1 /* 2 * PCI Bus Services, see include/linux/pci.h for further explanation. 3 * 4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter, 5 * David Mosberger-Tang 6 * 7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz> 8 */ 9 10 #include <linux/kernel.h> 11 #include <linux/delay.h> 12 #include <linux/init.h> 13 #include <linux/pci.h> 14 #include <linux/pm.h> 15 #include <linux/slab.h> 16 #include <linux/module.h> 17 #include <linux/spinlock.h> 18 #include <linux/string.h> 19 #include <linux/log2.h> 20 #include <linux/pci-aspm.h> 21 #include <linux/pm_wakeup.h> 22 #include <linux/interrupt.h> 23 #include <linux/device.h> 24 #include <linux/pm_runtime.h> 25 #include <linux/pci_hotplug.h> 26 #include <asm-generic/pci-bridge.h> 27 #include <asm/setup.h> 28 #include "pci.h" 29 30 const char *pci_power_names[] = { 31 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown", 32 }; 33 EXPORT_SYMBOL_GPL(pci_power_names); 34 35 int isa_dma_bridge_buggy; 36 EXPORT_SYMBOL(isa_dma_bridge_buggy); 37 38 int pci_pci_problems; 39 EXPORT_SYMBOL(pci_pci_problems); 40 41 unsigned int pci_pm_d3_delay; 42 43 static void pci_pme_list_scan(struct work_struct *work); 44 45 static LIST_HEAD(pci_pme_list); 46 static DEFINE_MUTEX(pci_pme_list_mutex); 47 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan); 48 49 struct pci_pme_device { 50 struct list_head list; 51 struct pci_dev *dev; 52 }; 53 54 #define PME_TIMEOUT 1000 /* How long between PME checks */ 55 56 static void pci_dev_d3_sleep(struct pci_dev *dev) 57 { 58 unsigned int delay = dev->d3_delay; 59 60 if (delay < pci_pm_d3_delay) 61 delay = pci_pm_d3_delay; 62 63 msleep(delay); 64 } 65 66 #ifdef CONFIG_PCI_DOMAINS 67 int pci_domains_supported = 1; 68 #endif 69 70 #define DEFAULT_CARDBUS_IO_SIZE (256) 71 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024) 72 /* pci=cbmemsize=nnM,cbiosize=nn can override this */ 73 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE; 74 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE; 75 76 #define DEFAULT_HOTPLUG_IO_SIZE (256) 77 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024) 78 /* pci=hpmemsize=nnM,hpiosize=nn can override this */ 79 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE; 80 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE; 81 82 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF; 83 84 /* 85 * The default CLS is used if arch didn't set CLS explicitly and not 86 * all pci devices agree on the same value. Arch can override either 87 * the dfl or actual value as it sees fit. Don't forget this is 88 * measured in 32-bit words, not bytes. 89 */ 90 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2; 91 u8 pci_cache_line_size; 92 93 /* 94 * If we set up a device for bus mastering, we need to check the latency 95 * timer as certain BIOSes forget to set it properly. 96 */ 97 unsigned int pcibios_max_latency = 255; 98 99 /* If set, the PCIe ARI capability will not be used. */ 100 static bool pcie_ari_disabled; 101 102 /** 103 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children 104 * @bus: pointer to PCI bus structure to search 105 * 106 * Given a PCI bus, returns the highest PCI bus number present in the set 107 * including the given PCI bus and its list of child PCI buses. 108 */ 109 unsigned char pci_bus_max_busnr(struct pci_bus* bus) 110 { 111 struct list_head *tmp; 112 unsigned char max, n; 113 114 max = bus->busn_res.end; 115 list_for_each(tmp, &bus->children) { 116 n = pci_bus_max_busnr(pci_bus_b(tmp)); 117 if(n > max) 118 max = n; 119 } 120 return max; 121 } 122 EXPORT_SYMBOL_GPL(pci_bus_max_busnr); 123 124 #ifdef CONFIG_HAS_IOMEM 125 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar) 126 { 127 /* 128 * Make sure the BAR is actually a memory resource, not an IO resource 129 */ 130 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) { 131 WARN_ON(1); 132 return NULL; 133 } 134 return ioremap_nocache(pci_resource_start(pdev, bar), 135 pci_resource_len(pdev, bar)); 136 } 137 EXPORT_SYMBOL_GPL(pci_ioremap_bar); 138 #endif 139 140 #define PCI_FIND_CAP_TTL 48 141 142 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn, 143 u8 pos, int cap, int *ttl) 144 { 145 u8 id; 146 147 while ((*ttl)--) { 148 pci_bus_read_config_byte(bus, devfn, pos, &pos); 149 if (pos < 0x40) 150 break; 151 pos &= ~3; 152 pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID, 153 &id); 154 if (id == 0xff) 155 break; 156 if (id == cap) 157 return pos; 158 pos += PCI_CAP_LIST_NEXT; 159 } 160 return 0; 161 } 162 163 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn, 164 u8 pos, int cap) 165 { 166 int ttl = PCI_FIND_CAP_TTL; 167 168 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl); 169 } 170 171 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap) 172 { 173 return __pci_find_next_cap(dev->bus, dev->devfn, 174 pos + PCI_CAP_LIST_NEXT, cap); 175 } 176 EXPORT_SYMBOL_GPL(pci_find_next_capability); 177 178 static int __pci_bus_find_cap_start(struct pci_bus *bus, 179 unsigned int devfn, u8 hdr_type) 180 { 181 u16 status; 182 183 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status); 184 if (!(status & PCI_STATUS_CAP_LIST)) 185 return 0; 186 187 switch (hdr_type) { 188 case PCI_HEADER_TYPE_NORMAL: 189 case PCI_HEADER_TYPE_BRIDGE: 190 return PCI_CAPABILITY_LIST; 191 case PCI_HEADER_TYPE_CARDBUS: 192 return PCI_CB_CAPABILITY_LIST; 193 default: 194 return 0; 195 } 196 197 return 0; 198 } 199 200 /** 201 * pci_find_capability - query for devices' capabilities 202 * @dev: PCI device to query 203 * @cap: capability code 204 * 205 * Tell if a device supports a given PCI capability. 206 * Returns the address of the requested capability structure within the 207 * device's PCI configuration space or 0 in case the device does not 208 * support it. Possible values for @cap: 209 * 210 * %PCI_CAP_ID_PM Power Management 211 * %PCI_CAP_ID_AGP Accelerated Graphics Port 212 * %PCI_CAP_ID_VPD Vital Product Data 213 * %PCI_CAP_ID_SLOTID Slot Identification 214 * %PCI_CAP_ID_MSI Message Signalled Interrupts 215 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap 216 * %PCI_CAP_ID_PCIX PCI-X 217 * %PCI_CAP_ID_EXP PCI Express 218 */ 219 int pci_find_capability(struct pci_dev *dev, int cap) 220 { 221 int pos; 222 223 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 224 if (pos) 225 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap); 226 227 return pos; 228 } 229 230 /** 231 * pci_bus_find_capability - query for devices' capabilities 232 * @bus: the PCI bus to query 233 * @devfn: PCI device to query 234 * @cap: capability code 235 * 236 * Like pci_find_capability() but works for pci devices that do not have a 237 * pci_dev structure set up yet. 238 * 239 * Returns the address of the requested capability structure within the 240 * device's PCI configuration space or 0 in case the device does not 241 * support it. 242 */ 243 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap) 244 { 245 int pos; 246 u8 hdr_type; 247 248 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type); 249 250 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f); 251 if (pos) 252 pos = __pci_find_next_cap(bus, devfn, pos, cap); 253 254 return pos; 255 } 256 257 /** 258 * pci_find_next_ext_capability - Find an extended capability 259 * @dev: PCI device to query 260 * @start: address at which to start looking (0 to start at beginning of list) 261 * @cap: capability code 262 * 263 * Returns the address of the next matching extended capability structure 264 * within the device's PCI configuration space or 0 if the device does 265 * not support it. Some capabilities can occur several times, e.g., the 266 * vendor-specific capability, and this provides a way to find them all. 267 */ 268 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap) 269 { 270 u32 header; 271 int ttl; 272 int pos = PCI_CFG_SPACE_SIZE; 273 274 /* minimum 8 bytes per capability */ 275 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8; 276 277 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE) 278 return 0; 279 280 if (start) 281 pos = start; 282 283 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 284 return 0; 285 286 /* 287 * If we have no capabilities, this is indicated by cap ID, 288 * cap version and next pointer all being 0. 289 */ 290 if (header == 0) 291 return 0; 292 293 while (ttl-- > 0) { 294 if (PCI_EXT_CAP_ID(header) == cap && pos != start) 295 return pos; 296 297 pos = PCI_EXT_CAP_NEXT(header); 298 if (pos < PCI_CFG_SPACE_SIZE) 299 break; 300 301 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 302 break; 303 } 304 305 return 0; 306 } 307 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability); 308 309 /** 310 * pci_find_ext_capability - Find an extended capability 311 * @dev: PCI device to query 312 * @cap: capability code 313 * 314 * Returns the address of the requested extended capability structure 315 * within the device's PCI configuration space or 0 if the device does 316 * not support it. Possible values for @cap: 317 * 318 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting 319 * %PCI_EXT_CAP_ID_VC Virtual Channel 320 * %PCI_EXT_CAP_ID_DSN Device Serial Number 321 * %PCI_EXT_CAP_ID_PWR Power Budgeting 322 */ 323 int pci_find_ext_capability(struct pci_dev *dev, int cap) 324 { 325 return pci_find_next_ext_capability(dev, 0, cap); 326 } 327 EXPORT_SYMBOL_GPL(pci_find_ext_capability); 328 329 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap) 330 { 331 int rc, ttl = PCI_FIND_CAP_TTL; 332 u8 cap, mask; 333 334 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST) 335 mask = HT_3BIT_CAP_MASK; 336 else 337 mask = HT_5BIT_CAP_MASK; 338 339 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos, 340 PCI_CAP_ID_HT, &ttl); 341 while (pos) { 342 rc = pci_read_config_byte(dev, pos + 3, &cap); 343 if (rc != PCIBIOS_SUCCESSFUL) 344 return 0; 345 346 if ((cap & mask) == ht_cap) 347 return pos; 348 349 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, 350 pos + PCI_CAP_LIST_NEXT, 351 PCI_CAP_ID_HT, &ttl); 352 } 353 354 return 0; 355 } 356 /** 357 * pci_find_next_ht_capability - query a device's Hypertransport capabilities 358 * @dev: PCI device to query 359 * @pos: Position from which to continue searching 360 * @ht_cap: Hypertransport capability code 361 * 362 * To be used in conjunction with pci_find_ht_capability() to search for 363 * all capabilities matching @ht_cap. @pos should always be a value returned 364 * from pci_find_ht_capability(). 365 * 366 * NB. To be 100% safe against broken PCI devices, the caller should take 367 * steps to avoid an infinite loop. 368 */ 369 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap) 370 { 371 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap); 372 } 373 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability); 374 375 /** 376 * pci_find_ht_capability - query a device's Hypertransport capabilities 377 * @dev: PCI device to query 378 * @ht_cap: Hypertransport capability code 379 * 380 * Tell if a device supports a given Hypertransport capability. 381 * Returns an address within the device's PCI configuration space 382 * or 0 in case the device does not support the request capability. 383 * The address points to the PCI capability, of type PCI_CAP_ID_HT, 384 * which has a Hypertransport capability matching @ht_cap. 385 */ 386 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap) 387 { 388 int pos; 389 390 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 391 if (pos) 392 pos = __pci_find_next_ht_cap(dev, pos, ht_cap); 393 394 return pos; 395 } 396 EXPORT_SYMBOL_GPL(pci_find_ht_capability); 397 398 /** 399 * pci_find_parent_resource - return resource region of parent bus of given region 400 * @dev: PCI device structure contains resources to be searched 401 * @res: child resource record for which parent is sought 402 * 403 * For given resource region of given device, return the resource 404 * region of parent bus the given region is contained in or where 405 * it should be allocated from. 406 */ 407 struct resource * 408 pci_find_parent_resource(const struct pci_dev *dev, struct resource *res) 409 { 410 const struct pci_bus *bus = dev->bus; 411 int i; 412 struct resource *best = NULL, *r; 413 414 pci_bus_for_each_resource(bus, r, i) { 415 if (!r) 416 continue; 417 if (res->start && !(res->start >= r->start && res->end <= r->end)) 418 continue; /* Not contained */ 419 if ((res->flags ^ r->flags) & (IORESOURCE_IO | IORESOURCE_MEM)) 420 continue; /* Wrong type */ 421 if (!((res->flags ^ r->flags) & IORESOURCE_PREFETCH)) 422 return r; /* Exact match */ 423 /* We can't insert a non-prefetch resource inside a prefetchable parent .. */ 424 if (r->flags & IORESOURCE_PREFETCH) 425 continue; 426 /* .. but we can put a prefetchable resource inside a non-prefetchable one */ 427 if (!best) 428 best = r; 429 } 430 return best; 431 } 432 433 /** 434 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos 435 * @dev: the PCI device to operate on 436 * @pos: config space offset of status word 437 * @mask: mask of bit(s) to care about in status word 438 * 439 * Return 1 when mask bit(s) in status word clear, 0 otherwise. 440 */ 441 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask) 442 { 443 int i; 444 445 /* Wait for Transaction Pending bit clean */ 446 for (i = 0; i < 4; i++) { 447 u16 status; 448 if (i) 449 msleep((1 << (i - 1)) * 100); 450 451 pci_read_config_word(dev, pos, &status); 452 if (!(status & mask)) 453 return 1; 454 } 455 456 return 0; 457 } 458 459 /** 460 * pci_restore_bars - restore a devices BAR values (e.g. after wake-up) 461 * @dev: PCI device to have its BARs restored 462 * 463 * Restore the BAR values for a given device, so as to make it 464 * accessible by its driver. 465 */ 466 static void 467 pci_restore_bars(struct pci_dev *dev) 468 { 469 int i; 470 471 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) 472 pci_update_resource(dev, i); 473 } 474 475 static struct pci_platform_pm_ops *pci_platform_pm; 476 477 int pci_set_platform_pm(struct pci_platform_pm_ops *ops) 478 { 479 if (!ops->is_manageable || !ops->set_state || !ops->choose_state 480 || !ops->sleep_wake) 481 return -EINVAL; 482 pci_platform_pm = ops; 483 return 0; 484 } 485 486 static inline bool platform_pci_power_manageable(struct pci_dev *dev) 487 { 488 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false; 489 } 490 491 static inline int platform_pci_set_power_state(struct pci_dev *dev, 492 pci_power_t t) 493 { 494 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS; 495 } 496 497 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev) 498 { 499 return pci_platform_pm ? 500 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR; 501 } 502 503 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable) 504 { 505 return pci_platform_pm ? 506 pci_platform_pm->sleep_wake(dev, enable) : -ENODEV; 507 } 508 509 static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable) 510 { 511 return pci_platform_pm ? 512 pci_platform_pm->run_wake(dev, enable) : -ENODEV; 513 } 514 515 /** 516 * pci_raw_set_power_state - Use PCI PM registers to set the power state of 517 * given PCI device 518 * @dev: PCI device to handle. 519 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 520 * 521 * RETURN VALUE: 522 * -EINVAL if the requested state is invalid. 523 * -EIO if device does not support PCI PM or its PM capabilities register has a 524 * wrong version, or device doesn't support the requested state. 525 * 0 if device already is in the requested state. 526 * 0 if device's power state has been successfully changed. 527 */ 528 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state) 529 { 530 u16 pmcsr; 531 bool need_restore = false; 532 533 /* Check if we're already there */ 534 if (dev->current_state == state) 535 return 0; 536 537 if (!dev->pm_cap) 538 return -EIO; 539 540 if (state < PCI_D0 || state > PCI_D3hot) 541 return -EINVAL; 542 543 /* Validate current state: 544 * Can enter D0 from any state, but if we can only go deeper 545 * to sleep if we're already in a low power state 546 */ 547 if (state != PCI_D0 && dev->current_state <= PCI_D3cold 548 && dev->current_state > state) { 549 dev_err(&dev->dev, "invalid power transition " 550 "(from state %d to %d)\n", dev->current_state, state); 551 return -EINVAL; 552 } 553 554 /* check if this device supports the desired state */ 555 if ((state == PCI_D1 && !dev->d1_support) 556 || (state == PCI_D2 && !dev->d2_support)) 557 return -EIO; 558 559 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 560 561 /* If we're (effectively) in D3, force entire word to 0. 