1 /* 2 * PCI Bus Services, see include/linux/pci.h for further explanation. 3 * 4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter, 5 * David Mosberger-Tang 6 * 7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz> 8 */ 9 10 #include <linux/acpi.h> 11 #include <linux/kernel.h> 12 #include <linux/delay.h> 13 #include <linux/dmi.h> 14 #include <linux/init.h> 15 #include <linux/of.h> 16 #include <linux/of_pci.h> 17 #include <linux/pci.h> 18 #include <linux/pm.h> 19 #include <linux/slab.h> 20 #include <linux/module.h> 21 #include <linux/spinlock.h> 22 #include <linux/string.h> 23 #include <linux/log2.h> 24 #include <linux/pci-aspm.h> 25 #include <linux/pm_wakeup.h> 26 #include <linux/interrupt.h> 27 #include <linux/device.h> 28 #include <linux/pm_runtime.h> 29 #include <linux/pci_hotplug.h> 30 #include <linux/vmalloc.h> 31 #include <linux/pci-ats.h> 32 #include <asm/setup.h> 33 #include <asm/dma.h> 34 #include <linux/aer.h> 35 #include "pci.h" 36 37 const char *pci_power_names[] = { 38 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown", 39 }; 40 EXPORT_SYMBOL_GPL(pci_power_names); 41 42 int isa_dma_bridge_buggy; 43 EXPORT_SYMBOL(isa_dma_bridge_buggy); 44 45 int pci_pci_problems; 46 EXPORT_SYMBOL(pci_pci_problems); 47 48 unsigned int pci_pm_d3_delay; 49 50 static void pci_pme_list_scan(struct work_struct *work); 51 52 static LIST_HEAD(pci_pme_list); 53 static DEFINE_MUTEX(pci_pme_list_mutex); 54 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan); 55 56 struct pci_pme_device { 57 struct list_head list; 58 struct pci_dev *dev; 59 }; 60 61 #define PME_TIMEOUT 1000 /* How long between PME checks */ 62 63 static void pci_dev_d3_sleep(struct pci_dev *dev) 64 { 65 unsigned int delay = dev->d3_delay; 66 67 if (delay < pci_pm_d3_delay) 68 delay = pci_pm_d3_delay; 69 70 if (delay) 71 msleep(delay); 72 } 73 74 #ifdef CONFIG_PCI_DOMAINS 75 int pci_domains_supported = 1; 76 #endif 77 78 #define DEFAULT_CARDBUS_IO_SIZE (256) 79 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024) 80 /* pci=cbmemsize=nnM,cbiosize=nn can override this */ 81 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE; 82 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE; 83 84 #define DEFAULT_HOTPLUG_IO_SIZE (256) 85 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024) 86 /* pci=hpmemsize=nnM,hpiosize=nn can override this */ 87 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE; 88 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE; 89 90 #define DEFAULT_HOTPLUG_BUS_SIZE 1 91 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 92 93 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT; 94 95 /* 96 * The default CLS is used if arch didn't set CLS explicitly and not 97 * all pci devices agree on the same value. Arch can override either 98 * the dfl or actual value as it sees fit. Don't forget this is 99 * measured in 32-bit words, not bytes. 100 */ 101 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2; 102 u8 pci_cache_line_size; 103 104 /* 105 * If we set up a device for bus mastering, we need to check the latency 106 * timer as certain BIOSes forget to set it properly. 107 */ 108 unsigned int pcibios_max_latency = 255; 109 110 /* If set, the PCIe ARI capability will not be used. */ 111 static bool pcie_ari_disabled; 112 113 /* Disable bridge_d3 for all PCIe ports */ 114 static bool pci_bridge_d3_disable; 115 /* Force bridge_d3 for all PCIe ports */ 116 static bool pci_bridge_d3_force; 117 118 static int __init pcie_port_pm_setup(char *str) 119 { 120 if (!strcmp(str, "off")) 121 pci_bridge_d3_disable = true; 122 else if (!strcmp(str, "force")) 123 pci_bridge_d3_force = true; 124 return 1; 125 } 126 __setup("pcie_port_pm=", pcie_port_pm_setup); 127 128 /** 129 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children 130 * @bus: pointer to PCI bus structure to search 131 * 132 * Given a PCI bus, returns the highest PCI bus number present in the set 133 * including the given PCI bus and its list of child PCI buses. 134 */ 135 unsigned char pci_bus_max_busnr(struct pci_bus *bus) 136 { 137 struct pci_bus *tmp; 138 unsigned char max, n; 139 140 max = bus->busn_res.end; 141 list_for_each_entry(tmp, &bus->children, node) { 142 n = pci_bus_max_busnr(tmp); 143 if (n > max) 144 max = n; 145 } 146 return max; 147 } 148 EXPORT_SYMBOL_GPL(pci_bus_max_busnr); 149 150 #ifdef CONFIG_HAS_IOMEM 151 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar) 152 { 153 struct resource *res = &pdev->resource[bar]; 154 155 /* 156 * Make sure the BAR is actually a memory resource, not an IO resource 157 */ 158 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) { 159 dev_warn(&pdev->dev, "can't ioremap BAR %d: %pR\n", bar, res); 160 return NULL; 161 } 162 return ioremap_nocache(res->start, resource_size(res)); 163 } 164 EXPORT_SYMBOL_GPL(pci_ioremap_bar); 165 166 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar) 167 { 168 /* 169 * Make sure the BAR is actually a memory resource, not an IO resource 170 */ 171 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) { 172 WARN_ON(1); 173 return NULL; 174 } 175 return ioremap_wc(pci_resource_start(pdev, bar), 176 pci_resource_len(pdev, bar)); 177 } 178 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar); 179 #endif 180 181 182 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn, 183 u8 pos, int cap, int *ttl) 184 { 185 u8 id; 186 u16 ent; 187 188 pci_bus_read_config_byte(bus, devfn, pos, &pos); 189 190 while ((*ttl)--) { 191 if (pos < 0x40) 192 break; 193 pos &= ~3; 194 pci_bus_read_config_word(bus, devfn, pos, &ent); 195 196 id = ent & 0xff; 197 if (id == 0xff) 198 break; 199 if (id == cap) 200 return pos; 201 pos = (ent >> 8); 202 } 203 return 0; 204 } 205 206 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn, 207 u8 pos, int cap) 208 { 209 int ttl = PCI_FIND_CAP_TTL; 210 211 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl); 212 } 213 214 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap) 215 { 216 return __pci_find_next_cap(dev->bus, dev->devfn, 217 pos + PCI_CAP_LIST_NEXT, cap); 218 } 219 EXPORT_SYMBOL_GPL(pci_find_next_capability); 220 221 static int __pci_bus_find_cap_start(struct pci_bus *bus, 222 unsigned int devfn, u8 hdr_type) 223 { 224 u16 status; 225 226 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status); 227 if (!(status & PCI_STATUS_CAP_LIST)) 228 return 0; 229 230 switch (hdr_type) { 231 case PCI_HEADER_TYPE_NORMAL: 232 case PCI_HEADER_TYPE_BRIDGE: 233 return PCI_CAPABILITY_LIST; 234 case PCI_HEADER_TYPE_CARDBUS: 235 return PCI_CB_CAPABILITY_LIST; 236 } 237 238 return 0; 239 } 240 241 /** 242 * pci_find_capability - query for devices' capabilities 243 * @dev: PCI device to query 244 * @cap: capability code 245 * 246 * Tell if a device supports a given PCI capability. 247 * Returns the address of the requested capability structure within the 248 * device's PCI configuration space or 0 in case the device does not 249 * support it. Possible values for @cap: 250 * 251 * %PCI_CAP_ID_PM Power Management 252 * %PCI_CAP_ID_AGP Accelerated Graphics Port 253 * %PCI_CAP_ID_VPD Vital Product Data 254 * %PCI_CAP_ID_SLOTID Slot Identification 255 * %PCI_CAP_ID_MSI Message Signalled Interrupts 256 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap 257 * %PCI_CAP_ID_PCIX PCI-X 258 * %PCI_CAP_ID_EXP PCI Express 259 */ 260 int pci_find_capability(struct pci_dev *dev, int cap) 261 { 262 int pos; 263 264 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 265 if (pos) 266 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap); 267 268 return pos; 269 } 270 EXPORT_SYMBOL(pci_find_capability); 271 272 /** 273 * pci_bus_find_capability - query for devices' capabilities 274 * @bus: the PCI bus to query 275 * @devfn: PCI device to query 276 * @cap: capability code 277 * 278 * Like pci_find_capability() but works for pci devices that do not have a 279 * pci_dev structure set up yet. 280 * 281 * Returns the address of the requested capability structure within the 282 * device's PCI configuration space or 0 in case the device does not 283 * support it. 284 */ 285 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap) 286 { 287 int pos; 288 u8 hdr_type; 289 290 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type); 291 292 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f); 293 if (pos) 294 pos = __pci_find_next_cap(bus, devfn, pos, cap); 295 296 return pos; 297 } 298 EXPORT_SYMBOL(pci_bus_find_capability); 299 300 /** 301 * pci_find_next_ext_capability - Find an extended capability 302 * @dev: PCI device to query 303 * @start: address at which to start looking (0 to start at beginning of list) 304 * @cap: capability code 305 * 306 * Returns the address of the next matching extended capability structure 307 * within the device's PCI configuration space or 0 if the device does 308 * not support it. Some capabilities can occur several times, e.g., the 309 * vendor-specific capability, and this provides a way to find them all. 310 */ 311 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap) 312 { 313 u32 header; 314 int ttl; 315 int pos = PCI_CFG_SPACE_SIZE; 316 317 /* minimum 8 bytes per capability */ 318 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8; 319 320 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE) 321 return 0; 322 323 if (start) 324 pos = start; 325 326 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 327 return 0; 328 329 /* 330 * If we have no capabilities, this is indicated by cap ID, 331 * cap version and next pointer all being 0. 332 */ 333 if (header == 0) 334 return 0; 335 336 while (ttl-- > 0) { 337 if (PCI_EXT_CAP_ID(header) == cap && pos != start) 338 return pos; 339 340 pos = PCI_EXT_CAP_NEXT(header); 341 if (pos < PCI_CFG_SPACE_SIZE) 342 break; 343 344 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 345 break; 346 } 347 348 return 0; 349 } 350 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability); 351 352 /** 353 * pci_find_ext_capability - Find an extended capability 354 * @dev: PCI device to query 355 * @cap: capability code 356 * 357 * Returns the address of the requested extended capability structure 358 * within the device's PCI configuration space or 0 if the device does 359 * not support it. Possible values for @cap: 360 * 361 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting 362 * %PCI_EXT_CAP_ID_VC Virtual Channel 363 * %PCI_EXT_CAP_ID_DSN Device Serial Number 364 * %PCI_EXT_CAP_ID_PWR Power Budgeting 365 */ 366 int pci_find_ext_capability(struct pci_dev *dev, int cap) 367 { 368 return pci_find_next_ext_capability(dev, 0, cap); 369 } 370 EXPORT_SYMBOL_GPL(pci_find_ext_capability); 371 372 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap) 373 { 374 int rc, ttl = PCI_FIND_CAP_TTL; 375 u8 cap, mask; 376 377 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST) 378 mask = HT_3BIT_CAP_MASK; 379 else 380 mask = HT_5BIT_CAP_MASK; 381 382 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos, 383 PCI_CAP_ID_HT, &ttl); 384 while (pos) { 385 rc = pci_read_config_byte(dev, pos + 3, &cap); 386 if (rc != PCIBIOS_SUCCESSFUL) 387 return 0; 388 389 if ((cap & mask) == ht_cap) 390 return pos; 391 392 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, 393 pos + PCI_CAP_LIST_NEXT, 394 PCI_CAP_ID_HT, &ttl); 395 } 396 397 return 0; 398 } 399 /** 400 * pci_find_next_ht_capability - query a device's Hypertransport capabilities 401 * @dev: PCI device to query 402 * @pos: Position from which to continue searching 403 * @ht_cap: Hypertransport capability code 404 * 405 * To be used in conjunction with pci_find_ht_capability() to search for 406 * all capabilities matching @ht_cap. @pos should always be a value returned 407 * from pci_find_ht_capability(). 408 * 409 * NB. To be 100% safe against broken PCI devices, the caller should take 410 * steps to avoid an infinite loop. 411 */ 412 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap) 413 { 414 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap); 415 } 416 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability); 417 418 /** 419 * pci_find_ht_capability - query a device's Hypertransport capabilities 420 * @dev: PCI device to query 421 * @ht_cap: Hypertransport capability code 422 * 423 * Tell if a device supports a given Hypertransport capability. 424 * Returns an address within the device's PCI configuration space 425 * or 0 in case the device does not support the request capability. 426 * The address points to the PCI capability, of type PCI_CAP_ID_HT, 427 * which has a Hypertransport capability matching @ht_cap. 428 */ 429 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap) 430 { 431 int pos; 432 433 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 434 if (pos) 435 pos = __pci_find_next_ht_cap(dev, pos, ht_cap); 436 437 return pos; 438 } 439 EXPORT_SYMBOL_GPL(pci_find_ht_capability); 440 441 /** 442 * pci_find_parent_resource - return resource region of parent bus of given region 443 * @dev: PCI device structure contains resources to be searched 444 * @res: child resource record for which parent is sought 445 * 446 * For given resource region of given device, return the resource 447 * region of parent bus the given region is contained in. 448 */ 449 struct resource *pci_find_parent_resource(const struct pci_dev *dev, 450 struct resource *res) 451 { 452 const struct pci_bus *bus = dev->bus; 453 struct resource *r; 454 int i; 455 456 pci_bus_for_each_resource(bus, r, i) { 457 if (!r) 458 continue; 459 if (resource_contains(r, res)) { 460 461 /* 462 * If the window is prefetchable but the BAR is 463 * not, the allocator made a mistake. 464 */ 465 if (r->flags & IORESOURCE_PREFETCH && 466 !(res->flags & IORESOURCE_PREFETCH)) 467 return NULL; 468 469 /* 470 * If we're below a transparent bridge, there may 471 * be both a positively-decoded aperture and a 472 * subtractively-decoded region that contain the BAR. 473 * We want the positively-decoded one, so this depends 474 * on pci_bus_for_each_resource() giving us those 475 * first. 476 */ 477 return r; 478 } 479 } 480 return NULL; 481 } 482 EXPORT_SYMBOL(pci_find_parent_resource); 483 484 /** 485 * pci_find_resource - Return matching PCI device resource 486 * @dev: PCI device to query 487 * @res: Resource to look for 488 * 489 * Goes over standard PCI resources (BARs) and checks if the given resource 490 * is partially or fully contained in any of them. In that case the 491 * matching resource is returned, %NULL otherwise. 492 */ 493 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res) 494 { 495 int i; 496 497 for (i = 0; i < PCI_ROM_RESOURCE; i++) { 498 struct resource *r = &dev->resource[i]; 499 500 if (r->start && resource_contains(r, res)) 501 return r; 502 } 503 504 return NULL; 505 } 506 EXPORT_SYMBOL(pci_find_resource); 507 508 /** 509 * pci_find_pcie_root_port - return PCIe Root Port 510 * @dev: PCI device to query 511 * 512 * Traverse up the parent chain and return the PCIe Root Port PCI Device 513 * for a given PCI Device. 514 */ 515 struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev) 516 { 517 struct pci_dev *bridge, *highest_pcie_bridge = dev; 518 519 bridge = pci_upstream_bridge(dev); 520 while (bridge && pci_is_pcie(bridge)) { 521 highest_pcie_bridge = bridge; 522 bridge = pci_upstream_bridge(bridge); 523 } 524 525 if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT) 526 return NULL; 527 528 return highest_pcie_bridge; 529 } 530 EXPORT_SYMBOL(pci_find_pcie_root_port); 531 532 /** 533 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos 534 * @dev: the PCI device to operate on 535 * @pos: config space offset of status word 536 * @mask: mask of bit(s) to care about in status word 537 * 538 * Return 1 when mask bit(s) in status word clear, 0 otherwise. 539 */ 540 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask) 541 { 542 int i; 543 544 /* Wait for Transaction Pending bit clean */ 545 for (i = 0; i < 4; i++) { 546 u16 status; 547 if (i) 548 msleep((1 << (i - 1)) * 100); 549 550 pci_read_config_word(dev, pos, &status); 551 if (!(status & mask)) 552 return 1; 553 } 554 555 return 0; 556 } 557 558 /** 559 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up) 560 * @dev: PCI device to have its BARs restored 561 * 562 * Restore the BAR values for a given device, so as to make it 563 * accessible by its driver. 564 */ 565 static void pci_restore_bars(struct pci_dev *dev) 566 { 567 int i; 568 569 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) 570 pci_update_resource(dev, i); 571 } 572 573 static const struct pci_platform_pm_ops *pci_platform_pm; 574 575 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops) 576 { 577 if (!ops->is_manageable || !ops->set_state || !ops->get_state || 578 !ops->choose_state || !ops->set_wakeup || !ops->need_resume) 579 return -EINVAL; 580 pci_platform_pm = ops; 581 return 0; 582 } 583 584 static inline bool platform_pci_power_manageable(struct pci_dev *dev) 585 { 586 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false; 587 } 588 589 static inline int platform_pci_set_power_state(struct pci_dev *dev, 590 pci_power_t t) 591 { 592 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS; 593 } 594 595 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev) 596 { 597 return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN; 598 } 599 600 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev) 601 { 602 return pci_platform_pm ? 603 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR; 604 } 605 606 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable) 607 { 608 return pci_platform_pm ? 609 pci_platform_pm->set_wakeup(dev, enable) : -ENODEV; 610 } 611 612 static inline bool platform_pci_need_resume(struct pci_dev *dev) 613 { 614 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false; 615 } 616 617 /** 618 * pci_raw_set_power_state - Use PCI PM registers to set the power state of 619 * given PCI device 620 * @dev: PCI device to handle. 621 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 622 * 623 * RETURN VALUE: 624 * -EINVAL if the requested state is invalid. 625 * -EIO if device does not support PCI PM or its PM capabilities register has a 626 * wrong version, or device doesn't support the requested state. 627 * 0 if device already is in the requested state. 628 * 0 if device's power state has been successfully changed. 629 */ 630 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state) 631 { 632 u16 pmcsr; 633 bool need_restore = false; 634 635 /* Check if we're already there */ 636 if (dev->current_state == state) 637 return 0; 638 639 if (!dev->pm_cap) 640 return -EIO; 641 642 if (state < PCI_D0 || state > PCI_D3hot) 643 return -EINVAL; 644 645 /* Validate current state: 646 * Can enter D0 from any state, but if we can only go deeper 647 * to sleep if we're already in a low power state 648 */ 649 if (state != PCI_D0 && dev->current_state <= PCI_D3cold 650 && dev->current_state > state) { 651 dev_err(&dev->dev, "invalid power transition (from state %d to %d)\n", 652 dev->current_state, state); 653 return -EINVAL; 654 } 655 656 /* check if this device supports the desired state */ 657 if ((state == PCI_D1 && !dev->d1_support) 658 || (state == PCI_D2 && !dev->d2_support)) 659 return -EIO; 660 661 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 662 663 /* If we're (effectively) in D3, force entire word to 0. 664 * This doesn't affect PME_Status, disables PME_En, and 665 * sets PowerState to 0. 666 */ 667 switch (dev->current_state) { 668 case PCI_D0: 669 case PCI_D1: 670 case PCI_D2: 671 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 672 pmcsr |= state; 673 break; 674 case PCI_D3hot: 675 case PCI_D3cold: 676 case PCI_UNKNOWN: /* Boot-up */ 677 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot 678 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET)) 679 need_restore = true; 680 /* Fall-through: force to D0 */ 681 default: 682 pmcsr = 0; 683 break; 684 } 685 686 /* enter specified state */ 687 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 688 689 /* Mandatory power management transition delays */ 690 /* see PCI PM 1.1 5.6.1 table 18 */ 691 if (state == PCI_D3hot || dev->current_state == PCI_D3hot) 692 pci_dev_d3_sleep(dev); 693 else if (state == PCI_D2 || dev->current_state == PCI_D2) 694 udelay(PCI_PM_D2_DELAY); 695 696 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 697 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 698 if (dev->current_state != state && printk_ratelimit()) 699 dev_info(&dev->dev, "Refused to change power state, currently in D%d\n", 700 dev->current_state); 701 702 /* 703 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT 704 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning 705 * from D3hot to D0 _may_ perform an internal reset, thereby 706 * going to "D0 Uninitialized" rather than "D0 Initialized". 707 * For example, at least some versions of the 3c905B and the 708 * 3c556B exhibit this behaviour. 