1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * PCI Bus Services, see include/linux/pci.h for further explanation. 4 * 5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter, 6 * David Mosberger-Tang 7 * 8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz> 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/kernel.h> 13 #include <linux/delay.h> 14 #include <linux/dmi.h> 15 #include <linux/init.h> 16 #include <linux/of.h> 17 #include <linux/of_pci.h> 18 #include <linux/pci.h> 19 #include <linux/pm.h> 20 #include <linux/slab.h> 21 #include <linux/module.h> 22 #include <linux/spinlock.h> 23 #include <linux/string.h> 24 #include <linux/log2.h> 25 #include <linux/logic_pio.h> 26 #include <linux/pm_wakeup.h> 27 #include <linux/interrupt.h> 28 #include <linux/device.h> 29 #include <linux/pm_runtime.h> 30 #include <linux/pci_hotplug.h> 31 #include <linux/vmalloc.h> 32 #include <linux/pci-ats.h> 33 #include <asm/setup.h> 34 #include <asm/dma.h> 35 #include <linux/aer.h> 36 #include "pci.h" 37 38 DEFINE_MUTEX(pci_slot_mutex); 39 40 const char *pci_power_names[] = { 41 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown", 42 }; 43 EXPORT_SYMBOL_GPL(pci_power_names); 44 45 int isa_dma_bridge_buggy; 46 EXPORT_SYMBOL(isa_dma_bridge_buggy); 47 48 int pci_pci_problems; 49 EXPORT_SYMBOL(pci_pci_problems); 50 51 unsigned int pci_pm_d3_delay; 52 53 static void pci_pme_list_scan(struct work_struct *work); 54 55 static LIST_HEAD(pci_pme_list); 56 static DEFINE_MUTEX(pci_pme_list_mutex); 57 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan); 58 59 struct pci_pme_device { 60 struct list_head list; 61 struct pci_dev *dev; 62 }; 63 64 #define PME_TIMEOUT 1000 /* How long between PME checks */ 65 66 static void pci_dev_d3_sleep(struct pci_dev *dev) 67 { 68 unsigned int delay = dev->d3_delay; 69 70 if (delay < pci_pm_d3_delay) 71 delay = pci_pm_d3_delay; 72 73 if (delay) 74 msleep(delay); 75 } 76 77 #ifdef CONFIG_PCI_DOMAINS 78 int pci_domains_supported = 1; 79 #endif 80 81 #define DEFAULT_CARDBUS_IO_SIZE (256) 82 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024) 83 /* pci=cbmemsize=nnM,cbiosize=nn can override this */ 84 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE; 85 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE; 86 87 #define DEFAULT_HOTPLUG_IO_SIZE (256) 88 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024) 89 /* pci=hpmemsize=nnM,hpiosize=nn can override this */ 90 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE; 91 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE; 92 93 #define DEFAULT_HOTPLUG_BUS_SIZE 1 94 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 95 96 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT; 97 98 /* 99 * The default CLS is used if arch didn't set CLS explicitly and not 100 * all pci devices agree on the same value. Arch can override either 101 * the dfl or actual value as it sees fit. Don't forget this is 102 * measured in 32-bit words, not bytes. 103 */ 104 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2; 105 u8 pci_cache_line_size; 106 107 /* 108 * If we set up a device for bus mastering, we need to check the latency 109 * timer as certain BIOSes forget to set it properly. 110 */ 111 unsigned int pcibios_max_latency = 255; 112 113 /* If set, the PCIe ARI capability will not be used. */ 114 static bool pcie_ari_disabled; 115 116 /* If set, the PCIe ATS capability will not be used. */ 117 static bool pcie_ats_disabled; 118 119 /* If set, the PCI config space of each device is printed during boot. */ 120 bool pci_early_dump; 121 122 bool pci_ats_disabled(void) 123 { 124 return pcie_ats_disabled; 125 } 126 127 /* Disable bridge_d3 for all PCIe ports */ 128 static bool pci_bridge_d3_disable; 129 /* Force bridge_d3 for all PCIe ports */ 130 static bool pci_bridge_d3_force; 131 132 static int __init pcie_port_pm_setup(char *str) 133 { 134 if (!strcmp(str, "off")) 135 pci_bridge_d3_disable = true; 136 else if (!strcmp(str, "force")) 137 pci_bridge_d3_force = true; 138 return 1; 139 } 140 __setup("pcie_port_pm=", pcie_port_pm_setup); 141 142 /* Time to wait after a reset for device to become responsive */ 143 #define PCIE_RESET_READY_POLL_MS 60000 144 145 /** 146 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children 147 * @bus: pointer to PCI bus structure to search 148 * 149 * Given a PCI bus, returns the highest PCI bus number present in the set 150 * including the given PCI bus and its list of child PCI buses. 151 */ 152 unsigned char pci_bus_max_busnr(struct pci_bus *bus) 153 { 154 struct pci_bus *tmp; 155 unsigned char max, n; 156 157 max = bus->busn_res.end; 158 list_for_each_entry(tmp, &bus->children, node) { 159 n = pci_bus_max_busnr(tmp); 160 if (n > max) 161 max = n; 162 } 163 return max; 164 } 165 EXPORT_SYMBOL_GPL(pci_bus_max_busnr); 166 167 #ifdef CONFIG_HAS_IOMEM 168 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar) 169 { 170 struct resource *res = &pdev->resource[bar]; 171 172 /* 173 * Make sure the BAR is actually a memory resource, not an IO resource 174 */ 175 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) { 176 pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res); 177 return NULL; 178 } 179 return ioremap_nocache(res->start, resource_size(res)); 180 } 181 EXPORT_SYMBOL_GPL(pci_ioremap_bar); 182 183 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar) 184 { 185 /* 186 * Make sure the BAR is actually a memory resource, not an IO resource 187 */ 188 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) { 189 WARN_ON(1); 190 return NULL; 191 } 192 return ioremap_wc(pci_resource_start(pdev, bar), 193 pci_resource_len(pdev, bar)); 194 } 195 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar); 196 #endif 197 198 /** 199 * pci_dev_str_match_path - test if a path string matches a device 200 * @dev: the PCI device to test 201 * @path: string to match the device against 202 * @endptr: pointer to the string after the match 203 * 204 * Test if a string (typically from a kernel parameter) formatted as a 205 * path of device/function addresses matches a PCI device. The string must 206 * be of the form: 207 * 208 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 209 * 210 * A path for a device can be obtained using 'lspci -t'. Using a path 211 * is more robust against bus renumbering than using only a single bus, 212 * device and function address. 213 * 214 * Returns 1 if the string matches the device, 0 if it does not and 215 * a negative error code if it fails to parse the string. 216 */ 217 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path, 218 const char **endptr) 219 { 220 int ret; 221 int seg, bus, slot, func; 222 char *wpath, *p; 223 char end; 224 225 *endptr = strchrnul(path, ';'); 226 227 wpath = kmemdup_nul(path, *endptr - path, GFP_KERNEL); 228 if (!wpath) 229 return -ENOMEM; 230 231 while (1) { 232 p = strrchr(wpath, '/'); 233 if (!p) 234 break; 235 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end); 236 if (ret != 2) { 237 ret = -EINVAL; 238 goto free_and_exit; 239 } 240 241 if (dev->devfn != PCI_DEVFN(slot, func)) { 242 ret = 0; 243 goto free_and_exit; 244 } 245 246 /* 247 * Note: we don't need to get a reference to the upstream 248 * bridge because we hold a reference to the top level 249 * device which should hold a reference to the bridge, 250 * and so on. 251 */ 252 dev = pci_upstream_bridge(dev); 253 if (!dev) { 254 ret = 0; 255 goto free_and_exit; 256 } 257 258 *p = 0; 259 } 260 261 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot, 262 &func, &end); 263 if (ret != 4) { 264 seg = 0; 265 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end); 266 if (ret != 3) { 267 ret = -EINVAL; 268 goto free_and_exit; 269 } 270 } 271 272 ret = (seg == pci_domain_nr(dev->bus) && 273 bus == dev->bus->number && 274 dev->devfn == PCI_DEVFN(slot, func)); 275 276 free_and_exit: 277 kfree(wpath); 278 return ret; 279 } 280 281 /** 282 * pci_dev_str_match - test if a string matches a device 283 * @dev: the PCI device to test 284 * @p: string to match the device against 285 * @endptr: pointer to the string after the match 286 * 287 * Test if a string (typically from a kernel parameter) matches a specified 288 * PCI device. The string may be of one of the following formats: 289 * 290 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 291 * pci:<vendor>:<device>[:<subvendor>:<subdevice>] 292 * 293 * The first format specifies a PCI bus/device/function address which 294 * may change if new hardware is inserted, if motherboard firmware changes, 295 * or due to changes caused in kernel parameters. If the domain is 296 * left unspecified, it is taken to be 0. In order to be robust against 297 * bus renumbering issues, a path of PCI device/function numbers may be used 298 * to address the specific device. The path for a device can be determined 299 * through the use of 'lspci -t'. 300 * 301 * The second format matches devices using IDs in the configuration 302 * space which may match multiple devices in the system. A value of 0 303 * for any field will match all devices. (Note: this differs from 304 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for 305 * legacy reasons and convenience so users don't have to specify 306 * FFFFFFFFs on the command line.) 307 * 308 * Returns 1 if the string matches the device, 0 if it does not and 309 * a negative error code if the string cannot be parsed. 310 */ 311 static int pci_dev_str_match(struct pci_dev *dev, const char *p, 312 const char **endptr) 313 { 314 int ret; 315 int count; 316 unsigned short vendor, device, subsystem_vendor, subsystem_device; 317 318 if (strncmp(p, "pci:", 4) == 0) { 319 /* PCI vendor/device (subvendor/subdevice) IDs are specified */ 320 p += 4; 321 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device, 322 &subsystem_vendor, &subsystem_device, &count); 323 if (ret != 4) { 324 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count); 325 if (ret != 2) 326 return -EINVAL; 327 328 subsystem_vendor = 0; 329 subsystem_device = 0; 330 } 331 332 p += count; 333 334 if ((!vendor || vendor == dev->vendor) && 335 (!device || device == dev->device) && 336 (!subsystem_vendor || 337 subsystem_vendor == dev->subsystem_vendor) && 338 (!subsystem_device || 339 subsystem_device == dev->subsystem_device)) 340 goto found; 341 } else { 342 /* 343 * PCI Bus, Device, Function IDs are specified 344 * (optionally, may include a path of devfns following it) 345 */ 346 ret = pci_dev_str_match_path(dev, p, &p); 347 if (ret < 0) 348 return ret; 349 else if (ret) 350 goto found; 351 } 352 353 *endptr = p; 354 return 0; 355 356 found: 357 *endptr = p; 358 return 1; 359 } 360 361 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn, 362 u8 pos, int cap, int *ttl) 363 { 364 u8 id; 365 u16 ent; 366 367 pci_bus_read_config_byte(bus, devfn, pos, &pos); 368 369 while ((*ttl)--) { 370 if (pos < 0x40) 371 break; 372 pos &= ~3; 373 pci_bus_read_config_word(bus, devfn, pos, &ent); 374 375 id = ent & 0xff; 376 if (id == 0xff) 377 break; 378 if (id == cap) 379 return pos; 380 pos = (ent >> 8); 381 } 382 return 0; 383 } 384 385 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn, 386 u8 pos, int cap) 387 { 388 int ttl = PCI_FIND_CAP_TTL; 389 390 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl); 391 } 392 393 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap) 394 { 395 return __pci_find_next_cap(dev->bus, dev->devfn, 396 pos + PCI_CAP_LIST_NEXT, cap); 397 } 398 EXPORT_SYMBOL_GPL(pci_find_next_capability); 399 400 static int __pci_bus_find_cap_start(struct pci_bus *bus, 401 unsigned int devfn, u8 hdr_type) 402 { 403 u16 status; 404 405 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status); 406 if (!(status & PCI_STATUS_CAP_LIST)) 407 return 0; 408 409 switch (hdr_type) { 410 case PCI_HEADER_TYPE_NORMAL: 411 case PCI_HEADER_TYPE_BRIDGE: 412 return PCI_CAPABILITY_LIST; 413 case PCI_HEADER_TYPE_CARDBUS: 414 return PCI_CB_CAPABILITY_LIST; 415 } 416 417 return 0; 418 } 419 420 /** 421 * pci_find_capability - query for devices' capabilities 422 * @dev: PCI device to query 423 * @cap: capability code 424 * 425 * Tell if a device supports a given PCI capability. 426 * Returns the address of the requested capability structure within the 427 * device's PCI configuration space or 0 in case the device does not 428 * support it. Possible values for @cap include: 429 * 430 * %PCI_CAP_ID_PM Power Management 431 * %PCI_CAP_ID_AGP Accelerated Graphics Port 432 * %PCI_CAP_ID_VPD Vital Product Data 433 * %PCI_CAP_ID_SLOTID Slot Identification 434 * %PCI_CAP_ID_MSI Message Signalled Interrupts 435 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap 436 * %PCI_CAP_ID_PCIX PCI-X 437 * %PCI_CAP_ID_EXP PCI Express 438 */ 439 int pci_find_capability(struct pci_dev *dev, int cap) 440 { 441 int pos; 442 443 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 444 if (pos) 445 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap); 446 447 return pos; 448 } 449 EXPORT_SYMBOL(pci_find_capability); 450 451 /** 452 * pci_bus_find_capability - query for devices' capabilities 453 * @bus: the PCI bus to query 454 * @devfn: PCI device to query 455 * @cap: capability code 456 * 457 * Like pci_find_capability() but works for PCI devices that do not have a 458 * pci_dev structure set up yet. 459 * 460 * Returns the address of the requested capability structure within the 461 * device's PCI configuration space or 0 in case the device does not 462 * support it. 463 */ 464 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap) 465 { 466 int pos; 467 u8 hdr_type; 468 469 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type); 470 471 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f); 472 if (pos) 473 pos = __pci_find_next_cap(bus, devfn, pos, cap); 474 475 return pos; 476 } 477 EXPORT_SYMBOL(pci_bus_find_capability); 478 479 /** 480 * pci_find_next_ext_capability - Find an extended capability 481 * @dev: PCI device to query 482 * @start: address at which to start looking (0 to start at beginning of list) 483 * @cap: capability code 484 * 485 * Returns the address of the next matching extended capability structure 486 * within the device's PCI configuration space or 0 if the device does 487 * not support it. Some capabilities can occur several times, e.g., the 488 * vendor-specific capability, and this provides a way to find them all. 489 */ 490 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap) 491 { 492 u32 header; 493 int ttl; 494 int pos = PCI_CFG_SPACE_SIZE; 495 496 /* minimum 8 bytes per capability */ 497 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8; 498 499 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE) 500 return 0; 501 502 if (start) 503 pos = start; 504 505 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 506 return 0; 507 508 /* 509 * If we have no capabilities, this is indicated by cap ID, 510 * cap version and next pointer all being 0. 511 */ 512 if (header == 0) 513 return 0; 514 515 while (ttl-- > 0) { 516 if (PCI_EXT_CAP_ID(header) == cap && pos != start) 517 return pos; 518 519 pos = PCI_EXT_CAP_NEXT(header); 520 if (pos < PCI_CFG_SPACE_SIZE) 521 break; 522 523 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 524 break; 525 } 526 527 return 0; 528 } 529 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability); 530 531 /** 532 * pci_find_ext_capability - Find an extended capability 533 * @dev: PCI device to query 534 * @cap: capability code 535 * 536 * Returns the address of the requested extended capability structure 537 * within the device's PCI configuration space or 0 if the device does 538 * not support it. Possible values for @cap include: 539 * 540 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting 541 * %PCI_EXT_CAP_ID_VC Virtual Channel 542 * %PCI_EXT_CAP_ID_DSN Device Serial Number 543 * %PCI_EXT_CAP_ID_PWR Power Budgeting 544 */ 545 int pci_find_ext_capability(struct pci_dev *dev, int cap) 546 { 547 return pci_find_next_ext_capability(dev, 0, cap); 548 } 549 EXPORT_SYMBOL_GPL(pci_find_ext_capability); 550 551 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap) 552 { 553 int rc, ttl = PCI_FIND_CAP_TTL; 554 u8 cap, mask; 555 556 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST) 557 mask = HT_3BIT_CAP_MASK; 558 else 559 mask = HT_5BIT_CAP_MASK; 560 561 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos, 562 PCI_CAP_ID_HT, &ttl); 563 while (pos) { 564 rc = pci_read_config_byte(dev, pos + 3, &cap); 565 if (rc != PCIBIOS_SUCCESSFUL) 566 return 0; 567 568 if ((cap & mask) == ht_cap) 569 return pos; 570 571 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, 572 pos + PCI_CAP_LIST_NEXT, 573 PCI_CAP_ID_HT, &ttl); 574 } 575 576 return 0; 577 } 578 /** 579 * pci_find_next_ht_capability - query a device's Hypertransport capabilities 580 * @dev: PCI device to query 581 * @pos: Position from which to continue searching 582 * @ht_cap: Hypertransport capability code 583 * 584 * To be used in conjunction with pci_find_ht_capability() to search for 585 * all capabilities matching @ht_cap. @pos should always be a value returned 586 * from pci_find_ht_capability(). 587 * 588 * NB. To be 100% safe against broken PCI devices, the caller should take 589 * steps to avoid an infinite loop. 590 */ 591 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap) 592 { 593 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap); 594 } 595 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability); 596 597 /** 598 * pci_find_ht_capability - query a device's Hypertransport capabilities 599 * @dev: PCI device to query 600 * @ht_cap: Hypertransport capability code 601 * 602 * Tell if a device supports a given Hypertransport capability. 603 * Returns an address within the device's PCI configuration space 604 * or 0 in case the device does not support the request capability. 605 * The address points to the PCI capability, of type PCI_CAP_ID_HT, 606 * which has a Hypertransport capability matching @ht_cap. 607 */ 608 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap) 609 { 610 int pos; 611 612 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 613 if (pos) 614 pos = __pci_find_next_ht_cap(dev, pos, ht_cap); 615 616 return pos; 617 } 618 EXPORT_SYMBOL_GPL(pci_find_ht_capability); 619 620 /** 621 * pci_find_parent_resource - return resource region of parent bus of given 622 * region 623 * @dev: PCI device structure contains resources to be searched 624 * @res: child resource record for which parent is sought 625 * 626 * For given resource region of given device, return the resource region of 627 * parent bus the given region is contained in. 628 */ 629 struct resource *pci_find_parent_resource(const struct pci_dev *dev, 630 struct resource *res) 631 { 632 const struct pci_bus *bus = dev->bus; 633 struct resource *r; 634 int i; 635 636 pci_bus_for_each_resource(bus, r, i) { 637 if (!r) 638 continue; 639 if (resource_contains(r, res)) { 640 641 /* 642 * If the window is prefetchable but the BAR is 643 * not, the allocator made a mistake. 644 */ 645 if (r->flags & IORESOURCE_PREFETCH && 646 !(res->flags & IORESOURCE_PREFETCH)) 647 return NULL; 648 649 /* 650 * If we're below a transparent bridge, there may 651 * be both a positively-decoded aperture and a 652 * subtractively-decoded region that contain the BAR. 653 * We want the positively-decoded one, so this depends 654 * on pci_bus_for_each_resource() giving us those 655 * first. 656 */ 657 return r; 658 } 659 } 660 return NULL; 661 } 662 EXPORT_SYMBOL(pci_find_parent_resource); 663 664 /** 665 * pci_find_resource - Return matching PCI device resource 666 * @dev: PCI device to query 667 * @res: Resource to look for 668 * 669 * Goes over standard PCI resources (BARs) and checks if the given resource 670 * is partially or fully contained in any of them. In that case the 671 * matching resource is returned, %NULL otherwise. 672 */ 673 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res) 674 { 675 int i; 676 677 for (i = 0; i < PCI_ROM_RESOURCE; i++) { 678 struct resource *r = &dev->resource[i]; 679 680 if (r->start && resource_contains(r, res)) 681 return r; 682 } 683 684 return NULL; 685 } 686 EXPORT_SYMBOL(pci_find_resource); 687 688 /** 689 * pci_find_pcie_root_port - return PCIe Root Port 690 * @dev: PCI device to query 691 * 692 * Traverse up the parent chain and return the PCIe Root Port PCI Device 693 * for a given PCI Device. 694 */ 695 struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev) 696 { 697 struct pci_dev *bridge, *highest_pcie_bridge = dev; 698 699 bridge = pci_upstream_bridge(dev); 700 while (bridge && pci_is_pcie(bridge)) { 701 highest_pcie_bridge = bridge; 702 bridge = pci_upstream_bridge(bridge); 703 } 704 705 if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT) 706 return NULL; 707 708 return highest_pcie_bridge; 709 } 710 EXPORT_SYMBOL(pci_find_pcie_root_port); 711 712 /** 713 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos 714 * @dev: the PCI device to operate on 715 * @pos: config space offset of status word 716 * @mask: mask of bit(s) to care about in status word 717 * 718 * Return 1 when mask bit(s) in status word clear, 0 otherwise. 719 */ 720 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask) 721 { 722 int i; 723 724 /* Wait for Transaction Pending bit clean */ 725 for (i = 0; i < 4; i++) { 726 u16 status; 727 if (i) 728 msleep((1 << (i - 1)) * 100); 729 730 pci_read_config_word(dev, pos, &status); 731 if (!(status & mask)) 732 return 1; 733 } 734 735 return 0; 736 } 737 738 /** 739 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up) 740 * @dev: PCI device to have its BARs restored 741 * 742 * Restore the BAR values for a given device, so as to make it 743 * accessible by its driver. 744 */ 745 static void pci_restore_bars(struct pci_dev *dev) 746 { 747 int i; 748 749 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) 750 pci_update_resource(dev, i); 751 } 752 753 static const struct pci_platform_pm_ops *pci_platform_pm; 754 755 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops) 756 { 757 if (!ops->is_manageable || !ops->set_state || !ops->get_state || 758 !ops->choose_state || !ops->set_wakeup || !ops->need_resume) 759 return -EINVAL; 760 pci_platform_pm = ops; 761 return 0; 762 } 763 764 static inline bool platform_pci_power_manageable(struct pci_dev *dev) 765 { 766 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false; 767 } 768 769 static inline int platform_pci_set_power_state(struct pci_dev *dev, 770 pci_power_t t) 771 { 772 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS; 773 } 774 775 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev) 776 { 777 return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN; 778 } 779 780 static inline void platform_pci_refresh_power_state(struct pci_dev *dev) 781 { 782 if (pci_platform_pm && pci_platform_pm->refresh_state) 783 pci_platform_pm->refresh_state(dev); 784 } 785 786 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev) 787 { 788 return pci_platform_pm ? 789 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR; 790 } 791 792 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable) 793 { 794 return pci_platform_pm ? 795 pci_platform_pm->set_wakeup(dev, enable) : -ENODEV; 796 } 797 798 static inline bool platform_pci_need_resume(struct pci_dev *dev) 799 { 800 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false; 801 } 802 803 static inline bool platform_pci_bridge_d3(struct pci_dev *dev) 804 { 805 return pci_platform_pm ? pci_platform_pm->bridge_d3(dev) : false; 806 } 807 808 /** 809 * pci_raw_set_power_state - Use PCI PM registers to set the power state of 810 * given PCI device 811 * @dev: PCI device to handle. 