1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * PCI Bus Services, see include/linux/pci.h for further explanation. 4 * 5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter, 6 * David Mosberger-Tang 7 * 8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz> 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/kernel.h> 13 #include <linux/delay.h> 14 #include <linux/dmi.h> 15 #include <linux/init.h> 16 #include <linux/msi.h> 17 #include <linux/of.h> 18 #include <linux/of_pci.h> 19 #include <linux/pci.h> 20 #include <linux/pm.h> 21 #include <linux/slab.h> 22 #include <linux/module.h> 23 #include <linux/spinlock.h> 24 #include <linux/string.h> 25 #include <linux/log2.h> 26 #include <linux/logic_pio.h> 27 #include <linux/pm_wakeup.h> 28 #include <linux/interrupt.h> 29 #include <linux/device.h> 30 #include <linux/pm_runtime.h> 31 #include <linux/pci_hotplug.h> 32 #include <linux/vmalloc.h> 33 #include <linux/pci-ats.h> 34 #include <asm/setup.h> 35 #include <asm/dma.h> 36 #include <linux/aer.h> 37 #include "pci.h" 38 39 DEFINE_MUTEX(pci_slot_mutex); 40 41 const char *pci_power_names[] = { 42 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown", 43 }; 44 EXPORT_SYMBOL_GPL(pci_power_names); 45 46 int isa_dma_bridge_buggy; 47 EXPORT_SYMBOL(isa_dma_bridge_buggy); 48 49 int pci_pci_problems; 50 EXPORT_SYMBOL(pci_pci_problems); 51 52 unsigned int pci_pm_d3_delay; 53 54 static void pci_pme_list_scan(struct work_struct *work); 55 56 static LIST_HEAD(pci_pme_list); 57 static DEFINE_MUTEX(pci_pme_list_mutex); 58 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan); 59 60 struct pci_pme_device { 61 struct list_head list; 62 struct pci_dev *dev; 63 }; 64 65 #define PME_TIMEOUT 1000 /* How long between PME checks */ 66 67 static void pci_dev_d3_sleep(struct pci_dev *dev) 68 { 69 unsigned int delay = dev->d3_delay; 70 71 if (delay < pci_pm_d3_delay) 72 delay = pci_pm_d3_delay; 73 74 if (delay) 75 msleep(delay); 76 } 77 78 #ifdef CONFIG_PCI_DOMAINS 79 int pci_domains_supported = 1; 80 #endif 81 82 #define DEFAULT_CARDBUS_IO_SIZE (256) 83 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024) 84 /* pci=cbmemsize=nnM,cbiosize=nn can override this */ 85 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE; 86 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE; 87 88 #define DEFAULT_HOTPLUG_IO_SIZE (256) 89 #define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024) 90 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024) 91 /* hpiosize=nn can override this */ 92 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE; 93 /* 94 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size, 95 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size; 96 * pci=hpmemsize=nnM overrides both 97 */ 98 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE; 99 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE; 100 101 #define DEFAULT_HOTPLUG_BUS_SIZE 1 102 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 103 104 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT; 105 106 /* 107 * The default CLS is used if arch didn't set CLS explicitly and not 108 * all pci devices agree on the same value. Arch can override either 109 * the dfl or actual value as it sees fit. Don't forget this is 110 * measured in 32-bit words, not bytes. 111 */ 112 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2; 113 u8 pci_cache_line_size; 114 115 /* 116 * If we set up a device for bus mastering, we need to check the latency 117 * timer as certain BIOSes forget to set it properly. 118 */ 119 unsigned int pcibios_max_latency = 255; 120 121 /* If set, the PCIe ARI capability will not be used. */ 122 static bool pcie_ari_disabled; 123 124 /* If set, the PCIe ATS capability will not be used. */ 125 static bool pcie_ats_disabled; 126 127 /* If set, the PCI config space of each device is printed during boot. */ 128 bool pci_early_dump; 129 130 bool pci_ats_disabled(void) 131 { 132 return pcie_ats_disabled; 133 } 134 EXPORT_SYMBOL_GPL(pci_ats_disabled); 135 136 /* Disable bridge_d3 for all PCIe ports */ 137 static bool pci_bridge_d3_disable; 138 /* Force bridge_d3 for all PCIe ports */ 139 static bool pci_bridge_d3_force; 140 141 static int __init pcie_port_pm_setup(char *str) 142 { 143 if (!strcmp(str, "off")) 144 pci_bridge_d3_disable = true; 145 else if (!strcmp(str, "force")) 146 pci_bridge_d3_force = true; 147 return 1; 148 } 149 __setup("pcie_port_pm=", pcie_port_pm_setup); 150 151 /* Time to wait after a reset for device to become responsive */ 152 #define PCIE_RESET_READY_POLL_MS 60000 153 154 /** 155 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children 156 * @bus: pointer to PCI bus structure to search 157 * 158 * Given a PCI bus, returns the highest PCI bus number present in the set 159 * including the given PCI bus and its list of child PCI buses. 160 */ 161 unsigned char pci_bus_max_busnr(struct pci_bus *bus) 162 { 163 struct pci_bus *tmp; 164 unsigned char max, n; 165 166 max = bus->busn_res.end; 167 list_for_each_entry(tmp, &bus->children, node) { 168 n = pci_bus_max_busnr(tmp); 169 if (n > max) 170 max = n; 171 } 172 return max; 173 } 174 EXPORT_SYMBOL_GPL(pci_bus_max_busnr); 175 176 /** 177 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS 178 * @pdev: the PCI device 179 * 180 * Returns error bits set in PCI_STATUS and clears them. 181 */ 182 int pci_status_get_and_clear_errors(struct pci_dev *pdev) 183 { 184 u16 status; 185 int ret; 186 187 ret = pci_read_config_word(pdev, PCI_STATUS, &status); 188 if (ret != PCIBIOS_SUCCESSFUL) 189 return -EIO; 190 191 status &= PCI_STATUS_ERROR_BITS; 192 if (status) 193 pci_write_config_word(pdev, PCI_STATUS, status); 194 195 return status; 196 } 197 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors); 198 199 #ifdef CONFIG_HAS_IOMEM 200 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar) 201 { 202 struct resource *res = &pdev->resource[bar]; 203 204 /* 205 * Make sure the BAR is actually a memory resource, not an IO resource 206 */ 207 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) { 208 pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res); 209 return NULL; 210 } 211 return ioremap(res->start, resource_size(res)); 212 } 213 EXPORT_SYMBOL_GPL(pci_ioremap_bar); 214 215 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar) 216 { 217 /* 218 * Make sure the BAR is actually a memory resource, not an IO resource 219 */ 220 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) { 221 WARN_ON(1); 222 return NULL; 223 } 224 return ioremap_wc(pci_resource_start(pdev, bar), 225 pci_resource_len(pdev, bar)); 226 } 227 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar); 228 #endif 229 230 /** 231 * pci_dev_str_match_path - test if a path string matches a device 232 * @dev: the PCI device to test 233 * @path: string to match the device against 234 * @endptr: pointer to the string after the match 235 * 236 * Test if a string (typically from a kernel parameter) formatted as a 237 * path of device/function addresses matches a PCI device. The string must 238 * be of the form: 239 * 240 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 241 * 242 * A path for a device can be obtained using 'lspci -t'. Using a path 243 * is more robust against bus renumbering than using only a single bus, 244 * device and function address. 245 * 246 * Returns 1 if the string matches the device, 0 if it does not and 247 * a negative error code if it fails to parse the string. 248 */ 249 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path, 250 const char **endptr) 251 { 252 int ret; 253 int seg, bus, slot, func; 254 char *wpath, *p; 255 char end; 256 257 *endptr = strchrnul(path, ';'); 258 259 wpath = kmemdup_nul(path, *endptr - path, GFP_KERNEL); 260 if (!wpath) 261 return -ENOMEM; 262 263 while (1) { 264 p = strrchr(wpath, '/'); 265 if (!p) 266 break; 267 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end); 268 if (ret != 2) { 269 ret = -EINVAL; 270 goto free_and_exit; 271 } 272 273 if (dev->devfn != PCI_DEVFN(slot, func)) { 274 ret = 0; 275 goto free_and_exit; 276 } 277 278 /* 279 * Note: we don't need to get a reference to the upstream 280 * bridge because we hold a reference to the top level 281 * device which should hold a reference to the bridge, 282 * and so on. 283 */ 284 dev = pci_upstream_bridge(dev); 285 if (!dev) { 286 ret = 0; 287 goto free_and_exit; 288 } 289 290 *p = 0; 291 } 292 293 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot, 294 &func, &end); 295 if (ret != 4) { 296 seg = 0; 297 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end); 298 if (ret != 3) { 299 ret = -EINVAL; 300 goto free_and_exit; 301 } 302 } 303 304 ret = (seg == pci_domain_nr(dev->bus) && 305 bus == dev->bus->number && 306 dev->devfn == PCI_DEVFN(slot, func)); 307 308 free_and_exit: 309 kfree(wpath); 310 return ret; 311 } 312 313 /** 314 * pci_dev_str_match - test if a string matches a device 315 * @dev: the PCI device to test 316 * @p: string to match the device against 317 * @endptr: pointer to the string after the match 318 * 319 * Test if a string (typically from a kernel parameter) matches a specified 320 * PCI device. The string may be of one of the following formats: 321 * 322 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 323 * pci:<vendor>:<device>[:<subvendor>:<subdevice>] 324 * 325 * The first format specifies a PCI bus/device/function address which 326 * may change if new hardware is inserted, if motherboard firmware changes, 327 * or due to changes caused in kernel parameters. If the domain is 328 * left unspecified, it is taken to be 0. In order to be robust against 329 * bus renumbering issues, a path of PCI device/function numbers may be used 330 * to address the specific device. The path for a device can be determined 331 * through the use of 'lspci -t'. 332 * 333 * The second format matches devices using IDs in the configuration 334 * space which may match multiple devices in the system. A value of 0 335 * for any field will match all devices. (Note: this differs from 336 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for 337 * legacy reasons and convenience so users don't have to specify 338 * FFFFFFFFs on the command line.) 339 * 340 * Returns 1 if the string matches the device, 0 if it does not and 341 * a negative error code if the string cannot be parsed. 342 */ 343 static int pci_dev_str_match(struct pci_dev *dev, const char *p, 344 const char **endptr) 345 { 346 int ret; 347 int count; 348 unsigned short vendor, device, subsystem_vendor, subsystem_device; 349 350 if (strncmp(p, "pci:", 4) == 0) { 351 /* PCI vendor/device (subvendor/subdevice) IDs are specified */ 352 p += 4; 353 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device, 354 &subsystem_vendor, &subsystem_device, &count); 355 if (ret != 4) { 356 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count); 357 if (ret != 2) 358 return -EINVAL; 359 360 subsystem_vendor = 0; 361 subsystem_device = 0; 362 } 363 364 p += count; 365 366 if ((!vendor || vendor == dev->vendor) && 367 (!device || device == dev->device) && 368 (!subsystem_vendor || 369 subsystem_vendor == dev->subsystem_vendor) && 370 (!subsystem_device || 371 subsystem_device == dev->subsystem_device)) 372 goto found; 373 } else { 374 /* 375 * PCI Bus, Device, Function IDs are specified 376 * (optionally, may include a path of devfns following it) 377 */ 378 ret = pci_dev_str_match_path(dev, p, &p); 379 if (ret < 0) 380 return ret; 381 else if (ret) 382 goto found; 383 } 384 385 *endptr = p; 386 return 0; 387 388 found: 389 *endptr = p; 390 return 1; 391 } 392 393 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn, 394 u8 pos, int cap, int *ttl) 395 { 396 u8 id; 397 u16 ent; 398 399 pci_bus_read_config_byte(bus, devfn, pos, &pos); 400 401 while ((*ttl)--) { 402 if (pos < 0x40) 403 break; 404 pos &= ~3; 405 pci_bus_read_config_word(bus, devfn, pos, &ent); 406 407 id = ent & 0xff; 408 if (id == 0xff) 409 break; 410 if (id == cap) 411 return pos; 412 pos = (ent >> 8); 413 } 414 return 0; 415 } 416 417 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn, 418 u8 pos, int cap) 419 { 420 int ttl = PCI_FIND_CAP_TTL; 421 422 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl); 423 } 424 425 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap) 426 { 427 return __pci_find_next_cap(dev->bus, dev->devfn, 428 pos + PCI_CAP_LIST_NEXT, cap); 429 } 430 EXPORT_SYMBOL_GPL(pci_find_next_capability); 431 432 static int __pci_bus_find_cap_start(struct pci_bus *bus, 433 unsigned int devfn, u8 hdr_type) 434 { 435 u16 status; 436 437 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status); 438 if (!(status & PCI_STATUS_CAP_LIST)) 439 return 0; 440 441 switch (hdr_type) { 442 case PCI_HEADER_TYPE_NORMAL: 443 case PCI_HEADER_TYPE_BRIDGE: 444 return PCI_CAPABILITY_LIST; 445 case PCI_HEADER_TYPE_CARDBUS: 446 return PCI_CB_CAPABILITY_LIST; 447 } 448 449 return 0; 450 } 451 452 /** 453 * pci_find_capability - query for devices' capabilities 454 * @dev: PCI device to query 455 * @cap: capability code 456 * 457 * Tell if a device supports a given PCI capability. 458 * Returns the address of the requested capability structure within the 459 * device's PCI configuration space or 0 in case the device does not 460 * support it. Possible values for @cap include: 461 * 462 * %PCI_CAP_ID_PM Power Management 463 * %PCI_CAP_ID_AGP Accelerated Graphics Port 464 * %PCI_CAP_ID_VPD Vital Product Data 465 * %PCI_CAP_ID_SLOTID Slot Identification 466 * %PCI_CAP_ID_MSI Message Signalled Interrupts 467 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap 468 * %PCI_CAP_ID_PCIX PCI-X 469 * %PCI_CAP_ID_EXP PCI Express 470 */ 471 int pci_find_capability(struct pci_dev *dev, int cap) 472 { 473 int pos; 474 475 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 476 if (pos) 477 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap); 478 479 return pos; 480 } 481 EXPORT_SYMBOL(pci_find_capability); 482 483 /** 484 * pci_bus_find_capability - query for devices' capabilities 485 * @bus: the PCI bus to query 486 * @devfn: PCI device to query 487 * @cap: capability code 488 * 489 * Like pci_find_capability() but works for PCI devices that do not have a 490 * pci_dev structure set up yet. 491 * 492 * Returns the address of the requested capability structure within the 493 * device's PCI configuration space or 0 in case the device does not 494 * support it. 495 */ 496 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap) 497 { 498 int pos; 499 u8 hdr_type; 500 501 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type); 502 503 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f); 504 if (pos) 505 pos = __pci_find_next_cap(bus, devfn, pos, cap); 506 507 return pos; 508 } 509 EXPORT_SYMBOL(pci_bus_find_capability); 510 511 /** 512 * pci_find_next_ext_capability - Find an extended capability 513 * @dev: PCI device to query 514 * @start: address at which to start looking (0 to start at beginning of list) 515 * @cap: capability code 516 * 517 * Returns the address of the next matching extended capability structure 518 * within the device's PCI configuration space or 0 if the device does 519 * not support it. Some capabilities can occur several times, e.g., the 520 * vendor-specific capability, and this provides a way to find them all. 521 */ 522 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap) 523 { 524 u32 header; 525 int ttl; 526 int pos = PCI_CFG_SPACE_SIZE; 527 528 /* minimum 8 bytes per capability */ 529 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8; 530 531 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE) 532 return 0; 533 534 if (start) 535 pos = start; 536 537 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 538 return 0; 539 540 /* 541 * If we have no capabilities, this is indicated by cap ID, 542 * cap version and next pointer all being 0. 543 */ 544 if (header == 0) 545 return 0; 546 547 while (ttl-- > 0) { 548 if (PCI_EXT_CAP_ID(header) == cap && pos != start) 549 return pos; 550 551 pos = PCI_EXT_CAP_NEXT(header); 552 if (pos < PCI_CFG_SPACE_SIZE) 553 break; 554 555 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 556 break; 557 } 558 559 return 0; 560 } 561 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability); 562 563 /** 564 * pci_find_ext_capability - Find an extended capability 565 * @dev: PCI device to query 566 * @cap: capability code 567 * 568 * Returns the address of the requested extended capability structure 569 * within the device's PCI configuration space or 0 if the device does 570 * not support it. Possible values for @cap include: 571 * 572 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting 573 * %PCI_EXT_CAP_ID_VC Virtual Channel 574 * %PCI_EXT_CAP_ID_DSN Device Serial Number 575 * %PCI_EXT_CAP_ID_PWR Power Budgeting 576 */ 577 int pci_find_ext_capability(struct pci_dev *dev, int cap) 578 { 579 return pci_find_next_ext_capability(dev, 0, cap); 580 } 581 EXPORT_SYMBOL_GPL(pci_find_ext_capability); 582 583 /** 584 * pci_get_dsn - Read and return the 8-byte Device Serial Number 585 * @dev: PCI device to query 586 * 587 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial 588 * Number. 589 * 590 * Returns the DSN, or zero if the capability does not exist. 591 */ 592 u64 pci_get_dsn(struct pci_dev *dev) 593 { 594 u32 dword; 595 u64 dsn; 596 int pos; 597 598 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN); 599 if (!pos) 600 return 0; 601 602 /* 603 * The Device Serial Number is two dwords offset 4 bytes from the 604 * capability position. The specification says that the first dword is 605 * the lower half, and the second dword is the upper half. 606 */ 607 pos += 4; 608 pci_read_config_dword(dev, pos, &dword); 609 dsn = (u64)dword; 610 pci_read_config_dword(dev, pos + 4, &dword); 611 dsn |= ((u64)dword) << 32; 612 613 return dsn; 614 } 615 EXPORT_SYMBOL_GPL(pci_get_dsn); 616 617 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap) 618 { 619 int rc, ttl = PCI_FIND_CAP_TTL; 620 u8 cap, mask; 621 622 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST) 623 mask = HT_3BIT_CAP_MASK; 624 else 625 mask = HT_5BIT_CAP_MASK; 626 627 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos, 628 PCI_CAP_ID_HT, &ttl); 629 while (pos) { 630 rc = pci_read_config_byte(dev, pos + 3, &cap); 631 if (rc != PCIBIOS_SUCCESSFUL) 632 return 0; 633 634 if ((cap & mask) == ht_cap) 635 return pos; 636 637 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, 638 pos + PCI_CAP_LIST_NEXT, 639 PCI_CAP_ID_HT, &ttl); 640 } 641 642 return 0; 643 } 644 /** 645 * pci_find_next_ht_capability - query a device's Hypertransport capabilities 646 * @dev: PCI device to query 647 * @pos: Position from which to continue searching 648 * @ht_cap: Hypertransport capability code 649 * 650 * To be used in conjunction with pci_find_ht_capability() to search for 651 * all capabilities matching @ht_cap. @pos should always be a value returned 652 * from pci_find_ht_capability(). 653 * 654 * NB. To be 100% safe against broken PCI devices, the caller should take 655 * steps to avoid an infinite loop. 656 */ 657 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap) 658 { 659 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap); 660 } 661 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability); 662 663 /** 664 * pci_find_ht_capability - query a device's Hypertransport capabilities 665 * @dev: PCI device to query 666 * @ht_cap: Hypertransport capability code 667 * 668 * Tell if a device supports a given Hypertransport capability. 669 * Returns an address within the device's PCI configuration space 670 * or 0 in case the device does not support the request capability. 671 * The address points to the PCI capability, of type PCI_CAP_ID_HT, 672 * which has a Hypertransport capability matching @ht_cap. 673 */ 674 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap) 675 { 676 int pos; 677 678 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 679 if (pos) 680 pos = __pci_find_next_ht_cap(dev, pos, ht_cap); 681 682 return pos; 683 } 684 EXPORT_SYMBOL_GPL(pci_find_ht_capability); 685 686 /** 687 * pci_find_parent_resource - return resource region of parent bus of given 688 * region 689 * @dev: PCI device structure contains resources to be searched 690 * @res: child resource record for which parent is sought 691 * 692 * For given resource region of given device, return the resource region of 693 * parent bus the given region is contained in. 694 */ 695 struct resource *pci_find_parent_resource(const struct pci_dev *dev, 696 struct resource *res) 697 { 698 const struct pci_bus *bus = dev->bus; 699 struct resource *r; 700 int i; 701 702 pci_bus_for_each_resource(bus, r, i) { 703 if (!r) 704 continue; 705 if (resource_contains(r, res)) { 706 707 /* 708 * If the window is prefetchable but the BAR is 709 * not, the allocator made a mistake. 710 */ 711 if (r->flags & IORESOURCE_PREFETCH && 712 !(res->flags & IORESOURCE_PREFETCH)) 713 return NULL; 714 715 /* 716 * If we're below a transparent bridge, there may 717 * be both a positively-decoded aperture and a 718 * subtractively-decoded region that contain the BAR. 719 * We want the positively-decoded one, so this depends 720 * on pci_bus_for_each_resource() giving us those 721 * first. 722 */ 723 return r; 724 } 725 } 726 return NULL; 727 } 728 EXPORT_SYMBOL(pci_find_parent_resource); 729 730 /** 731 * pci_find_resource - Return matching PCI device resource 732 * @dev: PCI device to query 733 * @res: Resource to look for 734 * 735 * Goes over standard PCI resources (BARs) and checks if the given resource 736 * is partially or fully contained in any of them. In that case the 737 * matching resource is returned, %NULL otherwise. 738 */ 739 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res) 740 { 741 int i; 742 743 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 744 struct resource *r = &dev->resource[i]; 745 746 if (r->start && resource_contains(r, res)) 747 return r; 748 } 749 750 return NULL; 751 } 752 EXPORT_SYMBOL(pci_find_resource); 753 754 /** 755 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos 756 * @dev: the PCI device to operate on 757 * @pos: config space offset of status word 758 * @mask: mask of bit(s) to care about in status word 759 * 760 * Return 1 when mask bit(s) in status word clear, 0 otherwise. 761 */ 762 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask) 763 { 764 int i; 765 766 /* Wait for Transaction Pending bit clean */ 767 for (i = 0; i < 4; i++) { 768 u16 status; 769 if (i) 770 msleep((1 << (i - 1)) * 100); 771 772 pci_read_config_word(dev, pos, &status); 773 if (!(status & mask)) 774 return 1; 775 } 776 777 return 0; 778 } 779 780 /** 781 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up) 782 * @dev: PCI device to have its BARs restored 783 * 784 * Restore the BAR values for a given device, so as to make it 785 * accessible by its driver. 786 */ 787 static void pci_restore_bars(struct pci_dev *dev) 788 { 789 int i; 790 791 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) 792 pci_update_resource(dev, i); 793 } 794 795 static const struct pci_platform_pm_ops *pci_platform_pm; 796 797 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops) 798 { 799 if (!ops->is_manageable || !ops->set_state || !ops->get_state || 800 !ops->choose_state || !ops->set_wakeup || !ops->need_resume) 801 return -EINVAL; 802 pci_platform_pm = ops; 803 return 0; 804 } 805 806 static inline bool platform_pci_power_manageable(struct pci_dev *dev) 807 { 808 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false; 809 } 810 811 static inline int platform_pci_set_power_state(struct pci_dev *dev, 812 pci_power_t t) 813 { 814 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS; 815 } 816 817 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev) 818 { 819 return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN; 820 } 821 822 static inline void platform_pci_refresh_power_state(struct pci_dev *dev) 823 { 824 if (pci_platform_pm && pci_platform_pm->refresh_state) 825 pci_platform_pm->refresh_state(dev); 826 } 827 828 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev) 829 { 830 return pci_platform_pm ? 831 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR; 832 } 833 834 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable) 835 { 836 return pci_platform_pm ? 837 pci_platform_pm->set_wakeup(dev, enable) : -ENODEV; 838 } 839 840 static inline bool platform_pci_need_resume(struct pci_dev *dev) 841 { 842 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false; 843 } 844 845 static inline bool platform_pci_bridge_d3(struct pci_dev *dev) 846 { 847 if (pci_platform_pm && pci_platform_pm->bridge_d3) 848 return pci_platform_pm->bridge_d3(dev); 849 return false; 850 } 851 852 /** 853 * pci_raw_set_power_state - Use PCI PM registers to set the power state of 854 * given PCI device 855 * @dev: PCI device to handle. 