xref: /openbmc/linux/drivers/pci/pci.c (revision a8fe58ce)
1 /*
2  *	PCI Bus Services, see include/linux/pci.h for further explanation.
3  *
4  *	Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5  *	David Mosberger-Tang
6  *
7  *	Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/of.h>
14 #include <linux/of_pci.h>
15 #include <linux/pci.h>
16 #include <linux/pm.h>
17 #include <linux/slab.h>
18 #include <linux/module.h>
19 #include <linux/spinlock.h>
20 #include <linux/string.h>
21 #include <linux/log2.h>
22 #include <linux/pci-aspm.h>
23 #include <linux/pm_wakeup.h>
24 #include <linux/interrupt.h>
25 #include <linux/device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/pci_hotplug.h>
28 #include <asm-generic/pci-bridge.h>
29 #include <asm/setup.h>
30 #include <linux/aer.h>
31 #include "pci.h"
32 
33 const char *pci_power_names[] = {
34 	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
35 };
36 EXPORT_SYMBOL_GPL(pci_power_names);
37 
38 int isa_dma_bridge_buggy;
39 EXPORT_SYMBOL(isa_dma_bridge_buggy);
40 
41 int pci_pci_problems;
42 EXPORT_SYMBOL(pci_pci_problems);
43 
44 unsigned int pci_pm_d3_delay;
45 
46 static void pci_pme_list_scan(struct work_struct *work);
47 
48 static LIST_HEAD(pci_pme_list);
49 static DEFINE_MUTEX(pci_pme_list_mutex);
50 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
51 
52 struct pci_pme_device {
53 	struct list_head list;
54 	struct pci_dev *dev;
55 };
56 
57 #define PME_TIMEOUT 1000 /* How long between PME checks */
58 
59 static void pci_dev_d3_sleep(struct pci_dev *dev)
60 {
61 	unsigned int delay = dev->d3_delay;
62 
63 	if (delay < pci_pm_d3_delay)
64 		delay = pci_pm_d3_delay;
65 
66 	msleep(delay);
67 }
68 
69 #ifdef CONFIG_PCI_DOMAINS
70 int pci_domains_supported = 1;
71 #endif
72 
73 #define DEFAULT_CARDBUS_IO_SIZE		(256)
74 #define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
75 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
76 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
77 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
78 
79 #define DEFAULT_HOTPLUG_IO_SIZE		(256)
80 #define DEFAULT_HOTPLUG_MEM_SIZE	(2*1024*1024)
81 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
82 unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
83 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
84 
85 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
86 
87 /*
88  * The default CLS is used if arch didn't set CLS explicitly and not
89  * all pci devices agree on the same value.  Arch can override either
90  * the dfl or actual value as it sees fit.  Don't forget this is
91  * measured in 32-bit words, not bytes.
92  */
93 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
94 u8 pci_cache_line_size;
95 
96 /*
97  * If we set up a device for bus mastering, we need to check the latency
98  * timer as certain BIOSes forget to set it properly.
99  */
100 unsigned int pcibios_max_latency = 255;
101 
102 /* If set, the PCIe ARI capability will not be used. */
103 static bool pcie_ari_disabled;
104 
105 /**
106  * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
107  * @bus: pointer to PCI bus structure to search
108  *
109  * Given a PCI bus, returns the highest PCI bus number present in the set
110  * including the given PCI bus and its list of child PCI buses.
111  */
112 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
113 {
114 	struct pci_bus *tmp;
115 	unsigned char max, n;
116 
117 	max = bus->busn_res.end;
118 	list_for_each_entry(tmp, &bus->children, node) {
119 		n = pci_bus_max_busnr(tmp);
120 		if (n > max)
121 			max = n;
122 	}
123 	return max;
124 }
125 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
126 
127 #ifdef CONFIG_HAS_IOMEM
128 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
129 {
130 	struct resource *res = &pdev->resource[bar];
131 
132 	/*
133 	 * Make sure the BAR is actually a memory resource, not an IO resource
134 	 */
135 	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
136 		dev_warn(&pdev->dev, "can't ioremap BAR %d: %pR\n", bar, res);
137 		return NULL;
138 	}
139 	return ioremap_nocache(res->start, resource_size(res));
140 }
141 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
142 
143 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
144 {
145 	/*
146 	 * Make sure the BAR is actually a memory resource, not an IO resource
147 	 */
148 	if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
149 		WARN_ON(1);
150 		return NULL;
151 	}
152 	return ioremap_wc(pci_resource_start(pdev, bar),
153 			  pci_resource_len(pdev, bar));
154 }
155 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
156 #endif
157 
158 
159 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
160 				   u8 pos, int cap, int *ttl)
161 {
162 	u8 id;
163 	u16 ent;
164 
165 	pci_bus_read_config_byte(bus, devfn, pos, &pos);
166 
167 	while ((*ttl)--) {
168 		if (pos < 0x40)
169 			break;
170 		pos &= ~3;
171 		pci_bus_read_config_word(bus, devfn, pos, &ent);
172 
173 		id = ent & 0xff;
174 		if (id == 0xff)
175 			break;
176 		if (id == cap)
177 			return pos;
178 		pos = (ent >> 8);
179 	}
180 	return 0;
181 }
182 
183 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
184 			       u8 pos, int cap)
185 {
186 	int ttl = PCI_FIND_CAP_TTL;
187 
188 	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
189 }
190 
191 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
192 {
193 	return __pci_find_next_cap(dev->bus, dev->devfn,
194 				   pos + PCI_CAP_LIST_NEXT, cap);
195 }
196 EXPORT_SYMBOL_GPL(pci_find_next_capability);
197 
198 static int __pci_bus_find_cap_start(struct pci_bus *bus,
199 				    unsigned int devfn, u8 hdr_type)
200 {
201 	u16 status;
202 
203 	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
204 	if (!(status & PCI_STATUS_CAP_LIST))
205 		return 0;
206 
207 	switch (hdr_type) {
208 	case PCI_HEADER_TYPE_NORMAL:
209 	case PCI_HEADER_TYPE_BRIDGE:
210 		return PCI_CAPABILITY_LIST;
211 	case PCI_HEADER_TYPE_CARDBUS:
212 		return PCI_CB_CAPABILITY_LIST;
213 	}
214 
215 	return 0;
216 }
217 
218 /**
219  * pci_find_capability - query for devices' capabilities
220  * @dev: PCI device to query
221  * @cap: capability code
222  *
223  * Tell if a device supports a given PCI capability.
224  * Returns the address of the requested capability structure within the
225  * device's PCI configuration space or 0 in case the device does not
226  * support it.  Possible values for @cap:
227  *
228  *  %PCI_CAP_ID_PM           Power Management
229  *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
230  *  %PCI_CAP_ID_VPD          Vital Product Data
231  *  %PCI_CAP_ID_SLOTID       Slot Identification
232  *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
233  *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
234  *  %PCI_CAP_ID_PCIX         PCI-X
235  *  %PCI_CAP_ID_EXP          PCI Express
236  */
237 int pci_find_capability(struct pci_dev *dev, int cap)
238 {
239 	int pos;
240 
241 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
242 	if (pos)
243 		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
244 
245 	return pos;
246 }
247 EXPORT_SYMBOL(pci_find_capability);
248 
249 /**
250  * pci_bus_find_capability - query for devices' capabilities
251  * @bus:   the PCI bus to query
252  * @devfn: PCI device to query
253  * @cap:   capability code
254  *
255  * Like pci_find_capability() but works for pci devices that do not have a
256  * pci_dev structure set up yet.
257  *
258  * Returns the address of the requested capability structure within the
259  * device's PCI configuration space or 0 in case the device does not
260  * support it.
261  */
262 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
263 {
264 	int pos;
265 	u8 hdr_type;
266 
267 	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
268 
269 	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
270 	if (pos)
271 		pos = __pci_find_next_cap(bus, devfn, pos, cap);
272 
273 	return pos;
274 }
275 EXPORT_SYMBOL(pci_bus_find_capability);
276 
277 /**
278  * pci_find_next_ext_capability - Find an extended capability
279  * @dev: PCI device to query
280  * @start: address at which to start looking (0 to start at beginning of list)
281  * @cap: capability code
282  *
283  * Returns the address of the next matching extended capability structure
284  * within the device's PCI configuration space or 0 if the device does
285  * not support it.  Some capabilities can occur several times, e.g., the
286  * vendor-specific capability, and this provides a way to find them all.
287  */
288 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
289 {
290 	u32 header;
291 	int ttl;
292 	int pos = PCI_CFG_SPACE_SIZE;
293 
294 	/* minimum 8 bytes per capability */
295 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
296 
297 	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
298 		return 0;
299 
300 	if (start)
301 		pos = start;
302 
303 	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
304 		return 0;
305 
306 	/*
307 	 * If we have no capabilities, this is indicated by cap ID,
308 	 * cap version and next pointer all being 0.
309 	 */
310 	if (header == 0)
311 		return 0;
312 
313 	while (ttl-- > 0) {
314 		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
315 			return pos;
316 
317 		pos = PCI_EXT_CAP_NEXT(header);
318 		if (pos < PCI_CFG_SPACE_SIZE)
319 			break;
320 
321 		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
322 			break;
323 	}
324 
325 	return 0;
326 }
327 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
328 
329 /**
330  * pci_find_ext_capability - Find an extended capability
331  * @dev: PCI device to query
332  * @cap: capability code
333  *
334  * Returns the address of the requested extended capability structure
335  * within the device's PCI configuration space or 0 if the device does
336  * not support it.  Possible values for @cap:
337  *
338  *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
339  *  %PCI_EXT_CAP_ID_VC		Virtual Channel
340  *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
341  *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
342  */
343 int pci_find_ext_capability(struct pci_dev *dev, int cap)
344 {
345 	return pci_find_next_ext_capability(dev, 0, cap);
346 }
347 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
348 
349 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
350 {
351 	int rc, ttl = PCI_FIND_CAP_TTL;
352 	u8 cap, mask;
353 
354 	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
355 		mask = HT_3BIT_CAP_MASK;
356 	else
357 		mask = HT_5BIT_CAP_MASK;
358 
359 	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
360 				      PCI_CAP_ID_HT, &ttl);
361 	while (pos) {
362 		rc = pci_read_config_byte(dev, pos + 3, &cap);
363 		if (rc != PCIBIOS_SUCCESSFUL)
364 			return 0;
365 
366 		if ((cap & mask) == ht_cap)
367 			return pos;
368 
369 		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
370 					      pos + PCI_CAP_LIST_NEXT,
371 					      PCI_CAP_ID_HT, &ttl);
372 	}
373 
374 	return 0;
375 }
376 /**
377  * pci_find_next_ht_capability - query a device's Hypertransport capabilities
378  * @dev: PCI device to query
379  * @pos: Position from which to continue searching
380  * @ht_cap: Hypertransport capability code
381  *
382  * To be used in conjunction with pci_find_ht_capability() to search for
383  * all capabilities matching @ht_cap. @pos should always be a value returned
384  * from pci_find_ht_capability().
385  *
386  * NB. To be 100% safe against broken PCI devices, the caller should take
387  * steps to avoid an infinite loop.
388  */
389 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
390 {
391 	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
392 }
393 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
394 
395 /**
396  * pci_find_ht_capability - query a device's Hypertransport capabilities
397  * @dev: PCI device to query
398  * @ht_cap: Hypertransport capability code
399  *
400  * Tell if a device supports a given Hypertransport capability.
401  * Returns an address within the device's PCI configuration space
402  * or 0 in case the device does not support the request capability.
403  * The address points to the PCI capability, of type PCI_CAP_ID_HT,
404  * which has a Hypertransport capability matching @ht_cap.
405  */
406 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
407 {
408 	int pos;
409 
410 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
411 	if (pos)
412 		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
413 
414 	return pos;
415 }
416 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
417 
418 /**
419  * pci_find_parent_resource - return resource region of parent bus of given region
420  * @dev: PCI device structure contains resources to be searched
421  * @res: child resource record for which parent is sought
422  *
423  *  For given resource region of given device, return the resource
424  *  region of parent bus the given region is contained in.
425  */
426 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
427 					  struct resource *res)
428 {
429 	const struct pci_bus *bus = dev->bus;
430 	struct resource *r;
431 	int i;
432 
433 	pci_bus_for_each_resource(bus, r, i) {
434 		if (!r)
435 			continue;
436 		if (res->start && resource_contains(r, res)) {
437 
438 			/*
439 			 * If the window is prefetchable but the BAR is
440 			 * not, the allocator made a mistake.
441 			 */
442 			if (r->flags & IORESOURCE_PREFETCH &&
443 			    !(res->flags & IORESOURCE_PREFETCH))
444 				return NULL;
445 
446 			/*
447 			 * If we're below a transparent bridge, there may
448 			 * be both a positively-decoded aperture and a
449 			 * subtractively-decoded region that contain the BAR.
450 			 * We want the positively-decoded one, so this depends
451 			 * on pci_bus_for_each_resource() giving us those
452 			 * first.
453 			 */
454 			return r;
455 		}
456 	}
457 	return NULL;
458 }
459 EXPORT_SYMBOL(pci_find_parent_resource);
460 
461 /**
462  * pci_find_pcie_root_port - return PCIe Root Port
463  * @dev: PCI device to query
464  *
465  * Traverse up the parent chain and return the PCIe Root Port PCI Device
466  * for a given PCI Device.
467  */
468 struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev)
469 {
470 	struct pci_dev *bridge, *highest_pcie_bridge = NULL;
471 
472 	bridge = pci_upstream_bridge(dev);
473 	while (bridge && pci_is_pcie(bridge)) {
474 		highest_pcie_bridge = bridge;
475 		bridge = pci_upstream_bridge(bridge);
476 	}
477 
478 	if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT)
479 		return NULL;
480 
481 	return highest_pcie_bridge;
482 }
483 EXPORT_SYMBOL(pci_find_pcie_root_port);
484 
485 /**
486  * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
487  * @dev: the PCI device to operate on
488  * @pos: config space offset of status word
489  * @mask: mask of bit(s) to care about in status word
490  *
491  * Return 1 when mask bit(s) in status word clear, 0 otherwise.
492  */
493 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
494 {
495 	int i;
496 
497 	/* Wait for Transaction Pending bit clean */
498 	for (i = 0; i < 4; i++) {
499 		u16 status;
500 		if (i)
501 			msleep((1 << (i - 1)) * 100);
502 
503 		pci_read_config_word(dev, pos, &status);
504 		if (!(status & mask))
505 			return 1;
506 	}
507 
508 	return 0;
509 }
510 
511 /**
512  * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
513  * @dev: PCI device to have its BARs restored
514  *
515  * Restore the BAR values for a given device, so as to make it
516  * accessible by its driver.
517  */
518 static void pci_restore_bars(struct pci_dev *dev)
519 {
520 	int i;
521 
522 	/* Per SR-IOV spec 3.4.1.11, VF BARs are RO zero */
523 	if (dev->is_virtfn)
524 		return;
525 
526 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
527 		pci_update_resource(dev, i);
528 }
529 
530 static const struct pci_platform_pm_ops *pci_platform_pm;
531 
532 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
533 {
534 	if (!ops->is_manageable || !ops->set_state || !ops->choose_state
535 	    || !ops->sleep_wake)
536 		return -EINVAL;
537 	pci_platform_pm = ops;
538 	return 0;
539 }
540 
541 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
542 {
543 	return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
544 }
545 
546 static inline int platform_pci_set_power_state(struct pci_dev *dev,
547 					       pci_power_t t)
548 {
549 	return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
550 }
551 
552 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
553 {
554 	return pci_platform_pm ?
555 			pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
556 }
557 
558 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
559 {
560 	return pci_platform_pm ?
561 			pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
562 }
563 
564 static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable)
565 {
566 	return pci_platform_pm ?
567 			pci_platform_pm->run_wake(dev, enable) : -ENODEV;
568 }
569 
570 static inline bool platform_pci_need_resume(struct pci_dev *dev)
571 {
572 	return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
573 }
574 
575 /**
576  * pci_raw_set_power_state - Use PCI PM registers to set the power state of
577  *                           given PCI device
578  * @dev: PCI device to handle.
579  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
580  *
581  * RETURN VALUE:
582  * -EINVAL if the requested state is invalid.
583  * -EIO if device does not support PCI PM or its PM capabilities register has a
584  * wrong version, or device doesn't support the requested state.
585  * 0 if device already is in the requested state.
586  * 0 if device's power state has been successfully changed.
587  */
588 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
589 {
590 	u16 pmcsr;
591 	bool need_restore = false;
592 
593 	/* Check if we're already there */
594 	if (dev->current_state == state)
595 		return 0;
596 
597 	if (!dev->pm_cap)
598 		return -EIO;
599 
600 	if (state < PCI_D0 || state > PCI_D3hot)
601 		return -EINVAL;
602 
603 	/* Validate current state:
604 	 * Can enter D0 from any state, but if we can only go deeper
605 	 * to sleep if we're already in a low power state
606 	 */
607 	if (state != PCI_D0 && dev->current_state <= PCI_D3cold
608 	    && dev->current_state > state) {
609 		dev_err(&dev->dev, "invalid power transition (from state %d to %d)\n",
610 			dev->current_state, state);
611 		return -EINVAL;
612 	}
613 
614 	/* check if this device supports the desired state */
615 	if ((state == PCI_D1 && !dev->d1_support)
616 	   || (state == PCI_D2 && !dev->d2_support))
617 		return -EIO;
618 
619 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
620 
621 	/* If we're (effectively) in D3, force entire word to 0.
622 	 * This doesn't affect PME_Status, disables PME_En, and
623 	 * sets PowerState to 0.
624 	 */
625 	switch (dev->current_state) {
626 	case PCI_D0:
627 	case PCI_D1:
628 	case PCI_D2:
629 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
630 		pmcsr |= state;
631 		break;
632 	case PCI_D3hot:
633 	case PCI_D3cold:
634 	case PCI_UNKNOWN: /* Boot-up */
635 		if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
636 		 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
637 			need_restore = true;
638 		/* Fall-through: force to D0 */
639 	default:
640 		pmcsr = 0;
641 		break;
642 	}
643 
644 	/* enter specified state */
645 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
646 
647 	/* Mandatory power management transition delays */
648 	/* see PCI PM 1.1 5.6.1 table 18 */
649 	if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
650 		pci_dev_d3_sleep(dev);
651 	else if (state == PCI_D2 || dev->current_state == PCI_D2)
652 		udelay(PCI_PM_D2_DELAY);
653 
654 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
655 	dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
656 	if (dev->current_state != state && printk_ratelimit())
657 		dev_info(&dev->dev, "Refused to change power state, currently in D%d\n",
658 			 dev->current_state);
659 
660 	/*
661 	 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
662 	 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
663 	 * from D3hot to D0 _may_ perform an internal reset, thereby
664 	 * going to "D0 Uninitialized" rather than "D0 Initialized".
665 	 * For example, at least some versions of the 3c905B and the
666 	 * 3c556B exhibit this behaviour.
667 	 *
668 	 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
669 	 * devices in a D3hot state at boot.  Consequently, we need to
670 	 * restore at least the BARs so that the device will be
671 	 * accessible to its driver.
