xref: /openbmc/linux/drivers/pci/pci.c (revision a5a7daa5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * PCI Bus Services, see include/linux/pci.h for further explanation.
4  *
5  * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6  * David Mosberger-Tang
7  *
8  * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/of.h>
17 #include <linux/of_pci.h>
18 #include <linux/pci.h>
19 #include <linux/pm.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/log2.h>
25 #include <linux/logic_pio.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/pci_hotplug.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pci-ats.h>
33 #include <asm/setup.h>
34 #include <asm/dma.h>
35 #include <linux/aer.h>
36 #include "pci.h"
37 
38 DEFINE_MUTEX(pci_slot_mutex);
39 
40 const char *pci_power_names[] = {
41 	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
42 };
43 EXPORT_SYMBOL_GPL(pci_power_names);
44 
45 int isa_dma_bridge_buggy;
46 EXPORT_SYMBOL(isa_dma_bridge_buggy);
47 
48 int pci_pci_problems;
49 EXPORT_SYMBOL(pci_pci_problems);
50 
51 unsigned int pci_pm_d3_delay;
52 
53 static void pci_pme_list_scan(struct work_struct *work);
54 
55 static LIST_HEAD(pci_pme_list);
56 static DEFINE_MUTEX(pci_pme_list_mutex);
57 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
58 
59 struct pci_pme_device {
60 	struct list_head list;
61 	struct pci_dev *dev;
62 };
63 
64 #define PME_TIMEOUT 1000 /* How long between PME checks */
65 
66 static void pci_dev_d3_sleep(struct pci_dev *dev)
67 {
68 	unsigned int delay = dev->d3_delay;
69 
70 	if (delay < pci_pm_d3_delay)
71 		delay = pci_pm_d3_delay;
72 
73 	if (delay)
74 		msleep(delay);
75 }
76 
77 #ifdef CONFIG_PCI_DOMAINS
78 int pci_domains_supported = 1;
79 #endif
80 
81 #define DEFAULT_CARDBUS_IO_SIZE		(256)
82 #define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
83 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
84 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
85 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
86 
87 #define DEFAULT_HOTPLUG_IO_SIZE		(256)
88 #define DEFAULT_HOTPLUG_MEM_SIZE	(2*1024*1024)
89 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
90 unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
91 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
92 
93 #define DEFAULT_HOTPLUG_BUS_SIZE	1
94 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
95 
96 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
97 
98 /*
99  * The default CLS is used if arch didn't set CLS explicitly and not
100  * all pci devices agree on the same value.  Arch can override either
101  * the dfl or actual value as it sees fit.  Don't forget this is
102  * measured in 32-bit words, not bytes.
103  */
104 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
105 u8 pci_cache_line_size;
106 
107 /*
108  * If we set up a device for bus mastering, we need to check the latency
109  * timer as certain BIOSes forget to set it properly.
110  */
111 unsigned int pcibios_max_latency = 255;
112 
113 /* If set, the PCIe ARI capability will not be used. */
114 static bool pcie_ari_disabled;
115 
116 /* If set, the PCIe ATS capability will not be used. */
117 static bool pcie_ats_disabled;
118 
119 /* If set, the PCI config space of each device is printed during boot. */
120 bool pci_early_dump;
121 
122 bool pci_ats_disabled(void)
123 {
124 	return pcie_ats_disabled;
125 }
126 
127 /* Disable bridge_d3 for all PCIe ports */
128 static bool pci_bridge_d3_disable;
129 /* Force bridge_d3 for all PCIe ports */
130 static bool pci_bridge_d3_force;
131 
132 static int __init pcie_port_pm_setup(char *str)
133 {
134 	if (!strcmp(str, "off"))
135 		pci_bridge_d3_disable = true;
136 	else if (!strcmp(str, "force"))
137 		pci_bridge_d3_force = true;
138 	return 1;
139 }
140 __setup("pcie_port_pm=", pcie_port_pm_setup);
141 
142 /* Time to wait after a reset for device to become responsive */
143 #define PCIE_RESET_READY_POLL_MS 60000
144 
145 /**
146  * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
147  * @bus: pointer to PCI bus structure to search
148  *
149  * Given a PCI bus, returns the highest PCI bus number present in the set
150  * including the given PCI bus and its list of child PCI buses.
151  */
152 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
153 {
154 	struct pci_bus *tmp;
155 	unsigned char max, n;
156 
157 	max = bus->busn_res.end;
158 	list_for_each_entry(tmp, &bus->children, node) {
159 		n = pci_bus_max_busnr(tmp);
160 		if (n > max)
161 			max = n;
162 	}
163 	return max;
164 }
165 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
166 
167 #ifdef CONFIG_HAS_IOMEM
168 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
169 {
170 	struct resource *res = &pdev->resource[bar];
171 
172 	/*
173 	 * Make sure the BAR is actually a memory resource, not an IO resource
174 	 */
175 	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
176 		pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
177 		return NULL;
178 	}
179 	return ioremap_nocache(res->start, resource_size(res));
180 }
181 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
182 
183 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
184 {
185 	/*
186 	 * Make sure the BAR is actually a memory resource, not an IO resource
187 	 */
188 	if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
189 		WARN_ON(1);
190 		return NULL;
191 	}
192 	return ioremap_wc(pci_resource_start(pdev, bar),
193 			  pci_resource_len(pdev, bar));
194 }
195 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
196 #endif
197 
198 /**
199  * pci_dev_str_match_path - test if a path string matches a device
200  * @dev: the PCI device to test
201  * @path: string to match the device against
202  * @endptr: pointer to the string after the match
203  *
204  * Test if a string (typically from a kernel parameter) formatted as a
205  * path of device/function addresses matches a PCI device. The string must
206  * be of the form:
207  *
208  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
209  *
210  * A path for a device can be obtained using 'lspci -t'.  Using a path
211  * is more robust against bus renumbering than using only a single bus,
212  * device and function address.
213  *
214  * Returns 1 if the string matches the device, 0 if it does not and
215  * a negative error code if it fails to parse the string.
216  */
217 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
218 				  const char **endptr)
219 {
220 	int ret;
221 	int seg, bus, slot, func;
222 	char *wpath, *p;
223 	char end;
224 
225 	*endptr = strchrnul(path, ';');
226 
227 	wpath = kmemdup_nul(path, *endptr - path, GFP_KERNEL);
228 	if (!wpath)
229 		return -ENOMEM;
230 
231 	while (1) {
232 		p = strrchr(wpath, '/');
233 		if (!p)
234 			break;
235 		ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
236 		if (ret != 2) {
237 			ret = -EINVAL;
238 			goto free_and_exit;
239 		}
240 
241 		if (dev->devfn != PCI_DEVFN(slot, func)) {
242 			ret = 0;
243 			goto free_and_exit;
244 		}
245 
246 		/*
247 		 * Note: we don't need to get a reference to the upstream
248 		 * bridge because we hold a reference to the top level
249 		 * device which should hold a reference to the bridge,
250 		 * and so on.
251 		 */
252 		dev = pci_upstream_bridge(dev);
253 		if (!dev) {
254 			ret = 0;
255 			goto free_and_exit;
256 		}
257 
258 		*p = 0;
259 	}
260 
261 	ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
262 		     &func, &end);
263 	if (ret != 4) {
264 		seg = 0;
265 		ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
266 		if (ret != 3) {
267 			ret = -EINVAL;
268 			goto free_and_exit;
269 		}
270 	}
271 
272 	ret = (seg == pci_domain_nr(dev->bus) &&
273 	       bus == dev->bus->number &&
274 	       dev->devfn == PCI_DEVFN(slot, func));
275 
276 free_and_exit:
277 	kfree(wpath);
278 	return ret;
279 }
280 
281 /**
282  * pci_dev_str_match - test if a string matches a device
283  * @dev: the PCI device to test
284  * @p: string to match the device against
285  * @endptr: pointer to the string after the match
286  *
287  * Test if a string (typically from a kernel parameter) matches a specified
288  * PCI device. The string may be of one of the following formats:
289  *
290  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
291  *   pci:<vendor>:<device>[:<subvendor>:<subdevice>]
292  *
293  * The first format specifies a PCI bus/device/function address which
294  * may change if new hardware is inserted, if motherboard firmware changes,
295  * or due to changes caused in kernel parameters. If the domain is
296  * left unspecified, it is taken to be 0.  In order to be robust against
297  * bus renumbering issues, a path of PCI device/function numbers may be used
298  * to address the specific device.  The path for a device can be determined
299  * through the use of 'lspci -t'.
300  *
301  * The second format matches devices using IDs in the configuration
302  * space which may match multiple devices in the system. A value of 0
303  * for any field will match all devices. (Note: this differs from
304  * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
305  * legacy reasons and convenience so users don't have to specify
306  * FFFFFFFFs on the command line.)
307  *
308  * Returns 1 if the string matches the device, 0 if it does not and
309  * a negative error code if the string cannot be parsed.
310  */
311 static int pci_dev_str_match(struct pci_dev *dev, const char *p,
312 			     const char **endptr)
313 {
314 	int ret;
315 	int count;
316 	unsigned short vendor, device, subsystem_vendor, subsystem_device;
317 
318 	if (strncmp(p, "pci:", 4) == 0) {
319 		/* PCI vendor/device (subvendor/subdevice) IDs are specified */
320 		p += 4;
321 		ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
322 			     &subsystem_vendor, &subsystem_device, &count);
323 		if (ret != 4) {
324 			ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
325 			if (ret != 2)
326 				return -EINVAL;
327 
328 			subsystem_vendor = 0;
329 			subsystem_device = 0;
330 		}
331 
332 		p += count;
333 
334 		if ((!vendor || vendor == dev->vendor) &&
335 		    (!device || device == dev->device) &&
336 		    (!subsystem_vendor ||
337 			    subsystem_vendor == dev->subsystem_vendor) &&
338 		    (!subsystem_device ||
339 			    subsystem_device == dev->subsystem_device))
340 			goto found;
341 	} else {
342 		/*
343 		 * PCI Bus, Device, Function IDs are specified
344 		 * (optionally, may include a path of devfns following it)
345 		 */
346 		ret = pci_dev_str_match_path(dev, p, &p);
347 		if (ret < 0)
348 			return ret;
349 		else if (ret)
350 			goto found;
351 	}
352 
353 	*endptr = p;
354 	return 0;
355 
356 found:
357 	*endptr = p;
358 	return 1;
359 }
360 
361 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
362 				   u8 pos, int cap, int *ttl)
363 {
364 	u8 id;
365 	u16 ent;
366 
367 	pci_bus_read_config_byte(bus, devfn, pos, &pos);
368 
369 	while ((*ttl)--) {
370 		if (pos < 0x40)
371 			break;
372 		pos &= ~3;
373 		pci_bus_read_config_word(bus, devfn, pos, &ent);
374 
375 		id = ent & 0xff;
376 		if (id == 0xff)
377 			break;
378 		if (id == cap)
379 			return pos;
380 		pos = (ent >> 8);
381 	}
382 	return 0;
383 }
384 
385 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
386 			       u8 pos, int cap)
387 {
388 	int ttl = PCI_FIND_CAP_TTL;
389 
390 	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
391 }
392 
393 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
394 {
395 	return __pci_find_next_cap(dev->bus, dev->devfn,
396 				   pos + PCI_CAP_LIST_NEXT, cap);
397 }
398 EXPORT_SYMBOL_GPL(pci_find_next_capability);
399 
400 static int __pci_bus_find_cap_start(struct pci_bus *bus,
401 				    unsigned int devfn, u8 hdr_type)
402 {
403 	u16 status;
404 
405 	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
406 	if (!(status & PCI_STATUS_CAP_LIST))
407 		return 0;
408 
409 	switch (hdr_type) {
410 	case PCI_HEADER_TYPE_NORMAL:
411 	case PCI_HEADER_TYPE_BRIDGE:
412 		return PCI_CAPABILITY_LIST;
413 	case PCI_HEADER_TYPE_CARDBUS:
414 		return PCI_CB_CAPABILITY_LIST;
415 	}
416 
417 	return 0;
418 }
419 
420 /**
421  * pci_find_capability - query for devices' capabilities
422  * @dev: PCI device to query
423  * @cap: capability code
424  *
425  * Tell if a device supports a given PCI capability.
426  * Returns the address of the requested capability structure within the
427  * device's PCI configuration space or 0 in case the device does not
428  * support it.  Possible values for @cap include:
429  *
430  *  %PCI_CAP_ID_PM           Power Management
431  *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
432  *  %PCI_CAP_ID_VPD          Vital Product Data
433  *  %PCI_CAP_ID_SLOTID       Slot Identification
434  *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
435  *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
436  *  %PCI_CAP_ID_PCIX         PCI-X
437  *  %PCI_CAP_ID_EXP          PCI Express
438  */
439 int pci_find_capability(struct pci_dev *dev, int cap)
440 {
441 	int pos;
442 
443 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
444 	if (pos)
445 		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
446 
447 	return pos;
448 }
449 EXPORT_SYMBOL(pci_find_capability);
450 
451 /**
452  * pci_bus_find_capability - query for devices' capabilities
453  * @bus: the PCI bus to query
454  * @devfn: PCI device to query
455  * @cap: capability code
456  *
457  * Like pci_find_capability() but works for PCI devices that do not have a
458  * pci_dev structure set up yet.
459  *
460  * Returns the address of the requested capability structure within the
461  * device's PCI configuration space or 0 in case the device does not
462  * support it.
463  */
464 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
465 {
466 	int pos;
467 	u8 hdr_type;
468 
469 	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
470 
471 	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
472 	if (pos)
473 		pos = __pci_find_next_cap(bus, devfn, pos, cap);
474 
475 	return pos;
476 }
477 EXPORT_SYMBOL(pci_bus_find_capability);
478 
479 /**
480  * pci_find_next_ext_capability - Find an extended capability
481  * @dev: PCI device to query
482  * @start: address at which to start looking (0 to start at beginning of list)
483  * @cap: capability code
484  *
485  * Returns the address of the next matching extended capability structure
486  * within the device's PCI configuration space or 0 if the device does
487  * not support it.  Some capabilities can occur several times, e.g., the
488  * vendor-specific capability, and this provides a way to find them all.
489  */
490 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
491 {
492 	u32 header;
493 	int ttl;
494 	int pos = PCI_CFG_SPACE_SIZE;
495 
496 	/* minimum 8 bytes per capability */
497 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
498 
499 	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
500 		return 0;
501 
502 	if (start)
503 		pos = start;
504 
505 	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
506 		return 0;
507 
508 	/*
509 	 * If we have no capabilities, this is indicated by cap ID,
510 	 * cap version and next pointer all being 0.
511 	 */
512 	if (header == 0)
513 		return 0;
514 
515 	while (ttl-- > 0) {
516 		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
517 			return pos;
518 
519 		pos = PCI_EXT_CAP_NEXT(header);
520 		if (pos < PCI_CFG_SPACE_SIZE)
521 			break;
522 
523 		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
524 			break;
525 	}
526 
527 	return 0;
528 }
529 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
530 
531 /**
532  * pci_find_ext_capability - Find an extended capability
533  * @dev: PCI device to query
534  * @cap: capability code
535  *
536  * Returns the address of the requested extended capability structure
537  * within the device's PCI configuration space or 0 if the device does
538  * not support it.  Possible values for @cap include:
539  *
540  *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
541  *  %PCI_EXT_CAP_ID_VC		Virtual Channel
542  *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
543  *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
544  */
545 int pci_find_ext_capability(struct pci_dev *dev, int cap)
546 {
547 	return pci_find_next_ext_capability(dev, 0, cap);
548 }
549 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
550 
551 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
552 {
553 	int rc, ttl = PCI_FIND_CAP_TTL;
554 	u8 cap, mask;
555 
556 	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
557 		mask = HT_3BIT_CAP_MASK;
558 	else
559 		mask = HT_5BIT_CAP_MASK;
560 
561 	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
562 				      PCI_CAP_ID_HT, &ttl);
563 	while (pos) {
564 		rc = pci_read_config_byte(dev, pos + 3, &cap);
565 		if (rc != PCIBIOS_SUCCESSFUL)
566 			return 0;
567 
568 		if ((cap & mask) == ht_cap)
569 			return pos;
570 
571 		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
572 					      pos + PCI_CAP_LIST_NEXT,
573 					      PCI_CAP_ID_HT, &ttl);
574 	}
575 
576 	return 0;
577 }
578 /**
579  * pci_find_next_ht_capability - query a device's Hypertransport capabilities
580  * @dev: PCI device to query
581  * @pos: Position from which to continue searching
582  * @ht_cap: Hypertransport capability code
583  *
584  * To be used in conjunction with pci_find_ht_capability() to search for
585  * all capabilities matching @ht_cap. @pos should always be a value returned
586  * from pci_find_ht_capability().
587  *
588  * NB. To be 100% safe against broken PCI devices, the caller should take
589  * steps to avoid an infinite loop.
590  */
591 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
592 {
593 	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
594 }
595 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
596 
597 /**
598  * pci_find_ht_capability - query a device's Hypertransport capabilities
599  * @dev: PCI device to query
600  * @ht_cap: Hypertransport capability code
601  *
602  * Tell if a device supports a given Hypertransport capability.
603  * Returns an address within the device's PCI configuration space
604  * or 0 in case the device does not support the request capability.
605  * The address points to the PCI capability, of type PCI_CAP_ID_HT,
606  * which has a Hypertransport capability matching @ht_cap.
607  */
608 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
609 {
610 	int pos;
611 
612 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
613 	if (pos)
614 		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
615 
616 	return pos;
617 }
618 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
619 
620 /**
621  * pci_find_parent_resource - return resource region of parent bus of given
622  *			      region
623  * @dev: PCI device structure contains resources to be searched
624  * @res: child resource record for which parent is sought
625  *
626  * For given resource region of given device, return the resource region of
627  * parent bus the given region is contained in.
628  */
629 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
630 					  struct resource *res)
631 {
632 	const struct pci_bus *bus = dev->bus;
633 	struct resource *r;
634 	int i;
635 
636 	pci_bus_for_each_resource(bus, r, i) {
637 		if (!r)
638 			continue;
639 		if (resource_contains(r, res)) {
640 
641 			/*
642 			 * If the window is prefetchable but the BAR is
643 			 * not, the allocator made a mistake.
644 			 */
645 			if (r->flags & IORESOURCE_PREFETCH &&
646 			    !(res->flags & IORESOURCE_PREFETCH))
647 				return NULL;
648 
649 			/*
650 			 * If we're below a transparent bridge, there may
651 			 * be both a positively-decoded aperture and a
652 			 * subtractively-decoded region that contain the BAR.
653 			 * We want the positively-decoded one, so this depends
654 			 * on pci_bus_for_each_resource() giving us those
655 			 * first.
656 			 */
657 			return r;
658 		}
659 	}
660 	return NULL;
661 }
662 EXPORT_SYMBOL(pci_find_parent_resource);
663 
664 /**
665  * pci_find_resource - Return matching PCI device resource
666  * @dev: PCI device to query
667  * @res: Resource to look for
668  *
669  * Goes over standard PCI resources (BARs) and checks if the given resource
670  * is partially or fully contained in any of them. In that case the
671  * matching resource is returned, %NULL otherwise.
672  */
673 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
674 {
675 	int i;
676 
677 	for (i = 0; i < PCI_ROM_RESOURCE; i++) {
678 		struct resource *r = &dev->resource[i];
679 
680 		if (r->start && resource_contains(r, res))
681 			return r;
682 	}
683 
684 	return NULL;
685 }
686 EXPORT_SYMBOL(pci_find_resource);
687 
688 /**
689  * pci_find_pcie_root_port - return PCIe Root Port
690  * @dev: PCI device to query
691  *
692  * Traverse up the parent chain and return the PCIe Root Port PCI Device
693  * for a given PCI Device.
694  */
695 struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev)
696 {
697 	struct pci_dev *bridge, *highest_pcie_bridge = dev;
698 
699 	bridge = pci_upstream_bridge(dev);
700 	while (bridge && pci_is_pcie(bridge)) {
701 		highest_pcie_bridge = bridge;
702 		bridge = pci_upstream_bridge(bridge);
703 	}
704 
705 	if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT)
706 		return NULL;
707 
708 	return highest_pcie_bridge;
709 }
710 EXPORT_SYMBOL(pci_find_pcie_root_port);
711 
712 /**
713  * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
714  * @dev: the PCI device to operate on
715  * @pos: config space offset of status word
716  * @mask: mask of bit(s) to care about in status word
717  *
718  * Return 1 when mask bit(s) in status word clear, 0 otherwise.
719  */
720 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
721 {
722 	int i;
723 
724 	/* Wait for Transaction Pending bit clean */
725 	for (i = 0; i < 4; i++) {
726 		u16 status;
727 		if (i)
728 			msleep((1 << (i - 1)) * 100);
729 
730 		pci_read_config_word(dev, pos, &status);
731 		if (!(status & mask))
732 			return 1;
733 	}
734 
735 	return 0;
736 }
737 
738 /**
739  * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
740  * @dev: PCI device to have its BARs restored
741  *
742  * Restore the BAR values for a given device, so as to make it
743  * accessible by its driver.
744  */
745 static void pci_restore_bars(struct pci_dev *dev)
746 {
747 	int i;
748 
749 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
750 		pci_update_resource(dev, i);
751 }
752 
753 static const struct pci_platform_pm_ops *pci_platform_pm;
754 
755 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
756 {
757 	if (!ops->is_manageable || !ops->set_state  || !ops->get_state ||
758 	    !ops->choose_state  || !ops->set_wakeup || !ops->need_resume)
759 		return -EINVAL;
760 	pci_platform_pm = ops;
761 	return 0;
762 }
763 
764 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
765 {
766 	return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
767 }
768 
769 static inline int platform_pci_set_power_state(struct pci_dev *dev,
770 					       pci_power_t t)
771 {
772 	return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
773 }
774 
775 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
776 {
777 	return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
778 }
779 
780 static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
781 {
782 	if (pci_platform_pm && pci_platform_pm->refresh_state)
783 		pci_platform_pm->refresh_state(dev);
784 }
785 
786 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
787 {
788 	return pci_platform_pm ?
789 			pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
790 }
791 
792 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
793 {
794 	return pci_platform_pm ?
795 			pci_platform_pm->set_wakeup(dev, enable) : -ENODEV;
796 }
797 
798 static inline bool platform_pci_need_resume(struct pci_dev *dev)
799 {
800 	return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
801 }
802 
803 static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
804 {
805 	return pci_platform_pm ? pci_platform_pm->bridge_d3(dev) : false;
806 }
807 
808 /**
809  * pci_raw_set_power_state - Use PCI PM registers to set the power state of
810  *			     given PCI device
811  * @dev: PCI device to handle.
812  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
813  *
814  * RETURN VALUE:
815  * -EINVAL if the requested state is invalid.
816  * -EIO if device does not support PCI PM or its PM capabilities register has a
817  * wrong version, or device doesn't support the requested state.
818  * 0 if device already is in the requested state.
819  * 0 if device's power state has been successfully changed.
820  */
821 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
822 {
823 	u16 pmcsr;
824 	bool need_restore = false;
825 
826 	/* Check if we're already there */
827 	if (dev->current_state == state)
828 		return 0;
829 
830 	if (!dev->pm_cap)
831 		return -EIO;
832 
833 	if (state < PCI_D0 || state > PCI_D3hot)
834 		return -EINVAL;
835 
836 	/*
837 	 * Validate current state:
838 	 * Can enter D0 from any state, but if we can only go deeper
839 	 * to sleep if we're already in a low power state
840 	 */
841 	if (state != PCI_D0 && dev->current_state <= PCI_D3cold
842 	    && dev->current_state > state) {
843 		pci_err(dev, "invalid power transition (from state %d to %d)\n",
844 			dev->current_state, state);
845 		return -EINVAL;
846 	}
847 
848 	/* Check if this device supports the desired state */
849 	if ((state == PCI_D1 && !dev->d1_support)
850 	   || (state == PCI_D2 && !dev->d2_support))
851 		return -EIO;
852 
853 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
854 
855 	/*
856 	 * If we're (effectively) in D3, force entire word to 0.
857 	 * This doesn't affect PME_Status, disables PME_En, and
858 	 * sets PowerState to 0.
