1 /* 2 * PCI Bus Services, see include/linux/pci.h for further explanation. 3 * 4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter, 5 * David Mosberger-Tang 6 * 7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz> 8 */ 9 10 #include <linux/acpi.h> 11 #include <linux/kernel.h> 12 #include <linux/delay.h> 13 #include <linux/dmi.h> 14 #include <linux/init.h> 15 #include <linux/of.h> 16 #include <linux/of_pci.h> 17 #include <linux/pci.h> 18 #include <linux/pm.h> 19 #include <linux/slab.h> 20 #include <linux/module.h> 21 #include <linux/spinlock.h> 22 #include <linux/string.h> 23 #include <linux/log2.h> 24 #include <linux/pci-aspm.h> 25 #include <linux/pm_wakeup.h> 26 #include <linux/interrupt.h> 27 #include <linux/device.h> 28 #include <linux/pm_runtime.h> 29 #include <linux/pci_hotplug.h> 30 #include <linux/vmalloc.h> 31 #include <asm/setup.h> 32 #include <asm/dma.h> 33 #include <linux/aer.h> 34 #include "pci.h" 35 36 const char *pci_power_names[] = { 37 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown", 38 }; 39 EXPORT_SYMBOL_GPL(pci_power_names); 40 41 int isa_dma_bridge_buggy; 42 EXPORT_SYMBOL(isa_dma_bridge_buggy); 43 44 int pci_pci_problems; 45 EXPORT_SYMBOL(pci_pci_problems); 46 47 unsigned int pci_pm_d3_delay; 48 49 static void pci_pme_list_scan(struct work_struct *work); 50 51 static LIST_HEAD(pci_pme_list); 52 static DEFINE_MUTEX(pci_pme_list_mutex); 53 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan); 54 55 struct pci_pme_device { 56 struct list_head list; 57 struct pci_dev *dev; 58 }; 59 60 #define PME_TIMEOUT 1000 /* How long between PME checks */ 61 62 static void pci_dev_d3_sleep(struct pci_dev *dev) 63 { 64 unsigned int delay = dev->d3_delay; 65 66 if (delay < pci_pm_d3_delay) 67 delay = pci_pm_d3_delay; 68 69 msleep(delay); 70 } 71 72 #ifdef CONFIG_PCI_DOMAINS 73 int pci_domains_supported = 1; 74 #endif 75 76 #define DEFAULT_CARDBUS_IO_SIZE (256) 77 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024) 78 /* pci=cbmemsize=nnM,cbiosize=nn can override this */ 79 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE; 80 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE; 81 82 #define DEFAULT_HOTPLUG_IO_SIZE (256) 83 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024) 84 /* pci=hpmemsize=nnM,hpiosize=nn can override this */ 85 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE; 86 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE; 87 88 #define DEFAULT_HOTPLUG_BUS_SIZE 1 89 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 90 91 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT; 92 93 /* 94 * The default CLS is used if arch didn't set CLS explicitly and not 95 * all pci devices agree on the same value. Arch can override either 96 * the dfl or actual value as it sees fit. Don't forget this is 97 * measured in 32-bit words, not bytes. 98 */ 99 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2; 100 u8 pci_cache_line_size; 101 102 /* 103 * If we set up a device for bus mastering, we need to check the latency 104 * timer as certain BIOSes forget to set it properly. 105 */ 106 unsigned int pcibios_max_latency = 255; 107 108 /* If set, the PCIe ARI capability will not be used. */ 109 static bool pcie_ari_disabled; 110 111 /* Disable bridge_d3 for all PCIe ports */ 112 static bool pci_bridge_d3_disable; 113 /* Force bridge_d3 for all PCIe ports */ 114 static bool pci_bridge_d3_force; 115 116 static int __init pcie_port_pm_setup(char *str) 117 { 118 if (!strcmp(str, "off")) 119 pci_bridge_d3_disable = true; 120 else if (!strcmp(str, "force")) 121 pci_bridge_d3_force = true; 122 return 1; 123 } 124 __setup("pcie_port_pm=", pcie_port_pm_setup); 125 126 /** 127 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children 128 * @bus: pointer to PCI bus structure to search 129 * 130 * Given a PCI bus, returns the highest PCI bus number present in the set 131 * including the given PCI bus and its list of child PCI buses. 132 */ 133 unsigned char pci_bus_max_busnr(struct pci_bus *bus) 134 { 135 struct pci_bus *tmp; 136 unsigned char max, n; 137 138 max = bus->busn_res.end; 139 list_for_each_entry(tmp, &bus->children, node) { 140 n = pci_bus_max_busnr(tmp); 141 if (n > max) 142 max = n; 143 } 144 return max; 145 } 146 EXPORT_SYMBOL_GPL(pci_bus_max_busnr); 147 148 #ifdef CONFIG_HAS_IOMEM 149 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar) 150 { 151 struct resource *res = &pdev->resource[bar]; 152 153 /* 154 * Make sure the BAR is actually a memory resource, not an IO resource 155 */ 156 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) { 157 dev_warn(&pdev->dev, "can't ioremap BAR %d: %pR\n", bar, res); 158 return NULL; 159 } 160 return ioremap_nocache(res->start, resource_size(res)); 161 } 162 EXPORT_SYMBOL_GPL(pci_ioremap_bar); 163 164 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar) 165 { 166 /* 167 * Make sure the BAR is actually a memory resource, not an IO resource 168 */ 169 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) { 170 WARN_ON(1); 171 return NULL; 172 } 173 return ioremap_wc(pci_resource_start(pdev, bar), 174 pci_resource_len(pdev, bar)); 175 } 176 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar); 177 #endif 178 179 180 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn, 181 u8 pos, int cap, int *ttl) 182 { 183 u8 id; 184 u16 ent; 185 186 pci_bus_read_config_byte(bus, devfn, pos, &pos); 187 188 while ((*ttl)--) { 189 if (pos < 0x40) 190 break; 191 pos &= ~3; 192 pci_bus_read_config_word(bus, devfn, pos, &ent); 193 194 id = ent & 0xff; 195 if (id == 0xff) 196 break; 197 if (id == cap) 198 return pos; 199 pos = (ent >> 8); 200 } 201 return 0; 202 } 203 204 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn, 205 u8 pos, int cap) 206 { 207 int ttl = PCI_FIND_CAP_TTL; 208 209 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl); 210 } 211 212 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap) 213 { 214 return __pci_find_next_cap(dev->bus, dev->devfn, 215 pos + PCI_CAP_LIST_NEXT, cap); 216 } 217 EXPORT_SYMBOL_GPL(pci_find_next_capability); 218 219 static int __pci_bus_find_cap_start(struct pci_bus *bus, 220 unsigned int devfn, u8 hdr_type) 221 { 222 u16 status; 223 224 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status); 225 if (!(status & PCI_STATUS_CAP_LIST)) 226 return 0; 227 228 switch (hdr_type) { 229 case PCI_HEADER_TYPE_NORMAL: 230 case PCI_HEADER_TYPE_BRIDGE: 231 return PCI_CAPABILITY_LIST; 232 case PCI_HEADER_TYPE_CARDBUS: 233 return PCI_CB_CAPABILITY_LIST; 234 } 235 236 return 0; 237 } 238 239 /** 240 * pci_find_capability - query for devices' capabilities 241 * @dev: PCI device to query 242 * @cap: capability code 243 * 244 * Tell if a device supports a given PCI capability. 245 * Returns the address of the requested capability structure within the 246 * device's PCI configuration space or 0 in case the device does not 247 * support it. Possible values for @cap: 248 * 249 * %PCI_CAP_ID_PM Power Management 250 * %PCI_CAP_ID_AGP Accelerated Graphics Port 251 * %PCI_CAP_ID_VPD Vital Product Data 252 * %PCI_CAP_ID_SLOTID Slot Identification 253 * %PCI_CAP_ID_MSI Message Signalled Interrupts 254 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap 255 * %PCI_CAP_ID_PCIX PCI-X 256 * %PCI_CAP_ID_EXP PCI Express 257 */ 258 int pci_find_capability(struct pci_dev *dev, int cap) 259 { 260 int pos; 261 262 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 263 if (pos) 264 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap); 265 266 return pos; 267 } 268 EXPORT_SYMBOL(pci_find_capability); 269 270 /** 271 * pci_bus_find_capability - query for devices' capabilities 272 * @bus: the PCI bus to query 273 * @devfn: PCI device to query 274 * @cap: capability code 275 * 276 * Like pci_find_capability() but works for pci devices that do not have a 277 * pci_dev structure set up yet. 278 * 279 * Returns the address of the requested capability structure within the 280 * device's PCI configuration space or 0 in case the device does not 281 * support it. 282 */ 283 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap) 284 { 285 int pos; 286 u8 hdr_type; 287 288 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type); 289 290 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f); 291 if (pos) 292 pos = __pci_find_next_cap(bus, devfn, pos, cap); 293 294 return pos; 295 } 296 EXPORT_SYMBOL(pci_bus_find_capability); 297 298 /** 299 * pci_find_next_ext_capability - Find an extended capability 300 * @dev: PCI device to query 301 * @start: address at which to start looking (0 to start at beginning of list) 302 * @cap: capability code 303 * 304 * Returns the address of the next matching extended capability structure 305 * within the device's PCI configuration space or 0 if the device does 306 * not support it. Some capabilities can occur several times, e.g., the 307 * vendor-specific capability, and this provides a way to find them all. 308 */ 309 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap) 310 { 311 u32 header; 312 int ttl; 313 int pos = PCI_CFG_SPACE_SIZE; 314 315 /* minimum 8 bytes per capability */ 316 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8; 317 318 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE) 319 return 0; 320 321 if (start) 322 pos = start; 323 324 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 325 return 0; 326 327 /* 328 * If we have no capabilities, this is indicated by cap ID, 329 * cap version and next pointer all being 0. 330 */ 331 if (header == 0) 332 return 0; 333 334 while (ttl-- > 0) { 335 if (PCI_EXT_CAP_ID(header) == cap && pos != start) 336 return pos; 337 338 pos = PCI_EXT_CAP_NEXT(header); 339 if (pos < PCI_CFG_SPACE_SIZE) 340 break; 341 342 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 343 break; 344 } 345 346 return 0; 347 } 348 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability); 349 350 /** 351 * pci_find_ext_capability - Find an extended capability 352 * @dev: PCI device to query 353 * @cap: capability code 354 * 355 * Returns the address of the requested extended capability structure 356 * within the device's PCI configuration space or 0 if the device does 357 * not support it. Possible values for @cap: 358 * 359 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting 360 * %PCI_EXT_CAP_ID_VC Virtual Channel 361 * %PCI_EXT_CAP_ID_DSN Device Serial Number 362 * %PCI_EXT_CAP_ID_PWR Power Budgeting 363 */ 364 int pci_find_ext_capability(struct pci_dev *dev, int cap) 365 { 366 return pci_find_next_ext_capability(dev, 0, cap); 367 } 368 EXPORT_SYMBOL_GPL(pci_find_ext_capability); 369 370 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap) 371 { 372 int rc, ttl = PCI_FIND_CAP_TTL; 373 u8 cap, mask; 374 375 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST) 376 mask = HT_3BIT_CAP_MASK; 377 else 378 mask = HT_5BIT_CAP_MASK; 379 380 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos, 381 PCI_CAP_ID_HT, &ttl); 382 while (pos) { 383 rc = pci_read_config_byte(dev, pos + 3, &cap); 384 if (rc != PCIBIOS_SUCCESSFUL) 385 return 0; 386 387 if ((cap & mask) == ht_cap) 388 return pos; 389 390 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, 391 pos + PCI_CAP_LIST_NEXT, 392 PCI_CAP_ID_HT, &ttl); 393 } 394 395 return 0; 396 } 397 /** 398 * pci_find_next_ht_capability - query a device's Hypertransport capabilities 399 * @dev: PCI device to query 400 * @pos: Position from which to continue searching 401 * @ht_cap: Hypertransport capability code 402 * 403 * To be used in conjunction with pci_find_ht_capability() to search for 404 * all capabilities matching @ht_cap. @pos should always be a value returned 405 * from pci_find_ht_capability(). 406 * 407 * NB. To be 100% safe against broken PCI devices, the caller should take 408 * steps to avoid an infinite loop. 409 */ 410 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap) 411 { 412 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap); 413 } 414 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability); 415 416 /** 417 * pci_find_ht_capability - query a device's Hypertransport capabilities 418 * @dev: PCI device to query 419 * @ht_cap: Hypertransport capability code 420 * 421 * Tell if a device supports a given Hypertransport capability. 422 * Returns an address within the device's PCI configuration space 423 * or 0 in case the device does not support the request capability. 424 * The address points to the PCI capability, of type PCI_CAP_ID_HT, 425 * which has a Hypertransport capability matching @ht_cap. 426 */ 427 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap) 428 { 429 int pos; 430 431 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 432 if (pos) 433 pos = __pci_find_next_ht_cap(dev, pos, ht_cap); 434 435 return pos; 436 } 437 EXPORT_SYMBOL_GPL(pci_find_ht_capability); 438 439 /** 440 * pci_find_parent_resource - return resource region of parent bus of given region 441 * @dev: PCI device structure contains resources to be searched 442 * @res: child resource record for which parent is sought 443 * 444 * For given resource region of given device, return the resource 445 * region of parent bus the given region is contained in. 446 */ 447 struct resource *pci_find_parent_resource(const struct pci_dev *dev, 448 struct resource *res) 449 { 450 const struct pci_bus *bus = dev->bus; 451 struct resource *r; 452 int i; 453 454 pci_bus_for_each_resource(bus, r, i) { 455 if (!r) 456 continue; 457 if (res->start && resource_contains(r, res)) { 458 459 /* 460 * If the window is prefetchable but the BAR is 461 * not, the allocator made a mistake. 462 */ 463 if (r->flags & IORESOURCE_PREFETCH && 464 !(res->flags & IORESOURCE_PREFETCH)) 465 return NULL; 466 467 /* 468 * If we're below a transparent bridge, there may 469 * be both a positively-decoded aperture and a 470 * subtractively-decoded region that contain the BAR. 471 * We want the positively-decoded one, so this depends 472 * on pci_bus_for_each_resource() giving us those 473 * first. 474 */ 475 return r; 476 } 477 } 478 return NULL; 479 } 480 EXPORT_SYMBOL(pci_find_parent_resource); 481 482 /** 483 * pci_find_resource - Return matching PCI device resource 484 * @dev: PCI device to query 485 * @res: Resource to look for 486 * 487 * Goes over standard PCI resources (BARs) and checks if the given resource 488 * is partially or fully contained in any of them. In that case the 489 * matching resource is returned, %NULL otherwise. 490 */ 491 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res) 492 { 493 int i; 494 495 for (i = 0; i < PCI_ROM_RESOURCE; i++) { 496 struct resource *r = &dev->resource[i]; 497 498 if (r->start && resource_contains(r, res)) 499 return r; 500 } 501 502 return NULL; 503 } 504 EXPORT_SYMBOL(pci_find_resource); 505 506 /** 507 * pci_find_pcie_root_port - return PCIe Root Port 508 * @dev: PCI device to query 509 * 510 * Traverse up the parent chain and return the PCIe Root Port PCI Device 511 * for a given PCI Device. 512 */ 513 struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev) 514 { 515 struct pci_dev *bridge, *highest_pcie_bridge = NULL; 516 517 bridge = pci_upstream_bridge(dev); 518 while (bridge && pci_is_pcie(bridge)) { 519 highest_pcie_bridge = bridge; 520 bridge = pci_upstream_bridge(bridge); 521 } 522 523 if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT) 524 return NULL; 525 526 return highest_pcie_bridge; 527 } 528 EXPORT_SYMBOL(pci_find_pcie_root_port); 529 530 /** 531 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos 532 * @dev: the PCI device to operate on 533 * @pos: config space offset of status word 534 * @mask: mask of bit(s) to care about in status word 535 * 536 * Return 1 when mask bit(s) in status word clear, 0 otherwise. 537 */ 538 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask) 539 { 540 int i; 541 542 /* Wait for Transaction Pending bit clean */ 543 for (i = 0; i < 4; i++) { 544 u16 status; 545 if (i) 546 msleep((1 << (i - 1)) * 100); 547 548 pci_read_config_word(dev, pos, &status); 549 if (!(status & mask)) 550 return 1; 551 } 552 553 return 0; 554 } 555 556 /** 557 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up) 558 * @dev: PCI device to have its BARs restored 559 * 560 * Restore the BAR values for a given device, so as to make it 561 * accessible by its driver. 562 */ 563 static void pci_restore_bars(struct pci_dev *dev) 564 { 565 int i; 566 567 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) 568 pci_update_resource(dev, i); 569 } 570 571 static const struct pci_platform_pm_ops *pci_platform_pm; 572 573 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops) 574 { 575 if (!ops->is_manageable || !ops->set_state || !ops->get_state || 576 !ops->choose_state || !ops->sleep_wake || !ops->run_wake || 577 !ops->need_resume) 578 return -EINVAL; 579 pci_platform_pm = ops; 580 return 0; 581 } 582 583 static inline bool platform_pci_power_manageable(struct pci_dev *dev) 584 { 585 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false; 586 } 587 588 static inline int platform_pci_set_power_state(struct pci_dev *dev, 589 pci_power_t t) 590 { 591 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS; 592 } 593 594 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev) 595 { 596 return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN; 597 } 598 599 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev) 600 { 601 return pci_platform_pm ? 602 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR; 603 } 604 605 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable) 606 { 607 return pci_platform_pm ? 608 pci_platform_pm->sleep_wake(dev, enable) : -ENODEV; 609 } 610 611 static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable) 612 { 613 return pci_platform_pm ? 614 pci_platform_pm->run_wake(dev, enable) : -ENODEV; 615 } 616 617 static inline bool platform_pci_need_resume(struct pci_dev *dev) 618 { 619 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false; 620 } 621 622 /** 623 * pci_raw_set_power_state - Use PCI PM registers to set the power state of 624 * given PCI device 625 * @dev: PCI device to handle. 626 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 627 * 628 * RETURN VALUE: 629 * -EINVAL if the requested state is invalid. 630 * -EIO if device does not support PCI PM or its PM capabilities register has a 631 * wrong version, or device doesn't support the requested state. 632 * 0 if device already is in the requested state. 633 * 0 if device's power state has been successfully changed. 634 */ 635 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state) 636 { 637 u16 pmcsr; 638 bool need_restore = false; 639 640 /* Check if we're already there */ 641 if (dev->current_state == state) 642 return 0; 643 644 if (!dev->pm_cap) 645 return -EIO; 646 647 if (state < PCI_D0 || state > PCI_D3hot) 648 return -EINVAL; 649 650 /* Validate current state: 651 * Can enter D0 from any state, but if we can only go deeper 652 * to sleep if we're already in a low power state 653 */ 654 if (state != PCI_D0 && dev->current_state <= PCI_D3cold 655 && dev->current_state > state) { 656 dev_err(&dev->dev, "invalid power transition (from state %d to %d)\n", 657 dev->current_state, state); 658 return -EINVAL; 659 } 660 661 /* check if this device supports the desired state */ 662 if ((state == PCI_D1 && !dev->d1_support) 663 || (state == PCI_D2 && !dev->d2_support)) 664 return -EIO; 665 666 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 667 668 /* If we're (effectively) in D3, force entire word to 0. 669 * This doesn't affect PME_Status, disables PME_En, and 670 * sets PowerState to 0. 