1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * PCI Bus Services, see include/linux/pci.h for further explanation. 4 * 5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter, 6 * David Mosberger-Tang 7 * 8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz> 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/kernel.h> 13 #include <linux/delay.h> 14 #include <linux/dmi.h> 15 #include <linux/init.h> 16 #include <linux/msi.h> 17 #include <linux/of.h> 18 #include <linux/pci.h> 19 #include <linux/pm.h> 20 #include <linux/slab.h> 21 #include <linux/module.h> 22 #include <linux/spinlock.h> 23 #include <linux/string.h> 24 #include <linux/log2.h> 25 #include <linux/logic_pio.h> 26 #include <linux/pm_wakeup.h> 27 #include <linux/interrupt.h> 28 #include <linux/device.h> 29 #include <linux/pm_runtime.h> 30 #include <linux/pci_hotplug.h> 31 #include <linux/vmalloc.h> 32 #include <asm/dma.h> 33 #include <linux/aer.h> 34 #include "pci.h" 35 36 DEFINE_MUTEX(pci_slot_mutex); 37 38 const char *pci_power_names[] = { 39 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown", 40 }; 41 EXPORT_SYMBOL_GPL(pci_power_names); 42 43 int isa_dma_bridge_buggy; 44 EXPORT_SYMBOL(isa_dma_bridge_buggy); 45 46 int pci_pci_problems; 47 EXPORT_SYMBOL(pci_pci_problems); 48 49 unsigned int pci_pm_d3hot_delay; 50 51 static void pci_pme_list_scan(struct work_struct *work); 52 53 static LIST_HEAD(pci_pme_list); 54 static DEFINE_MUTEX(pci_pme_list_mutex); 55 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan); 56 57 struct pci_pme_device { 58 struct list_head list; 59 struct pci_dev *dev; 60 }; 61 62 #define PME_TIMEOUT 1000 /* How long between PME checks */ 63 64 static void pci_dev_d3_sleep(struct pci_dev *dev) 65 { 66 unsigned int delay = dev->d3hot_delay; 67 68 if (delay < pci_pm_d3hot_delay) 69 delay = pci_pm_d3hot_delay; 70 71 if (delay) 72 msleep(delay); 73 } 74 75 #ifdef CONFIG_PCI_DOMAINS 76 int pci_domains_supported = 1; 77 #endif 78 79 #define DEFAULT_CARDBUS_IO_SIZE (256) 80 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024) 81 /* pci=cbmemsize=nnM,cbiosize=nn can override this */ 82 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE; 83 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE; 84 85 #define DEFAULT_HOTPLUG_IO_SIZE (256) 86 #define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024) 87 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024) 88 /* hpiosize=nn can override this */ 89 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE; 90 /* 91 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size, 92 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size; 93 * pci=hpmemsize=nnM overrides both 94 */ 95 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE; 96 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE; 97 98 #define DEFAULT_HOTPLUG_BUS_SIZE 1 99 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 100 101 102 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */ 103 #ifdef CONFIG_PCIE_BUS_TUNE_OFF 104 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF; 105 #elif defined CONFIG_PCIE_BUS_SAFE 106 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE; 107 #elif defined CONFIG_PCIE_BUS_PERFORMANCE 108 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE; 109 #elif defined CONFIG_PCIE_BUS_PEER2PEER 110 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER; 111 #else 112 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT; 113 #endif 114 115 /* 116 * The default CLS is used if arch didn't set CLS explicitly and not 117 * all pci devices agree on the same value. Arch can override either 118 * the dfl or actual value as it sees fit. Don't forget this is 119 * measured in 32-bit words, not bytes. 120 */ 121 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2; 122 u8 pci_cache_line_size; 123 124 /* 125 * If we set up a device for bus mastering, we need to check the latency 126 * timer as certain BIOSes forget to set it properly. 127 */ 128 unsigned int pcibios_max_latency = 255; 129 130 /* If set, the PCIe ARI capability will not be used. */ 131 static bool pcie_ari_disabled; 132 133 /* If set, the PCIe ATS capability will not be used. */ 134 static bool pcie_ats_disabled; 135 136 /* If set, the PCI config space of each device is printed during boot. */ 137 bool pci_early_dump; 138 139 bool pci_ats_disabled(void) 140 { 141 return pcie_ats_disabled; 142 } 143 EXPORT_SYMBOL_GPL(pci_ats_disabled); 144 145 /* Disable bridge_d3 for all PCIe ports */ 146 static bool pci_bridge_d3_disable; 147 /* Force bridge_d3 for all PCIe ports */ 148 static bool pci_bridge_d3_force; 149 150 static int __init pcie_port_pm_setup(char *str) 151 { 152 if (!strcmp(str, "off")) 153 pci_bridge_d3_disable = true; 154 else if (!strcmp(str, "force")) 155 pci_bridge_d3_force = true; 156 return 1; 157 } 158 __setup("pcie_port_pm=", pcie_port_pm_setup); 159 160 /* Time to wait after a reset for device to become responsive */ 161 #define PCIE_RESET_READY_POLL_MS 60000 162 163 /** 164 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children 165 * @bus: pointer to PCI bus structure to search 166 * 167 * Given a PCI bus, returns the highest PCI bus number present in the set 168 * including the given PCI bus and its list of child PCI buses. 169 */ 170 unsigned char pci_bus_max_busnr(struct pci_bus *bus) 171 { 172 struct pci_bus *tmp; 173 unsigned char max, n; 174 175 max = bus->busn_res.end; 176 list_for_each_entry(tmp, &bus->children, node) { 177 n = pci_bus_max_busnr(tmp); 178 if (n > max) 179 max = n; 180 } 181 return max; 182 } 183 EXPORT_SYMBOL_GPL(pci_bus_max_busnr); 184 185 /** 186 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS 187 * @pdev: the PCI device 188 * 189 * Returns error bits set in PCI_STATUS and clears them. 190 */ 191 int pci_status_get_and_clear_errors(struct pci_dev *pdev) 192 { 193 u16 status; 194 int ret; 195 196 ret = pci_read_config_word(pdev, PCI_STATUS, &status); 197 if (ret != PCIBIOS_SUCCESSFUL) 198 return -EIO; 199 200 status &= PCI_STATUS_ERROR_BITS; 201 if (status) 202 pci_write_config_word(pdev, PCI_STATUS, status); 203 204 return status; 205 } 206 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors); 207 208 #ifdef CONFIG_HAS_IOMEM 209 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar) 210 { 211 struct resource *res = &pdev->resource[bar]; 212 213 /* 214 * Make sure the BAR is actually a memory resource, not an IO resource 215 */ 216 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) { 217 pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res); 218 return NULL; 219 } 220 return ioremap(res->start, resource_size(res)); 221 } 222 EXPORT_SYMBOL_GPL(pci_ioremap_bar); 223 224 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar) 225 { 226 /* 227 * Make sure the BAR is actually a memory resource, not an IO resource 228 */ 229 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) { 230 WARN_ON(1); 231 return NULL; 232 } 233 return ioremap_wc(pci_resource_start(pdev, bar), 234 pci_resource_len(pdev, bar)); 235 } 236 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar); 237 #endif 238 239 /** 240 * pci_dev_str_match_path - test if a path string matches a device 241 * @dev: the PCI device to test 242 * @path: string to match the device against 243 * @endptr: pointer to the string after the match 244 * 245 * Test if a string (typically from a kernel parameter) formatted as a 246 * path of device/function addresses matches a PCI device. The string must 247 * be of the form: 248 * 249 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 250 * 251 * A path for a device can be obtained using 'lspci -t'. Using a path 252 * is more robust against bus renumbering than using only a single bus, 253 * device and function address. 254 * 255 * Returns 1 if the string matches the device, 0 if it does not and 256 * a negative error code if it fails to parse the string. 257 */ 258 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path, 259 const char **endptr) 260 { 261 int ret; 262 int seg, bus, slot, func; 263 char *wpath, *p; 264 char end; 265 266 *endptr = strchrnul(path, ';'); 267 268 wpath = kmemdup_nul(path, *endptr - path, GFP_KERNEL); 269 if (!wpath) 270 return -ENOMEM; 271 272 while (1) { 273 p = strrchr(wpath, '/'); 274 if (!p) 275 break; 276 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end); 277 if (ret != 2) { 278 ret = -EINVAL; 279 goto free_and_exit; 280 } 281 282 if (dev->devfn != PCI_DEVFN(slot, func)) { 283 ret = 0; 284 goto free_and_exit; 285 } 286 287 /* 288 * Note: we don't need to get a reference to the upstream 289 * bridge because we hold a reference to the top level 290 * device which should hold a reference to the bridge, 291 * and so on. 292 */ 293 dev = pci_upstream_bridge(dev); 294 if (!dev) { 295 ret = 0; 296 goto free_and_exit; 297 } 298 299 *p = 0; 300 } 301 302 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot, 303 &func, &end); 304 if (ret != 4) { 305 seg = 0; 306 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end); 307 if (ret != 3) { 308 ret = -EINVAL; 309 goto free_and_exit; 310 } 311 } 312 313 ret = (seg == pci_domain_nr(dev->bus) && 314 bus == dev->bus->number && 315 dev->devfn == PCI_DEVFN(slot, func)); 316 317 free_and_exit: 318 kfree(wpath); 319 return ret; 320 } 321 322 /** 323 * pci_dev_str_match - test if a string matches a device 324 * @dev: the PCI device to test 325 * @p: string to match the device against 326 * @endptr: pointer to the string after the match 327 * 328 * Test if a string (typically from a kernel parameter) matches a specified 329 * PCI device. The string may be of one of the following formats: 330 * 331 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 332 * pci:<vendor>:<device>[:<subvendor>:<subdevice>] 333 * 334 * The first format specifies a PCI bus/device/function address which 335 * may change if new hardware is inserted, if motherboard firmware changes, 336 * or due to changes caused in kernel parameters. If the domain is 337 * left unspecified, it is taken to be 0. In order to be robust against 338 * bus renumbering issues, a path of PCI device/function numbers may be used 339 * to address the specific device. The path for a device can be determined 340 * through the use of 'lspci -t'. 341 * 342 * The second format matches devices using IDs in the configuration 343 * space which may match multiple devices in the system. A value of 0 344 * for any field will match all devices. (Note: this differs from 345 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for 346 * legacy reasons and convenience so users don't have to specify 347 * FFFFFFFFs on the command line.) 348 * 349 * Returns 1 if the string matches the device, 0 if it does not and 350 * a negative error code if the string cannot be parsed. 351 */ 352 static int pci_dev_str_match(struct pci_dev *dev, const char *p, 353 const char **endptr) 354 { 355 int ret; 356 int count; 357 unsigned short vendor, device, subsystem_vendor, subsystem_device; 358 359 if (strncmp(p, "pci:", 4) == 0) { 360 /* PCI vendor/device (subvendor/subdevice) IDs are specified */ 361 p += 4; 362 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device, 363 &subsystem_vendor, &subsystem_device, &count); 364 if (ret != 4) { 365 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count); 366 if (ret != 2) 367 return -EINVAL; 368 369 subsystem_vendor = 0; 370 subsystem_device = 0; 371 } 372 373 p += count; 374 375 if ((!vendor || vendor == dev->vendor) && 376 (!device || device == dev->device) && 377 (!subsystem_vendor || 378 subsystem_vendor == dev->subsystem_vendor) && 379 (!subsystem_device || 380 subsystem_device == dev->subsystem_device)) 381 goto found; 382 } else { 383 /* 384 * PCI Bus, Device, Function IDs are specified 385 * (optionally, may include a path of devfns following it) 386 */ 387 ret = pci_dev_str_match_path(dev, p, &p); 388 if (ret < 0) 389 return ret; 390 else if (ret) 391 goto found; 392 } 393 394 *endptr = p; 395 return 0; 396 397 found: 398 *endptr = p; 399 return 1; 400 } 401 402 static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn, 403 u8 pos, int cap, int *ttl) 404 { 405 u8 id; 406 u16 ent; 407 408 pci_bus_read_config_byte(bus, devfn, pos, &pos); 409 410 while ((*ttl)--) { 411 if (pos < 0x40) 412 break; 413 pos &= ~3; 414 pci_bus_read_config_word(bus, devfn, pos, &ent); 415 416 id = ent & 0xff; 417 if (id == 0xff) 418 break; 419 if (id == cap) 420 return pos; 421 pos = (ent >> 8); 422 } 423 return 0; 424 } 425 426 static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn, 427 u8 pos, int cap) 428 { 429 int ttl = PCI_FIND_CAP_TTL; 430 431 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl); 432 } 433 434 u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap) 435 { 436 return __pci_find_next_cap(dev->bus, dev->devfn, 437 pos + PCI_CAP_LIST_NEXT, cap); 438 } 439 EXPORT_SYMBOL_GPL(pci_find_next_capability); 440 441 static u8 __pci_bus_find_cap_start(struct pci_bus *bus, 442 unsigned int devfn, u8 hdr_type) 443 { 444 u16 status; 445 446 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status); 447 if (!(status & PCI_STATUS_CAP_LIST)) 448 return 0; 449 450 switch (hdr_type) { 451 case PCI_HEADER_TYPE_NORMAL: 452 case PCI_HEADER_TYPE_BRIDGE: 453 return PCI_CAPABILITY_LIST; 454 case PCI_HEADER_TYPE_CARDBUS: 455 return PCI_CB_CAPABILITY_LIST; 456 } 457 458 return 0; 459 } 460 461 /** 462 * pci_find_capability - query for devices' capabilities 463 * @dev: PCI device to query 464 * @cap: capability code 465 * 466 * Tell if a device supports a given PCI capability. 467 * Returns the address of the requested capability structure within the 468 * device's PCI configuration space or 0 in case the device does not 469 * support it. Possible values for @cap include: 470 * 471 * %PCI_CAP_ID_PM Power Management 472 * %PCI_CAP_ID_AGP Accelerated Graphics Port 473 * %PCI_CAP_ID_VPD Vital Product Data 474 * %PCI_CAP_ID_SLOTID Slot Identification 475 * %PCI_CAP_ID_MSI Message Signalled Interrupts 476 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap 477 * %PCI_CAP_ID_PCIX PCI-X 478 * %PCI_CAP_ID_EXP PCI Express 479 */ 480 u8 pci_find_capability(struct pci_dev *dev, int cap) 481 { 482 u8 pos; 483 484 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 485 if (pos) 486 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap); 487 488 return pos; 489 } 490 EXPORT_SYMBOL(pci_find_capability); 491 492 /** 493 * pci_bus_find_capability - query for devices' capabilities 494 * @bus: the PCI bus to query 495 * @devfn: PCI device to query 496 * @cap: capability code 497 * 498 * Like pci_find_capability() but works for PCI devices that do not have a 499 * pci_dev structure set up yet. 500 * 501 * Returns the address of the requested capability structure within the 502 * device's PCI configuration space or 0 in case the device does not 503 * support it. 504 */ 505 u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap) 506 { 507 u8 hdr_type, pos; 508 509 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type); 510 511 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f); 512 if (pos) 513 pos = __pci_find_next_cap(bus, devfn, pos, cap); 514 515 return pos; 516 } 517 EXPORT_SYMBOL(pci_bus_find_capability); 518 519 /** 520 * pci_find_next_ext_capability - Find an extended capability 521 * @dev: PCI device to query 522 * @start: address at which to start looking (0 to start at beginning of list) 523 * @cap: capability code 524 * 525 * Returns the address of the next matching extended capability structure 526 * within the device's PCI configuration space or 0 if the device does 527 * not support it. Some capabilities can occur several times, e.g., the 528 * vendor-specific capability, and this provides a way to find them all. 529 */ 530 u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap) 531 { 532 u32 header; 533 int ttl; 534 u16 pos = PCI_CFG_SPACE_SIZE; 535 536 /* minimum 8 bytes per capability */ 537 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8; 538 539 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE) 540 return 0; 541 542 if (start) 543 pos = start; 544 545 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 546 return 0; 547 548 /* 549 * If we have no capabilities, this is indicated by cap ID, 550 * cap version and next pointer all being 0. 551 */ 552 if (header == 0) 553 return 0; 554 555 while (ttl-- > 0) { 556 if (PCI_EXT_CAP_ID(header) == cap && pos != start) 557 return pos; 558 559 pos = PCI_EXT_CAP_NEXT(header); 560 if (pos < PCI_CFG_SPACE_SIZE) 561 break; 562 563 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 564 break; 565 } 566 567 return 0; 568 } 569 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability); 570 571 /** 572 * pci_find_ext_capability - Find an extended capability 573 * @dev: PCI device to query 574 * @cap: capability code 575 * 576 * Returns the address of the requested extended capability structure 577 * within the device's PCI configuration space or 0 if the device does 578 * not support it. Possible values for @cap include: 579 * 580 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting 581 * %PCI_EXT_CAP_ID_VC Virtual Channel 582 * %PCI_EXT_CAP_ID_DSN Device Serial Number 583 * %PCI_EXT_CAP_ID_PWR Power Budgeting 584 */ 585 u16 pci_find_ext_capability(struct pci_dev *dev, int cap) 586 { 587 return pci_find_next_ext_capability(dev, 0, cap); 588 } 589 EXPORT_SYMBOL_GPL(pci_find_ext_capability); 590 591 /** 592 * pci_get_dsn - Read and return the 8-byte Device Serial Number 593 * @dev: PCI device to query 594 * 595 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial 596 * Number. 597 * 598 * Returns the DSN, or zero if the capability does not exist. 599 */ 600 u64 pci_get_dsn(struct pci_dev *dev) 601 { 602 u32 dword; 603 u64 dsn; 604 int pos; 605 606 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN); 607 if (!pos) 608 return 0; 609 610 /* 611 * The Device Serial Number is two dwords offset 4 bytes from the 612 * capability position. The specification says that the first dword is 613 * the lower half, and the second dword is the upper half. 614 */ 615 pos += 4; 616 pci_read_config_dword(dev, pos, &dword); 617 dsn = (u64)dword; 618 pci_read_config_dword(dev, pos + 4, &dword); 619 dsn |= ((u64)dword) << 32; 620 621 return dsn; 622 } 623 EXPORT_SYMBOL_GPL(pci_get_dsn); 624 625 static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap) 626 { 627 int rc, ttl = PCI_FIND_CAP_TTL; 628 u8 cap, mask; 629 630 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST) 631 mask = HT_3BIT_CAP_MASK; 632 else 633 mask = HT_5BIT_CAP_MASK; 634 635 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos, 636 PCI_CAP_ID_HT, &ttl); 637 while (pos) { 638 rc = pci_read_config_byte(dev, pos + 3, &cap); 639 if (rc != PCIBIOS_SUCCESSFUL) 640 return 0; 641 642 if ((cap & mask) == ht_cap) 643 return pos; 644 645 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, 646 pos + PCI_CAP_LIST_NEXT, 647 PCI_CAP_ID_HT, &ttl); 648 } 649 650 return 0; 651 } 652 653 /** 654 * pci_find_next_ht_capability - query a device's HyperTransport capabilities 655 * @dev: PCI device to query 656 * @pos: Position from which to continue searching 657 * @ht_cap: HyperTransport capability code 658 * 659 * To be used in conjunction with pci_find_ht_capability() to search for 660 * all capabilities matching @ht_cap. @pos should always be a value returned 661 * from pci_find_ht_capability(). 662 * 663 * NB. To be 100% safe against broken PCI devices, the caller should take 664 * steps to avoid an infinite loop. 665 */ 666 u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap) 667 { 668 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap); 669 } 670 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability); 671 672 /** 673 * pci_find_ht_capability - query a device's HyperTransport capabilities 674 * @dev: PCI device to query 675 * @ht_cap: HyperTransport capability code 676 * 677 * Tell if a device supports a given HyperTransport capability. 678 * Returns an address within the device's PCI configuration space 679 * or 0 in case the device does not support the request capability. 680 * The address points to the PCI capability, of type PCI_CAP_ID_HT, 681 * which has a HyperTransport capability matching @ht_cap. 682 */ 683 u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap) 684 { 685 u8 pos; 686 687 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 688 if (pos) 689 pos = __pci_find_next_ht_cap(dev, pos, ht_cap); 690 691 return pos; 692 } 693 EXPORT_SYMBOL_GPL(pci_find_ht_capability); 694 695 /** 696 * pci_find_parent_resource - return resource region of parent bus of given 697 * region 698 * @dev: PCI device structure contains resources to be searched 699 * @res: child resource record for which parent is sought 700 * 701 * For given resource region of given device, return the resource region of 702 * parent bus the given region is contained in. 703 */ 704 struct resource *pci_find_parent_resource(const struct pci_dev *dev, 705 struct resource *res) 706 { 707 const struct pci_bus *bus = dev->bus; 708 struct resource *r; 709 int i; 710 711 pci_bus_for_each_resource(bus, r, i) { 712 if (!r) 713 continue; 714 if (resource_contains(r, res)) { 715 716 /* 717 * If the window is prefetchable but the BAR is 718 * not, the allocator made a mistake. 719 */ 720 if (r->flags & IORESOURCE_PREFETCH && 721 !(res->flags & IORESOURCE_PREFETCH)) 722 return NULL; 723 724 /* 725 * If we're below a transparent bridge, there may 726 * be both a positively-decoded aperture and a 727 * subtractively-decoded region that contain the BAR. 728 * We want the positively-decoded one, so this depends 729 * on pci_bus_for_each_resource() giving us those 730 * first. 731 */ 732 return r; 733 } 734 } 735 return NULL; 736 } 737 EXPORT_SYMBOL(pci_find_parent_resource); 738 739 /** 740 * pci_find_resource - Return matching PCI device resource 741 * @dev: PCI device to query 742 * @res: Resource to look for 743 * 744 * Goes over standard PCI resources (BARs) and checks if the given resource 745 * is partially or fully contained in any of them. In that case the 746 * matching resource is returned, %NULL otherwise. 747 */ 748 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res) 749 { 750 int i; 751 752 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 753 struct resource *r = &dev->resource[i]; 754 755 if (r->start && resource_contains(r, res)) 756 return r; 757 } 758 759 return NULL; 760 } 761 EXPORT_SYMBOL(pci_find_resource); 762 763 /** 764 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos 765 * @dev: the PCI device to operate on 766 * @pos: config space offset of status word 767 * @mask: mask of bit(s) to care about in status word 768 * 769 * Return 1 when mask bit(s) in status word clear, 0 otherwise. 770 */ 771 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask) 772 { 773 int i; 774 775 /* Wait for Transaction Pending bit clean */ 776 for (i = 0; i < 4; i++) { 777 u16 status; 778 if (i) 779 msleep((1 << (i - 1)) * 100); 780 781 pci_read_config_word(dev, pos, &status); 782 if (!(status & mask)) 783 return 1; 784 } 785 786 return 0; 787 } 788 789 static int pci_acs_enable; 790 791 /** 792 * pci_request_acs - ask for ACS to be enabled if supported 793 */ 794 void pci_request_acs(void) 795 { 796 pci_acs_enable = 1; 797 } 798 799 static const char *disable_acs_redir_param; 800 801 /** 802 * pci_disable_acs_redir - disable ACS redirect capabilities 803 * @dev: the PCI device 804 * 805 * For only devices specified in the disable_acs_redir parameter. 806 */ 807 static void pci_disable_acs_redir(struct pci_dev *dev) 808 { 809 int ret = 0; 810 const char *p; 811 int pos; 812 u16 ctrl; 813 814 if (!disable_acs_redir_param) 815 return; 816 817 p = disable_acs_redir_param; 818 while (*p) { 819 ret = pci_dev_str_match(dev, p, &p); 820 if (ret < 0) { 821 pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n", 822 disable_acs_redir_param); 823 824 break; 825 } else if (ret == 1) { 826 /* Found a match */ 827 break; 828 } 829 830 if (*p != ';' && *p != ',') { 831 /* End of param or invalid format */ 832 break; 833 } 834 p++; 835 } 836 837 if (ret != 1) 838 return; 839 840 if (!pci_dev_specific_disable_acs_redir(dev)) 841 return; 842 843 pos = dev->acs_cap; 844 if (!pos) { 845 pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n"); 846 return; 847 } 848 849 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 850 851 /* P2P Request & Completion Redirect */ 852 ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC); 853 854 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 855 856 pci_info(dev, "disabled ACS redirect\n"); 857 } 858 859 /** 860 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities 861 * @dev: the PCI device 862 */ 863 static void pci_std_enable_acs(struct pci_dev *dev) 864 { 865 int pos; 866 u16 cap; 867 u16 ctrl; 868 869 pos = dev->acs_cap; 870 if (!pos) 871 return; 872 873 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap); 874 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 875 876 /* Source Validation */ 877 ctrl |= (cap & PCI_ACS_SV); 878 879 /* P2P Request Redirect */ 880 ctrl |= (cap & PCI_ACS_RR); 881 882 /* P2P Completion Redirect */ 883 ctrl |= (cap & PCI_ACS_CR); 884 885 /* Upstream Forwarding */ 886 ctrl |= (cap & PCI_ACS_UF); 887 888 /* Enable Translation Blocking for external devices */ 889 if (dev->external_facing || dev->untrusted) 890 ctrl |= (cap & PCI_ACS_TB); 891 892 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 893 } 894 895 /** 896 * pci_enable_acs - enable ACS if hardware support it 897 * @dev: the PCI device 898 */ 899 static void pci_enable_acs(struct pci_dev *dev) 900 { 901 if (!pci_acs_enable) 902 goto disable_acs_redir; 903 904 if (!pci_dev_specific_enable_acs(dev)) 905 goto disable_acs_redir; 906 907 pci_std_enable_acs(dev); 908 909 disable_acs_redir: 910 /* 911 * Note: pci_disable_acs_redir() must be called even if ACS was not 912 * enabled by the kernel because it may have been enabled by 913 * platform firmware. So if we are told to disable it, we should 914 * always disable it after setting the kernel's default 915 * preferences. 