xref: /openbmc/linux/drivers/pci/pci.c (revision 8a649e33f48e08be20c51541d9184645892ec370)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * PCI Bus Services, see include/linux/pci.h for further explanation.
4  *
5  * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6  * David Mosberger-Tang
7  *
8  * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/msi.h>
17 #include <linux/of.h>
18 #include <linux/pci.h>
19 #include <linux/pm.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/log2.h>
25 #include <linux/logic_pio.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/pci_hotplug.h>
31 #include <linux/vmalloc.h>
32 #include <asm/dma.h>
33 #include <linux/aer.h>
34 #include <linux/bitfield.h>
35 #include "pci.h"
36 
37 DEFINE_MUTEX(pci_slot_mutex);
38 
39 const char *pci_power_names[] = {
40 	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
41 };
42 EXPORT_SYMBOL_GPL(pci_power_names);
43 
44 #ifdef CONFIG_X86_32
45 int isa_dma_bridge_buggy;
46 EXPORT_SYMBOL(isa_dma_bridge_buggy);
47 #endif
48 
49 int pci_pci_problems;
50 EXPORT_SYMBOL(pci_pci_problems);
51 
52 unsigned int pci_pm_d3hot_delay;
53 
54 static void pci_pme_list_scan(struct work_struct *work);
55 
56 static LIST_HEAD(pci_pme_list);
57 static DEFINE_MUTEX(pci_pme_list_mutex);
58 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
59 
60 struct pci_pme_device {
61 	struct list_head list;
62 	struct pci_dev *dev;
63 };
64 
65 #define PME_TIMEOUT 1000 /* How long between PME checks */
66 
67 /*
68  * Devices may extend the 1 sec period through Request Retry Status
69  * completions (PCIe r6.0 sec 2.3.1).  The spec does not provide an upper
70  * limit, but 60 sec ought to be enough for any device to become
71  * responsive.
72  */
73 #define PCIE_RESET_READY_POLL_MS 60000 /* msec */
74 
75 static void pci_dev_d3_sleep(struct pci_dev *dev)
76 {
77 	unsigned int delay_ms = max(dev->d3hot_delay, pci_pm_d3hot_delay);
78 	unsigned int upper;
79 
80 	if (delay_ms) {
81 		/* Use a 20% upper bound, 1ms minimum */
82 		upper = max(DIV_ROUND_CLOSEST(delay_ms, 5), 1U);
83 		usleep_range(delay_ms * USEC_PER_MSEC,
84 			     (delay_ms + upper) * USEC_PER_MSEC);
85 	}
86 }
87 
88 bool pci_reset_supported(struct pci_dev *dev)
89 {
90 	return dev->reset_methods[0] != 0;
91 }
92 
93 #ifdef CONFIG_PCI_DOMAINS
94 int pci_domains_supported = 1;
95 #endif
96 
97 #define DEFAULT_CARDBUS_IO_SIZE		(256)
98 #define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
99 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
100 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
101 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
102 
103 #define DEFAULT_HOTPLUG_IO_SIZE		(256)
104 #define DEFAULT_HOTPLUG_MMIO_SIZE	(2*1024*1024)
105 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE	(2*1024*1024)
106 /* hpiosize=nn can override this */
107 unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
108 /*
109  * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
110  * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
111  * pci=hpmemsize=nnM overrides both
112  */
113 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
114 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
115 
116 #define DEFAULT_HOTPLUG_BUS_SIZE	1
117 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
118 
119 
120 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
121 #ifdef CONFIG_PCIE_BUS_TUNE_OFF
122 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
123 #elif defined CONFIG_PCIE_BUS_SAFE
124 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
125 #elif defined CONFIG_PCIE_BUS_PERFORMANCE
126 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
127 #elif defined CONFIG_PCIE_BUS_PEER2PEER
128 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
129 #else
130 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
131 #endif
132 
133 /*
134  * The default CLS is used if arch didn't set CLS explicitly and not
135  * all pci devices agree on the same value.  Arch can override either
136  * the dfl or actual value as it sees fit.  Don't forget this is
137  * measured in 32-bit words, not bytes.
138  */
139 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
140 u8 pci_cache_line_size;
141 
142 /*
143  * If we set up a device for bus mastering, we need to check the latency
144  * timer as certain BIOSes forget to set it properly.
145  */
146 unsigned int pcibios_max_latency = 255;
147 
148 /* If set, the PCIe ARI capability will not be used. */
149 static bool pcie_ari_disabled;
150 
151 /* If set, the PCIe ATS capability will not be used. */
152 static bool pcie_ats_disabled;
153 
154 /* If set, the PCI config space of each device is printed during boot. */
155 bool pci_early_dump;
156 
157 bool pci_ats_disabled(void)
158 {
159 	return pcie_ats_disabled;
160 }
161 EXPORT_SYMBOL_GPL(pci_ats_disabled);
162 
163 /* Disable bridge_d3 for all PCIe ports */
164 static bool pci_bridge_d3_disable;
165 /* Force bridge_d3 for all PCIe ports */
166 static bool pci_bridge_d3_force;
167 
168 static int __init pcie_port_pm_setup(char *str)
169 {
170 	if (!strcmp(str, "off"))
171 		pci_bridge_d3_disable = true;
172 	else if (!strcmp(str, "force"))
173 		pci_bridge_d3_force = true;
174 	return 1;
175 }
176 __setup("pcie_port_pm=", pcie_port_pm_setup);
177 
178 /**
179  * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
180  * @bus: pointer to PCI bus structure to search
181  *
182  * Given a PCI bus, returns the highest PCI bus number present in the set
183  * including the given PCI bus and its list of child PCI buses.
184  */
185 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
186 {
187 	struct pci_bus *tmp;
188 	unsigned char max, n;
189 
190 	max = bus->busn_res.end;
191 	list_for_each_entry(tmp, &bus->children, node) {
192 		n = pci_bus_max_busnr(tmp);
193 		if (n > max)
194 			max = n;
195 	}
196 	return max;
197 }
198 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
199 
200 /**
201  * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
202  * @pdev: the PCI device
203  *
204  * Returns error bits set in PCI_STATUS and clears them.
