xref: /openbmc/linux/drivers/pci/pci.c (revision 93696d8f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * PCI Bus Services, see include/linux/pci.h for further explanation.
4  *
5  * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6  * David Mosberger-Tang
7  *
8  * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/msi.h>
17 #include <linux/of.h>
18 #include <linux/pci.h>
19 #include <linux/pm.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/log2.h>
25 #include <linux/logic_pio.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/pci_hotplug.h>
31 #include <linux/vmalloc.h>
32 #include <asm/dma.h>
33 #include <linux/aer.h>
34 #include <linux/bitfield.h>
35 #include "pci.h"
36 
37 DEFINE_MUTEX(pci_slot_mutex);
38 
39 const char *pci_power_names[] = {
40 	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
41 };
42 EXPORT_SYMBOL_GPL(pci_power_names);
43 
44 #ifdef CONFIG_X86_32
45 int isa_dma_bridge_buggy;
46 EXPORT_SYMBOL(isa_dma_bridge_buggy);
47 #endif
48 
49 int pci_pci_problems;
50 EXPORT_SYMBOL(pci_pci_problems);
51 
52 unsigned int pci_pm_d3hot_delay;
53 
54 static void pci_pme_list_scan(struct work_struct *work);
55 
56 static LIST_HEAD(pci_pme_list);
57 static DEFINE_MUTEX(pci_pme_list_mutex);
58 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
59 
60 struct pci_pme_device {
61 	struct list_head list;
62 	struct pci_dev *dev;
63 };
64 
65 #define PME_TIMEOUT 1000 /* How long between PME checks */
66 
67 /*
68  * Following exit from Conventional Reset, devices must be ready within 1 sec
69  * (PCIe r6.0 sec 6.6.1).  A D3cold to D0 transition implies a Conventional
70  * Reset (PCIe r6.0 sec 5.8).
71  */
72 #define PCI_RESET_WAIT 1000 /* msec */
73 
74 /*
75  * Devices may extend the 1 sec period through Request Retry Status
76  * completions (PCIe r6.0 sec 2.3.1).  The spec does not provide an upper
77  * limit, but 60 sec ought to be enough for any device to become
78  * responsive.
79  */
80 #define PCIE_RESET_READY_POLL_MS 60000 /* msec */
81 
82 static void pci_dev_d3_sleep(struct pci_dev *dev)
83 {
84 	unsigned int delay_ms = max(dev->d3hot_delay, pci_pm_d3hot_delay);
85 	unsigned int upper;
86 
87 	if (delay_ms) {
88 		/* Use a 20% upper bound, 1ms minimum */
89 		upper = max(DIV_ROUND_CLOSEST(delay_ms, 5), 1U);
90 		usleep_range(delay_ms * USEC_PER_MSEC,
91 			     (delay_ms + upper) * USEC_PER_MSEC);
92 	}
93 }
94 
95 bool pci_reset_supported(struct pci_dev *dev)
96 {
97 	return dev->reset_methods[0] != 0;
98 }
99 
100 #ifdef CONFIG_PCI_DOMAINS
101 int pci_domains_supported = 1;
102 #endif
103 
104 #define DEFAULT_CARDBUS_IO_SIZE		(256)
105 #define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
106 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
107 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
108 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
109 
110 #define DEFAULT_HOTPLUG_IO_SIZE		(256)
111 #define DEFAULT_HOTPLUG_MMIO_SIZE	(2*1024*1024)
112 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE	(2*1024*1024)
113 /* hpiosize=nn can override this */
114 unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
115 /*
116  * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
117  * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
118  * pci=hpmemsize=nnM overrides both
119  */
120 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
121 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
122 
123 #define DEFAULT_HOTPLUG_BUS_SIZE	1
124 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
125 
126 
127 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
128 #ifdef CONFIG_PCIE_BUS_TUNE_OFF
129 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
130 #elif defined CONFIG_PCIE_BUS_SAFE
131 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
132 #elif defined CONFIG_PCIE_BUS_PERFORMANCE
133 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
134 #elif defined CONFIG_PCIE_BUS_PEER2PEER
135 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
136 #else
137 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
138 #endif
139 
140 /*
141  * The default CLS is used if arch didn't set CLS explicitly and not
142  * all pci devices agree on the same value.  Arch can override either
143  * the dfl or actual value as it sees fit.  Don't forget this is
144  * measured in 32-bit words, not bytes.
145  */
146 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
147 u8 pci_cache_line_size;
148 
149 /*
150  * If we set up a device for bus mastering, we need to check the latency
151  * timer as certain BIOSes forget to set it properly.
152  */
153 unsigned int pcibios_max_latency = 255;
154 
155 /* If set, the PCIe ARI capability will not be used. */
156 static bool pcie_ari_disabled;
157 
158 /* If set, the PCIe ATS capability will not be used. */
159 static bool pcie_ats_disabled;
160 
161 /* If set, the PCI config space of each device is printed during boot. */
162 bool pci_early_dump;
163 
164 bool pci_ats_disabled(void)
165 {
166 	return pcie_ats_disabled;
167 }
168 EXPORT_SYMBOL_GPL(pci_ats_disabled);
169 
170 /* Disable bridge_d3 for all PCIe ports */
171 static bool pci_bridge_d3_disable;
172 /* Force bridge_d3 for all PCIe ports */
173 static bool pci_bridge_d3_force;
174 
175 static int __init pcie_port_pm_setup(char *str)
176 {
177 	if (!strcmp(str, "off"))
178 		pci_bridge_d3_disable = true;
179 	else if (!strcmp(str, "force"))
180 		pci_bridge_d3_force = true;
181 	return 1;
182 }
183 __setup("pcie_port_pm=", pcie_port_pm_setup);
184 
185 /**
186  * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
187  * @bus: pointer to PCI bus structure to search
188  *
189  * Given a PCI bus, returns the highest PCI bus number present in the set
190  * including the given PCI bus and its list of child PCI buses.
191  */
192 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
193 {
194 	struct pci_bus *tmp;
195 	unsigned char max, n;
196 
197 	max = bus->busn_res.end;
198 	list_for_each_entry(tmp, &bus->children, node) {
199 		n = pci_bus_max_busnr(tmp);
200 		if (n > max)
201 			max = n;
202 	}
203 	return max;
204 }
205 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
206 
207 /**
208  * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
209  * @pdev: the PCI device
210  *
211  * Returns error bits set in PCI_STATUS and clears them.
212  */
213 int pci_status_get_and_clear_errors(struct pci_dev *pdev)
214 {
215 	u16 status;
216 	int ret;
217 
218 	ret = pci_read_config_word(pdev, PCI_STATUS, &status);
219 	if (ret != PCIBIOS_SUCCESSFUL)
220 		return -EIO;
221 
222 	status &= PCI_STATUS_ERROR_BITS;
223 	if (status)
224 		pci_write_config_word(pdev, PCI_STATUS, status);
225 
226 	return status;
227 }
228 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
229 
230 #ifdef CONFIG_HAS_IOMEM
231 static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar,
232 					    bool write_combine)
233 {
234 	struct resource *res = &pdev->resource[bar];
235 	resource_size_t start = res->start;
236 	resource_size_t size = resource_size(res);
237 
238 	/*
239 	 * Make sure the BAR is actually a memory resource, not an IO resource
240 	 */
241 	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
242 		pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
243 		return NULL;
244 	}
245 
246 	if (write_combine)
247 		return ioremap_wc(start, size);
248 
249 	return ioremap(start, size);
250 }
251 
252 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
253 {
254 	return __pci_ioremap_resource(pdev, bar, false);
255 }
256 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
257 
258 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
259 {
260 	return __pci_ioremap_resource(pdev, bar, true);
261 }
262 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
263 #endif
264 
265 /**
266  * pci_dev_str_match_path - test if a path string matches a device
267  * @dev: the PCI device to test
268  * @path: string to match the device against
269  * @endptr: pointer to the string after the match
270  *
271  * Test if a string (typically from a kernel parameter) formatted as a
272  * path of device/function addresses matches a PCI device. The string must
273  * be of the form:
274  *
275  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
276  *
277  * A path for a device can be obtained using 'lspci -t'.  Using a path
278  * is more robust against bus renumbering than using only a single bus,
279  * device and function address.
280  *
281  * Returns 1 if the string matches the device, 0 if it does not and
282  * a negative error code if it fails to parse the string.
283  */
284 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
285 				  const char **endptr)
286 {
287 	int ret;
288 	unsigned int seg, bus, slot, func;
289 	char *wpath, *p;
290 	char end;
291 
292 	*endptr = strchrnul(path, ';');
293 
294 	wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC);
295 	if (!wpath)
296 		return -ENOMEM;
297 
298 	while (1) {
299 		p = strrchr(wpath, '/');
300 		if (!p)
301 			break;
302 		ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
303 		if (ret != 2) {
304 			ret = -EINVAL;
305 			goto free_and_exit;
306 		}
307 
308 		if (dev->devfn != PCI_DEVFN(slot, func)) {
309 			ret = 0;
310 			goto free_and_exit;
311 		}
312 
313 		/*
314 		 * Note: we don't need to get a reference to the upstream
315 		 * bridge because we hold a reference to the top level
316 		 * device which should hold a reference to the bridge,
317 		 * and so on.
318 		 */
319 		dev = pci_upstream_bridge(dev);
320 		if (!dev) {
321 			ret = 0;
322 			goto free_and_exit;
323 		}
324 
325 		*p = 0;
326 	}
327 
328 	ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
329 		     &func, &end);
330 	if (ret != 4) {
331 		seg = 0;
332 		ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
333 		if (ret != 3) {
334 			ret = -EINVAL;
335 			goto free_and_exit;
336 		}
337 	}
338 
339 	ret = (seg == pci_domain_nr(dev->bus) &&
340 	       bus == dev->bus->number &&
341 	       dev->devfn == PCI_DEVFN(slot, func));
342 
343 free_and_exit:
344 	kfree(wpath);
345 	return ret;
346 }
347 
348 /**
349  * pci_dev_str_match - test if a string matches a device
350  * @dev: the PCI device to test
351  * @p: string to match the device against
352  * @endptr: pointer to the string after the match
353  *
354  * Test if a string (typically from a kernel parameter) matches a specified
355  * PCI device. The string may be of one of the following formats:
356  *
357  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
358  *   pci:<vendor>:<device>[:<subvendor>:<subdevice>]
359  *
360  * The first format specifies a PCI bus/device/function address which
361  * may change if new hardware is inserted, if motherboard firmware changes,
362  * or due to changes caused in kernel parameters. If the domain is
363  * left unspecified, it is taken to be 0.  In order to be robust against
364  * bus renumbering issues, a path of PCI device/function numbers may be used
365  * to address the specific device.  The path for a device can be determined
366  * through the use of 'lspci -t'.
367  *
368  * The second format matches devices using IDs in the configuration
369  * space which may match multiple devices in the system. A value of 0
370  * for any field will match all devices. (Note: this differs from
371  * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
372  * legacy reasons and convenience so users don't have to specify
373  * FFFFFFFFs on the command line.)
374  *
375  * Returns 1 if the string matches the device, 0 if it does not and
376  * a negative error code if the string cannot be parsed.
377  */
378 static int pci_dev_str_match(struct pci_dev *dev, const char *p,
379 			     const char **endptr)
380 {
381 	int ret;
382 	int count;
383 	unsigned short vendor, device, subsystem_vendor, subsystem_device;
384 
385 	if (strncmp(p, "pci:", 4) == 0) {
386 		/* PCI vendor/device (subvendor/subdevice) IDs are specified */
387 		p += 4;
388 		ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
389 			     &subsystem_vendor, &subsystem_device, &count);
390 		if (ret != 4) {
391 			ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
392 			if (ret != 2)
393 				return -EINVAL;
394 
395 			subsystem_vendor = 0;
396 			subsystem_device = 0;
397 		}
398 
399 		p += count;
400 
401 		if ((!vendor || vendor == dev->vendor) &&
402 		    (!device || device == dev->device) &&
403 		    (!subsystem_vendor ||
404 			    subsystem_vendor == dev->subsystem_vendor) &&
405 		    (!subsystem_device ||
406 			    subsystem_device == dev->subsystem_device))
407 			goto found;
408 	} else {
409 		/*
410 		 * PCI Bus, Device, Function IDs are specified
411 		 * (optionally, may include a path of devfns following it)
412 		 */
413 		ret = pci_dev_str_match_path(dev, p, &p);
414 		if (ret < 0)
415 			return ret;
416 		else if (ret)
417 			goto found;
418 	}
419 
420 	*endptr = p;
421 	return 0;
422 
423 found:
424 	*endptr = p;
425 	return 1;
426 }
427 
428 static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
429 				  u8 pos, int cap, int *ttl)
430 {
431 	u8 id;
432 	u16 ent;
433 
434 	pci_bus_read_config_byte(bus, devfn, pos, &pos);
435 
436 	while ((*ttl)--) {
437 		if (pos < 0x40)
438 			break;
439 		pos &= ~3;
440 		pci_bus_read_config_word(bus, devfn, pos, &ent);
441 
442 		id = ent & 0xff;
443 		if (id == 0xff)
444 			break;
445 		if (id == cap)
446 			return pos;
447 		pos = (ent >> 8);
448 	}
449 	return 0;
450 }
451 
452 static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
453 			      u8 pos, int cap)
454 {
455 	int ttl = PCI_FIND_CAP_TTL;
456 
457 	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
458 }
459 
460 u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
461 {
462 	return __pci_find_next_cap(dev->bus, dev->devfn,
463 				   pos + PCI_CAP_LIST_NEXT, cap);
464 }
465 EXPORT_SYMBOL_GPL(pci_find_next_capability);
466 
467 static u8 __pci_bus_find_cap_start(struct pci_bus *bus,
468 				    unsigned int devfn, u8 hdr_type)
469 {
470 	u16 status;
471 
472 	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
473 	if (!(status & PCI_STATUS_CAP_LIST))
474 		return 0;
475 
476 	switch (hdr_type) {
477 	case PCI_HEADER_TYPE_NORMAL:
478 	case PCI_HEADER_TYPE_BRIDGE:
479 		return PCI_CAPABILITY_LIST;
480 	case PCI_HEADER_TYPE_CARDBUS:
481 		return PCI_CB_CAPABILITY_LIST;
482 	}
483 
484 	return 0;
485 }
486 
487 /**
488  * pci_find_capability - query for devices' capabilities
489  * @dev: PCI device to query
490  * @cap: capability code
491  *
492  * Tell if a device supports a given PCI capability.
493  * Returns the address of the requested capability structure within the
494  * device's PCI configuration space or 0 in case the device does not
495  * support it.  Possible values for @cap include:
496  *
497  *  %PCI_CAP_ID_PM           Power Management
498  *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
499  *  %PCI_CAP_ID_VPD          Vital Product Data
500  *  %PCI_CAP_ID_SLOTID       Slot Identification
501  *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
502  *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
503  *  %PCI_CAP_ID_PCIX         PCI-X
504  *  %PCI_CAP_ID_EXP          PCI Express
505  */
506 u8 pci_find_capability(struct pci_dev *dev, int cap)
507 {
508 	u8 pos;
509 
510 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
511 	if (pos)
512 		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
513 
514 	return pos;
515 }
516 EXPORT_SYMBOL(pci_find_capability);
517 
518 /**
519  * pci_bus_find_capability - query for devices' capabilities
520  * @bus: the PCI bus to query
521  * @devfn: PCI device to query
522  * @cap: capability code
523  *
524  * Like pci_find_capability() but works for PCI devices that do not have a
525  * pci_dev structure set up yet.
526  *
527  * Returns the address of the requested capability structure within the
528  * device's PCI configuration space or 0 in case the device does not
529  * support it.
530  */
531 u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
532 {
533 	u8 hdr_type, pos;
534 
535 	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
536 
537 	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
538 	if (pos)
539 		pos = __pci_find_next_cap(bus, devfn, pos, cap);
540 
541 	return pos;
542 }
543 EXPORT_SYMBOL(pci_bus_find_capability);
544 
545 /**
546  * pci_find_next_ext_capability - Find an extended capability
547  * @dev: PCI device to query
548  * @start: address at which to start looking (0 to start at beginning of list)
549  * @cap: capability code
550  *
551  * Returns the address of the next matching extended capability structure
552  * within the device's PCI configuration space or 0 if the device does
553  * not support it.  Some capabilities can occur several times, e.g., the
554  * vendor-specific capability, and this provides a way to find them all.
555  */
556 u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap)
557 {
558 	u32 header;
559 	int ttl;
560 	u16 pos = PCI_CFG_SPACE_SIZE;
561 
562 	/* minimum 8 bytes per capability */
563 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
564 
565 	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
566 		return 0;
567 
568 	if (start)
569 		pos = start;
570 
571 	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
572 		return 0;
573 
574 	/*
575 	 * If we have no capabilities, this is indicated by cap ID,
576 	 * cap version and next pointer all being 0.
577 	 */
578 	if (header == 0)
579 		return 0;
580 
581 	while (ttl-- > 0) {
582 		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
583 			return pos;
584 
585 		pos = PCI_EXT_CAP_NEXT(header);
586 		if (pos < PCI_CFG_SPACE_SIZE)
587 			break;
588 
589 		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
590 			break;
591 	}
592 
593 	return 0;
594 }
595 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
596 
597 /**
598  * pci_find_ext_capability - Find an extended capability
599  * @dev: PCI device to query
600  * @cap: capability code
601  *
602  * Returns the address of the requested extended capability structure
603  * within the device's PCI configuration space or 0 if the device does
604  * not support it.  Possible values for @cap include:
605  *
606  *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
607  *  %PCI_EXT_CAP_ID_VC		Virtual Channel
608  *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
609  *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
610  */
611 u16 pci_find_ext_capability(struct pci_dev *dev, int cap)
612 {
613 	return pci_find_next_ext_capability(dev, 0, cap);
614 }
615 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
616 
617 /**
618  * pci_get_dsn - Read and return the 8-byte Device Serial Number
619  * @dev: PCI device to query
620  *
621  * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
622  * Number.
623  *
624  * Returns the DSN, or zero if the capability does not exist.
625  */
626 u64 pci_get_dsn(struct pci_dev *dev)
627 {
628 	u32 dword;
629 	u64 dsn;
630 	int pos;
631 
632 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
633 	if (!pos)
634 		return 0;
635 
636 	/*
637 	 * The Device Serial Number is two dwords offset 4 bytes from the
638 	 * capability position. The specification says that the first dword is
639 	 * the lower half, and the second dword is the upper half.
640 	 */
641 	pos += 4;
642 	pci_read_config_dword(dev, pos, &dword);
643 	dsn = (u64)dword;
644 	pci_read_config_dword(dev, pos + 4, &dword);
645 	dsn |= ((u64)dword) << 32;
646 
647 	return dsn;
648 }
649 EXPORT_SYMBOL_GPL(pci_get_dsn);
650 
651 static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap)
652 {
653 	int rc, ttl = PCI_FIND_CAP_TTL;
654 	u8 cap, mask;
655 
656 	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
657 		mask = HT_3BIT_CAP_MASK;
658 	else
659 		mask = HT_5BIT_CAP_MASK;
660 
661 	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
662 				      PCI_CAP_ID_HT, &ttl);
663 	while (pos) {
664 		rc = pci_read_config_byte(dev, pos + 3, &cap);
665 		if (rc != PCIBIOS_SUCCESSFUL)
666 			return 0;
667 
668 		if ((cap & mask) == ht_cap)
669 			return pos;
670 
671 		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
672 					      pos + PCI_CAP_LIST_NEXT,
673 					      PCI_CAP_ID_HT, &ttl);
674 	}
675 
676 	return 0;
677 }
678 
679 /**
680  * pci_find_next_ht_capability - query a device's HyperTransport capabilities
681  * @dev: PCI device to query
682  * @pos: Position from which to continue searching
683  * @ht_cap: HyperTransport capability code
684  *
685  * To be used in conjunction with pci_find_ht_capability() to search for
686  * all capabilities matching @ht_cap. @pos should always be a value returned
687  * from pci_find_ht_capability().
688  *
689  * NB. To be 100% safe against broken PCI devices, the caller should take
690  * steps to avoid an infinite loop.
691  */
692 u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap)
693 {
694 	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
695 }
696 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
697 
698 /**
699  * pci_find_ht_capability - query a device's HyperTransport capabilities
700  * @dev: PCI device to query
701  * @ht_cap: HyperTransport capability code
702  *
703  * Tell if a device supports a given HyperTransport capability.
704  * Returns an address within the device's PCI configuration space
705  * or 0 in case the device does not support the request capability.
706  * The address points to the PCI capability, of type PCI_CAP_ID_HT,
707  * which has a HyperTransport capability matching @ht_cap.
708  */
709 u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
710 {
711 	u8 pos;
712 
713 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
714 	if (pos)
715 		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
716 
717 	return pos;
718 }
719 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
720 
721 /**
722  * pci_find_vsec_capability - Find a vendor-specific extended capability
723  * @dev: PCI device to query
724  * @vendor: Vendor ID for which capability is defined
725  * @cap: Vendor-specific capability ID
726  *
727  * If @dev has Vendor ID @vendor, search for a VSEC capability with
728  * VSEC ID @cap. If found, return the capability offset in
729  * config space; otherwise return 0.
730  */
731 u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap)
732 {
733 	u16 vsec = 0;
734 	u32 header;
735 	int ret;
736 
737 	if (vendor != dev->vendor)
738 		return 0;
739 
740 	while ((vsec = pci_find_next_ext_capability(dev, vsec,
741 						     PCI_EXT_CAP_ID_VNDR))) {
742 		ret = pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER, &header);
743 		if (ret != PCIBIOS_SUCCESSFUL)
744 			continue;
745 
746 		if (PCI_VNDR_HEADER_ID(header) == cap)
747 			return vsec;
748 	}
749 
750 	return 0;
751 }
752 EXPORT_SYMBOL_GPL(pci_find_vsec_capability);
753 
754 /**
755  * pci_find_dvsec_capability - Find DVSEC for vendor
756  * @dev: PCI device to query
757  * @vendor: Vendor ID to match for the DVSEC
758  * @dvsec: Designated Vendor-specific capability ID
759  *
760  * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability
761  * offset in config space; otherwise return 0.
762  */
763 u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec)
764 {
765 	int pos;
766 
767 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC);
768 	if (!pos)
769 		return 0;
770 
771 	while (pos) {
772 		u16 v, id;
773 
774 		pci_read_config_word(dev, pos + PCI_DVSEC_HEADER1, &v);
775 		pci_read_config_word(dev, pos + PCI_DVSEC_HEADER2, &id);
776 		if (vendor == v && dvsec == id)
777 			return pos;
778 
779 		pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC);
780 	}
781 
782 	return 0;
783 }
784 EXPORT_SYMBOL_GPL(pci_find_dvsec_capability);
785 
786 /**
787  * pci_find_parent_resource - return resource region of parent bus of given
788  *			      region
789  * @dev: PCI device structure contains resources to be searched
790  * @res: child resource record for which parent is sought
791  *
792  * For given resource region of given device, return the resource region of
793  * parent bus the given region is contained in.
794  */
795 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
796 					  struct resource *res)
797 {
798 	const struct pci_bus *bus = dev->bus;
799 	struct resource *r;
800 
801 	pci_bus_for_each_resource(bus, r) {
802 		if (!r)
803 			continue;
804 		if (resource_contains(r, res)) {
805 
806 			/*
807 			 * If the window is prefetchable but the BAR is
808 			 * not, the allocator made a mistake.
809 			 */
810 			if (r->flags & IORESOURCE_PREFETCH &&
811 			    !(res->flags & IORESOURCE_PREFETCH))
812 				return NULL;
813 
814 			/*
815 			 * If we're below a transparent bridge, there may
816 			 * be both a positively-decoded aperture and a
817 			 * subtractively-decoded region that contain the BAR.
818 			 * We want the positively-decoded one, so this depends
819 			 * on pci_bus_for_each_resource() giving us those
820 			 * first.
821 			 */
822 			return r;
823 		}
824 	}
825 	return NULL;
826 }
827 EXPORT_SYMBOL(pci_find_parent_resource);
828 
829 /**
830  * pci_find_resource - Return matching PCI device resource
831  * @dev: PCI device to query
832  * @res: Resource to look for
833  *
834  * Goes over standard PCI resources (BARs) and checks if the given resource
835  * is partially or fully contained in any of them. In that case the
836  * matching resource is returned, %NULL otherwise.
837  */
838 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
839 {
840 	int i;
841 
842 	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
843 		struct resource *r = &dev->resource[i];
844 
845 		if (r->start && resource_contains(r, res))
846 			return r;
847 	}
848 
849 	return NULL;
850 }
851 EXPORT_SYMBOL(pci_find_resource);
852 
853 /**
854  * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
855  * @dev: the PCI device to operate on
856  * @pos: config space offset of status word
857  * @mask: mask of bit(s) to care about in status word
858  *
859  * Return 1 when mask bit(s) in status word clear, 0 otherwise.
860  */
861 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
862 {
863 	int i;
864 
865 	/* Wait for Transaction Pending bit clean */
866 	for (i = 0; i < 4; i++) {
867 		u16 status;
868 		if (i)
869 			msleep((1 << (i - 1)) * 100);
870 
871 		pci_read_config_word(dev, pos, &status);
872 		if (!(status & mask))
873 			return 1;
874 	}
875 
876 	return 0;
877 }
878 
879 static int pci_acs_enable;
880 
881 /**
882  * pci_request_acs - ask for ACS to be enabled if supported
883  */
884 void pci_request_acs(void)
885 {
886 	pci_acs_enable = 1;
887 }
888 
889 static const char *disable_acs_redir_param;
890 
891 /**
892  * pci_disable_acs_redir - disable ACS redirect capabilities
893  * @dev: the PCI device
894  *
895  * For only devices specified in the disable_acs_redir parameter.
896  */
897 static void pci_disable_acs_redir(struct pci_dev *dev)
898 {
899 	int ret = 0;
900 	const char *p;
901 	int pos;
902 	u16 ctrl;
903 
904 	if (!disable_acs_redir_param)
905 		return;
906 
907 	p = disable_acs_redir_param;
908 	while (*p) {
909 		ret = pci_dev_str_match(dev, p, &p);
910 		if (ret < 0) {
911 			pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
912 				     disable_acs_redir_param);
913 
914 			break;
915 		} else if (ret == 1) {
916 			/* Found a match */
917 			break;
918 		}
919 
920 		if (*p != ';' && *p != ',') {
921 			/* End of param or invalid format */
922 			break;
923 		}
924 		p++;
925 	}
926 
927 	if (ret != 1)
928 		return;
929 
930 	if (!pci_dev_specific_disable_acs_redir(dev))
931 		return;
932 
933 	pos = dev->acs_cap;
934 	if (!pos) {
935 		pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
936 		return;
937 	}
938 
939 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
940 
941 	/* P2P Request & Completion Redirect */
942 	ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
943 
944 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
945 
946 	pci_info(dev, "disabled ACS redirect\n");
947 }
948 
949 /**
950  * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
951  * @dev: the PCI device
952  */
953 static void pci_std_enable_acs(struct pci_dev *dev)
954 {
955 	int pos;
956 	u16 cap;
957 	u16 ctrl;
958 
959 	pos = dev->acs_cap;
960 	if (!pos)
961 		return;
962 
963 	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
964 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
965 
966 	/* Source Validation */
967 	ctrl |= (cap & PCI_ACS_SV);
968 
969 	/* P2P Request Redirect */
970 	ctrl |= (cap & PCI_ACS_RR);
971 
972 	/* P2P Completion Redirect */
973 	ctrl |= (cap & PCI_ACS_CR);
974 
975 	/* Upstream Forwarding */
976 	ctrl |= (cap & PCI_ACS_UF);
977 
978 	/* Enable Translation Blocking for external devices and noats */
979 	if (pci_ats_disabled() || dev->external_facing || dev->untrusted)
980 		ctrl |= (cap & PCI_ACS_TB);
981 
982 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
983 }
984 
985 /**
986  * pci_enable_acs - enable ACS if hardware support it
987  * @dev: the PCI device
988  */
989 static void pci_enable_acs(struct pci_dev *dev)
990 {
991 	if (!pci_acs_enable)
992 		goto disable_acs_redir;
993 
994 	if (!pci_dev_specific_enable_acs(dev))
995 		goto disable_acs_redir;
996 
997 	pci_std_enable_acs(dev);
998 
999 disable_acs_redir:
1000 	/*
1001 	 * Note: pci_disable_acs_redir() must be called even if ACS was not
1002 	 * enabled by the kernel because it may have been enabled by
1003 	 * platform firmware.  So if we are told to disable it, we should
1004 	 * always disable it after setting the kernel's default
1005 	 * preferences.
