xref: /openbmc/linux/drivers/pci/pci.c (revision 9009b455811b0fa1f6b0adfa94db136984db5a38)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * PCI Bus Services, see include/linux/pci.h for further explanation.
4  *
5  * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6  * David Mosberger-Tang
7  *
8  * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/msi.h>
17 #include <linux/of.h>
18 #include <linux/pci.h>
19 #include <linux/pm.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/log2.h>
25 #include <linux/logic_pio.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/pci_hotplug.h>
31 #include <linux/vmalloc.h>
32 #include <asm/dma.h>
33 #include <linux/aer.h>
34 #include "pci.h"
35 
36 DEFINE_MUTEX(pci_slot_mutex);
37 
38 const char *pci_power_names[] = {
39 	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
40 };
41 EXPORT_SYMBOL_GPL(pci_power_names);
42 
43 int isa_dma_bridge_buggy;
44 EXPORT_SYMBOL(isa_dma_bridge_buggy);
45 
46 int pci_pci_problems;
47 EXPORT_SYMBOL(pci_pci_problems);
48 
49 unsigned int pci_pm_d3hot_delay;
50 
51 static void pci_pme_list_scan(struct work_struct *work);
52 
53 static LIST_HEAD(pci_pme_list);
54 static DEFINE_MUTEX(pci_pme_list_mutex);
55 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
56 
57 struct pci_pme_device {
58 	struct list_head list;
59 	struct pci_dev *dev;
60 };
61 
62 #define PME_TIMEOUT 1000 /* How long between PME checks */
63 
64 static void pci_dev_d3_sleep(struct pci_dev *dev)
65 {
66 	unsigned int delay = dev->d3hot_delay;
67 
68 	if (delay < pci_pm_d3hot_delay)
69 		delay = pci_pm_d3hot_delay;
70 
71 	if (delay)
72 		msleep(delay);
73 }
74 
75 #ifdef CONFIG_PCI_DOMAINS
76 int pci_domains_supported = 1;
77 #endif
78 
79 #define DEFAULT_CARDBUS_IO_SIZE		(256)
80 #define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
81 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
82 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
83 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
84 
85 #define DEFAULT_HOTPLUG_IO_SIZE		(256)
86 #define DEFAULT_HOTPLUG_MMIO_SIZE	(2*1024*1024)
87 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE	(2*1024*1024)
88 /* hpiosize=nn can override this */
89 unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
90 /*
91  * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
92  * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
93  * pci=hpmemsize=nnM overrides both
94  */
95 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
96 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
97 
98 #define DEFAULT_HOTPLUG_BUS_SIZE	1
99 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
100 
101 
102 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
103 #ifdef CONFIG_PCIE_BUS_TUNE_OFF
104 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
105 #elif defined CONFIG_PCIE_BUS_SAFE
106 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
107 #elif defined CONFIG_PCIE_BUS_PERFORMANCE
108 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
109 #elif defined CONFIG_PCIE_BUS_PEER2PEER
110 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
111 #else
112 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
113 #endif
114 
115 /*
116  * The default CLS is used if arch didn't set CLS explicitly and not
117  * all pci devices agree on the same value.  Arch can override either
118  * the dfl or actual value as it sees fit.  Don't forget this is
119  * measured in 32-bit words, not bytes.
120  */
121 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
122 u8 pci_cache_line_size;
123 
124 /*
125  * If we set up a device for bus mastering, we need to check the latency
126  * timer as certain BIOSes forget to set it properly.
127  */
128 unsigned int pcibios_max_latency = 255;
129 
130 /* If set, the PCIe ARI capability will not be used. */
131 static bool pcie_ari_disabled;
132 
133 /* If set, the PCIe ATS capability will not be used. */
134 static bool pcie_ats_disabled;
135 
136 /* If set, the PCI config space of each device is printed during boot. */
137 bool pci_early_dump;
138 
139 bool pci_ats_disabled(void)
140 {
141 	return pcie_ats_disabled;
142 }
143 EXPORT_SYMBOL_GPL(pci_ats_disabled);
144 
145 /* Disable bridge_d3 for all PCIe ports */
146 static bool pci_bridge_d3_disable;
147 /* Force bridge_d3 for all PCIe ports */
148 static bool pci_bridge_d3_force;
149 
150 static int __init pcie_port_pm_setup(char *str)
151 {
152 	if (!strcmp(str, "off"))
153 		pci_bridge_d3_disable = true;
154 	else if (!strcmp(str, "force"))
155 		pci_bridge_d3_force = true;
156 	return 1;
157 }
158 __setup("pcie_port_pm=", pcie_port_pm_setup);
159 
160 /* Time to wait after a reset for device to become responsive */
161 #define PCIE_RESET_READY_POLL_MS 60000
162 
163 /**
164  * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
165  * @bus: pointer to PCI bus structure to search
166  *
167  * Given a PCI bus, returns the highest PCI bus number present in the set
168  * including the given PCI bus and its list of child PCI buses.
169  */
170 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
171 {
172 	struct pci_bus *tmp;
173 	unsigned char max, n;
174 
175 	max = bus->busn_res.end;
176 	list_for_each_entry(tmp, &bus->children, node) {
177 		n = pci_bus_max_busnr(tmp);
178 		if (n > max)
179 			max = n;
180 	}
181 	return max;
182 }
183 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
184 
185 /**
186  * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
187  * @pdev: the PCI device
188  *
189  * Returns error bits set in PCI_STATUS and clears them.
190  */
191 int pci_status_get_and_clear_errors(struct pci_dev *pdev)
192 {
193 	u16 status;
194 	int ret;
195 
196 	ret = pci_read_config_word(pdev, PCI_STATUS, &status);
197 	if (ret != PCIBIOS_SUCCESSFUL)
198 		return -EIO;
199 
200 	status &= PCI_STATUS_ERROR_BITS;
201 	if (status)
202 		pci_write_config_word(pdev, PCI_STATUS, status);
203 
204 	return status;
205 }
206 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
207 
208 #ifdef CONFIG_HAS_IOMEM
209 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
210 {
211 	struct resource *res = &pdev->resource[bar];
212 
213 	/*
214 	 * Make sure the BAR is actually a memory resource, not an IO resource
215 	 */
216 	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
217 		pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
218 		return NULL;
219 	}
220 	return ioremap(res->start, resource_size(res));
221 }
222 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
223 
224 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
225 {
226 	/*
227 	 * Make sure the BAR is actually a memory resource, not an IO resource
228 	 */
229 	if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
230 		WARN_ON(1);
231 		return NULL;
232 	}
233 	return ioremap_wc(pci_resource_start(pdev, bar),
234 			  pci_resource_len(pdev, bar));
235 }
236 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
237 #endif
238 
239 /**
240  * pci_dev_str_match_path - test if a path string matches a device
241  * @dev: the PCI device to test
242  * @path: string to match the device against
243  * @endptr: pointer to the string after the match
244  *
245  * Test if a string (typically from a kernel parameter) formatted as a
246  * path of device/function addresses matches a PCI device. The string must
247  * be of the form:
248  *
249  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
250  *
251  * A path for a device can be obtained using 'lspci -t'.  Using a path
252  * is more robust against bus renumbering than using only a single bus,
253  * device and function address.
254  *
255  * Returns 1 if the string matches the device, 0 if it does not and
256  * a negative error code if it fails to parse the string.
257  */
258 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
259 				  const char **endptr)
260 {
261 	int ret;
262 	int seg, bus, slot, func;
263 	char *wpath, *p;
264 	char end;
265 
266 	*endptr = strchrnul(path, ';');
267 
268 	wpath = kmemdup_nul(path, *endptr - path, GFP_KERNEL);
269 	if (!wpath)
270 		return -ENOMEM;
271 
272 	while (1) {
273 		p = strrchr(wpath, '/');
274 		if (!p)
275 			break;
276 		ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
277 		if (ret != 2) {
278 			ret = -EINVAL;
279 			goto free_and_exit;
280 		}
281 
282 		if (dev->devfn != PCI_DEVFN(slot, func)) {
283 			ret = 0;
284 			goto free_and_exit;
285 		}
286 
287 		/*
288 		 * Note: we don't need to get a reference to the upstream
289 		 * bridge because we hold a reference to the top level
290 		 * device which should hold a reference to the bridge,
291 		 * and so on.
292 		 */
293 		dev = pci_upstream_bridge(dev);
294 		if (!dev) {
295 			ret = 0;
296 			goto free_and_exit;
297 		}
298 
299 		*p = 0;
300 	}
301 
302 	ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
303 		     &func, &end);
304 	if (ret != 4) {
305 		seg = 0;
306 		ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
307 		if (ret != 3) {
308 			ret = -EINVAL;
309 			goto free_and_exit;
310 		}
311 	}
312 
313 	ret = (seg == pci_domain_nr(dev->bus) &&
314 	       bus == dev->bus->number &&
315 	       dev->devfn == PCI_DEVFN(slot, func));
316 
317 free_and_exit:
318 	kfree(wpath);
319 	return ret;
320 }
321 
322 /**
323  * pci_dev_str_match - test if a string matches a device
324  * @dev: the PCI device to test
325  * @p: string to match the device against
326  * @endptr: pointer to the string after the match
327  *
328  * Test if a string (typically from a kernel parameter) matches a specified
329  * PCI device. The string may be of one of the following formats:
330  *
331  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
332  *   pci:<vendor>:<device>[:<subvendor>:<subdevice>]
333  *
334  * The first format specifies a PCI bus/device/function address which
335  * may change if new hardware is inserted, if motherboard firmware changes,
336  * or due to changes caused in kernel parameters. If the domain is
337  * left unspecified, it is taken to be 0.  In order to be robust against
338  * bus renumbering issues, a path of PCI device/function numbers may be used
339  * to address the specific device.  The path for a device can be determined
340  * through the use of 'lspci -t'.
341  *
342  * The second format matches devices using IDs in the configuration
343  * space which may match multiple devices in the system. A value of 0
344  * for any field will match all devices. (Note: this differs from
345  * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
346  * legacy reasons and convenience so users don't have to specify
347  * FFFFFFFFs on the command line.)
348  *
349  * Returns 1 if the string matches the device, 0 if it does not and
350  * a negative error code if the string cannot be parsed.
351  */
352 static int pci_dev_str_match(struct pci_dev *dev, const char *p,
353 			     const char **endptr)
354 {
355 	int ret;
356 	int count;
357 	unsigned short vendor, device, subsystem_vendor, subsystem_device;
358 
359 	if (strncmp(p, "pci:", 4) == 0) {
360 		/* PCI vendor/device (subvendor/subdevice) IDs are specified */
361 		p += 4;
362 		ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
363 			     &subsystem_vendor, &subsystem_device, &count);
364 		if (ret != 4) {
365 			ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
366 			if (ret != 2)
367 				return -EINVAL;
368 
369 			subsystem_vendor = 0;
370 			subsystem_device = 0;
371 		}
372 
373 		p += count;
374 
375 		if ((!vendor || vendor == dev->vendor) &&
376 		    (!device || device == dev->device) &&
377 		    (!subsystem_vendor ||
378 			    subsystem_vendor == dev->subsystem_vendor) &&
379 		    (!subsystem_device ||
380 			    subsystem_device == dev->subsystem_device))
381 			goto found;
382 	} else {
383 		/*
384 		 * PCI Bus, Device, Function IDs are specified
385 		 * (optionally, may include a path of devfns following it)
386 		 */
387 		ret = pci_dev_str_match_path(dev, p, &p);
388 		if (ret < 0)
389 			return ret;
390 		else if (ret)
391 			goto found;
392 	}
393 
394 	*endptr = p;
395 	return 0;
396 
397 found:
398 	*endptr = p;
399 	return 1;
400 }
401 
402 static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
403 				  u8 pos, int cap, int *ttl)
404 {
405 	u8 id;
406 	u16 ent;
407 
408 	pci_bus_read_config_byte(bus, devfn, pos, &pos);
409 
410 	while ((*ttl)--) {
411 		if (pos < 0x40)
412 			break;
413 		pos &= ~3;
414 		pci_bus_read_config_word(bus, devfn, pos, &ent);
415 
416 		id = ent & 0xff;
417 		if (id == 0xff)
418 			break;
419 		if (id == cap)
420 			return pos;
421 		pos = (ent >> 8);
422 	}
423 	return 0;
424 }
425 
426 static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
427 			      u8 pos, int cap)
428 {
429 	int ttl = PCI_FIND_CAP_TTL;
430 
431 	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
432 }
433 
434 u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
435 {
436 	return __pci_find_next_cap(dev->bus, dev->devfn,
437 				   pos + PCI_CAP_LIST_NEXT, cap);
438 }
439 EXPORT_SYMBOL_GPL(pci_find_next_capability);
440 
441 static u8 __pci_bus_find_cap_start(struct pci_bus *bus,
442 				    unsigned int devfn, u8 hdr_type)
443 {
444 	u16 status;
445 
446 	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
447 	if (!(status & PCI_STATUS_CAP_LIST))
448 		return 0;
449 
450 	switch (hdr_type) {
451 	case PCI_HEADER_TYPE_NORMAL:
452 	case PCI_HEADER_TYPE_BRIDGE:
453 		return PCI_CAPABILITY_LIST;
454 	case PCI_HEADER_TYPE_CARDBUS:
455 		return PCI_CB_CAPABILITY_LIST;
456 	}
457 
458 	return 0;
459 }
460 
461 /**
462  * pci_find_capability - query for devices' capabilities
463  * @dev: PCI device to query
464  * @cap: capability code
465  *
466  * Tell if a device supports a given PCI capability.
467  * Returns the address of the requested capability structure within the
468  * device's PCI configuration space or 0 in case the device does not
469  * support it.  Possible values for @cap include:
470  *
471  *  %PCI_CAP_ID_PM           Power Management
472  *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
473  *  %PCI_CAP_ID_VPD          Vital Product Data
474  *  %PCI_CAP_ID_SLOTID       Slot Identification
475  *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
476  *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
477  *  %PCI_CAP_ID_PCIX         PCI-X
478  *  %PCI_CAP_ID_EXP          PCI Express
479  */
480 u8 pci_find_capability(struct pci_dev *dev, int cap)
481 {
482 	u8 pos;
483 
484 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
485 	if (pos)
486 		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
487 
488 	return pos;
489 }
490 EXPORT_SYMBOL(pci_find_capability);
491 
492 /**
493  * pci_bus_find_capability - query for devices' capabilities
494  * @bus: the PCI bus to query
495  * @devfn: PCI device to query
496  * @cap: capability code
497  *
498  * Like pci_find_capability() but works for PCI devices that do not have a
499  * pci_dev structure set up yet.
500  *
501  * Returns the address of the requested capability structure within the
502  * device's PCI configuration space or 0 in case the device does not
503  * support it.
504  */
505 u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
506 {
507 	u8 hdr_type, pos;
508 
509 	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
510 
511 	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
512 	if (pos)
513 		pos = __pci_find_next_cap(bus, devfn, pos, cap);
514 
515 	return pos;
516 }
517 EXPORT_SYMBOL(pci_bus_find_capability);
518 
519 /**
520  * pci_find_next_ext_capability - Find an extended capability
521  * @dev: PCI device to query
522  * @start: address at which to start looking (0 to start at beginning of list)
523  * @cap: capability code
524  *
525  * Returns the address of the next matching extended capability structure
526  * within the device's PCI configuration space or 0 if the device does
527  * not support it.  Some capabilities can occur several times, e.g., the
528  * vendor-specific capability, and this provides a way to find them all.
529  */
530 u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap)
531 {
532 	u32 header;
533 	int ttl;
534 	u16 pos = PCI_CFG_SPACE_SIZE;
535 
536 	/* minimum 8 bytes per capability */
537 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
538 
539 	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
540 		return 0;
541 
542 	if (start)
543 		pos = start;
544 
545 	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
546 		return 0;
547 
548 	/*
549 	 * If we have no capabilities, this is indicated by cap ID,
550 	 * cap version and next pointer all being 0.
551 	 */
552 	if (header == 0)
553 		return 0;
554 
555 	while (ttl-- > 0) {
556 		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
557 			return pos;
558 
559 		pos = PCI_EXT_CAP_NEXT(header);
560 		if (pos < PCI_CFG_SPACE_SIZE)
561 			break;
562 
563 		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
564 			break;
565 	}
566 
567 	return 0;
568 }
569 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
570 
571 /**
572  * pci_find_ext_capability - Find an extended capability
573  * @dev: PCI device to query
574  * @cap: capability code
575  *
576  * Returns the address of the requested extended capability structure
577  * within the device's PCI configuration space or 0 if the device does
578  * not support it.  Possible values for @cap include:
579  *
580  *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
581  *  %PCI_EXT_CAP_ID_VC		Virtual Channel
582  *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
583  *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
584  */
585 u16 pci_find_ext_capability(struct pci_dev *dev, int cap)
586 {
587 	return pci_find_next_ext_capability(dev, 0, cap);
588 }
589 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
590 
591 /**
592  * pci_get_dsn - Read and return the 8-byte Device Serial Number
593  * @dev: PCI device to query
594  *
595  * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
596  * Number.
597  *
598  * Returns the DSN, or zero if the capability does not exist.
599  */
600 u64 pci_get_dsn(struct pci_dev *dev)
601 {
602 	u32 dword;
603 	u64 dsn;
604 	int pos;
605 
606 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
607 	if (!pos)
608 		return 0;
609 
610 	/*
611 	 * The Device Serial Number is two dwords offset 4 bytes from the
612 	 * capability position. The specification says that the first dword is
613 	 * the lower half, and the second dword is the upper half.
614 	 */
615 	pos += 4;
616 	pci_read_config_dword(dev, pos, &dword);
617 	dsn = (u64)dword;
618 	pci_read_config_dword(dev, pos + 4, &dword);
619 	dsn |= ((u64)dword) << 32;
620 
621 	return dsn;
622 }
623 EXPORT_SYMBOL_GPL(pci_get_dsn);
624 
625 static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap)
626 {
627 	int rc, ttl = PCI_FIND_CAP_TTL;
628 	u8 cap, mask;
629 
630 	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
631 		mask = HT_3BIT_CAP_MASK;
632 	else
633 		mask = HT_5BIT_CAP_MASK;
634 
635 	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
636 				      PCI_CAP_ID_HT, &ttl);
637 	while (pos) {
638 		rc = pci_read_config_byte(dev, pos + 3, &cap);
639 		if (rc != PCIBIOS_SUCCESSFUL)
640 			return 0;
641 
642 		if ((cap & mask) == ht_cap)
643 			return pos;
644 
645 		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
646 					      pos + PCI_CAP_LIST_NEXT,
647 					      PCI_CAP_ID_HT, &ttl);
648 	}
649 
650 	return 0;
651 }
652 
653 /**
654  * pci_find_next_ht_capability - query a device's HyperTransport capabilities
655  * @dev: PCI device to query
656  * @pos: Position from which to continue searching
657  * @ht_cap: HyperTransport capability code
658  *
659  * To be used in conjunction with pci_find_ht_capability() to search for
660  * all capabilities matching @ht_cap. @pos should always be a value returned
661  * from pci_find_ht_capability().
662  *
663  * NB. To be 100% safe against broken PCI devices, the caller should take
664  * steps to avoid an infinite loop.
665  */
666 u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap)
667 {
668 	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
669 }
670 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
671 
672 /**
673  * pci_find_ht_capability - query a device's HyperTransport capabilities
674  * @dev: PCI device to query
675  * @ht_cap: HyperTransport capability code
676  *
677  * Tell if a device supports a given HyperTransport capability.
678  * Returns an address within the device's PCI configuration space
679  * or 0 in case the device does not support the request capability.
680  * The address points to the PCI capability, of type PCI_CAP_ID_HT,
681  * which has a HyperTransport capability matching @ht_cap.
682  */
683 u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
684 {
685 	u8 pos;
686 
687 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
688 	if (pos)
689 		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
690 
691 	return pos;
692 }
693 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
694 
695 /**
696  * pci_find_parent_resource - return resource region of parent bus of given
697  *			      region
698  * @dev: PCI device structure contains resources to be searched
699  * @res: child resource record for which parent is sought
700  *
701  * For given resource region of given device, return the resource region of
702  * parent bus the given region is contained in.
703  */
704 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
705 					  struct resource *res)
706 {
707 	const struct pci_bus *bus = dev->bus;
708 	struct resource *r;
709 	int i;
710 
711 	pci_bus_for_each_resource(bus, r, i) {
712 		if (!r)
713 			continue;
714 		if (resource_contains(r, res)) {
715 
716 			/*
717 			 * If the window is prefetchable but the BAR is
718 			 * not, the allocator made a mistake.
719 			 */
720 			if (r->flags & IORESOURCE_PREFETCH &&
721 			    !(res->flags & IORESOURCE_PREFETCH))
722 				return NULL;
723 
724 			/*
725 			 * If we're below a transparent bridge, there may
726 			 * be both a positively-decoded aperture and a
727 			 * subtractively-decoded region that contain the BAR.
728 			 * We want the positively-decoded one, so this depends
729 			 * on pci_bus_for_each_resource() giving us those
730 			 * first.
731 			 */
732 			return r;
733 		}
734 	}
735 	return NULL;
736 }
737 EXPORT_SYMBOL(pci_find_parent_resource);
738 
739 /**
740  * pci_find_resource - Return matching PCI device resource
741  * @dev: PCI device to query
742  * @res: Resource to look for
743  *
744  * Goes over standard PCI resources (BARs) and checks if the given resource
745  * is partially or fully contained in any of them. In that case the
746  * matching resource is returned, %NULL otherwise.
747  */
748 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
749 {
750 	int i;
751 
752 	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
753 		struct resource *r = &dev->resource[i];
754 
755 		if (r->start && resource_contains(r, res))
756 			return r;
757 	}
758 
759 	return NULL;
760 }
761 EXPORT_SYMBOL(pci_find_resource);
762 
763 /**
764  * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
765  * @dev: the PCI device to operate on
766  * @pos: config space offset of status word
767  * @mask: mask of bit(s) to care about in status word
768  *
769  * Return 1 when mask bit(s) in status word clear, 0 otherwise.
770  */
771 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
772 {
773 	int i;
774 
775 	/* Wait for Transaction Pending bit clean */
776 	for (i = 0; i < 4; i++) {
777 		u16 status;
778 		if (i)
779 			msleep((1 << (i - 1)) * 100);
780 
781 		pci_read_config_word(dev, pos, &status);
782 		if (!(status & mask))
783 			return 1;
784 	}
785 
786 	return 0;
787 }
788 
789 static int pci_acs_enable;
790 
791 /**
792  * pci_request_acs - ask for ACS to be enabled if supported
793  */
794 void pci_request_acs(void)
795 {
796 	pci_acs_enable = 1;
797 }
798 
799 static const char *disable_acs_redir_param;
800 
801 /**
802  * pci_disable_acs_redir - disable ACS redirect capabilities
803  * @dev: the PCI device
804  *
805  * For only devices specified in the disable_acs_redir parameter.
806  */
807 static void pci_disable_acs_redir(struct pci_dev *dev)
808 {
809 	int ret = 0;
810 	const char *p;
811 	int pos;
812 	u16 ctrl;
813 
814 	if (!disable_acs_redir_param)
815 		return;
816 
817 	p = disable_acs_redir_param;
818 	while (*p) {
819 		ret = pci_dev_str_match(dev, p, &p);
820 		if (ret < 0) {
821 			pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
822 				     disable_acs_redir_param);
823 
824 			break;
825 		} else if (ret == 1) {
826 			/* Found a match */
827 			break;
828 		}
829 
830 		if (*p != ';' && *p != ',') {
831 			/* End of param or invalid format */
832 			break;
833 		}
834 		p++;
835 	}
836 
837 	if (ret != 1)
838 		return;
839 
840 	if (!pci_dev_specific_disable_acs_redir(dev))
841 		return;
842 
843 	pos = dev->acs_cap;
844 	if (!pos) {
845 		pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
846 		return;
847 	}
848 
849 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
850 
851 	/* P2P Request & Completion Redirect */
852 	ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
853 
854 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
855 
856 	pci_info(dev, "disabled ACS redirect\n");
857 }
858 
859 /**
860  * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
861  * @dev: the PCI device
862  */
863 static void pci_std_enable_acs(struct pci_dev *dev)
864 {
865 	int pos;
866 	u16 cap;
867 	u16 ctrl;
868 
869 	pos = dev->acs_cap;
870 	if (!pos)
871 		return;
872 
873 	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
874 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
875 
876 	/* Source Validation */
877 	ctrl |= (cap & PCI_ACS_SV);
878 
879 	/* P2P Request Redirect */
880 	ctrl |= (cap & PCI_ACS_RR);
881 
882 	/* P2P Completion Redirect */
883 	ctrl |= (cap & PCI_ACS_CR);
884 
885 	/* Upstream Forwarding */
886 	ctrl |= (cap & PCI_ACS_UF);
887 
888 	/* Enable Translation Blocking for external devices */
889 	if (dev->external_facing || dev->untrusted)
890 		ctrl |= (cap & PCI_ACS_TB);
891 
892 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
893 }
894 
895 /**
896  * pci_enable_acs - enable ACS if hardware support it
897  * @dev: the PCI device
898  */
899 static void pci_enable_acs(struct pci_dev *dev)
900 {
901 	if (!pci_acs_enable)
902 		goto disable_acs_redir;
903 
904 	if (!pci_dev_specific_enable_acs(dev))
905 		goto disable_acs_redir;
906 
907 	pci_std_enable_acs(dev);
908 
909 disable_acs_redir:
910 	/*
911 	 * Note: pci_disable_acs_redir() must be called even if ACS was not
912 	 * enabled by the kernel because it may have been enabled by
913 	 * platform firmware.  So if we are told to disable it, we should
914 	 * always disable it after setting the kernel's default
915 	 * preferences.
