xref: /openbmc/linux/drivers/pci/pci.c (revision 9aa2cba7a275b2c0b10c95ea60aced015a5535e1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * PCI Bus Services, see include/linux/pci.h for further explanation.
4  *
5  * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6  * David Mosberger-Tang
7  *
8  * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/msi.h>
17 #include <linux/of.h>
18 #include <linux/pci.h>
19 #include <linux/pm.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/log2.h>
25 #include <linux/logic_pio.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/pci_hotplug.h>
31 #include <linux/vmalloc.h>
32 #include <asm/dma.h>
33 #include <linux/aer.h>
34 #include <linux/bitfield.h>
35 #include "pci.h"
36 
37 DEFINE_MUTEX(pci_slot_mutex);
38 
39 const char *pci_power_names[] = {
40 	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
41 };
42 EXPORT_SYMBOL_GPL(pci_power_names);
43 
44 #ifdef CONFIG_X86_32
45 int isa_dma_bridge_buggy;
46 EXPORT_SYMBOL(isa_dma_bridge_buggy);
47 #endif
48 
49 int pci_pci_problems;
50 EXPORT_SYMBOL(pci_pci_problems);
51 
52 unsigned int pci_pm_d3hot_delay;
53 
54 static void pci_pme_list_scan(struct work_struct *work);
55 
56 static LIST_HEAD(pci_pme_list);
57 static DEFINE_MUTEX(pci_pme_list_mutex);
58 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
59 
60 struct pci_pme_device {
61 	struct list_head list;
62 	struct pci_dev *dev;
63 };
64 
65 #define PME_TIMEOUT 1000 /* How long between PME checks */
66 
67 /*
68  * Following exit from Conventional Reset, devices must be ready within 1 sec
69  * (PCIe r6.0 sec 6.6.1).  A D3cold to D0 transition implies a Conventional
70  * Reset (PCIe r6.0 sec 5.8).
71  */
72 #define PCI_RESET_WAIT 1000 /* msec */
73 
74 /*
75  * Devices may extend the 1 sec period through Request Retry Status
76  * completions (PCIe r6.0 sec 2.3.1).  The spec does not provide an upper
77  * limit, but 60 sec ought to be enough for any device to become
78  * responsive.
79  */
80 #define PCIE_RESET_READY_POLL_MS 60000 /* msec */
81 
82 static void pci_dev_d3_sleep(struct pci_dev *dev)
83 {
84 	unsigned int delay_ms = max(dev->d3hot_delay, pci_pm_d3hot_delay);
85 	unsigned int upper;
86 
87 	if (delay_ms) {
88 		/* Use a 20% upper bound, 1ms minimum */
89 		upper = max(DIV_ROUND_CLOSEST(delay_ms, 5), 1U);
90 		usleep_range(delay_ms * USEC_PER_MSEC,
91 			     (delay_ms + upper) * USEC_PER_MSEC);
92 	}
93 }
94 
95 bool pci_reset_supported(struct pci_dev *dev)
96 {
97 	return dev->reset_methods[0] != 0;
98 }
99 
100 #ifdef CONFIG_PCI_DOMAINS
101 int pci_domains_supported = 1;
102 #endif
103 
104 #define DEFAULT_CARDBUS_IO_SIZE		(256)
105 #define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
106 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
107 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
108 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
109 
110 #define DEFAULT_HOTPLUG_IO_SIZE		(256)
111 #define DEFAULT_HOTPLUG_MMIO_SIZE	(2*1024*1024)
112 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE	(2*1024*1024)
113 /* hpiosize=nn can override this */
114 unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
115 /*
116  * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
117  * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
118  * pci=hpmemsize=nnM overrides both
119  */
120 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
121 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
122 
123 #define DEFAULT_HOTPLUG_BUS_SIZE	1
124 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
125 
126 
127 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
128 #ifdef CONFIG_PCIE_BUS_TUNE_OFF
129 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
130 #elif defined CONFIG_PCIE_BUS_SAFE
131 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
132 #elif defined CONFIG_PCIE_BUS_PERFORMANCE
133 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
134 #elif defined CONFIG_PCIE_BUS_PEER2PEER
135 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
136 #else
137 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
138 #endif
139 
140 /*
141  * The default CLS is used if arch didn't set CLS explicitly and not
142  * all pci devices agree on the same value.  Arch can override either
143  * the dfl or actual value as it sees fit.  Don't forget this is
144  * measured in 32-bit words, not bytes.
145  */
146 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
147 u8 pci_cache_line_size;
148 
149 /*
150  * If we set up a device for bus mastering, we need to check the latency
151  * timer as certain BIOSes forget to set it properly.
152  */
153 unsigned int pcibios_max_latency = 255;
154 
155 /* If set, the PCIe ARI capability will not be used. */
156 static bool pcie_ari_disabled;
157 
158 /* If set, the PCIe ATS capability will not be used. */
159 static bool pcie_ats_disabled;
160 
161 /* If set, the PCI config space of each device is printed during boot. */
162 bool pci_early_dump;
163 
164 bool pci_ats_disabled(void)
165 {
166 	return pcie_ats_disabled;
167 }
168 EXPORT_SYMBOL_GPL(pci_ats_disabled);
169 
170 /* Disable bridge_d3 for all PCIe ports */
171 static bool pci_bridge_d3_disable;
172 /* Force bridge_d3 for all PCIe ports */
173 static bool pci_bridge_d3_force;
174 
175 static int __init pcie_port_pm_setup(char *str)
176 {
177 	if (!strcmp(str, "off"))
178 		pci_bridge_d3_disable = true;
179 	else if (!strcmp(str, "force"))
180 		pci_bridge_d3_force = true;
181 	return 1;
182 }
183 __setup("pcie_port_pm=", pcie_port_pm_setup);
184 
185 /**
186  * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
187  * @bus: pointer to PCI bus structure to search
188  *
189  * Given a PCI bus, returns the highest PCI bus number present in the set
190  * including the given PCI bus and its list of child PCI buses.
191  */
192 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
193 {
194 	struct pci_bus *tmp;
195 	unsigned char max, n;
196 
197 	max = bus->busn_res.end;
198 	list_for_each_entry(tmp, &bus->children, node) {
199 		n = pci_bus_max_busnr(tmp);
200 		if (n > max)
201 			max = n;
202 	}
203 	return max;
204 }
205 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
206 
207 /**
208  * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
209  * @pdev: the PCI device
210  *
211  * Returns error bits set in PCI_STATUS and clears them.
212  */
213 int pci_status_get_and_clear_errors(struct pci_dev *pdev)
214 {
215 	u16 status;
216 	int ret;
217 
218 	ret = pci_read_config_word(pdev, PCI_STATUS, &status);
219 	if (ret != PCIBIOS_SUCCESSFUL)
220 		return -EIO;
221 
222 	status &= PCI_STATUS_ERROR_BITS;
223 	if (status)
224 		pci_write_config_word(pdev, PCI_STATUS, status);
225 
226 	return status;
227 }
228 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
229 
230 #ifdef CONFIG_HAS_IOMEM
231 static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar,
232 					    bool write_combine)
233 {
234 	struct resource *res = &pdev->resource[bar];
235 	resource_size_t start = res->start;
236 	resource_size_t size = resource_size(res);
237 
238 	/*
239 	 * Make sure the BAR is actually a memory resource, not an IO resource
240 	 */
241 	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
242 		pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
243 		return NULL;
244 	}
245 
246 	if (write_combine)
247 		return ioremap_wc(start, size);
248 
249 	return ioremap(start, size);
250 }
251 
252 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
253 {
254 	return __pci_ioremap_resource(pdev, bar, false);
255 }
256 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
257 
258 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
259 {
260 	return __pci_ioremap_resource(pdev, bar, true);
261 }
262 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
263 #endif
264 
265 /**
266  * pci_dev_str_match_path - test if a path string matches a device
267  * @dev: the PCI device to test
268  * @path: string to match the device against
269  * @endptr: pointer to the string after the match
270  *
271  * Test if a string (typically from a kernel parameter) formatted as a
272  * path of device/function addresses matches a PCI device. The string must
273  * be of the form:
274  *
275  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
276  *
277  * A path for a device can be obtained using 'lspci -t'.  Using a path
278  * is more robust against bus renumbering than using only a single bus,
279  * device and function address.
280  *
281  * Returns 1 if the string matches the device, 0 if it does not and
282  * a negative error code if it fails to parse the string.
283  */
284 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
285 				  const char **endptr)
286 {
287 	int ret;
288 	unsigned int seg, bus, slot, func;
289 	char *wpath, *p;
290 	char end;
291 
292 	*endptr = strchrnul(path, ';');
293 
294 	wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC);
295 	if (!wpath)
296 		return -ENOMEM;
297 
298 	while (1) {
299 		p = strrchr(wpath, '/');
300 		if (!p)
301 			break;
302 		ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
303 		if (ret != 2) {
304 			ret = -EINVAL;
305 			goto free_and_exit;
306 		}
307 
308 		if (dev->devfn != PCI_DEVFN(slot, func)) {
309 			ret = 0;
310 			goto free_and_exit;
311 		}
312 
313 		/*
314 		 * Note: we don't need to get a reference to the upstream
315 		 * bridge because we hold a reference to the top level
316 		 * device which should hold a reference to the bridge,
317 		 * and so on.
318 		 */
319 		dev = pci_upstream_bridge(dev);
320 		if (!dev) {
321 			ret = 0;
322 			goto free_and_exit;
323 		}
324 
325 		*p = 0;
326 	}
327 
328 	ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
329 		     &func, &end);
330 	if (ret != 4) {
331 		seg = 0;
332 		ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
333 		if (ret != 3) {
334 			ret = -EINVAL;
335 			goto free_and_exit;
336 		}
337 	}
338 
339 	ret = (seg == pci_domain_nr(dev->bus) &&
340 	       bus == dev->bus->number &&
341 	       dev->devfn == PCI_DEVFN(slot, func));
342 
343 free_and_exit:
344 	kfree(wpath);
345 	return ret;
346 }
347 
348 /**
349  * pci_dev_str_match - test if a string matches a device
350  * @dev: the PCI device to test
351  * @p: string to match the device against
352  * @endptr: pointer to the string after the match
353  *
354  * Test if a string (typically from a kernel parameter) matches a specified
355  * PCI device. The string may be of one of the following formats:
356  *
357  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
358  *   pci:<vendor>:<device>[:<subvendor>:<subdevice>]
359  *
360  * The first format specifies a PCI bus/device/function address which
361  * may change if new hardware is inserted, if motherboard firmware changes,
362  * or due to changes caused in kernel parameters. If the domain is
363  * left unspecified, it is taken to be 0.  In order to be robust against
364  * bus renumbering issues, a path of PCI device/function numbers may be used
365  * to address the specific device.  The path for a device can be determined
366  * through the use of 'lspci -t'.
367  *
368  * The second format matches devices using IDs in the configuration
369  * space which may match multiple devices in the system. A value of 0
370  * for any field will match all devices. (Note: this differs from
371  * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
372  * legacy reasons and convenience so users don't have to specify
373  * FFFFFFFFs on the command line.)
374  *
375  * Returns 1 if the string matches the device, 0 if it does not and
376  * a negative error code if the string cannot be parsed.
377  */
378 static int pci_dev_str_match(struct pci_dev *dev, const char *p,
379 			     const char **endptr)
380 {
381 	int ret;
382 	int count;
383 	unsigned short vendor, device, subsystem_vendor, subsystem_device;
384 
385 	if (strncmp(p, "pci:", 4) == 0) {
386 		/* PCI vendor/device (subvendor/subdevice) IDs are specified */
387 		p += 4;
388 		ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
389 			     &subsystem_vendor, &subsystem_device, &count);
390 		if (ret != 4) {
391 			ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
392 			if (ret != 2)
393 				return -EINVAL;
394 
395 			subsystem_vendor = 0;
396 			subsystem_device = 0;
397 		}
398 
399 		p += count;
400 
401 		if ((!vendor || vendor == dev->vendor) &&
402 		    (!device || device == dev->device) &&
403 		    (!subsystem_vendor ||
404 			    subsystem_vendor == dev->subsystem_vendor) &&
405 		    (!subsystem_device ||
406 			    subsystem_device == dev->subsystem_device))
407 			goto found;
408 	} else {
409 		/*
410 		 * PCI Bus, Device, Function IDs are specified
411 		 * (optionally, may include a path of devfns following it)
412 		 */
413 		ret = pci_dev_str_match_path(dev, p, &p);
414 		if (ret < 0)
415 			return ret;
416 		else if (ret)
417 			goto found;
418 	}
419 
420 	*endptr = p;
421 	return 0;
422 
423 found:
424 	*endptr = p;
425 	return 1;
426 }
427 
428 static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
429 				  u8 pos, int cap, int *ttl)
430 {
431 	u8 id;
432 	u16 ent;
433 
434 	pci_bus_read_config_byte(bus, devfn, pos, &pos);
435 
436 	while ((*ttl)--) {
437 		if (pos < 0x40)
438 			break;
439 		pos &= ~3;
440 		pci_bus_read_config_word(bus, devfn, pos, &ent);
441 
442 		id = ent & 0xff;
443 		if (id == 0xff)
444 			break;
445 		if (id == cap)
446 			return pos;
447 		pos = (ent >> 8);
448 	}
449 	return 0;
450 }
451 
452 static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
453 			      u8 pos, int cap)
454 {
455 	int ttl = PCI_FIND_CAP_TTL;
456 
457 	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
458 }
459 
460 u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
461 {
462 	return __pci_find_next_cap(dev->bus, dev->devfn,
463 				   pos + PCI_CAP_LIST_NEXT, cap);
464 }
465 EXPORT_SYMBOL_GPL(pci_find_next_capability);
466 
467 static u8 __pci_bus_find_cap_start(struct pci_bus *bus,
468 				    unsigned int devfn, u8 hdr_type)
469 {
470 	u16 status;
471 
472 	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
473 	if (!(status & PCI_STATUS_CAP_LIST))
474 		return 0;
475 
476 	switch (hdr_type) {
477 	case PCI_HEADER_TYPE_NORMAL:
478 	case PCI_HEADER_TYPE_BRIDGE:
479 		return PCI_CAPABILITY_LIST;
480 	case PCI_HEADER_TYPE_CARDBUS:
481 		return PCI_CB_CAPABILITY_LIST;
482 	}
483 
484 	return 0;
485 }
486 
487 /**
488  * pci_find_capability - query for devices' capabilities
489  * @dev: PCI device to query
490  * @cap: capability code
491  *
492  * Tell if a device supports a given PCI capability.
493  * Returns the address of the requested capability structure within the
494  * device's PCI configuration space or 0 in case the device does not
495  * support it.  Possible values for @cap include:
496  *
497  *  %PCI_CAP_ID_PM           Power Management
498  *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
499  *  %PCI_CAP_ID_VPD          Vital Product Data
500  *  %PCI_CAP_ID_SLOTID       Slot Identification
501  *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
502  *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
503  *  %PCI_CAP_ID_PCIX         PCI-X
504  *  %PCI_CAP_ID_EXP          PCI Express
505  */
506 u8 pci_find_capability(struct pci_dev *dev, int cap)
507 {
508 	u8 pos;
509 
510 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
511 	if (pos)
512 		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
513 
514 	return pos;
515 }
516 EXPORT_SYMBOL(pci_find_capability);
517 
518 /**
519  * pci_bus_find_capability - query for devices' capabilities
520  * @bus: the PCI bus to query
521  * @devfn: PCI device to query
522  * @cap: capability code
523  *
524  * Like pci_find_capability() but works for PCI devices that do not have a
525  * pci_dev structure set up yet.
526  *
527  * Returns the address of the requested capability structure within the
528  * device's PCI configuration space or 0 in case the device does not
529  * support it.
530  */
531 u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
532 {
533 	u8 hdr_type, pos;
534 
535 	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
536 
537 	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
538 	if (pos)
539 		pos = __pci_find_next_cap(bus, devfn, pos, cap);
540 
541 	return pos;
542 }
543 EXPORT_SYMBOL(pci_bus_find_capability);
544 
545 /**
546  * pci_find_next_ext_capability - Find an extended capability
547  * @dev: PCI device to query
548  * @start: address at which to start looking (0 to start at beginning of list)
549  * @cap: capability code
550  *
551  * Returns the address of the next matching extended capability structure
552  * within the device's PCI configuration space or 0 if the device does
553  * not support it.  Some capabilities can occur several times, e.g., the
554  * vendor-specific capability, and this provides a way to find them all.
555  */
556 u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap)
557 {
558 	u32 header;
559 	int ttl;
560 	u16 pos = PCI_CFG_SPACE_SIZE;
561 
562 	/* minimum 8 bytes per capability */
563 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
564 
565 	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
566 		return 0;
567 
568 	if (start)
569 		pos = start;
570 
571 	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
572 		return 0;
573 
574 	/*
575 	 * If we have no capabilities, this is indicated by cap ID,
576 	 * cap version and next pointer all being 0.
577 	 */
578 	if (header == 0)
579 		return 0;
580 
581 	while (ttl-- > 0) {
582 		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
583 			return pos;
584 
585 		pos = PCI_EXT_CAP_NEXT(header);
586 		if (pos < PCI_CFG_SPACE_SIZE)
587 			break;
588 
589 		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
590 			break;
591 	}
592 
593 	return 0;
594 }
595 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
596 
597 /**
598  * pci_find_ext_capability - Find an extended capability
599  * @dev: PCI device to query
600  * @cap: capability code
601  *
602  * Returns the address of the requested extended capability structure
603  * within the device's PCI configuration space or 0 if the device does
604  * not support it.  Possible values for @cap include:
605  *
606  *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
607  *  %PCI_EXT_CAP_ID_VC		Virtual Channel
608  *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
609  *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
610  */
611 u16 pci_find_ext_capability(struct pci_dev *dev, int cap)
612 {
613 	return pci_find_next_ext_capability(dev, 0, cap);
614 }
615 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
616 
617 /**
618  * pci_get_dsn - Read and return the 8-byte Device Serial Number
619  * @dev: PCI device to query
620  *
621  * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
622  * Number.
623  *
624  * Returns the DSN, or zero if the capability does not exist.
625  */
626 u64 pci_get_dsn(struct pci_dev *dev)
627 {
628 	u32 dword;
629 	u64 dsn;
630 	int pos;
631 
632 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
633 	if (!pos)
634 		return 0;
635 
636 	/*
637 	 * The Device Serial Number is two dwords offset 4 bytes from the
638 	 * capability position. The specification says that the first dword is
639 	 * the lower half, and the second dword is the upper half.
640 	 */
641 	pos += 4;
642 	pci_read_config_dword(dev, pos, &dword);
643 	dsn = (u64)dword;
644 	pci_read_config_dword(dev, pos + 4, &dword);
645 	dsn |= ((u64)dword) << 32;
646 
647 	return dsn;
648 }
649 EXPORT_SYMBOL_GPL(pci_get_dsn);
650 
651 static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap)
652 {
653 	int rc, ttl = PCI_FIND_CAP_TTL;
654 	u8 cap, mask;
655 
656 	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
657 		mask = HT_3BIT_CAP_MASK;
658 	else
659 		mask = HT_5BIT_CAP_MASK;
660 
661 	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
662 				      PCI_CAP_ID_HT, &ttl);
663 	while (pos) {
664 		rc = pci_read_config_byte(dev, pos + 3, &cap);
665 		if (rc != PCIBIOS_SUCCESSFUL)
666 			return 0;
667 
668 		if ((cap & mask) == ht_cap)
669 			return pos;
670 
671 		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
672 					      pos + PCI_CAP_LIST_NEXT,
673 					      PCI_CAP_ID_HT, &ttl);
674 	}
675 
676 	return 0;
677 }
678 
679 /**
680  * pci_find_next_ht_capability - query a device's HyperTransport capabilities
681  * @dev: PCI device to query
682  * @pos: Position from which to continue searching
683  * @ht_cap: HyperTransport capability code
684  *
685  * To be used in conjunction with pci_find_ht_capability() to search for
686  * all capabilities matching @ht_cap. @pos should always be a value returned
687  * from pci_find_ht_capability().
688  *
689  * NB. To be 100% safe against broken PCI devices, the caller should take
690  * steps to avoid an infinite loop.
691  */
692 u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap)
693 {
694 	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
695 }
696 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
697 
698 /**
699  * pci_find_ht_capability - query a device's HyperTransport capabilities
700  * @dev: PCI device to query
701  * @ht_cap: HyperTransport capability code
702  *
703  * Tell if a device supports a given HyperTransport capability.
704  * Returns an address within the device's PCI configuration space
705  * or 0 in case the device does not support the request capability.
706  * The address points to the PCI capability, of type PCI_CAP_ID_HT,
707  * which has a HyperTransport capability matching @ht_cap.
708  */
709 u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
710 {
711 	u8 pos;
712 
713 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
714 	if (pos)
715 		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
716 
717 	return pos;
718 }
719 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
720 
721 /**
722  * pci_find_vsec_capability - Find a vendor-specific extended capability
723  * @dev: PCI device to query
724  * @vendor: Vendor ID for which capability is defined
725  * @cap: Vendor-specific capability ID
726  *
727  * If @dev has Vendor ID @vendor, search for a VSEC capability with
728  * VSEC ID @cap. If found, return the capability offset in
729  * config space; otherwise return 0.
730  */
731 u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap)
732 {
733 	u16 vsec = 0;
734 	u32 header;
735 	int ret;
736 
737 	if (vendor != dev->vendor)
738 		return 0;
739 
740 	while ((vsec = pci_find_next_ext_capability(dev, vsec,
741 						     PCI_EXT_CAP_ID_VNDR))) {
742 		ret = pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER, &header);
743 		if (ret != PCIBIOS_SUCCESSFUL)
744 			continue;
745 
746 		if (PCI_VNDR_HEADER_ID(header) == cap)
747 			return vsec;
748 	}
749 
750 	return 0;
751 }
752 EXPORT_SYMBOL_GPL(pci_find_vsec_capability);
753 
754 /**
755  * pci_find_dvsec_capability - Find DVSEC for vendor
756  * @dev: PCI device to query
757  * @vendor: Vendor ID to match for the DVSEC
758  * @dvsec: Designated Vendor-specific capability ID
759  *
760  * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability
761  * offset in config space; otherwise return 0.
762  */
763 u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec)
764 {
765 	int pos;
766 
767 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC);
768 	if (!pos)
769 		return 0;
770 
771 	while (pos) {
772 		u16 v, id;
773 
774 		pci_read_config_word(dev, pos + PCI_DVSEC_HEADER1, &v);
775 		pci_read_config_word(dev, pos + PCI_DVSEC_HEADER2, &id);
776 		if (vendor == v && dvsec == id)
777 			return pos;
778 
779 		pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC);
780 	}
781 
782 	return 0;
783 }
784 EXPORT_SYMBOL_GPL(pci_find_dvsec_capability);
785 
786 /**
787  * pci_find_parent_resource - return resource region of parent bus of given
788  *			      region
789  * @dev: PCI device structure contains resources to be searched
790  * @res: child resource record for which parent is sought
791  *
792  * For given resource region of given device, return the resource region of
793  * parent bus the given region is contained in.
794  */
795 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
796 					  struct resource *res)
797 {
798 	const struct pci_bus *bus = dev->bus;
799 	struct resource *r;
800 
801 	pci_bus_for_each_resource(bus, r) {
802 		if (!r)
803 			continue;
804 		if (resource_contains(r, res)) {
805 
806 			/*
807 			 * If the window is prefetchable but the BAR is
808 			 * not, the allocator made a mistake.
809 			 */
810 			if (r->flags & IORESOURCE_PREFETCH &&
811 			    !(res->flags & IORESOURCE_PREFETCH))
812 				return NULL;
813 
814 			/*
815 			 * If we're below a transparent bridge, there may
816 			 * be both a positively-decoded aperture and a
817 			 * subtractively-decoded region that contain the BAR.
818 			 * We want the positively-decoded one, so this depends
819 			 * on pci_bus_for_each_resource() giving us those
820 			 * first.
821 			 */
822 			return r;
823 		}
824 	}
825 	return NULL;
826 }
827 EXPORT_SYMBOL(pci_find_parent_resource);
828 
829 /**
830  * pci_find_resource - Return matching PCI device resource
831  * @dev: PCI device to query
832  * @res: Resource to look for
833  *
834  * Goes over standard PCI resources (BARs) and checks if the given resource
835  * is partially or fully contained in any of them. In that case the
836  * matching resource is returned, %NULL otherwise.
837  */
838 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
839 {
840 	int i;
841 
842 	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
843 		struct resource *r = &dev->resource[i];
844 
845 		if (r->start && resource_contains(r, res))
846 			return r;
847 	}
848 
849 	return NULL;
850 }
851 EXPORT_SYMBOL(pci_find_resource);
852 
853 /**
854  * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
855  * @dev: the PCI device to operate on
856  * @pos: config space offset of status word
857  * @mask: mask of bit(s) to care about in status word
858  *
859  * Return 1 when mask bit(s) in status word clear, 0 otherwise.
860  */
861 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
862 {
863 	int i;
864 
865 	/* Wait for Transaction Pending bit clean */
866 	for (i = 0; i < 4; i++) {
867 		u16 status;
868 		if (i)
869 			msleep((1 << (i - 1)) * 100);
870 
871 		pci_read_config_word(dev, pos, &status);
872 		if (!(status & mask))
873 			return 1;
874 	}
875 
876 	return 0;
877 }
878 
879 static int pci_acs_enable;
880 
881 /**
882  * pci_request_acs - ask for ACS to be enabled if supported
883  */
884 void pci_request_acs(void)
885 {
886 	pci_acs_enable = 1;
887 }
888 
889 static const char *disable_acs_redir_param;
890 
891 /**
892  * pci_disable_acs_redir - disable ACS redirect capabilities
893  * @dev: the PCI device
894  *
895  * For only devices specified in the disable_acs_redir parameter.
896  */
897 static void pci_disable_acs_redir(struct pci_dev *dev)
898 {
899 	int ret = 0;
900 	const char *p;
901 	int pos;
902 	u16 ctrl;
903 
904 	if (!disable_acs_redir_param)
905 		return;
906 
907 	p = disable_acs_redir_param;
908 	while (*p) {
909 		ret = pci_dev_str_match(dev, p, &p);
910 		if (ret < 0) {
911 			pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
912 				     disable_acs_redir_param);
913 
914 			break;
915 		} else if (ret == 1) {
916 			/* Found a match */
917 			break;
918 		}
919 
920 		if (*p != ';' && *p != ',') {
921 			/* End of param or invalid format */
922 			break;
923 		}
924 		p++;
925 	}
926 
927 	if (ret != 1)
928 		return;
929 
930 	if (!pci_dev_specific_disable_acs_redir(dev))
931 		return;
932 
933 	pos = dev->acs_cap;
934 	if (!pos) {
935 		pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
936 		return;
937 	}
938 
939 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
940 
941 	/* P2P Request & Completion Redirect */
942 	ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
943 
944 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
945 
946 	pci_info(dev, "disabled ACS redirect\n");
947 }
948 
949 /**
950  * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
951  * @dev: the PCI device
952  */
953 static void pci_std_enable_acs(struct pci_dev *dev)
954 {
955 	int pos;
956 	u16 cap;
957 	u16 ctrl;
958 
959 	pos = dev->acs_cap;
960 	if (!pos)
961 		return;
962 
963 	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
964 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
965 
966 	/* Source Validation */
967 	ctrl |= (cap & PCI_ACS_SV);
968 
969 	/* P2P Request Redirect */
970 	ctrl |= (cap & PCI_ACS_RR);
971 
972 	/* P2P Completion Redirect */
973 	ctrl |= (cap & PCI_ACS_CR);
974 
975 	/* Upstream Forwarding */
976 	ctrl |= (cap & PCI_ACS_UF);
977 
978 	/* Enable Translation Blocking for external devices and noats */
979 	if (pci_ats_disabled() || dev->external_facing || dev->untrusted)
980 		ctrl |= (cap & PCI_ACS_TB);
981 
982 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
983 }
984 
985 /**
986  * pci_enable_acs - enable ACS if hardware support it
987  * @dev: the PCI device
988  */
989 static void pci_enable_acs(struct pci_dev *dev)
990 {
991 	if (!pci_acs_enable)
992 		goto disable_acs_redir;
993 
994 	if (!pci_dev_specific_enable_acs(dev))
995 		goto disable_acs_redir;
996 
997 	pci_std_enable_acs(dev);
998 
999 disable_acs_redir:
1000 	/*
1001 	 * Note: pci_disable_acs_redir() must be called even if ACS was not
1002 	 * enabled by the kernel because it may have been enabled by
1003 	 * platform firmware.  So if we are told to disable it, we should
1004 	 * always disable it after setting the kernel's default
1005 	 * preferences.
