xref: /openbmc/linux/drivers/pci/pci.c (revision 95b384f9)
1 /*
2  *	PCI Bus Services, see include/linux/pci.h for further explanation.
3  *
4  *	Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5  *	David Mosberger-Tang
6  *
7  *	Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/of.h>
14 #include <linux/of_pci.h>
15 #include <linux/pci.h>
16 #include <linux/pm.h>
17 #include <linux/slab.h>
18 #include <linux/module.h>
19 #include <linux/spinlock.h>
20 #include <linux/string.h>
21 #include <linux/log2.h>
22 #include <linux/pci-aspm.h>
23 #include <linux/pm_wakeup.h>
24 #include <linux/interrupt.h>
25 #include <linux/device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/pci_hotplug.h>
28 #include <asm/setup.h>
29 #include <linux/aer.h>
30 #include "pci.h"
31 
32 const char *pci_power_names[] = {
33 	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
34 };
35 EXPORT_SYMBOL_GPL(pci_power_names);
36 
37 int isa_dma_bridge_buggy;
38 EXPORT_SYMBOL(isa_dma_bridge_buggy);
39 
40 int pci_pci_problems;
41 EXPORT_SYMBOL(pci_pci_problems);
42 
43 unsigned int pci_pm_d3_delay;
44 
45 static void pci_pme_list_scan(struct work_struct *work);
46 
47 static LIST_HEAD(pci_pme_list);
48 static DEFINE_MUTEX(pci_pme_list_mutex);
49 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
50 
51 struct pci_pme_device {
52 	struct list_head list;
53 	struct pci_dev *dev;
54 };
55 
56 #define PME_TIMEOUT 1000 /* How long between PME checks */
57 
58 static void pci_dev_d3_sleep(struct pci_dev *dev)
59 {
60 	unsigned int delay = dev->d3_delay;
61 
62 	if (delay < pci_pm_d3_delay)
63 		delay = pci_pm_d3_delay;
64 
65 	msleep(delay);
66 }
67 
68 #ifdef CONFIG_PCI_DOMAINS
69 int pci_domains_supported = 1;
70 #endif
71 
72 #define DEFAULT_CARDBUS_IO_SIZE		(256)
73 #define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
74 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
75 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
76 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
77 
78 #define DEFAULT_HOTPLUG_IO_SIZE		(256)
79 #define DEFAULT_HOTPLUG_MEM_SIZE	(2*1024*1024)
80 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
81 unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
82 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
83 
84 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
85 
86 /*
87  * The default CLS is used if arch didn't set CLS explicitly and not
88  * all pci devices agree on the same value.  Arch can override either
89  * the dfl or actual value as it sees fit.  Don't forget this is
90  * measured in 32-bit words, not bytes.
91  */
92 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
93 u8 pci_cache_line_size;
94 
95 /*
96  * If we set up a device for bus mastering, we need to check the latency
97  * timer as certain BIOSes forget to set it properly.
98  */
99 unsigned int pcibios_max_latency = 255;
100 
101 /* If set, the PCIe ARI capability will not be used. */
102 static bool pcie_ari_disabled;
103 
104 /**
105  * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
106  * @bus: pointer to PCI bus structure to search
107  *
108  * Given a PCI bus, returns the highest PCI bus number present in the set
109  * including the given PCI bus and its list of child PCI buses.
110  */
111 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
112 {
113 	struct pci_bus *tmp;
114 	unsigned char max, n;
115 
116 	max = bus->busn_res.end;
117 	list_for_each_entry(tmp, &bus->children, node) {
118 		n = pci_bus_max_busnr(tmp);
119 		if (n > max)
120 			max = n;
121 	}
122 	return max;
123 }
124 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
125 
126 #ifdef CONFIG_HAS_IOMEM
127 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
128 {
129 	struct resource *res = &pdev->resource[bar];
130 
131 	/*
132 	 * Make sure the BAR is actually a memory resource, not an IO resource
133 	 */
134 	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
135 		dev_warn(&pdev->dev, "can't ioremap BAR %d: %pR\n", bar, res);
136 		return NULL;
137 	}
138 	return ioremap_nocache(res->start, resource_size(res));
139 }
140 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
141 
142 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
143 {
144 	/*
145 	 * Make sure the BAR is actually a memory resource, not an IO resource
146 	 */
147 	if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
148 		WARN_ON(1);
149 		return NULL;
150 	}
151 	return ioremap_wc(pci_resource_start(pdev, bar),
152 			  pci_resource_len(pdev, bar));
153 }
154 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
155 #endif
156 
157 
158 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
159 				   u8 pos, int cap, int *ttl)
160 {
161 	u8 id;
162 	u16 ent;
163 
164 	pci_bus_read_config_byte(bus, devfn, pos, &pos);
165 
166 	while ((*ttl)--) {
167 		if (pos < 0x40)
168 			break;
169 		pos &= ~3;
170 		pci_bus_read_config_word(bus, devfn, pos, &ent);
171 
172 		id = ent & 0xff;
173 		if (id == 0xff)
174 			break;
175 		if (id == cap)
176 			return pos;
177 		pos = (ent >> 8);
178 	}
179 	return 0;
180 }
181 
182 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
183 			       u8 pos, int cap)
184 {
185 	int ttl = PCI_FIND_CAP_TTL;
186 
187 	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
188 }
189 
190 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
191 {
192 	return __pci_find_next_cap(dev->bus, dev->devfn,
193 				   pos + PCI_CAP_LIST_NEXT, cap);
194 }
195 EXPORT_SYMBOL_GPL(pci_find_next_capability);
196 
197 static int __pci_bus_find_cap_start(struct pci_bus *bus,
198 				    unsigned int devfn, u8 hdr_type)
199 {
200 	u16 status;
201 
202 	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
203 	if (!(status & PCI_STATUS_CAP_LIST))
204 		return 0;
205 
206 	switch (hdr_type) {
207 	case PCI_HEADER_TYPE_NORMAL:
208 	case PCI_HEADER_TYPE_BRIDGE:
209 		return PCI_CAPABILITY_LIST;
210 	case PCI_HEADER_TYPE_CARDBUS:
211 		return PCI_CB_CAPABILITY_LIST;
212 	}
213 
214 	return 0;
215 }
216 
217 /**
218  * pci_find_capability - query for devices' capabilities
219  * @dev: PCI device to query
220  * @cap: capability code
221  *
222  * Tell if a device supports a given PCI capability.
223  * Returns the address of the requested capability structure within the
224  * device's PCI configuration space or 0 in case the device does not
225  * support it.  Possible values for @cap:
226  *
227  *  %PCI_CAP_ID_PM           Power Management
228  *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
229  *  %PCI_CAP_ID_VPD          Vital Product Data
230  *  %PCI_CAP_ID_SLOTID       Slot Identification
231  *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
232  *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
233  *  %PCI_CAP_ID_PCIX         PCI-X
234  *  %PCI_CAP_ID_EXP          PCI Express
235  */
236 int pci_find_capability(struct pci_dev *dev, int cap)
237 {
238 	int pos;
239 
240 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
241 	if (pos)
242 		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
243 
244 	return pos;
245 }
246 EXPORT_SYMBOL(pci_find_capability);
247 
248 /**
249  * pci_bus_find_capability - query for devices' capabilities
250  * @bus:   the PCI bus to query
251  * @devfn: PCI device to query
252  * @cap:   capability code
253  *
254  * Like pci_find_capability() but works for pci devices that do not have a
255  * pci_dev structure set up yet.
256  *
257  * Returns the address of the requested capability structure within the
258  * device's PCI configuration space or 0 in case the device does not
259  * support it.
260  */
261 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
262 {
263 	int pos;
264 	u8 hdr_type;
265 
266 	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
267 
268 	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
269 	if (pos)
270 		pos = __pci_find_next_cap(bus, devfn, pos, cap);
271 
272 	return pos;
273 }
274 EXPORT_SYMBOL(pci_bus_find_capability);
275 
276 /**
277  * pci_find_next_ext_capability - Find an extended capability
278  * @dev: PCI device to query
279  * @start: address at which to start looking (0 to start at beginning of list)
280  * @cap: capability code
281  *
282  * Returns the address of the next matching extended capability structure
283  * within the device's PCI configuration space or 0 if the device does
284  * not support it.  Some capabilities can occur several times, e.g., the
285  * vendor-specific capability, and this provides a way to find them all.
286  */
287 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
288 {
289 	u32 header;
290 	int ttl;
291 	int pos = PCI_CFG_SPACE_SIZE;
292 
293 	/* minimum 8 bytes per capability */
294 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
295 
296 	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
297 		return 0;
298 
299 	if (start)
300 		pos = start;
301 
302 	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
303 		return 0;
304 
305 	/*
306 	 * If we have no capabilities, this is indicated by cap ID,
307 	 * cap version and next pointer all being 0.
308 	 */
309 	if (header == 0)
310 		return 0;
311 
312 	while (ttl-- > 0) {
313 		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
314 			return pos;
315 
316 		pos = PCI_EXT_CAP_NEXT(header);
317 		if (pos < PCI_CFG_SPACE_SIZE)
318 			break;
319 
320 		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
321 			break;
322 	}
323 
324 	return 0;
325 }
326 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
327 
328 /**
329  * pci_find_ext_capability - Find an extended capability
330  * @dev: PCI device to query
331  * @cap: capability code
332  *
333  * Returns the address of the requested extended capability structure
334  * within the device's PCI configuration space or 0 if the device does
335  * not support it.  Possible values for @cap:
336  *
337  *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
338  *  %PCI_EXT_CAP_ID_VC		Virtual Channel
339  *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
340  *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
341  */
342 int pci_find_ext_capability(struct pci_dev *dev, int cap)
343 {
344 	return pci_find_next_ext_capability(dev, 0, cap);
345 }
346 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
347 
348 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
349 {
350 	int rc, ttl = PCI_FIND_CAP_TTL;
351 	u8 cap, mask;
352 
353 	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
354 		mask = HT_3BIT_CAP_MASK;
355 	else
356 		mask = HT_5BIT_CAP_MASK;
357 
358 	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
359 				      PCI_CAP_ID_HT, &ttl);
360 	while (pos) {
361 		rc = pci_read_config_byte(dev, pos + 3, &cap);
362 		if (rc != PCIBIOS_SUCCESSFUL)
363 			return 0;
364 
365 		if ((cap & mask) == ht_cap)
366 			return pos;
367 
368 		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
369 					      pos + PCI_CAP_LIST_NEXT,
370 					      PCI_CAP_ID_HT, &ttl);
371 	}
372 
373 	return 0;
374 }
375 /**
376  * pci_find_next_ht_capability - query a device's Hypertransport capabilities
377  * @dev: PCI device to query
378  * @pos: Position from which to continue searching
379  * @ht_cap: Hypertransport capability code
380  *
381  * To be used in conjunction with pci_find_ht_capability() to search for
382  * all capabilities matching @ht_cap. @pos should always be a value returned
383  * from pci_find_ht_capability().
384  *
385  * NB. To be 100% safe against broken PCI devices, the caller should take
386  * steps to avoid an infinite loop.
387  */
388 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
389 {
390 	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
391 }
392 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
393 
394 /**
395  * pci_find_ht_capability - query a device's Hypertransport capabilities
396  * @dev: PCI device to query
397  * @ht_cap: Hypertransport capability code
398  *
399  * Tell if a device supports a given Hypertransport capability.
400  * Returns an address within the device's PCI configuration space
401  * or 0 in case the device does not support the request capability.
402  * The address points to the PCI capability, of type PCI_CAP_ID_HT,
403  * which has a Hypertransport capability matching @ht_cap.
404  */
405 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
406 {
407 	int pos;
408 
409 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
410 	if (pos)
411 		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
412 
413 	return pos;
414 }
415 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
416 
417 /**
418  * pci_find_parent_resource - return resource region of parent bus of given region
419  * @dev: PCI device structure contains resources to be searched
420  * @res: child resource record for which parent is sought
421  *
422  *  For given resource region of given device, return the resource
423  *  region of parent bus the given region is contained in.
424  */
425 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
426 					  struct resource *res)
427 {
428 	const struct pci_bus *bus = dev->bus;
429 	struct resource *r;
430 	int i;
431 
432 	pci_bus_for_each_resource(bus, r, i) {
433 		if (!r)
434 			continue;
435 		if (res->start && resource_contains(r, res)) {
436 
437 			/*
438 			 * If the window is prefetchable but the BAR is
439 			 * not, the allocator made a mistake.
440 			 */
441 			if (r->flags & IORESOURCE_PREFETCH &&
442 			    !(res->flags & IORESOURCE_PREFETCH))
443 				return NULL;
444 
445 			/*
446 			 * If we're below a transparent bridge, there may
447 			 * be both a positively-decoded aperture and a
448 			 * subtractively-decoded region that contain the BAR.
449 			 * We want the positively-decoded one, so this depends
450 			 * on pci_bus_for_each_resource() giving us those
451 			 * first.
452 			 */
453 			return r;
454 		}
455 	}
456 	return NULL;
457 }
458 EXPORT_SYMBOL(pci_find_parent_resource);
459 
460 /**
461  * pci_find_pcie_root_port - return PCIe Root Port
462  * @dev: PCI device to query
463  *
464  * Traverse up the parent chain and return the PCIe Root Port PCI Device
465  * for a given PCI Device.
466  */
467 struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev)
468 {
469 	struct pci_dev *bridge, *highest_pcie_bridge = NULL;
470 
471 	bridge = pci_upstream_bridge(dev);
472 	while (bridge && pci_is_pcie(bridge)) {
473 		highest_pcie_bridge = bridge;
474 		bridge = pci_upstream_bridge(bridge);
475 	}
476 
477 	if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT)
478 		return NULL;
479 
480 	return highest_pcie_bridge;
481 }
482 EXPORT_SYMBOL(pci_find_pcie_root_port);
483 
484 /**
485  * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
486  * @dev: the PCI device to operate on
487  * @pos: config space offset of status word
488  * @mask: mask of bit(s) to care about in status word
489  *
490  * Return 1 when mask bit(s) in status word clear, 0 otherwise.
491  */
492 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
493 {
494 	int i;
495 
496 	/* Wait for Transaction Pending bit clean */
497 	for (i = 0; i < 4; i++) {
498 		u16 status;
499 		if (i)
500 			msleep((1 << (i - 1)) * 100);
501 
502 		pci_read_config_word(dev, pos, &status);
503 		if (!(status & mask))
504 			return 1;
505 	}
506 
507 	return 0;
508 }
509 
510 /**
511  * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
512  * @dev: PCI device to have its BARs restored
513  *
514  * Restore the BAR values for a given device, so as to make it
515  * accessible by its driver.
516  */
517 static void pci_restore_bars(struct pci_dev *dev)
518 {
519 	int i;
520 
521 	/* Per SR-IOV spec 3.4.1.11, VF BARs are RO zero */
522 	if (dev->is_virtfn)
523 		return;
524 
525 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
526 		pci_update_resource(dev, i);
527 }
528 
529 static const struct pci_platform_pm_ops *pci_platform_pm;
530 
531 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
532 {
533 	if (!ops->is_manageable || !ops->set_state || !ops->choose_state
534 	    || !ops->sleep_wake)
535 		return -EINVAL;
536 	pci_platform_pm = ops;
537 	return 0;
538 }
539 
540 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
541 {
542 	return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
543 }
544 
545 static inline int platform_pci_set_power_state(struct pci_dev *dev,
546 					       pci_power_t t)
547 {
548 	return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
549 }
550 
551 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
552 {
553 	return pci_platform_pm ?
554 			pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
555 }
556 
557 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
558 {
559 	return pci_platform_pm ?
560 			pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
561 }
562 
563 static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable)
564 {
565 	return pci_platform_pm ?
566 			pci_platform_pm->run_wake(dev, enable) : -ENODEV;
567 }
568 
569 static inline bool platform_pci_need_resume(struct pci_dev *dev)
570 {
571 	return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
572 }
573 
574 /**
575  * pci_raw_set_power_state - Use PCI PM registers to set the power state of
576  *                           given PCI device
577  * @dev: PCI device to handle.
578  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
579  *
580  * RETURN VALUE:
581  * -EINVAL if the requested state is invalid.
582  * -EIO if device does not support PCI PM or its PM capabilities register has a
583  * wrong version, or device doesn't support the requested state.
584  * 0 if device already is in the requested state.
585  * 0 if device's power state has been successfully changed.
586  */
587 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
588 {
589 	u16 pmcsr;
590 	bool need_restore = false;
591 
592 	/* Check if we're already there */
593 	if (dev->current_state == state)
594 		return 0;
595 
596 	if (!dev->pm_cap)
597 		return -EIO;
598 
599 	if (state < PCI_D0 || state > PCI_D3hot)
600 		return -EINVAL;
601 
602 	/* Validate current state:
603 	 * Can enter D0 from any state, but if we can only go deeper
604 	 * to sleep if we're already in a low power state
605 	 */
606 	if (state != PCI_D0 && dev->current_state <= PCI_D3cold
607 	    && dev->current_state > state) {
608 		dev_err(&dev->dev, "invalid power transition (from state %d to %d)\n",
609 			dev->current_state, state);
610 		return -EINVAL;
611 	}
612 
613 	/* check if this device supports the desired state */
614 	if ((state == PCI_D1 && !dev->d1_support)
615 	   || (state == PCI_D2 && !dev->d2_support))
616 		return -EIO;
617 
618 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
619 
620 	/* If we're (effectively) in D3, force entire word to 0.
621 	 * This doesn't affect PME_Status, disables PME_En, and
622 	 * sets PowerState to 0.
623 	 */
624 	switch (dev->current_state) {
625 	case PCI_D0:
626 	case PCI_D1:
627 	case PCI_D2:
628 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
629 		pmcsr |= state;
630 		break;
631 	case PCI_D3hot:
632 	case PCI_D3cold:
633 	case PCI_UNKNOWN: /* Boot-up */
634 		if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
635 		 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
636 			need_restore = true;
637 		/* Fall-through: force to D0 */
638 	default:
639 		pmcsr = 0;
640 		break;
641 	}
642 
643 	/* enter specified state */
644 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
645 
646 	/* Mandatory power management transition delays */
647 	/* see PCI PM 1.1 5.6.1 table 18 */
648 	if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
649 		pci_dev_d3_sleep(dev);
650 	else if (state == PCI_D2 || dev->current_state == PCI_D2)
651 		udelay(PCI_PM_D2_DELAY);
652 
653 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
654 	dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
655 	if (dev->current_state != state && printk_ratelimit())
656 		dev_info(&dev->dev, "Refused to change power state, currently in D%d\n",
657 			 dev->current_state);
658 
659 	/*
660 	 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
661 	 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
662 	 * from D3hot to D0 _may_ perform an internal reset, thereby
663 	 * going to "D0 Uninitialized" rather than "D0 Initialized".
664 	 * For example, at least some versions of the 3c905B and the
665 	 * 3c556B exhibit this behaviour.
666 	 *
667 	 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
668 	 * devices in a D3hot state at boot.  Consequently, we need to
669 	 * restore at least the BARs so that the device will be
670 	 * accessible to its driver.
671 	 */
672 	if (need_restore)
673 		pci_restore_bars(dev);
674 
675 	if (dev->bus->self)
676 		pcie_aspm_pm_state_change(dev->bus->self);
677 
678 	return 0;
679 }
680 
681 /**
682  * pci_update_current_state - Read PCI power state of given device from its
683  *                            PCI PM registers and cache it
684  * @dev: PCI device to handle.
