xref: /openbmc/linux/drivers/pci/pci.c (revision 8bf3cbe32b180836720f735e6de5dee700052317)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * PCI Bus Services, see include/linux/pci.h for further explanation.
4  *
5  * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6  * David Mosberger-Tang
7  *
8  * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/of.h>
17 #include <linux/of_pci.h>
18 #include <linux/pci.h>
19 #include <linux/pm.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/log2.h>
25 #include <linux/logic_pio.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/pci_hotplug.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pci-ats.h>
33 #include <asm/setup.h>
34 #include <asm/dma.h>
35 #include <linux/aer.h>
36 #include "pci.h"
37 
38 DEFINE_MUTEX(pci_slot_mutex);
39 
40 const char *pci_power_names[] = {
41 	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
42 };
43 EXPORT_SYMBOL_GPL(pci_power_names);
44 
45 int isa_dma_bridge_buggy;
46 EXPORT_SYMBOL(isa_dma_bridge_buggy);
47 
48 int pci_pci_problems;
49 EXPORT_SYMBOL(pci_pci_problems);
50 
51 unsigned int pci_pm_d3_delay;
52 
53 static void pci_pme_list_scan(struct work_struct *work);
54 
55 static LIST_HEAD(pci_pme_list);
56 static DEFINE_MUTEX(pci_pme_list_mutex);
57 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
58 
59 struct pci_pme_device {
60 	struct list_head list;
61 	struct pci_dev *dev;
62 };
63 
64 #define PME_TIMEOUT 1000 /* How long between PME checks */
65 
66 static void pci_dev_d3_sleep(struct pci_dev *dev)
67 {
68 	unsigned int delay = dev->d3_delay;
69 
70 	if (delay < pci_pm_d3_delay)
71 		delay = pci_pm_d3_delay;
72 
73 	if (delay)
74 		msleep(delay);
75 }
76 
77 #ifdef CONFIG_PCI_DOMAINS
78 int pci_domains_supported = 1;
79 #endif
80 
81 #define DEFAULT_CARDBUS_IO_SIZE		(256)
82 #define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
83 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
84 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
85 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
86 
87 #define DEFAULT_HOTPLUG_IO_SIZE		(256)
88 #define DEFAULT_HOTPLUG_MEM_SIZE	(2*1024*1024)
89 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
90 unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
91 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
92 
93 #define DEFAULT_HOTPLUG_BUS_SIZE	1
94 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
95 
96 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
97 
98 /*
99  * The default CLS is used if arch didn't set CLS explicitly and not
100  * all pci devices agree on the same value.  Arch can override either
101  * the dfl or actual value as it sees fit.  Don't forget this is
102  * measured in 32-bit words, not bytes.
103  */
104 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
105 u8 pci_cache_line_size;
106 
107 /*
108  * If we set up a device for bus mastering, we need to check the latency
109  * timer as certain BIOSes forget to set it properly.
110  */
111 unsigned int pcibios_max_latency = 255;
112 
113 /* If set, the PCIe ARI capability will not be used. */
114 static bool pcie_ari_disabled;
115 
116 /* If set, the PCIe ATS capability will not be used. */
117 static bool pcie_ats_disabled;
118 
119 /* If set, the PCI config space of each device is printed during boot. */
120 bool pci_early_dump;
121 
122 bool pci_ats_disabled(void)
123 {
124 	return pcie_ats_disabled;
125 }
126 
127 /* Disable bridge_d3 for all PCIe ports */
128 static bool pci_bridge_d3_disable;
129 /* Force bridge_d3 for all PCIe ports */
130 static bool pci_bridge_d3_force;
131 
132 static int __init pcie_port_pm_setup(char *str)
133 {
134 	if (!strcmp(str, "off"))
135 		pci_bridge_d3_disable = true;
136 	else if (!strcmp(str, "force"))
137 		pci_bridge_d3_force = true;
138 	return 1;
139 }
140 __setup("pcie_port_pm=", pcie_port_pm_setup);
141 
142 /* Time to wait after a reset for device to become responsive */
143 #define PCIE_RESET_READY_POLL_MS 60000
144 
145 /**
146  * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
147  * @bus: pointer to PCI bus structure to search
148  *
149  * Given a PCI bus, returns the highest PCI bus number present in the set
150  * including the given PCI bus and its list of child PCI buses.
151  */
152 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
153 {
154 	struct pci_bus *tmp;
155 	unsigned char max, n;
156 
157 	max = bus->busn_res.end;
158 	list_for_each_entry(tmp, &bus->children, node) {
159 		n = pci_bus_max_busnr(tmp);
160 		if (n > max)
161 			max = n;
162 	}
163 	return max;
164 }
165 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
166 
167 #ifdef CONFIG_HAS_IOMEM
168 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
169 {
170 	struct resource *res = &pdev->resource[bar];
171 
172 	/*
173 	 * Make sure the BAR is actually a memory resource, not an IO resource
174 	 */
175 	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
176 		pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
177 		return NULL;
178 	}
179 	return ioremap_nocache(res->start, resource_size(res));
180 }
181 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
182 
183 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
184 {
185 	/*
186 	 * Make sure the BAR is actually a memory resource, not an IO resource
187 	 */
188 	if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
189 		WARN_ON(1);
190 		return NULL;
191 	}
192 	return ioremap_wc(pci_resource_start(pdev, bar),
193 			  pci_resource_len(pdev, bar));
194 }
195 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
196 #endif
197 
198 /**
199  * pci_dev_str_match_path - test if a path string matches a device
200  * @dev: the PCI device to test
201  * @path: string to match the device against
202  * @endptr: pointer to the string after the match
203  *
204  * Test if a string (typically from a kernel parameter) formatted as a
205  * path of device/function addresses matches a PCI device. The string must
206  * be of the form:
207  *
208  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
209  *
210  * A path for a device can be obtained using 'lspci -t'.  Using a path
211  * is more robust against bus renumbering than using only a single bus,
212  * device and function address.
213  *
214  * Returns 1 if the string matches the device, 0 if it does not and
215  * a negative error code if it fails to parse the string.
216  */
217 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
218 				  const char **endptr)
219 {
220 	int ret;
221 	int seg, bus, slot, func;
222 	char *wpath, *p;
223 	char end;
224 
225 	*endptr = strchrnul(path, ';');
226 
227 	wpath = kmemdup_nul(path, *endptr - path, GFP_KERNEL);
228 	if (!wpath)
229 		return -ENOMEM;
230 
231 	while (1) {
232 		p = strrchr(wpath, '/');
233 		if (!p)
234 			break;
235 		ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
236 		if (ret != 2) {
237 			ret = -EINVAL;
238 			goto free_and_exit;
239 		}
240 
241 		if (dev->devfn != PCI_DEVFN(slot, func)) {
242 			ret = 0;
243 			goto free_and_exit;
244 		}
245 
246 		/*
247 		 * Note: we don't need to get a reference to the upstream
248 		 * bridge because we hold a reference to the top level
249 		 * device which should hold a reference to the bridge,
250 		 * and so on.
251 		 */
252 		dev = pci_upstream_bridge(dev);
253 		if (!dev) {
254 			ret = 0;
255 			goto free_and_exit;
256 		}
257 
258 		*p = 0;
259 	}
260 
261 	ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
262 		     &func, &end);
263 	if (ret != 4) {
264 		seg = 0;
265 		ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
266 		if (ret != 3) {
267 			ret = -EINVAL;
268 			goto free_and_exit;
269 		}
270 	}
271 
272 	ret = (seg == pci_domain_nr(dev->bus) &&
273 	       bus == dev->bus->number &&
274 	       dev->devfn == PCI_DEVFN(slot, func));
275 
276 free_and_exit:
277 	kfree(wpath);
278 	return ret;
279 }
280 
281 /**
282  * pci_dev_str_match - test if a string matches a device
283  * @dev: the PCI device to test
284  * @p: string to match the device against
285  * @endptr: pointer to the string after the match
286  *
287  * Test if a string (typically from a kernel parameter) matches a specified
288  * PCI device. The string may be of one of the following formats:
289  *
290  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
291  *   pci:<vendor>:<device>[:<subvendor>:<subdevice>]
292  *
293  * The first format specifies a PCI bus/device/function address which
294  * may change if new hardware is inserted, if motherboard firmware changes,
295  * or due to changes caused in kernel parameters. If the domain is
296  * left unspecified, it is taken to be 0.  In order to be robust against
297  * bus renumbering issues, a path of PCI device/function numbers may be used
298  * to address the specific device.  The path for a device can be determined
299  * through the use of 'lspci -t'.
300  *
301  * The second format matches devices using IDs in the configuration
302  * space which may match multiple devices in the system. A value of 0
303  * for any field will match all devices. (Note: this differs from
304  * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
305  * legacy reasons and convenience so users don't have to specify
306  * FFFFFFFFs on the command line.)
307  *
308  * Returns 1 if the string matches the device, 0 if it does not and
309  * a negative error code if the string cannot be parsed.
310  */
311 static int pci_dev_str_match(struct pci_dev *dev, const char *p,
312 			     const char **endptr)
313 {
314 	int ret;
315 	int count;
316 	unsigned short vendor, device, subsystem_vendor, subsystem_device;
317 
318 	if (strncmp(p, "pci:", 4) == 0) {
319 		/* PCI vendor/device (subvendor/subdevice) IDs are specified */
320 		p += 4;
321 		ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
322 			     &subsystem_vendor, &subsystem_device, &count);
323 		if (ret != 4) {
324 			ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
325 			if (ret != 2)
326 				return -EINVAL;
327 
328 			subsystem_vendor = 0;
329 			subsystem_device = 0;
330 		}
331 
332 		p += count;
333 
334 		if ((!vendor || vendor == dev->vendor) &&
335 		    (!device || device == dev->device) &&
336 		    (!subsystem_vendor ||
337 			    subsystem_vendor == dev->subsystem_vendor) &&
338 		    (!subsystem_device ||
339 			    subsystem_device == dev->subsystem_device))
340 			goto found;
341 	} else {
342 		/*
343 		 * PCI Bus, Device, Function IDs are specified
344 		 * (optionally, may include a path of devfns following it)
345 		 */
346 		ret = pci_dev_str_match_path(dev, p, &p);
347 		if (ret < 0)
348 			return ret;
349 		else if (ret)
350 			goto found;
351 	}
352 
353 	*endptr = p;
354 	return 0;
355 
356 found:
357 	*endptr = p;
358 	return 1;
359 }
360 
361 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
362 				   u8 pos, int cap, int *ttl)
363 {
364 	u8 id;
365 	u16 ent;
366 
367 	pci_bus_read_config_byte(bus, devfn, pos, &pos);
368 
369 	while ((*ttl)--) {
370 		if (pos < 0x40)
371 			break;
372 		pos &= ~3;
373 		pci_bus_read_config_word(bus, devfn, pos, &ent);
374 
375 		id = ent & 0xff;
376 		if (id == 0xff)
377 			break;
378 		if (id == cap)
379 			return pos;
380 		pos = (ent >> 8);
381 	}
382 	return 0;
383 }
384 
385 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
386 			       u8 pos, int cap)
387 {
388 	int ttl = PCI_FIND_CAP_TTL;
389 
390 	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
391 }
392 
393 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
394 {
395 	return __pci_find_next_cap(dev->bus, dev->devfn,
396 				   pos + PCI_CAP_LIST_NEXT, cap);
397 }
398 EXPORT_SYMBOL_GPL(pci_find_next_capability);
399 
400 static int __pci_bus_find_cap_start(struct pci_bus *bus,
401 				    unsigned int devfn, u8 hdr_type)
402 {
403 	u16 status;
404 
405 	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
406 	if (!(status & PCI_STATUS_CAP_LIST))
407 		return 0;
408 
409 	switch (hdr_type) {
410 	case PCI_HEADER_TYPE_NORMAL:
411 	case PCI_HEADER_TYPE_BRIDGE:
412 		return PCI_CAPABILITY_LIST;
413 	case PCI_HEADER_TYPE_CARDBUS:
414 		return PCI_CB_CAPABILITY_LIST;
415 	}
416 
417 	return 0;
418 }
419 
420 /**
421  * pci_find_capability - query for devices' capabilities
422  * @dev: PCI device to query
423  * @cap: capability code
424  *
425  * Tell if a device supports a given PCI capability.
426  * Returns the address of the requested capability structure within the
427  * device's PCI configuration space or 0 in case the device does not
428  * support it.  Possible values for @cap include:
429  *
430  *  %PCI_CAP_ID_PM           Power Management
431  *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
432  *  %PCI_CAP_ID_VPD          Vital Product Data
433  *  %PCI_CAP_ID_SLOTID       Slot Identification
434  *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
435  *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
436  *  %PCI_CAP_ID_PCIX         PCI-X
437  *  %PCI_CAP_ID_EXP          PCI Express
438  */
439 int pci_find_capability(struct pci_dev *dev, int cap)
440 {
441 	int pos;
442 
443 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
444 	if (pos)
445 		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
446 
447 	return pos;
448 }
449 EXPORT_SYMBOL(pci_find_capability);
450 
451 /**
452  * pci_bus_find_capability - query for devices' capabilities
453  * @bus: the PCI bus to query
454  * @devfn: PCI device to query
455  * @cap: capability code
456  *
457  * Like pci_find_capability() but works for PCI devices that do not have a
458  * pci_dev structure set up yet.
459  *
460  * Returns the address of the requested capability structure within the
461  * device's PCI configuration space or 0 in case the device does not
462  * support it.
463  */
464 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
465 {
466 	int pos;
467 	u8 hdr_type;
468 
469 	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
470 
471 	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
472 	if (pos)
473 		pos = __pci_find_next_cap(bus, devfn, pos, cap);
474 
475 	return pos;
476 }
477 EXPORT_SYMBOL(pci_bus_find_capability);
478 
479 /**
480  * pci_find_next_ext_capability - Find an extended capability
481  * @dev: PCI device to query
482  * @start: address at which to start looking (0 to start at beginning of list)
483  * @cap: capability code
484  *
485  * Returns the address of the next matching extended capability structure
486  * within the device's PCI configuration space or 0 if the device does
487  * not support it.  Some capabilities can occur several times, e.g., the
488  * vendor-specific capability, and this provides a way to find them all.
489  */
490 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
491 {
492 	u32 header;
493 	int ttl;
494 	int pos = PCI_CFG_SPACE_SIZE;
495 
496 	/* minimum 8 bytes per capability */
497 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
498 
499 	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
500 		return 0;
501 
502 	if (start)
503 		pos = start;
504 
505 	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
506 		return 0;
507 
508 	/*
509 	 * If we have no capabilities, this is indicated by cap ID,
510 	 * cap version and next pointer all being 0.
511 	 */
512 	if (header == 0)
513 		return 0;
514 
515 	while (ttl-- > 0) {
516 		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
517 			return pos;
518 
519 		pos = PCI_EXT_CAP_NEXT(header);
520 		if (pos < PCI_CFG_SPACE_SIZE)
521 			break;
522 
523 		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
524 			break;
525 	}
526 
527 	return 0;
528 }
529 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
530 
531 /**
532  * pci_find_ext_capability - Find an extended capability
533  * @dev: PCI device to query
534  * @cap: capability code
535  *
536  * Returns the address of the requested extended capability structure
537  * within the device's PCI configuration space or 0 if the device does
538  * not support it.  Possible values for @cap include:
539  *
540  *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
541  *  %PCI_EXT_CAP_ID_VC		Virtual Channel
542  *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
543  *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
544  */
545 int pci_find_ext_capability(struct pci_dev *dev, int cap)
546 {
547 	return pci_find_next_ext_capability(dev, 0, cap);
548 }
549 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
550 
551 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
552 {
553 	int rc, ttl = PCI_FIND_CAP_TTL;
554 	u8 cap, mask;
555 
556 	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
557 		mask = HT_3BIT_CAP_MASK;
558 	else
559 		mask = HT_5BIT_CAP_MASK;
560 
561 	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
562 				      PCI_CAP_ID_HT, &ttl);
563 	while (pos) {
564 		rc = pci_read_config_byte(dev, pos + 3, &cap);
565 		if (rc != PCIBIOS_SUCCESSFUL)
566 			return 0;
567 
568 		if ((cap & mask) == ht_cap)
569 			return pos;
570 
571 		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
572 					      pos + PCI_CAP_LIST_NEXT,
573 					      PCI_CAP_ID_HT, &ttl);
574 	}
575 
576 	return 0;
577 }
578 /**
579  * pci_find_next_ht_capability - query a device's Hypertransport capabilities
580  * @dev: PCI device to query
581  * @pos: Position from which to continue searching
582  * @ht_cap: Hypertransport capability code
583  *
584  * To be used in conjunction with pci_find_ht_capability() to search for
585  * all capabilities matching @ht_cap. @pos should always be a value returned
586  * from pci_find_ht_capability().
587  *
588  * NB. To be 100% safe against broken PCI devices, the caller should take
589  * steps to avoid an infinite loop.
590  */
591 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
592 {
593 	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
594 }
595 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
596 
597 /**
598  * pci_find_ht_capability - query a device's Hypertransport capabilities
599  * @dev: PCI device to query
600  * @ht_cap: Hypertransport capability code
601  *
602  * Tell if a device supports a given Hypertransport capability.
603  * Returns an address within the device's PCI configuration space
604  * or 0 in case the device does not support the request capability.
605  * The address points to the PCI capability, of type PCI_CAP_ID_HT,
606  * which has a Hypertransport capability matching @ht_cap.
607  */
608 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
609 {
610 	int pos;
611 
612 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
613 	if (pos)
614 		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
615 
616 	return pos;
617 }
618 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
619 
620 /**
621  * pci_find_parent_resource - return resource region of parent bus of given
622  *			      region
623  * @dev: PCI device structure contains resources to be searched
624  * @res: child resource record for which parent is sought
625  *
626  * For given resource region of given device, return the resource region of
627  * parent bus the given region is contained in.
628  */
629 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
630 					  struct resource *res)
631 {
632 	const struct pci_bus *bus = dev->bus;
633 	struct resource *r;
634 	int i;
635 
636 	pci_bus_for_each_resource(bus, r, i) {
637 		if (!r)
638 			continue;
639 		if (resource_contains(r, res)) {
640 
641 			/*
642 			 * If the window is prefetchable but the BAR is
643 			 * not, the allocator made a mistake.
644 			 */
645 			if (r->flags & IORESOURCE_PREFETCH &&
646 			    !(res->flags & IORESOURCE_PREFETCH))
647 				return NULL;
648 
649 			/*
650 			 * If we're below a transparent bridge, there may
651 			 * be both a positively-decoded aperture and a
652 			 * subtractively-decoded region that contain the BAR.
653 			 * We want the positively-decoded one, so this depends
654 			 * on pci_bus_for_each_resource() giving us those
655 			 * first.
656 			 */
657 			return r;
658 		}
659 	}
660 	return NULL;
661 }
662 EXPORT_SYMBOL(pci_find_parent_resource);
663 
664 /**
665  * pci_find_resource - Return matching PCI device resource
666  * @dev: PCI device to query
667  * @res: Resource to look for
668  *
669  * Goes over standard PCI resources (BARs) and checks if the given resource
670  * is partially or fully contained in any of them. In that case the
671  * matching resource is returned, %NULL otherwise.
672  */
673 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
674 {
675 	int i;
676 
677 	for (i = 0; i < PCI_ROM_RESOURCE; i++) {
678 		struct resource *r = &dev->resource[i];
679 
680 		if (r->start && resource_contains(r, res))
681 			return r;
682 	}
683 
684 	return NULL;
685 }
686 EXPORT_SYMBOL(pci_find_resource);
687 
688 /**
689  * pci_find_pcie_root_port - return PCIe Root Port
690  * @dev: PCI device to query
691  *
692  * Traverse up the parent chain and return the PCIe Root Port PCI Device
693  * for a given PCI Device.
694  */
695 struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev)
696 {
697 	struct pci_dev *bridge, *highest_pcie_bridge = dev;
698 
699 	bridge = pci_upstream_bridge(dev);
700 	while (bridge && pci_is_pcie(bridge)) {
701 		highest_pcie_bridge = bridge;
702 		bridge = pci_upstream_bridge(bridge);
703 	}
704 
705 	if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT)
706 		return NULL;
707 
708 	return highest_pcie_bridge;
709 }
710 EXPORT_SYMBOL(pci_find_pcie_root_port);
711 
712 /**
713  * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
714  * @dev: the PCI device to operate on
715  * @pos: config space offset of status word
716  * @mask: mask of bit(s) to care about in status word
717  *
718  * Return 1 when mask bit(s) in status word clear, 0 otherwise.
719  */
720 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
721 {
722 	int i;
723 
724 	/* Wait for Transaction Pending bit clean */
725 	for (i = 0; i < 4; i++) {
726 		u16 status;
727 		if (i)
728 			msleep((1 << (i - 1)) * 100);
729 
730 		pci_read_config_word(dev, pos, &status);
731 		if (!(status & mask))
732 			return 1;
733 	}
734 
735 	return 0;
736 }
737 
738 /**
739  * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
740  * @dev: PCI device to have its BARs restored
741  *
742  * Restore the BAR values for a given device, so as to make it
743  * accessible by its driver.
744  */
745 static void pci_restore_bars(struct pci_dev *dev)
746 {
747 	int i;
748 
749 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
750 		pci_update_resource(dev, i);
751 }
752 
753 static const struct pci_platform_pm_ops *pci_platform_pm;
754 
755 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
756 {
757 	if (!ops->is_manageable || !ops->set_state  || !ops->get_state ||
758 	    !ops->choose_state  || !ops->set_wakeup || !ops->need_resume)
759 		return -EINVAL;
760 	pci_platform_pm = ops;
761 	return 0;
762 }
763 
764 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
765 {
766 	return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
767 }
768 
769 static inline int platform_pci_set_power_state(struct pci_dev *dev,
770 					       pci_power_t t)
771 {
772 	return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
773 }
774 
775 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
776 {
777 	return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
778 }
779 
780 static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
781 {
782 	if (pci_platform_pm && pci_platform_pm->refresh_state)
783 		pci_platform_pm->refresh_state(dev);
784 }
785 
786 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
787 {
788 	return pci_platform_pm ?
789 			pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
790 }
791 
792 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
793 {
794 	return pci_platform_pm ?
795 			pci_platform_pm->set_wakeup(dev, enable) : -ENODEV;
796 }
797 
798 static inline bool platform_pci_need_resume(struct pci_dev *dev)
799 {
800 	return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
801 }
802 
803 static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
804 {
805 	return pci_platform_pm ? pci_platform_pm->bridge_d3(dev) : false;
806 }
807 
808 /**
809  * pci_raw_set_power_state - Use PCI PM registers to set the power state of
810  *			     given PCI device
811  * @dev: PCI device to handle.
812  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
813  *
814  * RETURN VALUE:
815  * -EINVAL if the requested state is invalid.
816  * -EIO if device does not support PCI PM or its PM capabilities register has a
817  * wrong version, or device doesn't support the requested state.
818  * 0 if device already is in the requested state.
819  * 0 if device's power state has been successfully changed.
820  */
821 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
822 {
823 	u16 pmcsr;
824 	bool need_restore = false;
825 
826 	/* Check if we're already there */
827 	if (dev->current_state == state)
828 		return 0;
829 
830 	if (!dev->pm_cap)
831 		return -EIO;
832 
833 	if (state < PCI_D0 || state > PCI_D3hot)
834 		return -EINVAL;
835 
836 	/*
837 	 * Validate current state:
838 	 * Can enter D0 from any state, but if we can only go deeper
839 	 * to sleep if we're already in a low power state
840 	 */
841 	if (state != PCI_D0 && dev->current_state <= PCI_D3cold
842 	    && dev->current_state > state) {
843 		pci_err(dev, "invalid power transition (from state %d to %d)\n",
844 			dev->current_state, state);
845 		return -EINVAL;
846 	}
847 
848 	/* Check if this device supports the desired state */
849 	if ((state == PCI_D1 && !dev->d1_support)
850 	   || (state == PCI_D2 && !dev->d2_support))
851 		return -EIO;
852 
853 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
854 
855 	/*
856 	 * If we're (effectively) in D3, force entire word to 0.
857 	 * This doesn't affect PME_Status, disables PME_En, and
858 	 * sets PowerState to 0.