709 * 710 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave 711 * devices in a D3hot state at boot. Consequently, we need to 712 * restore at least the BARs so that the device will be 713 * accessible to its driver. 714 */ 715 if (need_restore) 716 pci_restore_bars(dev); 717 718 if (dev->bus->self) 719 pcie_aspm_pm_state_change(dev->bus->self); 720 721 return 0; 722 } 723 724 /** 725 * pci_update_current_state - Read power state of given device and cache it 726 * @dev: PCI device to handle. 727 * @state: State to cache in case the device doesn't have the PM capability 728 * 729 * The power state is read from the PMCSR register, which however is 730 * inaccessible in D3cold. The platform firmware is therefore queried first 731 * to detect accessibility of the register. In case the platform firmware 732 * reports an incorrect state or the device isn't power manageable by the 733 * platform at all, we try to detect D3cold by testing accessibility of the 734 * vendor ID in config space. 735 */ 736 void pci_update_current_state(struct pci_dev *dev, pci_power_t state) 737 { 738 if (platform_pci_get_power_state(dev) == PCI_D3cold || 739 !pci_device_is_present(dev)) { 740 dev->current_state = PCI_D3cold; 741 } else if (dev->pm_cap) { 742 u16 pmcsr; 743 744 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 745 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 746 } else { 747 dev->current_state = state; 748 } 749 } 750 751 /** 752 * pci_power_up - Put the given device into D0 forcibly 753 * @dev: PCI device to power up 754 */ 755 void pci_power_up(struct pci_dev *dev) 756 { 757 if (platform_pci_power_manageable(dev)) 758 platform_pci_set_power_state(dev, PCI_D0); 759 760 pci_raw_set_power_state(dev, PCI_D0); 761 pci_update_current_state(dev, PCI_D0); 762 } 763 764 /** 765 * pci_platform_power_transition - Use platform to change device power state 766 * @dev: PCI device to handle. 767 * @state: State to put the device into. 768 */ 769 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state) 770 { 771 int error; 772 773 if (platform_pci_power_manageable(dev)) { 774 error = platform_pci_set_power_state(dev, state); 775 if (!error) 776 pci_update_current_state(dev, state); 777 } else 778 error = -ENODEV; 779 780 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */ 781 dev->current_state = PCI_D0; 782 783 return error; 784 } 785 786 /** 787 * pci_wakeup - Wake up a PCI device 788 * @pci_dev: Device to handle. 789 * @ign: ignored parameter 790 */ 791 static int pci_wakeup(struct pci_dev *pci_dev, void *ign) 792 { 793 pci_wakeup_event(pci_dev); 794 pm_request_resume(&pci_dev->dev); 795 return 0; 796 } 797 798 /** 799 * pci_wakeup_bus - Walk given bus and wake up devices on it 800 * @bus: Top bus of the subtree to walk. 801 */ 802 static void pci_wakeup_bus(struct pci_bus *bus) 803 { 804 if (bus) 805 pci_walk_bus(bus, pci_wakeup, NULL); 806 } 807 808 /** 809 * __pci_start_power_transition - Start power transition of a PCI device 810 * @dev: PCI device to handle. 811 * @state: State to put the device into. 812 */ 813 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state) 814 { 815 if (state == PCI_D0) { 816 pci_platform_power_transition(dev, PCI_D0); 817 /* 818 * Mandatory power management transition delays, see 819 * PCI Express Base Specification Revision 2.0 Section 820 * 6.6.1: Conventional Reset. Do not delay for 821 * devices powered on/off by corresponding bridge, 822 * because have already delayed for the bridge. 823 */ 824 if (dev->runtime_d3cold) { 825 if (dev->d3cold_delay) 826 msleep(dev->d3cold_delay); 827 /* 828 * When powering on a bridge from D3cold, the 829 * whole hierarchy may be powered on into 830 * D0uninitialized state, resume them to give 831 * them a chance to suspend again 832 */ 833 pci_wakeup_bus(dev->subordinate); 834 } 835 } 836 } 837 838 /** 839 * __pci_dev_set_current_state - Set current state of a PCI device 840 * @dev: Device to handle 841 * @data: pointer to state to be set 842 */ 843 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data) 844 { 845 pci_power_t state = *(pci_power_t *)data; 846 847 dev->current_state = state; 848 return 0; 849 } 850 851 /** 852 * __pci_bus_set_current_state - Walk given bus and set current state of devices 853 * @bus: Top bus of the subtree to walk. 854 * @state: state to be set 855 */ 856 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state) 857 { 858 if (bus) 859 pci_walk_bus(bus, __pci_dev_set_current_state, &state); 860 } 861 862 /** 863 * __pci_complete_power_transition - Complete power transition of a PCI device 864 * @dev: PCI device to handle. 865 * @state: State to put the device into. 866 * 867 * This function should not be called directly by device drivers. 868 */ 869 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state) 870 { 871 int ret; 872 873 if (state <= PCI_D0) 874 return -EINVAL; 875 ret = pci_platform_power_transition(dev, state); 876 /* Power off the bridge may power off the whole hierarchy */ 877 if (!ret && state == PCI_D3cold) 878 __pci_bus_set_current_state(dev->subordinate, PCI_D3cold); 879 return ret; 880 } 881 EXPORT_SYMBOL_GPL(__pci_complete_power_transition); 882 883 /** 884 * pci_set_power_state - Set the power state of a PCI device 885 * @dev: PCI device to handle. 886 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 887 * 888 * Transition a device to a new power state, using the platform firmware and/or 889 * the device's PCI PM registers. 890 * 891 * RETURN VALUE: 892 * -EINVAL if the requested state is invalid. 893 * -EIO if device does not support PCI PM or its PM capabilities register has a 894 * wrong version, or device doesn't support the requested state. 895 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported. 896 * 0 if device already is in the requested state. 897 * 0 if the transition is to D3 but D3 is not supported. 898 * 0 if device's power state has been successfully changed. 899 */ 900 int pci_set_power_state(struct pci_dev *dev, pci_power_t state) 901 { 902 int error; 903 904 /* bound the state we're entering */ 905 if (state > PCI_D3cold) 906 state = PCI_D3cold; 907 else if (state < PCI_D0) 908 state = PCI_D0; 909 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev)) 910 /* 911 * If the device or the parent bridge do not support PCI PM, 912 * ignore the request if we're doing anything other than putting 913 * it into D0 (which would only happen on boot). 914 */ 915 return 0; 916 917 /* Check if we're already there */ 918 if (dev->current_state == state) 919 return 0; 920 921 __pci_start_power_transition(dev, state); 922 923 /* This device is quirked not to be put into D3, so 924 don't put it in D3 */ 925 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3)) 926 return 0; 927 928 /* 929 * To put device in D3cold, we put device into D3hot in native 930 * way, then put device into D3cold with platform ops 931 */ 932 error = pci_raw_set_power_state(dev, state > PCI_D3hot ? 933 PCI_D3hot : state); 934 935 if (!__pci_complete_power_transition(dev, state)) 936 error = 0; 937 938 return error; 939 } 940 EXPORT_SYMBOL(pci_set_power_state); 941 942 /** 943 * pci_choose_state - Choose the power state of a PCI device 944 * @dev: PCI device to be suspended 945 * @state: target sleep state for the whole system. This is the value 946 * that is passed to suspend() function. 947 * 948 * Returns PCI power state suitable for given device and given system 949 * message. 950 */ 951 952 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state) 953 { 954 pci_power_t ret; 955 956 if (!dev->pm_cap) 957 return PCI_D0; 958 959 ret = platform_pci_choose_state(dev); 960 if (ret != PCI_POWER_ERROR) 961 return ret; 962 963 switch (state.event) { 964 case PM_EVENT_ON: 965 return PCI_D0; 966 case PM_EVENT_FREEZE: 967 case PM_EVENT_PRETHAW: 968 /* REVISIT both freeze and pre-thaw "should" use D0 */ 969 case PM_EVENT_SUSPEND: 970 case PM_EVENT_HIBERNATE: 971 return PCI_D3hot; 972 default: 973 dev_info(&dev->dev, "unrecognized suspend event %d\n", 974 state.event); 975 BUG(); 976 } 977 return PCI_D0; 978 } 979 EXPORT_SYMBOL(pci_choose_state); 980 981 #define PCI_EXP_SAVE_REGS 7 982 983 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev, 984 u16 cap, bool extended) 985 { 986 struct pci_cap_saved_state *tmp; 987 988 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) { 989 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap) 990 return tmp; 991 } 992 return NULL; 993 } 994 995 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap) 996 { 997 return _pci_find_saved_cap(dev, cap, false); 998 } 999 1000 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap) 1001 { 1002 return _pci_find_saved_cap(dev, cap, true); 1003 } 1004 1005 static int pci_save_pcie_state(struct pci_dev *dev) 1006 { 1007 int i = 0; 1008 struct pci_cap_saved_state *save_state; 1009 u16 *cap; 1010 1011 if (!pci_is_pcie(dev)) 1012 return 0; 1013 1014 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1015 if (!save_state) { 1016 dev_err(&dev->dev, "buffer not found in %s\n", __func__); 1017 return -ENOMEM; 1018 } 1019 1020 cap = (u16 *)&save_state->cap.data[0]; 1021 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]); 1022 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]); 1023 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]); 1024 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]); 1025 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]); 1026 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]); 1027 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]); 1028 1029 return 0; 1030 } 1031 1032 static void pci_restore_pcie_state(struct pci_dev *dev) 1033 { 1034 int i = 0; 1035 struct pci_cap_saved_state *save_state; 1036 u16 *cap; 1037 1038 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1039 if (!save_state) 1040 return; 1041 1042 cap = (u16 *)&save_state->cap.data[0]; 1043 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]); 1044 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]); 1045 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]); 1046 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]); 1047 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]); 1048 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]); 1049 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]); 1050 } 1051 1052 1053 static int pci_save_pcix_state(struct pci_dev *dev) 1054 { 1055 int pos; 1056 struct pci_cap_saved_state *save_state; 1057 1058 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1059 if (!pos) 1060 return 0; 1061 1062 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1063 if (!save_state) { 1064 dev_err(&dev->dev, "buffer not found in %s\n", __func__); 1065 return -ENOMEM; 1066 } 1067 1068 pci_read_config_word(dev, pos + PCI_X_CMD, 1069 (u16 *)save_state->cap.data); 1070 1071 return 0; 1072 } 1073 1074 static void pci_restore_pcix_state(struct pci_dev *dev) 1075 { 1076 int i = 0, pos; 1077 struct pci_cap_saved_state *save_state; 1078 u16 *cap; 1079 1080 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1081 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1082 if (!save_state || !pos) 1083 return; 1084 cap = (u16 *)&save_state->cap.data[0]; 1085 1086 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]); 1087 } 1088 1089 1090 /** 1091 * pci_save_state - save the PCI configuration space of a device before suspending 1092 * @dev: - PCI device that we're dealing with 1093 */ 1094 int pci_save_state(struct pci_dev *dev) 1095 { 1096 int i; 1097 /* XXX: 100% dword access ok here? */ 1098 for (i = 0; i < 16; i++) 1099 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]); 1100 dev->state_saved = true; 1101 1102 i = pci_save_pcie_state(dev); 1103 if (i != 0) 1104 return i; 1105 1106 i = pci_save_pcix_state(dev); 1107 if (i != 0) 1108 return i; 1109 1110 return pci_save_vc_state(dev); 1111 } 1112 EXPORT_SYMBOL(pci_save_state); 1113 1114 static void pci_restore_config_dword(struct pci_dev *pdev, int offset, 1115 u32 saved_val, int retry) 1116 { 1117 u32 val; 1118 1119 pci_read_config_dword(pdev, offset, &val); 1120 if (val == saved_val) 1121 return; 1122 1123 for (;;) { 1124 dev_dbg(&pdev->dev, "restoring config space at offset %#x (was %#x, writing %#x)\n", 1125 offset, val, saved_val); 1126 pci_write_config_dword(pdev, offset, saved_val); 1127 if (retry-- <= 0) 1128 return; 1129 1130 pci_read_config_dword(pdev, offset, &val); 1131 if (val == saved_val) 1132 return; 1133 1134 mdelay(1); 1135 } 1136 } 1137 1138 static void pci_restore_config_space_range(struct pci_dev *pdev, 1139 int start, int end, int retry) 1140 { 1141 int index; 1142 1143 for (index = end; index >= start; index--) 1144 pci_restore_config_dword(pdev, 4 * index, 1145 pdev->saved_config_space[index], 1146 retry); 1147 } 1148 1149 static void pci_restore_config_space(struct pci_dev *pdev) 1150 { 1151 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) { 1152 pci_restore_config_space_range(pdev, 10, 15, 0); 1153 /* Restore BARs before the command register. */ 1154 pci_restore_config_space_range(pdev, 4, 9, 10); 1155 pci_restore_config_space_range(pdev, 0, 3, 0); 1156 } else { 1157 pci_restore_config_space_range(pdev, 0, 15, 0); 1158 } 1159 } 1160 1161 /** 1162 * pci_restore_state - Restore the saved state of a PCI device 1163 * @dev: - PCI device that we're dealing with 1164 */ 1165 void pci_restore_state(struct pci_dev *dev) 1166 { 1167 if (!dev->state_saved) 1168 return; 1169 1170 /* PCI Express register must be restored first */ 1171 pci_restore_pcie_state(dev); 1172 pci_restore_pasid_state(dev); 1173 pci_restore_pri_state(dev); 1174 pci_restore_ats_state(dev); 1175 pci_restore_vc_state(dev); 1176 1177 pci_cleanup_aer_error_status_regs(dev); 1178 1179 pci_restore_config_space(dev); 1180 1181 pci_restore_pcix_state(dev); 1182 pci_restore_msi_state(dev); 1183 1184 /* Restore ACS and IOV configuration state */ 1185 pci_enable_acs(dev); 1186 pci_restore_iov_state(dev); 1187 1188 dev->state_saved = false; 1189 } 1190 EXPORT_SYMBOL(pci_restore_state); 1191 1192 struct pci_saved_state { 1193 u32 config_space[16]; 1194 struct pci_cap_saved_data cap[0]; 1195 }; 1196 1197 /** 1198 * pci_store_saved_state - Allocate and return an opaque struct containing 1199 * the device saved state. 1200 * @dev: PCI device that we're dealing with 1201 * 1202 * Return NULL if no state or error. 1203 */ 1204 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev) 1205 { 1206 struct pci_saved_state *state; 1207 struct pci_cap_saved_state *tmp; 1208 struct pci_cap_saved_data *cap; 1209 size_t size; 1210 1211 if (!dev->state_saved) 1212 return NULL; 1213 1214 size = sizeof(*state) + sizeof(struct pci_cap_saved_data); 1215 1216 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) 1217 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1218 1219 state = kzalloc(size, GFP_KERNEL); 1220 if (!state) 1221 return NULL; 1222 1223 memcpy(state->config_space, dev->saved_config_space, 1224 sizeof(state->config_space)); 1225 1226 cap = state->cap; 1227 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) { 1228 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1229 memcpy(cap, &tmp->cap, len); 1230 cap = (struct pci_cap_saved_data *)((u8 *)cap + len); 1231 } 1232 /* Empty cap_save terminates list */ 1233 1234 return state; 1235 } 1236 EXPORT_SYMBOL_GPL(pci_store_saved_state); 1237 1238 /** 1239 * pci_load_saved_state - Reload the provided save state into struct pci_dev. 1240 * @dev: PCI device that we're dealing with 1241 * @state: Saved state returned from pci_store_saved_state() 1242 */ 1243 int pci_load_saved_state(struct pci_dev *dev, 1244 struct pci_saved_state *state) 1245 { 1246 struct pci_cap_saved_data *cap; 1247 1248 dev->state_saved = false; 1249 1250 if (!state) 1251 return 0; 1252 1253 memcpy(dev->saved_config_space, state->config_space, 1254 sizeof(state->config_space)); 1255 1256 cap = state->cap; 1257 while (cap->size) { 1258 struct pci_cap_saved_state *tmp; 1259 1260 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended); 1261 if (!tmp || tmp->cap.size != cap->size) 1262 return -EINVAL; 1263 1264 memcpy(tmp->cap.data, cap->data, tmp->cap.size); 1265 cap = (struct pci_cap_saved_data *)((u8 *)cap + 1266 sizeof(struct pci_cap_saved_data) + cap->size); 1267 } 1268 1269 dev->state_saved = true; 1270 return 0; 1271 } 1272 EXPORT_SYMBOL_GPL(pci_load_saved_state); 1273 1274 /** 1275 * pci_load_and_free_saved_state - Reload the save state pointed to by state, 1276 * and free the memory allocated for it. 1277 * @dev: PCI device that we're dealing with 1278 * @state: Pointer to saved state returned from pci_store_saved_state() 1279 */ 1280 int pci_load_and_free_saved_state(struct pci_dev *dev, 1281 struct pci_saved_state **state) 1282 { 1283 int ret = pci_load_saved_state(dev, *state); 1284 kfree(*state); 1285 *state = NULL; 1286 return ret; 1287 } 1288 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state); 1289 1290 int __weak pcibios_enable_device(struct pci_dev *dev, int bars) 1291 { 1292 return pci_enable_resources(dev, bars); 1293 } 1294 1295 static int do_pci_enable_device(struct pci_dev *dev, int bars) 1296 { 1297 int err; 1298 struct pci_dev *bridge; 1299 u16 cmd; 1300 u8 pin; 1301 1302 err = pci_set_power_state(dev, PCI_D0); 1303 if (err < 0 && err != -EIO) 1304 return err; 1305 1306 bridge = pci_upstream_bridge(dev); 1307 if (bridge) 1308 pcie_aspm_powersave_config_link(bridge); 1309 1310 err = pcibios_enable_device(dev, bars); 1311 if (err < 0) 1312 return err; 1313 pci_fixup_device(pci_fixup_enable, dev); 1314 1315 if (dev->msi_enabled || dev->msix_enabled) 1316 return 0; 1317 1318 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin); 1319 if (pin) { 1320 pci_read_config_word(dev, PCI_COMMAND, &cmd); 1321 if (cmd & PCI_COMMAND_INTX_DISABLE) 1322 pci_write_config_word(dev, PCI_COMMAND, 1323 cmd & ~PCI_COMMAND_INTX_DISABLE); 1324 } 1325 1326 return 0; 1327 } 1328 1329 /** 1330 * pci_reenable_device - Resume abandoned device 1331 * @dev: PCI device to be resumed 1332 * 1333 * Note this function is a backend of pci_default_resume and is not supposed 1334 * to be called by normal code, write proper resume handler and use it instead. 1335 */ 1336 int pci_reenable_device(struct pci_dev *dev) 1337 { 1338 if (pci_is_enabled(dev)) 1339 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1); 1340 return 0; 1341 } 1342 EXPORT_SYMBOL(pci_reenable_device); 1343 1344 static void pci_enable_bridge(struct pci_dev *dev) 1345 { 1346 struct pci_dev *bridge; 1347 int retval; 1348 1349 bridge = pci_upstream_bridge(dev); 1350 if (bridge) 1351 pci_enable_bridge(bridge); 1352 1353 if (pci_is_enabled(dev)) { 1354 if (!dev->is_busmaster) 1355 pci_set_master(dev); 1356 return; 1357 } 1358 1359 retval = pci_enable_device(dev); 1360 if (retval) 1361 dev_err(&dev->dev, "Error enabling bridge (%d), continuing\n", 1362 retval); 1363 pci_set_master(dev); 1364 } 1365 1366 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags) 1367 { 1368 struct pci_dev *bridge; 1369 int err; 1370 int i, bars = 0; 1371 1372 /* 1373 * Power state could be unknown at this point, either due to a fresh 1374 * boot or a device removal call. So get the current power state 1375 * so that things like MSI message writing will behave as expected 1376 * (e.g. if the device really is in D0 at enable time). 1377 */ 1378 if (dev->pm_cap) { 1379 u16 pmcsr; 1380 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1381 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 1382 } 1383 1384 if (atomic_inc_return(&dev->enable_cnt) > 1) 1385 return 0; /* already enabled */ 1386 1387 bridge = pci_upstream_bridge(dev); 1388 if (bridge) 1389 pci_enable_bridge(bridge); 1390 1391 /* only skip sriov related */ 1392 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 1393 if (dev->resource[i].flags & flags) 1394 bars |= (1 << i); 1395 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++) 1396 if (dev->resource[i].flags & flags) 1397 bars |= (1 << i); 1398 1399 err = do_pci_enable_device(dev, bars); 1400 if (err < 0) 1401 atomic_dec(&dev->enable_cnt); 1402 return err; 1403 } 1404 1405 /** 1406 * pci_enable_device_io - Initialize a device for use with IO space 1407 * @dev: PCI device to be initialized 1408 * 1409 * Initialize device before it's used by a driver. Ask low-level code 1410 * to enable I/O resources. Wake up the device if it was suspended. 1411 * Beware, this function can fail. 1412 */ 1413 int pci_enable_device_io(struct pci_dev *dev) 1414 { 1415 return pci_enable_device_flags(dev, IORESOURCE_IO); 1416 } 1417 EXPORT_SYMBOL(pci_enable_device_io); 1418 1419 /** 1420 * pci_enable_device_mem - Initialize a device for use with Memory space 1421 * @dev: PCI device to be initialized 1422 * 1423 * Initialize device before it's used by a driver. Ask low-level code 1424 * to enable Memory resources. Wake up the device if it was suspended. 