916 */ 917 pci_disable_acs_redir(dev); 918 } 919 920 /** 921 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up) 922 * @dev: PCI device to have its BARs restored 923 * 924 * Restore the BAR values for a given device, so as to make it 925 * accessible by its driver. 926 */ 927 static void pci_restore_bars(struct pci_dev *dev) 928 { 929 int i; 930 931 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) 932 pci_update_resource(dev, i); 933 } 934 935 static const struct pci_platform_pm_ops *pci_platform_pm; 936 937 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops) 938 { 939 if (!ops->is_manageable || !ops->set_state || !ops->get_state || 940 !ops->choose_state || !ops->set_wakeup || !ops->need_resume) 941 return -EINVAL; 942 pci_platform_pm = ops; 943 return 0; 944 } 945 946 static inline bool platform_pci_power_manageable(struct pci_dev *dev) 947 { 948 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false; 949 } 950 951 static inline int platform_pci_set_power_state(struct pci_dev *dev, 952 pci_power_t t) 953 { 954 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS; 955 } 956 957 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev) 958 { 959 return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN; 960 } 961 962 static inline void platform_pci_refresh_power_state(struct pci_dev *dev) 963 { 964 if (pci_platform_pm && pci_platform_pm->refresh_state) 965 pci_platform_pm->refresh_state(dev); 966 } 967 968 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev) 969 { 970 return pci_platform_pm ? 971 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR; 972 } 973 974 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable) 975 { 976 return pci_platform_pm ? 977 pci_platform_pm->set_wakeup(dev, enable) : -ENODEV; 978 } 979 980 static inline bool platform_pci_need_resume(struct pci_dev *dev) 981 { 982 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false; 983 } 984 985 static inline bool platform_pci_bridge_d3(struct pci_dev *dev) 986 { 987 if (pci_platform_pm && pci_platform_pm->bridge_d3) 988 return pci_platform_pm->bridge_d3(dev); 989 return false; 990 } 991 992 /** 993 * pci_raw_set_power_state - Use PCI PM registers to set the power state of 994 * given PCI device 995 * @dev: PCI device to handle. 996 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 997 * 998 * RETURN VALUE: 999 * -EINVAL if the requested state is invalid. 1000 * -EIO if device does not support PCI PM or its PM capabilities register has a 1001 * wrong version, or device doesn't support the requested state. 1002 * 0 if device already is in the requested state. 1003 * 0 if device's power state has been successfully changed. 1004 */ 1005 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state) 1006 { 1007 u16 pmcsr; 1008 bool need_restore = false; 1009 1010 /* Check if we're already there */ 1011 if (dev->current_state == state) 1012 return 0; 1013 1014 if (!dev->pm_cap) 1015 return -EIO; 1016 1017 if (state < PCI_D0 || state > PCI_D3hot) 1018 return -EINVAL; 1019 1020 /* 1021 * Validate transition: We can enter D0 from any state, but if 1022 * we're already in a low-power state, we can only go deeper. E.g., 1023 * we can go from D1 to D3, but we can't go directly from D3 to D1; 1024 * we'd have to go from D3 to D0, then to D1. 1025 */ 1026 if (state != PCI_D0 && dev->current_state <= PCI_D3cold 1027 && dev->current_state > state) { 1028 pci_err(dev, "invalid power transition (from %s to %s)\n", 1029 pci_power_name(dev->current_state), 1030 pci_power_name(state)); 1031 return -EINVAL; 1032 } 1033 1034 /* Check if this device supports the desired state */ 1035 if ((state == PCI_D1 && !dev->d1_support) 1036 || (state == PCI_D2 && !dev->d2_support)) 1037 return -EIO; 1038 1039 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1040 if (pmcsr == (u16) ~0) { 1041 pci_err(dev, "can't change power state from %s to %s (config space inaccessible)\n", 1042 pci_power_name(dev->current_state), 1043 pci_power_name(state)); 1044 return -EIO; 1045 } 1046 1047 /* 1048 * If we're (effectively) in D3, force entire word to 0. 1049 * This doesn't affect PME_Status, disables PME_En, and 1050 * sets PowerState to 0. 1051 */ 1052 switch (dev->current_state) { 1053 case PCI_D0: 1054 case PCI_D1: 1055 case PCI_D2: 1056 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 1057 pmcsr |= state; 1058 break; 1059 case PCI_D3hot: 1060 case PCI_D3cold: 1061 case PCI_UNKNOWN: /* Boot-up */ 1062 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot 1063 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET)) 1064 need_restore = true; 1065 fallthrough; /* force to D0 */ 1066 default: 1067 pmcsr = 0; 1068 break; 1069 } 1070 1071 /* Enter specified state */ 1072 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 1073 1074 /* 1075 * Mandatory power management transition delays; see PCI PM 1.1 1076 * 5.6.1 table 18 1077 */ 1078 if (state == PCI_D3hot || dev->current_state == PCI_D3hot) 1079 pci_dev_d3_sleep(dev); 1080 else if (state == PCI_D2 || dev->current_state == PCI_D2) 1081 udelay(PCI_PM_D2_DELAY); 1082 1083 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1084 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 1085 if (dev->current_state != state) 1086 pci_info_ratelimited(dev, "refused to change power state from %s to %s\n", 1087 pci_power_name(dev->current_state), 1088 pci_power_name(state)); 1089 1090 /* 1091 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT 1092 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning 1093 * from D3hot to D0 _may_ perform an internal reset, thereby 1094 * going to "D0 Uninitialized" rather than "D0 Initialized". 1095 * For example, at least some versions of the 3c905B and the 1096 * 3c556B exhibit this behaviour. 1097 * 1098 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave 1099 * devices in a D3hot state at boot. Consequently, we need to 1100 * restore at least the BARs so that the device will be 1101 * accessible to its driver. 1102 */ 1103 if (need_restore) 1104 pci_restore_bars(dev); 1105 1106 if (dev->bus->self) 1107 pcie_aspm_pm_state_change(dev->bus->self); 1108 1109 return 0; 1110 } 1111 1112 /** 1113 * pci_update_current_state - Read power state of given device and cache it 1114 * @dev: PCI device to handle. 1115 * @state: State to cache in case the device doesn't have the PM capability 1116 * 1117 * The power state is read from the PMCSR register, which however is 1118 * inaccessible in D3cold. The platform firmware is therefore queried first 1119 * to detect accessibility of the register. In case the platform firmware 1120 * reports an incorrect state or the device isn't power manageable by the 1121 * platform at all, we try to detect D3cold by testing accessibility of the 1122 * vendor ID in config space. 1123 */ 1124 void pci_update_current_state(struct pci_dev *dev, pci_power_t state) 1125 { 1126 if (platform_pci_get_power_state(dev) == PCI_D3cold || 1127 !pci_device_is_present(dev)) { 1128 dev->current_state = PCI_D3cold; 1129 } else if (dev->pm_cap) { 1130 u16 pmcsr; 1131 1132 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1133 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 1134 } else { 1135 dev->current_state = state; 1136 } 1137 } 1138 1139 /** 1140 * pci_refresh_power_state - Refresh the given device's power state data 1141 * @dev: Target PCI device. 1142 * 1143 * Ask the platform to refresh the devices power state information and invoke 1144 * pci_update_current_state() to update its current PCI power state. 1145 */ 1146 void pci_refresh_power_state(struct pci_dev *dev) 1147 { 1148 if (platform_pci_power_manageable(dev)) 1149 platform_pci_refresh_power_state(dev); 1150 1151 pci_update_current_state(dev, dev->current_state); 1152 } 1153 1154 /** 1155 * pci_platform_power_transition - Use platform to change device power state 1156 * @dev: PCI device to handle. 1157 * @state: State to put the device into. 1158 */ 1159 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state) 1160 { 1161 int error; 1162 1163 if (platform_pci_power_manageable(dev)) { 1164 error = platform_pci_set_power_state(dev, state); 1165 if (!error) 1166 pci_update_current_state(dev, state); 1167 } else 1168 error = -ENODEV; 1169 1170 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */ 1171 dev->current_state = PCI_D0; 1172 1173 return error; 1174 } 1175 EXPORT_SYMBOL_GPL(pci_platform_power_transition); 1176 1177 static int pci_resume_one(struct pci_dev *pci_dev, void *ign) 1178 { 1179 pm_request_resume(&pci_dev->dev); 1180 return 0; 1181 } 1182 1183 /** 1184 * pci_resume_bus - Walk given bus and runtime resume devices on it 1185 * @bus: Top bus of the subtree to walk. 1186 */ 1187 void pci_resume_bus(struct pci_bus *bus) 1188 { 1189 if (bus) 1190 pci_walk_bus(bus, pci_resume_one, NULL); 1191 } 1192 1193 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout) 1194 { 1195 int delay = 1; 1196 u32 id; 1197 1198 /* 1199 * After reset, the device should not silently discard config 1200 * requests, but it may still indicate that it needs more time by 1201 * responding to them with CRS completions. The Root Port will 1202 * generally synthesize ~0 data to complete the read (except when 1203 * CRS SV is enabled and the read was for the Vendor ID; in that 1204 * case it synthesizes 0x0001 data). 1205 * 1206 * Wait for the device to return a non-CRS completion. Read the 1207 * Command register instead of Vendor ID so we don't have to 1208 * contend with the CRS SV value. 1209 */ 1210 pci_read_config_dword(dev, PCI_COMMAND, &id); 1211 while (id == ~0) { 1212 if (delay > timeout) { 1213 pci_warn(dev, "not ready %dms after %s; giving up\n", 1214 delay - 1, reset_type); 1215 return -ENOTTY; 1216 } 1217 1218 if (delay > 1000) 1219 pci_info(dev, "not ready %dms after %s; waiting\n", 1220 delay - 1, reset_type); 1221 1222 msleep(delay); 1223 delay *= 2; 1224 pci_read_config_dword(dev, PCI_COMMAND, &id); 1225 } 1226 1227 if (delay > 1000) 1228 pci_info(dev, "ready %dms after %s\n", delay - 1, 1229 reset_type); 1230 1231 return 0; 1232 } 1233 1234 /** 1235 * pci_power_up - Put the given device into D0 1236 * @dev: PCI device to power up 1237 */ 1238 int pci_power_up(struct pci_dev *dev) 1239 { 1240 pci_platform_power_transition(dev, PCI_D0); 1241 1242 /* 1243 * Mandatory power management transition delays are handled in 1244 * pci_pm_resume_noirq() and pci_pm_runtime_resume() of the 1245 * corresponding bridge. 1246 */ 1247 if (dev->runtime_d3cold) { 1248 /* 1249 * When powering on a bridge from D3cold, the whole hierarchy 1250 * may be powered on into D0uninitialized state, resume them to 1251 * give them a chance to suspend again 1252 */ 1253 pci_resume_bus(dev->subordinate); 1254 } 1255 1256 return pci_raw_set_power_state(dev, PCI_D0); 1257 } 1258 1259 /** 1260 * __pci_dev_set_current_state - Set current state of a PCI device 1261 * @dev: Device to handle 1262 * @data: pointer to state to be set 1263 */ 1264 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data) 1265 { 1266 pci_power_t state = *(pci_power_t *)data; 1267 1268 dev->current_state = state; 1269 return 0; 1270 } 1271 1272 /** 1273 * pci_bus_set_current_state - Walk given bus and set current state of devices 1274 * @bus: Top bus of the subtree to walk. 1275 * @state: state to be set 1276 */ 1277 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state) 1278 { 1279 if (bus) 1280 pci_walk_bus(bus, __pci_dev_set_current_state, &state); 1281 } 1282 1283 /** 1284 * pci_set_power_state - Set the power state of a PCI device 1285 * @dev: PCI device to handle. 1286 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 1287 * 1288 * Transition a device to a new power state, using the platform firmware and/or 1289 * the device's PCI PM registers. 1290 * 1291 * RETURN VALUE: 1292 * -EINVAL if the requested state is invalid. 1293 * -EIO if device does not support PCI PM or its PM capabilities register has a 1294 * wrong version, or device doesn't support the requested state. 1295 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported. 1296 * 0 if device already is in the requested state. 1297 * 0 if the transition is to D3 but D3 is not supported. 1298 * 0 if device's power state has been successfully changed. 1299 */ 1300 int pci_set_power_state(struct pci_dev *dev, pci_power_t state) 1301 { 1302 int error; 1303 1304 /* Bound the state we're entering */ 1305 if (state > PCI_D3cold) 1306 state = PCI_D3cold; 1307 else if (state < PCI_D0) 1308 state = PCI_D0; 1309 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev)) 1310 1311 /* 1312 * If the device or the parent bridge do not support PCI 1313 * PM, ignore the request if we're doing anything other 1314 * than putting it into D0 (which would only happen on 1315 * boot). 1316 */ 1317 return 0; 1318 1319 /* Check if we're already there */ 1320 if (dev->current_state == state) 1321 return 0; 1322 1323 if (state == PCI_D0) 1324 return pci_power_up(dev); 1325 1326 /* 1327 * This device is quirked not to be put into D3, so don't put it in 1328 * D3 1329 */ 1330 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3)) 1331 return 0; 1332 1333 /* 1334 * To put device in D3cold, we put device into D3hot in native 1335 * way, then put device into D3cold with platform ops 1336 */ 1337 error = pci_raw_set_power_state(dev, state > PCI_D3hot ? 1338 PCI_D3hot : state); 1339 1340 if (pci_platform_power_transition(dev, state)) 1341 return error; 1342 1343 /* Powering off a bridge may power off the whole hierarchy */ 1344 if (state == PCI_D3cold) 1345 pci_bus_set_current_state(dev->subordinate, PCI_D3cold); 1346 1347 return 0; 1348 } 1349 EXPORT_SYMBOL(pci_set_power_state); 1350 1351 /** 1352 * pci_choose_state - Choose the power state of a PCI device 1353 * @dev: PCI device to be suspended 1354 * @state: target sleep state for the whole system. This is the value 1355 * that is passed to suspend() function. 1356 * 1357 * Returns PCI power state suitable for given device and given system 1358 * message. 1359 */ 1360 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state) 1361 { 1362 pci_power_t ret; 1363 1364 if (!dev->pm_cap) 1365 return PCI_D0; 1366 1367 ret = platform_pci_choose_state(dev); 1368 if (ret != PCI_POWER_ERROR) 1369 return ret; 1370 1371 switch (state.event) { 1372 case PM_EVENT_ON: 1373 return PCI_D0; 1374 case PM_EVENT_FREEZE: 1375 case PM_EVENT_PRETHAW: 1376 /* REVISIT both freeze and pre-thaw "should" use D0 */ 1377 case PM_EVENT_SUSPEND: 1378 case PM_EVENT_HIBERNATE: 1379 return PCI_D3hot; 1380 default: 1381 pci_info(dev, "unrecognized suspend event %d\n", 1382 state.event); 1383 BUG(); 1384 } 1385 return PCI_D0; 1386 } 1387 EXPORT_SYMBOL(pci_choose_state); 1388 1389 #define PCI_EXP_SAVE_REGS 7 1390 1391 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev, 1392 u16 cap, bool extended) 1393 { 1394 struct pci_cap_saved_state *tmp; 1395 1396 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) { 1397 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap) 1398 return tmp; 1399 } 1400 return NULL; 1401 } 1402 1403 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap) 1404 { 1405 return _pci_find_saved_cap(dev, cap, false); 1406 } 1407 1408 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap) 1409 { 1410 return _pci_find_saved_cap(dev, cap, true); 1411 } 1412 1413 static int pci_save_pcie_state(struct pci_dev *dev) 1414 { 1415 int i = 0; 1416 struct pci_cap_saved_state *save_state; 1417 u16 *cap; 1418 1419 if (!pci_is_pcie(dev)) 1420 return 0; 1421 1422 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1423 if (!save_state) { 1424 pci_err(dev, "buffer not found in %s\n", __func__); 1425 return -ENOMEM; 1426 } 1427 1428 cap = (u16 *)&save_state->cap.data[0]; 1429 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]); 1430 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]); 1431 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]); 1432 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]); 1433 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]); 1434 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]); 1435 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]); 1436 1437 return 0; 1438 } 1439 1440 static void pci_restore_pcie_state(struct pci_dev *dev) 1441 { 1442 int i = 0; 1443 struct pci_cap_saved_state *save_state; 1444 u16 *cap; 1445 1446 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1447 if (!save_state) 1448 return; 1449 1450 cap = (u16 *)&save_state->cap.data[0]; 1451 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]); 1452 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]); 1453 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]); 1454 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]); 1455 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]); 1456 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]); 1457 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]); 1458 } 1459 1460 static int pci_save_pcix_state(struct pci_dev *dev) 1461 { 1462 int pos; 1463 struct pci_cap_saved_state *save_state; 1464 1465 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1466 if (!pos) 1467 return 0; 1468 1469 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1470 if (!save_state) { 1471 pci_err(dev, "buffer not found in %s\n", __func__); 1472 return -ENOMEM; 1473 } 1474 1475 pci_read_config_word(dev, pos + PCI_X_CMD, 1476 (u16 *)save_state->cap.data); 1477 1478 return 0; 1479 } 1480 1481 static void pci_restore_pcix_state(struct pci_dev *dev) 1482 { 1483 int i = 0, pos; 1484 struct pci_cap_saved_state *save_state; 1485 u16 *cap; 1486 1487 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1488 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1489 if (!save_state || !pos) 1490 return; 1491 cap = (u16 *)&save_state->cap.data[0]; 1492 1493 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]); 1494 } 1495 1496 static void pci_save_ltr_state(struct pci_dev *dev) 1497 { 1498 int ltr; 1499 struct pci_cap_saved_state *save_state; 1500 u16 *cap; 1501 1502 if (!pci_is_pcie(dev)) 1503 return; 1504 1505 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR); 1506 if (!ltr) 1507 return; 1508 1509 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR); 1510 if (!save_state) { 1511 pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n"); 1512 return; 1513 } 1514 1515 cap = (u16 *)&save_state->cap.data[0]; 1516 pci_read_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap++); 1517 pci_read_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, cap++); 1518 } 1519 1520 static void pci_restore_ltr_state(struct pci_dev *dev) 1521 { 1522 struct pci_cap_saved_state *save_state; 1523 int ltr; 1524 u16 *cap; 1525 1526 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR); 1527 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR); 1528 if (!save_state || !ltr) 1529 return; 1530 1531 cap = (u16 *)&save_state->cap.data[0]; 1532 pci_write_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap++); 1533 pci_write_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, *cap++); 1534 } 1535 1536 /** 1537 * pci_save_state - save the PCI configuration space of a device before 1538 * suspending 1539 * @dev: PCI device that we're dealing with 1540 */ 1541 int pci_save_state(struct pci_dev *dev) 1542 { 1543 int i; 1544 /* XXX: 100% dword access ok here? */ 1545 for (i = 0; i < 16; i++) { 1546 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]); 1547 pci_dbg(dev, "saving config space at offset %#x (reading %#x)\n", 1548 i * 4, dev->saved_config_space[i]); 1549 } 1550 dev->state_saved = true; 1551 1552 i = pci_save_pcie_state(dev); 1553 if (i != 0) 1554 return i; 1555 1556 i = pci_save_pcix_state(dev); 1557 if (i != 0) 1558 return i; 1559 1560 pci_save_ltr_state(dev); 1561 pci_save_dpc_state(dev); 1562 pci_save_aer_state(dev); 1563 pci_save_ptm_state(dev); 1564 return pci_save_vc_state(dev); 1565 } 1566 EXPORT_SYMBOL(pci_save_state); 1567 1568 static void pci_restore_config_dword(struct pci_dev *pdev, int offset, 1569 u32 saved_val, int retry, bool force) 1570 { 1571 u32 val; 1572 1573 pci_read_config_dword(pdev, offset, &val); 1574 if (!force && val == saved_val) 1575 return; 1576 1577 for (;;) { 1578 pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n", 1579 offset, val, saved_val); 1580 pci_write_config_dword(pdev, offset, saved_val); 1581 if (retry-- <= 0) 1582 return; 1583 1584 pci_read_config_dword(pdev, offset, &val); 1585 if (val == saved_val) 1586 return; 1587 1588 mdelay(1); 1589 } 1590 } 1591 1592 static void pci_restore_config_space_range(struct pci_dev *pdev, 1593 int start, int end, int retry, 1594 bool force) 1595 { 1596 int index; 1597 1598 for (index = end; index >= start; index--) 1599 pci_restore_config_dword(pdev, 4 * index, 1600 pdev->saved_config_space[index], 1601 retry, force); 1602 } 1603 1604 static void pci_restore_config_space(struct pci_dev *pdev) 1605 { 1606 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) { 1607 pci_restore_config_space_range(pdev, 10, 15, 0, false); 1608 /* Restore BARs before the command register. */ 1609 pci_restore_config_space_range(pdev, 4, 9, 10, false); 1610 pci_restore_config_space_range(pdev, 0, 3, 0, false); 1611 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 1612 pci_restore_config_space_range(pdev, 12, 15, 0, false); 1613 1614 /* 1615 * Force rewriting of prefetch registers to avoid S3 resume 1616 * issues on Intel PCI bridges that occur when these 1617 * registers are not explicitly written. 1618 */ 1619 pci_restore_config_space_range(pdev, 9, 11, 0, true); 1620 pci_restore_config_space_range(pdev, 0, 8, 0, false); 1621 } else { 1622 pci_restore_config_space_range(pdev, 0, 15, 0, false); 1623 } 1624 } 1625 1626 static void pci_restore_rebar_state(struct pci_dev *pdev) 1627 { 1628 unsigned int pos, nbars, i; 1629 u32 ctrl; 1630 1631 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 1632 if (!pos) 1633 return; 1634 1635 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1636 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >> 1637 PCI_REBAR_CTRL_NBAR_SHIFT; 1638 1639 for (i = 0; i < nbars; i++, pos += 8) { 1640 struct resource *res; 1641 int bar_idx, size; 1642 1643 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1644 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX; 1645 res = pdev->resource + bar_idx; 1646 size = pci_rebar_bytes_to_size(resource_size(res)); 1647 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 1648 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT; 1649 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 1650 } 1651 } 1652 1653 /** 1654 * pci_restore_state - Restore the saved state of a PCI device 1655 * @dev: PCI device that we're dealing with 1656 */ 1657 void pci_restore_state(struct pci_dev *dev) 1658 { 1659 if (!dev->state_saved) 1660 return; 1661 1662 /* 1663 * Restore max latencies (in the LTR capability) before enabling 1664 * LTR itself (in the PCIe capability). 1665 */ 1666 pci_restore_ltr_state(dev); 1667 1668 pci_restore_pcie_state(dev); 1669 pci_restore_pasid_state(dev); 1670 pci_restore_pri_state(dev); 1671 pci_restore_ats_state(dev); 1672 pci_restore_vc_state(dev); 1673 pci_restore_rebar_state(dev); 1674 pci_restore_dpc_state(dev); 1675 pci_restore_ptm_state(dev); 1676 1677 pci_aer_clear_status(dev); 1678 pci_restore_aer_state(dev); 1679 1680 pci_restore_config_space(dev); 1681 1682 pci_restore_pcix_state(dev); 1683 pci_restore_msi_state(dev); 1684 1685 /* Restore ACS and IOV configuration state */ 1686 pci_enable_acs(dev); 1687 pci_restore_iov_state(dev); 1688 1689 dev->state_saved = false; 1690 } 1691 EXPORT_SYMBOL(pci_restore_state); 1692 1693 struct pci_saved_state { 1694 u32 config_space[16]; 1695 struct pci_cap_saved_data cap[]; 1696 }; 1697 1698 /** 1699 * pci_store_saved_state - Allocate and return an opaque struct containing 1700 * the device saved state. 