916 	 */
917 	pci_disable_acs_redir(dev);
918 }
919 
920 /**
921  * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
922  * @dev: PCI device to have its BARs restored
923  *
924  * Restore the BAR values for a given device, so as to make it
925  * accessible by its driver.
926  */
927 static void pci_restore_bars(struct pci_dev *dev)
928 {
929 	int i;
930 
931 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
932 		pci_update_resource(dev, i);
933 }
934 
935 static const struct pci_platform_pm_ops *pci_platform_pm;
936 
937 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
938 {
939 	if (!ops->is_manageable || !ops->set_state  || !ops->get_state ||
940 	    !ops->choose_state  || !ops->set_wakeup || !ops->need_resume)
941 		return -EINVAL;
942 	pci_platform_pm = ops;
943 	return 0;
944 }
945 
946 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
947 {
948 	return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
949 }
950 
951 static inline int platform_pci_set_power_state(struct pci_dev *dev,
952 					       pci_power_t t)
953 {
954 	return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
955 }
956 
957 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
958 {
959 	return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
960 }
961 
962 static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
963 {
964 	if (pci_platform_pm && pci_platform_pm->refresh_state)
965 		pci_platform_pm->refresh_state(dev);
966 }
967 
968 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
969 {
970 	return pci_platform_pm ?
971 			pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
972 }
973 
974 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
975 {
976 	return pci_platform_pm ?
977 			pci_platform_pm->set_wakeup(dev, enable) : -ENODEV;
978 }
979 
980 static inline bool platform_pci_need_resume(struct pci_dev *dev)
981 {
982 	return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
983 }
984 
985 static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
986 {
987 	if (pci_platform_pm && pci_platform_pm->bridge_d3)
988 		return pci_platform_pm->bridge_d3(dev);
989 	return false;
990 }
991 
992 /**
993  * pci_raw_set_power_state - Use PCI PM registers to set the power state of
994  *			     given PCI device
995  * @dev: PCI device to handle.
996  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
997  *
998  * RETURN VALUE:
999  * -EINVAL if the requested state is invalid.
1000  * -EIO if device does not support PCI PM or its PM capabilities register has a
1001  * wrong version, or device doesn't support the requested state.
1002  * 0 if device already is in the requested state.
1003  * 0 if device's power state has been successfully changed.
1004  */
1005 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
1006 {
1007 	u16 pmcsr;
1008 	bool need_restore = false;
1009 
1010 	/* Check if we're already there */
1011 	if (dev->current_state == state)
1012 		return 0;
1013 
1014 	if (!dev->pm_cap)
1015 		return -EIO;
1016 
1017 	if (state < PCI_D0 || state > PCI_D3hot)
1018 		return -EINVAL;
1019 
1020 	/*
1021 	 * Validate transition: We can enter D0 from any state, but if
1022 	 * we're already in a low-power state, we can only go deeper.  E.g.,
1023 	 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1024 	 * we'd have to go from D3 to D0, then to D1.
1025 	 */
1026 	if (state != PCI_D0 && dev->current_state <= PCI_D3cold
1027 	    && dev->current_state > state) {
1028 		pci_err(dev, "invalid power transition (from %s to %s)\n",
1029 			pci_power_name(dev->current_state),
1030 			pci_power_name(state));
1031 		return -EINVAL;
1032 	}
1033 
1034 	/* Check if this device supports the desired state */
1035 	if ((state == PCI_D1 && !dev->d1_support)
1036 	   || (state == PCI_D2 && !dev->d2_support))
1037 		return -EIO;
1038 
1039 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1040 	if (pmcsr == (u16) ~0) {
1041 		pci_err(dev, "can't change power state from %s to %s (config space inaccessible)\n",
1042 			pci_power_name(dev->current_state),
1043 			pci_power_name(state));
1044 		return -EIO;
1045 	}
1046 
1047 	/*
1048 	 * If we're (effectively) in D3, force entire word to 0.
1049 	 * This doesn't affect PME_Status, disables PME_En, and
1050 	 * sets PowerState to 0.
1051 	 */
1052 	switch (dev->current_state) {
1053 	case PCI_D0:
1054 	case PCI_D1:
1055 	case PCI_D2:
1056 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1057 		pmcsr |= state;
1058 		break;
1059 	case PCI_D3hot:
1060 	case PCI_D3cold:
1061 	case PCI_UNKNOWN: /* Boot-up */
1062 		if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
1063 		 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
1064 			need_restore = true;
1065 		fallthrough;	/* force to D0 */
1066 	default:
1067 		pmcsr = 0;
1068 		break;
1069 	}
1070 
1071 	/* Enter specified state */
1072 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1073 
1074 	/*
1075 	 * Mandatory power management transition delays; see PCI PM 1.1
1076 	 * 5.6.1 table 18
1077 	 */
1078 	if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
1079 		pci_dev_d3_sleep(dev);
1080 	else if (state == PCI_D2 || dev->current_state == PCI_D2)
1081 		udelay(PCI_PM_D2_DELAY);
1082 
1083 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1084 	dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1085 	if (dev->current_state != state)
1086 		pci_info_ratelimited(dev, "refused to change power state from %s to %s\n",
1087 			 pci_power_name(dev->current_state),
1088 			 pci_power_name(state));
1089 
1090 	/*
1091 	 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1092 	 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1093 	 * from D3hot to D0 _may_ perform an internal reset, thereby
1094 	 * going to "D0 Uninitialized" rather than "D0 Initialized".
1095 	 * For example, at least some versions of the 3c905B and the
1096 	 * 3c556B exhibit this behaviour.
1097 	 *
1098 	 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1099 	 * devices in a D3hot state at boot.  Consequently, we need to
1100 	 * restore at least the BARs so that the device will be
1101 	 * accessible to its driver.
1102 	 */
1103 	if (need_restore)
1104 		pci_restore_bars(dev);
1105 
1106 	if (dev->bus->self)
1107 		pcie_aspm_pm_state_change(dev->bus->self);
1108 
1109 	return 0;
1110 }
1111 
1112 /**
1113  * pci_update_current_state - Read power state of given device and cache it
1114  * @dev: PCI device to handle.
1115  * @state: State to cache in case the device doesn't have the PM capability
1116  *
1117  * The power state is read from the PMCSR register, which however is
1118  * inaccessible in D3cold.  The platform firmware is therefore queried first
1119  * to detect accessibility of the register.  In case the platform firmware
1120  * reports an incorrect state or the device isn't power manageable by the
1121  * platform at all, we try to detect D3cold by testing accessibility of the
1122  * vendor ID in config space.
1123  */
1124 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1125 {
1126 	if (platform_pci_get_power_state(dev) == PCI_D3cold ||
1127 	    !pci_device_is_present(dev)) {
1128 		dev->current_state = PCI_D3cold;
1129 	} else if (dev->pm_cap) {
1130 		u16 pmcsr;
1131 
1132 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1133 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1134 	} else {
1135 		dev->current_state = state;
1136 	}
1137 }
1138 
1139 /**
1140  * pci_refresh_power_state - Refresh the given device's power state data
1141  * @dev: Target PCI device.
1142  *
1143  * Ask the platform to refresh the devices power state information and invoke
1144  * pci_update_current_state() to update its current PCI power state.
1145  */
1146 void pci_refresh_power_state(struct pci_dev *dev)
1147 {
1148 	if (platform_pci_power_manageable(dev))
1149 		platform_pci_refresh_power_state(dev);
1150 
1151 	pci_update_current_state(dev, dev->current_state);
1152 }
1153 
1154 /**
1155  * pci_platform_power_transition - Use platform to change device power state
1156  * @dev: PCI device to handle.
1157  * @state: State to put the device into.
1158  */
1159 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1160 {
1161 	int error;
1162 
1163 	if (platform_pci_power_manageable(dev)) {
1164 		error = platform_pci_set_power_state(dev, state);
1165 		if (!error)
1166 			pci_update_current_state(dev, state);
1167 	} else
1168 		error = -ENODEV;
1169 
1170 	if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
1171 		dev->current_state = PCI_D0;
1172 
1173 	return error;
1174 }
1175 EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1176 
1177 static int pci_resume_one(struct pci_dev *pci_dev, void *ign)
1178 {
1179 	pm_request_resume(&pci_dev->dev);
1180 	return 0;
1181 }
1182 
1183 /**
1184  * pci_resume_bus - Walk given bus and runtime resume devices on it
1185  * @bus: Top bus of the subtree to walk.
1186  */
1187 void pci_resume_bus(struct pci_bus *bus)
1188 {
1189 	if (bus)
1190 		pci_walk_bus(bus, pci_resume_one, NULL);
1191 }
1192 
1193 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1194 {
1195 	int delay = 1;
1196 	u32 id;
1197 
1198 	/*
1199 	 * After reset, the device should not silently discard config
1200 	 * requests, but it may still indicate that it needs more time by
1201 	 * responding to them with CRS completions.  The Root Port will
1202 	 * generally synthesize ~0 data to complete the read (except when
1203 	 * CRS SV is enabled and the read was for the Vendor ID; in that
1204 	 * case it synthesizes 0x0001 data).
1205 	 *
1206 	 * Wait for the device to return a non-CRS completion.  Read the
1207 	 * Command register instead of Vendor ID so we don't have to
1208 	 * contend with the CRS SV value.
1209 	 */
1210 	pci_read_config_dword(dev, PCI_COMMAND, &id);
1211 	while (id == ~0) {
1212 		if (delay > timeout) {
1213 			pci_warn(dev, "not ready %dms after %s; giving up\n",
1214 				 delay - 1, reset_type);
1215 			return -ENOTTY;
1216 		}
1217 
1218 		if (delay > 1000)
1219 			pci_info(dev, "not ready %dms after %s; waiting\n",
1220 				 delay - 1, reset_type);
1221 
1222 		msleep(delay);
1223 		delay *= 2;
1224 		pci_read_config_dword(dev, PCI_COMMAND, &id);
1225 	}
1226 
1227 	if (delay > 1000)
1228 		pci_info(dev, "ready %dms after %s\n", delay - 1,
1229 			 reset_type);
1230 
1231 	return 0;
1232 }
1233 
1234 /**
1235  * pci_power_up - Put the given device into D0
1236  * @dev: PCI device to power up
1237  */
1238 int pci_power_up(struct pci_dev *dev)
1239 {
1240 	pci_platform_power_transition(dev, PCI_D0);
1241 
1242 	/*
1243 	 * Mandatory power management transition delays are handled in
1244 	 * pci_pm_resume_noirq() and pci_pm_runtime_resume() of the
1245 	 * corresponding bridge.
1246 	 */
1247 	if (dev->runtime_d3cold) {
1248 		/*
1249 		 * When powering on a bridge from D3cold, the whole hierarchy
1250 		 * may be powered on into D0uninitialized state, resume them to
1251 		 * give them a chance to suspend again
1252 		 */
1253 		pci_resume_bus(dev->subordinate);
1254 	}
1255 
1256 	return pci_raw_set_power_state(dev, PCI_D0);
1257 }
1258 
1259 /**
1260  * __pci_dev_set_current_state - Set current state of a PCI device
1261  * @dev: Device to handle
1262  * @data: pointer to state to be set
1263  */
1264 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1265 {
1266 	pci_power_t state = *(pci_power_t *)data;
1267 
1268 	dev->current_state = state;
1269 	return 0;
1270 }
1271 
1272 /**
1273  * pci_bus_set_current_state - Walk given bus and set current state of devices
1274  * @bus: Top bus of the subtree to walk.
1275  * @state: state to be set
1276  */
1277 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1278 {
1279 	if (bus)
1280 		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1281 }
1282 
1283 /**
1284  * pci_set_power_state - Set the power state of a PCI device
1285  * @dev: PCI device to handle.
1286  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1287  *
1288  * Transition a device to a new power state, using the platform firmware and/or
1289  * the device's PCI PM registers.
1290  *
1291  * RETURN VALUE:
1292  * -EINVAL if the requested state is invalid.
1293  * -EIO if device does not support PCI PM or its PM capabilities register has a
1294  * wrong version, or device doesn't support the requested state.
1295  * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1296  * 0 if device already is in the requested state.
1297  * 0 if the transition is to D3 but D3 is not supported.
1298  * 0 if device's power state has been successfully changed.
1299  */
1300 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1301 {
1302 	int error;
1303 
1304 	/* Bound the state we're entering */
1305 	if (state > PCI_D3cold)
1306 		state = PCI_D3cold;
1307 	else if (state < PCI_D0)
1308 		state = PCI_D0;
1309 	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1310 
1311 		/*
1312 		 * If the device or the parent bridge do not support PCI
1313 		 * PM, ignore the request if we're doing anything other
1314 		 * than putting it into D0 (which would only happen on
1315 		 * boot).
1316 		 */
1317 		return 0;
1318 
1319 	/* Check if we're already there */
1320 	if (dev->current_state == state)
1321 		return 0;
1322 
1323 	if (state == PCI_D0)
1324 		return pci_power_up(dev);
1325 
1326 	/*
1327 	 * This device is quirked not to be put into D3, so don't put it in
1328 	 * D3
1329 	 */
1330 	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1331 		return 0;
1332 
1333 	/*
1334 	 * To put device in D3cold, we put device into D3hot in native
1335 	 * way, then put device into D3cold with platform ops
1336 	 */
1337 	error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
1338 					PCI_D3hot : state);
1339 
1340 	if (pci_platform_power_transition(dev, state))
1341 		return error;
1342 
1343 	/* Powering off a bridge may power off the whole hierarchy */
1344 	if (state == PCI_D3cold)
1345 		pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1346 
1347 	return 0;
1348 }
1349 EXPORT_SYMBOL(pci_set_power_state);
1350 
1351 /**
1352  * pci_choose_state - Choose the power state of a PCI device
1353  * @dev: PCI device to be suspended
1354  * @state: target sleep state for the whole system. This is the value
1355  *	   that is passed to suspend() function.
1356  *
1357  * Returns PCI power state suitable for given device and given system
1358  * message.
1359  */
1360 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
1361 {
1362 	pci_power_t ret;
1363 
1364 	if (!dev->pm_cap)
1365 		return PCI_D0;
1366 
1367 	ret = platform_pci_choose_state(dev);
1368 	if (ret != PCI_POWER_ERROR)
1369 		return ret;
1370 
1371 	switch (state.event) {
1372 	case PM_EVENT_ON:
1373 		return PCI_D0;
1374 	case PM_EVENT_FREEZE:
1375 	case PM_EVENT_PRETHAW:
1376 		/* REVISIT both freeze and pre-thaw "should" use D0 */
1377 	case PM_EVENT_SUSPEND:
1378 	case PM_EVENT_HIBERNATE:
1379 		return PCI_D3hot;
1380 	default:
1381 		pci_info(dev, "unrecognized suspend event %d\n",
1382 			 state.event);
1383 		BUG();
1384 	}
1385 	return PCI_D0;
1386 }
1387 EXPORT_SYMBOL(pci_choose_state);
1388 
1389 #define PCI_EXP_SAVE_REGS	7
1390 
1391 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1392 						       u16 cap, bool extended)
1393 {
1394 	struct pci_cap_saved_state *tmp;
1395 
1396 	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1397 		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1398 			return tmp;
1399 	}
1400 	return NULL;
1401 }
1402 
1403 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1404 {
1405 	return _pci_find_saved_cap(dev, cap, false);
1406 }
1407 
1408 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1409 {
1410 	return _pci_find_saved_cap(dev, cap, true);
1411 }
1412 
1413 static int pci_save_pcie_state(struct pci_dev *dev)
1414 {
1415 	int i = 0;
1416 	struct pci_cap_saved_state *save_state;
1417 	u16 *cap;
1418 
1419 	if (!pci_is_pcie(dev))
1420 		return 0;
1421 
1422 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1423 	if (!save_state) {
1424 		pci_err(dev, "buffer not found in %s\n", __func__);
1425 		return -ENOMEM;
1426 	}
1427 
1428 	cap = (u16 *)&save_state->cap.data[0];
1429 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1430 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1431 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1432 	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
1433 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1434 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1435 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1436 
1437 	return 0;
1438 }
1439 
1440 static void pci_restore_pcie_state(struct pci_dev *dev)
1441 {
1442 	int i = 0;
1443 	struct pci_cap_saved_state *save_state;
1444 	u16 *cap;
1445 
1446 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1447 	if (!save_state)
1448 		return;
1449 
1450 	cap = (u16 *)&save_state->cap.data[0];
1451 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1452 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1453 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1454 	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1455 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1456 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1457 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1458 }
1459 
1460 static int pci_save_pcix_state(struct pci_dev *dev)
1461 {
1462 	int pos;
1463 	struct pci_cap_saved_state *save_state;
1464 
1465 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1466 	if (!pos)
1467 		return 0;
1468 
1469 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1470 	if (!save_state) {
1471 		pci_err(dev, "buffer not found in %s\n", __func__);
1472 		return -ENOMEM;
1473 	}
1474 
1475 	pci_read_config_word(dev, pos + PCI_X_CMD,
1476 			     (u16 *)save_state->cap.data);
1477 
1478 	return 0;
1479 }
1480 
1481 static void pci_restore_pcix_state(struct pci_dev *dev)
1482 {
1483 	int i = 0, pos;
1484 	struct pci_cap_saved_state *save_state;
1485 	u16 *cap;
1486 
1487 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1488 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1489 	if (!save_state || !pos)
1490 		return;
1491 	cap = (u16 *)&save_state->cap.data[0];
1492 
1493 	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1494 }
1495 
1496 static void pci_save_ltr_state(struct pci_dev *dev)
1497 {
1498 	int ltr;
1499 	struct pci_cap_saved_state *save_state;
1500 	u16 *cap;
1501 
1502 	if (!pci_is_pcie(dev))
1503 		return;
1504 
1505 	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1506 	if (!ltr)
1507 		return;
1508 
1509 	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1510 	if (!save_state) {
1511 		pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1512 		return;
1513 	}
1514 
1515 	cap = (u16 *)&save_state->cap.data[0];
1516 	pci_read_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap++);
1517 	pci_read_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, cap++);
1518 }
1519 
1520 static void pci_restore_ltr_state(struct pci_dev *dev)
1521 {
1522 	struct pci_cap_saved_state *save_state;
1523 	int ltr;
1524 	u16 *cap;
1525 
1526 	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1527 	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1528 	if (!save_state || !ltr)
1529 		return;
1530 
1531 	cap = (u16 *)&save_state->cap.data[0];
1532 	pci_write_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap++);
1533 	pci_write_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, *cap++);
1534 }
1535 
1536 /**
1537  * pci_save_state - save the PCI configuration space of a device before
1538  *		    suspending
1539  * @dev: PCI device that we're dealing with
1540  */
1541 int pci_save_state(struct pci_dev *dev)
1542 {
1543 	int i;
1544 	/* XXX: 100% dword access ok here? */
1545 	for (i = 0; i < 16; i++) {
1546 		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1547 		pci_dbg(dev, "saving config space at offset %#x (reading %#x)\n",
1548 			i * 4, dev->saved_config_space[i]);
1549 	}
1550 	dev->state_saved = true;
1551 
1552 	i = pci_save_pcie_state(dev);
1553 	if (i != 0)
1554 		return i;
1555 
1556 	i = pci_save_pcix_state(dev);
1557 	if (i != 0)
1558 		return i;
1559 
1560 	pci_save_ltr_state(dev);
1561 	pci_save_dpc_state(dev);
1562 	pci_save_aer_state(dev);
1563 	pci_save_ptm_state(dev);
1564 	return pci_save_vc_state(dev);
1565 }
1566 EXPORT_SYMBOL(pci_save_state);
1567 
1568 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1569 				     u32 saved_val, int retry, bool force)
1570 {
1571 	u32 val;
1572 
1573 	pci_read_config_dword(pdev, offset, &val);
1574 	if (!force && val == saved_val)
1575 		return;
1576 
1577 	for (;;) {
1578 		pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1579 			offset, val, saved_val);
1580 		pci_write_config_dword(pdev, offset, saved_val);
1581 		if (retry-- <= 0)
1582 			return;
1583 
1584 		pci_read_config_dword(pdev, offset, &val);
1585 		if (val == saved_val)
1586 			return;
1587 
1588 		mdelay(1);
1589 	}
1590 }
1591 
1592 static void pci_restore_config_space_range(struct pci_dev *pdev,
1593 					   int start, int end, int retry,
1594 					   bool force)
1595 {
1596 	int index;
1597 
1598 	for (index = end; index >= start; index--)
1599 		pci_restore_config_dword(pdev, 4 * index,
1600 					 pdev->saved_config_space[index],
1601 					 retry, force);
1602 }
1603 
1604 static void pci_restore_config_space(struct pci_dev *pdev)
1605 {
1606 	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1607 		pci_restore_config_space_range(pdev, 10, 15, 0, false);
1608 		/* Restore BARs before the command register. */
1609 		pci_restore_config_space_range(pdev, 4, 9, 10, false);
1610 		pci_restore_config_space_range(pdev, 0, 3, 0, false);
1611 	} else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1612 		pci_restore_config_space_range(pdev, 12, 15, 0, false);
1613 
1614 		/*
1615 		 * Force rewriting of prefetch registers to avoid S3 resume
1616 		 * issues on Intel PCI bridges that occur when these
1617 		 * registers are not explicitly written.
1618 		 */
1619 		pci_restore_config_space_range(pdev, 9, 11, 0, true);
1620 		pci_restore_config_space_range(pdev, 0, 8, 0, false);
1621 	} else {
1622 		pci_restore_config_space_range(pdev, 0, 15, 0, false);
1623 	}
1624 }
1625 
1626 static void pci_restore_rebar_state(struct pci_dev *pdev)
1627 {
1628 	unsigned int pos, nbars, i;
1629 	u32 ctrl;
1630 
1631 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1632 	if (!pos)
1633 		return;
1634 
1635 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1636 	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1637 		    PCI_REBAR_CTRL_NBAR_SHIFT;
1638 
1639 	for (i = 0; i < nbars; i++, pos += 8) {
1640 		struct resource *res;
1641 		int bar_idx, size;
1642 
1643 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1644 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1645 		res = pdev->resource + bar_idx;
1646 		size = pci_rebar_bytes_to_size(resource_size(res));
1647 		ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1648 		ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1649 		pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1650 	}
1651 }
1652 
1653 /**
1654  * pci_restore_state - Restore the saved state of a PCI device
1655  * @dev: PCI device that we're dealing with
1656  */
1657 void pci_restore_state(struct pci_dev *dev)
1658 {
1659 	if (!dev->state_saved)
1660 		return;
1661 
1662 	/*
1663 	 * Restore max latencies (in the LTR capability) before enabling
1664 	 * LTR itself (in the PCIe capability).
1665 	 */
1666 	pci_restore_ltr_state(dev);
1667 
1668 	pci_restore_pcie_state(dev);
1669 	pci_restore_pasid_state(dev);
1670 	pci_restore_pri_state(dev);
1671 	pci_restore_ats_state(dev);
1672 	pci_restore_vc_state(dev);
1673 	pci_restore_rebar_state(dev);
1674 	pci_restore_dpc_state(dev);
1675 	pci_restore_ptm_state(dev);
1676 
1677 	pci_aer_clear_status(dev);
1678 	pci_restore_aer_state(dev);
1679 
1680 	pci_restore_config_space(dev);
1681 
1682 	pci_restore_pcix_state(dev);
1683 	pci_restore_msi_state(dev);
1684 
1685 	/* Restore ACS and IOV configuration state */
1686 	pci_enable_acs(dev);
1687 	pci_restore_iov_state(dev);
1688 
1689 	dev->state_saved = false;
1690 }
1691 EXPORT_SYMBOL(pci_restore_state);
1692 
1693 struct pci_saved_state {
1694 	u32 config_space[16];
1695 	struct pci_cap_saved_data cap[];
1696 };
1697 
1698 /**
1699  * pci_store_saved_state - Allocate and return an opaque struct containing
1700  *			   the device saved state.
1701  * @dev: PCI device that we're dealing with
1702  *
1703  * Return NULL if no state or error.
1704  */
1705 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1706 {
1707 	struct pci_saved_state *state;
1708 	struct pci_cap_saved_state *tmp;
1709 	struct pci_cap_saved_data *cap;
1710 	size_t size;
1711 
1712 	if (!dev->state_saved)
1713 		return NULL;
1714 
1715 	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1716 
1717 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1718 		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1719 
1720 	state = kzalloc(size, GFP_KERNEL);
1721 	if (!state)
1722 		return NULL;
1723 
1724 	memcpy(state->config_space, dev->saved_config_space,
1725 	       sizeof(state->config_space));
1726 
1727 	cap = state->cap;
1728 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1729 		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1730 		memcpy(cap, &tmp->cap, len);
1731 		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1732 	}
1733 	/* Empty cap_save terminates list */
1734 
1735 	return state;
1736 }
1737 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1738 
1739 /**
1740  * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1741  * @dev: PCI device that we're dealing with
1742  * @state: Saved state returned from pci_store_saved_state()
1743  */
1744 int pci_load_saved_state(struct pci_dev *dev,
1745 			 struct pci_saved_state *state)
1746 {
1747 	struct pci_cap_saved_data *cap;
1748 
1749 	dev->state_saved = false;
1750 
1751 	if (!state)
1752 		return 0;
1753 
1754 	memcpy(dev->saved_config_space, state->config_space,
1755 	       sizeof(state->config_space));
1756 
1757 	cap = state->cap;
1758 	while (cap->size) {
1759 		struct pci_cap_saved_state *tmp;
1760 
1761 		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1762 		if (!tmp || tmp->cap.size != cap->size)
1763 			return -EINVAL;
1764 
1765 		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1766 		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1767 		       sizeof(struct pci_cap_saved_data) + cap->size);
1768 	}
1769 
1770 	dev->state_saved = true;
1771 	return 0;
1772 }
1773 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1774 
1775 /**
1776  * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1777  *				   and free the memory allocated for it.