812 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 813 * 814 * RETURN VALUE: 815 * -EINVAL if the requested state is invalid. 816 * -EIO if device does not support PCI PM or its PM capabilities register has a 817 * wrong version, or device doesn't support the requested state. 818 * 0 if device already is in the requested state. 819 * 0 if device's power state has been successfully changed. 820 */ 821 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state) 822 { 823 u16 pmcsr; 824 bool need_restore = false; 825 826 /* Check if we're already there */ 827 if (dev->current_state == state) 828 return 0; 829 830 if (!dev->pm_cap) 831 return -EIO; 832 833 if (state < PCI_D0 || state > PCI_D3hot) 834 return -EINVAL; 835 836 /* 837 * Validate current state: 838 * Can enter D0 from any state, but if we can only go deeper 839 * to sleep if we're already in a low power state 840 */ 841 if (state != PCI_D0 && dev->current_state <= PCI_D3cold 842 && dev->current_state > state) { 843 pci_err(dev, "invalid power transition (from state %d to %d)\n", 844 dev->current_state, state); 845 return -EINVAL; 846 } 847 848 /* Check if this device supports the desired state */ 849 if ((state == PCI_D1 && !dev->d1_support) 850 || (state == PCI_D2 && !dev->d2_support)) 851 return -EIO; 852 853 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 854 855 /* 856 * If we're (effectively) in D3, force entire word to 0. 857 * This doesn't affect PME_Status, disables PME_En, and 858 * sets PowerState to 0. 859 */ 860 switch (dev->current_state) { 861 case PCI_D0: 862 case PCI_D1: 863 case PCI_D2: 864 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 865 pmcsr |= state; 866 break; 867 case PCI_D3hot: 868 case PCI_D3cold: 869 case PCI_UNKNOWN: /* Boot-up */ 870 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot 871 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET)) 872 need_restore = true; 873 /* Fall-through - force to D0 */ 874 default: 875 pmcsr = 0; 876 break; 877 } 878 879 /* Enter specified state */ 880 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 881 882 /* 883 * Mandatory power management transition delays; see PCI PM 1.1 884 * 5.6.1 table 18 885 */ 886 if (state == PCI_D3hot || dev->current_state == PCI_D3hot) 887 pci_dev_d3_sleep(dev); 888 else if (state == PCI_D2 || dev->current_state == PCI_D2) 889 udelay(PCI_PM_D2_DELAY); 890 891 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 892 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 893 if (dev->current_state != state && printk_ratelimit()) 894 pci_info(dev, "Refused to change power state, currently in D%d\n", 895 dev->current_state); 896 897 /* 898 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT 899 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning 900 * from D3hot to D0 _may_ perform an internal reset, thereby 901 * going to "D0 Uninitialized" rather than "D0 Initialized". 902 * For example, at least some versions of the 3c905B and the 903 * 3c556B exhibit this behaviour. 904 * 905 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave 906 * devices in a D3hot state at boot. Consequently, we need to 907 * restore at least the BARs so that the device will be 908 * accessible to its driver. 909 */ 910 if (need_restore) 911 pci_restore_bars(dev); 912 913 if (dev->bus->self) 914 pcie_aspm_pm_state_change(dev->bus->self); 915 916 return 0; 917 } 918 919 /** 920 * pci_update_current_state - Read power state of given device and cache it 921 * @dev: PCI device to handle. 922 * @state: State to cache in case the device doesn't have the PM capability 923 * 924 * The power state is read from the PMCSR register, which however is 925 * inaccessible in D3cold. The platform firmware is therefore queried first 926 * to detect accessibility of the register. In case the platform firmware 927 * reports an incorrect state or the device isn't power manageable by the 928 * platform at all, we try to detect D3cold by testing accessibility of the 929 * vendor ID in config space. 930 */ 931 void pci_update_current_state(struct pci_dev *dev, pci_power_t state) 932 { 933 if (platform_pci_get_power_state(dev) == PCI_D3cold || 934 !pci_device_is_present(dev)) { 935 dev->current_state = PCI_D3cold; 936 } else if (dev->pm_cap) { 937 u16 pmcsr; 938 939 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 940 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 941 } else { 942 dev->current_state = state; 943 } 944 } 945 946 /** 947 * pci_refresh_power_state - Refresh the given device's power state data 948 * @dev: Target PCI device. 949 * 950 * Ask the platform to refresh the devices power state information and invoke 951 * pci_update_current_state() to update its current PCI power state. 952 */ 953 void pci_refresh_power_state(struct pci_dev *dev) 954 { 955 if (platform_pci_power_manageable(dev)) 956 platform_pci_refresh_power_state(dev); 957 958 pci_update_current_state(dev, dev->current_state); 959 } 960 961 /** 962 * pci_power_up - Put the given device into D0 forcibly 963 * @dev: PCI device to power up 964 */ 965 void pci_power_up(struct pci_dev *dev) 966 { 967 if (platform_pci_power_manageable(dev)) 968 platform_pci_set_power_state(dev, PCI_D0); 969 970 pci_raw_set_power_state(dev, PCI_D0); 971 pci_update_current_state(dev, PCI_D0); 972 } 973 974 /** 975 * pci_platform_power_transition - Use platform to change device power state 976 * @dev: PCI device to handle. 977 * @state: State to put the device into. 978 */ 979 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state) 980 { 981 int error; 982 983 if (platform_pci_power_manageable(dev)) { 984 error = platform_pci_set_power_state(dev, state); 985 if (!error) 986 pci_update_current_state(dev, state); 987 } else 988 error = -ENODEV; 989 990 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */ 991 dev->current_state = PCI_D0; 992 993 return error; 994 } 995 996 /** 997 * pci_wakeup - Wake up a PCI device 998 * @pci_dev: Device to handle. 999 * @ign: ignored parameter 1000 */ 1001 static int pci_wakeup(struct pci_dev *pci_dev, void *ign) 1002 { 1003 pci_wakeup_event(pci_dev); 1004 pm_request_resume(&pci_dev->dev); 1005 return 0; 1006 } 1007 1008 /** 1009 * pci_wakeup_bus - Walk given bus and wake up devices on it 1010 * @bus: Top bus of the subtree to walk. 1011 */ 1012 void pci_wakeup_bus(struct pci_bus *bus) 1013 { 1014 if (bus) 1015 pci_walk_bus(bus, pci_wakeup, NULL); 1016 } 1017 1018 /** 1019 * __pci_start_power_transition - Start power transition of a PCI device 1020 * @dev: PCI device to handle. 1021 * @state: State to put the device into. 1022 */ 1023 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state) 1024 { 1025 if (state == PCI_D0) { 1026 pci_platform_power_transition(dev, PCI_D0); 1027 /* 1028 * Mandatory power management transition delays are 1029 * handled in the PCIe portdrv resume hooks. 1030 */ 1031 if (dev->runtime_d3cold) { 1032 /* 1033 * When powering on a bridge from D3cold, the 1034 * whole hierarchy may be powered on into 1035 * D0uninitialized state, resume them to give 1036 * them a chance to suspend again 1037 */ 1038 pci_wakeup_bus(dev->subordinate); 1039 } 1040 } 1041 } 1042 1043 /** 1044 * __pci_dev_set_current_state - Set current state of a PCI device 1045 * @dev: Device to handle 1046 * @data: pointer to state to be set 1047 */ 1048 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data) 1049 { 1050 pci_power_t state = *(pci_power_t *)data; 1051 1052 dev->current_state = state; 1053 return 0; 1054 } 1055 1056 /** 1057 * pci_bus_set_current_state - Walk given bus and set current state of devices 1058 * @bus: Top bus of the subtree to walk. 1059 * @state: state to be set 1060 */ 1061 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state) 1062 { 1063 if (bus) 1064 pci_walk_bus(bus, __pci_dev_set_current_state, &state); 1065 } 1066 1067 /** 1068 * __pci_complete_power_transition - Complete power transition of a PCI device 1069 * @dev: PCI device to handle. 1070 * @state: State to put the device into. 1071 * 1072 * This function should not be called directly by device drivers. 1073 */ 1074 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state) 1075 { 1076 int ret; 1077 1078 if (state <= PCI_D0) 1079 return -EINVAL; 1080 ret = pci_platform_power_transition(dev, state); 1081 /* Power off the bridge may power off the whole hierarchy */ 1082 if (!ret && state == PCI_D3cold) 1083 pci_bus_set_current_state(dev->subordinate, PCI_D3cold); 1084 return ret; 1085 } 1086 EXPORT_SYMBOL_GPL(__pci_complete_power_transition); 1087 1088 /** 1089 * pci_set_power_state - Set the power state of a PCI device 1090 * @dev: PCI device to handle. 1091 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 1092 * 1093 * Transition a device to a new power state, using the platform firmware and/or 1094 * the device's PCI PM registers. 1095 * 1096 * RETURN VALUE: 1097 * -EINVAL if the requested state is invalid. 1098 * -EIO if device does not support PCI PM or its PM capabilities register has a 1099 * wrong version, or device doesn't support the requested state. 1100 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported. 1101 * 0 if device already is in the requested state. 1102 * 0 if the transition is to D3 but D3 is not supported. 1103 * 0 if device's power state has been successfully changed. 1104 */ 1105 int pci_set_power_state(struct pci_dev *dev, pci_power_t state) 1106 { 1107 int error; 1108 1109 /* Bound the state we're entering */ 1110 if (state > PCI_D3cold) 1111 state = PCI_D3cold; 1112 else if (state < PCI_D0) 1113 state = PCI_D0; 1114 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev)) 1115 1116 /* 1117 * If the device or the parent bridge do not support PCI 1118 * PM, ignore the request if we're doing anything other 1119 * than putting it into D0 (which would only happen on 1120 * boot). 1121 */ 1122 return 0; 1123 1124 /* Check if we're already there */ 1125 if (dev->current_state == state) 1126 return 0; 1127 1128 __pci_start_power_transition(dev, state); 1129 1130 /* 1131 * This device is quirked not to be put into D3, so don't put it in 1132 * D3 1133 */ 1134 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3)) 1135 return 0; 1136 1137 /* 1138 * To put device in D3cold, we put device into D3hot in native 1139 * way, then put device into D3cold with platform ops 1140 */ 1141 error = pci_raw_set_power_state(dev, state > PCI_D3hot ? 1142 PCI_D3hot : state); 1143 1144 if (!__pci_complete_power_transition(dev, state)) 1145 error = 0; 1146 1147 return error; 1148 } 1149 EXPORT_SYMBOL(pci_set_power_state); 1150 1151 /** 1152 * pci_choose_state - Choose the power state of a PCI device 1153 * @dev: PCI device to be suspended 1154 * @state: target sleep state for the whole system. This is the value 1155 * that is passed to suspend() function. 1156 * 1157 * Returns PCI power state suitable for given device and given system 1158 * message. 1159 */ 1160 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state) 1161 { 1162 pci_power_t ret; 1163 1164 if (!dev->pm_cap) 1165 return PCI_D0; 1166 1167 ret = platform_pci_choose_state(dev); 1168 if (ret != PCI_POWER_ERROR) 1169 return ret; 1170 1171 switch (state.event) { 1172 case PM_EVENT_ON: 1173 return PCI_D0; 1174 case PM_EVENT_FREEZE: 1175 case PM_EVENT_PRETHAW: 1176 /* REVISIT both freeze and pre-thaw "should" use D0 */ 1177 case PM_EVENT_SUSPEND: 1178 case PM_EVENT_HIBERNATE: 1179 return PCI_D3hot; 1180 default: 1181 pci_info(dev, "unrecognized suspend event %d\n", 1182 state.event); 1183 BUG(); 1184 } 1185 return PCI_D0; 1186 } 1187 EXPORT_SYMBOL(pci_choose_state); 1188 1189 #define PCI_EXP_SAVE_REGS 7 1190 1191 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev, 1192 u16 cap, bool extended) 1193 { 1194 struct pci_cap_saved_state *tmp; 1195 1196 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) { 1197 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap) 1198 return tmp; 1199 } 1200 return NULL; 1201 } 1202 1203 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap) 1204 { 1205 return _pci_find_saved_cap(dev, cap, false); 1206 } 1207 1208 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap) 1209 { 1210 return _pci_find_saved_cap(dev, cap, true); 1211 } 1212 1213 static int pci_save_pcie_state(struct pci_dev *dev) 1214 { 1215 int i = 0; 1216 struct pci_cap_saved_state *save_state; 1217 u16 *cap; 1218 1219 if (!pci_is_pcie(dev)) 1220 return 0; 1221 1222 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1223 if (!save_state) { 1224 pci_err(dev, "buffer not found in %s\n", __func__); 1225 return -ENOMEM; 1226 } 1227 1228 cap = (u16 *)&save_state->cap.data[0]; 1229 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]); 1230 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]); 1231 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]); 1232 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]); 1233 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]); 1234 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]); 1235 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]); 1236 1237 return 0; 1238 } 1239 1240 static void pci_restore_pcie_state(struct pci_dev *dev) 1241 { 1242 int i = 0; 1243 struct pci_cap_saved_state *save_state; 1244 u16 *cap; 1245 1246 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1247 if (!save_state) 1248 return; 1249 1250 cap = (u16 *)&save_state->cap.data[0]; 1251 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]); 1252 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]); 1253 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]); 1254 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]); 1255 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]); 1256 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]); 1257 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]); 1258 } 1259 1260 static int pci_save_pcix_state(struct pci_dev *dev) 1261 { 1262 int pos; 1263 struct pci_cap_saved_state *save_state; 1264 1265 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1266 if (!pos) 1267 return 0; 1268 1269 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1270 if (!save_state) { 1271 pci_err(dev, "buffer not found in %s\n", __func__); 1272 return -ENOMEM; 1273 } 1274 1275 pci_read_config_word(dev, pos + PCI_X_CMD, 1276 (u16 *)save_state->cap.data); 1277 1278 return 0; 1279 } 1280 1281 static void pci_restore_pcix_state(struct pci_dev *dev) 1282 { 1283 int i = 0, pos; 1284 struct pci_cap_saved_state *save_state; 1285 u16 *cap; 1286 1287 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1288 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1289 if (!save_state || !pos) 1290 return; 1291 cap = (u16 *)&save_state->cap.data[0]; 1292 1293 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]); 1294 } 1295 1296 static void pci_save_ltr_state(struct pci_dev *dev) 1297 { 1298 int ltr; 1299 struct pci_cap_saved_state *save_state; 1300 u16 *cap; 1301 1302 if (!pci_is_pcie(dev)) 1303 return; 1304 1305 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR); 1306 if (!ltr) 1307 return; 1308 1309 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR); 1310 if (!save_state) { 1311 pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n"); 1312 return; 1313 } 1314 1315 cap = (u16 *)&save_state->cap.data[0]; 1316 pci_read_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap++); 1317 pci_read_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, cap++); 1318 } 1319 1320 static void pci_restore_ltr_state(struct pci_dev *dev) 1321 { 1322 struct pci_cap_saved_state *save_state; 1323 int ltr; 1324 u16 *cap; 1325 1326 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR); 1327 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR); 1328 if (!save_state || !ltr) 1329 return; 1330 1331 cap = (u16 *)&save_state->cap.data[0]; 1332 pci_write_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap++); 1333 pci_write_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, *cap++); 1334 } 1335 1336 /** 1337 * pci_save_state - save the PCI configuration space of a device before 1338 * suspending 1339 * @dev: PCI device that we're dealing with 1340 */ 1341 int pci_save_state(struct pci_dev *dev) 1342 { 1343 int i; 1344 /* XXX: 100% dword access ok here? */ 1345 for (i = 0; i < 16; i++) 1346 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]); 1347 dev->state_saved = true; 1348 1349 i = pci_save_pcie_state(dev); 1350 if (i != 0) 1351 return i; 1352 1353 i = pci_save_pcix_state(dev); 1354 if (i != 0) 1355 return i; 1356 1357 pci_save_ltr_state(dev); 1358 pci_save_dpc_state(dev); 1359 return pci_save_vc_state(dev); 1360 } 1361 EXPORT_SYMBOL(pci_save_state); 1362 1363 static void pci_restore_config_dword(struct pci_dev *pdev, int offset, 1364 u32 saved_val, int retry, bool force) 1365 { 1366 u32 val; 1367 1368 pci_read_config_dword(pdev, offset, &val); 1369 if (!force && val == saved_val) 1370 return; 1371 1372 for (;;) { 1373 pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n", 1374 offset, val, saved_val); 1375 pci_write_config_dword(pdev, offset, saved_val); 1376 if (retry-- <= 0) 1377 return; 1378 1379 pci_read_config_dword(pdev, offset, &val); 1380 if (val == saved_val) 1381 return; 1382 1383 mdelay(1); 1384 } 1385 } 1386 1387 static void pci_restore_config_space_range(struct pci_dev *pdev, 1388 int start, int end, int retry, 1389 bool force) 1390 { 1391 int index; 1392 1393 for (index = end; index >= start; index--) 1394 pci_restore_config_dword(pdev, 4 * index, 1395 pdev->saved_config_space[index], 1396 retry, force); 1397 } 1398 1399 static void pci_restore_config_space(struct pci_dev *pdev) 1400 { 1401 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) { 1402 pci_restore_config_space_range(pdev, 10, 15, 0, false); 1403 /* Restore BARs before the command register. */ 1404 pci_restore_config_space_range(pdev, 4, 9, 10, false); 1405 pci_restore_config_space_range(pdev, 0, 3, 0, false); 1406 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 1407 pci_restore_config_space_range(pdev, 12, 15, 0, false); 1408 1409 /* 1410 * Force rewriting of prefetch registers to avoid S3 resume 1411 * issues on Intel PCI bridges that occur when these 1412 * registers are not explicitly written. 1413 */ 1414 pci_restore_config_space_range(pdev, 9, 11, 0, true); 1415 pci_restore_config_space_range(pdev, 0, 8, 0, false); 1416 } else { 1417 pci_restore_config_space_range(pdev, 0, 15, 0, false); 1418 } 1419 } 1420 1421 static void pci_restore_rebar_state(struct pci_dev *pdev) 1422 { 1423 unsigned int pos, nbars, i; 1424 u32 ctrl; 1425 1426 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 1427 if (!pos) 1428 return; 1429 1430 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1431 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >> 1432 PCI_REBAR_CTRL_NBAR_SHIFT; 1433 1434 for (i = 0; i < nbars; i++, pos += 8) { 1435 struct resource *res; 1436 int bar_idx, size; 1437 1438 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1439 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX; 1440 res = pdev->resource + bar_idx; 1441 size = order_base_2((resource_size(res) >> 20) | 1) - 1; 1442 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 1443 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT; 1444 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 1445 } 1446 } 1447 1448 /** 1449 * pci_restore_state - Restore the saved state of a PCI device 1450 * @dev: PCI device that we're dealing with 1451 */ 1452 void pci_restore_state(struct pci_dev *dev) 1453 { 1454 if (!dev->state_saved) 1455 return; 1456 1457 /* 1458 * Restore max latencies (in the LTR capability) before enabling 1459 * LTR itself (in the PCIe capability). 1460 */ 1461 pci_restore_ltr_state(dev); 1462 1463 pci_restore_pcie_state(dev); 1464 pci_restore_pasid_state(dev); 1465 pci_restore_pri_state(dev); 1466 pci_restore_ats_state(dev); 1467 pci_restore_vc_state(dev); 1468 pci_restore_rebar_state(dev); 1469 pci_restore_dpc_state(dev); 1470 1471 pci_cleanup_aer_error_status_regs(dev); 1472 1473 pci_restore_config_space(dev); 1474 1475 pci_restore_pcix_state(dev); 1476 pci_restore_msi_state(dev); 1477 1478 /* Restore ACS and IOV configuration state */ 1479 pci_enable_acs(dev); 1480 pci_restore_iov_state(dev); 1481 1482 dev->state_saved = false; 1483 } 1484 EXPORT_SYMBOL(pci_restore_state); 1485 1486 struct pci_saved_state { 1487 u32 config_space[16]; 1488 struct pci_cap_saved_data cap[0]; 1489 }; 1490 1491 /** 1492 * pci_store_saved_state - Allocate and return an opaque struct containing 1493 * the device saved state. 1494 * @dev: PCI device that we're dealing with 1495 * 1496 * Return NULL if no state or error. 1497 */ 1498 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev) 1499 { 1500 struct pci_saved_state *state; 1501 struct pci_cap_saved_state *tmp; 1502 struct pci_cap_saved_data *cap; 1503 size_t size; 1504 1505 if (!dev->state_saved) 1506 return NULL; 1507 1508 size = sizeof(*state) + sizeof(struct pci_cap_saved_data); 1509 1510 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) 1511 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1512 1513 state = kzalloc(size, GFP_KERNEL); 1514 if (!state) 1515 return NULL; 1516 1517 memcpy(state->config_space, dev->saved_config_space, 1518 sizeof(state->config_space)); 1519 1520 cap = state->cap; 1521 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) { 1522 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1523 memcpy(cap, &tmp->cap, len); 1524 cap = (struct pci_cap_saved_data *)((u8 *)cap + len); 1525 } 1526 /* Empty cap_save terminates list */ 1527 1528 return state; 1529 } 1530 EXPORT_SYMBOL_GPL(pci_store_saved_state); 1531 1532 /** 1533 * pci_load_saved_state - Reload the provided save state into struct pci_dev. 1534 * @dev: PCI device that we're dealing with 1535 * @state: Saved state returned from pci_store_saved_state() 1536 */ 1537 int pci_load_saved_state(struct pci_dev *dev, 1538 struct pci_saved_state *state) 1539 { 1540 struct pci_cap_saved_data *cap; 1541 1542 dev->state_saved = false; 1543 1544 if (!state) 1545 return 0; 1546 1547 memcpy(dev->saved_config_space, state->config_space, 1548 sizeof(state->config_space)); 1549 1550 cap = state->cap; 1551 while (cap->size) { 1552 struct pci_cap_saved_state *tmp; 1553 1554 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended); 1555 if (!tmp || tmp->cap.size != cap->size) 1556 return -EINVAL; 1557 1558 memcpy(tmp->cap.data, cap->data, tmp->cap.size); 1559 cap = (struct pci_cap_saved_data *)((u8 *)cap + 1560 sizeof(struct pci_cap_saved_data) + cap->size); 1561 } 1562 1563 dev->state_saved = true; 1564 return 0; 1565 } 1566 EXPORT_SYMBOL_GPL(pci_load_saved_state); 1567 1568 /** 1569 * pci_load_and_free_saved_state - Reload the save state pointed to by state, 1570 * and free the memory allocated for it. 1571 * @dev: PCI device that we're dealing with 1572 * @state: Pointer to saved state returned from pci_store_saved_state() 1573 */ 1574 int pci_load_and_free_saved_state(struct pci_dev *dev, 1575 struct pci_saved_state **state) 1576 { 1577 int ret = pci_load_saved_state(dev, *state); 1578 kfree(*state); 1579 *state = NULL; 1580 return ret; 1581 } 1582 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state); 1583 1584 int __weak pcibios_enable_device(struct pci_dev *dev, int bars) 1585 { 1586 return pci_enable_resources(dev, bars); 1587 } 1588 1589 static int do_pci_enable_device(struct pci_dev *dev, int bars) 1590 { 1591 int err; 1592 struct pci_dev *bridge; 1593 u16 cmd; 1594 u8 pin; 1595 1596 err = pci_set_power_state(dev, PCI_D0); 1597 if (err < 0 && err != -EIO) 1598 return err; 1599 1600 bridge = pci_upstream_bridge(dev); 1601 if (bridge) 1602 pcie_aspm_powersave_config_link(bridge); 1603 1604 err = pcibios_enable_device(dev, bars); 1605 if (err < 0) 1606 return err; 1607 pci_fixup_device(pci_fixup_enable, dev); 1608 1609 if (dev->msi_enabled || dev->msix_enabled) 1610 return 0; 1611 1612 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin); 1613 if (pin) { 1614 pci_read_config_word(dev, PCI_COMMAND, &cmd); 1615 if (cmd & PCI_COMMAND_INTX_DISABLE) 1616 pci_write_config_word(dev, PCI_COMMAND, 1617 cmd & ~PCI_COMMAND_INTX_DISABLE); 1618 } 1619 1620 return 0; 1621 } 1622 1623 /** 1624 * pci_reenable_device - Resume abandoned device 1625 * @dev: PCI device to be resumed 1626 * 1627 * NOTE: This function is a backend of pci_default_resume() and is not supposed 1628 * to be called by normal code, write proper resume handler and use it instead. 