859 	 */
860 	switch (dev->current_state) {
861 	case PCI_D0:
862 	case PCI_D1:
863 	case PCI_D2:
864 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
865 		pmcsr |= state;
866 		break;
867 	case PCI_D3hot:
868 	case PCI_D3cold:
869 	case PCI_UNKNOWN: /* Boot-up */
870 		if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
871 		 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
872 			need_restore = true;
873 		/* Fall-through - force to D0 */
874 	default:
875 		pmcsr = 0;
876 		break;
877 	}
878 
879 	/* Enter specified state */
880 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
881 
882 	/*
883 	 * Mandatory power management transition delays; see PCI PM 1.1
884 	 * 5.6.1 table 18
885 	 */
886 	if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
887 		pci_dev_d3_sleep(dev);
888 	else if (state == PCI_D2 || dev->current_state == PCI_D2)
889 		udelay(PCI_PM_D2_DELAY);
890 
891 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
892 	dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
893 	if (dev->current_state != state)
894 		pci_info_ratelimited(dev, "Refused to change power state, currently in D%d\n",
895 			 dev->current_state);
896 
897 	/*
898 	 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
899 	 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
900 	 * from D3hot to D0 _may_ perform an internal reset, thereby
901 	 * going to "D0 Uninitialized" rather than "D0 Initialized".
902 	 * For example, at least some versions of the 3c905B and the
903 	 * 3c556B exhibit this behaviour.
904 	 *
905 	 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
906 	 * devices in a D3hot state at boot.  Consequently, we need to
907 	 * restore at least the BARs so that the device will be
908 	 * accessible to its driver.
909 	 */
910 	if (need_restore)
911 		pci_restore_bars(dev);
912 
913 	if (dev->bus->self)
914 		pcie_aspm_pm_state_change(dev->bus->self);
915 
916 	return 0;
917 }
918 
919 /**
920  * pci_update_current_state - Read power state of given device and cache it
921  * @dev: PCI device to handle.
922  * @state: State to cache in case the device doesn't have the PM capability
923  *
924  * The power state is read from the PMCSR register, which however is
925  * inaccessible in D3cold.  The platform firmware is therefore queried first
926  * to detect accessibility of the register.  In case the platform firmware
927  * reports an incorrect state or the device isn't power manageable by the
928  * platform at all, we try to detect D3cold by testing accessibility of the
929  * vendor ID in config space.
930  */
931 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
932 {
933 	if (platform_pci_get_power_state(dev) == PCI_D3cold ||
934 	    !pci_device_is_present(dev)) {
935 		dev->current_state = PCI_D3cold;
936 	} else if (dev->pm_cap) {
937 		u16 pmcsr;
938 
939 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
940 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
941 	} else {
942 		dev->current_state = state;
943 	}
944 }
945 
946 /**
947  * pci_refresh_power_state - Refresh the given device's power state data
948  * @dev: Target PCI device.
949  *
950  * Ask the platform to refresh the devices power state information and invoke
951  * pci_update_current_state() to update its current PCI power state.
952  */
953 void pci_refresh_power_state(struct pci_dev *dev)
954 {
955 	if (platform_pci_power_manageable(dev))
956 		platform_pci_refresh_power_state(dev);
957 
958 	pci_update_current_state(dev, dev->current_state);
959 }
960 
961 /**
962  * pci_platform_power_transition - Use platform to change device power state
963  * @dev: PCI device to handle.
964  * @state: State to put the device into.
965  */
966 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
967 {
968 	int error;
969 
970 	if (platform_pci_power_manageable(dev)) {
971 		error = platform_pci_set_power_state(dev, state);
972 		if (!error)
973 			pci_update_current_state(dev, state);
974 	} else
975 		error = -ENODEV;
976 
977 	if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
978 		dev->current_state = PCI_D0;
979 
980 	return error;
981 }
982 
983 /**
984  * pci_wakeup - Wake up a PCI device
985  * @pci_dev: Device to handle.
986  * @ign: ignored parameter
987  */
988 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
989 {
990 	pci_wakeup_event(pci_dev);
991 	pm_request_resume(&pci_dev->dev);
992 	return 0;
993 }
994 
995 /**
996  * pci_wakeup_bus - Walk given bus and wake up devices on it
997  * @bus: Top bus of the subtree to walk.
998  */
999 void pci_wakeup_bus(struct pci_bus *bus)
1000 {
1001 	if (bus)
1002 		pci_walk_bus(bus, pci_wakeup, NULL);
1003 }
1004 
1005 /**
1006  * __pci_start_power_transition - Start power transition of a PCI device
1007  * @dev: PCI device to handle.
1008  * @state: State to put the device into.
1009  */
1010 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
1011 {
1012 	if (state == PCI_D0) {
1013 		pci_platform_power_transition(dev, PCI_D0);
1014 		/*
1015 		 * Mandatory power management transition delays, see
1016 		 * PCI Express Base Specification Revision 2.0 Section
1017 		 * 6.6.1: Conventional Reset.  Do not delay for
1018 		 * devices powered on/off by corresponding bridge,
1019 		 * because have already delayed for the bridge.
1020 		 */
1021 		if (dev->runtime_d3cold) {
1022 			if (dev->d3cold_delay && !dev->imm_ready)
1023 				msleep(dev->d3cold_delay);
1024 			/*
1025 			 * When powering on a bridge from D3cold, the
1026 			 * whole hierarchy may be powered on into
1027 			 * D0uninitialized state, resume them to give
1028 			 * them a chance to suspend again
1029 			 */
1030 			pci_wakeup_bus(dev->subordinate);
1031 		}
1032 	}
1033 }
1034 
1035 /**
1036  * __pci_dev_set_current_state - Set current state of a PCI device
1037  * @dev: Device to handle
1038  * @data: pointer to state to be set
1039  */
1040 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1041 {
1042 	pci_power_t state = *(pci_power_t *)data;
1043 
1044 	dev->current_state = state;
1045 	return 0;
1046 }
1047 
1048 /**
1049  * pci_bus_set_current_state - Walk given bus and set current state of devices
1050  * @bus: Top bus of the subtree to walk.
1051  * @state: state to be set
1052  */
1053 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1054 {
1055 	if (bus)
1056 		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1057 }
1058 
1059 /**
1060  * __pci_complete_power_transition - Complete power transition of a PCI device
1061  * @dev: PCI device to handle.
1062  * @state: State to put the device into.
1063  *
1064  * This function should not be called directly by device drivers.
1065  */
1066 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
1067 {
1068 	int ret;
1069 
1070 	if (state <= PCI_D0)
1071 		return -EINVAL;
1072 	ret = pci_platform_power_transition(dev, state);
1073 	/* Power off the bridge may power off the whole hierarchy */
1074 	if (!ret && state == PCI_D3cold)
1075 		pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1076 	return ret;
1077 }
1078 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
1079 
1080 /**
1081  * pci_set_power_state - Set the power state of a PCI device
1082  * @dev: PCI device to handle.
1083  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1084  *
1085  * Transition a device to a new power state, using the platform firmware and/or
1086  * the device's PCI PM registers.
1087  *
1088  * RETURN VALUE:
1089  * -EINVAL if the requested state is invalid.
1090  * -EIO if device does not support PCI PM or its PM capabilities register has a
1091  * wrong version, or device doesn't support the requested state.
1092  * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1093  * 0 if device already is in the requested state.
1094  * 0 if the transition is to D3 but D3 is not supported.
1095  * 0 if device's power state has been successfully changed.
1096  */
1097 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1098 {
1099 	int error;
1100 
1101 	/* Bound the state we're entering */
1102 	if (state > PCI_D3cold)
1103 		state = PCI_D3cold;
1104 	else if (state < PCI_D0)
1105 		state = PCI_D0;
1106 	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1107 
1108 		/*
1109 		 * If the device or the parent bridge do not support PCI
1110 		 * PM, ignore the request if we're doing anything other
1111 		 * than putting it into D0 (which would only happen on
1112 		 * boot).
1113 		 */
1114 		return 0;
1115 
1116 	/* Check if we're already there */
1117 	if (dev->current_state == state)
1118 		return 0;
1119 
1120 	__pci_start_power_transition(dev, state);
1121 
1122 	/*
1123 	 * This device is quirked not to be put into D3, so don't put it in
1124 	 * D3
1125 	 */
1126 	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1127 		return 0;
1128 
1129 	/*
1130 	 * To put device in D3cold, we put device into D3hot in native
1131 	 * way, then put device into D3cold with platform ops
1132 	 */
1133 	error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
1134 					PCI_D3hot : state);
1135 
1136 	if (!__pci_complete_power_transition(dev, state))
1137 		error = 0;
1138 
1139 	return error;
1140 }
1141 EXPORT_SYMBOL(pci_set_power_state);
1142 
1143 /**
1144  * pci_power_up - Put the given device into D0 forcibly
1145  * @dev: PCI device to power up
1146  */
1147 void pci_power_up(struct pci_dev *dev)
1148 {
1149 	__pci_start_power_transition(dev, PCI_D0);
1150 	pci_raw_set_power_state(dev, PCI_D0);
1151 	pci_update_current_state(dev, PCI_D0);
1152 }
1153 
1154 /**
1155  * pci_choose_state - Choose the power state of a PCI device
1156  * @dev: PCI device to be suspended
1157  * @state: target sleep state for the whole system. This is the value
1158  *	   that is passed to suspend() function.
1159  *
1160  * Returns PCI power state suitable for given device and given system
1161  * message.
1162  */
1163 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
1164 {
1165 	pci_power_t ret;
1166 
1167 	if (!dev->pm_cap)
1168 		return PCI_D0;
1169 
1170 	ret = platform_pci_choose_state(dev);
1171 	if (ret != PCI_POWER_ERROR)
1172 		return ret;
1173 
1174 	switch (state.event) {
1175 	case PM_EVENT_ON:
1176 		return PCI_D0;
1177 	case PM_EVENT_FREEZE:
1178 	case PM_EVENT_PRETHAW:
1179 		/* REVISIT both freeze and pre-thaw "should" use D0 */
1180 	case PM_EVENT_SUSPEND:
1181 	case PM_EVENT_HIBERNATE:
1182 		return PCI_D3hot;
1183 	default:
1184 		pci_info(dev, "unrecognized suspend event %d\n",
1185 			 state.event);
1186 		BUG();
1187 	}
1188 	return PCI_D0;
1189 }
1190 EXPORT_SYMBOL(pci_choose_state);
1191 
1192 #define PCI_EXP_SAVE_REGS	7
1193 
1194 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1195 						       u16 cap, bool extended)
1196 {
1197 	struct pci_cap_saved_state *tmp;
1198 
1199 	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1200 		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1201 			return tmp;
1202 	}
1203 	return NULL;
1204 }
1205 
1206 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1207 {
1208 	return _pci_find_saved_cap(dev, cap, false);
1209 }
1210 
1211 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1212 {
1213 	return _pci_find_saved_cap(dev, cap, true);
1214 }
1215 
1216 static int pci_save_pcie_state(struct pci_dev *dev)
1217 {
1218 	int i = 0;
1219 	struct pci_cap_saved_state *save_state;
1220 	u16 *cap;
1221 
1222 	if (!pci_is_pcie(dev))
1223 		return 0;
1224 
1225 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1226 	if (!save_state) {
1227 		pci_err(dev, "buffer not found in %s\n", __func__);
1228 		return -ENOMEM;
1229 	}
1230 
1231 	cap = (u16 *)&save_state->cap.data[0];
1232 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1233 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1234 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1235 	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
1236 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1237 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1238 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1239 
1240 	return 0;
1241 }
1242 
1243 static void pci_restore_pcie_state(struct pci_dev *dev)
1244 {
1245 	int i = 0;
1246 	struct pci_cap_saved_state *save_state;
1247 	u16 *cap;
1248 
1249 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1250 	if (!save_state)
1251 		return;
1252 
1253 	cap = (u16 *)&save_state->cap.data[0];
1254 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1255 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1256 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1257 	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1258 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1259 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1260 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1261 }
1262 
1263 static int pci_save_pcix_state(struct pci_dev *dev)
1264 {
1265 	int pos;
1266 	struct pci_cap_saved_state *save_state;
1267 
1268 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1269 	if (!pos)
1270 		return 0;
1271 
1272 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1273 	if (!save_state) {
1274 		pci_err(dev, "buffer not found in %s\n", __func__);
1275 		return -ENOMEM;
1276 	}
1277 
1278 	pci_read_config_word(dev, pos + PCI_X_CMD,
1279 			     (u16 *)save_state->cap.data);
1280 
1281 	return 0;
1282 }
1283 
1284 static void pci_restore_pcix_state(struct pci_dev *dev)
1285 {
1286 	int i = 0, pos;
1287 	struct pci_cap_saved_state *save_state;
1288 	u16 *cap;
1289 
1290 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1291 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1292 	if (!save_state || !pos)
1293 		return;
1294 	cap = (u16 *)&save_state->cap.data[0];
1295 
1296 	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1297 }
1298 
1299 static void pci_save_ltr_state(struct pci_dev *dev)
1300 {
1301 	int ltr;
1302 	struct pci_cap_saved_state *save_state;
1303 	u16 *cap;
1304 
1305 	if (!pci_is_pcie(dev))
1306 		return;
1307 
1308 	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1309 	if (!ltr)
1310 		return;
1311 
1312 	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1313 	if (!save_state) {
1314 		pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1315 		return;
1316 	}
1317 
1318 	cap = (u16 *)&save_state->cap.data[0];
1319 	pci_read_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap++);
1320 	pci_read_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, cap++);
1321 }
1322 
1323 static void pci_restore_ltr_state(struct pci_dev *dev)
1324 {
1325 	struct pci_cap_saved_state *save_state;
1326 	int ltr;
1327 	u16 *cap;
1328 
1329 	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1330 	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1331 	if (!save_state || !ltr)
1332 		return;
1333 
1334 	cap = (u16 *)&save_state->cap.data[0];
1335 	pci_write_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap++);
1336 	pci_write_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, *cap++);
1337 }
1338 
1339 /**
1340  * pci_save_state - save the PCI configuration space of a device before
1341  *		    suspending
1342  * @dev: PCI device that we're dealing with
1343  */
1344 int pci_save_state(struct pci_dev *dev)
1345 {
1346 	int i;
1347 	/* XXX: 100% dword access ok here? */
1348 	for (i = 0; i < 16; i++)
1349 		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1350 	dev->state_saved = true;
1351 
1352 	i = pci_save_pcie_state(dev);
1353 	if (i != 0)
1354 		return i;
1355 
1356 	i = pci_save_pcix_state(dev);
1357 	if (i != 0)
1358 		return i;
1359 
1360 	pci_save_ltr_state(dev);
1361 	pci_save_dpc_state(dev);
1362 	return pci_save_vc_state(dev);
1363 }
1364 EXPORT_SYMBOL(pci_save_state);
1365 
1366 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1367 				     u32 saved_val, int retry, bool force)
1368 {
1369 	u32 val;
1370 
1371 	pci_read_config_dword(pdev, offset, &val);
1372 	if (!force && val == saved_val)
1373 		return;
1374 
1375 	for (;;) {
1376 		pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1377 			offset, val, saved_val);
1378 		pci_write_config_dword(pdev, offset, saved_val);
1379 		if (retry-- <= 0)
1380 			return;
1381 
1382 		pci_read_config_dword(pdev, offset, &val);
1383 		if (val == saved_val)
1384 			return;
1385 
1386 		mdelay(1);
1387 	}
1388 }
1389 
1390 static void pci_restore_config_space_range(struct pci_dev *pdev,
1391 					   int start, int end, int retry,
1392 					   bool force)
1393 {
1394 	int index;
1395 
1396 	for (index = end; index >= start; index--)
1397 		pci_restore_config_dword(pdev, 4 * index,
1398 					 pdev->saved_config_space[index],
1399 					 retry, force);
1400 }
1401 
1402 static void pci_restore_config_space(struct pci_dev *pdev)
1403 {
1404 	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1405 		pci_restore_config_space_range(pdev, 10, 15, 0, false);
1406 		/* Restore BARs before the command register. */
1407 		pci_restore_config_space_range(pdev, 4, 9, 10, false);
1408 		pci_restore_config_space_range(pdev, 0, 3, 0, false);
1409 	} else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1410 		pci_restore_config_space_range(pdev, 12, 15, 0, false);
1411 
1412 		/*
1413 		 * Force rewriting of prefetch registers to avoid S3 resume
1414 		 * issues on Intel PCI bridges that occur when these
1415 		 * registers are not explicitly written.
1416 		 */
1417 		pci_restore_config_space_range(pdev, 9, 11, 0, true);
1418 		pci_restore_config_space_range(pdev, 0, 8, 0, false);
1419 	} else {
1420 		pci_restore_config_space_range(pdev, 0, 15, 0, false);
1421 	}
1422 }
1423 
1424 static void pci_restore_rebar_state(struct pci_dev *pdev)
1425 {
1426 	unsigned int pos, nbars, i;
1427 	u32 ctrl;
1428 
1429 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1430 	if (!pos)
1431 		return;
1432 
1433 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1434 	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1435 		    PCI_REBAR_CTRL_NBAR_SHIFT;
1436 
1437 	for (i = 0; i < nbars; i++, pos += 8) {
1438 		struct resource *res;
1439 		int bar_idx, size;
1440 
1441 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1442 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1443 		res = pdev->resource + bar_idx;
1444 		size = ilog2(resource_size(res)) - 20;
1445 		ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1446 		ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1447 		pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1448 	}
1449 }
1450 
1451 /**
1452  * pci_restore_state - Restore the saved state of a PCI device
1453  * @dev: PCI device that we're dealing with
1454  */
1455 void pci_restore_state(struct pci_dev *dev)
1456 {
1457 	if (!dev->state_saved)
1458 		return;
1459 
1460 	/*
1461 	 * Restore max latencies (in the LTR capability) before enabling
1462 	 * LTR itself (in the PCIe capability).
1463 	 */
1464 	pci_restore_ltr_state(dev);
1465 
1466 	pci_restore_pcie_state(dev);
1467 	pci_restore_pasid_state(dev);
1468 	pci_restore_pri_state(dev);
1469 	pci_restore_ats_state(dev);
1470 	pci_restore_vc_state(dev);
1471 	pci_restore_rebar_state(dev);
1472 	pci_restore_dpc_state(dev);
1473 
1474 	pci_cleanup_aer_error_status_regs(dev);
1475 
1476 	pci_restore_config_space(dev);
1477 
1478 	pci_restore_pcix_state(dev);
1479 	pci_restore_msi_state(dev);
1480 
1481 	/* Restore ACS and IOV configuration state */
1482 	pci_enable_acs(dev);
1483 	pci_restore_iov_state(dev);
1484 
1485 	dev->state_saved = false;
1486 }
1487 EXPORT_SYMBOL(pci_restore_state);
1488 
1489 struct pci_saved_state {
1490 	u32 config_space[16];
1491 	struct pci_cap_saved_data cap[0];
1492 };
1493 
1494 /**
1495  * pci_store_saved_state - Allocate and return an opaque struct containing
1496  *			   the device saved state.
1497  * @dev: PCI device that we're dealing with
1498  *
1499  * Return NULL if no state or error.
1500  */
1501 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1502 {
1503 	struct pci_saved_state *state;
1504 	struct pci_cap_saved_state *tmp;
1505 	struct pci_cap_saved_data *cap;
1506 	size_t size;
1507 
1508 	if (!dev->state_saved)
1509 		return NULL;
1510 
1511 	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1512 
1513 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1514 		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1515 
1516 	state = kzalloc(size, GFP_KERNEL);
1517 	if (!state)
1518 		return NULL;
1519 
1520 	memcpy(state->config_space, dev->saved_config_space,
1521 	       sizeof(state->config_space));
1522 
1523 	cap = state->cap;
1524 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1525 		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1526 		memcpy(cap, &tmp->cap, len);
1527 		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1528 	}
1529 	/* Empty cap_save terminates list */
1530 
1531 	return state;
1532 }
1533 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1534 
1535 /**
1536  * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1537  * @dev: PCI device that we're dealing with
1538  * @state: Saved state returned from pci_store_saved_state()
1539  */
1540 int pci_load_saved_state(struct pci_dev *dev,
1541 			 struct pci_saved_state *state)
1542 {
1543 	struct pci_cap_saved_data *cap;
1544 
1545 	dev->state_saved = false;
1546 
1547 	if (!state)
1548 		return 0;
1549 
1550 	memcpy(dev->saved_config_space, state->config_space,
1551 	       sizeof(state->config_space));
1552 
1553 	cap = state->cap;
1554 	while (cap->size) {
1555 		struct pci_cap_saved_state *tmp;
1556 
1557 		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1558 		if (!tmp || tmp->cap.size != cap->size)
1559 			return -EINVAL;
1560 
1561 		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1562 		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1563 		       sizeof(struct pci_cap_saved_data) + cap->size);
1564 	}
1565 
1566 	dev->state_saved = true;
1567 	return 0;
1568 }
1569 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1570 
1571 /**
1572  * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1573  *				   and free the memory allocated for it.
1574  * @dev: PCI device that we're dealing with
1575  * @state: Pointer to saved state returned from pci_store_saved_state()
1576  */
1577 int pci_load_and_free_saved_state(struct pci_dev *dev,
1578 				  struct pci_saved_state **state)
1579 {
1580 	int ret = pci_load_saved_state(dev, *state);
1581 	kfree(*state);
1582 	*state = NULL;
1583 	return ret;
1584 }
1585 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1586 
1587 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1588 {
1589 	return pci_enable_resources(dev, bars);
1590 }
1591 
1592 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1593 {
1594 	int err;
1595 	struct pci_dev *bridge;
1596 	u16 cmd;
1597 	u8 pin;
1598 
1599 	err = pci_set_power_state(dev, PCI_D0);
1600 	if (err < 0 && err != -EIO)
1601 		return err;
1602 
1603 	bridge = pci_upstream_bridge(dev);
1604 	if (bridge)
1605 		pcie_aspm_powersave_config_link(bridge);
1606 
1607 	err = pcibios_enable_device(dev, bars);
1608 	if (err < 0)
1609 		return err;
1610 	pci_fixup_device(pci_fixup_enable, dev);
1611 
1612 	if (dev->msi_enabled || dev->msix_enabled)
1613 		return 0;
1614 
1615 	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1616 	if (pin) {
1617 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
1618 		if (cmd & PCI_COMMAND_INTX_DISABLE)
1619 			pci_write_config_word(dev, PCI_COMMAND,
1620 					      cmd & ~PCI_COMMAND_INTX_DISABLE);
1621 	}
1622 
1623 	return 0;
1624 }
1625 
1626 /**
1627  * pci_reenable_device - Resume abandoned device
1628  * @dev: PCI device to be resumed
1629  *
1630  * NOTE: This function is a backend of pci_default_resume() and is not supposed
1631  * to be called by normal code, write proper resume handler and use it instead.
1632  */
1633 int pci_reenable_device(struct pci_dev *dev)
1634 {
1635 	if (pci_is_enabled(dev))
1636 		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1637 	return 0;
1638 }
1639 EXPORT_SYMBOL(pci_reenable_device);
1640 
1641 static void pci_enable_bridge(struct pci_dev *dev)
1642 {
1643 	struct pci_dev *bridge;
1644 	int retval;
1645 
1646 	bridge = pci_upstream_bridge(dev);
1647 	if (bridge)
1648 		pci_enable_bridge(bridge);
1649 
1650 	if (pci_is_enabled(dev)) {
1651 		if (!dev->is_busmaster)
1652 			pci_set_master(dev);
1653 		return;
1654 	}
1655 
1656 	retval = pci_enable_device(dev);
1657 	if (retval)
1658 		pci_err(dev, "Error enabling bridge (%d), continuing\n",
1659 			retval);
1660 	pci_set_master(dev);
1661 }
1662 
1663 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1664 {
1665 	struct pci_dev *bridge;
1666 	int err;
1667 	int i, bars = 0;
1668 
1669 	/*
1670 	 * Power state could be unknown at this point, either due to a fresh
1671 	 * boot or a device removal call.  So get the current power state
1672 	 * so that things like MSI message writing will behave as expected
1673 	 * (e.g. if the device really is in D0 at enable time).
1674 	 */
1675 	if (dev->pm_cap) {
1676 		u16 pmcsr;
1677 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1678 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1679 	}
1680 
1681 	if (atomic_inc_return(&dev->enable_cnt) > 1)
1682 		return 0;		/* already enabled */
1683 
1684 	bridge = pci_upstream_bridge(dev);
1685 	if (bridge)
1686 		pci_enable_bridge(bridge);
1687 
1688 	/* only skip sriov related */
1689 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1690 		if (dev->resource[i].flags & flags)
1691 			bars |= (1 << i);
1692 	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1693 		if (dev->resource[i].flags & flags)
1694 			bars |= (1 << i);
1695 
1696 	err = do_pci_enable_device(dev, bars);
1697 	if (err < 0)
1698 		atomic_dec(&dev->enable_cnt);
1699 	return err;
1700 }
1701 
1702 /**
1703  * pci_enable_device_io - Initialize a device for use with IO space
1704  * @dev: PCI device to be initialized
1705  *
1706  * Initialize device before it's used by a driver. Ask low-level code
1707  * to enable I/O resources. Wake up the device if it was suspended.