685  * @state: State to cache in case the device doesn't have the PM capability
686  */
687 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
688 {
689 	if (dev->pm_cap) {
690 		u16 pmcsr;
691 
692 		/*
693 		 * Configuration space is not accessible for device in
694 		 * D3cold, so just keep or set D3cold for safety
695 		 */
696 		if (dev->current_state == PCI_D3cold)
697 			return;
698 		if (state == PCI_D3cold) {
699 			dev->current_state = PCI_D3cold;
700 			return;
701 		}
702 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
703 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
704 	} else {
705 		dev->current_state = state;
706 	}
707 }
708 
709 /**
710  * pci_power_up - Put the given device into D0 forcibly
711  * @dev: PCI device to power up
712  */
713 void pci_power_up(struct pci_dev *dev)
714 {
715 	if (platform_pci_power_manageable(dev))
716 		platform_pci_set_power_state(dev, PCI_D0);
717 
718 	pci_raw_set_power_state(dev, PCI_D0);
719 	pci_update_current_state(dev, PCI_D0);
720 }
721 
722 /**
723  * pci_platform_power_transition - Use platform to change device power state
724  * @dev: PCI device to handle.
725  * @state: State to put the device into.
726  */
727 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
728 {
729 	int error;
730 
731 	if (platform_pci_power_manageable(dev)) {
732 		error = platform_pci_set_power_state(dev, state);
733 		if (!error)
734 			pci_update_current_state(dev, state);
735 	} else
736 		error = -ENODEV;
737 
738 	if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
739 		dev->current_state = PCI_D0;
740 
741 	return error;
742 }
743 
744 /**
745  * pci_wakeup - Wake up a PCI device
746  * @pci_dev: Device to handle.
747  * @ign: ignored parameter
748  */
749 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
750 {
751 	pci_wakeup_event(pci_dev);
752 	pm_request_resume(&pci_dev->dev);
753 	return 0;
754 }
755 
756 /**
757  * pci_wakeup_bus - Walk given bus and wake up devices on it
758  * @bus: Top bus of the subtree to walk.
759  */
760 static void pci_wakeup_bus(struct pci_bus *bus)
761 {
762 	if (bus)
763 		pci_walk_bus(bus, pci_wakeup, NULL);
764 }
765 
766 /**
767  * __pci_start_power_transition - Start power transition of a PCI device
768  * @dev: PCI device to handle.
769  * @state: State to put the device into.
770  */
771 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
772 {
773 	if (state == PCI_D0) {
774 		pci_platform_power_transition(dev, PCI_D0);
775 		/*
776 		 * Mandatory power management transition delays, see
777 		 * PCI Express Base Specification Revision 2.0 Section
778 		 * 6.6.1: Conventional Reset.  Do not delay for
779 		 * devices powered on/off by corresponding bridge,
780 		 * because have already delayed for the bridge.
781 		 */
782 		if (dev->runtime_d3cold) {
783 			msleep(dev->d3cold_delay);
784 			/*
785 			 * When powering on a bridge from D3cold, the
786 			 * whole hierarchy may be powered on into
787 			 * D0uninitialized state, resume them to give
788 			 * them a chance to suspend again
789 			 */
790 			pci_wakeup_bus(dev->subordinate);
791 		}
792 	}
793 }
794 
795 /**
796  * __pci_dev_set_current_state - Set current state of a PCI device
797  * @dev: Device to handle
798  * @data: pointer to state to be set
799  */
800 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
801 {
802 	pci_power_t state = *(pci_power_t *)data;
803 
804 	dev->current_state = state;
805 	return 0;
806 }
807 
808 /**
809  * __pci_bus_set_current_state - Walk given bus and set current state of devices
810  * @bus: Top bus of the subtree to walk.
811  * @state: state to be set
812  */
813 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
814 {
815 	if (bus)
816 		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
817 }
818 
819 /**
820  * __pci_complete_power_transition - Complete power transition of a PCI device
821  * @dev: PCI device to handle.
822  * @state: State to put the device into.
823  *
824  * This function should not be called directly by device drivers.
825  */
826 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
827 {
828 	int ret;
829 
830 	if (state <= PCI_D0)
831 		return -EINVAL;
832 	ret = pci_platform_power_transition(dev, state);
833 	/* Power off the bridge may power off the whole hierarchy */
834 	if (!ret && state == PCI_D3cold)
835 		__pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
836 	return ret;
837 }
838 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
839 
840 /**
841  * pci_set_power_state - Set the power state of a PCI device
842  * @dev: PCI device to handle.
843  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
844  *
845  * Transition a device to a new power state, using the platform firmware and/or
846  * the device's PCI PM registers.
847  *
848  * RETURN VALUE:
849  * -EINVAL if the requested state is invalid.
850  * -EIO if device does not support PCI PM or its PM capabilities register has a
851  * wrong version, or device doesn't support the requested state.
852  * 0 if device already is in the requested state.
853  * 0 if device's power state has been successfully changed.
854  */
855 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
856 {
857 	int error;
858 
859 	/* bound the state we're entering */
860 	if (state > PCI_D3cold)
861 		state = PCI_D3cold;
862 	else if (state < PCI_D0)
863 		state = PCI_D0;
864 	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
865 		/*
866 		 * If the device or the parent bridge do not support PCI PM,
867 		 * ignore the request if we're doing anything other than putting
868 		 * it into D0 (which would only happen on boot).
869 		 */
870 		return 0;
871 
872 	/* Check if we're already there */
873 	if (dev->current_state == state)
874 		return 0;
875 
876 	__pci_start_power_transition(dev, state);
877 
878 	/* This device is quirked not to be put into D3, so
879 	   don't put it in D3 */
880 	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
881 		return 0;
882 
883 	/*
884 	 * To put device in D3cold, we put device into D3hot in native
885 	 * way, then put device into D3cold with platform ops
886 	 */
887 	error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
888 					PCI_D3hot : state);
889 
890 	if (!__pci_complete_power_transition(dev, state))
891 		error = 0;
892 
893 	return error;
894 }
895 EXPORT_SYMBOL(pci_set_power_state);
896 
897 /**
898  * pci_choose_state - Choose the power state of a PCI device
899  * @dev: PCI device to be suspended
900  * @state: target sleep state for the whole system. This is the value
901  *	that is passed to suspend() function.
902  *
903  * Returns PCI power state suitable for given device and given system
904  * message.
905  */
906 
907 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
908 {
909 	pci_power_t ret;
910 
911 	if (!dev->pm_cap)
912 		return PCI_D0;
913 
914 	ret = platform_pci_choose_state(dev);
915 	if (ret != PCI_POWER_ERROR)
916 		return ret;
917 
918 	switch (state.event) {
919 	case PM_EVENT_ON:
920 		return PCI_D0;
921 	case PM_EVENT_FREEZE:
922 	case PM_EVENT_PRETHAW:
923 		/* REVISIT both freeze and pre-thaw "should" use D0 */
924 	case PM_EVENT_SUSPEND:
925 	case PM_EVENT_HIBERNATE:
926 		return PCI_D3hot;
927 	default:
928 		dev_info(&dev->dev, "unrecognized suspend event %d\n",
929 			 state.event);
930 		BUG();
931 	}
932 	return PCI_D0;
933 }
934 EXPORT_SYMBOL(pci_choose_state);
935 
936 #define PCI_EXP_SAVE_REGS	7
937 
938 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
939 						       u16 cap, bool extended)
940 {
941 	struct pci_cap_saved_state *tmp;
942 
943 	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
944 		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
945 			return tmp;
946 	}
947 	return NULL;
948 }
949 
950 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
951 {
952 	return _pci_find_saved_cap(dev, cap, false);
953 }
954 
955 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
956 {
957 	return _pci_find_saved_cap(dev, cap, true);
958 }
959 
960 static int pci_save_pcie_state(struct pci_dev *dev)
961 {
962 	int i = 0;
963 	struct pci_cap_saved_state *save_state;
964 	u16 *cap;
965 
966 	if (!pci_is_pcie(dev))
967 		return 0;
968 
969 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
970 	if (!save_state) {
971 		dev_err(&dev->dev, "buffer not found in %s\n", __func__);
972 		return -ENOMEM;
973 	}
974 
975 	cap = (u16 *)&save_state->cap.data[0];
976 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
977 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
978 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
979 	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
980 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
981 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
982 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
983 
984 	return 0;
985 }
986 
987 static void pci_restore_pcie_state(struct pci_dev *dev)
988 {
989 	int i = 0;
990 	struct pci_cap_saved_state *save_state;
991 	u16 *cap;
992 
993 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
994 	if (!save_state)
995 		return;
996 
997 	cap = (u16 *)&save_state->cap.data[0];
998 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
999 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1000 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1001 	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1002 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1003 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1004 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1005 }
1006 
1007 
1008 static int pci_save_pcix_state(struct pci_dev *dev)
1009 {
1010 	int pos;
1011 	struct pci_cap_saved_state *save_state;
1012 
1013 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1014 	if (!pos)
1015 		return 0;
1016 
1017 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1018 	if (!save_state) {
1019 		dev_err(&dev->dev, "buffer not found in %s\n", __func__);
1020 		return -ENOMEM;
1021 	}
1022 
1023 	pci_read_config_word(dev, pos + PCI_X_CMD,
1024 			     (u16 *)save_state->cap.data);
1025 
1026 	return 0;
1027 }
1028 
1029 static void pci_restore_pcix_state(struct pci_dev *dev)
1030 {
1031 	int i = 0, pos;
1032 	struct pci_cap_saved_state *save_state;
1033 	u16 *cap;
1034 
1035 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1036 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1037 	if (!save_state || !pos)
1038 		return;
1039 	cap = (u16 *)&save_state->cap.data[0];
1040 
1041 	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1042 }
1043 
1044 
1045 /**
1046  * pci_save_state - save the PCI configuration space of a device before suspending
1047  * @dev: - PCI device that we're dealing with
1048  */
1049 int pci_save_state(struct pci_dev *dev)
1050 {
1051 	int i;
1052 	/* XXX: 100% dword access ok here? */
1053 	for (i = 0; i < 16; i++)
1054 		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1055 	dev->state_saved = true;
1056 
1057 	i = pci_save_pcie_state(dev);
1058 	if (i != 0)
1059 		return i;
1060 
1061 	i = pci_save_pcix_state(dev);
1062 	if (i != 0)
1063 		return i;
1064 
1065 	return pci_save_vc_state(dev);
1066 }
1067 EXPORT_SYMBOL(pci_save_state);
1068 
1069 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1070 				     u32 saved_val, int retry)
1071 {
1072 	u32 val;
1073 
1074 	pci_read_config_dword(pdev, offset, &val);
1075 	if (val == saved_val)
1076 		return;
1077 
1078 	for (;;) {
1079 		dev_dbg(&pdev->dev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1080 			offset, val, saved_val);
1081 		pci_write_config_dword(pdev, offset, saved_val);
1082 		if (retry-- <= 0)
1083 			return;
1084 
1085 		pci_read_config_dword(pdev, offset, &val);
1086 		if (val == saved_val)
1087 			return;
1088 
1089 		mdelay(1);
1090 	}
1091 }
1092 
1093 static void pci_restore_config_space_range(struct pci_dev *pdev,
1094 					   int start, int end, int retry)
1095 {
1096 	int index;
1097 
1098 	for (index = end; index >= start; index--)
1099 		pci_restore_config_dword(pdev, 4 * index,
1100 					 pdev->saved_config_space[index],
1101 					 retry);
1102 }
1103 
1104 static void pci_restore_config_space(struct pci_dev *pdev)
1105 {
1106 	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1107 		pci_restore_config_space_range(pdev, 10, 15, 0);
1108 		/* Restore BARs before the command register. */
1109 		pci_restore_config_space_range(pdev, 4, 9, 10);
1110 		pci_restore_config_space_range(pdev, 0, 3, 0);
1111 	} else {
1112 		pci_restore_config_space_range(pdev, 0, 15, 0);
1113 	}
1114 }
1115 
1116 /**
1117  * pci_restore_state - Restore the saved state of a PCI device
1118  * @dev: - PCI device that we're dealing with
1119  */
1120 void pci_restore_state(struct pci_dev *dev)
1121 {
1122 	if (!dev->state_saved)
1123 		return;
1124 
1125 	/* PCI Express register must be restored first */
1126 	pci_restore_pcie_state(dev);
1127 	pci_restore_ats_state(dev);
1128 	pci_restore_vc_state(dev);
1129 
1130 	pci_cleanup_aer_error_status_regs(dev);
1131 
1132 	pci_restore_config_space(dev);
1133 
1134 	pci_restore_pcix_state(dev);
1135 	pci_restore_msi_state(dev);
1136 
1137 	/* Restore ACS and IOV configuration state */
1138 	pci_enable_acs(dev);
1139 	pci_restore_iov_state(dev);
1140 
1141 	dev->state_saved = false;
1142 }
1143 EXPORT_SYMBOL(pci_restore_state);
1144 
1145 struct pci_saved_state {
1146 	u32 config_space[16];
1147 	struct pci_cap_saved_data cap[0];
1148 };
1149 
1150 /**
1151  * pci_store_saved_state - Allocate and return an opaque struct containing
1152  *			   the device saved state.
1153  * @dev: PCI device that we're dealing with
1154  *
1155  * Return NULL if no state or error.
1156  */
1157 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1158 {
1159 	struct pci_saved_state *state;
1160 	struct pci_cap_saved_state *tmp;
1161 	struct pci_cap_saved_data *cap;
1162 	size_t size;
1163 
1164 	if (!dev->state_saved)
1165 		return NULL;
1166 
1167 	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1168 
1169 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1170 		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1171 
1172 	state = kzalloc(size, GFP_KERNEL);
1173 	if (!state)
1174 		return NULL;
1175 
1176 	memcpy(state->config_space, dev->saved_config_space,
1177 	       sizeof(state->config_space));
1178 
1179 	cap = state->cap;
1180 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1181 		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1182 		memcpy(cap, &tmp->cap, len);
1183 		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1184 	}
1185 	/* Empty cap_save terminates list */
1186 
1187 	return state;
1188 }
1189 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1190 
1191 /**
1192  * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1193  * @dev: PCI device that we're dealing with
1194  * @state: Saved state returned from pci_store_saved_state()
1195  */
1196 int pci_load_saved_state(struct pci_dev *dev,
1197 			 struct pci_saved_state *state)
1198 {
1199 	struct pci_cap_saved_data *cap;
1200 
1201 	dev->state_saved = false;
1202 
1203 	if (!state)
1204 		return 0;
1205 
1206 	memcpy(dev->saved_config_space, state->config_space,
1207 	       sizeof(state->config_space));
1208 
1209 	cap = state->cap;
1210 	while (cap->size) {
1211 		struct pci_cap_saved_state *tmp;
1212 
1213 		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1214 		if (!tmp || tmp->cap.size != cap->size)
1215 			return -EINVAL;
1216 
1217 		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1218 		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1219 		       sizeof(struct pci_cap_saved_data) + cap->size);
1220 	}
1221 
1222 	dev->state_saved = true;
1223 	return 0;
1224 }
1225 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1226 
1227 /**
1228  * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1229  *				   and free the memory allocated for it.
1230  * @dev: PCI device that we're dealing with
1231  * @state: Pointer to saved state returned from pci_store_saved_state()
1232  */
1233 int pci_load_and_free_saved_state(struct pci_dev *dev,
1234 				  struct pci_saved_state **state)
1235 {
1236 	int ret = pci_load_saved_state(dev, *state);
1237 	kfree(*state);
1238 	*state = NULL;
1239 	return ret;
1240 }
1241 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1242 
1243 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1244 {
1245 	return pci_enable_resources(dev, bars);
1246 }
1247 
1248 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1249 {
1250 	int err;
1251 	struct pci_dev *bridge;
1252 	u16 cmd;
1253 	u8 pin;
1254 
1255 	err = pci_set_power_state(dev, PCI_D0);
1256 	if (err < 0 && err != -EIO)
1257 		return err;
1258 
1259 	bridge = pci_upstream_bridge(dev);
1260 	if (bridge)
1261 		pcie_aspm_powersave_config_link(bridge);
1262 
1263 	err = pcibios_enable_device(dev, bars);
1264 	if (err < 0)
1265 		return err;
1266 	pci_fixup_device(pci_fixup_enable, dev);
1267 
1268 	if (dev->msi_enabled || dev->msix_enabled)
1269 		return 0;
1270 
1271 	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1272 	if (pin) {
1273 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
1274 		if (cmd & PCI_COMMAND_INTX_DISABLE)
1275 			pci_write_config_word(dev, PCI_COMMAND,
1276 					      cmd & ~PCI_COMMAND_INTX_DISABLE);
1277 	}
1278 
1279 	return 0;
1280 }
1281 
1282 /**
1283  * pci_reenable_device - Resume abandoned device
1284  * @dev: PCI device to be resumed
1285  *
1286  *  Note this function is a backend of pci_default_resume and is not supposed
1287  *  to be called by normal code, write proper resume handler and use it instead.
1288  */
1289 int pci_reenable_device(struct pci_dev *dev)
1290 {
1291 	if (pci_is_enabled(dev))
1292 		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1293 	return 0;
1294 }
1295 EXPORT_SYMBOL(pci_reenable_device);
1296 
1297 static void pci_enable_bridge(struct pci_dev *dev)
1298 {
1299 	struct pci_dev *bridge;
1300 	int retval;
1301 
1302 	bridge = pci_upstream_bridge(dev);
1303 	if (bridge)
1304 		pci_enable_bridge(bridge);
1305 
1306 	if (pci_is_enabled(dev)) {
1307 		if (!dev->is_busmaster)
1308 			pci_set_master(dev);
1309 		return;
1310 	}
1311 
1312 	retval = pci_enable_device(dev);
1313 	if (retval)
1314 		dev_err(&dev->dev, "Error enabling bridge (%d), continuing\n",
1315 			retval);
1316 	pci_set_master(dev);
1317 }
1318 
1319 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1320 {
1321 	struct pci_dev *bridge;
1322 	int err;
1323 	int i, bars = 0;
1324 
1325 	/*
1326 	 * Power state could be unknown at this point, either due to a fresh
1327 	 * boot or a device removal call.  So get the current power state
1328 	 * so that things like MSI message writing will behave as expected
1329 	 * (e.g. if the device really is in D0 at enable time).
1330 	 */
1331 	if (dev->pm_cap) {
1332 		u16 pmcsr;
1333 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1334 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1335 	}
1336 
1337 	if (atomic_inc_return(&dev->enable_cnt) > 1)
1338 		return 0;		/* already enabled */
1339 
1340 	bridge = pci_upstream_bridge(dev);
1341 	if (bridge)
1342 		pci_enable_bridge(bridge);
1343 
1344 	/* only skip sriov related */
1345 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1346 		if (dev->resource[i].flags & flags)
1347 			bars |= (1 << i);
1348 	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1349 		if (dev->resource[i].flags & flags)
1350 			bars |= (1 << i);
1351 
1352 	err = do_pci_enable_device(dev, bars);
1353 	if (err < 0)
1354 		atomic_dec(&dev->enable_cnt);
1355 	return err;
1356 }
1357 
1358 /**
1359  * pci_enable_device_io - Initialize a device for use with IO space
1360  * @dev: PCI device to be initialized
1361  *
1362  *  Initialize device before it's used by a driver. Ask low-level code
1363  *  to enable I/O resources. Wake up the device if it was suspended.
1364  *  Beware, this function can fail.
1365  */
1366 int pci_enable_device_io(struct pci_dev *dev)
1367 {
1368 	return pci_enable_device_flags(dev, IORESOURCE_IO);
1369 }
1370 EXPORT_SYMBOL(pci_enable_device_io);
1371 
1372 /**
1373  * pci_enable_device_mem - Initialize a device for use with Memory space
1374  * @dev: PCI device to be initialized
1375  *
1376  *  Initialize device before it's used by a driver. Ask low-level code
1377  *  to enable Memory resources. Wake up the device if it was suspended.
1378  *  Beware, this function can fail.