671 */ 672 switch (dev->current_state) { 673 case PCI_D0: 674 case PCI_D1: 675 case PCI_D2: 676 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 677 pmcsr |= state; 678 break; 679 case PCI_D3hot: 680 case PCI_D3cold: 681 case PCI_UNKNOWN: /* Boot-up */ 682 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot 683 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET)) 684 need_restore = true; 685 /* Fall-through: force to D0 */ 686 default: 687 pmcsr = 0; 688 break; 689 } 690 691 /* enter specified state */ 692 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 693 694 /* Mandatory power management transition delays */ 695 /* see PCI PM 1.1 5.6.1 table 18 */ 696 if (state == PCI_D3hot || dev->current_state == PCI_D3hot) 697 pci_dev_d3_sleep(dev); 698 else if (state == PCI_D2 || dev->current_state == PCI_D2) 699 udelay(PCI_PM_D2_DELAY); 700 701 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 702 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 703 if (dev->current_state != state && printk_ratelimit()) 704 dev_info(&dev->dev, "Refused to change power state, currently in D%d\n", 705 dev->current_state); 706 707 /* 708 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT 709 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning 710 * from D3hot to D0 _may_ perform an internal reset, thereby 711 * going to "D0 Uninitialized" rather than "D0 Initialized". 712 * For example, at least some versions of the 3c905B and the 713 * 3c556B exhibit this behaviour. 714 * 715 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave 716 * devices in a D3hot state at boot. Consequently, we need to 717 * restore at least the BARs so that the device will be 718 * accessible to its driver. 719 */ 720 if (need_restore) 721 pci_restore_bars(dev); 722 723 if (dev->bus->self) 724 pcie_aspm_pm_state_change(dev->bus->self); 725 726 return 0; 727 } 728 729 /** 730 * pci_update_current_state - Read power state of given device and cache it 731 * @dev: PCI device to handle. 732 * @state: State to cache in case the device doesn't have the PM capability 733 * 734 * The power state is read from the PMCSR register, which however is 735 * inaccessible in D3cold. The platform firmware is therefore queried first 736 * to detect accessibility of the register. In case the platform firmware 737 * reports an incorrect state or the device isn't power manageable by the 738 * platform at all, we try to detect D3cold by testing accessibility of the 739 * vendor ID in config space. 740 */ 741 void pci_update_current_state(struct pci_dev *dev, pci_power_t state) 742 { 743 if (platform_pci_get_power_state(dev) == PCI_D3cold || 744 !pci_device_is_present(dev)) { 745 dev->current_state = PCI_D3cold; 746 } else if (dev->pm_cap) { 747 u16 pmcsr; 748 749 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 750 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 751 } else { 752 dev->current_state = state; 753 } 754 } 755 756 /** 757 * pci_power_up - Put the given device into D0 forcibly 758 * @dev: PCI device to power up 759 */ 760 void pci_power_up(struct pci_dev *dev) 761 { 762 if (platform_pci_power_manageable(dev)) 763 platform_pci_set_power_state(dev, PCI_D0); 764 765 pci_raw_set_power_state(dev, PCI_D0); 766 pci_update_current_state(dev, PCI_D0); 767 } 768 769 /** 770 * pci_platform_power_transition - Use platform to change device power state 771 * @dev: PCI device to handle. 772 * @state: State to put the device into. 773 */ 774 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state) 775 { 776 int error; 777 778 if (platform_pci_power_manageable(dev)) { 779 error = platform_pci_set_power_state(dev, state); 780 if (!error) 781 pci_update_current_state(dev, state); 782 } else 783 error = -ENODEV; 784 785 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */ 786 dev->current_state = PCI_D0; 787 788 return error; 789 } 790 791 /** 792 * pci_wakeup - Wake up a PCI device 793 * @pci_dev: Device to handle. 794 * @ign: ignored parameter 795 */ 796 static int pci_wakeup(struct pci_dev *pci_dev, void *ign) 797 { 798 pci_wakeup_event(pci_dev); 799 pm_request_resume(&pci_dev->dev); 800 return 0; 801 } 802 803 /** 804 * pci_wakeup_bus - Walk given bus and wake up devices on it 805 * @bus: Top bus of the subtree to walk. 806 */ 807 static void pci_wakeup_bus(struct pci_bus *bus) 808 { 809 if (bus) 810 pci_walk_bus(bus, pci_wakeup, NULL); 811 } 812 813 /** 814 * __pci_start_power_transition - Start power transition of a PCI device 815 * @dev: PCI device to handle. 816 * @state: State to put the device into. 817 */ 818 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state) 819 { 820 if (state == PCI_D0) { 821 pci_platform_power_transition(dev, PCI_D0); 822 /* 823 * Mandatory power management transition delays, see 824 * PCI Express Base Specification Revision 2.0 Section 825 * 6.6.1: Conventional Reset. Do not delay for 826 * devices powered on/off by corresponding bridge, 827 * because have already delayed for the bridge. 828 */ 829 if (dev->runtime_d3cold) { 830 msleep(dev->d3cold_delay); 831 /* 832 * When powering on a bridge from D3cold, the 833 * whole hierarchy may be powered on into 834 * D0uninitialized state, resume them to give 835 * them a chance to suspend again 836 */ 837 pci_wakeup_bus(dev->subordinate); 838 } 839 } 840 } 841 842 /** 843 * __pci_dev_set_current_state - Set current state of a PCI device 844 * @dev: Device to handle 845 * @data: pointer to state to be set 846 */ 847 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data) 848 { 849 pci_power_t state = *(pci_power_t *)data; 850 851 dev->current_state = state; 852 return 0; 853 } 854 855 /** 856 * __pci_bus_set_current_state - Walk given bus and set current state of devices 857 * @bus: Top bus of the subtree to walk. 858 * @state: state to be set 859 */ 860 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state) 861 { 862 if (bus) 863 pci_walk_bus(bus, __pci_dev_set_current_state, &state); 864 } 865 866 /** 867 * __pci_complete_power_transition - Complete power transition of a PCI device 868 * @dev: PCI device to handle. 869 * @state: State to put the device into. 870 * 871 * This function should not be called directly by device drivers. 872 */ 873 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state) 874 { 875 int ret; 876 877 if (state <= PCI_D0) 878 return -EINVAL; 879 ret = pci_platform_power_transition(dev, state); 880 /* Power off the bridge may power off the whole hierarchy */ 881 if (!ret && state == PCI_D3cold) 882 __pci_bus_set_current_state(dev->subordinate, PCI_D3cold); 883 return ret; 884 } 885 EXPORT_SYMBOL_GPL(__pci_complete_power_transition); 886 887 /** 888 * pci_set_power_state - Set the power state of a PCI device 889 * @dev: PCI device to handle. 890 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 891 * 892 * Transition a device to a new power state, using the platform firmware and/or 893 * the device's PCI PM registers. 894 * 895 * RETURN VALUE: 896 * -EINVAL if the requested state is invalid. 897 * -EIO if device does not support PCI PM or its PM capabilities register has a 898 * wrong version, or device doesn't support the requested state. 899 * 0 if device already is in the requested state. 900 * 0 if device's power state has been successfully changed. 901 */ 902 int pci_set_power_state(struct pci_dev *dev, pci_power_t state) 903 { 904 int error; 905 906 /* bound the state we're entering */ 907 if (state > PCI_D3cold) 908 state = PCI_D3cold; 909 else if (state < PCI_D0) 910 state = PCI_D0; 911 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev)) 912 /* 913 * If the device or the parent bridge do not support PCI PM, 914 * ignore the request if we're doing anything other than putting 915 * it into D0 (which would only happen on boot). 916 */ 917 return 0; 918 919 /* Check if we're already there */ 920 if (dev->current_state == state) 921 return 0; 922 923 __pci_start_power_transition(dev, state); 924 925 /* This device is quirked not to be put into D3, so 926 don't put it in D3 */ 927 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3)) 928 return 0; 929 930 /* 931 * To put device in D3cold, we put device into D3hot in native 932 * way, then put device into D3cold with platform ops 933 */ 934 error = pci_raw_set_power_state(dev, state > PCI_D3hot ? 935 PCI_D3hot : state); 936 937 if (!__pci_complete_power_transition(dev, state)) 938 error = 0; 939 940 return error; 941 } 942 EXPORT_SYMBOL(pci_set_power_state); 943 944 /** 945 * pci_choose_state - Choose the power state of a PCI device 946 * @dev: PCI device to be suspended 947 * @state: target sleep state for the whole system. This is the value 948 * that is passed to suspend() function. 949 * 950 * Returns PCI power state suitable for given device and given system 951 * message. 952 */ 953 954 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state) 955 { 956 pci_power_t ret; 957 958 if (!dev->pm_cap) 959 return PCI_D0; 960 961 ret = platform_pci_choose_state(dev); 962 if (ret != PCI_POWER_ERROR) 963 return ret; 964 965 switch (state.event) { 966 case PM_EVENT_ON: 967 return PCI_D0; 968 case PM_EVENT_FREEZE: 969 case PM_EVENT_PRETHAW: 970 /* REVISIT both freeze and pre-thaw "should" use D0 */ 971 case PM_EVENT_SUSPEND: 972 case PM_EVENT_HIBERNATE: 973 return PCI_D3hot; 974 default: 975 dev_info(&dev->dev, "unrecognized suspend event %d\n", 976 state.event); 977 BUG(); 978 } 979 return PCI_D0; 980 } 981 EXPORT_SYMBOL(pci_choose_state); 982 983 #define PCI_EXP_SAVE_REGS 7 984 985 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev, 986 u16 cap, bool extended) 987 { 988 struct pci_cap_saved_state *tmp; 989 990 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) { 991 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap) 992 return tmp; 993 } 994 return NULL; 995 } 996 997 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap) 998 { 999 return _pci_find_saved_cap(dev, cap, false); 1000 } 1001 1002 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap) 1003 { 1004 return _pci_find_saved_cap(dev, cap, true); 1005 } 1006 1007 static int pci_save_pcie_state(struct pci_dev *dev) 1008 { 1009 int i = 0; 1010 struct pci_cap_saved_state *save_state; 1011 u16 *cap; 1012 1013 if (!pci_is_pcie(dev)) 1014 return 0; 1015 1016 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1017 if (!save_state) { 1018 dev_err(&dev->dev, "buffer not found in %s\n", __func__); 1019 return -ENOMEM; 1020 } 1021 1022 cap = (u16 *)&save_state->cap.data[0]; 1023 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]); 1024 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]); 1025 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]); 1026 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]); 1027 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]); 1028 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]); 1029 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]); 1030 1031 return 0; 1032 } 1033 1034 static void pci_restore_pcie_state(struct pci_dev *dev) 1035 { 1036 int i = 0; 1037 struct pci_cap_saved_state *save_state; 1038 u16 *cap; 1039 1040 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1041 if (!save_state) 1042 return; 1043 1044 cap = (u16 *)&save_state->cap.data[0]; 1045 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]); 1046 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]); 1047 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]); 1048 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]); 1049 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]); 1050 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]); 1051 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]); 1052 } 1053 1054 1055 static int pci_save_pcix_state(struct pci_dev *dev) 1056 { 1057 int pos; 1058 struct pci_cap_saved_state *save_state; 1059 1060 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1061 if (!pos) 1062 return 0; 1063 1064 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1065 if (!save_state) { 1066 dev_err(&dev->dev, "buffer not found in %s\n", __func__); 1067 return -ENOMEM; 1068 } 1069 1070 pci_read_config_word(dev, pos + PCI_X_CMD, 1071 (u16 *)save_state->cap.data); 1072 1073 return 0; 1074 } 1075 1076 static void pci_restore_pcix_state(struct pci_dev *dev) 1077 { 1078 int i = 0, pos; 1079 struct pci_cap_saved_state *save_state; 1080 u16 *cap; 1081 1082 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1083 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1084 if (!save_state || !pos) 1085 return; 1086 cap = (u16 *)&save_state->cap.data[0]; 1087 1088 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]); 1089 } 1090 1091 1092 /** 1093 * pci_save_state - save the PCI configuration space of a device before suspending 1094 * @dev: - PCI device that we're dealing with 1095 */ 1096 int pci_save_state(struct pci_dev *dev) 1097 { 1098 int i; 1099 /* XXX: 100% dword access ok here? */ 1100 for (i = 0; i < 16; i++) 1101 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]); 1102 dev->state_saved = true; 1103 1104 i = pci_save_pcie_state(dev); 1105 if (i != 0) 1106 return i; 1107 1108 i = pci_save_pcix_state(dev); 1109 if (i != 0) 1110 return i; 1111 1112 return pci_save_vc_state(dev); 1113 } 1114 EXPORT_SYMBOL(pci_save_state); 1115 1116 static void pci_restore_config_dword(struct pci_dev *pdev, int offset, 1117 u32 saved_val, int retry) 1118 { 1119 u32 val; 1120 1121 pci_read_config_dword(pdev, offset, &val); 1122 if (val == saved_val) 1123 return; 1124 1125 for (;;) { 1126 dev_dbg(&pdev->dev, "restoring config space at offset %#x (was %#x, writing %#x)\n", 1127 offset, val, saved_val); 1128 pci_write_config_dword(pdev, offset, saved_val); 1129 if (retry-- <= 0) 1130 return; 1131 1132 pci_read_config_dword(pdev, offset, &val); 1133 if (val == saved_val) 1134 return; 1135 1136 mdelay(1); 1137 } 1138 } 1139 1140 static void pci_restore_config_space_range(struct pci_dev *pdev, 1141 int start, int end, int retry) 1142 { 1143 int index; 1144 1145 for (index = end; index >= start; index--) 1146 pci_restore_config_dword(pdev, 4 * index, 1147 pdev->saved_config_space[index], 1148 retry); 1149 } 1150 1151 static void pci_restore_config_space(struct pci_dev *pdev) 1152 { 1153 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) { 1154 pci_restore_config_space_range(pdev, 10, 15, 0); 1155 /* Restore BARs before the command register. */ 1156 pci_restore_config_space_range(pdev, 4, 9, 10); 1157 pci_restore_config_space_range(pdev, 0, 3, 0); 1158 } else { 1159 pci_restore_config_space_range(pdev, 0, 15, 0); 1160 } 1161 } 1162 1163 /** 1164 * pci_restore_state - Restore the saved state of a PCI device 1165 * @dev: - PCI device that we're dealing with 1166 */ 1167 void pci_restore_state(struct pci_dev *dev) 1168 { 1169 if (!dev->state_saved) 1170 return; 1171 1172 /* PCI Express register must be restored first */ 1173 pci_restore_pcie_state(dev); 1174 pci_restore_ats_state(dev); 1175 pci_restore_vc_state(dev); 1176 1177 pci_cleanup_aer_error_status_regs(dev); 1178 1179 pci_restore_config_space(dev); 1180 1181 pci_restore_pcix_state(dev); 1182 pci_restore_msi_state(dev); 1183 1184 /* Restore ACS and IOV configuration state */ 1185 pci_enable_acs(dev); 1186 pci_restore_iov_state(dev); 1187 1188 dev->state_saved = false; 1189 } 1190 EXPORT_SYMBOL(pci_restore_state); 1191 1192 struct pci_saved_state { 1193 u32 config_space[16]; 1194 struct pci_cap_saved_data cap[0]; 1195 }; 1196 1197 /** 1198 * pci_store_saved_state - Allocate and return an opaque struct containing 1199 * the device saved state. 1200 * @dev: PCI device that we're dealing with 1201 * 1202 * Return NULL if no state or error. 1203 */ 1204 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev) 1205 { 1206 struct pci_saved_state *state; 1207 struct pci_cap_saved_state *tmp; 1208 struct pci_cap_saved_data *cap; 1209 size_t size; 1210 1211 if (!dev->state_saved) 1212 return NULL; 1213 1214 size = sizeof(*state) + sizeof(struct pci_cap_saved_data); 1215 1216 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) 1217 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1218 1219 state = kzalloc(size, GFP_KERNEL); 1220 if (!state) 1221 return NULL; 1222 1223 memcpy(state->config_space, dev->saved_config_space, 1224 sizeof(state->config_space)); 1225 1226 cap = state->cap; 1227 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) { 1228 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1229 memcpy(cap, &tmp->cap, len); 1230 cap = (struct pci_cap_saved_data *)((u8 *)cap + len); 1231 } 1232 /* Empty cap_save terminates list */ 1233 1234 return state; 1235 } 1236 EXPORT_SYMBOL_GPL(pci_store_saved_state); 1237 1238 /** 1239 * pci_load_saved_state - Reload the provided save state into struct pci_dev. 1240 * @dev: PCI device that we're dealing with 1241 * @state: Saved state returned from pci_store_saved_state() 1242 */ 1243 int pci_load_saved_state(struct pci_dev *dev, 1244 struct pci_saved_state *state) 1245 { 1246 struct pci_cap_saved_data *cap; 1247 1248 dev->state_saved = false; 1249 1250 if (!state) 1251 return 0; 1252 1253 memcpy(dev->saved_config_space, state->config_space, 1254 sizeof(state->config_space)); 1255 1256 cap = state->cap; 1257 while (cap->size) { 1258 struct pci_cap_saved_state *tmp; 1259 1260 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended); 1261 if (!tmp || tmp->cap.size != cap->size) 1262 return -EINVAL; 1263 1264 memcpy(tmp->cap.data, cap->data, tmp->cap.size); 1265 cap = (struct pci_cap_saved_data *)((u8 *)cap + 1266 sizeof(struct pci_cap_saved_data) + cap->size); 1267 } 1268 1269 dev->state_saved = true; 1270 return 0; 1271 } 1272 EXPORT_SYMBOL_GPL(pci_load_saved_state); 1273 1274 /** 1275 * pci_load_and_free_saved_state - Reload the save state pointed to by state, 1276 * and free the memory allocated for it. 1277 * @dev: PCI device that we're dealing with 1278 * @state: Pointer to saved state returned from pci_store_saved_state() 1279 */ 1280 int pci_load_and_free_saved_state(struct pci_dev *dev, 1281 struct pci_saved_state **state) 1282 { 1283 int ret = pci_load_saved_state(dev, *state); 1284 kfree(*state); 1285 *state = NULL; 1286 return ret; 1287 } 1288 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state); 1289 1290 int __weak pcibios_enable_device(struct pci_dev *dev, int bars) 1291 { 1292 return pci_enable_resources(dev, bars); 1293 } 1294 1295 static int do_pci_enable_device(struct pci_dev *dev, int bars) 1296 { 1297 int err; 1298 struct pci_dev *bridge; 1299 u16 cmd; 1300 u8 pin; 1301 1302 err = pci_set_power_state(dev, PCI_D0); 1303 if (err < 0 && err != -EIO) 1304 return err; 1305 1306 bridge = pci_upstream_bridge(dev); 1307 if (bridge) 1308 pcie_aspm_powersave_config_link(bridge); 1309 1310 err = pcibios_enable_device(dev, bars); 1311 if (err < 0) 1312 return err; 1313 pci_fixup_device(pci_fixup_enable, dev); 1314 1315 if (dev->msi_enabled || dev->msix_enabled) 1316 return 0; 1317 1318 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin); 1319 if (pin) { 1320 pci_read_config_word(dev, PCI_COMMAND, &cmd); 1321 if (cmd & PCI_COMMAND_INTX_DISABLE) 1322 pci_write_config_word(dev, PCI_COMMAND, 1323 cmd & ~PCI_COMMAND_INTX_DISABLE); 1324 } 1325 1326 return 0; 1327 } 1328 1329 /** 1330 * pci_reenable_device - Resume abandoned device 1331 * @dev: PCI device to be resumed 1332 * 1333 * Note this function is a backend of pci_default_resume and is not supposed 1334 * to be called by normal code, write proper resume handler and use it instead. 