xref: /openbmc/linux/drivers/pci/pci.c (revision a1c7c49c2091926962f8c1c866d386febffec5d8)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * PCI Bus Services, see include/linux/pci.h for further explanation.
4  *
5  * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6  * David Mosberger-Tang
7  *
8  * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/msi.h>
17 #include <linux/of.h>
18 #include <linux/pci.h>
19 #include <linux/pm.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/log2.h>
25 #include <linux/logic_pio.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/pci_hotplug.h>
31 #include <linux/vmalloc.h>
32 #include <asm/dma.h>
33 #include <linux/aer.h>
34 #include <linux/bitfield.h>
35 #include "pci.h"
36 
37 DEFINE_MUTEX(pci_slot_mutex);
38 
39 const char *pci_power_names[] = {
40 	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
41 };
42 EXPORT_SYMBOL_GPL(pci_power_names);
43 
44 int isa_dma_bridge_buggy;
45 EXPORT_SYMBOL(isa_dma_bridge_buggy);
46 
47 int pci_pci_problems;
48 EXPORT_SYMBOL(pci_pci_problems);
49 
50 unsigned int pci_pm_d3hot_delay;
51 
52 static void pci_pme_list_scan(struct work_struct *work);
53 
54 static LIST_HEAD(pci_pme_list);
55 static DEFINE_MUTEX(pci_pme_list_mutex);
56 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
57 
58 struct pci_pme_device {
59 	struct list_head list;
60 	struct pci_dev *dev;
61 };
62 
63 #define PME_TIMEOUT 1000 /* How long between PME checks */
64 
65 static void pci_dev_d3_sleep(struct pci_dev *dev)
66 {
67 	unsigned int delay = dev->d3hot_delay;
68 
69 	if (delay < pci_pm_d3hot_delay)
70 		delay = pci_pm_d3hot_delay;
71 
72 	if (delay)
73 		msleep(delay);
74 }
75 
76 bool pci_reset_supported(struct pci_dev *dev)
77 {
78 	return dev->reset_methods[0] != 0;
79 }
80 
81 #ifdef CONFIG_PCI_DOMAINS
82 int pci_domains_supported = 1;
83 #endif
84 
85 #define DEFAULT_CARDBUS_IO_SIZE		(256)
86 #define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
87 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
88 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
89 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
90 
91 #define DEFAULT_HOTPLUG_IO_SIZE		(256)
92 #define DEFAULT_HOTPLUG_MMIO_SIZE	(2*1024*1024)
93 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE	(2*1024*1024)
94 /* hpiosize=nn can override this */
95 unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
96 /*
97  * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
98  * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
99  * pci=hpmemsize=nnM overrides both
100  */
101 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
102 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
103 
104 #define DEFAULT_HOTPLUG_BUS_SIZE	1
105 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
106 
107 
108 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
109 #ifdef CONFIG_PCIE_BUS_TUNE_OFF
110 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
111 #elif defined CONFIG_PCIE_BUS_SAFE
112 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
113 #elif defined CONFIG_PCIE_BUS_PERFORMANCE
114 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
115 #elif defined CONFIG_PCIE_BUS_PEER2PEER
116 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
117 #else
118 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
119 #endif
120 
121 /*
122  * The default CLS is used if arch didn't set CLS explicitly and not
123  * all pci devices agree on the same value.  Arch can override either
124  * the dfl or actual value as it sees fit.  Don't forget this is
125  * measured in 32-bit words, not bytes.
126  */
127 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
128 u8 pci_cache_line_size;
129 
130 /*
131  * If we set up a device for bus mastering, we need to check the latency
132  * timer as certain BIOSes forget to set it properly.
133  */
134 unsigned int pcibios_max_latency = 255;
135 
136 /* If set, the PCIe ARI capability will not be used. */
137 static bool pcie_ari_disabled;
138 
139 /* If set, the PCIe ATS capability will not be used. */
140 static bool pcie_ats_disabled;
141 
142 /* If set, the PCI config space of each device is printed during boot. */
143 bool pci_early_dump;
144 
145 bool pci_ats_disabled(void)
146 {
147 	return pcie_ats_disabled;
148 }
149 EXPORT_SYMBOL_GPL(pci_ats_disabled);
150 
151 /* Disable bridge_d3 for all PCIe ports */
152 static bool pci_bridge_d3_disable;
153 /* Force bridge_d3 for all PCIe ports */
154 static bool pci_bridge_d3_force;
155 
156 static int __init pcie_port_pm_setup(char *str)
157 {
158 	if (!strcmp(str, "off"))
159 		pci_bridge_d3_disable = true;
160 	else if (!strcmp(str, "force"))
161 		pci_bridge_d3_force = true;
162 	return 1;
163 }
164 __setup("pcie_port_pm=", pcie_port_pm_setup);
165 
166 /* Time to wait after a reset for device to become responsive */
167 #define PCIE_RESET_READY_POLL_MS 60000
168 
169 /**
170  * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
171  * @bus: pointer to PCI bus structure to search
172  *
173  * Given a PCI bus, returns the highest PCI bus number present in the set
174  * including the given PCI bus and its list of child PCI buses.
175  */
176 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
177 {
178 	struct pci_bus *tmp;
179 	unsigned char max, n;
180 
181 	max = bus->busn_res.end;
182 	list_for_each_entry(tmp, &bus->children, node) {
183 		n = pci_bus_max_busnr(tmp);
184 		if (n > max)
185 			max = n;
186 	}
187 	return max;
188 }
189 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
190 
191 /**
192  * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
193  * @pdev: the PCI device
194  *
195  * Returns error bits set in PCI_STATUS and clears them.
196  */
197 int pci_status_get_and_clear_errors(struct pci_dev *pdev)
198 {
199 	u16 status;
200 	int ret;
201 
202 	ret = pci_read_config_word(pdev, PCI_STATUS, &status);
203 	if (ret != PCIBIOS_SUCCESSFUL)
204 		return -EIO;
205 
206 	status &= PCI_STATUS_ERROR_BITS;
207 	if (status)
208 		pci_write_config_word(pdev, PCI_STATUS, status);
209 
210 	return status;
211 }
212 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
213 
214 #ifdef CONFIG_HAS_IOMEM
215 static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar,
216 					    bool write_combine)
217 {
218 	struct resource *res = &pdev->resource[bar];
219 	resource_size_t start = res->start;
220 	resource_size_t size = resource_size(res);
221 
222 	/*
223 	 * Make sure the BAR is actually a memory resource, not an IO resource
224 	 */
225 	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
226 		pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
227 		return NULL;
228 	}
229 
230 	if (write_combine)
231 		return ioremap_wc(start, size);
232 
233 	return ioremap(start, size);
234 }
235 
236 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
237 {
238 	return __pci_ioremap_resource(pdev, bar, false);
239 }
240 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
241 
242 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
243 {
244 	return __pci_ioremap_resource(pdev, bar, true);
245 }
246 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
247 #endif
248 
249 /**
250  * pci_dev_str_match_path - test if a path string matches a device
251  * @dev: the PCI device to test
252  * @path: string to match the device against
253  * @endptr: pointer to the string after the match
254  *
255  * Test if a string (typically from a kernel parameter) formatted as a
256  * path of device/function addresses matches a PCI device. The string must
257  * be of the form:
258  *
259  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
260  *
261  * A path for a device can be obtained using 'lspci -t'.  Using a path
262  * is more robust against bus renumbering than using only a single bus,
263  * device and function address.
264  *
265  * Returns 1 if the string matches the device, 0 if it does not and
266  * a negative error code if it fails to parse the string.
267  */
268 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
269 				  const char **endptr)
270 {
271 	int ret;
272 	unsigned int seg, bus, slot, func;
273 	char *wpath, *p;
274 	char end;
275 
276 	*endptr = strchrnul(path, ';');
277 
278 	wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC);
279 	if (!wpath)
280 		return -ENOMEM;
281 
282 	while (1) {
283 		p = strrchr(wpath, '/');
284 		if (!p)
285 			break;
286 		ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
287 		if (ret != 2) {
288 			ret = -EINVAL;
289 			goto free_and_exit;
290 		}
291 
292 		if (dev->devfn != PCI_DEVFN(slot, func)) {
293 			ret = 0;
294 			goto free_and_exit;
295 		}
296 
297 		/*
298 		 * Note: we don't need to get a reference to the upstream
299 		 * bridge because we hold a reference to the top level
300 		 * device which should hold a reference to the bridge,
301 		 * and so on.
302 		 */
303 		dev = pci_upstream_bridge(dev);
304 		if (!dev) {
305 			ret = 0;
306 			goto free_and_exit;
307 		}
308 
309 		*p = 0;
310 	}
311 
312 	ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
313 		     &func, &end);
314 	if (ret != 4) {
315 		seg = 0;
316 		ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
317 		if (ret != 3) {
318 			ret = -EINVAL;
319 			goto free_and_exit;
320 		}
321 	}
322 
323 	ret = (seg == pci_domain_nr(dev->bus) &&
324 	       bus == dev->bus->number &&
325 	       dev->devfn == PCI_DEVFN(slot, func));
326 
327 free_and_exit:
328 	kfree(wpath);
329 	return ret;
330 }
331 
332 /**
333  * pci_dev_str_match - test if a string matches a device
334  * @dev: the PCI device to test
335  * @p: string to match the device against
336  * @endptr: pointer to the string after the match
337  *
338  * Test if a string (typically from a kernel parameter) matches a specified
339  * PCI device. The string may be of one of the following formats:
340  *
341  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
342  *   pci:<vendor>:<device>[:<subvendor>:<subdevice>]
343  *
344  * The first format specifies a PCI bus/device/function address which
345  * may change if new hardware is inserted, if motherboard firmware changes,
346  * or due to changes caused in kernel parameters. If the domain is
347  * left unspecified, it is taken to be 0.  In order to be robust against
348  * bus renumbering issues, a path of PCI device/function numbers may be used
349  * to address the specific device.  The path for a device can be determined
350  * through the use of 'lspci -t'.
351  *
352  * The second format matches devices using IDs in the configuration
353  * space which may match multiple devices in the system. A value of 0
354  * for any field will match all devices. (Note: this differs from
355  * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
356  * legacy reasons and convenience so users don't have to specify
357  * FFFFFFFFs on the command line.)
358  *
359  * Returns 1 if the string matches the device, 0 if it does not and
360  * a negative error code if the string cannot be parsed.
361  */
362 static int pci_dev_str_match(struct pci_dev *dev, const char *p,
363 			     const char **endptr)
364 {
365 	int ret;
366 	int count;
367 	unsigned short vendor, device, subsystem_vendor, subsystem_device;
368 
369 	if (strncmp(p, "pci:", 4) == 0) {
370 		/* PCI vendor/device (subvendor/subdevice) IDs are specified */
371 		p += 4;
372 		ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
373 			     &subsystem_vendor, &subsystem_device, &count);
374 		if (ret != 4) {
375 			ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
376 			if (ret != 2)
377 				return -EINVAL;
378 
379 			subsystem_vendor = 0;
380 			subsystem_device = 0;
381 		}
382 
383 		p += count;
384 
385 		if ((!vendor || vendor == dev->vendor) &&
386 		    (!device || device == dev->device) &&
387 		    (!subsystem_vendor ||
388 			    subsystem_vendor == dev->subsystem_vendor) &&
389 		    (!subsystem_device ||
390 			    subsystem_device == dev->subsystem_device))
391 			goto found;
392 	} else {
393 		/*
394 		 * PCI Bus, Device, Function IDs are specified
395 		 * (optionally, may include a path of devfns following it)
396 		 */
397 		ret = pci_dev_str_match_path(dev, p, &p);
398 		if (ret < 0)
399 			return ret;
400 		else if (ret)
401 			goto found;
402 	}
403 
404 	*endptr = p;
405 	return 0;
406 
407 found:
408 	*endptr = p;
409 	return 1;
410 }
411 
412 static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
413 				  u8 pos, int cap, int *ttl)
414 {
415 	u8 id;
416 	u16 ent;
417 
418 	pci_bus_read_config_byte(bus, devfn, pos, &pos);
419 
420 	while ((*ttl)--) {
421 		if (pos < 0x40)
422 			break;
423 		pos &= ~3;
424 		pci_bus_read_config_word(bus, devfn, pos, &ent);
425 
426 		id = ent & 0xff;
427 		if (id == 0xff)
428 			break;
429 		if (id == cap)
430 			return pos;
431 		pos = (ent >> 8);
432 	}
433 	return 0;
434 }
435 
436 static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
437 			      u8 pos, int cap)
438 {
439 	int ttl = PCI_FIND_CAP_TTL;
440 
441 	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
442 }
443 
444 u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
445 {
446 	return __pci_find_next_cap(dev->bus, dev->devfn,
447 				   pos + PCI_CAP_LIST_NEXT, cap);
448 }
449 EXPORT_SYMBOL_GPL(pci_find_next_capability);
450 
451 static u8 __pci_bus_find_cap_start(struct pci_bus *bus,
452 				    unsigned int devfn, u8 hdr_type)
453 {
454 	u16 status;
455 
456 	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
457 	if (!(status & PCI_STATUS_CAP_LIST))
458 		return 0;
459 
460 	switch (hdr_type) {
461 	case PCI_HEADER_TYPE_NORMAL:
462 	case PCI_HEADER_TYPE_BRIDGE:
463 		return PCI_CAPABILITY_LIST;
464 	case PCI_HEADER_TYPE_CARDBUS:
465 		return PCI_CB_CAPABILITY_LIST;
466 	}
467 
468 	return 0;
469 }
470 
471 /**
472  * pci_find_capability - query for devices' capabilities
473  * @dev: PCI device to query
474  * @cap: capability code
475  *
476  * Tell if a device supports a given PCI capability.
477  * Returns the address of the requested capability structure within the
478  * device's PCI configuration space or 0 in case the device does not
479  * support it.  Possible values for @cap include:
480  *
481  *  %PCI_CAP_ID_PM           Power Management
482  *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
483  *  %PCI_CAP_ID_VPD          Vital Product Data
484  *  %PCI_CAP_ID_SLOTID       Slot Identification
485  *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
486  *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
487  *  %PCI_CAP_ID_PCIX         PCI-X
488  *  %PCI_CAP_ID_EXP          PCI Express
489  */
490 u8 pci_find_capability(struct pci_dev *dev, int cap)
491 {
492 	u8 pos;
493 
494 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
495 	if (pos)
496 		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
497 
498 	return pos;
499 }
500 EXPORT_SYMBOL(pci_find_capability);
501 
502 /**
503  * pci_bus_find_capability - query for devices' capabilities
504  * @bus: the PCI bus to query
505  * @devfn: PCI device to query
506  * @cap: capability code
507  *
508  * Like pci_find_capability() but works for PCI devices that do not have a
509  * pci_dev structure set up yet.
510  *
511  * Returns the address of the requested capability structure within the
512  * device's PCI configuration space or 0 in case the device does not
513  * support it.
514  */
515 u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
516 {
517 	u8 hdr_type, pos;
518 
519 	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
520 
521 	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
522 	if (pos)
523 		pos = __pci_find_next_cap(bus, devfn, pos, cap);
524 
525 	return pos;
526 }
527 EXPORT_SYMBOL(pci_bus_find_capability);
528 
529 /**
530  * pci_find_next_ext_capability - Find an extended capability
531  * @dev: PCI device to query
532  * @start: address at which to start looking (0 to start at beginning of list)
533  * @cap: capability code
534  *
535  * Returns the address of the next matching extended capability structure
536  * within the device's PCI configuration space or 0 if the device does
537  * not support it.  Some capabilities can occur several times, e.g., the
538  * vendor-specific capability, and this provides a way to find them all.
539  */
540 u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap)
541 {
542 	u32 header;
543 	int ttl;
544 	u16 pos = PCI_CFG_SPACE_SIZE;
545 
546 	/* minimum 8 bytes per capability */
547 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
548 
549 	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
550 		return 0;
551 
552 	if (start)
553 		pos = start;
554 
555 	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
556 		return 0;
557 
558 	/*
559 	 * If we have no capabilities, this is indicated by cap ID,
560 	 * cap version and next pointer all being 0.
561 	 */
562 	if (header == 0)
563 		return 0;
564 
565 	while (ttl-- > 0) {
566 		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
567 			return pos;
568 
569 		pos = PCI_EXT_CAP_NEXT(header);
570 		if (pos < PCI_CFG_SPACE_SIZE)
571 			break;
572 
573 		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
574 			break;
575 	}
576 
577 	return 0;
578 }
579 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
580 
581 /**
582  * pci_find_ext_capability - Find an extended capability
583  * @dev: PCI device to query
584  * @cap: capability code
585  *
586  * Returns the address of the requested extended capability structure
587  * within the device's PCI configuration space or 0 if the device does
588  * not support it.  Possible values for @cap include:
589  *
590  *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
591  *  %PCI_EXT_CAP_ID_VC		Virtual Channel
592  *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
593  *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
594  */
595 u16 pci_find_ext_capability(struct pci_dev *dev, int cap)
596 {
597 	return pci_find_next_ext_capability(dev, 0, cap);
598 }
599 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
600 
601 /**
602  * pci_get_dsn - Read and return the 8-byte Device Serial Number
603  * @dev: PCI device to query
604  *
605  * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
606  * Number.
607  *
608  * Returns the DSN, or zero if the capability does not exist.
609  */
610 u64 pci_get_dsn(struct pci_dev *dev)
611 {
612 	u32 dword;
613 	u64 dsn;
614 	int pos;
615 
616 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
617 	if (!pos)
618 		return 0;
619 
620 	/*
621 	 * The Device Serial Number is two dwords offset 4 bytes from the
622 	 * capability position. The specification says that the first dword is
623 	 * the lower half, and the second dword is the upper half.
624 	 */
625 	pos += 4;
626 	pci_read_config_dword(dev, pos, &dword);
627 	dsn = (u64)dword;
628 	pci_read_config_dword(dev, pos + 4, &dword);
629 	dsn |= ((u64)dword) << 32;
630 
631 	return dsn;
632 }
633 EXPORT_SYMBOL_GPL(pci_get_dsn);
634 
635 static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap)
636 {
637 	int rc, ttl = PCI_FIND_CAP_TTL;
638 	u8 cap, mask;
639 
640 	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
641 		mask = HT_3BIT_CAP_MASK;
642 	else
643 		mask = HT_5BIT_CAP_MASK;
644 
645 	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
646 				      PCI_CAP_ID_HT, &ttl);
647 	while (pos) {
648 		rc = pci_read_config_byte(dev, pos + 3, &cap);
649 		if (rc != PCIBIOS_SUCCESSFUL)
650 			return 0;
651 
652 		if ((cap & mask) == ht_cap)
653 			return pos;
654 
655 		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
656 					      pos + PCI_CAP_LIST_NEXT,
657 					      PCI_CAP_ID_HT, &ttl);
658 	}
659 
660 	return 0;
661 }
662 
663 /**
664  * pci_find_next_ht_capability - query a device's HyperTransport capabilities
665  * @dev: PCI device to query
666  * @pos: Position from which to continue searching
667  * @ht_cap: HyperTransport capability code
668  *
669  * To be used in conjunction with pci_find_ht_capability() to search for
670  * all capabilities matching @ht_cap. @pos should always be a value returned
671  * from pci_find_ht_capability().
672  *
673  * NB. To be 100% safe against broken PCI devices, the caller should take
674  * steps to avoid an infinite loop.
675  */
676 u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap)
677 {
678 	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
679 }
680 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
681 
682 /**
683  * pci_find_ht_capability - query a device's HyperTransport capabilities
684  * @dev: PCI device to query
685  * @ht_cap: HyperTransport capability code
686  *
687  * Tell if a device supports a given HyperTransport capability.
688  * Returns an address within the device's PCI configuration space
689  * or 0 in case the device does not support the request capability.
690  * The address points to the PCI capability, of type PCI_CAP_ID_HT,
691  * which has a HyperTransport capability matching @ht_cap.
692  */
693 u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
694 {
695 	u8 pos;
696 
697 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
698 	if (pos)
699 		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
700 
701 	return pos;
702 }
703 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
704 
705 /**
706  * pci_find_vsec_capability - Find a vendor-specific extended capability
707  * @dev: PCI device to query
708  * @vendor: Vendor ID for which capability is defined
709  * @cap: Vendor-specific capability ID
710  *
711  * If @dev has Vendor ID @vendor, search for a VSEC capability with
712  * VSEC ID @cap. If found, return the capability offset in
713  * config space; otherwise return 0.
714  */
715 u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap)
716 {
717 	u16 vsec = 0;
718 	u32 header;
719 
720 	if (vendor != dev->vendor)
721 		return 0;
722 
723 	while ((vsec = pci_find_next_ext_capability(dev, vsec,
724 						     PCI_EXT_CAP_ID_VNDR))) {
725 		if (pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER,
726 					  &header) == PCIBIOS_SUCCESSFUL &&
727 		    PCI_VNDR_HEADER_ID(header) == cap)
728 			return vsec;
729 	}
730 
731 	return 0;
732 }
733 EXPORT_SYMBOL_GPL(pci_find_vsec_capability);
734 
735 /**
736  * pci_find_dvsec_capability - Find DVSEC for vendor
737  * @dev: PCI device to query
738  * @vendor: Vendor ID to match for the DVSEC
739  * @dvsec: Designated Vendor-specific capability ID
740  *
741  * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability
742  * offset in config space; otherwise return 0.
743  */
744 u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec)
745 {
746 	int pos;
747 
748 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC);
749 	if (!pos)
750 		return 0;
751 
752 	while (pos) {
753 		u16 v, id;
754 
755 		pci_read_config_word(dev, pos + PCI_DVSEC_HEADER1, &v);
756 		pci_read_config_word(dev, pos + PCI_DVSEC_HEADER2, &id);
757 		if (vendor == v && dvsec == id)
758 			return pos;
759 
760 		pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC);
761 	}
762 
763 	return 0;
764 }
765 EXPORT_SYMBOL_GPL(pci_find_dvsec_capability);
766 
767 /**
768  * pci_find_parent_resource - return resource region of parent bus of given
769  *			      region
770  * @dev: PCI device structure contains resources to be searched
771  * @res: child resource record for which parent is sought
772  *
773  * For given resource region of given device, return the resource region of
774  * parent bus the given region is contained in.
775  */
776 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
777 					  struct resource *res)
778 {
779 	const struct pci_bus *bus = dev->bus;
780 	struct resource *r;
781 	int i;
782 
783 	pci_bus_for_each_resource(bus, r, i) {
784 		if (!r)
785 			continue;
786 		if (resource_contains(r, res)) {
787 
788 			/*
789 			 * If the window is prefetchable but the BAR is
790 			 * not, the allocator made a mistake.
791 			 */
792 			if (r->flags & IORESOURCE_PREFETCH &&
793 			    !(res->flags & IORESOURCE_PREFETCH))
794 				return NULL;
795 
796 			/*
797 			 * If we're below a transparent bridge, there may
798 			 * be both a positively-decoded aperture and a
799 			 * subtractively-decoded region that contain the BAR.
800 			 * We want the positively-decoded one, so this depends
801 			 * on pci_bus_for_each_resource() giving us those
802 			 * first.
803 			 */
804 			return r;
805 		}
806 	}
807 	return NULL;
808 }
809 EXPORT_SYMBOL(pci_find_parent_resource);
810 
811 /**
812  * pci_find_resource - Return matching PCI device resource
813  * @dev: PCI device to query
814  * @res: Resource to look for
815  *
816  * Goes over standard PCI resources (BARs) and checks if the given resource
817  * is partially or fully contained in any of them. In that case the
818  * matching resource is returned, %NULL otherwise.
819  */
820 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
821 {
822 	int i;
823 
824 	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
825 		struct resource *r = &dev->resource[i];
826 
827 		if (r->start && resource_contains(r, res))
828 			return r;
829 	}
830 
831 	return NULL;
832 }
833 EXPORT_SYMBOL(pci_find_resource);
834 
835 /**
836  * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
837  * @dev: the PCI device to operate on
838  * @pos: config space offset of status word
839  * @mask: mask of bit(s) to care about in status word
840  *
841  * Return 1 when mask bit(s) in status word clear, 0 otherwise.
842  */
843 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
844 {
845 	int i;
846 
847 	/* Wait for Transaction Pending bit clean */
848 	for (i = 0; i < 4; i++) {
849 		u16 status;
850 		if (i)
851 			msleep((1 << (i - 1)) * 100);
852 
853 		pci_read_config_word(dev, pos, &status);
854 		if (!(status & mask))
855 			return 1;
856 	}
857 
858 	return 0;
859 }
860 
861 static int pci_acs_enable;
862 
863 /**
864  * pci_request_acs - ask for ACS to be enabled if supported
865  */
866 void pci_request_acs(void)
867 {
868 	pci_acs_enable = 1;
869 }
870 
871 static const char *disable_acs_redir_param;
872 
873 /**
874  * pci_disable_acs_redir - disable ACS redirect capabilities
875  * @dev: the PCI device
876  *
877  * For only devices specified in the disable_acs_redir parameter.
878  */
879 static void pci_disable_acs_redir(struct pci_dev *dev)
880 {
881 	int ret = 0;
882 	const char *p;
883 	int pos;
884 	u16 ctrl;
885 
886 	if (!disable_acs_redir_param)
887 		return;
888 
889 	p = disable_acs_redir_param;
890 	while (*p) {
891 		ret = pci_dev_str_match(dev, p, &p);
892 		if (ret < 0) {
893 			pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
894 				     disable_acs_redir_param);
895 
896 			break;
897 		} else if (ret == 1) {
898 			/* Found a match */
899 			break;
900 		}
901 
902 		if (*p != ';' && *p != ',') {
903 			/* End of param or invalid format */
904 			break;
905 		}
906 		p++;
907 	}
908 
909 	if (ret != 1)
910 		return;
911 
912 	if (!pci_dev_specific_disable_acs_redir(dev))
913 		return;
914 
915 	pos = dev->acs_cap;
916 	if (!pos) {
917 		pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
918 		return;
919 	}
920 
921 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
922 
923 	/* P2P Request & Completion Redirect */
924 	ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
925 
926 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
927 
928 	pci_info(dev, "disabled ACS redirect\n");
929 }
930 
931 /**
932  * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
933  * @dev: the PCI device
934  */
935 static void pci_std_enable_acs(struct pci_dev *dev)
936 {
937 	int pos;
938 	u16 cap;
939 	u16 ctrl;
940 
941 	pos = dev->acs_cap;
942 	if (!pos)
943 		return;
944 
945 	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
946 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
947 
948 	/* Source Validation */
949 	ctrl |= (cap & PCI_ACS_SV);
950 
951 	/* P2P Request Redirect */
952 	ctrl |= (cap & PCI_ACS_RR);
953 
954 	/* P2P Completion Redirect */
955 	ctrl |= (cap & PCI_ACS_CR);
956 
957 	/* Upstream Forwarding */
958 	ctrl |= (cap & PCI_ACS_UF);
959 
960 	/* Enable Translation Blocking for external devices and noats */
961 	if (pci_ats_disabled() || dev->external_facing || dev->untrusted)
962 		ctrl |= (cap & PCI_ACS_TB);
963 
964 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
965 }
966 
967 /**
968  * pci_enable_acs - enable ACS if hardware support it
969  * @dev: the PCI device
970  */
971 static void pci_enable_acs(struct pci_dev *dev)
972 {
973 	if (!pci_acs_enable)
974 		goto disable_acs_redir;
975 
976 	if (!pci_dev_specific_enable_acs(dev))
977 		goto disable_acs_redir;
978 
979 	pci_std_enable_acs(dev);
980 
981 disable_acs_redir:
982 	/*
983 	 * Note: pci_disable_acs_redir() must be called even if ACS was not
984 	 * enabled by the kernel because it may have been enabled by
985 	 * platform firmware.  So if we are told to disable it, we should
986 	 * always disable it after setting the kernel's default
987 	 * preferences.
