1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * PCI Bus Services, see include/linux/pci.h for further explanation. 4 * 5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter, 6 * David Mosberger-Tang 7 * 8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz> 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/kernel.h> 13 #include <linux/delay.h> 14 #include <linux/dmi.h> 15 #include <linux/init.h> 16 #include <linux/of.h> 17 #include <linux/of_pci.h> 18 #include <linux/pci.h> 19 #include <linux/pm.h> 20 #include <linux/slab.h> 21 #include <linux/module.h> 22 #include <linux/spinlock.h> 23 #include <linux/string.h> 24 #include <linux/log2.h> 25 #include <linux/logic_pio.h> 26 #include <linux/pm_wakeup.h> 27 #include <linux/interrupt.h> 28 #include <linux/device.h> 29 #include <linux/pm_runtime.h> 30 #include <linux/pci_hotplug.h> 31 #include <linux/vmalloc.h> 32 #include <linux/pci-ats.h> 33 #include <asm/setup.h> 34 #include <asm/dma.h> 35 #include <linux/aer.h> 36 #include "pci.h" 37 38 DEFINE_MUTEX(pci_slot_mutex); 39 40 const char *pci_power_names[] = { 41 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown", 42 }; 43 EXPORT_SYMBOL_GPL(pci_power_names); 44 45 int isa_dma_bridge_buggy; 46 EXPORT_SYMBOL(isa_dma_bridge_buggy); 47 48 int pci_pci_problems; 49 EXPORT_SYMBOL(pci_pci_problems); 50 51 unsigned int pci_pm_d3_delay; 52 53 static void pci_pme_list_scan(struct work_struct *work); 54 55 static LIST_HEAD(pci_pme_list); 56 static DEFINE_MUTEX(pci_pme_list_mutex); 57 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan); 58 59 struct pci_pme_device { 60 struct list_head list; 61 struct pci_dev *dev; 62 }; 63 64 #define PME_TIMEOUT 1000 /* How long between PME checks */ 65 66 static void pci_dev_d3_sleep(struct pci_dev *dev) 67 { 68 unsigned int delay = dev->d3_delay; 69 70 if (delay < pci_pm_d3_delay) 71 delay = pci_pm_d3_delay; 72 73 if (delay) 74 msleep(delay); 75 } 76 77 #ifdef CONFIG_PCI_DOMAINS 78 int pci_domains_supported = 1; 79 #endif 80 81 #define DEFAULT_CARDBUS_IO_SIZE (256) 82 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024) 83 /* pci=cbmemsize=nnM,cbiosize=nn can override this */ 84 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE; 85 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE; 86 87 #define DEFAULT_HOTPLUG_IO_SIZE (256) 88 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024) 89 /* pci=hpmemsize=nnM,hpiosize=nn can override this */ 90 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE; 91 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE; 92 93 #define DEFAULT_HOTPLUG_BUS_SIZE 1 94 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 95 96 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT; 97 98 /* 99 * The default CLS is used if arch didn't set CLS explicitly and not 100 * all pci devices agree on the same value. Arch can override either 101 * the dfl or actual value as it sees fit. Don't forget this is 102 * measured in 32-bit words, not bytes. 103 */ 104 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2; 105 u8 pci_cache_line_size; 106 107 /* 108 * If we set up a device for bus mastering, we need to check the latency 109 * timer as certain BIOSes forget to set it properly. 110 */ 111 unsigned int pcibios_max_latency = 255; 112 113 /* If set, the PCIe ARI capability will not be used. */ 114 static bool pcie_ari_disabled; 115 116 /* If set, the PCIe ATS capability will not be used. */ 117 static bool pcie_ats_disabled; 118 119 /* If set, the PCI config space of each device is printed during boot. */ 120 bool pci_early_dump; 121 122 bool pci_ats_disabled(void) 123 { 124 return pcie_ats_disabled; 125 } 126 127 /* Disable bridge_d3 for all PCIe ports */ 128 static bool pci_bridge_d3_disable; 129 /* Force bridge_d3 for all PCIe ports */ 130 static bool pci_bridge_d3_force; 131 132 static int __init pcie_port_pm_setup(char *str) 133 { 134 if (!strcmp(str, "off")) 135 pci_bridge_d3_disable = true; 136 else if (!strcmp(str, "force")) 137 pci_bridge_d3_force = true; 138 return 1; 139 } 140 __setup("pcie_port_pm=", pcie_port_pm_setup); 141 142 /* Time to wait after a reset for device to become responsive */ 143 #define PCIE_RESET_READY_POLL_MS 60000 144 145 /** 146 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children 147 * @bus: pointer to PCI bus structure to search 148 * 149 * Given a PCI bus, returns the highest PCI bus number present in the set 150 * including the given PCI bus and its list of child PCI buses. 151 */ 152 unsigned char pci_bus_max_busnr(struct pci_bus *bus) 153 { 154 struct pci_bus *tmp; 155 unsigned char max, n; 156 157 max = bus->busn_res.end; 158 list_for_each_entry(tmp, &bus->children, node) { 159 n = pci_bus_max_busnr(tmp); 160 if (n > max) 161 max = n; 162 } 163 return max; 164 } 165 EXPORT_SYMBOL_GPL(pci_bus_max_busnr); 166 167 #ifdef CONFIG_HAS_IOMEM 168 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar) 169 { 170 struct resource *res = &pdev->resource[bar]; 171 172 /* 173 * Make sure the BAR is actually a memory resource, not an IO resource 174 */ 175 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) { 176 pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res); 177 return NULL; 178 } 179 return ioremap_nocache(res->start, resource_size(res)); 180 } 181 EXPORT_SYMBOL_GPL(pci_ioremap_bar); 182 183 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar) 184 { 185 /* 186 * Make sure the BAR is actually a memory resource, not an IO resource 187 */ 188 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) { 189 WARN_ON(1); 190 return NULL; 191 } 192 return ioremap_wc(pci_resource_start(pdev, bar), 193 pci_resource_len(pdev, bar)); 194 } 195 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar); 196 #endif 197 198 /** 199 * pci_dev_str_match_path - test if a path string matches a device 200 * @dev: the PCI device to test 201 * @path: string to match the device against 202 * @endptr: pointer to the string after the match 203 * 204 * Test if a string (typically from a kernel parameter) formatted as a 205 * path of device/function addresses matches a PCI device. The string must 206 * be of the form: 207 * 208 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 209 * 210 * A path for a device can be obtained using 'lspci -t'. Using a path 211 * is more robust against bus renumbering than using only a single bus, 212 * device and function address. 213 * 214 * Returns 1 if the string matches the device, 0 if it does not and 215 * a negative error code if it fails to parse the string. 216 */ 217 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path, 218 const char **endptr) 219 { 220 int ret; 221 int seg, bus, slot, func; 222 char *wpath, *p; 223 char end; 224 225 *endptr = strchrnul(path, ';'); 226 227 wpath = kmemdup_nul(path, *endptr - path, GFP_KERNEL); 228 if (!wpath) 229 return -ENOMEM; 230 231 while (1) { 232 p = strrchr(wpath, '/'); 233 if (!p) 234 break; 235 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end); 236 if (ret != 2) { 237 ret = -EINVAL; 238 goto free_and_exit; 239 } 240 241 if (dev->devfn != PCI_DEVFN(slot, func)) { 242 ret = 0; 243 goto free_and_exit; 244 } 245 246 /* 247 * Note: we don't need to get a reference to the upstream 248 * bridge because we hold a reference to the top level 249 * device which should hold a reference to the bridge, 250 * and so on. 251 */ 252 dev = pci_upstream_bridge(dev); 253 if (!dev) { 254 ret = 0; 255 goto free_and_exit; 256 } 257 258 *p = 0; 259 } 260 261 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot, 262 &func, &end); 263 if (ret != 4) { 264 seg = 0; 265 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end); 266 if (ret != 3) { 267 ret = -EINVAL; 268 goto free_and_exit; 269 } 270 } 271 272 ret = (seg == pci_domain_nr(dev->bus) && 273 bus == dev->bus->number && 274 dev->devfn == PCI_DEVFN(slot, func)); 275 276 free_and_exit: 277 kfree(wpath); 278 return ret; 279 } 280 281 /** 282 * pci_dev_str_match - test if a string matches a device 283 * @dev: the PCI device to test 284 * @p: string to match the device against 285 * @endptr: pointer to the string after the match 286 * 287 * Test if a string (typically from a kernel parameter) matches a specified 288 * PCI device. The string may be of one of the following formats: 289 * 290 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 291 * pci:<vendor>:<device>[:<subvendor>:<subdevice>] 292 * 293 * The first format specifies a PCI bus/device/function address which 294 * may change if new hardware is inserted, if motherboard firmware changes, 295 * or due to changes caused in kernel parameters. If the domain is 296 * left unspecified, it is taken to be 0. In order to be robust against 297 * bus renumbering issues, a path of PCI device/function numbers may be used 298 * to address the specific device. The path for a device can be determined 299 * through the use of 'lspci -t'. 300 * 301 * The second format matches devices using IDs in the configuration 302 * space which may match multiple devices in the system. A value of 0 303 * for any field will match all devices. (Note: this differs from 304 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for 305 * legacy reasons and convenience so users don't have to specify 306 * FFFFFFFFs on the command line.) 307 * 308 * Returns 1 if the string matches the device, 0 if it does not and 309 * a negative error code if the string cannot be parsed. 310 */ 311 static int pci_dev_str_match(struct pci_dev *dev, const char *p, 312 const char **endptr) 313 { 314 int ret; 315 int count; 316 unsigned short vendor, device, subsystem_vendor, subsystem_device; 317 318 if (strncmp(p, "pci:", 4) == 0) { 319 /* PCI vendor/device (subvendor/subdevice) IDs are specified */ 320 p += 4; 321 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device, 322 &subsystem_vendor, &subsystem_device, &count); 323 if (ret != 4) { 324 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count); 325 if (ret != 2) 326 return -EINVAL; 327 328 subsystem_vendor = 0; 329 subsystem_device = 0; 330 } 331 332 p += count; 333 334 if ((!vendor || vendor == dev->vendor) && 335 (!device || device == dev->device) && 336 (!subsystem_vendor || 337 subsystem_vendor == dev->subsystem_vendor) && 338 (!subsystem_device || 339 subsystem_device == dev->subsystem_device)) 340 goto found; 341 } else { 342 /* 343 * PCI Bus, Device, Function IDs are specified 344 * (optionally, may include a path of devfns following it) 345 */ 346 ret = pci_dev_str_match_path(dev, p, &p); 347 if (ret < 0) 348 return ret; 349 else if (ret) 350 goto found; 351 } 352 353 *endptr = p; 354 return 0; 355 356 found: 357 *endptr = p; 358 return 1; 359 } 360 361 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn, 362 u8 pos, int cap, int *ttl) 363 { 364 u8 id; 365 u16 ent; 366 367 pci_bus_read_config_byte(bus, devfn, pos, &pos); 368 369 while ((*ttl)--) { 370 if (pos < 0x40) 371 break; 372 pos &= ~3; 373 pci_bus_read_config_word(bus, devfn, pos, &ent); 374 375 id = ent & 0xff; 376 if (id == 0xff) 377 break; 378 if (id == cap) 379 return pos; 380 pos = (ent >> 8); 381 } 382 return 0; 383 } 384 385 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn, 386 u8 pos, int cap) 387 { 388 int ttl = PCI_FIND_CAP_TTL; 389 390 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl); 391 } 392 393 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap) 394 { 395 return __pci_find_next_cap(dev->bus, dev->devfn, 396 pos + PCI_CAP_LIST_NEXT, cap); 397 } 398 EXPORT_SYMBOL_GPL(pci_find_next_capability); 399 400 static int __pci_bus_find_cap_start(struct pci_bus *bus, 401 unsigned int devfn, u8 hdr_type) 402 { 403 u16 status; 404 405 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status); 406 if (!(status & PCI_STATUS_CAP_LIST)) 407 return 0; 408 409 switch (hdr_type) { 410 case PCI_HEADER_TYPE_NORMAL: 411 case PCI_HEADER_TYPE_BRIDGE: 412 return PCI_CAPABILITY_LIST; 413 case PCI_HEADER_TYPE_CARDBUS: 414 return PCI_CB_CAPABILITY_LIST; 415 } 416 417 return 0; 418 } 419 420 /** 421 * pci_find_capability - query for devices' capabilities 422 * @dev: PCI device to query 423 * @cap: capability code 424 * 425 * Tell if a device supports a given PCI capability. 426 * Returns the address of the requested capability structure within the 427 * device's PCI configuration space or 0 in case the device does not 428 * support it. Possible values for @cap: 429 * 430 * %PCI_CAP_ID_PM Power Management 431 * %PCI_CAP_ID_AGP Accelerated Graphics Port 432 * %PCI_CAP_ID_VPD Vital Product Data 433 * %PCI_CAP_ID_SLOTID Slot Identification 434 * %PCI_CAP_ID_MSI Message Signalled Interrupts 435 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap 436 * %PCI_CAP_ID_PCIX PCI-X 437 * %PCI_CAP_ID_EXP PCI Express 438 */ 439 int pci_find_capability(struct pci_dev *dev, int cap) 440 { 441 int pos; 442 443 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 444 if (pos) 445 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap); 446 447 return pos; 448 } 449 EXPORT_SYMBOL(pci_find_capability); 450 451 /** 452 * pci_bus_find_capability - query for devices' capabilities 453 * @bus: the PCI bus to query 454 * @devfn: PCI device to query 455 * @cap: capability code 456 * 457 * Like pci_find_capability() but works for pci devices that do not have a 458 * pci_dev structure set up yet. 459 * 460 * Returns the address of the requested capability structure within the 461 * device's PCI configuration space or 0 in case the device does not 462 * support it. 463 */ 464 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap) 465 { 466 int pos; 467 u8 hdr_type; 468 469 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type); 470 471 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f); 472 if (pos) 473 pos = __pci_find_next_cap(bus, devfn, pos, cap); 474 475 return pos; 476 } 477 EXPORT_SYMBOL(pci_bus_find_capability); 478 479 /** 480 * pci_find_next_ext_capability - Find an extended capability 481 * @dev: PCI device to query 482 * @start: address at which to start looking (0 to start at beginning of list) 483 * @cap: capability code 484 * 485 * Returns the address of the next matching extended capability structure 486 * within the device's PCI configuration space or 0 if the device does 487 * not support it. Some capabilities can occur several times, e.g., the 488 * vendor-specific capability, and this provides a way to find them all. 489 */ 490 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap) 491 { 492 u32 header; 493 int ttl; 494 int pos = PCI_CFG_SPACE_SIZE; 495 496 /* minimum 8 bytes per capability */ 497 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8; 498 499 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE) 500 return 0; 501 502 if (start) 503 pos = start; 504 505 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 506 return 0; 507 508 /* 509 * If we have no capabilities, this is indicated by cap ID, 510 * cap version and next pointer all being 0. 511 */ 512 if (header == 0) 513 return 0; 514 515 while (ttl-- > 0) { 516 if (PCI_EXT_CAP_ID(header) == cap && pos != start) 517 return pos; 518 519 pos = PCI_EXT_CAP_NEXT(header); 520 if (pos < PCI_CFG_SPACE_SIZE) 521 break; 522 523 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 524 break; 525 } 526 527 return 0; 528 } 529 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability); 530 531 /** 532 * pci_find_ext_capability - Find an extended capability 533 * @dev: PCI device to query 534 * @cap: capability code 535 * 536 * Returns the address of the requested extended capability structure 537 * within the device's PCI configuration space or 0 if the device does 538 * not support it. Possible values for @cap: 539 * 540 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting 541 * %PCI_EXT_CAP_ID_VC Virtual Channel 542 * %PCI_EXT_CAP_ID_DSN Device Serial Number 543 * %PCI_EXT_CAP_ID_PWR Power Budgeting 544 */ 545 int pci_find_ext_capability(struct pci_dev *dev, int cap) 546 { 547 return pci_find_next_ext_capability(dev, 0, cap); 548 } 549 EXPORT_SYMBOL_GPL(pci_find_ext_capability); 550 551 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap) 552 { 553 int rc, ttl = PCI_FIND_CAP_TTL; 554 u8 cap, mask; 555 556 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST) 557 mask = HT_3BIT_CAP_MASK; 558 else 559 mask = HT_5BIT_CAP_MASK; 560 561 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos, 562 PCI_CAP_ID_HT, &ttl); 563 while (pos) { 564 rc = pci_read_config_byte(dev, pos + 3, &cap); 565 if (rc != PCIBIOS_SUCCESSFUL) 566 return 0; 567 568 if ((cap & mask) == ht_cap) 569 return pos; 570 571 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, 572 pos + PCI_CAP_LIST_NEXT, 573 PCI_CAP_ID_HT, &ttl); 574 } 575 576 return 0; 577 } 578 /** 579 * pci_find_next_ht_capability - query a device's Hypertransport capabilities 580 * @dev: PCI device to query 581 * @pos: Position from which to continue searching 582 * @ht_cap: Hypertransport capability code 583 * 584 * To be used in conjunction with pci_find_ht_capability() to search for 585 * all capabilities matching @ht_cap. @pos should always be a value returned 586 * from pci_find_ht_capability(). 587 * 588 * NB. To be 100% safe against broken PCI devices, the caller should take 589 * steps to avoid an infinite loop. 590 */ 591 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap) 592 { 593 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap); 594 } 595 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability); 596 597 /** 598 * pci_find_ht_capability - query a device's Hypertransport capabilities 599 * @dev: PCI device to query 600 * @ht_cap: Hypertransport capability code 601 * 602 * Tell if a device supports a given Hypertransport capability. 603 * Returns an address within the device's PCI configuration space 604 * or 0 in case the device does not support the request capability. 605 * The address points to the PCI capability, of type PCI_CAP_ID_HT, 606 * which has a Hypertransport capability matching @ht_cap. 607 */ 608 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap) 609 { 610 int pos; 611 612 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 613 if (pos) 614 pos = __pci_find_next_ht_cap(dev, pos, ht_cap); 615 616 return pos; 617 } 618 EXPORT_SYMBOL_GPL(pci_find_ht_capability); 619 620 /** 621 * pci_find_parent_resource - return resource region of parent bus of given region 622 * @dev: PCI device structure contains resources to be searched 623 * @res: child resource record for which parent is sought 624 * 625 * For given resource region of given device, return the resource 626 * region of parent bus the given region is contained in. 627 */ 628 struct resource *pci_find_parent_resource(const struct pci_dev *dev, 629 struct resource *res) 630 { 631 const struct pci_bus *bus = dev->bus; 632 struct resource *r; 633 int i; 634 635 pci_bus_for_each_resource(bus, r, i) { 636 if (!r) 637 continue; 638 if (resource_contains(r, res)) { 639 640 /* 641 * If the window is prefetchable but the BAR is 642 * not, the allocator made a mistake. 643 */ 644 if (r->flags & IORESOURCE_PREFETCH && 645 !(res->flags & IORESOURCE_PREFETCH)) 646 return NULL; 647 648 /* 649 * If we're below a transparent bridge, there may 650 * be both a positively-decoded aperture and a 651 * subtractively-decoded region that contain the BAR. 652 * We want the positively-decoded one, so this depends 653 * on pci_bus_for_each_resource() giving us those 654 * first. 655 */ 656 return r; 657 } 658 } 659 return NULL; 660 } 661 EXPORT_SYMBOL(pci_find_parent_resource); 662 663 /** 664 * pci_find_resource - Return matching PCI device resource 665 * @dev: PCI device to query 666 * @res: Resource to look for 667 * 668 * Goes over standard PCI resources (BARs) and checks if the given resource 669 * is partially or fully contained in any of them. In that case the 670 * matching resource is returned, %NULL otherwise. 671 */ 672 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res) 673 { 674 int i; 675 676 for (i = 0; i < PCI_ROM_RESOURCE; i++) { 677 struct resource *r = &dev->resource[i]; 678 679 if (r->start && resource_contains(r, res)) 680 return r; 681 } 682 683 return NULL; 684 } 685 EXPORT_SYMBOL(pci_find_resource); 686 687 /** 688 * pci_find_pcie_root_port - return PCIe Root Port 689 * @dev: PCI device to query 690 * 691 * Traverse up the parent chain and return the PCIe Root Port PCI Device 692 * for a given PCI Device. 693 */ 694 struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev) 695 { 696 struct pci_dev *bridge, *highest_pcie_bridge = dev; 697 698 bridge = pci_upstream_bridge(dev); 699 while (bridge && pci_is_pcie(bridge)) { 700 highest_pcie_bridge = bridge; 701 bridge = pci_upstream_bridge(bridge); 702 } 703 704 if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT) 705 return NULL; 706 707 return highest_pcie_bridge; 708 } 709 EXPORT_SYMBOL(pci_find_pcie_root_port); 710 711 /** 712 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos 713 * @dev: the PCI device to operate on 714 * @pos: config space offset of status word 715 * @mask: mask of bit(s) to care about in status word 716 * 717 * Return 1 when mask bit(s) in status word clear, 0 otherwise. 718 */ 719 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask) 720 { 721 int i; 722 723 /* Wait for Transaction Pending bit clean */ 724 for (i = 0; i < 4; i++) { 725 u16 status; 726 if (i) 727 msleep((1 << (i - 1)) * 100); 728 729 pci_read_config_word(dev, pos, &status); 730 if (!(status & mask)) 731 return 1; 732 } 733 734 return 0; 735 } 736 737 /** 738 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up) 739 * @dev: PCI device to have its BARs restored 740 * 741 * Restore the BAR values for a given device, so as to make it 742 * accessible by its driver. 743 */ 744 static void pci_restore_bars(struct pci_dev *dev) 745 { 746 int i; 747 748 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) 749 pci_update_resource(dev, i); 750 } 751 752 static const struct pci_platform_pm_ops *pci_platform_pm; 753 754 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops) 755 { 756 if (!ops->is_manageable || !ops->set_state || !ops->get_state || 757 !ops->choose_state || !ops->set_wakeup || !ops->need_resume) 758 return -EINVAL; 759 pci_platform_pm = ops; 760 return 0; 761 } 762 763 static inline bool platform_pci_power_manageable(struct pci_dev *dev) 764 { 765 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false; 766 } 767 768 static inline int platform_pci_set_power_state(struct pci_dev *dev, 769 pci_power_t t) 770 { 771 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS; 772 } 773 774 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev) 775 { 776 return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN; 777 } 778 779 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev) 780 { 781 return pci_platform_pm ? 782 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR; 783 } 784 785 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable) 786 { 787 return pci_platform_pm ? 788 pci_platform_pm->set_wakeup(dev, enable) : -ENODEV; 789 } 790 791 static inline bool platform_pci_need_resume(struct pci_dev *dev) 792 { 793 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false; 794 } 795 796 static inline bool platform_pci_bridge_d3(struct pci_dev *dev) 797 { 798 return pci_platform_pm ? pci_platform_pm->bridge_d3(dev) : false; 799 } 800 801 /** 802 * pci_raw_set_power_state - Use PCI PM registers to set the power state of 803 * given PCI device 804 * @dev: PCI device to handle. 805 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 806 * 807 * RETURN VALUE: 808 * -EINVAL if the requested state is invalid. 