1425 * Beware, this function can fail. 1426 */ 1427 int pci_enable_device_mem(struct pci_dev *dev) 1428 { 1429 return pci_enable_device_flags(dev, IORESOURCE_MEM); 1430 } 1431 EXPORT_SYMBOL(pci_enable_device_mem); 1432 1433 /** 1434 * pci_enable_device - Initialize device before it's used by a driver. 1435 * @dev: PCI device to be initialized 1436 * 1437 * Initialize device before it's used by a driver. Ask low-level code 1438 * to enable I/O and memory. Wake up the device if it was suspended. 1439 * Beware, this function can fail. 1440 * 1441 * Note we don't actually enable the device many times if we call 1442 * this function repeatedly (we just increment the count). 1443 */ 1444 int pci_enable_device(struct pci_dev *dev) 1445 { 1446 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO); 1447 } 1448 EXPORT_SYMBOL(pci_enable_device); 1449 1450 /* 1451 * Managed PCI resources. This manages device on/off, intx/msi/msix 1452 * on/off and BAR regions. pci_dev itself records msi/msix status, so 1453 * there's no need to track it separately. pci_devres is initialized 1454 * when a device is enabled using managed PCI device enable interface. 1455 */ 1456 struct pci_devres { 1457 unsigned int enabled:1; 1458 unsigned int pinned:1; 1459 unsigned int orig_intx:1; 1460 unsigned int restore_intx:1; 1461 unsigned int mwi:1; 1462 u32 region_mask; 1463 }; 1464 1465 static void pcim_release(struct device *gendev, void *res) 1466 { 1467 struct pci_dev *dev = to_pci_dev(gendev); 1468 struct pci_devres *this = res; 1469 int i; 1470 1471 if (dev->msi_enabled) 1472 pci_disable_msi(dev); 1473 if (dev->msix_enabled) 1474 pci_disable_msix(dev); 1475 1476 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) 1477 if (this->region_mask & (1 << i)) 1478 pci_release_region(dev, i); 1479 1480 if (this->mwi) 1481 pci_clear_mwi(dev); 1482 1483 if (this->restore_intx) 1484 pci_intx(dev, this->orig_intx); 1485 1486 if (this->enabled && !this->pinned) 1487 pci_disable_device(dev); 1488 } 1489 1490 static struct pci_devres *get_pci_dr(struct pci_dev *pdev) 1491 { 1492 struct pci_devres *dr, *new_dr; 1493 1494 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL); 1495 if (dr) 1496 return dr; 1497 1498 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL); 1499 if (!new_dr) 1500 return NULL; 1501 return devres_get(&pdev->dev, new_dr, NULL, NULL); 1502 } 1503 1504 static struct pci_devres *find_pci_dr(struct pci_dev *pdev) 1505 { 1506 if (pci_is_managed(pdev)) 1507 return devres_find(&pdev->dev, pcim_release, NULL, NULL); 1508 return NULL; 1509 } 1510 1511 /** 1512 * pcim_enable_device - Managed pci_enable_device() 1513 * @pdev: PCI device to be initialized 1514 * 1515 * Managed pci_enable_device(). 1516 */ 1517 int pcim_enable_device(struct pci_dev *pdev) 1518 { 1519 struct pci_devres *dr; 1520 int rc; 1521 1522 dr = get_pci_dr(pdev); 1523 if (unlikely(!dr)) 1524 return -ENOMEM; 1525 if (dr->enabled) 1526 return 0; 1527 1528 rc = pci_enable_device(pdev); 1529 if (!rc) { 1530 pdev->is_managed = 1; 1531 dr->enabled = 1; 1532 } 1533 return rc; 1534 } 1535 EXPORT_SYMBOL(pcim_enable_device); 1536 1537 /** 1538 * pcim_pin_device - Pin managed PCI device 1539 * @pdev: PCI device to pin 1540 * 1541 * Pin managed PCI device @pdev. Pinned device won't be disabled on 1542 * driver detach. @pdev must have been enabled with 1543 * pcim_enable_device(). 1544 */ 1545 void pcim_pin_device(struct pci_dev *pdev) 1546 { 1547 struct pci_devres *dr; 1548 1549 dr = find_pci_dr(pdev); 1550 WARN_ON(!dr || !dr->enabled); 1551 if (dr) 1552 dr->pinned = 1; 1553 } 1554 EXPORT_SYMBOL(pcim_pin_device); 1555 1556 /* 1557 * pcibios_add_device - provide arch specific hooks when adding device dev 1558 * @dev: the PCI device being added 1559 * 1560 * Permits the platform to provide architecture specific functionality when 1561 * devices are added. This is the default implementation. Architecture 1562 * implementations can override this. 1563 */ 1564 int __weak pcibios_add_device(struct pci_dev *dev) 1565 { 1566 return 0; 1567 } 1568 1569 /** 1570 * pcibios_release_device - provide arch specific hooks when releasing device dev 1571 * @dev: the PCI device being released 1572 * 1573 * Permits the platform to provide architecture specific functionality when 1574 * devices are released. This is the default implementation. Architecture 1575 * implementations can override this. 1576 */ 1577 void __weak pcibios_release_device(struct pci_dev *dev) {} 1578 1579 /** 1580 * pcibios_disable_device - disable arch specific PCI resources for device dev 1581 * @dev: the PCI device to disable 1582 * 1583 * Disables architecture specific PCI resources for the device. This 1584 * is the default implementation. Architecture implementations can 1585 * override this. 1586 */ 1587 void __weak pcibios_disable_device(struct pci_dev *dev) {} 1588 1589 /** 1590 * pcibios_penalize_isa_irq - penalize an ISA IRQ 1591 * @irq: ISA IRQ to penalize 1592 * @active: IRQ active or not 1593 * 1594 * Permits the platform to provide architecture-specific functionality when 1595 * penalizing ISA IRQs. This is the default implementation. Architecture 1596 * implementations can override this. 1597 */ 1598 void __weak pcibios_penalize_isa_irq(int irq, int active) {} 1599 1600 static void do_pci_disable_device(struct pci_dev *dev) 1601 { 1602 u16 pci_command; 1603 1604 pci_read_config_word(dev, PCI_COMMAND, &pci_command); 1605 if (pci_command & PCI_COMMAND_MASTER) { 1606 pci_command &= ~PCI_COMMAND_MASTER; 1607 pci_write_config_word(dev, PCI_COMMAND, pci_command); 1608 } 1609 1610 pcibios_disable_device(dev); 1611 } 1612 1613 /** 1614 * pci_disable_enabled_device - Disable device without updating enable_cnt 1615 * @dev: PCI device to disable 1616 * 1617 * NOTE: This function is a backend of PCI power management routines and is 1618 * not supposed to be called drivers. 1619 */ 1620 void pci_disable_enabled_device(struct pci_dev *dev) 1621 { 1622 if (pci_is_enabled(dev)) 1623 do_pci_disable_device(dev); 1624 } 1625 1626 /** 1627 * pci_disable_device - Disable PCI device after use 1628 * @dev: PCI device to be disabled 1629 * 1630 * Signal to the system that the PCI device is not in use by the system 1631 * anymore. This only involves disabling PCI bus-mastering, if active. 1632 * 1633 * Note we don't actually disable the device until all callers of 1634 * pci_enable_device() have called pci_disable_device(). 1635 */ 1636 void pci_disable_device(struct pci_dev *dev) 1637 { 1638 struct pci_devres *dr; 1639 1640 dr = find_pci_dr(dev); 1641 if (dr) 1642 dr->enabled = 0; 1643 1644 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0, 1645 "disabling already-disabled device"); 1646 1647 if (atomic_dec_return(&dev->enable_cnt) != 0) 1648 return; 1649 1650 do_pci_disable_device(dev); 1651 1652 dev->is_busmaster = 0; 1653 } 1654 EXPORT_SYMBOL(pci_disable_device); 1655 1656 /** 1657 * pcibios_set_pcie_reset_state - set reset state for device dev 1658 * @dev: the PCIe device reset 1659 * @state: Reset state to enter into 1660 * 1661 * 1662 * Sets the PCIe reset state for the device. This is the default 1663 * implementation. Architecture implementations can override this. 1664 */ 1665 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev, 1666 enum pcie_reset_state state) 1667 { 1668 return -EINVAL; 1669 } 1670 1671 /** 1672 * pci_set_pcie_reset_state - set reset state for device dev 1673 * @dev: the PCIe device reset 1674 * @state: Reset state to enter into 1675 * 1676 * 1677 * Sets the PCI reset state for the device. 1678 */ 1679 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state) 1680 { 1681 return pcibios_set_pcie_reset_state(dev, state); 1682 } 1683 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state); 1684 1685 /** 1686 * pci_check_pme_status - Check if given device has generated PME. 1687 * @dev: Device to check. 1688 * 1689 * Check the PME status of the device and if set, clear it and clear PME enable 1690 * (if set). Return 'true' if PME status and PME enable were both set or 1691 * 'false' otherwise. 1692 */ 1693 bool pci_check_pme_status(struct pci_dev *dev) 1694 { 1695 int pmcsr_pos; 1696 u16 pmcsr; 1697 bool ret = false; 1698 1699 if (!dev->pm_cap) 1700 return false; 1701 1702 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL; 1703 pci_read_config_word(dev, pmcsr_pos, &pmcsr); 1704 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS)) 1705 return false; 1706 1707 /* Clear PME status. */ 1708 pmcsr |= PCI_PM_CTRL_PME_STATUS; 1709 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) { 1710 /* Disable PME to avoid interrupt flood. */ 1711 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 1712 ret = true; 1713 } 1714 1715 pci_write_config_word(dev, pmcsr_pos, pmcsr); 1716 1717 return ret; 1718 } 1719 1720 /** 1721 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set. 1722 * @dev: Device to handle. 1723 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag. 1724 * 1725 * Check if @dev has generated PME and queue a resume request for it in that 1726 * case. 1727 */ 1728 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset) 1729 { 1730 if (pme_poll_reset && dev->pme_poll) 1731 dev->pme_poll = false; 1732 1733 if (pci_check_pme_status(dev)) { 1734 pci_wakeup_event(dev); 1735 pm_request_resume(&dev->dev); 1736 } 1737 return 0; 1738 } 1739 1740 /** 1741 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary. 1742 * @bus: Top bus of the subtree to walk. 1743 */ 1744 void pci_pme_wakeup_bus(struct pci_bus *bus) 1745 { 1746 if (bus) 1747 pci_walk_bus(bus, pci_pme_wakeup, (void *)true); 1748 } 1749 1750 1751 /** 1752 * pci_pme_capable - check the capability of PCI device to generate PME# 1753 * @dev: PCI device to handle. 1754 * @state: PCI state from which device will issue PME#. 1755 */ 1756 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state) 1757 { 1758 if (!dev->pm_cap) 1759 return false; 1760 1761 return !!(dev->pme_support & (1 << state)); 1762 } 1763 EXPORT_SYMBOL(pci_pme_capable); 1764 1765 static void pci_pme_list_scan(struct work_struct *work) 1766 { 1767 struct pci_pme_device *pme_dev, *n; 1768 1769 mutex_lock(&pci_pme_list_mutex); 1770 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) { 1771 if (pme_dev->dev->pme_poll) { 1772 struct pci_dev *bridge; 1773 1774 bridge = pme_dev->dev->bus->self; 1775 /* 1776 * If bridge is in low power state, the 1777 * configuration space of subordinate devices 1778 * may be not accessible 1779 */ 1780 if (bridge && bridge->current_state != PCI_D0) 1781 continue; 1782 pci_pme_wakeup(pme_dev->dev, NULL); 1783 } else { 1784 list_del(&pme_dev->list); 1785 kfree(pme_dev); 1786 } 1787 } 1788 if (!list_empty(&pci_pme_list)) 1789 queue_delayed_work(system_freezable_wq, &pci_pme_work, 1790 msecs_to_jiffies(PME_TIMEOUT)); 1791 mutex_unlock(&pci_pme_list_mutex); 1792 } 1793 1794 static void __pci_pme_active(struct pci_dev *dev, bool enable) 1795 { 1796 u16 pmcsr; 1797 1798 if (!dev->pme_support) 1799 return; 1800 1801 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1802 /* Clear PME_Status by writing 1 to it and enable PME# */ 1803 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE; 1804 if (!enable) 1805 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 1806 1807 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 1808 } 1809 1810 /** 1811 * pci_pme_restore - Restore PME configuration after config space restore. 1812 * @dev: PCI device to update. 1813 */ 1814 void pci_pme_restore(struct pci_dev *dev) 1815 { 1816 u16 pmcsr; 1817 1818 if (!dev->pme_support) 1819 return; 1820 1821 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1822 if (dev->wakeup_prepared) { 1823 pmcsr |= PCI_PM_CTRL_PME_ENABLE; 1824 pmcsr &= ~PCI_PM_CTRL_PME_STATUS; 1825 } else { 1826 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 1827 pmcsr |= PCI_PM_CTRL_PME_STATUS; 1828 } 1829 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 1830 } 1831 1832 /** 1833 * pci_pme_active - enable or disable PCI device's PME# function 1834 * @dev: PCI device to handle. 1835 * @enable: 'true' to enable PME# generation; 'false' to disable it. 1836 * 1837 * The caller must verify that the device is capable of generating PME# before 1838 * calling this function with @enable equal to 'true'. 1839 */ 1840 void pci_pme_active(struct pci_dev *dev, bool enable) 1841 { 1842 __pci_pme_active(dev, enable); 1843 1844 /* 1845 * PCI (as opposed to PCIe) PME requires that the device have 1846 * its PME# line hooked up correctly. Not all hardware vendors 1847 * do this, so the PME never gets delivered and the device 1848 * remains asleep. The easiest way around this is to 1849 * periodically walk the list of suspended devices and check 1850 * whether any have their PME flag set. The assumption is that 1851 * we'll wake up often enough anyway that this won't be a huge 1852 * hit, and the power savings from the devices will still be a 1853 * win. 1854 * 1855 * Although PCIe uses in-band PME message instead of PME# line 1856 * to report PME, PME does not work for some PCIe devices in 1857 * reality. For example, there are devices that set their PME 1858 * status bits, but don't really bother to send a PME message; 1859 * there are PCI Express Root Ports that don't bother to 1860 * trigger interrupts when they receive PME messages from the 1861 * devices below. So PME poll is used for PCIe devices too. 1862 */ 1863 1864 if (dev->pme_poll) { 1865 struct pci_pme_device *pme_dev; 1866 if (enable) { 1867 pme_dev = kmalloc(sizeof(struct pci_pme_device), 1868 GFP_KERNEL); 1869 if (!pme_dev) { 1870 dev_warn(&dev->dev, "can't enable PME#\n"); 1871 return; 1872 } 1873 pme_dev->dev = dev; 1874 mutex_lock(&pci_pme_list_mutex); 1875 list_add(&pme_dev->list, &pci_pme_list); 1876 if (list_is_singular(&pci_pme_list)) 1877 queue_delayed_work(system_freezable_wq, 1878 &pci_pme_work, 1879 msecs_to_jiffies(PME_TIMEOUT)); 1880 mutex_unlock(&pci_pme_list_mutex); 1881 } else { 1882 mutex_lock(&pci_pme_list_mutex); 1883 list_for_each_entry(pme_dev, &pci_pme_list, list) { 1884 if (pme_dev->dev == dev) { 1885 list_del(&pme_dev->list); 1886 kfree(pme_dev); 1887 break; 1888 } 1889 } 1890 mutex_unlock(&pci_pme_list_mutex); 1891 } 1892 } 1893 1894 dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled"); 1895 } 1896 EXPORT_SYMBOL(pci_pme_active); 1897 1898 /** 1899 * pci_enable_wake - enable PCI device as wakeup event source 1900 * @dev: PCI device affected 1901 * @state: PCI state from which device will issue wakeup events 1902 * @enable: True to enable event generation; false to disable 1903 * 1904 * This enables the device as a wakeup event source, or disables it. 1905 * When such events involves platform-specific hooks, those hooks are 1906 * called automatically by this routine. 1907 * 1908 * Devices with legacy power management (no standard PCI PM capabilities) 1909 * always require such platform hooks. 1910 * 1911 * RETURN VALUE: 1912 * 0 is returned on success 1913 * -EINVAL is returned if device is not supposed to wake up the system 1914 * Error code depending on the platform is returned if both the platform and 1915 * the native mechanism fail to enable the generation of wake-up events 1916 */ 1917 int pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable) 1918 { 1919 int ret = 0; 1920 1921 /* 1922 * Bridges can only signal wakeup on behalf of subordinate devices, 1923 * but that is set up elsewhere, so skip them. 1924 */ 1925 if (pci_has_subordinate(dev)) 1926 return 0; 1927 1928 /* Don't do the same thing twice in a row for one device. */ 1929 if (!!enable == !!dev->wakeup_prepared) 1930 return 0; 1931 1932 /* 1933 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don 1934 * Anderson we should be doing PME# wake enable followed by ACPI wake 1935 * enable. To disable wake-up we call the platform first, for symmetry. 1936 */ 1937 1938 if (enable) { 1939 int error; 1940 1941 if (pci_pme_capable(dev, state)) 1942 pci_pme_active(dev, true); 1943 else 1944 ret = 1; 1945 error = platform_pci_set_wakeup(dev, true); 1946 if (ret) 1947 ret = error; 1948 if (!ret) 1949 dev->wakeup_prepared = true; 1950 } else { 1951 platform_pci_set_wakeup(dev, false); 1952 pci_pme_active(dev, false); 1953 dev->wakeup_prepared = false; 1954 } 1955 1956 return ret; 1957 } 1958 EXPORT_SYMBOL(pci_enable_wake); 1959 1960 /** 1961 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold 1962 * @dev: PCI device to prepare 1963 * @enable: True to enable wake-up event generation; false to disable 1964 * 1965 * Many drivers want the device to wake up the system from D3_hot or D3_cold 1966 * and this function allows them to set that up cleanly - pci_enable_wake() 1967 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI 1968 * ordering constraints. 1969 * 1970 * This function only returns error code if the device is not capable of 1971 * generating PME# from both D3_hot and D3_cold, and the platform is unable to 1972 * enable wake-up power for it. 1973 */ 1974 int pci_wake_from_d3(struct pci_dev *dev, bool enable) 1975 { 1976 return pci_pme_capable(dev, PCI_D3cold) ? 1977 pci_enable_wake(dev, PCI_D3cold, enable) : 1978 pci_enable_wake(dev, PCI_D3hot, enable); 1979 } 1980 EXPORT_SYMBOL(pci_wake_from_d3); 1981 1982 /** 1983 * pci_target_state - find an appropriate low power state for a given PCI dev 1984 * @dev: PCI device 1985 * @wakeup: Whether or not wakeup functionality will be enabled for the device. 1986 * 1987 * Use underlying platform code to find a supported low power state for @dev. 1988 * If the platform can't manage @dev, return the deepest state from which it 1989 * can generate wake events, based on any available PME info. 1990 */ 1991 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup) 1992 { 1993 pci_power_t target_state = PCI_D3hot; 1994 1995 if (platform_pci_power_manageable(dev)) { 1996 /* 1997 * Call the platform to choose the target state of the device 1998 * and enable wake-up from this state if supported. 1999 */ 2000 pci_power_t state = platform_pci_choose_state(dev); 2001 2002 switch (state) { 2003 case PCI_POWER_ERROR: 2004 case PCI_UNKNOWN: 2005 break; 2006 case PCI_D1: 2007 case PCI_D2: 2008 if (pci_no_d1d2(dev)) 2009 break; 2010 default: 2011 target_state = state; 2012 } 2013 2014 return target_state; 2015 } 2016 2017 if (!dev->pm_cap) 2018 target_state = PCI_D0; 2019 2020 /* 2021 * If the device is in D3cold even though it's not power-manageable by 2022 * the platform, it may have been powered down by non-standard means. 2023 * Best to let it slumber. 2024 */ 2025 if (dev->current_state == PCI_D3cold) 2026 target_state = PCI_D3cold; 2027 2028 if (wakeup) { 2029 /* 2030 * Find the deepest state from which the device can generate 2031 * wake-up events, make it the target state and enable device 2032 * to generate PME#. 2033 */ 2034 if (dev->pme_support) { 2035 while (target_state 2036 && !(dev->pme_support & (1 << target_state))) 2037 target_state--; 2038 } 2039 } 2040 2041 return target_state; 2042 } 2043 2044 /** 2045 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state 2046 * @dev: Device to handle. 2047 * 2048 * Choose the power state appropriate for the device depending on whether 2049 * it can wake up the system and/or is power manageable by the platform 2050 * (PCI_D3hot is the default) and put the device into that state. 2051 */ 2052 int pci_prepare_to_sleep(struct pci_dev *dev) 2053 { 2054 bool wakeup = device_may_wakeup(&dev->dev); 2055 pci_power_t target_state = pci_target_state(dev, wakeup); 2056 int error; 2057 2058 if (target_state == PCI_POWER_ERROR) 2059 return -EIO; 2060 2061 pci_enable_wake(dev, target_state, wakeup); 2062 2063 error = pci_set_power_state(dev, target_state); 2064 2065 if (error) 2066 pci_enable_wake(dev, target_state, false); 2067 2068 return error; 2069 } 2070 EXPORT_SYMBOL(pci_prepare_to_sleep); 2071 2072 /** 2073 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state 2074 * @dev: Device to handle. 2075 * 2076 * Disable device's system wake-up capability and put it into D0. 2077 */ 2078 int pci_back_from_sleep(struct pci_dev *dev) 2079 { 2080 pci_enable_wake(dev, PCI_D0, false); 2081 return pci_set_power_state(dev, PCI_D0); 2082 } 2083 EXPORT_SYMBOL(pci_back_from_sleep); 2084 2085 /** 2086 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend. 2087 * @dev: PCI device being suspended. 2088 * 2089 * Prepare @dev to generate wake-up events at run time and put it into a low 2090 * power state. 2091 */ 2092 int pci_finish_runtime_suspend(struct pci_dev *dev) 2093 { 2094 pci_power_t target_state; 2095 int error; 2096 2097 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev)); 2098 if (target_state == PCI_POWER_ERROR) 2099 return -EIO; 2100 2101 dev->runtime_d3cold = target_state == PCI_D3cold; 2102 2103 pci_enable_wake(dev, target_state, pci_dev_run_wake(dev)); 2104 2105 error = pci_set_power_state(dev, target_state); 2106 2107 if (error) { 2108 pci_enable_wake(dev, target_state, false); 2109 dev->runtime_d3cold = false; 2110 } 2111 2112 return error; 2113 } 2114 2115 /** 2116 * pci_dev_run_wake - Check if device can generate run-time wake-up events. 