1629 */ 1630 int pci_reenable_device(struct pci_dev *dev) 1631 { 1632 if (pci_is_enabled(dev)) 1633 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1); 1634 return 0; 1635 } 1636 EXPORT_SYMBOL(pci_reenable_device); 1637 1638 static void pci_enable_bridge(struct pci_dev *dev) 1639 { 1640 struct pci_dev *bridge; 1641 int retval; 1642 1643 bridge = pci_upstream_bridge(dev); 1644 if (bridge) 1645 pci_enable_bridge(bridge); 1646 1647 if (pci_is_enabled(dev)) { 1648 if (!dev->is_busmaster) 1649 pci_set_master(dev); 1650 return; 1651 } 1652 1653 retval = pci_enable_device(dev); 1654 if (retval) 1655 pci_err(dev, "Error enabling bridge (%d), continuing\n", 1656 retval); 1657 pci_set_master(dev); 1658 } 1659 1660 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags) 1661 { 1662 struct pci_dev *bridge; 1663 int err; 1664 int i, bars = 0; 1665 1666 /* 1667 * Power state could be unknown at this point, either due to a fresh 1668 * boot or a device removal call. So get the current power state 1669 * so that things like MSI message writing will behave as expected 1670 * (e.g. if the device really is in D0 at enable time). 1671 */ 1672 if (dev->pm_cap) { 1673 u16 pmcsr; 1674 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1675 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 1676 } 1677 1678 if (atomic_inc_return(&dev->enable_cnt) > 1) 1679 return 0; /* already enabled */ 1680 1681 bridge = pci_upstream_bridge(dev); 1682 if (bridge) 1683 pci_enable_bridge(bridge); 1684 1685 /* only skip sriov related */ 1686 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 1687 if (dev->resource[i].flags & flags) 1688 bars |= (1 << i); 1689 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++) 1690 if (dev->resource[i].flags & flags) 1691 bars |= (1 << i); 1692 1693 err = do_pci_enable_device(dev, bars); 1694 if (err < 0) 1695 atomic_dec(&dev->enable_cnt); 1696 return err; 1697 } 1698 1699 /** 1700 * pci_enable_device_io - Initialize a device for use with IO space 1701 * @dev: PCI device to be initialized 1702 * 1703 * Initialize device before it's used by a driver. Ask low-level code 1704 * to enable I/O resources. Wake up the device if it was suspended. 1705 * Beware, this function can fail. 1706 */ 1707 int pci_enable_device_io(struct pci_dev *dev) 1708 { 1709 return pci_enable_device_flags(dev, IORESOURCE_IO); 1710 } 1711 EXPORT_SYMBOL(pci_enable_device_io); 1712 1713 /** 1714 * pci_enable_device_mem - Initialize a device for use with Memory space 1715 * @dev: PCI device to be initialized 1716 * 1717 * Initialize device before it's used by a driver. Ask low-level code 1718 * to enable Memory resources. Wake up the device if it was suspended. 1719 * Beware, this function can fail. 1720 */ 1721 int pci_enable_device_mem(struct pci_dev *dev) 1722 { 1723 return pci_enable_device_flags(dev, IORESOURCE_MEM); 1724 } 1725 EXPORT_SYMBOL(pci_enable_device_mem); 1726 1727 /** 1728 * pci_enable_device - Initialize device before it's used by a driver. 1729 * @dev: PCI device to be initialized 1730 * 1731 * Initialize device before it's used by a driver. Ask low-level code 1732 * to enable I/O and memory. Wake up the device if it was suspended. 1733 * Beware, this function can fail. 1734 * 1735 * Note we don't actually enable the device many times if we call 1736 * this function repeatedly (we just increment the count). 1737 */ 1738 int pci_enable_device(struct pci_dev *dev) 1739 { 1740 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO); 1741 } 1742 EXPORT_SYMBOL(pci_enable_device); 1743 1744 /* 1745 * Managed PCI resources. This manages device on/off, INTx/MSI/MSI-X 1746 * on/off and BAR regions. pci_dev itself records MSI/MSI-X status, so 1747 * there's no need to track it separately. pci_devres is initialized 1748 * when a device is enabled using managed PCI device enable interface. 1749 */ 1750 struct pci_devres { 1751 unsigned int enabled:1; 1752 unsigned int pinned:1; 1753 unsigned int orig_intx:1; 1754 unsigned int restore_intx:1; 1755 unsigned int mwi:1; 1756 u32 region_mask; 1757 }; 1758 1759 static void pcim_release(struct device *gendev, void *res) 1760 { 1761 struct pci_dev *dev = to_pci_dev(gendev); 1762 struct pci_devres *this = res; 1763 int i; 1764 1765 if (dev->msi_enabled) 1766 pci_disable_msi(dev); 1767 if (dev->msix_enabled) 1768 pci_disable_msix(dev); 1769 1770 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) 1771 if (this->region_mask & (1 << i)) 1772 pci_release_region(dev, i); 1773 1774 if (this->mwi) 1775 pci_clear_mwi(dev); 1776 1777 if (this->restore_intx) 1778 pci_intx(dev, this->orig_intx); 1779 1780 if (this->enabled && !this->pinned) 1781 pci_disable_device(dev); 1782 } 1783 1784 static struct pci_devres *get_pci_dr(struct pci_dev *pdev) 1785 { 1786 struct pci_devres *dr, *new_dr; 1787 1788 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL); 1789 if (dr) 1790 return dr; 1791 1792 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL); 1793 if (!new_dr) 1794 return NULL; 1795 return devres_get(&pdev->dev, new_dr, NULL, NULL); 1796 } 1797 1798 static struct pci_devres *find_pci_dr(struct pci_dev *pdev) 1799 { 1800 if (pci_is_managed(pdev)) 1801 return devres_find(&pdev->dev, pcim_release, NULL, NULL); 1802 return NULL; 1803 } 1804 1805 /** 1806 * pcim_enable_device - Managed pci_enable_device() 1807 * @pdev: PCI device to be initialized 1808 * 1809 * Managed pci_enable_device(). 1810 */ 1811 int pcim_enable_device(struct pci_dev *pdev) 1812 { 1813 struct pci_devres *dr; 1814 int rc; 1815 1816 dr = get_pci_dr(pdev); 1817 if (unlikely(!dr)) 1818 return -ENOMEM; 1819 if (dr->enabled) 1820 return 0; 1821 1822 rc = pci_enable_device(pdev); 1823 if (!rc) { 1824 pdev->is_managed = 1; 1825 dr->enabled = 1; 1826 } 1827 return rc; 1828 } 1829 EXPORT_SYMBOL(pcim_enable_device); 1830 1831 /** 1832 * pcim_pin_device - Pin managed PCI device 1833 * @pdev: PCI device to pin 1834 * 1835 * Pin managed PCI device @pdev. Pinned device won't be disabled on 1836 * driver detach. @pdev must have been enabled with 1837 * pcim_enable_device(). 1838 */ 1839 void pcim_pin_device(struct pci_dev *pdev) 1840 { 1841 struct pci_devres *dr; 1842 1843 dr = find_pci_dr(pdev); 1844 WARN_ON(!dr || !dr->enabled); 1845 if (dr) 1846 dr->pinned = 1; 1847 } 1848 EXPORT_SYMBOL(pcim_pin_device); 1849 1850 /* 1851 * pcibios_add_device - provide arch specific hooks when adding device dev 1852 * @dev: the PCI device being added 1853 * 1854 * Permits the platform to provide architecture specific functionality when 1855 * devices are added. This is the default implementation. Architecture 1856 * implementations can override this. 1857 */ 1858 int __weak pcibios_add_device(struct pci_dev *dev) 1859 { 1860 return 0; 1861 } 1862 1863 /** 1864 * pcibios_release_device - provide arch specific hooks when releasing 1865 * device dev 1866 * @dev: the PCI device being released 1867 * 1868 * Permits the platform to provide architecture specific functionality when 1869 * devices are released. This is the default implementation. Architecture 1870 * implementations can override this. 1871 */ 1872 void __weak pcibios_release_device(struct pci_dev *dev) {} 1873 1874 /** 1875 * pcibios_disable_device - disable arch specific PCI resources for device dev 1876 * @dev: the PCI device to disable 1877 * 1878 * Disables architecture specific PCI resources for the device. This 1879 * is the default implementation. Architecture implementations can 1880 * override this. 1881 */ 1882 void __weak pcibios_disable_device(struct pci_dev *dev) {} 1883 1884 /** 1885 * pcibios_penalize_isa_irq - penalize an ISA IRQ 1886 * @irq: ISA IRQ to penalize 1887 * @active: IRQ active or not 1888 * 1889 * Permits the platform to provide architecture-specific functionality when 1890 * penalizing ISA IRQs. This is the default implementation. Architecture 1891 * implementations can override this. 1892 */ 1893 void __weak pcibios_penalize_isa_irq(int irq, int active) {} 1894 1895 static void do_pci_disable_device(struct pci_dev *dev) 1896 { 1897 u16 pci_command; 1898 1899 pci_read_config_word(dev, PCI_COMMAND, &pci_command); 1900 if (pci_command & PCI_COMMAND_MASTER) { 1901 pci_command &= ~PCI_COMMAND_MASTER; 1902 pci_write_config_word(dev, PCI_COMMAND, pci_command); 1903 } 1904 1905 pcibios_disable_device(dev); 1906 } 1907 1908 /** 1909 * pci_disable_enabled_device - Disable device without updating enable_cnt 1910 * @dev: PCI device to disable 1911 * 1912 * NOTE: This function is a backend of PCI power management routines and is 1913 * not supposed to be called drivers. 1914 */ 1915 void pci_disable_enabled_device(struct pci_dev *dev) 1916 { 1917 if (pci_is_enabled(dev)) 1918 do_pci_disable_device(dev); 1919 } 1920 1921 /** 1922 * pci_disable_device - Disable PCI device after use 1923 * @dev: PCI device to be disabled 1924 * 1925 * Signal to the system that the PCI device is not in use by the system 1926 * anymore. This only involves disabling PCI bus-mastering, if active. 1927 * 1928 * Note we don't actually disable the device until all callers of 1929 * pci_enable_device() have called pci_disable_device(). 1930 */ 1931 void pci_disable_device(struct pci_dev *dev) 1932 { 1933 struct pci_devres *dr; 1934 1935 dr = find_pci_dr(dev); 1936 if (dr) 1937 dr->enabled = 0; 1938 1939 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0, 1940 "disabling already-disabled device"); 1941 1942 if (atomic_dec_return(&dev->enable_cnt) != 0) 1943 return; 1944 1945 do_pci_disable_device(dev); 1946 1947 dev->is_busmaster = 0; 1948 } 1949 EXPORT_SYMBOL(pci_disable_device); 1950 1951 /** 1952 * pcibios_set_pcie_reset_state - set reset state for device dev 1953 * @dev: the PCIe device reset 1954 * @state: Reset state to enter into 1955 * 1956 * Set the PCIe reset state for the device. This is the default 1957 * implementation. Architecture implementations can override this. 1958 */ 1959 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev, 1960 enum pcie_reset_state state) 1961 { 1962 return -EINVAL; 1963 } 1964 1965 /** 1966 * pci_set_pcie_reset_state - set reset state for device dev 1967 * @dev: the PCIe device reset 1968 * @state: Reset state to enter into 1969 * 1970 * Sets the PCI reset state for the device. 1971 */ 1972 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state) 1973 { 1974 return pcibios_set_pcie_reset_state(dev, state); 1975 } 1976 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state); 1977 1978 /** 1979 * pcie_clear_root_pme_status - Clear root port PME interrupt status. 1980 * @dev: PCIe root port or event collector. 1981 */ 1982 void pcie_clear_root_pme_status(struct pci_dev *dev) 1983 { 1984 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME); 1985 } 1986 1987 /** 1988 * pci_check_pme_status - Check if given device has generated PME. 1989 * @dev: Device to check. 1990 * 1991 * Check the PME status of the device and if set, clear it and clear PME enable 1992 * (if set). Return 'true' if PME status and PME enable were both set or 1993 * 'false' otherwise. 1994 */ 1995 bool pci_check_pme_status(struct pci_dev *dev) 1996 { 1997 int pmcsr_pos; 1998 u16 pmcsr; 1999 bool ret = false; 2000 2001 if (!dev->pm_cap) 2002 return false; 2003 2004 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL; 2005 pci_read_config_word(dev, pmcsr_pos, &pmcsr); 2006 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS)) 2007 return false; 2008 2009 /* Clear PME status. */ 2010 pmcsr |= PCI_PM_CTRL_PME_STATUS; 2011 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) { 2012 /* Disable PME to avoid interrupt flood. */ 2013 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2014 ret = true; 2015 } 2016 2017 pci_write_config_word(dev, pmcsr_pos, pmcsr); 2018 2019 return ret; 2020 } 2021 2022 /** 2023 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set. 2024 * @dev: Device to handle. 2025 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag. 2026 * 2027 * Check if @dev has generated PME and queue a resume request for it in that 2028 * case. 2029 */ 2030 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset) 2031 { 2032 if (pme_poll_reset && dev->pme_poll) 2033 dev->pme_poll = false; 2034 2035 if (pci_check_pme_status(dev)) { 2036 pci_wakeup_event(dev); 2037 pm_request_resume(&dev->dev); 2038 } 2039 return 0; 2040 } 2041 2042 /** 2043 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary. 2044 * @bus: Top bus of the subtree to walk. 2045 */ 2046 void pci_pme_wakeup_bus(struct pci_bus *bus) 2047 { 2048 if (bus) 2049 pci_walk_bus(bus, pci_pme_wakeup, (void *)true); 2050 } 2051 2052 2053 /** 2054 * pci_pme_capable - check the capability of PCI device to generate PME# 2055 * @dev: PCI device to handle. 2056 * @state: PCI state from which device will issue PME#. 2057 */ 2058 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state) 2059 { 2060 if (!dev->pm_cap) 2061 return false; 2062 2063 return !!(dev->pme_support & (1 << state)); 2064 } 2065 EXPORT_SYMBOL(pci_pme_capable); 2066 2067 static void pci_pme_list_scan(struct work_struct *work) 2068 { 2069 struct pci_pme_device *pme_dev, *n; 2070 2071 mutex_lock(&pci_pme_list_mutex); 2072 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) { 2073 if (pme_dev->dev->pme_poll) { 2074 struct pci_dev *bridge; 2075 2076 bridge = pme_dev->dev->bus->self; 2077 /* 2078 * If bridge is in low power state, the 2079 * configuration space of subordinate devices 2080 * may be not accessible 2081 */ 2082 if (bridge && bridge->current_state != PCI_D0) 2083 continue; 2084 /* 2085 * If the device is in D3cold it should not be 2086 * polled either. 2087 */ 2088 if (pme_dev->dev->current_state == PCI_D3cold) 2089 continue; 2090 2091 pci_pme_wakeup(pme_dev->dev, NULL); 2092 } else { 2093 list_del(&pme_dev->list); 2094 kfree(pme_dev); 2095 } 2096 } 2097 if (!list_empty(&pci_pme_list)) 2098 queue_delayed_work(system_freezable_wq, &pci_pme_work, 2099 msecs_to_jiffies(PME_TIMEOUT)); 2100 mutex_unlock(&pci_pme_list_mutex); 2101 } 2102 2103 static void __pci_pme_active(struct pci_dev *dev, bool enable) 2104 { 2105 u16 pmcsr; 2106 2107 if (!dev->pme_support) 2108 return; 2109 2110 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2111 /* Clear PME_Status by writing 1 to it and enable PME# */ 2112 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE; 2113 if (!enable) 2114 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2115 2116 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2117 } 2118 2119 /** 2120 * pci_pme_restore - Restore PME configuration after config space restore. 2121 * @dev: PCI device to update. 2122 */ 2123 void pci_pme_restore(struct pci_dev *dev) 2124 { 2125 u16 pmcsr; 2126 2127 if (!dev->pme_support) 2128 return; 2129 2130 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2131 if (dev->wakeup_prepared) { 2132 pmcsr |= PCI_PM_CTRL_PME_ENABLE; 2133 pmcsr &= ~PCI_PM_CTRL_PME_STATUS; 2134 } else { 2135 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2136 pmcsr |= PCI_PM_CTRL_PME_STATUS; 2137 } 2138 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2139 } 2140 2141 /** 2142 * pci_pme_active - enable or disable PCI device's PME# function 2143 * @dev: PCI device to handle. 2144 * @enable: 'true' to enable PME# generation; 'false' to disable it. 2145 * 2146 * The caller must verify that the device is capable of generating PME# before 2147 * calling this function with @enable equal to 'true'. 2148 */ 2149 void pci_pme_active(struct pci_dev *dev, bool enable) 2150 { 2151 __pci_pme_active(dev, enable); 2152 2153 /* 2154 * PCI (as opposed to PCIe) PME requires that the device have 2155 * its PME# line hooked up correctly. Not all hardware vendors 2156 * do this, so the PME never gets delivered and the device 2157 * remains asleep. The easiest way around this is to 2158 * periodically walk the list of suspended devices and check 2159 * whether any have their PME flag set. The assumption is that 2160 * we'll wake up often enough anyway that this won't be a huge 2161 * hit, and the power savings from the devices will still be a 2162 * win. 2163 * 2164 * Although PCIe uses in-band PME message instead of PME# line 2165 * to report PME, PME does not work for some PCIe devices in 2166 * reality. For example, there are devices that set their PME 2167 * status bits, but don't really bother to send a PME message; 2168 * there are PCI Express Root Ports that don't bother to 2169 * trigger interrupts when they receive PME messages from the 2170 * devices below. So PME poll is used for PCIe devices too. 2171 */ 2172 2173 if (dev->pme_poll) { 2174 struct pci_pme_device *pme_dev; 2175 if (enable) { 2176 pme_dev = kmalloc(sizeof(struct pci_pme_device), 2177 GFP_KERNEL); 2178 if (!pme_dev) { 2179 pci_warn(dev, "can't enable PME#\n"); 2180 return; 2181 } 2182 pme_dev->dev = dev; 2183 mutex_lock(&pci_pme_list_mutex); 2184 list_add(&pme_dev->list, &pci_pme_list); 2185 if (list_is_singular(&pci_pme_list)) 2186 queue_delayed_work(system_freezable_wq, 2187 &pci_pme_work, 2188 msecs_to_jiffies(PME_TIMEOUT)); 2189 mutex_unlock(&pci_pme_list_mutex); 2190 } else { 2191 mutex_lock(&pci_pme_list_mutex); 2192 list_for_each_entry(pme_dev, &pci_pme_list, list) { 2193 if (pme_dev->dev == dev) { 2194 list_del(&pme_dev->list); 2195 kfree(pme_dev); 2196 break; 2197 } 2198 } 2199 mutex_unlock(&pci_pme_list_mutex); 2200 } 2201 } 2202 2203 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled"); 2204 } 2205 EXPORT_SYMBOL(pci_pme_active); 2206 2207 /** 2208 * __pci_enable_wake - enable PCI device as wakeup event source 2209 * @dev: PCI device affected 2210 * @state: PCI state from which device will issue wakeup events 2211 * @enable: True to enable event generation; false to disable 2212 * 2213 * This enables the device as a wakeup event source, or disables it. 2214 * When such events involves platform-specific hooks, those hooks are 2215 * called automatically by this routine. 2216 * 2217 * Devices with legacy power management (no standard PCI PM capabilities) 2218 * always require such platform hooks. 2219 * 2220 * RETURN VALUE: 2221 * 0 is returned on success 2222 * -EINVAL is returned if device is not supposed to wake up the system 2223 * Error code depending on the platform is returned if both the platform and 2224 * the native mechanism fail to enable the generation of wake-up events 2225 */ 2226 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable) 2227 { 2228 int ret = 0; 2229 2230 /* 2231 * Bridges that are not power-manageable directly only signal 2232 * wakeup on behalf of subordinate devices which is set up 2233 * elsewhere, so skip them. However, bridges that are 2234 * power-manageable may signal wakeup for themselves (for example, 2235 * on a hotplug event) and they need to be covered here. 2236 */ 2237 if (!pci_power_manageable(dev)) 2238 return 0; 2239 2240 /* Don't do the same thing twice in a row for one device. */ 2241 if (!!enable == !!dev->wakeup_prepared) 2242 return 0; 2243 2244 /* 2245 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don 2246 * Anderson we should be doing PME# wake enable followed by ACPI wake 2247 * enable. To disable wake-up we call the platform first, for symmetry. 2248 */ 2249 2250 if (enable) { 2251 int error; 2252 2253 if (pci_pme_capable(dev, state)) 2254 pci_pme_active(dev, true); 2255 else 2256 ret = 1; 2257 error = platform_pci_set_wakeup(dev, true); 2258 if (ret) 2259 ret = error; 2260 if (!ret) 2261 dev->wakeup_prepared = true; 2262 } else { 2263 platform_pci_set_wakeup(dev, false); 2264 pci_pme_active(dev, false); 2265 dev->wakeup_prepared = false; 2266 } 2267 2268 return ret; 2269 } 2270 2271 /** 2272 * pci_enable_wake - change wakeup settings for a PCI device 2273 * @pci_dev: Target device 2274 * @state: PCI state from which device will issue wakeup events 2275 * @enable: Whether or not to enable event generation 2276 * 2277 * If @enable is set, check device_may_wakeup() for the device before calling 2278 * __pci_enable_wake() for it. 2279 */ 2280 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable) 2281 { 2282 if (enable && !device_may_wakeup(&pci_dev->dev)) 2283 return -EINVAL; 2284 2285 return __pci_enable_wake(pci_dev, state, enable); 2286 } 2287 EXPORT_SYMBOL(pci_enable_wake); 2288 2289 /** 2290 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold 2291 * @dev: PCI device to prepare 2292 * @enable: True to enable wake-up event generation; false to disable 2293 * 2294 * Many drivers want the device to wake up the system from D3_hot or D3_cold 2295 * and this function allows them to set that up cleanly - pci_enable_wake() 2296 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI 2297 * ordering constraints. 2298 * 2299 * This function only returns error code if the device is not allowed to wake 2300 * up the system from sleep or it is not capable of generating PME# from both 2301 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it. 2302 */ 2303 int pci_wake_from_d3(struct pci_dev *dev, bool enable) 2304 { 2305 return pci_pme_capable(dev, PCI_D3cold) ? 2306 pci_enable_wake(dev, PCI_D3cold, enable) : 2307 pci_enable_wake(dev, PCI_D3hot, enable); 2308 } 2309 EXPORT_SYMBOL(pci_wake_from_d3); 2310 2311 /** 2312 * pci_target_state - find an appropriate low power state for a given PCI dev 2313 * @dev: PCI device 2314 * @wakeup: Whether or not wakeup functionality will be enabled for the device. 2315 * 2316 * Use underlying platform code to find a supported low power state for @dev. 2317 * If the platform can't manage @dev, return the deepest state from which it 2318 * can generate wake events, based on any available PME info. 2319 */ 2320 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup) 2321 { 2322 pci_power_t target_state = PCI_D3hot; 2323 2324 if (platform_pci_power_manageable(dev)) { 2325 /* 2326 * Call the platform to find the target state for the device. 2327 */ 2328 pci_power_t state = platform_pci_choose_state(dev); 2329 2330 switch (state) { 2331 case PCI_POWER_ERROR: 2332 case PCI_UNKNOWN: 2333 break; 2334 case PCI_D1: 2335 case PCI_D2: 2336 if (pci_no_d1d2(dev)) 2337 break; 2338 /* else, fall through */ 2339 default: 2340 target_state = state; 2341 } 2342 2343 return target_state; 2344 } 2345 2346 if (!dev->pm_cap) 2347 target_state = PCI_D0; 2348 2349 /* 2350 * If the device is in D3cold even though it's not power-manageable by 2351 * the platform, it may have been powered down by non-standard means. 2352 * Best to let it slumber. 2353 */ 2354 if (dev->current_state == PCI_D3cold) 2355 target_state = PCI_D3cold; 2356 2357 if (wakeup) { 2358 /* 2359 * Find the deepest state from which the device can generate 2360 * PME#. 2361 */ 2362 if (dev->pme_support) { 2363 while (target_state 2364 && !(dev->pme_support & (1 << target_state))) 2365 target_state--; 2366 } 2367 } 2368 2369 return target_state; 2370 } 2371 2372 /** 2373 * pci_prepare_to_sleep - prepare PCI device for system-wide transition 2374 * into a sleep state 2375 * @dev: Device to handle. 2376 * 2377 * Choose the power state appropriate for the device depending on whether 2378 * it can wake up the system and/or is power manageable by the platform 2379 * (PCI_D3hot is the default) and put the device into that state. 