988 	 */
989 	pci_disable_acs_redir(dev);
990 }
991 
992 /**
993  * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
994  * @dev: PCI device to have its BARs restored
995  *
996  * Restore the BAR values for a given device, so as to make it
997  * accessible by its driver.
998  */
999 static void pci_restore_bars(struct pci_dev *dev)
1000 {
1001 	int i;
1002 
1003 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
1004 		pci_update_resource(dev, i);
1005 }
1006 
1007 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
1008 {
1009 	if (pci_use_mid_pm())
1010 		return true;
1011 
1012 	return acpi_pci_power_manageable(dev);
1013 }
1014 
1015 static inline int platform_pci_set_power_state(struct pci_dev *dev,
1016 					       pci_power_t t)
1017 {
1018 	if (pci_use_mid_pm())
1019 		return mid_pci_set_power_state(dev, t);
1020 
1021 	return acpi_pci_set_power_state(dev, t);
1022 }
1023 
1024 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
1025 {
1026 	if (pci_use_mid_pm())
1027 		return mid_pci_get_power_state(dev);
1028 
1029 	return acpi_pci_get_power_state(dev);
1030 }
1031 
1032 static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
1033 {
1034 	if (!pci_use_mid_pm())
1035 		acpi_pci_refresh_power_state(dev);
1036 }
1037 
1038 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
1039 {
1040 	if (pci_use_mid_pm())
1041 		return PCI_POWER_ERROR;
1042 
1043 	return acpi_pci_choose_state(dev);
1044 }
1045 
1046 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
1047 {
1048 	if (pci_use_mid_pm())
1049 		return PCI_POWER_ERROR;
1050 
1051 	return acpi_pci_wakeup(dev, enable);
1052 }
1053 
1054 static inline bool platform_pci_need_resume(struct pci_dev *dev)
1055 {
1056 	if (pci_use_mid_pm())
1057 		return false;
1058 
1059 	return acpi_pci_need_resume(dev);
1060 }
1061 
1062 static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
1063 {
1064 	if (pci_use_mid_pm())
1065 		return false;
1066 
1067 	return acpi_pci_bridge_d3(dev);
1068 }
1069 
1070 /**
1071  * pci_raw_set_power_state - Use PCI PM registers to set the power state of
1072  *			     given PCI device
1073  * @dev: PCI device to handle.
1074  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1075  *
1076  * RETURN VALUE:
1077  * -EINVAL if the requested state is invalid.
1078  * -EIO if device does not support PCI PM or its PM capabilities register has a
1079  * wrong version, or device doesn't support the requested state.
1080  * 0 if device already is in the requested state.
1081  * 0 if device's power state has been successfully changed.
1082  */
1083 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
1084 {
1085 	u16 pmcsr;
1086 	bool need_restore = false;
1087 
1088 	/* Check if we're already there */
1089 	if (dev->current_state == state)
1090 		return 0;
1091 
1092 	if (!dev->pm_cap)
1093 		return -EIO;
1094 
1095 	if (state < PCI_D0 || state > PCI_D3hot)
1096 		return -EINVAL;
1097 
1098 	/*
1099 	 * Validate transition: We can enter D0 from any state, but if
1100 	 * we're already in a low-power state, we can only go deeper.  E.g.,
1101 	 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1102 	 * we'd have to go from D3 to D0, then to D1.
1103 	 */
1104 	if (state != PCI_D0 && dev->current_state <= PCI_D3cold
1105 	    && dev->current_state > state) {
1106 		pci_err(dev, "invalid power transition (from %s to %s)\n",
1107 			pci_power_name(dev->current_state),
1108 			pci_power_name(state));
1109 		return -EINVAL;
1110 	}
1111 
1112 	/* Check if this device supports the desired state */
1113 	if ((state == PCI_D1 && !dev->d1_support)
1114 	   || (state == PCI_D2 && !dev->d2_support))
1115 		return -EIO;
1116 
1117 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1118 	if (pmcsr == (u16) ~0) {
1119 		pci_err(dev, "can't change power state from %s to %s (config space inaccessible)\n",
1120 			pci_power_name(dev->current_state),
1121 			pci_power_name(state));
1122 		return -EIO;
1123 	}
1124 
1125 	/*
1126 	 * If we're (effectively) in D3, force entire word to 0.
1127 	 * This doesn't affect PME_Status, disables PME_En, and
1128 	 * sets PowerState to 0.
1129 	 */
1130 	switch (dev->current_state) {
1131 	case PCI_D0:
1132 	case PCI_D1:
1133 	case PCI_D2:
1134 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1135 		pmcsr |= state;
1136 		break;
1137 	case PCI_D3hot:
1138 	case PCI_D3cold:
1139 	case PCI_UNKNOWN: /* Boot-up */
1140 		if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
1141 		 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
1142 			need_restore = true;
1143 		fallthrough;	/* force to D0 */
1144 	default:
1145 		pmcsr = 0;
1146 		break;
1147 	}
1148 
1149 	/* Enter specified state */
1150 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1151 
1152 	/*
1153 	 * Mandatory power management transition delays; see PCI PM 1.1
1154 	 * 5.6.1 table 18
1155 	 */
1156 	if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
1157 		pci_dev_d3_sleep(dev);
1158 	else if (state == PCI_D2 || dev->current_state == PCI_D2)
1159 		udelay(PCI_PM_D2_DELAY);
1160 
1161 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1162 	dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1163 	if (dev->current_state != state)
1164 		pci_info_ratelimited(dev, "refused to change power state from %s to %s\n",
1165 			 pci_power_name(dev->current_state),
1166 			 pci_power_name(state));
1167 
1168 	/*
1169 	 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1170 	 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1171 	 * from D3hot to D0 _may_ perform an internal reset, thereby
1172 	 * going to "D0 Uninitialized" rather than "D0 Initialized".
1173 	 * For example, at least some versions of the 3c905B and the
1174 	 * 3c556B exhibit this behaviour.
1175 	 *
1176 	 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1177 	 * devices in a D3hot state at boot.  Consequently, we need to
1178 	 * restore at least the BARs so that the device will be
1179 	 * accessible to its driver.
1180 	 */
1181 	if (need_restore)
1182 		pci_restore_bars(dev);
1183 
1184 	if (dev->bus->self)
1185 		pcie_aspm_pm_state_change(dev->bus->self);
1186 
1187 	return 0;
1188 }
1189 
1190 /**
1191  * pci_update_current_state - Read power state of given device and cache it
1192  * @dev: PCI device to handle.
1193  * @state: State to cache in case the device doesn't have the PM capability
1194  *
1195  * The power state is read from the PMCSR register, which however is
1196  * inaccessible in D3cold.  The platform firmware is therefore queried first
1197  * to detect accessibility of the register.  In case the platform firmware
1198  * reports an incorrect state or the device isn't power manageable by the
1199  * platform at all, we try to detect D3cold by testing accessibility of the
1200  * vendor ID in config space.
1201  */
1202 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1203 {
1204 	if (platform_pci_get_power_state(dev) == PCI_D3cold ||
1205 	    !pci_device_is_present(dev)) {
1206 		dev->current_state = PCI_D3cold;
1207 	} else if (dev->pm_cap) {
1208 		u16 pmcsr;
1209 
1210 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1211 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1212 	} else {
1213 		dev->current_state = state;
1214 	}
1215 }
1216 
1217 /**
1218  * pci_refresh_power_state - Refresh the given device's power state data
1219  * @dev: Target PCI device.
1220  *
1221  * Ask the platform to refresh the devices power state information and invoke
1222  * pci_update_current_state() to update its current PCI power state.
1223  */
1224 void pci_refresh_power_state(struct pci_dev *dev)
1225 {
1226 	platform_pci_refresh_power_state(dev);
1227 	pci_update_current_state(dev, dev->current_state);
1228 }
1229 
1230 /**
1231  * pci_platform_power_transition - Use platform to change device power state
1232  * @dev: PCI device to handle.
1233  * @state: State to put the device into.
1234  */
1235 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1236 {
1237 	int error;
1238 
1239 	error = platform_pci_set_power_state(dev, state);
1240 	if (!error)
1241 		pci_update_current_state(dev, state);
1242 	else if (!dev->pm_cap) /* Fall back to PCI_D0 */
1243 		dev->current_state = PCI_D0;
1244 
1245 	return error;
1246 }
1247 EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1248 
1249 static int pci_resume_one(struct pci_dev *pci_dev, void *ign)
1250 {
1251 	pm_request_resume(&pci_dev->dev);
1252 	return 0;
1253 }
1254 
1255 /**
1256  * pci_resume_bus - Walk given bus and runtime resume devices on it
1257  * @bus: Top bus of the subtree to walk.
1258  */
1259 void pci_resume_bus(struct pci_bus *bus)
1260 {
1261 	if (bus)
1262 		pci_walk_bus(bus, pci_resume_one, NULL);
1263 }
1264 
1265 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1266 {
1267 	int delay = 1;
1268 	u32 id;
1269 
1270 	/*
1271 	 * After reset, the device should not silently discard config
1272 	 * requests, but it may still indicate that it needs more time by
1273 	 * responding to them with CRS completions.  The Root Port will
1274 	 * generally synthesize ~0 data to complete the read (except when
1275 	 * CRS SV is enabled and the read was for the Vendor ID; in that
1276 	 * case it synthesizes 0x0001 data).
1277 	 *
1278 	 * Wait for the device to return a non-CRS completion.  Read the
1279 	 * Command register instead of Vendor ID so we don't have to
1280 	 * contend with the CRS SV value.
1281 	 */
1282 	pci_read_config_dword(dev, PCI_COMMAND, &id);
1283 	while (id == ~0) {
1284 		if (delay > timeout) {
1285 			pci_warn(dev, "not ready %dms after %s; giving up\n",
1286 				 delay - 1, reset_type);
1287 			return -ENOTTY;
1288 		}
1289 
1290 		if (delay > 1000)
1291 			pci_info(dev, "not ready %dms after %s; waiting\n",
1292 				 delay - 1, reset_type);
1293 
1294 		msleep(delay);
1295 		delay *= 2;
1296 		pci_read_config_dword(dev, PCI_COMMAND, &id);
1297 	}
1298 
1299 	if (delay > 1000)
1300 		pci_info(dev, "ready %dms after %s\n", delay - 1,
1301 			 reset_type);
1302 
1303 	return 0;
1304 }
1305 
1306 /**
1307  * pci_power_up - Put the given device into D0
1308  * @dev: PCI device to power up
1309  */
1310 int pci_power_up(struct pci_dev *dev)
1311 {
1312 	pci_platform_power_transition(dev, PCI_D0);
1313 
1314 	/*
1315 	 * Mandatory power management transition delays are handled in
1316 	 * pci_pm_resume_noirq() and pci_pm_runtime_resume() of the
1317 	 * corresponding bridge.
1318 	 */
1319 	if (dev->runtime_d3cold) {
1320 		/*
1321 		 * When powering on a bridge from D3cold, the whole hierarchy
1322 		 * may be powered on into D0uninitialized state, resume them to
1323 		 * give them a chance to suspend again
1324 		 */
1325 		pci_resume_bus(dev->subordinate);
1326 	}
1327 
1328 	return pci_raw_set_power_state(dev, PCI_D0);
1329 }
1330 
1331 /**
1332  * __pci_dev_set_current_state - Set current state of a PCI device
1333  * @dev: Device to handle
1334  * @data: pointer to state to be set
1335  */
1336 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1337 {
1338 	pci_power_t state = *(pci_power_t *)data;
1339 
1340 	dev->current_state = state;
1341 	return 0;
1342 }
1343 
1344 /**
1345  * pci_bus_set_current_state - Walk given bus and set current state of devices
1346  * @bus: Top bus of the subtree to walk.
1347  * @state: state to be set
1348  */
1349 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1350 {
1351 	if (bus)
1352 		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1353 }
1354 
1355 /**
1356  * pci_set_power_state - Set the power state of a PCI device
1357  * @dev: PCI device to handle.
1358  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1359  *
1360  * Transition a device to a new power state, using the platform firmware and/or
1361  * the device's PCI PM registers.
1362  *
1363  * RETURN VALUE:
1364  * -EINVAL if the requested state is invalid.
1365  * -EIO if device does not support PCI PM or its PM capabilities register has a
1366  * wrong version, or device doesn't support the requested state.
1367  * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1368  * 0 if device already is in the requested state.
1369  * 0 if the transition is to D3 but D3 is not supported.
1370  * 0 if device's power state has been successfully changed.
1371  */
1372 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1373 {
1374 	int error;
1375 
1376 	/* Bound the state we're entering */
1377 	if (state > PCI_D3cold)
1378 		state = PCI_D3cold;
1379 	else if (state < PCI_D0)
1380 		state = PCI_D0;
1381 	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1382 
1383 		/*
1384 		 * If the device or the parent bridge do not support PCI
1385 		 * PM, ignore the request if we're doing anything other
1386 		 * than putting it into D0 (which would only happen on
1387 		 * boot).
1388 		 */
1389 		return 0;
1390 
1391 	/* Check if we're already there */
1392 	if (dev->current_state == state)
1393 		return 0;
1394 
1395 	if (state == PCI_D0)
1396 		return pci_power_up(dev);
1397 
1398 	/*
1399 	 * This device is quirked not to be put into D3, so don't put it in
1400 	 * D3
1401 	 */
1402 	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1403 		return 0;
1404 
1405 	/*
1406 	 * To put device in D3cold, we put device into D3hot in native
1407 	 * way, then put device into D3cold with platform ops
1408 	 */
1409 	error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
1410 					PCI_D3hot : state);
1411 
1412 	if (pci_platform_power_transition(dev, state))
1413 		return error;
1414 
1415 	/* Powering off a bridge may power off the whole hierarchy */
1416 	if (state == PCI_D3cold)
1417 		pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1418 
1419 	return 0;
1420 }
1421 EXPORT_SYMBOL(pci_set_power_state);
1422 
1423 #define PCI_EXP_SAVE_REGS	7
1424 
1425 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1426 						       u16 cap, bool extended)
1427 {
1428 	struct pci_cap_saved_state *tmp;
1429 
1430 	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1431 		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1432 			return tmp;
1433 	}
1434 	return NULL;
1435 }
1436 
1437 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1438 {
1439 	return _pci_find_saved_cap(dev, cap, false);
1440 }
1441 
1442 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1443 {
1444 	return _pci_find_saved_cap(dev, cap, true);
1445 }
1446 
1447 static int pci_save_pcie_state(struct pci_dev *dev)
1448 {
1449 	int i = 0;
1450 	struct pci_cap_saved_state *save_state;
1451 	u16 *cap;
1452 
1453 	if (!pci_is_pcie(dev))
1454 		return 0;
1455 
1456 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1457 	if (!save_state) {
1458 		pci_err(dev, "buffer not found in %s\n", __func__);
1459 		return -ENOMEM;
1460 	}
1461 
1462 	cap = (u16 *)&save_state->cap.data[0];
1463 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1464 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1465 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1466 	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
1467 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1468 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1469 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1470 
1471 	return 0;
1472 }
1473 
1474 void pci_bridge_reconfigure_ltr(struct pci_dev *dev)
1475 {
1476 #ifdef CONFIG_PCIEASPM
1477 	struct pci_dev *bridge;
1478 	u32 ctl;
1479 
1480 	bridge = pci_upstream_bridge(dev);
1481 	if (bridge && bridge->ltr_path) {
1482 		pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, &ctl);
1483 		if (!(ctl & PCI_EXP_DEVCTL2_LTR_EN)) {
1484 			pci_dbg(bridge, "re-enabling LTR\n");
1485 			pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
1486 						 PCI_EXP_DEVCTL2_LTR_EN);
1487 		}
1488 	}
1489 #endif
1490 }
1491 
1492 static void pci_restore_pcie_state(struct pci_dev *dev)
1493 {
1494 	int i = 0;
1495 	struct pci_cap_saved_state *save_state;
1496 	u16 *cap;
1497 
1498 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1499 	if (!save_state)
1500 		return;
1501 
1502 	/*
1503 	 * Downstream ports reset the LTR enable bit when link goes down.
1504 	 * Check and re-configure the bit here before restoring device.
1505 	 * PCIe r5.0, sec 7.5.3.16.
1506 	 */
1507 	pci_bridge_reconfigure_ltr(dev);
1508 
1509 	cap = (u16 *)&save_state->cap.data[0];
1510 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1511 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1512 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1513 	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1514 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1515 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1516 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1517 }
1518 
1519 static int pci_save_pcix_state(struct pci_dev *dev)
1520 {
1521 	int pos;
1522 	struct pci_cap_saved_state *save_state;
1523 
1524 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1525 	if (!pos)
1526 		return 0;
1527 
1528 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1529 	if (!save_state) {
1530 		pci_err(dev, "buffer not found in %s\n", __func__);
1531 		return -ENOMEM;
1532 	}
1533 
1534 	pci_read_config_word(dev, pos + PCI_X_CMD,
1535 			     (u16 *)save_state->cap.data);
1536 
1537 	return 0;
1538 }
1539 
1540 static void pci_restore_pcix_state(struct pci_dev *dev)
1541 {
1542 	int i = 0, pos;
1543 	struct pci_cap_saved_state *save_state;
1544 	u16 *cap;
1545 
1546 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1547 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1548 	if (!save_state || !pos)
1549 		return;
1550 	cap = (u16 *)&save_state->cap.data[0];
1551 
1552 	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1553 }
1554 
1555 static void pci_save_ltr_state(struct pci_dev *dev)
1556 {
1557 	int ltr;
1558 	struct pci_cap_saved_state *save_state;
1559 	u16 *cap;
1560 
1561 	if (!pci_is_pcie(dev))
1562 		return;
1563 
1564 	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1565 	if (!ltr)
1566 		return;
1567 
1568 	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1569 	if (!save_state) {
1570 		pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1571 		return;
1572 	}
1573 
1574 	cap = (u16 *)&save_state->cap.data[0];
1575 	pci_read_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap++);
1576 	pci_read_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, cap++);
1577 }
1578 
1579 static void pci_restore_ltr_state(struct pci_dev *dev)
1580 {
1581 	struct pci_cap_saved_state *save_state;
1582 	int ltr;
1583 	u16 *cap;
1584 
1585 	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1586 	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1587 	if (!save_state || !ltr)
1588 		return;
1589 
1590 	cap = (u16 *)&save_state->cap.data[0];
1591 	pci_write_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap++);
1592 	pci_write_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, *cap++);
1593 }
1594 
1595 /**
1596  * pci_save_state - save the PCI configuration space of a device before
1597  *		    suspending
1598  * @dev: PCI device that we're dealing with
1599  */
1600 int pci_save_state(struct pci_dev *dev)
1601 {
1602 	int i;
1603 	/* XXX: 100% dword access ok here? */
1604 	for (i = 0; i < 16; i++) {
1605 		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1606 		pci_dbg(dev, "saving config space at offset %#x (reading %#x)\n",
1607 			i * 4, dev->saved_config_space[i]);
1608 	}
1609 	dev->state_saved = true;
1610 
1611 	i = pci_save_pcie_state(dev);
1612 	if (i != 0)
1613 		return i;
1614 
1615 	i = pci_save_pcix_state(dev);
1616 	if (i != 0)
1617 		return i;
1618 
1619 	pci_save_ltr_state(dev);
1620 	pci_save_dpc_state(dev);
1621 	pci_save_aer_state(dev);
1622 	pci_save_ptm_state(dev);
1623 	return pci_save_vc_state(dev);
1624 }
1625 EXPORT_SYMBOL(pci_save_state);
1626 
1627 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1628 				     u32 saved_val, int retry, bool force)
1629 {
1630 	u32 val;
1631 
1632 	pci_read_config_dword(pdev, offset, &val);
1633 	if (!force && val == saved_val)
1634 		return;
1635 
1636 	for (;;) {
1637 		pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1638 			offset, val, saved_val);
1639 		pci_write_config_dword(pdev, offset, saved_val);
1640 		if (retry-- <= 0)
1641 			return;
1642 
1643 		pci_read_config_dword(pdev, offset, &val);
1644 		if (val == saved_val)
1645 			return;
1646 
1647 		mdelay(1);
1648 	}
1649 }
1650 
1651 static void pci_restore_config_space_range(struct pci_dev *pdev,
1652 					   int start, int end, int retry,
1653 					   bool force)
1654 {
1655 	int index;
1656 
1657 	for (index = end; index >= start; index--)
1658 		pci_restore_config_dword(pdev, 4 * index,
1659 					 pdev->saved_config_space[index],
1660 					 retry, force);
1661 }
1662 
1663 static void pci_restore_config_space(struct pci_dev *pdev)
1664 {
1665 	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1666 		pci_restore_config_space_range(pdev, 10, 15, 0, false);
1667 		/* Restore BARs before the command register. */
1668 		pci_restore_config_space_range(pdev, 4, 9, 10, false);
1669 		pci_restore_config_space_range(pdev, 0, 3, 0, false);
1670 	} else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1671 		pci_restore_config_space_range(pdev, 12, 15, 0, false);
1672 
1673 		/*
1674 		 * Force rewriting of prefetch registers to avoid S3 resume
1675 		 * issues on Intel PCI bridges that occur when these
1676 		 * registers are not explicitly written.
1677 		 */
1678 		pci_restore_config_space_range(pdev, 9, 11, 0, true);
1679 		pci_restore_config_space_range(pdev, 0, 8, 0, false);
1680 	} else {
1681 		pci_restore_config_space_range(pdev, 0, 15, 0, false);
1682 	}
1683 }
1684 
1685 static void pci_restore_rebar_state(struct pci_dev *pdev)
1686 {
1687 	unsigned int pos, nbars, i;
1688 	u32 ctrl;
1689 
1690 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1691 	if (!pos)
1692 		return;
1693 
1694 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1695 	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1696 		    PCI_REBAR_CTRL_NBAR_SHIFT;
1697 
1698 	for (i = 0; i < nbars; i++, pos += 8) {
1699 		struct resource *res;
1700 		int bar_idx, size;
1701 
1702 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1703 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1704 		res = pdev->resource + bar_idx;
1705 		size = pci_rebar_bytes_to_size(resource_size(res));
1706 		ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1707 		ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1708 		pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1709 	}
1710 }
1711 
1712 /**
1713  * pci_restore_state - Restore the saved state of a PCI device
1714  * @dev: PCI device that we're dealing with
1715  */
1716 void pci_restore_state(struct pci_dev *dev)
1717 {
1718 	if (!dev->state_saved)
1719 		return;
1720 
1721 	/*
1722 	 * Restore max latencies (in the LTR capability) before enabling
1723 	 * LTR itself (in the PCIe capability).
1724 	 */
1725 	pci_restore_ltr_state(dev);
1726 
1727 	pci_restore_pcie_state(dev);
1728 	pci_restore_pasid_state(dev);
1729 	pci_restore_pri_state(dev);
1730 	pci_restore_ats_state(dev);
1731 	pci_restore_vc_state(dev);
1732 	pci_restore_rebar_state(dev);
1733 	pci_restore_dpc_state(dev);
1734 	pci_restore_ptm_state(dev);
1735 
1736 	pci_aer_clear_status(dev);
1737 	pci_restore_aer_state(dev);
1738 
1739 	pci_restore_config_space(dev);
1740 
1741 	pci_restore_pcix_state(dev);
1742 	pci_restore_msi_state(dev);
1743 
1744 	/* Restore ACS and IOV configuration state */
1745 	pci_enable_acs(dev);
1746 	pci_restore_iov_state(dev);
1747 
1748 	dev->state_saved = false;
1749 }
1750 EXPORT_SYMBOL(pci_restore_state);
1751 
1752 struct pci_saved_state {
1753 	u32 config_space[16];
1754 	struct pci_cap_saved_data cap[];
1755 };
1756 
1757 /**
1758  * pci_store_saved_state - Allocate and return an opaque struct containing
1759  *			   the device saved state.
1760  * @dev: PCI device that we're dealing with
1761  *
1762  * Return NULL if no state or error.
1763  */
1764 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1765 {
1766 	struct pci_saved_state *state;
1767 	struct pci_cap_saved_state *tmp;
1768 	struct pci_cap_saved_data *cap;
1769 	size_t size;
1770 
1771 	if (!dev->state_saved)
1772 		return NULL;
1773 
1774 	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1775 
1776 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1777 		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1778 
1779 	state = kzalloc(size, GFP_KERNEL);
1780 	if (!state)
1781 		return NULL;
1782 
1783 	memcpy(state->config_space, dev->saved_config_space,
1784 	       sizeof(state->config_space));
1785 
1786 	cap = state->cap;
1787 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1788 		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1789 		memcpy(cap, &tmp->cap, len);
1790 		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1791 	}
1792 	/* Empty cap_save terminates list */
1793 
1794 	return state;
1795 }
1796 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1797 
1798 /**
1799  * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1800  * @dev: PCI device that we're dealing with
1801  * @state: Saved state returned from pci_store_saved_state()
1802  */
1803 int pci_load_saved_state(struct pci_dev *dev,
1804 			 struct pci_saved_state *state)
1805 {
1806 	struct pci_cap_saved_data *cap;
1807 
1808 	dev->state_saved = false;
1809 
1810 	if (!state)
1811 		return 0;
1812 
1813 	memcpy(dev->saved_config_space, state->config_space,
1814 	       sizeof(state->config_space));
1815 
1816 	cap = state->cap;
1817 	while (cap->size) {
1818 		struct pci_cap_saved_state *tmp;
1819 
1820 		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1821 		if (!tmp || tmp->cap.size != cap->size)
1822 			return -EINVAL;
1823 
1824 		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1825 		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1826 		       sizeof(struct pci_cap_saved_data) + cap->size);
1827 	}
1828 
1829 	dev->state_saved = true;
1830 	return 0;
1831 }
1832 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1833 
1834 /**
1835  * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1836  *				   and free the memory allocated for it.