562 * This doesn't affect PME_Status, disables PME_En, and 563 * sets PowerState to 0. 564 */ 565 switch (dev->current_state) { 566 case PCI_D0: 567 case PCI_D1: 568 case PCI_D2: 569 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 570 pmcsr |= state; 571 break; 572 case PCI_D3hot: 573 case PCI_D3cold: 574 case PCI_UNKNOWN: /* Boot-up */ 575 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot 576 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET)) 577 need_restore = true; 578 /* Fall-through: force to D0 */ 579 default: 580 pmcsr = 0; 581 break; 582 } 583 584 /* enter specified state */ 585 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 586 587 /* Mandatory power management transition delays */ 588 /* see PCI PM 1.1 5.6.1 table 18 */ 589 if (state == PCI_D3hot || dev->current_state == PCI_D3hot) 590 pci_dev_d3_sleep(dev); 591 else if (state == PCI_D2 || dev->current_state == PCI_D2) 592 udelay(PCI_PM_D2_DELAY); 593 594 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 595 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 596 if (dev->current_state != state && printk_ratelimit()) 597 dev_info(&dev->dev, "Refused to change power state, " 598 "currently in D%d\n", dev->current_state); 599 600 /* 601 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT 602 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning 603 * from D3hot to D0 _may_ perform an internal reset, thereby 604 * going to "D0 Uninitialized" rather than "D0 Initialized". 605 * For example, at least some versions of the 3c905B and the 606 * 3c556B exhibit this behaviour. 607 * 608 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave 609 * devices in a D3hot state at boot. Consequently, we need to 610 * restore at least the BARs so that the device will be 611 * accessible to its driver. 612 */ 613 if (need_restore) 614 pci_restore_bars(dev); 615 616 if (dev->bus->self) 617 pcie_aspm_pm_state_change(dev->bus->self); 618 619 return 0; 620 } 621 622 /** 623 * pci_update_current_state - Read PCI power state of given device from its 624 * PCI PM registers and cache it 625 * @dev: PCI device to handle. 626 * @state: State to cache in case the device doesn't have the PM capability 627 */ 628 void pci_update_current_state(struct pci_dev *dev, pci_power_t state) 629 { 630 if (dev->pm_cap) { 631 u16 pmcsr; 632 633 /* 634 * Configuration space is not accessible for device in 635 * D3cold, so just keep or set D3cold for safety 636 */ 637 if (dev->current_state == PCI_D3cold) 638 return; 639 if (state == PCI_D3cold) { 640 dev->current_state = PCI_D3cold; 641 return; 642 } 643 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 644 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 645 } else { 646 dev->current_state = state; 647 } 648 } 649 650 /** 651 * pci_power_up - Put the given device into D0 forcibly 652 * @dev: PCI device to power up 653 */ 654 void pci_power_up(struct pci_dev *dev) 655 { 656 if (platform_pci_power_manageable(dev)) 657 platform_pci_set_power_state(dev, PCI_D0); 658 659 pci_raw_set_power_state(dev, PCI_D0); 660 pci_update_current_state(dev, PCI_D0); 661 } 662 663 /** 664 * pci_platform_power_transition - Use platform to change device power state 665 * @dev: PCI device to handle. 666 * @state: State to put the device into. 667 */ 668 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state) 669 { 670 int error; 671 672 if (platform_pci_power_manageable(dev)) { 673 error = platform_pci_set_power_state(dev, state); 674 if (!error) 675 pci_update_current_state(dev, state); 676 } else 677 error = -ENODEV; 678 679 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */ 680 dev->current_state = PCI_D0; 681 682 return error; 683 } 684 685 /** 686 * pci_wakeup - Wake up a PCI device 687 * @pci_dev: Device to handle. 688 * @ign: ignored parameter 689 */ 690 static int pci_wakeup(struct pci_dev *pci_dev, void *ign) 691 { 692 pci_wakeup_event(pci_dev); 693 pm_request_resume(&pci_dev->dev); 694 return 0; 695 } 696 697 /** 698 * pci_wakeup_bus - Walk given bus and wake up devices on it 699 * @bus: Top bus of the subtree to walk. 700 */ 701 static void pci_wakeup_bus(struct pci_bus *bus) 702 { 703 if (bus) 704 pci_walk_bus(bus, pci_wakeup, NULL); 705 } 706 707 /** 708 * __pci_start_power_transition - Start power transition of a PCI device 709 * @dev: PCI device to handle. 710 * @state: State to put the device into. 711 */ 712 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state) 713 { 714 if (state == PCI_D0) { 715 pci_platform_power_transition(dev, PCI_D0); 716 /* 717 * Mandatory power management transition delays, see 718 * PCI Express Base Specification Revision 2.0 Section 719 * 6.6.1: Conventional Reset. Do not delay for 720 * devices powered on/off by corresponding bridge, 721 * because have already delayed for the bridge. 722 */ 723 if (dev->runtime_d3cold) { 724 msleep(dev->d3cold_delay); 725 /* 726 * When powering on a bridge from D3cold, the 727 * whole hierarchy may be powered on into 728 * D0uninitialized state, resume them to give 729 * them a chance to suspend again 730 */ 731 pci_wakeup_bus(dev->subordinate); 732 } 733 } 734 } 735 736 /** 737 * __pci_dev_set_current_state - Set current state of a PCI device 738 * @dev: Device to handle 739 * @data: pointer to state to be set 740 */ 741 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data) 742 { 743 pci_power_t state = *(pci_power_t *)data; 744 745 dev->current_state = state; 746 return 0; 747 } 748 749 /** 750 * __pci_bus_set_current_state - Walk given bus and set current state of devices 751 * @bus: Top bus of the subtree to walk. 752 * @state: state to be set 753 */ 754 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state) 755 { 756 if (bus) 757 pci_walk_bus(bus, __pci_dev_set_current_state, &state); 758 } 759 760 /** 761 * __pci_complete_power_transition - Complete power transition of a PCI device 762 * @dev: PCI device to handle. 763 * @state: State to put the device into. 764 * 765 * This function should not be called directly by device drivers. 766 */ 767 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state) 768 { 769 int ret; 770 771 if (state <= PCI_D0) 772 return -EINVAL; 773 ret = pci_platform_power_transition(dev, state); 774 /* Power off the bridge may power off the whole hierarchy */ 775 if (!ret && state == PCI_D3cold) 776 __pci_bus_set_current_state(dev->subordinate, PCI_D3cold); 777 return ret; 778 } 779 EXPORT_SYMBOL_GPL(__pci_complete_power_transition); 780 781 /** 782 * pci_set_power_state - Set the power state of a PCI device 783 * @dev: PCI device to handle. 784 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 785 * 786 * Transition a device to a new power state, using the platform firmware and/or 787 * the device's PCI PM registers. 788 * 789 * RETURN VALUE: 790 * -EINVAL if the requested state is invalid. 791 * -EIO if device does not support PCI PM or its PM capabilities register has a 792 * wrong version, or device doesn't support the requested state. 793 * 0 if device already is in the requested state. 794 * 0 if device's power state has been successfully changed. 795 */ 796 int pci_set_power_state(struct pci_dev *dev, pci_power_t state) 797 { 798 int error; 799 800 /* bound the state we're entering */ 801 if (state > PCI_D3cold) 802 state = PCI_D3cold; 803 else if (state < PCI_D0) 804 state = PCI_D0; 805 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev)) 806 /* 807 * If the device or the parent bridge do not support PCI PM, 808 * ignore the request if we're doing anything other than putting 809 * it into D0 (which would only happen on boot). 810 */ 811 return 0; 812 813 /* Check if we're already there */ 814 if (dev->current_state == state) 815 return 0; 816 817 __pci_start_power_transition(dev, state); 818 819 /* This device is quirked not to be put into D3, so 820 don't put it in D3 */ 821 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3)) 822 return 0; 823 824 /* 825 * To put device in D3cold, we put device into D3hot in native 826 * way, then put device into D3cold with platform ops 827 */ 828 error = pci_raw_set_power_state(dev, state > PCI_D3hot ? 829 PCI_D3hot : state); 830 831 if (!__pci_complete_power_transition(dev, state)) 832 error = 0; 833 /* 834 * When aspm_policy is "powersave" this call ensures 835 * that ASPM is configured. 836 */ 837 if (!error && dev->bus->self) 838 pcie_aspm_powersave_config_link(dev->bus->self); 839 840 return error; 841 } 842 843 /** 844 * pci_choose_state - Choose the power state of a PCI device 845 * @dev: PCI device to be suspended 846 * @state: target sleep state for the whole system. This is the value 847 * that is passed to suspend() function. 848 * 849 * Returns PCI power state suitable for given device and given system 850 * message. 851 */ 852 853 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state) 854 { 855 pci_power_t ret; 856 857 if (!dev->pm_cap) 858 return PCI_D0; 859 860 ret = platform_pci_choose_state(dev); 861 if (ret != PCI_POWER_ERROR) 862 return ret; 863 864 switch (state.event) { 865 case PM_EVENT_ON: 866 return PCI_D0; 867 case PM_EVENT_FREEZE: 868 case PM_EVENT_PRETHAW: 869 /* REVISIT both freeze and pre-thaw "should" use D0 */ 870 case PM_EVENT_SUSPEND: 871 case PM_EVENT_HIBERNATE: 872 return PCI_D3hot; 873 default: 874 dev_info(&dev->dev, "unrecognized suspend event %d\n", 875 state.event); 876 BUG(); 877 } 878 return PCI_D0; 879 } 880 881 EXPORT_SYMBOL(pci_choose_state); 882 883 #define PCI_EXP_SAVE_REGS 7 884 885 886 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev, 887 u16 cap, bool extended) 888 { 889 struct pci_cap_saved_state *tmp; 890 891 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) { 892 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap) 893 return tmp; 894 } 895 return NULL; 896 } 897 898 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap) 899 { 900 return _pci_find_saved_cap(dev, cap, false); 901 } 902 903 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap) 904 { 905 return _pci_find_saved_cap(dev, cap, true); 906 } 907 908 static int pci_save_pcie_state(struct pci_dev *dev) 909 { 910 int i = 0; 911 struct pci_cap_saved_state *save_state; 912 u16 *cap; 913 914 if (!pci_is_pcie(dev)) 915 return 0; 916 917 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 918 if (!save_state) { 919 dev_err(&dev->dev, "buffer not found in %s\n", __func__); 920 return -ENOMEM; 921 } 922 923 cap = (u16 *)&save_state->cap.data[0]; 924 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]); 925 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]); 926 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]); 927 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]); 928 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]); 929 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]); 930 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]); 931 932 return 0; 933 } 934 935 static void pci_restore_pcie_state(struct pci_dev *dev) 936 { 937 int i = 0; 938 struct pci_cap_saved_state *save_state; 939 u16 *cap; 940 941 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 942 if (!save_state) 943 return; 944 945 cap = (u16 *)&save_state->cap.data[0]; 946 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]); 947 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]); 948 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]); 949 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]); 950 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]); 951 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]); 952 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]); 953 } 954 955 956 static int pci_save_pcix_state(struct pci_dev *dev) 957 { 958 int pos; 959 struct pci_cap_saved_state *save_state; 960 961 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 962 if (pos <= 0) 963 return 0; 964 965 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 966 if (!save_state) { 967 dev_err(&dev->dev, "buffer not found in %s\n", __func__); 968 return -ENOMEM; 969 } 970 971 pci_read_config_word(dev, pos + PCI_X_CMD, 972 (u16 *)save_state->cap.data); 973 974 return 0; 975 } 976 977 static void pci_restore_pcix_state(struct pci_dev *dev) 978 { 979 int i = 0, pos; 980 struct pci_cap_saved_state *save_state; 981 u16 *cap; 982 983 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 984 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 985 if (!save_state || pos <= 0) 986 return; 987 cap = (u16 *)&save_state->cap.data[0]; 988 989 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]); 990 } 991 992 993 /** 994 * pci_save_state - save the PCI configuration space of a device before suspending 995 * @dev: - PCI device that we're dealing with 996 */ 997 int 998 pci_save_state(struct pci_dev *dev) 999 { 1000 int i; 1001 /* XXX: 100% dword access ok here? */ 1002 for (i = 0; i < 16; i++) 1003 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]); 1004 dev->state_saved = true; 1005 if ((i = pci_save_pcie_state(dev)) != 0) 1006 return i; 1007 if ((i = pci_save_pcix_state(dev)) != 0) 1008 return i; 1009 if ((i = pci_save_vc_state(dev)) != 0) 1010 return i; 1011 return 0; 1012 } 1013 1014 static void pci_restore_config_dword(struct pci_dev *pdev, int offset, 1015 u32 saved_val, int retry) 1016 { 1017 u32 val; 1018 1019 pci_read_config_dword(pdev, offset, &val); 1020 if (val == saved_val) 1021 return; 1022 1023 for (;;) { 1024 dev_dbg(&pdev->dev, "restoring config space at offset " 1025 "%#x (was %#x, writing %#x)\n", offset, val, saved_val); 1026 pci_write_config_dword(pdev, offset, saved_val); 1027 if (retry-- <= 0) 1028 return; 1029 1030 pci_read_config_dword(pdev, offset, &val); 1031 if (val == saved_val) 1032 return; 1033 1034 mdelay(1); 1035 } 1036 } 1037 1038 static void pci_restore_config_space_range(struct pci_dev *pdev, 1039 int start, int end, int retry) 1040 { 1041 int index; 1042 1043 for (index = end; index >= start; index--) 1044 pci_restore_config_dword(pdev, 4 * index, 1045 pdev->saved_config_space[index], 1046 retry); 1047 } 1048 1049 static void pci_restore_config_space(struct pci_dev *pdev) 1050 { 1051 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) { 1052 pci_restore_config_space_range(pdev, 10, 15, 0); 1053 /* Restore BARs before the command register. */ 1054 pci_restore_config_space_range(pdev, 4, 9, 10); 1055 pci_restore_config_space_range(pdev, 0, 3, 0); 1056 } else { 1057 pci_restore_config_space_range(pdev, 0, 15, 0); 1058 } 1059 } 1060 1061 /** 1062 * pci_restore_state - Restore the saved state of a PCI device 1063 * @dev: - PCI device that we're dealing with 1064 */ 1065 void pci_restore_state(struct pci_dev *dev) 1066 { 1067 if (!dev->state_saved) 1068 return; 1069 1070 /* PCI Express register must be restored first */ 1071 pci_restore_pcie_state(dev); 1072 pci_restore_ats_state(dev); 1073 pci_restore_vc_state(dev); 1074 1075 pci_restore_config_space(dev); 1076 1077 pci_restore_pcix_state(dev); 1078 pci_restore_msi_state(dev); 1079 pci_restore_iov_state(dev); 1080 1081 dev->state_saved = false; 1082 } 1083 1084 struct pci_saved_state { 1085 u32 config_space[16]; 1086 struct pci_cap_saved_data cap[0]; 1087 }; 1088 1089 /** 1090 * pci_store_saved_state - Allocate and return an opaque struct containing 1091 * the device saved state. 1092 * @dev: PCI device that we're dealing with 1093 * 1094 * Return NULL if no state or error. 