205  */
206 int pci_status_get_and_clear_errors(struct pci_dev *pdev)
207 {
208 	u16 status;
209 	int ret;
210 
211 	ret = pci_read_config_word(pdev, PCI_STATUS, &status);
212 	if (ret != PCIBIOS_SUCCESSFUL)
213 		return -EIO;
214 
215 	status &= PCI_STATUS_ERROR_BITS;
216 	if (status)
217 		pci_write_config_word(pdev, PCI_STATUS, status);
218 
219 	return status;
220 }
221 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
222 
223 #ifdef CONFIG_HAS_IOMEM
224 static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar,
225 					    bool write_combine)
226 {
227 	struct resource *res = &pdev->resource[bar];
228 	resource_size_t start = res->start;
229 	resource_size_t size = resource_size(res);
230 
231 	/*
232 	 * Make sure the BAR is actually a memory resource, not an IO resource
233 	 */
234 	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
235 		pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
236 		return NULL;
237 	}
238 
239 	if (write_combine)
240 		return ioremap_wc(start, size);
241 
242 	return ioremap(start, size);
243 }
244 
245 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
246 {
247 	return __pci_ioremap_resource(pdev, bar, false);
248 }
249 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
250 
251 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
252 {
253 	return __pci_ioremap_resource(pdev, bar, true);
254 }
255 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
256 #endif
257 
258 /**
259  * pci_dev_str_match_path - test if a path string matches a device
260  * @dev: the PCI device to test
261  * @path: string to match the device against
262  * @endptr: pointer to the string after the match
263  *
264  * Test if a string (typically from a kernel parameter) formatted as a
265  * path of device/function addresses matches a PCI device. The string must
266  * be of the form:
267  *
268  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
269  *
270  * A path for a device can be obtained using 'lspci -t'.  Using a path
271  * is more robust against bus renumbering than using only a single bus,
272  * device and function address.
273  *
274  * Returns 1 if the string matches the device, 0 if it does not and
275  * a negative error code if it fails to parse the string.
276  */
277 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
278 				  const char **endptr)
279 {
280 	int ret;
281 	unsigned int seg, bus, slot, func;
282 	char *wpath, *p;
283 	char end;
284 
285 	*endptr = strchrnul(path, ';');
286 
287 	wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC);
288 	if (!wpath)
289 		return -ENOMEM;
290 
291 	while (1) {
292 		p = strrchr(wpath, '/');
293 		if (!p)
294 			break;
295 		ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
296 		if (ret != 2) {
297 			ret = -EINVAL;
298 			goto free_and_exit;
299 		}
300 
301 		if (dev->devfn != PCI_DEVFN(slot, func)) {
302 			ret = 0;
303 			goto free_and_exit;
304 		}
305 
306 		/*
307 		 * Note: we don't need to get a reference to the upstream
308 		 * bridge because we hold a reference to the top level
309 		 * device which should hold a reference to the bridge,
310 		 * and so on.
311 		 */
312 		dev = pci_upstream_bridge(dev);
313 		if (!dev) {
314 			ret = 0;
315 			goto free_and_exit;
316 		}
317 
318 		*p = 0;
319 	}
320 
321 	ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
322 		     &func, &end);
323 	if (ret != 4) {
324 		seg = 0;
325 		ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
326 		if (ret != 3) {
327 			ret = -EINVAL;
328 			goto free_and_exit;
329 		}
330 	}
331 
332 	ret = (seg == pci_domain_nr(dev->bus) &&
333 	       bus == dev->bus->number &&
334 	       dev->devfn == PCI_DEVFN(slot, func));
335 
336 free_and_exit:
337 	kfree(wpath);
338 	return ret;
339 }
340 
341 /**
342  * pci_dev_str_match - test if a string matches a device
343  * @dev: the PCI device to test
344  * @p: string to match the device against
345  * @endptr: pointer to the string after the match
346  *
347  * Test if a string (typically from a kernel parameter) matches a specified
348  * PCI device. The string may be of one of the following formats:
349  *
350  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
351  *   pci:<vendor>:<device>[:<subvendor>:<subdevice>]
352  *
353  * The first format specifies a PCI bus/device/function address which
354  * may change if new hardware is inserted, if motherboard firmware changes,
355  * or due to changes caused in kernel parameters. If the domain is
356  * left unspecified, it is taken to be 0.  In order to be robust against
357  * bus renumbering issues, a path of PCI device/function numbers may be used
358  * to address the specific device.  The path for a device can be determined
359  * through the use of 'lspci -t'.
360  *
361  * The second format matches devices using IDs in the configuration
362  * space which may match multiple devices in the system. A value of 0
363  * for any field will match all devices. (Note: this differs from
364  * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
365  * legacy reasons and convenience so users don't have to specify
366  * FFFFFFFFs on the command line.)
367  *
368  * Returns 1 if the string matches the device, 0 if it does not and
369  * a negative error code if the string cannot be parsed.
370  */
371 static int pci_dev_str_match(struct pci_dev *dev, const char *p,
372 			     const char **endptr)
373 {
374 	int ret;
375 	int count;
376 	unsigned short vendor, device, subsystem_vendor, subsystem_device;
377 
378 	if (strncmp(p, "pci:", 4) == 0) {
379 		/* PCI vendor/device (subvendor/subdevice) IDs are specified */
380 		p += 4;
381 		ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
382 			     &subsystem_vendor, &subsystem_device, &count);
383 		if (ret != 4) {
384 			ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
385 			if (ret != 2)
386 				return -EINVAL;
387 
388 			subsystem_vendor = 0;
389 			subsystem_device = 0;
390 		}
391 
392 		p += count;
393 
394 		if ((!vendor || vendor == dev->vendor) &&
395 		    (!device || device == dev->device) &&
396 		    (!subsystem_vendor ||
397 			    subsystem_vendor == dev->subsystem_vendor) &&
398 		    (!subsystem_device ||
399 			    subsystem_device == dev->subsystem_device))
400 			goto found;
401 	} else {
402 		/*
403 		 * PCI Bus, Device, Function IDs are specified
404 		 * (optionally, may include a path of devfns following it)
405 		 */
406 		ret = pci_dev_str_match_path(dev, p, &p);
407 		if (ret < 0)
408 			return ret;
409 		else if (ret)
410 			goto found;
411 	}
412 
413 	*endptr = p;
414 	return 0;
415 
416 found:
417 	*endptr = p;
418 	return 1;
419 }
420 
421 static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
422 				  u8 pos, int cap, int *ttl)
423 {
424 	u8 id;
425 	u16 ent;
426 
427 	pci_bus_read_config_byte(bus, devfn, pos, &pos);
428 
429 	while ((*ttl)--) {
430 		if (pos < 0x40)
431 			break;
432 		pos &= ~3;
433 		pci_bus_read_config_word(bus, devfn, pos, &ent);
434 
435 		id = ent & 0xff;
436 		if (id == 0xff)
437 			break;
438 		if (id == cap)
439 			return pos;
440 		pos = (ent >> 8);
441 	}
442 	return 0;
443 }
444 
445 static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
446 			      u8 pos, int cap)
447 {
448 	int ttl = PCI_FIND_CAP_TTL;
449 
450 	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
451 }
452 
453 u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
454 {
455 	return __pci_find_next_cap(dev->bus, dev->devfn,
456 				   pos + PCI_CAP_LIST_NEXT, cap);
457 }
458 EXPORT_SYMBOL_GPL(pci_find_next_capability);
459 
460 static u8 __pci_bus_find_cap_start(struct pci_bus *bus,
461 				    unsigned int devfn, u8 hdr_type)
462 {
463 	u16 status;
464 
465 	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
466 	if (!(status & PCI_STATUS_CAP_LIST))
467 		return 0;
468 
469 	switch (hdr_type) {
470 	case PCI_HEADER_TYPE_NORMAL:
471 	case PCI_HEADER_TYPE_BRIDGE:
472 		return PCI_CAPABILITY_LIST;
473 	case PCI_HEADER_TYPE_CARDBUS:
474 		return PCI_CB_CAPABILITY_LIST;
475 	}
476 
477 	return 0;
478 }
479 
480 /**
481  * pci_find_capability - query for devices' capabilities
482  * @dev: PCI device to query
483  * @cap: capability code
484  *
485  * Tell if a device supports a given PCI capability.