1379  */
1380 int pci_enable_device_mem(struct pci_dev *dev)
1381 {
1382 	return pci_enable_device_flags(dev, IORESOURCE_MEM);
1383 }
1384 EXPORT_SYMBOL(pci_enable_device_mem);
1385 
1386 /**
1387  * pci_enable_device - Initialize device before it's used by a driver.
1388  * @dev: PCI device to be initialized
1389  *
1390  *  Initialize device before it's used by a driver. Ask low-level code
1391  *  to enable I/O and memory. Wake up the device if it was suspended.
1392  *  Beware, this function can fail.
1393  *
1394  *  Note we don't actually enable the device many times if we call
1395  *  this function repeatedly (we just increment the count).
1396  */
1397 int pci_enable_device(struct pci_dev *dev)
1398 {
1399 	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1400 }
1401 EXPORT_SYMBOL(pci_enable_device);
1402 
1403 /*
1404  * Managed PCI resources.  This manages device on/off, intx/msi/msix
1405  * on/off and BAR regions.  pci_dev itself records msi/msix status, so
1406  * there's no need to track it separately.  pci_devres is initialized
1407  * when a device is enabled using managed PCI device enable interface.
1408  */
1409 struct pci_devres {
1410 	unsigned int enabled:1;
1411 	unsigned int pinned:1;
1412 	unsigned int orig_intx:1;
1413 	unsigned int restore_intx:1;
1414 	u32 region_mask;
1415 };
1416 
1417 static void pcim_release(struct device *gendev, void *res)
1418 {
1419 	struct pci_dev *dev = to_pci_dev(gendev);
1420 	struct pci_devres *this = res;
1421 	int i;
1422 
1423 	if (dev->msi_enabled)
1424 		pci_disable_msi(dev);
1425 	if (dev->msix_enabled)
1426 		pci_disable_msix(dev);
1427 
1428 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1429 		if (this->region_mask & (1 << i))
1430 			pci_release_region(dev, i);
1431 
1432 	if (this->restore_intx)
1433 		pci_intx(dev, this->orig_intx);
1434 
1435 	if (this->enabled && !this->pinned)
1436 		pci_disable_device(dev);
1437 }
1438 
1439 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1440 {
1441 	struct pci_devres *dr, *new_dr;
1442 
1443 	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1444 	if (dr)
1445 		return dr;
1446 
1447 	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1448 	if (!new_dr)
1449 		return NULL;
1450 	return devres_get(&pdev->dev, new_dr, NULL, NULL);
1451 }
1452 
1453 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1454 {
1455 	if (pci_is_managed(pdev))
1456 		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1457 	return NULL;
1458 }
1459 
1460 /**
1461  * pcim_enable_device - Managed pci_enable_device()
1462  * @pdev: PCI device to be initialized
1463  *
1464  * Managed pci_enable_device().
1465  */
1466 int pcim_enable_device(struct pci_dev *pdev)
1467 {
1468 	struct pci_devres *dr;
1469 	int rc;
1470 
1471 	dr = get_pci_dr(pdev);
1472 	if (unlikely(!dr))
1473 		return -ENOMEM;
1474 	if (dr->enabled)
1475 		return 0;
1476 
1477 	rc = pci_enable_device(pdev);
1478 	if (!rc) {
1479 		pdev->is_managed = 1;
1480 		dr->enabled = 1;
1481 	}
1482 	return rc;
1483 }
1484 EXPORT_SYMBOL(pcim_enable_device);
1485 
1486 /**
1487  * pcim_pin_device - Pin managed PCI device
1488  * @pdev: PCI device to pin
1489  *
1490  * Pin managed PCI device @pdev.  Pinned device won't be disabled on
1491  * driver detach.  @pdev must have been enabled with
1492  * pcim_enable_device().
1493  */
1494 void pcim_pin_device(struct pci_dev *pdev)
1495 {
1496 	struct pci_devres *dr;
1497 
1498 	dr = find_pci_dr(pdev);
1499 	WARN_ON(!dr || !dr->enabled);
1500 	if (dr)
1501 		dr->pinned = 1;
1502 }
1503 EXPORT_SYMBOL(pcim_pin_device);
1504 
1505 /*
1506  * pcibios_add_device - provide arch specific hooks when adding device dev
1507  * @dev: the PCI device being added
1508  *
1509  * Permits the platform to provide architecture specific functionality when
1510  * devices are added. This is the default implementation. Architecture
1511  * implementations can override this.
1512  */
1513 int __weak pcibios_add_device(struct pci_dev *dev)
1514 {
1515 	return 0;
1516 }
1517 
1518 /**
1519  * pcibios_release_device - provide arch specific hooks when releasing device dev
1520  * @dev: the PCI device being released
1521  *
1522  * Permits the platform to provide architecture specific functionality when
1523  * devices are released. This is the default implementation. Architecture
1524  * implementations can override this.
1525  */
1526 void __weak pcibios_release_device(struct pci_dev *dev) {}
1527 
1528 /**
1529  * pcibios_disable_device - disable arch specific PCI resources for device dev
1530  * @dev: the PCI device to disable
1531  *
1532  * Disables architecture specific PCI resources for the device. This
1533  * is the default implementation. Architecture implementations can
1534  * override this.
1535  */
1536 void __weak pcibios_disable_device(struct pci_dev *dev) {}
1537 
1538 /**
1539  * pcibios_penalize_isa_irq - penalize an ISA IRQ
1540  * @irq: ISA IRQ to penalize
1541  * @active: IRQ active or not
1542  *
1543  * Permits the platform to provide architecture-specific functionality when
1544  * penalizing ISA IRQs. This is the default implementation. Architecture
1545  * implementations can override this.
1546  */
1547 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1548 
1549 static void do_pci_disable_device(struct pci_dev *dev)
1550 {
1551 	u16 pci_command;
1552 
1553 	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1554 	if (pci_command & PCI_COMMAND_MASTER) {
1555 		pci_command &= ~PCI_COMMAND_MASTER;
1556 		pci_write_config_word(dev, PCI_COMMAND, pci_command);
1557 	}
1558 
1559 	pcibios_disable_device(dev);
1560 }
1561 
1562 /**
1563  * pci_disable_enabled_device - Disable device without updating enable_cnt
1564  * @dev: PCI device to disable
1565  *
1566  * NOTE: This function is a backend of PCI power management routines and is
1567  * not supposed to be called drivers.
1568  */
1569 void pci_disable_enabled_device(struct pci_dev *dev)
1570 {
1571 	if (pci_is_enabled(dev))
1572 		do_pci_disable_device(dev);
1573 }
1574 
1575 /**
1576  * pci_disable_device - Disable PCI device after use
1577  * @dev: PCI device to be disabled
1578  *
1579  * Signal to the system that the PCI device is not in use by the system
1580  * anymore.  This only involves disabling PCI bus-mastering, if active.
1581  *
1582  * Note we don't actually disable the device until all callers of
1583  * pci_enable_device() have called pci_disable_device().
1584  */
1585 void pci_disable_device(struct pci_dev *dev)
1586 {
1587 	struct pci_devres *dr;
1588 
1589 	dr = find_pci_dr(dev);
1590 	if (dr)
1591 		dr->enabled = 0;
1592 
1593 	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1594 		      "disabling already-disabled device");
1595 
1596 	if (atomic_dec_return(&dev->enable_cnt) != 0)
1597 		return;
1598 
1599 	do_pci_disable_device(dev);
1600 
1601 	dev->is_busmaster = 0;
1602 }
1603 EXPORT_SYMBOL(pci_disable_device);
1604 
1605 /**
1606  * pcibios_set_pcie_reset_state - set reset state for device dev
1607  * @dev: the PCIe device reset
1608  * @state: Reset state to enter into
1609  *
1610  *
1611  * Sets the PCIe reset state for the device. This is the default
1612  * implementation. Architecture implementations can override this.
1613  */
1614 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1615 					enum pcie_reset_state state)
1616 {
1617 	return -EINVAL;
1618 }
1619 
1620 /**
1621  * pci_set_pcie_reset_state - set reset state for device dev
1622  * @dev: the PCIe device reset
1623  * @state: Reset state to enter into
1624  *
1625  *
1626  * Sets the PCI reset state for the device.
1627  */
1628 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1629 {
1630 	return pcibios_set_pcie_reset_state(dev, state);
1631 }
1632 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
1633 
1634 /**
1635  * pci_check_pme_status - Check if given device has generated PME.
1636  * @dev: Device to check.
1637  *
1638  * Check the PME status of the device and if set, clear it and clear PME enable
1639  * (if set).  Return 'true' if PME status and PME enable were both set or
1640  * 'false' otherwise.
1641  */
1642 bool pci_check_pme_status(struct pci_dev *dev)
1643 {
1644 	int pmcsr_pos;
1645 	u16 pmcsr;
1646 	bool ret = false;
1647 
1648 	if (!dev->pm_cap)
1649 		return false;
1650 
1651 	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1652 	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1653 	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1654 		return false;
1655 
1656 	/* Clear PME status. */
1657 	pmcsr |= PCI_PM_CTRL_PME_STATUS;
1658 	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1659 		/* Disable PME to avoid interrupt flood. */
1660 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1661 		ret = true;
1662 	}
1663 
1664 	pci_write_config_word(dev, pmcsr_pos, pmcsr);
1665 
1666 	return ret;
1667 }
1668 
1669 /**
1670  * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1671  * @dev: Device to handle.
1672  * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1673  *
1674  * Check if @dev has generated PME and queue a resume request for it in that
1675  * case.
1676  */
1677 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1678 {
1679 	if (pme_poll_reset && dev->pme_poll)
1680 		dev->pme_poll = false;
1681 
1682 	if (pci_check_pme_status(dev)) {
1683 		pci_wakeup_event(dev);
1684 		pm_request_resume(&dev->dev);
1685 	}
1686 	return 0;
1687 }
1688 
1689 /**
1690  * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1691  * @bus: Top bus of the subtree to walk.
1692  */
1693 void pci_pme_wakeup_bus(struct pci_bus *bus)
1694 {
1695 	if (bus)
1696 		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1697 }
1698 
1699 
1700 /**
1701  * pci_pme_capable - check the capability of PCI device to generate PME#
1702  * @dev: PCI device to handle.
1703  * @state: PCI state from which device will issue PME#.
1704  */
1705 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1706 {
1707 	if (!dev->pm_cap)
1708 		return false;
1709 
1710 	return !!(dev->pme_support & (1 << state));
1711 }
1712 EXPORT_SYMBOL(pci_pme_capable);
1713 
1714 static void pci_pme_list_scan(struct work_struct *work)
1715 {
1716 	struct pci_pme_device *pme_dev, *n;
1717 
1718 	mutex_lock(&pci_pme_list_mutex);
1719 	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1720 		if (pme_dev->dev->pme_poll) {
1721 			struct pci_dev *bridge;
1722 
1723 			bridge = pme_dev->dev->bus->self;
1724 			/*
1725 			 * If bridge is in low power state, the
1726 			 * configuration space of subordinate devices
1727 			 * may be not accessible
1728 			 */
1729 			if (bridge && bridge->current_state != PCI_D0)
1730 				continue;
1731 			pci_pme_wakeup(pme_dev->dev, NULL);
1732 		} else {
1733 			list_del(&pme_dev->list);
1734 			kfree(pme_dev);
1735 		}
1736 	}
1737 	if (!list_empty(&pci_pme_list))
1738 		schedule_delayed_work(&pci_pme_work,
1739 				      msecs_to_jiffies(PME_TIMEOUT));
1740 	mutex_unlock(&pci_pme_list_mutex);
1741 }
1742 
1743 static void __pci_pme_active(struct pci_dev *dev, bool enable)
1744 {
1745 	u16 pmcsr;
1746 
1747 	if (!dev->pme_support)
1748 		return;
1749 
1750 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1751 	/* Clear PME_Status by writing 1 to it and enable PME# */
1752 	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1753 	if (!enable)
1754 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1755 
1756 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1757 }
1758 
1759 /**
1760  * pci_pme_active - enable or disable PCI device's PME# function
1761  * @dev: PCI device to handle.
1762  * @enable: 'true' to enable PME# generation; 'false' to disable it.
1763  *
1764  * The caller must verify that the device is capable of generating PME# before
1765  * calling this function with @enable equal to 'true'.
1766  */
1767 void pci_pme_active(struct pci_dev *dev, bool enable)
1768 {
1769 	__pci_pme_active(dev, enable);
1770 
1771 	/*
1772 	 * PCI (as opposed to PCIe) PME requires that the device have
1773 	 * its PME# line hooked up correctly. Not all hardware vendors
1774 	 * do this, so the PME never gets delivered and the device
1775 	 * remains asleep. The easiest way around this is to
1776 	 * periodically walk the list of suspended devices and check
1777 	 * whether any have their PME flag set. The assumption is that
1778 	 * we'll wake up often enough anyway that this won't be a huge
1779 	 * hit, and the power savings from the devices will still be a
1780 	 * win.
1781 	 *
1782 	 * Although PCIe uses in-band PME message instead of PME# line
1783 	 * to report PME, PME does not work for some PCIe devices in
1784 	 * reality.  For example, there are devices that set their PME
1785 	 * status bits, but don't really bother to send a PME message;
1786 	 * there are PCI Express Root Ports that don't bother to
1787 	 * trigger interrupts when they receive PME messages from the
1788 	 * devices below.  So PME poll is used for PCIe devices too.
1789 	 */
1790 
1791 	if (dev->pme_poll) {
1792 		struct pci_pme_device *pme_dev;
1793 		if (enable) {
1794 			pme_dev = kmalloc(sizeof(struct pci_pme_device),
1795 					  GFP_KERNEL);
1796 			if (!pme_dev) {
1797 				dev_warn(&dev->dev, "can't enable PME#\n");
1798 				return;
1799 			}
1800 			pme_dev->dev = dev;
1801 			mutex_lock(&pci_pme_list_mutex);
1802 			list_add(&pme_dev->list, &pci_pme_list);
1803 			if (list_is_singular(&pci_pme_list))
1804 				schedule_delayed_work(&pci_pme_work,
1805 						      msecs_to_jiffies(PME_TIMEOUT));
1806 			mutex_unlock(&pci_pme_list_mutex);
1807 		} else {
1808 			mutex_lock(&pci_pme_list_mutex);
1809 			list_for_each_entry(pme_dev, &pci_pme_list, list) {
1810 				if (pme_dev->dev == dev) {
1811 					list_del(&pme_dev->list);
1812 					kfree(pme_dev);
1813 					break;
1814 				}
1815 			}
1816 			mutex_unlock(&pci_pme_list_mutex);
1817 		}
1818 	}
1819 
1820 	dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled");
1821 }
1822 EXPORT_SYMBOL(pci_pme_active);
1823 
1824 /**
1825  * __pci_enable_wake - enable PCI device as wakeup event source
1826  * @dev: PCI device affected
1827  * @state: PCI state from which device will issue wakeup events
1828  * @runtime: True if the events are to be generated at run time
1829  * @enable: True to enable event generation; false to disable
1830  *
1831  * This enables the device as a wakeup event source, or disables it.
1832  * When such events involves platform-specific hooks, those hooks are
1833  * called automatically by this routine.
1834  *
1835  * Devices with legacy power management (no standard PCI PM capabilities)
1836  * always require such platform hooks.
1837  *
1838  * RETURN VALUE:
1839  * 0 is returned on success
1840  * -EINVAL is returned if device is not supposed to wake up the system
1841  * Error code depending on the platform is returned if both the platform and
1842  * the native mechanism fail to enable the generation of wake-up events
1843  */
1844 int __pci_enable_wake(struct pci_dev *dev, pci_power_t state,
1845 		      bool runtime, bool enable)
1846 {
1847 	int ret = 0;
1848 
1849 	if (enable && !runtime && !device_may_wakeup(&dev->dev))
1850 		return -EINVAL;
1851 
1852 	/* Don't do the same thing twice in a row for one device. */
1853 	if (!!enable == !!dev->wakeup_prepared)
1854 		return 0;
1855 
1856 	/*
1857 	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1858 	 * Anderson we should be doing PME# wake enable followed by ACPI wake
1859 	 * enable.  To disable wake-up we call the platform first, for symmetry.
1860 	 */
1861 
1862 	if (enable) {
1863 		int error;
1864 
1865 		if (pci_pme_capable(dev, state))
1866 			pci_pme_active(dev, true);
1867 		else
1868 			ret = 1;
1869 		error = runtime ? platform_pci_run_wake(dev, true) :
1870 					platform_pci_sleep_wake(dev, true);
1871 		if (ret)
1872 			ret = error;
1873 		if (!ret)
1874 			dev->wakeup_prepared = true;
1875 	} else {
1876 		if (runtime)
1877 			platform_pci_run_wake(dev, false);
1878 		else
1879 			platform_pci_sleep_wake(dev, false);
1880 		pci_pme_active(dev, false);
1881 		dev->wakeup_prepared = false;
1882 	}
1883 
1884 	return ret;
1885 }
1886 EXPORT_SYMBOL(__pci_enable_wake);
1887 
1888 /**
1889  * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1890  * @dev: PCI device to prepare
1891  * @enable: True to enable wake-up event generation; false to disable
1892  *
1893  * Many drivers want the device to wake up the system from D3_hot or D3_cold
1894  * and this function allows them to set that up cleanly - pci_enable_wake()
1895  * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1896  * ordering constraints.
1897  *
1898  * This function only returns error code if the device is not capable of
1899  * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1900  * enable wake-up power for it.
1901  */
1902 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1903 {
1904 	return pci_pme_capable(dev, PCI_D3cold) ?
1905 			pci_enable_wake(dev, PCI_D3cold, enable) :
1906 			pci_enable_wake(dev, PCI_D3hot, enable);
1907 }
1908 EXPORT_SYMBOL(pci_wake_from_d3);
1909 
1910 /**
1911  * pci_target_state - find an appropriate low power state for a given PCI dev
1912  * @dev: PCI device
1913  *
1914  * Use underlying platform code to find a supported low power state for @dev.
1915  * If the platform can't manage @dev, return the deepest state from which it
1916  * can generate wake events, based on any available PME info.
1917  */
1918 static pci_power_t pci_target_state(struct pci_dev *dev)
1919 {
1920 	pci_power_t target_state = PCI_D3hot;
1921 
1922 	if (platform_pci_power_manageable(dev)) {
1923 		/*
1924 		 * Call the platform to choose the target state of the device
1925 		 * and enable wake-up from this state if supported.
1926 		 */
1927 		pci_power_t state = platform_pci_choose_state(dev);
1928 
1929 		switch (state) {
1930 		case PCI_POWER_ERROR:
1931 		case PCI_UNKNOWN:
1932 			break;
1933 		case PCI_D1:
1934 		case PCI_D2:
1935 			if (pci_no_d1d2(dev))
1936 				break;
1937 		default:
1938 			target_state = state;
1939 		}
1940 	} else if (!dev->pm_cap) {
1941 		target_state = PCI_D0;
1942 	} else if (device_may_wakeup(&dev->dev)) {
1943 		/*
1944 		 * Find the deepest state from which the device can generate
1945 		 * wake-up events, make it the target state and enable device
1946 		 * to generate PME#.
1947 		 */
1948 		if (dev->pme_support) {
1949 			while (target_state
1950 			      && !(dev->pme_support & (1 << target_state)))
1951 				target_state--;
1952 		}
1953 	}
1954 
1955 	return target_state;
1956 }
1957 
1958 /**
1959  * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1960  * @dev: Device to handle.
1961  *
1962  * Choose the power state appropriate for the device depending on whether
1963  * it can wake up the system and/or is power manageable by the platform
1964  * (PCI_D3hot is the default) and put the device into that state.