1006 	 */
1007 	pci_disable_acs_redir(dev);
1008 }
1009 
1010 /**
1011  * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
1012  * @dev: PCI device to have its BARs restored
1013  *
1014  * Restore the BAR values for a given device, so as to make it
1015  * accessible by its driver.
1016  */
1017 static void pci_restore_bars(struct pci_dev *dev)
1018 {
1019 	int i;
1020 
1021 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
1022 		pci_update_resource(dev, i);
1023 }
1024 
1025 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
1026 {
1027 	if (pci_use_mid_pm())
1028 		return true;
1029 
1030 	return acpi_pci_power_manageable(dev);
1031 }
1032 
1033 static inline int platform_pci_set_power_state(struct pci_dev *dev,
1034 					       pci_power_t t)
1035 {
1036 	if (pci_use_mid_pm())
1037 		return mid_pci_set_power_state(dev, t);
1038 
1039 	return acpi_pci_set_power_state(dev, t);
1040 }
1041 
1042 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
1043 {
1044 	if (pci_use_mid_pm())
1045 		return mid_pci_get_power_state(dev);
1046 
1047 	return acpi_pci_get_power_state(dev);
1048 }
1049 
1050 static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
1051 {
1052 	if (!pci_use_mid_pm())
1053 		acpi_pci_refresh_power_state(dev);
1054 }
1055 
1056 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
1057 {
1058 	if (pci_use_mid_pm())
1059 		return PCI_POWER_ERROR;
1060 
1061 	return acpi_pci_choose_state(dev);
1062 }
1063 
1064 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
1065 {
1066 	if (pci_use_mid_pm())
1067 		return PCI_POWER_ERROR;
1068 
1069 	return acpi_pci_wakeup(dev, enable);
1070 }
1071 
1072 static inline bool platform_pci_need_resume(struct pci_dev *dev)
1073 {
1074 	if (pci_use_mid_pm())
1075 		return false;
1076 
1077 	return acpi_pci_need_resume(dev);
1078 }
1079 
1080 static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
1081 {
1082 	if (pci_use_mid_pm())
1083 		return false;
1084 
1085 	return acpi_pci_bridge_d3(dev);
1086 }
1087 
1088 /**
1089  * pci_update_current_state - Read power state of given device and cache it
1090  * @dev: PCI device to handle.
1091  * @state: State to cache in case the device doesn't have the PM capability
1092  *
1093  * The power state is read from the PMCSR register, which however is
1094  * inaccessible in D3cold.  The platform firmware is therefore queried first
1095  * to detect accessibility of the register.  In case the platform firmware
1096  * reports an incorrect state or the device isn't power manageable by the
1097  * platform at all, we try to detect D3cold by testing accessibility of the
1098  * vendor ID in config space.
1099  */
1100 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1101 {
1102 	if (platform_pci_get_power_state(dev) == PCI_D3cold) {
1103 		dev->current_state = PCI_D3cold;
1104 	} else if (dev->pm_cap) {
1105 		u16 pmcsr;
1106 
1107 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1108 		if (PCI_POSSIBLE_ERROR(pmcsr)) {
1109 			dev->current_state = PCI_D3cold;
1110 			return;
1111 		}
1112 		dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1113 	} else {
1114 		dev->current_state = state;
1115 	}
1116 }
1117 
1118 /**
1119  * pci_refresh_power_state - Refresh the given device's power state data
1120  * @dev: Target PCI device.
1121  *
1122  * Ask the platform to refresh the devices power state information and invoke
1123  * pci_update_current_state() to update its current PCI power state.
1124  */
1125 void pci_refresh_power_state(struct pci_dev *dev)
1126 {
1127 	platform_pci_refresh_power_state(dev);
1128 	pci_update_current_state(dev, dev->current_state);
1129 }
1130 
1131 /**
1132  * pci_platform_power_transition - Use platform to change device power state
1133  * @dev: PCI device to handle.
1134  * @state: State to put the device into.
1135  */
1136 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1137 {
1138 	int error;
1139 
1140 	error = platform_pci_set_power_state(dev, state);
1141 	if (!error)
1142 		pci_update_current_state(dev, state);
1143 	else if (!dev->pm_cap) /* Fall back to PCI_D0 */
1144 		dev->current_state = PCI_D0;
1145 
1146 	return error;
1147 }
1148 EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1149 
1150 static int pci_resume_one(struct pci_dev *pci_dev, void *ign)
1151 {
1152 	pm_request_resume(&pci_dev->dev);
1153 	return 0;
1154 }
1155 
1156 /**
1157  * pci_resume_bus - Walk given bus and runtime resume devices on it
1158  * @bus: Top bus of the subtree to walk.
1159  */
1160 void pci_resume_bus(struct pci_bus *bus)
1161 {
1162 	if (bus)
1163 		pci_walk_bus(bus, pci_resume_one, NULL);
1164 }
1165 
1166 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1167 {
1168 	int delay = 1;
1169 	bool retrain = false;
1170 	struct pci_dev *bridge;
1171 
1172 	if (pci_is_pcie(dev)) {
1173 		bridge = pci_upstream_bridge(dev);
1174 		if (bridge)
1175 			retrain = true;
1176 	}
1177 
1178 	/*
1179 	 * After reset, the device should not silently discard config
1180 	 * requests, but it may still indicate that it needs more time by
1181 	 * responding to them with CRS completions.  The Root Port will
1182 	 * generally synthesize ~0 (PCI_ERROR_RESPONSE) data to complete
1183 	 * the read (except when CRS SV is enabled and the read was for the
1184 	 * Vendor ID; in that case it synthesizes 0x0001 data).
1185 	 *
1186 	 * Wait for the device to return a non-CRS completion.  Read the
1187 	 * Command register instead of Vendor ID so we don't have to
1188 	 * contend with the CRS SV value.
1189 	 */
1190 	for (;;) {
1191 		u32 id;
1192 
1193 		if (pci_dev_is_disconnected(dev)) {
1194 			pci_dbg(dev, "disconnected; not waiting\n");
1195 			return -ENOTTY;
1196 		}
1197 
1198 		pci_read_config_dword(dev, PCI_COMMAND, &id);
1199 		if (!PCI_POSSIBLE_ERROR(id))
1200 			break;
1201 
1202 		if (delay > timeout) {
1203 			pci_warn(dev, "not ready %dms after %s; giving up\n",
1204 				 delay - 1, reset_type);
1205 			return -ENOTTY;
1206 		}
1207 
1208 		if (delay > PCI_RESET_WAIT) {
1209 			if (retrain) {
1210 				retrain = false;
1211 				if (pcie_failed_link_retrain(bridge)) {
1212 					delay = 1;
1213 					continue;
1214 				}
1215 			}
1216 			pci_info(dev, "not ready %dms after %s; waiting\n",
1217 				 delay - 1, reset_type);
1218 		}
1219 
1220 		msleep(delay);
1221 		delay *= 2;
1222 	}
1223 
1224 	if (delay > PCI_RESET_WAIT)
1225 		pci_info(dev, "ready %dms after %s\n", delay - 1,
1226 			 reset_type);
1227 
1228 	return 0;
1229 }
1230 
1231 /**
1232  * pci_power_up - Put the given device into D0
1233  * @dev: PCI device to power up
1234  *
1235  * On success, return 0 or 1, depending on whether or not it is necessary to
1236  * restore the device's BARs subsequently (1 is returned in that case).
1237  *
1238  * On failure, return a negative error code.  Always return failure if @dev
1239  * lacks a Power Management Capability, even if the platform was able to
1240  * put the device in D0 via non-PCI means.
1241  */
1242 int pci_power_up(struct pci_dev *dev)
1243 {
1244 	bool need_restore;
1245 	pci_power_t state;
1246 	u16 pmcsr;
1247 
1248 	platform_pci_set_power_state(dev, PCI_D0);
1249 
1250 	if (!dev->pm_cap) {
1251 		state = platform_pci_get_power_state(dev);
1252 		if (state == PCI_UNKNOWN)
1253 			dev->current_state = PCI_D0;
1254 		else
1255 			dev->current_state = state;
1256 
1257 		return -EIO;
1258 	}
1259 
1260 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1261 	if (PCI_POSSIBLE_ERROR(pmcsr)) {
1262 		pci_err(dev, "Unable to change power state from %s to D0, device inaccessible\n",
1263 			pci_power_name(dev->current_state));
1264 		dev->current_state = PCI_D3cold;
1265 		return -EIO;
1266 	}
1267 
1268 	state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1269 
1270 	need_restore = (state == PCI_D3hot || dev->current_state >= PCI_D3hot) &&
1271 			!(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET);
1272 
1273 	if (state == PCI_D0)
1274 		goto end;
1275 
1276 	/*
1277 	 * Force the entire word to 0. This doesn't affect PME_Status, disables
1278 	 * PME_En, and sets PowerState to 0.
1279 	 */
1280 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, 0);
1281 
1282 	/* Mandatory transition delays; see PCI PM 1.2. */
1283 	if (state == PCI_D3hot)
1284 		pci_dev_d3_sleep(dev);
1285 	else if (state == PCI_D2)
1286 		udelay(PCI_PM_D2_DELAY);
1287 
1288 end:
1289 	dev->current_state = PCI_D0;
1290 	if (need_restore)
1291 		return 1;
1292 
1293 	return 0;
1294 }
1295 
1296 /**
1297  * pci_set_full_power_state - Put a PCI device into D0 and update its state
1298  * @dev: PCI device to power up
1299  * @locked: whether pci_bus_sem is held
1300  *
1301  * Call pci_power_up() to put @dev into D0, read from its PCI_PM_CTRL register
1302  * to confirm the state change, restore its BARs if they might be lost and
1303  * reconfigure ASPM in accordance with the new power state.
1304  *
1305  * If pci_restore_state() is going to be called right after a power state change
1306  * to D0, it is more efficient to use pci_power_up() directly instead of this
1307  * function.
1308  */
1309 static int pci_set_full_power_state(struct pci_dev *dev, bool locked)
1310 {
1311 	u16 pmcsr;
1312 	int ret;
1313 
1314 	ret = pci_power_up(dev);
1315 	if (ret < 0) {
1316 		if (dev->current_state == PCI_D0)
1317 			return 0;
1318 
1319 		return ret;
1320 	}
1321 
1322 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1323 	dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1324 	if (dev->current_state != PCI_D0) {
1325 		pci_info_ratelimited(dev, "Refused to change power state from %s to D0\n",
1326 				     pci_power_name(dev->current_state));
1327 	} else if (ret > 0) {
1328 		/*
1329 		 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1330 		 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1331 		 * from D3hot to D0 _may_ perform an internal reset, thereby
1332 		 * going to "D0 Uninitialized" rather than "D0 Initialized".
1333 		 * For example, at least some versions of the 3c905B and the
1334 		 * 3c556B exhibit this behaviour.
1335 		 *
1336 		 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1337 		 * devices in a D3hot state at boot.  Consequently, we need to
1338 		 * restore at least the BARs so that the device will be
1339 		 * accessible to its driver.
1340 		 */
1341 		pci_restore_bars(dev);
1342 	}
1343 
1344 	if (dev->bus->self)
1345 		pcie_aspm_pm_state_change(dev->bus->self, locked);
1346 
1347 	return 0;
1348 }
1349 
1350 /**
1351  * __pci_dev_set_current_state - Set current state of a PCI device
1352  * @dev: Device to handle
1353  * @data: pointer to state to be set
1354  */
1355 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1356 {
1357 	pci_power_t state = *(pci_power_t *)data;
1358 
1359 	dev->current_state = state;
1360 	return 0;
1361 }
1362 
1363 /**
1364  * pci_bus_set_current_state - Walk given bus and set current state of devices
1365  * @bus: Top bus of the subtree to walk.
1366  * @state: state to be set
1367  */
1368 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1369 {
1370 	if (bus)
1371 		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1372 }
1373 
1374 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state, bool locked)
1375 {
1376 	if (!bus)
1377 		return;
1378 
1379 	if (locked)
1380 		pci_walk_bus_locked(bus, __pci_dev_set_current_state, &state);
1381 	else
1382 		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1383 }
1384 
1385 /**
1386  * pci_set_low_power_state - Put a PCI device into a low-power state.
1387  * @dev: PCI device to handle.
1388  * @state: PCI power state (D1, D2, D3hot) to put the device into.
1389  * @locked: whether pci_bus_sem is held
1390  *
1391  * Use the device's PCI_PM_CTRL register to put it into a low-power state.
1392  *
1393  * RETURN VALUE:
1394  * -EINVAL if the requested state is invalid.
1395  * -EIO if device does not support PCI PM or its PM capabilities register has a
1396  * wrong version, or device doesn't support the requested state.
1397  * 0 if device already is in the requested state.
1398  * 0 if device's power state has been successfully changed.
1399  */
1400 static int pci_set_low_power_state(struct pci_dev *dev, pci_power_t state, bool locked)
1401 {
1402 	u16 pmcsr;
1403 
1404 	if (!dev->pm_cap)
1405 		return -EIO;
1406 
1407 	/*
1408 	 * Validate transition: We can enter D0 from any state, but if
1409 	 * we're already in a low-power state, we can only go deeper.  E.g.,
1410 	 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1411 	 * we'd have to go from D3 to D0, then to D1.
1412 	 */
1413 	if (dev->current_state <= PCI_D3cold && dev->current_state > state) {
1414 		pci_dbg(dev, "Invalid power transition (from %s to %s)\n",
1415 			pci_power_name(dev->current_state),
1416 			pci_power_name(state));
1417 		return -EINVAL;
1418 	}
1419 
1420 	/* Check if this device supports the desired state */
1421 	if ((state == PCI_D1 && !dev->d1_support)
1422 	   || (state == PCI_D2 && !dev->d2_support))
1423 		return -EIO;
1424 
1425 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1426 	if (PCI_POSSIBLE_ERROR(pmcsr)) {
1427 		pci_err(dev, "Unable to change power state from %s to %s, device inaccessible\n",
1428 			pci_power_name(dev->current_state),
1429 			pci_power_name(state));
1430 		dev->current_state = PCI_D3cold;
1431 		return -EIO;
1432 	}
1433 
1434 	pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1435 	pmcsr |= state;
1436 
1437 	/* Enter specified state */
1438 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1439 
1440 	/* Mandatory power management transition delays; see PCI PM 1.2. */
1441 	if (state == PCI_D3hot)
1442 		pci_dev_d3_sleep(dev);
1443 	else if (state == PCI_D2)
1444 		udelay(PCI_PM_D2_DELAY);
1445 
1446 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1447 	dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1448 	if (dev->current_state != state)
1449 		pci_info_ratelimited(dev, "Refused to change power state from %s to %s\n",
1450 				     pci_power_name(dev->current_state),
1451 				     pci_power_name(state));
1452 
1453 	if (dev->bus->self)
1454 		pcie_aspm_pm_state_change(dev->bus->self, locked);
1455 
1456 	return 0;
1457 }
1458 
1459 static int __pci_set_power_state(struct pci_dev *dev, pci_power_t state, bool locked)
1460 {
1461 	int error;
1462 
1463 	/* Bound the state we're entering */
1464 	if (state > PCI_D3cold)
1465 		state = PCI_D3cold;
1466 	else if (state < PCI_D0)
1467 		state = PCI_D0;
1468 	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1469 
1470 		/*
1471 		 * If the device or the parent bridge do not support PCI
1472 		 * PM, ignore the request if we're doing anything other
1473 		 * than putting it into D0 (which would only happen on
1474 		 * boot).
1475 		 */
1476 		return 0;
1477 
1478 	/* Check if we're already there */
1479 	if (dev->current_state == state)
1480 		return 0;
1481 
1482 	if (state == PCI_D0)
1483 		return pci_set_full_power_state(dev, locked);
1484 
1485 	/*
1486 	 * This device is quirked not to be put into D3, so don't put it in
1487 	 * D3
1488 	 */
1489 	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1490 		return 0;
1491 
1492 	if (state == PCI_D3cold) {
1493 		/*
1494 		 * To put the device in D3cold, put it into D3hot in the native
1495 		 * way, then put it into D3cold using platform ops.
1496 		 */
1497 		error = pci_set_low_power_state(dev, PCI_D3hot, locked);
1498 
1499 		if (pci_platform_power_transition(dev, PCI_D3cold))
1500 			return error;
1501 
1502 		/* Powering off a bridge may power off the whole hierarchy */
1503 		if (dev->current_state == PCI_D3cold)
1504 			__pci_bus_set_current_state(dev->subordinate, PCI_D3cold, locked);
1505 	} else {
1506 		error = pci_set_low_power_state(dev, state, locked);
1507 
1508 		if (pci_platform_power_transition(dev, state))
1509 			return error;
1510 	}
1511 
1512 	return 0;
1513 }
1514 
1515 /**
1516  * pci_set_power_state - Set the power state of a PCI device
1517  * @dev: PCI device to handle.
1518  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1519  *
1520  * Transition a device to a new power state, using the platform firmware and/or
1521  * the device's PCI PM registers.
1522  *
1523  * RETURN VALUE:
1524  * -EINVAL if the requested state is invalid.
1525  * -EIO if device does not support PCI PM or its PM capabilities register has a
1526  * wrong version, or device doesn't support the requested state.
1527  * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1528  * 0 if device already is in the requested state.
1529  * 0 if the transition is to D3 but D3 is not supported.
1530  * 0 if device's power state has been successfully changed.
1531  */
1532 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1533 {
1534 	return __pci_set_power_state(dev, state, false);
1535 }
1536 EXPORT_SYMBOL(pci_set_power_state);
1537 
1538 int pci_set_power_state_locked(struct pci_dev *dev, pci_power_t state)
1539 {
1540 	lockdep_assert_held(&pci_bus_sem);
1541 
1542 	return __pci_set_power_state(dev, state, true);
1543 }
1544 EXPORT_SYMBOL(pci_set_power_state_locked);
1545 
1546 #define PCI_EXP_SAVE_REGS	7
1547 
1548 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1549 						       u16 cap, bool extended)
1550 {
1551 	struct pci_cap_saved_state *tmp;
1552 
1553 	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1554 		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1555 			return tmp;
1556 	}
1557 	return NULL;
1558 }
1559 
1560 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1561 {
1562 	return _pci_find_saved_cap(dev, cap, false);
1563 }
1564 
1565 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1566 {
1567 	return _pci_find_saved_cap(dev, cap, true);
1568 }
1569 
1570 static int pci_save_pcie_state(struct pci_dev *dev)
1571 {
1572 	int i = 0;
1573 	struct pci_cap_saved_state *save_state;
1574 	u16 *cap;
1575 
1576 	if (!pci_is_pcie(dev))
1577 		return 0;
1578 
1579 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1580 	if (!save_state) {
1581 		pci_err(dev, "buffer not found in %s\n", __func__);
1582 		return -ENOMEM;
1583 	}
1584 
1585 	cap = (u16 *)&save_state->cap.data[0];
1586 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1587 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1588 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1589 	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
1590 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1591 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1592 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1593 
1594 	return 0;
1595 }
1596 
1597 void pci_bridge_reconfigure_ltr(struct pci_dev *dev)
1598 {
1599 #ifdef CONFIG_PCIEASPM
1600 	struct pci_dev *bridge;
1601 	u32 ctl;
1602 
1603 	bridge = pci_upstream_bridge(dev);
1604 	if (bridge && bridge->ltr_path) {
1605 		pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, &ctl);
1606 		if (!(ctl & PCI_EXP_DEVCTL2_LTR_EN)) {
1607 			pci_dbg(bridge, "re-enabling LTR\n");
1608 			pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
1609 						 PCI_EXP_DEVCTL2_LTR_EN);
1610 		}
1611 	}
1612 #endif
1613 }
1614 
1615 static void pci_restore_pcie_state(struct pci_dev *dev)
1616 {
1617 	int i = 0;
1618 	struct pci_cap_saved_state *save_state;
1619 	u16 *cap;
1620 
1621 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1622 	if (!save_state)
1623 		return;
1624 
1625 	/*
1626 	 * Downstream ports reset the LTR enable bit when link goes down.
1627 	 * Check and re-configure the bit here before restoring device.
1628 	 * PCIe r5.0, sec 7.5.3.16.
1629 	 */
1630 	pci_bridge_reconfigure_ltr(dev);
1631 
1632 	cap = (u16 *)&save_state->cap.data[0];
1633 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1634 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1635 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1636 	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1637 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1638 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1639 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1640 }
1641 
1642 static int pci_save_pcix_state(struct pci_dev *dev)
1643 {
1644 	int pos;
1645 	struct pci_cap_saved_state *save_state;
1646 
1647 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1648 	if (!pos)
1649 		return 0;
1650 
1651 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1652 	if (!save_state) {
1653 		pci_err(dev, "buffer not found in %s\n", __func__);
1654 		return -ENOMEM;
1655 	}
1656 
1657 	pci_read_config_word(dev, pos + PCI_X_CMD,
1658 			     (u16 *)save_state->cap.data);
1659 
1660 	return 0;
1661 }
1662 
1663 static void pci_restore_pcix_state(struct pci_dev *dev)
1664 {
1665 	int i = 0, pos;
1666 	struct pci_cap_saved_state *save_state;
1667 	u16 *cap;
1668 
1669 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1670 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1671 	if (!save_state || !pos)
1672 		return;
1673 	cap = (u16 *)&save_state->cap.data[0];
1674 
1675 	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1676 }
1677 
1678 static void pci_save_ltr_state(struct pci_dev *dev)
1679 {
1680 	int ltr;
1681 	struct pci_cap_saved_state *save_state;
1682 	u32 *cap;
1683 
1684 	if (!pci_is_pcie(dev))
1685 		return;
1686 
1687 	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1688 	if (!ltr)
1689 		return;
1690 
1691 	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1692 	if (!save_state) {
1693 		pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1694 		return;
1695 	}
1696 
1697 	/* Some broken devices only support dword access to LTR */
1698 	cap = &save_state->cap.data[0];
1699 	pci_read_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap);
1700 }
1701 
1702 static void pci_restore_ltr_state(struct pci_dev *dev)
1703 {
1704 	struct pci_cap_saved_state *save_state;
1705 	int ltr;
1706 	u32 *cap;
1707 
1708 	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1709 	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1710 	if (!save_state || !ltr)
1711 		return;
1712 
1713 	/* Some broken devices only support dword access to LTR */
1714 	cap = &save_state->cap.data[0];
1715 	pci_write_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap);
1716 }
1717 
1718 /**
1719  * pci_save_state - save the PCI configuration space of a device before
1720  *		    suspending
1721  * @dev: PCI device that we're dealing with
1722  */
1723 int pci_save_state(struct pci_dev *dev)
1724 {
1725 	int i;
1726 	/* XXX: 100% dword access ok here? */
1727 	for (i = 0; i < 16; i++) {
1728 		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1729 		pci_dbg(dev, "save config %#04x: %#010x\n",
1730 			i * 4, dev->saved_config_space[i]);
1731 	}
1732 	dev->state_saved = true;
1733 
1734 	i = pci_save_pcie_state(dev);
1735 	if (i != 0)
1736 		return i;
1737 
1738 	i = pci_save_pcix_state(dev);
1739 	if (i != 0)
1740 		return i;
1741 
1742 	pci_save_ltr_state(dev);
1743 	pci_save_dpc_state(dev);
1744 	pci_save_aer_state(dev);
1745 	pci_save_ptm_state(dev);
1746 	return pci_save_vc_state(dev);
1747 }
1748 EXPORT_SYMBOL(pci_save_state);
1749 
1750 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1751 				     u32 saved_val, int retry, bool force)
1752 {
1753 	u32 val;
1754 
1755 	pci_read_config_dword(pdev, offset, &val);
1756 	if (!force && val == saved_val)
1757 		return;
1758 
1759 	for (;;) {
1760 		pci_dbg(pdev, "restore config %#04x: %#010x -> %#010x\n",
1761 			offset, val, saved_val);
1762 		pci_write_config_dword(pdev, offset, saved_val);
1763 		if (retry-- <= 0)
1764 			return;
1765 
1766 		pci_read_config_dword(pdev, offset, &val);
1767 		if (val == saved_val)
1768 			return;
1769 
1770 		mdelay(1);
1771 	}
1772 }
1773 
1774 static void pci_restore_config_space_range(struct pci_dev *pdev,
1775 					   int start, int end, int retry,
1776 					   bool force)
1777 {
1778 	int index;
1779 
1780 	for (index = end; index >= start; index--)
1781 		pci_restore_config_dword(pdev, 4 * index,
1782 					 pdev->saved_config_space[index],
1783 					 retry, force);
1784 }
1785 
1786 static void pci_restore_config_space(struct pci_dev *pdev)
1787 {
1788 	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1789 		pci_restore_config_space_range(pdev, 10, 15, 0, false);
1790 		/* Restore BARs before the command register. */
1791 		pci_restore_config_space_range(pdev, 4, 9, 10, false);
1792 		pci_restore_config_space_range(pdev, 0, 3, 0, false);
1793 	} else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1794 		pci_restore_config_space_range(pdev, 12, 15, 0, false);
1795 
1796 		/*
1797 		 * Force rewriting of prefetch registers to avoid S3 resume
1798 		 * issues on Intel PCI bridges that occur when these
1799 		 * registers are not explicitly written.
1800 		 */
1801 		pci_restore_config_space_range(pdev, 9, 11, 0, true);
1802 		pci_restore_config_space_range(pdev, 0, 8, 0, false);
1803 	} else {
1804 		pci_restore_config_space_range(pdev, 0, 15, 0, false);
1805 	}
1806 }
1807 
1808 static void pci_restore_rebar_state(struct pci_dev *pdev)
1809 {
1810 	unsigned int pos, nbars, i;
1811 	u32 ctrl;
1812 
1813 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1814 	if (!pos)
1815 		return;
1816 
1817 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1818 	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1819 		    PCI_REBAR_CTRL_NBAR_SHIFT;
1820 
1821 	for (i = 0; i < nbars; i++, pos += 8) {
1822 		struct resource *res;
1823 		int bar_idx, size;
1824 
1825 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1826 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1827 		res = pdev->resource + bar_idx;
1828 		size = pci_rebar_bytes_to_size(resource_size(res));
1829 		ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1830 		ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1831 		pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1832 	}
1833 }
1834 
1835 /**
1836  * pci_restore_state - Restore the saved state of a PCI device
1837  * @dev: PCI device that we're dealing with
1838  */
1839 void pci_restore_state(struct pci_dev *dev)
1840 {
1841 	if (!dev->state_saved)
1842 		return;
1843 
1844 	/*
1845 	 * Restore max latencies (in the LTR capability) before enabling
1846 	 * LTR itself (in the PCIe capability).
1847 	 */
1848 	pci_restore_ltr_state(dev);
1849 
1850 	pci_restore_pcie_state(dev);
1851 	pci_restore_pasid_state(dev);
1852 	pci_restore_pri_state(dev);
1853 	pci_restore_ats_state(dev);
1854 	pci_restore_vc_state(dev);
1855 	pci_restore_rebar_state(dev);
1856 	pci_restore_dpc_state(dev);
1857 	pci_restore_ptm_state(dev);
1858 
1859 	pci_aer_clear_status(dev);
1860 	pci_restore_aer_state(dev);
1861 
1862 	pci_restore_config_space(dev);
1863 
1864 	pci_restore_pcix_state(dev);
1865 	pci_restore_msi_state(dev);
1866 
1867 	/* Restore ACS and IOV configuration state */
1868 	pci_enable_acs(dev);
1869 	pci_restore_iov_state(dev);
1870 
1871 	dev->state_saved = false;
1872 }
1873 EXPORT_SYMBOL(pci_restore_state);
1874 
1875 struct pci_saved_state {
1876 	u32 config_space[16];
1877 	struct pci_cap_saved_data cap[];
1878 };
1879 
1880 /**
1881  * pci_store_saved_state - Allocate and return an opaque struct containing
1882  *			   the device saved state.