672 	 */
673 	if (need_restore)
674 		pci_restore_bars(dev);
675 
676 	if (dev->bus->self)
677 		pcie_aspm_pm_state_change(dev->bus->self);
678 
679 	return 0;
680 }
681 
682 /**
683  * pci_update_current_state - Read PCI power state of given device from its
684  *                            PCI PM registers and cache it
685  * @dev: PCI device to handle.
686  * @state: State to cache in case the device doesn't have the PM capability
687  */
688 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
689 {
690 	if (dev->pm_cap) {
691 		u16 pmcsr;
692 
693 		/*
694 		 * Configuration space is not accessible for device in
695 		 * D3cold, so just keep or set D3cold for safety
696 		 */
697 		if (dev->current_state == PCI_D3cold)
698 			return;
699 		if (state == PCI_D3cold) {
700 			dev->current_state = PCI_D3cold;
701 			return;
702 		}
703 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
704 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
705 	} else {
706 		dev->current_state = state;
707 	}
708 }
709 
710 /**
711  * pci_power_up - Put the given device into D0 forcibly
712  * @dev: PCI device to power up
713  */
714 void pci_power_up(struct pci_dev *dev)
715 {
716 	if (platform_pci_power_manageable(dev))
717 		platform_pci_set_power_state(dev, PCI_D0);
718 
719 	pci_raw_set_power_state(dev, PCI_D0);
720 	pci_update_current_state(dev, PCI_D0);
721 }
722 
723 /**
724  * pci_platform_power_transition - Use platform to change device power state
725  * @dev: PCI device to handle.
726  * @state: State to put the device into.
727  */
728 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
729 {
730 	int error;
731 
732 	if (platform_pci_power_manageable(dev)) {
733 		error = platform_pci_set_power_state(dev, state);
734 		if (!error)
735 			pci_update_current_state(dev, state);
736 	} else
737 		error = -ENODEV;
738 
739 	if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
740 		dev->current_state = PCI_D0;
741 
742 	return error;
743 }
744 
745 /**
746  * pci_wakeup - Wake up a PCI device
747  * @pci_dev: Device to handle.
748  * @ign: ignored parameter
749  */
750 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
751 {
752 	pci_wakeup_event(pci_dev);
753 	pm_request_resume(&pci_dev->dev);
754 	return 0;
755 }
756 
757 /**
758  * pci_wakeup_bus - Walk given bus and wake up devices on it
759  * @bus: Top bus of the subtree to walk.
760  */
761 static void pci_wakeup_bus(struct pci_bus *bus)
762 {
763 	if (bus)
764 		pci_walk_bus(bus, pci_wakeup, NULL);
765 }
766 
767 /**
768  * __pci_start_power_transition - Start power transition of a PCI device
769  * @dev: PCI device to handle.
770  * @state: State to put the device into.
771  */
772 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
773 {
774 	if (state == PCI_D0) {
775 		pci_platform_power_transition(dev, PCI_D0);
776 		/*
777 		 * Mandatory power management transition delays, see
778 		 * PCI Express Base Specification Revision 2.0 Section
779 		 * 6.6.1: Conventional Reset.  Do not delay for
780 		 * devices powered on/off by corresponding bridge,
781 		 * because have already delayed for the bridge.
782 		 */
783 		if (dev->runtime_d3cold) {
784 			msleep(dev->d3cold_delay);
785 			/*
786 			 * When powering on a bridge from D3cold, the
787 			 * whole hierarchy may be powered on into
788 			 * D0uninitialized state, resume them to give
789 			 * them a chance to suspend again
790 			 */
791 			pci_wakeup_bus(dev->subordinate);
792 		}
793 	}
794 }
795 
796 /**
797  * __pci_dev_set_current_state - Set current state of a PCI device
798  * @dev: Device to handle
799  * @data: pointer to state to be set
800  */
801 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
802 {
803 	pci_power_t state = *(pci_power_t *)data;
804 
805 	dev->current_state = state;
806 	return 0;
807 }
808 
809 /**
810  * __pci_bus_set_current_state - Walk given bus and set current state of devices
811  * @bus: Top bus of the subtree to walk.
812  * @state: state to be set
813  */
814 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
815 {
816 	if (bus)
817 		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
818 }
819 
820 /**
821  * __pci_complete_power_transition - Complete power transition of a PCI device
822  * @dev: PCI device to handle.
823  * @state: State to put the device into.
824  *
825  * This function should not be called directly by device drivers.
826  */
827 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
828 {
829 	int ret;
830 
831 	if (state <= PCI_D0)
832 		return -EINVAL;
833 	ret = pci_platform_power_transition(dev, state);
834 	/* Power off the bridge may power off the whole hierarchy */
835 	if (!ret && state == PCI_D3cold)
836 		__pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
837 	return ret;
838 }
839 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
840 
841 /**
842  * pci_set_power_state - Set the power state of a PCI device
843  * @dev: PCI device to handle.
844  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
845  *
846  * Transition a device to a new power state, using the platform firmware and/or
847  * the device's PCI PM registers.
848  *
849  * RETURN VALUE:
850  * -EINVAL if the requested state is invalid.
851  * -EIO if device does not support PCI PM or its PM capabilities register has a
852  * wrong version, or device doesn't support the requested state.
853  * 0 if device already is in the requested state.
854  * 0 if device's power state has been successfully changed.
855  */
856 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
857 {
858 	int error;
859 
860 	/* bound the state we're entering */
861 	if (state > PCI_D3cold)
862 		state = PCI_D3cold;
863 	else if (state < PCI_D0)
864 		state = PCI_D0;
865 	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
866 		/*
867 		 * If the device or the parent bridge do not support PCI PM,
868 		 * ignore the request if we're doing anything other than putting
869 		 * it into D0 (which would only happen on boot).
870 		 */
871 		return 0;
872 
873 	/* Check if we're already there */
874 	if (dev->current_state == state)
875 		return 0;
876 
877 	__pci_start_power_transition(dev, state);
878 
879 	/* This device is quirked not to be put into D3, so
880 	   don't put it in D3 */
881 	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
882 		return 0;
883 
884 	/*
885 	 * To put device in D3cold, we put device into D3hot in native
886 	 * way, then put device into D3cold with platform ops
887 	 */
888 	error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
889 					PCI_D3hot : state);
890 
891 	if (!__pci_complete_power_transition(dev, state))
892 		error = 0;
893 
894 	return error;
895 }
896 EXPORT_SYMBOL(pci_set_power_state);
897 
898 /**
899  * pci_choose_state - Choose the power state of a PCI device
900  * @dev: PCI device to be suspended
901  * @state: target sleep state for the whole system. This is the value
902  *	that is passed to suspend() function.
903  *
904  * Returns PCI power state suitable for given device and given system
905  * message.
906  */
907 
908 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
909 {
910 	pci_power_t ret;
911 
912 	if (!dev->pm_cap)
913 		return PCI_D0;
914 
915 	ret = platform_pci_choose_state(dev);
916 	if (ret != PCI_POWER_ERROR)
917 		return ret;
918 
919 	switch (state.event) {
920 	case PM_EVENT_ON:
921 		return PCI_D0;
922 	case PM_EVENT_FREEZE:
923 	case PM_EVENT_PRETHAW:
924 		/* REVISIT both freeze and pre-thaw "should" use D0 */
925 	case PM_EVENT_SUSPEND:
926 	case PM_EVENT_HIBERNATE:
927 		return PCI_D3hot;
928 	default:
929 		dev_info(&dev->dev, "unrecognized suspend event %d\n",
930 			 state.event);
931 		BUG();
932 	}
933 	return PCI_D0;
934 }
935 EXPORT_SYMBOL(pci_choose_state);
936 
937 #define PCI_EXP_SAVE_REGS	7
938 
939 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
940 						       u16 cap, bool extended)
941 {
942 	struct pci_cap_saved_state *tmp;
943 
944 	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
945 		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
946 			return tmp;
947 	}
948 	return NULL;
949 }
950 
951 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
952 {
953 	return _pci_find_saved_cap(dev, cap, false);
954 }
955 
956 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
957 {
958 	return _pci_find_saved_cap(dev, cap, true);
959 }
960 
961 static int pci_save_pcie_state(struct pci_dev *dev)
962 {
963 	int i = 0;
964 	struct pci_cap_saved_state *save_state;
965 	u16 *cap;
966 
967 	if (!pci_is_pcie(dev))
968 		return 0;
969 
970 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
971 	if (!save_state) {
972 		dev_err(&dev->dev, "buffer not found in %s\n", __func__);
973 		return -ENOMEM;
974 	}
975 
976 	cap = (u16 *)&save_state->cap.data[0];
977 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
978 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
979 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
980 	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
981 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
982 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
983 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
984 
985 	return 0;
986 }
987 
988 static void pci_restore_pcie_state(struct pci_dev *dev)
989 {
990 	int i = 0;
991 	struct pci_cap_saved_state *save_state;
992 	u16 *cap;
993 
994 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
995 	if (!save_state)
996 		return;
997 
998 	cap = (u16 *)&save_state->cap.data[0];
999 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1000 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1001 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1002 	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1003 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1004 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1005 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1006 }
1007 
1008 
1009 static int pci_save_pcix_state(struct pci_dev *dev)
1010 {
1011 	int pos;
1012 	struct pci_cap_saved_state *save_state;
1013 
1014 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1015 	if (!pos)
1016 		return 0;
1017 
1018 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1019 	if (!save_state) {
1020 		dev_err(&dev->dev, "buffer not found in %s\n", __func__);
1021 		return -ENOMEM;
1022 	}
1023 
1024 	pci_read_config_word(dev, pos + PCI_X_CMD,
1025 			     (u16 *)save_state->cap.data);
1026 
1027 	return 0;
1028 }
1029 
1030 static void pci_restore_pcix_state(struct pci_dev *dev)
1031 {
1032 	int i = 0, pos;
1033 	struct pci_cap_saved_state *save_state;
1034 	u16 *cap;
1035 
1036 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1037 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1038 	if (!save_state || !pos)
1039 		return;
1040 	cap = (u16 *)&save_state->cap.data[0];
1041 
1042 	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1043 }
1044 
1045 
1046 /**
1047  * pci_save_state - save the PCI configuration space of a device before suspending
1048  * @dev: - PCI device that we're dealing with
1049  */
1050 int pci_save_state(struct pci_dev *dev)
1051 {
1052 	int i;
1053 	/* XXX: 100% dword access ok here? */
1054 	for (i = 0; i < 16; i++)
1055 		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1056 	dev->state_saved = true;
1057 
1058 	i = pci_save_pcie_state(dev);
1059 	if (i != 0)
1060 		return i;
1061 
1062 	i = pci_save_pcix_state(dev);
1063 	if (i != 0)
1064 		return i;
1065 
1066 	return pci_save_vc_state(dev);
1067 }
1068 EXPORT_SYMBOL(pci_save_state);
1069 
1070 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1071 				     u32 saved_val, int retry)
1072 {
1073 	u32 val;
1074 
1075 	pci_read_config_dword(pdev, offset, &val);
1076 	if (val == saved_val)
1077 		return;
1078 
1079 	for (;;) {
1080 		dev_dbg(&pdev->dev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1081 			offset, val, saved_val);
1082 		pci_write_config_dword(pdev, offset, saved_val);
1083 		if (retry-- <= 0)
1084 			return;
1085 
1086 		pci_read_config_dword(pdev, offset, &val);
1087 		if (val == saved_val)
1088 			return;
1089 
1090 		mdelay(1);
1091 	}
1092 }
1093 
1094 static void pci_restore_config_space_range(struct pci_dev *pdev,
1095 					   int start, int end, int retry)
1096 {
1097 	int index;
1098 
1099 	for (index = end; index >= start; index--)
1100 		pci_restore_config_dword(pdev, 4 * index,
1101 					 pdev->saved_config_space[index],
1102 					 retry);
1103 }
1104 
1105 static void pci_restore_config_space(struct pci_dev *pdev)
1106 {
1107 	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1108 		pci_restore_config_space_range(pdev, 10, 15, 0);
1109 		/* Restore BARs before the command register. */
1110 		pci_restore_config_space_range(pdev, 4, 9, 10);
1111 		pci_restore_config_space_range(pdev, 0, 3, 0);
1112 	} else {
1113 		pci_restore_config_space_range(pdev, 0, 15, 0);
1114 	}
1115 }
1116 
1117 /**
1118  * pci_restore_state - Restore the saved state of a PCI device
1119  * @dev: - PCI device that we're dealing with
1120  */
1121 void pci_restore_state(struct pci_dev *dev)
1122 {
1123 	if (!dev->state_saved)
1124 		return;
1125 
1126 	/* PCI Express register must be restored first */
1127 	pci_restore_pcie_state(dev);
1128 	pci_restore_ats_state(dev);
1129 	pci_restore_vc_state(dev);
1130 
1131 	pci_cleanup_aer_error_status_regs(dev);
1132 
1133 	pci_restore_config_space(dev);
1134 
1135 	pci_restore_pcix_state(dev);
1136 	pci_restore_msi_state(dev);
1137 
1138 	/* Restore ACS and IOV configuration state */
1139 	pci_enable_acs(dev);
1140 	pci_restore_iov_state(dev);
1141 
1142 	dev->state_saved = false;
1143 }
1144 EXPORT_SYMBOL(pci_restore_state);
1145 
1146 struct pci_saved_state {
1147 	u32 config_space[16];
1148 	struct pci_cap_saved_data cap[0];
1149 };
1150 
1151 /**
1152  * pci_store_saved_state - Allocate and return an opaque struct containing
1153  *			   the device saved state.
1154  * @dev: PCI device that we're dealing with
1155  *
1156  * Return NULL if no state or error.
1157  */
1158 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1159 {
1160 	struct pci_saved_state *state;
1161 	struct pci_cap_saved_state *tmp;
1162 	struct pci_cap_saved_data *cap;
1163 	size_t size;
1164 
1165 	if (!dev->state_saved)
1166 		return NULL;
1167 
1168 	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1169 
1170 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1171 		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1172 
1173 	state = kzalloc(size, GFP_KERNEL);
1174 	if (!state)
1175 		return NULL;
1176 
1177 	memcpy(state->config_space, dev->saved_config_space,
1178 	       sizeof(state->config_space));
1179 
1180 	cap = state->cap;
1181 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1182 		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1183 		memcpy(cap, &tmp->cap, len);
1184 		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1185 	}
1186 	/* Empty cap_save terminates list */
1187 
1188 	return state;
1189 }
1190 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1191 
1192 /**
1193  * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1194  * @dev: PCI device that we're dealing with
1195  * @state: Saved state returned from pci_store_saved_state()
1196  */
1197 int pci_load_saved_state(struct pci_dev *dev,
1198 			 struct pci_saved_state *state)
1199 {
1200 	struct pci_cap_saved_data *cap;
1201 
1202 	dev->state_saved = false;
1203 
1204 	if (!state)
1205 		return 0;
1206 
1207 	memcpy(dev->saved_config_space, state->config_space,
1208 	       sizeof(state->config_space));
1209 
1210 	cap = state->cap;
1211 	while (cap->size) {
1212 		struct pci_cap_saved_state *tmp;
1213 
1214 		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1215 		if (!tmp || tmp->cap.size != cap->size)
1216 			return -EINVAL;
1217 
1218 		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1219 		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1220 		       sizeof(struct pci_cap_saved_data) + cap->size);
1221 	}
1222 
1223 	dev->state_saved = true;
1224 	return 0;
1225 }
1226 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1227 
1228 /**
1229  * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1230  *				   and free the memory allocated for it.
1231  * @dev: PCI device that we're dealing with
1232  * @state: Pointer to saved state returned from pci_store_saved_state()
1233  */
1234 int pci_load_and_free_saved_state(struct pci_dev *dev,
1235 				  struct pci_saved_state **state)
1236 {
1237 	int ret = pci_load_saved_state(dev, *state);
1238 	kfree(*state);
1239 	*state = NULL;
1240 	return ret;
1241 }
1242 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1243 
1244 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1245 {
1246 	return pci_enable_resources(dev, bars);
1247 }
1248 
1249 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1250 {
1251 	int err;
1252 	struct pci_dev *bridge;
1253 	u16 cmd;
1254 	u8 pin;
1255 
1256 	err = pci_set_power_state(dev, PCI_D0);
1257 	if (err < 0 && err != -EIO)
1258 		return err;
1259 
1260 	bridge = pci_upstream_bridge(dev);
1261 	if (bridge)
1262 		pcie_aspm_powersave_config_link(bridge);
1263 
1264 	err = pcibios_enable_device(dev, bars);
1265 	if (err < 0)
1266 		return err;
1267 	pci_fixup_device(pci_fixup_enable, dev);
1268 
1269 	if (dev->msi_enabled || dev->msix_enabled)
1270 		return 0;
1271 
1272 	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1273 	if (pin) {
1274 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
1275 		if (cmd & PCI_COMMAND_INTX_DISABLE)
1276 			pci_write_config_word(dev, PCI_COMMAND,
1277 					      cmd & ~PCI_COMMAND_INTX_DISABLE);
1278 	}
1279 
1280 	return 0;
1281 }
1282 
1283 /**
1284  * pci_reenable_device - Resume abandoned device
1285  * @dev: PCI device to be resumed
1286  *
1287  *  Note this function is a backend of pci_default_resume and is not supposed
1288  *  to be called by normal code, write proper resume handler and use it instead.
1289  */
1290 int pci_reenable_device(struct pci_dev *dev)
1291 {
1292 	if (pci_is_enabled(dev))
1293 		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1294 	return 0;
1295 }
1296 EXPORT_SYMBOL(pci_reenable_device);
1297 
1298 static void pci_enable_bridge(struct pci_dev *dev)
1299 {
1300 	struct pci_dev *bridge;
1301 	int retval;
1302 
1303 	bridge = pci_upstream_bridge(dev);
1304 	if (bridge)
1305 		pci_enable_bridge(bridge);
1306 
1307 	if (pci_is_enabled(dev)) {
1308 		if (!dev->is_busmaster)
1309 			pci_set_master(dev);
1310 		return;
1311 	}
1312 
1313 	retval = pci_enable_device(dev);
1314 	if (retval)
1315 		dev_err(&dev->dev, "Error enabling bridge (%d), continuing\n",
1316 			retval);
1317 	pci_set_master(dev);
1318 }
1319 
1320 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1321 {
1322 	struct pci_dev *bridge;
1323 	int err;
1324 	int i, bars = 0;
1325 
1326 	/*
1327 	 * Power state could be unknown at this point, either due to a fresh
1328 	 * boot or a device removal call.  So get the current power state
1329 	 * so that things like MSI message writing will behave as expected
1330 	 * (e.g. if the device really is in D0 at enable time).