1335 */ 1336 int pci_reenable_device(struct pci_dev *dev) 1337 { 1338 if (pci_is_enabled(dev)) 1339 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1); 1340 return 0; 1341 } 1342 EXPORT_SYMBOL(pci_reenable_device); 1343 1344 static void pci_enable_bridge(struct pci_dev *dev) 1345 { 1346 struct pci_dev *bridge; 1347 int retval; 1348 1349 bridge = pci_upstream_bridge(dev); 1350 if (bridge) 1351 pci_enable_bridge(bridge); 1352 1353 if (pci_is_enabled(dev)) { 1354 if (!dev->is_busmaster) 1355 pci_set_master(dev); 1356 return; 1357 } 1358 1359 retval = pci_enable_device(dev); 1360 if (retval) 1361 dev_err(&dev->dev, "Error enabling bridge (%d), continuing\n", 1362 retval); 1363 pci_set_master(dev); 1364 } 1365 1366 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags) 1367 { 1368 struct pci_dev *bridge; 1369 int err; 1370 int i, bars = 0; 1371 1372 /* 1373 * Power state could be unknown at this point, either due to a fresh 1374 * boot or a device removal call. So get the current power state 1375 * so that things like MSI message writing will behave as expected 1376 * (e.g. if the device really is in D0 at enable time). 1377 */ 1378 if (dev->pm_cap) { 1379 u16 pmcsr; 1380 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1381 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 1382 } 1383 1384 if (atomic_inc_return(&dev->enable_cnt) > 1) 1385 return 0; /* already enabled */ 1386 1387 bridge = pci_upstream_bridge(dev); 1388 if (bridge) 1389 pci_enable_bridge(bridge); 1390 1391 /* only skip sriov related */ 1392 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 1393 if (dev->resource[i].flags & flags) 1394 bars |= (1 << i); 1395 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++) 1396 if (dev->resource[i].flags & flags) 1397 bars |= (1 << i); 1398 1399 err = do_pci_enable_device(dev, bars); 1400 if (err < 0) 1401 atomic_dec(&dev->enable_cnt); 1402 return err; 1403 } 1404 1405 /** 1406 * pci_enable_device_io - Initialize a device for use with IO space 1407 * @dev: PCI device to be initialized 1408 * 1409 * Initialize device before it's used by a driver. Ask low-level code 1410 * to enable I/O resources. Wake up the device if it was suspended. 1411 * Beware, this function can fail. 1412 */ 1413 int pci_enable_device_io(struct pci_dev *dev) 1414 { 1415 return pci_enable_device_flags(dev, IORESOURCE_IO); 1416 } 1417 EXPORT_SYMBOL(pci_enable_device_io); 1418 1419 /** 1420 * pci_enable_device_mem - Initialize a device for use with Memory space 1421 * @dev: PCI device to be initialized 1422 * 1423 * Initialize device before it's used by a driver. Ask low-level code 1424 * to enable Memory resources. Wake up the device if it was suspended. 1425 * Beware, this function can fail. 1426 */ 1427 int pci_enable_device_mem(struct pci_dev *dev) 1428 { 1429 return pci_enable_device_flags(dev, IORESOURCE_MEM); 1430 } 1431 EXPORT_SYMBOL(pci_enable_device_mem); 1432 1433 /** 1434 * pci_enable_device - Initialize device before it's used by a driver. 1435 * @dev: PCI device to be initialized 1436 * 1437 * Initialize device before it's used by a driver. Ask low-level code 1438 * to enable I/O and memory. Wake up the device if it was suspended. 1439 * Beware, this function can fail. 1440 * 1441 * Note we don't actually enable the device many times if we call 1442 * this function repeatedly (we just increment the count). 1443 */ 1444 int pci_enable_device(struct pci_dev *dev) 1445 { 1446 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO); 1447 } 1448 EXPORT_SYMBOL(pci_enable_device); 1449 1450 /* 1451 * Managed PCI resources. This manages device on/off, intx/msi/msix 1452 * on/off and BAR regions. pci_dev itself records msi/msix status, so 1453 * there's no need to track it separately. pci_devres is initialized 1454 * when a device is enabled using managed PCI device enable interface. 1455 */ 1456 struct pci_devres { 1457 unsigned int enabled:1; 1458 unsigned int pinned:1; 1459 unsigned int orig_intx:1; 1460 unsigned int restore_intx:1; 1461 u32 region_mask; 1462 }; 1463 1464 static void pcim_release(struct device *gendev, void *res) 1465 { 1466 struct pci_dev *dev = to_pci_dev(gendev); 1467 struct pci_devres *this = res; 1468 int i; 1469 1470 if (dev->msi_enabled) 1471 pci_disable_msi(dev); 1472 if (dev->msix_enabled) 1473 pci_disable_msix(dev); 1474 1475 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) 1476 if (this->region_mask & (1 << i)) 1477 pci_release_region(dev, i); 1478 1479 if (this->restore_intx) 1480 pci_intx(dev, this->orig_intx); 1481 1482 if (this->enabled && !this->pinned) 1483 pci_disable_device(dev); 1484 } 1485 1486 static struct pci_devres *get_pci_dr(struct pci_dev *pdev) 1487 { 1488 struct pci_devres *dr, *new_dr; 1489 1490 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL); 1491 if (dr) 1492 return dr; 1493 1494 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL); 1495 if (!new_dr) 1496 return NULL; 1497 return devres_get(&pdev->dev, new_dr, NULL, NULL); 1498 } 1499 1500 static struct pci_devres *find_pci_dr(struct pci_dev *pdev) 1501 { 1502 if (pci_is_managed(pdev)) 1503 return devres_find(&pdev->dev, pcim_release, NULL, NULL); 1504 return NULL; 1505 } 1506 1507 /** 1508 * pcim_enable_device - Managed pci_enable_device() 1509 * @pdev: PCI device to be initialized 1510 * 1511 * Managed pci_enable_device(). 1512 */ 1513 int pcim_enable_device(struct pci_dev *pdev) 1514 { 1515 struct pci_devres *dr; 1516 int rc; 1517 1518 dr = get_pci_dr(pdev); 1519 if (unlikely(!dr)) 1520 return -ENOMEM; 1521 if (dr->enabled) 1522 return 0; 1523 1524 rc = pci_enable_device(pdev); 1525 if (!rc) { 1526 pdev->is_managed = 1; 1527 dr->enabled = 1; 1528 } 1529 return rc; 1530 } 1531 EXPORT_SYMBOL(pcim_enable_device); 1532 1533 /** 1534 * pcim_pin_device - Pin managed PCI device 1535 * @pdev: PCI device to pin 1536 * 1537 * Pin managed PCI device @pdev. Pinned device won't be disabled on 1538 * driver detach. @pdev must have been enabled with 1539 * pcim_enable_device(). 1540 */ 1541 void pcim_pin_device(struct pci_dev *pdev) 1542 { 1543 struct pci_devres *dr; 1544 1545 dr = find_pci_dr(pdev); 1546 WARN_ON(!dr || !dr->enabled); 1547 if (dr) 1548 dr->pinned = 1; 1549 } 1550 EXPORT_SYMBOL(pcim_pin_device); 1551 1552 /* 1553 * pcibios_add_device - provide arch specific hooks when adding device dev 1554 * @dev: the PCI device being added 1555 * 1556 * Permits the platform to provide architecture specific functionality when 1557 * devices are added. This is the default implementation. Architecture 1558 * implementations can override this. 1559 */ 1560 int __weak pcibios_add_device(struct pci_dev *dev) 1561 { 1562 return 0; 1563 } 1564 1565 /** 1566 * pcibios_release_device - provide arch specific hooks when releasing device dev 1567 * @dev: the PCI device being released 1568 * 1569 * Permits the platform to provide architecture specific functionality when 1570 * devices are released. This is the default implementation. Architecture 1571 * implementations can override this. 1572 */ 1573 void __weak pcibios_release_device(struct pci_dev *dev) {} 1574 1575 /** 1576 * pcibios_disable_device - disable arch specific PCI resources for device dev 1577 * @dev: the PCI device to disable 1578 * 1579 * Disables architecture specific PCI resources for the device. This 1580 * is the default implementation. Architecture implementations can 1581 * override this. 1582 */ 1583 void __weak pcibios_disable_device(struct pci_dev *dev) {} 1584 1585 /** 1586 * pcibios_penalize_isa_irq - penalize an ISA IRQ 1587 * @irq: ISA IRQ to penalize 1588 * @active: IRQ active or not 1589 * 1590 * Permits the platform to provide architecture-specific functionality when 1591 * penalizing ISA IRQs. This is the default implementation. Architecture 1592 * implementations can override this. 1593 */ 1594 void __weak pcibios_penalize_isa_irq(int irq, int active) {} 1595 1596 static void do_pci_disable_device(struct pci_dev *dev) 1597 { 1598 u16 pci_command; 1599 1600 pci_read_config_word(dev, PCI_COMMAND, &pci_command); 1601 if (pci_command & PCI_COMMAND_MASTER) { 1602 pci_command &= ~PCI_COMMAND_MASTER; 1603 pci_write_config_word(dev, PCI_COMMAND, pci_command); 1604 } 1605 1606 pcibios_disable_device(dev); 1607 } 1608 1609 /** 1610 * pci_disable_enabled_device - Disable device without updating enable_cnt 1611 * @dev: PCI device to disable 1612 * 1613 * NOTE: This function is a backend of PCI power management routines and is 1614 * not supposed to be called drivers. 1615 */ 1616 void pci_disable_enabled_device(struct pci_dev *dev) 1617 { 1618 if (pci_is_enabled(dev)) 1619 do_pci_disable_device(dev); 1620 } 1621 1622 /** 1623 * pci_disable_device - Disable PCI device after use 1624 * @dev: PCI device to be disabled 1625 * 1626 * Signal to the system that the PCI device is not in use by the system 1627 * anymore. This only involves disabling PCI bus-mastering, if active. 1628 * 1629 * Note we don't actually disable the device until all callers of 1630 * pci_enable_device() have called pci_disable_device(). 1631 */ 1632 void pci_disable_device(struct pci_dev *dev) 1633 { 1634 struct pci_devres *dr; 1635 1636 dr = find_pci_dr(dev); 1637 if (dr) 1638 dr->enabled = 0; 1639 1640 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0, 1641 "disabling already-disabled device"); 1642 1643 if (atomic_dec_return(&dev->enable_cnt) != 0) 1644 return; 1645 1646 do_pci_disable_device(dev); 1647 1648 dev->is_busmaster = 0; 1649 } 1650 EXPORT_SYMBOL(pci_disable_device); 1651 1652 /** 1653 * pcibios_set_pcie_reset_state - set reset state for device dev 1654 * @dev: the PCIe device reset 1655 * @state: Reset state to enter into 1656 * 1657 * 1658 * Sets the PCIe reset state for the device. This is the default 1659 * implementation. Architecture implementations can override this. 1660 */ 1661 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev, 1662 enum pcie_reset_state state) 1663 { 1664 return -EINVAL; 1665 } 1666 1667 /** 1668 * pci_set_pcie_reset_state - set reset state for device dev 1669 * @dev: the PCIe device reset 1670 * @state: Reset state to enter into 1671 * 1672 * 1673 * Sets the PCI reset state for the device. 1674 */ 1675 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state) 1676 { 1677 return pcibios_set_pcie_reset_state(dev, state); 1678 } 1679 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state); 1680 1681 /** 1682 * pci_check_pme_status - Check if given device has generated PME. 1683 * @dev: Device to check. 1684 * 1685 * Check the PME status of the device and if set, clear it and clear PME enable 1686 * (if set). Return 'true' if PME status and PME enable were both set or 1687 * 'false' otherwise. 1688 */ 1689 bool pci_check_pme_status(struct pci_dev *dev) 1690 { 1691 int pmcsr_pos; 1692 u16 pmcsr; 1693 bool ret = false; 1694 1695 if (!dev->pm_cap) 1696 return false; 1697 1698 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL; 1699 pci_read_config_word(dev, pmcsr_pos, &pmcsr); 1700 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS)) 1701 return false; 1702 1703 /* Clear PME status. */ 1704 pmcsr |= PCI_PM_CTRL_PME_STATUS; 1705 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) { 1706 /* Disable PME to avoid interrupt flood. */ 1707 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 1708 ret = true; 1709 } 1710 1711 pci_write_config_word(dev, pmcsr_pos, pmcsr); 1712 1713 return ret; 1714 } 1715 1716 /** 1717 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set. 1718 * @dev: Device to handle. 1719 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag. 1720 * 1721 * Check if @dev has generated PME and queue a resume request for it in that 1722 * case. 1723 */ 1724 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset) 1725 { 1726 if (pme_poll_reset && dev->pme_poll) 1727 dev->pme_poll = false; 1728 1729 if (pci_check_pme_status(dev)) { 1730 pci_wakeup_event(dev); 1731 pm_request_resume(&dev->dev); 1732 } 1733 return 0; 1734 } 1735 1736 /** 1737 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary. 1738 * @bus: Top bus of the subtree to walk. 1739 */ 1740 void pci_pme_wakeup_bus(struct pci_bus *bus) 1741 { 1742 if (bus) 1743 pci_walk_bus(bus, pci_pme_wakeup, (void *)true); 1744 } 1745 1746 1747 /** 1748 * pci_pme_capable - check the capability of PCI device to generate PME# 1749 * @dev: PCI device to handle. 1750 * @state: PCI state from which device will issue PME#. 1751 */ 1752 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state) 1753 { 1754 if (!dev->pm_cap) 1755 return false; 1756 1757 return !!(dev->pme_support & (1 << state)); 1758 } 1759 EXPORT_SYMBOL(pci_pme_capable); 1760 1761 static void pci_pme_list_scan(struct work_struct *work) 1762 { 1763 struct pci_pme_device *pme_dev, *n; 1764 1765 mutex_lock(&pci_pme_list_mutex); 1766 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) { 1767 if (pme_dev->dev->pme_poll) { 1768 struct pci_dev *bridge; 1769 1770 bridge = pme_dev->dev->bus->self; 1771 /* 1772 * If bridge is in low power state, the 1773 * configuration space of subordinate devices 1774 * may be not accessible 1775 */ 1776 if (bridge && bridge->current_state != PCI_D0) 1777 continue; 1778 pci_pme_wakeup(pme_dev->dev, NULL); 1779 } else { 1780 list_del(&pme_dev->list); 1781 kfree(pme_dev); 1782 } 1783 } 1784 if (!list_empty(&pci_pme_list)) 1785 schedule_delayed_work(&pci_pme_work, 1786 msecs_to_jiffies(PME_TIMEOUT)); 1787 mutex_unlock(&pci_pme_list_mutex); 1788 } 1789 1790 static void __pci_pme_active(struct pci_dev *dev, bool enable) 1791 { 1792 u16 pmcsr; 1793 1794 if (!dev->pme_support) 1795 return; 1796 1797 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1798 /* Clear PME_Status by writing 1 to it and enable PME# */ 1799 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE; 1800 if (!enable) 1801 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 1802 1803 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 1804 } 1805 1806 /** 1807 * pci_pme_active - enable or disable PCI device's PME# function 1808 * @dev: PCI device to handle. 1809 * @enable: 'true' to enable PME# generation; 'false' to disable it. 1810 * 1811 * The caller must verify that the device is capable of generating PME# before 1812 * calling this function with @enable equal to 'true'. 1813 */ 1814 void pci_pme_active(struct pci_dev *dev, bool enable) 1815 { 1816 __pci_pme_active(dev, enable); 1817 1818 /* 1819 * PCI (as opposed to PCIe) PME requires that the device have 1820 * its PME# line hooked up correctly. Not all hardware vendors 1821 * do this, so the PME never gets delivered and the device 1822 * remains asleep. The easiest way around this is to 1823 * periodically walk the list of suspended devices and check 1824 * whether any have their PME flag set. The assumption is that 1825 * we'll wake up often enough anyway that this won't be a huge 1826 * hit, and the power savings from the devices will still be a 1827 * win. 1828 * 1829 * Although PCIe uses in-band PME message instead of PME# line 1830 * to report PME, PME does not work for some PCIe devices in 1831 * reality. For example, there are devices that set their PME 1832 * status bits, but don't really bother to send a PME message; 1833 * there are PCI Express Root Ports that don't bother to 1834 * trigger interrupts when they receive PME messages from the 1835 * devices below. So PME poll is used for PCIe devices too. 1836 */ 1837 1838 if (dev->pme_poll) { 1839 struct pci_pme_device *pme_dev; 1840 if (enable) { 1841 pme_dev = kmalloc(sizeof(struct pci_pme_device), 1842 GFP_KERNEL); 1843 if (!pme_dev) { 1844 dev_warn(&dev->dev, "can't enable PME#\n"); 1845 return; 1846 } 1847 pme_dev->dev = dev; 1848 mutex_lock(&pci_pme_list_mutex); 1849 list_add(&pme_dev->list, &pci_pme_list); 1850 if (list_is_singular(&pci_pme_list)) 1851 schedule_delayed_work(&pci_pme_work, 1852 msecs_to_jiffies(PME_TIMEOUT)); 1853 mutex_unlock(&pci_pme_list_mutex); 1854 } else { 1855 mutex_lock(&pci_pme_list_mutex); 1856 list_for_each_entry(pme_dev, &pci_pme_list, list) { 1857 if (pme_dev->dev == dev) { 1858 list_del(&pme_dev->list); 1859 kfree(pme_dev); 1860 break; 1861 } 1862 } 1863 mutex_unlock(&pci_pme_list_mutex); 1864 } 1865 } 1866 1867 dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled"); 1868 } 1869 EXPORT_SYMBOL(pci_pme_active); 1870 1871 /** 1872 * __pci_enable_wake - enable PCI device as wakeup event source 1873 * @dev: PCI device affected 1874 * @state: PCI state from which device will issue wakeup events 1875 * @runtime: True if the events are to be generated at run time 1876 * @enable: True to enable event generation; false to disable 1877 * 1878 * This enables the device as a wakeup event source, or disables it. 1879 * When such events involves platform-specific hooks, those hooks are 1880 * called automatically by this routine. 1881 * 1882 * Devices with legacy power management (no standard PCI PM capabilities) 1883 * always require such platform hooks. 1884 * 1885 * RETURN VALUE: 1886 * 0 is returned on success 1887 * -EINVAL is returned if device is not supposed to wake up the system 1888 * Error code depending on the platform is returned if both the platform and 1889 * the native mechanism fail to enable the generation of wake-up events 1890 */ 1891 int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, 1892 bool runtime, bool enable) 1893 { 1894 int ret = 0; 1895 1896 if (enable && !runtime && !device_may_wakeup(&dev->dev)) 1897 return -EINVAL; 1898 1899 /* Don't do the same thing twice in a row for one device. */ 1900 if (!!enable == !!dev->wakeup_prepared) 1901 return 0; 1902 1903 /* 1904 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don 1905 * Anderson we should be doing PME# wake enable followed by ACPI wake 1906 * enable. To disable wake-up we call the platform first, for symmetry. 1907 */ 1908 1909 if (enable) { 1910 int error; 1911 1912 if (pci_pme_capable(dev, state)) 1913 pci_pme_active(dev, true); 1914 else 1915 ret = 1; 1916 error = runtime ? platform_pci_run_wake(dev, true) : 1917 platform_pci_sleep_wake(dev, true); 1918 if (ret) 1919 ret = error; 1920 if (!ret) 1921 dev->wakeup_prepared = true; 1922 } else { 1923 if (runtime) 1924 platform_pci_run_wake(dev, false); 1925 else 1926 platform_pci_sleep_wake(dev, false); 1927 pci_pme_active(dev, false); 1928 dev->wakeup_prepared = false; 1929 } 1930 1931 return ret; 1932 } 1933 EXPORT_SYMBOL(__pci_enable_wake); 1934 1935 /** 1936 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold 1937 * @dev: PCI device to prepare 1938 * @enable: True to enable wake-up event generation; false to disable 1939 * 1940 * Many drivers want the device to wake up the system from D3_hot or D3_cold 1941 * and this function allows them to set that up cleanly - pci_enable_wake() 1942 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI 1943 * ordering constraints. 1944 * 1945 * This function only returns error code if the device is not capable of 1946 * generating PME# from both D3_hot and D3_cold, and the platform is unable to 1947 * enable wake-up power for it. 1948 */ 1949 int pci_wake_from_d3(struct pci_dev *dev, bool enable) 1950 { 1951 return pci_pme_capable(dev, PCI_D3cold) ? 1952 pci_enable_wake(dev, PCI_D3cold, enable) : 1953 pci_enable_wake(dev, PCI_D3hot, enable); 1954 } 1955 EXPORT_SYMBOL(pci_wake_from_d3); 1956 1957 /** 1958 * pci_target_state - find an appropriate low power state for a given PCI dev 1959 * @dev: PCI device 1960 * 1961 * Use underlying platform code to find a supported low power state for @dev. 1962 * If the platform can't manage @dev, return the deepest state from which it 1963 * can generate wake events, based on any available PME info. 1964 */ 1965 static pci_power_t pci_target_state(struct pci_dev *dev) 1966 { 1967 pci_power_t target_state = PCI_D3hot; 1968 1969 if (platform_pci_power_manageable(dev)) { 1970 /* 1971 * Call the platform to choose the target state of the device 1972 * and enable wake-up from this state if supported. 