1883  * @dev: PCI device that we're dealing with
1884  *
1885  * Return NULL if no state or error.
1886  */
1887 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1888 {
1889 	struct pci_saved_state *state;
1890 	struct pci_cap_saved_state *tmp;
1891 	struct pci_cap_saved_data *cap;
1892 	size_t size;
1893 
1894 	if (!dev->state_saved)
1895 		return NULL;
1896 
1897 	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1898 
1899 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1900 		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1901 
1902 	state = kzalloc(size, GFP_KERNEL);
1903 	if (!state)
1904 		return NULL;
1905 
1906 	memcpy(state->config_space, dev->saved_config_space,
1907 	       sizeof(state->config_space));
1908 
1909 	cap = state->cap;
1910 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1911 		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1912 		memcpy(cap, &tmp->cap, len);
1913 		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1914 	}
1915 	/* Empty cap_save terminates list */
1916 
1917 	return state;
1918 }
1919 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1920 
1921 /**
1922  * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1923  * @dev: PCI device that we're dealing with
1924  * @state: Saved state returned from pci_store_saved_state()
1925  */
1926 int pci_load_saved_state(struct pci_dev *dev,
1927 			 struct pci_saved_state *state)
1928 {
1929 	struct pci_cap_saved_data *cap;
1930 
1931 	dev->state_saved = false;
1932 
1933 	if (!state)
1934 		return 0;
1935 
1936 	memcpy(dev->saved_config_space, state->config_space,
1937 	       sizeof(state->config_space));
1938 
1939 	cap = state->cap;
1940 	while (cap->size) {
1941 		struct pci_cap_saved_state *tmp;
1942 
1943 		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1944 		if (!tmp || tmp->cap.size != cap->size)
1945 			return -EINVAL;
1946 
1947 		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1948 		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1949 		       sizeof(struct pci_cap_saved_data) + cap->size);
1950 	}
1951 
1952 	dev->state_saved = true;
1953 	return 0;
1954 }
1955 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1956 
1957 /**
1958  * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1959  *				   and free the memory allocated for it.
1960  * @dev: PCI device that we're dealing with
1961  * @state: Pointer to saved state returned from pci_store_saved_state()
1962  */
1963 int pci_load_and_free_saved_state(struct pci_dev *dev,
1964 				  struct pci_saved_state **state)
1965 {
1966 	int ret = pci_load_saved_state(dev, *state);
1967 	kfree(*state);
1968 	*state = NULL;
1969 	return ret;
1970 }
1971 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1972 
1973 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1974 {
1975 	return pci_enable_resources(dev, bars);
1976 }
1977 
1978 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1979 {
1980 	int err;
1981 	struct pci_dev *bridge;
1982 	u16 cmd;
1983 	u8 pin;
1984 
1985 	err = pci_set_power_state(dev, PCI_D0);
1986 	if (err < 0 && err != -EIO)
1987 		return err;
1988 
1989 	bridge = pci_upstream_bridge(dev);
1990 	if (bridge)
1991 		pcie_aspm_powersave_config_link(bridge);
1992 
1993 	err = pcibios_enable_device(dev, bars);
1994 	if (err < 0)
1995 		return err;
1996 	pci_fixup_device(pci_fixup_enable, dev);
1997 
1998 	if (dev->msi_enabled || dev->msix_enabled)
1999 		return 0;
2000 
2001 	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
2002 	if (pin) {
2003 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
2004 		if (cmd & PCI_COMMAND_INTX_DISABLE)
2005 			pci_write_config_word(dev, PCI_COMMAND,
2006 					      cmd & ~PCI_COMMAND_INTX_DISABLE);
2007 	}
2008 
2009 	return 0;
2010 }
2011 
2012 /**
2013  * pci_reenable_device - Resume abandoned device
2014  * @dev: PCI device to be resumed
2015  *
2016  * NOTE: This function is a backend of pci_default_resume() and is not supposed
2017  * to be called by normal code, write proper resume handler and use it instead.
2018  */
2019 int pci_reenable_device(struct pci_dev *dev)
2020 {
2021 	if (pci_is_enabled(dev))
2022 		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
2023 	return 0;
2024 }
2025 EXPORT_SYMBOL(pci_reenable_device);
2026 
2027 static void pci_enable_bridge(struct pci_dev *dev)
2028 {
2029 	struct pci_dev *bridge;
2030 	int retval;
2031 
2032 	bridge = pci_upstream_bridge(dev);
2033 	if (bridge)
2034 		pci_enable_bridge(bridge);
2035 
2036 	if (pci_is_enabled(dev)) {
2037 		if (!dev->is_busmaster)
2038 			pci_set_master(dev);
2039 		return;
2040 	}
2041 
2042 	retval = pci_enable_device(dev);
2043 	if (retval)
2044 		pci_err(dev, "Error enabling bridge (%d), continuing\n",
2045 			retval);
2046 	pci_set_master(dev);
2047 }
2048 
2049 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
2050 {
2051 	struct pci_dev *bridge;
2052 	int err;
2053 	int i, bars = 0;
2054 
2055 	/*
2056 	 * Power state could be unknown at this point, either due to a fresh
2057 	 * boot or a device removal call.  So get the current power state
2058 	 * so that things like MSI message writing will behave as expected
2059 	 * (e.g. if the device really is in D0 at enable time).
2060 	 */
2061 	pci_update_current_state(dev, dev->current_state);
2062 
2063 	if (atomic_inc_return(&dev->enable_cnt) > 1)
2064 		return 0;		/* already enabled */
2065 
2066 	bridge = pci_upstream_bridge(dev);
2067 	if (bridge)
2068 		pci_enable_bridge(bridge);
2069 
2070 	/* only skip sriov related */
2071 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
2072 		if (dev->resource[i].flags & flags)
2073 			bars |= (1 << i);
2074 	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
2075 		if (dev->resource[i].flags & flags)
2076 			bars |= (1 << i);
2077 
2078 	err = do_pci_enable_device(dev, bars);
2079 	if (err < 0)
2080 		atomic_dec(&dev->enable_cnt);
2081 	return err;
2082 }
2083 
2084 /**
2085  * pci_enable_device_io - Initialize a device for use with IO space
2086  * @dev: PCI device to be initialized
2087  *
2088  * Initialize device before it's used by a driver. Ask low-level code
2089  * to enable I/O resources. Wake up the device if it was suspended.
2090  * Beware, this function can fail.
2091  */
2092 int pci_enable_device_io(struct pci_dev *dev)
2093 {
2094 	return pci_enable_device_flags(dev, IORESOURCE_IO);
2095 }
2096 EXPORT_SYMBOL(pci_enable_device_io);
2097 
2098 /**
2099  * pci_enable_device_mem - Initialize a device for use with Memory space
2100  * @dev: PCI device to be initialized
2101  *
2102  * Initialize device before it's used by a driver. Ask low-level code
2103  * to enable Memory resources. Wake up the device if it was suspended.
2104  * Beware, this function can fail.
2105  */
2106 int pci_enable_device_mem(struct pci_dev *dev)
2107 {
2108 	return pci_enable_device_flags(dev, IORESOURCE_MEM);
2109 }
2110 EXPORT_SYMBOL(pci_enable_device_mem);
2111 
2112 /**
2113  * pci_enable_device - Initialize device before it's used by a driver.
2114  * @dev: PCI device to be initialized
2115  *
2116  * Initialize device before it's used by a driver. Ask low-level code
2117  * to enable I/O and memory. Wake up the device if it was suspended.
2118  * Beware, this function can fail.
2119  *
2120  * Note we don't actually enable the device many times if we call
2121  * this function repeatedly (we just increment the count).
2122  */
2123 int pci_enable_device(struct pci_dev *dev)
2124 {
2125 	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
2126 }
2127 EXPORT_SYMBOL(pci_enable_device);
2128 
2129 /*
2130  * Managed PCI resources.  This manages device on/off, INTx/MSI/MSI-X
2131  * on/off and BAR regions.  pci_dev itself records MSI/MSI-X status, so
2132  * there's no need to track it separately.  pci_devres is initialized
2133  * when a device is enabled using managed PCI device enable interface.
2134  */
2135 struct pci_devres {
2136 	unsigned int enabled:1;
2137 	unsigned int pinned:1;
2138 	unsigned int orig_intx:1;
2139 	unsigned int restore_intx:1;
2140 	unsigned int mwi:1;
2141 	u32 region_mask;
2142 };
2143 
2144 static void pcim_release(struct device *gendev, void *res)
2145 {
2146 	struct pci_dev *dev = to_pci_dev(gendev);
2147 	struct pci_devres *this = res;
2148 	int i;
2149 
2150 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
2151 		if (this->region_mask & (1 << i))
2152 			pci_release_region(dev, i);
2153 
2154 	if (this->mwi)
2155 		pci_clear_mwi(dev);
2156 
2157 	if (this->restore_intx)
2158 		pci_intx(dev, this->orig_intx);
2159 
2160 	if (this->enabled && !this->pinned)
2161 		pci_disable_device(dev);
2162 }
2163 
2164 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
2165 {
2166 	struct pci_devres *dr, *new_dr;
2167 
2168 	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
2169 	if (dr)
2170 		return dr;
2171 
2172 	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
2173 	if (!new_dr)
2174 		return NULL;
2175 	return devres_get(&pdev->dev, new_dr, NULL, NULL);
2176 }
2177 
2178 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
2179 {
2180 	if (pci_is_managed(pdev))
2181 		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
2182 	return NULL;
2183 }
2184 
2185 /**
2186  * pcim_enable_device - Managed pci_enable_device()
2187  * @pdev: PCI device to be initialized
2188  *
2189  * Managed pci_enable_device().
2190  */
2191 int pcim_enable_device(struct pci_dev *pdev)
2192 {
2193 	struct pci_devres *dr;
2194 	int rc;
2195 
2196 	dr = get_pci_dr(pdev);
2197 	if (unlikely(!dr))
2198 		return -ENOMEM;
2199 	if (dr->enabled)
2200 		return 0;
2201 
2202 	rc = pci_enable_device(pdev);
2203 	if (!rc) {
2204 		pdev->is_managed = 1;
2205 		dr->enabled = 1;
2206 	}
2207 	return rc;
2208 }
2209 EXPORT_SYMBOL(pcim_enable_device);
2210 
2211 /**
2212  * pcim_pin_device - Pin managed PCI device
2213  * @pdev: PCI device to pin
2214  *
2215  * Pin managed PCI device @pdev.  Pinned device won't be disabled on
2216  * driver detach.  @pdev must have been enabled with
2217  * pcim_enable_device().
2218  */
2219 void pcim_pin_device(struct pci_dev *pdev)
2220 {
2221 	struct pci_devres *dr;
2222 
2223 	dr = find_pci_dr(pdev);
2224 	WARN_ON(!dr || !dr->enabled);
2225 	if (dr)
2226 		dr->pinned = 1;
2227 }
2228 EXPORT_SYMBOL(pcim_pin_device);
2229 
2230 /*
2231  * pcibios_device_add - provide arch specific hooks when adding device dev
2232  * @dev: the PCI device being added
2233  *
2234  * Permits the platform to provide architecture specific functionality when
2235  * devices are added. This is the default implementation. Architecture
2236  * implementations can override this.
2237  */
2238 int __weak pcibios_device_add(struct pci_dev *dev)
2239 {
2240 	return 0;
2241 }
2242 
2243 /**
2244  * pcibios_release_device - provide arch specific hooks when releasing
2245  *			    device dev
2246  * @dev: the PCI device being released
2247  *
2248  * Permits the platform to provide architecture specific functionality when
2249  * devices are released. This is the default implementation. Architecture
2250  * implementations can override this.
2251  */
2252 void __weak pcibios_release_device(struct pci_dev *dev) {}
2253 
2254 /**
2255  * pcibios_disable_device - disable arch specific PCI resources for device dev
2256  * @dev: the PCI device to disable
2257  *
2258  * Disables architecture specific PCI resources for the device. This
2259  * is the default implementation. Architecture implementations can
2260  * override this.
2261  */
2262 void __weak pcibios_disable_device(struct pci_dev *dev) {}
2263 
2264 /**
2265  * pcibios_penalize_isa_irq - penalize an ISA IRQ
2266  * @irq: ISA IRQ to penalize
2267  * @active: IRQ active or not
2268  *
2269  * Permits the platform to provide architecture-specific functionality when
2270  * penalizing ISA IRQs. This is the default implementation. Architecture
2271  * implementations can override this.
2272  */
2273 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
2274 
2275 static void do_pci_disable_device(struct pci_dev *dev)
2276 {
2277 	u16 pci_command;
2278 
2279 	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2280 	if (pci_command & PCI_COMMAND_MASTER) {
2281 		pci_command &= ~PCI_COMMAND_MASTER;
2282 		pci_write_config_word(dev, PCI_COMMAND, pci_command);
2283 	}
2284 
2285 	pcibios_disable_device(dev);
2286 }
2287 
2288 /**
2289  * pci_disable_enabled_device - Disable device without updating enable_cnt
2290  * @dev: PCI device to disable
2291  *
2292  * NOTE: This function is a backend of PCI power management routines and is
2293  * not supposed to be called drivers.
2294  */
2295 void pci_disable_enabled_device(struct pci_dev *dev)
2296 {
2297 	if (pci_is_enabled(dev))
2298 		do_pci_disable_device(dev);
2299 }
2300 
2301 /**
2302  * pci_disable_device - Disable PCI device after use
2303  * @dev: PCI device to be disabled
2304  *
2305  * Signal to the system that the PCI device is not in use by the system
2306  * anymore.  This only involves disabling PCI bus-mastering, if active.
2307  *
2308  * Note we don't actually disable the device until all callers of
2309  * pci_enable_device() have called pci_disable_device().
2310  */
2311 void pci_disable_device(struct pci_dev *dev)
2312 {
2313 	struct pci_devres *dr;
2314 
2315 	dr = find_pci_dr(dev);
2316 	if (dr)
2317 		dr->enabled = 0;
2318 
2319 	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2320 		      "disabling already-disabled device");
2321 
2322 	if (atomic_dec_return(&dev->enable_cnt) != 0)
2323 		return;
2324 
2325 	do_pci_disable_device(dev);
2326 
2327 	dev->is_busmaster = 0;
2328 }
2329 EXPORT_SYMBOL(pci_disable_device);
2330 
2331 /**
2332  * pcibios_set_pcie_reset_state - set reset state for device dev
2333  * @dev: the PCIe device reset
2334  * @state: Reset state to enter into
2335  *
2336  * Set the PCIe reset state for the device. This is the default
2337  * implementation. Architecture implementations can override this.
2338  */
2339 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2340 					enum pcie_reset_state state)
2341 {
2342 	return -EINVAL;
2343 }
2344 
2345 /**
2346  * pci_set_pcie_reset_state - set reset state for device dev
2347  * @dev: the PCIe device reset
2348  * @state: Reset state to enter into
2349  *
2350  * Sets the PCI reset state for the device.
2351  */
2352 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2353 {
2354 	return pcibios_set_pcie_reset_state(dev, state);
2355 }
2356 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2357 
2358 #ifdef CONFIG_PCIEAER
2359 void pcie_clear_device_status(struct pci_dev *dev)
2360 {
2361 	u16 sta;
2362 
2363 	pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2364 	pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2365 }
2366 #endif
2367 
2368 /**
2369  * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2370  * @dev: PCIe root port or event collector.
2371  */
2372 void pcie_clear_root_pme_status(struct pci_dev *dev)
2373 {
2374 	pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2375 }
2376 
2377 /**
2378  * pci_check_pme_status - Check if given device has generated PME.
2379  * @dev: Device to check.
2380  *
2381  * Check the PME status of the device and if set, clear it and clear PME enable
2382  * (if set).  Return 'true' if PME status and PME enable were both set or
2383  * 'false' otherwise.
2384  */
2385 bool pci_check_pme_status(struct pci_dev *dev)
2386 {
2387 	int pmcsr_pos;
2388 	u16 pmcsr;
2389 	bool ret = false;
2390 
2391 	if (!dev->pm_cap)
2392 		return false;
2393 
2394 	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2395 	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2396 	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2397 		return false;
2398 
2399 	/* Clear PME status. */
2400 	pmcsr |= PCI_PM_CTRL_PME_STATUS;
2401 	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2402 		/* Disable PME to avoid interrupt flood. */
2403 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2404 		ret = true;
2405 	}
2406 
2407 	pci_write_config_word(dev, pmcsr_pos, pmcsr);
2408 
2409 	return ret;
2410 }
2411 
2412 /**
2413  * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2414  * @dev: Device to handle.
2415  * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2416  *
2417  * Check if @dev has generated PME and queue a resume request for it in that
2418  * case.
2419  */
2420 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2421 {
2422 	if (pme_poll_reset && dev->pme_poll)
2423 		dev->pme_poll = false;
2424 
2425 	if (pci_check_pme_status(dev)) {
2426 		pci_wakeup_event(dev);
2427 		pm_request_resume(&dev->dev);
2428 	}
2429 	return 0;
2430 }
2431 
2432 /**
2433  * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2434  * @bus: Top bus of the subtree to walk.
2435  */
2436 void pci_pme_wakeup_bus(struct pci_bus *bus)
2437 {
2438 	if (bus)
2439 		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2440 }
2441 
2442 
2443 /**
2444  * pci_pme_capable - check the capability of PCI device to generate PME#
2445  * @dev: PCI device to handle.
2446  * @state: PCI state from which device will issue PME#.
2447  */
2448 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2449 {
2450 	if (!dev->pm_cap)
2451 		return false;
2452 
2453 	return !!(dev->pme_support & (1 << state));
2454 }
2455 EXPORT_SYMBOL(pci_pme_capable);
2456 
2457 static void pci_pme_list_scan(struct work_struct *work)
2458 {
2459 	struct pci_pme_device *pme_dev, *n;
2460 
2461 	mutex_lock(&pci_pme_list_mutex);
2462 	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2463 		struct pci_dev *pdev = pme_dev->dev;
2464 
2465 		if (pdev->pme_poll) {
2466 			struct pci_dev *bridge = pdev->bus->self;
2467 			struct device *dev = &pdev->dev;
2468 			struct device *bdev = bridge ? &bridge->dev : NULL;
2469 			int bref = 0;
2470 
2471 			/*
2472 			 * If we have a bridge, it should be in an active/D0
2473 			 * state or the configuration space of subordinate
2474 			 * devices may not be accessible or stable over the
2475 			 * course of the call.
2476 			 */
2477 			if (bdev) {
2478 				bref = pm_runtime_get_if_active(bdev, true);
2479 				if (!bref)
2480 					continue;
2481 
2482 				if (bridge->current_state != PCI_D0)
2483 					goto put_bridge;
2484 			}
2485 
2486 			/*
2487 			 * The device itself should be suspended but config
2488 			 * space must be accessible, therefore it cannot be in
2489 			 * D3cold.
2490 			 */
2491 			if (pm_runtime_suspended(dev) &&
2492 			    pdev->current_state != PCI_D3cold)
2493 				pci_pme_wakeup(pdev, NULL);
2494 
2495 put_bridge:
2496 			if (bref > 0)
2497 				pm_runtime_put(bdev);
2498 		} else {
2499 			list_del(&pme_dev->list);
2500 			kfree(pme_dev);
2501 		}
2502 	}
2503 	if (!list_empty(&pci_pme_list))
2504 		queue_delayed_work(system_freezable_wq, &pci_pme_work,
2505 				   msecs_to_jiffies(PME_TIMEOUT));
2506 	mutex_unlock(&pci_pme_list_mutex);
2507 }
2508 
2509 static void __pci_pme_active(struct pci_dev *dev, bool enable)
2510 {
2511 	u16 pmcsr;
2512 
2513 	if (!dev->pme_support)
2514 		return;
2515 
2516 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2517 	/* Clear PME_Status by writing 1 to it and enable PME# */
2518 	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2519 	if (!enable)
2520 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2521 
2522 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2523 }
2524 
2525 /**
2526  * pci_pme_restore - Restore PME configuration after config space restore.
2527  * @dev: PCI device to update.
2528  */
2529 void pci_pme_restore(struct pci_dev *dev)
2530 {
2531 	u16 pmcsr;
2532 
2533 	if (!dev->pme_support)
2534 		return;
2535 
2536 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2537 	if (dev->wakeup_prepared) {
2538 		pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2539 		pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2540 	} else {
2541 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2542 		pmcsr |= PCI_PM_CTRL_PME_STATUS;
2543 	}
2544 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2545 }
2546 
2547 /**
2548  * pci_pme_active - enable or disable PCI device's PME# function
2549  * @dev: PCI device to handle.
2550  * @enable: 'true' to enable PME# generation; 'false' to disable it.
2551  *
2552  * The caller must verify that the device is capable of generating PME# before
2553  * calling this function with @enable equal to 'true'.
2554  */
2555 void pci_pme_active(struct pci_dev *dev, bool enable)
2556 {
2557 	__pci_pme_active(dev, enable);
2558 
2559 	/*
2560 	 * PCI (as opposed to PCIe) PME requires that the device have
2561 	 * its PME# line hooked up correctly. Not all hardware vendors
2562 	 * do this, so the PME never gets delivered and the device
2563 	 * remains asleep. The easiest way around this is to
2564 	 * periodically walk the list of suspended devices and check
2565 	 * whether any have their PME flag set. The assumption is that
2566 	 * we'll wake up often enough anyway that this won't be a huge
2567 	 * hit, and the power savings from the devices will still be a
2568 	 * win.
2569 	 *
2570 	 * Although PCIe uses in-band PME message instead of PME# line
2571 	 * to report PME, PME does not work for some PCIe devices in
2572 	 * reality.  For example, there are devices that set their PME
2573 	 * status bits, but don't really bother to send a PME message;
2574 	 * there are PCI Express Root Ports that don't bother to
2575 	 * trigger interrupts when they receive PME messages from the
2576 	 * devices below.  So PME poll is used for PCIe devices too.
2577 	 */
2578 
2579 	if (dev->pme_poll) {
2580 		struct pci_pme_device *pme_dev;
2581 		if (enable) {
2582 			pme_dev = kmalloc(sizeof(struct pci_pme_device),
2583 					  GFP_KERNEL);
2584 			if (!pme_dev) {
2585 				pci_warn(dev, "can't enable PME#\n");
2586 				return;
2587 			}
2588 			pme_dev->dev = dev;
2589 			mutex_lock(&pci_pme_list_mutex);
2590 			list_add(&pme_dev->list, &pci_pme_list);
2591 			if (list_is_singular(&pci_pme_list))
2592 				queue_delayed_work(system_freezable_wq,
2593 						   &pci_pme_work,
2594 						   msecs_to_jiffies(PME_TIMEOUT));
2595 			mutex_unlock(&pci_pme_list_mutex);
2596 		} else {
2597 			mutex_lock(&pci_pme_list_mutex);
2598 			list_for_each_entry(pme_dev, &pci_pme_list, list) {
2599 				if (pme_dev->dev == dev) {
2600 					list_del(&pme_dev->list);
2601 					kfree(pme_dev);
2602 					break;
2603 				}
2604 			}
2605 			mutex_unlock(&pci_pme_list_mutex);
2606 		}
2607 	}
2608 
2609 	pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2610 }
2611 EXPORT_SYMBOL(pci_pme_active);
2612 
2613 /**
2614  * __pci_enable_wake - enable PCI device as wakeup event source
2615  * @dev: PCI device affected
2616  * @state: PCI state from which device will issue wakeup events
2617  * @enable: True to enable event generation; false to disable
2618  *
2619  * This enables the device as a wakeup event source, or disables it.
2620  * When such events involves platform-specific hooks, those hooks are
2621  * called automatically by this routine.
2622  *
2623  * Devices with legacy power management (no standard PCI PM capabilities)
2624  * always require such platform hooks.
2625  *
2626  * RETURN VALUE:
2627  * 0 is returned on success
2628  * -EINVAL is returned if device is not supposed to wake up the system
2629  * Error code depending on the platform is returned if both the platform and
2630  * the native mechanism fail to enable the generation of wake-up events
2631  */
2632 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2633 {
2634 	int ret = 0;
2635 
2636 	/*
2637 	 * Bridges that are not power-manageable directly only signal
2638 	 * wakeup on behalf of subordinate devices which is set up
2639 	 * elsewhere, so skip them. However, bridges that are
2640 	 * power-manageable may signal wakeup for themselves (for example,
2641 	 * on a hotplug event) and they need to be covered here.
2642 	 */
2643 	if (!pci_power_manageable(dev))
2644 		return 0;
2645 
2646 	/* Don't do the same thing twice in a row for one device. */
2647 	if (!!enable == !!dev->wakeup_prepared)
2648 		return 0;
2649 
2650 	/*
2651 	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2652 	 * Anderson we should be doing PME# wake enable followed by ACPI wake
2653 	 * enable.  To disable wake-up we call the platform first, for symmetry.
2654 	 */
2655 
2656 	if (enable) {
2657 		int error;
2658 
2659 		/*
2660 		 * Enable PME signaling if the device can signal PME from
2661 		 * D3cold regardless of whether or not it can signal PME from
2662 		 * the current target state, because that will allow it to
2663 		 * signal PME when the hierarchy above it goes into D3cold and
2664 		 * the device itself ends up in D3cold as a result of that.
2665 		 */
2666 		if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold))
2667 			pci_pme_active(dev, true);
2668 		else
2669 			ret = 1;
2670 		error = platform_pci_set_wakeup(dev, true);
2671 		if (ret)
2672 			ret = error;
2673 		if (!ret)
2674 			dev->wakeup_prepared = true;
2675 	} else {
2676 		platform_pci_set_wakeup(dev, false);
2677 		pci_pme_active(dev, false);
2678 		dev->wakeup_prepared = false;
2679 	}
2680 
2681 	return ret;
2682 }
2683 
2684 /**
2685  * pci_enable_wake - change wakeup settings for a PCI device
2686  * @pci_dev: Target device
2687  * @state: PCI state from which device will issue wakeup events
2688  * @enable: Whether or not to enable event generation
2689  *
2690  * If @enable is set, check device_may_wakeup() for the device before calling
2691  * __pci_enable_wake() for it.
2692  */
2693 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2694 {
2695 	if (enable && !device_may_wakeup(&pci_dev->dev))
2696 		return -EINVAL;
2697 
2698 	return __pci_enable_wake(pci_dev, state, enable);
2699 }
2700 EXPORT_SYMBOL(pci_enable_wake);
2701 
2702 /**
2703  * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2704  * @dev: PCI device to prepare
2705  * @enable: True to enable wake-up event generation; false to disable
2706  *
2707  * Many drivers want the device to wake up the system from D3_hot or D3_cold
2708  * and this function allows them to set that up cleanly - pci_enable_wake()
2709  * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2710  * ordering constraints.
2711  *
2712  * This function only returns error code if the device is not allowed to wake
2713  * up the system from sleep or it is not capable of generating PME# from both
2714  * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2715  */
2716 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2717 {
2718 	return pci_pme_capable(dev, PCI_D3cold) ?
2719 			pci_enable_wake(dev, PCI_D3cold, enable) :
2720 			pci_enable_wake(dev, PCI_D3hot, enable);
2721 }
2722 EXPORT_SYMBOL(pci_wake_from_d3);
2723 
2724 /**
2725  * pci_target_state - find an appropriate low power state for a given PCI dev
2726  * @dev: PCI device
2727  * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2728  *
2729  * Use underlying platform code to find a supported low power state for @dev.