1708  * Beware, this function can fail.
1709  */
1710 int pci_enable_device_io(struct pci_dev *dev)
1711 {
1712 	return pci_enable_device_flags(dev, IORESOURCE_IO);
1713 }
1714 EXPORT_SYMBOL(pci_enable_device_io);
1715 
1716 /**
1717  * pci_enable_device_mem - Initialize a device for use with Memory space
1718  * @dev: PCI device to be initialized
1719  *
1720  * Initialize device before it's used by a driver. Ask low-level code
1721  * to enable Memory resources. Wake up the device if it was suspended.
1722  * Beware, this function can fail.
1723  */
1724 int pci_enable_device_mem(struct pci_dev *dev)
1725 {
1726 	return pci_enable_device_flags(dev, IORESOURCE_MEM);
1727 }
1728 EXPORT_SYMBOL(pci_enable_device_mem);
1729 
1730 /**
1731  * pci_enable_device - Initialize device before it's used by a driver.
1732  * @dev: PCI device to be initialized
1733  *
1734  * Initialize device before it's used by a driver. Ask low-level code
1735  * to enable I/O and memory. Wake up the device if it was suspended.
1736  * Beware, this function can fail.
1737  *
1738  * Note we don't actually enable the device many times if we call
1739  * this function repeatedly (we just increment the count).
1740  */
1741 int pci_enable_device(struct pci_dev *dev)
1742 {
1743 	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1744 }
1745 EXPORT_SYMBOL(pci_enable_device);
1746 
1747 /*
1748  * Managed PCI resources.  This manages device on/off, INTx/MSI/MSI-X
1749  * on/off and BAR regions.  pci_dev itself records MSI/MSI-X status, so
1750  * there's no need to track it separately.  pci_devres is initialized
1751  * when a device is enabled using managed PCI device enable interface.
1752  */
1753 struct pci_devres {
1754 	unsigned int enabled:1;
1755 	unsigned int pinned:1;
1756 	unsigned int orig_intx:1;
1757 	unsigned int restore_intx:1;
1758 	unsigned int mwi:1;
1759 	u32 region_mask;
1760 };
1761 
1762 static void pcim_release(struct device *gendev, void *res)
1763 {
1764 	struct pci_dev *dev = to_pci_dev(gendev);
1765 	struct pci_devres *this = res;
1766 	int i;
1767 
1768 	if (dev->msi_enabled)
1769 		pci_disable_msi(dev);
1770 	if (dev->msix_enabled)
1771 		pci_disable_msix(dev);
1772 
1773 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1774 		if (this->region_mask & (1 << i))
1775 			pci_release_region(dev, i);
1776 
1777 	if (this->mwi)
1778 		pci_clear_mwi(dev);
1779 
1780 	if (this->restore_intx)
1781 		pci_intx(dev, this->orig_intx);
1782 
1783 	if (this->enabled && !this->pinned)
1784 		pci_disable_device(dev);
1785 }
1786 
1787 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1788 {
1789 	struct pci_devres *dr, *new_dr;
1790 
1791 	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1792 	if (dr)
1793 		return dr;
1794 
1795 	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1796 	if (!new_dr)
1797 		return NULL;
1798 	return devres_get(&pdev->dev, new_dr, NULL, NULL);
1799 }
1800 
1801 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1802 {
1803 	if (pci_is_managed(pdev))
1804 		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1805 	return NULL;
1806 }
1807 
1808 /**
1809  * pcim_enable_device - Managed pci_enable_device()
1810  * @pdev: PCI device to be initialized
1811  *
1812  * Managed pci_enable_device().
1813  */
1814 int pcim_enable_device(struct pci_dev *pdev)
1815 {
1816 	struct pci_devres *dr;
1817 	int rc;
1818 
1819 	dr = get_pci_dr(pdev);
1820 	if (unlikely(!dr))
1821 		return -ENOMEM;
1822 	if (dr->enabled)
1823 		return 0;
1824 
1825 	rc = pci_enable_device(pdev);
1826 	if (!rc) {
1827 		pdev->is_managed = 1;
1828 		dr->enabled = 1;
1829 	}
1830 	return rc;
1831 }
1832 EXPORT_SYMBOL(pcim_enable_device);
1833 
1834 /**
1835  * pcim_pin_device - Pin managed PCI device
1836  * @pdev: PCI device to pin
1837  *
1838  * Pin managed PCI device @pdev.  Pinned device won't be disabled on
1839  * driver detach.  @pdev must have been enabled with
1840  * pcim_enable_device().
1841  */
1842 void pcim_pin_device(struct pci_dev *pdev)
1843 {
1844 	struct pci_devres *dr;
1845 
1846 	dr = find_pci_dr(pdev);
1847 	WARN_ON(!dr || !dr->enabled);
1848 	if (dr)
1849 		dr->pinned = 1;
1850 }
1851 EXPORT_SYMBOL(pcim_pin_device);
1852 
1853 /*
1854  * pcibios_add_device - provide arch specific hooks when adding device dev
1855  * @dev: the PCI device being added
1856  *
1857  * Permits the platform to provide architecture specific functionality when
1858  * devices are added. This is the default implementation. Architecture
1859  * implementations can override this.
1860  */
1861 int __weak pcibios_add_device(struct pci_dev *dev)
1862 {
1863 	return 0;
1864 }
1865 
1866 /**
1867  * pcibios_release_device - provide arch specific hooks when releasing
1868  *			    device dev
1869  * @dev: the PCI device being released
1870  *
1871  * Permits the platform to provide architecture specific functionality when
1872  * devices are released. This is the default implementation. Architecture
1873  * implementations can override this.
1874  */
1875 void __weak pcibios_release_device(struct pci_dev *dev) {}
1876 
1877 /**
1878  * pcibios_disable_device - disable arch specific PCI resources for device dev
1879  * @dev: the PCI device to disable
1880  *
1881  * Disables architecture specific PCI resources for the device. This
1882  * is the default implementation. Architecture implementations can
1883  * override this.
1884  */
1885 void __weak pcibios_disable_device(struct pci_dev *dev) {}
1886 
1887 /**
1888  * pcibios_penalize_isa_irq - penalize an ISA IRQ
1889  * @irq: ISA IRQ to penalize
1890  * @active: IRQ active or not
1891  *
1892  * Permits the platform to provide architecture-specific functionality when
1893  * penalizing ISA IRQs. This is the default implementation. Architecture
1894  * implementations can override this.
1895  */
1896 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1897 
1898 static void do_pci_disable_device(struct pci_dev *dev)
1899 {
1900 	u16 pci_command;
1901 
1902 	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1903 	if (pci_command & PCI_COMMAND_MASTER) {
1904 		pci_command &= ~PCI_COMMAND_MASTER;
1905 		pci_write_config_word(dev, PCI_COMMAND, pci_command);
1906 	}
1907 
1908 	pcibios_disable_device(dev);
1909 }
1910 
1911 /**
1912  * pci_disable_enabled_device - Disable device without updating enable_cnt
1913  * @dev: PCI device to disable
1914  *
1915  * NOTE: This function is a backend of PCI power management routines and is
1916  * not supposed to be called drivers.
1917  */
1918 void pci_disable_enabled_device(struct pci_dev *dev)
1919 {
1920 	if (pci_is_enabled(dev))
1921 		do_pci_disable_device(dev);
1922 }
1923 
1924 /**
1925  * pci_disable_device - Disable PCI device after use
1926  * @dev: PCI device to be disabled
1927  *
1928  * Signal to the system that the PCI device is not in use by the system
1929  * anymore.  This only involves disabling PCI bus-mastering, if active.
1930  *
1931  * Note we don't actually disable the device until all callers of
1932  * pci_enable_device() have called pci_disable_device().
1933  */
1934 void pci_disable_device(struct pci_dev *dev)
1935 {
1936 	struct pci_devres *dr;
1937 
1938 	dr = find_pci_dr(dev);
1939 	if (dr)
1940 		dr->enabled = 0;
1941 
1942 	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1943 		      "disabling already-disabled device");
1944 
1945 	if (atomic_dec_return(&dev->enable_cnt) != 0)
1946 		return;
1947 
1948 	do_pci_disable_device(dev);
1949 
1950 	dev->is_busmaster = 0;
1951 }
1952 EXPORT_SYMBOL(pci_disable_device);
1953 
1954 /**
1955  * pcibios_set_pcie_reset_state - set reset state for device dev
1956  * @dev: the PCIe device reset
1957  * @state: Reset state to enter into
1958  *
1959  * Set the PCIe reset state for the device. This is the default
1960  * implementation. Architecture implementations can override this.
1961  */
1962 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1963 					enum pcie_reset_state state)
1964 {
1965 	return -EINVAL;
1966 }
1967 
1968 /**
1969  * pci_set_pcie_reset_state - set reset state for device dev
1970  * @dev: the PCIe device reset
1971  * @state: Reset state to enter into
1972  *
1973  * Sets the PCI reset state for the device.
1974  */
1975 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1976 {
1977 	return pcibios_set_pcie_reset_state(dev, state);
1978 }
1979 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
1980 
1981 /**
1982  * pcie_clear_root_pme_status - Clear root port PME interrupt status.
1983  * @dev: PCIe root port or event collector.
1984  */
1985 void pcie_clear_root_pme_status(struct pci_dev *dev)
1986 {
1987 	pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
1988 }
1989 
1990 /**
1991  * pci_check_pme_status - Check if given device has generated PME.
1992  * @dev: Device to check.
1993  *
1994  * Check the PME status of the device and if set, clear it and clear PME enable
1995  * (if set).  Return 'true' if PME status and PME enable were both set or
1996  * 'false' otherwise.
1997  */
1998 bool pci_check_pme_status(struct pci_dev *dev)
1999 {
2000 	int pmcsr_pos;
2001 	u16 pmcsr;
2002 	bool ret = false;
2003 
2004 	if (!dev->pm_cap)
2005 		return false;
2006 
2007 	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2008 	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2009 	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2010 		return false;
2011 
2012 	/* Clear PME status. */
2013 	pmcsr |= PCI_PM_CTRL_PME_STATUS;
2014 	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2015 		/* Disable PME to avoid interrupt flood. */
2016 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2017 		ret = true;
2018 	}
2019 
2020 	pci_write_config_word(dev, pmcsr_pos, pmcsr);
2021 
2022 	return ret;
2023 }
2024 
2025 /**
2026  * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2027  * @dev: Device to handle.
2028  * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2029  *
2030  * Check if @dev has generated PME and queue a resume request for it in that
2031  * case.
2032  */
2033 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2034 {
2035 	if (pme_poll_reset && dev->pme_poll)
2036 		dev->pme_poll = false;
2037 
2038 	if (pci_check_pme_status(dev)) {
2039 		pci_wakeup_event(dev);
2040 		pm_request_resume(&dev->dev);
2041 	}
2042 	return 0;
2043 }
2044 
2045 /**
2046  * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2047  * @bus: Top bus of the subtree to walk.
2048  */
2049 void pci_pme_wakeup_bus(struct pci_bus *bus)
2050 {
2051 	if (bus)
2052 		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2053 }
2054 
2055 
2056 /**
2057  * pci_pme_capable - check the capability of PCI device to generate PME#
2058  * @dev: PCI device to handle.
2059  * @state: PCI state from which device will issue PME#.
2060  */
2061 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2062 {
2063 	if (!dev->pm_cap)
2064 		return false;
2065 
2066 	return !!(dev->pme_support & (1 << state));
2067 }
2068 EXPORT_SYMBOL(pci_pme_capable);
2069 
2070 static void pci_pme_list_scan(struct work_struct *work)
2071 {
2072 	struct pci_pme_device *pme_dev, *n;
2073 
2074 	mutex_lock(&pci_pme_list_mutex);
2075 	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2076 		if (pme_dev->dev->pme_poll) {
2077 			struct pci_dev *bridge;
2078 
2079 			bridge = pme_dev->dev->bus->self;
2080 			/*
2081 			 * If bridge is in low power state, the
2082 			 * configuration space of subordinate devices
2083 			 * may be not accessible
2084 			 */
2085 			if (bridge && bridge->current_state != PCI_D0)
2086 				continue;
2087 			/*
2088 			 * If the device is in D3cold it should not be
2089 			 * polled either.
2090 			 */
2091 			if (pme_dev->dev->current_state == PCI_D3cold)
2092 				continue;
2093 
2094 			pci_pme_wakeup(pme_dev->dev, NULL);
2095 		} else {
2096 			list_del(&pme_dev->list);
2097 			kfree(pme_dev);
2098 		}
2099 	}
2100 	if (!list_empty(&pci_pme_list))
2101 		queue_delayed_work(system_freezable_wq, &pci_pme_work,
2102 				   msecs_to_jiffies(PME_TIMEOUT));
2103 	mutex_unlock(&pci_pme_list_mutex);
2104 }
2105 
2106 static void __pci_pme_active(struct pci_dev *dev, bool enable)
2107 {
2108 	u16 pmcsr;
2109 
2110 	if (!dev->pme_support)
2111 		return;
2112 
2113 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2114 	/* Clear PME_Status by writing 1 to it and enable PME# */
2115 	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2116 	if (!enable)
2117 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2118 
2119 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2120 }
2121 
2122 /**
2123  * pci_pme_restore - Restore PME configuration after config space restore.
2124  * @dev: PCI device to update.
2125  */
2126 void pci_pme_restore(struct pci_dev *dev)
2127 {
2128 	u16 pmcsr;
2129 
2130 	if (!dev->pme_support)
2131 		return;
2132 
2133 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2134 	if (dev->wakeup_prepared) {
2135 		pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2136 		pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2137 	} else {
2138 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2139 		pmcsr |= PCI_PM_CTRL_PME_STATUS;
2140 	}
2141 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2142 }
2143 
2144 /**
2145  * pci_pme_active - enable or disable PCI device's PME# function
2146  * @dev: PCI device to handle.
2147  * @enable: 'true' to enable PME# generation; 'false' to disable it.
2148  *
2149  * The caller must verify that the device is capable of generating PME# before
2150  * calling this function with @enable equal to 'true'.
2151  */
2152 void pci_pme_active(struct pci_dev *dev, bool enable)
2153 {
2154 	__pci_pme_active(dev, enable);
2155 
2156 	/*
2157 	 * PCI (as opposed to PCIe) PME requires that the device have
2158 	 * its PME# line hooked up correctly. Not all hardware vendors
2159 	 * do this, so the PME never gets delivered and the device
2160 	 * remains asleep. The easiest way around this is to
2161 	 * periodically walk the list of suspended devices and check
2162 	 * whether any have their PME flag set. The assumption is that
2163 	 * we'll wake up often enough anyway that this won't be a huge
2164 	 * hit, and the power savings from the devices will still be a
2165 	 * win.
2166 	 *
2167 	 * Although PCIe uses in-band PME message instead of PME# line
2168 	 * to report PME, PME does not work for some PCIe devices in
2169 	 * reality.  For example, there are devices that set their PME
2170 	 * status bits, but don't really bother to send a PME message;
2171 	 * there are PCI Express Root Ports that don't bother to
2172 	 * trigger interrupts when they receive PME messages from the
2173 	 * devices below.  So PME poll is used for PCIe devices too.
2174 	 */
2175 
2176 	if (dev->pme_poll) {
2177 		struct pci_pme_device *pme_dev;
2178 		if (enable) {
2179 			pme_dev = kmalloc(sizeof(struct pci_pme_device),
2180 					  GFP_KERNEL);
2181 			if (!pme_dev) {
2182 				pci_warn(dev, "can't enable PME#\n");
2183 				return;
2184 			}
2185 			pme_dev->dev = dev;
2186 			mutex_lock(&pci_pme_list_mutex);
2187 			list_add(&pme_dev->list, &pci_pme_list);
2188 			if (list_is_singular(&pci_pme_list))
2189 				queue_delayed_work(system_freezable_wq,
2190 						   &pci_pme_work,
2191 						   msecs_to_jiffies(PME_TIMEOUT));
2192 			mutex_unlock(&pci_pme_list_mutex);
2193 		} else {
2194 			mutex_lock(&pci_pme_list_mutex);
2195 			list_for_each_entry(pme_dev, &pci_pme_list, list) {
2196 				if (pme_dev->dev == dev) {
2197 					list_del(&pme_dev->list);
2198 					kfree(pme_dev);
2199 					break;
2200 				}
2201 			}
2202 			mutex_unlock(&pci_pme_list_mutex);
2203 		}
2204 	}
2205 
2206 	pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2207 }
2208 EXPORT_SYMBOL(pci_pme_active);
2209 
2210 /**
2211  * __pci_enable_wake - enable PCI device as wakeup event source
2212  * @dev: PCI device affected
2213  * @state: PCI state from which device will issue wakeup events
2214  * @enable: True to enable event generation; false to disable
2215  *
2216  * This enables the device as a wakeup event source, or disables it.
2217  * When such events involves platform-specific hooks, those hooks are
2218  * called automatically by this routine.
2219  *
2220  * Devices with legacy power management (no standard PCI PM capabilities)
2221  * always require such platform hooks.
2222  *
2223  * RETURN VALUE:
2224  * 0 is returned on success
2225  * -EINVAL is returned if device is not supposed to wake up the system
2226  * Error code depending on the platform is returned if both the platform and
2227  * the native mechanism fail to enable the generation of wake-up events
2228  */
2229 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2230 {
2231 	int ret = 0;
2232 
2233 	/*
2234 	 * Bridges that are not power-manageable directly only signal
2235 	 * wakeup on behalf of subordinate devices which is set up
2236 	 * elsewhere, so skip them. However, bridges that are
2237 	 * power-manageable may signal wakeup for themselves (for example,
2238 	 * on a hotplug event) and they need to be covered here.
2239 	 */
2240 	if (!pci_power_manageable(dev))
2241 		return 0;
2242 
2243 	/* Don't do the same thing twice in a row for one device. */
2244 	if (!!enable == !!dev->wakeup_prepared)
2245 		return 0;
2246 
2247 	/*
2248 	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2249 	 * Anderson we should be doing PME# wake enable followed by ACPI wake
2250 	 * enable.  To disable wake-up we call the platform first, for symmetry.
2251 	 */
2252 
2253 	if (enable) {
2254 		int error;
2255 
2256 		if (pci_pme_capable(dev, state))
2257 			pci_pme_active(dev, true);
2258 		else
2259 			ret = 1;
2260 		error = platform_pci_set_wakeup(dev, true);
2261 		if (ret)
2262 			ret = error;
2263 		if (!ret)
2264 			dev->wakeup_prepared = true;
2265 	} else {
2266 		platform_pci_set_wakeup(dev, false);
2267 		pci_pme_active(dev, false);
2268 		dev->wakeup_prepared = false;
2269 	}
2270 
2271 	return ret;
2272 }
2273 
2274 /**
2275  * pci_enable_wake - change wakeup settings for a PCI device
2276  * @pci_dev: Target device
2277  * @state: PCI state from which device will issue wakeup events
2278  * @enable: Whether or not to enable event generation
2279  *
2280  * If @enable is set, check device_may_wakeup() for the device before calling
2281  * __pci_enable_wake() for it.
2282  */
2283 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2284 {
2285 	if (enable && !device_may_wakeup(&pci_dev->dev))
2286 		return -EINVAL;
2287 
2288 	return __pci_enable_wake(pci_dev, state, enable);
2289 }
2290 EXPORT_SYMBOL(pci_enable_wake);
2291 
2292 /**
2293  * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2294  * @dev: PCI device to prepare
2295  * @enable: True to enable wake-up event generation; false to disable
2296  *
2297  * Many drivers want the device to wake up the system from D3_hot or D3_cold
2298  * and this function allows them to set that up cleanly - pci_enable_wake()
2299  * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2300  * ordering constraints.
2301  *
2302  * This function only returns error code if the device is not allowed to wake
2303  * up the system from sleep or it is not capable of generating PME# from both
2304  * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2305  */
2306 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2307 {
2308 	return pci_pme_capable(dev, PCI_D3cold) ?
2309 			pci_enable_wake(dev, PCI_D3cold, enable) :
2310 			pci_enable_wake(dev, PCI_D3hot, enable);
2311 }
2312 EXPORT_SYMBOL(pci_wake_from_d3);
2313 
2314 /**
2315  * pci_target_state - find an appropriate low power state for a given PCI dev
2316  * @dev: PCI device
2317  * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2318  *
2319  * Use underlying platform code to find a supported low power state for @dev.
2320  * If the platform can't manage @dev, return the deepest state from which it
2321  * can generate wake events, based on any available PME info.
2322  */
2323 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2324 {
2325 	pci_power_t target_state = PCI_D3hot;
2326 
2327 	if (platform_pci_power_manageable(dev)) {
2328 		/*
2329 		 * Call the platform to find the target state for the device.
2330 		 */
2331 		pci_power_t state = platform_pci_choose_state(dev);
2332 
2333 		switch (state) {
2334 		case PCI_POWER_ERROR:
2335 		case PCI_UNKNOWN:
2336 			break;
2337 		case PCI_D1:
2338 		case PCI_D2:
2339 			if (pci_no_d1d2(dev))
2340 				break;
2341 			/* else, fall through */
2342 		default:
2343 			target_state = state;
2344 		}
2345 
2346 		return target_state;
2347 	}
2348 
2349 	if (!dev->pm_cap)
2350 		target_state = PCI_D0;
2351 
2352 	/*
2353 	 * If the device is in D3cold even though it's not power-manageable by
2354 	 * the platform, it may have been powered down by non-standard means.
2355 	 * Best to let it slumber.
2356 	 */
2357 	if (dev->current_state == PCI_D3cold)
2358 		target_state = PCI_D3cold;
2359 
2360 	if (wakeup) {
2361 		/*
2362 		 * Find the deepest state from which the device can generate
2363 		 * PME#.
2364 		 */
2365 		if (dev->pme_support) {
2366 			while (target_state
2367 			      && !(dev->pme_support & (1 << target_state)))
2368 				target_state--;
2369 		}
2370 	}
2371 
2372 	return target_state;
2373 }
2374 
2375 /**
2376  * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2377  *			  into a sleep state
2378  * @dev: Device to handle.
2379  *
2380  * Choose the power state appropriate for the device depending on whether
2381  * it can wake up the system and/or is power manageable by the platform
2382  * (PCI_D3hot is the default) and put the device into that state.
2383  */
2384 int pci_prepare_to_sleep(struct pci_dev *dev)
2385 {
2386 	bool wakeup = device_may_wakeup(&dev->dev);
2387 	pci_power_t target_state = pci_target_state(dev, wakeup);
2388 	int error;
2389 
2390 	if (target_state == PCI_POWER_ERROR)
2391 		return -EIO;
2392 
2393 	pci_enable_wake(dev, target_state, wakeup);
2394 
2395 	error = pci_set_power_state(dev, target_state);
2396 
2397 	if (error)
2398 		pci_enable_wake(dev, target_state, false);
2399 
2400 	return error;
2401 }
2402 EXPORT_SYMBOL(pci_prepare_to_sleep);
2403 
2404 /**
2405  * pci_back_from_sleep - turn PCI device on during system-wide transition
2406  *			 into working state
2407  * @dev: Device to handle.
2408  *
2409  * Disable device's system wake-up capability and put it into D0.
2410  */
2411 int pci_back_from_sleep(struct pci_dev *dev)
2412 {
2413 	pci_enable_wake(dev, PCI_D0, false);
2414 	return pci_set_power_state(dev, PCI_D0);
2415 }
2416 EXPORT_SYMBOL(pci_back_from_sleep);
2417 
2418 /**
2419  * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2420  * @dev: PCI device being suspended.
2421  *
2422  * Prepare @dev to generate wake-up events at run time and put it into a low
2423  * power state.
2424  */
2425 int pci_finish_runtime_suspend(struct pci_dev *dev)
2426 {
2427 	pci_power_t target_state;
2428 	int error;
2429 
2430 	target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2431 	if (target_state == PCI_POWER_ERROR)
2432 		return -EIO;
2433 
2434 	dev->runtime_d3cold = target_state == PCI_D3cold;
2435 
2436 	__pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2437 
2438 	error = pci_set_power_state(dev, target_state);
2439 
2440 	if (error) {
2441 		pci_enable_wake(dev, target_state, false);
2442 		dev->runtime_d3cold = false;
2443 	}
2444 
2445 	return error;
2446 }
2447 
2448 /**
2449  * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2450  * @dev: Device to check.