2380 */ 2381 int pci_prepare_to_sleep(struct pci_dev *dev) 2382 { 2383 bool wakeup = device_may_wakeup(&dev->dev); 2384 pci_power_t target_state = pci_target_state(dev, wakeup); 2385 int error; 2386 2387 if (target_state == PCI_POWER_ERROR) 2388 return -EIO; 2389 2390 pci_enable_wake(dev, target_state, wakeup); 2391 2392 error = pci_set_power_state(dev, target_state); 2393 2394 if (error) 2395 pci_enable_wake(dev, target_state, false); 2396 2397 return error; 2398 } 2399 EXPORT_SYMBOL(pci_prepare_to_sleep); 2400 2401 /** 2402 * pci_back_from_sleep - turn PCI device on during system-wide transition 2403 * into working state 2404 * @dev: Device to handle. 2405 * 2406 * Disable device's system wake-up capability and put it into D0. 2407 */ 2408 int pci_back_from_sleep(struct pci_dev *dev) 2409 { 2410 pci_enable_wake(dev, PCI_D0, false); 2411 return pci_set_power_state(dev, PCI_D0); 2412 } 2413 EXPORT_SYMBOL(pci_back_from_sleep); 2414 2415 /** 2416 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend. 2417 * @dev: PCI device being suspended. 2418 * 2419 * Prepare @dev to generate wake-up events at run time and put it into a low 2420 * power state. 2421 */ 2422 int pci_finish_runtime_suspend(struct pci_dev *dev) 2423 { 2424 pci_power_t target_state; 2425 int error; 2426 2427 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev)); 2428 if (target_state == PCI_POWER_ERROR) 2429 return -EIO; 2430 2431 dev->runtime_d3cold = target_state == PCI_D3cold; 2432 2433 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev)); 2434 2435 error = pci_set_power_state(dev, target_state); 2436 2437 if (error) { 2438 pci_enable_wake(dev, target_state, false); 2439 dev->runtime_d3cold = false; 2440 } 2441 2442 return error; 2443 } 2444 2445 /** 2446 * pci_dev_run_wake - Check if device can generate run-time wake-up events. 2447 * @dev: Device to check. 2448 * 2449 * Return true if the device itself is capable of generating wake-up events 2450 * (through the platform or using the native PCIe PME) or if the device supports 2451 * PME and one of its upstream bridges can generate wake-up events. 2452 */ 2453 bool pci_dev_run_wake(struct pci_dev *dev) 2454 { 2455 struct pci_bus *bus = dev->bus; 2456 2457 if (!dev->pme_support) 2458 return false; 2459 2460 /* PME-capable in principle, but not from the target power state */ 2461 if (!pci_pme_capable(dev, pci_target_state(dev, true))) 2462 return false; 2463 2464 if (device_can_wakeup(&dev->dev)) 2465 return true; 2466 2467 while (bus->parent) { 2468 struct pci_dev *bridge = bus->self; 2469 2470 if (device_can_wakeup(&bridge->dev)) 2471 return true; 2472 2473 bus = bus->parent; 2474 } 2475 2476 /* We have reached the root bus. */ 2477 if (bus->bridge) 2478 return device_can_wakeup(bus->bridge); 2479 2480 return false; 2481 } 2482 EXPORT_SYMBOL_GPL(pci_dev_run_wake); 2483 2484 /** 2485 * pci_dev_need_resume - Check if it is necessary to resume the device. 2486 * @pci_dev: Device to check. 2487 * 2488 * Return 'true' if the device is not runtime-suspended or it has to be 2489 * reconfigured due to wakeup settings difference between system and runtime 2490 * suspend, or the current power state of it is not suitable for the upcoming 2491 * (system-wide) transition. 2492 */ 2493 bool pci_dev_need_resume(struct pci_dev *pci_dev) 2494 { 2495 struct device *dev = &pci_dev->dev; 2496 pci_power_t target_state; 2497 2498 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev)) 2499 return true; 2500 2501 target_state = pci_target_state(pci_dev, device_may_wakeup(dev)); 2502 2503 /* 2504 * If the earlier platform check has not triggered, D3cold is just power 2505 * removal on top of D3hot, so no need to resume the device in that 2506 * case. 2507 */ 2508 return target_state != pci_dev->current_state && 2509 target_state != PCI_D3cold && 2510 pci_dev->current_state != PCI_D3hot; 2511 } 2512 2513 /** 2514 * pci_dev_adjust_pme - Adjust PME setting for a suspended device. 2515 * @pci_dev: Device to check. 2516 * 2517 * If the device is suspended and it is not configured for system wakeup, 2518 * disable PME for it to prevent it from waking up the system unnecessarily. 2519 * 2520 * Note that if the device's power state is D3cold and the platform check in 2521 * pci_dev_need_resume() has not triggered, the device's configuration need not 2522 * be changed. 2523 */ 2524 void pci_dev_adjust_pme(struct pci_dev *pci_dev) 2525 { 2526 struct device *dev = &pci_dev->dev; 2527 2528 spin_lock_irq(&dev->power.lock); 2529 2530 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) && 2531 pci_dev->current_state < PCI_D3cold) 2532 __pci_pme_active(pci_dev, false); 2533 2534 spin_unlock_irq(&dev->power.lock); 2535 } 2536 2537 /** 2538 * pci_dev_complete_resume - Finalize resume from system sleep for a device. 2539 * @pci_dev: Device to handle. 2540 * 2541 * If the device is runtime suspended and wakeup-capable, enable PME for it as 2542 * it might have been disabled during the prepare phase of system suspend if 2543 * the device was not configured for system wakeup. 2544 */ 2545 void pci_dev_complete_resume(struct pci_dev *pci_dev) 2546 { 2547 struct device *dev = &pci_dev->dev; 2548 2549 if (!pci_dev_run_wake(pci_dev)) 2550 return; 2551 2552 spin_lock_irq(&dev->power.lock); 2553 2554 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold) 2555 __pci_pme_active(pci_dev, true); 2556 2557 spin_unlock_irq(&dev->power.lock); 2558 } 2559 2560 void pci_config_pm_runtime_get(struct pci_dev *pdev) 2561 { 2562 struct device *dev = &pdev->dev; 2563 struct device *parent = dev->parent; 2564 2565 if (parent) 2566 pm_runtime_get_sync(parent); 2567 pm_runtime_get_noresume(dev); 2568 /* 2569 * pdev->current_state is set to PCI_D3cold during suspending, 2570 * so wait until suspending completes 2571 */ 2572 pm_runtime_barrier(dev); 2573 /* 2574 * Only need to resume devices in D3cold, because config 2575 * registers are still accessible for devices suspended but 2576 * not in D3cold. 2577 */ 2578 if (pdev->current_state == PCI_D3cold) 2579 pm_runtime_resume(dev); 2580 } 2581 2582 void pci_config_pm_runtime_put(struct pci_dev *pdev) 2583 { 2584 struct device *dev = &pdev->dev; 2585 struct device *parent = dev->parent; 2586 2587 pm_runtime_put(dev); 2588 if (parent) 2589 pm_runtime_put_sync(parent); 2590 } 2591 2592 static const struct dmi_system_id bridge_d3_blacklist[] = { 2593 #ifdef CONFIG_X86 2594 { 2595 /* 2596 * Gigabyte X299 root port is not marked as hotplug capable 2597 * which allows Linux to power manage it. However, this 2598 * confuses the BIOS SMI handler so don't power manage root 2599 * ports on that system. 2600 */ 2601 .ident = "X299 DESIGNARE EX-CF", 2602 .matches = { 2603 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."), 2604 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"), 2605 }, 2606 }, 2607 #endif 2608 { } 2609 }; 2610 2611 /** 2612 * pci_bridge_d3_possible - Is it possible to put the bridge into D3 2613 * @bridge: Bridge to check 2614 * 2615 * This function checks if it is possible to move the bridge to D3. 2616 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt. 2617 */ 2618 bool pci_bridge_d3_possible(struct pci_dev *bridge) 2619 { 2620 if (!pci_is_pcie(bridge)) 2621 return false; 2622 2623 switch (pci_pcie_type(bridge)) { 2624 case PCI_EXP_TYPE_ROOT_PORT: 2625 case PCI_EXP_TYPE_UPSTREAM: 2626 case PCI_EXP_TYPE_DOWNSTREAM: 2627 if (pci_bridge_d3_disable) 2628 return false; 2629 2630 /* 2631 * Hotplug ports handled by firmware in System Management Mode 2632 * may not be put into D3 by the OS (Thunderbolt on non-Macs). 2633 */ 2634 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge)) 2635 return false; 2636 2637 if (pci_bridge_d3_force) 2638 return true; 2639 2640 /* Even the oldest 2010 Thunderbolt controller supports D3. */ 2641 if (bridge->is_thunderbolt) 2642 return true; 2643 2644 /* Platform might know better if the bridge supports D3 */ 2645 if (platform_pci_bridge_d3(bridge)) 2646 return true; 2647 2648 /* 2649 * Hotplug ports handled natively by the OS were not validated 2650 * by vendors for runtime D3 at least until 2018 because there 2651 * was no OS support. 2652 */ 2653 if (bridge->is_hotplug_bridge) 2654 return false; 2655 2656 if (dmi_check_system(bridge_d3_blacklist)) 2657 return false; 2658 2659 /* 2660 * It should be safe to put PCIe ports from 2015 or newer 2661 * to D3. 2662 */ 2663 if (dmi_get_bios_year() >= 2015) 2664 return true; 2665 break; 2666 } 2667 2668 return false; 2669 } 2670 2671 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data) 2672 { 2673 bool *d3cold_ok = data; 2674 2675 if (/* The device needs to be allowed to go D3cold ... */ 2676 dev->no_d3cold || !dev->d3cold_allowed || 2677 2678 /* ... and if it is wakeup capable to do so from D3cold. */ 2679 (device_may_wakeup(&dev->dev) && 2680 !pci_pme_capable(dev, PCI_D3cold)) || 2681 2682 /* If it is a bridge it must be allowed to go to D3. */ 2683 !pci_power_manageable(dev)) 2684 2685 *d3cold_ok = false; 2686 2687 return !*d3cold_ok; 2688 } 2689 2690 /* 2691 * pci_bridge_d3_update - Update bridge D3 capabilities 2692 * @dev: PCI device which is changed 2693 * 2694 * Update upstream bridge PM capabilities accordingly depending on if the 2695 * device PM configuration was changed or the device is being removed. The 2696 * change is also propagated upstream. 2697 */ 2698 void pci_bridge_d3_update(struct pci_dev *dev) 2699 { 2700 bool remove = !device_is_registered(&dev->dev); 2701 struct pci_dev *bridge; 2702 bool d3cold_ok = true; 2703 2704 bridge = pci_upstream_bridge(dev); 2705 if (!bridge || !pci_bridge_d3_possible(bridge)) 2706 return; 2707 2708 /* 2709 * If D3 is currently allowed for the bridge, removing one of its 2710 * children won't change that. 2711 */ 2712 if (remove && bridge->bridge_d3) 2713 return; 2714 2715 /* 2716 * If D3 is currently allowed for the bridge and a child is added or 2717 * changed, disallowance of D3 can only be caused by that child, so 2718 * we only need to check that single device, not any of its siblings. 2719 * 2720 * If D3 is currently not allowed for the bridge, checking the device 2721 * first may allow us to skip checking its siblings. 2722 */ 2723 if (!remove) 2724 pci_dev_check_d3cold(dev, &d3cold_ok); 2725 2726 /* 2727 * If D3 is currently not allowed for the bridge, this may be caused 2728 * either by the device being changed/removed or any of its siblings, 2729 * so we need to go through all children to find out if one of them 2730 * continues to block D3. 2731 */ 2732 if (d3cold_ok && !bridge->bridge_d3) 2733 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold, 2734 &d3cold_ok); 2735 2736 if (bridge->bridge_d3 != d3cold_ok) { 2737 bridge->bridge_d3 = d3cold_ok; 2738 /* Propagate change to upstream bridges */ 2739 pci_bridge_d3_update(bridge); 2740 } 2741 } 2742 2743 /** 2744 * pci_d3cold_enable - Enable D3cold for device 2745 * @dev: PCI device to handle 2746 * 2747 * This function can be used in drivers to enable D3cold from the device 2748 * they handle. It also updates upstream PCI bridge PM capabilities 2749 * accordingly. 2750 */ 2751 void pci_d3cold_enable(struct pci_dev *dev) 2752 { 2753 if (dev->no_d3cold) { 2754 dev->no_d3cold = false; 2755 pci_bridge_d3_update(dev); 2756 } 2757 } 2758 EXPORT_SYMBOL_GPL(pci_d3cold_enable); 2759 2760 /** 2761 * pci_d3cold_disable - Disable D3cold for device 2762 * @dev: PCI device to handle 2763 * 2764 * This function can be used in drivers to disable D3cold from the device 2765 * they handle. It also updates upstream PCI bridge PM capabilities 2766 * accordingly. 2767 */ 2768 void pci_d3cold_disable(struct pci_dev *dev) 2769 { 2770 if (!dev->no_d3cold) { 2771 dev->no_d3cold = true; 2772 pci_bridge_d3_update(dev); 2773 } 2774 } 2775 EXPORT_SYMBOL_GPL(pci_d3cold_disable); 2776 2777 /** 2778 * pci_pm_init - Initialize PM functions of given PCI device 2779 * @dev: PCI device to handle. 2780 */ 2781 void pci_pm_init(struct pci_dev *dev) 2782 { 2783 int pm; 2784 u16 status; 2785 u16 pmc; 2786 2787 pm_runtime_forbid(&dev->dev); 2788 pm_runtime_set_active(&dev->dev); 2789 pm_runtime_enable(&dev->dev); 2790 device_enable_async_suspend(&dev->dev); 2791 dev->wakeup_prepared = false; 2792 2793 dev->pm_cap = 0; 2794 dev->pme_support = 0; 2795 2796 /* find PCI PM capability in list */ 2797 pm = pci_find_capability(dev, PCI_CAP_ID_PM); 2798 if (!pm) 2799 return; 2800 /* Check device's ability to generate PME# */ 2801 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc); 2802 2803 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) { 2804 pci_err(dev, "unsupported PM cap regs version (%u)\n", 2805 pmc & PCI_PM_CAP_VER_MASK); 2806 return; 2807 } 2808 2809 dev->pm_cap = pm; 2810 dev->d3_delay = PCI_PM_D3_WAIT; 2811 dev->d3cold_delay = PCI_PM_D3COLD_WAIT; 2812 dev->bridge_d3 = pci_bridge_d3_possible(dev); 2813 dev->d3cold_allowed = true; 2814 2815 dev->d1_support = false; 2816 dev->d2_support = false; 2817 if (!pci_no_d1d2(dev)) { 2818 if (pmc & PCI_PM_CAP_D1) 2819 dev->d1_support = true; 2820 if (pmc & PCI_PM_CAP_D2) 2821 dev->d2_support = true; 2822 2823 if (dev->d1_support || dev->d2_support) 2824 pci_info(dev, "supports%s%s\n", 2825 dev->d1_support ? " D1" : "", 2826 dev->d2_support ? " D2" : ""); 2827 } 2828 2829 pmc &= PCI_PM_CAP_PME_MASK; 2830 if (pmc) { 2831 pci_info(dev, "PME# supported from%s%s%s%s%s\n", 2832 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "", 2833 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "", 2834 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "", 2835 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "", 2836 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : ""); 2837 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT; 2838 dev->pme_poll = true; 2839 /* 2840 * Make device's PM flags reflect the wake-up capability, but 2841 * let the user space enable it to wake up the system as needed. 2842 */ 2843 device_set_wakeup_capable(&dev->dev, true); 2844 /* Disable the PME# generation functionality */ 2845 pci_pme_active(dev, false); 2846 } 2847 2848 pci_read_config_word(dev, PCI_STATUS, &status); 2849 if (status & PCI_STATUS_IMM_READY) 2850 dev->imm_ready = 1; 2851 } 2852 2853 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop) 2854 { 2855 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI; 2856 2857 switch (prop) { 2858 case PCI_EA_P_MEM: 2859 case PCI_EA_P_VF_MEM: 2860 flags |= IORESOURCE_MEM; 2861 break; 2862 case PCI_EA_P_MEM_PREFETCH: 2863 case PCI_EA_P_VF_MEM_PREFETCH: 2864 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH; 2865 break; 2866 case PCI_EA_P_IO: 2867 flags |= IORESOURCE_IO; 2868 break; 2869 default: 2870 return 0; 2871 } 2872 2873 return flags; 2874 } 2875 2876 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei, 2877 u8 prop) 2878 { 2879 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO) 2880 return &dev->resource[bei]; 2881 #ifdef CONFIG_PCI_IOV 2882 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 && 2883 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH)) 2884 return &dev->resource[PCI_IOV_RESOURCES + 2885 bei - PCI_EA_BEI_VF_BAR0]; 2886 #endif 2887 else if (bei == PCI_EA_BEI_ROM) 2888 return &dev->resource[PCI_ROM_RESOURCE]; 2889 else 2890 return NULL; 2891 } 2892 2893 /* Read an Enhanced Allocation (EA) entry */ 2894 static int pci_ea_read(struct pci_dev *dev, int offset) 2895 { 2896 struct resource *res; 2897 int ent_size, ent_offset = offset; 2898 resource_size_t start, end; 2899 unsigned long flags; 2900 u32 dw0, bei, base, max_offset; 2901 u8 prop; 2902 bool support_64 = (sizeof(resource_size_t) >= 8); 2903 2904 pci_read_config_dword(dev, ent_offset, &dw0); 2905 ent_offset += 4; 2906 2907 /* Entry size field indicates DWORDs after 1st */ 2908 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2; 2909 2910 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */ 2911 goto out; 2912 2913 bei = (dw0 & PCI_EA_BEI) >> 4; 2914 prop = (dw0 & PCI_EA_PP) >> 8; 2915 2916 /* 2917 * If the Property is in the reserved range, try the Secondary 2918 * Property instead. 2919 */ 2920 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED) 2921 prop = (dw0 & PCI_EA_SP) >> 16; 2922 if (prop > PCI_EA_P_BRIDGE_IO) 2923 goto out; 2924 2925 res = pci_ea_get_resource(dev, bei, prop); 2926 if (!res) { 2927 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei); 2928 goto out; 2929 } 2930 2931 flags = pci_ea_flags(dev, prop); 2932 if (!flags) { 2933 pci_err(dev, "Unsupported EA properties: %#x\n", prop); 2934 goto out; 2935 } 2936 2937 /* Read Base */ 2938 pci_read_config_dword(dev, ent_offset, &base); 2939 start = (base & PCI_EA_FIELD_MASK); 2940 ent_offset += 4; 2941 2942 /* Read MaxOffset */ 2943 pci_read_config_dword(dev, ent_offset, &max_offset); 2944 ent_offset += 4; 2945 2946 /* Read Base MSBs (if 64-bit entry) */ 2947 if (base & PCI_EA_IS_64) { 2948 u32 base_upper; 2949 2950 pci_read_config_dword(dev, ent_offset, &base_upper); 2951 ent_offset += 4; 2952 2953 flags |= IORESOURCE_MEM_64; 2954 2955 /* entry starts above 32-bit boundary, can't use */ 2956 if (!support_64 && base_upper) 2957 goto out; 2958 2959 if (support_64) 2960 start |= ((u64)base_upper << 32); 2961 } 2962 2963 end = start + (max_offset | 0x03); 2964 2965 /* Read MaxOffset MSBs (if 64-bit entry) */ 2966 if (max_offset & PCI_EA_IS_64) { 2967 u32 max_offset_upper; 2968 2969 pci_read_config_dword(dev, ent_offset, &max_offset_upper); 2970 ent_offset += 4; 2971 2972 flags |= IORESOURCE_MEM_64; 2973 2974 /* entry too big, can't use */ 2975 if (!support_64 && max_offset_upper) 2976 goto out; 2977 2978 if (support_64) 2979 end += ((u64)max_offset_upper << 32); 2980 } 2981 2982 if (end < start) { 2983 pci_err(dev, "EA Entry crosses address boundary\n"); 2984 goto out; 2985 } 2986 2987 if (ent_size != ent_offset - offset) { 2988 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n", 2989 ent_size, ent_offset - offset); 2990 goto out; 2991 } 2992 2993 res->name = pci_name(dev); 2994 res->start = start; 2995 res->end = end; 2996 res->flags = flags; 2997 2998 if (bei <= PCI_EA_BEI_BAR5) 2999 pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 3000 bei, res, prop); 3001 else if (bei == PCI_EA_BEI_ROM) 3002 pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n", 3003 res, prop); 3004 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5) 3005 pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 3006 bei - PCI_EA_BEI_VF_BAR0, res, prop); 3007 else 3008 pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n", 3009 bei, res, prop); 3010 3011 out: 3012 return offset + ent_size; 3013 } 3014 3015 /* Enhanced Allocation Initialization */ 3016 void pci_ea_init(struct pci_dev *dev) 3017 { 3018 int ea; 3019 u8 num_ent; 3020 int offset; 3021 int i; 3022 3023 /* find PCI EA capability in list */ 3024 ea = pci_find_capability(dev, PCI_CAP_ID_EA); 3025 if (!ea) 3026 return; 3027 3028 /* determine the number of entries */ 3029 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT, 3030 &num_ent); 3031 num_ent &= PCI_EA_NUM_ENT_MASK; 3032 3033 offset = ea + PCI_EA_FIRST_ENT; 3034 3035 /* Skip DWORD 2 for type 1 functions */ 3036 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) 3037 offset += 4; 3038 3039 /* parse each EA entry */ 3040 for (i = 0; i < num_ent; ++i) 3041 offset = pci_ea_read(dev, offset); 3042 } 3043 3044 static void pci_add_saved_cap(struct pci_dev *pci_dev, 3045 struct pci_cap_saved_state *new_cap) 3046 { 3047 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space); 3048 } 3049 3050 /** 3051 * _pci_add_cap_save_buffer - allocate buffer for saving given 3052 * capability registers 3053 * @dev: the PCI device 3054 * @cap: the capability to allocate the buffer for 3055 * @extended: Standard or Extended capability ID 3056 * @size: requested size of the buffer 3057 */ 3058 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap, 3059 bool extended, unsigned int size) 3060 { 3061 int pos; 3062 struct pci_cap_saved_state *save_state; 3063 3064 if (extended) 3065 pos = pci_find_ext_capability(dev, cap); 3066 else 3067 pos = pci_find_capability(dev, cap); 3068 3069 if (!pos) 3070 return 0; 3071 3072 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL); 3073 if (!save_state) 3074 return -ENOMEM; 3075 3076 save_state->cap.cap_nr = cap; 3077 save_state->cap.cap_extended = extended; 3078 save_state->cap.size = size; 3079 pci_add_saved_cap(dev, save_state); 3080 3081 return 0; 3082 } 3083 3084 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size) 3085 { 3086 return _pci_add_cap_save_buffer(dev, cap, false, size); 3087 } 3088 3089 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size) 3090 { 3091 return _pci_add_cap_save_buffer(dev, cap, true, size); 3092 } 3093 3094 /** 3095 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities 3096 * @dev: the PCI device 3097 */ 3098 void pci_allocate_cap_save_buffers(struct pci_dev *dev) 3099 { 3100 int error; 3101 3102 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP, 3103 PCI_EXP_SAVE_REGS * sizeof(u16)); 3104 if (error) 3105 pci_err(dev, "unable to preallocate PCI Express save buffer\n"); 3106 3107 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16)); 3108 if (error) 3109 pci_err(dev, "unable to preallocate PCI-X save buffer\n"); 3110 3111 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR, 3112 2 * sizeof(u16)); 3113 if (error) 3114 pci_err(dev, "unable to allocate suspend buffer for LTR\n"); 3115 3116 pci_allocate_vc_save_buffers(dev); 3117 } 3118 3119 void pci_free_cap_save_buffers(struct pci_dev *dev) 3120 { 3121 struct pci_cap_saved_state *tmp; 3122 struct hlist_node *n; 3123 3124 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next) 3125 kfree(tmp); 3126 } 3127 3128 /** 3129 * pci_configure_ari - enable or disable ARI forwarding 3130 * @dev: the PCI device 3131 * 3132 * If @dev and its upstream bridge both support ARI, enable ARI in the 3133 * bridge. Otherwise, disable ARI in the bridge. 3134 */ 3135 void pci_configure_ari(struct pci_dev *dev) 3136 { 3137 u32 cap; 3138 struct pci_dev *bridge; 3139 3140 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn) 3141 return; 3142 3143 bridge = dev->bus->self; 3144 if (!bridge) 3145 return; 3146 3147 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3148 if (!(cap & PCI_EXP_DEVCAP2_ARI)) 3149 return; 3150 3151 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) { 3152 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, 3153 PCI_EXP_DEVCTL2_ARI); 3154 bridge->ari_enabled = 1; 3155 } else { 3156 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2, 3157 PCI_EXP_DEVCTL2_ARI); 3158 bridge->ari_enabled = 0; 3159 } 3160 } 3161 3162 static int pci_acs_enable; 3163 3164 /** 3165 * pci_request_acs - ask for ACS to be enabled if supported 3166 */ 3167 void pci_request_acs(void) 3168 { 3169 pci_acs_enable = 1; 3170 } 3171 3172 static const char *disable_acs_redir_param; 3173 3174 /** 3175 * pci_disable_acs_redir - disable ACS redirect capabilities 3176 * @dev: the PCI device 3177 * 3178 * For only devices specified in the disable_acs_redir parameter. 