1965  */
1966 int pci_prepare_to_sleep(struct pci_dev *dev)
1967 {
1968 	pci_power_t target_state = pci_target_state(dev);
1969 	int error;
1970 
1971 	if (target_state == PCI_POWER_ERROR)
1972 		return -EIO;
1973 
1974 	pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
1975 
1976 	error = pci_set_power_state(dev, target_state);
1977 
1978 	if (error)
1979 		pci_enable_wake(dev, target_state, false);
1980 
1981 	return error;
1982 }
1983 EXPORT_SYMBOL(pci_prepare_to_sleep);
1984 
1985 /**
1986  * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1987  * @dev: Device to handle.
1988  *
1989  * Disable device's system wake-up capability and put it into D0.
1990  */
1991 int pci_back_from_sleep(struct pci_dev *dev)
1992 {
1993 	pci_enable_wake(dev, PCI_D0, false);
1994 	return pci_set_power_state(dev, PCI_D0);
1995 }
1996 EXPORT_SYMBOL(pci_back_from_sleep);
1997 
1998 /**
1999  * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2000  * @dev: PCI device being suspended.
2001  *
2002  * Prepare @dev to generate wake-up events at run time and put it into a low
2003  * power state.
2004  */
2005 int pci_finish_runtime_suspend(struct pci_dev *dev)
2006 {
2007 	pci_power_t target_state = pci_target_state(dev);
2008 	int error;
2009 
2010 	if (target_state == PCI_POWER_ERROR)
2011 		return -EIO;
2012 
2013 	dev->runtime_d3cold = target_state == PCI_D3cold;
2014 
2015 	__pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev));
2016 
2017 	error = pci_set_power_state(dev, target_state);
2018 
2019 	if (error) {
2020 		__pci_enable_wake(dev, target_state, true, false);
2021 		dev->runtime_d3cold = false;
2022 	}
2023 
2024 	return error;
2025 }
2026 
2027 /**
2028  * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2029  * @dev: Device to check.
2030  *
2031  * Return true if the device itself is capable of generating wake-up events
2032  * (through the platform or using the native PCIe PME) or if the device supports
2033  * PME and one of its upstream bridges can generate wake-up events.
2034  */
2035 bool pci_dev_run_wake(struct pci_dev *dev)
2036 {
2037 	struct pci_bus *bus = dev->bus;
2038 
2039 	if (device_run_wake(&dev->dev))
2040 		return true;
2041 
2042 	if (!dev->pme_support)
2043 		return false;
2044 
2045 	while (bus->parent) {
2046 		struct pci_dev *bridge = bus->self;
2047 
2048 		if (device_run_wake(&bridge->dev))
2049 			return true;
2050 
2051 		bus = bus->parent;
2052 	}
2053 
2054 	/* We have reached the root bus. */
2055 	if (bus->bridge)
2056 		return device_run_wake(bus->bridge);
2057 
2058 	return false;
2059 }
2060 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2061 
2062 /**
2063  * pci_dev_keep_suspended - Check if the device can stay in the suspended state.
2064  * @pci_dev: Device to check.
2065  *
2066  * Return 'true' if the device is runtime-suspended, it doesn't have to be
2067  * reconfigured due to wakeup settings difference between system and runtime
2068  * suspend and the current power state of it is suitable for the upcoming
2069  * (system) transition.
2070  *
2071  * If the device is not configured for system wakeup, disable PME for it before
2072  * returning 'true' to prevent it from waking up the system unnecessarily.
2073  */
2074 bool pci_dev_keep_suspended(struct pci_dev *pci_dev)
2075 {
2076 	struct device *dev = &pci_dev->dev;
2077 
2078 	if (!pm_runtime_suspended(dev)
2079 	    || pci_target_state(pci_dev) != pci_dev->current_state
2080 	    || platform_pci_need_resume(pci_dev))
2081 		return false;
2082 
2083 	/*
2084 	 * At this point the device is good to go unless it's been configured
2085 	 * to generate PME at the runtime suspend time, but it is not supposed
2086 	 * to wake up the system.  In that case, simply disable PME for it
2087 	 * (it will have to be re-enabled on exit from system resume).
2088 	 *
2089 	 * If the device's power state is D3cold and the platform check above
2090 	 * hasn't triggered, the device's configuration is suitable and we don't
2091 	 * need to manipulate it at all.
2092 	 */
2093 	spin_lock_irq(&dev->power.lock);
2094 
2095 	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold &&
2096 	    !device_may_wakeup(dev))
2097 		__pci_pme_active(pci_dev, false);
2098 
2099 	spin_unlock_irq(&dev->power.lock);
2100 	return true;
2101 }
2102 
2103 /**
2104  * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2105  * @pci_dev: Device to handle.
2106  *
2107  * If the device is runtime suspended and wakeup-capable, enable PME for it as
2108  * it might have been disabled during the prepare phase of system suspend if
2109  * the device was not configured for system wakeup.
2110  */
2111 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2112 {
2113 	struct device *dev = &pci_dev->dev;
2114 
2115 	if (!pci_dev_run_wake(pci_dev))
2116 		return;
2117 
2118 	spin_lock_irq(&dev->power.lock);
2119 
2120 	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2121 		__pci_pme_active(pci_dev, true);
2122 
2123 	spin_unlock_irq(&dev->power.lock);
2124 }
2125 
2126 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2127 {
2128 	struct device *dev = &pdev->dev;
2129 	struct device *parent = dev->parent;
2130 
2131 	if (parent)
2132 		pm_runtime_get_sync(parent);
2133 	pm_runtime_get_noresume(dev);
2134 	/*
2135 	 * pdev->current_state is set to PCI_D3cold during suspending,
2136 	 * so wait until suspending completes
2137 	 */
2138 	pm_runtime_barrier(dev);
2139 	/*
2140 	 * Only need to resume devices in D3cold, because config
2141 	 * registers are still accessible for devices suspended but
2142 	 * not in D3cold.
2143 	 */
2144 	if (pdev->current_state == PCI_D3cold)
2145 		pm_runtime_resume(dev);
2146 }
2147 
2148 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2149 {
2150 	struct device *dev = &pdev->dev;
2151 	struct device *parent = dev->parent;
2152 
2153 	pm_runtime_put(dev);
2154 	if (parent)
2155 		pm_runtime_put_sync(parent);
2156 }
2157 
2158 /**
2159  * pci_pm_init - Initialize PM functions of given PCI device
2160  * @dev: PCI device to handle.
2161  */
2162 void pci_pm_init(struct pci_dev *dev)
2163 {
2164 	int pm;
2165 	u16 pmc;
2166 
2167 	pm_runtime_forbid(&dev->dev);
2168 	pm_runtime_set_active(&dev->dev);
2169 	pm_runtime_enable(&dev->dev);
2170 	device_enable_async_suspend(&dev->dev);
2171 	dev->wakeup_prepared = false;
2172 
2173 	dev->pm_cap = 0;
2174 	dev->pme_support = 0;
2175 
2176 	/* find PCI PM capability in list */
2177 	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2178 	if (!pm)
2179 		return;
2180 	/* Check device's ability to generate PME# */
2181 	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2182 
2183 	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2184 		dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
2185 			pmc & PCI_PM_CAP_VER_MASK);
2186 		return;
2187 	}
2188 
2189 	dev->pm_cap = pm;
2190 	dev->d3_delay = PCI_PM_D3_WAIT;
2191 	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2192 	dev->d3cold_allowed = true;
2193 
2194 	dev->d1_support = false;
2195 	dev->d2_support = false;
2196 	if (!pci_no_d1d2(dev)) {
2197 		if (pmc & PCI_PM_CAP_D1)
2198 			dev->d1_support = true;
2199 		if (pmc & PCI_PM_CAP_D2)
2200 			dev->d2_support = true;
2201 
2202 		if (dev->d1_support || dev->d2_support)
2203 			dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
2204 				   dev->d1_support ? " D1" : "",
2205 				   dev->d2_support ? " D2" : "");
2206 	}
2207 
2208 	pmc &= PCI_PM_CAP_PME_MASK;
2209 	if (pmc) {
2210 		dev_printk(KERN_DEBUG, &dev->dev,
2211 			 "PME# supported from%s%s%s%s%s\n",
2212 			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2213 			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2214 			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2215 			 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2216 			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2217 		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2218 		dev->pme_poll = true;
2219 		/*
2220 		 * Make device's PM flags reflect the wake-up capability, but
2221 		 * let the user space enable it to wake up the system as needed.
2222 		 */
2223 		device_set_wakeup_capable(&dev->dev, true);
2224 		/* Disable the PME# generation functionality */
2225 		pci_pme_active(dev, false);
2226 	}
2227 }
2228 
2229 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
2230 {
2231 	unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
2232 
2233 	switch (prop) {
2234 	case PCI_EA_P_MEM:
2235 	case PCI_EA_P_VF_MEM:
2236 		flags |= IORESOURCE_MEM;
2237 		break;
2238 	case PCI_EA_P_MEM_PREFETCH:
2239 	case PCI_EA_P_VF_MEM_PREFETCH:
2240 		flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
2241 		break;
2242 	case PCI_EA_P_IO:
2243 		flags |= IORESOURCE_IO;
2244 		break;
2245 	default:
2246 		return 0;
2247 	}
2248 
2249 	return flags;
2250 }
2251 
2252 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
2253 					    u8 prop)
2254 {
2255 	if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
2256 		return &dev->resource[bei];
2257 #ifdef CONFIG_PCI_IOV
2258 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
2259 		 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
2260 		return &dev->resource[PCI_IOV_RESOURCES +
2261 				      bei - PCI_EA_BEI_VF_BAR0];
2262 #endif
2263 	else if (bei == PCI_EA_BEI_ROM)
2264 		return &dev->resource[PCI_ROM_RESOURCE];
2265 	else
2266 		return NULL;
2267 }
2268 
2269 /* Read an Enhanced Allocation (EA) entry */
2270 static int pci_ea_read(struct pci_dev *dev, int offset)
2271 {
2272 	struct resource *res;
2273 	int ent_size, ent_offset = offset;
2274 	resource_size_t start, end;
2275 	unsigned long flags;
2276 	u32 dw0, bei, base, max_offset;
2277 	u8 prop;
2278 	bool support_64 = (sizeof(resource_size_t) >= 8);
2279 
2280 	pci_read_config_dword(dev, ent_offset, &dw0);
2281 	ent_offset += 4;
2282 
2283 	/* Entry size field indicates DWORDs after 1st */
2284 	ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
2285 
2286 	if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
2287 		goto out;
2288 
2289 	bei = (dw0 & PCI_EA_BEI) >> 4;
2290 	prop = (dw0 & PCI_EA_PP) >> 8;
2291 
2292 	/*
2293 	 * If the Property is in the reserved range, try the Secondary
2294 	 * Property instead.
2295 	 */
2296 	if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
2297 		prop = (dw0 & PCI_EA_SP) >> 16;
2298 	if (prop > PCI_EA_P_BRIDGE_IO)
2299 		goto out;
2300 
2301 	res = pci_ea_get_resource(dev, bei, prop);
2302 	if (!res) {
2303 		dev_err(&dev->dev, "Unsupported EA entry BEI: %u\n", bei);
2304 		goto out;
2305 	}
2306 
2307 	flags = pci_ea_flags(dev, prop);
2308 	if (!flags) {
2309 		dev_err(&dev->dev, "Unsupported EA properties: %#x\n", prop);
2310 		goto out;
2311 	}
2312 
2313 	/* Read Base */
2314 	pci_read_config_dword(dev, ent_offset, &base);
2315 	start = (base & PCI_EA_FIELD_MASK);
2316 	ent_offset += 4;
2317 
2318 	/* Read MaxOffset */
2319 	pci_read_config_dword(dev, ent_offset, &max_offset);
2320 	ent_offset += 4;
2321 
2322 	/* Read Base MSBs (if 64-bit entry) */
2323 	if (base & PCI_EA_IS_64) {
2324 		u32 base_upper;
2325 
2326 		pci_read_config_dword(dev, ent_offset, &base_upper);
2327 		ent_offset += 4;
2328 
2329 		flags |= IORESOURCE_MEM_64;
2330 
2331 		/* entry starts above 32-bit boundary, can't use */
2332 		if (!support_64 && base_upper)
2333 			goto out;
2334 
2335 		if (support_64)
2336 			start |= ((u64)base_upper << 32);
2337 	}
2338 
2339 	end = start + (max_offset | 0x03);
2340 
2341 	/* Read MaxOffset MSBs (if 64-bit entry) */
2342 	if (max_offset & PCI_EA_IS_64) {
2343 		u32 max_offset_upper;
2344 
2345 		pci_read_config_dword(dev, ent_offset, &max_offset_upper);
2346 		ent_offset += 4;
2347 
2348 		flags |= IORESOURCE_MEM_64;
2349 
2350 		/* entry too big, can't use */
2351 		if (!support_64 && max_offset_upper)
2352 			goto out;
2353 
2354 		if (support_64)
2355 			end += ((u64)max_offset_upper << 32);
2356 	}
2357 
2358 	if (end < start) {
2359 		dev_err(&dev->dev, "EA Entry crosses address boundary\n");
2360 		goto out;
2361 	}
2362 
2363 	if (ent_size != ent_offset - offset) {
2364 		dev_err(&dev->dev,
2365 			"EA Entry Size (%d) does not match length read (%d)\n",
2366 			ent_size, ent_offset - offset);
2367 		goto out;
2368 	}
2369 
2370 	res->name = pci_name(dev);
2371 	res->start = start;
2372 	res->end = end;
2373 	res->flags = flags;
2374 
2375 	if (bei <= PCI_EA_BEI_BAR5)
2376 		dev_printk(KERN_DEBUG, &dev->dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2377 			   bei, res, prop);
2378 	else if (bei == PCI_EA_BEI_ROM)
2379 		dev_printk(KERN_DEBUG, &dev->dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
2380 			   res, prop);
2381 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
2382 		dev_printk(KERN_DEBUG, &dev->dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2383 			   bei - PCI_EA_BEI_VF_BAR0, res, prop);
2384 	else
2385 		dev_printk(KERN_DEBUG, &dev->dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
2386 			   bei, res, prop);
2387 
2388 out:
2389 	return offset + ent_size;
2390 }
2391 
2392 /* Enhanced Allocation Initialization */
2393 void pci_ea_init(struct pci_dev *dev)
2394 {
2395 	int ea;
2396 	u8 num_ent;
2397 	int offset;
2398 	int i;
2399 
2400 	/* find PCI EA capability in list */
2401 	ea = pci_find_capability(dev, PCI_CAP_ID_EA);
2402 	if (!ea)
2403 		return;
2404 
2405 	/* determine the number of entries */
2406 	pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
2407 					&num_ent);
2408 	num_ent &= PCI_EA_NUM_ENT_MASK;
2409 
2410 	offset = ea + PCI_EA_FIRST_ENT;
2411 
2412 	/* Skip DWORD 2 for type 1 functions */
2413 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
2414 		offset += 4;
2415 
2416 	/* parse each EA entry */
2417 	for (i = 0; i < num_ent; ++i)
2418 		offset = pci_ea_read(dev, offset);
2419 }
2420 
2421 static void pci_add_saved_cap(struct pci_dev *pci_dev,
2422 	struct pci_cap_saved_state *new_cap)
2423 {
2424 	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
2425 }
2426 
2427 /**
2428  * _pci_add_cap_save_buffer - allocate buffer for saving given
2429  *                            capability registers
2430  * @dev: the PCI device
2431  * @cap: the capability to allocate the buffer for
2432  * @extended: Standard or Extended capability ID
2433  * @size: requested size of the buffer
2434  */
2435 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
2436 				    bool extended, unsigned int size)
2437 {
2438 	int pos;
2439 	struct pci_cap_saved_state *save_state;
2440 
2441 	if (extended)
2442 		pos = pci_find_ext_capability(dev, cap);
2443 	else
2444 		pos = pci_find_capability(dev, cap);
2445 
2446 	if (!pos)
2447 		return 0;
2448 
2449 	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2450 	if (!save_state)
2451 		return -ENOMEM;
2452 
2453 	save_state->cap.cap_nr = cap;
2454 	save_state->cap.cap_extended = extended;
2455 	save_state->cap.size = size;
2456 	pci_add_saved_cap(dev, save_state);
2457 
2458 	return 0;
2459 }
2460 
2461 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
2462 {
2463 	return _pci_add_cap_save_buffer(dev, cap, false, size);
2464 }
2465 
2466 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
2467 {
2468 	return _pci_add_cap_save_buffer(dev, cap, true, size);
2469 }
2470 
2471 /**
2472  * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2473  * @dev: the PCI device
2474  */
2475 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2476 {
2477 	int error;
2478 
2479 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2480 					PCI_EXP_SAVE_REGS * sizeof(u16));
2481 	if (error)
2482 		dev_err(&dev->dev,
2483 			"unable to preallocate PCI Express save buffer\n");
2484 
2485 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2486 	if (error)
2487 		dev_err(&dev->dev,
2488 			"unable to preallocate PCI-X save buffer\n");
2489 
2490 	pci_allocate_vc_save_buffers(dev);
2491 }
2492 
2493 void pci_free_cap_save_buffers(struct pci_dev *dev)
2494 {
2495 	struct pci_cap_saved_state *tmp;
2496 	struct hlist_node *n;
2497 
2498 	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
2499 		kfree(tmp);
2500 }
2501 
2502 /**
2503  * pci_configure_ari - enable or disable ARI forwarding
2504  * @dev: the PCI device
2505  *
2506  * If @dev and its upstream bridge both support ARI, enable ARI in the
2507  * bridge.  Otherwise, disable ARI in the bridge.
2508  */
2509 void pci_configure_ari(struct pci_dev *dev)
2510 {
2511 	u32 cap;
2512 	struct pci_dev *bridge;
2513 
2514 	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
2515 		return;
2516 
2517 	bridge = dev->bus->self;
2518 	if (!bridge)
2519 		return;
2520 
2521 	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
2522 	if (!(cap & PCI_EXP_DEVCAP2_ARI))
2523 		return;
2524 
2525 	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
2526 		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
2527 					 PCI_EXP_DEVCTL2_ARI);
2528 		bridge->ari_enabled = 1;
2529 	} else {
2530 		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
2531 					   PCI_EXP_DEVCTL2_ARI);
2532 		bridge->ari_enabled = 0;
2533 	}
2534 }
2535 
2536 static int pci_acs_enable;
2537 
2538 /**
2539  * pci_request_acs - ask for ACS to be enabled if supported
2540  */
2541 void pci_request_acs(void)
2542 {
2543 	pci_acs_enable = 1;
2544 }
2545 
2546 /**
2547  * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites
2548  * @dev: the PCI device
2549  */
2550 static void pci_std_enable_acs(struct pci_dev *dev)
2551 {
2552 	int pos;
2553 	u16 cap;
2554 	u16 ctrl;
2555 
2556 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2557 	if (!pos)
2558 		return;
2559 
2560 	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2561 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2562 
2563 	/* Source Validation */
2564 	ctrl |= (cap & PCI_ACS_SV);
2565 
2566 	/* P2P Request Redirect */
2567 	ctrl |= (cap & PCI_ACS_RR);
2568 
2569 	/* P2P Completion Redirect */
2570 	ctrl |= (cap & PCI_ACS_CR);
2571 
2572 	/* Upstream Forwarding */
2573 	ctrl |= (cap & PCI_ACS_UF);
2574 
2575 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2576 }
2577 
2578 /**
2579  * pci_enable_acs - enable ACS if hardware support it
2580  * @dev: the PCI device
2581  */
2582 void pci_enable_acs(struct pci_dev *dev)
2583 {
2584 	if (!pci_acs_enable)
2585 		return;
2586 
2587 	if (!pci_dev_specific_enable_acs(dev))
2588 		return;
2589 
2590 	pci_std_enable_acs(dev);
2591 }
2592 
2593 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
2594 {
2595 	int pos;
2596 	u16 cap, ctrl;
2597 
2598 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2599 	if (!pos)
2600 		return false;
2601 
2602 	/*
2603 	 * Except for egress control, capabilities are either required
2604 	 * or only required if controllable.  Features missing from the
2605 	 * capability field can therefore be assumed as hard-wired enabled.