2451  *
2452  * Return true if the device itself is capable of generating wake-up events
2453  * (through the platform or using the native PCIe PME) or if the device supports
2454  * PME and one of its upstream bridges can generate wake-up events.
2455  */
2456 bool pci_dev_run_wake(struct pci_dev *dev)
2457 {
2458 	struct pci_bus *bus = dev->bus;
2459 
2460 	if (!dev->pme_support)
2461 		return false;
2462 
2463 	/* PME-capable in principle, but not from the target power state */
2464 	if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2465 		return false;
2466 
2467 	if (device_can_wakeup(&dev->dev))
2468 		return true;
2469 
2470 	while (bus->parent) {
2471 		struct pci_dev *bridge = bus->self;
2472 
2473 		if (device_can_wakeup(&bridge->dev))
2474 			return true;
2475 
2476 		bus = bus->parent;
2477 	}
2478 
2479 	/* We have reached the root bus. */
2480 	if (bus->bridge)
2481 		return device_can_wakeup(bus->bridge);
2482 
2483 	return false;
2484 }
2485 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2486 
2487 /**
2488  * pci_dev_need_resume - Check if it is necessary to resume the device.
2489  * @pci_dev: Device to check.
2490  *
2491  * Return 'true' if the device is not runtime-suspended or it has to be
2492  * reconfigured due to wakeup settings difference between system and runtime
2493  * suspend, or the current power state of it is not suitable for the upcoming
2494  * (system-wide) transition.
2495  */
2496 bool pci_dev_need_resume(struct pci_dev *pci_dev)
2497 {
2498 	struct device *dev = &pci_dev->dev;
2499 	pci_power_t target_state;
2500 
2501 	if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2502 		return true;
2503 
2504 	target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2505 
2506 	/*
2507 	 * If the earlier platform check has not triggered, D3cold is just power
2508 	 * removal on top of D3hot, so no need to resume the device in that
2509 	 * case.
2510 	 */
2511 	return target_state != pci_dev->current_state &&
2512 		target_state != PCI_D3cold &&
2513 		pci_dev->current_state != PCI_D3hot;
2514 }
2515 
2516 /**
2517  * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2518  * @pci_dev: Device to check.
2519  *
2520  * If the device is suspended and it is not configured for system wakeup,
2521  * disable PME for it to prevent it from waking up the system unnecessarily.
2522  *
2523  * Note that if the device's power state is D3cold and the platform check in
2524  * pci_dev_need_resume() has not triggered, the device's configuration need not
2525  * be changed.
2526  */
2527 void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2528 {
2529 	struct device *dev = &pci_dev->dev;
2530 
2531 	spin_lock_irq(&dev->power.lock);
2532 
2533 	if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2534 	    pci_dev->current_state < PCI_D3cold)
2535 		__pci_pme_active(pci_dev, false);
2536 
2537 	spin_unlock_irq(&dev->power.lock);
2538 }
2539 
2540 /**
2541  * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2542  * @pci_dev: Device to handle.
2543  *
2544  * If the device is runtime suspended and wakeup-capable, enable PME for it as
2545  * it might have been disabled during the prepare phase of system suspend if
2546  * the device was not configured for system wakeup.
2547  */
2548 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2549 {
2550 	struct device *dev = &pci_dev->dev;
2551 
2552 	if (!pci_dev_run_wake(pci_dev))
2553 		return;
2554 
2555 	spin_lock_irq(&dev->power.lock);
2556 
2557 	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2558 		__pci_pme_active(pci_dev, true);
2559 
2560 	spin_unlock_irq(&dev->power.lock);
2561 }
2562 
2563 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2564 {
2565 	struct device *dev = &pdev->dev;
2566 	struct device *parent = dev->parent;
2567 
2568 	if (parent)
2569 		pm_runtime_get_sync(parent);
2570 	pm_runtime_get_noresume(dev);
2571 	/*
2572 	 * pdev->current_state is set to PCI_D3cold during suspending,
2573 	 * so wait until suspending completes
2574 	 */
2575 	pm_runtime_barrier(dev);
2576 	/*
2577 	 * Only need to resume devices in D3cold, because config
2578 	 * registers are still accessible for devices suspended but
2579 	 * not in D3cold.
2580 	 */
2581 	if (pdev->current_state == PCI_D3cold)
2582 		pm_runtime_resume(dev);
2583 }
2584 
2585 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2586 {
2587 	struct device *dev = &pdev->dev;
2588 	struct device *parent = dev->parent;
2589 
2590 	pm_runtime_put(dev);
2591 	if (parent)
2592 		pm_runtime_put_sync(parent);
2593 }
2594 
2595 static const struct dmi_system_id bridge_d3_blacklist[] = {
2596 #ifdef CONFIG_X86
2597 	{
2598 		/*
2599 		 * Gigabyte X299 root port is not marked as hotplug capable
2600 		 * which allows Linux to power manage it.  However, this
2601 		 * confuses the BIOS SMI handler so don't power manage root
2602 		 * ports on that system.
2603 		 */
2604 		.ident = "X299 DESIGNARE EX-CF",
2605 		.matches = {
2606 			DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2607 			DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2608 		},
2609 	},
2610 #endif
2611 	{ }
2612 };
2613 
2614 /**
2615  * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2616  * @bridge: Bridge to check
2617  *
2618  * This function checks if it is possible to move the bridge to D3.
2619  * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2620  */
2621 bool pci_bridge_d3_possible(struct pci_dev *bridge)
2622 {
2623 	if (!pci_is_pcie(bridge))
2624 		return false;
2625 
2626 	switch (pci_pcie_type(bridge)) {
2627 	case PCI_EXP_TYPE_ROOT_PORT:
2628 	case PCI_EXP_TYPE_UPSTREAM:
2629 	case PCI_EXP_TYPE_DOWNSTREAM:
2630 		if (pci_bridge_d3_disable)
2631 			return false;
2632 
2633 		/*
2634 		 * Hotplug ports handled by firmware in System Management Mode
2635 		 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2636 		 */
2637 		if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
2638 			return false;
2639 
2640 		if (pci_bridge_d3_force)
2641 			return true;
2642 
2643 		/* Even the oldest 2010 Thunderbolt controller supports D3. */
2644 		if (bridge->is_thunderbolt)
2645 			return true;
2646 
2647 		/* Platform might know better if the bridge supports D3 */
2648 		if (platform_pci_bridge_d3(bridge))
2649 			return true;
2650 
2651 		/*
2652 		 * Hotplug ports handled natively by the OS were not validated
2653 		 * by vendors for runtime D3 at least until 2018 because there
2654 		 * was no OS support.
2655 		 */
2656 		if (bridge->is_hotplug_bridge)
2657 			return false;
2658 
2659 		if (dmi_check_system(bridge_d3_blacklist))
2660 			return false;
2661 
2662 		/*
2663 		 * It should be safe to put PCIe ports from 2015 or newer
2664 		 * to D3.
2665 		 */
2666 		if (dmi_get_bios_year() >= 2015)
2667 			return true;
2668 		break;
2669 	}
2670 
2671 	return false;
2672 }
2673 
2674 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2675 {
2676 	bool *d3cold_ok = data;
2677 
2678 	if (/* The device needs to be allowed to go D3cold ... */
2679 	    dev->no_d3cold || !dev->d3cold_allowed ||
2680 
2681 	    /* ... and if it is wakeup capable to do so from D3cold. */
2682 	    (device_may_wakeup(&dev->dev) &&
2683 	     !pci_pme_capable(dev, PCI_D3cold)) ||
2684 
2685 	    /* If it is a bridge it must be allowed to go to D3. */
2686 	    !pci_power_manageable(dev))
2687 
2688 		*d3cold_ok = false;
2689 
2690 	return !*d3cold_ok;
2691 }
2692 
2693 /*
2694  * pci_bridge_d3_update - Update bridge D3 capabilities
2695  * @dev: PCI device which is changed
2696  *
2697  * Update upstream bridge PM capabilities accordingly depending on if the
2698  * device PM configuration was changed or the device is being removed.  The
2699  * change is also propagated upstream.
2700  */
2701 void pci_bridge_d3_update(struct pci_dev *dev)
2702 {
2703 	bool remove = !device_is_registered(&dev->dev);
2704 	struct pci_dev *bridge;
2705 	bool d3cold_ok = true;
2706 
2707 	bridge = pci_upstream_bridge(dev);
2708 	if (!bridge || !pci_bridge_d3_possible(bridge))
2709 		return;
2710 
2711 	/*
2712 	 * If D3 is currently allowed for the bridge, removing one of its
2713 	 * children won't change that.
2714 	 */
2715 	if (remove && bridge->bridge_d3)
2716 		return;
2717 
2718 	/*
2719 	 * If D3 is currently allowed for the bridge and a child is added or
2720 	 * changed, disallowance of D3 can only be caused by that child, so
2721 	 * we only need to check that single device, not any of its siblings.
2722 	 *
2723 	 * If D3 is currently not allowed for the bridge, checking the device
2724 	 * first may allow us to skip checking its siblings.
2725 	 */
2726 	if (!remove)
2727 		pci_dev_check_d3cold(dev, &d3cold_ok);
2728 
2729 	/*
2730 	 * If D3 is currently not allowed for the bridge, this may be caused
2731 	 * either by the device being changed/removed or any of its siblings,
2732 	 * so we need to go through all children to find out if one of them
2733 	 * continues to block D3.
2734 	 */
2735 	if (d3cold_ok && !bridge->bridge_d3)
2736 		pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
2737 			     &d3cold_ok);
2738 
2739 	if (bridge->bridge_d3 != d3cold_ok) {
2740 		bridge->bridge_d3 = d3cold_ok;
2741 		/* Propagate change to upstream bridges */
2742 		pci_bridge_d3_update(bridge);
2743 	}
2744 }
2745 
2746 /**
2747  * pci_d3cold_enable - Enable D3cold for device
2748  * @dev: PCI device to handle
2749  *
2750  * This function can be used in drivers to enable D3cold from the device
2751  * they handle.  It also updates upstream PCI bridge PM capabilities
2752  * accordingly.
2753  */
2754 void pci_d3cold_enable(struct pci_dev *dev)
2755 {
2756 	if (dev->no_d3cold) {
2757 		dev->no_d3cold = false;
2758 		pci_bridge_d3_update(dev);
2759 	}
2760 }
2761 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
2762 
2763 /**
2764  * pci_d3cold_disable - Disable D3cold for device
2765  * @dev: PCI device to handle
2766  *
2767  * This function can be used in drivers to disable D3cold from the device
2768  * they handle.  It also updates upstream PCI bridge PM capabilities
2769  * accordingly.
2770  */
2771 void pci_d3cold_disable(struct pci_dev *dev)
2772 {
2773 	if (!dev->no_d3cold) {
2774 		dev->no_d3cold = true;
2775 		pci_bridge_d3_update(dev);
2776 	}
2777 }
2778 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
2779 
2780 /**
2781  * pci_pm_init - Initialize PM functions of given PCI device
2782  * @dev: PCI device to handle.
2783  */
2784 void pci_pm_init(struct pci_dev *dev)
2785 {
2786 	int pm;
2787 	u16 status;
2788 	u16 pmc;
2789 
2790 	pm_runtime_forbid(&dev->dev);
2791 	pm_runtime_set_active(&dev->dev);
2792 	pm_runtime_enable(&dev->dev);
2793 	device_enable_async_suspend(&dev->dev);
2794 	dev->wakeup_prepared = false;
2795 
2796 	dev->pm_cap = 0;
2797 	dev->pme_support = 0;
2798 
2799 	/* find PCI PM capability in list */
2800 	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2801 	if (!pm)
2802 		return;
2803 	/* Check device's ability to generate PME# */
2804 	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2805 
2806 	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2807 		pci_err(dev, "unsupported PM cap regs version (%u)\n",
2808 			pmc & PCI_PM_CAP_VER_MASK);
2809 		return;
2810 	}
2811 
2812 	dev->pm_cap = pm;
2813 	dev->d3_delay = PCI_PM_D3_WAIT;
2814 	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2815 	dev->bridge_d3 = pci_bridge_d3_possible(dev);
2816 	dev->d3cold_allowed = true;
2817 
2818 	dev->d1_support = false;
2819 	dev->d2_support = false;
2820 	if (!pci_no_d1d2(dev)) {
2821 		if (pmc & PCI_PM_CAP_D1)
2822 			dev->d1_support = true;
2823 		if (pmc & PCI_PM_CAP_D2)
2824 			dev->d2_support = true;
2825 
2826 		if (dev->d1_support || dev->d2_support)
2827 			pci_info(dev, "supports%s%s\n",
2828 				   dev->d1_support ? " D1" : "",
2829 				   dev->d2_support ? " D2" : "");
2830 	}
2831 
2832 	pmc &= PCI_PM_CAP_PME_MASK;
2833 	if (pmc) {
2834 		pci_info(dev, "PME# supported from%s%s%s%s%s\n",
2835 			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2836 			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2837 			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2838 			 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2839 			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2840 		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2841 		dev->pme_poll = true;
2842 		/*
2843 		 * Make device's PM flags reflect the wake-up capability, but
2844 		 * let the user space enable it to wake up the system as needed.
2845 		 */
2846 		device_set_wakeup_capable(&dev->dev, true);
2847 		/* Disable the PME# generation functionality */
2848 		pci_pme_active(dev, false);
2849 	}
2850 
2851 	pci_read_config_word(dev, PCI_STATUS, &status);
2852 	if (status & PCI_STATUS_IMM_READY)
2853 		dev->imm_ready = 1;
2854 }
2855 
2856 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
2857 {
2858 	unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
2859 
2860 	switch (prop) {
2861 	case PCI_EA_P_MEM:
2862 	case PCI_EA_P_VF_MEM:
2863 		flags |= IORESOURCE_MEM;
2864 		break;
2865 	case PCI_EA_P_MEM_PREFETCH:
2866 	case PCI_EA_P_VF_MEM_PREFETCH:
2867 		flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
2868 		break;
2869 	case PCI_EA_P_IO:
2870 		flags |= IORESOURCE_IO;
2871 		break;
2872 	default:
2873 		return 0;
2874 	}
2875 
2876 	return flags;
2877 }
2878 
2879 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
2880 					    u8 prop)
2881 {
2882 	if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
2883 		return &dev->resource[bei];
2884 #ifdef CONFIG_PCI_IOV
2885 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
2886 		 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
2887 		return &dev->resource[PCI_IOV_RESOURCES +
2888 				      bei - PCI_EA_BEI_VF_BAR0];
2889 #endif
2890 	else if (bei == PCI_EA_BEI_ROM)
2891 		return &dev->resource[PCI_ROM_RESOURCE];
2892 	else
2893 		return NULL;
2894 }
2895 
2896 /* Read an Enhanced Allocation (EA) entry */
2897 static int pci_ea_read(struct pci_dev *dev, int offset)
2898 {
2899 	struct resource *res;
2900 	int ent_size, ent_offset = offset;
2901 	resource_size_t start, end;
2902 	unsigned long flags;
2903 	u32 dw0, bei, base, max_offset;
2904 	u8 prop;
2905 	bool support_64 = (sizeof(resource_size_t) >= 8);
2906 
2907 	pci_read_config_dword(dev, ent_offset, &dw0);
2908 	ent_offset += 4;
2909 
2910 	/* Entry size field indicates DWORDs after 1st */
2911 	ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
2912 
2913 	if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
2914 		goto out;
2915 
2916 	bei = (dw0 & PCI_EA_BEI) >> 4;
2917 	prop = (dw0 & PCI_EA_PP) >> 8;
2918 
2919 	/*
2920 	 * If the Property is in the reserved range, try the Secondary
2921 	 * Property instead.
2922 	 */
2923 	if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
2924 		prop = (dw0 & PCI_EA_SP) >> 16;
2925 	if (prop > PCI_EA_P_BRIDGE_IO)
2926 		goto out;
2927 
2928 	res = pci_ea_get_resource(dev, bei, prop);
2929 	if (!res) {
2930 		pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
2931 		goto out;
2932 	}
2933 
2934 	flags = pci_ea_flags(dev, prop);
2935 	if (!flags) {
2936 		pci_err(dev, "Unsupported EA properties: %#x\n", prop);
2937 		goto out;
2938 	}
2939 
2940 	/* Read Base */
2941 	pci_read_config_dword(dev, ent_offset, &base);
2942 	start = (base & PCI_EA_FIELD_MASK);
2943 	ent_offset += 4;
2944 
2945 	/* Read MaxOffset */
2946 	pci_read_config_dword(dev, ent_offset, &max_offset);
2947 	ent_offset += 4;
2948 
2949 	/* Read Base MSBs (if 64-bit entry) */
2950 	if (base & PCI_EA_IS_64) {
2951 		u32 base_upper;
2952 
2953 		pci_read_config_dword(dev, ent_offset, &base_upper);
2954 		ent_offset += 4;
2955 
2956 		flags |= IORESOURCE_MEM_64;
2957 
2958 		/* entry starts above 32-bit boundary, can't use */
2959 		if (!support_64 && base_upper)
2960 			goto out;
2961 
2962 		if (support_64)
2963 			start |= ((u64)base_upper << 32);
2964 	}
2965 
2966 	end = start + (max_offset | 0x03);
2967 
2968 	/* Read MaxOffset MSBs (if 64-bit entry) */
2969 	if (max_offset & PCI_EA_IS_64) {
2970 		u32 max_offset_upper;
2971 
2972 		pci_read_config_dword(dev, ent_offset, &max_offset_upper);
2973 		ent_offset += 4;
2974 
2975 		flags |= IORESOURCE_MEM_64;
2976 
2977 		/* entry too big, can't use */
2978 		if (!support_64 && max_offset_upper)
2979 			goto out;
2980 
2981 		if (support_64)
2982 			end += ((u64)max_offset_upper << 32);
2983 	}
2984 
2985 	if (end < start) {
2986 		pci_err(dev, "EA Entry crosses address boundary\n");
2987 		goto out;
2988 	}
2989 
2990 	if (ent_size != ent_offset - offset) {
2991 		pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
2992 			ent_size, ent_offset - offset);
2993 		goto out;
2994 	}
2995 
2996 	res->name = pci_name(dev);
2997 	res->start = start;
2998 	res->end = end;
2999 	res->flags = flags;
3000 
3001 	if (bei <= PCI_EA_BEI_BAR5)
3002 		pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3003 			   bei, res, prop);
3004 	else if (bei == PCI_EA_BEI_ROM)
3005 		pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3006 			   res, prop);
3007 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3008 		pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3009 			   bei - PCI_EA_BEI_VF_BAR0, res, prop);
3010 	else
3011 		pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3012 			   bei, res, prop);
3013 
3014 out:
3015 	return offset + ent_size;
3016 }
3017 
3018 /* Enhanced Allocation Initialization */
3019 void pci_ea_init(struct pci_dev *dev)
3020 {
3021 	int ea;
3022 	u8 num_ent;
3023 	int offset;
3024 	int i;
3025 
3026 	/* find PCI EA capability in list */
3027 	ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3028 	if (!ea)
3029 		return;
3030 
3031 	/* determine the number of entries */
3032 	pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3033 					&num_ent);
3034 	num_ent &= PCI_EA_NUM_ENT_MASK;
3035 
3036 	offset = ea + PCI_EA_FIRST_ENT;
3037 
3038 	/* Skip DWORD 2 for type 1 functions */
3039 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3040 		offset += 4;
3041 
3042 	/* parse each EA entry */
3043 	for (i = 0; i < num_ent; ++i)
3044 		offset = pci_ea_read(dev, offset);
3045 }
3046 
3047 static void pci_add_saved_cap(struct pci_dev *pci_dev,
3048 	struct pci_cap_saved_state *new_cap)
3049 {
3050 	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3051 }
3052 
3053 /**
3054  * _pci_add_cap_save_buffer - allocate buffer for saving given
3055  *			      capability registers
3056  * @dev: the PCI device
3057  * @cap: the capability to allocate the buffer for
3058  * @extended: Standard or Extended capability ID
3059  * @size: requested size of the buffer
3060  */
3061 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3062 				    bool extended, unsigned int size)
3063 {
3064 	int pos;
3065 	struct pci_cap_saved_state *save_state;
3066 
3067 	if (extended)
3068 		pos = pci_find_ext_capability(dev, cap);
3069 	else
3070 		pos = pci_find_capability(dev, cap);
3071 
3072 	if (!pos)
3073 		return 0;
3074 
3075 	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3076 	if (!save_state)
3077 		return -ENOMEM;
3078 
3079 	save_state->cap.cap_nr = cap;
3080 	save_state->cap.cap_extended = extended;
3081 	save_state->cap.size = size;
3082 	pci_add_saved_cap(dev, save_state);
3083 
3084 	return 0;
3085 }
3086 
3087 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3088 {
3089 	return _pci_add_cap_save_buffer(dev, cap, false, size);
3090 }
3091 
3092 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3093 {
3094 	return _pci_add_cap_save_buffer(dev, cap, true, size);
3095 }
3096 
3097 /**
3098  * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3099  * @dev: the PCI device
3100  */
3101 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3102 {
3103 	int error;
3104 
3105 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3106 					PCI_EXP_SAVE_REGS * sizeof(u16));
3107 	if (error)
3108 		pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3109 
3110 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3111 	if (error)
3112 		pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3113 
3114 	error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3115 					    2 * sizeof(u16));
3116 	if (error)
3117 		pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3118 
3119 	pci_allocate_vc_save_buffers(dev);
3120 }
3121 
3122 void pci_free_cap_save_buffers(struct pci_dev *dev)
3123 {
3124 	struct pci_cap_saved_state *tmp;
3125 	struct hlist_node *n;
3126 
3127 	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3128 		kfree(tmp);
3129 }
3130 
3131 /**
3132  * pci_configure_ari - enable or disable ARI forwarding
3133  * @dev: the PCI device
3134  *
3135  * If @dev and its upstream bridge both support ARI, enable ARI in the
3136  * bridge.  Otherwise, disable ARI in the bridge.
3137  */
3138 void pci_configure_ari(struct pci_dev *dev)
3139 {
3140 	u32 cap;
3141 	struct pci_dev *bridge;
3142 
3143 	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3144 		return;
3145 
3146 	bridge = dev->bus->self;
3147 	if (!bridge)
3148 		return;
3149 
3150 	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3151 	if (!(cap & PCI_EXP_DEVCAP2_ARI))
3152 		return;
3153 
3154 	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3155 		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3156 					 PCI_EXP_DEVCTL2_ARI);
3157 		bridge->ari_enabled = 1;
3158 	} else {
3159 		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3160 					   PCI_EXP_DEVCTL2_ARI);
3161 		bridge->ari_enabled = 0;
3162 	}
3163 }
3164 
3165 static int pci_acs_enable;
3166 
3167 /**
3168  * pci_request_acs - ask for ACS to be enabled if supported
3169  */
3170 void pci_request_acs(void)
3171 {
3172 	pci_acs_enable = 1;
3173 }
3174 
3175 static const char *disable_acs_redir_param;
3176 
3177 /**
3178  * pci_disable_acs_redir - disable ACS redirect capabilities
3179  * @dev: the PCI device
3180  *
3181  * For only devices specified in the disable_acs_redir parameter.
3182  */
3183 static void pci_disable_acs_redir(struct pci_dev *dev)
3184 {
3185 	int ret = 0;
3186 	const char *p;
3187 	int pos;
3188 	u16 ctrl;
3189 
3190 	if (!disable_acs_redir_param)
3191 		return;
3192 
3193 	p = disable_acs_redir_param;
3194 	while (*p) {
3195 		ret = pci_dev_str_match(dev, p, &p);
3196 		if (ret < 0) {
3197 			pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
3198 				     disable_acs_redir_param);
3199 
3200 			break;
3201 		} else if (ret == 1) {
3202 			/* Found a match */
3203 			break;
3204 		}
3205 
3206 		if (*p != ';' && *p != ',') {
3207 			/* End of param or invalid format */
3208 			break;
3209 		}
3210 		p++;
3211 	}
3212 
3213 	if (ret != 1)
3214 		return;
3215 
3216 	if (!pci_dev_specific_disable_acs_redir(dev))
3217 		return;
3218 
3219 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3220 	if (!pos) {
3221 		pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
3222 		return;
3223 	}
3224 
3225 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
3226 
3227 	/* P2P Request & Completion Redirect */
3228 	ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
3229 
3230 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
3231 
3232 	pci_info(dev, "disabled ACS redirect\n");
3233 }
3234 
3235 /**
3236  * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
3237  * @dev: the PCI device
3238  */
3239 static void pci_std_enable_acs(struct pci_dev *dev)
3240 {
3241 	int pos;
3242 	u16 cap;
3243 	u16 ctrl;
3244 
3245 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3246 	if (!pos)
3247 		return;
3248 
3249 	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
3250 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
3251 
3252 	/* Source Validation */
3253 	ctrl |= (cap & PCI_ACS_SV);
3254 
3255 	/* P2P Request Redirect */
3256 	ctrl |= (cap & PCI_ACS_RR);
3257 
3258 	/* P2P Completion Redirect */
3259 	ctrl |= (cap & PCI_ACS_CR);
3260 
3261 	/* Upstream Forwarding */
3262 	ctrl |= (cap & PCI_ACS_UF);
3263 
3264 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
3265 }
3266 
3267 /**
3268  * pci_enable_acs - enable ACS if hardware support it
3269  * @dev: the PCI device
3270  */
3271 void pci_enable_acs(struct pci_dev *dev)
3272 {
3273 	if (!pci_acs_enable)
3274 		goto disable_acs_redir;
3275 
3276 	if (!pci_dev_specific_enable_acs(dev))
3277 		goto disable_acs_redir;
3278 
3279 	pci_std_enable_acs(dev);
3280 
3281 disable_acs_redir:
3282 	/*
3283 	 * Note: pci_disable_acs_redir() must be called even if ACS was not
3284 	 * enabled by the kernel because it may have been enabled by
3285 	 * platform firmware.  So if we are told to disable it, we should
3286 	 * always disable it after setting the kernel's default
3287 	 * preferences.