3179 */ 3180 static void pci_disable_acs_redir(struct pci_dev *dev) 3181 { 3182 int ret = 0; 3183 const char *p; 3184 int pos; 3185 u16 ctrl; 3186 3187 if (!disable_acs_redir_param) 3188 return; 3189 3190 p = disable_acs_redir_param; 3191 while (*p) { 3192 ret = pci_dev_str_match(dev, p, &p); 3193 if (ret < 0) { 3194 pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n", 3195 disable_acs_redir_param); 3196 3197 break; 3198 } else if (ret == 1) { 3199 /* Found a match */ 3200 break; 3201 } 3202 3203 if (*p != ';' && *p != ',') { 3204 /* End of param or invalid format */ 3205 break; 3206 } 3207 p++; 3208 } 3209 3210 if (ret != 1) 3211 return; 3212 3213 if (!pci_dev_specific_disable_acs_redir(dev)) 3214 return; 3215 3216 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS); 3217 if (!pos) { 3218 pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n"); 3219 return; 3220 } 3221 3222 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 3223 3224 /* P2P Request & Completion Redirect */ 3225 ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC); 3226 3227 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 3228 3229 pci_info(dev, "disabled ACS redirect\n"); 3230 } 3231 3232 /** 3233 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities 3234 * @dev: the PCI device 3235 */ 3236 static void pci_std_enable_acs(struct pci_dev *dev) 3237 { 3238 int pos; 3239 u16 cap; 3240 u16 ctrl; 3241 3242 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS); 3243 if (!pos) 3244 return; 3245 3246 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap); 3247 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 3248 3249 /* Source Validation */ 3250 ctrl |= (cap & PCI_ACS_SV); 3251 3252 /* P2P Request Redirect */ 3253 ctrl |= (cap & PCI_ACS_RR); 3254 3255 /* P2P Completion Redirect */ 3256 ctrl |= (cap & PCI_ACS_CR); 3257 3258 /* Upstream Forwarding */ 3259 ctrl |= (cap & PCI_ACS_UF); 3260 3261 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 3262 } 3263 3264 /** 3265 * pci_enable_acs - enable ACS if hardware support it 3266 * @dev: the PCI device 3267 */ 3268 void pci_enable_acs(struct pci_dev *dev) 3269 { 3270 if (!pci_acs_enable) 3271 goto disable_acs_redir; 3272 3273 if (!pci_dev_specific_enable_acs(dev)) 3274 goto disable_acs_redir; 3275 3276 pci_std_enable_acs(dev); 3277 3278 disable_acs_redir: 3279 /* 3280 * Note: pci_disable_acs_redir() must be called even if ACS was not 3281 * enabled by the kernel because it may have been enabled by 3282 * platform firmware. So if we are told to disable it, we should 3283 * always disable it after setting the kernel's default 3284 * preferences. 3285 */ 3286 pci_disable_acs_redir(dev); 3287 } 3288 3289 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags) 3290 { 3291 int pos; 3292 u16 cap, ctrl; 3293 3294 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS); 3295 if (!pos) 3296 return false; 3297 3298 /* 3299 * Except for egress control, capabilities are either required 3300 * or only required if controllable. Features missing from the 3301 * capability field can therefore be assumed as hard-wired enabled. 3302 */ 3303 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap); 3304 acs_flags &= (cap | PCI_ACS_EC); 3305 3306 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl); 3307 return (ctrl & acs_flags) == acs_flags; 3308 } 3309 3310 /** 3311 * pci_acs_enabled - test ACS against required flags for a given device 3312 * @pdev: device to test 3313 * @acs_flags: required PCI ACS flags 3314 * 3315 * Return true if the device supports the provided flags. Automatically 3316 * filters out flags that are not implemented on multifunction devices. 3317 * 3318 * Note that this interface checks the effective ACS capabilities of the 3319 * device rather than the actual capabilities. For instance, most single 3320 * function endpoints are not required to support ACS because they have no 3321 * opportunity for peer-to-peer access. We therefore return 'true' 3322 * regardless of whether the device exposes an ACS capability. This makes 3323 * it much easier for callers of this function to ignore the actual type 3324 * or topology of the device when testing ACS support. 3325 */ 3326 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags) 3327 { 3328 int ret; 3329 3330 ret = pci_dev_specific_acs_enabled(pdev, acs_flags); 3331 if (ret >= 0) 3332 return ret > 0; 3333 3334 /* 3335 * Conventional PCI and PCI-X devices never support ACS, either 3336 * effectively or actually. The shared bus topology implies that 3337 * any device on the bus can receive or snoop DMA. 3338 */ 3339 if (!pci_is_pcie(pdev)) 3340 return false; 3341 3342 switch (pci_pcie_type(pdev)) { 3343 /* 3344 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec, 3345 * but since their primary interface is PCI/X, we conservatively 3346 * handle them as we would a non-PCIe device. 3347 */ 3348 case PCI_EXP_TYPE_PCIE_BRIDGE: 3349 /* 3350 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never 3351 * applicable... must never implement an ACS Extended Capability...". 3352 * This seems arbitrary, but we take a conservative interpretation 3353 * of this statement. 3354 */ 3355 case PCI_EXP_TYPE_PCI_BRIDGE: 3356 case PCI_EXP_TYPE_RC_EC: 3357 return false; 3358 /* 3359 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should 3360 * implement ACS in order to indicate their peer-to-peer capabilities, 3361 * regardless of whether they are single- or multi-function devices. 3362 */ 3363 case PCI_EXP_TYPE_DOWNSTREAM: 3364 case PCI_EXP_TYPE_ROOT_PORT: 3365 return pci_acs_flags_enabled(pdev, acs_flags); 3366 /* 3367 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be 3368 * implemented by the remaining PCIe types to indicate peer-to-peer 3369 * capabilities, but only when they are part of a multifunction 3370 * device. The footnote for section 6.12 indicates the specific 3371 * PCIe types included here. 3372 */ 3373 case PCI_EXP_TYPE_ENDPOINT: 3374 case PCI_EXP_TYPE_UPSTREAM: 3375 case PCI_EXP_TYPE_LEG_END: 3376 case PCI_EXP_TYPE_RC_END: 3377 if (!pdev->multifunction) 3378 break; 3379 3380 return pci_acs_flags_enabled(pdev, acs_flags); 3381 } 3382 3383 /* 3384 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable 3385 * to single function devices with the exception of downstream ports. 3386 */ 3387 return true; 3388 } 3389 3390 /** 3391 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy 3392 * @start: starting downstream device 3393 * @end: ending upstream device or NULL to search to the root bus 3394 * @acs_flags: required flags 3395 * 3396 * Walk up a device tree from start to end testing PCI ACS support. If 3397 * any step along the way does not support the required flags, return false. 3398 */ 3399 bool pci_acs_path_enabled(struct pci_dev *start, 3400 struct pci_dev *end, u16 acs_flags) 3401 { 3402 struct pci_dev *pdev, *parent = start; 3403 3404 do { 3405 pdev = parent; 3406 3407 if (!pci_acs_enabled(pdev, acs_flags)) 3408 return false; 3409 3410 if (pci_is_root_bus(pdev->bus)) 3411 return (end == NULL); 3412 3413 parent = pdev->bus->self; 3414 } while (pdev != end); 3415 3416 return true; 3417 } 3418 3419 /** 3420 * pci_rebar_find_pos - find position of resize ctrl reg for BAR 3421 * @pdev: PCI device 3422 * @bar: BAR to find 3423 * 3424 * Helper to find the position of the ctrl register for a BAR. 3425 * Returns -ENOTSUPP if resizable BARs are not supported at all. 3426 * Returns -ENOENT if no ctrl register for the BAR could be found. 3427 */ 3428 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar) 3429 { 3430 unsigned int pos, nbars, i; 3431 u32 ctrl; 3432 3433 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 3434 if (!pos) 3435 return -ENOTSUPP; 3436 3437 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3438 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >> 3439 PCI_REBAR_CTRL_NBAR_SHIFT; 3440 3441 for (i = 0; i < nbars; i++, pos += 8) { 3442 int bar_idx; 3443 3444 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3445 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX; 3446 if (bar_idx == bar) 3447 return pos; 3448 } 3449 3450 return -ENOENT; 3451 } 3452 3453 /** 3454 * pci_rebar_get_possible_sizes - get possible sizes for BAR 3455 * @pdev: PCI device 3456 * @bar: BAR to query 3457 * 3458 * Get the possible sizes of a resizable BAR as bitmask defined in the spec 3459 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable. 3460 */ 3461 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar) 3462 { 3463 int pos; 3464 u32 cap; 3465 3466 pos = pci_rebar_find_pos(pdev, bar); 3467 if (pos < 0) 3468 return 0; 3469 3470 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap); 3471 return (cap & PCI_REBAR_CAP_SIZES) >> 4; 3472 } 3473 3474 /** 3475 * pci_rebar_get_current_size - get the current size of a BAR 3476 * @pdev: PCI device 3477 * @bar: BAR to set size to 3478 * 3479 * Read the size of a BAR from the resizable BAR config. 3480 * Returns size if found or negative error code. 3481 */ 3482 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar) 3483 { 3484 int pos; 3485 u32 ctrl; 3486 3487 pos = pci_rebar_find_pos(pdev, bar); 3488 if (pos < 0) 3489 return pos; 3490 3491 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3492 return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT; 3493 } 3494 3495 /** 3496 * pci_rebar_set_size - set a new size for a BAR 3497 * @pdev: PCI device 3498 * @bar: BAR to set size to 3499 * @size: new size as defined in the spec (0=1MB, 19=512GB) 3500 * 3501 * Set the new size of a BAR as defined in the spec. 3502 * Returns zero if resizing was successful, error code otherwise. 3503 */ 3504 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size) 3505 { 3506 int pos; 3507 u32 ctrl; 3508 3509 pos = pci_rebar_find_pos(pdev, bar); 3510 if (pos < 0) 3511 return pos; 3512 3513 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3514 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 3515 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT; 3516 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 3517 return 0; 3518 } 3519 3520 /** 3521 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port 3522 * @dev: the PCI device 3523 * @cap_mask: mask of desired AtomicOp sizes, including one or more of: 3524 * PCI_EXP_DEVCAP2_ATOMIC_COMP32 3525 * PCI_EXP_DEVCAP2_ATOMIC_COMP64 3526 * PCI_EXP_DEVCAP2_ATOMIC_COMP128 3527 * 3528 * Return 0 if all upstream bridges support AtomicOp routing, egress 3529 * blocking is disabled on all upstream ports, and the root port supports 3530 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit 3531 * AtomicOp completion), or negative otherwise. 3532 */ 3533 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask) 3534 { 3535 struct pci_bus *bus = dev->bus; 3536 struct pci_dev *bridge; 3537 u32 cap, ctl2; 3538 3539 if (!pci_is_pcie(dev)) 3540 return -EINVAL; 3541 3542 /* 3543 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be 3544 * AtomicOp requesters. For now, we only support endpoints as 3545 * requesters and root ports as completers. No endpoints as 3546 * completers, and no peer-to-peer. 3547 */ 3548 3549 switch (pci_pcie_type(dev)) { 3550 case PCI_EXP_TYPE_ENDPOINT: 3551 case PCI_EXP_TYPE_LEG_END: 3552 case PCI_EXP_TYPE_RC_END: 3553 break; 3554 default: 3555 return -EINVAL; 3556 } 3557 3558 while (bus->parent) { 3559 bridge = bus->self; 3560 3561 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3562 3563 switch (pci_pcie_type(bridge)) { 3564 /* Ensure switch ports support AtomicOp routing */ 3565 case PCI_EXP_TYPE_UPSTREAM: 3566 case PCI_EXP_TYPE_DOWNSTREAM: 3567 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE)) 3568 return -EINVAL; 3569 break; 3570 3571 /* Ensure root port supports all the sizes we care about */ 3572 case PCI_EXP_TYPE_ROOT_PORT: 3573 if ((cap & cap_mask) != cap_mask) 3574 return -EINVAL; 3575 break; 3576 } 3577 3578 /* Ensure upstream ports don't block AtomicOps on egress */ 3579 if (!bridge->has_secondary_link) { 3580 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, 3581 &ctl2); 3582 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK) 3583 return -EINVAL; 3584 } 3585 3586 bus = bus->parent; 3587 } 3588 3589 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2, 3590 PCI_EXP_DEVCTL2_ATOMIC_REQ); 3591 return 0; 3592 } 3593 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root); 3594 3595 /** 3596 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge 3597 * @dev: the PCI device 3598 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD) 3599 * 3600 * Perform INTx swizzling for a device behind one level of bridge. This is 3601 * required by section 9.1 of the PCI-to-PCI bridge specification for devices 3602 * behind bridges on add-in cards. For devices with ARI enabled, the slot 3603 * number is always 0 (see the Implementation Note in section 2.2.8.1 of 3604 * the PCI Express Base Specification, Revision 2.1) 3605 */ 3606 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin) 3607 { 3608 int slot; 3609 3610 if (pci_ari_enabled(dev->bus)) 3611 slot = 0; 3612 else 3613 slot = PCI_SLOT(dev->devfn); 3614 3615 return (((pin - 1) + slot) % 4) + 1; 3616 } 3617 3618 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge) 3619 { 3620 u8 pin; 3621 3622 pin = dev->pin; 3623 if (!pin) 3624 return -1; 3625 3626 while (!pci_is_root_bus(dev->bus)) { 3627 pin = pci_swizzle_interrupt_pin(dev, pin); 3628 dev = dev->bus->self; 3629 } 3630 *bridge = dev; 3631 return pin; 3632 } 3633 3634 /** 3635 * pci_common_swizzle - swizzle INTx all the way to root bridge 3636 * @dev: the PCI device 3637 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD) 3638 * 3639 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI 3640 * bridges all the way up to a PCI root bus. 3641 */ 3642 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp) 3643 { 3644 u8 pin = *pinp; 3645 3646 while (!pci_is_root_bus(dev->bus)) { 3647 pin = pci_swizzle_interrupt_pin(dev, pin); 3648 dev = dev->bus->self; 3649 } 3650 *pinp = pin; 3651 return PCI_SLOT(dev->devfn); 3652 } 3653 EXPORT_SYMBOL_GPL(pci_common_swizzle); 3654 3655 /** 3656 * pci_release_region - Release a PCI bar 3657 * @pdev: PCI device whose resources were previously reserved by 3658 * pci_request_region() 3659 * @bar: BAR to release 3660 * 3661 * Releases the PCI I/O and memory resources previously reserved by a 3662 * successful call to pci_request_region(). Call this function only 3663 * after all use of the PCI regions has ceased. 3664 */ 3665 void pci_release_region(struct pci_dev *pdev, int bar) 3666 { 3667 struct pci_devres *dr; 3668 3669 if (pci_resource_len(pdev, bar) == 0) 3670 return; 3671 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) 3672 release_region(pci_resource_start(pdev, bar), 3673 pci_resource_len(pdev, bar)); 3674 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) 3675 release_mem_region(pci_resource_start(pdev, bar), 3676 pci_resource_len(pdev, bar)); 3677 3678 dr = find_pci_dr(pdev); 3679 if (dr) 3680 dr->region_mask &= ~(1 << bar); 3681 } 3682 EXPORT_SYMBOL(pci_release_region); 3683 3684 /** 3685 * __pci_request_region - Reserved PCI I/O and memory resource 3686 * @pdev: PCI device whose resources are to be reserved 3687 * @bar: BAR to be reserved 3688 * @res_name: Name to be associated with resource. 3689 * @exclusive: whether the region access is exclusive or not 3690 * 3691 * Mark the PCI region associated with PCI device @pdev BAR @bar as 3692 * being reserved by owner @res_name. Do not access any 3693 * address inside the PCI regions unless this call returns 3694 * successfully. 3695 * 3696 * If @exclusive is set, then the region is marked so that userspace 3697 * is explicitly not allowed to map the resource via /dev/mem or 3698 * sysfs MMIO access. 3699 * 3700 * Returns 0 on success, or %EBUSY on error. A warning 3701 * message is also printed on failure. 3702 */ 3703 static int __pci_request_region(struct pci_dev *pdev, int bar, 3704 const char *res_name, int exclusive) 3705 { 3706 struct pci_devres *dr; 3707 3708 if (pci_resource_len(pdev, bar) == 0) 3709 return 0; 3710 3711 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) { 3712 if (!request_region(pci_resource_start(pdev, bar), 3713 pci_resource_len(pdev, bar), res_name)) 3714 goto err_out; 3715 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) { 3716 if (!__request_mem_region(pci_resource_start(pdev, bar), 3717 pci_resource_len(pdev, bar), res_name, 3718 exclusive)) 3719 goto err_out; 3720 } 3721 3722 dr = find_pci_dr(pdev); 3723 if (dr) 3724 dr->region_mask |= 1 << bar; 3725 3726 return 0; 3727 3728 err_out: 3729 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar, 3730 &pdev->resource[bar]); 3731 return -EBUSY; 3732 } 3733 3734 /** 3735 * pci_request_region - Reserve PCI I/O and memory resource 3736 * @pdev: PCI device whose resources are to be reserved 3737 * @bar: BAR to be reserved 3738 * @res_name: Name to be associated with resource 3739 * 3740 * Mark the PCI region associated with PCI device @pdev BAR @bar as 3741 * being reserved by owner @res_name. Do not access any 3742 * address inside the PCI regions unless this call returns 3743 * successfully. 3744 * 3745 * Returns 0 on success, or %EBUSY on error. A warning 3746 * message is also printed on failure. 3747 */ 3748 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name) 3749 { 3750 return __pci_request_region(pdev, bar, res_name, 0); 3751 } 3752 EXPORT_SYMBOL(pci_request_region); 3753 3754 /** 3755 * pci_release_selected_regions - Release selected PCI I/O and memory resources 3756 * @pdev: PCI device whose resources were previously reserved 3757 * @bars: Bitmask of BARs to be released 3758 * 3759 * Release selected PCI I/O and memory resources previously reserved. 3760 * Call this function only after all use of the PCI regions has ceased. 3761 */ 3762 void pci_release_selected_regions(struct pci_dev *pdev, int bars) 3763 { 3764 int i; 3765 3766 for (i = 0; i < 6; i++) 3767 if (bars & (1 << i)) 3768 pci_release_region(pdev, i); 3769 } 3770 EXPORT_SYMBOL(pci_release_selected_regions); 3771 3772 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars, 3773 const char *res_name, int excl) 3774 { 3775 int i; 3776 3777 for (i = 0; i < 6; i++) 3778 if (bars & (1 << i)) 3779 if (__pci_request_region(pdev, i, res_name, excl)) 3780 goto err_out; 3781 return 0; 3782 3783 err_out: 3784 while (--i >= 0) 3785 if (bars & (1 << i)) 3786 pci_release_region(pdev, i); 3787 3788 return -EBUSY; 3789 } 3790 3791 3792 /** 3793 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources 3794 * @pdev: PCI device whose resources are to be reserved 3795 * @bars: Bitmask of BARs to be requested 3796 * @res_name: Name to be associated with resource 3797 */ 3798 int pci_request_selected_regions(struct pci_dev *pdev, int bars, 3799 const char *res_name) 3800 { 3801 return __pci_request_selected_regions(pdev, bars, res_name, 0); 3802 } 3803 EXPORT_SYMBOL(pci_request_selected_regions); 3804 3805 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars, 3806 const char *res_name) 3807 { 3808 return __pci_request_selected_regions(pdev, bars, res_name, 3809 IORESOURCE_EXCLUSIVE); 3810 } 3811 EXPORT_SYMBOL(pci_request_selected_regions_exclusive); 3812 3813 /** 3814 * pci_release_regions - Release reserved PCI I/O and memory resources 3815 * @pdev: PCI device whose resources were previously reserved by 3816 * pci_request_regions() 3817 * 3818 * Releases all PCI I/O and memory resources previously reserved by a 3819 * successful call to pci_request_regions(). Call this function only 3820 * after all use of the PCI regions has ceased. 3821 */ 3822 3823 void pci_release_regions(struct pci_dev *pdev) 3824 { 3825 pci_release_selected_regions(pdev, (1 << 6) - 1); 3826 } 3827 EXPORT_SYMBOL(pci_release_regions); 3828 3829 /** 3830 * pci_request_regions - Reserve PCI I/O and memory resources 3831 * @pdev: PCI device whose resources are to be reserved 3832 * @res_name: Name to be associated with resource. 3833 * 3834 * Mark all PCI regions associated with PCI device @pdev as 3835 * being reserved by owner @res_name. Do not access any 3836 * address inside the PCI regions unless this call returns 3837 * successfully. 3838 * 3839 * Returns 0 on success, or %EBUSY on error. A warning 3840 * message is also printed on failure. 3841 */ 3842 int pci_request_regions(struct pci_dev *pdev, const char *res_name) 3843 { 3844 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name); 3845 } 3846 EXPORT_SYMBOL(pci_request_regions); 3847 3848 /** 3849 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources 3850 * @pdev: PCI device whose resources are to be reserved 3851 * @res_name: Name to be associated with resource. 3852 * 3853 * Mark all PCI regions associated with PCI device @pdev as being reserved 3854 * by owner @res_name. Do not access any address inside the PCI regions 3855 * unless this call returns successfully. 3856 * 3857 * pci_request_regions_exclusive() will mark the region so that /dev/mem 3858 * and the sysfs MMIO access will not be allowed. 3859 * 3860 * Returns 0 on success, or %EBUSY on error. A warning message is also 3861 * printed on failure. 3862 */ 3863 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name) 3864 { 3865 return pci_request_selected_regions_exclusive(pdev, 3866 ((1 << 6) - 1), res_name); 3867 } 3868 EXPORT_SYMBOL(pci_request_regions_exclusive); 3869 3870 /* 3871 * Record the PCI IO range (expressed as CPU physical address + size). 3872 * Return a negative value if an error has occurred, zero otherwise 3873 */ 3874 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr, 3875 resource_size_t size) 3876 { 3877 int ret = 0; 3878 #ifdef PCI_IOBASE 3879 struct logic_pio_hwaddr *range; 3880 3881 if (!size || addr + size < addr) 3882 return -EINVAL; 3883 3884 range = kzalloc(sizeof(*range), GFP_ATOMIC); 3885 if (!range) 3886 return -ENOMEM; 3887 3888 range->fwnode = fwnode; 3889 range->size = size; 3890 range->hw_start = addr; 3891 range->flags = LOGIC_PIO_CPU_MMIO; 3892 3893 ret = logic_pio_register_range(range); 3894 if (ret) 3895 kfree(range); 3896 #endif 3897 3898 return ret; 3899 } 3900 3901 phys_addr_t pci_pio_to_address(unsigned long pio) 3902 { 3903 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR; 3904 3905 #ifdef PCI_IOBASE 3906 if (pio >= MMIO_UPPER_LIMIT) 3907 return address; 3908 3909 address = logic_pio_to_hwaddr(pio); 3910 #endif 3911 3912 return address; 3913 } 3914 3915 unsigned long __weak pci_address_to_pio(phys_addr_t address) 3916 { 3917 #ifdef PCI_IOBASE 3918 return logic_pio_trans_cpuaddr(address); 3919 #else 3920 if (address > IO_SPACE_LIMIT) 3921 return (unsigned long)-1; 3922 3923 return (unsigned long) address; 3924 #endif 3925 } 3926 3927 /** 3928 * pci_remap_iospace - Remap the memory mapped I/O space 3929 * @res: Resource describing the I/O space 3930 * @phys_addr: physical address of range to be mapped 3931 * 3932 * Remap the memory mapped I/O space described by the @res and the CPU 3933 * physical address @phys_addr into virtual address space. Only 3934 * architectures that have memory mapped IO functions defined (and the 3935 * PCI_IOBASE value defined) should call this function. 3936 */ 3937 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr) 3938 { 3939 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 3940 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 3941 3942 if (!(res->flags & IORESOURCE_IO)) 3943 return -EINVAL; 3944 3945 if (res->end > IO_SPACE_LIMIT) 3946 return -EINVAL; 3947 3948 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr, 3949 pgprot_device(PAGE_KERNEL)); 3950 #else 3951 /* 3952 * This architecture does not have memory mapped I/O space, 3953 * so this function should never be called 3954 */ 3955 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n"); 3956 return -ENODEV; 3957 #endif 3958 } 3959 EXPORT_SYMBOL(pci_remap_iospace); 3960 3961 /** 3962 * pci_unmap_iospace - Unmap the memory mapped I/O space 3963 * @res: resource to be unmapped 3964 * 3965 * Unmap the CPU virtual address @res from virtual address space. Only 3966 * architectures that have memory mapped IO functions defined (and the 3967 * PCI_IOBASE value defined) should call this function. 