486  * Returns the address of the requested capability structure within the
487  * device's PCI configuration space or 0 in case the device does not
488  * support it.  Possible values for @cap include:
489  *
490  *  %PCI_CAP_ID_PM           Power Management
491  *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
492  *  %PCI_CAP_ID_VPD          Vital Product Data
493  *  %PCI_CAP_ID_SLOTID       Slot Identification
494  *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
495  *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
496  *  %PCI_CAP_ID_PCIX         PCI-X
497  *  %PCI_CAP_ID_EXP          PCI Express
498  */
499 u8 pci_find_capability(struct pci_dev *dev, int cap)
500 {
501 	u8 pos;
502 
503 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
504 	if (pos)
505 		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
506 
507 	return pos;
508 }
509 EXPORT_SYMBOL(pci_find_capability);
510 
511 /**
512  * pci_bus_find_capability - query for devices' capabilities
513  * @bus: the PCI bus to query
514  * @devfn: PCI device to query
515  * @cap: capability code
516  *
517  * Like pci_find_capability() but works for PCI devices that do not have a
518  * pci_dev structure set up yet.
519  *
520  * Returns the address of the requested capability structure within the
521  * device's PCI configuration space or 0 in case the device does not
522  * support it.
523  */
524 u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
525 {
526 	u8 hdr_type, pos;
527 
528 	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
529 
530 	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
531 	if (pos)
532 		pos = __pci_find_next_cap(bus, devfn, pos, cap);
533 
534 	return pos;
535 }
536 EXPORT_SYMBOL(pci_bus_find_capability);
537 
538 /**
539  * pci_find_next_ext_capability - Find an extended capability
540  * @dev: PCI device to query
541  * @start: address at which to start looking (0 to start at beginning of list)
542  * @cap: capability code
543  *
544  * Returns the address of the next matching extended capability structure
545  * within the device's PCI configuration space or 0 if the device does
546  * not support it.  Some capabilities can occur several times, e.g., the
547  * vendor-specific capability, and this provides a way to find them all.
548  */
549 u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap)
550 {
551 	u32 header;
552 	int ttl;
553 	u16 pos = PCI_CFG_SPACE_SIZE;
554 
555 	/* minimum 8 bytes per capability */
556 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
557 
558 	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
559 		return 0;
560 
561 	if (start)
562 		pos = start;
563 
564 	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
565 		return 0;
566 
567 	/*
568 	 * If we have no capabilities, this is indicated by cap ID,
569 	 * cap version and next pointer all being 0.
570 	 */
571 	if (header == 0)
572 		return 0;
573 
574 	while (ttl-- > 0) {
575 		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
576 			return pos;
577 
578 		pos = PCI_EXT_CAP_NEXT(header);
579 		if (pos < PCI_CFG_SPACE_SIZE)
580 			break;
581 
582 		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
583 			break;
584 	}
585 
586 	return 0;
587 }
588 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
589 
590 /**
591  * pci_find_ext_capability - Find an extended capability
592  * @dev: PCI device to query
593  * @cap: capability code
594  *
595  * Returns the address of the requested extended capability structure
596  * within the device's PCI configuration space or 0 if the device does
597  * not support it.  Possible values for @cap include:
598  *
599  *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
600  *  %PCI_EXT_CAP_ID_VC		Virtual Channel
601  *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
602  *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
603  */
604 u16 pci_find_ext_capability(struct pci_dev *dev, int cap)
605 {
606 	return pci_find_next_ext_capability(dev, 0, cap);
607 }
608 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
609 
610 /**
611  * pci_get_dsn - Read and return the 8-byte Device Serial Number
612  * @dev: PCI device to query
613  *
614  * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
615  * Number.
616  *
617  * Returns the DSN, or zero if the capability does not exist.
618  */
619 u64 pci_get_dsn(struct pci_dev *dev)
620 {
621 	u32 dword;
622 	u64 dsn;
623 	int pos;
624 
625 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
626 	if (!pos)
627 		return 0;
628 
629 	/*
630 	 * The Device Serial Number is two dwords offset 4 bytes from the
631 	 * capability position. The specification says that the first dword is
632 	 * the lower half, and the second dword is the upper half.
633 	 */
634 	pos += 4;
635 	pci_read_config_dword(dev, pos, &dword);
636 	dsn = (u64)dword;
637 	pci_read_config_dword(dev, pos + 4, &dword);
638 	dsn |= ((u64)dword) << 32;
639 
640 	return dsn;
641 }
642 EXPORT_SYMBOL_GPL(pci_get_dsn);
643 
644 static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap)
645 {
646 	int rc, ttl = PCI_FIND_CAP_TTL;
647 	u8 cap, mask;
648 
649 	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
650 		mask = HT_3BIT_CAP_MASK;
651 	else
652 		mask = HT_5BIT_CAP_MASK;
653 
654 	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
655 				      PCI_CAP_ID_HT, &ttl);
656 	while (pos) {
657 		rc = pci_read_config_byte(dev, pos + 3, &cap);
658 		if (rc != PCIBIOS_SUCCESSFUL)
659 			return 0;
660 
661 		if ((cap & mask) == ht_cap)
662 			return pos;
663 
664 		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
665 					      pos + PCI_CAP_LIST_NEXT,
666 					      PCI_CAP_ID_HT, &ttl);
667 	}
668 
669 	return 0;
670 }
671 
672 /**
673  * pci_find_next_ht_capability - query a device's HyperTransport capabilities
674  * @dev: PCI device to query
675  * @pos: Position from which to continue searching
676  * @ht_cap: HyperTransport capability code
677  *
678  * To be used in conjunction with pci_find_ht_capability() to search for
679  * all capabilities matching @ht_cap. @pos should always be a value returned
680  * from pci_find_ht_capability().
681  *
682  * NB. To be 100% safe against broken PCI devices, the caller should take
683  * steps to avoid an infinite loop.
684  */
685 u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap)
686 {
687 	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
688 }
689 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
690 
691 /**
692  * pci_find_ht_capability - query a device's HyperTransport capabilities
693  * @dev: PCI device to query
694  * @ht_cap: HyperTransport capability code
695  *
696  * Tell if a device supports a given HyperTransport capability.
697  * Returns an address within the device's PCI configuration space
698  * or 0 in case the device does not support the request capability.