3288 	 */
3289 	pci_disable_acs_redir(dev);
3290 }
3291 
3292 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3293 {
3294 	int pos;
3295 	u16 cap, ctrl;
3296 
3297 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
3298 	if (!pos)
3299 		return false;
3300 
3301 	/*
3302 	 * Except for egress control, capabilities are either required
3303 	 * or only required if controllable.  Features missing from the
3304 	 * capability field can therefore be assumed as hard-wired enabled.
3305 	 */
3306 	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3307 	acs_flags &= (cap | PCI_ACS_EC);
3308 
3309 	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3310 	return (ctrl & acs_flags) == acs_flags;
3311 }
3312 
3313 /**
3314  * pci_acs_enabled - test ACS against required flags for a given device
3315  * @pdev: device to test
3316  * @acs_flags: required PCI ACS flags
3317  *
3318  * Return true if the device supports the provided flags.  Automatically
3319  * filters out flags that are not implemented on multifunction devices.
3320  *
3321  * Note that this interface checks the effective ACS capabilities of the
3322  * device rather than the actual capabilities.  For instance, most single
3323  * function endpoints are not required to support ACS because they have no
3324  * opportunity for peer-to-peer access.  We therefore return 'true'
3325  * regardless of whether the device exposes an ACS capability.  This makes
3326  * it much easier for callers of this function to ignore the actual type
3327  * or topology of the device when testing ACS support.
3328  */
3329 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3330 {
3331 	int ret;
3332 
3333 	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3334 	if (ret >= 0)
3335 		return ret > 0;
3336 
3337 	/*
3338 	 * Conventional PCI and PCI-X devices never support ACS, either
3339 	 * effectively or actually.  The shared bus topology implies that
3340 	 * any device on the bus can receive or snoop DMA.
3341 	 */
3342 	if (!pci_is_pcie(pdev))
3343 		return false;
3344 
3345 	switch (pci_pcie_type(pdev)) {
3346 	/*
3347 	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3348 	 * but since their primary interface is PCI/X, we conservatively
3349 	 * handle them as we would a non-PCIe device.
3350 	 */
3351 	case PCI_EXP_TYPE_PCIE_BRIDGE:
3352 	/*
3353 	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
3354 	 * applicable... must never implement an ACS Extended Capability...".
3355 	 * This seems arbitrary, but we take a conservative interpretation
3356 	 * of this statement.
3357 	 */
3358 	case PCI_EXP_TYPE_PCI_BRIDGE:
3359 	case PCI_EXP_TYPE_RC_EC:
3360 		return false;
3361 	/*
3362 	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3363 	 * implement ACS in order to indicate their peer-to-peer capabilities,
3364 	 * regardless of whether they are single- or multi-function devices.
3365 	 */
3366 	case PCI_EXP_TYPE_DOWNSTREAM:
3367 	case PCI_EXP_TYPE_ROOT_PORT:
3368 		return pci_acs_flags_enabled(pdev, acs_flags);
3369 	/*
3370 	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3371 	 * implemented by the remaining PCIe types to indicate peer-to-peer
3372 	 * capabilities, but only when they are part of a multifunction
3373 	 * device.  The footnote for section 6.12 indicates the specific
3374 	 * PCIe types included here.
3375 	 */
3376 	case PCI_EXP_TYPE_ENDPOINT:
3377 	case PCI_EXP_TYPE_UPSTREAM:
3378 	case PCI_EXP_TYPE_LEG_END:
3379 	case PCI_EXP_TYPE_RC_END:
3380 		if (!pdev->multifunction)
3381 			break;
3382 
3383 		return pci_acs_flags_enabled(pdev, acs_flags);
3384 	}
3385 
3386 	/*
3387 	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3388 	 * to single function devices with the exception of downstream ports.
3389 	 */
3390 	return true;
3391 }
3392 
3393 /**
3394  * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
3395  * @start: starting downstream device
3396  * @end: ending upstream device or NULL to search to the root bus
3397  * @acs_flags: required flags
3398  *
3399  * Walk up a device tree from start to end testing PCI ACS support.  If
3400  * any step along the way does not support the required flags, return false.
3401  */
3402 bool pci_acs_path_enabled(struct pci_dev *start,
3403 			  struct pci_dev *end, u16 acs_flags)
3404 {
3405 	struct pci_dev *pdev, *parent = start;
3406 
3407 	do {
3408 		pdev = parent;
3409 
3410 		if (!pci_acs_enabled(pdev, acs_flags))
3411 			return false;
3412 
3413 		if (pci_is_root_bus(pdev->bus))
3414 			return (end == NULL);
3415 
3416 		parent = pdev->bus->self;
3417 	} while (pdev != end);
3418 
3419 	return true;
3420 }
3421 
3422 /**
3423  * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3424  * @pdev: PCI device
3425  * @bar: BAR to find
3426  *
3427  * Helper to find the position of the ctrl register for a BAR.
3428  * Returns -ENOTSUPP if resizable BARs are not supported at all.
3429  * Returns -ENOENT if no ctrl register for the BAR could be found.
3430  */
3431 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3432 {
3433 	unsigned int pos, nbars, i;
3434 	u32 ctrl;
3435 
3436 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3437 	if (!pos)
3438 		return -ENOTSUPP;
3439 
3440 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3441 	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3442 		    PCI_REBAR_CTRL_NBAR_SHIFT;
3443 
3444 	for (i = 0; i < nbars; i++, pos += 8) {
3445 		int bar_idx;
3446 
3447 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3448 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3449 		if (bar_idx == bar)
3450 			return pos;
3451 	}
3452 
3453 	return -ENOENT;
3454 }
3455 
3456 /**
3457  * pci_rebar_get_possible_sizes - get possible sizes for BAR
3458  * @pdev: PCI device
3459  * @bar: BAR to query
3460  *
3461  * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3462  * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3463  */
3464 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3465 {
3466 	int pos;
3467 	u32 cap;
3468 
3469 	pos = pci_rebar_find_pos(pdev, bar);
3470 	if (pos < 0)
3471 		return 0;
3472 
3473 	pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3474 	return (cap & PCI_REBAR_CAP_SIZES) >> 4;
3475 }
3476 
3477 /**
3478  * pci_rebar_get_current_size - get the current size of a BAR
3479  * @pdev: PCI device
3480  * @bar: BAR to set size to
3481  *
3482  * Read the size of a BAR from the resizable BAR config.
3483  * Returns size if found or negative error code.
3484  */
3485 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3486 {
3487 	int pos;
3488 	u32 ctrl;
3489 
3490 	pos = pci_rebar_find_pos(pdev, bar);
3491 	if (pos < 0)
3492 		return pos;
3493 
3494 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3495 	return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3496 }
3497 
3498 /**
3499  * pci_rebar_set_size - set a new size for a BAR
3500  * @pdev: PCI device
3501  * @bar: BAR to set size to
3502  * @size: new size as defined in the spec (0=1MB, 19=512GB)
3503  *
3504  * Set the new size of a BAR as defined in the spec.
3505  * Returns zero if resizing was successful, error code otherwise.
3506  */
3507 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3508 {
3509 	int pos;
3510 	u32 ctrl;
3511 
3512 	pos = pci_rebar_find_pos(pdev, bar);
3513 	if (pos < 0)
3514 		return pos;
3515 
3516 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3517 	ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3518 	ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3519 	pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3520 	return 0;
3521 }
3522 
3523 /**
3524  * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3525  * @dev: the PCI device
3526  * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3527  *	PCI_EXP_DEVCAP2_ATOMIC_COMP32
3528  *	PCI_EXP_DEVCAP2_ATOMIC_COMP64
3529  *	PCI_EXP_DEVCAP2_ATOMIC_COMP128
3530  *
3531  * Return 0 if all upstream bridges support AtomicOp routing, egress
3532  * blocking is disabled on all upstream ports, and the root port supports
3533  * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3534  * AtomicOp completion), or negative otherwise.
3535  */
3536 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3537 {
3538 	struct pci_bus *bus = dev->bus;
3539 	struct pci_dev *bridge;
3540 	u32 cap, ctl2;
3541 
3542 	if (!pci_is_pcie(dev))
3543 		return -EINVAL;
3544 
3545 	/*
3546 	 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3547 	 * AtomicOp requesters.  For now, we only support endpoints as
3548 	 * requesters and root ports as completers.  No endpoints as
3549 	 * completers, and no peer-to-peer.
3550 	 */
3551 
3552 	switch (pci_pcie_type(dev)) {
3553 	case PCI_EXP_TYPE_ENDPOINT:
3554 	case PCI_EXP_TYPE_LEG_END:
3555 	case PCI_EXP_TYPE_RC_END:
3556 		break;
3557 	default:
3558 		return -EINVAL;
3559 	}
3560 
3561 	while (bus->parent) {
3562 		bridge = bus->self;
3563 
3564 		pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3565 
3566 		switch (pci_pcie_type(bridge)) {
3567 		/* Ensure switch ports support AtomicOp routing */
3568 		case PCI_EXP_TYPE_UPSTREAM:
3569 		case PCI_EXP_TYPE_DOWNSTREAM:
3570 			if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3571 				return -EINVAL;
3572 			break;
3573 
3574 		/* Ensure root port supports all the sizes we care about */
3575 		case PCI_EXP_TYPE_ROOT_PORT:
3576 			if ((cap & cap_mask) != cap_mask)
3577 				return -EINVAL;
3578 			break;
3579 		}
3580 
3581 		/* Ensure upstream ports don't block AtomicOps on egress */
3582 		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3583 			pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3584 						   &ctl2);
3585 			if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3586 				return -EINVAL;
3587 		}
3588 
3589 		bus = bus->parent;
3590 	}
3591 
3592 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3593 				 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3594 	return 0;
3595 }
3596 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3597 
3598 /**
3599  * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3600  * @dev: the PCI device
3601  * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3602  *
3603  * Perform INTx swizzling for a device behind one level of bridge.  This is
3604  * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3605  * behind bridges on add-in cards.  For devices with ARI enabled, the slot
3606  * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3607  * the PCI Express Base Specification, Revision 2.1)
3608  */
3609 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3610 {
3611 	int slot;
3612 
3613 	if (pci_ari_enabled(dev->bus))
3614 		slot = 0;
3615 	else
3616 		slot = PCI_SLOT(dev->devfn);
3617 
3618 	return (((pin - 1) + slot) % 4) + 1;
3619 }
3620 
3621 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3622 {
3623 	u8 pin;
3624 
3625 	pin = dev->pin;
3626 	if (!pin)
3627 		return -1;
3628 
3629 	while (!pci_is_root_bus(dev->bus)) {
3630 		pin = pci_swizzle_interrupt_pin(dev, pin);
3631 		dev = dev->bus->self;
3632 	}
3633 	*bridge = dev;
3634 	return pin;
3635 }
3636 
3637 /**
3638  * pci_common_swizzle - swizzle INTx all the way to root bridge
3639  * @dev: the PCI device
3640  * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3641  *
3642  * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
3643  * bridges all the way up to a PCI root bus.
3644  */
3645 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3646 {
3647 	u8 pin = *pinp;
3648 
3649 	while (!pci_is_root_bus(dev->bus)) {
3650 		pin = pci_swizzle_interrupt_pin(dev, pin);
3651 		dev = dev->bus->self;
3652 	}
3653 	*pinp = pin;
3654 	return PCI_SLOT(dev->devfn);
3655 }
3656 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3657 
3658 /**
3659  * pci_release_region - Release a PCI bar
3660  * @pdev: PCI device whose resources were previously reserved by
3661  *	  pci_request_region()
3662  * @bar: BAR to release
3663  *
3664  * Releases the PCI I/O and memory resources previously reserved by a
3665  * successful call to pci_request_region().  Call this function only
3666  * after all use of the PCI regions has ceased.
3667  */
3668 void pci_release_region(struct pci_dev *pdev, int bar)
3669 {
3670 	struct pci_devres *dr;
3671 
3672 	if (pci_resource_len(pdev, bar) == 0)
3673 		return;
3674 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3675 		release_region(pci_resource_start(pdev, bar),
3676 				pci_resource_len(pdev, bar));
3677 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3678 		release_mem_region(pci_resource_start(pdev, bar),
3679 				pci_resource_len(pdev, bar));
3680 
3681 	dr = find_pci_dr(pdev);
3682 	if (dr)
3683 		dr->region_mask &= ~(1 << bar);
3684 }
3685 EXPORT_SYMBOL(pci_release_region);
3686 
3687 /**
3688  * __pci_request_region - Reserved PCI I/O and memory resource
3689  * @pdev: PCI device whose resources are to be reserved
3690  * @bar: BAR to be reserved
3691  * @res_name: Name to be associated with resource.
3692  * @exclusive: whether the region access is exclusive or not
3693  *
3694  * Mark the PCI region associated with PCI device @pdev BAR @bar as
3695  * being reserved by owner @res_name.  Do not access any
3696  * address inside the PCI regions unless this call returns
3697  * successfully.
3698  *
3699  * If @exclusive is set, then the region is marked so that userspace
3700  * is explicitly not allowed to map the resource via /dev/mem or
3701  * sysfs MMIO access.
3702  *
3703  * Returns 0 on success, or %EBUSY on error.  A warning
3704  * message is also printed on failure.
3705  */
3706 static int __pci_request_region(struct pci_dev *pdev, int bar,
3707 				const char *res_name, int exclusive)
3708 {
3709 	struct pci_devres *dr;
3710 
3711 	if (pci_resource_len(pdev, bar) == 0)
3712 		return 0;
3713 
3714 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3715 		if (!request_region(pci_resource_start(pdev, bar),
3716 			    pci_resource_len(pdev, bar), res_name))
3717 			goto err_out;
3718 	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3719 		if (!__request_mem_region(pci_resource_start(pdev, bar),
3720 					pci_resource_len(pdev, bar), res_name,
3721 					exclusive))
3722 			goto err_out;
3723 	}
3724 
3725 	dr = find_pci_dr(pdev);
3726 	if (dr)
3727 		dr->region_mask |= 1 << bar;
3728 
3729 	return 0;
3730 
3731 err_out:
3732 	pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3733 		 &pdev->resource[bar]);
3734 	return -EBUSY;
3735 }
3736 
3737 /**
3738  * pci_request_region - Reserve PCI I/O and memory resource
3739  * @pdev: PCI device whose resources are to be reserved
3740  * @bar: BAR to be reserved
3741  * @res_name: Name to be associated with resource
3742  *
3743  * Mark the PCI region associated with PCI device @pdev BAR @bar as
3744  * being reserved by owner @res_name.  Do not access any
3745  * address inside the PCI regions unless this call returns
3746  * successfully.
3747  *
3748  * Returns 0 on success, or %EBUSY on error.  A warning
3749  * message is also printed on failure.
3750  */
3751 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3752 {
3753 	return __pci_request_region(pdev, bar, res_name, 0);
3754 }
3755 EXPORT_SYMBOL(pci_request_region);
3756 
3757 /**
3758  * pci_release_selected_regions - Release selected PCI I/O and memory resources
3759  * @pdev: PCI device whose resources were previously reserved
3760  * @bars: Bitmask of BARs to be released
3761  *
3762  * Release selected PCI I/O and memory resources previously reserved.
3763  * Call this function only after all use of the PCI regions has ceased.
3764  */
3765 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3766 {
3767 	int i;
3768 
3769 	for (i = 0; i < 6; i++)
3770 		if (bars & (1 << i))
3771 			pci_release_region(pdev, i);
3772 }
3773 EXPORT_SYMBOL(pci_release_selected_regions);
3774 
3775 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3776 					  const char *res_name, int excl)
3777 {
3778 	int i;
3779 
3780 	for (i = 0; i < 6; i++)
3781 		if (bars & (1 << i))
3782 			if (__pci_request_region(pdev, i, res_name, excl))
3783 				goto err_out;
3784 	return 0;
3785 
3786 err_out:
3787 	while (--i >= 0)
3788 		if (bars & (1 << i))
3789 			pci_release_region(pdev, i);
3790 
3791 	return -EBUSY;
3792 }
3793 
3794 
3795 /**
3796  * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3797  * @pdev: PCI device whose resources are to be reserved
3798  * @bars: Bitmask of BARs to be requested
3799  * @res_name: Name to be associated with resource
3800  */
3801 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3802 				 const char *res_name)
3803 {
3804 	return __pci_request_selected_regions(pdev, bars, res_name, 0);
3805 }
3806 EXPORT_SYMBOL(pci_request_selected_regions);
3807 
3808 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3809 					   const char *res_name)
3810 {
3811 	return __pci_request_selected_regions(pdev, bars, res_name,
3812 			IORESOURCE_EXCLUSIVE);
3813 }
3814 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3815 
3816 /**
3817  * pci_release_regions - Release reserved PCI I/O and memory resources
3818  * @pdev: PCI device whose resources were previously reserved by
3819  *	  pci_request_regions()
3820  *
3821  * Releases all PCI I/O and memory resources previously reserved by a
3822  * successful call to pci_request_regions().  Call this function only
3823  * after all use of the PCI regions has ceased.
3824  */
3825 
3826 void pci_release_regions(struct pci_dev *pdev)
3827 {
3828 	pci_release_selected_regions(pdev, (1 << 6) - 1);
3829 }
3830 EXPORT_SYMBOL(pci_release_regions);
3831 
3832 /**
3833  * pci_request_regions - Reserve PCI I/O and memory resources
3834  * @pdev: PCI device whose resources are to be reserved
3835  * @res_name: Name to be associated with resource.
3836  *
3837  * Mark all PCI regions associated with PCI device @pdev as
3838  * being reserved by owner @res_name.  Do not access any
3839  * address inside the PCI regions unless this call returns
3840  * successfully.
3841  *
3842  * Returns 0 on success, or %EBUSY on error.  A warning
3843  * message is also printed on failure.
3844  */
3845 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
3846 {
3847 	return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
3848 }
3849 EXPORT_SYMBOL(pci_request_regions);
3850 
3851 /**
3852  * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
3853  * @pdev: PCI device whose resources are to be reserved
3854  * @res_name: Name to be associated with resource.
3855  *
3856  * Mark all PCI regions associated with PCI device @pdev as being reserved
3857  * by owner @res_name.  Do not access any address inside the PCI regions
3858  * unless this call returns successfully.
3859  *
3860  * pci_request_regions_exclusive() will mark the region so that /dev/mem
3861  * and the sysfs MMIO access will not be allowed.
3862  *
3863  * Returns 0 on success, or %EBUSY on error.  A warning message is also
3864  * printed on failure.
3865  */
3866 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3867 {
3868 	return pci_request_selected_regions_exclusive(pdev,
3869 					((1 << 6) - 1), res_name);
3870 }
3871 EXPORT_SYMBOL(pci_request_regions_exclusive);
3872 
3873 /*
3874  * Record the PCI IO range (expressed as CPU physical address + size).
3875  * Return a negative value if an error has occurred, zero otherwise
3876  */
3877 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
3878 			resource_size_t	size)
3879 {
3880 	int ret = 0;
3881 #ifdef PCI_IOBASE
3882 	struct logic_pio_hwaddr *range;
3883 
3884 	if (!size || addr + size < addr)
3885 		return -EINVAL;
3886 
3887 	range = kzalloc(sizeof(*range), GFP_ATOMIC);
3888 	if (!range)
3889 		return -ENOMEM;
3890 
3891 	range->fwnode = fwnode;
3892 	range->size = size;
3893 	range->hw_start = addr;
3894 	range->flags = LOGIC_PIO_CPU_MMIO;
3895 
3896 	ret = logic_pio_register_range(range);
3897 	if (ret)
3898 		kfree(range);
3899 #endif
3900 
3901 	return ret;
3902 }
3903 
3904 phys_addr_t pci_pio_to_address(unsigned long pio)
3905 {
3906 	phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
3907 
3908 #ifdef PCI_IOBASE
3909 	if (pio >= MMIO_UPPER_LIMIT)
3910 		return address;
3911 
3912 	address = logic_pio_to_hwaddr(pio);
3913 #endif
3914 
3915 	return address;
3916 }
3917 
3918 unsigned long __weak pci_address_to_pio(phys_addr_t address)
3919 {
3920 #ifdef PCI_IOBASE
3921 	return logic_pio_trans_cpuaddr(address);
3922 #else
3923 	if (address > IO_SPACE_LIMIT)
3924 		return (unsigned long)-1;
3925 
3926 	return (unsigned long) address;
3927 #endif
3928 }
3929 
3930 /**
3931  * pci_remap_iospace - Remap the memory mapped I/O space
3932  * @res: Resource describing the I/O space
3933  * @phys_addr: physical address of range to be mapped
3934  *
3935  * Remap the memory mapped I/O space described by the @res and the CPU
3936  * physical address @phys_addr into virtual address space.  Only
3937  * architectures that have memory mapped IO functions defined (and the
3938  * PCI_IOBASE value defined) should call this function.
3939  */
3940 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
3941 {
3942 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3943 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3944 
3945 	if (!(res->flags & IORESOURCE_IO))
3946 		return -EINVAL;
3947 
3948 	if (res->end > IO_SPACE_LIMIT)
3949 		return -EINVAL;
3950 
3951 	return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
3952 				  pgprot_device(PAGE_KERNEL));
3953 #else
3954 	/*
3955 	 * This architecture does not have memory mapped I/O space,
3956 	 * so this function should never be called
3957 	 */
3958 	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
3959 	return -ENODEV;
3960 #endif
3961 }
3962 EXPORT_SYMBOL(pci_remap_iospace);
3963 
3964 /**
3965  * pci_unmap_iospace - Unmap the memory mapped I/O space
3966  * @res: resource to be unmapped
3967  *
3968  * Unmap the CPU virtual address @res from virtual address space.  Only
3969  * architectures that have memory mapped IO functions defined (and the
3970  * PCI_IOBASE value defined) should call this function.
3971  */
3972 void pci_unmap_iospace(struct resource *res)
3973 {
3974 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3975 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3976 
3977 	unmap_kernel_range(vaddr, resource_size(res));
3978 #endif
3979 }
3980 EXPORT_SYMBOL(pci_unmap_iospace);
3981 
3982 static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
3983 {
3984 	struct resource **res = ptr;
3985 
3986 	pci_unmap_iospace(*res);
3987 }
3988 
3989 /**
3990  * devm_pci_remap_iospace - Managed pci_remap_iospace()
3991  * @dev: Generic device to remap IO address for
3992  * @res: Resource describing the I/O space
3993  * @phys_addr: physical address of range to be mapped
3994  *
3995  * Managed pci_remap_iospace().  Map is automatically unmapped on driver
3996  * detach.
3997  */
3998 int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
3999 			   phys_addr_t phys_addr)
4000 {
4001 	const struct resource **ptr;
4002 	int error;
4003 
4004 	ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4005 	if (!ptr)
4006 		return -ENOMEM;
4007 
4008 	error = pci_remap_iospace(res, phys_addr);
4009 	if (error) {
4010 		devres_free(ptr);
4011 	} else	{
4012 		*ptr = res;
4013 		devres_add(dev, ptr);
4014 	}
4015 
4016 	return error;
4017 }
4018 EXPORT_SYMBOL(devm_pci_remap_iospace);
4019 
4020 /**
4021  * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4022  * @dev: Generic device to remap IO address for
4023  * @offset: Resource address to map
4024  * @size: Size of map
4025  *
4026  * Managed pci_remap_cfgspace().  Map is automatically unmapped on driver
4027  * detach.