1778  * @dev: PCI device that we're dealing with
1779  * @state: Pointer to saved state returned from pci_store_saved_state()
1780  */
1781 int pci_load_and_free_saved_state(struct pci_dev *dev,
1782 				  struct pci_saved_state **state)
1783 {
1784 	int ret = pci_load_saved_state(dev, *state);
1785 	kfree(*state);
1786 	*state = NULL;
1787 	return ret;
1788 }
1789 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1790 
1791 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1792 {
1793 	return pci_enable_resources(dev, bars);
1794 }
1795 
1796 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1797 {
1798 	int err;
1799 	struct pci_dev *bridge;
1800 	u16 cmd;
1801 	u8 pin;
1802 
1803 	err = pci_set_power_state(dev, PCI_D0);
1804 	if (err < 0 && err != -EIO)
1805 		return err;
1806 
1807 	bridge = pci_upstream_bridge(dev);
1808 	if (bridge)
1809 		pcie_aspm_powersave_config_link(bridge);
1810 
1811 	err = pcibios_enable_device(dev, bars);
1812 	if (err < 0)
1813 		return err;
1814 	pci_fixup_device(pci_fixup_enable, dev);
1815 
1816 	if (dev->msi_enabled || dev->msix_enabled)
1817 		return 0;
1818 
1819 	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1820 	if (pin) {
1821 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
1822 		if (cmd & PCI_COMMAND_INTX_DISABLE)
1823 			pci_write_config_word(dev, PCI_COMMAND,
1824 					      cmd & ~PCI_COMMAND_INTX_DISABLE);
1825 	}
1826 
1827 	return 0;
1828 }
1829 
1830 /**
1831  * pci_reenable_device - Resume abandoned device
1832  * @dev: PCI device to be resumed
1833  *
1834  * NOTE: This function is a backend of pci_default_resume() and is not supposed
1835  * to be called by normal code, write proper resume handler and use it instead.
1836  */
1837 int pci_reenable_device(struct pci_dev *dev)
1838 {
1839 	if (pci_is_enabled(dev))
1840 		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1841 	return 0;
1842 }
1843 EXPORT_SYMBOL(pci_reenable_device);
1844 
1845 static void pci_enable_bridge(struct pci_dev *dev)
1846 {
1847 	struct pci_dev *bridge;
1848 	int retval;
1849 
1850 	bridge = pci_upstream_bridge(dev);
1851 	if (bridge)
1852 		pci_enable_bridge(bridge);
1853 
1854 	if (pci_is_enabled(dev)) {
1855 		if (!dev->is_busmaster)
1856 			pci_set_master(dev);
1857 		return;
1858 	}
1859 
1860 	retval = pci_enable_device(dev);
1861 	if (retval)
1862 		pci_err(dev, "Error enabling bridge (%d), continuing\n",
1863 			retval);
1864 	pci_set_master(dev);
1865 }
1866 
1867 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1868 {
1869 	struct pci_dev *bridge;
1870 	int err;
1871 	int i, bars = 0;
1872 
1873 	if (atomic_inc_return(&dev->enable_cnt) > 1) {
1874 		pci_update_current_state(dev, dev->current_state);
1875 		return 0;		/* already enabled */
1876 	}
1877 
1878 	bridge = pci_upstream_bridge(dev);
1879 	if (bridge)
1880 		pci_enable_bridge(bridge);
1881 
1882 	/* only skip sriov related */
1883 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1884 		if (dev->resource[i].flags & flags)
1885 			bars |= (1 << i);
1886 	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1887 		if (dev->resource[i].flags & flags)
1888 			bars |= (1 << i);
1889 
1890 	err = do_pci_enable_device(dev, bars);
1891 	if (err < 0)
1892 		atomic_dec(&dev->enable_cnt);
1893 	return err;
1894 }
1895 
1896 /**
1897  * pci_enable_device_io - Initialize a device for use with IO space
1898  * @dev: PCI device to be initialized
1899  *
1900  * Initialize device before it's used by a driver. Ask low-level code
1901  * to enable I/O resources. Wake up the device if it was suspended.
1902  * Beware, this function can fail.
1903  */
1904 int pci_enable_device_io(struct pci_dev *dev)
1905 {
1906 	return pci_enable_device_flags(dev, IORESOURCE_IO);
1907 }
1908 EXPORT_SYMBOL(pci_enable_device_io);
1909 
1910 /**
1911  * pci_enable_device_mem - Initialize a device for use with Memory space
1912  * @dev: PCI device to be initialized
1913  *
1914  * Initialize device before it's used by a driver. Ask low-level code
1915  * to enable Memory resources. Wake up the device if it was suspended.
1916  * Beware, this function can fail.
1917  */
1918 int pci_enable_device_mem(struct pci_dev *dev)
1919 {
1920 	return pci_enable_device_flags(dev, IORESOURCE_MEM);
1921 }
1922 EXPORT_SYMBOL(pci_enable_device_mem);
1923 
1924 /**
1925  * pci_enable_device - Initialize device before it's used by a driver.
1926  * @dev: PCI device to be initialized
1927  *
1928  * Initialize device before it's used by a driver. Ask low-level code
1929  * to enable I/O and memory. Wake up the device if it was suspended.
1930  * Beware, this function can fail.
1931  *
1932  * Note we don't actually enable the device many times if we call
1933  * this function repeatedly (we just increment the count).
1934  */
1935 int pci_enable_device(struct pci_dev *dev)
1936 {
1937 	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1938 }
1939 EXPORT_SYMBOL(pci_enable_device);
1940 
1941 /*
1942  * Managed PCI resources.  This manages device on/off, INTx/MSI/MSI-X
1943  * on/off and BAR regions.  pci_dev itself records MSI/MSI-X status, so
1944  * there's no need to track it separately.  pci_devres is initialized
1945  * when a device is enabled using managed PCI device enable interface.
1946  */
1947 struct pci_devres {
1948 	unsigned int enabled:1;
1949 	unsigned int pinned:1;
1950 	unsigned int orig_intx:1;
1951 	unsigned int restore_intx:1;
1952 	unsigned int mwi:1;
1953 	u32 region_mask;
1954 };
1955 
1956 static void pcim_release(struct device *gendev, void *res)
1957 {
1958 	struct pci_dev *dev = to_pci_dev(gendev);
1959 	struct pci_devres *this = res;
1960 	int i;
1961 
1962 	if (dev->msi_enabled)
1963 		pci_disable_msi(dev);
1964 	if (dev->msix_enabled)
1965 		pci_disable_msix(dev);
1966 
1967 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1968 		if (this->region_mask & (1 << i))
1969 			pci_release_region(dev, i);
1970 
1971 	if (this->mwi)
1972 		pci_clear_mwi(dev);
1973 
1974 	if (this->restore_intx)
1975 		pci_intx(dev, this->orig_intx);
1976 
1977 	if (this->enabled && !this->pinned)
1978 		pci_disable_device(dev);
1979 }
1980 
1981 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1982 {
1983 	struct pci_devres *dr, *new_dr;
1984 
1985 	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1986 	if (dr)
1987 		return dr;
1988 
1989 	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1990 	if (!new_dr)
1991 		return NULL;
1992 	return devres_get(&pdev->dev, new_dr, NULL, NULL);
1993 }
1994 
1995 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1996 {
1997 	if (pci_is_managed(pdev))
1998 		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1999 	return NULL;
2000 }
2001 
2002 /**
2003  * pcim_enable_device - Managed pci_enable_device()
2004  * @pdev: PCI device to be initialized
2005  *
2006  * Managed pci_enable_device().
2007  */
2008 int pcim_enable_device(struct pci_dev *pdev)
2009 {
2010 	struct pci_devres *dr;
2011 	int rc;
2012 
2013 	dr = get_pci_dr(pdev);
2014 	if (unlikely(!dr))
2015 		return -ENOMEM;
2016 	if (dr->enabled)
2017 		return 0;
2018 
2019 	rc = pci_enable_device(pdev);
2020 	if (!rc) {
2021 		pdev->is_managed = 1;
2022 		dr->enabled = 1;
2023 	}
2024 	return rc;
2025 }
2026 EXPORT_SYMBOL(pcim_enable_device);
2027 
2028 /**
2029  * pcim_pin_device - Pin managed PCI device
2030  * @pdev: PCI device to pin
2031  *
2032  * Pin managed PCI device @pdev.  Pinned device won't be disabled on
2033  * driver detach.  @pdev must have been enabled with
2034  * pcim_enable_device().
2035  */
2036 void pcim_pin_device(struct pci_dev *pdev)
2037 {
2038 	struct pci_devres *dr;
2039 
2040 	dr = find_pci_dr(pdev);
2041 	WARN_ON(!dr || !dr->enabled);
2042 	if (dr)
2043 		dr->pinned = 1;
2044 }
2045 EXPORT_SYMBOL(pcim_pin_device);
2046 
2047 /*
2048  * pcibios_add_device - provide arch specific hooks when adding device dev
2049  * @dev: the PCI device being added
2050  *
2051  * Permits the platform to provide architecture specific functionality when
2052  * devices are added. This is the default implementation. Architecture
2053  * implementations can override this.
2054  */
2055 int __weak pcibios_add_device(struct pci_dev *dev)
2056 {
2057 	return 0;
2058 }
2059 
2060 /**
2061  * pcibios_release_device - provide arch specific hooks when releasing
2062  *			    device dev
2063  * @dev: the PCI device being released
2064  *
2065  * Permits the platform to provide architecture specific functionality when
2066  * devices are released. This is the default implementation. Architecture
2067  * implementations can override this.
2068  */
2069 void __weak pcibios_release_device(struct pci_dev *dev) {}
2070 
2071 /**
2072  * pcibios_disable_device - disable arch specific PCI resources for device dev
2073  * @dev: the PCI device to disable
2074  *
2075  * Disables architecture specific PCI resources for the device. This
2076  * is the default implementation. Architecture implementations can
2077  * override this.
2078  */
2079 void __weak pcibios_disable_device(struct pci_dev *dev) {}
2080 
2081 /**
2082  * pcibios_penalize_isa_irq - penalize an ISA IRQ
2083  * @irq: ISA IRQ to penalize
2084  * @active: IRQ active or not
2085  *
2086  * Permits the platform to provide architecture-specific functionality when
2087  * penalizing ISA IRQs. This is the default implementation. Architecture
2088  * implementations can override this.
2089  */
2090 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
2091 
2092 static void do_pci_disable_device(struct pci_dev *dev)
2093 {
2094 	u16 pci_command;
2095 
2096 	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2097 	if (pci_command & PCI_COMMAND_MASTER) {
2098 		pci_command &= ~PCI_COMMAND_MASTER;
2099 		pci_write_config_word(dev, PCI_COMMAND, pci_command);
2100 	}
2101 
2102 	pcibios_disable_device(dev);
2103 }
2104 
2105 /**
2106  * pci_disable_enabled_device - Disable device without updating enable_cnt
2107  * @dev: PCI device to disable
2108  *
2109  * NOTE: This function is a backend of PCI power management routines and is
2110  * not supposed to be called drivers.
2111  */
2112 void pci_disable_enabled_device(struct pci_dev *dev)
2113 {
2114 	if (pci_is_enabled(dev))
2115 		do_pci_disable_device(dev);
2116 }
2117 
2118 /**
2119  * pci_disable_device - Disable PCI device after use
2120  * @dev: PCI device to be disabled
2121  *
2122  * Signal to the system that the PCI device is not in use by the system
2123  * anymore.  This only involves disabling PCI bus-mastering, if active.
2124  *
2125  * Note we don't actually disable the device until all callers of
2126  * pci_enable_device() have called pci_disable_device().
2127  */
2128 void pci_disable_device(struct pci_dev *dev)
2129 {
2130 	struct pci_devres *dr;
2131 
2132 	dr = find_pci_dr(dev);
2133 	if (dr)
2134 		dr->enabled = 0;
2135 
2136 	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2137 		      "disabling already-disabled device");
2138 
2139 	if (atomic_dec_return(&dev->enable_cnt) != 0)
2140 		return;
2141 
2142 	do_pci_disable_device(dev);
2143 
2144 	dev->is_busmaster = 0;
2145 }
2146 EXPORT_SYMBOL(pci_disable_device);
2147 
2148 /**
2149  * pcibios_set_pcie_reset_state - set reset state for device dev
2150  * @dev: the PCIe device reset
2151  * @state: Reset state to enter into
2152  *
2153  * Set the PCIe reset state for the device. This is the default
2154  * implementation. Architecture implementations can override this.
2155  */
2156 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2157 					enum pcie_reset_state state)
2158 {
2159 	return -EINVAL;
2160 }
2161 
2162 /**
2163  * pci_set_pcie_reset_state - set reset state for device dev
2164  * @dev: the PCIe device reset
2165  * @state: Reset state to enter into
2166  *
2167  * Sets the PCI reset state for the device.
2168  */
2169 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2170 {
2171 	return pcibios_set_pcie_reset_state(dev, state);
2172 }
2173 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2174 
2175 void pcie_clear_device_status(struct pci_dev *dev)
2176 {
2177 	u16 sta;
2178 
2179 	pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2180 	pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2181 }
2182 
2183 /**
2184  * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2185  * @dev: PCIe root port or event collector.
2186  */
2187 void pcie_clear_root_pme_status(struct pci_dev *dev)
2188 {
2189 	pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2190 }
2191 
2192 /**
2193  * pci_check_pme_status - Check if given device has generated PME.
2194  * @dev: Device to check.
2195  *
2196  * Check the PME status of the device and if set, clear it and clear PME enable
2197  * (if set).  Return 'true' if PME status and PME enable were both set or
2198  * 'false' otherwise.
2199  */
2200 bool pci_check_pme_status(struct pci_dev *dev)
2201 {
2202 	int pmcsr_pos;
2203 	u16 pmcsr;
2204 	bool ret = false;
2205 
2206 	if (!dev->pm_cap)
2207 		return false;
2208 
2209 	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2210 	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2211 	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2212 		return false;
2213 
2214 	/* Clear PME status. */
2215 	pmcsr |= PCI_PM_CTRL_PME_STATUS;
2216 	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2217 		/* Disable PME to avoid interrupt flood. */
2218 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2219 		ret = true;
2220 	}
2221 
2222 	pci_write_config_word(dev, pmcsr_pos, pmcsr);
2223 
2224 	return ret;
2225 }
2226 
2227 /**
2228  * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2229  * @dev: Device to handle.
2230  * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2231  *
2232  * Check if @dev has generated PME and queue a resume request for it in that
2233  * case.
2234  */
2235 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2236 {
2237 	if (pme_poll_reset && dev->pme_poll)
2238 		dev->pme_poll = false;
2239 
2240 	if (pci_check_pme_status(dev)) {
2241 		pci_wakeup_event(dev);
2242 		pm_request_resume(&dev->dev);
2243 	}
2244 	return 0;
2245 }
2246 
2247 /**
2248  * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2249  * @bus: Top bus of the subtree to walk.
2250  */
2251 void pci_pme_wakeup_bus(struct pci_bus *bus)
2252 {
2253 	if (bus)
2254 		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2255 }
2256 
2257 
2258 /**
2259  * pci_pme_capable - check the capability of PCI device to generate PME#
2260  * @dev: PCI device to handle.
2261  * @state: PCI state from which device will issue PME#.
2262  */
2263 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2264 {
2265 	if (!dev->pm_cap)
2266 		return false;
2267 
2268 	return !!(dev->pme_support & (1 << state));
2269 }
2270 EXPORT_SYMBOL(pci_pme_capable);
2271 
2272 static void pci_pme_list_scan(struct work_struct *work)
2273 {
2274 	struct pci_pme_device *pme_dev, *n;
2275 
2276 	mutex_lock(&pci_pme_list_mutex);
2277 	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2278 		if (pme_dev->dev->pme_poll) {
2279 			struct pci_dev *bridge;
2280 
2281 			bridge = pme_dev->dev->bus->self;
2282 			/*
2283 			 * If bridge is in low power state, the
2284 			 * configuration space of subordinate devices
2285 			 * may be not accessible
2286 			 */
2287 			if (bridge && bridge->current_state != PCI_D0)
2288 				continue;
2289 			/*
2290 			 * If the device is in D3cold it should not be
2291 			 * polled either.
2292 			 */
2293 			if (pme_dev->dev->current_state == PCI_D3cold)
2294 				continue;
2295 
2296 			pci_pme_wakeup(pme_dev->dev, NULL);
2297 		} else {
2298 			list_del(&pme_dev->list);
2299 			kfree(pme_dev);
2300 		}
2301 	}
2302 	if (!list_empty(&pci_pme_list))
2303 		queue_delayed_work(system_freezable_wq, &pci_pme_work,
2304 				   msecs_to_jiffies(PME_TIMEOUT));
2305 	mutex_unlock(&pci_pme_list_mutex);
2306 }
2307 
2308 static void __pci_pme_active(struct pci_dev *dev, bool enable)
2309 {
2310 	u16 pmcsr;
2311 
2312 	if (!dev->pme_support)
2313 		return;
2314 
2315 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2316 	/* Clear PME_Status by writing 1 to it and enable PME# */
2317 	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2318 	if (!enable)
2319 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2320 
2321 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2322 }
2323 
2324 /**
2325  * pci_pme_restore - Restore PME configuration after config space restore.
2326  * @dev: PCI device to update.
2327  */
2328 void pci_pme_restore(struct pci_dev *dev)
2329 {
2330 	u16 pmcsr;
2331 
2332 	if (!dev->pme_support)
2333 		return;
2334 
2335 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2336 	if (dev->wakeup_prepared) {
2337 		pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2338 		pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2339 	} else {
2340 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2341 		pmcsr |= PCI_PM_CTRL_PME_STATUS;
2342 	}
2343 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2344 }
2345 
2346 /**
2347  * pci_pme_active - enable or disable PCI device's PME# function
2348  * @dev: PCI device to handle.
2349  * @enable: 'true' to enable PME# generation; 'false' to disable it.
2350  *
2351  * The caller must verify that the device is capable of generating PME# before
2352  * calling this function with @enable equal to 'true'.
2353  */
2354 void pci_pme_active(struct pci_dev *dev, bool enable)
2355 {
2356 	__pci_pme_active(dev, enable);
2357 
2358 	/*
2359 	 * PCI (as opposed to PCIe) PME requires that the device have
2360 	 * its PME# line hooked up correctly. Not all hardware vendors
2361 	 * do this, so the PME never gets delivered and the device
2362 	 * remains asleep. The easiest way around this is to
2363 	 * periodically walk the list of suspended devices and check
2364 	 * whether any have their PME flag set. The assumption is that
2365 	 * we'll wake up often enough anyway that this won't be a huge
2366 	 * hit, and the power savings from the devices will still be a
2367 	 * win.
2368 	 *
2369 	 * Although PCIe uses in-band PME message instead of PME# line
2370 	 * to report PME, PME does not work for some PCIe devices in
2371 	 * reality.  For example, there are devices that set their PME
2372 	 * status bits, but don't really bother to send a PME message;
2373 	 * there are PCI Express Root Ports that don't bother to
2374 	 * trigger interrupts when they receive PME messages from the
2375 	 * devices below.  So PME poll is used for PCIe devices too.
2376 	 */
2377 
2378 	if (dev->pme_poll) {
2379 		struct pci_pme_device *pme_dev;
2380 		if (enable) {
2381 			pme_dev = kmalloc(sizeof(struct pci_pme_device),
2382 					  GFP_KERNEL);
2383 			if (!pme_dev) {
2384 				pci_warn(dev, "can't enable PME#\n");
2385 				return;
2386 			}
2387 			pme_dev->dev = dev;
2388 			mutex_lock(&pci_pme_list_mutex);
2389 			list_add(&pme_dev->list, &pci_pme_list);
2390 			if (list_is_singular(&pci_pme_list))
2391 				queue_delayed_work(system_freezable_wq,
2392 						   &pci_pme_work,
2393 						   msecs_to_jiffies(PME_TIMEOUT));
2394 			mutex_unlock(&pci_pme_list_mutex);
2395 		} else {
2396 			mutex_lock(&pci_pme_list_mutex);
2397 			list_for_each_entry(pme_dev, &pci_pme_list, list) {
2398 				if (pme_dev->dev == dev) {
2399 					list_del(&pme_dev->list);
2400 					kfree(pme_dev);
2401 					break;
2402 				}
2403 			}
2404 			mutex_unlock(&pci_pme_list_mutex);
2405 		}
2406 	}
2407 
2408 	pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2409 }
2410 EXPORT_SYMBOL(pci_pme_active);
2411 
2412 /**
2413  * __pci_enable_wake - enable PCI device as wakeup event source
2414  * @dev: PCI device affected
2415  * @state: PCI state from which device will issue wakeup events
2416  * @enable: True to enable event generation; false to disable
2417  *
2418  * This enables the device as a wakeup event source, or disables it.
2419  * When such events involves platform-specific hooks, those hooks are
2420  * called automatically by this routine.
2421  *
2422  * Devices with legacy power management (no standard PCI PM capabilities)
2423  * always require such platform hooks.
2424  *
2425  * RETURN VALUE:
2426  * 0 is returned on success
2427  * -EINVAL is returned if device is not supposed to wake up the system
2428  * Error code depending on the platform is returned if both the platform and
2429  * the native mechanism fail to enable the generation of wake-up events
2430  */
2431 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2432 {
2433 	int ret = 0;
2434 
2435 	/*
2436 	 * Bridges that are not power-manageable directly only signal
2437 	 * wakeup on behalf of subordinate devices which is set up
2438 	 * elsewhere, so skip them. However, bridges that are
2439 	 * power-manageable may signal wakeup for themselves (for example,
2440 	 * on a hotplug event) and they need to be covered here.
2441 	 */
2442 	if (!pci_power_manageable(dev))
2443 		return 0;
2444 
2445 	/* Don't do the same thing twice in a row for one device. */
2446 	if (!!enable == !!dev->wakeup_prepared)
2447 		return 0;
2448 
2449 	/*
2450 	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2451 	 * Anderson we should be doing PME# wake enable followed by ACPI wake
2452 	 * enable.  To disable wake-up we call the platform first, for symmetry.
2453 	 */
2454 
2455 	if (enable) {
2456 		int error;
2457 
2458 		if (pci_pme_capable(dev, state))
2459 			pci_pme_active(dev, true);
2460 		else
2461 			ret = 1;
2462 		error = platform_pci_set_wakeup(dev, true);
2463 		if (ret)
2464 			ret = error;
2465 		if (!ret)
2466 			dev->wakeup_prepared = true;
2467 	} else {
2468 		platform_pci_set_wakeup(dev, false);
2469 		pci_pme_active(dev, false);
2470 		dev->wakeup_prepared = false;
2471 	}
2472 
2473 	return ret;
2474 }
2475 
2476 /**
2477  * pci_enable_wake - change wakeup settings for a PCI device
2478  * @pci_dev: Target device
2479  * @state: PCI state from which device will issue wakeup events
2480  * @enable: Whether or not to enable event generation
2481  *
2482  * If @enable is set, check device_may_wakeup() for the device before calling
2483  * __pci_enable_wake() for it.
2484  */
2485 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2486 {
2487 	if (enable && !device_may_wakeup(&pci_dev->dev))
2488 		return -EINVAL;
2489 
2490 	return __pci_enable_wake(pci_dev, state, enable);
2491 }
2492 EXPORT_SYMBOL(pci_enable_wake);
2493 
2494 /**
2495  * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2496  * @dev: PCI device to prepare
2497  * @enable: True to enable wake-up event generation; false to disable
2498  *
2499  * Many drivers want the device to wake up the system from D3_hot or D3_cold
2500  * and this function allows them to set that up cleanly - pci_enable_wake()
2501  * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2502  * ordering constraints.
2503  *
2504  * This function only returns error code if the device is not allowed to wake
2505  * up the system from sleep or it is not capable of generating PME# from both
2506  * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2507  */
2508 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2509 {
2510 	return pci_pme_capable(dev, PCI_D3cold) ?
2511 			pci_enable_wake(dev, PCI_D3cold, enable) :
2512 			pci_enable_wake(dev, PCI_D3hot, enable);
2513 }
2514 EXPORT_SYMBOL(pci_wake_from_d3);
2515 
2516 /**
2517  * pci_target_state - find an appropriate low power state for a given PCI dev
2518  * @dev: PCI device
2519  * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2520  *
2521  * Use underlying platform code to find a supported low power state for @dev.
2522  * If the platform can't manage @dev, return the deepest state from which it
2523  * can generate wake events, based on any available PME info.
2524  */
2525 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2526 {
2527 	pci_power_t target_state = PCI_D3hot;
2528 
2529 	if (platform_pci_power_manageable(dev)) {
2530 		/*
2531 		 * Call the platform to find the target state for the device.
2532 		 */
2533 		pci_power_t state = platform_pci_choose_state(dev);
2534 
2535 		switch (state) {
2536 		case PCI_POWER_ERROR:
2537 		case PCI_UNKNOWN:
2538 			break;
2539 		case PCI_D1:
2540 		case PCI_D2:
2541 			if (pci_no_d1d2(dev))
2542 				break;
2543 			fallthrough;
2544 		default:
2545 			target_state = state;
2546 		}
2547 
2548 		return target_state;
2549 	}
2550 
2551 	if (!dev->pm_cap)
2552 		target_state = PCI_D0;
2553 
2554 	/*
2555 	 * If the device is in D3cold even though it's not power-manageable by
2556 	 * the platform, it may have been powered down by non-standard means.
2557 	 * Best to let it slumber.