1331 	 */
1332 	if (dev->pm_cap) {
1333 		u16 pmcsr;
1334 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1335 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1336 	}
1337 
1338 	if (atomic_inc_return(&dev->enable_cnt) > 1)
1339 		return 0;		/* already enabled */
1340 
1341 	bridge = pci_upstream_bridge(dev);
1342 	if (bridge)
1343 		pci_enable_bridge(bridge);
1344 
1345 	/* only skip sriov related */
1346 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1347 		if (dev->resource[i].flags & flags)
1348 			bars |= (1 << i);
1349 	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1350 		if (dev->resource[i].flags & flags)
1351 			bars |= (1 << i);
1352 
1353 	err = do_pci_enable_device(dev, bars);
1354 	if (err < 0)
1355 		atomic_dec(&dev->enable_cnt);
1356 	return err;
1357 }
1358 
1359 /**
1360  * pci_enable_device_io - Initialize a device for use with IO space
1361  * @dev: PCI device to be initialized
1362  *
1363  *  Initialize device before it's used by a driver. Ask low-level code
1364  *  to enable I/O resources. Wake up the device if it was suspended.
1365  *  Beware, this function can fail.
1366  */
1367 int pci_enable_device_io(struct pci_dev *dev)
1368 {
1369 	return pci_enable_device_flags(dev, IORESOURCE_IO);
1370 }
1371 EXPORT_SYMBOL(pci_enable_device_io);
1372 
1373 /**
1374  * pci_enable_device_mem - Initialize a device for use with Memory space
1375  * @dev: PCI device to be initialized
1376  *
1377  *  Initialize device before it's used by a driver. Ask low-level code
1378  *  to enable Memory resources. Wake up the device if it was suspended.
1379  *  Beware, this function can fail.
1380  */
1381 int pci_enable_device_mem(struct pci_dev *dev)
1382 {
1383 	return pci_enable_device_flags(dev, IORESOURCE_MEM);
1384 }
1385 EXPORT_SYMBOL(pci_enable_device_mem);
1386 
1387 /**
1388  * pci_enable_device - Initialize device before it's used by a driver.
1389  * @dev: PCI device to be initialized
1390  *
1391  *  Initialize device before it's used by a driver. Ask low-level code
1392  *  to enable I/O and memory. Wake up the device if it was suspended.
1393  *  Beware, this function can fail.
1394  *
1395  *  Note we don't actually enable the device many times if we call
1396  *  this function repeatedly (we just increment the count).
1397  */
1398 int pci_enable_device(struct pci_dev *dev)
1399 {
1400 	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1401 }
1402 EXPORT_SYMBOL(pci_enable_device);
1403 
1404 /*
1405  * Managed PCI resources.  This manages device on/off, intx/msi/msix
1406  * on/off and BAR regions.  pci_dev itself records msi/msix status, so
1407  * there's no need to track it separately.  pci_devres is initialized
1408  * when a device is enabled using managed PCI device enable interface.
1409  */
1410 struct pci_devres {
1411 	unsigned int enabled:1;
1412 	unsigned int pinned:1;
1413 	unsigned int orig_intx:1;
1414 	unsigned int restore_intx:1;
1415 	u32 region_mask;
1416 };
1417 
1418 static void pcim_release(struct device *gendev, void *res)
1419 {
1420 	struct pci_dev *dev = to_pci_dev(gendev);
1421 	struct pci_devres *this = res;
1422 	int i;
1423 
1424 	if (dev->msi_enabled)
1425 		pci_disable_msi(dev);
1426 	if (dev->msix_enabled)
1427 		pci_disable_msix(dev);
1428 
1429 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1430 		if (this->region_mask & (1 << i))
1431 			pci_release_region(dev, i);
1432 
1433 	if (this->restore_intx)
1434 		pci_intx(dev, this->orig_intx);
1435 
1436 	if (this->enabled && !this->pinned)
1437 		pci_disable_device(dev);
1438 }
1439 
1440 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1441 {
1442 	struct pci_devres *dr, *new_dr;
1443 
1444 	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1445 	if (dr)
1446 		return dr;
1447 
1448 	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1449 	if (!new_dr)
1450 		return NULL;
1451 	return devres_get(&pdev->dev, new_dr, NULL, NULL);
1452 }
1453 
1454 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1455 {
1456 	if (pci_is_managed(pdev))
1457 		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1458 	return NULL;
1459 }
1460 
1461 /**
1462  * pcim_enable_device - Managed pci_enable_device()
1463  * @pdev: PCI device to be initialized
1464  *
1465  * Managed pci_enable_device().
1466  */
1467 int pcim_enable_device(struct pci_dev *pdev)
1468 {
1469 	struct pci_devres *dr;
1470 	int rc;
1471 
1472 	dr = get_pci_dr(pdev);
1473 	if (unlikely(!dr))
1474 		return -ENOMEM;
1475 	if (dr->enabled)
1476 		return 0;
1477 
1478 	rc = pci_enable_device(pdev);
1479 	if (!rc) {
1480 		pdev->is_managed = 1;
1481 		dr->enabled = 1;
1482 	}
1483 	return rc;
1484 }
1485 EXPORT_SYMBOL(pcim_enable_device);
1486 
1487 /**
1488  * pcim_pin_device - Pin managed PCI device
1489  * @pdev: PCI device to pin
1490  *
1491  * Pin managed PCI device @pdev.  Pinned device won't be disabled on
1492  * driver detach.  @pdev must have been enabled with
1493  * pcim_enable_device().
1494  */
1495 void pcim_pin_device(struct pci_dev *pdev)
1496 {
1497 	struct pci_devres *dr;
1498 
1499 	dr = find_pci_dr(pdev);
1500 	WARN_ON(!dr || !dr->enabled);
1501 	if (dr)
1502 		dr->pinned = 1;
1503 }
1504 EXPORT_SYMBOL(pcim_pin_device);
1505 
1506 /*
1507  * pcibios_add_device - provide arch specific hooks when adding device dev
1508  * @dev: the PCI device being added
1509  *
1510  * Permits the platform to provide architecture specific functionality when
1511  * devices are added. This is the default implementation. Architecture
1512  * implementations can override this.
1513  */
1514 int __weak pcibios_add_device(struct pci_dev *dev)
1515 {
1516 	return 0;
1517 }
1518 
1519 /**
1520  * pcibios_release_device - provide arch specific hooks when releasing device dev
1521  * @dev: the PCI device being released
1522  *
1523  * Permits the platform to provide architecture specific functionality when
1524  * devices are released. This is the default implementation. Architecture
1525  * implementations can override this.
1526  */
1527 void __weak pcibios_release_device(struct pci_dev *dev) {}
1528 
1529 /**
1530  * pcibios_disable_device - disable arch specific PCI resources for device dev
1531  * @dev: the PCI device to disable
1532  *
1533  * Disables architecture specific PCI resources for the device. This
1534  * is the default implementation. Architecture implementations can
1535  * override this.
1536  */
1537 void __weak pcibios_disable_device(struct pci_dev *dev) {}
1538 
1539 /**
1540  * pcibios_penalize_isa_irq - penalize an ISA IRQ
1541  * @irq: ISA IRQ to penalize
1542  * @active: IRQ active or not
1543  *
1544  * Permits the platform to provide architecture-specific functionality when
1545  * penalizing ISA IRQs. This is the default implementation. Architecture
1546  * implementations can override this.
1547  */
1548 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1549 
1550 static void do_pci_disable_device(struct pci_dev *dev)
1551 {
1552 	u16 pci_command;
1553 
1554 	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1555 	if (pci_command & PCI_COMMAND_MASTER) {
1556 		pci_command &= ~PCI_COMMAND_MASTER;
1557 		pci_write_config_word(dev, PCI_COMMAND, pci_command);
1558 	}
1559 
1560 	pcibios_disable_device(dev);
1561 }
1562 
1563 /**
1564  * pci_disable_enabled_device - Disable device without updating enable_cnt
1565  * @dev: PCI device to disable
1566  *
1567  * NOTE: This function is a backend of PCI power management routines and is
1568  * not supposed to be called drivers.
1569  */
1570 void pci_disable_enabled_device(struct pci_dev *dev)
1571 {
1572 	if (pci_is_enabled(dev))
1573 		do_pci_disable_device(dev);
1574 }
1575 
1576 /**
1577  * pci_disable_device - Disable PCI device after use
1578  * @dev: PCI device to be disabled
1579  *
1580  * Signal to the system that the PCI device is not in use by the system
1581  * anymore.  This only involves disabling PCI bus-mastering, if active.
1582  *
1583  * Note we don't actually disable the device until all callers of
1584  * pci_enable_device() have called pci_disable_device().
1585  */
1586 void pci_disable_device(struct pci_dev *dev)
1587 {
1588 	struct pci_devres *dr;
1589 
1590 	dr = find_pci_dr(dev);
1591 	if (dr)
1592 		dr->enabled = 0;
1593 
1594 	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1595 		      "disabling already-disabled device");
1596 
1597 	if (atomic_dec_return(&dev->enable_cnt) != 0)
1598 		return;
1599 
1600 	do_pci_disable_device(dev);
1601 
1602 	dev->is_busmaster = 0;
1603 }
1604 EXPORT_SYMBOL(pci_disable_device);
1605 
1606 /**
1607  * pcibios_set_pcie_reset_state - set reset state for device dev
1608  * @dev: the PCIe device reset
1609  * @state: Reset state to enter into
1610  *
1611  *
1612  * Sets the PCIe reset state for the device. This is the default
1613  * implementation. Architecture implementations can override this.
1614  */
1615 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1616 					enum pcie_reset_state state)
1617 {
1618 	return -EINVAL;
1619 }
1620 
1621 /**
1622  * pci_set_pcie_reset_state - set reset state for device dev
1623  * @dev: the PCIe device reset
1624  * @state: Reset state to enter into
1625  *
1626  *
1627  * Sets the PCI reset state for the device.
1628  */
1629 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1630 {
1631 	return pcibios_set_pcie_reset_state(dev, state);
1632 }
1633 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
1634 
1635 /**
1636  * pci_check_pme_status - Check if given device has generated PME.
1637  * @dev: Device to check.
1638  *
1639  * Check the PME status of the device and if set, clear it and clear PME enable
1640  * (if set).  Return 'true' if PME status and PME enable were both set or
1641  * 'false' otherwise.
1642  */
1643 bool pci_check_pme_status(struct pci_dev *dev)
1644 {
1645 	int pmcsr_pos;
1646 	u16 pmcsr;
1647 	bool ret = false;
1648 
1649 	if (!dev->pm_cap)
1650 		return false;
1651 
1652 	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1653 	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1654 	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1655 		return false;
1656 
1657 	/* Clear PME status. */
1658 	pmcsr |= PCI_PM_CTRL_PME_STATUS;
1659 	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1660 		/* Disable PME to avoid interrupt flood. */
1661 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1662 		ret = true;
1663 	}
1664 
1665 	pci_write_config_word(dev, pmcsr_pos, pmcsr);
1666 
1667 	return ret;
1668 }
1669 
1670 /**
1671  * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1672  * @dev: Device to handle.
1673  * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1674  *
1675  * Check if @dev has generated PME and queue a resume request for it in that
1676  * case.
1677  */
1678 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1679 {
1680 	if (pme_poll_reset && dev->pme_poll)
1681 		dev->pme_poll = false;
1682 
1683 	if (pci_check_pme_status(dev)) {
1684 		pci_wakeup_event(dev);
1685 		pm_request_resume(&dev->dev);
1686 	}
1687 	return 0;
1688 }
1689 
1690 /**
1691  * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1692  * @bus: Top bus of the subtree to walk.
1693  */
1694 void pci_pme_wakeup_bus(struct pci_bus *bus)
1695 {
1696 	if (bus)
1697 		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1698 }
1699 
1700 
1701 /**
1702  * pci_pme_capable - check the capability of PCI device to generate PME#
1703  * @dev: PCI device to handle.
1704  * @state: PCI state from which device will issue PME#.
1705  */
1706 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1707 {
1708 	if (!dev->pm_cap)
1709 		return false;
1710 
1711 	return !!(dev->pme_support & (1 << state));
1712 }
1713 EXPORT_SYMBOL(pci_pme_capable);
1714 
1715 static void pci_pme_list_scan(struct work_struct *work)
1716 {
1717 	struct pci_pme_device *pme_dev, *n;
1718 
1719 	mutex_lock(&pci_pme_list_mutex);
1720 	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1721 		if (pme_dev->dev->pme_poll) {
1722 			struct pci_dev *bridge;
1723 
1724 			bridge = pme_dev->dev->bus->self;
1725 			/*
1726 			 * If bridge is in low power state, the
1727 			 * configuration space of subordinate devices
1728 			 * may be not accessible
1729 			 */
1730 			if (bridge && bridge->current_state != PCI_D0)
1731 				continue;
1732 			pci_pme_wakeup(pme_dev->dev, NULL);
1733 		} else {
1734 			list_del(&pme_dev->list);
1735 			kfree(pme_dev);
1736 		}
1737 	}
1738 	if (!list_empty(&pci_pme_list))
1739 		schedule_delayed_work(&pci_pme_work,
1740 				      msecs_to_jiffies(PME_TIMEOUT));
1741 	mutex_unlock(&pci_pme_list_mutex);
1742 }
1743 
1744 static void __pci_pme_active(struct pci_dev *dev, bool enable)
1745 {
1746 	u16 pmcsr;
1747 
1748 	if (!dev->pme_support)
1749 		return;
1750 
1751 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1752 	/* Clear PME_Status by writing 1 to it and enable PME# */
1753 	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1754 	if (!enable)
1755 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1756 
1757 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1758 }
1759 
1760 /**
1761  * pci_pme_active - enable or disable PCI device's PME# function
1762  * @dev: PCI device to handle.
1763  * @enable: 'true' to enable PME# generation; 'false' to disable it.
1764  *
1765  * The caller must verify that the device is capable of generating PME# before
1766  * calling this function with @enable equal to 'true'.
1767  */
1768 void pci_pme_active(struct pci_dev *dev, bool enable)
1769 {
1770 	__pci_pme_active(dev, enable);
1771 
1772 	/*
1773 	 * PCI (as opposed to PCIe) PME requires that the device have
1774 	 * its PME# line hooked up correctly. Not all hardware vendors
1775 	 * do this, so the PME never gets delivered and the device
1776 	 * remains asleep. The easiest way around this is to
1777 	 * periodically walk the list of suspended devices and check
1778 	 * whether any have their PME flag set. The assumption is that
1779 	 * we'll wake up often enough anyway that this won't be a huge
1780 	 * hit, and the power savings from the devices will still be a
1781 	 * win.
1782 	 *
1783 	 * Although PCIe uses in-band PME message instead of PME# line
1784 	 * to report PME, PME does not work for some PCIe devices in
1785 	 * reality.  For example, there are devices that set their PME
1786 	 * status bits, but don't really bother to send a PME message;
1787 	 * there are PCI Express Root Ports that don't bother to
1788 	 * trigger interrupts when they receive PME messages from the
1789 	 * devices below.  So PME poll is used for PCIe devices too.
1790 	 */
1791 
1792 	if (dev->pme_poll) {
1793 		struct pci_pme_device *pme_dev;
1794 		if (enable) {
1795 			pme_dev = kmalloc(sizeof(struct pci_pme_device),
1796 					  GFP_KERNEL);
1797 			if (!pme_dev) {
1798 				dev_warn(&dev->dev, "can't enable PME#\n");
1799 				return;
1800 			}
1801 			pme_dev->dev = dev;
1802 			mutex_lock(&pci_pme_list_mutex);
1803 			list_add(&pme_dev->list, &pci_pme_list);
1804 			if (list_is_singular(&pci_pme_list))
1805 				schedule_delayed_work(&pci_pme_work,
1806 						      msecs_to_jiffies(PME_TIMEOUT));
1807 			mutex_unlock(&pci_pme_list_mutex);
1808 		} else {
1809 			mutex_lock(&pci_pme_list_mutex);
1810 			list_for_each_entry(pme_dev, &pci_pme_list, list) {
1811 				if (pme_dev->dev == dev) {
1812 					list_del(&pme_dev->list);
1813 					kfree(pme_dev);
1814 					break;
1815 				}
1816 			}
1817 			mutex_unlock(&pci_pme_list_mutex);
1818 		}
1819 	}
1820 
1821 	dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled");
1822 }
1823 EXPORT_SYMBOL(pci_pme_active);
1824 
1825 /**
1826  * __pci_enable_wake - enable PCI device as wakeup event source
1827  * @dev: PCI device affected
1828  * @state: PCI state from which device will issue wakeup events
1829  * @runtime: True if the events are to be generated at run time
1830  * @enable: True to enable event generation; false to disable
1831  *
1832  * This enables the device as a wakeup event source, or disables it.
1833  * When such events involves platform-specific hooks, those hooks are
1834  * called automatically by this routine.
1835  *
1836  * Devices with legacy power management (no standard PCI PM capabilities)
1837  * always require such platform hooks.
1838  *
1839  * RETURN VALUE:
1840  * 0 is returned on success
1841  * -EINVAL is returned if device is not supposed to wake up the system
1842  * Error code depending on the platform is returned if both the platform and
1843  * the native mechanism fail to enable the generation of wake-up events
1844  */
1845 int __pci_enable_wake(struct pci_dev *dev, pci_power_t state,
1846 		      bool runtime, bool enable)
1847 {
1848 	int ret = 0;
1849 
1850 	if (enable && !runtime && !device_may_wakeup(&dev->dev))
1851 		return -EINVAL;
1852 
1853 	/* Don't do the same thing twice in a row for one device. */
1854 	if (!!enable == !!dev->wakeup_prepared)
1855 		return 0;
1856 
1857 	/*
1858 	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1859 	 * Anderson we should be doing PME# wake enable followed by ACPI wake
1860 	 * enable.  To disable wake-up we call the platform first, for symmetry.
1861 	 */
1862 
1863 	if (enable) {
1864 		int error;
1865 
1866 		if (pci_pme_capable(dev, state))
1867 			pci_pme_active(dev, true);
1868 		else
1869 			ret = 1;
1870 		error = runtime ? platform_pci_run_wake(dev, true) :
1871 					platform_pci_sleep_wake(dev, true);
1872 		if (ret)
1873 			ret = error;
1874 		if (!ret)
1875 			dev->wakeup_prepared = true;
1876 	} else {
1877 		if (runtime)
1878 			platform_pci_run_wake(dev, false);
1879 		else
1880 			platform_pci_sleep_wake(dev, false);
1881 		pci_pme_active(dev, false);
1882 		dev->wakeup_prepared = false;
1883 	}
1884 
1885 	return ret;
1886 }
1887 EXPORT_SYMBOL(__pci_enable_wake);
1888 
1889 /**
1890  * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1891  * @dev: PCI device to prepare
1892  * @enable: True to enable wake-up event generation; false to disable
1893  *
1894  * Many drivers want the device to wake up the system from D3_hot or D3_cold
1895  * and this function allows them to set that up cleanly - pci_enable_wake()
1896  * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1897  * ordering constraints.
1898  *
1899  * This function only returns error code if the device is not capable of
1900  * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1901  * enable wake-up power for it.
1902  */
1903 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1904 {
1905 	return pci_pme_capable(dev, PCI_D3cold) ?
1906 			pci_enable_wake(dev, PCI_D3cold, enable) :
1907 			pci_enable_wake(dev, PCI_D3hot, enable);
1908 }
1909 EXPORT_SYMBOL(pci_wake_from_d3);
1910 
1911 /**
1912  * pci_target_state - find an appropriate low power state for a given PCI dev
1913  * @dev: PCI device
1914  *
1915  * Use underlying platform code to find a supported low power state for @dev.