2730  * If the platform can't manage @dev, return the deepest state from which it
2731  * can generate wake events, based on any available PME info.
2732  */
2733 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2734 {
2735 	if (platform_pci_power_manageable(dev)) {
2736 		/*
2737 		 * Call the platform to find the target state for the device.
2738 		 */
2739 		pci_power_t state = platform_pci_choose_state(dev);
2740 
2741 		switch (state) {
2742 		case PCI_POWER_ERROR:
2743 		case PCI_UNKNOWN:
2744 			return PCI_D3hot;
2745 
2746 		case PCI_D1:
2747 		case PCI_D2:
2748 			if (pci_no_d1d2(dev))
2749 				return PCI_D3hot;
2750 		}
2751 
2752 		return state;
2753 	}
2754 
2755 	/*
2756 	 * If the device is in D3cold even though it's not power-manageable by
2757 	 * the platform, it may have been powered down by non-standard means.
2758 	 * Best to let it slumber.
2759 	 */
2760 	if (dev->current_state == PCI_D3cold)
2761 		return PCI_D3cold;
2762 	else if (!dev->pm_cap)
2763 		return PCI_D0;
2764 
2765 	if (wakeup && dev->pme_support) {
2766 		pci_power_t state = PCI_D3hot;
2767 
2768 		/*
2769 		 * Find the deepest state from which the device can generate
2770 		 * PME#.
2771 		 */
2772 		while (state && !(dev->pme_support & (1 << state)))
2773 			state--;
2774 
2775 		if (state)
2776 			return state;
2777 		else if (dev->pme_support & 1)
2778 			return PCI_D0;
2779 	}
2780 
2781 	return PCI_D3hot;
2782 }
2783 
2784 /**
2785  * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2786  *			  into a sleep state
2787  * @dev: Device to handle.
2788  *
2789  * Choose the power state appropriate for the device depending on whether
2790  * it can wake up the system and/or is power manageable by the platform
2791  * (PCI_D3hot is the default) and put the device into that state.
2792  */
2793 int pci_prepare_to_sleep(struct pci_dev *dev)
2794 {
2795 	bool wakeup = device_may_wakeup(&dev->dev);
2796 	pci_power_t target_state = pci_target_state(dev, wakeup);
2797 	int error;
2798 
2799 	if (target_state == PCI_POWER_ERROR)
2800 		return -EIO;
2801 
2802 	pci_enable_wake(dev, target_state, wakeup);
2803 
2804 	error = pci_set_power_state(dev, target_state);
2805 
2806 	if (error)
2807 		pci_enable_wake(dev, target_state, false);
2808 
2809 	return error;
2810 }
2811 EXPORT_SYMBOL(pci_prepare_to_sleep);
2812 
2813 /**
2814  * pci_back_from_sleep - turn PCI device on during system-wide transition
2815  *			 into working state
2816  * @dev: Device to handle.
2817  *
2818  * Disable device's system wake-up capability and put it into D0.
2819  */
2820 int pci_back_from_sleep(struct pci_dev *dev)
2821 {
2822 	int ret = pci_set_power_state(dev, PCI_D0);
2823 
2824 	if (ret)
2825 		return ret;
2826 
2827 	pci_enable_wake(dev, PCI_D0, false);
2828 	return 0;
2829 }
2830 EXPORT_SYMBOL(pci_back_from_sleep);
2831 
2832 /**
2833  * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2834  * @dev: PCI device being suspended.
2835  *
2836  * Prepare @dev to generate wake-up events at run time and put it into a low
2837  * power state.
2838  */
2839 int pci_finish_runtime_suspend(struct pci_dev *dev)
2840 {
2841 	pci_power_t target_state;
2842 	int error;
2843 
2844 	target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2845 	if (target_state == PCI_POWER_ERROR)
2846 		return -EIO;
2847 
2848 	__pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2849 
2850 	error = pci_set_power_state(dev, target_state);
2851 
2852 	if (error)
2853 		pci_enable_wake(dev, target_state, false);
2854 
2855 	return error;
2856 }
2857 
2858 /**
2859  * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2860  * @dev: Device to check.
2861  *
2862  * Return true if the device itself is capable of generating wake-up events
2863  * (through the platform or using the native PCIe PME) or if the device supports
2864  * PME and one of its upstream bridges can generate wake-up events.
2865  */
2866 bool pci_dev_run_wake(struct pci_dev *dev)
2867 {
2868 	struct pci_bus *bus = dev->bus;
2869 
2870 	if (!dev->pme_support)
2871 		return false;
2872 
2873 	/* PME-capable in principle, but not from the target power state */
2874 	if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2875 		return false;
2876 
2877 	if (device_can_wakeup(&dev->dev))
2878 		return true;
2879 
2880 	while (bus->parent) {
2881 		struct pci_dev *bridge = bus->self;
2882 
2883 		if (device_can_wakeup(&bridge->dev))
2884 			return true;
2885 
2886 		bus = bus->parent;
2887 	}
2888 
2889 	/* We have reached the root bus. */
2890 	if (bus->bridge)
2891 		return device_can_wakeup(bus->bridge);
2892 
2893 	return false;
2894 }
2895 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2896 
2897 /**
2898  * pci_dev_need_resume - Check if it is necessary to resume the device.
2899  * @pci_dev: Device to check.
2900  *
2901  * Return 'true' if the device is not runtime-suspended or it has to be
2902  * reconfigured due to wakeup settings difference between system and runtime
2903  * suspend, or the current power state of it is not suitable for the upcoming
2904  * (system-wide) transition.
2905  */
2906 bool pci_dev_need_resume(struct pci_dev *pci_dev)
2907 {
2908 	struct device *dev = &pci_dev->dev;
2909 	pci_power_t target_state;
2910 
2911 	if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2912 		return true;
2913 
2914 	target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2915 
2916 	/*
2917 	 * If the earlier platform check has not triggered, D3cold is just power
2918 	 * removal on top of D3hot, so no need to resume the device in that
2919 	 * case.
2920 	 */
2921 	return target_state != pci_dev->current_state &&
2922 		target_state != PCI_D3cold &&
2923 		pci_dev->current_state != PCI_D3hot;
2924 }
2925 
2926 /**
2927  * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2928  * @pci_dev: Device to check.
2929  *
2930  * If the device is suspended and it is not configured for system wakeup,
2931  * disable PME for it to prevent it from waking up the system unnecessarily.
2932  *
2933  * Note that if the device's power state is D3cold and the platform check in
2934  * pci_dev_need_resume() has not triggered, the device's configuration need not
2935  * be changed.
2936  */
2937 void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2938 {
2939 	struct device *dev = &pci_dev->dev;
2940 
2941 	spin_lock_irq(&dev->power.lock);
2942 
2943 	if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2944 	    pci_dev->current_state < PCI_D3cold)
2945 		__pci_pme_active(pci_dev, false);
2946 
2947 	spin_unlock_irq(&dev->power.lock);
2948 }
2949 
2950 /**
2951  * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2952  * @pci_dev: Device to handle.
2953  *
2954  * If the device is runtime suspended and wakeup-capable, enable PME for it as
2955  * it might have been disabled during the prepare phase of system suspend if
2956  * the device was not configured for system wakeup.
2957  */
2958 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2959 {
2960 	struct device *dev = &pci_dev->dev;
2961 
2962 	if (!pci_dev_run_wake(pci_dev))
2963 		return;
2964 
2965 	spin_lock_irq(&dev->power.lock);
2966 
2967 	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2968 		__pci_pme_active(pci_dev, true);
2969 
2970 	spin_unlock_irq(&dev->power.lock);
2971 }
2972 
2973 /**
2974  * pci_choose_state - Choose the power state of a PCI device.
2975  * @dev: Target PCI device.
2976  * @state: Target state for the whole system.
2977  *
2978  * Returns PCI power state suitable for @dev and @state.
2979  */
2980 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
2981 {
2982 	if (state.event == PM_EVENT_ON)
2983 		return PCI_D0;
2984 
2985 	return pci_target_state(dev, false);
2986 }
2987 EXPORT_SYMBOL(pci_choose_state);
2988 
2989 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2990 {
2991 	struct device *dev = &pdev->dev;
2992 	struct device *parent = dev->parent;
2993 
2994 	if (parent)
2995 		pm_runtime_get_sync(parent);
2996 	pm_runtime_get_noresume(dev);
2997 	/*
2998 	 * pdev->current_state is set to PCI_D3cold during suspending,
2999 	 * so wait until suspending completes
3000 	 */
3001 	pm_runtime_barrier(dev);
3002 	/*
3003 	 * Only need to resume devices in D3cold, because config
3004 	 * registers are still accessible for devices suspended but
3005 	 * not in D3cold.
3006 	 */
3007 	if (pdev->current_state == PCI_D3cold)
3008 		pm_runtime_resume(dev);
3009 }
3010 
3011 void pci_config_pm_runtime_put(struct pci_dev *pdev)
3012 {
3013 	struct device *dev = &pdev->dev;
3014 	struct device *parent = dev->parent;
3015 
3016 	pm_runtime_put(dev);
3017 	if (parent)
3018 		pm_runtime_put_sync(parent);
3019 }
3020 
3021 static const struct dmi_system_id bridge_d3_blacklist[] = {
3022 #ifdef CONFIG_X86
3023 	{
3024 		/*
3025 		 * Gigabyte X299 root port is not marked as hotplug capable
3026 		 * which allows Linux to power manage it.  However, this
3027 		 * confuses the BIOS SMI handler so don't power manage root
3028 		 * ports on that system.
3029 		 */
3030 		.ident = "X299 DESIGNARE EX-CF",
3031 		.matches = {
3032 			DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
3033 			DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
3034 		},
3035 	},
3036 	{
3037 		/*
3038 		 * Downstream device is not accessible after putting a root port
3039 		 * into D3cold and back into D0 on Elo Continental Z2 board
3040 		 */
3041 		.ident = "Elo Continental Z2",
3042 		.matches = {
3043 			DMI_MATCH(DMI_BOARD_VENDOR, "Elo Touch Solutions"),
3044 			DMI_MATCH(DMI_BOARD_NAME, "Geminilake"),
3045 			DMI_MATCH(DMI_BOARD_VERSION, "Continental Z2"),
3046 		},
3047 	},
3048 	{
3049 		/*
3050 		 * Changing power state of root port dGPU is connected fails
3051 		 * https://gitlab.freedesktop.org/drm/amd/-/issues/3229
3052 		 */
3053 		.ident = "Hewlett-Packard HP Pavilion 17 Notebook PC/1972",
3054 		.matches = {
3055 			DMI_MATCH(DMI_BOARD_VENDOR, "Hewlett-Packard"),
3056 			DMI_MATCH(DMI_BOARD_NAME, "1972"),
3057 			DMI_MATCH(DMI_BOARD_VERSION, "95.33"),
3058 		},
3059 	},
3060 #endif
3061 	{ }
3062 };
3063 
3064 /**
3065  * pci_bridge_d3_possible - Is it possible to put the bridge into D3
3066  * @bridge: Bridge to check
3067  *
3068  * This function checks if it is possible to move the bridge to D3.
3069  * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
3070  */
3071 bool pci_bridge_d3_possible(struct pci_dev *bridge)
3072 {
3073 	if (!pci_is_pcie(bridge))
3074 		return false;
3075 
3076 	switch (pci_pcie_type(bridge)) {
3077 	case PCI_EXP_TYPE_ROOT_PORT:
3078 	case PCI_EXP_TYPE_UPSTREAM:
3079 	case PCI_EXP_TYPE_DOWNSTREAM:
3080 		if (pci_bridge_d3_disable)
3081 			return false;
3082 
3083 		/*
3084 		 * Hotplug ports handled by firmware in System Management Mode
3085 		 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
3086 		 */
3087 		if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
3088 			return false;
3089 
3090 		if (pci_bridge_d3_force)
3091 			return true;
3092 
3093 		/* Even the oldest 2010 Thunderbolt controller supports D3. */
3094 		if (bridge->is_thunderbolt)
3095 			return true;
3096 
3097 		/* Platform might know better if the bridge supports D3 */
3098 		if (platform_pci_bridge_d3(bridge))
3099 			return true;
3100 
3101 		/*
3102 		 * Hotplug ports handled natively by the OS were not validated
3103 		 * by vendors for runtime D3 at least until 2018 because there
3104 		 * was no OS support.
3105 		 */
3106 		if (bridge->is_hotplug_bridge)
3107 			return false;
3108 
3109 		if (dmi_check_system(bridge_d3_blacklist))
3110 			return false;
3111 
3112 		/*
3113 		 * It should be safe to put PCIe ports from 2015 or newer
3114 		 * to D3.
3115 		 */
3116 		if (dmi_get_bios_year() >= 2015)
3117 			return true;
3118 		break;
3119 	}
3120 
3121 	return false;
3122 }
3123 
3124 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
3125 {
3126 	bool *d3cold_ok = data;
3127 
3128 	if (/* The device needs to be allowed to go D3cold ... */
3129 	    dev->no_d3cold || !dev->d3cold_allowed ||
3130 
3131 	    /* ... and if it is wakeup capable to do so from D3cold. */
3132 	    (device_may_wakeup(&dev->dev) &&
3133 	     !pci_pme_capable(dev, PCI_D3cold)) ||
3134 
3135 	    /* If it is a bridge it must be allowed to go to D3. */
3136 	    !pci_power_manageable(dev))
3137 
3138 		*d3cold_ok = false;
3139 
3140 	return !*d3cold_ok;
3141 }
3142 
3143 /*
3144  * pci_bridge_d3_update - Update bridge D3 capabilities
3145  * @dev: PCI device which is changed
3146  *
3147  * Update upstream bridge PM capabilities accordingly depending on if the
3148  * device PM configuration was changed or the device is being removed.  The
3149  * change is also propagated upstream.
3150  */
3151 void pci_bridge_d3_update(struct pci_dev *dev)
3152 {
3153 	bool remove = !device_is_registered(&dev->dev);
3154 	struct pci_dev *bridge;
3155 	bool d3cold_ok = true;
3156 
3157 	bridge = pci_upstream_bridge(dev);
3158 	if (!bridge || !pci_bridge_d3_possible(bridge))
3159 		return;
3160 
3161 	/*
3162 	 * If D3 is currently allowed for the bridge, removing one of its
3163 	 * children won't change that.
3164 	 */
3165 	if (remove && bridge->bridge_d3)
3166 		return;
3167 
3168 	/*
3169 	 * If D3 is currently allowed for the bridge and a child is added or
3170 	 * changed, disallowance of D3 can only be caused by that child, so
3171 	 * we only need to check that single device, not any of its siblings.
3172 	 *
3173 	 * If D3 is currently not allowed for the bridge, checking the device
3174 	 * first may allow us to skip checking its siblings.
3175 	 */
3176 	if (!remove)
3177 		pci_dev_check_d3cold(dev, &d3cold_ok);
3178 
3179 	/*
3180 	 * If D3 is currently not allowed for the bridge, this may be caused
3181 	 * either by the device being changed/removed or any of its siblings,
3182 	 * so we need to go through all children to find out if one of them
3183 	 * continues to block D3.
3184 	 */
3185 	if (d3cold_ok && !bridge->bridge_d3)
3186 		pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
3187 			     &d3cold_ok);
3188 
3189 	if (bridge->bridge_d3 != d3cold_ok) {
3190 		bridge->bridge_d3 = d3cold_ok;
3191 		/* Propagate change to upstream bridges */
3192 		pci_bridge_d3_update(bridge);
3193 	}
3194 }
3195 
3196 /**
3197  * pci_d3cold_enable - Enable D3cold for device
3198  * @dev: PCI device to handle
3199  *
3200  * This function can be used in drivers to enable D3cold from the device
3201  * they handle.  It also updates upstream PCI bridge PM capabilities
3202  * accordingly.
3203  */
3204 void pci_d3cold_enable(struct pci_dev *dev)
3205 {
3206 	if (dev->no_d3cold) {
3207 		dev->no_d3cold = false;
3208 		pci_bridge_d3_update(dev);
3209 	}
3210 }
3211 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
3212 
3213 /**
3214  * pci_d3cold_disable - Disable D3cold for device
3215  * @dev: PCI device to handle
3216  *
3217  * This function can be used in drivers to disable D3cold from the device
3218  * they handle.  It also updates upstream PCI bridge PM capabilities
3219  * accordingly.
3220  */
3221 void pci_d3cold_disable(struct pci_dev *dev)
3222 {
3223 	if (!dev->no_d3cold) {
3224 		dev->no_d3cold = true;
3225 		pci_bridge_d3_update(dev);
3226 	}
3227 }
3228 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3229 
3230 /**
3231  * pci_pm_init - Initialize PM functions of given PCI device
3232  * @dev: PCI device to handle.
3233  */
3234 void pci_pm_init(struct pci_dev *dev)
3235 {
3236 	int pm;
3237 	u16 status;
3238 	u16 pmc;
3239 
3240 	pm_runtime_forbid(&dev->dev);
3241 	pm_runtime_set_active(&dev->dev);
3242 	pm_runtime_enable(&dev->dev);
3243 	device_enable_async_suspend(&dev->dev);
3244 	dev->wakeup_prepared = false;
3245 
3246 	dev->pm_cap = 0;
3247 	dev->pme_support = 0;
3248 
3249 	/* find PCI PM capability in list */
3250 	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3251 	if (!pm)
3252 		return;
3253 	/* Check device's ability to generate PME# */
3254 	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3255 
3256 	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3257 		pci_err(dev, "unsupported PM cap regs version (%u)\n",
3258 			pmc & PCI_PM_CAP_VER_MASK);
3259 		return;
3260 	}
3261 
3262 	dev->pm_cap = pm;
3263 	dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3264 	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3265 	dev->bridge_d3 = pci_bridge_d3_possible(dev);
3266 	dev->d3cold_allowed = true;
3267 
3268 	dev->d1_support = false;
3269 	dev->d2_support = false;
3270 	if (!pci_no_d1d2(dev)) {
3271 		if (pmc & PCI_PM_CAP_D1)
3272 			dev->d1_support = true;
3273 		if (pmc & PCI_PM_CAP_D2)
3274 			dev->d2_support = true;
3275 
3276 		if (dev->d1_support || dev->d2_support)
3277 			pci_info(dev, "supports%s%s\n",
3278 				   dev->d1_support ? " D1" : "",
3279 				   dev->d2_support ? " D2" : "");
3280 	}
3281 
3282 	pmc &= PCI_PM_CAP_PME_MASK;
3283 	if (pmc) {
3284 		pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3285 			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3286 			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3287 			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3288 			 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3289 			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3290 		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
3291 		dev->pme_poll = true;
3292 		/*
3293 		 * Make device's PM flags reflect the wake-up capability, but
3294 		 * let the user space enable it to wake up the system as needed.
3295 		 */
3296 		device_set_wakeup_capable(&dev->dev, true);
3297 		/* Disable the PME# generation functionality */
3298 		pci_pme_active(dev, false);
3299 	}
3300 
3301 	pci_read_config_word(dev, PCI_STATUS, &status);
3302 	if (status & PCI_STATUS_IMM_READY)
3303 		dev->imm_ready = 1;
3304 }
3305 
3306 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3307 {
3308 	unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3309 
3310 	switch (prop) {
3311 	case PCI_EA_P_MEM:
3312 	case PCI_EA_P_VF_MEM:
3313 		flags |= IORESOURCE_MEM;
3314 		break;
3315 	case PCI_EA_P_MEM_PREFETCH:
3316 	case PCI_EA_P_VF_MEM_PREFETCH:
3317 		flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3318 		break;
3319 	case PCI_EA_P_IO:
3320 		flags |= IORESOURCE_IO;
3321 		break;
3322 	default:
3323 		return 0;
3324 	}
3325 
3326 	return flags;
3327 }
3328 
3329 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3330 					    u8 prop)
3331 {
3332 	if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3333 		return &dev->resource[bei];
3334 #ifdef CONFIG_PCI_IOV
3335 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3336 		 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3337 		return &dev->resource[PCI_IOV_RESOURCES +
3338 				      bei - PCI_EA_BEI_VF_BAR0];
3339 #endif
3340 	else if (bei == PCI_EA_BEI_ROM)
3341 		return &dev->resource[PCI_ROM_RESOURCE];
3342 	else
3343 		return NULL;
3344 }
3345 
3346 /* Read an Enhanced Allocation (EA) entry */
3347 static int pci_ea_read(struct pci_dev *dev, int offset)
3348 {
3349 	struct resource *res;
3350 	int ent_size, ent_offset = offset;
3351 	resource_size_t start, end;
3352 	unsigned long flags;
3353 	u32 dw0, bei, base, max_offset;
3354 	u8 prop;
3355 	bool support_64 = (sizeof(resource_size_t) >= 8);
3356 
3357 	pci_read_config_dword(dev, ent_offset, &dw0);
3358 	ent_offset += 4;
3359 
3360 	/* Entry size field indicates DWORDs after 1st */
3361 	ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
3362 
3363 	if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3364 		goto out;
3365 
3366 	bei = (dw0 & PCI_EA_BEI) >> 4;
3367 	prop = (dw0 & PCI_EA_PP) >> 8;
3368 
3369 	/*
3370 	 * If the Property is in the reserved range, try the Secondary
3371 	 * Property instead.
3372 	 */
3373 	if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3374 		prop = (dw0 & PCI_EA_SP) >> 16;
3375 	if (prop > PCI_EA_P_BRIDGE_IO)
3376 		goto out;
3377 
3378 	res = pci_ea_get_resource(dev, bei, prop);
3379 	if (!res) {
3380 		pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3381 		goto out;
3382 	}
3383 
3384 	flags = pci_ea_flags(dev, prop);
3385 	if (!flags) {
3386 		pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3387 		goto out;
3388 	}
3389 
3390 	/* Read Base */
3391 	pci_read_config_dword(dev, ent_offset, &base);
3392 	start = (base & PCI_EA_FIELD_MASK);
3393 	ent_offset += 4;
3394 
3395 	/* Read MaxOffset */
3396 	pci_read_config_dword(dev, ent_offset, &max_offset);
3397 	ent_offset += 4;
3398 
3399 	/* Read Base MSBs (if 64-bit entry) */
3400 	if (base & PCI_EA_IS_64) {
3401 		u32 base_upper;
3402 
3403 		pci_read_config_dword(dev, ent_offset, &base_upper);
3404 		ent_offset += 4;
3405 
3406 		flags |= IORESOURCE_MEM_64;
3407 
3408 		/* entry starts above 32-bit boundary, can't use */
3409 		if (!support_64 && base_upper)
3410 			goto out;
3411 
3412 		if (support_64)
3413 			start |= ((u64)base_upper << 32);
3414 	}
3415 
3416 	end = start + (max_offset | 0x03);
3417 
3418 	/* Read MaxOffset MSBs (if 64-bit entry) */
3419 	if (max_offset & PCI_EA_IS_64) {
3420 		u32 max_offset_upper;
3421 
3422 		pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3423 		ent_offset += 4;
3424 
3425 		flags |= IORESOURCE_MEM_64;
3426 
3427 		/* entry too big, can't use */
3428 		if (!support_64 && max_offset_upper)
3429 			goto out;
3430 
3431 		if (support_64)
3432 			end += ((u64)max_offset_upper << 32);
3433 	}
3434 
3435 	if (end < start) {
3436 		pci_err(dev, "EA Entry crosses address boundary\n");
3437 		goto out;
3438 	}
3439 
3440 	if (ent_size != ent_offset - offset) {
3441 		pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3442 			ent_size, ent_offset - offset);
3443 		goto out;
3444 	}
3445 
3446 	res->name = pci_name(dev);
3447 	res->start = start;
3448 	res->end = end;
3449 	res->flags = flags;
3450 
3451 	if (bei <= PCI_EA_BEI_BAR5)
3452 		pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3453 			   bei, res, prop);
3454 	else if (bei == PCI_EA_BEI_ROM)
3455 		pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3456 			   res, prop);
3457 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3458 		pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3459 			   bei - PCI_EA_BEI_VF_BAR0, res, prop);
3460 	else
3461 		pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3462 			   bei, res, prop);
3463 
3464 out:
3465 	return offset + ent_size;
3466 }
3467 
3468 /* Enhanced Allocation Initialization */
3469 void pci_ea_init(struct pci_dev *dev)
3470 {
3471 	int ea;
3472 	u8 num_ent;
3473 	int offset;
3474 	int i;
3475 
3476 	/* find PCI EA capability in list */
3477 	ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3478 	if (!ea)
3479 		return;
3480 
3481 	/* determine the number of entries */
3482 	pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3483 					&num_ent);
3484 	num_ent &= PCI_EA_NUM_ENT_MASK;
3485 
3486 	offset = ea + PCI_EA_FIRST_ENT;
3487 
3488 	/* Skip DWORD 2 for type 1 functions */
3489 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3490 		offset += 4;
3491 
3492 	/* parse each EA entry */
3493 	for (i = 0; i < num_ent; ++i)
3494 		offset = pci_ea_read(dev, offset);
3495 }
3496 
3497 static void pci_add_saved_cap(struct pci_dev *pci_dev,
3498 	struct pci_cap_saved_state *new_cap)
3499 {
3500 	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3501 }
3502 
3503 /**
3504  * _pci_add_cap_save_buffer - allocate buffer for saving given
3505  *			      capability registers
3506  * @dev: the PCI device
3507  * @cap: the capability to allocate the buffer for
3508  * @extended: Standard or Extended capability ID
3509  * @size: requested size of the buffer
3510  */
3511 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3512 				    bool extended, unsigned int size)
3513 {
3514 	int pos;
3515 	struct pci_cap_saved_state *save_state;
3516 
3517 	if (extended)
3518 		pos = pci_find_ext_capability(dev, cap);
3519 	else
3520 		pos = pci_find_capability(dev, cap);
3521 
3522 	if (!pos)
3523 		return 0;
3524 
3525 	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3526 	if (!save_state)
3527 		return -ENOMEM;
3528 
3529 	save_state->cap.cap_nr = cap;
3530 	save_state->cap.cap_extended = extended;
3531 	save_state->cap.size = size;
3532 	pci_add_saved_cap(dev, save_state);
3533 
3534 	return 0;
3535 }
3536 
3537 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3538 {
3539 	return _pci_add_cap_save_buffer(dev, cap, false, size);
3540 }
3541 
3542 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3543 {
3544 	return _pci_add_cap_save_buffer(dev, cap, true, size);
3545 }
3546 
3547 /**
3548  * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3549  * @dev: the PCI device
3550  */
3551 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3552 {
3553 	int error;
3554 
3555 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3556 					PCI_EXP_SAVE_REGS * sizeof(u16));
3557 	if (error)
3558 		pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3559 
3560 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3561 	if (error)
3562 		pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3563 
3564 	error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3565 					    2 * sizeof(u16));
3566 	if (error)
3567 		pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3568 
3569 	pci_allocate_vc_save_buffers(dev);
3570 }
3571 
3572 void pci_free_cap_save_buffers(struct pci_dev *dev)
3573 {
3574 	struct pci_cap_saved_state *tmp;
3575 	struct hlist_node *n;
3576 
3577 	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3578 		kfree(tmp);
3579 }
3580 
3581 /**
3582  * pci_configure_ari - enable or disable ARI forwarding
3583  * @dev: the PCI device
3584  *
3585  * If @dev and its upstream bridge both support ARI, enable ARI in the
3586  * bridge.  Otherwise, disable ARI in the bridge.
3587  */
3588 void pci_configure_ari(struct pci_dev *dev)
3589 {
3590 	u32 cap;
3591 	struct pci_dev *bridge;
3592 
3593 	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3594 		return;
3595 
3596 	bridge = dev->bus->self;
3597 	if (!bridge)
3598 		return;
3599 
3600 	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3601 	if (!(cap & PCI_EXP_DEVCAP2_ARI))
3602 		return;
3603 
3604 	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3605 		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3606 					 PCI_EXP_DEVCTL2_ARI);
3607 		bridge->ari_enabled = 1;
3608 	} else {
3609 		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3610 					   PCI_EXP_DEVCTL2_ARI);
3611 		bridge->ari_enabled = 0;
3612 	}
3613 }
3614 
3615 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3616 {
3617 	int pos;
3618 	u16 cap, ctrl;
3619 
3620 	pos = pdev->acs_cap;
3621 	if (!pos)
3622 		return false;
3623 
3624 	/*
3625 	 * Except for egress control, capabilities are either required
3626 	 * or only required if controllable.  Features missing from the
3627 	 * capability field can therefore be assumed as hard-wired enabled.