859 	 */
860 	switch (dev->current_state) {
861 	case PCI_D0:
862 	case PCI_D1:
863 	case PCI_D2:
864 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
865 		pmcsr |= state;
866 		break;
867 	case PCI_D3hot:
868 	case PCI_D3cold:
869 	case PCI_UNKNOWN: /* Boot-up */
870 		if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
871 		 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
872 			need_restore = true;
873 		/* Fall-through - force to D0 */
874 	default:
875 		pmcsr = 0;
876 		break;
877 	}
878 
879 	/* Enter specified state */
880 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
881 
882 	/*
883 	 * Mandatory power management transition delays; see PCI PM 1.1
884 	 * 5.6.1 table 18
885 	 */
886 	if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
887 		pci_dev_d3_sleep(dev);
888 	else if (state == PCI_D2 || dev->current_state == PCI_D2)
889 		udelay(PCI_PM_D2_DELAY);
890 
891 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
892 	dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
893 	if (dev->current_state != state && printk_ratelimit())
894 		pci_info(dev, "Refused to change power state, currently in D%d\n",
895 			 dev->current_state);
896 
897 	/*
898 	 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
899 	 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
900 	 * from D3hot to D0 _may_ perform an internal reset, thereby
901 	 * going to "D0 Uninitialized" rather than "D0 Initialized".
902 	 * For example, at least some versions of the 3c905B and the
903 	 * 3c556B exhibit this behaviour.
904 	 *
905 	 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
906 	 * devices in a D3hot state at boot.  Consequently, we need to
907 	 * restore at least the BARs so that the device will be
908 	 * accessible to its driver.
909 	 */
910 	if (need_restore)
911 		pci_restore_bars(dev);
912 
913 	if (dev->bus->self)
914 		pcie_aspm_pm_state_change(dev->bus->self);
915 
916 	return 0;
917 }
918 
919 /**
920  * pci_update_current_state - Read power state of given device and cache it
921  * @dev: PCI device to handle.
922  * @state: State to cache in case the device doesn't have the PM capability
923  *
924  * The power state is read from the PMCSR register, which however is
925  * inaccessible in D3cold.  The platform firmware is therefore queried first
926  * to detect accessibility of the register.  In case the platform firmware
927  * reports an incorrect state or the device isn't power manageable by the
928  * platform at all, we try to detect D3cold by testing accessibility of the
929  * vendor ID in config space.
930  */
931 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
932 {
933 	if (platform_pci_get_power_state(dev) == PCI_D3cold ||
934 	    !pci_device_is_present(dev)) {
935 		dev->current_state = PCI_D3cold;
936 	} else if (dev->pm_cap) {
937 		u16 pmcsr;
938 
939 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
940 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
941 	} else {
942 		dev->current_state = state;
943 	}
944 }
945 
946 /**
947  * pci_refresh_power_state - Refresh the given device's power state data
948  * @dev: Target PCI device.
949  *
950  * Ask the platform to refresh the devices power state information and invoke
951  * pci_update_current_state() to update its current PCI power state.
952  */
953 void pci_refresh_power_state(struct pci_dev *dev)
954 {
955 	if (platform_pci_power_manageable(dev))
956 		platform_pci_refresh_power_state(dev);
957 
958 	pci_update_current_state(dev, dev->current_state);
959 }
960 
961 /**
962  * pci_power_up - Put the given device into D0 forcibly
963  * @dev: PCI device to power up
964  */
965 void pci_power_up(struct pci_dev *dev)
966 {
967 	if (platform_pci_power_manageable(dev))
968 		platform_pci_set_power_state(dev, PCI_D0);
969 
970 	pci_raw_set_power_state(dev, PCI_D0);
971 	pci_update_current_state(dev, PCI_D0);
972 }
973 
974 /**
975  * pci_platform_power_transition - Use platform to change device power state
976  * @dev: PCI device to handle.
977  * @state: State to put the device into.
978  */
979 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
980 {
981 	int error;
982 
983 	if (platform_pci_power_manageable(dev)) {
984 		error = platform_pci_set_power_state(dev, state);
985 		if (!error)
986 			pci_update_current_state(dev, state);
987 	} else
988 		error = -ENODEV;
989 
990 	if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
991 		dev->current_state = PCI_D0;
992 
993 	return error;
994 }
995 
996 /**
997  * pci_wakeup - Wake up a PCI device
998  * @pci_dev: Device to handle.
999  * @ign: ignored parameter
1000  */
1001 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
1002 {
1003 	pci_wakeup_event(pci_dev);
1004 	pm_request_resume(&pci_dev->dev);
1005 	return 0;
1006 }
1007 
1008 /**
1009  * pci_wakeup_bus - Walk given bus and wake up devices on it
1010  * @bus: Top bus of the subtree to walk.
1011  */
1012 void pci_wakeup_bus(struct pci_bus *bus)
1013 {
1014 	if (bus)
1015 		pci_walk_bus(bus, pci_wakeup, NULL);
1016 }
1017 
1018 /**
1019  * __pci_start_power_transition - Start power transition of a PCI device
1020  * @dev: PCI device to handle.
1021  * @state: State to put the device into.
1022  */
1023 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
1024 {
1025 	if (state == PCI_D0) {
1026 		pci_platform_power_transition(dev, PCI_D0);
1027 		/*
1028 		 * Mandatory power management transition delays, see
1029 		 * PCI Express Base Specification Revision 2.0 Section
1030 		 * 6.6.1: Conventional Reset.  Do not delay for
1031 		 * devices powered on/off by corresponding bridge,
1032 		 * because have already delayed for the bridge.
1033 		 */
1034 		if (dev->runtime_d3cold) {
1035 			if (dev->d3cold_delay && !dev->imm_ready)
1036 				msleep(dev->d3cold_delay);
1037 			/*
1038 			 * When powering on a bridge from D3cold, the
1039 			 * whole hierarchy may be powered on into
1040 			 * D0uninitialized state, resume them to give
1041 			 * them a chance to suspend again
1042 			 */
1043 			pci_wakeup_bus(dev->subordinate);
1044 		}
1045 	}
1046 }
1047 
1048 /**
1049  * __pci_dev_set_current_state - Set current state of a PCI device
1050  * @dev: Device to handle
1051  * @data: pointer to state to be set
1052  */
1053 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1054 {
1055 	pci_power_t state = *(pci_power_t *)data;
1056 
1057 	dev->current_state = state;
1058 	return 0;
1059 }
1060 
1061 /**
1062  * pci_bus_set_current_state - Walk given bus and set current state of devices
1063  * @bus: Top bus of the subtree to walk.
1064  * @state: state to be set
1065  */
1066 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1067 {
1068 	if (bus)
1069 		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1070 }
1071 
1072 /**
1073  * __pci_complete_power_transition - Complete power transition of a PCI device
1074  * @dev: PCI device to handle.
1075  * @state: State to put the device into.
1076  *
1077  * This function should not be called directly by device drivers.
1078  */
1079 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
1080 {
1081 	int ret;
1082 
1083 	if (state <= PCI_D0)
1084 		return -EINVAL;
1085 	ret = pci_platform_power_transition(dev, state);
1086 	/* Power off the bridge may power off the whole hierarchy */
1087 	if (!ret && state == PCI_D3cold)
1088 		pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1089 	return ret;
1090 }
1091 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
1092 
1093 /**
1094  * pci_set_power_state - Set the power state of a PCI device
1095  * @dev: PCI device to handle.
1096  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1097  *
1098  * Transition a device to a new power state, using the platform firmware and/or
1099  * the device's PCI PM registers.
1100  *
1101  * RETURN VALUE:
1102  * -EINVAL if the requested state is invalid.
1103  * -EIO if device does not support PCI PM or its PM capabilities register has a
1104  * wrong version, or device doesn't support the requested state.
1105  * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1106  * 0 if device already is in the requested state.
1107  * 0 if the transition is to D3 but D3 is not supported.
1108  * 0 if device's power state has been successfully changed.
1109  */
1110 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1111 {
1112 	int error;
1113 
1114 	/* Bound the state we're entering */
1115 	if (state > PCI_D3cold)
1116 		state = PCI_D3cold;
1117 	else if (state < PCI_D0)
1118 		state = PCI_D0;
1119 	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1120 
1121 		/*
1122 		 * If the device or the parent bridge do not support PCI
1123 		 * PM, ignore the request if we're doing anything other
1124 		 * than putting it into D0 (which would only happen on
1125 		 * boot).
1126 		 */
1127 		return 0;
1128 
1129 	/* Check if we're already there */
1130 	if (dev->current_state == state)
1131 		return 0;
1132 
1133 	__pci_start_power_transition(dev, state);
1134 
1135 	/*
1136 	 * This device is quirked not to be put into D3, so don't put it in
1137 	 * D3
1138 	 */
1139 	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1140 		return 0;
1141 
1142 	/*
1143 	 * To put device in D3cold, we put device into D3hot in native
1144 	 * way, then put device into D3cold with platform ops
1145 	 */
1146 	error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
1147 					PCI_D3hot : state);
1148 
1149 	if (!__pci_complete_power_transition(dev, state))
1150 		error = 0;
1151 
1152 	return error;
1153 }
1154 EXPORT_SYMBOL(pci_set_power_state);
1155 
1156 /**
1157  * pci_choose_state - Choose the power state of a PCI device
1158  * @dev: PCI device to be suspended
1159  * @state: target sleep state for the whole system. This is the value
1160  *	   that is passed to suspend() function.
1161  *
1162  * Returns PCI power state suitable for given device and given system
1163  * message.
1164  */
1165 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
1166 {
1167 	pci_power_t ret;
1168 
1169 	if (!dev->pm_cap)
1170 		return PCI_D0;
1171 
1172 	ret = platform_pci_choose_state(dev);
1173 	if (ret != PCI_POWER_ERROR)
1174 		return ret;
1175 
1176 	switch (state.event) {
1177 	case PM_EVENT_ON:
1178 		return PCI_D0;
1179 	case PM_EVENT_FREEZE:
1180 	case PM_EVENT_PRETHAW:
1181 		/* REVISIT both freeze and pre-thaw "should" use D0 */
1182 	case PM_EVENT_SUSPEND:
1183 	case PM_EVENT_HIBERNATE:
1184 		return PCI_D3hot;
1185 	default:
1186 		pci_info(dev, "unrecognized suspend event %d\n",
1187 			 state.event);
1188 		BUG();
1189 	}
1190 	return PCI_D0;
1191 }
1192 EXPORT_SYMBOL(pci_choose_state);
1193 
1194 #define PCI_EXP_SAVE_REGS	7
1195 
1196 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1197 						       u16 cap, bool extended)
1198 {
1199 	struct pci_cap_saved_state *tmp;
1200 
1201 	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1202 		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1203 			return tmp;
1204 	}
1205 	return NULL;
1206 }
1207 
1208 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1209 {
1210 	return _pci_find_saved_cap(dev, cap, false);
1211 }
1212 
1213 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1214 {
1215 	return _pci_find_saved_cap(dev, cap, true);
1216 }
1217 
1218 static int pci_save_pcie_state(struct pci_dev *dev)
1219 {
1220 	int i = 0;
1221 	struct pci_cap_saved_state *save_state;
1222 	u16 *cap;
1223 
1224 	if (!pci_is_pcie(dev))
1225 		return 0;
1226 
1227 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1228 	if (!save_state) {
1229 		pci_err(dev, "buffer not found in %s\n", __func__);
1230 		return -ENOMEM;
1231 	}
1232 
1233 	cap = (u16 *)&save_state->cap.data[0];
1234 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1235 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1236 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1237 	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
1238 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1239 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1240 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1241 
1242 	return 0;
1243 }
1244 
1245 static void pci_restore_pcie_state(struct pci_dev *dev)
1246 {
1247 	int i = 0;
1248 	struct pci_cap_saved_state *save_state;
1249 	u16 *cap;
1250 
1251 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1252 	if (!save_state)
1253 		return;
1254 
1255 	cap = (u16 *)&save_state->cap.data[0];
1256 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1257 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1258 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1259 	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1260 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1261 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1262 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1263 }
1264 
1265 static int pci_save_pcix_state(struct pci_dev *dev)
1266 {
1267 	int pos;
1268 	struct pci_cap_saved_state *save_state;
1269 
1270 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1271 	if (!pos)
1272 		return 0;
1273 
1274 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1275 	if (!save_state) {
1276 		pci_err(dev, "buffer not found in %s\n", __func__);
1277 		return -ENOMEM;
1278 	}
1279 
1280 	pci_read_config_word(dev, pos + PCI_X_CMD,
1281 			     (u16 *)save_state->cap.data);
1282 
1283 	return 0;
1284 }
1285 
1286 static void pci_restore_pcix_state(struct pci_dev *dev)
1287 {
1288 	int i = 0, pos;
1289 	struct pci_cap_saved_state *save_state;
1290 	u16 *cap;
1291 
1292 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1293 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1294 	if (!save_state || !pos)
1295 		return;
1296 	cap = (u16 *)&save_state->cap.data[0];
1297 
1298 	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1299 }
1300 
1301 static void pci_save_ltr_state(struct pci_dev *dev)
1302 {
1303 	int ltr;
1304 	struct pci_cap_saved_state *save_state;
1305 	u16 *cap;
1306 
1307 	if (!pci_is_pcie(dev))
1308 		return;
1309 
1310 	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1311 	if (!ltr)
1312 		return;
1313 
1314 	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1315 	if (!save_state) {
1316 		pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1317 		return;
1318 	}
1319 
1320 	cap = (u16 *)&save_state->cap.data[0];
1321 	pci_read_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap++);
1322 	pci_read_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, cap++);
1323 }
1324 
1325 static void pci_restore_ltr_state(struct pci_dev *dev)
1326 {
1327 	struct pci_cap_saved_state *save_state;
1328 	int ltr;
1329 	u16 *cap;
1330 
1331 	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1332 	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1333 	if (!save_state || !ltr)
1334 		return;
1335 
1336 	cap = (u16 *)&save_state->cap.data[0];
1337 	pci_write_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap++);
1338 	pci_write_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, *cap++);
1339 }
1340 
1341 /**
1342  * pci_save_state - save the PCI configuration space of a device before
1343  *		    suspending
1344  * @dev: PCI device that we're dealing with
1345  */
1346 int pci_save_state(struct pci_dev *dev)
1347 {
1348 	int i;
1349 	/* XXX: 100% dword access ok here? */
1350 	for (i = 0; i < 16; i++)
1351 		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1352 	dev->state_saved = true;
1353 
1354 	i = pci_save_pcie_state(dev);
1355 	if (i != 0)
1356 		return i;
1357 
1358 	i = pci_save_pcix_state(dev);
1359 	if (i != 0)
1360 		return i;
1361 
1362 	pci_save_ltr_state(dev);
1363 	pci_save_dpc_state(dev);
1364 	return pci_save_vc_state(dev);
1365 }
1366 EXPORT_SYMBOL(pci_save_state);
1367 
1368 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1369 				     u32 saved_val, int retry, bool force)
1370 {
1371 	u32 val;
1372 
1373 	pci_read_config_dword(pdev, offset, &val);
1374 	if (!force && val == saved_val)
1375 		return;
1376 
1377 	for (;;) {
1378 		pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1379 			offset, val, saved_val);
1380 		pci_write_config_dword(pdev, offset, saved_val);
1381 		if (retry-- <= 0)
1382 			return;
1383 
1384 		pci_read_config_dword(pdev, offset, &val);
1385 		if (val == saved_val)
1386 			return;
1387 
1388 		mdelay(1);
1389 	}
1390 }
1391 
1392 static void pci_restore_config_space_range(struct pci_dev *pdev,
1393 					   int start, int end, int retry,
1394 					   bool force)
1395 {
1396 	int index;
1397 
1398 	for (index = end; index >= start; index--)
1399 		pci_restore_config_dword(pdev, 4 * index,
1400 					 pdev->saved_config_space[index],
1401 					 retry, force);
1402 }
1403 
1404 static void pci_restore_config_space(struct pci_dev *pdev)
1405 {
1406 	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1407 		pci_restore_config_space_range(pdev, 10, 15, 0, false);
1408 		/* Restore BARs before the command register. */
1409 		pci_restore_config_space_range(pdev, 4, 9, 10, false);
1410 		pci_restore_config_space_range(pdev, 0, 3, 0, false);
1411 	} else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1412 		pci_restore_config_space_range(pdev, 12, 15, 0, false);
1413 
1414 		/*
1415 		 * Force rewriting of prefetch registers to avoid S3 resume
1416 		 * issues on Intel PCI bridges that occur when these
1417 		 * registers are not explicitly written.
1418 		 */
1419 		pci_restore_config_space_range(pdev, 9, 11, 0, true);
1420 		pci_restore_config_space_range(pdev, 0, 8, 0, false);
1421 	} else {
1422 		pci_restore_config_space_range(pdev, 0, 15, 0, false);
1423 	}
1424 }
1425 
1426 static void pci_restore_rebar_state(struct pci_dev *pdev)
1427 {
1428 	unsigned int pos, nbars, i;
1429 	u32 ctrl;
1430 
1431 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1432 	if (!pos)
1433 		return;
1434 
1435 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1436 	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1437 		    PCI_REBAR_CTRL_NBAR_SHIFT;
1438 
1439 	for (i = 0; i < nbars; i++, pos += 8) {
1440 		struct resource *res;
1441 		int bar_idx, size;
1442 
1443 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1444 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1445 		res = pdev->resource + bar_idx;
1446 		size = order_base_2((resource_size(res) >> 20) | 1) - 1;
1447 		ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1448 		ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1449 		pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1450 	}
1451 }
1452 
1453 /**
1454  * pci_restore_state - Restore the saved state of a PCI device
1455  * @dev: PCI device that we're dealing with
1456  */
1457 void pci_restore_state(struct pci_dev *dev)
1458 {
1459 	if (!dev->state_saved)
1460 		return;
1461 
1462 	/*
1463 	 * Restore max latencies (in the LTR capability) before enabling
1464 	 * LTR itself (in the PCIe capability).
1465 	 */
1466 	pci_restore_ltr_state(dev);
1467 
1468 	pci_restore_pcie_state(dev);
1469 	pci_restore_pasid_state(dev);
1470 	pci_restore_pri_state(dev);
1471 	pci_restore_ats_state(dev);
1472 	pci_restore_vc_state(dev);
1473 	pci_restore_rebar_state(dev);
1474 	pci_restore_dpc_state(dev);
1475 
1476 	pci_cleanup_aer_error_status_regs(dev);
1477 
1478 	pci_restore_config_space(dev);
1479 
1480 	pci_restore_pcix_state(dev);
1481 	pci_restore_msi_state(dev);
1482 
1483 	/* Restore ACS and IOV configuration state */
1484 	pci_enable_acs(dev);
1485 	pci_restore_iov_state(dev);
1486 
1487 	dev->state_saved = false;
1488 }
1489 EXPORT_SYMBOL(pci_restore_state);
1490 
1491 struct pci_saved_state {
1492 	u32 config_space[16];
1493 	struct pci_cap_saved_data cap[0];
1494 };
1495 
1496 /**
1497  * pci_store_saved_state - Allocate and return an opaque struct containing
1498  *			   the device saved state.
1499  * @dev: PCI device that we're dealing with
1500  *
1501  * Return NULL if no state or error.
1502  */
1503 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1504 {
1505 	struct pci_saved_state *state;
1506 	struct pci_cap_saved_state *tmp;
1507 	struct pci_cap_saved_data *cap;
1508 	size_t size;
1509 
1510 	if (!dev->state_saved)
1511 		return NULL;
1512 
1513 	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1514 
1515 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1516 		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1517 
1518 	state = kzalloc(size, GFP_KERNEL);
1519 	if (!state)
1520 		return NULL;
1521 
1522 	memcpy(state->config_space, dev->saved_config_space,
1523 	       sizeof(state->config_space));
1524 
1525 	cap = state->cap;
1526 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1527 		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1528 		memcpy(cap, &tmp->cap, len);
1529 		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1530 	}
1531 	/* Empty cap_save terminates list */
1532 
1533 	return state;
1534 }
1535 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1536 
1537 /**
1538  * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1539  * @dev: PCI device that we're dealing with
1540  * @state: Saved state returned from pci_store_saved_state()
1541  */
1542 int pci_load_saved_state(struct pci_dev *dev,
1543 			 struct pci_saved_state *state)
1544 {
1545 	struct pci_cap_saved_data *cap;
1546 
1547 	dev->state_saved = false;
1548 
1549 	if (!state)
1550 		return 0;
1551 
1552 	memcpy(dev->saved_config_space, state->config_space,
1553 	       sizeof(state->config_space));
1554 
1555 	cap = state->cap;
1556 	while (cap->size) {
1557 		struct pci_cap_saved_state *tmp;
1558 
1559 		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1560 		if (!tmp || tmp->cap.size != cap->size)
1561 			return -EINVAL;
1562 
1563 		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1564 		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1565 		       sizeof(struct pci_cap_saved_data) + cap->size);
1566 	}
1567 
1568 	dev->state_saved = true;
1569 	return 0;
1570 }
1571 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1572 
1573 /**
1574  * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1575  *				   and free the memory allocated for it.
1576  * @dev: PCI device that we're dealing with
1577  * @state: Pointer to saved state returned from pci_store_saved_state()
1578  */
1579 int pci_load_and_free_saved_state(struct pci_dev *dev,
1580 				  struct pci_saved_state **state)
1581 {
1582 	int ret = pci_load_saved_state(dev, *state);
1583 	kfree(*state);
1584 	*state = NULL;
1585 	return ret;
1586 }
1587 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1588 
1589 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1590 {
1591 	return pci_enable_resources(dev, bars);
1592 }
1593 
1594 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1595 {
1596 	int err;
1597 	struct pci_dev *bridge;
1598 	u16 cmd;
1599 	u8 pin;
1600 
1601 	err = pci_set_power_state(dev, PCI_D0);
1602 	if (err < 0 && err != -EIO)
1603 		return err;
1604 
1605 	bridge = pci_upstream_bridge(dev);
1606 	if (bridge)
1607 		pcie_aspm_powersave_config_link(bridge);
1608 
1609 	err = pcibios_enable_device(dev, bars);
1610 	if (err < 0)
1611 		return err;
1612 	pci_fixup_device(pci_fixup_enable, dev);
1613 
1614 	if (dev->msi_enabled || dev->msix_enabled)
1615 		return 0;
1616 
1617 	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1618 	if (pin) {
1619 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
1620 		if (cmd & PCI_COMMAND_INTX_DISABLE)
1621 			pci_write_config_word(dev, PCI_COMMAND,
1622 					      cmd & ~PCI_COMMAND_INTX_DISABLE);
1623 	}
1624 
1625 	return 0;
1626 }
1627 
1628 /**
1629  * pci_reenable_device - Resume abandoned device
1630  * @dev: PCI device to be resumed
1631  *
1632  * NOTE: This function is a backend of pci_default_resume() and is not supposed
1633  * to be called by normal code, write proper resume handler and use it instead.
1634  */
1635 int pci_reenable_device(struct pci_dev *dev)
1636 {
1637 	if (pci_is_enabled(dev))
1638 		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1639 	return 0;
1640 }
1641 EXPORT_SYMBOL(pci_reenable_device);
1642 
1643 static void pci_enable_bridge(struct pci_dev *dev)
1644 {
1645 	struct pci_dev *bridge;
1646 	int retval;
1647 
1648 	bridge = pci_upstream_bridge(dev);
1649 	if (bridge)
1650 		pci_enable_bridge(bridge);
1651 
1652 	if (pci_is_enabled(dev)) {
1653 		if (!dev->is_busmaster)
1654 			pci_set_master(dev);
1655 		return;
1656 	}
1657 
1658 	retval = pci_enable_device(dev);
1659 	if (retval)
1660 		pci_err(dev, "Error enabling bridge (%d), continuing\n",
1661 			retval);
1662 	pci_set_master(dev);
1663 }
1664 
1665 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1666 {
1667 	struct pci_dev *bridge;
1668 	int err;
1669 	int i, bars = 0;
1670 
1671 	/*
1672 	 * Power state could be unknown at this point, either due to a fresh
1673 	 * boot or a device removal call.  So get the current power state
1674 	 * so that things like MSI message writing will behave as expected
1675 	 * (e.g. if the device really is in D0 at enable time).
1676 	 */
1677 	if (dev->pm_cap) {
1678 		u16 pmcsr;
1679 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1680 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1681 	}
1682 
1683 	if (atomic_inc_return(&dev->enable_cnt) > 1)
1684 		return 0;		/* already enabled */
1685 
1686 	bridge = pci_upstream_bridge(dev);
1687 	if (bridge)
1688 		pci_enable_bridge(bridge);
1689 
1690 	/* only skip sriov related */
1691 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1692 		if (dev->resource[i].flags & flags)
1693 			bars |= (1 << i);
1694 	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1695 		if (dev->resource[i].flags & flags)
1696 			bars |= (1 << i);
1697 
1698 	err = do_pci_enable_device(dev, bars);
1699 	if (err < 0)
1700 		atomic_dec(&dev->enable_cnt);
1701 	return err;
1702 }
1703 
1704 /**
1705  * pci_enable_device_io - Initialize a device for use with IO space
1706  * @dev: PCI device to be initialized
1707  *
1708  * Initialize device before it's used by a driver. Ask low-level code
1709  * to enable I/O resources. Wake up the device if it was suspended.