1837  * @dev: PCI device that we're dealing with
1838  * @state: Pointer to saved state returned from pci_store_saved_state()
1839  */
1840 int pci_load_and_free_saved_state(struct pci_dev *dev,
1841 				  struct pci_saved_state **state)
1842 {
1843 	int ret = pci_load_saved_state(dev, *state);
1844 	kfree(*state);
1845 	*state = NULL;
1846 	return ret;
1847 }
1848 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1849 
1850 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1851 {
1852 	return pci_enable_resources(dev, bars);
1853 }
1854 
1855 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1856 {
1857 	int err;
1858 	struct pci_dev *bridge;
1859 	u16 cmd;
1860 	u8 pin;
1861 
1862 	err = pci_set_power_state(dev, PCI_D0);
1863 	if (err < 0 && err != -EIO)
1864 		return err;
1865 
1866 	bridge = pci_upstream_bridge(dev);
1867 	if (bridge)
1868 		pcie_aspm_powersave_config_link(bridge);
1869 
1870 	err = pcibios_enable_device(dev, bars);
1871 	if (err < 0)
1872 		return err;
1873 	pci_fixup_device(pci_fixup_enable, dev);
1874 
1875 	if (dev->msi_enabled || dev->msix_enabled)
1876 		return 0;
1877 
1878 	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1879 	if (pin) {
1880 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
1881 		if (cmd & PCI_COMMAND_INTX_DISABLE)
1882 			pci_write_config_word(dev, PCI_COMMAND,
1883 					      cmd & ~PCI_COMMAND_INTX_DISABLE);
1884 	}
1885 
1886 	return 0;
1887 }
1888 
1889 /**
1890  * pci_reenable_device - Resume abandoned device
1891  * @dev: PCI device to be resumed
1892  *
1893  * NOTE: This function is a backend of pci_default_resume() and is not supposed
1894  * to be called by normal code, write proper resume handler and use it instead.
1895  */
1896 int pci_reenable_device(struct pci_dev *dev)
1897 {
1898 	if (pci_is_enabled(dev))
1899 		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1900 	return 0;
1901 }
1902 EXPORT_SYMBOL(pci_reenable_device);
1903 
1904 static void pci_enable_bridge(struct pci_dev *dev)
1905 {
1906 	struct pci_dev *bridge;
1907 	int retval;
1908 
1909 	bridge = pci_upstream_bridge(dev);
1910 	if (bridge)
1911 		pci_enable_bridge(bridge);
1912 
1913 	if (pci_is_enabled(dev)) {
1914 		if (!dev->is_busmaster)
1915 			pci_set_master(dev);
1916 		return;
1917 	}
1918 
1919 	retval = pci_enable_device(dev);
1920 	if (retval)
1921 		pci_err(dev, "Error enabling bridge (%d), continuing\n",
1922 			retval);
1923 	pci_set_master(dev);
1924 }
1925 
1926 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1927 {
1928 	struct pci_dev *bridge;
1929 	int err;
1930 	int i, bars = 0;
1931 
1932 	/*
1933 	 * Power state could be unknown at this point, either due to a fresh
1934 	 * boot or a device removal call.  So get the current power state
1935 	 * so that things like MSI message writing will behave as expected
1936 	 * (e.g. if the device really is in D0 at enable time).
1937 	 */
1938 	pci_update_current_state(dev, dev->current_state);
1939 
1940 	if (atomic_inc_return(&dev->enable_cnt) > 1)
1941 		return 0;		/* already enabled */
1942 
1943 	bridge = pci_upstream_bridge(dev);
1944 	if (bridge)
1945 		pci_enable_bridge(bridge);
1946 
1947 	/* only skip sriov related */
1948 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1949 		if (dev->resource[i].flags & flags)
1950 			bars |= (1 << i);
1951 	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1952 		if (dev->resource[i].flags & flags)
1953 			bars |= (1 << i);
1954 
1955 	err = do_pci_enable_device(dev, bars);
1956 	if (err < 0)
1957 		atomic_dec(&dev->enable_cnt);
1958 	return err;
1959 }
1960 
1961 /**
1962  * pci_enable_device_io - Initialize a device for use with IO space
1963  * @dev: PCI device to be initialized
1964  *
1965  * Initialize device before it's used by a driver. Ask low-level code
1966  * to enable I/O resources. Wake up the device if it was suspended.
1967  * Beware, this function can fail.
1968  */
1969 int pci_enable_device_io(struct pci_dev *dev)
1970 {
1971 	return pci_enable_device_flags(dev, IORESOURCE_IO);
1972 }
1973 EXPORT_SYMBOL(pci_enable_device_io);
1974 
1975 /**
1976  * pci_enable_device_mem - Initialize a device for use with Memory space
1977  * @dev: PCI device to be initialized
1978  *
1979  * Initialize device before it's used by a driver. Ask low-level code
1980  * to enable Memory resources. Wake up the device if it was suspended.
1981  * Beware, this function can fail.
1982  */
1983 int pci_enable_device_mem(struct pci_dev *dev)
1984 {
1985 	return pci_enable_device_flags(dev, IORESOURCE_MEM);
1986 }
1987 EXPORT_SYMBOL(pci_enable_device_mem);
1988 
1989 /**
1990  * pci_enable_device - Initialize device before it's used by a driver.
1991  * @dev: PCI device to be initialized
1992  *
1993  * Initialize device before it's used by a driver. Ask low-level code
1994  * to enable I/O and memory. Wake up the device if it was suspended.
1995  * Beware, this function can fail.
1996  *
1997  * Note we don't actually enable the device many times if we call
1998  * this function repeatedly (we just increment the count).
1999  */
2000 int pci_enable_device(struct pci_dev *dev)
2001 {
2002 	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
2003 }
2004 EXPORT_SYMBOL(pci_enable_device);
2005 
2006 /*
2007  * Managed PCI resources.  This manages device on/off, INTx/MSI/MSI-X
2008  * on/off and BAR regions.  pci_dev itself records MSI/MSI-X status, so
2009  * there's no need to track it separately.  pci_devres is initialized
2010  * when a device is enabled using managed PCI device enable interface.
2011  */
2012 struct pci_devres {
2013 	unsigned int enabled:1;
2014 	unsigned int pinned:1;
2015 	unsigned int orig_intx:1;
2016 	unsigned int restore_intx:1;
2017 	unsigned int mwi:1;
2018 	u32 region_mask;
2019 };
2020 
2021 static void pcim_release(struct device *gendev, void *res)
2022 {
2023 	struct pci_dev *dev = to_pci_dev(gendev);
2024 	struct pci_devres *this = res;
2025 	int i;
2026 
2027 	if (dev->msi_enabled)
2028 		pci_disable_msi(dev);
2029 	if (dev->msix_enabled)
2030 		pci_disable_msix(dev);
2031 
2032 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
2033 		if (this->region_mask & (1 << i))
2034 			pci_release_region(dev, i);
2035 
2036 	if (this->mwi)
2037 		pci_clear_mwi(dev);
2038 
2039 	if (this->restore_intx)
2040 		pci_intx(dev, this->orig_intx);
2041 
2042 	if (this->enabled && !this->pinned)
2043 		pci_disable_device(dev);
2044 }
2045 
2046 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
2047 {
2048 	struct pci_devres *dr, *new_dr;
2049 
2050 	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
2051 	if (dr)
2052 		return dr;
2053 
2054 	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
2055 	if (!new_dr)
2056 		return NULL;
2057 	return devres_get(&pdev->dev, new_dr, NULL, NULL);
2058 }
2059 
2060 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
2061 {
2062 	if (pci_is_managed(pdev))
2063 		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
2064 	return NULL;
2065 }
2066 
2067 /**
2068  * pcim_enable_device - Managed pci_enable_device()
2069  * @pdev: PCI device to be initialized
2070  *
2071  * Managed pci_enable_device().
2072  */
2073 int pcim_enable_device(struct pci_dev *pdev)
2074 {
2075 	struct pci_devres *dr;
2076 	int rc;
2077 
2078 	dr = get_pci_dr(pdev);
2079 	if (unlikely(!dr))
2080 		return -ENOMEM;
2081 	if (dr->enabled)
2082 		return 0;
2083 
2084 	rc = pci_enable_device(pdev);
2085 	if (!rc) {
2086 		pdev->is_managed = 1;
2087 		dr->enabled = 1;
2088 	}
2089 	return rc;
2090 }
2091 EXPORT_SYMBOL(pcim_enable_device);
2092 
2093 /**
2094  * pcim_pin_device - Pin managed PCI device
2095  * @pdev: PCI device to pin
2096  *
2097  * Pin managed PCI device @pdev.  Pinned device won't be disabled on
2098  * driver detach.  @pdev must have been enabled with
2099  * pcim_enable_device().
2100  */
2101 void pcim_pin_device(struct pci_dev *pdev)
2102 {
2103 	struct pci_devres *dr;
2104 
2105 	dr = find_pci_dr(pdev);
2106 	WARN_ON(!dr || !dr->enabled);
2107 	if (dr)
2108 		dr->pinned = 1;
2109 }
2110 EXPORT_SYMBOL(pcim_pin_device);
2111 
2112 /*
2113  * pcibios_device_add - provide arch specific hooks when adding device dev
2114  * @dev: the PCI device being added
2115  *
2116  * Permits the platform to provide architecture specific functionality when
2117  * devices are added. This is the default implementation. Architecture
2118  * implementations can override this.
2119  */
2120 int __weak pcibios_device_add(struct pci_dev *dev)
2121 {
2122 	return 0;
2123 }
2124 
2125 /**
2126  * pcibios_release_device - provide arch specific hooks when releasing
2127  *			    device dev
2128  * @dev: the PCI device being released
2129  *
2130  * Permits the platform to provide architecture specific functionality when
2131  * devices are released. This is the default implementation. Architecture
2132  * implementations can override this.
2133  */
2134 void __weak pcibios_release_device(struct pci_dev *dev) {}
2135 
2136 /**
2137  * pcibios_disable_device - disable arch specific PCI resources for device dev
2138  * @dev: the PCI device to disable
2139  *
2140  * Disables architecture specific PCI resources for the device. This
2141  * is the default implementation. Architecture implementations can
2142  * override this.
2143  */
2144 void __weak pcibios_disable_device(struct pci_dev *dev) {}
2145 
2146 /**
2147  * pcibios_penalize_isa_irq - penalize an ISA IRQ
2148  * @irq: ISA IRQ to penalize
2149  * @active: IRQ active or not
2150  *
2151  * Permits the platform to provide architecture-specific functionality when
2152  * penalizing ISA IRQs. This is the default implementation. Architecture
2153  * implementations can override this.
2154  */
2155 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
2156 
2157 static void do_pci_disable_device(struct pci_dev *dev)
2158 {
2159 	u16 pci_command;
2160 
2161 	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2162 	if (pci_command & PCI_COMMAND_MASTER) {
2163 		pci_command &= ~PCI_COMMAND_MASTER;
2164 		pci_write_config_word(dev, PCI_COMMAND, pci_command);
2165 	}
2166 
2167 	pcibios_disable_device(dev);
2168 }
2169 
2170 /**
2171  * pci_disable_enabled_device - Disable device without updating enable_cnt
2172  * @dev: PCI device to disable
2173  *
2174  * NOTE: This function is a backend of PCI power management routines and is
2175  * not supposed to be called drivers.
2176  */
2177 void pci_disable_enabled_device(struct pci_dev *dev)
2178 {
2179 	if (pci_is_enabled(dev))
2180 		do_pci_disable_device(dev);
2181 }
2182 
2183 /**
2184  * pci_disable_device - Disable PCI device after use
2185  * @dev: PCI device to be disabled
2186  *
2187  * Signal to the system that the PCI device is not in use by the system
2188  * anymore.  This only involves disabling PCI bus-mastering, if active.
2189  *
2190  * Note we don't actually disable the device until all callers of
2191  * pci_enable_device() have called pci_disable_device().
2192  */
2193 void pci_disable_device(struct pci_dev *dev)
2194 {
2195 	struct pci_devres *dr;
2196 
2197 	dr = find_pci_dr(dev);
2198 	if (dr)
2199 		dr->enabled = 0;
2200 
2201 	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2202 		      "disabling already-disabled device");
2203 
2204 	if (atomic_dec_return(&dev->enable_cnt) != 0)
2205 		return;
2206 
2207 	do_pci_disable_device(dev);
2208 
2209 	dev->is_busmaster = 0;
2210 }
2211 EXPORT_SYMBOL(pci_disable_device);
2212 
2213 /**
2214  * pcibios_set_pcie_reset_state - set reset state for device dev
2215  * @dev: the PCIe device reset
2216  * @state: Reset state to enter into
2217  *
2218  * Set the PCIe reset state for the device. This is the default
2219  * implementation. Architecture implementations can override this.
2220  */
2221 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2222 					enum pcie_reset_state state)
2223 {
2224 	return -EINVAL;
2225 }
2226 
2227 /**
2228  * pci_set_pcie_reset_state - set reset state for device dev
2229  * @dev: the PCIe device reset
2230  * @state: Reset state to enter into
2231  *
2232  * Sets the PCI reset state for the device.
2233  */
2234 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2235 {
2236 	return pcibios_set_pcie_reset_state(dev, state);
2237 }
2238 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2239 
2240 #ifdef CONFIG_PCIEAER
2241 void pcie_clear_device_status(struct pci_dev *dev)
2242 {
2243 	u16 sta;
2244 
2245 	pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2246 	pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2247 }
2248 #endif
2249 
2250 /**
2251  * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2252  * @dev: PCIe root port or event collector.
2253  */
2254 void pcie_clear_root_pme_status(struct pci_dev *dev)
2255 {
2256 	pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2257 }
2258 
2259 /**
2260  * pci_check_pme_status - Check if given device has generated PME.
2261  * @dev: Device to check.
2262  *
2263  * Check the PME status of the device and if set, clear it and clear PME enable
2264  * (if set).  Return 'true' if PME status and PME enable were both set or
2265  * 'false' otherwise.
2266  */
2267 bool pci_check_pme_status(struct pci_dev *dev)
2268 {
2269 	int pmcsr_pos;
2270 	u16 pmcsr;
2271 	bool ret = false;
2272 
2273 	if (!dev->pm_cap)
2274 		return false;
2275 
2276 	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2277 	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2278 	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2279 		return false;
2280 
2281 	/* Clear PME status. */
2282 	pmcsr |= PCI_PM_CTRL_PME_STATUS;
2283 	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2284 		/* Disable PME to avoid interrupt flood. */
2285 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2286 		ret = true;
2287 	}
2288 
2289 	pci_write_config_word(dev, pmcsr_pos, pmcsr);
2290 
2291 	return ret;
2292 }
2293 
2294 /**
2295  * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2296  * @dev: Device to handle.
2297  * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2298  *
2299  * Check if @dev has generated PME and queue a resume request for it in that
2300  * case.
2301  */
2302 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2303 {
2304 	if (pme_poll_reset && dev->pme_poll)
2305 		dev->pme_poll = false;
2306 
2307 	if (pci_check_pme_status(dev)) {
2308 		pci_wakeup_event(dev);
2309 		pm_request_resume(&dev->dev);
2310 	}
2311 	return 0;
2312 }
2313 
2314 /**
2315  * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2316  * @bus: Top bus of the subtree to walk.
2317  */
2318 void pci_pme_wakeup_bus(struct pci_bus *bus)
2319 {
2320 	if (bus)
2321 		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2322 }
2323 
2324 
2325 /**
2326  * pci_pme_capable - check the capability of PCI device to generate PME#
2327  * @dev: PCI device to handle.
2328  * @state: PCI state from which device will issue PME#.
2329  */
2330 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2331 {
2332 	if (!dev->pm_cap)
2333 		return false;
2334 
2335 	return !!(dev->pme_support & (1 << state));
2336 }
2337 EXPORT_SYMBOL(pci_pme_capable);
2338 
2339 static void pci_pme_list_scan(struct work_struct *work)
2340 {
2341 	struct pci_pme_device *pme_dev, *n;
2342 
2343 	mutex_lock(&pci_pme_list_mutex);
2344 	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2345 		if (pme_dev->dev->pme_poll) {
2346 			struct pci_dev *bridge;
2347 
2348 			bridge = pme_dev->dev->bus->self;
2349 			/*
2350 			 * If bridge is in low power state, the
2351 			 * configuration space of subordinate devices
2352 			 * may be not accessible
2353 			 */
2354 			if (bridge && bridge->current_state != PCI_D0)
2355 				continue;
2356 			/*
2357 			 * If the device is in D3cold it should not be
2358 			 * polled either.
2359 			 */
2360 			if (pme_dev->dev->current_state == PCI_D3cold)
2361 				continue;
2362 
2363 			pci_pme_wakeup(pme_dev->dev, NULL);
2364 		} else {
2365 			list_del(&pme_dev->list);
2366 			kfree(pme_dev);
2367 		}
2368 	}
2369 	if (!list_empty(&pci_pme_list))
2370 		queue_delayed_work(system_freezable_wq, &pci_pme_work,
2371 				   msecs_to_jiffies(PME_TIMEOUT));
2372 	mutex_unlock(&pci_pme_list_mutex);
2373 }
2374 
2375 static void __pci_pme_active(struct pci_dev *dev, bool enable)
2376 {
2377 	u16 pmcsr;
2378 
2379 	if (!dev->pme_support)
2380 		return;
2381 
2382 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2383 	/* Clear PME_Status by writing 1 to it and enable PME# */
2384 	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2385 	if (!enable)
2386 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2387 
2388 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2389 }
2390 
2391 /**
2392  * pci_pme_restore - Restore PME configuration after config space restore.
2393  * @dev: PCI device to update.
2394  */
2395 void pci_pme_restore(struct pci_dev *dev)
2396 {
2397 	u16 pmcsr;
2398 
2399 	if (!dev->pme_support)
2400 		return;
2401 
2402 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2403 	if (dev->wakeup_prepared) {
2404 		pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2405 		pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2406 	} else {
2407 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2408 		pmcsr |= PCI_PM_CTRL_PME_STATUS;
2409 	}
2410 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2411 }
2412 
2413 /**
2414  * pci_pme_active - enable or disable PCI device's PME# function
2415  * @dev: PCI device to handle.
2416  * @enable: 'true' to enable PME# generation; 'false' to disable it.
2417  *
2418  * The caller must verify that the device is capable of generating PME# before
2419  * calling this function with @enable equal to 'true'.
2420  */
2421 void pci_pme_active(struct pci_dev *dev, bool enable)
2422 {
2423 	__pci_pme_active(dev, enable);
2424 
2425 	/*
2426 	 * PCI (as opposed to PCIe) PME requires that the device have
2427 	 * its PME# line hooked up correctly. Not all hardware vendors
2428 	 * do this, so the PME never gets delivered and the device
2429 	 * remains asleep. The easiest way around this is to
2430 	 * periodically walk the list of suspended devices and check
2431 	 * whether any have their PME flag set. The assumption is that
2432 	 * we'll wake up often enough anyway that this won't be a huge
2433 	 * hit, and the power savings from the devices will still be a
2434 	 * win.
2435 	 *
2436 	 * Although PCIe uses in-band PME message instead of PME# line
2437 	 * to report PME, PME does not work for some PCIe devices in
2438 	 * reality.  For example, there are devices that set their PME
2439 	 * status bits, but don't really bother to send a PME message;
2440 	 * there are PCI Express Root Ports that don't bother to
2441 	 * trigger interrupts when they receive PME messages from the
2442 	 * devices below.  So PME poll is used for PCIe devices too.
2443 	 */
2444 
2445 	if (dev->pme_poll) {
2446 		struct pci_pme_device *pme_dev;
2447 		if (enable) {
2448 			pme_dev = kmalloc(sizeof(struct pci_pme_device),
2449 					  GFP_KERNEL);
2450 			if (!pme_dev) {
2451 				pci_warn(dev, "can't enable PME#\n");
2452 				return;
2453 			}
2454 			pme_dev->dev = dev;
2455 			mutex_lock(&pci_pme_list_mutex);
2456 			list_add(&pme_dev->list, &pci_pme_list);
2457 			if (list_is_singular(&pci_pme_list))
2458 				queue_delayed_work(system_freezable_wq,
2459 						   &pci_pme_work,
2460 						   msecs_to_jiffies(PME_TIMEOUT));
2461 			mutex_unlock(&pci_pme_list_mutex);
2462 		} else {
2463 			mutex_lock(&pci_pme_list_mutex);
2464 			list_for_each_entry(pme_dev, &pci_pme_list, list) {
2465 				if (pme_dev->dev == dev) {
2466 					list_del(&pme_dev->list);
2467 					kfree(pme_dev);
2468 					break;
2469 				}
2470 			}
2471 			mutex_unlock(&pci_pme_list_mutex);
2472 		}
2473 	}
2474 
2475 	pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2476 }
2477 EXPORT_SYMBOL(pci_pme_active);
2478 
2479 /**
2480  * __pci_enable_wake - enable PCI device as wakeup event source
2481  * @dev: PCI device affected
2482  * @state: PCI state from which device will issue wakeup events
2483  * @enable: True to enable event generation; false to disable
2484  *
2485  * This enables the device as a wakeup event source, or disables it.
2486  * When such events involves platform-specific hooks, those hooks are
2487  * called automatically by this routine.
2488  *
2489  * Devices with legacy power management (no standard PCI PM capabilities)
2490  * always require such platform hooks.
2491  *
2492  * RETURN VALUE:
2493  * 0 is returned on success
2494  * -EINVAL is returned if device is not supposed to wake up the system
2495  * Error code depending on the platform is returned if both the platform and
2496  * the native mechanism fail to enable the generation of wake-up events
2497  */
2498 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2499 {
2500 	int ret = 0;
2501 
2502 	/*
2503 	 * Bridges that are not power-manageable directly only signal
2504 	 * wakeup on behalf of subordinate devices which is set up
2505 	 * elsewhere, so skip them. However, bridges that are
2506 	 * power-manageable may signal wakeup for themselves (for example,
2507 	 * on a hotplug event) and they need to be covered here.
2508 	 */
2509 	if (!pci_power_manageable(dev))
2510 		return 0;
2511 
2512 	/* Don't do the same thing twice in a row for one device. */
2513 	if (!!enable == !!dev->wakeup_prepared)
2514 		return 0;
2515 
2516 	/*
2517 	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2518 	 * Anderson we should be doing PME# wake enable followed by ACPI wake
2519 	 * enable.  To disable wake-up we call the platform first, for symmetry.
2520 	 */
2521 
2522 	if (enable) {
2523 		int error;
2524 
2525 		/*
2526 		 * Enable PME signaling if the device can signal PME from
2527 		 * D3cold regardless of whether or not it can signal PME from
2528 		 * the current target state, because that will allow it to
2529 		 * signal PME when the hierarchy above it goes into D3cold and
2530 		 * the device itself ends up in D3cold as a result of that.
2531 		 */
2532 		if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold))
2533 			pci_pme_active(dev, true);
2534 		else
2535 			ret = 1;
2536 		error = platform_pci_set_wakeup(dev, true);
2537 		if (ret)
2538 			ret = error;
2539 		if (!ret)
2540 			dev->wakeup_prepared = true;
2541 	} else {
2542 		platform_pci_set_wakeup(dev, false);
2543 		pci_pme_active(dev, false);
2544 		dev->wakeup_prepared = false;
2545 	}
2546 
2547 	return ret;
2548 }
2549 
2550 /**
2551  * pci_enable_wake - change wakeup settings for a PCI device
2552  * @pci_dev: Target device
2553  * @state: PCI state from which device will issue wakeup events
2554  * @enable: Whether or not to enable event generation
2555  *
2556  * If @enable is set, check device_may_wakeup() for the device before calling
2557  * __pci_enable_wake() for it.
2558  */
2559 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2560 {
2561 	if (enable && !device_may_wakeup(&pci_dev->dev))
2562 		return -EINVAL;
2563 
2564 	return __pci_enable_wake(pci_dev, state, enable);
2565 }
2566 EXPORT_SYMBOL(pci_enable_wake);
2567 
2568 /**
2569  * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2570  * @dev: PCI device to prepare
2571  * @enable: True to enable wake-up event generation; false to disable
2572  *
2573  * Many drivers want the device to wake up the system from D3_hot or D3_cold
2574  * and this function allows them to set that up cleanly - pci_enable_wake()
2575  * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2576  * ordering constraints.
2577  *
2578  * This function only returns error code if the device is not allowed to wake
2579  * up the system from sleep or it is not capable of generating PME# from both
2580  * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2581  */
2582 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2583 {
2584 	return pci_pme_capable(dev, PCI_D3cold) ?
2585 			pci_enable_wake(dev, PCI_D3cold, enable) :
2586 			pci_enable_wake(dev, PCI_D3hot, enable);
2587 }
2588 EXPORT_SYMBOL(pci_wake_from_d3);
2589 
2590 /**
2591  * pci_target_state - find an appropriate low power state for a given PCI dev
2592  * @dev: PCI device
2593  * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2594  *
2595  * Use underlying platform code to find a supported low power state for @dev.
2596  * If the platform can't manage @dev, return the deepest state from which it
2597  * can generate wake events, based on any available PME info.
2598  */
2599 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2600 {
2601 	if (platform_pci_power_manageable(dev)) {
2602 		/*
2603 		 * Call the platform to find the target state for the device.
2604 		 */
2605 		pci_power_t state = platform_pci_choose_state(dev);
2606 
2607 		switch (state) {
2608 		case PCI_POWER_ERROR:
2609 		case PCI_UNKNOWN:
2610 			return PCI_D3hot;
2611 
2612 		case PCI_D1:
2613 		case PCI_D2:
2614 			if (pci_no_d1d2(dev))
2615 				return PCI_D3hot;
2616 		}
2617 
2618 		return state;
2619 	}
2620 
2621 	/*
2622 	 * If the device is in D3cold even though it's not power-manageable by
2623 	 * the platform, it may have been powered down by non-standard means.
2624 	 * Best to let it slumber.
2625 	 */
2626 	if (dev->current_state == PCI_D3cold)
2627 		return PCI_D3cold;
2628 	else if (!dev->pm_cap)
2629 		return PCI_D0;
2630 
2631 	if (wakeup && dev->pme_support) {
2632 		pci_power_t state = PCI_D3hot;
2633 
2634 		/*
2635 		 * Find the deepest state from which the device can generate
2636 		 * PME#.
2637 		 */
2638 		while (state && !(dev->pme_support & (1 << state)))
2639 			state--;
2640 
2641 		if (state)
2642 			return state;
2643 		else if (dev->pme_support & 1)
2644 			return PCI_D0;
2645 	}
2646 
2647 	return PCI_D3hot;
2648 }
2649 
2650 /**
2651  * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2652  *			  into a sleep state
2653  * @dev: Device to handle.