2606 	 */
2607 	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
2608 	acs_flags &= (cap | PCI_ACS_EC);
2609 
2610 	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2611 	return (ctrl & acs_flags) == acs_flags;
2612 }
2613 
2614 /**
2615  * pci_acs_enabled - test ACS against required flags for a given device
2616  * @pdev: device to test
2617  * @acs_flags: required PCI ACS flags
2618  *
2619  * Return true if the device supports the provided flags.  Automatically
2620  * filters out flags that are not implemented on multifunction devices.
2621  *
2622  * Note that this interface checks the effective ACS capabilities of the
2623  * device rather than the actual capabilities.  For instance, most single
2624  * function endpoints are not required to support ACS because they have no
2625  * opportunity for peer-to-peer access.  We therefore return 'true'
2626  * regardless of whether the device exposes an ACS capability.  This makes
2627  * it much easier for callers of this function to ignore the actual type
2628  * or topology of the device when testing ACS support.
2629  */
2630 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2631 {
2632 	int ret;
2633 
2634 	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2635 	if (ret >= 0)
2636 		return ret > 0;
2637 
2638 	/*
2639 	 * Conventional PCI and PCI-X devices never support ACS, either
2640 	 * effectively or actually.  The shared bus topology implies that
2641 	 * any device on the bus can receive or snoop DMA.
2642 	 */
2643 	if (!pci_is_pcie(pdev))
2644 		return false;
2645 
2646 	switch (pci_pcie_type(pdev)) {
2647 	/*
2648 	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
2649 	 * but since their primary interface is PCI/X, we conservatively
2650 	 * handle them as we would a non-PCIe device.
2651 	 */
2652 	case PCI_EXP_TYPE_PCIE_BRIDGE:
2653 	/*
2654 	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
2655 	 * applicable... must never implement an ACS Extended Capability...".
2656 	 * This seems arbitrary, but we take a conservative interpretation
2657 	 * of this statement.
2658 	 */
2659 	case PCI_EXP_TYPE_PCI_BRIDGE:
2660 	case PCI_EXP_TYPE_RC_EC:
2661 		return false;
2662 	/*
2663 	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
2664 	 * implement ACS in order to indicate their peer-to-peer capabilities,
2665 	 * regardless of whether they are single- or multi-function devices.
2666 	 */
2667 	case PCI_EXP_TYPE_DOWNSTREAM:
2668 	case PCI_EXP_TYPE_ROOT_PORT:
2669 		return pci_acs_flags_enabled(pdev, acs_flags);
2670 	/*
2671 	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
2672 	 * implemented by the remaining PCIe types to indicate peer-to-peer
2673 	 * capabilities, but only when they are part of a multifunction
2674 	 * device.  The footnote for section 6.12 indicates the specific
2675 	 * PCIe types included here.
2676 	 */
2677 	case PCI_EXP_TYPE_ENDPOINT:
2678 	case PCI_EXP_TYPE_UPSTREAM:
2679 	case PCI_EXP_TYPE_LEG_END:
2680 	case PCI_EXP_TYPE_RC_END:
2681 		if (!pdev->multifunction)
2682 			break;
2683 
2684 		return pci_acs_flags_enabled(pdev, acs_flags);
2685 	}
2686 
2687 	/*
2688 	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
2689 	 * to single function devices with the exception of downstream ports.
2690 	 */
2691 	return true;
2692 }
2693 
2694 /**
2695  * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2696  * @start: starting downstream device
2697  * @end: ending upstream device or NULL to search to the root bus
2698  * @acs_flags: required flags
2699  *
2700  * Walk up a device tree from start to end testing PCI ACS support.  If
2701  * any step along the way does not support the required flags, return false.
2702  */
2703 bool pci_acs_path_enabled(struct pci_dev *start,
2704 			  struct pci_dev *end, u16 acs_flags)
2705 {
2706 	struct pci_dev *pdev, *parent = start;
2707 
2708 	do {
2709 		pdev = parent;
2710 
2711 		if (!pci_acs_enabled(pdev, acs_flags))
2712 			return false;
2713 
2714 		if (pci_is_root_bus(pdev->bus))
2715 			return (end == NULL);
2716 
2717 		parent = pdev->bus->self;
2718 	} while (pdev != end);
2719 
2720 	return true;
2721 }
2722 
2723 /**
2724  * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2725  * @dev: the PCI device
2726  * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
2727  *
2728  * Perform INTx swizzling for a device behind one level of bridge.  This is
2729  * required by section 9.1 of the PCI-to-PCI bridge specification for devices
2730  * behind bridges on add-in cards.  For devices with ARI enabled, the slot
2731  * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2732  * the PCI Express Base Specification, Revision 2.1)
2733  */
2734 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
2735 {
2736 	int slot;
2737 
2738 	if (pci_ari_enabled(dev->bus))
2739 		slot = 0;
2740 	else
2741 		slot = PCI_SLOT(dev->devfn);
2742 
2743 	return (((pin - 1) + slot) % 4) + 1;
2744 }
2745 
2746 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
2747 {
2748 	u8 pin;
2749 
2750 	pin = dev->pin;
2751 	if (!pin)
2752 		return -1;
2753 
2754 	while (!pci_is_root_bus(dev->bus)) {
2755 		pin = pci_swizzle_interrupt_pin(dev, pin);
2756 		dev = dev->bus->self;
2757 	}
2758 	*bridge = dev;
2759 	return pin;
2760 }
2761 
2762 /**
2763  * pci_common_swizzle - swizzle INTx all the way to root bridge
2764  * @dev: the PCI device
2765  * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2766  *
2767  * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
2768  * bridges all the way up to a PCI root bus.
2769  */
2770 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
2771 {
2772 	u8 pin = *pinp;
2773 
2774 	while (!pci_is_root_bus(dev->bus)) {
2775 		pin = pci_swizzle_interrupt_pin(dev, pin);
2776 		dev = dev->bus->self;
2777 	}
2778 	*pinp = pin;
2779 	return PCI_SLOT(dev->devfn);
2780 }
2781 EXPORT_SYMBOL_GPL(pci_common_swizzle);
2782 
2783 /**
2784  *	pci_release_region - Release a PCI bar
2785  *	@pdev: PCI device whose resources were previously reserved by pci_request_region
2786  *	@bar: BAR to release
2787  *
2788  *	Releases the PCI I/O and memory resources previously reserved by a
2789  *	successful call to pci_request_region.  Call this function only
2790  *	after all use of the PCI regions has ceased.
2791  */
2792 void pci_release_region(struct pci_dev *pdev, int bar)
2793 {
2794 	struct pci_devres *dr;
2795 
2796 	if (pci_resource_len(pdev, bar) == 0)
2797 		return;
2798 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
2799 		release_region(pci_resource_start(pdev, bar),
2800 				pci_resource_len(pdev, bar));
2801 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
2802 		release_mem_region(pci_resource_start(pdev, bar),
2803 				pci_resource_len(pdev, bar));
2804 
2805 	dr = find_pci_dr(pdev);
2806 	if (dr)
2807 		dr->region_mask &= ~(1 << bar);
2808 }
2809 EXPORT_SYMBOL(pci_release_region);
2810 
2811 /**
2812  *	__pci_request_region - Reserved PCI I/O and memory resource
2813  *	@pdev: PCI device whose resources are to be reserved
2814  *	@bar: BAR to be reserved
2815  *	@res_name: Name to be associated with resource.
2816  *	@exclusive: whether the region access is exclusive or not
2817  *
2818  *	Mark the PCI region associated with PCI device @pdev BR @bar as
2819  *	being reserved by owner @res_name.  Do not access any
2820  *	address inside the PCI regions unless this call returns
2821  *	successfully.
2822  *
2823  *	If @exclusive is set, then the region is marked so that userspace
2824  *	is explicitly not allowed to map the resource via /dev/mem or
2825  *	sysfs MMIO access.
2826  *
2827  *	Returns 0 on success, or %EBUSY on error.  A warning
2828  *	message is also printed on failure.
2829  */
2830 static int __pci_request_region(struct pci_dev *pdev, int bar,
2831 				const char *res_name, int exclusive)
2832 {
2833 	struct pci_devres *dr;
2834 
2835 	if (pci_resource_len(pdev, bar) == 0)
2836 		return 0;
2837 
2838 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
2839 		if (!request_region(pci_resource_start(pdev, bar),
2840 			    pci_resource_len(pdev, bar), res_name))
2841 			goto err_out;
2842 	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
2843 		if (!__request_mem_region(pci_resource_start(pdev, bar),
2844 					pci_resource_len(pdev, bar), res_name,
2845 					exclusive))
2846 			goto err_out;
2847 	}
2848 
2849 	dr = find_pci_dr(pdev);
2850 	if (dr)
2851 		dr->region_mask |= 1 << bar;
2852 
2853 	return 0;
2854 
2855 err_out:
2856 	dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
2857 		 &pdev->resource[bar]);
2858 	return -EBUSY;
2859 }
2860 
2861 /**
2862  *	pci_request_region - Reserve PCI I/O and memory resource
2863  *	@pdev: PCI device whose resources are to be reserved
2864  *	@bar: BAR to be reserved
2865  *	@res_name: Name to be associated with resource
2866  *
2867  *	Mark the PCI region associated with PCI device @pdev BAR @bar as
2868  *	being reserved by owner @res_name.  Do not access any
2869  *	address inside the PCI regions unless this call returns
2870  *	successfully.
2871  *
2872  *	Returns 0 on success, or %EBUSY on error.  A warning
2873  *	message is also printed on failure.
2874  */
2875 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
2876 {
2877 	return __pci_request_region(pdev, bar, res_name, 0);
2878 }
2879 EXPORT_SYMBOL(pci_request_region);
2880 
2881 /**
2882  *	pci_request_region_exclusive - Reserved PCI I/O and memory resource
2883  *	@pdev: PCI device whose resources are to be reserved
2884  *	@bar: BAR to be reserved
2885  *	@res_name: Name to be associated with resource.
2886  *
2887  *	Mark the PCI region associated with PCI device @pdev BR @bar as
2888  *	being reserved by owner @res_name.  Do not access any
2889  *	address inside the PCI regions unless this call returns
2890  *	successfully.
2891  *
2892  *	Returns 0 on success, or %EBUSY on error.  A warning
2893  *	message is also printed on failure.
2894  *
2895  *	The key difference that _exclusive makes it that userspace is
2896  *	explicitly not allowed to map the resource via /dev/mem or
2897  *	sysfs.
2898  */
2899 int pci_request_region_exclusive(struct pci_dev *pdev, int bar,
2900 				 const char *res_name)
2901 {
2902 	return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
2903 }
2904 EXPORT_SYMBOL(pci_request_region_exclusive);
2905 
2906 /**
2907  * pci_release_selected_regions - Release selected PCI I/O and memory resources
2908  * @pdev: PCI device whose resources were previously reserved
2909  * @bars: Bitmask of BARs to be released
2910  *
2911  * Release selected PCI I/O and memory resources previously reserved.
2912  * Call this function only after all use of the PCI regions has ceased.
2913  */
2914 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
2915 {
2916 	int i;
2917 
2918 	for (i = 0; i < 6; i++)
2919 		if (bars & (1 << i))
2920 			pci_release_region(pdev, i);
2921 }
2922 EXPORT_SYMBOL(pci_release_selected_regions);
2923 
2924 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
2925 					  const char *res_name, int excl)
2926 {
2927 	int i;
2928 
2929 	for (i = 0; i < 6; i++)
2930 		if (bars & (1 << i))
2931 			if (__pci_request_region(pdev, i, res_name, excl))
2932 				goto err_out;
2933 	return 0;
2934 
2935 err_out:
2936 	while (--i >= 0)
2937 		if (bars & (1 << i))
2938 			pci_release_region(pdev, i);
2939 
2940 	return -EBUSY;
2941 }
2942 
2943 
2944 /**
2945  * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
2946  * @pdev: PCI device whose resources are to be reserved
2947  * @bars: Bitmask of BARs to be requested
2948  * @res_name: Name to be associated with resource
2949  */
2950 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
2951 				 const char *res_name)
2952 {
2953 	return __pci_request_selected_regions(pdev, bars, res_name, 0);
2954 }
2955 EXPORT_SYMBOL(pci_request_selected_regions);
2956 
2957 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
2958 					   const char *res_name)
2959 {
2960 	return __pci_request_selected_regions(pdev, bars, res_name,
2961 			IORESOURCE_EXCLUSIVE);
2962 }
2963 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
2964 
2965 /**
2966  *	pci_release_regions - Release reserved PCI I/O and memory resources
2967  *	@pdev: PCI device whose resources were previously reserved by pci_request_regions
2968  *
2969  *	Releases all PCI I/O and memory resources previously reserved by a
2970  *	successful call to pci_request_regions.  Call this function only
2971  *	after all use of the PCI regions has ceased.
2972  */
2973 
2974 void pci_release_regions(struct pci_dev *pdev)
2975 {
2976 	pci_release_selected_regions(pdev, (1 << 6) - 1);
2977 }
2978 EXPORT_SYMBOL(pci_release_regions);
2979 
2980 /**
2981  *	pci_request_regions - Reserved PCI I/O and memory resources
2982  *	@pdev: PCI device whose resources are to be reserved
2983  *	@res_name: Name to be associated with resource.
2984  *
2985  *	Mark all PCI regions associated with PCI device @pdev as
2986  *	being reserved by owner @res_name.  Do not access any
2987  *	address inside the PCI regions unless this call returns
2988  *	successfully.
2989  *
2990  *	Returns 0 on success, or %EBUSY on error.  A warning
2991  *	message is also printed on failure.
2992  */
2993 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
2994 {
2995 	return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
2996 }
2997 EXPORT_SYMBOL(pci_request_regions);
2998 
2999 /**
3000  *	pci_request_regions_exclusive - Reserved PCI I/O and memory resources
3001  *	@pdev: PCI device whose resources are to be reserved
3002  *	@res_name: Name to be associated with resource.
3003  *
3004  *	Mark all PCI regions associated with PCI device @pdev as
3005  *	being reserved by owner @res_name.  Do not access any
3006  *	address inside the PCI regions unless this call returns
3007  *	successfully.
3008  *
3009  *	pci_request_regions_exclusive() will mark the region so that
3010  *	/dev/mem and the sysfs MMIO access will not be allowed.
3011  *
3012  *	Returns 0 on success, or %EBUSY on error.  A warning
3013  *	message is also printed on failure.
3014  */
3015 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3016 {
3017 	return pci_request_selected_regions_exclusive(pdev,
3018 					((1 << 6) - 1), res_name);
3019 }
3020 EXPORT_SYMBOL(pci_request_regions_exclusive);
3021 
3022 #ifdef PCI_IOBASE
3023 struct io_range {
3024 	struct list_head list;
3025 	phys_addr_t start;
3026 	resource_size_t size;
3027 };
3028 
3029 static LIST_HEAD(io_range_list);
3030 static DEFINE_SPINLOCK(io_range_lock);
3031 #endif
3032 
3033 /*
3034  * Record the PCI IO range (expressed as CPU physical address + size).
3035  * Return a negative value if an error has occured, zero otherwise
3036  */
3037 int __weak pci_register_io_range(phys_addr_t addr, resource_size_t size)
3038 {
3039 	int err = 0;
3040 
3041 #ifdef PCI_IOBASE
3042 	struct io_range *range;
3043 	resource_size_t allocated_size = 0;
3044 
3045 	/* check if the range hasn't been previously recorded */
3046 	spin_lock(&io_range_lock);
3047 	list_for_each_entry(range, &io_range_list, list) {
3048 		if (addr >= range->start && addr + size <= range->start + size) {
3049 			/* range already registered, bail out */
3050 			goto end_register;
3051 		}
3052 		allocated_size += range->size;
3053 	}
3054 
3055 	/* range not registed yet, check for available space */
3056 	if (allocated_size + size - 1 > IO_SPACE_LIMIT) {
3057 		/* if it's too big check if 64K space can be reserved */
3058 		if (allocated_size + SZ_64K - 1 > IO_SPACE_LIMIT) {
3059 			err = -E2BIG;
3060 			goto end_register;
3061 		}
3062 
3063 		size = SZ_64K;
3064 		pr_warn("Requested IO range too big, new size set to 64K\n");
3065 	}
3066 
3067 	/* add the range to the list */
3068 	range = kzalloc(sizeof(*range), GFP_ATOMIC);
3069 	if (!range) {
3070 		err = -ENOMEM;
3071 		goto end_register;
3072 	}
3073 
3074 	range->start = addr;
3075 	range->size = size;
3076 
3077 	list_add_tail(&range->list, &io_range_list);
3078 
3079 end_register:
3080 	spin_unlock(&io_range_lock);
3081 #endif
3082 
3083 	return err;
3084 }
3085 
3086 phys_addr_t pci_pio_to_address(unsigned long pio)
3087 {
3088 	phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
3089 
3090 #ifdef PCI_IOBASE
3091 	struct io_range *range;
3092 	resource_size_t allocated_size = 0;
3093 
3094 	if (pio > IO_SPACE_LIMIT)
3095 		return address;
3096 
3097 	spin_lock(&io_range_lock);
3098 	list_for_each_entry(range, &io_range_list, list) {
3099 		if (pio >= allocated_size && pio < allocated_size + range->size) {
3100 			address = range->start + pio - allocated_size;
3101 			break;
3102 		}
3103 		allocated_size += range->size;
3104 	}
3105 	spin_unlock(&io_range_lock);
3106 #endif
3107 
3108 	return address;
3109 }
3110 
3111 unsigned long __weak pci_address_to_pio(phys_addr_t address)
3112 {
3113 #ifdef PCI_IOBASE
3114 	struct io_range *res;
3115 	resource_size_t offset = 0;
3116 	unsigned long addr = -1;
3117 
3118 	spin_lock(&io_range_lock);
3119 	list_for_each_entry(res, &io_range_list, list) {
3120 		if (address >= res->start && address < res->start + res->size) {
3121 			addr = address - res->start + offset;
3122 			break;
3123 		}
3124 		offset += res->size;
3125 	}
3126 	spin_unlock(&io_range_lock);
3127 
3128 	return addr;
3129 #else
3130 	if (address > IO_SPACE_LIMIT)
3131 		return (unsigned long)-1;
3132 
3133 	return (unsigned long) address;
3134 #endif
3135 }
3136 
3137 /**
3138  *	pci_remap_iospace - Remap the memory mapped I/O space
3139  *	@res: Resource describing the I/O space
3140  *	@phys_addr: physical address of range to be mapped
3141  *
3142  *	Remap the memory mapped I/O space described by the @res
3143  *	and the CPU physical address @phys_addr into virtual address space.
3144  *	Only architectures that have memory mapped IO functions defined
3145  *	(and the PCI_IOBASE value defined) should call this function.
3146  */
3147 int __weak pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
3148 {
3149 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3150 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3151 
3152 	if (!(res->flags & IORESOURCE_IO))
3153 		return -EINVAL;
3154 
3155 	if (res->end > IO_SPACE_LIMIT)
3156 		return -EINVAL;
3157 
3158 	return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
3159 				  pgprot_device(PAGE_KERNEL));
3160 #else
3161 	/* this architecture does not have memory mapped I/O space,
3162 	   so this function should never be called */
3163 	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
3164 	return -ENODEV;
3165 #endif
3166 }
3167 
3168 static void __pci_set_master(struct pci_dev *dev, bool enable)
3169 {
3170 	u16 old_cmd, cmd;
3171 
3172 	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
3173 	if (enable)
3174 		cmd = old_cmd | PCI_COMMAND_MASTER;
3175 	else
3176 		cmd = old_cmd & ~PCI_COMMAND_MASTER;
3177 	if (cmd != old_cmd) {
3178 		dev_dbg(&dev->dev, "%s bus mastering\n",
3179 			enable ? "enabling" : "disabling");
3180 		pci_write_config_word(dev, PCI_COMMAND, cmd);
3181 	}
3182 	dev->is_busmaster = enable;
3183 }
3184 
3185 /**
3186  * pcibios_setup - process "pci=" kernel boot arguments
3187  * @str: string used to pass in "pci=" kernel boot arguments
3188  *
3189  * Process kernel boot arguments.  This is the default implementation.