699  * The address points to the PCI capability, of type PCI_CAP_ID_HT,
700  * which has a HyperTransport capability matching @ht_cap.
701  */
702 u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
703 {
704 	u8 pos;
705 
706 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
707 	if (pos)
708 		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
709 
710 	return pos;
711 }
712 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
713 
714 /**
715  * pci_find_vsec_capability - Find a vendor-specific extended capability
716  * @dev: PCI device to query
717  * @vendor: Vendor ID for which capability is defined
718  * @cap: Vendor-specific capability ID
719  *
720  * If @dev has Vendor ID @vendor, search for a VSEC capability with
721  * VSEC ID @cap. If found, return the capability offset in
722  * config space; otherwise return 0.
723  */
724 u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap)
725 {
726 	u16 vsec = 0;
727 	u32 header;
728 
729 	if (vendor != dev->vendor)
730 		return 0;
731 
732 	while ((vsec = pci_find_next_ext_capability(dev, vsec,
733 						     PCI_EXT_CAP_ID_VNDR))) {
734 		if (pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER,
735 					  &header) == PCIBIOS_SUCCESSFUL &&
736 		    PCI_VNDR_HEADER_ID(header) == cap)
737 			return vsec;
738 	}
739 
740 	return 0;
741 }
742 EXPORT_SYMBOL_GPL(pci_find_vsec_capability);
743 
744 /**
745  * pci_find_dvsec_capability - Find DVSEC for vendor
746  * @dev: PCI device to query
747  * @vendor: Vendor ID to match for the DVSEC
748  * @dvsec: Designated Vendor-specific capability ID
749  *
750  * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability
751  * offset in config space; otherwise return 0.
752  */
753 u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec)
754 {
755 	int pos;
756 
757 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC);
758 	if (!pos)
759 		return 0;
760 
761 	while (pos) {
762 		u16 v, id;
763 
764 		pci_read_config_word(dev, pos + PCI_DVSEC_HEADER1, &v);
765 		pci_read_config_word(dev, pos + PCI_DVSEC_HEADER2, &id);
766 		if (vendor == v && dvsec == id)
767 			return pos;
768 
769 		pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC);
770 	}
771 
772 	return 0;
773 }
774 EXPORT_SYMBOL_GPL(pci_find_dvsec_capability);
775 
776 /**
777  * pci_find_parent_resource - return resource region of parent bus of given
778  *			      region
779  * @dev: PCI device structure contains resources to be searched
780  * @res: child resource record for which parent is sought
781  *
782  * For given resource region of given device, return the resource region of
783  * parent bus the given region is contained in.
784  */
785 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
786 					  struct resource *res)
787 {
788 	const struct pci_bus *bus = dev->bus;
789 	struct resource *r;
790 
791 	pci_bus_for_each_resource(bus, r) {
792 		if (!r)
793 			continue;
794 		if (resource_contains(r, res)) {
795 
796 			/*
797 			 * If the window is prefetchable but the BAR is
798 			 * not, the allocator made a mistake.
799 			 */
800 			if (r->flags & IORESOURCE_PREFETCH &&
801 			    !(res->flags & IORESOURCE_PREFETCH))
802 				return NULL;
803 
804 			/*
805 			 * If we're below a transparent bridge, there may
806 			 * be both a positively-decoded aperture and a
807 			 * subtractively-decoded region that contain the BAR.
808 			 * We want the positively-decoded one, so this depends
809 			 * on pci_bus_for_each_resource() giving us those
810 			 * first.
811 			 */
812 			return r;
813 		}
814 	}
815 	return NULL;
816 }
817 EXPORT_SYMBOL(pci_find_parent_resource);
818 
819 /**
820  * pci_find_resource - Return matching PCI device resource
821  * @dev: PCI device to query
822  * @res: Resource to look for
823  *
824  * Goes over standard PCI resources (BARs) and checks if the given resource
825  * is partially or fully contained in any of them. In that case the
826  * matching resource is returned, %NULL otherwise.
827  */
828 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
829 {
830 	int i;
831 
832 	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
833 		struct resource *r = &dev->resource[i];
834 
835 		if (r->start && resource_contains(r, res))
836 			return r;
837 	}
838 
839 	return NULL;
840 }
841 EXPORT_SYMBOL(pci_find_resource);
842 
843 /**
844  * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
845  * @dev: the PCI device to operate on
846  * @pos: config space offset of status word
847  * @mask: mask of bit(s) to care about in status word
848  *
849  * Return 1 when mask bit(s) in status word clear, 0 otherwise.
850  */
851 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
852 {
853 	int i;
854 
855 	/* Wait for Transaction Pending bit clean */
856 	for (i = 0; i < 4; i++) {
857 		u16 status;
858 		if (i)
859 			msleep((1 << (i - 1)) * 100);
860 
861 		pci_read_config_word(dev, pos, &status);
862 		if (!(status & mask))
863 			return 1;
864 	}
865 
866 	return 0;
867 }
868 
869 static int pci_acs_enable;
870 
871 /**
872  * pci_request_acs - ask for ACS to be enabled if supported
873  */
874 void pci_request_acs(void)
875 {
876 	pci_acs_enable = 1;
877 }
878 
879 static const char *disable_acs_redir_param;
880 
881 /**
882  * pci_disable_acs_redir - disable ACS redirect capabilities
883  * @dev: the PCI device
884  *
885  * For only devices specified in the disable_acs_redir parameter.
886  */
887 static void pci_disable_acs_redir(struct pci_dev *dev)
888 {
889 	int ret = 0;
890 	const char *p;
891 	int pos;
892 	u16 ctrl;
893 
894 	if (!disable_acs_redir_param)
895 		return;
896 
897 	p = disable_acs_redir_param;
898 	while (*p) {
899 		ret = pci_dev_str_match(dev, p, &p);
900 		if (ret < 0) {
901 			pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
902 				     disable_acs_redir_param);
903 
904 			break;
905 		} else if (ret == 1) {
906 			/* Found a match */
907 			break;
908 		}
909 
910 		if (*p != ';' && *p != ',') {
911 			/* End of param or invalid format */
912 			break;
913 		}
914 		p++;
915 	}
916 
917 	if (ret != 1)
918 		return;
919 
920 	if (!pci_dev_specific_disable_acs_redir(dev))
921 		return;
922 
923 	pos = dev->acs_cap;
924 	if (!pos) {
925 		pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
926 		return;
927 	}
928 
929 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
930 
931 	/* P2P Request & Completion Redirect */
932 	ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
933 
934 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
935 
936 	pci_info(dev, "disabled ACS redirect\n");
937 }
938 
939 /**
940  * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
941  * @dev: the PCI device
942  */
943 static void pci_std_enable_acs(struct pci_dev *dev)
944 {
945 	int pos;
946 	u16 cap;
947 	u16 ctrl;
948 
949 	pos = dev->acs_cap;
950 	if (!pos)
951 		return;
952 
953 	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
954 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
955 
956 	/* Source Validation */
957 	ctrl |= (cap & PCI_ACS_SV);
958 
959 	/* P2P Request Redirect */
960 	ctrl |= (cap & PCI_ACS_RR);
961 
962 	/* P2P Completion Redirect */
963 	ctrl |= (cap & PCI_ACS_CR);
964 
965 	/* Upstream Forwarding */
966 	ctrl |= (cap & PCI_ACS_UF);
967 
968 	/* Enable Translation Blocking for external devices and noats */
969 	if (pci_ats_disabled() || dev->external_facing || dev->untrusted)
970 		ctrl |= (cap & PCI_ACS_TB);
971 
972 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
973 }
974 
975 /**
976  * pci_enable_acs - enable ACS if hardware support it
977  * @dev: the PCI device
978  */
979 static void pci_enable_acs(struct pci_dev *dev)
980 {
981 	if (!pci_acs_enable)
982 		goto disable_acs_redir;
983 
984 	if (!pci_dev_specific_enable_acs(dev))
985 		goto disable_acs_redir;
986 
987 	pci_std_enable_acs(dev);
988 
989 disable_acs_redir:
990 	/*
991 	 * Note: pci_disable_acs_redir() must be called even if ACS was not
992 	 * enabled by the kernel because it may have been enabled by
993 	 * platform firmware.  So if we are told to disable it, we should
994 	 * always disable it after setting the kernel's default
995 	 * preferences.