2654  *
2655  * Choose the power state appropriate for the device depending on whether
2656  * it can wake up the system and/or is power manageable by the platform
2657  * (PCI_D3hot is the default) and put the device into that state.
2658  */
2659 int pci_prepare_to_sleep(struct pci_dev *dev)
2660 {
2661 	bool wakeup = device_may_wakeup(&dev->dev);
2662 	pci_power_t target_state = pci_target_state(dev, wakeup);
2663 	int error;
2664 
2665 	if (target_state == PCI_POWER_ERROR)
2666 		return -EIO;
2667 
2668 	/*
2669 	 * There are systems (for example, Intel mobile chips since Coffee
2670 	 * Lake) where the power drawn while suspended can be significantly
2671 	 * reduced by disabling PTM on PCIe root ports as this allows the
2672 	 * port to enter a lower-power PM state and the SoC to reach a
2673 	 * lower-power idle state as a whole.
2674 	 */
2675 	if (pci_pcie_type(dev) == PCI_EXP_TYPE_ROOT_PORT)
2676 		pci_disable_ptm(dev);
2677 
2678 	pci_enable_wake(dev, target_state, wakeup);
2679 
2680 	error = pci_set_power_state(dev, target_state);
2681 
2682 	if (error) {
2683 		pci_enable_wake(dev, target_state, false);
2684 		pci_restore_ptm_state(dev);
2685 	}
2686 
2687 	return error;
2688 }
2689 EXPORT_SYMBOL(pci_prepare_to_sleep);
2690 
2691 /**
2692  * pci_back_from_sleep - turn PCI device on during system-wide transition
2693  *			 into working state
2694  * @dev: Device to handle.
2695  *
2696  * Disable device's system wake-up capability and put it into D0.
2697  */
2698 int pci_back_from_sleep(struct pci_dev *dev)
2699 {
2700 	int ret = pci_set_power_state(dev, PCI_D0);
2701 
2702 	if (ret)
2703 		return ret;
2704 
2705 	pci_enable_wake(dev, PCI_D0, false);
2706 	return 0;
2707 }
2708 EXPORT_SYMBOL(pci_back_from_sleep);
2709 
2710 /**
2711  * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2712  * @dev: PCI device being suspended.
2713  *
2714  * Prepare @dev to generate wake-up events at run time and put it into a low
2715  * power state.
2716  */
2717 int pci_finish_runtime_suspend(struct pci_dev *dev)
2718 {
2719 	pci_power_t target_state;
2720 	int error;
2721 
2722 	target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2723 	if (target_state == PCI_POWER_ERROR)
2724 		return -EIO;
2725 
2726 	dev->runtime_d3cold = target_state == PCI_D3cold;
2727 
2728 	/*
2729 	 * There are systems (for example, Intel mobile chips since Coffee
2730 	 * Lake) where the power drawn while suspended can be significantly
2731 	 * reduced by disabling PTM on PCIe root ports as this allows the
2732 	 * port to enter a lower-power PM state and the SoC to reach a
2733 	 * lower-power idle state as a whole.
2734 	 */
2735 	if (pci_pcie_type(dev) == PCI_EXP_TYPE_ROOT_PORT)
2736 		pci_disable_ptm(dev);
2737 
2738 	__pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2739 
2740 	error = pci_set_power_state(dev, target_state);
2741 
2742 	if (error) {
2743 		pci_enable_wake(dev, target_state, false);
2744 		pci_restore_ptm_state(dev);
2745 		dev->runtime_d3cold = false;
2746 	}
2747 
2748 	return error;
2749 }
2750 
2751 /**
2752  * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2753  * @dev: Device to check.
2754  *
2755  * Return true if the device itself is capable of generating wake-up events
2756  * (through the platform or using the native PCIe PME) or if the device supports
2757  * PME and one of its upstream bridges can generate wake-up events.
2758  */
2759 bool pci_dev_run_wake(struct pci_dev *dev)
2760 {
2761 	struct pci_bus *bus = dev->bus;
2762 
2763 	if (!dev->pme_support)
2764 		return false;
2765 
2766 	/* PME-capable in principle, but not from the target power state */
2767 	if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2768 		return false;
2769 
2770 	if (device_can_wakeup(&dev->dev))
2771 		return true;
2772 
2773 	while (bus->parent) {
2774 		struct pci_dev *bridge = bus->self;
2775 
2776 		if (device_can_wakeup(&bridge->dev))
2777 			return true;
2778 
2779 		bus = bus->parent;
2780 	}
2781 
2782 	/* We have reached the root bus. */
2783 	if (bus->bridge)
2784 		return device_can_wakeup(bus->bridge);
2785 
2786 	return false;
2787 }
2788 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2789 
2790 /**
2791  * pci_dev_need_resume - Check if it is necessary to resume the device.
2792  * @pci_dev: Device to check.
2793  *
2794  * Return 'true' if the device is not runtime-suspended or it has to be
2795  * reconfigured due to wakeup settings difference between system and runtime
2796  * suspend, or the current power state of it is not suitable for the upcoming
2797  * (system-wide) transition.
2798  */
2799 bool pci_dev_need_resume(struct pci_dev *pci_dev)
2800 {
2801 	struct device *dev = &pci_dev->dev;
2802 	pci_power_t target_state;
2803 
2804 	if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2805 		return true;
2806 
2807 	target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2808 
2809 	/*
2810 	 * If the earlier platform check has not triggered, D3cold is just power
2811 	 * removal on top of D3hot, so no need to resume the device in that
2812 	 * case.
2813 	 */
2814 	return target_state != pci_dev->current_state &&
2815 		target_state != PCI_D3cold &&
2816 		pci_dev->current_state != PCI_D3hot;
2817 }
2818 
2819 /**
2820  * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2821  * @pci_dev: Device to check.
2822  *
2823  * If the device is suspended and it is not configured for system wakeup,
2824  * disable PME for it to prevent it from waking up the system unnecessarily.
2825  *
2826  * Note that if the device's power state is D3cold and the platform check in
2827  * pci_dev_need_resume() has not triggered, the device's configuration need not
2828  * be changed.
2829  */
2830 void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2831 {
2832 	struct device *dev = &pci_dev->dev;
2833 
2834 	spin_lock_irq(&dev->power.lock);
2835 
2836 	if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2837 	    pci_dev->current_state < PCI_D3cold)
2838 		__pci_pme_active(pci_dev, false);
2839 
2840 	spin_unlock_irq(&dev->power.lock);
2841 }
2842 
2843 /**
2844  * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2845  * @pci_dev: Device to handle.
2846  *
2847  * If the device is runtime suspended and wakeup-capable, enable PME for it as
2848  * it might have been disabled during the prepare phase of system suspend if
2849  * the device was not configured for system wakeup.
2850  */
2851 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2852 {
2853 	struct device *dev = &pci_dev->dev;
2854 
2855 	if (!pci_dev_run_wake(pci_dev))
2856 		return;
2857 
2858 	spin_lock_irq(&dev->power.lock);
2859 
2860 	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2861 		__pci_pme_active(pci_dev, true);
2862 
2863 	spin_unlock_irq(&dev->power.lock);
2864 }
2865 
2866 /**
2867  * pci_choose_state - Choose the power state of a PCI device.
2868  * @dev: Target PCI device.
2869  * @state: Target state for the whole system.
2870  *
2871  * Returns PCI power state suitable for @dev and @state.
2872  */
2873 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
2874 {
2875 	if (state.event == PM_EVENT_ON)
2876 		return PCI_D0;
2877 
2878 	return pci_target_state(dev, false);
2879 }
2880 EXPORT_SYMBOL(pci_choose_state);
2881 
2882 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2883 {
2884 	struct device *dev = &pdev->dev;
2885 	struct device *parent = dev->parent;
2886 
2887 	if (parent)
2888 		pm_runtime_get_sync(parent);
2889 	pm_runtime_get_noresume(dev);
2890 	/*
2891 	 * pdev->current_state is set to PCI_D3cold during suspending,
2892 	 * so wait until suspending completes
2893 	 */
2894 	pm_runtime_barrier(dev);
2895 	/*
2896 	 * Only need to resume devices in D3cold, because config
2897 	 * registers are still accessible for devices suspended but
2898 	 * not in D3cold.
2899 	 */
2900 	if (pdev->current_state == PCI_D3cold)
2901 		pm_runtime_resume(dev);
2902 }
2903 
2904 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2905 {
2906 	struct device *dev = &pdev->dev;
2907 	struct device *parent = dev->parent;
2908 
2909 	pm_runtime_put(dev);
2910 	if (parent)
2911 		pm_runtime_put_sync(parent);
2912 }
2913 
2914 static const struct dmi_system_id bridge_d3_blacklist[] = {
2915 #ifdef CONFIG_X86
2916 	{
2917 		/*
2918 		 * Gigabyte X299 root port is not marked as hotplug capable
2919 		 * which allows Linux to power manage it.  However, this
2920 		 * confuses the BIOS SMI handler so don't power manage root
2921 		 * ports on that system.
2922 		 */
2923 		.ident = "X299 DESIGNARE EX-CF",
2924 		.matches = {
2925 			DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2926 			DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2927 		},
2928 	},
2929 #endif
2930 	{ }
2931 };
2932 
2933 /**
2934  * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2935  * @bridge: Bridge to check
2936  *
2937  * This function checks if it is possible to move the bridge to D3.
2938  * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2939  */
2940 bool pci_bridge_d3_possible(struct pci_dev *bridge)
2941 {
2942 	if (!pci_is_pcie(bridge))
2943 		return false;
2944 
2945 	switch (pci_pcie_type(bridge)) {
2946 	case PCI_EXP_TYPE_ROOT_PORT:
2947 	case PCI_EXP_TYPE_UPSTREAM:
2948 	case PCI_EXP_TYPE_DOWNSTREAM:
2949 		if (pci_bridge_d3_disable)
2950 			return false;
2951 
2952 		/*
2953 		 * Hotplug ports handled by firmware in System Management Mode
2954 		 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2955 		 */
2956 		if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
2957 			return false;
2958 
2959 		if (pci_bridge_d3_force)
2960 			return true;
2961 
2962 		/* Even the oldest 2010 Thunderbolt controller supports D3. */
2963 		if (bridge->is_thunderbolt)
2964 			return true;
2965 
2966 		/* Platform might know better if the bridge supports D3 */
2967 		if (platform_pci_bridge_d3(bridge))
2968 			return true;
2969 
2970 		/*
2971 		 * Hotplug ports handled natively by the OS were not validated
2972 		 * by vendors for runtime D3 at least until 2018 because there
2973 		 * was no OS support.
2974 		 */
2975 		if (bridge->is_hotplug_bridge)
2976 			return false;
2977 
2978 		if (dmi_check_system(bridge_d3_blacklist))
2979 			return false;
2980 
2981 		/*
2982 		 * It should be safe to put PCIe ports from 2015 or newer
2983 		 * to D3.
2984 		 */
2985 		if (dmi_get_bios_year() >= 2015)
2986 			return true;
2987 		break;
2988 	}
2989 
2990 	return false;
2991 }
2992 
2993 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2994 {
2995 	bool *d3cold_ok = data;
2996 
2997 	if (/* The device needs to be allowed to go D3cold ... */
2998 	    dev->no_d3cold || !dev->d3cold_allowed ||
2999 
3000 	    /* ... and if it is wakeup capable to do so from D3cold. */
3001 	    (device_may_wakeup(&dev->dev) &&
3002 	     !pci_pme_capable(dev, PCI_D3cold)) ||
3003 
3004 	    /* If it is a bridge it must be allowed to go to D3. */
3005 	    !pci_power_manageable(dev))
3006 
3007 		*d3cold_ok = false;
3008 
3009 	return !*d3cold_ok;
3010 }
3011 
3012 /*
3013  * pci_bridge_d3_update - Update bridge D3 capabilities
3014  * @dev: PCI device which is changed
3015  *
3016  * Update upstream bridge PM capabilities accordingly depending on if the
3017  * device PM configuration was changed or the device is being removed.  The
3018  * change is also propagated upstream.
3019  */
3020 void pci_bridge_d3_update(struct pci_dev *dev)
3021 {
3022 	bool remove = !device_is_registered(&dev->dev);
3023 	struct pci_dev *bridge;
3024 	bool d3cold_ok = true;
3025 
3026 	bridge = pci_upstream_bridge(dev);
3027 	if (!bridge || !pci_bridge_d3_possible(bridge))
3028 		return;
3029 
3030 	/*
3031 	 * If D3 is currently allowed for the bridge, removing one of its
3032 	 * children won't change that.
3033 	 */
3034 	if (remove && bridge->bridge_d3)
3035 		return;
3036 
3037 	/*
3038 	 * If D3 is currently allowed for the bridge and a child is added or
3039 	 * changed, disallowance of D3 can only be caused by that child, so
3040 	 * we only need to check that single device, not any of its siblings.
3041 	 *
3042 	 * If D3 is currently not allowed for the bridge, checking the device
3043 	 * first may allow us to skip checking its siblings.
3044 	 */
3045 	if (!remove)
3046 		pci_dev_check_d3cold(dev, &d3cold_ok);
3047 
3048 	/*
3049 	 * If D3 is currently not allowed for the bridge, this may be caused
3050 	 * either by the device being changed/removed or any of its siblings,
3051 	 * so we need to go through all children to find out if one of them
3052 	 * continues to block D3.
3053 	 */
3054 	if (d3cold_ok && !bridge->bridge_d3)
3055 		pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
3056 			     &d3cold_ok);
3057 
3058 	if (bridge->bridge_d3 != d3cold_ok) {
3059 		bridge->bridge_d3 = d3cold_ok;
3060 		/* Propagate change to upstream bridges */
3061 		pci_bridge_d3_update(bridge);
3062 	}
3063 }
3064 
3065 /**
3066  * pci_d3cold_enable - Enable D3cold for device
3067  * @dev: PCI device to handle
3068  *
3069  * This function can be used in drivers to enable D3cold from the device
3070  * they handle.  It also updates upstream PCI bridge PM capabilities
3071  * accordingly.
3072  */
3073 void pci_d3cold_enable(struct pci_dev *dev)
3074 {
3075 	if (dev->no_d3cold) {
3076 		dev->no_d3cold = false;
3077 		pci_bridge_d3_update(dev);
3078 	}
3079 }
3080 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
3081 
3082 /**
3083  * pci_d3cold_disable - Disable D3cold for device
3084  * @dev: PCI device to handle
3085  *
3086  * This function can be used in drivers to disable D3cold from the device
3087  * they handle.  It also updates upstream PCI bridge PM capabilities
3088  * accordingly.
3089  */
3090 void pci_d3cold_disable(struct pci_dev *dev)
3091 {
3092 	if (!dev->no_d3cold) {
3093 		dev->no_d3cold = true;
3094 		pci_bridge_d3_update(dev);
3095 	}
3096 }
3097 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3098 
3099 /**
3100  * pci_pm_init - Initialize PM functions of given PCI device
3101  * @dev: PCI device to handle.
3102  */
3103 void pci_pm_init(struct pci_dev *dev)
3104 {
3105 	int pm;
3106 	u16 status;
3107 	u16 pmc;
3108 
3109 	pm_runtime_forbid(&dev->dev);
3110 	pm_runtime_set_active(&dev->dev);
3111 	pm_runtime_enable(&dev->dev);
3112 	device_enable_async_suspend(&dev->dev);
3113 	dev->wakeup_prepared = false;
3114 
3115 	dev->pm_cap = 0;
3116 	dev->pme_support = 0;
3117 
3118 	/* find PCI PM capability in list */
3119 	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3120 	if (!pm)
3121 		return;
3122 	/* Check device's ability to generate PME# */
3123 	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3124 
3125 	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3126 		pci_err(dev, "unsupported PM cap regs version (%u)\n",
3127 			pmc & PCI_PM_CAP_VER_MASK);
3128 		return;
3129 	}
3130 
3131 	dev->pm_cap = pm;
3132 	dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3133 	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3134 	dev->bridge_d3 = pci_bridge_d3_possible(dev);
3135 	dev->d3cold_allowed = true;
3136 
3137 	dev->d1_support = false;
3138 	dev->d2_support = false;
3139 	if (!pci_no_d1d2(dev)) {
3140 		if (pmc & PCI_PM_CAP_D1)
3141 			dev->d1_support = true;
3142 		if (pmc & PCI_PM_CAP_D2)
3143 			dev->d2_support = true;
3144 
3145 		if (dev->d1_support || dev->d2_support)
3146 			pci_info(dev, "supports%s%s\n",
3147 				   dev->d1_support ? " D1" : "",
3148 				   dev->d2_support ? " D2" : "");
3149 	}
3150 
3151 	pmc &= PCI_PM_CAP_PME_MASK;
3152 	if (pmc) {
3153 		pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3154 			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3155 			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3156 			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3157 			 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3158 			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3159 		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
3160 		dev->pme_poll = true;
3161 		/*
3162 		 * Make device's PM flags reflect the wake-up capability, but
3163 		 * let the user space enable it to wake up the system as needed.
3164 		 */
3165 		device_set_wakeup_capable(&dev->dev, true);
3166 		/* Disable the PME# generation functionality */
3167 		pci_pme_active(dev, false);
3168 	}
3169 
3170 	pci_read_config_word(dev, PCI_STATUS, &status);
3171 	if (status & PCI_STATUS_IMM_READY)
3172 		dev->imm_ready = 1;
3173 }
3174 
3175 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3176 {
3177 	unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3178 
3179 	switch (prop) {
3180 	case PCI_EA_P_MEM:
3181 	case PCI_EA_P_VF_MEM:
3182 		flags |= IORESOURCE_MEM;
3183 		break;
3184 	case PCI_EA_P_MEM_PREFETCH:
3185 	case PCI_EA_P_VF_MEM_PREFETCH:
3186 		flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3187 		break;
3188 	case PCI_EA_P_IO:
3189 		flags |= IORESOURCE_IO;
3190 		break;
3191 	default:
3192 		return 0;
3193 	}
3194 
3195 	return flags;
3196 }
3197 
3198 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3199 					    u8 prop)
3200 {
3201 	if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3202 		return &dev->resource[bei];
3203 #ifdef CONFIG_PCI_IOV
3204 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3205 		 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3206 		return &dev->resource[PCI_IOV_RESOURCES +
3207 				      bei - PCI_EA_BEI_VF_BAR0];
3208 #endif
3209 	else if (bei == PCI_EA_BEI_ROM)
3210 		return &dev->resource[PCI_ROM_RESOURCE];
3211 	else
3212 		return NULL;
3213 }
3214 
3215 /* Read an Enhanced Allocation (EA) entry */
3216 static int pci_ea_read(struct pci_dev *dev, int offset)
3217 {
3218 	struct resource *res;
3219 	int ent_size, ent_offset = offset;
3220 	resource_size_t start, end;
3221 	unsigned long flags;
3222 	u32 dw0, bei, base, max_offset;
3223 	u8 prop;
3224 	bool support_64 = (sizeof(resource_size_t) >= 8);
3225 
3226 	pci_read_config_dword(dev, ent_offset, &dw0);
3227 	ent_offset += 4;
3228 
3229 	/* Entry size field indicates DWORDs after 1st */
3230 	ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
3231 
3232 	if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3233 		goto out;
3234 
3235 	bei = (dw0 & PCI_EA_BEI) >> 4;
3236 	prop = (dw0 & PCI_EA_PP) >> 8;
3237 
3238 	/*
3239 	 * If the Property is in the reserved range, try the Secondary
3240 	 * Property instead.
3241 	 */
3242 	if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3243 		prop = (dw0 & PCI_EA_SP) >> 16;
3244 	if (prop > PCI_EA_P_BRIDGE_IO)
3245 		goto out;
3246 
3247 	res = pci_ea_get_resource(dev, bei, prop);
3248 	if (!res) {
3249 		pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3250 		goto out;
3251 	}
3252 
3253 	flags = pci_ea_flags(dev, prop);
3254 	if (!flags) {
3255 		pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3256 		goto out;
3257 	}
3258 
3259 	/* Read Base */
3260 	pci_read_config_dword(dev, ent_offset, &base);
3261 	start = (base & PCI_EA_FIELD_MASK);
3262 	ent_offset += 4;
3263 
3264 	/* Read MaxOffset */
3265 	pci_read_config_dword(dev, ent_offset, &max_offset);
3266 	ent_offset += 4;
3267 
3268 	/* Read Base MSBs (if 64-bit entry) */
3269 	if (base & PCI_EA_IS_64) {
3270 		u32 base_upper;
3271 
3272 		pci_read_config_dword(dev, ent_offset, &base_upper);
3273 		ent_offset += 4;
3274 
3275 		flags |= IORESOURCE_MEM_64;
3276 
3277 		/* entry starts above 32-bit boundary, can't use */
3278 		if (!support_64 && base_upper)
3279 			goto out;
3280 
3281 		if (support_64)
3282 			start |= ((u64)base_upper << 32);
3283 	}
3284 
3285 	end = start + (max_offset | 0x03);
3286 
3287 	/* Read MaxOffset MSBs (if 64-bit entry) */
3288 	if (max_offset & PCI_EA_IS_64) {
3289 		u32 max_offset_upper;
3290 
3291 		pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3292 		ent_offset += 4;
3293 
3294 		flags |= IORESOURCE_MEM_64;
3295 
3296 		/* entry too big, can't use */
3297 		if (!support_64 && max_offset_upper)
3298 			goto out;
3299 
3300 		if (support_64)
3301 			end += ((u64)max_offset_upper << 32);
3302 	}
3303 
3304 	if (end < start) {
3305 		pci_err(dev, "EA Entry crosses address boundary\n");
3306 		goto out;
3307 	}
3308 
3309 	if (ent_size != ent_offset - offset) {
3310 		pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3311 			ent_size, ent_offset - offset);
3312 		goto out;
3313 	}
3314 
3315 	res->name = pci_name(dev);
3316 	res->start = start;
3317 	res->end = end;
3318 	res->flags = flags;
3319 
3320 	if (bei <= PCI_EA_BEI_BAR5)
3321 		pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3322 			   bei, res, prop);
3323 	else if (bei == PCI_EA_BEI_ROM)
3324 		pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3325 			   res, prop);
3326 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3327 		pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3328 			   bei - PCI_EA_BEI_VF_BAR0, res, prop);
3329 	else
3330 		pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3331 			   bei, res, prop);
3332 
3333 out:
3334 	return offset + ent_size;
3335 }
3336 
3337 /* Enhanced Allocation Initialization */
3338 void pci_ea_init(struct pci_dev *dev)
3339 {
3340 	int ea;
3341 	u8 num_ent;
3342 	int offset;
3343 	int i;
3344 
3345 	/* find PCI EA capability in list */
3346 	ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3347 	if (!ea)
3348 		return;
3349 
3350 	/* determine the number of entries */
3351 	pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3352 					&num_ent);
3353 	num_ent &= PCI_EA_NUM_ENT_MASK;
3354 
3355 	offset = ea + PCI_EA_FIRST_ENT;
3356 
3357 	/* Skip DWORD 2 for type 1 functions */
3358 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3359 		offset += 4;
3360 
3361 	/* parse each EA entry */
3362 	for (i = 0; i < num_ent; ++i)
3363 		offset = pci_ea_read(dev, offset);
3364 }
3365 
3366 static void pci_add_saved_cap(struct pci_dev *pci_dev,
3367 	struct pci_cap_saved_state *new_cap)
3368 {
3369 	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3370 }
3371 
3372 /**
3373  * _pci_add_cap_save_buffer - allocate buffer for saving given
3374  *			      capability registers
3375  * @dev: the PCI device
3376  * @cap: the capability to allocate the buffer for
3377  * @extended: Standard or Extended capability ID
3378  * @size: requested size of the buffer
3379  */
3380 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3381 				    bool extended, unsigned int size)
3382 {
3383 	int pos;
3384 	struct pci_cap_saved_state *save_state;
3385 
3386 	if (extended)
3387 		pos = pci_find_ext_capability(dev, cap);
3388 	else
3389 		pos = pci_find_capability(dev, cap);
3390 
3391 	if (!pos)
3392 		return 0;
3393 
3394 	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3395 	if (!save_state)
3396 		return -ENOMEM;
3397 
3398 	save_state->cap.cap_nr = cap;
3399 	save_state->cap.cap_extended = extended;
3400 	save_state->cap.size = size;
3401 	pci_add_saved_cap(dev, save_state);
3402 
3403 	return 0;
3404 }
3405 
3406 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3407 {
3408 	return _pci_add_cap_save_buffer(dev, cap, false, size);
3409 }
3410 
3411 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3412 {
3413 	return _pci_add_cap_save_buffer(dev, cap, true, size);
3414 }
3415 
3416 /**
3417  * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3418  * @dev: the PCI device
3419  */
3420 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3421 {
3422 	int error;
3423 
3424 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3425 					PCI_EXP_SAVE_REGS * sizeof(u16));
3426 	if (error)
3427 		pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3428 
3429 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3430 	if (error)
3431 		pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3432 
3433 	error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3434 					    2 * sizeof(u16));
3435 	if (error)
3436 		pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3437 
3438 	pci_allocate_vc_save_buffers(dev);
3439 }
3440 
3441 void pci_free_cap_save_buffers(struct pci_dev *dev)
3442 {
3443 	struct pci_cap_saved_state *tmp;
3444 	struct hlist_node *n;
3445 
3446 	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3447 		kfree(tmp);
3448 }
3449 
3450 /**
3451  * pci_configure_ari - enable or disable ARI forwarding
3452  * @dev: the PCI device
3453  *
3454  * If @dev and its upstream bridge both support ARI, enable ARI in the
3455  * bridge.  Otherwise, disable ARI in the bridge.
3456  */
3457 void pci_configure_ari(struct pci_dev *dev)
3458 {
3459 	u32 cap;
3460 	struct pci_dev *bridge;
3461 
3462 	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3463 		return;
3464 
3465 	bridge = dev->bus->self;
3466 	if (!bridge)
3467 		return;
3468 
3469 	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3470 	if (!(cap & PCI_EXP_DEVCAP2_ARI))
3471 		return;
3472 
3473 	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3474 		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3475 					 PCI_EXP_DEVCTL2_ARI);
3476 		bridge->ari_enabled = 1;
3477 	} else {
3478 		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3479 					   PCI_EXP_DEVCTL2_ARI);
3480 		bridge->ari_enabled = 0;
3481 	}
3482 }
3483 
3484 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3485 {
3486 	int pos;
3487 	u16 cap, ctrl;
3488 
3489 	pos = pdev->acs_cap;
3490 	if (!pos)
3491 		return false;
3492 
3493 	/*
3494 	 * Except for egress control, capabilities are either required
3495 	 * or only required if controllable.  Features missing from the
3496 	 * capability field can therefore be assumed as hard-wired enabled.