1973 */ 1974 pci_power_t state = platform_pci_choose_state(dev); 1975 1976 switch (state) { 1977 case PCI_POWER_ERROR: 1978 case PCI_UNKNOWN: 1979 break; 1980 case PCI_D1: 1981 case PCI_D2: 1982 if (pci_no_d1d2(dev)) 1983 break; 1984 default: 1985 target_state = state; 1986 } 1987 1988 return target_state; 1989 } 1990 1991 if (!dev->pm_cap) 1992 target_state = PCI_D0; 1993 1994 /* 1995 * If the device is in D3cold even though it's not power-manageable by 1996 * the platform, it may have been powered down by non-standard means. 1997 * Best to let it slumber. 1998 */ 1999 if (dev->current_state == PCI_D3cold) 2000 target_state = PCI_D3cold; 2001 2002 if (device_may_wakeup(&dev->dev)) { 2003 /* 2004 * Find the deepest state from which the device can generate 2005 * wake-up events, make it the target state and enable device 2006 * to generate PME#. 2007 */ 2008 if (dev->pme_support) { 2009 while (target_state 2010 && !(dev->pme_support & (1 << target_state))) 2011 target_state--; 2012 } 2013 } 2014 2015 return target_state; 2016 } 2017 2018 /** 2019 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state 2020 * @dev: Device to handle. 2021 * 2022 * Choose the power state appropriate for the device depending on whether 2023 * it can wake up the system and/or is power manageable by the platform 2024 * (PCI_D3hot is the default) and put the device into that state. 2025 */ 2026 int pci_prepare_to_sleep(struct pci_dev *dev) 2027 { 2028 pci_power_t target_state = pci_target_state(dev); 2029 int error; 2030 2031 if (target_state == PCI_POWER_ERROR) 2032 return -EIO; 2033 2034 pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev)); 2035 2036 error = pci_set_power_state(dev, target_state); 2037 2038 if (error) 2039 pci_enable_wake(dev, target_state, false); 2040 2041 return error; 2042 } 2043 EXPORT_SYMBOL(pci_prepare_to_sleep); 2044 2045 /** 2046 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state 2047 * @dev: Device to handle. 2048 * 2049 * Disable device's system wake-up capability and put it into D0. 2050 */ 2051 int pci_back_from_sleep(struct pci_dev *dev) 2052 { 2053 pci_enable_wake(dev, PCI_D0, false); 2054 return pci_set_power_state(dev, PCI_D0); 2055 } 2056 EXPORT_SYMBOL(pci_back_from_sleep); 2057 2058 /** 2059 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend. 2060 * @dev: PCI device being suspended. 2061 * 2062 * Prepare @dev to generate wake-up events at run time and put it into a low 2063 * power state. 2064 */ 2065 int pci_finish_runtime_suspend(struct pci_dev *dev) 2066 { 2067 pci_power_t target_state = pci_target_state(dev); 2068 int error; 2069 2070 if (target_state == PCI_POWER_ERROR) 2071 return -EIO; 2072 2073 dev->runtime_d3cold = target_state == PCI_D3cold; 2074 2075 __pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev)); 2076 2077 error = pci_set_power_state(dev, target_state); 2078 2079 if (error) { 2080 __pci_enable_wake(dev, target_state, true, false); 2081 dev->runtime_d3cold = false; 2082 } 2083 2084 return error; 2085 } 2086 2087 /** 2088 * pci_dev_run_wake - Check if device can generate run-time wake-up events. 2089 * @dev: Device to check. 2090 * 2091 * Return true if the device itself is capable of generating wake-up events 2092 * (through the platform or using the native PCIe PME) or if the device supports 2093 * PME and one of its upstream bridges can generate wake-up events. 2094 */ 2095 bool pci_dev_run_wake(struct pci_dev *dev) 2096 { 2097 struct pci_bus *bus = dev->bus; 2098 2099 if (device_run_wake(&dev->dev)) 2100 return true; 2101 2102 if (!dev->pme_support) 2103 return false; 2104 2105 /* PME-capable in principle, but not from the intended sleep state */ 2106 if (!pci_pme_capable(dev, pci_target_state(dev))) 2107 return false; 2108 2109 while (bus->parent) { 2110 struct pci_dev *bridge = bus->self; 2111 2112 if (device_run_wake(&bridge->dev)) 2113 return true; 2114 2115 bus = bus->parent; 2116 } 2117 2118 /* We have reached the root bus. */ 2119 if (bus->bridge) 2120 return device_run_wake(bus->bridge); 2121 2122 return false; 2123 } 2124 EXPORT_SYMBOL_GPL(pci_dev_run_wake); 2125 2126 /** 2127 * pci_dev_keep_suspended - Check if the device can stay in the suspended state. 2128 * @pci_dev: Device to check. 2129 * 2130 * Return 'true' if the device is runtime-suspended, it doesn't have to be 2131 * reconfigured due to wakeup settings difference between system and runtime 2132 * suspend and the current power state of it is suitable for the upcoming 2133 * (system) transition. 2134 * 2135 * If the device is not configured for system wakeup, disable PME for it before 2136 * returning 'true' to prevent it from waking up the system unnecessarily. 2137 */ 2138 bool pci_dev_keep_suspended(struct pci_dev *pci_dev) 2139 { 2140 struct device *dev = &pci_dev->dev; 2141 2142 if (!pm_runtime_suspended(dev) 2143 || pci_target_state(pci_dev) != pci_dev->current_state 2144 || platform_pci_need_resume(pci_dev)) 2145 return false; 2146 2147 /* 2148 * At this point the device is good to go unless it's been configured 2149 * to generate PME at the runtime suspend time, but it is not supposed 2150 * to wake up the system. In that case, simply disable PME for it 2151 * (it will have to be re-enabled on exit from system resume). 2152 * 2153 * If the device's power state is D3cold and the platform check above 2154 * hasn't triggered, the device's configuration is suitable and we don't 2155 * need to manipulate it at all. 2156 */ 2157 spin_lock_irq(&dev->power.lock); 2158 2159 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold && 2160 !device_may_wakeup(dev)) 2161 __pci_pme_active(pci_dev, false); 2162 2163 spin_unlock_irq(&dev->power.lock); 2164 return true; 2165 } 2166 2167 /** 2168 * pci_dev_complete_resume - Finalize resume from system sleep for a device. 2169 * @pci_dev: Device to handle. 2170 * 2171 * If the device is runtime suspended and wakeup-capable, enable PME for it as 2172 * it might have been disabled during the prepare phase of system suspend if 2173 * the device was not configured for system wakeup. 2174 */ 2175 void pci_dev_complete_resume(struct pci_dev *pci_dev) 2176 { 2177 struct device *dev = &pci_dev->dev; 2178 2179 if (!pci_dev_run_wake(pci_dev)) 2180 return; 2181 2182 spin_lock_irq(&dev->power.lock); 2183 2184 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold) 2185 __pci_pme_active(pci_dev, true); 2186 2187 spin_unlock_irq(&dev->power.lock); 2188 } 2189 2190 void pci_config_pm_runtime_get(struct pci_dev *pdev) 2191 { 2192 struct device *dev = &pdev->dev; 2193 struct device *parent = dev->parent; 2194 2195 if (parent) 2196 pm_runtime_get_sync(parent); 2197 pm_runtime_get_noresume(dev); 2198 /* 2199 * pdev->current_state is set to PCI_D3cold during suspending, 2200 * so wait until suspending completes 2201 */ 2202 pm_runtime_barrier(dev); 2203 /* 2204 * Only need to resume devices in D3cold, because config 2205 * registers are still accessible for devices suspended but 2206 * not in D3cold. 2207 */ 2208 if (pdev->current_state == PCI_D3cold) 2209 pm_runtime_resume(dev); 2210 } 2211 2212 void pci_config_pm_runtime_put(struct pci_dev *pdev) 2213 { 2214 struct device *dev = &pdev->dev; 2215 struct device *parent = dev->parent; 2216 2217 pm_runtime_put(dev); 2218 if (parent) 2219 pm_runtime_put_sync(parent); 2220 } 2221 2222 /** 2223 * pci_bridge_d3_possible - Is it possible to put the bridge into D3 2224 * @bridge: Bridge to check 2225 * 2226 * This function checks if it is possible to move the bridge to D3. 2227 * Currently we only allow D3 for recent enough PCIe ports. 2228 */ 2229 bool pci_bridge_d3_possible(struct pci_dev *bridge) 2230 { 2231 unsigned int year; 2232 2233 if (!pci_is_pcie(bridge)) 2234 return false; 2235 2236 switch (pci_pcie_type(bridge)) { 2237 case PCI_EXP_TYPE_ROOT_PORT: 2238 case PCI_EXP_TYPE_UPSTREAM: 2239 case PCI_EXP_TYPE_DOWNSTREAM: 2240 if (pci_bridge_d3_disable) 2241 return false; 2242 2243 /* 2244 * Hotplug interrupts cannot be delivered if the link is down, 2245 * so parents of a hotplug port must stay awake. In addition, 2246 * hotplug ports handled by firmware in System Management Mode 2247 * may not be put into D3 by the OS (Thunderbolt on non-Macs). 2248 * For simplicity, disallow in general for now. 2249 */ 2250 if (bridge->is_hotplug_bridge) 2251 return false; 2252 2253 if (pci_bridge_d3_force) 2254 return true; 2255 2256 /* 2257 * It should be safe to put PCIe ports from 2015 or newer 2258 * to D3. 2259 */ 2260 if (dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL) && 2261 year >= 2015) { 2262 return true; 2263 } 2264 break; 2265 } 2266 2267 return false; 2268 } 2269 2270 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data) 2271 { 2272 bool *d3cold_ok = data; 2273 2274 if (/* The device needs to be allowed to go D3cold ... */ 2275 dev->no_d3cold || !dev->d3cold_allowed || 2276 2277 /* ... and if it is wakeup capable to do so from D3cold. */ 2278 (device_may_wakeup(&dev->dev) && 2279 !pci_pme_capable(dev, PCI_D3cold)) || 2280 2281 /* If it is a bridge it must be allowed to go to D3. */ 2282 !pci_power_manageable(dev)) 2283 2284 *d3cold_ok = false; 2285 2286 return !*d3cold_ok; 2287 } 2288 2289 /* 2290 * pci_bridge_d3_update - Update bridge D3 capabilities 2291 * @dev: PCI device which is changed 2292 * 2293 * Update upstream bridge PM capabilities accordingly depending on if the 2294 * device PM configuration was changed or the device is being removed. The 2295 * change is also propagated upstream. 2296 */ 2297 void pci_bridge_d3_update(struct pci_dev *dev) 2298 { 2299 bool remove = !device_is_registered(&dev->dev); 2300 struct pci_dev *bridge; 2301 bool d3cold_ok = true; 2302 2303 bridge = pci_upstream_bridge(dev); 2304 if (!bridge || !pci_bridge_d3_possible(bridge)) 2305 return; 2306 2307 /* 2308 * If D3 is currently allowed for the bridge, removing one of its 2309 * children won't change that. 2310 */ 2311 if (remove && bridge->bridge_d3) 2312 return; 2313 2314 /* 2315 * If D3 is currently allowed for the bridge and a child is added or 2316 * changed, disallowance of D3 can only be caused by that child, so 2317 * we only need to check that single device, not any of its siblings. 2318 * 2319 * If D3 is currently not allowed for the bridge, checking the device 2320 * first may allow us to skip checking its siblings. 2321 */ 2322 if (!remove) 2323 pci_dev_check_d3cold(dev, &d3cold_ok); 2324 2325 /* 2326 * If D3 is currently not allowed for the bridge, this may be caused 2327 * either by the device being changed/removed or any of its siblings, 2328 * so we need to go through all children to find out if one of them 2329 * continues to block D3. 2330 */ 2331 if (d3cold_ok && !bridge->bridge_d3) 2332 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold, 2333 &d3cold_ok); 2334 2335 if (bridge->bridge_d3 != d3cold_ok) { 2336 bridge->bridge_d3 = d3cold_ok; 2337 /* Propagate change to upstream bridges */ 2338 pci_bridge_d3_update(bridge); 2339 } 2340 } 2341 2342 /** 2343 * pci_d3cold_enable - Enable D3cold for device 2344 * @dev: PCI device to handle 2345 * 2346 * This function can be used in drivers to enable D3cold from the device 2347 * they handle. It also updates upstream PCI bridge PM capabilities 2348 * accordingly. 2349 */ 2350 void pci_d3cold_enable(struct pci_dev *dev) 2351 { 2352 if (dev->no_d3cold) { 2353 dev->no_d3cold = false; 2354 pci_bridge_d3_update(dev); 2355 } 2356 } 2357 EXPORT_SYMBOL_GPL(pci_d3cold_enable); 2358 2359 /** 2360 * pci_d3cold_disable - Disable D3cold for device 2361 * @dev: PCI device to handle 2362 * 2363 * This function can be used in drivers to disable D3cold from the device 2364 * they handle. It also updates upstream PCI bridge PM capabilities 2365 * accordingly. 2366 */ 2367 void pci_d3cold_disable(struct pci_dev *dev) 2368 { 2369 if (!dev->no_d3cold) { 2370 dev->no_d3cold = true; 2371 pci_bridge_d3_update(dev); 2372 } 2373 } 2374 EXPORT_SYMBOL_GPL(pci_d3cold_disable); 2375 2376 /** 2377 * pci_pm_init - Initialize PM functions of given PCI device 2378 * @dev: PCI device to handle. 2379 */ 2380 void pci_pm_init(struct pci_dev *dev) 2381 { 2382 int pm; 2383 u16 pmc; 2384 2385 pm_runtime_forbid(&dev->dev); 2386 pm_runtime_set_active(&dev->dev); 2387 pm_runtime_enable(&dev->dev); 2388 device_enable_async_suspend(&dev->dev); 2389 dev->wakeup_prepared = false; 2390 2391 dev->pm_cap = 0; 2392 dev->pme_support = 0; 2393 2394 /* find PCI PM capability in list */ 2395 pm = pci_find_capability(dev, PCI_CAP_ID_PM); 2396 if (!pm) 2397 return; 2398 /* Check device's ability to generate PME# */ 2399 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc); 2400 2401 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) { 2402 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n", 2403 pmc & PCI_PM_CAP_VER_MASK); 2404 return; 2405 } 2406 2407 dev->pm_cap = pm; 2408 dev->d3_delay = PCI_PM_D3_WAIT; 2409 dev->d3cold_delay = PCI_PM_D3COLD_WAIT; 2410 dev->bridge_d3 = pci_bridge_d3_possible(dev); 2411 dev->d3cold_allowed = true; 2412 2413 dev->d1_support = false; 2414 dev->d2_support = false; 2415 if (!pci_no_d1d2(dev)) { 2416 if (pmc & PCI_PM_CAP_D1) 2417 dev->d1_support = true; 2418 if (pmc & PCI_PM_CAP_D2) 2419 dev->d2_support = true; 2420 2421 if (dev->d1_support || dev->d2_support) 2422 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n", 2423 dev->d1_support ? " D1" : "", 2424 dev->d2_support ? " D2" : ""); 2425 } 2426 2427 pmc &= PCI_PM_CAP_PME_MASK; 2428 if (pmc) { 2429 dev_printk(KERN_DEBUG, &dev->dev, 2430 "PME# supported from%s%s%s%s%s\n", 2431 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "", 2432 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "", 2433 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "", 2434 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "", 2435 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : ""); 2436 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT; 2437 dev->pme_poll = true; 2438 /* 2439 * Make device's PM flags reflect the wake-up capability, but 2440 * let the user space enable it to wake up the system as needed. 2441 */ 2442 device_set_wakeup_capable(&dev->dev, true); 2443 /* Disable the PME# generation functionality */ 2444 pci_pme_active(dev, false); 2445 } 2446 } 2447 2448 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop) 2449 { 2450 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI; 2451 2452 switch (prop) { 2453 case PCI_EA_P_MEM: 2454 case PCI_EA_P_VF_MEM: 2455 flags |= IORESOURCE_MEM; 2456 break; 2457 case PCI_EA_P_MEM_PREFETCH: 2458 case PCI_EA_P_VF_MEM_PREFETCH: 2459 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH; 2460 break; 2461 case PCI_EA_P_IO: 2462 flags |= IORESOURCE_IO; 2463 break; 2464 default: 2465 return 0; 2466 } 2467 2468 return flags; 2469 } 2470 2471 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei, 2472 u8 prop) 2473 { 2474 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO) 2475 return &dev->resource[bei]; 2476 #ifdef CONFIG_PCI_IOV 2477 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 && 2478 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH)) 2479 return &dev->resource[PCI_IOV_RESOURCES + 2480 bei - PCI_EA_BEI_VF_BAR0]; 2481 #endif 2482 else if (bei == PCI_EA_BEI_ROM) 2483 return &dev->resource[PCI_ROM_RESOURCE]; 2484 else 2485 return NULL; 2486 } 2487 2488 /* Read an Enhanced Allocation (EA) entry */ 2489 static int pci_ea_read(struct pci_dev *dev, int offset) 2490 { 2491 struct resource *res; 2492 int ent_size, ent_offset = offset; 2493 resource_size_t start, end; 2494 unsigned long flags; 2495 u32 dw0, bei, base, max_offset; 2496 u8 prop; 2497 bool support_64 = (sizeof(resource_size_t) >= 8); 2498 2499 pci_read_config_dword(dev, ent_offset, &dw0); 2500 ent_offset += 4; 2501 2502 /* Entry size field indicates DWORDs after 1st */ 2503 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2; 2504 2505 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */ 2506 goto out; 2507 2508 bei = (dw0 & PCI_EA_BEI) >> 4; 2509 prop = (dw0 & PCI_EA_PP) >> 8; 2510 2511 /* 2512 * If the Property is in the reserved range, try the Secondary 2513 * Property instead. 2514 */ 2515 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED) 2516 prop = (dw0 & PCI_EA_SP) >> 16; 2517 if (prop > PCI_EA_P_BRIDGE_IO) 2518 goto out; 2519 2520 res = pci_ea_get_resource(dev, bei, prop); 2521 if (!res) { 2522 dev_err(&dev->dev, "Unsupported EA entry BEI: %u\n", bei); 2523 goto out; 2524 } 2525 2526 flags = pci_ea_flags(dev, prop); 2527 if (!flags) { 2528 dev_err(&dev->dev, "Unsupported EA properties: %#x\n", prop); 2529 goto out; 2530 } 2531 2532 /* Read Base */ 2533 pci_read_config_dword(dev, ent_offset, &base); 2534 start = (base & PCI_EA_FIELD_MASK); 2535 ent_offset += 4; 2536 2537 /* Read MaxOffset */ 2538 pci_read_config_dword(dev, ent_offset, &max_offset); 2539 ent_offset += 4; 2540 2541 /* Read Base MSBs (if 64-bit entry) */ 2542 if (base & PCI_EA_IS_64) { 2543 u32 base_upper; 2544 2545 pci_read_config_dword(dev, ent_offset, &base_upper); 2546 ent_offset += 4; 2547 2548 flags |= IORESOURCE_MEM_64; 2549 2550 /* entry starts above 32-bit boundary, can't use */ 2551 if (!support_64 && base_upper) 2552 goto out; 2553 2554 if (support_64) 2555 start |= ((u64)base_upper << 32); 2556 } 2557 2558 end = start + (max_offset | 0x03); 2559 2560 /* Read MaxOffset MSBs (if 64-bit entry) */ 2561 if (max_offset & PCI_EA_IS_64) { 2562 u32 max_offset_upper; 2563 2564 pci_read_config_dword(dev, ent_offset, &max_offset_upper); 2565 ent_offset += 4; 2566 2567 flags |= IORESOURCE_MEM_64; 2568 2569 /* entry too big, can't use */ 2570 if (!support_64 && max_offset_upper) 2571 goto out; 2572 2573 if (support_64) 2574 end += ((u64)max_offset_upper << 32); 2575 } 2576 2577 if (end < start) { 2578 dev_err(&dev->dev, "EA Entry crosses address boundary\n"); 2579 goto out; 2580 } 2581 2582 if (ent_size != ent_offset - offset) { 2583 dev_err(&dev->dev, 2584 "EA Entry Size (%d) does not match length read (%d)\n", 2585 ent_size, ent_offset - offset); 2586 goto out; 2587 } 2588 2589 res->name = pci_name(dev); 2590 res->start = start; 2591 res->end = end; 2592 res->flags = flags; 2593 2594 if (bei <= PCI_EA_BEI_BAR5) 2595 dev_printk(KERN_DEBUG, &dev->dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 2596 bei, res, prop); 2597 else if (bei == PCI_EA_BEI_ROM) 2598 dev_printk(KERN_DEBUG, &dev->dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n", 2599 res, prop); 2600 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5) 2601 dev_printk(KERN_DEBUG, &dev->dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 2602 bei - PCI_EA_BEI_VF_BAR0, res, prop); 2603 else 2604 dev_printk(KERN_DEBUG, &dev->dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n", 2605 bei, res, prop); 2606 2607 out: 2608 return offset + ent_size; 2609 } 2610 2611 /* Enhanced Allocation Initialization */ 2612 void pci_ea_init(struct pci_dev *dev) 2613 { 2614 int ea; 2615 u8 num_ent; 2616 int offset; 2617 int i; 2618 2619 /* find PCI EA capability in list */ 2620 ea = pci_find_capability(dev, PCI_CAP_ID_EA); 2621 if (!ea) 2622 return; 2623 2624 /* determine the number of entries */ 2625 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT, 2626 &num_ent); 2627 num_ent &= PCI_EA_NUM_ENT_MASK; 2628 2629 offset = ea + PCI_EA_FIRST_ENT; 2630 2631 /* Skip DWORD 2 for type 1 functions */ 2632 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) 2633 offset += 4; 2634 2635 /* parse each EA entry */ 2636 for (i = 0; i < num_ent; ++i) 2637 offset = pci_ea_read(dev, offset); 2638 } 2639 2640 static void pci_add_saved_cap(struct pci_dev *pci_dev, 2641 struct pci_cap_saved_state *new_cap) 2642 { 2643 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space); 2644 } 2645 2646 /** 2647 * _pci_add_cap_save_buffer - allocate buffer for saving given 2648 * capability registers 2649 * @dev: the PCI device 2650 * @cap: the capability to allocate the buffer for 2651 * @extended: Standard or Extended capability ID 2652 * @size: requested size of the buffer 2653 */ 2654 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap, 2655 bool extended, unsigned int size) 2656 { 2657 int pos; 2658 struct pci_cap_saved_state *save_state; 2659 2660 if (extended) 2661 pos = pci_find_ext_capability(dev, cap); 2662 else 2663 pos = pci_find_capability(dev, cap); 2664 2665 if (!pos) 2666 return 0; 2667 2668 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL); 2669 if (!save_state) 2670 return -ENOMEM; 2671 2672 save_state->cap.cap_nr = cap; 2673 save_state->cap.cap_extended = extended; 2674 save_state->cap.size = size; 2675 pci_add_saved_cap(dev, save_state); 2676 2677 return 0; 2678 } 2679 2680 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size) 2681 { 2682 return _pci_add_cap_save_buffer(dev, cap, false, size); 2683 } 2684 2685 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size) 2686 { 2687 return _pci_add_cap_save_buffer(dev, cap, true, size); 2688 } 2689 2690 /** 2691 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities 2692 * @dev: the PCI device 2693 */ 2694 void pci_allocate_cap_save_buffers(struct pci_dev *dev) 2695 { 2696 int error; 2697 2698 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP, 2699 PCI_EXP_SAVE_REGS * sizeof(u16)); 2700 if (error) 2701 dev_err(&dev->dev, 2702 "unable to preallocate PCI Express save buffer\n"); 2703 2704 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16)); 2705 if (error) 2706 dev_err(&dev->dev, 2707 "unable to preallocate PCI-X save buffer\n"); 2708 2709 pci_allocate_vc_save_buffers(dev); 2710 } 2711 2712 void pci_free_cap_save_buffers(struct pci_dev *dev) 2713 { 2714 struct pci_cap_saved_state *tmp; 2715 struct hlist_node *n; 2716 2717 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next) 2718 kfree(tmp); 2719 } 2720 2721 /** 2722 * pci_configure_ari - enable or disable ARI forwarding 2723 * @dev: the PCI device 2724 * 2725 * If @dev and its upstream bridge both support ARI, enable ARI in the 2726 * bridge. Otherwise, disable ARI in the bridge. 