1710  * Beware, this function can fail.
1711  */
1712 int pci_enable_device_io(struct pci_dev *dev)
1713 {
1714 	return pci_enable_device_flags(dev, IORESOURCE_IO);
1715 }
1716 EXPORT_SYMBOL(pci_enable_device_io);
1717 
1718 /**
1719  * pci_enable_device_mem - Initialize a device for use with Memory space
1720  * @dev: PCI device to be initialized
1721  *
1722  * Initialize device before it's used by a driver. Ask low-level code
1723  * to enable Memory resources. Wake up the device if it was suspended.
1724  * Beware, this function can fail.
1725  */
1726 int pci_enable_device_mem(struct pci_dev *dev)
1727 {
1728 	return pci_enable_device_flags(dev, IORESOURCE_MEM);
1729 }
1730 EXPORT_SYMBOL(pci_enable_device_mem);
1731 
1732 /**
1733  * pci_enable_device - Initialize device before it's used by a driver.
1734  * @dev: PCI device to be initialized
1735  *
1736  * Initialize device before it's used by a driver. Ask low-level code
1737  * to enable I/O and memory. Wake up the device if it was suspended.
1738  * Beware, this function can fail.
1739  *
1740  * Note we don't actually enable the device many times if we call
1741  * this function repeatedly (we just increment the count).
1742  */
1743 int pci_enable_device(struct pci_dev *dev)
1744 {
1745 	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1746 }
1747 EXPORT_SYMBOL(pci_enable_device);
1748 
1749 /*
1750  * Managed PCI resources.  This manages device on/off, INTx/MSI/MSI-X
1751  * on/off and BAR regions.  pci_dev itself records MSI/MSI-X status, so
1752  * there's no need to track it separately.  pci_devres is initialized
1753  * when a device is enabled using managed PCI device enable interface.
1754  */
1755 struct pci_devres {
1756 	unsigned int enabled:1;
1757 	unsigned int pinned:1;
1758 	unsigned int orig_intx:1;
1759 	unsigned int restore_intx:1;
1760 	unsigned int mwi:1;
1761 	u32 region_mask;
1762 };
1763 
1764 static void pcim_release(struct device *gendev, void *res)
1765 {
1766 	struct pci_dev *dev = to_pci_dev(gendev);
1767 	struct pci_devres *this = res;
1768 	int i;
1769 
1770 	if (dev->msi_enabled)
1771 		pci_disable_msi(dev);
1772 	if (dev->msix_enabled)
1773 		pci_disable_msix(dev);
1774 
1775 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1776 		if (this->region_mask & (1 << i))
1777 			pci_release_region(dev, i);
1778 
1779 	if (this->mwi)
1780 		pci_clear_mwi(dev);
1781 
1782 	if (this->restore_intx)
1783 		pci_intx(dev, this->orig_intx);
1784 
1785 	if (this->enabled && !this->pinned)
1786 		pci_disable_device(dev);
1787 }
1788 
1789 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1790 {
1791 	struct pci_devres *dr, *new_dr;
1792 
1793 	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1794 	if (dr)
1795 		return dr;
1796 
1797 	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1798 	if (!new_dr)
1799 		return NULL;
1800 	return devres_get(&pdev->dev, new_dr, NULL, NULL);
1801 }
1802 
1803 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1804 {
1805 	if (pci_is_managed(pdev))
1806 		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1807 	return NULL;
1808 }
1809 
1810 /**
1811  * pcim_enable_device - Managed pci_enable_device()
1812  * @pdev: PCI device to be initialized
1813  *
1814  * Managed pci_enable_device().
1815  */
1816 int pcim_enable_device(struct pci_dev *pdev)
1817 {
1818 	struct pci_devres *dr;
1819 	int rc;
1820 
1821 	dr = get_pci_dr(pdev);
1822 	if (unlikely(!dr))
1823 		return -ENOMEM;
1824 	if (dr->enabled)
1825 		return 0;
1826 
1827 	rc = pci_enable_device(pdev);
1828 	if (!rc) {
1829 		pdev->is_managed = 1;
1830 		dr->enabled = 1;
1831 	}
1832 	return rc;
1833 }
1834 EXPORT_SYMBOL(pcim_enable_device);
1835 
1836 /**
1837  * pcim_pin_device - Pin managed PCI device
1838  * @pdev: PCI device to pin
1839  *
1840  * Pin managed PCI device @pdev.  Pinned device won't be disabled on
1841  * driver detach.  @pdev must have been enabled with
1842  * pcim_enable_device().
1843  */
1844 void pcim_pin_device(struct pci_dev *pdev)
1845 {
1846 	struct pci_devres *dr;
1847 
1848 	dr = find_pci_dr(pdev);
1849 	WARN_ON(!dr || !dr->enabled);
1850 	if (dr)
1851 		dr->pinned = 1;
1852 }
1853 EXPORT_SYMBOL(pcim_pin_device);
1854 
1855 /*
1856  * pcibios_add_device - provide arch specific hooks when adding device dev
1857  * @dev: the PCI device being added
1858  *
1859  * Permits the platform to provide architecture specific functionality when
1860  * devices are added. This is the default implementation. Architecture
1861  * implementations can override this.
1862  */
1863 int __weak pcibios_add_device(struct pci_dev *dev)
1864 {
1865 	return 0;
1866 }
1867 
1868 /**
1869  * pcibios_release_device - provide arch specific hooks when releasing
1870  *			    device dev
1871  * @dev: the PCI device being released
1872  *
1873  * Permits the platform to provide architecture specific functionality when
1874  * devices are released. This is the default implementation. Architecture
1875  * implementations can override this.
1876  */
1877 void __weak pcibios_release_device(struct pci_dev *dev) {}
1878 
1879 /**
1880  * pcibios_disable_device - disable arch specific PCI resources for device dev
1881  * @dev: the PCI device to disable
1882  *
1883  * Disables architecture specific PCI resources for the device. This
1884  * is the default implementation. Architecture implementations can
1885  * override this.
1886  */
1887 void __weak pcibios_disable_device(struct pci_dev *dev) {}
1888 
1889 /**
1890  * pcibios_penalize_isa_irq - penalize an ISA IRQ
1891  * @irq: ISA IRQ to penalize
1892  * @active: IRQ active or not
1893  *
1894  * Permits the platform to provide architecture-specific functionality when
1895  * penalizing ISA IRQs. This is the default implementation. Architecture
1896  * implementations can override this.
1897  */
1898 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1899 
1900 static void do_pci_disable_device(struct pci_dev *dev)
1901 {
1902 	u16 pci_command;
1903 
1904 	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1905 	if (pci_command & PCI_COMMAND_MASTER) {
1906 		pci_command &= ~PCI_COMMAND_MASTER;
1907 		pci_write_config_word(dev, PCI_COMMAND, pci_command);
1908 	}
1909 
1910 	pcibios_disable_device(dev);
1911 }
1912 
1913 /**
1914  * pci_disable_enabled_device - Disable device without updating enable_cnt
1915  * @dev: PCI device to disable
1916  *
1917  * NOTE: This function is a backend of PCI power management routines and is
1918  * not supposed to be called drivers.
1919  */
1920 void pci_disable_enabled_device(struct pci_dev *dev)
1921 {
1922 	if (pci_is_enabled(dev))
1923 		do_pci_disable_device(dev);
1924 }
1925 
1926 /**
1927  * pci_disable_device - Disable PCI device after use
1928  * @dev: PCI device to be disabled
1929  *
1930  * Signal to the system that the PCI device is not in use by the system
1931  * anymore.  This only involves disabling PCI bus-mastering, if active.
1932  *
1933  * Note we don't actually disable the device until all callers of
1934  * pci_enable_device() have called pci_disable_device().
1935  */
1936 void pci_disable_device(struct pci_dev *dev)
1937 {
1938 	struct pci_devres *dr;
1939 
1940 	dr = find_pci_dr(dev);
1941 	if (dr)
1942 		dr->enabled = 0;
1943 
1944 	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1945 		      "disabling already-disabled device");
1946 
1947 	if (atomic_dec_return(&dev->enable_cnt) != 0)
1948 		return;
1949 
1950 	do_pci_disable_device(dev);
1951 
1952 	dev->is_busmaster = 0;
1953 }
1954 EXPORT_SYMBOL(pci_disable_device);
1955 
1956 /**
1957  * pcibios_set_pcie_reset_state - set reset state for device dev
1958  * @dev: the PCIe device reset
1959  * @state: Reset state to enter into
1960  *
1961  * Set the PCIe reset state for the device. This is the default
1962  * implementation. Architecture implementations can override this.
1963  */
1964 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1965 					enum pcie_reset_state state)
1966 {
1967 	return -EINVAL;
1968 }
1969 
1970 /**
1971  * pci_set_pcie_reset_state - set reset state for device dev
1972  * @dev: the PCIe device reset
1973  * @state: Reset state to enter into
1974  *
1975  * Sets the PCI reset state for the device.
1976  */
1977 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1978 {
1979 	return pcibios_set_pcie_reset_state(dev, state);
1980 }
1981 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
1982 
1983 /**
1984  * pcie_clear_root_pme_status - Clear root port PME interrupt status.
1985  * @dev: PCIe root port or event collector.
1986  */
1987 void pcie_clear_root_pme_status(struct pci_dev *dev)
1988 {
1989 	pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
1990 }
1991 
1992 /**
1993  * pci_check_pme_status - Check if given device has generated PME.
1994  * @dev: Device to check.
1995  *
1996  * Check the PME status of the device and if set, clear it and clear PME enable
1997  * (if set).  Return 'true' if PME status and PME enable were both set or
1998  * 'false' otherwise.
1999  */
2000 bool pci_check_pme_status(struct pci_dev *dev)
2001 {
2002 	int pmcsr_pos;
2003 	u16 pmcsr;
2004 	bool ret = false;
2005 
2006 	if (!dev->pm_cap)
2007 		return false;
2008 
2009 	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2010 	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2011 	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2012 		return false;
2013 
2014 	/* Clear PME status. */
2015 	pmcsr |= PCI_PM_CTRL_PME_STATUS;
2016 	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2017 		/* Disable PME to avoid interrupt flood. */
2018 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2019 		ret = true;
2020 	}
2021 
2022 	pci_write_config_word(dev, pmcsr_pos, pmcsr);
2023 
2024 	return ret;
2025 }
2026 
2027 /**
2028  * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2029  * @dev: Device to handle.
2030  * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2031  *
2032  * Check if @dev has generated PME and queue a resume request for it in that
2033  * case.
2034  */
2035 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2036 {
2037 	if (pme_poll_reset && dev->pme_poll)
2038 		dev->pme_poll = false;
2039 
2040 	if (pci_check_pme_status(dev)) {
2041 		pci_wakeup_event(dev);
2042 		pm_request_resume(&dev->dev);
2043 	}
2044 	return 0;
2045 }
2046 
2047 /**
2048  * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2049  * @bus: Top bus of the subtree to walk.
2050  */
2051 void pci_pme_wakeup_bus(struct pci_bus *bus)
2052 {
2053 	if (bus)
2054 		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2055 }
2056 
2057 
2058 /**
2059  * pci_pme_capable - check the capability of PCI device to generate PME#
2060  * @dev: PCI device to handle.
2061  * @state: PCI state from which device will issue PME#.
2062  */
2063 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2064 {
2065 	if (!dev->pm_cap)
2066 		return false;
2067 
2068 	return !!(dev->pme_support & (1 << state));
2069 }
2070 EXPORT_SYMBOL(pci_pme_capable);
2071 
2072 static void pci_pme_list_scan(struct work_struct *work)
2073 {
2074 	struct pci_pme_device *pme_dev, *n;
2075 
2076 	mutex_lock(&pci_pme_list_mutex);
2077 	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2078 		if (pme_dev->dev->pme_poll) {
2079 			struct pci_dev *bridge;
2080 
2081 			bridge = pme_dev->dev->bus->self;
2082 			/*
2083 			 * If bridge is in low power state, the
2084 			 * configuration space of subordinate devices
2085 			 * may be not accessible
2086 			 */
2087 			if (bridge && bridge->current_state != PCI_D0)
2088 				continue;
2089 			/*
2090 			 * If the device is in D3cold it should not be
2091 			 * polled either.
2092 			 */
2093 			if (pme_dev->dev->current_state == PCI_D3cold)
2094 				continue;
2095 
2096 			pci_pme_wakeup(pme_dev->dev, NULL);
2097 		} else {
2098 			list_del(&pme_dev->list);
2099 			kfree(pme_dev);
2100 		}
2101 	}
2102 	if (!list_empty(&pci_pme_list))
2103 		queue_delayed_work(system_freezable_wq, &pci_pme_work,
2104 				   msecs_to_jiffies(PME_TIMEOUT));
2105 	mutex_unlock(&pci_pme_list_mutex);
2106 }
2107 
2108 static void __pci_pme_active(struct pci_dev *dev, bool enable)
2109 {
2110 	u16 pmcsr;
2111 
2112 	if (!dev->pme_support)
2113 		return;
2114 
2115 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2116 	/* Clear PME_Status by writing 1 to it and enable PME# */
2117 	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2118 	if (!enable)
2119 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2120 
2121 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2122 }
2123 
2124 /**
2125  * pci_pme_restore - Restore PME configuration after config space restore.
2126  * @dev: PCI device to update.
2127  */
2128 void pci_pme_restore(struct pci_dev *dev)
2129 {
2130 	u16 pmcsr;
2131 
2132 	if (!dev->pme_support)
2133 		return;
2134 
2135 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2136 	if (dev->wakeup_prepared) {
2137 		pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2138 		pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2139 	} else {
2140 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2141 		pmcsr |= PCI_PM_CTRL_PME_STATUS;
2142 	}
2143 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2144 }
2145 
2146 /**
2147  * pci_pme_active - enable or disable PCI device's PME# function
2148  * @dev: PCI device to handle.
2149  * @enable: 'true' to enable PME# generation; 'false' to disable it.
2150  *
2151  * The caller must verify that the device is capable of generating PME# before
2152  * calling this function with @enable equal to 'true'.
2153  */
2154 void pci_pme_active(struct pci_dev *dev, bool enable)
2155 {
2156 	__pci_pme_active(dev, enable);
2157 
2158 	/*
2159 	 * PCI (as opposed to PCIe) PME requires that the device have
2160 	 * its PME# line hooked up correctly. Not all hardware vendors
2161 	 * do this, so the PME never gets delivered and the device
2162 	 * remains asleep. The easiest way around this is to
2163 	 * periodically walk the list of suspended devices and check
2164 	 * whether any have their PME flag set. The assumption is that
2165 	 * we'll wake up often enough anyway that this won't be a huge
2166 	 * hit, and the power savings from the devices will still be a
2167 	 * win.
2168 	 *
2169 	 * Although PCIe uses in-band PME message instead of PME# line
2170 	 * to report PME, PME does not work for some PCIe devices in
2171 	 * reality.  For example, there are devices that set their PME
2172 	 * status bits, but don't really bother to send a PME message;
2173 	 * there are PCI Express Root Ports that don't bother to
2174 	 * trigger interrupts when they receive PME messages from the
2175 	 * devices below.  So PME poll is used for PCIe devices too.
2176 	 */
2177 
2178 	if (dev->pme_poll) {
2179 		struct pci_pme_device *pme_dev;
2180 		if (enable) {
2181 			pme_dev = kmalloc(sizeof(struct pci_pme_device),
2182 					  GFP_KERNEL);
2183 			if (!pme_dev) {
2184 				pci_warn(dev, "can't enable PME#\n");
2185 				return;
2186 			}
2187 			pme_dev->dev = dev;
2188 			mutex_lock(&pci_pme_list_mutex);
2189 			list_add(&pme_dev->list, &pci_pme_list);
2190 			if (list_is_singular(&pci_pme_list))
2191 				queue_delayed_work(system_freezable_wq,
2192 						   &pci_pme_work,
2193 						   msecs_to_jiffies(PME_TIMEOUT));
2194 			mutex_unlock(&pci_pme_list_mutex);
2195 		} else {
2196 			mutex_lock(&pci_pme_list_mutex);
2197 			list_for_each_entry(pme_dev, &pci_pme_list, list) {
2198 				if (pme_dev->dev == dev) {
2199 					list_del(&pme_dev->list);
2200 					kfree(pme_dev);
2201 					break;
2202 				}
2203 			}
2204 			mutex_unlock(&pci_pme_list_mutex);
2205 		}
2206 	}
2207 
2208 	pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2209 }
2210 EXPORT_SYMBOL(pci_pme_active);
2211 
2212 /**
2213  * __pci_enable_wake - enable PCI device as wakeup event source
2214  * @dev: PCI device affected
2215  * @state: PCI state from which device will issue wakeup events
2216  * @enable: True to enable event generation; false to disable
2217  *
2218  * This enables the device as a wakeup event source, or disables it.
2219  * When such events involves platform-specific hooks, those hooks are
2220  * called automatically by this routine.
2221  *
2222  * Devices with legacy power management (no standard PCI PM capabilities)
2223  * always require such platform hooks.
2224  *
2225  * RETURN VALUE:
2226  * 0 is returned on success
2227  * -EINVAL is returned if device is not supposed to wake up the system
2228  * Error code depending on the platform is returned if both the platform and
2229  * the native mechanism fail to enable the generation of wake-up events
2230  */
2231 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2232 {
2233 	int ret = 0;
2234 
2235 	/*
2236 	 * Bridges that are not power-manageable directly only signal
2237 	 * wakeup on behalf of subordinate devices which is set up
2238 	 * elsewhere, so skip them. However, bridges that are
2239 	 * power-manageable may signal wakeup for themselves (for example,
2240 	 * on a hotplug event) and they need to be covered here.
2241 	 */
2242 	if (!pci_power_manageable(dev))
2243 		return 0;
2244 
2245 	/* Don't do the same thing twice in a row for one device. */
2246 	if (!!enable == !!dev->wakeup_prepared)
2247 		return 0;
2248 
2249 	/*
2250 	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2251 	 * Anderson we should be doing PME# wake enable followed by ACPI wake
2252 	 * enable.  To disable wake-up we call the platform first, for symmetry.
2253 	 */
2254 
2255 	if (enable) {
2256 		int error;
2257 
2258 		if (pci_pme_capable(dev, state))
2259 			pci_pme_active(dev, true);
2260 		else
2261 			ret = 1;
2262 		error = platform_pci_set_wakeup(dev, true);
2263 		if (ret)
2264 			ret = error;
2265 		if (!ret)
2266 			dev->wakeup_prepared = true;
2267 	} else {
2268 		platform_pci_set_wakeup(dev, false);
2269 		pci_pme_active(dev, false);
2270 		dev->wakeup_prepared = false;
2271 	}
2272 
2273 	return ret;
2274 }
2275 
2276 /**
2277  * pci_enable_wake - change wakeup settings for a PCI device
2278  * @pci_dev: Target device
2279  * @state: PCI state from which device will issue wakeup events
2280  * @enable: Whether or not to enable event generation
2281  *
2282  * If @enable is set, check device_may_wakeup() for the device before calling
2283  * __pci_enable_wake() for it.
2284  */
2285 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2286 {
2287 	if (enable && !device_may_wakeup(&pci_dev->dev))
2288 		return -EINVAL;
2289 
2290 	return __pci_enable_wake(pci_dev, state, enable);
2291 }
2292 EXPORT_SYMBOL(pci_enable_wake);
2293 
2294 /**
2295  * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2296  * @dev: PCI device to prepare
2297  * @enable: True to enable wake-up event generation; false to disable
2298  *
2299  * Many drivers want the device to wake up the system from D3_hot or D3_cold
2300  * and this function allows them to set that up cleanly - pci_enable_wake()
2301  * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2302  * ordering constraints.
2303  *
2304  * This function only returns error code if the device is not allowed to wake
2305  * up the system from sleep or it is not capable of generating PME# from both
2306  * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2307  */
2308 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2309 {
2310 	return pci_pme_capable(dev, PCI_D3cold) ?
2311 			pci_enable_wake(dev, PCI_D3cold, enable) :
2312 			pci_enable_wake(dev, PCI_D3hot, enable);
2313 }
2314 EXPORT_SYMBOL(pci_wake_from_d3);
2315 
2316 /**
2317  * pci_target_state - find an appropriate low power state for a given PCI dev
2318  * @dev: PCI device
2319  * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2320  *
2321  * Use underlying platform code to find a supported low power state for @dev.
2322  * If the platform can't manage @dev, return the deepest state from which it
2323  * can generate wake events, based on any available PME info.
2324  */
2325 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2326 {
2327 	pci_power_t target_state = PCI_D3hot;
2328 
2329 	if (platform_pci_power_manageable(dev)) {
2330 		/*
2331 		 * Call the platform to find the target state for the device.
2332 		 */
2333 		pci_power_t state = platform_pci_choose_state(dev);
2334 
2335 		switch (state) {
2336 		case PCI_POWER_ERROR:
2337 		case PCI_UNKNOWN:
2338 			break;
2339 		case PCI_D1:
2340 		case PCI_D2:
2341 			if (pci_no_d1d2(dev))
2342 				break;
2343 			/* else, fall through */
2344 		default:
2345 			target_state = state;
2346 		}
2347 
2348 		return target_state;
2349 	}
2350 
2351 	if (!dev->pm_cap)
2352 		target_state = PCI_D0;
2353 
2354 	/*
2355 	 * If the device is in D3cold even though it's not power-manageable by
2356 	 * the platform, it may have been powered down by non-standard means.
2357 	 * Best to let it slumber.
2358 	 */
2359 	if (dev->current_state == PCI_D3cold)
2360 		target_state = PCI_D3cold;
2361 
2362 	if (wakeup) {
2363 		/*
2364 		 * Find the deepest state from which the device can generate
2365 		 * PME#.
2366 		 */
2367 		if (dev->pme_support) {
2368 			while (target_state
2369 			      && !(dev->pme_support & (1 << target_state)))
2370 				target_state--;
2371 		}
2372 	}
2373 
2374 	return target_state;
2375 }
2376 
2377 /**
2378  * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2379  *			  into a sleep state
2380  * @dev: Device to handle.
2381  *
2382  * Choose the power state appropriate for the device depending on whether
2383  * it can wake up the system and/or is power manageable by the platform
2384  * (PCI_D3hot is the default) and put the device into that state.
2385  */
2386 int pci_prepare_to_sleep(struct pci_dev *dev)
2387 {
2388 	bool wakeup = device_may_wakeup(&dev->dev);
2389 	pci_power_t target_state = pci_target_state(dev, wakeup);
2390 	int error;
2391 
2392 	if (target_state == PCI_POWER_ERROR)
2393 		return -EIO;
2394 
2395 	pci_enable_wake(dev, target_state, wakeup);
2396 
2397 	error = pci_set_power_state(dev, target_state);
2398 
2399 	if (error)
2400 		pci_enable_wake(dev, target_state, false);
2401 
2402 	return error;
2403 }
2404 EXPORT_SYMBOL(pci_prepare_to_sleep);
2405 
2406 /**
2407  * pci_back_from_sleep - turn PCI device on during system-wide transition
2408  *			 into working state
2409  * @dev: Device to handle.
2410  *
2411  * Disable device's system wake-up capability and put it into D0.
2412  */
2413 int pci_back_from_sleep(struct pci_dev *dev)
2414 {
2415 	pci_enable_wake(dev, PCI_D0, false);
2416 	return pci_set_power_state(dev, PCI_D0);
2417 }
2418 EXPORT_SYMBOL(pci_back_from_sleep);
2419 
2420 /**
2421  * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2422  * @dev: PCI device being suspended.
2423  *
2424  * Prepare @dev to generate wake-up events at run time and put it into a low
2425  * power state.
2426  */
2427 int pci_finish_runtime_suspend(struct pci_dev *dev)
2428 {
2429 	pci_power_t target_state;
2430 	int error;
2431 
2432 	target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2433 	if (target_state == PCI_POWER_ERROR)
2434 		return -EIO;
2435 
2436 	dev->runtime_d3cold = target_state == PCI_D3cold;
2437 
2438 	__pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2439 
2440 	error = pci_set_power_state(dev, target_state);
2441 
2442 	if (error) {
2443 		pci_enable_wake(dev, target_state, false);
2444 		dev->runtime_d3cold = false;
2445 	}
2446 
2447 	return error;
2448 }
2449 
2450 /**
2451  * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2452  * @dev: Device to check.