1006 	 */
1007 	pci_disable_acs_redir(dev);
1008 }
1009 
1010 /**
1011  * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
1012  * @dev: PCI device to have its BARs restored
1013  *
1014  * Restore the BAR values for a given device, so as to make it
1015  * accessible by its driver.
1016  */
1017 static void pci_restore_bars(struct pci_dev *dev)
1018 {
1019 	int i;
1020 
1021 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
1022 		pci_update_resource(dev, i);
1023 }
1024 
1025 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
1026 {
1027 	if (pci_use_mid_pm())
1028 		return true;
1029 
1030 	return acpi_pci_power_manageable(dev);
1031 }
1032 
1033 static inline int platform_pci_set_power_state(struct pci_dev *dev,
1034 					       pci_power_t t)
1035 {
1036 	if (pci_use_mid_pm())
1037 		return mid_pci_set_power_state(dev, t);
1038 
1039 	return acpi_pci_set_power_state(dev, t);
1040 }
1041 
1042 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
1043 {
1044 	if (pci_use_mid_pm())
1045 		return mid_pci_get_power_state(dev);
1046 
1047 	return acpi_pci_get_power_state(dev);
1048 }
1049 
1050 static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
1051 {
1052 	if (!pci_use_mid_pm())
1053 		acpi_pci_refresh_power_state(dev);
1054 }
1055 
1056 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
1057 {
1058 	if (pci_use_mid_pm())
1059 		return PCI_POWER_ERROR;
1060 
1061 	return acpi_pci_choose_state(dev);
1062 }
1063 
1064 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
1065 {
1066 	if (pci_use_mid_pm())
1067 		return PCI_POWER_ERROR;
1068 
1069 	return acpi_pci_wakeup(dev, enable);
1070 }
1071 
1072 static inline bool platform_pci_need_resume(struct pci_dev *dev)
1073 {
1074 	if (pci_use_mid_pm())
1075 		return false;
1076 
1077 	return acpi_pci_need_resume(dev);
1078 }
1079 
1080 static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
1081 {
1082 	if (pci_use_mid_pm())
1083 		return false;
1084 
1085 	return acpi_pci_bridge_d3(dev);
1086 }
1087 
1088 /**
1089  * pci_update_current_state - Read power state of given device and cache it
1090  * @dev: PCI device to handle.
1091  * @state: State to cache in case the device doesn't have the PM capability
1092  *
1093  * The power state is read from the PMCSR register, which however is
1094  * inaccessible in D3cold.  The platform firmware is therefore queried first
1095  * to detect accessibility of the register.  In case the platform firmware
1096  * reports an incorrect state or the device isn't power manageable by the
1097  * platform at all, we try to detect D3cold by testing accessibility of the
1098  * vendor ID in config space.
1099  */
1100 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1101 {
1102 	if (platform_pci_get_power_state(dev) == PCI_D3cold) {
1103 		dev->current_state = PCI_D3cold;
1104 	} else if (dev->pm_cap) {
1105 		u16 pmcsr;
1106 
1107 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1108 		if (PCI_POSSIBLE_ERROR(pmcsr)) {
1109 			dev->current_state = PCI_D3cold;
1110 			return;
1111 		}
1112 		dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1113 	} else {
1114 		dev->current_state = state;
1115 	}
1116 }
1117 
1118 /**
1119  * pci_refresh_power_state - Refresh the given device's power state data
1120  * @dev: Target PCI device.
1121  *
1122  * Ask the platform to refresh the devices power state information and invoke
1123  * pci_update_current_state() to update its current PCI power state.
1124  */
1125 void pci_refresh_power_state(struct pci_dev *dev)
1126 {
1127 	platform_pci_refresh_power_state(dev);
1128 	pci_update_current_state(dev, dev->current_state);
1129 }
1130 
1131 /**
1132  * pci_platform_power_transition - Use platform to change device power state
1133  * @dev: PCI device to handle.
1134  * @state: State to put the device into.
1135  */
1136 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1137 {
1138 	int error;
1139 
1140 	error = platform_pci_set_power_state(dev, state);
1141 	if (!error)
1142 		pci_update_current_state(dev, state);
1143 	else if (!dev->pm_cap) /* Fall back to PCI_D0 */
1144 		dev->current_state = PCI_D0;
1145 
1146 	return error;
1147 }
1148 EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1149 
1150 static int pci_resume_one(struct pci_dev *pci_dev, void *ign)
1151 {
1152 	pm_request_resume(&pci_dev->dev);
1153 	return 0;
1154 }
1155 
1156 /**
1157  * pci_resume_bus - Walk given bus and runtime resume devices on it
1158  * @bus: Top bus of the subtree to walk.
1159  */
1160 void pci_resume_bus(struct pci_bus *bus)
1161 {
1162 	if (bus)
1163 		pci_walk_bus(bus, pci_resume_one, NULL);
1164 }
1165 
1166 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1167 {
1168 	int delay = 1;
1169 	bool retrain = false;
1170 	struct pci_dev *bridge;
1171 
1172 	if (pci_is_pcie(dev)) {
1173 		bridge = pci_upstream_bridge(dev);
1174 		if (bridge)
1175 			retrain = true;
1176 	}
1177 
1178 	/*
1179 	 * After reset, the device should not silently discard config
1180 	 * requests, but it may still indicate that it needs more time by
1181 	 * responding to them with CRS completions.  The Root Port will
1182 	 * generally synthesize ~0 (PCI_ERROR_RESPONSE) data to complete
1183 	 * the read (except when CRS SV is enabled and the read was for the
1184 	 * Vendor ID; in that case it synthesizes 0x0001 data).
1185 	 *
1186 	 * Wait for the device to return a non-CRS completion.  Read the
1187 	 * Command register instead of Vendor ID so we don't have to
1188 	 * contend with the CRS SV value.
1189 	 */
1190 	for (;;) {
1191 		u32 id;
1192 
1193 		pci_read_config_dword(dev, PCI_COMMAND, &id);
1194 		if (!PCI_POSSIBLE_ERROR(id))
1195 			break;
1196 
1197 		if (delay > timeout) {
1198 			pci_warn(dev, "not ready %dms after %s; giving up\n",
1199 				 delay - 1, reset_type);
1200 			return -ENOTTY;
1201 		}
1202 
1203 		if (delay > PCI_RESET_WAIT) {
1204 			if (retrain) {
1205 				retrain = false;
1206 				if (pcie_failed_link_retrain(bridge)) {
1207 					delay = 1;
1208 					continue;
1209 				}
1210 			}
1211 			pci_info(dev, "not ready %dms after %s; waiting\n",
1212 				 delay - 1, reset_type);
1213 		}
1214 
1215 		msleep(delay);
1216 		delay *= 2;
1217 	}
1218 
1219 	if (delay > PCI_RESET_WAIT)
1220 		pci_info(dev, "ready %dms after %s\n", delay - 1,
1221 			 reset_type);
1222 
1223 	return 0;
1224 }
1225 
1226 /**
1227  * pci_power_up - Put the given device into D0
1228  * @dev: PCI device to power up
1229  *
1230  * On success, return 0 or 1, depending on whether or not it is necessary to
1231  * restore the device's BARs subsequently (1 is returned in that case).
1232  *
1233  * On failure, return a negative error code.  Always return failure if @dev
1234  * lacks a Power Management Capability, even if the platform was able to
1235  * put the device in D0 via non-PCI means.
1236  */
1237 int pci_power_up(struct pci_dev *dev)
1238 {
1239 	bool need_restore;
1240 	pci_power_t state;
1241 	u16 pmcsr;
1242 
1243 	platform_pci_set_power_state(dev, PCI_D0);
1244 
1245 	if (!dev->pm_cap) {
1246 		state = platform_pci_get_power_state(dev);
1247 		if (state == PCI_UNKNOWN)
1248 			dev->current_state = PCI_D0;
1249 		else
1250 			dev->current_state = state;
1251 
1252 		return -EIO;
1253 	}
1254 
1255 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1256 	if (PCI_POSSIBLE_ERROR(pmcsr)) {
1257 		pci_err(dev, "Unable to change power state from %s to D0, device inaccessible\n",
1258 			pci_power_name(dev->current_state));
1259 		dev->current_state = PCI_D3cold;
1260 		return -EIO;
1261 	}
1262 
1263 	state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1264 
1265 	need_restore = (state == PCI_D3hot || dev->current_state >= PCI_D3hot) &&
1266 			!(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET);
1267 
1268 	if (state == PCI_D0)
1269 		goto end;
1270 
1271 	/*
1272 	 * Force the entire word to 0. This doesn't affect PME_Status, disables
1273 	 * PME_En, and sets PowerState to 0.
1274 	 */
1275 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, 0);
1276 
1277 	/* Mandatory transition delays; see PCI PM 1.2. */
1278 	if (state == PCI_D3hot)
1279 		pci_dev_d3_sleep(dev);
1280 	else if (state == PCI_D2)
1281 		udelay(PCI_PM_D2_DELAY);
1282 
1283 end:
1284 	dev->current_state = PCI_D0;
1285 	if (need_restore)
1286 		return 1;
1287 
1288 	return 0;
1289 }
1290 
1291 /**
1292  * pci_set_full_power_state - Put a PCI device into D0 and update its state
1293  * @dev: PCI device to power up
1294  *
1295  * Call pci_power_up() to put @dev into D0, read from its PCI_PM_CTRL register
1296  * to confirm the state change, restore its BARs if they might be lost and
1297  * reconfigure ASPM in accordance with the new power state.
1298  *
1299  * If pci_restore_state() is going to be called right after a power state change
1300  * to D0, it is more efficient to use pci_power_up() directly instead of this
1301  * function.
1302  */
1303 static int pci_set_full_power_state(struct pci_dev *dev)
1304 {
1305 	u16 pmcsr;
1306 	int ret;
1307 
1308 	ret = pci_power_up(dev);
1309 	if (ret < 0) {
1310 		if (dev->current_state == PCI_D0)
1311 			return 0;
1312 
1313 		return ret;
1314 	}
1315 
1316 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1317 	dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1318 	if (dev->current_state != PCI_D0) {
1319 		pci_info_ratelimited(dev, "Refused to change power state from %s to D0\n",
1320 				     pci_power_name(dev->current_state));
1321 	} else if (ret > 0) {
1322 		/*
1323 		 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1324 		 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1325 		 * from D3hot to D0 _may_ perform an internal reset, thereby
1326 		 * going to "D0 Uninitialized" rather than "D0 Initialized".
1327 		 * For example, at least some versions of the 3c905B and the
1328 		 * 3c556B exhibit this behaviour.
1329 		 *
1330 		 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1331 		 * devices in a D3hot state at boot.  Consequently, we need to
1332 		 * restore at least the BARs so that the device will be
1333 		 * accessible to its driver.
1334 		 */
1335 		pci_restore_bars(dev);
1336 	}
1337 
1338 	if (dev->bus->self)
1339 		pcie_aspm_pm_state_change(dev->bus->self);
1340 
1341 	return 0;
1342 }
1343 
1344 /**
1345  * __pci_dev_set_current_state - Set current state of a PCI device
1346  * @dev: Device to handle
1347  * @data: pointer to state to be set
1348  */
1349 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1350 {
1351 	pci_power_t state = *(pci_power_t *)data;
1352 
1353 	dev->current_state = state;
1354 	return 0;
1355 }
1356 
1357 /**
1358  * pci_bus_set_current_state - Walk given bus and set current state of devices
1359  * @bus: Top bus of the subtree to walk.
1360  * @state: state to be set
1361  */
1362 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1363 {
1364 	if (bus)
1365 		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1366 }
1367 
1368 /**
1369  * pci_set_low_power_state - Put a PCI device into a low-power state.
1370  * @dev: PCI device to handle.
1371  * @state: PCI power state (D1, D2, D3hot) to put the device into.
1372  *
1373  * Use the device's PCI_PM_CTRL register to put it into a low-power state.
1374  *
1375  * RETURN VALUE:
1376  * -EINVAL if the requested state is invalid.
1377  * -EIO if device does not support PCI PM or its PM capabilities register has a
1378  * wrong version, or device doesn't support the requested state.
1379  * 0 if device already is in the requested state.
1380  * 0 if device's power state has been successfully changed.
1381  */
1382 static int pci_set_low_power_state(struct pci_dev *dev, pci_power_t state)
1383 {
1384 	u16 pmcsr;
1385 
1386 	if (!dev->pm_cap)
1387 		return -EIO;
1388 
1389 	/*
1390 	 * Validate transition: We can enter D0 from any state, but if
1391 	 * we're already in a low-power state, we can only go deeper.  E.g.,
1392 	 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1393 	 * we'd have to go from D3 to D0, then to D1.
1394 	 */
1395 	if (dev->current_state <= PCI_D3cold && dev->current_state > state) {
1396 		pci_dbg(dev, "Invalid power transition (from %s to %s)\n",
1397 			pci_power_name(dev->current_state),
1398 			pci_power_name(state));
1399 		return -EINVAL;
1400 	}
1401 
1402 	/* Check if this device supports the desired state */
1403 	if ((state == PCI_D1 && !dev->d1_support)
1404 	   || (state == PCI_D2 && !dev->d2_support))
1405 		return -EIO;
1406 
1407 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1408 	if (PCI_POSSIBLE_ERROR(pmcsr)) {
1409 		pci_err(dev, "Unable to change power state from %s to %s, device inaccessible\n",
1410 			pci_power_name(dev->current_state),
1411 			pci_power_name(state));
1412 		dev->current_state = PCI_D3cold;
1413 		return -EIO;
1414 	}
1415 
1416 	pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1417 	pmcsr |= state;
1418 
1419 	/* Enter specified state */
1420 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1421 
1422 	/* Mandatory power management transition delays; see PCI PM 1.2. */
1423 	if (state == PCI_D3hot)
1424 		pci_dev_d3_sleep(dev);
1425 	else if (state == PCI_D2)
1426 		udelay(PCI_PM_D2_DELAY);
1427 
1428 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1429 	dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1430 	if (dev->current_state != state)
1431 		pci_info_ratelimited(dev, "Refused to change power state from %s to %s\n",
1432 				     pci_power_name(dev->current_state),
1433 				     pci_power_name(state));
1434 
1435 	if (dev->bus->self)
1436 		pcie_aspm_pm_state_change(dev->bus->self);
1437 
1438 	return 0;
1439 }
1440 
1441 /**
1442  * pci_set_power_state - Set the power state of a PCI device
1443  * @dev: PCI device to handle.
1444  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1445  *
1446  * Transition a device to a new power state, using the platform firmware and/or
1447  * the device's PCI PM registers.
1448  *
1449  * RETURN VALUE:
1450  * -EINVAL if the requested state is invalid.
1451  * -EIO if device does not support PCI PM or its PM capabilities register has a
1452  * wrong version, or device doesn't support the requested state.
1453  * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1454  * 0 if device already is in the requested state.
1455  * 0 if the transition is to D3 but D3 is not supported.
1456  * 0 if device's power state has been successfully changed.
1457  */
1458 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1459 {
1460 	int error;
1461 
1462 	/* Bound the state we're entering */
1463 	if (state > PCI_D3cold)
1464 		state = PCI_D3cold;
1465 	else if (state < PCI_D0)
1466 		state = PCI_D0;
1467 	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1468 
1469 		/*
1470 		 * If the device or the parent bridge do not support PCI
1471 		 * PM, ignore the request if we're doing anything other
1472 		 * than putting it into D0 (which would only happen on
1473 		 * boot).
1474 		 */
1475 		return 0;
1476 
1477 	/* Check if we're already there */
1478 	if (dev->current_state == state)
1479 		return 0;
1480 
1481 	if (state == PCI_D0)
1482 		return pci_set_full_power_state(dev);
1483 
1484 	/*
1485 	 * This device is quirked not to be put into D3, so don't put it in
1486 	 * D3
1487 	 */
1488 	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1489 		return 0;
1490 
1491 	if (state == PCI_D3cold) {
1492 		/*
1493 		 * To put the device in D3cold, put it into D3hot in the native
1494 		 * way, then put it into D3cold using platform ops.
1495 		 */
1496 		error = pci_set_low_power_state(dev, PCI_D3hot);
1497 
1498 		if (pci_platform_power_transition(dev, PCI_D3cold))
1499 			return error;
1500 
1501 		/* Powering off a bridge may power off the whole hierarchy */
1502 		if (dev->current_state == PCI_D3cold)
1503 			pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1504 	} else {
1505 		error = pci_set_low_power_state(dev, state);
1506 
1507 		if (pci_platform_power_transition(dev, state))
1508 			return error;
1509 	}
1510 
1511 	return 0;
1512 }
1513 EXPORT_SYMBOL(pci_set_power_state);
1514 
1515 #define PCI_EXP_SAVE_REGS	7
1516 
1517 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1518 						       u16 cap, bool extended)
1519 {
1520 	struct pci_cap_saved_state *tmp;
1521 
1522 	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1523 		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1524 			return tmp;
1525 	}
1526 	return NULL;
1527 }
1528 
1529 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1530 {
1531 	return _pci_find_saved_cap(dev, cap, false);
1532 }
1533 
1534 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1535 {
1536 	return _pci_find_saved_cap(dev, cap, true);
1537 }
1538 
1539 static int pci_save_pcie_state(struct pci_dev *dev)
1540 {
1541 	int i = 0;
1542 	struct pci_cap_saved_state *save_state;
1543 	u16 *cap;
1544 
1545 	if (!pci_is_pcie(dev))
1546 		return 0;
1547 
1548 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1549 	if (!save_state) {
1550 		pci_err(dev, "buffer not found in %s\n", __func__);
1551 		return -ENOMEM;
1552 	}
1553 
1554 	cap = (u16 *)&save_state->cap.data[0];
1555 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1556 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1557 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1558 	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
1559 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1560 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1561 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1562 
1563 	return 0;
1564 }
1565 
1566 void pci_bridge_reconfigure_ltr(struct pci_dev *dev)
1567 {
1568 #ifdef CONFIG_PCIEASPM
1569 	struct pci_dev *bridge;
1570 	u32 ctl;
1571 
1572 	bridge = pci_upstream_bridge(dev);
1573 	if (bridge && bridge->ltr_path) {
1574 		pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, &ctl);
1575 		if (!(ctl & PCI_EXP_DEVCTL2_LTR_EN)) {
1576 			pci_dbg(bridge, "re-enabling LTR\n");
1577 			pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
1578 						 PCI_EXP_DEVCTL2_LTR_EN);
1579 		}
1580 	}
1581 #endif
1582 }
1583 
1584 static void pci_restore_pcie_state(struct pci_dev *dev)
1585 {
1586 	int i = 0;
1587 	struct pci_cap_saved_state *save_state;
1588 	u16 *cap;
1589 
1590 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1591 	if (!save_state)
1592 		return;
1593 
1594 	/*
1595 	 * Downstream ports reset the LTR enable bit when link goes down.
1596 	 * Check and re-configure the bit here before restoring device.
1597 	 * PCIe r5.0, sec 7.5.3.16.
1598 	 */
1599 	pci_bridge_reconfigure_ltr(dev);
1600 
1601 	cap = (u16 *)&save_state->cap.data[0];
1602 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1603 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1604 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1605 	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1606 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1607 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1608 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1609 }
1610 
1611 static int pci_save_pcix_state(struct pci_dev *dev)
1612 {
1613 	int pos;
1614 	struct pci_cap_saved_state *save_state;
1615 
1616 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1617 	if (!pos)
1618 		return 0;
1619 
1620 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1621 	if (!save_state) {
1622 		pci_err(dev, "buffer not found in %s\n", __func__);
1623 		return -ENOMEM;
1624 	}
1625 
1626 	pci_read_config_word(dev, pos + PCI_X_CMD,
1627 			     (u16 *)save_state->cap.data);
1628 
1629 	return 0;
1630 }
1631 
1632 static void pci_restore_pcix_state(struct pci_dev *dev)
1633 {
1634 	int i = 0, pos;
1635 	struct pci_cap_saved_state *save_state;
1636 	u16 *cap;
1637 
1638 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1639 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1640 	if (!save_state || !pos)
1641 		return;
1642 	cap = (u16 *)&save_state->cap.data[0];
1643 
1644 	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1645 }
1646 
1647 static void pci_save_ltr_state(struct pci_dev *dev)
1648 {
1649 	int ltr;
1650 	struct pci_cap_saved_state *save_state;
1651 	u32 *cap;
1652 
1653 	if (!pci_is_pcie(dev))
1654 		return;
1655 
1656 	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1657 	if (!ltr)
1658 		return;
1659 
1660 	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1661 	if (!save_state) {
1662 		pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1663 		return;
1664 	}
1665 
1666 	/* Some broken devices only support dword access to LTR */
1667 	cap = &save_state->cap.data[0];
1668 	pci_read_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap);
1669 }
1670 
1671 static void pci_restore_ltr_state(struct pci_dev *dev)
1672 {
1673 	struct pci_cap_saved_state *save_state;
1674 	int ltr;
1675 	u32 *cap;
1676 
1677 	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1678 	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1679 	if (!save_state || !ltr)
1680 		return;
1681 
1682 	/* Some broken devices only support dword access to LTR */
1683 	cap = &save_state->cap.data[0];
1684 	pci_write_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap);
1685 }
1686 
1687 /**
1688  * pci_save_state - save the PCI configuration space of a device before
1689  *		    suspending
1690  * @dev: PCI device that we're dealing with
1691  */
1692 int pci_save_state(struct pci_dev *dev)
1693 {
1694 	int i;
1695 	/* XXX: 100% dword access ok here? */
1696 	for (i = 0; i < 16; i++) {
1697 		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1698 		pci_dbg(dev, "save config %#04x: %#010x\n",
1699 			i * 4, dev->saved_config_space[i]);
1700 	}
1701 	dev->state_saved = true;
1702 
1703 	i = pci_save_pcie_state(dev);
1704 	if (i != 0)
1705 		return i;
1706 
1707 	i = pci_save_pcix_state(dev);
1708 	if (i != 0)
1709 		return i;
1710 
1711 	pci_save_ltr_state(dev);
1712 	pci_save_dpc_state(dev);
1713 	pci_save_aer_state(dev);
1714 	pci_save_ptm_state(dev);
1715 	return pci_save_vc_state(dev);
1716 }
1717 EXPORT_SYMBOL(pci_save_state);
1718 
1719 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1720 				     u32 saved_val, int retry, bool force)
1721 {
1722 	u32 val;
1723 
1724 	pci_read_config_dword(pdev, offset, &val);
1725 	if (!force && val == saved_val)
1726 		return;
1727 
1728 	for (;;) {
1729 		pci_dbg(pdev, "restore config %#04x: %#010x -> %#010x\n",
1730 			offset, val, saved_val);
1731 		pci_write_config_dword(pdev, offset, saved_val);
1732 		if (retry-- <= 0)
1733 			return;
1734 
1735 		pci_read_config_dword(pdev, offset, &val);
1736 		if (val == saved_val)
1737 			return;
1738 
1739 		mdelay(1);
1740 	}
1741 }
1742 
1743 static void pci_restore_config_space_range(struct pci_dev *pdev,
1744 					   int start, int end, int retry,
1745 					   bool force)
1746 {
1747 	int index;
1748 
1749 	for (index = end; index >= start; index--)
1750 		pci_restore_config_dword(pdev, 4 * index,
1751 					 pdev->saved_config_space[index],
1752 					 retry, force);
1753 }
1754 
1755 static void pci_restore_config_space(struct pci_dev *pdev)
1756 {
1757 	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1758 		pci_restore_config_space_range(pdev, 10, 15, 0, false);
1759 		/* Restore BARs before the command register. */
1760 		pci_restore_config_space_range(pdev, 4, 9, 10, false);
1761 		pci_restore_config_space_range(pdev, 0, 3, 0, false);
1762 	} else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1763 		pci_restore_config_space_range(pdev, 12, 15, 0, false);
1764 
1765 		/*
1766 		 * Force rewriting of prefetch registers to avoid S3 resume
1767 		 * issues on Intel PCI bridges that occur when these
1768 		 * registers are not explicitly written.
1769 		 */
1770 		pci_restore_config_space_range(pdev, 9, 11, 0, true);
1771 		pci_restore_config_space_range(pdev, 0, 8, 0, false);
1772 	} else {
1773 		pci_restore_config_space_range(pdev, 0, 15, 0, false);
1774 	}
1775 }
1776 
1777 static void pci_restore_rebar_state(struct pci_dev *pdev)
1778 {
1779 	unsigned int pos, nbars, i;
1780 	u32 ctrl;
1781 
1782 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1783 	if (!pos)
1784 		return;
1785 
1786 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1787 	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1788 		    PCI_REBAR_CTRL_NBAR_SHIFT;
1789 
1790 	for (i = 0; i < nbars; i++, pos += 8) {
1791 		struct resource *res;
1792 		int bar_idx, size;
1793 
1794 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1795 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1796 		res = pdev->resource + bar_idx;
1797 		size = pci_rebar_bytes_to_size(resource_size(res));
1798 		ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1799 		ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1800 		pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1801 	}
1802 }
1803 
1804 /**
1805  * pci_restore_state - Restore the saved state of a PCI device
1806  * @dev: PCI device that we're dealing with
1807  */
1808 void pci_restore_state(struct pci_dev *dev)
1809 {
1810 	if (!dev->state_saved)
1811 		return;
1812 
1813 	/*
1814 	 * Restore max latencies (in the LTR capability) before enabling
1815 	 * LTR itself (in the PCIe capability).
1816 	 */
1817 	pci_restore_ltr_state(dev);
1818 
1819 	pci_restore_pcie_state(dev);
1820 	pci_restore_pasid_state(dev);
1821 	pci_restore_pri_state(dev);
1822 	pci_restore_ats_state(dev);
1823 	pci_restore_vc_state(dev);
1824 	pci_restore_rebar_state(dev);
1825 	pci_restore_dpc_state(dev);
1826 	pci_restore_ptm_state(dev);
1827 
1828 	pci_aer_clear_status(dev);
1829 	pci_restore_aer_state(dev);
1830 
1831 	pci_restore_config_space(dev);
1832 
1833 	pci_restore_pcix_state(dev);
1834 	pci_restore_msi_state(dev);
1835 
1836 	/* Restore ACS and IOV configuration state */
1837 	pci_enable_acs(dev);
1838 	pci_restore_iov_state(dev);
1839 
1840 	dev->state_saved = false;
1841 }
1842 EXPORT_SYMBOL(pci_restore_state);
1843 
1844 struct pci_saved_state {
1845 	u32 config_space[16];
1846 	struct pci_cap_saved_data cap[];
1847 };
1848 
1849 /**
1850  * pci_store_saved_state - Allocate and return an opaque struct containing
1851  *			   the device saved state.