1916  * If the platform can't manage @dev, return the deepest state from which it
1917  * can generate wake events, based on any available PME info.
1918  */
1919 static pci_power_t pci_target_state(struct pci_dev *dev)
1920 {
1921 	pci_power_t target_state = PCI_D3hot;
1922 
1923 	if (platform_pci_power_manageable(dev)) {
1924 		/*
1925 		 * Call the platform to choose the target state of the device
1926 		 * and enable wake-up from this state if supported.
1927 		 */
1928 		pci_power_t state = platform_pci_choose_state(dev);
1929 
1930 		switch (state) {
1931 		case PCI_POWER_ERROR:
1932 		case PCI_UNKNOWN:
1933 			break;
1934 		case PCI_D1:
1935 		case PCI_D2:
1936 			if (pci_no_d1d2(dev))
1937 				break;
1938 		default:
1939 			target_state = state;
1940 		}
1941 	} else if (!dev->pm_cap) {
1942 		target_state = PCI_D0;
1943 	} else if (device_may_wakeup(&dev->dev)) {
1944 		/*
1945 		 * Find the deepest state from which the device can generate
1946 		 * wake-up events, make it the target state and enable device
1947 		 * to generate PME#.
1948 		 */
1949 		if (dev->pme_support) {
1950 			while (target_state
1951 			      && !(dev->pme_support & (1 << target_state)))
1952 				target_state--;
1953 		}
1954 	}
1955 
1956 	return target_state;
1957 }
1958 
1959 /**
1960  * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1961  * @dev: Device to handle.
1962  *
1963  * Choose the power state appropriate for the device depending on whether
1964  * it can wake up the system and/or is power manageable by the platform
1965  * (PCI_D3hot is the default) and put the device into that state.
1966  */
1967 int pci_prepare_to_sleep(struct pci_dev *dev)
1968 {
1969 	pci_power_t target_state = pci_target_state(dev);
1970 	int error;
1971 
1972 	if (target_state == PCI_POWER_ERROR)
1973 		return -EIO;
1974 
1975 	pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
1976 
1977 	error = pci_set_power_state(dev, target_state);
1978 
1979 	if (error)
1980 		pci_enable_wake(dev, target_state, false);
1981 
1982 	return error;
1983 }
1984 EXPORT_SYMBOL(pci_prepare_to_sleep);
1985 
1986 /**
1987  * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1988  * @dev: Device to handle.
1989  *
1990  * Disable device's system wake-up capability and put it into D0.
1991  */
1992 int pci_back_from_sleep(struct pci_dev *dev)
1993 {
1994 	pci_enable_wake(dev, PCI_D0, false);
1995 	return pci_set_power_state(dev, PCI_D0);
1996 }
1997 EXPORT_SYMBOL(pci_back_from_sleep);
1998 
1999 /**
2000  * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2001  * @dev: PCI device being suspended.
2002  *
2003  * Prepare @dev to generate wake-up events at run time and put it into a low
2004  * power state.
2005  */
2006 int pci_finish_runtime_suspend(struct pci_dev *dev)
2007 {
2008 	pci_power_t target_state = pci_target_state(dev);
2009 	int error;
2010 
2011 	if (target_state == PCI_POWER_ERROR)
2012 		return -EIO;
2013 
2014 	dev->runtime_d3cold = target_state == PCI_D3cold;
2015 
2016 	__pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev));
2017 
2018 	error = pci_set_power_state(dev, target_state);
2019 
2020 	if (error) {
2021 		__pci_enable_wake(dev, target_state, true, false);
2022 		dev->runtime_d3cold = false;
2023 	}
2024 
2025 	return error;
2026 }
2027 
2028 /**
2029  * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2030  * @dev: Device to check.
2031  *
2032  * Return true if the device itself is capable of generating wake-up events
2033  * (through the platform or using the native PCIe PME) or if the device supports
2034  * PME and one of its upstream bridges can generate wake-up events.
2035  */
2036 bool pci_dev_run_wake(struct pci_dev *dev)
2037 {
2038 	struct pci_bus *bus = dev->bus;
2039 
2040 	if (device_run_wake(&dev->dev))
2041 		return true;
2042 
2043 	if (!dev->pme_support)
2044 		return false;
2045 
2046 	while (bus->parent) {
2047 		struct pci_dev *bridge = bus->self;
2048 
2049 		if (device_run_wake(&bridge->dev))
2050 			return true;
2051 
2052 		bus = bus->parent;
2053 	}
2054 
2055 	/* We have reached the root bus. */
2056 	if (bus->bridge)
2057 		return device_run_wake(bus->bridge);
2058 
2059 	return false;
2060 }
2061 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2062 
2063 /**
2064  * pci_dev_keep_suspended - Check if the device can stay in the suspended state.
2065  * @pci_dev: Device to check.
2066  *
2067  * Return 'true' if the device is runtime-suspended, it doesn't have to be
2068  * reconfigured due to wakeup settings difference between system and runtime
2069  * suspend and the current power state of it is suitable for the upcoming
2070  * (system) transition.
2071  *
2072  * If the device is not configured for system wakeup, disable PME for it before
2073  * returning 'true' to prevent it from waking up the system unnecessarily.
2074  */
2075 bool pci_dev_keep_suspended(struct pci_dev *pci_dev)
2076 {
2077 	struct device *dev = &pci_dev->dev;
2078 
2079 	if (!pm_runtime_suspended(dev)
2080 	    || pci_target_state(pci_dev) != pci_dev->current_state
2081 	    || platform_pci_need_resume(pci_dev))
2082 		return false;
2083 
2084 	/*
2085 	 * At this point the device is good to go unless it's been configured
2086 	 * to generate PME at the runtime suspend time, but it is not supposed
2087 	 * to wake up the system.  In that case, simply disable PME for it
2088 	 * (it will have to be re-enabled on exit from system resume).
2089 	 *
2090 	 * If the device's power state is D3cold and the platform check above
2091 	 * hasn't triggered, the device's configuration is suitable and we don't
2092 	 * need to manipulate it at all.
2093 	 */
2094 	spin_lock_irq(&dev->power.lock);
2095 
2096 	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold &&
2097 	    !device_may_wakeup(dev))
2098 		__pci_pme_active(pci_dev, false);
2099 
2100 	spin_unlock_irq(&dev->power.lock);
2101 	return true;
2102 }
2103 
2104 /**
2105  * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2106  * @pci_dev: Device to handle.
2107  *
2108  * If the device is runtime suspended and wakeup-capable, enable PME for it as
2109  * it might have been disabled during the prepare phase of system suspend if
2110  * the device was not configured for system wakeup.
2111  */
2112 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2113 {
2114 	struct device *dev = &pci_dev->dev;
2115 
2116 	if (!pci_dev_run_wake(pci_dev))
2117 		return;
2118 
2119 	spin_lock_irq(&dev->power.lock);
2120 
2121 	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2122 		__pci_pme_active(pci_dev, true);
2123 
2124 	spin_unlock_irq(&dev->power.lock);
2125 }
2126 
2127 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2128 {
2129 	struct device *dev = &pdev->dev;
2130 	struct device *parent = dev->parent;
2131 
2132 	if (parent)
2133 		pm_runtime_get_sync(parent);
2134 	pm_runtime_get_noresume(dev);
2135 	/*
2136 	 * pdev->current_state is set to PCI_D3cold during suspending,
2137 	 * so wait until suspending completes
2138 	 */
2139 	pm_runtime_barrier(dev);
2140 	/*
2141 	 * Only need to resume devices in D3cold, because config
2142 	 * registers are still accessible for devices suspended but
2143 	 * not in D3cold.
2144 	 */
2145 	if (pdev->current_state == PCI_D3cold)
2146 		pm_runtime_resume(dev);
2147 }
2148 
2149 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2150 {
2151 	struct device *dev = &pdev->dev;
2152 	struct device *parent = dev->parent;
2153 
2154 	pm_runtime_put(dev);
2155 	if (parent)
2156 		pm_runtime_put_sync(parent);
2157 }
2158 
2159 /**
2160  * pci_pm_init - Initialize PM functions of given PCI device
2161  * @dev: PCI device to handle.
2162  */
2163 void pci_pm_init(struct pci_dev *dev)
2164 {
2165 	int pm;
2166 	u16 pmc;
2167 
2168 	pm_runtime_forbid(&dev->dev);
2169 	pm_runtime_set_active(&dev->dev);
2170 	pm_runtime_enable(&dev->dev);
2171 	device_enable_async_suspend(&dev->dev);
2172 	dev->wakeup_prepared = false;
2173 
2174 	dev->pm_cap = 0;
2175 	dev->pme_support = 0;
2176 
2177 	/* find PCI PM capability in list */
2178 	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2179 	if (!pm)
2180 		return;
2181 	/* Check device's ability to generate PME# */
2182 	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2183 
2184 	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2185 		dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
2186 			pmc & PCI_PM_CAP_VER_MASK);
2187 		return;
2188 	}
2189 
2190 	dev->pm_cap = pm;
2191 	dev->d3_delay = PCI_PM_D3_WAIT;
2192 	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2193 	dev->d3cold_allowed = true;
2194 
2195 	dev->d1_support = false;
2196 	dev->d2_support = false;
2197 	if (!pci_no_d1d2(dev)) {
2198 		if (pmc & PCI_PM_CAP_D1)
2199 			dev->d1_support = true;
2200 		if (pmc & PCI_PM_CAP_D2)
2201 			dev->d2_support = true;
2202 
2203 		if (dev->d1_support || dev->d2_support)
2204 			dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
2205 				   dev->d1_support ? " D1" : "",
2206 				   dev->d2_support ? " D2" : "");
2207 	}
2208 
2209 	pmc &= PCI_PM_CAP_PME_MASK;
2210 	if (pmc) {
2211 		dev_printk(KERN_DEBUG, &dev->dev,
2212 			 "PME# supported from%s%s%s%s%s\n",
2213 			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2214 			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2215 			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2216 			 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2217 			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2218 		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2219 		dev->pme_poll = true;
2220 		/*
2221 		 * Make device's PM flags reflect the wake-up capability, but
2222 		 * let the user space enable it to wake up the system as needed.
2223 		 */
2224 		device_set_wakeup_capable(&dev->dev, true);
2225 		/* Disable the PME# generation functionality */
2226 		pci_pme_active(dev, false);
2227 	}
2228 }
2229 
2230 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
2231 {
2232 	unsigned long flags = IORESOURCE_PCI_FIXED;
2233 
2234 	switch (prop) {
2235 	case PCI_EA_P_MEM:
2236 	case PCI_EA_P_VF_MEM:
2237 		flags |= IORESOURCE_MEM;
2238 		break;
2239 	case PCI_EA_P_MEM_PREFETCH:
2240 	case PCI_EA_P_VF_MEM_PREFETCH:
2241 		flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
2242 		break;
2243 	case PCI_EA_P_IO:
2244 		flags |= IORESOURCE_IO;
2245 		break;
2246 	default:
2247 		return 0;
2248 	}
2249 
2250 	return flags;
2251 }
2252 
2253 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
2254 					    u8 prop)
2255 {
2256 	if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
2257 		return &dev->resource[bei];
2258 #ifdef CONFIG_PCI_IOV
2259 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
2260 		 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
2261 		return &dev->resource[PCI_IOV_RESOURCES +
2262 				      bei - PCI_EA_BEI_VF_BAR0];
2263 #endif
2264 	else if (bei == PCI_EA_BEI_ROM)
2265 		return &dev->resource[PCI_ROM_RESOURCE];
2266 	else
2267 		return NULL;
2268 }
2269 
2270 /* Read an Enhanced Allocation (EA) entry */
2271 static int pci_ea_read(struct pci_dev *dev, int offset)
2272 {
2273 	struct resource *res;
2274 	int ent_size, ent_offset = offset;
2275 	resource_size_t start, end;
2276 	unsigned long flags;
2277 	u32 dw0, bei, base, max_offset;
2278 	u8 prop;
2279 	bool support_64 = (sizeof(resource_size_t) >= 8);
2280 
2281 	pci_read_config_dword(dev, ent_offset, &dw0);
2282 	ent_offset += 4;
2283 
2284 	/* Entry size field indicates DWORDs after 1st */
2285 	ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
2286 
2287 	if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
2288 		goto out;
2289 
2290 	bei = (dw0 & PCI_EA_BEI) >> 4;
2291 	prop = (dw0 & PCI_EA_PP) >> 8;
2292 
2293 	/*
2294 	 * If the Property is in the reserved range, try the Secondary
2295 	 * Property instead.
2296 	 */
2297 	if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
2298 		prop = (dw0 & PCI_EA_SP) >> 16;
2299 	if (prop > PCI_EA_P_BRIDGE_IO)
2300 		goto out;
2301 
2302 	res = pci_ea_get_resource(dev, bei, prop);
2303 	if (!res) {
2304 		dev_err(&dev->dev, "Unsupported EA entry BEI: %u\n", bei);
2305 		goto out;
2306 	}
2307 
2308 	flags = pci_ea_flags(dev, prop);
2309 	if (!flags) {
2310 		dev_err(&dev->dev, "Unsupported EA properties: %#x\n", prop);
2311 		goto out;
2312 	}
2313 
2314 	/* Read Base */
2315 	pci_read_config_dword(dev, ent_offset, &base);
2316 	start = (base & PCI_EA_FIELD_MASK);
2317 	ent_offset += 4;
2318 
2319 	/* Read MaxOffset */
2320 	pci_read_config_dword(dev, ent_offset, &max_offset);
2321 	ent_offset += 4;
2322 
2323 	/* Read Base MSBs (if 64-bit entry) */
2324 	if (base & PCI_EA_IS_64) {
2325 		u32 base_upper;
2326 
2327 		pci_read_config_dword(dev, ent_offset, &base_upper);
2328 		ent_offset += 4;
2329 
2330 		flags |= IORESOURCE_MEM_64;
2331 
2332 		/* entry starts above 32-bit boundary, can't use */
2333 		if (!support_64 && base_upper)
2334 			goto out;
2335 
2336 		if (support_64)
2337 			start |= ((u64)base_upper << 32);
2338 	}
2339 
2340 	end = start + (max_offset | 0x03);
2341 
2342 	/* Read MaxOffset MSBs (if 64-bit entry) */
2343 	if (max_offset & PCI_EA_IS_64) {
2344 		u32 max_offset_upper;
2345 
2346 		pci_read_config_dword(dev, ent_offset, &max_offset_upper);
2347 		ent_offset += 4;
2348 
2349 		flags |= IORESOURCE_MEM_64;
2350 
2351 		/* entry too big, can't use */
2352 		if (!support_64 && max_offset_upper)
2353 			goto out;
2354 
2355 		if (support_64)
2356 			end += ((u64)max_offset_upper << 32);
2357 	}
2358 
2359 	if (end < start) {
2360 		dev_err(&dev->dev, "EA Entry crosses address boundary\n");
2361 		goto out;
2362 	}
2363 
2364 	if (ent_size != ent_offset - offset) {
2365 		dev_err(&dev->dev,
2366 			"EA Entry Size (%d) does not match length read (%d)\n",
2367 			ent_size, ent_offset - offset);
2368 		goto out;
2369 	}
2370 
2371 	res->name = pci_name(dev);
2372 	res->start = start;
2373 	res->end = end;
2374 	res->flags = flags;
2375 
2376 	if (bei <= PCI_EA_BEI_BAR5)
2377 		dev_printk(KERN_DEBUG, &dev->dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2378 			   bei, res, prop);
2379 	else if (bei == PCI_EA_BEI_ROM)
2380 		dev_printk(KERN_DEBUG, &dev->dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
2381 			   res, prop);
2382 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
2383 		dev_printk(KERN_DEBUG, &dev->dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2384 			   bei - PCI_EA_BEI_VF_BAR0, res, prop);
2385 	else
2386 		dev_printk(KERN_DEBUG, &dev->dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
2387 			   bei, res, prop);
2388 
2389 out:
2390 	return offset + ent_size;
2391 }
2392 
2393 /* Enhanced Allocation Initalization */
2394 void pci_ea_init(struct pci_dev *dev)
2395 {
2396 	int ea;
2397 	u8 num_ent;
2398 	int offset;
2399 	int i;
2400 
2401 	/* find PCI EA capability in list */
2402 	ea = pci_find_capability(dev, PCI_CAP_ID_EA);
2403 	if (!ea)
2404 		return;
2405 
2406 	/* determine the number of entries */
2407 	pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
2408 					&num_ent);
2409 	num_ent &= PCI_EA_NUM_ENT_MASK;
2410 
2411 	offset = ea + PCI_EA_FIRST_ENT;
2412 
2413 	/* Skip DWORD 2 for type 1 functions */
2414 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
2415 		offset += 4;
2416 
2417 	/* parse each EA entry */
2418 	for (i = 0; i < num_ent; ++i)
2419 		offset = pci_ea_read(dev, offset);
2420 }
2421 
2422 static void pci_add_saved_cap(struct pci_dev *pci_dev,
2423 	struct pci_cap_saved_state *new_cap)
2424 {
2425 	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
2426 }
2427 
2428 /**
2429  * _pci_add_cap_save_buffer - allocate buffer for saving given
2430  *                            capability registers
2431  * @dev: the PCI device
2432  * @cap: the capability to allocate the buffer for
2433  * @extended: Standard or Extended capability ID
2434  * @size: requested size of the buffer
2435  */
2436 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
2437 				    bool extended, unsigned int size)
2438 {
2439 	int pos;
2440 	struct pci_cap_saved_state *save_state;
2441 
2442 	if (extended)
2443 		pos = pci_find_ext_capability(dev, cap);
2444 	else
2445 		pos = pci_find_capability(dev, cap);
2446 
2447 	if (!pos)
2448 		return 0;
2449 
2450 	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2451 	if (!save_state)
2452 		return -ENOMEM;
2453 
2454 	save_state->cap.cap_nr = cap;
2455 	save_state->cap.cap_extended = extended;
2456 	save_state->cap.size = size;
2457 	pci_add_saved_cap(dev, save_state);
2458 
2459 	return 0;
2460 }
2461 
2462 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
2463 {
2464 	return _pci_add_cap_save_buffer(dev, cap, false, size);
2465 }
2466 
2467 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
2468 {
2469 	return _pci_add_cap_save_buffer(dev, cap, true, size);
2470 }
2471 
2472 /**
2473  * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2474  * @dev: the PCI device
2475  */
2476 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2477 {
2478 	int error;
2479 
2480 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2481 					PCI_EXP_SAVE_REGS * sizeof(u16));
2482 	if (error)
2483 		dev_err(&dev->dev,
2484 			"unable to preallocate PCI Express save buffer\n");
2485 
2486 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2487 	if (error)
2488 		dev_err(&dev->dev,
2489 			"unable to preallocate PCI-X save buffer\n");
2490 
2491 	pci_allocate_vc_save_buffers(dev);
2492 }
2493 
2494 void pci_free_cap_save_buffers(struct pci_dev *dev)
2495 {
2496 	struct pci_cap_saved_state *tmp;
2497 	struct hlist_node *n;
2498 
2499 	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
2500 		kfree(tmp);
2501 }
2502 
2503 /**
2504  * pci_configure_ari - enable or disable ARI forwarding
2505  * @dev: the PCI device
2506  *
2507  * If @dev and its upstream bridge both support ARI, enable ARI in the
2508  * bridge.  Otherwise, disable ARI in the bridge.