1701 * @dev: PCI device that we're dealing with 1702 * 1703 * Return NULL if no state or error. 1704 */ 1705 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev) 1706 { 1707 struct pci_saved_state *state; 1708 struct pci_cap_saved_state *tmp; 1709 struct pci_cap_saved_data *cap; 1710 size_t size; 1711 1712 if (!dev->state_saved) 1713 return NULL; 1714 1715 size = sizeof(*state) + sizeof(struct pci_cap_saved_data); 1716 1717 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) 1718 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1719 1720 state = kzalloc(size, GFP_KERNEL); 1721 if (!state) 1722 return NULL; 1723 1724 memcpy(state->config_space, dev->saved_config_space, 1725 sizeof(state->config_space)); 1726 1727 cap = state->cap; 1728 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) { 1729 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1730 memcpy(cap, &tmp->cap, len); 1731 cap = (struct pci_cap_saved_data *)((u8 *)cap + len); 1732 } 1733 /* Empty cap_save terminates list */ 1734 1735 return state; 1736 } 1737 EXPORT_SYMBOL_GPL(pci_store_saved_state); 1738 1739 /** 1740 * pci_load_saved_state - Reload the provided save state into struct pci_dev. 1741 * @dev: PCI device that we're dealing with 1742 * @state: Saved state returned from pci_store_saved_state() 1743 */ 1744 int pci_load_saved_state(struct pci_dev *dev, 1745 struct pci_saved_state *state) 1746 { 1747 struct pci_cap_saved_data *cap; 1748 1749 dev->state_saved = false; 1750 1751 if (!state) 1752 return 0; 1753 1754 memcpy(dev->saved_config_space, state->config_space, 1755 sizeof(state->config_space)); 1756 1757 cap = state->cap; 1758 while (cap->size) { 1759 struct pci_cap_saved_state *tmp; 1760 1761 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended); 1762 if (!tmp || tmp->cap.size != cap->size) 1763 return -EINVAL; 1764 1765 memcpy(tmp->cap.data, cap->data, tmp->cap.size); 1766 cap = (struct pci_cap_saved_data *)((u8 *)cap + 1767 sizeof(struct pci_cap_saved_data) + cap->size); 1768 } 1769 1770 dev->state_saved = true; 1771 return 0; 1772 } 1773 EXPORT_SYMBOL_GPL(pci_load_saved_state); 1774 1775 /** 1776 * pci_load_and_free_saved_state - Reload the save state pointed to by state, 1777 * and free the memory allocated for it. 1778 * @dev: PCI device that we're dealing with 1779 * @state: Pointer to saved state returned from pci_store_saved_state() 1780 */ 1781 int pci_load_and_free_saved_state(struct pci_dev *dev, 1782 struct pci_saved_state **state) 1783 { 1784 int ret = pci_load_saved_state(dev, *state); 1785 kfree(*state); 1786 *state = NULL; 1787 return ret; 1788 } 1789 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state); 1790 1791 int __weak pcibios_enable_device(struct pci_dev *dev, int bars) 1792 { 1793 return pci_enable_resources(dev, bars); 1794 } 1795 1796 static int do_pci_enable_device(struct pci_dev *dev, int bars) 1797 { 1798 int err; 1799 struct pci_dev *bridge; 1800 u16 cmd; 1801 u8 pin; 1802 1803 err = pci_set_power_state(dev, PCI_D0); 1804 if (err < 0 && err != -EIO) 1805 return err; 1806 1807 bridge = pci_upstream_bridge(dev); 1808 if (bridge) 1809 pcie_aspm_powersave_config_link(bridge); 1810 1811 err = pcibios_enable_device(dev, bars); 1812 if (err < 0) 1813 return err; 1814 pci_fixup_device(pci_fixup_enable, dev); 1815 1816 if (dev->msi_enabled || dev->msix_enabled) 1817 return 0; 1818 1819 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin); 1820 if (pin) { 1821 pci_read_config_word(dev, PCI_COMMAND, &cmd); 1822 if (cmd & PCI_COMMAND_INTX_DISABLE) 1823 pci_write_config_word(dev, PCI_COMMAND, 1824 cmd & ~PCI_COMMAND_INTX_DISABLE); 1825 } 1826 1827 return 0; 1828 } 1829 1830 /** 1831 * pci_reenable_device - Resume abandoned device 1832 * @dev: PCI device to be resumed 1833 * 1834 * NOTE: This function is a backend of pci_default_resume() and is not supposed 1835 * to be called by normal code, write proper resume handler and use it instead. 1836 */ 1837 int pci_reenable_device(struct pci_dev *dev) 1838 { 1839 if (pci_is_enabled(dev)) 1840 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1); 1841 return 0; 1842 } 1843 EXPORT_SYMBOL(pci_reenable_device); 1844 1845 static void pci_enable_bridge(struct pci_dev *dev) 1846 { 1847 struct pci_dev *bridge; 1848 int retval; 1849 1850 bridge = pci_upstream_bridge(dev); 1851 if (bridge) 1852 pci_enable_bridge(bridge); 1853 1854 if (pci_is_enabled(dev)) { 1855 if (!dev->is_busmaster) 1856 pci_set_master(dev); 1857 return; 1858 } 1859 1860 retval = pci_enable_device(dev); 1861 if (retval) 1862 pci_err(dev, "Error enabling bridge (%d), continuing\n", 1863 retval); 1864 pci_set_master(dev); 1865 } 1866 1867 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags) 1868 { 1869 struct pci_dev *bridge; 1870 int err; 1871 int i, bars = 0; 1872 1873 if (atomic_inc_return(&dev->enable_cnt) > 1) { 1874 pci_update_current_state(dev, dev->current_state); 1875 return 0; /* already enabled */ 1876 } 1877 1878 bridge = pci_upstream_bridge(dev); 1879 if (bridge) 1880 pci_enable_bridge(bridge); 1881 1882 /* only skip sriov related */ 1883 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 1884 if (dev->resource[i].flags & flags) 1885 bars |= (1 << i); 1886 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++) 1887 if (dev->resource[i].flags & flags) 1888 bars |= (1 << i); 1889 1890 err = do_pci_enable_device(dev, bars); 1891 if (err < 0) 1892 atomic_dec(&dev->enable_cnt); 1893 return err; 1894 } 1895 1896 /** 1897 * pci_enable_device_io - Initialize a device for use with IO space 1898 * @dev: PCI device to be initialized 1899 * 1900 * Initialize device before it's used by a driver. Ask low-level code 1901 * to enable I/O resources. Wake up the device if it was suspended. 1902 * Beware, this function can fail. 1903 */ 1904 int pci_enable_device_io(struct pci_dev *dev) 1905 { 1906 return pci_enable_device_flags(dev, IORESOURCE_IO); 1907 } 1908 EXPORT_SYMBOL(pci_enable_device_io); 1909 1910 /** 1911 * pci_enable_device_mem - Initialize a device for use with Memory space 1912 * @dev: PCI device to be initialized 1913 * 1914 * Initialize device before it's used by a driver. Ask low-level code 1915 * to enable Memory resources. Wake up the device if it was suspended. 1916 * Beware, this function can fail. 1917 */ 1918 int pci_enable_device_mem(struct pci_dev *dev) 1919 { 1920 return pci_enable_device_flags(dev, IORESOURCE_MEM); 1921 } 1922 EXPORT_SYMBOL(pci_enable_device_mem); 1923 1924 /** 1925 * pci_enable_device - Initialize device before it's used by a driver. 1926 * @dev: PCI device to be initialized 1927 * 1928 * Initialize device before it's used by a driver. Ask low-level code 1929 * to enable I/O and memory. Wake up the device if it was suspended. 1930 * Beware, this function can fail. 1931 * 1932 * Note we don't actually enable the device many times if we call 1933 * this function repeatedly (we just increment the count). 1934 */ 1935 int pci_enable_device(struct pci_dev *dev) 1936 { 1937 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO); 1938 } 1939 EXPORT_SYMBOL(pci_enable_device); 1940 1941 /* 1942 * Managed PCI resources. This manages device on/off, INTx/MSI/MSI-X 1943 * on/off and BAR regions. pci_dev itself records MSI/MSI-X status, so 1944 * there's no need to track it separately. pci_devres is initialized 1945 * when a device is enabled using managed PCI device enable interface. 1946 */ 1947 struct pci_devres { 1948 unsigned int enabled:1; 1949 unsigned int pinned:1; 1950 unsigned int orig_intx:1; 1951 unsigned int restore_intx:1; 1952 unsigned int mwi:1; 1953 u32 region_mask; 1954 }; 1955 1956 static void pcim_release(struct device *gendev, void *res) 1957 { 1958 struct pci_dev *dev = to_pci_dev(gendev); 1959 struct pci_devres *this = res; 1960 int i; 1961 1962 if (dev->msi_enabled) 1963 pci_disable_msi(dev); 1964 if (dev->msix_enabled) 1965 pci_disable_msix(dev); 1966 1967 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) 1968 if (this->region_mask & (1 << i)) 1969 pci_release_region(dev, i); 1970 1971 if (this->mwi) 1972 pci_clear_mwi(dev); 1973 1974 if (this->restore_intx) 1975 pci_intx(dev, this->orig_intx); 1976 1977 if (this->enabled && !this->pinned) 1978 pci_disable_device(dev); 1979 } 1980 1981 static struct pci_devres *get_pci_dr(struct pci_dev *pdev) 1982 { 1983 struct pci_devres *dr, *new_dr; 1984 1985 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL); 1986 if (dr) 1987 return dr; 1988 1989 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL); 1990 if (!new_dr) 1991 return NULL; 1992 return devres_get(&pdev->dev, new_dr, NULL, NULL); 1993 } 1994 1995 static struct pci_devres *find_pci_dr(struct pci_dev *pdev) 1996 { 1997 if (pci_is_managed(pdev)) 1998 return devres_find(&pdev->dev, pcim_release, NULL, NULL); 1999 return NULL; 2000 } 2001 2002 /** 2003 * pcim_enable_device - Managed pci_enable_device() 2004 * @pdev: PCI device to be initialized 2005 * 2006 * Managed pci_enable_device(). 2007 */ 2008 int pcim_enable_device(struct pci_dev *pdev) 2009 { 2010 struct pci_devres *dr; 2011 int rc; 2012 2013 dr = get_pci_dr(pdev); 2014 if (unlikely(!dr)) 2015 return -ENOMEM; 2016 if (dr->enabled) 2017 return 0; 2018 2019 rc = pci_enable_device(pdev); 2020 if (!rc) { 2021 pdev->is_managed = 1; 2022 dr->enabled = 1; 2023 } 2024 return rc; 2025 } 2026 EXPORT_SYMBOL(pcim_enable_device); 2027 2028 /** 2029 * pcim_pin_device - Pin managed PCI device 2030 * @pdev: PCI device to pin 2031 * 2032 * Pin managed PCI device @pdev. Pinned device won't be disabled on 2033 * driver detach. @pdev must have been enabled with 2034 * pcim_enable_device(). 2035 */ 2036 void pcim_pin_device(struct pci_dev *pdev) 2037 { 2038 struct pci_devres *dr; 2039 2040 dr = find_pci_dr(pdev); 2041 WARN_ON(!dr || !dr->enabled); 2042 if (dr) 2043 dr->pinned = 1; 2044 } 2045 EXPORT_SYMBOL(pcim_pin_device); 2046 2047 /* 2048 * pcibios_add_device - provide arch specific hooks when adding device dev 2049 * @dev: the PCI device being added 2050 * 2051 * Permits the platform to provide architecture specific functionality when 2052 * devices are added. This is the default implementation. Architecture 2053 * implementations can override this. 2054 */ 2055 int __weak pcibios_add_device(struct pci_dev *dev) 2056 { 2057 return 0; 2058 } 2059 2060 /** 2061 * pcibios_release_device - provide arch specific hooks when releasing 2062 * device dev 2063 * @dev: the PCI device being released 2064 * 2065 * Permits the platform to provide architecture specific functionality when 2066 * devices are released. This is the default implementation. Architecture 2067 * implementations can override this. 2068 */ 2069 void __weak pcibios_release_device(struct pci_dev *dev) {} 2070 2071 /** 2072 * pcibios_disable_device - disable arch specific PCI resources for device dev 2073 * @dev: the PCI device to disable 2074 * 2075 * Disables architecture specific PCI resources for the device. This 2076 * is the default implementation. Architecture implementations can 2077 * override this. 2078 */ 2079 void __weak pcibios_disable_device(struct pci_dev *dev) {} 2080 2081 /** 2082 * pcibios_penalize_isa_irq - penalize an ISA IRQ 2083 * @irq: ISA IRQ to penalize 2084 * @active: IRQ active or not 2085 * 2086 * Permits the platform to provide architecture-specific functionality when 2087 * penalizing ISA IRQs. This is the default implementation. Architecture 2088 * implementations can override this. 2089 */ 2090 void __weak pcibios_penalize_isa_irq(int irq, int active) {} 2091 2092 static void do_pci_disable_device(struct pci_dev *dev) 2093 { 2094 u16 pci_command; 2095 2096 pci_read_config_word(dev, PCI_COMMAND, &pci_command); 2097 if (pci_command & PCI_COMMAND_MASTER) { 2098 pci_command &= ~PCI_COMMAND_MASTER; 2099 pci_write_config_word(dev, PCI_COMMAND, pci_command); 2100 } 2101 2102 pcibios_disable_device(dev); 2103 } 2104 2105 /** 2106 * pci_disable_enabled_device - Disable device without updating enable_cnt 2107 * @dev: PCI device to disable 2108 * 2109 * NOTE: This function is a backend of PCI power management routines and is 2110 * not supposed to be called drivers. 2111 */ 2112 void pci_disable_enabled_device(struct pci_dev *dev) 2113 { 2114 if (pci_is_enabled(dev)) 2115 do_pci_disable_device(dev); 2116 } 2117 2118 /** 2119 * pci_disable_device - Disable PCI device after use 2120 * @dev: PCI device to be disabled 2121 * 2122 * Signal to the system that the PCI device is not in use by the system 2123 * anymore. This only involves disabling PCI bus-mastering, if active. 2124 * 2125 * Note we don't actually disable the device until all callers of 2126 * pci_enable_device() have called pci_disable_device(). 2127 */ 2128 void pci_disable_device(struct pci_dev *dev) 2129 { 2130 struct pci_devres *dr; 2131 2132 dr = find_pci_dr(dev); 2133 if (dr) 2134 dr->enabled = 0; 2135 2136 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0, 2137 "disabling already-disabled device"); 2138 2139 if (atomic_dec_return(&dev->enable_cnt) != 0) 2140 return; 2141 2142 do_pci_disable_device(dev); 2143 2144 dev->is_busmaster = 0; 2145 } 2146 EXPORT_SYMBOL(pci_disable_device); 2147 2148 /** 2149 * pcibios_set_pcie_reset_state - set reset state for device dev 2150 * @dev: the PCIe device reset 2151 * @state: Reset state to enter into 2152 * 2153 * Set the PCIe reset state for the device. This is the default 2154 * implementation. Architecture implementations can override this. 2155 */ 2156 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev, 2157 enum pcie_reset_state state) 2158 { 2159 return -EINVAL; 2160 } 2161 2162 /** 2163 * pci_set_pcie_reset_state - set reset state for device dev 2164 * @dev: the PCIe device reset 2165 * @state: Reset state to enter into 2166 * 2167 * Sets the PCI reset state for the device. 2168 */ 2169 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state) 2170 { 2171 return pcibios_set_pcie_reset_state(dev, state); 2172 } 2173 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state); 2174 2175 void pcie_clear_device_status(struct pci_dev *dev) 2176 { 2177 u16 sta; 2178 2179 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta); 2180 pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta); 2181 } 2182 2183 /** 2184 * pcie_clear_root_pme_status - Clear root port PME interrupt status. 2185 * @dev: PCIe root port or event collector. 2186 */ 2187 void pcie_clear_root_pme_status(struct pci_dev *dev) 2188 { 2189 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME); 2190 } 2191 2192 /** 2193 * pci_check_pme_status - Check if given device has generated PME. 2194 * @dev: Device to check. 2195 * 2196 * Check the PME status of the device and if set, clear it and clear PME enable 2197 * (if set). Return 'true' if PME status and PME enable were both set or 2198 * 'false' otherwise. 2199 */ 2200 bool pci_check_pme_status(struct pci_dev *dev) 2201 { 2202 int pmcsr_pos; 2203 u16 pmcsr; 2204 bool ret = false; 2205 2206 if (!dev->pm_cap) 2207 return false; 2208 2209 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL; 2210 pci_read_config_word(dev, pmcsr_pos, &pmcsr); 2211 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS)) 2212 return false; 2213 2214 /* Clear PME status. */ 2215 pmcsr |= PCI_PM_CTRL_PME_STATUS; 2216 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) { 2217 /* Disable PME to avoid interrupt flood. */ 2218 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2219 ret = true; 2220 } 2221 2222 pci_write_config_word(dev, pmcsr_pos, pmcsr); 2223 2224 return ret; 2225 } 2226 2227 /** 2228 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set. 2229 * @dev: Device to handle. 2230 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag. 2231 * 2232 * Check if @dev has generated PME and queue a resume request for it in that 2233 * case. 2234 */ 2235 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset) 2236 { 2237 if (pme_poll_reset && dev->pme_poll) 2238 dev->pme_poll = false; 2239 2240 if (pci_check_pme_status(dev)) { 2241 pci_wakeup_event(dev); 2242 pm_request_resume(&dev->dev); 2243 } 2244 return 0; 2245 } 2246 2247 /** 2248 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary. 2249 * @bus: Top bus of the subtree to walk. 2250 */ 2251 void pci_pme_wakeup_bus(struct pci_bus *bus) 2252 { 2253 if (bus) 2254 pci_walk_bus(bus, pci_pme_wakeup, (void *)true); 2255 } 2256 2257 2258 /** 2259 * pci_pme_capable - check the capability of PCI device to generate PME# 2260 * @dev: PCI device to handle. 2261 * @state: PCI state from which device will issue PME#. 2262 */ 2263 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state) 2264 { 2265 if (!dev->pm_cap) 2266 return false; 2267 2268 return !!(dev->pme_support & (1 << state)); 2269 } 2270 EXPORT_SYMBOL(pci_pme_capable); 2271 2272 static void pci_pme_list_scan(struct work_struct *work) 2273 { 2274 struct pci_pme_device *pme_dev, *n; 2275 2276 mutex_lock(&pci_pme_list_mutex); 2277 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) { 2278 if (pme_dev->dev->pme_poll) { 2279 struct pci_dev *bridge; 2280 2281 bridge = pme_dev->dev->bus->self; 2282 /* 2283 * If bridge is in low power state, the 2284 * configuration space of subordinate devices 2285 * may be not accessible 2286 */ 2287 if (bridge && bridge->current_state != PCI_D0) 2288 continue; 2289 /* 2290 * If the device is in D3cold it should not be 2291 * polled either. 2292 */ 2293 if (pme_dev->dev->current_state == PCI_D3cold) 2294 continue; 2295 2296 pci_pme_wakeup(pme_dev->dev, NULL); 2297 } else { 2298 list_del(&pme_dev->list); 2299 kfree(pme_dev); 2300 } 2301 } 2302 if (!list_empty(&pci_pme_list)) 2303 queue_delayed_work(system_freezable_wq, &pci_pme_work, 2304 msecs_to_jiffies(PME_TIMEOUT)); 2305 mutex_unlock(&pci_pme_list_mutex); 2306 } 2307 2308 static void __pci_pme_active(struct pci_dev *dev, bool enable) 2309 { 2310 u16 pmcsr; 2311 2312 if (!dev->pme_support) 2313 return; 2314 2315 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2316 /* Clear PME_Status by writing 1 to it and enable PME# */ 2317 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE; 2318 if (!enable) 2319 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2320 2321 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2322 } 2323 2324 /** 2325 * pci_pme_restore - Restore PME configuration after config space restore. 2326 * @dev: PCI device to update. 2327 */ 2328 void pci_pme_restore(struct pci_dev *dev) 2329 { 2330 u16 pmcsr; 2331 2332 if (!dev->pme_support) 2333 return; 2334 2335 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2336 if (dev->wakeup_prepared) { 2337 pmcsr |= PCI_PM_CTRL_PME_ENABLE; 2338 pmcsr &= ~PCI_PM_CTRL_PME_STATUS; 2339 } else { 2340 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2341 pmcsr |= PCI_PM_CTRL_PME_STATUS; 2342 } 2343 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2344 } 2345 2346 /** 2347 * pci_pme_active - enable or disable PCI device's PME# function 2348 * @dev: PCI device to handle. 2349 * @enable: 'true' to enable PME# generation; 'false' to disable it. 2350 * 2351 * The caller must verify that the device is capable of generating PME# before 2352 * calling this function with @enable equal to 'true'. 2353 */ 2354 void pci_pme_active(struct pci_dev *dev, bool enable) 2355 { 2356 __pci_pme_active(dev, enable); 2357 2358 /* 2359 * PCI (as opposed to PCIe) PME requires that the device have 2360 * its PME# line hooked up correctly. Not all hardware vendors 2361 * do this, so the PME never gets delivered and the device 2362 * remains asleep. The easiest way around this is to 2363 * periodically walk the list of suspended devices and check 2364 * whether any have their PME flag set. The assumption is that 2365 * we'll wake up often enough anyway that this won't be a huge 2366 * hit, and the power savings from the devices will still be a 2367 * win. 2368 * 2369 * Although PCIe uses in-band PME message instead of PME# line 2370 * to report PME, PME does not work for some PCIe devices in 2371 * reality. For example, there are devices that set their PME 2372 * status bits, but don't really bother to send a PME message; 2373 * there are PCI Express Root Ports that don't bother to 2374 * trigger interrupts when they receive PME messages from the 2375 * devices below. So PME poll is used for PCIe devices too. 2376 */ 2377 2378 if (dev->pme_poll) { 2379 struct pci_pme_device *pme_dev; 2380 if (enable) { 2381 pme_dev = kmalloc(sizeof(struct pci_pme_device), 2382 GFP_KERNEL); 2383 if (!pme_dev) { 2384 pci_warn(dev, "can't enable PME#\n"); 2385 return; 2386 } 2387 pme_dev->dev = dev; 2388 mutex_lock(&pci_pme_list_mutex); 2389 list_add(&pme_dev->list, &pci_pme_list); 2390 if (list_is_singular(&pci_pme_list)) 2391 queue_delayed_work(system_freezable_wq, 2392 &pci_pme_work, 2393 msecs_to_jiffies(PME_TIMEOUT)); 2394 mutex_unlock(&pci_pme_list_mutex); 2395 } else { 2396 mutex_lock(&pci_pme_list_mutex); 2397 list_for_each_entry(pme_dev, &pci_pme_list, list) { 2398 if (pme_dev->dev == dev) { 2399 list_del(&pme_dev->list); 2400 kfree(pme_dev); 2401 break; 2402 } 2403 } 2404 mutex_unlock(&pci_pme_list_mutex); 2405 } 2406 } 2407 2408 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled"); 2409 } 2410 EXPORT_SYMBOL(pci_pme_active); 2411 2412 /** 2413 * __pci_enable_wake - enable PCI device as wakeup event source 2414 * @dev: PCI device affected 2415 * @state: PCI state from which device will issue wakeup events 2416 * @enable: True to enable event generation; false to disable 2417 * 2418 * This enables the device as a wakeup event source, or disables it. 2419 * When such events involves platform-specific hooks, those hooks are 2420 * called automatically by this routine. 2421 * 2422 * Devices with legacy power management (no standard PCI PM capabilities) 2423 * always require such platform hooks. 2424 * 2425 * RETURN VALUE: 2426 * 0 is returned on success 2427 * -EINVAL is returned if device is not supposed to wake up the system 2428 * Error code depending on the platform is returned if both the platform and 2429 * the native mechanism fail to enable the generation of wake-up events 2430 */ 2431 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable) 2432 { 2433 int ret = 0; 2434 2435 /* 2436 * Bridges that are not power-manageable directly only signal 2437 * wakeup on behalf of subordinate devices which is set up 2438 * elsewhere, so skip them. However, bridges that are 2439 * power-manageable may signal wakeup for themselves (for example, 2440 * on a hotplug event) and they need to be covered here. 2441 */ 2442 if (!pci_power_manageable(dev)) 2443 return 0; 2444 2445 /* Don't do the same thing twice in a row for one device. */ 2446 if (!!enable == !!dev->wakeup_prepared) 2447 return 0; 2448 2449 /* 2450 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don 2451 * Anderson we should be doing PME# wake enable followed by ACPI wake 2452 * enable. To disable wake-up we call the platform first, for symmetry. 2453 */ 2454 2455 if (enable) { 2456 int error; 2457 2458 if (pci_pme_capable(dev, state)) 2459 pci_pme_active(dev, true); 2460 else 2461 ret = 1; 2462 error = platform_pci_set_wakeup(dev, true); 2463 if (ret) 2464 ret = error; 2465 if (!ret) 2466 dev->wakeup_prepared = true; 2467 } else { 2468 platform_pci_set_wakeup(dev, false); 2469 pci_pme_active(dev, false); 2470 dev->wakeup_prepared = false; 2471 } 2472 2473 return ret; 2474 } 2475 2476 /** 2477 * pci_enable_wake - change wakeup settings for a PCI device 2478 * @pci_dev: Target device 2479 * @state: PCI state from which device will issue wakeup events 2480 * @enable: Whether or not to enable event generation 2481 * 2482 * If @enable is set, check device_may_wakeup() for the device before calling 2483 * __pci_enable_wake() for it. 2484 */ 2485 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable) 2486 { 2487 if (enable && !device_may_wakeup(&pci_dev->dev)) 2488 return -EINVAL; 2489 2490 return __pci_enable_wake(pci_dev, state, enable); 2491 } 2492 EXPORT_SYMBOL(pci_enable_wake); 2493 2494 /** 2495 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold 2496 * @dev: PCI device to prepare 2497 * @enable: True to enable wake-up event generation; false to disable 2498 * 2499 * Many drivers want the device to wake up the system from D3_hot or D3_cold 2500 * and this function allows them to set that up cleanly - pci_enable_wake() 2501 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI 2502 * ordering constraints. 2503 * 2504 * This function only returns error code if the device is not allowed to wake 2505 * up the system from sleep or it is not capable of generating PME# from both 2506 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it. 2507 */ 2508 int pci_wake_from_d3(struct pci_dev *dev, bool enable) 2509 { 2510 return pci_pme_capable(dev, PCI_D3cold) ? 