3497 	 */
3498 	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3499 	acs_flags &= (cap | PCI_ACS_EC);
3500 
3501 	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3502 	return (ctrl & acs_flags) == acs_flags;
3503 }
3504 
3505 /**
3506  * pci_acs_enabled - test ACS against required flags for a given device
3507  * @pdev: device to test
3508  * @acs_flags: required PCI ACS flags
3509  *
3510  * Return true if the device supports the provided flags.  Automatically
3511  * filters out flags that are not implemented on multifunction devices.
3512  *
3513  * Note that this interface checks the effective ACS capabilities of the
3514  * device rather than the actual capabilities.  For instance, most single
3515  * function endpoints are not required to support ACS because they have no
3516  * opportunity for peer-to-peer access.  We therefore return 'true'
3517  * regardless of whether the device exposes an ACS capability.  This makes
3518  * it much easier for callers of this function to ignore the actual type
3519  * or topology of the device when testing ACS support.
3520  */
3521 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3522 {
3523 	int ret;
3524 
3525 	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3526 	if (ret >= 0)
3527 		return ret > 0;
3528 
3529 	/*
3530 	 * Conventional PCI and PCI-X devices never support ACS, either
3531 	 * effectively or actually.  The shared bus topology implies that
3532 	 * any device on the bus can receive or snoop DMA.
3533 	 */
3534 	if (!pci_is_pcie(pdev))
3535 		return false;
3536 
3537 	switch (pci_pcie_type(pdev)) {
3538 	/*
3539 	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3540 	 * but since their primary interface is PCI/X, we conservatively
3541 	 * handle them as we would a non-PCIe device.
3542 	 */
3543 	case PCI_EXP_TYPE_PCIE_BRIDGE:
3544 	/*
3545 	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
3546 	 * applicable... must never implement an ACS Extended Capability...".
3547 	 * This seems arbitrary, but we take a conservative interpretation
3548 	 * of this statement.
3549 	 */
3550 	case PCI_EXP_TYPE_PCI_BRIDGE:
3551 	case PCI_EXP_TYPE_RC_EC:
3552 		return false;
3553 	/*
3554 	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3555 	 * implement ACS in order to indicate their peer-to-peer capabilities,
3556 	 * regardless of whether they are single- or multi-function devices.
3557 	 */
3558 	case PCI_EXP_TYPE_DOWNSTREAM:
3559 	case PCI_EXP_TYPE_ROOT_PORT:
3560 		return pci_acs_flags_enabled(pdev, acs_flags);
3561 	/*
3562 	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3563 	 * implemented by the remaining PCIe types to indicate peer-to-peer
3564 	 * capabilities, but only when they are part of a multifunction
3565 	 * device.  The footnote for section 6.12 indicates the specific
3566 	 * PCIe types included here.
3567 	 */
3568 	case PCI_EXP_TYPE_ENDPOINT:
3569 	case PCI_EXP_TYPE_UPSTREAM:
3570 	case PCI_EXP_TYPE_LEG_END:
3571 	case PCI_EXP_TYPE_RC_END:
3572 		if (!pdev->multifunction)
3573 			break;
3574 
3575 		return pci_acs_flags_enabled(pdev, acs_flags);
3576 	}
3577 
3578 	/*
3579 	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3580 	 * to single function devices with the exception of downstream ports.
3581 	 */
3582 	return true;
3583 }
3584 
3585 /**
3586  * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
3587  * @start: starting downstream device
3588  * @end: ending upstream device or NULL to search to the root bus
3589  * @acs_flags: required flags
3590  *
3591  * Walk up a device tree from start to end testing PCI ACS support.  If
3592  * any step along the way does not support the required flags, return false.
3593  */
3594 bool pci_acs_path_enabled(struct pci_dev *start,
3595 			  struct pci_dev *end, u16 acs_flags)
3596 {
3597 	struct pci_dev *pdev, *parent = start;
3598 
3599 	do {
3600 		pdev = parent;
3601 
3602 		if (!pci_acs_enabled(pdev, acs_flags))
3603 			return false;
3604 
3605 		if (pci_is_root_bus(pdev->bus))
3606 			return (end == NULL);
3607 
3608 		parent = pdev->bus->self;
3609 	} while (pdev != end);
3610 
3611 	return true;
3612 }
3613 
3614 /**
3615  * pci_acs_init - Initialize ACS if hardware supports it
3616  * @dev: the PCI device
3617  */
3618 void pci_acs_init(struct pci_dev *dev)
3619 {
3620 	dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3621 
3622 	/*
3623 	 * Attempt to enable ACS regardless of capability because some Root
3624 	 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3625 	 * the standard ACS capability but still support ACS via those
3626 	 * quirks.
3627 	 */
3628 	pci_enable_acs(dev);
3629 }
3630 
3631 /**
3632  * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3633  * @pdev: PCI device
3634  * @bar: BAR to find
3635  *
3636  * Helper to find the position of the ctrl register for a BAR.
3637  * Returns -ENOTSUPP if resizable BARs are not supported at all.
3638  * Returns -ENOENT if no ctrl register for the BAR could be found.
3639  */
3640 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3641 {
3642 	unsigned int pos, nbars, i;
3643 	u32 ctrl;
3644 
3645 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3646 	if (!pos)
3647 		return -ENOTSUPP;
3648 
3649 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3650 	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3651 		    PCI_REBAR_CTRL_NBAR_SHIFT;
3652 
3653 	for (i = 0; i < nbars; i++, pos += 8) {
3654 		int bar_idx;
3655 
3656 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3657 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3658 		if (bar_idx == bar)
3659 			return pos;
3660 	}
3661 
3662 	return -ENOENT;
3663 }
3664 
3665 /**
3666  * pci_rebar_get_possible_sizes - get possible sizes for BAR
3667  * @pdev: PCI device
3668  * @bar: BAR to query
3669  *
3670  * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3671  * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3672  */
3673 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3674 {
3675 	int pos;
3676 	u32 cap;
3677 
3678 	pos = pci_rebar_find_pos(pdev, bar);
3679 	if (pos < 0)
3680 		return 0;
3681 
3682 	pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3683 	cap &= PCI_REBAR_CAP_SIZES;
3684 
3685 	/* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
3686 	if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
3687 	    bar == 0 && cap == 0x7000)
3688 		cap = 0x3f000;
3689 
3690 	return cap >> 4;
3691 }
3692 EXPORT_SYMBOL(pci_rebar_get_possible_sizes);
3693 
3694 /**
3695  * pci_rebar_get_current_size - get the current size of a BAR
3696  * @pdev: PCI device
3697  * @bar: BAR to set size to
3698  *
3699  * Read the size of a BAR from the resizable BAR config.
3700  * Returns size if found or negative error code.
3701  */
3702 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3703 {
3704 	int pos;
3705 	u32 ctrl;
3706 
3707 	pos = pci_rebar_find_pos(pdev, bar);
3708 	if (pos < 0)
3709 		return pos;
3710 
3711 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3712 	return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3713 }
3714 
3715 /**
3716  * pci_rebar_set_size - set a new size for a BAR
3717  * @pdev: PCI device
3718  * @bar: BAR to set size to
3719  * @size: new size as defined in the spec (0=1MB, 19=512GB)
3720  *
3721  * Set the new size of a BAR as defined in the spec.
3722  * Returns zero if resizing was successful, error code otherwise.
3723  */
3724 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3725 {
3726 	int pos;
3727 	u32 ctrl;
3728 
3729 	pos = pci_rebar_find_pos(pdev, bar);
3730 	if (pos < 0)
3731 		return pos;
3732 
3733 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3734 	ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3735 	ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3736 	pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3737 	return 0;
3738 }
3739 
3740 /**
3741  * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3742  * @dev: the PCI device
3743  * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3744  *	PCI_EXP_DEVCAP2_ATOMIC_COMP32
3745  *	PCI_EXP_DEVCAP2_ATOMIC_COMP64
3746  *	PCI_EXP_DEVCAP2_ATOMIC_COMP128
3747  *
3748  * Return 0 if all upstream bridges support AtomicOp routing, egress
3749  * blocking is disabled on all upstream ports, and the root port supports
3750  * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3751  * AtomicOp completion), or negative otherwise.
3752  */
3753 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3754 {
3755 	struct pci_bus *bus = dev->bus;
3756 	struct pci_dev *bridge;
3757 	u32 cap, ctl2;
3758 
3759 	/*
3760 	 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit
3761 	 * in Device Control 2 is reserved in VFs and the PF value applies
3762 	 * to all associated VFs.
3763 	 */
3764 	if (dev->is_virtfn)
3765 		return -EINVAL;
3766 
3767 	if (!pci_is_pcie(dev))
3768 		return -EINVAL;
3769 
3770 	/*
3771 	 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3772 	 * AtomicOp requesters.  For now, we only support endpoints as
3773 	 * requesters and root ports as completers.  No endpoints as
3774 	 * completers, and no peer-to-peer.
3775 	 */
3776 
3777 	switch (pci_pcie_type(dev)) {
3778 	case PCI_EXP_TYPE_ENDPOINT:
3779 	case PCI_EXP_TYPE_LEG_END:
3780 	case PCI_EXP_TYPE_RC_END:
3781 		break;
3782 	default:
3783 		return -EINVAL;
3784 	}
3785 
3786 	while (bus->parent) {
3787 		bridge = bus->self;
3788 
3789 		pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3790 
3791 		switch (pci_pcie_type(bridge)) {
3792 		/* Ensure switch ports support AtomicOp routing */
3793 		case PCI_EXP_TYPE_UPSTREAM:
3794 		case PCI_EXP_TYPE_DOWNSTREAM:
3795 			if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3796 				return -EINVAL;
3797 			break;
3798 
3799 		/* Ensure root port supports all the sizes we care about */
3800 		case PCI_EXP_TYPE_ROOT_PORT:
3801 			if ((cap & cap_mask) != cap_mask)
3802 				return -EINVAL;
3803 			break;
3804 		}
3805 
3806 		/* Ensure upstream ports don't block AtomicOps on egress */
3807 		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3808 			pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3809 						   &ctl2);
3810 			if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3811 				return -EINVAL;
3812 		}
3813 
3814 		bus = bus->parent;
3815 	}
3816 
3817 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3818 				 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3819 	return 0;
3820 }
3821 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3822 
3823 /**
3824  * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3825  * @dev: the PCI device
3826  * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3827  *
3828  * Perform INTx swizzling for a device behind one level of bridge.  This is
3829  * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3830  * behind bridges on add-in cards.  For devices with ARI enabled, the slot
3831  * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3832  * the PCI Express Base Specification, Revision 2.1)
3833  */
3834 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3835 {
3836 	int slot;
3837 
3838 	if (pci_ari_enabled(dev->bus))
3839 		slot = 0;
3840 	else
3841 		slot = PCI_SLOT(dev->devfn);
3842 
3843 	return (((pin - 1) + slot) % 4) + 1;
3844 }
3845 
3846 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3847 {
3848 	u8 pin;
3849 
3850 	pin = dev->pin;
3851 	if (!pin)
3852 		return -1;
3853 
3854 	while (!pci_is_root_bus(dev->bus)) {
3855 		pin = pci_swizzle_interrupt_pin(dev, pin);
3856 		dev = dev->bus->self;
3857 	}
3858 	*bridge = dev;
3859 	return pin;
3860 }
3861 
3862 /**
3863  * pci_common_swizzle - swizzle INTx all the way to root bridge
3864  * @dev: the PCI device
3865  * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3866  *
3867  * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
3868  * bridges all the way up to a PCI root bus.
3869  */
3870 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3871 {
3872 	u8 pin = *pinp;
3873 
3874 	while (!pci_is_root_bus(dev->bus)) {
3875 		pin = pci_swizzle_interrupt_pin(dev, pin);
3876 		dev = dev->bus->self;
3877 	}
3878 	*pinp = pin;
3879 	return PCI_SLOT(dev->devfn);
3880 }
3881 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3882 
3883 /**
3884  * pci_release_region - Release a PCI bar
3885  * @pdev: PCI device whose resources were previously reserved by
3886  *	  pci_request_region()
3887  * @bar: BAR to release
3888  *
3889  * Releases the PCI I/O and memory resources previously reserved by a
3890  * successful call to pci_request_region().  Call this function only
3891  * after all use of the PCI regions has ceased.
3892  */
3893 void pci_release_region(struct pci_dev *pdev, int bar)
3894 {
3895 	struct pci_devres *dr;
3896 
3897 	if (pci_resource_len(pdev, bar) == 0)
3898 		return;
3899 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3900 		release_region(pci_resource_start(pdev, bar),
3901 				pci_resource_len(pdev, bar));
3902 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3903 		release_mem_region(pci_resource_start(pdev, bar),
3904 				pci_resource_len(pdev, bar));
3905 
3906 	dr = find_pci_dr(pdev);
3907 	if (dr)
3908 		dr->region_mask &= ~(1 << bar);
3909 }
3910 EXPORT_SYMBOL(pci_release_region);
3911 
3912 /**
3913  * __pci_request_region - Reserved PCI I/O and memory resource
3914  * @pdev: PCI device whose resources are to be reserved
3915  * @bar: BAR to be reserved
3916  * @res_name: Name to be associated with resource.
3917  * @exclusive: whether the region access is exclusive or not
3918  *
3919  * Mark the PCI region associated with PCI device @pdev BAR @bar as
3920  * being reserved by owner @res_name.  Do not access any
3921  * address inside the PCI regions unless this call returns
3922  * successfully.
3923  *
3924  * If @exclusive is set, then the region is marked so that userspace
3925  * is explicitly not allowed to map the resource via /dev/mem or
3926  * sysfs MMIO access.
3927  *
3928  * Returns 0 on success, or %EBUSY on error.  A warning
3929  * message is also printed on failure.
3930  */
3931 static int __pci_request_region(struct pci_dev *pdev, int bar,
3932 				const char *res_name, int exclusive)
3933 {
3934 	struct pci_devres *dr;
3935 
3936 	if (pci_resource_len(pdev, bar) == 0)
3937 		return 0;
3938 
3939 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3940 		if (!request_region(pci_resource_start(pdev, bar),
3941 			    pci_resource_len(pdev, bar), res_name))
3942 			goto err_out;
3943 	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3944 		if (!__request_mem_region(pci_resource_start(pdev, bar),
3945 					pci_resource_len(pdev, bar), res_name,
3946 					exclusive))
3947 			goto err_out;
3948 	}
3949 
3950 	dr = find_pci_dr(pdev);
3951 	if (dr)
3952 		dr->region_mask |= 1 << bar;
3953 
3954 	return 0;
3955 
3956 err_out:
3957 	pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3958 		 &pdev->resource[bar]);
3959 	return -EBUSY;
3960 }
3961 
3962 /**
3963  * pci_request_region - Reserve PCI I/O and memory resource
3964  * @pdev: PCI device whose resources are to be reserved
3965  * @bar: BAR to be reserved
3966  * @res_name: Name to be associated with resource
3967  *
3968  * Mark the PCI region associated with PCI device @pdev BAR @bar as
3969  * being reserved by owner @res_name.  Do not access any
3970  * address inside the PCI regions unless this call returns
3971  * successfully.
3972  *
3973  * Returns 0 on success, or %EBUSY on error.  A warning
3974  * message is also printed on failure.
3975  */
3976 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3977 {
3978 	return __pci_request_region(pdev, bar, res_name, 0);
3979 }
3980 EXPORT_SYMBOL(pci_request_region);
3981 
3982 /**
3983  * pci_release_selected_regions - Release selected PCI I/O and memory resources
3984  * @pdev: PCI device whose resources were previously reserved
3985  * @bars: Bitmask of BARs to be released
3986  *
3987  * Release selected PCI I/O and memory resources previously reserved.
3988  * Call this function only after all use of the PCI regions has ceased.
3989  */
3990 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3991 {
3992 	int i;
3993 
3994 	for (i = 0; i < PCI_STD_NUM_BARS; i++)
3995 		if (bars & (1 << i))
3996 			pci_release_region(pdev, i);
3997 }
3998 EXPORT_SYMBOL(pci_release_selected_regions);
3999 
4000 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
4001 					  const char *res_name, int excl)
4002 {
4003 	int i;
4004 
4005 	for (i = 0; i < PCI_STD_NUM_BARS; i++)
4006 		if (bars & (1 << i))
4007 			if (__pci_request_region(pdev, i, res_name, excl))
4008 				goto err_out;
4009 	return 0;
4010 
4011 err_out:
4012 	while (--i >= 0)
4013 		if (bars & (1 << i))
4014 			pci_release_region(pdev, i);
4015 
4016 	return -EBUSY;
4017 }
4018 
4019 
4020 /**
4021  * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
4022  * @pdev: PCI device whose resources are to be reserved
4023  * @bars: Bitmask of BARs to be requested
4024  * @res_name: Name to be associated with resource
4025  */
4026 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
4027 				 const char *res_name)
4028 {
4029 	return __pci_request_selected_regions(pdev, bars, res_name, 0);
4030 }
4031 EXPORT_SYMBOL(pci_request_selected_regions);
4032 
4033 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
4034 					   const char *res_name)
4035 {
4036 	return __pci_request_selected_regions(pdev, bars, res_name,
4037 			IORESOURCE_EXCLUSIVE);
4038 }
4039 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
4040 
4041 /**
4042  * pci_release_regions - Release reserved PCI I/O and memory resources
4043  * @pdev: PCI device whose resources were previously reserved by
4044  *	  pci_request_regions()
4045  *
4046  * Releases all PCI I/O and memory resources previously reserved by a
4047  * successful call to pci_request_regions().  Call this function only
4048  * after all use of the PCI regions has ceased.
4049  */
4050 
4051 void pci_release_regions(struct pci_dev *pdev)
4052 {
4053 	pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
4054 }
4055 EXPORT_SYMBOL(pci_release_regions);
4056 
4057 /**
4058  * pci_request_regions - Reserve PCI I/O and memory resources
4059  * @pdev: PCI device whose resources are to be reserved
4060  * @res_name: Name to be associated with resource.
4061  *
4062  * Mark all PCI regions associated with PCI device @pdev as
4063  * being reserved by owner @res_name.  Do not access any
4064  * address inside the PCI regions unless this call returns
4065  * successfully.
4066  *
4067  * Returns 0 on success, or %EBUSY on error.  A warning
4068  * message is also printed on failure.
4069  */
4070 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
4071 {
4072 	return pci_request_selected_regions(pdev,
4073 			((1 << PCI_STD_NUM_BARS) - 1), res_name);
4074 }
4075 EXPORT_SYMBOL(pci_request_regions);
4076 
4077 /**
4078  * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
4079  * @pdev: PCI device whose resources are to be reserved
4080  * @res_name: Name to be associated with resource.
4081  *
4082  * Mark all PCI regions associated with PCI device @pdev as being reserved
4083  * by owner @res_name.  Do not access any address inside the PCI regions
4084  * unless this call returns successfully.
4085  *
4086  * pci_request_regions_exclusive() will mark the region so that /dev/mem
4087  * and the sysfs MMIO access will not be allowed.
4088  *
4089  * Returns 0 on success, or %EBUSY on error.  A warning message is also
4090  * printed on failure.
4091  */
4092 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
4093 {
4094 	return pci_request_selected_regions_exclusive(pdev,
4095 				((1 << PCI_STD_NUM_BARS) - 1), res_name);
4096 }
4097 EXPORT_SYMBOL(pci_request_regions_exclusive);
4098 
4099 /*
4100  * Record the PCI IO range (expressed as CPU physical address + size).
4101  * Return a negative value if an error has occurred, zero otherwise
4102  */
4103 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
4104 			resource_size_t	size)
4105 {
4106 	int ret = 0;
4107 #ifdef PCI_IOBASE
4108 	struct logic_pio_hwaddr *range;
4109 
4110 	if (!size || addr + size < addr)
4111 		return -EINVAL;
4112 
4113 	range = kzalloc(sizeof(*range), GFP_ATOMIC);
4114 	if (!range)
4115 		return -ENOMEM;
4116 
4117 	range->fwnode = fwnode;
4118 	range->size = size;
4119 	range->hw_start = addr;
4120 	range->flags = LOGIC_PIO_CPU_MMIO;
4121 
4122 	ret = logic_pio_register_range(range);
4123 	if (ret)
4124 		kfree(range);
4125 
4126 	/* Ignore duplicates due to deferred probing */
4127 	if (ret == -EEXIST)
4128 		ret = 0;
4129 #endif
4130 
4131 	return ret;
4132 }
4133 
4134 phys_addr_t pci_pio_to_address(unsigned long pio)
4135 {
4136 	phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
4137 
4138 #ifdef PCI_IOBASE
4139 	if (pio >= MMIO_UPPER_LIMIT)
4140 		return address;
4141 
4142 	address = logic_pio_to_hwaddr(pio);
4143 #endif
4144 
4145 	return address;
4146 }
4147 EXPORT_SYMBOL_GPL(pci_pio_to_address);
4148 
4149 unsigned long __weak pci_address_to_pio(phys_addr_t address)
4150 {
4151 #ifdef PCI_IOBASE
4152 	return logic_pio_trans_cpuaddr(address);
4153 #else
4154 	if (address > IO_SPACE_LIMIT)
4155 		return (unsigned long)-1;
4156 
4157 	return (unsigned long) address;
4158 #endif
4159 }
4160 
4161 /**
4162  * pci_remap_iospace - Remap the memory mapped I/O space
4163  * @res: Resource describing the I/O space
4164  * @phys_addr: physical address of range to be mapped
4165  *
4166  * Remap the memory mapped I/O space described by the @res and the CPU
4167  * physical address @phys_addr into virtual address space.  Only
4168  * architectures that have memory mapped IO functions defined (and the
4169  * PCI_IOBASE value defined) should call this function.
4170  */
4171 #ifndef pci_remap_iospace
4172 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4173 {
4174 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4175 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4176 
4177 	if (!(res->flags & IORESOURCE_IO))
4178 		return -EINVAL;
4179 
4180 	if (res->end > IO_SPACE_LIMIT)
4181 		return -EINVAL;
4182 
4183 	return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4184 				  pgprot_device(PAGE_KERNEL));
4185 #else
4186 	/*
4187 	 * This architecture does not have memory mapped I/O space,
4188 	 * so this function should never be called
4189 	 */
4190 	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4191 	return -ENODEV;
4192 #endif
4193 }
4194 EXPORT_SYMBOL(pci_remap_iospace);
4195 #endif
4196 
4197 /**
4198  * pci_unmap_iospace - Unmap the memory mapped I/O space
4199  * @res: resource to be unmapped
4200  *
4201  * Unmap the CPU virtual address @res from virtual address space.  Only
4202  * architectures that have memory mapped IO functions defined (and the
4203  * PCI_IOBASE value defined) should call this function.
4204  */
4205 void pci_unmap_iospace(struct resource *res)
4206 {
4207 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4208 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4209 
4210 	vunmap_range(vaddr, vaddr + resource_size(res));
4211 #endif
4212 }
4213 EXPORT_SYMBOL(pci_unmap_iospace);
4214 
4215 static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
4216 {
4217 	struct resource **res = ptr;
4218 
4219 	pci_unmap_iospace(*res);
4220 }
4221 
4222 /**
4223  * devm_pci_remap_iospace - Managed pci_remap_iospace()
4224  * @dev: Generic device to remap IO address for
4225  * @res: Resource describing the I/O space
4226  * @phys_addr: physical address of range to be mapped
4227  *
4228  * Managed pci_remap_iospace().  Map is automatically unmapped on driver
4229  * detach.
4230  */
4231 int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4232 			   phys_addr_t phys_addr)
4233 {
4234 	const struct resource **ptr;
4235 	int error;
4236 
4237 	ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4238 	if (!ptr)
4239 		return -ENOMEM;
4240 
4241 	error = pci_remap_iospace(res, phys_addr);
4242 	if (error) {
4243 		devres_free(ptr);
4244 	} else	{
4245 		*ptr = res;
4246 		devres_add(dev, ptr);
4247 	}
4248 
4249 	return error;
4250 }
4251 EXPORT_SYMBOL(devm_pci_remap_iospace);
4252 
4253 /**
4254  * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4255  * @dev: Generic device to remap IO address for
4256  * @offset: Resource address to map
4257  * @size: Size of map
4258  *
4259  * Managed pci_remap_cfgspace().  Map is automatically unmapped on driver
4260  * detach.
4261  */
4262 void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4263 				      resource_size_t offset,
4264 				      resource_size_t size)
4265 {
4266 	void __iomem **ptr, *addr;
4267 
4268 	ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4269 	if (!ptr)
4270 		return NULL;
4271 
4272 	addr = pci_remap_cfgspace(offset, size);
4273 	if (addr) {
4274 		*ptr = addr;
4275 		devres_add(dev, ptr);
4276 	} else
4277 		devres_free(ptr);
4278 
4279 	return addr;
4280 }
4281 EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4282 
4283 /**
4284  * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4285  * @dev: generic device to handle the resource for
4286  * @res: configuration space resource to be handled
4287  *
4288  * Checks that a resource is a valid memory region, requests the memory
4289  * region and ioremaps with pci_remap_cfgspace() API that ensures the
4290  * proper PCI configuration space memory attributes are guaranteed.
4291  *
4292  * All operations are managed and will be undone on driver detach.
4293  *
4294  * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4295  * on failure. Usage example::
4296  *
4297  *	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4298  *	base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4299  *	if (IS_ERR(base))
4300  *		return PTR_ERR(base);
4301  */
4302 void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4303 					  struct resource *res)
4304 {
4305 	resource_size_t size;
4306 	const char *name;
4307 	void __iomem *dest_ptr;
4308 
4309 	BUG_ON(!dev);
4310 
4311 	if (!res || resource_type(res) != IORESOURCE_MEM) {
4312 		dev_err(dev, "invalid resource\n");
4313 		return IOMEM_ERR_PTR(-EINVAL);
4314 	}
4315 
4316 	size = resource_size(res);
4317 
4318 	if (res->name)
4319 		name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev),
4320 				      res->name);
4321 	else
4322 		name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL);
4323 	if (!name)
4324 		return IOMEM_ERR_PTR(-ENOMEM);
4325 
4326 	if (!devm_request_mem_region(dev, res->start, size, name)) {
4327 		dev_err(dev, "can't request region for resource %pR\n", res);
4328 		return IOMEM_ERR_PTR(-EBUSY);
4329 	}
4330 
4331 	dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4332 	if (!dest_ptr) {
4333 		dev_err(dev, "ioremap failed for resource %pR\n", res);
4334 		devm_release_mem_region(dev, res->start, size);
4335 		dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4336 	}
4337 
4338 	return dest_ptr;
4339 }
4340 EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4341 
4342 static void __pci_set_master(struct pci_dev *dev, bool enable)
4343 {
4344 	u16 old_cmd, cmd;
4345 
4346 	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4347 	if (enable)
4348 		cmd = old_cmd | PCI_COMMAND_MASTER;
4349 	else
4350 		cmd = old_cmd & ~PCI_COMMAND_MASTER;
4351 	if (cmd != old_cmd) {
4352 		pci_dbg(dev, "%s bus mastering\n",
4353 			enable ? "enabling" : "disabling");
4354 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4355 	}
4356 	dev->is_busmaster = enable;
4357 }
4358 
4359 /**
4360  * pcibios_setup - process "pci=" kernel boot arguments
4361  * @str: string used to pass in "pci=" kernel boot arguments
4362  *
4363  * Process kernel boot arguments.  This is the default implementation.