2509  */
2510 void pci_configure_ari(struct pci_dev *dev)
2511 {
2512 	u32 cap;
2513 	struct pci_dev *bridge;
2514 
2515 	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
2516 		return;
2517 
2518 	bridge = dev->bus->self;
2519 	if (!bridge)
2520 		return;
2521 
2522 	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
2523 	if (!(cap & PCI_EXP_DEVCAP2_ARI))
2524 		return;
2525 
2526 	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
2527 		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
2528 					 PCI_EXP_DEVCTL2_ARI);
2529 		bridge->ari_enabled = 1;
2530 	} else {
2531 		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
2532 					   PCI_EXP_DEVCTL2_ARI);
2533 		bridge->ari_enabled = 0;
2534 	}
2535 }
2536 
2537 static int pci_acs_enable;
2538 
2539 /**
2540  * pci_request_acs - ask for ACS to be enabled if supported
2541  */
2542 void pci_request_acs(void)
2543 {
2544 	pci_acs_enable = 1;
2545 }
2546 
2547 /**
2548  * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites
2549  * @dev: the PCI device
2550  */
2551 static int pci_std_enable_acs(struct pci_dev *dev)
2552 {
2553 	int pos;
2554 	u16 cap;
2555 	u16 ctrl;
2556 
2557 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2558 	if (!pos)
2559 		return -ENODEV;
2560 
2561 	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2562 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2563 
2564 	/* Source Validation */
2565 	ctrl |= (cap & PCI_ACS_SV);
2566 
2567 	/* P2P Request Redirect */
2568 	ctrl |= (cap & PCI_ACS_RR);
2569 
2570 	/* P2P Completion Redirect */
2571 	ctrl |= (cap & PCI_ACS_CR);
2572 
2573 	/* Upstream Forwarding */
2574 	ctrl |= (cap & PCI_ACS_UF);
2575 
2576 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2577 
2578 	return 0;
2579 }
2580 
2581 /**
2582  * pci_enable_acs - enable ACS if hardware support it
2583  * @dev: the PCI device
2584  */
2585 void pci_enable_acs(struct pci_dev *dev)
2586 {
2587 	if (!pci_acs_enable)
2588 		return;
2589 
2590 	if (!pci_std_enable_acs(dev))
2591 		return;
2592 
2593 	pci_dev_specific_enable_acs(dev);
2594 }
2595 
2596 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
2597 {
2598 	int pos;
2599 	u16 cap, ctrl;
2600 
2601 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2602 	if (!pos)
2603 		return false;
2604 
2605 	/*
2606 	 * Except for egress control, capabilities are either required
2607 	 * or only required if controllable.  Features missing from the
2608 	 * capability field can therefore be assumed as hard-wired enabled.
2609 	 */
2610 	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
2611 	acs_flags &= (cap | PCI_ACS_EC);
2612 
2613 	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2614 	return (ctrl & acs_flags) == acs_flags;
2615 }
2616 
2617 /**
2618  * pci_acs_enabled - test ACS against required flags for a given device
2619  * @pdev: device to test
2620  * @acs_flags: required PCI ACS flags
2621  *
2622  * Return true if the device supports the provided flags.  Automatically
2623  * filters out flags that are not implemented on multifunction devices.
2624  *
2625  * Note that this interface checks the effective ACS capabilities of the
2626  * device rather than the actual capabilities.  For instance, most single
2627  * function endpoints are not required to support ACS because they have no
2628  * opportunity for peer-to-peer access.  We therefore return 'true'
2629  * regardless of whether the device exposes an ACS capability.  This makes
2630  * it much easier for callers of this function to ignore the actual type
2631  * or topology of the device when testing ACS support.
2632  */
2633 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2634 {
2635 	int ret;
2636 
2637 	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2638 	if (ret >= 0)
2639 		return ret > 0;
2640 
2641 	/*
2642 	 * Conventional PCI and PCI-X devices never support ACS, either
2643 	 * effectively or actually.  The shared bus topology implies that
2644 	 * any device on the bus can receive or snoop DMA.
2645 	 */
2646 	if (!pci_is_pcie(pdev))
2647 		return false;
2648 
2649 	switch (pci_pcie_type(pdev)) {
2650 	/*
2651 	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
2652 	 * but since their primary interface is PCI/X, we conservatively
2653 	 * handle them as we would a non-PCIe device.
2654 	 */
2655 	case PCI_EXP_TYPE_PCIE_BRIDGE:
2656 	/*
2657 	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
2658 	 * applicable... must never implement an ACS Extended Capability...".
2659 	 * This seems arbitrary, but we take a conservative interpretation
2660 	 * of this statement.
2661 	 */
2662 	case PCI_EXP_TYPE_PCI_BRIDGE:
2663 	case PCI_EXP_TYPE_RC_EC:
2664 		return false;
2665 	/*
2666 	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
2667 	 * implement ACS in order to indicate their peer-to-peer capabilities,
2668 	 * regardless of whether they are single- or multi-function devices.
2669 	 */
2670 	case PCI_EXP_TYPE_DOWNSTREAM:
2671 	case PCI_EXP_TYPE_ROOT_PORT:
2672 		return pci_acs_flags_enabled(pdev, acs_flags);
2673 	/*
2674 	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
2675 	 * implemented by the remaining PCIe types to indicate peer-to-peer
2676 	 * capabilities, but only when they are part of a multifunction
2677 	 * device.  The footnote for section 6.12 indicates the specific
2678 	 * PCIe types included here.
2679 	 */
2680 	case PCI_EXP_TYPE_ENDPOINT:
2681 	case PCI_EXP_TYPE_UPSTREAM:
2682 	case PCI_EXP_TYPE_LEG_END:
2683 	case PCI_EXP_TYPE_RC_END:
2684 		if (!pdev->multifunction)
2685 			break;
2686 
2687 		return pci_acs_flags_enabled(pdev, acs_flags);
2688 	}
2689 
2690 	/*
2691 	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
2692 	 * to single function devices with the exception of downstream ports.
2693 	 */
2694 	return true;
2695 }
2696 
2697 /**
2698  * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2699  * @start: starting downstream device
2700  * @end: ending upstream device or NULL to search to the root bus
2701  * @acs_flags: required flags
2702  *
2703  * Walk up a device tree from start to end testing PCI ACS support.  If
2704  * any step along the way does not support the required flags, return false.
2705  */
2706 bool pci_acs_path_enabled(struct pci_dev *start,
2707 			  struct pci_dev *end, u16 acs_flags)
2708 {
2709 	struct pci_dev *pdev, *parent = start;
2710 
2711 	do {
2712 		pdev = parent;
2713 
2714 		if (!pci_acs_enabled(pdev, acs_flags))
2715 			return false;
2716 
2717 		if (pci_is_root_bus(pdev->bus))
2718 			return (end == NULL);
2719 
2720 		parent = pdev->bus->self;
2721 	} while (pdev != end);
2722 
2723 	return true;
2724 }
2725 
2726 /**
2727  * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2728  * @dev: the PCI device
2729  * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
2730  *
2731  * Perform INTx swizzling for a device behind one level of bridge.  This is
2732  * required by section 9.1 of the PCI-to-PCI bridge specification for devices
2733  * behind bridges on add-in cards.  For devices with ARI enabled, the slot
2734  * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2735  * the PCI Express Base Specification, Revision 2.1)
2736  */
2737 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
2738 {
2739 	int slot;
2740 
2741 	if (pci_ari_enabled(dev->bus))
2742 		slot = 0;
2743 	else
2744 		slot = PCI_SLOT(dev->devfn);
2745 
2746 	return (((pin - 1) + slot) % 4) + 1;
2747 }
2748 
2749 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
2750 {
2751 	u8 pin;
2752 
2753 	pin = dev->pin;
2754 	if (!pin)
2755 		return -1;
2756 
2757 	while (!pci_is_root_bus(dev->bus)) {
2758 		pin = pci_swizzle_interrupt_pin(dev, pin);
2759 		dev = dev->bus->self;
2760 	}
2761 	*bridge = dev;
2762 	return pin;
2763 }
2764 
2765 /**
2766  * pci_common_swizzle - swizzle INTx all the way to root bridge
2767  * @dev: the PCI device
2768  * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2769  *
2770  * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
2771  * bridges all the way up to a PCI root bus.
2772  */
2773 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
2774 {
2775 	u8 pin = *pinp;
2776 
2777 	while (!pci_is_root_bus(dev->bus)) {
2778 		pin = pci_swizzle_interrupt_pin(dev, pin);
2779 		dev = dev->bus->self;
2780 	}
2781 	*pinp = pin;
2782 	return PCI_SLOT(dev->devfn);
2783 }
2784 EXPORT_SYMBOL_GPL(pci_common_swizzle);
2785 
2786 /**
2787  *	pci_release_region - Release a PCI bar
2788  *	@pdev: PCI device whose resources were previously reserved by pci_request_region
2789  *	@bar: BAR to release
2790  *
2791  *	Releases the PCI I/O and memory resources previously reserved by a
2792  *	successful call to pci_request_region.  Call this function only
2793  *	after all use of the PCI regions has ceased.
2794  */
2795 void pci_release_region(struct pci_dev *pdev, int bar)
2796 {
2797 	struct pci_devres *dr;
2798 
2799 	if (pci_resource_len(pdev, bar) == 0)
2800 		return;
2801 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
2802 		release_region(pci_resource_start(pdev, bar),
2803 				pci_resource_len(pdev, bar));
2804 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
2805 		release_mem_region(pci_resource_start(pdev, bar),
2806 				pci_resource_len(pdev, bar));
2807 
2808 	dr = find_pci_dr(pdev);
2809 	if (dr)
2810 		dr->region_mask &= ~(1 << bar);
2811 }
2812 EXPORT_SYMBOL(pci_release_region);
2813 
2814 /**
2815  *	__pci_request_region - Reserved PCI I/O and memory resource
2816  *	@pdev: PCI device whose resources are to be reserved
2817  *	@bar: BAR to be reserved
2818  *	@res_name: Name to be associated with resource.
2819  *	@exclusive: whether the region access is exclusive or not
2820  *
2821  *	Mark the PCI region associated with PCI device @pdev BR @bar as
2822  *	being reserved by owner @res_name.  Do not access any
2823  *	address inside the PCI regions unless this call returns
2824  *	successfully.
2825  *
2826  *	If @exclusive is set, then the region is marked so that userspace
2827  *	is explicitly not allowed to map the resource via /dev/mem or
2828  *	sysfs MMIO access.
2829  *
2830  *	Returns 0 on success, or %EBUSY on error.  A warning
2831  *	message is also printed on failure.
2832  */
2833 static int __pci_request_region(struct pci_dev *pdev, int bar,
2834 				const char *res_name, int exclusive)
2835 {
2836 	struct pci_devres *dr;
2837 
2838 	if (pci_resource_len(pdev, bar) == 0)
2839 		return 0;
2840 
2841 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
2842 		if (!request_region(pci_resource_start(pdev, bar),
2843 			    pci_resource_len(pdev, bar), res_name))
2844 			goto err_out;
2845 	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
2846 		if (!__request_mem_region(pci_resource_start(pdev, bar),
2847 					pci_resource_len(pdev, bar), res_name,
2848 					exclusive))
2849 			goto err_out;
2850 	}
2851 
2852 	dr = find_pci_dr(pdev);
2853 	if (dr)
2854 		dr->region_mask |= 1 << bar;
2855 
2856 	return 0;
2857 
2858 err_out:
2859 	dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
2860 		 &pdev->resource[bar]);
2861 	return -EBUSY;
2862 }
2863 
2864 /**
2865  *	pci_request_region - Reserve PCI I/O and memory resource
2866  *	@pdev: PCI device whose resources are to be reserved
2867  *	@bar: BAR to be reserved
2868  *	@res_name: Name to be associated with resource
2869  *
2870  *	Mark the PCI region associated with PCI device @pdev BAR @bar as
2871  *	being reserved by owner @res_name.  Do not access any
2872  *	address inside the PCI regions unless this call returns
2873  *	successfully.
2874  *
2875  *	Returns 0 on success, or %EBUSY on error.  A warning
2876  *	message is also printed on failure.
2877  */
2878 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
2879 {
2880 	return __pci_request_region(pdev, bar, res_name, 0);
2881 }
2882 EXPORT_SYMBOL(pci_request_region);
2883 
2884 /**
2885  *	pci_request_region_exclusive - Reserved PCI I/O and memory resource
2886  *	@pdev: PCI device whose resources are to be reserved
2887  *	@bar: BAR to be reserved
2888  *	@res_name: Name to be associated with resource.
2889  *
2890  *	Mark the PCI region associated with PCI device @pdev BR @bar as
2891  *	being reserved by owner @res_name.  Do not access any
2892  *	address inside the PCI regions unless this call returns
2893  *	successfully.
2894  *
2895  *	Returns 0 on success, or %EBUSY on error.  A warning
2896  *	message is also printed on failure.
2897  *
2898  *	The key difference that _exclusive makes it that userspace is
2899  *	explicitly not allowed to map the resource via /dev/mem or
2900  *	sysfs.
2901  */
2902 int pci_request_region_exclusive(struct pci_dev *pdev, int bar,
2903 				 const char *res_name)
2904 {
2905 	return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
2906 }
2907 EXPORT_SYMBOL(pci_request_region_exclusive);
2908 
2909 /**
2910  * pci_release_selected_regions - Release selected PCI I/O and memory resources
2911  * @pdev: PCI device whose resources were previously reserved
2912  * @bars: Bitmask of BARs to be released
2913  *
2914  * Release selected PCI I/O and memory resources previously reserved.
2915  * Call this function only after all use of the PCI regions has ceased.
2916  */
2917 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
2918 {
2919 	int i;
2920 
2921 	for (i = 0; i < 6; i++)
2922 		if (bars & (1 << i))
2923 			pci_release_region(pdev, i);
2924 }
2925 EXPORT_SYMBOL(pci_release_selected_regions);
2926 
2927 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
2928 					  const char *res_name, int excl)
2929 {
2930 	int i;
2931 
2932 	for (i = 0; i < 6; i++)
2933 		if (bars & (1 << i))
2934 			if (__pci_request_region(pdev, i, res_name, excl))
2935 				goto err_out;
2936 	return 0;
2937 
2938 err_out:
2939 	while (--i >= 0)
2940 		if (bars & (1 << i))
2941 			pci_release_region(pdev, i);
2942 
2943 	return -EBUSY;
2944 }
2945 
2946 
2947 /**
2948  * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
2949  * @pdev: PCI device whose resources are to be reserved
2950  * @bars: Bitmask of BARs to be requested
2951  * @res_name: Name to be associated with resource
2952  */
2953 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
2954 				 const char *res_name)
2955 {
2956 	return __pci_request_selected_regions(pdev, bars, res_name, 0);
2957 }
2958 EXPORT_SYMBOL(pci_request_selected_regions);
2959 
2960 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
2961 					   const char *res_name)
2962 {
2963 	return __pci_request_selected_regions(pdev, bars, res_name,
2964 			IORESOURCE_EXCLUSIVE);
2965 }
2966 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
2967 
2968 /**
2969  *	pci_release_regions - Release reserved PCI I/O and memory resources
2970  *	@pdev: PCI device whose resources were previously reserved by pci_request_regions
2971  *
2972  *	Releases all PCI I/O and memory resources previously reserved by a
2973  *	successful call to pci_request_regions.  Call this function only
2974  *	after all use of the PCI regions has ceased.
2975  */
2976 
2977 void pci_release_regions(struct pci_dev *pdev)
2978 {
2979 	pci_release_selected_regions(pdev, (1 << 6) - 1);
2980 }
2981 EXPORT_SYMBOL(pci_release_regions);
2982 
2983 /**
2984  *	pci_request_regions - Reserved PCI I/O and memory resources
2985  *	@pdev: PCI device whose resources are to be reserved
2986  *	@res_name: Name to be associated with resource.
2987  *
2988  *	Mark all PCI regions associated with PCI device @pdev as
2989  *	being reserved by owner @res_name.  Do not access any
2990  *	address inside the PCI regions unless this call returns
2991  *	successfully.
2992  *
2993  *	Returns 0 on success, or %EBUSY on error.  A warning
2994  *	message is also printed on failure.
2995  */
2996 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
2997 {
2998 	return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
2999 }
3000 EXPORT_SYMBOL(pci_request_regions);
3001 
3002 /**
3003  *	pci_request_regions_exclusive - Reserved PCI I/O and memory resources
3004  *	@pdev: PCI device whose resources are to be reserved
3005  *	@res_name: Name to be associated with resource.
3006  *
3007  *	Mark all PCI regions associated with PCI device @pdev as
3008  *	being reserved by owner @res_name.  Do not access any
3009  *	address inside the PCI regions unless this call returns
3010  *	successfully.
3011  *
3012  *	pci_request_regions_exclusive() will mark the region so that
3013  *	/dev/mem and the sysfs MMIO access will not be allowed.
3014  *
3015  *	Returns 0 on success, or %EBUSY on error.  A warning
3016  *	message is also printed on failure.
3017  */
3018 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3019 {
3020 	return pci_request_selected_regions_exclusive(pdev,
3021 					((1 << 6) - 1), res_name);
3022 }
3023 EXPORT_SYMBOL(pci_request_regions_exclusive);
3024 
3025 /**
3026  *	pci_remap_iospace - Remap the memory mapped I/O space
3027  *	@res: Resource describing the I/O space
3028  *	@phys_addr: physical address of range to be mapped
3029  *
3030  *	Remap the memory mapped I/O space described by the @res
3031  *	and the CPU physical address @phys_addr into virtual address space.
3032  *	Only architectures that have memory mapped IO functions defined
3033  *	(and the PCI_IOBASE value defined) should call this function.
3034  */
3035 int __weak pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
3036 {
3037 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3038 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3039 
3040 	if (!(res->flags & IORESOURCE_IO))
3041 		return -EINVAL;
3042 
3043 	if (res->end > IO_SPACE_LIMIT)
3044 		return -EINVAL;
3045 
3046 	return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
3047 				  pgprot_device(PAGE_KERNEL));
3048 #else
3049 	/* this architecture does not have memory mapped I/O space,
3050 	   so this function should never be called */
3051 	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
3052 	return -ENODEV;
3053 #endif
3054 }
3055 
3056 static void __pci_set_master(struct pci_dev *dev, bool enable)
3057 {
3058 	u16 old_cmd, cmd;
3059 
3060 	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
3061 	if (enable)
3062 		cmd = old_cmd | PCI_COMMAND_MASTER;
3063 	else
3064 		cmd = old_cmd & ~PCI_COMMAND_MASTER;
3065 	if (cmd != old_cmd) {
3066 		dev_dbg(&dev->dev, "%s bus mastering\n",
3067 			enable ? "enabling" : "disabling");
3068 		pci_write_config_word(dev, PCI_COMMAND, cmd);
3069 	}
3070 	dev->is_busmaster = enable;
3071 }
3072 
3073 /**
3074  * pcibios_setup - process "pci=" kernel boot arguments
3075  * @str: string used to pass in "pci=" kernel boot arguments
3076  *
3077  * Process kernel boot arguments.  This is the default implementation.