1852  * @dev: PCI device that we're dealing with
1853  *
1854  * Return NULL if no state or error.
1855  */
1856 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1857 {
1858 	struct pci_saved_state *state;
1859 	struct pci_cap_saved_state *tmp;
1860 	struct pci_cap_saved_data *cap;
1861 	size_t size;
1862 
1863 	if (!dev->state_saved)
1864 		return NULL;
1865 
1866 	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1867 
1868 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1869 		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1870 
1871 	state = kzalloc(size, GFP_KERNEL);
1872 	if (!state)
1873 		return NULL;
1874 
1875 	memcpy(state->config_space, dev->saved_config_space,
1876 	       sizeof(state->config_space));
1877 
1878 	cap = state->cap;
1879 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1880 		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1881 		memcpy(cap, &tmp->cap, len);
1882 		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1883 	}
1884 	/* Empty cap_save terminates list */
1885 
1886 	return state;
1887 }
1888 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1889 
1890 /**
1891  * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1892  * @dev: PCI device that we're dealing with
1893  * @state: Saved state returned from pci_store_saved_state()
1894  */
1895 int pci_load_saved_state(struct pci_dev *dev,
1896 			 struct pci_saved_state *state)
1897 {
1898 	struct pci_cap_saved_data *cap;
1899 
1900 	dev->state_saved = false;
1901 
1902 	if (!state)
1903 		return 0;
1904 
1905 	memcpy(dev->saved_config_space, state->config_space,
1906 	       sizeof(state->config_space));
1907 
1908 	cap = state->cap;
1909 	while (cap->size) {
1910 		struct pci_cap_saved_state *tmp;
1911 
1912 		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1913 		if (!tmp || tmp->cap.size != cap->size)
1914 			return -EINVAL;
1915 
1916 		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1917 		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1918 		       sizeof(struct pci_cap_saved_data) + cap->size);
1919 	}
1920 
1921 	dev->state_saved = true;
1922 	return 0;
1923 }
1924 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1925 
1926 /**
1927  * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1928  *				   and free the memory allocated for it.
1929  * @dev: PCI device that we're dealing with
1930  * @state: Pointer to saved state returned from pci_store_saved_state()
1931  */
1932 int pci_load_and_free_saved_state(struct pci_dev *dev,
1933 				  struct pci_saved_state **state)
1934 {
1935 	int ret = pci_load_saved_state(dev, *state);
1936 	kfree(*state);
1937 	*state = NULL;
1938 	return ret;
1939 }
1940 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1941 
1942 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1943 {
1944 	return pci_enable_resources(dev, bars);
1945 }
1946 
1947 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1948 {
1949 	int err;
1950 	struct pci_dev *bridge;
1951 	u16 cmd;
1952 	u8 pin;
1953 
1954 	err = pci_set_power_state(dev, PCI_D0);
1955 	if (err < 0 && err != -EIO)
1956 		return err;
1957 
1958 	bridge = pci_upstream_bridge(dev);
1959 	if (bridge)
1960 		pcie_aspm_powersave_config_link(bridge);
1961 
1962 	err = pcibios_enable_device(dev, bars);
1963 	if (err < 0)
1964 		return err;
1965 	pci_fixup_device(pci_fixup_enable, dev);
1966 
1967 	if (dev->msi_enabled || dev->msix_enabled)
1968 		return 0;
1969 
1970 	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1971 	if (pin) {
1972 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
1973 		if (cmd & PCI_COMMAND_INTX_DISABLE)
1974 			pci_write_config_word(dev, PCI_COMMAND,
1975 					      cmd & ~PCI_COMMAND_INTX_DISABLE);
1976 	}
1977 
1978 	return 0;
1979 }
1980 
1981 /**
1982  * pci_reenable_device - Resume abandoned device
1983  * @dev: PCI device to be resumed
1984  *
1985  * NOTE: This function is a backend of pci_default_resume() and is not supposed
1986  * to be called by normal code, write proper resume handler and use it instead.
1987  */
1988 int pci_reenable_device(struct pci_dev *dev)
1989 {
1990 	if (pci_is_enabled(dev))
1991 		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1992 	return 0;
1993 }
1994 EXPORT_SYMBOL(pci_reenable_device);
1995 
1996 static void pci_enable_bridge(struct pci_dev *dev)
1997 {
1998 	struct pci_dev *bridge;
1999 	int retval;
2000 
2001 	bridge = pci_upstream_bridge(dev);
2002 	if (bridge)
2003 		pci_enable_bridge(bridge);
2004 
2005 	if (pci_is_enabled(dev)) {
2006 		if (!dev->is_busmaster)
2007 			pci_set_master(dev);
2008 		return;
2009 	}
2010 
2011 	retval = pci_enable_device(dev);
2012 	if (retval)
2013 		pci_err(dev, "Error enabling bridge (%d), continuing\n",
2014 			retval);
2015 	pci_set_master(dev);
2016 }
2017 
2018 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
2019 {
2020 	struct pci_dev *bridge;
2021 	int err;
2022 	int i, bars = 0;
2023 
2024 	/*
2025 	 * Power state could be unknown at this point, either due to a fresh
2026 	 * boot or a device removal call.  So get the current power state
2027 	 * so that things like MSI message writing will behave as expected
2028 	 * (e.g. if the device really is in D0 at enable time).
2029 	 */
2030 	pci_update_current_state(dev, dev->current_state);
2031 
2032 	if (atomic_inc_return(&dev->enable_cnt) > 1)
2033 		return 0;		/* already enabled */
2034 
2035 	bridge = pci_upstream_bridge(dev);
2036 	if (bridge)
2037 		pci_enable_bridge(bridge);
2038 
2039 	/* only skip sriov related */
2040 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
2041 		if (dev->resource[i].flags & flags)
2042 			bars |= (1 << i);
2043 	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
2044 		if (dev->resource[i].flags & flags)
2045 			bars |= (1 << i);
2046 
2047 	err = do_pci_enable_device(dev, bars);
2048 	if (err < 0)
2049 		atomic_dec(&dev->enable_cnt);
2050 	return err;
2051 }
2052 
2053 /**
2054  * pci_enable_device_io - Initialize a device for use with IO space
2055  * @dev: PCI device to be initialized
2056  *
2057  * Initialize device before it's used by a driver. Ask low-level code
2058  * to enable I/O resources. Wake up the device if it was suspended.
2059  * Beware, this function can fail.
2060  */
2061 int pci_enable_device_io(struct pci_dev *dev)
2062 {
2063 	return pci_enable_device_flags(dev, IORESOURCE_IO);
2064 }
2065 EXPORT_SYMBOL(pci_enable_device_io);
2066 
2067 /**
2068  * pci_enable_device_mem - Initialize a device for use with Memory space
2069  * @dev: PCI device to be initialized
2070  *
2071  * Initialize device before it's used by a driver. Ask low-level code
2072  * to enable Memory resources. Wake up the device if it was suspended.
2073  * Beware, this function can fail.
2074  */
2075 int pci_enable_device_mem(struct pci_dev *dev)
2076 {
2077 	return pci_enable_device_flags(dev, IORESOURCE_MEM);
2078 }
2079 EXPORT_SYMBOL(pci_enable_device_mem);
2080 
2081 /**
2082  * pci_enable_device - Initialize device before it's used by a driver.
2083  * @dev: PCI device to be initialized
2084  *
2085  * Initialize device before it's used by a driver. Ask low-level code
2086  * to enable I/O and memory. Wake up the device if it was suspended.
2087  * Beware, this function can fail.
2088  *
2089  * Note we don't actually enable the device many times if we call
2090  * this function repeatedly (we just increment the count).
2091  */
2092 int pci_enable_device(struct pci_dev *dev)
2093 {
2094 	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
2095 }
2096 EXPORT_SYMBOL(pci_enable_device);
2097 
2098 /*
2099  * Managed PCI resources.  This manages device on/off, INTx/MSI/MSI-X
2100  * on/off and BAR regions.  pci_dev itself records MSI/MSI-X status, so
2101  * there's no need to track it separately.  pci_devres is initialized
2102  * when a device is enabled using managed PCI device enable interface.
2103  */
2104 struct pci_devres {
2105 	unsigned int enabled:1;
2106 	unsigned int pinned:1;
2107 	unsigned int orig_intx:1;
2108 	unsigned int restore_intx:1;
2109 	unsigned int mwi:1;
2110 	u32 region_mask;
2111 };
2112 
2113 static void pcim_release(struct device *gendev, void *res)
2114 {
2115 	struct pci_dev *dev = to_pci_dev(gendev);
2116 	struct pci_devres *this = res;
2117 	int i;
2118 
2119 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
2120 		if (this->region_mask & (1 << i))
2121 			pci_release_region(dev, i);
2122 
2123 	if (this->mwi)
2124 		pci_clear_mwi(dev);
2125 
2126 	if (this->restore_intx)
2127 		pci_intx(dev, this->orig_intx);
2128 
2129 	if (this->enabled && !this->pinned)
2130 		pci_disable_device(dev);
2131 }
2132 
2133 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
2134 {
2135 	struct pci_devres *dr, *new_dr;
2136 
2137 	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
2138 	if (dr)
2139 		return dr;
2140 
2141 	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
2142 	if (!new_dr)
2143 		return NULL;
2144 	return devres_get(&pdev->dev, new_dr, NULL, NULL);
2145 }
2146 
2147 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
2148 {
2149 	if (pci_is_managed(pdev))
2150 		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
2151 	return NULL;
2152 }
2153 
2154 /**
2155  * pcim_enable_device - Managed pci_enable_device()
2156  * @pdev: PCI device to be initialized
2157  *
2158  * Managed pci_enable_device().
2159  */
2160 int pcim_enable_device(struct pci_dev *pdev)
2161 {
2162 	struct pci_devres *dr;
2163 	int rc;
2164 
2165 	dr = get_pci_dr(pdev);
2166 	if (unlikely(!dr))
2167 		return -ENOMEM;
2168 	if (dr->enabled)
2169 		return 0;
2170 
2171 	rc = pci_enable_device(pdev);
2172 	if (!rc) {
2173 		pdev->is_managed = 1;
2174 		dr->enabled = 1;
2175 	}
2176 	return rc;
2177 }
2178 EXPORT_SYMBOL(pcim_enable_device);
2179 
2180 /**
2181  * pcim_pin_device - Pin managed PCI device
2182  * @pdev: PCI device to pin
2183  *
2184  * Pin managed PCI device @pdev.  Pinned device won't be disabled on
2185  * driver detach.  @pdev must have been enabled with
2186  * pcim_enable_device().
2187  */
2188 void pcim_pin_device(struct pci_dev *pdev)
2189 {
2190 	struct pci_devres *dr;
2191 
2192 	dr = find_pci_dr(pdev);
2193 	WARN_ON(!dr || !dr->enabled);
2194 	if (dr)
2195 		dr->pinned = 1;
2196 }
2197 EXPORT_SYMBOL(pcim_pin_device);
2198 
2199 /*
2200  * pcibios_device_add - provide arch specific hooks when adding device dev
2201  * @dev: the PCI device being added
2202  *
2203  * Permits the platform to provide architecture specific functionality when
2204  * devices are added. This is the default implementation. Architecture
2205  * implementations can override this.
2206  */
2207 int __weak pcibios_device_add(struct pci_dev *dev)
2208 {
2209 	return 0;
2210 }
2211 
2212 /**
2213  * pcibios_release_device - provide arch specific hooks when releasing
2214  *			    device dev
2215  * @dev: the PCI device being released
2216  *
2217  * Permits the platform to provide architecture specific functionality when
2218  * devices are released. This is the default implementation. Architecture
2219  * implementations can override this.
2220  */
2221 void __weak pcibios_release_device(struct pci_dev *dev) {}
2222 
2223 /**
2224  * pcibios_disable_device - disable arch specific PCI resources for device dev
2225  * @dev: the PCI device to disable
2226  *
2227  * Disables architecture specific PCI resources for the device. This
2228  * is the default implementation. Architecture implementations can
2229  * override this.
2230  */
2231 void __weak pcibios_disable_device(struct pci_dev *dev) {}
2232 
2233 /**
2234  * pcibios_penalize_isa_irq - penalize an ISA IRQ
2235  * @irq: ISA IRQ to penalize
2236  * @active: IRQ active or not
2237  *
2238  * Permits the platform to provide architecture-specific functionality when
2239  * penalizing ISA IRQs. This is the default implementation. Architecture
2240  * implementations can override this.
2241  */
2242 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
2243 
2244 static void do_pci_disable_device(struct pci_dev *dev)
2245 {
2246 	u16 pci_command;
2247 
2248 	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2249 	if (pci_command & PCI_COMMAND_MASTER) {
2250 		pci_command &= ~PCI_COMMAND_MASTER;
2251 		pci_write_config_word(dev, PCI_COMMAND, pci_command);
2252 	}
2253 
2254 	pcibios_disable_device(dev);
2255 }
2256 
2257 /**
2258  * pci_disable_enabled_device - Disable device without updating enable_cnt
2259  * @dev: PCI device to disable
2260  *
2261  * NOTE: This function is a backend of PCI power management routines and is
2262  * not supposed to be called drivers.
2263  */
2264 void pci_disable_enabled_device(struct pci_dev *dev)
2265 {
2266 	if (pci_is_enabled(dev))
2267 		do_pci_disable_device(dev);
2268 }
2269 
2270 /**
2271  * pci_disable_device - Disable PCI device after use
2272  * @dev: PCI device to be disabled
2273  *
2274  * Signal to the system that the PCI device is not in use by the system
2275  * anymore.  This only involves disabling PCI bus-mastering, if active.
2276  *
2277  * Note we don't actually disable the device until all callers of
2278  * pci_enable_device() have called pci_disable_device().
2279  */
2280 void pci_disable_device(struct pci_dev *dev)
2281 {
2282 	struct pci_devres *dr;
2283 
2284 	dr = find_pci_dr(dev);
2285 	if (dr)
2286 		dr->enabled = 0;
2287 
2288 	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2289 		      "disabling already-disabled device");
2290 
2291 	if (atomic_dec_return(&dev->enable_cnt) != 0)
2292 		return;
2293 
2294 	do_pci_disable_device(dev);
2295 
2296 	dev->is_busmaster = 0;
2297 }
2298 EXPORT_SYMBOL(pci_disable_device);
2299 
2300 /**
2301  * pcibios_set_pcie_reset_state - set reset state for device dev
2302  * @dev: the PCIe device reset
2303  * @state: Reset state to enter into
2304  *
2305  * Set the PCIe reset state for the device. This is the default
2306  * implementation. Architecture implementations can override this.
2307  */
2308 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2309 					enum pcie_reset_state state)
2310 {
2311 	return -EINVAL;
2312 }
2313 
2314 /**
2315  * pci_set_pcie_reset_state - set reset state for device dev
2316  * @dev: the PCIe device reset
2317  * @state: Reset state to enter into
2318  *
2319  * Sets the PCI reset state for the device.
2320  */
2321 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2322 {
2323 	return pcibios_set_pcie_reset_state(dev, state);
2324 }
2325 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2326 
2327 #ifdef CONFIG_PCIEAER
2328 void pcie_clear_device_status(struct pci_dev *dev)
2329 {
2330 	u16 sta;
2331 
2332 	pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2333 	pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2334 }
2335 #endif
2336 
2337 /**
2338  * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2339  * @dev: PCIe root port or event collector.
2340  */
2341 void pcie_clear_root_pme_status(struct pci_dev *dev)
2342 {
2343 	pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2344 }
2345 
2346 /**
2347  * pci_check_pme_status - Check if given device has generated PME.
2348  * @dev: Device to check.
2349  *
2350  * Check the PME status of the device and if set, clear it and clear PME enable
2351  * (if set).  Return 'true' if PME status and PME enable were both set or
2352  * 'false' otherwise.
2353  */
2354 bool pci_check_pme_status(struct pci_dev *dev)
2355 {
2356 	int pmcsr_pos;
2357 	u16 pmcsr;
2358 	bool ret = false;
2359 
2360 	if (!dev->pm_cap)
2361 		return false;
2362 
2363 	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2364 	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2365 	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2366 		return false;
2367 
2368 	/* Clear PME status. */
2369 	pmcsr |= PCI_PM_CTRL_PME_STATUS;
2370 	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2371 		/* Disable PME to avoid interrupt flood. */
2372 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2373 		ret = true;
2374 	}
2375 
2376 	pci_write_config_word(dev, pmcsr_pos, pmcsr);
2377 
2378 	return ret;
2379 }
2380 
2381 /**
2382  * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2383  * @dev: Device to handle.
2384  * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2385  *
2386  * Check if @dev has generated PME and queue a resume request for it in that
2387  * case.
2388  */
2389 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2390 {
2391 	if (pme_poll_reset && dev->pme_poll)
2392 		dev->pme_poll = false;
2393 
2394 	if (pci_check_pme_status(dev)) {
2395 		pci_wakeup_event(dev);
2396 		pm_request_resume(&dev->dev);
2397 	}
2398 	return 0;
2399 }
2400 
2401 /**
2402  * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2403  * @bus: Top bus of the subtree to walk.
2404  */
2405 void pci_pme_wakeup_bus(struct pci_bus *bus)
2406 {
2407 	if (bus)
2408 		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2409 }
2410 
2411 
2412 /**
2413  * pci_pme_capable - check the capability of PCI device to generate PME#
2414  * @dev: PCI device to handle.
2415  * @state: PCI state from which device will issue PME#.
2416  */
2417 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2418 {
2419 	if (!dev->pm_cap)
2420 		return false;
2421 
2422 	return !!(dev->pme_support & (1 << state));
2423 }
2424 EXPORT_SYMBOL(pci_pme_capable);
2425 
2426 static void pci_pme_list_scan(struct work_struct *work)
2427 {
2428 	struct pci_pme_device *pme_dev, *n;
2429 
2430 	mutex_lock(&pci_pme_list_mutex);
2431 	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2432 		struct pci_dev *pdev = pme_dev->dev;
2433 
2434 		if (pdev->pme_poll) {
2435 			struct pci_dev *bridge = pdev->bus->self;
2436 			struct device *dev = &pdev->dev;
2437 			int pm_status;
2438 
2439 			/*
2440 			 * If bridge is in low power state, the
2441 			 * configuration space of subordinate devices
2442 			 * may be not accessible
2443 			 */
2444 			if (bridge && bridge->current_state != PCI_D0)
2445 				continue;
2446 
2447 			/*
2448 			 * If the device is in a low power state it
2449 			 * should not be polled either.
2450 			 */
2451 			pm_status = pm_runtime_get_if_active(dev, true);
2452 			if (!pm_status)
2453 				continue;
2454 
2455 			if (pdev->current_state != PCI_D3cold)
2456 				pci_pme_wakeup(pdev, NULL);
2457 
2458 			if (pm_status > 0)
2459 				pm_runtime_put(dev);
2460 		} else {
2461 			list_del(&pme_dev->list);
2462 			kfree(pme_dev);
2463 		}
2464 	}
2465 	if (!list_empty(&pci_pme_list))
2466 		queue_delayed_work(system_freezable_wq, &pci_pme_work,
2467 				   msecs_to_jiffies(PME_TIMEOUT));
2468 	mutex_unlock(&pci_pme_list_mutex);
2469 }
2470 
2471 static void __pci_pme_active(struct pci_dev *dev, bool enable)
2472 {
2473 	u16 pmcsr;
2474 
2475 	if (!dev->pme_support)
2476 		return;
2477 
2478 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2479 	/* Clear PME_Status by writing 1 to it and enable PME# */
2480 	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2481 	if (!enable)
2482 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2483 
2484 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2485 }
2486 
2487 /**
2488  * pci_pme_restore - Restore PME configuration after config space restore.
2489  * @dev: PCI device to update.
2490  */
2491 void pci_pme_restore(struct pci_dev *dev)
2492 {
2493 	u16 pmcsr;
2494 
2495 	if (!dev->pme_support)
2496 		return;
2497 
2498 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2499 	if (dev->wakeup_prepared) {
2500 		pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2501 		pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2502 	} else {
2503 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2504 		pmcsr |= PCI_PM_CTRL_PME_STATUS;
2505 	}
2506 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2507 }
2508 
2509 /**
2510  * pci_pme_active - enable or disable PCI device's PME# function
2511  * @dev: PCI device to handle.
2512  * @enable: 'true' to enable PME# generation; 'false' to disable it.
2513  *
2514  * The caller must verify that the device is capable of generating PME# before
2515  * calling this function with @enable equal to 'true'.
2516  */
2517 void pci_pme_active(struct pci_dev *dev, bool enable)
2518 {
2519 	__pci_pme_active(dev, enable);
2520 
2521 	/*
2522 	 * PCI (as opposed to PCIe) PME requires that the device have
2523 	 * its PME# line hooked up correctly. Not all hardware vendors
2524 	 * do this, so the PME never gets delivered and the device
2525 	 * remains asleep. The easiest way around this is to
2526 	 * periodically walk the list of suspended devices and check
2527 	 * whether any have their PME flag set. The assumption is that
2528 	 * we'll wake up often enough anyway that this won't be a huge
2529 	 * hit, and the power savings from the devices will still be a
2530 	 * win.
2531 	 *
2532 	 * Although PCIe uses in-band PME message instead of PME# line
2533 	 * to report PME, PME does not work for some PCIe devices in
2534 	 * reality.  For example, there are devices that set their PME
2535 	 * status bits, but don't really bother to send a PME message;
2536 	 * there are PCI Express Root Ports that don't bother to
2537 	 * trigger interrupts when they receive PME messages from the
2538 	 * devices below.  So PME poll is used for PCIe devices too.
2539 	 */
2540 
2541 	if (dev->pme_poll) {
2542 		struct pci_pme_device *pme_dev;
2543 		if (enable) {
2544 			pme_dev = kmalloc(sizeof(struct pci_pme_device),
2545 					  GFP_KERNEL);
2546 			if (!pme_dev) {
2547 				pci_warn(dev, "can't enable PME#\n");
2548 				return;
2549 			}
2550 			pme_dev->dev = dev;
2551 			mutex_lock(&pci_pme_list_mutex);
2552 			list_add(&pme_dev->list, &pci_pme_list);
2553 			if (list_is_singular(&pci_pme_list))
2554 				queue_delayed_work(system_freezable_wq,
2555 						   &pci_pme_work,
2556 						   msecs_to_jiffies(PME_TIMEOUT));
2557 			mutex_unlock(&pci_pme_list_mutex);
2558 		} else {
2559 			mutex_lock(&pci_pme_list_mutex);
2560 			list_for_each_entry(pme_dev, &pci_pme_list, list) {
2561 				if (pme_dev->dev == dev) {
2562 					list_del(&pme_dev->list);
2563 					kfree(pme_dev);
2564 					break;
2565 				}
2566 			}
2567 			mutex_unlock(&pci_pme_list_mutex);
2568 		}
2569 	}
2570 
2571 	pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2572 }
2573 EXPORT_SYMBOL(pci_pme_active);
2574 
2575 /**
2576  * __pci_enable_wake - enable PCI device as wakeup event source
2577  * @dev: PCI device affected
2578  * @state: PCI state from which device will issue wakeup events
2579  * @enable: True to enable event generation; false to disable
2580  *
2581  * This enables the device as a wakeup event source, or disables it.
2582  * When such events involves platform-specific hooks, those hooks are
2583  * called automatically by this routine.
2584  *
2585  * Devices with legacy power management (no standard PCI PM capabilities)
2586  * always require such platform hooks.
2587  *
2588  * RETURN VALUE:
2589  * 0 is returned on success
2590  * -EINVAL is returned if device is not supposed to wake up the system
2591  * Error code depending on the platform is returned if both the platform and
2592  * the native mechanism fail to enable the generation of wake-up events
2593  */
2594 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2595 {
2596 	int ret = 0;
2597 
2598 	/*
2599 	 * Bridges that are not power-manageable directly only signal
2600 	 * wakeup on behalf of subordinate devices which is set up
2601 	 * elsewhere, so skip them. However, bridges that are
2602 	 * power-manageable may signal wakeup for themselves (for example,
2603 	 * on a hotplug event) and they need to be covered here.
2604 	 */
2605 	if (!pci_power_manageable(dev))
2606 		return 0;
2607 
2608 	/* Don't do the same thing twice in a row for one device. */
2609 	if (!!enable == !!dev->wakeup_prepared)
2610 		return 0;
2611 
2612 	/*
2613 	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2614 	 * Anderson we should be doing PME# wake enable followed by ACPI wake
2615 	 * enable.  To disable wake-up we call the platform first, for symmetry.
2616 	 */
2617 
2618 	if (enable) {
2619 		int error;
2620 
2621 		/*
2622 		 * Enable PME signaling if the device can signal PME from
2623 		 * D3cold regardless of whether or not it can signal PME from
2624 		 * the current target state, because that will allow it to
2625 		 * signal PME when the hierarchy above it goes into D3cold and
2626 		 * the device itself ends up in D3cold as a result of that.
2627 		 */
2628 		if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold))
2629 			pci_pme_active(dev, true);
2630 		else
2631 			ret = 1;
2632 		error = platform_pci_set_wakeup(dev, true);
2633 		if (ret)
2634 			ret = error;
2635 		if (!ret)
2636 			dev->wakeup_prepared = true;
2637 	} else {
2638 		platform_pci_set_wakeup(dev, false);
2639 		pci_pme_active(dev, false);
2640 		dev->wakeup_prepared = false;
2641 	}
2642 
2643 	return ret;
2644 }
2645 
2646 /**
2647  * pci_enable_wake - change wakeup settings for a PCI device
2648  * @pci_dev: Target device
2649  * @state: PCI state from which device will issue wakeup events
2650  * @enable: Whether or not to enable event generation
2651  *
2652  * If @enable is set, check device_may_wakeup() for the device before calling
2653  * __pci_enable_wake() for it.
2654  */
2655 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2656 {
2657 	if (enable && !device_may_wakeup(&pci_dev->dev))
2658 		return -EINVAL;
2659 
2660 	return __pci_enable_wake(pci_dev, state, enable);
2661 }
2662 EXPORT_SYMBOL(pci_enable_wake);
2663 
2664 /**
2665  * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2666  * @dev: PCI device to prepare
2667  * @enable: True to enable wake-up event generation; false to disable
2668  *
2669  * Many drivers want the device to wake up the system from D3_hot or D3_cold
2670  * and this function allows them to set that up cleanly - pci_enable_wake()
2671  * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2672  * ordering constraints.
2673  *
2674  * This function only returns error code if the device is not allowed to wake
2675  * up the system from sleep or it is not capable of generating PME# from both
2676  * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2677  */
2678 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2679 {
2680 	return pci_pme_capable(dev, PCI_D3cold) ?
2681 			pci_enable_wake(dev, PCI_D3cold, enable) :
2682 			pci_enable_wake(dev, PCI_D3hot, enable);
2683 }
2684 EXPORT_SYMBOL(pci_wake_from_d3);
2685 
2686 /**
2687  * pci_target_state - find an appropriate low power state for a given PCI dev
2688  * @dev: PCI device
2689  * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2690  *
2691  * Use underlying platform code to find a supported low power state for @dev.
2692  * If the platform can't manage @dev, return the deepest state from which it
2693  * can generate wake events, based on any available PME info.
2694  */
2695 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2696 {
2697 	if (platform_pci_power_manageable(dev)) {
2698 		/*
2699 		 * Call the platform to find the target state for the device.
2700 		 */
2701 		pci_power_t state = platform_pci_choose_state(dev);
2702 
2703 		switch (state) {
2704 		case PCI_POWER_ERROR:
2705 		case PCI_UNKNOWN:
2706 			return PCI_D3hot;
2707 
2708 		case PCI_D1:
2709 		case PCI_D2:
2710 			if (pci_no_d1d2(dev))
2711 				return PCI_D3hot;
2712 		}
2713 
2714 		return state;
2715 	}
2716 
2717 	/*
2718 	 * If the device is in D3cold even though it's not power-manageable by
2719 	 * the platform, it may have been powered down by non-standard means.