856 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 857 * 858 * RETURN VALUE: 859 * -EINVAL if the requested state is invalid. 860 * -EIO if device does not support PCI PM or its PM capabilities register has a 861 * wrong version, or device doesn't support the requested state. 862 * 0 if device already is in the requested state. 863 * 0 if device's power state has been successfully changed. 864 */ 865 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state) 866 { 867 u16 pmcsr; 868 bool need_restore = false; 869 870 /* Check if we're already there */ 871 if (dev->current_state == state) 872 return 0; 873 874 if (!dev->pm_cap) 875 return -EIO; 876 877 if (state < PCI_D0 || state > PCI_D3hot) 878 return -EINVAL; 879 880 /* 881 * Validate transition: We can enter D0 from any state, but if 882 * we're already in a low-power state, we can only go deeper. E.g., 883 * we can go from D1 to D3, but we can't go directly from D3 to D1; 884 * we'd have to go from D3 to D0, then to D1. 885 */ 886 if (state != PCI_D0 && dev->current_state <= PCI_D3cold 887 && dev->current_state > state) { 888 pci_err(dev, "invalid power transition (from %s to %s)\n", 889 pci_power_name(dev->current_state), 890 pci_power_name(state)); 891 return -EINVAL; 892 } 893 894 /* Check if this device supports the desired state */ 895 if ((state == PCI_D1 && !dev->d1_support) 896 || (state == PCI_D2 && !dev->d2_support)) 897 return -EIO; 898 899 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 900 if (pmcsr == (u16) ~0) { 901 pci_err(dev, "can't change power state from %s to %s (config space inaccessible)\n", 902 pci_power_name(dev->current_state), 903 pci_power_name(state)); 904 return -EIO; 905 } 906 907 /* 908 * If we're (effectively) in D3, force entire word to 0. 909 * This doesn't affect PME_Status, disables PME_En, and 910 * sets PowerState to 0. 911 */ 912 switch (dev->current_state) { 913 case PCI_D0: 914 case PCI_D1: 915 case PCI_D2: 916 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 917 pmcsr |= state; 918 break; 919 case PCI_D3hot: 920 case PCI_D3cold: 921 case PCI_UNKNOWN: /* Boot-up */ 922 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot 923 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET)) 924 need_restore = true; 925 /* Fall-through - force to D0 */ 926 default: 927 pmcsr = 0; 928 break; 929 } 930 931 /* Enter specified state */ 932 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 933 934 /* 935 * Mandatory power management transition delays; see PCI PM 1.1 936 * 5.6.1 table 18 937 */ 938 if (state == PCI_D3hot || dev->current_state == PCI_D3hot) 939 pci_dev_d3_sleep(dev); 940 else if (state == PCI_D2 || dev->current_state == PCI_D2) 941 msleep(PCI_PM_D2_DELAY); 942 943 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 944 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 945 if (dev->current_state != state) 946 pci_info_ratelimited(dev, "refused to change power state from %s to %s\n", 947 pci_power_name(dev->current_state), 948 pci_power_name(state)); 949 950 /* 951 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT 952 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning 953 * from D3hot to D0 _may_ perform an internal reset, thereby 954 * going to "D0 Uninitialized" rather than "D0 Initialized". 955 * For example, at least some versions of the 3c905B and the 956 * 3c556B exhibit this behaviour. 957 * 958 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave 959 * devices in a D3hot state at boot. Consequently, we need to 960 * restore at least the BARs so that the device will be 961 * accessible to its driver. 962 */ 963 if (need_restore) 964 pci_restore_bars(dev); 965 966 if (dev->bus->self) 967 pcie_aspm_pm_state_change(dev->bus->self); 968 969 return 0; 970 } 971 972 /** 973 * pci_update_current_state - Read power state of given device and cache it 974 * @dev: PCI device to handle. 975 * @state: State to cache in case the device doesn't have the PM capability 976 * 977 * The power state is read from the PMCSR register, which however is 978 * inaccessible in D3cold. The platform firmware is therefore queried first 979 * to detect accessibility of the register. In case the platform firmware 980 * reports an incorrect state or the device isn't power manageable by the 981 * platform at all, we try to detect D3cold by testing accessibility of the 982 * vendor ID in config space. 983 */ 984 void pci_update_current_state(struct pci_dev *dev, pci_power_t state) 985 { 986 if (platform_pci_get_power_state(dev) == PCI_D3cold || 987 !pci_device_is_present(dev)) { 988 dev->current_state = PCI_D3cold; 989 } else if (dev->pm_cap) { 990 u16 pmcsr; 991 992 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 993 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 994 } else { 995 dev->current_state = state; 996 } 997 } 998 999 /** 1000 * pci_refresh_power_state - Refresh the given device's power state data 1001 * @dev: Target PCI device. 1002 * 1003 * Ask the platform to refresh the devices power state information and invoke 1004 * pci_update_current_state() to update its current PCI power state. 1005 */ 1006 void pci_refresh_power_state(struct pci_dev *dev) 1007 { 1008 if (platform_pci_power_manageable(dev)) 1009 platform_pci_refresh_power_state(dev); 1010 1011 pci_update_current_state(dev, dev->current_state); 1012 } 1013 1014 /** 1015 * pci_platform_power_transition - Use platform to change device power state 1016 * @dev: PCI device to handle. 1017 * @state: State to put the device into. 1018 */ 1019 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state) 1020 { 1021 int error; 1022 1023 if (platform_pci_power_manageable(dev)) { 1024 error = platform_pci_set_power_state(dev, state); 1025 if (!error) 1026 pci_update_current_state(dev, state); 1027 } else 1028 error = -ENODEV; 1029 1030 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */ 1031 dev->current_state = PCI_D0; 1032 1033 return error; 1034 } 1035 EXPORT_SYMBOL_GPL(pci_platform_power_transition); 1036 1037 /** 1038 * pci_wakeup - Wake up a PCI device 1039 * @pci_dev: Device to handle. 1040 * @ign: ignored parameter 1041 */ 1042 static int pci_wakeup(struct pci_dev *pci_dev, void *ign) 1043 { 1044 pci_wakeup_event(pci_dev); 1045 pm_request_resume(&pci_dev->dev); 1046 return 0; 1047 } 1048 1049 /** 1050 * pci_wakeup_bus - Walk given bus and wake up devices on it 1051 * @bus: Top bus of the subtree to walk. 1052 */ 1053 void pci_wakeup_bus(struct pci_bus *bus) 1054 { 1055 if (bus) 1056 pci_walk_bus(bus, pci_wakeup, NULL); 1057 } 1058 1059 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout) 1060 { 1061 int delay = 1; 1062 u32 id; 1063 1064 /* 1065 * After reset, the device should not silently discard config 1066 * requests, but it may still indicate that it needs more time by 1067 * responding to them with CRS completions. The Root Port will 1068 * generally synthesize ~0 data to complete the read (except when 1069 * CRS SV is enabled and the read was for the Vendor ID; in that 1070 * case it synthesizes 0x0001 data). 1071 * 1072 * Wait for the device to return a non-CRS completion. Read the 1073 * Command register instead of Vendor ID so we don't have to 1074 * contend with the CRS SV value. 1075 */ 1076 pci_read_config_dword(dev, PCI_COMMAND, &id); 1077 while (id == ~0) { 1078 if (delay > timeout) { 1079 pci_warn(dev, "not ready %dms after %s; giving up\n", 1080 delay - 1, reset_type); 1081 return -ENOTTY; 1082 } 1083 1084 if (delay > 1000) 1085 pci_info(dev, "not ready %dms after %s; waiting\n", 1086 delay - 1, reset_type); 1087 1088 msleep(delay); 1089 delay *= 2; 1090 pci_read_config_dword(dev, PCI_COMMAND, &id); 1091 } 1092 1093 if (delay > 1000) 1094 pci_info(dev, "ready %dms after %s\n", delay - 1, 1095 reset_type); 1096 1097 return 0; 1098 } 1099 1100 /** 1101 * pci_power_up - Put the given device into D0 1102 * @dev: PCI device to power up 1103 */ 1104 int pci_power_up(struct pci_dev *dev) 1105 { 1106 pci_platform_power_transition(dev, PCI_D0); 1107 1108 /* 1109 * Mandatory power management transition delays are handled in 1110 * pci_pm_resume_noirq() and pci_pm_runtime_resume() of the 1111 * corresponding bridge. 1112 */ 1113 if (dev->runtime_d3cold) { 1114 /* 1115 * When powering on a bridge from D3cold, the whole hierarchy 1116 * may be powered on into D0uninitialized state, resume them to 1117 * give them a chance to suspend again 1118 */ 1119 pci_wakeup_bus(dev->subordinate); 1120 } 1121 1122 return pci_raw_set_power_state(dev, PCI_D0); 1123 } 1124 1125 /** 1126 * __pci_dev_set_current_state - Set current state of a PCI device 1127 * @dev: Device to handle 1128 * @data: pointer to state to be set 1129 */ 1130 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data) 1131 { 1132 pci_power_t state = *(pci_power_t *)data; 1133 1134 dev->current_state = state; 1135 return 0; 1136 } 1137 1138 /** 1139 * pci_bus_set_current_state - Walk given bus and set current state of devices 1140 * @bus: Top bus of the subtree to walk. 1141 * @state: state to be set 1142 */ 1143 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state) 1144 { 1145 if (bus) 1146 pci_walk_bus(bus, __pci_dev_set_current_state, &state); 1147 } 1148 1149 /** 1150 * pci_set_power_state - Set the power state of a PCI device 1151 * @dev: PCI device to handle. 1152 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 1153 * 1154 * Transition a device to a new power state, using the platform firmware and/or 1155 * the device's PCI PM registers. 1156 * 1157 * RETURN VALUE: 1158 * -EINVAL if the requested state is invalid. 1159 * -EIO if device does not support PCI PM or its PM capabilities register has a 1160 * wrong version, or device doesn't support the requested state. 1161 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported. 1162 * 0 if device already is in the requested state. 1163 * 0 if the transition is to D3 but D3 is not supported. 1164 * 0 if device's power state has been successfully changed. 1165 */ 1166 int pci_set_power_state(struct pci_dev *dev, pci_power_t state) 1167 { 1168 int error; 1169 1170 /* Bound the state we're entering */ 1171 if (state > PCI_D3cold) 1172 state = PCI_D3cold; 1173 else if (state < PCI_D0) 1174 state = PCI_D0; 1175 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev)) 1176 1177 /* 1178 * If the device or the parent bridge do not support PCI 1179 * PM, ignore the request if we're doing anything other 1180 * than putting it into D0 (which would only happen on 1181 * boot). 1182 */ 1183 return 0; 1184 1185 /* Check if we're already there */ 1186 if (dev->current_state == state) 1187 return 0; 1188 1189 if (state == PCI_D0) 1190 return pci_power_up(dev); 1191 1192 /* 1193 * This device is quirked not to be put into D3, so don't put it in 1194 * D3 1195 */ 1196 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3)) 1197 return 0; 1198 1199 /* 1200 * To put device in D3cold, we put device into D3hot in native 1201 * way, then put device into D3cold with platform ops 1202 */ 1203 error = pci_raw_set_power_state(dev, state > PCI_D3hot ? 1204 PCI_D3hot : state); 1205 1206 if (pci_platform_power_transition(dev, state)) 1207 return error; 1208 1209 /* Powering off a bridge may power off the whole hierarchy */ 1210 if (state == PCI_D3cold) 1211 pci_bus_set_current_state(dev->subordinate, PCI_D3cold); 1212 1213 return 0; 1214 } 1215 EXPORT_SYMBOL(pci_set_power_state); 1216 1217 /** 1218 * pci_choose_state - Choose the power state of a PCI device 1219 * @dev: PCI device to be suspended 1220 * @state: target sleep state for the whole system. This is the value 1221 * that is passed to suspend() function. 1222 * 1223 * Returns PCI power state suitable for given device and given system 1224 * message. 1225 */ 1226 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state) 1227 { 1228 pci_power_t ret; 1229 1230 if (!dev->pm_cap) 1231 return PCI_D0; 1232 1233 ret = platform_pci_choose_state(dev); 1234 if (ret != PCI_POWER_ERROR) 1235 return ret; 1236 1237 switch (state.event) { 1238 case PM_EVENT_ON: 1239 return PCI_D0; 1240 case PM_EVENT_FREEZE: 1241 case PM_EVENT_PRETHAW: 1242 /* REVISIT both freeze and pre-thaw "should" use D0 */ 1243 case PM_EVENT_SUSPEND: 1244 case PM_EVENT_HIBERNATE: 1245 return PCI_D3hot; 1246 default: 1247 pci_info(dev, "unrecognized suspend event %d\n", 1248 state.event); 1249 BUG(); 1250 } 1251 return PCI_D0; 1252 } 1253 EXPORT_SYMBOL(pci_choose_state); 1254 1255 #define PCI_EXP_SAVE_REGS 7 1256 1257 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev, 1258 u16 cap, bool extended) 1259 { 1260 struct pci_cap_saved_state *tmp; 1261 1262 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) { 1263 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap) 1264 return tmp; 1265 } 1266 return NULL; 1267 } 1268 1269 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap) 1270 { 1271 return _pci_find_saved_cap(dev, cap, false); 1272 } 1273 1274 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap) 1275 { 1276 return _pci_find_saved_cap(dev, cap, true); 1277 } 1278 1279 static int pci_save_pcie_state(struct pci_dev *dev) 1280 { 1281 int i = 0; 1282 struct pci_cap_saved_state *save_state; 1283 u16 *cap; 1284 1285 if (!pci_is_pcie(dev)) 1286 return 0; 1287 1288 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1289 if (!save_state) { 1290 pci_err(dev, "buffer not found in %s\n", __func__); 1291 return -ENOMEM; 1292 } 1293 1294 cap = (u16 *)&save_state->cap.data[0]; 1295 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]); 1296 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]); 1297 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]); 1298 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]); 1299 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]); 1300 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]); 1301 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]); 1302 1303 return 0; 1304 } 1305 1306 static void pci_restore_pcie_state(struct pci_dev *dev) 1307 { 1308 int i = 0; 1309 struct pci_cap_saved_state *save_state; 1310 u16 *cap; 1311 1312 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1313 if (!save_state) 1314 return; 1315 1316 cap = (u16 *)&save_state->cap.data[0]; 1317 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]); 1318 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]); 1319 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]); 1320 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]); 1321 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]); 1322 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]); 1323 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]); 1324 } 1325 1326 static int pci_save_pcix_state(struct pci_dev *dev) 1327 { 1328 int pos; 1329 struct pci_cap_saved_state *save_state; 1330 1331 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1332 if (!pos) 1333 return 0; 1334 1335 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1336 if (!save_state) { 1337 pci_err(dev, "buffer not found in %s\n", __func__); 1338 return -ENOMEM; 1339 } 1340 1341 pci_read_config_word(dev, pos + PCI_X_CMD, 1342 (u16 *)save_state->cap.data); 1343 1344 return 0; 1345 } 1346 1347 static void pci_restore_pcix_state(struct pci_dev *dev) 1348 { 1349 int i = 0, pos; 1350 struct pci_cap_saved_state *save_state; 1351 u16 *cap; 1352 1353 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1354 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1355 if (!save_state || !pos) 1356 return; 1357 cap = (u16 *)&save_state->cap.data[0]; 1358 1359 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]); 1360 } 1361 1362 static void pci_save_ltr_state(struct pci_dev *dev) 1363 { 1364 int ltr; 1365 struct pci_cap_saved_state *save_state; 1366 u16 *cap; 1367 1368 if (!pci_is_pcie(dev)) 1369 return; 1370 1371 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR); 1372 if (!ltr) 1373 return; 1374 1375 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR); 1376 if (!save_state) { 1377 pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n"); 1378 return; 1379 } 1380 1381 cap = (u16 *)&save_state->cap.data[0]; 1382 pci_read_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap++); 1383 pci_read_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, cap++); 1384 } 1385 1386 static void pci_restore_ltr_state(struct pci_dev *dev) 1387 { 1388 struct pci_cap_saved_state *save_state; 1389 int ltr; 1390 u16 *cap; 1391 1392 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR); 1393 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR); 1394 if (!save_state || !ltr) 1395 return; 1396 1397 cap = (u16 *)&save_state->cap.data[0]; 1398 pci_write_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap++); 1399 pci_write_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, *cap++); 1400 } 1401 1402 /** 1403 * pci_save_state - save the PCI configuration space of a device before 1404 * suspending 1405 * @dev: PCI device that we're dealing with 1406 */ 1407 int pci_save_state(struct pci_dev *dev) 1408 { 1409 int i; 1410 /* XXX: 100% dword access ok here? */ 1411 for (i = 0; i < 16; i++) { 1412 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]); 1413 pci_dbg(dev, "saving config space at offset %#x (reading %#x)\n", 1414 i * 4, dev->saved_config_space[i]); 1415 } 1416 dev->state_saved = true; 1417 1418 i = pci_save_pcie_state(dev); 1419 if (i != 0) 1420 return i; 1421 1422 i = pci_save_pcix_state(dev); 1423 if (i != 0) 1424 return i; 1425 1426 pci_save_ltr_state(dev); 1427 pci_save_dpc_state(dev); 1428 pci_save_aer_state(dev); 1429 return pci_save_vc_state(dev); 1430 } 1431 EXPORT_SYMBOL(pci_save_state); 1432 1433 static void pci_restore_config_dword(struct pci_dev *pdev, int offset, 1434 u32 saved_val, int retry, bool force) 1435 { 1436 u32 val; 1437 1438 pci_read_config_dword(pdev, offset, &val); 1439 if (!force && val == saved_val) 1440 return; 1441 1442 for (;;) { 1443 pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n", 1444 offset, val, saved_val); 1445 pci_write_config_dword(pdev, offset, saved_val); 1446 if (retry-- <= 0) 1447 return; 1448 1449 pci_read_config_dword(pdev, offset, &val); 1450 if (val == saved_val) 1451 return; 1452 1453 mdelay(1); 1454 } 1455 } 1456 1457 static void pci_restore_config_space_range(struct pci_dev *pdev, 1458 int start, int end, int retry, 1459 bool force) 1460 { 1461 int index; 1462 1463 for (index = end; index >= start; index--) 1464 pci_restore_config_dword(pdev, 4 * index, 1465 pdev->saved_config_space[index], 1466 retry, force); 1467 } 1468 1469 static void pci_restore_config_space(struct pci_dev *pdev) 1470 { 1471 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) { 1472 pci_restore_config_space_range(pdev, 10, 15, 0, false); 1473 /* Restore BARs before the command register. */ 1474 pci_restore_config_space_range(pdev, 4, 9, 10, false); 1475 pci_restore_config_space_range(pdev, 0, 3, 0, false); 1476 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 1477 pci_restore_config_space_range(pdev, 12, 15, 0, false); 1478 1479 /* 1480 * Force rewriting of prefetch registers to avoid S3 resume 1481 * issues on Intel PCI bridges that occur when these 1482 * registers are not explicitly written. 1483 */ 1484 pci_restore_config_space_range(pdev, 9, 11, 0, true); 1485 pci_restore_config_space_range(pdev, 0, 8, 0, false); 1486 } else { 1487 pci_restore_config_space_range(pdev, 0, 15, 0, false); 1488 } 1489 } 1490 1491 static void pci_restore_rebar_state(struct pci_dev *pdev) 1492 { 1493 unsigned int pos, nbars, i; 1494 u32 ctrl; 1495 1496 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 1497 if (!pos) 1498 return; 1499 1500 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1501 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >> 1502 PCI_REBAR_CTRL_NBAR_SHIFT; 1503 1504 for (i = 0; i < nbars; i++, pos += 8) { 1505 struct resource *res; 1506 int bar_idx, size; 1507 1508 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1509 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX; 1510 res = pdev->resource + bar_idx; 1511 size = ilog2(resource_size(res)) - 20; 1512 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 1513 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT; 1514 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 1515 } 1516 } 1517 1518 /** 1519 * pci_restore_state - Restore the saved state of a PCI device 1520 * @dev: PCI device that we're dealing with 1521 */ 1522 void pci_restore_state(struct pci_dev *dev) 1523 { 1524 if (!dev->state_saved) 1525 return; 1526 1527 /* 1528 * Restore max latencies (in the LTR capability) before enabling 1529 * LTR itself (in the PCIe capability). 1530 */ 1531 pci_restore_ltr_state(dev); 1532 1533 pci_restore_pcie_state(dev); 1534 pci_restore_pasid_state(dev); 1535 pci_restore_pri_state(dev); 1536 pci_restore_ats_state(dev); 1537 pci_restore_vc_state(dev); 1538 pci_restore_rebar_state(dev); 1539 pci_restore_dpc_state(dev); 1540 1541 pci_aer_clear_status(dev); 1542 pci_restore_aer_state(dev); 1543 1544 pci_restore_config_space(dev); 1545 1546 pci_restore_pcix_state(dev); 1547 pci_restore_msi_state(dev); 1548 1549 /* Restore ACS and IOV configuration state */ 1550 pci_enable_acs(dev); 1551 pci_restore_iov_state(dev); 1552 1553 dev->state_saved = false; 1554 } 1555 EXPORT_SYMBOL(pci_restore_state); 1556 1557 struct pci_saved_state { 1558 u32 config_space[16]; 1559 struct pci_cap_saved_data cap[]; 1560 }; 1561 1562 /** 1563 * pci_store_saved_state - Allocate and return an opaque struct containing 1564 * the device saved state. 1565 * @dev: PCI device that we're dealing with 1566 * 1567 * Return NULL if no state or error. 1568 */ 1569 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev) 1570 { 1571 struct pci_saved_state *state; 1572 struct pci_cap_saved_state *tmp; 1573 struct pci_cap_saved_data *cap; 1574 size_t size; 1575 1576 if (!dev->state_saved) 1577 return NULL; 1578 1579 size = sizeof(*state) + sizeof(struct pci_cap_saved_data); 1580 1581 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) 1582 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1583 1584 state = kzalloc(size, GFP_KERNEL); 1585 if (!state) 1586 return NULL; 1587 1588 memcpy(state->config_space, dev->saved_config_space, 1589 sizeof(state->config_space)); 1590 1591 cap = state->cap; 1592 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) { 1593 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1594 memcpy(cap, &tmp->cap, len); 1595 cap = (struct pci_cap_saved_data *)((u8 *)cap + len); 1596 } 1597 /* Empty cap_save terminates list */ 1598 1599 return state; 1600 } 1601 EXPORT_SYMBOL_GPL(pci_store_saved_state); 1602 1603 /** 1604 * pci_load_saved_state - Reload the provided save state into struct pci_dev. 1605 * @dev: PCI device that we're dealing with 1606 * @state: Saved state returned from pci_store_saved_state() 1607 */ 1608 int pci_load_saved_state(struct pci_dev *dev, 1609 struct pci_saved_state *state) 1610 { 1611 struct pci_cap_saved_data *cap; 1612 1613 dev->state_saved = false; 1614 1615 if (!state) 1616 return 0; 1617 1618 memcpy(dev->saved_config_space, state->config_space, 1619 sizeof(state->config_space)); 1620 1621 cap = state->cap; 1622 while (cap->size) { 1623 struct pci_cap_saved_state *tmp; 1624 1625 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended); 1626 if (!tmp || tmp->cap.size != cap->size) 1627 return -EINVAL; 1628 1629 memcpy(tmp->cap.data, cap->data, tmp->cap.size); 1630 cap = (struct pci_cap_saved_data *)((u8 *)cap + 1631 sizeof(struct pci_cap_saved_data) + cap->size); 1632 } 1633 1634 dev->state_saved = true; 1635 return 0; 1636 } 1637 EXPORT_SYMBOL_GPL(pci_load_saved_state); 1638 1639 /** 1640 * pci_load_and_free_saved_state - Reload the save state pointed to by state, 1641 * and free the memory allocated for it. 1642 * @dev: PCI device that we're dealing with 1643 * @state: Pointer to saved state returned from pci_store_saved_state() 1644 */ 1645 int pci_load_and_free_saved_state(struct pci_dev *dev, 1646 struct pci_saved_state **state) 1647 { 1648 int ret = pci_load_saved_state(dev, *state); 1649 kfree(*state); 1650 *state = NULL; 1651 return ret; 1652 } 1653 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state); 1654 1655 int __weak pcibios_enable_device(struct pci_dev *dev, int bars) 1656 { 1657 return pci_enable_resources(dev, bars); 1658 } 1659 1660 static int do_pci_enable_device(struct pci_dev *dev, int bars) 1661 { 1662 int err; 1663 struct pci_dev *bridge; 1664 u16 cmd; 1665 u8 pin; 1666 1667 err = pci_set_power_state(dev, PCI_D0); 1668 if (err < 0 && err != -EIO) 1669 return err; 1670 1671 bridge = pci_upstream_bridge(dev); 1672 if (bridge) 1673 pcie_aspm_powersave_config_link(bridge); 1674 1675 err = pcibios_enable_device(dev, bars); 1676 if (err < 0) 1677 return err; 1678 pci_fixup_device(pci_fixup_enable, dev); 1679 1680 if (dev->msi_enabled || dev->msix_enabled) 1681 return 0; 1682 1683 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin); 1684 if (pin) { 1685 pci_read_config_word(dev, PCI_COMMAND, &cmd); 1686 if (cmd & PCI_COMMAND_INTX_DISABLE) 1687 pci_write_config_word(dev, PCI_COMMAND, 1688 cmd & ~PCI_COMMAND_INTX_DISABLE); 1689 } 1690 1691 return 0; 1692 } 1693 1694 /** 1695 * pci_reenable_device - Resume abandoned device 1696 * @dev: PCI device to be resumed 1697 * 1698 * NOTE: This function is a backend of pci_default_resume() and is not supposed 1699 * to be called by normal code, write proper resume handler and use it instead. 