809 * -EIO if device does not support PCI PM or its PM capabilities register has a 810 * wrong version, or device doesn't support the requested state. 811 * 0 if device already is in the requested state. 812 * 0 if device's power state has been successfully changed. 813 */ 814 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state) 815 { 816 u16 pmcsr; 817 bool need_restore = false; 818 819 /* Check if we're already there */ 820 if (dev->current_state == state) 821 return 0; 822 823 if (!dev->pm_cap) 824 return -EIO; 825 826 if (state < PCI_D0 || state > PCI_D3hot) 827 return -EINVAL; 828 829 /* Validate current state: 830 * Can enter D0 from any state, but if we can only go deeper 831 * to sleep if we're already in a low power state 832 */ 833 if (state != PCI_D0 && dev->current_state <= PCI_D3cold 834 && dev->current_state > state) { 835 pci_err(dev, "invalid power transition (from state %d to %d)\n", 836 dev->current_state, state); 837 return -EINVAL; 838 } 839 840 /* check if this device supports the desired state */ 841 if ((state == PCI_D1 && !dev->d1_support) 842 || (state == PCI_D2 && !dev->d2_support)) 843 return -EIO; 844 845 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 846 847 /* If we're (effectively) in D3, force entire word to 0. 848 * This doesn't affect PME_Status, disables PME_En, and 849 * sets PowerState to 0. 850 */ 851 switch (dev->current_state) { 852 case PCI_D0: 853 case PCI_D1: 854 case PCI_D2: 855 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 856 pmcsr |= state; 857 break; 858 case PCI_D3hot: 859 case PCI_D3cold: 860 case PCI_UNKNOWN: /* Boot-up */ 861 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot 862 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET)) 863 need_restore = true; 864 /* Fall-through - force to D0 */ 865 default: 866 pmcsr = 0; 867 break; 868 } 869 870 /* enter specified state */ 871 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 872 873 /* Mandatory power management transition delays */ 874 /* see PCI PM 1.1 5.6.1 table 18 */ 875 if (state == PCI_D3hot || dev->current_state == PCI_D3hot) 876 pci_dev_d3_sleep(dev); 877 else if (state == PCI_D2 || dev->current_state == PCI_D2) 878 udelay(PCI_PM_D2_DELAY); 879 880 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 881 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 882 if (dev->current_state != state && printk_ratelimit()) 883 pci_info(dev, "Refused to change power state, currently in D%d\n", 884 dev->current_state); 885 886 /* 887 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT 888 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning 889 * from D3hot to D0 _may_ perform an internal reset, thereby 890 * going to "D0 Uninitialized" rather than "D0 Initialized". 891 * For example, at least some versions of the 3c905B and the 892 * 3c556B exhibit this behaviour. 893 * 894 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave 895 * devices in a D3hot state at boot. Consequently, we need to 896 * restore at least the BARs so that the device will be 897 * accessible to its driver. 898 */ 899 if (need_restore) 900 pci_restore_bars(dev); 901 902 if (dev->bus->self) 903 pcie_aspm_pm_state_change(dev->bus->self); 904 905 return 0; 906 } 907 908 /** 909 * pci_update_current_state - Read power state of given device and cache it 910 * @dev: PCI device to handle. 911 * @state: State to cache in case the device doesn't have the PM capability 912 * 913 * The power state is read from the PMCSR register, which however is 914 * inaccessible in D3cold. The platform firmware is therefore queried first 915 * to detect accessibility of the register. In case the platform firmware 916 * reports an incorrect state or the device isn't power manageable by the 917 * platform at all, we try to detect D3cold by testing accessibility of the 918 * vendor ID in config space. 919 */ 920 void pci_update_current_state(struct pci_dev *dev, pci_power_t state) 921 { 922 if (platform_pci_get_power_state(dev) == PCI_D3cold || 923 !pci_device_is_present(dev)) { 924 dev->current_state = PCI_D3cold; 925 } else if (dev->pm_cap) { 926 u16 pmcsr; 927 928 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 929 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 930 } else { 931 dev->current_state = state; 932 } 933 } 934 935 /** 936 * pci_power_up - Put the given device into D0 forcibly 937 * @dev: PCI device to power up 938 */ 939 void pci_power_up(struct pci_dev *dev) 940 { 941 if (platform_pci_power_manageable(dev)) 942 platform_pci_set_power_state(dev, PCI_D0); 943 944 pci_raw_set_power_state(dev, PCI_D0); 945 pci_update_current_state(dev, PCI_D0); 946 } 947 948 /** 949 * pci_platform_power_transition - Use platform to change device power state 950 * @dev: PCI device to handle. 951 * @state: State to put the device into. 952 */ 953 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state) 954 { 955 int error; 956 957 if (platform_pci_power_manageable(dev)) { 958 error = platform_pci_set_power_state(dev, state); 959 if (!error) 960 pci_update_current_state(dev, state); 961 } else 962 error = -ENODEV; 963 964 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */ 965 dev->current_state = PCI_D0; 966 967 return error; 968 } 969 970 /** 971 * pci_wakeup - Wake up a PCI device 972 * @pci_dev: Device to handle. 973 * @ign: ignored parameter 974 */ 975 static int pci_wakeup(struct pci_dev *pci_dev, void *ign) 976 { 977 pci_wakeup_event(pci_dev); 978 pm_request_resume(&pci_dev->dev); 979 return 0; 980 } 981 982 /** 983 * pci_wakeup_bus - Walk given bus and wake up devices on it 984 * @bus: Top bus of the subtree to walk. 985 */ 986 void pci_wakeup_bus(struct pci_bus *bus) 987 { 988 if (bus) 989 pci_walk_bus(bus, pci_wakeup, NULL); 990 } 991 992 /** 993 * __pci_start_power_transition - Start power transition of a PCI device 994 * @dev: PCI device to handle. 995 * @state: State to put the device into. 996 */ 997 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state) 998 { 999 if (state == PCI_D0) { 1000 pci_platform_power_transition(dev, PCI_D0); 1001 /* 1002 * Mandatory power management transition delays, see 1003 * PCI Express Base Specification Revision 2.0 Section 1004 * 6.6.1: Conventional Reset. Do not delay for 1005 * devices powered on/off by corresponding bridge, 1006 * because have already delayed for the bridge. 1007 */ 1008 if (dev->runtime_d3cold) { 1009 if (dev->d3cold_delay && !dev->imm_ready) 1010 msleep(dev->d3cold_delay); 1011 /* 1012 * When powering on a bridge from D3cold, the 1013 * whole hierarchy may be powered on into 1014 * D0uninitialized state, resume them to give 1015 * them a chance to suspend again 1016 */ 1017 pci_wakeup_bus(dev->subordinate); 1018 } 1019 } 1020 } 1021 1022 /** 1023 * __pci_dev_set_current_state - Set current state of a PCI device 1024 * @dev: Device to handle 1025 * @data: pointer to state to be set 1026 */ 1027 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data) 1028 { 1029 pci_power_t state = *(pci_power_t *)data; 1030 1031 dev->current_state = state; 1032 return 0; 1033 } 1034 1035 /** 1036 * pci_bus_set_current_state - Walk given bus and set current state of devices 1037 * @bus: Top bus of the subtree to walk. 1038 * @state: state to be set 1039 */ 1040 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state) 1041 { 1042 if (bus) 1043 pci_walk_bus(bus, __pci_dev_set_current_state, &state); 1044 } 1045 1046 /** 1047 * __pci_complete_power_transition - Complete power transition of a PCI device 1048 * @dev: PCI device to handle. 1049 * @state: State to put the device into. 1050 * 1051 * This function should not be called directly by device drivers. 1052 */ 1053 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state) 1054 { 1055 int ret; 1056 1057 if (state <= PCI_D0) 1058 return -EINVAL; 1059 ret = pci_platform_power_transition(dev, state); 1060 /* Power off the bridge may power off the whole hierarchy */ 1061 if (!ret && state == PCI_D3cold) 1062 pci_bus_set_current_state(dev->subordinate, PCI_D3cold); 1063 return ret; 1064 } 1065 EXPORT_SYMBOL_GPL(__pci_complete_power_transition); 1066 1067 /** 1068 * pci_set_power_state - Set the power state of a PCI device 1069 * @dev: PCI device to handle. 1070 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 1071 * 1072 * Transition a device to a new power state, using the platform firmware and/or 1073 * the device's PCI PM registers. 1074 * 1075 * RETURN VALUE: 1076 * -EINVAL if the requested state is invalid. 1077 * -EIO if device does not support PCI PM or its PM capabilities register has a 1078 * wrong version, or device doesn't support the requested state. 1079 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported. 1080 * 0 if device already is in the requested state. 1081 * 0 if the transition is to D3 but D3 is not supported. 1082 * 0 if device's power state has been successfully changed. 1083 */ 1084 int pci_set_power_state(struct pci_dev *dev, pci_power_t state) 1085 { 1086 int error; 1087 1088 /* bound the state we're entering */ 1089 if (state > PCI_D3cold) 1090 state = PCI_D3cold; 1091 else if (state < PCI_D0) 1092 state = PCI_D0; 1093 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev)) 1094 /* 1095 * If the device or the parent bridge do not support PCI PM, 1096 * ignore the request if we're doing anything other than putting 1097 * it into D0 (which would only happen on boot). 1098 */ 1099 return 0; 1100 1101 /* Check if we're already there */ 1102 if (dev->current_state == state) 1103 return 0; 1104 1105 __pci_start_power_transition(dev, state); 1106 1107 /* This device is quirked not to be put into D3, so 1108 don't put it in D3 */ 1109 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3)) 1110 return 0; 1111 1112 /* 1113 * To put device in D3cold, we put device into D3hot in native 1114 * way, then put device into D3cold with platform ops 1115 */ 1116 error = pci_raw_set_power_state(dev, state > PCI_D3hot ? 1117 PCI_D3hot : state); 1118 1119 if (!__pci_complete_power_transition(dev, state)) 1120 error = 0; 1121 1122 return error; 1123 } 1124 EXPORT_SYMBOL(pci_set_power_state); 1125 1126 /** 1127 * pci_choose_state - Choose the power state of a PCI device 1128 * @dev: PCI device to be suspended 1129 * @state: target sleep state for the whole system. This is the value 1130 * that is passed to suspend() function. 1131 * 1132 * Returns PCI power state suitable for given device and given system 1133 * message. 1134 */ 1135 1136 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state) 1137 { 1138 pci_power_t ret; 1139 1140 if (!dev->pm_cap) 1141 return PCI_D0; 1142 1143 ret = platform_pci_choose_state(dev); 1144 if (ret != PCI_POWER_ERROR) 1145 return ret; 1146 1147 switch (state.event) { 1148 case PM_EVENT_ON: 1149 return PCI_D0; 1150 case PM_EVENT_FREEZE: 1151 case PM_EVENT_PRETHAW: 1152 /* REVISIT both freeze and pre-thaw "should" use D0 */ 1153 case PM_EVENT_SUSPEND: 1154 case PM_EVENT_HIBERNATE: 1155 return PCI_D3hot; 1156 default: 1157 pci_info(dev, "unrecognized suspend event %d\n", 1158 state.event); 1159 BUG(); 1160 } 1161 return PCI_D0; 1162 } 1163 EXPORT_SYMBOL(pci_choose_state); 1164 1165 #define PCI_EXP_SAVE_REGS 7 1166 1167 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev, 1168 u16 cap, bool extended) 1169 { 1170 struct pci_cap_saved_state *tmp; 1171 1172 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) { 1173 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap) 1174 return tmp; 1175 } 1176 return NULL; 1177 } 1178 1179 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap) 1180 { 1181 return _pci_find_saved_cap(dev, cap, false); 1182 } 1183 1184 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap) 1185 { 1186 return _pci_find_saved_cap(dev, cap, true); 1187 } 1188 1189 static int pci_save_pcie_state(struct pci_dev *dev) 1190 { 1191 int i = 0; 1192 struct pci_cap_saved_state *save_state; 1193 u16 *cap; 1194 1195 if (!pci_is_pcie(dev)) 1196 return 0; 1197 1198 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1199 if (!save_state) { 1200 pci_err(dev, "buffer not found in %s\n", __func__); 1201 return -ENOMEM; 1202 } 1203 1204 cap = (u16 *)&save_state->cap.data[0]; 1205 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]); 1206 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]); 1207 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]); 1208 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]); 1209 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]); 1210 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]); 1211 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]); 1212 1213 return 0; 1214 } 1215 1216 static void pci_restore_pcie_state(struct pci_dev *dev) 1217 { 1218 int i = 0; 1219 struct pci_cap_saved_state *save_state; 1220 u16 *cap; 1221 1222 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1223 if (!save_state) 1224 return; 1225 1226 cap = (u16 *)&save_state->cap.data[0]; 1227 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]); 1228 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]); 1229 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]); 1230 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]); 1231 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]); 1232 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]); 1233 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]); 1234 } 1235 1236 static int pci_save_pcix_state(struct pci_dev *dev) 1237 { 1238 int pos; 1239 struct pci_cap_saved_state *save_state; 1240 1241 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1242 if (!pos) 1243 return 0; 1244 1245 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1246 if (!save_state) { 1247 pci_err(dev, "buffer not found in %s\n", __func__); 1248 return -ENOMEM; 1249 } 1250 1251 pci_read_config_word(dev, pos + PCI_X_CMD, 1252 (u16 *)save_state->cap.data); 1253 1254 return 0; 1255 } 1256 1257 static void pci_restore_pcix_state(struct pci_dev *dev) 1258 { 1259 int i = 0, pos; 1260 struct pci_cap_saved_state *save_state; 1261 u16 *cap; 1262 1263 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1264 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1265 if (!save_state || !pos) 1266 return; 1267 cap = (u16 *)&save_state->cap.data[0]; 1268 1269 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]); 1270 } 1271 1272 static void pci_save_ltr_state(struct pci_dev *dev) 1273 { 1274 int ltr; 1275 struct pci_cap_saved_state *save_state; 1276 u16 *cap; 1277 1278 if (!pci_is_pcie(dev)) 1279 return; 1280 1281 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR); 1282 if (!ltr) 1283 return; 1284 1285 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR); 1286 if (!save_state) { 1287 pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n"); 1288 return; 1289 } 1290 1291 cap = (u16 *)&save_state->cap.data[0]; 1292 pci_read_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap++); 1293 pci_read_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, cap++); 1294 } 1295 1296 static void pci_restore_ltr_state(struct pci_dev *dev) 1297 { 1298 struct pci_cap_saved_state *save_state; 1299 int ltr; 1300 u16 *cap; 1301 1302 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR); 1303 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR); 1304 if (!save_state || !ltr) 1305 return; 1306 1307 cap = (u16 *)&save_state->cap.data[0]; 1308 pci_write_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap++); 1309 pci_write_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, *cap++); 1310 } 1311 1312 /** 1313 * pci_save_state - save the PCI configuration space of a device before suspending 1314 * @dev: - PCI device that we're dealing with 1315 */ 1316 int pci_save_state(struct pci_dev *dev) 1317 { 1318 int i; 1319 /* XXX: 100% dword access ok here? */ 1320 for (i = 0; i < 16; i++) 1321 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]); 1322 dev->state_saved = true; 1323 1324 i = pci_save_pcie_state(dev); 1325 if (i != 0) 1326 return i; 1327 1328 i = pci_save_pcix_state(dev); 1329 if (i != 0) 1330 return i; 1331 1332 pci_save_ltr_state(dev); 1333 pci_save_dpc_state(dev); 1334 return pci_save_vc_state(dev); 1335 } 1336 EXPORT_SYMBOL(pci_save_state); 1337 1338 static void pci_restore_config_dword(struct pci_dev *pdev, int offset, 1339 u32 saved_val, int retry, bool force) 1340 { 1341 u32 val; 1342 1343 pci_read_config_dword(pdev, offset, &val); 1344 if (!force && val == saved_val) 1345 return; 1346 1347 for (;;) { 1348 pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n", 1349 offset, val, saved_val); 1350 pci_write_config_dword(pdev, offset, saved_val); 1351 if (retry-- <= 0) 1352 return; 1353 1354 pci_read_config_dword(pdev, offset, &val); 1355 if (val == saved_val) 1356 return; 1357 1358 mdelay(1); 1359 } 1360 } 1361 1362 static void pci_restore_config_space_range(struct pci_dev *pdev, 1363 int start, int end, int retry, 1364 bool force) 1365 { 1366 int index; 1367 1368 for (index = end; index >= start; index--) 1369 pci_restore_config_dword(pdev, 4 * index, 1370 pdev->saved_config_space[index], 1371 retry, force); 1372 } 1373 1374 static void pci_restore_config_space(struct pci_dev *pdev) 1375 { 1376 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) { 1377 pci_restore_config_space_range(pdev, 10, 15, 0, false); 1378 /* Restore BARs before the command register. */ 1379 pci_restore_config_space_range(pdev, 4, 9, 10, false); 1380 pci_restore_config_space_range(pdev, 0, 3, 0, false); 1381 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 1382 pci_restore_config_space_range(pdev, 12, 15, 0, false); 1383 1384 /* 1385 * Force rewriting of prefetch registers to avoid S3 resume 1386 * issues on Intel PCI bridges that occur when these 1387 * registers are not explicitly written. 1388 */ 1389 pci_restore_config_space_range(pdev, 9, 11, 0, true); 1390 pci_restore_config_space_range(pdev, 0, 8, 0, false); 1391 } else { 1392 pci_restore_config_space_range(pdev, 0, 15, 0, false); 1393 } 1394 } 1395 1396 static void pci_restore_rebar_state(struct pci_dev *pdev) 1397 { 1398 unsigned int pos, nbars, i; 1399 u32 ctrl; 1400 1401 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 1402 if (!pos) 1403 return; 1404 1405 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1406 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >> 1407 PCI_REBAR_CTRL_NBAR_SHIFT; 1408 1409 for (i = 0; i < nbars; i++, pos += 8) { 1410 struct resource *res; 1411 int bar_idx, size; 1412 1413 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1414 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX; 1415 res = pdev->resource + bar_idx; 1416 size = order_base_2((resource_size(res) >> 20) | 1) - 1; 1417 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 1418 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT; 1419 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 1420 } 1421 } 1422 1423 /** 1424 * pci_restore_state - Restore the saved state of a PCI device 1425 * @dev: - PCI device that we're dealing with 1426 */ 1427 void pci_restore_state(struct pci_dev *dev) 1428 { 1429 if (!dev->state_saved) 1430 return; 1431 1432 /* 1433 * Restore max latencies (in the LTR capability) before enabling 1434 * LTR itself (in the PCIe capability). 1435 */ 1436 pci_restore_ltr_state(dev); 1437 1438 pci_restore_pcie_state(dev); 1439 pci_restore_pasid_state(dev); 1440 pci_restore_pri_state(dev); 1441 pci_restore_ats_state(dev); 1442 pci_restore_vc_state(dev); 1443 pci_restore_rebar_state(dev); 1444 pci_restore_dpc_state(dev); 1445 1446 pci_cleanup_aer_error_status_regs(dev); 1447 1448 pci_restore_config_space(dev); 1449 1450 pci_restore_pcix_state(dev); 1451 pci_restore_msi_state(dev); 1452 1453 /* Restore ACS and IOV configuration state */ 1454 pci_enable_acs(dev); 1455 pci_restore_iov_state(dev); 1456 1457 dev->state_saved = false; 1458 } 1459 EXPORT_SYMBOL(pci_restore_state); 1460 1461 struct pci_saved_state { 1462 u32 config_space[16]; 1463 struct pci_cap_saved_data cap[0]; 1464 }; 1465 1466 /** 1467 * pci_store_saved_state - Allocate and return an opaque struct containing 1468 * the device saved state. 1469 * @dev: PCI device that we're dealing with 1470 * 1471 * Return NULL if no state or error. 1472 */ 1473 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev) 1474 { 1475 struct pci_saved_state *state; 1476 struct pci_cap_saved_state *tmp; 1477 struct pci_cap_saved_data *cap; 1478 size_t size; 1479 1480 if (!dev->state_saved) 1481 return NULL; 1482 1483 size = sizeof(*state) + sizeof(struct pci_cap_saved_data); 1484 1485 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) 1486 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1487 1488 state = kzalloc(size, GFP_KERNEL); 1489 if (!state) 1490 return NULL; 1491 1492 memcpy(state->config_space, dev->saved_config_space, 1493 sizeof(state->config_space)); 1494 1495 cap = state->cap; 1496 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) { 1497 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1498 memcpy(cap, &tmp->cap, len); 1499 cap = (struct pci_cap_saved_data *)((u8 *)cap + len); 1500 } 1501 /* Empty cap_save terminates list */ 1502 1503 return state; 1504 } 1505 EXPORT_SYMBOL_GPL(pci_store_saved_state); 1506 1507 /** 1508 * pci_load_saved_state - Reload the provided save state into struct pci_dev. 1509 * @dev: PCI device that we're dealing with 1510 * @state: Saved state returned from pci_store_saved_state() 1511 */ 1512 int pci_load_saved_state(struct pci_dev *dev, 1513 struct pci_saved_state *state) 1514 { 1515 struct pci_cap_saved_data *cap; 1516 1517 dev->state_saved = false; 1518 1519 if (!state) 1520 return 0; 1521 1522 memcpy(dev->saved_config_space, state->config_space, 1523 sizeof(state->config_space)); 1524 1525 cap = state->cap; 1526 while (cap->size) { 1527 struct pci_cap_saved_state *tmp; 1528 1529 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended); 1530 if (!tmp || tmp->cap.size != cap->size) 1531 return -EINVAL; 1532 1533 memcpy(tmp->cap.data, cap->data, tmp->cap.size); 1534 cap = (struct pci_cap_saved_data *)((u8 *)cap + 1535 sizeof(struct pci_cap_saved_data) + cap->size); 1536 } 1537 1538 dev->state_saved = true; 1539 return 0; 1540 } 1541 EXPORT_SYMBOL_GPL(pci_load_saved_state); 1542 1543 /** 1544 * pci_load_and_free_saved_state - Reload the save state pointed to by state, 1545 * and free the memory allocated for it. 1546 * @dev: PCI device that we're dealing with 1547 * @state: Pointer to saved state returned from pci_store_saved_state() 1548 */ 1549 int pci_load_and_free_saved_state(struct pci_dev *dev, 1550 struct pci_saved_state **state) 1551 { 1552 int ret = pci_load_saved_state(dev, *state); 1553 kfree(*state); 1554 *state = NULL; 1555 return ret; 1556 } 1557 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state); 1558 1559 int __weak pcibios_enable_device(struct pci_dev *dev, int bars) 1560 { 1561 return pci_enable_resources(dev, bars); 1562 } 1563 1564 static int do_pci_enable_device(struct pci_dev *dev, int bars) 1565 { 1566 int err; 1567 struct pci_dev *bridge; 1568 u16 cmd; 1569 u8 pin; 1570 1571 err = pci_set_power_state(dev, PCI_D0); 1572 if (err < 0 && err != -EIO) 1573 return err; 1574 1575 bridge = pci_upstream_bridge(dev); 1576 if (bridge) 1577 pcie_aspm_powersave_config_link(bridge); 1578 1579 err = pcibios_enable_device(dev, bars); 1580 if (err < 0) 1581 return err; 1582 pci_fixup_device(pci_fixup_enable, dev); 1583 1584 if (dev->msi_enabled || dev->msix_enabled) 1585 return 0; 1586 1587 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin); 1588 if (pin) { 1589 pci_read_config_word(dev, PCI_COMMAND, &cmd); 1590 if (cmd & PCI_COMMAND_INTX_DISABLE) 1591 pci_write_config_word(dev, PCI_COMMAND, 1592 cmd & ~PCI_COMMAND_INTX_DISABLE); 1593 } 1594 1595 return 0; 1596 } 1597 1598 /** 1599 * pci_reenable_device - Resume abandoned device 1600 * @dev: PCI device to be resumed 1601 * 1602 * Note this function is a backend of pci_default_resume and is not supposed 1603 * to be called by normal code, write proper resume handler and use it instead. 