1095 */ 1096 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev) 1097 { 1098 struct pci_saved_state *state; 1099 struct pci_cap_saved_state *tmp; 1100 struct pci_cap_saved_data *cap; 1101 size_t size; 1102 1103 if (!dev->state_saved) 1104 return NULL; 1105 1106 size = sizeof(*state) + sizeof(struct pci_cap_saved_data); 1107 1108 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) 1109 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1110 1111 state = kzalloc(size, GFP_KERNEL); 1112 if (!state) 1113 return NULL; 1114 1115 memcpy(state->config_space, dev->saved_config_space, 1116 sizeof(state->config_space)); 1117 1118 cap = state->cap; 1119 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) { 1120 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1121 memcpy(cap, &tmp->cap, len); 1122 cap = (struct pci_cap_saved_data *)((u8 *)cap + len); 1123 } 1124 /* Empty cap_save terminates list */ 1125 1126 return state; 1127 } 1128 EXPORT_SYMBOL_GPL(pci_store_saved_state); 1129 1130 /** 1131 * pci_load_saved_state - Reload the provided save state into struct pci_dev. 1132 * @dev: PCI device that we're dealing with 1133 * @state: Saved state returned from pci_store_saved_state() 1134 */ 1135 static int pci_load_saved_state(struct pci_dev *dev, 1136 struct pci_saved_state *state) 1137 { 1138 struct pci_cap_saved_data *cap; 1139 1140 dev->state_saved = false; 1141 1142 if (!state) 1143 return 0; 1144 1145 memcpy(dev->saved_config_space, state->config_space, 1146 sizeof(state->config_space)); 1147 1148 cap = state->cap; 1149 while (cap->size) { 1150 struct pci_cap_saved_state *tmp; 1151 1152 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended); 1153 if (!tmp || tmp->cap.size != cap->size) 1154 return -EINVAL; 1155 1156 memcpy(tmp->cap.data, cap->data, tmp->cap.size); 1157 cap = (struct pci_cap_saved_data *)((u8 *)cap + 1158 sizeof(struct pci_cap_saved_data) + cap->size); 1159 } 1160 1161 dev->state_saved = true; 1162 return 0; 1163 } 1164 1165 /** 1166 * pci_load_and_free_saved_state - Reload the save state pointed to by state, 1167 * and free the memory allocated for it. 1168 * @dev: PCI device that we're dealing with 1169 * @state: Pointer to saved state returned from pci_store_saved_state() 1170 */ 1171 int pci_load_and_free_saved_state(struct pci_dev *dev, 1172 struct pci_saved_state **state) 1173 { 1174 int ret = pci_load_saved_state(dev, *state); 1175 kfree(*state); 1176 *state = NULL; 1177 return ret; 1178 } 1179 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state); 1180 1181 static int do_pci_enable_device(struct pci_dev *dev, int bars) 1182 { 1183 int err; 1184 u16 cmd; 1185 u8 pin; 1186 1187 err = pci_set_power_state(dev, PCI_D0); 1188 if (err < 0 && err != -EIO) 1189 return err; 1190 err = pcibios_enable_device(dev, bars); 1191 if (err < 0) 1192 return err; 1193 pci_fixup_device(pci_fixup_enable, dev); 1194 1195 if (dev->msi_enabled || dev->msix_enabled) 1196 return 0; 1197 1198 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin); 1199 if (pin) { 1200 pci_read_config_word(dev, PCI_COMMAND, &cmd); 1201 if (cmd & PCI_COMMAND_INTX_DISABLE) 1202 pci_write_config_word(dev, PCI_COMMAND, 1203 cmd & ~PCI_COMMAND_INTX_DISABLE); 1204 } 1205 1206 return 0; 1207 } 1208 1209 /** 1210 * pci_reenable_device - Resume abandoned device 1211 * @dev: PCI device to be resumed 1212 * 1213 * Note this function is a backend of pci_default_resume and is not supposed 1214 * to be called by normal code, write proper resume handler and use it instead. 1215 */ 1216 int pci_reenable_device(struct pci_dev *dev) 1217 { 1218 if (pci_is_enabled(dev)) 1219 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1); 1220 return 0; 1221 } 1222 1223 static void pci_enable_bridge(struct pci_dev *dev) 1224 { 1225 struct pci_dev *bridge; 1226 int retval; 1227 1228 bridge = pci_upstream_bridge(dev); 1229 if (bridge) 1230 pci_enable_bridge(bridge); 1231 1232 if (pci_is_enabled(dev)) { 1233 if (!dev->is_busmaster) 1234 pci_set_master(dev); 1235 return; 1236 } 1237 1238 retval = pci_enable_device(dev); 1239 if (retval) 1240 dev_err(&dev->dev, "Error enabling bridge (%d), continuing\n", 1241 retval); 1242 pci_set_master(dev); 1243 } 1244 1245 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags) 1246 { 1247 struct pci_dev *bridge; 1248 int err; 1249 int i, bars = 0; 1250 1251 /* 1252 * Power state could be unknown at this point, either due to a fresh 1253 * boot or a device removal call. So get the current power state 1254 * so that things like MSI message writing will behave as expected 1255 * (e.g. if the device really is in D0 at enable time). 1256 */ 1257 if (dev->pm_cap) { 1258 u16 pmcsr; 1259 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1260 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 1261 } 1262 1263 if (atomic_inc_return(&dev->enable_cnt) > 1) 1264 return 0; /* already enabled */ 1265 1266 bridge = pci_upstream_bridge(dev); 1267 if (bridge) 1268 pci_enable_bridge(bridge); 1269 1270 /* only skip sriov related */ 1271 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 1272 if (dev->resource[i].flags & flags) 1273 bars |= (1 << i); 1274 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++) 1275 if (dev->resource[i].flags & flags) 1276 bars |= (1 << i); 1277 1278 err = do_pci_enable_device(dev, bars); 1279 if (err < 0) 1280 atomic_dec(&dev->enable_cnt); 1281 return err; 1282 } 1283 1284 /** 1285 * pci_enable_device_io - Initialize a device for use with IO space 1286 * @dev: PCI device to be initialized 1287 * 1288 * Initialize device before it's used by a driver. Ask low-level code 1289 * to enable I/O resources. Wake up the device if it was suspended. 1290 * Beware, this function can fail. 1291 */ 1292 int pci_enable_device_io(struct pci_dev *dev) 1293 { 1294 return pci_enable_device_flags(dev, IORESOURCE_IO); 1295 } 1296 1297 /** 1298 * pci_enable_device_mem - Initialize a device for use with Memory space 1299 * @dev: PCI device to be initialized 1300 * 1301 * Initialize device before it's used by a driver. Ask low-level code 1302 * to enable Memory resources. Wake up the device if it was suspended. 1303 * Beware, this function can fail. 1304 */ 1305 int pci_enable_device_mem(struct pci_dev *dev) 1306 { 1307 return pci_enable_device_flags(dev, IORESOURCE_MEM); 1308 } 1309 1310 /** 1311 * pci_enable_device - Initialize device before it's used by a driver. 1312 * @dev: PCI device to be initialized 1313 * 1314 * Initialize device before it's used by a driver. Ask low-level code 1315 * to enable I/O and memory. Wake up the device if it was suspended. 1316 * Beware, this function can fail. 1317 * 1318 * Note we don't actually enable the device many times if we call 1319 * this function repeatedly (we just increment the count). 1320 */ 1321 int pci_enable_device(struct pci_dev *dev) 1322 { 1323 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO); 1324 } 1325 1326 /* 1327 * Managed PCI resources. This manages device on/off, intx/msi/msix 1328 * on/off and BAR regions. pci_dev itself records msi/msix status, so 1329 * there's no need to track it separately. pci_devres is initialized 1330 * when a device is enabled using managed PCI device enable interface. 1331 */ 1332 struct pci_devres { 1333 unsigned int enabled:1; 1334 unsigned int pinned:1; 1335 unsigned int orig_intx:1; 1336 unsigned int restore_intx:1; 1337 u32 region_mask; 1338 }; 1339 1340 static void pcim_release(struct device *gendev, void *res) 1341 { 1342 struct pci_dev *dev = container_of(gendev, struct pci_dev, dev); 1343 struct pci_devres *this = res; 1344 int i; 1345 1346 if (dev->msi_enabled) 1347 pci_disable_msi(dev); 1348 if (dev->msix_enabled) 1349 pci_disable_msix(dev); 1350 1351 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) 1352 if (this->region_mask & (1 << i)) 1353 pci_release_region(dev, i); 1354 1355 if (this->restore_intx) 1356 pci_intx(dev, this->orig_intx); 1357 1358 if (this->enabled && !this->pinned) 1359 pci_disable_device(dev); 1360 } 1361 1362 static struct pci_devres * get_pci_dr(struct pci_dev *pdev) 1363 { 1364 struct pci_devres *dr, *new_dr; 1365 1366 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL); 1367 if (dr) 1368 return dr; 1369 1370 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL); 1371 if (!new_dr) 1372 return NULL; 1373 return devres_get(&pdev->dev, new_dr, NULL, NULL); 1374 } 1375 1376 static struct pci_devres * find_pci_dr(struct pci_dev *pdev) 1377 { 1378 if (pci_is_managed(pdev)) 1379 return devres_find(&pdev->dev, pcim_release, NULL, NULL); 1380 return NULL; 1381 } 1382 1383 /** 1384 * pcim_enable_device - Managed pci_enable_device() 1385 * @pdev: PCI device to be initialized 1386 * 1387 * Managed pci_enable_device(). 1388 */ 1389 int pcim_enable_device(struct pci_dev *pdev) 1390 { 1391 struct pci_devres *dr; 1392 int rc; 1393 1394 dr = get_pci_dr(pdev); 1395 if (unlikely(!dr)) 1396 return -ENOMEM; 1397 if (dr->enabled) 1398 return 0; 1399 1400 rc = pci_enable_device(pdev); 1401 if (!rc) { 1402 pdev->is_managed = 1; 1403 dr->enabled = 1; 1404 } 1405 return rc; 1406 } 1407 1408 /** 1409 * pcim_pin_device - Pin managed PCI device 1410 * @pdev: PCI device to pin 1411 * 1412 * Pin managed PCI device @pdev. Pinned device won't be disabled on 1413 * driver detach. @pdev must have been enabled with 1414 * pcim_enable_device(). 1415 */ 1416 void pcim_pin_device(struct pci_dev *pdev) 1417 { 1418 struct pci_devres *dr; 1419 1420 dr = find_pci_dr(pdev); 1421 WARN_ON(!dr || !dr->enabled); 1422 if (dr) 1423 dr->pinned = 1; 1424 } 1425 1426 /* 1427 * pcibios_add_device - provide arch specific hooks when adding device dev 1428 * @dev: the PCI device being added 1429 * 1430 * Permits the platform to provide architecture specific functionality when 1431 * devices are added. This is the default implementation. Architecture 1432 * implementations can override this. 1433 */ 1434 int __weak pcibios_add_device (struct pci_dev *dev) 1435 { 1436 return 0; 1437 } 1438 1439 /** 1440 * pcibios_release_device - provide arch specific hooks when releasing device dev 1441 * @dev: the PCI device being released 1442 * 1443 * Permits the platform to provide architecture specific functionality when 1444 * devices are released. This is the default implementation. Architecture 1445 * implementations can override this. 1446 */ 1447 void __weak pcibios_release_device(struct pci_dev *dev) {} 1448 1449 /** 1450 * pcibios_disable_device - disable arch specific PCI resources for device dev 1451 * @dev: the PCI device to disable 1452 * 1453 * Disables architecture specific PCI resources for the device. This 1454 * is the default implementation. Architecture implementations can 1455 * override this. 1456 */ 1457 void __weak pcibios_disable_device (struct pci_dev *dev) {} 1458 1459 static void do_pci_disable_device(struct pci_dev *dev) 1460 { 1461 u16 pci_command; 1462 1463 pci_read_config_word(dev, PCI_COMMAND, &pci_command); 1464 if (pci_command & PCI_COMMAND_MASTER) { 1465 pci_command &= ~PCI_COMMAND_MASTER; 1466 pci_write_config_word(dev, PCI_COMMAND, pci_command); 1467 } 1468 1469 pcibios_disable_device(dev); 1470 } 1471 1472 /** 1473 * pci_disable_enabled_device - Disable device without updating enable_cnt 1474 * @dev: PCI device to disable 1475 * 1476 * NOTE: This function is a backend of PCI power management routines and is 1477 * not supposed to be called drivers. 1478 */ 1479 void pci_disable_enabled_device(struct pci_dev *dev) 1480 { 1481 if (pci_is_enabled(dev)) 1482 do_pci_disable_device(dev); 1483 } 1484 1485 /** 1486 * pci_disable_device - Disable PCI device after use 1487 * @dev: PCI device to be disabled 1488 * 1489 * Signal to the system that the PCI device is not in use by the system 1490 * anymore. This only involves disabling PCI bus-mastering, if active. 1491 * 1492 * Note we don't actually disable the device until all callers of 1493 * pci_enable_device() have called pci_disable_device(). 1494 */ 1495 void 1496 pci_disable_device(struct pci_dev *dev) 1497 { 1498 struct pci_devres *dr; 1499 1500 dr = find_pci_dr(dev); 1501 if (dr) 1502 dr->enabled = 0; 1503 1504 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0, 1505 "disabling already-disabled device"); 1506 1507 if (atomic_dec_return(&dev->enable_cnt) != 0) 1508 return; 1509 1510 do_pci_disable_device(dev); 1511 1512 dev->is_busmaster = 0; 1513 } 1514 1515 /** 1516 * pcibios_set_pcie_reset_state - set reset state for device dev 1517 * @dev: the PCIe device reset 1518 * @state: Reset state to enter into 1519 * 1520 * 1521 * Sets the PCIe reset state for the device. This is the default 1522 * implementation. Architecture implementations can override this. 1523 */ 1524 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev, 1525 enum pcie_reset_state state) 1526 { 1527 return -EINVAL; 1528 } 1529 1530 /** 1531 * pci_set_pcie_reset_state - set reset state for device dev 1532 * @dev: the PCIe device reset 1533 * @state: Reset state to enter into 1534 * 1535 * 1536 * Sets the PCI reset state for the device. 1537 */ 1538 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state) 1539 { 1540 return pcibios_set_pcie_reset_state(dev, state); 1541 } 1542 1543 /** 1544 * pci_check_pme_status - Check if given device has generated PME. 1545 * @dev: Device to check. 1546 * 1547 * Check the PME status of the device and if set, clear it and clear PME enable 1548 * (if set). Return 'true' if PME status and PME enable were both set or 1549 * 'false' otherwise. 1550 */ 1551 bool pci_check_pme_status(struct pci_dev *dev) 1552 { 1553 int pmcsr_pos; 1554 u16 pmcsr; 1555 bool ret = false; 1556 1557 if (!dev->pm_cap) 1558 return false; 1559 1560 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL; 1561 pci_read_config_word(dev, pmcsr_pos, &pmcsr); 1562 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS)) 1563 return false; 1564 1565 /* Clear PME status. */ 1566 pmcsr |= PCI_PM_CTRL_PME_STATUS; 1567 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) { 1568 /* Disable PME to avoid interrupt flood. */ 1569 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 1570 ret = true; 1571 } 1572 1573 pci_write_config_word(dev, pmcsr_pos, pmcsr); 1574 1575 return ret; 1576 } 1577 1578 /** 1579 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set. 1580 * @dev: Device to handle. 1581 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag. 1582 * 1583 * Check if @dev has generated PME and queue a resume request for it in that 1584 * case. 1585 */ 1586 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset) 1587 { 1588 if (pme_poll_reset && dev->pme_poll) 1589 dev->pme_poll = false; 1590 1591 if (pci_check_pme_status(dev)) { 1592 pci_wakeup_event(dev); 1593 pm_request_resume(&dev->dev); 1594 } 1595 return 0; 1596 } 1597 1598 /** 1599 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary. 1600 * @bus: Top bus of the subtree to walk. 1601 */ 1602 void pci_pme_wakeup_bus(struct pci_bus *bus) 1603 { 1604 if (bus) 1605 pci_walk_bus(bus, pci_pme_wakeup, (void *)true); 1606 } 1607 1608 1609 /** 1610 * pci_pme_capable - check the capability of PCI device to generate PME# 1611 * @dev: PCI device to handle. 1612 * @state: PCI state from which device will issue PME#. 1613 */ 1614 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state) 1615 { 1616 if (!dev->pm_cap) 1617 return false; 1618 1619 return !!(dev->pme_support & (1 << state)); 1620 } 1621 1622 static void pci_pme_list_scan(struct work_struct *work) 1623 { 1624 struct pci_pme_device *pme_dev, *n; 1625 1626 mutex_lock(&pci_pme_list_mutex); 1627 if (!list_empty(&pci_pme_list)) { 1628 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) { 1629 if (pme_dev->dev->pme_poll) { 1630 struct pci_dev *bridge; 1631 1632 bridge = pme_dev->dev->bus->self; 1633 /* 1634 * If bridge is in low power state, the 1635 * configuration space of subordinate devices 1636 * may be not accessible 1637 */ 1638 if (bridge && bridge->current_state != PCI_D0) 1639 continue; 1640 pci_pme_wakeup(pme_dev->dev, NULL); 1641 } else { 1642 list_del(&pme_dev->list); 1643 kfree(pme_dev); 1644 } 1645 } 1646 if (!list_empty(&pci_pme_list)) 1647 schedule_delayed_work(&pci_pme_work, 1648 msecs_to_jiffies(PME_TIMEOUT)); 1649 } 1650 mutex_unlock(&pci_pme_list_mutex); 1651 } 1652 1653 /** 1654 * pci_pme_active - enable or disable PCI device's PME# function 1655 * @dev: PCI device to handle. 1656 * @enable: 'true' to enable PME# generation; 'false' to disable it. 1657 * 1658 * The caller must verify that the device is capable of generating PME# before 1659 * calling this function with @enable equal to 'true'. 