2727 */ 2728 void pci_configure_ari(struct pci_dev *dev) 2729 { 2730 u32 cap; 2731 struct pci_dev *bridge; 2732 2733 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn) 2734 return; 2735 2736 bridge = dev->bus->self; 2737 if (!bridge) 2738 return; 2739 2740 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 2741 if (!(cap & PCI_EXP_DEVCAP2_ARI)) 2742 return; 2743 2744 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) { 2745 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, 2746 PCI_EXP_DEVCTL2_ARI); 2747 bridge->ari_enabled = 1; 2748 } else { 2749 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2, 2750 PCI_EXP_DEVCTL2_ARI); 2751 bridge->ari_enabled = 0; 2752 } 2753 } 2754 2755 static int pci_acs_enable; 2756 2757 /** 2758 * pci_request_acs - ask for ACS to be enabled if supported 2759 */ 2760 void pci_request_acs(void) 2761 { 2762 pci_acs_enable = 1; 2763 } 2764 2765 /** 2766 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites 2767 * @dev: the PCI device 2768 */ 2769 static void pci_std_enable_acs(struct pci_dev *dev) 2770 { 2771 int pos; 2772 u16 cap; 2773 u16 ctrl; 2774 2775 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS); 2776 if (!pos) 2777 return; 2778 2779 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap); 2780 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 2781 2782 /* Source Validation */ 2783 ctrl |= (cap & PCI_ACS_SV); 2784 2785 /* P2P Request Redirect */ 2786 ctrl |= (cap & PCI_ACS_RR); 2787 2788 /* P2P Completion Redirect */ 2789 ctrl |= (cap & PCI_ACS_CR); 2790 2791 /* Upstream Forwarding */ 2792 ctrl |= (cap & PCI_ACS_UF); 2793 2794 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 2795 } 2796 2797 /** 2798 * pci_enable_acs - enable ACS if hardware support it 2799 * @dev: the PCI device 2800 */ 2801 void pci_enable_acs(struct pci_dev *dev) 2802 { 2803 if (!pci_acs_enable) 2804 return; 2805 2806 if (!pci_dev_specific_enable_acs(dev)) 2807 return; 2808 2809 pci_std_enable_acs(dev); 2810 } 2811 2812 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags) 2813 { 2814 int pos; 2815 u16 cap, ctrl; 2816 2817 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS); 2818 if (!pos) 2819 return false; 2820 2821 /* 2822 * Except for egress control, capabilities are either required 2823 * or only required if controllable. Features missing from the 2824 * capability field can therefore be assumed as hard-wired enabled. 2825 */ 2826 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap); 2827 acs_flags &= (cap | PCI_ACS_EC); 2828 2829 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl); 2830 return (ctrl & acs_flags) == acs_flags; 2831 } 2832 2833 /** 2834 * pci_acs_enabled - test ACS against required flags for a given device 2835 * @pdev: device to test 2836 * @acs_flags: required PCI ACS flags 2837 * 2838 * Return true if the device supports the provided flags. Automatically 2839 * filters out flags that are not implemented on multifunction devices. 2840 * 2841 * Note that this interface checks the effective ACS capabilities of the 2842 * device rather than the actual capabilities. For instance, most single 2843 * function endpoints are not required to support ACS because they have no 2844 * opportunity for peer-to-peer access. We therefore return 'true' 2845 * regardless of whether the device exposes an ACS capability. This makes 2846 * it much easier for callers of this function to ignore the actual type 2847 * or topology of the device when testing ACS support. 2848 */ 2849 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags) 2850 { 2851 int ret; 2852 2853 ret = pci_dev_specific_acs_enabled(pdev, acs_flags); 2854 if (ret >= 0) 2855 return ret > 0; 2856 2857 /* 2858 * Conventional PCI and PCI-X devices never support ACS, either 2859 * effectively or actually. The shared bus topology implies that 2860 * any device on the bus can receive or snoop DMA. 2861 */ 2862 if (!pci_is_pcie(pdev)) 2863 return false; 2864 2865 switch (pci_pcie_type(pdev)) { 2866 /* 2867 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec, 2868 * but since their primary interface is PCI/X, we conservatively 2869 * handle them as we would a non-PCIe device. 2870 */ 2871 case PCI_EXP_TYPE_PCIE_BRIDGE: 2872 /* 2873 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never 2874 * applicable... must never implement an ACS Extended Capability...". 2875 * This seems arbitrary, but we take a conservative interpretation 2876 * of this statement. 2877 */ 2878 case PCI_EXP_TYPE_PCI_BRIDGE: 2879 case PCI_EXP_TYPE_RC_EC: 2880 return false; 2881 /* 2882 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should 2883 * implement ACS in order to indicate their peer-to-peer capabilities, 2884 * regardless of whether they are single- or multi-function devices. 2885 */ 2886 case PCI_EXP_TYPE_DOWNSTREAM: 2887 case PCI_EXP_TYPE_ROOT_PORT: 2888 return pci_acs_flags_enabled(pdev, acs_flags); 2889 /* 2890 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be 2891 * implemented by the remaining PCIe types to indicate peer-to-peer 2892 * capabilities, but only when they are part of a multifunction 2893 * device. The footnote for section 6.12 indicates the specific 2894 * PCIe types included here. 2895 */ 2896 case PCI_EXP_TYPE_ENDPOINT: 2897 case PCI_EXP_TYPE_UPSTREAM: 2898 case PCI_EXP_TYPE_LEG_END: 2899 case PCI_EXP_TYPE_RC_END: 2900 if (!pdev->multifunction) 2901 break; 2902 2903 return pci_acs_flags_enabled(pdev, acs_flags); 2904 } 2905 2906 /* 2907 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable 2908 * to single function devices with the exception of downstream ports. 2909 */ 2910 return true; 2911 } 2912 2913 /** 2914 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy 2915 * @start: starting downstream device 2916 * @end: ending upstream device or NULL to search to the root bus 2917 * @acs_flags: required flags 2918 * 2919 * Walk up a device tree from start to end testing PCI ACS support. If 2920 * any step along the way does not support the required flags, return false. 2921 */ 2922 bool pci_acs_path_enabled(struct pci_dev *start, 2923 struct pci_dev *end, u16 acs_flags) 2924 { 2925 struct pci_dev *pdev, *parent = start; 2926 2927 do { 2928 pdev = parent; 2929 2930 if (!pci_acs_enabled(pdev, acs_flags)) 2931 return false; 2932 2933 if (pci_is_root_bus(pdev->bus)) 2934 return (end == NULL); 2935 2936 parent = pdev->bus->self; 2937 } while (pdev != end); 2938 2939 return true; 2940 } 2941 2942 /** 2943 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge 2944 * @dev: the PCI device 2945 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD) 2946 * 2947 * Perform INTx swizzling for a device behind one level of bridge. This is 2948 * required by section 9.1 of the PCI-to-PCI bridge specification for devices 2949 * behind bridges on add-in cards. For devices with ARI enabled, the slot 2950 * number is always 0 (see the Implementation Note in section 2.2.8.1 of 2951 * the PCI Express Base Specification, Revision 2.1) 2952 */ 2953 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin) 2954 { 2955 int slot; 2956 2957 if (pci_ari_enabled(dev->bus)) 2958 slot = 0; 2959 else 2960 slot = PCI_SLOT(dev->devfn); 2961 2962 return (((pin - 1) + slot) % 4) + 1; 2963 } 2964 2965 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge) 2966 { 2967 u8 pin; 2968 2969 pin = dev->pin; 2970 if (!pin) 2971 return -1; 2972 2973 while (!pci_is_root_bus(dev->bus)) { 2974 pin = pci_swizzle_interrupt_pin(dev, pin); 2975 dev = dev->bus->self; 2976 } 2977 *bridge = dev; 2978 return pin; 2979 } 2980 2981 /** 2982 * pci_common_swizzle - swizzle INTx all the way to root bridge 2983 * @dev: the PCI device 2984 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD) 2985 * 2986 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI 2987 * bridges all the way up to a PCI root bus. 2988 */ 2989 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp) 2990 { 2991 u8 pin = *pinp; 2992 2993 while (!pci_is_root_bus(dev->bus)) { 2994 pin = pci_swizzle_interrupt_pin(dev, pin); 2995 dev = dev->bus->self; 2996 } 2997 *pinp = pin; 2998 return PCI_SLOT(dev->devfn); 2999 } 3000 EXPORT_SYMBOL_GPL(pci_common_swizzle); 3001 3002 /** 3003 * pci_release_region - Release a PCI bar 3004 * @pdev: PCI device whose resources were previously reserved by pci_request_region 3005 * @bar: BAR to release 3006 * 3007 * Releases the PCI I/O and memory resources previously reserved by a 3008 * successful call to pci_request_region. Call this function only 3009 * after all use of the PCI regions has ceased. 3010 */ 3011 void pci_release_region(struct pci_dev *pdev, int bar) 3012 { 3013 struct pci_devres *dr; 3014 3015 if (pci_resource_len(pdev, bar) == 0) 3016 return; 3017 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) 3018 release_region(pci_resource_start(pdev, bar), 3019 pci_resource_len(pdev, bar)); 3020 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) 3021 release_mem_region(pci_resource_start(pdev, bar), 3022 pci_resource_len(pdev, bar)); 3023 3024 dr = find_pci_dr(pdev); 3025 if (dr) 3026 dr->region_mask &= ~(1 << bar); 3027 } 3028 EXPORT_SYMBOL(pci_release_region); 3029 3030 /** 3031 * __pci_request_region - Reserved PCI I/O and memory resource 3032 * @pdev: PCI device whose resources are to be reserved 3033 * @bar: BAR to be reserved 3034 * @res_name: Name to be associated with resource. 3035 * @exclusive: whether the region access is exclusive or not 3036 * 3037 * Mark the PCI region associated with PCI device @pdev BR @bar as 3038 * being reserved by owner @res_name. Do not access any 3039 * address inside the PCI regions unless this call returns 3040 * successfully. 3041 * 3042 * If @exclusive is set, then the region is marked so that userspace 3043 * is explicitly not allowed to map the resource via /dev/mem or 3044 * sysfs MMIO access. 3045 * 3046 * Returns 0 on success, or %EBUSY on error. A warning 3047 * message is also printed on failure. 3048 */ 3049 static int __pci_request_region(struct pci_dev *pdev, int bar, 3050 const char *res_name, int exclusive) 3051 { 3052 struct pci_devres *dr; 3053 3054 if (pci_resource_len(pdev, bar) == 0) 3055 return 0; 3056 3057 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) { 3058 if (!request_region(pci_resource_start(pdev, bar), 3059 pci_resource_len(pdev, bar), res_name)) 3060 goto err_out; 3061 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) { 3062 if (!__request_mem_region(pci_resource_start(pdev, bar), 3063 pci_resource_len(pdev, bar), res_name, 3064 exclusive)) 3065 goto err_out; 3066 } 3067 3068 dr = find_pci_dr(pdev); 3069 if (dr) 3070 dr->region_mask |= 1 << bar; 3071 3072 return 0; 3073 3074 err_out: 3075 dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar, 3076 &pdev->resource[bar]); 3077 return -EBUSY; 3078 } 3079 3080 /** 3081 * pci_request_region - Reserve PCI I/O and memory resource 3082 * @pdev: PCI device whose resources are to be reserved 3083 * @bar: BAR to be reserved 3084 * @res_name: Name to be associated with resource 3085 * 3086 * Mark the PCI region associated with PCI device @pdev BAR @bar as 3087 * being reserved by owner @res_name. Do not access any 3088 * address inside the PCI regions unless this call returns 3089 * successfully. 3090 * 3091 * Returns 0 on success, or %EBUSY on error. A warning 3092 * message is also printed on failure. 3093 */ 3094 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name) 3095 { 3096 return __pci_request_region(pdev, bar, res_name, 0); 3097 } 3098 EXPORT_SYMBOL(pci_request_region); 3099 3100 /** 3101 * pci_request_region_exclusive - Reserved PCI I/O and memory resource 3102 * @pdev: PCI device whose resources are to be reserved 3103 * @bar: BAR to be reserved 3104 * @res_name: Name to be associated with resource. 3105 * 3106 * Mark the PCI region associated with PCI device @pdev BR @bar as 3107 * being reserved by owner @res_name. Do not access any 3108 * address inside the PCI regions unless this call returns 3109 * successfully. 3110 * 3111 * Returns 0 on success, or %EBUSY on error. A warning 3112 * message is also printed on failure. 3113 * 3114 * The key difference that _exclusive makes it that userspace is 3115 * explicitly not allowed to map the resource via /dev/mem or 3116 * sysfs. 3117 */ 3118 int pci_request_region_exclusive(struct pci_dev *pdev, int bar, 3119 const char *res_name) 3120 { 3121 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE); 3122 } 3123 EXPORT_SYMBOL(pci_request_region_exclusive); 3124 3125 /** 3126 * pci_release_selected_regions - Release selected PCI I/O and memory resources 3127 * @pdev: PCI device whose resources were previously reserved 3128 * @bars: Bitmask of BARs to be released 3129 * 3130 * Release selected PCI I/O and memory resources previously reserved. 3131 * Call this function only after all use of the PCI regions has ceased. 3132 */ 3133 void pci_release_selected_regions(struct pci_dev *pdev, int bars) 3134 { 3135 int i; 3136 3137 for (i = 0; i < 6; i++) 3138 if (bars & (1 << i)) 3139 pci_release_region(pdev, i); 3140 } 3141 EXPORT_SYMBOL(pci_release_selected_regions); 3142 3143 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars, 3144 const char *res_name, int excl) 3145 { 3146 int i; 3147 3148 for (i = 0; i < 6; i++) 3149 if (bars & (1 << i)) 3150 if (__pci_request_region(pdev, i, res_name, excl)) 3151 goto err_out; 3152 return 0; 3153 3154 err_out: 3155 while (--i >= 0) 3156 if (bars & (1 << i)) 3157 pci_release_region(pdev, i); 3158 3159 return -EBUSY; 3160 } 3161 3162 3163 /** 3164 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources 3165 * @pdev: PCI device whose resources are to be reserved 3166 * @bars: Bitmask of BARs to be requested 3167 * @res_name: Name to be associated with resource 3168 */ 3169 int pci_request_selected_regions(struct pci_dev *pdev, int bars, 3170 const char *res_name) 3171 { 3172 return __pci_request_selected_regions(pdev, bars, res_name, 0); 3173 } 3174 EXPORT_SYMBOL(pci_request_selected_regions); 3175 3176 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars, 3177 const char *res_name) 3178 { 3179 return __pci_request_selected_regions(pdev, bars, res_name, 3180 IORESOURCE_EXCLUSIVE); 3181 } 3182 EXPORT_SYMBOL(pci_request_selected_regions_exclusive); 3183 3184 /** 3185 * pci_release_regions - Release reserved PCI I/O and memory resources 3186 * @pdev: PCI device whose resources were previously reserved by pci_request_regions 3187 * 3188 * Releases all PCI I/O and memory resources previously reserved by a 3189 * successful call to pci_request_regions. Call this function only 3190 * after all use of the PCI regions has ceased. 3191 */ 3192 3193 void pci_release_regions(struct pci_dev *pdev) 3194 { 3195 pci_release_selected_regions(pdev, (1 << 6) - 1); 3196 } 3197 EXPORT_SYMBOL(pci_release_regions); 3198 3199 /** 3200 * pci_request_regions - Reserved PCI I/O and memory resources 3201 * @pdev: PCI device whose resources are to be reserved 3202 * @res_name: Name to be associated with resource. 3203 * 3204 * Mark all PCI regions associated with PCI device @pdev as 3205 * being reserved by owner @res_name. Do not access any 3206 * address inside the PCI regions unless this call returns 3207 * successfully. 3208 * 3209 * Returns 0 on success, or %EBUSY on error. A warning 3210 * message is also printed on failure. 3211 */ 3212 int pci_request_regions(struct pci_dev *pdev, const char *res_name) 3213 { 3214 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name); 3215 } 3216 EXPORT_SYMBOL(pci_request_regions); 3217 3218 /** 3219 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources 3220 * @pdev: PCI device whose resources are to be reserved 3221 * @res_name: Name to be associated with resource. 3222 * 3223 * Mark all PCI regions associated with PCI device @pdev as 3224 * being reserved by owner @res_name. Do not access any 3225 * address inside the PCI regions unless this call returns 3226 * successfully. 3227 * 3228 * pci_request_regions_exclusive() will mark the region so that 3229 * /dev/mem and the sysfs MMIO access will not be allowed. 3230 * 3231 * Returns 0 on success, or %EBUSY on error. A warning 3232 * message is also printed on failure. 3233 */ 3234 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name) 3235 { 3236 return pci_request_selected_regions_exclusive(pdev, 3237 ((1 << 6) - 1), res_name); 3238 } 3239 EXPORT_SYMBOL(pci_request_regions_exclusive); 3240 3241 #ifdef PCI_IOBASE 3242 struct io_range { 3243 struct list_head list; 3244 phys_addr_t start; 3245 resource_size_t size; 3246 }; 3247 3248 static LIST_HEAD(io_range_list); 3249 static DEFINE_SPINLOCK(io_range_lock); 3250 #endif 3251 3252 /* 3253 * Record the PCI IO range (expressed as CPU physical address + size). 