3628 	 */
3629 	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3630 	acs_flags &= (cap | PCI_ACS_EC);
3631 
3632 	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3633 	return (ctrl & acs_flags) == acs_flags;
3634 }
3635 
3636 /**
3637  * pci_acs_enabled - test ACS against required flags for a given device
3638  * @pdev: device to test
3639  * @acs_flags: required PCI ACS flags
3640  *
3641  * Return true if the device supports the provided flags.  Automatically
3642  * filters out flags that are not implemented on multifunction devices.
3643  *
3644  * Note that this interface checks the effective ACS capabilities of the
3645  * device rather than the actual capabilities.  For instance, most single
3646  * function endpoints are not required to support ACS because they have no
3647  * opportunity for peer-to-peer access.  We therefore return 'true'
3648  * regardless of whether the device exposes an ACS capability.  This makes
3649  * it much easier for callers of this function to ignore the actual type
3650  * or topology of the device when testing ACS support.
3651  */
3652 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3653 {
3654 	int ret;
3655 
3656 	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3657 	if (ret >= 0)
3658 		return ret > 0;
3659 
3660 	/*
3661 	 * Conventional PCI and PCI-X devices never support ACS, either
3662 	 * effectively or actually.  The shared bus topology implies that
3663 	 * any device on the bus can receive or snoop DMA.
3664 	 */
3665 	if (!pci_is_pcie(pdev))
3666 		return false;
3667 
3668 	switch (pci_pcie_type(pdev)) {
3669 	/*
3670 	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3671 	 * but since their primary interface is PCI/X, we conservatively
3672 	 * handle them as we would a non-PCIe device.
3673 	 */
3674 	case PCI_EXP_TYPE_PCIE_BRIDGE:
3675 	/*
3676 	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
3677 	 * applicable... must never implement an ACS Extended Capability...".
3678 	 * This seems arbitrary, but we take a conservative interpretation
3679 	 * of this statement.
3680 	 */
3681 	case PCI_EXP_TYPE_PCI_BRIDGE:
3682 	case PCI_EXP_TYPE_RC_EC:
3683 		return false;
3684 	/*
3685 	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3686 	 * implement ACS in order to indicate their peer-to-peer capabilities,
3687 	 * regardless of whether they are single- or multi-function devices.
3688 	 */
3689 	case PCI_EXP_TYPE_DOWNSTREAM:
3690 	case PCI_EXP_TYPE_ROOT_PORT:
3691 		return pci_acs_flags_enabled(pdev, acs_flags);
3692 	/*
3693 	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3694 	 * implemented by the remaining PCIe types to indicate peer-to-peer
3695 	 * capabilities, but only when they are part of a multifunction
3696 	 * device.  The footnote for section 6.12 indicates the specific
3697 	 * PCIe types included here.
3698 	 */
3699 	case PCI_EXP_TYPE_ENDPOINT:
3700 	case PCI_EXP_TYPE_UPSTREAM:
3701 	case PCI_EXP_TYPE_LEG_END:
3702 	case PCI_EXP_TYPE_RC_END:
3703 		if (!pdev->multifunction)
3704 			break;
3705 
3706 		return pci_acs_flags_enabled(pdev, acs_flags);
3707 	}
3708 
3709 	/*
3710 	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3711 	 * to single function devices with the exception of downstream ports.
3712 	 */
3713 	return true;
3714 }
3715 
3716 /**
3717  * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
3718  * @start: starting downstream device
3719  * @end: ending upstream device or NULL to search to the root bus
3720  * @acs_flags: required flags
3721  *
3722  * Walk up a device tree from start to end testing PCI ACS support.  If
3723  * any step along the way does not support the required flags, return false.
3724  */
3725 bool pci_acs_path_enabled(struct pci_dev *start,
3726 			  struct pci_dev *end, u16 acs_flags)
3727 {
3728 	struct pci_dev *pdev, *parent = start;
3729 
3730 	do {
3731 		pdev = parent;
3732 
3733 		if (!pci_acs_enabled(pdev, acs_flags))
3734 			return false;
3735 
3736 		if (pci_is_root_bus(pdev->bus))
3737 			return (end == NULL);
3738 
3739 		parent = pdev->bus->self;
3740 	} while (pdev != end);
3741 
3742 	return true;
3743 }
3744 
3745 /**
3746  * pci_acs_init - Initialize ACS if hardware supports it
3747  * @dev: the PCI device
3748  */
3749 void pci_acs_init(struct pci_dev *dev)
3750 {
3751 	dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3752 
3753 	/*
3754 	 * Attempt to enable ACS regardless of capability because some Root
3755 	 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3756 	 * the standard ACS capability but still support ACS via those
3757 	 * quirks.
3758 	 */
3759 	pci_enable_acs(dev);
3760 }
3761 
3762 /**
3763  * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3764  * @pdev: PCI device
3765  * @bar: BAR to find
3766  *
3767  * Helper to find the position of the ctrl register for a BAR.
3768  * Returns -ENOTSUPP if resizable BARs are not supported at all.
3769  * Returns -ENOENT if no ctrl register for the BAR could be found.
3770  */
3771 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3772 {
3773 	unsigned int pos, nbars, i;
3774 	u32 ctrl;
3775 
3776 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3777 	if (!pos)
3778 		return -ENOTSUPP;
3779 
3780 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3781 	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3782 		    PCI_REBAR_CTRL_NBAR_SHIFT;
3783 
3784 	for (i = 0; i < nbars; i++, pos += 8) {
3785 		int bar_idx;
3786 
3787 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3788 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3789 		if (bar_idx == bar)
3790 			return pos;
3791 	}
3792 
3793 	return -ENOENT;
3794 }
3795 
3796 /**
3797  * pci_rebar_get_possible_sizes - get possible sizes for BAR
3798  * @pdev: PCI device
3799  * @bar: BAR to query
3800  *
3801  * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3802  * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3803  */
3804 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3805 {
3806 	int pos;
3807 	u32 cap;
3808 
3809 	pos = pci_rebar_find_pos(pdev, bar);
3810 	if (pos < 0)
3811 		return 0;
3812 
3813 	pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3814 	cap = FIELD_GET(PCI_REBAR_CAP_SIZES, cap);
3815 
3816 	/* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
3817 	if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
3818 	    bar == 0 && cap == 0x700)
3819 		return 0x3f00;
3820 
3821 	return cap;
3822 }
3823 EXPORT_SYMBOL(pci_rebar_get_possible_sizes);
3824 
3825 /**
3826  * pci_rebar_get_current_size - get the current size of a BAR
3827  * @pdev: PCI device
3828  * @bar: BAR to set size to
3829  *
3830  * Read the size of a BAR from the resizable BAR config.
3831  * Returns size if found or negative error code.
3832  */
3833 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3834 {
3835 	int pos;
3836 	u32 ctrl;
3837 
3838 	pos = pci_rebar_find_pos(pdev, bar);
3839 	if (pos < 0)
3840 		return pos;
3841 
3842 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3843 	return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3844 }
3845 
3846 /**
3847  * pci_rebar_set_size - set a new size for a BAR
3848  * @pdev: PCI device
3849  * @bar: BAR to set size to
3850  * @size: new size as defined in the spec (0=1MB, 19=512GB)
3851  *
3852  * Set the new size of a BAR as defined in the spec.
3853  * Returns zero if resizing was successful, error code otherwise.
3854  */
3855 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3856 {
3857 	int pos;
3858 	u32 ctrl;
3859 
3860 	pos = pci_rebar_find_pos(pdev, bar);
3861 	if (pos < 0)
3862 		return pos;
3863 
3864 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3865 	ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3866 	ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3867 	pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3868 	return 0;
3869 }
3870 
3871 /**
3872  * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3873  * @dev: the PCI device
3874  * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3875  *	PCI_EXP_DEVCAP2_ATOMIC_COMP32
3876  *	PCI_EXP_DEVCAP2_ATOMIC_COMP64
3877  *	PCI_EXP_DEVCAP2_ATOMIC_COMP128
3878  *
3879  * Return 0 if all upstream bridges support AtomicOp routing, egress
3880  * blocking is disabled on all upstream ports, and the root port supports
3881  * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3882  * AtomicOp completion), or negative otherwise.
3883  */
3884 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3885 {
3886 	struct pci_bus *bus = dev->bus;
3887 	struct pci_dev *bridge;
3888 	u32 cap, ctl2;
3889 
3890 	/*
3891 	 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit
3892 	 * in Device Control 2 is reserved in VFs and the PF value applies
3893 	 * to all associated VFs.
3894 	 */
3895 	if (dev->is_virtfn)
3896 		return -EINVAL;
3897 
3898 	if (!pci_is_pcie(dev))
3899 		return -EINVAL;
3900 
3901 	/*
3902 	 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3903 	 * AtomicOp requesters.  For now, we only support endpoints as
3904 	 * requesters and root ports as completers.  No endpoints as
3905 	 * completers, and no peer-to-peer.
3906 	 */
3907 
3908 	switch (pci_pcie_type(dev)) {
3909 	case PCI_EXP_TYPE_ENDPOINT:
3910 	case PCI_EXP_TYPE_LEG_END:
3911 	case PCI_EXP_TYPE_RC_END:
3912 		break;
3913 	default:
3914 		return -EINVAL;
3915 	}
3916 
3917 	while (bus->parent) {
3918 		bridge = bus->self;
3919 
3920 		pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3921 
3922 		switch (pci_pcie_type(bridge)) {
3923 		/* Ensure switch ports support AtomicOp routing */
3924 		case PCI_EXP_TYPE_UPSTREAM:
3925 		case PCI_EXP_TYPE_DOWNSTREAM:
3926 			if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3927 				return -EINVAL;
3928 			break;
3929 
3930 		/* Ensure root port supports all the sizes we care about */
3931 		case PCI_EXP_TYPE_ROOT_PORT:
3932 			if ((cap & cap_mask) != cap_mask)
3933 				return -EINVAL;
3934 			break;
3935 		}
3936 
3937 		/* Ensure upstream ports don't block AtomicOps on egress */
3938 		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3939 			pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3940 						   &ctl2);
3941 			if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3942 				return -EINVAL;
3943 		}
3944 
3945 		bus = bus->parent;
3946 	}
3947 
3948 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3949 				 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3950 	return 0;
3951 }
3952 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3953 
3954 /**
3955  * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3956  * @dev: the PCI device
3957  * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3958  *
3959  * Perform INTx swizzling for a device behind one level of bridge.  This is
3960  * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3961  * behind bridges on add-in cards.  For devices with ARI enabled, the slot
3962  * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3963  * the PCI Express Base Specification, Revision 2.1)
3964  */
3965 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3966 {
3967 	int slot;
3968 
3969 	if (pci_ari_enabled(dev->bus))
3970 		slot = 0;
3971 	else
3972 		slot = PCI_SLOT(dev->devfn);
3973 
3974 	return (((pin - 1) + slot) % 4) + 1;
3975 }
3976 
3977 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3978 {
3979 	u8 pin;
3980 
3981 	pin = dev->pin;
3982 	if (!pin)
3983 		return -1;
3984 
3985 	while (!pci_is_root_bus(dev->bus)) {
3986 		pin = pci_swizzle_interrupt_pin(dev, pin);
3987 		dev = dev->bus->self;
3988 	}
3989 	*bridge = dev;
3990 	return pin;
3991 }
3992 
3993 /**
3994  * pci_common_swizzle - swizzle INTx all the way to root bridge
3995  * @dev: the PCI device
3996  * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3997  *
3998  * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
3999  * bridges all the way up to a PCI root bus.
4000  */
4001 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
4002 {
4003 	u8 pin = *pinp;
4004 
4005 	while (!pci_is_root_bus(dev->bus)) {
4006 		pin = pci_swizzle_interrupt_pin(dev, pin);
4007 		dev = dev->bus->self;
4008 	}
4009 	*pinp = pin;
4010 	return PCI_SLOT(dev->devfn);
4011 }
4012 EXPORT_SYMBOL_GPL(pci_common_swizzle);
4013 
4014 /**
4015  * pci_release_region - Release a PCI bar
4016  * @pdev: PCI device whose resources were previously reserved by
4017  *	  pci_request_region()
4018  * @bar: BAR to release
4019  *
4020  * Releases the PCI I/O and memory resources previously reserved by a
4021  * successful call to pci_request_region().  Call this function only
4022  * after all use of the PCI regions has ceased.
4023  */
4024 void pci_release_region(struct pci_dev *pdev, int bar)
4025 {
4026 	struct pci_devres *dr;
4027 
4028 	if (pci_resource_len(pdev, bar) == 0)
4029 		return;
4030 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
4031 		release_region(pci_resource_start(pdev, bar),
4032 				pci_resource_len(pdev, bar));
4033 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
4034 		release_mem_region(pci_resource_start(pdev, bar),
4035 				pci_resource_len(pdev, bar));
4036 
4037 	dr = find_pci_dr(pdev);
4038 	if (dr)
4039 		dr->region_mask &= ~(1 << bar);
4040 }
4041 EXPORT_SYMBOL(pci_release_region);
4042 
4043 /**
4044  * __pci_request_region - Reserved PCI I/O and memory resource
4045  * @pdev: PCI device whose resources are to be reserved
4046  * @bar: BAR to be reserved
4047  * @res_name: Name to be associated with resource.
4048  * @exclusive: whether the region access is exclusive or not
4049  *
4050  * Mark the PCI region associated with PCI device @pdev BAR @bar as
4051  * being reserved by owner @res_name.  Do not access any
4052  * address inside the PCI regions unless this call returns
4053  * successfully.
4054  *
4055  * If @exclusive is set, then the region is marked so that userspace
4056  * is explicitly not allowed to map the resource via /dev/mem or
4057  * sysfs MMIO access.
4058  *
4059  * Returns 0 on success, or %EBUSY on error.  A warning
4060  * message is also printed on failure.
4061  */
4062 static int __pci_request_region(struct pci_dev *pdev, int bar,
4063 				const char *res_name, int exclusive)
4064 {
4065 	struct pci_devres *dr;
4066 
4067 	if (pci_resource_len(pdev, bar) == 0)
4068 		return 0;
4069 
4070 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
4071 		if (!request_region(pci_resource_start(pdev, bar),
4072 			    pci_resource_len(pdev, bar), res_name))
4073 			goto err_out;
4074 	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
4075 		if (!__request_mem_region(pci_resource_start(pdev, bar),
4076 					pci_resource_len(pdev, bar), res_name,
4077 					exclusive))
4078 			goto err_out;
4079 	}
4080 
4081 	dr = find_pci_dr(pdev);
4082 	if (dr)
4083 		dr->region_mask |= 1 << bar;
4084 
4085 	return 0;
4086 
4087 err_out:
4088 	pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
4089 		 &pdev->resource[bar]);
4090 	return -EBUSY;
4091 }
4092 
4093 /**
4094  * pci_request_region - Reserve PCI I/O and memory resource
4095  * @pdev: PCI device whose resources are to be reserved
4096  * @bar: BAR to be reserved
4097  * @res_name: Name to be associated with resource
4098  *
4099  * Mark the PCI region associated with PCI device @pdev BAR @bar as
4100  * being reserved by owner @res_name.  Do not access any
4101  * address inside the PCI regions unless this call returns
4102  * successfully.
4103  *
4104  * Returns 0 on success, or %EBUSY on error.  A warning
4105  * message is also printed on failure.
4106  */
4107 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
4108 {
4109 	return __pci_request_region(pdev, bar, res_name, 0);
4110 }
4111 EXPORT_SYMBOL(pci_request_region);
4112 
4113 /**
4114  * pci_release_selected_regions - Release selected PCI I/O and memory resources
4115  * @pdev: PCI device whose resources were previously reserved
4116  * @bars: Bitmask of BARs to be released
4117  *
4118  * Release selected PCI I/O and memory resources previously reserved.
4119  * Call this function only after all use of the PCI regions has ceased.
4120  */
4121 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
4122 {
4123 	int i;
4124 
4125 	for (i = 0; i < PCI_STD_NUM_BARS; i++)
4126 		if (bars & (1 << i))
4127 			pci_release_region(pdev, i);
4128 }
4129 EXPORT_SYMBOL(pci_release_selected_regions);
4130 
4131 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
4132 					  const char *res_name, int excl)
4133 {
4134 	int i;
4135 
4136 	for (i = 0; i < PCI_STD_NUM_BARS; i++)
4137 		if (bars & (1 << i))
4138 			if (__pci_request_region(pdev, i, res_name, excl))
4139 				goto err_out;
4140 	return 0;
4141 
4142 err_out:
4143 	while (--i >= 0)
4144 		if (bars & (1 << i))
4145 			pci_release_region(pdev, i);
4146 
4147 	return -EBUSY;
4148 }
4149 
4150 
4151 /**
4152  * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
4153  * @pdev: PCI device whose resources are to be reserved
4154  * @bars: Bitmask of BARs to be requested
4155  * @res_name: Name to be associated with resource
4156  */
4157 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
4158 				 const char *res_name)
4159 {
4160 	return __pci_request_selected_regions(pdev, bars, res_name, 0);
4161 }
4162 EXPORT_SYMBOL(pci_request_selected_regions);
4163 
4164 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
4165 					   const char *res_name)
4166 {
4167 	return __pci_request_selected_regions(pdev, bars, res_name,
4168 			IORESOURCE_EXCLUSIVE);
4169 }
4170 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
4171 
4172 /**
4173  * pci_release_regions - Release reserved PCI I/O and memory resources
4174  * @pdev: PCI device whose resources were previously reserved by
4175  *	  pci_request_regions()
4176  *
4177  * Releases all PCI I/O and memory resources previously reserved by a
4178  * successful call to pci_request_regions().  Call this function only
4179  * after all use of the PCI regions has ceased.
4180  */
4181 
4182 void pci_release_regions(struct pci_dev *pdev)
4183 {
4184 	pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
4185 }
4186 EXPORT_SYMBOL(pci_release_regions);
4187 
4188 /**
4189  * pci_request_regions - Reserve PCI I/O and memory resources
4190  * @pdev: PCI device whose resources are to be reserved
4191  * @res_name: Name to be associated with resource.
4192  *
4193  * Mark all PCI regions associated with PCI device @pdev as
4194  * being reserved by owner @res_name.  Do not access any
4195  * address inside the PCI regions unless this call returns
4196  * successfully.
4197  *
4198  * Returns 0 on success, or %EBUSY on error.  A warning
4199  * message is also printed on failure.
4200  */
4201 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
4202 {
4203 	return pci_request_selected_regions(pdev,
4204 			((1 << PCI_STD_NUM_BARS) - 1), res_name);
4205 }
4206 EXPORT_SYMBOL(pci_request_regions);
4207 
4208 /**
4209  * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
4210  * @pdev: PCI device whose resources are to be reserved
4211  * @res_name: Name to be associated with resource.
4212  *
4213  * Mark all PCI regions associated with PCI device @pdev as being reserved
4214  * by owner @res_name.  Do not access any address inside the PCI regions
4215  * unless this call returns successfully.
4216  *
4217  * pci_request_regions_exclusive() will mark the region so that /dev/mem
4218  * and the sysfs MMIO access will not be allowed.
4219  *
4220  * Returns 0 on success, or %EBUSY on error.  A warning message is also
4221  * printed on failure.
4222  */
4223 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
4224 {
4225 	return pci_request_selected_regions_exclusive(pdev,
4226 				((1 << PCI_STD_NUM_BARS) - 1), res_name);
4227 }
4228 EXPORT_SYMBOL(pci_request_regions_exclusive);
4229 
4230 /*
4231  * Record the PCI IO range (expressed as CPU physical address + size).
4232  * Return a negative value if an error has occurred, zero otherwise
4233  */
4234 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
4235 			resource_size_t	size)
4236 {
4237 	int ret = 0;
4238 #ifdef PCI_IOBASE
4239 	struct logic_pio_hwaddr *range;
4240 
4241 	if (!size || addr + size < addr)
4242 		return -EINVAL;
4243 
4244 	range = kzalloc(sizeof(*range), GFP_ATOMIC);
4245 	if (!range)
4246 		return -ENOMEM;
4247 
4248 	range->fwnode = fwnode;
4249 	range->size = size;
4250 	range->hw_start = addr;
4251 	range->flags = LOGIC_PIO_CPU_MMIO;
4252 
4253 	ret = logic_pio_register_range(range);
4254 	if (ret)
4255 		kfree(range);
4256 
4257 	/* Ignore duplicates due to deferred probing */
4258 	if (ret == -EEXIST)
4259 		ret = 0;
4260 #endif
4261 
4262 	return ret;
4263 }
4264 
4265 phys_addr_t pci_pio_to_address(unsigned long pio)
4266 {
4267 #ifdef PCI_IOBASE
4268 	if (pio < MMIO_UPPER_LIMIT)
4269 		return logic_pio_to_hwaddr(pio);
4270 #endif
4271 
4272 	return (phys_addr_t) OF_BAD_ADDR;
4273 }
4274 EXPORT_SYMBOL_GPL(pci_pio_to_address);
4275 
4276 unsigned long __weak pci_address_to_pio(phys_addr_t address)
4277 {
4278 #ifdef PCI_IOBASE
4279 	return logic_pio_trans_cpuaddr(address);
4280 #else
4281 	if (address > IO_SPACE_LIMIT)
4282 		return (unsigned long)-1;
4283 
4284 	return (unsigned long) address;
4285 #endif
4286 }
4287 
4288 /**
4289  * pci_remap_iospace - Remap the memory mapped I/O space
4290  * @res: Resource describing the I/O space
4291  * @phys_addr: physical address of range to be mapped
4292  *
4293  * Remap the memory mapped I/O space described by the @res and the CPU
4294  * physical address @phys_addr into virtual address space.  Only
4295  * architectures that have memory mapped IO functions defined (and the
4296  * PCI_IOBASE value defined) should call this function.
4297  */
4298 #ifndef pci_remap_iospace
4299 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4300 {
4301 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4302 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4303 
4304 	if (!(res->flags & IORESOURCE_IO))
4305 		return -EINVAL;
4306 
4307 	if (res->end > IO_SPACE_LIMIT)
4308 		return -EINVAL;
4309 
4310 	return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4311 				  pgprot_device(PAGE_KERNEL));
4312 #else
4313 	/*
4314 	 * This architecture does not have memory mapped I/O space,
4315 	 * so this function should never be called
4316 	 */
4317 	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4318 	return -ENODEV;
4319 #endif
4320 }
4321 EXPORT_SYMBOL(pci_remap_iospace);
4322 #endif
4323 
4324 /**
4325  * pci_unmap_iospace - Unmap the memory mapped I/O space
4326  * @res: resource to be unmapped
4327  *
4328  * Unmap the CPU virtual address @res from virtual address space.  Only
4329  * architectures that have memory mapped IO functions defined (and the
4330  * PCI_IOBASE value defined) should call this function.
4331  */
4332 void pci_unmap_iospace(struct resource *res)
4333 {
4334 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4335 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4336 
4337 	vunmap_range(vaddr, vaddr + resource_size(res));
4338 #endif
4339 }
4340 EXPORT_SYMBOL(pci_unmap_iospace);
4341 
4342 static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
4343 {
4344 	struct resource **res = ptr;
4345 
4346 	pci_unmap_iospace(*res);
4347 }
4348 
4349 /**
4350  * devm_pci_remap_iospace - Managed pci_remap_iospace()
4351  * @dev: Generic device to remap IO address for
4352  * @res: Resource describing the I/O space
4353  * @phys_addr: physical address of range to be mapped
4354  *
4355  * Managed pci_remap_iospace().  Map is automatically unmapped on driver
4356  * detach.
4357  */
4358 int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4359 			   phys_addr_t phys_addr)
4360 {
4361 	const struct resource **ptr;
4362 	int error;
4363 
4364 	ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4365 	if (!ptr)
4366 		return -ENOMEM;
4367 
4368 	error = pci_remap_iospace(res, phys_addr);
4369 	if (error) {
4370 		devres_free(ptr);
4371 	} else	{
4372 		*ptr = res;
4373 		devres_add(dev, ptr);
4374 	}
4375 
4376 	return error;
4377 }
4378 EXPORT_SYMBOL(devm_pci_remap_iospace);
4379 
4380 /**
4381  * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4382  * @dev: Generic device to remap IO address for
4383  * @offset: Resource address to map
4384  * @size: Size of map
4385  *
4386  * Managed pci_remap_cfgspace().  Map is automatically unmapped on driver
4387  * detach.
4388  */
4389 void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4390 				      resource_size_t offset,
4391 				      resource_size_t size)
4392 {
4393 	void __iomem **ptr, *addr;
4394 
4395 	ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4396 	if (!ptr)
4397 		return NULL;
4398 
4399 	addr = pci_remap_cfgspace(offset, size);
4400 	if (addr) {
4401 		*ptr = addr;
4402 		devres_add(dev, ptr);
4403 	} else
4404 		devres_free(ptr);
4405 
4406 	return addr;
4407 }
4408 EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4409 
4410 /**
4411  * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4412  * @dev: generic device to handle the resource for
4413  * @res: configuration space resource to be handled
4414  *
4415  * Checks that a resource is a valid memory region, requests the memory
4416  * region and ioremaps with pci_remap_cfgspace() API that ensures the
4417  * proper PCI configuration space memory attributes are guaranteed.
4418  *
4419  * All operations are managed and will be undone on driver detach.
4420  *
4421  * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4422  * on failure. Usage example::
4423  *
4424  *	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4425  *	base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4426  *	if (IS_ERR(base))
4427  *		return PTR_ERR(base);
4428  */
4429 void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4430 					  struct resource *res)
4431 {
4432 	resource_size_t size;
4433 	const char *name;
4434 	void __iomem *dest_ptr;
4435 
4436 	BUG_ON(!dev);
4437 
4438 	if (!res || resource_type(res) != IORESOURCE_MEM) {
4439 		dev_err(dev, "invalid resource\n");
4440 		return IOMEM_ERR_PTR(-EINVAL);
4441 	}
4442 
4443 	size = resource_size(res);
4444 
4445 	if (res->name)
4446 		name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev),
4447 				      res->name);
4448 	else
4449 		name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL);
4450 	if (!name)
4451 		return IOMEM_ERR_PTR(-ENOMEM);
4452 
4453 	if (!devm_request_mem_region(dev, res->start, size, name)) {
4454 		dev_err(dev, "can't request region for resource %pR\n", res);
4455 		return IOMEM_ERR_PTR(-EBUSY);
4456 	}
4457 
4458 	dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4459 	if (!dest_ptr) {
4460 		dev_err(dev, "ioremap failed for resource %pR\n", res);
4461 		devm_release_mem_region(dev, res->start, size);
4462 		dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4463 	}
4464 
4465 	return dest_ptr;
4466 }
4467 EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4468 
4469 static void __pci_set_master(struct pci_dev *dev, bool enable)
4470 {
4471 	u16 old_cmd, cmd;
4472 
4473 	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4474 	if (enable)
4475 		cmd = old_cmd | PCI_COMMAND_MASTER;
4476 	else
4477 		cmd = old_cmd & ~PCI_COMMAND_MASTER;
4478 	if (cmd != old_cmd) {
4479 		pci_dbg(dev, "%s bus mastering\n",
4480 			enable ? "enabling" : "disabling");
4481 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4482 	}
4483 	dev->is_busmaster = enable;
4484 }
4485 
4486 /**
4487  * pcibios_setup - process "pci=" kernel boot arguments
4488  * @str: string used to pass in "pci=" kernel boot arguments
4489  *
4490  * Process kernel boot arguments.  This is the default implementation.
4491  * Architecture specific implementations can override this as necessary.