2117 * @dev: Device to check. 2118 * 2119 * Return true if the device itself is capable of generating wake-up events 2120 * (through the platform or using the native PCIe PME) or if the device supports 2121 * PME and one of its upstream bridges can generate wake-up events. 2122 */ 2123 bool pci_dev_run_wake(struct pci_dev *dev) 2124 { 2125 struct pci_bus *bus = dev->bus; 2126 2127 if (device_can_wakeup(&dev->dev)) 2128 return true; 2129 2130 if (!dev->pme_support) 2131 return false; 2132 2133 /* PME-capable in principle, but not from the target power state */ 2134 if (!pci_pme_capable(dev, pci_target_state(dev, false))) 2135 return false; 2136 2137 while (bus->parent) { 2138 struct pci_dev *bridge = bus->self; 2139 2140 if (device_can_wakeup(&bridge->dev)) 2141 return true; 2142 2143 bus = bus->parent; 2144 } 2145 2146 /* We have reached the root bus. */ 2147 if (bus->bridge) 2148 return device_can_wakeup(bus->bridge); 2149 2150 return false; 2151 } 2152 EXPORT_SYMBOL_GPL(pci_dev_run_wake); 2153 2154 /** 2155 * pci_dev_keep_suspended - Check if the device can stay in the suspended state. 2156 * @pci_dev: Device to check. 2157 * 2158 * Return 'true' if the device is runtime-suspended, it doesn't have to be 2159 * reconfigured due to wakeup settings difference between system and runtime 2160 * suspend and the current power state of it is suitable for the upcoming 2161 * (system) transition. 2162 * 2163 * If the device is not configured for system wakeup, disable PME for it before 2164 * returning 'true' to prevent it from waking up the system unnecessarily. 2165 */ 2166 bool pci_dev_keep_suspended(struct pci_dev *pci_dev) 2167 { 2168 struct device *dev = &pci_dev->dev; 2169 bool wakeup = device_may_wakeup(dev); 2170 2171 if (!pm_runtime_suspended(dev) 2172 || pci_target_state(pci_dev, wakeup) != pci_dev->current_state 2173 || platform_pci_need_resume(pci_dev)) 2174 return false; 2175 2176 /* 2177 * At this point the device is good to go unless it's been configured 2178 * to generate PME at the runtime suspend time, but it is not supposed 2179 * to wake up the system. In that case, simply disable PME for it 2180 * (it will have to be re-enabled on exit from system resume). 2181 * 2182 * If the device's power state is D3cold and the platform check above 2183 * hasn't triggered, the device's configuration is suitable and we don't 2184 * need to manipulate it at all. 2185 */ 2186 spin_lock_irq(&dev->power.lock); 2187 2188 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold && 2189 !wakeup) 2190 __pci_pme_active(pci_dev, false); 2191 2192 spin_unlock_irq(&dev->power.lock); 2193 return true; 2194 } 2195 2196 /** 2197 * pci_dev_complete_resume - Finalize resume from system sleep for a device. 2198 * @pci_dev: Device to handle. 2199 * 2200 * If the device is runtime suspended and wakeup-capable, enable PME for it as 2201 * it might have been disabled during the prepare phase of system suspend if 2202 * the device was not configured for system wakeup. 2203 */ 2204 void pci_dev_complete_resume(struct pci_dev *pci_dev) 2205 { 2206 struct device *dev = &pci_dev->dev; 2207 2208 if (!pci_dev_run_wake(pci_dev)) 2209 return; 2210 2211 spin_lock_irq(&dev->power.lock); 2212 2213 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold) 2214 __pci_pme_active(pci_dev, true); 2215 2216 spin_unlock_irq(&dev->power.lock); 2217 } 2218 2219 void pci_config_pm_runtime_get(struct pci_dev *pdev) 2220 { 2221 struct device *dev = &pdev->dev; 2222 struct device *parent = dev->parent; 2223 2224 if (parent) 2225 pm_runtime_get_sync(parent); 2226 pm_runtime_get_noresume(dev); 2227 /* 2228 * pdev->current_state is set to PCI_D3cold during suspending, 2229 * so wait until suspending completes 2230 */ 2231 pm_runtime_barrier(dev); 2232 /* 2233 * Only need to resume devices in D3cold, because config 2234 * registers are still accessible for devices suspended but 2235 * not in D3cold. 2236 */ 2237 if (pdev->current_state == PCI_D3cold) 2238 pm_runtime_resume(dev); 2239 } 2240 2241 void pci_config_pm_runtime_put(struct pci_dev *pdev) 2242 { 2243 struct device *dev = &pdev->dev; 2244 struct device *parent = dev->parent; 2245 2246 pm_runtime_put(dev); 2247 if (parent) 2248 pm_runtime_put_sync(parent); 2249 } 2250 2251 /** 2252 * pci_bridge_d3_possible - Is it possible to put the bridge into D3 2253 * @bridge: Bridge to check 2254 * 2255 * This function checks if it is possible to move the bridge to D3. 2256 * Currently we only allow D3 for recent enough PCIe ports. 2257 */ 2258 bool pci_bridge_d3_possible(struct pci_dev *bridge) 2259 { 2260 unsigned int year; 2261 2262 if (!pci_is_pcie(bridge)) 2263 return false; 2264 2265 switch (pci_pcie_type(bridge)) { 2266 case PCI_EXP_TYPE_ROOT_PORT: 2267 case PCI_EXP_TYPE_UPSTREAM: 2268 case PCI_EXP_TYPE_DOWNSTREAM: 2269 if (pci_bridge_d3_disable) 2270 return false; 2271 2272 /* 2273 * Hotplug interrupts cannot be delivered if the link is down, 2274 * so parents of a hotplug port must stay awake. In addition, 2275 * hotplug ports handled by firmware in System Management Mode 2276 * may not be put into D3 by the OS (Thunderbolt on non-Macs). 2277 * For simplicity, disallow in general for now. 2278 */ 2279 if (bridge->is_hotplug_bridge) 2280 return false; 2281 2282 if (pci_bridge_d3_force) 2283 return true; 2284 2285 /* 2286 * It should be safe to put PCIe ports from 2015 or newer 2287 * to D3. 2288 */ 2289 if (dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL) && 2290 year >= 2015) { 2291 return true; 2292 } 2293 break; 2294 } 2295 2296 return false; 2297 } 2298 2299 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data) 2300 { 2301 bool *d3cold_ok = data; 2302 2303 if (/* The device needs to be allowed to go D3cold ... */ 2304 dev->no_d3cold || !dev->d3cold_allowed || 2305 2306 /* ... and if it is wakeup capable to do so from D3cold. */ 2307 (device_may_wakeup(&dev->dev) && 2308 !pci_pme_capable(dev, PCI_D3cold)) || 2309 2310 /* If it is a bridge it must be allowed to go to D3. */ 2311 !pci_power_manageable(dev)) 2312 2313 *d3cold_ok = false; 2314 2315 return !*d3cold_ok; 2316 } 2317 2318 /* 2319 * pci_bridge_d3_update - Update bridge D3 capabilities 2320 * @dev: PCI device which is changed 2321 * 2322 * Update upstream bridge PM capabilities accordingly depending on if the 2323 * device PM configuration was changed or the device is being removed. The 2324 * change is also propagated upstream. 2325 */ 2326 void pci_bridge_d3_update(struct pci_dev *dev) 2327 { 2328 bool remove = !device_is_registered(&dev->dev); 2329 struct pci_dev *bridge; 2330 bool d3cold_ok = true; 2331 2332 bridge = pci_upstream_bridge(dev); 2333 if (!bridge || !pci_bridge_d3_possible(bridge)) 2334 return; 2335 2336 /* 2337 * If D3 is currently allowed for the bridge, removing one of its 2338 * children won't change that. 2339 */ 2340 if (remove && bridge->bridge_d3) 2341 return; 2342 2343 /* 2344 * If D3 is currently allowed for the bridge and a child is added or 2345 * changed, disallowance of D3 can only be caused by that child, so 2346 * we only need to check that single device, not any of its siblings. 2347 * 2348 * If D3 is currently not allowed for the bridge, checking the device 2349 * first may allow us to skip checking its siblings. 2350 */ 2351 if (!remove) 2352 pci_dev_check_d3cold(dev, &d3cold_ok); 2353 2354 /* 2355 * If D3 is currently not allowed for the bridge, this may be caused 2356 * either by the device being changed/removed or any of its siblings, 2357 * so we need to go through all children to find out if one of them 2358 * continues to block D3. 2359 */ 2360 if (d3cold_ok && !bridge->bridge_d3) 2361 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold, 2362 &d3cold_ok); 2363 2364 if (bridge->bridge_d3 != d3cold_ok) { 2365 bridge->bridge_d3 = d3cold_ok; 2366 /* Propagate change to upstream bridges */ 2367 pci_bridge_d3_update(bridge); 2368 } 2369 } 2370 2371 /** 2372 * pci_d3cold_enable - Enable D3cold for device 2373 * @dev: PCI device to handle 2374 * 2375 * This function can be used in drivers to enable D3cold from the device 2376 * they handle. It also updates upstream PCI bridge PM capabilities 2377 * accordingly. 2378 */ 2379 void pci_d3cold_enable(struct pci_dev *dev) 2380 { 2381 if (dev->no_d3cold) { 2382 dev->no_d3cold = false; 2383 pci_bridge_d3_update(dev); 2384 } 2385 } 2386 EXPORT_SYMBOL_GPL(pci_d3cold_enable); 2387 2388 /** 2389 * pci_d3cold_disable - Disable D3cold for device 2390 * @dev: PCI device to handle 2391 * 2392 * This function can be used in drivers to disable D3cold from the device 2393 * they handle. It also updates upstream PCI bridge PM capabilities 2394 * accordingly. 2395 */ 2396 void pci_d3cold_disable(struct pci_dev *dev) 2397 { 2398 if (!dev->no_d3cold) { 2399 dev->no_d3cold = true; 2400 pci_bridge_d3_update(dev); 2401 } 2402 } 2403 EXPORT_SYMBOL_GPL(pci_d3cold_disable); 2404 2405 /** 2406 * pci_pm_init - Initialize PM functions of given PCI device 2407 * @dev: PCI device to handle. 2408 */ 2409 void pci_pm_init(struct pci_dev *dev) 2410 { 2411 int pm; 2412 u16 pmc; 2413 2414 pm_runtime_forbid(&dev->dev); 2415 pm_runtime_set_active(&dev->dev); 2416 pm_runtime_enable(&dev->dev); 2417 device_enable_async_suspend(&dev->dev); 2418 dev->wakeup_prepared = false; 2419 2420 dev->pm_cap = 0; 2421 dev->pme_support = 0; 2422 2423 /* find PCI PM capability in list */ 2424 pm = pci_find_capability(dev, PCI_CAP_ID_PM); 2425 if (!pm) 2426 return; 2427 /* Check device's ability to generate PME# */ 2428 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc); 2429 2430 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) { 2431 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n", 2432 pmc & PCI_PM_CAP_VER_MASK); 2433 return; 2434 } 2435 2436 dev->pm_cap = pm; 2437 dev->d3_delay = PCI_PM_D3_WAIT; 2438 dev->d3cold_delay = PCI_PM_D3COLD_WAIT; 2439 dev->bridge_d3 = pci_bridge_d3_possible(dev); 2440 dev->d3cold_allowed = true; 2441 2442 dev->d1_support = false; 2443 dev->d2_support = false; 2444 if (!pci_no_d1d2(dev)) { 2445 if (pmc & PCI_PM_CAP_D1) 2446 dev->d1_support = true; 2447 if (pmc & PCI_PM_CAP_D2) 2448 dev->d2_support = true; 2449 2450 if (dev->d1_support || dev->d2_support) 2451 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n", 2452 dev->d1_support ? " D1" : "", 2453 dev->d2_support ? " D2" : ""); 2454 } 2455 2456 pmc &= PCI_PM_CAP_PME_MASK; 2457 if (pmc) { 2458 dev_printk(KERN_DEBUG, &dev->dev, 2459 "PME# supported from%s%s%s%s%s\n", 2460 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "", 2461 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "", 2462 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "", 2463 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "", 2464 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : ""); 2465 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT; 2466 dev->pme_poll = true; 2467 /* 2468 * Make device's PM flags reflect the wake-up capability, but 2469 * let the user space enable it to wake up the system as needed. 2470 */ 2471 device_set_wakeup_capable(&dev->dev, true); 2472 /* Disable the PME# generation functionality */ 2473 pci_pme_active(dev, false); 2474 } 2475 } 2476 2477 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop) 2478 { 2479 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI; 2480 2481 switch (prop) { 2482 case PCI_EA_P_MEM: 2483 case PCI_EA_P_VF_MEM: 2484 flags |= IORESOURCE_MEM; 2485 break; 2486 case PCI_EA_P_MEM_PREFETCH: 2487 case PCI_EA_P_VF_MEM_PREFETCH: 2488 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH; 2489 break; 2490 case PCI_EA_P_IO: 2491 flags |= IORESOURCE_IO; 2492 break; 2493 default: 2494 return 0; 2495 } 2496 2497 return flags; 2498 } 2499 2500 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei, 2501 u8 prop) 2502 { 2503 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO) 2504 return &dev->resource[bei]; 2505 #ifdef CONFIG_PCI_IOV 2506 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 && 2507 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH)) 2508 return &dev->resource[PCI_IOV_RESOURCES + 2509 bei - PCI_EA_BEI_VF_BAR0]; 2510 #endif 2511 else if (bei == PCI_EA_BEI_ROM) 2512 return &dev->resource[PCI_ROM_RESOURCE]; 2513 else 2514 return NULL; 2515 } 2516 2517 /* Read an Enhanced Allocation (EA) entry */ 2518 static int pci_ea_read(struct pci_dev *dev, int offset) 2519 { 2520 struct resource *res; 2521 int ent_size, ent_offset = offset; 2522 resource_size_t start, end; 2523 unsigned long flags; 2524 u32 dw0, bei, base, max_offset; 2525 u8 prop; 2526 bool support_64 = (sizeof(resource_size_t) >= 8); 2527 2528 pci_read_config_dword(dev, ent_offset, &dw0); 2529 ent_offset += 4; 2530 2531 /* Entry size field indicates DWORDs after 1st */ 2532 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2; 2533 2534 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */ 2535 goto out; 2536 2537 bei = (dw0 & PCI_EA_BEI) >> 4; 2538 prop = (dw0 & PCI_EA_PP) >> 8; 2539 2540 /* 2541 * If the Property is in the reserved range, try the Secondary 2542 * Property instead. 2543 */ 2544 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED) 2545 prop = (dw0 & PCI_EA_SP) >> 16; 2546 if (prop > PCI_EA_P_BRIDGE_IO) 2547 goto out; 2548 2549 res = pci_ea_get_resource(dev, bei, prop); 2550 if (!res) { 2551 dev_err(&dev->dev, "Unsupported EA entry BEI: %u\n", bei); 2552 goto out; 2553 } 2554 2555 flags = pci_ea_flags(dev, prop); 2556 if (!flags) { 2557 dev_err(&dev->dev, "Unsupported EA properties: %#x\n", prop); 2558 goto out; 2559 } 2560 2561 /* Read Base */ 2562 pci_read_config_dword(dev, ent_offset, &base); 2563 start = (base & PCI_EA_FIELD_MASK); 2564 ent_offset += 4; 2565 2566 /* Read MaxOffset */ 2567 pci_read_config_dword(dev, ent_offset, &max_offset); 2568 ent_offset += 4; 2569 2570 /* Read Base MSBs (if 64-bit entry) */ 2571 if (base & PCI_EA_IS_64) { 2572 u32 base_upper; 2573 2574 pci_read_config_dword(dev, ent_offset, &base_upper); 2575 ent_offset += 4; 2576 2577 flags |= IORESOURCE_MEM_64; 2578 2579 /* entry starts above 32-bit boundary, can't use */ 2580 if (!support_64 && base_upper) 2581 goto out; 2582 2583 if (support_64) 2584 start |= ((u64)base_upper << 32); 2585 } 2586 2587 end = start + (max_offset | 0x03); 2588 2589 /* Read MaxOffset MSBs (if 64-bit entry) */ 2590 if (max_offset & PCI_EA_IS_64) { 2591 u32 max_offset_upper; 2592 2593 pci_read_config_dword(dev, ent_offset, &max_offset_upper); 2594 ent_offset += 4; 2595 2596 flags |= IORESOURCE_MEM_64; 2597 2598 /* entry too big, can't use */ 2599 if (!support_64 && max_offset_upper) 2600 goto out; 2601 2602 if (support_64) 2603 end += ((u64)max_offset_upper << 32); 2604 } 2605 2606 if (end < start) { 2607 dev_err(&dev->dev, "EA Entry crosses address boundary\n"); 2608 goto out; 2609 } 2610 2611 if (ent_size != ent_offset - offset) { 2612 dev_err(&dev->dev, 2613 "EA Entry Size (%d) does not match length read (%d)\n", 2614 ent_size, ent_offset - offset); 2615 goto out; 2616 } 2617 2618 res->name = pci_name(dev); 2619 res->start = start; 2620 res->end = end; 2621 res->flags = flags; 2622 2623 if (bei <= PCI_EA_BEI_BAR5) 2624 dev_printk(KERN_DEBUG, &dev->dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 2625 bei, res, prop); 2626 else if (bei == PCI_EA_BEI_ROM) 2627 dev_printk(KERN_DEBUG, &dev->dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n", 2628 res, prop); 2629 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5) 2630 dev_printk(KERN_DEBUG, &dev->dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 2631 bei - PCI_EA_BEI_VF_BAR0, res, prop); 2632 else 2633 dev_printk(KERN_DEBUG, &dev->dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n", 2634 bei, res, prop); 2635 2636 out: 2637 return offset + ent_size; 2638 } 2639 2640 /* Enhanced Allocation Initialization */ 2641 void pci_ea_init(struct pci_dev *dev) 2642 { 2643 int ea; 2644 u8 num_ent; 2645 int offset; 2646 int i; 2647 2648 /* find PCI EA capability in list */ 2649 ea = pci_find_capability(dev, PCI_CAP_ID_EA); 2650 if (!ea) 2651 return; 2652 2653 /* determine the number of entries */ 2654 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT, 2655 &num_ent); 2656 num_ent &= PCI_EA_NUM_ENT_MASK; 2657 2658 offset = ea + PCI_EA_FIRST_ENT; 2659 2660 /* Skip DWORD 2 for type 1 functions */ 2661 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) 2662 offset += 4; 2663 2664 /* parse each EA entry */ 2665 for (i = 0; i < num_ent; ++i) 2666 offset = pci_ea_read(dev, offset); 2667 } 2668 2669 static void pci_add_saved_cap(struct pci_dev *pci_dev, 2670 struct pci_cap_saved_state *new_cap) 2671 { 2672 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space); 2673 } 2674 2675 /** 2676 * _pci_add_cap_save_buffer - allocate buffer for saving given 2677 * capability registers 2678 * @dev: the PCI device 2679 * @cap: the capability to allocate the buffer for 2680 * @extended: Standard or Extended capability ID 2681 * @size: requested size of the buffer 2682 */ 2683 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap, 2684 bool extended, unsigned int size) 2685 { 2686 int pos; 2687 struct pci_cap_saved_state *save_state; 2688 2689 if (extended) 2690 pos = pci_find_ext_capability(dev, cap); 2691 else 2692 pos = pci_find_capability(dev, cap); 2693 2694 if (!pos) 2695 return 0; 2696 2697 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL); 2698 if (!save_state) 2699 return -ENOMEM; 2700 2701 save_state->cap.cap_nr = cap; 2702 save_state->cap.cap_extended = extended; 2703 save_state->cap.size = size; 2704 pci_add_saved_cap(dev, save_state); 2705 2706 return 0; 2707 } 2708 2709 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size) 2710 { 2711 return _pci_add_cap_save_buffer(dev, cap, false, size); 2712 } 2713 2714 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size) 2715 { 2716 return _pci_add_cap_save_buffer(dev, cap, true, size); 2717 } 2718 2719 /** 2720 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities 2721 * @dev: the PCI device 2722 */ 2723 void pci_allocate_cap_save_buffers(struct pci_dev *dev) 2724 { 2725 int error; 2726 2727 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP, 2728 PCI_EXP_SAVE_REGS * sizeof(u16)); 2729 if (error) 2730 dev_err(&dev->dev, 2731 "unable to preallocate PCI Express save buffer\n"); 2732 2733 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16)); 2734 if (error) 2735 dev_err(&dev->dev, 2736 "unable to preallocate PCI-X save buffer\n"); 2737 2738 pci_allocate_vc_save_buffers(dev); 2739 } 2740 2741 void pci_free_cap_save_buffers(struct pci_dev *dev) 2742 { 2743 struct pci_cap_saved_state *tmp; 2744 struct hlist_node *n; 2745 2746 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next) 2747 kfree(tmp); 2748 } 2749 2750 /** 2751 * pci_configure_ari - enable or disable ARI forwarding 2752 * @dev: the PCI device 2753 * 2754 * If @dev and its upstream bridge both support ARI, enable ARI in the 2755 * bridge. Otherwise, disable ARI in the bridge. 2756 */ 2757 void pci_configure_ari(struct pci_dev *dev) 2758 { 2759 u32 cap; 2760 struct pci_dev *bridge; 2761 2762 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn) 2763 return; 2764 2765 bridge = dev->bus->self; 2766 if (!bridge) 2767 return; 2768 2769 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 2770 if (!(cap & PCI_EXP_DEVCAP2_ARI)) 2771 return; 2772 2773 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) { 2774 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, 2775 PCI_EXP_DEVCTL2_ARI); 2776 bridge->ari_enabled = 1; 2777 } else { 2778 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2, 2779 PCI_EXP_DEVCTL2_ARI); 2780 bridge->ari_enabled = 0; 2781 } 2782 } 2783 2784 static int pci_acs_enable; 2785 2786 /** 2787 * pci_request_acs - ask for ACS to be enabled if supported 2788 */ 2789 void pci_request_acs(void) 2790 { 2791 pci_acs_enable = 1; 2792 } 2793 2794 /** 2795 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites 2796 * @dev: the PCI device 2797 */ 2798 static void pci_std_enable_acs(struct pci_dev *dev) 2799 { 2800 int pos; 2801 u16 cap; 2802 u16 ctrl; 2803 2804 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS); 2805 if (!pos) 2806 return; 2807 2808 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap); 2809 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 2810 2811 /* Source Validation */ 2812 ctrl |= (cap & PCI_ACS_SV); 2813 2814 /* P2P Request Redirect */ 2815 ctrl |= (cap & PCI_ACS_RR); 2816 2817 /* P2P Completion Redirect */ 2818 ctrl |= (cap & PCI_ACS_CR); 2819 2820 /* Upstream Forwarding */ 2821 ctrl |= (cap & PCI_ACS_UF); 2822 2823 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 2824 } 2825 2826 /** 2827 * pci_enable_acs - enable ACS if hardware support it 2828 * @dev: the PCI device 2829 */ 2830 void pci_enable_acs(struct pci_dev *dev) 2831 { 2832 if (!pci_acs_enable) 2833 return; 2834 2835 if (!pci_dev_specific_enable_acs(dev)) 2836 return; 2837 2838 pci_std_enable_acs(dev); 2839 } 2840 2841 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags) 2842 { 2843 int pos; 2844 u16 cap, ctrl; 2845 2846 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS); 2847 if (!pos) 2848 return false; 2849 2850 /* 2851 * Except for egress control, capabilities are either required 2852 * or only required if controllable. Features missing from the 2853 * capability field can therefore be assumed as hard-wired enabled. 