2511 pci_enable_wake(dev, PCI_D3cold, enable) : 2512 pci_enable_wake(dev, PCI_D3hot, enable); 2513 } 2514 EXPORT_SYMBOL(pci_wake_from_d3); 2515 2516 /** 2517 * pci_target_state - find an appropriate low power state for a given PCI dev 2518 * @dev: PCI device 2519 * @wakeup: Whether or not wakeup functionality will be enabled for the device. 2520 * 2521 * Use underlying platform code to find a supported low power state for @dev. 2522 * If the platform can't manage @dev, return the deepest state from which it 2523 * can generate wake events, based on any available PME info. 2524 */ 2525 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup) 2526 { 2527 pci_power_t target_state = PCI_D3hot; 2528 2529 if (platform_pci_power_manageable(dev)) { 2530 /* 2531 * Call the platform to find the target state for the device. 2532 */ 2533 pci_power_t state = platform_pci_choose_state(dev); 2534 2535 switch (state) { 2536 case PCI_POWER_ERROR: 2537 case PCI_UNKNOWN: 2538 break; 2539 case PCI_D1: 2540 case PCI_D2: 2541 if (pci_no_d1d2(dev)) 2542 break; 2543 fallthrough; 2544 default: 2545 target_state = state; 2546 } 2547 2548 return target_state; 2549 } 2550 2551 if (!dev->pm_cap) 2552 target_state = PCI_D0; 2553 2554 /* 2555 * If the device is in D3cold even though it's not power-manageable by 2556 * the platform, it may have been powered down by non-standard means. 2557 * Best to let it slumber. 2558 */ 2559 if (dev->current_state == PCI_D3cold) 2560 target_state = PCI_D3cold; 2561 2562 if (wakeup) { 2563 /* 2564 * Find the deepest state from which the device can generate 2565 * PME#. 2566 */ 2567 if (dev->pme_support) { 2568 while (target_state 2569 && !(dev->pme_support & (1 << target_state))) 2570 target_state--; 2571 } 2572 } 2573 2574 return target_state; 2575 } 2576 2577 /** 2578 * pci_prepare_to_sleep - prepare PCI device for system-wide transition 2579 * into a sleep state 2580 * @dev: Device to handle. 2581 * 2582 * Choose the power state appropriate for the device depending on whether 2583 * it can wake up the system and/or is power manageable by the platform 2584 * (PCI_D3hot is the default) and put the device into that state. 2585 */ 2586 int pci_prepare_to_sleep(struct pci_dev *dev) 2587 { 2588 bool wakeup = device_may_wakeup(&dev->dev); 2589 pci_power_t target_state = pci_target_state(dev, wakeup); 2590 int error; 2591 2592 if (target_state == PCI_POWER_ERROR) 2593 return -EIO; 2594 2595 /* 2596 * There are systems (for example, Intel mobile chips since Coffee 2597 * Lake) where the power drawn while suspended can be significantly 2598 * reduced by disabling PTM on PCIe root ports as this allows the 2599 * port to enter a lower-power PM state and the SoC to reach a 2600 * lower-power idle state as a whole. 2601 */ 2602 if (pci_pcie_type(dev) == PCI_EXP_TYPE_ROOT_PORT) 2603 pci_disable_ptm(dev); 2604 2605 pci_enable_wake(dev, target_state, wakeup); 2606 2607 error = pci_set_power_state(dev, target_state); 2608 2609 if (error) { 2610 pci_enable_wake(dev, target_state, false); 2611 pci_restore_ptm_state(dev); 2612 } 2613 2614 return error; 2615 } 2616 EXPORT_SYMBOL(pci_prepare_to_sleep); 2617 2618 /** 2619 * pci_back_from_sleep - turn PCI device on during system-wide transition 2620 * into working state 2621 * @dev: Device to handle. 2622 * 2623 * Disable device's system wake-up capability and put it into D0. 2624 */ 2625 int pci_back_from_sleep(struct pci_dev *dev) 2626 { 2627 pci_enable_wake(dev, PCI_D0, false); 2628 return pci_set_power_state(dev, PCI_D0); 2629 } 2630 EXPORT_SYMBOL(pci_back_from_sleep); 2631 2632 /** 2633 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend. 2634 * @dev: PCI device being suspended. 2635 * 2636 * Prepare @dev to generate wake-up events at run time and put it into a low 2637 * power state. 2638 */ 2639 int pci_finish_runtime_suspend(struct pci_dev *dev) 2640 { 2641 pci_power_t target_state; 2642 int error; 2643 2644 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev)); 2645 if (target_state == PCI_POWER_ERROR) 2646 return -EIO; 2647 2648 dev->runtime_d3cold = target_state == PCI_D3cold; 2649 2650 /* 2651 * There are systems (for example, Intel mobile chips since Coffee 2652 * Lake) where the power drawn while suspended can be significantly 2653 * reduced by disabling PTM on PCIe root ports as this allows the 2654 * port to enter a lower-power PM state and the SoC to reach a 2655 * lower-power idle state as a whole. 2656 */ 2657 if (pci_pcie_type(dev) == PCI_EXP_TYPE_ROOT_PORT) 2658 pci_disable_ptm(dev); 2659 2660 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev)); 2661 2662 error = pci_set_power_state(dev, target_state); 2663 2664 if (error) { 2665 pci_enable_wake(dev, target_state, false); 2666 pci_restore_ptm_state(dev); 2667 dev->runtime_d3cold = false; 2668 } 2669 2670 return error; 2671 } 2672 2673 /** 2674 * pci_dev_run_wake - Check if device can generate run-time wake-up events. 2675 * @dev: Device to check. 2676 * 2677 * Return true if the device itself is capable of generating wake-up events 2678 * (through the platform or using the native PCIe PME) or if the device supports 2679 * PME and one of its upstream bridges can generate wake-up events. 2680 */ 2681 bool pci_dev_run_wake(struct pci_dev *dev) 2682 { 2683 struct pci_bus *bus = dev->bus; 2684 2685 if (!dev->pme_support) 2686 return false; 2687 2688 /* PME-capable in principle, but not from the target power state */ 2689 if (!pci_pme_capable(dev, pci_target_state(dev, true))) 2690 return false; 2691 2692 if (device_can_wakeup(&dev->dev)) 2693 return true; 2694 2695 while (bus->parent) { 2696 struct pci_dev *bridge = bus->self; 2697 2698 if (device_can_wakeup(&bridge->dev)) 2699 return true; 2700 2701 bus = bus->parent; 2702 } 2703 2704 /* We have reached the root bus. */ 2705 if (bus->bridge) 2706 return device_can_wakeup(bus->bridge); 2707 2708 return false; 2709 } 2710 EXPORT_SYMBOL_GPL(pci_dev_run_wake); 2711 2712 /** 2713 * pci_dev_need_resume - Check if it is necessary to resume the device. 2714 * @pci_dev: Device to check. 2715 * 2716 * Return 'true' if the device is not runtime-suspended or it has to be 2717 * reconfigured due to wakeup settings difference between system and runtime 2718 * suspend, or the current power state of it is not suitable for the upcoming 2719 * (system-wide) transition. 2720 */ 2721 bool pci_dev_need_resume(struct pci_dev *pci_dev) 2722 { 2723 struct device *dev = &pci_dev->dev; 2724 pci_power_t target_state; 2725 2726 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev)) 2727 return true; 2728 2729 target_state = pci_target_state(pci_dev, device_may_wakeup(dev)); 2730 2731 /* 2732 * If the earlier platform check has not triggered, D3cold is just power 2733 * removal on top of D3hot, so no need to resume the device in that 2734 * case. 2735 */ 2736 return target_state != pci_dev->current_state && 2737 target_state != PCI_D3cold && 2738 pci_dev->current_state != PCI_D3hot; 2739 } 2740 2741 /** 2742 * pci_dev_adjust_pme - Adjust PME setting for a suspended device. 2743 * @pci_dev: Device to check. 2744 * 2745 * If the device is suspended and it is not configured for system wakeup, 2746 * disable PME for it to prevent it from waking up the system unnecessarily. 2747 * 2748 * Note that if the device's power state is D3cold and the platform check in 2749 * pci_dev_need_resume() has not triggered, the device's configuration need not 2750 * be changed. 2751 */ 2752 void pci_dev_adjust_pme(struct pci_dev *pci_dev) 2753 { 2754 struct device *dev = &pci_dev->dev; 2755 2756 spin_lock_irq(&dev->power.lock); 2757 2758 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) && 2759 pci_dev->current_state < PCI_D3cold) 2760 __pci_pme_active(pci_dev, false); 2761 2762 spin_unlock_irq(&dev->power.lock); 2763 } 2764 2765 /** 2766 * pci_dev_complete_resume - Finalize resume from system sleep for a device. 2767 * @pci_dev: Device to handle. 2768 * 2769 * If the device is runtime suspended and wakeup-capable, enable PME for it as 2770 * it might have been disabled during the prepare phase of system suspend if 2771 * the device was not configured for system wakeup. 2772 */ 2773 void pci_dev_complete_resume(struct pci_dev *pci_dev) 2774 { 2775 struct device *dev = &pci_dev->dev; 2776 2777 if (!pci_dev_run_wake(pci_dev)) 2778 return; 2779 2780 spin_lock_irq(&dev->power.lock); 2781 2782 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold) 2783 __pci_pme_active(pci_dev, true); 2784 2785 spin_unlock_irq(&dev->power.lock); 2786 } 2787 2788 void pci_config_pm_runtime_get(struct pci_dev *pdev) 2789 { 2790 struct device *dev = &pdev->dev; 2791 struct device *parent = dev->parent; 2792 2793 if (parent) 2794 pm_runtime_get_sync(parent); 2795 pm_runtime_get_noresume(dev); 2796 /* 2797 * pdev->current_state is set to PCI_D3cold during suspending, 2798 * so wait until suspending completes 2799 */ 2800 pm_runtime_barrier(dev); 2801 /* 2802 * Only need to resume devices in D3cold, because config 2803 * registers are still accessible for devices suspended but 2804 * not in D3cold. 2805 */ 2806 if (pdev->current_state == PCI_D3cold) 2807 pm_runtime_resume(dev); 2808 } 2809 2810 void pci_config_pm_runtime_put(struct pci_dev *pdev) 2811 { 2812 struct device *dev = &pdev->dev; 2813 struct device *parent = dev->parent; 2814 2815 pm_runtime_put(dev); 2816 if (parent) 2817 pm_runtime_put_sync(parent); 2818 } 2819 2820 static const struct dmi_system_id bridge_d3_blacklist[] = { 2821 #ifdef CONFIG_X86 2822 { 2823 /* 2824 * Gigabyte X299 root port is not marked as hotplug capable 2825 * which allows Linux to power manage it. However, this 2826 * confuses the BIOS SMI handler so don't power manage root 2827 * ports on that system. 2828 */ 2829 .ident = "X299 DESIGNARE EX-CF", 2830 .matches = { 2831 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."), 2832 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"), 2833 }, 2834 }, 2835 #endif 2836 { } 2837 }; 2838 2839 /** 2840 * pci_bridge_d3_possible - Is it possible to put the bridge into D3 2841 * @bridge: Bridge to check 2842 * 2843 * This function checks if it is possible to move the bridge to D3. 2844 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt. 2845 */ 2846 bool pci_bridge_d3_possible(struct pci_dev *bridge) 2847 { 2848 if (!pci_is_pcie(bridge)) 2849 return false; 2850 2851 switch (pci_pcie_type(bridge)) { 2852 case PCI_EXP_TYPE_ROOT_PORT: 2853 case PCI_EXP_TYPE_UPSTREAM: 2854 case PCI_EXP_TYPE_DOWNSTREAM: 2855 if (pci_bridge_d3_disable) 2856 return false; 2857 2858 /* 2859 * Hotplug ports handled by firmware in System Management Mode 2860 * may not be put into D3 by the OS (Thunderbolt on non-Macs). 2861 */ 2862 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge)) 2863 return false; 2864 2865 if (pci_bridge_d3_force) 2866 return true; 2867 2868 /* Even the oldest 2010 Thunderbolt controller supports D3. */ 2869 if (bridge->is_thunderbolt) 2870 return true; 2871 2872 /* Platform might know better if the bridge supports D3 */ 2873 if (platform_pci_bridge_d3(bridge)) 2874 return true; 2875 2876 /* 2877 * Hotplug ports handled natively by the OS were not validated 2878 * by vendors for runtime D3 at least until 2018 because there 2879 * was no OS support. 2880 */ 2881 if (bridge->is_hotplug_bridge) 2882 return false; 2883 2884 if (dmi_check_system(bridge_d3_blacklist)) 2885 return false; 2886 2887 /* 2888 * It should be safe to put PCIe ports from 2015 or newer 2889 * to D3. 2890 */ 2891 if (dmi_get_bios_year() >= 2015) 2892 return true; 2893 break; 2894 } 2895 2896 return false; 2897 } 2898 2899 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data) 2900 { 2901 bool *d3cold_ok = data; 2902 2903 if (/* The device needs to be allowed to go D3cold ... */ 2904 dev->no_d3cold || !dev->d3cold_allowed || 2905 2906 /* ... and if it is wakeup capable to do so from D3cold. */ 2907 (device_may_wakeup(&dev->dev) && 2908 !pci_pme_capable(dev, PCI_D3cold)) || 2909 2910 /* If it is a bridge it must be allowed to go to D3. */ 2911 !pci_power_manageable(dev)) 2912 2913 *d3cold_ok = false; 2914 2915 return !*d3cold_ok; 2916 } 2917 2918 /* 2919 * pci_bridge_d3_update - Update bridge D3 capabilities 2920 * @dev: PCI device which is changed 2921 * 2922 * Update upstream bridge PM capabilities accordingly depending on if the 2923 * device PM configuration was changed or the device is being removed. The 2924 * change is also propagated upstream. 2925 */ 2926 void pci_bridge_d3_update(struct pci_dev *dev) 2927 { 2928 bool remove = !device_is_registered(&dev->dev); 2929 struct pci_dev *bridge; 2930 bool d3cold_ok = true; 2931 2932 bridge = pci_upstream_bridge(dev); 2933 if (!bridge || !pci_bridge_d3_possible(bridge)) 2934 return; 2935 2936 /* 2937 * If D3 is currently allowed for the bridge, removing one of its 2938 * children won't change that. 2939 */ 2940 if (remove && bridge->bridge_d3) 2941 return; 2942 2943 /* 2944 * If D3 is currently allowed for the bridge and a child is added or 2945 * changed, disallowance of D3 can only be caused by that child, so 2946 * we only need to check that single device, not any of its siblings. 2947 * 2948 * If D3 is currently not allowed for the bridge, checking the device 2949 * first may allow us to skip checking its siblings. 2950 */ 2951 if (!remove) 2952 pci_dev_check_d3cold(dev, &d3cold_ok); 2953 2954 /* 2955 * If D3 is currently not allowed for the bridge, this may be caused 2956 * either by the device being changed/removed or any of its siblings, 2957 * so we need to go through all children to find out if one of them 2958 * continues to block D3. 2959 */ 2960 if (d3cold_ok && !bridge->bridge_d3) 2961 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold, 2962 &d3cold_ok); 2963 2964 if (bridge->bridge_d3 != d3cold_ok) { 2965 bridge->bridge_d3 = d3cold_ok; 2966 /* Propagate change to upstream bridges */ 2967 pci_bridge_d3_update(bridge); 2968 } 2969 } 2970 2971 /** 2972 * pci_d3cold_enable - Enable D3cold for device 2973 * @dev: PCI device to handle 2974 * 2975 * This function can be used in drivers to enable D3cold from the device 2976 * they handle. It also updates upstream PCI bridge PM capabilities 2977 * accordingly. 2978 */ 2979 void pci_d3cold_enable(struct pci_dev *dev) 2980 { 2981 if (dev->no_d3cold) { 2982 dev->no_d3cold = false; 2983 pci_bridge_d3_update(dev); 2984 } 2985 } 2986 EXPORT_SYMBOL_GPL(pci_d3cold_enable); 2987 2988 /** 2989 * pci_d3cold_disable - Disable D3cold for device 2990 * @dev: PCI device to handle 2991 * 2992 * This function can be used in drivers to disable D3cold from the device 2993 * they handle. It also updates upstream PCI bridge PM capabilities 2994 * accordingly. 2995 */ 2996 void pci_d3cold_disable(struct pci_dev *dev) 2997 { 2998 if (!dev->no_d3cold) { 2999 dev->no_d3cold = true; 3000 pci_bridge_d3_update(dev); 3001 } 3002 } 3003 EXPORT_SYMBOL_GPL(pci_d3cold_disable); 3004 3005 /** 3006 * pci_pm_init - Initialize PM functions of given PCI device 3007 * @dev: PCI device to handle. 3008 */ 3009 void pci_pm_init(struct pci_dev *dev) 3010 { 3011 int pm; 3012 u16 status; 3013 u16 pmc; 3014 3015 pm_runtime_forbid(&dev->dev); 3016 pm_runtime_set_active(&dev->dev); 3017 pm_runtime_enable(&dev->dev); 3018 device_enable_async_suspend(&dev->dev); 3019 dev->wakeup_prepared = false; 3020 3021 dev->pm_cap = 0; 3022 dev->pme_support = 0; 3023 3024 /* find PCI PM capability in list */ 3025 pm = pci_find_capability(dev, PCI_CAP_ID_PM); 3026 if (!pm) 3027 return; 3028 /* Check device's ability to generate PME# */ 3029 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc); 3030 3031 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) { 3032 pci_err(dev, "unsupported PM cap regs version (%u)\n", 3033 pmc & PCI_PM_CAP_VER_MASK); 3034 return; 3035 } 3036 3037 dev->pm_cap = pm; 3038 dev->d3hot_delay = PCI_PM_D3HOT_WAIT; 3039 dev->d3cold_delay = PCI_PM_D3COLD_WAIT; 3040 dev->bridge_d3 = pci_bridge_d3_possible(dev); 3041 dev->d3cold_allowed = true; 3042 3043 dev->d1_support = false; 3044 dev->d2_support = false; 3045 if (!pci_no_d1d2(dev)) { 3046 if (pmc & PCI_PM_CAP_D1) 3047 dev->d1_support = true; 3048 if (pmc & PCI_PM_CAP_D2) 3049 dev->d2_support = true; 3050 3051 if (dev->d1_support || dev->d2_support) 3052 pci_info(dev, "supports%s%s\n", 3053 dev->d1_support ? " D1" : "", 3054 dev->d2_support ? " D2" : ""); 3055 } 3056 3057 pmc &= PCI_PM_CAP_PME_MASK; 3058 if (pmc) { 3059 pci_info(dev, "PME# supported from%s%s%s%s%s\n", 3060 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "", 3061 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "", 3062 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "", 3063 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "", 3064 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : ""); 3065 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT; 3066 dev->pme_poll = true; 3067 /* 3068 * Make device's PM flags reflect the wake-up capability, but 3069 * let the user space enable it to wake up the system as needed. 3070 */ 3071 device_set_wakeup_capable(&dev->dev, true); 3072 /* Disable the PME# generation functionality */ 3073 pci_pme_active(dev, false); 3074 } 3075 3076 pci_read_config_word(dev, PCI_STATUS, &status); 3077 if (status & PCI_STATUS_IMM_READY) 3078 dev->imm_ready = 1; 3079 } 3080 3081 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop) 3082 { 3083 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI; 3084 3085 switch (prop) { 3086 case PCI_EA_P_MEM: 3087 case PCI_EA_P_VF_MEM: 3088 flags |= IORESOURCE_MEM; 3089 break; 3090 case PCI_EA_P_MEM_PREFETCH: 3091 case PCI_EA_P_VF_MEM_PREFETCH: 3092 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH; 3093 break; 3094 case PCI_EA_P_IO: 3095 flags |= IORESOURCE_IO; 3096 break; 3097 default: 3098 return 0; 3099 } 3100 3101 return flags; 3102 } 3103 3104 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei, 3105 u8 prop) 3106 { 3107 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO) 3108 return &dev->resource[bei]; 3109 #ifdef CONFIG_PCI_IOV 3110 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 && 3111 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH)) 3112 return &dev->resource[PCI_IOV_RESOURCES + 3113 bei - PCI_EA_BEI_VF_BAR0]; 3114 #endif 3115 else if (bei == PCI_EA_BEI_ROM) 3116 return &dev->resource[PCI_ROM_RESOURCE]; 3117 else 3118 return NULL; 3119 } 3120 3121 /* Read an Enhanced Allocation (EA) entry */ 3122 static int pci_ea_read(struct pci_dev *dev, int offset) 3123 { 3124 struct resource *res; 3125 int ent_size, ent_offset = offset; 3126 resource_size_t start, end; 3127 unsigned long flags; 3128 u32 dw0, bei, base, max_offset; 3129 u8 prop; 3130 bool support_64 = (sizeof(resource_size_t) >= 8); 3131 3132 pci_read_config_dword(dev, ent_offset, &dw0); 3133 ent_offset += 4; 3134 3135 /* Entry size field indicates DWORDs after 1st */ 3136 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2; 3137 3138 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */ 3139 goto out; 3140 3141 bei = (dw0 & PCI_EA_BEI) >> 4; 3142 prop = (dw0 & PCI_EA_PP) >> 8; 3143 3144 /* 3145 * If the Property is in the reserved range, try the Secondary 3146 * Property instead. 3147 */ 3148 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED) 3149 prop = (dw0 & PCI_EA_SP) >> 16; 3150 if (prop > PCI_EA_P_BRIDGE_IO) 3151 goto out; 3152 3153 res = pci_ea_get_resource(dev, bei, prop); 3154 if (!res) { 3155 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei); 3156 goto out; 3157 } 3158 3159 flags = pci_ea_flags(dev, prop); 3160 if (!flags) { 3161 pci_err(dev, "Unsupported EA properties: %#x\n", prop); 3162 goto out; 3163 } 3164 3165 /* Read Base */ 3166 pci_read_config_dword(dev, ent_offset, &base); 3167 start = (base & PCI_EA_FIELD_MASK); 3168 ent_offset += 4; 3169 3170 /* Read MaxOffset */ 3171 pci_read_config_dword(dev, ent_offset, &max_offset); 3172 ent_offset += 4; 3173 3174 /* Read Base MSBs (if 64-bit entry) */ 3175 if (base & PCI_EA_IS_64) { 3176 u32 base_upper; 3177 3178 pci_read_config_dword(dev, ent_offset, &base_upper); 3179 ent_offset += 4; 3180 3181 flags |= IORESOURCE_MEM_64; 3182 3183 /* entry starts above 32-bit boundary, can't use */ 3184 if (!support_64 && base_upper) 3185 goto out; 3186 3187 if (support_64) 3188 start |= ((u64)base_upper << 32); 3189 } 3190 3191 end = start + (max_offset | 0x03); 3192 3193 /* Read MaxOffset MSBs (if 64-bit entry) */ 3194 if (max_offset & PCI_EA_IS_64) { 3195 u32 max_offset_upper; 3196 3197 pci_read_config_dword(dev, ent_offset, &max_offset_upper); 3198 ent_offset += 4; 3199 3200 flags |= IORESOURCE_MEM_64; 3201 3202 /* entry too big, can't use */ 3203 if (!support_64 && max_offset_upper) 3204 goto out; 3205 3206 if (support_64) 3207 end += ((u64)max_offset_upper << 32); 3208 } 3209 3210 if (end < start) { 3211 pci_err(dev, "EA Entry crosses address boundary\n"); 3212 goto out; 3213 } 3214 3215 if (ent_size != ent_offset - offset) { 3216 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n", 3217 ent_size, ent_offset - offset); 3218 goto out; 3219 } 3220 3221 res->name = pci_name(dev); 3222 res->start = start; 3223 res->end = end; 3224 res->flags = flags; 3225 3226 if (bei <= PCI_EA_BEI_BAR5) 3227 pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 3228 bei, res, prop); 3229 else if (bei == PCI_EA_BEI_ROM) 3230 pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n", 3231 res, prop); 3232 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5) 3233 pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 3234 bei - PCI_EA_BEI_VF_BAR0, res, prop); 3235 else 3236 pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n", 3237 bei, res, prop); 3238 3239 out: 3240 return offset + ent_size; 3241 } 3242 3243 /* Enhanced Allocation Initialization */ 3244 void pci_ea_init(struct pci_dev *dev) 3245 { 3246 int ea; 3247 u8 num_ent; 3248 int offset; 3249 int i; 3250 3251 /* find PCI EA capability in list */ 3252 ea = pci_find_capability(dev, PCI_CAP_ID_EA); 3253 if (!ea) 3254 return; 3255 3256 /* determine the number of entries */ 3257 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT, 3258 &num_ent); 3259 num_ent &= PCI_EA_NUM_ENT_MASK; 3260 3261 offset = ea + PCI_EA_FIRST_ENT; 3262 3263 /* Skip DWORD 2 for type 1 functions */ 3264 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) 3265 offset += 4; 3266 3267 /* parse each EA entry */ 3268 for (i = 0; i < num_ent; ++i) 3269 offset = pci_ea_read(dev, offset); 3270 } 3271 3272 static void pci_add_saved_cap(struct pci_dev *pci_dev, 3273 struct pci_cap_saved_state *new_cap) 3274 { 3275 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space); 3276 } 3277 3278 /** 3279 * _pci_add_cap_save_buffer - allocate buffer for saving given 3280 * capability registers 3281 * @dev: the PCI device 3282 * @cap: the capability to allocate the buffer for 3283 * @extended: Standard or Extended capability ID 3284 * @size: requested size of the buffer 3285 */ 3286 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap, 3287 bool extended, unsigned int size) 3288 { 3289 int pos; 3290 struct pci_cap_saved_state *save_state; 3291 3292 if (extended) 3293 pos = pci_find_ext_capability(dev, cap); 3294 else 3295 pos = pci_find_capability(dev, cap); 3296 3297 if (!pos) 3298 return 0; 3299 3300 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL); 3301 if (!save_state) 3302 return -ENOMEM; 3303 3304 save_state->cap.cap_nr = cap; 3305 save_state->cap.cap_extended = extended; 3306 save_state->cap.size = size; 3307 pci_add_saved_cap(dev, save_state); 3308 3309 return 0; 3310 } 3311 3312 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size) 3313 { 3314 return _pci_add_cap_save_buffer(dev, cap, false, size); 3315 } 3316 3317 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size) 3318 { 3319 return _pci_add_cap_save_buffer(dev, cap, true, size); 3320 } 3321 3322 /** 3323 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities 3324 * @dev: the PCI device 3325 */ 3326 void pci_allocate_cap_save_buffers(struct pci_dev *dev) 3327 { 3328 int error; 3329 3330 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP, 3331 PCI_EXP_SAVE_REGS * sizeof(u16)); 3332 if (error) 3333 pci_err(dev, "unable to preallocate PCI Express save buffer\n"); 3334 3335 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16)); 3336 if (error) 3337 pci_err(dev, "unable to preallocate PCI-X save buffer\n"); 3338 3339 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR, 3340 2 * sizeof(u16)); 3341 if (error) 3342 pci_err(dev, "unable to allocate suspend buffer for LTR\n"); 3343 3344 pci_allocate_vc_save_buffers(dev); 3345 } 3346 3347 void pci_free_cap_save_buffers(struct pci_dev *dev) 3348 { 3349 struct pci_cap_saved_state *tmp; 3350 struct hlist_node *n; 3351 3352 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next) 3353 kfree(tmp); 3354 } 3355 3356 /** 3357 * pci_configure_ari - enable or disable ARI forwarding 3358 * @dev: the PCI device 3359 * 3360 * If @dev and its upstream bridge both support ARI, enable ARI in the 3361 * bridge. Otherwise, disable ARI in the bridge. 