3968 */ 3969 void pci_unmap_iospace(struct resource *res) 3970 { 3971 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 3972 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 3973 3974 unmap_kernel_range(vaddr, resource_size(res)); 3975 #endif 3976 } 3977 EXPORT_SYMBOL(pci_unmap_iospace); 3978 3979 static void devm_pci_unmap_iospace(struct device *dev, void *ptr) 3980 { 3981 struct resource **res = ptr; 3982 3983 pci_unmap_iospace(*res); 3984 } 3985 3986 /** 3987 * devm_pci_remap_iospace - Managed pci_remap_iospace() 3988 * @dev: Generic device to remap IO address for 3989 * @res: Resource describing the I/O space 3990 * @phys_addr: physical address of range to be mapped 3991 * 3992 * Managed pci_remap_iospace(). Map is automatically unmapped on driver 3993 * detach. 3994 */ 3995 int devm_pci_remap_iospace(struct device *dev, const struct resource *res, 3996 phys_addr_t phys_addr) 3997 { 3998 const struct resource **ptr; 3999 int error; 4000 4001 ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL); 4002 if (!ptr) 4003 return -ENOMEM; 4004 4005 error = pci_remap_iospace(res, phys_addr); 4006 if (error) { 4007 devres_free(ptr); 4008 } else { 4009 *ptr = res; 4010 devres_add(dev, ptr); 4011 } 4012 4013 return error; 4014 } 4015 EXPORT_SYMBOL(devm_pci_remap_iospace); 4016 4017 /** 4018 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace() 4019 * @dev: Generic device to remap IO address for 4020 * @offset: Resource address to map 4021 * @size: Size of map 4022 * 4023 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver 4024 * detach. 4025 */ 4026 void __iomem *devm_pci_remap_cfgspace(struct device *dev, 4027 resource_size_t offset, 4028 resource_size_t size) 4029 { 4030 void __iomem **ptr, *addr; 4031 4032 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL); 4033 if (!ptr) 4034 return NULL; 4035 4036 addr = pci_remap_cfgspace(offset, size); 4037 if (addr) { 4038 *ptr = addr; 4039 devres_add(dev, ptr); 4040 } else 4041 devres_free(ptr); 4042 4043 return addr; 4044 } 4045 EXPORT_SYMBOL(devm_pci_remap_cfgspace); 4046 4047 /** 4048 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource 4049 * @dev: generic device to handle the resource for 4050 * @res: configuration space resource to be handled 4051 * 4052 * Checks that a resource is a valid memory region, requests the memory 4053 * region and ioremaps with pci_remap_cfgspace() API that ensures the 4054 * proper PCI configuration space memory attributes are guaranteed. 4055 * 4056 * All operations are managed and will be undone on driver detach. 4057 * 4058 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code 4059 * on failure. Usage example:: 4060 * 4061 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 4062 * base = devm_pci_remap_cfg_resource(&pdev->dev, res); 4063 * if (IS_ERR(base)) 4064 * return PTR_ERR(base); 4065 */ 4066 void __iomem *devm_pci_remap_cfg_resource(struct device *dev, 4067 struct resource *res) 4068 { 4069 resource_size_t size; 4070 const char *name; 4071 void __iomem *dest_ptr; 4072 4073 BUG_ON(!dev); 4074 4075 if (!res || resource_type(res) != IORESOURCE_MEM) { 4076 dev_err(dev, "invalid resource\n"); 4077 return IOMEM_ERR_PTR(-EINVAL); 4078 } 4079 4080 size = resource_size(res); 4081 name = res->name ?: dev_name(dev); 4082 4083 if (!devm_request_mem_region(dev, res->start, size, name)) { 4084 dev_err(dev, "can't request region for resource %pR\n", res); 4085 return IOMEM_ERR_PTR(-EBUSY); 4086 } 4087 4088 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size); 4089 if (!dest_ptr) { 4090 dev_err(dev, "ioremap failed for resource %pR\n", res); 4091 devm_release_mem_region(dev, res->start, size); 4092 dest_ptr = IOMEM_ERR_PTR(-ENOMEM); 4093 } 4094 4095 return dest_ptr; 4096 } 4097 EXPORT_SYMBOL(devm_pci_remap_cfg_resource); 4098 4099 static void __pci_set_master(struct pci_dev *dev, bool enable) 4100 { 4101 u16 old_cmd, cmd; 4102 4103 pci_read_config_word(dev, PCI_COMMAND, &old_cmd); 4104 if (enable) 4105 cmd = old_cmd | PCI_COMMAND_MASTER; 4106 else 4107 cmd = old_cmd & ~PCI_COMMAND_MASTER; 4108 if (cmd != old_cmd) { 4109 pci_dbg(dev, "%s bus mastering\n", 4110 enable ? "enabling" : "disabling"); 4111 pci_write_config_word(dev, PCI_COMMAND, cmd); 4112 } 4113 dev->is_busmaster = enable; 4114 } 4115 4116 /** 4117 * pcibios_setup - process "pci=" kernel boot arguments 4118 * @str: string used to pass in "pci=" kernel boot arguments 4119 * 4120 * Process kernel boot arguments. This is the default implementation. 4121 * Architecture specific implementations can override this as necessary. 4122 */ 4123 char * __weak __init pcibios_setup(char *str) 4124 { 4125 return str; 4126 } 4127 4128 /** 4129 * pcibios_set_master - enable PCI bus-mastering for device dev 4130 * @dev: the PCI device to enable 4131 * 4132 * Enables PCI bus-mastering for the device. This is the default 4133 * implementation. Architecture specific implementations can override 4134 * this if necessary. 4135 */ 4136 void __weak pcibios_set_master(struct pci_dev *dev) 4137 { 4138 u8 lat; 4139 4140 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */ 4141 if (pci_is_pcie(dev)) 4142 return; 4143 4144 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat); 4145 if (lat < 16) 4146 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency; 4147 else if (lat > pcibios_max_latency) 4148 lat = pcibios_max_latency; 4149 else 4150 return; 4151 4152 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat); 4153 } 4154 4155 /** 4156 * pci_set_master - enables bus-mastering for device dev 4157 * @dev: the PCI device to enable 4158 * 4159 * Enables bus-mastering on the device and calls pcibios_set_master() 4160 * to do the needed arch specific settings. 4161 */ 4162 void pci_set_master(struct pci_dev *dev) 4163 { 4164 __pci_set_master(dev, true); 4165 pcibios_set_master(dev); 4166 } 4167 EXPORT_SYMBOL(pci_set_master); 4168 4169 /** 4170 * pci_clear_master - disables bus-mastering for device dev 4171 * @dev: the PCI device to disable 4172 */ 4173 void pci_clear_master(struct pci_dev *dev) 4174 { 4175 __pci_set_master(dev, false); 4176 } 4177 EXPORT_SYMBOL(pci_clear_master); 4178 4179 /** 4180 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed 4181 * @dev: the PCI device for which MWI is to be enabled 4182 * 4183 * Helper function for pci_set_mwi. 4184 * Originally copied from drivers/net/acenic.c. 4185 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. 4186 * 4187 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4188 */ 4189 int pci_set_cacheline_size(struct pci_dev *dev) 4190 { 4191 u8 cacheline_size; 4192 4193 if (!pci_cache_line_size) 4194 return -EINVAL; 4195 4196 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be 4197 equal to or multiple of the right value. */ 4198 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4199 if (cacheline_size >= pci_cache_line_size && 4200 (cacheline_size % pci_cache_line_size) == 0) 4201 return 0; 4202 4203 /* Write the correct value. */ 4204 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size); 4205 /* Read it back. */ 4206 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4207 if (cacheline_size == pci_cache_line_size) 4208 return 0; 4209 4210 pci_info(dev, "cache line size of %d is not supported\n", 4211 pci_cache_line_size << 2); 4212 4213 return -EINVAL; 4214 } 4215 EXPORT_SYMBOL_GPL(pci_set_cacheline_size); 4216 4217 /** 4218 * pci_set_mwi - enables memory-write-invalidate PCI transaction 4219 * @dev: the PCI device for which MWI is enabled 4220 * 4221 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4222 * 4223 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4224 */ 4225 int pci_set_mwi(struct pci_dev *dev) 4226 { 4227 #ifdef PCI_DISABLE_MWI 4228 return 0; 4229 #else 4230 int rc; 4231 u16 cmd; 4232 4233 rc = pci_set_cacheline_size(dev); 4234 if (rc) 4235 return rc; 4236 4237 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4238 if (!(cmd & PCI_COMMAND_INVALIDATE)) { 4239 pci_dbg(dev, "enabling Mem-Wr-Inval\n"); 4240 cmd |= PCI_COMMAND_INVALIDATE; 4241 pci_write_config_word(dev, PCI_COMMAND, cmd); 4242 } 4243 return 0; 4244 #endif 4245 } 4246 EXPORT_SYMBOL(pci_set_mwi); 4247 4248 /** 4249 * pcim_set_mwi - a device-managed pci_set_mwi() 4250 * @dev: the PCI device for which MWI is enabled 4251 * 4252 * Managed pci_set_mwi(). 4253 * 4254 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4255 */ 4256 int pcim_set_mwi(struct pci_dev *dev) 4257 { 4258 struct pci_devres *dr; 4259 4260 dr = find_pci_dr(dev); 4261 if (!dr) 4262 return -ENOMEM; 4263 4264 dr->mwi = 1; 4265 return pci_set_mwi(dev); 4266 } 4267 EXPORT_SYMBOL(pcim_set_mwi); 4268 4269 /** 4270 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction 4271 * @dev: the PCI device for which MWI is enabled 4272 * 4273 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4274 * Callers are not required to check the return value. 4275 * 4276 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4277 */ 4278 int pci_try_set_mwi(struct pci_dev *dev) 4279 { 4280 #ifdef PCI_DISABLE_MWI 4281 return 0; 4282 #else 4283 return pci_set_mwi(dev); 4284 #endif 4285 } 4286 EXPORT_SYMBOL(pci_try_set_mwi); 4287 4288 /** 4289 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev 4290 * @dev: the PCI device to disable 4291 * 4292 * Disables PCI Memory-Write-Invalidate transaction on the device 4293 */ 4294 void pci_clear_mwi(struct pci_dev *dev) 4295 { 4296 #ifndef PCI_DISABLE_MWI 4297 u16 cmd; 4298 4299 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4300 if (cmd & PCI_COMMAND_INVALIDATE) { 4301 cmd &= ~PCI_COMMAND_INVALIDATE; 4302 pci_write_config_word(dev, PCI_COMMAND, cmd); 4303 } 4304 #endif 4305 } 4306 EXPORT_SYMBOL(pci_clear_mwi); 4307 4308 /** 4309 * pci_intx - enables/disables PCI INTx for device dev 4310 * @pdev: the PCI device to operate on 4311 * @enable: boolean: whether to enable or disable PCI INTx 4312 * 4313 * Enables/disables PCI INTx for device @pdev 4314 */ 4315 void pci_intx(struct pci_dev *pdev, int enable) 4316 { 4317 u16 pci_command, new; 4318 4319 pci_read_config_word(pdev, PCI_COMMAND, &pci_command); 4320 4321 if (enable) 4322 new = pci_command & ~PCI_COMMAND_INTX_DISABLE; 4323 else 4324 new = pci_command | PCI_COMMAND_INTX_DISABLE; 4325 4326 if (new != pci_command) { 4327 struct pci_devres *dr; 4328 4329 pci_write_config_word(pdev, PCI_COMMAND, new); 4330 4331 dr = find_pci_dr(pdev); 4332 if (dr && !dr->restore_intx) { 4333 dr->restore_intx = 1; 4334 dr->orig_intx = !enable; 4335 } 4336 } 4337 } 4338 EXPORT_SYMBOL_GPL(pci_intx); 4339 4340 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask) 4341 { 4342 struct pci_bus *bus = dev->bus; 4343 bool mask_updated = true; 4344 u32 cmd_status_dword; 4345 u16 origcmd, newcmd; 4346 unsigned long flags; 4347 bool irq_pending; 4348 4349 /* 4350 * We do a single dword read to retrieve both command and status. 4351 * Document assumptions that make this possible. 4352 */ 4353 BUILD_BUG_ON(PCI_COMMAND % 4); 4354 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS); 4355 4356 raw_spin_lock_irqsave(&pci_lock, flags); 4357 4358 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword); 4359 4360 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT; 4361 4362 /* 4363 * Check interrupt status register to see whether our device 4364 * triggered the interrupt (when masking) or the next IRQ is 4365 * already pending (when unmasking). 4366 */ 4367 if (mask != irq_pending) { 4368 mask_updated = false; 4369 goto done; 4370 } 4371 4372 origcmd = cmd_status_dword; 4373 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE; 4374 if (mask) 4375 newcmd |= PCI_COMMAND_INTX_DISABLE; 4376 if (newcmd != origcmd) 4377 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd); 4378 4379 done: 4380 raw_spin_unlock_irqrestore(&pci_lock, flags); 4381 4382 return mask_updated; 4383 } 4384 4385 /** 4386 * pci_check_and_mask_intx - mask INTx on pending interrupt 4387 * @dev: the PCI device to operate on 4388 * 4389 * Check if the device dev has its INTx line asserted, mask it and return 4390 * true in that case. False is returned if no interrupt was pending. 4391 */ 4392 bool pci_check_and_mask_intx(struct pci_dev *dev) 4393 { 4394 return pci_check_and_set_intx_mask(dev, true); 4395 } 4396 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx); 4397 4398 /** 4399 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending 4400 * @dev: the PCI device to operate on 4401 * 4402 * Check if the device dev has its INTx line asserted, unmask it if not and 4403 * return true. False is returned and the mask remains active if there was 4404 * still an interrupt pending. 4405 */ 4406 bool pci_check_and_unmask_intx(struct pci_dev *dev) 4407 { 4408 return pci_check_and_set_intx_mask(dev, false); 4409 } 4410 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx); 4411 4412 /** 4413 * pci_wait_for_pending_transaction - wait for pending transaction 4414 * @dev: the PCI device to operate on 4415 * 4416 * Return 0 if transaction is pending 1 otherwise. 4417 */ 4418 int pci_wait_for_pending_transaction(struct pci_dev *dev) 4419 { 4420 if (!pci_is_pcie(dev)) 4421 return 1; 4422 4423 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA, 4424 PCI_EXP_DEVSTA_TRPND); 4425 } 4426 EXPORT_SYMBOL(pci_wait_for_pending_transaction); 4427 4428 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout) 4429 { 4430 int delay = 1; 4431 u32 id; 4432 4433 /* 4434 * After reset, the device should not silently discard config 4435 * requests, but it may still indicate that it needs more time by 4436 * responding to them with CRS completions. The Root Port will 4437 * generally synthesize ~0 data to complete the read (except when 4438 * CRS SV is enabled and the read was for the Vendor ID; in that 4439 * case it synthesizes 0x0001 data). 4440 * 4441 * Wait for the device to return a non-CRS completion. Read the 4442 * Command register instead of Vendor ID so we don't have to 4443 * contend with the CRS SV value. 4444 */ 4445 pci_read_config_dword(dev, PCI_COMMAND, &id); 4446 while (id == ~0) { 4447 if (delay > timeout) { 4448 pci_warn(dev, "not ready %dms after %s; giving up\n", 4449 delay - 1, reset_type); 4450 return -ENOTTY; 4451 } 4452 4453 if (delay > 1000) 4454 pci_info(dev, "not ready %dms after %s; waiting\n", 4455 delay - 1, reset_type); 4456 4457 msleep(delay); 4458 delay *= 2; 4459 pci_read_config_dword(dev, PCI_COMMAND, &id); 4460 } 4461 4462 if (delay > 1000) 4463 pci_info(dev, "ready %dms after %s\n", delay - 1, 4464 reset_type); 4465 4466 return 0; 4467 } 4468 4469 /** 4470 * pcie_has_flr - check if a device supports function level resets 4471 * @dev: device to check 4472 * 4473 * Returns true if the device advertises support for PCIe function level 4474 * resets. 4475 */ 4476 bool pcie_has_flr(struct pci_dev *dev) 4477 { 4478 u32 cap; 4479 4480 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4481 return false; 4482 4483 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap); 4484 return cap & PCI_EXP_DEVCAP_FLR; 4485 } 4486 EXPORT_SYMBOL_GPL(pcie_has_flr); 4487 4488 /** 4489 * pcie_flr - initiate a PCIe function level reset 4490 * @dev: device to reset 4491 * 4492 * Initiate a function level reset on @dev. The caller should ensure the 4493 * device supports FLR before calling this function, e.g. by using the 4494 * pcie_has_flr() helper. 4495 */ 4496 int pcie_flr(struct pci_dev *dev) 4497 { 4498 if (!pci_wait_for_pending_transaction(dev)) 4499 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n"); 4500 4501 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR); 4502 4503 if (dev->imm_ready) 4504 return 0; 4505 4506 /* 4507 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within 4508 * 100ms, but may silently discard requests while the FLR is in 4509 * progress. Wait 100ms before trying to access the device. 4510 */ 4511 msleep(100); 4512 4513 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS); 4514 } 4515 EXPORT_SYMBOL_GPL(pcie_flr); 4516 4517 static int pci_af_flr(struct pci_dev *dev, int probe) 4518 { 4519 int pos; 4520 u8 cap; 4521 4522 pos = pci_find_capability(dev, PCI_CAP_ID_AF); 4523 if (!pos) 4524 return -ENOTTY; 4525 4526 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4527 return -ENOTTY; 4528 4529 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap); 4530 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR)) 4531 return -ENOTTY; 4532 4533 if (probe) 4534 return 0; 4535 4536 /* 4537 * Wait for Transaction Pending bit to clear. A word-aligned test 4538 * is used, so we use the control offset rather than status and shift 4539 * the test bit to match. 4540 */ 4541 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL, 4542 PCI_AF_STATUS_TP << 8)) 4543 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n"); 4544 4545 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR); 4546 4547 if (dev->imm_ready) 4548 return 0; 4549 4550 /* 4551 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006, 4552 * updated 27 July 2006; a device must complete an FLR within 4553 * 100ms, but may silently discard requests while the FLR is in 4554 * progress. Wait 100ms before trying to access the device. 4555 */ 4556 msleep(100); 4557 4558 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS); 4559 } 4560 4561 /** 4562 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0. 4563 * @dev: Device to reset. 4564 * @probe: If set, only check if the device can be reset this way. 4565 * 4566 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is 4567 * unset, it will be reinitialized internally when going from PCI_D3hot to 4568 * PCI_D0. If that's the case and the device is not in a low-power state 4569 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset. 4570 * 4571 * NOTE: This causes the caller to sleep for twice the device power transition 4572 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms 4573 * by default (i.e. unless the @dev's d3_delay field has a different value). 4574 * Moreover, only devices in D0 can be reset by this function. 4575 */ 4576 static int pci_pm_reset(struct pci_dev *dev, int probe) 4577 { 4578 u16 csr; 4579 4580 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET) 4581 return -ENOTTY; 4582 4583 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr); 4584 if (csr & PCI_PM_CTRL_NO_SOFT_RESET) 4585 return -ENOTTY; 4586 4587 if (probe) 4588 return 0; 4589 4590 if (dev->current_state != PCI_D0) 4591 return -EINVAL; 4592 4593 csr &= ~PCI_PM_CTRL_STATE_MASK; 4594 csr |= PCI_D3hot; 4595 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4596 pci_dev_d3_sleep(dev); 4597 4598 csr &= ~PCI_PM_CTRL_STATE_MASK; 4599 csr |= PCI_D0; 4600 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4601 pci_dev_d3_sleep(dev); 4602 4603 return pci_dev_wait(dev, "PM D3->D0", PCIE_RESET_READY_POLL_MS); 4604 } 4605 4606 /** 4607 * pcie_wait_for_link_delay - Wait until link is active or inactive 4608 * @pdev: Bridge device 4609 * @active: waiting for active or inactive? 4610 * @delay: Delay to wait after link has become active (in ms) 4611 * 4612 * Use this to wait till link becomes active or inactive. 4613 */ 4614 bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active, int delay) 4615 { 4616 int timeout = 1000; 4617 bool ret; 4618 u16 lnk_status; 4619 4620 /* 4621 * Some controllers might not implement link active reporting. In this 4622 * case, we wait for 1000 + 100 ms. 4623 */ 4624 if (!pdev->link_active_reporting) { 4625 msleep(1100); 4626 return true; 4627 } 4628 4629 /* 4630 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms, 4631 * after which we should expect an link active if the reset was 4632 * successful. If so, software must wait a minimum 100ms before sending 4633 * configuration requests to devices downstream this port. 4634 * 4635 * If the link fails to activate, either the device was physically 4636 * removed or the link is permanently failed. 4637 */ 4638 if (active) 4639 msleep(20); 4640 for (;;) { 4641 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status); 4642 ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA); 4643 if (ret == active) 4644 break; 4645 if (timeout <= 0) 4646 break; 4647 msleep(10); 4648 timeout -= 10; 4649 } 4650 if (active && ret) 4651 msleep(delay); 4652 else if (ret != active) 4653 pci_info(pdev, "Data Link Layer Link Active not %s in 1000 msec\n", 4654 active ? "set" : "cleared"); 4655 return ret == active; 4656 } 4657 4658 /** 4659 * pcie_wait_for_link - Wait until link is active or inactive 4660 * @pdev: Bridge device 4661 * @active: waiting for active or inactive? 4662 * 4663 * Use this to wait till link becomes active or inactive. 4664 */ 4665 bool pcie_wait_for_link(struct pci_dev *pdev, bool active) 4666 { 4667 return pcie_wait_for_link_delay(pdev, active, 100); 4668 } 4669 4670 void pci_reset_secondary_bus(struct pci_dev *dev) 4671 { 4672 u16 ctrl; 4673 4674 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl); 4675 ctrl |= PCI_BRIDGE_CTL_BUS_RESET; 4676 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 4677 4678 /* 4679 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double 4680 * this to 2ms to ensure that we meet the minimum requirement. 4681 */ 4682 msleep(2); 4683 4684 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET; 4685 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 4686 4687 /* 4688 * Trhfa for conventional PCI is 2^25 clock cycles. 4689 * Assuming a minimum 33MHz clock this results in a 1s 4690 * delay before we can consider subordinate devices to 4691 * be re-initialized. PCIe has some ways to shorten this, 4692 * but we don't make use of them yet. 4693 */ 4694 ssleep(1); 4695 } 4696 4697 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev) 4698 { 4699 pci_reset_secondary_bus(dev); 4700 } 4701 4702 /** 4703 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge. 4704 * @dev: Bridge device 4705 * 4706 * Use the bridge control register to assert reset on the secondary bus. 4707 * Devices on the secondary bus are left in power-on state. 4708 */ 4709 int pci_bridge_secondary_bus_reset(struct pci_dev *dev) 4710 { 4711 pcibios_reset_secondary_bus(dev); 4712 4713 return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS); 4714 } 4715 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset); 4716 4717 static int pci_parent_bus_reset(struct pci_dev *dev, int probe) 4718 { 4719 struct pci_dev *pdev; 4720 4721 if (pci_is_root_bus(dev->bus) || dev->subordinate || 4722 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 4723 return -ENOTTY; 4724 4725 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 4726 if (pdev != dev) 4727 return -ENOTTY; 4728 4729 if (probe) 4730 return 0; 4731 4732 return pci_bridge_secondary_bus_reset(dev->bus->self); 4733 } 4734 4735 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe) 4736 { 4737 int rc = -ENOTTY; 4738 4739 if (!hotplug || !try_module_get(hotplug->owner)) 4740 return rc; 4741 4742 if (hotplug->ops->reset_slot) 4743 rc = hotplug->ops->reset_slot(hotplug, probe); 4744 4745 module_put(hotplug->owner); 4746 4747 return rc; 4748 } 4749 4750 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe) 4751 { 4752 struct pci_dev *pdev; 4753 4754 if (dev->subordinate || !dev->slot || 4755 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 4756 return -ENOTTY; 4757 4758 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 4759 if (pdev != dev && pdev->slot == dev->slot) 4760 return -ENOTTY; 4761 4762 return pci_reset_hotplug_slot(dev->slot->hotplug, probe); 4763 } 4764 4765 static void pci_dev_lock(struct pci_dev *dev) 4766 { 4767 pci_cfg_access_lock(dev); 4768 /* block PM suspend, driver probe, etc. */ 4769 device_lock(&dev->dev); 4770 } 4771 4772 /* Return 1 on successful lock, 0 on contention */ 4773 static int pci_dev_trylock(struct pci_dev *dev) 4774 { 4775 if (pci_cfg_access_trylock(dev)) { 4776 if (device_trylock(&dev->dev)) 4777 return 1; 4778 pci_cfg_access_unlock(dev); 4779 } 4780 4781 return 0; 4782 } 4783 4784 static void pci_dev_unlock(struct pci_dev *dev) 4785 { 4786 device_unlock(&dev->dev); 4787 pci_cfg_access_unlock(dev); 4788 } 4789 4790 static void pci_dev_save_and_disable(struct pci_dev *dev) 4791 { 4792 const struct pci_error_handlers *err_handler = 4793 dev->driver ? dev->driver->err_handler : NULL; 4794 4795 /* 4796 * dev->driver->err_handler->reset_prepare() is protected against 4797 * races with ->remove() by the device lock, which must be held by 4798 * the caller. 