3254 * Return a negative value if an error has occured, zero otherwise 3255 */ 3256 int __weak pci_register_io_range(phys_addr_t addr, resource_size_t size) 3257 { 3258 int err = 0; 3259 3260 #ifdef PCI_IOBASE 3261 struct io_range *range; 3262 resource_size_t allocated_size = 0; 3263 3264 /* check if the range hasn't been previously recorded */ 3265 spin_lock(&io_range_lock); 3266 list_for_each_entry(range, &io_range_list, list) { 3267 if (addr >= range->start && addr + size <= range->start + size) { 3268 /* range already registered, bail out */ 3269 goto end_register; 3270 } 3271 allocated_size += range->size; 3272 } 3273 3274 /* range not registed yet, check for available space */ 3275 if (allocated_size + size - 1 > IO_SPACE_LIMIT) { 3276 /* if it's too big check if 64K space can be reserved */ 3277 if (allocated_size + SZ_64K - 1 > IO_SPACE_LIMIT) { 3278 err = -E2BIG; 3279 goto end_register; 3280 } 3281 3282 size = SZ_64K; 3283 pr_warn("Requested IO range too big, new size set to 64K\n"); 3284 } 3285 3286 /* add the range to the list */ 3287 range = kzalloc(sizeof(*range), GFP_ATOMIC); 3288 if (!range) { 3289 err = -ENOMEM; 3290 goto end_register; 3291 } 3292 3293 range->start = addr; 3294 range->size = size; 3295 3296 list_add_tail(&range->list, &io_range_list); 3297 3298 end_register: 3299 spin_unlock(&io_range_lock); 3300 #endif 3301 3302 return err; 3303 } 3304 3305 phys_addr_t pci_pio_to_address(unsigned long pio) 3306 { 3307 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR; 3308 3309 #ifdef PCI_IOBASE 3310 struct io_range *range; 3311 resource_size_t allocated_size = 0; 3312 3313 if (pio > IO_SPACE_LIMIT) 3314 return address; 3315 3316 spin_lock(&io_range_lock); 3317 list_for_each_entry(range, &io_range_list, list) { 3318 if (pio >= allocated_size && pio < allocated_size + range->size) { 3319 address = range->start + pio - allocated_size; 3320 break; 3321 } 3322 allocated_size += range->size; 3323 } 3324 spin_unlock(&io_range_lock); 3325 #endif 3326 3327 return address; 3328 } 3329 3330 unsigned long __weak pci_address_to_pio(phys_addr_t address) 3331 { 3332 #ifdef PCI_IOBASE 3333 struct io_range *res; 3334 resource_size_t offset = 0; 3335 unsigned long addr = -1; 3336 3337 spin_lock(&io_range_lock); 3338 list_for_each_entry(res, &io_range_list, list) { 3339 if (address >= res->start && address < res->start + res->size) { 3340 addr = address - res->start + offset; 3341 break; 3342 } 3343 offset += res->size; 3344 } 3345 spin_unlock(&io_range_lock); 3346 3347 return addr; 3348 #else 3349 if (address > IO_SPACE_LIMIT) 3350 return (unsigned long)-1; 3351 3352 return (unsigned long) address; 3353 #endif 3354 } 3355 3356 /** 3357 * pci_remap_iospace - Remap the memory mapped I/O space 3358 * @res: Resource describing the I/O space 3359 * @phys_addr: physical address of range to be mapped 3360 * 3361 * Remap the memory mapped I/O space described by the @res 3362 * and the CPU physical address @phys_addr into virtual address space. 3363 * Only architectures that have memory mapped IO functions defined 3364 * (and the PCI_IOBASE value defined) should call this function. 3365 */ 3366 int __weak pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr) 3367 { 3368 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 3369 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 3370 3371 if (!(res->flags & IORESOURCE_IO)) 3372 return -EINVAL; 3373 3374 if (res->end > IO_SPACE_LIMIT) 3375 return -EINVAL; 3376 3377 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr, 3378 pgprot_device(PAGE_KERNEL)); 3379 #else 3380 /* this architecture does not have memory mapped I/O space, 3381 so this function should never be called */ 3382 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n"); 3383 return -ENODEV; 3384 #endif 3385 } 3386 3387 /** 3388 * pci_unmap_iospace - Unmap the memory mapped I/O space 3389 * @res: resource to be unmapped 3390 * 3391 * Unmap the CPU virtual address @res from virtual address space. 3392 * Only architectures that have memory mapped IO functions defined 3393 * (and the PCI_IOBASE value defined) should call this function. 3394 */ 3395 void pci_unmap_iospace(struct resource *res) 3396 { 3397 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 3398 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 3399 3400 unmap_kernel_range(vaddr, resource_size(res)); 3401 #endif 3402 } 3403 3404 static void __pci_set_master(struct pci_dev *dev, bool enable) 3405 { 3406 u16 old_cmd, cmd; 3407 3408 pci_read_config_word(dev, PCI_COMMAND, &old_cmd); 3409 if (enable) 3410 cmd = old_cmd | PCI_COMMAND_MASTER; 3411 else 3412 cmd = old_cmd & ~PCI_COMMAND_MASTER; 3413 if (cmd != old_cmd) { 3414 dev_dbg(&dev->dev, "%s bus mastering\n", 3415 enable ? "enabling" : "disabling"); 3416 pci_write_config_word(dev, PCI_COMMAND, cmd); 3417 } 3418 dev->is_busmaster = enable; 3419 } 3420 3421 /** 3422 * pcibios_setup - process "pci=" kernel boot arguments 3423 * @str: string used to pass in "pci=" kernel boot arguments 3424 * 3425 * Process kernel boot arguments. This is the default implementation. 3426 * Architecture specific implementations can override this as necessary. 3427 */ 3428 char * __weak __init pcibios_setup(char *str) 3429 { 3430 return str; 3431 } 3432 3433 /** 3434 * pcibios_set_master - enable PCI bus-mastering for device dev 3435 * @dev: the PCI device to enable 3436 * 3437 * Enables PCI bus-mastering for the device. This is the default 3438 * implementation. Architecture specific implementations can override 3439 * this if necessary. 3440 */ 3441 void __weak pcibios_set_master(struct pci_dev *dev) 3442 { 3443 u8 lat; 3444 3445 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */ 3446 if (pci_is_pcie(dev)) 3447 return; 3448 3449 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat); 3450 if (lat < 16) 3451 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency; 3452 else if (lat > pcibios_max_latency) 3453 lat = pcibios_max_latency; 3454 else 3455 return; 3456 3457 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat); 3458 } 3459 3460 /** 3461 * pci_set_master - enables bus-mastering for device dev 3462 * @dev: the PCI device to enable 3463 * 3464 * Enables bus-mastering on the device and calls pcibios_set_master() 3465 * to do the needed arch specific settings. 3466 */ 3467 void pci_set_master(struct pci_dev *dev) 3468 { 3469 __pci_set_master(dev, true); 3470 pcibios_set_master(dev); 3471 } 3472 EXPORT_SYMBOL(pci_set_master); 3473 3474 /** 3475 * pci_clear_master - disables bus-mastering for device dev 3476 * @dev: the PCI device to disable 3477 */ 3478 void pci_clear_master(struct pci_dev *dev) 3479 { 3480 __pci_set_master(dev, false); 3481 } 3482 EXPORT_SYMBOL(pci_clear_master); 3483 3484 /** 3485 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed 3486 * @dev: the PCI device for which MWI is to be enabled 3487 * 3488 * Helper function for pci_set_mwi. 3489 * Originally copied from drivers/net/acenic.c. 3490 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. 3491 * 3492 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 3493 */ 3494 int pci_set_cacheline_size(struct pci_dev *dev) 3495 { 3496 u8 cacheline_size; 3497 3498 if (!pci_cache_line_size) 3499 return -EINVAL; 3500 3501 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be 3502 equal to or multiple of the right value. */ 3503 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 3504 if (cacheline_size >= pci_cache_line_size && 3505 (cacheline_size % pci_cache_line_size) == 0) 3506 return 0; 3507 3508 /* Write the correct value. */ 3509 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size); 3510 /* Read it back. */ 3511 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 3512 if (cacheline_size == pci_cache_line_size) 3513 return 0; 3514 3515 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not supported\n", 3516 pci_cache_line_size << 2); 3517 3518 return -EINVAL; 3519 } 3520 EXPORT_SYMBOL_GPL(pci_set_cacheline_size); 3521 3522 /** 3523 * pci_set_mwi - enables memory-write-invalidate PCI transaction 3524 * @dev: the PCI device for which MWI is enabled 3525 * 3526 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 3527 * 3528 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 3529 */ 3530 int pci_set_mwi(struct pci_dev *dev) 3531 { 3532 #ifdef PCI_DISABLE_MWI 3533 return 0; 3534 #else 3535 int rc; 3536 u16 cmd; 3537 3538 rc = pci_set_cacheline_size(dev); 3539 if (rc) 3540 return rc; 3541 3542 pci_read_config_word(dev, PCI_COMMAND, &cmd); 3543 if (!(cmd & PCI_COMMAND_INVALIDATE)) { 3544 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n"); 3545 cmd |= PCI_COMMAND_INVALIDATE; 3546 pci_write_config_word(dev, PCI_COMMAND, cmd); 3547 } 3548 return 0; 3549 #endif 3550 } 3551 EXPORT_SYMBOL(pci_set_mwi); 3552 3553 /** 3554 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction 3555 * @dev: the PCI device for which MWI is enabled 3556 * 3557 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 3558 * Callers are not required to check the return value. 3559 * 3560 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 3561 */ 3562 int pci_try_set_mwi(struct pci_dev *dev) 3563 { 3564 #ifdef PCI_DISABLE_MWI 3565 return 0; 3566 #else 3567 return pci_set_mwi(dev); 3568 #endif 3569 } 3570 EXPORT_SYMBOL(pci_try_set_mwi); 3571 3572 /** 3573 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev 3574 * @dev: the PCI device to disable 3575 * 3576 * Disables PCI Memory-Write-Invalidate transaction on the device 3577 */ 3578 void pci_clear_mwi(struct pci_dev *dev) 3579 { 3580 #ifndef PCI_DISABLE_MWI 3581 u16 cmd; 3582 3583 pci_read_config_word(dev, PCI_COMMAND, &cmd); 3584 if (cmd & PCI_COMMAND_INVALIDATE) { 3585 cmd &= ~PCI_COMMAND_INVALIDATE; 3586 pci_write_config_word(dev, PCI_COMMAND, cmd); 3587 } 3588 #endif 3589 } 3590 EXPORT_SYMBOL(pci_clear_mwi); 3591 3592 /** 3593 * pci_intx - enables/disables PCI INTx for device dev 3594 * @pdev: the PCI device to operate on 3595 * @enable: boolean: whether to enable or disable PCI INTx 3596 * 3597 * Enables/disables PCI INTx for device dev 3598 */ 3599 void pci_intx(struct pci_dev *pdev, int enable) 3600 { 3601 u16 pci_command, new; 3602 3603 pci_read_config_word(pdev, PCI_COMMAND, &pci_command); 3604 3605 if (enable) 3606 new = pci_command & ~PCI_COMMAND_INTX_DISABLE; 3607 else 3608 new = pci_command | PCI_COMMAND_INTX_DISABLE; 3609 3610 if (new != pci_command) { 3611 struct pci_devres *dr; 3612 3613 pci_write_config_word(pdev, PCI_COMMAND, new); 3614 3615 dr = find_pci_dr(pdev); 3616 if (dr && !dr->restore_intx) { 3617 dr->restore_intx = 1; 3618 dr->orig_intx = !enable; 3619 } 3620 } 3621 } 3622 EXPORT_SYMBOL_GPL(pci_intx); 3623 3624 /** 3625 * pci_intx_mask_supported - probe for INTx masking support 3626 * @dev: the PCI device to operate on 3627 * 3628 * Check if the device dev support INTx masking via the config space 3629 * command word. 3630 */ 3631 bool pci_intx_mask_supported(struct pci_dev *dev) 3632 { 3633 bool mask_supported = false; 3634 u16 orig, new; 3635 3636 if (dev->broken_intx_masking) 3637 return false; 3638 3639 pci_cfg_access_lock(dev); 3640 3641 pci_read_config_word(dev, PCI_COMMAND, &orig); 3642 pci_write_config_word(dev, PCI_COMMAND, 3643 orig ^ PCI_COMMAND_INTX_DISABLE); 3644 pci_read_config_word(dev, PCI_COMMAND, &new); 3645 3646 /* 3647 * There's no way to protect against hardware bugs or detect them 3648 * reliably, but as long as we know what the value should be, let's 3649 * go ahead and check it. 3650 */ 3651 if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) { 3652 dev_err(&dev->dev, "Command register changed from 0x%x to 0x%x: driver or hardware bug?\n", 3653 orig, new); 3654 } else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) { 3655 mask_supported = true; 3656 pci_write_config_word(dev, PCI_COMMAND, orig); 3657 } 3658 3659 pci_cfg_access_unlock(dev); 3660 return mask_supported; 3661 } 3662 EXPORT_SYMBOL_GPL(pci_intx_mask_supported); 3663 3664 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask) 3665 { 3666 struct pci_bus *bus = dev->bus; 3667 bool mask_updated = true; 3668 u32 cmd_status_dword; 3669 u16 origcmd, newcmd; 3670 unsigned long flags; 3671 bool irq_pending; 3672 3673 /* 3674 * We do a single dword read to retrieve both command and status. 3675 * Document assumptions that make this possible. 3676 */ 3677 BUILD_BUG_ON(PCI_COMMAND % 4); 3678 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS); 3679 3680 raw_spin_lock_irqsave(&pci_lock, flags); 3681 3682 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword); 3683 3684 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT; 3685 3686 /* 3687 * Check interrupt status register to see whether our device 3688 * triggered the interrupt (when masking) or the next IRQ is 3689 * already pending (when unmasking). 3690 */ 3691 if (mask != irq_pending) { 3692 mask_updated = false; 3693 goto done; 3694 } 3695 3696 origcmd = cmd_status_dword; 3697 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE; 3698 if (mask) 3699 newcmd |= PCI_COMMAND_INTX_DISABLE; 3700 if (newcmd != origcmd) 3701 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd); 3702 3703 done: 3704 raw_spin_unlock_irqrestore(&pci_lock, flags); 3705 3706 return mask_updated; 3707 } 3708 3709 /** 3710 * pci_check_and_mask_intx - mask INTx on pending interrupt 3711 * @dev: the PCI device to operate on 3712 * 3713 * Check if the device dev has its INTx line asserted, mask it and 3714 * return true in that case. False is returned if not interrupt was 3715 * pending. 3716 */ 3717 bool pci_check_and_mask_intx(struct pci_dev *dev) 3718 { 3719 return pci_check_and_set_intx_mask(dev, true); 3720 } 3721 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx); 3722 3723 /** 3724 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending 3725 * @dev: the PCI device to operate on 3726 * 3727 * Check if the device dev has its INTx line asserted, unmask it if not 3728 * and return true. False is returned and the mask remains active if 3729 * there was still an interrupt pending. 3730 */ 3731 bool pci_check_and_unmask_intx(struct pci_dev *dev) 3732 { 3733 return pci_check_and_set_intx_mask(dev, false); 3734 } 3735 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx); 3736 3737 /** 3738 * pci_wait_for_pending_transaction - waits for pending transaction 3739 * @dev: the PCI device to operate on 3740 * 3741 * Return 0 if transaction is pending 1 otherwise. 3742 */ 3743 int pci_wait_for_pending_transaction(struct pci_dev *dev) 3744 { 3745 if (!pci_is_pcie(dev)) 3746 return 1; 3747 3748 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA, 3749 PCI_EXP_DEVSTA_TRPND); 3750 } 3751 EXPORT_SYMBOL(pci_wait_for_pending_transaction); 3752 3753 /* 3754 * We should only need to wait 100ms after FLR, but some devices take longer. 3755 * Wait for up to 1000ms for config space to return something other than -1. 3756 * Intel IGD requires this when an LCD panel is attached. We read the 2nd 3757 * dword because VFs don't implement the 1st dword. 3758 */ 3759 static void pci_flr_wait(struct pci_dev *dev) 3760 { 3761 int i = 0; 3762 u32 id; 3763 3764 do { 3765 msleep(100); 3766 pci_read_config_dword(dev, PCI_COMMAND, &id); 3767 } while (i++ < 10 && id == ~0); 3768 3769 if (id == ~0) 3770 dev_warn(&dev->dev, "Failed to return from FLR\n"); 3771 else if (i > 1) 3772 dev_info(&dev->dev, "Required additional %dms to return from FLR\n", 3773 (i - 1) * 100); 3774 } 3775 3776 static int pcie_flr(struct pci_dev *dev, int probe) 3777 { 3778 u32 cap; 3779 3780 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap); 3781 if (!(cap & PCI_EXP_DEVCAP_FLR)) 3782 return -ENOTTY; 3783 3784 if (probe) 3785 return 0; 3786 3787 if (!pci_wait_for_pending_transaction(dev)) 3788 dev_err(&dev->dev, "timed out waiting for pending transaction; performing function level reset anyway\n"); 3789 3790 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR); 3791 pci_flr_wait(dev); 3792 return 0; 3793 } 3794 3795 static int pci_af_flr(struct pci_dev *dev, int probe) 3796 { 3797 int pos; 3798 u8 cap; 3799 3800 pos = pci_find_capability(dev, PCI_CAP_ID_AF); 3801 if (!pos) 3802 return -ENOTTY; 3803 3804 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap); 3805 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR)) 3806 return -ENOTTY; 3807 3808 if (probe) 3809 return 0; 3810 3811 /* 3812 * Wait for Transaction Pending bit to clear. A word-aligned test 3813 * is used, so we use the conrol offset rather than status and shift 3814 * the test bit to match. 3815 */ 3816 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL, 3817 PCI_AF_STATUS_TP << 8)) 3818 dev_err(&dev->dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n"); 3819 3820 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR); 3821 pci_flr_wait(dev); 3822 return 0; 3823 } 3824 3825 /** 3826 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0. 3827 * @dev: Device to reset. 3828 * @probe: If set, only check if the device can be reset this way. 3829 * 3830 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is 3831 * unset, it will be reinitialized internally when going from PCI_D3hot to 3832 * PCI_D0. If that's the case and the device is not in a low-power state 3833 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset. 3834 * 3835 * NOTE: This causes the caller to sleep for twice the device power transition 3836 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms 3837 * by default (i.e. unless the @dev's d3_delay field has a different value). 3838 * Moreover, only devices in D0 can be reset by this function. 3839 */ 3840 static int pci_pm_reset(struct pci_dev *dev, int probe) 3841 { 3842 u16 csr; 3843 3844 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET) 3845 return -ENOTTY; 3846 3847 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr); 3848 if (csr & PCI_PM_CTRL_NO_SOFT_RESET) 3849 return -ENOTTY; 3850 3851 if (probe) 3852 return 0; 3853 3854 if (dev->current_state != PCI_D0) 3855 return -EINVAL; 3856 3857 csr &= ~PCI_PM_CTRL_STATE_MASK; 3858 csr |= PCI_D3hot; 3859 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 3860 pci_dev_d3_sleep(dev); 3861 3862 csr &= ~PCI_PM_CTRL_STATE_MASK; 3863 csr |= PCI_D0; 3864 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 3865 pci_dev_d3_sleep(dev); 3866 3867 return 0; 3868 } 3869 3870 void pci_reset_secondary_bus(struct pci_dev *dev) 3871 { 3872 u16 ctrl; 3873 3874 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl); 3875 ctrl |= PCI_BRIDGE_CTL_BUS_RESET; 3876 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 3877 /* 3878 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double 3879 * this to 2ms to ensure that we meet the minimum requirement. 3880 */ 3881 msleep(2); 3882 3883 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET; 3884 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 3885 3886 /* 3887 * Trhfa for conventional PCI is 2^25 clock cycles. 3888 * Assuming a minimum 33MHz clock this results in a 1s 3889 * delay before we can consider subordinate devices to 3890 * be re-initialized. PCIe has some ways to shorten this, 3891 * but we don't make use of them yet. 3892 */ 3893 ssleep(1); 3894 } 3895 3896 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev) 3897 { 3898 pci_reset_secondary_bus(dev); 3899 } 3900 3901 /** 3902 * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge. 3903 * @dev: Bridge device 3904 * 3905 * Use the bridge control register to assert reset on the secondary bus. 3906 * Devices on the secondary bus are left in power-on state. 