3190  * Architecture specific implementations can override this as necessary.
3191  */
3192 char * __weak __init pcibios_setup(char *str)
3193 {
3194 	return str;
3195 }
3196 
3197 /**
3198  * pcibios_set_master - enable PCI bus-mastering for device dev
3199  * @dev: the PCI device to enable
3200  *
3201  * Enables PCI bus-mastering for the device.  This is the default
3202  * implementation.  Architecture specific implementations can override
3203  * this if necessary.
3204  */
3205 void __weak pcibios_set_master(struct pci_dev *dev)
3206 {
3207 	u8 lat;
3208 
3209 	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
3210 	if (pci_is_pcie(dev))
3211 		return;
3212 
3213 	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
3214 	if (lat < 16)
3215 		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
3216 	else if (lat > pcibios_max_latency)
3217 		lat = pcibios_max_latency;
3218 	else
3219 		return;
3220 
3221 	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
3222 }
3223 
3224 /**
3225  * pci_set_master - enables bus-mastering for device dev
3226  * @dev: the PCI device to enable
3227  *
3228  * Enables bus-mastering on the device and calls pcibios_set_master()
3229  * to do the needed arch specific settings.
3230  */
3231 void pci_set_master(struct pci_dev *dev)
3232 {
3233 	__pci_set_master(dev, true);
3234 	pcibios_set_master(dev);
3235 }
3236 EXPORT_SYMBOL(pci_set_master);
3237 
3238 /**
3239  * pci_clear_master - disables bus-mastering for device dev
3240  * @dev: the PCI device to disable
3241  */
3242 void pci_clear_master(struct pci_dev *dev)
3243 {
3244 	__pci_set_master(dev, false);
3245 }
3246 EXPORT_SYMBOL(pci_clear_master);
3247 
3248 /**
3249  * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
3250  * @dev: the PCI device for which MWI is to be enabled
3251  *
3252  * Helper function for pci_set_mwi.
3253  * Originally copied from drivers/net/acenic.c.
3254  * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
3255  *
3256  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3257  */
3258 int pci_set_cacheline_size(struct pci_dev *dev)
3259 {
3260 	u8 cacheline_size;
3261 
3262 	if (!pci_cache_line_size)
3263 		return -EINVAL;
3264 
3265 	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
3266 	   equal to or multiple of the right value. */
3267 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3268 	if (cacheline_size >= pci_cache_line_size &&
3269 	    (cacheline_size % pci_cache_line_size) == 0)
3270 		return 0;
3271 
3272 	/* Write the correct value. */
3273 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
3274 	/* Read it back. */
3275 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3276 	if (cacheline_size == pci_cache_line_size)
3277 		return 0;
3278 
3279 	dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not supported\n",
3280 		   pci_cache_line_size << 2);
3281 
3282 	return -EINVAL;
3283 }
3284 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
3285 
3286 /**
3287  * pci_set_mwi - enables memory-write-invalidate PCI transaction
3288  * @dev: the PCI device for which MWI is enabled
3289  *
3290  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3291  *
3292  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3293  */
3294 int pci_set_mwi(struct pci_dev *dev)
3295 {
3296 #ifdef PCI_DISABLE_MWI
3297 	return 0;
3298 #else
3299 	int rc;
3300 	u16 cmd;
3301 
3302 	rc = pci_set_cacheline_size(dev);
3303 	if (rc)
3304 		return rc;
3305 
3306 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
3307 	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
3308 		dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
3309 		cmd |= PCI_COMMAND_INVALIDATE;
3310 		pci_write_config_word(dev, PCI_COMMAND, cmd);
3311 	}
3312 	return 0;
3313 #endif
3314 }
3315 EXPORT_SYMBOL(pci_set_mwi);
3316 
3317 /**
3318  * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
3319  * @dev: the PCI device for which MWI is enabled
3320  *
3321  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3322  * Callers are not required to check the return value.
3323  *
3324  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3325  */
3326 int pci_try_set_mwi(struct pci_dev *dev)
3327 {
3328 #ifdef PCI_DISABLE_MWI
3329 	return 0;
3330 #else
3331 	return pci_set_mwi(dev);
3332 #endif
3333 }
3334 EXPORT_SYMBOL(pci_try_set_mwi);
3335 
3336 /**
3337  * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
3338  * @dev: the PCI device to disable
3339  *
3340  * Disables PCI Memory-Write-Invalidate transaction on the device
3341  */
3342 void pci_clear_mwi(struct pci_dev *dev)
3343 {
3344 #ifndef PCI_DISABLE_MWI
3345 	u16 cmd;
3346 
3347 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
3348 	if (cmd & PCI_COMMAND_INVALIDATE) {
3349 		cmd &= ~PCI_COMMAND_INVALIDATE;
3350 		pci_write_config_word(dev, PCI_COMMAND, cmd);
3351 	}
3352 #endif
3353 }
3354 EXPORT_SYMBOL(pci_clear_mwi);
3355 
3356 /**
3357  * pci_intx - enables/disables PCI INTx for device dev
3358  * @pdev: the PCI device to operate on
3359  * @enable: boolean: whether to enable or disable PCI INTx
3360  *
3361  * Enables/disables PCI INTx for device dev
3362  */
3363 void pci_intx(struct pci_dev *pdev, int enable)
3364 {
3365 	u16 pci_command, new;
3366 
3367 	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
3368 
3369 	if (enable)
3370 		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
3371 	else
3372 		new = pci_command | PCI_COMMAND_INTX_DISABLE;
3373 
3374 	if (new != pci_command) {
3375 		struct pci_devres *dr;
3376 
3377 		pci_write_config_word(pdev, PCI_COMMAND, new);
3378 
3379 		dr = find_pci_dr(pdev);
3380 		if (dr && !dr->restore_intx) {
3381 			dr->restore_intx = 1;
3382 			dr->orig_intx = !enable;
3383 		}
3384 	}
3385 }
3386 EXPORT_SYMBOL_GPL(pci_intx);
3387 
3388 /**
3389  * pci_intx_mask_supported - probe for INTx masking support
3390  * @dev: the PCI device to operate on
3391  *
3392  * Check if the device dev support INTx masking via the config space
3393  * command word.
3394  */
3395 bool pci_intx_mask_supported(struct pci_dev *dev)
3396 {
3397 	bool mask_supported = false;
3398 	u16 orig, new;
3399 
3400 	if (dev->broken_intx_masking)
3401 		return false;
3402 
3403 	pci_cfg_access_lock(dev);
3404 
3405 	pci_read_config_word(dev, PCI_COMMAND, &orig);
3406 	pci_write_config_word(dev, PCI_COMMAND,
3407 			      orig ^ PCI_COMMAND_INTX_DISABLE);
3408 	pci_read_config_word(dev, PCI_COMMAND, &new);
3409 
3410 	/*
3411 	 * There's no way to protect against hardware bugs or detect them
3412 	 * reliably, but as long as we know what the value should be, let's
3413 	 * go ahead and check it.
3414 	 */
3415 	if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) {
3416 		dev_err(&dev->dev, "Command register changed from 0x%x to 0x%x: driver or hardware bug?\n",
3417 			orig, new);
3418 	} else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) {
3419 		mask_supported = true;
3420 		pci_write_config_word(dev, PCI_COMMAND, orig);
3421 	}
3422 
3423 	pci_cfg_access_unlock(dev);
3424 	return mask_supported;
3425 }
3426 EXPORT_SYMBOL_GPL(pci_intx_mask_supported);
3427 
3428 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
3429 {
3430 	struct pci_bus *bus = dev->bus;
3431 	bool mask_updated = true;
3432 	u32 cmd_status_dword;
3433 	u16 origcmd, newcmd;
3434 	unsigned long flags;
3435 	bool irq_pending;
3436 
3437 	/*
3438 	 * We do a single dword read to retrieve both command and status.
3439 	 * Document assumptions that make this possible.
3440 	 */
3441 	BUILD_BUG_ON(PCI_COMMAND % 4);
3442 	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
3443 
3444 	raw_spin_lock_irqsave(&pci_lock, flags);
3445 
3446 	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
3447 
3448 	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
3449 
3450 	/*
3451 	 * Check interrupt status register to see whether our device
3452 	 * triggered the interrupt (when masking) or the next IRQ is
3453 	 * already pending (when unmasking).
3454 	 */
3455 	if (mask != irq_pending) {
3456 		mask_updated = false;
3457 		goto done;
3458 	}
3459 
3460 	origcmd = cmd_status_dword;
3461 	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
3462 	if (mask)
3463 		newcmd |= PCI_COMMAND_INTX_DISABLE;
3464 	if (newcmd != origcmd)
3465 		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
3466 
3467 done:
3468 	raw_spin_unlock_irqrestore(&pci_lock, flags);
3469 
3470 	return mask_updated;
3471 }
3472 
3473 /**
3474  * pci_check_and_mask_intx - mask INTx on pending interrupt
3475  * @dev: the PCI device to operate on
3476  *
3477  * Check if the device dev has its INTx line asserted, mask it and
3478  * return true in that case. False is returned if not interrupt was
3479  * pending.
3480  */
3481 bool pci_check_and_mask_intx(struct pci_dev *dev)
3482 {
3483 	return pci_check_and_set_intx_mask(dev, true);
3484 }
3485 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
3486 
3487 /**
3488  * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
3489  * @dev: the PCI device to operate on
3490  *
3491  * Check if the device dev has its INTx line asserted, unmask it if not
3492  * and return true. False is returned and the mask remains active if
3493  * there was still an interrupt pending.
3494  */
3495 bool pci_check_and_unmask_intx(struct pci_dev *dev)
3496 {
3497 	return pci_check_and_set_intx_mask(dev, false);
3498 }
3499 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
3500 
3501 /**
3502  * pci_wait_for_pending_transaction - waits for pending transaction
3503  * @dev: the PCI device to operate on
3504  *
3505  * Return 0 if transaction is pending 1 otherwise.
3506  */
3507 int pci_wait_for_pending_transaction(struct pci_dev *dev)
3508 {
3509 	if (!pci_is_pcie(dev))
3510 		return 1;
3511 
3512 	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
3513 				    PCI_EXP_DEVSTA_TRPND);
3514 }
3515 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
3516 
3517 /*
3518  * We should only need to wait 100ms after FLR, but some devices take longer.
3519  * Wait for up to 1000ms for config space to return something other than -1.
3520  * Intel IGD requires this when an LCD panel is attached.  We read the 2nd
3521  * dword because VFs don't implement the 1st dword.
3522  */
3523 static void pci_flr_wait(struct pci_dev *dev)
3524 {
3525 	int i = 0;
3526 	u32 id;
3527 
3528 	do {
3529 		msleep(100);
3530 		pci_read_config_dword(dev, PCI_COMMAND, &id);
3531 	} while (i++ < 10 && id == ~0);
3532 
3533 	if (id == ~0)
3534 		dev_warn(&dev->dev, "Failed to return from FLR\n");
3535 	else if (i > 1)
3536 		dev_info(&dev->dev, "Required additional %dms to return from FLR\n",
3537 			 (i - 1) * 100);
3538 }
3539 
3540 static int pcie_flr(struct pci_dev *dev, int probe)
3541 {
3542 	u32 cap;
3543 
3544 	pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
3545 	if (!(cap & PCI_EXP_DEVCAP_FLR))
3546 		return -ENOTTY;
3547 
3548 	if (probe)
3549 		return 0;
3550 
3551 	if (!pci_wait_for_pending_transaction(dev))
3552 		dev_err(&dev->dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
3553 
3554 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
3555 	pci_flr_wait(dev);
3556 	return 0;
3557 }
3558 
3559 static int pci_af_flr(struct pci_dev *dev, int probe)
3560 {
3561 	int pos;
3562 	u8 cap;
3563 
3564 	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
3565 	if (!pos)
3566 		return -ENOTTY;
3567 
3568 	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
3569 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
3570 		return -ENOTTY;
3571 
3572 	if (probe)
3573 		return 0;
3574 
3575 	/*
3576 	 * Wait for Transaction Pending bit to clear.  A word-aligned test
3577 	 * is used, so we use the conrol offset rather than status and shift
3578 	 * the test bit to match.
3579 	 */
3580 	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
3581 				 PCI_AF_STATUS_TP << 8))
3582 		dev_err(&dev->dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
3583 
3584 	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
3585 	pci_flr_wait(dev);
3586 	return 0;
3587 }
3588 
3589 /**
3590  * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
3591  * @dev: Device to reset.
3592  * @probe: If set, only check if the device can be reset this way.
3593  *
3594  * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
3595  * unset, it will be reinitialized internally when going from PCI_D3hot to
3596  * PCI_D0.  If that's the case and the device is not in a low-power state
3597  * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
3598  *
3599  * NOTE: This causes the caller to sleep for twice the device power transition
3600  * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
3601  * by default (i.e. unless the @dev's d3_delay field has a different value).
3602  * Moreover, only devices in D0 can be reset by this function.
3603  */
3604 static int pci_pm_reset(struct pci_dev *dev, int probe)
3605 {
3606 	u16 csr;
3607 
3608 	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
3609 		return -ENOTTY;
3610 
3611 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
3612 	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
3613 		return -ENOTTY;
3614 
3615 	if (probe)
3616 		return 0;
3617 
3618 	if (dev->current_state != PCI_D0)
3619 		return -EINVAL;
3620 
3621 	csr &= ~PCI_PM_CTRL_STATE_MASK;
3622 	csr |= PCI_D3hot;
3623 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3624 	pci_dev_d3_sleep(dev);
3625 
3626 	csr &= ~PCI_PM_CTRL_STATE_MASK;
3627 	csr |= PCI_D0;
3628 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3629 	pci_dev_d3_sleep(dev);
3630 
3631 	return 0;
3632 }
3633 
3634 void pci_reset_secondary_bus(struct pci_dev *dev)
3635 {
3636 	u16 ctrl;
3637 
3638 	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
3639 	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
3640 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3641 	/*
3642 	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
3643 	 * this to 2ms to ensure that we meet the minimum requirement.
3644 	 */
3645 	msleep(2);
3646 
3647 	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
3648 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3649 
3650 	/*
3651 	 * Trhfa for conventional PCI is 2^25 clock cycles.
3652 	 * Assuming a minimum 33MHz clock this results in a 1s
3653 	 * delay before we can consider subordinate devices to
3654 	 * be re-initialized.  PCIe has some ways to shorten this,
3655 	 * but we don't make use of them yet.
3656 	 */
3657 	ssleep(1);
3658 }
3659 
3660 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
3661 {
3662 	pci_reset_secondary_bus(dev);
3663 }
3664 
3665 /**
3666  * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge.
3667  * @dev: Bridge device
3668  *
3669  * Use the bridge control register to assert reset on the secondary bus.
3670  * Devices on the secondary bus are left in power-on state.
3671  */
3672 void pci_reset_bridge_secondary_bus(struct pci_dev *dev)
3673 {
3674 	pcibios_reset_secondary_bus(dev);
3675 }
3676 EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus);
3677 
3678 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
3679 {
3680 	struct pci_dev *pdev;
3681 
3682 	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
3683 	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
3684 		return -ENOTTY;
3685 
3686 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3687 		if (pdev != dev)
3688 			return -ENOTTY;
3689 
3690 	if (probe)
3691 		return 0;
3692 
3693 	pci_reset_bridge_secondary_bus(dev->bus->self);
3694 
3695 	return 0;
3696 }
3697 
3698 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
3699 {
3700 	int rc = -ENOTTY;
3701 
3702 	if (!hotplug || !try_module_get(hotplug->ops->owner))
3703 		return rc;
3704 
3705 	if (hotplug->ops->reset_slot)
3706 		rc = hotplug->ops->reset_slot(hotplug, probe);
3707 
3708 	module_put(hotplug->ops->owner);
3709 
3710 	return rc;
3711 }
3712 
3713 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
3714 {
3715 	struct pci_dev *pdev;
3716 
3717 	if (dev->subordinate || !dev->slot ||
3718 	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
3719 		return -ENOTTY;
3720 
3721 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3722 		if (pdev != dev && pdev->slot == dev->slot)
3723 			return -ENOTTY;
3724 
3725 	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
3726 }
3727 
3728 static int __pci_dev_reset(struct pci_dev *dev, int probe)
3729 {
3730 	int rc;
3731 
3732 	might_sleep();
3733 
3734 	rc = pci_dev_specific_reset(dev, probe);
3735 	if (rc != -ENOTTY)
3736 		goto done;
3737 
3738 	rc = pcie_flr(dev, probe);
3739 	if (rc != -ENOTTY)
3740 		goto done;
3741 
3742 	rc = pci_af_flr(dev, probe);
3743 	if (rc != -ENOTTY)
3744 		goto done;
3745 
3746 	rc = pci_pm_reset(dev, probe);
3747 	if (rc != -ENOTTY)
3748 		goto done;
3749 
3750 	rc = pci_dev_reset_slot_function(dev, probe);
3751 	if (rc != -ENOTTY)
3752 		goto done;
3753 
3754 	rc = pci_parent_bus_reset(dev, probe);
3755 done:
3756 	return rc;
3757 }
3758 
3759 static void pci_dev_lock(struct pci_dev *dev)
3760 {
3761 	pci_cfg_access_lock(dev);
3762 	/* block PM suspend, driver probe, etc. */
3763 	device_lock(&dev->dev);
3764 }
3765 
3766 /* Return 1 on successful lock, 0 on contention */
3767 static int pci_dev_trylock(struct pci_dev *dev)
3768 {
3769 	if (pci_cfg_access_trylock(dev)) {
3770 		if (device_trylock(&dev->dev))
3771 			return 1;
3772 		pci_cfg_access_unlock(dev);
3773 	}
3774 
3775 	return 0;
3776 }
3777 
3778 static void pci_dev_unlock(struct pci_dev *dev)
3779 {
3780 	device_unlock(&dev->dev);
3781 	pci_cfg_access_unlock(dev);
3782 }
3783 
3784 /**
3785  * pci_reset_notify - notify device driver of reset
3786  * @dev: device to be notified of reset
3787  * @prepare: 'true' if device is about to be reset; 'false' if reset attempt
3788  *           completed
3789  *
3790  * Must be called prior to device access being disabled and after device
3791  * access is restored.
3792  */
3793 static void pci_reset_notify(struct pci_dev *dev, bool prepare)
3794 {
3795 	const struct pci_error_handlers *err_handler =
3796 			dev->driver ? dev->driver->err_handler : NULL;
3797 	if (err_handler && err_handler->reset_notify)
3798 		err_handler->reset_notify(dev, prepare);
3799 }
3800 
3801 static void pci_dev_save_and_disable(struct pci_dev *dev)
3802 {
3803 	pci_reset_notify(dev, true);
3804 
3805 	/*
3806 	 * Wake-up device prior to save.  PM registers default to D0 after
3807 	 * reset and a simple register restore doesn't reliably return
3808 	 * to a non-D0 state anyway.
3809 	 */
3810 	pci_set_power_state(dev, PCI_D0);
3811 
3812 	pci_save_state(dev);
3813 	/*
3814 	 * Disable the device by clearing the Command register, except for
3815 	 * INTx-disable which is set.  This not only disables MMIO and I/O port
3816 	 * BARs, but also prevents the device from being Bus Master, preventing
3817 	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
3818 	 * compliant devices, INTx-disable prevents legacy interrupts.