2453  *
2454  * Return true if the device itself is capable of generating wake-up events
2455  * (through the platform or using the native PCIe PME) or if the device supports
2456  * PME and one of its upstream bridges can generate wake-up events.
2457  */
2458 bool pci_dev_run_wake(struct pci_dev *dev)
2459 {
2460 	struct pci_bus *bus = dev->bus;
2461 
2462 	if (!dev->pme_support)
2463 		return false;
2464 
2465 	/* PME-capable in principle, but not from the target power state */
2466 	if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2467 		return false;
2468 
2469 	if (device_can_wakeup(&dev->dev))
2470 		return true;
2471 
2472 	while (bus->parent) {
2473 		struct pci_dev *bridge = bus->self;
2474 
2475 		if (device_can_wakeup(&bridge->dev))
2476 			return true;
2477 
2478 		bus = bus->parent;
2479 	}
2480 
2481 	/* We have reached the root bus. */
2482 	if (bus->bridge)
2483 		return device_can_wakeup(bus->bridge);
2484 
2485 	return false;
2486 }
2487 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2488 
2489 /**
2490  * pci_dev_need_resume - Check if it is necessary to resume the device.
2491  * @pci_dev: Device to check.
2492  *
2493  * Return 'true' if the device is not runtime-suspended or it has to be
2494  * reconfigured due to wakeup settings difference between system and runtime
2495  * suspend, or the current power state of it is not suitable for the upcoming
2496  * (system-wide) transition.
2497  */
2498 bool pci_dev_need_resume(struct pci_dev *pci_dev)
2499 {
2500 	struct device *dev = &pci_dev->dev;
2501 	pci_power_t target_state;
2502 
2503 	if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2504 		return true;
2505 
2506 	target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2507 
2508 	/*
2509 	 * If the earlier platform check has not triggered, D3cold is just power
2510 	 * removal on top of D3hot, so no need to resume the device in that
2511 	 * case.
2512 	 */
2513 	return target_state != pci_dev->current_state &&
2514 		target_state != PCI_D3cold &&
2515 		pci_dev->current_state != PCI_D3hot;
2516 }
2517 
2518 /**
2519  * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2520  * @pci_dev: Device to check.
2521  *
2522  * If the device is suspended and it is not configured for system wakeup,
2523  * disable PME for it to prevent it from waking up the system unnecessarily.
2524  *
2525  * Note that if the device's power state is D3cold and the platform check in
2526  * pci_dev_need_resume() has not triggered, the device's configuration need not
2527  * be changed.
2528  */
2529 void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2530 {
2531 	struct device *dev = &pci_dev->dev;
2532 
2533 	spin_lock_irq(&dev->power.lock);
2534 
2535 	if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2536 	    pci_dev->current_state < PCI_D3cold)
2537 		__pci_pme_active(pci_dev, false);
2538 
2539 	spin_unlock_irq(&dev->power.lock);
2540 }
2541 
2542 /**
2543  * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2544  * @pci_dev: Device to handle.
2545  *
2546  * If the device is runtime suspended and wakeup-capable, enable PME for it as
2547  * it might have been disabled during the prepare phase of system suspend if
2548  * the device was not configured for system wakeup.
2549  */
2550 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2551 {
2552 	struct device *dev = &pci_dev->dev;
2553 
2554 	if (!pci_dev_run_wake(pci_dev))
2555 		return;
2556 
2557 	spin_lock_irq(&dev->power.lock);
2558 
2559 	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2560 		__pci_pme_active(pci_dev, true);
2561 
2562 	spin_unlock_irq(&dev->power.lock);
2563 }
2564 
2565 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2566 {
2567 	struct device *dev = &pdev->dev;
2568 	struct device *parent = dev->parent;
2569 
2570 	if (parent)
2571 		pm_runtime_get_sync(parent);
2572 	pm_runtime_get_noresume(dev);
2573 	/*
2574 	 * pdev->current_state is set to PCI_D3cold during suspending,
2575 	 * so wait until suspending completes
2576 	 */
2577 	pm_runtime_barrier(dev);
2578 	/*
2579 	 * Only need to resume devices in D3cold, because config
2580 	 * registers are still accessible for devices suspended but
2581 	 * not in D3cold.
2582 	 */
2583 	if (pdev->current_state == PCI_D3cold)
2584 		pm_runtime_resume(dev);
2585 }
2586 
2587 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2588 {
2589 	struct device *dev = &pdev->dev;
2590 	struct device *parent = dev->parent;
2591 
2592 	pm_runtime_put(dev);
2593 	if (parent)
2594 		pm_runtime_put_sync(parent);
2595 }
2596 
2597 static const struct dmi_system_id bridge_d3_blacklist[] = {
2598 #ifdef CONFIG_X86
2599 	{
2600 		/*
2601 		 * Gigabyte X299 root port is not marked as hotplug capable
2602 		 * which allows Linux to power manage it.  However, this
2603 		 * confuses the BIOS SMI handler so don't power manage root
2604 		 * ports on that system.
2605 		 */
2606 		.ident = "X299 DESIGNARE EX-CF",
2607 		.matches = {
2608 			DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2609 			DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2610 		},
2611 	},
2612 #endif
2613 	{ }
2614 };
2615 
2616 /**
2617  * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2618  * @bridge: Bridge to check
2619  *
2620  * This function checks if it is possible to move the bridge to D3.
2621  * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2622  */
2623 bool pci_bridge_d3_possible(struct pci_dev *bridge)
2624 {
2625 	if (!pci_is_pcie(bridge))
2626 		return false;
2627 
2628 	switch (pci_pcie_type(bridge)) {
2629 	case PCI_EXP_TYPE_ROOT_PORT:
2630 	case PCI_EXP_TYPE_UPSTREAM:
2631 	case PCI_EXP_TYPE_DOWNSTREAM:
2632 		if (pci_bridge_d3_disable)
2633 			return false;
2634 
2635 		/*
2636 		 * Hotplug ports handled by firmware in System Management Mode
2637 		 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2638 		 */
2639 		if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
2640 			return false;
2641 
2642 		if (pci_bridge_d3_force)
2643 			return true;
2644 
2645 		/* Even the oldest 2010 Thunderbolt controller supports D3. */
2646 		if (bridge->is_thunderbolt)
2647 			return true;
2648 
2649 		/* Platform might know better if the bridge supports D3 */
2650 		if (platform_pci_bridge_d3(bridge))
2651 			return true;
2652 
2653 		/*
2654 		 * Hotplug ports handled natively by the OS were not validated
2655 		 * by vendors for runtime D3 at least until 2018 because there
2656 		 * was no OS support.
2657 		 */
2658 		if (bridge->is_hotplug_bridge)
2659 			return false;
2660 
2661 		if (dmi_check_system(bridge_d3_blacklist))
2662 			return false;
2663 
2664 		/*
2665 		 * It should be safe to put PCIe ports from 2015 or newer
2666 		 * to D3.
2667 		 */
2668 		if (dmi_get_bios_year() >= 2015)
2669 			return true;
2670 		break;
2671 	}
2672 
2673 	return false;
2674 }
2675 
2676 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2677 {
2678 	bool *d3cold_ok = data;
2679 
2680 	if (/* The device needs to be allowed to go D3cold ... */
2681 	    dev->no_d3cold || !dev->d3cold_allowed ||
2682 
2683 	    /* ... and if it is wakeup capable to do so from D3cold. */
2684 	    (device_may_wakeup(&dev->dev) &&
2685 	     !pci_pme_capable(dev, PCI_D3cold)) ||
2686 
2687 	    /* If it is a bridge it must be allowed to go to D3. */
2688 	    !pci_power_manageable(dev))
2689 
2690 		*d3cold_ok = false;
2691 
2692 	return !*d3cold_ok;
2693 }
2694 
2695 /*
2696  * pci_bridge_d3_update - Update bridge D3 capabilities
2697  * @dev: PCI device which is changed
2698  *
2699  * Update upstream bridge PM capabilities accordingly depending on if the
2700  * device PM configuration was changed or the device is being removed.  The
2701  * change is also propagated upstream.
2702  */
2703 void pci_bridge_d3_update(struct pci_dev *dev)
2704 {
2705 	bool remove = !device_is_registered(&dev->dev);
2706 	struct pci_dev *bridge;
2707 	bool d3cold_ok = true;
2708 
2709 	bridge = pci_upstream_bridge(dev);
2710 	if (!bridge || !pci_bridge_d3_possible(bridge))
2711 		return;
2712 
2713 	/*
2714 	 * If D3 is currently allowed for the bridge, removing one of its
2715 	 * children won't change that.
2716 	 */
2717 	if (remove && bridge->bridge_d3)
2718 		return;
2719 
2720 	/*
2721 	 * If D3 is currently allowed for the bridge and a child is added or
2722 	 * changed, disallowance of D3 can only be caused by that child, so
2723 	 * we only need to check that single device, not any of its siblings.
2724 	 *
2725 	 * If D3 is currently not allowed for the bridge, checking the device
2726 	 * first may allow us to skip checking its siblings.
2727 	 */
2728 	if (!remove)
2729 		pci_dev_check_d3cold(dev, &d3cold_ok);
2730 
2731 	/*
2732 	 * If D3 is currently not allowed for the bridge, this may be caused
2733 	 * either by the device being changed/removed or any of its siblings,
2734 	 * so we need to go through all children to find out if one of them
2735 	 * continues to block D3.
2736 	 */
2737 	if (d3cold_ok && !bridge->bridge_d3)
2738 		pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
2739 			     &d3cold_ok);
2740 
2741 	if (bridge->bridge_d3 != d3cold_ok) {
2742 		bridge->bridge_d3 = d3cold_ok;
2743 		/* Propagate change to upstream bridges */
2744 		pci_bridge_d3_update(bridge);
2745 	}
2746 }
2747 
2748 /**
2749  * pci_d3cold_enable - Enable D3cold for device
2750  * @dev: PCI device to handle
2751  *
2752  * This function can be used in drivers to enable D3cold from the device
2753  * they handle.  It also updates upstream PCI bridge PM capabilities
2754  * accordingly.
2755  */
2756 void pci_d3cold_enable(struct pci_dev *dev)
2757 {
2758 	if (dev->no_d3cold) {
2759 		dev->no_d3cold = false;
2760 		pci_bridge_d3_update(dev);
2761 	}
2762 }
2763 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
2764 
2765 /**
2766  * pci_d3cold_disable - Disable D3cold for device
2767  * @dev: PCI device to handle
2768  *
2769  * This function can be used in drivers to disable D3cold from the device
2770  * they handle.  It also updates upstream PCI bridge PM capabilities
2771  * accordingly.
2772  */
2773 void pci_d3cold_disable(struct pci_dev *dev)
2774 {
2775 	if (!dev->no_d3cold) {
2776 		dev->no_d3cold = true;
2777 		pci_bridge_d3_update(dev);
2778 	}
2779 }
2780 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
2781 
2782 /**
2783  * pci_pm_init - Initialize PM functions of given PCI device
2784  * @dev: PCI device to handle.
2785  */
2786 void pci_pm_init(struct pci_dev *dev)
2787 {
2788 	int pm;
2789 	u16 status;
2790 	u16 pmc;
2791 
2792 	pm_runtime_forbid(&dev->dev);
2793 	pm_runtime_set_active(&dev->dev);
2794 	pm_runtime_enable(&dev->dev);
2795 	device_enable_async_suspend(&dev->dev);
2796 	dev->wakeup_prepared = false;
2797 
2798 	dev->pm_cap = 0;
2799 	dev->pme_support = 0;
2800 
2801 	/* find PCI PM capability in list */
2802 	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2803 	if (!pm)
2804 		return;
2805 	/* Check device's ability to generate PME# */
2806 	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2807 
2808 	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2809 		pci_err(dev, "unsupported PM cap regs version (%u)\n",
2810 			pmc & PCI_PM_CAP_VER_MASK);
2811 		return;
2812 	}
2813 
2814 	dev->pm_cap = pm;
2815 	dev->d3_delay = PCI_PM_D3_WAIT;
2816 	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2817 	dev->bridge_d3 = pci_bridge_d3_possible(dev);
2818 	dev->d3cold_allowed = true;
2819 
2820 	dev->d1_support = false;
2821 	dev->d2_support = false;
2822 	if (!pci_no_d1d2(dev)) {
2823 		if (pmc & PCI_PM_CAP_D1)
2824 			dev->d1_support = true;
2825 		if (pmc & PCI_PM_CAP_D2)
2826 			dev->d2_support = true;
2827 
2828 		if (dev->d1_support || dev->d2_support)
2829 			pci_info(dev, "supports%s%s\n",
2830 				   dev->d1_support ? " D1" : "",
2831 				   dev->d2_support ? " D2" : "");
2832 	}
2833 
2834 	pmc &= PCI_PM_CAP_PME_MASK;
2835 	if (pmc) {
2836 		pci_info(dev, "PME# supported from%s%s%s%s%s\n",
2837 			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2838 			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2839 			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2840 			 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2841 			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2842 		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2843 		dev->pme_poll = true;
2844 		/*
2845 		 * Make device's PM flags reflect the wake-up capability, but
2846 		 * let the user space enable it to wake up the system as needed.
2847 		 */
2848 		device_set_wakeup_capable(&dev->dev, true);
2849 		/* Disable the PME# generation functionality */
2850 		pci_pme_active(dev, false);
2851 	}
2852 
2853 	pci_read_config_word(dev, PCI_STATUS, &status);
2854 	if (status & PCI_STATUS_IMM_READY)
2855 		dev->imm_ready = 1;
2856 }
2857 
2858 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
2859 {
2860 	unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
2861 
2862 	switch (prop) {
2863 	case PCI_EA_P_MEM:
2864 	case PCI_EA_P_VF_MEM:
2865 		flags |= IORESOURCE_MEM;
2866 		break;
2867 	case PCI_EA_P_MEM_PREFETCH:
2868 	case PCI_EA_P_VF_MEM_PREFETCH:
2869 		flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
2870 		break;
2871 	case PCI_EA_P_IO:
2872 		flags |= IORESOURCE_IO;
2873 		break;
2874 	default:
2875 		return 0;
2876 	}
2877 
2878 	return flags;
2879 }
2880 
2881 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
2882 					    u8 prop)
2883 {
2884 	if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
2885 		return &dev->resource[bei];
2886 #ifdef CONFIG_PCI_IOV
2887 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
2888 		 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
2889 		return &dev->resource[PCI_IOV_RESOURCES +
2890 				      bei - PCI_EA_BEI_VF_BAR0];
2891 #endif
2892 	else if (bei == PCI_EA_BEI_ROM)
2893 		return &dev->resource[PCI_ROM_RESOURCE];
2894 	else
2895 		return NULL;
2896 }
2897 
2898 /* Read an Enhanced Allocation (EA) entry */
2899 static int pci_ea_read(struct pci_dev *dev, int offset)
2900 {
2901 	struct resource *res;
2902 	int ent_size, ent_offset = offset;
2903 	resource_size_t start, end;
2904 	unsigned long flags;
2905 	u32 dw0, bei, base, max_offset;
2906 	u8 prop;
2907 	bool support_64 = (sizeof(resource_size_t) >= 8);
2908 
2909 	pci_read_config_dword(dev, ent_offset, &dw0);
2910 	ent_offset += 4;
2911 
2912 	/* Entry size field indicates DWORDs after 1st */
2913 	ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
2914 
2915 	if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
2916 		goto out;
2917 
2918 	bei = (dw0 & PCI_EA_BEI) >> 4;
2919 	prop = (dw0 & PCI_EA_PP) >> 8;
2920 
2921 	/*
2922 	 * If the Property is in the reserved range, try the Secondary
2923 	 * Property instead.
2924 	 */
2925 	if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
2926 		prop = (dw0 & PCI_EA_SP) >> 16;
2927 	if (prop > PCI_EA_P_BRIDGE_IO)
2928 		goto out;
2929 
2930 	res = pci_ea_get_resource(dev, bei, prop);
2931 	if (!res) {
2932 		pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
2933 		goto out;
2934 	}
2935 
2936 	flags = pci_ea_flags(dev, prop);
2937 	if (!flags) {
2938 		pci_err(dev, "Unsupported EA properties: %#x\n", prop);
2939 		goto out;
2940 	}
2941 
2942 	/* Read Base */
2943 	pci_read_config_dword(dev, ent_offset, &base);
2944 	start = (base & PCI_EA_FIELD_MASK);
2945 	ent_offset += 4;
2946 
2947 	/* Read MaxOffset */
2948 	pci_read_config_dword(dev, ent_offset, &max_offset);
2949 	ent_offset += 4;
2950 
2951 	/* Read Base MSBs (if 64-bit entry) */
2952 	if (base & PCI_EA_IS_64) {
2953 		u32 base_upper;
2954 
2955 		pci_read_config_dword(dev, ent_offset, &base_upper);
2956 		ent_offset += 4;
2957 
2958 		flags |= IORESOURCE_MEM_64;
2959 
2960 		/* entry starts above 32-bit boundary, can't use */
2961 		if (!support_64 && base_upper)
2962 			goto out;
2963 
2964 		if (support_64)
2965 			start |= ((u64)base_upper << 32);
2966 	}
2967 
2968 	end = start + (max_offset | 0x03);
2969 
2970 	/* Read MaxOffset MSBs (if 64-bit entry) */
2971 	if (max_offset & PCI_EA_IS_64) {
2972 		u32 max_offset_upper;
2973 
2974 		pci_read_config_dword(dev, ent_offset, &max_offset_upper);
2975 		ent_offset += 4;
2976 
2977 		flags |= IORESOURCE_MEM_64;
2978 
2979 		/* entry too big, can't use */
2980 		if (!support_64 && max_offset_upper)
2981 			goto out;
2982 
2983 		if (support_64)
2984 			end += ((u64)max_offset_upper << 32);
2985 	}
2986 
2987 	if (end < start) {
2988 		pci_err(dev, "EA Entry crosses address boundary\n");
2989 		goto out;
2990 	}
2991 
2992 	if (ent_size != ent_offset - offset) {
2993 		pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
2994 			ent_size, ent_offset - offset);
2995 		goto out;
2996 	}
2997 
2998 	res->name = pci_name(dev);
2999 	res->start = start;
3000 	res->end = end;
3001 	res->flags = flags;
3002 
3003 	if (bei <= PCI_EA_BEI_BAR5)
3004 		pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3005 			   bei, res, prop);
3006 	else if (bei == PCI_EA_BEI_ROM)
3007 		pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3008 			   res, prop);
3009 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3010 		pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3011 			   bei - PCI_EA_BEI_VF_BAR0, res, prop);
3012 	else
3013 		pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3014 			   bei, res, prop);
3015 
3016 out:
3017 	return offset + ent_size;
3018 }
3019 
3020 /* Enhanced Allocation Initialization */
3021 void pci_ea_init(struct pci_dev *dev)
3022 {
3023 	int ea;
3024 	u8 num_ent;
3025 	int offset;
3026 	int i;
3027 
3028 	/* find PCI EA capability in list */
3029 	ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3030 	if (!ea)
3031 		return;
3032 
3033 	/* determine the number of entries */
3034 	pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3035 					&num_ent);
3036 	num_ent &= PCI_EA_NUM_ENT_MASK;
3037 
3038 	offset = ea + PCI_EA_FIRST_ENT;
3039 
3040 	/* Skip DWORD 2 for type 1 functions */
3041 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3042 		offset += 4;
3043 
3044 	/* parse each EA entry */
3045 	for (i = 0; i < num_ent; ++i)
3046 		offset = pci_ea_read(dev, offset);
3047 }
3048 
3049 static void pci_add_saved_cap(struct pci_dev *pci_dev,
3050 	struct pci_cap_saved_state *new_cap)
3051 {
3052 	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3053 }
3054 
3055 /**
3056  * _pci_add_cap_save_buffer - allocate buffer for saving given
3057  *			      capability registers
3058  * @dev: the PCI device
3059  * @cap: the capability to allocate the buffer for
3060  * @extended: Standard or Extended capability ID
3061  * @size: requested size of the buffer
3062  */
3063 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3064 				    bool extended, unsigned int size)
3065 {
3066 	int pos;
3067 	struct pci_cap_saved_state *save_state;
3068 
3069 	if (extended)
3070 		pos = pci_find_ext_capability(dev, cap);
3071 	else
3072 		pos = pci_find_capability(dev, cap);
3073 
3074 	if (!pos)
3075 		return 0;
3076 
3077 	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3078 	if (!save_state)
3079 		return -ENOMEM;
3080 
3081 	save_state->cap.cap_nr = cap;
3082 	save_state->cap.cap_extended = extended;
3083 	save_state->cap.size = size;
3084 	pci_add_saved_cap(dev, save_state);
3085 
3086 	return 0;
3087 }
3088 
3089 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3090 {
3091 	return _pci_add_cap_save_buffer(dev, cap, false, size);
3092 }
3093 
3094 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3095 {
3096 	return _pci_add_cap_save_buffer(dev, cap, true, size);
3097 }
3098 
3099 /**
3100  * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3101  * @dev: the PCI device
3102  */
3103 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3104 {
3105 	int error;
3106 
3107 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3108 					PCI_EXP_SAVE_REGS * sizeof(u16));
3109 	if (error)
3110 		pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3111 
3112 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3113 	if (error)
3114 		pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3115 
3116 	error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3117 					    2 * sizeof(u16));
3118 	if (error)
3119 		pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3120 
3121 	pci_allocate_vc_save_buffers(dev);
3122 }
3123 
3124 void pci_free_cap_save_buffers(struct pci_dev *dev)
3125 {
3126 	struct pci_cap_saved_state *tmp;
3127 	struct hlist_node *n;
3128 
3129 	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3130 		kfree(tmp);
3131 }
3132 
3133 /**
3134  * pci_configure_ari - enable or disable ARI forwarding
3135  * @dev: the PCI device
3136  *
3137  * If @dev and its upstream bridge both support ARI, enable ARI in the
3138  * bridge.  Otherwise, disable ARI in the bridge.
3139  */
3140 void pci_configure_ari(struct pci_dev *dev)
3141 {
3142 	u32 cap;
3143 	struct pci_dev *bridge;
3144 
3145 	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3146 		return;
3147 
3148 	bridge = dev->bus->self;
3149 	if (!bridge)
3150 		return;
3151 
3152 	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3153 	if (!(cap & PCI_EXP_DEVCAP2_ARI))
3154 		return;
3155 
3156 	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3157 		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3158 					 PCI_EXP_DEVCTL2_ARI);
3159 		bridge->ari_enabled = 1;
3160 	} else {
3161 		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3162 					   PCI_EXP_DEVCTL2_ARI);
3163 		bridge->ari_enabled = 0;
3164 	}
3165 }
3166 
3167 static int pci_acs_enable;
3168 
3169 /**
3170  * pci_request_acs - ask for ACS to be enabled if supported
3171  */
3172 void pci_request_acs(void)
3173 {
3174 	pci_acs_enable = 1;
3175 }
3176 
3177 static const char *disable_acs_redir_param;
3178 
3179 /**
3180  * pci_disable_acs_redir - disable ACS redirect capabilities
3181  * @dev: the PCI device
3182  *
3183  * For only devices specified in the disable_acs_redir parameter.