1660 */ 1661 void pci_pme_active(struct pci_dev *dev, bool enable) 1662 { 1663 u16 pmcsr; 1664 1665 if (!dev->pme_support) 1666 return; 1667 1668 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1669 /* Clear PME_Status by writing 1 to it and enable PME# */ 1670 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE; 1671 if (!enable) 1672 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 1673 1674 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 1675 1676 /* 1677 * PCI (as opposed to PCIe) PME requires that the device have 1678 * its PME# line hooked up correctly. Not all hardware vendors 1679 * do this, so the PME never gets delivered and the device 1680 * remains asleep. The easiest way around this is to 1681 * periodically walk the list of suspended devices and check 1682 * whether any have their PME flag set. The assumption is that 1683 * we'll wake up often enough anyway that this won't be a huge 1684 * hit, and the power savings from the devices will still be a 1685 * win. 1686 * 1687 * Although PCIe uses in-band PME message instead of PME# line 1688 * to report PME, PME does not work for some PCIe devices in 1689 * reality. For example, there are devices that set their PME 1690 * status bits, but don't really bother to send a PME message; 1691 * there are PCI Express Root Ports that don't bother to 1692 * trigger interrupts when they receive PME messages from the 1693 * devices below. So PME poll is used for PCIe devices too. 1694 */ 1695 1696 if (dev->pme_poll) { 1697 struct pci_pme_device *pme_dev; 1698 if (enable) { 1699 pme_dev = kmalloc(sizeof(struct pci_pme_device), 1700 GFP_KERNEL); 1701 if (!pme_dev) { 1702 dev_warn(&dev->dev, "can't enable PME#\n"); 1703 return; 1704 } 1705 pme_dev->dev = dev; 1706 mutex_lock(&pci_pme_list_mutex); 1707 list_add(&pme_dev->list, &pci_pme_list); 1708 if (list_is_singular(&pci_pme_list)) 1709 schedule_delayed_work(&pci_pme_work, 1710 msecs_to_jiffies(PME_TIMEOUT)); 1711 mutex_unlock(&pci_pme_list_mutex); 1712 } else { 1713 mutex_lock(&pci_pme_list_mutex); 1714 list_for_each_entry(pme_dev, &pci_pme_list, list) { 1715 if (pme_dev->dev == dev) { 1716 list_del(&pme_dev->list); 1717 kfree(pme_dev); 1718 break; 1719 } 1720 } 1721 mutex_unlock(&pci_pme_list_mutex); 1722 } 1723 } 1724 1725 dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled"); 1726 } 1727 1728 /** 1729 * __pci_enable_wake - enable PCI device as wakeup event source 1730 * @dev: PCI device affected 1731 * @state: PCI state from which device will issue wakeup events 1732 * @runtime: True if the events are to be generated at run time 1733 * @enable: True to enable event generation; false to disable 1734 * 1735 * This enables the device as a wakeup event source, or disables it. 1736 * When such events involves platform-specific hooks, those hooks are 1737 * called automatically by this routine. 1738 * 1739 * Devices with legacy power management (no standard PCI PM capabilities) 1740 * always require such platform hooks. 1741 * 1742 * RETURN VALUE: 1743 * 0 is returned on success 1744 * -EINVAL is returned if device is not supposed to wake up the system 1745 * Error code depending on the platform is returned if both the platform and 1746 * the native mechanism fail to enable the generation of wake-up events 1747 */ 1748 int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, 1749 bool runtime, bool enable) 1750 { 1751 int ret = 0; 1752 1753 if (enable && !runtime && !device_may_wakeup(&dev->dev)) 1754 return -EINVAL; 1755 1756 /* Don't do the same thing twice in a row for one device. */ 1757 if (!!enable == !!dev->wakeup_prepared) 1758 return 0; 1759 1760 /* 1761 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don 1762 * Anderson we should be doing PME# wake enable followed by ACPI wake 1763 * enable. To disable wake-up we call the platform first, for symmetry. 1764 */ 1765 1766 if (enable) { 1767 int error; 1768 1769 if (pci_pme_capable(dev, state)) 1770 pci_pme_active(dev, true); 1771 else 1772 ret = 1; 1773 error = runtime ? platform_pci_run_wake(dev, true) : 1774 platform_pci_sleep_wake(dev, true); 1775 if (ret) 1776 ret = error; 1777 if (!ret) 1778 dev->wakeup_prepared = true; 1779 } else { 1780 if (runtime) 1781 platform_pci_run_wake(dev, false); 1782 else 1783 platform_pci_sleep_wake(dev, false); 1784 pci_pme_active(dev, false); 1785 dev->wakeup_prepared = false; 1786 } 1787 1788 return ret; 1789 } 1790 EXPORT_SYMBOL(__pci_enable_wake); 1791 1792 /** 1793 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold 1794 * @dev: PCI device to prepare 1795 * @enable: True to enable wake-up event generation; false to disable 1796 * 1797 * Many drivers want the device to wake up the system from D3_hot or D3_cold 1798 * and this function allows them to set that up cleanly - pci_enable_wake() 1799 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI 1800 * ordering constraints. 1801 * 1802 * This function only returns error code if the device is not capable of 1803 * generating PME# from both D3_hot and D3_cold, and the platform is unable to 1804 * enable wake-up power for it. 1805 */ 1806 int pci_wake_from_d3(struct pci_dev *dev, bool enable) 1807 { 1808 return pci_pme_capable(dev, PCI_D3cold) ? 1809 pci_enable_wake(dev, PCI_D3cold, enable) : 1810 pci_enable_wake(dev, PCI_D3hot, enable); 1811 } 1812 1813 /** 1814 * pci_target_state - find an appropriate low power state for a given PCI dev 1815 * @dev: PCI device 1816 * 1817 * Use underlying platform code to find a supported low power state for @dev. 1818 * If the platform can't manage @dev, return the deepest state from which it 1819 * can generate wake events, based on any available PME info. 1820 */ 1821 static pci_power_t pci_target_state(struct pci_dev *dev) 1822 { 1823 pci_power_t target_state = PCI_D3hot; 1824 1825 if (platform_pci_power_manageable(dev)) { 1826 /* 1827 * Call the platform to choose the target state of the device 1828 * and enable wake-up from this state if supported. 1829 */ 1830 pci_power_t state = platform_pci_choose_state(dev); 1831 1832 switch (state) { 1833 case PCI_POWER_ERROR: 1834 case PCI_UNKNOWN: 1835 break; 1836 case PCI_D1: 1837 case PCI_D2: 1838 if (pci_no_d1d2(dev)) 1839 break; 1840 default: 1841 target_state = state; 1842 } 1843 } else if (!dev->pm_cap) { 1844 target_state = PCI_D0; 1845 } else if (device_may_wakeup(&dev->dev)) { 1846 /* 1847 * Find the deepest state from which the device can generate 1848 * wake-up events, make it the target state and enable device 1849 * to generate PME#. 1850 */ 1851 if (dev->pme_support) { 1852 while (target_state 1853 && !(dev->pme_support & (1 << target_state))) 1854 target_state--; 1855 } 1856 } 1857 1858 return target_state; 1859 } 1860 1861 /** 1862 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state 1863 * @dev: Device to handle. 1864 * 1865 * Choose the power state appropriate for the device depending on whether 1866 * it can wake up the system and/or is power manageable by the platform 1867 * (PCI_D3hot is the default) and put the device into that state. 1868 */ 1869 int pci_prepare_to_sleep(struct pci_dev *dev) 1870 { 1871 pci_power_t target_state = pci_target_state(dev); 1872 int error; 1873 1874 if (target_state == PCI_POWER_ERROR) 1875 return -EIO; 1876 1877 /* D3cold during system suspend/hibernate is not supported */ 1878 if (target_state > PCI_D3hot) 1879 target_state = PCI_D3hot; 1880 1881 pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev)); 1882 1883 error = pci_set_power_state(dev, target_state); 1884 1885 if (error) 1886 pci_enable_wake(dev, target_state, false); 1887 1888 return error; 1889 } 1890 1891 /** 1892 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state 1893 * @dev: Device to handle. 1894 * 1895 * Disable device's system wake-up capability and put it into D0. 1896 */ 1897 int pci_back_from_sleep(struct pci_dev *dev) 1898 { 1899 pci_enable_wake(dev, PCI_D0, false); 1900 return pci_set_power_state(dev, PCI_D0); 1901 } 1902 1903 /** 1904 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend. 1905 * @dev: PCI device being suspended. 1906 * 1907 * Prepare @dev to generate wake-up events at run time and put it into a low 1908 * power state. 1909 */ 1910 int pci_finish_runtime_suspend(struct pci_dev *dev) 1911 { 1912 pci_power_t target_state = pci_target_state(dev); 1913 int error; 1914 1915 if (target_state == PCI_POWER_ERROR) 1916 return -EIO; 1917 1918 dev->runtime_d3cold = target_state == PCI_D3cold; 1919 1920 __pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev)); 1921 1922 error = pci_set_power_state(dev, target_state); 1923 1924 if (error) { 1925 __pci_enable_wake(dev, target_state, true, false); 1926 dev->runtime_d3cold = false; 1927 } 1928 1929 return error; 1930 } 1931 1932 /** 1933 * pci_dev_run_wake - Check if device can generate run-time wake-up events. 1934 * @dev: Device to check. 1935 * 1936 * Return true if the device itself is capable of generating wake-up events 1937 * (through the platform or using the native PCIe PME) or if the device supports 1938 * PME and one of its upstream bridges can generate wake-up events. 1939 */ 1940 bool pci_dev_run_wake(struct pci_dev *dev) 1941 { 1942 struct pci_bus *bus = dev->bus; 1943 1944 if (device_run_wake(&dev->dev)) 1945 return true; 1946 1947 if (!dev->pme_support) 1948 return false; 1949 1950 while (bus->parent) { 1951 struct pci_dev *bridge = bus->self; 1952 1953 if (device_run_wake(&bridge->dev)) 1954 return true; 1955 1956 bus = bus->parent; 1957 } 1958 1959 /* We have reached the root bus. */ 1960 if (bus->bridge) 1961 return device_run_wake(bus->bridge); 1962 1963 return false; 1964 } 1965 EXPORT_SYMBOL_GPL(pci_dev_run_wake); 1966 1967 void pci_config_pm_runtime_get(struct pci_dev *pdev) 1968 { 1969 struct device *dev = &pdev->dev; 1970 struct device *parent = dev->parent; 1971 1972 if (parent) 1973 pm_runtime_get_sync(parent); 1974 pm_runtime_get_noresume(dev); 1975 /* 1976 * pdev->current_state is set to PCI_D3cold during suspending, 1977 * so wait until suspending completes 1978 */ 1979 pm_runtime_barrier(dev); 1980 /* 1981 * Only need to resume devices in D3cold, because config 1982 * registers are still accessible for devices suspended but 1983 * not in D3cold. 1984 */ 1985 if (pdev->current_state == PCI_D3cold) 1986 pm_runtime_resume(dev); 1987 } 1988 1989 void pci_config_pm_runtime_put(struct pci_dev *pdev) 1990 { 1991 struct device *dev = &pdev->dev; 1992 struct device *parent = dev->parent; 1993 1994 pm_runtime_put(dev); 1995 if (parent) 1996 pm_runtime_put_sync(parent); 1997 } 1998 1999 /** 2000 * pci_pm_init - Initialize PM functions of given PCI device 2001 * @dev: PCI device to handle. 2002 */ 2003 void pci_pm_init(struct pci_dev *dev) 2004 { 2005 int pm; 2006 u16 pmc; 2007 2008 pm_runtime_forbid(&dev->dev); 2009 pm_runtime_set_active(&dev->dev); 2010 pm_runtime_enable(&dev->dev); 2011 device_enable_async_suspend(&dev->dev); 2012 dev->wakeup_prepared = false; 2013 2014 dev->pm_cap = 0; 2015 dev->pme_support = 0; 2016 2017 /* find PCI PM capability in list */ 2018 pm = pci_find_capability(dev, PCI_CAP_ID_PM); 2019 if (!pm) 2020 return; 2021 /* Check device's ability to generate PME# */ 2022 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc); 2023 2024 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) { 2025 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n", 2026 pmc & PCI_PM_CAP_VER_MASK); 2027 return; 2028 } 2029 2030 dev->pm_cap = pm; 2031 dev->d3_delay = PCI_PM_D3_WAIT; 2032 dev->d3cold_delay = PCI_PM_D3COLD_WAIT; 2033 dev->d3cold_allowed = true; 2034 2035 dev->d1_support = false; 2036 dev->d2_support = false; 2037 if (!pci_no_d1d2(dev)) { 2038 if (pmc & PCI_PM_CAP_D1) 2039 dev->d1_support = true; 2040 if (pmc & PCI_PM_CAP_D2) 2041 dev->d2_support = true; 2042 2043 if (dev->d1_support || dev->d2_support) 2044 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n", 2045 dev->d1_support ? " D1" : "", 2046 dev->d2_support ? " D2" : ""); 2047 } 2048 2049 pmc &= PCI_PM_CAP_PME_MASK; 2050 if (pmc) { 2051 dev_printk(KERN_DEBUG, &dev->dev, 2052 "PME# supported from%s%s%s%s%s\n", 2053 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "", 2054 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "", 2055 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "", 2056 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "", 2057 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : ""); 2058 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT; 2059 dev->pme_poll = true; 2060 /* 2061 * Make device's PM flags reflect the wake-up capability, but 2062 * let the user space enable it to wake up the system as needed. 2063 */ 2064 device_set_wakeup_capable(&dev->dev, true); 2065 /* Disable the PME# generation functionality */ 2066 pci_pme_active(dev, false); 2067 } 2068 } 2069 2070 static void pci_add_saved_cap(struct pci_dev *pci_dev, 2071 struct pci_cap_saved_state *new_cap) 2072 { 2073 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space); 2074 } 2075 2076 /** 2077 * _pci_add_cap_save_buffer - allocate buffer for saving given 2078 * capability registers 2079 * @dev: the PCI device 2080 * @cap: the capability to allocate the buffer for 2081 * @extended: Standard or Extended capability ID 2082 * @size: requested size of the buffer 2083 */ 2084 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap, 2085 bool extended, unsigned int size) 2086 { 2087 int pos; 2088 struct pci_cap_saved_state *save_state; 2089 2090 if (extended) 2091 pos = pci_find_ext_capability(dev, cap); 2092 else 2093 pos = pci_find_capability(dev, cap); 2094 2095 if (pos <= 0) 2096 return 0; 2097 2098 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL); 2099 if (!save_state) 2100 return -ENOMEM; 2101 2102 save_state->cap.cap_nr = cap; 2103 save_state->cap.cap_extended = extended; 2104 save_state->cap.size = size; 2105 pci_add_saved_cap(dev, save_state); 2106 2107 return 0; 2108 } 2109 2110 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size) 2111 { 2112 return _pci_add_cap_save_buffer(dev, cap, false, size); 2113 } 2114 2115 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size) 2116 { 2117 return _pci_add_cap_save_buffer(dev, cap, true, size); 2118 } 2119 2120 /** 2121 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities 2122 * @dev: the PCI device 2123 */ 2124 void pci_allocate_cap_save_buffers(struct pci_dev *dev) 2125 { 2126 int error; 2127 2128 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP, 2129 PCI_EXP_SAVE_REGS * sizeof(u16)); 2130 if (error) 2131 dev_err(&dev->dev, 2132 "unable to preallocate PCI Express save buffer\n"); 2133 2134 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16)); 2135 if (error) 2136 dev_err(&dev->dev, 2137 "unable to preallocate PCI-X save buffer\n"); 2138 2139 pci_allocate_vc_save_buffers(dev); 2140 } 2141 2142 void pci_free_cap_save_buffers(struct pci_dev *dev) 2143 { 2144 struct pci_cap_saved_state *tmp; 2145 struct hlist_node *n; 2146 2147 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next) 2148 kfree(tmp); 2149 } 2150 2151 /** 2152 * pci_configure_ari - enable or disable ARI forwarding 2153 * @dev: the PCI device 2154 * 2155 * If @dev and its upstream bridge both support ARI, enable ARI in the 2156 * bridge. Otherwise, disable ARI in the bridge. 2157 */ 2158 void pci_configure_ari(struct pci_dev *dev) 2159 { 2160 u32 cap; 2161 struct pci_dev *bridge; 2162 2163 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn) 2164 return; 2165 2166 bridge = dev->bus->self; 2167 if (!bridge) 2168 return; 2169 2170 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 2171 if (!(cap & PCI_EXP_DEVCAP2_ARI)) 2172 return; 2173 2174 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) { 2175 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, 2176 PCI_EXP_DEVCTL2_ARI); 2177 bridge->ari_enabled = 1; 2178 } else { 2179 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2, 2180 PCI_EXP_DEVCTL2_ARI); 2181 bridge->ari_enabled = 0; 2182 } 2183 } 2184 2185 static int pci_acs_enable; 2186 2187 /** 2188 * pci_request_acs - ask for ACS to be enabled if supported 2189 */ 2190 void pci_request_acs(void) 2191 { 2192 pci_acs_enable = 1; 2193 } 2194 2195 /** 2196 * pci_enable_acs - enable ACS if hardware support it 2197 * @dev: the PCI device 2198 */ 2199 void pci_enable_acs(struct pci_dev *dev) 2200 { 2201 int pos; 2202 u16 cap; 2203 u16 ctrl; 2204 2205 if (!pci_acs_enable) 2206 return; 2207 2208 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS); 2209 if (!pos) 2210 return; 2211 2212 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap); 2213 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 2214 2215 /* Source Validation */ 2216 ctrl |= (cap & PCI_ACS_SV); 2217 2218 /* P2P Request Redirect */ 2219 ctrl |= (cap & PCI_ACS_RR); 2220 2221 /* P2P Completion Redirect */ 2222 ctrl |= (cap & PCI_ACS_CR); 2223 2224 /* Upstream Forwarding */ 2225 ctrl |= (cap & PCI_ACS_UF); 2226 2227 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 2228 } 2229 2230 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags) 2231 { 2232 int pos; 2233 u16 cap, ctrl; 2234 2235 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS); 2236 if (!pos) 2237 return false; 2238 2239 /* 2240 * Except for egress control, capabilities are either required 2241 * or only required if controllable. Features missing from the 2242 * capability field can therefore be assumed as hard-wired enabled. 