996 	 */
997 	pci_disable_acs_redir(dev);
998 }
999 
1000 /**
1001  * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
1002  * @dev: PCI device to have its BARs restored
1003  *
1004  * Restore the BAR values for a given device, so as to make it
1005  * accessible by its driver.
1006  */
1007 static void pci_restore_bars(struct pci_dev *dev)
1008 {
1009 	int i;
1010 
1011 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
1012 		pci_update_resource(dev, i);
1013 }
1014 
1015 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
1016 {
1017 	if (pci_use_mid_pm())
1018 		return true;
1019 
1020 	return acpi_pci_power_manageable(dev);
1021 }
1022 
1023 static inline int platform_pci_set_power_state(struct pci_dev *dev,
1024 					       pci_power_t t)
1025 {
1026 	if (pci_use_mid_pm())
1027 		return mid_pci_set_power_state(dev, t);
1028 
1029 	return acpi_pci_set_power_state(dev, t);
1030 }
1031 
1032 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
1033 {
1034 	if (pci_use_mid_pm())
1035 		return mid_pci_get_power_state(dev);
1036 
1037 	return acpi_pci_get_power_state(dev);
1038 }
1039 
1040 static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
1041 {
1042 	if (!pci_use_mid_pm())
1043 		acpi_pci_refresh_power_state(dev);
1044 }
1045 
1046 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
1047 {
1048 	if (pci_use_mid_pm())
1049 		return PCI_POWER_ERROR;
1050 
1051 	return acpi_pci_choose_state(dev);
1052 }
1053 
1054 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
1055 {
1056 	if (pci_use_mid_pm())
1057 		return PCI_POWER_ERROR;
1058 
1059 	return acpi_pci_wakeup(dev, enable);
1060 }
1061 
1062 static inline bool platform_pci_need_resume(struct pci_dev *dev)
1063 {
1064 	if (pci_use_mid_pm())
1065 		return false;
1066 
1067 	return acpi_pci_need_resume(dev);
1068 }
1069 
1070 static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
1071 {
1072 	if (pci_use_mid_pm())
1073 		return false;
1074 
1075 	return acpi_pci_bridge_d3(dev);
1076 }
1077 
1078 /**
1079  * pci_update_current_state - Read power state of given device and cache it
1080  * @dev: PCI device to handle.
1081  * @state: State to cache in case the device doesn't have the PM capability
1082  *
1083  * The power state is read from the PMCSR register, which however is
1084  * inaccessible in D3cold.  The platform firmware is therefore queried first
1085  * to detect accessibility of the register.  In case the platform firmware
1086  * reports an incorrect state or the device isn't power manageable by the
1087  * platform at all, we try to detect D3cold by testing accessibility of the
1088  * vendor ID in config space.
1089  */
1090 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1091 {
1092 	if (platform_pci_get_power_state(dev) == PCI_D3cold) {
1093 		dev->current_state = PCI_D3cold;
1094 	} else if (dev->pm_cap) {
1095 		u16 pmcsr;
1096 
1097 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1098 		if (PCI_POSSIBLE_ERROR(pmcsr)) {
1099 			dev->current_state = PCI_D3cold;
1100 			return;
1101 		}
1102 		dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1103 	} else {
1104 		dev->current_state = state;
1105 	}
1106 }
1107 
1108 /**
1109  * pci_refresh_power_state - Refresh the given device's power state data
1110  * @dev: Target PCI device.
1111  *
1112  * Ask the platform to refresh the devices power state information and invoke
1113  * pci_update_current_state() to update its current PCI power state.
1114  */
1115 void pci_refresh_power_state(struct pci_dev *dev)
1116 {
1117 	platform_pci_refresh_power_state(dev);
1118 	pci_update_current_state(dev, dev->current_state);
1119 }
1120 
1121 /**
1122  * pci_platform_power_transition - Use platform to change device power state
1123  * @dev: PCI device to handle.
1124  * @state: State to put the device into.
1125  */
1126 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1127 {
1128 	int error;
1129 
1130 	error = platform_pci_set_power_state(dev, state);
1131 	if (!error)
1132 		pci_update_current_state(dev, state);
1133 	else if (!dev->pm_cap) /* Fall back to PCI_D0 */
1134 		dev->current_state = PCI_D0;
1135 
1136 	return error;
1137 }
1138 EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1139 
1140 static int pci_resume_one(struct pci_dev *pci_dev, void *ign)
1141 {
1142 	pm_request_resume(&pci_dev->dev);
1143 	return 0;
1144 }
1145 
1146 /**
1147  * pci_resume_bus - Walk given bus and runtime resume devices on it
1148  * @bus: Top bus of the subtree to walk.
1149  */
1150 void pci_resume_bus(struct pci_bus *bus)
1151 {
1152 	if (bus)
1153 		pci_walk_bus(bus, pci_resume_one, NULL);
1154 }
1155 
1156 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1157 {
1158 	int delay = 1;
1159 	u32 id;
1160 
1161 	/*
1162 	 * After reset, the device should not silently discard config
1163 	 * requests, but it may still indicate that it needs more time by
1164 	 * responding to them with CRS completions.  The Root Port will
1165 	 * generally synthesize ~0 (PCI_ERROR_RESPONSE) data to complete
1166 	 * the read (except when CRS SV is enabled and the read was for the
1167 	 * Vendor ID; in that case it synthesizes 0x0001 data).