3907 */ 3908 void pci_reset_bridge_secondary_bus(struct pci_dev *dev) 3909 { 3910 pcibios_reset_secondary_bus(dev); 3911 } 3912 EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus); 3913 3914 static int pci_parent_bus_reset(struct pci_dev *dev, int probe) 3915 { 3916 struct pci_dev *pdev; 3917 3918 if (pci_is_root_bus(dev->bus) || dev->subordinate || 3919 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 3920 return -ENOTTY; 3921 3922 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 3923 if (pdev != dev) 3924 return -ENOTTY; 3925 3926 if (probe) 3927 return 0; 3928 3929 pci_reset_bridge_secondary_bus(dev->bus->self); 3930 3931 return 0; 3932 } 3933 3934 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe) 3935 { 3936 int rc = -ENOTTY; 3937 3938 if (!hotplug || !try_module_get(hotplug->ops->owner)) 3939 return rc; 3940 3941 if (hotplug->ops->reset_slot) 3942 rc = hotplug->ops->reset_slot(hotplug, probe); 3943 3944 module_put(hotplug->ops->owner); 3945 3946 return rc; 3947 } 3948 3949 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe) 3950 { 3951 struct pci_dev *pdev; 3952 3953 if (dev->subordinate || !dev->slot || 3954 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 3955 return -ENOTTY; 3956 3957 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 3958 if (pdev != dev && pdev->slot == dev->slot) 3959 return -ENOTTY; 3960 3961 return pci_reset_hotplug_slot(dev->slot->hotplug, probe); 3962 } 3963 3964 static int __pci_dev_reset(struct pci_dev *dev, int probe) 3965 { 3966 int rc; 3967 3968 might_sleep(); 3969 3970 rc = pci_dev_specific_reset(dev, probe); 3971 if (rc != -ENOTTY) 3972 goto done; 3973 3974 rc = pcie_flr(dev, probe); 3975 if (rc != -ENOTTY) 3976 goto done; 3977 3978 rc = pci_af_flr(dev, probe); 3979 if (rc != -ENOTTY) 3980 goto done; 3981 3982 rc = pci_pm_reset(dev, probe); 3983 if (rc != -ENOTTY) 3984 goto done; 3985 3986 rc = pci_dev_reset_slot_function(dev, probe); 3987 if (rc != -ENOTTY) 3988 goto done; 3989 3990 rc = pci_parent_bus_reset(dev, probe); 3991 done: 3992 return rc; 3993 } 3994 3995 static void pci_dev_lock(struct pci_dev *dev) 3996 { 3997 pci_cfg_access_lock(dev); 3998 /* block PM suspend, driver probe, etc. */ 3999 device_lock(&dev->dev); 4000 } 4001 4002 /* Return 1 on successful lock, 0 on contention */ 4003 static int pci_dev_trylock(struct pci_dev *dev) 4004 { 4005 if (pci_cfg_access_trylock(dev)) { 4006 if (device_trylock(&dev->dev)) 4007 return 1; 4008 pci_cfg_access_unlock(dev); 4009 } 4010 4011 return 0; 4012 } 4013 4014 static void pci_dev_unlock(struct pci_dev *dev) 4015 { 4016 device_unlock(&dev->dev); 4017 pci_cfg_access_unlock(dev); 4018 } 4019 4020 /** 4021 * pci_reset_notify - notify device driver of reset 4022 * @dev: device to be notified of reset 4023 * @prepare: 'true' if device is about to be reset; 'false' if reset attempt 4024 * completed 4025 * 4026 * Must be called prior to device access being disabled and after device 4027 * access is restored. 4028 */ 4029 static void pci_reset_notify(struct pci_dev *dev, bool prepare) 4030 { 4031 const struct pci_error_handlers *err_handler = 4032 dev->driver ? dev->driver->err_handler : NULL; 4033 if (err_handler && err_handler->reset_notify) 4034 err_handler->reset_notify(dev, prepare); 4035 } 4036 4037 static void pci_dev_save_and_disable(struct pci_dev *dev) 4038 { 4039 pci_reset_notify(dev, true); 4040 4041 /* 4042 * Wake-up device prior to save. PM registers default to D0 after 4043 * reset and a simple register restore doesn't reliably return 4044 * to a non-D0 state anyway. 4045 */ 4046 pci_set_power_state(dev, PCI_D0); 4047 4048 pci_save_state(dev); 4049 /* 4050 * Disable the device by clearing the Command register, except for 4051 * INTx-disable which is set. This not only disables MMIO and I/O port 4052 * BARs, but also prevents the device from being Bus Master, preventing 4053 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3 4054 * compliant devices, INTx-disable prevents legacy interrupts. 4055 */ 4056 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE); 4057 } 4058 4059 static void pci_dev_restore(struct pci_dev *dev) 4060 { 4061 pci_restore_state(dev); 4062 pci_reset_notify(dev, false); 4063 } 4064 4065 static int pci_dev_reset(struct pci_dev *dev, int probe) 4066 { 4067 int rc; 4068 4069 if (!probe) 4070 pci_dev_lock(dev); 4071 4072 rc = __pci_dev_reset(dev, probe); 4073 4074 if (!probe) 4075 pci_dev_unlock(dev); 4076 4077 return rc; 4078 } 4079 4080 /** 4081 * __pci_reset_function - reset a PCI device function 4082 * @dev: PCI device to reset 4083 * 4084 * Some devices allow an individual function to be reset without affecting 4085 * other functions in the same device. The PCI device must be responsive 4086 * to PCI config space in order to use this function. 4087 * 4088 * The device function is presumed to be unused when this function is called. 4089 * Resetting the device will make the contents of PCI configuration space 4090 * random, so any caller of this must be prepared to reinitialise the 4091 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 4092 * etc. 4093 * 4094 * Returns 0 if the device function was successfully reset or negative if the 4095 * device doesn't support resetting a single function. 4096 */ 4097 int __pci_reset_function(struct pci_dev *dev) 4098 { 4099 return pci_dev_reset(dev, 0); 4100 } 4101 EXPORT_SYMBOL_GPL(__pci_reset_function); 4102 4103 /** 4104 * __pci_reset_function_locked - reset a PCI device function while holding 4105 * the @dev mutex lock. 4106 * @dev: PCI device to reset 4107 * 4108 * Some devices allow an individual function to be reset without affecting 4109 * other functions in the same device. The PCI device must be responsive 4110 * to PCI config space in order to use this function. 4111 * 4112 * The device function is presumed to be unused and the caller is holding 4113 * the device mutex lock when this function is called. 4114 * Resetting the device will make the contents of PCI configuration space 4115 * random, so any caller of this must be prepared to reinitialise the 4116 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 4117 * etc. 4118 * 4119 * Returns 0 if the device function was successfully reset or negative if the 4120 * device doesn't support resetting a single function. 4121 */ 4122 int __pci_reset_function_locked(struct pci_dev *dev) 4123 { 4124 return __pci_dev_reset(dev, 0); 4125 } 4126 EXPORT_SYMBOL_GPL(__pci_reset_function_locked); 4127 4128 /** 4129 * pci_probe_reset_function - check whether the device can be safely reset 4130 * @dev: PCI device to reset 4131 * 4132 * Some devices allow an individual function to be reset without affecting 4133 * other functions in the same device. The PCI device must be responsive 4134 * to PCI config space in order to use this function. 4135 * 4136 * Returns 0 if the device function can be reset or negative if the 4137 * device doesn't support resetting a single function. 4138 */ 4139 int pci_probe_reset_function(struct pci_dev *dev) 4140 { 4141 return pci_dev_reset(dev, 1); 4142 } 4143 4144 /** 4145 * pci_reset_function - quiesce and reset a PCI device function 4146 * @dev: PCI device to reset 4147 * 4148 * Some devices allow an individual function to be reset without affecting 4149 * other functions in the same device. The PCI device must be responsive 4150 * to PCI config space in order to use this function. 4151 * 4152 * This function does not just reset the PCI portion of a device, but 4153 * clears all the state associated with the device. This function differs 4154 * from __pci_reset_function in that it saves and restores device state 4155 * over the reset. 4156 * 4157 * Returns 0 if the device function was successfully reset or negative if the 4158 * device doesn't support resetting a single function. 4159 */ 4160 int pci_reset_function(struct pci_dev *dev) 4161 { 4162 int rc; 4163 4164 rc = pci_dev_reset(dev, 1); 4165 if (rc) 4166 return rc; 4167 4168 pci_dev_save_and_disable(dev); 4169 4170 rc = pci_dev_reset(dev, 0); 4171 4172 pci_dev_restore(dev); 4173 4174 return rc; 4175 } 4176 EXPORT_SYMBOL_GPL(pci_reset_function); 4177 4178 /** 4179 * pci_try_reset_function - quiesce and reset a PCI device function 4180 * @dev: PCI device to reset 4181 * 4182 * Same as above, except return -EAGAIN if unable to lock device. 4183 */ 4184 int pci_try_reset_function(struct pci_dev *dev) 4185 { 4186 int rc; 4187 4188 rc = pci_dev_reset(dev, 1); 4189 if (rc) 4190 return rc; 4191 4192 pci_dev_save_and_disable(dev); 4193 4194 if (pci_dev_trylock(dev)) { 4195 rc = __pci_dev_reset(dev, 0); 4196 pci_dev_unlock(dev); 4197 } else 4198 rc = -EAGAIN; 4199 4200 pci_dev_restore(dev); 4201 4202 return rc; 4203 } 4204 EXPORT_SYMBOL_GPL(pci_try_reset_function); 4205 4206 /* Do any devices on or below this bus prevent a bus reset? */ 4207 static bool pci_bus_resetable(struct pci_bus *bus) 4208 { 4209 struct pci_dev *dev; 4210 4211 list_for_each_entry(dev, &bus->devices, bus_list) { 4212 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 4213 (dev->subordinate && !pci_bus_resetable(dev->subordinate))) 4214 return false; 4215 } 4216 4217 return true; 4218 } 4219 4220 /* Lock devices from the top of the tree down */ 4221 static void pci_bus_lock(struct pci_bus *bus) 4222 { 4223 struct pci_dev *dev; 4224 4225 list_for_each_entry(dev, &bus->devices, bus_list) { 4226 pci_dev_lock(dev); 4227 if (dev->subordinate) 4228 pci_bus_lock(dev->subordinate); 4229 } 4230 } 4231 4232 /* Unlock devices from the bottom of the tree up */ 4233 static void pci_bus_unlock(struct pci_bus *bus) 4234 { 4235 struct pci_dev *dev; 4236 4237 list_for_each_entry(dev, &bus->devices, bus_list) { 4238 if (dev->subordinate) 4239 pci_bus_unlock(dev->subordinate); 4240 pci_dev_unlock(dev); 4241 } 4242 } 4243 4244 /* Return 1 on successful lock, 0 on contention */ 4245 static int pci_bus_trylock(struct pci_bus *bus) 4246 { 4247 struct pci_dev *dev; 4248 4249 list_for_each_entry(dev, &bus->devices, bus_list) { 4250 if (!pci_dev_trylock(dev)) 4251 goto unlock; 4252 if (dev->subordinate) { 4253 if (!pci_bus_trylock(dev->subordinate)) { 4254 pci_dev_unlock(dev); 4255 goto unlock; 4256 } 4257 } 4258 } 4259 return 1; 4260 4261 unlock: 4262 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) { 4263 if (dev->subordinate) 4264 pci_bus_unlock(dev->subordinate); 4265 pci_dev_unlock(dev); 4266 } 4267 return 0; 4268 } 4269 4270 /* Do any devices on or below this slot prevent a bus reset? */ 4271 static bool pci_slot_resetable(struct pci_slot *slot) 4272 { 4273 struct pci_dev *dev; 4274 4275 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 4276 if (!dev->slot || dev->slot != slot) 4277 continue; 4278 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 4279 (dev->subordinate && !pci_bus_resetable(dev->subordinate))) 4280 return false; 4281 } 4282 4283 return true; 4284 } 4285 4286 /* Lock devices from the top of the tree down */ 4287 static void pci_slot_lock(struct pci_slot *slot) 4288 { 4289 struct pci_dev *dev; 4290 4291 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 4292 if (!dev->slot || dev->slot != slot) 4293 continue; 4294 pci_dev_lock(dev); 4295 if (dev->subordinate) 4296 pci_bus_lock(dev->subordinate); 4297 } 4298 } 4299 4300 /* Unlock devices from the bottom of the tree up */ 4301 static void pci_slot_unlock(struct pci_slot *slot) 4302 { 4303 struct pci_dev *dev; 4304 4305 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 4306 if (!dev->slot || dev->slot != slot) 4307 continue; 4308 if (dev->subordinate) 4309 pci_bus_unlock(dev->subordinate); 4310 pci_dev_unlock(dev); 4311 } 4312 } 4313 4314 /* Return 1 on successful lock, 0 on contention */ 4315 static int pci_slot_trylock(struct pci_slot *slot) 4316 { 4317 struct pci_dev *dev; 4318 4319 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 4320 if (!dev->slot || dev->slot != slot) 4321 continue; 4322 if (!pci_dev_trylock(dev)) 4323 goto unlock; 4324 if (dev->subordinate) { 4325 if (!pci_bus_trylock(dev->subordinate)) { 4326 pci_dev_unlock(dev); 4327 goto unlock; 4328 } 4329 } 4330 } 4331 return 1; 4332 4333 unlock: 4334 list_for_each_entry_continue_reverse(dev, 4335 &slot->bus->devices, bus_list) { 4336 if (!dev->slot || dev->slot != slot) 4337 continue; 4338 if (dev->subordinate) 4339 pci_bus_unlock(dev->subordinate); 4340 pci_dev_unlock(dev); 4341 } 4342 return 0; 4343 } 4344 4345 /* Save and disable devices from the top of the tree down */ 4346 static void pci_bus_save_and_disable(struct pci_bus *bus) 4347 { 4348 struct pci_dev *dev; 4349 4350 list_for_each_entry(dev, &bus->devices, bus_list) { 4351 pci_dev_save_and_disable(dev); 4352 if (dev->subordinate) 4353 pci_bus_save_and_disable(dev->subordinate); 4354 } 4355 } 4356 4357 /* 4358 * Restore devices from top of the tree down - parent bridges need to be 4359 * restored before we can get to subordinate devices. 4360 */ 4361 static void pci_bus_restore(struct pci_bus *bus) 4362 { 4363 struct pci_dev *dev; 4364 4365 list_for_each_entry(dev, &bus->devices, bus_list) { 4366 pci_dev_restore(dev); 4367 if (dev->subordinate) 4368 pci_bus_restore(dev->subordinate); 4369 } 4370 } 4371 4372 /* Save and disable devices from the top of the tree down */ 4373 static void pci_slot_save_and_disable(struct pci_slot *slot) 4374 { 4375 struct pci_dev *dev; 4376 4377 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 4378 if (!dev->slot || dev->slot != slot) 4379 continue; 4380 pci_dev_save_and_disable(dev); 4381 if (dev->subordinate) 4382 pci_bus_save_and_disable(dev->subordinate); 4383 } 4384 } 4385 4386 /* 4387 * Restore devices from top of the tree down - parent bridges need to be 4388 * restored before we can get to subordinate devices. 4389 */ 4390 static void pci_slot_restore(struct pci_slot *slot) 4391 { 4392 struct pci_dev *dev; 4393 4394 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 4395 if (!dev->slot || dev->slot != slot) 4396 continue; 4397 pci_dev_restore(dev); 4398 if (dev->subordinate) 4399 pci_bus_restore(dev->subordinate); 4400 } 4401 } 4402 4403 static int pci_slot_reset(struct pci_slot *slot, int probe) 4404 { 4405 int rc; 4406 4407 if (!slot || !pci_slot_resetable(slot)) 4408 return -ENOTTY; 4409 4410 if (!probe) 4411 pci_slot_lock(slot); 4412 4413 might_sleep(); 4414 4415 rc = pci_reset_hotplug_slot(slot->hotplug, probe); 4416 4417 if (!probe) 4418 pci_slot_unlock(slot); 4419 4420 return rc; 4421 } 4422 4423 /** 4424 * pci_probe_reset_slot - probe whether a PCI slot can be reset 4425 * @slot: PCI slot to probe 4426 * 4427 * Return 0 if slot can be reset, negative if a slot reset is not supported. 4428 */ 4429 int pci_probe_reset_slot(struct pci_slot *slot) 4430 { 4431 return pci_slot_reset(slot, 1); 4432 } 4433 EXPORT_SYMBOL_GPL(pci_probe_reset_slot); 4434 4435 /** 4436 * pci_reset_slot - reset a PCI slot 4437 * @slot: PCI slot to reset 4438 * 4439 * A PCI bus may host multiple slots, each slot may support a reset mechanism 4440 * independent of other slots. For instance, some slots may support slot power 4441 * control. In the case of a 1:1 bus to slot architecture, this function may 4442 * wrap the bus reset to avoid spurious slot related events such as hotplug. 4443 * Generally a slot reset should be attempted before a bus reset. All of the 4444 * function of the slot and any subordinate buses behind the slot are reset 4445 * through this function. PCI config space of all devices in the slot and 4446 * behind the slot is saved before and restored after reset. 4447 * 4448 * Return 0 on success, non-zero on error. 4449 */ 4450 int pci_reset_slot(struct pci_slot *slot) 4451 { 4452 int rc; 4453 4454 rc = pci_slot_reset(slot, 1); 4455 if (rc) 4456 return rc; 4457 4458 pci_slot_save_and_disable(slot); 4459 4460 rc = pci_slot_reset(slot, 0); 4461 4462 pci_slot_restore(slot); 4463 4464 return rc; 4465 } 4466 EXPORT_SYMBOL_GPL(pci_reset_slot); 4467 4468 /** 4469 * pci_try_reset_slot - Try to reset a PCI slot 4470 * @slot: PCI slot to reset 4471 * 4472 * Same as above except return -EAGAIN if the slot cannot be locked 4473 */ 4474 int pci_try_reset_slot(struct pci_slot *slot) 4475 { 4476 int rc; 4477 4478 rc = pci_slot_reset(slot, 1); 4479 if (rc) 4480 return rc; 4481 4482 pci_slot_save_and_disable(slot); 4483 4484 if (pci_slot_trylock(slot)) { 4485 might_sleep(); 4486 rc = pci_reset_hotplug_slot(slot->hotplug, 0); 4487 pci_slot_unlock(slot); 4488 } else 4489 rc = -EAGAIN; 4490 4491 pci_slot_restore(slot); 4492 4493 return rc; 4494 } 4495 EXPORT_SYMBOL_GPL(pci_try_reset_slot); 4496 4497 static int pci_bus_reset(struct pci_bus *bus, int probe) 4498 { 4499 if (!bus->self || !pci_bus_resetable(bus)) 4500 return -ENOTTY; 4501 4502 if (probe) 4503 return 0; 4504 4505 pci_bus_lock(bus); 4506 4507 might_sleep(); 4508 4509 pci_reset_bridge_secondary_bus(bus->self); 4510 4511 pci_bus_unlock(bus); 4512 4513 return 0; 4514 } 4515 4516 /** 4517 * pci_probe_reset_bus - probe whether a PCI bus can be reset 4518 * @bus: PCI bus to probe 4519 * 4520 * Return 0 if bus can be reset, negative if a bus reset is not supported. 4521 */ 4522 int pci_probe_reset_bus(struct pci_bus *bus) 4523 { 4524 return pci_bus_reset(bus, 1); 4525 } 4526 EXPORT_SYMBOL_GPL(pci_probe_reset_bus); 4527 4528 /** 4529 * pci_reset_bus - reset a PCI bus 4530 * @bus: top level PCI bus to reset 4531 * 4532 * Do a bus reset on the given bus and any subordinate buses, saving 4533 * and restoring state of all devices. 4534 * 4535 * Return 0 on success, non-zero on error. 4536 */ 4537 int pci_reset_bus(struct pci_bus *bus) 4538 { 4539 int rc; 4540 4541 rc = pci_bus_reset(bus, 1); 4542 if (rc) 4543 return rc; 4544 4545 pci_bus_save_and_disable(bus); 4546 4547 rc = pci_bus_reset(bus, 0); 4548 4549 pci_bus_restore(bus); 4550 4551 return rc; 4552 } 4553 EXPORT_SYMBOL_GPL(pci_reset_bus); 4554 4555 /** 4556 * pci_try_reset_bus - Try to reset a PCI bus 4557 * @bus: top level PCI bus to reset 4558 * 4559 * Same as above except return -EAGAIN if the bus cannot be locked 4560 */ 4561 int pci_try_reset_bus(struct pci_bus *bus) 4562 { 4563 int rc; 4564 4565 rc = pci_bus_reset(bus, 1); 4566 if (rc) 4567 return rc; 4568 4569 pci_bus_save_and_disable(bus); 4570 4571 if (pci_bus_trylock(bus)) { 4572 might_sleep(); 4573 pci_reset_bridge_secondary_bus(bus->self); 4574 pci_bus_unlock(bus); 4575 } else 4576 rc = -EAGAIN; 4577 4578 pci_bus_restore(bus); 4579 4580 return rc; 4581 } 4582 EXPORT_SYMBOL_GPL(pci_try_reset_bus); 4583 4584 /** 4585 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count 4586 * @dev: PCI device to query 4587 * 4588 * Returns mmrbc: maximum designed memory read count in bytes 4589 * or appropriate error value. 4590 */ 4591 int pcix_get_max_mmrbc(struct pci_dev *dev) 4592 { 4593 int cap; 4594 u32 stat; 4595 4596 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 4597 if (!cap) 4598 return -EINVAL; 4599 4600 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 4601 return -EINVAL; 4602 4603 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21); 4604 } 4605 EXPORT_SYMBOL(pcix_get_max_mmrbc); 4606 4607 /** 4608 * pcix_get_mmrbc - get PCI-X maximum memory read byte count 4609 * @dev: PCI device to query 4610 * 4611 * Returns mmrbc: maximum memory read count in bytes 4612 * or appropriate error value. 4613 */ 4614 int pcix_get_mmrbc(struct pci_dev *dev) 4615 { 4616 int cap; 4617 u16 cmd; 4618 4619 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 4620 if (!cap) 4621 return -EINVAL; 4622 4623 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 4624 return -EINVAL; 4625 4626 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2); 4627 } 4628 EXPORT_SYMBOL(pcix_get_mmrbc); 4629 4630 /** 4631 * pcix_set_mmrbc - set PCI-X maximum memory read byte count 4632 * @dev: PCI device to query 4633 * @mmrbc: maximum memory read count in bytes 4634 * valid values are 512, 1024, 2048, 4096 4635 * 4636 * If possible sets maximum memory read byte count, some bridges have erratas 4637 * that prevent this. 4638 */ 4639 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc) 4640 { 4641 int cap; 4642 u32 stat, v, o; 4643 u16 cmd; 4644 4645 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc)) 4646 return -EINVAL; 4647 4648 v = ffs(mmrbc) - 10; 4649 4650 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 4651 if (!cap) 4652 return -EINVAL; 4653 4654 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 4655 return -EINVAL; 4656 4657 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21) 4658 return -E2BIG; 4659 4660 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 4661 return -EINVAL; 4662 4663 o = (cmd & PCI_X_CMD_MAX_READ) >> 2; 4664 if (o != v) { 4665 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC)) 4666 return -EIO; 4667 4668 cmd &= ~PCI_X_CMD_MAX_READ; 4669 cmd |= v << 2; 4670 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd)) 4671 return -EIO; 4672 } 4673 return 0; 4674 } 4675 EXPORT_SYMBOL(pcix_set_mmrbc); 4676 4677 /** 4678 * pcie_get_readrq - get PCI Express read request size 4679 * @dev: PCI device to query 4680 * 4681 * Returns maximum memory read request in bytes 4682 * or appropriate error value. 