3184  */
3185 static void pci_disable_acs_redir(struct pci_dev *dev)
3186 {
3187 	int ret = 0;
3188 	const char *p;
3189 	int pos;
3190 	u16 ctrl;
3191 
3192 	if (!disable_acs_redir_param)
3193 		return;
3194 
3195 	p = disable_acs_redir_param;
3196 	while (*p) {
3197 		ret = pci_dev_str_match(dev, p, &p);
3198 		if (ret < 0) {
3199 			pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
3200 				     disable_acs_redir_param);
3201 
3202 			break;
3203 		} else if (ret == 1) {
3204 			/* Found a match */
3205 			break;
3206 		}
3207 
3208 		if (*p != ';' && *p != ',') {
3209 			/* End of param or invalid format */
3210 			break;
3211 		}
3212 		p++;
3213 	}
3214 
3215 	if (ret != 1)
3216 		return;
3217 
3218 	if (!pci_dev_specific_disable_acs_redir(dev))
3219 		return;
3220 
3221 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3222 	if (!pos) {
3223 		pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
3224 		return;
3225 	}
3226 
3227 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
3228 
3229 	/* P2P Request & Completion Redirect */
3230 	ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
3231 
3232 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
3233 
3234 	pci_info(dev, "disabled ACS redirect\n");
3235 }
3236 
3237 /**
3238  * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
3239  * @dev: the PCI device
3240  */
3241 static void pci_std_enable_acs(struct pci_dev *dev)
3242 {
3243 	int pos;
3244 	u16 cap;
3245 	u16 ctrl;
3246 
3247 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3248 	if (!pos)
3249 		return;
3250 
3251 	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
3252 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
3253 
3254 	/* Source Validation */
3255 	ctrl |= (cap & PCI_ACS_SV);
3256 
3257 	/* P2P Request Redirect */
3258 	ctrl |= (cap & PCI_ACS_RR);
3259 
3260 	/* P2P Completion Redirect */
3261 	ctrl |= (cap & PCI_ACS_CR);
3262 
3263 	/* Upstream Forwarding */
3264 	ctrl |= (cap & PCI_ACS_UF);
3265 
3266 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
3267 }
3268 
3269 /**
3270  * pci_enable_acs - enable ACS if hardware support it
3271  * @dev: the PCI device
3272  */
3273 void pci_enable_acs(struct pci_dev *dev)
3274 {
3275 	if (!pci_acs_enable)
3276 		goto disable_acs_redir;
3277 
3278 	if (!pci_dev_specific_enable_acs(dev))
3279 		goto disable_acs_redir;
3280 
3281 	pci_std_enable_acs(dev);
3282 
3283 disable_acs_redir:
3284 	/*
3285 	 * Note: pci_disable_acs_redir() must be called even if ACS was not
3286 	 * enabled by the kernel because it may have been enabled by
3287 	 * platform firmware.  So if we are told to disable it, we should
3288 	 * always disable it after setting the kernel's default
3289 	 * preferences.
3290 	 */
3291 	pci_disable_acs_redir(dev);
3292 }
3293 
3294 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3295 {
3296 	int pos;
3297 	u16 cap, ctrl;
3298 
3299 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
3300 	if (!pos)
3301 		return false;
3302 
3303 	/*
3304 	 * Except for egress control, capabilities are either required
3305 	 * or only required if controllable.  Features missing from the
3306 	 * capability field can therefore be assumed as hard-wired enabled.
3307 	 */
3308 	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3309 	acs_flags &= (cap | PCI_ACS_EC);
3310 
3311 	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3312 	return (ctrl & acs_flags) == acs_flags;
3313 }
3314 
3315 /**
3316  * pci_acs_enabled - test ACS against required flags for a given device
3317  * @pdev: device to test
3318  * @acs_flags: required PCI ACS flags
3319  *
3320  * Return true if the device supports the provided flags.  Automatically
3321  * filters out flags that are not implemented on multifunction devices.
3322  *
3323  * Note that this interface checks the effective ACS capabilities of the
3324  * device rather than the actual capabilities.  For instance, most single
3325  * function endpoints are not required to support ACS because they have no
3326  * opportunity for peer-to-peer access.  We therefore return 'true'
3327  * regardless of whether the device exposes an ACS capability.  This makes
3328  * it much easier for callers of this function to ignore the actual type
3329  * or topology of the device when testing ACS support.
3330  */
3331 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3332 {
3333 	int ret;
3334 
3335 	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3336 	if (ret >= 0)
3337 		return ret > 0;
3338 
3339 	/*
3340 	 * Conventional PCI and PCI-X devices never support ACS, either
3341 	 * effectively or actually.  The shared bus topology implies that
3342 	 * any device on the bus can receive or snoop DMA.
3343 	 */
3344 	if (!pci_is_pcie(pdev))
3345 		return false;
3346 
3347 	switch (pci_pcie_type(pdev)) {
3348 	/*
3349 	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3350 	 * but since their primary interface is PCI/X, we conservatively
3351 	 * handle them as we would a non-PCIe device.
3352 	 */
3353 	case PCI_EXP_TYPE_PCIE_BRIDGE:
3354 	/*
3355 	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
3356 	 * applicable... must never implement an ACS Extended Capability...".
3357 	 * This seems arbitrary, but we take a conservative interpretation
3358 	 * of this statement.
3359 	 */
3360 	case PCI_EXP_TYPE_PCI_BRIDGE:
3361 	case PCI_EXP_TYPE_RC_EC:
3362 		return false;
3363 	/*
3364 	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3365 	 * implement ACS in order to indicate their peer-to-peer capabilities,
3366 	 * regardless of whether they are single- or multi-function devices.
3367 	 */
3368 	case PCI_EXP_TYPE_DOWNSTREAM:
3369 	case PCI_EXP_TYPE_ROOT_PORT:
3370 		return pci_acs_flags_enabled(pdev, acs_flags);
3371 	/*
3372 	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3373 	 * implemented by the remaining PCIe types to indicate peer-to-peer
3374 	 * capabilities, but only when they are part of a multifunction
3375 	 * device.  The footnote for section 6.12 indicates the specific
3376 	 * PCIe types included here.
3377 	 */
3378 	case PCI_EXP_TYPE_ENDPOINT:
3379 	case PCI_EXP_TYPE_UPSTREAM:
3380 	case PCI_EXP_TYPE_LEG_END:
3381 	case PCI_EXP_TYPE_RC_END:
3382 		if (!pdev->multifunction)
3383 			break;
3384 
3385 		return pci_acs_flags_enabled(pdev, acs_flags);
3386 	}
3387 
3388 	/*
3389 	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3390 	 * to single function devices with the exception of downstream ports.
3391 	 */
3392 	return true;
3393 }
3394 
3395 /**
3396  * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
3397  * @start: starting downstream device
3398  * @end: ending upstream device or NULL to search to the root bus
3399  * @acs_flags: required flags
3400  *
3401  * Walk up a device tree from start to end testing PCI ACS support.  If
3402  * any step along the way does not support the required flags, return false.
3403  */
3404 bool pci_acs_path_enabled(struct pci_dev *start,
3405 			  struct pci_dev *end, u16 acs_flags)
3406 {
3407 	struct pci_dev *pdev, *parent = start;
3408 
3409 	do {
3410 		pdev = parent;
3411 
3412 		if (!pci_acs_enabled(pdev, acs_flags))
3413 			return false;
3414 
3415 		if (pci_is_root_bus(pdev->bus))
3416 			return (end == NULL);
3417 
3418 		parent = pdev->bus->self;
3419 	} while (pdev != end);
3420 
3421 	return true;
3422 }
3423 
3424 /**
3425  * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3426  * @pdev: PCI device
3427  * @bar: BAR to find
3428  *
3429  * Helper to find the position of the ctrl register for a BAR.
3430  * Returns -ENOTSUPP if resizable BARs are not supported at all.
3431  * Returns -ENOENT if no ctrl register for the BAR could be found.
3432  */
3433 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3434 {
3435 	unsigned int pos, nbars, i;
3436 	u32 ctrl;
3437 
3438 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3439 	if (!pos)
3440 		return -ENOTSUPP;
3441 
3442 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3443 	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3444 		    PCI_REBAR_CTRL_NBAR_SHIFT;
3445 
3446 	for (i = 0; i < nbars; i++, pos += 8) {
3447 		int bar_idx;
3448 
3449 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3450 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3451 		if (bar_idx == bar)
3452 			return pos;
3453 	}
3454 
3455 	return -ENOENT;
3456 }
3457 
3458 /**
3459  * pci_rebar_get_possible_sizes - get possible sizes for BAR
3460  * @pdev: PCI device
3461  * @bar: BAR to query
3462  *
3463  * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3464  * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3465  */
3466 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3467 {
3468 	int pos;
3469 	u32 cap;
3470 
3471 	pos = pci_rebar_find_pos(pdev, bar);
3472 	if (pos < 0)
3473 		return 0;
3474 
3475 	pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3476 	return (cap & PCI_REBAR_CAP_SIZES) >> 4;
3477 }
3478 
3479 /**
3480  * pci_rebar_get_current_size - get the current size of a BAR
3481  * @pdev: PCI device
3482  * @bar: BAR to set size to
3483  *
3484  * Read the size of a BAR from the resizable BAR config.
3485  * Returns size if found or negative error code.
3486  */
3487 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3488 {
3489 	int pos;
3490 	u32 ctrl;
3491 
3492 	pos = pci_rebar_find_pos(pdev, bar);
3493 	if (pos < 0)
3494 		return pos;
3495 
3496 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3497 	return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3498 }
3499 
3500 /**
3501  * pci_rebar_set_size - set a new size for a BAR
3502  * @pdev: PCI device
3503  * @bar: BAR to set size to
3504  * @size: new size as defined in the spec (0=1MB, 19=512GB)
3505  *
3506  * Set the new size of a BAR as defined in the spec.
3507  * Returns zero if resizing was successful, error code otherwise.
3508  */
3509 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3510 {
3511 	int pos;
3512 	u32 ctrl;
3513 
3514 	pos = pci_rebar_find_pos(pdev, bar);
3515 	if (pos < 0)
3516 		return pos;
3517 
3518 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3519 	ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3520 	ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3521 	pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3522 	return 0;
3523 }
3524 
3525 /**
3526  * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3527  * @dev: the PCI device
3528  * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3529  *	PCI_EXP_DEVCAP2_ATOMIC_COMP32
3530  *	PCI_EXP_DEVCAP2_ATOMIC_COMP64
3531  *	PCI_EXP_DEVCAP2_ATOMIC_COMP128
3532  *
3533  * Return 0 if all upstream bridges support AtomicOp routing, egress
3534  * blocking is disabled on all upstream ports, and the root port supports
3535  * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3536  * AtomicOp completion), or negative otherwise.
3537  */
3538 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3539 {
3540 	struct pci_bus *bus = dev->bus;
3541 	struct pci_dev *bridge;
3542 	u32 cap, ctl2;
3543 
3544 	if (!pci_is_pcie(dev))
3545 		return -EINVAL;
3546 
3547 	/*
3548 	 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3549 	 * AtomicOp requesters.  For now, we only support endpoints as
3550 	 * requesters and root ports as completers.  No endpoints as
3551 	 * completers, and no peer-to-peer.
3552 	 */
3553 
3554 	switch (pci_pcie_type(dev)) {
3555 	case PCI_EXP_TYPE_ENDPOINT:
3556 	case PCI_EXP_TYPE_LEG_END:
3557 	case PCI_EXP_TYPE_RC_END:
3558 		break;
3559 	default:
3560 		return -EINVAL;
3561 	}
3562 
3563 	while (bus->parent) {
3564 		bridge = bus->self;
3565 
3566 		pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3567 
3568 		switch (pci_pcie_type(bridge)) {
3569 		/* Ensure switch ports support AtomicOp routing */
3570 		case PCI_EXP_TYPE_UPSTREAM:
3571 		case PCI_EXP_TYPE_DOWNSTREAM:
3572 			if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3573 				return -EINVAL;
3574 			break;
3575 
3576 		/* Ensure root port supports all the sizes we care about */
3577 		case PCI_EXP_TYPE_ROOT_PORT:
3578 			if ((cap & cap_mask) != cap_mask)
3579 				return -EINVAL;
3580 			break;
3581 		}
3582 
3583 		/* Ensure upstream ports don't block AtomicOps on egress */
3584 		if (!bridge->has_secondary_link) {
3585 			pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3586 						   &ctl2);
3587 			if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3588 				return -EINVAL;
3589 		}
3590 
3591 		bus = bus->parent;
3592 	}
3593 
3594 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3595 				 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3596 	return 0;
3597 }
3598 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3599 
3600 /**
3601  * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3602  * @dev: the PCI device
3603  * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3604  *
3605  * Perform INTx swizzling for a device behind one level of bridge.  This is
3606  * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3607  * behind bridges on add-in cards.  For devices with ARI enabled, the slot
3608  * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3609  * the PCI Express Base Specification, Revision 2.1)
3610  */
3611 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3612 {
3613 	int slot;
3614 
3615 	if (pci_ari_enabled(dev->bus))
3616 		slot = 0;
3617 	else
3618 		slot = PCI_SLOT(dev->devfn);
3619 
3620 	return (((pin - 1) + slot) % 4) + 1;
3621 }
3622 
3623 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3624 {
3625 	u8 pin;
3626 
3627 	pin = dev->pin;
3628 	if (!pin)
3629 		return -1;
3630 
3631 	while (!pci_is_root_bus(dev->bus)) {
3632 		pin = pci_swizzle_interrupt_pin(dev, pin);
3633 		dev = dev->bus->self;
3634 	}
3635 	*bridge = dev;
3636 	return pin;
3637 }
3638 
3639 /**
3640  * pci_common_swizzle - swizzle INTx all the way to root bridge
3641  * @dev: the PCI device
3642  * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3643  *
3644  * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
3645  * bridges all the way up to a PCI root bus.
3646  */
3647 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3648 {
3649 	u8 pin = *pinp;
3650 
3651 	while (!pci_is_root_bus(dev->bus)) {
3652 		pin = pci_swizzle_interrupt_pin(dev, pin);
3653 		dev = dev->bus->self;
3654 	}
3655 	*pinp = pin;
3656 	return PCI_SLOT(dev->devfn);
3657 }
3658 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3659 
3660 /**
3661  * pci_release_region - Release a PCI bar
3662  * @pdev: PCI device whose resources were previously reserved by
3663  *	  pci_request_region()
3664  * @bar: BAR to release
3665  *
3666  * Releases the PCI I/O and memory resources previously reserved by a
3667  * successful call to pci_request_region().  Call this function only
3668  * after all use of the PCI regions has ceased.
3669  */
3670 void pci_release_region(struct pci_dev *pdev, int bar)
3671 {
3672 	struct pci_devres *dr;
3673 
3674 	if (pci_resource_len(pdev, bar) == 0)
3675 		return;
3676 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3677 		release_region(pci_resource_start(pdev, bar),
3678 				pci_resource_len(pdev, bar));
3679 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3680 		release_mem_region(pci_resource_start(pdev, bar),
3681 				pci_resource_len(pdev, bar));
3682 
3683 	dr = find_pci_dr(pdev);
3684 	if (dr)
3685 		dr->region_mask &= ~(1 << bar);
3686 }
3687 EXPORT_SYMBOL(pci_release_region);
3688 
3689 /**
3690  * __pci_request_region - Reserved PCI I/O and memory resource
3691  * @pdev: PCI device whose resources are to be reserved
3692  * @bar: BAR to be reserved
3693  * @res_name: Name to be associated with resource.
3694  * @exclusive: whether the region access is exclusive or not
3695  *
3696  * Mark the PCI region associated with PCI device @pdev BAR @bar as
3697  * being reserved by owner @res_name.  Do not access any
3698  * address inside the PCI regions unless this call returns
3699  * successfully.
3700  *
3701  * If @exclusive is set, then the region is marked so that userspace
3702  * is explicitly not allowed to map the resource via /dev/mem or
3703  * sysfs MMIO access.
3704  *
3705  * Returns 0 on success, or %EBUSY on error.  A warning
3706  * message is also printed on failure.
3707  */
3708 static int __pci_request_region(struct pci_dev *pdev, int bar,
3709 				const char *res_name, int exclusive)
3710 {
3711 	struct pci_devres *dr;
3712 
3713 	if (pci_resource_len(pdev, bar) == 0)
3714 		return 0;
3715 
3716 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3717 		if (!request_region(pci_resource_start(pdev, bar),
3718 			    pci_resource_len(pdev, bar), res_name))
3719 			goto err_out;
3720 	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3721 		if (!__request_mem_region(pci_resource_start(pdev, bar),
3722 					pci_resource_len(pdev, bar), res_name,
3723 					exclusive))
3724 			goto err_out;
3725 	}
3726 
3727 	dr = find_pci_dr(pdev);
3728 	if (dr)
3729 		dr->region_mask |= 1 << bar;
3730 
3731 	return 0;
3732 
3733 err_out:
3734 	pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3735 		 &pdev->resource[bar]);
3736 	return -EBUSY;
3737 }
3738 
3739 /**
3740  * pci_request_region - Reserve PCI I/O and memory resource
3741  * @pdev: PCI device whose resources are to be reserved
3742  * @bar: BAR to be reserved
3743  * @res_name: Name to be associated with resource
3744  *
3745  * Mark the PCI region associated with PCI device @pdev BAR @bar as
3746  * being reserved by owner @res_name.  Do not access any
3747  * address inside the PCI regions unless this call returns
3748  * successfully.
3749  *
3750  * Returns 0 on success, or %EBUSY on error.  A warning
3751  * message is also printed on failure.
3752  */
3753 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3754 {
3755 	return __pci_request_region(pdev, bar, res_name, 0);
3756 }
3757 EXPORT_SYMBOL(pci_request_region);
3758 
3759 /**
3760  * pci_release_selected_regions - Release selected PCI I/O and memory resources
3761  * @pdev: PCI device whose resources were previously reserved
3762  * @bars: Bitmask of BARs to be released
3763  *
3764  * Release selected PCI I/O and memory resources previously reserved.
3765  * Call this function only after all use of the PCI regions has ceased.
3766  */
3767 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3768 {
3769 	int i;
3770 
3771 	for (i = 0; i < 6; i++)
3772 		if (bars & (1 << i))
3773 			pci_release_region(pdev, i);
3774 }
3775 EXPORT_SYMBOL(pci_release_selected_regions);
3776 
3777 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3778 					  const char *res_name, int excl)
3779 {
3780 	int i;
3781 
3782 	for (i = 0; i < 6; i++)
3783 		if (bars & (1 << i))
3784 			if (__pci_request_region(pdev, i, res_name, excl))
3785 				goto err_out;
3786 	return 0;
3787 
3788 err_out:
3789 	while (--i >= 0)
3790 		if (bars & (1 << i))
3791 			pci_release_region(pdev, i);
3792 
3793 	return -EBUSY;
3794 }
3795 
3796 
3797 /**
3798  * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3799  * @pdev: PCI device whose resources are to be reserved
3800  * @bars: Bitmask of BARs to be requested
3801  * @res_name: Name to be associated with resource
3802  */
3803 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3804 				 const char *res_name)
3805 {
3806 	return __pci_request_selected_regions(pdev, bars, res_name, 0);
3807 }
3808 EXPORT_SYMBOL(pci_request_selected_regions);
3809 
3810 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3811 					   const char *res_name)
3812 {
3813 	return __pci_request_selected_regions(pdev, bars, res_name,
3814 			IORESOURCE_EXCLUSIVE);
3815 }
3816 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3817 
3818 /**
3819  * pci_release_regions - Release reserved PCI I/O and memory resources
3820  * @pdev: PCI device whose resources were previously reserved by
3821  *	  pci_request_regions()
3822  *
3823  * Releases all PCI I/O and memory resources previously reserved by a
3824  * successful call to pci_request_regions().  Call this function only
3825  * after all use of the PCI regions has ceased.
3826  */
3827 
3828 void pci_release_regions(struct pci_dev *pdev)
3829 {
3830 	pci_release_selected_regions(pdev, (1 << 6) - 1);
3831 }
3832 EXPORT_SYMBOL(pci_release_regions);
3833 
3834 /**
3835  * pci_request_regions - Reserve PCI I/O and memory resources
3836  * @pdev: PCI device whose resources are to be reserved
3837  * @res_name: Name to be associated with resource.
3838  *
3839  * Mark all PCI regions associated with PCI device @pdev as
3840  * being reserved by owner @res_name.  Do not access any
3841  * address inside the PCI regions unless this call returns
3842  * successfully.
3843  *
3844  * Returns 0 on success, or %EBUSY on error.  A warning
3845  * message is also printed on failure.
3846  */
3847 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
3848 {
3849 	return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
3850 }
3851 EXPORT_SYMBOL(pci_request_regions);
3852 
3853 /**
3854  * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
3855  * @pdev: PCI device whose resources are to be reserved
3856  * @res_name: Name to be associated with resource.
3857  *
3858  * Mark all PCI regions associated with PCI device @pdev as being reserved
3859  * by owner @res_name.  Do not access any address inside the PCI regions
3860  * unless this call returns successfully.
3861  *
3862  * pci_request_regions_exclusive() will mark the region so that /dev/mem
3863  * and the sysfs MMIO access will not be allowed.
3864  *
3865  * Returns 0 on success, or %EBUSY on error.  A warning message is also
3866  * printed on failure.
3867  */
3868 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3869 {
3870 	return pci_request_selected_regions_exclusive(pdev,
3871 					((1 << 6) - 1), res_name);
3872 }
3873 EXPORT_SYMBOL(pci_request_regions_exclusive);
3874 
3875 /*
3876  * Record the PCI IO range (expressed as CPU physical address + size).
3877  * Return a negative value if an error has occurred, zero otherwise
3878  */
3879 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
3880 			resource_size_t	size)
3881 {
3882 	int ret = 0;
3883 #ifdef PCI_IOBASE
3884 	struct logic_pio_hwaddr *range;
3885 
3886 	if (!size || addr + size < addr)
3887 		return -EINVAL;
3888 
3889 	range = kzalloc(sizeof(*range), GFP_ATOMIC);
3890 	if (!range)
3891 		return -ENOMEM;
3892 
3893 	range->fwnode = fwnode;
3894 	range->size = size;
3895 	range->hw_start = addr;
3896 	range->flags = LOGIC_PIO_CPU_MMIO;
3897 
3898 	ret = logic_pio_register_range(range);
3899 	if (ret)
3900 		kfree(range);
3901 #endif
3902 
3903 	return ret;
3904 }
3905 
3906 phys_addr_t pci_pio_to_address(unsigned long pio)
3907 {
3908 	phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
3909 
3910 #ifdef PCI_IOBASE
3911 	if (pio >= MMIO_UPPER_LIMIT)
3912 		return address;
3913 
3914 	address = logic_pio_to_hwaddr(pio);
3915 #endif
3916 
3917 	return address;
3918 }
3919 
3920 unsigned long __weak pci_address_to_pio(phys_addr_t address)
3921 {
3922 #ifdef PCI_IOBASE
3923 	return logic_pio_trans_cpuaddr(address);
3924 #else
3925 	if (address > IO_SPACE_LIMIT)
3926 		return (unsigned long)-1;
3927 
3928 	return (unsigned long) address;
3929 #endif
3930 }
3931 
3932 /**
3933  * pci_remap_iospace - Remap the memory mapped I/O space
3934  * @res: Resource describing the I/O space
3935  * @phys_addr: physical address of range to be mapped
3936  *
3937  * Remap the memory mapped I/O space described by the @res and the CPU
3938  * physical address @phys_addr into virtual address space.  Only
3939  * architectures that have memory mapped IO functions defined (and the
3940  * PCI_IOBASE value defined) should call this function.
3941  */
3942 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
3943 {
3944 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3945 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3946 
3947 	if (!(res->flags & IORESOURCE_IO))
3948 		return -EINVAL;
3949 
3950 	if (res->end > IO_SPACE_LIMIT)
3951 		return -EINVAL;
3952 
3953 	return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
3954 				  pgprot_device(PAGE_KERNEL));
3955 #else
3956 	/*
3957 	 * This architecture does not have memory mapped I/O space,
3958 	 * so this function should never be called
3959 	 */
3960 	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
3961 	return -ENODEV;
3962 #endif
3963 }
3964 EXPORT_SYMBOL(pci_remap_iospace);
3965 
3966 /**
3967  * pci_unmap_iospace - Unmap the memory mapped I/O space
3968  * @res: resource to be unmapped
3969  *
3970  * Unmap the CPU virtual address @res from virtual address space.  Only
3971  * architectures that have memory mapped IO functions defined (and the
3972  * PCI_IOBASE value defined) should call this function.
3973  */
3974 void pci_unmap_iospace(struct resource *res)
3975 {
3976 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3977 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3978 
3979 	unmap_kernel_range(vaddr, resource_size(res));
3980 #endif
3981 }
3982 EXPORT_SYMBOL(pci_unmap_iospace);
3983 
3984 static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
3985 {
3986 	struct resource **res = ptr;
3987 
3988 	pci_unmap_iospace(*res);
3989 }
3990 
3991 /**
3992  * devm_pci_remap_iospace - Managed pci_remap_iospace()
3993  * @dev: Generic device to remap IO address for
3994  * @res: Resource describing the I/O space
3995  * @phys_addr: physical address of range to be mapped
3996  *
3997  * Managed pci_remap_iospace().  Map is automatically unmapped on driver
3998  * detach.