1604 */ 1605 int pci_reenable_device(struct pci_dev *dev) 1606 { 1607 if (pci_is_enabled(dev)) 1608 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1); 1609 return 0; 1610 } 1611 EXPORT_SYMBOL(pci_reenable_device); 1612 1613 static void pci_enable_bridge(struct pci_dev *dev) 1614 { 1615 struct pci_dev *bridge; 1616 int retval; 1617 1618 bridge = pci_upstream_bridge(dev); 1619 if (bridge) 1620 pci_enable_bridge(bridge); 1621 1622 if (pci_is_enabled(dev)) { 1623 if (!dev->is_busmaster) 1624 pci_set_master(dev); 1625 return; 1626 } 1627 1628 retval = pci_enable_device(dev); 1629 if (retval) 1630 pci_err(dev, "Error enabling bridge (%d), continuing\n", 1631 retval); 1632 pci_set_master(dev); 1633 } 1634 1635 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags) 1636 { 1637 struct pci_dev *bridge; 1638 int err; 1639 int i, bars = 0; 1640 1641 /* 1642 * Power state could be unknown at this point, either due to a fresh 1643 * boot or a device removal call. So get the current power state 1644 * so that things like MSI message writing will behave as expected 1645 * (e.g. if the device really is in D0 at enable time). 1646 */ 1647 if (dev->pm_cap) { 1648 u16 pmcsr; 1649 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1650 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 1651 } 1652 1653 if (atomic_inc_return(&dev->enable_cnt) > 1) 1654 return 0; /* already enabled */ 1655 1656 bridge = pci_upstream_bridge(dev); 1657 if (bridge) 1658 pci_enable_bridge(bridge); 1659 1660 /* only skip sriov related */ 1661 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 1662 if (dev->resource[i].flags & flags) 1663 bars |= (1 << i); 1664 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++) 1665 if (dev->resource[i].flags & flags) 1666 bars |= (1 << i); 1667 1668 err = do_pci_enable_device(dev, bars); 1669 if (err < 0) 1670 atomic_dec(&dev->enable_cnt); 1671 return err; 1672 } 1673 1674 /** 1675 * pci_enable_device_io - Initialize a device for use with IO space 1676 * @dev: PCI device to be initialized 1677 * 1678 * Initialize device before it's used by a driver. Ask low-level code 1679 * to enable I/O resources. Wake up the device if it was suspended. 1680 * Beware, this function can fail. 1681 */ 1682 int pci_enable_device_io(struct pci_dev *dev) 1683 { 1684 return pci_enable_device_flags(dev, IORESOURCE_IO); 1685 } 1686 EXPORT_SYMBOL(pci_enable_device_io); 1687 1688 /** 1689 * pci_enable_device_mem - Initialize a device for use with Memory space 1690 * @dev: PCI device to be initialized 1691 * 1692 * Initialize device before it's used by a driver. Ask low-level code 1693 * to enable Memory resources. Wake up the device if it was suspended. 1694 * Beware, this function can fail. 1695 */ 1696 int pci_enable_device_mem(struct pci_dev *dev) 1697 { 1698 return pci_enable_device_flags(dev, IORESOURCE_MEM); 1699 } 1700 EXPORT_SYMBOL(pci_enable_device_mem); 1701 1702 /** 1703 * pci_enable_device - Initialize device before it's used by a driver. 1704 * @dev: PCI device to be initialized 1705 * 1706 * Initialize device before it's used by a driver. Ask low-level code 1707 * to enable I/O and memory. Wake up the device if it was suspended. 1708 * Beware, this function can fail. 1709 * 1710 * Note we don't actually enable the device many times if we call 1711 * this function repeatedly (we just increment the count). 1712 */ 1713 int pci_enable_device(struct pci_dev *dev) 1714 { 1715 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO); 1716 } 1717 EXPORT_SYMBOL(pci_enable_device); 1718 1719 /* 1720 * Managed PCI resources. This manages device on/off, intx/msi/msix 1721 * on/off and BAR regions. pci_dev itself records msi/msix status, so 1722 * there's no need to track it separately. pci_devres is initialized 1723 * when a device is enabled using managed PCI device enable interface. 1724 */ 1725 struct pci_devres { 1726 unsigned int enabled:1; 1727 unsigned int pinned:1; 1728 unsigned int orig_intx:1; 1729 unsigned int restore_intx:1; 1730 unsigned int mwi:1; 1731 u32 region_mask; 1732 }; 1733 1734 static void pcim_release(struct device *gendev, void *res) 1735 { 1736 struct pci_dev *dev = to_pci_dev(gendev); 1737 struct pci_devres *this = res; 1738 int i; 1739 1740 if (dev->msi_enabled) 1741 pci_disable_msi(dev); 1742 if (dev->msix_enabled) 1743 pci_disable_msix(dev); 1744 1745 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) 1746 if (this->region_mask & (1 << i)) 1747 pci_release_region(dev, i); 1748 1749 if (this->mwi) 1750 pci_clear_mwi(dev); 1751 1752 if (this->restore_intx) 1753 pci_intx(dev, this->orig_intx); 1754 1755 if (this->enabled && !this->pinned) 1756 pci_disable_device(dev); 1757 } 1758 1759 static struct pci_devres *get_pci_dr(struct pci_dev *pdev) 1760 { 1761 struct pci_devres *dr, *new_dr; 1762 1763 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL); 1764 if (dr) 1765 return dr; 1766 1767 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL); 1768 if (!new_dr) 1769 return NULL; 1770 return devres_get(&pdev->dev, new_dr, NULL, NULL); 1771 } 1772 1773 static struct pci_devres *find_pci_dr(struct pci_dev *pdev) 1774 { 1775 if (pci_is_managed(pdev)) 1776 return devres_find(&pdev->dev, pcim_release, NULL, NULL); 1777 return NULL; 1778 } 1779 1780 /** 1781 * pcim_enable_device - Managed pci_enable_device() 1782 * @pdev: PCI device to be initialized 1783 * 1784 * Managed pci_enable_device(). 1785 */ 1786 int pcim_enable_device(struct pci_dev *pdev) 1787 { 1788 struct pci_devres *dr; 1789 int rc; 1790 1791 dr = get_pci_dr(pdev); 1792 if (unlikely(!dr)) 1793 return -ENOMEM; 1794 if (dr->enabled) 1795 return 0; 1796 1797 rc = pci_enable_device(pdev); 1798 if (!rc) { 1799 pdev->is_managed = 1; 1800 dr->enabled = 1; 1801 } 1802 return rc; 1803 } 1804 EXPORT_SYMBOL(pcim_enable_device); 1805 1806 /** 1807 * pcim_pin_device - Pin managed PCI device 1808 * @pdev: PCI device to pin 1809 * 1810 * Pin managed PCI device @pdev. Pinned device won't be disabled on 1811 * driver detach. @pdev must have been enabled with 1812 * pcim_enable_device(). 1813 */ 1814 void pcim_pin_device(struct pci_dev *pdev) 1815 { 1816 struct pci_devres *dr; 1817 1818 dr = find_pci_dr(pdev); 1819 WARN_ON(!dr || !dr->enabled); 1820 if (dr) 1821 dr->pinned = 1; 1822 } 1823 EXPORT_SYMBOL(pcim_pin_device); 1824 1825 /* 1826 * pcibios_add_device - provide arch specific hooks when adding device dev 1827 * @dev: the PCI device being added 1828 * 1829 * Permits the platform to provide architecture specific functionality when 1830 * devices are added. This is the default implementation. Architecture 1831 * implementations can override this. 1832 */ 1833 int __weak pcibios_add_device(struct pci_dev *dev) 1834 { 1835 return 0; 1836 } 1837 1838 /** 1839 * pcibios_release_device - provide arch specific hooks when releasing device dev 1840 * @dev: the PCI device being released 1841 * 1842 * Permits the platform to provide architecture specific functionality when 1843 * devices are released. This is the default implementation. Architecture 1844 * implementations can override this. 1845 */ 1846 void __weak pcibios_release_device(struct pci_dev *dev) {} 1847 1848 /** 1849 * pcibios_disable_device - disable arch specific PCI resources for device dev 1850 * @dev: the PCI device to disable 1851 * 1852 * Disables architecture specific PCI resources for the device. This 1853 * is the default implementation. Architecture implementations can 1854 * override this. 1855 */ 1856 void __weak pcibios_disable_device(struct pci_dev *dev) {} 1857 1858 /** 1859 * pcibios_penalize_isa_irq - penalize an ISA IRQ 1860 * @irq: ISA IRQ to penalize 1861 * @active: IRQ active or not 1862 * 1863 * Permits the platform to provide architecture-specific functionality when 1864 * penalizing ISA IRQs. This is the default implementation. Architecture 1865 * implementations can override this. 1866 */ 1867 void __weak pcibios_penalize_isa_irq(int irq, int active) {} 1868 1869 static void do_pci_disable_device(struct pci_dev *dev) 1870 { 1871 u16 pci_command; 1872 1873 pci_read_config_word(dev, PCI_COMMAND, &pci_command); 1874 if (pci_command & PCI_COMMAND_MASTER) { 1875 pci_command &= ~PCI_COMMAND_MASTER; 1876 pci_write_config_word(dev, PCI_COMMAND, pci_command); 1877 } 1878 1879 pcibios_disable_device(dev); 1880 } 1881 1882 /** 1883 * pci_disable_enabled_device - Disable device without updating enable_cnt 1884 * @dev: PCI device to disable 1885 * 1886 * NOTE: This function is a backend of PCI power management routines and is 1887 * not supposed to be called drivers. 1888 */ 1889 void pci_disable_enabled_device(struct pci_dev *dev) 1890 { 1891 if (pci_is_enabled(dev)) 1892 do_pci_disable_device(dev); 1893 } 1894 1895 /** 1896 * pci_disable_device - Disable PCI device after use 1897 * @dev: PCI device to be disabled 1898 * 1899 * Signal to the system that the PCI device is not in use by the system 1900 * anymore. This only involves disabling PCI bus-mastering, if active. 1901 * 1902 * Note we don't actually disable the device until all callers of 1903 * pci_enable_device() have called pci_disable_device(). 1904 */ 1905 void pci_disable_device(struct pci_dev *dev) 1906 { 1907 struct pci_devres *dr; 1908 1909 dr = find_pci_dr(dev); 1910 if (dr) 1911 dr->enabled = 0; 1912 1913 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0, 1914 "disabling already-disabled device"); 1915 1916 if (atomic_dec_return(&dev->enable_cnt) != 0) 1917 return; 1918 1919 do_pci_disable_device(dev); 1920 1921 dev->is_busmaster = 0; 1922 } 1923 EXPORT_SYMBOL(pci_disable_device); 1924 1925 /** 1926 * pcibios_set_pcie_reset_state - set reset state for device dev 1927 * @dev: the PCIe device reset 1928 * @state: Reset state to enter into 1929 * 1930 * 1931 * Sets the PCIe reset state for the device. This is the default 1932 * implementation. Architecture implementations can override this. 1933 */ 1934 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev, 1935 enum pcie_reset_state state) 1936 { 1937 return -EINVAL; 1938 } 1939 1940 /** 1941 * pci_set_pcie_reset_state - set reset state for device dev 1942 * @dev: the PCIe device reset 1943 * @state: Reset state to enter into 1944 * 1945 * 1946 * Sets the PCI reset state for the device. 1947 */ 1948 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state) 1949 { 1950 return pcibios_set_pcie_reset_state(dev, state); 1951 } 1952 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state); 1953 1954 /** 1955 * pcie_clear_root_pme_status - Clear root port PME interrupt status. 1956 * @dev: PCIe root port or event collector. 1957 */ 1958 void pcie_clear_root_pme_status(struct pci_dev *dev) 1959 { 1960 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME); 1961 } 1962 1963 /** 1964 * pci_check_pme_status - Check if given device has generated PME. 1965 * @dev: Device to check. 1966 * 1967 * Check the PME status of the device and if set, clear it and clear PME enable 1968 * (if set). Return 'true' if PME status and PME enable were both set or 1969 * 'false' otherwise. 1970 */ 1971 bool pci_check_pme_status(struct pci_dev *dev) 1972 { 1973 int pmcsr_pos; 1974 u16 pmcsr; 1975 bool ret = false; 1976 1977 if (!dev->pm_cap) 1978 return false; 1979 1980 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL; 1981 pci_read_config_word(dev, pmcsr_pos, &pmcsr); 1982 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS)) 1983 return false; 1984 1985 /* Clear PME status. */ 1986 pmcsr |= PCI_PM_CTRL_PME_STATUS; 1987 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) { 1988 /* Disable PME to avoid interrupt flood. */ 1989 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 1990 ret = true; 1991 } 1992 1993 pci_write_config_word(dev, pmcsr_pos, pmcsr); 1994 1995 return ret; 1996 } 1997 1998 /** 1999 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set. 2000 * @dev: Device to handle. 2001 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag. 2002 * 2003 * Check if @dev has generated PME and queue a resume request for it in that 2004 * case. 2005 */ 2006 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset) 2007 { 2008 if (pme_poll_reset && dev->pme_poll) 2009 dev->pme_poll = false; 2010 2011 if (pci_check_pme_status(dev)) { 2012 pci_wakeup_event(dev); 2013 pm_request_resume(&dev->dev); 2014 } 2015 return 0; 2016 } 2017 2018 /** 2019 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary. 2020 * @bus: Top bus of the subtree to walk. 2021 */ 2022 void pci_pme_wakeup_bus(struct pci_bus *bus) 2023 { 2024 if (bus) 2025 pci_walk_bus(bus, pci_pme_wakeup, (void *)true); 2026 } 2027 2028 2029 /** 2030 * pci_pme_capable - check the capability of PCI device to generate PME# 2031 * @dev: PCI device to handle. 2032 * @state: PCI state from which device will issue PME#. 2033 */ 2034 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state) 2035 { 2036 if (!dev->pm_cap) 2037 return false; 2038 2039 return !!(dev->pme_support & (1 << state)); 2040 } 2041 EXPORT_SYMBOL(pci_pme_capable); 2042 2043 static void pci_pme_list_scan(struct work_struct *work) 2044 { 2045 struct pci_pme_device *pme_dev, *n; 2046 2047 mutex_lock(&pci_pme_list_mutex); 2048 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) { 2049 if (pme_dev->dev->pme_poll) { 2050 struct pci_dev *bridge; 2051 2052 bridge = pme_dev->dev->bus->self; 2053 /* 2054 * If bridge is in low power state, the 2055 * configuration space of subordinate devices 2056 * may be not accessible 2057 */ 2058 if (bridge && bridge->current_state != PCI_D0) 2059 continue; 2060 pci_pme_wakeup(pme_dev->dev, NULL); 2061 } else { 2062 list_del(&pme_dev->list); 2063 kfree(pme_dev); 2064 } 2065 } 2066 if (!list_empty(&pci_pme_list)) 2067 queue_delayed_work(system_freezable_wq, &pci_pme_work, 2068 msecs_to_jiffies(PME_TIMEOUT)); 2069 mutex_unlock(&pci_pme_list_mutex); 2070 } 2071 2072 static void __pci_pme_active(struct pci_dev *dev, bool enable) 2073 { 2074 u16 pmcsr; 2075 2076 if (!dev->pme_support) 2077 return; 2078 2079 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2080 /* Clear PME_Status by writing 1 to it and enable PME# */ 2081 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE; 2082 if (!enable) 2083 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2084 2085 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2086 } 2087 2088 /** 2089 * pci_pme_restore - Restore PME configuration after config space restore. 2090 * @dev: PCI device to update. 2091 */ 2092 void pci_pme_restore(struct pci_dev *dev) 2093 { 2094 u16 pmcsr; 2095 2096 if (!dev->pme_support) 2097 return; 2098 2099 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2100 if (dev->wakeup_prepared) { 2101 pmcsr |= PCI_PM_CTRL_PME_ENABLE; 2102 pmcsr &= ~PCI_PM_CTRL_PME_STATUS; 2103 } else { 2104 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2105 pmcsr |= PCI_PM_CTRL_PME_STATUS; 2106 } 2107 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2108 } 2109 2110 /** 2111 * pci_pme_active - enable or disable PCI device's PME# function 2112 * @dev: PCI device to handle. 2113 * @enable: 'true' to enable PME# generation; 'false' to disable it. 2114 * 2115 * The caller must verify that the device is capable of generating PME# before 2116 * calling this function with @enable equal to 'true'. 2117 */ 2118 void pci_pme_active(struct pci_dev *dev, bool enable) 2119 { 2120 __pci_pme_active(dev, enable); 2121 2122 /* 2123 * PCI (as opposed to PCIe) PME requires that the device have 2124 * its PME# line hooked up correctly. Not all hardware vendors 2125 * do this, so the PME never gets delivered and the device 2126 * remains asleep. The easiest way around this is to 2127 * periodically walk the list of suspended devices and check 2128 * whether any have their PME flag set. The assumption is that 2129 * we'll wake up often enough anyway that this won't be a huge 2130 * hit, and the power savings from the devices will still be a 2131 * win. 2132 * 2133 * Although PCIe uses in-band PME message instead of PME# line 2134 * to report PME, PME does not work for some PCIe devices in 2135 * reality. For example, there are devices that set their PME 2136 * status bits, but don't really bother to send a PME message; 2137 * there are PCI Express Root Ports that don't bother to 2138 * trigger interrupts when they receive PME messages from the 2139 * devices below. So PME poll is used for PCIe devices too. 2140 */ 2141 2142 if (dev->pme_poll) { 2143 struct pci_pme_device *pme_dev; 2144 if (enable) { 2145 pme_dev = kmalloc(sizeof(struct pci_pme_device), 2146 GFP_KERNEL); 2147 if (!pme_dev) { 2148 pci_warn(dev, "can't enable PME#\n"); 2149 return; 2150 } 2151 pme_dev->dev = dev; 2152 mutex_lock(&pci_pme_list_mutex); 2153 list_add(&pme_dev->list, &pci_pme_list); 2154 if (list_is_singular(&pci_pme_list)) 2155 queue_delayed_work(system_freezable_wq, 2156 &pci_pme_work, 2157 msecs_to_jiffies(PME_TIMEOUT)); 2158 mutex_unlock(&pci_pme_list_mutex); 2159 } else { 2160 mutex_lock(&pci_pme_list_mutex); 2161 list_for_each_entry(pme_dev, &pci_pme_list, list) { 2162 if (pme_dev->dev == dev) { 2163 list_del(&pme_dev->list); 2164 kfree(pme_dev); 2165 break; 2166 } 2167 } 2168 mutex_unlock(&pci_pme_list_mutex); 2169 } 2170 } 2171 2172 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled"); 2173 } 2174 EXPORT_SYMBOL(pci_pme_active); 2175 2176 /** 2177 * __pci_enable_wake - enable PCI device as wakeup event source 2178 * @dev: PCI device affected 2179 * @state: PCI state from which device will issue wakeup events 2180 * @enable: True to enable event generation; false to disable 2181 * 2182 * This enables the device as a wakeup event source, or disables it. 2183 * When such events involves platform-specific hooks, those hooks are 2184 * called automatically by this routine. 2185 * 2186 * Devices with legacy power management (no standard PCI PM capabilities) 2187 * always require such platform hooks. 2188 * 2189 * RETURN VALUE: 2190 * 0 is returned on success 2191 * -EINVAL is returned if device is not supposed to wake up the system 2192 * Error code depending on the platform is returned if both the platform and 2193 * the native mechanism fail to enable the generation of wake-up events 2194 */ 2195 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable) 2196 { 2197 int ret = 0; 2198 2199 /* 2200 * Bridges that are not power-manageable directly only signal 2201 * wakeup on behalf of subordinate devices which is set up 2202 * elsewhere, so skip them. However, bridges that are 2203 * power-manageable may signal wakeup for themselves (for example, 2204 * on a hotplug event) and they need to be covered here. 2205 */ 2206 if (!pci_power_manageable(dev)) 2207 return 0; 2208 2209 /* Don't do the same thing twice in a row for one device. */ 2210 if (!!enable == !!dev->wakeup_prepared) 2211 return 0; 2212 2213 /* 2214 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don 2215 * Anderson we should be doing PME# wake enable followed by ACPI wake 2216 * enable. To disable wake-up we call the platform first, for symmetry. 2217 */ 2218 2219 if (enable) { 2220 int error; 2221 2222 if (pci_pme_capable(dev, state)) 2223 pci_pme_active(dev, true); 2224 else 2225 ret = 1; 2226 error = platform_pci_set_wakeup(dev, true); 2227 if (ret) 2228 ret = error; 2229 if (!ret) 2230 dev->wakeup_prepared = true; 2231 } else { 2232 platform_pci_set_wakeup(dev, false); 2233 pci_pme_active(dev, false); 2234 dev->wakeup_prepared = false; 2235 } 2236 2237 return ret; 2238 } 2239 2240 /** 2241 * pci_enable_wake - change wakeup settings for a PCI device 2242 * @pci_dev: Target device 2243 * @state: PCI state from which device will issue wakeup events 2244 * @enable: Whether or not to enable event generation 2245 * 2246 * If @enable is set, check device_may_wakeup() for the device before calling 2247 * __pci_enable_wake() for it. 2248 */ 2249 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable) 2250 { 2251 if (enable && !device_may_wakeup(&pci_dev->dev)) 2252 return -EINVAL; 2253 2254 return __pci_enable_wake(pci_dev, state, enable); 2255 } 2256 EXPORT_SYMBOL(pci_enable_wake); 2257 2258 /** 2259 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold 2260 * @dev: PCI device to prepare 2261 * @enable: True to enable wake-up event generation; false to disable 2262 * 2263 * Many drivers want the device to wake up the system from D3_hot or D3_cold 2264 * and this function allows them to set that up cleanly - pci_enable_wake() 2265 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI 2266 * ordering constraints. 2267 * 2268 * This function only returns error code if the device is not allowed to wake 2269 * up the system from sleep or it is not capable of generating PME# from both 2270 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it. 2271 */ 2272 int pci_wake_from_d3(struct pci_dev *dev, bool enable) 2273 { 2274 return pci_pme_capable(dev, PCI_D3cold) ? 2275 pci_enable_wake(dev, PCI_D3cold, enable) : 2276 pci_enable_wake(dev, PCI_D3hot, enable); 2277 } 2278 EXPORT_SYMBOL(pci_wake_from_d3); 2279 2280 /** 2281 * pci_target_state - find an appropriate low power state for a given PCI dev 2282 * @dev: PCI device 2283 * @wakeup: Whether or not wakeup functionality will be enabled for the device. 2284 * 2285 * Use underlying platform code to find a supported low power state for @dev. 2286 * If the platform can't manage @dev, return the deepest state from which it 2287 * can generate wake events, based on any available PME info. 2288 */ 2289 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup) 2290 { 2291 pci_power_t target_state = PCI_D3hot; 2292 2293 if (platform_pci_power_manageable(dev)) { 2294 /* 2295 * Call the platform to find the target state for the device. 2296 */ 2297 pci_power_t state = platform_pci_choose_state(dev); 2298 2299 switch (state) { 2300 case PCI_POWER_ERROR: 2301 case PCI_UNKNOWN: 2302 break; 2303 case PCI_D1: 2304 case PCI_D2: 2305 if (pci_no_d1d2(dev)) 2306 break; 2307 /* else, fall through */ 2308 default: 2309 target_state = state; 2310 } 2311 2312 return target_state; 2313 } 2314 2315 if (!dev->pm_cap) 2316 target_state = PCI_D0; 2317 2318 /* 2319 * If the device is in D3cold even though it's not power-manageable by 2320 * the platform, it may have been powered down by non-standard means. 2321 * Best to let it slumber. 2322 */ 2323 if (dev->current_state == PCI_D3cold) 2324 target_state = PCI_D3cold; 2325 2326 if (wakeup) { 2327 /* 2328 * Find the deepest state from which the device can generate 2329 * PME#. 2330 */ 2331 if (dev->pme_support) { 2332 while (target_state 2333 && !(dev->pme_support & (1 << target_state))) 2334 target_state--; 2335 } 2336 } 2337 2338 return target_state; 2339 } 2340 2341 /** 2342 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state 2343 * @dev: Device to handle. 2344 * 2345 * Choose the power state appropriate for the device depending on whether 2346 * it can wake up the system and/or is power manageable by the platform 2347 * (PCI_D3hot is the default) and put the device into that state. 2348 */ 2349 int pci_prepare_to_sleep(struct pci_dev *dev) 2350 { 2351 bool wakeup = device_may_wakeup(&dev->dev); 2352 pci_power_t target_state = pci_target_state(dev, wakeup); 2353 int error; 2354 2355 if (target_state == PCI_POWER_ERROR) 2356 return -EIO; 2357 2358 pci_enable_wake(dev, target_state, wakeup); 2359 2360 error = pci_set_power_state(dev, target_state); 2361 2362 if (error) 2363 pci_enable_wake(dev, target_state, false); 2364 2365 return error; 2366 } 2367 EXPORT_SYMBOL(pci_prepare_to_sleep); 2368 2369 /** 2370 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state 2371 * @dev: Device to handle. 