1700 */ 1701 int pci_reenable_device(struct pci_dev *dev) 1702 { 1703 if (pci_is_enabled(dev)) 1704 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1); 1705 return 0; 1706 } 1707 EXPORT_SYMBOL(pci_reenable_device); 1708 1709 static void pci_enable_bridge(struct pci_dev *dev) 1710 { 1711 struct pci_dev *bridge; 1712 int retval; 1713 1714 bridge = pci_upstream_bridge(dev); 1715 if (bridge) 1716 pci_enable_bridge(bridge); 1717 1718 if (pci_is_enabled(dev)) { 1719 if (!dev->is_busmaster) 1720 pci_set_master(dev); 1721 return; 1722 } 1723 1724 retval = pci_enable_device(dev); 1725 if (retval) 1726 pci_err(dev, "Error enabling bridge (%d), continuing\n", 1727 retval); 1728 pci_set_master(dev); 1729 } 1730 1731 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags) 1732 { 1733 struct pci_dev *bridge; 1734 int err; 1735 int i, bars = 0; 1736 1737 /* 1738 * Power state could be unknown at this point, either due to a fresh 1739 * boot or a device removal call. So get the current power state 1740 * so that things like MSI message writing will behave as expected 1741 * (e.g. if the device really is in D0 at enable time). 1742 */ 1743 if (dev->pm_cap) { 1744 u16 pmcsr; 1745 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1746 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 1747 } 1748 1749 if (atomic_inc_return(&dev->enable_cnt) > 1) 1750 return 0; /* already enabled */ 1751 1752 bridge = pci_upstream_bridge(dev); 1753 if (bridge) 1754 pci_enable_bridge(bridge); 1755 1756 /* only skip sriov related */ 1757 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 1758 if (dev->resource[i].flags & flags) 1759 bars |= (1 << i); 1760 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++) 1761 if (dev->resource[i].flags & flags) 1762 bars |= (1 << i); 1763 1764 err = do_pci_enable_device(dev, bars); 1765 if (err < 0) 1766 atomic_dec(&dev->enable_cnt); 1767 return err; 1768 } 1769 1770 /** 1771 * pci_enable_device_io - Initialize a device for use with IO space 1772 * @dev: PCI device to be initialized 1773 * 1774 * Initialize device before it's used by a driver. Ask low-level code 1775 * to enable I/O resources. Wake up the device if it was suspended. 1776 * Beware, this function can fail. 1777 */ 1778 int pci_enable_device_io(struct pci_dev *dev) 1779 { 1780 return pci_enable_device_flags(dev, IORESOURCE_IO); 1781 } 1782 EXPORT_SYMBOL(pci_enable_device_io); 1783 1784 /** 1785 * pci_enable_device_mem - Initialize a device for use with Memory space 1786 * @dev: PCI device to be initialized 1787 * 1788 * Initialize device before it's used by a driver. Ask low-level code 1789 * to enable Memory resources. Wake up the device if it was suspended. 1790 * Beware, this function can fail. 1791 */ 1792 int pci_enable_device_mem(struct pci_dev *dev) 1793 { 1794 return pci_enable_device_flags(dev, IORESOURCE_MEM); 1795 } 1796 EXPORT_SYMBOL(pci_enable_device_mem); 1797 1798 /** 1799 * pci_enable_device - Initialize device before it's used by a driver. 1800 * @dev: PCI device to be initialized 1801 * 1802 * Initialize device before it's used by a driver. Ask low-level code 1803 * to enable I/O and memory. Wake up the device if it was suspended. 1804 * Beware, this function can fail. 1805 * 1806 * Note we don't actually enable the device many times if we call 1807 * this function repeatedly (we just increment the count). 1808 */ 1809 int pci_enable_device(struct pci_dev *dev) 1810 { 1811 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO); 1812 } 1813 EXPORT_SYMBOL(pci_enable_device); 1814 1815 /* 1816 * Managed PCI resources. This manages device on/off, INTx/MSI/MSI-X 1817 * on/off and BAR regions. pci_dev itself records MSI/MSI-X status, so 1818 * there's no need to track it separately. pci_devres is initialized 1819 * when a device is enabled using managed PCI device enable interface. 1820 */ 1821 struct pci_devres { 1822 unsigned int enabled:1; 1823 unsigned int pinned:1; 1824 unsigned int orig_intx:1; 1825 unsigned int restore_intx:1; 1826 unsigned int mwi:1; 1827 u32 region_mask; 1828 }; 1829 1830 static void pcim_release(struct device *gendev, void *res) 1831 { 1832 struct pci_dev *dev = to_pci_dev(gendev); 1833 struct pci_devres *this = res; 1834 int i; 1835 1836 if (dev->msi_enabled) 1837 pci_disable_msi(dev); 1838 if (dev->msix_enabled) 1839 pci_disable_msix(dev); 1840 1841 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) 1842 if (this->region_mask & (1 << i)) 1843 pci_release_region(dev, i); 1844 1845 if (this->mwi) 1846 pci_clear_mwi(dev); 1847 1848 if (this->restore_intx) 1849 pci_intx(dev, this->orig_intx); 1850 1851 if (this->enabled && !this->pinned) 1852 pci_disable_device(dev); 1853 } 1854 1855 static struct pci_devres *get_pci_dr(struct pci_dev *pdev) 1856 { 1857 struct pci_devres *dr, *new_dr; 1858 1859 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL); 1860 if (dr) 1861 return dr; 1862 1863 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL); 1864 if (!new_dr) 1865 return NULL; 1866 return devres_get(&pdev->dev, new_dr, NULL, NULL); 1867 } 1868 1869 static struct pci_devres *find_pci_dr(struct pci_dev *pdev) 1870 { 1871 if (pci_is_managed(pdev)) 1872 return devres_find(&pdev->dev, pcim_release, NULL, NULL); 1873 return NULL; 1874 } 1875 1876 /** 1877 * pcim_enable_device - Managed pci_enable_device() 1878 * @pdev: PCI device to be initialized 1879 * 1880 * Managed pci_enable_device(). 1881 */ 1882 int pcim_enable_device(struct pci_dev *pdev) 1883 { 1884 struct pci_devres *dr; 1885 int rc; 1886 1887 dr = get_pci_dr(pdev); 1888 if (unlikely(!dr)) 1889 return -ENOMEM; 1890 if (dr->enabled) 1891 return 0; 1892 1893 rc = pci_enable_device(pdev); 1894 if (!rc) { 1895 pdev->is_managed = 1; 1896 dr->enabled = 1; 1897 } 1898 return rc; 1899 } 1900 EXPORT_SYMBOL(pcim_enable_device); 1901 1902 /** 1903 * pcim_pin_device - Pin managed PCI device 1904 * @pdev: PCI device to pin 1905 * 1906 * Pin managed PCI device @pdev. Pinned device won't be disabled on 1907 * driver detach. @pdev must have been enabled with 1908 * pcim_enable_device(). 1909 */ 1910 void pcim_pin_device(struct pci_dev *pdev) 1911 { 1912 struct pci_devres *dr; 1913 1914 dr = find_pci_dr(pdev); 1915 WARN_ON(!dr || !dr->enabled); 1916 if (dr) 1917 dr->pinned = 1; 1918 } 1919 EXPORT_SYMBOL(pcim_pin_device); 1920 1921 /* 1922 * pcibios_add_device - provide arch specific hooks when adding device dev 1923 * @dev: the PCI device being added 1924 * 1925 * Permits the platform to provide architecture specific functionality when 1926 * devices are added. This is the default implementation. Architecture 1927 * implementations can override this. 1928 */ 1929 int __weak pcibios_add_device(struct pci_dev *dev) 1930 { 1931 return 0; 1932 } 1933 1934 /** 1935 * pcibios_release_device - provide arch specific hooks when releasing 1936 * device dev 1937 * @dev: the PCI device being released 1938 * 1939 * Permits the platform to provide architecture specific functionality when 1940 * devices are released. This is the default implementation. Architecture 1941 * implementations can override this. 1942 */ 1943 void __weak pcibios_release_device(struct pci_dev *dev) {} 1944 1945 /** 1946 * pcibios_disable_device - disable arch specific PCI resources for device dev 1947 * @dev: the PCI device to disable 1948 * 1949 * Disables architecture specific PCI resources for the device. This 1950 * is the default implementation. Architecture implementations can 1951 * override this. 1952 */ 1953 void __weak pcibios_disable_device(struct pci_dev *dev) {} 1954 1955 /** 1956 * pcibios_penalize_isa_irq - penalize an ISA IRQ 1957 * @irq: ISA IRQ to penalize 1958 * @active: IRQ active or not 1959 * 1960 * Permits the platform to provide architecture-specific functionality when 1961 * penalizing ISA IRQs. This is the default implementation. Architecture 1962 * implementations can override this. 1963 */ 1964 void __weak pcibios_penalize_isa_irq(int irq, int active) {} 1965 1966 static void do_pci_disable_device(struct pci_dev *dev) 1967 { 1968 u16 pci_command; 1969 1970 pci_read_config_word(dev, PCI_COMMAND, &pci_command); 1971 if (pci_command & PCI_COMMAND_MASTER) { 1972 pci_command &= ~PCI_COMMAND_MASTER; 1973 pci_write_config_word(dev, PCI_COMMAND, pci_command); 1974 } 1975 1976 pcibios_disable_device(dev); 1977 } 1978 1979 /** 1980 * pci_disable_enabled_device - Disable device without updating enable_cnt 1981 * @dev: PCI device to disable 1982 * 1983 * NOTE: This function is a backend of PCI power management routines and is 1984 * not supposed to be called drivers. 1985 */ 1986 void pci_disable_enabled_device(struct pci_dev *dev) 1987 { 1988 if (pci_is_enabled(dev)) 1989 do_pci_disable_device(dev); 1990 } 1991 1992 /** 1993 * pci_disable_device - Disable PCI device after use 1994 * @dev: PCI device to be disabled 1995 * 1996 * Signal to the system that the PCI device is not in use by the system 1997 * anymore. This only involves disabling PCI bus-mastering, if active. 1998 * 1999 * Note we don't actually disable the device until all callers of 2000 * pci_enable_device() have called pci_disable_device(). 2001 */ 2002 void pci_disable_device(struct pci_dev *dev) 2003 { 2004 struct pci_devres *dr; 2005 2006 dr = find_pci_dr(dev); 2007 if (dr) 2008 dr->enabled = 0; 2009 2010 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0, 2011 "disabling already-disabled device"); 2012 2013 if (atomic_dec_return(&dev->enable_cnt) != 0) 2014 return; 2015 2016 do_pci_disable_device(dev); 2017 2018 dev->is_busmaster = 0; 2019 } 2020 EXPORT_SYMBOL(pci_disable_device); 2021 2022 /** 2023 * pcibios_set_pcie_reset_state - set reset state for device dev 2024 * @dev: the PCIe device reset 2025 * @state: Reset state to enter into 2026 * 2027 * Set the PCIe reset state for the device. This is the default 2028 * implementation. Architecture implementations can override this. 2029 */ 2030 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev, 2031 enum pcie_reset_state state) 2032 { 2033 return -EINVAL; 2034 } 2035 2036 /** 2037 * pci_set_pcie_reset_state - set reset state for device dev 2038 * @dev: the PCIe device reset 2039 * @state: Reset state to enter into 2040 * 2041 * Sets the PCI reset state for the device. 2042 */ 2043 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state) 2044 { 2045 return pcibios_set_pcie_reset_state(dev, state); 2046 } 2047 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state); 2048 2049 /** 2050 * pcie_clear_root_pme_status - Clear root port PME interrupt status. 2051 * @dev: PCIe root port or event collector. 2052 */ 2053 void pcie_clear_root_pme_status(struct pci_dev *dev) 2054 { 2055 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME); 2056 } 2057 2058 /** 2059 * pci_check_pme_status - Check if given device has generated PME. 2060 * @dev: Device to check. 2061 * 2062 * Check the PME status of the device and if set, clear it and clear PME enable 2063 * (if set). Return 'true' if PME status and PME enable were both set or 2064 * 'false' otherwise. 2065 */ 2066 bool pci_check_pme_status(struct pci_dev *dev) 2067 { 2068 int pmcsr_pos; 2069 u16 pmcsr; 2070 bool ret = false; 2071 2072 if (!dev->pm_cap) 2073 return false; 2074 2075 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL; 2076 pci_read_config_word(dev, pmcsr_pos, &pmcsr); 2077 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS)) 2078 return false; 2079 2080 /* Clear PME status. */ 2081 pmcsr |= PCI_PM_CTRL_PME_STATUS; 2082 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) { 2083 /* Disable PME to avoid interrupt flood. */ 2084 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2085 ret = true; 2086 } 2087 2088 pci_write_config_word(dev, pmcsr_pos, pmcsr); 2089 2090 return ret; 2091 } 2092 2093 /** 2094 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set. 2095 * @dev: Device to handle. 2096 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag. 2097 * 2098 * Check if @dev has generated PME and queue a resume request for it in that 2099 * case. 2100 */ 2101 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset) 2102 { 2103 if (pme_poll_reset && dev->pme_poll) 2104 dev->pme_poll = false; 2105 2106 if (pci_check_pme_status(dev)) { 2107 pci_wakeup_event(dev); 2108 pm_request_resume(&dev->dev); 2109 } 2110 return 0; 2111 } 2112 2113 /** 2114 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary. 2115 * @bus: Top bus of the subtree to walk. 2116 */ 2117 void pci_pme_wakeup_bus(struct pci_bus *bus) 2118 { 2119 if (bus) 2120 pci_walk_bus(bus, pci_pme_wakeup, (void *)true); 2121 } 2122 2123 2124 /** 2125 * pci_pme_capable - check the capability of PCI device to generate PME# 2126 * @dev: PCI device to handle. 2127 * @state: PCI state from which device will issue PME#. 2128 */ 2129 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state) 2130 { 2131 if (!dev->pm_cap) 2132 return false; 2133 2134 return !!(dev->pme_support & (1 << state)); 2135 } 2136 EXPORT_SYMBOL(pci_pme_capable); 2137 2138 static void pci_pme_list_scan(struct work_struct *work) 2139 { 2140 struct pci_pme_device *pme_dev, *n; 2141 2142 mutex_lock(&pci_pme_list_mutex); 2143 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) { 2144 if (pme_dev->dev->pme_poll) { 2145 struct pci_dev *bridge; 2146 2147 bridge = pme_dev->dev->bus->self; 2148 /* 2149 * If bridge is in low power state, the 2150 * configuration space of subordinate devices 2151 * may be not accessible 2152 */ 2153 if (bridge && bridge->current_state != PCI_D0) 2154 continue; 2155 /* 2156 * If the device is in D3cold it should not be 2157 * polled either. 2158 */ 2159 if (pme_dev->dev->current_state == PCI_D3cold) 2160 continue; 2161 2162 pci_pme_wakeup(pme_dev->dev, NULL); 2163 } else { 2164 list_del(&pme_dev->list); 2165 kfree(pme_dev); 2166 } 2167 } 2168 if (!list_empty(&pci_pme_list)) 2169 queue_delayed_work(system_freezable_wq, &pci_pme_work, 2170 msecs_to_jiffies(PME_TIMEOUT)); 2171 mutex_unlock(&pci_pme_list_mutex); 2172 } 2173 2174 static void __pci_pme_active(struct pci_dev *dev, bool enable) 2175 { 2176 u16 pmcsr; 2177 2178 if (!dev->pme_support) 2179 return; 2180 2181 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2182 /* Clear PME_Status by writing 1 to it and enable PME# */ 2183 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE; 2184 if (!enable) 2185 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2186 2187 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2188 } 2189 2190 /** 2191 * pci_pme_restore - Restore PME configuration after config space restore. 2192 * @dev: PCI device to update. 2193 */ 2194 void pci_pme_restore(struct pci_dev *dev) 2195 { 2196 u16 pmcsr; 2197 2198 if (!dev->pme_support) 2199 return; 2200 2201 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2202 if (dev->wakeup_prepared) { 2203 pmcsr |= PCI_PM_CTRL_PME_ENABLE; 2204 pmcsr &= ~PCI_PM_CTRL_PME_STATUS; 2205 } else { 2206 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2207 pmcsr |= PCI_PM_CTRL_PME_STATUS; 2208 } 2209 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2210 } 2211 2212 /** 2213 * pci_pme_active - enable or disable PCI device's PME# function 2214 * @dev: PCI device to handle. 2215 * @enable: 'true' to enable PME# generation; 'false' to disable it. 2216 * 2217 * The caller must verify that the device is capable of generating PME# before 2218 * calling this function with @enable equal to 'true'. 2219 */ 2220 void pci_pme_active(struct pci_dev *dev, bool enable) 2221 { 2222 __pci_pme_active(dev, enable); 2223 2224 /* 2225 * PCI (as opposed to PCIe) PME requires that the device have 2226 * its PME# line hooked up correctly. Not all hardware vendors 2227 * do this, so the PME never gets delivered and the device 2228 * remains asleep. The easiest way around this is to 2229 * periodically walk the list of suspended devices and check 2230 * whether any have their PME flag set. The assumption is that 2231 * we'll wake up often enough anyway that this won't be a huge 2232 * hit, and the power savings from the devices will still be a 2233 * win. 2234 * 2235 * Although PCIe uses in-band PME message instead of PME# line 2236 * to report PME, PME does not work for some PCIe devices in 2237 * reality. For example, there are devices that set their PME 2238 * status bits, but don't really bother to send a PME message; 2239 * there are PCI Express Root Ports that don't bother to 2240 * trigger interrupts when they receive PME messages from the 2241 * devices below. So PME poll is used for PCIe devices too. 2242 */ 2243 2244 if (dev->pme_poll) { 2245 struct pci_pme_device *pme_dev; 2246 if (enable) { 2247 pme_dev = kmalloc(sizeof(struct pci_pme_device), 2248 GFP_KERNEL); 2249 if (!pme_dev) { 2250 pci_warn(dev, "can't enable PME#\n"); 2251 return; 2252 } 2253 pme_dev->dev = dev; 2254 mutex_lock(&pci_pme_list_mutex); 2255 list_add(&pme_dev->list, &pci_pme_list); 2256 if (list_is_singular(&pci_pme_list)) 2257 queue_delayed_work(system_freezable_wq, 2258 &pci_pme_work, 2259 msecs_to_jiffies(PME_TIMEOUT)); 2260 mutex_unlock(&pci_pme_list_mutex); 2261 } else { 2262 mutex_lock(&pci_pme_list_mutex); 2263 list_for_each_entry(pme_dev, &pci_pme_list, list) { 2264 if (pme_dev->dev == dev) { 2265 list_del(&pme_dev->list); 2266 kfree(pme_dev); 2267 break; 2268 } 2269 } 2270 mutex_unlock(&pci_pme_list_mutex); 2271 } 2272 } 2273 2274 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled"); 2275 } 2276 EXPORT_SYMBOL(pci_pme_active); 2277 2278 /** 2279 * __pci_enable_wake - enable PCI device as wakeup event source 2280 * @dev: PCI device affected 2281 * @state: PCI state from which device will issue wakeup events 2282 * @enable: True to enable event generation; false to disable 2283 * 2284 * This enables the device as a wakeup event source, or disables it. 2285 * When such events involves platform-specific hooks, those hooks are 2286 * called automatically by this routine. 2287 * 2288 * Devices with legacy power management (no standard PCI PM capabilities) 2289 * always require such platform hooks. 2290 * 2291 * RETURN VALUE: 2292 * 0 is returned on success 2293 * -EINVAL is returned if device is not supposed to wake up the system 2294 * Error code depending on the platform is returned if both the platform and 2295 * the native mechanism fail to enable the generation of wake-up events 2296 */ 2297 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable) 2298 { 2299 int ret = 0; 2300 2301 /* 2302 * Bridges that are not power-manageable directly only signal 2303 * wakeup on behalf of subordinate devices which is set up 2304 * elsewhere, so skip them. However, bridges that are 2305 * power-manageable may signal wakeup for themselves (for example, 2306 * on a hotplug event) and they need to be covered here. 2307 */ 2308 if (!pci_power_manageable(dev)) 2309 return 0; 2310 2311 /* Don't do the same thing twice in a row for one device. */ 2312 if (!!enable == !!dev->wakeup_prepared) 2313 return 0; 2314 2315 /* 2316 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don 2317 * Anderson we should be doing PME# wake enable followed by ACPI wake 2318 * enable. To disable wake-up we call the platform first, for symmetry. 2319 */ 2320 2321 if (enable) { 2322 int error; 2323 2324 if (pci_pme_capable(dev, state)) 2325 pci_pme_active(dev, true); 2326 else 2327 ret = 1; 2328 error = platform_pci_set_wakeup(dev, true); 2329 if (ret) 2330 ret = error; 2331 if (!ret) 2332 dev->wakeup_prepared = true; 2333 } else { 2334 platform_pci_set_wakeup(dev, false); 2335 pci_pme_active(dev, false); 2336 dev->wakeup_prepared = false; 2337 } 2338 2339 return ret; 2340 } 2341 2342 /** 2343 * pci_enable_wake - change wakeup settings for a PCI device 2344 * @pci_dev: Target device 2345 * @state: PCI state from which device will issue wakeup events 2346 * @enable: Whether or not to enable event generation 2347 * 2348 * If @enable is set, check device_may_wakeup() for the device before calling 2349 * __pci_enable_wake() for it. 2350 */ 2351 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable) 2352 { 2353 if (enable && !device_may_wakeup(&pci_dev->dev)) 2354 return -EINVAL; 2355 2356 return __pci_enable_wake(pci_dev, state, enable); 2357 } 2358 EXPORT_SYMBOL(pci_enable_wake); 2359 2360 /** 2361 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold 2362 * @dev: PCI device to prepare 2363 * @enable: True to enable wake-up event generation; false to disable 2364 * 2365 * Many drivers want the device to wake up the system from D3_hot or D3_cold 2366 * and this function allows them to set that up cleanly - pci_enable_wake() 2367 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI 2368 * ordering constraints. 2369 * 2370 * This function only returns error code if the device is not allowed to wake 2371 * up the system from sleep or it is not capable of generating PME# from both 2372 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it. 2373 */ 2374 int pci_wake_from_d3(struct pci_dev *dev, bool enable) 2375 { 2376 return pci_pme_capable(dev, PCI_D3cold) ? 2377 pci_enable_wake(dev, PCI_D3cold, enable) : 2378 pci_enable_wake(dev, PCI_D3hot, enable); 2379 } 2380 EXPORT_SYMBOL(pci_wake_from_d3); 2381 2382 /** 2383 * pci_target_state - find an appropriate low power state for a given PCI dev 2384 * @dev: PCI device 2385 * @wakeup: Whether or not wakeup functionality will be enabled for the device. 2386 * 2387 * Use underlying platform code to find a supported low power state for @dev. 2388 * If the platform can't manage @dev, return the deepest state from which it 2389 * can generate wake events, based on any available PME info. 2390 */ 2391 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup) 2392 { 2393 pci_power_t target_state = PCI_D3hot; 2394 2395 if (platform_pci_power_manageable(dev)) { 2396 /* 2397 * Call the platform to find the target state for the device. 2398 */ 2399 pci_power_t state = platform_pci_choose_state(dev); 2400 2401 switch (state) { 2402 case PCI_POWER_ERROR: 2403 case PCI_UNKNOWN: 2404 break; 2405 case PCI_D1: 2406 case PCI_D2: 2407 if (pci_no_d1d2(dev)) 2408 break; 2409 /* else, fall through */ 2410 default: 2411 target_state = state; 2412 } 2413 2414 return target_state; 2415 } 2416 2417 if (!dev->pm_cap) 2418 target_state = PCI_D0; 2419 2420 /* 2421 * If the device is in D3cold even though it's not power-manageable by 2422 * the platform, it may have been powered down by non-standard means. 2423 * Best to let it slumber. 2424 */ 2425 if (dev->current_state == PCI_D3cold) 2426 target_state = PCI_D3cold; 2427 2428 if (wakeup) { 2429 /* 2430 * Find the deepest state from which the device can generate 2431 * PME#. 2432 */ 2433 if (dev->pme_support) { 2434 while (target_state 2435 && !(dev->pme_support & (1 << target_state))) 2436 target_state--; 2437 } 2438 } 2439 2440 return target_state; 2441 } 2442 2443 /** 2444 * pci_prepare_to_sleep - prepare PCI device for system-wide transition 2445 * into a sleep state 2446 * @dev: Device to handle. 2447 * 2448 * Choose the power state appropriate for the device depending on whether 2449 * it can wake up the system and/or is power manageable by the platform 2450 * (PCI_D3hot is the default) and put the device into that state. 2451 */ 2452 int pci_prepare_to_sleep(struct pci_dev *dev) 2453 { 2454 bool wakeup = device_may_wakeup(&dev->dev); 2455 pci_power_t target_state = pci_target_state(dev, wakeup); 2456 int error; 2457 2458 if (target_state == PCI_POWER_ERROR) 2459 return -EIO; 2460 2461 pci_enable_wake(dev, target_state, wakeup); 2462 2463 error = pci_set_power_state(dev, target_state); 2464 2465 if (error) 2466 pci_enable_wake(dev, target_state, false); 2467 2468 return error; 2469 } 2470 EXPORT_SYMBOL(pci_prepare_to_sleep); 2471 2472 /** 2473 * pci_back_from_sleep - turn PCI device on during system-wide transition 2474 * into working state 2475 * @dev: Device to handle. 