4028  */
4029 void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4030 				      resource_size_t offset,
4031 				      resource_size_t size)
4032 {
4033 	void __iomem **ptr, *addr;
4034 
4035 	ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4036 	if (!ptr)
4037 		return NULL;
4038 
4039 	addr = pci_remap_cfgspace(offset, size);
4040 	if (addr) {
4041 		*ptr = addr;
4042 		devres_add(dev, ptr);
4043 	} else
4044 		devres_free(ptr);
4045 
4046 	return addr;
4047 }
4048 EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4049 
4050 /**
4051  * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4052  * @dev: generic device to handle the resource for
4053  * @res: configuration space resource to be handled
4054  *
4055  * Checks that a resource is a valid memory region, requests the memory
4056  * region and ioremaps with pci_remap_cfgspace() API that ensures the
4057  * proper PCI configuration space memory attributes are guaranteed.
4058  *
4059  * All operations are managed and will be undone on driver detach.
4060  *
4061  * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4062  * on failure. Usage example::
4063  *
4064  *	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4065  *	base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4066  *	if (IS_ERR(base))
4067  *		return PTR_ERR(base);
4068  */
4069 void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4070 					  struct resource *res)
4071 {
4072 	resource_size_t size;
4073 	const char *name;
4074 	void __iomem *dest_ptr;
4075 
4076 	BUG_ON(!dev);
4077 
4078 	if (!res || resource_type(res) != IORESOURCE_MEM) {
4079 		dev_err(dev, "invalid resource\n");
4080 		return IOMEM_ERR_PTR(-EINVAL);
4081 	}
4082 
4083 	size = resource_size(res);
4084 	name = res->name ?: dev_name(dev);
4085 
4086 	if (!devm_request_mem_region(dev, res->start, size, name)) {
4087 		dev_err(dev, "can't request region for resource %pR\n", res);
4088 		return IOMEM_ERR_PTR(-EBUSY);
4089 	}
4090 
4091 	dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4092 	if (!dest_ptr) {
4093 		dev_err(dev, "ioremap failed for resource %pR\n", res);
4094 		devm_release_mem_region(dev, res->start, size);
4095 		dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4096 	}
4097 
4098 	return dest_ptr;
4099 }
4100 EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4101 
4102 static void __pci_set_master(struct pci_dev *dev, bool enable)
4103 {
4104 	u16 old_cmd, cmd;
4105 
4106 	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4107 	if (enable)
4108 		cmd = old_cmd | PCI_COMMAND_MASTER;
4109 	else
4110 		cmd = old_cmd & ~PCI_COMMAND_MASTER;
4111 	if (cmd != old_cmd) {
4112 		pci_dbg(dev, "%s bus mastering\n",
4113 			enable ? "enabling" : "disabling");
4114 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4115 	}
4116 	dev->is_busmaster = enable;
4117 }
4118 
4119 /**
4120  * pcibios_setup - process "pci=" kernel boot arguments
4121  * @str: string used to pass in "pci=" kernel boot arguments
4122  *
4123  * Process kernel boot arguments.  This is the default implementation.
4124  * Architecture specific implementations can override this as necessary.
4125  */
4126 char * __weak __init pcibios_setup(char *str)
4127 {
4128 	return str;
4129 }
4130 
4131 /**
4132  * pcibios_set_master - enable PCI bus-mastering for device dev
4133  * @dev: the PCI device to enable
4134  *
4135  * Enables PCI bus-mastering for the device.  This is the default
4136  * implementation.  Architecture specific implementations can override
4137  * this if necessary.
4138  */
4139 void __weak pcibios_set_master(struct pci_dev *dev)
4140 {
4141 	u8 lat;
4142 
4143 	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4144 	if (pci_is_pcie(dev))
4145 		return;
4146 
4147 	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4148 	if (lat < 16)
4149 		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4150 	else if (lat > pcibios_max_latency)
4151 		lat = pcibios_max_latency;
4152 	else
4153 		return;
4154 
4155 	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4156 }
4157 
4158 /**
4159  * pci_set_master - enables bus-mastering for device dev
4160  * @dev: the PCI device to enable
4161  *
4162  * Enables bus-mastering on the device and calls pcibios_set_master()
4163  * to do the needed arch specific settings.
4164  */
4165 void pci_set_master(struct pci_dev *dev)
4166 {
4167 	__pci_set_master(dev, true);
4168 	pcibios_set_master(dev);
4169 }
4170 EXPORT_SYMBOL(pci_set_master);
4171 
4172 /**
4173  * pci_clear_master - disables bus-mastering for device dev
4174  * @dev: the PCI device to disable
4175  */
4176 void pci_clear_master(struct pci_dev *dev)
4177 {
4178 	__pci_set_master(dev, false);
4179 }
4180 EXPORT_SYMBOL(pci_clear_master);
4181 
4182 /**
4183  * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4184  * @dev: the PCI device for which MWI is to be enabled
4185  *
4186  * Helper function for pci_set_mwi.
4187  * Originally copied from drivers/net/acenic.c.
4188  * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4189  *
4190  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4191  */
4192 int pci_set_cacheline_size(struct pci_dev *dev)
4193 {
4194 	u8 cacheline_size;
4195 
4196 	if (!pci_cache_line_size)
4197 		return -EINVAL;
4198 
4199 	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4200 	   equal to or multiple of the right value. */
4201 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4202 	if (cacheline_size >= pci_cache_line_size &&
4203 	    (cacheline_size % pci_cache_line_size) == 0)
4204 		return 0;
4205 
4206 	/* Write the correct value. */
4207 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4208 	/* Read it back. */
4209 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4210 	if (cacheline_size == pci_cache_line_size)
4211 		return 0;
4212 
4213 	pci_info(dev, "cache line size of %d is not supported\n",
4214 		   pci_cache_line_size << 2);
4215 
4216 	return -EINVAL;
4217 }
4218 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4219 
4220 /**
4221  * pci_set_mwi - enables memory-write-invalidate PCI transaction
4222  * @dev: the PCI device for which MWI is enabled
4223  *
4224  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4225  *
4226  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4227  */
4228 int pci_set_mwi(struct pci_dev *dev)
4229 {
4230 #ifdef PCI_DISABLE_MWI
4231 	return 0;
4232 #else
4233 	int rc;
4234 	u16 cmd;
4235 
4236 	rc = pci_set_cacheline_size(dev);
4237 	if (rc)
4238 		return rc;
4239 
4240 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4241 	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4242 		pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4243 		cmd |= PCI_COMMAND_INVALIDATE;
4244 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4245 	}
4246 	return 0;
4247 #endif
4248 }
4249 EXPORT_SYMBOL(pci_set_mwi);
4250 
4251 /**
4252  * pcim_set_mwi - a device-managed pci_set_mwi()
4253  * @dev: the PCI device for which MWI is enabled
4254  *
4255  * Managed pci_set_mwi().
4256  *
4257  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4258  */
4259 int pcim_set_mwi(struct pci_dev *dev)
4260 {
4261 	struct pci_devres *dr;
4262 
4263 	dr = find_pci_dr(dev);
4264 	if (!dr)
4265 		return -ENOMEM;
4266 
4267 	dr->mwi = 1;
4268 	return pci_set_mwi(dev);
4269 }
4270 EXPORT_SYMBOL(pcim_set_mwi);
4271 
4272 /**
4273  * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4274  * @dev: the PCI device for which MWI is enabled
4275  *
4276  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4277  * Callers are not required to check the return value.
4278  *
4279  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4280  */
4281 int pci_try_set_mwi(struct pci_dev *dev)
4282 {
4283 #ifdef PCI_DISABLE_MWI
4284 	return 0;
4285 #else
4286 	return pci_set_mwi(dev);
4287 #endif
4288 }
4289 EXPORT_SYMBOL(pci_try_set_mwi);
4290 
4291 /**
4292  * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4293  * @dev: the PCI device to disable
4294  *
4295  * Disables PCI Memory-Write-Invalidate transaction on the device
4296  */
4297 void pci_clear_mwi(struct pci_dev *dev)
4298 {
4299 #ifndef PCI_DISABLE_MWI
4300 	u16 cmd;
4301 
4302 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4303 	if (cmd & PCI_COMMAND_INVALIDATE) {
4304 		cmd &= ~PCI_COMMAND_INVALIDATE;
4305 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4306 	}
4307 #endif
4308 }
4309 EXPORT_SYMBOL(pci_clear_mwi);
4310 
4311 /**
4312  * pci_intx - enables/disables PCI INTx for device dev
4313  * @pdev: the PCI device to operate on
4314  * @enable: boolean: whether to enable or disable PCI INTx
4315  *
4316  * Enables/disables PCI INTx for device @pdev
4317  */
4318 void pci_intx(struct pci_dev *pdev, int enable)
4319 {
4320 	u16 pci_command, new;
4321 
4322 	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4323 
4324 	if (enable)
4325 		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4326 	else
4327 		new = pci_command | PCI_COMMAND_INTX_DISABLE;
4328 
4329 	if (new != pci_command) {
4330 		struct pci_devres *dr;
4331 
4332 		pci_write_config_word(pdev, PCI_COMMAND, new);
4333 
4334 		dr = find_pci_dr(pdev);
4335 		if (dr && !dr->restore_intx) {
4336 			dr->restore_intx = 1;
4337 			dr->orig_intx = !enable;
4338 		}
4339 	}
4340 }
4341 EXPORT_SYMBOL_GPL(pci_intx);
4342 
4343 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4344 {
4345 	struct pci_bus *bus = dev->bus;
4346 	bool mask_updated = true;
4347 	u32 cmd_status_dword;
4348 	u16 origcmd, newcmd;
4349 	unsigned long flags;
4350 	bool irq_pending;
4351 
4352 	/*
4353 	 * We do a single dword read to retrieve both command and status.
4354 	 * Document assumptions that make this possible.
4355 	 */
4356 	BUILD_BUG_ON(PCI_COMMAND % 4);
4357 	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4358 
4359 	raw_spin_lock_irqsave(&pci_lock, flags);
4360 
4361 	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4362 
4363 	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4364 
4365 	/*
4366 	 * Check interrupt status register to see whether our device
4367 	 * triggered the interrupt (when masking) or the next IRQ is
4368 	 * already pending (when unmasking).
4369 	 */
4370 	if (mask != irq_pending) {
4371 		mask_updated = false;
4372 		goto done;
4373 	}
4374 
4375 	origcmd = cmd_status_dword;
4376 	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4377 	if (mask)
4378 		newcmd |= PCI_COMMAND_INTX_DISABLE;
4379 	if (newcmd != origcmd)
4380 		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4381 
4382 done:
4383 	raw_spin_unlock_irqrestore(&pci_lock, flags);
4384 
4385 	return mask_updated;
4386 }
4387 
4388 /**
4389  * pci_check_and_mask_intx - mask INTx on pending interrupt
4390  * @dev: the PCI device to operate on
4391  *
4392  * Check if the device dev has its INTx line asserted, mask it and return
4393  * true in that case. False is returned if no interrupt was pending.
4394  */
4395 bool pci_check_and_mask_intx(struct pci_dev *dev)
4396 {
4397 	return pci_check_and_set_intx_mask(dev, true);
4398 }
4399 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4400 
4401 /**
4402  * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4403  * @dev: the PCI device to operate on
4404  *
4405  * Check if the device dev has its INTx line asserted, unmask it if not and
4406  * return true. False is returned and the mask remains active if there was
4407  * still an interrupt pending.
4408  */
4409 bool pci_check_and_unmask_intx(struct pci_dev *dev)
4410 {
4411 	return pci_check_and_set_intx_mask(dev, false);
4412 }
4413 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4414 
4415 /**
4416  * pci_wait_for_pending_transaction - wait for pending transaction
4417  * @dev: the PCI device to operate on
4418  *
4419  * Return 0 if transaction is pending 1 otherwise.
4420  */
4421 int pci_wait_for_pending_transaction(struct pci_dev *dev)
4422 {
4423 	if (!pci_is_pcie(dev))
4424 		return 1;
4425 
4426 	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4427 				    PCI_EXP_DEVSTA_TRPND);
4428 }
4429 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4430 
4431 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
4432 {
4433 	int delay = 1;
4434 	u32 id;
4435 
4436 	/*
4437 	 * After reset, the device should not silently discard config
4438 	 * requests, but it may still indicate that it needs more time by
4439 	 * responding to them with CRS completions.  The Root Port will
4440 	 * generally synthesize ~0 data to complete the read (except when
4441 	 * CRS SV is enabled and the read was for the Vendor ID; in that
4442 	 * case it synthesizes 0x0001 data).
4443 	 *
4444 	 * Wait for the device to return a non-CRS completion.  Read the
4445 	 * Command register instead of Vendor ID so we don't have to
4446 	 * contend with the CRS SV value.
4447 	 */
4448 	pci_read_config_dword(dev, PCI_COMMAND, &id);
4449 	while (id == ~0) {
4450 		if (delay > timeout) {
4451 			pci_warn(dev, "not ready %dms after %s; giving up\n",
4452 				 delay - 1, reset_type);
4453 			return -ENOTTY;
4454 		}
4455 
4456 		if (delay > 1000)
4457 			pci_info(dev, "not ready %dms after %s; waiting\n",
4458 				 delay - 1, reset_type);
4459 
4460 		msleep(delay);
4461 		delay *= 2;
4462 		pci_read_config_dword(dev, PCI_COMMAND, &id);
4463 	}
4464 
4465 	if (delay > 1000)
4466 		pci_info(dev, "ready %dms after %s\n", delay - 1,
4467 			 reset_type);
4468 
4469 	return 0;
4470 }
4471 
4472 /**
4473  * pcie_has_flr - check if a device supports function level resets
4474  * @dev: device to check
4475  *
4476  * Returns true if the device advertises support for PCIe function level
4477  * resets.
4478  */
4479 bool pcie_has_flr(struct pci_dev *dev)
4480 {
4481 	u32 cap;
4482 
4483 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4484 		return false;
4485 
4486 	pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
4487 	return cap & PCI_EXP_DEVCAP_FLR;
4488 }
4489 EXPORT_SYMBOL_GPL(pcie_has_flr);
4490 
4491 /**
4492  * pcie_flr - initiate a PCIe function level reset
4493  * @dev: device to reset
4494  *
4495  * Initiate a function level reset on @dev.  The caller should ensure the
4496  * device supports FLR before calling this function, e.g. by using the
4497  * pcie_has_flr() helper.
4498  */
4499 int pcie_flr(struct pci_dev *dev)
4500 {
4501 	if (!pci_wait_for_pending_transaction(dev))
4502 		pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4503 
4504 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4505 
4506 	if (dev->imm_ready)
4507 		return 0;
4508 
4509 	/*
4510 	 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4511 	 * 100ms, but may silently discard requests while the FLR is in
4512 	 * progress.  Wait 100ms before trying to access the device.
4513 	 */
4514 	msleep(100);
4515 
4516 	return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4517 }
4518 EXPORT_SYMBOL_GPL(pcie_flr);
4519 
4520 static int pci_af_flr(struct pci_dev *dev, int probe)
4521 {
4522 	int pos;
4523 	u8 cap;
4524 
4525 	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4526 	if (!pos)
4527 		return -ENOTTY;
4528 
4529 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4530 		return -ENOTTY;
4531 
4532 	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4533 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4534 		return -ENOTTY;
4535 
4536 	if (probe)
4537 		return 0;
4538 
4539 	/*
4540 	 * Wait for Transaction Pending bit to clear.  A word-aligned test
4541 	 * is used, so we use the control offset rather than status and shift
4542 	 * the test bit to match.
4543 	 */
4544 	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4545 				 PCI_AF_STATUS_TP << 8))
4546 		pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4547 
4548 	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4549 
4550 	if (dev->imm_ready)
4551 		return 0;
4552 
4553 	/*
4554 	 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4555 	 * updated 27 July 2006; a device must complete an FLR within
4556 	 * 100ms, but may silently discard requests while the FLR is in
4557 	 * progress.  Wait 100ms before trying to access the device.
4558 	 */
4559 	msleep(100);
4560 
4561 	return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4562 }
4563 
4564 /**
4565  * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4566  * @dev: Device to reset.
4567  * @probe: If set, only check if the device can be reset this way.
4568  *
4569  * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4570  * unset, it will be reinitialized internally when going from PCI_D3hot to
4571  * PCI_D0.  If that's the case and the device is not in a low-power state
4572  * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4573  *
4574  * NOTE: This causes the caller to sleep for twice the device power transition
4575  * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4576  * by default (i.e. unless the @dev's d3_delay field has a different value).
4577  * Moreover, only devices in D0 can be reset by this function.
4578  */
4579 static int pci_pm_reset(struct pci_dev *dev, int probe)
4580 {
4581 	u16 csr;
4582 
4583 	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4584 		return -ENOTTY;
4585 
4586 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4587 	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4588 		return -ENOTTY;
4589 
4590 	if (probe)
4591 		return 0;
4592 
4593 	if (dev->current_state != PCI_D0)
4594 		return -EINVAL;
4595 
4596 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4597 	csr |= PCI_D3hot;
4598 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4599 	pci_dev_d3_sleep(dev);
4600 
4601 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4602 	csr |= PCI_D0;
4603 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4604 	pci_dev_d3_sleep(dev);
4605 
4606 	return pci_dev_wait(dev, "PM D3->D0", PCIE_RESET_READY_POLL_MS);
4607 }
4608 /**
4609  * pcie_wait_for_link - Wait until link is active or inactive
4610  * @pdev: Bridge device
4611  * @active: waiting for active or inactive?
4612  *
4613  * Use this to wait till link becomes active or inactive.
4614  */
4615 bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4616 {
4617 	int timeout = 1000;
4618 	bool ret;
4619 	u16 lnk_status;
4620 
4621 	/*
4622 	 * Some controllers might not implement link active reporting. In this
4623 	 * case, we wait for 1000 + 100 ms.
4624 	 */
4625 	if (!pdev->link_active_reporting) {
4626 		msleep(1100);
4627 		return true;
4628 	}
4629 
4630 	/*
4631 	 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4632 	 * after which we should expect an link active if the reset was
4633 	 * successful. If so, software must wait a minimum 100ms before sending
4634 	 * configuration requests to devices downstream this port.
4635 	 *
4636 	 * If the link fails to activate, either the device was physically
4637 	 * removed or the link is permanently failed.
4638 	 */
4639 	if (active)
4640 		msleep(20);
4641 	for (;;) {
4642 		pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
4643 		ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA);
4644 		if (ret == active)
4645 			break;
4646 		if (timeout <= 0)
4647 			break;
4648 		msleep(10);
4649 		timeout -= 10;
4650 	}
4651 	if (active && ret)
4652 		msleep(100);
4653 	else if (ret != active)
4654 		pci_info(pdev, "Data Link Layer Link Active not %s in 1000 msec\n",
4655 			active ? "set" : "cleared");
4656 	return ret == active;
4657 }
4658 
4659 void pci_reset_secondary_bus(struct pci_dev *dev)
4660 {
4661 	u16 ctrl;
4662 
4663 	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4664 	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4665 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4666 
4667 	/*
4668 	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
4669 	 * this to 2ms to ensure that we meet the minimum requirement.
4670 	 */
4671 	msleep(2);
4672 
4673 	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4674 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4675 
4676 	/*
4677 	 * Trhfa for conventional PCI is 2^25 clock cycles.
4678 	 * Assuming a minimum 33MHz clock this results in a 1s
4679 	 * delay before we can consider subordinate devices to
4680 	 * be re-initialized.  PCIe has some ways to shorten this,
4681 	 * but we don't make use of them yet.
4682 	 */
4683 	ssleep(1);
4684 }
4685 
4686 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4687 {
4688 	pci_reset_secondary_bus(dev);
4689 }
4690 
4691 /**
4692  * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
4693  * @dev: Bridge device
4694  *
4695  * Use the bridge control register to assert reset on the secondary bus.
4696  * Devices on the secondary bus are left in power-on state.
4697  */
4698 int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
4699 {
4700 	pcibios_reset_secondary_bus(dev);
4701 
4702 	return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS);
4703 }
4704 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
4705 
4706 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
4707 {
4708 	struct pci_dev *pdev;
4709 
4710 	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4711 	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4712 		return -ENOTTY;
4713 
4714 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4715 		if (pdev != dev)
4716 			return -ENOTTY;
4717 
4718 	if (probe)
4719 		return 0;
4720 
4721 	return pci_bridge_secondary_bus_reset(dev->bus->self);
4722 }
4723 
4724 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
4725 {
4726 	int rc = -ENOTTY;
4727 
4728 	if (!hotplug || !try_module_get(hotplug->owner))
4729 		return rc;
4730 
4731 	if (hotplug->ops->reset_slot)
4732 		rc = hotplug->ops->reset_slot(hotplug, probe);
4733 
4734 	module_put(hotplug->owner);
4735 
4736 	return rc;
4737 }
4738 
4739 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
4740 {
4741 	struct pci_dev *pdev;
4742 
4743 	if (dev->subordinate || !dev->slot ||
4744 	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4745 		return -ENOTTY;
4746 
4747 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4748 		if (pdev != dev && pdev->slot == dev->slot)
4749 			return -ENOTTY;
4750 
4751 	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
4752 }
4753 
4754 static void pci_dev_lock(struct pci_dev *dev)
4755 {
4756 	pci_cfg_access_lock(dev);
4757 	/* block PM suspend, driver probe, etc. */
4758 	device_lock(&dev->dev);
4759 }
4760 
4761 /* Return 1 on successful lock, 0 on contention */
4762 static int pci_dev_trylock(struct pci_dev *dev)
4763 {
4764 	if (pci_cfg_access_trylock(dev)) {
4765 		if (device_trylock(&dev->dev))
4766 			return 1;
4767 		pci_cfg_access_unlock(dev);
4768 	}
4769 
4770 	return 0;
4771 }
4772 
4773 static void pci_dev_unlock(struct pci_dev *dev)
4774 {
4775 	device_unlock(&dev->dev);
4776 	pci_cfg_access_unlock(dev);
4777 }
4778 
4779 static void pci_dev_save_and_disable(struct pci_dev *dev)
4780 {
4781 	const struct pci_error_handlers *err_handler =
4782 			dev->driver ? dev->driver->err_handler : NULL;
4783 
4784 	/*
4785 	 * dev->driver->err_handler->reset_prepare() is protected against
4786 	 * races with ->remove() by the device lock, which must be held by
4787 	 * the caller.
4788 	 */
4789 	if (err_handler && err_handler->reset_prepare)
4790 		err_handler->reset_prepare(dev);
4791 
4792 	/*
4793 	 * Wake-up device prior to save.  PM registers default to D0 after
4794 	 * reset and a simple register restore doesn't reliably return
4795 	 * to a non-D0 state anyway.
4796 	 */
4797 	pci_set_power_state(dev, PCI_D0);
4798 
4799 	pci_save_state(dev);
4800 	/*
4801 	 * Disable the device by clearing the Command register, except for
4802 	 * INTx-disable which is set.  This not only disables MMIO and I/O port
4803 	 * BARs, but also prevents the device from being Bus Master, preventing
4804 	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
4805 	 * compliant devices, INTx-disable prevents legacy interrupts.
4806 	 */
4807 	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
4808 }
4809 
4810 static void pci_dev_restore(struct pci_dev *dev)
4811 {
4812 	const struct pci_error_handlers *err_handler =
4813 			dev->driver ? dev->driver->err_handler : NULL;
4814 
4815 	pci_restore_state(dev);
4816 
4817 	/*
4818 	 * dev->driver->err_handler->reset_done() is protected against
4819 	 * races with ->remove() by the device lock, which must be held by
4820 	 * the caller.
4821 	 */
4822 	if (err_handler && err_handler->reset_done)
4823 		err_handler->reset_done(dev);
4824 }
4825 
4826 /**
4827  * __pci_reset_function_locked - reset a PCI device function while holding
4828  * the @dev mutex lock.
4829  * @dev: PCI device to reset
4830  *
4831  * Some devices allow an individual function to be reset without affecting
4832  * other functions in the same device.  The PCI device must be responsive
4833  * to PCI config space in order to use this function.
4834  *
4835  * The device function is presumed to be unused and the caller is holding
4836  * the device mutex lock when this function is called.
4837  *
4838  * Resetting the device will make the contents of PCI configuration space
4839  * random, so any caller of this must be prepared to reinitialise the
4840  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4841  * etc.
4842  *
4843  * Returns 0 if the device function was successfully reset or negative if the
4844  * device doesn't support resetting a single function.