2372 * 2373 * Disable device's system wake-up capability and put it into D0. 2374 */ 2375 int pci_back_from_sleep(struct pci_dev *dev) 2376 { 2377 pci_enable_wake(dev, PCI_D0, false); 2378 return pci_set_power_state(dev, PCI_D0); 2379 } 2380 EXPORT_SYMBOL(pci_back_from_sleep); 2381 2382 /** 2383 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend. 2384 * @dev: PCI device being suspended. 2385 * 2386 * Prepare @dev to generate wake-up events at run time and put it into a low 2387 * power state. 2388 */ 2389 int pci_finish_runtime_suspend(struct pci_dev *dev) 2390 { 2391 pci_power_t target_state; 2392 int error; 2393 2394 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev)); 2395 if (target_state == PCI_POWER_ERROR) 2396 return -EIO; 2397 2398 dev->runtime_d3cold = target_state == PCI_D3cold; 2399 2400 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev)); 2401 2402 error = pci_set_power_state(dev, target_state); 2403 2404 if (error) { 2405 pci_enable_wake(dev, target_state, false); 2406 dev->runtime_d3cold = false; 2407 } 2408 2409 return error; 2410 } 2411 2412 /** 2413 * pci_dev_run_wake - Check if device can generate run-time wake-up events. 2414 * @dev: Device to check. 2415 * 2416 * Return true if the device itself is capable of generating wake-up events 2417 * (through the platform or using the native PCIe PME) or if the device supports 2418 * PME and one of its upstream bridges can generate wake-up events. 2419 */ 2420 bool pci_dev_run_wake(struct pci_dev *dev) 2421 { 2422 struct pci_bus *bus = dev->bus; 2423 2424 if (!dev->pme_support) 2425 return false; 2426 2427 /* PME-capable in principle, but not from the target power state */ 2428 if (!pci_pme_capable(dev, pci_target_state(dev, true))) 2429 return false; 2430 2431 if (device_can_wakeup(&dev->dev)) 2432 return true; 2433 2434 while (bus->parent) { 2435 struct pci_dev *bridge = bus->self; 2436 2437 if (device_can_wakeup(&bridge->dev)) 2438 return true; 2439 2440 bus = bus->parent; 2441 } 2442 2443 /* We have reached the root bus. */ 2444 if (bus->bridge) 2445 return device_can_wakeup(bus->bridge); 2446 2447 return false; 2448 } 2449 EXPORT_SYMBOL_GPL(pci_dev_run_wake); 2450 2451 /** 2452 * pci_dev_keep_suspended - Check if the device can stay in the suspended state. 2453 * @pci_dev: Device to check. 2454 * 2455 * Return 'true' if the device is runtime-suspended, it doesn't have to be 2456 * reconfigured due to wakeup settings difference between system and runtime 2457 * suspend and the current power state of it is suitable for the upcoming 2458 * (system) transition. 2459 * 2460 * If the device is not configured for system wakeup, disable PME for it before 2461 * returning 'true' to prevent it from waking up the system unnecessarily. 2462 */ 2463 bool pci_dev_keep_suspended(struct pci_dev *pci_dev) 2464 { 2465 struct device *dev = &pci_dev->dev; 2466 bool wakeup = device_may_wakeup(dev); 2467 2468 if (!pm_runtime_suspended(dev) 2469 || pci_target_state(pci_dev, wakeup) != pci_dev->current_state 2470 || platform_pci_need_resume(pci_dev)) 2471 return false; 2472 2473 /* 2474 * At this point the device is good to go unless it's been configured 2475 * to generate PME at the runtime suspend time, but it is not supposed 2476 * to wake up the system. In that case, simply disable PME for it 2477 * (it will have to be re-enabled on exit from system resume). 2478 * 2479 * If the device's power state is D3cold and the platform check above 2480 * hasn't triggered, the device's configuration is suitable and we don't 2481 * need to manipulate it at all. 2482 */ 2483 spin_lock_irq(&dev->power.lock); 2484 2485 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold && 2486 !wakeup) 2487 __pci_pme_active(pci_dev, false); 2488 2489 spin_unlock_irq(&dev->power.lock); 2490 return true; 2491 } 2492 2493 /** 2494 * pci_dev_complete_resume - Finalize resume from system sleep for a device. 2495 * @pci_dev: Device to handle. 2496 * 2497 * If the device is runtime suspended and wakeup-capable, enable PME for it as 2498 * it might have been disabled during the prepare phase of system suspend if 2499 * the device was not configured for system wakeup. 2500 */ 2501 void pci_dev_complete_resume(struct pci_dev *pci_dev) 2502 { 2503 struct device *dev = &pci_dev->dev; 2504 2505 if (!pci_dev_run_wake(pci_dev)) 2506 return; 2507 2508 spin_lock_irq(&dev->power.lock); 2509 2510 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold) 2511 __pci_pme_active(pci_dev, true); 2512 2513 spin_unlock_irq(&dev->power.lock); 2514 } 2515 2516 void pci_config_pm_runtime_get(struct pci_dev *pdev) 2517 { 2518 struct device *dev = &pdev->dev; 2519 struct device *parent = dev->parent; 2520 2521 if (parent) 2522 pm_runtime_get_sync(parent); 2523 pm_runtime_get_noresume(dev); 2524 /* 2525 * pdev->current_state is set to PCI_D3cold during suspending, 2526 * so wait until suspending completes 2527 */ 2528 pm_runtime_barrier(dev); 2529 /* 2530 * Only need to resume devices in D3cold, because config 2531 * registers are still accessible for devices suspended but 2532 * not in D3cold. 2533 */ 2534 if (pdev->current_state == PCI_D3cold) 2535 pm_runtime_resume(dev); 2536 } 2537 2538 void pci_config_pm_runtime_put(struct pci_dev *pdev) 2539 { 2540 struct device *dev = &pdev->dev; 2541 struct device *parent = dev->parent; 2542 2543 pm_runtime_put(dev); 2544 if (parent) 2545 pm_runtime_put_sync(parent); 2546 } 2547 2548 static const struct dmi_system_id bridge_d3_blacklist[] = { 2549 #ifdef CONFIG_X86 2550 { 2551 /* 2552 * Gigabyte X299 root port is not marked as hotplug capable 2553 * which allows Linux to power manage it. However, this 2554 * confuses the BIOS SMI handler so don't power manage root 2555 * ports on that system. 2556 */ 2557 .ident = "X299 DESIGNARE EX-CF", 2558 .matches = { 2559 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."), 2560 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"), 2561 }, 2562 }, 2563 #endif 2564 { } 2565 }; 2566 2567 /** 2568 * pci_bridge_d3_possible - Is it possible to put the bridge into D3 2569 * @bridge: Bridge to check 2570 * 2571 * This function checks if it is possible to move the bridge to D3. 2572 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt. 2573 */ 2574 bool pci_bridge_d3_possible(struct pci_dev *bridge) 2575 { 2576 if (!pci_is_pcie(bridge)) 2577 return false; 2578 2579 switch (pci_pcie_type(bridge)) { 2580 case PCI_EXP_TYPE_ROOT_PORT: 2581 case PCI_EXP_TYPE_UPSTREAM: 2582 case PCI_EXP_TYPE_DOWNSTREAM: 2583 if (pci_bridge_d3_disable) 2584 return false; 2585 2586 /* 2587 * Hotplug ports handled by firmware in System Management Mode 2588 * may not be put into D3 by the OS (Thunderbolt on non-Macs). 2589 */ 2590 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge)) 2591 return false; 2592 2593 if (pci_bridge_d3_force) 2594 return true; 2595 2596 /* Even the oldest 2010 Thunderbolt controller supports D3. */ 2597 if (bridge->is_thunderbolt) 2598 return true; 2599 2600 /* Platform might know better if the bridge supports D3 */ 2601 if (platform_pci_bridge_d3(bridge)) 2602 return true; 2603 2604 /* 2605 * Hotplug ports handled natively by the OS were not validated 2606 * by vendors for runtime D3 at least until 2018 because there 2607 * was no OS support. 2608 */ 2609 if (bridge->is_hotplug_bridge) 2610 return false; 2611 2612 if (dmi_check_system(bridge_d3_blacklist)) 2613 return false; 2614 2615 /* 2616 * It should be safe to put PCIe ports from 2015 or newer 2617 * to D3. 2618 */ 2619 if (dmi_get_bios_year() >= 2015) 2620 return true; 2621 break; 2622 } 2623 2624 return false; 2625 } 2626 2627 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data) 2628 { 2629 bool *d3cold_ok = data; 2630 2631 if (/* The device needs to be allowed to go D3cold ... */ 2632 dev->no_d3cold || !dev->d3cold_allowed || 2633 2634 /* ... and if it is wakeup capable to do so from D3cold. */ 2635 (device_may_wakeup(&dev->dev) && 2636 !pci_pme_capable(dev, PCI_D3cold)) || 2637 2638 /* If it is a bridge it must be allowed to go to D3. */ 2639 !pci_power_manageable(dev)) 2640 2641 *d3cold_ok = false; 2642 2643 return !*d3cold_ok; 2644 } 2645 2646 /* 2647 * pci_bridge_d3_update - Update bridge D3 capabilities 2648 * @dev: PCI device which is changed 2649 * 2650 * Update upstream bridge PM capabilities accordingly depending on if the 2651 * device PM configuration was changed or the device is being removed. The 2652 * change is also propagated upstream. 2653 */ 2654 void pci_bridge_d3_update(struct pci_dev *dev) 2655 { 2656 bool remove = !device_is_registered(&dev->dev); 2657 struct pci_dev *bridge; 2658 bool d3cold_ok = true; 2659 2660 bridge = pci_upstream_bridge(dev); 2661 if (!bridge || !pci_bridge_d3_possible(bridge)) 2662 return; 2663 2664 /* 2665 * If D3 is currently allowed for the bridge, removing one of its 2666 * children won't change that. 2667 */ 2668 if (remove && bridge->bridge_d3) 2669 return; 2670 2671 /* 2672 * If D3 is currently allowed for the bridge and a child is added or 2673 * changed, disallowance of D3 can only be caused by that child, so 2674 * we only need to check that single device, not any of its siblings. 2675 * 2676 * If D3 is currently not allowed for the bridge, checking the device 2677 * first may allow us to skip checking its siblings. 2678 */ 2679 if (!remove) 2680 pci_dev_check_d3cold(dev, &d3cold_ok); 2681 2682 /* 2683 * If D3 is currently not allowed for the bridge, this may be caused 2684 * either by the device being changed/removed or any of its siblings, 2685 * so we need to go through all children to find out if one of them 2686 * continues to block D3. 2687 */ 2688 if (d3cold_ok && !bridge->bridge_d3) 2689 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold, 2690 &d3cold_ok); 2691 2692 if (bridge->bridge_d3 != d3cold_ok) { 2693 bridge->bridge_d3 = d3cold_ok; 2694 /* Propagate change to upstream bridges */ 2695 pci_bridge_d3_update(bridge); 2696 } 2697 } 2698 2699 /** 2700 * pci_d3cold_enable - Enable D3cold for device 2701 * @dev: PCI device to handle 2702 * 2703 * This function can be used in drivers to enable D3cold from the device 2704 * they handle. It also updates upstream PCI bridge PM capabilities 2705 * accordingly. 2706 */ 2707 void pci_d3cold_enable(struct pci_dev *dev) 2708 { 2709 if (dev->no_d3cold) { 2710 dev->no_d3cold = false; 2711 pci_bridge_d3_update(dev); 2712 } 2713 } 2714 EXPORT_SYMBOL_GPL(pci_d3cold_enable); 2715 2716 /** 2717 * pci_d3cold_disable - Disable D3cold for device 2718 * @dev: PCI device to handle 2719 * 2720 * This function can be used in drivers to disable D3cold from the device 2721 * they handle. It also updates upstream PCI bridge PM capabilities 2722 * accordingly. 2723 */ 2724 void pci_d3cold_disable(struct pci_dev *dev) 2725 { 2726 if (!dev->no_d3cold) { 2727 dev->no_d3cold = true; 2728 pci_bridge_d3_update(dev); 2729 } 2730 } 2731 EXPORT_SYMBOL_GPL(pci_d3cold_disable); 2732 2733 /** 2734 * pci_pm_init - Initialize PM functions of given PCI device 2735 * @dev: PCI device to handle. 2736 */ 2737 void pci_pm_init(struct pci_dev *dev) 2738 { 2739 int pm; 2740 u16 status; 2741 u16 pmc; 2742 2743 pm_runtime_forbid(&dev->dev); 2744 pm_runtime_set_active(&dev->dev); 2745 pm_runtime_enable(&dev->dev); 2746 device_enable_async_suspend(&dev->dev); 2747 dev->wakeup_prepared = false; 2748 2749 dev->pm_cap = 0; 2750 dev->pme_support = 0; 2751 2752 /* find PCI PM capability in list */ 2753 pm = pci_find_capability(dev, PCI_CAP_ID_PM); 2754 if (!pm) 2755 return; 2756 /* Check device's ability to generate PME# */ 2757 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc); 2758 2759 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) { 2760 pci_err(dev, "unsupported PM cap regs version (%u)\n", 2761 pmc & PCI_PM_CAP_VER_MASK); 2762 return; 2763 } 2764 2765 dev->pm_cap = pm; 2766 dev->d3_delay = PCI_PM_D3_WAIT; 2767 dev->d3cold_delay = PCI_PM_D3COLD_WAIT; 2768 dev->bridge_d3 = pci_bridge_d3_possible(dev); 2769 dev->d3cold_allowed = true; 2770 2771 dev->d1_support = false; 2772 dev->d2_support = false; 2773 if (!pci_no_d1d2(dev)) { 2774 if (pmc & PCI_PM_CAP_D1) 2775 dev->d1_support = true; 2776 if (pmc & PCI_PM_CAP_D2) 2777 dev->d2_support = true; 2778 2779 if (dev->d1_support || dev->d2_support) 2780 pci_printk(KERN_DEBUG, dev, "supports%s%s\n", 2781 dev->d1_support ? " D1" : "", 2782 dev->d2_support ? " D2" : ""); 2783 } 2784 2785 pmc &= PCI_PM_CAP_PME_MASK; 2786 if (pmc) { 2787 pci_printk(KERN_DEBUG, dev, "PME# supported from%s%s%s%s%s\n", 2788 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "", 2789 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "", 2790 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "", 2791 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "", 2792 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : ""); 2793 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT; 2794 dev->pme_poll = true; 2795 /* 2796 * Make device's PM flags reflect the wake-up capability, but 2797 * let the user space enable it to wake up the system as needed. 2798 */ 2799 device_set_wakeup_capable(&dev->dev, true); 2800 /* Disable the PME# generation functionality */ 2801 pci_pme_active(dev, false); 2802 } 2803 2804 pci_read_config_word(dev, PCI_STATUS, &status); 2805 if (status & PCI_STATUS_IMM_READY) 2806 dev->imm_ready = 1; 2807 } 2808 2809 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop) 2810 { 2811 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI; 2812 2813 switch (prop) { 2814 case PCI_EA_P_MEM: 2815 case PCI_EA_P_VF_MEM: 2816 flags |= IORESOURCE_MEM; 2817 break; 2818 case PCI_EA_P_MEM_PREFETCH: 2819 case PCI_EA_P_VF_MEM_PREFETCH: 2820 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH; 2821 break; 2822 case PCI_EA_P_IO: 2823 flags |= IORESOURCE_IO; 2824 break; 2825 default: 2826 return 0; 2827 } 2828 2829 return flags; 2830 } 2831 2832 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei, 2833 u8 prop) 2834 { 2835 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO) 2836 return &dev->resource[bei]; 2837 #ifdef CONFIG_PCI_IOV 2838 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 && 2839 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH)) 2840 return &dev->resource[PCI_IOV_RESOURCES + 2841 bei - PCI_EA_BEI_VF_BAR0]; 2842 #endif 2843 else if (bei == PCI_EA_BEI_ROM) 2844 return &dev->resource[PCI_ROM_RESOURCE]; 2845 else 2846 return NULL; 2847 } 2848 2849 /* Read an Enhanced Allocation (EA) entry */ 2850 static int pci_ea_read(struct pci_dev *dev, int offset) 2851 { 2852 struct resource *res; 2853 int ent_size, ent_offset = offset; 2854 resource_size_t start, end; 2855 unsigned long flags; 2856 u32 dw0, bei, base, max_offset; 2857 u8 prop; 2858 bool support_64 = (sizeof(resource_size_t) >= 8); 2859 2860 pci_read_config_dword(dev, ent_offset, &dw0); 2861 ent_offset += 4; 2862 2863 /* Entry size field indicates DWORDs after 1st */ 2864 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2; 2865 2866 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */ 2867 goto out; 2868 2869 bei = (dw0 & PCI_EA_BEI) >> 4; 2870 prop = (dw0 & PCI_EA_PP) >> 8; 2871 2872 /* 2873 * If the Property is in the reserved range, try the Secondary 2874 * Property instead. 2875 */ 2876 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED) 2877 prop = (dw0 & PCI_EA_SP) >> 16; 2878 if (prop > PCI_EA_P_BRIDGE_IO) 2879 goto out; 2880 2881 res = pci_ea_get_resource(dev, bei, prop); 2882 if (!res) { 2883 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei); 2884 goto out; 2885 } 2886 2887 flags = pci_ea_flags(dev, prop); 2888 if (!flags) { 2889 pci_err(dev, "Unsupported EA properties: %#x\n", prop); 2890 goto out; 2891 } 2892 2893 /* Read Base */ 2894 pci_read_config_dword(dev, ent_offset, &base); 2895 start = (base & PCI_EA_FIELD_MASK); 2896 ent_offset += 4; 2897 2898 /* Read MaxOffset */ 2899 pci_read_config_dword(dev, ent_offset, &max_offset); 2900 ent_offset += 4; 2901 2902 /* Read Base MSBs (if 64-bit entry) */ 2903 if (base & PCI_EA_IS_64) { 2904 u32 base_upper; 2905 2906 pci_read_config_dword(dev, ent_offset, &base_upper); 2907 ent_offset += 4; 2908 2909 flags |= IORESOURCE_MEM_64; 2910 2911 /* entry starts above 32-bit boundary, can't use */ 2912 if (!support_64 && base_upper) 2913 goto out; 2914 2915 if (support_64) 2916 start |= ((u64)base_upper << 32); 2917 } 2918 2919 end = start + (max_offset | 0x03); 2920 2921 /* Read MaxOffset MSBs (if 64-bit entry) */ 2922 if (max_offset & PCI_EA_IS_64) { 2923 u32 max_offset_upper; 2924 2925 pci_read_config_dword(dev, ent_offset, &max_offset_upper); 2926 ent_offset += 4; 2927 2928 flags |= IORESOURCE_MEM_64; 2929 2930 /* entry too big, can't use */ 2931 if (!support_64 && max_offset_upper) 2932 goto out; 2933 2934 if (support_64) 2935 end += ((u64)max_offset_upper << 32); 2936 } 2937 2938 if (end < start) { 2939 pci_err(dev, "EA Entry crosses address boundary\n"); 2940 goto out; 2941 } 2942 2943 if (ent_size != ent_offset - offset) { 2944 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n", 2945 ent_size, ent_offset - offset); 2946 goto out; 2947 } 2948 2949 res->name = pci_name(dev); 2950 res->start = start; 2951 res->end = end; 2952 res->flags = flags; 2953 2954 if (bei <= PCI_EA_BEI_BAR5) 2955 pci_printk(KERN_DEBUG, dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 2956 bei, res, prop); 2957 else if (bei == PCI_EA_BEI_ROM) 2958 pci_printk(KERN_DEBUG, dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n", 2959 res, prop); 2960 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5) 2961 pci_printk(KERN_DEBUG, dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 2962 bei - PCI_EA_BEI_VF_BAR0, res, prop); 2963 else 2964 pci_printk(KERN_DEBUG, dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n", 2965 bei, res, prop); 2966 2967 out: 2968 return offset + ent_size; 2969 } 2970 2971 /* Enhanced Allocation Initialization */ 2972 void pci_ea_init(struct pci_dev *dev) 2973 { 2974 int ea; 2975 u8 num_ent; 2976 int offset; 2977 int i; 2978 2979 /* find PCI EA capability in list */ 2980 ea = pci_find_capability(dev, PCI_CAP_ID_EA); 2981 if (!ea) 2982 return; 2983 2984 /* determine the number of entries */ 2985 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT, 2986 &num_ent); 2987 num_ent &= PCI_EA_NUM_ENT_MASK; 2988 2989 offset = ea + PCI_EA_FIRST_ENT; 2990 2991 /* Skip DWORD 2 for type 1 functions */ 2992 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) 2993 offset += 4; 2994 2995 /* parse each EA entry */ 2996 for (i = 0; i < num_ent; ++i) 2997 offset = pci_ea_read(dev, offset); 2998 } 2999 3000 static void pci_add_saved_cap(struct pci_dev *pci_dev, 3001 struct pci_cap_saved_state *new_cap) 3002 { 3003 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space); 3004 } 3005 3006 /** 3007 * _pci_add_cap_save_buffer - allocate buffer for saving given 3008 * capability registers 3009 * @dev: the PCI device 3010 * @cap: the capability to allocate the buffer for 3011 * @extended: Standard or Extended capability ID 3012 * @size: requested size of the buffer 3013 */ 3014 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap, 3015 bool extended, unsigned int size) 3016 { 3017 int pos; 3018 struct pci_cap_saved_state *save_state; 3019 3020 if (extended) 3021 pos = pci_find_ext_capability(dev, cap); 3022 else 3023 pos = pci_find_capability(dev, cap); 3024 3025 if (!pos) 3026 return 0; 3027 3028 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL); 3029 if (!save_state) 3030 return -ENOMEM; 3031 3032 save_state->cap.cap_nr = cap; 3033 save_state->cap.cap_extended = extended; 3034 save_state->cap.size = size; 3035 pci_add_saved_cap(dev, save_state); 3036 3037 return 0; 3038 } 3039 3040 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size) 3041 { 3042 return _pci_add_cap_save_buffer(dev, cap, false, size); 3043 } 3044 3045 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size) 3046 { 3047 return _pci_add_cap_save_buffer(dev, cap, true, size); 3048 } 3049 3050 /** 3051 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities 3052 * @dev: the PCI device 3053 */ 3054 void pci_allocate_cap_save_buffers(struct pci_dev *dev) 3055 { 3056 int error; 3057 3058 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP, 3059 PCI_EXP_SAVE_REGS * sizeof(u16)); 3060 if (error) 3061 pci_err(dev, "unable to preallocate PCI Express save buffer\n"); 3062 3063 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16)); 3064 if (error) 3065 pci_err(dev, "unable to preallocate PCI-X save buffer\n"); 3066 3067 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR, 3068 2 * sizeof(u16)); 3069 if (error) 3070 pci_err(dev, "unable to allocate suspend buffer for LTR\n"); 3071 3072 pci_allocate_vc_save_buffers(dev); 3073 } 3074 3075 void pci_free_cap_save_buffers(struct pci_dev *dev) 3076 { 3077 struct pci_cap_saved_state *tmp; 3078 struct hlist_node *n; 3079 3080 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next) 3081 kfree(tmp); 3082 } 3083 3084 /** 3085 * pci_configure_ari - enable or disable ARI forwarding 3086 * @dev: the PCI device 3087 * 3088 * If @dev and its upstream bridge both support ARI, enable ARI in the 3089 * bridge. Otherwise, disable ARI in the bridge. 3090 */ 3091 void pci_configure_ari(struct pci_dev *dev) 3092 { 3093 u32 cap; 3094 struct pci_dev *bridge; 3095 3096 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn) 3097 return; 3098 3099 bridge = dev->bus->self; 3100 if (!bridge) 3101 return; 3102 3103 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3104 if (!(cap & PCI_EXP_DEVCAP2_ARI)) 3105 return; 3106 3107 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) { 3108 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, 3109 PCI_EXP_DEVCTL2_ARI); 3110 bridge->ari_enabled = 1; 3111 } else { 3112 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2, 3113 PCI_EXP_DEVCTL2_ARI); 3114 bridge->ari_enabled = 0; 3115 } 3116 } 3117 3118 static int pci_acs_enable; 3119 3120 /** 3121 * pci_request_acs - ask for ACS to be enabled if supported 3122 */ 3123 void pci_request_acs(void) 3124 { 3125 pci_acs_enable = 1; 3126 } 3127 3128 static const char *disable_acs_redir_param; 3129 3130 /** 3131 * pci_disable_acs_redir - disable ACS redirect capabilities 3132 * @dev: the PCI device 3133 * 3134 * For only devices specified in the disable_acs_redir parameter. 