4799 */ 4800 if (err_handler && err_handler->reset_prepare) 4801 err_handler->reset_prepare(dev); 4802 4803 /* 4804 * Wake-up device prior to save. PM registers default to D0 after 4805 * reset and a simple register restore doesn't reliably return 4806 * to a non-D0 state anyway. 4807 */ 4808 pci_set_power_state(dev, PCI_D0); 4809 4810 pci_save_state(dev); 4811 /* 4812 * Disable the device by clearing the Command register, except for 4813 * INTx-disable which is set. This not only disables MMIO and I/O port 4814 * BARs, but also prevents the device from being Bus Master, preventing 4815 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3 4816 * compliant devices, INTx-disable prevents legacy interrupts. 4817 */ 4818 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE); 4819 } 4820 4821 static void pci_dev_restore(struct pci_dev *dev) 4822 { 4823 const struct pci_error_handlers *err_handler = 4824 dev->driver ? dev->driver->err_handler : NULL; 4825 4826 pci_restore_state(dev); 4827 4828 /* 4829 * dev->driver->err_handler->reset_done() is protected against 4830 * races with ->remove() by the device lock, which must be held by 4831 * the caller. 4832 */ 4833 if (err_handler && err_handler->reset_done) 4834 err_handler->reset_done(dev); 4835 } 4836 4837 /** 4838 * __pci_reset_function_locked - reset a PCI device function while holding 4839 * the @dev mutex lock. 4840 * @dev: PCI device to reset 4841 * 4842 * Some devices allow an individual function to be reset without affecting 4843 * other functions in the same device. The PCI device must be responsive 4844 * to PCI config space in order to use this function. 4845 * 4846 * The device function is presumed to be unused and the caller is holding 4847 * the device mutex lock when this function is called. 4848 * 4849 * Resetting the device will make the contents of PCI configuration space 4850 * random, so any caller of this must be prepared to reinitialise the 4851 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 4852 * etc. 4853 * 4854 * Returns 0 if the device function was successfully reset or negative if the 4855 * device doesn't support resetting a single function. 4856 */ 4857 int __pci_reset_function_locked(struct pci_dev *dev) 4858 { 4859 int rc; 4860 4861 might_sleep(); 4862 4863 /* 4864 * A reset method returns -ENOTTY if it doesn't support this device 4865 * and we should try the next method. 4866 * 4867 * If it returns 0 (success), we're finished. If it returns any 4868 * other error, we're also finished: this indicates that further 4869 * reset mechanisms might be broken on the device. 4870 */ 4871 rc = pci_dev_specific_reset(dev, 0); 4872 if (rc != -ENOTTY) 4873 return rc; 4874 if (pcie_has_flr(dev)) { 4875 rc = pcie_flr(dev); 4876 if (rc != -ENOTTY) 4877 return rc; 4878 } 4879 rc = pci_af_flr(dev, 0); 4880 if (rc != -ENOTTY) 4881 return rc; 4882 rc = pci_pm_reset(dev, 0); 4883 if (rc != -ENOTTY) 4884 return rc; 4885 rc = pci_dev_reset_slot_function(dev, 0); 4886 if (rc != -ENOTTY) 4887 return rc; 4888 return pci_parent_bus_reset(dev, 0); 4889 } 4890 EXPORT_SYMBOL_GPL(__pci_reset_function_locked); 4891 4892 /** 4893 * pci_probe_reset_function - check whether the device can be safely reset 4894 * @dev: PCI device to reset 4895 * 4896 * Some devices allow an individual function to be reset without affecting 4897 * other functions in the same device. The PCI device must be responsive 4898 * to PCI config space in order to use this function. 4899 * 4900 * Returns 0 if the device function can be reset or negative if the 4901 * device doesn't support resetting a single function. 4902 */ 4903 int pci_probe_reset_function(struct pci_dev *dev) 4904 { 4905 int rc; 4906 4907 might_sleep(); 4908 4909 rc = pci_dev_specific_reset(dev, 1); 4910 if (rc != -ENOTTY) 4911 return rc; 4912 if (pcie_has_flr(dev)) 4913 return 0; 4914 rc = pci_af_flr(dev, 1); 4915 if (rc != -ENOTTY) 4916 return rc; 4917 rc = pci_pm_reset(dev, 1); 4918 if (rc != -ENOTTY) 4919 return rc; 4920 rc = pci_dev_reset_slot_function(dev, 1); 4921 if (rc != -ENOTTY) 4922 return rc; 4923 4924 return pci_parent_bus_reset(dev, 1); 4925 } 4926 4927 /** 4928 * pci_reset_function - quiesce and reset a PCI device function 4929 * @dev: PCI device to reset 4930 * 4931 * Some devices allow an individual function to be reset without affecting 4932 * other functions in the same device. The PCI device must be responsive 4933 * to PCI config space in order to use this function. 4934 * 4935 * This function does not just reset the PCI portion of a device, but 4936 * clears all the state associated with the device. This function differs 4937 * from __pci_reset_function_locked() in that it saves and restores device state 4938 * over the reset and takes the PCI device lock. 4939 * 4940 * Returns 0 if the device function was successfully reset or negative if the 4941 * device doesn't support resetting a single function. 4942 */ 4943 int pci_reset_function(struct pci_dev *dev) 4944 { 4945 int rc; 4946 4947 if (!dev->reset_fn) 4948 return -ENOTTY; 4949 4950 pci_dev_lock(dev); 4951 pci_dev_save_and_disable(dev); 4952 4953 rc = __pci_reset_function_locked(dev); 4954 4955 pci_dev_restore(dev); 4956 pci_dev_unlock(dev); 4957 4958 return rc; 4959 } 4960 EXPORT_SYMBOL_GPL(pci_reset_function); 4961 4962 /** 4963 * pci_reset_function_locked - quiesce and reset a PCI device function 4964 * @dev: PCI device to reset 4965 * 4966 * Some devices allow an individual function to be reset without affecting 4967 * other functions in the same device. The PCI device must be responsive 4968 * to PCI config space in order to use this function. 4969 * 4970 * This function does not just reset the PCI portion of a device, but 4971 * clears all the state associated with the device. This function differs 4972 * from __pci_reset_function_locked() in that it saves and restores device state 4973 * over the reset. It also differs from pci_reset_function() in that it 4974 * requires the PCI device lock to be held. 4975 * 4976 * Returns 0 if the device function was successfully reset or negative if the 4977 * device doesn't support resetting a single function. 4978 */ 4979 int pci_reset_function_locked(struct pci_dev *dev) 4980 { 4981 int rc; 4982 4983 if (!dev->reset_fn) 4984 return -ENOTTY; 4985 4986 pci_dev_save_and_disable(dev); 4987 4988 rc = __pci_reset_function_locked(dev); 4989 4990 pci_dev_restore(dev); 4991 4992 return rc; 4993 } 4994 EXPORT_SYMBOL_GPL(pci_reset_function_locked); 4995 4996 /** 4997 * pci_try_reset_function - quiesce and reset a PCI device function 4998 * @dev: PCI device to reset 4999 * 5000 * Same as above, except return -EAGAIN if unable to lock device. 5001 */ 5002 int pci_try_reset_function(struct pci_dev *dev) 5003 { 5004 int rc; 5005 5006 if (!dev->reset_fn) 5007 return -ENOTTY; 5008 5009 if (!pci_dev_trylock(dev)) 5010 return -EAGAIN; 5011 5012 pci_dev_save_and_disable(dev); 5013 rc = __pci_reset_function_locked(dev); 5014 pci_dev_restore(dev); 5015 pci_dev_unlock(dev); 5016 5017 return rc; 5018 } 5019 EXPORT_SYMBOL_GPL(pci_try_reset_function); 5020 5021 /* Do any devices on or below this bus prevent a bus reset? */ 5022 static bool pci_bus_resetable(struct pci_bus *bus) 5023 { 5024 struct pci_dev *dev; 5025 5026 5027 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 5028 return false; 5029 5030 list_for_each_entry(dev, &bus->devices, bus_list) { 5031 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 5032 (dev->subordinate && !pci_bus_resetable(dev->subordinate))) 5033 return false; 5034 } 5035 5036 return true; 5037 } 5038 5039 /* Lock devices from the top of the tree down */ 5040 static void pci_bus_lock(struct pci_bus *bus) 5041 { 5042 struct pci_dev *dev; 5043 5044 list_for_each_entry(dev, &bus->devices, bus_list) { 5045 pci_dev_lock(dev); 5046 if (dev->subordinate) 5047 pci_bus_lock(dev->subordinate); 5048 } 5049 } 5050 5051 /* Unlock devices from the bottom of the tree up */ 5052 static void pci_bus_unlock(struct pci_bus *bus) 5053 { 5054 struct pci_dev *dev; 5055 5056 list_for_each_entry(dev, &bus->devices, bus_list) { 5057 if (dev->subordinate) 5058 pci_bus_unlock(dev->subordinate); 5059 pci_dev_unlock(dev); 5060 } 5061 } 5062 5063 /* Return 1 on successful lock, 0 on contention */ 5064 static int pci_bus_trylock(struct pci_bus *bus) 5065 { 5066 struct pci_dev *dev; 5067 5068 list_for_each_entry(dev, &bus->devices, bus_list) { 5069 if (!pci_dev_trylock(dev)) 5070 goto unlock; 5071 if (dev->subordinate) { 5072 if (!pci_bus_trylock(dev->subordinate)) { 5073 pci_dev_unlock(dev); 5074 goto unlock; 5075 } 5076 } 5077 } 5078 return 1; 5079 5080 unlock: 5081 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) { 5082 if (dev->subordinate) 5083 pci_bus_unlock(dev->subordinate); 5084 pci_dev_unlock(dev); 5085 } 5086 return 0; 5087 } 5088 5089 /* Do any devices on or below this slot prevent a bus reset? */ 5090 static bool pci_slot_resetable(struct pci_slot *slot) 5091 { 5092 struct pci_dev *dev; 5093 5094 if (slot->bus->self && 5095 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 5096 return false; 5097 5098 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5099 if (!dev->slot || dev->slot != slot) 5100 continue; 5101 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 5102 (dev->subordinate && !pci_bus_resetable(dev->subordinate))) 5103 return false; 5104 } 5105 5106 return true; 5107 } 5108 5109 /* Lock devices from the top of the tree down */ 5110 static void pci_slot_lock(struct pci_slot *slot) 5111 { 5112 struct pci_dev *dev; 5113 5114 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5115 if (!dev->slot || dev->slot != slot) 5116 continue; 5117 pci_dev_lock(dev); 5118 if (dev->subordinate) 5119 pci_bus_lock(dev->subordinate); 5120 } 5121 } 5122 5123 /* Unlock devices from the bottom of the tree up */ 5124 static void pci_slot_unlock(struct pci_slot *slot) 5125 { 5126 struct pci_dev *dev; 5127 5128 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5129 if (!dev->slot || dev->slot != slot) 5130 continue; 5131 if (dev->subordinate) 5132 pci_bus_unlock(dev->subordinate); 5133 pci_dev_unlock(dev); 5134 } 5135 } 5136 5137 /* Return 1 on successful lock, 0 on contention */ 5138 static int pci_slot_trylock(struct pci_slot *slot) 5139 { 5140 struct pci_dev *dev; 5141 5142 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5143 if (!dev->slot || dev->slot != slot) 5144 continue; 5145 if (!pci_dev_trylock(dev)) 5146 goto unlock; 5147 if (dev->subordinate) { 5148 if (!pci_bus_trylock(dev->subordinate)) { 5149 pci_dev_unlock(dev); 5150 goto unlock; 5151 } 5152 } 5153 } 5154 return 1; 5155 5156 unlock: 5157 list_for_each_entry_continue_reverse(dev, 5158 &slot->bus->devices, bus_list) { 5159 if (!dev->slot || dev->slot != slot) 5160 continue; 5161 if (dev->subordinate) 5162 pci_bus_unlock(dev->subordinate); 5163 pci_dev_unlock(dev); 5164 } 5165 return 0; 5166 } 5167 5168 /* 5169 * Save and disable devices from the top of the tree down while holding 5170 * the @dev mutex lock for the entire tree. 5171 */ 5172 static void pci_bus_save_and_disable_locked(struct pci_bus *bus) 5173 { 5174 struct pci_dev *dev; 5175 5176 list_for_each_entry(dev, &bus->devices, bus_list) { 5177 pci_dev_save_and_disable(dev); 5178 if (dev->subordinate) 5179 pci_bus_save_and_disable_locked(dev->subordinate); 5180 } 5181 } 5182 5183 /* 5184 * Restore devices from top of the tree down while holding @dev mutex lock 5185 * for the entire tree. Parent bridges need to be restored before we can 5186 * get to subordinate devices. 5187 */ 5188 static void pci_bus_restore_locked(struct pci_bus *bus) 5189 { 5190 struct pci_dev *dev; 5191 5192 list_for_each_entry(dev, &bus->devices, bus_list) { 5193 pci_dev_restore(dev); 5194 if (dev->subordinate) 5195 pci_bus_restore_locked(dev->subordinate); 5196 } 5197 } 5198 5199 /* 5200 * Save and disable devices from the top of the tree down while holding 5201 * the @dev mutex lock for the entire tree. 5202 */ 5203 static void pci_slot_save_and_disable_locked(struct pci_slot *slot) 5204 { 5205 struct pci_dev *dev; 5206 5207 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5208 if (!dev->slot || dev->slot != slot) 5209 continue; 5210 pci_dev_save_and_disable(dev); 5211 if (dev->subordinate) 5212 pci_bus_save_and_disable_locked(dev->subordinate); 5213 } 5214 } 5215 5216 /* 5217 * Restore devices from top of the tree down while holding @dev mutex lock 5218 * for the entire tree. Parent bridges need to be restored before we can 5219 * get to subordinate devices. 5220 */ 5221 static void pci_slot_restore_locked(struct pci_slot *slot) 5222 { 5223 struct pci_dev *dev; 5224 5225 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5226 if (!dev->slot || dev->slot != slot) 5227 continue; 5228 pci_dev_restore(dev); 5229 if (dev->subordinate) 5230 pci_bus_restore_locked(dev->subordinate); 5231 } 5232 } 5233 5234 static int pci_slot_reset(struct pci_slot *slot, int probe) 5235 { 5236 int rc; 5237 5238 if (!slot || !pci_slot_resetable(slot)) 5239 return -ENOTTY; 5240 5241 if (!probe) 5242 pci_slot_lock(slot); 5243 5244 might_sleep(); 5245 5246 rc = pci_reset_hotplug_slot(slot->hotplug, probe); 5247 5248 if (!probe) 5249 pci_slot_unlock(slot); 5250 5251 return rc; 5252 } 5253 5254 /** 5255 * pci_probe_reset_slot - probe whether a PCI slot can be reset 5256 * @slot: PCI slot to probe 5257 * 5258 * Return 0 if slot can be reset, negative if a slot reset is not supported. 5259 */ 5260 int pci_probe_reset_slot(struct pci_slot *slot) 5261 { 5262 return pci_slot_reset(slot, 1); 5263 } 5264 EXPORT_SYMBOL_GPL(pci_probe_reset_slot); 5265 5266 /** 5267 * __pci_reset_slot - Try to reset a PCI slot 5268 * @slot: PCI slot to reset 5269 * 5270 * A PCI bus may host multiple slots, each slot may support a reset mechanism 5271 * independent of other slots. For instance, some slots may support slot power 5272 * control. In the case of a 1:1 bus to slot architecture, this function may 5273 * wrap the bus reset to avoid spurious slot related events such as hotplug. 5274 * Generally a slot reset should be attempted before a bus reset. All of the 5275 * function of the slot and any subordinate buses behind the slot are reset 5276 * through this function. PCI config space of all devices in the slot and 5277 * behind the slot is saved before and restored after reset. 5278 * 5279 * Same as above except return -EAGAIN if the slot cannot be locked 5280 */ 5281 static int __pci_reset_slot(struct pci_slot *slot) 5282 { 5283 int rc; 5284 5285 rc = pci_slot_reset(slot, 1); 5286 if (rc) 5287 return rc; 5288 5289 if (pci_slot_trylock(slot)) { 5290 pci_slot_save_and_disable_locked(slot); 5291 might_sleep(); 5292 rc = pci_reset_hotplug_slot(slot->hotplug, 0); 5293 pci_slot_restore_locked(slot); 5294 pci_slot_unlock(slot); 5295 } else 5296 rc = -EAGAIN; 5297 5298 return rc; 5299 } 5300 5301 static int pci_bus_reset(struct pci_bus *bus, int probe) 5302 { 5303 int ret; 5304 5305 if (!bus->self || !pci_bus_resetable(bus)) 5306 return -ENOTTY; 5307 5308 if (probe) 5309 return 0; 5310 5311 pci_bus_lock(bus); 5312 5313 might_sleep(); 5314 5315 ret = pci_bridge_secondary_bus_reset(bus->self); 5316 5317 pci_bus_unlock(bus); 5318 5319 return ret; 5320 } 5321 5322 /** 5323 * pci_bus_error_reset - reset the bridge's subordinate bus 5324 * @bridge: The parent device that connects to the bus to reset 5325 * 5326 * This function will first try to reset the slots on this bus if the method is 5327 * available. If slot reset fails or is not available, this will fall back to a 5328 * secondary bus reset. 5329 */ 5330 int pci_bus_error_reset(struct pci_dev *bridge) 5331 { 5332 struct pci_bus *bus = bridge->subordinate; 5333 struct pci_slot *slot; 5334 5335 if (!bus) 5336 return -ENOTTY; 5337 5338 mutex_lock(&pci_slot_mutex); 5339 if (list_empty(&bus->slots)) 5340 goto bus_reset; 5341 5342 list_for_each_entry(slot, &bus->slots, list) 5343 if (pci_probe_reset_slot(slot)) 5344 goto bus_reset; 5345 5346 list_for_each_entry(slot, &bus->slots, list) 5347 if (pci_slot_reset(slot, 0)) 5348 goto bus_reset; 5349 5350 mutex_unlock(&pci_slot_mutex); 5351 return 0; 5352 bus_reset: 5353 mutex_unlock(&pci_slot_mutex); 5354 return pci_bus_reset(bridge->subordinate, 0); 5355 } 5356 5357 /** 5358 * pci_probe_reset_bus - probe whether a PCI bus can be reset 5359 * @bus: PCI bus to probe 5360 * 5361 * Return 0 if bus can be reset, negative if a bus reset is not supported. 5362 */ 5363 int pci_probe_reset_bus(struct pci_bus *bus) 5364 { 5365 return pci_bus_reset(bus, 1); 5366 } 5367 EXPORT_SYMBOL_GPL(pci_probe_reset_bus); 5368 5369 /** 5370 * __pci_reset_bus - Try to reset a PCI bus 5371 * @bus: top level PCI bus to reset 5372 * 5373 * Same as above except return -EAGAIN if the bus cannot be locked 5374 */ 5375 static int __pci_reset_bus(struct pci_bus *bus) 5376 { 5377 int rc; 5378 5379 rc = pci_bus_reset(bus, 1); 5380 if (rc) 5381 return rc; 5382 5383 if (pci_bus_trylock(bus)) { 5384 pci_bus_save_and_disable_locked(bus); 5385 might_sleep(); 5386 rc = pci_bridge_secondary_bus_reset(bus->self); 5387 pci_bus_restore_locked(bus); 5388 pci_bus_unlock(bus); 5389 } else 5390 rc = -EAGAIN; 5391 5392 return rc; 5393 } 5394 5395 /** 5396 * pci_reset_bus - Try to reset a PCI bus 5397 * @pdev: top level PCI device to reset via slot/bus 5398 * 5399 * Same as above except return -EAGAIN if the bus cannot be locked 5400 */ 5401 int pci_reset_bus(struct pci_dev *pdev) 5402 { 5403 return (!pci_probe_reset_slot(pdev->slot)) ? 5404 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus); 5405 } 5406 EXPORT_SYMBOL_GPL(pci_reset_bus); 5407 5408 /** 5409 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count 5410 * @dev: PCI device to query 5411 * 5412 * Returns mmrbc: maximum designed memory read count in bytes or 5413 * appropriate error value. 5414 */ 5415 int pcix_get_max_mmrbc(struct pci_dev *dev) 5416 { 5417 int cap; 5418 u32 stat; 5419 5420 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5421 if (!cap) 5422 return -EINVAL; 5423 5424 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 5425 return -EINVAL; 5426 5427 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21); 5428 } 5429 EXPORT_SYMBOL(pcix_get_max_mmrbc); 5430 5431 /** 5432 * pcix_get_mmrbc - get PCI-X maximum memory read byte count 5433 * @dev: PCI device to query 5434 * 5435 * Returns mmrbc: maximum memory read count in bytes or appropriate error 5436 * value. 5437 */ 5438 int pcix_get_mmrbc(struct pci_dev *dev) 5439 { 5440 int cap; 5441 u16 cmd; 5442 5443 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5444 if (!cap) 5445 return -EINVAL; 5446 5447 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 5448 return -EINVAL; 5449 5450 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2); 5451 } 5452 EXPORT_SYMBOL(pcix_get_mmrbc); 5453 5454 /** 5455 * pcix_set_mmrbc - set PCI-X maximum memory read byte count 5456 * @dev: PCI device to query 5457 * @mmrbc: maximum memory read count in bytes 5458 * valid values are 512, 1024, 2048, 4096 5459 * 5460 * If possible sets maximum memory read byte count, some bridges have errata 5461 * that prevent this. 5462 */ 5463 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc) 5464 { 5465 int cap; 5466 u32 stat, v, o; 5467 u16 cmd; 5468 5469 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc)) 5470 return -EINVAL; 5471 5472 v = ffs(mmrbc) - 10; 5473 5474 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5475 if (!cap) 5476 return -EINVAL; 5477 5478 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 5479 return -EINVAL; 5480 5481 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21) 5482 return -E2BIG; 5483 5484 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 5485 return -EINVAL; 5486 5487 o = (cmd & PCI_X_CMD_MAX_READ) >> 2; 5488 if (o != v) { 5489 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC)) 5490 return -EIO; 5491 5492 cmd &= ~PCI_X_CMD_MAX_READ; 5493 cmd |= v << 2; 5494 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd)) 5495 return -EIO; 5496 } 5497 return 0; 5498 } 5499 EXPORT_SYMBOL(pcix_set_mmrbc); 5500 5501 /** 5502 * pcie_get_readrq - get PCI Express read request size 5503 * @dev: PCI device to query 5504 * 5505 * Returns maximum memory read request in bytes or appropriate error value. 5506 */ 5507 int pcie_get_readrq(struct pci_dev *dev) 5508 { 5509 u16 ctl; 5510 5511 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 5512 5513 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12); 5514 } 5515 EXPORT_SYMBOL(pcie_get_readrq); 5516 5517 /** 5518 * pcie_set_readrq - set PCI Express maximum memory read request 5519 * @dev: PCI device to query 5520 * @rq: maximum memory read count in bytes 5521 * valid values are 128, 256, 512, 1024, 2048, 4096 5522 * 5523 * If possible sets maximum memory read request in bytes 5524 */ 5525 int pcie_set_readrq(struct pci_dev *dev, int rq) 5526 { 5527 u16 v; 5528 5529 if (rq < 128 || rq > 4096 || !is_power_of_2(rq)) 5530 return -EINVAL; 5531 5532 /* 5533 * If using the "performance" PCIe config, we clamp the read rq 5534 * size to the max packet size to keep the host bridge from 5535 * generating requests larger than we can cope with. 5536 */ 5537 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) { 5538 int mps = pcie_get_mps(dev); 5539 5540 if (mps < rq) 5541 rq = mps; 5542 } 5543 5544 v = (ffs(rq) - 8) << 12; 5545 5546 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 5547 PCI_EXP_DEVCTL_READRQ, v); 5548 } 5549 EXPORT_SYMBOL(pcie_set_readrq); 5550 5551 /** 5552 * pcie_get_mps - get PCI Express maximum payload size 5553 * @dev: PCI device to query 5554 * 5555 * Returns maximum payload size in bytes 5556 */ 5557 int pcie_get_mps(struct pci_dev *dev) 5558 { 5559 u16 ctl; 5560 5561 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 5562 5563 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5); 5564 } 5565 EXPORT_SYMBOL(pcie_get_mps); 5566 5567 /** 5568 * pcie_set_mps - set PCI Express maximum payload size 5569 * @dev: PCI device to query 5570 * @mps: maximum payload size in bytes 5571 * valid values are 128, 256, 512, 1024, 2048, 4096 5572 * 5573 * If possible sets maximum payload size 5574 */ 5575 int pcie_set_mps(struct pci_dev *dev, int mps) 5576 { 5577 u16 v; 5578 5579 if (mps < 128 || mps > 4096 || !is_power_of_2(mps)) 5580 return -EINVAL; 5581 5582 v = ffs(mps) - 8; 5583 if (v > dev->pcie_mpss) 5584 return -EINVAL; 5585 v <<= 5; 5586 5587 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 5588 PCI_EXP_DEVCTL_PAYLOAD, v); 5589 } 5590 EXPORT_SYMBOL(pcie_set_mps); 5591 5592 /** 5593 * pcie_bandwidth_available - determine minimum link settings of a PCIe 5594 * device and its bandwidth limitation 5595 * @dev: PCI device to query 5596 * @limiting_dev: storage for device causing the bandwidth limitation 5597 * @speed: storage for speed of limiting device 5598 * @width: storage for width of limiting device 5599 * 5600 * Walk up the PCI device chain and find the point where the minimum 5601 * bandwidth is available. Return the bandwidth available there and (if 5602 * limiting_dev, speed, and width pointers are supplied) information about 5603 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of 5604 * raw bandwidth. 