4845  */
4846 int __pci_reset_function_locked(struct pci_dev *dev)
4847 {
4848 	int rc;
4849 
4850 	might_sleep();
4851 
4852 	/*
4853 	 * A reset method returns -ENOTTY if it doesn't support this device
4854 	 * and we should try the next method.
4855 	 *
4856 	 * If it returns 0 (success), we're finished.  If it returns any
4857 	 * other error, we're also finished: this indicates that further
4858 	 * reset mechanisms might be broken on the device.
4859 	 */
4860 	rc = pci_dev_specific_reset(dev, 0);
4861 	if (rc != -ENOTTY)
4862 		return rc;
4863 	if (pcie_has_flr(dev)) {
4864 		rc = pcie_flr(dev);
4865 		if (rc != -ENOTTY)
4866 			return rc;
4867 	}
4868 	rc = pci_af_flr(dev, 0);
4869 	if (rc != -ENOTTY)
4870 		return rc;
4871 	rc = pci_pm_reset(dev, 0);
4872 	if (rc != -ENOTTY)
4873 		return rc;
4874 	rc = pci_dev_reset_slot_function(dev, 0);
4875 	if (rc != -ENOTTY)
4876 		return rc;
4877 	return pci_parent_bus_reset(dev, 0);
4878 }
4879 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
4880 
4881 /**
4882  * pci_probe_reset_function - check whether the device can be safely reset
4883  * @dev: PCI device to reset
4884  *
4885  * Some devices allow an individual function to be reset without affecting
4886  * other functions in the same device.  The PCI device must be responsive
4887  * to PCI config space in order to use this function.
4888  *
4889  * Returns 0 if the device function can be reset or negative if the
4890  * device doesn't support resetting a single function.
4891  */
4892 int pci_probe_reset_function(struct pci_dev *dev)
4893 {
4894 	int rc;
4895 
4896 	might_sleep();
4897 
4898 	rc = pci_dev_specific_reset(dev, 1);
4899 	if (rc != -ENOTTY)
4900 		return rc;
4901 	if (pcie_has_flr(dev))
4902 		return 0;
4903 	rc = pci_af_flr(dev, 1);
4904 	if (rc != -ENOTTY)
4905 		return rc;
4906 	rc = pci_pm_reset(dev, 1);
4907 	if (rc != -ENOTTY)
4908 		return rc;
4909 	rc = pci_dev_reset_slot_function(dev, 1);
4910 	if (rc != -ENOTTY)
4911 		return rc;
4912 
4913 	return pci_parent_bus_reset(dev, 1);
4914 }
4915 
4916 /**
4917  * pci_reset_function - quiesce and reset a PCI device function
4918  * @dev: PCI device to reset
4919  *
4920  * Some devices allow an individual function to be reset without affecting
4921  * other functions in the same device.  The PCI device must be responsive
4922  * to PCI config space in order to use this function.
4923  *
4924  * This function does not just reset the PCI portion of a device, but
4925  * clears all the state associated with the device.  This function differs
4926  * from __pci_reset_function_locked() in that it saves and restores device state
4927  * over the reset and takes the PCI device lock.
4928  *
4929  * Returns 0 if the device function was successfully reset or negative if the
4930  * device doesn't support resetting a single function.
4931  */
4932 int pci_reset_function(struct pci_dev *dev)
4933 {
4934 	int rc;
4935 
4936 	if (!dev->reset_fn)
4937 		return -ENOTTY;
4938 
4939 	pci_dev_lock(dev);
4940 	pci_dev_save_and_disable(dev);
4941 
4942 	rc = __pci_reset_function_locked(dev);
4943 
4944 	pci_dev_restore(dev);
4945 	pci_dev_unlock(dev);
4946 
4947 	return rc;
4948 }
4949 EXPORT_SYMBOL_GPL(pci_reset_function);
4950 
4951 /**
4952  * pci_reset_function_locked - quiesce and reset a PCI device function
4953  * @dev: PCI device to reset
4954  *
4955  * Some devices allow an individual function to be reset without affecting
4956  * other functions in the same device.  The PCI device must be responsive
4957  * to PCI config space in order to use this function.
4958  *
4959  * This function does not just reset the PCI portion of a device, but
4960  * clears all the state associated with the device.  This function differs
4961  * from __pci_reset_function_locked() in that it saves and restores device state
4962  * over the reset.  It also differs from pci_reset_function() in that it
4963  * requires the PCI device lock to be held.
4964  *
4965  * Returns 0 if the device function was successfully reset or negative if the
4966  * device doesn't support resetting a single function.
4967  */
4968 int pci_reset_function_locked(struct pci_dev *dev)
4969 {
4970 	int rc;
4971 
4972 	if (!dev->reset_fn)
4973 		return -ENOTTY;
4974 
4975 	pci_dev_save_and_disable(dev);
4976 
4977 	rc = __pci_reset_function_locked(dev);
4978 
4979 	pci_dev_restore(dev);
4980 
4981 	return rc;
4982 }
4983 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
4984 
4985 /**
4986  * pci_try_reset_function - quiesce and reset a PCI device function
4987  * @dev: PCI device to reset
4988  *
4989  * Same as above, except return -EAGAIN if unable to lock device.
4990  */
4991 int pci_try_reset_function(struct pci_dev *dev)
4992 {
4993 	int rc;
4994 
4995 	if (!dev->reset_fn)
4996 		return -ENOTTY;
4997 
4998 	if (!pci_dev_trylock(dev))
4999 		return -EAGAIN;
5000 
5001 	pci_dev_save_and_disable(dev);
5002 	rc = __pci_reset_function_locked(dev);
5003 	pci_dev_restore(dev);
5004 	pci_dev_unlock(dev);
5005 
5006 	return rc;
5007 }
5008 EXPORT_SYMBOL_GPL(pci_try_reset_function);
5009 
5010 /* Do any devices on or below this bus prevent a bus reset? */
5011 static bool pci_bus_resetable(struct pci_bus *bus)
5012 {
5013 	struct pci_dev *dev;
5014 
5015 
5016 	if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5017 		return false;
5018 
5019 	list_for_each_entry(dev, &bus->devices, bus_list) {
5020 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5021 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5022 			return false;
5023 	}
5024 
5025 	return true;
5026 }
5027 
5028 /* Lock devices from the top of the tree down */
5029 static void pci_bus_lock(struct pci_bus *bus)
5030 {
5031 	struct pci_dev *dev;
5032 
5033 	list_for_each_entry(dev, &bus->devices, bus_list) {
5034 		pci_dev_lock(dev);
5035 		if (dev->subordinate)
5036 			pci_bus_lock(dev->subordinate);
5037 	}
5038 }
5039 
5040 /* Unlock devices from the bottom of the tree up */
5041 static void pci_bus_unlock(struct pci_bus *bus)
5042 {
5043 	struct pci_dev *dev;
5044 
5045 	list_for_each_entry(dev, &bus->devices, bus_list) {
5046 		if (dev->subordinate)
5047 			pci_bus_unlock(dev->subordinate);
5048 		pci_dev_unlock(dev);
5049 	}
5050 }
5051 
5052 /* Return 1 on successful lock, 0 on contention */
5053 static int pci_bus_trylock(struct pci_bus *bus)
5054 {
5055 	struct pci_dev *dev;
5056 
5057 	list_for_each_entry(dev, &bus->devices, bus_list) {
5058 		if (!pci_dev_trylock(dev))
5059 			goto unlock;
5060 		if (dev->subordinate) {
5061 			if (!pci_bus_trylock(dev->subordinate)) {
5062 				pci_dev_unlock(dev);
5063 				goto unlock;
5064 			}
5065 		}
5066 	}
5067 	return 1;
5068 
5069 unlock:
5070 	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5071 		if (dev->subordinate)
5072 			pci_bus_unlock(dev->subordinate);
5073 		pci_dev_unlock(dev);
5074 	}
5075 	return 0;
5076 }
5077 
5078 /* Do any devices on or below this slot prevent a bus reset? */
5079 static bool pci_slot_resetable(struct pci_slot *slot)
5080 {
5081 	struct pci_dev *dev;
5082 
5083 	if (slot->bus->self &&
5084 	    (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5085 		return false;
5086 
5087 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5088 		if (!dev->slot || dev->slot != slot)
5089 			continue;
5090 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5091 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5092 			return false;
5093 	}
5094 
5095 	return true;
5096 }
5097 
5098 /* Lock devices from the top of the tree down */
5099 static void pci_slot_lock(struct pci_slot *slot)
5100 {
5101 	struct pci_dev *dev;
5102 
5103 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5104 		if (!dev->slot || dev->slot != slot)
5105 			continue;
5106 		pci_dev_lock(dev);
5107 		if (dev->subordinate)
5108 			pci_bus_lock(dev->subordinate);
5109 	}
5110 }
5111 
5112 /* Unlock devices from the bottom of the tree up */
5113 static void pci_slot_unlock(struct pci_slot *slot)
5114 {
5115 	struct pci_dev *dev;
5116 
5117 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5118 		if (!dev->slot || dev->slot != slot)
5119 			continue;
5120 		if (dev->subordinate)
5121 			pci_bus_unlock(dev->subordinate);
5122 		pci_dev_unlock(dev);
5123 	}
5124 }
5125 
5126 /* Return 1 on successful lock, 0 on contention */
5127 static int pci_slot_trylock(struct pci_slot *slot)
5128 {
5129 	struct pci_dev *dev;
5130 
5131 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5132 		if (!dev->slot || dev->slot != slot)
5133 			continue;
5134 		if (!pci_dev_trylock(dev))
5135 			goto unlock;
5136 		if (dev->subordinate) {
5137 			if (!pci_bus_trylock(dev->subordinate)) {
5138 				pci_dev_unlock(dev);
5139 				goto unlock;
5140 			}
5141 		}
5142 	}
5143 	return 1;
5144 
5145 unlock:
5146 	list_for_each_entry_continue_reverse(dev,
5147 					     &slot->bus->devices, bus_list) {
5148 		if (!dev->slot || dev->slot != slot)
5149 			continue;
5150 		if (dev->subordinate)
5151 			pci_bus_unlock(dev->subordinate);
5152 		pci_dev_unlock(dev);
5153 	}
5154 	return 0;
5155 }
5156 
5157 /*
5158  * Save and disable devices from the top of the tree down while holding
5159  * the @dev mutex lock for the entire tree.
5160  */
5161 static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5162 {
5163 	struct pci_dev *dev;
5164 
5165 	list_for_each_entry(dev, &bus->devices, bus_list) {
5166 		pci_dev_save_and_disable(dev);
5167 		if (dev->subordinate)
5168 			pci_bus_save_and_disable_locked(dev->subordinate);
5169 	}
5170 }
5171 
5172 /*
5173  * Restore devices from top of the tree down while holding @dev mutex lock
5174  * for the entire tree.  Parent bridges need to be restored before we can
5175  * get to subordinate devices.
5176  */
5177 static void pci_bus_restore_locked(struct pci_bus *bus)
5178 {
5179 	struct pci_dev *dev;
5180 
5181 	list_for_each_entry(dev, &bus->devices, bus_list) {
5182 		pci_dev_restore(dev);
5183 		if (dev->subordinate)
5184 			pci_bus_restore_locked(dev->subordinate);
5185 	}
5186 }
5187 
5188 /*
5189  * Save and disable devices from the top of the tree down while holding
5190  * the @dev mutex lock for the entire tree.
5191  */
5192 static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5193 {
5194 	struct pci_dev *dev;
5195 
5196 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5197 		if (!dev->slot || dev->slot != slot)
5198 			continue;
5199 		pci_dev_save_and_disable(dev);
5200 		if (dev->subordinate)
5201 			pci_bus_save_and_disable_locked(dev->subordinate);
5202 	}
5203 }
5204 
5205 /*
5206  * Restore devices from top of the tree down while holding @dev mutex lock
5207  * for the entire tree.  Parent bridges need to be restored before we can
5208  * get to subordinate devices.
5209  */
5210 static void pci_slot_restore_locked(struct pci_slot *slot)
5211 {
5212 	struct pci_dev *dev;
5213 
5214 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5215 		if (!dev->slot || dev->slot != slot)
5216 			continue;
5217 		pci_dev_restore(dev);
5218 		if (dev->subordinate)
5219 			pci_bus_restore_locked(dev->subordinate);
5220 	}
5221 }
5222 
5223 static int pci_slot_reset(struct pci_slot *slot, int probe)
5224 {
5225 	int rc;
5226 
5227 	if (!slot || !pci_slot_resetable(slot))
5228 		return -ENOTTY;
5229 
5230 	if (!probe)
5231 		pci_slot_lock(slot);
5232 
5233 	might_sleep();
5234 
5235 	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5236 
5237 	if (!probe)
5238 		pci_slot_unlock(slot);
5239 
5240 	return rc;
5241 }
5242 
5243 /**
5244  * pci_probe_reset_slot - probe whether a PCI slot can be reset
5245  * @slot: PCI slot to probe
5246  *
5247  * Return 0 if slot can be reset, negative if a slot reset is not supported.
5248  */
5249 int pci_probe_reset_slot(struct pci_slot *slot)
5250 {
5251 	return pci_slot_reset(slot, 1);
5252 }
5253 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5254 
5255 /**
5256  * __pci_reset_slot - Try to reset a PCI slot
5257  * @slot: PCI slot to reset
5258  *
5259  * A PCI bus may host multiple slots, each slot may support a reset mechanism
5260  * independent of other slots.  For instance, some slots may support slot power
5261  * control.  In the case of a 1:1 bus to slot architecture, this function may
5262  * wrap the bus reset to avoid spurious slot related events such as hotplug.
5263  * Generally a slot reset should be attempted before a bus reset.  All of the
5264  * function of the slot and any subordinate buses behind the slot are reset
5265  * through this function.  PCI config space of all devices in the slot and
5266  * behind the slot is saved before and restored after reset.
5267  *
5268  * Same as above except return -EAGAIN if the slot cannot be locked
5269  */
5270 static int __pci_reset_slot(struct pci_slot *slot)
5271 {
5272 	int rc;
5273 
5274 	rc = pci_slot_reset(slot, 1);
5275 	if (rc)
5276 		return rc;
5277 
5278 	if (pci_slot_trylock(slot)) {
5279 		pci_slot_save_and_disable_locked(slot);
5280 		might_sleep();
5281 		rc = pci_reset_hotplug_slot(slot->hotplug, 0);
5282 		pci_slot_restore_locked(slot);
5283 		pci_slot_unlock(slot);
5284 	} else
5285 		rc = -EAGAIN;
5286 
5287 	return rc;
5288 }
5289 
5290 static int pci_bus_reset(struct pci_bus *bus, int probe)
5291 {
5292 	int ret;
5293 
5294 	if (!bus->self || !pci_bus_resetable(bus))
5295 		return -ENOTTY;
5296 
5297 	if (probe)
5298 		return 0;
5299 
5300 	pci_bus_lock(bus);
5301 
5302 	might_sleep();
5303 
5304 	ret = pci_bridge_secondary_bus_reset(bus->self);
5305 
5306 	pci_bus_unlock(bus);
5307 
5308 	return ret;
5309 }
5310 
5311 /**
5312  * pci_bus_error_reset - reset the bridge's subordinate bus
5313  * @bridge: The parent device that connects to the bus to reset
5314  *
5315  * This function will first try to reset the slots on this bus if the method is
5316  * available. If slot reset fails or is not available, this will fall back to a
5317  * secondary bus reset.
5318  */
5319 int pci_bus_error_reset(struct pci_dev *bridge)
5320 {
5321 	struct pci_bus *bus = bridge->subordinate;
5322 	struct pci_slot *slot;
5323 
5324 	if (!bus)
5325 		return -ENOTTY;
5326 
5327 	mutex_lock(&pci_slot_mutex);
5328 	if (list_empty(&bus->slots))
5329 		goto bus_reset;
5330 
5331 	list_for_each_entry(slot, &bus->slots, list)
5332 		if (pci_probe_reset_slot(slot))
5333 			goto bus_reset;
5334 
5335 	list_for_each_entry(slot, &bus->slots, list)
5336 		if (pci_slot_reset(slot, 0))
5337 			goto bus_reset;
5338 
5339 	mutex_unlock(&pci_slot_mutex);
5340 	return 0;
5341 bus_reset:
5342 	mutex_unlock(&pci_slot_mutex);
5343 	return pci_bus_reset(bridge->subordinate, 0);
5344 }
5345 
5346 /**
5347  * pci_probe_reset_bus - probe whether a PCI bus can be reset
5348  * @bus: PCI bus to probe
5349  *
5350  * Return 0 if bus can be reset, negative if a bus reset is not supported.
5351  */
5352 int pci_probe_reset_bus(struct pci_bus *bus)
5353 {
5354 	return pci_bus_reset(bus, 1);
5355 }
5356 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5357 
5358 /**
5359  * __pci_reset_bus - Try to reset a PCI bus
5360  * @bus: top level PCI bus to reset
5361  *
5362  * Same as above except return -EAGAIN if the bus cannot be locked
5363  */
5364 static int __pci_reset_bus(struct pci_bus *bus)
5365 {
5366 	int rc;
5367 
5368 	rc = pci_bus_reset(bus, 1);
5369 	if (rc)
5370 		return rc;
5371 
5372 	if (pci_bus_trylock(bus)) {
5373 		pci_bus_save_and_disable_locked(bus);
5374 		might_sleep();
5375 		rc = pci_bridge_secondary_bus_reset(bus->self);
5376 		pci_bus_restore_locked(bus);
5377 		pci_bus_unlock(bus);
5378 	} else
5379 		rc = -EAGAIN;
5380 
5381 	return rc;
5382 }
5383 
5384 /**
5385  * pci_reset_bus - Try to reset a PCI bus
5386  * @pdev: top level PCI device to reset via slot/bus
5387  *
5388  * Same as above except return -EAGAIN if the bus cannot be locked
5389  */
5390 int pci_reset_bus(struct pci_dev *pdev)
5391 {
5392 	return (!pci_probe_reset_slot(pdev->slot)) ?
5393 	    __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5394 }
5395 EXPORT_SYMBOL_GPL(pci_reset_bus);
5396 
5397 /**
5398  * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5399  * @dev: PCI device to query
5400  *
5401  * Returns mmrbc: maximum designed memory read count in bytes or
5402  * appropriate error value.
5403  */
5404 int pcix_get_max_mmrbc(struct pci_dev *dev)
5405 {
5406 	int cap;
5407 	u32 stat;
5408 
5409 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5410 	if (!cap)
5411 		return -EINVAL;
5412 
5413 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5414 		return -EINVAL;
5415 
5416 	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
5417 }
5418 EXPORT_SYMBOL(pcix_get_max_mmrbc);
5419 
5420 /**
5421  * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5422  * @dev: PCI device to query
5423  *
5424  * Returns mmrbc: maximum memory read count in bytes or appropriate error
5425  * value.
5426  */
5427 int pcix_get_mmrbc(struct pci_dev *dev)
5428 {
5429 	int cap;
5430 	u16 cmd;
5431 
5432 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5433 	if (!cap)
5434 		return -EINVAL;
5435 
5436 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5437 		return -EINVAL;
5438 
5439 	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
5440 }
5441 EXPORT_SYMBOL(pcix_get_mmrbc);
5442 
5443 /**
5444  * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5445  * @dev: PCI device to query
5446  * @mmrbc: maximum memory read count in bytes
5447  *    valid values are 512, 1024, 2048, 4096
5448  *
5449  * If possible sets maximum memory read byte count, some bridges have errata
5450  * that prevent this.
5451  */
5452 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5453 {
5454 	int cap;
5455 	u32 stat, v, o;
5456 	u16 cmd;
5457 
5458 	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5459 		return -EINVAL;
5460 
5461 	v = ffs(mmrbc) - 10;
5462 
5463 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5464 	if (!cap)
5465 		return -EINVAL;
5466 
5467 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5468 		return -EINVAL;
5469 
5470 	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
5471 		return -E2BIG;
5472 
5473 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5474 		return -EINVAL;
5475 
5476 	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
5477 	if (o != v) {
5478 		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5479 			return -EIO;
5480 
5481 		cmd &= ~PCI_X_CMD_MAX_READ;
5482 		cmd |= v << 2;
5483 		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5484 			return -EIO;
5485 	}
5486 	return 0;
5487 }
5488 EXPORT_SYMBOL(pcix_set_mmrbc);
5489 
5490 /**
5491  * pcie_get_readrq - get PCI Express read request size
5492  * @dev: PCI device to query
5493  *
5494  * Returns maximum memory read request in bytes or appropriate error value.
5495  */
5496 int pcie_get_readrq(struct pci_dev *dev)
5497 {
5498 	u16 ctl;
5499 
5500 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5501 
5502 	return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5503 }
5504 EXPORT_SYMBOL(pcie_get_readrq);
5505 
5506 /**
5507  * pcie_set_readrq - set PCI Express maximum memory read request
5508  * @dev: PCI device to query
5509  * @rq: maximum memory read count in bytes
5510  *    valid values are 128, 256, 512, 1024, 2048, 4096
5511  *
5512  * If possible sets maximum memory read request in bytes
5513  */
5514 int pcie_set_readrq(struct pci_dev *dev, int rq)
5515 {
5516 	u16 v;
5517 
5518 	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
5519 		return -EINVAL;
5520 
5521 	/*
5522 	 * If using the "performance" PCIe config, we clamp the read rq
5523 	 * size to the max packet size to keep the host bridge from
5524 	 * generating requests larger than we can cope with.
5525 	 */
5526 	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
5527 		int mps = pcie_get_mps(dev);
5528 
5529 		if (mps < rq)
5530 			rq = mps;
5531 	}
5532 
5533 	v = (ffs(rq) - 8) << 12;
5534 
5535 	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5536 						  PCI_EXP_DEVCTL_READRQ, v);
5537 }
5538 EXPORT_SYMBOL(pcie_set_readrq);
5539 
5540 /**
5541  * pcie_get_mps - get PCI Express maximum payload size
5542  * @dev: PCI device to query
5543  *
5544  * Returns maximum payload size in bytes
5545  */
5546 int pcie_get_mps(struct pci_dev *dev)
5547 {
5548 	u16 ctl;
5549 
5550 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5551 
5552 	return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
5553 }
5554 EXPORT_SYMBOL(pcie_get_mps);
5555 
5556 /**
5557  * pcie_set_mps - set PCI Express maximum payload size
5558  * @dev: PCI device to query
5559  * @mps: maximum payload size in bytes
5560  *    valid values are 128, 256, 512, 1024, 2048, 4096
5561  *
5562  * If possible sets maximum payload size
5563  */
5564 int pcie_set_mps(struct pci_dev *dev, int mps)
5565 {
5566 	u16 v;
5567 
5568 	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
5569 		return -EINVAL;
5570 
5571 	v = ffs(mps) - 8;
5572 	if (v > dev->pcie_mpss)
5573 		return -EINVAL;
5574 	v <<= 5;
5575 
5576 	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5577 						  PCI_EXP_DEVCTL_PAYLOAD, v);
5578 }
5579 EXPORT_SYMBOL(pcie_set_mps);
5580 
5581 /**
5582  * pcie_bandwidth_available - determine minimum link settings of a PCIe
5583  *			      device and its bandwidth limitation
5584  * @dev: PCI device to query
5585  * @limiting_dev: storage for device causing the bandwidth limitation
5586  * @speed: storage for speed of limiting device
5587  * @width: storage for width of limiting device
5588  *
5589  * Walk up the PCI device chain and find the point where the minimum
5590  * bandwidth is available.  Return the bandwidth available there and (if
5591  * limiting_dev, speed, and width pointers are supplied) information about
5592  * that point.  The bandwidth returned is in Mb/s, i.e., megabits/second of
5593  * raw bandwidth.
5594  */
5595 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
5596 			     enum pci_bus_speed *speed,
5597 			     enum pcie_link_width *width)
5598 {
5599 	u16 lnksta;
5600 	enum pci_bus_speed next_speed;
5601 	enum pcie_link_width next_width;
5602 	u32 bw, next_bw;
5603 
5604 	if (speed)
5605 		*speed = PCI_SPEED_UNKNOWN;
5606 	if (width)
5607 		*width = PCIE_LNK_WIDTH_UNKNOWN;
5608 
5609 	bw = 0;
5610 
5611 	while (dev) {
5612 		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
5613 
5614 		next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
5615 		next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
5616 			PCI_EXP_LNKSTA_NLW_SHIFT;
5617 
5618 		next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
5619 
5620 		/* Check if current device limits the total bandwidth */
5621 		if (!bw || next_bw <= bw) {
5622 			bw = next_bw;
5623 
5624 			if (limiting_dev)
5625 				*limiting_dev = dev;
5626 			if (speed)
5627 				*speed = next_speed;
5628 			if (width)
5629 				*width = next_width;
5630 		}
5631 
5632 		dev = pci_upstream_bridge(dev);
5633 	}
5634 
5635 	return bw;
5636 }
5637 EXPORT_SYMBOL(pcie_bandwidth_available);
5638 
5639 /**
5640  * pcie_get_speed_cap - query for the PCI device's link speed capability
5641  * @dev: PCI device to query
5642  *
5643  * Query the PCI device speed capability.  Return the maximum link speed
5644  * supported by the device.