1168 	 *
1169 	 * Wait for the device to return a non-CRS completion.  Read the
1170 	 * Command register instead of Vendor ID so we don't have to
1171 	 * contend with the CRS SV value.
1172 	 */
1173 	pci_read_config_dword(dev, PCI_COMMAND, &id);
1174 	while (PCI_POSSIBLE_ERROR(id)) {
1175 		if (delay > timeout) {
1176 			pci_warn(dev, "not ready %dms after %s; giving up\n",
1177 				 delay - 1, reset_type);
1178 			return -ENOTTY;
1179 		}
1180 
1181 		if (delay > PCI_RESET_WAIT)
1182 			pci_info(dev, "not ready %dms after %s; waiting\n",
1183 				 delay - 1, reset_type);
1184 
1185 		msleep(delay);
1186 		delay *= 2;
1187 		pci_read_config_dword(dev, PCI_COMMAND, &id);
1188 	}
1189 
1190 	if (delay > PCI_RESET_WAIT)
1191 		pci_info(dev, "ready %dms after %s\n", delay - 1,
1192 			 reset_type);
1193 
1194 	return 0;
1195 }
1196 
1197 /**
1198  * pci_power_up - Put the given device into D0
1199  * @dev: PCI device to power up
1200  *
1201  * On success, return 0 or 1, depending on whether or not it is necessary to
1202  * restore the device's BARs subsequently (1 is returned in that case).
1203  */
1204 int pci_power_up(struct pci_dev *dev)
1205 {
1206 	bool need_restore;
1207 	pci_power_t state;
1208 	u16 pmcsr;
1209 
1210 	platform_pci_set_power_state(dev, PCI_D0);
1211 
1212 	if (!dev->pm_cap) {
1213 		state = platform_pci_get_power_state(dev);
1214 		if (state == PCI_UNKNOWN)
1215 			dev->current_state = PCI_D0;
1216 		else
1217 			dev->current_state = state;
1218 
1219 		if (state == PCI_D0)
1220 			return 0;
1221 
1222 		return -EIO;
1223 	}
1224 
1225 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1226 	if (PCI_POSSIBLE_ERROR(pmcsr)) {
1227 		pci_err(dev, "Unable to change power state from %s to D0, device inaccessible\n",
1228 			pci_power_name(dev->current_state));
1229 		dev->current_state = PCI_D3cold;
1230 		return -EIO;
1231 	}
1232 
1233 	state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1234 
1235 	need_restore = (state == PCI_D3hot || dev->current_state >= PCI_D3hot) &&
1236 			!(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET);
1237 
1238 	if (state == PCI_D0)
1239 		goto end;
1240 
1241 	/*
1242 	 * Force the entire word to 0. This doesn't affect PME_Status, disables
1243 	 * PME_En, and sets PowerState to 0.
1244 	 */
1245 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, 0);
1246 
1247 	/* Mandatory transition delays; see PCI PM 1.2. */
1248 	if (state == PCI_D3hot)
1249 		pci_dev_d3_sleep(dev);
1250 	else if (state == PCI_D2)
1251 		udelay(PCI_PM_D2_DELAY);
1252 
1253 end:
1254 	dev->current_state = PCI_D0;
1255 	if (need_restore)
1256 		return 1;
1257 
1258 	return 0;
1259 }
1260 
1261 /**
1262  * pci_set_full_power_state - Put a PCI device into D0 and update its state
1263  * @dev: PCI device to power up
1264  *
1265  * Call pci_power_up() to put @dev into D0, read from its PCI_PM_CTRL register
1266  * to confirm the state change, restore its BARs if they might be lost and
1267  * reconfigure ASPM in acordance with the new power state.
1268  *
1269  * If pci_restore_state() is going to be called right after a power state change
1270  * to D0, it is more efficient to use pci_power_up() directly instead of this
1271  * function.
1272  */
1273 static int pci_set_full_power_state(struct pci_dev *dev)
1274 {
1275 	u16 pmcsr;
1276 	int ret;
1277 
1278 	ret = pci_power_up(dev);
1279 	if (ret < 0)
1280 		return ret;
1281 
1282 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1283 	dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1284 	if (dev->current_state != PCI_D0) {
1285 		pci_info_ratelimited(dev, "Refused to change power state from %s to D0\n",
1286 				     pci_power_name(dev->current_state));
1287 	} else if (ret > 0) {
1288 		/*
1289 		 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1290 		 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1291 		 * from D3hot to D0 _may_ perform an internal reset, thereby
1292 		 * going to "D0 Uninitialized" rather than "D0 Initialized".
1293 		 * For example, at least some versions of the 3c905B and the
1294 		 * 3c556B exhibit this behaviour.
1295 		 *
1296 		 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1297 		 * devices in a D3hot state at boot.  Consequently, we need to
1298 		 * restore at least the BARs so that the device will be
1299 		 * accessible to its driver.
1300 		 */
1301 		pci_restore_bars(dev);
1302 	}
1303 
1304 	return 0;
1305 }
1306 
1307 /**
1308  * __pci_dev_set_current_state - Set current state of a PCI device
1309  * @dev: Device to handle
1310  * @data: pointer to state to be set
1311  */
1312 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1313 {
1314 	pci_power_t state = *(pci_power_t *)data;
1315 
1316 	dev->current_state = state;
1317 	return 0;
1318 }
1319 
1320 /**
1321  * pci_bus_set_current_state - Walk given bus and set current state of devices
1322  * @bus: Top bus of the subtree to walk.
1323  * @state: state to be set
1324  */
1325 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1326 {
1327 	if (bus)
1328 		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1329 }
1330 
1331 /**
1332  * pci_set_low_power_state - Put a PCI device into a low-power state.
1333  * @dev: PCI device to handle.
1334  * @state: PCI power state (D1, D2, D3hot) to put the device into.
1335  *
1336  * Use the device's PCI_PM_CTRL register to put it into a low-power state.
1337  *
1338  * RETURN VALUE:
1339  * -EINVAL if the requested state is invalid.
1340  * -EIO if device does not support PCI PM or its PM capabilities register has a
1341  * wrong version, or device doesn't support the requested state.
1342  * 0 if device already is in the requested state.
1343  * 0 if device's power state has been successfully changed.
1344  */
1345 static int pci_set_low_power_state(struct pci_dev *dev, pci_power_t state)
1346 {
1347 	u16 pmcsr;
1348 
1349 	if (!dev->pm_cap)
1350 		return -EIO;
1351 
1352 	/*
1353 	 * Validate transition: We can enter D0 from any state, but if
1354 	 * we're already in a low-power state, we can only go deeper.  E.g.,
1355 	 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1356 	 * we'd have to go from D3 to D0, then to D1.