3819 	 */
3820 	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
3821 }
3822 
3823 static void pci_dev_restore(struct pci_dev *dev)
3824 {
3825 	pci_restore_state(dev);
3826 	pci_reset_notify(dev, false);
3827 }
3828 
3829 static int pci_dev_reset(struct pci_dev *dev, int probe)
3830 {
3831 	int rc;
3832 
3833 	if (!probe)
3834 		pci_dev_lock(dev);
3835 
3836 	rc = __pci_dev_reset(dev, probe);
3837 
3838 	if (!probe)
3839 		pci_dev_unlock(dev);
3840 
3841 	return rc;
3842 }
3843 
3844 /**
3845  * __pci_reset_function - reset a PCI device function
3846  * @dev: PCI device to reset
3847  *
3848  * Some devices allow an individual function to be reset without affecting
3849  * other functions in the same device.  The PCI device must be responsive
3850  * to PCI config space in order to use this function.
3851  *
3852  * The device function is presumed to be unused when this function is called.
3853  * Resetting the device will make the contents of PCI configuration space
3854  * random, so any caller of this must be prepared to reinitialise the
3855  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3856  * etc.
3857  *
3858  * Returns 0 if the device function was successfully reset or negative if the
3859  * device doesn't support resetting a single function.
3860  */
3861 int __pci_reset_function(struct pci_dev *dev)
3862 {
3863 	return pci_dev_reset(dev, 0);
3864 }
3865 EXPORT_SYMBOL_GPL(__pci_reset_function);
3866 
3867 /**
3868  * __pci_reset_function_locked - reset a PCI device function while holding
3869  * the @dev mutex lock.
3870  * @dev: PCI device to reset
3871  *
3872  * Some devices allow an individual function to be reset without affecting
3873  * other functions in the same device.  The PCI device must be responsive
3874  * to PCI config space in order to use this function.
3875  *
3876  * The device function is presumed to be unused and the caller is holding
3877  * the device mutex lock when this function is called.
3878  * Resetting the device will make the contents of PCI configuration space
3879  * random, so any caller of this must be prepared to reinitialise the
3880  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3881  * etc.
3882  *
3883  * Returns 0 if the device function was successfully reset or negative if the
3884  * device doesn't support resetting a single function.
3885  */
3886 int __pci_reset_function_locked(struct pci_dev *dev)
3887 {
3888 	return __pci_dev_reset(dev, 0);
3889 }
3890 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
3891 
3892 /**
3893  * pci_probe_reset_function - check whether the device can be safely reset
3894  * @dev: PCI device to reset
3895  *
3896  * Some devices allow an individual function to be reset without affecting
3897  * other functions in the same device.  The PCI device must be responsive
3898  * to PCI config space in order to use this function.
3899  *
3900  * Returns 0 if the device function can be reset or negative if the
3901  * device doesn't support resetting a single function.
3902  */
3903 int pci_probe_reset_function(struct pci_dev *dev)
3904 {
3905 	return pci_dev_reset(dev, 1);
3906 }
3907 
3908 /**
3909  * pci_reset_function - quiesce and reset a PCI device function
3910  * @dev: PCI device to reset
3911  *
3912  * Some devices allow an individual function to be reset without affecting
3913  * other functions in the same device.  The PCI device must be responsive
3914  * to PCI config space in order to use this function.
3915  *
3916  * This function does not just reset the PCI portion of a device, but
3917  * clears all the state associated with the device.  This function differs
3918  * from __pci_reset_function in that it saves and restores device state
3919  * over the reset.
3920  *
3921  * Returns 0 if the device function was successfully reset or negative if the
3922  * device doesn't support resetting a single function.
3923  */
3924 int pci_reset_function(struct pci_dev *dev)
3925 {
3926 	int rc;
3927 
3928 	rc = pci_dev_reset(dev, 1);
3929 	if (rc)
3930 		return rc;
3931 
3932 	pci_dev_save_and_disable(dev);
3933 
3934 	rc = pci_dev_reset(dev, 0);
3935 
3936 	pci_dev_restore(dev);
3937 
3938 	return rc;
3939 }
3940 EXPORT_SYMBOL_GPL(pci_reset_function);
3941 
3942 /**
3943  * pci_try_reset_function - quiesce and reset a PCI device function
3944  * @dev: PCI device to reset
3945  *
3946  * Same as above, except return -EAGAIN if unable to lock device.
3947  */
3948 int pci_try_reset_function(struct pci_dev *dev)
3949 {
3950 	int rc;
3951 
3952 	rc = pci_dev_reset(dev, 1);
3953 	if (rc)
3954 		return rc;
3955 
3956 	pci_dev_save_and_disable(dev);
3957 
3958 	if (pci_dev_trylock(dev)) {
3959 		rc = __pci_dev_reset(dev, 0);
3960 		pci_dev_unlock(dev);
3961 	} else
3962 		rc = -EAGAIN;
3963 
3964 	pci_dev_restore(dev);
3965 
3966 	return rc;
3967 }
3968 EXPORT_SYMBOL_GPL(pci_try_reset_function);
3969 
3970 /* Do any devices on or below this bus prevent a bus reset? */
3971 static bool pci_bus_resetable(struct pci_bus *bus)
3972 {
3973 	struct pci_dev *dev;
3974 
3975 	list_for_each_entry(dev, &bus->devices, bus_list) {
3976 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
3977 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
3978 			return false;
3979 	}
3980 
3981 	return true;
3982 }
3983 
3984 /* Lock devices from the top of the tree down */
3985 static void pci_bus_lock(struct pci_bus *bus)
3986 {
3987 	struct pci_dev *dev;
3988 
3989 	list_for_each_entry(dev, &bus->devices, bus_list) {
3990 		pci_dev_lock(dev);
3991 		if (dev->subordinate)
3992 			pci_bus_lock(dev->subordinate);
3993 	}
3994 }
3995 
3996 /* Unlock devices from the bottom of the tree up */
3997 static void pci_bus_unlock(struct pci_bus *bus)
3998 {
3999 	struct pci_dev *dev;
4000 
4001 	list_for_each_entry(dev, &bus->devices, bus_list) {
4002 		if (dev->subordinate)
4003 			pci_bus_unlock(dev->subordinate);
4004 		pci_dev_unlock(dev);
4005 	}
4006 }
4007 
4008 /* Return 1 on successful lock, 0 on contention */
4009 static int pci_bus_trylock(struct pci_bus *bus)
4010 {
4011 	struct pci_dev *dev;
4012 
4013 	list_for_each_entry(dev, &bus->devices, bus_list) {
4014 		if (!pci_dev_trylock(dev))
4015 			goto unlock;
4016 		if (dev->subordinate) {
4017 			if (!pci_bus_trylock(dev->subordinate)) {
4018 				pci_dev_unlock(dev);
4019 				goto unlock;
4020 			}
4021 		}
4022 	}
4023 	return 1;
4024 
4025 unlock:
4026 	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
4027 		if (dev->subordinate)
4028 			pci_bus_unlock(dev->subordinate);
4029 		pci_dev_unlock(dev);
4030 	}
4031 	return 0;
4032 }
4033 
4034 /* Do any devices on or below this slot prevent a bus reset? */
4035 static bool pci_slot_resetable(struct pci_slot *slot)
4036 {
4037 	struct pci_dev *dev;
4038 
4039 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4040 		if (!dev->slot || dev->slot != slot)
4041 			continue;
4042 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
4043 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
4044 			return false;
4045 	}
4046 
4047 	return true;
4048 }
4049 
4050 /* Lock devices from the top of the tree down */
4051 static void pci_slot_lock(struct pci_slot *slot)
4052 {
4053 	struct pci_dev *dev;
4054 
4055 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4056 		if (!dev->slot || dev->slot != slot)
4057 			continue;
4058 		pci_dev_lock(dev);
4059 		if (dev->subordinate)
4060 			pci_bus_lock(dev->subordinate);
4061 	}
4062 }
4063 
4064 /* Unlock devices from the bottom of the tree up */
4065 static void pci_slot_unlock(struct pci_slot *slot)
4066 {
4067 	struct pci_dev *dev;
4068 
4069 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4070 		if (!dev->slot || dev->slot != slot)
4071 			continue;
4072 		if (dev->subordinate)
4073 			pci_bus_unlock(dev->subordinate);
4074 		pci_dev_unlock(dev);
4075 	}
4076 }
4077 
4078 /* Return 1 on successful lock, 0 on contention */
4079 static int pci_slot_trylock(struct pci_slot *slot)
4080 {
4081 	struct pci_dev *dev;
4082 
4083 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4084 		if (!dev->slot || dev->slot != slot)
4085 			continue;
4086 		if (!pci_dev_trylock(dev))
4087 			goto unlock;
4088 		if (dev->subordinate) {
4089 			if (!pci_bus_trylock(dev->subordinate)) {
4090 				pci_dev_unlock(dev);
4091 				goto unlock;
4092 			}
4093 		}
4094 	}
4095 	return 1;
4096 
4097 unlock:
4098 	list_for_each_entry_continue_reverse(dev,
4099 					     &slot->bus->devices, bus_list) {
4100 		if (!dev->slot || dev->slot != slot)
4101 			continue;
4102 		if (dev->subordinate)
4103 			pci_bus_unlock(dev->subordinate);
4104 		pci_dev_unlock(dev);
4105 	}
4106 	return 0;
4107 }
4108 
4109 /* Save and disable devices from the top of the tree down */
4110 static void pci_bus_save_and_disable(struct pci_bus *bus)
4111 {
4112 	struct pci_dev *dev;
4113 
4114 	list_for_each_entry(dev, &bus->devices, bus_list) {
4115 		pci_dev_save_and_disable(dev);
4116 		if (dev->subordinate)
4117 			pci_bus_save_and_disable(dev->subordinate);
4118 	}
4119 }
4120 
4121 /*
4122  * Restore devices from top of the tree down - parent bridges need to be
4123  * restored before we can get to subordinate devices.
4124  */
4125 static void pci_bus_restore(struct pci_bus *bus)
4126 {
4127 	struct pci_dev *dev;
4128 
4129 	list_for_each_entry(dev, &bus->devices, bus_list) {
4130 		pci_dev_restore(dev);
4131 		if (dev->subordinate)
4132 			pci_bus_restore(dev->subordinate);
4133 	}
4134 }
4135 
4136 /* Save and disable devices from the top of the tree down */
4137 static void pci_slot_save_and_disable(struct pci_slot *slot)
4138 {
4139 	struct pci_dev *dev;
4140 
4141 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4142 		if (!dev->slot || dev->slot != slot)
4143 			continue;
4144 		pci_dev_save_and_disable(dev);
4145 		if (dev->subordinate)
4146 			pci_bus_save_and_disable(dev->subordinate);
4147 	}
4148 }
4149 
4150 /*
4151  * Restore devices from top of the tree down - parent bridges need to be
4152  * restored before we can get to subordinate devices.
4153  */
4154 static void pci_slot_restore(struct pci_slot *slot)
4155 {
4156 	struct pci_dev *dev;
4157 
4158 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4159 		if (!dev->slot || dev->slot != slot)
4160 			continue;
4161 		pci_dev_restore(dev);
4162 		if (dev->subordinate)
4163 			pci_bus_restore(dev->subordinate);
4164 	}
4165 }
4166 
4167 static int pci_slot_reset(struct pci_slot *slot, int probe)
4168 {
4169 	int rc;
4170 
4171 	if (!slot || !pci_slot_resetable(slot))
4172 		return -ENOTTY;
4173 
4174 	if (!probe)
4175 		pci_slot_lock(slot);
4176 
4177 	might_sleep();
4178 
4179 	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
4180 
4181 	if (!probe)
4182 		pci_slot_unlock(slot);
4183 
4184 	return rc;
4185 }
4186 
4187 /**
4188  * pci_probe_reset_slot - probe whether a PCI slot can be reset
4189  * @slot: PCI slot to probe
4190  *
4191  * Return 0 if slot can be reset, negative if a slot reset is not supported.
4192  */
4193 int pci_probe_reset_slot(struct pci_slot *slot)
4194 {
4195 	return pci_slot_reset(slot, 1);
4196 }
4197 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
4198 
4199 /**
4200  * pci_reset_slot - reset a PCI slot
4201  * @slot: PCI slot to reset
4202  *
4203  * A PCI bus may host multiple slots, each slot may support a reset mechanism
4204  * independent of other slots.  For instance, some slots may support slot power
4205  * control.  In the case of a 1:1 bus to slot architecture, this function may
4206  * wrap the bus reset to avoid spurious slot related events such as hotplug.
4207  * Generally a slot reset should be attempted before a bus reset.  All of the
4208  * function of the slot and any subordinate buses behind the slot are reset
4209  * through this function.  PCI config space of all devices in the slot and
4210  * behind the slot is saved before and restored after reset.
4211  *
4212  * Return 0 on success, non-zero on error.
4213  */
4214 int pci_reset_slot(struct pci_slot *slot)
4215 {
4216 	int rc;
4217 
4218 	rc = pci_slot_reset(slot, 1);
4219 	if (rc)
4220 		return rc;
4221 
4222 	pci_slot_save_and_disable(slot);
4223 
4224 	rc = pci_slot_reset(slot, 0);
4225 
4226 	pci_slot_restore(slot);
4227 
4228 	return rc;
4229 }
4230 EXPORT_SYMBOL_GPL(pci_reset_slot);
4231 
4232 /**
4233  * pci_try_reset_slot - Try to reset a PCI slot
4234  * @slot: PCI slot to reset
4235  *
4236  * Same as above except return -EAGAIN if the slot cannot be locked
4237  */
4238 int pci_try_reset_slot(struct pci_slot *slot)
4239 {
4240 	int rc;
4241 
4242 	rc = pci_slot_reset(slot, 1);
4243 	if (rc)
4244 		return rc;
4245 
4246 	pci_slot_save_and_disable(slot);
4247 
4248 	if (pci_slot_trylock(slot)) {
4249 		might_sleep();
4250 		rc = pci_reset_hotplug_slot(slot->hotplug, 0);
4251 		pci_slot_unlock(slot);
4252 	} else
4253 		rc = -EAGAIN;
4254 
4255 	pci_slot_restore(slot);
4256 
4257 	return rc;
4258 }
4259 EXPORT_SYMBOL_GPL(pci_try_reset_slot);
4260 
4261 static int pci_bus_reset(struct pci_bus *bus, int probe)
4262 {
4263 	if (!bus->self || !pci_bus_resetable(bus))
4264 		return -ENOTTY;
4265 
4266 	if (probe)
4267 		return 0;
4268 
4269 	pci_bus_lock(bus);
4270 
4271 	might_sleep();
4272 
4273 	pci_reset_bridge_secondary_bus(bus->self);
4274 
4275 	pci_bus_unlock(bus);
4276 
4277 	return 0;
4278 }
4279 
4280 /**
4281  * pci_probe_reset_bus - probe whether a PCI bus can be reset
4282  * @bus: PCI bus to probe
4283  *
4284  * Return 0 if bus can be reset, negative if a bus reset is not supported.
4285  */
4286 int pci_probe_reset_bus(struct pci_bus *bus)
4287 {
4288 	return pci_bus_reset(bus, 1);
4289 }
4290 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
4291 
4292 /**
4293  * pci_reset_bus - reset a PCI bus
4294  * @bus: top level PCI bus to reset
4295  *
4296  * Do a bus reset on the given bus and any subordinate buses, saving
4297  * and restoring state of all devices.
4298  *
4299  * Return 0 on success, non-zero on error.
4300  */
4301 int pci_reset_bus(struct pci_bus *bus)
4302 {
4303 	int rc;
4304 
4305 	rc = pci_bus_reset(bus, 1);
4306 	if (rc)
4307 		return rc;
4308 
4309 	pci_bus_save_and_disable(bus);
4310 
4311 	rc = pci_bus_reset(bus, 0);
4312 
4313 	pci_bus_restore(bus);
4314 
4315 	return rc;
4316 }
4317 EXPORT_SYMBOL_GPL(pci_reset_bus);
4318 
4319 /**
4320  * pci_try_reset_bus - Try to reset a PCI bus
4321  * @bus: top level PCI bus to reset
4322  *
4323  * Same as above except return -EAGAIN if the bus cannot be locked
4324  */
4325 int pci_try_reset_bus(struct pci_bus *bus)
4326 {
4327 	int rc;
4328 
4329 	rc = pci_bus_reset(bus, 1);
4330 	if (rc)
4331 		return rc;
4332 
4333 	pci_bus_save_and_disable(bus);
4334 
4335 	if (pci_bus_trylock(bus)) {
4336 		might_sleep();
4337 		pci_reset_bridge_secondary_bus(bus->self);
4338 		pci_bus_unlock(bus);
4339 	} else
4340 		rc = -EAGAIN;
4341 
4342 	pci_bus_restore(bus);
4343 
4344 	return rc;
4345 }
4346 EXPORT_SYMBOL_GPL(pci_try_reset_bus);
4347 
4348 /**
4349  * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
4350  * @dev: PCI device to query
4351  *
4352  * Returns mmrbc: maximum designed memory read count in bytes
4353  *    or appropriate error value.
4354  */
4355 int pcix_get_max_mmrbc(struct pci_dev *dev)
4356 {
4357 	int cap;
4358 	u32 stat;
4359 
4360 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4361 	if (!cap)
4362 		return -EINVAL;
4363 
4364 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4365 		return -EINVAL;
4366 
4367 	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
4368 }
4369 EXPORT_SYMBOL(pcix_get_max_mmrbc);
4370 
4371 /**
4372  * pcix_get_mmrbc - get PCI-X maximum memory read byte count
4373  * @dev: PCI device to query
4374  *
4375  * Returns mmrbc: maximum memory read count in bytes
4376  *    or appropriate error value.
4377  */
4378 int pcix_get_mmrbc(struct pci_dev *dev)
4379 {
4380 	int cap;
4381 	u16 cmd;
4382 
4383 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4384 	if (!cap)
4385 		return -EINVAL;
4386 
4387 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4388 		return -EINVAL;
4389 
4390 	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
4391 }
4392 EXPORT_SYMBOL(pcix_get_mmrbc);
4393 
4394 /**
4395  * pcix_set_mmrbc - set PCI-X maximum memory read byte count
4396  * @dev: PCI device to query
4397  * @mmrbc: maximum memory read count in bytes
4398  *    valid values are 512, 1024, 2048, 4096
4399  *
4400  * If possible sets maximum memory read byte count, some bridges have erratas
4401  * that prevent this.
4402  */
4403 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
4404 {
4405 	int cap;
4406 	u32 stat, v, o;
4407 	u16 cmd;
4408 
4409 	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
4410 		return -EINVAL;
4411 
4412 	v = ffs(mmrbc) - 10;
4413 
4414 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4415 	if (!cap)
4416 		return -EINVAL;
4417 
4418 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4419 		return -EINVAL;
4420 
4421 	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
4422 		return -E2BIG;
4423 
4424 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4425 		return -EINVAL;
4426 
4427 	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
4428 	if (o != v) {
4429 		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
4430 			return -EIO;
4431 
4432 		cmd &= ~PCI_X_CMD_MAX_READ;
4433 		cmd |= v << 2;
4434 		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
4435 			return -EIO;
4436 	}
4437 	return 0;
4438 }
4439 EXPORT_SYMBOL(pcix_set_mmrbc);
4440 
4441 /**
4442  * pcie_get_readrq - get PCI Express read request size
4443  * @dev: PCI device to query
4444  *
4445  * Returns maximum memory read request in bytes
4446  *    or appropriate error value.