2558 	 */
2559 	if (dev->current_state == PCI_D3cold)
2560 		target_state = PCI_D3cold;
2561 
2562 	if (wakeup) {
2563 		/*
2564 		 * Find the deepest state from which the device can generate
2565 		 * PME#.
2566 		 */
2567 		if (dev->pme_support) {
2568 			while (target_state
2569 			      && !(dev->pme_support & (1 << target_state)))
2570 				target_state--;
2571 		}
2572 	}
2573 
2574 	return target_state;
2575 }
2576 
2577 /**
2578  * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2579  *			  into a sleep state
2580  * @dev: Device to handle.
2581  *
2582  * Choose the power state appropriate for the device depending on whether
2583  * it can wake up the system and/or is power manageable by the platform
2584  * (PCI_D3hot is the default) and put the device into that state.
2585  */
2586 int pci_prepare_to_sleep(struct pci_dev *dev)
2587 {
2588 	bool wakeup = device_may_wakeup(&dev->dev);
2589 	pci_power_t target_state = pci_target_state(dev, wakeup);
2590 	int error;
2591 
2592 	if (target_state == PCI_POWER_ERROR)
2593 		return -EIO;
2594 
2595 	/*
2596 	 * There are systems (for example, Intel mobile chips since Coffee
2597 	 * Lake) where the power drawn while suspended can be significantly
2598 	 * reduced by disabling PTM on PCIe root ports as this allows the
2599 	 * port to enter a lower-power PM state and the SoC to reach a
2600 	 * lower-power idle state as a whole.
2601 	 */
2602 	if (pci_pcie_type(dev) == PCI_EXP_TYPE_ROOT_PORT)
2603 		pci_disable_ptm(dev);
2604 
2605 	pci_enable_wake(dev, target_state, wakeup);
2606 
2607 	error = pci_set_power_state(dev, target_state);
2608 
2609 	if (error) {
2610 		pci_enable_wake(dev, target_state, false);
2611 		pci_restore_ptm_state(dev);
2612 	}
2613 
2614 	return error;
2615 }
2616 EXPORT_SYMBOL(pci_prepare_to_sleep);
2617 
2618 /**
2619  * pci_back_from_sleep - turn PCI device on during system-wide transition
2620  *			 into working state
2621  * @dev: Device to handle.
2622  *
2623  * Disable device's system wake-up capability and put it into D0.
2624  */
2625 int pci_back_from_sleep(struct pci_dev *dev)
2626 {
2627 	pci_enable_wake(dev, PCI_D0, false);
2628 	return pci_set_power_state(dev, PCI_D0);
2629 }
2630 EXPORT_SYMBOL(pci_back_from_sleep);
2631 
2632 /**
2633  * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2634  * @dev: PCI device being suspended.
2635  *
2636  * Prepare @dev to generate wake-up events at run time and put it into a low
2637  * power state.
2638  */
2639 int pci_finish_runtime_suspend(struct pci_dev *dev)
2640 {
2641 	pci_power_t target_state;
2642 	int error;
2643 
2644 	target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2645 	if (target_state == PCI_POWER_ERROR)
2646 		return -EIO;
2647 
2648 	dev->runtime_d3cold = target_state == PCI_D3cold;
2649 
2650 	/*
2651 	 * There are systems (for example, Intel mobile chips since Coffee
2652 	 * Lake) where the power drawn while suspended can be significantly
2653 	 * reduced by disabling PTM on PCIe root ports as this allows the
2654 	 * port to enter a lower-power PM state and the SoC to reach a
2655 	 * lower-power idle state as a whole.
2656 	 */
2657 	if (pci_pcie_type(dev) == PCI_EXP_TYPE_ROOT_PORT)
2658 		pci_disable_ptm(dev);
2659 
2660 	__pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2661 
2662 	error = pci_set_power_state(dev, target_state);
2663 
2664 	if (error) {
2665 		pci_enable_wake(dev, target_state, false);
2666 		pci_restore_ptm_state(dev);
2667 		dev->runtime_d3cold = false;
2668 	}
2669 
2670 	return error;
2671 }
2672 
2673 /**
2674  * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2675  * @dev: Device to check.
2676  *
2677  * Return true if the device itself is capable of generating wake-up events
2678  * (through the platform or using the native PCIe PME) or if the device supports
2679  * PME and one of its upstream bridges can generate wake-up events.
2680  */
2681 bool pci_dev_run_wake(struct pci_dev *dev)
2682 {
2683 	struct pci_bus *bus = dev->bus;
2684 
2685 	if (!dev->pme_support)
2686 		return false;
2687 
2688 	/* PME-capable in principle, but not from the target power state */
2689 	if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2690 		return false;
2691 
2692 	if (device_can_wakeup(&dev->dev))
2693 		return true;
2694 
2695 	while (bus->parent) {
2696 		struct pci_dev *bridge = bus->self;
2697 
2698 		if (device_can_wakeup(&bridge->dev))
2699 			return true;
2700 
2701 		bus = bus->parent;
2702 	}
2703 
2704 	/* We have reached the root bus. */
2705 	if (bus->bridge)
2706 		return device_can_wakeup(bus->bridge);
2707 
2708 	return false;
2709 }
2710 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2711 
2712 /**
2713  * pci_dev_need_resume - Check if it is necessary to resume the device.
2714  * @pci_dev: Device to check.
2715  *
2716  * Return 'true' if the device is not runtime-suspended or it has to be
2717  * reconfigured due to wakeup settings difference between system and runtime
2718  * suspend, or the current power state of it is not suitable for the upcoming
2719  * (system-wide) transition.
2720  */
2721 bool pci_dev_need_resume(struct pci_dev *pci_dev)
2722 {
2723 	struct device *dev = &pci_dev->dev;
2724 	pci_power_t target_state;
2725 
2726 	if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2727 		return true;
2728 
2729 	target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2730 
2731 	/*
2732 	 * If the earlier platform check has not triggered, D3cold is just power
2733 	 * removal on top of D3hot, so no need to resume the device in that
2734 	 * case.
2735 	 */
2736 	return target_state != pci_dev->current_state &&
2737 		target_state != PCI_D3cold &&
2738 		pci_dev->current_state != PCI_D3hot;
2739 }
2740 
2741 /**
2742  * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2743  * @pci_dev: Device to check.
2744  *
2745  * If the device is suspended and it is not configured for system wakeup,
2746  * disable PME for it to prevent it from waking up the system unnecessarily.
2747  *
2748  * Note that if the device's power state is D3cold and the platform check in
2749  * pci_dev_need_resume() has not triggered, the device's configuration need not
2750  * be changed.
2751  */
2752 void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2753 {
2754 	struct device *dev = &pci_dev->dev;
2755 
2756 	spin_lock_irq(&dev->power.lock);
2757 
2758 	if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2759 	    pci_dev->current_state < PCI_D3cold)
2760 		__pci_pme_active(pci_dev, false);
2761 
2762 	spin_unlock_irq(&dev->power.lock);
2763 }
2764 
2765 /**
2766  * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2767  * @pci_dev: Device to handle.
2768  *
2769  * If the device is runtime suspended and wakeup-capable, enable PME for it as
2770  * it might have been disabled during the prepare phase of system suspend if
2771  * the device was not configured for system wakeup.
2772  */
2773 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2774 {
2775 	struct device *dev = &pci_dev->dev;
2776 
2777 	if (!pci_dev_run_wake(pci_dev))
2778 		return;
2779 
2780 	spin_lock_irq(&dev->power.lock);
2781 
2782 	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2783 		__pci_pme_active(pci_dev, true);
2784 
2785 	spin_unlock_irq(&dev->power.lock);
2786 }
2787 
2788 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2789 {
2790 	struct device *dev = &pdev->dev;
2791 	struct device *parent = dev->parent;
2792 
2793 	if (parent)
2794 		pm_runtime_get_sync(parent);
2795 	pm_runtime_get_noresume(dev);
2796 	/*
2797 	 * pdev->current_state is set to PCI_D3cold during suspending,
2798 	 * so wait until suspending completes
2799 	 */
2800 	pm_runtime_barrier(dev);
2801 	/*
2802 	 * Only need to resume devices in D3cold, because config
2803 	 * registers are still accessible for devices suspended but
2804 	 * not in D3cold.
2805 	 */
2806 	if (pdev->current_state == PCI_D3cold)
2807 		pm_runtime_resume(dev);
2808 }
2809 
2810 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2811 {
2812 	struct device *dev = &pdev->dev;
2813 	struct device *parent = dev->parent;
2814 
2815 	pm_runtime_put(dev);
2816 	if (parent)
2817 		pm_runtime_put_sync(parent);
2818 }
2819 
2820 static const struct dmi_system_id bridge_d3_blacklist[] = {
2821 #ifdef CONFIG_X86
2822 	{
2823 		/*
2824 		 * Gigabyte X299 root port is not marked as hotplug capable
2825 		 * which allows Linux to power manage it.  However, this
2826 		 * confuses the BIOS SMI handler so don't power manage root
2827 		 * ports on that system.
2828 		 */
2829 		.ident = "X299 DESIGNARE EX-CF",
2830 		.matches = {
2831 			DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2832 			DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2833 		},
2834 	},
2835 #endif
2836 	{ }
2837 };
2838 
2839 /**
2840  * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2841  * @bridge: Bridge to check
2842  *
2843  * This function checks if it is possible to move the bridge to D3.
2844  * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2845  */
2846 bool pci_bridge_d3_possible(struct pci_dev *bridge)
2847 {
2848 	if (!pci_is_pcie(bridge))
2849 		return false;
2850 
2851 	switch (pci_pcie_type(bridge)) {
2852 	case PCI_EXP_TYPE_ROOT_PORT:
2853 	case PCI_EXP_TYPE_UPSTREAM:
2854 	case PCI_EXP_TYPE_DOWNSTREAM:
2855 		if (pci_bridge_d3_disable)
2856 			return false;
2857 
2858 		/*
2859 		 * Hotplug ports handled by firmware in System Management Mode
2860 		 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2861 		 */
2862 		if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
2863 			return false;
2864 
2865 		if (pci_bridge_d3_force)
2866 			return true;
2867 
2868 		/* Even the oldest 2010 Thunderbolt controller supports D3. */
2869 		if (bridge->is_thunderbolt)
2870 			return true;
2871 
2872 		/* Platform might know better if the bridge supports D3 */
2873 		if (platform_pci_bridge_d3(bridge))
2874 			return true;
2875 
2876 		/*
2877 		 * Hotplug ports handled natively by the OS were not validated
2878 		 * by vendors for runtime D3 at least until 2018 because there
2879 		 * was no OS support.
2880 		 */
2881 		if (bridge->is_hotplug_bridge)
2882 			return false;
2883 
2884 		if (dmi_check_system(bridge_d3_blacklist))
2885 			return false;
2886 
2887 		/*
2888 		 * It should be safe to put PCIe ports from 2015 or newer
2889 		 * to D3.
2890 		 */
2891 		if (dmi_get_bios_year() >= 2015)
2892 			return true;
2893 		break;
2894 	}
2895 
2896 	return false;
2897 }
2898 
2899 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2900 {
2901 	bool *d3cold_ok = data;
2902 
2903 	if (/* The device needs to be allowed to go D3cold ... */
2904 	    dev->no_d3cold || !dev->d3cold_allowed ||
2905 
2906 	    /* ... and if it is wakeup capable to do so from D3cold. */
2907 	    (device_may_wakeup(&dev->dev) &&
2908 	     !pci_pme_capable(dev, PCI_D3cold)) ||
2909 
2910 	    /* If it is a bridge it must be allowed to go to D3. */
2911 	    !pci_power_manageable(dev))
2912 
2913 		*d3cold_ok = false;
2914 
2915 	return !*d3cold_ok;
2916 }
2917 
2918 /*
2919  * pci_bridge_d3_update - Update bridge D3 capabilities
2920  * @dev: PCI device which is changed
2921  *
2922  * Update upstream bridge PM capabilities accordingly depending on if the
2923  * device PM configuration was changed or the device is being removed.  The
2924  * change is also propagated upstream.
2925  */
2926 void pci_bridge_d3_update(struct pci_dev *dev)
2927 {
2928 	bool remove = !device_is_registered(&dev->dev);
2929 	struct pci_dev *bridge;
2930 	bool d3cold_ok = true;
2931 
2932 	bridge = pci_upstream_bridge(dev);
2933 	if (!bridge || !pci_bridge_d3_possible(bridge))
2934 		return;
2935 
2936 	/*
2937 	 * If D3 is currently allowed for the bridge, removing one of its
2938 	 * children won't change that.
2939 	 */
2940 	if (remove && bridge->bridge_d3)
2941 		return;
2942 
2943 	/*
2944 	 * If D3 is currently allowed for the bridge and a child is added or
2945 	 * changed, disallowance of D3 can only be caused by that child, so
2946 	 * we only need to check that single device, not any of its siblings.
2947 	 *
2948 	 * If D3 is currently not allowed for the bridge, checking the device
2949 	 * first may allow us to skip checking its siblings.
2950 	 */
2951 	if (!remove)
2952 		pci_dev_check_d3cold(dev, &d3cold_ok);
2953 
2954 	/*
2955 	 * If D3 is currently not allowed for the bridge, this may be caused
2956 	 * either by the device being changed/removed or any of its siblings,
2957 	 * so we need to go through all children to find out if one of them
2958 	 * continues to block D3.
2959 	 */
2960 	if (d3cold_ok && !bridge->bridge_d3)
2961 		pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
2962 			     &d3cold_ok);
2963 
2964 	if (bridge->bridge_d3 != d3cold_ok) {
2965 		bridge->bridge_d3 = d3cold_ok;
2966 		/* Propagate change to upstream bridges */
2967 		pci_bridge_d3_update(bridge);
2968 	}
2969 }
2970 
2971 /**
2972  * pci_d3cold_enable - Enable D3cold for device
2973  * @dev: PCI device to handle
2974  *
2975  * This function can be used in drivers to enable D3cold from the device
2976  * they handle.  It also updates upstream PCI bridge PM capabilities
2977  * accordingly.
2978  */
2979 void pci_d3cold_enable(struct pci_dev *dev)
2980 {
2981 	if (dev->no_d3cold) {
2982 		dev->no_d3cold = false;
2983 		pci_bridge_d3_update(dev);
2984 	}
2985 }
2986 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
2987 
2988 /**
2989  * pci_d3cold_disable - Disable D3cold for device
2990  * @dev: PCI device to handle
2991  *
2992  * This function can be used in drivers to disable D3cold from the device
2993  * they handle.  It also updates upstream PCI bridge PM capabilities
2994  * accordingly.
2995  */
2996 void pci_d3cold_disable(struct pci_dev *dev)
2997 {
2998 	if (!dev->no_d3cold) {
2999 		dev->no_d3cold = true;
3000 		pci_bridge_d3_update(dev);
3001 	}
3002 }
3003 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3004 
3005 /**
3006  * pci_pm_init - Initialize PM functions of given PCI device
3007  * @dev: PCI device to handle.
3008  */
3009 void pci_pm_init(struct pci_dev *dev)
3010 {
3011 	int pm;
3012 	u16 status;
3013 	u16 pmc;
3014 
3015 	pm_runtime_forbid(&dev->dev);
3016 	pm_runtime_set_active(&dev->dev);
3017 	pm_runtime_enable(&dev->dev);
3018 	device_enable_async_suspend(&dev->dev);
3019 	dev->wakeup_prepared = false;
3020 
3021 	dev->pm_cap = 0;
3022 	dev->pme_support = 0;
3023 
3024 	/* find PCI PM capability in list */
3025 	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3026 	if (!pm)
3027 		return;
3028 	/* Check device's ability to generate PME# */
3029 	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3030 
3031 	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3032 		pci_err(dev, "unsupported PM cap regs version (%u)\n",
3033 			pmc & PCI_PM_CAP_VER_MASK);
3034 		return;
3035 	}
3036 
3037 	dev->pm_cap = pm;
3038 	dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3039 	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3040 	dev->bridge_d3 = pci_bridge_d3_possible(dev);
3041 	dev->d3cold_allowed = true;
3042 
3043 	dev->d1_support = false;
3044 	dev->d2_support = false;
3045 	if (!pci_no_d1d2(dev)) {
3046 		if (pmc & PCI_PM_CAP_D1)
3047 			dev->d1_support = true;
3048 		if (pmc & PCI_PM_CAP_D2)
3049 			dev->d2_support = true;
3050 
3051 		if (dev->d1_support || dev->d2_support)
3052 			pci_info(dev, "supports%s%s\n",
3053 				   dev->d1_support ? " D1" : "",
3054 				   dev->d2_support ? " D2" : "");
3055 	}
3056 
3057 	pmc &= PCI_PM_CAP_PME_MASK;
3058 	if (pmc) {
3059 		pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3060 			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3061 			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3062 			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3063 			 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3064 			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3065 		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
3066 		dev->pme_poll = true;
3067 		/*
3068 		 * Make device's PM flags reflect the wake-up capability, but
3069 		 * let the user space enable it to wake up the system as needed.
3070 		 */
3071 		device_set_wakeup_capable(&dev->dev, true);
3072 		/* Disable the PME# generation functionality */
3073 		pci_pme_active(dev, false);
3074 	}
3075 
3076 	pci_read_config_word(dev, PCI_STATUS, &status);
3077 	if (status & PCI_STATUS_IMM_READY)
3078 		dev->imm_ready = 1;
3079 }
3080 
3081 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3082 {
3083 	unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3084 
3085 	switch (prop) {
3086 	case PCI_EA_P_MEM:
3087 	case PCI_EA_P_VF_MEM:
3088 		flags |= IORESOURCE_MEM;
3089 		break;
3090 	case PCI_EA_P_MEM_PREFETCH:
3091 	case PCI_EA_P_VF_MEM_PREFETCH:
3092 		flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3093 		break;
3094 	case PCI_EA_P_IO:
3095 		flags |= IORESOURCE_IO;
3096 		break;
3097 	default:
3098 		return 0;
3099 	}
3100 
3101 	return flags;
3102 }
3103 
3104 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3105 					    u8 prop)
3106 {
3107 	if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3108 		return &dev->resource[bei];
3109 #ifdef CONFIG_PCI_IOV
3110 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3111 		 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3112 		return &dev->resource[PCI_IOV_RESOURCES +
3113 				      bei - PCI_EA_BEI_VF_BAR0];
3114 #endif
3115 	else if (bei == PCI_EA_BEI_ROM)
3116 		return &dev->resource[PCI_ROM_RESOURCE];
3117 	else
3118 		return NULL;
3119 }
3120 
3121 /* Read an Enhanced Allocation (EA) entry */
3122 static int pci_ea_read(struct pci_dev *dev, int offset)
3123 {
3124 	struct resource *res;
3125 	int ent_size, ent_offset = offset;
3126 	resource_size_t start, end;
3127 	unsigned long flags;
3128 	u32 dw0, bei, base, max_offset;
3129 	u8 prop;
3130 	bool support_64 = (sizeof(resource_size_t) >= 8);
3131 
3132 	pci_read_config_dword(dev, ent_offset, &dw0);
3133 	ent_offset += 4;
3134 
3135 	/* Entry size field indicates DWORDs after 1st */
3136 	ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
3137 
3138 	if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3139 		goto out;
3140 
3141 	bei = (dw0 & PCI_EA_BEI) >> 4;
3142 	prop = (dw0 & PCI_EA_PP) >> 8;
3143 
3144 	/*
3145 	 * If the Property is in the reserved range, try the Secondary
3146 	 * Property instead.
3147 	 */
3148 	if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3149 		prop = (dw0 & PCI_EA_SP) >> 16;
3150 	if (prop > PCI_EA_P_BRIDGE_IO)
3151 		goto out;
3152 
3153 	res = pci_ea_get_resource(dev, bei, prop);
3154 	if (!res) {
3155 		pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3156 		goto out;
3157 	}
3158 
3159 	flags = pci_ea_flags(dev, prop);
3160 	if (!flags) {
3161 		pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3162 		goto out;
3163 	}
3164 
3165 	/* Read Base */
3166 	pci_read_config_dword(dev, ent_offset, &base);
3167 	start = (base & PCI_EA_FIELD_MASK);
3168 	ent_offset += 4;
3169 
3170 	/* Read MaxOffset */
3171 	pci_read_config_dword(dev, ent_offset, &max_offset);
3172 	ent_offset += 4;
3173 
3174 	/* Read Base MSBs (if 64-bit entry) */
3175 	if (base & PCI_EA_IS_64) {
3176 		u32 base_upper;
3177 
3178 		pci_read_config_dword(dev, ent_offset, &base_upper);
3179 		ent_offset += 4;
3180 
3181 		flags |= IORESOURCE_MEM_64;
3182 
3183 		/* entry starts above 32-bit boundary, can't use */
3184 		if (!support_64 && base_upper)
3185 			goto out;
3186 
3187 		if (support_64)
3188 			start |= ((u64)base_upper << 32);
3189 	}
3190 
3191 	end = start + (max_offset | 0x03);
3192 
3193 	/* Read MaxOffset MSBs (if 64-bit entry) */
3194 	if (max_offset & PCI_EA_IS_64) {
3195 		u32 max_offset_upper;
3196 
3197 		pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3198 		ent_offset += 4;
3199 
3200 		flags |= IORESOURCE_MEM_64;
3201 
3202 		/* entry too big, can't use */
3203 		if (!support_64 && max_offset_upper)
3204 			goto out;
3205 
3206 		if (support_64)
3207 			end += ((u64)max_offset_upper << 32);
3208 	}
3209 
3210 	if (end < start) {
3211 		pci_err(dev, "EA Entry crosses address boundary\n");
3212 		goto out;
3213 	}
3214 
3215 	if (ent_size != ent_offset - offset) {
3216 		pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3217 			ent_size, ent_offset - offset);
3218 		goto out;
3219 	}
3220 
3221 	res->name = pci_name(dev);
3222 	res->start = start;
3223 	res->end = end;
3224 	res->flags = flags;
3225 
3226 	if (bei <= PCI_EA_BEI_BAR5)
3227 		pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3228 			   bei, res, prop);
3229 	else if (bei == PCI_EA_BEI_ROM)
3230 		pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3231 			   res, prop);
3232 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3233 		pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3234 			   bei - PCI_EA_BEI_VF_BAR0, res, prop);
3235 	else
3236 		pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3237 			   bei, res, prop);
3238 
3239 out:
3240 	return offset + ent_size;
3241 }
3242 
3243 /* Enhanced Allocation Initialization */
3244 void pci_ea_init(struct pci_dev *dev)
3245 {
3246 	int ea;
3247 	u8 num_ent;
3248 	int offset;
3249 	int i;
3250 
3251 	/* find PCI EA capability in list */
3252 	ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3253 	if (!ea)
3254 		return;
3255 
3256 	/* determine the number of entries */
3257 	pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3258 					&num_ent);
3259 	num_ent &= PCI_EA_NUM_ENT_MASK;
3260 
3261 	offset = ea + PCI_EA_FIRST_ENT;
3262 
3263 	/* Skip DWORD 2 for type 1 functions */
3264 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3265 		offset += 4;
3266 
3267 	/* parse each EA entry */
3268 	for (i = 0; i < num_ent; ++i)
3269 		offset = pci_ea_read(dev, offset);
3270 }
3271 
3272 static void pci_add_saved_cap(struct pci_dev *pci_dev,
3273 	struct pci_cap_saved_state *new_cap)
3274 {
3275 	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3276 }
3277 
3278 /**
3279  * _pci_add_cap_save_buffer - allocate buffer for saving given
3280  *			      capability registers
3281  * @dev: the PCI device
3282  * @cap: the capability to allocate the buffer for
3283  * @extended: Standard or Extended capability ID
3284  * @size: requested size of the buffer
3285  */
3286 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3287 				    bool extended, unsigned int size)
3288 {
3289 	int pos;
3290 	struct pci_cap_saved_state *save_state;
3291 
3292 	if (extended)
3293 		pos = pci_find_ext_capability(dev, cap);
3294 	else
3295 		pos = pci_find_capability(dev, cap);
3296 
3297 	if (!pos)
3298 		return 0;
3299 
3300 	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3301 	if (!save_state)
3302 		return -ENOMEM;
3303 
3304 	save_state->cap.cap_nr = cap;
3305 	save_state->cap.cap_extended = extended;
3306 	save_state->cap.size = size;
3307 	pci_add_saved_cap(dev, save_state);
3308 
3309 	return 0;
3310 }
3311 
3312 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3313 {
3314 	return _pci_add_cap_save_buffer(dev, cap, false, size);
3315 }
3316 
3317 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3318 {
3319 	return _pci_add_cap_save_buffer(dev, cap, true, size);
3320 }
3321 
3322 /**
3323  * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3324  * @dev: the PCI device
3325  */
3326 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3327 {
3328 	int error;
3329 
3330 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3331 					PCI_EXP_SAVE_REGS * sizeof(u16));
3332 	if (error)
3333 		pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3334 
3335 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3336 	if (error)
3337 		pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3338 
3339 	error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3340 					    2 * sizeof(u16));
3341 	if (error)
3342 		pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3343 
3344 	pci_allocate_vc_save_buffers(dev);
3345 }
3346 
3347 void pci_free_cap_save_buffers(struct pci_dev *dev)
3348 {
3349 	struct pci_cap_saved_state *tmp;
3350 	struct hlist_node *n;
3351 
3352 	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3353 		kfree(tmp);
3354 }
3355 
3356 /**
3357  * pci_configure_ari - enable or disable ARI forwarding
3358  * @dev: the PCI device
3359  *
3360  * If @dev and its upstream bridge both support ARI, enable ARI in the
3361  * bridge.  Otherwise, disable ARI in the bridge.