2476 * 2477 * Disable device's system wake-up capability and put it into D0. 2478 */ 2479 int pci_back_from_sleep(struct pci_dev *dev) 2480 { 2481 pci_enable_wake(dev, PCI_D0, false); 2482 return pci_set_power_state(dev, PCI_D0); 2483 } 2484 EXPORT_SYMBOL(pci_back_from_sleep); 2485 2486 /** 2487 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend. 2488 * @dev: PCI device being suspended. 2489 * 2490 * Prepare @dev to generate wake-up events at run time and put it into a low 2491 * power state. 2492 */ 2493 int pci_finish_runtime_suspend(struct pci_dev *dev) 2494 { 2495 pci_power_t target_state; 2496 int error; 2497 2498 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev)); 2499 if (target_state == PCI_POWER_ERROR) 2500 return -EIO; 2501 2502 dev->runtime_d3cold = target_state == PCI_D3cold; 2503 2504 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev)); 2505 2506 error = pci_set_power_state(dev, target_state); 2507 2508 if (error) { 2509 pci_enable_wake(dev, target_state, false); 2510 dev->runtime_d3cold = false; 2511 } 2512 2513 return error; 2514 } 2515 2516 /** 2517 * pci_dev_run_wake - Check if device can generate run-time wake-up events. 2518 * @dev: Device to check. 2519 * 2520 * Return true if the device itself is capable of generating wake-up events 2521 * (through the platform or using the native PCIe PME) or if the device supports 2522 * PME and one of its upstream bridges can generate wake-up events. 2523 */ 2524 bool pci_dev_run_wake(struct pci_dev *dev) 2525 { 2526 struct pci_bus *bus = dev->bus; 2527 2528 if (!dev->pme_support) 2529 return false; 2530 2531 /* PME-capable in principle, but not from the target power state */ 2532 if (!pci_pme_capable(dev, pci_target_state(dev, true))) 2533 return false; 2534 2535 if (device_can_wakeup(&dev->dev)) 2536 return true; 2537 2538 while (bus->parent) { 2539 struct pci_dev *bridge = bus->self; 2540 2541 if (device_can_wakeup(&bridge->dev)) 2542 return true; 2543 2544 bus = bus->parent; 2545 } 2546 2547 /* We have reached the root bus. */ 2548 if (bus->bridge) 2549 return device_can_wakeup(bus->bridge); 2550 2551 return false; 2552 } 2553 EXPORT_SYMBOL_GPL(pci_dev_run_wake); 2554 2555 /** 2556 * pci_dev_need_resume - Check if it is necessary to resume the device. 2557 * @pci_dev: Device to check. 2558 * 2559 * Return 'true' if the device is not runtime-suspended or it has to be 2560 * reconfigured due to wakeup settings difference between system and runtime 2561 * suspend, or the current power state of it is not suitable for the upcoming 2562 * (system-wide) transition. 2563 */ 2564 bool pci_dev_need_resume(struct pci_dev *pci_dev) 2565 { 2566 struct device *dev = &pci_dev->dev; 2567 pci_power_t target_state; 2568 2569 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev)) 2570 return true; 2571 2572 target_state = pci_target_state(pci_dev, device_may_wakeup(dev)); 2573 2574 /* 2575 * If the earlier platform check has not triggered, D3cold is just power 2576 * removal on top of D3hot, so no need to resume the device in that 2577 * case. 2578 */ 2579 return target_state != pci_dev->current_state && 2580 target_state != PCI_D3cold && 2581 pci_dev->current_state != PCI_D3hot; 2582 } 2583 2584 /** 2585 * pci_dev_adjust_pme - Adjust PME setting for a suspended device. 2586 * @pci_dev: Device to check. 2587 * 2588 * If the device is suspended and it is not configured for system wakeup, 2589 * disable PME for it to prevent it from waking up the system unnecessarily. 2590 * 2591 * Note that if the device's power state is D3cold and the platform check in 2592 * pci_dev_need_resume() has not triggered, the device's configuration need not 2593 * be changed. 2594 */ 2595 void pci_dev_adjust_pme(struct pci_dev *pci_dev) 2596 { 2597 struct device *dev = &pci_dev->dev; 2598 2599 spin_lock_irq(&dev->power.lock); 2600 2601 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) && 2602 pci_dev->current_state < PCI_D3cold) 2603 __pci_pme_active(pci_dev, false); 2604 2605 spin_unlock_irq(&dev->power.lock); 2606 } 2607 2608 /** 2609 * pci_dev_complete_resume - Finalize resume from system sleep for a device. 2610 * @pci_dev: Device to handle. 2611 * 2612 * If the device is runtime suspended and wakeup-capable, enable PME for it as 2613 * it might have been disabled during the prepare phase of system suspend if 2614 * the device was not configured for system wakeup. 2615 */ 2616 void pci_dev_complete_resume(struct pci_dev *pci_dev) 2617 { 2618 struct device *dev = &pci_dev->dev; 2619 2620 if (!pci_dev_run_wake(pci_dev)) 2621 return; 2622 2623 spin_lock_irq(&dev->power.lock); 2624 2625 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold) 2626 __pci_pme_active(pci_dev, true); 2627 2628 spin_unlock_irq(&dev->power.lock); 2629 } 2630 2631 void pci_config_pm_runtime_get(struct pci_dev *pdev) 2632 { 2633 struct device *dev = &pdev->dev; 2634 struct device *parent = dev->parent; 2635 2636 if (parent) 2637 pm_runtime_get_sync(parent); 2638 pm_runtime_get_noresume(dev); 2639 /* 2640 * pdev->current_state is set to PCI_D3cold during suspending, 2641 * so wait until suspending completes 2642 */ 2643 pm_runtime_barrier(dev); 2644 /* 2645 * Only need to resume devices in D3cold, because config 2646 * registers are still accessible for devices suspended but 2647 * not in D3cold. 2648 */ 2649 if (pdev->current_state == PCI_D3cold) 2650 pm_runtime_resume(dev); 2651 } 2652 2653 void pci_config_pm_runtime_put(struct pci_dev *pdev) 2654 { 2655 struct device *dev = &pdev->dev; 2656 struct device *parent = dev->parent; 2657 2658 pm_runtime_put(dev); 2659 if (parent) 2660 pm_runtime_put_sync(parent); 2661 } 2662 2663 static const struct dmi_system_id bridge_d3_blacklist[] = { 2664 #ifdef CONFIG_X86 2665 { 2666 /* 2667 * Gigabyte X299 root port is not marked as hotplug capable 2668 * which allows Linux to power manage it. However, this 2669 * confuses the BIOS SMI handler so don't power manage root 2670 * ports on that system. 2671 */ 2672 .ident = "X299 DESIGNARE EX-CF", 2673 .matches = { 2674 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."), 2675 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"), 2676 }, 2677 }, 2678 #endif 2679 { } 2680 }; 2681 2682 /** 2683 * pci_bridge_d3_possible - Is it possible to put the bridge into D3 2684 * @bridge: Bridge to check 2685 * 2686 * This function checks if it is possible to move the bridge to D3. 2687 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt. 2688 */ 2689 bool pci_bridge_d3_possible(struct pci_dev *bridge) 2690 { 2691 if (!pci_is_pcie(bridge)) 2692 return false; 2693 2694 switch (pci_pcie_type(bridge)) { 2695 case PCI_EXP_TYPE_ROOT_PORT: 2696 case PCI_EXP_TYPE_UPSTREAM: 2697 case PCI_EXP_TYPE_DOWNSTREAM: 2698 if (pci_bridge_d3_disable) 2699 return false; 2700 2701 /* 2702 * Hotplug ports handled by firmware in System Management Mode 2703 * may not be put into D3 by the OS (Thunderbolt on non-Macs). 2704 */ 2705 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge)) 2706 return false; 2707 2708 if (pci_bridge_d3_force) 2709 return true; 2710 2711 /* Even the oldest 2010 Thunderbolt controller supports D3. */ 2712 if (bridge->is_thunderbolt) 2713 return true; 2714 2715 /* Platform might know better if the bridge supports D3 */ 2716 if (platform_pci_bridge_d3(bridge)) 2717 return true; 2718 2719 /* 2720 * Hotplug ports handled natively by the OS were not validated 2721 * by vendors for runtime D3 at least until 2018 because there 2722 * was no OS support. 2723 */ 2724 if (bridge->is_hotplug_bridge) 2725 return false; 2726 2727 if (dmi_check_system(bridge_d3_blacklist)) 2728 return false; 2729 2730 /* 2731 * It should be safe to put PCIe ports from 2015 or newer 2732 * to D3. 2733 */ 2734 if (dmi_get_bios_year() >= 2015) 2735 return true; 2736 break; 2737 } 2738 2739 return false; 2740 } 2741 2742 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data) 2743 { 2744 bool *d3cold_ok = data; 2745 2746 if (/* The device needs to be allowed to go D3cold ... */ 2747 dev->no_d3cold || !dev->d3cold_allowed || 2748 2749 /* ... and if it is wakeup capable to do so from D3cold. */ 2750 (device_may_wakeup(&dev->dev) && 2751 !pci_pme_capable(dev, PCI_D3cold)) || 2752 2753 /* If it is a bridge it must be allowed to go to D3. */ 2754 !pci_power_manageable(dev)) 2755 2756 *d3cold_ok = false; 2757 2758 return !*d3cold_ok; 2759 } 2760 2761 /* 2762 * pci_bridge_d3_update - Update bridge D3 capabilities 2763 * @dev: PCI device which is changed 2764 * 2765 * Update upstream bridge PM capabilities accordingly depending on if the 2766 * device PM configuration was changed or the device is being removed. The 2767 * change is also propagated upstream. 2768 */ 2769 void pci_bridge_d3_update(struct pci_dev *dev) 2770 { 2771 bool remove = !device_is_registered(&dev->dev); 2772 struct pci_dev *bridge; 2773 bool d3cold_ok = true; 2774 2775 bridge = pci_upstream_bridge(dev); 2776 if (!bridge || !pci_bridge_d3_possible(bridge)) 2777 return; 2778 2779 /* 2780 * If D3 is currently allowed for the bridge, removing one of its 2781 * children won't change that. 2782 */ 2783 if (remove && bridge->bridge_d3) 2784 return; 2785 2786 /* 2787 * If D3 is currently allowed for the bridge and a child is added or 2788 * changed, disallowance of D3 can only be caused by that child, so 2789 * we only need to check that single device, not any of its siblings. 2790 * 2791 * If D3 is currently not allowed for the bridge, checking the device 2792 * first may allow us to skip checking its siblings. 2793 */ 2794 if (!remove) 2795 pci_dev_check_d3cold(dev, &d3cold_ok); 2796 2797 /* 2798 * If D3 is currently not allowed for the bridge, this may be caused 2799 * either by the device being changed/removed or any of its siblings, 2800 * so we need to go through all children to find out if one of them 2801 * continues to block D3. 2802 */ 2803 if (d3cold_ok && !bridge->bridge_d3) 2804 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold, 2805 &d3cold_ok); 2806 2807 if (bridge->bridge_d3 != d3cold_ok) { 2808 bridge->bridge_d3 = d3cold_ok; 2809 /* Propagate change to upstream bridges */ 2810 pci_bridge_d3_update(bridge); 2811 } 2812 } 2813 2814 /** 2815 * pci_d3cold_enable - Enable D3cold for device 2816 * @dev: PCI device to handle 2817 * 2818 * This function can be used in drivers to enable D3cold from the device 2819 * they handle. It also updates upstream PCI bridge PM capabilities 2820 * accordingly. 2821 */ 2822 void pci_d3cold_enable(struct pci_dev *dev) 2823 { 2824 if (dev->no_d3cold) { 2825 dev->no_d3cold = false; 2826 pci_bridge_d3_update(dev); 2827 } 2828 } 2829 EXPORT_SYMBOL_GPL(pci_d3cold_enable); 2830 2831 /** 2832 * pci_d3cold_disable - Disable D3cold for device 2833 * @dev: PCI device to handle 2834 * 2835 * This function can be used in drivers to disable D3cold from the device 2836 * they handle. It also updates upstream PCI bridge PM capabilities 2837 * accordingly. 2838 */ 2839 void pci_d3cold_disable(struct pci_dev *dev) 2840 { 2841 if (!dev->no_d3cold) { 2842 dev->no_d3cold = true; 2843 pci_bridge_d3_update(dev); 2844 } 2845 } 2846 EXPORT_SYMBOL_GPL(pci_d3cold_disable); 2847 2848 /** 2849 * pci_pm_init - Initialize PM functions of given PCI device 2850 * @dev: PCI device to handle. 2851 */ 2852 void pci_pm_init(struct pci_dev *dev) 2853 { 2854 int pm; 2855 u16 status; 2856 u16 pmc; 2857 2858 pm_runtime_forbid(&dev->dev); 2859 pm_runtime_set_active(&dev->dev); 2860 pm_runtime_enable(&dev->dev); 2861 device_enable_async_suspend(&dev->dev); 2862 dev->wakeup_prepared = false; 2863 2864 dev->pm_cap = 0; 2865 dev->pme_support = 0; 2866 2867 /* find PCI PM capability in list */ 2868 pm = pci_find_capability(dev, PCI_CAP_ID_PM); 2869 if (!pm) 2870 return; 2871 /* Check device's ability to generate PME# */ 2872 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc); 2873 2874 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) { 2875 pci_err(dev, "unsupported PM cap regs version (%u)\n", 2876 pmc & PCI_PM_CAP_VER_MASK); 2877 return; 2878 } 2879 2880 dev->pm_cap = pm; 2881 dev->d3_delay = PCI_PM_D3_WAIT; 2882 dev->d3cold_delay = PCI_PM_D3COLD_WAIT; 2883 dev->bridge_d3 = pci_bridge_d3_possible(dev); 2884 dev->d3cold_allowed = true; 2885 2886 dev->d1_support = false; 2887 dev->d2_support = false; 2888 if (!pci_no_d1d2(dev)) { 2889 if (pmc & PCI_PM_CAP_D1) 2890 dev->d1_support = true; 2891 if (pmc & PCI_PM_CAP_D2) 2892 dev->d2_support = true; 2893 2894 if (dev->d1_support || dev->d2_support) 2895 pci_info(dev, "supports%s%s\n", 2896 dev->d1_support ? " D1" : "", 2897 dev->d2_support ? " D2" : ""); 2898 } 2899 2900 pmc &= PCI_PM_CAP_PME_MASK; 2901 if (pmc) { 2902 pci_info(dev, "PME# supported from%s%s%s%s%s\n", 2903 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "", 2904 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "", 2905 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "", 2906 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "", 2907 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : ""); 2908 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT; 2909 dev->pme_poll = true; 2910 /* 2911 * Make device's PM flags reflect the wake-up capability, but 2912 * let the user space enable it to wake up the system as needed. 2913 */ 2914 device_set_wakeup_capable(&dev->dev, true); 2915 /* Disable the PME# generation functionality */ 2916 pci_pme_active(dev, false); 2917 } 2918 2919 pci_read_config_word(dev, PCI_STATUS, &status); 2920 if (status & PCI_STATUS_IMM_READY) 2921 dev->imm_ready = 1; 2922 } 2923 2924 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop) 2925 { 2926 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI; 2927 2928 switch (prop) { 2929 case PCI_EA_P_MEM: 2930 case PCI_EA_P_VF_MEM: 2931 flags |= IORESOURCE_MEM; 2932 break; 2933 case PCI_EA_P_MEM_PREFETCH: 2934 case PCI_EA_P_VF_MEM_PREFETCH: 2935 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH; 2936 break; 2937 case PCI_EA_P_IO: 2938 flags |= IORESOURCE_IO; 2939 break; 2940 default: 2941 return 0; 2942 } 2943 2944 return flags; 2945 } 2946 2947 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei, 2948 u8 prop) 2949 { 2950 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO) 2951 return &dev->resource[bei]; 2952 #ifdef CONFIG_PCI_IOV 2953 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 && 2954 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH)) 2955 return &dev->resource[PCI_IOV_RESOURCES + 2956 bei - PCI_EA_BEI_VF_BAR0]; 2957 #endif 2958 else if (bei == PCI_EA_BEI_ROM) 2959 return &dev->resource[PCI_ROM_RESOURCE]; 2960 else 2961 return NULL; 2962 } 2963 2964 /* Read an Enhanced Allocation (EA) entry */ 2965 static int pci_ea_read(struct pci_dev *dev, int offset) 2966 { 2967 struct resource *res; 2968 int ent_size, ent_offset = offset; 2969 resource_size_t start, end; 2970 unsigned long flags; 2971 u32 dw0, bei, base, max_offset; 2972 u8 prop; 2973 bool support_64 = (sizeof(resource_size_t) >= 8); 2974 2975 pci_read_config_dword(dev, ent_offset, &dw0); 2976 ent_offset += 4; 2977 2978 /* Entry size field indicates DWORDs after 1st */ 2979 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2; 2980 2981 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */ 2982 goto out; 2983 2984 bei = (dw0 & PCI_EA_BEI) >> 4; 2985 prop = (dw0 & PCI_EA_PP) >> 8; 2986 2987 /* 2988 * If the Property is in the reserved range, try the Secondary 2989 * Property instead. 2990 */ 2991 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED) 2992 prop = (dw0 & PCI_EA_SP) >> 16; 2993 if (prop > PCI_EA_P_BRIDGE_IO) 2994 goto out; 2995 2996 res = pci_ea_get_resource(dev, bei, prop); 2997 if (!res) { 2998 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei); 2999 goto out; 3000 } 3001 3002 flags = pci_ea_flags(dev, prop); 3003 if (!flags) { 3004 pci_err(dev, "Unsupported EA properties: %#x\n", prop); 3005 goto out; 3006 } 3007 3008 /* Read Base */ 3009 pci_read_config_dword(dev, ent_offset, &base); 3010 start = (base & PCI_EA_FIELD_MASK); 3011 ent_offset += 4; 3012 3013 /* Read MaxOffset */ 3014 pci_read_config_dword(dev, ent_offset, &max_offset); 3015 ent_offset += 4; 3016 3017 /* Read Base MSBs (if 64-bit entry) */ 3018 if (base & PCI_EA_IS_64) { 3019 u32 base_upper; 3020 3021 pci_read_config_dword(dev, ent_offset, &base_upper); 3022 ent_offset += 4; 3023 3024 flags |= IORESOURCE_MEM_64; 3025 3026 /* entry starts above 32-bit boundary, can't use */ 3027 if (!support_64 && base_upper) 3028 goto out; 3029 3030 if (support_64) 3031 start |= ((u64)base_upper << 32); 3032 } 3033 3034 end = start + (max_offset | 0x03); 3035 3036 /* Read MaxOffset MSBs (if 64-bit entry) */ 3037 if (max_offset & PCI_EA_IS_64) { 3038 u32 max_offset_upper; 3039 3040 pci_read_config_dword(dev, ent_offset, &max_offset_upper); 3041 ent_offset += 4; 3042 3043 flags |= IORESOURCE_MEM_64; 3044 3045 /* entry too big, can't use */ 3046 if (!support_64 && max_offset_upper) 3047 goto out; 3048 3049 if (support_64) 3050 end += ((u64)max_offset_upper << 32); 3051 } 3052 3053 if (end < start) { 3054 pci_err(dev, "EA Entry crosses address boundary\n"); 3055 goto out; 3056 } 3057 3058 if (ent_size != ent_offset - offset) { 3059 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n", 3060 ent_size, ent_offset - offset); 3061 goto out; 3062 } 3063 3064 res->name = pci_name(dev); 3065 res->start = start; 3066 res->end = end; 3067 res->flags = flags; 3068 3069 if (bei <= PCI_EA_BEI_BAR5) 3070 pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 3071 bei, res, prop); 3072 else if (bei == PCI_EA_BEI_ROM) 3073 pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n", 3074 res, prop); 3075 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5) 3076 pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 3077 bei - PCI_EA_BEI_VF_BAR0, res, prop); 3078 else 3079 pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n", 3080 bei, res, prop); 3081 3082 out: 3083 return offset + ent_size; 3084 } 3085 3086 /* Enhanced Allocation Initialization */ 3087 void pci_ea_init(struct pci_dev *dev) 3088 { 3089 int ea; 3090 u8 num_ent; 3091 int offset; 3092 int i; 3093 3094 /* find PCI EA capability in list */ 3095 ea = pci_find_capability(dev, PCI_CAP_ID_EA); 3096 if (!ea) 3097 return; 3098 3099 /* determine the number of entries */ 3100 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT, 3101 &num_ent); 3102 num_ent &= PCI_EA_NUM_ENT_MASK; 3103 3104 offset = ea + PCI_EA_FIRST_ENT; 3105 3106 /* Skip DWORD 2 for type 1 functions */ 3107 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) 3108 offset += 4; 3109 3110 /* parse each EA entry */ 3111 for (i = 0; i < num_ent; ++i) 3112 offset = pci_ea_read(dev, offset); 3113 } 3114 3115 static void pci_add_saved_cap(struct pci_dev *pci_dev, 3116 struct pci_cap_saved_state *new_cap) 3117 { 3118 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space); 3119 } 3120 3121 /** 3122 * _pci_add_cap_save_buffer - allocate buffer for saving given 3123 * capability registers 3124 * @dev: the PCI device 3125 * @cap: the capability to allocate the buffer for 3126 * @extended: Standard or Extended capability ID 3127 * @size: requested size of the buffer 3128 */ 3129 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap, 3130 bool extended, unsigned int size) 3131 { 3132 int pos; 3133 struct pci_cap_saved_state *save_state; 3134 3135 if (extended) 3136 pos = pci_find_ext_capability(dev, cap); 3137 else 3138 pos = pci_find_capability(dev, cap); 3139 3140 if (!pos) 3141 return 0; 3142 3143 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL); 3144 if (!save_state) 3145 return -ENOMEM; 3146 3147 save_state->cap.cap_nr = cap; 3148 save_state->cap.cap_extended = extended; 3149 save_state->cap.size = size; 3150 pci_add_saved_cap(dev, save_state); 3151 3152 return 0; 3153 } 3154 3155 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size) 3156 { 3157 return _pci_add_cap_save_buffer(dev, cap, false, size); 3158 } 3159 3160 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size) 3161 { 3162 return _pci_add_cap_save_buffer(dev, cap, true, size); 3163 } 3164 3165 /** 3166 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities 3167 * @dev: the PCI device 3168 */ 3169 void pci_allocate_cap_save_buffers(struct pci_dev *dev) 3170 { 3171 int error; 3172 3173 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP, 3174 PCI_EXP_SAVE_REGS * sizeof(u16)); 3175 if (error) 3176 pci_err(dev, "unable to preallocate PCI Express save buffer\n"); 3177 3178 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16)); 3179 if (error) 3180 pci_err(dev, "unable to preallocate PCI-X save buffer\n"); 3181 3182 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR, 3183 2 * sizeof(u16)); 3184 if (error) 3185 pci_err(dev, "unable to allocate suspend buffer for LTR\n"); 3186 3187 pci_allocate_vc_save_buffers(dev); 3188 } 3189 3190 void pci_free_cap_save_buffers(struct pci_dev *dev) 3191 { 3192 struct pci_cap_saved_state *tmp; 3193 struct hlist_node *n; 3194 3195 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next) 3196 kfree(tmp); 3197 } 3198 3199 /** 3200 * pci_configure_ari - enable or disable ARI forwarding 3201 * @dev: the PCI device 3202 * 3203 * If @dev and its upstream bridge both support ARI, enable ARI in the 3204 * bridge. Otherwise, disable ARI in the bridge. 3205 */ 3206 void pci_configure_ari(struct pci_dev *dev) 3207 { 3208 u32 cap; 3209 struct pci_dev *bridge; 3210 3211 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn) 3212 return; 3213 3214 bridge = dev->bus->self; 3215 if (!bridge) 3216 return; 3217 3218 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3219 if (!(cap & PCI_EXP_DEVCAP2_ARI)) 3220 return; 3221 3222 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) { 3223 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, 3224 PCI_EXP_DEVCTL2_ARI); 3225 bridge->ari_enabled = 1; 3226 } else { 3227 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2, 3228 PCI_EXP_DEVCTL2_ARI); 3229 bridge->ari_enabled = 0; 3230 } 3231 } 3232 3233 static int pci_acs_enable; 3234 3235 /** 3236 * pci_request_acs - ask for ACS to be enabled if supported 3237 */ 3238 void pci_request_acs(void) 3239 { 3240 pci_acs_enable = 1; 3241 } 3242 3243 static const char *disable_acs_redir_param; 3244 3245 /** 3246 * pci_disable_acs_redir - disable ACS redirect capabilities 3247 * @dev: the PCI device 3248 * 3249 * For only devices specified in the disable_acs_redir parameter. 3250 */ 3251 static void pci_disable_acs_redir(struct pci_dev *dev) 3252 { 3253 int ret = 0; 3254 const char *p; 3255 int pos; 3256 u16 ctrl; 3257 3258 if (!disable_acs_redir_param) 3259 return; 3260 3261 p = disable_acs_redir_param; 3262 while (*p) { 3263 ret = pci_dev_str_match(dev, p, &p); 3264 if (ret < 0) { 3265 pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n", 3266 disable_acs_redir_param); 3267 3268 break; 3269 } else if (ret == 1) { 3270 /* Found a match */ 3271 break; 3272 } 3273 3274 if (*p != ';' && *p != ',') { 3275 /* End of param or invalid format */ 3276 break; 3277 } 3278 p++; 3279 } 3280 3281 if (ret != 1) 3282 return; 3283 3284 if (!pci_dev_specific_disable_acs_redir(dev)) 3285 return; 3286 3287 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS); 3288 if (!pos) { 3289 pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n"); 3290 return; 3291 } 3292 3293 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 3294 3295 /* P2P Request & Completion Redirect */ 3296 ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC); 3297 3298 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 3299 3300 pci_info(dev, "disabled ACS redirect\n"); 3301 } 3302 3303 /** 3304 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities 3305 * @dev: the PCI device 3306 */ 3307 static void pci_std_enable_acs(struct pci_dev *dev) 3308 { 3309 int pos; 3310 u16 cap; 3311 u16 ctrl; 3312 3313 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS); 3314 if (!pos) 3315 return; 3316 3317 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap); 3318 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 3319 3320 /* Source Validation */ 3321 ctrl |= (cap & PCI_ACS_SV); 3322 3323 /* P2P Request Redirect */ 3324 ctrl |= (cap & PCI_ACS_RR); 3325 3326 /* P2P Completion Redirect */ 3327 ctrl |= (cap & PCI_ACS_CR); 3328 3329 /* Upstream Forwarding */ 3330 ctrl |= (cap & PCI_ACS_UF); 3331 3332 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 3333 } 3334 3335 /** 3336 * pci_enable_acs - enable ACS if hardware support it 3337 * @dev: the PCI device 3338 */ 3339 void pci_enable_acs(struct pci_dev *dev) 3340 { 3341 if (!pci_acs_enable) 3342 goto disable_acs_redir; 3343 3344 if (!pci_dev_specific_enable_acs(dev)) 3345 goto disable_acs_redir; 3346 3347 pci_std_enable_acs(dev); 3348 3349 disable_acs_redir: 3350 /* 3351 * Note: pci_disable_acs_redir() must be called even if ACS was not 3352 * enabled by the kernel because it may have been enabled by 3353 * platform firmware. So if we are told to disable it, we should 3354 * always disable it after setting the kernel's default 3355 * preferences. 