3135 */ 3136 static void pci_disable_acs_redir(struct pci_dev *dev) 3137 { 3138 int ret = 0; 3139 const char *p; 3140 int pos; 3141 u16 ctrl; 3142 3143 if (!disable_acs_redir_param) 3144 return; 3145 3146 p = disable_acs_redir_param; 3147 while (*p) { 3148 ret = pci_dev_str_match(dev, p, &p); 3149 if (ret < 0) { 3150 pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n", 3151 disable_acs_redir_param); 3152 3153 break; 3154 } else if (ret == 1) { 3155 /* Found a match */ 3156 break; 3157 } 3158 3159 if (*p != ';' && *p != ',') { 3160 /* End of param or invalid format */ 3161 break; 3162 } 3163 p++; 3164 } 3165 3166 if (ret != 1) 3167 return; 3168 3169 if (!pci_dev_specific_disable_acs_redir(dev)) 3170 return; 3171 3172 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS); 3173 if (!pos) { 3174 pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n"); 3175 return; 3176 } 3177 3178 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 3179 3180 /* P2P Request & Completion Redirect */ 3181 ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC); 3182 3183 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 3184 3185 pci_info(dev, "disabled ACS redirect\n"); 3186 } 3187 3188 /** 3189 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites 3190 * @dev: the PCI device 3191 */ 3192 static void pci_std_enable_acs(struct pci_dev *dev) 3193 { 3194 int pos; 3195 u16 cap; 3196 u16 ctrl; 3197 3198 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS); 3199 if (!pos) 3200 return; 3201 3202 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap); 3203 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 3204 3205 /* Source Validation */ 3206 ctrl |= (cap & PCI_ACS_SV); 3207 3208 /* P2P Request Redirect */ 3209 ctrl |= (cap & PCI_ACS_RR); 3210 3211 /* P2P Completion Redirect */ 3212 ctrl |= (cap & PCI_ACS_CR); 3213 3214 /* Upstream Forwarding */ 3215 ctrl |= (cap & PCI_ACS_UF); 3216 3217 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 3218 } 3219 3220 /** 3221 * pci_enable_acs - enable ACS if hardware support it 3222 * @dev: the PCI device 3223 */ 3224 void pci_enable_acs(struct pci_dev *dev) 3225 { 3226 if (!pci_acs_enable) 3227 goto disable_acs_redir; 3228 3229 if (!pci_dev_specific_enable_acs(dev)) 3230 goto disable_acs_redir; 3231 3232 pci_std_enable_acs(dev); 3233 3234 disable_acs_redir: 3235 /* 3236 * Note: pci_disable_acs_redir() must be called even if ACS was not 3237 * enabled by the kernel because it may have been enabled by 3238 * platform firmware. So if we are told to disable it, we should 3239 * always disable it after setting the kernel's default 3240 * preferences. 3241 */ 3242 pci_disable_acs_redir(dev); 3243 } 3244 3245 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags) 3246 { 3247 int pos; 3248 u16 cap, ctrl; 3249 3250 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS); 3251 if (!pos) 3252 return false; 3253 3254 /* 3255 * Except for egress control, capabilities are either required 3256 * or only required if controllable. Features missing from the 3257 * capability field can therefore be assumed as hard-wired enabled. 3258 */ 3259 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap); 3260 acs_flags &= (cap | PCI_ACS_EC); 3261 3262 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl); 3263 return (ctrl & acs_flags) == acs_flags; 3264 } 3265 3266 /** 3267 * pci_acs_enabled - test ACS against required flags for a given device 3268 * @pdev: device to test 3269 * @acs_flags: required PCI ACS flags 3270 * 3271 * Return true if the device supports the provided flags. Automatically 3272 * filters out flags that are not implemented on multifunction devices. 3273 * 3274 * Note that this interface checks the effective ACS capabilities of the 3275 * device rather than the actual capabilities. For instance, most single 3276 * function endpoints are not required to support ACS because they have no 3277 * opportunity for peer-to-peer access. We therefore return 'true' 3278 * regardless of whether the device exposes an ACS capability. This makes 3279 * it much easier for callers of this function to ignore the actual type 3280 * or topology of the device when testing ACS support. 3281 */ 3282 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags) 3283 { 3284 int ret; 3285 3286 ret = pci_dev_specific_acs_enabled(pdev, acs_flags); 3287 if (ret >= 0) 3288 return ret > 0; 3289 3290 /* 3291 * Conventional PCI and PCI-X devices never support ACS, either 3292 * effectively or actually. The shared bus topology implies that 3293 * any device on the bus can receive or snoop DMA. 3294 */ 3295 if (!pci_is_pcie(pdev)) 3296 return false; 3297 3298 switch (pci_pcie_type(pdev)) { 3299 /* 3300 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec, 3301 * but since their primary interface is PCI/X, we conservatively 3302 * handle them as we would a non-PCIe device. 3303 */ 3304 case PCI_EXP_TYPE_PCIE_BRIDGE: 3305 /* 3306 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never 3307 * applicable... must never implement an ACS Extended Capability...". 3308 * This seems arbitrary, but we take a conservative interpretation 3309 * of this statement. 3310 */ 3311 case PCI_EXP_TYPE_PCI_BRIDGE: 3312 case PCI_EXP_TYPE_RC_EC: 3313 return false; 3314 /* 3315 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should 3316 * implement ACS in order to indicate their peer-to-peer capabilities, 3317 * regardless of whether they are single- or multi-function devices. 3318 */ 3319 case PCI_EXP_TYPE_DOWNSTREAM: 3320 case PCI_EXP_TYPE_ROOT_PORT: 3321 return pci_acs_flags_enabled(pdev, acs_flags); 3322 /* 3323 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be 3324 * implemented by the remaining PCIe types to indicate peer-to-peer 3325 * capabilities, but only when they are part of a multifunction 3326 * device. The footnote for section 6.12 indicates the specific 3327 * PCIe types included here. 3328 */ 3329 case PCI_EXP_TYPE_ENDPOINT: 3330 case PCI_EXP_TYPE_UPSTREAM: 3331 case PCI_EXP_TYPE_LEG_END: 3332 case PCI_EXP_TYPE_RC_END: 3333 if (!pdev->multifunction) 3334 break; 3335 3336 return pci_acs_flags_enabled(pdev, acs_flags); 3337 } 3338 3339 /* 3340 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable 3341 * to single function devices with the exception of downstream ports. 3342 */ 3343 return true; 3344 } 3345 3346 /** 3347 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy 3348 * @start: starting downstream device 3349 * @end: ending upstream device or NULL to search to the root bus 3350 * @acs_flags: required flags 3351 * 3352 * Walk up a device tree from start to end testing PCI ACS support. If 3353 * any step along the way does not support the required flags, return false. 3354 */ 3355 bool pci_acs_path_enabled(struct pci_dev *start, 3356 struct pci_dev *end, u16 acs_flags) 3357 { 3358 struct pci_dev *pdev, *parent = start; 3359 3360 do { 3361 pdev = parent; 3362 3363 if (!pci_acs_enabled(pdev, acs_flags)) 3364 return false; 3365 3366 if (pci_is_root_bus(pdev->bus)) 3367 return (end == NULL); 3368 3369 parent = pdev->bus->self; 3370 } while (pdev != end); 3371 3372 return true; 3373 } 3374 3375 /** 3376 * pci_rebar_find_pos - find position of resize ctrl reg for BAR 3377 * @pdev: PCI device 3378 * @bar: BAR to find 3379 * 3380 * Helper to find the position of the ctrl register for a BAR. 3381 * Returns -ENOTSUPP if resizable BARs are not supported at all. 3382 * Returns -ENOENT if no ctrl register for the BAR could be found. 3383 */ 3384 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar) 3385 { 3386 unsigned int pos, nbars, i; 3387 u32 ctrl; 3388 3389 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 3390 if (!pos) 3391 return -ENOTSUPP; 3392 3393 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3394 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >> 3395 PCI_REBAR_CTRL_NBAR_SHIFT; 3396 3397 for (i = 0; i < nbars; i++, pos += 8) { 3398 int bar_idx; 3399 3400 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3401 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX; 3402 if (bar_idx == bar) 3403 return pos; 3404 } 3405 3406 return -ENOENT; 3407 } 3408 3409 /** 3410 * pci_rebar_get_possible_sizes - get possible sizes for BAR 3411 * @pdev: PCI device 3412 * @bar: BAR to query 3413 * 3414 * Get the possible sizes of a resizable BAR as bitmask defined in the spec 3415 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable. 3416 */ 3417 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar) 3418 { 3419 int pos; 3420 u32 cap; 3421 3422 pos = pci_rebar_find_pos(pdev, bar); 3423 if (pos < 0) 3424 return 0; 3425 3426 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap); 3427 return (cap & PCI_REBAR_CAP_SIZES) >> 4; 3428 } 3429 3430 /** 3431 * pci_rebar_get_current_size - get the current size of a BAR 3432 * @pdev: PCI device 3433 * @bar: BAR to set size to 3434 * 3435 * Read the size of a BAR from the resizable BAR config. 3436 * Returns size if found or negative error code. 3437 */ 3438 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar) 3439 { 3440 int pos; 3441 u32 ctrl; 3442 3443 pos = pci_rebar_find_pos(pdev, bar); 3444 if (pos < 0) 3445 return pos; 3446 3447 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3448 return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT; 3449 } 3450 3451 /** 3452 * pci_rebar_set_size - set a new size for a BAR 3453 * @pdev: PCI device 3454 * @bar: BAR to set size to 3455 * @size: new size as defined in the spec (0=1MB, 19=512GB) 3456 * 3457 * Set the new size of a BAR as defined in the spec. 3458 * Returns zero if resizing was successful, error code otherwise. 3459 */ 3460 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size) 3461 { 3462 int pos; 3463 u32 ctrl; 3464 3465 pos = pci_rebar_find_pos(pdev, bar); 3466 if (pos < 0) 3467 return pos; 3468 3469 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3470 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 3471 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT; 3472 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 3473 return 0; 3474 } 3475 3476 /** 3477 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port 3478 * @dev: the PCI device 3479 * @cap_mask: mask of desired AtomicOp sizes, including one or more of: 3480 * PCI_EXP_DEVCAP2_ATOMIC_COMP32 3481 * PCI_EXP_DEVCAP2_ATOMIC_COMP64 3482 * PCI_EXP_DEVCAP2_ATOMIC_COMP128 3483 * 3484 * Return 0 if all upstream bridges support AtomicOp routing, egress 3485 * blocking is disabled on all upstream ports, and the root port supports 3486 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit 3487 * AtomicOp completion), or negative otherwise. 3488 */ 3489 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask) 3490 { 3491 struct pci_bus *bus = dev->bus; 3492 struct pci_dev *bridge; 3493 u32 cap, ctl2; 3494 3495 if (!pci_is_pcie(dev)) 3496 return -EINVAL; 3497 3498 /* 3499 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be 3500 * AtomicOp requesters. For now, we only support endpoints as 3501 * requesters and root ports as completers. No endpoints as 3502 * completers, and no peer-to-peer. 3503 */ 3504 3505 switch (pci_pcie_type(dev)) { 3506 case PCI_EXP_TYPE_ENDPOINT: 3507 case PCI_EXP_TYPE_LEG_END: 3508 case PCI_EXP_TYPE_RC_END: 3509 break; 3510 default: 3511 return -EINVAL; 3512 } 3513 3514 while (bus->parent) { 3515 bridge = bus->self; 3516 3517 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3518 3519 switch (pci_pcie_type(bridge)) { 3520 /* Ensure switch ports support AtomicOp routing */ 3521 case PCI_EXP_TYPE_UPSTREAM: 3522 case PCI_EXP_TYPE_DOWNSTREAM: 3523 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE)) 3524 return -EINVAL; 3525 break; 3526 3527 /* Ensure root port supports all the sizes we care about */ 3528 case PCI_EXP_TYPE_ROOT_PORT: 3529 if ((cap & cap_mask) != cap_mask) 3530 return -EINVAL; 3531 break; 3532 } 3533 3534 /* Ensure upstream ports don't block AtomicOps on egress */ 3535 if (!bridge->has_secondary_link) { 3536 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, 3537 &ctl2); 3538 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK) 3539 return -EINVAL; 3540 } 3541 3542 bus = bus->parent; 3543 } 3544 3545 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2, 3546 PCI_EXP_DEVCTL2_ATOMIC_REQ); 3547 return 0; 3548 } 3549 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root); 3550 3551 /** 3552 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge 3553 * @dev: the PCI device 3554 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD) 3555 * 3556 * Perform INTx swizzling for a device behind one level of bridge. This is 3557 * required by section 9.1 of the PCI-to-PCI bridge specification for devices 3558 * behind bridges on add-in cards. For devices with ARI enabled, the slot 3559 * number is always 0 (see the Implementation Note in section 2.2.8.1 of 3560 * the PCI Express Base Specification, Revision 2.1) 3561 */ 3562 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin) 3563 { 3564 int slot; 3565 3566 if (pci_ari_enabled(dev->bus)) 3567 slot = 0; 3568 else 3569 slot = PCI_SLOT(dev->devfn); 3570 3571 return (((pin - 1) + slot) % 4) + 1; 3572 } 3573 3574 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge) 3575 { 3576 u8 pin; 3577 3578 pin = dev->pin; 3579 if (!pin) 3580 return -1; 3581 3582 while (!pci_is_root_bus(dev->bus)) { 3583 pin = pci_swizzle_interrupt_pin(dev, pin); 3584 dev = dev->bus->self; 3585 } 3586 *bridge = dev; 3587 return pin; 3588 } 3589 3590 /** 3591 * pci_common_swizzle - swizzle INTx all the way to root bridge 3592 * @dev: the PCI device 3593 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD) 3594 * 3595 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI 3596 * bridges all the way up to a PCI root bus. 3597 */ 3598 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp) 3599 { 3600 u8 pin = *pinp; 3601 3602 while (!pci_is_root_bus(dev->bus)) { 3603 pin = pci_swizzle_interrupt_pin(dev, pin); 3604 dev = dev->bus->self; 3605 } 3606 *pinp = pin; 3607 return PCI_SLOT(dev->devfn); 3608 } 3609 EXPORT_SYMBOL_GPL(pci_common_swizzle); 3610 3611 /** 3612 * pci_release_region - Release a PCI bar 3613 * @pdev: PCI device whose resources were previously reserved by pci_request_region 3614 * @bar: BAR to release 3615 * 3616 * Releases the PCI I/O and memory resources previously reserved by a 3617 * successful call to pci_request_region. Call this function only 3618 * after all use of the PCI regions has ceased. 3619 */ 3620 void pci_release_region(struct pci_dev *pdev, int bar) 3621 { 3622 struct pci_devres *dr; 3623 3624 if (pci_resource_len(pdev, bar) == 0) 3625 return; 3626 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) 3627 release_region(pci_resource_start(pdev, bar), 3628 pci_resource_len(pdev, bar)); 3629 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) 3630 release_mem_region(pci_resource_start(pdev, bar), 3631 pci_resource_len(pdev, bar)); 3632 3633 dr = find_pci_dr(pdev); 3634 if (dr) 3635 dr->region_mask &= ~(1 << bar); 3636 } 3637 EXPORT_SYMBOL(pci_release_region); 3638 3639 /** 3640 * __pci_request_region - Reserved PCI I/O and memory resource 3641 * @pdev: PCI device whose resources are to be reserved 3642 * @bar: BAR to be reserved 3643 * @res_name: Name to be associated with resource. 3644 * @exclusive: whether the region access is exclusive or not 3645 * 3646 * Mark the PCI region associated with PCI device @pdev BR @bar as 3647 * being reserved by owner @res_name. Do not access any 3648 * address inside the PCI regions unless this call returns 3649 * successfully. 3650 * 3651 * If @exclusive is set, then the region is marked so that userspace 3652 * is explicitly not allowed to map the resource via /dev/mem or 3653 * sysfs MMIO access. 3654 * 3655 * Returns 0 on success, or %EBUSY on error. A warning 3656 * message is also printed on failure. 3657 */ 3658 static int __pci_request_region(struct pci_dev *pdev, int bar, 3659 const char *res_name, int exclusive) 3660 { 3661 struct pci_devres *dr; 3662 3663 if (pci_resource_len(pdev, bar) == 0) 3664 return 0; 3665 3666 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) { 3667 if (!request_region(pci_resource_start(pdev, bar), 3668 pci_resource_len(pdev, bar), res_name)) 3669 goto err_out; 3670 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) { 3671 if (!__request_mem_region(pci_resource_start(pdev, bar), 3672 pci_resource_len(pdev, bar), res_name, 3673 exclusive)) 3674 goto err_out; 3675 } 3676 3677 dr = find_pci_dr(pdev); 3678 if (dr) 3679 dr->region_mask |= 1 << bar; 3680 3681 return 0; 3682 3683 err_out: 3684 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar, 3685 &pdev->resource[bar]); 3686 return -EBUSY; 3687 } 3688 3689 /** 3690 * pci_request_region - Reserve PCI I/O and memory resource 3691 * @pdev: PCI device whose resources are to be reserved 3692 * @bar: BAR to be reserved 3693 * @res_name: Name to be associated with resource 3694 * 3695 * Mark the PCI region associated with PCI device @pdev BAR @bar as 3696 * being reserved by owner @res_name. Do not access any 3697 * address inside the PCI regions unless this call returns 3698 * successfully. 3699 * 3700 * Returns 0 on success, or %EBUSY on error. A warning 3701 * message is also printed on failure. 3702 */ 3703 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name) 3704 { 3705 return __pci_request_region(pdev, bar, res_name, 0); 3706 } 3707 EXPORT_SYMBOL(pci_request_region); 3708 3709 /** 3710 * pci_request_region_exclusive - Reserved PCI I/O and memory resource 3711 * @pdev: PCI device whose resources are to be reserved 3712 * @bar: BAR to be reserved 3713 * @res_name: Name to be associated with resource. 3714 * 3715 * Mark the PCI region associated with PCI device @pdev BR @bar as 3716 * being reserved by owner @res_name. Do not access any 3717 * address inside the PCI regions unless this call returns 3718 * successfully. 3719 * 3720 * Returns 0 on success, or %EBUSY on error. A warning 3721 * message is also printed on failure. 3722 * 3723 * The key difference that _exclusive makes it that userspace is 3724 * explicitly not allowed to map the resource via /dev/mem or 3725 * sysfs. 3726 */ 3727 int pci_request_region_exclusive(struct pci_dev *pdev, int bar, 3728 const char *res_name) 3729 { 3730 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE); 3731 } 3732 EXPORT_SYMBOL(pci_request_region_exclusive); 3733 3734 /** 3735 * pci_release_selected_regions - Release selected PCI I/O and memory resources 3736 * @pdev: PCI device whose resources were previously reserved 3737 * @bars: Bitmask of BARs to be released 3738 * 3739 * Release selected PCI I/O and memory resources previously reserved. 3740 * Call this function only after all use of the PCI regions has ceased. 3741 */ 3742 void pci_release_selected_regions(struct pci_dev *pdev, int bars) 3743 { 3744 int i; 3745 3746 for (i = 0; i < 6; i++) 3747 if (bars & (1 << i)) 3748 pci_release_region(pdev, i); 3749 } 3750 EXPORT_SYMBOL(pci_release_selected_regions); 3751 3752 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars, 3753 const char *res_name, int excl) 3754 { 3755 int i; 3756 3757 for (i = 0; i < 6; i++) 3758 if (bars & (1 << i)) 3759 if (__pci_request_region(pdev, i, res_name, excl)) 3760 goto err_out; 3761 return 0; 3762 3763 err_out: 3764 while (--i >= 0) 3765 if (bars & (1 << i)) 3766 pci_release_region(pdev, i); 3767 3768 return -EBUSY; 3769 } 3770 3771 3772 /** 3773 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources 3774 * @pdev: PCI device whose resources are to be reserved 3775 * @bars: Bitmask of BARs to be requested 3776 * @res_name: Name to be associated with resource 3777 */ 3778 int pci_request_selected_regions(struct pci_dev *pdev, int bars, 3779 const char *res_name) 3780 { 3781 return __pci_request_selected_regions(pdev, bars, res_name, 0); 3782 } 3783 EXPORT_SYMBOL(pci_request_selected_regions); 3784 3785 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars, 3786 const char *res_name) 3787 { 3788 return __pci_request_selected_regions(pdev, bars, res_name, 3789 IORESOURCE_EXCLUSIVE); 3790 } 3791 EXPORT_SYMBOL(pci_request_selected_regions_exclusive); 3792 3793 /** 3794 * pci_release_regions - Release reserved PCI I/O and memory resources 3795 * @pdev: PCI device whose resources were previously reserved by pci_request_regions 3796 * 3797 * Releases all PCI I/O and memory resources previously reserved by a 3798 * successful call to pci_request_regions. Call this function only 3799 * after all use of the PCI regions has ceased. 3800 */ 3801 3802 void pci_release_regions(struct pci_dev *pdev) 3803 { 3804 pci_release_selected_regions(pdev, (1 << 6) - 1); 3805 } 3806 EXPORT_SYMBOL(pci_release_regions); 3807 3808 /** 3809 * pci_request_regions - Reserved PCI I/O and memory resources 3810 * @pdev: PCI device whose resources are to be reserved 3811 * @res_name: Name to be associated with resource. 3812 * 3813 * Mark all PCI regions associated with PCI device @pdev as 3814 * being reserved by owner @res_name. Do not access any 3815 * address inside the PCI regions unless this call returns 3816 * successfully. 3817 * 3818 * Returns 0 on success, or %EBUSY on error. A warning 3819 * message is also printed on failure. 3820 */ 3821 int pci_request_regions(struct pci_dev *pdev, const char *res_name) 3822 { 3823 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name); 3824 } 3825 EXPORT_SYMBOL(pci_request_regions); 3826 3827 /** 3828 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources 3829 * @pdev: PCI device whose resources are to be reserved 3830 * @res_name: Name to be associated with resource. 3831 * 3832 * Mark all PCI regions associated with PCI device @pdev as 3833 * being reserved by owner @res_name. Do not access any 3834 * address inside the PCI regions unless this call returns 3835 * successfully. 3836 * 3837 * pci_request_regions_exclusive() will mark the region so that 3838 * /dev/mem and the sysfs MMIO access will not be allowed. 3839 * 3840 * Returns 0 on success, or %EBUSY on error. A warning 3841 * message is also printed on failure. 3842 */ 3843 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name) 3844 { 3845 return pci_request_selected_regions_exclusive(pdev, 3846 ((1 << 6) - 1), res_name); 3847 } 3848 EXPORT_SYMBOL(pci_request_regions_exclusive); 3849 3850 /* 3851 * Record the PCI IO range (expressed as CPU physical address + size). 3852 * Return a negative value if an error has occured, zero otherwise 3853 */ 3854 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr, 3855 resource_size_t size) 3856 { 3857 int ret = 0; 3858 #ifdef PCI_IOBASE 3859 struct logic_pio_hwaddr *range; 3860 3861 if (!size || addr + size < addr) 3862 return -EINVAL; 3863 3864 range = kzalloc(sizeof(*range), GFP_ATOMIC); 3865 if (!range) 3866 return -ENOMEM; 3867 3868 range->fwnode = fwnode; 3869 range->size = size; 3870 range->hw_start = addr; 3871 range->flags = LOGIC_PIO_CPU_MMIO; 3872 3873 ret = logic_pio_register_range(range); 3874 if (ret) 3875 kfree(range); 3876 #endif 3877 3878 return ret; 3879 } 3880 3881 phys_addr_t pci_pio_to_address(unsigned long pio) 3882 { 3883 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR; 3884 3885 #ifdef PCI_IOBASE 3886 if (pio >= MMIO_UPPER_LIMIT) 3887 return address; 3888 3889 address = logic_pio_to_hwaddr(pio); 3890 #endif 3891 3892 return address; 3893 } 3894 3895 unsigned long __weak pci_address_to_pio(phys_addr_t address) 3896 { 3897 #ifdef PCI_IOBASE 3898 return logic_pio_trans_cpuaddr(address); 3899 #else 3900 if (address > IO_SPACE_LIMIT) 3901 return (unsigned long)-1; 3902 3903 return (unsigned long) address; 3904 #endif 3905 } 3906 3907 /** 3908 * pci_remap_iospace - Remap the memory mapped I/O space 3909 * @res: Resource describing the I/O space 3910 * @phys_addr: physical address of range to be mapped 3911 * 3912 * Remap the memory mapped I/O space described by the @res 3913 * and the CPU physical address @phys_addr into virtual address space. 3914 * Only architectures that have memory mapped IO functions defined 3915 * (and the PCI_IOBASE value defined) should call this function. 3916 */ 3917 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr) 3918 { 3919 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 3920 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 3921 3922 if (!(res->flags & IORESOURCE_IO)) 3923 return -EINVAL; 3924 3925 if (res->end > IO_SPACE_LIMIT) 3926 return -EINVAL; 3927 3928 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr, 3929 pgprot_device(PAGE_KERNEL)); 3930 #else 3931 /* this architecture does not have memory mapped I/O space, 3932 so this function should never be called */ 3933 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n"); 3934 return -ENODEV; 3935 #endif 3936 } 3937 EXPORT_SYMBOL(pci_remap_iospace); 3938 3939 /** 3940 * pci_unmap_iospace - Unmap the memory mapped I/O space 3941 * @res: resource to be unmapped 3942 * 3943 * Unmap the CPU virtual address @res from virtual address space. 