4364  * Architecture specific implementations can override this as necessary.
4365  */
4366 char * __weak __init pcibios_setup(char *str)
4367 {
4368 	return str;
4369 }
4370 
4371 /**
4372  * pcibios_set_master - enable PCI bus-mastering for device dev
4373  * @dev: the PCI device to enable
4374  *
4375  * Enables PCI bus-mastering for the device.  This is the default
4376  * implementation.  Architecture specific implementations can override
4377  * this if necessary.
4378  */
4379 void __weak pcibios_set_master(struct pci_dev *dev)
4380 {
4381 	u8 lat;
4382 
4383 	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4384 	if (pci_is_pcie(dev))
4385 		return;
4386 
4387 	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4388 	if (lat < 16)
4389 		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4390 	else if (lat > pcibios_max_latency)
4391 		lat = pcibios_max_latency;
4392 	else
4393 		return;
4394 
4395 	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4396 }
4397 
4398 /**
4399  * pci_set_master - enables bus-mastering for device dev
4400  * @dev: the PCI device to enable
4401  *
4402  * Enables bus-mastering on the device and calls pcibios_set_master()
4403  * to do the needed arch specific settings.
4404  */
4405 void pci_set_master(struct pci_dev *dev)
4406 {
4407 	__pci_set_master(dev, true);
4408 	pcibios_set_master(dev);
4409 }
4410 EXPORT_SYMBOL(pci_set_master);
4411 
4412 /**
4413  * pci_clear_master - disables bus-mastering for device dev
4414  * @dev: the PCI device to disable
4415  */
4416 void pci_clear_master(struct pci_dev *dev)
4417 {
4418 	__pci_set_master(dev, false);
4419 }
4420 EXPORT_SYMBOL(pci_clear_master);
4421 
4422 /**
4423  * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4424  * @dev: the PCI device for which MWI is to be enabled
4425  *
4426  * Helper function for pci_set_mwi.
4427  * Originally copied from drivers/net/acenic.c.
4428  * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4429  *
4430  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4431  */
4432 int pci_set_cacheline_size(struct pci_dev *dev)
4433 {
4434 	u8 cacheline_size;
4435 
4436 	if (!pci_cache_line_size)
4437 		return -EINVAL;
4438 
4439 	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4440 	   equal to or multiple of the right value. */
4441 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4442 	if (cacheline_size >= pci_cache_line_size &&
4443 	    (cacheline_size % pci_cache_line_size) == 0)
4444 		return 0;
4445 
4446 	/* Write the correct value. */
4447 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4448 	/* Read it back. */
4449 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4450 	if (cacheline_size == pci_cache_line_size)
4451 		return 0;
4452 
4453 	pci_dbg(dev, "cache line size of %d is not supported\n",
4454 		   pci_cache_line_size << 2);
4455 
4456 	return -EINVAL;
4457 }
4458 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4459 
4460 /**
4461  * pci_set_mwi - enables memory-write-invalidate PCI transaction
4462  * @dev: the PCI device for which MWI is enabled
4463  *
4464  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4465  *
4466  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4467  */
4468 int pci_set_mwi(struct pci_dev *dev)
4469 {
4470 #ifdef PCI_DISABLE_MWI
4471 	return 0;
4472 #else
4473 	int rc;
4474 	u16 cmd;
4475 
4476 	rc = pci_set_cacheline_size(dev);
4477 	if (rc)
4478 		return rc;
4479 
4480 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4481 	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4482 		pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4483 		cmd |= PCI_COMMAND_INVALIDATE;
4484 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4485 	}
4486 	return 0;
4487 #endif
4488 }
4489 EXPORT_SYMBOL(pci_set_mwi);
4490 
4491 /**
4492  * pcim_set_mwi - a device-managed pci_set_mwi()
4493  * @dev: the PCI device for which MWI is enabled
4494  *
4495  * Managed pci_set_mwi().
4496  *
4497  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4498  */
4499 int pcim_set_mwi(struct pci_dev *dev)
4500 {
4501 	struct pci_devres *dr;
4502 
4503 	dr = find_pci_dr(dev);
4504 	if (!dr)
4505 		return -ENOMEM;
4506 
4507 	dr->mwi = 1;
4508 	return pci_set_mwi(dev);
4509 }
4510 EXPORT_SYMBOL(pcim_set_mwi);
4511 
4512 /**
4513  * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4514  * @dev: the PCI device for which MWI is enabled
4515  *
4516  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4517  * Callers are not required to check the return value.
4518  *
4519  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4520  */
4521 int pci_try_set_mwi(struct pci_dev *dev)
4522 {
4523 #ifdef PCI_DISABLE_MWI
4524 	return 0;
4525 #else
4526 	return pci_set_mwi(dev);
4527 #endif
4528 }
4529 EXPORT_SYMBOL(pci_try_set_mwi);
4530 
4531 /**
4532  * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4533  * @dev: the PCI device to disable
4534  *
4535  * Disables PCI Memory-Write-Invalidate transaction on the device
4536  */
4537 void pci_clear_mwi(struct pci_dev *dev)
4538 {
4539 #ifndef PCI_DISABLE_MWI
4540 	u16 cmd;
4541 
4542 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4543 	if (cmd & PCI_COMMAND_INVALIDATE) {
4544 		cmd &= ~PCI_COMMAND_INVALIDATE;
4545 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4546 	}
4547 #endif
4548 }
4549 EXPORT_SYMBOL(pci_clear_mwi);
4550 
4551 /**
4552  * pci_disable_parity - disable parity checking for device
4553  * @dev: the PCI device to operate on
4554  *
4555  * Disable parity checking for device @dev
4556  */
4557 void pci_disable_parity(struct pci_dev *dev)
4558 {
4559 	u16 cmd;
4560 
4561 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4562 	if (cmd & PCI_COMMAND_PARITY) {
4563 		cmd &= ~PCI_COMMAND_PARITY;
4564 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4565 	}
4566 }
4567 
4568 /**
4569  * pci_intx - enables/disables PCI INTx for device dev
4570  * @pdev: the PCI device to operate on
4571  * @enable: boolean: whether to enable or disable PCI INTx
4572  *
4573  * Enables/disables PCI INTx for device @pdev
4574  */
4575 void pci_intx(struct pci_dev *pdev, int enable)
4576 {
4577 	u16 pci_command, new;
4578 
4579 	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4580 
4581 	if (enable)
4582 		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4583 	else
4584 		new = pci_command | PCI_COMMAND_INTX_DISABLE;
4585 
4586 	if (new != pci_command) {
4587 		struct pci_devres *dr;
4588 
4589 		pci_write_config_word(pdev, PCI_COMMAND, new);
4590 
4591 		dr = find_pci_dr(pdev);
4592 		if (dr && !dr->restore_intx) {
4593 			dr->restore_intx = 1;
4594 			dr->orig_intx = !enable;
4595 		}
4596 	}
4597 }
4598 EXPORT_SYMBOL_GPL(pci_intx);
4599 
4600 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4601 {
4602 	struct pci_bus *bus = dev->bus;
4603 	bool mask_updated = true;
4604 	u32 cmd_status_dword;
4605 	u16 origcmd, newcmd;
4606 	unsigned long flags;
4607 	bool irq_pending;
4608 
4609 	/*
4610 	 * We do a single dword read to retrieve both command and status.
4611 	 * Document assumptions that make this possible.
4612 	 */
4613 	BUILD_BUG_ON(PCI_COMMAND % 4);
4614 	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4615 
4616 	raw_spin_lock_irqsave(&pci_lock, flags);
4617 
4618 	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4619 
4620 	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4621 
4622 	/*
4623 	 * Check interrupt status register to see whether our device
4624 	 * triggered the interrupt (when masking) or the next IRQ is
4625 	 * already pending (when unmasking).
4626 	 */
4627 	if (mask != irq_pending) {
4628 		mask_updated = false;
4629 		goto done;
4630 	}
4631 
4632 	origcmd = cmd_status_dword;
4633 	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4634 	if (mask)
4635 		newcmd |= PCI_COMMAND_INTX_DISABLE;
4636 	if (newcmd != origcmd)
4637 		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4638 
4639 done:
4640 	raw_spin_unlock_irqrestore(&pci_lock, flags);
4641 
4642 	return mask_updated;
4643 }
4644 
4645 /**
4646  * pci_check_and_mask_intx - mask INTx on pending interrupt
4647  * @dev: the PCI device to operate on
4648  *
4649  * Check if the device dev has its INTx line asserted, mask it and return
4650  * true in that case. False is returned if no interrupt was pending.
4651  */
4652 bool pci_check_and_mask_intx(struct pci_dev *dev)
4653 {
4654 	return pci_check_and_set_intx_mask(dev, true);
4655 }
4656 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4657 
4658 /**
4659  * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4660  * @dev: the PCI device to operate on
4661  *
4662  * Check if the device dev has its INTx line asserted, unmask it if not and
4663  * return true. False is returned and the mask remains active if there was
4664  * still an interrupt pending.
4665  */
4666 bool pci_check_and_unmask_intx(struct pci_dev *dev)
4667 {
4668 	return pci_check_and_set_intx_mask(dev, false);
4669 }
4670 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4671 
4672 /**
4673  * pci_wait_for_pending_transaction - wait for pending transaction
4674  * @dev: the PCI device to operate on
4675  *
4676  * Return 0 if transaction is pending 1 otherwise.
4677  */
4678 int pci_wait_for_pending_transaction(struct pci_dev *dev)
4679 {
4680 	if (!pci_is_pcie(dev))
4681 		return 1;
4682 
4683 	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4684 				    PCI_EXP_DEVSTA_TRPND);
4685 }
4686 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4687 
4688 /**
4689  * pcie_flr - initiate a PCIe function level reset
4690  * @dev: device to reset
4691  *
4692  * Initiate a function level reset unconditionally on @dev without
4693  * checking any flags and DEVCAP
4694  */
4695 int pcie_flr(struct pci_dev *dev)
4696 {
4697 	if (!pci_wait_for_pending_transaction(dev))
4698 		pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4699 
4700 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4701 
4702 	if (dev->imm_ready)
4703 		return 0;
4704 
4705 	/*
4706 	 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4707 	 * 100ms, but may silently discard requests while the FLR is in
4708 	 * progress.  Wait 100ms before trying to access the device.
4709 	 */
4710 	msleep(100);
4711 
4712 	return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4713 }
4714 EXPORT_SYMBOL_GPL(pcie_flr);
4715 
4716 /**
4717  * pcie_reset_flr - initiate a PCIe function level reset
4718  * @dev: device to reset
4719  * @probe: if true, return 0 if device can be reset this way
4720  *
4721  * Initiate a function level reset on @dev.
4722  */
4723 int pcie_reset_flr(struct pci_dev *dev, bool probe)
4724 {
4725 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4726 		return -ENOTTY;
4727 
4728 	if (!(dev->devcap & PCI_EXP_DEVCAP_FLR))
4729 		return -ENOTTY;
4730 
4731 	if (probe)
4732 		return 0;
4733 
4734 	return pcie_flr(dev);
4735 }
4736 EXPORT_SYMBOL_GPL(pcie_reset_flr);
4737 
4738 static int pci_af_flr(struct pci_dev *dev, bool probe)
4739 {
4740 	int pos;
4741 	u8 cap;
4742 
4743 	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4744 	if (!pos)
4745 		return -ENOTTY;
4746 
4747 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4748 		return -ENOTTY;
4749 
4750 	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4751 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4752 		return -ENOTTY;
4753 
4754 	if (probe)
4755 		return 0;
4756 
4757 	/*
4758 	 * Wait for Transaction Pending bit to clear.  A word-aligned test
4759 	 * is used, so we use the control offset rather than status and shift
4760 	 * the test bit to match.
4761 	 */
4762 	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4763 				 PCI_AF_STATUS_TP << 8))
4764 		pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4765 
4766 	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4767 
4768 	if (dev->imm_ready)
4769 		return 0;
4770 
4771 	/*
4772 	 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4773 	 * updated 27 July 2006; a device must complete an FLR within
4774 	 * 100ms, but may silently discard requests while the FLR is in
4775 	 * progress.  Wait 100ms before trying to access the device.
4776 	 */
4777 	msleep(100);
4778 
4779 	return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4780 }
4781 
4782 /**
4783  * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4784  * @dev: Device to reset.
4785  * @probe: if true, return 0 if the device can be reset this way.
4786  *
4787  * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4788  * unset, it will be reinitialized internally when going from PCI_D3hot to
4789  * PCI_D0.  If that's the case and the device is not in a low-power state
4790  * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4791  *
4792  * NOTE: This causes the caller to sleep for twice the device power transition
4793  * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4794  * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4795  * Moreover, only devices in D0 can be reset by this function.
4796  */
4797 static int pci_pm_reset(struct pci_dev *dev, bool probe)
4798 {
4799 	u16 csr;
4800 
4801 	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4802 		return -ENOTTY;
4803 
4804 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4805 	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4806 		return -ENOTTY;
4807 
4808 	if (probe)
4809 		return 0;
4810 
4811 	if (dev->current_state != PCI_D0)
4812 		return -EINVAL;
4813 
4814 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4815 	csr |= PCI_D3hot;
4816 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4817 	pci_dev_d3_sleep(dev);
4818 
4819 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4820 	csr |= PCI_D0;
4821 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4822 	pci_dev_d3_sleep(dev);
4823 
4824 	return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4825 }
4826 
4827 /**
4828  * pcie_wait_for_link_delay - Wait until link is active or inactive
4829  * @pdev: Bridge device
4830  * @active: waiting for active or inactive?
4831  * @delay: Delay to wait after link has become active (in ms)
4832  *
4833  * Use this to wait till link becomes active or inactive.
4834  */
4835 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4836 				     int delay)
4837 {
4838 	int timeout = 1000;
4839 	bool ret;
4840 	u16 lnk_status;
4841 
4842 	/*
4843 	 * Some controllers might not implement link active reporting. In this
4844 	 * case, we wait for 1000 ms + any delay requested by the caller.
4845 	 */
4846 	if (!pdev->link_active_reporting) {
4847 		msleep(timeout + delay);
4848 		return true;
4849 	}
4850 
4851 	/*
4852 	 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4853 	 * after which we should expect an link active if the reset was
4854 	 * successful. If so, software must wait a minimum 100ms before sending
4855 	 * configuration requests to devices downstream this port.
4856 	 *
4857 	 * If the link fails to activate, either the device was physically
4858 	 * removed or the link is permanently failed.
4859 	 */
4860 	if (active)
4861 		msleep(20);
4862 	for (;;) {
4863 		pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
4864 		ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA);
4865 		if (ret == active)
4866 			break;
4867 		if (timeout <= 0)
4868 			break;
4869 		msleep(10);
4870 		timeout -= 10;
4871 	}
4872 	if (active && ret)
4873 		msleep(delay);
4874 
4875 	return ret == active;
4876 }
4877 
4878 /**
4879  * pcie_wait_for_link - Wait until link is active or inactive
4880  * @pdev: Bridge device
4881  * @active: waiting for active or inactive?
4882  *
4883  * Use this to wait till link becomes active or inactive.
4884  */
4885 bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4886 {
4887 	return pcie_wait_for_link_delay(pdev, active, 100);
4888 }
4889 
4890 /*
4891  * Find maximum D3cold delay required by all the devices on the bus.  The
4892  * spec says 100 ms, but firmware can lower it and we allow drivers to
4893  * increase it as well.
4894  *
4895  * Called with @pci_bus_sem locked for reading.
4896  */
4897 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
4898 {
4899 	const struct pci_dev *pdev;
4900 	int min_delay = 100;
4901 	int max_delay = 0;
4902 
4903 	list_for_each_entry(pdev, &bus->devices, bus_list) {
4904 		if (pdev->d3cold_delay < min_delay)
4905 			min_delay = pdev->d3cold_delay;
4906 		if (pdev->d3cold_delay > max_delay)
4907 			max_delay = pdev->d3cold_delay;
4908 	}
4909 
4910 	return max(min_delay, max_delay);
4911 }
4912 
4913 /**
4914  * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4915  * @dev: PCI bridge
4916  *
4917  * Handle necessary delays before access to the devices on the secondary
4918  * side of the bridge are permitted after D3cold to D0 transition.
4919  *
4920  * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4921  * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4922  * 4.3.2.
4923  */
4924 void pci_bridge_wait_for_secondary_bus(struct pci_dev *dev)
4925 {
4926 	struct pci_dev *child;
4927 	int delay;
4928 
4929 	if (pci_dev_is_disconnected(dev))
4930 		return;
4931 
4932 	if (!pci_is_bridge(dev) || !dev->bridge_d3)
4933 		return;
4934 
4935 	down_read(&pci_bus_sem);
4936 
4937 	/*
4938 	 * We only deal with devices that are present currently on the bus.
4939 	 * For any hot-added devices the access delay is handled in pciehp
4940 	 * board_added(). In case of ACPI hotplug the firmware is expected
4941 	 * to configure the devices before OS is notified.
4942 	 */
4943 	if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
4944 		up_read(&pci_bus_sem);
4945 		return;
4946 	}
4947 
4948 	/* Take d3cold_delay requirements into account */
4949 	delay = pci_bus_max_d3cold_delay(dev->subordinate);
4950 	if (!delay) {
4951 		up_read(&pci_bus_sem);
4952 		return;
4953 	}
4954 
4955 	child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
4956 				 bus_list);
4957 	up_read(&pci_bus_sem);
4958 
4959 	/*
4960 	 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
4961 	 * accessing the device after reset (that is 1000 ms + 100 ms). In
4962 	 * practice this should not be needed because we don't do power
4963 	 * management for them (see pci_bridge_d3_possible()).
4964 	 */
4965 	if (!pci_is_pcie(dev)) {
4966 		pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
4967 		msleep(1000 + delay);
4968 		return;
4969 	}
4970 
4971 	/*
4972 	 * For PCIe downstream and root ports that do not support speeds
4973 	 * greater than 5 GT/s need to wait minimum 100 ms. For higher
4974 	 * speeds (gen3) we need to wait first for the data link layer to
4975 	 * become active.
4976 	 *
4977 	 * However, 100 ms is the minimum and the PCIe spec says the
4978 	 * software must allow at least 1s before it can determine that the
4979 	 * device that did not respond is a broken device. There is
4980 	 * evidence that 100 ms is not always enough, for example certain
4981 	 * Titan Ridge xHCI controller does not always respond to
4982 	 * configuration requests if we only wait for 100 ms (see
4983 	 * https://bugzilla.kernel.org/show_bug.cgi?id=203885).
4984 	 *
4985 	 * Therefore we wait for 100 ms and check for the device presence.
4986 	 * If it is still not present give it an additional 100 ms.
4987 	 */
4988 	if (!pcie_downstream_port(dev))
4989 		return;
4990 
4991 	if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
4992 		pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
4993 		msleep(delay);
4994 	} else {
4995 		pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
4996 			delay);
4997 		if (!pcie_wait_for_link_delay(dev, true, delay)) {
4998 			/* Did not train, no need to wait any further */
4999 			pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
5000 			return;
5001 		}
5002 	}
5003 
5004 	if (!pci_device_is_present(child)) {
5005 		pci_dbg(child, "waiting additional %d ms to become accessible\n", delay);
5006 		msleep(delay);
5007 	}
5008 }
5009 
5010 void pci_reset_secondary_bus(struct pci_dev *dev)
5011 {
5012 	u16 ctrl;
5013 
5014 	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
5015 	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
5016 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
5017 
5018 	/*
5019 	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
5020 	 * this to 2ms to ensure that we meet the minimum requirement.
5021 	 */
5022 	msleep(2);
5023 
5024 	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
5025 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
5026 
5027 	/*
5028 	 * Trhfa for conventional PCI is 2^25 clock cycles.
5029 	 * Assuming a minimum 33MHz clock this results in a 1s
5030 	 * delay before we can consider subordinate devices to
5031 	 * be re-initialized.  PCIe has some ways to shorten this,
5032 	 * but we don't make use of them yet.
5033 	 */
5034 	ssleep(1);
5035 }
5036 
5037 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
5038 {
5039 	pci_reset_secondary_bus(dev);
5040 }
5041 
5042 /**
5043  * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
5044  * @dev: Bridge device
5045  *
5046  * Use the bridge control register to assert reset on the secondary bus.
5047  * Devices on the secondary bus are left in power-on state.
5048  */
5049 int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
5050 {
5051 	pcibios_reset_secondary_bus(dev);
5052 
5053 	return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS);
5054 }
5055 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
5056 
5057 static int pci_parent_bus_reset(struct pci_dev *dev, bool probe)
5058 {
5059 	struct pci_dev *pdev;
5060 
5061 	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
5062 	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5063 		return -ENOTTY;
5064 
5065 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
5066 		if (pdev != dev)
5067 			return -ENOTTY;
5068 
5069 	if (probe)
5070 		return 0;
5071 
5072 	return pci_bridge_secondary_bus_reset(dev->bus->self);
5073 }
5074 
5075 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe)
5076 {
5077 	int rc = -ENOTTY;
5078 
5079 	if (!hotplug || !try_module_get(hotplug->owner))
5080 		return rc;
5081 
5082 	if (hotplug->ops->reset_slot)
5083 		rc = hotplug->ops->reset_slot(hotplug, probe);
5084 
5085 	module_put(hotplug->owner);
5086 
5087 	return rc;
5088 }
5089 
5090 static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe)
5091 {
5092 	if (dev->multifunction || dev->subordinate || !dev->slot ||
5093 	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5094 		return -ENOTTY;
5095 
5096 	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
5097 }
5098 
5099 static int pci_reset_bus_function(struct pci_dev *dev, bool probe)
5100 {
5101 	int rc;
5102 
5103 	rc = pci_dev_reset_slot_function(dev, probe);
5104 	if (rc != -ENOTTY)
5105 		return rc;
5106 	return pci_parent_bus_reset(dev, probe);
5107 }
5108 
5109 void pci_dev_lock(struct pci_dev *dev)
5110 {
5111 	pci_cfg_access_lock(dev);
5112 	/* block PM suspend, driver probe, etc. */
5113 	device_lock(&dev->dev);
5114 }
5115 EXPORT_SYMBOL_GPL(pci_dev_lock);
5116 
5117 /* Return 1 on successful lock, 0 on contention */
5118 int pci_dev_trylock(struct pci_dev *dev)
5119 {
5120 	if (pci_cfg_access_trylock(dev)) {
5121 		if (device_trylock(&dev->dev))
5122 			return 1;
5123 		pci_cfg_access_unlock(dev);
5124 	}
5125 
5126 	return 0;
5127 }
5128 EXPORT_SYMBOL_GPL(pci_dev_trylock);
5129 
5130 void pci_dev_unlock(struct pci_dev *dev)
5131 {
5132 	device_unlock(&dev->dev);
5133 	pci_cfg_access_unlock(dev);
5134 }
5135 EXPORT_SYMBOL_GPL(pci_dev_unlock);
5136 
5137 static void pci_dev_save_and_disable(struct pci_dev *dev)
5138 {
5139 	const struct pci_error_handlers *err_handler =
5140 			dev->driver ? dev->driver->err_handler : NULL;
5141 
5142 	/*
5143 	 * dev->driver->err_handler->reset_prepare() is protected against
5144 	 * races with ->remove() by the device lock, which must be held by
5145 	 * the caller.
5146 	 */
5147 	if (err_handler && err_handler->reset_prepare)
5148 		err_handler->reset_prepare(dev);
5149 
5150 	/*
5151 	 * Wake-up device prior to save.  PM registers default to D0 after
5152 	 * reset and a simple register restore doesn't reliably return
5153 	 * to a non-D0 state anyway.
5154 	 */
5155 	pci_set_power_state(dev, PCI_D0);
5156 
5157 	pci_save_state(dev);
5158 	/*
5159 	 * Disable the device by clearing the Command register, except for
5160 	 * INTx-disable which is set.  This not only disables MMIO and I/O port
5161 	 * BARs, but also prevents the device from being Bus Master, preventing
5162 	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
5163 	 * compliant devices, INTx-disable prevents legacy interrupts.
5164 	 */
5165 	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
5166 }
5167 
5168 static void pci_dev_restore(struct pci_dev *dev)
5169 {
5170 	const struct pci_error_handlers *err_handler =
5171 			dev->driver ? dev->driver->err_handler : NULL;
5172 
5173 	pci_restore_state(dev);
5174 
5175 	/*
5176 	 * dev->driver->err_handler->reset_done() is protected against
5177 	 * races with ->remove() by the device lock, which must be held by
5178 	 * the caller.