3078  * Architecture specific implementations can override this as necessary.
3079  */
3080 char * __weak __init pcibios_setup(char *str)
3081 {
3082 	return str;
3083 }
3084 
3085 /**
3086  * pcibios_set_master - enable PCI bus-mastering for device dev
3087  * @dev: the PCI device to enable
3088  *
3089  * Enables PCI bus-mastering for the device.  This is the default
3090  * implementation.  Architecture specific implementations can override
3091  * this if necessary.
3092  */
3093 void __weak pcibios_set_master(struct pci_dev *dev)
3094 {
3095 	u8 lat;
3096 
3097 	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
3098 	if (pci_is_pcie(dev))
3099 		return;
3100 
3101 	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
3102 	if (lat < 16)
3103 		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
3104 	else if (lat > pcibios_max_latency)
3105 		lat = pcibios_max_latency;
3106 	else
3107 		return;
3108 
3109 	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
3110 }
3111 
3112 /**
3113  * pci_set_master - enables bus-mastering for device dev
3114  * @dev: the PCI device to enable
3115  *
3116  * Enables bus-mastering on the device and calls pcibios_set_master()
3117  * to do the needed arch specific settings.
3118  */
3119 void pci_set_master(struct pci_dev *dev)
3120 {
3121 	__pci_set_master(dev, true);
3122 	pcibios_set_master(dev);
3123 }
3124 EXPORT_SYMBOL(pci_set_master);
3125 
3126 /**
3127  * pci_clear_master - disables bus-mastering for device dev
3128  * @dev: the PCI device to disable
3129  */
3130 void pci_clear_master(struct pci_dev *dev)
3131 {
3132 	__pci_set_master(dev, false);
3133 }
3134 EXPORT_SYMBOL(pci_clear_master);
3135 
3136 /**
3137  * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
3138  * @dev: the PCI device for which MWI is to be enabled
3139  *
3140  * Helper function for pci_set_mwi.
3141  * Originally copied from drivers/net/acenic.c.
3142  * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
3143  *
3144  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3145  */
3146 int pci_set_cacheline_size(struct pci_dev *dev)
3147 {
3148 	u8 cacheline_size;
3149 
3150 	if (!pci_cache_line_size)
3151 		return -EINVAL;
3152 
3153 	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
3154 	   equal to or multiple of the right value. */
3155 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3156 	if (cacheline_size >= pci_cache_line_size &&
3157 	    (cacheline_size % pci_cache_line_size) == 0)
3158 		return 0;
3159 
3160 	/* Write the correct value. */
3161 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
3162 	/* Read it back. */
3163 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3164 	if (cacheline_size == pci_cache_line_size)
3165 		return 0;
3166 
3167 	dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not supported\n",
3168 		   pci_cache_line_size << 2);
3169 
3170 	return -EINVAL;
3171 }
3172 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
3173 
3174 /**
3175  * pci_set_mwi - enables memory-write-invalidate PCI transaction
3176  * @dev: the PCI device for which MWI is enabled
3177  *
3178  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3179  *
3180  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3181  */
3182 int pci_set_mwi(struct pci_dev *dev)
3183 {
3184 #ifdef PCI_DISABLE_MWI
3185 	return 0;
3186 #else
3187 	int rc;
3188 	u16 cmd;
3189 
3190 	rc = pci_set_cacheline_size(dev);
3191 	if (rc)
3192 		return rc;
3193 
3194 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
3195 	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
3196 		dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
3197 		cmd |= PCI_COMMAND_INVALIDATE;
3198 		pci_write_config_word(dev, PCI_COMMAND, cmd);
3199 	}
3200 	return 0;
3201 #endif
3202 }
3203 EXPORT_SYMBOL(pci_set_mwi);
3204 
3205 /**
3206  * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
3207  * @dev: the PCI device for which MWI is enabled
3208  *
3209  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3210  * Callers are not required to check the return value.
3211  *
3212  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3213  */
3214 int pci_try_set_mwi(struct pci_dev *dev)
3215 {
3216 #ifdef PCI_DISABLE_MWI
3217 	return 0;
3218 #else
3219 	return pci_set_mwi(dev);
3220 #endif
3221 }
3222 EXPORT_SYMBOL(pci_try_set_mwi);
3223 
3224 /**
3225  * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
3226  * @dev: the PCI device to disable
3227  *
3228  * Disables PCI Memory-Write-Invalidate transaction on the device
3229  */
3230 void pci_clear_mwi(struct pci_dev *dev)
3231 {
3232 #ifndef PCI_DISABLE_MWI
3233 	u16 cmd;
3234 
3235 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
3236 	if (cmd & PCI_COMMAND_INVALIDATE) {
3237 		cmd &= ~PCI_COMMAND_INVALIDATE;
3238 		pci_write_config_word(dev, PCI_COMMAND, cmd);
3239 	}
3240 #endif
3241 }
3242 EXPORT_SYMBOL(pci_clear_mwi);
3243 
3244 /**
3245  * pci_intx - enables/disables PCI INTx for device dev
3246  * @pdev: the PCI device to operate on
3247  * @enable: boolean: whether to enable or disable PCI INTx
3248  *
3249  * Enables/disables PCI INTx for device dev
3250  */
3251 void pci_intx(struct pci_dev *pdev, int enable)
3252 {
3253 	u16 pci_command, new;
3254 
3255 	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
3256 
3257 	if (enable)
3258 		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
3259 	else
3260 		new = pci_command | PCI_COMMAND_INTX_DISABLE;
3261 
3262 	if (new != pci_command) {
3263 		struct pci_devres *dr;
3264 
3265 		pci_write_config_word(pdev, PCI_COMMAND, new);
3266 
3267 		dr = find_pci_dr(pdev);
3268 		if (dr && !dr->restore_intx) {
3269 			dr->restore_intx = 1;
3270 			dr->orig_intx = !enable;
3271 		}
3272 	}
3273 }
3274 EXPORT_SYMBOL_GPL(pci_intx);
3275 
3276 /**
3277  * pci_intx_mask_supported - probe for INTx masking support
3278  * @dev: the PCI device to operate on
3279  *
3280  * Check if the device dev support INTx masking via the config space
3281  * command word.
3282  */
3283 bool pci_intx_mask_supported(struct pci_dev *dev)
3284 {
3285 	bool mask_supported = false;
3286 	u16 orig, new;
3287 
3288 	if (dev->broken_intx_masking)
3289 		return false;
3290 
3291 	pci_cfg_access_lock(dev);
3292 
3293 	pci_read_config_word(dev, PCI_COMMAND, &orig);
3294 	pci_write_config_word(dev, PCI_COMMAND,
3295 			      orig ^ PCI_COMMAND_INTX_DISABLE);
3296 	pci_read_config_word(dev, PCI_COMMAND, &new);
3297 
3298 	/*
3299 	 * There's no way to protect against hardware bugs or detect them
3300 	 * reliably, but as long as we know what the value should be, let's
3301 	 * go ahead and check it.
3302 	 */
3303 	if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) {
3304 		dev_err(&dev->dev, "Command register changed from 0x%x to 0x%x: driver or hardware bug?\n",
3305 			orig, new);
3306 	} else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) {
3307 		mask_supported = true;
3308 		pci_write_config_word(dev, PCI_COMMAND, orig);
3309 	}
3310 
3311 	pci_cfg_access_unlock(dev);
3312 	return mask_supported;
3313 }
3314 EXPORT_SYMBOL_GPL(pci_intx_mask_supported);
3315 
3316 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
3317 {
3318 	struct pci_bus *bus = dev->bus;
3319 	bool mask_updated = true;
3320 	u32 cmd_status_dword;
3321 	u16 origcmd, newcmd;
3322 	unsigned long flags;
3323 	bool irq_pending;
3324 
3325 	/*
3326 	 * We do a single dword read to retrieve both command and status.
3327 	 * Document assumptions that make this possible.
3328 	 */
3329 	BUILD_BUG_ON(PCI_COMMAND % 4);
3330 	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
3331 
3332 	raw_spin_lock_irqsave(&pci_lock, flags);
3333 
3334 	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
3335 
3336 	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
3337 
3338 	/*
3339 	 * Check interrupt status register to see whether our device
3340 	 * triggered the interrupt (when masking) or the next IRQ is
3341 	 * already pending (when unmasking).
3342 	 */
3343 	if (mask != irq_pending) {
3344 		mask_updated = false;
3345 		goto done;
3346 	}
3347 
3348 	origcmd = cmd_status_dword;
3349 	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
3350 	if (mask)
3351 		newcmd |= PCI_COMMAND_INTX_DISABLE;
3352 	if (newcmd != origcmd)
3353 		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
3354 
3355 done:
3356 	raw_spin_unlock_irqrestore(&pci_lock, flags);
3357 
3358 	return mask_updated;
3359 }
3360 
3361 /**
3362  * pci_check_and_mask_intx - mask INTx on pending interrupt
3363  * @dev: the PCI device to operate on
3364  *
3365  * Check if the device dev has its INTx line asserted, mask it and
3366  * return true in that case. False is returned if not interrupt was
3367  * pending.
3368  */
3369 bool pci_check_and_mask_intx(struct pci_dev *dev)
3370 {
3371 	return pci_check_and_set_intx_mask(dev, true);
3372 }
3373 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
3374 
3375 /**
3376  * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
3377  * @dev: the PCI device to operate on
3378  *
3379  * Check if the device dev has its INTx line asserted, unmask it if not
3380  * and return true. False is returned and the mask remains active if
3381  * there was still an interrupt pending.
3382  */
3383 bool pci_check_and_unmask_intx(struct pci_dev *dev)
3384 {
3385 	return pci_check_and_set_intx_mask(dev, false);
3386 }
3387 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
3388 
3389 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
3390 {
3391 	return dma_set_max_seg_size(&dev->dev, size);
3392 }
3393 EXPORT_SYMBOL(pci_set_dma_max_seg_size);
3394 
3395 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
3396 {
3397 	return dma_set_seg_boundary(&dev->dev, mask);
3398 }
3399 EXPORT_SYMBOL(pci_set_dma_seg_boundary);
3400 
3401 /**
3402  * pci_wait_for_pending_transaction - waits for pending transaction
3403  * @dev: the PCI device to operate on
3404  *
3405  * Return 0 if transaction is pending 1 otherwise.
3406  */
3407 int pci_wait_for_pending_transaction(struct pci_dev *dev)
3408 {
3409 	if (!pci_is_pcie(dev))
3410 		return 1;
3411 
3412 	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
3413 				    PCI_EXP_DEVSTA_TRPND);
3414 }
3415 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
3416 
3417 static int pcie_flr(struct pci_dev *dev, int probe)
3418 {
3419 	u32 cap;
3420 
3421 	pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
3422 	if (!(cap & PCI_EXP_DEVCAP_FLR))
3423 		return -ENOTTY;
3424 
3425 	if (probe)
3426 		return 0;
3427 
3428 	if (!pci_wait_for_pending_transaction(dev))
3429 		dev_err(&dev->dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
3430 
3431 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
3432 	msleep(100);
3433 	return 0;
3434 }
3435 
3436 static int pci_af_flr(struct pci_dev *dev, int probe)
3437 {
3438 	int pos;
3439 	u8 cap;
3440 
3441 	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
3442 	if (!pos)
3443 		return -ENOTTY;
3444 
3445 	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
3446 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
3447 		return -ENOTTY;
3448 
3449 	if (probe)
3450 		return 0;
3451 
3452 	/*
3453 	 * Wait for Transaction Pending bit to clear.  A word-aligned test
3454 	 * is used, so we use the conrol offset rather than status and shift
3455 	 * the test bit to match.
3456 	 */
3457 	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
3458 				 PCI_AF_STATUS_TP << 8))
3459 		dev_err(&dev->dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
3460 
3461 	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
3462 	msleep(100);
3463 	return 0;
3464 }
3465 
3466 /**
3467  * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
3468  * @dev: Device to reset.
3469  * @probe: If set, only check if the device can be reset this way.
3470  *
3471  * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
3472  * unset, it will be reinitialized internally when going from PCI_D3hot to
3473  * PCI_D0.  If that's the case and the device is not in a low-power state
3474  * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
3475  *
3476  * NOTE: This causes the caller to sleep for twice the device power transition
3477  * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
3478  * by default (i.e. unless the @dev's d3_delay field has a different value).
3479  * Moreover, only devices in D0 can be reset by this function.
3480  */
3481 static int pci_pm_reset(struct pci_dev *dev, int probe)
3482 {
3483 	u16 csr;
3484 
3485 	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
3486 		return -ENOTTY;
3487 
3488 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
3489 	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
3490 		return -ENOTTY;
3491 
3492 	if (probe)
3493 		return 0;
3494 
3495 	if (dev->current_state != PCI_D0)
3496 		return -EINVAL;
3497 
3498 	csr &= ~PCI_PM_CTRL_STATE_MASK;
3499 	csr |= PCI_D3hot;
3500 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3501 	pci_dev_d3_sleep(dev);
3502 
3503 	csr &= ~PCI_PM_CTRL_STATE_MASK;
3504 	csr |= PCI_D0;
3505 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3506 	pci_dev_d3_sleep(dev);
3507 
3508 	return 0;
3509 }
3510 
3511 void pci_reset_secondary_bus(struct pci_dev *dev)
3512 {
3513 	u16 ctrl;
3514 
3515 	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
3516 	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
3517 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3518 	/*
3519 	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
3520 	 * this to 2ms to ensure that we meet the minimum requirement.
3521 	 */
3522 	msleep(2);
3523 
3524 	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
3525 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3526 
3527 	/*
3528 	 * Trhfa for conventional PCI is 2^25 clock cycles.
3529 	 * Assuming a minimum 33MHz clock this results in a 1s
3530 	 * delay before we can consider subordinate devices to
3531 	 * be re-initialized.  PCIe has some ways to shorten this,
3532 	 * but we don't make use of them yet.
3533 	 */
3534 	ssleep(1);
3535 }
3536 
3537 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
3538 {
3539 	pci_reset_secondary_bus(dev);
3540 }
3541 
3542 /**
3543  * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge.
3544  * @dev: Bridge device
3545  *
3546  * Use the bridge control register to assert reset on the secondary bus.
3547  * Devices on the secondary bus are left in power-on state.
3548  */
3549 void pci_reset_bridge_secondary_bus(struct pci_dev *dev)
3550 {
3551 	pcibios_reset_secondary_bus(dev);
3552 }
3553 EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus);
3554 
3555 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
3556 {
3557 	struct pci_dev *pdev;
3558 
3559 	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
3560 	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
3561 		return -ENOTTY;
3562 
3563 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3564 		if (pdev != dev)
3565 			return -ENOTTY;
3566 
3567 	if (probe)
3568 		return 0;
3569 
3570 	pci_reset_bridge_secondary_bus(dev->bus->self);
3571 
3572 	return 0;
3573 }
3574 
3575 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
3576 {
3577 	int rc = -ENOTTY;
3578 
3579 	if (!hotplug || !try_module_get(hotplug->ops->owner))
3580 		return rc;
3581 
3582 	if (hotplug->ops->reset_slot)
3583 		rc = hotplug->ops->reset_slot(hotplug, probe);
3584 
3585 	module_put(hotplug->ops->owner);
3586 
3587 	return rc;
3588 }
3589 
3590 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
3591 {
3592 	struct pci_dev *pdev;
3593 
3594 	if (dev->subordinate || !dev->slot ||
3595 	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
3596 		return -ENOTTY;
3597 
3598 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3599 		if (pdev != dev && pdev->slot == dev->slot)
3600 			return -ENOTTY;
3601 
3602 	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
3603 }
3604 
3605 static int __pci_dev_reset(struct pci_dev *dev, int probe)
3606 {
3607 	int rc;
3608 
3609 	might_sleep();
3610 
3611 	rc = pci_dev_specific_reset(dev, probe);
3612 	if (rc != -ENOTTY)
3613 		goto done;
3614 
3615 	rc = pcie_flr(dev, probe);
3616 	if (rc != -ENOTTY)
3617 		goto done;
3618 
3619 	rc = pci_af_flr(dev, probe);
3620 	if (rc != -ENOTTY)
3621 		goto done;
3622 
3623 	rc = pci_pm_reset(dev, probe);
3624 	if (rc != -ENOTTY)
3625 		goto done;
3626 
3627 	rc = pci_dev_reset_slot_function(dev, probe);
3628 	if (rc != -ENOTTY)
3629 		goto done;
3630 
3631 	rc = pci_parent_bus_reset(dev, probe);
3632 done:
3633 	return rc;
3634 }
3635 
3636 static void pci_dev_lock(struct pci_dev *dev)
3637 {
3638 	pci_cfg_access_lock(dev);
3639 	/* block PM suspend, driver probe, etc. */
3640 	device_lock(&dev->dev);
3641 }
3642 
3643 /* Return 1 on successful lock, 0 on contention */
3644 static int pci_dev_trylock(struct pci_dev *dev)
3645 {
3646 	if (pci_cfg_access_trylock(dev)) {
3647 		if (device_trylock(&dev->dev))
3648 			return 1;
3649 		pci_cfg_access_unlock(dev);
3650 	}
3651 
3652 	return 0;
3653 }
3654 
3655 static void pci_dev_unlock(struct pci_dev *dev)
3656 {
3657 	device_unlock(&dev->dev);
3658 	pci_cfg_access_unlock(dev);
3659 }
3660 
3661 /**
3662  * pci_reset_notify - notify device driver of reset
3663  * @dev: device to be notified of reset
3664  * @prepare: 'true' if device is about to be reset; 'false' if reset attempt
3665  *           completed
3666  *
3667  * Must be called prior to device access being disabled and after device
3668  * access is restored.
3669  */
3670 static void pci_reset_notify(struct pci_dev *dev, bool prepare)
3671 {
3672 	const struct pci_error_handlers *err_handler =
3673 			dev->driver ? dev->driver->err_handler : NULL;
3674 	if (err_handler && err_handler->reset_notify)
3675 		err_handler->reset_notify(dev, prepare);
3676 }
3677 
3678 static void pci_dev_save_and_disable(struct pci_dev *dev)
3679 {
3680 	pci_reset_notify(dev, true);
3681 
3682 	/*
3683 	 * Wake-up device prior to save.  PM registers default to D0 after
3684 	 * reset and a simple register restore doesn't reliably return
3685 	 * to a non-D0 state anyway.
3686 	 */
3687 	pci_set_power_state(dev, PCI_D0);
3688 
3689 	pci_save_state(dev);
3690 	/*
3691 	 * Disable the device by clearing the Command register, except for
3692 	 * INTx-disable which is set.  This not only disables MMIO and I/O port
3693 	 * BARs, but also prevents the device from being Bus Master, preventing
3694 	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
3695 	 * compliant devices, INTx-disable prevents legacy interrupts.