2243 */ 2244 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap); 2245 acs_flags &= (cap | PCI_ACS_EC); 2246 2247 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl); 2248 return (ctrl & acs_flags) == acs_flags; 2249 } 2250 2251 /** 2252 * pci_acs_enabled - test ACS against required flags for a given device 2253 * @pdev: device to test 2254 * @acs_flags: required PCI ACS flags 2255 * 2256 * Return true if the device supports the provided flags. Automatically 2257 * filters out flags that are not implemented on multifunction devices. 2258 * 2259 * Note that this interface checks the effective ACS capabilities of the 2260 * device rather than the actual capabilities. For instance, most single 2261 * function endpoints are not required to support ACS because they have no 2262 * opportunity for peer-to-peer access. We therefore return 'true' 2263 * regardless of whether the device exposes an ACS capability. This makes 2264 * it much easier for callers of this function to ignore the actual type 2265 * or topology of the device when testing ACS support. 2266 */ 2267 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags) 2268 { 2269 int ret; 2270 2271 ret = pci_dev_specific_acs_enabled(pdev, acs_flags); 2272 if (ret >= 0) 2273 return ret > 0; 2274 2275 /* 2276 * Conventional PCI and PCI-X devices never support ACS, either 2277 * effectively or actually. The shared bus topology implies that 2278 * any device on the bus can receive or snoop DMA. 2279 */ 2280 if (!pci_is_pcie(pdev)) 2281 return false; 2282 2283 switch (pci_pcie_type(pdev)) { 2284 /* 2285 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec, 2286 * but since their primary interface is PCI/X, we conservatively 2287 * handle them as we would a non-PCIe device. 2288 */ 2289 case PCI_EXP_TYPE_PCIE_BRIDGE: 2290 /* 2291 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never 2292 * applicable... must never implement an ACS Extended Capability...". 2293 * This seems arbitrary, but we take a conservative interpretation 2294 * of this statement. 2295 */ 2296 case PCI_EXP_TYPE_PCI_BRIDGE: 2297 case PCI_EXP_TYPE_RC_EC: 2298 return false; 2299 /* 2300 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should 2301 * implement ACS in order to indicate their peer-to-peer capabilities, 2302 * regardless of whether they are single- or multi-function devices. 2303 */ 2304 case PCI_EXP_TYPE_DOWNSTREAM: 2305 case PCI_EXP_TYPE_ROOT_PORT: 2306 return pci_acs_flags_enabled(pdev, acs_flags); 2307 /* 2308 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be 2309 * implemented by the remaining PCIe types to indicate peer-to-peer 2310 * capabilities, but only when they are part of a multifunction 2311 * device. The footnote for section 6.12 indicates the specific 2312 * PCIe types included here. 2313 */ 2314 case PCI_EXP_TYPE_ENDPOINT: 2315 case PCI_EXP_TYPE_UPSTREAM: 2316 case PCI_EXP_TYPE_LEG_END: 2317 case PCI_EXP_TYPE_RC_END: 2318 if (!pdev->multifunction) 2319 break; 2320 2321 return pci_acs_flags_enabled(pdev, acs_flags); 2322 } 2323 2324 /* 2325 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable 2326 * to single function devices with the exception of downstream ports. 2327 */ 2328 return true; 2329 } 2330 2331 /** 2332 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy 2333 * @start: starting downstream device 2334 * @end: ending upstream device or NULL to search to the root bus 2335 * @acs_flags: required flags 2336 * 2337 * Walk up a device tree from start to end testing PCI ACS support. If 2338 * any step along the way does not support the required flags, return false. 2339 */ 2340 bool pci_acs_path_enabled(struct pci_dev *start, 2341 struct pci_dev *end, u16 acs_flags) 2342 { 2343 struct pci_dev *pdev, *parent = start; 2344 2345 do { 2346 pdev = parent; 2347 2348 if (!pci_acs_enabled(pdev, acs_flags)) 2349 return false; 2350 2351 if (pci_is_root_bus(pdev->bus)) 2352 return (end == NULL); 2353 2354 parent = pdev->bus->self; 2355 } while (pdev != end); 2356 2357 return true; 2358 } 2359 2360 /** 2361 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge 2362 * @dev: the PCI device 2363 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD) 2364 * 2365 * Perform INTx swizzling for a device behind one level of bridge. This is 2366 * required by section 9.1 of the PCI-to-PCI bridge specification for devices 2367 * behind bridges on add-in cards. For devices with ARI enabled, the slot 2368 * number is always 0 (see the Implementation Note in section 2.2.8.1 of 2369 * the PCI Express Base Specification, Revision 2.1) 2370 */ 2371 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin) 2372 { 2373 int slot; 2374 2375 if (pci_ari_enabled(dev->bus)) 2376 slot = 0; 2377 else 2378 slot = PCI_SLOT(dev->devfn); 2379 2380 return (((pin - 1) + slot) % 4) + 1; 2381 } 2382 2383 int 2384 pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge) 2385 { 2386 u8 pin; 2387 2388 pin = dev->pin; 2389 if (!pin) 2390 return -1; 2391 2392 while (!pci_is_root_bus(dev->bus)) { 2393 pin = pci_swizzle_interrupt_pin(dev, pin); 2394 dev = dev->bus->self; 2395 } 2396 *bridge = dev; 2397 return pin; 2398 } 2399 2400 /** 2401 * pci_common_swizzle - swizzle INTx all the way to root bridge 2402 * @dev: the PCI device 2403 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD) 2404 * 2405 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI 2406 * bridges all the way up to a PCI root bus. 2407 */ 2408 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp) 2409 { 2410 u8 pin = *pinp; 2411 2412 while (!pci_is_root_bus(dev->bus)) { 2413 pin = pci_swizzle_interrupt_pin(dev, pin); 2414 dev = dev->bus->self; 2415 } 2416 *pinp = pin; 2417 return PCI_SLOT(dev->devfn); 2418 } 2419 2420 /** 2421 * pci_release_region - Release a PCI bar 2422 * @pdev: PCI device whose resources were previously reserved by pci_request_region 2423 * @bar: BAR to release 2424 * 2425 * Releases the PCI I/O and memory resources previously reserved by a 2426 * successful call to pci_request_region. Call this function only 2427 * after all use of the PCI regions has ceased. 2428 */ 2429 void pci_release_region(struct pci_dev *pdev, int bar) 2430 { 2431 struct pci_devres *dr; 2432 2433 if (pci_resource_len(pdev, bar) == 0) 2434 return; 2435 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) 2436 release_region(pci_resource_start(pdev, bar), 2437 pci_resource_len(pdev, bar)); 2438 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) 2439 release_mem_region(pci_resource_start(pdev, bar), 2440 pci_resource_len(pdev, bar)); 2441 2442 dr = find_pci_dr(pdev); 2443 if (dr) 2444 dr->region_mask &= ~(1 << bar); 2445 } 2446 2447 /** 2448 * __pci_request_region - Reserved PCI I/O and memory resource 2449 * @pdev: PCI device whose resources are to be reserved 2450 * @bar: BAR to be reserved 2451 * @res_name: Name to be associated with resource. 2452 * @exclusive: whether the region access is exclusive or not 2453 * 2454 * Mark the PCI region associated with PCI device @pdev BR @bar as 2455 * being reserved by owner @res_name. Do not access any 2456 * address inside the PCI regions unless this call returns 2457 * successfully. 2458 * 2459 * If @exclusive is set, then the region is marked so that userspace 2460 * is explicitly not allowed to map the resource via /dev/mem or 2461 * sysfs MMIO access. 2462 * 2463 * Returns 0 on success, or %EBUSY on error. A warning 2464 * message is also printed on failure. 2465 */ 2466 static int __pci_request_region(struct pci_dev *pdev, int bar, const char *res_name, 2467 int exclusive) 2468 { 2469 struct pci_devres *dr; 2470 2471 if (pci_resource_len(pdev, bar) == 0) 2472 return 0; 2473 2474 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) { 2475 if (!request_region(pci_resource_start(pdev, bar), 2476 pci_resource_len(pdev, bar), res_name)) 2477 goto err_out; 2478 } 2479 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) { 2480 if (!__request_mem_region(pci_resource_start(pdev, bar), 2481 pci_resource_len(pdev, bar), res_name, 2482 exclusive)) 2483 goto err_out; 2484 } 2485 2486 dr = find_pci_dr(pdev); 2487 if (dr) 2488 dr->region_mask |= 1 << bar; 2489 2490 return 0; 2491 2492 err_out: 2493 dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar, 2494 &pdev->resource[bar]); 2495 return -EBUSY; 2496 } 2497 2498 /** 2499 * pci_request_region - Reserve PCI I/O and memory resource 2500 * @pdev: PCI device whose resources are to be reserved 2501 * @bar: BAR to be reserved 2502 * @res_name: Name to be associated with resource 2503 * 2504 * Mark the PCI region associated with PCI device @pdev BAR @bar as 2505 * being reserved by owner @res_name. Do not access any 2506 * address inside the PCI regions unless this call returns 2507 * successfully. 2508 * 2509 * Returns 0 on success, or %EBUSY on error. A warning 2510 * message is also printed on failure. 2511 */ 2512 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name) 2513 { 2514 return __pci_request_region(pdev, bar, res_name, 0); 2515 } 2516 2517 /** 2518 * pci_request_region_exclusive - Reserved PCI I/O and memory resource 2519 * @pdev: PCI device whose resources are to be reserved 2520 * @bar: BAR to be reserved 2521 * @res_name: Name to be associated with resource. 2522 * 2523 * Mark the PCI region associated with PCI device @pdev BR @bar as 2524 * being reserved by owner @res_name. Do not access any 2525 * address inside the PCI regions unless this call returns 2526 * successfully. 2527 * 2528 * Returns 0 on success, or %EBUSY on error. A warning 2529 * message is also printed on failure. 2530 * 2531 * The key difference that _exclusive makes it that userspace is 2532 * explicitly not allowed to map the resource via /dev/mem or 2533 * sysfs. 2534 */ 2535 int pci_request_region_exclusive(struct pci_dev *pdev, int bar, const char *res_name) 2536 { 2537 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE); 2538 } 2539 /** 2540 * pci_release_selected_regions - Release selected PCI I/O and memory resources 2541 * @pdev: PCI device whose resources were previously reserved 2542 * @bars: Bitmask of BARs to be released 2543 * 2544 * Release selected PCI I/O and memory resources previously reserved. 2545 * Call this function only after all use of the PCI regions has ceased. 2546 */ 2547 void pci_release_selected_regions(struct pci_dev *pdev, int bars) 2548 { 2549 int i; 2550 2551 for (i = 0; i < 6; i++) 2552 if (bars & (1 << i)) 2553 pci_release_region(pdev, i); 2554 } 2555 2556 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars, 2557 const char *res_name, int excl) 2558 { 2559 int i; 2560 2561 for (i = 0; i < 6; i++) 2562 if (bars & (1 << i)) 2563 if (__pci_request_region(pdev, i, res_name, excl)) 2564 goto err_out; 2565 return 0; 2566 2567 err_out: 2568 while(--i >= 0) 2569 if (bars & (1 << i)) 2570 pci_release_region(pdev, i); 2571 2572 return -EBUSY; 2573 } 2574 2575 2576 /** 2577 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources 2578 * @pdev: PCI device whose resources are to be reserved 2579 * @bars: Bitmask of BARs to be requested 2580 * @res_name: Name to be associated with resource 2581 */ 2582 int pci_request_selected_regions(struct pci_dev *pdev, int bars, 2583 const char *res_name) 2584 { 2585 return __pci_request_selected_regions(pdev, bars, res_name, 0); 2586 } 2587 2588 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, 2589 int bars, const char *res_name) 2590 { 2591 return __pci_request_selected_regions(pdev, bars, res_name, 2592 IORESOURCE_EXCLUSIVE); 2593 } 2594 2595 /** 2596 * pci_release_regions - Release reserved PCI I/O and memory resources 2597 * @pdev: PCI device whose resources were previously reserved by pci_request_regions 2598 * 2599 * Releases all PCI I/O and memory resources previously reserved by a 2600 * successful call to pci_request_regions. Call this function only 2601 * after all use of the PCI regions has ceased. 2602 */ 2603 2604 void pci_release_regions(struct pci_dev *pdev) 2605 { 2606 pci_release_selected_regions(pdev, (1 << 6) - 1); 2607 } 2608 2609 /** 2610 * pci_request_regions - Reserved PCI I/O and memory resources 2611 * @pdev: PCI device whose resources are to be reserved 2612 * @res_name: Name to be associated with resource. 2613 * 2614 * Mark all PCI regions associated with PCI device @pdev as 2615 * being reserved by owner @res_name. Do not access any 2616 * address inside the PCI regions unless this call returns 2617 * successfully. 2618 * 2619 * Returns 0 on success, or %EBUSY on error. A warning 2620 * message is also printed on failure. 2621 */ 2622 int pci_request_regions(struct pci_dev *pdev, const char *res_name) 2623 { 2624 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name); 2625 } 2626 2627 /** 2628 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources 2629 * @pdev: PCI device whose resources are to be reserved 2630 * @res_name: Name to be associated with resource. 2631 * 2632 * Mark all PCI regions associated with PCI device @pdev as 2633 * being reserved by owner @res_name. Do not access any 2634 * address inside the PCI regions unless this call returns 2635 * successfully. 2636 * 2637 * pci_request_regions_exclusive() will mark the region so that 2638 * /dev/mem and the sysfs MMIO access will not be allowed. 2639 * 2640 * Returns 0 on success, or %EBUSY on error. A warning 2641 * message is also printed on failure. 2642 */ 2643 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name) 2644 { 2645 return pci_request_selected_regions_exclusive(pdev, 2646 ((1 << 6) - 1), res_name); 2647 } 2648 2649 static void __pci_set_master(struct pci_dev *dev, bool enable) 2650 { 2651 u16 old_cmd, cmd; 2652 2653 pci_read_config_word(dev, PCI_COMMAND, &old_cmd); 2654 if (enable) 2655 cmd = old_cmd | PCI_COMMAND_MASTER; 2656 else 2657 cmd = old_cmd & ~PCI_COMMAND_MASTER; 2658 if (cmd != old_cmd) { 2659 dev_dbg(&dev->dev, "%s bus mastering\n", 2660 enable ? "enabling" : "disabling"); 2661 pci_write_config_word(dev, PCI_COMMAND, cmd); 2662 } 2663 dev->is_busmaster = enable; 2664 } 2665 2666 /** 2667 * pcibios_setup - process "pci=" kernel boot arguments 2668 * @str: string used to pass in "pci=" kernel boot arguments 2669 * 2670 * Process kernel boot arguments. This is the default implementation. 2671 * Architecture specific implementations can override this as necessary. 2672 */ 2673 char * __weak __init pcibios_setup(char *str) 2674 { 2675 return str; 2676 } 2677 2678 /** 2679 * pcibios_set_master - enable PCI bus-mastering for device dev 2680 * @dev: the PCI device to enable 2681 * 2682 * Enables PCI bus-mastering for the device. This is the default 2683 * implementation. Architecture specific implementations can override 2684 * this if necessary. 2685 */ 2686 void __weak pcibios_set_master(struct pci_dev *dev) 2687 { 2688 u8 lat; 2689 2690 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */ 2691 if (pci_is_pcie(dev)) 2692 return; 2693 2694 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat); 2695 if (lat < 16) 2696 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency; 2697 else if (lat > pcibios_max_latency) 2698 lat = pcibios_max_latency; 2699 else 2700 return; 2701 2702 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat); 2703 } 2704 2705 /** 2706 * pci_set_master - enables bus-mastering for device dev 2707 * @dev: the PCI device to enable 2708 * 2709 * Enables bus-mastering on the device and calls pcibios_set_master() 2710 * to do the needed arch specific settings. 