3362  */
3363 void pci_configure_ari(struct pci_dev *dev)
3364 {
3365 	u32 cap;
3366 	struct pci_dev *bridge;
3367 
3368 	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3369 		return;
3370 
3371 	bridge = dev->bus->self;
3372 	if (!bridge)
3373 		return;
3374 
3375 	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3376 	if (!(cap & PCI_EXP_DEVCAP2_ARI))
3377 		return;
3378 
3379 	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3380 		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3381 					 PCI_EXP_DEVCTL2_ARI);
3382 		bridge->ari_enabled = 1;
3383 	} else {
3384 		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3385 					   PCI_EXP_DEVCTL2_ARI);
3386 		bridge->ari_enabled = 0;
3387 	}
3388 }
3389 
3390 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3391 {
3392 	int pos;
3393 	u16 cap, ctrl;
3394 
3395 	pos = pdev->acs_cap;
3396 	if (!pos)
3397 		return false;
3398 
3399 	/*
3400 	 * Except for egress control, capabilities are either required
3401 	 * or only required if controllable.  Features missing from the
3402 	 * capability field can therefore be assumed as hard-wired enabled.
3403 	 */
3404 	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3405 	acs_flags &= (cap | PCI_ACS_EC);
3406 
3407 	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3408 	return (ctrl & acs_flags) == acs_flags;
3409 }
3410 
3411 /**
3412  * pci_acs_enabled - test ACS against required flags for a given device
3413  * @pdev: device to test
3414  * @acs_flags: required PCI ACS flags
3415  *
3416  * Return true if the device supports the provided flags.  Automatically
3417  * filters out flags that are not implemented on multifunction devices.
3418  *
3419  * Note that this interface checks the effective ACS capabilities of the
3420  * device rather than the actual capabilities.  For instance, most single
3421  * function endpoints are not required to support ACS because they have no
3422  * opportunity for peer-to-peer access.  We therefore return 'true'
3423  * regardless of whether the device exposes an ACS capability.  This makes
3424  * it much easier for callers of this function to ignore the actual type
3425  * or topology of the device when testing ACS support.
3426  */
3427 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3428 {
3429 	int ret;
3430 
3431 	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3432 	if (ret >= 0)
3433 		return ret > 0;
3434 
3435 	/*
3436 	 * Conventional PCI and PCI-X devices never support ACS, either
3437 	 * effectively or actually.  The shared bus topology implies that
3438 	 * any device on the bus can receive or snoop DMA.
3439 	 */
3440 	if (!pci_is_pcie(pdev))
3441 		return false;
3442 
3443 	switch (pci_pcie_type(pdev)) {
3444 	/*
3445 	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3446 	 * but since their primary interface is PCI/X, we conservatively
3447 	 * handle them as we would a non-PCIe device.
3448 	 */
3449 	case PCI_EXP_TYPE_PCIE_BRIDGE:
3450 	/*
3451 	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
3452 	 * applicable... must never implement an ACS Extended Capability...".
3453 	 * This seems arbitrary, but we take a conservative interpretation
3454 	 * of this statement.
3455 	 */
3456 	case PCI_EXP_TYPE_PCI_BRIDGE:
3457 	case PCI_EXP_TYPE_RC_EC:
3458 		return false;
3459 	/*
3460 	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3461 	 * implement ACS in order to indicate their peer-to-peer capabilities,
3462 	 * regardless of whether they are single- or multi-function devices.
3463 	 */
3464 	case PCI_EXP_TYPE_DOWNSTREAM:
3465 	case PCI_EXP_TYPE_ROOT_PORT:
3466 		return pci_acs_flags_enabled(pdev, acs_flags);
3467 	/*
3468 	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3469 	 * implemented by the remaining PCIe types to indicate peer-to-peer
3470 	 * capabilities, but only when they are part of a multifunction
3471 	 * device.  The footnote for section 6.12 indicates the specific
3472 	 * PCIe types included here.
3473 	 */
3474 	case PCI_EXP_TYPE_ENDPOINT:
3475 	case PCI_EXP_TYPE_UPSTREAM:
3476 	case PCI_EXP_TYPE_LEG_END:
3477 	case PCI_EXP_TYPE_RC_END:
3478 		if (!pdev->multifunction)
3479 			break;
3480 
3481 		return pci_acs_flags_enabled(pdev, acs_flags);
3482 	}
3483 
3484 	/*
3485 	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3486 	 * to single function devices with the exception of downstream ports.
3487 	 */
3488 	return true;
3489 }
3490 
3491 /**
3492  * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
3493  * @start: starting downstream device
3494  * @end: ending upstream device or NULL to search to the root bus
3495  * @acs_flags: required flags
3496  *
3497  * Walk up a device tree from start to end testing PCI ACS support.  If
3498  * any step along the way does not support the required flags, return false.
3499  */
3500 bool pci_acs_path_enabled(struct pci_dev *start,
3501 			  struct pci_dev *end, u16 acs_flags)
3502 {
3503 	struct pci_dev *pdev, *parent = start;
3504 
3505 	do {
3506 		pdev = parent;
3507 
3508 		if (!pci_acs_enabled(pdev, acs_flags))
3509 			return false;
3510 
3511 		if (pci_is_root_bus(pdev->bus))
3512 			return (end == NULL);
3513 
3514 		parent = pdev->bus->self;
3515 	} while (pdev != end);
3516 
3517 	return true;
3518 }
3519 
3520 /**
3521  * pci_acs_init - Initialize ACS if hardware supports it
3522  * @dev: the PCI device
3523  */
3524 void pci_acs_init(struct pci_dev *dev)
3525 {
3526 	dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3527 
3528 	/*
3529 	 * Attempt to enable ACS regardless of capability because some Root
3530 	 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3531 	 * the standard ACS capability but still support ACS via those
3532 	 * quirks.
3533 	 */
3534 	pci_enable_acs(dev);
3535 }
3536 
3537 /**
3538  * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3539  * @pdev: PCI device
3540  * @bar: BAR to find
3541  *
3542  * Helper to find the position of the ctrl register for a BAR.
3543  * Returns -ENOTSUPP if resizable BARs are not supported at all.
3544  * Returns -ENOENT if no ctrl register for the BAR could be found.
3545  */
3546 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3547 {
3548 	unsigned int pos, nbars, i;
3549 	u32 ctrl;
3550 
3551 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3552 	if (!pos)
3553 		return -ENOTSUPP;
3554 
3555 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3556 	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3557 		    PCI_REBAR_CTRL_NBAR_SHIFT;
3558 
3559 	for (i = 0; i < nbars; i++, pos += 8) {
3560 		int bar_idx;
3561 
3562 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3563 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3564 		if (bar_idx == bar)
3565 			return pos;
3566 	}
3567 
3568 	return -ENOENT;
3569 }
3570 
3571 /**
3572  * pci_rebar_get_possible_sizes - get possible sizes for BAR
3573  * @pdev: PCI device
3574  * @bar: BAR to query
3575  *
3576  * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3577  * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3578  */
3579 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3580 {
3581 	int pos;
3582 	u32 cap;
3583 
3584 	pos = pci_rebar_find_pos(pdev, bar);
3585 	if (pos < 0)
3586 		return 0;
3587 
3588 	pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3589 	cap &= PCI_REBAR_CAP_SIZES;
3590 
3591 	/* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
3592 	if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
3593 	    bar == 0 && cap == 0x7000)
3594 		cap = 0x3f000;
3595 
3596 	return cap >> 4;
3597 }
3598 EXPORT_SYMBOL(pci_rebar_get_possible_sizes);
3599 
3600 /**
3601  * pci_rebar_get_current_size - get the current size of a BAR
3602  * @pdev: PCI device
3603  * @bar: BAR to set size to
3604  *
3605  * Read the size of a BAR from the resizable BAR config.
3606  * Returns size if found or negative error code.
3607  */
3608 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3609 {
3610 	int pos;
3611 	u32 ctrl;
3612 
3613 	pos = pci_rebar_find_pos(pdev, bar);
3614 	if (pos < 0)
3615 		return pos;
3616 
3617 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3618 	return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3619 }
3620 
3621 /**
3622  * pci_rebar_set_size - set a new size for a BAR
3623  * @pdev: PCI device
3624  * @bar: BAR to set size to
3625  * @size: new size as defined in the spec (0=1MB, 19=512GB)
3626  *
3627  * Set the new size of a BAR as defined in the spec.
3628  * Returns zero if resizing was successful, error code otherwise.
3629  */
3630 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3631 {
3632 	int pos;
3633 	u32 ctrl;
3634 
3635 	pos = pci_rebar_find_pos(pdev, bar);
3636 	if (pos < 0)
3637 		return pos;
3638 
3639 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3640 	ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3641 	ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3642 	pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3643 	return 0;
3644 }
3645 
3646 /**
3647  * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3648  * @dev: the PCI device
3649  * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3650  *	PCI_EXP_DEVCAP2_ATOMIC_COMP32
3651  *	PCI_EXP_DEVCAP2_ATOMIC_COMP64
3652  *	PCI_EXP_DEVCAP2_ATOMIC_COMP128
3653  *
3654  * Return 0 if all upstream bridges support AtomicOp routing, egress
3655  * blocking is disabled on all upstream ports, and the root port supports
3656  * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3657  * AtomicOp completion), or negative otherwise.
3658  */
3659 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3660 {
3661 	struct pci_bus *bus = dev->bus;
3662 	struct pci_dev *bridge;
3663 	u32 cap, ctl2;
3664 
3665 	if (!pci_is_pcie(dev))
3666 		return -EINVAL;
3667 
3668 	/*
3669 	 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3670 	 * AtomicOp requesters.  For now, we only support endpoints as
3671 	 * requesters and root ports as completers.  No endpoints as
3672 	 * completers, and no peer-to-peer.
3673 	 */
3674 
3675 	switch (pci_pcie_type(dev)) {
3676 	case PCI_EXP_TYPE_ENDPOINT:
3677 	case PCI_EXP_TYPE_LEG_END:
3678 	case PCI_EXP_TYPE_RC_END:
3679 		break;
3680 	default:
3681 		return -EINVAL;
3682 	}
3683 
3684 	while (bus->parent) {
3685 		bridge = bus->self;
3686 
3687 		pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3688 
3689 		switch (pci_pcie_type(bridge)) {
3690 		/* Ensure switch ports support AtomicOp routing */
3691 		case PCI_EXP_TYPE_UPSTREAM:
3692 		case PCI_EXP_TYPE_DOWNSTREAM:
3693 			if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3694 				return -EINVAL;
3695 			break;
3696 
3697 		/* Ensure root port supports all the sizes we care about */
3698 		case PCI_EXP_TYPE_ROOT_PORT:
3699 			if ((cap & cap_mask) != cap_mask)
3700 				return -EINVAL;
3701 			break;
3702 		}
3703 
3704 		/* Ensure upstream ports don't block AtomicOps on egress */
3705 		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3706 			pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3707 						   &ctl2);
3708 			if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3709 				return -EINVAL;
3710 		}
3711 
3712 		bus = bus->parent;
3713 	}
3714 
3715 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3716 				 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3717 	return 0;
3718 }
3719 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3720 
3721 /**
3722  * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3723  * @dev: the PCI device
3724  * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3725  *
3726  * Perform INTx swizzling for a device behind one level of bridge.  This is
3727  * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3728  * behind bridges on add-in cards.  For devices with ARI enabled, the slot
3729  * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3730  * the PCI Express Base Specification, Revision 2.1)
3731  */
3732 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3733 {
3734 	int slot;
3735 
3736 	if (pci_ari_enabled(dev->bus))
3737 		slot = 0;
3738 	else
3739 		slot = PCI_SLOT(dev->devfn);
3740 
3741 	return (((pin - 1) + slot) % 4) + 1;
3742 }
3743 
3744 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3745 {
3746 	u8 pin;
3747 
3748 	pin = dev->pin;
3749 	if (!pin)
3750 		return -1;
3751 
3752 	while (!pci_is_root_bus(dev->bus)) {
3753 		pin = pci_swizzle_interrupt_pin(dev, pin);
3754 		dev = dev->bus->self;
3755 	}
3756 	*bridge = dev;
3757 	return pin;
3758 }
3759 
3760 /**
3761  * pci_common_swizzle - swizzle INTx all the way to root bridge
3762  * @dev: the PCI device
3763  * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3764  *
3765  * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
3766  * bridges all the way up to a PCI root bus.
3767  */
3768 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3769 {
3770 	u8 pin = *pinp;
3771 
3772 	while (!pci_is_root_bus(dev->bus)) {
3773 		pin = pci_swizzle_interrupt_pin(dev, pin);
3774 		dev = dev->bus->self;
3775 	}
3776 	*pinp = pin;
3777 	return PCI_SLOT(dev->devfn);
3778 }
3779 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3780 
3781 /**
3782  * pci_release_region - Release a PCI bar
3783  * @pdev: PCI device whose resources were previously reserved by
3784  *	  pci_request_region()
3785  * @bar: BAR to release
3786  *
3787  * Releases the PCI I/O and memory resources previously reserved by a
3788  * successful call to pci_request_region().  Call this function only
3789  * after all use of the PCI regions has ceased.
3790  */
3791 void pci_release_region(struct pci_dev *pdev, int bar)
3792 {
3793 	struct pci_devres *dr;
3794 
3795 	if (pci_resource_len(pdev, bar) == 0)
3796 		return;
3797 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3798 		release_region(pci_resource_start(pdev, bar),
3799 				pci_resource_len(pdev, bar));
3800 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3801 		release_mem_region(pci_resource_start(pdev, bar),
3802 				pci_resource_len(pdev, bar));
3803 
3804 	dr = find_pci_dr(pdev);
3805 	if (dr)
3806 		dr->region_mask &= ~(1 << bar);
3807 }
3808 EXPORT_SYMBOL(pci_release_region);
3809 
3810 /**
3811  * __pci_request_region - Reserved PCI I/O and memory resource
3812  * @pdev: PCI device whose resources are to be reserved
3813  * @bar: BAR to be reserved
3814  * @res_name: Name to be associated with resource.
3815  * @exclusive: whether the region access is exclusive or not
3816  *
3817  * Mark the PCI region associated with PCI device @pdev BAR @bar as
3818  * being reserved by owner @res_name.  Do not access any
3819  * address inside the PCI regions unless this call returns
3820  * successfully.
3821  *
3822  * If @exclusive is set, then the region is marked so that userspace
3823  * is explicitly not allowed to map the resource via /dev/mem or
3824  * sysfs MMIO access.
3825  *
3826  * Returns 0 on success, or %EBUSY on error.  A warning
3827  * message is also printed on failure.
3828  */
3829 static int __pci_request_region(struct pci_dev *pdev, int bar,
3830 				const char *res_name, int exclusive)
3831 {
3832 	struct pci_devres *dr;
3833 
3834 	if (pci_resource_len(pdev, bar) == 0)
3835 		return 0;
3836 
3837 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3838 		if (!request_region(pci_resource_start(pdev, bar),
3839 			    pci_resource_len(pdev, bar), res_name))
3840 			goto err_out;
3841 	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3842 		if (!__request_mem_region(pci_resource_start(pdev, bar),
3843 					pci_resource_len(pdev, bar), res_name,
3844 					exclusive))
3845 			goto err_out;
3846 	}
3847 
3848 	dr = find_pci_dr(pdev);
3849 	if (dr)
3850 		dr->region_mask |= 1 << bar;
3851 
3852 	return 0;
3853 
3854 err_out:
3855 	pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3856 		 &pdev->resource[bar]);
3857 	return -EBUSY;
3858 }
3859 
3860 /**
3861  * pci_request_region - Reserve PCI I/O and memory resource
3862  * @pdev: PCI device whose resources are to be reserved
3863  * @bar: BAR to be reserved
3864  * @res_name: Name to be associated with resource
3865  *
3866  * Mark the PCI region associated with PCI device @pdev BAR @bar as
3867  * being reserved by owner @res_name.  Do not access any
3868  * address inside the PCI regions unless this call returns
3869  * successfully.
3870  *
3871  * Returns 0 on success, or %EBUSY on error.  A warning
3872  * message is also printed on failure.
3873  */
3874 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3875 {
3876 	return __pci_request_region(pdev, bar, res_name, 0);
3877 }
3878 EXPORT_SYMBOL(pci_request_region);
3879 
3880 /**
3881  * pci_release_selected_regions - Release selected PCI I/O and memory resources
3882  * @pdev: PCI device whose resources were previously reserved
3883  * @bars: Bitmask of BARs to be released
3884  *
3885  * Release selected PCI I/O and memory resources previously reserved.
3886  * Call this function only after all use of the PCI regions has ceased.
3887  */
3888 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3889 {
3890 	int i;
3891 
3892 	for (i = 0; i < PCI_STD_NUM_BARS; i++)
3893 		if (bars & (1 << i))
3894 			pci_release_region(pdev, i);
3895 }
3896 EXPORT_SYMBOL(pci_release_selected_regions);
3897 
3898 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3899 					  const char *res_name, int excl)
3900 {
3901 	int i;
3902 
3903 	for (i = 0; i < PCI_STD_NUM_BARS; i++)
3904 		if (bars & (1 << i))
3905 			if (__pci_request_region(pdev, i, res_name, excl))
3906 				goto err_out;
3907 	return 0;
3908 
3909 err_out:
3910 	while (--i >= 0)
3911 		if (bars & (1 << i))
3912 			pci_release_region(pdev, i);
3913 
3914 	return -EBUSY;
3915 }
3916 
3917 
3918 /**
3919  * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3920  * @pdev: PCI device whose resources are to be reserved
3921  * @bars: Bitmask of BARs to be requested
3922  * @res_name: Name to be associated with resource
3923  */
3924 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3925 				 const char *res_name)
3926 {
3927 	return __pci_request_selected_regions(pdev, bars, res_name, 0);
3928 }
3929 EXPORT_SYMBOL(pci_request_selected_regions);
3930 
3931 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3932 					   const char *res_name)
3933 {
3934 	return __pci_request_selected_regions(pdev, bars, res_name,
3935 			IORESOURCE_EXCLUSIVE);
3936 }
3937 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3938 
3939 /**
3940  * pci_release_regions - Release reserved PCI I/O and memory resources
3941  * @pdev: PCI device whose resources were previously reserved by
3942  *	  pci_request_regions()
3943  *
3944  * Releases all PCI I/O and memory resources previously reserved by a
3945  * successful call to pci_request_regions().  Call this function only
3946  * after all use of the PCI regions has ceased.
3947  */
3948 
3949 void pci_release_regions(struct pci_dev *pdev)
3950 {
3951 	pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
3952 }
3953 EXPORT_SYMBOL(pci_release_regions);
3954 
3955 /**
3956  * pci_request_regions - Reserve PCI I/O and memory resources
3957  * @pdev: PCI device whose resources are to be reserved
3958  * @res_name: Name to be associated with resource.
3959  *
3960  * Mark all PCI regions associated with PCI device @pdev as
3961  * being reserved by owner @res_name.  Do not access any
3962  * address inside the PCI regions unless this call returns
3963  * successfully.
3964  *
3965  * Returns 0 on success, or %EBUSY on error.  A warning
3966  * message is also printed on failure.
3967  */
3968 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
3969 {
3970 	return pci_request_selected_regions(pdev,
3971 			((1 << PCI_STD_NUM_BARS) - 1), res_name);
3972 }
3973 EXPORT_SYMBOL(pci_request_regions);
3974 
3975 /**
3976  * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
3977  * @pdev: PCI device whose resources are to be reserved
3978  * @res_name: Name to be associated with resource.
3979  *
3980  * Mark all PCI regions associated with PCI device @pdev as being reserved
3981  * by owner @res_name.  Do not access any address inside the PCI regions
3982  * unless this call returns successfully.
3983  *
3984  * pci_request_regions_exclusive() will mark the region so that /dev/mem
3985  * and the sysfs MMIO access will not be allowed.
3986  *
3987  * Returns 0 on success, or %EBUSY on error.  A warning message is also
3988  * printed on failure.
3989  */
3990 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3991 {
3992 	return pci_request_selected_regions_exclusive(pdev,
3993 				((1 << PCI_STD_NUM_BARS) - 1), res_name);
3994 }
3995 EXPORT_SYMBOL(pci_request_regions_exclusive);
3996 
3997 /*
3998  * Record the PCI IO range (expressed as CPU physical address + size).
3999  * Return a negative value if an error has occurred, zero otherwise
4000  */
4001 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
4002 			resource_size_t	size)
4003 {
4004 	int ret = 0;
4005 #ifdef PCI_IOBASE
4006 	struct logic_pio_hwaddr *range;
4007 
4008 	if (!size || addr + size < addr)
4009 		return -EINVAL;
4010 
4011 	range = kzalloc(sizeof(*range), GFP_ATOMIC);
4012 	if (!range)
4013 		return -ENOMEM;
4014 
4015 	range->fwnode = fwnode;
4016 	range->size = size;
4017 	range->hw_start = addr;
4018 	range->flags = LOGIC_PIO_CPU_MMIO;
4019 
4020 	ret = logic_pio_register_range(range);
4021 	if (ret)
4022 		kfree(range);
4023 
4024 	/* Ignore duplicates due to deferred probing */
4025 	if (ret == -EEXIST)
4026 		ret = 0;
4027 #endif
4028 
4029 	return ret;
4030 }
4031 
4032 phys_addr_t pci_pio_to_address(unsigned long pio)
4033 {
4034 	phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
4035 
4036 #ifdef PCI_IOBASE
4037 	if (pio >= MMIO_UPPER_LIMIT)
4038 		return address;
4039 
4040 	address = logic_pio_to_hwaddr(pio);
4041 #endif
4042 
4043 	return address;
4044 }
4045 
4046 unsigned long __weak pci_address_to_pio(phys_addr_t address)
4047 {
4048 #ifdef PCI_IOBASE
4049 	return logic_pio_trans_cpuaddr(address);
4050 #else
4051 	if (address > IO_SPACE_LIMIT)
4052 		return (unsigned long)-1;
4053 
4054 	return (unsigned long) address;
4055 #endif
4056 }
4057 
4058 /**
4059  * pci_remap_iospace - Remap the memory mapped I/O space
4060  * @res: Resource describing the I/O space
4061  * @phys_addr: physical address of range to be mapped
4062  *
4063  * Remap the memory mapped I/O space described by the @res and the CPU
4064  * physical address @phys_addr into virtual address space.  Only
4065  * architectures that have memory mapped IO functions defined (and the
4066  * PCI_IOBASE value defined) should call this function.
4067  */
4068 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4069 {
4070 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4071 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4072 
4073 	if (!(res->flags & IORESOURCE_IO))
4074 		return -EINVAL;
4075 
4076 	if (res->end > IO_SPACE_LIMIT)
4077 		return -EINVAL;
4078 
4079 	return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4080 				  pgprot_device(PAGE_KERNEL));
4081 #else
4082 	/*
4083 	 * This architecture does not have memory mapped I/O space,
4084 	 * so this function should never be called
4085 	 */
4086 	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4087 	return -ENODEV;
4088 #endif
4089 }
4090 EXPORT_SYMBOL(pci_remap_iospace);
4091 
4092 /**
4093  * pci_unmap_iospace - Unmap the memory mapped I/O space
4094  * @res: resource to be unmapped
4095  *
4096  * Unmap the CPU virtual address @res from virtual address space.  Only
4097  * architectures that have memory mapped IO functions defined (and the
4098  * PCI_IOBASE value defined) should call this function.
4099  */
4100 void pci_unmap_iospace(struct resource *res)
4101 {
4102 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4103 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4104 
4105 	vunmap_range(vaddr, vaddr + resource_size(res));
4106 #endif
4107 }
4108 EXPORT_SYMBOL(pci_unmap_iospace);
4109 
4110 static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
4111 {
4112 	struct resource **res = ptr;
4113 
4114 	pci_unmap_iospace(*res);
4115 }
4116 
4117 /**
4118  * devm_pci_remap_iospace - Managed pci_remap_iospace()
4119  * @dev: Generic device to remap IO address for
4120  * @res: Resource describing the I/O space
4121  * @phys_addr: physical address of range to be mapped
4122  *
4123  * Managed pci_remap_iospace().  Map is automatically unmapped on driver
4124  * detach.
4125  */
4126 int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4127 			   phys_addr_t phys_addr)
4128 {
4129 	const struct resource **ptr;
4130 	int error;
4131 
4132 	ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4133 	if (!ptr)
4134 		return -ENOMEM;
4135 
4136 	error = pci_remap_iospace(res, phys_addr);
4137 	if (error) {
4138 		devres_free(ptr);
4139 	} else	{
4140 		*ptr = res;
4141 		devres_add(dev, ptr);
4142 	}
4143 
4144 	return error;
4145 }
4146 EXPORT_SYMBOL(devm_pci_remap_iospace);
4147 
4148 /**
4149  * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4150  * @dev: Generic device to remap IO address for
4151  * @offset: Resource address to map
4152  * @size: Size of map
4153  *
4154  * Managed pci_remap_cfgspace().  Map is automatically unmapped on driver
4155  * detach.
4156  */
4157 void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4158 				      resource_size_t offset,
4159 				      resource_size_t size)
4160 {
4161 	void __iomem **ptr, *addr;
4162 
4163 	ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4164 	if (!ptr)
4165 		return NULL;
4166 
4167 	addr = pci_remap_cfgspace(offset, size);
4168 	if (addr) {
4169 		*ptr = addr;
4170 		devres_add(dev, ptr);
4171 	} else
4172 		devres_free(ptr);
4173 
4174 	return addr;
4175 }
4176 EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4177 
4178 /**
4179  * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4180  * @dev: generic device to handle the resource for
4181  * @res: configuration space resource to be handled
4182  *
4183  * Checks that a resource is a valid memory region, requests the memory
4184  * region and ioremaps with pci_remap_cfgspace() API that ensures the
4185  * proper PCI configuration space memory attributes are guaranteed.