2720 	 * Best to let it slumber.
2721 	 */
2722 	if (dev->current_state == PCI_D3cold)
2723 		return PCI_D3cold;
2724 	else if (!dev->pm_cap)
2725 		return PCI_D0;
2726 
2727 	if (wakeup && dev->pme_support) {
2728 		pci_power_t state = PCI_D3hot;
2729 
2730 		/*
2731 		 * Find the deepest state from which the device can generate
2732 		 * PME#.
2733 		 */
2734 		while (state && !(dev->pme_support & (1 << state)))
2735 			state--;
2736 
2737 		if (state)
2738 			return state;
2739 		else if (dev->pme_support & 1)
2740 			return PCI_D0;
2741 	}
2742 
2743 	return PCI_D3hot;
2744 }
2745 
2746 /**
2747  * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2748  *			  into a sleep state
2749  * @dev: Device to handle.
2750  *
2751  * Choose the power state appropriate for the device depending on whether
2752  * it can wake up the system and/or is power manageable by the platform
2753  * (PCI_D3hot is the default) and put the device into that state.
2754  */
2755 int pci_prepare_to_sleep(struct pci_dev *dev)
2756 {
2757 	bool wakeup = device_may_wakeup(&dev->dev);
2758 	pci_power_t target_state = pci_target_state(dev, wakeup);
2759 	int error;
2760 
2761 	if (target_state == PCI_POWER_ERROR)
2762 		return -EIO;
2763 
2764 	pci_enable_wake(dev, target_state, wakeup);
2765 
2766 	error = pci_set_power_state(dev, target_state);
2767 
2768 	if (error)
2769 		pci_enable_wake(dev, target_state, false);
2770 
2771 	return error;
2772 }
2773 EXPORT_SYMBOL(pci_prepare_to_sleep);
2774 
2775 /**
2776  * pci_back_from_sleep - turn PCI device on during system-wide transition
2777  *			 into working state
2778  * @dev: Device to handle.
2779  *
2780  * Disable device's system wake-up capability and put it into D0.
2781  */
2782 int pci_back_from_sleep(struct pci_dev *dev)
2783 {
2784 	int ret = pci_set_power_state(dev, PCI_D0);
2785 
2786 	if (ret)
2787 		return ret;
2788 
2789 	pci_enable_wake(dev, PCI_D0, false);
2790 	return 0;
2791 }
2792 EXPORT_SYMBOL(pci_back_from_sleep);
2793 
2794 /**
2795  * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2796  * @dev: PCI device being suspended.
2797  *
2798  * Prepare @dev to generate wake-up events at run time and put it into a low
2799  * power state.
2800  */
2801 int pci_finish_runtime_suspend(struct pci_dev *dev)
2802 {
2803 	pci_power_t target_state;
2804 	int error;
2805 
2806 	target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2807 	if (target_state == PCI_POWER_ERROR)
2808 		return -EIO;
2809 
2810 	__pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2811 
2812 	error = pci_set_power_state(dev, target_state);
2813 
2814 	if (error)
2815 		pci_enable_wake(dev, target_state, false);
2816 
2817 	return error;
2818 }
2819 
2820 /**
2821  * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2822  * @dev: Device to check.
2823  *
2824  * Return true if the device itself is capable of generating wake-up events
2825  * (through the platform or using the native PCIe PME) or if the device supports
2826  * PME and one of its upstream bridges can generate wake-up events.
2827  */
2828 bool pci_dev_run_wake(struct pci_dev *dev)
2829 {
2830 	struct pci_bus *bus = dev->bus;
2831 
2832 	if (!dev->pme_support)
2833 		return false;
2834 
2835 	/* PME-capable in principle, but not from the target power state */
2836 	if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2837 		return false;
2838 
2839 	if (device_can_wakeup(&dev->dev))
2840 		return true;
2841 
2842 	while (bus->parent) {
2843 		struct pci_dev *bridge = bus->self;
2844 
2845 		if (device_can_wakeup(&bridge->dev))
2846 			return true;
2847 
2848 		bus = bus->parent;
2849 	}
2850 
2851 	/* We have reached the root bus. */
2852 	if (bus->bridge)
2853 		return device_can_wakeup(bus->bridge);
2854 
2855 	return false;
2856 }
2857 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2858 
2859 /**
2860  * pci_dev_need_resume - Check if it is necessary to resume the device.
2861  * @pci_dev: Device to check.
2862  *
2863  * Return 'true' if the device is not runtime-suspended or it has to be
2864  * reconfigured due to wakeup settings difference between system and runtime
2865  * suspend, or the current power state of it is not suitable for the upcoming
2866  * (system-wide) transition.
2867  */
2868 bool pci_dev_need_resume(struct pci_dev *pci_dev)
2869 {
2870 	struct device *dev = &pci_dev->dev;
2871 	pci_power_t target_state;
2872 
2873 	if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2874 		return true;
2875 
2876 	target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2877 
2878 	/*
2879 	 * If the earlier platform check has not triggered, D3cold is just power
2880 	 * removal on top of D3hot, so no need to resume the device in that
2881 	 * case.
2882 	 */
2883 	return target_state != pci_dev->current_state &&
2884 		target_state != PCI_D3cold &&
2885 		pci_dev->current_state != PCI_D3hot;
2886 }
2887 
2888 /**
2889  * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2890  * @pci_dev: Device to check.
2891  *
2892  * If the device is suspended and it is not configured for system wakeup,
2893  * disable PME for it to prevent it from waking up the system unnecessarily.
2894  *
2895  * Note that if the device's power state is D3cold and the platform check in
2896  * pci_dev_need_resume() has not triggered, the device's configuration need not
2897  * be changed.
2898  */
2899 void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2900 {
2901 	struct device *dev = &pci_dev->dev;
2902 
2903 	spin_lock_irq(&dev->power.lock);
2904 
2905 	if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2906 	    pci_dev->current_state < PCI_D3cold)
2907 		__pci_pme_active(pci_dev, false);
2908 
2909 	spin_unlock_irq(&dev->power.lock);
2910 }
2911 
2912 /**
2913  * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2914  * @pci_dev: Device to handle.
2915  *
2916  * If the device is runtime suspended and wakeup-capable, enable PME for it as
2917  * it might have been disabled during the prepare phase of system suspend if
2918  * the device was not configured for system wakeup.
2919  */
2920 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2921 {
2922 	struct device *dev = &pci_dev->dev;
2923 
2924 	if (!pci_dev_run_wake(pci_dev))
2925 		return;
2926 
2927 	spin_lock_irq(&dev->power.lock);
2928 
2929 	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2930 		__pci_pme_active(pci_dev, true);
2931 
2932 	spin_unlock_irq(&dev->power.lock);
2933 }
2934 
2935 /**
2936  * pci_choose_state - Choose the power state of a PCI device.
2937  * @dev: Target PCI device.
2938  * @state: Target state for the whole system.
2939  *
2940  * Returns PCI power state suitable for @dev and @state.
2941  */
2942 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
2943 {
2944 	if (state.event == PM_EVENT_ON)
2945 		return PCI_D0;
2946 
2947 	return pci_target_state(dev, false);
2948 }
2949 EXPORT_SYMBOL(pci_choose_state);
2950 
2951 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2952 {
2953 	struct device *dev = &pdev->dev;
2954 	struct device *parent = dev->parent;
2955 
2956 	if (parent)
2957 		pm_runtime_get_sync(parent);
2958 	pm_runtime_get_noresume(dev);
2959 	/*
2960 	 * pdev->current_state is set to PCI_D3cold during suspending,
2961 	 * so wait until suspending completes
2962 	 */
2963 	pm_runtime_barrier(dev);
2964 	/*
2965 	 * Only need to resume devices in D3cold, because config
2966 	 * registers are still accessible for devices suspended but
2967 	 * not in D3cold.
2968 	 */
2969 	if (pdev->current_state == PCI_D3cold)
2970 		pm_runtime_resume(dev);
2971 }
2972 
2973 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2974 {
2975 	struct device *dev = &pdev->dev;
2976 	struct device *parent = dev->parent;
2977 
2978 	pm_runtime_put(dev);
2979 	if (parent)
2980 		pm_runtime_put_sync(parent);
2981 }
2982 
2983 static const struct dmi_system_id bridge_d3_blacklist[] = {
2984 #ifdef CONFIG_X86
2985 	{
2986 		/*
2987 		 * Gigabyte X299 root port is not marked as hotplug capable
2988 		 * which allows Linux to power manage it.  However, this
2989 		 * confuses the BIOS SMI handler so don't power manage root
2990 		 * ports on that system.
2991 		 */
2992 		.ident = "X299 DESIGNARE EX-CF",
2993 		.matches = {
2994 			DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2995 			DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2996 		},
2997 	},
2998 	{
2999 		/*
3000 		 * Downstream device is not accessible after putting a root port
3001 		 * into D3cold and back into D0 on Elo Continental Z2 board
3002 		 */
3003 		.ident = "Elo Continental Z2",
3004 		.matches = {
3005 			DMI_MATCH(DMI_BOARD_VENDOR, "Elo Touch Solutions"),
3006 			DMI_MATCH(DMI_BOARD_NAME, "Geminilake"),
3007 			DMI_MATCH(DMI_BOARD_VERSION, "Continental Z2"),
3008 		},
3009 	},
3010 #endif
3011 	{ }
3012 };
3013 
3014 /**
3015  * pci_bridge_d3_possible - Is it possible to put the bridge into D3
3016  * @bridge: Bridge to check
3017  *
3018  * This function checks if it is possible to move the bridge to D3.
3019  * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
3020  */
3021 bool pci_bridge_d3_possible(struct pci_dev *bridge)
3022 {
3023 	if (!pci_is_pcie(bridge))
3024 		return false;
3025 
3026 	switch (pci_pcie_type(bridge)) {
3027 	case PCI_EXP_TYPE_ROOT_PORT:
3028 	case PCI_EXP_TYPE_UPSTREAM:
3029 	case PCI_EXP_TYPE_DOWNSTREAM:
3030 		if (pci_bridge_d3_disable)
3031 			return false;
3032 
3033 		/*
3034 		 * Hotplug ports handled by firmware in System Management Mode
3035 		 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
3036 		 */
3037 		if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
3038 			return false;
3039 
3040 		if (pci_bridge_d3_force)
3041 			return true;
3042 
3043 		/* Even the oldest 2010 Thunderbolt controller supports D3. */
3044 		if (bridge->is_thunderbolt)
3045 			return true;
3046 
3047 		/* Platform might know better if the bridge supports D3 */
3048 		if (platform_pci_bridge_d3(bridge))
3049 			return true;
3050 
3051 		/*
3052 		 * Hotplug ports handled natively by the OS were not validated
3053 		 * by vendors for runtime D3 at least until 2018 because there
3054 		 * was no OS support.
3055 		 */
3056 		if (bridge->is_hotplug_bridge)
3057 			return false;
3058 
3059 		if (dmi_check_system(bridge_d3_blacklist))
3060 			return false;
3061 
3062 		/*
3063 		 * It should be safe to put PCIe ports from 2015 or newer
3064 		 * to D3.
3065 		 */
3066 		if (dmi_get_bios_year() >= 2015)
3067 			return true;
3068 		break;
3069 	}
3070 
3071 	return false;
3072 }
3073 
3074 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
3075 {
3076 	bool *d3cold_ok = data;
3077 
3078 	if (/* The device needs to be allowed to go D3cold ... */
3079 	    dev->no_d3cold || !dev->d3cold_allowed ||
3080 
3081 	    /* ... and if it is wakeup capable to do so from D3cold. */
3082 	    (device_may_wakeup(&dev->dev) &&
3083 	     !pci_pme_capable(dev, PCI_D3cold)) ||
3084 
3085 	    /* If it is a bridge it must be allowed to go to D3. */
3086 	    !pci_power_manageable(dev))
3087 
3088 		*d3cold_ok = false;
3089 
3090 	return !*d3cold_ok;
3091 }
3092 
3093 /*
3094  * pci_bridge_d3_update - Update bridge D3 capabilities
3095  * @dev: PCI device which is changed
3096  *
3097  * Update upstream bridge PM capabilities accordingly depending on if the
3098  * device PM configuration was changed or the device is being removed.  The
3099  * change is also propagated upstream.
3100  */
3101 void pci_bridge_d3_update(struct pci_dev *dev)
3102 {
3103 	bool remove = !device_is_registered(&dev->dev);
3104 	struct pci_dev *bridge;
3105 	bool d3cold_ok = true;
3106 
3107 	bridge = pci_upstream_bridge(dev);
3108 	if (!bridge || !pci_bridge_d3_possible(bridge))
3109 		return;
3110 
3111 	/*
3112 	 * If D3 is currently allowed for the bridge, removing one of its
3113 	 * children won't change that.
3114 	 */
3115 	if (remove && bridge->bridge_d3)
3116 		return;
3117 
3118 	/*
3119 	 * If D3 is currently allowed for the bridge and a child is added or
3120 	 * changed, disallowance of D3 can only be caused by that child, so
3121 	 * we only need to check that single device, not any of its siblings.
3122 	 *
3123 	 * If D3 is currently not allowed for the bridge, checking the device
3124 	 * first may allow us to skip checking its siblings.
3125 	 */
3126 	if (!remove)
3127 		pci_dev_check_d3cold(dev, &d3cold_ok);
3128 
3129 	/*
3130 	 * If D3 is currently not allowed for the bridge, this may be caused
3131 	 * either by the device being changed/removed or any of its siblings,
3132 	 * so we need to go through all children to find out if one of them
3133 	 * continues to block D3.
3134 	 */
3135 	if (d3cold_ok && !bridge->bridge_d3)
3136 		pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
3137 			     &d3cold_ok);
3138 
3139 	if (bridge->bridge_d3 != d3cold_ok) {
3140 		bridge->bridge_d3 = d3cold_ok;
3141 		/* Propagate change to upstream bridges */
3142 		pci_bridge_d3_update(bridge);
3143 	}
3144 }
3145 
3146 /**
3147  * pci_d3cold_enable - Enable D3cold for device
3148  * @dev: PCI device to handle
3149  *
3150  * This function can be used in drivers to enable D3cold from the device
3151  * they handle.  It also updates upstream PCI bridge PM capabilities
3152  * accordingly.
3153  */
3154 void pci_d3cold_enable(struct pci_dev *dev)
3155 {
3156 	if (dev->no_d3cold) {
3157 		dev->no_d3cold = false;
3158 		pci_bridge_d3_update(dev);
3159 	}
3160 }
3161 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
3162 
3163 /**
3164  * pci_d3cold_disable - Disable D3cold for device
3165  * @dev: PCI device to handle
3166  *
3167  * This function can be used in drivers to disable D3cold from the device
3168  * they handle.  It also updates upstream PCI bridge PM capabilities
3169  * accordingly.
3170  */
3171 void pci_d3cold_disable(struct pci_dev *dev)
3172 {
3173 	if (!dev->no_d3cold) {
3174 		dev->no_d3cold = true;
3175 		pci_bridge_d3_update(dev);
3176 	}
3177 }
3178 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3179 
3180 /**
3181  * pci_pm_init - Initialize PM functions of given PCI device
3182  * @dev: PCI device to handle.
3183  */
3184 void pci_pm_init(struct pci_dev *dev)
3185 {
3186 	int pm;
3187 	u16 status;
3188 	u16 pmc;
3189 
3190 	pm_runtime_forbid(&dev->dev);
3191 	pm_runtime_set_active(&dev->dev);
3192 	pm_runtime_enable(&dev->dev);
3193 	device_enable_async_suspend(&dev->dev);
3194 	dev->wakeup_prepared = false;
3195 
3196 	dev->pm_cap = 0;
3197 	dev->pme_support = 0;
3198 
3199 	/* find PCI PM capability in list */
3200 	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3201 	if (!pm)
3202 		return;
3203 	/* Check device's ability to generate PME# */
3204 	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3205 
3206 	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3207 		pci_err(dev, "unsupported PM cap regs version (%u)\n",
3208 			pmc & PCI_PM_CAP_VER_MASK);
3209 		return;
3210 	}
3211 
3212 	dev->pm_cap = pm;
3213 	dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3214 	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3215 	dev->bridge_d3 = pci_bridge_d3_possible(dev);
3216 	dev->d3cold_allowed = true;
3217 
3218 	dev->d1_support = false;
3219 	dev->d2_support = false;
3220 	if (!pci_no_d1d2(dev)) {
3221 		if (pmc & PCI_PM_CAP_D1)
3222 			dev->d1_support = true;
3223 		if (pmc & PCI_PM_CAP_D2)
3224 			dev->d2_support = true;
3225 
3226 		if (dev->d1_support || dev->d2_support)
3227 			pci_info(dev, "supports%s%s\n",
3228 				   dev->d1_support ? " D1" : "",
3229 				   dev->d2_support ? " D2" : "");
3230 	}
3231 
3232 	pmc &= PCI_PM_CAP_PME_MASK;
3233 	if (pmc) {
3234 		pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3235 			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3236 			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3237 			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3238 			 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3239 			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3240 		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
3241 		dev->pme_poll = true;
3242 		/*
3243 		 * Make device's PM flags reflect the wake-up capability, but
3244 		 * let the user space enable it to wake up the system as needed.
3245 		 */
3246 		device_set_wakeup_capable(&dev->dev, true);
3247 		/* Disable the PME# generation functionality */
3248 		pci_pme_active(dev, false);
3249 	}
3250 
3251 	pci_read_config_word(dev, PCI_STATUS, &status);
3252 	if (status & PCI_STATUS_IMM_READY)
3253 		dev->imm_ready = 1;
3254 }
3255 
3256 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3257 {
3258 	unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3259 
3260 	switch (prop) {
3261 	case PCI_EA_P_MEM:
3262 	case PCI_EA_P_VF_MEM:
3263 		flags |= IORESOURCE_MEM;
3264 		break;
3265 	case PCI_EA_P_MEM_PREFETCH:
3266 	case PCI_EA_P_VF_MEM_PREFETCH:
3267 		flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3268 		break;
3269 	case PCI_EA_P_IO:
3270 		flags |= IORESOURCE_IO;
3271 		break;
3272 	default:
3273 		return 0;
3274 	}
3275 
3276 	return flags;
3277 }
3278 
3279 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3280 					    u8 prop)
3281 {
3282 	if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3283 		return &dev->resource[bei];
3284 #ifdef CONFIG_PCI_IOV
3285 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3286 		 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3287 		return &dev->resource[PCI_IOV_RESOURCES +
3288 				      bei - PCI_EA_BEI_VF_BAR0];
3289 #endif
3290 	else if (bei == PCI_EA_BEI_ROM)
3291 		return &dev->resource[PCI_ROM_RESOURCE];
3292 	else
3293 		return NULL;
3294 }
3295 
3296 /* Read an Enhanced Allocation (EA) entry */
3297 static int pci_ea_read(struct pci_dev *dev, int offset)
3298 {
3299 	struct resource *res;
3300 	int ent_size, ent_offset = offset;
3301 	resource_size_t start, end;
3302 	unsigned long flags;
3303 	u32 dw0, bei, base, max_offset;
3304 	u8 prop;
3305 	bool support_64 = (sizeof(resource_size_t) >= 8);
3306 
3307 	pci_read_config_dword(dev, ent_offset, &dw0);
3308 	ent_offset += 4;
3309 
3310 	/* Entry size field indicates DWORDs after 1st */
3311 	ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
3312 
3313 	if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3314 		goto out;
3315 
3316 	bei = (dw0 & PCI_EA_BEI) >> 4;
3317 	prop = (dw0 & PCI_EA_PP) >> 8;
3318 
3319 	/*
3320 	 * If the Property is in the reserved range, try the Secondary
3321 	 * Property instead.
3322 	 */
3323 	if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3324 		prop = (dw0 & PCI_EA_SP) >> 16;
3325 	if (prop > PCI_EA_P_BRIDGE_IO)
3326 		goto out;
3327 
3328 	res = pci_ea_get_resource(dev, bei, prop);
3329 	if (!res) {
3330 		pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3331 		goto out;
3332 	}
3333 
3334 	flags = pci_ea_flags(dev, prop);
3335 	if (!flags) {
3336 		pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3337 		goto out;
3338 	}
3339 
3340 	/* Read Base */
3341 	pci_read_config_dword(dev, ent_offset, &base);
3342 	start = (base & PCI_EA_FIELD_MASK);
3343 	ent_offset += 4;
3344 
3345 	/* Read MaxOffset */
3346 	pci_read_config_dword(dev, ent_offset, &max_offset);
3347 	ent_offset += 4;
3348 
3349 	/* Read Base MSBs (if 64-bit entry) */
3350 	if (base & PCI_EA_IS_64) {
3351 		u32 base_upper;
3352 
3353 		pci_read_config_dword(dev, ent_offset, &base_upper);
3354 		ent_offset += 4;
3355 
3356 		flags |= IORESOURCE_MEM_64;
3357 
3358 		/* entry starts above 32-bit boundary, can't use */
3359 		if (!support_64 && base_upper)
3360 			goto out;
3361 
3362 		if (support_64)
3363 			start |= ((u64)base_upper << 32);
3364 	}
3365 
3366 	end = start + (max_offset | 0x03);
3367 
3368 	/* Read MaxOffset MSBs (if 64-bit entry) */
3369 	if (max_offset & PCI_EA_IS_64) {
3370 		u32 max_offset_upper;
3371 
3372 		pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3373 		ent_offset += 4;
3374 
3375 		flags |= IORESOURCE_MEM_64;
3376 
3377 		/* entry too big, can't use */
3378 		if (!support_64 && max_offset_upper)
3379 			goto out;
3380 
3381 		if (support_64)
3382 			end += ((u64)max_offset_upper << 32);
3383 	}
3384 
3385 	if (end < start) {
3386 		pci_err(dev, "EA Entry crosses address boundary\n");
3387 		goto out;
3388 	}
3389 
3390 	if (ent_size != ent_offset - offset) {
3391 		pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3392 			ent_size, ent_offset - offset);
3393 		goto out;
3394 	}
3395 
3396 	res->name = pci_name(dev);
3397 	res->start = start;
3398 	res->end = end;
3399 	res->flags = flags;
3400 
3401 	if (bei <= PCI_EA_BEI_BAR5)
3402 		pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3403 			   bei, res, prop);
3404 	else if (bei == PCI_EA_BEI_ROM)
3405 		pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3406 			   res, prop);
3407 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3408 		pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3409 			   bei - PCI_EA_BEI_VF_BAR0, res, prop);
3410 	else
3411 		pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3412 			   bei, res, prop);
3413 
3414 out:
3415 	return offset + ent_size;
3416 }
3417 
3418 /* Enhanced Allocation Initialization */
3419 void pci_ea_init(struct pci_dev *dev)
3420 {
3421 	int ea;
3422 	u8 num_ent;
3423 	int offset;
3424 	int i;
3425 
3426 	/* find PCI EA capability in list */
3427 	ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3428 	if (!ea)
3429 		return;
3430 
3431 	/* determine the number of entries */
3432 	pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3433 					&num_ent);
3434 	num_ent &= PCI_EA_NUM_ENT_MASK;
3435 
3436 	offset = ea + PCI_EA_FIRST_ENT;
3437 
3438 	/* Skip DWORD 2 for type 1 functions */
3439 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3440 		offset += 4;
3441 
3442 	/* parse each EA entry */
3443 	for (i = 0; i < num_ent; ++i)
3444 		offset = pci_ea_read(dev, offset);
3445 }
3446 
3447 static void pci_add_saved_cap(struct pci_dev *pci_dev,
3448 	struct pci_cap_saved_state *new_cap)
3449 {
3450 	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3451 }
3452 
3453 /**
3454  * _pci_add_cap_save_buffer - allocate buffer for saving given
3455  *			      capability registers
3456  * @dev: the PCI device
3457  * @cap: the capability to allocate the buffer for
3458  * @extended: Standard or Extended capability ID
3459  * @size: requested size of the buffer
3460  */
3461 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3462 				    bool extended, unsigned int size)
3463 {
3464 	int pos;
3465 	struct pci_cap_saved_state *save_state;
3466 
3467 	if (extended)
3468 		pos = pci_find_ext_capability(dev, cap);
3469 	else
3470 		pos = pci_find_capability(dev, cap);
3471 
3472 	if (!pos)
3473 		return 0;
3474 
3475 	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3476 	if (!save_state)
3477 		return -ENOMEM;
3478 
3479 	save_state->cap.cap_nr = cap;
3480 	save_state->cap.cap_extended = extended;
3481 	save_state->cap.size = size;
3482 	pci_add_saved_cap(dev, save_state);
3483 
3484 	return 0;
3485 }
3486 
3487 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3488 {
3489 	return _pci_add_cap_save_buffer(dev, cap, false, size);
3490 }
3491 
3492 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3493 {
3494 	return _pci_add_cap_save_buffer(dev, cap, true, size);
3495 }
3496 
3497 /**
3498  * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3499  * @dev: the PCI device
3500  */
3501 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3502 {
3503 	int error;
3504 
3505 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3506 					PCI_EXP_SAVE_REGS * sizeof(u16));
3507 	if (error)
3508 		pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3509 
3510 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3511 	if (error)
3512 		pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3513 
3514 	error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3515 					    2 * sizeof(u16));
3516 	if (error)
3517 		pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3518 
3519 	pci_allocate_vc_save_buffers(dev);
3520 }
3521 
3522 void pci_free_cap_save_buffers(struct pci_dev *dev)
3523 {
3524 	struct pci_cap_saved_state *tmp;
3525 	struct hlist_node *n;
3526 
3527 	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3528 		kfree(tmp);
3529 }
3530 
3531 /**
3532  * pci_configure_ari - enable or disable ARI forwarding
3533  * @dev: the PCI device
3534  *
3535  * If @dev and its upstream bridge both support ARI, enable ARI in the
3536  * bridge.  Otherwise, disable ARI in the bridge.
3537  */
3538 void pci_configure_ari(struct pci_dev *dev)
3539 {
3540 	u32 cap;
3541 	struct pci_dev *bridge;
3542 
3543 	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3544 		return;
3545 
3546 	bridge = dev->bus->self;
3547 	if (!bridge)
3548 		return;
3549 
3550 	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3551 	if (!(cap & PCI_EXP_DEVCAP2_ARI))
3552 		return;
3553 
3554 	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3555 		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3556 					 PCI_EXP_DEVCTL2_ARI);
3557 		bridge->ari_enabled = 1;
3558 	} else {
3559 		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3560 					   PCI_EXP_DEVCTL2_ARI);
3561 		bridge->ari_enabled = 0;
3562 	}
3563 }
3564 
3565 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3566 {
3567 	int pos;
3568 	u16 cap, ctrl;
3569 
3570 	pos = pdev->acs_cap;
3571 	if (!pos)
3572 		return false;
3573 
3574 	/*
3575 	 * Except for egress control, capabilities are either required
3576 	 * or only required if controllable.  Features missing from the
3577 	 * capability field can therefore be assumed as hard-wired enabled.
3578 	 */
3579 	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3580 	acs_flags &= (cap | PCI_ACS_EC);
3581 
3582 	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3583 	return (ctrl & acs_flags) == acs_flags;
3584 }
3585 
3586 /**
3587  * pci_acs_enabled - test ACS against required flags for a given device
3588  * @pdev: device to test
3589  * @acs_flags: required PCI ACS flags
3590  *
3591  * Return true if the device supports the provided flags.  Automatically
3592  * filters out flags that are not implemented on multifunction devices.