2711 */ 2712 void pci_set_master(struct pci_dev *dev) 2713 { 2714 __pci_set_master(dev, true); 2715 pcibios_set_master(dev); 2716 } 2717 2718 /** 2719 * pci_clear_master - disables bus-mastering for device dev 2720 * @dev: the PCI device to disable 2721 */ 2722 void pci_clear_master(struct pci_dev *dev) 2723 { 2724 __pci_set_master(dev, false); 2725 } 2726 2727 /** 2728 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed 2729 * @dev: the PCI device for which MWI is to be enabled 2730 * 2731 * Helper function for pci_set_mwi. 2732 * Originally copied from drivers/net/acenic.c. 2733 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. 2734 * 2735 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 2736 */ 2737 int pci_set_cacheline_size(struct pci_dev *dev) 2738 { 2739 u8 cacheline_size; 2740 2741 if (!pci_cache_line_size) 2742 return -EINVAL; 2743 2744 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be 2745 equal to or multiple of the right value. */ 2746 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 2747 if (cacheline_size >= pci_cache_line_size && 2748 (cacheline_size % pci_cache_line_size) == 0) 2749 return 0; 2750 2751 /* Write the correct value. */ 2752 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size); 2753 /* Read it back. */ 2754 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 2755 if (cacheline_size == pci_cache_line_size) 2756 return 0; 2757 2758 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not " 2759 "supported\n", pci_cache_line_size << 2); 2760 2761 return -EINVAL; 2762 } 2763 EXPORT_SYMBOL_GPL(pci_set_cacheline_size); 2764 2765 #ifdef PCI_DISABLE_MWI 2766 int pci_set_mwi(struct pci_dev *dev) 2767 { 2768 return 0; 2769 } 2770 2771 int pci_try_set_mwi(struct pci_dev *dev) 2772 { 2773 return 0; 2774 } 2775 2776 void pci_clear_mwi(struct pci_dev *dev) 2777 { 2778 } 2779 2780 #else 2781 2782 /** 2783 * pci_set_mwi - enables memory-write-invalidate PCI transaction 2784 * @dev: the PCI device for which MWI is enabled 2785 * 2786 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 2787 * 2788 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 2789 */ 2790 int 2791 pci_set_mwi(struct pci_dev *dev) 2792 { 2793 int rc; 2794 u16 cmd; 2795 2796 rc = pci_set_cacheline_size(dev); 2797 if (rc) 2798 return rc; 2799 2800 pci_read_config_word(dev, PCI_COMMAND, &cmd); 2801 if (! (cmd & PCI_COMMAND_INVALIDATE)) { 2802 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n"); 2803 cmd |= PCI_COMMAND_INVALIDATE; 2804 pci_write_config_word(dev, PCI_COMMAND, cmd); 2805 } 2806 2807 return 0; 2808 } 2809 2810 /** 2811 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction 2812 * @dev: the PCI device for which MWI is enabled 2813 * 2814 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 2815 * Callers are not required to check the return value. 2816 * 2817 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 2818 */ 2819 int pci_try_set_mwi(struct pci_dev *dev) 2820 { 2821 int rc = pci_set_mwi(dev); 2822 return rc; 2823 } 2824 2825 /** 2826 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev 2827 * @dev: the PCI device to disable 2828 * 2829 * Disables PCI Memory-Write-Invalidate transaction on the device 2830 */ 2831 void 2832 pci_clear_mwi(struct pci_dev *dev) 2833 { 2834 u16 cmd; 2835 2836 pci_read_config_word(dev, PCI_COMMAND, &cmd); 2837 if (cmd & PCI_COMMAND_INVALIDATE) { 2838 cmd &= ~PCI_COMMAND_INVALIDATE; 2839 pci_write_config_word(dev, PCI_COMMAND, cmd); 2840 } 2841 } 2842 #endif /* ! PCI_DISABLE_MWI */ 2843 2844 /** 2845 * pci_intx - enables/disables PCI INTx for device dev 2846 * @pdev: the PCI device to operate on 2847 * @enable: boolean: whether to enable or disable PCI INTx 2848 * 2849 * Enables/disables PCI INTx for device dev 2850 */ 2851 void 2852 pci_intx(struct pci_dev *pdev, int enable) 2853 { 2854 u16 pci_command, new; 2855 2856 pci_read_config_word(pdev, PCI_COMMAND, &pci_command); 2857 2858 if (enable) { 2859 new = pci_command & ~PCI_COMMAND_INTX_DISABLE; 2860 } else { 2861 new = pci_command | PCI_COMMAND_INTX_DISABLE; 2862 } 2863 2864 if (new != pci_command) { 2865 struct pci_devres *dr; 2866 2867 pci_write_config_word(pdev, PCI_COMMAND, new); 2868 2869 dr = find_pci_dr(pdev); 2870 if (dr && !dr->restore_intx) { 2871 dr->restore_intx = 1; 2872 dr->orig_intx = !enable; 2873 } 2874 } 2875 } 2876 2877 /** 2878 * pci_intx_mask_supported - probe for INTx masking support 2879 * @dev: the PCI device to operate on 2880 * 2881 * Check if the device dev support INTx masking via the config space 2882 * command word. 2883 */ 2884 bool pci_intx_mask_supported(struct pci_dev *dev) 2885 { 2886 bool mask_supported = false; 2887 u16 orig, new; 2888 2889 if (dev->broken_intx_masking) 2890 return false; 2891 2892 pci_cfg_access_lock(dev); 2893 2894 pci_read_config_word(dev, PCI_COMMAND, &orig); 2895 pci_write_config_word(dev, PCI_COMMAND, 2896 orig ^ PCI_COMMAND_INTX_DISABLE); 2897 pci_read_config_word(dev, PCI_COMMAND, &new); 2898 2899 /* 2900 * There's no way to protect against hardware bugs or detect them 2901 * reliably, but as long as we know what the value should be, let's 2902 * go ahead and check it. 2903 */ 2904 if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) { 2905 dev_err(&dev->dev, "Command register changed from " 2906 "0x%x to 0x%x: driver or hardware bug?\n", orig, new); 2907 } else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) { 2908 mask_supported = true; 2909 pci_write_config_word(dev, PCI_COMMAND, orig); 2910 } 2911 2912 pci_cfg_access_unlock(dev); 2913 return mask_supported; 2914 } 2915 EXPORT_SYMBOL_GPL(pci_intx_mask_supported); 2916 2917 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask) 2918 { 2919 struct pci_bus *bus = dev->bus; 2920 bool mask_updated = true; 2921 u32 cmd_status_dword; 2922 u16 origcmd, newcmd; 2923 unsigned long flags; 2924 bool irq_pending; 2925 2926 /* 2927 * We do a single dword read to retrieve both command and status. 2928 * Document assumptions that make this possible. 2929 */ 2930 BUILD_BUG_ON(PCI_COMMAND % 4); 2931 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS); 2932 2933 raw_spin_lock_irqsave(&pci_lock, flags); 2934 2935 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword); 2936 2937 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT; 2938 2939 /* 2940 * Check interrupt status register to see whether our device 2941 * triggered the interrupt (when masking) or the next IRQ is 2942 * already pending (when unmasking). 2943 */ 2944 if (mask != irq_pending) { 2945 mask_updated = false; 2946 goto done; 2947 } 2948 2949 origcmd = cmd_status_dword; 2950 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE; 2951 if (mask) 2952 newcmd |= PCI_COMMAND_INTX_DISABLE; 2953 if (newcmd != origcmd) 2954 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd); 2955 2956 done: 2957 raw_spin_unlock_irqrestore(&pci_lock, flags); 2958 2959 return mask_updated; 2960 } 2961 2962 /** 2963 * pci_check_and_mask_intx - mask INTx on pending interrupt 2964 * @dev: the PCI device to operate on 2965 * 2966 * Check if the device dev has its INTx line asserted, mask it and 2967 * return true in that case. False is returned if not interrupt was 2968 * pending. 2969 */ 2970 bool pci_check_and_mask_intx(struct pci_dev *dev) 2971 { 2972 return pci_check_and_set_intx_mask(dev, true); 2973 } 2974 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx); 2975 2976 /** 2977 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending 2978 * @dev: the PCI device to operate on 2979 * 2980 * Check if the device dev has its INTx line asserted, unmask it if not 2981 * and return true. False is returned and the mask remains active if 2982 * there was still an interrupt pending. 2983 */ 2984 bool pci_check_and_unmask_intx(struct pci_dev *dev) 2985 { 2986 return pci_check_and_set_intx_mask(dev, false); 2987 } 2988 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx); 2989 2990 /** 2991 * pci_msi_off - disables any MSI or MSI-X capabilities 2992 * @dev: the PCI device to operate on 2993 * 2994 * If you want to use MSI, see pci_enable_msi() and friends. 2995 * This is a lower-level primitive that allows us to disable 2996 * MSI operation at the device level. 2997 */ 2998 void pci_msi_off(struct pci_dev *dev) 2999 { 3000 int pos; 3001 u16 control; 3002 3003 /* 3004 * This looks like it could go in msi.c, but we need it even when 3005 * CONFIG_PCI_MSI=n. For the same reason, we can't use 3006 * dev->msi_cap or dev->msix_cap here. 3007 */ 3008 pos = pci_find_capability(dev, PCI_CAP_ID_MSI); 3009 if (pos) { 3010 pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control); 3011 control &= ~PCI_MSI_FLAGS_ENABLE; 3012 pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control); 3013 } 3014 pos = pci_find_capability(dev, PCI_CAP_ID_MSIX); 3015 if (pos) { 3016 pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control); 3017 control &= ~PCI_MSIX_FLAGS_ENABLE; 3018 pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control); 3019 } 3020 } 3021 EXPORT_SYMBOL_GPL(pci_msi_off); 3022 3023 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size) 3024 { 3025 return dma_set_max_seg_size(&dev->dev, size); 3026 } 3027 EXPORT_SYMBOL(pci_set_dma_max_seg_size); 3028 3029 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask) 3030 { 3031 return dma_set_seg_boundary(&dev->dev, mask); 3032 } 3033 EXPORT_SYMBOL(pci_set_dma_seg_boundary); 3034 3035 /** 3036 * pci_wait_for_pending_transaction - waits for pending transaction 3037 * @dev: the PCI device to operate on 3038 * 3039 * Return 0 if transaction is pending 1 otherwise. 3040 */ 3041 int pci_wait_for_pending_transaction(struct pci_dev *dev) 3042 { 3043 if (!pci_is_pcie(dev)) 3044 return 1; 3045 3046 return pci_wait_for_pending(dev, PCI_EXP_DEVSTA, PCI_EXP_DEVSTA_TRPND); 3047 } 3048 EXPORT_SYMBOL(pci_wait_for_pending_transaction); 3049 3050 static int pcie_flr(struct pci_dev *dev, int probe) 3051 { 3052 u32 cap; 3053 3054 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap); 3055 if (!(cap & PCI_EXP_DEVCAP_FLR)) 3056 return -ENOTTY; 3057 3058 if (probe) 3059 return 0; 3060 3061 if (!pci_wait_for_pending_transaction(dev)) 3062 dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n"); 3063 3064 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR); 3065 3066 msleep(100); 3067 3068 return 0; 3069 } 3070 3071 static int pci_af_flr(struct pci_dev *dev, int probe) 3072 { 3073 int pos; 3074 u8 cap; 3075 3076 pos = pci_find_capability(dev, PCI_CAP_ID_AF); 3077 if (!pos) 3078 return -ENOTTY; 3079 3080 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap); 3081 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR)) 3082 return -ENOTTY; 3083 3084 if (probe) 3085 return 0; 3086 3087 /* Wait for Transaction Pending bit clean */ 3088 if (pci_wait_for_pending(dev, PCI_AF_STATUS, PCI_AF_STATUS_TP)) 3089 goto clear; 3090 3091 dev_err(&dev->dev, "transaction is not cleared; " 3092 "proceeding with reset anyway\n"); 3093 3094 clear: 3095 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR); 3096 msleep(100); 3097 3098 return 0; 3099 } 3100 3101 /** 3102 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0. 3103 * @dev: Device to reset. 3104 * @probe: If set, only check if the device can be reset this way. 3105 * 3106 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is 3107 * unset, it will be reinitialized internally when going from PCI_D3hot to 3108 * PCI_D0. If that's the case and the device is not in a low-power state 3109 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset. 3110 * 3111 * NOTE: This causes the caller to sleep for twice the device power transition 3112 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms 3113 * by default (i.e. unless the @dev's d3_delay field has a different value). 3114 * Moreover, only devices in D0 can be reset by this function. 3115 */ 3116 static int pci_pm_reset(struct pci_dev *dev, int probe) 3117 { 3118 u16 csr; 3119 3120 if (!dev->pm_cap) 3121 return -ENOTTY; 3122 3123 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr); 3124 if (csr & PCI_PM_CTRL_NO_SOFT_RESET) 3125 return -ENOTTY; 3126 3127 if (probe) 3128 return 0; 3129 3130 if (dev->current_state != PCI_D0) 3131 return -EINVAL; 3132 3133 csr &= ~PCI_PM_CTRL_STATE_MASK; 3134 csr |= PCI_D3hot; 3135 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 3136 pci_dev_d3_sleep(dev); 3137 3138 csr &= ~PCI_PM_CTRL_STATE_MASK; 3139 csr |= PCI_D0; 3140 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 3141 pci_dev_d3_sleep(dev); 3142 3143 return 0; 3144 } 3145 3146 /** 3147 * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge. 3148 * @dev: Bridge device 3149 * 3150 * Use the bridge control register to assert reset on the secondary bus. 3151 * Devices on the secondary bus are left in power-on state. 3152 */ 3153 void pci_reset_bridge_secondary_bus(struct pci_dev *dev) 3154 { 3155 u16 ctrl; 3156 3157 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl); 3158 ctrl |= PCI_BRIDGE_CTL_BUS_RESET; 3159 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 3160 /* 3161 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double 3162 * this to 2ms to ensure that we meet the minimum requirement. 3163 */ 3164 msleep(2); 3165 3166 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET; 3167 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 3168 3169 /* 3170 * Trhfa for conventional PCI is 2^25 clock cycles. 3171 * Assuming a minimum 33MHz clock this results in a 1s 3172 * delay before we can consider subordinate devices to 3173 * be re-initialized. PCIe has some ways to shorten this, 3174 * but we don't make use of them yet. 3175 */ 3176 ssleep(1); 3177 } 3178 EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus); 3179 3180 static int pci_parent_bus_reset(struct pci_dev *dev, int probe) 3181 { 3182 struct pci_dev *pdev; 3183 3184 if (pci_is_root_bus(dev->bus) || dev->subordinate || !dev->bus->self) 3185 return -ENOTTY; 3186 3187 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 3188 if (pdev != dev) 3189 return -ENOTTY; 3190 3191 if (probe) 3192 return 0; 3193 3194 pci_reset_bridge_secondary_bus(dev->bus->self); 3195 3196 return 0; 3197 } 3198 3199 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe) 3200 { 3201 int rc = -ENOTTY; 3202 3203 if (!hotplug || !try_module_get(hotplug->ops->owner)) 3204 return rc; 3205 3206 if (hotplug->ops->reset_slot) 3207 rc = hotplug->ops->reset_slot(hotplug, probe); 3208 3209 module_put(hotplug->ops->owner); 3210 3211 return rc; 3212 } 3213 3214 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe) 3215 { 3216 struct pci_dev *pdev; 3217 3218 if (dev->subordinate || !dev->slot) 3219 return -ENOTTY; 3220 3221 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 3222 if (pdev != dev && pdev->slot == dev->slot) 3223 return -ENOTTY; 3224 3225 return pci_reset_hotplug_slot(dev->slot->hotplug, probe); 3226 } 3227 3228 static int __pci_dev_reset(struct pci_dev *dev, int probe) 3229 { 3230 int rc; 3231 3232 might_sleep(); 3233 3234 rc = pci_dev_specific_reset(dev, probe); 3235 if (rc != -ENOTTY) 3236 goto done; 3237 3238 rc = pcie_flr(dev, probe); 3239 if (rc != -ENOTTY) 3240 goto done; 3241 3242 rc = pci_af_flr(dev, probe); 3243 if (rc != -ENOTTY) 3244 goto done; 3245 3246 rc = pci_pm_reset(dev, probe); 3247 if (rc != -ENOTTY) 3248 goto done; 3249 3250 rc = pci_dev_reset_slot_function(dev, probe); 3251 if (rc != -ENOTTY) 3252 goto done; 3253 3254 rc = pci_parent_bus_reset(dev, probe); 3255 done: 3256 return rc; 3257 } 3258 3259 static void pci_dev_lock(struct pci_dev *dev) 3260 { 3261 pci_cfg_access_lock(dev); 3262 /* block PM suspend, driver probe, etc. */ 3263 device_lock(&dev->dev); 3264 } 3265 3266 /* Return 1 on successful lock, 0 on contention */ 3267 static int pci_dev_trylock(struct pci_dev *dev) 3268 { 3269 if (pci_cfg_access_trylock(dev)) { 3270 if (device_trylock(&dev->dev)) 3271 return 1; 3272 pci_cfg_access_unlock(dev); 3273 } 3274 3275 return 0; 3276 } 3277 3278 static void pci_dev_unlock(struct pci_dev *dev) 3279 { 3280 device_unlock(&dev->dev); 3281 pci_cfg_access_unlock(dev); 3282 } 3283 3284 static void pci_dev_save_and_disable(struct pci_dev *dev) 3285 { 3286 /* 3287 * Wake-up device prior to save. PM registers default to D0 after 3288 * reset and a simple register restore doesn't reliably return 3289 * to a non-D0 state anyway. 