3999  */
4000 int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4001 			   phys_addr_t phys_addr)
4002 {
4003 	const struct resource **ptr;
4004 	int error;
4005 
4006 	ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4007 	if (!ptr)
4008 		return -ENOMEM;
4009 
4010 	error = pci_remap_iospace(res, phys_addr);
4011 	if (error) {
4012 		devres_free(ptr);
4013 	} else	{
4014 		*ptr = res;
4015 		devres_add(dev, ptr);
4016 	}
4017 
4018 	return error;
4019 }
4020 EXPORT_SYMBOL(devm_pci_remap_iospace);
4021 
4022 /**
4023  * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4024  * @dev: Generic device to remap IO address for
4025  * @offset: Resource address to map
4026  * @size: Size of map
4027  *
4028  * Managed pci_remap_cfgspace().  Map is automatically unmapped on driver
4029  * detach.
4030  */
4031 void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4032 				      resource_size_t offset,
4033 				      resource_size_t size)
4034 {
4035 	void __iomem **ptr, *addr;
4036 
4037 	ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4038 	if (!ptr)
4039 		return NULL;
4040 
4041 	addr = pci_remap_cfgspace(offset, size);
4042 	if (addr) {
4043 		*ptr = addr;
4044 		devres_add(dev, ptr);
4045 	} else
4046 		devres_free(ptr);
4047 
4048 	return addr;
4049 }
4050 EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4051 
4052 /**
4053  * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4054  * @dev: generic device to handle the resource for
4055  * @res: configuration space resource to be handled
4056  *
4057  * Checks that a resource is a valid memory region, requests the memory
4058  * region and ioremaps with pci_remap_cfgspace() API that ensures the
4059  * proper PCI configuration space memory attributes are guaranteed.
4060  *
4061  * All operations are managed and will be undone on driver detach.
4062  *
4063  * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4064  * on failure. Usage example::
4065  *
4066  *	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4067  *	base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4068  *	if (IS_ERR(base))
4069  *		return PTR_ERR(base);
4070  */
4071 void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4072 					  struct resource *res)
4073 {
4074 	resource_size_t size;
4075 	const char *name;
4076 	void __iomem *dest_ptr;
4077 
4078 	BUG_ON(!dev);
4079 
4080 	if (!res || resource_type(res) != IORESOURCE_MEM) {
4081 		dev_err(dev, "invalid resource\n");
4082 		return IOMEM_ERR_PTR(-EINVAL);
4083 	}
4084 
4085 	size = resource_size(res);
4086 	name = res->name ?: dev_name(dev);
4087 
4088 	if (!devm_request_mem_region(dev, res->start, size, name)) {
4089 		dev_err(dev, "can't request region for resource %pR\n", res);
4090 		return IOMEM_ERR_PTR(-EBUSY);
4091 	}
4092 
4093 	dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4094 	if (!dest_ptr) {
4095 		dev_err(dev, "ioremap failed for resource %pR\n", res);
4096 		devm_release_mem_region(dev, res->start, size);
4097 		dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4098 	}
4099 
4100 	return dest_ptr;
4101 }
4102 EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4103 
4104 static void __pci_set_master(struct pci_dev *dev, bool enable)
4105 {
4106 	u16 old_cmd, cmd;
4107 
4108 	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4109 	if (enable)
4110 		cmd = old_cmd | PCI_COMMAND_MASTER;
4111 	else
4112 		cmd = old_cmd & ~PCI_COMMAND_MASTER;
4113 	if (cmd != old_cmd) {
4114 		pci_dbg(dev, "%s bus mastering\n",
4115 			enable ? "enabling" : "disabling");
4116 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4117 	}
4118 	dev->is_busmaster = enable;
4119 }
4120 
4121 /**
4122  * pcibios_setup - process "pci=" kernel boot arguments
4123  * @str: string used to pass in "pci=" kernel boot arguments
4124  *
4125  * Process kernel boot arguments.  This is the default implementation.
4126  * Architecture specific implementations can override this as necessary.
4127  */
4128 char * __weak __init pcibios_setup(char *str)
4129 {
4130 	return str;
4131 }
4132 
4133 /**
4134  * pcibios_set_master - enable PCI bus-mastering for device dev
4135  * @dev: the PCI device to enable
4136  *
4137  * Enables PCI bus-mastering for the device.  This is the default
4138  * implementation.  Architecture specific implementations can override
4139  * this if necessary.
4140  */
4141 void __weak pcibios_set_master(struct pci_dev *dev)
4142 {
4143 	u8 lat;
4144 
4145 	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4146 	if (pci_is_pcie(dev))
4147 		return;
4148 
4149 	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4150 	if (lat < 16)
4151 		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4152 	else if (lat > pcibios_max_latency)
4153 		lat = pcibios_max_latency;
4154 	else
4155 		return;
4156 
4157 	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4158 }
4159 
4160 /**
4161  * pci_set_master - enables bus-mastering for device dev
4162  * @dev: the PCI device to enable
4163  *
4164  * Enables bus-mastering on the device and calls pcibios_set_master()
4165  * to do the needed arch specific settings.
4166  */
4167 void pci_set_master(struct pci_dev *dev)
4168 {
4169 	__pci_set_master(dev, true);
4170 	pcibios_set_master(dev);
4171 }
4172 EXPORT_SYMBOL(pci_set_master);
4173 
4174 /**
4175  * pci_clear_master - disables bus-mastering for device dev
4176  * @dev: the PCI device to disable
4177  */
4178 void pci_clear_master(struct pci_dev *dev)
4179 {
4180 	__pci_set_master(dev, false);
4181 }
4182 EXPORT_SYMBOL(pci_clear_master);
4183 
4184 /**
4185  * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4186  * @dev: the PCI device for which MWI is to be enabled
4187  *
4188  * Helper function for pci_set_mwi.
4189  * Originally copied from drivers/net/acenic.c.
4190  * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4191  *
4192  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4193  */
4194 int pci_set_cacheline_size(struct pci_dev *dev)
4195 {
4196 	u8 cacheline_size;
4197 
4198 	if (!pci_cache_line_size)
4199 		return -EINVAL;
4200 
4201 	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4202 	   equal to or multiple of the right value. */
4203 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4204 	if (cacheline_size >= pci_cache_line_size &&
4205 	    (cacheline_size % pci_cache_line_size) == 0)
4206 		return 0;
4207 
4208 	/* Write the correct value. */
4209 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4210 	/* Read it back. */
4211 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4212 	if (cacheline_size == pci_cache_line_size)
4213 		return 0;
4214 
4215 	pci_info(dev, "cache line size of %d is not supported\n",
4216 		   pci_cache_line_size << 2);
4217 
4218 	return -EINVAL;
4219 }
4220 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4221 
4222 /**
4223  * pci_set_mwi - enables memory-write-invalidate PCI transaction
4224  * @dev: the PCI device for which MWI is enabled
4225  *
4226  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4227  *
4228  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4229  */
4230 int pci_set_mwi(struct pci_dev *dev)
4231 {
4232 #ifdef PCI_DISABLE_MWI
4233 	return 0;
4234 #else
4235 	int rc;
4236 	u16 cmd;
4237 
4238 	rc = pci_set_cacheline_size(dev);
4239 	if (rc)
4240 		return rc;
4241 
4242 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4243 	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4244 		pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4245 		cmd |= PCI_COMMAND_INVALIDATE;
4246 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4247 	}
4248 	return 0;
4249 #endif
4250 }
4251 EXPORT_SYMBOL(pci_set_mwi);
4252 
4253 /**
4254  * pcim_set_mwi - a device-managed pci_set_mwi()
4255  * @dev: the PCI device for which MWI is enabled
4256  *
4257  * Managed pci_set_mwi().
4258  *
4259  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4260  */
4261 int pcim_set_mwi(struct pci_dev *dev)
4262 {
4263 	struct pci_devres *dr;
4264 
4265 	dr = find_pci_dr(dev);
4266 	if (!dr)
4267 		return -ENOMEM;
4268 
4269 	dr->mwi = 1;
4270 	return pci_set_mwi(dev);
4271 }
4272 EXPORT_SYMBOL(pcim_set_mwi);
4273 
4274 /**
4275  * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4276  * @dev: the PCI device for which MWI is enabled
4277  *
4278  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4279  * Callers are not required to check the return value.
4280  *
4281  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4282  */
4283 int pci_try_set_mwi(struct pci_dev *dev)
4284 {
4285 #ifdef PCI_DISABLE_MWI
4286 	return 0;
4287 #else
4288 	return pci_set_mwi(dev);
4289 #endif
4290 }
4291 EXPORT_SYMBOL(pci_try_set_mwi);
4292 
4293 /**
4294  * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4295  * @dev: the PCI device to disable
4296  *
4297  * Disables PCI Memory-Write-Invalidate transaction on the device
4298  */
4299 void pci_clear_mwi(struct pci_dev *dev)
4300 {
4301 #ifndef PCI_DISABLE_MWI
4302 	u16 cmd;
4303 
4304 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4305 	if (cmd & PCI_COMMAND_INVALIDATE) {
4306 		cmd &= ~PCI_COMMAND_INVALIDATE;
4307 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4308 	}
4309 #endif
4310 }
4311 EXPORT_SYMBOL(pci_clear_mwi);
4312 
4313 /**
4314  * pci_intx - enables/disables PCI INTx for device dev
4315  * @pdev: the PCI device to operate on
4316  * @enable: boolean: whether to enable or disable PCI INTx
4317  *
4318  * Enables/disables PCI INTx for device @pdev
4319  */
4320 void pci_intx(struct pci_dev *pdev, int enable)
4321 {
4322 	u16 pci_command, new;
4323 
4324 	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4325 
4326 	if (enable)
4327 		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4328 	else
4329 		new = pci_command | PCI_COMMAND_INTX_DISABLE;
4330 
4331 	if (new != pci_command) {
4332 		struct pci_devres *dr;
4333 
4334 		pci_write_config_word(pdev, PCI_COMMAND, new);
4335 
4336 		dr = find_pci_dr(pdev);
4337 		if (dr && !dr->restore_intx) {
4338 			dr->restore_intx = 1;
4339 			dr->orig_intx = !enable;
4340 		}
4341 	}
4342 }
4343 EXPORT_SYMBOL_GPL(pci_intx);
4344 
4345 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4346 {
4347 	struct pci_bus *bus = dev->bus;
4348 	bool mask_updated = true;
4349 	u32 cmd_status_dword;
4350 	u16 origcmd, newcmd;
4351 	unsigned long flags;
4352 	bool irq_pending;
4353 
4354 	/*
4355 	 * We do a single dword read to retrieve both command and status.
4356 	 * Document assumptions that make this possible.
4357 	 */
4358 	BUILD_BUG_ON(PCI_COMMAND % 4);
4359 	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4360 
4361 	raw_spin_lock_irqsave(&pci_lock, flags);
4362 
4363 	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4364 
4365 	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4366 
4367 	/*
4368 	 * Check interrupt status register to see whether our device
4369 	 * triggered the interrupt (when masking) or the next IRQ is
4370 	 * already pending (when unmasking).
4371 	 */
4372 	if (mask != irq_pending) {
4373 		mask_updated = false;
4374 		goto done;
4375 	}
4376 
4377 	origcmd = cmd_status_dword;
4378 	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4379 	if (mask)
4380 		newcmd |= PCI_COMMAND_INTX_DISABLE;
4381 	if (newcmd != origcmd)
4382 		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4383 
4384 done:
4385 	raw_spin_unlock_irqrestore(&pci_lock, flags);
4386 
4387 	return mask_updated;
4388 }
4389 
4390 /**
4391  * pci_check_and_mask_intx - mask INTx on pending interrupt
4392  * @dev: the PCI device to operate on
4393  *
4394  * Check if the device dev has its INTx line asserted, mask it and return
4395  * true in that case. False is returned if no interrupt was pending.
4396  */
4397 bool pci_check_and_mask_intx(struct pci_dev *dev)
4398 {
4399 	return pci_check_and_set_intx_mask(dev, true);
4400 }
4401 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4402 
4403 /**
4404  * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4405  * @dev: the PCI device to operate on
4406  *
4407  * Check if the device dev has its INTx line asserted, unmask it if not and
4408  * return true. False is returned and the mask remains active if there was
4409  * still an interrupt pending.
4410  */
4411 bool pci_check_and_unmask_intx(struct pci_dev *dev)
4412 {
4413 	return pci_check_and_set_intx_mask(dev, false);
4414 }
4415 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4416 
4417 /**
4418  * pci_wait_for_pending_transaction - wait for pending transaction
4419  * @dev: the PCI device to operate on
4420  *
4421  * Return 0 if transaction is pending 1 otherwise.
4422  */
4423 int pci_wait_for_pending_transaction(struct pci_dev *dev)
4424 {
4425 	if (!pci_is_pcie(dev))
4426 		return 1;
4427 
4428 	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4429 				    PCI_EXP_DEVSTA_TRPND);
4430 }
4431 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4432 
4433 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
4434 {
4435 	int delay = 1;
4436 	u32 id;
4437 
4438 	/*
4439 	 * After reset, the device should not silently discard config
4440 	 * requests, but it may still indicate that it needs more time by
4441 	 * responding to them with CRS completions.  The Root Port will
4442 	 * generally synthesize ~0 data to complete the read (except when
4443 	 * CRS SV is enabled and the read was for the Vendor ID; in that
4444 	 * case it synthesizes 0x0001 data).
4445 	 *
4446 	 * Wait for the device to return a non-CRS completion.  Read the
4447 	 * Command register instead of Vendor ID so we don't have to
4448 	 * contend with the CRS SV value.
4449 	 */
4450 	pci_read_config_dword(dev, PCI_COMMAND, &id);
4451 	while (id == ~0) {
4452 		if (delay > timeout) {
4453 			pci_warn(dev, "not ready %dms after %s; giving up\n",
4454 				 delay - 1, reset_type);
4455 			return -ENOTTY;
4456 		}
4457 
4458 		if (delay > 1000)
4459 			pci_info(dev, "not ready %dms after %s; waiting\n",
4460 				 delay - 1, reset_type);
4461 
4462 		msleep(delay);
4463 		delay *= 2;
4464 		pci_read_config_dword(dev, PCI_COMMAND, &id);
4465 	}
4466 
4467 	if (delay > 1000)
4468 		pci_info(dev, "ready %dms after %s\n", delay - 1,
4469 			 reset_type);
4470 
4471 	return 0;
4472 }
4473 
4474 /**
4475  * pcie_has_flr - check if a device supports function level resets
4476  * @dev: device to check
4477  *
4478  * Returns true if the device advertises support for PCIe function level
4479  * resets.
4480  */
4481 bool pcie_has_flr(struct pci_dev *dev)
4482 {
4483 	u32 cap;
4484 
4485 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4486 		return false;
4487 
4488 	pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
4489 	return cap & PCI_EXP_DEVCAP_FLR;
4490 }
4491 EXPORT_SYMBOL_GPL(pcie_has_flr);
4492 
4493 /**
4494  * pcie_flr - initiate a PCIe function level reset
4495  * @dev: device to reset
4496  *
4497  * Initiate a function level reset on @dev.  The caller should ensure the
4498  * device supports FLR before calling this function, e.g. by using the
4499  * pcie_has_flr() helper.
4500  */
4501 int pcie_flr(struct pci_dev *dev)
4502 {
4503 	if (!pci_wait_for_pending_transaction(dev))
4504 		pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4505 
4506 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4507 
4508 	if (dev->imm_ready)
4509 		return 0;
4510 
4511 	/*
4512 	 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4513 	 * 100ms, but may silently discard requests while the FLR is in
4514 	 * progress.  Wait 100ms before trying to access the device.
4515 	 */
4516 	msleep(100);
4517 
4518 	return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4519 }
4520 EXPORT_SYMBOL_GPL(pcie_flr);
4521 
4522 static int pci_af_flr(struct pci_dev *dev, int probe)
4523 {
4524 	int pos;
4525 	u8 cap;
4526 
4527 	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4528 	if (!pos)
4529 		return -ENOTTY;
4530 
4531 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4532 		return -ENOTTY;
4533 
4534 	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4535 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4536 		return -ENOTTY;
4537 
4538 	if (probe)
4539 		return 0;
4540 
4541 	/*
4542 	 * Wait for Transaction Pending bit to clear.  A word-aligned test
4543 	 * is used, so we use the control offset rather than status and shift
4544 	 * the test bit to match.
4545 	 */
4546 	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4547 				 PCI_AF_STATUS_TP << 8))
4548 		pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4549 
4550 	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4551 
4552 	if (dev->imm_ready)
4553 		return 0;
4554 
4555 	/*
4556 	 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4557 	 * updated 27 July 2006; a device must complete an FLR within
4558 	 * 100ms, but may silently discard requests while the FLR is in
4559 	 * progress.  Wait 100ms before trying to access the device.
4560 	 */
4561 	msleep(100);
4562 
4563 	return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4564 }
4565 
4566 /**
4567  * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4568  * @dev: Device to reset.
4569  * @probe: If set, only check if the device can be reset this way.
4570  *
4571  * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4572  * unset, it will be reinitialized internally when going from PCI_D3hot to
4573  * PCI_D0.  If that's the case and the device is not in a low-power state
4574  * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4575  *
4576  * NOTE: This causes the caller to sleep for twice the device power transition
4577  * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4578  * by default (i.e. unless the @dev's d3_delay field has a different value).
4579  * Moreover, only devices in D0 can be reset by this function.
4580  */
4581 static int pci_pm_reset(struct pci_dev *dev, int probe)
4582 {
4583 	u16 csr;
4584 
4585 	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4586 		return -ENOTTY;
4587 
4588 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4589 	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4590 		return -ENOTTY;
4591 
4592 	if (probe)
4593 		return 0;
4594 
4595 	if (dev->current_state != PCI_D0)
4596 		return -EINVAL;
4597 
4598 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4599 	csr |= PCI_D3hot;
4600 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4601 	pci_dev_d3_sleep(dev);
4602 
4603 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4604 	csr |= PCI_D0;
4605 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4606 	pci_dev_d3_sleep(dev);
4607 
4608 	return pci_dev_wait(dev, "PM D3->D0", PCIE_RESET_READY_POLL_MS);
4609 }
4610 /**
4611  * pcie_wait_for_link - Wait until link is active or inactive
4612  * @pdev: Bridge device
4613  * @active: waiting for active or inactive?
4614  *
4615  * Use this to wait till link becomes active or inactive.
4616  */
4617 bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4618 {
4619 	int timeout = 1000;
4620 	bool ret;
4621 	u16 lnk_status;
4622 
4623 	/*
4624 	 * Some controllers might not implement link active reporting. In this
4625 	 * case, we wait for 1000 + 100 ms.
4626 	 */
4627 	if (!pdev->link_active_reporting) {
4628 		msleep(1100);
4629 		return true;
4630 	}
4631 
4632 	/*
4633 	 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4634 	 * after which we should expect an link active if the reset was
4635 	 * successful. If so, software must wait a minimum 100ms before sending
4636 	 * configuration requests to devices downstream this port.
4637 	 *
4638 	 * If the link fails to activate, either the device was physically
4639 	 * removed or the link is permanently failed.
4640 	 */
4641 	if (active)
4642 		msleep(20);
4643 	for (;;) {
4644 		pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
4645 		ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA);
4646 		if (ret == active)
4647 			break;
4648 		if (timeout <= 0)
4649 			break;
4650 		msleep(10);
4651 		timeout -= 10;
4652 	}
4653 	if (active && ret)
4654 		msleep(100);
4655 	else if (ret != active)
4656 		pci_info(pdev, "Data Link Layer Link Active not %s in 1000 msec\n",
4657 			active ? "set" : "cleared");
4658 	return ret == active;
4659 }
4660 
4661 void pci_reset_secondary_bus(struct pci_dev *dev)
4662 {
4663 	u16 ctrl;
4664 
4665 	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4666 	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4667 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4668 
4669 	/*
4670 	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
4671 	 * this to 2ms to ensure that we meet the minimum requirement.
4672 	 */
4673 	msleep(2);
4674 
4675 	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4676 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4677 
4678 	/*
4679 	 * Trhfa for conventional PCI is 2^25 clock cycles.
4680 	 * Assuming a minimum 33MHz clock this results in a 1s
4681 	 * delay before we can consider subordinate devices to
4682 	 * be re-initialized.  PCIe has some ways to shorten this,
4683 	 * but we don't make use of them yet.
4684 	 */
4685 	ssleep(1);
4686 }
4687 
4688 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4689 {
4690 	pci_reset_secondary_bus(dev);
4691 }
4692 
4693 /**
4694  * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
4695  * @dev: Bridge device
4696  *
4697  * Use the bridge control register to assert reset on the secondary bus.
4698  * Devices on the secondary bus are left in power-on state.
4699  */
4700 int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
4701 {
4702 	pcibios_reset_secondary_bus(dev);
4703 
4704 	return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS);
4705 }
4706 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
4707 
4708 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
4709 {
4710 	struct pci_dev *pdev;
4711 
4712 	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4713 	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4714 		return -ENOTTY;
4715 
4716 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4717 		if (pdev != dev)
4718 			return -ENOTTY;
4719 
4720 	if (probe)
4721 		return 0;
4722 
4723 	return pci_bridge_secondary_bus_reset(dev->bus->self);
4724 }
4725 
4726 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
4727 {
4728 	int rc = -ENOTTY;
4729 
4730 	if (!hotplug || !try_module_get(hotplug->owner))
4731 		return rc;
4732 
4733 	if (hotplug->ops->reset_slot)
4734 		rc = hotplug->ops->reset_slot(hotplug, probe);
4735 
4736 	module_put(hotplug->owner);
4737 
4738 	return rc;
4739 }
4740 
4741 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
4742 {
4743 	struct pci_dev *pdev;
4744 
4745 	if (dev->subordinate || !dev->slot ||
4746 	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4747 		return -ENOTTY;
4748 
4749 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4750 		if (pdev != dev && pdev->slot == dev->slot)
4751 			return -ENOTTY;
4752 
4753 	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
4754 }
4755 
4756 static void pci_dev_lock(struct pci_dev *dev)
4757 {
4758 	pci_cfg_access_lock(dev);
4759 	/* block PM suspend, driver probe, etc. */
4760 	device_lock(&dev->dev);
4761 }
4762 
4763 /* Return 1 on successful lock, 0 on contention */
4764 static int pci_dev_trylock(struct pci_dev *dev)
4765 {
4766 	if (pci_cfg_access_trylock(dev)) {
4767 		if (device_trylock(&dev->dev))
4768 			return 1;
4769 		pci_cfg_access_unlock(dev);
4770 	}
4771 
4772 	return 0;
4773 }
4774 
4775 static void pci_dev_unlock(struct pci_dev *dev)
4776 {
4777 	device_unlock(&dev->dev);
4778 	pci_cfg_access_unlock(dev);
4779 }
4780 
4781 static void pci_dev_save_and_disable(struct pci_dev *dev)
4782 {
4783 	const struct pci_error_handlers *err_handler =
4784 			dev->driver ? dev->driver->err_handler : NULL;
4785 
4786 	/*
4787 	 * dev->driver->err_handler->reset_prepare() is protected against
4788 	 * races with ->remove() by the device lock, which must be held by
4789 	 * the caller.
4790 	 */
4791 	if (err_handler && err_handler->reset_prepare)
4792 		err_handler->reset_prepare(dev);
4793 
4794 	/*
4795 	 * Wake-up device prior to save.  PM registers default to D0 after
4796 	 * reset and a simple register restore doesn't reliably return
4797 	 * to a non-D0 state anyway.
4798 	 */
4799 	pci_set_power_state(dev, PCI_D0);
4800 
4801 	pci_save_state(dev);
4802 	/*
4803 	 * Disable the device by clearing the Command register, except for
4804 	 * INTx-disable which is set.  This not only disables MMIO and I/O port
4805 	 * BARs, but also prevents the device from being Bus Master, preventing
4806 	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
4807 	 * compliant devices, INTx-disable prevents legacy interrupts.
4808 	 */
4809 	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
4810 }
4811 
4812 static void pci_dev_restore(struct pci_dev *dev)
4813 {
4814 	const struct pci_error_handlers *err_handler =
4815 			dev->driver ? dev->driver->err_handler : NULL;
4816 
4817 	pci_restore_state(dev);
4818 
4819 	/*
4820 	 * dev->driver->err_handler->reset_done() is protected against
4821 	 * races with ->remove() by the device lock, which must be held by
4822 	 * the caller.
4823 	 */
4824 	if (err_handler && err_handler->reset_done)
4825 		err_handler->reset_done(dev);
4826 }
4827 
4828 /**
4829  * __pci_reset_function_locked - reset a PCI device function while holding
4830  * the @dev mutex lock.