3593  *
3594  * Note that this interface checks the effective ACS capabilities of the
3595  * device rather than the actual capabilities.  For instance, most single
3596  * function endpoints are not required to support ACS because they have no
3597  * opportunity for peer-to-peer access.  We therefore return 'true'
3598  * regardless of whether the device exposes an ACS capability.  This makes
3599  * it much easier for callers of this function to ignore the actual type
3600  * or topology of the device when testing ACS support.
3601  */
3602 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3603 {
3604 	int ret;
3605 
3606 	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3607 	if (ret >= 0)
3608 		return ret > 0;
3609 
3610 	/*
3611 	 * Conventional PCI and PCI-X devices never support ACS, either
3612 	 * effectively or actually.  The shared bus topology implies that
3613 	 * any device on the bus can receive or snoop DMA.
3614 	 */
3615 	if (!pci_is_pcie(pdev))
3616 		return false;
3617 
3618 	switch (pci_pcie_type(pdev)) {
3619 	/*
3620 	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3621 	 * but since their primary interface is PCI/X, we conservatively
3622 	 * handle them as we would a non-PCIe device.
3623 	 */
3624 	case PCI_EXP_TYPE_PCIE_BRIDGE:
3625 	/*
3626 	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
3627 	 * applicable... must never implement an ACS Extended Capability...".
3628 	 * This seems arbitrary, but we take a conservative interpretation
3629 	 * of this statement.
3630 	 */
3631 	case PCI_EXP_TYPE_PCI_BRIDGE:
3632 	case PCI_EXP_TYPE_RC_EC:
3633 		return false;
3634 	/*
3635 	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3636 	 * implement ACS in order to indicate their peer-to-peer capabilities,
3637 	 * regardless of whether they are single- or multi-function devices.
3638 	 */
3639 	case PCI_EXP_TYPE_DOWNSTREAM:
3640 	case PCI_EXP_TYPE_ROOT_PORT:
3641 		return pci_acs_flags_enabled(pdev, acs_flags);
3642 	/*
3643 	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3644 	 * implemented by the remaining PCIe types to indicate peer-to-peer
3645 	 * capabilities, but only when they are part of a multifunction
3646 	 * device.  The footnote for section 6.12 indicates the specific
3647 	 * PCIe types included here.
3648 	 */
3649 	case PCI_EXP_TYPE_ENDPOINT:
3650 	case PCI_EXP_TYPE_UPSTREAM:
3651 	case PCI_EXP_TYPE_LEG_END:
3652 	case PCI_EXP_TYPE_RC_END:
3653 		if (!pdev->multifunction)
3654 			break;
3655 
3656 		return pci_acs_flags_enabled(pdev, acs_flags);
3657 	}
3658 
3659 	/*
3660 	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3661 	 * to single function devices with the exception of downstream ports.
3662 	 */
3663 	return true;
3664 }
3665 
3666 /**
3667  * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
3668  * @start: starting downstream device
3669  * @end: ending upstream device or NULL to search to the root bus
3670  * @acs_flags: required flags
3671  *
3672  * Walk up a device tree from start to end testing PCI ACS support.  If
3673  * any step along the way does not support the required flags, return false.
3674  */
3675 bool pci_acs_path_enabled(struct pci_dev *start,
3676 			  struct pci_dev *end, u16 acs_flags)
3677 {
3678 	struct pci_dev *pdev, *parent = start;
3679 
3680 	do {
3681 		pdev = parent;
3682 
3683 		if (!pci_acs_enabled(pdev, acs_flags))
3684 			return false;
3685 
3686 		if (pci_is_root_bus(pdev->bus))
3687 			return (end == NULL);
3688 
3689 		parent = pdev->bus->self;
3690 	} while (pdev != end);
3691 
3692 	return true;
3693 }
3694 
3695 /**
3696  * pci_acs_init - Initialize ACS if hardware supports it
3697  * @dev: the PCI device
3698  */
3699 void pci_acs_init(struct pci_dev *dev)
3700 {
3701 	dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3702 
3703 	/*
3704 	 * Attempt to enable ACS regardless of capability because some Root
3705 	 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3706 	 * the standard ACS capability but still support ACS via those
3707 	 * quirks.
3708 	 */
3709 	pci_enable_acs(dev);
3710 }
3711 
3712 /**
3713  * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3714  * @pdev: PCI device
3715  * @bar: BAR to find
3716  *
3717  * Helper to find the position of the ctrl register for a BAR.
3718  * Returns -ENOTSUPP if resizable BARs are not supported at all.
3719  * Returns -ENOENT if no ctrl register for the BAR could be found.
3720  */
3721 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3722 {
3723 	unsigned int pos, nbars, i;
3724 	u32 ctrl;
3725 
3726 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3727 	if (!pos)
3728 		return -ENOTSUPP;
3729 
3730 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3731 	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3732 		    PCI_REBAR_CTRL_NBAR_SHIFT;
3733 
3734 	for (i = 0; i < nbars; i++, pos += 8) {
3735 		int bar_idx;
3736 
3737 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3738 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3739 		if (bar_idx == bar)
3740 			return pos;
3741 	}
3742 
3743 	return -ENOENT;
3744 }
3745 
3746 /**
3747  * pci_rebar_get_possible_sizes - get possible sizes for BAR
3748  * @pdev: PCI device
3749  * @bar: BAR to query
3750  *
3751  * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3752  * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3753  */
3754 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3755 {
3756 	int pos;
3757 	u32 cap;
3758 
3759 	pos = pci_rebar_find_pos(pdev, bar);
3760 	if (pos < 0)
3761 		return 0;
3762 
3763 	pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3764 	cap = FIELD_GET(PCI_REBAR_CAP_SIZES, cap);
3765 
3766 	/* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
3767 	if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
3768 	    bar == 0 && cap == 0x700)
3769 		return 0x3f00;
3770 
3771 	return cap;
3772 }
3773 EXPORT_SYMBOL(pci_rebar_get_possible_sizes);
3774 
3775 /**
3776  * pci_rebar_get_current_size - get the current size of a BAR
3777  * @pdev: PCI device
3778  * @bar: BAR to set size to
3779  *
3780  * Read the size of a BAR from the resizable BAR config.
3781  * Returns size if found or negative error code.
3782  */
3783 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3784 {
3785 	int pos;
3786 	u32 ctrl;
3787 
3788 	pos = pci_rebar_find_pos(pdev, bar);
3789 	if (pos < 0)
3790 		return pos;
3791 
3792 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3793 	return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3794 }
3795 
3796 /**
3797  * pci_rebar_set_size - set a new size for a BAR
3798  * @pdev: PCI device
3799  * @bar: BAR to set size to
3800  * @size: new size as defined in the spec (0=1MB, 19=512GB)
3801  *
3802  * Set the new size of a BAR as defined in the spec.
3803  * Returns zero if resizing was successful, error code otherwise.
3804  */
3805 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3806 {
3807 	int pos;
3808 	u32 ctrl;
3809 
3810 	pos = pci_rebar_find_pos(pdev, bar);
3811 	if (pos < 0)
3812 		return pos;
3813 
3814 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3815 	ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3816 	ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3817 	pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3818 	return 0;
3819 }
3820 
3821 /**
3822  * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3823  * @dev: the PCI device
3824  * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3825  *	PCI_EXP_DEVCAP2_ATOMIC_COMP32
3826  *	PCI_EXP_DEVCAP2_ATOMIC_COMP64
3827  *	PCI_EXP_DEVCAP2_ATOMIC_COMP128
3828  *
3829  * Return 0 if all upstream bridges support AtomicOp routing, egress
3830  * blocking is disabled on all upstream ports, and the root port supports
3831  * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3832  * AtomicOp completion), or negative otherwise.
3833  */
3834 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3835 {
3836 	struct pci_bus *bus = dev->bus;
3837 	struct pci_dev *bridge;
3838 	u32 cap, ctl2;
3839 
3840 	/*
3841 	 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit
3842 	 * in Device Control 2 is reserved in VFs and the PF value applies
3843 	 * to all associated VFs.
3844 	 */
3845 	if (dev->is_virtfn)
3846 		return -EINVAL;
3847 
3848 	if (!pci_is_pcie(dev))
3849 		return -EINVAL;
3850 
3851 	/*
3852 	 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3853 	 * AtomicOp requesters.  For now, we only support endpoints as
3854 	 * requesters and root ports as completers.  No endpoints as
3855 	 * completers, and no peer-to-peer.
3856 	 */
3857 
3858 	switch (pci_pcie_type(dev)) {
3859 	case PCI_EXP_TYPE_ENDPOINT:
3860 	case PCI_EXP_TYPE_LEG_END:
3861 	case PCI_EXP_TYPE_RC_END:
3862 		break;
3863 	default:
3864 		return -EINVAL;
3865 	}
3866 
3867 	while (bus->parent) {
3868 		bridge = bus->self;
3869 
3870 		pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3871 
3872 		switch (pci_pcie_type(bridge)) {
3873 		/* Ensure switch ports support AtomicOp routing */
3874 		case PCI_EXP_TYPE_UPSTREAM:
3875 		case PCI_EXP_TYPE_DOWNSTREAM:
3876 			if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3877 				return -EINVAL;
3878 			break;
3879 
3880 		/* Ensure root port supports all the sizes we care about */
3881 		case PCI_EXP_TYPE_ROOT_PORT:
3882 			if ((cap & cap_mask) != cap_mask)
3883 				return -EINVAL;
3884 			break;
3885 		}
3886 
3887 		/* Ensure upstream ports don't block AtomicOps on egress */
3888 		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3889 			pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3890 						   &ctl2);
3891 			if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3892 				return -EINVAL;
3893 		}
3894 
3895 		bus = bus->parent;
3896 	}
3897 
3898 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3899 				 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3900 	return 0;
3901 }
3902 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3903 
3904 /**
3905  * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3906  * @dev: the PCI device
3907  * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3908  *
3909  * Perform INTx swizzling for a device behind one level of bridge.  This is
3910  * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3911  * behind bridges on add-in cards.  For devices with ARI enabled, the slot
3912  * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3913  * the PCI Express Base Specification, Revision 2.1)
3914  */
3915 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3916 {
3917 	int slot;
3918 
3919 	if (pci_ari_enabled(dev->bus))
3920 		slot = 0;
3921 	else
3922 		slot = PCI_SLOT(dev->devfn);
3923 
3924 	return (((pin - 1) + slot) % 4) + 1;
3925 }
3926 
3927 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3928 {
3929 	u8 pin;
3930 
3931 	pin = dev->pin;
3932 	if (!pin)
3933 		return -1;
3934 
3935 	while (!pci_is_root_bus(dev->bus)) {
3936 		pin = pci_swizzle_interrupt_pin(dev, pin);
3937 		dev = dev->bus->self;
3938 	}
3939 	*bridge = dev;
3940 	return pin;
3941 }
3942 
3943 /**
3944  * pci_common_swizzle - swizzle INTx all the way to root bridge
3945  * @dev: the PCI device
3946  * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3947  *
3948  * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
3949  * bridges all the way up to a PCI root bus.
3950  */
3951 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3952 {
3953 	u8 pin = *pinp;
3954 
3955 	while (!pci_is_root_bus(dev->bus)) {
3956 		pin = pci_swizzle_interrupt_pin(dev, pin);
3957 		dev = dev->bus->self;
3958 	}
3959 	*pinp = pin;
3960 	return PCI_SLOT(dev->devfn);
3961 }
3962 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3963 
3964 /**
3965  * pci_release_region - Release a PCI bar
3966  * @pdev: PCI device whose resources were previously reserved by
3967  *	  pci_request_region()
3968  * @bar: BAR to release
3969  *
3970  * Releases the PCI I/O and memory resources previously reserved by a
3971  * successful call to pci_request_region().  Call this function only
3972  * after all use of the PCI regions has ceased.
3973  */
3974 void pci_release_region(struct pci_dev *pdev, int bar)
3975 {
3976 	struct pci_devres *dr;
3977 
3978 	if (pci_resource_len(pdev, bar) == 0)
3979 		return;
3980 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3981 		release_region(pci_resource_start(pdev, bar),
3982 				pci_resource_len(pdev, bar));
3983 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3984 		release_mem_region(pci_resource_start(pdev, bar),
3985 				pci_resource_len(pdev, bar));
3986 
3987 	dr = find_pci_dr(pdev);
3988 	if (dr)
3989 		dr->region_mask &= ~(1 << bar);
3990 }
3991 EXPORT_SYMBOL(pci_release_region);
3992 
3993 /**
3994  * __pci_request_region - Reserved PCI I/O and memory resource
3995  * @pdev: PCI device whose resources are to be reserved
3996  * @bar: BAR to be reserved
3997  * @res_name: Name to be associated with resource.
3998  * @exclusive: whether the region access is exclusive or not
3999  *
4000  * Mark the PCI region associated with PCI device @pdev BAR @bar as
4001  * being reserved by owner @res_name.  Do not access any
4002  * address inside the PCI regions unless this call returns
4003  * successfully.
4004  *
4005  * If @exclusive is set, then the region is marked so that userspace
4006  * is explicitly not allowed to map the resource via /dev/mem or
4007  * sysfs MMIO access.
4008  *
4009  * Returns 0 on success, or %EBUSY on error.  A warning
4010  * message is also printed on failure.
4011  */
4012 static int __pci_request_region(struct pci_dev *pdev, int bar,
4013 				const char *res_name, int exclusive)
4014 {
4015 	struct pci_devres *dr;
4016 
4017 	if (pci_resource_len(pdev, bar) == 0)
4018 		return 0;
4019 
4020 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
4021 		if (!request_region(pci_resource_start(pdev, bar),
4022 			    pci_resource_len(pdev, bar), res_name))
4023 			goto err_out;
4024 	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
4025 		if (!__request_mem_region(pci_resource_start(pdev, bar),
4026 					pci_resource_len(pdev, bar), res_name,
4027 					exclusive))
4028 			goto err_out;
4029 	}
4030 
4031 	dr = find_pci_dr(pdev);
4032 	if (dr)
4033 		dr->region_mask |= 1 << bar;
4034 
4035 	return 0;
4036 
4037 err_out:
4038 	pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
4039 		 &pdev->resource[bar]);
4040 	return -EBUSY;
4041 }
4042 
4043 /**
4044  * pci_request_region - Reserve PCI I/O and memory resource
4045  * @pdev: PCI device whose resources are to be reserved
4046  * @bar: BAR to be reserved
4047  * @res_name: Name to be associated with resource
4048  *
4049  * Mark the PCI region associated with PCI device @pdev BAR @bar as
4050  * being reserved by owner @res_name.  Do not access any
4051  * address inside the PCI regions unless this call returns
4052  * successfully.
4053  *
4054  * Returns 0 on success, or %EBUSY on error.  A warning
4055  * message is also printed on failure.
4056  */
4057 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
4058 {
4059 	return __pci_request_region(pdev, bar, res_name, 0);
4060 }
4061 EXPORT_SYMBOL(pci_request_region);
4062 
4063 /**
4064  * pci_release_selected_regions - Release selected PCI I/O and memory resources
4065  * @pdev: PCI device whose resources were previously reserved
4066  * @bars: Bitmask of BARs to be released
4067  *
4068  * Release selected PCI I/O and memory resources previously reserved.
4069  * Call this function only after all use of the PCI regions has ceased.
4070  */
4071 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
4072 {
4073 	int i;
4074 
4075 	for (i = 0; i < PCI_STD_NUM_BARS; i++)
4076 		if (bars & (1 << i))
4077 			pci_release_region(pdev, i);
4078 }
4079 EXPORT_SYMBOL(pci_release_selected_regions);
4080 
4081 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
4082 					  const char *res_name, int excl)
4083 {
4084 	int i;
4085 
4086 	for (i = 0; i < PCI_STD_NUM_BARS; i++)
4087 		if (bars & (1 << i))
4088 			if (__pci_request_region(pdev, i, res_name, excl))
4089 				goto err_out;
4090 	return 0;
4091 
4092 err_out:
4093 	while (--i >= 0)
4094 		if (bars & (1 << i))
4095 			pci_release_region(pdev, i);
4096 
4097 	return -EBUSY;
4098 }
4099 
4100 
4101 /**
4102  * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
4103  * @pdev: PCI device whose resources are to be reserved
4104  * @bars: Bitmask of BARs to be requested
4105  * @res_name: Name to be associated with resource
4106  */
4107 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
4108 				 const char *res_name)
4109 {
4110 	return __pci_request_selected_regions(pdev, bars, res_name, 0);
4111 }
4112 EXPORT_SYMBOL(pci_request_selected_regions);
4113 
4114 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
4115 					   const char *res_name)
4116 {
4117 	return __pci_request_selected_regions(pdev, bars, res_name,
4118 			IORESOURCE_EXCLUSIVE);
4119 }
4120 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
4121 
4122 /**
4123  * pci_release_regions - Release reserved PCI I/O and memory resources
4124  * @pdev: PCI device whose resources were previously reserved by
4125  *	  pci_request_regions()
4126  *
4127  * Releases all PCI I/O and memory resources previously reserved by a
4128  * successful call to pci_request_regions().  Call this function only
4129  * after all use of the PCI regions has ceased.
4130  */
4131 
4132 void pci_release_regions(struct pci_dev *pdev)
4133 {
4134 	pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
4135 }
4136 EXPORT_SYMBOL(pci_release_regions);
4137 
4138 /**
4139  * pci_request_regions - Reserve PCI I/O and memory resources
4140  * @pdev: PCI device whose resources are to be reserved
4141  * @res_name: Name to be associated with resource.
4142  *
4143  * Mark all PCI regions associated with PCI device @pdev as
4144  * being reserved by owner @res_name.  Do not access any
4145  * address inside the PCI regions unless this call returns
4146  * successfully.
4147  *
4148  * Returns 0 on success, or %EBUSY on error.  A warning
4149  * message is also printed on failure.
4150  */
4151 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
4152 {
4153 	return pci_request_selected_regions(pdev,
4154 			((1 << PCI_STD_NUM_BARS) - 1), res_name);
4155 }
4156 EXPORT_SYMBOL(pci_request_regions);
4157 
4158 /**
4159  * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
4160  * @pdev: PCI device whose resources are to be reserved
4161  * @res_name: Name to be associated with resource.
4162  *
4163  * Mark all PCI regions associated with PCI device @pdev as being reserved
4164  * by owner @res_name.  Do not access any address inside the PCI regions
4165  * unless this call returns successfully.
4166  *
4167  * pci_request_regions_exclusive() will mark the region so that /dev/mem
4168  * and the sysfs MMIO access will not be allowed.
4169  *
4170  * Returns 0 on success, or %EBUSY on error.  A warning message is also
4171  * printed on failure.
4172  */
4173 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
4174 {
4175 	return pci_request_selected_regions_exclusive(pdev,
4176 				((1 << PCI_STD_NUM_BARS) - 1), res_name);
4177 }
4178 EXPORT_SYMBOL(pci_request_regions_exclusive);
4179 
4180 /*
4181  * Record the PCI IO range (expressed as CPU physical address + size).
4182  * Return a negative value if an error has occurred, zero otherwise
4183  */
4184 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
4185 			resource_size_t	size)
4186 {
4187 	int ret = 0;
4188 #ifdef PCI_IOBASE
4189 	struct logic_pio_hwaddr *range;
4190 
4191 	if (!size || addr + size < addr)
4192 		return -EINVAL;
4193 
4194 	range = kzalloc(sizeof(*range), GFP_ATOMIC);
4195 	if (!range)
4196 		return -ENOMEM;
4197 
4198 	range->fwnode = fwnode;
4199 	range->size = size;
4200 	range->hw_start = addr;
4201 	range->flags = LOGIC_PIO_CPU_MMIO;
4202 
4203 	ret = logic_pio_register_range(range);
4204 	if (ret)
4205 		kfree(range);
4206 
4207 	/* Ignore duplicates due to deferred probing */
4208 	if (ret == -EEXIST)
4209 		ret = 0;
4210 #endif
4211 
4212 	return ret;
4213 }
4214 
4215 phys_addr_t pci_pio_to_address(unsigned long pio)
4216 {
4217 #ifdef PCI_IOBASE
4218 	if (pio < MMIO_UPPER_LIMIT)
4219 		return logic_pio_to_hwaddr(pio);
4220 #endif
4221 
4222 	return (phys_addr_t) OF_BAD_ADDR;
4223 }
4224 EXPORT_SYMBOL_GPL(pci_pio_to_address);
4225 
4226 unsigned long __weak pci_address_to_pio(phys_addr_t address)
4227 {
4228 #ifdef PCI_IOBASE
4229 	return logic_pio_trans_cpuaddr(address);
4230 #else
4231 	if (address > IO_SPACE_LIMIT)
4232 		return (unsigned long)-1;
4233 
4234 	return (unsigned long) address;
4235 #endif
4236 }
4237 
4238 /**
4239  * pci_remap_iospace - Remap the memory mapped I/O space
4240  * @res: Resource describing the I/O space
4241  * @phys_addr: physical address of range to be mapped
4242  *
4243  * Remap the memory mapped I/O space described by the @res and the CPU
4244  * physical address @phys_addr into virtual address space.  Only
4245  * architectures that have memory mapped IO functions defined (and the
4246  * PCI_IOBASE value defined) should call this function.
4247  */
4248 #ifndef pci_remap_iospace
4249 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4250 {
4251 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4252 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4253 
4254 	if (!(res->flags & IORESOURCE_IO))
4255 		return -EINVAL;
4256 
4257 	if (res->end > IO_SPACE_LIMIT)
4258 		return -EINVAL;
4259 
4260 	return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4261 				  pgprot_device(PAGE_KERNEL));
4262 #else
4263 	/*
4264 	 * This architecture does not have memory mapped I/O space,
4265 	 * so this function should never be called
4266 	 */
4267 	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4268 	return -ENODEV;
4269 #endif
4270 }
4271 EXPORT_SYMBOL(pci_remap_iospace);
4272 #endif
4273 
4274 /**
4275  * pci_unmap_iospace - Unmap the memory mapped I/O space
4276  * @res: resource to be unmapped
4277  *
4278  * Unmap the CPU virtual address @res from virtual address space.  Only
4279  * architectures that have memory mapped IO functions defined (and the
4280  * PCI_IOBASE value defined) should call this function.
4281  */
4282 void pci_unmap_iospace(struct resource *res)
4283 {
4284 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4285 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4286 
4287 	vunmap_range(vaddr, vaddr + resource_size(res));
4288 #endif
4289 }
4290 EXPORT_SYMBOL(pci_unmap_iospace);
4291 
4292 static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
4293 {
4294 	struct resource **res = ptr;
4295 
4296 	pci_unmap_iospace(*res);
4297 }
4298 
4299 /**
4300  * devm_pci_remap_iospace - Managed pci_remap_iospace()
4301  * @dev: Generic device to remap IO address for
4302  * @res: Resource describing the I/O space
4303  * @phys_addr: physical address of range to be mapped
4304  *
4305  * Managed pci_remap_iospace().  Map is automatically unmapped on driver
4306  * detach.
4307  */
4308 int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4309 			   phys_addr_t phys_addr)
4310 {
4311 	const struct resource **ptr;
4312 	int error;
4313 
4314 	ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4315 	if (!ptr)
4316 		return -ENOMEM;
4317 
4318 	error = pci_remap_iospace(res, phys_addr);
4319 	if (error) {
4320 		devres_free(ptr);
4321 	} else	{
4322 		*ptr = res;
4323 		devres_add(dev, ptr);
4324 	}
4325 
4326 	return error;
4327 }
4328 EXPORT_SYMBOL(devm_pci_remap_iospace);
4329 
4330 /**
4331  * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4332  * @dev: Generic device to remap IO address for
4333  * @offset: Resource address to map
4334  * @size: Size of map
4335  *
4336  * Managed pci_remap_cfgspace().  Map is automatically unmapped on driver
4337  * detach.
4338  */
4339 void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4340 				      resource_size_t offset,
4341 				      resource_size_t size)
4342 {
4343 	void __iomem **ptr, *addr;
4344 
4345 	ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4346 	if (!ptr)
4347 		return NULL;
4348 
4349 	addr = pci_remap_cfgspace(offset, size);
4350 	if (addr) {
4351 		*ptr = addr;
4352 		devres_add(dev, ptr);
4353 	} else
4354 		devres_free(ptr);
4355 
4356 	return addr;
4357 }
4358 EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4359 
4360 /**
4361  * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4362  * @dev: generic device to handle the resource for
4363  * @res: configuration space resource to be handled
4364  *
4365  * Checks that a resource is a valid memory region, requests the memory
4366  * region and ioremaps with pci_remap_cfgspace() API that ensures the
4367  * proper PCI configuration space memory attributes are guaranteed.
4368  *
4369  * All operations are managed and will be undone on driver detach.
4370  *
4371  * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4372  * on failure. Usage example::
4373  *
4374  *	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4375  *	base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4376  *	if (IS_ERR(base))
4377  *		return PTR_ERR(base);
4378  */
4379 void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4380 					  struct resource *res)
4381 {
4382 	resource_size_t size;
4383 	const char *name;
4384 	void __iomem *dest_ptr;
4385 
4386 	BUG_ON(!dev);
4387 
4388 	if (!res || resource_type(res) != IORESOURCE_MEM) {
4389 		dev_err(dev, "invalid resource\n");
4390 		return IOMEM_ERR_PTR(-EINVAL);
4391 	}
4392 
4393 	size = resource_size(res);
4394 
4395 	if (res->name)
4396 		name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev),
4397 				      res->name);
4398 	else
4399 		name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL);
4400 	if (!name)
4401 		return IOMEM_ERR_PTR(-ENOMEM);
4402 
4403 	if (!devm_request_mem_region(dev, res->start, size, name)) {
4404 		dev_err(dev, "can't request region for resource %pR\n", res);
4405 		return IOMEM_ERR_PTR(-EBUSY);
4406 	}
4407 
4408 	dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4409 	if (!dest_ptr) {
4410 		dev_err(dev, "ioremap failed for resource %pR\n", res);
4411 		devm_release_mem_region(dev, res->start, size);
4412 		dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4413 	}
4414 
4415 	return dest_ptr;
4416 }
4417 EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4418 
4419 static void __pci_set_master(struct pci_dev *dev, bool enable)
4420 {
4421 	u16 old_cmd, cmd;
4422 
4423 	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4424 	if (enable)
4425 		cmd = old_cmd | PCI_COMMAND_MASTER;
4426 	else
4427 		cmd = old_cmd & ~PCI_COMMAND_MASTER;
4428 	if (cmd != old_cmd) {
4429 		pci_dbg(dev, "%s bus mastering\n",
4430 			enable ? "enabling" : "disabling");
4431 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4432 	}
4433 	dev->is_busmaster = enable;
4434 }
4435 
4436 /**
4437  * pcibios_setup - process "pci=" kernel boot arguments
4438  * @str: string used to pass in "pci=" kernel boot arguments
4439  *
4440  * Process kernel boot arguments.  This is the default implementation.
4441  * Architecture specific implementations can override this as necessary.
4442  */
4443 char * __weak __init pcibios_setup(char *str)
4444 {
4445 	return str;
4446 }
4447 
4448 /**
4449  * pcibios_set_master - enable PCI bus-mastering for device dev
4450  * @dev: the PCI device to enable
4451  *
4452  * Enables PCI bus-mastering for the device.  This is the default
4453  * implementation.  Architecture specific implementations can override
4454  * this if necessary.
4455  */
4456 void __weak pcibios_set_master(struct pci_dev *dev)
4457 {
4458 	u8 lat;
4459 
4460 	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4461 	if (pci_is_pcie(dev))
4462 		return;
4463 
4464 	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4465 	if (lat < 16)
4466 		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4467 	else if (lat > pcibios_max_latency)
4468 		lat = pcibios_max_latency;
4469 	else
4470 		return;
4471 
4472 	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4473 }
4474 
4475 /**
4476  * pci_set_master - enables bus-mastering for device dev
4477  * @dev: the PCI device to enable
4478  *
4479  * Enables bus-mastering on the device and calls pcibios_set_master()
4480  * to do the needed arch specific settings.