3290 */ 3291 pci_set_power_state(dev, PCI_D0); 3292 3293 pci_save_state(dev); 3294 /* 3295 * Disable the device by clearing the Command register, except for 3296 * INTx-disable which is set. This not only disables MMIO and I/O port 3297 * BARs, but also prevents the device from being Bus Master, preventing 3298 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3 3299 * compliant devices, INTx-disable prevents legacy interrupts. 3300 */ 3301 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE); 3302 } 3303 3304 static void pci_dev_restore(struct pci_dev *dev) 3305 { 3306 pci_restore_state(dev); 3307 } 3308 3309 static int pci_dev_reset(struct pci_dev *dev, int probe) 3310 { 3311 int rc; 3312 3313 if (!probe) 3314 pci_dev_lock(dev); 3315 3316 rc = __pci_dev_reset(dev, probe); 3317 3318 if (!probe) 3319 pci_dev_unlock(dev); 3320 3321 return rc; 3322 } 3323 /** 3324 * __pci_reset_function - reset a PCI device function 3325 * @dev: PCI device to reset 3326 * 3327 * Some devices allow an individual function to be reset without affecting 3328 * other functions in the same device. The PCI device must be responsive 3329 * to PCI config space in order to use this function. 3330 * 3331 * The device function is presumed to be unused when this function is called. 3332 * Resetting the device will make the contents of PCI configuration space 3333 * random, so any caller of this must be prepared to reinitialise the 3334 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 3335 * etc. 3336 * 3337 * Returns 0 if the device function was successfully reset or negative if the 3338 * device doesn't support resetting a single function. 3339 */ 3340 int __pci_reset_function(struct pci_dev *dev) 3341 { 3342 return pci_dev_reset(dev, 0); 3343 } 3344 EXPORT_SYMBOL_GPL(__pci_reset_function); 3345 3346 /** 3347 * __pci_reset_function_locked - reset a PCI device function while holding 3348 * the @dev mutex lock. 3349 * @dev: PCI device to reset 3350 * 3351 * Some devices allow an individual function to be reset without affecting 3352 * other functions in the same device. The PCI device must be responsive 3353 * to PCI config space in order to use this function. 3354 * 3355 * The device function is presumed to be unused and the caller is holding 3356 * the device mutex lock when this function is called. 3357 * Resetting the device will make the contents of PCI configuration space 3358 * random, so any caller of this must be prepared to reinitialise the 3359 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 3360 * etc. 3361 * 3362 * Returns 0 if the device function was successfully reset or negative if the 3363 * device doesn't support resetting a single function. 3364 */ 3365 int __pci_reset_function_locked(struct pci_dev *dev) 3366 { 3367 return __pci_dev_reset(dev, 0); 3368 } 3369 EXPORT_SYMBOL_GPL(__pci_reset_function_locked); 3370 3371 /** 3372 * pci_probe_reset_function - check whether the device can be safely reset 3373 * @dev: PCI device to reset 3374 * 3375 * Some devices allow an individual function to be reset without affecting 3376 * other functions in the same device. The PCI device must be responsive 3377 * to PCI config space in order to use this function. 3378 * 3379 * Returns 0 if the device function can be reset or negative if the 3380 * device doesn't support resetting a single function. 3381 */ 3382 int pci_probe_reset_function(struct pci_dev *dev) 3383 { 3384 return pci_dev_reset(dev, 1); 3385 } 3386 3387 /** 3388 * pci_reset_function - quiesce and reset a PCI device function 3389 * @dev: PCI device to reset 3390 * 3391 * Some devices allow an individual function to be reset without affecting 3392 * other functions in the same device. The PCI device must be responsive 3393 * to PCI config space in order to use this function. 3394 * 3395 * This function does not just reset the PCI portion of a device, but 3396 * clears all the state associated with the device. This function differs 3397 * from __pci_reset_function in that it saves and restores device state 3398 * over the reset. 3399 * 3400 * Returns 0 if the device function was successfully reset or negative if the 3401 * device doesn't support resetting a single function. 3402 */ 3403 int pci_reset_function(struct pci_dev *dev) 3404 { 3405 int rc; 3406 3407 rc = pci_dev_reset(dev, 1); 3408 if (rc) 3409 return rc; 3410 3411 pci_dev_save_and_disable(dev); 3412 3413 rc = pci_dev_reset(dev, 0); 3414 3415 pci_dev_restore(dev); 3416 3417 return rc; 3418 } 3419 EXPORT_SYMBOL_GPL(pci_reset_function); 3420 3421 /** 3422 * pci_try_reset_function - quiesce and reset a PCI device function 3423 * @dev: PCI device to reset 3424 * 3425 * Same as above, except return -EAGAIN if unable to lock device. 3426 */ 3427 int pci_try_reset_function(struct pci_dev *dev) 3428 { 3429 int rc; 3430 3431 rc = pci_dev_reset(dev, 1); 3432 if (rc) 3433 return rc; 3434 3435 pci_dev_save_and_disable(dev); 3436 3437 if (pci_dev_trylock(dev)) { 3438 rc = __pci_dev_reset(dev, 0); 3439 pci_dev_unlock(dev); 3440 } else 3441 rc = -EAGAIN; 3442 3443 pci_dev_restore(dev); 3444 3445 return rc; 3446 } 3447 EXPORT_SYMBOL_GPL(pci_try_reset_function); 3448 3449 /* Lock devices from the top of the tree down */ 3450 static void pci_bus_lock(struct pci_bus *bus) 3451 { 3452 struct pci_dev *dev; 3453 3454 list_for_each_entry(dev, &bus->devices, bus_list) { 3455 pci_dev_lock(dev); 3456 if (dev->subordinate) 3457 pci_bus_lock(dev->subordinate); 3458 } 3459 } 3460 3461 /* Unlock devices from the bottom of the tree up */ 3462 static void pci_bus_unlock(struct pci_bus *bus) 3463 { 3464 struct pci_dev *dev; 3465 3466 list_for_each_entry(dev, &bus->devices, bus_list) { 3467 if (dev->subordinate) 3468 pci_bus_unlock(dev->subordinate); 3469 pci_dev_unlock(dev); 3470 } 3471 } 3472 3473 /* Return 1 on successful lock, 0 on contention */ 3474 static int pci_bus_trylock(struct pci_bus *bus) 3475 { 3476 struct pci_dev *dev; 3477 3478 list_for_each_entry(dev, &bus->devices, bus_list) { 3479 if (!pci_dev_trylock(dev)) 3480 goto unlock; 3481 if (dev->subordinate) { 3482 if (!pci_bus_trylock(dev->subordinate)) { 3483 pci_dev_unlock(dev); 3484 goto unlock; 3485 } 3486 } 3487 } 3488 return 1; 3489 3490 unlock: 3491 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) { 3492 if (dev->subordinate) 3493 pci_bus_unlock(dev->subordinate); 3494 pci_dev_unlock(dev); 3495 } 3496 return 0; 3497 } 3498 3499 /* Lock devices from the top of the tree down */ 3500 static void pci_slot_lock(struct pci_slot *slot) 3501 { 3502 struct pci_dev *dev; 3503 3504 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 3505 if (!dev->slot || dev->slot != slot) 3506 continue; 3507 pci_dev_lock(dev); 3508 if (dev->subordinate) 3509 pci_bus_lock(dev->subordinate); 3510 } 3511 } 3512 3513 /* Unlock devices from the bottom of the tree up */ 3514 static void pci_slot_unlock(struct pci_slot *slot) 3515 { 3516 struct pci_dev *dev; 3517 3518 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 3519 if (!dev->slot || dev->slot != slot) 3520 continue; 3521 if (dev->subordinate) 3522 pci_bus_unlock(dev->subordinate); 3523 pci_dev_unlock(dev); 3524 } 3525 } 3526 3527 /* Return 1 on successful lock, 0 on contention */ 3528 static int pci_slot_trylock(struct pci_slot *slot) 3529 { 3530 struct pci_dev *dev; 3531 3532 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 3533 if (!dev->slot || dev->slot != slot) 3534 continue; 3535 if (!pci_dev_trylock(dev)) 3536 goto unlock; 3537 if (dev->subordinate) { 3538 if (!pci_bus_trylock(dev->subordinate)) { 3539 pci_dev_unlock(dev); 3540 goto unlock; 3541 } 3542 } 3543 } 3544 return 1; 3545 3546 unlock: 3547 list_for_each_entry_continue_reverse(dev, 3548 &slot->bus->devices, bus_list) { 3549 if (!dev->slot || dev->slot != slot) 3550 continue; 3551 if (dev->subordinate) 3552 pci_bus_unlock(dev->subordinate); 3553 pci_dev_unlock(dev); 3554 } 3555 return 0; 3556 } 3557 3558 /* Save and disable devices from the top of the tree down */ 3559 static void pci_bus_save_and_disable(struct pci_bus *bus) 3560 { 3561 struct pci_dev *dev; 3562 3563 list_for_each_entry(dev, &bus->devices, bus_list) { 3564 pci_dev_save_and_disable(dev); 3565 if (dev->subordinate) 3566 pci_bus_save_and_disable(dev->subordinate); 3567 } 3568 } 3569 3570 /* 3571 * Restore devices from top of the tree down - parent bridges need to be 3572 * restored before we can get to subordinate devices. 3573 */ 3574 static void pci_bus_restore(struct pci_bus *bus) 3575 { 3576 struct pci_dev *dev; 3577 3578 list_for_each_entry(dev, &bus->devices, bus_list) { 3579 pci_dev_restore(dev); 3580 if (dev->subordinate) 3581 pci_bus_restore(dev->subordinate); 3582 } 3583 } 3584 3585 /* Save and disable devices from the top of the tree down */ 3586 static void pci_slot_save_and_disable(struct pci_slot *slot) 3587 { 3588 struct pci_dev *dev; 3589 3590 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 3591 if (!dev->slot || dev->slot != slot) 3592 continue; 3593 pci_dev_save_and_disable(dev); 3594 if (dev->subordinate) 3595 pci_bus_save_and_disable(dev->subordinate); 3596 } 3597 } 3598 3599 /* 3600 * Restore devices from top of the tree down - parent bridges need to be 3601 * restored before we can get to subordinate devices. 3602 */ 3603 static void pci_slot_restore(struct pci_slot *slot) 3604 { 3605 struct pci_dev *dev; 3606 3607 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 3608 if (!dev->slot || dev->slot != slot) 3609 continue; 3610 pci_dev_restore(dev); 3611 if (dev->subordinate) 3612 pci_bus_restore(dev->subordinate); 3613 } 3614 } 3615 3616 static int pci_slot_reset(struct pci_slot *slot, int probe) 3617 { 3618 int rc; 3619 3620 if (!slot) 3621 return -ENOTTY; 3622 3623 if (!probe) 3624 pci_slot_lock(slot); 3625 3626 might_sleep(); 3627 3628 rc = pci_reset_hotplug_slot(slot->hotplug, probe); 3629 3630 if (!probe) 3631 pci_slot_unlock(slot); 3632 3633 return rc; 3634 } 3635 3636 /** 3637 * pci_probe_reset_slot - probe whether a PCI slot can be reset 3638 * @slot: PCI slot to probe 3639 * 3640 * Return 0 if slot can be reset, negative if a slot reset is not supported. 3641 */ 3642 int pci_probe_reset_slot(struct pci_slot *slot) 3643 { 3644 return pci_slot_reset(slot, 1); 3645 } 3646 EXPORT_SYMBOL_GPL(pci_probe_reset_slot); 3647 3648 /** 3649 * pci_reset_slot - reset a PCI slot 3650 * @slot: PCI slot to reset 3651 * 3652 * A PCI bus may host multiple slots, each slot may support a reset mechanism 3653 * independent of other slots. For instance, some slots may support slot power 3654 * control. In the case of a 1:1 bus to slot architecture, this function may 3655 * wrap the bus reset to avoid spurious slot related events such as hotplug. 3656 * Generally a slot reset should be attempted before a bus reset. All of the 3657 * function of the slot and any subordinate buses behind the slot are reset 3658 * through this function. PCI config space of all devices in the slot and 3659 * behind the slot is saved before and restored after reset. 3660 * 3661 * Return 0 on success, non-zero on error. 3662 */ 3663 int pci_reset_slot(struct pci_slot *slot) 3664 { 3665 int rc; 3666 3667 rc = pci_slot_reset(slot, 1); 3668 if (rc) 3669 return rc; 3670 3671 pci_slot_save_and_disable(slot); 3672 3673 rc = pci_slot_reset(slot, 0); 3674 3675 pci_slot_restore(slot); 3676 3677 return rc; 3678 } 3679 EXPORT_SYMBOL_GPL(pci_reset_slot); 3680 3681 /** 3682 * pci_try_reset_slot - Try to reset a PCI slot 3683 * @slot: PCI slot to reset 3684 * 3685 * Same as above except return -EAGAIN if the slot cannot be locked 3686 */ 3687 int pci_try_reset_slot(struct pci_slot *slot) 3688 { 3689 int rc; 3690 3691 rc = pci_slot_reset(slot, 1); 3692 if (rc) 3693 return rc; 3694 3695 pci_slot_save_and_disable(slot); 3696 3697 if (pci_slot_trylock(slot)) { 3698 might_sleep(); 3699 rc = pci_reset_hotplug_slot(slot->hotplug, 0); 3700 pci_slot_unlock(slot); 3701 } else 3702 rc = -EAGAIN; 3703 3704 pci_slot_restore(slot); 3705 3706 return rc; 3707 } 3708 EXPORT_SYMBOL_GPL(pci_try_reset_slot); 3709 3710 static int pci_bus_reset(struct pci_bus *bus, int probe) 3711 { 3712 if (!bus->self) 3713 return -ENOTTY; 3714 3715 if (probe) 3716 return 0; 3717 3718 pci_bus_lock(bus); 3719 3720 might_sleep(); 3721 3722 pci_reset_bridge_secondary_bus(bus->self); 3723 3724 pci_bus_unlock(bus); 3725 3726 return 0; 3727 } 3728 3729 /** 3730 * pci_probe_reset_bus - probe whether a PCI bus can be reset 3731 * @bus: PCI bus to probe 3732 * 3733 * Return 0 if bus can be reset, negative if a bus reset is not supported. 3734 */ 3735 int pci_probe_reset_bus(struct pci_bus *bus) 3736 { 3737 return pci_bus_reset(bus, 1); 3738 } 3739 EXPORT_SYMBOL_GPL(pci_probe_reset_bus); 3740 3741 /** 3742 * pci_reset_bus - reset a PCI bus 3743 * @bus: top level PCI bus to reset 3744 * 3745 * Do a bus reset on the given bus and any subordinate buses, saving 3746 * and restoring state of all devices. 3747 * 3748 * Return 0 on success, non-zero on error. 3749 */ 3750 int pci_reset_bus(struct pci_bus *bus) 3751 { 3752 int rc; 3753 3754 rc = pci_bus_reset(bus, 1); 3755 if (rc) 3756 return rc; 3757 3758 pci_bus_save_and_disable(bus); 3759 3760 rc = pci_bus_reset(bus, 0); 3761 3762 pci_bus_restore(bus); 3763 3764 return rc; 3765 } 3766 EXPORT_SYMBOL_GPL(pci_reset_bus); 3767 3768 /** 3769 * pci_try_reset_bus - Try to reset a PCI bus 3770 * @bus: top level PCI bus to reset 3771 * 3772 * Same as above except return -EAGAIN if the bus cannot be locked 3773 */ 3774 int pci_try_reset_bus(struct pci_bus *bus) 3775 { 3776 int rc; 3777 3778 rc = pci_bus_reset(bus, 1); 3779 if (rc) 3780 return rc; 3781 3782 pci_bus_save_and_disable(bus); 3783 3784 if (pci_bus_trylock(bus)) { 3785 might_sleep(); 3786 pci_reset_bridge_secondary_bus(bus->self); 3787 pci_bus_unlock(bus); 3788 } else 3789 rc = -EAGAIN; 3790 3791 pci_bus_restore(bus); 3792 3793 return rc; 3794 } 3795 EXPORT_SYMBOL_GPL(pci_try_reset_bus); 3796 3797 /** 3798 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count 3799 * @dev: PCI device to query 3800 * 3801 * Returns mmrbc: maximum designed memory read count in bytes 3802 * or appropriate error value. 3803 */ 3804 int pcix_get_max_mmrbc(struct pci_dev *dev) 3805 { 3806 int cap; 3807 u32 stat; 3808 3809 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 3810 if (!cap) 3811 return -EINVAL; 3812 3813 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 3814 return -EINVAL; 3815 3816 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21); 3817 } 3818 EXPORT_SYMBOL(pcix_get_max_mmrbc); 3819 3820 /** 3821 * pcix_get_mmrbc - get PCI-X maximum memory read byte count 3822 * @dev: PCI device to query 3823 * 3824 * Returns mmrbc: maximum memory read count in bytes 3825 * or appropriate error value. 3826 */ 3827 int pcix_get_mmrbc(struct pci_dev *dev) 3828 { 3829 int cap; 3830 u16 cmd; 3831 3832 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 3833 if (!cap) 3834 return -EINVAL; 3835 3836 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 3837 return -EINVAL; 3838 3839 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2); 3840 } 3841 EXPORT_SYMBOL(pcix_get_mmrbc); 3842 3843 /** 3844 * pcix_set_mmrbc - set PCI-X maximum memory read byte count 3845 * @dev: PCI device to query 3846 * @mmrbc: maximum memory read count in bytes 3847 * valid values are 512, 1024, 2048, 4096 3848 * 3849 * If possible sets maximum memory read byte count, some bridges have erratas 3850 * that prevent this. 3851 */ 3852 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc) 3853 { 3854 int cap; 3855 u32 stat, v, o; 3856 u16 cmd; 3857 3858 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc)) 3859 return -EINVAL; 3860 3861 v = ffs(mmrbc) - 10; 3862 3863 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 3864 if (!cap) 3865 return -EINVAL; 3866 3867 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 3868 return -EINVAL; 3869 3870 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21) 3871 return -E2BIG; 3872 3873 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 3874 return -EINVAL; 3875 3876 o = (cmd & PCI_X_CMD_MAX_READ) >> 2; 3877 if (o != v) { 3878 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC)) 3879 return -EIO; 3880 3881 cmd &= ~PCI_X_CMD_MAX_READ; 3882 cmd |= v << 2; 3883 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd)) 3884 return -EIO; 3885 } 3886 return 0; 3887 } 3888 EXPORT_SYMBOL(pcix_set_mmrbc); 3889 3890 /** 3891 * pcie_get_readrq - get PCI Express read request size 3892 * @dev: PCI device to query 3893 * 3894 * Returns maximum memory read request in bytes 3895 * or appropriate error value. 