4831  * @dev: PCI device to reset
4832  *
4833  * Some devices allow an individual function to be reset without affecting
4834  * other functions in the same device.  The PCI device must be responsive
4835  * to PCI config space in order to use this function.
4836  *
4837  * The device function is presumed to be unused and the caller is holding
4838  * the device mutex lock when this function is called.
4839  *
4840  * Resetting the device will make the contents of PCI configuration space
4841  * random, so any caller of this must be prepared to reinitialise the
4842  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4843  * etc.
4844  *
4845  * Returns 0 if the device function was successfully reset or negative if the
4846  * device doesn't support resetting a single function.
4847  */
4848 int __pci_reset_function_locked(struct pci_dev *dev)
4849 {
4850 	int rc;
4851 
4852 	might_sleep();
4853 
4854 	/*
4855 	 * A reset method returns -ENOTTY if it doesn't support this device
4856 	 * and we should try the next method.
4857 	 *
4858 	 * If it returns 0 (success), we're finished.  If it returns any
4859 	 * other error, we're also finished: this indicates that further
4860 	 * reset mechanisms might be broken on the device.
4861 	 */
4862 	rc = pci_dev_specific_reset(dev, 0);
4863 	if (rc != -ENOTTY)
4864 		return rc;
4865 	if (pcie_has_flr(dev)) {
4866 		rc = pcie_flr(dev);
4867 		if (rc != -ENOTTY)
4868 			return rc;
4869 	}
4870 	rc = pci_af_flr(dev, 0);
4871 	if (rc != -ENOTTY)
4872 		return rc;
4873 	rc = pci_pm_reset(dev, 0);
4874 	if (rc != -ENOTTY)
4875 		return rc;
4876 	rc = pci_dev_reset_slot_function(dev, 0);
4877 	if (rc != -ENOTTY)
4878 		return rc;
4879 	return pci_parent_bus_reset(dev, 0);
4880 }
4881 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
4882 
4883 /**
4884  * pci_probe_reset_function - check whether the device can be safely reset
4885  * @dev: PCI device to reset
4886  *
4887  * Some devices allow an individual function to be reset without affecting
4888  * other functions in the same device.  The PCI device must be responsive
4889  * to PCI config space in order to use this function.
4890  *
4891  * Returns 0 if the device function can be reset or negative if the
4892  * device doesn't support resetting a single function.
4893  */
4894 int pci_probe_reset_function(struct pci_dev *dev)
4895 {
4896 	int rc;
4897 
4898 	might_sleep();
4899 
4900 	rc = pci_dev_specific_reset(dev, 1);
4901 	if (rc != -ENOTTY)
4902 		return rc;
4903 	if (pcie_has_flr(dev))
4904 		return 0;
4905 	rc = pci_af_flr(dev, 1);
4906 	if (rc != -ENOTTY)
4907 		return rc;
4908 	rc = pci_pm_reset(dev, 1);
4909 	if (rc != -ENOTTY)
4910 		return rc;
4911 	rc = pci_dev_reset_slot_function(dev, 1);
4912 	if (rc != -ENOTTY)
4913 		return rc;
4914 
4915 	return pci_parent_bus_reset(dev, 1);
4916 }
4917 
4918 /**
4919  * pci_reset_function - quiesce and reset a PCI device function
4920  * @dev: PCI device to reset
4921  *
4922  * Some devices allow an individual function to be reset without affecting
4923  * other functions in the same device.  The PCI device must be responsive
4924  * to PCI config space in order to use this function.
4925  *
4926  * This function does not just reset the PCI portion of a device, but
4927  * clears all the state associated with the device.  This function differs
4928  * from __pci_reset_function_locked() in that it saves and restores device state
4929  * over the reset and takes the PCI device lock.
4930  *
4931  * Returns 0 if the device function was successfully reset or negative if the
4932  * device doesn't support resetting a single function.
4933  */
4934 int pci_reset_function(struct pci_dev *dev)
4935 {
4936 	int rc;
4937 
4938 	if (!dev->reset_fn)
4939 		return -ENOTTY;
4940 
4941 	pci_dev_lock(dev);
4942 	pci_dev_save_and_disable(dev);
4943 
4944 	rc = __pci_reset_function_locked(dev);
4945 
4946 	pci_dev_restore(dev);
4947 	pci_dev_unlock(dev);
4948 
4949 	return rc;
4950 }
4951 EXPORT_SYMBOL_GPL(pci_reset_function);
4952 
4953 /**
4954  * pci_reset_function_locked - quiesce and reset a PCI device function
4955  * @dev: PCI device to reset
4956  *
4957  * Some devices allow an individual function to be reset without affecting
4958  * other functions in the same device.  The PCI device must be responsive
4959  * to PCI config space in order to use this function.
4960  *
4961  * This function does not just reset the PCI portion of a device, but
4962  * clears all the state associated with the device.  This function differs
4963  * from __pci_reset_function_locked() in that it saves and restores device state
4964  * over the reset.  It also differs from pci_reset_function() in that it
4965  * requires the PCI device lock to be held.
4966  *
4967  * Returns 0 if the device function was successfully reset or negative if the
4968  * device doesn't support resetting a single function.
4969  */
4970 int pci_reset_function_locked(struct pci_dev *dev)
4971 {
4972 	int rc;
4973 
4974 	if (!dev->reset_fn)
4975 		return -ENOTTY;
4976 
4977 	pci_dev_save_and_disable(dev);
4978 
4979 	rc = __pci_reset_function_locked(dev);
4980 
4981 	pci_dev_restore(dev);
4982 
4983 	return rc;
4984 }
4985 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
4986 
4987 /**
4988  * pci_try_reset_function - quiesce and reset a PCI device function
4989  * @dev: PCI device to reset
4990  *
4991  * Same as above, except return -EAGAIN if unable to lock device.
4992  */
4993 int pci_try_reset_function(struct pci_dev *dev)
4994 {
4995 	int rc;
4996 
4997 	if (!dev->reset_fn)
4998 		return -ENOTTY;
4999 
5000 	if (!pci_dev_trylock(dev))
5001 		return -EAGAIN;
5002 
5003 	pci_dev_save_and_disable(dev);
5004 	rc = __pci_reset_function_locked(dev);
5005 	pci_dev_restore(dev);
5006 	pci_dev_unlock(dev);
5007 
5008 	return rc;
5009 }
5010 EXPORT_SYMBOL_GPL(pci_try_reset_function);
5011 
5012 /* Do any devices on or below this bus prevent a bus reset? */
5013 static bool pci_bus_resetable(struct pci_bus *bus)
5014 {
5015 	struct pci_dev *dev;
5016 
5017 
5018 	if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5019 		return false;
5020 
5021 	list_for_each_entry(dev, &bus->devices, bus_list) {
5022 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5023 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5024 			return false;
5025 	}
5026 
5027 	return true;
5028 }
5029 
5030 /* Lock devices from the top of the tree down */
5031 static void pci_bus_lock(struct pci_bus *bus)
5032 {
5033 	struct pci_dev *dev;
5034 
5035 	list_for_each_entry(dev, &bus->devices, bus_list) {
5036 		pci_dev_lock(dev);
5037 		if (dev->subordinate)
5038 			pci_bus_lock(dev->subordinate);
5039 	}
5040 }
5041 
5042 /* Unlock devices from the bottom of the tree up */
5043 static void pci_bus_unlock(struct pci_bus *bus)
5044 {
5045 	struct pci_dev *dev;
5046 
5047 	list_for_each_entry(dev, &bus->devices, bus_list) {
5048 		if (dev->subordinate)
5049 			pci_bus_unlock(dev->subordinate);
5050 		pci_dev_unlock(dev);
5051 	}
5052 }
5053 
5054 /* Return 1 on successful lock, 0 on contention */
5055 static int pci_bus_trylock(struct pci_bus *bus)
5056 {
5057 	struct pci_dev *dev;
5058 
5059 	list_for_each_entry(dev, &bus->devices, bus_list) {
5060 		if (!pci_dev_trylock(dev))
5061 			goto unlock;
5062 		if (dev->subordinate) {
5063 			if (!pci_bus_trylock(dev->subordinate)) {
5064 				pci_dev_unlock(dev);
5065 				goto unlock;
5066 			}
5067 		}
5068 	}
5069 	return 1;
5070 
5071 unlock:
5072 	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5073 		if (dev->subordinate)
5074 			pci_bus_unlock(dev->subordinate);
5075 		pci_dev_unlock(dev);
5076 	}
5077 	return 0;
5078 }
5079 
5080 /* Do any devices on or below this slot prevent a bus reset? */
5081 static bool pci_slot_resetable(struct pci_slot *slot)
5082 {
5083 	struct pci_dev *dev;
5084 
5085 	if (slot->bus->self &&
5086 	    (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5087 		return false;
5088 
5089 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5090 		if (!dev->slot || dev->slot != slot)
5091 			continue;
5092 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5093 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5094 			return false;
5095 	}
5096 
5097 	return true;
5098 }
5099 
5100 /* Lock devices from the top of the tree down */
5101 static void pci_slot_lock(struct pci_slot *slot)
5102 {
5103 	struct pci_dev *dev;
5104 
5105 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5106 		if (!dev->slot || dev->slot != slot)
5107 			continue;
5108 		pci_dev_lock(dev);
5109 		if (dev->subordinate)
5110 			pci_bus_lock(dev->subordinate);
5111 	}
5112 }
5113 
5114 /* Unlock devices from the bottom of the tree up */
5115 static void pci_slot_unlock(struct pci_slot *slot)
5116 {
5117 	struct pci_dev *dev;
5118 
5119 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5120 		if (!dev->slot || dev->slot != slot)
5121 			continue;
5122 		if (dev->subordinate)
5123 			pci_bus_unlock(dev->subordinate);
5124 		pci_dev_unlock(dev);
5125 	}
5126 }
5127 
5128 /* Return 1 on successful lock, 0 on contention */
5129 static int pci_slot_trylock(struct pci_slot *slot)
5130 {
5131 	struct pci_dev *dev;
5132 
5133 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5134 		if (!dev->slot || dev->slot != slot)
5135 			continue;
5136 		if (!pci_dev_trylock(dev))
5137 			goto unlock;
5138 		if (dev->subordinate) {
5139 			if (!pci_bus_trylock(dev->subordinate)) {
5140 				pci_dev_unlock(dev);
5141 				goto unlock;
5142 			}
5143 		}
5144 	}
5145 	return 1;
5146 
5147 unlock:
5148 	list_for_each_entry_continue_reverse(dev,
5149 					     &slot->bus->devices, bus_list) {
5150 		if (!dev->slot || dev->slot != slot)
5151 			continue;
5152 		if (dev->subordinate)
5153 			pci_bus_unlock(dev->subordinate);
5154 		pci_dev_unlock(dev);
5155 	}
5156 	return 0;
5157 }
5158 
5159 /*
5160  * Save and disable devices from the top of the tree down while holding
5161  * the @dev mutex lock for the entire tree.
5162  */
5163 static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5164 {
5165 	struct pci_dev *dev;
5166 
5167 	list_for_each_entry(dev, &bus->devices, bus_list) {
5168 		pci_dev_save_and_disable(dev);
5169 		if (dev->subordinate)
5170 			pci_bus_save_and_disable_locked(dev->subordinate);
5171 	}
5172 }
5173 
5174 /*
5175  * Restore devices from top of the tree down while holding @dev mutex lock
5176  * for the entire tree.  Parent bridges need to be restored before we can
5177  * get to subordinate devices.
5178  */
5179 static void pci_bus_restore_locked(struct pci_bus *bus)
5180 {
5181 	struct pci_dev *dev;
5182 
5183 	list_for_each_entry(dev, &bus->devices, bus_list) {
5184 		pci_dev_restore(dev);
5185 		if (dev->subordinate)
5186 			pci_bus_restore_locked(dev->subordinate);
5187 	}
5188 }
5189 
5190 /*
5191  * Save and disable devices from the top of the tree down while holding
5192  * the @dev mutex lock for the entire tree.
5193  */
5194 static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5195 {
5196 	struct pci_dev *dev;
5197 
5198 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5199 		if (!dev->slot || dev->slot != slot)
5200 			continue;
5201 		pci_dev_save_and_disable(dev);
5202 		if (dev->subordinate)
5203 			pci_bus_save_and_disable_locked(dev->subordinate);
5204 	}
5205 }
5206 
5207 /*
5208  * Restore devices from top of the tree down while holding @dev mutex lock
5209  * for the entire tree.  Parent bridges need to be restored before we can
5210  * get to subordinate devices.
5211  */
5212 static void pci_slot_restore_locked(struct pci_slot *slot)
5213 {
5214 	struct pci_dev *dev;
5215 
5216 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5217 		if (!dev->slot || dev->slot != slot)
5218 			continue;
5219 		pci_dev_restore(dev);
5220 		if (dev->subordinate)
5221 			pci_bus_restore_locked(dev->subordinate);
5222 	}
5223 }
5224 
5225 static int pci_slot_reset(struct pci_slot *slot, int probe)
5226 {
5227 	int rc;
5228 
5229 	if (!slot || !pci_slot_resetable(slot))
5230 		return -ENOTTY;
5231 
5232 	if (!probe)
5233 		pci_slot_lock(slot);
5234 
5235 	might_sleep();
5236 
5237 	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5238 
5239 	if (!probe)
5240 		pci_slot_unlock(slot);
5241 
5242 	return rc;
5243 }
5244 
5245 /**
5246  * pci_probe_reset_slot - probe whether a PCI slot can be reset
5247  * @slot: PCI slot to probe
5248  *
5249  * Return 0 if slot can be reset, negative if a slot reset is not supported.
5250  */
5251 int pci_probe_reset_slot(struct pci_slot *slot)
5252 {
5253 	return pci_slot_reset(slot, 1);
5254 }
5255 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5256 
5257 /**
5258  * __pci_reset_slot - Try to reset a PCI slot
5259  * @slot: PCI slot to reset
5260  *
5261  * A PCI bus may host multiple slots, each slot may support a reset mechanism
5262  * independent of other slots.  For instance, some slots may support slot power
5263  * control.  In the case of a 1:1 bus to slot architecture, this function may
5264  * wrap the bus reset to avoid spurious slot related events such as hotplug.
5265  * Generally a slot reset should be attempted before a bus reset.  All of the
5266  * function of the slot and any subordinate buses behind the slot are reset
5267  * through this function.  PCI config space of all devices in the slot and
5268  * behind the slot is saved before and restored after reset.
5269  *
5270  * Same as above except return -EAGAIN if the slot cannot be locked
5271  */
5272 static int __pci_reset_slot(struct pci_slot *slot)
5273 {
5274 	int rc;
5275 
5276 	rc = pci_slot_reset(slot, 1);
5277 	if (rc)
5278 		return rc;
5279 
5280 	if (pci_slot_trylock(slot)) {
5281 		pci_slot_save_and_disable_locked(slot);
5282 		might_sleep();
5283 		rc = pci_reset_hotplug_slot(slot->hotplug, 0);
5284 		pci_slot_restore_locked(slot);
5285 		pci_slot_unlock(slot);
5286 	} else
5287 		rc = -EAGAIN;
5288 
5289 	return rc;
5290 }
5291 
5292 static int pci_bus_reset(struct pci_bus *bus, int probe)
5293 {
5294 	int ret;
5295 
5296 	if (!bus->self || !pci_bus_resetable(bus))
5297 		return -ENOTTY;
5298 
5299 	if (probe)
5300 		return 0;
5301 
5302 	pci_bus_lock(bus);
5303 
5304 	might_sleep();
5305 
5306 	ret = pci_bridge_secondary_bus_reset(bus->self);
5307 
5308 	pci_bus_unlock(bus);
5309 
5310 	return ret;
5311 }
5312 
5313 /**
5314  * pci_bus_error_reset - reset the bridge's subordinate bus
5315  * @bridge: The parent device that connects to the bus to reset
5316  *
5317  * This function will first try to reset the slots on this bus if the method is
5318  * available. If slot reset fails or is not available, this will fall back to a
5319  * secondary bus reset.
5320  */
5321 int pci_bus_error_reset(struct pci_dev *bridge)
5322 {
5323 	struct pci_bus *bus = bridge->subordinate;
5324 	struct pci_slot *slot;
5325 
5326 	if (!bus)
5327 		return -ENOTTY;
5328 
5329 	mutex_lock(&pci_slot_mutex);
5330 	if (list_empty(&bus->slots))
5331 		goto bus_reset;
5332 
5333 	list_for_each_entry(slot, &bus->slots, list)
5334 		if (pci_probe_reset_slot(slot))
5335 			goto bus_reset;
5336 
5337 	list_for_each_entry(slot, &bus->slots, list)
5338 		if (pci_slot_reset(slot, 0))
5339 			goto bus_reset;
5340 
5341 	mutex_unlock(&pci_slot_mutex);
5342 	return 0;
5343 bus_reset:
5344 	mutex_unlock(&pci_slot_mutex);
5345 	return pci_bus_reset(bridge->subordinate, 0);
5346 }
5347 
5348 /**
5349  * pci_probe_reset_bus - probe whether a PCI bus can be reset
5350  * @bus: PCI bus to probe
5351  *
5352  * Return 0 if bus can be reset, negative if a bus reset is not supported.
5353  */
5354 int pci_probe_reset_bus(struct pci_bus *bus)
5355 {
5356 	return pci_bus_reset(bus, 1);
5357 }
5358 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5359 
5360 /**
5361  * __pci_reset_bus - Try to reset a PCI bus
5362  * @bus: top level PCI bus to reset
5363  *
5364  * Same as above except return -EAGAIN if the bus cannot be locked
5365  */
5366 static int __pci_reset_bus(struct pci_bus *bus)
5367 {
5368 	int rc;
5369 
5370 	rc = pci_bus_reset(bus, 1);
5371 	if (rc)
5372 		return rc;
5373 
5374 	if (pci_bus_trylock(bus)) {
5375 		pci_bus_save_and_disable_locked(bus);
5376 		might_sleep();
5377 		rc = pci_bridge_secondary_bus_reset(bus->self);
5378 		pci_bus_restore_locked(bus);
5379 		pci_bus_unlock(bus);
5380 	} else
5381 		rc = -EAGAIN;
5382 
5383 	return rc;
5384 }
5385 
5386 /**
5387  * pci_reset_bus - Try to reset a PCI bus
5388  * @pdev: top level PCI device to reset via slot/bus
5389  *
5390  * Same as above except return -EAGAIN if the bus cannot be locked
5391  */
5392 int pci_reset_bus(struct pci_dev *pdev)
5393 {
5394 	return (!pci_probe_reset_slot(pdev->slot)) ?
5395 	    __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5396 }
5397 EXPORT_SYMBOL_GPL(pci_reset_bus);
5398 
5399 /**
5400  * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5401  * @dev: PCI device to query
5402  *
5403  * Returns mmrbc: maximum designed memory read count in bytes or
5404  * appropriate error value.
5405  */
5406 int pcix_get_max_mmrbc(struct pci_dev *dev)
5407 {
5408 	int cap;
5409 	u32 stat;
5410 
5411 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5412 	if (!cap)
5413 		return -EINVAL;
5414 
5415 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5416 		return -EINVAL;
5417 
5418 	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
5419 }
5420 EXPORT_SYMBOL(pcix_get_max_mmrbc);
5421 
5422 /**
5423  * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5424  * @dev: PCI device to query
5425  *
5426  * Returns mmrbc: maximum memory read count in bytes or appropriate error
5427  * value.
5428  */
5429 int pcix_get_mmrbc(struct pci_dev *dev)
5430 {
5431 	int cap;
5432 	u16 cmd;
5433 
5434 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5435 	if (!cap)
5436 		return -EINVAL;
5437 
5438 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5439 		return -EINVAL;
5440 
5441 	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
5442 }
5443 EXPORT_SYMBOL(pcix_get_mmrbc);
5444 
5445 /**
5446  * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5447  * @dev: PCI device to query
5448  * @mmrbc: maximum memory read count in bytes
5449  *    valid values are 512, 1024, 2048, 4096
5450  *
5451  * If possible sets maximum memory read byte count, some bridges have errata
5452  * that prevent this.
5453  */
5454 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5455 {
5456 	int cap;
5457 	u32 stat, v, o;
5458 	u16 cmd;
5459 
5460 	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5461 		return -EINVAL;
5462 
5463 	v = ffs(mmrbc) - 10;
5464 
5465 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5466 	if (!cap)
5467 		return -EINVAL;
5468 
5469 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5470 		return -EINVAL;
5471 
5472 	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
5473 		return -E2BIG;
5474 
5475 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5476 		return -EINVAL;
5477 
5478 	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
5479 	if (o != v) {
5480 		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5481 			return -EIO;
5482 
5483 		cmd &= ~PCI_X_CMD_MAX_READ;
5484 		cmd |= v << 2;
5485 		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5486 			return -EIO;
5487 	}
5488 	return 0;
5489 }
5490 EXPORT_SYMBOL(pcix_set_mmrbc);
5491 
5492 /**
5493  * pcie_get_readrq - get PCI Express read request size
5494  * @dev: PCI device to query
5495  *
5496  * Returns maximum memory read request in bytes or appropriate error value.
5497  */
5498 int pcie_get_readrq(struct pci_dev *dev)
5499 {
5500 	u16 ctl;
5501 
5502 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5503 
5504 	return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5505 }
5506 EXPORT_SYMBOL(pcie_get_readrq);
5507 
5508 /**
5509  * pcie_set_readrq - set PCI Express maximum memory read request
5510  * @dev: PCI device to query
5511  * @rq: maximum memory read count in bytes
5512  *    valid values are 128, 256, 512, 1024, 2048, 4096
5513  *
5514  * If possible sets maximum memory read request in bytes
5515  */
5516 int pcie_set_readrq(struct pci_dev *dev, int rq)
5517 {
5518 	u16 v;
5519 
5520 	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
5521 		return -EINVAL;
5522 
5523 	/*
5524 	 * If using the "performance" PCIe config, we clamp the read rq
5525 	 * size to the max packet size to keep the host bridge from
5526 	 * generating requests larger than we can cope with.
5527 	 */
5528 	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
5529 		int mps = pcie_get_mps(dev);
5530 
5531 		if (mps < rq)
5532 			rq = mps;
5533 	}
5534 
5535 	v = (ffs(rq) - 8) << 12;
5536 
5537 	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5538 						  PCI_EXP_DEVCTL_READRQ, v);
5539 }
5540 EXPORT_SYMBOL(pcie_set_readrq);
5541 
5542 /**
5543  * pcie_get_mps - get PCI Express maximum payload size
5544  * @dev: PCI device to query
5545  *
5546  * Returns maximum payload size in bytes
5547  */
5548 int pcie_get_mps(struct pci_dev *dev)
5549 {
5550 	u16 ctl;
5551 
5552 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5553 
5554 	return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
5555 }
5556 EXPORT_SYMBOL(pcie_get_mps);
5557 
5558 /**
5559  * pcie_set_mps - set PCI Express maximum payload size
5560  * @dev: PCI device to query
5561  * @mps: maximum payload size in bytes
5562  *    valid values are 128, 256, 512, 1024, 2048, 4096
5563  *
5564  * If possible sets maximum payload size
5565  */
5566 int pcie_set_mps(struct pci_dev *dev, int mps)
5567 {
5568 	u16 v;
5569 
5570 	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
5571 		return -EINVAL;
5572 
5573 	v = ffs(mps) - 8;
5574 	if (v > dev->pcie_mpss)
5575 		return -EINVAL;
5576 	v <<= 5;
5577 
5578 	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5579 						  PCI_EXP_DEVCTL_PAYLOAD, v);
5580 }
5581 EXPORT_SYMBOL(pcie_set_mps);
5582 
5583 /**
5584  * pcie_bandwidth_available - determine minimum link settings of a PCIe
5585  *			      device and its bandwidth limitation
5586  * @dev: PCI device to query
5587  * @limiting_dev: storage for device causing the bandwidth limitation
5588  * @speed: storage for speed of limiting device
5589  * @width: storage for width of limiting device
5590  *
5591  * Walk up the PCI device chain and find the point where the minimum
5592  * bandwidth is available.  Return the bandwidth available there and (if
5593  * limiting_dev, speed, and width pointers are supplied) information about
5594  * that point.  The bandwidth returned is in Mb/s, i.e., megabits/second of
5595  * raw bandwidth.