4186  *
4187  * All operations are managed and will be undone on driver detach.
4188  *
4189  * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4190  * on failure. Usage example::
4191  *
4192  *	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4193  *	base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4194  *	if (IS_ERR(base))
4195  *		return PTR_ERR(base);
4196  */
4197 void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4198 					  struct resource *res)
4199 {
4200 	resource_size_t size;
4201 	const char *name;
4202 	void __iomem *dest_ptr;
4203 
4204 	BUG_ON(!dev);
4205 
4206 	if (!res || resource_type(res) != IORESOURCE_MEM) {
4207 		dev_err(dev, "invalid resource\n");
4208 		return IOMEM_ERR_PTR(-EINVAL);
4209 	}
4210 
4211 	size = resource_size(res);
4212 
4213 	if (res->name)
4214 		name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev),
4215 				      res->name);
4216 	else
4217 		name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL);
4218 	if (!name)
4219 		return IOMEM_ERR_PTR(-ENOMEM);
4220 
4221 	if (!devm_request_mem_region(dev, res->start, size, name)) {
4222 		dev_err(dev, "can't request region for resource %pR\n", res);
4223 		return IOMEM_ERR_PTR(-EBUSY);
4224 	}
4225 
4226 	dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4227 	if (!dest_ptr) {
4228 		dev_err(dev, "ioremap failed for resource %pR\n", res);
4229 		devm_release_mem_region(dev, res->start, size);
4230 		dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4231 	}
4232 
4233 	return dest_ptr;
4234 }
4235 EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4236 
4237 static void __pci_set_master(struct pci_dev *dev, bool enable)
4238 {
4239 	u16 old_cmd, cmd;
4240 
4241 	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4242 	if (enable)
4243 		cmd = old_cmd | PCI_COMMAND_MASTER;
4244 	else
4245 		cmd = old_cmd & ~PCI_COMMAND_MASTER;
4246 	if (cmd != old_cmd) {
4247 		pci_dbg(dev, "%s bus mastering\n",
4248 			enable ? "enabling" : "disabling");
4249 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4250 	}
4251 	dev->is_busmaster = enable;
4252 }
4253 
4254 /**
4255  * pcibios_setup - process "pci=" kernel boot arguments
4256  * @str: string used to pass in "pci=" kernel boot arguments
4257  *
4258  * Process kernel boot arguments.  This is the default implementation.
4259  * Architecture specific implementations can override this as necessary.
4260  */
4261 char * __weak __init pcibios_setup(char *str)
4262 {
4263 	return str;
4264 }
4265 
4266 /**
4267  * pcibios_set_master - enable PCI bus-mastering for device dev
4268  * @dev: the PCI device to enable
4269  *
4270  * Enables PCI bus-mastering for the device.  This is the default
4271  * implementation.  Architecture specific implementations can override
4272  * this if necessary.
4273  */
4274 void __weak pcibios_set_master(struct pci_dev *dev)
4275 {
4276 	u8 lat;
4277 
4278 	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4279 	if (pci_is_pcie(dev))
4280 		return;
4281 
4282 	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4283 	if (lat < 16)
4284 		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4285 	else if (lat > pcibios_max_latency)
4286 		lat = pcibios_max_latency;
4287 	else
4288 		return;
4289 
4290 	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4291 }
4292 
4293 /**
4294  * pci_set_master - enables bus-mastering for device dev
4295  * @dev: the PCI device to enable
4296  *
4297  * Enables bus-mastering on the device and calls pcibios_set_master()
4298  * to do the needed arch specific settings.
4299  */
4300 void pci_set_master(struct pci_dev *dev)
4301 {
4302 	__pci_set_master(dev, true);
4303 	pcibios_set_master(dev);
4304 }
4305 EXPORT_SYMBOL(pci_set_master);
4306 
4307 /**
4308  * pci_clear_master - disables bus-mastering for device dev
4309  * @dev: the PCI device to disable
4310  */
4311 void pci_clear_master(struct pci_dev *dev)
4312 {
4313 	__pci_set_master(dev, false);
4314 }
4315 EXPORT_SYMBOL(pci_clear_master);
4316 
4317 /**
4318  * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4319  * @dev: the PCI device for which MWI is to be enabled
4320  *
4321  * Helper function for pci_set_mwi.
4322  * Originally copied from drivers/net/acenic.c.
4323  * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4324  *
4325  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4326  */
4327 int pci_set_cacheline_size(struct pci_dev *dev)
4328 {
4329 	u8 cacheline_size;
4330 
4331 	if (!pci_cache_line_size)
4332 		return -EINVAL;
4333 
4334 	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4335 	   equal to or multiple of the right value. */
4336 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4337 	if (cacheline_size >= pci_cache_line_size &&
4338 	    (cacheline_size % pci_cache_line_size) == 0)
4339 		return 0;
4340 
4341 	/* Write the correct value. */
4342 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4343 	/* Read it back. */
4344 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4345 	if (cacheline_size == pci_cache_line_size)
4346 		return 0;
4347 
4348 	pci_dbg(dev, "cache line size of %d is not supported\n",
4349 		   pci_cache_line_size << 2);
4350 
4351 	return -EINVAL;
4352 }
4353 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4354 
4355 /**
4356  * pci_set_mwi - enables memory-write-invalidate PCI transaction
4357  * @dev: the PCI device for which MWI is enabled
4358  *
4359  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4360  *
4361  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4362  */
4363 int pci_set_mwi(struct pci_dev *dev)
4364 {
4365 #ifdef PCI_DISABLE_MWI
4366 	return 0;
4367 #else
4368 	int rc;
4369 	u16 cmd;
4370 
4371 	rc = pci_set_cacheline_size(dev);
4372 	if (rc)
4373 		return rc;
4374 
4375 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4376 	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4377 		pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4378 		cmd |= PCI_COMMAND_INVALIDATE;
4379 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4380 	}
4381 	return 0;
4382 #endif
4383 }
4384 EXPORT_SYMBOL(pci_set_mwi);
4385 
4386 /**
4387  * pcim_set_mwi - a device-managed pci_set_mwi()
4388  * @dev: the PCI device for which MWI is enabled
4389  *
4390  * Managed pci_set_mwi().
4391  *
4392  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4393  */
4394 int pcim_set_mwi(struct pci_dev *dev)
4395 {
4396 	struct pci_devres *dr;
4397 
4398 	dr = find_pci_dr(dev);
4399 	if (!dr)
4400 		return -ENOMEM;
4401 
4402 	dr->mwi = 1;
4403 	return pci_set_mwi(dev);
4404 }
4405 EXPORT_SYMBOL(pcim_set_mwi);
4406 
4407 /**
4408  * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4409  * @dev: the PCI device for which MWI is enabled
4410  *
4411  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4412  * Callers are not required to check the return value.
4413  *
4414  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4415  */
4416 int pci_try_set_mwi(struct pci_dev *dev)
4417 {
4418 #ifdef PCI_DISABLE_MWI
4419 	return 0;
4420 #else
4421 	return pci_set_mwi(dev);
4422 #endif
4423 }
4424 EXPORT_SYMBOL(pci_try_set_mwi);
4425 
4426 /**
4427  * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4428  * @dev: the PCI device to disable
4429  *
4430  * Disables PCI Memory-Write-Invalidate transaction on the device
4431  */
4432 void pci_clear_mwi(struct pci_dev *dev)
4433 {
4434 #ifndef PCI_DISABLE_MWI
4435 	u16 cmd;
4436 
4437 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4438 	if (cmd & PCI_COMMAND_INVALIDATE) {
4439 		cmd &= ~PCI_COMMAND_INVALIDATE;
4440 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4441 	}
4442 #endif
4443 }
4444 EXPORT_SYMBOL(pci_clear_mwi);
4445 
4446 /**
4447  * pci_intx - enables/disables PCI INTx for device dev
4448  * @pdev: the PCI device to operate on
4449  * @enable: boolean: whether to enable or disable PCI INTx
4450  *
4451  * Enables/disables PCI INTx for device @pdev
4452  */
4453 void pci_intx(struct pci_dev *pdev, int enable)
4454 {
4455 	u16 pci_command, new;
4456 
4457 	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4458 
4459 	if (enable)
4460 		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4461 	else
4462 		new = pci_command | PCI_COMMAND_INTX_DISABLE;
4463 
4464 	if (new != pci_command) {
4465 		struct pci_devres *dr;
4466 
4467 		pci_write_config_word(pdev, PCI_COMMAND, new);
4468 
4469 		dr = find_pci_dr(pdev);
4470 		if (dr && !dr->restore_intx) {
4471 			dr->restore_intx = 1;
4472 			dr->orig_intx = !enable;
4473 		}
4474 	}
4475 }
4476 EXPORT_SYMBOL_GPL(pci_intx);
4477 
4478 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4479 {
4480 	struct pci_bus *bus = dev->bus;
4481 	bool mask_updated = true;
4482 	u32 cmd_status_dword;
4483 	u16 origcmd, newcmd;
4484 	unsigned long flags;
4485 	bool irq_pending;
4486 
4487 	/*
4488 	 * We do a single dword read to retrieve both command and status.
4489 	 * Document assumptions that make this possible.
4490 	 */
4491 	BUILD_BUG_ON(PCI_COMMAND % 4);
4492 	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4493 
4494 	raw_spin_lock_irqsave(&pci_lock, flags);
4495 
4496 	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4497 
4498 	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4499 
4500 	/*
4501 	 * Check interrupt status register to see whether our device
4502 	 * triggered the interrupt (when masking) or the next IRQ is
4503 	 * already pending (when unmasking).
4504 	 */
4505 	if (mask != irq_pending) {
4506 		mask_updated = false;
4507 		goto done;
4508 	}
4509 
4510 	origcmd = cmd_status_dword;
4511 	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4512 	if (mask)
4513 		newcmd |= PCI_COMMAND_INTX_DISABLE;
4514 	if (newcmd != origcmd)
4515 		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4516 
4517 done:
4518 	raw_spin_unlock_irqrestore(&pci_lock, flags);
4519 
4520 	return mask_updated;
4521 }
4522 
4523 /**
4524  * pci_check_and_mask_intx - mask INTx on pending interrupt
4525  * @dev: the PCI device to operate on
4526  *
4527  * Check if the device dev has its INTx line asserted, mask it and return
4528  * true in that case. False is returned if no interrupt was pending.
4529  */
4530 bool pci_check_and_mask_intx(struct pci_dev *dev)
4531 {
4532 	return pci_check_and_set_intx_mask(dev, true);
4533 }
4534 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4535 
4536 /**
4537  * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4538  * @dev: the PCI device to operate on
4539  *
4540  * Check if the device dev has its INTx line asserted, unmask it if not and
4541  * return true. False is returned and the mask remains active if there was
4542  * still an interrupt pending.
4543  */
4544 bool pci_check_and_unmask_intx(struct pci_dev *dev)
4545 {
4546 	return pci_check_and_set_intx_mask(dev, false);
4547 }
4548 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4549 
4550 /**
4551  * pci_wait_for_pending_transaction - wait for pending transaction
4552  * @dev: the PCI device to operate on
4553  *
4554  * Return 0 if transaction is pending 1 otherwise.
4555  */
4556 int pci_wait_for_pending_transaction(struct pci_dev *dev)
4557 {
4558 	if (!pci_is_pcie(dev))
4559 		return 1;
4560 
4561 	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4562 				    PCI_EXP_DEVSTA_TRPND);
4563 }
4564 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4565 
4566 /**
4567  * pcie_has_flr - check if a device supports function level resets
4568  * @dev: device to check
4569  *
4570  * Returns true if the device advertises support for PCIe function level
4571  * resets.
4572  */
4573 bool pcie_has_flr(struct pci_dev *dev)
4574 {
4575 	u32 cap;
4576 
4577 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4578 		return false;
4579 
4580 	pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
4581 	return cap & PCI_EXP_DEVCAP_FLR;
4582 }
4583 EXPORT_SYMBOL_GPL(pcie_has_flr);
4584 
4585 /**
4586  * pcie_flr - initiate a PCIe function level reset
4587  * @dev: device to reset
4588  *
4589  * Initiate a function level reset on @dev.  The caller should ensure the
4590  * device supports FLR before calling this function, e.g. by using the
4591  * pcie_has_flr() helper.
4592  */
4593 int pcie_flr(struct pci_dev *dev)
4594 {
4595 	if (!pci_wait_for_pending_transaction(dev))
4596 		pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4597 
4598 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4599 
4600 	if (dev->imm_ready)
4601 		return 0;
4602 
4603 	/*
4604 	 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4605 	 * 100ms, but may silently discard requests while the FLR is in
4606 	 * progress.  Wait 100ms before trying to access the device.
4607 	 */
4608 	msleep(100);
4609 
4610 	return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4611 }
4612 EXPORT_SYMBOL_GPL(pcie_flr);
4613 
4614 static int pci_af_flr(struct pci_dev *dev, int probe)
4615 {
4616 	int pos;
4617 	u8 cap;
4618 
4619 	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4620 	if (!pos)
4621 		return -ENOTTY;
4622 
4623 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4624 		return -ENOTTY;
4625 
4626 	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4627 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4628 		return -ENOTTY;
4629 
4630 	if (probe)
4631 		return 0;
4632 
4633 	/*
4634 	 * Wait for Transaction Pending bit to clear.  A word-aligned test
4635 	 * is used, so we use the control offset rather than status and shift
4636 	 * the test bit to match.
4637 	 */
4638 	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4639 				 PCI_AF_STATUS_TP << 8))
4640 		pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4641 
4642 	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4643 
4644 	if (dev->imm_ready)
4645 		return 0;
4646 
4647 	/*
4648 	 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4649 	 * updated 27 July 2006; a device must complete an FLR within
4650 	 * 100ms, but may silently discard requests while the FLR is in
4651 	 * progress.  Wait 100ms before trying to access the device.
4652 	 */
4653 	msleep(100);
4654 
4655 	return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4656 }
4657 
4658 /**
4659  * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4660  * @dev: Device to reset.
4661  * @probe: If set, only check if the device can be reset this way.
4662  *
4663  * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4664  * unset, it will be reinitialized internally when going from PCI_D3hot to
4665  * PCI_D0.  If that's the case and the device is not in a low-power state
4666  * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4667  *
4668  * NOTE: This causes the caller to sleep for twice the device power transition
4669  * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4670  * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4671  * Moreover, only devices in D0 can be reset by this function.
4672  */
4673 static int pci_pm_reset(struct pci_dev *dev, int probe)
4674 {
4675 	u16 csr;
4676 
4677 	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4678 		return -ENOTTY;
4679 
4680 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4681 	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4682 		return -ENOTTY;
4683 
4684 	if (probe)
4685 		return 0;
4686 
4687 	if (dev->current_state != PCI_D0)
4688 		return -EINVAL;
4689 
4690 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4691 	csr |= PCI_D3hot;
4692 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4693 	pci_dev_d3_sleep(dev);
4694 
4695 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4696 	csr |= PCI_D0;
4697 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4698 	pci_dev_d3_sleep(dev);
4699 
4700 	return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4701 }
4702 
4703 /**
4704  * pcie_wait_for_link_delay - Wait until link is active or inactive
4705  * @pdev: Bridge device
4706  * @active: waiting for active or inactive?
4707  * @delay: Delay to wait after link has become active (in ms)
4708  *
4709  * Use this to wait till link becomes active or inactive.
4710  */
4711 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4712 				     int delay)
4713 {
4714 	int timeout = 1000;
4715 	bool ret;
4716 	u16 lnk_status;
4717 
4718 	/*
4719 	 * Some controllers might not implement link active reporting. In this
4720 	 * case, we wait for 1000 ms + any delay requested by the caller.
4721 	 */
4722 	if (!pdev->link_active_reporting) {
4723 		msleep(timeout + delay);
4724 		return true;
4725 	}
4726 
4727 	/*
4728 	 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4729 	 * after which we should expect an link active if the reset was
4730 	 * successful. If so, software must wait a minimum 100ms before sending
4731 	 * configuration requests to devices downstream this port.
4732 	 *
4733 	 * If the link fails to activate, either the device was physically
4734 	 * removed or the link is permanently failed.
4735 	 */
4736 	if (active)
4737 		msleep(20);
4738 	for (;;) {
4739 		pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
4740 		ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA);
4741 		if (ret == active)
4742 			break;
4743 		if (timeout <= 0)
4744 			break;
4745 		msleep(10);
4746 		timeout -= 10;
4747 	}
4748 	if (active && ret)
4749 		msleep(delay);
4750 
4751 	return ret == active;
4752 }
4753 
4754 /**
4755  * pcie_wait_for_link - Wait until link is active or inactive
4756  * @pdev: Bridge device
4757  * @active: waiting for active or inactive?
4758  *
4759  * Use this to wait till link becomes active or inactive.
4760  */
4761 bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4762 {
4763 	return pcie_wait_for_link_delay(pdev, active, 100);
4764 }
4765 
4766 /*
4767  * Find maximum D3cold delay required by all the devices on the bus.  The
4768  * spec says 100 ms, but firmware can lower it and we allow drivers to
4769  * increase it as well.
4770  *
4771  * Called with @pci_bus_sem locked for reading.
4772  */
4773 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
4774 {
4775 	const struct pci_dev *pdev;
4776 	int min_delay = 100;
4777 	int max_delay = 0;
4778 
4779 	list_for_each_entry(pdev, &bus->devices, bus_list) {
4780 		if (pdev->d3cold_delay < min_delay)
4781 			min_delay = pdev->d3cold_delay;
4782 		if (pdev->d3cold_delay > max_delay)
4783 			max_delay = pdev->d3cold_delay;
4784 	}
4785 
4786 	return max(min_delay, max_delay);
4787 }
4788 
4789 /**
4790  * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4791  * @dev: PCI bridge
4792  *
4793  * Handle necessary delays before access to the devices on the secondary
4794  * side of the bridge are permitted after D3cold to D0 transition.
4795  *
4796  * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4797  * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4798  * 4.3.2.
4799  */
4800 void pci_bridge_wait_for_secondary_bus(struct pci_dev *dev)
4801 {
4802 	struct pci_dev *child;
4803 	int delay;
4804 
4805 	if (pci_dev_is_disconnected(dev))
4806 		return;
4807 
4808 	if (!pci_is_bridge(dev) || !dev->bridge_d3)
4809 		return;
4810 
4811 	down_read(&pci_bus_sem);
4812 
4813 	/*
4814 	 * We only deal with devices that are present currently on the bus.
4815 	 * For any hot-added devices the access delay is handled in pciehp
4816 	 * board_added(). In case of ACPI hotplug the firmware is expected
4817 	 * to configure the devices before OS is notified.
4818 	 */
4819 	if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
4820 		up_read(&pci_bus_sem);
4821 		return;
4822 	}
4823 
4824 	/* Take d3cold_delay requirements into account */
4825 	delay = pci_bus_max_d3cold_delay(dev->subordinate);
4826 	if (!delay) {
4827 		up_read(&pci_bus_sem);
4828 		return;
4829 	}
4830 
4831 	child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
4832 				 bus_list);
4833 	up_read(&pci_bus_sem);
4834 
4835 	/*
4836 	 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
4837 	 * accessing the device after reset (that is 1000 ms + 100 ms). In
4838 	 * practice this should not be needed because we don't do power
4839 	 * management for them (see pci_bridge_d3_possible()).
4840 	 */
4841 	if (!pci_is_pcie(dev)) {
4842 		pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
4843 		msleep(1000 + delay);
4844 		return;
4845 	}
4846 
4847 	/*
4848 	 * For PCIe downstream and root ports that do not support speeds
4849 	 * greater than 5 GT/s need to wait minimum 100 ms. For higher
4850 	 * speeds (gen3) we need to wait first for the data link layer to
4851 	 * become active.
4852 	 *
4853 	 * However, 100 ms is the minimum and the PCIe spec says the
4854 	 * software must allow at least 1s before it can determine that the
4855 	 * device that did not respond is a broken device. There is
4856 	 * evidence that 100 ms is not always enough, for example certain
4857 	 * Titan Ridge xHCI controller does not always respond to
4858 	 * configuration requests if we only wait for 100 ms (see
4859 	 * https://bugzilla.kernel.org/show_bug.cgi?id=203885).
4860 	 *
4861 	 * Therefore we wait for 100 ms and check for the device presence.
4862 	 * If it is still not present give it an additional 100 ms.
4863 	 */
4864 	if (!pcie_downstream_port(dev))
4865 		return;
4866 
4867 	if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
4868 		pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
4869 		msleep(delay);
4870 	} else {
4871 		pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
4872 			delay);
4873 		if (!pcie_wait_for_link_delay(dev, true, delay)) {
4874 			/* Did not train, no need to wait any further */
4875 			pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
4876 			return;
4877 		}
4878 	}
4879 
4880 	if (!pci_device_is_present(child)) {
4881 		pci_dbg(child, "waiting additional %d ms to become accessible\n", delay);
4882 		msleep(delay);
4883 	}
4884 }
4885 
4886 void pci_reset_secondary_bus(struct pci_dev *dev)
4887 {
4888 	u16 ctrl;
4889 
4890 	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4891 	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4892 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4893 
4894 	/*
4895 	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
4896 	 * this to 2ms to ensure that we meet the minimum requirement.
4897 	 */
4898 	msleep(2);
4899 
4900 	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4901 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4902 
4903 	/*
4904 	 * Trhfa for conventional PCI is 2^25 clock cycles.
4905 	 * Assuming a minimum 33MHz clock this results in a 1s
4906 	 * delay before we can consider subordinate devices to
4907 	 * be re-initialized.  PCIe has some ways to shorten this,
4908 	 * but we don't make use of them yet.
4909 	 */
4910 	ssleep(1);
4911 }
4912 
4913 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4914 {
4915 	pci_reset_secondary_bus(dev);
4916 }
4917 
4918 /**
4919  * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
4920  * @dev: Bridge device
4921  *
4922  * Use the bridge control register to assert reset on the secondary bus.
4923  * Devices on the secondary bus are left in power-on state.
4924  */
4925 int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
4926 {
4927 	pcibios_reset_secondary_bus(dev);
4928 
4929 	return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS);
4930 }
4931 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
4932 
4933 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
4934 {
4935 	struct pci_dev *pdev;
4936 
4937 	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4938 	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4939 		return -ENOTTY;
4940 
4941 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4942 		if (pdev != dev)
4943 			return -ENOTTY;
4944 
4945 	if (probe)
4946 		return 0;
4947 
4948 	return pci_bridge_secondary_bus_reset(dev->bus->self);
4949 }
4950 
4951 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
4952 {
4953 	int rc = -ENOTTY;
4954 
4955 	if (!hotplug || !try_module_get(hotplug->owner))
4956 		return rc;
4957 
4958 	if (hotplug->ops->reset_slot)
4959 		rc = hotplug->ops->reset_slot(hotplug, probe);
4960 
4961 	module_put(hotplug->owner);
4962 
4963 	return rc;
4964 }
4965 
4966 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
4967 {
4968 	if (dev->multifunction || dev->subordinate || !dev->slot ||
4969 	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4970 		return -ENOTTY;
4971 
4972 	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
4973 }
4974 
4975 static void pci_dev_lock(struct pci_dev *dev)
4976 {
4977 	pci_cfg_access_lock(dev);
4978 	/* block PM suspend, driver probe, etc. */
4979 	device_lock(&dev->dev);
4980 }
4981 
4982 /* Return 1 on successful lock, 0 on contention */
4983 static int pci_dev_trylock(struct pci_dev *dev)
4984 {
4985 	if (pci_cfg_access_trylock(dev)) {
4986 		if (device_trylock(&dev->dev))
4987 			return 1;
4988 		pci_cfg_access_unlock(dev);
4989 	}
4990 
4991 	return 0;
4992 }
4993 
4994 static void pci_dev_unlock(struct pci_dev *dev)
4995 {
4996 	device_unlock(&dev->dev);
4997 	pci_cfg_access_unlock(dev);
4998 }
4999 
5000 static void pci_dev_save_and_disable(struct pci_dev *dev)
5001 {
5002 	const struct pci_error_handlers *err_handler =
5003 			dev->driver ? dev->driver->err_handler : NULL;
5004 
5005 	/*
5006 	 * dev->driver->err_handler->reset_prepare() is protected against
5007 	 * races with ->remove() by the device lock, which must be held by
5008 	 * the caller.
5009 	 */
5010 	if (err_handler && err_handler->reset_prepare)
5011 		err_handler->reset_prepare(dev);
5012 
5013 	/*
5014 	 * Wake-up device prior to save.  PM registers default to D0 after
5015 	 * reset and a simple register restore doesn't reliably return
5016 	 * to a non-D0 state anyway.
5017 	 */
5018 	pci_set_power_state(dev, PCI_D0);
5019 
5020 	pci_save_state(dev);
5021 	/*
5022 	 * Disable the device by clearing the Command register, except for
5023 	 * INTx-disable which is set.  This not only disables MMIO and I/O port
5024 	 * BARs, but also prevents the device from being Bus Master, preventing
5025 	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
5026 	 * compliant devices, INTx-disable prevents legacy interrupts.
5027 	 */
5028 	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
5029 }
5030 
5031 static void pci_dev_restore(struct pci_dev *dev)
5032 {
5033 	const struct pci_error_handlers *err_handler =
5034 			dev->driver ? dev->driver->err_handler : NULL;
5035 
5036 	pci_restore_state(dev);
5037 
5038 	/*
5039 	 * dev->driver->err_handler->reset_done() is protected against
5040 	 * races with ->remove() by the device lock, which must be held by
5041 	 * the caller.
5042 	 */
5043 	if (err_handler && err_handler->reset_done)
5044 		err_handler->reset_done(dev);
5045 }
5046 
5047 /**
5048  * __pci_reset_function_locked - reset a PCI device function while holding
5049  * the @dev mutex lock.