3896 */ 3897 int pcie_get_readrq(struct pci_dev *dev) 3898 { 3899 u16 ctl; 3900 3901 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 3902 3903 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12); 3904 } 3905 EXPORT_SYMBOL(pcie_get_readrq); 3906 3907 /** 3908 * pcie_set_readrq - set PCI Express maximum memory read request 3909 * @dev: PCI device to query 3910 * @rq: maximum memory read count in bytes 3911 * valid values are 128, 256, 512, 1024, 2048, 4096 3912 * 3913 * If possible sets maximum memory read request in bytes 3914 */ 3915 int pcie_set_readrq(struct pci_dev *dev, int rq) 3916 { 3917 u16 v; 3918 3919 if (rq < 128 || rq > 4096 || !is_power_of_2(rq)) 3920 return -EINVAL; 3921 3922 /* 3923 * If using the "performance" PCIe config, we clamp the 3924 * read rq size to the max packet size to prevent the 3925 * host bridge generating requests larger than we can 3926 * cope with 3927 */ 3928 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) { 3929 int mps = pcie_get_mps(dev); 3930 3931 if (mps < rq) 3932 rq = mps; 3933 } 3934 3935 v = (ffs(rq) - 8) << 12; 3936 3937 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 3938 PCI_EXP_DEVCTL_READRQ, v); 3939 } 3940 EXPORT_SYMBOL(pcie_set_readrq); 3941 3942 /** 3943 * pcie_get_mps - get PCI Express maximum payload size 3944 * @dev: PCI device to query 3945 * 3946 * Returns maximum payload size in bytes 3947 */ 3948 int pcie_get_mps(struct pci_dev *dev) 3949 { 3950 u16 ctl; 3951 3952 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 3953 3954 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5); 3955 } 3956 EXPORT_SYMBOL(pcie_get_mps); 3957 3958 /** 3959 * pcie_set_mps - set PCI Express maximum payload size 3960 * @dev: PCI device to query 3961 * @mps: maximum payload size in bytes 3962 * valid values are 128, 256, 512, 1024, 2048, 4096 3963 * 3964 * If possible sets maximum payload size 3965 */ 3966 int pcie_set_mps(struct pci_dev *dev, int mps) 3967 { 3968 u16 v; 3969 3970 if (mps < 128 || mps > 4096 || !is_power_of_2(mps)) 3971 return -EINVAL; 3972 3973 v = ffs(mps) - 8; 3974 if (v > dev->pcie_mpss) 3975 return -EINVAL; 3976 v <<= 5; 3977 3978 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 3979 PCI_EXP_DEVCTL_PAYLOAD, v); 3980 } 3981 EXPORT_SYMBOL(pcie_set_mps); 3982 3983 /** 3984 * pcie_get_minimum_link - determine minimum link settings of a PCI device 3985 * @dev: PCI device to query 3986 * @speed: storage for minimum speed 3987 * @width: storage for minimum width 3988 * 3989 * This function will walk up the PCI device chain and determine the minimum 3990 * link width and speed of the device. 3991 */ 3992 int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed, 3993 enum pcie_link_width *width) 3994 { 3995 int ret; 3996 3997 *speed = PCI_SPEED_UNKNOWN; 3998 *width = PCIE_LNK_WIDTH_UNKNOWN; 3999 4000 while (dev) { 4001 u16 lnksta; 4002 enum pci_bus_speed next_speed; 4003 enum pcie_link_width next_width; 4004 4005 ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta); 4006 if (ret) 4007 return ret; 4008 4009 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS]; 4010 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >> 4011 PCI_EXP_LNKSTA_NLW_SHIFT; 4012 4013 if (next_speed < *speed) 4014 *speed = next_speed; 4015 4016 if (next_width < *width) 4017 *width = next_width; 4018 4019 dev = dev->bus->self; 4020 } 4021 4022 return 0; 4023 } 4024 EXPORT_SYMBOL(pcie_get_minimum_link); 4025 4026 /** 4027 * pci_select_bars - Make BAR mask from the type of resource 4028 * @dev: the PCI device for which BAR mask is made 4029 * @flags: resource type mask to be selected 4030 * 4031 * This helper routine makes bar mask from the type of resource. 4032 */ 4033 int pci_select_bars(struct pci_dev *dev, unsigned long flags) 4034 { 4035 int i, bars = 0; 4036 for (i = 0; i < PCI_NUM_RESOURCES; i++) 4037 if (pci_resource_flags(dev, i) & flags) 4038 bars |= (1 << i); 4039 return bars; 4040 } 4041 4042 /** 4043 * pci_resource_bar - get position of the BAR associated with a resource 4044 * @dev: the PCI device 4045 * @resno: the resource number 4046 * @type: the BAR type to be filled in 4047 * 4048 * Returns BAR position in config space, or 0 if the BAR is invalid. 4049 */ 4050 int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type) 4051 { 4052 int reg; 4053 4054 if (resno < PCI_ROM_RESOURCE) { 4055 *type = pci_bar_unknown; 4056 return PCI_BASE_ADDRESS_0 + 4 * resno; 4057 } else if (resno == PCI_ROM_RESOURCE) { 4058 *type = pci_bar_mem32; 4059 return dev->rom_base_reg; 4060 } else if (resno < PCI_BRIDGE_RESOURCES) { 4061 /* device specific resource */ 4062 reg = pci_iov_resource_bar(dev, resno, type); 4063 if (reg) 4064 return reg; 4065 } 4066 4067 dev_err(&dev->dev, "BAR %d: invalid resource\n", resno); 4068 return 0; 4069 } 4070 4071 /* Some architectures require additional programming to enable VGA */ 4072 static arch_set_vga_state_t arch_set_vga_state; 4073 4074 void __init pci_register_set_vga_state(arch_set_vga_state_t func) 4075 { 4076 arch_set_vga_state = func; /* NULL disables */ 4077 } 4078 4079 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode, 4080 unsigned int command_bits, u32 flags) 4081 { 4082 if (arch_set_vga_state) 4083 return arch_set_vga_state(dev, decode, command_bits, 4084 flags); 4085 return 0; 4086 } 4087 4088 /** 4089 * pci_set_vga_state - set VGA decode state on device and parents if requested 4090 * @dev: the PCI device 4091 * @decode: true = enable decoding, false = disable decoding 4092 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY 4093 * @flags: traverse ancestors and change bridges 4094 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE 4095 */ 4096 int pci_set_vga_state(struct pci_dev *dev, bool decode, 4097 unsigned int command_bits, u32 flags) 4098 { 4099 struct pci_bus *bus; 4100 struct pci_dev *bridge; 4101 u16 cmd; 4102 int rc; 4103 4104 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) & (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY))); 4105 4106 /* ARCH specific VGA enables */ 4107 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags); 4108 if (rc) 4109 return rc; 4110 4111 if (flags & PCI_VGA_STATE_CHANGE_DECODES) { 4112 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4113 if (decode == true) 4114 cmd |= command_bits; 4115 else 4116 cmd &= ~command_bits; 4117 pci_write_config_word(dev, PCI_COMMAND, cmd); 4118 } 4119 4120 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE)) 4121 return 0; 4122 4123 bus = dev->bus; 4124 while (bus) { 4125 bridge = bus->self; 4126 if (bridge) { 4127 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL, 4128 &cmd); 4129 if (decode == true) 4130 cmd |= PCI_BRIDGE_CTL_VGA; 4131 else 4132 cmd &= ~PCI_BRIDGE_CTL_VGA; 4133 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL, 4134 cmd); 4135 } 4136 bus = bus->parent; 4137 } 4138 return 0; 4139 } 4140 4141 bool pci_device_is_present(struct pci_dev *pdev) 4142 { 4143 u32 v; 4144 4145 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0); 4146 } 4147 EXPORT_SYMBOL_GPL(pci_device_is_present); 4148 4149 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE 4150 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0}; 4151 static DEFINE_SPINLOCK(resource_alignment_lock); 4152 4153 /** 4154 * pci_specified_resource_alignment - get resource alignment specified by user. 4155 * @dev: the PCI device to get 4156 * 4157 * RETURNS: Resource alignment if it is specified. 4158 * Zero if it is not specified. 4159 */ 4160 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev) 4161 { 4162 int seg, bus, slot, func, align_order, count; 4163 resource_size_t align = 0; 4164 char *p; 4165 4166 spin_lock(&resource_alignment_lock); 4167 p = resource_alignment_param; 4168 while (*p) { 4169 count = 0; 4170 if (sscanf(p, "%d%n", &align_order, &count) == 1 && 4171 p[count] == '@') { 4172 p += count + 1; 4173 } else { 4174 align_order = -1; 4175 } 4176 if (sscanf(p, "%x:%x:%x.%x%n", 4177 &seg, &bus, &slot, &func, &count) != 4) { 4178 seg = 0; 4179 if (sscanf(p, "%x:%x.%x%n", 4180 &bus, &slot, &func, &count) != 3) { 4181 /* Invalid format */ 4182 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n", 4183 p); 4184 break; 4185 } 4186 } 4187 p += count; 4188 if (seg == pci_domain_nr(dev->bus) && 4189 bus == dev->bus->number && 4190 slot == PCI_SLOT(dev->devfn) && 4191 func == PCI_FUNC(dev->devfn)) { 4192 if (align_order == -1) { 4193 align = PAGE_SIZE; 4194 } else { 4195 align = 1 << align_order; 4196 } 4197 /* Found */ 4198 break; 4199 } 4200 if (*p != ';' && *p != ',') { 4201 /* End of param or invalid format */ 4202 break; 4203 } 4204 p++; 4205 } 4206 spin_unlock(&resource_alignment_lock); 4207 return align; 4208 } 4209 4210 /* 4211 * This function disables memory decoding and releases memory resources 4212 * of the device specified by kernel's boot parameter 'pci=resource_alignment='. 4213 * It also rounds up size to specified alignment. 4214 * Later on, the kernel will assign page-aligned memory resource back 4215 * to the device. 4216 */ 4217 void pci_reassigndev_resource_alignment(struct pci_dev *dev) 4218 { 4219 int i; 4220 struct resource *r; 4221 resource_size_t align, size; 4222 u16 command; 4223 4224 /* check if specified PCI is target device to reassign */ 4225 align = pci_specified_resource_alignment(dev); 4226 if (!align) 4227 return; 4228 4229 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL && 4230 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) { 4231 dev_warn(&dev->dev, 4232 "Can't reassign resources to host bridge.\n"); 4233 return; 4234 } 4235 4236 dev_info(&dev->dev, 4237 "Disabling memory decoding and releasing memory resources.\n"); 4238 pci_read_config_word(dev, PCI_COMMAND, &command); 4239 command &= ~PCI_COMMAND_MEMORY; 4240 pci_write_config_word(dev, PCI_COMMAND, command); 4241 4242 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) { 4243 r = &dev->resource[i]; 4244 if (!(r->flags & IORESOURCE_MEM)) 4245 continue; 4246 size = resource_size(r); 4247 if (size < align) { 4248 size = align; 4249 dev_info(&dev->dev, 4250 "Rounding up size of resource #%d to %#llx.\n", 4251 i, (unsigned long long)size); 4252 } 4253 r->end = size - 1; 4254 r->start = 0; 4255 } 4256 /* Need to disable bridge's resource window, 4257 * to enable the kernel to reassign new resource 4258 * window later on. 4259 */ 4260 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE && 4261 (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) { 4262 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) { 4263 r = &dev->resource[i]; 4264 if (!(r->flags & IORESOURCE_MEM)) 4265 continue; 4266 r->end = resource_size(r) - 1; 4267 r->start = 0; 4268 } 4269 pci_disable_bridge_window(dev); 4270 } 4271 } 4272 4273 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count) 4274 { 4275 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1) 4276 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1; 4277 spin_lock(&resource_alignment_lock); 4278 strncpy(resource_alignment_param, buf, count); 4279 resource_alignment_param[count] = '\0'; 4280 spin_unlock(&resource_alignment_lock); 4281 return count; 4282 } 4283 4284 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size) 4285 { 4286 size_t count; 4287 spin_lock(&resource_alignment_lock); 4288 count = snprintf(buf, size, "%s", resource_alignment_param); 4289 spin_unlock(&resource_alignment_lock); 4290 return count; 4291 } 4292 4293 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf) 4294 { 4295 return pci_get_resource_alignment_param(buf, PAGE_SIZE); 4296 } 4297 4298 static ssize_t pci_resource_alignment_store(struct bus_type *bus, 4299 const char *buf, size_t count) 4300 { 4301 return pci_set_resource_alignment_param(buf, count); 4302 } 4303 4304 BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show, 4305 pci_resource_alignment_store); 4306 4307 static int __init pci_resource_alignment_sysfs_init(void) 4308 { 4309 return bus_create_file(&pci_bus_type, 4310 &bus_attr_resource_alignment); 4311 } 4312 4313 late_initcall(pci_resource_alignment_sysfs_init); 4314 4315 static void pci_no_domains(void) 4316 { 4317 #ifdef CONFIG_PCI_DOMAINS 4318 pci_domains_supported = 0; 4319 #endif 4320 } 4321 4322 /** 4323 * pci_ext_cfg_avail - can we access extended PCI config space? 4324 * 4325 * Returns 1 if we can access PCI extended config space (offsets 4326 * greater than 0xff). This is the default implementation. Architecture 4327 * implementations can override this. 4328 */ 4329 int __weak pci_ext_cfg_avail(void) 4330 { 4331 return 1; 4332 } 4333 4334 void __weak pci_fixup_cardbus(struct pci_bus *bus) 4335 { 4336 } 4337 EXPORT_SYMBOL(pci_fixup_cardbus); 4338 4339 static int __init pci_setup(char *str) 4340 { 4341 while (str) { 4342 char *k = strchr(str, ','); 4343 if (k) 4344 *k++ = 0; 4345 if (*str && (str = pcibios_setup(str)) && *str) { 4346 if (!strcmp(str, "nomsi")) { 4347 pci_no_msi(); 4348 } else if (!strcmp(str, "noaer")) { 4349 pci_no_aer(); 4350 } else if (!strncmp(str, "realloc=", 8)) { 4351 pci_realloc_get_opt(str + 8); 4352 } else if (!strncmp(str, "realloc", 7)) { 4353 pci_realloc_get_opt("on"); 4354 } else if (!strcmp(str, "nodomains")) { 4355 pci_no_domains(); 4356 } else if (!strncmp(str, "noari", 5)) { 4357 pcie_ari_disabled = true; 4358 } else if (!strncmp(str, "cbiosize=", 9)) { 4359 pci_cardbus_io_size = memparse(str + 9, &str); 4360 } else if (!strncmp(str, "cbmemsize=", 10)) { 4361 pci_cardbus_mem_size = memparse(str + 10, &str); 4362 } else if (!strncmp(str, "resource_alignment=", 19)) { 4363 pci_set_resource_alignment_param(str + 19, 4364 strlen(str + 19)); 4365 } else if (!strncmp(str, "ecrc=", 5)) { 4366 pcie_ecrc_get_policy(str + 5); 4367 } else if (!strncmp(str, "hpiosize=", 9)) { 4368 pci_hotplug_io_size = memparse(str + 9, &str); 4369 } else if (!strncmp(str, "hpmemsize=", 10)) { 4370 pci_hotplug_mem_size = memparse(str + 10, &str); 4371 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) { 4372 pcie_bus_config = PCIE_BUS_TUNE_OFF; 4373 } else if (!strncmp(str, "pcie_bus_safe", 13)) { 4374 pcie_bus_config = PCIE_BUS_SAFE; 4375 } else if (!strncmp(str, "pcie_bus_perf", 13)) { 4376 pcie_bus_config = PCIE_BUS_PERFORMANCE; 4377 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) { 4378 pcie_bus_config = PCIE_BUS_PEER2PEER; 4379 } else if (!strncmp(str, "pcie_scan_all", 13)) { 4380 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS); 4381 } else { 4382 printk(KERN_ERR "PCI: Unknown option `%s'\n", 4383 str); 4384 } 4385 } 4386 str = k; 4387 } 4388 return 0; 4389 } 4390 early_param("pci", pci_setup); 4391 4392 EXPORT_SYMBOL(pci_reenable_device); 4393 EXPORT_SYMBOL(pci_enable_device_io); 4394 EXPORT_SYMBOL(pci_enable_device_mem); 4395 EXPORT_SYMBOL(pci_enable_device); 4396 EXPORT_SYMBOL(pcim_enable_device); 4397 EXPORT_SYMBOL(pcim_pin_device); 4398 EXPORT_SYMBOL(pci_disable_device); 4399 EXPORT_SYMBOL(pci_find_capability); 4400 EXPORT_SYMBOL(pci_bus_find_capability); 4401 EXPORT_SYMBOL(pci_release_regions); 4402 EXPORT_SYMBOL(pci_request_regions); 4403 EXPORT_SYMBOL(pci_request_regions_exclusive); 4404 EXPORT_SYMBOL(pci_release_region); 4405 EXPORT_SYMBOL(pci_request_region); 4406 EXPORT_SYMBOL(pci_request_region_exclusive); 4407 EXPORT_SYMBOL(pci_release_selected_regions); 4408 EXPORT_SYMBOL(pci_request_selected_regions); 4409 EXPORT_SYMBOL(pci_request_selected_regions_exclusive); 4410 EXPORT_SYMBOL(pci_set_master); 4411 EXPORT_SYMBOL(pci_clear_master); 4412 EXPORT_SYMBOL(pci_set_mwi); 4413 EXPORT_SYMBOL(pci_try_set_mwi); 4414 EXPORT_SYMBOL(pci_clear_mwi); 4415 EXPORT_SYMBOL_GPL(pci_intx); 4416 EXPORT_SYMBOL(pci_assign_resource); 4417 EXPORT_SYMBOL(pci_find_parent_resource); 4418 EXPORT_SYMBOL(pci_select_bars); 4419 4420 EXPORT_SYMBOL(pci_set_power_state); 4421 EXPORT_SYMBOL(pci_save_state); 4422 EXPORT_SYMBOL(pci_restore_state); 4423 EXPORT_SYMBOL(pci_pme_capable); 4424 EXPORT_SYMBOL(pci_pme_active); 4425 EXPORT_SYMBOL(pci_wake_from_d3); 4426 EXPORT_SYMBOL(pci_prepare_to_sleep); 4427 EXPORT_SYMBOL(pci_back_from_sleep); 4428 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state); 4429