4683 */ 4684 int pcie_get_readrq(struct pci_dev *dev) 4685 { 4686 u16 ctl; 4687 4688 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 4689 4690 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12); 4691 } 4692 EXPORT_SYMBOL(pcie_get_readrq); 4693 4694 /** 4695 * pcie_set_readrq - set PCI Express maximum memory read request 4696 * @dev: PCI device to query 4697 * @rq: maximum memory read count in bytes 4698 * valid values are 128, 256, 512, 1024, 2048, 4096 4699 * 4700 * If possible sets maximum memory read request in bytes 4701 */ 4702 int pcie_set_readrq(struct pci_dev *dev, int rq) 4703 { 4704 u16 v; 4705 4706 if (rq < 128 || rq > 4096 || !is_power_of_2(rq)) 4707 return -EINVAL; 4708 4709 /* 4710 * If using the "performance" PCIe config, we clamp the 4711 * read rq size to the max packet size to prevent the 4712 * host bridge generating requests larger than we can 4713 * cope with 4714 */ 4715 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) { 4716 int mps = pcie_get_mps(dev); 4717 4718 if (mps < rq) 4719 rq = mps; 4720 } 4721 4722 v = (ffs(rq) - 8) << 12; 4723 4724 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 4725 PCI_EXP_DEVCTL_READRQ, v); 4726 } 4727 EXPORT_SYMBOL(pcie_set_readrq); 4728 4729 /** 4730 * pcie_get_mps - get PCI Express maximum payload size 4731 * @dev: PCI device to query 4732 * 4733 * Returns maximum payload size in bytes 4734 */ 4735 int pcie_get_mps(struct pci_dev *dev) 4736 { 4737 u16 ctl; 4738 4739 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 4740 4741 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5); 4742 } 4743 EXPORT_SYMBOL(pcie_get_mps); 4744 4745 /** 4746 * pcie_set_mps - set PCI Express maximum payload size 4747 * @dev: PCI device to query 4748 * @mps: maximum payload size in bytes 4749 * valid values are 128, 256, 512, 1024, 2048, 4096 4750 * 4751 * If possible sets maximum payload size 4752 */ 4753 int pcie_set_mps(struct pci_dev *dev, int mps) 4754 { 4755 u16 v; 4756 4757 if (mps < 128 || mps > 4096 || !is_power_of_2(mps)) 4758 return -EINVAL; 4759 4760 v = ffs(mps) - 8; 4761 if (v > dev->pcie_mpss) 4762 return -EINVAL; 4763 v <<= 5; 4764 4765 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 4766 PCI_EXP_DEVCTL_PAYLOAD, v); 4767 } 4768 EXPORT_SYMBOL(pcie_set_mps); 4769 4770 /** 4771 * pcie_get_minimum_link - determine minimum link settings of a PCI device 4772 * @dev: PCI device to query 4773 * @speed: storage for minimum speed 4774 * @width: storage for minimum width 4775 * 4776 * This function will walk up the PCI device chain and determine the minimum 4777 * link width and speed of the device. 4778 */ 4779 int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed, 4780 enum pcie_link_width *width) 4781 { 4782 int ret; 4783 4784 *speed = PCI_SPEED_UNKNOWN; 4785 *width = PCIE_LNK_WIDTH_UNKNOWN; 4786 4787 while (dev) { 4788 u16 lnksta; 4789 enum pci_bus_speed next_speed; 4790 enum pcie_link_width next_width; 4791 4792 ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta); 4793 if (ret) 4794 return ret; 4795 4796 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS]; 4797 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >> 4798 PCI_EXP_LNKSTA_NLW_SHIFT; 4799 4800 if (next_speed < *speed) 4801 *speed = next_speed; 4802 4803 if (next_width < *width) 4804 *width = next_width; 4805 4806 dev = dev->bus->self; 4807 } 4808 4809 return 0; 4810 } 4811 EXPORT_SYMBOL(pcie_get_minimum_link); 4812 4813 /** 4814 * pci_select_bars - Make BAR mask from the type of resource 4815 * @dev: the PCI device for which BAR mask is made 4816 * @flags: resource type mask to be selected 4817 * 4818 * This helper routine makes bar mask from the type of resource. 4819 */ 4820 int pci_select_bars(struct pci_dev *dev, unsigned long flags) 4821 { 4822 int i, bars = 0; 4823 for (i = 0; i < PCI_NUM_RESOURCES; i++) 4824 if (pci_resource_flags(dev, i) & flags) 4825 bars |= (1 << i); 4826 return bars; 4827 } 4828 EXPORT_SYMBOL(pci_select_bars); 4829 4830 /* Some architectures require additional programming to enable VGA */ 4831 static arch_set_vga_state_t arch_set_vga_state; 4832 4833 void __init pci_register_set_vga_state(arch_set_vga_state_t func) 4834 { 4835 arch_set_vga_state = func; /* NULL disables */ 4836 } 4837 4838 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode, 4839 unsigned int command_bits, u32 flags) 4840 { 4841 if (arch_set_vga_state) 4842 return arch_set_vga_state(dev, decode, command_bits, 4843 flags); 4844 return 0; 4845 } 4846 4847 /** 4848 * pci_set_vga_state - set VGA decode state on device and parents if requested 4849 * @dev: the PCI device 4850 * @decode: true = enable decoding, false = disable decoding 4851 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY 4852 * @flags: traverse ancestors and change bridges 4853 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE 4854 */ 4855 int pci_set_vga_state(struct pci_dev *dev, bool decode, 4856 unsigned int command_bits, u32 flags) 4857 { 4858 struct pci_bus *bus; 4859 struct pci_dev *bridge; 4860 u16 cmd; 4861 int rc; 4862 4863 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY))); 4864 4865 /* ARCH specific VGA enables */ 4866 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags); 4867 if (rc) 4868 return rc; 4869 4870 if (flags & PCI_VGA_STATE_CHANGE_DECODES) { 4871 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4872 if (decode == true) 4873 cmd |= command_bits; 4874 else 4875 cmd &= ~command_bits; 4876 pci_write_config_word(dev, PCI_COMMAND, cmd); 4877 } 4878 4879 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE)) 4880 return 0; 4881 4882 bus = dev->bus; 4883 while (bus) { 4884 bridge = bus->self; 4885 if (bridge) { 4886 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL, 4887 &cmd); 4888 if (decode == true) 4889 cmd |= PCI_BRIDGE_CTL_VGA; 4890 else 4891 cmd &= ~PCI_BRIDGE_CTL_VGA; 4892 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL, 4893 cmd); 4894 } 4895 bus = bus->parent; 4896 } 4897 return 0; 4898 } 4899 4900 /** 4901 * pci_add_dma_alias - Add a DMA devfn alias for a device 4902 * @dev: the PCI device for which alias is added 4903 * @devfn: alias slot and function 4904 * 4905 * This helper encodes 8-bit devfn as bit number in dma_alias_mask. 4906 * It should be called early, preferably as PCI fixup header quirk. 4907 */ 4908 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn) 4909 { 4910 if (!dev->dma_alias_mask) 4911 dev->dma_alias_mask = kcalloc(BITS_TO_LONGS(U8_MAX), 4912 sizeof(long), GFP_KERNEL); 4913 if (!dev->dma_alias_mask) { 4914 dev_warn(&dev->dev, "Unable to allocate DMA alias mask\n"); 4915 return; 4916 } 4917 4918 set_bit(devfn, dev->dma_alias_mask); 4919 dev_info(&dev->dev, "Enabling fixed DMA alias to %02x.%d\n", 4920 PCI_SLOT(devfn), PCI_FUNC(devfn)); 4921 } 4922 4923 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2) 4924 { 4925 return (dev1->dma_alias_mask && 4926 test_bit(dev2->devfn, dev1->dma_alias_mask)) || 4927 (dev2->dma_alias_mask && 4928 test_bit(dev1->devfn, dev2->dma_alias_mask)); 4929 } 4930 4931 bool pci_device_is_present(struct pci_dev *pdev) 4932 { 4933 u32 v; 4934 4935 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0); 4936 } 4937 EXPORT_SYMBOL_GPL(pci_device_is_present); 4938 4939 void pci_ignore_hotplug(struct pci_dev *dev) 4940 { 4941 struct pci_dev *bridge = dev->bus->self; 4942 4943 dev->ignore_hotplug = 1; 4944 /* Propagate the "ignore hotplug" setting to the parent bridge. */ 4945 if (bridge) 4946 bridge->ignore_hotplug = 1; 4947 } 4948 EXPORT_SYMBOL_GPL(pci_ignore_hotplug); 4949 4950 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE 4951 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0}; 4952 static DEFINE_SPINLOCK(resource_alignment_lock); 4953 4954 /** 4955 * pci_specified_resource_alignment - get resource alignment specified by user. 4956 * @dev: the PCI device to get 4957 * 4958 * RETURNS: Resource alignment if it is specified. 4959 * Zero if it is not specified. 4960 */ 4961 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev) 4962 { 4963 int seg, bus, slot, func, align_order, count; 4964 unsigned short vendor, device, subsystem_vendor, subsystem_device; 4965 resource_size_t align = 0; 4966 char *p; 4967 4968 spin_lock(&resource_alignment_lock); 4969 p = resource_alignment_param; 4970 if (!*p) 4971 goto out; 4972 if (pci_has_flag(PCI_PROBE_ONLY)) { 4973 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n"); 4974 goto out; 4975 } 4976 4977 while (*p) { 4978 count = 0; 4979 if (sscanf(p, "%d%n", &align_order, &count) == 1 && 4980 p[count] == '@') { 4981 p += count + 1; 4982 } else { 4983 align_order = -1; 4984 } 4985 if (strncmp(p, "pci:", 4) == 0) { 4986 /* PCI vendor/device (subvendor/subdevice) ids are specified */ 4987 p += 4; 4988 if (sscanf(p, "%hx:%hx:%hx:%hx%n", 4989 &vendor, &device, &subsystem_vendor, &subsystem_device, &count) != 4) { 4990 if (sscanf(p, "%hx:%hx%n", &vendor, &device, &count) != 2) { 4991 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: pci:%s\n", 4992 p); 4993 break; 4994 } 4995 subsystem_vendor = subsystem_device = 0; 4996 } 4997 p += count; 4998 if ((!vendor || (vendor == dev->vendor)) && 4999 (!device || (device == dev->device)) && 5000 (!subsystem_vendor || (subsystem_vendor == dev->subsystem_vendor)) && 5001 (!subsystem_device || (subsystem_device == dev->subsystem_device))) { 5002 if (align_order == -1) 5003 align = PAGE_SIZE; 5004 else 5005 align = 1 << align_order; 5006 /* Found */ 5007 break; 5008 } 5009 } 5010 else { 5011 if (sscanf(p, "%x:%x:%x.%x%n", 5012 &seg, &bus, &slot, &func, &count) != 4) { 5013 seg = 0; 5014 if (sscanf(p, "%x:%x.%x%n", 5015 &bus, &slot, &func, &count) != 3) { 5016 /* Invalid format */ 5017 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n", 5018 p); 5019 break; 5020 } 5021 } 5022 p += count; 5023 if (seg == pci_domain_nr(dev->bus) && 5024 bus == dev->bus->number && 5025 slot == PCI_SLOT(dev->devfn) && 5026 func == PCI_FUNC(dev->devfn)) { 5027 if (align_order == -1) 5028 align = PAGE_SIZE; 5029 else 5030 align = 1 << align_order; 5031 /* Found */ 5032 break; 5033 } 5034 } 5035 if (*p != ';' && *p != ',') { 5036 /* End of param or invalid format */ 5037 break; 5038 } 5039 p++; 5040 } 5041 out: 5042 spin_unlock(&resource_alignment_lock); 5043 return align; 5044 } 5045 5046 /* 5047 * This function disables memory decoding and releases memory resources 5048 * of the device specified by kernel's boot parameter 'pci=resource_alignment='. 5049 * It also rounds up size to specified alignment. 5050 * Later on, the kernel will assign page-aligned memory resource back 5051 * to the device. 5052 */ 5053 void pci_reassigndev_resource_alignment(struct pci_dev *dev) 5054 { 5055 int i; 5056 struct resource *r; 5057 resource_size_t align, size; 5058 u16 command; 5059 5060 /* 5061 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec 5062 * 3.4.1.11. Their resources are allocated from the space 5063 * described by the VF BARx register in the PF's SR-IOV capability. 5064 * We can't influence their alignment here. 5065 */ 5066 if (dev->is_virtfn) 5067 return; 5068 5069 /* check if specified PCI is target device to reassign */ 5070 align = pci_specified_resource_alignment(dev); 5071 if (!align) 5072 return; 5073 5074 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL && 5075 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) { 5076 dev_warn(&dev->dev, 5077 "Can't reassign resources to host bridge.\n"); 5078 return; 5079 } 5080 5081 dev_info(&dev->dev, 5082 "Disabling memory decoding and releasing memory resources.\n"); 5083 pci_read_config_word(dev, PCI_COMMAND, &command); 5084 command &= ~PCI_COMMAND_MEMORY; 5085 pci_write_config_word(dev, PCI_COMMAND, command); 5086 5087 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) { 5088 r = &dev->resource[i]; 5089 if (!(r->flags & IORESOURCE_MEM)) 5090 continue; 5091 if (r->flags & IORESOURCE_PCI_FIXED) { 5092 dev_info(&dev->dev, "Ignoring requested alignment for BAR%d: %pR\n", 5093 i, r); 5094 continue; 5095 } 5096 5097 size = resource_size(r); 5098 if (size < align) { 5099 size = align; 5100 dev_info(&dev->dev, 5101 "Rounding up size of resource #%d to %#llx.\n", 5102 i, (unsigned long long)size); 5103 } 5104 r->flags |= IORESOURCE_UNSET; 5105 r->end = size - 1; 5106 r->start = 0; 5107 } 5108 /* Need to disable bridge's resource window, 5109 * to enable the kernel to reassign new resource 5110 * window later on. 5111 */ 5112 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE && 5113 (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) { 5114 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) { 5115 r = &dev->resource[i]; 5116 if (!(r->flags & IORESOURCE_MEM)) 5117 continue; 5118 r->flags |= IORESOURCE_UNSET; 5119 r->end = resource_size(r) - 1; 5120 r->start = 0; 5121 } 5122 pci_disable_bridge_window(dev); 5123 } 5124 } 5125 5126 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count) 5127 { 5128 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1) 5129 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1; 5130 spin_lock(&resource_alignment_lock); 5131 strncpy(resource_alignment_param, buf, count); 5132 resource_alignment_param[count] = '\0'; 5133 spin_unlock(&resource_alignment_lock); 5134 return count; 5135 } 5136 5137 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size) 5138 { 5139 size_t count; 5140 spin_lock(&resource_alignment_lock); 5141 count = snprintf(buf, size, "%s", resource_alignment_param); 5142 spin_unlock(&resource_alignment_lock); 5143 return count; 5144 } 5145 5146 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf) 5147 { 5148 return pci_get_resource_alignment_param(buf, PAGE_SIZE); 5149 } 5150 5151 static ssize_t pci_resource_alignment_store(struct bus_type *bus, 5152 const char *buf, size_t count) 5153 { 5154 return pci_set_resource_alignment_param(buf, count); 5155 } 5156 5157 static BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show, 5158 pci_resource_alignment_store); 5159 5160 static int __init pci_resource_alignment_sysfs_init(void) 5161 { 5162 return bus_create_file(&pci_bus_type, 5163 &bus_attr_resource_alignment); 5164 } 5165 late_initcall(pci_resource_alignment_sysfs_init); 5166 5167 static void pci_no_domains(void) 5168 { 5169 #ifdef CONFIG_PCI_DOMAINS 5170 pci_domains_supported = 0; 5171 #endif 5172 } 5173 5174 #ifdef CONFIG_PCI_DOMAINS 5175 static atomic_t __domain_nr = ATOMIC_INIT(-1); 5176 5177 int pci_get_new_domain_nr(void) 5178 { 5179 return atomic_inc_return(&__domain_nr); 5180 } 5181 5182 #ifdef CONFIG_PCI_DOMAINS_GENERIC 5183 static int of_pci_bus_find_domain_nr(struct device *parent) 5184 { 5185 static int use_dt_domains = -1; 5186 int domain = -1; 5187 5188 if (parent) 5189 domain = of_get_pci_domain_nr(parent->of_node); 5190 /* 5191 * Check DT domain and use_dt_domains values. 5192 * 5193 * If DT domain property is valid (domain >= 0) and 5194 * use_dt_domains != 0, the DT assignment is valid since this means 5195 * we have not previously allocated a domain number by using 5196 * pci_get_new_domain_nr(); we should also update use_dt_domains to 5197 * 1, to indicate that we have just assigned a domain number from 5198 * DT. 5199 * 5200 * If DT domain property value is not valid (ie domain < 0), and we 5201 * have not previously assigned a domain number from DT 5202 * (use_dt_domains != 1) we should assign a domain number by 5203 * using the: 5204 * 5205 * pci_get_new_domain_nr() 5206 * 5207 * API and update the use_dt_domains value to keep track of method we 5208 * are using to assign domain numbers (use_dt_domains = 0). 5209 * 5210 * All other combinations imply we have a platform that is trying 5211 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(), 5212 * which is a recipe for domain mishandling and it is prevented by 5213 * invalidating the domain value (domain = -1) and printing a 5214 * corresponding error. 5215 */ 5216 if (domain >= 0 && use_dt_domains) { 5217 use_dt_domains = 1; 5218 } else if (domain < 0 && use_dt_domains != 1) { 5219 use_dt_domains = 0; 5220 domain = pci_get_new_domain_nr(); 5221 } else { 5222 dev_err(parent, "Node %s has inconsistent \"linux,pci-domain\" property in DT\n", 5223 parent->of_node->full_name); 5224 domain = -1; 5225 } 5226 5227 return domain; 5228 } 5229 5230 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent) 5231 { 5232 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) : 5233 acpi_pci_bus_find_domain_nr(bus); 5234 } 5235 #endif 5236 #endif 5237 5238 /** 5239 * pci_ext_cfg_avail - can we access extended PCI config space? 5240 * 5241 * Returns 1 if we can access PCI extended config space (offsets 5242 * greater than 0xff). This is the default implementation. Architecture 5243 * implementations can override this. 5244 */ 5245 int __weak pci_ext_cfg_avail(void) 5246 { 5247 return 1; 5248 } 5249 5250 void __weak pci_fixup_cardbus(struct pci_bus *bus) 5251 { 5252 } 5253 EXPORT_SYMBOL(pci_fixup_cardbus); 5254 5255 static int __init pci_setup(char *str) 5256 { 5257 while (str) { 5258 char *k = strchr(str, ','); 5259 if (k) 5260 *k++ = 0; 5261 if (*str && (str = pcibios_setup(str)) && *str) { 5262 if (!strcmp(str, "nomsi")) { 5263 pci_no_msi(); 5264 } else if (!strcmp(str, "noaer")) { 5265 pci_no_aer(); 5266 } else if (!strncmp(str, "realloc=", 8)) { 5267 pci_realloc_get_opt(str + 8); 5268 } else if (!strncmp(str, "realloc", 7)) { 5269 pci_realloc_get_opt("on"); 5270 } else if (!strcmp(str, "nodomains")) { 5271 pci_no_domains(); 5272 } else if (!strncmp(str, "noari", 5)) { 5273 pcie_ari_disabled = true; 5274 } else if (!strncmp(str, "cbiosize=", 9)) { 5275 pci_cardbus_io_size = memparse(str + 9, &str); 5276 } else if (!strncmp(str, "cbmemsize=", 10)) { 5277 pci_cardbus_mem_size = memparse(str + 10, &str); 5278 } else if (!strncmp(str, "resource_alignment=", 19)) { 5279 pci_set_resource_alignment_param(str + 19, 5280 strlen(str + 19)); 5281 } else if (!strncmp(str, "ecrc=", 5)) { 5282 pcie_ecrc_get_policy(str + 5); 5283 } else if (!strncmp(str, "hpiosize=", 9)) { 5284 pci_hotplug_io_size = memparse(str + 9, &str); 5285 } else if (!strncmp(str, "hpmemsize=", 10)) { 5286 pci_hotplug_mem_size = memparse(str + 10, &str); 5287 } else if (!strncmp(str, "hpbussize=", 10)) { 5288 pci_hotplug_bus_size = 5289 simple_strtoul(str + 10, &str, 0); 5290 if (pci_hotplug_bus_size > 0xff) 5291 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 5292 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) { 5293 pcie_bus_config = PCIE_BUS_TUNE_OFF; 5294 } else if (!strncmp(str, "pcie_bus_safe", 13)) { 5295 pcie_bus_config = PCIE_BUS_SAFE; 5296 } else if (!strncmp(str, "pcie_bus_perf", 13)) { 5297 pcie_bus_config = PCIE_BUS_PERFORMANCE; 5298 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) { 5299 pcie_bus_config = PCIE_BUS_PEER2PEER; 5300 } else if (!strncmp(str, "pcie_scan_all", 13)) { 5301 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS); 5302 } else { 5303 printk(KERN_ERR "PCI: Unknown option `%s'\n", 5304 str); 5305 } 5306 } 5307 str = k; 5308 } 5309 return 0; 5310 } 5311 early_param("pci", pci_setup); 5312