3696 	 */
3697 	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
3698 }
3699 
3700 static void pci_dev_restore(struct pci_dev *dev)
3701 {
3702 	pci_restore_state(dev);
3703 	pci_reset_notify(dev, false);
3704 }
3705 
3706 static int pci_dev_reset(struct pci_dev *dev, int probe)
3707 {
3708 	int rc;
3709 
3710 	if (!probe)
3711 		pci_dev_lock(dev);
3712 
3713 	rc = __pci_dev_reset(dev, probe);
3714 
3715 	if (!probe)
3716 		pci_dev_unlock(dev);
3717 
3718 	return rc;
3719 }
3720 
3721 /**
3722  * __pci_reset_function - reset a PCI device function
3723  * @dev: PCI device to reset
3724  *
3725  * Some devices allow an individual function to be reset without affecting
3726  * other functions in the same device.  The PCI device must be responsive
3727  * to PCI config space in order to use this function.
3728  *
3729  * The device function is presumed to be unused when this function is called.
3730  * Resetting the device will make the contents of PCI configuration space
3731  * random, so any caller of this must be prepared to reinitialise the
3732  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3733  * etc.
3734  *
3735  * Returns 0 if the device function was successfully reset or negative if the
3736  * device doesn't support resetting a single function.
3737  */
3738 int __pci_reset_function(struct pci_dev *dev)
3739 {
3740 	return pci_dev_reset(dev, 0);
3741 }
3742 EXPORT_SYMBOL_GPL(__pci_reset_function);
3743 
3744 /**
3745  * __pci_reset_function_locked - reset a PCI device function while holding
3746  * the @dev mutex lock.
3747  * @dev: PCI device to reset
3748  *
3749  * Some devices allow an individual function to be reset without affecting
3750  * other functions in the same device.  The PCI device must be responsive
3751  * to PCI config space in order to use this function.
3752  *
3753  * The device function is presumed to be unused and the caller is holding
3754  * the device mutex lock when this function is called.
3755  * Resetting the device will make the contents of PCI configuration space
3756  * random, so any caller of this must be prepared to reinitialise the
3757  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3758  * etc.
3759  *
3760  * Returns 0 if the device function was successfully reset or negative if the
3761  * device doesn't support resetting a single function.
3762  */
3763 int __pci_reset_function_locked(struct pci_dev *dev)
3764 {
3765 	return __pci_dev_reset(dev, 0);
3766 }
3767 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
3768 
3769 /**
3770  * pci_probe_reset_function - check whether the device can be safely reset
3771  * @dev: PCI device to reset
3772  *
3773  * Some devices allow an individual function to be reset without affecting
3774  * other functions in the same device.  The PCI device must be responsive
3775  * to PCI config space in order to use this function.
3776  *
3777  * Returns 0 if the device function can be reset or negative if the
3778  * device doesn't support resetting a single function.
3779  */
3780 int pci_probe_reset_function(struct pci_dev *dev)
3781 {
3782 	return pci_dev_reset(dev, 1);
3783 }
3784 
3785 /**
3786  * pci_reset_function - quiesce and reset a PCI device function
3787  * @dev: PCI device to reset
3788  *
3789  * Some devices allow an individual function to be reset without affecting
3790  * other functions in the same device.  The PCI device must be responsive
3791  * to PCI config space in order to use this function.
3792  *
3793  * This function does not just reset the PCI portion of a device, but
3794  * clears all the state associated with the device.  This function differs
3795  * from __pci_reset_function in that it saves and restores device state
3796  * over the reset.
3797  *
3798  * Returns 0 if the device function was successfully reset or negative if the
3799  * device doesn't support resetting a single function.
3800  */
3801 int pci_reset_function(struct pci_dev *dev)
3802 {
3803 	int rc;
3804 
3805 	rc = pci_dev_reset(dev, 1);
3806 	if (rc)
3807 		return rc;
3808 
3809 	pci_dev_save_and_disable(dev);
3810 
3811 	rc = pci_dev_reset(dev, 0);
3812 
3813 	pci_dev_restore(dev);
3814 
3815 	return rc;
3816 }
3817 EXPORT_SYMBOL_GPL(pci_reset_function);
3818 
3819 /**
3820  * pci_try_reset_function - quiesce and reset a PCI device function
3821  * @dev: PCI device to reset
3822  *
3823  * Same as above, except return -EAGAIN if unable to lock device.
3824  */
3825 int pci_try_reset_function(struct pci_dev *dev)
3826 {
3827 	int rc;
3828 
3829 	rc = pci_dev_reset(dev, 1);
3830 	if (rc)
3831 		return rc;
3832 
3833 	pci_dev_save_and_disable(dev);
3834 
3835 	if (pci_dev_trylock(dev)) {
3836 		rc = __pci_dev_reset(dev, 0);
3837 		pci_dev_unlock(dev);
3838 	} else
3839 		rc = -EAGAIN;
3840 
3841 	pci_dev_restore(dev);
3842 
3843 	return rc;
3844 }
3845 EXPORT_SYMBOL_GPL(pci_try_reset_function);
3846 
3847 /* Do any devices on or below this bus prevent a bus reset? */
3848 static bool pci_bus_resetable(struct pci_bus *bus)
3849 {
3850 	struct pci_dev *dev;
3851 
3852 	list_for_each_entry(dev, &bus->devices, bus_list) {
3853 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
3854 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
3855 			return false;
3856 	}
3857 
3858 	return true;
3859 }
3860 
3861 /* Lock devices from the top of the tree down */
3862 static void pci_bus_lock(struct pci_bus *bus)
3863 {
3864 	struct pci_dev *dev;
3865 
3866 	list_for_each_entry(dev, &bus->devices, bus_list) {
3867 		pci_dev_lock(dev);
3868 		if (dev->subordinate)
3869 			pci_bus_lock(dev->subordinate);
3870 	}
3871 }
3872 
3873 /* Unlock devices from the bottom of the tree up */
3874 static void pci_bus_unlock(struct pci_bus *bus)
3875 {
3876 	struct pci_dev *dev;
3877 
3878 	list_for_each_entry(dev, &bus->devices, bus_list) {
3879 		if (dev->subordinate)
3880 			pci_bus_unlock(dev->subordinate);
3881 		pci_dev_unlock(dev);
3882 	}
3883 }
3884 
3885 /* Return 1 on successful lock, 0 on contention */
3886 static int pci_bus_trylock(struct pci_bus *bus)
3887 {
3888 	struct pci_dev *dev;
3889 
3890 	list_for_each_entry(dev, &bus->devices, bus_list) {
3891 		if (!pci_dev_trylock(dev))
3892 			goto unlock;
3893 		if (dev->subordinate) {
3894 			if (!pci_bus_trylock(dev->subordinate)) {
3895 				pci_dev_unlock(dev);
3896 				goto unlock;
3897 			}
3898 		}
3899 	}
3900 	return 1;
3901 
3902 unlock:
3903 	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
3904 		if (dev->subordinate)
3905 			pci_bus_unlock(dev->subordinate);
3906 		pci_dev_unlock(dev);
3907 	}
3908 	return 0;
3909 }
3910 
3911 /* Do any devices on or below this slot prevent a bus reset? */
3912 static bool pci_slot_resetable(struct pci_slot *slot)
3913 {
3914 	struct pci_dev *dev;
3915 
3916 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3917 		if (!dev->slot || dev->slot != slot)
3918 			continue;
3919 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
3920 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
3921 			return false;
3922 	}
3923 
3924 	return true;
3925 }
3926 
3927 /* Lock devices from the top of the tree down */
3928 static void pci_slot_lock(struct pci_slot *slot)
3929 {
3930 	struct pci_dev *dev;
3931 
3932 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3933 		if (!dev->slot || dev->slot != slot)
3934 			continue;
3935 		pci_dev_lock(dev);
3936 		if (dev->subordinate)
3937 			pci_bus_lock(dev->subordinate);
3938 	}
3939 }
3940 
3941 /* Unlock devices from the bottom of the tree up */
3942 static void pci_slot_unlock(struct pci_slot *slot)
3943 {
3944 	struct pci_dev *dev;
3945 
3946 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3947 		if (!dev->slot || dev->slot != slot)
3948 			continue;
3949 		if (dev->subordinate)
3950 			pci_bus_unlock(dev->subordinate);
3951 		pci_dev_unlock(dev);
3952 	}
3953 }
3954 
3955 /* Return 1 on successful lock, 0 on contention */
3956 static int pci_slot_trylock(struct pci_slot *slot)
3957 {
3958 	struct pci_dev *dev;
3959 
3960 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3961 		if (!dev->slot || dev->slot != slot)
3962 			continue;
3963 		if (!pci_dev_trylock(dev))
3964 			goto unlock;
3965 		if (dev->subordinate) {
3966 			if (!pci_bus_trylock(dev->subordinate)) {
3967 				pci_dev_unlock(dev);
3968 				goto unlock;
3969 			}
3970 		}
3971 	}
3972 	return 1;
3973 
3974 unlock:
3975 	list_for_each_entry_continue_reverse(dev,
3976 					     &slot->bus->devices, bus_list) {
3977 		if (!dev->slot || dev->slot != slot)
3978 			continue;
3979 		if (dev->subordinate)
3980 			pci_bus_unlock(dev->subordinate);
3981 		pci_dev_unlock(dev);
3982 	}
3983 	return 0;
3984 }
3985 
3986 /* Save and disable devices from the top of the tree down */
3987 static void pci_bus_save_and_disable(struct pci_bus *bus)
3988 {
3989 	struct pci_dev *dev;
3990 
3991 	list_for_each_entry(dev, &bus->devices, bus_list) {
3992 		pci_dev_save_and_disable(dev);
3993 		if (dev->subordinate)
3994 			pci_bus_save_and_disable(dev->subordinate);
3995 	}
3996 }
3997 
3998 /*
3999  * Restore devices from top of the tree down - parent bridges need to be
4000  * restored before we can get to subordinate devices.
4001  */
4002 static void pci_bus_restore(struct pci_bus *bus)
4003 {
4004 	struct pci_dev *dev;
4005 
4006 	list_for_each_entry(dev, &bus->devices, bus_list) {
4007 		pci_dev_restore(dev);
4008 		if (dev->subordinate)
4009 			pci_bus_restore(dev->subordinate);
4010 	}
4011 }
4012 
4013 /* Save and disable devices from the top of the tree down */
4014 static void pci_slot_save_and_disable(struct pci_slot *slot)
4015 {
4016 	struct pci_dev *dev;
4017 
4018 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4019 		if (!dev->slot || dev->slot != slot)
4020 			continue;
4021 		pci_dev_save_and_disable(dev);
4022 		if (dev->subordinate)
4023 			pci_bus_save_and_disable(dev->subordinate);
4024 	}
4025 }
4026 
4027 /*
4028  * Restore devices from top of the tree down - parent bridges need to be
4029  * restored before we can get to subordinate devices.
4030  */
4031 static void pci_slot_restore(struct pci_slot *slot)
4032 {
4033 	struct pci_dev *dev;
4034 
4035 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4036 		if (!dev->slot || dev->slot != slot)
4037 			continue;
4038 		pci_dev_restore(dev);
4039 		if (dev->subordinate)
4040 			pci_bus_restore(dev->subordinate);
4041 	}
4042 }
4043 
4044 static int pci_slot_reset(struct pci_slot *slot, int probe)
4045 {
4046 	int rc;
4047 
4048 	if (!slot || !pci_slot_resetable(slot))
4049 		return -ENOTTY;
4050 
4051 	if (!probe)
4052 		pci_slot_lock(slot);
4053 
4054 	might_sleep();
4055 
4056 	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
4057 
4058 	if (!probe)
4059 		pci_slot_unlock(slot);
4060 
4061 	return rc;
4062 }
4063 
4064 /**
4065  * pci_probe_reset_slot - probe whether a PCI slot can be reset
4066  * @slot: PCI slot to probe
4067  *
4068  * Return 0 if slot can be reset, negative if a slot reset is not supported.
4069  */
4070 int pci_probe_reset_slot(struct pci_slot *slot)
4071 {
4072 	return pci_slot_reset(slot, 1);
4073 }
4074 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
4075 
4076 /**
4077  * pci_reset_slot - reset a PCI slot
4078  * @slot: PCI slot to reset
4079  *
4080  * A PCI bus may host multiple slots, each slot may support a reset mechanism
4081  * independent of other slots.  For instance, some slots may support slot power
4082  * control.  In the case of a 1:1 bus to slot architecture, this function may
4083  * wrap the bus reset to avoid spurious slot related events such as hotplug.
4084  * Generally a slot reset should be attempted before a bus reset.  All of the
4085  * function of the slot and any subordinate buses behind the slot are reset
4086  * through this function.  PCI config space of all devices in the slot and
4087  * behind the slot is saved before and restored after reset.
4088  *
4089  * Return 0 on success, non-zero on error.
4090  */
4091 int pci_reset_slot(struct pci_slot *slot)
4092 {
4093 	int rc;
4094 
4095 	rc = pci_slot_reset(slot, 1);
4096 	if (rc)
4097 		return rc;
4098 
4099 	pci_slot_save_and_disable(slot);
4100 
4101 	rc = pci_slot_reset(slot, 0);
4102 
4103 	pci_slot_restore(slot);
4104 
4105 	return rc;
4106 }
4107 EXPORT_SYMBOL_GPL(pci_reset_slot);
4108 
4109 /**
4110  * pci_try_reset_slot - Try to reset a PCI slot
4111  * @slot: PCI slot to reset
4112  *
4113  * Same as above except return -EAGAIN if the slot cannot be locked
4114  */
4115 int pci_try_reset_slot(struct pci_slot *slot)
4116 {
4117 	int rc;
4118 
4119 	rc = pci_slot_reset(slot, 1);
4120 	if (rc)
4121 		return rc;
4122 
4123 	pci_slot_save_and_disable(slot);
4124 
4125 	if (pci_slot_trylock(slot)) {
4126 		might_sleep();
4127 		rc = pci_reset_hotplug_slot(slot->hotplug, 0);
4128 		pci_slot_unlock(slot);
4129 	} else
4130 		rc = -EAGAIN;
4131 
4132 	pci_slot_restore(slot);
4133 
4134 	return rc;
4135 }
4136 EXPORT_SYMBOL_GPL(pci_try_reset_slot);
4137 
4138 static int pci_bus_reset(struct pci_bus *bus, int probe)
4139 {
4140 	if (!bus->self || !pci_bus_resetable(bus))
4141 		return -ENOTTY;
4142 
4143 	if (probe)
4144 		return 0;
4145 
4146 	pci_bus_lock(bus);
4147 
4148 	might_sleep();
4149 
4150 	pci_reset_bridge_secondary_bus(bus->self);
4151 
4152 	pci_bus_unlock(bus);
4153 
4154 	return 0;
4155 }
4156 
4157 /**
4158  * pci_probe_reset_bus - probe whether a PCI bus can be reset
4159  * @bus: PCI bus to probe
4160  *
4161  * Return 0 if bus can be reset, negative if a bus reset is not supported.
4162  */
4163 int pci_probe_reset_bus(struct pci_bus *bus)
4164 {
4165 	return pci_bus_reset(bus, 1);
4166 }
4167 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
4168 
4169 /**
4170  * pci_reset_bus - reset a PCI bus
4171  * @bus: top level PCI bus to reset
4172  *
4173  * Do a bus reset on the given bus and any subordinate buses, saving
4174  * and restoring state of all devices.
4175  *
4176  * Return 0 on success, non-zero on error.
4177  */
4178 int pci_reset_bus(struct pci_bus *bus)
4179 {
4180 	int rc;
4181 
4182 	rc = pci_bus_reset(bus, 1);
4183 	if (rc)
4184 		return rc;
4185 
4186 	pci_bus_save_and_disable(bus);
4187 
4188 	rc = pci_bus_reset(bus, 0);
4189 
4190 	pci_bus_restore(bus);
4191 
4192 	return rc;
4193 }
4194 EXPORT_SYMBOL_GPL(pci_reset_bus);
4195 
4196 /**
4197  * pci_try_reset_bus - Try to reset a PCI bus
4198  * @bus: top level PCI bus to reset
4199  *
4200  * Same as above except return -EAGAIN if the bus cannot be locked
4201  */
4202 int pci_try_reset_bus(struct pci_bus *bus)
4203 {
4204 	int rc;
4205 
4206 	rc = pci_bus_reset(bus, 1);
4207 	if (rc)
4208 		return rc;
4209 
4210 	pci_bus_save_and_disable(bus);
4211 
4212 	if (pci_bus_trylock(bus)) {
4213 		might_sleep();
4214 		pci_reset_bridge_secondary_bus(bus->self);
4215 		pci_bus_unlock(bus);
4216 	} else
4217 		rc = -EAGAIN;
4218 
4219 	pci_bus_restore(bus);
4220 
4221 	return rc;
4222 }
4223 EXPORT_SYMBOL_GPL(pci_try_reset_bus);
4224 
4225 /**
4226  * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
4227  * @dev: PCI device to query
4228  *
4229  * Returns mmrbc: maximum designed memory read count in bytes
4230  *    or appropriate error value.
4231  */
4232 int pcix_get_max_mmrbc(struct pci_dev *dev)
4233 {
4234 	int cap;
4235 	u32 stat;
4236 
4237 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4238 	if (!cap)
4239 		return -EINVAL;
4240 
4241 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4242 		return -EINVAL;
4243 
4244 	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
4245 }
4246 EXPORT_SYMBOL(pcix_get_max_mmrbc);
4247 
4248 /**
4249  * pcix_get_mmrbc - get PCI-X maximum memory read byte count
4250  * @dev: PCI device to query
4251  *
4252  * Returns mmrbc: maximum memory read count in bytes
4253  *    or appropriate error value.
4254  */
4255 int pcix_get_mmrbc(struct pci_dev *dev)
4256 {
4257 	int cap;
4258 	u16 cmd;
4259 
4260 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4261 	if (!cap)
4262 		return -EINVAL;
4263 
4264 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4265 		return -EINVAL;
4266 
4267 	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
4268 }
4269 EXPORT_SYMBOL(pcix_get_mmrbc);
4270 
4271 /**
4272  * pcix_set_mmrbc - set PCI-X maximum memory read byte count
4273  * @dev: PCI device to query
4274  * @mmrbc: maximum memory read count in bytes
4275  *    valid values are 512, 1024, 2048, 4096
4276  *
4277  * If possible sets maximum memory read byte count, some bridges have erratas
4278  * that prevent this.
4279  */
4280 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
4281 {
4282 	int cap;
4283 	u32 stat, v, o;
4284 	u16 cmd;
4285 
4286 	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
4287 		return -EINVAL;
4288 
4289 	v = ffs(mmrbc) - 10;
4290 
4291 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4292 	if (!cap)
4293 		return -EINVAL;
4294 
4295 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4296 		return -EINVAL;
4297 
4298 	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
4299 		return -E2BIG;
4300 
4301 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4302 		return -EINVAL;
4303 
4304 	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
4305 	if (o != v) {
4306 		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
4307 			return -EIO;
4308 
4309 		cmd &= ~PCI_X_CMD_MAX_READ;
4310 		cmd |= v << 2;
4311 		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
4312 			return -EIO;
4313 	}
4314 	return 0;
4315 }
4316 EXPORT_SYMBOL(pcix_set_mmrbc);
4317 
4318 /**
4319  * pcie_get_readrq - get PCI Express read request size
4320  * @dev: PCI device to query
4321  *
4322  * Returns maximum memory read request in bytes
4323  *    or appropriate error value.