1357 	 */
1358 	if (dev->current_state <= PCI_D3cold && dev->current_state > state) {
1359 		pci_dbg(dev, "Invalid power transition (from %s to %s)\n",
1360 			pci_power_name(dev->current_state),
1361 			pci_power_name(state));
1362 		return -EINVAL;
1363 	}
1364 
1365 	/* Check if this device supports the desired state */
1366 	if ((state == PCI_D1 && !dev->d1_support)
1367 	   || (state == PCI_D2 && !dev->d2_support))
1368 		return -EIO;
1369 
1370 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1371 	if (PCI_POSSIBLE_ERROR(pmcsr)) {
1372 		pci_err(dev, "Unable to change power state from %s to %s, device inaccessible\n",
1373 			pci_power_name(dev->current_state),
1374 			pci_power_name(state));
1375 		dev->current_state = PCI_D3cold;
1376 		return -EIO;
1377 	}
1378 
1379 	pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1380 	pmcsr |= state;
1381 
1382 	/* Enter specified state */
1383 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1384 
1385 	/* Mandatory power management transition delays; see PCI PM 1.2. */
1386 	if (state == PCI_D3hot)
1387 		pci_dev_d3_sleep(dev);
1388 	else if (state == PCI_D2)
1389 		udelay(PCI_PM_D2_DELAY);
1390 
1391 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1392 	dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1393 	if (dev->current_state != state)
1394 		pci_info_ratelimited(dev, "Refused to change power state from %s to %s\n",
1395 				     pci_power_name(dev->current_state),
1396 				     pci_power_name(state));
1397 
1398 	return 0;
1399 }
1400 
1401 /**
1402  * pci_set_power_state - Set the power state of a PCI device
1403  * @dev: PCI device to handle.
1404  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1405  *
1406  * Transition a device to a new power state, using the platform firmware and/or
1407  * the device's PCI PM registers.
1408  *
1409  * RETURN VALUE:
1410  * -EINVAL if the requested state is invalid.
1411  * -EIO if device does not support PCI PM or its PM capabilities register has a
1412  * wrong version, or device doesn't support the requested state.
1413  * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1414  * 0 if device already is in the requested state.
1415  * 0 if the transition is to D3 but D3 is not supported.
1416  * 0 if device's power state has been successfully changed.
1417  */
1418 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1419 {
1420 	int error;
1421 
1422 	/* Bound the state we're entering */
1423 	if (state > PCI_D3cold)
1424 		state = PCI_D3cold;
1425 	else if (state < PCI_D0)
1426 		state = PCI_D0;
1427 	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1428 
1429 		/*
1430 		 * If the device or the parent bridge do not support PCI
1431 		 * PM, ignore the request if we're doing anything other
1432 		 * than putting it into D0 (which would only happen on
1433 		 * boot).
1434 		 */
1435 		return 0;
1436 
1437 	/* Check if we're already there */
1438 	if (dev->current_state == state)
1439 		return 0;
1440 
1441 	if (state == PCI_D0)
1442 		return pci_set_full_power_state(dev);
1443 
1444 	/*
1445 	 * This device is quirked not to be put into D3, so don't put it in
1446 	 * D3
1447 	 */
1448 	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1449 		return 0;
1450 
1451 	if (state == PCI_D3cold) {
1452 		/*
1453 		 * To put the device in D3cold, put it into D3hot in the native
1454 		 * way, then put it into D3cold using platform ops.
1455 		 */
1456 		error = pci_set_low_power_state(dev, PCI_D3hot);
1457 
1458 		if (pci_platform_power_transition(dev, PCI_D3cold))
1459 			return error;
1460 
1461 		/* Powering off a bridge may power off the whole hierarchy */
1462 		if (dev->current_state == PCI_D3cold)
1463 			pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1464 	} else {
1465 		error = pci_set_low_power_state(dev, state);
1466 
1467 		if (pci_platform_power_transition(dev, state))
1468 			return error;
1469 	}
1470 
1471 	return 0;
1472 }
1473 EXPORT_SYMBOL(pci_set_power_state);
1474 
1475 #define PCI_EXP_SAVE_REGS	7
1476 
1477 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1478 						       u16 cap, bool extended)
1479 {
1480 	struct pci_cap_saved_state *tmp;
1481 
1482 	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1483 		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1484 			return tmp;
1485 	}
1486 	return NULL;
1487 }
1488 
1489 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1490 {
1491 	return _pci_find_saved_cap(dev, cap, false);
1492 }
1493 
1494 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1495 {
1496 	return _pci_find_saved_cap(dev, cap, true);
1497 }
1498 
1499 static int pci_save_pcie_state(struct pci_dev *dev)
1500 {
1501 	int i = 0;
1502 	struct pci_cap_saved_state *save_state;
1503 	u16 *cap;
1504 
1505 	if (!pci_is_pcie(dev))
1506 		return 0;
1507 
1508 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1509 	if (!save_state) {
1510 		pci_err(dev, "buffer not found in %s\n", __func__);
1511 		return -ENOMEM;
1512 	}
1513 
1514 	cap = (u16 *)&save_state->cap.data[0];
1515 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1516 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1517 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1518 	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
1519 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1520 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1521 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1522 
1523 	return 0;
1524 }
1525 
1526 void pci_bridge_reconfigure_ltr(struct pci_dev *dev)
1527 {
1528 #ifdef CONFIG_PCIEASPM
1529 	struct pci_dev *bridge;
1530 	u32 ctl;
1531 
1532 	bridge = pci_upstream_bridge(dev);
1533 	if (bridge && bridge->ltr_path) {
1534 		pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, &ctl);
1535 		if (!(ctl & PCI_EXP_DEVCTL2_LTR_EN)) {
1536 			pci_dbg(bridge, "re-enabling LTR\n");
1537 			pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
1538 						 PCI_EXP_DEVCTL2_LTR_EN);
1539 		}
1540 	}
1541 #endif
1542 }
1543 
1544 static void pci_restore_pcie_state(struct pci_dev *dev)
1545 {
1546 	int i = 0;
1547 	struct pci_cap_saved_state *save_state;
1548 	u16 *cap;
1549 
1550 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1551 	if (!save_state)
1552 		return;
1553 
1554 	/*
1555 	 * Downstream ports reset the LTR enable bit when link goes down.
1556 	 * Check and re-configure the bit here before restoring device.
1557 	 * PCIe r5.0, sec 7.5.3.16.