3356 */ 3357 pci_disable_acs_redir(dev); 3358 } 3359 3360 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags) 3361 { 3362 int pos; 3363 u16 cap, ctrl; 3364 3365 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS); 3366 if (!pos) 3367 return false; 3368 3369 /* 3370 * Except for egress control, capabilities are either required 3371 * or only required if controllable. Features missing from the 3372 * capability field can therefore be assumed as hard-wired enabled. 3373 */ 3374 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap); 3375 acs_flags &= (cap | PCI_ACS_EC); 3376 3377 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl); 3378 return (ctrl & acs_flags) == acs_flags; 3379 } 3380 3381 /** 3382 * pci_acs_enabled - test ACS against required flags for a given device 3383 * @pdev: device to test 3384 * @acs_flags: required PCI ACS flags 3385 * 3386 * Return true if the device supports the provided flags. Automatically 3387 * filters out flags that are not implemented on multifunction devices. 3388 * 3389 * Note that this interface checks the effective ACS capabilities of the 3390 * device rather than the actual capabilities. For instance, most single 3391 * function endpoints are not required to support ACS because they have no 3392 * opportunity for peer-to-peer access. We therefore return 'true' 3393 * regardless of whether the device exposes an ACS capability. This makes 3394 * it much easier for callers of this function to ignore the actual type 3395 * or topology of the device when testing ACS support. 3396 */ 3397 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags) 3398 { 3399 int ret; 3400 3401 ret = pci_dev_specific_acs_enabled(pdev, acs_flags); 3402 if (ret >= 0) 3403 return ret > 0; 3404 3405 /* 3406 * Conventional PCI and PCI-X devices never support ACS, either 3407 * effectively or actually. The shared bus topology implies that 3408 * any device on the bus can receive or snoop DMA. 3409 */ 3410 if (!pci_is_pcie(pdev)) 3411 return false; 3412 3413 switch (pci_pcie_type(pdev)) { 3414 /* 3415 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec, 3416 * but since their primary interface is PCI/X, we conservatively 3417 * handle them as we would a non-PCIe device. 3418 */ 3419 case PCI_EXP_TYPE_PCIE_BRIDGE: 3420 /* 3421 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never 3422 * applicable... must never implement an ACS Extended Capability...". 3423 * This seems arbitrary, but we take a conservative interpretation 3424 * of this statement. 3425 */ 3426 case PCI_EXP_TYPE_PCI_BRIDGE: 3427 case PCI_EXP_TYPE_RC_EC: 3428 return false; 3429 /* 3430 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should 3431 * implement ACS in order to indicate their peer-to-peer capabilities, 3432 * regardless of whether they are single- or multi-function devices. 3433 */ 3434 case PCI_EXP_TYPE_DOWNSTREAM: 3435 case PCI_EXP_TYPE_ROOT_PORT: 3436 return pci_acs_flags_enabled(pdev, acs_flags); 3437 /* 3438 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be 3439 * implemented by the remaining PCIe types to indicate peer-to-peer 3440 * capabilities, but only when they are part of a multifunction 3441 * device. The footnote for section 6.12 indicates the specific 3442 * PCIe types included here. 3443 */ 3444 case PCI_EXP_TYPE_ENDPOINT: 3445 case PCI_EXP_TYPE_UPSTREAM: 3446 case PCI_EXP_TYPE_LEG_END: 3447 case PCI_EXP_TYPE_RC_END: 3448 if (!pdev->multifunction) 3449 break; 3450 3451 return pci_acs_flags_enabled(pdev, acs_flags); 3452 } 3453 3454 /* 3455 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable 3456 * to single function devices with the exception of downstream ports. 3457 */ 3458 return true; 3459 } 3460 3461 /** 3462 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy 3463 * @start: starting downstream device 3464 * @end: ending upstream device or NULL to search to the root bus 3465 * @acs_flags: required flags 3466 * 3467 * Walk up a device tree from start to end testing PCI ACS support. If 3468 * any step along the way does not support the required flags, return false. 3469 */ 3470 bool pci_acs_path_enabled(struct pci_dev *start, 3471 struct pci_dev *end, u16 acs_flags) 3472 { 3473 struct pci_dev *pdev, *parent = start; 3474 3475 do { 3476 pdev = parent; 3477 3478 if (!pci_acs_enabled(pdev, acs_flags)) 3479 return false; 3480 3481 if (pci_is_root_bus(pdev->bus)) 3482 return (end == NULL); 3483 3484 parent = pdev->bus->self; 3485 } while (pdev != end); 3486 3487 return true; 3488 } 3489 3490 /** 3491 * pci_rebar_find_pos - find position of resize ctrl reg for BAR 3492 * @pdev: PCI device 3493 * @bar: BAR to find 3494 * 3495 * Helper to find the position of the ctrl register for a BAR. 3496 * Returns -ENOTSUPP if resizable BARs are not supported at all. 3497 * Returns -ENOENT if no ctrl register for the BAR could be found. 3498 */ 3499 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar) 3500 { 3501 unsigned int pos, nbars, i; 3502 u32 ctrl; 3503 3504 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 3505 if (!pos) 3506 return -ENOTSUPP; 3507 3508 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3509 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >> 3510 PCI_REBAR_CTRL_NBAR_SHIFT; 3511 3512 for (i = 0; i < nbars; i++, pos += 8) { 3513 int bar_idx; 3514 3515 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3516 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX; 3517 if (bar_idx == bar) 3518 return pos; 3519 } 3520 3521 return -ENOENT; 3522 } 3523 3524 /** 3525 * pci_rebar_get_possible_sizes - get possible sizes for BAR 3526 * @pdev: PCI device 3527 * @bar: BAR to query 3528 * 3529 * Get the possible sizes of a resizable BAR as bitmask defined in the spec 3530 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable. 3531 */ 3532 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar) 3533 { 3534 int pos; 3535 u32 cap; 3536 3537 pos = pci_rebar_find_pos(pdev, bar); 3538 if (pos < 0) 3539 return 0; 3540 3541 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap); 3542 return (cap & PCI_REBAR_CAP_SIZES) >> 4; 3543 } 3544 3545 /** 3546 * pci_rebar_get_current_size - get the current size of a BAR 3547 * @pdev: PCI device 3548 * @bar: BAR to set size to 3549 * 3550 * Read the size of a BAR from the resizable BAR config. 3551 * Returns size if found or negative error code. 3552 */ 3553 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar) 3554 { 3555 int pos; 3556 u32 ctrl; 3557 3558 pos = pci_rebar_find_pos(pdev, bar); 3559 if (pos < 0) 3560 return pos; 3561 3562 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3563 return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT; 3564 } 3565 3566 /** 3567 * pci_rebar_set_size - set a new size for a BAR 3568 * @pdev: PCI device 3569 * @bar: BAR to set size to 3570 * @size: new size as defined in the spec (0=1MB, 19=512GB) 3571 * 3572 * Set the new size of a BAR as defined in the spec. 3573 * Returns zero if resizing was successful, error code otherwise. 3574 */ 3575 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size) 3576 { 3577 int pos; 3578 u32 ctrl; 3579 3580 pos = pci_rebar_find_pos(pdev, bar); 3581 if (pos < 0) 3582 return pos; 3583 3584 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3585 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 3586 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT; 3587 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 3588 return 0; 3589 } 3590 3591 /** 3592 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port 3593 * @dev: the PCI device 3594 * @cap_mask: mask of desired AtomicOp sizes, including one or more of: 3595 * PCI_EXP_DEVCAP2_ATOMIC_COMP32 3596 * PCI_EXP_DEVCAP2_ATOMIC_COMP64 3597 * PCI_EXP_DEVCAP2_ATOMIC_COMP128 3598 * 3599 * Return 0 if all upstream bridges support AtomicOp routing, egress 3600 * blocking is disabled on all upstream ports, and the root port supports 3601 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit 3602 * AtomicOp completion), or negative otherwise. 3603 */ 3604 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask) 3605 { 3606 struct pci_bus *bus = dev->bus; 3607 struct pci_dev *bridge; 3608 u32 cap, ctl2; 3609 3610 if (!pci_is_pcie(dev)) 3611 return -EINVAL; 3612 3613 /* 3614 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be 3615 * AtomicOp requesters. For now, we only support endpoints as 3616 * requesters and root ports as completers. No endpoints as 3617 * completers, and no peer-to-peer. 3618 */ 3619 3620 switch (pci_pcie_type(dev)) { 3621 case PCI_EXP_TYPE_ENDPOINT: 3622 case PCI_EXP_TYPE_LEG_END: 3623 case PCI_EXP_TYPE_RC_END: 3624 break; 3625 default: 3626 return -EINVAL; 3627 } 3628 3629 while (bus->parent) { 3630 bridge = bus->self; 3631 3632 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3633 3634 switch (pci_pcie_type(bridge)) { 3635 /* Ensure switch ports support AtomicOp routing */ 3636 case PCI_EXP_TYPE_UPSTREAM: 3637 case PCI_EXP_TYPE_DOWNSTREAM: 3638 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE)) 3639 return -EINVAL; 3640 break; 3641 3642 /* Ensure root port supports all the sizes we care about */ 3643 case PCI_EXP_TYPE_ROOT_PORT: 3644 if ((cap & cap_mask) != cap_mask) 3645 return -EINVAL; 3646 break; 3647 } 3648 3649 /* Ensure upstream ports don't block AtomicOps on egress */ 3650 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) { 3651 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, 3652 &ctl2); 3653 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK) 3654 return -EINVAL; 3655 } 3656 3657 bus = bus->parent; 3658 } 3659 3660 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2, 3661 PCI_EXP_DEVCTL2_ATOMIC_REQ); 3662 return 0; 3663 } 3664 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root); 3665 3666 /** 3667 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge 3668 * @dev: the PCI device 3669 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD) 3670 * 3671 * Perform INTx swizzling for a device behind one level of bridge. This is 3672 * required by section 9.1 of the PCI-to-PCI bridge specification for devices 3673 * behind bridges on add-in cards. For devices with ARI enabled, the slot 3674 * number is always 0 (see the Implementation Note in section 2.2.8.1 of 3675 * the PCI Express Base Specification, Revision 2.1) 3676 */ 3677 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin) 3678 { 3679 int slot; 3680 3681 if (pci_ari_enabled(dev->bus)) 3682 slot = 0; 3683 else 3684 slot = PCI_SLOT(dev->devfn); 3685 3686 return (((pin - 1) + slot) % 4) + 1; 3687 } 3688 3689 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge) 3690 { 3691 u8 pin; 3692 3693 pin = dev->pin; 3694 if (!pin) 3695 return -1; 3696 3697 while (!pci_is_root_bus(dev->bus)) { 3698 pin = pci_swizzle_interrupt_pin(dev, pin); 3699 dev = dev->bus->self; 3700 } 3701 *bridge = dev; 3702 return pin; 3703 } 3704 3705 /** 3706 * pci_common_swizzle - swizzle INTx all the way to root bridge 3707 * @dev: the PCI device 3708 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD) 3709 * 3710 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI 3711 * bridges all the way up to a PCI root bus. 3712 */ 3713 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp) 3714 { 3715 u8 pin = *pinp; 3716 3717 while (!pci_is_root_bus(dev->bus)) { 3718 pin = pci_swizzle_interrupt_pin(dev, pin); 3719 dev = dev->bus->self; 3720 } 3721 *pinp = pin; 3722 return PCI_SLOT(dev->devfn); 3723 } 3724 EXPORT_SYMBOL_GPL(pci_common_swizzle); 3725 3726 /** 3727 * pci_release_region - Release a PCI bar 3728 * @pdev: PCI device whose resources were previously reserved by 3729 * pci_request_region() 3730 * @bar: BAR to release 3731 * 3732 * Releases the PCI I/O and memory resources previously reserved by a 3733 * successful call to pci_request_region(). Call this function only 3734 * after all use of the PCI regions has ceased. 3735 */ 3736 void pci_release_region(struct pci_dev *pdev, int bar) 3737 { 3738 struct pci_devres *dr; 3739 3740 if (pci_resource_len(pdev, bar) == 0) 3741 return; 3742 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) 3743 release_region(pci_resource_start(pdev, bar), 3744 pci_resource_len(pdev, bar)); 3745 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) 3746 release_mem_region(pci_resource_start(pdev, bar), 3747 pci_resource_len(pdev, bar)); 3748 3749 dr = find_pci_dr(pdev); 3750 if (dr) 3751 dr->region_mask &= ~(1 << bar); 3752 } 3753 EXPORT_SYMBOL(pci_release_region); 3754 3755 /** 3756 * __pci_request_region - Reserved PCI I/O and memory resource 3757 * @pdev: PCI device whose resources are to be reserved 3758 * @bar: BAR to be reserved 3759 * @res_name: Name to be associated with resource. 3760 * @exclusive: whether the region access is exclusive or not 3761 * 3762 * Mark the PCI region associated with PCI device @pdev BAR @bar as 3763 * being reserved by owner @res_name. Do not access any 3764 * address inside the PCI regions unless this call returns 3765 * successfully. 3766 * 3767 * If @exclusive is set, then the region is marked so that userspace 3768 * is explicitly not allowed to map the resource via /dev/mem or 3769 * sysfs MMIO access. 3770 * 3771 * Returns 0 on success, or %EBUSY on error. A warning 3772 * message is also printed on failure. 3773 */ 3774 static int __pci_request_region(struct pci_dev *pdev, int bar, 3775 const char *res_name, int exclusive) 3776 { 3777 struct pci_devres *dr; 3778 3779 if (pci_resource_len(pdev, bar) == 0) 3780 return 0; 3781 3782 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) { 3783 if (!request_region(pci_resource_start(pdev, bar), 3784 pci_resource_len(pdev, bar), res_name)) 3785 goto err_out; 3786 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) { 3787 if (!__request_mem_region(pci_resource_start(pdev, bar), 3788 pci_resource_len(pdev, bar), res_name, 3789 exclusive)) 3790 goto err_out; 3791 } 3792 3793 dr = find_pci_dr(pdev); 3794 if (dr) 3795 dr->region_mask |= 1 << bar; 3796 3797 return 0; 3798 3799 err_out: 3800 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar, 3801 &pdev->resource[bar]); 3802 return -EBUSY; 3803 } 3804 3805 /** 3806 * pci_request_region - Reserve PCI I/O and memory resource 3807 * @pdev: PCI device whose resources are to be reserved 3808 * @bar: BAR to be reserved 3809 * @res_name: Name to be associated with resource 3810 * 3811 * Mark the PCI region associated with PCI device @pdev BAR @bar as 3812 * being reserved by owner @res_name. Do not access any 3813 * address inside the PCI regions unless this call returns 3814 * successfully. 3815 * 3816 * Returns 0 on success, or %EBUSY on error. A warning 3817 * message is also printed on failure. 3818 */ 3819 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name) 3820 { 3821 return __pci_request_region(pdev, bar, res_name, 0); 3822 } 3823 EXPORT_SYMBOL(pci_request_region); 3824 3825 /** 3826 * pci_release_selected_regions - Release selected PCI I/O and memory resources 3827 * @pdev: PCI device whose resources were previously reserved 3828 * @bars: Bitmask of BARs to be released 3829 * 3830 * Release selected PCI I/O and memory resources previously reserved. 3831 * Call this function only after all use of the PCI regions has ceased. 3832 */ 3833 void pci_release_selected_regions(struct pci_dev *pdev, int bars) 3834 { 3835 int i; 3836 3837 for (i = 0; i < PCI_STD_NUM_BARS; i++) 3838 if (bars & (1 << i)) 3839 pci_release_region(pdev, i); 3840 } 3841 EXPORT_SYMBOL(pci_release_selected_regions); 3842 3843 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars, 3844 const char *res_name, int excl) 3845 { 3846 int i; 3847 3848 for (i = 0; i < PCI_STD_NUM_BARS; i++) 3849 if (bars & (1 << i)) 3850 if (__pci_request_region(pdev, i, res_name, excl)) 3851 goto err_out; 3852 return 0; 3853 3854 err_out: 3855 while (--i >= 0) 3856 if (bars & (1 << i)) 3857 pci_release_region(pdev, i); 3858 3859 return -EBUSY; 3860 } 3861 3862 3863 /** 3864 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources 3865 * @pdev: PCI device whose resources are to be reserved 3866 * @bars: Bitmask of BARs to be requested 3867 * @res_name: Name to be associated with resource 3868 */ 3869 int pci_request_selected_regions(struct pci_dev *pdev, int bars, 3870 const char *res_name) 3871 { 3872 return __pci_request_selected_regions(pdev, bars, res_name, 0); 3873 } 3874 EXPORT_SYMBOL(pci_request_selected_regions); 3875 3876 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars, 3877 const char *res_name) 3878 { 3879 return __pci_request_selected_regions(pdev, bars, res_name, 3880 IORESOURCE_EXCLUSIVE); 3881 } 3882 EXPORT_SYMBOL(pci_request_selected_regions_exclusive); 3883 3884 /** 3885 * pci_release_regions - Release reserved PCI I/O and memory resources 3886 * @pdev: PCI device whose resources were previously reserved by 3887 * pci_request_regions() 3888 * 3889 * Releases all PCI I/O and memory resources previously reserved by a 3890 * successful call to pci_request_regions(). Call this function only 3891 * after all use of the PCI regions has ceased. 3892 */ 3893 3894 void pci_release_regions(struct pci_dev *pdev) 3895 { 3896 pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1); 3897 } 3898 EXPORT_SYMBOL(pci_release_regions); 3899 3900 /** 3901 * pci_request_regions - Reserve PCI I/O and memory resources 3902 * @pdev: PCI device whose resources are to be reserved 3903 * @res_name: Name to be associated with resource. 3904 * 3905 * Mark all PCI regions associated with PCI device @pdev as 3906 * being reserved by owner @res_name. Do not access any 3907 * address inside the PCI regions unless this call returns 3908 * successfully. 3909 * 3910 * Returns 0 on success, or %EBUSY on error. A warning 3911 * message is also printed on failure. 3912 */ 3913 int pci_request_regions(struct pci_dev *pdev, const char *res_name) 3914 { 3915 return pci_request_selected_regions(pdev, 3916 ((1 << PCI_STD_NUM_BARS) - 1), res_name); 3917 } 3918 EXPORT_SYMBOL(pci_request_regions); 3919 3920 /** 3921 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources 3922 * @pdev: PCI device whose resources are to be reserved 3923 * @res_name: Name to be associated with resource. 3924 * 3925 * Mark all PCI regions associated with PCI device @pdev as being reserved 3926 * by owner @res_name. Do not access any address inside the PCI regions 3927 * unless this call returns successfully. 3928 * 3929 * pci_request_regions_exclusive() will mark the region so that /dev/mem 3930 * and the sysfs MMIO access will not be allowed. 3931 * 3932 * Returns 0 on success, or %EBUSY on error. A warning message is also 3933 * printed on failure. 3934 */ 3935 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name) 3936 { 3937 return pci_request_selected_regions_exclusive(pdev, 3938 ((1 << PCI_STD_NUM_BARS) - 1), res_name); 3939 } 3940 EXPORT_SYMBOL(pci_request_regions_exclusive); 3941 3942 /* 3943 * Record the PCI IO range (expressed as CPU physical address + size). 3944 * Return a negative value if an error has occurred, zero otherwise 3945 */ 3946 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr, 3947 resource_size_t size) 3948 { 3949 int ret = 0; 3950 #ifdef PCI_IOBASE 3951 struct logic_pio_hwaddr *range; 3952 3953 if (!size || addr + size < addr) 3954 return -EINVAL; 3955 3956 range = kzalloc(sizeof(*range), GFP_ATOMIC); 3957 if (!range) 3958 return -ENOMEM; 3959 3960 range->fwnode = fwnode; 3961 range->size = size; 3962 range->hw_start = addr; 3963 range->flags = LOGIC_PIO_CPU_MMIO; 3964 3965 ret = logic_pio_register_range(range); 3966 if (ret) 3967 kfree(range); 3968 #endif 3969 3970 return ret; 3971 } 3972 3973 phys_addr_t pci_pio_to_address(unsigned long pio) 3974 { 3975 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR; 3976 3977 #ifdef PCI_IOBASE 3978 if (pio >= MMIO_UPPER_LIMIT) 3979 return address; 3980 3981 address = logic_pio_to_hwaddr(pio); 3982 #endif 3983 3984 return address; 3985 } 3986 3987 unsigned long __weak pci_address_to_pio(phys_addr_t address) 3988 { 3989 #ifdef PCI_IOBASE 3990 return logic_pio_trans_cpuaddr(address); 3991 #else 3992 if (address > IO_SPACE_LIMIT) 3993 return (unsigned long)-1; 3994 3995 return (unsigned long) address; 3996 #endif 3997 } 3998 3999 /** 4000 * pci_remap_iospace - Remap the memory mapped I/O space 4001 * @res: Resource describing the I/O space 4002 * @phys_addr: physical address of range to be mapped 4003 * 4004 * Remap the memory mapped I/O space described by the @res and the CPU 4005 * physical address @phys_addr into virtual address space. Only 4006 * architectures that have memory mapped IO functions defined (and the 4007 * PCI_IOBASE value defined) should call this function. 4008 */ 4009 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr) 4010 { 4011 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 4012 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 4013 4014 if (!(res->flags & IORESOURCE_IO)) 4015 return -EINVAL; 4016 4017 if (res->end > IO_SPACE_LIMIT) 4018 return -EINVAL; 4019 4020 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr, 4021 pgprot_device(PAGE_KERNEL)); 4022 #else 4023 /* 4024 * This architecture does not have memory mapped I/O space, 4025 * so this function should never be called 4026 */ 4027 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n"); 4028 return -ENODEV; 4029 #endif 4030 } 4031 EXPORT_SYMBOL(pci_remap_iospace); 4032 4033 /** 4034 * pci_unmap_iospace - Unmap the memory mapped I/O space 4035 * @res: resource to be unmapped 4036 * 4037 * Unmap the CPU virtual address @res from virtual address space. Only 4038 * architectures that have memory mapped IO functions defined (and the 4039 * PCI_IOBASE value defined) should call this function. 4040 */ 4041 void pci_unmap_iospace(struct resource *res) 4042 { 4043 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 4044 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 4045 4046 unmap_kernel_range(vaddr, resource_size(res)); 4047 #endif 4048 } 4049 EXPORT_SYMBOL(pci_unmap_iospace); 4050 4051 static void devm_pci_unmap_iospace(struct device *dev, void *ptr) 4052 { 4053 struct resource **res = ptr; 4054 4055 pci_unmap_iospace(*res); 4056 } 4057 4058 /** 4059 * devm_pci_remap_iospace - Managed pci_remap_iospace() 4060 * @dev: Generic device to remap IO address for 4061 * @res: Resource describing the I/O space 4062 * @phys_addr: physical address of range to be mapped 4063 * 4064 * Managed pci_remap_iospace(). Map is automatically unmapped on driver 4065 * detach. 4066 */ 4067 int devm_pci_remap_iospace(struct device *dev, const struct resource *res, 4068 phys_addr_t phys_addr) 4069 { 4070 const struct resource **ptr; 4071 int error; 4072 4073 ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL); 4074 if (!ptr) 4075 return -ENOMEM; 4076 4077 error = pci_remap_iospace(res, phys_addr); 4078 if (error) { 4079 devres_free(ptr); 4080 } else { 4081 *ptr = res; 4082 devres_add(dev, ptr); 4083 } 4084 4085 return error; 4086 } 4087 EXPORT_SYMBOL(devm_pci_remap_iospace); 4088 4089 /** 4090 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace() 4091 * @dev: Generic device to remap IO address for 4092 * @offset: Resource address to map 4093 * @size: Size of map 4094 * 4095 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver 4096 * detach. 4097 */ 4098 void __iomem *devm_pci_remap_cfgspace(struct device *dev, 4099 resource_size_t offset, 4100 resource_size_t size) 4101 { 4102 void __iomem **ptr, *addr; 4103 4104 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL); 4105 if (!ptr) 4106 return NULL; 4107 4108 addr = pci_remap_cfgspace(offset, size); 4109 if (addr) { 4110 *ptr = addr; 4111 devres_add(dev, ptr); 4112 } else 4113 devres_free(ptr); 4114 4115 return addr; 4116 } 4117 EXPORT_SYMBOL(devm_pci_remap_cfgspace); 4118 4119 /** 4120 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource 4121 * @dev: generic device to handle the resource for 4122 * @res: configuration space resource to be handled 4123 * 4124 * Checks that a resource is a valid memory region, requests the memory 4125 * region and ioremaps with pci_remap_cfgspace() API that ensures the 4126 * proper PCI configuration space memory attributes are guaranteed. 