5179 	 */
5180 	if (err_handler && err_handler->reset_done)
5181 		err_handler->reset_done(dev);
5182 }
5183 
5184 /* dev->reset_methods[] is a 0-terminated list of indices into this array */
5185 static const struct pci_reset_fn_method pci_reset_fn_methods[] = {
5186 	{ },
5187 	{ pci_dev_specific_reset, .name = "device_specific" },
5188 	{ pci_dev_acpi_reset, .name = "acpi" },
5189 	{ pcie_reset_flr, .name = "flr" },
5190 	{ pci_af_flr, .name = "af_flr" },
5191 	{ pci_pm_reset, .name = "pm" },
5192 	{ pci_reset_bus_function, .name = "bus" },
5193 };
5194 
5195 static ssize_t reset_method_show(struct device *dev,
5196 				 struct device_attribute *attr, char *buf)
5197 {
5198 	struct pci_dev *pdev = to_pci_dev(dev);
5199 	ssize_t len = 0;
5200 	int i, m;
5201 
5202 	for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5203 		m = pdev->reset_methods[i];
5204 		if (!m)
5205 			break;
5206 
5207 		len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "",
5208 				     pci_reset_fn_methods[m].name);
5209 	}
5210 
5211 	if (len)
5212 		len += sysfs_emit_at(buf, len, "\n");
5213 
5214 	return len;
5215 }
5216 
5217 static int reset_method_lookup(const char *name)
5218 {
5219 	int m;
5220 
5221 	for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5222 		if (sysfs_streq(name, pci_reset_fn_methods[m].name))
5223 			return m;
5224 	}
5225 
5226 	return 0;	/* not found */
5227 }
5228 
5229 static ssize_t reset_method_store(struct device *dev,
5230 				  struct device_attribute *attr,
5231 				  const char *buf, size_t count)
5232 {
5233 	struct pci_dev *pdev = to_pci_dev(dev);
5234 	char *options, *name;
5235 	int m, n;
5236 	u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 };
5237 
5238 	if (sysfs_streq(buf, "")) {
5239 		pdev->reset_methods[0] = 0;
5240 		pci_warn(pdev, "All device reset methods disabled by user");
5241 		return count;
5242 	}
5243 
5244 	if (sysfs_streq(buf, "default")) {
5245 		pci_init_reset_methods(pdev);
5246 		return count;
5247 	}
5248 
5249 	options = kstrndup(buf, count, GFP_KERNEL);
5250 	if (!options)
5251 		return -ENOMEM;
5252 
5253 	n = 0;
5254 	while ((name = strsep(&options, " ")) != NULL) {
5255 		if (sysfs_streq(name, ""))
5256 			continue;
5257 
5258 		name = strim(name);
5259 
5260 		m = reset_method_lookup(name);
5261 		if (!m) {
5262 			pci_err(pdev, "Invalid reset method '%s'", name);
5263 			goto error;
5264 		}
5265 
5266 		if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) {
5267 			pci_err(pdev, "Unsupported reset method '%s'", name);
5268 			goto error;
5269 		}
5270 
5271 		if (n == PCI_NUM_RESET_METHODS - 1) {
5272 			pci_err(pdev, "Too many reset methods\n");
5273 			goto error;
5274 		}
5275 
5276 		reset_methods[n++] = m;
5277 	}
5278 
5279 	reset_methods[n] = 0;
5280 
5281 	/* Warn if dev-specific supported but not highest priority */
5282 	if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 &&
5283 	    reset_methods[0] != 1)
5284 		pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user");
5285 	memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods));
5286 	kfree(options);
5287 	return count;
5288 
5289 error:
5290 	/* Leave previous methods unchanged */
5291 	kfree(options);
5292 	return -EINVAL;
5293 }
5294 static DEVICE_ATTR_RW(reset_method);
5295 
5296 static struct attribute *pci_dev_reset_method_attrs[] = {
5297 	&dev_attr_reset_method.attr,
5298 	NULL,
5299 };
5300 
5301 static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj,
5302 						    struct attribute *a, int n)
5303 {
5304 	struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj));
5305 
5306 	if (!pci_reset_supported(pdev))
5307 		return 0;
5308 
5309 	return a->mode;
5310 }
5311 
5312 const struct attribute_group pci_dev_reset_method_attr_group = {
5313 	.attrs = pci_dev_reset_method_attrs,
5314 	.is_visible = pci_dev_reset_method_attr_is_visible,
5315 };
5316 
5317 /**
5318  * __pci_reset_function_locked - reset a PCI device function while holding
5319  * the @dev mutex lock.
5320  * @dev: PCI device to reset
5321  *
5322  * Some devices allow an individual function to be reset without affecting
5323  * other functions in the same device.  The PCI device must be responsive
5324  * to PCI config space in order to use this function.
5325  *
5326  * The device function is presumed to be unused and the caller is holding
5327  * the device mutex lock when this function is called.
5328  *
5329  * Resetting the device will make the contents of PCI configuration space
5330  * random, so any caller of this must be prepared to reinitialise the
5331  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5332  * etc.
5333  *
5334  * Returns 0 if the device function was successfully reset or negative if the
5335  * device doesn't support resetting a single function.
5336  */
5337 int __pci_reset_function_locked(struct pci_dev *dev)
5338 {
5339 	int i, m, rc;
5340 
5341 	might_sleep();
5342 
5343 	/*
5344 	 * A reset method returns -ENOTTY if it doesn't support this device and
5345 	 * we should try the next method.
5346 	 *
5347 	 * If it returns 0 (success), we're finished.  If it returns any other
5348 	 * error, we're also finished: this indicates that further reset
5349 	 * mechanisms might be broken on the device.
5350 	 */
5351 	for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5352 		m = dev->reset_methods[i];
5353 		if (!m)
5354 			return -ENOTTY;
5355 
5356 		rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET);
5357 		if (!rc)
5358 			return 0;
5359 		if (rc != -ENOTTY)
5360 			return rc;
5361 	}
5362 
5363 	return -ENOTTY;
5364 }
5365 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5366 
5367 /**
5368  * pci_init_reset_methods - check whether device can be safely reset
5369  * and store supported reset mechanisms.
5370  * @dev: PCI device to check for reset mechanisms
5371  *
5372  * Some devices allow an individual function to be reset without affecting
5373  * other functions in the same device.  The PCI device must be in D0-D3hot
5374  * state.
5375  *
5376  * Stores reset mechanisms supported by device in reset_methods byte array
5377  * which is a member of struct pci_dev.
5378  */
5379 void pci_init_reset_methods(struct pci_dev *dev)
5380 {
5381 	int m, i, rc;
5382 
5383 	BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS);
5384 
5385 	might_sleep();
5386 
5387 	i = 0;
5388 	for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5389 		rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE);
5390 		if (!rc)
5391 			dev->reset_methods[i++] = m;
5392 		else if (rc != -ENOTTY)
5393 			break;
5394 	}
5395 
5396 	dev->reset_methods[i] = 0;
5397 }
5398 
5399 /**
5400  * pci_reset_function - quiesce and reset a PCI device function
5401  * @dev: PCI device to reset
5402  *
5403  * Some devices allow an individual function to be reset without affecting
5404  * other functions in the same device.  The PCI device must be responsive
5405  * to PCI config space in order to use this function.
5406  *
5407  * This function does not just reset the PCI portion of a device, but
5408  * clears all the state associated with the device.  This function differs
5409  * from __pci_reset_function_locked() in that it saves and restores device state
5410  * over the reset and takes the PCI device lock.
5411  *
5412  * Returns 0 if the device function was successfully reset or negative if the
5413  * device doesn't support resetting a single function.
5414  */
5415 int pci_reset_function(struct pci_dev *dev)
5416 {
5417 	int rc;
5418 
5419 	if (!pci_reset_supported(dev))
5420 		return -ENOTTY;
5421 
5422 	pci_dev_lock(dev);
5423 	pci_dev_save_and_disable(dev);
5424 
5425 	rc = __pci_reset_function_locked(dev);
5426 
5427 	pci_dev_restore(dev);
5428 	pci_dev_unlock(dev);
5429 
5430 	return rc;
5431 }
5432 EXPORT_SYMBOL_GPL(pci_reset_function);
5433 
5434 /**
5435  * pci_reset_function_locked - quiesce and reset a PCI device function
5436  * @dev: PCI device to reset
5437  *
5438  * Some devices allow an individual function to be reset without affecting
5439  * other functions in the same device.  The PCI device must be responsive
5440  * to PCI config space in order to use this function.
5441  *
5442  * This function does not just reset the PCI portion of a device, but
5443  * clears all the state associated with the device.  This function differs
5444  * from __pci_reset_function_locked() in that it saves and restores device state
5445  * over the reset.  It also differs from pci_reset_function() in that it
5446  * requires the PCI device lock to be held.
5447  *
5448  * Returns 0 if the device function was successfully reset or negative if the
5449  * device doesn't support resetting a single function.
5450  */
5451 int pci_reset_function_locked(struct pci_dev *dev)
5452 {
5453 	int rc;
5454 
5455 	if (!pci_reset_supported(dev))
5456 		return -ENOTTY;
5457 
5458 	pci_dev_save_and_disable(dev);
5459 
5460 	rc = __pci_reset_function_locked(dev);
5461 
5462 	pci_dev_restore(dev);
5463 
5464 	return rc;
5465 }
5466 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5467 
5468 /**
5469  * pci_try_reset_function - quiesce and reset a PCI device function
5470  * @dev: PCI device to reset
5471  *
5472  * Same as above, except return -EAGAIN if unable to lock device.
5473  */
5474 int pci_try_reset_function(struct pci_dev *dev)
5475 {
5476 	int rc;
5477 
5478 	if (!pci_reset_supported(dev))
5479 		return -ENOTTY;
5480 
5481 	if (!pci_dev_trylock(dev))
5482 		return -EAGAIN;
5483 
5484 	pci_dev_save_and_disable(dev);
5485 	rc = __pci_reset_function_locked(dev);
5486 	pci_dev_restore(dev);
5487 	pci_dev_unlock(dev);
5488 
5489 	return rc;
5490 }
5491 EXPORT_SYMBOL_GPL(pci_try_reset_function);
5492 
5493 /* Do any devices on or below this bus prevent a bus reset? */
5494 static bool pci_bus_resetable(struct pci_bus *bus)
5495 {
5496 	struct pci_dev *dev;
5497 
5498 
5499 	if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5500 		return false;
5501 
5502 	list_for_each_entry(dev, &bus->devices, bus_list) {
5503 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5504 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5505 			return false;
5506 	}
5507 
5508 	return true;
5509 }
5510 
5511 /* Lock devices from the top of the tree down */
5512 static void pci_bus_lock(struct pci_bus *bus)
5513 {
5514 	struct pci_dev *dev;
5515 
5516 	list_for_each_entry(dev, &bus->devices, bus_list) {
5517 		pci_dev_lock(dev);
5518 		if (dev->subordinate)
5519 			pci_bus_lock(dev->subordinate);
5520 	}
5521 }
5522 
5523 /* Unlock devices from the bottom of the tree up */
5524 static void pci_bus_unlock(struct pci_bus *bus)
5525 {
5526 	struct pci_dev *dev;
5527 
5528 	list_for_each_entry(dev, &bus->devices, bus_list) {
5529 		if (dev->subordinate)
5530 			pci_bus_unlock(dev->subordinate);
5531 		pci_dev_unlock(dev);
5532 	}
5533 }
5534 
5535 /* Return 1 on successful lock, 0 on contention */
5536 static int pci_bus_trylock(struct pci_bus *bus)
5537 {
5538 	struct pci_dev *dev;
5539 
5540 	list_for_each_entry(dev, &bus->devices, bus_list) {
5541 		if (!pci_dev_trylock(dev))
5542 			goto unlock;
5543 		if (dev->subordinate) {
5544 			if (!pci_bus_trylock(dev->subordinate)) {
5545 				pci_dev_unlock(dev);
5546 				goto unlock;
5547 			}
5548 		}
5549 	}
5550 	return 1;
5551 
5552 unlock:
5553 	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5554 		if (dev->subordinate)
5555 			pci_bus_unlock(dev->subordinate);
5556 		pci_dev_unlock(dev);
5557 	}
5558 	return 0;
5559 }
5560 
5561 /* Do any devices on or below this slot prevent a bus reset? */
5562 static bool pci_slot_resetable(struct pci_slot *slot)
5563 {
5564 	struct pci_dev *dev;
5565 
5566 	if (slot->bus->self &&
5567 	    (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5568 		return false;
5569 
5570 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5571 		if (!dev->slot || dev->slot != slot)
5572 			continue;
5573 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5574 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5575 			return false;
5576 	}
5577 
5578 	return true;
5579 }
5580 
5581 /* Lock devices from the top of the tree down */
5582 static void pci_slot_lock(struct pci_slot *slot)
5583 {
5584 	struct pci_dev *dev;
5585 
5586 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5587 		if (!dev->slot || dev->slot != slot)
5588 			continue;
5589 		pci_dev_lock(dev);
5590 		if (dev->subordinate)
5591 			pci_bus_lock(dev->subordinate);
5592 	}
5593 }
5594 
5595 /* Unlock devices from the bottom of the tree up */
5596 static void pci_slot_unlock(struct pci_slot *slot)
5597 {
5598 	struct pci_dev *dev;
5599 
5600 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5601 		if (!dev->slot || dev->slot != slot)
5602 			continue;
5603 		if (dev->subordinate)
5604 			pci_bus_unlock(dev->subordinate);
5605 		pci_dev_unlock(dev);
5606 	}
5607 }
5608 
5609 /* Return 1 on successful lock, 0 on contention */
5610 static int pci_slot_trylock(struct pci_slot *slot)
5611 {
5612 	struct pci_dev *dev;
5613 
5614 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5615 		if (!dev->slot || dev->slot != slot)
5616 			continue;
5617 		if (!pci_dev_trylock(dev))
5618 			goto unlock;
5619 		if (dev->subordinate) {
5620 			if (!pci_bus_trylock(dev->subordinate)) {
5621 				pci_dev_unlock(dev);
5622 				goto unlock;
5623 			}
5624 		}
5625 	}
5626 	return 1;
5627 
5628 unlock:
5629 	list_for_each_entry_continue_reverse(dev,
5630 					     &slot->bus->devices, bus_list) {
5631 		if (!dev->slot || dev->slot != slot)
5632 			continue;
5633 		if (dev->subordinate)
5634 			pci_bus_unlock(dev->subordinate);
5635 		pci_dev_unlock(dev);
5636 	}
5637 	return 0;
5638 }
5639 
5640 /*
5641  * Save and disable devices from the top of the tree down while holding
5642  * the @dev mutex lock for the entire tree.
5643  */
5644 static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5645 {
5646 	struct pci_dev *dev;
5647 
5648 	list_for_each_entry(dev, &bus->devices, bus_list) {
5649 		pci_dev_save_and_disable(dev);
5650 		if (dev->subordinate)
5651 			pci_bus_save_and_disable_locked(dev->subordinate);
5652 	}
5653 }
5654 
5655 /*
5656  * Restore devices from top of the tree down while holding @dev mutex lock
5657  * for the entire tree.  Parent bridges need to be restored before we can
5658  * get to subordinate devices.
5659  */
5660 static void pci_bus_restore_locked(struct pci_bus *bus)
5661 {
5662 	struct pci_dev *dev;
5663 
5664 	list_for_each_entry(dev, &bus->devices, bus_list) {
5665 		pci_dev_restore(dev);
5666 		if (dev->subordinate)
5667 			pci_bus_restore_locked(dev->subordinate);
5668 	}
5669 }
5670 
5671 /*
5672  * Save and disable devices from the top of the tree down while holding
5673  * the @dev mutex lock for the entire tree.
5674  */
5675 static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5676 {
5677 	struct pci_dev *dev;
5678 
5679 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5680 		if (!dev->slot || dev->slot != slot)
5681 			continue;
5682 		pci_dev_save_and_disable(dev);
5683 		if (dev->subordinate)
5684 			pci_bus_save_and_disable_locked(dev->subordinate);
5685 	}
5686 }
5687 
5688 /*
5689  * Restore devices from top of the tree down while holding @dev mutex lock
5690  * for the entire tree.  Parent bridges need to be restored before we can
5691  * get to subordinate devices.
5692  */
5693 static void pci_slot_restore_locked(struct pci_slot *slot)
5694 {
5695 	struct pci_dev *dev;
5696 
5697 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5698 		if (!dev->slot || dev->slot != slot)
5699 			continue;
5700 		pci_dev_restore(dev);
5701 		if (dev->subordinate)
5702 			pci_bus_restore_locked(dev->subordinate);
5703 	}
5704 }
5705 
5706 static int pci_slot_reset(struct pci_slot *slot, bool probe)
5707 {
5708 	int rc;
5709 
5710 	if (!slot || !pci_slot_resetable(slot))
5711 		return -ENOTTY;
5712 
5713 	if (!probe)
5714 		pci_slot_lock(slot);
5715 
5716 	might_sleep();
5717 
5718 	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5719 
5720 	if (!probe)
5721 		pci_slot_unlock(slot);
5722 
5723 	return rc;
5724 }
5725 
5726 /**
5727  * pci_probe_reset_slot - probe whether a PCI slot can be reset
5728  * @slot: PCI slot to probe
5729  *
5730  * Return 0 if slot can be reset, negative if a slot reset is not supported.
5731  */
5732 int pci_probe_reset_slot(struct pci_slot *slot)
5733 {
5734 	return pci_slot_reset(slot, PCI_RESET_PROBE);
5735 }
5736 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5737 
5738 /**
5739  * __pci_reset_slot - Try to reset a PCI slot
5740  * @slot: PCI slot to reset
5741  *
5742  * A PCI bus may host multiple slots, each slot may support a reset mechanism
5743  * independent of other slots.  For instance, some slots may support slot power
5744  * control.  In the case of a 1:1 bus to slot architecture, this function may
5745  * wrap the bus reset to avoid spurious slot related events such as hotplug.
5746  * Generally a slot reset should be attempted before a bus reset.  All of the
5747  * function of the slot and any subordinate buses behind the slot are reset
5748  * through this function.  PCI config space of all devices in the slot and
5749  * behind the slot is saved before and restored after reset.
5750  *
5751  * Same as above except return -EAGAIN if the slot cannot be locked
5752  */
5753 static int __pci_reset_slot(struct pci_slot *slot)
5754 {
5755 	int rc;
5756 
5757 	rc = pci_slot_reset(slot, PCI_RESET_PROBE);
5758 	if (rc)
5759 		return rc;
5760 
5761 	if (pci_slot_trylock(slot)) {
5762 		pci_slot_save_and_disable_locked(slot);
5763 		might_sleep();
5764 		rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET);
5765 		pci_slot_restore_locked(slot);
5766 		pci_slot_unlock(slot);
5767 	} else
5768 		rc = -EAGAIN;
5769 
5770 	return rc;
5771 }
5772 
5773 static int pci_bus_reset(struct pci_bus *bus, bool probe)
5774 {
5775 	int ret;
5776 
5777 	if (!bus->self || !pci_bus_resetable(bus))
5778 		return -ENOTTY;
5779 
5780 	if (probe)
5781 		return 0;
5782 
5783 	pci_bus_lock(bus);
5784 
5785 	might_sleep();
5786 
5787 	ret = pci_bridge_secondary_bus_reset(bus->self);
5788 
5789 	pci_bus_unlock(bus);
5790 
5791 	return ret;
5792 }
5793 
5794 /**
5795  * pci_bus_error_reset - reset the bridge's subordinate bus
5796  * @bridge: The parent device that connects to the bus to reset
5797  *
5798  * This function will first try to reset the slots on this bus if the method is
5799  * available. If slot reset fails or is not available, this will fall back to a
5800  * secondary bus reset.
5801  */
5802 int pci_bus_error_reset(struct pci_dev *bridge)
5803 {
5804 	struct pci_bus *bus = bridge->subordinate;
5805 	struct pci_slot *slot;
5806 
5807 	if (!bus)
5808 		return -ENOTTY;
5809 
5810 	mutex_lock(&pci_slot_mutex);
5811 	if (list_empty(&bus->slots))
5812 		goto bus_reset;
5813 
5814 	list_for_each_entry(slot, &bus->slots, list)
5815 		if (pci_probe_reset_slot(slot))
5816 			goto bus_reset;
5817 
5818 	list_for_each_entry(slot, &bus->slots, list)
5819 		if (pci_slot_reset(slot, PCI_RESET_DO_RESET))
5820 			goto bus_reset;
5821 
5822 	mutex_unlock(&pci_slot_mutex);
5823 	return 0;
5824 bus_reset:
5825 	mutex_unlock(&pci_slot_mutex);
5826 	return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET);
5827 }
5828 
5829 /**
5830  * pci_probe_reset_bus - probe whether a PCI bus can be reset
5831  * @bus: PCI bus to probe
5832  *
5833  * Return 0 if bus can be reset, negative if a bus reset is not supported.
5834  */
5835 int pci_probe_reset_bus(struct pci_bus *bus)
5836 {
5837 	return pci_bus_reset(bus, PCI_RESET_PROBE);
5838 }
5839 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5840 
5841 /**
5842  * __pci_reset_bus - Try to reset a PCI bus
5843  * @bus: top level PCI bus to reset
5844  *
5845  * Same as above except return -EAGAIN if the bus cannot be locked
5846  */
5847 static int __pci_reset_bus(struct pci_bus *bus)
5848 {
5849 	int rc;
5850 
5851 	rc = pci_bus_reset(bus, PCI_RESET_PROBE);
5852 	if (rc)
5853 		return rc;
5854 
5855 	if (pci_bus_trylock(bus)) {
5856 		pci_bus_save_and_disable_locked(bus);
5857 		might_sleep();
5858 		rc = pci_bridge_secondary_bus_reset(bus->self);
5859 		pci_bus_restore_locked(bus);
5860 		pci_bus_unlock(bus);
5861 	} else
5862 		rc = -EAGAIN;
5863 
5864 	return rc;
5865 }
5866 
5867 /**
5868  * pci_reset_bus - Try to reset a PCI bus
5869  * @pdev: top level PCI device to reset via slot/bus
5870  *
5871  * Same as above except return -EAGAIN if the bus cannot be locked
5872  */
5873 int pci_reset_bus(struct pci_dev *pdev)
5874 {
5875 	return (!pci_probe_reset_slot(pdev->slot)) ?
5876 	    __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5877 }
5878 EXPORT_SYMBOL_GPL(pci_reset_bus);
5879 
5880 /**
5881  * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5882  * @dev: PCI device to query
5883  *
5884  * Returns mmrbc: maximum designed memory read count in bytes or
5885  * appropriate error value.
5886  */
5887 int pcix_get_max_mmrbc(struct pci_dev *dev)
5888 {
5889 	int cap;
5890 	u32 stat;
5891 
5892 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5893 	if (!cap)
5894 		return -EINVAL;
5895 
5896 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5897 		return -EINVAL;
5898 
5899 	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
5900 }
5901 EXPORT_SYMBOL(pcix_get_max_mmrbc);
5902 
5903 /**
5904  * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5905  * @dev: PCI device to query
5906  *
5907  * Returns mmrbc: maximum memory read count in bytes or appropriate error
5908  * value.
5909  */
5910 int pcix_get_mmrbc(struct pci_dev *dev)
5911 {
5912 	int cap;
5913 	u16 cmd;
5914 
5915 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5916 	if (!cap)
5917 		return -EINVAL;
5918 
5919 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5920 		return -EINVAL;
5921 
5922 	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
5923 }
5924 EXPORT_SYMBOL(pcix_get_mmrbc);
5925 
5926 /**
5927  * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5928  * @dev: PCI device to query
5929  * @mmrbc: maximum memory read count in bytes
5930  *    valid values are 512, 1024, 2048, 4096
5931  *
5932  * If possible sets maximum memory read byte count, some bridges have errata
5933  * that prevent this.
5934  */
5935 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5936 {
5937 	int cap;
5938 	u32 stat, v, o;
5939 	u16 cmd;
5940 
5941 	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5942 		return -EINVAL;
5943 
5944 	v = ffs(mmrbc) - 10;
5945 
5946 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5947 	if (!cap)
5948 		return -EINVAL;
5949 
5950 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5951 		return -EINVAL;
5952 
5953 	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
5954 		return -E2BIG;
5955 
5956 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5957 		return -EINVAL;
5958 
5959 	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
5960 	if (o != v) {
5961 		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5962 			return -EIO;
5963 
5964 		cmd &= ~PCI_X_CMD_MAX_READ;
5965 		cmd |= v << 2;
5966 		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5967 			return -EIO;
5968 	}
5969 	return 0;
5970 }
5971 EXPORT_SYMBOL(pcix_set_mmrbc);
5972 
5973 /**
5974  * pcie_get_readrq - get PCI Express read request size
5975  * @dev: PCI device to query
5976  *
5977  * Returns maximum memory read request in bytes or appropriate error value.
5978  */
5979 int pcie_get_readrq(struct pci_dev *dev)
5980 {
5981 	u16 ctl;
5982 
5983 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5984 
5985 	return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5986 }
5987 EXPORT_SYMBOL(pcie_get_readrq);
5988 
5989 /**
5990  * pcie_set_readrq - set PCI Express maximum memory read request
5991  * @dev: PCI device to query
5992  * @rq: maximum memory read count in bytes
5993  *    valid values are 128, 256, 512, 1024, 2048, 4096
5994  *
5995  * If possible sets maximum memory read request in bytes
5996  */
5997 int pcie_set_readrq(struct pci_dev *dev, int rq)
5998 {
5999 	u16 v;
6000 	int ret;
6001 
6002 	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
6003 		return -EINVAL;
6004 
6005 	/*
6006 	 * If using the "performance" PCIe config, we clamp the read rq
6007 	 * size to the max packet size to keep the host bridge from
6008 	 * generating requests larger than we can cope with.
6009 	 */
6010 	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
6011 		int mps = pcie_get_mps(dev);
6012 
6013 		if (mps < rq)
6014 			rq = mps;
6015 	}
6016 
6017 	v = (ffs(rq) - 8) << 12;
6018 
6019 	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6020 						  PCI_EXP_DEVCTL_READRQ, v);
6021 
6022 	return pcibios_err_to_errno(ret);
6023 }
6024 EXPORT_SYMBOL(pcie_set_readrq);
6025 
6026 /**
6027  * pcie_get_mps - get PCI Express maximum payload size
6028  * @dev: PCI device to query
6029  *
6030  * Returns maximum payload size in bytes
6031  */
6032 int pcie_get_mps(struct pci_dev *dev)
6033 {
6034 	u16 ctl;
6035 
6036 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6037 
6038 	return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6039 }
6040 EXPORT_SYMBOL(pcie_get_mps);
6041 
6042 /**
6043  * pcie_set_mps - set PCI Express maximum payload size
6044  * @dev: PCI device to query
6045  * @mps: maximum payload size in bytes
6046  *    valid values are 128, 256, 512, 1024, 2048, 4096
6047  *
6048  * If possible sets maximum payload size
6049  */
6050 int pcie_set_mps(struct pci_dev *dev, int mps)
6051 {
6052 	u16 v;
6053 	int ret;
6054 
6055 	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
6056 		return -EINVAL;
6057 
6058 	v = ffs(mps) - 8;
6059 	if (v > dev->pcie_mpss)
6060 		return -EINVAL;
6061 	v <<= 5;
6062 
6063 	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6064 						  PCI_EXP_DEVCTL_PAYLOAD, v);
6065 
6066 	return pcibios_err_to_errno(ret);
6067 }
6068 EXPORT_SYMBOL(pcie_set_mps);
6069 
6070 /**
6071  * pcie_bandwidth_available - determine minimum link settings of a PCIe
6072  *			      device and its bandwidth limitation
6073  * @dev: PCI device to query
6074  * @limiting_dev: storage for device causing the bandwidth limitation
6075  * @speed: storage for speed of limiting device
6076  * @width: storage for width of limiting device
6077  *
6078  * Walk up the PCI device chain and find the point where the minimum
6079  * bandwidth is available.  Return the bandwidth available there and (if
6080  * limiting_dev, speed, and width pointers are supplied) information about
6081  * that point.  The bandwidth returned is in Mb/s, i.e., megabits/second of
6082  * raw bandwidth.