2854 */ 2855 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap); 2856 acs_flags &= (cap | PCI_ACS_EC); 2857 2858 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl); 2859 return (ctrl & acs_flags) == acs_flags; 2860 } 2861 2862 /** 2863 * pci_acs_enabled - test ACS against required flags for a given device 2864 * @pdev: device to test 2865 * @acs_flags: required PCI ACS flags 2866 * 2867 * Return true if the device supports the provided flags. Automatically 2868 * filters out flags that are not implemented on multifunction devices. 2869 * 2870 * Note that this interface checks the effective ACS capabilities of the 2871 * device rather than the actual capabilities. For instance, most single 2872 * function endpoints are not required to support ACS because they have no 2873 * opportunity for peer-to-peer access. We therefore return 'true' 2874 * regardless of whether the device exposes an ACS capability. This makes 2875 * it much easier for callers of this function to ignore the actual type 2876 * or topology of the device when testing ACS support. 2877 */ 2878 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags) 2879 { 2880 int ret; 2881 2882 ret = pci_dev_specific_acs_enabled(pdev, acs_flags); 2883 if (ret >= 0) 2884 return ret > 0; 2885 2886 /* 2887 * Conventional PCI and PCI-X devices never support ACS, either 2888 * effectively or actually. The shared bus topology implies that 2889 * any device on the bus can receive or snoop DMA. 2890 */ 2891 if (!pci_is_pcie(pdev)) 2892 return false; 2893 2894 switch (pci_pcie_type(pdev)) { 2895 /* 2896 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec, 2897 * but since their primary interface is PCI/X, we conservatively 2898 * handle them as we would a non-PCIe device. 2899 */ 2900 case PCI_EXP_TYPE_PCIE_BRIDGE: 2901 /* 2902 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never 2903 * applicable... must never implement an ACS Extended Capability...". 2904 * This seems arbitrary, but we take a conservative interpretation 2905 * of this statement. 2906 */ 2907 case PCI_EXP_TYPE_PCI_BRIDGE: 2908 case PCI_EXP_TYPE_RC_EC: 2909 return false; 2910 /* 2911 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should 2912 * implement ACS in order to indicate their peer-to-peer capabilities, 2913 * regardless of whether they are single- or multi-function devices. 2914 */ 2915 case PCI_EXP_TYPE_DOWNSTREAM: 2916 case PCI_EXP_TYPE_ROOT_PORT: 2917 return pci_acs_flags_enabled(pdev, acs_flags); 2918 /* 2919 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be 2920 * implemented by the remaining PCIe types to indicate peer-to-peer 2921 * capabilities, but only when they are part of a multifunction 2922 * device. The footnote for section 6.12 indicates the specific 2923 * PCIe types included here. 2924 */ 2925 case PCI_EXP_TYPE_ENDPOINT: 2926 case PCI_EXP_TYPE_UPSTREAM: 2927 case PCI_EXP_TYPE_LEG_END: 2928 case PCI_EXP_TYPE_RC_END: 2929 if (!pdev->multifunction) 2930 break; 2931 2932 return pci_acs_flags_enabled(pdev, acs_flags); 2933 } 2934 2935 /* 2936 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable 2937 * to single function devices with the exception of downstream ports. 2938 */ 2939 return true; 2940 } 2941 2942 /** 2943 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy 2944 * @start: starting downstream device 2945 * @end: ending upstream device or NULL to search to the root bus 2946 * @acs_flags: required flags 2947 * 2948 * Walk up a device tree from start to end testing PCI ACS support. If 2949 * any step along the way does not support the required flags, return false. 2950 */ 2951 bool pci_acs_path_enabled(struct pci_dev *start, 2952 struct pci_dev *end, u16 acs_flags) 2953 { 2954 struct pci_dev *pdev, *parent = start; 2955 2956 do { 2957 pdev = parent; 2958 2959 if (!pci_acs_enabled(pdev, acs_flags)) 2960 return false; 2961 2962 if (pci_is_root_bus(pdev->bus)) 2963 return (end == NULL); 2964 2965 parent = pdev->bus->self; 2966 } while (pdev != end); 2967 2968 return true; 2969 } 2970 2971 /** 2972 * pci_rebar_find_pos - find position of resize ctrl reg for BAR 2973 * @pdev: PCI device 2974 * @bar: BAR to find 2975 * 2976 * Helper to find the position of the ctrl register for a BAR. 2977 * Returns -ENOTSUPP if resizable BARs are not supported at all. 2978 * Returns -ENOENT if no ctrl register for the BAR could be found. 2979 */ 2980 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar) 2981 { 2982 unsigned int pos, nbars, i; 2983 u32 ctrl; 2984 2985 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 2986 if (!pos) 2987 return -ENOTSUPP; 2988 2989 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 2990 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >> 2991 PCI_REBAR_CTRL_NBAR_SHIFT; 2992 2993 for (i = 0; i < nbars; i++, pos += 8) { 2994 int bar_idx; 2995 2996 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 2997 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX; 2998 if (bar_idx == bar) 2999 return pos; 3000 } 3001 3002 return -ENOENT; 3003 } 3004 3005 /** 3006 * pci_rebar_get_possible_sizes - get possible sizes for BAR 3007 * @pdev: PCI device 3008 * @bar: BAR to query 3009 * 3010 * Get the possible sizes of a resizable BAR as bitmask defined in the spec 3011 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable. 3012 */ 3013 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar) 3014 { 3015 int pos; 3016 u32 cap; 3017 3018 pos = pci_rebar_find_pos(pdev, bar); 3019 if (pos < 0) 3020 return 0; 3021 3022 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap); 3023 return (cap & PCI_REBAR_CAP_SIZES) >> 4; 3024 } 3025 3026 /** 3027 * pci_rebar_get_current_size - get the current size of a BAR 3028 * @pdev: PCI device 3029 * @bar: BAR to set size to 3030 * 3031 * Read the size of a BAR from the resizable BAR config. 3032 * Returns size if found or negative error code. 3033 */ 3034 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar) 3035 { 3036 int pos; 3037 u32 ctrl; 3038 3039 pos = pci_rebar_find_pos(pdev, bar); 3040 if (pos < 0) 3041 return pos; 3042 3043 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3044 return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> 8; 3045 } 3046 3047 /** 3048 * pci_rebar_set_size - set a new size for a BAR 3049 * @pdev: PCI device 3050 * @bar: BAR to set size to 3051 * @size: new size as defined in the spec (0=1MB, 19=512GB) 3052 * 3053 * Set the new size of a BAR as defined in the spec. 3054 * Returns zero if resizing was successful, error code otherwise. 3055 */ 3056 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size) 3057 { 3058 int pos; 3059 u32 ctrl; 3060 3061 pos = pci_rebar_find_pos(pdev, bar); 3062 if (pos < 0) 3063 return pos; 3064 3065 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3066 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 3067 ctrl |= size << 8; 3068 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 3069 return 0; 3070 } 3071 3072 /** 3073 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge 3074 * @dev: the PCI device 3075 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD) 3076 * 3077 * Perform INTx swizzling for a device behind one level of bridge. This is 3078 * required by section 9.1 of the PCI-to-PCI bridge specification for devices 3079 * behind bridges on add-in cards. For devices with ARI enabled, the slot 3080 * number is always 0 (see the Implementation Note in section 2.2.8.1 of 3081 * the PCI Express Base Specification, Revision 2.1) 3082 */ 3083 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin) 3084 { 3085 int slot; 3086 3087 if (pci_ari_enabled(dev->bus)) 3088 slot = 0; 3089 else 3090 slot = PCI_SLOT(dev->devfn); 3091 3092 return (((pin - 1) + slot) % 4) + 1; 3093 } 3094 3095 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge) 3096 { 3097 u8 pin; 3098 3099 pin = dev->pin; 3100 if (!pin) 3101 return -1; 3102 3103 while (!pci_is_root_bus(dev->bus)) { 3104 pin = pci_swizzle_interrupt_pin(dev, pin); 3105 dev = dev->bus->self; 3106 } 3107 *bridge = dev; 3108 return pin; 3109 } 3110 3111 /** 3112 * pci_common_swizzle - swizzle INTx all the way to root bridge 3113 * @dev: the PCI device 3114 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD) 3115 * 3116 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI 3117 * bridges all the way up to a PCI root bus. 3118 */ 3119 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp) 3120 { 3121 u8 pin = *pinp; 3122 3123 while (!pci_is_root_bus(dev->bus)) { 3124 pin = pci_swizzle_interrupt_pin(dev, pin); 3125 dev = dev->bus->self; 3126 } 3127 *pinp = pin; 3128 return PCI_SLOT(dev->devfn); 3129 } 3130 EXPORT_SYMBOL_GPL(pci_common_swizzle); 3131 3132 /** 3133 * pci_release_region - Release a PCI bar 3134 * @pdev: PCI device whose resources were previously reserved by pci_request_region 3135 * @bar: BAR to release 3136 * 3137 * Releases the PCI I/O and memory resources previously reserved by a 3138 * successful call to pci_request_region. Call this function only 3139 * after all use of the PCI regions has ceased. 3140 */ 3141 void pci_release_region(struct pci_dev *pdev, int bar) 3142 { 3143 struct pci_devres *dr; 3144 3145 if (pci_resource_len(pdev, bar) == 0) 3146 return; 3147 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) 3148 release_region(pci_resource_start(pdev, bar), 3149 pci_resource_len(pdev, bar)); 3150 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) 3151 release_mem_region(pci_resource_start(pdev, bar), 3152 pci_resource_len(pdev, bar)); 3153 3154 dr = find_pci_dr(pdev); 3155 if (dr) 3156 dr->region_mask &= ~(1 << bar); 3157 } 3158 EXPORT_SYMBOL(pci_release_region); 3159 3160 /** 3161 * __pci_request_region - Reserved PCI I/O and memory resource 3162 * @pdev: PCI device whose resources are to be reserved 3163 * @bar: BAR to be reserved 3164 * @res_name: Name to be associated with resource. 3165 * @exclusive: whether the region access is exclusive or not 3166 * 3167 * Mark the PCI region associated with PCI device @pdev BR @bar as 3168 * being reserved by owner @res_name. Do not access any 3169 * address inside the PCI regions unless this call returns 3170 * successfully. 3171 * 3172 * If @exclusive is set, then the region is marked so that userspace 3173 * is explicitly not allowed to map the resource via /dev/mem or 3174 * sysfs MMIO access. 3175 * 3176 * Returns 0 on success, or %EBUSY on error. A warning 3177 * message is also printed on failure. 3178 */ 3179 static int __pci_request_region(struct pci_dev *pdev, int bar, 3180 const char *res_name, int exclusive) 3181 { 3182 struct pci_devres *dr; 3183 3184 if (pci_resource_len(pdev, bar) == 0) 3185 return 0; 3186 3187 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) { 3188 if (!request_region(pci_resource_start(pdev, bar), 3189 pci_resource_len(pdev, bar), res_name)) 3190 goto err_out; 3191 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) { 3192 if (!__request_mem_region(pci_resource_start(pdev, bar), 3193 pci_resource_len(pdev, bar), res_name, 3194 exclusive)) 3195 goto err_out; 3196 } 3197 3198 dr = find_pci_dr(pdev); 3199 if (dr) 3200 dr->region_mask |= 1 << bar; 3201 3202 return 0; 3203 3204 err_out: 3205 dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar, 3206 &pdev->resource[bar]); 3207 return -EBUSY; 3208 } 3209 3210 /** 3211 * pci_request_region - Reserve PCI I/O and memory resource 3212 * @pdev: PCI device whose resources are to be reserved 3213 * @bar: BAR to be reserved 3214 * @res_name: Name to be associated with resource 3215 * 3216 * Mark the PCI region associated with PCI device @pdev BAR @bar as 3217 * being reserved by owner @res_name. Do not access any 3218 * address inside the PCI regions unless this call returns 3219 * successfully. 3220 * 3221 * Returns 0 on success, or %EBUSY on error. A warning 3222 * message is also printed on failure. 3223 */ 3224 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name) 3225 { 3226 return __pci_request_region(pdev, bar, res_name, 0); 3227 } 3228 EXPORT_SYMBOL(pci_request_region); 3229 3230 /** 3231 * pci_request_region_exclusive - Reserved PCI I/O and memory resource 3232 * @pdev: PCI device whose resources are to be reserved 3233 * @bar: BAR to be reserved 3234 * @res_name: Name to be associated with resource. 3235 * 3236 * Mark the PCI region associated with PCI device @pdev BR @bar as 3237 * being reserved by owner @res_name. Do not access any 3238 * address inside the PCI regions unless this call returns 3239 * successfully. 3240 * 3241 * Returns 0 on success, or %EBUSY on error. A warning 3242 * message is also printed on failure. 3243 * 3244 * The key difference that _exclusive makes it that userspace is 3245 * explicitly not allowed to map the resource via /dev/mem or 3246 * sysfs. 3247 */ 3248 int pci_request_region_exclusive(struct pci_dev *pdev, int bar, 3249 const char *res_name) 3250 { 3251 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE); 3252 } 3253 EXPORT_SYMBOL(pci_request_region_exclusive); 3254 3255 /** 3256 * pci_release_selected_regions - Release selected PCI I/O and memory resources 3257 * @pdev: PCI device whose resources were previously reserved 3258 * @bars: Bitmask of BARs to be released 3259 * 3260 * Release selected PCI I/O and memory resources previously reserved. 3261 * Call this function only after all use of the PCI regions has ceased. 3262 */ 3263 void pci_release_selected_regions(struct pci_dev *pdev, int bars) 3264 { 3265 int i; 3266 3267 for (i = 0; i < 6; i++) 3268 if (bars & (1 << i)) 3269 pci_release_region(pdev, i); 3270 } 3271 EXPORT_SYMBOL(pci_release_selected_regions); 3272 3273 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars, 3274 const char *res_name, int excl) 3275 { 3276 int i; 3277 3278 for (i = 0; i < 6; i++) 3279 if (bars & (1 << i)) 3280 if (__pci_request_region(pdev, i, res_name, excl)) 3281 goto err_out; 3282 return 0; 3283 3284 err_out: 3285 while (--i >= 0) 3286 if (bars & (1 << i)) 3287 pci_release_region(pdev, i); 3288 3289 return -EBUSY; 3290 } 3291 3292 3293 /** 3294 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources 3295 * @pdev: PCI device whose resources are to be reserved 3296 * @bars: Bitmask of BARs to be requested 3297 * @res_name: Name to be associated with resource 3298 */ 3299 int pci_request_selected_regions(struct pci_dev *pdev, int bars, 3300 const char *res_name) 3301 { 3302 return __pci_request_selected_regions(pdev, bars, res_name, 0); 3303 } 3304 EXPORT_SYMBOL(pci_request_selected_regions); 3305 3306 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars, 3307 const char *res_name) 3308 { 3309 return __pci_request_selected_regions(pdev, bars, res_name, 3310 IORESOURCE_EXCLUSIVE); 3311 } 3312 EXPORT_SYMBOL(pci_request_selected_regions_exclusive); 3313 3314 /** 3315 * pci_release_regions - Release reserved PCI I/O and memory resources 3316 * @pdev: PCI device whose resources were previously reserved by pci_request_regions 3317 * 3318 * Releases all PCI I/O and memory resources previously reserved by a 3319 * successful call to pci_request_regions. Call this function only 3320 * after all use of the PCI regions has ceased. 3321 */ 3322 3323 void pci_release_regions(struct pci_dev *pdev) 3324 { 3325 pci_release_selected_regions(pdev, (1 << 6) - 1); 3326 } 3327 EXPORT_SYMBOL(pci_release_regions); 3328 3329 /** 3330 * pci_request_regions - Reserved PCI I/O and memory resources 3331 * @pdev: PCI device whose resources are to be reserved 3332 * @res_name: Name to be associated with resource. 3333 * 3334 * Mark all PCI regions associated with PCI device @pdev as 3335 * being reserved by owner @res_name. Do not access any 3336 * address inside the PCI regions unless this call returns 3337 * successfully. 3338 * 3339 * Returns 0 on success, or %EBUSY on error. A warning 3340 * message is also printed on failure. 3341 */ 3342 int pci_request_regions(struct pci_dev *pdev, const char *res_name) 3343 { 3344 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name); 3345 } 3346 EXPORT_SYMBOL(pci_request_regions); 3347 3348 /** 3349 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources 3350 * @pdev: PCI device whose resources are to be reserved 3351 * @res_name: Name to be associated with resource. 3352 * 3353 * Mark all PCI regions associated with PCI device @pdev as 3354 * being reserved by owner @res_name. Do not access any 3355 * address inside the PCI regions unless this call returns 3356 * successfully. 3357 * 3358 * pci_request_regions_exclusive() will mark the region so that 3359 * /dev/mem and the sysfs MMIO access will not be allowed. 3360 * 3361 * Returns 0 on success, or %EBUSY on error. A warning 3362 * message is also printed on failure. 3363 */ 3364 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name) 3365 { 3366 return pci_request_selected_regions_exclusive(pdev, 3367 ((1 << 6) - 1), res_name); 3368 } 3369 EXPORT_SYMBOL(pci_request_regions_exclusive); 3370 3371 #ifdef PCI_IOBASE 3372 struct io_range { 3373 struct list_head list; 3374 phys_addr_t start; 3375 resource_size_t size; 3376 }; 3377 3378 static LIST_HEAD(io_range_list); 3379 static DEFINE_SPINLOCK(io_range_lock); 3380 #endif 3381 3382 /* 3383 * Record the PCI IO range (expressed as CPU physical address + size). 3384 * Return a negative value if an error has occured, zero otherwise 3385 */ 3386 int __weak pci_register_io_range(phys_addr_t addr, resource_size_t size) 3387 { 3388 int err = 0; 3389 3390 #ifdef PCI_IOBASE 3391 struct io_range *range; 3392 resource_size_t allocated_size = 0; 3393 3394 /* check if the range hasn't been previously recorded */ 3395 spin_lock(&io_range_lock); 3396 list_for_each_entry(range, &io_range_list, list) { 3397 if (addr >= range->start && addr + size <= range->start + size) { 3398 /* range already registered, bail out */ 3399 goto end_register; 3400 } 3401 allocated_size += range->size; 3402 } 3403 3404 /* range not registed yet, check for available space */ 3405 if (allocated_size + size - 1 > IO_SPACE_LIMIT) { 3406 /* if it's too big check if 64K space can be reserved */ 3407 if (allocated_size + SZ_64K - 1 > IO_SPACE_LIMIT) { 3408 err = -E2BIG; 3409 goto end_register; 3410 } 3411 3412 size = SZ_64K; 3413 pr_warn("Requested IO range too big, new size set to 64K\n"); 3414 } 3415 3416 /* add the range to the list */ 3417 range = kzalloc(sizeof(*range), GFP_ATOMIC); 3418 if (!range) { 3419 err = -ENOMEM; 3420 goto end_register; 3421 } 3422 3423 range->start = addr; 3424 range->size = size; 3425 3426 list_add_tail(&range->list, &io_range_list); 3427 3428 end_register: 3429 spin_unlock(&io_range_lock); 3430 #endif 3431 3432 return err; 3433 } 3434 3435 phys_addr_t pci_pio_to_address(unsigned long pio) 3436 { 3437 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR; 3438 3439 #ifdef PCI_IOBASE 3440 struct io_range *range; 3441 resource_size_t allocated_size = 0; 3442 3443 if (pio > IO_SPACE_LIMIT) 3444 return address; 3445 3446 spin_lock(&io_range_lock); 3447 list_for_each_entry(range, &io_range_list, list) { 3448 if (pio >= allocated_size && pio < allocated_size + range->size) { 3449 address = range->start + pio - allocated_size; 3450 break; 3451 } 3452 allocated_size += range->size; 3453 } 3454 spin_unlock(&io_range_lock); 3455 #endif 3456 3457 return address; 3458 } 3459 3460 unsigned long __weak pci_address_to_pio(phys_addr_t address) 3461 { 3462 #ifdef PCI_IOBASE 3463 struct io_range *res; 3464 resource_size_t offset = 0; 3465 unsigned long addr = -1; 3466 3467 spin_lock(&io_range_lock); 3468 list_for_each_entry(res, &io_range_list, list) { 3469 if (address >= res->start && address < res->start + res->size) { 3470 addr = address - res->start + offset; 3471 break; 3472 } 3473 offset += res->size; 3474 } 3475 spin_unlock(&io_range_lock); 3476 3477 return addr; 3478 #else 3479 if (address > IO_SPACE_LIMIT) 3480 return (unsigned long)-1; 3481 3482 return (unsigned long) address; 3483 #endif 3484 } 3485 3486 /** 3487 * pci_remap_iospace - Remap the memory mapped I/O space 3488 * @res: Resource describing the I/O space 3489 * @phys_addr: physical address of range to be mapped 3490 * 3491 * Remap the memory mapped I/O space described by the @res 3492 * and the CPU physical address @phys_addr into virtual address space. 3493 * Only architectures that have memory mapped IO functions defined 3494 * (and the PCI_IOBASE value defined) should call this function. 