3944 * Only architectures that have memory mapped IO functions defined 3945 * (and the PCI_IOBASE value defined) should call this function. 3946 */ 3947 void pci_unmap_iospace(struct resource *res) 3948 { 3949 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 3950 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 3951 3952 unmap_kernel_range(vaddr, resource_size(res)); 3953 #endif 3954 } 3955 EXPORT_SYMBOL(pci_unmap_iospace); 3956 3957 static void devm_pci_unmap_iospace(struct device *dev, void *ptr) 3958 { 3959 struct resource **res = ptr; 3960 3961 pci_unmap_iospace(*res); 3962 } 3963 3964 /** 3965 * devm_pci_remap_iospace - Managed pci_remap_iospace() 3966 * @dev: Generic device to remap IO address for 3967 * @res: Resource describing the I/O space 3968 * @phys_addr: physical address of range to be mapped 3969 * 3970 * Managed pci_remap_iospace(). Map is automatically unmapped on driver 3971 * detach. 3972 */ 3973 int devm_pci_remap_iospace(struct device *dev, const struct resource *res, 3974 phys_addr_t phys_addr) 3975 { 3976 const struct resource **ptr; 3977 int error; 3978 3979 ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL); 3980 if (!ptr) 3981 return -ENOMEM; 3982 3983 error = pci_remap_iospace(res, phys_addr); 3984 if (error) { 3985 devres_free(ptr); 3986 } else { 3987 *ptr = res; 3988 devres_add(dev, ptr); 3989 } 3990 3991 return error; 3992 } 3993 EXPORT_SYMBOL(devm_pci_remap_iospace); 3994 3995 /** 3996 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace() 3997 * @dev: Generic device to remap IO address for 3998 * @offset: Resource address to map 3999 * @size: Size of map 4000 * 4001 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver 4002 * detach. 4003 */ 4004 void __iomem *devm_pci_remap_cfgspace(struct device *dev, 4005 resource_size_t offset, 4006 resource_size_t size) 4007 { 4008 void __iomem **ptr, *addr; 4009 4010 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL); 4011 if (!ptr) 4012 return NULL; 4013 4014 addr = pci_remap_cfgspace(offset, size); 4015 if (addr) { 4016 *ptr = addr; 4017 devres_add(dev, ptr); 4018 } else 4019 devres_free(ptr); 4020 4021 return addr; 4022 } 4023 EXPORT_SYMBOL(devm_pci_remap_cfgspace); 4024 4025 /** 4026 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource 4027 * @dev: generic device to handle the resource for 4028 * @res: configuration space resource to be handled 4029 * 4030 * Checks that a resource is a valid memory region, requests the memory 4031 * region and ioremaps with pci_remap_cfgspace() API that ensures the 4032 * proper PCI configuration space memory attributes are guaranteed. 4033 * 4034 * All operations are managed and will be undone on driver detach. 4035 * 4036 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code 4037 * on failure. Usage example:: 4038 * 4039 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 4040 * base = devm_pci_remap_cfg_resource(&pdev->dev, res); 4041 * if (IS_ERR(base)) 4042 * return PTR_ERR(base); 4043 */ 4044 void __iomem *devm_pci_remap_cfg_resource(struct device *dev, 4045 struct resource *res) 4046 { 4047 resource_size_t size; 4048 const char *name; 4049 void __iomem *dest_ptr; 4050 4051 BUG_ON(!dev); 4052 4053 if (!res || resource_type(res) != IORESOURCE_MEM) { 4054 dev_err(dev, "invalid resource\n"); 4055 return IOMEM_ERR_PTR(-EINVAL); 4056 } 4057 4058 size = resource_size(res); 4059 name = res->name ?: dev_name(dev); 4060 4061 if (!devm_request_mem_region(dev, res->start, size, name)) { 4062 dev_err(dev, "can't request region for resource %pR\n", res); 4063 return IOMEM_ERR_PTR(-EBUSY); 4064 } 4065 4066 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size); 4067 if (!dest_ptr) { 4068 dev_err(dev, "ioremap failed for resource %pR\n", res); 4069 devm_release_mem_region(dev, res->start, size); 4070 dest_ptr = IOMEM_ERR_PTR(-ENOMEM); 4071 } 4072 4073 return dest_ptr; 4074 } 4075 EXPORT_SYMBOL(devm_pci_remap_cfg_resource); 4076 4077 static void __pci_set_master(struct pci_dev *dev, bool enable) 4078 { 4079 u16 old_cmd, cmd; 4080 4081 pci_read_config_word(dev, PCI_COMMAND, &old_cmd); 4082 if (enable) 4083 cmd = old_cmd | PCI_COMMAND_MASTER; 4084 else 4085 cmd = old_cmd & ~PCI_COMMAND_MASTER; 4086 if (cmd != old_cmd) { 4087 pci_dbg(dev, "%s bus mastering\n", 4088 enable ? "enabling" : "disabling"); 4089 pci_write_config_word(dev, PCI_COMMAND, cmd); 4090 } 4091 dev->is_busmaster = enable; 4092 } 4093 4094 /** 4095 * pcibios_setup - process "pci=" kernel boot arguments 4096 * @str: string used to pass in "pci=" kernel boot arguments 4097 * 4098 * Process kernel boot arguments. This is the default implementation. 4099 * Architecture specific implementations can override this as necessary. 4100 */ 4101 char * __weak __init pcibios_setup(char *str) 4102 { 4103 return str; 4104 } 4105 4106 /** 4107 * pcibios_set_master - enable PCI bus-mastering for device dev 4108 * @dev: the PCI device to enable 4109 * 4110 * Enables PCI bus-mastering for the device. This is the default 4111 * implementation. Architecture specific implementations can override 4112 * this if necessary. 4113 */ 4114 void __weak pcibios_set_master(struct pci_dev *dev) 4115 { 4116 u8 lat; 4117 4118 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */ 4119 if (pci_is_pcie(dev)) 4120 return; 4121 4122 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat); 4123 if (lat < 16) 4124 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency; 4125 else if (lat > pcibios_max_latency) 4126 lat = pcibios_max_latency; 4127 else 4128 return; 4129 4130 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat); 4131 } 4132 4133 /** 4134 * pci_set_master - enables bus-mastering for device dev 4135 * @dev: the PCI device to enable 4136 * 4137 * Enables bus-mastering on the device and calls pcibios_set_master() 4138 * to do the needed arch specific settings. 4139 */ 4140 void pci_set_master(struct pci_dev *dev) 4141 { 4142 __pci_set_master(dev, true); 4143 pcibios_set_master(dev); 4144 } 4145 EXPORT_SYMBOL(pci_set_master); 4146 4147 /** 4148 * pci_clear_master - disables bus-mastering for device dev 4149 * @dev: the PCI device to disable 4150 */ 4151 void pci_clear_master(struct pci_dev *dev) 4152 { 4153 __pci_set_master(dev, false); 4154 } 4155 EXPORT_SYMBOL(pci_clear_master); 4156 4157 /** 4158 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed 4159 * @dev: the PCI device for which MWI is to be enabled 4160 * 4161 * Helper function for pci_set_mwi. 4162 * Originally copied from drivers/net/acenic.c. 4163 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. 4164 * 4165 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4166 */ 4167 int pci_set_cacheline_size(struct pci_dev *dev) 4168 { 4169 u8 cacheline_size; 4170 4171 if (!pci_cache_line_size) 4172 return -EINVAL; 4173 4174 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be 4175 equal to or multiple of the right value. */ 4176 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4177 if (cacheline_size >= pci_cache_line_size && 4178 (cacheline_size % pci_cache_line_size) == 0) 4179 return 0; 4180 4181 /* Write the correct value. */ 4182 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size); 4183 /* Read it back. */ 4184 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4185 if (cacheline_size == pci_cache_line_size) 4186 return 0; 4187 4188 pci_printk(KERN_DEBUG, dev, "cache line size of %d is not supported\n", 4189 pci_cache_line_size << 2); 4190 4191 return -EINVAL; 4192 } 4193 EXPORT_SYMBOL_GPL(pci_set_cacheline_size); 4194 4195 /** 4196 * pci_set_mwi - enables memory-write-invalidate PCI transaction 4197 * @dev: the PCI device for which MWI is enabled 4198 * 4199 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4200 * 4201 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4202 */ 4203 int pci_set_mwi(struct pci_dev *dev) 4204 { 4205 #ifdef PCI_DISABLE_MWI 4206 return 0; 4207 #else 4208 int rc; 4209 u16 cmd; 4210 4211 rc = pci_set_cacheline_size(dev); 4212 if (rc) 4213 return rc; 4214 4215 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4216 if (!(cmd & PCI_COMMAND_INVALIDATE)) { 4217 pci_dbg(dev, "enabling Mem-Wr-Inval\n"); 4218 cmd |= PCI_COMMAND_INVALIDATE; 4219 pci_write_config_word(dev, PCI_COMMAND, cmd); 4220 } 4221 return 0; 4222 #endif 4223 } 4224 EXPORT_SYMBOL(pci_set_mwi); 4225 4226 /** 4227 * pcim_set_mwi - a device-managed pci_set_mwi() 4228 * @dev: the PCI device for which MWI is enabled 4229 * 4230 * Managed pci_set_mwi(). 4231 * 4232 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4233 */ 4234 int pcim_set_mwi(struct pci_dev *dev) 4235 { 4236 struct pci_devres *dr; 4237 4238 dr = find_pci_dr(dev); 4239 if (!dr) 4240 return -ENOMEM; 4241 4242 dr->mwi = 1; 4243 return pci_set_mwi(dev); 4244 } 4245 EXPORT_SYMBOL(pcim_set_mwi); 4246 4247 /** 4248 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction 4249 * @dev: the PCI device for which MWI is enabled 4250 * 4251 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4252 * Callers are not required to check the return value. 4253 * 4254 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4255 */ 4256 int pci_try_set_mwi(struct pci_dev *dev) 4257 { 4258 #ifdef PCI_DISABLE_MWI 4259 return 0; 4260 #else 4261 return pci_set_mwi(dev); 4262 #endif 4263 } 4264 EXPORT_SYMBOL(pci_try_set_mwi); 4265 4266 /** 4267 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev 4268 * @dev: the PCI device to disable 4269 * 4270 * Disables PCI Memory-Write-Invalidate transaction on the device 4271 */ 4272 void pci_clear_mwi(struct pci_dev *dev) 4273 { 4274 #ifndef PCI_DISABLE_MWI 4275 u16 cmd; 4276 4277 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4278 if (cmd & PCI_COMMAND_INVALIDATE) { 4279 cmd &= ~PCI_COMMAND_INVALIDATE; 4280 pci_write_config_word(dev, PCI_COMMAND, cmd); 4281 } 4282 #endif 4283 } 4284 EXPORT_SYMBOL(pci_clear_mwi); 4285 4286 /** 4287 * pci_intx - enables/disables PCI INTx for device dev 4288 * @pdev: the PCI device to operate on 4289 * @enable: boolean: whether to enable or disable PCI INTx 4290 * 4291 * Enables/disables PCI INTx for device dev 4292 */ 4293 void pci_intx(struct pci_dev *pdev, int enable) 4294 { 4295 u16 pci_command, new; 4296 4297 pci_read_config_word(pdev, PCI_COMMAND, &pci_command); 4298 4299 if (enable) 4300 new = pci_command & ~PCI_COMMAND_INTX_DISABLE; 4301 else 4302 new = pci_command | PCI_COMMAND_INTX_DISABLE; 4303 4304 if (new != pci_command) { 4305 struct pci_devres *dr; 4306 4307 pci_write_config_word(pdev, PCI_COMMAND, new); 4308 4309 dr = find_pci_dr(pdev); 4310 if (dr && !dr->restore_intx) { 4311 dr->restore_intx = 1; 4312 dr->orig_intx = !enable; 4313 } 4314 } 4315 } 4316 EXPORT_SYMBOL_GPL(pci_intx); 4317 4318 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask) 4319 { 4320 struct pci_bus *bus = dev->bus; 4321 bool mask_updated = true; 4322 u32 cmd_status_dword; 4323 u16 origcmd, newcmd; 4324 unsigned long flags; 4325 bool irq_pending; 4326 4327 /* 4328 * We do a single dword read to retrieve both command and status. 4329 * Document assumptions that make this possible. 4330 */ 4331 BUILD_BUG_ON(PCI_COMMAND % 4); 4332 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS); 4333 4334 raw_spin_lock_irqsave(&pci_lock, flags); 4335 4336 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword); 4337 4338 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT; 4339 4340 /* 4341 * Check interrupt status register to see whether our device 4342 * triggered the interrupt (when masking) or the next IRQ is 4343 * already pending (when unmasking). 4344 */ 4345 if (mask != irq_pending) { 4346 mask_updated = false; 4347 goto done; 4348 } 4349 4350 origcmd = cmd_status_dword; 4351 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE; 4352 if (mask) 4353 newcmd |= PCI_COMMAND_INTX_DISABLE; 4354 if (newcmd != origcmd) 4355 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd); 4356 4357 done: 4358 raw_spin_unlock_irqrestore(&pci_lock, flags); 4359 4360 return mask_updated; 4361 } 4362 4363 /** 4364 * pci_check_and_mask_intx - mask INTx on pending interrupt 4365 * @dev: the PCI device to operate on 4366 * 4367 * Check if the device dev has its INTx line asserted, mask it and 4368 * return true in that case. False is returned if no interrupt was 4369 * pending. 4370 */ 4371 bool pci_check_and_mask_intx(struct pci_dev *dev) 4372 { 4373 return pci_check_and_set_intx_mask(dev, true); 4374 } 4375 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx); 4376 4377 /** 4378 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending 4379 * @dev: the PCI device to operate on 4380 * 4381 * Check if the device dev has its INTx line asserted, unmask it if not 4382 * and return true. False is returned and the mask remains active if 4383 * there was still an interrupt pending. 4384 */ 4385 bool pci_check_and_unmask_intx(struct pci_dev *dev) 4386 { 4387 return pci_check_and_set_intx_mask(dev, false); 4388 } 4389 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx); 4390 4391 /** 4392 * pci_wait_for_pending_transaction - waits for pending transaction 4393 * @dev: the PCI device to operate on 4394 * 4395 * Return 0 if transaction is pending 1 otherwise. 4396 */ 4397 int pci_wait_for_pending_transaction(struct pci_dev *dev) 4398 { 4399 if (!pci_is_pcie(dev)) 4400 return 1; 4401 4402 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA, 4403 PCI_EXP_DEVSTA_TRPND); 4404 } 4405 EXPORT_SYMBOL(pci_wait_for_pending_transaction); 4406 4407 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout) 4408 { 4409 int delay = 1; 4410 u32 id; 4411 4412 /* 4413 * After reset, the device should not silently discard config 4414 * requests, but it may still indicate that it needs more time by 4415 * responding to them with CRS completions. The Root Port will 4416 * generally synthesize ~0 data to complete the read (except when 4417 * CRS SV is enabled and the read was for the Vendor ID; in that 4418 * case it synthesizes 0x0001 data). 4419 * 4420 * Wait for the device to return a non-CRS completion. Read the 4421 * Command register instead of Vendor ID so we don't have to 4422 * contend with the CRS SV value. 4423 */ 4424 pci_read_config_dword(dev, PCI_COMMAND, &id); 4425 while (id == ~0) { 4426 if (delay > timeout) { 4427 pci_warn(dev, "not ready %dms after %s; giving up\n", 4428 delay - 1, reset_type); 4429 return -ENOTTY; 4430 } 4431 4432 if (delay > 1000) 4433 pci_info(dev, "not ready %dms after %s; waiting\n", 4434 delay - 1, reset_type); 4435 4436 msleep(delay); 4437 delay *= 2; 4438 pci_read_config_dword(dev, PCI_COMMAND, &id); 4439 } 4440 4441 if (delay > 1000) 4442 pci_info(dev, "ready %dms after %s\n", delay - 1, 4443 reset_type); 4444 4445 return 0; 4446 } 4447 4448 /** 4449 * pcie_has_flr - check if a device supports function level resets 4450 * @dev: device to check 4451 * 4452 * Returns true if the device advertises support for PCIe function level 4453 * resets. 4454 */ 4455 bool pcie_has_flr(struct pci_dev *dev) 4456 { 4457 u32 cap; 4458 4459 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4460 return false; 4461 4462 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap); 4463 return cap & PCI_EXP_DEVCAP_FLR; 4464 } 4465 EXPORT_SYMBOL_GPL(pcie_has_flr); 4466 4467 /** 4468 * pcie_flr - initiate a PCIe function level reset 4469 * @dev: device to reset 4470 * 4471 * Initiate a function level reset on @dev. The caller should ensure the 4472 * device supports FLR before calling this function, e.g. by using the 4473 * pcie_has_flr() helper. 4474 */ 4475 int pcie_flr(struct pci_dev *dev) 4476 { 4477 if (!pci_wait_for_pending_transaction(dev)) 4478 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n"); 4479 4480 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR); 4481 4482 if (dev->imm_ready) 4483 return 0; 4484 4485 /* 4486 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within 4487 * 100ms, but may silently discard requests while the FLR is in 4488 * progress. Wait 100ms before trying to access the device. 4489 */ 4490 msleep(100); 4491 4492 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS); 4493 } 4494 EXPORT_SYMBOL_GPL(pcie_flr); 4495 4496 static int pci_af_flr(struct pci_dev *dev, int probe) 4497 { 4498 int pos; 4499 u8 cap; 4500 4501 pos = pci_find_capability(dev, PCI_CAP_ID_AF); 4502 if (!pos) 4503 return -ENOTTY; 4504 4505 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4506 return -ENOTTY; 4507 4508 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap); 4509 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR)) 4510 return -ENOTTY; 4511 4512 if (probe) 4513 return 0; 4514 4515 /* 4516 * Wait for Transaction Pending bit to clear. A word-aligned test 4517 * is used, so we use the conrol offset rather than status and shift 4518 * the test bit to match. 4519 */ 4520 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL, 4521 PCI_AF_STATUS_TP << 8)) 4522 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n"); 4523 4524 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR); 4525 4526 if (dev->imm_ready) 4527 return 0; 4528 4529 /* 4530 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006, 4531 * updated 27 July 2006; a device must complete an FLR within 4532 * 100ms, but may silently discard requests while the FLR is in 4533 * progress. Wait 100ms before trying to access the device. 4534 */ 4535 msleep(100); 4536 4537 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS); 4538 } 4539 4540 /** 4541 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0. 4542 * @dev: Device to reset. 4543 * @probe: If set, only check if the device can be reset this way. 4544 * 4545 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is 4546 * unset, it will be reinitialized internally when going from PCI_D3hot to 4547 * PCI_D0. If that's the case and the device is not in a low-power state 4548 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset. 4549 * 4550 * NOTE: This causes the caller to sleep for twice the device power transition 4551 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms 4552 * by default (i.e. unless the @dev's d3_delay field has a different value). 4553 * Moreover, only devices in D0 can be reset by this function. 4554 */ 4555 static int pci_pm_reset(struct pci_dev *dev, int probe) 4556 { 4557 u16 csr; 4558 4559 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET) 4560 return -ENOTTY; 4561 4562 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr); 4563 if (csr & PCI_PM_CTRL_NO_SOFT_RESET) 4564 return -ENOTTY; 4565 4566 if (probe) 4567 return 0; 4568 4569 if (dev->current_state != PCI_D0) 4570 return -EINVAL; 4571 4572 csr &= ~PCI_PM_CTRL_STATE_MASK; 4573 csr |= PCI_D3hot; 4574 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4575 pci_dev_d3_sleep(dev); 4576 4577 csr &= ~PCI_PM_CTRL_STATE_MASK; 4578 csr |= PCI_D0; 4579 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4580 pci_dev_d3_sleep(dev); 4581 4582 return pci_dev_wait(dev, "PM D3->D0", PCIE_RESET_READY_POLL_MS); 4583 } 4584 /** 4585 * pcie_wait_for_link - Wait until link is active or inactive 4586 * @pdev: Bridge device 4587 * @active: waiting for active or inactive? 4588 * 4589 * Use this to wait till link becomes active or inactive. 4590 */ 4591 bool pcie_wait_for_link(struct pci_dev *pdev, bool active) 4592 { 4593 int timeout = 1000; 4594 bool ret; 4595 u16 lnk_status; 4596 4597 /* 4598 * Some controllers might not implement link active reporting. In this 4599 * case, we wait for 1000 + 100 ms. 4600 */ 4601 if (!pdev->link_active_reporting) { 4602 msleep(1100); 4603 return true; 4604 } 4605 4606 /* 4607 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms, 4608 * after which we should expect an link active if the reset was 4609 * successful. If so, software must wait a minimum 100ms before sending 4610 * configuration requests to devices downstream this port. 4611 * 4612 * If the link fails to activate, either the device was physically 4613 * removed or the link is permanently failed. 4614 */ 4615 if (active) 4616 msleep(20); 4617 for (;;) { 4618 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status); 4619 ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA); 4620 if (ret == active) 4621 break; 4622 if (timeout <= 0) 4623 break; 4624 msleep(10); 4625 timeout -= 10; 4626 } 4627 if (active && ret) 4628 msleep(100); 4629 else if (ret != active) 4630 pci_info(pdev, "Data Link Layer Link Active not %s in 1000 msec\n", 4631 active ? "set" : "cleared"); 4632 return ret == active; 4633 } 4634 4635 void pci_reset_secondary_bus(struct pci_dev *dev) 4636 { 4637 u16 ctrl; 4638 4639 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl); 4640 ctrl |= PCI_BRIDGE_CTL_BUS_RESET; 4641 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 4642 4643 /* 4644 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double 4645 * this to 2ms to ensure that we meet the minimum requirement. 4646 */ 4647 msleep(2); 4648 4649 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET; 4650 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 4651 4652 /* 4653 * Trhfa for conventional PCI is 2^25 clock cycles. 4654 * Assuming a minimum 33MHz clock this results in a 1s 4655 * delay before we can consider subordinate devices to 4656 * be re-initialized. PCIe has some ways to shorten this, 4657 * but we don't make use of them yet. 4658 */ 4659 ssleep(1); 4660 } 4661 4662 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev) 4663 { 4664 pci_reset_secondary_bus(dev); 4665 } 4666 4667 /** 4668 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge. 4669 * @dev: Bridge device 4670 * 4671 * Use the bridge control register to assert reset on the secondary bus. 4672 * Devices on the secondary bus are left in power-on state. 4673 */ 4674 int pci_bridge_secondary_bus_reset(struct pci_dev *dev) 4675 { 4676 pcibios_reset_secondary_bus(dev); 4677 4678 return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS); 4679 } 4680 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset); 4681 4682 static int pci_parent_bus_reset(struct pci_dev *dev, int probe) 4683 { 4684 struct pci_dev *pdev; 4685 4686 if (pci_is_root_bus(dev->bus) || dev->subordinate || 4687 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 4688 return -ENOTTY; 4689 4690 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 4691 if (pdev != dev) 4692 return -ENOTTY; 4693 4694 if (probe) 4695 return 0; 4696 4697 return pci_bridge_secondary_bus_reset(dev->bus->self); 4698 } 4699 4700 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe) 4701 { 4702 int rc = -ENOTTY; 4703 4704 if (!hotplug || !try_module_get(hotplug->owner)) 4705 return rc; 4706 4707 if (hotplug->ops->reset_slot) 4708 rc = hotplug->ops->reset_slot(hotplug, probe); 4709 4710 module_put(hotplug->owner); 4711 4712 return rc; 4713 } 4714 4715 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe) 4716 { 4717 struct pci_dev *pdev; 4718 4719 if (dev->subordinate || !dev->slot || 4720 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 4721 return -ENOTTY; 4722 4723 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 4724 if (pdev != dev && pdev->slot == dev->slot) 4725 return -ENOTTY; 4726 4727 return pci_reset_hotplug_slot(dev->slot->hotplug, probe); 4728 } 4729 4730 static void pci_dev_lock(struct pci_dev *dev) 4731 { 4732 pci_cfg_access_lock(dev); 4733 /* block PM suspend, driver probe, etc. */ 4734 device_lock(&dev->dev); 4735 } 4736 4737 /* Return 1 on successful lock, 0 on contention */ 4738 static int pci_dev_trylock(struct pci_dev *dev) 4739 { 4740 if (pci_cfg_access_trylock(dev)) { 4741 if (device_trylock(&dev->dev)) 4742 return 1; 4743 pci_cfg_access_unlock(dev); 4744 } 4745 4746 return 0; 4747 } 4748 4749 static void pci_dev_unlock(struct pci_dev *dev) 4750 { 4751 device_unlock(&dev->dev); 4752 pci_cfg_access_unlock(dev); 4753 } 4754 4755 static void pci_dev_save_and_disable(struct pci_dev *dev) 4756 { 4757 const struct pci_error_handlers *err_handler = 4758 dev->driver ? dev->driver->err_handler : NULL; 4759 4760 /* 4761 * dev->driver->err_handler->reset_prepare() is protected against 4762 * races with ->remove() by the device lock, which must be held by 4763 * the caller. 