5050  * @dev: PCI device to reset
5051  *
5052  * Some devices allow an individual function to be reset without affecting
5053  * other functions in the same device.  The PCI device must be responsive
5054  * to PCI config space in order to use this function.
5055  *
5056  * The device function is presumed to be unused and the caller is holding
5057  * the device mutex lock when this function is called.
5058  *
5059  * Resetting the device will make the contents of PCI configuration space
5060  * random, so any caller of this must be prepared to reinitialise the
5061  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5062  * etc.
5063  *
5064  * Returns 0 if the device function was successfully reset or negative if the
5065  * device doesn't support resetting a single function.
5066  */
5067 int __pci_reset_function_locked(struct pci_dev *dev)
5068 {
5069 	int rc;
5070 
5071 	might_sleep();
5072 
5073 	/*
5074 	 * A reset method returns -ENOTTY if it doesn't support this device
5075 	 * and we should try the next method.
5076 	 *
5077 	 * If it returns 0 (success), we're finished.  If it returns any
5078 	 * other error, we're also finished: this indicates that further
5079 	 * reset mechanisms might be broken on the device.
5080 	 */
5081 	rc = pci_dev_specific_reset(dev, 0);
5082 	if (rc != -ENOTTY)
5083 		return rc;
5084 	if (pcie_has_flr(dev)) {
5085 		rc = pcie_flr(dev);
5086 		if (rc != -ENOTTY)
5087 			return rc;
5088 	}
5089 	rc = pci_af_flr(dev, 0);
5090 	if (rc != -ENOTTY)
5091 		return rc;
5092 	rc = pci_pm_reset(dev, 0);
5093 	if (rc != -ENOTTY)
5094 		return rc;
5095 	rc = pci_dev_reset_slot_function(dev, 0);
5096 	if (rc != -ENOTTY)
5097 		return rc;
5098 	return pci_parent_bus_reset(dev, 0);
5099 }
5100 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5101 
5102 /**
5103  * pci_probe_reset_function - check whether the device can be safely reset
5104  * @dev: PCI device to reset
5105  *
5106  * Some devices allow an individual function to be reset without affecting
5107  * other functions in the same device.  The PCI device must be responsive
5108  * to PCI config space in order to use this function.
5109  *
5110  * Returns 0 if the device function can be reset or negative if the
5111  * device doesn't support resetting a single function.
5112  */
5113 int pci_probe_reset_function(struct pci_dev *dev)
5114 {
5115 	int rc;
5116 
5117 	might_sleep();
5118 
5119 	rc = pci_dev_specific_reset(dev, 1);
5120 	if (rc != -ENOTTY)
5121 		return rc;
5122 	if (pcie_has_flr(dev))
5123 		return 0;
5124 	rc = pci_af_flr(dev, 1);
5125 	if (rc != -ENOTTY)
5126 		return rc;
5127 	rc = pci_pm_reset(dev, 1);
5128 	if (rc != -ENOTTY)
5129 		return rc;
5130 	rc = pci_dev_reset_slot_function(dev, 1);
5131 	if (rc != -ENOTTY)
5132 		return rc;
5133 
5134 	return pci_parent_bus_reset(dev, 1);
5135 }
5136 
5137 /**
5138  * pci_reset_function - quiesce and reset a PCI device function
5139  * @dev: PCI device to reset
5140  *
5141  * Some devices allow an individual function to be reset without affecting
5142  * other functions in the same device.  The PCI device must be responsive
5143  * to PCI config space in order to use this function.
5144  *
5145  * This function does not just reset the PCI portion of a device, but
5146  * clears all the state associated with the device.  This function differs
5147  * from __pci_reset_function_locked() in that it saves and restores device state
5148  * over the reset and takes the PCI device lock.
5149  *
5150  * Returns 0 if the device function was successfully reset or negative if the
5151  * device doesn't support resetting a single function.
5152  */
5153 int pci_reset_function(struct pci_dev *dev)
5154 {
5155 	int rc;
5156 
5157 	if (!dev->reset_fn)
5158 		return -ENOTTY;
5159 
5160 	pci_dev_lock(dev);
5161 	pci_dev_save_and_disable(dev);
5162 
5163 	rc = __pci_reset_function_locked(dev);
5164 
5165 	pci_dev_restore(dev);
5166 	pci_dev_unlock(dev);
5167 
5168 	return rc;
5169 }
5170 EXPORT_SYMBOL_GPL(pci_reset_function);
5171 
5172 /**
5173  * pci_reset_function_locked - quiesce and reset a PCI device function
5174  * @dev: PCI device to reset
5175  *
5176  * Some devices allow an individual function to be reset without affecting
5177  * other functions in the same device.  The PCI device must be responsive
5178  * to PCI config space in order to use this function.
5179  *
5180  * This function does not just reset the PCI portion of a device, but
5181  * clears all the state associated with the device.  This function differs
5182  * from __pci_reset_function_locked() in that it saves and restores device state
5183  * over the reset.  It also differs from pci_reset_function() in that it
5184  * requires the PCI device lock to be held.
5185  *
5186  * Returns 0 if the device function was successfully reset or negative if the
5187  * device doesn't support resetting a single function.
5188  */
5189 int pci_reset_function_locked(struct pci_dev *dev)
5190 {
5191 	int rc;
5192 
5193 	if (!dev->reset_fn)
5194 		return -ENOTTY;
5195 
5196 	pci_dev_save_and_disable(dev);
5197 
5198 	rc = __pci_reset_function_locked(dev);
5199 
5200 	pci_dev_restore(dev);
5201 
5202 	return rc;
5203 }
5204 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5205 
5206 /**
5207  * pci_try_reset_function - quiesce and reset a PCI device function
5208  * @dev: PCI device to reset
5209  *
5210  * Same as above, except return -EAGAIN if unable to lock device.
5211  */
5212 int pci_try_reset_function(struct pci_dev *dev)
5213 {
5214 	int rc;
5215 
5216 	if (!dev->reset_fn)
5217 		return -ENOTTY;
5218 
5219 	if (!pci_dev_trylock(dev))
5220 		return -EAGAIN;
5221 
5222 	pci_dev_save_and_disable(dev);
5223 	rc = __pci_reset_function_locked(dev);
5224 	pci_dev_restore(dev);
5225 	pci_dev_unlock(dev);
5226 
5227 	return rc;
5228 }
5229 EXPORT_SYMBOL_GPL(pci_try_reset_function);
5230 
5231 /* Do any devices on or below this bus prevent a bus reset? */
5232 static bool pci_bus_resetable(struct pci_bus *bus)
5233 {
5234 	struct pci_dev *dev;
5235 
5236 
5237 	if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5238 		return false;
5239 
5240 	list_for_each_entry(dev, &bus->devices, bus_list) {
5241 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5242 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5243 			return false;
5244 	}
5245 
5246 	return true;
5247 }
5248 
5249 /* Lock devices from the top of the tree down */
5250 static void pci_bus_lock(struct pci_bus *bus)
5251 {
5252 	struct pci_dev *dev;
5253 
5254 	list_for_each_entry(dev, &bus->devices, bus_list) {
5255 		pci_dev_lock(dev);
5256 		if (dev->subordinate)
5257 			pci_bus_lock(dev->subordinate);
5258 	}
5259 }
5260 
5261 /* Unlock devices from the bottom of the tree up */
5262 static void pci_bus_unlock(struct pci_bus *bus)
5263 {
5264 	struct pci_dev *dev;
5265 
5266 	list_for_each_entry(dev, &bus->devices, bus_list) {
5267 		if (dev->subordinate)
5268 			pci_bus_unlock(dev->subordinate);
5269 		pci_dev_unlock(dev);
5270 	}
5271 }
5272 
5273 /* Return 1 on successful lock, 0 on contention */
5274 static int pci_bus_trylock(struct pci_bus *bus)
5275 {
5276 	struct pci_dev *dev;
5277 
5278 	list_for_each_entry(dev, &bus->devices, bus_list) {
5279 		if (!pci_dev_trylock(dev))
5280 			goto unlock;
5281 		if (dev->subordinate) {
5282 			if (!pci_bus_trylock(dev->subordinate)) {
5283 				pci_dev_unlock(dev);
5284 				goto unlock;
5285 			}
5286 		}
5287 	}
5288 	return 1;
5289 
5290 unlock:
5291 	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5292 		if (dev->subordinate)
5293 			pci_bus_unlock(dev->subordinate);
5294 		pci_dev_unlock(dev);
5295 	}
5296 	return 0;
5297 }
5298 
5299 /* Do any devices on or below this slot prevent a bus reset? */
5300 static bool pci_slot_resetable(struct pci_slot *slot)
5301 {
5302 	struct pci_dev *dev;
5303 
5304 	if (slot->bus->self &&
5305 	    (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5306 		return false;
5307 
5308 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5309 		if (!dev->slot || dev->slot != slot)
5310 			continue;
5311 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5312 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5313 			return false;
5314 	}
5315 
5316 	return true;
5317 }
5318 
5319 /* Lock devices from the top of the tree down */
5320 static void pci_slot_lock(struct pci_slot *slot)
5321 {
5322 	struct pci_dev *dev;
5323 
5324 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5325 		if (!dev->slot || dev->slot != slot)
5326 			continue;
5327 		pci_dev_lock(dev);
5328 		if (dev->subordinate)
5329 			pci_bus_lock(dev->subordinate);
5330 	}
5331 }
5332 
5333 /* Unlock devices from the bottom of the tree up */
5334 static void pci_slot_unlock(struct pci_slot *slot)
5335 {
5336 	struct pci_dev *dev;
5337 
5338 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5339 		if (!dev->slot || dev->slot != slot)
5340 			continue;
5341 		if (dev->subordinate)
5342 			pci_bus_unlock(dev->subordinate);
5343 		pci_dev_unlock(dev);
5344 	}
5345 }
5346 
5347 /* Return 1 on successful lock, 0 on contention */
5348 static int pci_slot_trylock(struct pci_slot *slot)
5349 {
5350 	struct pci_dev *dev;
5351 
5352 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5353 		if (!dev->slot || dev->slot != slot)
5354 			continue;
5355 		if (!pci_dev_trylock(dev))
5356 			goto unlock;
5357 		if (dev->subordinate) {
5358 			if (!pci_bus_trylock(dev->subordinate)) {
5359 				pci_dev_unlock(dev);
5360 				goto unlock;
5361 			}
5362 		}
5363 	}
5364 	return 1;
5365 
5366 unlock:
5367 	list_for_each_entry_continue_reverse(dev,
5368 					     &slot->bus->devices, bus_list) {
5369 		if (!dev->slot || dev->slot != slot)
5370 			continue;
5371 		if (dev->subordinate)
5372 			pci_bus_unlock(dev->subordinate);
5373 		pci_dev_unlock(dev);
5374 	}
5375 	return 0;
5376 }
5377 
5378 /*
5379  * Save and disable devices from the top of the tree down while holding
5380  * the @dev mutex lock for the entire tree.
5381  */
5382 static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5383 {
5384 	struct pci_dev *dev;
5385 
5386 	list_for_each_entry(dev, &bus->devices, bus_list) {
5387 		pci_dev_save_and_disable(dev);
5388 		if (dev->subordinate)
5389 			pci_bus_save_and_disable_locked(dev->subordinate);
5390 	}
5391 }
5392 
5393 /*
5394  * Restore devices from top of the tree down while holding @dev mutex lock
5395  * for the entire tree.  Parent bridges need to be restored before we can
5396  * get to subordinate devices.
5397  */
5398 static void pci_bus_restore_locked(struct pci_bus *bus)
5399 {
5400 	struct pci_dev *dev;
5401 
5402 	list_for_each_entry(dev, &bus->devices, bus_list) {
5403 		pci_dev_restore(dev);
5404 		if (dev->subordinate)
5405 			pci_bus_restore_locked(dev->subordinate);
5406 	}
5407 }
5408 
5409 /*
5410  * Save and disable devices from the top of the tree down while holding
5411  * the @dev mutex lock for the entire tree.
5412  */
5413 static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5414 {
5415 	struct pci_dev *dev;
5416 
5417 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5418 		if (!dev->slot || dev->slot != slot)
5419 			continue;
5420 		pci_dev_save_and_disable(dev);
5421 		if (dev->subordinate)
5422 			pci_bus_save_and_disable_locked(dev->subordinate);
5423 	}
5424 }
5425 
5426 /*
5427  * Restore devices from top of the tree down while holding @dev mutex lock
5428  * for the entire tree.  Parent bridges need to be restored before we can
5429  * get to subordinate devices.
5430  */
5431 static void pci_slot_restore_locked(struct pci_slot *slot)
5432 {
5433 	struct pci_dev *dev;
5434 
5435 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5436 		if (!dev->slot || dev->slot != slot)
5437 			continue;
5438 		pci_dev_restore(dev);
5439 		if (dev->subordinate)
5440 			pci_bus_restore_locked(dev->subordinate);
5441 	}
5442 }
5443 
5444 static int pci_slot_reset(struct pci_slot *slot, int probe)
5445 {
5446 	int rc;
5447 
5448 	if (!slot || !pci_slot_resetable(slot))
5449 		return -ENOTTY;
5450 
5451 	if (!probe)
5452 		pci_slot_lock(slot);
5453 
5454 	might_sleep();
5455 
5456 	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5457 
5458 	if (!probe)
5459 		pci_slot_unlock(slot);
5460 
5461 	return rc;
5462 }
5463 
5464 /**
5465  * pci_probe_reset_slot - probe whether a PCI slot can be reset
5466  * @slot: PCI slot to probe
5467  *
5468  * Return 0 if slot can be reset, negative if a slot reset is not supported.
5469  */
5470 int pci_probe_reset_slot(struct pci_slot *slot)
5471 {
5472 	return pci_slot_reset(slot, 1);
5473 }
5474 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5475 
5476 /**
5477  * __pci_reset_slot - Try to reset a PCI slot
5478  * @slot: PCI slot to reset
5479  *
5480  * A PCI bus may host multiple slots, each slot may support a reset mechanism
5481  * independent of other slots.  For instance, some slots may support slot power
5482  * control.  In the case of a 1:1 bus to slot architecture, this function may
5483  * wrap the bus reset to avoid spurious slot related events such as hotplug.
5484  * Generally a slot reset should be attempted before a bus reset.  All of the
5485  * function of the slot and any subordinate buses behind the slot are reset
5486  * through this function.  PCI config space of all devices in the slot and
5487  * behind the slot is saved before and restored after reset.
5488  *
5489  * Same as above except return -EAGAIN if the slot cannot be locked
5490  */
5491 static int __pci_reset_slot(struct pci_slot *slot)
5492 {
5493 	int rc;
5494 
5495 	rc = pci_slot_reset(slot, 1);
5496 	if (rc)
5497 		return rc;
5498 
5499 	if (pci_slot_trylock(slot)) {
5500 		pci_slot_save_and_disable_locked(slot);
5501 		might_sleep();
5502 		rc = pci_reset_hotplug_slot(slot->hotplug, 0);
5503 		pci_slot_restore_locked(slot);
5504 		pci_slot_unlock(slot);
5505 	} else
5506 		rc = -EAGAIN;
5507 
5508 	return rc;
5509 }
5510 
5511 static int pci_bus_reset(struct pci_bus *bus, int probe)
5512 {
5513 	int ret;
5514 
5515 	if (!bus->self || !pci_bus_resetable(bus))
5516 		return -ENOTTY;
5517 
5518 	if (probe)
5519 		return 0;
5520 
5521 	pci_bus_lock(bus);
5522 
5523 	might_sleep();
5524 
5525 	ret = pci_bridge_secondary_bus_reset(bus->self);
5526 
5527 	pci_bus_unlock(bus);
5528 
5529 	return ret;
5530 }
5531 
5532 /**
5533  * pci_bus_error_reset - reset the bridge's subordinate bus
5534  * @bridge: The parent device that connects to the bus to reset
5535  *
5536  * This function will first try to reset the slots on this bus if the method is
5537  * available. If slot reset fails or is not available, this will fall back to a
5538  * secondary bus reset.
5539  */
5540 int pci_bus_error_reset(struct pci_dev *bridge)
5541 {
5542 	struct pci_bus *bus = bridge->subordinate;
5543 	struct pci_slot *slot;
5544 
5545 	if (!bus)
5546 		return -ENOTTY;
5547 
5548 	mutex_lock(&pci_slot_mutex);
5549 	if (list_empty(&bus->slots))
5550 		goto bus_reset;
5551 
5552 	list_for_each_entry(slot, &bus->slots, list)
5553 		if (pci_probe_reset_slot(slot))
5554 			goto bus_reset;
5555 
5556 	list_for_each_entry(slot, &bus->slots, list)
5557 		if (pci_slot_reset(slot, 0))
5558 			goto bus_reset;
5559 
5560 	mutex_unlock(&pci_slot_mutex);
5561 	return 0;
5562 bus_reset:
5563 	mutex_unlock(&pci_slot_mutex);
5564 	return pci_bus_reset(bridge->subordinate, 0);
5565 }
5566 
5567 /**
5568  * pci_probe_reset_bus - probe whether a PCI bus can be reset
5569  * @bus: PCI bus to probe
5570  *
5571  * Return 0 if bus can be reset, negative if a bus reset is not supported.
5572  */
5573 int pci_probe_reset_bus(struct pci_bus *bus)
5574 {
5575 	return pci_bus_reset(bus, 1);
5576 }
5577 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5578 
5579 /**
5580  * __pci_reset_bus - Try to reset a PCI bus
5581  * @bus: top level PCI bus to reset
5582  *
5583  * Same as above except return -EAGAIN if the bus cannot be locked
5584  */
5585 static int __pci_reset_bus(struct pci_bus *bus)
5586 {
5587 	int rc;
5588 
5589 	rc = pci_bus_reset(bus, 1);
5590 	if (rc)
5591 		return rc;
5592 
5593 	if (pci_bus_trylock(bus)) {
5594 		pci_bus_save_and_disable_locked(bus);
5595 		might_sleep();
5596 		rc = pci_bridge_secondary_bus_reset(bus->self);
5597 		pci_bus_restore_locked(bus);
5598 		pci_bus_unlock(bus);
5599 	} else
5600 		rc = -EAGAIN;
5601 
5602 	return rc;
5603 }
5604 
5605 /**
5606  * pci_reset_bus - Try to reset a PCI bus
5607  * @pdev: top level PCI device to reset via slot/bus
5608  *
5609  * Same as above except return -EAGAIN if the bus cannot be locked
5610  */
5611 int pci_reset_bus(struct pci_dev *pdev)
5612 {
5613 	return (!pci_probe_reset_slot(pdev->slot)) ?
5614 	    __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5615 }
5616 EXPORT_SYMBOL_GPL(pci_reset_bus);
5617 
5618 /**
5619  * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5620  * @dev: PCI device to query
5621  *
5622  * Returns mmrbc: maximum designed memory read count in bytes or
5623  * appropriate error value.
5624  */
5625 int pcix_get_max_mmrbc(struct pci_dev *dev)
5626 {
5627 	int cap;
5628 	u32 stat;
5629 
5630 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5631 	if (!cap)
5632 		return -EINVAL;
5633 
5634 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5635 		return -EINVAL;
5636 
5637 	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
5638 }
5639 EXPORT_SYMBOL(pcix_get_max_mmrbc);
5640 
5641 /**
5642  * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5643  * @dev: PCI device to query
5644  *
5645  * Returns mmrbc: maximum memory read count in bytes or appropriate error
5646  * value.
5647  */
5648 int pcix_get_mmrbc(struct pci_dev *dev)
5649 {
5650 	int cap;
5651 	u16 cmd;
5652 
5653 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5654 	if (!cap)
5655 		return -EINVAL;
5656 
5657 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5658 		return -EINVAL;
5659 
5660 	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
5661 }
5662 EXPORT_SYMBOL(pcix_get_mmrbc);
5663 
5664 /**
5665  * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5666  * @dev: PCI device to query
5667  * @mmrbc: maximum memory read count in bytes
5668  *    valid values are 512, 1024, 2048, 4096
5669  *
5670  * If possible sets maximum memory read byte count, some bridges have errata
5671  * that prevent this.
5672  */
5673 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5674 {
5675 	int cap;
5676 	u32 stat, v, o;
5677 	u16 cmd;
5678 
5679 	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5680 		return -EINVAL;
5681 
5682 	v = ffs(mmrbc) - 10;
5683 
5684 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5685 	if (!cap)
5686 		return -EINVAL;
5687 
5688 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5689 		return -EINVAL;
5690 
5691 	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
5692 		return -E2BIG;
5693 
5694 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5695 		return -EINVAL;
5696 
5697 	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
5698 	if (o != v) {
5699 		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5700 			return -EIO;
5701 
5702 		cmd &= ~PCI_X_CMD_MAX_READ;
5703 		cmd |= v << 2;
5704 		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5705 			return -EIO;
5706 	}
5707 	return 0;
5708 }
5709 EXPORT_SYMBOL(pcix_set_mmrbc);
5710 
5711 /**
5712  * pcie_get_readrq - get PCI Express read request size
5713  * @dev: PCI device to query
5714  *
5715  * Returns maximum memory read request in bytes or appropriate error value.
5716  */
5717 int pcie_get_readrq(struct pci_dev *dev)
5718 {
5719 	u16 ctl;
5720 
5721 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5722 
5723 	return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5724 }
5725 EXPORT_SYMBOL(pcie_get_readrq);
5726 
5727 /**
5728  * pcie_set_readrq - set PCI Express maximum memory read request
5729  * @dev: PCI device to query
5730  * @rq: maximum memory read count in bytes
5731  *    valid values are 128, 256, 512, 1024, 2048, 4096
5732  *
5733  * If possible sets maximum memory read request in bytes
5734  */
5735 int pcie_set_readrq(struct pci_dev *dev, int rq)
5736 {
5737 	u16 v;
5738 	int ret;
5739 
5740 	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
5741 		return -EINVAL;
5742 
5743 	/*
5744 	 * If using the "performance" PCIe config, we clamp the read rq
5745 	 * size to the max packet size to keep the host bridge from
5746 	 * generating requests larger than we can cope with.
5747 	 */
5748 	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
5749 		int mps = pcie_get_mps(dev);
5750 
5751 		if (mps < rq)
5752 			rq = mps;
5753 	}
5754 
5755 	v = (ffs(rq) - 8) << 12;
5756 
5757 	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5758 						  PCI_EXP_DEVCTL_READRQ, v);
5759 
5760 	return pcibios_err_to_errno(ret);
5761 }
5762 EXPORT_SYMBOL(pcie_set_readrq);
5763 
5764 /**
5765  * pcie_get_mps - get PCI Express maximum payload size
5766  * @dev: PCI device to query
5767  *
5768  * Returns maximum payload size in bytes
5769  */
5770 int pcie_get_mps(struct pci_dev *dev)
5771 {
5772 	u16 ctl;
5773 
5774 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5775 
5776 	return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
5777 }
5778 EXPORT_SYMBOL(pcie_get_mps);
5779 
5780 /**
5781  * pcie_set_mps - set PCI Express maximum payload size
5782  * @dev: PCI device to query
5783  * @mps: maximum payload size in bytes
5784  *    valid values are 128, 256, 512, 1024, 2048, 4096
5785  *
5786  * If possible sets maximum payload size
5787  */
5788 int pcie_set_mps(struct pci_dev *dev, int mps)
5789 {
5790 	u16 v;
5791 	int ret;
5792 
5793 	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
5794 		return -EINVAL;
5795 
5796 	v = ffs(mps) - 8;
5797 	if (v > dev->pcie_mpss)
5798 		return -EINVAL;
5799 	v <<= 5;
5800 
5801 	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5802 						  PCI_EXP_DEVCTL_PAYLOAD, v);
5803 
5804 	return pcibios_err_to_errno(ret);
5805 }
5806 EXPORT_SYMBOL(pcie_set_mps);
5807 
5808 /**
5809  * pcie_bandwidth_available - determine minimum link settings of a PCIe
5810  *			      device and its bandwidth limitation
5811  * @dev: PCI device to query
5812  * @limiting_dev: storage for device causing the bandwidth limitation
5813  * @speed: storage for speed of limiting device
5814  * @width: storage for width of limiting device
5815  *
5816  * Walk up the PCI device chain and find the point where the minimum
5817  * bandwidth is available.  Return the bandwidth available there and (if
5818  * limiting_dev, speed, and width pointers are supplied) information about
5819  * that point.  The bandwidth returned is in Mb/s, i.e., megabits/second of
5820  * raw bandwidth.
5821  */
5822 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
5823 			     enum pci_bus_speed *speed,
5824 			     enum pcie_link_width *width)
5825 {
5826 	u16 lnksta;
5827 	enum pci_bus_speed next_speed;
5828 	enum pcie_link_width next_width;
5829 	u32 bw, next_bw;
5830 
5831 	if (speed)
5832 		*speed = PCI_SPEED_UNKNOWN;
5833 	if (width)
5834 		*width = PCIE_LNK_WIDTH_UNKNOWN;
5835 
5836 	bw = 0;
5837 
5838 	while (dev) {
5839 		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
5840 
5841 		next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
5842 		next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
5843 			PCI_EXP_LNKSTA_NLW_SHIFT;
5844 
5845 		next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
5846 
5847 		/* Check if current device limits the total bandwidth */
5848 		if (!bw || next_bw <= bw) {
5849 			bw = next_bw;
5850 
5851 			if (limiting_dev)
5852 				*limiting_dev = dev;
5853 			if (speed)
5854 				*speed = next_speed;
5855 			if (width)
5856 				*width = next_width;
5857 		}
5858 
5859 		dev = pci_upstream_bridge(dev);
5860 	}
5861 
5862 	return bw;
5863 }
5864 EXPORT_SYMBOL(pcie_bandwidth_available);
5865 
5866 /**
5867  * pcie_get_speed_cap - query for the PCI device's link speed capability
5868  * @dev: PCI device to query
5869  *
5870  * Query the PCI device speed capability.  Return the maximum link speed
5871  * supported by the device.