3362 */ 3363 void pci_configure_ari(struct pci_dev *dev) 3364 { 3365 u32 cap; 3366 struct pci_dev *bridge; 3367 3368 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn) 3369 return; 3370 3371 bridge = dev->bus->self; 3372 if (!bridge) 3373 return; 3374 3375 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3376 if (!(cap & PCI_EXP_DEVCAP2_ARI)) 3377 return; 3378 3379 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) { 3380 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, 3381 PCI_EXP_DEVCTL2_ARI); 3382 bridge->ari_enabled = 1; 3383 } else { 3384 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2, 3385 PCI_EXP_DEVCTL2_ARI); 3386 bridge->ari_enabled = 0; 3387 } 3388 } 3389 3390 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags) 3391 { 3392 int pos; 3393 u16 cap, ctrl; 3394 3395 pos = pdev->acs_cap; 3396 if (!pos) 3397 return false; 3398 3399 /* 3400 * Except for egress control, capabilities are either required 3401 * or only required if controllable. Features missing from the 3402 * capability field can therefore be assumed as hard-wired enabled. 3403 */ 3404 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap); 3405 acs_flags &= (cap | PCI_ACS_EC); 3406 3407 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl); 3408 return (ctrl & acs_flags) == acs_flags; 3409 } 3410 3411 /** 3412 * pci_acs_enabled - test ACS against required flags for a given device 3413 * @pdev: device to test 3414 * @acs_flags: required PCI ACS flags 3415 * 3416 * Return true if the device supports the provided flags. Automatically 3417 * filters out flags that are not implemented on multifunction devices. 3418 * 3419 * Note that this interface checks the effective ACS capabilities of the 3420 * device rather than the actual capabilities. For instance, most single 3421 * function endpoints are not required to support ACS because they have no 3422 * opportunity for peer-to-peer access. We therefore return 'true' 3423 * regardless of whether the device exposes an ACS capability. This makes 3424 * it much easier for callers of this function to ignore the actual type 3425 * or topology of the device when testing ACS support. 3426 */ 3427 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags) 3428 { 3429 int ret; 3430 3431 ret = pci_dev_specific_acs_enabled(pdev, acs_flags); 3432 if (ret >= 0) 3433 return ret > 0; 3434 3435 /* 3436 * Conventional PCI and PCI-X devices never support ACS, either 3437 * effectively or actually. The shared bus topology implies that 3438 * any device on the bus can receive or snoop DMA. 3439 */ 3440 if (!pci_is_pcie(pdev)) 3441 return false; 3442 3443 switch (pci_pcie_type(pdev)) { 3444 /* 3445 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec, 3446 * but since their primary interface is PCI/X, we conservatively 3447 * handle them as we would a non-PCIe device. 3448 */ 3449 case PCI_EXP_TYPE_PCIE_BRIDGE: 3450 /* 3451 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never 3452 * applicable... must never implement an ACS Extended Capability...". 3453 * This seems arbitrary, but we take a conservative interpretation 3454 * of this statement. 3455 */ 3456 case PCI_EXP_TYPE_PCI_BRIDGE: 3457 case PCI_EXP_TYPE_RC_EC: 3458 return false; 3459 /* 3460 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should 3461 * implement ACS in order to indicate their peer-to-peer capabilities, 3462 * regardless of whether they are single- or multi-function devices. 3463 */ 3464 case PCI_EXP_TYPE_DOWNSTREAM: 3465 case PCI_EXP_TYPE_ROOT_PORT: 3466 return pci_acs_flags_enabled(pdev, acs_flags); 3467 /* 3468 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be 3469 * implemented by the remaining PCIe types to indicate peer-to-peer 3470 * capabilities, but only when they are part of a multifunction 3471 * device. The footnote for section 6.12 indicates the specific 3472 * PCIe types included here. 3473 */ 3474 case PCI_EXP_TYPE_ENDPOINT: 3475 case PCI_EXP_TYPE_UPSTREAM: 3476 case PCI_EXP_TYPE_LEG_END: 3477 case PCI_EXP_TYPE_RC_END: 3478 if (!pdev->multifunction) 3479 break; 3480 3481 return pci_acs_flags_enabled(pdev, acs_flags); 3482 } 3483 3484 /* 3485 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable 3486 * to single function devices with the exception of downstream ports. 3487 */ 3488 return true; 3489 } 3490 3491 /** 3492 * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy 3493 * @start: starting downstream device 3494 * @end: ending upstream device or NULL to search to the root bus 3495 * @acs_flags: required flags 3496 * 3497 * Walk up a device tree from start to end testing PCI ACS support. If 3498 * any step along the way does not support the required flags, return false. 3499 */ 3500 bool pci_acs_path_enabled(struct pci_dev *start, 3501 struct pci_dev *end, u16 acs_flags) 3502 { 3503 struct pci_dev *pdev, *parent = start; 3504 3505 do { 3506 pdev = parent; 3507 3508 if (!pci_acs_enabled(pdev, acs_flags)) 3509 return false; 3510 3511 if (pci_is_root_bus(pdev->bus)) 3512 return (end == NULL); 3513 3514 parent = pdev->bus->self; 3515 } while (pdev != end); 3516 3517 return true; 3518 } 3519 3520 /** 3521 * pci_acs_init - Initialize ACS if hardware supports it 3522 * @dev: the PCI device 3523 */ 3524 void pci_acs_init(struct pci_dev *dev) 3525 { 3526 dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS); 3527 3528 /* 3529 * Attempt to enable ACS regardless of capability because some Root 3530 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have 3531 * the standard ACS capability but still support ACS via those 3532 * quirks. 3533 */ 3534 pci_enable_acs(dev); 3535 } 3536 3537 /** 3538 * pci_rebar_find_pos - find position of resize ctrl reg for BAR 3539 * @pdev: PCI device 3540 * @bar: BAR to find 3541 * 3542 * Helper to find the position of the ctrl register for a BAR. 3543 * Returns -ENOTSUPP if resizable BARs are not supported at all. 3544 * Returns -ENOENT if no ctrl register for the BAR could be found. 3545 */ 3546 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar) 3547 { 3548 unsigned int pos, nbars, i; 3549 u32 ctrl; 3550 3551 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 3552 if (!pos) 3553 return -ENOTSUPP; 3554 3555 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3556 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >> 3557 PCI_REBAR_CTRL_NBAR_SHIFT; 3558 3559 for (i = 0; i < nbars; i++, pos += 8) { 3560 int bar_idx; 3561 3562 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3563 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX; 3564 if (bar_idx == bar) 3565 return pos; 3566 } 3567 3568 return -ENOENT; 3569 } 3570 3571 /** 3572 * pci_rebar_get_possible_sizes - get possible sizes for BAR 3573 * @pdev: PCI device 3574 * @bar: BAR to query 3575 * 3576 * Get the possible sizes of a resizable BAR as bitmask defined in the spec 3577 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable. 3578 */ 3579 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar) 3580 { 3581 int pos; 3582 u32 cap; 3583 3584 pos = pci_rebar_find_pos(pdev, bar); 3585 if (pos < 0) 3586 return 0; 3587 3588 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap); 3589 cap &= PCI_REBAR_CAP_SIZES; 3590 3591 /* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */ 3592 if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f && 3593 bar == 0 && cap == 0x7000) 3594 cap = 0x3f000; 3595 3596 return cap >> 4; 3597 } 3598 EXPORT_SYMBOL(pci_rebar_get_possible_sizes); 3599 3600 /** 3601 * pci_rebar_get_current_size - get the current size of a BAR 3602 * @pdev: PCI device 3603 * @bar: BAR to set size to 3604 * 3605 * Read the size of a BAR from the resizable BAR config. 3606 * Returns size if found or negative error code. 3607 */ 3608 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar) 3609 { 3610 int pos; 3611 u32 ctrl; 3612 3613 pos = pci_rebar_find_pos(pdev, bar); 3614 if (pos < 0) 3615 return pos; 3616 3617 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3618 return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT; 3619 } 3620 3621 /** 3622 * pci_rebar_set_size - set a new size for a BAR 3623 * @pdev: PCI device 3624 * @bar: BAR to set size to 3625 * @size: new size as defined in the spec (0=1MB, 19=512GB) 3626 * 3627 * Set the new size of a BAR as defined in the spec. 3628 * Returns zero if resizing was successful, error code otherwise. 3629 */ 3630 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size) 3631 { 3632 int pos; 3633 u32 ctrl; 3634 3635 pos = pci_rebar_find_pos(pdev, bar); 3636 if (pos < 0) 3637 return pos; 3638 3639 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3640 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 3641 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT; 3642 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 3643 return 0; 3644 } 3645 3646 /** 3647 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port 3648 * @dev: the PCI device 3649 * @cap_mask: mask of desired AtomicOp sizes, including one or more of: 3650 * PCI_EXP_DEVCAP2_ATOMIC_COMP32 3651 * PCI_EXP_DEVCAP2_ATOMIC_COMP64 3652 * PCI_EXP_DEVCAP2_ATOMIC_COMP128 3653 * 3654 * Return 0 if all upstream bridges support AtomicOp routing, egress 3655 * blocking is disabled on all upstream ports, and the root port supports 3656 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit 3657 * AtomicOp completion), or negative otherwise. 3658 */ 3659 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask) 3660 { 3661 struct pci_bus *bus = dev->bus; 3662 struct pci_dev *bridge; 3663 u32 cap, ctl2; 3664 3665 if (!pci_is_pcie(dev)) 3666 return -EINVAL; 3667 3668 /* 3669 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be 3670 * AtomicOp requesters. For now, we only support endpoints as 3671 * requesters and root ports as completers. No endpoints as 3672 * completers, and no peer-to-peer. 3673 */ 3674 3675 switch (pci_pcie_type(dev)) { 3676 case PCI_EXP_TYPE_ENDPOINT: 3677 case PCI_EXP_TYPE_LEG_END: 3678 case PCI_EXP_TYPE_RC_END: 3679 break; 3680 default: 3681 return -EINVAL; 3682 } 3683 3684 while (bus->parent) { 3685 bridge = bus->self; 3686 3687 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3688 3689 switch (pci_pcie_type(bridge)) { 3690 /* Ensure switch ports support AtomicOp routing */ 3691 case PCI_EXP_TYPE_UPSTREAM: 3692 case PCI_EXP_TYPE_DOWNSTREAM: 3693 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE)) 3694 return -EINVAL; 3695 break; 3696 3697 /* Ensure root port supports all the sizes we care about */ 3698 case PCI_EXP_TYPE_ROOT_PORT: 3699 if ((cap & cap_mask) != cap_mask) 3700 return -EINVAL; 3701 break; 3702 } 3703 3704 /* Ensure upstream ports don't block AtomicOps on egress */ 3705 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) { 3706 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, 3707 &ctl2); 3708 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK) 3709 return -EINVAL; 3710 } 3711 3712 bus = bus->parent; 3713 } 3714 3715 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2, 3716 PCI_EXP_DEVCTL2_ATOMIC_REQ); 3717 return 0; 3718 } 3719 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root); 3720 3721 /** 3722 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge 3723 * @dev: the PCI device 3724 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD) 3725 * 3726 * Perform INTx swizzling for a device behind one level of bridge. This is 3727 * required by section 9.1 of the PCI-to-PCI bridge specification for devices 3728 * behind bridges on add-in cards. For devices with ARI enabled, the slot 3729 * number is always 0 (see the Implementation Note in section 2.2.8.1 of 3730 * the PCI Express Base Specification, Revision 2.1) 3731 */ 3732 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin) 3733 { 3734 int slot; 3735 3736 if (pci_ari_enabled(dev->bus)) 3737 slot = 0; 3738 else 3739 slot = PCI_SLOT(dev->devfn); 3740 3741 return (((pin - 1) + slot) % 4) + 1; 3742 } 3743 3744 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge) 3745 { 3746 u8 pin; 3747 3748 pin = dev->pin; 3749 if (!pin) 3750 return -1; 3751 3752 while (!pci_is_root_bus(dev->bus)) { 3753 pin = pci_swizzle_interrupt_pin(dev, pin); 3754 dev = dev->bus->self; 3755 } 3756 *bridge = dev; 3757 return pin; 3758 } 3759 3760 /** 3761 * pci_common_swizzle - swizzle INTx all the way to root bridge 3762 * @dev: the PCI device 3763 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD) 3764 * 3765 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI 3766 * bridges all the way up to a PCI root bus. 3767 */ 3768 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp) 3769 { 3770 u8 pin = *pinp; 3771 3772 while (!pci_is_root_bus(dev->bus)) { 3773 pin = pci_swizzle_interrupt_pin(dev, pin); 3774 dev = dev->bus->self; 3775 } 3776 *pinp = pin; 3777 return PCI_SLOT(dev->devfn); 3778 } 3779 EXPORT_SYMBOL_GPL(pci_common_swizzle); 3780 3781 /** 3782 * pci_release_region - Release a PCI bar 3783 * @pdev: PCI device whose resources were previously reserved by 3784 * pci_request_region() 3785 * @bar: BAR to release 3786 * 3787 * Releases the PCI I/O and memory resources previously reserved by a 3788 * successful call to pci_request_region(). Call this function only 3789 * after all use of the PCI regions has ceased. 3790 */ 3791 void pci_release_region(struct pci_dev *pdev, int bar) 3792 { 3793 struct pci_devres *dr; 3794 3795 if (pci_resource_len(pdev, bar) == 0) 3796 return; 3797 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) 3798 release_region(pci_resource_start(pdev, bar), 3799 pci_resource_len(pdev, bar)); 3800 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) 3801 release_mem_region(pci_resource_start(pdev, bar), 3802 pci_resource_len(pdev, bar)); 3803 3804 dr = find_pci_dr(pdev); 3805 if (dr) 3806 dr->region_mask &= ~(1 << bar); 3807 } 3808 EXPORT_SYMBOL(pci_release_region); 3809 3810 /** 3811 * __pci_request_region - Reserved PCI I/O and memory resource 3812 * @pdev: PCI device whose resources are to be reserved 3813 * @bar: BAR to be reserved 3814 * @res_name: Name to be associated with resource. 3815 * @exclusive: whether the region access is exclusive or not 3816 * 3817 * Mark the PCI region associated with PCI device @pdev BAR @bar as 3818 * being reserved by owner @res_name. Do not access any 3819 * address inside the PCI regions unless this call returns 3820 * successfully. 3821 * 3822 * If @exclusive is set, then the region is marked so that userspace 3823 * is explicitly not allowed to map the resource via /dev/mem or 3824 * sysfs MMIO access. 3825 * 3826 * Returns 0 on success, or %EBUSY on error. A warning 3827 * message is also printed on failure. 3828 */ 3829 static int __pci_request_region(struct pci_dev *pdev, int bar, 3830 const char *res_name, int exclusive) 3831 { 3832 struct pci_devres *dr; 3833 3834 if (pci_resource_len(pdev, bar) == 0) 3835 return 0; 3836 3837 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) { 3838 if (!request_region(pci_resource_start(pdev, bar), 3839 pci_resource_len(pdev, bar), res_name)) 3840 goto err_out; 3841 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) { 3842 if (!__request_mem_region(pci_resource_start(pdev, bar), 3843 pci_resource_len(pdev, bar), res_name, 3844 exclusive)) 3845 goto err_out; 3846 } 3847 3848 dr = find_pci_dr(pdev); 3849 if (dr) 3850 dr->region_mask |= 1 << bar; 3851 3852 return 0; 3853 3854 err_out: 3855 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar, 3856 &pdev->resource[bar]); 3857 return -EBUSY; 3858 } 3859 3860 /** 3861 * pci_request_region - Reserve PCI I/O and memory resource 3862 * @pdev: PCI device whose resources are to be reserved 3863 * @bar: BAR to be reserved 3864 * @res_name: Name to be associated with resource 3865 * 3866 * Mark the PCI region associated with PCI device @pdev BAR @bar as 3867 * being reserved by owner @res_name. Do not access any 3868 * address inside the PCI regions unless this call returns 3869 * successfully. 3870 * 3871 * Returns 0 on success, or %EBUSY on error. A warning 3872 * message is also printed on failure. 3873 */ 3874 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name) 3875 { 3876 return __pci_request_region(pdev, bar, res_name, 0); 3877 } 3878 EXPORT_SYMBOL(pci_request_region); 3879 3880 /** 3881 * pci_release_selected_regions - Release selected PCI I/O and memory resources 3882 * @pdev: PCI device whose resources were previously reserved 3883 * @bars: Bitmask of BARs to be released 3884 * 3885 * Release selected PCI I/O and memory resources previously reserved. 3886 * Call this function only after all use of the PCI regions has ceased. 3887 */ 3888 void pci_release_selected_regions(struct pci_dev *pdev, int bars) 3889 { 3890 int i; 3891 3892 for (i = 0; i < PCI_STD_NUM_BARS; i++) 3893 if (bars & (1 << i)) 3894 pci_release_region(pdev, i); 3895 } 3896 EXPORT_SYMBOL(pci_release_selected_regions); 3897 3898 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars, 3899 const char *res_name, int excl) 3900 { 3901 int i; 3902 3903 for (i = 0; i < PCI_STD_NUM_BARS; i++) 3904 if (bars & (1 << i)) 3905 if (__pci_request_region(pdev, i, res_name, excl)) 3906 goto err_out; 3907 return 0; 3908 3909 err_out: 3910 while (--i >= 0) 3911 if (bars & (1 << i)) 3912 pci_release_region(pdev, i); 3913 3914 return -EBUSY; 3915 } 3916 3917 3918 /** 3919 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources 3920 * @pdev: PCI device whose resources are to be reserved 3921 * @bars: Bitmask of BARs to be requested 3922 * @res_name: Name to be associated with resource 3923 */ 3924 int pci_request_selected_regions(struct pci_dev *pdev, int bars, 3925 const char *res_name) 3926 { 3927 return __pci_request_selected_regions(pdev, bars, res_name, 0); 3928 } 3929 EXPORT_SYMBOL(pci_request_selected_regions); 3930 3931 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars, 3932 const char *res_name) 3933 { 3934 return __pci_request_selected_regions(pdev, bars, res_name, 3935 IORESOURCE_EXCLUSIVE); 3936 } 3937 EXPORT_SYMBOL(pci_request_selected_regions_exclusive); 3938 3939 /** 3940 * pci_release_regions - Release reserved PCI I/O and memory resources 3941 * @pdev: PCI device whose resources were previously reserved by 3942 * pci_request_regions() 3943 * 3944 * Releases all PCI I/O and memory resources previously reserved by a 3945 * successful call to pci_request_regions(). Call this function only 3946 * after all use of the PCI regions has ceased. 3947 */ 3948 3949 void pci_release_regions(struct pci_dev *pdev) 3950 { 3951 pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1); 3952 } 3953 EXPORT_SYMBOL(pci_release_regions); 3954 3955 /** 3956 * pci_request_regions - Reserve PCI I/O and memory resources 3957 * @pdev: PCI device whose resources are to be reserved 3958 * @res_name: Name to be associated with resource. 3959 * 3960 * Mark all PCI regions associated with PCI device @pdev as 3961 * being reserved by owner @res_name. Do not access any 3962 * address inside the PCI regions unless this call returns 3963 * successfully. 3964 * 3965 * Returns 0 on success, or %EBUSY on error. A warning 3966 * message is also printed on failure. 3967 */ 3968 int pci_request_regions(struct pci_dev *pdev, const char *res_name) 3969 { 3970 return pci_request_selected_regions(pdev, 3971 ((1 << PCI_STD_NUM_BARS) - 1), res_name); 3972 } 3973 EXPORT_SYMBOL(pci_request_regions); 3974 3975 /** 3976 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources 3977 * @pdev: PCI device whose resources are to be reserved 3978 * @res_name: Name to be associated with resource. 3979 * 3980 * Mark all PCI regions associated with PCI device @pdev as being reserved 3981 * by owner @res_name. Do not access any address inside the PCI regions 3982 * unless this call returns successfully. 3983 * 3984 * pci_request_regions_exclusive() will mark the region so that /dev/mem 3985 * and the sysfs MMIO access will not be allowed. 3986 * 3987 * Returns 0 on success, or %EBUSY on error. A warning message is also 3988 * printed on failure. 3989 */ 3990 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name) 3991 { 3992 return pci_request_selected_regions_exclusive(pdev, 3993 ((1 << PCI_STD_NUM_BARS) - 1), res_name); 3994 } 3995 EXPORT_SYMBOL(pci_request_regions_exclusive); 3996 3997 /* 3998 * Record the PCI IO range (expressed as CPU physical address + size). 3999 * Return a negative value if an error has occurred, zero otherwise 4000 */ 4001 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr, 4002 resource_size_t size) 4003 { 4004 int ret = 0; 4005 #ifdef PCI_IOBASE 4006 struct logic_pio_hwaddr *range; 4007 4008 if (!size || addr + size < addr) 4009 return -EINVAL; 4010 4011 range = kzalloc(sizeof(*range), GFP_ATOMIC); 4012 if (!range) 4013 return -ENOMEM; 4014 4015 range->fwnode = fwnode; 4016 range->size = size; 4017 range->hw_start = addr; 4018 range->flags = LOGIC_PIO_CPU_MMIO; 4019 4020 ret = logic_pio_register_range(range); 4021 if (ret) 4022 kfree(range); 4023 4024 /* Ignore duplicates due to deferred probing */ 4025 if (ret == -EEXIST) 4026 ret = 0; 4027 #endif 4028 4029 return ret; 4030 } 4031 4032 phys_addr_t pci_pio_to_address(unsigned long pio) 4033 { 4034 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR; 4035 4036 #ifdef PCI_IOBASE 4037 if (pio >= MMIO_UPPER_LIMIT) 4038 return address; 4039 4040 address = logic_pio_to_hwaddr(pio); 4041 #endif 4042 4043 return address; 4044 } 4045 4046 unsigned long __weak pci_address_to_pio(phys_addr_t address) 4047 { 4048 #ifdef PCI_IOBASE 4049 return logic_pio_trans_cpuaddr(address); 4050 #else 4051 if (address > IO_SPACE_LIMIT) 4052 return (unsigned long)-1; 4053 4054 return (unsigned long) address; 4055 #endif 4056 } 4057 4058 /** 4059 * pci_remap_iospace - Remap the memory mapped I/O space 4060 * @res: Resource describing the I/O space 4061 * @phys_addr: physical address of range to be mapped 4062 * 4063 * Remap the memory mapped I/O space described by the @res and the CPU 4064 * physical address @phys_addr into virtual address space. Only 4065 * architectures that have memory mapped IO functions defined (and the 4066 * PCI_IOBASE value defined) should call this function. 4067 */ 4068 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr) 4069 { 4070 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 4071 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 4072 4073 if (!(res->flags & IORESOURCE_IO)) 4074 return -EINVAL; 4075 4076 if (res->end > IO_SPACE_LIMIT) 4077 return -EINVAL; 4078 4079 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr, 4080 pgprot_device(PAGE_KERNEL)); 4081 #else 4082 /* 4083 * This architecture does not have memory mapped I/O space, 4084 * so this function should never be called 4085 */ 4086 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n"); 4087 return -ENODEV; 4088 #endif 4089 } 4090 EXPORT_SYMBOL(pci_remap_iospace); 4091 4092 /** 4093 * pci_unmap_iospace - Unmap the memory mapped I/O space 4094 * @res: resource to be unmapped 4095 * 4096 * Unmap the CPU virtual address @res from virtual address space. Only 4097 * architectures that have memory mapped IO functions defined (and the 4098 * PCI_IOBASE value defined) should call this function. 4099 */ 4100 void pci_unmap_iospace(struct resource *res) 4101 { 4102 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 4103 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 4104 4105 vunmap_range(vaddr, vaddr + resource_size(res)); 4106 #endif 4107 } 4108 EXPORT_SYMBOL(pci_unmap_iospace); 4109 4110 static void devm_pci_unmap_iospace(struct device *dev, void *ptr) 4111 { 4112 struct resource **res = ptr; 4113 4114 pci_unmap_iospace(*res); 4115 } 4116 4117 /** 4118 * devm_pci_remap_iospace - Managed pci_remap_iospace() 4119 * @dev: Generic device to remap IO address for 4120 * @res: Resource describing the I/O space 4121 * @phys_addr: physical address of range to be mapped 4122 * 4123 * Managed pci_remap_iospace(). Map is automatically unmapped on driver 4124 * detach. 4125 */ 4126 int devm_pci_remap_iospace(struct device *dev, const struct resource *res, 4127 phys_addr_t phys_addr) 4128 { 4129 const struct resource **ptr; 4130 int error; 4131 4132 ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL); 4133 if (!ptr) 4134 return -ENOMEM; 4135 4136 error = pci_remap_iospace(res, phys_addr); 4137 if (error) { 4138 devres_free(ptr); 4139 } else { 4140 *ptr = res; 4141 devres_add(dev, ptr); 4142 } 4143 4144 return error; 4145 } 4146 EXPORT_SYMBOL(devm_pci_remap_iospace); 4147 4148 /** 4149 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace() 4150 * @dev: Generic device to remap IO address for 4151 * @offset: Resource address to map 4152 * @size: Size of map 4153 * 4154 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver 4155 * detach. 