4127 * 4128 * All operations are managed and will be undone on driver detach. 4129 * 4130 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code 4131 * on failure. Usage example:: 4132 * 4133 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 4134 * base = devm_pci_remap_cfg_resource(&pdev->dev, res); 4135 * if (IS_ERR(base)) 4136 * return PTR_ERR(base); 4137 */ 4138 void __iomem *devm_pci_remap_cfg_resource(struct device *dev, 4139 struct resource *res) 4140 { 4141 resource_size_t size; 4142 const char *name; 4143 void __iomem *dest_ptr; 4144 4145 BUG_ON(!dev); 4146 4147 if (!res || resource_type(res) != IORESOURCE_MEM) { 4148 dev_err(dev, "invalid resource\n"); 4149 return IOMEM_ERR_PTR(-EINVAL); 4150 } 4151 4152 size = resource_size(res); 4153 name = res->name ?: dev_name(dev); 4154 4155 if (!devm_request_mem_region(dev, res->start, size, name)) { 4156 dev_err(dev, "can't request region for resource %pR\n", res); 4157 return IOMEM_ERR_PTR(-EBUSY); 4158 } 4159 4160 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size); 4161 if (!dest_ptr) { 4162 dev_err(dev, "ioremap failed for resource %pR\n", res); 4163 devm_release_mem_region(dev, res->start, size); 4164 dest_ptr = IOMEM_ERR_PTR(-ENOMEM); 4165 } 4166 4167 return dest_ptr; 4168 } 4169 EXPORT_SYMBOL(devm_pci_remap_cfg_resource); 4170 4171 static void __pci_set_master(struct pci_dev *dev, bool enable) 4172 { 4173 u16 old_cmd, cmd; 4174 4175 pci_read_config_word(dev, PCI_COMMAND, &old_cmd); 4176 if (enable) 4177 cmd = old_cmd | PCI_COMMAND_MASTER; 4178 else 4179 cmd = old_cmd & ~PCI_COMMAND_MASTER; 4180 if (cmd != old_cmd) { 4181 pci_dbg(dev, "%s bus mastering\n", 4182 enable ? "enabling" : "disabling"); 4183 pci_write_config_word(dev, PCI_COMMAND, cmd); 4184 } 4185 dev->is_busmaster = enable; 4186 } 4187 4188 /** 4189 * pcibios_setup - process "pci=" kernel boot arguments 4190 * @str: string used to pass in "pci=" kernel boot arguments 4191 * 4192 * Process kernel boot arguments. This is the default implementation. 4193 * Architecture specific implementations can override this as necessary. 4194 */ 4195 char * __weak __init pcibios_setup(char *str) 4196 { 4197 return str; 4198 } 4199 4200 /** 4201 * pcibios_set_master - enable PCI bus-mastering for device dev 4202 * @dev: the PCI device to enable 4203 * 4204 * Enables PCI bus-mastering for the device. This is the default 4205 * implementation. Architecture specific implementations can override 4206 * this if necessary. 4207 */ 4208 void __weak pcibios_set_master(struct pci_dev *dev) 4209 { 4210 u8 lat; 4211 4212 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */ 4213 if (pci_is_pcie(dev)) 4214 return; 4215 4216 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat); 4217 if (lat < 16) 4218 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency; 4219 else if (lat > pcibios_max_latency) 4220 lat = pcibios_max_latency; 4221 else 4222 return; 4223 4224 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat); 4225 } 4226 4227 /** 4228 * pci_set_master - enables bus-mastering for device dev 4229 * @dev: the PCI device to enable 4230 * 4231 * Enables bus-mastering on the device and calls pcibios_set_master() 4232 * to do the needed arch specific settings. 4233 */ 4234 void pci_set_master(struct pci_dev *dev) 4235 { 4236 __pci_set_master(dev, true); 4237 pcibios_set_master(dev); 4238 } 4239 EXPORT_SYMBOL(pci_set_master); 4240 4241 /** 4242 * pci_clear_master - disables bus-mastering for device dev 4243 * @dev: the PCI device to disable 4244 */ 4245 void pci_clear_master(struct pci_dev *dev) 4246 { 4247 __pci_set_master(dev, false); 4248 } 4249 EXPORT_SYMBOL(pci_clear_master); 4250 4251 /** 4252 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed 4253 * @dev: the PCI device for which MWI is to be enabled 4254 * 4255 * Helper function for pci_set_mwi. 4256 * Originally copied from drivers/net/acenic.c. 4257 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. 4258 * 4259 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4260 */ 4261 int pci_set_cacheline_size(struct pci_dev *dev) 4262 { 4263 u8 cacheline_size; 4264 4265 if (!pci_cache_line_size) 4266 return -EINVAL; 4267 4268 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be 4269 equal to or multiple of the right value. */ 4270 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4271 if (cacheline_size >= pci_cache_line_size && 4272 (cacheline_size % pci_cache_line_size) == 0) 4273 return 0; 4274 4275 /* Write the correct value. */ 4276 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size); 4277 /* Read it back. */ 4278 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4279 if (cacheline_size == pci_cache_line_size) 4280 return 0; 4281 4282 pci_info(dev, "cache line size of %d is not supported\n", 4283 pci_cache_line_size << 2); 4284 4285 return -EINVAL; 4286 } 4287 EXPORT_SYMBOL_GPL(pci_set_cacheline_size); 4288 4289 /** 4290 * pci_set_mwi - enables memory-write-invalidate PCI transaction 4291 * @dev: the PCI device for which MWI is enabled 4292 * 4293 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4294 * 4295 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4296 */ 4297 int pci_set_mwi(struct pci_dev *dev) 4298 { 4299 #ifdef PCI_DISABLE_MWI 4300 return 0; 4301 #else 4302 int rc; 4303 u16 cmd; 4304 4305 rc = pci_set_cacheline_size(dev); 4306 if (rc) 4307 return rc; 4308 4309 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4310 if (!(cmd & PCI_COMMAND_INVALIDATE)) { 4311 pci_dbg(dev, "enabling Mem-Wr-Inval\n"); 4312 cmd |= PCI_COMMAND_INVALIDATE; 4313 pci_write_config_word(dev, PCI_COMMAND, cmd); 4314 } 4315 return 0; 4316 #endif 4317 } 4318 EXPORT_SYMBOL(pci_set_mwi); 4319 4320 /** 4321 * pcim_set_mwi - a device-managed pci_set_mwi() 4322 * @dev: the PCI device for which MWI is enabled 4323 * 4324 * Managed pci_set_mwi(). 4325 * 4326 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4327 */ 4328 int pcim_set_mwi(struct pci_dev *dev) 4329 { 4330 struct pci_devres *dr; 4331 4332 dr = find_pci_dr(dev); 4333 if (!dr) 4334 return -ENOMEM; 4335 4336 dr->mwi = 1; 4337 return pci_set_mwi(dev); 4338 } 4339 EXPORT_SYMBOL(pcim_set_mwi); 4340 4341 /** 4342 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction 4343 * @dev: the PCI device for which MWI is enabled 4344 * 4345 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4346 * Callers are not required to check the return value. 4347 * 4348 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4349 */ 4350 int pci_try_set_mwi(struct pci_dev *dev) 4351 { 4352 #ifdef PCI_DISABLE_MWI 4353 return 0; 4354 #else 4355 return pci_set_mwi(dev); 4356 #endif 4357 } 4358 EXPORT_SYMBOL(pci_try_set_mwi); 4359 4360 /** 4361 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev 4362 * @dev: the PCI device to disable 4363 * 4364 * Disables PCI Memory-Write-Invalidate transaction on the device 4365 */ 4366 void pci_clear_mwi(struct pci_dev *dev) 4367 { 4368 #ifndef PCI_DISABLE_MWI 4369 u16 cmd; 4370 4371 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4372 if (cmd & PCI_COMMAND_INVALIDATE) { 4373 cmd &= ~PCI_COMMAND_INVALIDATE; 4374 pci_write_config_word(dev, PCI_COMMAND, cmd); 4375 } 4376 #endif 4377 } 4378 EXPORT_SYMBOL(pci_clear_mwi); 4379 4380 /** 4381 * pci_intx - enables/disables PCI INTx for device dev 4382 * @pdev: the PCI device to operate on 4383 * @enable: boolean: whether to enable or disable PCI INTx 4384 * 4385 * Enables/disables PCI INTx for device @pdev 4386 */ 4387 void pci_intx(struct pci_dev *pdev, int enable) 4388 { 4389 u16 pci_command, new; 4390 4391 pci_read_config_word(pdev, PCI_COMMAND, &pci_command); 4392 4393 if (enable) 4394 new = pci_command & ~PCI_COMMAND_INTX_DISABLE; 4395 else 4396 new = pci_command | PCI_COMMAND_INTX_DISABLE; 4397 4398 if (new != pci_command) { 4399 struct pci_devres *dr; 4400 4401 pci_write_config_word(pdev, PCI_COMMAND, new); 4402 4403 dr = find_pci_dr(pdev); 4404 if (dr && !dr->restore_intx) { 4405 dr->restore_intx = 1; 4406 dr->orig_intx = !enable; 4407 } 4408 } 4409 } 4410 EXPORT_SYMBOL_GPL(pci_intx); 4411 4412 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask) 4413 { 4414 struct pci_bus *bus = dev->bus; 4415 bool mask_updated = true; 4416 u32 cmd_status_dword; 4417 u16 origcmd, newcmd; 4418 unsigned long flags; 4419 bool irq_pending; 4420 4421 /* 4422 * We do a single dword read to retrieve both command and status. 4423 * Document assumptions that make this possible. 4424 */ 4425 BUILD_BUG_ON(PCI_COMMAND % 4); 4426 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS); 4427 4428 raw_spin_lock_irqsave(&pci_lock, flags); 4429 4430 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword); 4431 4432 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT; 4433 4434 /* 4435 * Check interrupt status register to see whether our device 4436 * triggered the interrupt (when masking) or the next IRQ is 4437 * already pending (when unmasking). 4438 */ 4439 if (mask != irq_pending) { 4440 mask_updated = false; 4441 goto done; 4442 } 4443 4444 origcmd = cmd_status_dword; 4445 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE; 4446 if (mask) 4447 newcmd |= PCI_COMMAND_INTX_DISABLE; 4448 if (newcmd != origcmd) 4449 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd); 4450 4451 done: 4452 raw_spin_unlock_irqrestore(&pci_lock, flags); 4453 4454 return mask_updated; 4455 } 4456 4457 /** 4458 * pci_check_and_mask_intx - mask INTx on pending interrupt 4459 * @dev: the PCI device to operate on 4460 * 4461 * Check if the device dev has its INTx line asserted, mask it and return 4462 * true in that case. False is returned if no interrupt was pending. 4463 */ 4464 bool pci_check_and_mask_intx(struct pci_dev *dev) 4465 { 4466 return pci_check_and_set_intx_mask(dev, true); 4467 } 4468 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx); 4469 4470 /** 4471 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending 4472 * @dev: the PCI device to operate on 4473 * 4474 * Check if the device dev has its INTx line asserted, unmask it if not and 4475 * return true. False is returned and the mask remains active if there was 4476 * still an interrupt pending. 4477 */ 4478 bool pci_check_and_unmask_intx(struct pci_dev *dev) 4479 { 4480 return pci_check_and_set_intx_mask(dev, false); 4481 } 4482 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx); 4483 4484 /** 4485 * pci_wait_for_pending_transaction - wait for pending transaction 4486 * @dev: the PCI device to operate on 4487 * 4488 * Return 0 if transaction is pending 1 otherwise. 4489 */ 4490 int pci_wait_for_pending_transaction(struct pci_dev *dev) 4491 { 4492 if (!pci_is_pcie(dev)) 4493 return 1; 4494 4495 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA, 4496 PCI_EXP_DEVSTA_TRPND); 4497 } 4498 EXPORT_SYMBOL(pci_wait_for_pending_transaction); 4499 4500 /** 4501 * pcie_has_flr - check if a device supports function level resets 4502 * @dev: device to check 4503 * 4504 * Returns true if the device advertises support for PCIe function level 4505 * resets. 4506 */ 4507 bool pcie_has_flr(struct pci_dev *dev) 4508 { 4509 u32 cap; 4510 4511 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4512 return false; 4513 4514 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap); 4515 return cap & PCI_EXP_DEVCAP_FLR; 4516 } 4517 EXPORT_SYMBOL_GPL(pcie_has_flr); 4518 4519 /** 4520 * pcie_flr - initiate a PCIe function level reset 4521 * @dev: device to reset 4522 * 4523 * Initiate a function level reset on @dev. The caller should ensure the 4524 * device supports FLR before calling this function, e.g. by using the 4525 * pcie_has_flr() helper. 4526 */ 4527 int pcie_flr(struct pci_dev *dev) 4528 { 4529 if (!pci_wait_for_pending_transaction(dev)) 4530 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n"); 4531 4532 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR); 4533 4534 if (dev->imm_ready) 4535 return 0; 4536 4537 /* 4538 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within 4539 * 100ms, but may silently discard requests while the FLR is in 4540 * progress. Wait 100ms before trying to access the device. 4541 */ 4542 msleep(100); 4543 4544 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS); 4545 } 4546 EXPORT_SYMBOL_GPL(pcie_flr); 4547 4548 static int pci_af_flr(struct pci_dev *dev, int probe) 4549 { 4550 int pos; 4551 u8 cap; 4552 4553 pos = pci_find_capability(dev, PCI_CAP_ID_AF); 4554 if (!pos) 4555 return -ENOTTY; 4556 4557 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4558 return -ENOTTY; 4559 4560 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap); 4561 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR)) 4562 return -ENOTTY; 4563 4564 if (probe) 4565 return 0; 4566 4567 /* 4568 * Wait for Transaction Pending bit to clear. A word-aligned test 4569 * is used, so we use the control offset rather than status and shift 4570 * the test bit to match. 4571 */ 4572 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL, 4573 PCI_AF_STATUS_TP << 8)) 4574 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n"); 4575 4576 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR); 4577 4578 if (dev->imm_ready) 4579 return 0; 4580 4581 /* 4582 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006, 4583 * updated 27 July 2006; a device must complete an FLR within 4584 * 100ms, but may silently discard requests while the FLR is in 4585 * progress. Wait 100ms before trying to access the device. 4586 */ 4587 msleep(100); 4588 4589 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS); 4590 } 4591 4592 /** 4593 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0. 4594 * @dev: Device to reset. 4595 * @probe: If set, only check if the device can be reset this way. 4596 * 4597 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is 4598 * unset, it will be reinitialized internally when going from PCI_D3hot to 4599 * PCI_D0. If that's the case and the device is not in a low-power state 4600 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset. 4601 * 4602 * NOTE: This causes the caller to sleep for twice the device power transition 4603 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms 4604 * by default (i.e. unless the @dev's d3_delay field has a different value). 4605 * Moreover, only devices in D0 can be reset by this function. 4606 */ 4607 static int pci_pm_reset(struct pci_dev *dev, int probe) 4608 { 4609 u16 csr; 4610 4611 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET) 4612 return -ENOTTY; 4613 4614 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr); 4615 if (csr & PCI_PM_CTRL_NO_SOFT_RESET) 4616 return -ENOTTY; 4617 4618 if (probe) 4619 return 0; 4620 4621 if (dev->current_state != PCI_D0) 4622 return -EINVAL; 4623 4624 csr &= ~PCI_PM_CTRL_STATE_MASK; 4625 csr |= PCI_D3hot; 4626 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4627 pci_dev_d3_sleep(dev); 4628 4629 csr &= ~PCI_PM_CTRL_STATE_MASK; 4630 csr |= PCI_D0; 4631 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4632 pci_dev_d3_sleep(dev); 4633 4634 return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS); 4635 } 4636 4637 /** 4638 * pcie_wait_for_link_delay - Wait until link is active or inactive 4639 * @pdev: Bridge device 4640 * @active: waiting for active or inactive? 4641 * @delay: Delay to wait after link has become active (in ms). Specify %0 4642 * for no delay. 4643 * 4644 * Use this to wait till link becomes active or inactive. 4645 */ 4646 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active, 4647 int delay) 4648 { 4649 int timeout = 1000; 4650 bool ret; 4651 u16 lnk_status; 4652 4653 /* 4654 * Some controllers might not implement link active reporting. In this 4655 * case, we wait for 1000 ms + any delay requested by the caller. 4656 */ 4657 if (!pdev->link_active_reporting) { 4658 msleep(timeout + delay); 4659 return true; 4660 } 4661 4662 /* 4663 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms, 4664 * after which we should expect an link active if the reset was 4665 * successful. If so, software must wait a minimum 100ms before sending 4666 * configuration requests to devices downstream this port. 4667 * 4668 * If the link fails to activate, either the device was physically 4669 * removed or the link is permanently failed. 4670 */ 4671 if (active) 4672 msleep(20); 4673 for (;;) { 4674 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status); 4675 ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA); 4676 if (ret == active) 4677 break; 4678 if (timeout <= 0) 4679 break; 4680 msleep(10); 4681 timeout -= 10; 4682 } 4683 if (active && ret && delay) 4684 msleep(delay); 4685 else if (ret != active) 4686 pci_info(pdev, "Data Link Layer Link Active not %s in 1000 msec\n", 4687 active ? "set" : "cleared"); 4688 return ret == active; 4689 } 4690 4691 /** 4692 * pcie_wait_for_link - Wait until link is active or inactive 4693 * @pdev: Bridge device 4694 * @active: waiting for active or inactive? 4695 * 4696 * Use this to wait till link becomes active or inactive. 4697 */ 4698 bool pcie_wait_for_link(struct pci_dev *pdev, bool active) 4699 { 4700 return pcie_wait_for_link_delay(pdev, active, 100); 4701 } 4702 4703 /* 4704 * Find maximum D3cold delay required by all the devices on the bus. The 4705 * spec says 100 ms, but firmware can lower it and we allow drivers to 4706 * increase it as well. 4707 * 4708 * Called with @pci_bus_sem locked for reading. 4709 */ 4710 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus) 4711 { 4712 const struct pci_dev *pdev; 4713 int min_delay = 100; 4714 int max_delay = 0; 4715 4716 list_for_each_entry(pdev, &bus->devices, bus_list) { 4717 if (pdev->d3cold_delay < min_delay) 4718 min_delay = pdev->d3cold_delay; 4719 if (pdev->d3cold_delay > max_delay) 4720 max_delay = pdev->d3cold_delay; 4721 } 4722 4723 return max(min_delay, max_delay); 4724 } 4725 4726 /** 4727 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible 4728 * @dev: PCI bridge 4729 * 4730 * Handle necessary delays before access to the devices on the secondary 4731 * side of the bridge are permitted after D3cold to D0 transition. 4732 * 4733 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For 4734 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section 4735 * 4.3.2. 4736 */ 4737 void pci_bridge_wait_for_secondary_bus(struct pci_dev *dev) 4738 { 4739 struct pci_dev *child; 4740 int delay; 4741 4742 if (pci_dev_is_disconnected(dev)) 4743 return; 4744 4745 if (!pci_is_bridge(dev) || !dev->bridge_d3) 4746 return; 4747 4748 down_read(&pci_bus_sem); 4749 4750 /* 4751 * We only deal with devices that are present currently on the bus. 4752 * For any hot-added devices the access delay is handled in pciehp 4753 * board_added(). In case of ACPI hotplug the firmware is expected 4754 * to configure the devices before OS is notified. 4755 */ 4756 if (!dev->subordinate || list_empty(&dev->subordinate->devices)) { 4757 up_read(&pci_bus_sem); 4758 return; 4759 } 4760 4761 /* Take d3cold_delay requirements into account */ 4762 delay = pci_bus_max_d3cold_delay(dev->subordinate); 4763 if (!delay) { 4764 up_read(&pci_bus_sem); 4765 return; 4766 } 4767 4768 child = list_first_entry(&dev->subordinate->devices, struct pci_dev, 4769 bus_list); 4770 up_read(&pci_bus_sem); 4771 4772 /* 4773 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before 4774 * accessing the device after reset (that is 1000 ms + 100 ms). In 4775 * practice this should not be needed because we don't do power 4776 * management for them (see pci_bridge_d3_possible()). 4777 */ 4778 if (!pci_is_pcie(dev)) { 4779 pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay); 4780 msleep(1000 + delay); 4781 return; 4782 } 4783 4784 /* 4785 * For PCIe downstream and root ports that do not support speeds 4786 * greater than 5 GT/s need to wait minimum 100 ms. For higher 4787 * speeds (gen3) we need to wait first for the data link layer to 4788 * become active. 4789 * 4790 * However, 100 ms is the minimum and the PCIe spec says the 4791 * software must allow at least 1s before it can determine that the 4792 * device that did not respond is a broken device. There is 4793 * evidence that 100 ms is not always enough, for example certain 4794 * Titan Ridge xHCI controller does not always respond to 4795 * configuration requests if we only wait for 100 ms (see 4796 * https://bugzilla.kernel.org/show_bug.cgi?id=203885). 4797 * 4798 * Therefore we wait for 100 ms and check for the device presence. 4799 * If it is still not present give it an additional 100 ms. 4800 */ 4801 if (!pcie_downstream_port(dev)) 4802 return; 4803 4804 /* 4805 * Per PCIe r5.0, sec 6.6.1, for downstream ports that support 4806 * speeds > 5 GT/s, we must wait for link training to complete 4807 * before the mandatory delay. 4808 * 4809 * We can only tell when link training completes via DLL Link 4810 * Active, which is required for downstream ports that support 4811 * speeds > 5 GT/s (sec 7.5.3.6). Unfortunately some common 4812 * devices do not implement Link Active reporting even when it's 4813 * required, so we'll check for that directly instead of checking 4814 * the supported link speed. We assume devices without Link Active 4815 * reporting can train in 100 ms regardless of speed. 4816 */ 4817 if (dev->link_active_reporting) { 4818 pci_dbg(dev, "waiting for link to train\n"); 4819 if (!pcie_wait_for_link_delay(dev, true, 0)) { 4820 /* Did not train, no need to wait any further */ 4821 return; 4822 } 4823 } 4824 pci_dbg(child, "waiting %d ms to become accessible\n", delay); 4825 msleep(delay); 4826 4827 if (!pci_device_is_present(child)) { 4828 pci_dbg(child, "waiting additional %d ms to become accessible\n", delay); 4829 msleep(delay); 4830 } 4831 } 4832 4833 void pci_reset_secondary_bus(struct pci_dev *dev) 4834 { 4835 u16 ctrl; 4836 4837 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl); 4838 ctrl |= PCI_BRIDGE_CTL_BUS_RESET; 4839 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 4840 4841 /* 4842 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double 4843 * this to 2ms to ensure that we meet the minimum requirement. 4844 */ 4845 msleep(2); 4846 4847 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET; 4848 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 4849 4850 /* 4851 * Trhfa for conventional PCI is 2^25 clock cycles. 4852 * Assuming a minimum 33MHz clock this results in a 1s 4853 * delay before we can consider subordinate devices to 4854 * be re-initialized. PCIe has some ways to shorten this, 4855 * but we don't make use of them yet. 4856 */ 4857 ssleep(1); 4858 } 4859 4860 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev) 4861 { 4862 pci_reset_secondary_bus(dev); 4863 } 4864 4865 /** 4866 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge. 4867 * @dev: Bridge device 4868 * 4869 * Use the bridge control register to assert reset on the secondary bus. 4870 * Devices on the secondary bus are left in power-on state. 4871 */ 4872 int pci_bridge_secondary_bus_reset(struct pci_dev *dev) 4873 { 4874 pcibios_reset_secondary_bus(dev); 4875 4876 return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS); 4877 } 4878 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset); 4879 4880 static int pci_parent_bus_reset(struct pci_dev *dev, int probe) 4881 { 4882 struct pci_dev *pdev; 4883 4884 if (pci_is_root_bus(dev->bus) || dev->subordinate || 4885 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 4886 return -ENOTTY; 4887 4888 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 4889 if (pdev != dev) 4890 return -ENOTTY; 4891 4892 if (probe) 4893 return 0; 4894 4895 return pci_bridge_secondary_bus_reset(dev->bus->self); 4896 } 4897 4898 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe) 4899 { 4900 int rc = -ENOTTY; 4901 4902 if (!hotplug || !try_module_get(hotplug->owner)) 4903 return rc; 4904 4905 if (hotplug->ops->reset_slot) 4906 rc = hotplug->ops->reset_slot(hotplug, probe); 4907 4908 module_put(hotplug->owner); 4909 4910 return rc; 4911 } 4912 4913 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe) 4914 { 4915 struct pci_dev *pdev; 4916 4917 if (dev->subordinate || !dev->slot || 4918 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 4919 return -ENOTTY; 4920 4921 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 4922 if (pdev != dev && pdev->slot == dev->slot) 4923 return -ENOTTY; 4924 4925 return pci_reset_hotplug_slot(dev->slot->hotplug, probe); 4926 } 4927 4928 static void pci_dev_lock(struct pci_dev *dev) 4929 { 4930 pci_cfg_access_lock(dev); 4931 /* block PM suspend, driver probe, etc. */ 4932 device_lock(&dev->dev); 4933 } 4934 4935 /* Return 1 on successful lock, 0 on contention */ 4936 static int pci_dev_trylock(struct pci_dev *dev) 4937 { 4938 if (pci_cfg_access_trylock(dev)) { 4939 if (device_trylock(&dev->dev)) 4940 return 1; 4941 pci_cfg_access_unlock(dev); 4942 } 4943 4944 return 0; 4945 } 4946 4947 static void pci_dev_unlock(struct pci_dev *dev) 4948 { 4949 device_unlock(&dev->dev); 4950 pci_cfg_access_unlock(dev); 4951 } 4952 4953 static void pci_dev_save_and_disable(struct pci_dev *dev) 4954 { 4955 const struct pci_error_handlers *err_handler = 4956 dev->driver ? dev->driver->err_handler : NULL; 4957 4958 /* 4959 * dev->driver->err_handler->reset_prepare() is protected against 4960 * races with ->remove() by the device lock, which must be held by 4961 * the caller. 