5596  */
5597 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
5598 			     enum pci_bus_speed *speed,
5599 			     enum pcie_link_width *width)
5600 {
5601 	u16 lnksta;
5602 	enum pci_bus_speed next_speed;
5603 	enum pcie_link_width next_width;
5604 	u32 bw, next_bw;
5605 
5606 	if (speed)
5607 		*speed = PCI_SPEED_UNKNOWN;
5608 	if (width)
5609 		*width = PCIE_LNK_WIDTH_UNKNOWN;
5610 
5611 	bw = 0;
5612 
5613 	while (dev) {
5614 		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
5615 
5616 		next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
5617 		next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
5618 			PCI_EXP_LNKSTA_NLW_SHIFT;
5619 
5620 		next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
5621 
5622 		/* Check if current device limits the total bandwidth */
5623 		if (!bw || next_bw <= bw) {
5624 			bw = next_bw;
5625 
5626 			if (limiting_dev)
5627 				*limiting_dev = dev;
5628 			if (speed)
5629 				*speed = next_speed;
5630 			if (width)
5631 				*width = next_width;
5632 		}
5633 
5634 		dev = pci_upstream_bridge(dev);
5635 	}
5636 
5637 	return bw;
5638 }
5639 EXPORT_SYMBOL(pcie_bandwidth_available);
5640 
5641 /**
5642  * pcie_get_speed_cap - query for the PCI device's link speed capability
5643  * @dev: PCI device to query
5644  *
5645  * Query the PCI device speed capability.  Return the maximum link speed
5646  * supported by the device.
5647  */
5648 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
5649 {
5650 	u32 lnkcap2, lnkcap;
5651 
5652 	/*
5653 	 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18.  The
5654 	 * implementation note there recommends using the Supported Link
5655 	 * Speeds Vector in Link Capabilities 2 when supported.
5656 	 *
5657 	 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
5658 	 * should use the Supported Link Speeds field in Link Capabilities,
5659 	 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
5660 	 */
5661 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
5662 	if (lnkcap2) { /* PCIe r3.0-compliant */
5663 		if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_32_0GB)
5664 			return PCIE_SPEED_32_0GT;
5665 		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_16_0GB)
5666 			return PCIE_SPEED_16_0GT;
5667 		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB)
5668 			return PCIE_SPEED_8_0GT;
5669 		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB)
5670 			return PCIE_SPEED_5_0GT;
5671 		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB)
5672 			return PCIE_SPEED_2_5GT;
5673 		return PCI_SPEED_UNKNOWN;
5674 	}
5675 
5676 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5677 	if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
5678 		return PCIE_SPEED_5_0GT;
5679 	else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
5680 		return PCIE_SPEED_2_5GT;
5681 
5682 	return PCI_SPEED_UNKNOWN;
5683 }
5684 EXPORT_SYMBOL(pcie_get_speed_cap);
5685 
5686 /**
5687  * pcie_get_width_cap - query for the PCI device's link width capability
5688  * @dev: PCI device to query
5689  *
5690  * Query the PCI device width capability.  Return the maximum link width
5691  * supported by the device.
5692  */
5693 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
5694 {
5695 	u32 lnkcap;
5696 
5697 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5698 	if (lnkcap)
5699 		return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
5700 
5701 	return PCIE_LNK_WIDTH_UNKNOWN;
5702 }
5703 EXPORT_SYMBOL(pcie_get_width_cap);
5704 
5705 /**
5706  * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
5707  * @dev: PCI device
5708  * @speed: storage for link speed
5709  * @width: storage for link width
5710  *
5711  * Calculate a PCI device's link bandwidth by querying for its link speed
5712  * and width, multiplying them, and applying encoding overhead.  The result
5713  * is in Mb/s, i.e., megabits/second of raw bandwidth.
5714  */
5715 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
5716 			   enum pcie_link_width *width)
5717 {
5718 	*speed = pcie_get_speed_cap(dev);
5719 	*width = pcie_get_width_cap(dev);
5720 
5721 	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
5722 		return 0;
5723 
5724 	return *width * PCIE_SPEED2MBS_ENC(*speed);
5725 }
5726 
5727 /**
5728  * __pcie_print_link_status - Report the PCI device's link speed and width
5729  * @dev: PCI device to query
5730  * @verbose: Print info even when enough bandwidth is available
5731  *
5732  * If the available bandwidth at the device is less than the device is
5733  * capable of, report the device's maximum possible bandwidth and the
5734  * upstream link that limits its performance.  If @verbose, always print
5735  * the available bandwidth, even if the device isn't constrained.
5736  */
5737 void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
5738 {
5739 	enum pcie_link_width width, width_cap;
5740 	enum pci_bus_speed speed, speed_cap;
5741 	struct pci_dev *limiting_dev = NULL;
5742 	u32 bw_avail, bw_cap;
5743 
5744 	bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
5745 	bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
5746 
5747 	if (bw_avail >= bw_cap && verbose)
5748 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
5749 			 bw_cap / 1000, bw_cap % 1000,
5750 			 PCIE_SPEED2STR(speed_cap), width_cap);
5751 	else if (bw_avail < bw_cap)
5752 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
5753 			 bw_avail / 1000, bw_avail % 1000,
5754 			 PCIE_SPEED2STR(speed), width,
5755 			 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
5756 			 bw_cap / 1000, bw_cap % 1000,
5757 			 PCIE_SPEED2STR(speed_cap), width_cap);
5758 }
5759 
5760 /**
5761  * pcie_print_link_status - Report the PCI device's link speed and width
5762  * @dev: PCI device to query
5763  *
5764  * Report the available bandwidth at the device.
5765  */
5766 void pcie_print_link_status(struct pci_dev *dev)
5767 {
5768 	__pcie_print_link_status(dev, true);
5769 }
5770 EXPORT_SYMBOL(pcie_print_link_status);
5771 
5772 /**
5773  * pci_select_bars - Make BAR mask from the type of resource
5774  * @dev: the PCI device for which BAR mask is made
5775  * @flags: resource type mask to be selected
5776  *
5777  * This helper routine makes bar mask from the type of resource.
5778  */
5779 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
5780 {
5781 	int i, bars = 0;
5782 	for (i = 0; i < PCI_NUM_RESOURCES; i++)
5783 		if (pci_resource_flags(dev, i) & flags)
5784 			bars |= (1 << i);
5785 	return bars;
5786 }
5787 EXPORT_SYMBOL(pci_select_bars);
5788 
5789 /* Some architectures require additional programming to enable VGA */
5790 static arch_set_vga_state_t arch_set_vga_state;
5791 
5792 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
5793 {
5794 	arch_set_vga_state = func;	/* NULL disables */
5795 }
5796 
5797 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
5798 				  unsigned int command_bits, u32 flags)
5799 {
5800 	if (arch_set_vga_state)
5801 		return arch_set_vga_state(dev, decode, command_bits,
5802 						flags);
5803 	return 0;
5804 }
5805 
5806 /**
5807  * pci_set_vga_state - set VGA decode state on device and parents if requested
5808  * @dev: the PCI device
5809  * @decode: true = enable decoding, false = disable decoding
5810  * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
5811  * @flags: traverse ancestors and change bridges
5812  * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
5813  */
5814 int pci_set_vga_state(struct pci_dev *dev, bool decode,
5815 		      unsigned int command_bits, u32 flags)
5816 {
5817 	struct pci_bus *bus;
5818 	struct pci_dev *bridge;
5819 	u16 cmd;
5820 	int rc;
5821 
5822 	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
5823 
5824 	/* ARCH specific VGA enables */
5825 	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
5826 	if (rc)
5827 		return rc;
5828 
5829 	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
5830 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
5831 		if (decode == true)
5832 			cmd |= command_bits;
5833 		else
5834 			cmd &= ~command_bits;
5835 		pci_write_config_word(dev, PCI_COMMAND, cmd);
5836 	}
5837 
5838 	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
5839 		return 0;
5840 
5841 	bus = dev->bus;
5842 	while (bus) {
5843 		bridge = bus->self;
5844 		if (bridge) {
5845 			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
5846 					     &cmd);
5847 			if (decode == true)
5848 				cmd |= PCI_BRIDGE_CTL_VGA;
5849 			else
5850 				cmd &= ~PCI_BRIDGE_CTL_VGA;
5851 			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
5852 					      cmd);
5853 		}
5854 		bus = bus->parent;
5855 	}
5856 	return 0;
5857 }
5858 
5859 /**
5860  * pci_add_dma_alias - Add a DMA devfn alias for a device
5861  * @dev: the PCI device for which alias is added
5862  * @devfn: alias slot and function
5863  *
5864  * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
5865  * which is used to program permissible bus-devfn source addresses for DMA
5866  * requests in an IOMMU.  These aliases factor into IOMMU group creation
5867  * and are useful for devices generating DMA requests beyond or different
5868  * from their logical bus-devfn.  Examples include device quirks where the
5869  * device simply uses the wrong devfn, as well as non-transparent bridges
5870  * where the alias may be a proxy for devices in another domain.
5871  *
5872  * IOMMU group creation is performed during device discovery or addition,
5873  * prior to any potential DMA mapping and therefore prior to driver probing
5874  * (especially for userspace assigned devices where IOMMU group definition
5875  * cannot be left as a userspace activity).  DMA aliases should therefore
5876  * be configured via quirks, such as the PCI fixup header quirk.
5877  */
5878 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn)
5879 {
5880 	if (!dev->dma_alias_mask)
5881 		dev->dma_alias_mask = bitmap_zalloc(U8_MAX, GFP_KERNEL);
5882 	if (!dev->dma_alias_mask) {
5883 		pci_warn(dev, "Unable to allocate DMA alias mask\n");
5884 		return;
5885 	}
5886 
5887 	set_bit(devfn, dev->dma_alias_mask);
5888 	pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
5889 		 PCI_SLOT(devfn), PCI_FUNC(devfn));
5890 }
5891 
5892 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
5893 {
5894 	return (dev1->dma_alias_mask &&
5895 		test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
5896 	       (dev2->dma_alias_mask &&
5897 		test_bit(dev1->devfn, dev2->dma_alias_mask));
5898 }
5899 
5900 bool pci_device_is_present(struct pci_dev *pdev)
5901 {
5902 	u32 v;
5903 
5904 	if (pci_dev_is_disconnected(pdev))
5905 		return false;
5906 	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
5907 }
5908 EXPORT_SYMBOL_GPL(pci_device_is_present);
5909 
5910 void pci_ignore_hotplug(struct pci_dev *dev)
5911 {
5912 	struct pci_dev *bridge = dev->bus->self;
5913 
5914 	dev->ignore_hotplug = 1;
5915 	/* Propagate the "ignore hotplug" setting to the parent bridge. */
5916 	if (bridge)
5917 		bridge->ignore_hotplug = 1;
5918 }
5919 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
5920 
5921 resource_size_t __weak pcibios_default_alignment(void)
5922 {
5923 	return 0;
5924 }
5925 
5926 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
5927 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
5928 static DEFINE_SPINLOCK(resource_alignment_lock);
5929 
5930 /**
5931  * pci_specified_resource_alignment - get resource alignment specified by user.
5932  * @dev: the PCI device to get
5933  * @resize: whether or not to change resources' size when reassigning alignment
5934  *
5935  * RETURNS: Resource alignment if it is specified.
5936  *          Zero if it is not specified.
5937  */
5938 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
5939 							bool *resize)
5940 {
5941 	int align_order, count;
5942 	resource_size_t align = pcibios_default_alignment();
5943 	const char *p;
5944 	int ret;
5945 
5946 	spin_lock(&resource_alignment_lock);
5947 	p = resource_alignment_param;
5948 	if (!*p && !align)
5949 		goto out;
5950 	if (pci_has_flag(PCI_PROBE_ONLY)) {
5951 		align = 0;
5952 		pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
5953 		goto out;
5954 	}
5955 
5956 	while (*p) {
5957 		count = 0;
5958 		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
5959 							p[count] == '@') {
5960 			p += count + 1;
5961 		} else {
5962 			align_order = -1;
5963 		}
5964 
5965 		ret = pci_dev_str_match(dev, p, &p);
5966 		if (ret == 1) {
5967 			*resize = true;
5968 			if (align_order == -1)
5969 				align = PAGE_SIZE;
5970 			else
5971 				align = 1 << align_order;
5972 			break;
5973 		} else if (ret < 0) {
5974 			pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
5975 			       p);
5976 			break;
5977 		}
5978 
5979 		if (*p != ';' && *p != ',') {
5980 			/* End of param or invalid format */
5981 			break;
5982 		}
5983 		p++;
5984 	}
5985 out:
5986 	spin_unlock(&resource_alignment_lock);
5987 	return align;
5988 }
5989 
5990 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
5991 					   resource_size_t align, bool resize)
5992 {
5993 	struct resource *r = &dev->resource[bar];
5994 	resource_size_t size;
5995 
5996 	if (!(r->flags & IORESOURCE_MEM))
5997 		return;
5998 
5999 	if (r->flags & IORESOURCE_PCI_FIXED) {
6000 		pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6001 			 bar, r, (unsigned long long)align);
6002 		return;
6003 	}
6004 
6005 	size = resource_size(r);
6006 	if (size >= align)
6007 		return;
6008 
6009 	/*
6010 	 * Increase the alignment of the resource.  There are two ways we
6011 	 * can do this:
6012 	 *
6013 	 * 1) Increase the size of the resource.  BARs are aligned on their
6014 	 *    size, so when we reallocate space for this resource, we'll
6015 	 *    allocate it with the larger alignment.  This also prevents
6016 	 *    assignment of any other BARs inside the alignment region, so
6017 	 *    if we're requesting page alignment, this means no other BARs
6018 	 *    will share the page.
6019 	 *
6020 	 *    The disadvantage is that this makes the resource larger than
6021 	 *    the hardware BAR, which may break drivers that compute things
6022 	 *    based on the resource size, e.g., to find registers at a
6023 	 *    fixed offset before the end of the BAR.
6024 	 *
6025 	 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6026 	 *    set r->start to the desired alignment.  By itself this
6027 	 *    doesn't prevent other BARs being put inside the alignment
6028 	 *    region, but if we realign *every* resource of every device in
6029 	 *    the system, none of them will share an alignment region.
6030 	 *
6031 	 * When the user has requested alignment for only some devices via
6032 	 * the "pci=resource_alignment" argument, "resize" is true and we
6033 	 * use the first method.  Otherwise we assume we're aligning all
6034 	 * devices and we use the second.
6035 	 */
6036 
6037 	pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6038 		 bar, r, (unsigned long long)align);
6039 
6040 	if (resize) {
6041 		r->start = 0;
6042 		r->end = align - 1;
6043 	} else {
6044 		r->flags &= ~IORESOURCE_SIZEALIGN;
6045 		r->flags |= IORESOURCE_STARTALIGN;
6046 		r->start = align;
6047 		r->end = r->start + size - 1;
6048 	}
6049 	r->flags |= IORESOURCE_UNSET;
6050 }
6051 
6052 /*
6053  * This function disables memory decoding and releases memory resources
6054  * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6055  * It also rounds up size to specified alignment.
6056  * Later on, the kernel will assign page-aligned memory resource back
6057  * to the device.
6058  */
6059 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6060 {
6061 	int i;
6062 	struct resource *r;
6063 	resource_size_t align;
6064 	u16 command;
6065 	bool resize = false;
6066 
6067 	/*
6068 	 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6069 	 * 3.4.1.11.  Their resources are allocated from the space
6070 	 * described by the VF BARx register in the PF's SR-IOV capability.
6071 	 * We can't influence their alignment here.
6072 	 */
6073 	if (dev->is_virtfn)
6074 		return;
6075 
6076 	/* check if specified PCI is target device to reassign */
6077 	align = pci_specified_resource_alignment(dev, &resize);
6078 	if (!align)
6079 		return;
6080 
6081 	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6082 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6083 		pci_warn(dev, "Can't reassign resources to host bridge\n");
6084 		return;
6085 	}
6086 
6087 	pci_read_config_word(dev, PCI_COMMAND, &command);
6088 	command &= ~PCI_COMMAND_MEMORY;
6089 	pci_write_config_word(dev, PCI_COMMAND, command);
6090 
6091 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6092 		pci_request_resource_alignment(dev, i, align, resize);
6093 
6094 	/*
6095 	 * Need to disable bridge's resource window,
6096 	 * to enable the kernel to reassign new resource
6097 	 * window later on.
6098 	 */
6099 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6100 		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6101 			r = &dev->resource[i];
6102 			if (!(r->flags & IORESOURCE_MEM))
6103 				continue;
6104 			r->flags |= IORESOURCE_UNSET;
6105 			r->end = resource_size(r) - 1;
6106 			r->start = 0;
6107 		}
6108 		pci_disable_bridge_window(dev);
6109 	}
6110 }
6111 
6112 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
6113 {
6114 	if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
6115 		count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
6116 	spin_lock(&resource_alignment_lock);
6117 	strncpy(resource_alignment_param, buf, count);
6118 	resource_alignment_param[count] = '\0';
6119 	spin_unlock(&resource_alignment_lock);
6120 	return count;
6121 }
6122 
6123 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
6124 {
6125 	size_t count;
6126 	spin_lock(&resource_alignment_lock);
6127 	count = snprintf(buf, size, "%s", resource_alignment_param);
6128 	spin_unlock(&resource_alignment_lock);
6129 	return count;
6130 }
6131 
6132 static ssize_t resource_alignment_show(struct bus_type *bus, char *buf)
6133 {
6134 	return pci_get_resource_alignment_param(buf, PAGE_SIZE);
6135 }
6136 
6137 static ssize_t resource_alignment_store(struct bus_type *bus,
6138 					const char *buf, size_t count)
6139 {
6140 	return pci_set_resource_alignment_param(buf, count);
6141 }
6142 
6143 static BUS_ATTR_RW(resource_alignment);
6144 
6145 static int __init pci_resource_alignment_sysfs_init(void)
6146 {
6147 	return bus_create_file(&pci_bus_type,
6148 					&bus_attr_resource_alignment);
6149 }
6150 late_initcall(pci_resource_alignment_sysfs_init);
6151 
6152 static void pci_no_domains(void)
6153 {
6154 #ifdef CONFIG_PCI_DOMAINS
6155 	pci_domains_supported = 0;
6156 #endif
6157 }
6158 
6159 #ifdef CONFIG_PCI_DOMAINS_GENERIC
6160 static atomic_t __domain_nr = ATOMIC_INIT(-1);
6161 
6162 static int pci_get_new_domain_nr(void)
6163 {
6164 	return atomic_inc_return(&__domain_nr);
6165 }
6166 
6167 static int of_pci_bus_find_domain_nr(struct device *parent)
6168 {
6169 	static int use_dt_domains = -1;
6170 	int domain = -1;
6171 
6172 	if (parent)
6173 		domain = of_get_pci_domain_nr(parent->of_node);
6174 
6175 	/*
6176 	 * Check DT domain and use_dt_domains values.
6177 	 *
6178 	 * If DT domain property is valid (domain >= 0) and
6179 	 * use_dt_domains != 0, the DT assignment is valid since this means
6180 	 * we have not previously allocated a domain number by using
6181 	 * pci_get_new_domain_nr(); we should also update use_dt_domains to
6182 	 * 1, to indicate that we have just assigned a domain number from
6183 	 * DT.
6184 	 *
6185 	 * If DT domain property value is not valid (ie domain < 0), and we
6186 	 * have not previously assigned a domain number from DT
6187 	 * (use_dt_domains != 1) we should assign a domain number by
6188 	 * using the:
6189 	 *
6190 	 * pci_get_new_domain_nr()
6191 	 *
6192 	 * API and update the use_dt_domains value to keep track of method we
6193 	 * are using to assign domain numbers (use_dt_domains = 0).
6194 	 *
6195 	 * All other combinations imply we have a platform that is trying
6196 	 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
6197 	 * which is a recipe for domain mishandling and it is prevented by
6198 	 * invalidating the domain value (domain = -1) and printing a
6199 	 * corresponding error.
6200 	 */
6201 	if (domain >= 0 && use_dt_domains) {
6202 		use_dt_domains = 1;
6203 	} else if (domain < 0 && use_dt_domains != 1) {
6204 		use_dt_domains = 0;
6205 		domain = pci_get_new_domain_nr();
6206 	} else {
6207 		if (parent)
6208 			pr_err("Node %pOF has ", parent->of_node);
6209 		pr_err("Inconsistent \"linux,pci-domain\" property in DT\n");
6210 		domain = -1;
6211 	}
6212 
6213 	return domain;
6214 }
6215 
6216 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6217 {
6218 	return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6219 			       acpi_pci_bus_find_domain_nr(bus);
6220 }
6221 #endif
6222 
6223 /**
6224  * pci_ext_cfg_avail - can we access extended PCI config space?
6225  *
6226  * Returns 1 if we can access PCI extended config space (offsets
6227  * greater than 0xff). This is the default implementation. Architecture
6228  * implementations can override this.
6229  */
6230 int __weak pci_ext_cfg_avail(void)
6231 {
6232 	return 1;
6233 }
6234 
6235 void __weak pci_fixup_cardbus(struct pci_bus *bus)
6236 {
6237 }
6238 EXPORT_SYMBOL(pci_fixup_cardbus);
6239 
6240 static int __init pci_setup(char *str)
6241 {
6242 	while (str) {
6243 		char *k = strchr(str, ',');
6244 		if (k)
6245 			*k++ = 0;
6246 		if (*str && (str = pcibios_setup(str)) && *str) {
6247 			if (!strcmp(str, "nomsi")) {
6248 				pci_no_msi();
6249 			} else if (!strncmp(str, "noats", 5)) {
6250 				pr_info("PCIe: ATS is disabled\n");
6251 				pcie_ats_disabled = true;
6252 			} else if (!strcmp(str, "noaer")) {
6253 				pci_no_aer();
6254 			} else if (!strcmp(str, "earlydump")) {
6255 				pci_early_dump = true;
6256 			} else if (!strncmp(str, "realloc=", 8)) {
6257 				pci_realloc_get_opt(str + 8);
6258 			} else if (!strncmp(str, "realloc", 7)) {
6259 				pci_realloc_get_opt("on");
6260 			} else if (!strcmp(str, "nodomains")) {
6261 				pci_no_domains();
6262 			} else if (!strncmp(str, "noari", 5)) {
6263 				pcie_ari_disabled = true;
6264 			} else if (!strncmp(str, "cbiosize=", 9)) {
6265 				pci_cardbus_io_size = memparse(str + 9, &str);
6266 			} else if (!strncmp(str, "cbmemsize=", 10)) {
6267 				pci_cardbus_mem_size = memparse(str + 10, &str);
6268 			} else if (!strncmp(str, "resource_alignment=", 19)) {
6269 				pci_set_resource_alignment_param(str + 19,
6270 							strlen(str + 19));
6271 			} else if (!strncmp(str, "ecrc=", 5)) {
6272 				pcie_ecrc_get_policy(str + 5);
6273 			} else if (!strncmp(str, "hpiosize=", 9)) {
6274 				pci_hotplug_io_size = memparse(str + 9, &str);
6275 			} else if (!strncmp(str, "hpmemsize=", 10)) {
6276 				pci_hotplug_mem_size = memparse(str + 10, &str);
6277 			} else if (!strncmp(str, "hpbussize=", 10)) {
6278 				pci_hotplug_bus_size =
6279 					simple_strtoul(str + 10, &str, 0);
6280 				if (pci_hotplug_bus_size > 0xff)
6281 					pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6282 			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6283 				pcie_bus_config = PCIE_BUS_TUNE_OFF;
6284 			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
6285 				pcie_bus_config = PCIE_BUS_SAFE;
6286 			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
6287 				pcie_bus_config = PCIE_BUS_PERFORMANCE;
6288 			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6289 				pcie_bus_config = PCIE_BUS_PEER2PEER;
6290 			} else if (!strncmp(str, "pcie_scan_all", 13)) {
6291 				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6292 			} else if (!strncmp(str, "disable_acs_redir=", 18)) {
6293 				disable_acs_redir_param = str + 18;
6294 			} else {
6295 				pr_err("PCI: Unknown option `%s'\n", str);
6296 			}
6297 		}
6298 		str = k;
6299 	}
6300 	return 0;
6301 }
6302 early_param("pci", pci_setup);
6303 
6304 /*
6305  * 'disable_acs_redir_param' is initialized in pci_setup(), above, to point
6306  * to data in the __initdata section which will be freed after the init
6307  * sequence is complete. We can't allocate memory in pci_setup() because some
6308  * architectures do not have any memory allocation service available during
6309  * an early_param() call. So we allocate memory and copy the variable here
6310  * before the init section is freed.
6311  */
6312 static int __init pci_realloc_setup_params(void)
6313 {
6314 	disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6315 
6316 	return 0;
6317 }
6318 pure_initcall(pci_realloc_setup_params);
6319