5872  */
5873 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
5874 {
5875 	u32 lnkcap2, lnkcap;
5876 
5877 	/*
5878 	 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18.  The
5879 	 * implementation note there recommends using the Supported Link
5880 	 * Speeds Vector in Link Capabilities 2 when supported.
5881 	 *
5882 	 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
5883 	 * should use the Supported Link Speeds field in Link Capabilities,
5884 	 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
5885 	 */
5886 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
5887 
5888 	/* PCIe r3.0-compliant */
5889 	if (lnkcap2)
5890 		return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
5891 
5892 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5893 	if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
5894 		return PCIE_SPEED_5_0GT;
5895 	else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
5896 		return PCIE_SPEED_2_5GT;
5897 
5898 	return PCI_SPEED_UNKNOWN;
5899 }
5900 EXPORT_SYMBOL(pcie_get_speed_cap);
5901 
5902 /**
5903  * pcie_get_width_cap - query for the PCI device's link width capability
5904  * @dev: PCI device to query
5905  *
5906  * Query the PCI device width capability.  Return the maximum link width
5907  * supported by the device.
5908  */
5909 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
5910 {
5911 	u32 lnkcap;
5912 
5913 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5914 	if (lnkcap)
5915 		return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
5916 
5917 	return PCIE_LNK_WIDTH_UNKNOWN;
5918 }
5919 EXPORT_SYMBOL(pcie_get_width_cap);
5920 
5921 /**
5922  * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
5923  * @dev: PCI device
5924  * @speed: storage for link speed
5925  * @width: storage for link width
5926  *
5927  * Calculate a PCI device's link bandwidth by querying for its link speed
5928  * and width, multiplying them, and applying encoding overhead.  The result
5929  * is in Mb/s, i.e., megabits/second of raw bandwidth.
5930  */
5931 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
5932 			   enum pcie_link_width *width)
5933 {
5934 	*speed = pcie_get_speed_cap(dev);
5935 	*width = pcie_get_width_cap(dev);
5936 
5937 	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
5938 		return 0;
5939 
5940 	return *width * PCIE_SPEED2MBS_ENC(*speed);
5941 }
5942 
5943 /**
5944  * __pcie_print_link_status - Report the PCI device's link speed and width
5945  * @dev: PCI device to query
5946  * @verbose: Print info even when enough bandwidth is available
5947  *
5948  * If the available bandwidth at the device is less than the device is
5949  * capable of, report the device's maximum possible bandwidth and the
5950  * upstream link that limits its performance.  If @verbose, always print
5951  * the available bandwidth, even if the device isn't constrained.
5952  */
5953 void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
5954 {
5955 	enum pcie_link_width width, width_cap;
5956 	enum pci_bus_speed speed, speed_cap;
5957 	struct pci_dev *limiting_dev = NULL;
5958 	u32 bw_avail, bw_cap;
5959 
5960 	bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
5961 	bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
5962 
5963 	if (bw_avail >= bw_cap && verbose)
5964 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
5965 			 bw_cap / 1000, bw_cap % 1000,
5966 			 pci_speed_string(speed_cap), width_cap);
5967 	else if (bw_avail < bw_cap)
5968 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
5969 			 bw_avail / 1000, bw_avail % 1000,
5970 			 pci_speed_string(speed), width,
5971 			 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
5972 			 bw_cap / 1000, bw_cap % 1000,
5973 			 pci_speed_string(speed_cap), width_cap);
5974 }
5975 
5976 /**
5977  * pcie_print_link_status - Report the PCI device's link speed and width
5978  * @dev: PCI device to query
5979  *
5980  * Report the available bandwidth at the device.
5981  */
5982 void pcie_print_link_status(struct pci_dev *dev)
5983 {
5984 	__pcie_print_link_status(dev, true);
5985 }
5986 EXPORT_SYMBOL(pcie_print_link_status);
5987 
5988 /**
5989  * pci_select_bars - Make BAR mask from the type of resource
5990  * @dev: the PCI device for which BAR mask is made
5991  * @flags: resource type mask to be selected
5992  *
5993  * This helper routine makes bar mask from the type of resource.
5994  */
5995 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
5996 {
5997 	int i, bars = 0;
5998 	for (i = 0; i < PCI_NUM_RESOURCES; i++)
5999 		if (pci_resource_flags(dev, i) & flags)
6000 			bars |= (1 << i);
6001 	return bars;
6002 }
6003 EXPORT_SYMBOL(pci_select_bars);
6004 
6005 /* Some architectures require additional programming to enable VGA */
6006 static arch_set_vga_state_t arch_set_vga_state;
6007 
6008 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6009 {
6010 	arch_set_vga_state = func;	/* NULL disables */
6011 }
6012 
6013 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
6014 				  unsigned int command_bits, u32 flags)
6015 {
6016 	if (arch_set_vga_state)
6017 		return arch_set_vga_state(dev, decode, command_bits,
6018 						flags);
6019 	return 0;
6020 }
6021 
6022 /**
6023  * pci_set_vga_state - set VGA decode state on device and parents if requested
6024  * @dev: the PCI device
6025  * @decode: true = enable decoding, false = disable decoding
6026  * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6027  * @flags: traverse ancestors and change bridges
6028  * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6029  */
6030 int pci_set_vga_state(struct pci_dev *dev, bool decode,
6031 		      unsigned int command_bits, u32 flags)
6032 {
6033 	struct pci_bus *bus;
6034 	struct pci_dev *bridge;
6035 	u16 cmd;
6036 	int rc;
6037 
6038 	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6039 
6040 	/* ARCH specific VGA enables */
6041 	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6042 	if (rc)
6043 		return rc;
6044 
6045 	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6046 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
6047 		if (decode)
6048 			cmd |= command_bits;
6049 		else
6050 			cmd &= ~command_bits;
6051 		pci_write_config_word(dev, PCI_COMMAND, cmd);
6052 	}
6053 
6054 	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6055 		return 0;
6056 
6057 	bus = dev->bus;
6058 	while (bus) {
6059 		bridge = bus->self;
6060 		if (bridge) {
6061 			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6062 					     &cmd);
6063 			if (decode)
6064 				cmd |= PCI_BRIDGE_CTL_VGA;
6065 			else
6066 				cmd &= ~PCI_BRIDGE_CTL_VGA;
6067 			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6068 					      cmd);
6069 		}
6070 		bus = bus->parent;
6071 	}
6072 	return 0;
6073 }
6074 
6075 #ifdef CONFIG_ACPI
6076 bool pci_pr3_present(struct pci_dev *pdev)
6077 {
6078 	struct acpi_device *adev;
6079 
6080 	if (acpi_disabled)
6081 		return false;
6082 
6083 	adev = ACPI_COMPANION(&pdev->dev);
6084 	if (!adev)
6085 		return false;
6086 
6087 	return adev->power.flags.power_resources &&
6088 		acpi_has_method(adev->handle, "_PR3");
6089 }
6090 EXPORT_SYMBOL_GPL(pci_pr3_present);
6091 #endif
6092 
6093 /**
6094  * pci_add_dma_alias - Add a DMA devfn alias for a device
6095  * @dev: the PCI device for which alias is added
6096  * @devfn_from: alias slot and function
6097  * @nr_devfns: number of subsequent devfns to alias
6098  *
6099  * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6100  * which is used to program permissible bus-devfn source addresses for DMA
6101  * requests in an IOMMU.  These aliases factor into IOMMU group creation
6102  * and are useful for devices generating DMA requests beyond or different
6103  * from their logical bus-devfn.  Examples include device quirks where the
6104  * device simply uses the wrong devfn, as well as non-transparent bridges
6105  * where the alias may be a proxy for devices in another domain.
6106  *
6107  * IOMMU group creation is performed during device discovery or addition,
6108  * prior to any potential DMA mapping and therefore prior to driver probing
6109  * (especially for userspace assigned devices where IOMMU group definition
6110  * cannot be left as a userspace activity).  DMA aliases should therefore
6111  * be configured via quirks, such as the PCI fixup header quirk.
6112  */
6113 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from, unsigned nr_devfns)
6114 {
6115 	int devfn_to;
6116 
6117 	nr_devfns = min(nr_devfns, (unsigned) MAX_NR_DEVFNS - devfn_from);
6118 	devfn_to = devfn_from + nr_devfns - 1;
6119 
6120 	if (!dev->dma_alias_mask)
6121 		dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6122 	if (!dev->dma_alias_mask) {
6123 		pci_warn(dev, "Unable to allocate DMA alias mask\n");
6124 		return;
6125 	}
6126 
6127 	bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6128 
6129 	if (nr_devfns == 1)
6130 		pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6131 				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6132 	else if (nr_devfns > 1)
6133 		pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6134 				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6135 				PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6136 }
6137 
6138 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6139 {
6140 	return (dev1->dma_alias_mask &&
6141 		test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6142 	       (dev2->dma_alias_mask &&
6143 		test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6144 	       pci_real_dma_dev(dev1) == dev2 ||
6145 	       pci_real_dma_dev(dev2) == dev1;
6146 }
6147 
6148 bool pci_device_is_present(struct pci_dev *pdev)
6149 {
6150 	u32 v;
6151 
6152 	if (pci_dev_is_disconnected(pdev))
6153 		return false;
6154 	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6155 }
6156 EXPORT_SYMBOL_GPL(pci_device_is_present);
6157 
6158 void pci_ignore_hotplug(struct pci_dev *dev)
6159 {
6160 	struct pci_dev *bridge = dev->bus->self;
6161 
6162 	dev->ignore_hotplug = 1;
6163 	/* Propagate the "ignore hotplug" setting to the parent bridge. */
6164 	if (bridge)
6165 		bridge->ignore_hotplug = 1;
6166 }
6167 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6168 
6169 /**
6170  * pci_real_dma_dev - Get PCI DMA device for PCI device
6171  * @dev: the PCI device that may have a PCI DMA alias
6172  *
6173  * Permits the platform to provide architecture-specific functionality to
6174  * devices needing to alias DMA to another PCI device on another PCI bus. If
6175  * the PCI device is on the same bus, it is recommended to use
6176  * pci_add_dma_alias(). This is the default implementation. Architecture
6177  * implementations can override this.
6178  */
6179 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6180 {
6181 	return dev;
6182 }
6183 
6184 resource_size_t __weak pcibios_default_alignment(void)
6185 {
6186 	return 0;
6187 }
6188 
6189 /*
6190  * Arches that don't want to expose struct resource to userland as-is in
6191  * sysfs and /proc can implement their own pci_resource_to_user().
6192  */
6193 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6194 				 const struct resource *rsrc,
6195 				 resource_size_t *start, resource_size_t *end)
6196 {
6197 	*start = rsrc->start;
6198 	*end = rsrc->end;
6199 }
6200 
6201 static char *resource_alignment_param;
6202 static DEFINE_SPINLOCK(resource_alignment_lock);
6203 
6204 /**
6205  * pci_specified_resource_alignment - get resource alignment specified by user.
6206  * @dev: the PCI device to get
6207  * @resize: whether or not to change resources' size when reassigning alignment
6208  *
6209  * RETURNS: Resource alignment if it is specified.
6210  *          Zero if it is not specified.
6211  */
6212 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6213 							bool *resize)
6214 {
6215 	int align_order, count;
6216 	resource_size_t align = pcibios_default_alignment();
6217 	const char *p;
6218 	int ret;
6219 
6220 	spin_lock(&resource_alignment_lock);
6221 	p = resource_alignment_param;
6222 	if (!p || !*p)
6223 		goto out;
6224 	if (pci_has_flag(PCI_PROBE_ONLY)) {
6225 		align = 0;
6226 		pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6227 		goto out;
6228 	}
6229 
6230 	while (*p) {
6231 		count = 0;
6232 		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6233 		    p[count] == '@') {
6234 			p += count + 1;
6235 			if (align_order > 63) {
6236 				pr_err("PCI: Invalid requested alignment (order %d)\n",
6237 				       align_order);
6238 				align_order = PAGE_SHIFT;
6239 			}
6240 		} else {
6241 			align_order = PAGE_SHIFT;
6242 		}
6243 
6244 		ret = pci_dev_str_match(dev, p, &p);
6245 		if (ret == 1) {
6246 			*resize = true;
6247 			align = 1ULL << align_order;
6248 			break;
6249 		} else if (ret < 0) {
6250 			pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6251 			       p);
6252 			break;
6253 		}
6254 
6255 		if (*p != ';' && *p != ',') {
6256 			/* End of param or invalid format */
6257 			break;
6258 		}
6259 		p++;
6260 	}
6261 out:
6262 	spin_unlock(&resource_alignment_lock);
6263 	return align;
6264 }
6265 
6266 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6267 					   resource_size_t align, bool resize)
6268 {
6269 	struct resource *r = &dev->resource[bar];
6270 	resource_size_t size;
6271 
6272 	if (!(r->flags & IORESOURCE_MEM))
6273 		return;
6274 
6275 	if (r->flags & IORESOURCE_PCI_FIXED) {
6276 		pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6277 			 bar, r, (unsigned long long)align);
6278 		return;
6279 	}
6280 
6281 	size = resource_size(r);
6282 	if (size >= align)
6283 		return;
6284 
6285 	/*
6286 	 * Increase the alignment of the resource.  There are two ways we
6287 	 * can do this:
6288 	 *
6289 	 * 1) Increase the size of the resource.  BARs are aligned on their
6290 	 *    size, so when we reallocate space for this resource, we'll
6291 	 *    allocate it with the larger alignment.  This also prevents
6292 	 *    assignment of any other BARs inside the alignment region, so
6293 	 *    if we're requesting page alignment, this means no other BARs
6294 	 *    will share the page.
6295 	 *
6296 	 *    The disadvantage is that this makes the resource larger than
6297 	 *    the hardware BAR, which may break drivers that compute things
6298 	 *    based on the resource size, e.g., to find registers at a
6299 	 *    fixed offset before the end of the BAR.
6300 	 *
6301 	 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6302 	 *    set r->start to the desired alignment.  By itself this
6303 	 *    doesn't prevent other BARs being put inside the alignment
6304 	 *    region, but if we realign *every* resource of every device in
6305 	 *    the system, none of them will share an alignment region.
6306 	 *
6307 	 * When the user has requested alignment for only some devices via
6308 	 * the "pci=resource_alignment" argument, "resize" is true and we
6309 	 * use the first method.  Otherwise we assume we're aligning all
6310 	 * devices and we use the second.
6311 	 */
6312 
6313 	pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6314 		 bar, r, (unsigned long long)align);
6315 
6316 	if (resize) {
6317 		r->start = 0;
6318 		r->end = align - 1;
6319 	} else {
6320 		r->flags &= ~IORESOURCE_SIZEALIGN;
6321 		r->flags |= IORESOURCE_STARTALIGN;
6322 		r->start = align;
6323 		r->end = r->start + size - 1;
6324 	}
6325 	r->flags |= IORESOURCE_UNSET;
6326 }
6327 
6328 /*
6329  * This function disables memory decoding and releases memory resources
6330  * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6331  * It also rounds up size to specified alignment.
6332  * Later on, the kernel will assign page-aligned memory resource back
6333  * to the device.
6334  */
6335 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6336 {
6337 	int i;
6338 	struct resource *r;
6339 	resource_size_t align;
6340 	u16 command;
6341 	bool resize = false;
6342 
6343 	/*
6344 	 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6345 	 * 3.4.1.11.  Their resources are allocated from the space
6346 	 * described by the VF BARx register in the PF's SR-IOV capability.
6347 	 * We can't influence their alignment here.
6348 	 */
6349 	if (dev->is_virtfn)
6350 		return;
6351 
6352 	/* check if specified PCI is target device to reassign */
6353 	align = pci_specified_resource_alignment(dev, &resize);
6354 	if (!align)
6355 		return;
6356 
6357 	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6358 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6359 		pci_warn(dev, "Can't reassign resources to host bridge\n");
6360 		return;
6361 	}
6362 
6363 	pci_read_config_word(dev, PCI_COMMAND, &command);
6364 	command &= ~PCI_COMMAND_MEMORY;
6365 	pci_write_config_word(dev, PCI_COMMAND, command);
6366 
6367 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6368 		pci_request_resource_alignment(dev, i, align, resize);
6369 
6370 	/*
6371 	 * Need to disable bridge's resource window,
6372 	 * to enable the kernel to reassign new resource
6373 	 * window later on.
6374 	 */
6375 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6376 		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6377 			r = &dev->resource[i];
6378 			if (!(r->flags & IORESOURCE_MEM))
6379 				continue;
6380 			r->flags |= IORESOURCE_UNSET;
6381 			r->end = resource_size(r) - 1;
6382 			r->start = 0;
6383 		}
6384 		pci_disable_bridge_window(dev);
6385 	}
6386 }
6387 
6388 static ssize_t resource_alignment_show(struct bus_type *bus, char *buf)
6389 {
6390 	size_t count = 0;
6391 
6392 	spin_lock(&resource_alignment_lock);
6393 	if (resource_alignment_param)
6394 		count = scnprintf(buf, PAGE_SIZE, "%s", resource_alignment_param);
6395 	spin_unlock(&resource_alignment_lock);
6396 
6397 	/*
6398 	 * When set by the command line, resource_alignment_param will not
6399 	 * have a trailing line feed, which is ugly. So conditionally add
6400 	 * it here.
6401 	 */
6402 	if (count >= 2 && buf[count - 2] != '\n' && count < PAGE_SIZE - 1) {
6403 		buf[count - 1] = '\n';
6404 		buf[count++] = 0;
6405 	}
6406 
6407 	return count;
6408 }
6409 
6410 static ssize_t resource_alignment_store(struct bus_type *bus,
6411 					const char *buf, size_t count)
6412 {
6413 	char *param = kstrndup(buf, count, GFP_KERNEL);
6414 
6415 	if (!param)
6416 		return -ENOMEM;
6417 
6418 	spin_lock(&resource_alignment_lock);
6419 	kfree(resource_alignment_param);
6420 	resource_alignment_param = param;
6421 	spin_unlock(&resource_alignment_lock);
6422 	return count;
6423 }
6424 
6425 static BUS_ATTR_RW(resource_alignment);
6426 
6427 static int __init pci_resource_alignment_sysfs_init(void)
6428 {
6429 	return bus_create_file(&pci_bus_type,
6430 					&bus_attr_resource_alignment);
6431 }
6432 late_initcall(pci_resource_alignment_sysfs_init);
6433 
6434 static void pci_no_domains(void)
6435 {
6436 #ifdef CONFIG_PCI_DOMAINS
6437 	pci_domains_supported = 0;
6438 #endif
6439 }
6440 
6441 #ifdef CONFIG_PCI_DOMAINS_GENERIC
6442 static atomic_t __domain_nr = ATOMIC_INIT(-1);
6443 
6444 static int pci_get_new_domain_nr(void)
6445 {
6446 	return atomic_inc_return(&__domain_nr);
6447 }
6448 
6449 static int of_pci_bus_find_domain_nr(struct device *parent)
6450 {
6451 	static int use_dt_domains = -1;
6452 	int domain = -1;
6453 
6454 	if (parent)
6455 		domain = of_get_pci_domain_nr(parent->of_node);
6456 
6457 	/*
6458 	 * Check DT domain and use_dt_domains values.
6459 	 *
6460 	 * If DT domain property is valid (domain >= 0) and
6461 	 * use_dt_domains != 0, the DT assignment is valid since this means
6462 	 * we have not previously allocated a domain number by using
6463 	 * pci_get_new_domain_nr(); we should also update use_dt_domains to
6464 	 * 1, to indicate that we have just assigned a domain number from
6465 	 * DT.
6466 	 *
6467 	 * If DT domain property value is not valid (ie domain < 0), and we
6468 	 * have not previously assigned a domain number from DT
6469 	 * (use_dt_domains != 1) we should assign a domain number by
6470 	 * using the:
6471 	 *
6472 	 * pci_get_new_domain_nr()
6473 	 *
6474 	 * API and update the use_dt_domains value to keep track of method we
6475 	 * are using to assign domain numbers (use_dt_domains = 0).
6476 	 *
6477 	 * All other combinations imply we have a platform that is trying
6478 	 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
6479 	 * which is a recipe for domain mishandling and it is prevented by
6480 	 * invalidating the domain value (domain = -1) and printing a
6481 	 * corresponding error.
6482 	 */
6483 	if (domain >= 0 && use_dt_domains) {
6484 		use_dt_domains = 1;
6485 	} else if (domain < 0 && use_dt_domains != 1) {
6486 		use_dt_domains = 0;
6487 		domain = pci_get_new_domain_nr();
6488 	} else {
6489 		if (parent)
6490 			pr_err("Node %pOF has ", parent->of_node);
6491 		pr_err("Inconsistent \"linux,pci-domain\" property in DT\n");
6492 		domain = -1;
6493 	}
6494 
6495 	return domain;
6496 }
6497 
6498 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6499 {
6500 	return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6501 			       acpi_pci_bus_find_domain_nr(bus);
6502 }
6503 #endif
6504 
6505 /**
6506  * pci_ext_cfg_avail - can we access extended PCI config space?
6507  *
6508  * Returns 1 if we can access PCI extended config space (offsets
6509  * greater than 0xff). This is the default implementation. Architecture
6510  * implementations can override this.
6511  */
6512 int __weak pci_ext_cfg_avail(void)
6513 {
6514 	return 1;
6515 }
6516 
6517 void __weak pci_fixup_cardbus(struct pci_bus *bus)
6518 {
6519 }
6520 EXPORT_SYMBOL(pci_fixup_cardbus);
6521 
6522 static int __init pci_setup(char *str)
6523 {
6524 	while (str) {
6525 		char *k = strchr(str, ',');
6526 		if (k)
6527 			*k++ = 0;
6528 		if (*str && (str = pcibios_setup(str)) && *str) {
6529 			if (!strcmp(str, "nomsi")) {
6530 				pci_no_msi();
6531 			} else if (!strncmp(str, "noats", 5)) {
6532 				pr_info("PCIe: ATS is disabled\n");
6533 				pcie_ats_disabled = true;
6534 			} else if (!strcmp(str, "noaer")) {
6535 				pci_no_aer();
6536 			} else if (!strcmp(str, "earlydump")) {
6537 				pci_early_dump = true;
6538 			} else if (!strncmp(str, "realloc=", 8)) {
6539 				pci_realloc_get_opt(str + 8);
6540 			} else if (!strncmp(str, "realloc", 7)) {
6541 				pci_realloc_get_opt("on");
6542 			} else if (!strcmp(str, "nodomains")) {
6543 				pci_no_domains();
6544 			} else if (!strncmp(str, "noari", 5)) {
6545 				pcie_ari_disabled = true;
6546 			} else if (!strncmp(str, "cbiosize=", 9)) {
6547 				pci_cardbus_io_size = memparse(str + 9, &str);
6548 			} else if (!strncmp(str, "cbmemsize=", 10)) {
6549 				pci_cardbus_mem_size = memparse(str + 10, &str);
6550 			} else if (!strncmp(str, "resource_alignment=", 19)) {
6551 				resource_alignment_param = str + 19;
6552 			} else if (!strncmp(str, "ecrc=", 5)) {
6553 				pcie_ecrc_get_policy(str + 5);
6554 			} else if (!strncmp(str, "hpiosize=", 9)) {
6555 				pci_hotplug_io_size = memparse(str + 9, &str);
6556 			} else if (!strncmp(str, "hpmmiosize=", 11)) {
6557 				pci_hotplug_mmio_size = memparse(str + 11, &str);
6558 			} else if (!strncmp(str, "hpmmioprefsize=", 15)) {
6559 				pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
6560 			} else if (!strncmp(str, "hpmemsize=", 10)) {
6561 				pci_hotplug_mmio_size = memparse(str + 10, &str);
6562 				pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
6563 			} else if (!strncmp(str, "hpbussize=", 10)) {
6564 				pci_hotplug_bus_size =
6565 					simple_strtoul(str + 10, &str, 0);
6566 				if (pci_hotplug_bus_size > 0xff)
6567 					pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6568 			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6569 				pcie_bus_config = PCIE_BUS_TUNE_OFF;
6570 			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
6571 				pcie_bus_config = PCIE_BUS_SAFE;
6572 			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
6573 				pcie_bus_config = PCIE_BUS_PERFORMANCE;
6574 			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6575 				pcie_bus_config = PCIE_BUS_PEER2PEER;
6576 			} else if (!strncmp(str, "pcie_scan_all", 13)) {
6577 				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6578 			} else if (!strncmp(str, "disable_acs_redir=", 18)) {
6579 				disable_acs_redir_param = str + 18;
6580 			} else {
6581 				pr_err("PCI: Unknown option `%s'\n", str);
6582 			}
6583 		}
6584 		str = k;
6585 	}
6586 	return 0;
6587 }
6588 early_param("pci", pci_setup);
6589 
6590 /*
6591  * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6592  * in pci_setup(), above, to point to data in the __initdata section which
6593  * will be freed after the init sequence is complete. We can't allocate memory
6594  * in pci_setup() because some architectures do not have any memory allocation
6595  * service available during an early_param() call. So we allocate memory and
6596  * copy the variable here before the init section is freed.
6597  *
6598  */
6599 static int __init pci_realloc_setup_params(void)
6600 {
6601 	resource_alignment_param = kstrdup(resource_alignment_param,
6602 					   GFP_KERNEL);
6603 	disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6604 
6605 	return 0;
6606 }
6607 pure_initcall(pci_realloc_setup_params);
6608