4962 */ 4963 if (err_handler && err_handler->reset_prepare) 4964 err_handler->reset_prepare(dev); 4965 4966 /* 4967 * Wake-up device prior to save. PM registers default to D0 after 4968 * reset and a simple register restore doesn't reliably return 4969 * to a non-D0 state anyway. 4970 */ 4971 pci_set_power_state(dev, PCI_D0); 4972 4973 pci_save_state(dev); 4974 /* 4975 * Disable the device by clearing the Command register, except for 4976 * INTx-disable which is set. This not only disables MMIO and I/O port 4977 * BARs, but also prevents the device from being Bus Master, preventing 4978 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3 4979 * compliant devices, INTx-disable prevents legacy interrupts. 4980 */ 4981 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE); 4982 } 4983 4984 static void pci_dev_restore(struct pci_dev *dev) 4985 { 4986 const struct pci_error_handlers *err_handler = 4987 dev->driver ? dev->driver->err_handler : NULL; 4988 4989 pci_restore_state(dev); 4990 4991 /* 4992 * dev->driver->err_handler->reset_done() is protected against 4993 * races with ->remove() by the device lock, which must be held by 4994 * the caller. 4995 */ 4996 if (err_handler && err_handler->reset_done) 4997 err_handler->reset_done(dev); 4998 } 4999 5000 /** 5001 * __pci_reset_function_locked - reset a PCI device function while holding 5002 * the @dev mutex lock. 5003 * @dev: PCI device to reset 5004 * 5005 * Some devices allow an individual function to be reset without affecting 5006 * other functions in the same device. The PCI device must be responsive 5007 * to PCI config space in order to use this function. 5008 * 5009 * The device function is presumed to be unused and the caller is holding 5010 * the device mutex lock when this function is called. 5011 * 5012 * Resetting the device will make the contents of PCI configuration space 5013 * random, so any caller of this must be prepared to reinitialise the 5014 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 5015 * etc. 5016 * 5017 * Returns 0 if the device function was successfully reset or negative if the 5018 * device doesn't support resetting a single function. 5019 */ 5020 int __pci_reset_function_locked(struct pci_dev *dev) 5021 { 5022 int rc; 5023 5024 might_sleep(); 5025 5026 /* 5027 * A reset method returns -ENOTTY if it doesn't support this device 5028 * and we should try the next method. 5029 * 5030 * If it returns 0 (success), we're finished. If it returns any 5031 * other error, we're also finished: this indicates that further 5032 * reset mechanisms might be broken on the device. 5033 */ 5034 rc = pci_dev_specific_reset(dev, 0); 5035 if (rc != -ENOTTY) 5036 return rc; 5037 if (pcie_has_flr(dev)) { 5038 rc = pcie_flr(dev); 5039 if (rc != -ENOTTY) 5040 return rc; 5041 } 5042 rc = pci_af_flr(dev, 0); 5043 if (rc != -ENOTTY) 5044 return rc; 5045 rc = pci_pm_reset(dev, 0); 5046 if (rc != -ENOTTY) 5047 return rc; 5048 rc = pci_dev_reset_slot_function(dev, 0); 5049 if (rc != -ENOTTY) 5050 return rc; 5051 return pci_parent_bus_reset(dev, 0); 5052 } 5053 EXPORT_SYMBOL_GPL(__pci_reset_function_locked); 5054 5055 /** 5056 * pci_probe_reset_function - check whether the device can be safely reset 5057 * @dev: PCI device to reset 5058 * 5059 * Some devices allow an individual function to be reset without affecting 5060 * other functions in the same device. The PCI device must be responsive 5061 * to PCI config space in order to use this function. 5062 * 5063 * Returns 0 if the device function can be reset or negative if the 5064 * device doesn't support resetting a single function. 5065 */ 5066 int pci_probe_reset_function(struct pci_dev *dev) 5067 { 5068 int rc; 5069 5070 might_sleep(); 5071 5072 rc = pci_dev_specific_reset(dev, 1); 5073 if (rc != -ENOTTY) 5074 return rc; 5075 if (pcie_has_flr(dev)) 5076 return 0; 5077 rc = pci_af_flr(dev, 1); 5078 if (rc != -ENOTTY) 5079 return rc; 5080 rc = pci_pm_reset(dev, 1); 5081 if (rc != -ENOTTY) 5082 return rc; 5083 rc = pci_dev_reset_slot_function(dev, 1); 5084 if (rc != -ENOTTY) 5085 return rc; 5086 5087 return pci_parent_bus_reset(dev, 1); 5088 } 5089 5090 /** 5091 * pci_reset_function - quiesce and reset a PCI device function 5092 * @dev: PCI device to reset 5093 * 5094 * Some devices allow an individual function to be reset without affecting 5095 * other functions in the same device. The PCI device must be responsive 5096 * to PCI config space in order to use this function. 5097 * 5098 * This function does not just reset the PCI portion of a device, but 5099 * clears all the state associated with the device. This function differs 5100 * from __pci_reset_function_locked() in that it saves and restores device state 5101 * over the reset and takes the PCI device lock. 5102 * 5103 * Returns 0 if the device function was successfully reset or negative if the 5104 * device doesn't support resetting a single function. 5105 */ 5106 int pci_reset_function(struct pci_dev *dev) 5107 { 5108 int rc; 5109 5110 if (!dev->reset_fn) 5111 return -ENOTTY; 5112 5113 pci_dev_lock(dev); 5114 pci_dev_save_and_disable(dev); 5115 5116 rc = __pci_reset_function_locked(dev); 5117 5118 pci_dev_restore(dev); 5119 pci_dev_unlock(dev); 5120 5121 return rc; 5122 } 5123 EXPORT_SYMBOL_GPL(pci_reset_function); 5124 5125 /** 5126 * pci_reset_function_locked - quiesce and reset a PCI device function 5127 * @dev: PCI device to reset 5128 * 5129 * Some devices allow an individual function to be reset without affecting 5130 * other functions in the same device. The PCI device must be responsive 5131 * to PCI config space in order to use this function. 5132 * 5133 * This function does not just reset the PCI portion of a device, but 5134 * clears all the state associated with the device. This function differs 5135 * from __pci_reset_function_locked() in that it saves and restores device state 5136 * over the reset. It also differs from pci_reset_function() in that it 5137 * requires the PCI device lock to be held. 5138 * 5139 * Returns 0 if the device function was successfully reset or negative if the 5140 * device doesn't support resetting a single function. 5141 */ 5142 int pci_reset_function_locked(struct pci_dev *dev) 5143 { 5144 int rc; 5145 5146 if (!dev->reset_fn) 5147 return -ENOTTY; 5148 5149 pci_dev_save_and_disable(dev); 5150 5151 rc = __pci_reset_function_locked(dev); 5152 5153 pci_dev_restore(dev); 5154 5155 return rc; 5156 } 5157 EXPORT_SYMBOL_GPL(pci_reset_function_locked); 5158 5159 /** 5160 * pci_try_reset_function - quiesce and reset a PCI device function 5161 * @dev: PCI device to reset 5162 * 5163 * Same as above, except return -EAGAIN if unable to lock device. 5164 */ 5165 int pci_try_reset_function(struct pci_dev *dev) 5166 { 5167 int rc; 5168 5169 if (!dev->reset_fn) 5170 return -ENOTTY; 5171 5172 if (!pci_dev_trylock(dev)) 5173 return -EAGAIN; 5174 5175 pci_dev_save_and_disable(dev); 5176 rc = __pci_reset_function_locked(dev); 5177 pci_dev_restore(dev); 5178 pci_dev_unlock(dev); 5179 5180 return rc; 5181 } 5182 EXPORT_SYMBOL_GPL(pci_try_reset_function); 5183 5184 /* Do any devices on or below this bus prevent a bus reset? */ 5185 static bool pci_bus_resetable(struct pci_bus *bus) 5186 { 5187 struct pci_dev *dev; 5188 5189 5190 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 5191 return false; 5192 5193 list_for_each_entry(dev, &bus->devices, bus_list) { 5194 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 5195 (dev->subordinate && !pci_bus_resetable(dev->subordinate))) 5196 return false; 5197 } 5198 5199 return true; 5200 } 5201 5202 /* Lock devices from the top of the tree down */ 5203 static void pci_bus_lock(struct pci_bus *bus) 5204 { 5205 struct pci_dev *dev; 5206 5207 list_for_each_entry(dev, &bus->devices, bus_list) { 5208 pci_dev_lock(dev); 5209 if (dev->subordinate) 5210 pci_bus_lock(dev->subordinate); 5211 } 5212 } 5213 5214 /* Unlock devices from the bottom of the tree up */ 5215 static void pci_bus_unlock(struct pci_bus *bus) 5216 { 5217 struct pci_dev *dev; 5218 5219 list_for_each_entry(dev, &bus->devices, bus_list) { 5220 if (dev->subordinate) 5221 pci_bus_unlock(dev->subordinate); 5222 pci_dev_unlock(dev); 5223 } 5224 } 5225 5226 /* Return 1 on successful lock, 0 on contention */ 5227 static int pci_bus_trylock(struct pci_bus *bus) 5228 { 5229 struct pci_dev *dev; 5230 5231 list_for_each_entry(dev, &bus->devices, bus_list) { 5232 if (!pci_dev_trylock(dev)) 5233 goto unlock; 5234 if (dev->subordinate) { 5235 if (!pci_bus_trylock(dev->subordinate)) { 5236 pci_dev_unlock(dev); 5237 goto unlock; 5238 } 5239 } 5240 } 5241 return 1; 5242 5243 unlock: 5244 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) { 5245 if (dev->subordinate) 5246 pci_bus_unlock(dev->subordinate); 5247 pci_dev_unlock(dev); 5248 } 5249 return 0; 5250 } 5251 5252 /* Do any devices on or below this slot prevent a bus reset? */ 5253 static bool pci_slot_resetable(struct pci_slot *slot) 5254 { 5255 struct pci_dev *dev; 5256 5257 if (slot->bus->self && 5258 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 5259 return false; 5260 5261 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5262 if (!dev->slot || dev->slot != slot) 5263 continue; 5264 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 5265 (dev->subordinate && !pci_bus_resetable(dev->subordinate))) 5266 return false; 5267 } 5268 5269 return true; 5270 } 5271 5272 /* Lock devices from the top of the tree down */ 5273 static void pci_slot_lock(struct pci_slot *slot) 5274 { 5275 struct pci_dev *dev; 5276 5277 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5278 if (!dev->slot || dev->slot != slot) 5279 continue; 5280 pci_dev_lock(dev); 5281 if (dev->subordinate) 5282 pci_bus_lock(dev->subordinate); 5283 } 5284 } 5285 5286 /* Unlock devices from the bottom of the tree up */ 5287 static void pci_slot_unlock(struct pci_slot *slot) 5288 { 5289 struct pci_dev *dev; 5290 5291 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5292 if (!dev->slot || dev->slot != slot) 5293 continue; 5294 if (dev->subordinate) 5295 pci_bus_unlock(dev->subordinate); 5296 pci_dev_unlock(dev); 5297 } 5298 } 5299 5300 /* Return 1 on successful lock, 0 on contention */ 5301 static int pci_slot_trylock(struct pci_slot *slot) 5302 { 5303 struct pci_dev *dev; 5304 5305 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5306 if (!dev->slot || dev->slot != slot) 5307 continue; 5308 if (!pci_dev_trylock(dev)) 5309 goto unlock; 5310 if (dev->subordinate) { 5311 if (!pci_bus_trylock(dev->subordinate)) { 5312 pci_dev_unlock(dev); 5313 goto unlock; 5314 } 5315 } 5316 } 5317 return 1; 5318 5319 unlock: 5320 list_for_each_entry_continue_reverse(dev, 5321 &slot->bus->devices, bus_list) { 5322 if (!dev->slot || dev->slot != slot) 5323 continue; 5324 if (dev->subordinate) 5325 pci_bus_unlock(dev->subordinate); 5326 pci_dev_unlock(dev); 5327 } 5328 return 0; 5329 } 5330 5331 /* 5332 * Save and disable devices from the top of the tree down while holding 5333 * the @dev mutex lock for the entire tree. 5334 */ 5335 static void pci_bus_save_and_disable_locked(struct pci_bus *bus) 5336 { 5337 struct pci_dev *dev; 5338 5339 list_for_each_entry(dev, &bus->devices, bus_list) { 5340 pci_dev_save_and_disable(dev); 5341 if (dev->subordinate) 5342 pci_bus_save_and_disable_locked(dev->subordinate); 5343 } 5344 } 5345 5346 /* 5347 * Restore devices from top of the tree down while holding @dev mutex lock 5348 * for the entire tree. Parent bridges need to be restored before we can 5349 * get to subordinate devices. 5350 */ 5351 static void pci_bus_restore_locked(struct pci_bus *bus) 5352 { 5353 struct pci_dev *dev; 5354 5355 list_for_each_entry(dev, &bus->devices, bus_list) { 5356 pci_dev_restore(dev); 5357 if (dev->subordinate) 5358 pci_bus_restore_locked(dev->subordinate); 5359 } 5360 } 5361 5362 /* 5363 * Save and disable devices from the top of the tree down while holding 5364 * the @dev mutex lock for the entire tree. 5365 */ 5366 static void pci_slot_save_and_disable_locked(struct pci_slot *slot) 5367 { 5368 struct pci_dev *dev; 5369 5370 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5371 if (!dev->slot || dev->slot != slot) 5372 continue; 5373 pci_dev_save_and_disable(dev); 5374 if (dev->subordinate) 5375 pci_bus_save_and_disable_locked(dev->subordinate); 5376 } 5377 } 5378 5379 /* 5380 * Restore devices from top of the tree down while holding @dev mutex lock 5381 * for the entire tree. Parent bridges need to be restored before we can 5382 * get to subordinate devices. 5383 */ 5384 static void pci_slot_restore_locked(struct pci_slot *slot) 5385 { 5386 struct pci_dev *dev; 5387 5388 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5389 if (!dev->slot || dev->slot != slot) 5390 continue; 5391 pci_dev_restore(dev); 5392 if (dev->subordinate) 5393 pci_bus_restore_locked(dev->subordinate); 5394 } 5395 } 5396 5397 static int pci_slot_reset(struct pci_slot *slot, int probe) 5398 { 5399 int rc; 5400 5401 if (!slot || !pci_slot_resetable(slot)) 5402 return -ENOTTY; 5403 5404 if (!probe) 5405 pci_slot_lock(slot); 5406 5407 might_sleep(); 5408 5409 rc = pci_reset_hotplug_slot(slot->hotplug, probe); 5410 5411 if (!probe) 5412 pci_slot_unlock(slot); 5413 5414 return rc; 5415 } 5416 5417 /** 5418 * pci_probe_reset_slot - probe whether a PCI slot can be reset 5419 * @slot: PCI slot to probe 5420 * 5421 * Return 0 if slot can be reset, negative if a slot reset is not supported. 5422 */ 5423 int pci_probe_reset_slot(struct pci_slot *slot) 5424 { 5425 return pci_slot_reset(slot, 1); 5426 } 5427 EXPORT_SYMBOL_GPL(pci_probe_reset_slot); 5428 5429 /** 5430 * __pci_reset_slot - Try to reset a PCI slot 5431 * @slot: PCI slot to reset 5432 * 5433 * A PCI bus may host multiple slots, each slot may support a reset mechanism 5434 * independent of other slots. For instance, some slots may support slot power 5435 * control. In the case of a 1:1 bus to slot architecture, this function may 5436 * wrap the bus reset to avoid spurious slot related events such as hotplug. 5437 * Generally a slot reset should be attempted before a bus reset. All of the 5438 * function of the slot and any subordinate buses behind the slot are reset 5439 * through this function. PCI config space of all devices in the slot and 5440 * behind the slot is saved before and restored after reset. 5441 * 5442 * Same as above except return -EAGAIN if the slot cannot be locked 5443 */ 5444 static int __pci_reset_slot(struct pci_slot *slot) 5445 { 5446 int rc; 5447 5448 rc = pci_slot_reset(slot, 1); 5449 if (rc) 5450 return rc; 5451 5452 if (pci_slot_trylock(slot)) { 5453 pci_slot_save_and_disable_locked(slot); 5454 might_sleep(); 5455 rc = pci_reset_hotplug_slot(slot->hotplug, 0); 5456 pci_slot_restore_locked(slot); 5457 pci_slot_unlock(slot); 5458 } else 5459 rc = -EAGAIN; 5460 5461 return rc; 5462 } 5463 5464 static int pci_bus_reset(struct pci_bus *bus, int probe) 5465 { 5466 int ret; 5467 5468 if (!bus->self || !pci_bus_resetable(bus)) 5469 return -ENOTTY; 5470 5471 if (probe) 5472 return 0; 5473 5474 pci_bus_lock(bus); 5475 5476 might_sleep(); 5477 5478 ret = pci_bridge_secondary_bus_reset(bus->self); 5479 5480 pci_bus_unlock(bus); 5481 5482 return ret; 5483 } 5484 5485 /** 5486 * pci_bus_error_reset - reset the bridge's subordinate bus 5487 * @bridge: The parent device that connects to the bus to reset 5488 * 5489 * This function will first try to reset the slots on this bus if the method is 5490 * available. If slot reset fails or is not available, this will fall back to a 5491 * secondary bus reset. 5492 */ 5493 int pci_bus_error_reset(struct pci_dev *bridge) 5494 { 5495 struct pci_bus *bus = bridge->subordinate; 5496 struct pci_slot *slot; 5497 5498 if (!bus) 5499 return -ENOTTY; 5500 5501 mutex_lock(&pci_slot_mutex); 5502 if (list_empty(&bus->slots)) 5503 goto bus_reset; 5504 5505 list_for_each_entry(slot, &bus->slots, list) 5506 if (pci_probe_reset_slot(slot)) 5507 goto bus_reset; 5508 5509 list_for_each_entry(slot, &bus->slots, list) 5510 if (pci_slot_reset(slot, 0)) 5511 goto bus_reset; 5512 5513 mutex_unlock(&pci_slot_mutex); 5514 return 0; 5515 bus_reset: 5516 mutex_unlock(&pci_slot_mutex); 5517 return pci_bus_reset(bridge->subordinate, 0); 5518 } 5519 5520 /** 5521 * pci_probe_reset_bus - probe whether a PCI bus can be reset 5522 * @bus: PCI bus to probe 5523 * 5524 * Return 0 if bus can be reset, negative if a bus reset is not supported. 5525 */ 5526 int pci_probe_reset_bus(struct pci_bus *bus) 5527 { 5528 return pci_bus_reset(bus, 1); 5529 } 5530 EXPORT_SYMBOL_GPL(pci_probe_reset_bus); 5531 5532 /** 5533 * __pci_reset_bus - Try to reset a PCI bus 5534 * @bus: top level PCI bus to reset 5535 * 5536 * Same as above except return -EAGAIN if the bus cannot be locked 5537 */ 5538 static int __pci_reset_bus(struct pci_bus *bus) 5539 { 5540 int rc; 5541 5542 rc = pci_bus_reset(bus, 1); 5543 if (rc) 5544 return rc; 5545 5546 if (pci_bus_trylock(bus)) { 5547 pci_bus_save_and_disable_locked(bus); 5548 might_sleep(); 5549 rc = pci_bridge_secondary_bus_reset(bus->self); 5550 pci_bus_restore_locked(bus); 5551 pci_bus_unlock(bus); 5552 } else 5553 rc = -EAGAIN; 5554 5555 return rc; 5556 } 5557 5558 /** 5559 * pci_reset_bus - Try to reset a PCI bus 5560 * @pdev: top level PCI device to reset via slot/bus 5561 * 5562 * Same as above except return -EAGAIN if the bus cannot be locked 5563 */ 5564 int pci_reset_bus(struct pci_dev *pdev) 5565 { 5566 return (!pci_probe_reset_slot(pdev->slot)) ? 5567 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus); 5568 } 5569 EXPORT_SYMBOL_GPL(pci_reset_bus); 5570 5571 /** 5572 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count 5573 * @dev: PCI device to query 5574 * 5575 * Returns mmrbc: maximum designed memory read count in bytes or 5576 * appropriate error value. 5577 */ 5578 int pcix_get_max_mmrbc(struct pci_dev *dev) 5579 { 5580 int cap; 5581 u32 stat; 5582 5583 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5584 if (!cap) 5585 return -EINVAL; 5586 5587 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 5588 return -EINVAL; 5589 5590 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21); 5591 } 5592 EXPORT_SYMBOL(pcix_get_max_mmrbc); 5593 5594 /** 5595 * pcix_get_mmrbc - get PCI-X maximum memory read byte count 5596 * @dev: PCI device to query 5597 * 5598 * Returns mmrbc: maximum memory read count in bytes or appropriate error 5599 * value. 5600 */ 5601 int pcix_get_mmrbc(struct pci_dev *dev) 5602 { 5603 int cap; 5604 u16 cmd; 5605 5606 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5607 if (!cap) 5608 return -EINVAL; 5609 5610 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 5611 return -EINVAL; 5612 5613 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2); 5614 } 5615 EXPORT_SYMBOL(pcix_get_mmrbc); 5616 5617 /** 5618 * pcix_set_mmrbc - set PCI-X maximum memory read byte count 5619 * @dev: PCI device to query 5620 * @mmrbc: maximum memory read count in bytes 5621 * valid values are 512, 1024, 2048, 4096 5622 * 5623 * If possible sets maximum memory read byte count, some bridges have errata 5624 * that prevent this. 5625 */ 5626 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc) 5627 { 5628 int cap; 5629 u32 stat, v, o; 5630 u16 cmd; 5631 5632 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc)) 5633 return -EINVAL; 5634 5635 v = ffs(mmrbc) - 10; 5636 5637 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5638 if (!cap) 5639 return -EINVAL; 5640 5641 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 5642 return -EINVAL; 5643 5644 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21) 5645 return -E2BIG; 5646 5647 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 5648 return -EINVAL; 5649 5650 o = (cmd & PCI_X_CMD_MAX_READ) >> 2; 5651 if (o != v) { 5652 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC)) 5653 return -EIO; 5654 5655 cmd &= ~PCI_X_CMD_MAX_READ; 5656 cmd |= v << 2; 5657 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd)) 5658 return -EIO; 5659 } 5660 return 0; 5661 } 5662 EXPORT_SYMBOL(pcix_set_mmrbc); 5663 5664 /** 5665 * pcie_get_readrq - get PCI Express read request size 5666 * @dev: PCI device to query 5667 * 5668 * Returns maximum memory read request in bytes or appropriate error value. 5669 */ 5670 int pcie_get_readrq(struct pci_dev *dev) 5671 { 5672 u16 ctl; 5673 5674 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 5675 5676 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12); 5677 } 5678 EXPORT_SYMBOL(pcie_get_readrq); 5679 5680 /** 5681 * pcie_set_readrq - set PCI Express maximum memory read request 5682 * @dev: PCI device to query 5683 * @rq: maximum memory read count in bytes 5684 * valid values are 128, 256, 512, 1024, 2048, 4096 5685 * 5686 * If possible sets maximum memory read request in bytes 5687 */ 5688 int pcie_set_readrq(struct pci_dev *dev, int rq) 5689 { 5690 u16 v; 5691 5692 if (rq < 128 || rq > 4096 || !is_power_of_2(rq)) 5693 return -EINVAL; 5694 5695 /* 5696 * If using the "performance" PCIe config, we clamp the read rq 5697 * size to the max packet size to keep the host bridge from 5698 * generating requests larger than we can cope with. 5699 */ 5700 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) { 5701 int mps = pcie_get_mps(dev); 5702 5703 if (mps < rq) 5704 rq = mps; 5705 } 5706 5707 v = (ffs(rq) - 8) << 12; 5708 5709 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 5710 PCI_EXP_DEVCTL_READRQ, v); 5711 } 5712 EXPORT_SYMBOL(pcie_set_readrq); 5713 5714 /** 5715 * pcie_get_mps - get PCI Express maximum payload size 5716 * @dev: PCI device to query 5717 * 5718 * Returns maximum payload size in bytes 5719 */ 5720 int pcie_get_mps(struct pci_dev *dev) 5721 { 5722 u16 ctl; 5723 5724 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 5725 5726 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5); 5727 } 5728 EXPORT_SYMBOL(pcie_get_mps); 5729 5730 /** 5731 * pcie_set_mps - set PCI Express maximum payload size 5732 * @dev: PCI device to query 5733 * @mps: maximum payload size in bytes 5734 * valid values are 128, 256, 512, 1024, 2048, 4096 5735 * 5736 * If possible sets maximum payload size 5737 */ 5738 int pcie_set_mps(struct pci_dev *dev, int mps) 5739 { 5740 u16 v; 5741 5742 if (mps < 128 || mps > 4096 || !is_power_of_2(mps)) 5743 return -EINVAL; 5744 5745 v = ffs(mps) - 8; 5746 if (v > dev->pcie_mpss) 5747 return -EINVAL; 5748 v <<= 5; 5749 5750 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 5751 PCI_EXP_DEVCTL_PAYLOAD, v); 5752 } 5753 EXPORT_SYMBOL(pcie_set_mps); 5754 5755 /** 5756 * pcie_bandwidth_available - determine minimum link settings of a PCIe 5757 * device and its bandwidth limitation 5758 * @dev: PCI device to query 5759 * @limiting_dev: storage for device causing the bandwidth limitation 5760 * @speed: storage for speed of limiting device 5761 * @width: storage for width of limiting device 5762 * 5763 * Walk up the PCI device chain and find the point where the minimum 5764 * bandwidth is available. Return the bandwidth available there and (if 5765 * limiting_dev, speed, and width pointers are supplied) information about 5766 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of 5767 * raw bandwidth. 5768 */ 5769 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev, 5770 enum pci_bus_speed *speed, 5771 enum pcie_link_width *width) 5772 { 5773 u16 lnksta; 5774 enum pci_bus_speed next_speed; 5775 enum pcie_link_width next_width; 5776 u32 bw, next_bw; 5777 5778 if (speed) 5779 *speed = PCI_SPEED_UNKNOWN; 5780 if (width) 5781 *width = PCIE_LNK_WIDTH_UNKNOWN; 5782 5783 bw = 0; 5784 5785 while (dev) { 5786 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta); 5787 5788 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS]; 5789 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >> 5790 PCI_EXP_LNKSTA_NLW_SHIFT; 5791 5792 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed); 5793 5794 /* Check if current device limits the total bandwidth */ 5795 if (!bw || next_bw <= bw) { 5796 bw = next_bw; 5797 5798 if (limiting_dev) 5799 *limiting_dev = dev; 5800 if (speed) 5801 *speed = next_speed; 5802 if (width) 5803 *width = next_width; 5804 } 5805 5806 dev = pci_upstream_bridge(dev); 5807 } 5808 5809 return bw; 5810 } 5811 EXPORT_SYMBOL(pcie_bandwidth_available); 5812 5813 /** 5814 * pcie_get_speed_cap - query for the PCI device's link speed capability 5815 * @dev: PCI device to query 5816 * 5817 * Query the PCI device speed capability. Return the maximum link speed 5818 * supported by the device. 