4447  */
4448 int pcie_get_readrq(struct pci_dev *dev)
4449 {
4450 	u16 ctl;
4451 
4452 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4453 
4454 	return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
4455 }
4456 EXPORT_SYMBOL(pcie_get_readrq);
4457 
4458 /**
4459  * pcie_set_readrq - set PCI Express maximum memory read request
4460  * @dev: PCI device to query
4461  * @rq: maximum memory read count in bytes
4462  *    valid values are 128, 256, 512, 1024, 2048, 4096
4463  *
4464  * If possible sets maximum memory read request in bytes
4465  */
4466 int pcie_set_readrq(struct pci_dev *dev, int rq)
4467 {
4468 	u16 v;
4469 
4470 	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
4471 		return -EINVAL;
4472 
4473 	/*
4474 	 * If using the "performance" PCIe config, we clamp the
4475 	 * read rq size to the max packet size to prevent the
4476 	 * host bridge generating requests larger than we can
4477 	 * cope with
4478 	 */
4479 	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
4480 		int mps = pcie_get_mps(dev);
4481 
4482 		if (mps < rq)
4483 			rq = mps;
4484 	}
4485 
4486 	v = (ffs(rq) - 8) << 12;
4487 
4488 	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4489 						  PCI_EXP_DEVCTL_READRQ, v);
4490 }
4491 EXPORT_SYMBOL(pcie_set_readrq);
4492 
4493 /**
4494  * pcie_get_mps - get PCI Express maximum payload size
4495  * @dev: PCI device to query
4496  *
4497  * Returns maximum payload size in bytes
4498  */
4499 int pcie_get_mps(struct pci_dev *dev)
4500 {
4501 	u16 ctl;
4502 
4503 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4504 
4505 	return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
4506 }
4507 EXPORT_SYMBOL(pcie_get_mps);
4508 
4509 /**
4510  * pcie_set_mps - set PCI Express maximum payload size
4511  * @dev: PCI device to query
4512  * @mps: maximum payload size in bytes
4513  *    valid values are 128, 256, 512, 1024, 2048, 4096
4514  *
4515  * If possible sets maximum payload size
4516  */
4517 int pcie_set_mps(struct pci_dev *dev, int mps)
4518 {
4519 	u16 v;
4520 
4521 	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
4522 		return -EINVAL;
4523 
4524 	v = ffs(mps) - 8;
4525 	if (v > dev->pcie_mpss)
4526 		return -EINVAL;
4527 	v <<= 5;
4528 
4529 	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4530 						  PCI_EXP_DEVCTL_PAYLOAD, v);
4531 }
4532 EXPORT_SYMBOL(pcie_set_mps);
4533 
4534 /**
4535  * pcie_get_minimum_link - determine minimum link settings of a PCI device
4536  * @dev: PCI device to query
4537  * @speed: storage for minimum speed
4538  * @width: storage for minimum width
4539  *
4540  * This function will walk up the PCI device chain and determine the minimum
4541  * link width and speed of the device.
4542  */
4543 int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed,
4544 			  enum pcie_link_width *width)
4545 {
4546 	int ret;
4547 
4548 	*speed = PCI_SPEED_UNKNOWN;
4549 	*width = PCIE_LNK_WIDTH_UNKNOWN;
4550 
4551 	while (dev) {
4552 		u16 lnksta;
4553 		enum pci_bus_speed next_speed;
4554 		enum pcie_link_width next_width;
4555 
4556 		ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
4557 		if (ret)
4558 			return ret;
4559 
4560 		next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
4561 		next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
4562 			PCI_EXP_LNKSTA_NLW_SHIFT;
4563 
4564 		if (next_speed < *speed)
4565 			*speed = next_speed;
4566 
4567 		if (next_width < *width)
4568 			*width = next_width;
4569 
4570 		dev = dev->bus->self;
4571 	}
4572 
4573 	return 0;
4574 }
4575 EXPORT_SYMBOL(pcie_get_minimum_link);
4576 
4577 /**
4578  * pci_select_bars - Make BAR mask from the type of resource
4579  * @dev: the PCI device for which BAR mask is made
4580  * @flags: resource type mask to be selected
4581  *
4582  * This helper routine makes bar mask from the type of resource.
4583  */
4584 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
4585 {
4586 	int i, bars = 0;
4587 	for (i = 0; i < PCI_NUM_RESOURCES; i++)
4588 		if (pci_resource_flags(dev, i) & flags)
4589 			bars |= (1 << i);
4590 	return bars;
4591 }
4592 EXPORT_SYMBOL(pci_select_bars);
4593 
4594 /**
4595  * pci_resource_bar - get position of the BAR associated with a resource
4596  * @dev: the PCI device
4597  * @resno: the resource number
4598  * @type: the BAR type to be filled in
4599  *
4600  * Returns BAR position in config space, or 0 if the BAR is invalid.
4601  */
4602 int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
4603 {
4604 	int reg;
4605 
4606 	if (resno < PCI_ROM_RESOURCE) {
4607 		*type = pci_bar_unknown;
4608 		return PCI_BASE_ADDRESS_0 + 4 * resno;
4609 	} else if (resno == PCI_ROM_RESOURCE) {
4610 		*type = pci_bar_mem32;
4611 		return dev->rom_base_reg;
4612 	} else if (resno < PCI_BRIDGE_RESOURCES) {
4613 		/* device specific resource */
4614 		*type = pci_bar_unknown;
4615 		reg = pci_iov_resource_bar(dev, resno);
4616 		if (reg)
4617 			return reg;
4618 	}
4619 
4620 	dev_err(&dev->dev, "BAR %d: invalid resource\n", resno);
4621 	return 0;
4622 }
4623 
4624 /* Some architectures require additional programming to enable VGA */
4625 static arch_set_vga_state_t arch_set_vga_state;
4626 
4627 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
4628 {
4629 	arch_set_vga_state = func;	/* NULL disables */
4630 }
4631 
4632 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
4633 				  unsigned int command_bits, u32 flags)
4634 {
4635 	if (arch_set_vga_state)
4636 		return arch_set_vga_state(dev, decode, command_bits,
4637 						flags);
4638 	return 0;
4639 }
4640 
4641 /**
4642  * pci_set_vga_state - set VGA decode state on device and parents if requested
4643  * @dev: the PCI device
4644  * @decode: true = enable decoding, false = disable decoding
4645  * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
4646  * @flags: traverse ancestors and change bridges
4647  * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
4648  */
4649 int pci_set_vga_state(struct pci_dev *dev, bool decode,
4650 		      unsigned int command_bits, u32 flags)
4651 {
4652 	struct pci_bus *bus;
4653 	struct pci_dev *bridge;
4654 	u16 cmd;
4655 	int rc;
4656 
4657 	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
4658 
4659 	/* ARCH specific VGA enables */
4660 	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
4661 	if (rc)
4662 		return rc;
4663 
4664 	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
4665 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
4666 		if (decode == true)
4667 			cmd |= command_bits;
4668 		else
4669 			cmd &= ~command_bits;
4670 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4671 	}
4672 
4673 	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
4674 		return 0;
4675 
4676 	bus = dev->bus;
4677 	while (bus) {
4678 		bridge = bus->self;
4679 		if (bridge) {
4680 			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
4681 					     &cmd);
4682 			if (decode == true)
4683 				cmd |= PCI_BRIDGE_CTL_VGA;
4684 			else
4685 				cmd &= ~PCI_BRIDGE_CTL_VGA;
4686 			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
4687 					      cmd);
4688 		}
4689 		bus = bus->parent;
4690 	}
4691 	return 0;
4692 }
4693 
4694 /**
4695  * pci_add_dma_alias - Add a DMA devfn alias for a device
4696  * @dev: the PCI device for which alias is added
4697  * @devfn: alias slot and function
4698  *
4699  * This helper encodes 8-bit devfn as bit number in dma_alias_mask.
4700  * It should be called early, preferably as PCI fixup header quirk.
4701  */
4702 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn)
4703 {
4704 	if (!dev->dma_alias_mask)
4705 		dev->dma_alias_mask = kcalloc(BITS_TO_LONGS(U8_MAX),
4706 					      sizeof(long), GFP_KERNEL);
4707 	if (!dev->dma_alias_mask) {
4708 		dev_warn(&dev->dev, "Unable to allocate DMA alias mask\n");
4709 		return;
4710 	}
4711 
4712 	set_bit(devfn, dev->dma_alias_mask);
4713 	dev_info(&dev->dev, "Enabling fixed DMA alias to %02x.%d\n",
4714 		 PCI_SLOT(devfn), PCI_FUNC(devfn));
4715 }
4716 
4717 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
4718 {
4719 	return (dev1->dma_alias_mask &&
4720 		test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
4721 	       (dev2->dma_alias_mask &&
4722 		test_bit(dev1->devfn, dev2->dma_alias_mask));
4723 }
4724 
4725 bool pci_device_is_present(struct pci_dev *pdev)
4726 {
4727 	u32 v;
4728 
4729 	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
4730 }
4731 EXPORT_SYMBOL_GPL(pci_device_is_present);
4732 
4733 void pci_ignore_hotplug(struct pci_dev *dev)
4734 {
4735 	struct pci_dev *bridge = dev->bus->self;
4736 
4737 	dev->ignore_hotplug = 1;
4738 	/* Propagate the "ignore hotplug" setting to the parent bridge. */
4739 	if (bridge)
4740 		bridge->ignore_hotplug = 1;
4741 }
4742 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
4743 
4744 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
4745 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
4746 static DEFINE_SPINLOCK(resource_alignment_lock);
4747 
4748 /**
4749  * pci_specified_resource_alignment - get resource alignment specified by user.
4750  * @dev: the PCI device to get
4751  *
4752  * RETURNS: Resource alignment if it is specified.
4753  *          Zero if it is not specified.
4754  */
4755 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
4756 {
4757 	int seg, bus, slot, func, align_order, count;
4758 	resource_size_t align = 0;
4759 	char *p;
4760 
4761 	spin_lock(&resource_alignment_lock);
4762 	p = resource_alignment_param;
4763 	while (*p) {
4764 		count = 0;
4765 		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
4766 							p[count] == '@') {
4767 			p += count + 1;
4768 		} else {
4769 			align_order = -1;
4770 		}
4771 		if (sscanf(p, "%x:%x:%x.%x%n",
4772 			&seg, &bus, &slot, &func, &count) != 4) {
4773 			seg = 0;
4774 			if (sscanf(p, "%x:%x.%x%n",
4775 					&bus, &slot, &func, &count) != 3) {
4776 				/* Invalid format */
4777 				printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
4778 					p);
4779 				break;
4780 			}
4781 		}
4782 		p += count;
4783 		if (seg == pci_domain_nr(dev->bus) &&
4784 			bus == dev->bus->number &&
4785 			slot == PCI_SLOT(dev->devfn) &&
4786 			func == PCI_FUNC(dev->devfn)) {
4787 			if (align_order == -1)
4788 				align = PAGE_SIZE;
4789 			else
4790 				align = 1 << align_order;
4791 			/* Found */
4792 			break;
4793 		}
4794 		if (*p != ';' && *p != ',') {
4795 			/* End of param or invalid format */
4796 			break;
4797 		}
4798 		p++;
4799 	}
4800 	spin_unlock(&resource_alignment_lock);
4801 	return align;
4802 }
4803 
4804 /*
4805  * This function disables memory decoding and releases memory resources
4806  * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
4807  * It also rounds up size to specified alignment.
4808  * Later on, the kernel will assign page-aligned memory resource back
4809  * to the device.
4810  */
4811 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
4812 {
4813 	int i;
4814 	struct resource *r;
4815 	resource_size_t align, size;
4816 	u16 command;
4817 
4818 	/* check if specified PCI is target device to reassign */
4819 	align = pci_specified_resource_alignment(dev);
4820 	if (!align)
4821 		return;
4822 
4823 	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
4824 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
4825 		dev_warn(&dev->dev,
4826 			"Can't reassign resources to host bridge.\n");
4827 		return;
4828 	}
4829 
4830 	dev_info(&dev->dev,
4831 		"Disabling memory decoding and releasing memory resources.\n");
4832 	pci_read_config_word(dev, PCI_COMMAND, &command);
4833 	command &= ~PCI_COMMAND_MEMORY;
4834 	pci_write_config_word(dev, PCI_COMMAND, command);
4835 
4836 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) {
4837 		r = &dev->resource[i];
4838 		if (!(r->flags & IORESOURCE_MEM))
4839 			continue;
4840 		size = resource_size(r);
4841 		if (size < align) {
4842 			size = align;
4843 			dev_info(&dev->dev,
4844 				"Rounding up size of resource #%d to %#llx.\n",
4845 				i, (unsigned long long)size);
4846 		}
4847 		r->flags |= IORESOURCE_UNSET;
4848 		r->end = size - 1;
4849 		r->start = 0;
4850 	}
4851 	/* Need to disable bridge's resource window,
4852 	 * to enable the kernel to reassign new resource
4853 	 * window later on.
4854 	 */
4855 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
4856 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
4857 		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
4858 			r = &dev->resource[i];
4859 			if (!(r->flags & IORESOURCE_MEM))
4860 				continue;
4861 			r->flags |= IORESOURCE_UNSET;
4862 			r->end = resource_size(r) - 1;
4863 			r->start = 0;
4864 		}
4865 		pci_disable_bridge_window(dev);
4866 	}
4867 }
4868 
4869 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
4870 {
4871 	if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
4872 		count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
4873 	spin_lock(&resource_alignment_lock);
4874 	strncpy(resource_alignment_param, buf, count);
4875 	resource_alignment_param[count] = '\0';
4876 	spin_unlock(&resource_alignment_lock);
4877 	return count;
4878 }
4879 
4880 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
4881 {
4882 	size_t count;
4883 	spin_lock(&resource_alignment_lock);
4884 	count = snprintf(buf, size, "%s", resource_alignment_param);
4885 	spin_unlock(&resource_alignment_lock);
4886 	return count;
4887 }
4888 
4889 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
4890 {
4891 	return pci_get_resource_alignment_param(buf, PAGE_SIZE);
4892 }
4893 
4894 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
4895 					const char *buf, size_t count)
4896 {
4897 	return pci_set_resource_alignment_param(buf, count);
4898 }
4899 
4900 BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
4901 					pci_resource_alignment_store);
4902 
4903 static int __init pci_resource_alignment_sysfs_init(void)
4904 {
4905 	return bus_create_file(&pci_bus_type,
4906 					&bus_attr_resource_alignment);
4907 }
4908 late_initcall(pci_resource_alignment_sysfs_init);
4909 
4910 static void pci_no_domains(void)
4911 {
4912 #ifdef CONFIG_PCI_DOMAINS
4913 	pci_domains_supported = 0;
4914 #endif
4915 }
4916 
4917 #ifdef CONFIG_PCI_DOMAINS
4918 static atomic_t __domain_nr = ATOMIC_INIT(-1);
4919 
4920 int pci_get_new_domain_nr(void)
4921 {
4922 	return atomic_inc_return(&__domain_nr);
4923 }
4924 
4925 #ifdef CONFIG_PCI_DOMAINS_GENERIC
4926 void pci_bus_assign_domain_nr(struct pci_bus *bus, struct device *parent)
4927 {
4928 	static int use_dt_domains = -1;
4929 	int domain = -1;
4930 
4931 	if (parent)
4932 		domain = of_get_pci_domain_nr(parent->of_node);
4933 	/*
4934 	 * Check DT domain and use_dt_domains values.
4935 	 *
4936 	 * If DT domain property is valid (domain >= 0) and
4937 	 * use_dt_domains != 0, the DT assignment is valid since this means
4938 	 * we have not previously allocated a domain number by using
4939 	 * pci_get_new_domain_nr(); we should also update use_dt_domains to
4940 	 * 1, to indicate that we have just assigned a domain number from
4941 	 * DT.
4942 	 *
4943 	 * If DT domain property value is not valid (ie domain < 0), and we
4944 	 * have not previously assigned a domain number from DT
4945 	 * (use_dt_domains != 1) we should assign a domain number by
4946 	 * using the:
4947 	 *
4948 	 * pci_get_new_domain_nr()
4949 	 *
4950 	 * API and update the use_dt_domains value to keep track of method we
4951 	 * are using to assign domain numbers (use_dt_domains = 0).
4952 	 *
4953 	 * All other combinations imply we have a platform that is trying
4954 	 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
4955 	 * which is a recipe for domain mishandling and it is prevented by
4956 	 * invalidating the domain value (domain = -1) and printing a
4957 	 * corresponding error.
4958 	 */
4959 	if (domain >= 0 && use_dt_domains) {
4960 		use_dt_domains = 1;
4961 	} else if (domain < 0 && use_dt_domains != 1) {
4962 		use_dt_domains = 0;
4963 		domain = pci_get_new_domain_nr();
4964 	} else {
4965 		dev_err(parent, "Node %s has inconsistent \"linux,pci-domain\" property in DT\n",
4966 			parent->of_node->full_name);
4967 		domain = -1;
4968 	}
4969 
4970 	bus->domain_nr = domain;
4971 }
4972 #endif
4973 #endif
4974 
4975 /**
4976  * pci_ext_cfg_avail - can we access extended PCI config space?
4977  *
4978  * Returns 1 if we can access PCI extended config space (offsets
4979  * greater than 0xff). This is the default implementation. Architecture
4980  * implementations can override this.
4981  */
4982 int __weak pci_ext_cfg_avail(void)
4983 {
4984 	return 1;
4985 }
4986 
4987 void __weak pci_fixup_cardbus(struct pci_bus *bus)
4988 {
4989 }
4990 EXPORT_SYMBOL(pci_fixup_cardbus);
4991 
4992 static int __init pci_setup(char *str)
4993 {
4994 	while (str) {
4995 		char *k = strchr(str, ',');
4996 		if (k)
4997 			*k++ = 0;
4998 		if (*str && (str = pcibios_setup(str)) && *str) {
4999 			if (!strcmp(str, "nomsi")) {
5000 				pci_no_msi();
5001 			} else if (!strcmp(str, "noaer")) {
5002 				pci_no_aer();
5003 			} else if (!strncmp(str, "realloc=", 8)) {
5004 				pci_realloc_get_opt(str + 8);
5005 			} else if (!strncmp(str, "realloc", 7)) {
5006 				pci_realloc_get_opt("on");
5007 			} else if (!strcmp(str, "nodomains")) {
5008 				pci_no_domains();
5009 			} else if (!strncmp(str, "noari", 5)) {
5010 				pcie_ari_disabled = true;
5011 			} else if (!strncmp(str, "cbiosize=", 9)) {
5012 				pci_cardbus_io_size = memparse(str + 9, &str);
5013 			} else if (!strncmp(str, "cbmemsize=", 10)) {
5014 				pci_cardbus_mem_size = memparse(str + 10, &str);
5015 			} else if (!strncmp(str, "resource_alignment=", 19)) {
5016 				pci_set_resource_alignment_param(str + 19,
5017 							strlen(str + 19));
5018 			} else if (!strncmp(str, "ecrc=", 5)) {
5019 				pcie_ecrc_get_policy(str + 5);
5020 			} else if (!strncmp(str, "hpiosize=", 9)) {
5021 				pci_hotplug_io_size = memparse(str + 9, &str);
5022 			} else if (!strncmp(str, "hpmemsize=", 10)) {
5023 				pci_hotplug_mem_size = memparse(str + 10, &str);
5024 			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
5025 				pcie_bus_config = PCIE_BUS_TUNE_OFF;
5026 			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
5027 				pcie_bus_config = PCIE_BUS_SAFE;
5028 			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
5029 				pcie_bus_config = PCIE_BUS_PERFORMANCE;
5030 			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
5031 				pcie_bus_config = PCIE_BUS_PEER2PEER;
5032 			} else if (!strncmp(str, "pcie_scan_all", 13)) {
5033 				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
5034 			} else {
5035 				printk(KERN_ERR "PCI: Unknown option `%s'\n",
5036 						str);
5037 			}
5038 		}
5039 		str = k;
5040 	}
5041 	return 0;
5042 }
5043 early_param("pci", pci_setup);
5044