3495 */ 3496 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr) 3497 { 3498 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 3499 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 3500 3501 if (!(res->flags & IORESOURCE_IO)) 3502 return -EINVAL; 3503 3504 if (res->end > IO_SPACE_LIMIT) 3505 return -EINVAL; 3506 3507 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr, 3508 pgprot_device(PAGE_KERNEL)); 3509 #else 3510 /* this architecture does not have memory mapped I/O space, 3511 so this function should never be called */ 3512 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n"); 3513 return -ENODEV; 3514 #endif 3515 } 3516 EXPORT_SYMBOL(pci_remap_iospace); 3517 3518 /** 3519 * pci_unmap_iospace - Unmap the memory mapped I/O space 3520 * @res: resource to be unmapped 3521 * 3522 * Unmap the CPU virtual address @res from virtual address space. 3523 * Only architectures that have memory mapped IO functions defined 3524 * (and the PCI_IOBASE value defined) should call this function. 3525 */ 3526 void pci_unmap_iospace(struct resource *res) 3527 { 3528 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 3529 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 3530 3531 unmap_kernel_range(vaddr, resource_size(res)); 3532 #endif 3533 } 3534 EXPORT_SYMBOL(pci_unmap_iospace); 3535 3536 /** 3537 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace() 3538 * @dev: Generic device to remap IO address for 3539 * @offset: Resource address to map 3540 * @size: Size of map 3541 * 3542 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver 3543 * detach. 3544 */ 3545 void __iomem *devm_pci_remap_cfgspace(struct device *dev, 3546 resource_size_t offset, 3547 resource_size_t size) 3548 { 3549 void __iomem **ptr, *addr; 3550 3551 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL); 3552 if (!ptr) 3553 return NULL; 3554 3555 addr = pci_remap_cfgspace(offset, size); 3556 if (addr) { 3557 *ptr = addr; 3558 devres_add(dev, ptr); 3559 } else 3560 devres_free(ptr); 3561 3562 return addr; 3563 } 3564 EXPORT_SYMBOL(devm_pci_remap_cfgspace); 3565 3566 /** 3567 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource 3568 * @dev: generic device to handle the resource for 3569 * @res: configuration space resource to be handled 3570 * 3571 * Checks that a resource is a valid memory region, requests the memory 3572 * region and ioremaps with pci_remap_cfgspace() API that ensures the 3573 * proper PCI configuration space memory attributes are guaranteed. 3574 * 3575 * All operations are managed and will be undone on driver detach. 3576 * 3577 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code 3578 * on failure. Usage example:: 3579 * 3580 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 3581 * base = devm_pci_remap_cfg_resource(&pdev->dev, res); 3582 * if (IS_ERR(base)) 3583 * return PTR_ERR(base); 3584 */ 3585 void __iomem *devm_pci_remap_cfg_resource(struct device *dev, 3586 struct resource *res) 3587 { 3588 resource_size_t size; 3589 const char *name; 3590 void __iomem *dest_ptr; 3591 3592 BUG_ON(!dev); 3593 3594 if (!res || resource_type(res) != IORESOURCE_MEM) { 3595 dev_err(dev, "invalid resource\n"); 3596 return IOMEM_ERR_PTR(-EINVAL); 3597 } 3598 3599 size = resource_size(res); 3600 name = res->name ?: dev_name(dev); 3601 3602 if (!devm_request_mem_region(dev, res->start, size, name)) { 3603 dev_err(dev, "can't request region for resource %pR\n", res); 3604 return IOMEM_ERR_PTR(-EBUSY); 3605 } 3606 3607 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size); 3608 if (!dest_ptr) { 3609 dev_err(dev, "ioremap failed for resource %pR\n", res); 3610 devm_release_mem_region(dev, res->start, size); 3611 dest_ptr = IOMEM_ERR_PTR(-ENOMEM); 3612 } 3613 3614 return dest_ptr; 3615 } 3616 EXPORT_SYMBOL(devm_pci_remap_cfg_resource); 3617 3618 static void __pci_set_master(struct pci_dev *dev, bool enable) 3619 { 3620 u16 old_cmd, cmd; 3621 3622 pci_read_config_word(dev, PCI_COMMAND, &old_cmd); 3623 if (enable) 3624 cmd = old_cmd | PCI_COMMAND_MASTER; 3625 else 3626 cmd = old_cmd & ~PCI_COMMAND_MASTER; 3627 if (cmd != old_cmd) { 3628 dev_dbg(&dev->dev, "%s bus mastering\n", 3629 enable ? "enabling" : "disabling"); 3630 pci_write_config_word(dev, PCI_COMMAND, cmd); 3631 } 3632 dev->is_busmaster = enable; 3633 } 3634 3635 /** 3636 * pcibios_setup - process "pci=" kernel boot arguments 3637 * @str: string used to pass in "pci=" kernel boot arguments 3638 * 3639 * Process kernel boot arguments. This is the default implementation. 3640 * Architecture specific implementations can override this as necessary. 3641 */ 3642 char * __weak __init pcibios_setup(char *str) 3643 { 3644 return str; 3645 } 3646 3647 /** 3648 * pcibios_set_master - enable PCI bus-mastering for device dev 3649 * @dev: the PCI device to enable 3650 * 3651 * Enables PCI bus-mastering for the device. This is the default 3652 * implementation. Architecture specific implementations can override 3653 * this if necessary. 3654 */ 3655 void __weak pcibios_set_master(struct pci_dev *dev) 3656 { 3657 u8 lat; 3658 3659 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */ 3660 if (pci_is_pcie(dev)) 3661 return; 3662 3663 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat); 3664 if (lat < 16) 3665 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency; 3666 else if (lat > pcibios_max_latency) 3667 lat = pcibios_max_latency; 3668 else 3669 return; 3670 3671 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat); 3672 } 3673 3674 /** 3675 * pci_set_master - enables bus-mastering for device dev 3676 * @dev: the PCI device to enable 3677 * 3678 * Enables bus-mastering on the device and calls pcibios_set_master() 3679 * to do the needed arch specific settings. 3680 */ 3681 void pci_set_master(struct pci_dev *dev) 3682 { 3683 __pci_set_master(dev, true); 3684 pcibios_set_master(dev); 3685 } 3686 EXPORT_SYMBOL(pci_set_master); 3687 3688 /** 3689 * pci_clear_master - disables bus-mastering for device dev 3690 * @dev: the PCI device to disable 3691 */ 3692 void pci_clear_master(struct pci_dev *dev) 3693 { 3694 __pci_set_master(dev, false); 3695 } 3696 EXPORT_SYMBOL(pci_clear_master); 3697 3698 /** 3699 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed 3700 * @dev: the PCI device for which MWI is to be enabled 3701 * 3702 * Helper function for pci_set_mwi. 3703 * Originally copied from drivers/net/acenic.c. 3704 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. 3705 * 3706 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 3707 */ 3708 int pci_set_cacheline_size(struct pci_dev *dev) 3709 { 3710 u8 cacheline_size; 3711 3712 if (!pci_cache_line_size) 3713 return -EINVAL; 3714 3715 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be 3716 equal to or multiple of the right value. */ 3717 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 3718 if (cacheline_size >= pci_cache_line_size && 3719 (cacheline_size % pci_cache_line_size) == 0) 3720 return 0; 3721 3722 /* Write the correct value. */ 3723 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size); 3724 /* Read it back. */ 3725 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 3726 if (cacheline_size == pci_cache_line_size) 3727 return 0; 3728 3729 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not supported\n", 3730 pci_cache_line_size << 2); 3731 3732 return -EINVAL; 3733 } 3734 EXPORT_SYMBOL_GPL(pci_set_cacheline_size); 3735 3736 /** 3737 * pci_set_mwi - enables memory-write-invalidate PCI transaction 3738 * @dev: the PCI device for which MWI is enabled 3739 * 3740 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 3741 * 3742 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 3743 */ 3744 int pci_set_mwi(struct pci_dev *dev) 3745 { 3746 #ifdef PCI_DISABLE_MWI 3747 return 0; 3748 #else 3749 int rc; 3750 u16 cmd; 3751 3752 rc = pci_set_cacheline_size(dev); 3753 if (rc) 3754 return rc; 3755 3756 pci_read_config_word(dev, PCI_COMMAND, &cmd); 3757 if (!(cmd & PCI_COMMAND_INVALIDATE)) { 3758 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n"); 3759 cmd |= PCI_COMMAND_INVALIDATE; 3760 pci_write_config_word(dev, PCI_COMMAND, cmd); 3761 } 3762 return 0; 3763 #endif 3764 } 3765 EXPORT_SYMBOL(pci_set_mwi); 3766 3767 /** 3768 * pcim_set_mwi - a device-managed pci_set_mwi() 3769 * @dev: the PCI device for which MWI is enabled 3770 * 3771 * Managed pci_set_mwi(). 3772 * 3773 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 3774 */ 3775 int pcim_set_mwi(struct pci_dev *dev) 3776 { 3777 struct pci_devres *dr; 3778 3779 dr = find_pci_dr(dev); 3780 if (!dr) 3781 return -ENOMEM; 3782 3783 dr->mwi = 1; 3784 return pci_set_mwi(dev); 3785 } 3786 EXPORT_SYMBOL(pcim_set_mwi); 3787 3788 /** 3789 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction 3790 * @dev: the PCI device for which MWI is enabled 3791 * 3792 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 3793 * Callers are not required to check the return value. 3794 * 3795 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 3796 */ 3797 int pci_try_set_mwi(struct pci_dev *dev) 3798 { 3799 #ifdef PCI_DISABLE_MWI 3800 return 0; 3801 #else 3802 return pci_set_mwi(dev); 3803 #endif 3804 } 3805 EXPORT_SYMBOL(pci_try_set_mwi); 3806 3807 /** 3808 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev 3809 * @dev: the PCI device to disable 3810 * 3811 * Disables PCI Memory-Write-Invalidate transaction on the device 3812 */ 3813 void pci_clear_mwi(struct pci_dev *dev) 3814 { 3815 #ifndef PCI_DISABLE_MWI 3816 u16 cmd; 3817 3818 pci_read_config_word(dev, PCI_COMMAND, &cmd); 3819 if (cmd & PCI_COMMAND_INVALIDATE) { 3820 cmd &= ~PCI_COMMAND_INVALIDATE; 3821 pci_write_config_word(dev, PCI_COMMAND, cmd); 3822 } 3823 #endif 3824 } 3825 EXPORT_SYMBOL(pci_clear_mwi); 3826 3827 /** 3828 * pci_intx - enables/disables PCI INTx for device dev 3829 * @pdev: the PCI device to operate on 3830 * @enable: boolean: whether to enable or disable PCI INTx 3831 * 3832 * Enables/disables PCI INTx for device dev 3833 */ 3834 void pci_intx(struct pci_dev *pdev, int enable) 3835 { 3836 u16 pci_command, new; 3837 3838 pci_read_config_word(pdev, PCI_COMMAND, &pci_command); 3839 3840 if (enable) 3841 new = pci_command & ~PCI_COMMAND_INTX_DISABLE; 3842 else 3843 new = pci_command | PCI_COMMAND_INTX_DISABLE; 3844 3845 if (new != pci_command) { 3846 struct pci_devres *dr; 3847 3848 pci_write_config_word(pdev, PCI_COMMAND, new); 3849 3850 dr = find_pci_dr(pdev); 3851 if (dr && !dr->restore_intx) { 3852 dr->restore_intx = 1; 3853 dr->orig_intx = !enable; 3854 } 3855 } 3856 } 3857 EXPORT_SYMBOL_GPL(pci_intx); 3858 3859 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask) 3860 { 3861 struct pci_bus *bus = dev->bus; 3862 bool mask_updated = true; 3863 u32 cmd_status_dword; 3864 u16 origcmd, newcmd; 3865 unsigned long flags; 3866 bool irq_pending; 3867 3868 /* 3869 * We do a single dword read to retrieve both command and status. 3870 * Document assumptions that make this possible. 3871 */ 3872 BUILD_BUG_ON(PCI_COMMAND % 4); 3873 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS); 3874 3875 raw_spin_lock_irqsave(&pci_lock, flags); 3876 3877 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword); 3878 3879 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT; 3880 3881 /* 3882 * Check interrupt status register to see whether our device 3883 * triggered the interrupt (when masking) or the next IRQ is 3884 * already pending (when unmasking). 3885 */ 3886 if (mask != irq_pending) { 3887 mask_updated = false; 3888 goto done; 3889 } 3890 3891 origcmd = cmd_status_dword; 3892 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE; 3893 if (mask) 3894 newcmd |= PCI_COMMAND_INTX_DISABLE; 3895 if (newcmd != origcmd) 3896 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd); 3897 3898 done: 3899 raw_spin_unlock_irqrestore(&pci_lock, flags); 3900 3901 return mask_updated; 3902 } 3903 3904 /** 3905 * pci_check_and_mask_intx - mask INTx on pending interrupt 3906 * @dev: the PCI device to operate on 3907 * 3908 * Check if the device dev has its INTx line asserted, mask it and 3909 * return true in that case. False is returned if no interrupt was 3910 * pending. 3911 */ 3912 bool pci_check_and_mask_intx(struct pci_dev *dev) 3913 { 3914 return pci_check_and_set_intx_mask(dev, true); 3915 } 3916 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx); 3917 3918 /** 3919 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending 3920 * @dev: the PCI device to operate on 3921 * 3922 * Check if the device dev has its INTx line asserted, unmask it if not 3923 * and return true. False is returned and the mask remains active if 3924 * there was still an interrupt pending. 3925 */ 3926 bool pci_check_and_unmask_intx(struct pci_dev *dev) 3927 { 3928 return pci_check_and_set_intx_mask(dev, false); 3929 } 3930 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx); 3931 3932 /** 3933 * pci_wait_for_pending_transaction - waits for pending transaction 3934 * @dev: the PCI device to operate on 3935 * 3936 * Return 0 if transaction is pending 1 otherwise. 3937 */ 3938 int pci_wait_for_pending_transaction(struct pci_dev *dev) 3939 { 3940 if (!pci_is_pcie(dev)) 3941 return 1; 3942 3943 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA, 3944 PCI_EXP_DEVSTA_TRPND); 3945 } 3946 EXPORT_SYMBOL(pci_wait_for_pending_transaction); 3947 3948 static void pci_flr_wait(struct pci_dev *dev) 3949 { 3950 int delay = 1, timeout = 60000; 3951 u32 id; 3952 3953 /* 3954 * Per PCIe r3.1, sec 6.6.2, a device must complete an FLR within 3955 * 100ms, but may silently discard requests while the FLR is in 3956 * progress. Wait 100ms before trying to access the device. 3957 */ 3958 msleep(100); 3959 3960 /* 3961 * After 100ms, the device should not silently discard config 3962 * requests, but it may still indicate that it needs more time by 3963 * responding to them with CRS completions. The Root Port will 3964 * generally synthesize ~0 data to complete the read (except when 3965 * CRS SV is enabled and the read was for the Vendor ID; in that 3966 * case it synthesizes 0x0001 data). 3967 * 3968 * Wait for the device to return a non-CRS completion. Read the 3969 * Command register instead of Vendor ID so we don't have to 3970 * contend with the CRS SV value. 3971 */ 3972 pci_read_config_dword(dev, PCI_COMMAND, &id); 3973 while (id == ~0) { 3974 if (delay > timeout) { 3975 dev_warn(&dev->dev, "not ready %dms after FLR; giving up\n", 3976 100 + delay - 1); 3977 return; 3978 } 3979 3980 if (delay > 1000) 3981 dev_info(&dev->dev, "not ready %dms after FLR; waiting\n", 3982 100 + delay - 1); 3983 3984 msleep(delay); 3985 delay *= 2; 3986 pci_read_config_dword(dev, PCI_COMMAND, &id); 3987 } 3988 3989 if (delay > 1000) 3990 dev_info(&dev->dev, "ready %dms after FLR\n", 100 + delay - 1); 3991 } 3992 3993 /** 3994 * pcie_has_flr - check if a device supports function level resets 3995 * @dev: device to check 3996 * 3997 * Returns true if the device advertises support for PCIe function level 3998 * resets. 3999 */ 4000 static bool pcie_has_flr(struct pci_dev *dev) 4001 { 4002 u32 cap; 4003 4004 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4005 return false; 4006 4007 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap); 4008 return cap & PCI_EXP_DEVCAP_FLR; 4009 } 4010 4011 /** 4012 * pcie_flr - initiate a PCIe function level reset 4013 * @dev: device to reset 4014 * 4015 * Initiate a function level reset on @dev. The caller should ensure the 4016 * device supports FLR before calling this function, e.g. by using the 4017 * pcie_has_flr() helper. 4018 */ 4019 void pcie_flr(struct pci_dev *dev) 4020 { 4021 if (!pci_wait_for_pending_transaction(dev)) 4022 dev_err(&dev->dev, "timed out waiting for pending transaction; performing function level reset anyway\n"); 4023 4024 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR); 4025 pci_flr_wait(dev); 4026 } 4027 EXPORT_SYMBOL_GPL(pcie_flr); 4028 4029 static int pci_af_flr(struct pci_dev *dev, int probe) 4030 { 4031 int pos; 4032 u8 cap; 4033 4034 pos = pci_find_capability(dev, PCI_CAP_ID_AF); 4035 if (!pos) 4036 return -ENOTTY; 4037 4038 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4039 return -ENOTTY; 4040 4041 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap); 4042 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR)) 4043 return -ENOTTY; 4044 4045 if (probe) 4046 return 0; 4047 4048 /* 4049 * Wait for Transaction Pending bit to clear. A word-aligned test 4050 * is used, so we use the conrol offset rather than status and shift 4051 * the test bit to match. 4052 */ 4053 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL, 4054 PCI_AF_STATUS_TP << 8)) 4055 dev_err(&dev->dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n"); 4056 4057 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR); 4058 pci_flr_wait(dev); 4059 return 0; 4060 } 4061 4062 /** 4063 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0. 4064 * @dev: Device to reset. 4065 * @probe: If set, only check if the device can be reset this way. 4066 * 4067 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is 4068 * unset, it will be reinitialized internally when going from PCI_D3hot to 4069 * PCI_D0. If that's the case and the device is not in a low-power state 4070 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset. 4071 * 4072 * NOTE: This causes the caller to sleep for twice the device power transition 4073 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms 4074 * by default (i.e. unless the @dev's d3_delay field has a different value). 4075 * Moreover, only devices in D0 can be reset by this function. 4076 */ 4077 static int pci_pm_reset(struct pci_dev *dev, int probe) 4078 { 4079 u16 csr; 4080 4081 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET) 4082 return -ENOTTY; 4083 4084 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr); 4085 if (csr & PCI_PM_CTRL_NO_SOFT_RESET) 4086 return -ENOTTY; 4087 4088 if (probe) 4089 return 0; 4090 4091 if (dev->current_state != PCI_D0) 4092 return -EINVAL; 4093 4094 csr &= ~PCI_PM_CTRL_STATE_MASK; 4095 csr |= PCI_D3hot; 4096 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4097 pci_dev_d3_sleep(dev); 4098 4099 csr &= ~PCI_PM_CTRL_STATE_MASK; 4100 csr |= PCI_D0; 4101 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4102 pci_dev_d3_sleep(dev); 4103 4104 return 0; 4105 } 4106 4107 void pci_reset_secondary_bus(struct pci_dev *dev) 4108 { 4109 u16 ctrl; 4110 4111 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl); 4112 ctrl |= PCI_BRIDGE_CTL_BUS_RESET; 4113 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 4114 /* 4115 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double 4116 * this to 2ms to ensure that we meet the minimum requirement. 4117 */ 4118 msleep(2); 4119 4120 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET; 4121 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 4122 4123 /* 4124 * Trhfa for conventional PCI is 2^25 clock cycles. 4125 * Assuming a minimum 33MHz clock this results in a 1s 4126 * delay before we can consider subordinate devices to 4127 * be re-initialized. PCIe has some ways to shorten this, 4128 * but we don't make use of them yet. 4129 */ 4130 ssleep(1); 4131 } 4132 4133 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev) 4134 { 4135 pci_reset_secondary_bus(dev); 4136 } 4137 4138 /** 4139 * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge. 4140 * @dev: Bridge device 4141 * 4142 * Use the bridge control register to assert reset on the secondary bus. 4143 * Devices on the secondary bus are left in power-on state. 4144 */ 4145 void pci_reset_bridge_secondary_bus(struct pci_dev *dev) 4146 { 4147 pcibios_reset_secondary_bus(dev); 4148 } 4149 EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus); 4150 4151 static int pci_parent_bus_reset(struct pci_dev *dev, int probe) 4152 { 4153 struct pci_dev *pdev; 4154 4155 if (pci_is_root_bus(dev->bus) || dev->subordinate || 4156 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 4157 return -ENOTTY; 4158 4159 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 4160 if (pdev != dev) 4161 return -ENOTTY; 4162 4163 if (probe) 4164 return 0; 4165 4166 pci_reset_bridge_secondary_bus(dev->bus->self); 4167 4168 return 0; 4169 } 4170 4171 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe) 4172 { 4173 int rc = -ENOTTY; 4174 4175 if (!hotplug || !try_module_get(hotplug->ops->owner)) 4176 return rc; 4177 4178 if (hotplug->ops->reset_slot) 4179 rc = hotplug->ops->reset_slot(hotplug, probe); 4180 4181 module_put(hotplug->ops->owner); 4182 4183 return rc; 4184 } 4185 4186 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe) 4187 { 4188 struct pci_dev *pdev; 4189 4190 if (dev->subordinate || !dev->slot || 4191 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 4192 return -ENOTTY; 4193 4194 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 4195 if (pdev != dev && pdev->slot == dev->slot) 4196 return -ENOTTY; 4197 4198 return pci_reset_hotplug_slot(dev->slot->hotplug, probe); 4199 } 4200 4201 static void pci_dev_lock(struct pci_dev *dev) 4202 { 4203 pci_cfg_access_lock(dev); 4204 /* block PM suspend, driver probe, etc. */ 4205 device_lock(&dev->dev); 4206 } 4207 4208 /* Return 1 on successful lock, 0 on contention */ 4209 static int pci_dev_trylock(struct pci_dev *dev) 4210 { 4211 if (pci_cfg_access_trylock(dev)) { 4212 if (device_trylock(&dev->dev)) 4213 return 1; 4214 pci_cfg_access_unlock(dev); 4215 } 4216 4217 return 0; 4218 } 4219 4220 static void pci_dev_unlock(struct pci_dev *dev) 4221 { 4222 device_unlock(&dev->dev); 4223 pci_cfg_access_unlock(dev); 4224 } 4225 4226 static void pci_dev_save_and_disable(struct pci_dev *dev) 4227 { 4228 const struct pci_error_handlers *err_handler = 4229 dev->driver ? dev->driver->err_handler : NULL; 4230 4231 /* 4232 * dev->driver->err_handler->reset_prepare() is protected against 4233 * races with ->remove() by the device lock, which must be held by 4234 * the caller. 