5645  */
5646 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
5647 {
5648 	u32 lnkcap2, lnkcap;
5649 
5650 	/*
5651 	 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18.  The
5652 	 * implementation note there recommends using the Supported Link
5653 	 * Speeds Vector in Link Capabilities 2 when supported.
5654 	 *
5655 	 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
5656 	 * should use the Supported Link Speeds field in Link Capabilities,
5657 	 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
5658 	 */
5659 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
5660 	if (lnkcap2) { /* PCIe r3.0-compliant */
5661 		if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_32_0GB)
5662 			return PCIE_SPEED_32_0GT;
5663 		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_16_0GB)
5664 			return PCIE_SPEED_16_0GT;
5665 		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB)
5666 			return PCIE_SPEED_8_0GT;
5667 		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB)
5668 			return PCIE_SPEED_5_0GT;
5669 		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB)
5670 			return PCIE_SPEED_2_5GT;
5671 		return PCI_SPEED_UNKNOWN;
5672 	}
5673 
5674 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5675 	if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
5676 		return PCIE_SPEED_5_0GT;
5677 	else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
5678 		return PCIE_SPEED_2_5GT;
5679 
5680 	return PCI_SPEED_UNKNOWN;
5681 }
5682 EXPORT_SYMBOL(pcie_get_speed_cap);
5683 
5684 /**
5685  * pcie_get_width_cap - query for the PCI device's link width capability
5686  * @dev: PCI device to query
5687  *
5688  * Query the PCI device width capability.  Return the maximum link width
5689  * supported by the device.
5690  */
5691 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
5692 {
5693 	u32 lnkcap;
5694 
5695 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5696 	if (lnkcap)
5697 		return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
5698 
5699 	return PCIE_LNK_WIDTH_UNKNOWN;
5700 }
5701 EXPORT_SYMBOL(pcie_get_width_cap);
5702 
5703 /**
5704  * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
5705  * @dev: PCI device
5706  * @speed: storage for link speed
5707  * @width: storage for link width
5708  *
5709  * Calculate a PCI device's link bandwidth by querying for its link speed
5710  * and width, multiplying them, and applying encoding overhead.  The result
5711  * is in Mb/s, i.e., megabits/second of raw bandwidth.
5712  */
5713 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
5714 			   enum pcie_link_width *width)
5715 {
5716 	*speed = pcie_get_speed_cap(dev);
5717 	*width = pcie_get_width_cap(dev);
5718 
5719 	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
5720 		return 0;
5721 
5722 	return *width * PCIE_SPEED2MBS_ENC(*speed);
5723 }
5724 
5725 /**
5726  * __pcie_print_link_status - Report the PCI device's link speed and width
5727  * @dev: PCI device to query
5728  * @verbose: Print info even when enough bandwidth is available
5729  *
5730  * If the available bandwidth at the device is less than the device is
5731  * capable of, report the device's maximum possible bandwidth and the
5732  * upstream link that limits its performance.  If @verbose, always print
5733  * the available bandwidth, even if the device isn't constrained.
5734  */
5735 void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
5736 {
5737 	enum pcie_link_width width, width_cap;
5738 	enum pci_bus_speed speed, speed_cap;
5739 	struct pci_dev *limiting_dev = NULL;
5740 	u32 bw_avail, bw_cap;
5741 
5742 	bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
5743 	bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
5744 
5745 	if (bw_avail >= bw_cap && verbose)
5746 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
5747 			 bw_cap / 1000, bw_cap % 1000,
5748 			 PCIE_SPEED2STR(speed_cap), width_cap);
5749 	else if (bw_avail < bw_cap)
5750 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
5751 			 bw_avail / 1000, bw_avail % 1000,
5752 			 PCIE_SPEED2STR(speed), width,
5753 			 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
5754 			 bw_cap / 1000, bw_cap % 1000,
5755 			 PCIE_SPEED2STR(speed_cap), width_cap);
5756 }
5757 
5758 /**
5759  * pcie_print_link_status - Report the PCI device's link speed and width
5760  * @dev: PCI device to query
5761  *
5762  * Report the available bandwidth at the device.
5763  */
5764 void pcie_print_link_status(struct pci_dev *dev)
5765 {
5766 	__pcie_print_link_status(dev, true);
5767 }
5768 EXPORT_SYMBOL(pcie_print_link_status);
5769 
5770 /**
5771  * pci_select_bars - Make BAR mask from the type of resource
5772  * @dev: the PCI device for which BAR mask is made
5773  * @flags: resource type mask to be selected
5774  *
5775  * This helper routine makes bar mask from the type of resource.
5776  */
5777 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
5778 {
5779 	int i, bars = 0;
5780 	for (i = 0; i < PCI_NUM_RESOURCES; i++)
5781 		if (pci_resource_flags(dev, i) & flags)
5782 			bars |= (1 << i);
5783 	return bars;
5784 }
5785 EXPORT_SYMBOL(pci_select_bars);
5786 
5787 /* Some architectures require additional programming to enable VGA */
5788 static arch_set_vga_state_t arch_set_vga_state;
5789 
5790 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
5791 {
5792 	arch_set_vga_state = func;	/* NULL disables */
5793 }
5794 
5795 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
5796 				  unsigned int command_bits, u32 flags)
5797 {
5798 	if (arch_set_vga_state)
5799 		return arch_set_vga_state(dev, decode, command_bits,
5800 						flags);
5801 	return 0;
5802 }
5803 
5804 /**
5805  * pci_set_vga_state - set VGA decode state on device and parents if requested
5806  * @dev: the PCI device
5807  * @decode: true = enable decoding, false = disable decoding
5808  * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
5809  * @flags: traverse ancestors and change bridges
5810  * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
5811  */
5812 int pci_set_vga_state(struct pci_dev *dev, bool decode,
5813 		      unsigned int command_bits, u32 flags)
5814 {
5815 	struct pci_bus *bus;
5816 	struct pci_dev *bridge;
5817 	u16 cmd;
5818 	int rc;
5819 
5820 	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
5821 
5822 	/* ARCH specific VGA enables */
5823 	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
5824 	if (rc)
5825 		return rc;
5826 
5827 	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
5828 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
5829 		if (decode == true)
5830 			cmd |= command_bits;
5831 		else
5832 			cmd &= ~command_bits;
5833 		pci_write_config_word(dev, PCI_COMMAND, cmd);
5834 	}
5835 
5836 	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
5837 		return 0;
5838 
5839 	bus = dev->bus;
5840 	while (bus) {
5841 		bridge = bus->self;
5842 		if (bridge) {
5843 			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
5844 					     &cmd);
5845 			if (decode == true)
5846 				cmd |= PCI_BRIDGE_CTL_VGA;
5847 			else
5848 				cmd &= ~PCI_BRIDGE_CTL_VGA;
5849 			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
5850 					      cmd);
5851 		}
5852 		bus = bus->parent;
5853 	}
5854 	return 0;
5855 }
5856 
5857 /**
5858  * pci_add_dma_alias - Add a DMA devfn alias for a device
5859  * @dev: the PCI device for which alias is added
5860  * @devfn: alias slot and function
5861  *
5862  * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
5863  * which is used to program permissible bus-devfn source addresses for DMA
5864  * requests in an IOMMU.  These aliases factor into IOMMU group creation
5865  * and are useful for devices generating DMA requests beyond or different
5866  * from their logical bus-devfn.  Examples include device quirks where the
5867  * device simply uses the wrong devfn, as well as non-transparent bridges
5868  * where the alias may be a proxy for devices in another domain.
5869  *
5870  * IOMMU group creation is performed during device discovery or addition,
5871  * prior to any potential DMA mapping and therefore prior to driver probing
5872  * (especially for userspace assigned devices where IOMMU group definition
5873  * cannot be left as a userspace activity).  DMA aliases should therefore
5874  * be configured via quirks, such as the PCI fixup header quirk.
5875  */
5876 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn)
5877 {
5878 	if (!dev->dma_alias_mask)
5879 		dev->dma_alias_mask = bitmap_zalloc(U8_MAX, GFP_KERNEL);
5880 	if (!dev->dma_alias_mask) {
5881 		pci_warn(dev, "Unable to allocate DMA alias mask\n");
5882 		return;
5883 	}
5884 
5885 	set_bit(devfn, dev->dma_alias_mask);
5886 	pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
5887 		 PCI_SLOT(devfn), PCI_FUNC(devfn));
5888 }
5889 
5890 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
5891 {
5892 	return (dev1->dma_alias_mask &&
5893 		test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
5894 	       (dev2->dma_alias_mask &&
5895 		test_bit(dev1->devfn, dev2->dma_alias_mask));
5896 }
5897 
5898 bool pci_device_is_present(struct pci_dev *pdev)
5899 {
5900 	u32 v;
5901 
5902 	if (pci_dev_is_disconnected(pdev))
5903 		return false;
5904 	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
5905 }
5906 EXPORT_SYMBOL_GPL(pci_device_is_present);
5907 
5908 void pci_ignore_hotplug(struct pci_dev *dev)
5909 {
5910 	struct pci_dev *bridge = dev->bus->self;
5911 
5912 	dev->ignore_hotplug = 1;
5913 	/* Propagate the "ignore hotplug" setting to the parent bridge. */
5914 	if (bridge)
5915 		bridge->ignore_hotplug = 1;
5916 }
5917 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
5918 
5919 resource_size_t __weak pcibios_default_alignment(void)
5920 {
5921 	return 0;
5922 }
5923 
5924 /*
5925  * Arches that don't want to expose struct resource to userland as-is in
5926  * sysfs and /proc can implement their own pci_resource_to_user().
5927  */
5928 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
5929 				 const struct resource *rsrc,
5930 				 resource_size_t *start, resource_size_t *end)
5931 {
5932 	*start = rsrc->start;
5933 	*end = rsrc->end;
5934 }
5935 
5936 static char *resource_alignment_param;
5937 static DEFINE_SPINLOCK(resource_alignment_lock);
5938 
5939 /**
5940  * pci_specified_resource_alignment - get resource alignment specified by user.
5941  * @dev: the PCI device to get
5942  * @resize: whether or not to change resources' size when reassigning alignment
5943  *
5944  * RETURNS: Resource alignment if it is specified.
5945  *          Zero if it is not specified.
5946  */
5947 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
5948 							bool *resize)
5949 {
5950 	int align_order, count;
5951 	resource_size_t align = pcibios_default_alignment();
5952 	const char *p;
5953 	int ret;
5954 
5955 	spin_lock(&resource_alignment_lock);
5956 	p = resource_alignment_param;
5957 	if (!p || !*p)
5958 		goto out;
5959 	if (pci_has_flag(PCI_PROBE_ONLY)) {
5960 		align = 0;
5961 		pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
5962 		goto out;
5963 	}
5964 
5965 	while (*p) {
5966 		count = 0;
5967 		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
5968 							p[count] == '@') {
5969 			p += count + 1;
5970 		} else {
5971 			align_order = -1;
5972 		}
5973 
5974 		ret = pci_dev_str_match(dev, p, &p);
5975 		if (ret == 1) {
5976 			*resize = true;
5977 			if (align_order == -1)
5978 				align = PAGE_SIZE;
5979 			else
5980 				align = 1 << align_order;
5981 			break;
5982 		} else if (ret < 0) {
5983 			pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
5984 			       p);
5985 			break;
5986 		}
5987 
5988 		if (*p != ';' && *p != ',') {
5989 			/* End of param or invalid format */
5990 			break;
5991 		}
5992 		p++;
5993 	}
5994 out:
5995 	spin_unlock(&resource_alignment_lock);
5996 	return align;
5997 }
5998 
5999 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6000 					   resource_size_t align, bool resize)
6001 {
6002 	struct resource *r = &dev->resource[bar];
6003 	resource_size_t size;
6004 
6005 	if (!(r->flags & IORESOURCE_MEM))
6006 		return;
6007 
6008 	if (r->flags & IORESOURCE_PCI_FIXED) {
6009 		pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6010 			 bar, r, (unsigned long long)align);
6011 		return;
6012 	}
6013 
6014 	size = resource_size(r);
6015 	if (size >= align)
6016 		return;
6017 
6018 	/*
6019 	 * Increase the alignment of the resource.  There are two ways we
6020 	 * can do this:
6021 	 *
6022 	 * 1) Increase the size of the resource.  BARs are aligned on their
6023 	 *    size, so when we reallocate space for this resource, we'll
6024 	 *    allocate it with the larger alignment.  This also prevents
6025 	 *    assignment of any other BARs inside the alignment region, so
6026 	 *    if we're requesting page alignment, this means no other BARs
6027 	 *    will share the page.
6028 	 *
6029 	 *    The disadvantage is that this makes the resource larger than
6030 	 *    the hardware BAR, which may break drivers that compute things
6031 	 *    based on the resource size, e.g., to find registers at a
6032 	 *    fixed offset before the end of the BAR.
6033 	 *
6034 	 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6035 	 *    set r->start to the desired alignment.  By itself this
6036 	 *    doesn't prevent other BARs being put inside the alignment
6037 	 *    region, but if we realign *every* resource of every device in
6038 	 *    the system, none of them will share an alignment region.
6039 	 *
6040 	 * When the user has requested alignment for only some devices via
6041 	 * the "pci=resource_alignment" argument, "resize" is true and we
6042 	 * use the first method.  Otherwise we assume we're aligning all
6043 	 * devices and we use the second.
6044 	 */
6045 
6046 	pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6047 		 bar, r, (unsigned long long)align);
6048 
6049 	if (resize) {
6050 		r->start = 0;
6051 		r->end = align - 1;
6052 	} else {
6053 		r->flags &= ~IORESOURCE_SIZEALIGN;
6054 		r->flags |= IORESOURCE_STARTALIGN;
6055 		r->start = align;
6056 		r->end = r->start + size - 1;
6057 	}
6058 	r->flags |= IORESOURCE_UNSET;
6059 }
6060 
6061 /*
6062  * This function disables memory decoding and releases memory resources
6063  * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6064  * It also rounds up size to specified alignment.
6065  * Later on, the kernel will assign page-aligned memory resource back
6066  * to the device.
6067  */
6068 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6069 {
6070 	int i;
6071 	struct resource *r;
6072 	resource_size_t align;
6073 	u16 command;
6074 	bool resize = false;
6075 
6076 	/*
6077 	 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6078 	 * 3.4.1.11.  Their resources are allocated from the space
6079 	 * described by the VF BARx register in the PF's SR-IOV capability.
6080 	 * We can't influence their alignment here.
6081 	 */
6082 	if (dev->is_virtfn)
6083 		return;
6084 
6085 	/* check if specified PCI is target device to reassign */
6086 	align = pci_specified_resource_alignment(dev, &resize);
6087 	if (!align)
6088 		return;
6089 
6090 	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6091 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6092 		pci_warn(dev, "Can't reassign resources to host bridge\n");
6093 		return;
6094 	}
6095 
6096 	pci_read_config_word(dev, PCI_COMMAND, &command);
6097 	command &= ~PCI_COMMAND_MEMORY;
6098 	pci_write_config_word(dev, PCI_COMMAND, command);
6099 
6100 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6101 		pci_request_resource_alignment(dev, i, align, resize);
6102 
6103 	/*
6104 	 * Need to disable bridge's resource window,
6105 	 * to enable the kernel to reassign new resource
6106 	 * window later on.
6107 	 */
6108 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6109 		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6110 			r = &dev->resource[i];
6111 			if (!(r->flags & IORESOURCE_MEM))
6112 				continue;
6113 			r->flags |= IORESOURCE_UNSET;
6114 			r->end = resource_size(r) - 1;
6115 			r->start = 0;
6116 		}
6117 		pci_disable_bridge_window(dev);
6118 	}
6119 }
6120 
6121 static ssize_t resource_alignment_show(struct bus_type *bus, char *buf)
6122 {
6123 	size_t count = 0;
6124 
6125 	spin_lock(&resource_alignment_lock);
6126 	if (resource_alignment_param)
6127 		count = snprintf(buf, PAGE_SIZE, "%s", resource_alignment_param);
6128 	spin_unlock(&resource_alignment_lock);
6129 
6130 	/*
6131 	 * When set by the command line, resource_alignment_param will not
6132 	 * have a trailing line feed, which is ugly. So conditionally add
6133 	 * it here.
6134 	 */
6135 	if (count >= 2 && buf[count - 2] != '\n' && count < PAGE_SIZE - 1) {
6136 		buf[count - 1] = '\n';
6137 		buf[count++] = 0;
6138 	}
6139 
6140 	return count;
6141 }
6142 
6143 static ssize_t resource_alignment_store(struct bus_type *bus,
6144 					const char *buf, size_t count)
6145 {
6146 	char *param = kstrndup(buf, count, GFP_KERNEL);
6147 
6148 	if (!param)
6149 		return -ENOMEM;
6150 
6151 	spin_lock(&resource_alignment_lock);
6152 	kfree(resource_alignment_param);
6153 	resource_alignment_param = param;
6154 	spin_unlock(&resource_alignment_lock);
6155 	return count;
6156 }
6157 
6158 static BUS_ATTR_RW(resource_alignment);
6159 
6160 static int __init pci_resource_alignment_sysfs_init(void)
6161 {
6162 	return bus_create_file(&pci_bus_type,
6163 					&bus_attr_resource_alignment);
6164 }
6165 late_initcall(pci_resource_alignment_sysfs_init);
6166 
6167 static void pci_no_domains(void)
6168 {
6169 #ifdef CONFIG_PCI_DOMAINS
6170 	pci_domains_supported = 0;
6171 #endif
6172 }
6173 
6174 #ifdef CONFIG_PCI_DOMAINS_GENERIC
6175 static atomic_t __domain_nr = ATOMIC_INIT(-1);
6176 
6177 static int pci_get_new_domain_nr(void)
6178 {
6179 	return atomic_inc_return(&__domain_nr);
6180 }
6181 
6182 static int of_pci_bus_find_domain_nr(struct device *parent)
6183 {
6184 	static int use_dt_domains = -1;
6185 	int domain = -1;
6186 
6187 	if (parent)
6188 		domain = of_get_pci_domain_nr(parent->of_node);
6189 
6190 	/*
6191 	 * Check DT domain and use_dt_domains values.
6192 	 *
6193 	 * If DT domain property is valid (domain >= 0) and
6194 	 * use_dt_domains != 0, the DT assignment is valid since this means
6195 	 * we have not previously allocated a domain number by using
6196 	 * pci_get_new_domain_nr(); we should also update use_dt_domains to
6197 	 * 1, to indicate that we have just assigned a domain number from
6198 	 * DT.
6199 	 *
6200 	 * If DT domain property value is not valid (ie domain < 0), and we
6201 	 * have not previously assigned a domain number from DT
6202 	 * (use_dt_domains != 1) we should assign a domain number by
6203 	 * using the:
6204 	 *
6205 	 * pci_get_new_domain_nr()
6206 	 *
6207 	 * API and update the use_dt_domains value to keep track of method we
6208 	 * are using to assign domain numbers (use_dt_domains = 0).
6209 	 *
6210 	 * All other combinations imply we have a platform that is trying
6211 	 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
6212 	 * which is a recipe for domain mishandling and it is prevented by
6213 	 * invalidating the domain value (domain = -1) and printing a
6214 	 * corresponding error.
6215 	 */
6216 	if (domain >= 0 && use_dt_domains) {
6217 		use_dt_domains = 1;
6218 	} else if (domain < 0 && use_dt_domains != 1) {
6219 		use_dt_domains = 0;
6220 		domain = pci_get_new_domain_nr();
6221 	} else {
6222 		if (parent)
6223 			pr_err("Node %pOF has ", parent->of_node);
6224 		pr_err("Inconsistent \"linux,pci-domain\" property in DT\n");
6225 		domain = -1;
6226 	}
6227 
6228 	return domain;
6229 }
6230 
6231 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6232 {
6233 	return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6234 			       acpi_pci_bus_find_domain_nr(bus);
6235 }
6236 #endif
6237 
6238 /**
6239  * pci_ext_cfg_avail - can we access extended PCI config space?
6240  *
6241  * Returns 1 if we can access PCI extended config space (offsets
6242  * greater than 0xff). This is the default implementation. Architecture
6243  * implementations can override this.
6244  */
6245 int __weak pci_ext_cfg_avail(void)
6246 {
6247 	return 1;
6248 }
6249 
6250 void __weak pci_fixup_cardbus(struct pci_bus *bus)
6251 {
6252 }
6253 EXPORT_SYMBOL(pci_fixup_cardbus);
6254 
6255 static int __init pci_setup(char *str)
6256 {
6257 	while (str) {
6258 		char *k = strchr(str, ',');
6259 		if (k)
6260 			*k++ = 0;
6261 		if (*str && (str = pcibios_setup(str)) && *str) {
6262 			if (!strcmp(str, "nomsi")) {
6263 				pci_no_msi();
6264 			} else if (!strncmp(str, "noats", 5)) {
6265 				pr_info("PCIe: ATS is disabled\n");
6266 				pcie_ats_disabled = true;
6267 			} else if (!strcmp(str, "noaer")) {
6268 				pci_no_aer();
6269 			} else if (!strcmp(str, "earlydump")) {
6270 				pci_early_dump = true;
6271 			} else if (!strncmp(str, "realloc=", 8)) {
6272 				pci_realloc_get_opt(str + 8);
6273 			} else if (!strncmp(str, "realloc", 7)) {
6274 				pci_realloc_get_opt("on");
6275 			} else if (!strcmp(str, "nodomains")) {
6276 				pci_no_domains();
6277 			} else if (!strncmp(str, "noari", 5)) {
6278 				pcie_ari_disabled = true;
6279 			} else if (!strncmp(str, "cbiosize=", 9)) {
6280 				pci_cardbus_io_size = memparse(str + 9, &str);
6281 			} else if (!strncmp(str, "cbmemsize=", 10)) {
6282 				pci_cardbus_mem_size = memparse(str + 10, &str);
6283 			} else if (!strncmp(str, "resource_alignment=", 19)) {
6284 				resource_alignment_param = str + 19;
6285 			} else if (!strncmp(str, "ecrc=", 5)) {
6286 				pcie_ecrc_get_policy(str + 5);
6287 			} else if (!strncmp(str, "hpiosize=", 9)) {
6288 				pci_hotplug_io_size = memparse(str + 9, &str);
6289 			} else if (!strncmp(str, "hpmemsize=", 10)) {
6290 				pci_hotplug_mem_size = memparse(str + 10, &str);
6291 			} else if (!strncmp(str, "hpbussize=", 10)) {
6292 				pci_hotplug_bus_size =
6293 					simple_strtoul(str + 10, &str, 0);
6294 				if (pci_hotplug_bus_size > 0xff)
6295 					pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6296 			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6297 				pcie_bus_config = PCIE_BUS_TUNE_OFF;
6298 			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
6299 				pcie_bus_config = PCIE_BUS_SAFE;
6300 			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
6301 				pcie_bus_config = PCIE_BUS_PERFORMANCE;
6302 			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6303 				pcie_bus_config = PCIE_BUS_PEER2PEER;
6304 			} else if (!strncmp(str, "pcie_scan_all", 13)) {
6305 				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6306 			} else if (!strncmp(str, "disable_acs_redir=", 18)) {
6307 				disable_acs_redir_param = str + 18;
6308 			} else {
6309 				pr_err("PCI: Unknown option `%s'\n", str);
6310 			}
6311 		}
6312 		str = k;
6313 	}
6314 	return 0;
6315 }
6316 early_param("pci", pci_setup);
6317 
6318 /*
6319  * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6320  * in pci_setup(), above, to point to data in the __initdata section which
6321  * will be freed after the init sequence is complete. We can't allocate memory
6322  * in pci_setup() because some architectures do not have any memory allocation
6323  * service available during an early_param() call. So we allocate memory and
6324  * copy the variable here before the init section is freed.
6325  *
6326  */
6327 static int __init pci_realloc_setup_params(void)
6328 {
6329 	resource_alignment_param = kstrdup(resource_alignment_param,
6330 					   GFP_KERNEL);
6331 	disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6332 
6333 	return 0;
6334 }
6335 pure_initcall(pci_realloc_setup_params);
6336