4481  */
4482 void pci_set_master(struct pci_dev *dev)
4483 {
4484 	__pci_set_master(dev, true);
4485 	pcibios_set_master(dev);
4486 }
4487 EXPORT_SYMBOL(pci_set_master);
4488 
4489 /**
4490  * pci_clear_master - disables bus-mastering for device dev
4491  * @dev: the PCI device to disable
4492  */
4493 void pci_clear_master(struct pci_dev *dev)
4494 {
4495 	__pci_set_master(dev, false);
4496 }
4497 EXPORT_SYMBOL(pci_clear_master);
4498 
4499 /**
4500  * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4501  * @dev: the PCI device for which MWI is to be enabled
4502  *
4503  * Helper function for pci_set_mwi.
4504  * Originally copied from drivers/net/acenic.c.
4505  * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4506  *
4507  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4508  */
4509 int pci_set_cacheline_size(struct pci_dev *dev)
4510 {
4511 	u8 cacheline_size;
4512 
4513 	if (!pci_cache_line_size)
4514 		return -EINVAL;
4515 
4516 	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4517 	   equal to or multiple of the right value. */
4518 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4519 	if (cacheline_size >= pci_cache_line_size &&
4520 	    (cacheline_size % pci_cache_line_size) == 0)
4521 		return 0;
4522 
4523 	/* Write the correct value. */
4524 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4525 	/* Read it back. */
4526 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4527 	if (cacheline_size == pci_cache_line_size)
4528 		return 0;
4529 
4530 	pci_dbg(dev, "cache line size of %d is not supported\n",
4531 		   pci_cache_line_size << 2);
4532 
4533 	return -EINVAL;
4534 }
4535 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4536 
4537 /**
4538  * pci_set_mwi - enables memory-write-invalidate PCI transaction
4539  * @dev: the PCI device for which MWI is enabled
4540  *
4541  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4542  *
4543  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4544  */
4545 int pci_set_mwi(struct pci_dev *dev)
4546 {
4547 #ifdef PCI_DISABLE_MWI
4548 	return 0;
4549 #else
4550 	int rc;
4551 	u16 cmd;
4552 
4553 	rc = pci_set_cacheline_size(dev);
4554 	if (rc)
4555 		return rc;
4556 
4557 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4558 	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4559 		pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4560 		cmd |= PCI_COMMAND_INVALIDATE;
4561 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4562 	}
4563 	return 0;
4564 #endif
4565 }
4566 EXPORT_SYMBOL(pci_set_mwi);
4567 
4568 /**
4569  * pcim_set_mwi - a device-managed pci_set_mwi()
4570  * @dev: the PCI device for which MWI is enabled
4571  *
4572  * Managed pci_set_mwi().
4573  *
4574  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4575  */
4576 int pcim_set_mwi(struct pci_dev *dev)
4577 {
4578 	struct pci_devres *dr;
4579 
4580 	dr = find_pci_dr(dev);
4581 	if (!dr)
4582 		return -ENOMEM;
4583 
4584 	dr->mwi = 1;
4585 	return pci_set_mwi(dev);
4586 }
4587 EXPORT_SYMBOL(pcim_set_mwi);
4588 
4589 /**
4590  * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4591  * @dev: the PCI device for which MWI is enabled
4592  *
4593  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4594  * Callers are not required to check the return value.
4595  *
4596  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4597  */
4598 int pci_try_set_mwi(struct pci_dev *dev)
4599 {
4600 #ifdef PCI_DISABLE_MWI
4601 	return 0;
4602 #else
4603 	return pci_set_mwi(dev);
4604 #endif
4605 }
4606 EXPORT_SYMBOL(pci_try_set_mwi);
4607 
4608 /**
4609  * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4610  * @dev: the PCI device to disable
4611  *
4612  * Disables PCI Memory-Write-Invalidate transaction on the device
4613  */
4614 void pci_clear_mwi(struct pci_dev *dev)
4615 {
4616 #ifndef PCI_DISABLE_MWI
4617 	u16 cmd;
4618 
4619 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4620 	if (cmd & PCI_COMMAND_INVALIDATE) {
4621 		cmd &= ~PCI_COMMAND_INVALIDATE;
4622 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4623 	}
4624 #endif
4625 }
4626 EXPORT_SYMBOL(pci_clear_mwi);
4627 
4628 /**
4629  * pci_disable_parity - disable parity checking for device
4630  * @dev: the PCI device to operate on
4631  *
4632  * Disable parity checking for device @dev
4633  */
4634 void pci_disable_parity(struct pci_dev *dev)
4635 {
4636 	u16 cmd;
4637 
4638 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4639 	if (cmd & PCI_COMMAND_PARITY) {
4640 		cmd &= ~PCI_COMMAND_PARITY;
4641 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4642 	}
4643 }
4644 
4645 /**
4646  * pci_intx - enables/disables PCI INTx for device dev
4647  * @pdev: the PCI device to operate on
4648  * @enable: boolean: whether to enable or disable PCI INTx
4649  *
4650  * Enables/disables PCI INTx for device @pdev
4651  */
4652 void pci_intx(struct pci_dev *pdev, int enable)
4653 {
4654 	u16 pci_command, new;
4655 
4656 	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4657 
4658 	if (enable)
4659 		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4660 	else
4661 		new = pci_command | PCI_COMMAND_INTX_DISABLE;
4662 
4663 	if (new != pci_command) {
4664 		struct pci_devres *dr;
4665 
4666 		pci_write_config_word(pdev, PCI_COMMAND, new);
4667 
4668 		dr = find_pci_dr(pdev);
4669 		if (dr && !dr->restore_intx) {
4670 			dr->restore_intx = 1;
4671 			dr->orig_intx = !enable;
4672 		}
4673 	}
4674 }
4675 EXPORT_SYMBOL_GPL(pci_intx);
4676 
4677 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4678 {
4679 	struct pci_bus *bus = dev->bus;
4680 	bool mask_updated = true;
4681 	u32 cmd_status_dword;
4682 	u16 origcmd, newcmd;
4683 	unsigned long flags;
4684 	bool irq_pending;
4685 
4686 	/*
4687 	 * We do a single dword read to retrieve both command and status.
4688 	 * Document assumptions that make this possible.
4689 	 */
4690 	BUILD_BUG_ON(PCI_COMMAND % 4);
4691 	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4692 
4693 	raw_spin_lock_irqsave(&pci_lock, flags);
4694 
4695 	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4696 
4697 	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4698 
4699 	/*
4700 	 * Check interrupt status register to see whether our device
4701 	 * triggered the interrupt (when masking) or the next IRQ is
4702 	 * already pending (when unmasking).
4703 	 */
4704 	if (mask != irq_pending) {
4705 		mask_updated = false;
4706 		goto done;
4707 	}
4708 
4709 	origcmd = cmd_status_dword;
4710 	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4711 	if (mask)
4712 		newcmd |= PCI_COMMAND_INTX_DISABLE;
4713 	if (newcmd != origcmd)
4714 		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4715 
4716 done:
4717 	raw_spin_unlock_irqrestore(&pci_lock, flags);
4718 
4719 	return mask_updated;
4720 }
4721 
4722 /**
4723  * pci_check_and_mask_intx - mask INTx on pending interrupt
4724  * @dev: the PCI device to operate on
4725  *
4726  * Check if the device dev has its INTx line asserted, mask it and return
4727  * true in that case. False is returned if no interrupt was pending.
4728  */
4729 bool pci_check_and_mask_intx(struct pci_dev *dev)
4730 {
4731 	return pci_check_and_set_intx_mask(dev, true);
4732 }
4733 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4734 
4735 /**
4736  * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4737  * @dev: the PCI device to operate on
4738  *
4739  * Check if the device dev has its INTx line asserted, unmask it if not and
4740  * return true. False is returned and the mask remains active if there was
4741  * still an interrupt pending.
4742  */
4743 bool pci_check_and_unmask_intx(struct pci_dev *dev)
4744 {
4745 	return pci_check_and_set_intx_mask(dev, false);
4746 }
4747 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4748 
4749 /**
4750  * pci_wait_for_pending_transaction - wait for pending transaction
4751  * @dev: the PCI device to operate on
4752  *
4753  * Return 0 if transaction is pending 1 otherwise.
4754  */
4755 int pci_wait_for_pending_transaction(struct pci_dev *dev)
4756 {
4757 	if (!pci_is_pcie(dev))
4758 		return 1;
4759 
4760 	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4761 				    PCI_EXP_DEVSTA_TRPND);
4762 }
4763 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4764 
4765 /**
4766  * pcie_flr - initiate a PCIe function level reset
4767  * @dev: device to reset
4768  *
4769  * Initiate a function level reset unconditionally on @dev without
4770  * checking any flags and DEVCAP
4771  */
4772 int pcie_flr(struct pci_dev *dev)
4773 {
4774 	if (!pci_wait_for_pending_transaction(dev))
4775 		pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4776 
4777 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4778 
4779 	if (dev->imm_ready)
4780 		return 0;
4781 
4782 	/*
4783 	 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4784 	 * 100ms, but may silently discard requests while the FLR is in
4785 	 * progress.  Wait 100ms before trying to access the device.
4786 	 */
4787 	msleep(100);
4788 
4789 	return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4790 }
4791 EXPORT_SYMBOL_GPL(pcie_flr);
4792 
4793 /**
4794  * pcie_reset_flr - initiate a PCIe function level reset
4795  * @dev: device to reset
4796  * @probe: if true, return 0 if device can be reset this way
4797  *
4798  * Initiate a function level reset on @dev.
4799  */
4800 int pcie_reset_flr(struct pci_dev *dev, bool probe)
4801 {
4802 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4803 		return -ENOTTY;
4804 
4805 	if (!(dev->devcap & PCI_EXP_DEVCAP_FLR))
4806 		return -ENOTTY;
4807 
4808 	if (probe)
4809 		return 0;
4810 
4811 	return pcie_flr(dev);
4812 }
4813 EXPORT_SYMBOL_GPL(pcie_reset_flr);
4814 
4815 static int pci_af_flr(struct pci_dev *dev, bool probe)
4816 {
4817 	int pos;
4818 	u8 cap;
4819 
4820 	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4821 	if (!pos)
4822 		return -ENOTTY;
4823 
4824 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4825 		return -ENOTTY;
4826 
4827 	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4828 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4829 		return -ENOTTY;
4830 
4831 	if (probe)
4832 		return 0;
4833 
4834 	/*
4835 	 * Wait for Transaction Pending bit to clear.  A word-aligned test
4836 	 * is used, so we use the control offset rather than status and shift
4837 	 * the test bit to match.
4838 	 */
4839 	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4840 				 PCI_AF_STATUS_TP << 8))
4841 		pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4842 
4843 	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4844 
4845 	if (dev->imm_ready)
4846 		return 0;
4847 
4848 	/*
4849 	 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4850 	 * updated 27 July 2006; a device must complete an FLR within
4851 	 * 100ms, but may silently discard requests while the FLR is in
4852 	 * progress.  Wait 100ms before trying to access the device.
4853 	 */
4854 	msleep(100);
4855 
4856 	return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4857 }
4858 
4859 /**
4860  * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4861  * @dev: Device to reset.
4862  * @probe: if true, return 0 if the device can be reset this way.
4863  *
4864  * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4865  * unset, it will be reinitialized internally when going from PCI_D3hot to
4866  * PCI_D0.  If that's the case and the device is not in a low-power state
4867  * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4868  *
4869  * NOTE: This causes the caller to sleep for twice the device power transition
4870  * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4871  * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4872  * Moreover, only devices in D0 can be reset by this function.
4873  */
4874 static int pci_pm_reset(struct pci_dev *dev, bool probe)
4875 {
4876 	u16 csr;
4877 
4878 	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4879 		return -ENOTTY;
4880 
4881 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4882 	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4883 		return -ENOTTY;
4884 
4885 	if (probe)
4886 		return 0;
4887 
4888 	if (dev->current_state != PCI_D0)
4889 		return -EINVAL;
4890 
4891 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4892 	csr |= PCI_D3hot;
4893 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4894 	pci_dev_d3_sleep(dev);
4895 
4896 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4897 	csr |= PCI_D0;
4898 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4899 	pci_dev_d3_sleep(dev);
4900 
4901 	return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4902 }
4903 
4904 /**
4905  * pcie_wait_for_link_status - Wait for link status change
4906  * @pdev: Device whose link to wait for.
4907  * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE.
4908  * @active: Waiting for active or inactive?
4909  *
4910  * Return 0 if successful, or -ETIMEDOUT if status has not changed within
4911  * PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
4912  */
4913 static int pcie_wait_for_link_status(struct pci_dev *pdev,
4914 				     bool use_lt, bool active)
4915 {
4916 	u16 lnksta_mask, lnksta_match;
4917 	unsigned long end_jiffies;
4918 	u16 lnksta;
4919 
4920 	lnksta_mask = use_lt ? PCI_EXP_LNKSTA_LT : PCI_EXP_LNKSTA_DLLLA;
4921 	lnksta_match = active ? lnksta_mask : 0;
4922 
4923 	end_jiffies = jiffies + msecs_to_jiffies(PCIE_LINK_RETRAIN_TIMEOUT_MS);
4924 	do {
4925 		pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta);
4926 		if ((lnksta & lnksta_mask) == lnksta_match)
4927 			return 0;
4928 		msleep(1);
4929 	} while (time_before(jiffies, end_jiffies));
4930 
4931 	return -ETIMEDOUT;
4932 }
4933 
4934 /**
4935  * pcie_retrain_link - Request a link retrain and wait for it to complete
4936  * @pdev: Device whose link to retrain.
4937  * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE, for status.
4938  *
4939  * Retrain completion status is retrieved from the Link Status Register
4940  * according to @use_lt.  It is not verified whether the use of the DLLLA
4941  * bit is valid.
4942  *
4943  * Return 0 if successful, or -ETIMEDOUT if training has not completed
4944  * within PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
4945  */
4946 int pcie_retrain_link(struct pci_dev *pdev, bool use_lt)
4947 {
4948 	int rc;
4949 
4950 	/*
4951 	 * Ensure the updated LNKCTL parameters are used during link
4952 	 * training by checking that there is no ongoing link training to
4953 	 * avoid LTSSM race as recommended in Implementation Note at the
4954 	 * end of PCIe r6.0.1 sec 7.5.3.7.
4955 	 */
4956 	rc = pcie_wait_for_link_status(pdev, use_lt, !use_lt);
4957 	if (rc)
4958 		return rc;
4959 
4960 	pcie_capability_set_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL);
4961 	if (pdev->clear_retrain_link) {
4962 		/*
4963 		 * Due to an erratum in some devices the Retrain Link bit
4964 		 * needs to be cleared again manually to allow the link
4965 		 * training to succeed.
4966 		 */
4967 		pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL);
4968 	}
4969 
4970 	return pcie_wait_for_link_status(pdev, use_lt, !use_lt);
4971 }
4972 
4973 /**
4974  * pcie_wait_for_link_delay - Wait until link is active or inactive
4975  * @pdev: Bridge device
4976  * @active: waiting for active or inactive?
4977  * @delay: Delay to wait after link has become active (in ms)
4978  *
4979  * Use this to wait till link becomes active or inactive.
4980  */
4981 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4982 				     int delay)
4983 {
4984 	int rc;
4985 
4986 	/*
4987 	 * Some controllers might not implement link active reporting. In this
4988 	 * case, we wait for 1000 ms + any delay requested by the caller.
4989 	 */
4990 	if (!pdev->link_active_reporting) {
4991 		msleep(PCIE_LINK_RETRAIN_TIMEOUT_MS + delay);
4992 		return true;
4993 	}
4994 
4995 	/*
4996 	 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4997 	 * after which we should expect an link active if the reset was
4998 	 * successful. If so, software must wait a minimum 100ms before sending
4999 	 * configuration requests to devices downstream this port.
5000 	 *
5001 	 * If the link fails to activate, either the device was physically
5002 	 * removed or the link is permanently failed.
5003 	 */
5004 	if (active)
5005 		msleep(20);
5006 	rc = pcie_wait_for_link_status(pdev, false, active);
5007 	if (active) {
5008 		if (rc)
5009 			rc = pcie_failed_link_retrain(pdev);
5010 		if (rc)
5011 			return false;
5012 
5013 		msleep(delay);
5014 		return true;
5015 	}
5016 
5017 	if (rc)
5018 		return false;
5019 
5020 	return true;
5021 }
5022 
5023 /**
5024  * pcie_wait_for_link - Wait until link is active or inactive
5025  * @pdev: Bridge device
5026  * @active: waiting for active or inactive?
5027  *
5028  * Use this to wait till link becomes active or inactive.
5029  */
5030 bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
5031 {
5032 	return pcie_wait_for_link_delay(pdev, active, 100);
5033 }
5034 
5035 /*
5036  * Find maximum D3cold delay required by all the devices on the bus.  The
5037  * spec says 100 ms, but firmware can lower it and we allow drivers to
5038  * increase it as well.
5039  *
5040  * Called with @pci_bus_sem locked for reading.
5041  */
5042 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
5043 {
5044 	const struct pci_dev *pdev;
5045 	int min_delay = 100;
5046 	int max_delay = 0;
5047 
5048 	list_for_each_entry(pdev, &bus->devices, bus_list) {
5049 		if (pdev->d3cold_delay < min_delay)
5050 			min_delay = pdev->d3cold_delay;
5051 		if (pdev->d3cold_delay > max_delay)
5052 			max_delay = pdev->d3cold_delay;
5053 	}
5054 
5055 	return max(min_delay, max_delay);
5056 }
5057 
5058 /**
5059  * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
5060  * @dev: PCI bridge
5061  * @reset_type: reset type in human-readable form
5062  *
5063  * Handle necessary delays before access to the devices on the secondary
5064  * side of the bridge are permitted after D3cold to D0 transition
5065  * or Conventional Reset.
5066  *
5067  * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
5068  * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
5069  * 4.3.2.
5070  *
5071  * Return 0 on success or -ENOTTY if the first device on the secondary bus
5072  * failed to become accessible.
5073  */
5074 int pci_bridge_wait_for_secondary_bus(struct pci_dev *dev, char *reset_type)
5075 {
5076 	struct pci_dev *child;
5077 	int delay;
5078 
5079 	if (pci_dev_is_disconnected(dev))
5080 		return 0;
5081 
5082 	if (!pci_is_bridge(dev))
5083 		return 0;
5084 
5085 	down_read(&pci_bus_sem);
5086 
5087 	/*
5088 	 * We only deal with devices that are present currently on the bus.
5089 	 * For any hot-added devices the access delay is handled in pciehp
5090 	 * board_added(). In case of ACPI hotplug the firmware is expected
5091 	 * to configure the devices before OS is notified.
5092 	 */
5093 	if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
5094 		up_read(&pci_bus_sem);
5095 		return 0;
5096 	}
5097 
5098 	/* Take d3cold_delay requirements into account */
5099 	delay = pci_bus_max_d3cold_delay(dev->subordinate);
5100 	if (!delay) {
5101 		up_read(&pci_bus_sem);
5102 		return 0;
5103 	}
5104 
5105 	child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
5106 				 bus_list);
5107 	up_read(&pci_bus_sem);
5108 
5109 	/*
5110 	 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
5111 	 * accessing the device after reset (that is 1000 ms + 100 ms).
5112 	 */
5113 	if (!pci_is_pcie(dev)) {
5114 		pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
5115 		msleep(1000 + delay);
5116 		return 0;
5117 	}
5118 
5119 	/*
5120 	 * For PCIe downstream and root ports that do not support speeds
5121 	 * greater than 5 GT/s need to wait minimum 100 ms. For higher
5122 	 * speeds (gen3) we need to wait first for the data link layer to
5123 	 * become active.
5124 	 *
5125 	 * However, 100 ms is the minimum and the PCIe spec says the
5126 	 * software must allow at least 1s before it can determine that the
5127 	 * device that did not respond is a broken device. Also device can
5128 	 * take longer than that to respond if it indicates so through Request
5129 	 * Retry Status completions.
5130 	 *
5131 	 * Therefore we wait for 100 ms and check for the device presence
5132 	 * until the timeout expires.
5133 	 */
5134 	if (!pcie_downstream_port(dev))
5135 		return 0;
5136 
5137 	if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
5138 		u16 status;
5139 
5140 		pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
5141 		msleep(delay);
5142 
5143 		if (!pci_dev_wait(child, reset_type, PCI_RESET_WAIT - delay))
5144 			return 0;
5145 
5146 		/*
5147 		 * If the port supports active link reporting we now check
5148 		 * whether the link is active and if not bail out early with
5149 		 * the assumption that the device is not present anymore.
5150 		 */
5151 		if (!dev->link_active_reporting)
5152 			return -ENOTTY;
5153 
5154 		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &status);
5155 		if (!(status & PCI_EXP_LNKSTA_DLLLA))
5156 			return -ENOTTY;
5157 
5158 		return pci_dev_wait(child, reset_type,
5159 				    PCIE_RESET_READY_POLL_MS - PCI_RESET_WAIT);
5160 	}
5161 
5162 	pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
5163 		delay);
5164 	if (!pcie_wait_for_link_delay(dev, true, delay)) {
5165 		/* Did not train, no need to wait any further */
5166 		pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
5167 		return -ENOTTY;
5168 	}
5169 
5170 	return pci_dev_wait(child, reset_type,
5171 			    PCIE_RESET_READY_POLL_MS - delay);
5172 }
5173 
5174 void pci_reset_secondary_bus(struct pci_dev *dev)
5175 {
5176 	u16 ctrl;
5177 
5178 	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
5179 	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
5180 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
5181 
5182 	/*
5183 	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
5184 	 * this to 2ms to ensure that we meet the minimum requirement.
5185 	 */
5186 	msleep(2);
5187 
5188 	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
5189 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
5190 }
5191 
5192 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
5193 {
5194 	pci_reset_secondary_bus(dev);
5195 }
5196 
5197 /**
5198  * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
5199  * @dev: Bridge device
5200  *
5201  * Use the bridge control register to assert reset on the secondary bus.
5202  * Devices on the secondary bus are left in power-on state.
5203  */
5204 int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
5205 {
5206 	pcibios_reset_secondary_bus(dev);
5207 
5208 	return pci_bridge_wait_for_secondary_bus(dev, "bus reset");
5209 }
5210 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
5211 
5212 static int pci_parent_bus_reset(struct pci_dev *dev, bool probe)
5213 {
5214 	struct pci_dev *pdev;
5215 
5216 	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
5217 	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5218 		return -ENOTTY;
5219 
5220 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
5221 		if (pdev != dev)
5222 			return -ENOTTY;
5223 
5224 	if (probe)
5225 		return 0;
5226 
5227 	return pci_bridge_secondary_bus_reset(dev->bus->self);
5228 }
5229 
5230 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe)
5231 {
5232 	int rc = -ENOTTY;
5233 
5234 	if (!hotplug || !try_module_get(hotplug->owner))
5235 		return rc;
5236 
5237 	if (hotplug->ops->reset_slot)
5238 		rc = hotplug->ops->reset_slot(hotplug, probe);
5239 
5240 	module_put(hotplug->owner);
5241 
5242 	return rc;
5243 }
5244 
5245 static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe)
5246 {
5247 	if (dev->multifunction || dev->subordinate || !dev->slot ||
5248 	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5249 		return -ENOTTY;
5250 
5251 	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
5252 }
5253 
5254 static int pci_reset_bus_function(struct pci_dev *dev, bool probe)
5255 {
5256 	int rc;
5257 
5258 	rc = pci_dev_reset_slot_function(dev, probe);
5259 	if (rc != -ENOTTY)
5260 		return rc;
5261 	return pci_parent_bus_reset(dev, probe);
5262 }
5263 
5264 void pci_dev_lock(struct pci_dev *dev)
5265 {
5266 	/* block PM suspend, driver probe, etc. */
5267 	device_lock(&dev->dev);
5268 	pci_cfg_access_lock(dev);
5269 }
5270 EXPORT_SYMBOL_GPL(pci_dev_lock);
5271 
5272 /* Return 1 on successful lock, 0 on contention */
5273 int pci_dev_trylock(struct pci_dev *dev)
5274 {
5275 	if (device_trylock(&dev->dev)) {
5276 		if (pci_cfg_access_trylock(dev))
5277 			return 1;
5278 		device_unlock(&dev->dev);
5279 	}
5280 
5281 	return 0;
5282 }
5283 EXPORT_SYMBOL_GPL(pci_dev_trylock);
5284 
5285 void pci_dev_unlock(struct pci_dev *dev)
5286 {
5287 	pci_cfg_access_unlock(dev);
5288 	device_unlock(&dev->dev);
5289 }
5290 EXPORT_SYMBOL_GPL(pci_dev_unlock);
5291 
5292 static void pci_dev_save_and_disable(struct pci_dev *dev)
5293 {
5294 	const struct pci_error_handlers *err_handler =
5295 			dev->driver ? dev->driver->err_handler : NULL;
5296 
5297 	/*
5298 	 * dev->driver->err_handler->reset_prepare() is protected against
5299 	 * races with ->remove() by the device lock, which must be held by
5300 	 * the caller.
5301 	 */
5302 	if (err_handler && err_handler->reset_prepare)
5303 		err_handler->reset_prepare(dev);
5304 
5305 	/*
5306 	 * Wake-up device prior to save.  PM registers default to D0 after
5307 	 * reset and a simple register restore doesn't reliably return
5308 	 * to a non-D0 state anyway.
5309 	 */
5310 	pci_set_power_state(dev, PCI_D0);
5311 
5312 	pci_save_state(dev);
5313 	/*
5314 	 * Disable the device by clearing the Command register, except for
5315 	 * INTx-disable which is set.  This not only disables MMIO and I/O port
5316 	 * BARs, but also prevents the device from being Bus Master, preventing
5317 	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
5318 	 * compliant devices, INTx-disable prevents legacy interrupts.
5319 	 */
5320 	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
5321 }
5322 
5323 static void pci_dev_restore(struct pci_dev *dev)
5324 {
5325 	const struct pci_error_handlers *err_handler =
5326 			dev->driver ? dev->driver->err_handler : NULL;
5327 
5328 	pci_restore_state(dev);
5329 
5330 	/*
5331 	 * dev->driver->err_handler->reset_done() is protected against
5332 	 * races with ->remove() by the device lock, which must be held by
5333 	 * the caller.