4156 */ 4157 void __iomem *devm_pci_remap_cfgspace(struct device *dev, 4158 resource_size_t offset, 4159 resource_size_t size) 4160 { 4161 void __iomem **ptr, *addr; 4162 4163 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL); 4164 if (!ptr) 4165 return NULL; 4166 4167 addr = pci_remap_cfgspace(offset, size); 4168 if (addr) { 4169 *ptr = addr; 4170 devres_add(dev, ptr); 4171 } else 4172 devres_free(ptr); 4173 4174 return addr; 4175 } 4176 EXPORT_SYMBOL(devm_pci_remap_cfgspace); 4177 4178 /** 4179 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource 4180 * @dev: generic device to handle the resource for 4181 * @res: configuration space resource to be handled 4182 * 4183 * Checks that a resource is a valid memory region, requests the memory 4184 * region and ioremaps with pci_remap_cfgspace() API that ensures the 4185 * proper PCI configuration space memory attributes are guaranteed. 4186 * 4187 * All operations are managed and will be undone on driver detach. 4188 * 4189 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code 4190 * on failure. Usage example:: 4191 * 4192 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 4193 * base = devm_pci_remap_cfg_resource(&pdev->dev, res); 4194 * if (IS_ERR(base)) 4195 * return PTR_ERR(base); 4196 */ 4197 void __iomem *devm_pci_remap_cfg_resource(struct device *dev, 4198 struct resource *res) 4199 { 4200 resource_size_t size; 4201 const char *name; 4202 void __iomem *dest_ptr; 4203 4204 BUG_ON(!dev); 4205 4206 if (!res || resource_type(res) != IORESOURCE_MEM) { 4207 dev_err(dev, "invalid resource\n"); 4208 return IOMEM_ERR_PTR(-EINVAL); 4209 } 4210 4211 size = resource_size(res); 4212 4213 if (res->name) 4214 name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev), 4215 res->name); 4216 else 4217 name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL); 4218 if (!name) 4219 return IOMEM_ERR_PTR(-ENOMEM); 4220 4221 if (!devm_request_mem_region(dev, res->start, size, name)) { 4222 dev_err(dev, "can't request region for resource %pR\n", res); 4223 return IOMEM_ERR_PTR(-EBUSY); 4224 } 4225 4226 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size); 4227 if (!dest_ptr) { 4228 dev_err(dev, "ioremap failed for resource %pR\n", res); 4229 devm_release_mem_region(dev, res->start, size); 4230 dest_ptr = IOMEM_ERR_PTR(-ENOMEM); 4231 } 4232 4233 return dest_ptr; 4234 } 4235 EXPORT_SYMBOL(devm_pci_remap_cfg_resource); 4236 4237 static void __pci_set_master(struct pci_dev *dev, bool enable) 4238 { 4239 u16 old_cmd, cmd; 4240 4241 pci_read_config_word(dev, PCI_COMMAND, &old_cmd); 4242 if (enable) 4243 cmd = old_cmd | PCI_COMMAND_MASTER; 4244 else 4245 cmd = old_cmd & ~PCI_COMMAND_MASTER; 4246 if (cmd != old_cmd) { 4247 pci_dbg(dev, "%s bus mastering\n", 4248 enable ? "enabling" : "disabling"); 4249 pci_write_config_word(dev, PCI_COMMAND, cmd); 4250 } 4251 dev->is_busmaster = enable; 4252 } 4253 4254 /** 4255 * pcibios_setup - process "pci=" kernel boot arguments 4256 * @str: string used to pass in "pci=" kernel boot arguments 4257 * 4258 * Process kernel boot arguments. This is the default implementation. 4259 * Architecture specific implementations can override this as necessary. 4260 */ 4261 char * __weak __init pcibios_setup(char *str) 4262 { 4263 return str; 4264 } 4265 4266 /** 4267 * pcibios_set_master - enable PCI bus-mastering for device dev 4268 * @dev: the PCI device to enable 4269 * 4270 * Enables PCI bus-mastering for the device. This is the default 4271 * implementation. Architecture specific implementations can override 4272 * this if necessary. 4273 */ 4274 void __weak pcibios_set_master(struct pci_dev *dev) 4275 { 4276 u8 lat; 4277 4278 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */ 4279 if (pci_is_pcie(dev)) 4280 return; 4281 4282 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat); 4283 if (lat < 16) 4284 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency; 4285 else if (lat > pcibios_max_latency) 4286 lat = pcibios_max_latency; 4287 else 4288 return; 4289 4290 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat); 4291 } 4292 4293 /** 4294 * pci_set_master - enables bus-mastering for device dev 4295 * @dev: the PCI device to enable 4296 * 4297 * Enables bus-mastering on the device and calls pcibios_set_master() 4298 * to do the needed arch specific settings. 4299 */ 4300 void pci_set_master(struct pci_dev *dev) 4301 { 4302 __pci_set_master(dev, true); 4303 pcibios_set_master(dev); 4304 } 4305 EXPORT_SYMBOL(pci_set_master); 4306 4307 /** 4308 * pci_clear_master - disables bus-mastering for device dev 4309 * @dev: the PCI device to disable 4310 */ 4311 void pci_clear_master(struct pci_dev *dev) 4312 { 4313 __pci_set_master(dev, false); 4314 } 4315 EXPORT_SYMBOL(pci_clear_master); 4316 4317 /** 4318 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed 4319 * @dev: the PCI device for which MWI is to be enabled 4320 * 4321 * Helper function for pci_set_mwi. 4322 * Originally copied from drivers/net/acenic.c. 4323 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. 4324 * 4325 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4326 */ 4327 int pci_set_cacheline_size(struct pci_dev *dev) 4328 { 4329 u8 cacheline_size; 4330 4331 if (!pci_cache_line_size) 4332 return -EINVAL; 4333 4334 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be 4335 equal to or multiple of the right value. */ 4336 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4337 if (cacheline_size >= pci_cache_line_size && 4338 (cacheline_size % pci_cache_line_size) == 0) 4339 return 0; 4340 4341 /* Write the correct value. */ 4342 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size); 4343 /* Read it back. */ 4344 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4345 if (cacheline_size == pci_cache_line_size) 4346 return 0; 4347 4348 pci_dbg(dev, "cache line size of %d is not supported\n", 4349 pci_cache_line_size << 2); 4350 4351 return -EINVAL; 4352 } 4353 EXPORT_SYMBOL_GPL(pci_set_cacheline_size); 4354 4355 /** 4356 * pci_set_mwi - enables memory-write-invalidate PCI transaction 4357 * @dev: the PCI device for which MWI is enabled 4358 * 4359 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4360 * 4361 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4362 */ 4363 int pci_set_mwi(struct pci_dev *dev) 4364 { 4365 #ifdef PCI_DISABLE_MWI 4366 return 0; 4367 #else 4368 int rc; 4369 u16 cmd; 4370 4371 rc = pci_set_cacheline_size(dev); 4372 if (rc) 4373 return rc; 4374 4375 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4376 if (!(cmd & PCI_COMMAND_INVALIDATE)) { 4377 pci_dbg(dev, "enabling Mem-Wr-Inval\n"); 4378 cmd |= PCI_COMMAND_INVALIDATE; 4379 pci_write_config_word(dev, PCI_COMMAND, cmd); 4380 } 4381 return 0; 4382 #endif 4383 } 4384 EXPORT_SYMBOL(pci_set_mwi); 4385 4386 /** 4387 * pcim_set_mwi - a device-managed pci_set_mwi() 4388 * @dev: the PCI device for which MWI is enabled 4389 * 4390 * Managed pci_set_mwi(). 4391 * 4392 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4393 */ 4394 int pcim_set_mwi(struct pci_dev *dev) 4395 { 4396 struct pci_devres *dr; 4397 4398 dr = find_pci_dr(dev); 4399 if (!dr) 4400 return -ENOMEM; 4401 4402 dr->mwi = 1; 4403 return pci_set_mwi(dev); 4404 } 4405 EXPORT_SYMBOL(pcim_set_mwi); 4406 4407 /** 4408 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction 4409 * @dev: the PCI device for which MWI is enabled 4410 * 4411 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4412 * Callers are not required to check the return value. 4413 * 4414 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4415 */ 4416 int pci_try_set_mwi(struct pci_dev *dev) 4417 { 4418 #ifdef PCI_DISABLE_MWI 4419 return 0; 4420 #else 4421 return pci_set_mwi(dev); 4422 #endif 4423 } 4424 EXPORT_SYMBOL(pci_try_set_mwi); 4425 4426 /** 4427 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev 4428 * @dev: the PCI device to disable 4429 * 4430 * Disables PCI Memory-Write-Invalidate transaction on the device 4431 */ 4432 void pci_clear_mwi(struct pci_dev *dev) 4433 { 4434 #ifndef PCI_DISABLE_MWI 4435 u16 cmd; 4436 4437 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4438 if (cmd & PCI_COMMAND_INVALIDATE) { 4439 cmd &= ~PCI_COMMAND_INVALIDATE; 4440 pci_write_config_word(dev, PCI_COMMAND, cmd); 4441 } 4442 #endif 4443 } 4444 EXPORT_SYMBOL(pci_clear_mwi); 4445 4446 /** 4447 * pci_intx - enables/disables PCI INTx for device dev 4448 * @pdev: the PCI device to operate on 4449 * @enable: boolean: whether to enable or disable PCI INTx 4450 * 4451 * Enables/disables PCI INTx for device @pdev 4452 */ 4453 void pci_intx(struct pci_dev *pdev, int enable) 4454 { 4455 u16 pci_command, new; 4456 4457 pci_read_config_word(pdev, PCI_COMMAND, &pci_command); 4458 4459 if (enable) 4460 new = pci_command & ~PCI_COMMAND_INTX_DISABLE; 4461 else 4462 new = pci_command | PCI_COMMAND_INTX_DISABLE; 4463 4464 if (new != pci_command) { 4465 struct pci_devres *dr; 4466 4467 pci_write_config_word(pdev, PCI_COMMAND, new); 4468 4469 dr = find_pci_dr(pdev); 4470 if (dr && !dr->restore_intx) { 4471 dr->restore_intx = 1; 4472 dr->orig_intx = !enable; 4473 } 4474 } 4475 } 4476 EXPORT_SYMBOL_GPL(pci_intx); 4477 4478 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask) 4479 { 4480 struct pci_bus *bus = dev->bus; 4481 bool mask_updated = true; 4482 u32 cmd_status_dword; 4483 u16 origcmd, newcmd; 4484 unsigned long flags; 4485 bool irq_pending; 4486 4487 /* 4488 * We do a single dword read to retrieve both command and status. 4489 * Document assumptions that make this possible. 4490 */ 4491 BUILD_BUG_ON(PCI_COMMAND % 4); 4492 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS); 4493 4494 raw_spin_lock_irqsave(&pci_lock, flags); 4495 4496 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword); 4497 4498 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT; 4499 4500 /* 4501 * Check interrupt status register to see whether our device 4502 * triggered the interrupt (when masking) or the next IRQ is 4503 * already pending (when unmasking). 4504 */ 4505 if (mask != irq_pending) { 4506 mask_updated = false; 4507 goto done; 4508 } 4509 4510 origcmd = cmd_status_dword; 4511 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE; 4512 if (mask) 4513 newcmd |= PCI_COMMAND_INTX_DISABLE; 4514 if (newcmd != origcmd) 4515 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd); 4516 4517 done: 4518 raw_spin_unlock_irqrestore(&pci_lock, flags); 4519 4520 return mask_updated; 4521 } 4522 4523 /** 4524 * pci_check_and_mask_intx - mask INTx on pending interrupt 4525 * @dev: the PCI device to operate on 4526 * 4527 * Check if the device dev has its INTx line asserted, mask it and return 4528 * true in that case. False is returned if no interrupt was pending. 4529 */ 4530 bool pci_check_and_mask_intx(struct pci_dev *dev) 4531 { 4532 return pci_check_and_set_intx_mask(dev, true); 4533 } 4534 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx); 4535 4536 /** 4537 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending 4538 * @dev: the PCI device to operate on 4539 * 4540 * Check if the device dev has its INTx line asserted, unmask it if not and 4541 * return true. False is returned and the mask remains active if there was 4542 * still an interrupt pending. 4543 */ 4544 bool pci_check_and_unmask_intx(struct pci_dev *dev) 4545 { 4546 return pci_check_and_set_intx_mask(dev, false); 4547 } 4548 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx); 4549 4550 /** 4551 * pci_wait_for_pending_transaction - wait for pending transaction 4552 * @dev: the PCI device to operate on 4553 * 4554 * Return 0 if transaction is pending 1 otherwise. 4555 */ 4556 int pci_wait_for_pending_transaction(struct pci_dev *dev) 4557 { 4558 if (!pci_is_pcie(dev)) 4559 return 1; 4560 4561 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA, 4562 PCI_EXP_DEVSTA_TRPND); 4563 } 4564 EXPORT_SYMBOL(pci_wait_for_pending_transaction); 4565 4566 /** 4567 * pcie_has_flr - check if a device supports function level resets 4568 * @dev: device to check 4569 * 4570 * Returns true if the device advertises support for PCIe function level 4571 * resets. 4572 */ 4573 bool pcie_has_flr(struct pci_dev *dev) 4574 { 4575 u32 cap; 4576 4577 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4578 return false; 4579 4580 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap); 4581 return cap & PCI_EXP_DEVCAP_FLR; 4582 } 4583 EXPORT_SYMBOL_GPL(pcie_has_flr); 4584 4585 /** 4586 * pcie_flr - initiate a PCIe function level reset 4587 * @dev: device to reset 4588 * 4589 * Initiate a function level reset on @dev. The caller should ensure the 4590 * device supports FLR before calling this function, e.g. by using the 4591 * pcie_has_flr() helper. 4592 */ 4593 int pcie_flr(struct pci_dev *dev) 4594 { 4595 if (!pci_wait_for_pending_transaction(dev)) 4596 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n"); 4597 4598 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR); 4599 4600 if (dev->imm_ready) 4601 return 0; 4602 4603 /* 4604 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within 4605 * 100ms, but may silently discard requests while the FLR is in 4606 * progress. Wait 100ms before trying to access the device. 4607 */ 4608 msleep(100); 4609 4610 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS); 4611 } 4612 EXPORT_SYMBOL_GPL(pcie_flr); 4613 4614 static int pci_af_flr(struct pci_dev *dev, int probe) 4615 { 4616 int pos; 4617 u8 cap; 4618 4619 pos = pci_find_capability(dev, PCI_CAP_ID_AF); 4620 if (!pos) 4621 return -ENOTTY; 4622 4623 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4624 return -ENOTTY; 4625 4626 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap); 4627 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR)) 4628 return -ENOTTY; 4629 4630 if (probe) 4631 return 0; 4632 4633 /* 4634 * Wait for Transaction Pending bit to clear. A word-aligned test 4635 * is used, so we use the control offset rather than status and shift 4636 * the test bit to match. 4637 */ 4638 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL, 4639 PCI_AF_STATUS_TP << 8)) 4640 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n"); 4641 4642 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR); 4643 4644 if (dev->imm_ready) 4645 return 0; 4646 4647 /* 4648 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006, 4649 * updated 27 July 2006; a device must complete an FLR within 4650 * 100ms, but may silently discard requests while the FLR is in 4651 * progress. Wait 100ms before trying to access the device. 4652 */ 4653 msleep(100); 4654 4655 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS); 4656 } 4657 4658 /** 4659 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0. 4660 * @dev: Device to reset. 4661 * @probe: If set, only check if the device can be reset this way. 4662 * 4663 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is 4664 * unset, it will be reinitialized internally when going from PCI_D3hot to 4665 * PCI_D0. If that's the case and the device is not in a low-power state 4666 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset. 4667 * 4668 * NOTE: This causes the caller to sleep for twice the device power transition 4669 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms 4670 * by default (i.e. unless the @dev's d3hot_delay field has a different value). 4671 * Moreover, only devices in D0 can be reset by this function. 4672 */ 4673 static int pci_pm_reset(struct pci_dev *dev, int probe) 4674 { 4675 u16 csr; 4676 4677 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET) 4678 return -ENOTTY; 4679 4680 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr); 4681 if (csr & PCI_PM_CTRL_NO_SOFT_RESET) 4682 return -ENOTTY; 4683 4684 if (probe) 4685 return 0; 4686 4687 if (dev->current_state != PCI_D0) 4688 return -EINVAL; 4689 4690 csr &= ~PCI_PM_CTRL_STATE_MASK; 4691 csr |= PCI_D3hot; 4692 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4693 pci_dev_d3_sleep(dev); 4694 4695 csr &= ~PCI_PM_CTRL_STATE_MASK; 4696 csr |= PCI_D0; 4697 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4698 pci_dev_d3_sleep(dev); 4699 4700 return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS); 4701 } 4702 4703 /** 4704 * pcie_wait_for_link_delay - Wait until link is active or inactive 4705 * @pdev: Bridge device 4706 * @active: waiting for active or inactive? 4707 * @delay: Delay to wait after link has become active (in ms) 4708 * 4709 * Use this to wait till link becomes active or inactive. 4710 */ 4711 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active, 4712 int delay) 4713 { 4714 int timeout = 1000; 4715 bool ret; 4716 u16 lnk_status; 4717 4718 /* 4719 * Some controllers might not implement link active reporting. In this 4720 * case, we wait for 1000 ms + any delay requested by the caller. 4721 */ 4722 if (!pdev->link_active_reporting) { 4723 msleep(timeout + delay); 4724 return true; 4725 } 4726 4727 /* 4728 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms, 4729 * after which we should expect an link active if the reset was 4730 * successful. If so, software must wait a minimum 100ms before sending 4731 * configuration requests to devices downstream this port. 4732 * 4733 * If the link fails to activate, either the device was physically 4734 * removed or the link is permanently failed. 4735 */ 4736 if (active) 4737 msleep(20); 4738 for (;;) { 4739 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status); 4740 ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA); 4741 if (ret == active) 4742 break; 4743 if (timeout <= 0) 4744 break; 4745 msleep(10); 4746 timeout -= 10; 4747 } 4748 if (active && ret) 4749 msleep(delay); 4750 4751 return ret == active; 4752 } 4753 4754 /** 4755 * pcie_wait_for_link - Wait until link is active or inactive 4756 * @pdev: Bridge device 4757 * @active: waiting for active or inactive? 4758 * 4759 * Use this to wait till link becomes active or inactive. 4760 */ 4761 bool pcie_wait_for_link(struct pci_dev *pdev, bool active) 4762 { 4763 return pcie_wait_for_link_delay(pdev, active, 100); 4764 } 4765 4766 /* 4767 * Find maximum D3cold delay required by all the devices on the bus. The 4768 * spec says 100 ms, but firmware can lower it and we allow drivers to 4769 * increase it as well. 4770 * 4771 * Called with @pci_bus_sem locked for reading. 4772 */ 4773 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus) 4774 { 4775 const struct pci_dev *pdev; 4776 int min_delay = 100; 4777 int max_delay = 0; 4778 4779 list_for_each_entry(pdev, &bus->devices, bus_list) { 4780 if (pdev->d3cold_delay < min_delay) 4781 min_delay = pdev->d3cold_delay; 4782 if (pdev->d3cold_delay > max_delay) 4783 max_delay = pdev->d3cold_delay; 4784 } 4785 4786 return max(min_delay, max_delay); 4787 } 4788 4789 /** 4790 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible 4791 * @dev: PCI bridge 4792 * 4793 * Handle necessary delays before access to the devices on the secondary 4794 * side of the bridge are permitted after D3cold to D0 transition. 4795 * 4796 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For 4797 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section 4798 * 4.3.2. 4799 */ 4800 void pci_bridge_wait_for_secondary_bus(struct pci_dev *dev) 4801 { 4802 struct pci_dev *child; 4803 int delay; 4804 4805 if (pci_dev_is_disconnected(dev)) 4806 return; 4807 4808 if (!pci_is_bridge(dev) || !dev->bridge_d3) 4809 return; 4810 4811 down_read(&pci_bus_sem); 4812 4813 /* 4814 * We only deal with devices that are present currently on the bus. 4815 * For any hot-added devices the access delay is handled in pciehp 4816 * board_added(). In case of ACPI hotplug the firmware is expected 4817 * to configure the devices before OS is notified. 4818 */ 4819 if (!dev->subordinate || list_empty(&dev->subordinate->devices)) { 4820 up_read(&pci_bus_sem); 4821 return; 4822 } 4823 4824 /* Take d3cold_delay requirements into account */ 4825 delay = pci_bus_max_d3cold_delay(dev->subordinate); 4826 if (!delay) { 4827 up_read(&pci_bus_sem); 4828 return; 4829 } 4830 4831 child = list_first_entry(&dev->subordinate->devices, struct pci_dev, 4832 bus_list); 4833 up_read(&pci_bus_sem); 4834 4835 /* 4836 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before 4837 * accessing the device after reset (that is 1000 ms + 100 ms). In 4838 * practice this should not be needed because we don't do power 4839 * management for them (see pci_bridge_d3_possible()). 4840 */ 4841 if (!pci_is_pcie(dev)) { 4842 pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay); 4843 msleep(1000 + delay); 4844 return; 4845 } 4846 4847 /* 4848 * For PCIe downstream and root ports that do not support speeds 4849 * greater than 5 GT/s need to wait minimum 100 ms. For higher 4850 * speeds (gen3) we need to wait first for the data link layer to 4851 * become active. 4852 * 4853 * However, 100 ms is the minimum and the PCIe spec says the 4854 * software must allow at least 1s before it can determine that the 4855 * device that did not respond is a broken device. There is 4856 * evidence that 100 ms is not always enough, for example certain 4857 * Titan Ridge xHCI controller does not always respond to 4858 * configuration requests if we only wait for 100 ms (see 4859 * https://bugzilla.kernel.org/show_bug.cgi?id=203885). 4860 * 4861 * Therefore we wait for 100 ms and check for the device presence. 4862 * If it is still not present give it an additional 100 ms. 4863 */ 4864 if (!pcie_downstream_port(dev)) 4865 return; 4866 4867 if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) { 4868 pci_dbg(dev, "waiting %d ms for downstream link\n", delay); 4869 msleep(delay); 4870 } else { 4871 pci_dbg(dev, "waiting %d ms for downstream link, after activation\n", 4872 delay); 4873 if (!pcie_wait_for_link_delay(dev, true, delay)) { 4874 /* Did not train, no need to wait any further */ 4875 pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n"); 4876 return; 4877 } 4878 } 4879 4880 if (!pci_device_is_present(child)) { 4881 pci_dbg(child, "waiting additional %d ms to become accessible\n", delay); 4882 msleep(delay); 4883 } 4884 } 4885 4886 void pci_reset_secondary_bus(struct pci_dev *dev) 4887 { 4888 u16 ctrl; 4889 4890 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl); 4891 ctrl |= PCI_BRIDGE_CTL_BUS_RESET; 4892 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 4893 4894 /* 4895 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double 4896 * this to 2ms to ensure that we meet the minimum requirement. 4897 */ 4898 msleep(2); 4899 4900 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET; 4901 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 4902 4903 /* 4904 * Trhfa for conventional PCI is 2^25 clock cycles. 4905 * Assuming a minimum 33MHz clock this results in a 1s 4906 * delay before we can consider subordinate devices to 4907 * be re-initialized. PCIe has some ways to shorten this, 4908 * but we don't make use of them yet. 4909 */ 4910 ssleep(1); 4911 } 4912 4913 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev) 4914 { 4915 pci_reset_secondary_bus(dev); 4916 } 4917 4918 /** 4919 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge. 4920 * @dev: Bridge device 4921 * 4922 * Use the bridge control register to assert reset on the secondary bus. 4923 * Devices on the secondary bus are left in power-on state. 4924 */ 4925 int pci_bridge_secondary_bus_reset(struct pci_dev *dev) 4926 { 4927 pcibios_reset_secondary_bus(dev); 4928 4929 return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS); 4930 } 4931 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset); 4932 4933 static int pci_parent_bus_reset(struct pci_dev *dev, int probe) 4934 { 4935 struct pci_dev *pdev; 4936 4937 if (pci_is_root_bus(dev->bus) || dev->subordinate || 4938 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 4939 return -ENOTTY; 4940 4941 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 4942 if (pdev != dev) 4943 return -ENOTTY; 4944 4945 if (probe) 4946 return 0; 4947 4948 return pci_bridge_secondary_bus_reset(dev->bus->self); 4949 } 4950 4951 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe) 4952 { 4953 int rc = -ENOTTY; 4954 4955 if (!hotplug || !try_module_get(hotplug->owner)) 4956 return rc; 4957 4958 if (hotplug->ops->reset_slot) 4959 rc = hotplug->ops->reset_slot(hotplug, probe); 4960 4961 module_put(hotplug->owner); 4962 4963 return rc; 4964 } 4965 4966 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe) 4967 { 4968 if (dev->multifunction || dev->subordinate || !dev->slot || 4969 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 4970 return -ENOTTY; 4971 4972 return pci_reset_hotplug_slot(dev->slot->hotplug, probe); 4973 } 4974 4975 static void pci_dev_lock(struct pci_dev *dev) 4976 { 4977 pci_cfg_access_lock(dev); 4978 /* block PM suspend, driver probe, etc. */ 4979 device_lock(&dev->dev); 4980 } 4981 4982 /* Return 1 on successful lock, 0 on contention */ 4983 static int pci_dev_trylock(struct pci_dev *dev) 4984 { 4985 if (pci_cfg_access_trylock(dev)) { 4986 if (device_trylock(&dev->dev)) 4987 return 1; 4988 pci_cfg_access_unlock(dev); 4989 } 4990 4991 return 0; 4992 } 4993 4994 static void pci_dev_unlock(struct pci_dev *dev) 4995 { 4996 device_unlock(&dev->dev); 4997 pci_cfg_access_unlock(dev); 4998 } 4999 5000 static void pci_dev_save_and_disable(struct pci_dev *dev) 5001 { 5002 const struct pci_error_handlers *err_handler = 5003 dev->driver ? dev->driver->err_handler : NULL; 5004 5005 /* 5006 * dev->driver->err_handler->reset_prepare() is protected against 5007 * races with ->remove() by the device lock, which must be held by 5008 * the caller. 