4235 */ 4236 if (err_handler && err_handler->reset_prepare) 4237 err_handler->reset_prepare(dev); 4238 4239 /* 4240 * Wake-up device prior to save. PM registers default to D0 after 4241 * reset and a simple register restore doesn't reliably return 4242 * to a non-D0 state anyway. 4243 */ 4244 pci_set_power_state(dev, PCI_D0); 4245 4246 pci_save_state(dev); 4247 /* 4248 * Disable the device by clearing the Command register, except for 4249 * INTx-disable which is set. This not only disables MMIO and I/O port 4250 * BARs, but also prevents the device from being Bus Master, preventing 4251 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3 4252 * compliant devices, INTx-disable prevents legacy interrupts. 4253 */ 4254 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE); 4255 } 4256 4257 static void pci_dev_restore(struct pci_dev *dev) 4258 { 4259 const struct pci_error_handlers *err_handler = 4260 dev->driver ? dev->driver->err_handler : NULL; 4261 4262 pci_restore_state(dev); 4263 4264 /* 4265 * dev->driver->err_handler->reset_done() is protected against 4266 * races with ->remove() by the device lock, which must be held by 4267 * the caller. 4268 */ 4269 if (err_handler && err_handler->reset_done) 4270 err_handler->reset_done(dev); 4271 } 4272 4273 /** 4274 * __pci_reset_function_locked - reset a PCI device function while holding 4275 * the @dev mutex lock. 4276 * @dev: PCI device to reset 4277 * 4278 * Some devices allow an individual function to be reset without affecting 4279 * other functions in the same device. The PCI device must be responsive 4280 * to PCI config space in order to use this function. 4281 * 4282 * The device function is presumed to be unused and the caller is holding 4283 * the device mutex lock when this function is called. 4284 * Resetting the device will make the contents of PCI configuration space 4285 * random, so any caller of this must be prepared to reinitialise the 4286 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 4287 * etc. 4288 * 4289 * Returns 0 if the device function was successfully reset or negative if the 4290 * device doesn't support resetting a single function. 4291 */ 4292 int __pci_reset_function_locked(struct pci_dev *dev) 4293 { 4294 int rc; 4295 4296 might_sleep(); 4297 4298 /* 4299 * A reset method returns -ENOTTY if it doesn't support this device 4300 * and we should try the next method. 4301 * 4302 * If it returns 0 (success), we're finished. If it returns any 4303 * other error, we're also finished: this indicates that further 4304 * reset mechanisms might be broken on the device. 4305 */ 4306 rc = pci_dev_specific_reset(dev, 0); 4307 if (rc != -ENOTTY) 4308 return rc; 4309 if (pcie_has_flr(dev)) { 4310 pcie_flr(dev); 4311 return 0; 4312 } 4313 rc = pci_af_flr(dev, 0); 4314 if (rc != -ENOTTY) 4315 return rc; 4316 rc = pci_pm_reset(dev, 0); 4317 if (rc != -ENOTTY) 4318 return rc; 4319 rc = pci_dev_reset_slot_function(dev, 0); 4320 if (rc != -ENOTTY) 4321 return rc; 4322 return pci_parent_bus_reset(dev, 0); 4323 } 4324 EXPORT_SYMBOL_GPL(__pci_reset_function_locked); 4325 4326 /** 4327 * pci_probe_reset_function - check whether the device can be safely reset 4328 * @dev: PCI device to reset 4329 * 4330 * Some devices allow an individual function to be reset without affecting 4331 * other functions in the same device. The PCI device must be responsive 4332 * to PCI config space in order to use this function. 4333 * 4334 * Returns 0 if the device function can be reset or negative if the 4335 * device doesn't support resetting a single function. 4336 */ 4337 int pci_probe_reset_function(struct pci_dev *dev) 4338 { 4339 int rc; 4340 4341 might_sleep(); 4342 4343 rc = pci_dev_specific_reset(dev, 1); 4344 if (rc != -ENOTTY) 4345 return rc; 4346 if (pcie_has_flr(dev)) 4347 return 0; 4348 rc = pci_af_flr(dev, 1); 4349 if (rc != -ENOTTY) 4350 return rc; 4351 rc = pci_pm_reset(dev, 1); 4352 if (rc != -ENOTTY) 4353 return rc; 4354 rc = pci_dev_reset_slot_function(dev, 1); 4355 if (rc != -ENOTTY) 4356 return rc; 4357 4358 return pci_parent_bus_reset(dev, 1); 4359 } 4360 4361 /** 4362 * pci_reset_function - quiesce and reset a PCI device function 4363 * @dev: PCI device to reset 4364 * 4365 * Some devices allow an individual function to be reset without affecting 4366 * other functions in the same device. The PCI device must be responsive 4367 * to PCI config space in order to use this function. 4368 * 4369 * This function does not just reset the PCI portion of a device, but 4370 * clears all the state associated with the device. This function differs 4371 * from __pci_reset_function_locked() in that it saves and restores device state 4372 * over the reset and takes the PCI device lock. 4373 * 4374 * Returns 0 if the device function was successfully reset or negative if the 4375 * device doesn't support resetting a single function. 4376 */ 4377 int pci_reset_function(struct pci_dev *dev) 4378 { 4379 int rc; 4380 4381 rc = pci_probe_reset_function(dev); 4382 if (rc) 4383 return rc; 4384 4385 pci_dev_lock(dev); 4386 pci_dev_save_and_disable(dev); 4387 4388 rc = __pci_reset_function_locked(dev); 4389 4390 pci_dev_restore(dev); 4391 pci_dev_unlock(dev); 4392 4393 return rc; 4394 } 4395 EXPORT_SYMBOL_GPL(pci_reset_function); 4396 4397 /** 4398 * pci_reset_function_locked - quiesce and reset a PCI device function 4399 * @dev: PCI device to reset 4400 * 4401 * Some devices allow an individual function to be reset without affecting 4402 * other functions in the same device. The PCI device must be responsive 4403 * to PCI config space in order to use this function. 4404 * 4405 * This function does not just reset the PCI portion of a device, but 4406 * clears all the state associated with the device. This function differs 4407 * from __pci_reset_function_locked() in that it saves and restores device state 4408 * over the reset. It also differs from pci_reset_function() in that it 4409 * requires the PCI device lock to be held. 4410 * 4411 * Returns 0 if the device function was successfully reset or negative if the 4412 * device doesn't support resetting a single function. 4413 */ 4414 int pci_reset_function_locked(struct pci_dev *dev) 4415 { 4416 int rc; 4417 4418 rc = pci_probe_reset_function(dev); 4419 if (rc) 4420 return rc; 4421 4422 pci_dev_save_and_disable(dev); 4423 4424 rc = __pci_reset_function_locked(dev); 4425 4426 pci_dev_restore(dev); 4427 4428 return rc; 4429 } 4430 EXPORT_SYMBOL_GPL(pci_reset_function_locked); 4431 4432 /** 4433 * pci_try_reset_function - quiesce and reset a PCI device function 4434 * @dev: PCI device to reset 4435 * 4436 * Same as above, except return -EAGAIN if unable to lock device. 4437 */ 4438 int pci_try_reset_function(struct pci_dev *dev) 4439 { 4440 int rc; 4441 4442 rc = pci_probe_reset_function(dev); 4443 if (rc) 4444 return rc; 4445 4446 if (!pci_dev_trylock(dev)) 4447 return -EAGAIN; 4448 4449 pci_dev_save_and_disable(dev); 4450 rc = __pci_reset_function_locked(dev); 4451 pci_dev_unlock(dev); 4452 4453 pci_dev_restore(dev); 4454 return rc; 4455 } 4456 EXPORT_SYMBOL_GPL(pci_try_reset_function); 4457 4458 /* Do any devices on or below this bus prevent a bus reset? */ 4459 static bool pci_bus_resetable(struct pci_bus *bus) 4460 { 4461 struct pci_dev *dev; 4462 4463 4464 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 4465 return false; 4466 4467 list_for_each_entry(dev, &bus->devices, bus_list) { 4468 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 4469 (dev->subordinate && !pci_bus_resetable(dev->subordinate))) 4470 return false; 4471 } 4472 4473 return true; 4474 } 4475 4476 /* Lock devices from the top of the tree down */ 4477 static void pci_bus_lock(struct pci_bus *bus) 4478 { 4479 struct pci_dev *dev; 4480 4481 list_for_each_entry(dev, &bus->devices, bus_list) { 4482 pci_dev_lock(dev); 4483 if (dev->subordinate) 4484 pci_bus_lock(dev->subordinate); 4485 } 4486 } 4487 4488 /* Unlock devices from the bottom of the tree up */ 4489 static void pci_bus_unlock(struct pci_bus *bus) 4490 { 4491 struct pci_dev *dev; 4492 4493 list_for_each_entry(dev, &bus->devices, bus_list) { 4494 if (dev->subordinate) 4495 pci_bus_unlock(dev->subordinate); 4496 pci_dev_unlock(dev); 4497 } 4498 } 4499 4500 /* Return 1 on successful lock, 0 on contention */ 4501 static int pci_bus_trylock(struct pci_bus *bus) 4502 { 4503 struct pci_dev *dev; 4504 4505 list_for_each_entry(dev, &bus->devices, bus_list) { 4506 if (!pci_dev_trylock(dev)) 4507 goto unlock; 4508 if (dev->subordinate) { 4509 if (!pci_bus_trylock(dev->subordinate)) { 4510 pci_dev_unlock(dev); 4511 goto unlock; 4512 } 4513 } 4514 } 4515 return 1; 4516 4517 unlock: 4518 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) { 4519 if (dev->subordinate) 4520 pci_bus_unlock(dev->subordinate); 4521 pci_dev_unlock(dev); 4522 } 4523 return 0; 4524 } 4525 4526 /* Do any devices on or below this slot prevent a bus reset? */ 4527 static bool pci_slot_resetable(struct pci_slot *slot) 4528 { 4529 struct pci_dev *dev; 4530 4531 if (slot->bus->self && 4532 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 4533 return false; 4534 4535 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 4536 if (!dev->slot || dev->slot != slot) 4537 continue; 4538 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 4539 (dev->subordinate && !pci_bus_resetable(dev->subordinate))) 4540 return false; 4541 } 4542 4543 return true; 4544 } 4545 4546 /* Lock devices from the top of the tree down */ 4547 static void pci_slot_lock(struct pci_slot *slot) 4548 { 4549 struct pci_dev *dev; 4550 4551 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 4552 if (!dev->slot || dev->slot != slot) 4553 continue; 4554 pci_dev_lock(dev); 4555 if (dev->subordinate) 4556 pci_bus_lock(dev->subordinate); 4557 } 4558 } 4559 4560 /* Unlock devices from the bottom of the tree up */ 4561 static void pci_slot_unlock(struct pci_slot *slot) 4562 { 4563 struct pci_dev *dev; 4564 4565 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 4566 if (!dev->slot || dev->slot != slot) 4567 continue; 4568 if (dev->subordinate) 4569 pci_bus_unlock(dev->subordinate); 4570 pci_dev_unlock(dev); 4571 } 4572 } 4573 4574 /* Return 1 on successful lock, 0 on contention */ 4575 static int pci_slot_trylock(struct pci_slot *slot) 4576 { 4577 struct pci_dev *dev; 4578 4579 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 4580 if (!dev->slot || dev->slot != slot) 4581 continue; 4582 if (!pci_dev_trylock(dev)) 4583 goto unlock; 4584 if (dev->subordinate) { 4585 if (!pci_bus_trylock(dev->subordinate)) { 4586 pci_dev_unlock(dev); 4587 goto unlock; 4588 } 4589 } 4590 } 4591 return 1; 4592 4593 unlock: 4594 list_for_each_entry_continue_reverse(dev, 4595 &slot->bus->devices, bus_list) { 4596 if (!dev->slot || dev->slot != slot) 4597 continue; 4598 if (dev->subordinate) 4599 pci_bus_unlock(dev->subordinate); 4600 pci_dev_unlock(dev); 4601 } 4602 return 0; 4603 } 4604 4605 /* Save and disable devices from the top of the tree down */ 4606 static void pci_bus_save_and_disable(struct pci_bus *bus) 4607 { 4608 struct pci_dev *dev; 4609 4610 list_for_each_entry(dev, &bus->devices, bus_list) { 4611 pci_dev_lock(dev); 4612 pci_dev_save_and_disable(dev); 4613 pci_dev_unlock(dev); 4614 if (dev->subordinate) 4615 pci_bus_save_and_disable(dev->subordinate); 4616 } 4617 } 4618 4619 /* 4620 * Restore devices from top of the tree down - parent bridges need to be 4621 * restored before we can get to subordinate devices. 4622 */ 4623 static void pci_bus_restore(struct pci_bus *bus) 4624 { 4625 struct pci_dev *dev; 4626 4627 list_for_each_entry(dev, &bus->devices, bus_list) { 4628 pci_dev_lock(dev); 4629 pci_dev_restore(dev); 4630 pci_dev_unlock(dev); 4631 if (dev->subordinate) 4632 pci_bus_restore(dev->subordinate); 4633 } 4634 } 4635 4636 /* Save and disable devices from the top of the tree down */ 4637 static void pci_slot_save_and_disable(struct pci_slot *slot) 4638 { 4639 struct pci_dev *dev; 4640 4641 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 4642 if (!dev->slot || dev->slot != slot) 4643 continue; 4644 pci_dev_save_and_disable(dev); 4645 if (dev->subordinate) 4646 pci_bus_save_and_disable(dev->subordinate); 4647 } 4648 } 4649 4650 /* 4651 * Restore devices from top of the tree down - parent bridges need to be 4652 * restored before we can get to subordinate devices. 4653 */ 4654 static void pci_slot_restore(struct pci_slot *slot) 4655 { 4656 struct pci_dev *dev; 4657 4658 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 4659 if (!dev->slot || dev->slot != slot) 4660 continue; 4661 pci_dev_restore(dev); 4662 if (dev->subordinate) 4663 pci_bus_restore(dev->subordinate); 4664 } 4665 } 4666 4667 static int pci_slot_reset(struct pci_slot *slot, int probe) 4668 { 4669 int rc; 4670 4671 if (!slot || !pci_slot_resetable(slot)) 4672 return -ENOTTY; 4673 4674 if (!probe) 4675 pci_slot_lock(slot); 4676 4677 might_sleep(); 4678 4679 rc = pci_reset_hotplug_slot(slot->hotplug, probe); 4680 4681 if (!probe) 4682 pci_slot_unlock(slot); 4683 4684 return rc; 4685 } 4686 4687 /** 4688 * pci_probe_reset_slot - probe whether a PCI slot can be reset 4689 * @slot: PCI slot to probe 4690 * 4691 * Return 0 if slot can be reset, negative if a slot reset is not supported. 4692 */ 4693 int pci_probe_reset_slot(struct pci_slot *slot) 4694 { 4695 return pci_slot_reset(slot, 1); 4696 } 4697 EXPORT_SYMBOL_GPL(pci_probe_reset_slot); 4698 4699 /** 4700 * pci_reset_slot - reset a PCI slot 4701 * @slot: PCI slot to reset 4702 * 4703 * A PCI bus may host multiple slots, each slot may support a reset mechanism 4704 * independent of other slots. For instance, some slots may support slot power 4705 * control. In the case of a 1:1 bus to slot architecture, this function may 4706 * wrap the bus reset to avoid spurious slot related events such as hotplug. 4707 * Generally a slot reset should be attempted before a bus reset. All of the 4708 * function of the slot and any subordinate buses behind the slot are reset 4709 * through this function. PCI config space of all devices in the slot and 4710 * behind the slot is saved before and restored after reset. 4711 * 4712 * Return 0 on success, non-zero on error. 4713 */ 4714 int pci_reset_slot(struct pci_slot *slot) 4715 { 4716 int rc; 4717 4718 rc = pci_slot_reset(slot, 1); 4719 if (rc) 4720 return rc; 4721 4722 pci_slot_save_and_disable(slot); 4723 4724 rc = pci_slot_reset(slot, 0); 4725 4726 pci_slot_restore(slot); 4727 4728 return rc; 4729 } 4730 EXPORT_SYMBOL_GPL(pci_reset_slot); 4731 4732 /** 4733 * pci_try_reset_slot - Try to reset a PCI slot 4734 * @slot: PCI slot to reset 4735 * 4736 * Same as above except return -EAGAIN if the slot cannot be locked 4737 */ 4738 int pci_try_reset_slot(struct pci_slot *slot) 4739 { 4740 int rc; 4741 4742 rc = pci_slot_reset(slot, 1); 4743 if (rc) 4744 return rc; 4745 4746 pci_slot_save_and_disable(slot); 4747 4748 if (pci_slot_trylock(slot)) { 4749 might_sleep(); 4750 rc = pci_reset_hotplug_slot(slot->hotplug, 0); 4751 pci_slot_unlock(slot); 4752 } else 4753 rc = -EAGAIN; 4754 4755 pci_slot_restore(slot); 4756 4757 return rc; 4758 } 4759 EXPORT_SYMBOL_GPL(pci_try_reset_slot); 4760 4761 static int pci_bus_reset(struct pci_bus *bus, int probe) 4762 { 4763 if (!bus->self || !pci_bus_resetable(bus)) 4764 return -ENOTTY; 4765 4766 if (probe) 4767 return 0; 4768 4769 pci_bus_lock(bus); 4770 4771 might_sleep(); 4772 4773 pci_reset_bridge_secondary_bus(bus->self); 4774 4775 pci_bus_unlock(bus); 4776 4777 return 0; 4778 } 4779 4780 /** 4781 * pci_probe_reset_bus - probe whether a PCI bus can be reset 4782 * @bus: PCI bus to probe 4783 * 4784 * Return 0 if bus can be reset, negative if a bus reset is not supported. 4785 */ 4786 int pci_probe_reset_bus(struct pci_bus *bus) 4787 { 4788 return pci_bus_reset(bus, 1); 4789 } 4790 EXPORT_SYMBOL_GPL(pci_probe_reset_bus); 4791 4792 /** 4793 * pci_reset_bus - reset a PCI bus 4794 * @bus: top level PCI bus to reset 4795 * 4796 * Do a bus reset on the given bus and any subordinate buses, saving 4797 * and restoring state of all devices. 4798 * 4799 * Return 0 on success, non-zero on error. 4800 */ 4801 int pci_reset_bus(struct pci_bus *bus) 4802 { 4803 int rc; 4804 4805 rc = pci_bus_reset(bus, 1); 4806 if (rc) 4807 return rc; 4808 4809 pci_bus_save_and_disable(bus); 4810 4811 rc = pci_bus_reset(bus, 0); 4812 4813 pci_bus_restore(bus); 4814 4815 return rc; 4816 } 4817 EXPORT_SYMBOL_GPL(pci_reset_bus); 4818 4819 /** 4820 * pci_try_reset_bus - Try to reset a PCI bus 4821 * @bus: top level PCI bus to reset 4822 * 4823 * Same as above except return -EAGAIN if the bus cannot be locked 4824 */ 4825 int pci_try_reset_bus(struct pci_bus *bus) 4826 { 4827 int rc; 4828 4829 rc = pci_bus_reset(bus, 1); 4830 if (rc) 4831 return rc; 4832 4833 pci_bus_save_and_disable(bus); 4834 4835 if (pci_bus_trylock(bus)) { 4836 might_sleep(); 4837 pci_reset_bridge_secondary_bus(bus->self); 4838 pci_bus_unlock(bus); 4839 } else 4840 rc = -EAGAIN; 4841 4842 pci_bus_restore(bus); 4843 4844 return rc; 4845 } 4846 EXPORT_SYMBOL_GPL(pci_try_reset_bus); 4847 4848 /** 4849 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count 4850 * @dev: PCI device to query 4851 * 4852 * Returns mmrbc: maximum designed memory read count in bytes 4853 * or appropriate error value. 4854 */ 4855 int pcix_get_max_mmrbc(struct pci_dev *dev) 4856 { 4857 int cap; 4858 u32 stat; 4859 4860 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 4861 if (!cap) 4862 return -EINVAL; 4863 4864 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 4865 return -EINVAL; 4866 4867 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21); 4868 } 4869 EXPORT_SYMBOL(pcix_get_max_mmrbc); 4870 4871 /** 4872 * pcix_get_mmrbc - get PCI-X maximum memory read byte count 4873 * @dev: PCI device to query 4874 * 4875 * Returns mmrbc: maximum memory read count in bytes 4876 * or appropriate error value. 4877 */ 4878 int pcix_get_mmrbc(struct pci_dev *dev) 4879 { 4880 int cap; 4881 u16 cmd; 4882 4883 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 4884 if (!cap) 4885 return -EINVAL; 4886 4887 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 4888 return -EINVAL; 4889 4890 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2); 4891 } 4892 EXPORT_SYMBOL(pcix_get_mmrbc); 4893 4894 /** 4895 * pcix_set_mmrbc - set PCI-X maximum memory read byte count 4896 * @dev: PCI device to query 4897 * @mmrbc: maximum memory read count in bytes 4898 * valid values are 512, 1024, 2048, 4096 4899 * 4900 * If possible sets maximum memory read byte count, some bridges have erratas 4901 * that prevent this. 4902 */ 4903 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc) 4904 { 4905 int cap; 4906 u32 stat, v, o; 4907 u16 cmd; 4908 4909 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc)) 4910 return -EINVAL; 4911 4912 v = ffs(mmrbc) - 10; 4913 4914 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 4915 if (!cap) 4916 return -EINVAL; 4917 4918 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 4919 return -EINVAL; 4920 4921 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21) 4922 return -E2BIG; 4923 4924 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 4925 return -EINVAL; 4926 4927 o = (cmd & PCI_X_CMD_MAX_READ) >> 2; 4928 if (o != v) { 4929 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC)) 4930 return -EIO; 4931 4932 cmd &= ~PCI_X_CMD_MAX_READ; 4933 cmd |= v << 2; 4934 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd)) 4935 return -EIO; 4936 } 4937 return 0; 4938 } 4939 EXPORT_SYMBOL(pcix_set_mmrbc); 4940 4941 /** 4942 * pcie_get_readrq - get PCI Express read request size 4943 * @dev: PCI device to query 4944 * 4945 * Returns maximum memory read request in bytes 4946 * or appropriate error value. 