6083  */
6084 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
6085 			     enum pci_bus_speed *speed,
6086 			     enum pcie_link_width *width)
6087 {
6088 	u16 lnksta;
6089 	enum pci_bus_speed next_speed;
6090 	enum pcie_link_width next_width;
6091 	u32 bw, next_bw;
6092 
6093 	if (speed)
6094 		*speed = PCI_SPEED_UNKNOWN;
6095 	if (width)
6096 		*width = PCIE_LNK_WIDTH_UNKNOWN;
6097 
6098 	bw = 0;
6099 
6100 	while (dev) {
6101 		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
6102 
6103 		next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
6104 		next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
6105 			PCI_EXP_LNKSTA_NLW_SHIFT;
6106 
6107 		next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
6108 
6109 		/* Check if current device limits the total bandwidth */
6110 		if (!bw || next_bw <= bw) {
6111 			bw = next_bw;
6112 
6113 			if (limiting_dev)
6114 				*limiting_dev = dev;
6115 			if (speed)
6116 				*speed = next_speed;
6117 			if (width)
6118 				*width = next_width;
6119 		}
6120 
6121 		dev = pci_upstream_bridge(dev);
6122 	}
6123 
6124 	return bw;
6125 }
6126 EXPORT_SYMBOL(pcie_bandwidth_available);
6127 
6128 /**
6129  * pcie_get_speed_cap - query for the PCI device's link speed capability
6130  * @dev: PCI device to query
6131  *
6132  * Query the PCI device speed capability.  Return the maximum link speed
6133  * supported by the device.
6134  */
6135 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
6136 {
6137 	u32 lnkcap2, lnkcap;
6138 
6139 	/*
6140 	 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18.  The
6141 	 * implementation note there recommends using the Supported Link
6142 	 * Speeds Vector in Link Capabilities 2 when supported.
6143 	 *
6144 	 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
6145 	 * should use the Supported Link Speeds field in Link Capabilities,
6146 	 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
6147 	 */
6148 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
6149 
6150 	/* PCIe r3.0-compliant */
6151 	if (lnkcap2)
6152 		return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
6153 
6154 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6155 	if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
6156 		return PCIE_SPEED_5_0GT;
6157 	else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
6158 		return PCIE_SPEED_2_5GT;
6159 
6160 	return PCI_SPEED_UNKNOWN;
6161 }
6162 EXPORT_SYMBOL(pcie_get_speed_cap);
6163 
6164 /**
6165  * pcie_get_width_cap - query for the PCI device's link width capability
6166  * @dev: PCI device to query
6167  *
6168  * Query the PCI device width capability.  Return the maximum link width
6169  * supported by the device.
6170  */
6171 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
6172 {
6173 	u32 lnkcap;
6174 
6175 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6176 	if (lnkcap)
6177 		return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
6178 
6179 	return PCIE_LNK_WIDTH_UNKNOWN;
6180 }
6181 EXPORT_SYMBOL(pcie_get_width_cap);
6182 
6183 /**
6184  * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
6185  * @dev: PCI device
6186  * @speed: storage for link speed
6187  * @width: storage for link width
6188  *
6189  * Calculate a PCI device's link bandwidth by querying for its link speed
6190  * and width, multiplying them, and applying encoding overhead.  The result
6191  * is in Mb/s, i.e., megabits/second of raw bandwidth.
6192  */
6193 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
6194 			   enum pcie_link_width *width)
6195 {
6196 	*speed = pcie_get_speed_cap(dev);
6197 	*width = pcie_get_width_cap(dev);
6198 
6199 	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
6200 		return 0;
6201 
6202 	return *width * PCIE_SPEED2MBS_ENC(*speed);
6203 }
6204 
6205 /**
6206  * __pcie_print_link_status - Report the PCI device's link speed and width
6207  * @dev: PCI device to query
6208  * @verbose: Print info even when enough bandwidth is available
6209  *
6210  * If the available bandwidth at the device is less than the device is
6211  * capable of, report the device's maximum possible bandwidth and the
6212  * upstream link that limits its performance.  If @verbose, always print
6213  * the available bandwidth, even if the device isn't constrained.
6214  */
6215 void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
6216 {
6217 	enum pcie_link_width width, width_cap;
6218 	enum pci_bus_speed speed, speed_cap;
6219 	struct pci_dev *limiting_dev = NULL;
6220 	u32 bw_avail, bw_cap;
6221 
6222 	bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
6223 	bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
6224 
6225 	if (bw_avail >= bw_cap && verbose)
6226 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
6227 			 bw_cap / 1000, bw_cap % 1000,
6228 			 pci_speed_string(speed_cap), width_cap);
6229 	else if (bw_avail < bw_cap)
6230 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
6231 			 bw_avail / 1000, bw_avail % 1000,
6232 			 pci_speed_string(speed), width,
6233 			 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
6234 			 bw_cap / 1000, bw_cap % 1000,
6235 			 pci_speed_string(speed_cap), width_cap);
6236 }
6237 
6238 /**
6239  * pcie_print_link_status - Report the PCI device's link speed and width
6240  * @dev: PCI device to query
6241  *
6242  * Report the available bandwidth at the device.
6243  */
6244 void pcie_print_link_status(struct pci_dev *dev)
6245 {
6246 	__pcie_print_link_status(dev, true);
6247 }
6248 EXPORT_SYMBOL(pcie_print_link_status);
6249 
6250 /**
6251  * pci_select_bars - Make BAR mask from the type of resource
6252  * @dev: the PCI device for which BAR mask is made
6253  * @flags: resource type mask to be selected
6254  *
6255  * This helper routine makes bar mask from the type of resource.
6256  */
6257 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
6258 {
6259 	int i, bars = 0;
6260 	for (i = 0; i < PCI_NUM_RESOURCES; i++)
6261 		if (pci_resource_flags(dev, i) & flags)
6262 			bars |= (1 << i);
6263 	return bars;
6264 }
6265 EXPORT_SYMBOL(pci_select_bars);
6266 
6267 /* Some architectures require additional programming to enable VGA */
6268 static arch_set_vga_state_t arch_set_vga_state;
6269 
6270 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6271 {
6272 	arch_set_vga_state = func;	/* NULL disables */
6273 }
6274 
6275 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
6276 				  unsigned int command_bits, u32 flags)
6277 {
6278 	if (arch_set_vga_state)
6279 		return arch_set_vga_state(dev, decode, command_bits,
6280 						flags);
6281 	return 0;
6282 }
6283 
6284 /**
6285  * pci_set_vga_state - set VGA decode state on device and parents if requested
6286  * @dev: the PCI device
6287  * @decode: true = enable decoding, false = disable decoding
6288  * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6289  * @flags: traverse ancestors and change bridges
6290  * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6291  */
6292 int pci_set_vga_state(struct pci_dev *dev, bool decode,
6293 		      unsigned int command_bits, u32 flags)
6294 {
6295 	struct pci_bus *bus;
6296 	struct pci_dev *bridge;
6297 	u16 cmd;
6298 	int rc;
6299 
6300 	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6301 
6302 	/* ARCH specific VGA enables */
6303 	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6304 	if (rc)
6305 		return rc;
6306 
6307 	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6308 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
6309 		if (decode)
6310 			cmd |= command_bits;
6311 		else
6312 			cmd &= ~command_bits;
6313 		pci_write_config_word(dev, PCI_COMMAND, cmd);
6314 	}
6315 
6316 	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6317 		return 0;
6318 
6319 	bus = dev->bus;
6320 	while (bus) {
6321 		bridge = bus->self;
6322 		if (bridge) {
6323 			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6324 					     &cmd);
6325 			if (decode)
6326 				cmd |= PCI_BRIDGE_CTL_VGA;
6327 			else
6328 				cmd &= ~PCI_BRIDGE_CTL_VGA;
6329 			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6330 					      cmd);
6331 		}
6332 		bus = bus->parent;
6333 	}
6334 	return 0;
6335 }
6336 
6337 #ifdef CONFIG_ACPI
6338 bool pci_pr3_present(struct pci_dev *pdev)
6339 {
6340 	struct acpi_device *adev;
6341 
6342 	if (acpi_disabled)
6343 		return false;
6344 
6345 	adev = ACPI_COMPANION(&pdev->dev);
6346 	if (!adev)
6347 		return false;
6348 
6349 	return adev->power.flags.power_resources &&
6350 		acpi_has_method(adev->handle, "_PR3");
6351 }
6352 EXPORT_SYMBOL_GPL(pci_pr3_present);
6353 #endif
6354 
6355 /**
6356  * pci_add_dma_alias - Add a DMA devfn alias for a device
6357  * @dev: the PCI device for which alias is added
6358  * @devfn_from: alias slot and function
6359  * @nr_devfns: number of subsequent devfns to alias
6360  *
6361  * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6362  * which is used to program permissible bus-devfn source addresses for DMA
6363  * requests in an IOMMU.  These aliases factor into IOMMU group creation
6364  * and are useful for devices generating DMA requests beyond or different
6365  * from their logical bus-devfn.  Examples include device quirks where the
6366  * device simply uses the wrong devfn, as well as non-transparent bridges
6367  * where the alias may be a proxy for devices in another domain.
6368  *
6369  * IOMMU group creation is performed during device discovery or addition,
6370  * prior to any potential DMA mapping and therefore prior to driver probing
6371  * (especially for userspace assigned devices where IOMMU group definition
6372  * cannot be left as a userspace activity).  DMA aliases should therefore
6373  * be configured via quirks, such as the PCI fixup header quirk.
6374  */
6375 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from,
6376 		       unsigned int nr_devfns)
6377 {
6378 	int devfn_to;
6379 
6380 	nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from);
6381 	devfn_to = devfn_from + nr_devfns - 1;
6382 
6383 	if (!dev->dma_alias_mask)
6384 		dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6385 	if (!dev->dma_alias_mask) {
6386 		pci_warn(dev, "Unable to allocate DMA alias mask\n");
6387 		return;
6388 	}
6389 
6390 	bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6391 
6392 	if (nr_devfns == 1)
6393 		pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6394 				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6395 	else if (nr_devfns > 1)
6396 		pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6397 				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6398 				PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6399 }
6400 
6401 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6402 {
6403 	return (dev1->dma_alias_mask &&
6404 		test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6405 	       (dev2->dma_alias_mask &&
6406 		test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6407 	       pci_real_dma_dev(dev1) == dev2 ||
6408 	       pci_real_dma_dev(dev2) == dev1;
6409 }
6410 
6411 bool pci_device_is_present(struct pci_dev *pdev)
6412 {
6413 	u32 v;
6414 
6415 	if (pci_dev_is_disconnected(pdev))
6416 		return false;
6417 	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6418 }
6419 EXPORT_SYMBOL_GPL(pci_device_is_present);
6420 
6421 void pci_ignore_hotplug(struct pci_dev *dev)
6422 {
6423 	struct pci_dev *bridge = dev->bus->self;
6424 
6425 	dev->ignore_hotplug = 1;
6426 	/* Propagate the "ignore hotplug" setting to the parent bridge. */
6427 	if (bridge)
6428 		bridge->ignore_hotplug = 1;
6429 }
6430 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6431 
6432 /**
6433  * pci_real_dma_dev - Get PCI DMA device for PCI device
6434  * @dev: the PCI device that may have a PCI DMA alias
6435  *
6436  * Permits the platform to provide architecture-specific functionality to
6437  * devices needing to alias DMA to another PCI device on another PCI bus. If
6438  * the PCI device is on the same bus, it is recommended to use
6439  * pci_add_dma_alias(). This is the default implementation. Architecture
6440  * implementations can override this.
6441  */
6442 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6443 {
6444 	return dev;
6445 }
6446 
6447 resource_size_t __weak pcibios_default_alignment(void)
6448 {
6449 	return 0;
6450 }
6451 
6452 /*
6453  * Arches that don't want to expose struct resource to userland as-is in
6454  * sysfs and /proc can implement their own pci_resource_to_user().
6455  */
6456 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6457 				 const struct resource *rsrc,
6458 				 resource_size_t *start, resource_size_t *end)
6459 {
6460 	*start = rsrc->start;
6461 	*end = rsrc->end;
6462 }
6463 
6464 static char *resource_alignment_param;
6465 static DEFINE_SPINLOCK(resource_alignment_lock);
6466 
6467 /**
6468  * pci_specified_resource_alignment - get resource alignment specified by user.
6469  * @dev: the PCI device to get
6470  * @resize: whether or not to change resources' size when reassigning alignment
6471  *
6472  * RETURNS: Resource alignment if it is specified.
6473  *          Zero if it is not specified.
6474  */
6475 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6476 							bool *resize)
6477 {
6478 	int align_order, count;
6479 	resource_size_t align = pcibios_default_alignment();
6480 	const char *p;
6481 	int ret;
6482 
6483 	spin_lock(&resource_alignment_lock);
6484 	p = resource_alignment_param;
6485 	if (!p || !*p)
6486 		goto out;
6487 	if (pci_has_flag(PCI_PROBE_ONLY)) {
6488 		align = 0;
6489 		pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6490 		goto out;
6491 	}
6492 
6493 	while (*p) {
6494 		count = 0;
6495 		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6496 		    p[count] == '@') {
6497 			p += count + 1;
6498 			if (align_order > 63) {
6499 				pr_err("PCI: Invalid requested alignment (order %d)\n",
6500 				       align_order);
6501 				align_order = PAGE_SHIFT;
6502 			}
6503 		} else {
6504 			align_order = PAGE_SHIFT;
6505 		}
6506 
6507 		ret = pci_dev_str_match(dev, p, &p);
6508 		if (ret == 1) {
6509 			*resize = true;
6510 			align = 1ULL << align_order;
6511 			break;
6512 		} else if (ret < 0) {
6513 			pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6514 			       p);
6515 			break;
6516 		}
6517 
6518 		if (*p != ';' && *p != ',') {
6519 			/* End of param or invalid format */
6520 			break;
6521 		}
6522 		p++;
6523 	}
6524 out:
6525 	spin_unlock(&resource_alignment_lock);
6526 	return align;
6527 }
6528 
6529 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6530 					   resource_size_t align, bool resize)
6531 {
6532 	struct resource *r = &dev->resource[bar];
6533 	resource_size_t size;
6534 
6535 	if (!(r->flags & IORESOURCE_MEM))
6536 		return;
6537 
6538 	if (r->flags & IORESOURCE_PCI_FIXED) {
6539 		pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6540 			 bar, r, (unsigned long long)align);
6541 		return;
6542 	}
6543 
6544 	size = resource_size(r);
6545 	if (size >= align)
6546 		return;
6547 
6548 	/*
6549 	 * Increase the alignment of the resource.  There are two ways we
6550 	 * can do this:
6551 	 *
6552 	 * 1) Increase the size of the resource.  BARs are aligned on their
6553 	 *    size, so when we reallocate space for this resource, we'll
6554 	 *    allocate it with the larger alignment.  This also prevents
6555 	 *    assignment of any other BARs inside the alignment region, so
6556 	 *    if we're requesting page alignment, this means no other BARs
6557 	 *    will share the page.
6558 	 *
6559 	 *    The disadvantage is that this makes the resource larger than
6560 	 *    the hardware BAR, which may break drivers that compute things
6561 	 *    based on the resource size, e.g., to find registers at a
6562 	 *    fixed offset before the end of the BAR.
6563 	 *
6564 	 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6565 	 *    set r->start to the desired alignment.  By itself this
6566 	 *    doesn't prevent other BARs being put inside the alignment
6567 	 *    region, but if we realign *every* resource of every device in
6568 	 *    the system, none of them will share an alignment region.
6569 	 *
6570 	 * When the user has requested alignment for only some devices via
6571 	 * the "pci=resource_alignment" argument, "resize" is true and we
6572 	 * use the first method.  Otherwise we assume we're aligning all
6573 	 * devices and we use the second.
6574 	 */
6575 
6576 	pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6577 		 bar, r, (unsigned long long)align);
6578 
6579 	if (resize) {
6580 		r->start = 0;
6581 		r->end = align - 1;
6582 	} else {
6583 		r->flags &= ~IORESOURCE_SIZEALIGN;
6584 		r->flags |= IORESOURCE_STARTALIGN;
6585 		r->start = align;
6586 		r->end = r->start + size - 1;
6587 	}
6588 	r->flags |= IORESOURCE_UNSET;
6589 }
6590 
6591 /*
6592  * This function disables memory decoding and releases memory resources
6593  * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6594  * It also rounds up size to specified alignment.
6595  * Later on, the kernel will assign page-aligned memory resource back
6596  * to the device.
6597  */
6598 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6599 {
6600 	int i;
6601 	struct resource *r;
6602 	resource_size_t align;
6603 	u16 command;
6604 	bool resize = false;
6605 
6606 	/*
6607 	 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6608 	 * 3.4.1.11.  Their resources are allocated from the space
6609 	 * described by the VF BARx register in the PF's SR-IOV capability.
6610 	 * We can't influence their alignment here.
6611 	 */
6612 	if (dev->is_virtfn)
6613 		return;
6614 
6615 	/* check if specified PCI is target device to reassign */
6616 	align = pci_specified_resource_alignment(dev, &resize);
6617 	if (!align)
6618 		return;
6619 
6620 	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6621 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6622 		pci_warn(dev, "Can't reassign resources to host bridge\n");
6623 		return;
6624 	}
6625 
6626 	pci_read_config_word(dev, PCI_COMMAND, &command);
6627 	command &= ~PCI_COMMAND_MEMORY;
6628 	pci_write_config_word(dev, PCI_COMMAND, command);
6629 
6630 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6631 		pci_request_resource_alignment(dev, i, align, resize);
6632 
6633 	/*
6634 	 * Need to disable bridge's resource window,
6635 	 * to enable the kernel to reassign new resource
6636 	 * window later on.
6637 	 */
6638 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6639 		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6640 			r = &dev->resource[i];
6641 			if (!(r->flags & IORESOURCE_MEM))
6642 				continue;
6643 			r->flags |= IORESOURCE_UNSET;
6644 			r->end = resource_size(r) - 1;
6645 			r->start = 0;
6646 		}
6647 		pci_disable_bridge_window(dev);
6648 	}
6649 }
6650 
6651 static ssize_t resource_alignment_show(struct bus_type *bus, char *buf)
6652 {
6653 	size_t count = 0;
6654 
6655 	spin_lock(&resource_alignment_lock);
6656 	if (resource_alignment_param)
6657 		count = sysfs_emit(buf, "%s\n", resource_alignment_param);
6658 	spin_unlock(&resource_alignment_lock);
6659 
6660 	return count;
6661 }
6662 
6663 static ssize_t resource_alignment_store(struct bus_type *bus,
6664 					const char *buf, size_t count)
6665 {
6666 	char *param, *old, *end;
6667 
6668 	if (count >= (PAGE_SIZE - 1))
6669 		return -EINVAL;
6670 
6671 	param = kstrndup(buf, count, GFP_KERNEL);
6672 	if (!param)
6673 		return -ENOMEM;
6674 
6675 	end = strchr(param, '\n');
6676 	if (end)
6677 		*end = '\0';
6678 
6679 	spin_lock(&resource_alignment_lock);
6680 	old = resource_alignment_param;
6681 	if (strlen(param)) {
6682 		resource_alignment_param = param;
6683 	} else {
6684 		kfree(param);
6685 		resource_alignment_param = NULL;
6686 	}
6687 	spin_unlock(&resource_alignment_lock);
6688 
6689 	kfree(old);
6690 
6691 	return count;
6692 }
6693 
6694 static BUS_ATTR_RW(resource_alignment);
6695 
6696 static int __init pci_resource_alignment_sysfs_init(void)
6697 {
6698 	return bus_create_file(&pci_bus_type,
6699 					&bus_attr_resource_alignment);
6700 }
6701 late_initcall(pci_resource_alignment_sysfs_init);
6702 
6703 static void pci_no_domains(void)
6704 {
6705 #ifdef CONFIG_PCI_DOMAINS
6706 	pci_domains_supported = 0;
6707 #endif
6708 }
6709 
6710 #ifdef CONFIG_PCI_DOMAINS_GENERIC
6711 static atomic_t __domain_nr = ATOMIC_INIT(-1);
6712 
6713 static int pci_get_new_domain_nr(void)
6714 {
6715 	return atomic_inc_return(&__domain_nr);
6716 }
6717 
6718 static int of_pci_bus_find_domain_nr(struct device *parent)
6719 {
6720 	static int use_dt_domains = -1;
6721 	int domain = -1;
6722 
6723 	if (parent)
6724 		domain = of_get_pci_domain_nr(parent->of_node);
6725 
6726 	/*
6727 	 * Check DT domain and use_dt_domains values.
6728 	 *
6729 	 * If DT domain property is valid (domain >= 0) and
6730 	 * use_dt_domains != 0, the DT assignment is valid since this means
6731 	 * we have not previously allocated a domain number by using
6732 	 * pci_get_new_domain_nr(); we should also update use_dt_domains to
6733 	 * 1, to indicate that we have just assigned a domain number from
6734 	 * DT.
6735 	 *
6736 	 * If DT domain property value is not valid (ie domain < 0), and we
6737 	 * have not previously assigned a domain number from DT
6738 	 * (use_dt_domains != 1) we should assign a domain number by
6739 	 * using the:
6740 	 *
6741 	 * pci_get_new_domain_nr()
6742 	 *
6743 	 * API and update the use_dt_domains value to keep track of method we
6744 	 * are using to assign domain numbers (use_dt_domains = 0).
6745 	 *
6746 	 * All other combinations imply we have a platform that is trying
6747 	 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
6748 	 * which is a recipe for domain mishandling and it is prevented by
6749 	 * invalidating the domain value (domain = -1) and printing a
6750 	 * corresponding error.
6751 	 */
6752 	if (domain >= 0 && use_dt_domains) {
6753 		use_dt_domains = 1;
6754 	} else if (domain < 0 && use_dt_domains != 1) {
6755 		use_dt_domains = 0;
6756 		domain = pci_get_new_domain_nr();
6757 	} else {
6758 		if (parent)
6759 			pr_err("Node %pOF has ", parent->of_node);
6760 		pr_err("Inconsistent \"linux,pci-domain\" property in DT\n");
6761 		domain = -1;
6762 	}
6763 
6764 	return domain;
6765 }
6766 
6767 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6768 {
6769 	return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6770 			       acpi_pci_bus_find_domain_nr(bus);
6771 }
6772 #endif
6773 
6774 /**
6775  * pci_ext_cfg_avail - can we access extended PCI config space?
6776  *
6777  * Returns 1 if we can access PCI extended config space (offsets
6778  * greater than 0xff). This is the default implementation. Architecture
6779  * implementations can override this.
6780  */
6781 int __weak pci_ext_cfg_avail(void)
6782 {
6783 	return 1;
6784 }
6785 
6786 void __weak pci_fixup_cardbus(struct pci_bus *bus)
6787 {
6788 }
6789 EXPORT_SYMBOL(pci_fixup_cardbus);
6790 
6791 static int __init pci_setup(char *str)
6792 {
6793 	while (str) {
6794 		char *k = strchr(str, ',');
6795 		if (k)
6796 			*k++ = 0;
6797 		if (*str && (str = pcibios_setup(str)) && *str) {
6798 			if (!strcmp(str, "nomsi")) {
6799 				pci_no_msi();
6800 			} else if (!strncmp(str, "noats", 5)) {
6801 				pr_info("PCIe: ATS is disabled\n");
6802 				pcie_ats_disabled = true;
6803 			} else if (!strcmp(str, "noaer")) {
6804 				pci_no_aer();
6805 			} else if (!strcmp(str, "earlydump")) {
6806 				pci_early_dump = true;
6807 			} else if (!strncmp(str, "realloc=", 8)) {
6808 				pci_realloc_get_opt(str + 8);
6809 			} else if (!strncmp(str, "realloc", 7)) {
6810 				pci_realloc_get_opt("on");
6811 			} else if (!strcmp(str, "nodomains")) {
6812 				pci_no_domains();
6813 			} else if (!strncmp(str, "noari", 5)) {
6814 				pcie_ari_disabled = true;
6815 			} else if (!strncmp(str, "cbiosize=", 9)) {
6816 				pci_cardbus_io_size = memparse(str + 9, &str);
6817 			} else if (!strncmp(str, "cbmemsize=", 10)) {
6818 				pci_cardbus_mem_size = memparse(str + 10, &str);
6819 			} else if (!strncmp(str, "resource_alignment=", 19)) {
6820 				resource_alignment_param = str + 19;
6821 			} else if (!strncmp(str, "ecrc=", 5)) {
6822 				pcie_ecrc_get_policy(str + 5);
6823 			} else if (!strncmp(str, "hpiosize=", 9)) {
6824 				pci_hotplug_io_size = memparse(str + 9, &str);
6825 			} else if (!strncmp(str, "hpmmiosize=", 11)) {
6826 				pci_hotplug_mmio_size = memparse(str + 11, &str);
6827 			} else if (!strncmp(str, "hpmmioprefsize=", 15)) {
6828 				pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
6829 			} else if (!strncmp(str, "hpmemsize=", 10)) {
6830 				pci_hotplug_mmio_size = memparse(str + 10, &str);
6831 				pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
6832 			} else if (!strncmp(str, "hpbussize=", 10)) {
6833 				pci_hotplug_bus_size =
6834 					simple_strtoul(str + 10, &str, 0);
6835 				if (pci_hotplug_bus_size > 0xff)
6836 					pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6837 			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6838 				pcie_bus_config = PCIE_BUS_TUNE_OFF;
6839 			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
6840 				pcie_bus_config = PCIE_BUS_SAFE;
6841 			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
6842 				pcie_bus_config = PCIE_BUS_PERFORMANCE;
6843 			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6844 				pcie_bus_config = PCIE_BUS_PEER2PEER;
6845 			} else if (!strncmp(str, "pcie_scan_all", 13)) {
6846 				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6847 			} else if (!strncmp(str, "disable_acs_redir=", 18)) {
6848 				disable_acs_redir_param = str + 18;
6849 			} else {
6850 				pr_err("PCI: Unknown option `%s'\n", str);
6851 			}
6852 		}
6853 		str = k;
6854 	}
6855 	return 0;
6856 }
6857 early_param("pci", pci_setup);
6858 
6859 /*
6860  * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6861  * in pci_setup(), above, to point to data in the __initdata section which
6862  * will be freed after the init sequence is complete. We can't allocate memory
6863  * in pci_setup() because some architectures do not have any memory allocation
6864  * service available during an early_param() call. So we allocate memory and
6865  * copy the variable here before the init section is freed.
6866  *
6867  */
6868 static int __init pci_realloc_setup_params(void)
6869 {
6870 	resource_alignment_param = kstrdup(resource_alignment_param,
6871 					   GFP_KERNEL);
6872 	disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6873 
6874 	return 0;
6875 }
6876 pure_initcall(pci_realloc_setup_params);
6877