5009 */ 5010 if (err_handler && err_handler->reset_prepare) 5011 err_handler->reset_prepare(dev); 5012 5013 /* 5014 * Wake-up device prior to save. PM registers default to D0 after 5015 * reset and a simple register restore doesn't reliably return 5016 * to a non-D0 state anyway. 5017 */ 5018 pci_set_power_state(dev, PCI_D0); 5019 5020 pci_save_state(dev); 5021 /* 5022 * Disable the device by clearing the Command register, except for 5023 * INTx-disable which is set. This not only disables MMIO and I/O port 5024 * BARs, but also prevents the device from being Bus Master, preventing 5025 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3 5026 * compliant devices, INTx-disable prevents legacy interrupts. 5027 */ 5028 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE); 5029 } 5030 5031 static void pci_dev_restore(struct pci_dev *dev) 5032 { 5033 const struct pci_error_handlers *err_handler = 5034 dev->driver ? dev->driver->err_handler : NULL; 5035 5036 pci_restore_state(dev); 5037 5038 /* 5039 * dev->driver->err_handler->reset_done() is protected against 5040 * races with ->remove() by the device lock, which must be held by 5041 * the caller. 5042 */ 5043 if (err_handler && err_handler->reset_done) 5044 err_handler->reset_done(dev); 5045 } 5046 5047 /** 5048 * __pci_reset_function_locked - reset a PCI device function while holding 5049 * the @dev mutex lock. 5050 * @dev: PCI device to reset 5051 * 5052 * Some devices allow an individual function to be reset without affecting 5053 * other functions in the same device. The PCI device must be responsive 5054 * to PCI config space in order to use this function. 5055 * 5056 * The device function is presumed to be unused and the caller is holding 5057 * the device mutex lock when this function is called. 5058 * 5059 * Resetting the device will make the contents of PCI configuration space 5060 * random, so any caller of this must be prepared to reinitialise the 5061 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 5062 * etc. 5063 * 5064 * Returns 0 if the device function was successfully reset or negative if the 5065 * device doesn't support resetting a single function. 5066 */ 5067 int __pci_reset_function_locked(struct pci_dev *dev) 5068 { 5069 int rc; 5070 5071 might_sleep(); 5072 5073 /* 5074 * A reset method returns -ENOTTY if it doesn't support this device 5075 * and we should try the next method. 5076 * 5077 * If it returns 0 (success), we're finished. If it returns any 5078 * other error, we're also finished: this indicates that further 5079 * reset mechanisms might be broken on the device. 5080 */ 5081 rc = pci_dev_specific_reset(dev, 0); 5082 if (rc != -ENOTTY) 5083 return rc; 5084 if (pcie_has_flr(dev)) { 5085 rc = pcie_flr(dev); 5086 if (rc != -ENOTTY) 5087 return rc; 5088 } 5089 rc = pci_af_flr(dev, 0); 5090 if (rc != -ENOTTY) 5091 return rc; 5092 rc = pci_pm_reset(dev, 0); 5093 if (rc != -ENOTTY) 5094 return rc; 5095 rc = pci_dev_reset_slot_function(dev, 0); 5096 if (rc != -ENOTTY) 5097 return rc; 5098 return pci_parent_bus_reset(dev, 0); 5099 } 5100 EXPORT_SYMBOL_GPL(__pci_reset_function_locked); 5101 5102 /** 5103 * pci_probe_reset_function - check whether the device can be safely reset 5104 * @dev: PCI device to reset 5105 * 5106 * Some devices allow an individual function to be reset without affecting 5107 * other functions in the same device. The PCI device must be responsive 5108 * to PCI config space in order to use this function. 5109 * 5110 * Returns 0 if the device function can be reset or negative if the 5111 * device doesn't support resetting a single function. 5112 */ 5113 int pci_probe_reset_function(struct pci_dev *dev) 5114 { 5115 int rc; 5116 5117 might_sleep(); 5118 5119 rc = pci_dev_specific_reset(dev, 1); 5120 if (rc != -ENOTTY) 5121 return rc; 5122 if (pcie_has_flr(dev)) 5123 return 0; 5124 rc = pci_af_flr(dev, 1); 5125 if (rc != -ENOTTY) 5126 return rc; 5127 rc = pci_pm_reset(dev, 1); 5128 if (rc != -ENOTTY) 5129 return rc; 5130 rc = pci_dev_reset_slot_function(dev, 1); 5131 if (rc != -ENOTTY) 5132 return rc; 5133 5134 return pci_parent_bus_reset(dev, 1); 5135 } 5136 5137 /** 5138 * pci_reset_function - quiesce and reset a PCI device function 5139 * @dev: PCI device to reset 5140 * 5141 * Some devices allow an individual function to be reset without affecting 5142 * other functions in the same device. The PCI device must be responsive 5143 * to PCI config space in order to use this function. 5144 * 5145 * This function does not just reset the PCI portion of a device, but 5146 * clears all the state associated with the device. This function differs 5147 * from __pci_reset_function_locked() in that it saves and restores device state 5148 * over the reset and takes the PCI device lock. 5149 * 5150 * Returns 0 if the device function was successfully reset or negative if the 5151 * device doesn't support resetting a single function. 5152 */ 5153 int pci_reset_function(struct pci_dev *dev) 5154 { 5155 int rc; 5156 5157 if (!dev->reset_fn) 5158 return -ENOTTY; 5159 5160 pci_dev_lock(dev); 5161 pci_dev_save_and_disable(dev); 5162 5163 rc = __pci_reset_function_locked(dev); 5164 5165 pci_dev_restore(dev); 5166 pci_dev_unlock(dev); 5167 5168 return rc; 5169 } 5170 EXPORT_SYMBOL_GPL(pci_reset_function); 5171 5172 /** 5173 * pci_reset_function_locked - quiesce and reset a PCI device function 5174 * @dev: PCI device to reset 5175 * 5176 * Some devices allow an individual function to be reset without affecting 5177 * other functions in the same device. The PCI device must be responsive 5178 * to PCI config space in order to use this function. 5179 * 5180 * This function does not just reset the PCI portion of a device, but 5181 * clears all the state associated with the device. This function differs 5182 * from __pci_reset_function_locked() in that it saves and restores device state 5183 * over the reset. It also differs from pci_reset_function() in that it 5184 * requires the PCI device lock to be held. 5185 * 5186 * Returns 0 if the device function was successfully reset or negative if the 5187 * device doesn't support resetting a single function. 5188 */ 5189 int pci_reset_function_locked(struct pci_dev *dev) 5190 { 5191 int rc; 5192 5193 if (!dev->reset_fn) 5194 return -ENOTTY; 5195 5196 pci_dev_save_and_disable(dev); 5197 5198 rc = __pci_reset_function_locked(dev); 5199 5200 pci_dev_restore(dev); 5201 5202 return rc; 5203 } 5204 EXPORT_SYMBOL_GPL(pci_reset_function_locked); 5205 5206 /** 5207 * pci_try_reset_function - quiesce and reset a PCI device function 5208 * @dev: PCI device to reset 5209 * 5210 * Same as above, except return -EAGAIN if unable to lock device. 5211 */ 5212 int pci_try_reset_function(struct pci_dev *dev) 5213 { 5214 int rc; 5215 5216 if (!dev->reset_fn) 5217 return -ENOTTY; 5218 5219 if (!pci_dev_trylock(dev)) 5220 return -EAGAIN; 5221 5222 pci_dev_save_and_disable(dev); 5223 rc = __pci_reset_function_locked(dev); 5224 pci_dev_restore(dev); 5225 pci_dev_unlock(dev); 5226 5227 return rc; 5228 } 5229 EXPORT_SYMBOL_GPL(pci_try_reset_function); 5230 5231 /* Do any devices on or below this bus prevent a bus reset? */ 5232 static bool pci_bus_resetable(struct pci_bus *bus) 5233 { 5234 struct pci_dev *dev; 5235 5236 5237 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 5238 return false; 5239 5240 list_for_each_entry(dev, &bus->devices, bus_list) { 5241 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 5242 (dev->subordinate && !pci_bus_resetable(dev->subordinate))) 5243 return false; 5244 } 5245 5246 return true; 5247 } 5248 5249 /* Lock devices from the top of the tree down */ 5250 static void pci_bus_lock(struct pci_bus *bus) 5251 { 5252 struct pci_dev *dev; 5253 5254 list_for_each_entry(dev, &bus->devices, bus_list) { 5255 pci_dev_lock(dev); 5256 if (dev->subordinate) 5257 pci_bus_lock(dev->subordinate); 5258 } 5259 } 5260 5261 /* Unlock devices from the bottom of the tree up */ 5262 static void pci_bus_unlock(struct pci_bus *bus) 5263 { 5264 struct pci_dev *dev; 5265 5266 list_for_each_entry(dev, &bus->devices, bus_list) { 5267 if (dev->subordinate) 5268 pci_bus_unlock(dev->subordinate); 5269 pci_dev_unlock(dev); 5270 } 5271 } 5272 5273 /* Return 1 on successful lock, 0 on contention */ 5274 static int pci_bus_trylock(struct pci_bus *bus) 5275 { 5276 struct pci_dev *dev; 5277 5278 list_for_each_entry(dev, &bus->devices, bus_list) { 5279 if (!pci_dev_trylock(dev)) 5280 goto unlock; 5281 if (dev->subordinate) { 5282 if (!pci_bus_trylock(dev->subordinate)) { 5283 pci_dev_unlock(dev); 5284 goto unlock; 5285 } 5286 } 5287 } 5288 return 1; 5289 5290 unlock: 5291 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) { 5292 if (dev->subordinate) 5293 pci_bus_unlock(dev->subordinate); 5294 pci_dev_unlock(dev); 5295 } 5296 return 0; 5297 } 5298 5299 /* Do any devices on or below this slot prevent a bus reset? */ 5300 static bool pci_slot_resetable(struct pci_slot *slot) 5301 { 5302 struct pci_dev *dev; 5303 5304 if (slot->bus->self && 5305 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 5306 return false; 5307 5308 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5309 if (!dev->slot || dev->slot != slot) 5310 continue; 5311 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 5312 (dev->subordinate && !pci_bus_resetable(dev->subordinate))) 5313 return false; 5314 } 5315 5316 return true; 5317 } 5318 5319 /* Lock devices from the top of the tree down */ 5320 static void pci_slot_lock(struct pci_slot *slot) 5321 { 5322 struct pci_dev *dev; 5323 5324 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5325 if (!dev->slot || dev->slot != slot) 5326 continue; 5327 pci_dev_lock(dev); 5328 if (dev->subordinate) 5329 pci_bus_lock(dev->subordinate); 5330 } 5331 } 5332 5333 /* Unlock devices from the bottom of the tree up */ 5334 static void pci_slot_unlock(struct pci_slot *slot) 5335 { 5336 struct pci_dev *dev; 5337 5338 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5339 if (!dev->slot || dev->slot != slot) 5340 continue; 5341 if (dev->subordinate) 5342 pci_bus_unlock(dev->subordinate); 5343 pci_dev_unlock(dev); 5344 } 5345 } 5346 5347 /* Return 1 on successful lock, 0 on contention */ 5348 static int pci_slot_trylock(struct pci_slot *slot) 5349 { 5350 struct pci_dev *dev; 5351 5352 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5353 if (!dev->slot || dev->slot != slot) 5354 continue; 5355 if (!pci_dev_trylock(dev)) 5356 goto unlock; 5357 if (dev->subordinate) { 5358 if (!pci_bus_trylock(dev->subordinate)) { 5359 pci_dev_unlock(dev); 5360 goto unlock; 5361 } 5362 } 5363 } 5364 return 1; 5365 5366 unlock: 5367 list_for_each_entry_continue_reverse(dev, 5368 &slot->bus->devices, bus_list) { 5369 if (!dev->slot || dev->slot != slot) 5370 continue; 5371 if (dev->subordinate) 5372 pci_bus_unlock(dev->subordinate); 5373 pci_dev_unlock(dev); 5374 } 5375 return 0; 5376 } 5377 5378 /* 5379 * Save and disable devices from the top of the tree down while holding 5380 * the @dev mutex lock for the entire tree. 5381 */ 5382 static void pci_bus_save_and_disable_locked(struct pci_bus *bus) 5383 { 5384 struct pci_dev *dev; 5385 5386 list_for_each_entry(dev, &bus->devices, bus_list) { 5387 pci_dev_save_and_disable(dev); 5388 if (dev->subordinate) 5389 pci_bus_save_and_disable_locked(dev->subordinate); 5390 } 5391 } 5392 5393 /* 5394 * Restore devices from top of the tree down while holding @dev mutex lock 5395 * for the entire tree. Parent bridges need to be restored before we can 5396 * get to subordinate devices. 5397 */ 5398 static void pci_bus_restore_locked(struct pci_bus *bus) 5399 { 5400 struct pci_dev *dev; 5401 5402 list_for_each_entry(dev, &bus->devices, bus_list) { 5403 pci_dev_restore(dev); 5404 if (dev->subordinate) 5405 pci_bus_restore_locked(dev->subordinate); 5406 } 5407 } 5408 5409 /* 5410 * Save and disable devices from the top of the tree down while holding 5411 * the @dev mutex lock for the entire tree. 5412 */ 5413 static void pci_slot_save_and_disable_locked(struct pci_slot *slot) 5414 { 5415 struct pci_dev *dev; 5416 5417 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5418 if (!dev->slot || dev->slot != slot) 5419 continue; 5420 pci_dev_save_and_disable(dev); 5421 if (dev->subordinate) 5422 pci_bus_save_and_disable_locked(dev->subordinate); 5423 } 5424 } 5425 5426 /* 5427 * Restore devices from top of the tree down while holding @dev mutex lock 5428 * for the entire tree. Parent bridges need to be restored before we can 5429 * get to subordinate devices. 5430 */ 5431 static void pci_slot_restore_locked(struct pci_slot *slot) 5432 { 5433 struct pci_dev *dev; 5434 5435 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5436 if (!dev->slot || dev->slot != slot) 5437 continue; 5438 pci_dev_restore(dev); 5439 if (dev->subordinate) 5440 pci_bus_restore_locked(dev->subordinate); 5441 } 5442 } 5443 5444 static int pci_slot_reset(struct pci_slot *slot, int probe) 5445 { 5446 int rc; 5447 5448 if (!slot || !pci_slot_resetable(slot)) 5449 return -ENOTTY; 5450 5451 if (!probe) 5452 pci_slot_lock(slot); 5453 5454 might_sleep(); 5455 5456 rc = pci_reset_hotplug_slot(slot->hotplug, probe); 5457 5458 if (!probe) 5459 pci_slot_unlock(slot); 5460 5461 return rc; 5462 } 5463 5464 /** 5465 * pci_probe_reset_slot - probe whether a PCI slot can be reset 5466 * @slot: PCI slot to probe 5467 * 5468 * Return 0 if slot can be reset, negative if a slot reset is not supported. 5469 */ 5470 int pci_probe_reset_slot(struct pci_slot *slot) 5471 { 5472 return pci_slot_reset(slot, 1); 5473 } 5474 EXPORT_SYMBOL_GPL(pci_probe_reset_slot); 5475 5476 /** 5477 * __pci_reset_slot - Try to reset a PCI slot 5478 * @slot: PCI slot to reset 5479 * 5480 * A PCI bus may host multiple slots, each slot may support a reset mechanism 5481 * independent of other slots. For instance, some slots may support slot power 5482 * control. In the case of a 1:1 bus to slot architecture, this function may 5483 * wrap the bus reset to avoid spurious slot related events such as hotplug. 5484 * Generally a slot reset should be attempted before a bus reset. All of the 5485 * function of the slot and any subordinate buses behind the slot are reset 5486 * through this function. PCI config space of all devices in the slot and 5487 * behind the slot is saved before and restored after reset. 5488 * 5489 * Same as above except return -EAGAIN if the slot cannot be locked 5490 */ 5491 static int __pci_reset_slot(struct pci_slot *slot) 5492 { 5493 int rc; 5494 5495 rc = pci_slot_reset(slot, 1); 5496 if (rc) 5497 return rc; 5498 5499 if (pci_slot_trylock(slot)) { 5500 pci_slot_save_and_disable_locked(slot); 5501 might_sleep(); 5502 rc = pci_reset_hotplug_slot(slot->hotplug, 0); 5503 pci_slot_restore_locked(slot); 5504 pci_slot_unlock(slot); 5505 } else 5506 rc = -EAGAIN; 5507 5508 return rc; 5509 } 5510 5511 static int pci_bus_reset(struct pci_bus *bus, int probe) 5512 { 5513 int ret; 5514 5515 if (!bus->self || !pci_bus_resetable(bus)) 5516 return -ENOTTY; 5517 5518 if (probe) 5519 return 0; 5520 5521 pci_bus_lock(bus); 5522 5523 might_sleep(); 5524 5525 ret = pci_bridge_secondary_bus_reset(bus->self); 5526 5527 pci_bus_unlock(bus); 5528 5529 return ret; 5530 } 5531 5532 /** 5533 * pci_bus_error_reset - reset the bridge's subordinate bus 5534 * @bridge: The parent device that connects to the bus to reset 5535 * 5536 * This function will first try to reset the slots on this bus if the method is 5537 * available. If slot reset fails or is not available, this will fall back to a 5538 * secondary bus reset. 5539 */ 5540 int pci_bus_error_reset(struct pci_dev *bridge) 5541 { 5542 struct pci_bus *bus = bridge->subordinate; 5543 struct pci_slot *slot; 5544 5545 if (!bus) 5546 return -ENOTTY; 5547 5548 mutex_lock(&pci_slot_mutex); 5549 if (list_empty(&bus->slots)) 5550 goto bus_reset; 5551 5552 list_for_each_entry(slot, &bus->slots, list) 5553 if (pci_probe_reset_slot(slot)) 5554 goto bus_reset; 5555 5556 list_for_each_entry(slot, &bus->slots, list) 5557 if (pci_slot_reset(slot, 0)) 5558 goto bus_reset; 5559 5560 mutex_unlock(&pci_slot_mutex); 5561 return 0; 5562 bus_reset: 5563 mutex_unlock(&pci_slot_mutex); 5564 return pci_bus_reset(bridge->subordinate, 0); 5565 } 5566 5567 /** 5568 * pci_probe_reset_bus - probe whether a PCI bus can be reset 5569 * @bus: PCI bus to probe 5570 * 5571 * Return 0 if bus can be reset, negative if a bus reset is not supported. 5572 */ 5573 int pci_probe_reset_bus(struct pci_bus *bus) 5574 { 5575 return pci_bus_reset(bus, 1); 5576 } 5577 EXPORT_SYMBOL_GPL(pci_probe_reset_bus); 5578 5579 /** 5580 * __pci_reset_bus - Try to reset a PCI bus 5581 * @bus: top level PCI bus to reset 5582 * 5583 * Same as above except return -EAGAIN if the bus cannot be locked 5584 */ 5585 static int __pci_reset_bus(struct pci_bus *bus) 5586 { 5587 int rc; 5588 5589 rc = pci_bus_reset(bus, 1); 5590 if (rc) 5591 return rc; 5592 5593 if (pci_bus_trylock(bus)) { 5594 pci_bus_save_and_disable_locked(bus); 5595 might_sleep(); 5596 rc = pci_bridge_secondary_bus_reset(bus->self); 5597 pci_bus_restore_locked(bus); 5598 pci_bus_unlock(bus); 5599 } else 5600 rc = -EAGAIN; 5601 5602 return rc; 5603 } 5604 5605 /** 5606 * pci_reset_bus - Try to reset a PCI bus 5607 * @pdev: top level PCI device to reset via slot/bus 5608 * 5609 * Same as above except return -EAGAIN if the bus cannot be locked 5610 */ 5611 int pci_reset_bus(struct pci_dev *pdev) 5612 { 5613 return (!pci_probe_reset_slot(pdev->slot)) ? 5614 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus); 5615 } 5616 EXPORT_SYMBOL_GPL(pci_reset_bus); 5617 5618 /** 5619 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count 5620 * @dev: PCI device to query 5621 * 5622 * Returns mmrbc: maximum designed memory read count in bytes or 5623 * appropriate error value. 5624 */ 5625 int pcix_get_max_mmrbc(struct pci_dev *dev) 5626 { 5627 int cap; 5628 u32 stat; 5629 5630 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5631 if (!cap) 5632 return -EINVAL; 5633 5634 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 5635 return -EINVAL; 5636 5637 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21); 5638 } 5639 EXPORT_SYMBOL(pcix_get_max_mmrbc); 5640 5641 /** 5642 * pcix_get_mmrbc - get PCI-X maximum memory read byte count 5643 * @dev: PCI device to query 5644 * 5645 * Returns mmrbc: maximum memory read count in bytes or appropriate error 5646 * value. 5647 */ 5648 int pcix_get_mmrbc(struct pci_dev *dev) 5649 { 5650 int cap; 5651 u16 cmd; 5652 5653 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5654 if (!cap) 5655 return -EINVAL; 5656 5657 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 5658 return -EINVAL; 5659 5660 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2); 5661 } 5662 EXPORT_SYMBOL(pcix_get_mmrbc); 5663 5664 /** 5665 * pcix_set_mmrbc - set PCI-X maximum memory read byte count 5666 * @dev: PCI device to query 5667 * @mmrbc: maximum memory read count in bytes 5668 * valid values are 512, 1024, 2048, 4096 5669 * 5670 * If possible sets maximum memory read byte count, some bridges have errata 5671 * that prevent this. 5672 */ 5673 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc) 5674 { 5675 int cap; 5676 u32 stat, v, o; 5677 u16 cmd; 5678 5679 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc)) 5680 return -EINVAL; 5681 5682 v = ffs(mmrbc) - 10; 5683 5684 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5685 if (!cap) 5686 return -EINVAL; 5687 5688 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 5689 return -EINVAL; 5690 5691 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21) 5692 return -E2BIG; 5693 5694 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 5695 return -EINVAL; 5696 5697 o = (cmd & PCI_X_CMD_MAX_READ) >> 2; 5698 if (o != v) { 5699 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC)) 5700 return -EIO; 5701 5702 cmd &= ~PCI_X_CMD_MAX_READ; 5703 cmd |= v << 2; 5704 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd)) 5705 return -EIO; 5706 } 5707 return 0; 5708 } 5709 EXPORT_SYMBOL(pcix_set_mmrbc); 5710 5711 /** 5712 * pcie_get_readrq - get PCI Express read request size 5713 * @dev: PCI device to query 5714 * 5715 * Returns maximum memory read request in bytes or appropriate error value. 5716 */ 5717 int pcie_get_readrq(struct pci_dev *dev) 5718 { 5719 u16 ctl; 5720 5721 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 5722 5723 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12); 5724 } 5725 EXPORT_SYMBOL(pcie_get_readrq); 5726 5727 /** 5728 * pcie_set_readrq - set PCI Express maximum memory read request 5729 * @dev: PCI device to query 5730 * @rq: maximum memory read count in bytes 5731 * valid values are 128, 256, 512, 1024, 2048, 4096 5732 * 5733 * If possible sets maximum memory read request in bytes 5734 */ 5735 int pcie_set_readrq(struct pci_dev *dev, int rq) 5736 { 5737 u16 v; 5738 int ret; 5739 5740 if (rq < 128 || rq > 4096 || !is_power_of_2(rq)) 5741 return -EINVAL; 5742 5743 /* 5744 * If using the "performance" PCIe config, we clamp the read rq 5745 * size to the max packet size to keep the host bridge from 5746 * generating requests larger than we can cope with. 5747 */ 5748 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) { 5749 int mps = pcie_get_mps(dev); 5750 5751 if (mps < rq) 5752 rq = mps; 5753 } 5754 5755 v = (ffs(rq) - 8) << 12; 5756 5757 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 5758 PCI_EXP_DEVCTL_READRQ, v); 5759 5760 return pcibios_err_to_errno(ret); 5761 } 5762 EXPORT_SYMBOL(pcie_set_readrq); 5763 5764 /** 5765 * pcie_get_mps - get PCI Express maximum payload size 5766 * @dev: PCI device to query 5767 * 5768 * Returns maximum payload size in bytes 5769 */ 5770 int pcie_get_mps(struct pci_dev *dev) 5771 { 5772 u16 ctl; 5773 5774 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 5775 5776 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5); 5777 } 5778 EXPORT_SYMBOL(pcie_get_mps); 5779 5780 /** 5781 * pcie_set_mps - set PCI Express maximum payload size 5782 * @dev: PCI device to query 5783 * @mps: maximum payload size in bytes 5784 * valid values are 128, 256, 512, 1024, 2048, 4096 5785 * 5786 * If possible sets maximum payload size 5787 */ 5788 int pcie_set_mps(struct pci_dev *dev, int mps) 5789 { 5790 u16 v; 5791 int ret; 5792 5793 if (mps < 128 || mps > 4096 || !is_power_of_2(mps)) 5794 return -EINVAL; 5795 5796 v = ffs(mps) - 8; 5797 if (v > dev->pcie_mpss) 5798 return -EINVAL; 5799 v <<= 5; 5800 5801 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 5802 PCI_EXP_DEVCTL_PAYLOAD, v); 5803 5804 return pcibios_err_to_errno(ret); 5805 } 5806 EXPORT_SYMBOL(pcie_set_mps); 5807 5808 /** 5809 * pcie_bandwidth_available - determine minimum link settings of a PCIe 5810 * device and its bandwidth limitation 5811 * @dev: PCI device to query 5812 * @limiting_dev: storage for device causing the bandwidth limitation 5813 * @speed: storage for speed of limiting device 5814 * @width: storage for width of limiting device 5815 * 5816 * Walk up the PCI device chain and find the point where the minimum 5817 * bandwidth is available. Return the bandwidth available there and (if 5818 * limiting_dev, speed, and width pointers are supplied) information about 5819 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of 5820 * raw bandwidth. 5821 */ 5822 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev, 5823 enum pci_bus_speed *speed, 5824 enum pcie_link_width *width) 5825 { 5826 u16 lnksta; 5827 enum pci_bus_speed next_speed; 5828 enum pcie_link_width next_width; 5829 u32 bw, next_bw; 5830 5831 if (speed) 5832 *speed = PCI_SPEED_UNKNOWN; 5833 if (width) 5834 *width = PCIE_LNK_WIDTH_UNKNOWN; 5835 5836 bw = 0; 5837 5838 while (dev) { 5839 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta); 5840 5841 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS]; 5842 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >> 5843 PCI_EXP_LNKSTA_NLW_SHIFT; 5844 5845 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed); 5846 5847 /* Check if current device limits the total bandwidth */ 5848 if (!bw || next_bw <= bw) { 5849 bw = next_bw; 5850 5851 if (limiting_dev) 5852 *limiting_dev = dev; 5853 if (speed) 5854 *speed = next_speed; 5855 if (width) 5856 *width = next_width; 5857 } 5858 5859 dev = pci_upstream_bridge(dev); 5860 } 5861 5862 return bw; 5863 } 5864 EXPORT_SYMBOL(pcie_bandwidth_available); 5865 5866 /** 5867 * pcie_get_speed_cap - query for the PCI device's link speed capability 5868 * @dev: PCI device to query 5869 * 5870 * Query the PCI device speed capability. Return the maximum link speed 5871 * supported by the device. 