4324  */
4325 int pcie_get_readrq(struct pci_dev *dev)
4326 {
4327 	u16 ctl;
4328 
4329 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4330 
4331 	return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
4332 }
4333 EXPORT_SYMBOL(pcie_get_readrq);
4334 
4335 /**
4336  * pcie_set_readrq - set PCI Express maximum memory read request
4337  * @dev: PCI device to query
4338  * @rq: maximum memory read count in bytes
4339  *    valid values are 128, 256, 512, 1024, 2048, 4096
4340  *
4341  * If possible sets maximum memory read request in bytes
4342  */
4343 int pcie_set_readrq(struct pci_dev *dev, int rq)
4344 {
4345 	u16 v;
4346 
4347 	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
4348 		return -EINVAL;
4349 
4350 	/*
4351 	 * If using the "performance" PCIe config, we clamp the
4352 	 * read rq size to the max packet size to prevent the
4353 	 * host bridge generating requests larger than we can
4354 	 * cope with
4355 	 */
4356 	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
4357 		int mps = pcie_get_mps(dev);
4358 
4359 		if (mps < rq)
4360 			rq = mps;
4361 	}
4362 
4363 	v = (ffs(rq) - 8) << 12;
4364 
4365 	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4366 						  PCI_EXP_DEVCTL_READRQ, v);
4367 }
4368 EXPORT_SYMBOL(pcie_set_readrq);
4369 
4370 /**
4371  * pcie_get_mps - get PCI Express maximum payload size
4372  * @dev: PCI device to query
4373  *
4374  * Returns maximum payload size in bytes
4375  */
4376 int pcie_get_mps(struct pci_dev *dev)
4377 {
4378 	u16 ctl;
4379 
4380 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4381 
4382 	return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
4383 }
4384 EXPORT_SYMBOL(pcie_get_mps);
4385 
4386 /**
4387  * pcie_set_mps - set PCI Express maximum payload size
4388  * @dev: PCI device to query
4389  * @mps: maximum payload size in bytes
4390  *    valid values are 128, 256, 512, 1024, 2048, 4096
4391  *
4392  * If possible sets maximum payload size
4393  */
4394 int pcie_set_mps(struct pci_dev *dev, int mps)
4395 {
4396 	u16 v;
4397 
4398 	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
4399 		return -EINVAL;
4400 
4401 	v = ffs(mps) - 8;
4402 	if (v > dev->pcie_mpss)
4403 		return -EINVAL;
4404 	v <<= 5;
4405 
4406 	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4407 						  PCI_EXP_DEVCTL_PAYLOAD, v);
4408 }
4409 EXPORT_SYMBOL(pcie_set_mps);
4410 
4411 /**
4412  * pcie_get_minimum_link - determine minimum link settings of a PCI device
4413  * @dev: PCI device to query
4414  * @speed: storage for minimum speed
4415  * @width: storage for minimum width
4416  *
4417  * This function will walk up the PCI device chain and determine the minimum
4418  * link width and speed of the device.
4419  */
4420 int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed,
4421 			  enum pcie_link_width *width)
4422 {
4423 	int ret;
4424 
4425 	*speed = PCI_SPEED_UNKNOWN;
4426 	*width = PCIE_LNK_WIDTH_UNKNOWN;
4427 
4428 	while (dev) {
4429 		u16 lnksta;
4430 		enum pci_bus_speed next_speed;
4431 		enum pcie_link_width next_width;
4432 
4433 		ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
4434 		if (ret)
4435 			return ret;
4436 
4437 		next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
4438 		next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
4439 			PCI_EXP_LNKSTA_NLW_SHIFT;
4440 
4441 		if (next_speed < *speed)
4442 			*speed = next_speed;
4443 
4444 		if (next_width < *width)
4445 			*width = next_width;
4446 
4447 		dev = dev->bus->self;
4448 	}
4449 
4450 	return 0;
4451 }
4452 EXPORT_SYMBOL(pcie_get_minimum_link);
4453 
4454 /**
4455  * pci_select_bars - Make BAR mask from the type of resource
4456  * @dev: the PCI device for which BAR mask is made
4457  * @flags: resource type mask to be selected
4458  *
4459  * This helper routine makes bar mask from the type of resource.
4460  */
4461 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
4462 {
4463 	int i, bars = 0;
4464 	for (i = 0; i < PCI_NUM_RESOURCES; i++)
4465 		if (pci_resource_flags(dev, i) & flags)
4466 			bars |= (1 << i);
4467 	return bars;
4468 }
4469 EXPORT_SYMBOL(pci_select_bars);
4470 
4471 /**
4472  * pci_resource_bar - get position of the BAR associated with a resource
4473  * @dev: the PCI device
4474  * @resno: the resource number
4475  * @type: the BAR type to be filled in
4476  *
4477  * Returns BAR position in config space, or 0 if the BAR is invalid.
4478  */
4479 int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
4480 {
4481 	int reg;
4482 
4483 	if (resno < PCI_ROM_RESOURCE) {
4484 		*type = pci_bar_unknown;
4485 		return PCI_BASE_ADDRESS_0 + 4 * resno;
4486 	} else if (resno == PCI_ROM_RESOURCE) {
4487 		*type = pci_bar_mem32;
4488 		return dev->rom_base_reg;
4489 	} else if (resno < PCI_BRIDGE_RESOURCES) {
4490 		/* device specific resource */
4491 		*type = pci_bar_unknown;
4492 		reg = pci_iov_resource_bar(dev, resno);
4493 		if (reg)
4494 			return reg;
4495 	}
4496 
4497 	dev_err(&dev->dev, "BAR %d: invalid resource\n", resno);
4498 	return 0;
4499 }
4500 
4501 /* Some architectures require additional programming to enable VGA */
4502 static arch_set_vga_state_t arch_set_vga_state;
4503 
4504 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
4505 {
4506 	arch_set_vga_state = func;	/* NULL disables */
4507 }
4508 
4509 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
4510 				  unsigned int command_bits, u32 flags)
4511 {
4512 	if (arch_set_vga_state)
4513 		return arch_set_vga_state(dev, decode, command_bits,
4514 						flags);
4515 	return 0;
4516 }
4517 
4518 /**
4519  * pci_set_vga_state - set VGA decode state on device and parents if requested
4520  * @dev: the PCI device
4521  * @decode: true = enable decoding, false = disable decoding
4522  * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
4523  * @flags: traverse ancestors and change bridges
4524  * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
4525  */
4526 int pci_set_vga_state(struct pci_dev *dev, bool decode,
4527 		      unsigned int command_bits, u32 flags)
4528 {
4529 	struct pci_bus *bus;
4530 	struct pci_dev *bridge;
4531 	u16 cmd;
4532 	int rc;
4533 
4534 	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
4535 
4536 	/* ARCH specific VGA enables */
4537 	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
4538 	if (rc)
4539 		return rc;
4540 
4541 	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
4542 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
4543 		if (decode == true)
4544 			cmd |= command_bits;
4545 		else
4546 			cmd &= ~command_bits;
4547 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4548 	}
4549 
4550 	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
4551 		return 0;
4552 
4553 	bus = dev->bus;
4554 	while (bus) {
4555 		bridge = bus->self;
4556 		if (bridge) {
4557 			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
4558 					     &cmd);
4559 			if (decode == true)
4560 				cmd |= PCI_BRIDGE_CTL_VGA;
4561 			else
4562 				cmd &= ~PCI_BRIDGE_CTL_VGA;
4563 			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
4564 					      cmd);
4565 		}
4566 		bus = bus->parent;
4567 	}
4568 	return 0;
4569 }
4570 
4571 bool pci_device_is_present(struct pci_dev *pdev)
4572 {
4573 	u32 v;
4574 
4575 	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
4576 }
4577 EXPORT_SYMBOL_GPL(pci_device_is_present);
4578 
4579 void pci_ignore_hotplug(struct pci_dev *dev)
4580 {
4581 	struct pci_dev *bridge = dev->bus->self;
4582 
4583 	dev->ignore_hotplug = 1;
4584 	/* Propagate the "ignore hotplug" setting to the parent bridge. */
4585 	if (bridge)
4586 		bridge->ignore_hotplug = 1;
4587 }
4588 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
4589 
4590 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
4591 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
4592 static DEFINE_SPINLOCK(resource_alignment_lock);
4593 
4594 /**
4595  * pci_specified_resource_alignment - get resource alignment specified by user.
4596  * @dev: the PCI device to get
4597  *
4598  * RETURNS: Resource alignment if it is specified.
4599  *          Zero if it is not specified.
4600  */
4601 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
4602 {
4603 	int seg, bus, slot, func, align_order, count;
4604 	resource_size_t align = 0;
4605 	char *p;
4606 
4607 	spin_lock(&resource_alignment_lock);
4608 	p = resource_alignment_param;
4609 	while (*p) {
4610 		count = 0;
4611 		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
4612 							p[count] == '@') {
4613 			p += count + 1;
4614 		} else {
4615 			align_order = -1;
4616 		}
4617 		if (sscanf(p, "%x:%x:%x.%x%n",
4618 			&seg, &bus, &slot, &func, &count) != 4) {
4619 			seg = 0;
4620 			if (sscanf(p, "%x:%x.%x%n",
4621 					&bus, &slot, &func, &count) != 3) {
4622 				/* Invalid format */
4623 				printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
4624 					p);
4625 				break;
4626 			}
4627 		}
4628 		p += count;
4629 		if (seg == pci_domain_nr(dev->bus) &&
4630 			bus == dev->bus->number &&
4631 			slot == PCI_SLOT(dev->devfn) &&
4632 			func == PCI_FUNC(dev->devfn)) {
4633 			if (align_order == -1)
4634 				align = PAGE_SIZE;
4635 			else
4636 				align = 1 << align_order;
4637 			/* Found */
4638 			break;
4639 		}
4640 		if (*p != ';' && *p != ',') {
4641 			/* End of param or invalid format */
4642 			break;
4643 		}
4644 		p++;
4645 	}
4646 	spin_unlock(&resource_alignment_lock);
4647 	return align;
4648 }
4649 
4650 /*
4651  * This function disables memory decoding and releases memory resources
4652  * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
4653  * It also rounds up size to specified alignment.
4654  * Later on, the kernel will assign page-aligned memory resource back
4655  * to the device.
4656  */
4657 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
4658 {
4659 	int i;
4660 	struct resource *r;
4661 	resource_size_t align, size;
4662 	u16 command;
4663 
4664 	/* check if specified PCI is target device to reassign */
4665 	align = pci_specified_resource_alignment(dev);
4666 	if (!align)
4667 		return;
4668 
4669 	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
4670 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
4671 		dev_warn(&dev->dev,
4672 			"Can't reassign resources to host bridge.\n");
4673 		return;
4674 	}
4675 
4676 	dev_info(&dev->dev,
4677 		"Disabling memory decoding and releasing memory resources.\n");
4678 	pci_read_config_word(dev, PCI_COMMAND, &command);
4679 	command &= ~PCI_COMMAND_MEMORY;
4680 	pci_write_config_word(dev, PCI_COMMAND, command);
4681 
4682 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) {
4683 		r = &dev->resource[i];
4684 		if (!(r->flags & IORESOURCE_MEM))
4685 			continue;
4686 		size = resource_size(r);
4687 		if (size < align) {
4688 			size = align;
4689 			dev_info(&dev->dev,
4690 				"Rounding up size of resource #%d to %#llx.\n",
4691 				i, (unsigned long long)size);
4692 		}
4693 		r->flags |= IORESOURCE_UNSET;
4694 		r->end = size - 1;
4695 		r->start = 0;
4696 	}
4697 	/* Need to disable bridge's resource window,
4698 	 * to enable the kernel to reassign new resource
4699 	 * window later on.
4700 	 */
4701 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
4702 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
4703 		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
4704 			r = &dev->resource[i];
4705 			if (!(r->flags & IORESOURCE_MEM))
4706 				continue;
4707 			r->flags |= IORESOURCE_UNSET;
4708 			r->end = resource_size(r) - 1;
4709 			r->start = 0;
4710 		}
4711 		pci_disable_bridge_window(dev);
4712 	}
4713 }
4714 
4715 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
4716 {
4717 	if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
4718 		count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
4719 	spin_lock(&resource_alignment_lock);
4720 	strncpy(resource_alignment_param, buf, count);
4721 	resource_alignment_param[count] = '\0';
4722 	spin_unlock(&resource_alignment_lock);
4723 	return count;
4724 }
4725 
4726 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
4727 {
4728 	size_t count;
4729 	spin_lock(&resource_alignment_lock);
4730 	count = snprintf(buf, size, "%s", resource_alignment_param);
4731 	spin_unlock(&resource_alignment_lock);
4732 	return count;
4733 }
4734 
4735 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
4736 {
4737 	return pci_get_resource_alignment_param(buf, PAGE_SIZE);
4738 }
4739 
4740 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
4741 					const char *buf, size_t count)
4742 {
4743 	return pci_set_resource_alignment_param(buf, count);
4744 }
4745 
4746 BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
4747 					pci_resource_alignment_store);
4748 
4749 static int __init pci_resource_alignment_sysfs_init(void)
4750 {
4751 	return bus_create_file(&pci_bus_type,
4752 					&bus_attr_resource_alignment);
4753 }
4754 late_initcall(pci_resource_alignment_sysfs_init);
4755 
4756 static void pci_no_domains(void)
4757 {
4758 #ifdef CONFIG_PCI_DOMAINS
4759 	pci_domains_supported = 0;
4760 #endif
4761 }
4762 
4763 #ifdef CONFIG_PCI_DOMAINS
4764 static atomic_t __domain_nr = ATOMIC_INIT(-1);
4765 
4766 int pci_get_new_domain_nr(void)
4767 {
4768 	return atomic_inc_return(&__domain_nr);
4769 }
4770 
4771 #ifdef CONFIG_PCI_DOMAINS_GENERIC
4772 void pci_bus_assign_domain_nr(struct pci_bus *bus, struct device *parent)
4773 {
4774 	static int use_dt_domains = -1;
4775 	int domain = of_get_pci_domain_nr(parent->of_node);
4776 
4777 	/*
4778 	 * Check DT domain and use_dt_domains values.
4779 	 *
4780 	 * If DT domain property is valid (domain >= 0) and
4781 	 * use_dt_domains != 0, the DT assignment is valid since this means
4782 	 * we have not previously allocated a domain number by using
4783 	 * pci_get_new_domain_nr(); we should also update use_dt_domains to
4784 	 * 1, to indicate that we have just assigned a domain number from
4785 	 * DT.
4786 	 *
4787 	 * If DT domain property value is not valid (ie domain < 0), and we
4788 	 * have not previously assigned a domain number from DT
4789 	 * (use_dt_domains != 1) we should assign a domain number by
4790 	 * using the:
4791 	 *
4792 	 * pci_get_new_domain_nr()
4793 	 *
4794 	 * API and update the use_dt_domains value to keep track of method we
4795 	 * are using to assign domain numbers (use_dt_domains = 0).
4796 	 *
4797 	 * All other combinations imply we have a platform that is trying
4798 	 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
4799 	 * which is a recipe for domain mishandling and it is prevented by
4800 	 * invalidating the domain value (domain = -1) and printing a
4801 	 * corresponding error.
4802 	 */
4803 	if (domain >= 0 && use_dt_domains) {
4804 		use_dt_domains = 1;
4805 	} else if (domain < 0 && use_dt_domains != 1) {
4806 		use_dt_domains = 0;
4807 		domain = pci_get_new_domain_nr();
4808 	} else {
4809 		dev_err(parent, "Node %s has inconsistent \"linux,pci-domain\" property in DT\n",
4810 			parent->of_node->full_name);
4811 		domain = -1;
4812 	}
4813 
4814 	bus->domain_nr = domain;
4815 }
4816 #endif
4817 #endif
4818 
4819 /**
4820  * pci_ext_cfg_avail - can we access extended PCI config space?
4821  *
4822  * Returns 1 if we can access PCI extended config space (offsets
4823  * greater than 0xff). This is the default implementation. Architecture
4824  * implementations can override this.
4825  */
4826 int __weak pci_ext_cfg_avail(void)
4827 {
4828 	return 1;
4829 }
4830 
4831 void __weak pci_fixup_cardbus(struct pci_bus *bus)
4832 {
4833 }
4834 EXPORT_SYMBOL(pci_fixup_cardbus);
4835 
4836 static int __init pci_setup(char *str)
4837 {
4838 	while (str) {
4839 		char *k = strchr(str, ',');
4840 		if (k)
4841 			*k++ = 0;
4842 		if (*str && (str = pcibios_setup(str)) && *str) {
4843 			if (!strcmp(str, "nomsi")) {
4844 				pci_no_msi();
4845 			} else if (!strcmp(str, "noaer")) {
4846 				pci_no_aer();
4847 			} else if (!strncmp(str, "realloc=", 8)) {
4848 				pci_realloc_get_opt(str + 8);
4849 			} else if (!strncmp(str, "realloc", 7)) {
4850 				pci_realloc_get_opt("on");
4851 			} else if (!strcmp(str, "nodomains")) {
4852 				pci_no_domains();
4853 			} else if (!strncmp(str, "noari", 5)) {
4854 				pcie_ari_disabled = true;
4855 			} else if (!strncmp(str, "cbiosize=", 9)) {
4856 				pci_cardbus_io_size = memparse(str + 9, &str);
4857 			} else if (!strncmp(str, "cbmemsize=", 10)) {
4858 				pci_cardbus_mem_size = memparse(str + 10, &str);
4859 			} else if (!strncmp(str, "resource_alignment=", 19)) {
4860 				pci_set_resource_alignment_param(str + 19,
4861 							strlen(str + 19));
4862 			} else if (!strncmp(str, "ecrc=", 5)) {
4863 				pcie_ecrc_get_policy(str + 5);
4864 			} else if (!strncmp(str, "hpiosize=", 9)) {
4865 				pci_hotplug_io_size = memparse(str + 9, &str);
4866 			} else if (!strncmp(str, "hpmemsize=", 10)) {
4867 				pci_hotplug_mem_size = memparse(str + 10, &str);
4868 			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
4869 				pcie_bus_config = PCIE_BUS_TUNE_OFF;
4870 			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
4871 				pcie_bus_config = PCIE_BUS_SAFE;
4872 			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
4873 				pcie_bus_config = PCIE_BUS_PERFORMANCE;
4874 			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
4875 				pcie_bus_config = PCIE_BUS_PEER2PEER;
4876 			} else if (!strncmp(str, "pcie_scan_all", 13)) {
4877 				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
4878 			} else {
4879 				printk(KERN_ERR "PCI: Unknown option `%s'\n",
4880 						str);
4881 			}
4882 		}
4883 		str = k;
4884 	}
4885 	return 0;
4886 }
4887 early_param("pci", pci_setup);
4888