5819 */ 5820 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev) 5821 { 5822 u32 lnkcap2, lnkcap; 5823 5824 /* 5825 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The 5826 * implementation note there recommends using the Supported Link 5827 * Speeds Vector in Link Capabilities 2 when supported. 5828 * 5829 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software 5830 * should use the Supported Link Speeds field in Link Capabilities, 5831 * where only 2.5 GT/s and 5.0 GT/s speeds were defined. 5832 */ 5833 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2); 5834 5835 /* PCIe r3.0-compliant */ 5836 if (lnkcap2) 5837 return PCIE_LNKCAP2_SLS2SPEED(lnkcap2); 5838 5839 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 5840 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB) 5841 return PCIE_SPEED_5_0GT; 5842 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB) 5843 return PCIE_SPEED_2_5GT; 5844 5845 return PCI_SPEED_UNKNOWN; 5846 } 5847 EXPORT_SYMBOL(pcie_get_speed_cap); 5848 5849 /** 5850 * pcie_get_width_cap - query for the PCI device's link width capability 5851 * @dev: PCI device to query 5852 * 5853 * Query the PCI device width capability. Return the maximum link width 5854 * supported by the device. 5855 */ 5856 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev) 5857 { 5858 u32 lnkcap; 5859 5860 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 5861 if (lnkcap) 5862 return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4; 5863 5864 return PCIE_LNK_WIDTH_UNKNOWN; 5865 } 5866 EXPORT_SYMBOL(pcie_get_width_cap); 5867 5868 /** 5869 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability 5870 * @dev: PCI device 5871 * @speed: storage for link speed 5872 * @width: storage for link width 5873 * 5874 * Calculate a PCI device's link bandwidth by querying for its link speed 5875 * and width, multiplying them, and applying encoding overhead. The result 5876 * is in Mb/s, i.e., megabits/second of raw bandwidth. 5877 */ 5878 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed, 5879 enum pcie_link_width *width) 5880 { 5881 *speed = pcie_get_speed_cap(dev); 5882 *width = pcie_get_width_cap(dev); 5883 5884 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN) 5885 return 0; 5886 5887 return *width * PCIE_SPEED2MBS_ENC(*speed); 5888 } 5889 5890 /** 5891 * __pcie_print_link_status - Report the PCI device's link speed and width 5892 * @dev: PCI device to query 5893 * @verbose: Print info even when enough bandwidth is available 5894 * 5895 * If the available bandwidth at the device is less than the device is 5896 * capable of, report the device's maximum possible bandwidth and the 5897 * upstream link that limits its performance. If @verbose, always print 5898 * the available bandwidth, even if the device isn't constrained. 5899 */ 5900 void __pcie_print_link_status(struct pci_dev *dev, bool verbose) 5901 { 5902 enum pcie_link_width width, width_cap; 5903 enum pci_bus_speed speed, speed_cap; 5904 struct pci_dev *limiting_dev = NULL; 5905 u32 bw_avail, bw_cap; 5906 5907 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap); 5908 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width); 5909 5910 if (bw_avail >= bw_cap && verbose) 5911 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n", 5912 bw_cap / 1000, bw_cap % 1000, 5913 pci_speed_string(speed_cap), width_cap); 5914 else if (bw_avail < bw_cap) 5915 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n", 5916 bw_avail / 1000, bw_avail % 1000, 5917 pci_speed_string(speed), width, 5918 limiting_dev ? pci_name(limiting_dev) : "<unknown>", 5919 bw_cap / 1000, bw_cap % 1000, 5920 pci_speed_string(speed_cap), width_cap); 5921 } 5922 5923 /** 5924 * pcie_print_link_status - Report the PCI device's link speed and width 5925 * @dev: PCI device to query 5926 * 5927 * Report the available bandwidth at the device. 5928 */ 5929 void pcie_print_link_status(struct pci_dev *dev) 5930 { 5931 __pcie_print_link_status(dev, true); 5932 } 5933 EXPORT_SYMBOL(pcie_print_link_status); 5934 5935 /** 5936 * pci_select_bars - Make BAR mask from the type of resource 5937 * @dev: the PCI device for which BAR mask is made 5938 * @flags: resource type mask to be selected 5939 * 5940 * This helper routine makes bar mask from the type of resource. 5941 */ 5942 int pci_select_bars(struct pci_dev *dev, unsigned long flags) 5943 { 5944 int i, bars = 0; 5945 for (i = 0; i < PCI_NUM_RESOURCES; i++) 5946 if (pci_resource_flags(dev, i) & flags) 5947 bars |= (1 << i); 5948 return bars; 5949 } 5950 EXPORT_SYMBOL(pci_select_bars); 5951 5952 /* Some architectures require additional programming to enable VGA */ 5953 static arch_set_vga_state_t arch_set_vga_state; 5954 5955 void __init pci_register_set_vga_state(arch_set_vga_state_t func) 5956 { 5957 arch_set_vga_state = func; /* NULL disables */ 5958 } 5959 5960 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode, 5961 unsigned int command_bits, u32 flags) 5962 { 5963 if (arch_set_vga_state) 5964 return arch_set_vga_state(dev, decode, command_bits, 5965 flags); 5966 return 0; 5967 } 5968 5969 /** 5970 * pci_set_vga_state - set VGA decode state on device and parents if requested 5971 * @dev: the PCI device 5972 * @decode: true = enable decoding, false = disable decoding 5973 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY 5974 * @flags: traverse ancestors and change bridges 5975 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE 5976 */ 5977 int pci_set_vga_state(struct pci_dev *dev, bool decode, 5978 unsigned int command_bits, u32 flags) 5979 { 5980 struct pci_bus *bus; 5981 struct pci_dev *bridge; 5982 u16 cmd; 5983 int rc; 5984 5985 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY))); 5986 5987 /* ARCH specific VGA enables */ 5988 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags); 5989 if (rc) 5990 return rc; 5991 5992 if (flags & PCI_VGA_STATE_CHANGE_DECODES) { 5993 pci_read_config_word(dev, PCI_COMMAND, &cmd); 5994 if (decode == true) 5995 cmd |= command_bits; 5996 else 5997 cmd &= ~command_bits; 5998 pci_write_config_word(dev, PCI_COMMAND, cmd); 5999 } 6000 6001 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE)) 6002 return 0; 6003 6004 bus = dev->bus; 6005 while (bus) { 6006 bridge = bus->self; 6007 if (bridge) { 6008 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL, 6009 &cmd); 6010 if (decode == true) 6011 cmd |= PCI_BRIDGE_CTL_VGA; 6012 else 6013 cmd &= ~PCI_BRIDGE_CTL_VGA; 6014 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL, 6015 cmd); 6016 } 6017 bus = bus->parent; 6018 } 6019 return 0; 6020 } 6021 6022 #ifdef CONFIG_ACPI 6023 bool pci_pr3_present(struct pci_dev *pdev) 6024 { 6025 struct acpi_device *adev; 6026 6027 if (acpi_disabled) 6028 return false; 6029 6030 adev = ACPI_COMPANION(&pdev->dev); 6031 if (!adev) 6032 return false; 6033 6034 return adev->power.flags.power_resources && 6035 acpi_has_method(adev->handle, "_PR3"); 6036 } 6037 EXPORT_SYMBOL_GPL(pci_pr3_present); 6038 #endif 6039 6040 /** 6041 * pci_add_dma_alias - Add a DMA devfn alias for a device 6042 * @dev: the PCI device for which alias is added 6043 * @devfn_from: alias slot and function 6044 * @nr_devfns: number of subsequent devfns to alias 6045 * 6046 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask 6047 * which is used to program permissible bus-devfn source addresses for DMA 6048 * requests in an IOMMU. These aliases factor into IOMMU group creation 6049 * and are useful for devices generating DMA requests beyond or different 6050 * from their logical bus-devfn. Examples include device quirks where the 6051 * device simply uses the wrong devfn, as well as non-transparent bridges 6052 * where the alias may be a proxy for devices in another domain. 6053 * 6054 * IOMMU group creation is performed during device discovery or addition, 6055 * prior to any potential DMA mapping and therefore prior to driver probing 6056 * (especially for userspace assigned devices where IOMMU group definition 6057 * cannot be left as a userspace activity). DMA aliases should therefore 6058 * be configured via quirks, such as the PCI fixup header quirk. 6059 */ 6060 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from, unsigned nr_devfns) 6061 { 6062 int devfn_to; 6063 6064 nr_devfns = min(nr_devfns, (unsigned) MAX_NR_DEVFNS - devfn_from); 6065 devfn_to = devfn_from + nr_devfns - 1; 6066 6067 if (!dev->dma_alias_mask) 6068 dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL); 6069 if (!dev->dma_alias_mask) { 6070 pci_warn(dev, "Unable to allocate DMA alias mask\n"); 6071 return; 6072 } 6073 6074 bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns); 6075 6076 if (nr_devfns == 1) 6077 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n", 6078 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from)); 6079 else if (nr_devfns > 1) 6080 pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n", 6081 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from), 6082 PCI_SLOT(devfn_to), PCI_FUNC(devfn_to)); 6083 } 6084 6085 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2) 6086 { 6087 return (dev1->dma_alias_mask && 6088 test_bit(dev2->devfn, dev1->dma_alias_mask)) || 6089 (dev2->dma_alias_mask && 6090 test_bit(dev1->devfn, dev2->dma_alias_mask)) || 6091 pci_real_dma_dev(dev1) == dev2 || 6092 pci_real_dma_dev(dev2) == dev1; 6093 } 6094 6095 bool pci_device_is_present(struct pci_dev *pdev) 6096 { 6097 u32 v; 6098 6099 if (pci_dev_is_disconnected(pdev)) 6100 return false; 6101 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0); 6102 } 6103 EXPORT_SYMBOL_GPL(pci_device_is_present); 6104 6105 void pci_ignore_hotplug(struct pci_dev *dev) 6106 { 6107 struct pci_dev *bridge = dev->bus->self; 6108 6109 dev->ignore_hotplug = 1; 6110 /* Propagate the "ignore hotplug" setting to the parent bridge. */ 6111 if (bridge) 6112 bridge->ignore_hotplug = 1; 6113 } 6114 EXPORT_SYMBOL_GPL(pci_ignore_hotplug); 6115 6116 /** 6117 * pci_real_dma_dev - Get PCI DMA device for PCI device 6118 * @dev: the PCI device that may have a PCI DMA alias 6119 * 6120 * Permits the platform to provide architecture-specific functionality to 6121 * devices needing to alias DMA to another PCI device on another PCI bus. If 6122 * the PCI device is on the same bus, it is recommended to use 6123 * pci_add_dma_alias(). This is the default implementation. Architecture 6124 * implementations can override this. 6125 */ 6126 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev) 6127 { 6128 return dev; 6129 } 6130 6131 resource_size_t __weak pcibios_default_alignment(void) 6132 { 6133 return 0; 6134 } 6135 6136 /* 6137 * Arches that don't want to expose struct resource to userland as-is in 6138 * sysfs and /proc can implement their own pci_resource_to_user(). 6139 */ 6140 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar, 6141 const struct resource *rsrc, 6142 resource_size_t *start, resource_size_t *end) 6143 { 6144 *start = rsrc->start; 6145 *end = rsrc->end; 6146 } 6147 6148 static char *resource_alignment_param; 6149 static DEFINE_SPINLOCK(resource_alignment_lock); 6150 6151 /** 6152 * pci_specified_resource_alignment - get resource alignment specified by user. 6153 * @dev: the PCI device to get 6154 * @resize: whether or not to change resources' size when reassigning alignment 6155 * 6156 * RETURNS: Resource alignment if it is specified. 6157 * Zero if it is not specified. 6158 */ 6159 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev, 6160 bool *resize) 6161 { 6162 int align_order, count; 6163 resource_size_t align = pcibios_default_alignment(); 6164 const char *p; 6165 int ret; 6166 6167 spin_lock(&resource_alignment_lock); 6168 p = resource_alignment_param; 6169 if (!p || !*p) 6170 goto out; 6171 if (pci_has_flag(PCI_PROBE_ONLY)) { 6172 align = 0; 6173 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n"); 6174 goto out; 6175 } 6176 6177 while (*p) { 6178 count = 0; 6179 if (sscanf(p, "%d%n", &align_order, &count) == 1 && 6180 p[count] == '@') { 6181 p += count + 1; 6182 } else { 6183 align_order = -1; 6184 } 6185 6186 ret = pci_dev_str_match(dev, p, &p); 6187 if (ret == 1) { 6188 *resize = true; 6189 if (align_order == -1) 6190 align = PAGE_SIZE; 6191 else 6192 align = 1 << align_order; 6193 break; 6194 } else if (ret < 0) { 6195 pr_err("PCI: Can't parse resource_alignment parameter: %s\n", 6196 p); 6197 break; 6198 } 6199 6200 if (*p != ';' && *p != ',') { 6201 /* End of param or invalid format */ 6202 break; 6203 } 6204 p++; 6205 } 6206 out: 6207 spin_unlock(&resource_alignment_lock); 6208 return align; 6209 } 6210 6211 static void pci_request_resource_alignment(struct pci_dev *dev, int bar, 6212 resource_size_t align, bool resize) 6213 { 6214 struct resource *r = &dev->resource[bar]; 6215 resource_size_t size; 6216 6217 if (!(r->flags & IORESOURCE_MEM)) 6218 return; 6219 6220 if (r->flags & IORESOURCE_PCI_FIXED) { 6221 pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n", 6222 bar, r, (unsigned long long)align); 6223 return; 6224 } 6225 6226 size = resource_size(r); 6227 if (size >= align) 6228 return; 6229 6230 /* 6231 * Increase the alignment of the resource. There are two ways we 6232 * can do this: 6233 * 6234 * 1) Increase the size of the resource. BARs are aligned on their 6235 * size, so when we reallocate space for this resource, we'll 6236 * allocate it with the larger alignment. This also prevents 6237 * assignment of any other BARs inside the alignment region, so 6238 * if we're requesting page alignment, this means no other BARs 6239 * will share the page. 6240 * 6241 * The disadvantage is that this makes the resource larger than 6242 * the hardware BAR, which may break drivers that compute things 6243 * based on the resource size, e.g., to find registers at a 6244 * fixed offset before the end of the BAR. 6245 * 6246 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and 6247 * set r->start to the desired alignment. By itself this 6248 * doesn't prevent other BARs being put inside the alignment 6249 * region, but if we realign *every* resource of every device in 6250 * the system, none of them will share an alignment region. 6251 * 6252 * When the user has requested alignment for only some devices via 6253 * the "pci=resource_alignment" argument, "resize" is true and we 6254 * use the first method. Otherwise we assume we're aligning all 6255 * devices and we use the second. 6256 */ 6257 6258 pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n", 6259 bar, r, (unsigned long long)align); 6260 6261 if (resize) { 6262 r->start = 0; 6263 r->end = align - 1; 6264 } else { 6265 r->flags &= ~IORESOURCE_SIZEALIGN; 6266 r->flags |= IORESOURCE_STARTALIGN; 6267 r->start = align; 6268 r->end = r->start + size - 1; 6269 } 6270 r->flags |= IORESOURCE_UNSET; 6271 } 6272 6273 /* 6274 * This function disables memory decoding and releases memory resources 6275 * of the device specified by kernel's boot parameter 'pci=resource_alignment='. 6276 * It also rounds up size to specified alignment. 6277 * Later on, the kernel will assign page-aligned memory resource back 6278 * to the device. 6279 */ 6280 void pci_reassigndev_resource_alignment(struct pci_dev *dev) 6281 { 6282 int i; 6283 struct resource *r; 6284 resource_size_t align; 6285 u16 command; 6286 bool resize = false; 6287 6288 /* 6289 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec 6290 * 3.4.1.11. Their resources are allocated from the space 6291 * described by the VF BARx register in the PF's SR-IOV capability. 6292 * We can't influence their alignment here. 6293 */ 6294 if (dev->is_virtfn) 6295 return; 6296 6297 /* check if specified PCI is target device to reassign */ 6298 align = pci_specified_resource_alignment(dev, &resize); 6299 if (!align) 6300 return; 6301 6302 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL && 6303 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) { 6304 pci_warn(dev, "Can't reassign resources to host bridge\n"); 6305 return; 6306 } 6307 6308 pci_read_config_word(dev, PCI_COMMAND, &command); 6309 command &= ~PCI_COMMAND_MEMORY; 6310 pci_write_config_word(dev, PCI_COMMAND, command); 6311 6312 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 6313 pci_request_resource_alignment(dev, i, align, resize); 6314 6315 /* 6316 * Need to disable bridge's resource window, 6317 * to enable the kernel to reassign new resource 6318 * window later on. 6319 */ 6320 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 6321 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) { 6322 r = &dev->resource[i]; 6323 if (!(r->flags & IORESOURCE_MEM)) 6324 continue; 6325 r->flags |= IORESOURCE_UNSET; 6326 r->end = resource_size(r) - 1; 6327 r->start = 0; 6328 } 6329 pci_disable_bridge_window(dev); 6330 } 6331 } 6332 6333 static ssize_t resource_alignment_show(struct bus_type *bus, char *buf) 6334 { 6335 size_t count = 0; 6336 6337 spin_lock(&resource_alignment_lock); 6338 if (resource_alignment_param) 6339 count = snprintf(buf, PAGE_SIZE, "%s", resource_alignment_param); 6340 spin_unlock(&resource_alignment_lock); 6341 6342 /* 6343 * When set by the command line, resource_alignment_param will not 6344 * have a trailing line feed, which is ugly. So conditionally add 6345 * it here. 6346 */ 6347 if (count >= 2 && buf[count - 2] != '\n' && count < PAGE_SIZE - 1) { 6348 buf[count - 1] = '\n'; 6349 buf[count++] = 0; 6350 } 6351 6352 return count; 6353 } 6354 6355 static ssize_t resource_alignment_store(struct bus_type *bus, 6356 const char *buf, size_t count) 6357 { 6358 char *param = kstrndup(buf, count, GFP_KERNEL); 6359 6360 if (!param) 6361 return -ENOMEM; 6362 6363 spin_lock(&resource_alignment_lock); 6364 kfree(resource_alignment_param); 6365 resource_alignment_param = param; 6366 spin_unlock(&resource_alignment_lock); 6367 return count; 6368 } 6369 6370 static BUS_ATTR_RW(resource_alignment); 6371 6372 static int __init pci_resource_alignment_sysfs_init(void) 6373 { 6374 return bus_create_file(&pci_bus_type, 6375 &bus_attr_resource_alignment); 6376 } 6377 late_initcall(pci_resource_alignment_sysfs_init); 6378 6379 static void pci_no_domains(void) 6380 { 6381 #ifdef CONFIG_PCI_DOMAINS 6382 pci_domains_supported = 0; 6383 #endif 6384 } 6385 6386 #ifdef CONFIG_PCI_DOMAINS_GENERIC 6387 static atomic_t __domain_nr = ATOMIC_INIT(-1); 6388 6389 static int pci_get_new_domain_nr(void) 6390 { 6391 return atomic_inc_return(&__domain_nr); 6392 } 6393 6394 static int of_pci_bus_find_domain_nr(struct device *parent) 6395 { 6396 static int use_dt_domains = -1; 6397 int domain = -1; 6398 6399 if (parent) 6400 domain = of_get_pci_domain_nr(parent->of_node); 6401 6402 /* 6403 * Check DT domain and use_dt_domains values. 6404 * 6405 * If DT domain property is valid (domain >= 0) and 6406 * use_dt_domains != 0, the DT assignment is valid since this means 6407 * we have not previously allocated a domain number by using 6408 * pci_get_new_domain_nr(); we should also update use_dt_domains to 6409 * 1, to indicate that we have just assigned a domain number from 6410 * DT. 6411 * 6412 * If DT domain property value is not valid (ie domain < 0), and we 6413 * have not previously assigned a domain number from DT 6414 * (use_dt_domains != 1) we should assign a domain number by 6415 * using the: 6416 * 6417 * pci_get_new_domain_nr() 6418 * 6419 * API and update the use_dt_domains value to keep track of method we 6420 * are using to assign domain numbers (use_dt_domains = 0). 6421 * 6422 * All other combinations imply we have a platform that is trying 6423 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(), 6424 * which is a recipe for domain mishandling and it is prevented by 6425 * invalidating the domain value (domain = -1) and printing a 6426 * corresponding error. 6427 */ 6428 if (domain >= 0 && use_dt_domains) { 6429 use_dt_domains = 1; 6430 } else if (domain < 0 && use_dt_domains != 1) { 6431 use_dt_domains = 0; 6432 domain = pci_get_new_domain_nr(); 6433 } else { 6434 if (parent) 6435 pr_err("Node %pOF has ", parent->of_node); 6436 pr_err("Inconsistent \"linux,pci-domain\" property in DT\n"); 6437 domain = -1; 6438 } 6439 6440 return domain; 6441 } 6442 6443 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent) 6444 { 6445 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) : 6446 acpi_pci_bus_find_domain_nr(bus); 6447 } 6448 #endif 6449 6450 /** 6451 * pci_ext_cfg_avail - can we access extended PCI config space? 6452 * 6453 * Returns 1 if we can access PCI extended config space (offsets 6454 * greater than 0xff). This is the default implementation. Architecture 6455 * implementations can override this. 6456 */ 6457 int __weak pci_ext_cfg_avail(void) 6458 { 6459 return 1; 6460 } 6461 6462 void __weak pci_fixup_cardbus(struct pci_bus *bus) 6463 { 6464 } 6465 EXPORT_SYMBOL(pci_fixup_cardbus); 6466 6467 static int __init pci_setup(char *str) 6468 { 6469 while (str) { 6470 char *k = strchr(str, ','); 6471 if (k) 6472 *k++ = 0; 6473 if (*str && (str = pcibios_setup(str)) && *str) { 6474 if (!strcmp(str, "nomsi")) { 6475 pci_no_msi(); 6476 } else if (!strncmp(str, "noats", 5)) { 6477 pr_info("PCIe: ATS is disabled\n"); 6478 pcie_ats_disabled = true; 6479 } else if (!strcmp(str, "noaer")) { 6480 pci_no_aer(); 6481 } else if (!strcmp(str, "earlydump")) { 6482 pci_early_dump = true; 6483 } else if (!strncmp(str, "realloc=", 8)) { 6484 pci_realloc_get_opt(str + 8); 6485 } else if (!strncmp(str, "realloc", 7)) { 6486 pci_realloc_get_opt("on"); 6487 } else if (!strcmp(str, "nodomains")) { 6488 pci_no_domains(); 6489 } else if (!strncmp(str, "noari", 5)) { 6490 pcie_ari_disabled = true; 6491 } else if (!strncmp(str, "cbiosize=", 9)) { 6492 pci_cardbus_io_size = memparse(str + 9, &str); 6493 } else if (!strncmp(str, "cbmemsize=", 10)) { 6494 pci_cardbus_mem_size = memparse(str + 10, &str); 6495 } else if (!strncmp(str, "resource_alignment=", 19)) { 6496 resource_alignment_param = str + 19; 6497 } else if (!strncmp(str, "ecrc=", 5)) { 6498 pcie_ecrc_get_policy(str + 5); 6499 } else if (!strncmp(str, "hpiosize=", 9)) { 6500 pci_hotplug_io_size = memparse(str + 9, &str); 6501 } else if (!strncmp(str, "hpmmiosize=", 11)) { 6502 pci_hotplug_mmio_size = memparse(str + 11, &str); 6503 } else if (!strncmp(str, "hpmmioprefsize=", 15)) { 6504 pci_hotplug_mmio_pref_size = memparse(str + 15, &str); 6505 } else if (!strncmp(str, "hpmemsize=", 10)) { 6506 pci_hotplug_mmio_size = memparse(str + 10, &str); 6507 pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size; 6508 } else if (!strncmp(str, "hpbussize=", 10)) { 6509 pci_hotplug_bus_size = 6510 simple_strtoul(str + 10, &str, 0); 6511 if (pci_hotplug_bus_size > 0xff) 6512 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 6513 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) { 6514 pcie_bus_config = PCIE_BUS_TUNE_OFF; 6515 } else if (!strncmp(str, "pcie_bus_safe", 13)) { 6516 pcie_bus_config = PCIE_BUS_SAFE; 6517 } else if (!strncmp(str, "pcie_bus_perf", 13)) { 6518 pcie_bus_config = PCIE_BUS_PERFORMANCE; 6519 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) { 6520 pcie_bus_config = PCIE_BUS_PEER2PEER; 6521 } else if (!strncmp(str, "pcie_scan_all", 13)) { 6522 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS); 6523 } else if (!strncmp(str, "disable_acs_redir=", 18)) { 6524 disable_acs_redir_param = str + 18; 6525 } else { 6526 pr_err("PCI: Unknown option `%s'\n", str); 6527 } 6528 } 6529 str = k; 6530 } 6531 return 0; 6532 } 6533 early_param("pci", pci_setup); 6534 6535 /* 6536 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized 6537 * in pci_setup(), above, to point to data in the __initdata section which 6538 * will be freed after the init sequence is complete. We can't allocate memory 6539 * in pci_setup() because some architectures do not have any memory allocation 6540 * service available during an early_param() call. So we allocate memory and 6541 * copy the variable here before the init section is freed. 6542 * 6543 */ 6544 static int __init pci_realloc_setup_params(void) 6545 { 6546 resource_alignment_param = kstrdup(resource_alignment_param, 6547 GFP_KERNEL); 6548 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL); 6549 6550 return 0; 6551 } 6552 pure_initcall(pci_realloc_setup_params); 6553