4492  */
4493 char * __weak __init pcibios_setup(char *str)
4494 {
4495 	return str;
4496 }
4497 
4498 /**
4499  * pcibios_set_master - enable PCI bus-mastering for device dev
4500  * @dev: the PCI device to enable
4501  *
4502  * Enables PCI bus-mastering for the device.  This is the default
4503  * implementation.  Architecture specific implementations can override
4504  * this if necessary.
4505  */
4506 void __weak pcibios_set_master(struct pci_dev *dev)
4507 {
4508 	u8 lat;
4509 
4510 	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4511 	if (pci_is_pcie(dev))
4512 		return;
4513 
4514 	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4515 	if (lat < 16)
4516 		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4517 	else if (lat > pcibios_max_latency)
4518 		lat = pcibios_max_latency;
4519 	else
4520 		return;
4521 
4522 	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4523 }
4524 
4525 /**
4526  * pci_set_master - enables bus-mastering for device dev
4527  * @dev: the PCI device to enable
4528  *
4529  * Enables bus-mastering on the device and calls pcibios_set_master()
4530  * to do the needed arch specific settings.
4531  */
4532 void pci_set_master(struct pci_dev *dev)
4533 {
4534 	__pci_set_master(dev, true);
4535 	pcibios_set_master(dev);
4536 }
4537 EXPORT_SYMBOL(pci_set_master);
4538 
4539 /**
4540  * pci_clear_master - disables bus-mastering for device dev
4541  * @dev: the PCI device to disable
4542  */
4543 void pci_clear_master(struct pci_dev *dev)
4544 {
4545 	__pci_set_master(dev, false);
4546 }
4547 EXPORT_SYMBOL(pci_clear_master);
4548 
4549 /**
4550  * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4551  * @dev: the PCI device for which MWI is to be enabled
4552  *
4553  * Helper function for pci_set_mwi.
4554  * Originally copied from drivers/net/acenic.c.
4555  * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4556  *
4557  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4558  */
4559 int pci_set_cacheline_size(struct pci_dev *dev)
4560 {
4561 	u8 cacheline_size;
4562 
4563 	if (!pci_cache_line_size)
4564 		return -EINVAL;
4565 
4566 	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4567 	   equal to or multiple of the right value. */
4568 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4569 	if (cacheline_size >= pci_cache_line_size &&
4570 	    (cacheline_size % pci_cache_line_size) == 0)
4571 		return 0;
4572 
4573 	/* Write the correct value. */
4574 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4575 	/* Read it back. */
4576 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4577 	if (cacheline_size == pci_cache_line_size)
4578 		return 0;
4579 
4580 	pci_dbg(dev, "cache line size of %d is not supported\n",
4581 		   pci_cache_line_size << 2);
4582 
4583 	return -EINVAL;
4584 }
4585 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4586 
4587 /**
4588  * pci_set_mwi - enables memory-write-invalidate PCI transaction
4589  * @dev: the PCI device for which MWI is enabled
4590  *
4591  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4592  *
4593  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4594  */
4595 int pci_set_mwi(struct pci_dev *dev)
4596 {
4597 #ifdef PCI_DISABLE_MWI
4598 	return 0;
4599 #else
4600 	int rc;
4601 	u16 cmd;
4602 
4603 	rc = pci_set_cacheline_size(dev);
4604 	if (rc)
4605 		return rc;
4606 
4607 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4608 	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4609 		pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4610 		cmd |= PCI_COMMAND_INVALIDATE;
4611 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4612 	}
4613 	return 0;
4614 #endif
4615 }
4616 EXPORT_SYMBOL(pci_set_mwi);
4617 
4618 /**
4619  * pcim_set_mwi - a device-managed pci_set_mwi()
4620  * @dev: the PCI device for which MWI is enabled
4621  *
4622  * Managed pci_set_mwi().
4623  *
4624  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4625  */
4626 int pcim_set_mwi(struct pci_dev *dev)
4627 {
4628 	struct pci_devres *dr;
4629 
4630 	dr = find_pci_dr(dev);
4631 	if (!dr)
4632 		return -ENOMEM;
4633 
4634 	dr->mwi = 1;
4635 	return pci_set_mwi(dev);
4636 }
4637 EXPORT_SYMBOL(pcim_set_mwi);
4638 
4639 /**
4640  * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4641  * @dev: the PCI device for which MWI is enabled
4642  *
4643  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4644  * Callers are not required to check the return value.
4645  *
4646  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4647  */
4648 int pci_try_set_mwi(struct pci_dev *dev)
4649 {
4650 #ifdef PCI_DISABLE_MWI
4651 	return 0;
4652 #else
4653 	return pci_set_mwi(dev);
4654 #endif
4655 }
4656 EXPORT_SYMBOL(pci_try_set_mwi);
4657 
4658 /**
4659  * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4660  * @dev: the PCI device to disable
4661  *
4662  * Disables PCI Memory-Write-Invalidate transaction on the device
4663  */
4664 void pci_clear_mwi(struct pci_dev *dev)
4665 {
4666 #ifndef PCI_DISABLE_MWI
4667 	u16 cmd;
4668 
4669 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4670 	if (cmd & PCI_COMMAND_INVALIDATE) {
4671 		cmd &= ~PCI_COMMAND_INVALIDATE;
4672 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4673 	}
4674 #endif
4675 }
4676 EXPORT_SYMBOL(pci_clear_mwi);
4677 
4678 /**
4679  * pci_disable_parity - disable parity checking for device
4680  * @dev: the PCI device to operate on
4681  *
4682  * Disable parity checking for device @dev
4683  */
4684 void pci_disable_parity(struct pci_dev *dev)
4685 {
4686 	u16 cmd;
4687 
4688 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4689 	if (cmd & PCI_COMMAND_PARITY) {
4690 		cmd &= ~PCI_COMMAND_PARITY;
4691 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4692 	}
4693 }
4694 
4695 /**
4696  * pci_intx - enables/disables PCI INTx for device dev
4697  * @pdev: the PCI device to operate on
4698  * @enable: boolean: whether to enable or disable PCI INTx
4699  *
4700  * Enables/disables PCI INTx for device @pdev
4701  */
4702 void pci_intx(struct pci_dev *pdev, int enable)
4703 {
4704 	u16 pci_command, new;
4705 
4706 	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4707 
4708 	if (enable)
4709 		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4710 	else
4711 		new = pci_command | PCI_COMMAND_INTX_DISABLE;
4712 
4713 	if (new != pci_command) {
4714 		struct pci_devres *dr;
4715 
4716 		pci_write_config_word(pdev, PCI_COMMAND, new);
4717 
4718 		dr = find_pci_dr(pdev);
4719 		if (dr && !dr->restore_intx) {
4720 			dr->restore_intx = 1;
4721 			dr->orig_intx = !enable;
4722 		}
4723 	}
4724 }
4725 EXPORT_SYMBOL_GPL(pci_intx);
4726 
4727 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4728 {
4729 	struct pci_bus *bus = dev->bus;
4730 	bool mask_updated = true;
4731 	u32 cmd_status_dword;
4732 	u16 origcmd, newcmd;
4733 	unsigned long flags;
4734 	bool irq_pending;
4735 
4736 	/*
4737 	 * We do a single dword read to retrieve both command and status.
4738 	 * Document assumptions that make this possible.
4739 	 */
4740 	BUILD_BUG_ON(PCI_COMMAND % 4);
4741 	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4742 
4743 	raw_spin_lock_irqsave(&pci_lock, flags);
4744 
4745 	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4746 
4747 	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4748 
4749 	/*
4750 	 * Check interrupt status register to see whether our device
4751 	 * triggered the interrupt (when masking) or the next IRQ is
4752 	 * already pending (when unmasking).
4753 	 */
4754 	if (mask != irq_pending) {
4755 		mask_updated = false;
4756 		goto done;
4757 	}
4758 
4759 	origcmd = cmd_status_dword;
4760 	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4761 	if (mask)
4762 		newcmd |= PCI_COMMAND_INTX_DISABLE;
4763 	if (newcmd != origcmd)
4764 		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4765 
4766 done:
4767 	raw_spin_unlock_irqrestore(&pci_lock, flags);
4768 
4769 	return mask_updated;
4770 }
4771 
4772 /**
4773  * pci_check_and_mask_intx - mask INTx on pending interrupt
4774  * @dev: the PCI device to operate on
4775  *
4776  * Check if the device dev has its INTx line asserted, mask it and return
4777  * true in that case. False is returned if no interrupt was pending.
4778  */
4779 bool pci_check_and_mask_intx(struct pci_dev *dev)
4780 {
4781 	return pci_check_and_set_intx_mask(dev, true);
4782 }
4783 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4784 
4785 /**
4786  * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4787  * @dev: the PCI device to operate on
4788  *
4789  * Check if the device dev has its INTx line asserted, unmask it if not and
4790  * return true. False is returned and the mask remains active if there was
4791  * still an interrupt pending.
4792  */
4793 bool pci_check_and_unmask_intx(struct pci_dev *dev)
4794 {
4795 	return pci_check_and_set_intx_mask(dev, false);
4796 }
4797 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4798 
4799 /**
4800  * pci_wait_for_pending_transaction - wait for pending transaction
4801  * @dev: the PCI device to operate on
4802  *
4803  * Return 0 if transaction is pending 1 otherwise.
4804  */
4805 int pci_wait_for_pending_transaction(struct pci_dev *dev)
4806 {
4807 	if (!pci_is_pcie(dev))
4808 		return 1;
4809 
4810 	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4811 				    PCI_EXP_DEVSTA_TRPND);
4812 }
4813 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4814 
4815 /**
4816  * pcie_flr - initiate a PCIe function level reset
4817  * @dev: device to reset
4818  *
4819  * Initiate a function level reset unconditionally on @dev without
4820  * checking any flags and DEVCAP
4821  */
4822 int pcie_flr(struct pci_dev *dev)
4823 {
4824 	if (!pci_wait_for_pending_transaction(dev))
4825 		pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4826 
4827 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4828 
4829 	if (dev->imm_ready)
4830 		return 0;
4831 
4832 	/*
4833 	 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4834 	 * 100ms, but may silently discard requests while the FLR is in
4835 	 * progress.  Wait 100ms before trying to access the device.
4836 	 */
4837 	msleep(100);
4838 
4839 	return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4840 }
4841 EXPORT_SYMBOL_GPL(pcie_flr);
4842 
4843 /**
4844  * pcie_reset_flr - initiate a PCIe function level reset
4845  * @dev: device to reset
4846  * @probe: if true, return 0 if device can be reset this way
4847  *
4848  * Initiate a function level reset on @dev.
4849  */
4850 int pcie_reset_flr(struct pci_dev *dev, bool probe)
4851 {
4852 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4853 		return -ENOTTY;
4854 
4855 	if (!(dev->devcap & PCI_EXP_DEVCAP_FLR))
4856 		return -ENOTTY;
4857 
4858 	if (probe)
4859 		return 0;
4860 
4861 	return pcie_flr(dev);
4862 }
4863 EXPORT_SYMBOL_GPL(pcie_reset_flr);
4864 
4865 static int pci_af_flr(struct pci_dev *dev, bool probe)
4866 {
4867 	int pos;
4868 	u8 cap;
4869 
4870 	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4871 	if (!pos)
4872 		return -ENOTTY;
4873 
4874 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4875 		return -ENOTTY;
4876 
4877 	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4878 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4879 		return -ENOTTY;
4880 
4881 	if (probe)
4882 		return 0;
4883 
4884 	/*
4885 	 * Wait for Transaction Pending bit to clear.  A word-aligned test
4886 	 * is used, so we use the control offset rather than status and shift
4887 	 * the test bit to match.
4888 	 */
4889 	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4890 				 PCI_AF_STATUS_TP << 8))
4891 		pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4892 
4893 	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4894 
4895 	if (dev->imm_ready)
4896 		return 0;
4897 
4898 	/*
4899 	 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4900 	 * updated 27 July 2006; a device must complete an FLR within
4901 	 * 100ms, but may silently discard requests while the FLR is in
4902 	 * progress.  Wait 100ms before trying to access the device.
4903 	 */
4904 	msleep(100);
4905 
4906 	return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4907 }
4908 
4909 /**
4910  * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4911  * @dev: Device to reset.
4912  * @probe: if true, return 0 if the device can be reset this way.
4913  *
4914  * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4915  * unset, it will be reinitialized internally when going from PCI_D3hot to
4916  * PCI_D0.  If that's the case and the device is not in a low-power state
4917  * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4918  *
4919  * NOTE: This causes the caller to sleep for twice the device power transition
4920  * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4921  * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4922  * Moreover, only devices in D0 can be reset by this function.
4923  */
4924 static int pci_pm_reset(struct pci_dev *dev, bool probe)
4925 {
4926 	u16 csr;
4927 
4928 	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4929 		return -ENOTTY;
4930 
4931 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4932 	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4933 		return -ENOTTY;
4934 
4935 	if (probe)
4936 		return 0;
4937 
4938 	if (dev->current_state != PCI_D0)
4939 		return -EINVAL;
4940 
4941 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4942 	csr |= PCI_D3hot;
4943 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4944 	pci_dev_d3_sleep(dev);
4945 
4946 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4947 	csr |= PCI_D0;
4948 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4949 	pci_dev_d3_sleep(dev);
4950 
4951 	return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4952 }
4953 
4954 /**
4955  * pcie_wait_for_link_status - Wait for link status change
4956  * @pdev: Device whose link to wait for.
4957  * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE.
4958  * @active: Waiting for active or inactive?
4959  *
4960  * Return 0 if successful, or -ETIMEDOUT if status has not changed within
4961  * PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
4962  */
4963 static int pcie_wait_for_link_status(struct pci_dev *pdev,
4964 				     bool use_lt, bool active)
4965 {
4966 	u16 lnksta_mask, lnksta_match;
4967 	unsigned long end_jiffies;
4968 	u16 lnksta;
4969 
4970 	lnksta_mask = use_lt ? PCI_EXP_LNKSTA_LT : PCI_EXP_LNKSTA_DLLLA;
4971 	lnksta_match = active ? lnksta_mask : 0;
4972 
4973 	end_jiffies = jiffies + msecs_to_jiffies(PCIE_LINK_RETRAIN_TIMEOUT_MS);
4974 	do {
4975 		pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta);
4976 		if ((lnksta & lnksta_mask) == lnksta_match)
4977 			return 0;
4978 		msleep(1);
4979 	} while (time_before(jiffies, end_jiffies));
4980 
4981 	return -ETIMEDOUT;
4982 }
4983 
4984 /**
4985  * pcie_retrain_link - Request a link retrain and wait for it to complete
4986  * @pdev: Device whose link to retrain.
4987  * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE, for status.
4988  *
4989  * Retrain completion status is retrieved from the Link Status Register
4990  * according to @use_lt.  It is not verified whether the use of the DLLLA
4991  * bit is valid.
4992  *
4993  * Return 0 if successful, or -ETIMEDOUT if training has not completed
4994  * within PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
4995  */
4996 int pcie_retrain_link(struct pci_dev *pdev, bool use_lt)
4997 {
4998 	int rc;
4999 
5000 	/*
5001 	 * Ensure the updated LNKCTL parameters are used during link
5002 	 * training by checking that there is no ongoing link training to
5003 	 * avoid LTSSM race as recommended in Implementation Note at the
5004 	 * end of PCIe r6.0.1 sec 7.5.3.7.
5005 	 */
5006 	rc = pcie_wait_for_link_status(pdev, true, false);
5007 	if (rc)
5008 		return rc;
5009 
5010 	pcie_capability_set_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL);
5011 	if (pdev->clear_retrain_link) {
5012 		/*
5013 		 * Due to an erratum in some devices the Retrain Link bit
5014 		 * needs to be cleared again manually to allow the link
5015 		 * training to succeed.
5016 		 */
5017 		pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL);
5018 	}
5019 
5020 	return pcie_wait_for_link_status(pdev, use_lt, !use_lt);
5021 }
5022 
5023 /**
5024  * pcie_wait_for_link_delay - Wait until link is active or inactive
5025  * @pdev: Bridge device
5026  * @active: waiting for active or inactive?
5027  * @delay: Delay to wait after link has become active (in ms)
5028  *
5029  * Use this to wait till link becomes active or inactive.
5030  */
5031 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
5032 				     int delay)
5033 {
5034 	int rc;
5035 
5036 	/*
5037 	 * Some controllers might not implement link active reporting. In this
5038 	 * case, we wait for 1000 ms + any delay requested by the caller.
5039 	 */
5040 	if (!pdev->link_active_reporting) {
5041 		msleep(PCIE_LINK_RETRAIN_TIMEOUT_MS + delay);
5042 		return true;
5043 	}
5044 
5045 	/*
5046 	 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
5047 	 * after which we should expect an link active if the reset was
5048 	 * successful. If so, software must wait a minimum 100ms before sending
5049 	 * configuration requests to devices downstream this port.
5050 	 *
5051 	 * If the link fails to activate, either the device was physically
5052 	 * removed or the link is permanently failed.
5053 	 */
5054 	if (active)
5055 		msleep(20);
5056 	rc = pcie_wait_for_link_status(pdev, false, active);
5057 	if (active) {
5058 		if (rc)
5059 			rc = pcie_failed_link_retrain(pdev);
5060 		if (rc)
5061 			return false;
5062 
5063 		msleep(delay);
5064 		return true;
5065 	}
5066 
5067 	if (rc)
5068 		return false;
5069 
5070 	return true;
5071 }
5072 
5073 /**
5074  * pcie_wait_for_link - Wait until link is active or inactive
5075  * @pdev: Bridge device
5076  * @active: waiting for active or inactive?
5077  *
5078  * Use this to wait till link becomes active or inactive.
5079  */
5080 bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
5081 {
5082 	return pcie_wait_for_link_delay(pdev, active, 100);
5083 }
5084 
5085 /*
5086  * Find maximum D3cold delay required by all the devices on the bus.  The
5087  * spec says 100 ms, but firmware can lower it and we allow drivers to
5088  * increase it as well.
5089  *
5090  * Called with @pci_bus_sem locked for reading.
5091  */
5092 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
5093 {
5094 	const struct pci_dev *pdev;
5095 	int min_delay = 100;
5096 	int max_delay = 0;
5097 
5098 	list_for_each_entry(pdev, &bus->devices, bus_list) {
5099 		if (pdev->d3cold_delay < min_delay)
5100 			min_delay = pdev->d3cold_delay;
5101 		if (pdev->d3cold_delay > max_delay)
5102 			max_delay = pdev->d3cold_delay;
5103 	}
5104 
5105 	return max(min_delay, max_delay);
5106 }
5107 
5108 /**
5109  * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
5110  * @dev: PCI bridge
5111  * @reset_type: reset type in human-readable form
5112  *
5113  * Handle necessary delays before access to the devices on the secondary
5114  * side of the bridge are permitted after D3cold to D0 transition
5115  * or Conventional Reset.
5116  *
5117  * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
5118  * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
5119  * 4.3.2.
5120  *
5121  * Return 0 on success or -ENOTTY if the first device on the secondary bus
5122  * failed to become accessible.
5123  */
5124 int pci_bridge_wait_for_secondary_bus(struct pci_dev *dev, char *reset_type)
5125 {
5126 	struct pci_dev *child __free(pci_dev_put) = NULL;
5127 	int delay;
5128 
5129 	if (pci_dev_is_disconnected(dev))
5130 		return 0;
5131 
5132 	if (!pci_is_bridge(dev))
5133 		return 0;
5134 
5135 	down_read(&pci_bus_sem);
5136 
5137 	/*
5138 	 * We only deal with devices that are present currently on the bus.
5139 	 * For any hot-added devices the access delay is handled in pciehp
5140 	 * board_added(). In case of ACPI hotplug the firmware is expected
5141 	 * to configure the devices before OS is notified.
5142 	 */
5143 	if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
5144 		up_read(&pci_bus_sem);
5145 		return 0;
5146 	}
5147 
5148 	/* Take d3cold_delay requirements into account */
5149 	delay = pci_bus_max_d3cold_delay(dev->subordinate);
5150 	if (!delay) {
5151 		up_read(&pci_bus_sem);
5152 		return 0;
5153 	}
5154 
5155 	child = pci_dev_get(list_first_entry(&dev->subordinate->devices,
5156 					     struct pci_dev, bus_list));
5157 	up_read(&pci_bus_sem);
5158 
5159 	/*
5160 	 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
5161 	 * accessing the device after reset (that is 1000 ms + 100 ms).
5162 	 */
5163 	if (!pci_is_pcie(dev)) {
5164 		pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
5165 		msleep(1000 + delay);
5166 		return 0;
5167 	}
5168 
5169 	/*
5170 	 * For PCIe downstream and root ports that do not support speeds
5171 	 * greater than 5 GT/s need to wait minimum 100 ms. For higher
5172 	 * speeds (gen3) we need to wait first for the data link layer to
5173 	 * become active.
5174 	 *
5175 	 * However, 100 ms is the minimum and the PCIe spec says the
5176 	 * software must allow at least 1s before it can determine that the
5177 	 * device that did not respond is a broken device. Also device can
5178 	 * take longer than that to respond if it indicates so through Request
5179 	 * Retry Status completions.
5180 	 *
5181 	 * Therefore we wait for 100 ms and check for the device presence
5182 	 * until the timeout expires.
5183 	 */
5184 	if (!pcie_downstream_port(dev))
5185 		return 0;
5186 
5187 	if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
5188 		u16 status;
5189 
5190 		pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
5191 		msleep(delay);
5192 
5193 		if (!pci_dev_wait(child, reset_type, PCI_RESET_WAIT - delay))
5194 			return 0;
5195 
5196 		/*
5197 		 * If the port supports active link reporting we now check
5198 		 * whether the link is active and if not bail out early with
5199 		 * the assumption that the device is not present anymore.
5200 		 */
5201 		if (!dev->link_active_reporting)
5202 			return -ENOTTY;
5203 
5204 		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &status);
5205 		if (!(status & PCI_EXP_LNKSTA_DLLLA))
5206 			return -ENOTTY;
5207 
5208 		return pci_dev_wait(child, reset_type,
5209 				    PCIE_RESET_READY_POLL_MS - PCI_RESET_WAIT);
5210 	}
5211 
5212 	pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
5213 		delay);
5214 	if (!pcie_wait_for_link_delay(dev, true, delay)) {
5215 		/* Did not train, no need to wait any further */
5216 		pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
5217 		return -ENOTTY;
5218 	}
5219 
5220 	return pci_dev_wait(child, reset_type,
5221 			    PCIE_RESET_READY_POLL_MS - delay);
5222 }
5223 
5224 void pci_reset_secondary_bus(struct pci_dev *dev)
5225 {
5226 	u16 ctrl;
5227 
5228 	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
5229 	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
5230 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
5231 
5232 	/*
5233 	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
5234 	 * this to 2ms to ensure that we meet the minimum requirement.
5235 	 */
5236 	msleep(2);
5237 
5238 	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
5239 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
5240 }
5241 
5242 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
5243 {
5244 	pci_reset_secondary_bus(dev);
5245 }
5246 
5247 /**
5248  * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
5249  * @dev: Bridge device
5250  *
5251  * Use the bridge control register to assert reset on the secondary bus.
5252  * Devices on the secondary bus are left in power-on state.
5253  */
5254 int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
5255 {
5256 	pcibios_reset_secondary_bus(dev);
5257 
5258 	return pci_bridge_wait_for_secondary_bus(dev, "bus reset");
5259 }
5260 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
5261 
5262 static int pci_parent_bus_reset(struct pci_dev *dev, bool probe)
5263 {
5264 	struct pci_dev *pdev;
5265 
5266 	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
5267 	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5268 		return -ENOTTY;
5269 
5270 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
5271 		if (pdev != dev)
5272 			return -ENOTTY;
5273 
5274 	if (probe)
5275 		return 0;
5276 
5277 	return pci_bridge_secondary_bus_reset(dev->bus->self);
5278 }
5279 
5280 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe)
5281 {
5282 	int rc = -ENOTTY;
5283 
5284 	if (!hotplug || !try_module_get(hotplug->owner))
5285 		return rc;
5286 
5287 	if (hotplug->ops->reset_slot)
5288 		rc = hotplug->ops->reset_slot(hotplug, probe);
5289 
5290 	module_put(hotplug->owner);
5291 
5292 	return rc;
5293 }
5294 
5295 static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe)
5296 {
5297 	if (dev->multifunction || dev->subordinate || !dev->slot ||
5298 	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5299 		return -ENOTTY;
5300 
5301 	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
5302 }
5303 
5304 static int pci_reset_bus_function(struct pci_dev *dev, bool probe)
5305 {
5306 	int rc;
5307 
5308 	rc = pci_dev_reset_slot_function(dev, probe);
5309 	if (rc != -ENOTTY)
5310 		return rc;
5311 	return pci_parent_bus_reset(dev, probe);
5312 }
5313 
5314 void pci_dev_lock(struct pci_dev *dev)
5315 {
5316 	/* block PM suspend, driver probe, etc. */
5317 	device_lock(&dev->dev);
5318 	pci_cfg_access_lock(dev);
5319 }
5320 EXPORT_SYMBOL_GPL(pci_dev_lock);
5321 
5322 /* Return 1 on successful lock, 0 on contention */
5323 int pci_dev_trylock(struct pci_dev *dev)
5324 {
5325 	if (device_trylock(&dev->dev)) {
5326 		if (pci_cfg_access_trylock(dev))
5327 			return 1;
5328 		device_unlock(&dev->dev);
5329 	}
5330 
5331 	return 0;
5332 }
5333 EXPORT_SYMBOL_GPL(pci_dev_trylock);
5334 
5335 void pci_dev_unlock(struct pci_dev *dev)
5336 {
5337 	pci_cfg_access_unlock(dev);
5338 	device_unlock(&dev->dev);
5339 }
5340 EXPORT_SYMBOL_GPL(pci_dev_unlock);
5341 
5342 static void pci_dev_save_and_disable(struct pci_dev *dev)
5343 {
5344 	const struct pci_error_handlers *err_handler =
5345 			dev->driver ? dev->driver->err_handler : NULL;
5346 
5347 	/*
5348 	 * dev->driver->err_handler->reset_prepare() is protected against
5349 	 * races with ->remove() by the device lock, which must be held by
5350 	 * the caller.
5351 	 */
5352 	if (err_handler && err_handler->reset_prepare)
5353 		err_handler->reset_prepare(dev);
5354 
5355 	/*
5356 	 * Wake-up device prior to save.  PM registers default to D0 after
5357 	 * reset and a simple register restore doesn't reliably return
5358 	 * to a non-D0 state anyway.
5359 	 */
5360 	pci_set_power_state(dev, PCI_D0);
5361 
5362 	pci_save_state(dev);
5363 	/*
5364 	 * Disable the device by clearing the Command register, except for
5365 	 * INTx-disable which is set.  This not only disables MMIO and I/O port
5366 	 * BARs, but also prevents the device from being Bus Master, preventing
5367 	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
5368 	 * compliant devices, INTx-disable prevents legacy interrupts.
5369 	 */
5370 	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
5371 }
5372 
5373 static void pci_dev_restore(struct pci_dev *dev)
5374 {
5375 	const struct pci_error_handlers *err_handler =
5376 			dev->driver ? dev->driver->err_handler : NULL;
5377 
5378 	pci_restore_state(dev);
5379 
5380 	/*
5381 	 * dev->driver->err_handler->reset_done() is protected against
5382 	 * races with ->remove() by the device lock, which must be held by
5383 	 * the caller.