5334 	 */
5335 	if (err_handler && err_handler->reset_done)
5336 		err_handler->reset_done(dev);
5337 }
5338 
5339 /* dev->reset_methods[] is a 0-terminated list of indices into this array */
5340 static const struct pci_reset_fn_method pci_reset_fn_methods[] = {
5341 	{ },
5342 	{ pci_dev_specific_reset, .name = "device_specific" },
5343 	{ pci_dev_acpi_reset, .name = "acpi" },
5344 	{ pcie_reset_flr, .name = "flr" },
5345 	{ pci_af_flr, .name = "af_flr" },
5346 	{ pci_pm_reset, .name = "pm" },
5347 	{ pci_reset_bus_function, .name = "bus" },
5348 };
5349 
5350 static ssize_t reset_method_show(struct device *dev,
5351 				 struct device_attribute *attr, char *buf)
5352 {
5353 	struct pci_dev *pdev = to_pci_dev(dev);
5354 	ssize_t len = 0;
5355 	int i, m;
5356 
5357 	for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5358 		m = pdev->reset_methods[i];
5359 		if (!m)
5360 			break;
5361 
5362 		len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "",
5363 				     pci_reset_fn_methods[m].name);
5364 	}
5365 
5366 	if (len)
5367 		len += sysfs_emit_at(buf, len, "\n");
5368 
5369 	return len;
5370 }
5371 
5372 static int reset_method_lookup(const char *name)
5373 {
5374 	int m;
5375 
5376 	for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5377 		if (sysfs_streq(name, pci_reset_fn_methods[m].name))
5378 			return m;
5379 	}
5380 
5381 	return 0;	/* not found */
5382 }
5383 
5384 static ssize_t reset_method_store(struct device *dev,
5385 				  struct device_attribute *attr,
5386 				  const char *buf, size_t count)
5387 {
5388 	struct pci_dev *pdev = to_pci_dev(dev);
5389 	char *options, *name;
5390 	int m, n;
5391 	u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 };
5392 
5393 	if (sysfs_streq(buf, "")) {
5394 		pdev->reset_methods[0] = 0;
5395 		pci_warn(pdev, "All device reset methods disabled by user");
5396 		return count;
5397 	}
5398 
5399 	if (sysfs_streq(buf, "default")) {
5400 		pci_init_reset_methods(pdev);
5401 		return count;
5402 	}
5403 
5404 	options = kstrndup(buf, count, GFP_KERNEL);
5405 	if (!options)
5406 		return -ENOMEM;
5407 
5408 	n = 0;
5409 	while ((name = strsep(&options, " ")) != NULL) {
5410 		if (sysfs_streq(name, ""))
5411 			continue;
5412 
5413 		name = strim(name);
5414 
5415 		m = reset_method_lookup(name);
5416 		if (!m) {
5417 			pci_err(pdev, "Invalid reset method '%s'", name);
5418 			goto error;
5419 		}
5420 
5421 		if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) {
5422 			pci_err(pdev, "Unsupported reset method '%s'", name);
5423 			goto error;
5424 		}
5425 
5426 		if (n == PCI_NUM_RESET_METHODS - 1) {
5427 			pci_err(pdev, "Too many reset methods\n");
5428 			goto error;
5429 		}
5430 
5431 		reset_methods[n++] = m;
5432 	}
5433 
5434 	reset_methods[n] = 0;
5435 
5436 	/* Warn if dev-specific supported but not highest priority */
5437 	if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 &&
5438 	    reset_methods[0] != 1)
5439 		pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user");
5440 	memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods));
5441 	kfree(options);
5442 	return count;
5443 
5444 error:
5445 	/* Leave previous methods unchanged */
5446 	kfree(options);
5447 	return -EINVAL;
5448 }
5449 static DEVICE_ATTR_RW(reset_method);
5450 
5451 static struct attribute *pci_dev_reset_method_attrs[] = {
5452 	&dev_attr_reset_method.attr,
5453 	NULL,
5454 };
5455 
5456 static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj,
5457 						    struct attribute *a, int n)
5458 {
5459 	struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj));
5460 
5461 	if (!pci_reset_supported(pdev))
5462 		return 0;
5463 
5464 	return a->mode;
5465 }
5466 
5467 const struct attribute_group pci_dev_reset_method_attr_group = {
5468 	.attrs = pci_dev_reset_method_attrs,
5469 	.is_visible = pci_dev_reset_method_attr_is_visible,
5470 };
5471 
5472 /**
5473  * __pci_reset_function_locked - reset a PCI device function while holding
5474  * the @dev mutex lock.
5475  * @dev: PCI device to reset
5476  *
5477  * Some devices allow an individual function to be reset without affecting
5478  * other functions in the same device.  The PCI device must be responsive
5479  * to PCI config space in order to use this function.
5480  *
5481  * The device function is presumed to be unused and the caller is holding
5482  * the device mutex lock when this function is called.
5483  *
5484  * Resetting the device will make the contents of PCI configuration space
5485  * random, so any caller of this must be prepared to reinitialise the
5486  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5487  * etc.
5488  *
5489  * Returns 0 if the device function was successfully reset or negative if the
5490  * device doesn't support resetting a single function.
5491  */
5492 int __pci_reset_function_locked(struct pci_dev *dev)
5493 {
5494 	int i, m, rc;
5495 
5496 	might_sleep();
5497 
5498 	/*
5499 	 * A reset method returns -ENOTTY if it doesn't support this device and
5500 	 * we should try the next method.
5501 	 *
5502 	 * If it returns 0 (success), we're finished.  If it returns any other
5503 	 * error, we're also finished: this indicates that further reset
5504 	 * mechanisms might be broken on the device.
5505 	 */
5506 	for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5507 		m = dev->reset_methods[i];
5508 		if (!m)
5509 			return -ENOTTY;
5510 
5511 		rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET);
5512 		if (!rc)
5513 			return 0;
5514 		if (rc != -ENOTTY)
5515 			return rc;
5516 	}
5517 
5518 	return -ENOTTY;
5519 }
5520 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5521 
5522 /**
5523  * pci_init_reset_methods - check whether device can be safely reset
5524  * and store supported reset mechanisms.
5525  * @dev: PCI device to check for reset mechanisms
5526  *
5527  * Some devices allow an individual function to be reset without affecting
5528  * other functions in the same device.  The PCI device must be in D0-D3hot
5529  * state.
5530  *
5531  * Stores reset mechanisms supported by device in reset_methods byte array
5532  * which is a member of struct pci_dev.
5533  */
5534 void pci_init_reset_methods(struct pci_dev *dev)
5535 {
5536 	int m, i, rc;
5537 
5538 	BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS);
5539 
5540 	might_sleep();
5541 
5542 	i = 0;
5543 	for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5544 		rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE);
5545 		if (!rc)
5546 			dev->reset_methods[i++] = m;
5547 		else if (rc != -ENOTTY)
5548 			break;
5549 	}
5550 
5551 	dev->reset_methods[i] = 0;
5552 }
5553 
5554 /**
5555  * pci_reset_function - quiesce and reset a PCI device function
5556  * @dev: PCI device to reset
5557  *
5558  * Some devices allow an individual function to be reset without affecting
5559  * other functions in the same device.  The PCI device must be responsive
5560  * to PCI config space in order to use this function.
5561  *
5562  * This function does not just reset the PCI portion of a device, but
5563  * clears all the state associated with the device.  This function differs
5564  * from __pci_reset_function_locked() in that it saves and restores device state
5565  * over the reset and takes the PCI device lock.
5566  *
5567  * Returns 0 if the device function was successfully reset or negative if the
5568  * device doesn't support resetting a single function.
5569  */
5570 int pci_reset_function(struct pci_dev *dev)
5571 {
5572 	int rc;
5573 
5574 	if (!pci_reset_supported(dev))
5575 		return -ENOTTY;
5576 
5577 	pci_dev_lock(dev);
5578 	pci_dev_save_and_disable(dev);
5579 
5580 	rc = __pci_reset_function_locked(dev);
5581 
5582 	pci_dev_restore(dev);
5583 	pci_dev_unlock(dev);
5584 
5585 	return rc;
5586 }
5587 EXPORT_SYMBOL_GPL(pci_reset_function);
5588 
5589 /**
5590  * pci_reset_function_locked - quiesce and reset a PCI device function
5591  * @dev: PCI device to reset
5592  *
5593  * Some devices allow an individual function to be reset without affecting
5594  * other functions in the same device.  The PCI device must be responsive
5595  * to PCI config space in order to use this function.
5596  *
5597  * This function does not just reset the PCI portion of a device, but
5598  * clears all the state associated with the device.  This function differs
5599  * from __pci_reset_function_locked() in that it saves and restores device state
5600  * over the reset.  It also differs from pci_reset_function() in that it
5601  * requires the PCI device lock to be held.
5602  *
5603  * Returns 0 if the device function was successfully reset or negative if the
5604  * device doesn't support resetting a single function.
5605  */
5606 int pci_reset_function_locked(struct pci_dev *dev)
5607 {
5608 	int rc;
5609 
5610 	if (!pci_reset_supported(dev))
5611 		return -ENOTTY;
5612 
5613 	pci_dev_save_and_disable(dev);
5614 
5615 	rc = __pci_reset_function_locked(dev);
5616 
5617 	pci_dev_restore(dev);
5618 
5619 	return rc;
5620 }
5621 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5622 
5623 /**
5624  * pci_try_reset_function - quiesce and reset a PCI device function
5625  * @dev: PCI device to reset
5626  *
5627  * Same as above, except return -EAGAIN if unable to lock device.
5628  */
5629 int pci_try_reset_function(struct pci_dev *dev)
5630 {
5631 	int rc;
5632 
5633 	if (!pci_reset_supported(dev))
5634 		return -ENOTTY;
5635 
5636 	if (!pci_dev_trylock(dev))
5637 		return -EAGAIN;
5638 
5639 	pci_dev_save_and_disable(dev);
5640 	rc = __pci_reset_function_locked(dev);
5641 	pci_dev_restore(dev);
5642 	pci_dev_unlock(dev);
5643 
5644 	return rc;
5645 }
5646 EXPORT_SYMBOL_GPL(pci_try_reset_function);
5647 
5648 /* Do any devices on or below this bus prevent a bus reset? */
5649 static bool pci_bus_resettable(struct pci_bus *bus)
5650 {
5651 	struct pci_dev *dev;
5652 
5653 
5654 	if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5655 		return false;
5656 
5657 	list_for_each_entry(dev, &bus->devices, bus_list) {
5658 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5659 		    (dev->subordinate && !pci_bus_resettable(dev->subordinate)))
5660 			return false;
5661 	}
5662 
5663 	return true;
5664 }
5665 
5666 /* Lock devices from the top of the tree down */
5667 static void pci_bus_lock(struct pci_bus *bus)
5668 {
5669 	struct pci_dev *dev;
5670 
5671 	list_for_each_entry(dev, &bus->devices, bus_list) {
5672 		pci_dev_lock(dev);
5673 		if (dev->subordinate)
5674 			pci_bus_lock(dev->subordinate);
5675 	}
5676 }
5677 
5678 /* Unlock devices from the bottom of the tree up */
5679 static void pci_bus_unlock(struct pci_bus *bus)
5680 {
5681 	struct pci_dev *dev;
5682 
5683 	list_for_each_entry(dev, &bus->devices, bus_list) {
5684 		if (dev->subordinate)
5685 			pci_bus_unlock(dev->subordinate);
5686 		pci_dev_unlock(dev);
5687 	}
5688 }
5689 
5690 /* Return 1 on successful lock, 0 on contention */
5691 static int pci_bus_trylock(struct pci_bus *bus)
5692 {
5693 	struct pci_dev *dev;
5694 
5695 	list_for_each_entry(dev, &bus->devices, bus_list) {
5696 		if (!pci_dev_trylock(dev))
5697 			goto unlock;
5698 		if (dev->subordinate) {
5699 			if (!pci_bus_trylock(dev->subordinate)) {
5700 				pci_dev_unlock(dev);
5701 				goto unlock;
5702 			}
5703 		}
5704 	}
5705 	return 1;
5706 
5707 unlock:
5708 	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5709 		if (dev->subordinate)
5710 			pci_bus_unlock(dev->subordinate);
5711 		pci_dev_unlock(dev);
5712 	}
5713 	return 0;
5714 }
5715 
5716 /* Do any devices on or below this slot prevent a bus reset? */
5717 static bool pci_slot_resettable(struct pci_slot *slot)
5718 {
5719 	struct pci_dev *dev;
5720 
5721 	if (slot->bus->self &&
5722 	    (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5723 		return false;
5724 
5725 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5726 		if (!dev->slot || dev->slot != slot)
5727 			continue;
5728 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5729 		    (dev->subordinate && !pci_bus_resettable(dev->subordinate)))
5730 			return false;
5731 	}
5732 
5733 	return true;
5734 }
5735 
5736 /* Lock devices from the top of the tree down */
5737 static void pci_slot_lock(struct pci_slot *slot)
5738 {
5739 	struct pci_dev *dev;
5740 
5741 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5742 		if (!dev->slot || dev->slot != slot)
5743 			continue;
5744 		pci_dev_lock(dev);
5745 		if (dev->subordinate)
5746 			pci_bus_lock(dev->subordinate);
5747 	}
5748 }
5749 
5750 /* Unlock devices from the bottom of the tree up */
5751 static void pci_slot_unlock(struct pci_slot *slot)
5752 {
5753 	struct pci_dev *dev;
5754 
5755 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5756 		if (!dev->slot || dev->slot != slot)
5757 			continue;
5758 		if (dev->subordinate)
5759 			pci_bus_unlock(dev->subordinate);
5760 		pci_dev_unlock(dev);
5761 	}
5762 }
5763 
5764 /* Return 1 on successful lock, 0 on contention */
5765 static int pci_slot_trylock(struct pci_slot *slot)
5766 {
5767 	struct pci_dev *dev;
5768 
5769 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5770 		if (!dev->slot || dev->slot != slot)
5771 			continue;
5772 		if (!pci_dev_trylock(dev))
5773 			goto unlock;
5774 		if (dev->subordinate) {
5775 			if (!pci_bus_trylock(dev->subordinate)) {
5776 				pci_dev_unlock(dev);
5777 				goto unlock;
5778 			}
5779 		}
5780 	}
5781 	return 1;
5782 
5783 unlock:
5784 	list_for_each_entry_continue_reverse(dev,
5785 					     &slot->bus->devices, bus_list) {
5786 		if (!dev->slot || dev->slot != slot)
5787 			continue;
5788 		if (dev->subordinate)
5789 			pci_bus_unlock(dev->subordinate);
5790 		pci_dev_unlock(dev);
5791 	}
5792 	return 0;
5793 }
5794 
5795 /*
5796  * Save and disable devices from the top of the tree down while holding
5797  * the @dev mutex lock for the entire tree.
5798  */
5799 static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5800 {
5801 	struct pci_dev *dev;
5802 
5803 	list_for_each_entry(dev, &bus->devices, bus_list) {
5804 		pci_dev_save_and_disable(dev);
5805 		if (dev->subordinate)
5806 			pci_bus_save_and_disable_locked(dev->subordinate);
5807 	}
5808 }
5809 
5810 /*
5811  * Restore devices from top of the tree down while holding @dev mutex lock
5812  * for the entire tree.  Parent bridges need to be restored before we can
5813  * get to subordinate devices.
5814  */
5815 static void pci_bus_restore_locked(struct pci_bus *bus)
5816 {
5817 	struct pci_dev *dev;
5818 
5819 	list_for_each_entry(dev, &bus->devices, bus_list) {
5820 		pci_dev_restore(dev);
5821 		if (dev->subordinate)
5822 			pci_bus_restore_locked(dev->subordinate);
5823 	}
5824 }
5825 
5826 /*
5827  * Save and disable devices from the top of the tree down while holding
5828  * the @dev mutex lock for the entire tree.
5829  */
5830 static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5831 {
5832 	struct pci_dev *dev;
5833 
5834 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5835 		if (!dev->slot || dev->slot != slot)
5836 			continue;
5837 		pci_dev_save_and_disable(dev);
5838 		if (dev->subordinate)
5839 			pci_bus_save_and_disable_locked(dev->subordinate);
5840 	}
5841 }
5842 
5843 /*
5844  * Restore devices from top of the tree down while holding @dev mutex lock
5845  * for the entire tree.  Parent bridges need to be restored before we can
5846  * get to subordinate devices.
5847  */
5848 static void pci_slot_restore_locked(struct pci_slot *slot)
5849 {
5850 	struct pci_dev *dev;
5851 
5852 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5853 		if (!dev->slot || dev->slot != slot)
5854 			continue;
5855 		pci_dev_restore(dev);
5856 		if (dev->subordinate)
5857 			pci_bus_restore_locked(dev->subordinate);
5858 	}
5859 }
5860 
5861 static int pci_slot_reset(struct pci_slot *slot, bool probe)
5862 {
5863 	int rc;
5864 
5865 	if (!slot || !pci_slot_resettable(slot))
5866 		return -ENOTTY;
5867 
5868 	if (!probe)
5869 		pci_slot_lock(slot);
5870 
5871 	might_sleep();
5872 
5873 	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5874 
5875 	if (!probe)
5876 		pci_slot_unlock(slot);
5877 
5878 	return rc;
5879 }
5880 
5881 /**
5882  * pci_probe_reset_slot - probe whether a PCI slot can be reset
5883  * @slot: PCI slot to probe
5884  *
5885  * Return 0 if slot can be reset, negative if a slot reset is not supported.
5886  */
5887 int pci_probe_reset_slot(struct pci_slot *slot)
5888 {
5889 	return pci_slot_reset(slot, PCI_RESET_PROBE);
5890 }
5891 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5892 
5893 /**
5894  * __pci_reset_slot - Try to reset a PCI slot
5895  * @slot: PCI slot to reset
5896  *
5897  * A PCI bus may host multiple slots, each slot may support a reset mechanism
5898  * independent of other slots.  For instance, some slots may support slot power
5899  * control.  In the case of a 1:1 bus to slot architecture, this function may
5900  * wrap the bus reset to avoid spurious slot related events such as hotplug.
5901  * Generally a slot reset should be attempted before a bus reset.  All of the
5902  * function of the slot and any subordinate buses behind the slot are reset
5903  * through this function.  PCI config space of all devices in the slot and
5904  * behind the slot is saved before and restored after reset.
5905  *
5906  * Same as above except return -EAGAIN if the slot cannot be locked
5907  */
5908 static int __pci_reset_slot(struct pci_slot *slot)
5909 {
5910 	int rc;
5911 
5912 	rc = pci_slot_reset(slot, PCI_RESET_PROBE);
5913 	if (rc)
5914 		return rc;
5915 
5916 	if (pci_slot_trylock(slot)) {
5917 		pci_slot_save_and_disable_locked(slot);
5918 		might_sleep();
5919 		rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET);
5920 		pci_slot_restore_locked(slot);
5921 		pci_slot_unlock(slot);
5922 	} else
5923 		rc = -EAGAIN;
5924 
5925 	return rc;
5926 }
5927 
5928 static int pci_bus_reset(struct pci_bus *bus, bool probe)
5929 {
5930 	int ret;
5931 
5932 	if (!bus->self || !pci_bus_resettable(bus))
5933 		return -ENOTTY;
5934 
5935 	if (probe)
5936 		return 0;
5937 
5938 	pci_bus_lock(bus);
5939 
5940 	might_sleep();
5941 
5942 	ret = pci_bridge_secondary_bus_reset(bus->self);
5943 
5944 	pci_bus_unlock(bus);
5945 
5946 	return ret;
5947 }
5948 
5949 /**
5950  * pci_bus_error_reset - reset the bridge's subordinate bus
5951  * @bridge: The parent device that connects to the bus to reset
5952  *
5953  * This function will first try to reset the slots on this bus if the method is
5954  * available. If slot reset fails or is not available, this will fall back to a
5955  * secondary bus reset.
5956  */
5957 int pci_bus_error_reset(struct pci_dev *bridge)
5958 {
5959 	struct pci_bus *bus = bridge->subordinate;
5960 	struct pci_slot *slot;
5961 
5962 	if (!bus)
5963 		return -ENOTTY;
5964 
5965 	mutex_lock(&pci_slot_mutex);
5966 	if (list_empty(&bus->slots))
5967 		goto bus_reset;
5968 
5969 	list_for_each_entry(slot, &bus->slots, list)
5970 		if (pci_probe_reset_slot(slot))
5971 			goto bus_reset;
5972 
5973 	list_for_each_entry(slot, &bus->slots, list)
5974 		if (pci_slot_reset(slot, PCI_RESET_DO_RESET))
5975 			goto bus_reset;
5976 
5977 	mutex_unlock(&pci_slot_mutex);
5978 	return 0;
5979 bus_reset:
5980 	mutex_unlock(&pci_slot_mutex);
5981 	return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET);
5982 }
5983 
5984 /**
5985  * pci_probe_reset_bus - probe whether a PCI bus can be reset
5986  * @bus: PCI bus to probe
5987  *
5988  * Return 0 if bus can be reset, negative if a bus reset is not supported.
5989  */
5990 int pci_probe_reset_bus(struct pci_bus *bus)
5991 {
5992 	return pci_bus_reset(bus, PCI_RESET_PROBE);
5993 }
5994 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5995 
5996 /**
5997  * __pci_reset_bus - Try to reset a PCI bus
5998  * @bus: top level PCI bus to reset
5999  *
6000  * Same as above except return -EAGAIN if the bus cannot be locked
6001  */
6002 static int __pci_reset_bus(struct pci_bus *bus)
6003 {
6004 	int rc;
6005 
6006 	rc = pci_bus_reset(bus, PCI_RESET_PROBE);
6007 	if (rc)
6008 		return rc;
6009 
6010 	if (pci_bus_trylock(bus)) {
6011 		pci_bus_save_and_disable_locked(bus);
6012 		might_sleep();
6013 		rc = pci_bridge_secondary_bus_reset(bus->self);
6014 		pci_bus_restore_locked(bus);
6015 		pci_bus_unlock(bus);
6016 	} else
6017 		rc = -EAGAIN;
6018 
6019 	return rc;
6020 }
6021 
6022 /**
6023  * pci_reset_bus - Try to reset a PCI bus
6024  * @pdev: top level PCI device to reset via slot/bus
6025  *
6026  * Same as above except return -EAGAIN if the bus cannot be locked
6027  */
6028 int pci_reset_bus(struct pci_dev *pdev)
6029 {
6030 	return (!pci_probe_reset_slot(pdev->slot)) ?
6031 	    __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
6032 }
6033 EXPORT_SYMBOL_GPL(pci_reset_bus);
6034 
6035 /**
6036  * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
6037  * @dev: PCI device to query
6038  *
6039  * Returns mmrbc: maximum designed memory read count in bytes or
6040  * appropriate error value.
6041  */
6042 int pcix_get_max_mmrbc(struct pci_dev *dev)
6043 {
6044 	int cap;
6045 	u32 stat;
6046 
6047 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
6048 	if (!cap)
6049 		return -EINVAL;
6050 
6051 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
6052 		return -EINVAL;
6053 
6054 	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
6055 }
6056 EXPORT_SYMBOL(pcix_get_max_mmrbc);
6057 
6058 /**
6059  * pcix_get_mmrbc - get PCI-X maximum memory read byte count
6060  * @dev: PCI device to query
6061  *
6062  * Returns mmrbc: maximum memory read count in bytes or appropriate error
6063  * value.
6064  */
6065 int pcix_get_mmrbc(struct pci_dev *dev)
6066 {
6067 	int cap;
6068 	u16 cmd;
6069 
6070 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
6071 	if (!cap)
6072 		return -EINVAL;
6073 
6074 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
6075 		return -EINVAL;
6076 
6077 	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
6078 }
6079 EXPORT_SYMBOL(pcix_get_mmrbc);
6080 
6081 /**
6082  * pcix_set_mmrbc - set PCI-X maximum memory read byte count
6083  * @dev: PCI device to query
6084  * @mmrbc: maximum memory read count in bytes
6085  *    valid values are 512, 1024, 2048, 4096
6086  *
6087  * If possible sets maximum memory read byte count, some bridges have errata
6088  * that prevent this.
6089  */
6090 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
6091 {
6092 	int cap;
6093 	u32 stat, v, o;
6094 	u16 cmd;
6095 
6096 	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
6097 		return -EINVAL;
6098 
6099 	v = ffs(mmrbc) - 10;
6100 
6101 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
6102 	if (!cap)
6103 		return -EINVAL;
6104 
6105 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
6106 		return -EINVAL;
6107 
6108 	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
6109 		return -E2BIG;
6110 
6111 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
6112 		return -EINVAL;
6113 
6114 	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
6115 	if (o != v) {
6116 		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
6117 			return -EIO;
6118 
6119 		cmd &= ~PCI_X_CMD_MAX_READ;
6120 		cmd |= v << 2;
6121 		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
6122 			return -EIO;
6123 	}
6124 	return 0;
6125 }
6126 EXPORT_SYMBOL(pcix_set_mmrbc);
6127 
6128 /**
6129  * pcie_get_readrq - get PCI Express read request size
6130  * @dev: PCI device to query
6131  *
6132  * Returns maximum memory read request in bytes or appropriate error value.
6133  */
6134 int pcie_get_readrq(struct pci_dev *dev)
6135 {
6136 	u16 ctl;
6137 
6138 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6139 
6140 	return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6141 }
6142 EXPORT_SYMBOL(pcie_get_readrq);
6143 
6144 /**
6145  * pcie_set_readrq - set PCI Express maximum memory read request
6146  * @dev: PCI device to query
6147  * @rq: maximum memory read count in bytes
6148  *    valid values are 128, 256, 512, 1024, 2048, 4096
6149  *
6150  * If possible sets maximum memory read request in bytes
6151  */
6152 int pcie_set_readrq(struct pci_dev *dev, int rq)
6153 {
6154 	u16 v;
6155 	int ret;
6156 	struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
6157 
6158 	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
6159 		return -EINVAL;
6160 
6161 	/*
6162 	 * If using the "performance" PCIe config, we clamp the read rq
6163 	 * size to the max packet size to keep the host bridge from
6164 	 * generating requests larger than we can cope with.
6165 	 */
6166 	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
6167 		int mps = pcie_get_mps(dev);
6168 
6169 		if (mps < rq)
6170 			rq = mps;
6171 	}
6172 
6173 	v = (ffs(rq) - 8) << 12;
6174 
6175 	if (bridge->no_inc_mrrs) {
6176 		int max_mrrs = pcie_get_readrq(dev);
6177 
6178 		if (rq > max_mrrs) {
6179 			pci_info(dev, "can't set Max_Read_Request_Size to %d; max is %d\n", rq, max_mrrs);
6180 			return -EINVAL;
6181 		}
6182 	}
6183 
6184 	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6185 						  PCI_EXP_DEVCTL_READRQ, v);
6186 
6187 	return pcibios_err_to_errno(ret);
6188 }
6189 EXPORT_SYMBOL(pcie_set_readrq);
6190 
6191 /**
6192  * pcie_get_mps - get PCI Express maximum payload size
6193  * @dev: PCI device to query
6194  *
6195  * Returns maximum payload size in bytes
6196  */
6197 int pcie_get_mps(struct pci_dev *dev)
6198 {
6199 	u16 ctl;
6200 
6201 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6202 
6203 	return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6204 }
6205 EXPORT_SYMBOL(pcie_get_mps);
6206 
6207 /**
6208  * pcie_set_mps - set PCI Express maximum payload size
6209  * @dev: PCI device to query
6210  * @mps: maximum payload size in bytes
6211  *    valid values are 128, 256, 512, 1024, 2048, 4096
6212  *
6213  * If possible sets maximum payload size
6214  */
6215 int pcie_set_mps(struct pci_dev *dev, int mps)
6216 {
6217 	u16 v;
6218 	int ret;
6219 
6220 	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
6221 		return -EINVAL;
6222 
6223 	v = ffs(mps) - 8;
6224 	if (v > dev->pcie_mpss)
6225 		return -EINVAL;
6226 	v <<= 5;
6227 
6228 	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6229 						  PCI_EXP_DEVCTL_PAYLOAD, v);
6230 
6231 	return pcibios_err_to_errno(ret);
6232 }
6233 EXPORT_SYMBOL(pcie_set_mps);
6234 
6235 /**
6236  * pcie_bandwidth_available - determine minimum link settings of a PCIe
6237  *			      device and its bandwidth limitation
6238  * @dev: PCI device to query
6239  * @limiting_dev: storage for device causing the bandwidth limitation
6240  * @speed: storage for speed of limiting device
6241  * @width: storage for width of limiting device
6242  *
6243  * Walk up the PCI device chain and find the point where the minimum
6244  * bandwidth is available.  Return the bandwidth available there and (if
6245  * limiting_dev, speed, and width pointers are supplied) information about
6246  * that point.  The bandwidth returned is in Mb/s, i.e., megabits/second of
6247  * raw bandwidth.