4764 */ 4765 if (err_handler && err_handler->reset_prepare) 4766 err_handler->reset_prepare(dev); 4767 4768 /* 4769 * Wake-up device prior to save. PM registers default to D0 after 4770 * reset and a simple register restore doesn't reliably return 4771 * to a non-D0 state anyway. 4772 */ 4773 pci_set_power_state(dev, PCI_D0); 4774 4775 pci_save_state(dev); 4776 /* 4777 * Disable the device by clearing the Command register, except for 4778 * INTx-disable which is set. This not only disables MMIO and I/O port 4779 * BARs, but also prevents the device from being Bus Master, preventing 4780 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3 4781 * compliant devices, INTx-disable prevents legacy interrupts. 4782 */ 4783 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE); 4784 } 4785 4786 static void pci_dev_restore(struct pci_dev *dev) 4787 { 4788 const struct pci_error_handlers *err_handler = 4789 dev->driver ? dev->driver->err_handler : NULL; 4790 4791 pci_restore_state(dev); 4792 4793 /* 4794 * dev->driver->err_handler->reset_done() is protected against 4795 * races with ->remove() by the device lock, which must be held by 4796 * the caller. 4797 */ 4798 if (err_handler && err_handler->reset_done) 4799 err_handler->reset_done(dev); 4800 } 4801 4802 /** 4803 * __pci_reset_function_locked - reset a PCI device function while holding 4804 * the @dev mutex lock. 4805 * @dev: PCI device to reset 4806 * 4807 * Some devices allow an individual function to be reset without affecting 4808 * other functions in the same device. The PCI device must be responsive 4809 * to PCI config space in order to use this function. 4810 * 4811 * The device function is presumed to be unused and the caller is holding 4812 * the device mutex lock when this function is called. 4813 * Resetting the device will make the contents of PCI configuration space 4814 * random, so any caller of this must be prepared to reinitialise the 4815 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 4816 * etc. 4817 * 4818 * Returns 0 if the device function was successfully reset or negative if the 4819 * device doesn't support resetting a single function. 4820 */ 4821 int __pci_reset_function_locked(struct pci_dev *dev) 4822 { 4823 int rc; 4824 4825 might_sleep(); 4826 4827 /* 4828 * A reset method returns -ENOTTY if it doesn't support this device 4829 * and we should try the next method. 4830 * 4831 * If it returns 0 (success), we're finished. If it returns any 4832 * other error, we're also finished: this indicates that further 4833 * reset mechanisms might be broken on the device. 4834 */ 4835 rc = pci_dev_specific_reset(dev, 0); 4836 if (rc != -ENOTTY) 4837 return rc; 4838 if (pcie_has_flr(dev)) { 4839 rc = pcie_flr(dev); 4840 if (rc != -ENOTTY) 4841 return rc; 4842 } 4843 rc = pci_af_flr(dev, 0); 4844 if (rc != -ENOTTY) 4845 return rc; 4846 rc = pci_pm_reset(dev, 0); 4847 if (rc != -ENOTTY) 4848 return rc; 4849 rc = pci_dev_reset_slot_function(dev, 0); 4850 if (rc != -ENOTTY) 4851 return rc; 4852 return pci_parent_bus_reset(dev, 0); 4853 } 4854 EXPORT_SYMBOL_GPL(__pci_reset_function_locked); 4855 4856 /** 4857 * pci_probe_reset_function - check whether the device can be safely reset 4858 * @dev: PCI device to reset 4859 * 4860 * Some devices allow an individual function to be reset without affecting 4861 * other functions in the same device. The PCI device must be responsive 4862 * to PCI config space in order to use this function. 4863 * 4864 * Returns 0 if the device function can be reset or negative if the 4865 * device doesn't support resetting a single function. 4866 */ 4867 int pci_probe_reset_function(struct pci_dev *dev) 4868 { 4869 int rc; 4870 4871 might_sleep(); 4872 4873 rc = pci_dev_specific_reset(dev, 1); 4874 if (rc != -ENOTTY) 4875 return rc; 4876 if (pcie_has_flr(dev)) 4877 return 0; 4878 rc = pci_af_flr(dev, 1); 4879 if (rc != -ENOTTY) 4880 return rc; 4881 rc = pci_pm_reset(dev, 1); 4882 if (rc != -ENOTTY) 4883 return rc; 4884 rc = pci_dev_reset_slot_function(dev, 1); 4885 if (rc != -ENOTTY) 4886 return rc; 4887 4888 return pci_parent_bus_reset(dev, 1); 4889 } 4890 4891 /** 4892 * pci_reset_function - quiesce and reset a PCI device function 4893 * @dev: PCI device to reset 4894 * 4895 * Some devices allow an individual function to be reset without affecting 4896 * other functions in the same device. The PCI device must be responsive 4897 * to PCI config space in order to use this function. 4898 * 4899 * This function does not just reset the PCI portion of a device, but 4900 * clears all the state associated with the device. This function differs 4901 * from __pci_reset_function_locked() in that it saves and restores device state 4902 * over the reset and takes the PCI device lock. 4903 * 4904 * Returns 0 if the device function was successfully reset or negative if the 4905 * device doesn't support resetting a single function. 4906 */ 4907 int pci_reset_function(struct pci_dev *dev) 4908 { 4909 int rc; 4910 4911 if (!dev->reset_fn) 4912 return -ENOTTY; 4913 4914 pci_dev_lock(dev); 4915 pci_dev_save_and_disable(dev); 4916 4917 rc = __pci_reset_function_locked(dev); 4918 4919 pci_dev_restore(dev); 4920 pci_dev_unlock(dev); 4921 4922 return rc; 4923 } 4924 EXPORT_SYMBOL_GPL(pci_reset_function); 4925 4926 /** 4927 * pci_reset_function_locked - quiesce and reset a PCI device function 4928 * @dev: PCI device to reset 4929 * 4930 * Some devices allow an individual function to be reset without affecting 4931 * other functions in the same device. The PCI device must be responsive 4932 * to PCI config space in order to use this function. 4933 * 4934 * This function does not just reset the PCI portion of a device, but 4935 * clears all the state associated with the device. This function differs 4936 * from __pci_reset_function_locked() in that it saves and restores device state 4937 * over the reset. It also differs from pci_reset_function() in that it 4938 * requires the PCI device lock to be held. 4939 * 4940 * Returns 0 if the device function was successfully reset or negative if the 4941 * device doesn't support resetting a single function. 4942 */ 4943 int pci_reset_function_locked(struct pci_dev *dev) 4944 { 4945 int rc; 4946 4947 if (!dev->reset_fn) 4948 return -ENOTTY; 4949 4950 pci_dev_save_and_disable(dev); 4951 4952 rc = __pci_reset_function_locked(dev); 4953 4954 pci_dev_restore(dev); 4955 4956 return rc; 4957 } 4958 EXPORT_SYMBOL_GPL(pci_reset_function_locked); 4959 4960 /** 4961 * pci_try_reset_function - quiesce and reset a PCI device function 4962 * @dev: PCI device to reset 4963 * 4964 * Same as above, except return -EAGAIN if unable to lock device. 4965 */ 4966 int pci_try_reset_function(struct pci_dev *dev) 4967 { 4968 int rc; 4969 4970 if (!dev->reset_fn) 4971 return -ENOTTY; 4972 4973 if (!pci_dev_trylock(dev)) 4974 return -EAGAIN; 4975 4976 pci_dev_save_and_disable(dev); 4977 rc = __pci_reset_function_locked(dev); 4978 pci_dev_restore(dev); 4979 pci_dev_unlock(dev); 4980 4981 return rc; 4982 } 4983 EXPORT_SYMBOL_GPL(pci_try_reset_function); 4984 4985 /* Do any devices on or below this bus prevent a bus reset? */ 4986 static bool pci_bus_resetable(struct pci_bus *bus) 4987 { 4988 struct pci_dev *dev; 4989 4990 4991 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 4992 return false; 4993 4994 list_for_each_entry(dev, &bus->devices, bus_list) { 4995 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 4996 (dev->subordinate && !pci_bus_resetable(dev->subordinate))) 4997 return false; 4998 } 4999 5000 return true; 5001 } 5002 5003 /* Lock devices from the top of the tree down */ 5004 static void pci_bus_lock(struct pci_bus *bus) 5005 { 5006 struct pci_dev *dev; 5007 5008 list_for_each_entry(dev, &bus->devices, bus_list) { 5009 pci_dev_lock(dev); 5010 if (dev->subordinate) 5011 pci_bus_lock(dev->subordinate); 5012 } 5013 } 5014 5015 /* Unlock devices from the bottom of the tree up */ 5016 static void pci_bus_unlock(struct pci_bus *bus) 5017 { 5018 struct pci_dev *dev; 5019 5020 list_for_each_entry(dev, &bus->devices, bus_list) { 5021 if (dev->subordinate) 5022 pci_bus_unlock(dev->subordinate); 5023 pci_dev_unlock(dev); 5024 } 5025 } 5026 5027 /* Return 1 on successful lock, 0 on contention */ 5028 static int pci_bus_trylock(struct pci_bus *bus) 5029 { 5030 struct pci_dev *dev; 5031 5032 list_for_each_entry(dev, &bus->devices, bus_list) { 5033 if (!pci_dev_trylock(dev)) 5034 goto unlock; 5035 if (dev->subordinate) { 5036 if (!pci_bus_trylock(dev->subordinate)) { 5037 pci_dev_unlock(dev); 5038 goto unlock; 5039 } 5040 } 5041 } 5042 return 1; 5043 5044 unlock: 5045 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) { 5046 if (dev->subordinate) 5047 pci_bus_unlock(dev->subordinate); 5048 pci_dev_unlock(dev); 5049 } 5050 return 0; 5051 } 5052 5053 /* Do any devices on or below this slot prevent a bus reset? */ 5054 static bool pci_slot_resetable(struct pci_slot *slot) 5055 { 5056 struct pci_dev *dev; 5057 5058 if (slot->bus->self && 5059 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 5060 return false; 5061 5062 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5063 if (!dev->slot || dev->slot != slot) 5064 continue; 5065 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 5066 (dev->subordinate && !pci_bus_resetable(dev->subordinate))) 5067 return false; 5068 } 5069 5070 return true; 5071 } 5072 5073 /* Lock devices from the top of the tree down */ 5074 static void pci_slot_lock(struct pci_slot *slot) 5075 { 5076 struct pci_dev *dev; 5077 5078 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5079 if (!dev->slot || dev->slot != slot) 5080 continue; 5081 pci_dev_lock(dev); 5082 if (dev->subordinate) 5083 pci_bus_lock(dev->subordinate); 5084 } 5085 } 5086 5087 /* Unlock devices from the bottom of the tree up */ 5088 static void pci_slot_unlock(struct pci_slot *slot) 5089 { 5090 struct pci_dev *dev; 5091 5092 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5093 if (!dev->slot || dev->slot != slot) 5094 continue; 5095 if (dev->subordinate) 5096 pci_bus_unlock(dev->subordinate); 5097 pci_dev_unlock(dev); 5098 } 5099 } 5100 5101 /* Return 1 on successful lock, 0 on contention */ 5102 static int pci_slot_trylock(struct pci_slot *slot) 5103 { 5104 struct pci_dev *dev; 5105 5106 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5107 if (!dev->slot || dev->slot != slot) 5108 continue; 5109 if (!pci_dev_trylock(dev)) 5110 goto unlock; 5111 if (dev->subordinate) { 5112 if (!pci_bus_trylock(dev->subordinate)) { 5113 pci_dev_unlock(dev); 5114 goto unlock; 5115 } 5116 } 5117 } 5118 return 1; 5119 5120 unlock: 5121 list_for_each_entry_continue_reverse(dev, 5122 &slot->bus->devices, bus_list) { 5123 if (!dev->slot || dev->slot != slot) 5124 continue; 5125 if (dev->subordinate) 5126 pci_bus_unlock(dev->subordinate); 5127 pci_dev_unlock(dev); 5128 } 5129 return 0; 5130 } 5131 5132 /* 5133 * Save and disable devices from the top of the tree down while holding 5134 * the @dev mutex lock for the entire tree. 5135 */ 5136 static void pci_bus_save_and_disable_locked(struct pci_bus *bus) 5137 { 5138 struct pci_dev *dev; 5139 5140 list_for_each_entry(dev, &bus->devices, bus_list) { 5141 pci_dev_save_and_disable(dev); 5142 if (dev->subordinate) 5143 pci_bus_save_and_disable_locked(dev->subordinate); 5144 } 5145 } 5146 5147 /* 5148 * Restore devices from top of the tree down while holding @dev mutex lock 5149 * for the entire tree. Parent bridges need to be restored before we can 5150 * get to subordinate devices. 5151 */ 5152 static void pci_bus_restore_locked(struct pci_bus *bus) 5153 { 5154 struct pci_dev *dev; 5155 5156 list_for_each_entry(dev, &bus->devices, bus_list) { 5157 pci_dev_restore(dev); 5158 if (dev->subordinate) 5159 pci_bus_restore_locked(dev->subordinate); 5160 } 5161 } 5162 5163 /* 5164 * Save and disable devices from the top of the tree down while holding 5165 * the @dev mutex lock for the entire tree. 5166 */ 5167 static void pci_slot_save_and_disable_locked(struct pci_slot *slot) 5168 { 5169 struct pci_dev *dev; 5170 5171 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5172 if (!dev->slot || dev->slot != slot) 5173 continue; 5174 pci_dev_save_and_disable(dev); 5175 if (dev->subordinate) 5176 pci_bus_save_and_disable_locked(dev->subordinate); 5177 } 5178 } 5179 5180 /* 5181 * Restore devices from top of the tree down while holding @dev mutex lock 5182 * for the entire tree. Parent bridges need to be restored before we can 5183 * get to subordinate devices. 5184 */ 5185 static void pci_slot_restore_locked(struct pci_slot *slot) 5186 { 5187 struct pci_dev *dev; 5188 5189 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5190 if (!dev->slot || dev->slot != slot) 5191 continue; 5192 pci_dev_restore(dev); 5193 if (dev->subordinate) 5194 pci_bus_restore_locked(dev->subordinate); 5195 } 5196 } 5197 5198 static int pci_slot_reset(struct pci_slot *slot, int probe) 5199 { 5200 int rc; 5201 5202 if (!slot || !pci_slot_resetable(slot)) 5203 return -ENOTTY; 5204 5205 if (!probe) 5206 pci_slot_lock(slot); 5207 5208 might_sleep(); 5209 5210 rc = pci_reset_hotplug_slot(slot->hotplug, probe); 5211 5212 if (!probe) 5213 pci_slot_unlock(slot); 5214 5215 return rc; 5216 } 5217 5218 /** 5219 * pci_probe_reset_slot - probe whether a PCI slot can be reset 5220 * @slot: PCI slot to probe 5221 * 5222 * Return 0 if slot can be reset, negative if a slot reset is not supported. 5223 */ 5224 int pci_probe_reset_slot(struct pci_slot *slot) 5225 { 5226 return pci_slot_reset(slot, 1); 5227 } 5228 EXPORT_SYMBOL_GPL(pci_probe_reset_slot); 5229 5230 /** 5231 * __pci_reset_slot - Try to reset a PCI slot 5232 * @slot: PCI slot to reset 5233 * 5234 * A PCI bus may host multiple slots, each slot may support a reset mechanism 5235 * independent of other slots. For instance, some slots may support slot power 5236 * control. In the case of a 1:1 bus to slot architecture, this function may 5237 * wrap the bus reset to avoid spurious slot related events such as hotplug. 5238 * Generally a slot reset should be attempted before a bus reset. All of the 5239 * function of the slot and any subordinate buses behind the slot are reset 5240 * through this function. PCI config space of all devices in the slot and 5241 * behind the slot is saved before and restored after reset. 5242 * 5243 * Same as above except return -EAGAIN if the slot cannot be locked 5244 */ 5245 static int __pci_reset_slot(struct pci_slot *slot) 5246 { 5247 int rc; 5248 5249 rc = pci_slot_reset(slot, 1); 5250 if (rc) 5251 return rc; 5252 5253 if (pci_slot_trylock(slot)) { 5254 pci_slot_save_and_disable_locked(slot); 5255 might_sleep(); 5256 rc = pci_reset_hotplug_slot(slot->hotplug, 0); 5257 pci_slot_restore_locked(slot); 5258 pci_slot_unlock(slot); 5259 } else 5260 rc = -EAGAIN; 5261 5262 return rc; 5263 } 5264 5265 static int pci_bus_reset(struct pci_bus *bus, int probe) 5266 { 5267 int ret; 5268 5269 if (!bus->self || !pci_bus_resetable(bus)) 5270 return -ENOTTY; 5271 5272 if (probe) 5273 return 0; 5274 5275 pci_bus_lock(bus); 5276 5277 might_sleep(); 5278 5279 ret = pci_bridge_secondary_bus_reset(bus->self); 5280 5281 pci_bus_unlock(bus); 5282 5283 return ret; 5284 } 5285 5286 /** 5287 * pci_bus_error_reset - reset the bridge's subordinate bus 5288 * @bridge: The parent device that connects to the bus to reset 5289 * 5290 * This function will first try to reset the slots on this bus if the method is 5291 * available. If slot reset fails or is not available, this will fall back to a 5292 * secondary bus reset. 5293 */ 5294 int pci_bus_error_reset(struct pci_dev *bridge) 5295 { 5296 struct pci_bus *bus = bridge->subordinate; 5297 struct pci_slot *slot; 5298 5299 if (!bus) 5300 return -ENOTTY; 5301 5302 mutex_lock(&pci_slot_mutex); 5303 if (list_empty(&bus->slots)) 5304 goto bus_reset; 5305 5306 list_for_each_entry(slot, &bus->slots, list) 5307 if (pci_probe_reset_slot(slot)) 5308 goto bus_reset; 5309 5310 list_for_each_entry(slot, &bus->slots, list) 5311 if (pci_slot_reset(slot, 0)) 5312 goto bus_reset; 5313 5314 mutex_unlock(&pci_slot_mutex); 5315 return 0; 5316 bus_reset: 5317 mutex_unlock(&pci_slot_mutex); 5318 return pci_bus_reset(bridge->subordinate, 0); 5319 } 5320 5321 /** 5322 * pci_probe_reset_bus - probe whether a PCI bus can be reset 5323 * @bus: PCI bus to probe 5324 * 5325 * Return 0 if bus can be reset, negative if a bus reset is not supported. 5326 */ 5327 int pci_probe_reset_bus(struct pci_bus *bus) 5328 { 5329 return pci_bus_reset(bus, 1); 5330 } 5331 EXPORT_SYMBOL_GPL(pci_probe_reset_bus); 5332 5333 /** 5334 * __pci_reset_bus - Try to reset a PCI bus 5335 * @bus: top level PCI bus to reset 5336 * 5337 * Same as above except return -EAGAIN if the bus cannot be locked 5338 */ 5339 static int __pci_reset_bus(struct pci_bus *bus) 5340 { 5341 int rc; 5342 5343 rc = pci_bus_reset(bus, 1); 5344 if (rc) 5345 return rc; 5346 5347 if (pci_bus_trylock(bus)) { 5348 pci_bus_save_and_disable_locked(bus); 5349 might_sleep(); 5350 rc = pci_bridge_secondary_bus_reset(bus->self); 5351 pci_bus_restore_locked(bus); 5352 pci_bus_unlock(bus); 5353 } else 5354 rc = -EAGAIN; 5355 5356 return rc; 5357 } 5358 5359 /** 5360 * pci_reset_bus - Try to reset a PCI bus 5361 * @pdev: top level PCI device to reset via slot/bus 5362 * 5363 * Same as above except return -EAGAIN if the bus cannot be locked 5364 */ 5365 int pci_reset_bus(struct pci_dev *pdev) 5366 { 5367 return (!pci_probe_reset_slot(pdev->slot)) ? 5368 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus); 5369 } 5370 EXPORT_SYMBOL_GPL(pci_reset_bus); 5371 5372 /** 5373 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count 5374 * @dev: PCI device to query 5375 * 5376 * Returns mmrbc: maximum designed memory read count in bytes 5377 * or appropriate error value. 5378 */ 5379 int pcix_get_max_mmrbc(struct pci_dev *dev) 5380 { 5381 int cap; 5382 u32 stat; 5383 5384 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5385 if (!cap) 5386 return -EINVAL; 5387 5388 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 5389 return -EINVAL; 5390 5391 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21); 5392 } 5393 EXPORT_SYMBOL(pcix_get_max_mmrbc); 5394 5395 /** 5396 * pcix_get_mmrbc - get PCI-X maximum memory read byte count 5397 * @dev: PCI device to query 5398 * 5399 * Returns mmrbc: maximum memory read count in bytes 5400 * or appropriate error value. 5401 */ 5402 int pcix_get_mmrbc(struct pci_dev *dev) 5403 { 5404 int cap; 5405 u16 cmd; 5406 5407 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5408 if (!cap) 5409 return -EINVAL; 5410 5411 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 5412 return -EINVAL; 5413 5414 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2); 5415 } 5416 EXPORT_SYMBOL(pcix_get_mmrbc); 5417 5418 /** 5419 * pcix_set_mmrbc - set PCI-X maximum memory read byte count 5420 * @dev: PCI device to query 5421 * @mmrbc: maximum memory read count in bytes 5422 * valid values are 512, 1024, 2048, 4096 5423 * 5424 * If possible sets maximum memory read byte count, some bridges have erratas 5425 * that prevent this. 5426 */ 5427 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc) 5428 { 5429 int cap; 5430 u32 stat, v, o; 5431 u16 cmd; 5432 5433 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc)) 5434 return -EINVAL; 5435 5436 v = ffs(mmrbc) - 10; 5437 5438 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5439 if (!cap) 5440 return -EINVAL; 5441 5442 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 5443 return -EINVAL; 5444 5445 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21) 5446 return -E2BIG; 5447 5448 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 5449 return -EINVAL; 5450 5451 o = (cmd & PCI_X_CMD_MAX_READ) >> 2; 5452 if (o != v) { 5453 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC)) 5454 return -EIO; 5455 5456 cmd &= ~PCI_X_CMD_MAX_READ; 5457 cmd |= v << 2; 5458 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd)) 5459 return -EIO; 5460 } 5461 return 0; 5462 } 5463 EXPORT_SYMBOL(pcix_set_mmrbc); 5464 5465 /** 5466 * pcie_get_readrq - get PCI Express read request size 5467 * @dev: PCI device to query 5468 * 5469 * Returns maximum memory read request in bytes 5470 * or appropriate error value. 5471 */ 5472 int pcie_get_readrq(struct pci_dev *dev) 5473 { 5474 u16 ctl; 5475 5476 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 5477 5478 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12); 5479 } 5480 EXPORT_SYMBOL(pcie_get_readrq); 5481 5482 /** 5483 * pcie_set_readrq - set PCI Express maximum memory read request 5484 * @dev: PCI device to query 5485 * @rq: maximum memory read count in bytes 5486 * valid values are 128, 256, 512, 1024, 2048, 4096 5487 * 5488 * If possible sets maximum memory read request in bytes 5489 */ 5490 int pcie_set_readrq(struct pci_dev *dev, int rq) 5491 { 5492 u16 v; 5493 5494 if (rq < 128 || rq > 4096 || !is_power_of_2(rq)) 5495 return -EINVAL; 5496 5497 /* 5498 * If using the "performance" PCIe config, we clamp the 5499 * read rq size to the max packet size to prevent the 5500 * host bridge generating requests larger than we can 5501 * cope with 5502 */ 5503 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) { 5504 int mps = pcie_get_mps(dev); 5505 5506 if (mps < rq) 5507 rq = mps; 5508 } 5509 5510 v = (ffs(rq) - 8) << 12; 5511 5512 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 5513 PCI_EXP_DEVCTL_READRQ, v); 5514 } 5515 EXPORT_SYMBOL(pcie_set_readrq); 5516 5517 /** 5518 * pcie_get_mps - get PCI Express maximum payload size 5519 * @dev: PCI device to query 5520 * 5521 * Returns maximum payload size in bytes 5522 */ 5523 int pcie_get_mps(struct pci_dev *dev) 5524 { 5525 u16 ctl; 5526 5527 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 5528 5529 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5); 5530 } 5531 EXPORT_SYMBOL(pcie_get_mps); 5532 5533 /** 5534 * pcie_set_mps - set PCI Express maximum payload size 5535 * @dev: PCI device to query 5536 * @mps: maximum payload size in bytes 5537 * valid values are 128, 256, 512, 1024, 2048, 4096 5538 * 5539 * If possible sets maximum payload size 5540 */ 5541 int pcie_set_mps(struct pci_dev *dev, int mps) 5542 { 5543 u16 v; 5544 5545 if (mps < 128 || mps > 4096 || !is_power_of_2(mps)) 5546 return -EINVAL; 5547 5548 v = ffs(mps) - 8; 5549 if (v > dev->pcie_mpss) 5550 return -EINVAL; 5551 v <<= 5; 5552 5553 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 5554 PCI_EXP_DEVCTL_PAYLOAD, v); 5555 } 5556 EXPORT_SYMBOL(pcie_set_mps); 5557 5558 /** 5559 * pcie_bandwidth_available - determine minimum link settings of a PCIe 5560 * device and its bandwidth limitation 5561 * @dev: PCI device to query 5562 * @limiting_dev: storage for device causing the bandwidth limitation 5563 * @speed: storage for speed of limiting device 5564 * @width: storage for width of limiting device 5565 * 5566 * Walk up the PCI device chain and find the point where the minimum 5567 * bandwidth is available. Return the bandwidth available there and (if 5568 * limiting_dev, speed, and width pointers are supplied) information about 5569 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of 5570 * raw bandwidth. 