5605 */ 5606 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev, 5607 enum pci_bus_speed *speed, 5608 enum pcie_link_width *width) 5609 { 5610 u16 lnksta; 5611 enum pci_bus_speed next_speed; 5612 enum pcie_link_width next_width; 5613 u32 bw, next_bw; 5614 5615 if (speed) 5616 *speed = PCI_SPEED_UNKNOWN; 5617 if (width) 5618 *width = PCIE_LNK_WIDTH_UNKNOWN; 5619 5620 bw = 0; 5621 5622 while (dev) { 5623 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta); 5624 5625 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS]; 5626 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >> 5627 PCI_EXP_LNKSTA_NLW_SHIFT; 5628 5629 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed); 5630 5631 /* Check if current device limits the total bandwidth */ 5632 if (!bw || next_bw <= bw) { 5633 bw = next_bw; 5634 5635 if (limiting_dev) 5636 *limiting_dev = dev; 5637 if (speed) 5638 *speed = next_speed; 5639 if (width) 5640 *width = next_width; 5641 } 5642 5643 dev = pci_upstream_bridge(dev); 5644 } 5645 5646 return bw; 5647 } 5648 EXPORT_SYMBOL(pcie_bandwidth_available); 5649 5650 /** 5651 * pcie_get_speed_cap - query for the PCI device's link speed capability 5652 * @dev: PCI device to query 5653 * 5654 * Query the PCI device speed capability. Return the maximum link speed 5655 * supported by the device. 5656 */ 5657 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev) 5658 { 5659 u32 lnkcap2, lnkcap; 5660 5661 /* 5662 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The 5663 * implementation note there recommends using the Supported Link 5664 * Speeds Vector in Link Capabilities 2 when supported. 5665 * 5666 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software 5667 * should use the Supported Link Speeds field in Link Capabilities, 5668 * where only 2.5 GT/s and 5.0 GT/s speeds were defined. 5669 */ 5670 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2); 5671 if (lnkcap2) { /* PCIe r3.0-compliant */ 5672 if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_32_0GB) 5673 return PCIE_SPEED_32_0GT; 5674 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_16_0GB) 5675 return PCIE_SPEED_16_0GT; 5676 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB) 5677 return PCIE_SPEED_8_0GT; 5678 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB) 5679 return PCIE_SPEED_5_0GT; 5680 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB) 5681 return PCIE_SPEED_2_5GT; 5682 return PCI_SPEED_UNKNOWN; 5683 } 5684 5685 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 5686 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB) 5687 return PCIE_SPEED_5_0GT; 5688 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB) 5689 return PCIE_SPEED_2_5GT; 5690 5691 return PCI_SPEED_UNKNOWN; 5692 } 5693 EXPORT_SYMBOL(pcie_get_speed_cap); 5694 5695 /** 5696 * pcie_get_width_cap - query for the PCI device's link width capability 5697 * @dev: PCI device to query 5698 * 5699 * Query the PCI device width capability. Return the maximum link width 5700 * supported by the device. 5701 */ 5702 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev) 5703 { 5704 u32 lnkcap; 5705 5706 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 5707 if (lnkcap) 5708 return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4; 5709 5710 return PCIE_LNK_WIDTH_UNKNOWN; 5711 } 5712 EXPORT_SYMBOL(pcie_get_width_cap); 5713 5714 /** 5715 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability 5716 * @dev: PCI device 5717 * @speed: storage for link speed 5718 * @width: storage for link width 5719 * 5720 * Calculate a PCI device's link bandwidth by querying for its link speed 5721 * and width, multiplying them, and applying encoding overhead. The result 5722 * is in Mb/s, i.e., megabits/second of raw bandwidth. 5723 */ 5724 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed, 5725 enum pcie_link_width *width) 5726 { 5727 *speed = pcie_get_speed_cap(dev); 5728 *width = pcie_get_width_cap(dev); 5729 5730 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN) 5731 return 0; 5732 5733 return *width * PCIE_SPEED2MBS_ENC(*speed); 5734 } 5735 5736 /** 5737 * __pcie_print_link_status - Report the PCI device's link speed and width 5738 * @dev: PCI device to query 5739 * @verbose: Print info even when enough bandwidth is available 5740 * 5741 * If the available bandwidth at the device is less than the device is 5742 * capable of, report the device's maximum possible bandwidth and the 5743 * upstream link that limits its performance. If @verbose, always print 5744 * the available bandwidth, even if the device isn't constrained. 5745 */ 5746 void __pcie_print_link_status(struct pci_dev *dev, bool verbose) 5747 { 5748 enum pcie_link_width width, width_cap; 5749 enum pci_bus_speed speed, speed_cap; 5750 struct pci_dev *limiting_dev = NULL; 5751 u32 bw_avail, bw_cap; 5752 5753 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap); 5754 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width); 5755 5756 if (bw_avail >= bw_cap && verbose) 5757 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n", 5758 bw_cap / 1000, bw_cap % 1000, 5759 PCIE_SPEED2STR(speed_cap), width_cap); 5760 else if (bw_avail < bw_cap) 5761 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n", 5762 bw_avail / 1000, bw_avail % 1000, 5763 PCIE_SPEED2STR(speed), width, 5764 limiting_dev ? pci_name(limiting_dev) : "<unknown>", 5765 bw_cap / 1000, bw_cap % 1000, 5766 PCIE_SPEED2STR(speed_cap), width_cap); 5767 } 5768 5769 /** 5770 * pcie_print_link_status - Report the PCI device's link speed and width 5771 * @dev: PCI device to query 5772 * 5773 * Report the available bandwidth at the device. 5774 */ 5775 void pcie_print_link_status(struct pci_dev *dev) 5776 { 5777 __pcie_print_link_status(dev, true); 5778 } 5779 EXPORT_SYMBOL(pcie_print_link_status); 5780 5781 /** 5782 * pci_select_bars - Make BAR mask from the type of resource 5783 * @dev: the PCI device for which BAR mask is made 5784 * @flags: resource type mask to be selected 5785 * 5786 * This helper routine makes bar mask from the type of resource. 5787 */ 5788 int pci_select_bars(struct pci_dev *dev, unsigned long flags) 5789 { 5790 int i, bars = 0; 5791 for (i = 0; i < PCI_NUM_RESOURCES; i++) 5792 if (pci_resource_flags(dev, i) & flags) 5793 bars |= (1 << i); 5794 return bars; 5795 } 5796 EXPORT_SYMBOL(pci_select_bars); 5797 5798 /* Some architectures require additional programming to enable VGA */ 5799 static arch_set_vga_state_t arch_set_vga_state; 5800 5801 void __init pci_register_set_vga_state(arch_set_vga_state_t func) 5802 { 5803 arch_set_vga_state = func; /* NULL disables */ 5804 } 5805 5806 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode, 5807 unsigned int command_bits, u32 flags) 5808 { 5809 if (arch_set_vga_state) 5810 return arch_set_vga_state(dev, decode, command_bits, 5811 flags); 5812 return 0; 5813 } 5814 5815 /** 5816 * pci_set_vga_state - set VGA decode state on device and parents if requested 5817 * @dev: the PCI device 5818 * @decode: true = enable decoding, false = disable decoding 5819 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY 5820 * @flags: traverse ancestors and change bridges 5821 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE 5822 */ 5823 int pci_set_vga_state(struct pci_dev *dev, bool decode, 5824 unsigned int command_bits, u32 flags) 5825 { 5826 struct pci_bus *bus; 5827 struct pci_dev *bridge; 5828 u16 cmd; 5829 int rc; 5830 5831 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY))); 5832 5833 /* ARCH specific VGA enables */ 5834 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags); 5835 if (rc) 5836 return rc; 5837 5838 if (flags & PCI_VGA_STATE_CHANGE_DECODES) { 5839 pci_read_config_word(dev, PCI_COMMAND, &cmd); 5840 if (decode == true) 5841 cmd |= command_bits; 5842 else 5843 cmd &= ~command_bits; 5844 pci_write_config_word(dev, PCI_COMMAND, cmd); 5845 } 5846 5847 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE)) 5848 return 0; 5849 5850 bus = dev->bus; 5851 while (bus) { 5852 bridge = bus->self; 5853 if (bridge) { 5854 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL, 5855 &cmd); 5856 if (decode == true) 5857 cmd |= PCI_BRIDGE_CTL_VGA; 5858 else 5859 cmd &= ~PCI_BRIDGE_CTL_VGA; 5860 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL, 5861 cmd); 5862 } 5863 bus = bus->parent; 5864 } 5865 return 0; 5866 } 5867 5868 /** 5869 * pci_add_dma_alias - Add a DMA devfn alias for a device 5870 * @dev: the PCI device for which alias is added 5871 * @devfn: alias slot and function 5872 * 5873 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask 5874 * which is used to program permissible bus-devfn source addresses for DMA 5875 * requests in an IOMMU. These aliases factor into IOMMU group creation 5876 * and are useful for devices generating DMA requests beyond or different 5877 * from their logical bus-devfn. Examples include device quirks where the 5878 * device simply uses the wrong devfn, as well as non-transparent bridges 5879 * where the alias may be a proxy for devices in another domain. 5880 * 5881 * IOMMU group creation is performed during device discovery or addition, 5882 * prior to any potential DMA mapping and therefore prior to driver probing 5883 * (especially for userspace assigned devices where IOMMU group definition 5884 * cannot be left as a userspace activity). DMA aliases should therefore 5885 * be configured via quirks, such as the PCI fixup header quirk. 5886 */ 5887 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn) 5888 { 5889 if (!dev->dma_alias_mask) 5890 dev->dma_alias_mask = bitmap_zalloc(U8_MAX, GFP_KERNEL); 5891 if (!dev->dma_alias_mask) { 5892 pci_warn(dev, "Unable to allocate DMA alias mask\n"); 5893 return; 5894 } 5895 5896 set_bit(devfn, dev->dma_alias_mask); 5897 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n", 5898 PCI_SLOT(devfn), PCI_FUNC(devfn)); 5899 } 5900 5901 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2) 5902 { 5903 return (dev1->dma_alias_mask && 5904 test_bit(dev2->devfn, dev1->dma_alias_mask)) || 5905 (dev2->dma_alias_mask && 5906 test_bit(dev1->devfn, dev2->dma_alias_mask)); 5907 } 5908 5909 bool pci_device_is_present(struct pci_dev *pdev) 5910 { 5911 u32 v; 5912 5913 if (pci_dev_is_disconnected(pdev)) 5914 return false; 5915 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0); 5916 } 5917 EXPORT_SYMBOL_GPL(pci_device_is_present); 5918 5919 void pci_ignore_hotplug(struct pci_dev *dev) 5920 { 5921 struct pci_dev *bridge = dev->bus->self; 5922 5923 dev->ignore_hotplug = 1; 5924 /* Propagate the "ignore hotplug" setting to the parent bridge. */ 5925 if (bridge) 5926 bridge->ignore_hotplug = 1; 5927 } 5928 EXPORT_SYMBOL_GPL(pci_ignore_hotplug); 5929 5930 resource_size_t __weak pcibios_default_alignment(void) 5931 { 5932 return 0; 5933 } 5934 5935 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE 5936 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0}; 5937 static DEFINE_SPINLOCK(resource_alignment_lock); 5938 5939 /** 5940 * pci_specified_resource_alignment - get resource alignment specified by user. 5941 * @dev: the PCI device to get 5942 * @resize: whether or not to change resources' size when reassigning alignment 5943 * 5944 * RETURNS: Resource alignment if it is specified. 5945 * Zero if it is not specified. 5946 */ 5947 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev, 5948 bool *resize) 5949 { 5950 int align_order, count; 5951 resource_size_t align = pcibios_default_alignment(); 5952 const char *p; 5953 int ret; 5954 5955 spin_lock(&resource_alignment_lock); 5956 p = resource_alignment_param; 5957 if (!*p && !align) 5958 goto out; 5959 if (pci_has_flag(PCI_PROBE_ONLY)) { 5960 align = 0; 5961 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n"); 5962 goto out; 5963 } 5964 5965 while (*p) { 5966 count = 0; 5967 if (sscanf(p, "%d%n", &align_order, &count) == 1 && 5968 p[count] == '@') { 5969 p += count + 1; 5970 } else { 5971 align_order = -1; 5972 } 5973 5974 ret = pci_dev_str_match(dev, p, &p); 5975 if (ret == 1) { 5976 *resize = true; 5977 if (align_order == -1) 5978 align = PAGE_SIZE; 5979 else 5980 align = 1 << align_order; 5981 break; 5982 } else if (ret < 0) { 5983 pr_err("PCI: Can't parse resource_alignment parameter: %s\n", 5984 p); 5985 break; 5986 } 5987 5988 if (*p != ';' && *p != ',') { 5989 /* End of param or invalid format */ 5990 break; 5991 } 5992 p++; 5993 } 5994 out: 5995 spin_unlock(&resource_alignment_lock); 5996 return align; 5997 } 5998 5999 static void pci_request_resource_alignment(struct pci_dev *dev, int bar, 6000 resource_size_t align, bool resize) 6001 { 6002 struct resource *r = &dev->resource[bar]; 6003 resource_size_t size; 6004 6005 if (!(r->flags & IORESOURCE_MEM)) 6006 return; 6007 6008 if (r->flags & IORESOURCE_PCI_FIXED) { 6009 pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n", 6010 bar, r, (unsigned long long)align); 6011 return; 6012 } 6013 6014 size = resource_size(r); 6015 if (size >= align) 6016 return; 6017 6018 /* 6019 * Increase the alignment of the resource. There are two ways we 6020 * can do this: 6021 * 6022 * 1) Increase the size of the resource. BARs are aligned on their 6023 * size, so when we reallocate space for this resource, we'll 6024 * allocate it with the larger alignment. This also prevents 6025 * assignment of any other BARs inside the alignment region, so 6026 * if we're requesting page alignment, this means no other BARs 6027 * will share the page. 6028 * 6029 * The disadvantage is that this makes the resource larger than 6030 * the hardware BAR, which may break drivers that compute things 6031 * based on the resource size, e.g., to find registers at a 6032 * fixed offset before the end of the BAR. 6033 * 6034 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and 6035 * set r->start to the desired alignment. By itself this 6036 * doesn't prevent other BARs being put inside the alignment 6037 * region, but if we realign *every* resource of every device in 6038 * the system, none of them will share an alignment region. 6039 * 6040 * When the user has requested alignment for only some devices via 6041 * the "pci=resource_alignment" argument, "resize" is true and we 6042 * use the first method. Otherwise we assume we're aligning all 6043 * devices and we use the second. 6044 */ 6045 6046 pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n", 6047 bar, r, (unsigned long long)align); 6048 6049 if (resize) { 6050 r->start = 0; 6051 r->end = align - 1; 6052 } else { 6053 r->flags &= ~IORESOURCE_SIZEALIGN; 6054 r->flags |= IORESOURCE_STARTALIGN; 6055 r->start = align; 6056 r->end = r->start + size - 1; 6057 } 6058 r->flags |= IORESOURCE_UNSET; 6059 } 6060 6061 /* 6062 * This function disables memory decoding and releases memory resources 6063 * of the device specified by kernel's boot parameter 'pci=resource_alignment='. 6064 * It also rounds up size to specified alignment. 6065 * Later on, the kernel will assign page-aligned memory resource back 6066 * to the device. 6067 */ 6068 void pci_reassigndev_resource_alignment(struct pci_dev *dev) 6069 { 6070 int i; 6071 struct resource *r; 6072 resource_size_t align; 6073 u16 command; 6074 bool resize = false; 6075 6076 /* 6077 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec 6078 * 3.4.1.11. Their resources are allocated from the space 6079 * described by the VF BARx register in the PF's SR-IOV capability. 6080 * We can't influence their alignment here. 6081 */ 6082 if (dev->is_virtfn) 6083 return; 6084 6085 /* check if specified PCI is target device to reassign */ 6086 align = pci_specified_resource_alignment(dev, &resize); 6087 if (!align) 6088 return; 6089 6090 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL && 6091 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) { 6092 pci_warn(dev, "Can't reassign resources to host bridge\n"); 6093 return; 6094 } 6095 6096 pci_read_config_word(dev, PCI_COMMAND, &command); 6097 command &= ~PCI_COMMAND_MEMORY; 6098 pci_write_config_word(dev, PCI_COMMAND, command); 6099 6100 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 6101 pci_request_resource_alignment(dev, i, align, resize); 6102 6103 /* 6104 * Need to disable bridge's resource window, 6105 * to enable the kernel to reassign new resource 6106 * window later on. 6107 */ 6108 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 6109 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) { 6110 r = &dev->resource[i]; 6111 if (!(r->flags & IORESOURCE_MEM)) 6112 continue; 6113 r->flags |= IORESOURCE_UNSET; 6114 r->end = resource_size(r) - 1; 6115 r->start = 0; 6116 } 6117 pci_disable_bridge_window(dev); 6118 } 6119 } 6120 6121 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count) 6122 { 6123 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1) 6124 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1; 6125 spin_lock(&resource_alignment_lock); 6126 strncpy(resource_alignment_param, buf, count); 6127 resource_alignment_param[count] = '\0'; 6128 spin_unlock(&resource_alignment_lock); 6129 return count; 6130 } 6131 6132 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size) 6133 { 6134 size_t count; 6135 spin_lock(&resource_alignment_lock); 6136 count = snprintf(buf, size, "%s", resource_alignment_param); 6137 spin_unlock(&resource_alignment_lock); 6138 return count; 6139 } 6140 6141 static ssize_t resource_alignment_show(struct bus_type *bus, char *buf) 6142 { 6143 return pci_get_resource_alignment_param(buf, PAGE_SIZE); 6144 } 6145 6146 static ssize_t resource_alignment_store(struct bus_type *bus, 6147 const char *buf, size_t count) 6148 { 6149 return pci_set_resource_alignment_param(buf, count); 6150 } 6151 6152 static BUS_ATTR_RW(resource_alignment); 6153 6154 static int __init pci_resource_alignment_sysfs_init(void) 6155 { 6156 return bus_create_file(&pci_bus_type, 6157 &bus_attr_resource_alignment); 6158 } 6159 late_initcall(pci_resource_alignment_sysfs_init); 6160 6161 static void pci_no_domains(void) 6162 { 6163 #ifdef CONFIG_PCI_DOMAINS 6164 pci_domains_supported = 0; 6165 #endif 6166 } 6167 6168 #ifdef CONFIG_PCI_DOMAINS_GENERIC 6169 static atomic_t __domain_nr = ATOMIC_INIT(-1); 6170 6171 static int pci_get_new_domain_nr(void) 6172 { 6173 return atomic_inc_return(&__domain_nr); 6174 } 6175 6176 static int of_pci_bus_find_domain_nr(struct device *parent) 6177 { 6178 static int use_dt_domains = -1; 6179 int domain = -1; 6180 6181 if (parent) 6182 domain = of_get_pci_domain_nr(parent->of_node); 6183 6184 /* 6185 * Check DT domain and use_dt_domains values. 6186 * 6187 * If DT domain property is valid (domain >= 0) and 6188 * use_dt_domains != 0, the DT assignment is valid since this means 6189 * we have not previously allocated a domain number by using 6190 * pci_get_new_domain_nr(); we should also update use_dt_domains to 6191 * 1, to indicate that we have just assigned a domain number from 6192 * DT. 6193 * 6194 * If DT domain property value is not valid (ie domain < 0), and we 6195 * have not previously assigned a domain number from DT 6196 * (use_dt_domains != 1) we should assign a domain number by 6197 * using the: 6198 * 6199 * pci_get_new_domain_nr() 6200 * 6201 * API and update the use_dt_domains value to keep track of method we 6202 * are using to assign domain numbers (use_dt_domains = 0). 6203 * 6204 * All other combinations imply we have a platform that is trying 6205 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(), 6206 * which is a recipe for domain mishandling and it is prevented by 6207 * invalidating the domain value (domain = -1) and printing a 6208 * corresponding error. 6209 */ 6210 if (domain >= 0 && use_dt_domains) { 6211 use_dt_domains = 1; 6212 } else if (domain < 0 && use_dt_domains != 1) { 6213 use_dt_domains = 0; 6214 domain = pci_get_new_domain_nr(); 6215 } else { 6216 if (parent) 6217 pr_err("Node %pOF has ", parent->of_node); 6218 pr_err("Inconsistent \"linux,pci-domain\" property in DT\n"); 6219 domain = -1; 6220 } 6221 6222 return domain; 6223 } 6224 6225 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent) 6226 { 6227 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) : 6228 acpi_pci_bus_find_domain_nr(bus); 6229 } 6230 #endif 6231 6232 /** 6233 * pci_ext_cfg_avail - can we access extended PCI config space? 6234 * 6235 * Returns 1 if we can access PCI extended config space (offsets 6236 * greater than 0xff). This is the default implementation. Architecture 6237 * implementations can override this. 6238 */ 6239 int __weak pci_ext_cfg_avail(void) 6240 { 6241 return 1; 6242 } 6243 6244 void __weak pci_fixup_cardbus(struct pci_bus *bus) 6245 { 6246 } 6247 EXPORT_SYMBOL(pci_fixup_cardbus); 6248 6249 static int __init pci_setup(char *str) 6250 { 6251 while (str) { 6252 char *k = strchr(str, ','); 6253 if (k) 6254 *k++ = 0; 6255 if (*str && (str = pcibios_setup(str)) && *str) { 6256 if (!strcmp(str, "nomsi")) { 6257 pci_no_msi(); 6258 } else if (!strncmp(str, "noats", 5)) { 6259 pr_info("PCIe: ATS is disabled\n"); 6260 pcie_ats_disabled = true; 6261 } else if (!strcmp(str, "noaer")) { 6262 pci_no_aer(); 6263 } else if (!strcmp(str, "earlydump")) { 6264 pci_early_dump = true; 6265 } else if (!strncmp(str, "realloc=", 8)) { 6266 pci_realloc_get_opt(str + 8); 6267 } else if (!strncmp(str, "realloc", 7)) { 6268 pci_realloc_get_opt("on"); 6269 } else if (!strcmp(str, "nodomains")) { 6270 pci_no_domains(); 6271 } else if (!strncmp(str, "noari", 5)) { 6272 pcie_ari_disabled = true; 6273 } else if (!strncmp(str, "cbiosize=", 9)) { 6274 pci_cardbus_io_size = memparse(str + 9, &str); 6275 } else if (!strncmp(str, "cbmemsize=", 10)) { 6276 pci_cardbus_mem_size = memparse(str + 10, &str); 6277 } else if (!strncmp(str, "resource_alignment=", 19)) { 6278 pci_set_resource_alignment_param(str + 19, 6279 strlen(str + 19)); 6280 } else if (!strncmp(str, "ecrc=", 5)) { 6281 pcie_ecrc_get_policy(str + 5); 6282 } else if (!strncmp(str, "hpiosize=", 9)) { 6283 pci_hotplug_io_size = memparse(str + 9, &str); 6284 } else if (!strncmp(str, "hpmemsize=", 10)) { 6285 pci_hotplug_mem_size = memparse(str + 10, &str); 6286 } else if (!strncmp(str, "hpbussize=", 10)) { 6287 pci_hotplug_bus_size = 6288 simple_strtoul(str + 10, &str, 0); 6289 if (pci_hotplug_bus_size > 0xff) 6290 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 6291 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) { 6292 pcie_bus_config = PCIE_BUS_TUNE_OFF; 6293 } else if (!strncmp(str, "pcie_bus_safe", 13)) { 6294 pcie_bus_config = PCIE_BUS_SAFE; 6295 } else if (!strncmp(str, "pcie_bus_perf", 13)) { 6296 pcie_bus_config = PCIE_BUS_PERFORMANCE; 6297 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) { 6298 pcie_bus_config = PCIE_BUS_PEER2PEER; 6299 } else if (!strncmp(str, "pcie_scan_all", 13)) { 6300 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS); 6301 } else if (!strncmp(str, "disable_acs_redir=", 18)) { 6302 disable_acs_redir_param = str + 18; 6303 } else { 6304 pr_err("PCI: Unknown option `%s'\n", str); 6305 } 6306 } 6307 str = k; 6308 } 6309 return 0; 6310 } 6311 early_param("pci", pci_setup); 6312 6313 /* 6314 * 'disable_acs_redir_param' is initialized in pci_setup(), above, to point 6315 * to data in the __initdata section which will be freed after the init 6316 * sequence is complete. We can't allocate memory in pci_setup() because some 6317 * architectures do not have any memory allocation service available during 6318 * an early_param() call. So we allocate memory and copy the variable here 6319 * before the init section is freed. 6320 */ 6321 static int __init pci_realloc_setup_params(void) 6322 { 6323 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL); 6324 6325 return 0; 6326 } 6327 pure_initcall(pci_realloc_setup_params); 6328