6248  */
6249 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
6250 			     enum pci_bus_speed *speed,
6251 			     enum pcie_link_width *width)
6252 {
6253 	u16 lnksta;
6254 	enum pci_bus_speed next_speed;
6255 	enum pcie_link_width next_width;
6256 	u32 bw, next_bw;
6257 
6258 	if (speed)
6259 		*speed = PCI_SPEED_UNKNOWN;
6260 	if (width)
6261 		*width = PCIE_LNK_WIDTH_UNKNOWN;
6262 
6263 	bw = 0;
6264 
6265 	while (dev) {
6266 		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
6267 
6268 		next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
6269 		next_width = FIELD_GET(PCI_EXP_LNKSTA_NLW, lnksta);
6270 
6271 		next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
6272 
6273 		/* Check if current device limits the total bandwidth */
6274 		if (!bw || next_bw <= bw) {
6275 			bw = next_bw;
6276 
6277 			if (limiting_dev)
6278 				*limiting_dev = dev;
6279 			if (speed)
6280 				*speed = next_speed;
6281 			if (width)
6282 				*width = next_width;
6283 		}
6284 
6285 		dev = pci_upstream_bridge(dev);
6286 	}
6287 
6288 	return bw;
6289 }
6290 EXPORT_SYMBOL(pcie_bandwidth_available);
6291 
6292 /**
6293  * pcie_get_speed_cap - query for the PCI device's link speed capability
6294  * @dev: PCI device to query
6295  *
6296  * Query the PCI device speed capability.  Return the maximum link speed
6297  * supported by the device.
6298  */
6299 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
6300 {
6301 	u32 lnkcap2, lnkcap;
6302 
6303 	/*
6304 	 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18.  The
6305 	 * implementation note there recommends using the Supported Link
6306 	 * Speeds Vector in Link Capabilities 2 when supported.
6307 	 *
6308 	 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
6309 	 * should use the Supported Link Speeds field in Link Capabilities,
6310 	 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
6311 	 */
6312 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
6313 
6314 	/* PCIe r3.0-compliant */
6315 	if (lnkcap2)
6316 		return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
6317 
6318 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6319 	if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
6320 		return PCIE_SPEED_5_0GT;
6321 	else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
6322 		return PCIE_SPEED_2_5GT;
6323 
6324 	return PCI_SPEED_UNKNOWN;
6325 }
6326 EXPORT_SYMBOL(pcie_get_speed_cap);
6327 
6328 /**
6329  * pcie_get_width_cap - query for the PCI device's link width capability
6330  * @dev: PCI device to query
6331  *
6332  * Query the PCI device width capability.  Return the maximum link width
6333  * supported by the device.
6334  */
6335 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
6336 {
6337 	u32 lnkcap;
6338 
6339 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6340 	if (lnkcap)
6341 		return FIELD_GET(PCI_EXP_LNKCAP_MLW, lnkcap);
6342 
6343 	return PCIE_LNK_WIDTH_UNKNOWN;
6344 }
6345 EXPORT_SYMBOL(pcie_get_width_cap);
6346 
6347 /**
6348  * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
6349  * @dev: PCI device
6350  * @speed: storage for link speed
6351  * @width: storage for link width
6352  *
6353  * Calculate a PCI device's link bandwidth by querying for its link speed
6354  * and width, multiplying them, and applying encoding overhead.  The result
6355  * is in Mb/s, i.e., megabits/second of raw bandwidth.
6356  */
6357 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
6358 			   enum pcie_link_width *width)
6359 {
6360 	*speed = pcie_get_speed_cap(dev);
6361 	*width = pcie_get_width_cap(dev);
6362 
6363 	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
6364 		return 0;
6365 
6366 	return *width * PCIE_SPEED2MBS_ENC(*speed);
6367 }
6368 
6369 /**
6370  * __pcie_print_link_status - Report the PCI device's link speed and width
6371  * @dev: PCI device to query
6372  * @verbose: Print info even when enough bandwidth is available
6373  *
6374  * If the available bandwidth at the device is less than the device is
6375  * capable of, report the device's maximum possible bandwidth and the
6376  * upstream link that limits its performance.  If @verbose, always print
6377  * the available bandwidth, even if the device isn't constrained.
6378  */
6379 void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
6380 {
6381 	enum pcie_link_width width, width_cap;
6382 	enum pci_bus_speed speed, speed_cap;
6383 	struct pci_dev *limiting_dev = NULL;
6384 	u32 bw_avail, bw_cap;
6385 
6386 	bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
6387 	bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
6388 
6389 	if (bw_avail >= bw_cap && verbose)
6390 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
6391 			 bw_cap / 1000, bw_cap % 1000,
6392 			 pci_speed_string(speed_cap), width_cap);
6393 	else if (bw_avail < bw_cap)
6394 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
6395 			 bw_avail / 1000, bw_avail % 1000,
6396 			 pci_speed_string(speed), width,
6397 			 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
6398 			 bw_cap / 1000, bw_cap % 1000,
6399 			 pci_speed_string(speed_cap), width_cap);
6400 }
6401 
6402 /**
6403  * pcie_print_link_status - Report the PCI device's link speed and width
6404  * @dev: PCI device to query
6405  *
6406  * Report the available bandwidth at the device.
6407  */
6408 void pcie_print_link_status(struct pci_dev *dev)
6409 {
6410 	__pcie_print_link_status(dev, true);
6411 }
6412 EXPORT_SYMBOL(pcie_print_link_status);
6413 
6414 /**
6415  * pci_select_bars - Make BAR mask from the type of resource
6416  * @dev: the PCI device for which BAR mask is made
6417  * @flags: resource type mask to be selected
6418  *
6419  * This helper routine makes bar mask from the type of resource.
6420  */
6421 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
6422 {
6423 	int i, bars = 0;
6424 	for (i = 0; i < PCI_NUM_RESOURCES; i++)
6425 		if (pci_resource_flags(dev, i) & flags)
6426 			bars |= (1 << i);
6427 	return bars;
6428 }
6429 EXPORT_SYMBOL(pci_select_bars);
6430 
6431 /* Some architectures require additional programming to enable VGA */
6432 static arch_set_vga_state_t arch_set_vga_state;
6433 
6434 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6435 {
6436 	arch_set_vga_state = func;	/* NULL disables */
6437 }
6438 
6439 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
6440 				  unsigned int command_bits, u32 flags)
6441 {
6442 	if (arch_set_vga_state)
6443 		return arch_set_vga_state(dev, decode, command_bits,
6444 						flags);
6445 	return 0;
6446 }
6447 
6448 /**
6449  * pci_set_vga_state - set VGA decode state on device and parents if requested
6450  * @dev: the PCI device
6451  * @decode: true = enable decoding, false = disable decoding
6452  * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6453  * @flags: traverse ancestors and change bridges
6454  * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6455  */
6456 int pci_set_vga_state(struct pci_dev *dev, bool decode,
6457 		      unsigned int command_bits, u32 flags)
6458 {
6459 	struct pci_bus *bus;
6460 	struct pci_dev *bridge;
6461 	u16 cmd;
6462 	int rc;
6463 
6464 	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6465 
6466 	/* ARCH specific VGA enables */
6467 	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6468 	if (rc)
6469 		return rc;
6470 
6471 	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6472 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
6473 		if (decode)
6474 			cmd |= command_bits;
6475 		else
6476 			cmd &= ~command_bits;
6477 		pci_write_config_word(dev, PCI_COMMAND, cmd);
6478 	}
6479 
6480 	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6481 		return 0;
6482 
6483 	bus = dev->bus;
6484 	while (bus) {
6485 		bridge = bus->self;
6486 		if (bridge) {
6487 			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6488 					     &cmd);
6489 			if (decode)
6490 				cmd |= PCI_BRIDGE_CTL_VGA;
6491 			else
6492 				cmd &= ~PCI_BRIDGE_CTL_VGA;
6493 			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6494 					      cmd);
6495 		}
6496 		bus = bus->parent;
6497 	}
6498 	return 0;
6499 }
6500 
6501 #ifdef CONFIG_ACPI
6502 bool pci_pr3_present(struct pci_dev *pdev)
6503 {
6504 	struct acpi_device *adev;
6505 
6506 	if (acpi_disabled)
6507 		return false;
6508 
6509 	adev = ACPI_COMPANION(&pdev->dev);
6510 	if (!adev)
6511 		return false;
6512 
6513 	return adev->power.flags.power_resources &&
6514 		acpi_has_method(adev->handle, "_PR3");
6515 }
6516 EXPORT_SYMBOL_GPL(pci_pr3_present);
6517 #endif
6518 
6519 /**
6520  * pci_add_dma_alias - Add a DMA devfn alias for a device
6521  * @dev: the PCI device for which alias is added
6522  * @devfn_from: alias slot and function
6523  * @nr_devfns: number of subsequent devfns to alias
6524  *
6525  * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6526  * which is used to program permissible bus-devfn source addresses for DMA
6527  * requests in an IOMMU.  These aliases factor into IOMMU group creation
6528  * and are useful for devices generating DMA requests beyond or different
6529  * from their logical bus-devfn.  Examples include device quirks where the
6530  * device simply uses the wrong devfn, as well as non-transparent bridges
6531  * where the alias may be a proxy for devices in another domain.
6532  *
6533  * IOMMU group creation is performed during device discovery or addition,
6534  * prior to any potential DMA mapping and therefore prior to driver probing
6535  * (especially for userspace assigned devices where IOMMU group definition
6536  * cannot be left as a userspace activity).  DMA aliases should therefore
6537  * be configured via quirks, such as the PCI fixup header quirk.
6538  */
6539 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from,
6540 		       unsigned int nr_devfns)
6541 {
6542 	int devfn_to;
6543 
6544 	nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from);
6545 	devfn_to = devfn_from + nr_devfns - 1;
6546 
6547 	if (!dev->dma_alias_mask)
6548 		dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6549 	if (!dev->dma_alias_mask) {
6550 		pci_warn(dev, "Unable to allocate DMA alias mask\n");
6551 		return;
6552 	}
6553 
6554 	bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6555 
6556 	if (nr_devfns == 1)
6557 		pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6558 				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6559 	else if (nr_devfns > 1)
6560 		pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6561 				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6562 				PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6563 }
6564 
6565 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6566 {
6567 	return (dev1->dma_alias_mask &&
6568 		test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6569 	       (dev2->dma_alias_mask &&
6570 		test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6571 	       pci_real_dma_dev(dev1) == dev2 ||
6572 	       pci_real_dma_dev(dev2) == dev1;
6573 }
6574 
6575 bool pci_device_is_present(struct pci_dev *pdev)
6576 {
6577 	u32 v;
6578 
6579 	/* Check PF if pdev is a VF, since VF Vendor/Device IDs are 0xffff */
6580 	pdev = pci_physfn(pdev);
6581 	if (pci_dev_is_disconnected(pdev))
6582 		return false;
6583 	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6584 }
6585 EXPORT_SYMBOL_GPL(pci_device_is_present);
6586 
6587 void pci_ignore_hotplug(struct pci_dev *dev)
6588 {
6589 	struct pci_dev *bridge = dev->bus->self;
6590 
6591 	dev->ignore_hotplug = 1;
6592 	/* Propagate the "ignore hotplug" setting to the parent bridge. */
6593 	if (bridge)
6594 		bridge->ignore_hotplug = 1;
6595 }
6596 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6597 
6598 /**
6599  * pci_real_dma_dev - Get PCI DMA device for PCI device
6600  * @dev: the PCI device that may have a PCI DMA alias
6601  *
6602  * Permits the platform to provide architecture-specific functionality to
6603  * devices needing to alias DMA to another PCI device on another PCI bus. If
6604  * the PCI device is on the same bus, it is recommended to use
6605  * pci_add_dma_alias(). This is the default implementation. Architecture
6606  * implementations can override this.
6607  */
6608 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6609 {
6610 	return dev;
6611 }
6612 
6613 resource_size_t __weak pcibios_default_alignment(void)
6614 {
6615 	return 0;
6616 }
6617 
6618 /*
6619  * Arches that don't want to expose struct resource to userland as-is in
6620  * sysfs and /proc can implement their own pci_resource_to_user().
6621  */
6622 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6623 				 const struct resource *rsrc,
6624 				 resource_size_t *start, resource_size_t *end)
6625 {
6626 	*start = rsrc->start;
6627 	*end = rsrc->end;
6628 }
6629 
6630 static char *resource_alignment_param;
6631 static DEFINE_SPINLOCK(resource_alignment_lock);
6632 
6633 /**
6634  * pci_specified_resource_alignment - get resource alignment specified by user.
6635  * @dev: the PCI device to get
6636  * @resize: whether or not to change resources' size when reassigning alignment
6637  *
6638  * RETURNS: Resource alignment if it is specified.
6639  *          Zero if it is not specified.
6640  */
6641 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6642 							bool *resize)
6643 {
6644 	int align_order, count;
6645 	resource_size_t align = pcibios_default_alignment();
6646 	const char *p;
6647 	int ret;
6648 
6649 	spin_lock(&resource_alignment_lock);
6650 	p = resource_alignment_param;
6651 	if (!p || !*p)
6652 		goto out;
6653 	if (pci_has_flag(PCI_PROBE_ONLY)) {
6654 		align = 0;
6655 		pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6656 		goto out;
6657 	}
6658 
6659 	while (*p) {
6660 		count = 0;
6661 		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6662 		    p[count] == '@') {
6663 			p += count + 1;
6664 			if (align_order > 63) {
6665 				pr_err("PCI: Invalid requested alignment (order %d)\n",
6666 				       align_order);
6667 				align_order = PAGE_SHIFT;
6668 			}
6669 		} else {
6670 			align_order = PAGE_SHIFT;
6671 		}
6672 
6673 		ret = pci_dev_str_match(dev, p, &p);
6674 		if (ret == 1) {
6675 			*resize = true;
6676 			align = 1ULL << align_order;
6677 			break;
6678 		} else if (ret < 0) {
6679 			pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6680 			       p);
6681 			break;
6682 		}
6683 
6684 		if (*p != ';' && *p != ',') {
6685 			/* End of param or invalid format */
6686 			break;
6687 		}
6688 		p++;
6689 	}
6690 out:
6691 	spin_unlock(&resource_alignment_lock);
6692 	return align;
6693 }
6694 
6695 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6696 					   resource_size_t align, bool resize)
6697 {
6698 	struct resource *r = &dev->resource[bar];
6699 	resource_size_t size;
6700 
6701 	if (!(r->flags & IORESOURCE_MEM))
6702 		return;
6703 
6704 	if (r->flags & IORESOURCE_PCI_FIXED) {
6705 		pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6706 			 bar, r, (unsigned long long)align);
6707 		return;
6708 	}
6709 
6710 	size = resource_size(r);
6711 	if (size >= align)
6712 		return;
6713 
6714 	/*
6715 	 * Increase the alignment of the resource.  There are two ways we
6716 	 * can do this:
6717 	 *
6718 	 * 1) Increase the size of the resource.  BARs are aligned on their
6719 	 *    size, so when we reallocate space for this resource, we'll
6720 	 *    allocate it with the larger alignment.  This also prevents
6721 	 *    assignment of any other BARs inside the alignment region, so
6722 	 *    if we're requesting page alignment, this means no other BARs
6723 	 *    will share the page.
6724 	 *
6725 	 *    The disadvantage is that this makes the resource larger than
6726 	 *    the hardware BAR, which may break drivers that compute things
6727 	 *    based on the resource size, e.g., to find registers at a
6728 	 *    fixed offset before the end of the BAR.
6729 	 *
6730 	 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6731 	 *    set r->start to the desired alignment.  By itself this
6732 	 *    doesn't prevent other BARs being put inside the alignment
6733 	 *    region, but if we realign *every* resource of every device in
6734 	 *    the system, none of them will share an alignment region.
6735 	 *
6736 	 * When the user has requested alignment for only some devices via
6737 	 * the "pci=resource_alignment" argument, "resize" is true and we
6738 	 * use the first method.  Otherwise we assume we're aligning all
6739 	 * devices and we use the second.
6740 	 */
6741 
6742 	pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6743 		 bar, r, (unsigned long long)align);
6744 
6745 	if (resize) {
6746 		r->start = 0;
6747 		r->end = align - 1;
6748 	} else {
6749 		r->flags &= ~IORESOURCE_SIZEALIGN;
6750 		r->flags |= IORESOURCE_STARTALIGN;
6751 		r->start = align;
6752 		r->end = r->start + size - 1;
6753 	}
6754 	r->flags |= IORESOURCE_UNSET;
6755 }
6756 
6757 /*
6758  * This function disables memory decoding and releases memory resources
6759  * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6760  * It also rounds up size to specified alignment.
6761  * Later on, the kernel will assign page-aligned memory resource back
6762  * to the device.
6763  */
6764 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6765 {
6766 	int i;
6767 	struct resource *r;
6768 	resource_size_t align;
6769 	u16 command;
6770 	bool resize = false;
6771 
6772 	/*
6773 	 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6774 	 * 3.4.1.11.  Their resources are allocated from the space
6775 	 * described by the VF BARx register in the PF's SR-IOV capability.
6776 	 * We can't influence their alignment here.
6777 	 */
6778 	if (dev->is_virtfn)
6779 		return;
6780 
6781 	/* check if specified PCI is target device to reassign */
6782 	align = pci_specified_resource_alignment(dev, &resize);
6783 	if (!align)
6784 		return;
6785 
6786 	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6787 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6788 		pci_warn(dev, "Can't reassign resources to host bridge\n");
6789 		return;
6790 	}
6791 
6792 	pci_read_config_word(dev, PCI_COMMAND, &command);
6793 	command &= ~PCI_COMMAND_MEMORY;
6794 	pci_write_config_word(dev, PCI_COMMAND, command);
6795 
6796 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6797 		pci_request_resource_alignment(dev, i, align, resize);
6798 
6799 	/*
6800 	 * Need to disable bridge's resource window,
6801 	 * to enable the kernel to reassign new resource
6802 	 * window later on.
6803 	 */
6804 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6805 		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6806 			r = &dev->resource[i];
6807 			if (!(r->flags & IORESOURCE_MEM))
6808 				continue;
6809 			r->flags |= IORESOURCE_UNSET;
6810 			r->end = resource_size(r) - 1;
6811 			r->start = 0;
6812 		}
6813 		pci_disable_bridge_window(dev);
6814 	}
6815 }
6816 
6817 static ssize_t resource_alignment_show(const struct bus_type *bus, char *buf)
6818 {
6819 	size_t count = 0;
6820 
6821 	spin_lock(&resource_alignment_lock);
6822 	if (resource_alignment_param)
6823 		count = sysfs_emit(buf, "%s\n", resource_alignment_param);
6824 	spin_unlock(&resource_alignment_lock);
6825 
6826 	return count;
6827 }
6828 
6829 static ssize_t resource_alignment_store(const struct bus_type *bus,
6830 					const char *buf, size_t count)
6831 {
6832 	char *param, *old, *end;
6833 
6834 	if (count >= (PAGE_SIZE - 1))
6835 		return -EINVAL;
6836 
6837 	param = kstrndup(buf, count, GFP_KERNEL);
6838 	if (!param)
6839 		return -ENOMEM;
6840 
6841 	end = strchr(param, '\n');
6842 	if (end)
6843 		*end = '\0';
6844 
6845 	spin_lock(&resource_alignment_lock);
6846 	old = resource_alignment_param;
6847 	if (strlen(param)) {
6848 		resource_alignment_param = param;
6849 	} else {
6850 		kfree(param);
6851 		resource_alignment_param = NULL;
6852 	}
6853 	spin_unlock(&resource_alignment_lock);
6854 
6855 	kfree(old);
6856 
6857 	return count;
6858 }
6859 
6860 static BUS_ATTR_RW(resource_alignment);
6861 
6862 static int __init pci_resource_alignment_sysfs_init(void)
6863 {
6864 	return bus_create_file(&pci_bus_type,
6865 					&bus_attr_resource_alignment);
6866 }
6867 late_initcall(pci_resource_alignment_sysfs_init);
6868 
6869 static void pci_no_domains(void)
6870 {
6871 #ifdef CONFIG_PCI_DOMAINS
6872 	pci_domains_supported = 0;
6873 #endif
6874 }
6875 
6876 #ifdef CONFIG_PCI_DOMAINS_GENERIC
6877 static DEFINE_IDA(pci_domain_nr_static_ida);
6878 static DEFINE_IDA(pci_domain_nr_dynamic_ida);
6879 
6880 static void of_pci_reserve_static_domain_nr(void)
6881 {
6882 	struct device_node *np;
6883 	int domain_nr;
6884 
6885 	for_each_node_by_type(np, "pci") {
6886 		domain_nr = of_get_pci_domain_nr(np);
6887 		if (domain_nr < 0)
6888 			continue;
6889 		/*
6890 		 * Permanently allocate domain_nr in dynamic_ida
6891 		 * to prevent it from dynamic allocation.
6892 		 */
6893 		ida_alloc_range(&pci_domain_nr_dynamic_ida,
6894 				domain_nr, domain_nr, GFP_KERNEL);
6895 	}
6896 }
6897 
6898 static int of_pci_bus_find_domain_nr(struct device *parent)
6899 {
6900 	static bool static_domains_reserved = false;
6901 	int domain_nr;
6902 
6903 	/* On the first call scan device tree for static allocations. */
6904 	if (!static_domains_reserved) {
6905 		of_pci_reserve_static_domain_nr();
6906 		static_domains_reserved = true;
6907 	}
6908 
6909 	if (parent) {
6910 		/*
6911 		 * If domain is in DT, allocate it in static IDA.  This
6912 		 * prevents duplicate static allocations in case of errors
6913 		 * in DT.
6914 		 */
6915 		domain_nr = of_get_pci_domain_nr(parent->of_node);
6916 		if (domain_nr >= 0)
6917 			return ida_alloc_range(&pci_domain_nr_static_ida,
6918 					       domain_nr, domain_nr,
6919 					       GFP_KERNEL);
6920 	}
6921 
6922 	/*
6923 	 * If domain was not specified in DT, choose a free ID from dynamic
6924 	 * allocations. All domain numbers from DT are permanently in
6925 	 * dynamic allocations to prevent assigning them to other DT nodes
6926 	 * without static domain.
6927 	 */
6928 	return ida_alloc(&pci_domain_nr_dynamic_ida, GFP_KERNEL);
6929 }
6930 
6931 static void of_pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent)
6932 {
6933 	if (bus->domain_nr < 0)
6934 		return;
6935 
6936 	/* Release domain from IDA where it was allocated. */
6937 	if (of_get_pci_domain_nr(parent->of_node) == bus->domain_nr)
6938 		ida_free(&pci_domain_nr_static_ida, bus->domain_nr);
6939 	else
6940 		ida_free(&pci_domain_nr_dynamic_ida, bus->domain_nr);
6941 }
6942 
6943 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6944 {
6945 	return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6946 			       acpi_pci_bus_find_domain_nr(bus);
6947 }
6948 
6949 void pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent)
6950 {
6951 	if (!acpi_disabled)
6952 		return;
6953 	of_pci_bus_release_domain_nr(bus, parent);
6954 }
6955 #endif
6956 
6957 /**
6958  * pci_ext_cfg_avail - can we access extended PCI config space?
6959  *
6960  * Returns 1 if we can access PCI extended config space (offsets
6961  * greater than 0xff). This is the default implementation. Architecture
6962  * implementations can override this.
6963  */
6964 int __weak pci_ext_cfg_avail(void)
6965 {
6966 	return 1;
6967 }
6968 
6969 void __weak pci_fixup_cardbus(struct pci_bus *bus)
6970 {
6971 }
6972 EXPORT_SYMBOL(pci_fixup_cardbus);
6973 
6974 static int __init pci_setup(char *str)
6975 {
6976 	while (str) {
6977 		char *k = strchr(str, ',');
6978 		if (k)
6979 			*k++ = 0;
6980 		if (*str && (str = pcibios_setup(str)) && *str) {
6981 			if (!strcmp(str, "nomsi")) {
6982 				pci_no_msi();
6983 			} else if (!strncmp(str, "noats", 5)) {
6984 				pr_info("PCIe: ATS is disabled\n");
6985 				pcie_ats_disabled = true;
6986 			} else if (!strcmp(str, "noaer")) {
6987 				pci_no_aer();
6988 			} else if (!strcmp(str, "earlydump")) {
6989 				pci_early_dump = true;
6990 			} else if (!strncmp(str, "realloc=", 8)) {
6991 				pci_realloc_get_opt(str + 8);
6992 			} else if (!strncmp(str, "realloc", 7)) {
6993 				pci_realloc_get_opt("on");
6994 			} else if (!strcmp(str, "nodomains")) {
6995 				pci_no_domains();
6996 			} else if (!strncmp(str, "noari", 5)) {
6997 				pcie_ari_disabled = true;
6998 			} else if (!strncmp(str, "cbiosize=", 9)) {
6999 				pci_cardbus_io_size = memparse(str + 9, &str);
7000 			} else if (!strncmp(str, "cbmemsize=", 10)) {
7001 				pci_cardbus_mem_size = memparse(str + 10, &str);
7002 			} else if (!strncmp(str, "resource_alignment=", 19)) {
7003 				resource_alignment_param = str + 19;
7004 			} else if (!strncmp(str, "ecrc=", 5)) {
7005 				pcie_ecrc_get_policy(str + 5);
7006 			} else if (!strncmp(str, "hpiosize=", 9)) {
7007 				pci_hotplug_io_size = memparse(str + 9, &str);
7008 			} else if (!strncmp(str, "hpmmiosize=", 11)) {
7009 				pci_hotplug_mmio_size = memparse(str + 11, &str);
7010 			} else if (!strncmp(str, "hpmmioprefsize=", 15)) {
7011 				pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
7012 			} else if (!strncmp(str, "hpmemsize=", 10)) {
7013 				pci_hotplug_mmio_size = memparse(str + 10, &str);
7014 				pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
7015 			} else if (!strncmp(str, "hpbussize=", 10)) {
7016 				pci_hotplug_bus_size =
7017 					simple_strtoul(str + 10, &str, 0);
7018 				if (pci_hotplug_bus_size > 0xff)
7019 					pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
7020 			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
7021 				pcie_bus_config = PCIE_BUS_TUNE_OFF;
7022 			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
7023 				pcie_bus_config = PCIE_BUS_SAFE;
7024 			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
7025 				pcie_bus_config = PCIE_BUS_PERFORMANCE;
7026 			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
7027 				pcie_bus_config = PCIE_BUS_PEER2PEER;
7028 			} else if (!strncmp(str, "pcie_scan_all", 13)) {
7029 				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
7030 			} else if (!strncmp(str, "disable_acs_redir=", 18)) {
7031 				disable_acs_redir_param = str + 18;
7032 			} else {
7033 				pr_err("PCI: Unknown option `%s'\n", str);
7034 			}
7035 		}
7036 		str = k;
7037 	}
7038 	return 0;
7039 }
7040 early_param("pci", pci_setup);
7041 
7042 /*
7043  * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
7044  * in pci_setup(), above, to point to data in the __initdata section which
7045  * will be freed after the init sequence is complete. We can't allocate memory
7046  * in pci_setup() because some architectures do not have any memory allocation
7047  * service available during an early_param() call. So we allocate memory and
7048  * copy the variable here before the init section is freed.
7049  *
7050  */
7051 static int __init pci_realloc_setup_params(void)
7052 {
7053 	resource_alignment_param = kstrdup(resource_alignment_param,
7054 					   GFP_KERNEL);
7055 	disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
7056 
7057 	return 0;
7058 }
7059 pure_initcall(pci_realloc_setup_params);
7060