5571 */ 5572 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev, 5573 enum pci_bus_speed *speed, 5574 enum pcie_link_width *width) 5575 { 5576 u16 lnksta; 5577 enum pci_bus_speed next_speed; 5578 enum pcie_link_width next_width; 5579 u32 bw, next_bw; 5580 5581 if (speed) 5582 *speed = PCI_SPEED_UNKNOWN; 5583 if (width) 5584 *width = PCIE_LNK_WIDTH_UNKNOWN; 5585 5586 bw = 0; 5587 5588 while (dev) { 5589 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta); 5590 5591 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS]; 5592 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >> 5593 PCI_EXP_LNKSTA_NLW_SHIFT; 5594 5595 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed); 5596 5597 /* Check if current device limits the total bandwidth */ 5598 if (!bw || next_bw <= bw) { 5599 bw = next_bw; 5600 5601 if (limiting_dev) 5602 *limiting_dev = dev; 5603 if (speed) 5604 *speed = next_speed; 5605 if (width) 5606 *width = next_width; 5607 } 5608 5609 dev = pci_upstream_bridge(dev); 5610 } 5611 5612 return bw; 5613 } 5614 EXPORT_SYMBOL(pcie_bandwidth_available); 5615 5616 /** 5617 * pcie_get_speed_cap - query for the PCI device's link speed capability 5618 * @dev: PCI device to query 5619 * 5620 * Query the PCI device speed capability. Return the maximum link speed 5621 * supported by the device. 5622 */ 5623 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev) 5624 { 5625 u32 lnkcap2, lnkcap; 5626 5627 /* 5628 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The 5629 * implementation note there recommends using the Supported Link 5630 * Speeds Vector in Link Capabilities 2 when supported. 5631 * 5632 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software 5633 * should use the Supported Link Speeds field in Link Capabilities, 5634 * where only 2.5 GT/s and 5.0 GT/s speeds were defined. 5635 */ 5636 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2); 5637 if (lnkcap2) { /* PCIe r3.0-compliant */ 5638 if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_16_0GB) 5639 return PCIE_SPEED_16_0GT; 5640 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB) 5641 return PCIE_SPEED_8_0GT; 5642 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB) 5643 return PCIE_SPEED_5_0GT; 5644 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB) 5645 return PCIE_SPEED_2_5GT; 5646 return PCI_SPEED_UNKNOWN; 5647 } 5648 5649 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 5650 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB) 5651 return PCIE_SPEED_5_0GT; 5652 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB) 5653 return PCIE_SPEED_2_5GT; 5654 5655 return PCI_SPEED_UNKNOWN; 5656 } 5657 EXPORT_SYMBOL(pcie_get_speed_cap); 5658 5659 /** 5660 * pcie_get_width_cap - query for the PCI device's link width capability 5661 * @dev: PCI device to query 5662 * 5663 * Query the PCI device width capability. Return the maximum link width 5664 * supported by the device. 5665 */ 5666 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev) 5667 { 5668 u32 lnkcap; 5669 5670 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 5671 if (lnkcap) 5672 return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4; 5673 5674 return PCIE_LNK_WIDTH_UNKNOWN; 5675 } 5676 EXPORT_SYMBOL(pcie_get_width_cap); 5677 5678 /** 5679 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability 5680 * @dev: PCI device 5681 * @speed: storage for link speed 5682 * @width: storage for link width 5683 * 5684 * Calculate a PCI device's link bandwidth by querying for its link speed 5685 * and width, multiplying them, and applying encoding overhead. The result 5686 * is in Mb/s, i.e., megabits/second of raw bandwidth. 5687 */ 5688 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed, 5689 enum pcie_link_width *width) 5690 { 5691 *speed = pcie_get_speed_cap(dev); 5692 *width = pcie_get_width_cap(dev); 5693 5694 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN) 5695 return 0; 5696 5697 return *width * PCIE_SPEED2MBS_ENC(*speed); 5698 } 5699 5700 /** 5701 * __pcie_print_link_status - Report the PCI device's link speed and width 5702 * @dev: PCI device to query 5703 * @verbose: Print info even when enough bandwidth is available 5704 * 5705 * If the available bandwidth at the device is less than the device is 5706 * capable of, report the device's maximum possible bandwidth and the 5707 * upstream link that limits its performance. If @verbose, always print 5708 * the available bandwidth, even if the device isn't constrained. 5709 */ 5710 void __pcie_print_link_status(struct pci_dev *dev, bool verbose) 5711 { 5712 enum pcie_link_width width, width_cap; 5713 enum pci_bus_speed speed, speed_cap; 5714 struct pci_dev *limiting_dev = NULL; 5715 u32 bw_avail, bw_cap; 5716 5717 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap); 5718 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width); 5719 5720 if (bw_avail >= bw_cap && verbose) 5721 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n", 5722 bw_cap / 1000, bw_cap % 1000, 5723 PCIE_SPEED2STR(speed_cap), width_cap); 5724 else if (bw_avail < bw_cap) 5725 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n", 5726 bw_avail / 1000, bw_avail % 1000, 5727 PCIE_SPEED2STR(speed), width, 5728 limiting_dev ? pci_name(limiting_dev) : "<unknown>", 5729 bw_cap / 1000, bw_cap % 1000, 5730 PCIE_SPEED2STR(speed_cap), width_cap); 5731 } 5732 5733 /** 5734 * pcie_print_link_status - Report the PCI device's link speed and width 5735 * @dev: PCI device to query 5736 * 5737 * Report the available bandwidth at the device. 5738 */ 5739 void pcie_print_link_status(struct pci_dev *dev) 5740 { 5741 __pcie_print_link_status(dev, true); 5742 } 5743 EXPORT_SYMBOL(pcie_print_link_status); 5744 5745 /** 5746 * pci_select_bars - Make BAR mask from the type of resource 5747 * @dev: the PCI device for which BAR mask is made 5748 * @flags: resource type mask to be selected 5749 * 5750 * This helper routine makes bar mask from the type of resource. 5751 */ 5752 int pci_select_bars(struct pci_dev *dev, unsigned long flags) 5753 { 5754 int i, bars = 0; 5755 for (i = 0; i < PCI_NUM_RESOURCES; i++) 5756 if (pci_resource_flags(dev, i) & flags) 5757 bars |= (1 << i); 5758 return bars; 5759 } 5760 EXPORT_SYMBOL(pci_select_bars); 5761 5762 /* Some architectures require additional programming to enable VGA */ 5763 static arch_set_vga_state_t arch_set_vga_state; 5764 5765 void __init pci_register_set_vga_state(arch_set_vga_state_t func) 5766 { 5767 arch_set_vga_state = func; /* NULL disables */ 5768 } 5769 5770 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode, 5771 unsigned int command_bits, u32 flags) 5772 { 5773 if (arch_set_vga_state) 5774 return arch_set_vga_state(dev, decode, command_bits, 5775 flags); 5776 return 0; 5777 } 5778 5779 /** 5780 * pci_set_vga_state - set VGA decode state on device and parents if requested 5781 * @dev: the PCI device 5782 * @decode: true = enable decoding, false = disable decoding 5783 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY 5784 * @flags: traverse ancestors and change bridges 5785 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE 5786 */ 5787 int pci_set_vga_state(struct pci_dev *dev, bool decode, 5788 unsigned int command_bits, u32 flags) 5789 { 5790 struct pci_bus *bus; 5791 struct pci_dev *bridge; 5792 u16 cmd; 5793 int rc; 5794 5795 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY))); 5796 5797 /* ARCH specific VGA enables */ 5798 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags); 5799 if (rc) 5800 return rc; 5801 5802 if (flags & PCI_VGA_STATE_CHANGE_DECODES) { 5803 pci_read_config_word(dev, PCI_COMMAND, &cmd); 5804 if (decode == true) 5805 cmd |= command_bits; 5806 else 5807 cmd &= ~command_bits; 5808 pci_write_config_word(dev, PCI_COMMAND, cmd); 5809 } 5810 5811 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE)) 5812 return 0; 5813 5814 bus = dev->bus; 5815 while (bus) { 5816 bridge = bus->self; 5817 if (bridge) { 5818 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL, 5819 &cmd); 5820 if (decode == true) 5821 cmd |= PCI_BRIDGE_CTL_VGA; 5822 else 5823 cmd &= ~PCI_BRIDGE_CTL_VGA; 5824 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL, 5825 cmd); 5826 } 5827 bus = bus->parent; 5828 } 5829 return 0; 5830 } 5831 5832 /** 5833 * pci_add_dma_alias - Add a DMA devfn alias for a device 5834 * @dev: the PCI device for which alias is added 5835 * @devfn: alias slot and function 5836 * 5837 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask 5838 * which is used to program permissible bus-devfn source addresses for DMA 5839 * requests in an IOMMU. These aliases factor into IOMMU group creation 5840 * and are useful for devices generating DMA requests beyond or different 5841 * from their logical bus-devfn. Examples include device quirks where the 5842 * device simply uses the wrong devfn, as well as non-transparent bridges 5843 * where the alias may be a proxy for devices in another domain. 5844 * 5845 * IOMMU group creation is performed during device discovery or addition, 5846 * prior to any potential DMA mapping and therefore prior to driver probing 5847 * (especially for userspace assigned devices where IOMMU group definition 5848 * cannot be left as a userspace activity). DMA aliases should therefore 5849 * be configured via quirks, such as the PCI fixup header quirk. 5850 */ 5851 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn) 5852 { 5853 if (!dev->dma_alias_mask) 5854 dev->dma_alias_mask = bitmap_zalloc(U8_MAX, GFP_KERNEL); 5855 if (!dev->dma_alias_mask) { 5856 pci_warn(dev, "Unable to allocate DMA alias mask\n"); 5857 return; 5858 } 5859 5860 set_bit(devfn, dev->dma_alias_mask); 5861 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n", 5862 PCI_SLOT(devfn), PCI_FUNC(devfn)); 5863 } 5864 5865 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2) 5866 { 5867 return (dev1->dma_alias_mask && 5868 test_bit(dev2->devfn, dev1->dma_alias_mask)) || 5869 (dev2->dma_alias_mask && 5870 test_bit(dev1->devfn, dev2->dma_alias_mask)); 5871 } 5872 5873 bool pci_device_is_present(struct pci_dev *pdev) 5874 { 5875 u32 v; 5876 5877 if (pci_dev_is_disconnected(pdev)) 5878 return false; 5879 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0); 5880 } 5881 EXPORT_SYMBOL_GPL(pci_device_is_present); 5882 5883 void pci_ignore_hotplug(struct pci_dev *dev) 5884 { 5885 struct pci_dev *bridge = dev->bus->self; 5886 5887 dev->ignore_hotplug = 1; 5888 /* Propagate the "ignore hotplug" setting to the parent bridge. */ 5889 if (bridge) 5890 bridge->ignore_hotplug = 1; 5891 } 5892 EXPORT_SYMBOL_GPL(pci_ignore_hotplug); 5893 5894 resource_size_t __weak pcibios_default_alignment(void) 5895 { 5896 return 0; 5897 } 5898 5899 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE 5900 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0}; 5901 static DEFINE_SPINLOCK(resource_alignment_lock); 5902 5903 /** 5904 * pci_specified_resource_alignment - get resource alignment specified by user. 5905 * @dev: the PCI device to get 5906 * @resize: whether or not to change resources' size when reassigning alignment 5907 * 5908 * RETURNS: Resource alignment if it is specified. 5909 * Zero if it is not specified. 5910 */ 5911 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev, 5912 bool *resize) 5913 { 5914 int align_order, count; 5915 resource_size_t align = pcibios_default_alignment(); 5916 const char *p; 5917 int ret; 5918 5919 spin_lock(&resource_alignment_lock); 5920 p = resource_alignment_param; 5921 if (!*p && !align) 5922 goto out; 5923 if (pci_has_flag(PCI_PROBE_ONLY)) { 5924 align = 0; 5925 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n"); 5926 goto out; 5927 } 5928 5929 while (*p) { 5930 count = 0; 5931 if (sscanf(p, "%d%n", &align_order, &count) == 1 && 5932 p[count] == '@') { 5933 p += count + 1; 5934 } else { 5935 align_order = -1; 5936 } 5937 5938 ret = pci_dev_str_match(dev, p, &p); 5939 if (ret == 1) { 5940 *resize = true; 5941 if (align_order == -1) 5942 align = PAGE_SIZE; 5943 else 5944 align = 1 << align_order; 5945 break; 5946 } else if (ret < 0) { 5947 pr_err("PCI: Can't parse resource_alignment parameter: %s\n", 5948 p); 5949 break; 5950 } 5951 5952 if (*p != ';' && *p != ',') { 5953 /* End of param or invalid format */ 5954 break; 5955 } 5956 p++; 5957 } 5958 out: 5959 spin_unlock(&resource_alignment_lock); 5960 return align; 5961 } 5962 5963 static void pci_request_resource_alignment(struct pci_dev *dev, int bar, 5964 resource_size_t align, bool resize) 5965 { 5966 struct resource *r = &dev->resource[bar]; 5967 resource_size_t size; 5968 5969 if (!(r->flags & IORESOURCE_MEM)) 5970 return; 5971 5972 if (r->flags & IORESOURCE_PCI_FIXED) { 5973 pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n", 5974 bar, r, (unsigned long long)align); 5975 return; 5976 } 5977 5978 size = resource_size(r); 5979 if (size >= align) 5980 return; 5981 5982 /* 5983 * Increase the alignment of the resource. There are two ways we 5984 * can do this: 5985 * 5986 * 1) Increase the size of the resource. BARs are aligned on their 5987 * size, so when we reallocate space for this resource, we'll 5988 * allocate it with the larger alignment. This also prevents 5989 * assignment of any other BARs inside the alignment region, so 5990 * if we're requesting page alignment, this means no other BARs 5991 * will share the page. 5992 * 5993 * The disadvantage is that this makes the resource larger than 5994 * the hardware BAR, which may break drivers that compute things 5995 * based on the resource size, e.g., to find registers at a 5996 * fixed offset before the end of the BAR. 5997 * 5998 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and 5999 * set r->start to the desired alignment. By itself this 6000 * doesn't prevent other BARs being put inside the alignment 6001 * region, but if we realign *every* resource of every device in 6002 * the system, none of them will share an alignment region. 6003 * 6004 * When the user has requested alignment for only some devices via 6005 * the "pci=resource_alignment" argument, "resize" is true and we 6006 * use the first method. Otherwise we assume we're aligning all 6007 * devices and we use the second. 6008 */ 6009 6010 pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n", 6011 bar, r, (unsigned long long)align); 6012 6013 if (resize) { 6014 r->start = 0; 6015 r->end = align - 1; 6016 } else { 6017 r->flags &= ~IORESOURCE_SIZEALIGN; 6018 r->flags |= IORESOURCE_STARTALIGN; 6019 r->start = align; 6020 r->end = r->start + size - 1; 6021 } 6022 r->flags |= IORESOURCE_UNSET; 6023 } 6024 6025 /* 6026 * This function disables memory decoding and releases memory resources 6027 * of the device specified by kernel's boot parameter 'pci=resource_alignment='. 6028 * It also rounds up size to specified alignment. 6029 * Later on, the kernel will assign page-aligned memory resource back 6030 * to the device. 6031 */ 6032 void pci_reassigndev_resource_alignment(struct pci_dev *dev) 6033 { 6034 int i; 6035 struct resource *r; 6036 resource_size_t align; 6037 u16 command; 6038 bool resize = false; 6039 6040 /* 6041 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec 6042 * 3.4.1.11. Their resources are allocated from the space 6043 * described by the VF BARx register in the PF's SR-IOV capability. 6044 * We can't influence their alignment here. 6045 */ 6046 if (dev->is_virtfn) 6047 return; 6048 6049 /* check if specified PCI is target device to reassign */ 6050 align = pci_specified_resource_alignment(dev, &resize); 6051 if (!align) 6052 return; 6053 6054 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL && 6055 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) { 6056 pci_warn(dev, "Can't reassign resources to host bridge\n"); 6057 return; 6058 } 6059 6060 pci_read_config_word(dev, PCI_COMMAND, &command); 6061 command &= ~PCI_COMMAND_MEMORY; 6062 pci_write_config_word(dev, PCI_COMMAND, command); 6063 6064 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 6065 pci_request_resource_alignment(dev, i, align, resize); 6066 6067 /* 6068 * Need to disable bridge's resource window, 6069 * to enable the kernel to reassign new resource 6070 * window later on. 6071 */ 6072 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 6073 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) { 6074 r = &dev->resource[i]; 6075 if (!(r->flags & IORESOURCE_MEM)) 6076 continue; 6077 r->flags |= IORESOURCE_UNSET; 6078 r->end = resource_size(r) - 1; 6079 r->start = 0; 6080 } 6081 pci_disable_bridge_window(dev); 6082 } 6083 } 6084 6085 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count) 6086 { 6087 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1) 6088 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1; 6089 spin_lock(&resource_alignment_lock); 6090 strncpy(resource_alignment_param, buf, count); 6091 resource_alignment_param[count] = '\0'; 6092 spin_unlock(&resource_alignment_lock); 6093 return count; 6094 } 6095 6096 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size) 6097 { 6098 size_t count; 6099 spin_lock(&resource_alignment_lock); 6100 count = snprintf(buf, size, "%s", resource_alignment_param); 6101 spin_unlock(&resource_alignment_lock); 6102 return count; 6103 } 6104 6105 static ssize_t resource_alignment_show(struct bus_type *bus, char *buf) 6106 { 6107 return pci_get_resource_alignment_param(buf, PAGE_SIZE); 6108 } 6109 6110 static ssize_t resource_alignment_store(struct bus_type *bus, 6111 const char *buf, size_t count) 6112 { 6113 return pci_set_resource_alignment_param(buf, count); 6114 } 6115 6116 static BUS_ATTR_RW(resource_alignment); 6117 6118 static int __init pci_resource_alignment_sysfs_init(void) 6119 { 6120 return bus_create_file(&pci_bus_type, 6121 &bus_attr_resource_alignment); 6122 } 6123 late_initcall(pci_resource_alignment_sysfs_init); 6124 6125 static void pci_no_domains(void) 6126 { 6127 #ifdef CONFIG_PCI_DOMAINS 6128 pci_domains_supported = 0; 6129 #endif 6130 } 6131 6132 #ifdef CONFIG_PCI_DOMAINS_GENERIC 6133 static atomic_t __domain_nr = ATOMIC_INIT(-1); 6134 6135 static int pci_get_new_domain_nr(void) 6136 { 6137 return atomic_inc_return(&__domain_nr); 6138 } 6139 6140 static int of_pci_bus_find_domain_nr(struct device *parent) 6141 { 6142 static int use_dt_domains = -1; 6143 int domain = -1; 6144 6145 if (parent) 6146 domain = of_get_pci_domain_nr(parent->of_node); 6147 /* 6148 * Check DT domain and use_dt_domains values. 6149 * 6150 * If DT domain property is valid (domain >= 0) and 6151 * use_dt_domains != 0, the DT assignment is valid since this means 6152 * we have not previously allocated a domain number by using 6153 * pci_get_new_domain_nr(); we should also update use_dt_domains to 6154 * 1, to indicate that we have just assigned a domain number from 6155 * DT. 6156 * 6157 * If DT domain property value is not valid (ie domain < 0), and we 6158 * have not previously assigned a domain number from DT 6159 * (use_dt_domains != 1) we should assign a domain number by 6160 * using the: 6161 * 6162 * pci_get_new_domain_nr() 6163 * 6164 * API and update the use_dt_domains value to keep track of method we 6165 * are using to assign domain numbers (use_dt_domains = 0). 6166 * 6167 * All other combinations imply we have a platform that is trying 6168 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(), 6169 * which is a recipe for domain mishandling and it is prevented by 6170 * invalidating the domain value (domain = -1) and printing a 6171 * corresponding error. 6172 */ 6173 if (domain >= 0 && use_dt_domains) { 6174 use_dt_domains = 1; 6175 } else if (domain < 0 && use_dt_domains != 1) { 6176 use_dt_domains = 0; 6177 domain = pci_get_new_domain_nr(); 6178 } else { 6179 if (parent) 6180 pr_err("Node %pOF has ", parent->of_node); 6181 pr_err("Inconsistent \"linux,pci-domain\" property in DT\n"); 6182 domain = -1; 6183 } 6184 6185 return domain; 6186 } 6187 6188 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent) 6189 { 6190 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) : 6191 acpi_pci_bus_find_domain_nr(bus); 6192 } 6193 #endif 6194 6195 /** 6196 * pci_ext_cfg_avail - can we access extended PCI config space? 6197 * 6198 * Returns 1 if we can access PCI extended config space (offsets 6199 * greater than 0xff). This is the default implementation. Architecture 6200 * implementations can override this. 6201 */ 6202 int __weak pci_ext_cfg_avail(void) 6203 { 6204 return 1; 6205 } 6206 6207 void __weak pci_fixup_cardbus(struct pci_bus *bus) 6208 { 6209 } 6210 EXPORT_SYMBOL(pci_fixup_cardbus); 6211 6212 static int __init pci_setup(char *str) 6213 { 6214 while (str) { 6215 char *k = strchr(str, ','); 6216 if (k) 6217 *k++ = 0; 6218 if (*str && (str = pcibios_setup(str)) && *str) { 6219 if (!strcmp(str, "nomsi")) { 6220 pci_no_msi(); 6221 } else if (!strncmp(str, "noats", 5)) { 6222 pr_info("PCIe: ATS is disabled\n"); 6223 pcie_ats_disabled = true; 6224 } else if (!strcmp(str, "noaer")) { 6225 pci_no_aer(); 6226 } else if (!strcmp(str, "earlydump")) { 6227 pci_early_dump = true; 6228 } else if (!strncmp(str, "realloc=", 8)) { 6229 pci_realloc_get_opt(str + 8); 6230 } else if (!strncmp(str, "realloc", 7)) { 6231 pci_realloc_get_opt("on"); 6232 } else if (!strcmp(str, "nodomains")) { 6233 pci_no_domains(); 6234 } else if (!strncmp(str, "noari", 5)) { 6235 pcie_ari_disabled = true; 6236 } else if (!strncmp(str, "cbiosize=", 9)) { 6237 pci_cardbus_io_size = memparse(str + 9, &str); 6238 } else if (!strncmp(str, "cbmemsize=", 10)) { 6239 pci_cardbus_mem_size = memparse(str + 10, &str); 6240 } else if (!strncmp(str, "resource_alignment=", 19)) { 6241 pci_set_resource_alignment_param(str + 19, 6242 strlen(str + 19)); 6243 } else if (!strncmp(str, "ecrc=", 5)) { 6244 pcie_ecrc_get_policy(str + 5); 6245 } else if (!strncmp(str, "hpiosize=", 9)) { 6246 pci_hotplug_io_size = memparse(str + 9, &str); 6247 } else if (!strncmp(str, "hpmemsize=", 10)) { 6248 pci_hotplug_mem_size = memparse(str + 10, &str); 6249 } else if (!strncmp(str, "hpbussize=", 10)) { 6250 pci_hotplug_bus_size = 6251 simple_strtoul(str + 10, &str, 0); 6252 if (pci_hotplug_bus_size > 0xff) 6253 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 6254 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) { 6255 pcie_bus_config = PCIE_BUS_TUNE_OFF; 6256 } else if (!strncmp(str, "pcie_bus_safe", 13)) { 6257 pcie_bus_config = PCIE_BUS_SAFE; 6258 } else if (!strncmp(str, "pcie_bus_perf", 13)) { 6259 pcie_bus_config = PCIE_BUS_PERFORMANCE; 6260 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) { 6261 pcie_bus_config = PCIE_BUS_PEER2PEER; 6262 } else if (!strncmp(str, "pcie_scan_all", 13)) { 6263 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS); 6264 } else if (!strncmp(str, "disable_acs_redir=", 18)) { 6265 disable_acs_redir_param = str + 18; 6266 } else { 6267 printk(KERN_ERR "PCI: Unknown option `%s'\n", 6268 str); 6269 } 6270 } 6271 str = k; 6272 } 6273 return 0; 6274 } 6275 early_param("pci", pci_setup); 6276 6277 /* 6278 * 'disable_acs_redir_param' is initialized in pci_setup(), above, to point 6279 * to data in the __initdata section which will be freed after the init 6280 * sequence is complete. We can't allocate memory in pci_setup() because some 6281 * architectures do not have any memory allocation service available during 6282 * an early_param() call. So we allocate memory and copy the variable here 6283 * before the init section is freed. 6284 */ 6285 static int __init pci_realloc_setup_params(void) 6286 { 6287 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL); 6288 6289 return 0; 6290 } 6291 pure_initcall(pci_realloc_setup_params); 6292