5872 */ 5873 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev) 5874 { 5875 u32 lnkcap2, lnkcap; 5876 5877 /* 5878 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The 5879 * implementation note there recommends using the Supported Link 5880 * Speeds Vector in Link Capabilities 2 when supported. 5881 * 5882 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software 5883 * should use the Supported Link Speeds field in Link Capabilities, 5884 * where only 2.5 GT/s and 5.0 GT/s speeds were defined. 5885 */ 5886 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2); 5887 5888 /* PCIe r3.0-compliant */ 5889 if (lnkcap2) 5890 return PCIE_LNKCAP2_SLS2SPEED(lnkcap2); 5891 5892 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 5893 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB) 5894 return PCIE_SPEED_5_0GT; 5895 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB) 5896 return PCIE_SPEED_2_5GT; 5897 5898 return PCI_SPEED_UNKNOWN; 5899 } 5900 EXPORT_SYMBOL(pcie_get_speed_cap); 5901 5902 /** 5903 * pcie_get_width_cap - query for the PCI device's link width capability 5904 * @dev: PCI device to query 5905 * 5906 * Query the PCI device width capability. Return the maximum link width 5907 * supported by the device. 5908 */ 5909 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev) 5910 { 5911 u32 lnkcap; 5912 5913 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 5914 if (lnkcap) 5915 return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4; 5916 5917 return PCIE_LNK_WIDTH_UNKNOWN; 5918 } 5919 EXPORT_SYMBOL(pcie_get_width_cap); 5920 5921 /** 5922 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability 5923 * @dev: PCI device 5924 * @speed: storage for link speed 5925 * @width: storage for link width 5926 * 5927 * Calculate a PCI device's link bandwidth by querying for its link speed 5928 * and width, multiplying them, and applying encoding overhead. The result 5929 * is in Mb/s, i.e., megabits/second of raw bandwidth. 5930 */ 5931 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed, 5932 enum pcie_link_width *width) 5933 { 5934 *speed = pcie_get_speed_cap(dev); 5935 *width = pcie_get_width_cap(dev); 5936 5937 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN) 5938 return 0; 5939 5940 return *width * PCIE_SPEED2MBS_ENC(*speed); 5941 } 5942 5943 /** 5944 * __pcie_print_link_status - Report the PCI device's link speed and width 5945 * @dev: PCI device to query 5946 * @verbose: Print info even when enough bandwidth is available 5947 * 5948 * If the available bandwidth at the device is less than the device is 5949 * capable of, report the device's maximum possible bandwidth and the 5950 * upstream link that limits its performance. If @verbose, always print 5951 * the available bandwidth, even if the device isn't constrained. 5952 */ 5953 void __pcie_print_link_status(struct pci_dev *dev, bool verbose) 5954 { 5955 enum pcie_link_width width, width_cap; 5956 enum pci_bus_speed speed, speed_cap; 5957 struct pci_dev *limiting_dev = NULL; 5958 u32 bw_avail, bw_cap; 5959 5960 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap); 5961 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width); 5962 5963 if (bw_avail >= bw_cap && verbose) 5964 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n", 5965 bw_cap / 1000, bw_cap % 1000, 5966 pci_speed_string(speed_cap), width_cap); 5967 else if (bw_avail < bw_cap) 5968 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n", 5969 bw_avail / 1000, bw_avail % 1000, 5970 pci_speed_string(speed), width, 5971 limiting_dev ? pci_name(limiting_dev) : "<unknown>", 5972 bw_cap / 1000, bw_cap % 1000, 5973 pci_speed_string(speed_cap), width_cap); 5974 } 5975 5976 /** 5977 * pcie_print_link_status - Report the PCI device's link speed and width 5978 * @dev: PCI device to query 5979 * 5980 * Report the available bandwidth at the device. 5981 */ 5982 void pcie_print_link_status(struct pci_dev *dev) 5983 { 5984 __pcie_print_link_status(dev, true); 5985 } 5986 EXPORT_SYMBOL(pcie_print_link_status); 5987 5988 /** 5989 * pci_select_bars - Make BAR mask from the type of resource 5990 * @dev: the PCI device for which BAR mask is made 5991 * @flags: resource type mask to be selected 5992 * 5993 * This helper routine makes bar mask from the type of resource. 5994 */ 5995 int pci_select_bars(struct pci_dev *dev, unsigned long flags) 5996 { 5997 int i, bars = 0; 5998 for (i = 0; i < PCI_NUM_RESOURCES; i++) 5999 if (pci_resource_flags(dev, i) & flags) 6000 bars |= (1 << i); 6001 return bars; 6002 } 6003 EXPORT_SYMBOL(pci_select_bars); 6004 6005 /* Some architectures require additional programming to enable VGA */ 6006 static arch_set_vga_state_t arch_set_vga_state; 6007 6008 void __init pci_register_set_vga_state(arch_set_vga_state_t func) 6009 { 6010 arch_set_vga_state = func; /* NULL disables */ 6011 } 6012 6013 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode, 6014 unsigned int command_bits, u32 flags) 6015 { 6016 if (arch_set_vga_state) 6017 return arch_set_vga_state(dev, decode, command_bits, 6018 flags); 6019 return 0; 6020 } 6021 6022 /** 6023 * pci_set_vga_state - set VGA decode state on device and parents if requested 6024 * @dev: the PCI device 6025 * @decode: true = enable decoding, false = disable decoding 6026 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY 6027 * @flags: traverse ancestors and change bridges 6028 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE 6029 */ 6030 int pci_set_vga_state(struct pci_dev *dev, bool decode, 6031 unsigned int command_bits, u32 flags) 6032 { 6033 struct pci_bus *bus; 6034 struct pci_dev *bridge; 6035 u16 cmd; 6036 int rc; 6037 6038 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY))); 6039 6040 /* ARCH specific VGA enables */ 6041 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags); 6042 if (rc) 6043 return rc; 6044 6045 if (flags & PCI_VGA_STATE_CHANGE_DECODES) { 6046 pci_read_config_word(dev, PCI_COMMAND, &cmd); 6047 if (decode) 6048 cmd |= command_bits; 6049 else 6050 cmd &= ~command_bits; 6051 pci_write_config_word(dev, PCI_COMMAND, cmd); 6052 } 6053 6054 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE)) 6055 return 0; 6056 6057 bus = dev->bus; 6058 while (bus) { 6059 bridge = bus->self; 6060 if (bridge) { 6061 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL, 6062 &cmd); 6063 if (decode) 6064 cmd |= PCI_BRIDGE_CTL_VGA; 6065 else 6066 cmd &= ~PCI_BRIDGE_CTL_VGA; 6067 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL, 6068 cmd); 6069 } 6070 bus = bus->parent; 6071 } 6072 return 0; 6073 } 6074 6075 #ifdef CONFIG_ACPI 6076 bool pci_pr3_present(struct pci_dev *pdev) 6077 { 6078 struct acpi_device *adev; 6079 6080 if (acpi_disabled) 6081 return false; 6082 6083 adev = ACPI_COMPANION(&pdev->dev); 6084 if (!adev) 6085 return false; 6086 6087 return adev->power.flags.power_resources && 6088 acpi_has_method(adev->handle, "_PR3"); 6089 } 6090 EXPORT_SYMBOL_GPL(pci_pr3_present); 6091 #endif 6092 6093 /** 6094 * pci_add_dma_alias - Add a DMA devfn alias for a device 6095 * @dev: the PCI device for which alias is added 6096 * @devfn_from: alias slot and function 6097 * @nr_devfns: number of subsequent devfns to alias 6098 * 6099 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask 6100 * which is used to program permissible bus-devfn source addresses for DMA 6101 * requests in an IOMMU. These aliases factor into IOMMU group creation 6102 * and are useful for devices generating DMA requests beyond or different 6103 * from their logical bus-devfn. Examples include device quirks where the 6104 * device simply uses the wrong devfn, as well as non-transparent bridges 6105 * where the alias may be a proxy for devices in another domain. 6106 * 6107 * IOMMU group creation is performed during device discovery or addition, 6108 * prior to any potential DMA mapping and therefore prior to driver probing 6109 * (especially for userspace assigned devices where IOMMU group definition 6110 * cannot be left as a userspace activity). DMA aliases should therefore 6111 * be configured via quirks, such as the PCI fixup header quirk. 6112 */ 6113 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from, unsigned nr_devfns) 6114 { 6115 int devfn_to; 6116 6117 nr_devfns = min(nr_devfns, (unsigned) MAX_NR_DEVFNS - devfn_from); 6118 devfn_to = devfn_from + nr_devfns - 1; 6119 6120 if (!dev->dma_alias_mask) 6121 dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL); 6122 if (!dev->dma_alias_mask) { 6123 pci_warn(dev, "Unable to allocate DMA alias mask\n"); 6124 return; 6125 } 6126 6127 bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns); 6128 6129 if (nr_devfns == 1) 6130 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n", 6131 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from)); 6132 else if (nr_devfns > 1) 6133 pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n", 6134 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from), 6135 PCI_SLOT(devfn_to), PCI_FUNC(devfn_to)); 6136 } 6137 6138 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2) 6139 { 6140 return (dev1->dma_alias_mask && 6141 test_bit(dev2->devfn, dev1->dma_alias_mask)) || 6142 (dev2->dma_alias_mask && 6143 test_bit(dev1->devfn, dev2->dma_alias_mask)) || 6144 pci_real_dma_dev(dev1) == dev2 || 6145 pci_real_dma_dev(dev2) == dev1; 6146 } 6147 6148 bool pci_device_is_present(struct pci_dev *pdev) 6149 { 6150 u32 v; 6151 6152 if (pci_dev_is_disconnected(pdev)) 6153 return false; 6154 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0); 6155 } 6156 EXPORT_SYMBOL_GPL(pci_device_is_present); 6157 6158 void pci_ignore_hotplug(struct pci_dev *dev) 6159 { 6160 struct pci_dev *bridge = dev->bus->self; 6161 6162 dev->ignore_hotplug = 1; 6163 /* Propagate the "ignore hotplug" setting to the parent bridge. */ 6164 if (bridge) 6165 bridge->ignore_hotplug = 1; 6166 } 6167 EXPORT_SYMBOL_GPL(pci_ignore_hotplug); 6168 6169 /** 6170 * pci_real_dma_dev - Get PCI DMA device for PCI device 6171 * @dev: the PCI device that may have a PCI DMA alias 6172 * 6173 * Permits the platform to provide architecture-specific functionality to 6174 * devices needing to alias DMA to another PCI device on another PCI bus. If 6175 * the PCI device is on the same bus, it is recommended to use 6176 * pci_add_dma_alias(). This is the default implementation. Architecture 6177 * implementations can override this. 6178 */ 6179 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev) 6180 { 6181 return dev; 6182 } 6183 6184 resource_size_t __weak pcibios_default_alignment(void) 6185 { 6186 return 0; 6187 } 6188 6189 /* 6190 * Arches that don't want to expose struct resource to userland as-is in 6191 * sysfs and /proc can implement their own pci_resource_to_user(). 6192 */ 6193 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar, 6194 const struct resource *rsrc, 6195 resource_size_t *start, resource_size_t *end) 6196 { 6197 *start = rsrc->start; 6198 *end = rsrc->end; 6199 } 6200 6201 static char *resource_alignment_param; 6202 static DEFINE_SPINLOCK(resource_alignment_lock); 6203 6204 /** 6205 * pci_specified_resource_alignment - get resource alignment specified by user. 6206 * @dev: the PCI device to get 6207 * @resize: whether or not to change resources' size when reassigning alignment 6208 * 6209 * RETURNS: Resource alignment if it is specified. 6210 * Zero if it is not specified. 6211 */ 6212 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev, 6213 bool *resize) 6214 { 6215 int align_order, count; 6216 resource_size_t align = pcibios_default_alignment(); 6217 const char *p; 6218 int ret; 6219 6220 spin_lock(&resource_alignment_lock); 6221 p = resource_alignment_param; 6222 if (!p || !*p) 6223 goto out; 6224 if (pci_has_flag(PCI_PROBE_ONLY)) { 6225 align = 0; 6226 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n"); 6227 goto out; 6228 } 6229 6230 while (*p) { 6231 count = 0; 6232 if (sscanf(p, "%d%n", &align_order, &count) == 1 && 6233 p[count] == '@') { 6234 p += count + 1; 6235 if (align_order > 63) { 6236 pr_err("PCI: Invalid requested alignment (order %d)\n", 6237 align_order); 6238 align_order = PAGE_SHIFT; 6239 } 6240 } else { 6241 align_order = PAGE_SHIFT; 6242 } 6243 6244 ret = pci_dev_str_match(dev, p, &p); 6245 if (ret == 1) { 6246 *resize = true; 6247 align = 1ULL << align_order; 6248 break; 6249 } else if (ret < 0) { 6250 pr_err("PCI: Can't parse resource_alignment parameter: %s\n", 6251 p); 6252 break; 6253 } 6254 6255 if (*p != ';' && *p != ',') { 6256 /* End of param or invalid format */ 6257 break; 6258 } 6259 p++; 6260 } 6261 out: 6262 spin_unlock(&resource_alignment_lock); 6263 return align; 6264 } 6265 6266 static void pci_request_resource_alignment(struct pci_dev *dev, int bar, 6267 resource_size_t align, bool resize) 6268 { 6269 struct resource *r = &dev->resource[bar]; 6270 resource_size_t size; 6271 6272 if (!(r->flags & IORESOURCE_MEM)) 6273 return; 6274 6275 if (r->flags & IORESOURCE_PCI_FIXED) { 6276 pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n", 6277 bar, r, (unsigned long long)align); 6278 return; 6279 } 6280 6281 size = resource_size(r); 6282 if (size >= align) 6283 return; 6284 6285 /* 6286 * Increase the alignment of the resource. There are two ways we 6287 * can do this: 6288 * 6289 * 1) Increase the size of the resource. BARs are aligned on their 6290 * size, so when we reallocate space for this resource, we'll 6291 * allocate it with the larger alignment. This also prevents 6292 * assignment of any other BARs inside the alignment region, so 6293 * if we're requesting page alignment, this means no other BARs 6294 * will share the page. 6295 * 6296 * The disadvantage is that this makes the resource larger than 6297 * the hardware BAR, which may break drivers that compute things 6298 * based on the resource size, e.g., to find registers at a 6299 * fixed offset before the end of the BAR. 6300 * 6301 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and 6302 * set r->start to the desired alignment. By itself this 6303 * doesn't prevent other BARs being put inside the alignment 6304 * region, but if we realign *every* resource of every device in 6305 * the system, none of them will share an alignment region. 6306 * 6307 * When the user has requested alignment for only some devices via 6308 * the "pci=resource_alignment" argument, "resize" is true and we 6309 * use the first method. Otherwise we assume we're aligning all 6310 * devices and we use the second. 6311 */ 6312 6313 pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n", 6314 bar, r, (unsigned long long)align); 6315 6316 if (resize) { 6317 r->start = 0; 6318 r->end = align - 1; 6319 } else { 6320 r->flags &= ~IORESOURCE_SIZEALIGN; 6321 r->flags |= IORESOURCE_STARTALIGN; 6322 r->start = align; 6323 r->end = r->start + size - 1; 6324 } 6325 r->flags |= IORESOURCE_UNSET; 6326 } 6327 6328 /* 6329 * This function disables memory decoding and releases memory resources 6330 * of the device specified by kernel's boot parameter 'pci=resource_alignment='. 6331 * It also rounds up size to specified alignment. 6332 * Later on, the kernel will assign page-aligned memory resource back 6333 * to the device. 6334 */ 6335 void pci_reassigndev_resource_alignment(struct pci_dev *dev) 6336 { 6337 int i; 6338 struct resource *r; 6339 resource_size_t align; 6340 u16 command; 6341 bool resize = false; 6342 6343 /* 6344 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec 6345 * 3.4.1.11. Their resources are allocated from the space 6346 * described by the VF BARx register in the PF's SR-IOV capability. 6347 * We can't influence their alignment here. 6348 */ 6349 if (dev->is_virtfn) 6350 return; 6351 6352 /* check if specified PCI is target device to reassign */ 6353 align = pci_specified_resource_alignment(dev, &resize); 6354 if (!align) 6355 return; 6356 6357 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL && 6358 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) { 6359 pci_warn(dev, "Can't reassign resources to host bridge\n"); 6360 return; 6361 } 6362 6363 pci_read_config_word(dev, PCI_COMMAND, &command); 6364 command &= ~PCI_COMMAND_MEMORY; 6365 pci_write_config_word(dev, PCI_COMMAND, command); 6366 6367 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 6368 pci_request_resource_alignment(dev, i, align, resize); 6369 6370 /* 6371 * Need to disable bridge's resource window, 6372 * to enable the kernel to reassign new resource 6373 * window later on. 6374 */ 6375 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 6376 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) { 6377 r = &dev->resource[i]; 6378 if (!(r->flags & IORESOURCE_MEM)) 6379 continue; 6380 r->flags |= IORESOURCE_UNSET; 6381 r->end = resource_size(r) - 1; 6382 r->start = 0; 6383 } 6384 pci_disable_bridge_window(dev); 6385 } 6386 } 6387 6388 static ssize_t resource_alignment_show(struct bus_type *bus, char *buf) 6389 { 6390 size_t count = 0; 6391 6392 spin_lock(&resource_alignment_lock); 6393 if (resource_alignment_param) 6394 count = scnprintf(buf, PAGE_SIZE, "%s", resource_alignment_param); 6395 spin_unlock(&resource_alignment_lock); 6396 6397 /* 6398 * When set by the command line, resource_alignment_param will not 6399 * have a trailing line feed, which is ugly. So conditionally add 6400 * it here. 6401 */ 6402 if (count >= 2 && buf[count - 2] != '\n' && count < PAGE_SIZE - 1) { 6403 buf[count - 1] = '\n'; 6404 buf[count++] = 0; 6405 } 6406 6407 return count; 6408 } 6409 6410 static ssize_t resource_alignment_store(struct bus_type *bus, 6411 const char *buf, size_t count) 6412 { 6413 char *param = kstrndup(buf, count, GFP_KERNEL); 6414 6415 if (!param) 6416 return -ENOMEM; 6417 6418 spin_lock(&resource_alignment_lock); 6419 kfree(resource_alignment_param); 6420 resource_alignment_param = param; 6421 spin_unlock(&resource_alignment_lock); 6422 return count; 6423 } 6424 6425 static BUS_ATTR_RW(resource_alignment); 6426 6427 static int __init pci_resource_alignment_sysfs_init(void) 6428 { 6429 return bus_create_file(&pci_bus_type, 6430 &bus_attr_resource_alignment); 6431 } 6432 late_initcall(pci_resource_alignment_sysfs_init); 6433 6434 static void pci_no_domains(void) 6435 { 6436 #ifdef CONFIG_PCI_DOMAINS 6437 pci_domains_supported = 0; 6438 #endif 6439 } 6440 6441 #ifdef CONFIG_PCI_DOMAINS_GENERIC 6442 static atomic_t __domain_nr = ATOMIC_INIT(-1); 6443 6444 static int pci_get_new_domain_nr(void) 6445 { 6446 return atomic_inc_return(&__domain_nr); 6447 } 6448 6449 static int of_pci_bus_find_domain_nr(struct device *parent) 6450 { 6451 static int use_dt_domains = -1; 6452 int domain = -1; 6453 6454 if (parent) 6455 domain = of_get_pci_domain_nr(parent->of_node); 6456 6457 /* 6458 * Check DT domain and use_dt_domains values. 6459 * 6460 * If DT domain property is valid (domain >= 0) and 6461 * use_dt_domains != 0, the DT assignment is valid since this means 6462 * we have not previously allocated a domain number by using 6463 * pci_get_new_domain_nr(); we should also update use_dt_domains to 6464 * 1, to indicate that we have just assigned a domain number from 6465 * DT. 6466 * 6467 * If DT domain property value is not valid (ie domain < 0), and we 6468 * have not previously assigned a domain number from DT 6469 * (use_dt_domains != 1) we should assign a domain number by 6470 * using the: 6471 * 6472 * pci_get_new_domain_nr() 6473 * 6474 * API and update the use_dt_domains value to keep track of method we 6475 * are using to assign domain numbers (use_dt_domains = 0). 6476 * 6477 * All other combinations imply we have a platform that is trying 6478 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(), 6479 * which is a recipe for domain mishandling and it is prevented by 6480 * invalidating the domain value (domain = -1) and printing a 6481 * corresponding error. 6482 */ 6483 if (domain >= 0 && use_dt_domains) { 6484 use_dt_domains = 1; 6485 } else if (domain < 0 && use_dt_domains != 1) { 6486 use_dt_domains = 0; 6487 domain = pci_get_new_domain_nr(); 6488 } else { 6489 if (parent) 6490 pr_err("Node %pOF has ", parent->of_node); 6491 pr_err("Inconsistent \"linux,pci-domain\" property in DT\n"); 6492 domain = -1; 6493 } 6494 6495 return domain; 6496 } 6497 6498 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent) 6499 { 6500 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) : 6501 acpi_pci_bus_find_domain_nr(bus); 6502 } 6503 #endif 6504 6505 /** 6506 * pci_ext_cfg_avail - can we access extended PCI config space? 6507 * 6508 * Returns 1 if we can access PCI extended config space (offsets 6509 * greater than 0xff). This is the default implementation. Architecture 6510 * implementations can override this. 6511 */ 6512 int __weak pci_ext_cfg_avail(void) 6513 { 6514 return 1; 6515 } 6516 6517 void __weak pci_fixup_cardbus(struct pci_bus *bus) 6518 { 6519 } 6520 EXPORT_SYMBOL(pci_fixup_cardbus); 6521 6522 static int __init pci_setup(char *str) 6523 { 6524 while (str) { 6525 char *k = strchr(str, ','); 6526 if (k) 6527 *k++ = 0; 6528 if (*str && (str = pcibios_setup(str)) && *str) { 6529 if (!strcmp(str, "nomsi")) { 6530 pci_no_msi(); 6531 } else if (!strncmp(str, "noats", 5)) { 6532 pr_info("PCIe: ATS is disabled\n"); 6533 pcie_ats_disabled = true; 6534 } else if (!strcmp(str, "noaer")) { 6535 pci_no_aer(); 6536 } else if (!strcmp(str, "earlydump")) { 6537 pci_early_dump = true; 6538 } else if (!strncmp(str, "realloc=", 8)) { 6539 pci_realloc_get_opt(str + 8); 6540 } else if (!strncmp(str, "realloc", 7)) { 6541 pci_realloc_get_opt("on"); 6542 } else if (!strcmp(str, "nodomains")) { 6543 pci_no_domains(); 6544 } else if (!strncmp(str, "noari", 5)) { 6545 pcie_ari_disabled = true; 6546 } else if (!strncmp(str, "cbiosize=", 9)) { 6547 pci_cardbus_io_size = memparse(str + 9, &str); 6548 } else if (!strncmp(str, "cbmemsize=", 10)) { 6549 pci_cardbus_mem_size = memparse(str + 10, &str); 6550 } else if (!strncmp(str, "resource_alignment=", 19)) { 6551 resource_alignment_param = str + 19; 6552 } else if (!strncmp(str, "ecrc=", 5)) { 6553 pcie_ecrc_get_policy(str + 5); 6554 } else if (!strncmp(str, "hpiosize=", 9)) { 6555 pci_hotplug_io_size = memparse(str + 9, &str); 6556 } else if (!strncmp(str, "hpmmiosize=", 11)) { 6557 pci_hotplug_mmio_size = memparse(str + 11, &str); 6558 } else if (!strncmp(str, "hpmmioprefsize=", 15)) { 6559 pci_hotplug_mmio_pref_size = memparse(str + 15, &str); 6560 } else if (!strncmp(str, "hpmemsize=", 10)) { 6561 pci_hotplug_mmio_size = memparse(str + 10, &str); 6562 pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size; 6563 } else if (!strncmp(str, "hpbussize=", 10)) { 6564 pci_hotplug_bus_size = 6565 simple_strtoul(str + 10, &str, 0); 6566 if (pci_hotplug_bus_size > 0xff) 6567 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 6568 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) { 6569 pcie_bus_config = PCIE_BUS_TUNE_OFF; 6570 } else if (!strncmp(str, "pcie_bus_safe", 13)) { 6571 pcie_bus_config = PCIE_BUS_SAFE; 6572 } else if (!strncmp(str, "pcie_bus_perf", 13)) { 6573 pcie_bus_config = PCIE_BUS_PERFORMANCE; 6574 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) { 6575 pcie_bus_config = PCIE_BUS_PEER2PEER; 6576 } else if (!strncmp(str, "pcie_scan_all", 13)) { 6577 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS); 6578 } else if (!strncmp(str, "disable_acs_redir=", 18)) { 6579 disable_acs_redir_param = str + 18; 6580 } else { 6581 pr_err("PCI: Unknown option `%s'\n", str); 6582 } 6583 } 6584 str = k; 6585 } 6586 return 0; 6587 } 6588 early_param("pci", pci_setup); 6589 6590 /* 6591 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized 6592 * in pci_setup(), above, to point to data in the __initdata section which 6593 * will be freed after the init sequence is complete. We can't allocate memory 6594 * in pci_setup() because some architectures do not have any memory allocation 6595 * service available during an early_param() call. So we allocate memory and 6596 * copy the variable here before the init section is freed. 6597 * 6598 */ 6599 static int __init pci_realloc_setup_params(void) 6600 { 6601 resource_alignment_param = kstrdup(resource_alignment_param, 6602 GFP_KERNEL); 6603 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL); 6604 6605 return 0; 6606 } 6607 pure_initcall(pci_realloc_setup_params); 6608