5384 	 */
5385 	if (err_handler && err_handler->reset_done)
5386 		err_handler->reset_done(dev);
5387 }
5388 
5389 /* dev->reset_methods[] is a 0-terminated list of indices into this array */
5390 static const struct pci_reset_fn_method pci_reset_fn_methods[] = {
5391 	{ },
5392 	{ pci_dev_specific_reset, .name = "device_specific" },
5393 	{ pci_dev_acpi_reset, .name = "acpi" },
5394 	{ pcie_reset_flr, .name = "flr" },
5395 	{ pci_af_flr, .name = "af_flr" },
5396 	{ pci_pm_reset, .name = "pm" },
5397 	{ pci_reset_bus_function, .name = "bus" },
5398 };
5399 
5400 static ssize_t reset_method_show(struct device *dev,
5401 				 struct device_attribute *attr, char *buf)
5402 {
5403 	struct pci_dev *pdev = to_pci_dev(dev);
5404 	ssize_t len = 0;
5405 	int i, m;
5406 
5407 	for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5408 		m = pdev->reset_methods[i];
5409 		if (!m)
5410 			break;
5411 
5412 		len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "",
5413 				     pci_reset_fn_methods[m].name);
5414 	}
5415 
5416 	if (len)
5417 		len += sysfs_emit_at(buf, len, "\n");
5418 
5419 	return len;
5420 }
5421 
5422 static int reset_method_lookup(const char *name)
5423 {
5424 	int m;
5425 
5426 	for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5427 		if (sysfs_streq(name, pci_reset_fn_methods[m].name))
5428 			return m;
5429 	}
5430 
5431 	return 0;	/* not found */
5432 }
5433 
5434 static ssize_t reset_method_store(struct device *dev,
5435 				  struct device_attribute *attr,
5436 				  const char *buf, size_t count)
5437 {
5438 	struct pci_dev *pdev = to_pci_dev(dev);
5439 	char *options, *name;
5440 	int m, n;
5441 	u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 };
5442 
5443 	if (sysfs_streq(buf, "")) {
5444 		pdev->reset_methods[0] = 0;
5445 		pci_warn(pdev, "All device reset methods disabled by user");
5446 		return count;
5447 	}
5448 
5449 	if (sysfs_streq(buf, "default")) {
5450 		pci_init_reset_methods(pdev);
5451 		return count;
5452 	}
5453 
5454 	options = kstrndup(buf, count, GFP_KERNEL);
5455 	if (!options)
5456 		return -ENOMEM;
5457 
5458 	n = 0;
5459 	while ((name = strsep(&options, " ")) != NULL) {
5460 		if (sysfs_streq(name, ""))
5461 			continue;
5462 
5463 		name = strim(name);
5464 
5465 		m = reset_method_lookup(name);
5466 		if (!m) {
5467 			pci_err(pdev, "Invalid reset method '%s'", name);
5468 			goto error;
5469 		}
5470 
5471 		if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) {
5472 			pci_err(pdev, "Unsupported reset method '%s'", name);
5473 			goto error;
5474 		}
5475 
5476 		if (n == PCI_NUM_RESET_METHODS - 1) {
5477 			pci_err(pdev, "Too many reset methods\n");
5478 			goto error;
5479 		}
5480 
5481 		reset_methods[n++] = m;
5482 	}
5483 
5484 	reset_methods[n] = 0;
5485 
5486 	/* Warn if dev-specific supported but not highest priority */
5487 	if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 &&
5488 	    reset_methods[0] != 1)
5489 		pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user");
5490 	memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods));
5491 	kfree(options);
5492 	return count;
5493 
5494 error:
5495 	/* Leave previous methods unchanged */
5496 	kfree(options);
5497 	return -EINVAL;
5498 }
5499 static DEVICE_ATTR_RW(reset_method);
5500 
5501 static struct attribute *pci_dev_reset_method_attrs[] = {
5502 	&dev_attr_reset_method.attr,
5503 	NULL,
5504 };
5505 
5506 static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj,
5507 						    struct attribute *a, int n)
5508 {
5509 	struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj));
5510 
5511 	if (!pci_reset_supported(pdev))
5512 		return 0;
5513 
5514 	return a->mode;
5515 }
5516 
5517 const struct attribute_group pci_dev_reset_method_attr_group = {
5518 	.attrs = pci_dev_reset_method_attrs,
5519 	.is_visible = pci_dev_reset_method_attr_is_visible,
5520 };
5521 
5522 /**
5523  * __pci_reset_function_locked - reset a PCI device function while holding
5524  * the @dev mutex lock.
5525  * @dev: PCI device to reset
5526  *
5527  * Some devices allow an individual function to be reset without affecting
5528  * other functions in the same device.  The PCI device must be responsive
5529  * to PCI config space in order to use this function.
5530  *
5531  * The device function is presumed to be unused and the caller is holding
5532  * the device mutex lock when this function is called.
5533  *
5534  * Resetting the device will make the contents of PCI configuration space
5535  * random, so any caller of this must be prepared to reinitialise the
5536  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5537  * etc.
5538  *
5539  * Returns 0 if the device function was successfully reset or negative if the
5540  * device doesn't support resetting a single function.
5541  */
5542 int __pci_reset_function_locked(struct pci_dev *dev)
5543 {
5544 	int i, m, rc;
5545 
5546 	might_sleep();
5547 
5548 	/*
5549 	 * A reset method returns -ENOTTY if it doesn't support this device and
5550 	 * we should try the next method.
5551 	 *
5552 	 * If it returns 0 (success), we're finished.  If it returns any other
5553 	 * error, we're also finished: this indicates that further reset
5554 	 * mechanisms might be broken on the device.
5555 	 */
5556 	for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5557 		m = dev->reset_methods[i];
5558 		if (!m)
5559 			return -ENOTTY;
5560 
5561 		rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET);
5562 		if (!rc)
5563 			return 0;
5564 		if (rc != -ENOTTY)
5565 			return rc;
5566 	}
5567 
5568 	return -ENOTTY;
5569 }
5570 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5571 
5572 /**
5573  * pci_init_reset_methods - check whether device can be safely reset
5574  * and store supported reset mechanisms.
5575  * @dev: PCI device to check for reset mechanisms
5576  *
5577  * Some devices allow an individual function to be reset without affecting
5578  * other functions in the same device.  The PCI device must be in D0-D3hot
5579  * state.
5580  *
5581  * Stores reset mechanisms supported by device in reset_methods byte array
5582  * which is a member of struct pci_dev.
5583  */
5584 void pci_init_reset_methods(struct pci_dev *dev)
5585 {
5586 	int m, i, rc;
5587 
5588 	BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS);
5589 
5590 	might_sleep();
5591 
5592 	i = 0;
5593 	for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5594 		rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE);
5595 		if (!rc)
5596 			dev->reset_methods[i++] = m;
5597 		else if (rc != -ENOTTY)
5598 			break;
5599 	}
5600 
5601 	dev->reset_methods[i] = 0;
5602 }
5603 
5604 /**
5605  * pci_reset_function - quiesce and reset a PCI device function
5606  * @dev: PCI device to reset
5607  *
5608  * Some devices allow an individual function to be reset without affecting
5609  * other functions in the same device.  The PCI device must be responsive
5610  * to PCI config space in order to use this function.
5611  *
5612  * This function does not just reset the PCI portion of a device, but
5613  * clears all the state associated with the device.  This function differs
5614  * from __pci_reset_function_locked() in that it saves and restores device state
5615  * over the reset and takes the PCI device lock.
5616  *
5617  * Returns 0 if the device function was successfully reset or negative if the
5618  * device doesn't support resetting a single function.
5619  */
5620 int pci_reset_function(struct pci_dev *dev)
5621 {
5622 	int rc;
5623 
5624 	if (!pci_reset_supported(dev))
5625 		return -ENOTTY;
5626 
5627 	pci_dev_lock(dev);
5628 	pci_dev_save_and_disable(dev);
5629 
5630 	rc = __pci_reset_function_locked(dev);
5631 
5632 	pci_dev_restore(dev);
5633 	pci_dev_unlock(dev);
5634 
5635 	return rc;
5636 }
5637 EXPORT_SYMBOL_GPL(pci_reset_function);
5638 
5639 /**
5640  * pci_reset_function_locked - quiesce and reset a PCI device function
5641  * @dev: PCI device to reset
5642  *
5643  * Some devices allow an individual function to be reset without affecting
5644  * other functions in the same device.  The PCI device must be responsive
5645  * to PCI config space in order to use this function.
5646  *
5647  * This function does not just reset the PCI portion of a device, but
5648  * clears all the state associated with the device.  This function differs
5649  * from __pci_reset_function_locked() in that it saves and restores device state
5650  * over the reset.  It also differs from pci_reset_function() in that it
5651  * requires the PCI device lock to be held.
5652  *
5653  * Returns 0 if the device function was successfully reset or negative if the
5654  * device doesn't support resetting a single function.
5655  */
5656 int pci_reset_function_locked(struct pci_dev *dev)
5657 {
5658 	int rc;
5659 
5660 	if (!pci_reset_supported(dev))
5661 		return -ENOTTY;
5662 
5663 	pci_dev_save_and_disable(dev);
5664 
5665 	rc = __pci_reset_function_locked(dev);
5666 
5667 	pci_dev_restore(dev);
5668 
5669 	return rc;
5670 }
5671 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5672 
5673 /**
5674  * pci_try_reset_function - quiesce and reset a PCI device function
5675  * @dev: PCI device to reset
5676  *
5677  * Same as above, except return -EAGAIN if unable to lock device.
5678  */
5679 int pci_try_reset_function(struct pci_dev *dev)
5680 {
5681 	int rc;
5682 
5683 	if (!pci_reset_supported(dev))
5684 		return -ENOTTY;
5685 
5686 	if (!pci_dev_trylock(dev))
5687 		return -EAGAIN;
5688 
5689 	pci_dev_save_and_disable(dev);
5690 	rc = __pci_reset_function_locked(dev);
5691 	pci_dev_restore(dev);
5692 	pci_dev_unlock(dev);
5693 
5694 	return rc;
5695 }
5696 EXPORT_SYMBOL_GPL(pci_try_reset_function);
5697 
5698 /* Do any devices on or below this bus prevent a bus reset? */
5699 static bool pci_bus_resettable(struct pci_bus *bus)
5700 {
5701 	struct pci_dev *dev;
5702 
5703 
5704 	if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5705 		return false;
5706 
5707 	list_for_each_entry(dev, &bus->devices, bus_list) {
5708 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5709 		    (dev->subordinate && !pci_bus_resettable(dev->subordinate)))
5710 			return false;
5711 	}
5712 
5713 	return true;
5714 }
5715 
5716 /* Lock devices from the top of the tree down */
5717 static void pci_bus_lock(struct pci_bus *bus)
5718 {
5719 	struct pci_dev *dev;
5720 
5721 	list_for_each_entry(dev, &bus->devices, bus_list) {
5722 		pci_dev_lock(dev);
5723 		if (dev->subordinate)
5724 			pci_bus_lock(dev->subordinate);
5725 	}
5726 }
5727 
5728 /* Unlock devices from the bottom of the tree up */
5729 static void pci_bus_unlock(struct pci_bus *bus)
5730 {
5731 	struct pci_dev *dev;
5732 
5733 	list_for_each_entry(dev, &bus->devices, bus_list) {
5734 		if (dev->subordinate)
5735 			pci_bus_unlock(dev->subordinate);
5736 		pci_dev_unlock(dev);
5737 	}
5738 }
5739 
5740 /* Return 1 on successful lock, 0 on contention */
5741 static int pci_bus_trylock(struct pci_bus *bus)
5742 {
5743 	struct pci_dev *dev;
5744 
5745 	list_for_each_entry(dev, &bus->devices, bus_list) {
5746 		if (!pci_dev_trylock(dev))
5747 			goto unlock;
5748 		if (dev->subordinate) {
5749 			if (!pci_bus_trylock(dev->subordinate)) {
5750 				pci_dev_unlock(dev);
5751 				goto unlock;
5752 			}
5753 		}
5754 	}
5755 	return 1;
5756 
5757 unlock:
5758 	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5759 		if (dev->subordinate)
5760 			pci_bus_unlock(dev->subordinate);
5761 		pci_dev_unlock(dev);
5762 	}
5763 	return 0;
5764 }
5765 
5766 /* Do any devices on or below this slot prevent a bus reset? */
5767 static bool pci_slot_resettable(struct pci_slot *slot)
5768 {
5769 	struct pci_dev *dev;
5770 
5771 	if (slot->bus->self &&
5772 	    (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5773 		return false;
5774 
5775 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5776 		if (!dev->slot || dev->slot != slot)
5777 			continue;
5778 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5779 		    (dev->subordinate && !pci_bus_resettable(dev->subordinate)))
5780 			return false;
5781 	}
5782 
5783 	return true;
5784 }
5785 
5786 /* Lock devices from the top of the tree down */
5787 static void pci_slot_lock(struct pci_slot *slot)
5788 {
5789 	struct pci_dev *dev;
5790 
5791 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5792 		if (!dev->slot || dev->slot != slot)
5793 			continue;
5794 		pci_dev_lock(dev);
5795 		if (dev->subordinate)
5796 			pci_bus_lock(dev->subordinate);
5797 	}
5798 }
5799 
5800 /* Unlock devices from the bottom of the tree up */
5801 static void pci_slot_unlock(struct pci_slot *slot)
5802 {
5803 	struct pci_dev *dev;
5804 
5805 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5806 		if (!dev->slot || dev->slot != slot)
5807 			continue;
5808 		if (dev->subordinate)
5809 			pci_bus_unlock(dev->subordinate);
5810 		pci_dev_unlock(dev);
5811 	}
5812 }
5813 
5814 /* Return 1 on successful lock, 0 on contention */
5815 static int pci_slot_trylock(struct pci_slot *slot)
5816 {
5817 	struct pci_dev *dev;
5818 
5819 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5820 		if (!dev->slot || dev->slot != slot)
5821 			continue;
5822 		if (!pci_dev_trylock(dev))
5823 			goto unlock;
5824 		if (dev->subordinate) {
5825 			if (!pci_bus_trylock(dev->subordinate)) {
5826 				pci_dev_unlock(dev);
5827 				goto unlock;
5828 			}
5829 		}
5830 	}
5831 	return 1;
5832 
5833 unlock:
5834 	list_for_each_entry_continue_reverse(dev,
5835 					     &slot->bus->devices, bus_list) {
5836 		if (!dev->slot || dev->slot != slot)
5837 			continue;
5838 		if (dev->subordinate)
5839 			pci_bus_unlock(dev->subordinate);
5840 		pci_dev_unlock(dev);
5841 	}
5842 	return 0;
5843 }
5844 
5845 /*
5846  * Save and disable devices from the top of the tree down while holding
5847  * the @dev mutex lock for the entire tree.
5848  */
5849 static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5850 {
5851 	struct pci_dev *dev;
5852 
5853 	list_for_each_entry(dev, &bus->devices, bus_list) {
5854 		pci_dev_save_and_disable(dev);
5855 		if (dev->subordinate)
5856 			pci_bus_save_and_disable_locked(dev->subordinate);
5857 	}
5858 }
5859 
5860 /*
5861  * Restore devices from top of the tree down while holding @dev mutex lock
5862  * for the entire tree.  Parent bridges need to be restored before we can
5863  * get to subordinate devices.
5864  */
5865 static void pci_bus_restore_locked(struct pci_bus *bus)
5866 {
5867 	struct pci_dev *dev;
5868 
5869 	list_for_each_entry(dev, &bus->devices, bus_list) {
5870 		pci_dev_restore(dev);
5871 		if (dev->subordinate)
5872 			pci_bus_restore_locked(dev->subordinate);
5873 	}
5874 }
5875 
5876 /*
5877  * Save and disable devices from the top of the tree down while holding
5878  * the @dev mutex lock for the entire tree.
5879  */
5880 static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5881 {
5882 	struct pci_dev *dev;
5883 
5884 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5885 		if (!dev->slot || dev->slot != slot)
5886 			continue;
5887 		pci_dev_save_and_disable(dev);
5888 		if (dev->subordinate)
5889 			pci_bus_save_and_disable_locked(dev->subordinate);
5890 	}
5891 }
5892 
5893 /*
5894  * Restore devices from top of the tree down while holding @dev mutex lock
5895  * for the entire tree.  Parent bridges need to be restored before we can
5896  * get to subordinate devices.
5897  */
5898 static void pci_slot_restore_locked(struct pci_slot *slot)
5899 {
5900 	struct pci_dev *dev;
5901 
5902 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5903 		if (!dev->slot || dev->slot != slot)
5904 			continue;
5905 		pci_dev_restore(dev);
5906 		if (dev->subordinate)
5907 			pci_bus_restore_locked(dev->subordinate);
5908 	}
5909 }
5910 
5911 static int pci_slot_reset(struct pci_slot *slot, bool probe)
5912 {
5913 	int rc;
5914 
5915 	if (!slot || !pci_slot_resettable(slot))
5916 		return -ENOTTY;
5917 
5918 	if (!probe)
5919 		pci_slot_lock(slot);
5920 
5921 	might_sleep();
5922 
5923 	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5924 
5925 	if (!probe)
5926 		pci_slot_unlock(slot);
5927 
5928 	return rc;
5929 }
5930 
5931 /**
5932  * pci_probe_reset_slot - probe whether a PCI slot can be reset
5933  * @slot: PCI slot to probe
5934  *
5935  * Return 0 if slot can be reset, negative if a slot reset is not supported.
5936  */
5937 int pci_probe_reset_slot(struct pci_slot *slot)
5938 {
5939 	return pci_slot_reset(slot, PCI_RESET_PROBE);
5940 }
5941 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5942 
5943 /**
5944  * __pci_reset_slot - Try to reset a PCI slot
5945  * @slot: PCI slot to reset
5946  *
5947  * A PCI bus may host multiple slots, each slot may support a reset mechanism
5948  * independent of other slots.  For instance, some slots may support slot power
5949  * control.  In the case of a 1:1 bus to slot architecture, this function may
5950  * wrap the bus reset to avoid spurious slot related events such as hotplug.
5951  * Generally a slot reset should be attempted before a bus reset.  All of the
5952  * function of the slot and any subordinate buses behind the slot are reset
5953  * through this function.  PCI config space of all devices in the slot and
5954  * behind the slot is saved before and restored after reset.
5955  *
5956  * Same as above except return -EAGAIN if the slot cannot be locked
5957  */
5958 static int __pci_reset_slot(struct pci_slot *slot)
5959 {
5960 	int rc;
5961 
5962 	rc = pci_slot_reset(slot, PCI_RESET_PROBE);
5963 	if (rc)
5964 		return rc;
5965 
5966 	if (pci_slot_trylock(slot)) {
5967 		pci_slot_save_and_disable_locked(slot);
5968 		might_sleep();
5969 		rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET);
5970 		pci_slot_restore_locked(slot);
5971 		pci_slot_unlock(slot);
5972 	} else
5973 		rc = -EAGAIN;
5974 
5975 	return rc;
5976 }
5977 
5978 static int pci_bus_reset(struct pci_bus *bus, bool probe)
5979 {
5980 	int ret;
5981 
5982 	if (!bus->self || !pci_bus_resettable(bus))
5983 		return -ENOTTY;
5984 
5985 	if (probe)
5986 		return 0;
5987 
5988 	pci_bus_lock(bus);
5989 
5990 	might_sleep();
5991 
5992 	ret = pci_bridge_secondary_bus_reset(bus->self);
5993 
5994 	pci_bus_unlock(bus);
5995 
5996 	return ret;
5997 }
5998 
5999 /**
6000  * pci_bus_error_reset - reset the bridge's subordinate bus
6001  * @bridge: The parent device that connects to the bus to reset
6002  *
6003  * This function will first try to reset the slots on this bus if the method is
6004  * available. If slot reset fails or is not available, this will fall back to a
6005  * secondary bus reset.
6006  */
6007 int pci_bus_error_reset(struct pci_dev *bridge)
6008 {
6009 	struct pci_bus *bus = bridge->subordinate;
6010 	struct pci_slot *slot;
6011 
6012 	if (!bus)
6013 		return -ENOTTY;
6014 
6015 	mutex_lock(&pci_slot_mutex);
6016 	if (list_empty(&bus->slots))
6017 		goto bus_reset;
6018 
6019 	list_for_each_entry(slot, &bus->slots, list)
6020 		if (pci_probe_reset_slot(slot))
6021 			goto bus_reset;
6022 
6023 	list_for_each_entry(slot, &bus->slots, list)
6024 		if (pci_slot_reset(slot, PCI_RESET_DO_RESET))
6025 			goto bus_reset;
6026 
6027 	mutex_unlock(&pci_slot_mutex);
6028 	return 0;
6029 bus_reset:
6030 	mutex_unlock(&pci_slot_mutex);
6031 	return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET);
6032 }
6033 
6034 /**
6035  * pci_probe_reset_bus - probe whether a PCI bus can be reset
6036  * @bus: PCI bus to probe
6037  *
6038  * Return 0 if bus can be reset, negative if a bus reset is not supported.
6039  */
6040 int pci_probe_reset_bus(struct pci_bus *bus)
6041 {
6042 	return pci_bus_reset(bus, PCI_RESET_PROBE);
6043 }
6044 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
6045 
6046 /**
6047  * __pci_reset_bus - Try to reset a PCI bus
6048  * @bus: top level PCI bus to reset
6049  *
6050  * Same as above except return -EAGAIN if the bus cannot be locked
6051  */
6052 static int __pci_reset_bus(struct pci_bus *bus)
6053 {
6054 	int rc;
6055 
6056 	rc = pci_bus_reset(bus, PCI_RESET_PROBE);
6057 	if (rc)
6058 		return rc;
6059 
6060 	if (pci_bus_trylock(bus)) {
6061 		pci_bus_save_and_disable_locked(bus);
6062 		might_sleep();
6063 		rc = pci_bridge_secondary_bus_reset(bus->self);
6064 		pci_bus_restore_locked(bus);
6065 		pci_bus_unlock(bus);
6066 	} else
6067 		rc = -EAGAIN;
6068 
6069 	return rc;
6070 }
6071 
6072 /**
6073  * pci_reset_bus - Try to reset a PCI bus
6074  * @pdev: top level PCI device to reset via slot/bus
6075  *
6076  * Same as above except return -EAGAIN if the bus cannot be locked
6077  */
6078 int pci_reset_bus(struct pci_dev *pdev)
6079 {
6080 	return (!pci_probe_reset_slot(pdev->slot)) ?
6081 	    __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
6082 }
6083 EXPORT_SYMBOL_GPL(pci_reset_bus);
6084 
6085 /**
6086  * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
6087  * @dev: PCI device to query
6088  *
6089  * Returns mmrbc: maximum designed memory read count in bytes or
6090  * appropriate error value.
6091  */
6092 int pcix_get_max_mmrbc(struct pci_dev *dev)
6093 {
6094 	int cap;
6095 	u32 stat;
6096 
6097 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
6098 	if (!cap)
6099 		return -EINVAL;
6100 
6101 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
6102 		return -EINVAL;
6103 
6104 	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
6105 }
6106 EXPORT_SYMBOL(pcix_get_max_mmrbc);
6107 
6108 /**
6109  * pcix_get_mmrbc - get PCI-X maximum memory read byte count
6110  * @dev: PCI device to query
6111  *
6112  * Returns mmrbc: maximum memory read count in bytes or appropriate error
6113  * value.
6114  */
6115 int pcix_get_mmrbc(struct pci_dev *dev)
6116 {
6117 	int cap;
6118 	u16 cmd;
6119 
6120 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
6121 	if (!cap)
6122 		return -EINVAL;
6123 
6124 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
6125 		return -EINVAL;
6126 
6127 	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
6128 }
6129 EXPORT_SYMBOL(pcix_get_mmrbc);
6130 
6131 /**
6132  * pcix_set_mmrbc - set PCI-X maximum memory read byte count
6133  * @dev: PCI device to query
6134  * @mmrbc: maximum memory read count in bytes
6135  *    valid values are 512, 1024, 2048, 4096
6136  *
6137  * If possible sets maximum memory read byte count, some bridges have errata
6138  * that prevent this.
6139  */
6140 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
6141 {
6142 	int cap;
6143 	u32 stat, v, o;
6144 	u16 cmd;
6145 
6146 	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
6147 		return -EINVAL;
6148 
6149 	v = ffs(mmrbc) - 10;
6150 
6151 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
6152 	if (!cap)
6153 		return -EINVAL;
6154 
6155 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
6156 		return -EINVAL;
6157 
6158 	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
6159 		return -E2BIG;
6160 
6161 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
6162 		return -EINVAL;
6163 
6164 	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
6165 	if (o != v) {
6166 		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
6167 			return -EIO;
6168 
6169 		cmd &= ~PCI_X_CMD_MAX_READ;
6170 		cmd |= v << 2;
6171 		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
6172 			return -EIO;
6173 	}
6174 	return 0;
6175 }
6176 EXPORT_SYMBOL(pcix_set_mmrbc);
6177 
6178 /**
6179  * pcie_get_readrq - get PCI Express read request size
6180  * @dev: PCI device to query
6181  *
6182  * Returns maximum memory read request in bytes or appropriate error value.
6183  */
6184 int pcie_get_readrq(struct pci_dev *dev)
6185 {
6186 	u16 ctl;
6187 
6188 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6189 
6190 	return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6191 }
6192 EXPORT_SYMBOL(pcie_get_readrq);
6193 
6194 /**
6195  * pcie_set_readrq - set PCI Express maximum memory read request
6196  * @dev: PCI device to query
6197  * @rq: maximum memory read count in bytes
6198  *    valid values are 128, 256, 512, 1024, 2048, 4096
6199  *
6200  * If possible sets maximum memory read request in bytes
6201  */
6202 int pcie_set_readrq(struct pci_dev *dev, int rq)
6203 {
6204 	u16 v;
6205 	int ret;
6206 	struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
6207 
6208 	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
6209 		return -EINVAL;
6210 
6211 	/*
6212 	 * If using the "performance" PCIe config, we clamp the read rq
6213 	 * size to the max packet size to keep the host bridge from
6214 	 * generating requests larger than we can cope with.
6215 	 */
6216 	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
6217 		int mps = pcie_get_mps(dev);
6218 
6219 		if (mps < rq)
6220 			rq = mps;
6221 	}
6222 
6223 	v = (ffs(rq) - 8) << 12;
6224 
6225 	if (bridge->no_inc_mrrs) {
6226 		int max_mrrs = pcie_get_readrq(dev);
6227 
6228 		if (rq > max_mrrs) {
6229 			pci_info(dev, "can't set Max_Read_Request_Size to %d; max is %d\n", rq, max_mrrs);
6230 			return -EINVAL;
6231 		}
6232 	}
6233 
6234 	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6235 						  PCI_EXP_DEVCTL_READRQ, v);
6236 
6237 	return pcibios_err_to_errno(ret);
6238 }
6239 EXPORT_SYMBOL(pcie_set_readrq);
6240 
6241 /**
6242  * pcie_get_mps - get PCI Express maximum payload size
6243  * @dev: PCI device to query
6244  *
6245  * Returns maximum payload size in bytes
6246  */
6247 int pcie_get_mps(struct pci_dev *dev)
6248 {
6249 	u16 ctl;
6250 
6251 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6252 
6253 	return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6254 }
6255 EXPORT_SYMBOL(pcie_get_mps);
6256 
6257 /**
6258  * pcie_set_mps - set PCI Express maximum payload size
6259  * @dev: PCI device to query
6260  * @mps: maximum payload size in bytes
6261  *    valid values are 128, 256, 512, 1024, 2048, 4096
6262  *
6263  * If possible sets maximum payload size
6264  */
6265 int pcie_set_mps(struct pci_dev *dev, int mps)
6266 {
6267 	u16 v;
6268 	int ret;
6269 
6270 	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
6271 		return -EINVAL;
6272 
6273 	v = ffs(mps) - 8;
6274 	if (v > dev->pcie_mpss)
6275 		return -EINVAL;
6276 	v <<= 5;
6277 
6278 	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6279 						  PCI_EXP_DEVCTL_PAYLOAD, v);
6280 
6281 	return pcibios_err_to_errno(ret);
6282 }
6283 EXPORT_SYMBOL(pcie_set_mps);
6284 
6285 /**
6286  * pcie_bandwidth_available - determine minimum link settings of a PCIe
6287  *			      device and its bandwidth limitation
6288  * @dev: PCI device to query
6289  * @limiting_dev: storage for device causing the bandwidth limitation
6290  * @speed: storage for speed of limiting device
6291  * @width: storage for width of limiting device
6292  *
6293  * Walk up the PCI device chain and find the point where the minimum
6294  * bandwidth is available.  Return the bandwidth available there and (if
6295  * limiting_dev, speed, and width pointers are supplied) information about
6296  * that point.  The bandwidth returned is in Mb/s, i.e., megabits/second of
6297  * raw bandwidth.