4947 */ 4948 int pcie_get_readrq(struct pci_dev *dev) 4949 { 4950 u16 ctl; 4951 4952 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 4953 4954 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12); 4955 } 4956 EXPORT_SYMBOL(pcie_get_readrq); 4957 4958 /** 4959 * pcie_set_readrq - set PCI Express maximum memory read request 4960 * @dev: PCI device to query 4961 * @rq: maximum memory read count in bytes 4962 * valid values are 128, 256, 512, 1024, 2048, 4096 4963 * 4964 * If possible sets maximum memory read request in bytes 4965 */ 4966 int pcie_set_readrq(struct pci_dev *dev, int rq) 4967 { 4968 u16 v; 4969 4970 if (rq < 128 || rq > 4096 || !is_power_of_2(rq)) 4971 return -EINVAL; 4972 4973 /* 4974 * If using the "performance" PCIe config, we clamp the 4975 * read rq size to the max packet size to prevent the 4976 * host bridge generating requests larger than we can 4977 * cope with 4978 */ 4979 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) { 4980 int mps = pcie_get_mps(dev); 4981 4982 if (mps < rq) 4983 rq = mps; 4984 } 4985 4986 v = (ffs(rq) - 8) << 12; 4987 4988 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 4989 PCI_EXP_DEVCTL_READRQ, v); 4990 } 4991 EXPORT_SYMBOL(pcie_set_readrq); 4992 4993 /** 4994 * pcie_get_mps - get PCI Express maximum payload size 4995 * @dev: PCI device to query 4996 * 4997 * Returns maximum payload size in bytes 4998 */ 4999 int pcie_get_mps(struct pci_dev *dev) 5000 { 5001 u16 ctl; 5002 5003 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 5004 5005 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5); 5006 } 5007 EXPORT_SYMBOL(pcie_get_mps); 5008 5009 /** 5010 * pcie_set_mps - set PCI Express maximum payload size 5011 * @dev: PCI device to query 5012 * @mps: maximum payload size in bytes 5013 * valid values are 128, 256, 512, 1024, 2048, 4096 5014 * 5015 * If possible sets maximum payload size 5016 */ 5017 int pcie_set_mps(struct pci_dev *dev, int mps) 5018 { 5019 u16 v; 5020 5021 if (mps < 128 || mps > 4096 || !is_power_of_2(mps)) 5022 return -EINVAL; 5023 5024 v = ffs(mps) - 8; 5025 if (v > dev->pcie_mpss) 5026 return -EINVAL; 5027 v <<= 5; 5028 5029 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 5030 PCI_EXP_DEVCTL_PAYLOAD, v); 5031 } 5032 EXPORT_SYMBOL(pcie_set_mps); 5033 5034 /** 5035 * pcie_get_minimum_link - determine minimum link settings of a PCI device 5036 * @dev: PCI device to query 5037 * @speed: storage for minimum speed 5038 * @width: storage for minimum width 5039 * 5040 * This function will walk up the PCI device chain and determine the minimum 5041 * link width and speed of the device. 5042 */ 5043 int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed, 5044 enum pcie_link_width *width) 5045 { 5046 int ret; 5047 5048 *speed = PCI_SPEED_UNKNOWN; 5049 *width = PCIE_LNK_WIDTH_UNKNOWN; 5050 5051 while (dev) { 5052 u16 lnksta; 5053 enum pci_bus_speed next_speed; 5054 enum pcie_link_width next_width; 5055 5056 ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta); 5057 if (ret) 5058 return ret; 5059 5060 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS]; 5061 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >> 5062 PCI_EXP_LNKSTA_NLW_SHIFT; 5063 5064 if (next_speed < *speed) 5065 *speed = next_speed; 5066 5067 if (next_width < *width) 5068 *width = next_width; 5069 5070 dev = dev->bus->self; 5071 } 5072 5073 return 0; 5074 } 5075 EXPORT_SYMBOL(pcie_get_minimum_link); 5076 5077 /** 5078 * pci_select_bars - Make BAR mask from the type of resource 5079 * @dev: the PCI device for which BAR mask is made 5080 * @flags: resource type mask to be selected 5081 * 5082 * This helper routine makes bar mask from the type of resource. 5083 */ 5084 int pci_select_bars(struct pci_dev *dev, unsigned long flags) 5085 { 5086 int i, bars = 0; 5087 for (i = 0; i < PCI_NUM_RESOURCES; i++) 5088 if (pci_resource_flags(dev, i) & flags) 5089 bars |= (1 << i); 5090 return bars; 5091 } 5092 EXPORT_SYMBOL(pci_select_bars); 5093 5094 /* Some architectures require additional programming to enable VGA */ 5095 static arch_set_vga_state_t arch_set_vga_state; 5096 5097 void __init pci_register_set_vga_state(arch_set_vga_state_t func) 5098 { 5099 arch_set_vga_state = func; /* NULL disables */ 5100 } 5101 5102 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode, 5103 unsigned int command_bits, u32 flags) 5104 { 5105 if (arch_set_vga_state) 5106 return arch_set_vga_state(dev, decode, command_bits, 5107 flags); 5108 return 0; 5109 } 5110 5111 /** 5112 * pci_set_vga_state - set VGA decode state on device and parents if requested 5113 * @dev: the PCI device 5114 * @decode: true = enable decoding, false = disable decoding 5115 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY 5116 * @flags: traverse ancestors and change bridges 5117 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE 5118 */ 5119 int pci_set_vga_state(struct pci_dev *dev, bool decode, 5120 unsigned int command_bits, u32 flags) 5121 { 5122 struct pci_bus *bus; 5123 struct pci_dev *bridge; 5124 u16 cmd; 5125 int rc; 5126 5127 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY))); 5128 5129 /* ARCH specific VGA enables */ 5130 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags); 5131 if (rc) 5132 return rc; 5133 5134 if (flags & PCI_VGA_STATE_CHANGE_DECODES) { 5135 pci_read_config_word(dev, PCI_COMMAND, &cmd); 5136 if (decode == true) 5137 cmd |= command_bits; 5138 else 5139 cmd &= ~command_bits; 5140 pci_write_config_word(dev, PCI_COMMAND, cmd); 5141 } 5142 5143 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE)) 5144 return 0; 5145 5146 bus = dev->bus; 5147 while (bus) { 5148 bridge = bus->self; 5149 if (bridge) { 5150 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL, 5151 &cmd); 5152 if (decode == true) 5153 cmd |= PCI_BRIDGE_CTL_VGA; 5154 else 5155 cmd &= ~PCI_BRIDGE_CTL_VGA; 5156 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL, 5157 cmd); 5158 } 5159 bus = bus->parent; 5160 } 5161 return 0; 5162 } 5163 5164 /** 5165 * pci_add_dma_alias - Add a DMA devfn alias for a device 5166 * @dev: the PCI device for which alias is added 5167 * @devfn: alias slot and function 5168 * 5169 * This helper encodes 8-bit devfn as bit number in dma_alias_mask. 5170 * It should be called early, preferably as PCI fixup header quirk. 5171 */ 5172 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn) 5173 { 5174 if (!dev->dma_alias_mask) 5175 dev->dma_alias_mask = kcalloc(BITS_TO_LONGS(U8_MAX), 5176 sizeof(long), GFP_KERNEL); 5177 if (!dev->dma_alias_mask) { 5178 dev_warn(&dev->dev, "Unable to allocate DMA alias mask\n"); 5179 return; 5180 } 5181 5182 set_bit(devfn, dev->dma_alias_mask); 5183 dev_info(&dev->dev, "Enabling fixed DMA alias to %02x.%d\n", 5184 PCI_SLOT(devfn), PCI_FUNC(devfn)); 5185 } 5186 5187 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2) 5188 { 5189 return (dev1->dma_alias_mask && 5190 test_bit(dev2->devfn, dev1->dma_alias_mask)) || 5191 (dev2->dma_alias_mask && 5192 test_bit(dev1->devfn, dev2->dma_alias_mask)); 5193 } 5194 5195 bool pci_device_is_present(struct pci_dev *pdev) 5196 { 5197 u32 v; 5198 5199 if (pci_dev_is_disconnected(pdev)) 5200 return false; 5201 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0); 5202 } 5203 EXPORT_SYMBOL_GPL(pci_device_is_present); 5204 5205 void pci_ignore_hotplug(struct pci_dev *dev) 5206 { 5207 struct pci_dev *bridge = dev->bus->self; 5208 5209 dev->ignore_hotplug = 1; 5210 /* Propagate the "ignore hotplug" setting to the parent bridge. */ 5211 if (bridge) 5212 bridge->ignore_hotplug = 1; 5213 } 5214 EXPORT_SYMBOL_GPL(pci_ignore_hotplug); 5215 5216 resource_size_t __weak pcibios_default_alignment(void) 5217 { 5218 return 0; 5219 } 5220 5221 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE 5222 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0}; 5223 static DEFINE_SPINLOCK(resource_alignment_lock); 5224 5225 /** 5226 * pci_specified_resource_alignment - get resource alignment specified by user. 5227 * @dev: the PCI device to get 5228 * @resize: whether or not to change resources' size when reassigning alignment 5229 * 5230 * RETURNS: Resource alignment if it is specified. 5231 * Zero if it is not specified. 5232 */ 5233 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev, 5234 bool *resize) 5235 { 5236 int seg, bus, slot, func, align_order, count; 5237 unsigned short vendor, device, subsystem_vendor, subsystem_device; 5238 resource_size_t align = pcibios_default_alignment(); 5239 char *p; 5240 5241 spin_lock(&resource_alignment_lock); 5242 p = resource_alignment_param; 5243 if (!*p && !align) 5244 goto out; 5245 if (pci_has_flag(PCI_PROBE_ONLY)) { 5246 align = 0; 5247 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n"); 5248 goto out; 5249 } 5250 5251 while (*p) { 5252 count = 0; 5253 if (sscanf(p, "%d%n", &align_order, &count) == 1 && 5254 p[count] == '@') { 5255 p += count + 1; 5256 } else { 5257 align_order = -1; 5258 } 5259 if (strncmp(p, "pci:", 4) == 0) { 5260 /* PCI vendor/device (subvendor/subdevice) ids are specified */ 5261 p += 4; 5262 if (sscanf(p, "%hx:%hx:%hx:%hx%n", 5263 &vendor, &device, &subsystem_vendor, &subsystem_device, &count) != 4) { 5264 if (sscanf(p, "%hx:%hx%n", &vendor, &device, &count) != 2) { 5265 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: pci:%s\n", 5266 p); 5267 break; 5268 } 5269 subsystem_vendor = subsystem_device = 0; 5270 } 5271 p += count; 5272 if ((!vendor || (vendor == dev->vendor)) && 5273 (!device || (device == dev->device)) && 5274 (!subsystem_vendor || (subsystem_vendor == dev->subsystem_vendor)) && 5275 (!subsystem_device || (subsystem_device == dev->subsystem_device))) { 5276 *resize = true; 5277 if (align_order == -1) 5278 align = PAGE_SIZE; 5279 else 5280 align = 1 << align_order; 5281 /* Found */ 5282 break; 5283 } 5284 } 5285 else { 5286 if (sscanf(p, "%x:%x:%x.%x%n", 5287 &seg, &bus, &slot, &func, &count) != 4) { 5288 seg = 0; 5289 if (sscanf(p, "%x:%x.%x%n", 5290 &bus, &slot, &func, &count) != 3) { 5291 /* Invalid format */ 5292 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n", 5293 p); 5294 break; 5295 } 5296 } 5297 p += count; 5298 if (seg == pci_domain_nr(dev->bus) && 5299 bus == dev->bus->number && 5300 slot == PCI_SLOT(dev->devfn) && 5301 func == PCI_FUNC(dev->devfn)) { 5302 *resize = true; 5303 if (align_order == -1) 5304 align = PAGE_SIZE; 5305 else 5306 align = 1 << align_order; 5307 /* Found */ 5308 break; 5309 } 5310 } 5311 if (*p != ';' && *p != ',') { 5312 /* End of param or invalid format */ 5313 break; 5314 } 5315 p++; 5316 } 5317 out: 5318 spin_unlock(&resource_alignment_lock); 5319 return align; 5320 } 5321 5322 static void pci_request_resource_alignment(struct pci_dev *dev, int bar, 5323 resource_size_t align, bool resize) 5324 { 5325 struct resource *r = &dev->resource[bar]; 5326 resource_size_t size; 5327 5328 if (!(r->flags & IORESOURCE_MEM)) 5329 return; 5330 5331 if (r->flags & IORESOURCE_PCI_FIXED) { 5332 dev_info(&dev->dev, "BAR%d %pR: ignoring requested alignment %#llx\n", 5333 bar, r, (unsigned long long)align); 5334 return; 5335 } 5336 5337 size = resource_size(r); 5338 if (size >= align) 5339 return; 5340 5341 /* 5342 * Increase the alignment of the resource. There are two ways we 5343 * can do this: 5344 * 5345 * 1) Increase the size of the resource. BARs are aligned on their 5346 * size, so when we reallocate space for this resource, we'll 5347 * allocate it with the larger alignment. This also prevents 5348 * assignment of any other BARs inside the alignment region, so 5349 * if we're requesting page alignment, this means no other BARs 5350 * will share the page. 5351 * 5352 * The disadvantage is that this makes the resource larger than 5353 * the hardware BAR, which may break drivers that compute things 5354 * based on the resource size, e.g., to find registers at a 5355 * fixed offset before the end of the BAR. 5356 * 5357 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and 5358 * set r->start to the desired alignment. By itself this 5359 * doesn't prevent other BARs being put inside the alignment 5360 * region, but if we realign *every* resource of every device in 5361 * the system, none of them will share an alignment region. 5362 * 5363 * When the user has requested alignment for only some devices via 5364 * the "pci=resource_alignment" argument, "resize" is true and we 5365 * use the first method. Otherwise we assume we're aligning all 5366 * devices and we use the second. 5367 */ 5368 5369 dev_info(&dev->dev, "BAR%d %pR: requesting alignment to %#llx\n", 5370 bar, r, (unsigned long long)align); 5371 5372 if (resize) { 5373 r->start = 0; 5374 r->end = align - 1; 5375 } else { 5376 r->flags &= ~IORESOURCE_SIZEALIGN; 5377 r->flags |= IORESOURCE_STARTALIGN; 5378 r->start = align; 5379 r->end = r->start + size - 1; 5380 } 5381 r->flags |= IORESOURCE_UNSET; 5382 } 5383 5384 /* 5385 * This function disables memory decoding and releases memory resources 5386 * of the device specified by kernel's boot parameter 'pci=resource_alignment='. 5387 * It also rounds up size to specified alignment. 5388 * Later on, the kernel will assign page-aligned memory resource back 5389 * to the device. 5390 */ 5391 void pci_reassigndev_resource_alignment(struct pci_dev *dev) 5392 { 5393 int i; 5394 struct resource *r; 5395 resource_size_t align; 5396 u16 command; 5397 bool resize = false; 5398 5399 /* 5400 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec 5401 * 3.4.1.11. Their resources are allocated from the space 5402 * described by the VF BARx register in the PF's SR-IOV capability. 5403 * We can't influence their alignment here. 5404 */ 5405 if (dev->is_virtfn) 5406 return; 5407 5408 /* check if specified PCI is target device to reassign */ 5409 align = pci_specified_resource_alignment(dev, &resize); 5410 if (!align) 5411 return; 5412 5413 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL && 5414 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) { 5415 dev_warn(&dev->dev, 5416 "Can't reassign resources to host bridge.\n"); 5417 return; 5418 } 5419 5420 dev_info(&dev->dev, 5421 "Disabling memory decoding and releasing memory resources.\n"); 5422 pci_read_config_word(dev, PCI_COMMAND, &command); 5423 command &= ~PCI_COMMAND_MEMORY; 5424 pci_write_config_word(dev, PCI_COMMAND, command); 5425 5426 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 5427 pci_request_resource_alignment(dev, i, align, resize); 5428 5429 /* 5430 * Need to disable bridge's resource window, 5431 * to enable the kernel to reassign new resource 5432 * window later on. 5433 */ 5434 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE && 5435 (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) { 5436 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) { 5437 r = &dev->resource[i]; 5438 if (!(r->flags & IORESOURCE_MEM)) 5439 continue; 5440 r->flags |= IORESOURCE_UNSET; 5441 r->end = resource_size(r) - 1; 5442 r->start = 0; 5443 } 5444 pci_disable_bridge_window(dev); 5445 } 5446 } 5447 5448 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count) 5449 { 5450 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1) 5451 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1; 5452 spin_lock(&resource_alignment_lock); 5453 strncpy(resource_alignment_param, buf, count); 5454 resource_alignment_param[count] = '\0'; 5455 spin_unlock(&resource_alignment_lock); 5456 return count; 5457 } 5458 5459 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size) 5460 { 5461 size_t count; 5462 spin_lock(&resource_alignment_lock); 5463 count = snprintf(buf, size, "%s", resource_alignment_param); 5464 spin_unlock(&resource_alignment_lock); 5465 return count; 5466 } 5467 5468 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf) 5469 { 5470 return pci_get_resource_alignment_param(buf, PAGE_SIZE); 5471 } 5472 5473 static ssize_t pci_resource_alignment_store(struct bus_type *bus, 5474 const char *buf, size_t count) 5475 { 5476 return pci_set_resource_alignment_param(buf, count); 5477 } 5478 5479 static BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show, 5480 pci_resource_alignment_store); 5481 5482 static int __init pci_resource_alignment_sysfs_init(void) 5483 { 5484 return bus_create_file(&pci_bus_type, 5485 &bus_attr_resource_alignment); 5486 } 5487 late_initcall(pci_resource_alignment_sysfs_init); 5488 5489 static void pci_no_domains(void) 5490 { 5491 #ifdef CONFIG_PCI_DOMAINS 5492 pci_domains_supported = 0; 5493 #endif 5494 } 5495 5496 #ifdef CONFIG_PCI_DOMAINS 5497 static atomic_t __domain_nr = ATOMIC_INIT(-1); 5498 5499 int pci_get_new_domain_nr(void) 5500 { 5501 return atomic_inc_return(&__domain_nr); 5502 } 5503 5504 #ifdef CONFIG_PCI_DOMAINS_GENERIC 5505 static int of_pci_bus_find_domain_nr(struct device *parent) 5506 { 5507 static int use_dt_domains = -1; 5508 int domain = -1; 5509 5510 if (parent) 5511 domain = of_get_pci_domain_nr(parent->of_node); 5512 /* 5513 * Check DT domain and use_dt_domains values. 5514 * 5515 * If DT domain property is valid (domain >= 0) and 5516 * use_dt_domains != 0, the DT assignment is valid since this means 5517 * we have not previously allocated a domain number by using 5518 * pci_get_new_domain_nr(); we should also update use_dt_domains to 5519 * 1, to indicate that we have just assigned a domain number from 5520 * DT. 5521 * 5522 * If DT domain property value is not valid (ie domain < 0), and we 5523 * have not previously assigned a domain number from DT 5524 * (use_dt_domains != 1) we should assign a domain number by 5525 * using the: 5526 * 5527 * pci_get_new_domain_nr() 5528 * 5529 * API and update the use_dt_domains value to keep track of method we 5530 * are using to assign domain numbers (use_dt_domains = 0). 5531 * 5532 * All other combinations imply we have a platform that is trying 5533 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(), 5534 * which is a recipe for domain mishandling and it is prevented by 5535 * invalidating the domain value (domain = -1) and printing a 5536 * corresponding error. 5537 */ 5538 if (domain >= 0 && use_dt_domains) { 5539 use_dt_domains = 1; 5540 } else if (domain < 0 && use_dt_domains != 1) { 5541 use_dt_domains = 0; 5542 domain = pci_get_new_domain_nr(); 5543 } else { 5544 dev_err(parent, "Node %pOF has inconsistent \"linux,pci-domain\" property in DT\n", 5545 parent->of_node); 5546 domain = -1; 5547 } 5548 5549 return domain; 5550 } 5551 5552 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent) 5553 { 5554 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) : 5555 acpi_pci_bus_find_domain_nr(bus); 5556 } 5557 #endif 5558 #endif 5559 5560 /** 5561 * pci_ext_cfg_avail - can we access extended PCI config space? 5562 * 5563 * Returns 1 if we can access PCI extended config space (offsets 5564 * greater than 0xff). This is the default implementation. Architecture 5565 * implementations can override this. 5566 */ 5567 int __weak pci_ext_cfg_avail(void) 5568 { 5569 return 1; 5570 } 5571 5572 void __weak pci_fixup_cardbus(struct pci_bus *bus) 5573 { 5574 } 5575 EXPORT_SYMBOL(pci_fixup_cardbus); 5576 5577 static int __init pci_setup(char *str) 5578 { 5579 while (str) { 5580 char *k = strchr(str, ','); 5581 if (k) 5582 *k++ = 0; 5583 if (*str && (str = pcibios_setup(str)) && *str) { 5584 if (!strcmp(str, "nomsi")) { 5585 pci_no_msi(); 5586 } else if (!strcmp(str, "noaer")) { 5587 pci_no_aer(); 5588 } else if (!strncmp(str, "realloc=", 8)) { 5589 pci_realloc_get_opt(str + 8); 5590 } else if (!strncmp(str, "realloc", 7)) { 5591 pci_realloc_get_opt("on"); 5592 } else if (!strcmp(str, "nodomains")) { 5593 pci_no_domains(); 5594 } else if (!strncmp(str, "noari", 5)) { 5595 pcie_ari_disabled = true; 5596 } else if (!strncmp(str, "cbiosize=", 9)) { 5597 pci_cardbus_io_size = memparse(str + 9, &str); 5598 } else if (!strncmp(str, "cbmemsize=", 10)) { 5599 pci_cardbus_mem_size = memparse(str + 10, &str); 5600 } else if (!strncmp(str, "resource_alignment=", 19)) { 5601 pci_set_resource_alignment_param(str + 19, 5602 strlen(str + 19)); 5603 } else if (!strncmp(str, "ecrc=", 5)) { 5604 pcie_ecrc_get_policy(str + 5); 5605 } else if (!strncmp(str, "hpiosize=", 9)) { 5606 pci_hotplug_io_size = memparse(str + 9, &str); 5607 } else if (!strncmp(str, "hpmemsize=", 10)) { 5608 pci_hotplug_mem_size = memparse(str + 10, &str); 5609 } else if (!strncmp(str, "hpbussize=", 10)) { 5610 pci_hotplug_bus_size = 5611 simple_strtoul(str + 10, &str, 0); 5612 if (pci_hotplug_bus_size > 0xff) 5613 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 5614 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) { 5615 pcie_bus_config = PCIE_BUS_TUNE_OFF; 5616 } else if (!strncmp(str, "pcie_bus_safe", 13)) { 5617 pcie_bus_config = PCIE_BUS_SAFE; 5618 } else if (!strncmp(str, "pcie_bus_perf", 13)) { 5619 pcie_bus_config = PCIE_BUS_PERFORMANCE; 5620 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) { 5621 pcie_bus_config = PCIE_BUS_PEER2PEER; 5622 } else if (!strncmp(str, "pcie_scan_all", 13)) { 5623 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS); 5624 } else { 5625 printk(KERN_ERR "PCI: Unknown option `%s'\n", 5626 str); 5627 } 5628 } 5629 str = k; 5630 } 5631 return 0; 5632 } 5633 early_param("pci", pci_setup); 5634