6298  */
6299 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
6300 			     enum pci_bus_speed *speed,
6301 			     enum pcie_link_width *width)
6302 {
6303 	u16 lnksta;
6304 	enum pci_bus_speed next_speed;
6305 	enum pcie_link_width next_width;
6306 	u32 bw, next_bw;
6307 
6308 	if (speed)
6309 		*speed = PCI_SPEED_UNKNOWN;
6310 	if (width)
6311 		*width = PCIE_LNK_WIDTH_UNKNOWN;
6312 
6313 	bw = 0;
6314 
6315 	while (dev) {
6316 		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
6317 
6318 		next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
6319 		next_width = FIELD_GET(PCI_EXP_LNKSTA_NLW, lnksta);
6320 
6321 		next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
6322 
6323 		/* Check if current device limits the total bandwidth */
6324 		if (!bw || next_bw <= bw) {
6325 			bw = next_bw;
6326 
6327 			if (limiting_dev)
6328 				*limiting_dev = dev;
6329 			if (speed)
6330 				*speed = next_speed;
6331 			if (width)
6332 				*width = next_width;
6333 		}
6334 
6335 		dev = pci_upstream_bridge(dev);
6336 	}
6337 
6338 	return bw;
6339 }
6340 EXPORT_SYMBOL(pcie_bandwidth_available);
6341 
6342 /**
6343  * pcie_get_speed_cap - query for the PCI device's link speed capability
6344  * @dev: PCI device to query
6345  *
6346  * Query the PCI device speed capability.  Return the maximum link speed
6347  * supported by the device.
6348  */
6349 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
6350 {
6351 	u32 lnkcap2, lnkcap;
6352 
6353 	/*
6354 	 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18.  The
6355 	 * implementation note there recommends using the Supported Link
6356 	 * Speeds Vector in Link Capabilities 2 when supported.
6357 	 *
6358 	 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
6359 	 * should use the Supported Link Speeds field in Link Capabilities,
6360 	 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
6361 	 */
6362 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
6363 
6364 	/* PCIe r3.0-compliant */
6365 	if (lnkcap2)
6366 		return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
6367 
6368 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6369 	if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
6370 		return PCIE_SPEED_5_0GT;
6371 	else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
6372 		return PCIE_SPEED_2_5GT;
6373 
6374 	return PCI_SPEED_UNKNOWN;
6375 }
6376 EXPORT_SYMBOL(pcie_get_speed_cap);
6377 
6378 /**
6379  * pcie_get_width_cap - query for the PCI device's link width capability
6380  * @dev: PCI device to query
6381  *
6382  * Query the PCI device width capability.  Return the maximum link width
6383  * supported by the device.
6384  */
6385 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
6386 {
6387 	u32 lnkcap;
6388 
6389 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6390 	if (lnkcap)
6391 		return FIELD_GET(PCI_EXP_LNKCAP_MLW, lnkcap);
6392 
6393 	return PCIE_LNK_WIDTH_UNKNOWN;
6394 }
6395 EXPORT_SYMBOL(pcie_get_width_cap);
6396 
6397 /**
6398  * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
6399  * @dev: PCI device
6400  * @speed: storage for link speed
6401  * @width: storage for link width
6402  *
6403  * Calculate a PCI device's link bandwidth by querying for its link speed
6404  * and width, multiplying them, and applying encoding overhead.  The result
6405  * is in Mb/s, i.e., megabits/second of raw bandwidth.
6406  */
6407 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
6408 			   enum pcie_link_width *width)
6409 {
6410 	*speed = pcie_get_speed_cap(dev);
6411 	*width = pcie_get_width_cap(dev);
6412 
6413 	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
6414 		return 0;
6415 
6416 	return *width * PCIE_SPEED2MBS_ENC(*speed);
6417 }
6418 
6419 /**
6420  * __pcie_print_link_status - Report the PCI device's link speed and width
6421  * @dev: PCI device to query
6422  * @verbose: Print info even when enough bandwidth is available
6423  *
6424  * If the available bandwidth at the device is less than the device is
6425  * capable of, report the device's maximum possible bandwidth and the
6426  * upstream link that limits its performance.  If @verbose, always print
6427  * the available bandwidth, even if the device isn't constrained.
6428  */
6429 void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
6430 {
6431 	enum pcie_link_width width, width_cap;
6432 	enum pci_bus_speed speed, speed_cap;
6433 	struct pci_dev *limiting_dev = NULL;
6434 	u32 bw_avail, bw_cap;
6435 
6436 	bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
6437 	bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
6438 
6439 	if (bw_avail >= bw_cap && verbose)
6440 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
6441 			 bw_cap / 1000, bw_cap % 1000,
6442 			 pci_speed_string(speed_cap), width_cap);
6443 	else if (bw_avail < bw_cap)
6444 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
6445 			 bw_avail / 1000, bw_avail % 1000,
6446 			 pci_speed_string(speed), width,
6447 			 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
6448 			 bw_cap / 1000, bw_cap % 1000,
6449 			 pci_speed_string(speed_cap), width_cap);
6450 }
6451 
6452 /**
6453  * pcie_print_link_status - Report the PCI device's link speed and width
6454  * @dev: PCI device to query
6455  *
6456  * Report the available bandwidth at the device.
6457  */
6458 void pcie_print_link_status(struct pci_dev *dev)
6459 {
6460 	__pcie_print_link_status(dev, true);
6461 }
6462 EXPORT_SYMBOL(pcie_print_link_status);
6463 
6464 /**
6465  * pci_select_bars - Make BAR mask from the type of resource
6466  * @dev: the PCI device for which BAR mask is made
6467  * @flags: resource type mask to be selected
6468  *
6469  * This helper routine makes bar mask from the type of resource.
6470  */
6471 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
6472 {
6473 	int i, bars = 0;
6474 	for (i = 0; i < PCI_NUM_RESOURCES; i++)
6475 		if (pci_resource_flags(dev, i) & flags)
6476 			bars |= (1 << i);
6477 	return bars;
6478 }
6479 EXPORT_SYMBOL(pci_select_bars);
6480 
6481 /* Some architectures require additional programming to enable VGA */
6482 static arch_set_vga_state_t arch_set_vga_state;
6483 
6484 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6485 {
6486 	arch_set_vga_state = func;	/* NULL disables */
6487 }
6488 
6489 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
6490 				  unsigned int command_bits, u32 flags)
6491 {
6492 	if (arch_set_vga_state)
6493 		return arch_set_vga_state(dev, decode, command_bits,
6494 						flags);
6495 	return 0;
6496 }
6497 
6498 /**
6499  * pci_set_vga_state - set VGA decode state on device and parents if requested
6500  * @dev: the PCI device
6501  * @decode: true = enable decoding, false = disable decoding
6502  * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6503  * @flags: traverse ancestors and change bridges
6504  * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6505  */
6506 int pci_set_vga_state(struct pci_dev *dev, bool decode,
6507 		      unsigned int command_bits, u32 flags)
6508 {
6509 	struct pci_bus *bus;
6510 	struct pci_dev *bridge;
6511 	u16 cmd;
6512 	int rc;
6513 
6514 	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6515 
6516 	/* ARCH specific VGA enables */
6517 	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6518 	if (rc)
6519 		return rc;
6520 
6521 	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6522 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
6523 		if (decode)
6524 			cmd |= command_bits;
6525 		else
6526 			cmd &= ~command_bits;
6527 		pci_write_config_word(dev, PCI_COMMAND, cmd);
6528 	}
6529 
6530 	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6531 		return 0;
6532 
6533 	bus = dev->bus;
6534 	while (bus) {
6535 		bridge = bus->self;
6536 		if (bridge) {
6537 			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6538 					     &cmd);
6539 			if (decode)
6540 				cmd |= PCI_BRIDGE_CTL_VGA;
6541 			else
6542 				cmd &= ~PCI_BRIDGE_CTL_VGA;
6543 			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6544 					      cmd);
6545 		}
6546 		bus = bus->parent;
6547 	}
6548 	return 0;
6549 }
6550 
6551 #ifdef CONFIG_ACPI
6552 bool pci_pr3_present(struct pci_dev *pdev)
6553 {
6554 	struct acpi_device *adev;
6555 
6556 	if (acpi_disabled)
6557 		return false;
6558 
6559 	adev = ACPI_COMPANION(&pdev->dev);
6560 	if (!adev)
6561 		return false;
6562 
6563 	return adev->power.flags.power_resources &&
6564 		acpi_has_method(adev->handle, "_PR3");
6565 }
6566 EXPORT_SYMBOL_GPL(pci_pr3_present);
6567 #endif
6568 
6569 /**
6570  * pci_add_dma_alias - Add a DMA devfn alias for a device
6571  * @dev: the PCI device for which alias is added
6572  * @devfn_from: alias slot and function
6573  * @nr_devfns: number of subsequent devfns to alias
6574  *
6575  * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6576  * which is used to program permissible bus-devfn source addresses for DMA
6577  * requests in an IOMMU.  These aliases factor into IOMMU group creation
6578  * and are useful for devices generating DMA requests beyond or different
6579  * from their logical bus-devfn.  Examples include device quirks where the
6580  * device simply uses the wrong devfn, as well as non-transparent bridges
6581  * where the alias may be a proxy for devices in another domain.
6582  *
6583  * IOMMU group creation is performed during device discovery or addition,
6584  * prior to any potential DMA mapping and therefore prior to driver probing
6585  * (especially for userspace assigned devices where IOMMU group definition
6586  * cannot be left as a userspace activity).  DMA aliases should therefore
6587  * be configured via quirks, such as the PCI fixup header quirk.
6588  */
6589 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from,
6590 		       unsigned int nr_devfns)
6591 {
6592 	int devfn_to;
6593 
6594 	nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from);
6595 	devfn_to = devfn_from + nr_devfns - 1;
6596 
6597 	if (!dev->dma_alias_mask)
6598 		dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6599 	if (!dev->dma_alias_mask) {
6600 		pci_warn(dev, "Unable to allocate DMA alias mask\n");
6601 		return;
6602 	}
6603 
6604 	bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6605 
6606 	if (nr_devfns == 1)
6607 		pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6608 				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6609 	else if (nr_devfns > 1)
6610 		pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6611 				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6612 				PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6613 }
6614 
6615 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6616 {
6617 	return (dev1->dma_alias_mask &&
6618 		test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6619 	       (dev2->dma_alias_mask &&
6620 		test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6621 	       pci_real_dma_dev(dev1) == dev2 ||
6622 	       pci_real_dma_dev(dev2) == dev1;
6623 }
6624 
6625 bool pci_device_is_present(struct pci_dev *pdev)
6626 {
6627 	u32 v;
6628 
6629 	/* Check PF if pdev is a VF, since VF Vendor/Device IDs are 0xffff */
6630 	pdev = pci_physfn(pdev);
6631 	if (pci_dev_is_disconnected(pdev))
6632 		return false;
6633 	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6634 }
6635 EXPORT_SYMBOL_GPL(pci_device_is_present);
6636 
6637 void pci_ignore_hotplug(struct pci_dev *dev)
6638 {
6639 	struct pci_dev *bridge = dev->bus->self;
6640 
6641 	dev->ignore_hotplug = 1;
6642 	/* Propagate the "ignore hotplug" setting to the parent bridge. */
6643 	if (bridge)
6644 		bridge->ignore_hotplug = 1;
6645 }
6646 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6647 
6648 /**
6649  * pci_real_dma_dev - Get PCI DMA device for PCI device
6650  * @dev: the PCI device that may have a PCI DMA alias
6651  *
6652  * Permits the platform to provide architecture-specific functionality to
6653  * devices needing to alias DMA to another PCI device on another PCI bus. If
6654  * the PCI device is on the same bus, it is recommended to use
6655  * pci_add_dma_alias(). This is the default implementation. Architecture
6656  * implementations can override this.
6657  */
6658 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6659 {
6660 	return dev;
6661 }
6662 
6663 resource_size_t __weak pcibios_default_alignment(void)
6664 {
6665 	return 0;
6666 }
6667 
6668 /*
6669  * Arches that don't want to expose struct resource to userland as-is in
6670  * sysfs and /proc can implement their own pci_resource_to_user().
6671  */
6672 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6673 				 const struct resource *rsrc,
6674 				 resource_size_t *start, resource_size_t *end)
6675 {
6676 	*start = rsrc->start;
6677 	*end = rsrc->end;
6678 }
6679 
6680 static char *resource_alignment_param;
6681 static DEFINE_SPINLOCK(resource_alignment_lock);
6682 
6683 /**
6684  * pci_specified_resource_alignment - get resource alignment specified by user.
6685  * @dev: the PCI device to get
6686  * @resize: whether or not to change resources' size when reassigning alignment
6687  *
6688  * RETURNS: Resource alignment if it is specified.
6689  *          Zero if it is not specified.
6690  */
6691 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6692 							bool *resize)
6693 {
6694 	int align_order, count;
6695 	resource_size_t align = pcibios_default_alignment();
6696 	const char *p;
6697 	int ret;
6698 
6699 	spin_lock(&resource_alignment_lock);
6700 	p = resource_alignment_param;
6701 	if (!p || !*p)
6702 		goto out;
6703 	if (pci_has_flag(PCI_PROBE_ONLY)) {
6704 		align = 0;
6705 		pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6706 		goto out;
6707 	}
6708 
6709 	while (*p) {
6710 		count = 0;
6711 		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6712 		    p[count] == '@') {
6713 			p += count + 1;
6714 			if (align_order > 63) {
6715 				pr_err("PCI: Invalid requested alignment (order %d)\n",
6716 				       align_order);
6717 				align_order = PAGE_SHIFT;
6718 			}
6719 		} else {
6720 			align_order = PAGE_SHIFT;
6721 		}
6722 
6723 		ret = pci_dev_str_match(dev, p, &p);
6724 		if (ret == 1) {
6725 			*resize = true;
6726 			align = 1ULL << align_order;
6727 			break;
6728 		} else if (ret < 0) {
6729 			pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6730 			       p);
6731 			break;
6732 		}
6733 
6734 		if (*p != ';' && *p != ',') {
6735 			/* End of param or invalid format */
6736 			break;
6737 		}
6738 		p++;
6739 	}
6740 out:
6741 	spin_unlock(&resource_alignment_lock);
6742 	return align;
6743 }
6744 
6745 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6746 					   resource_size_t align, bool resize)
6747 {
6748 	struct resource *r = &dev->resource[bar];
6749 	resource_size_t size;
6750 
6751 	if (!(r->flags & IORESOURCE_MEM))
6752 		return;
6753 
6754 	if (r->flags & IORESOURCE_PCI_FIXED) {
6755 		pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6756 			 bar, r, (unsigned long long)align);
6757 		return;
6758 	}
6759 
6760 	size = resource_size(r);
6761 	if (size >= align)
6762 		return;
6763 
6764 	/*
6765 	 * Increase the alignment of the resource.  There are two ways we
6766 	 * can do this:
6767 	 *
6768 	 * 1) Increase the size of the resource.  BARs are aligned on their
6769 	 *    size, so when we reallocate space for this resource, we'll
6770 	 *    allocate it with the larger alignment.  This also prevents
6771 	 *    assignment of any other BARs inside the alignment region, so
6772 	 *    if we're requesting page alignment, this means no other BARs
6773 	 *    will share the page.
6774 	 *
6775 	 *    The disadvantage is that this makes the resource larger than
6776 	 *    the hardware BAR, which may break drivers that compute things
6777 	 *    based on the resource size, e.g., to find registers at a
6778 	 *    fixed offset before the end of the BAR.
6779 	 *
6780 	 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6781 	 *    set r->start to the desired alignment.  By itself this
6782 	 *    doesn't prevent other BARs being put inside the alignment
6783 	 *    region, but if we realign *every* resource of every device in
6784 	 *    the system, none of them will share an alignment region.
6785 	 *
6786 	 * When the user has requested alignment for only some devices via
6787 	 * the "pci=resource_alignment" argument, "resize" is true and we
6788 	 * use the first method.  Otherwise we assume we're aligning all
6789 	 * devices and we use the second.
6790 	 */
6791 
6792 	pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6793 		 bar, r, (unsigned long long)align);
6794 
6795 	if (resize) {
6796 		r->start = 0;
6797 		r->end = align - 1;
6798 	} else {
6799 		r->flags &= ~IORESOURCE_SIZEALIGN;
6800 		r->flags |= IORESOURCE_STARTALIGN;
6801 		r->start = align;
6802 		r->end = r->start + size - 1;
6803 	}
6804 	r->flags |= IORESOURCE_UNSET;
6805 }
6806 
6807 /*
6808  * This function disables memory decoding and releases memory resources
6809  * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6810  * It also rounds up size to specified alignment.
6811  * Later on, the kernel will assign page-aligned memory resource back
6812  * to the device.
6813  */
6814 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6815 {
6816 	int i;
6817 	struct resource *r;
6818 	resource_size_t align;
6819 	u16 command;
6820 	bool resize = false;
6821 
6822 	/*
6823 	 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6824 	 * 3.4.1.11.  Their resources are allocated from the space
6825 	 * described by the VF BARx register in the PF's SR-IOV capability.
6826 	 * We can't influence their alignment here.
6827 	 */
6828 	if (dev->is_virtfn)
6829 		return;
6830 
6831 	/* check if specified PCI is target device to reassign */
6832 	align = pci_specified_resource_alignment(dev, &resize);
6833 	if (!align)
6834 		return;
6835 
6836 	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6837 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6838 		pci_warn(dev, "Can't reassign resources to host bridge\n");
6839 		return;
6840 	}
6841 
6842 	pci_read_config_word(dev, PCI_COMMAND, &command);
6843 	command &= ~PCI_COMMAND_MEMORY;
6844 	pci_write_config_word(dev, PCI_COMMAND, command);
6845 
6846 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6847 		pci_request_resource_alignment(dev, i, align, resize);
6848 
6849 	/*
6850 	 * Need to disable bridge's resource window,
6851 	 * to enable the kernel to reassign new resource
6852 	 * window later on.
6853 	 */
6854 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6855 		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6856 			r = &dev->resource[i];
6857 			if (!(r->flags & IORESOURCE_MEM))
6858 				continue;
6859 			r->flags |= IORESOURCE_UNSET;
6860 			r->end = resource_size(r) - 1;
6861 			r->start = 0;
6862 		}
6863 		pci_disable_bridge_window(dev);
6864 	}
6865 }
6866 
6867 static ssize_t resource_alignment_show(const struct bus_type *bus, char *buf)
6868 {
6869 	size_t count = 0;
6870 
6871 	spin_lock(&resource_alignment_lock);
6872 	if (resource_alignment_param)
6873 		count = sysfs_emit(buf, "%s\n", resource_alignment_param);
6874 	spin_unlock(&resource_alignment_lock);
6875 
6876 	return count;
6877 }
6878 
6879 static ssize_t resource_alignment_store(const struct bus_type *bus,
6880 					const char *buf, size_t count)
6881 {
6882 	char *param, *old, *end;
6883 
6884 	if (count >= (PAGE_SIZE - 1))
6885 		return -EINVAL;
6886 
6887 	param = kstrndup(buf, count, GFP_KERNEL);
6888 	if (!param)
6889 		return -ENOMEM;
6890 
6891 	end = strchr(param, '\n');
6892 	if (end)
6893 		*end = '\0';
6894 
6895 	spin_lock(&resource_alignment_lock);
6896 	old = resource_alignment_param;
6897 	if (strlen(param)) {
6898 		resource_alignment_param = param;
6899 	} else {
6900 		kfree(param);
6901 		resource_alignment_param = NULL;
6902 	}
6903 	spin_unlock(&resource_alignment_lock);
6904 
6905 	kfree(old);
6906 
6907 	return count;
6908 }
6909 
6910 static BUS_ATTR_RW(resource_alignment);
6911 
6912 static int __init pci_resource_alignment_sysfs_init(void)
6913 {
6914 	return bus_create_file(&pci_bus_type,
6915 					&bus_attr_resource_alignment);
6916 }
6917 late_initcall(pci_resource_alignment_sysfs_init);
6918 
6919 static void pci_no_domains(void)
6920 {
6921 #ifdef CONFIG_PCI_DOMAINS
6922 	pci_domains_supported = 0;
6923 #endif
6924 }
6925 
6926 #ifdef CONFIG_PCI_DOMAINS_GENERIC
6927 static DEFINE_IDA(pci_domain_nr_static_ida);
6928 static DEFINE_IDA(pci_domain_nr_dynamic_ida);
6929 
6930 static void of_pci_reserve_static_domain_nr(void)
6931 {
6932 	struct device_node *np;
6933 	int domain_nr;
6934 
6935 	for_each_node_by_type(np, "pci") {
6936 		domain_nr = of_get_pci_domain_nr(np);
6937 		if (domain_nr < 0)
6938 			continue;
6939 		/*
6940 		 * Permanently allocate domain_nr in dynamic_ida
6941 		 * to prevent it from dynamic allocation.
6942 		 */
6943 		ida_alloc_range(&pci_domain_nr_dynamic_ida,
6944 				domain_nr, domain_nr, GFP_KERNEL);
6945 	}
6946 }
6947 
6948 static int of_pci_bus_find_domain_nr(struct device *parent)
6949 {
6950 	static bool static_domains_reserved = false;
6951 	int domain_nr;
6952 
6953 	/* On the first call scan device tree for static allocations. */
6954 	if (!static_domains_reserved) {
6955 		of_pci_reserve_static_domain_nr();
6956 		static_domains_reserved = true;
6957 	}
6958 
6959 	if (parent) {
6960 		/*
6961 		 * If domain is in DT, allocate it in static IDA.  This
6962 		 * prevents duplicate static allocations in case of errors
6963 		 * in DT.
6964 		 */
6965 		domain_nr = of_get_pci_domain_nr(parent->of_node);
6966 		if (domain_nr >= 0)
6967 			return ida_alloc_range(&pci_domain_nr_static_ida,
6968 					       domain_nr, domain_nr,
6969 					       GFP_KERNEL);
6970 	}
6971 
6972 	/*
6973 	 * If domain was not specified in DT, choose a free ID from dynamic
6974 	 * allocations. All domain numbers from DT are permanently in
6975 	 * dynamic allocations to prevent assigning them to other DT nodes
6976 	 * without static domain.
6977 	 */
6978 	return ida_alloc(&pci_domain_nr_dynamic_ida, GFP_KERNEL);
6979 }
6980 
6981 static void of_pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent)
6982 {
6983 	if (bus->domain_nr < 0)
6984 		return;
6985 
6986 	/* Release domain from IDA where it was allocated. */
6987 	if (of_get_pci_domain_nr(parent->of_node) == bus->domain_nr)
6988 		ida_free(&pci_domain_nr_static_ida, bus->domain_nr);
6989 	else
6990 		ida_free(&pci_domain_nr_dynamic_ida, bus->domain_nr);
6991 }
6992 
6993 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6994 {
6995 	return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6996 			       acpi_pci_bus_find_domain_nr(bus);
6997 }
6998 
6999 void pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent)
7000 {
7001 	if (!acpi_disabled)
7002 		return;
7003 	of_pci_bus_release_domain_nr(bus, parent);
7004 }
7005 #endif
7006 
7007 /**
7008  * pci_ext_cfg_avail - can we access extended PCI config space?
7009  *
7010  * Returns 1 if we can access PCI extended config space (offsets
7011  * greater than 0xff). This is the default implementation. Architecture
7012  * implementations can override this.
7013  */
7014 int __weak pci_ext_cfg_avail(void)
7015 {
7016 	return 1;
7017 }
7018 
7019 void __weak pci_fixup_cardbus(struct pci_bus *bus)
7020 {
7021 }
7022 EXPORT_SYMBOL(pci_fixup_cardbus);
7023 
7024 static int __init pci_setup(char *str)
7025 {
7026 	while (str) {
7027 		char *k = strchr(str, ',');
7028 		if (k)
7029 			*k++ = 0;
7030 		if (*str && (str = pcibios_setup(str)) && *str) {
7031 			if (!strcmp(str, "nomsi")) {
7032 				pci_no_msi();
7033 			} else if (!strncmp(str, "noats", 5)) {
7034 				pr_info("PCIe: ATS is disabled\n");
7035 				pcie_ats_disabled = true;
7036 			} else if (!strcmp(str, "noaer")) {
7037 				pci_no_aer();
7038 			} else if (!strcmp(str, "earlydump")) {
7039 				pci_early_dump = true;
7040 			} else if (!strncmp(str, "realloc=", 8)) {
7041 				pci_realloc_get_opt(str + 8);
7042 			} else if (!strncmp(str, "realloc", 7)) {
7043 				pci_realloc_get_opt("on");
7044 			} else if (!strcmp(str, "nodomains")) {
7045 				pci_no_domains();
7046 			} else if (!strncmp(str, "noari", 5)) {
7047 				pcie_ari_disabled = true;
7048 			} else if (!strncmp(str, "cbiosize=", 9)) {
7049 				pci_cardbus_io_size = memparse(str + 9, &str);
7050 			} else if (!strncmp(str, "cbmemsize=", 10)) {
7051 				pci_cardbus_mem_size = memparse(str + 10, &str);
7052 			} else if (!strncmp(str, "resource_alignment=", 19)) {
7053 				resource_alignment_param = str + 19;
7054 			} else if (!strncmp(str, "ecrc=", 5)) {
7055 				pcie_ecrc_get_policy(str + 5);
7056 			} else if (!strncmp(str, "hpiosize=", 9)) {
7057 				pci_hotplug_io_size = memparse(str + 9, &str);
7058 			} else if (!strncmp(str, "hpmmiosize=", 11)) {
7059 				pci_hotplug_mmio_size = memparse(str + 11, &str);
7060 			} else if (!strncmp(str, "hpmmioprefsize=", 15)) {
7061 				pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
7062 			} else if (!strncmp(str, "hpmemsize=", 10)) {
7063 				pci_hotplug_mmio_size = memparse(str + 10, &str);
7064 				pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
7065 			} else if (!strncmp(str, "hpbussize=", 10)) {
7066 				pci_hotplug_bus_size =
7067 					simple_strtoul(str + 10, &str, 0);
7068 				if (pci_hotplug_bus_size > 0xff)
7069 					pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
7070 			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
7071 				pcie_bus_config = PCIE_BUS_TUNE_OFF;
7072 			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
7073 				pcie_bus_config = PCIE_BUS_SAFE;
7074 			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
7075 				pcie_bus_config = PCIE_BUS_PERFORMANCE;
7076 			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
7077 				pcie_bus_config = PCIE_BUS_PEER2PEER;
7078 			} else if (!strncmp(str, "pcie_scan_all", 13)) {
7079 				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
7080 			} else if (!strncmp(str, "disable_acs_redir=", 18)) {
7081 				disable_acs_redir_param = str + 18;
7082 			} else {
7083 				pr_err("PCI: Unknown option `%s'\n", str);
7084 			}
7085 		}
7086 		str = k;
7087 	}
7088 	return 0;
7089 }
7090 early_param("pci", pci_setup);
7091 
7092 /*
7093  * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
7094  * in pci_setup(), above, to point to data in the __initdata section which
7095  * will be freed after the init sequence is complete. We can't allocate memory
7096  * in pci_setup() because some architectures do not have any memory allocation
7097  * service available during an early_param() call. So we allocate memory and
7098  * copy the variable here before the init section is freed.
7099  *
7100  */
7101 static int __init pci_realloc_setup_params(void)
7102 {
7103 	resource_alignment_param = kstrdup(resource_alignment_param,
7104 					   GFP_KERNEL);
7105 	disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
7106 
7107 	return 0;
7108 }
7109 pure_initcall(pci_realloc_setup_params);
7110