1558 	 */
1559 	pci_bridge_reconfigure_ltr(dev);
1560 
1561 	cap = (u16 *)&save_state->cap.data[0];
1562 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1563 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1564 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1565 	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1566 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1567 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1568 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1569 }
1570 
1571 static int pci_save_pcix_state(struct pci_dev *dev)
1572 {
1573 	int pos;
1574 	struct pci_cap_saved_state *save_state;
1575 
1576 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1577 	if (!pos)
1578 		return 0;
1579 
1580 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1581 	if (!save_state) {
1582 		pci_err(dev, "buffer not found in %s\n", __func__);
1583 		return -ENOMEM;
1584 	}
1585 
1586 	pci_read_config_word(dev, pos + PCI_X_CMD,
1587 			     (u16 *)save_state->cap.data);
1588 
1589 	return 0;
1590 }
1591 
1592 static void pci_restore_pcix_state(struct pci_dev *dev)
1593 {
1594 	int i = 0, pos;
1595 	struct pci_cap_saved_state *save_state;
1596 	u16 *cap;
1597 
1598 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1599 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1600 	if (!save_state || !pos)
1601 		return;
1602 	cap = (u16 *)&save_state->cap.data[0];
1603 
1604 	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1605 }
1606 
1607 static void pci_save_ltr_state(struct pci_dev *dev)
1608 {
1609 	int ltr;
1610 	struct pci_cap_saved_state *save_state;
1611 	u32 *cap;
1612 
1613 	if (!pci_is_pcie(dev))
1614 		return;
1615 
1616 	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1617 	if (!ltr)
1618 		return;
1619 
1620 	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1621 	if (!save_state) {
1622 		pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1623 		return;
1624 	}
1625 
1626 	/* Some broken devices only support dword access to LTR */
1627 	cap = &save_state->cap.data[0];
1628 	pci_read_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap);
1629 }
1630 
1631 static void pci_restore_ltr_state(struct pci_dev *dev)
1632 {
1633 	struct pci_cap_saved_state *save_state;
1634 	int ltr;
1635 	u32 *cap;
1636 
1637 	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1638 	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1639 	if (!save_state || !ltr)
1640 		return;
1641 
1642 	/* Some broken devices only support dword access to LTR */
1643 	cap = &save_state->cap.data[0];
1644 	pci_write_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap);
1645 }
1646 
1647 /**
1648  * pci_save_state - save the PCI configuration space of a device before
1649  *		    suspending
1650  * @dev: PCI device that we're dealing with
1651  */
1652 int pci_save_state(struct pci_dev *dev)
1653 {
1654 	int i;
1655 	/* XXX: 100% dword access ok here? */
1656 	for (i = 0; i < 16; i++) {
1657 		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1658 		pci_dbg(dev, "saving config space at offset %#x (reading %#x)\n",
1659 			i * 4, dev->saved_config_space[i]);
1660 	}
1661 	dev->state_saved = true;
1662 
1663 	i = pci_save_pcie_state(dev);
1664 	if (i != 0)
1665 		return i;
1666 
1667 	i = pci_save_pcix_state(dev);
1668 	if (i != 0)
1669 		return i;
1670 
1671 	pci_save_ltr_state(dev);
1672 	pci_save_dpc_state(dev);
1673 	pci_save_aer_state(dev);
1674 	pci_save_ptm_state(dev);
1675 	return pci_save_vc_state(dev);
1676 }
1677 EXPORT_SYMBOL(pci_save_state);
1678 
1679 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1680 				     u32 saved_val, int retry, bool force)
1681 {
1682 	u32 val;
1683 
1684 	pci_read_config_dword(pdev, offset, &val);
1685 	if (!force && val == saved_val)
1686 		return;
1687 
1688 	for (;;) {
1689 		pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1690 			offset, val, saved_val);
1691 		pci_write_config_dword(pdev, offset, saved_val);
1692 		if (retry-- <= 0)
1693 			return;
1694 
1695 		pci_read_config_dword(pdev, offset, &val);
1696 		if (val == saved_val)
1697 			return;
1698 
1699 		mdelay(1);
1700 	}
1701 }
1702 
1703 static void pci_restore_config_space_range(struct pci_dev *pdev,
1704 					   int start, int end, int retry,
1705 					   bool force)
1706 {
1707 	int index;
1708 
1709 	for (index = end; index >= start; index--)
1710 		pci_restore_config_dword(pdev, 4 * index,
1711 					 pdev->saved_config_space[index],
1712 					 retry, force);
1713 }
1714 
1715 static void pci_restore_config_space(struct pci_dev *pdev)
1716 {
1717 	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1718 		pci_restore_config_space_range(pdev, 10, 15, 0, false);
1719 		/* Restore BARs before the command register. */
1720 		pci_restore_config_space_range(pdev, 4, 9, 10, false);
1721 		pci_restore_config_space_range(pdev, 0, 3, 0, false);
1722 	} else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1723 		pci_restore_config_space_range(pdev, 12, 15, 0, false);
1724 
1725 		/*
1726 		 * Force rewriting of prefetch registers to avoid S3 resume
1727 		 * issues on Intel PCI bridges that occur when these
1728 		 * registers are not explicitly written.
1729 		 */
1730 		pci_restore_config_space_range(pdev, 9, 11, 0, true);
1731 		pci_restore_config_space_range(pdev, 0, 8, 0, false);
1732 	} else {
1733 		pci_restore_config_space_range(pdev, 0, 15, 0, false);
1734 	}
1735 }
1736 
1737 static void pci_restore_rebar_state(struct pci_dev *pdev)
1738 {
1739 	unsigned int pos, nbars, i;
1740 	u32 ctrl;
1741 
1742 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1743 	if (!pos)
1744 		return;
1745 
1746 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1747 	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1748 		    PCI_REBAR_CTRL_NBAR_SHIFT;
1749 
1750 	for (i = 0; i < nbars; i++, pos += 8) {
1751 		struct resource *res;
1752 		int bar_idx, size;
1753 
1754 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1755 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1756 		res = pdev->resource + bar_idx;
1757 		size = pci_rebar_bytes_to_size(resource_size(res));
1758 		ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1759 		ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1760 		pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1761 	}
1762 }
1763 
1764 /**
1765  * pci_restore_state - Restore the saved state of a PCI device
1766  * @dev: PCI device that we're dealing with
1767  */
1768 void pci_restore_state(struct pci_dev *dev)
1769 {
1770 	if (!dev->state_saved)
1771 		return;
1772 
1773 	/*
1774 	 * Restore max latencies (in the LTR capability) before enabling
1775 	 * LTR itself (in the PCIe capability).
1776 	 */
1777 	pci_restore_ltr_state(dev);
1778 
1779 	pci_restore_pcie_state(dev);
1780 	pci_restore_pasid_state(dev);
1781 	pci_restore_pri_state(dev);
1782 	pci_restore_ats_state(dev);
1783 	pci_restore_vc_state(dev);
1784 	pci_restore_rebar_state(dev);
1785 	pci_restore_dpc_state(dev);
1786 	pci_restore_ptm_state(dev);
1787 
1788 	pci_aer_clear_status(dev);
1789 	pci_restore_aer_state(dev);
1790 
1791 	pci_restore_config_space(dev);
1792 
1793 	pci_restore_pcix_state(dev);
1794 	pci_restore_msi_state(dev);
1795 
1796 	/* Restore ACS and IOV configuration state */
1797 	pci_enable_acs(dev);
1798 	pci_restore_iov_state(dev);
1799 
1800 	dev->state_saved = false;
1801 }
1802 EXPORT_SYMBOL(pci_restore_state);
1803 
1804 struct pci_saved_state {
1805 	u32 config_space[16];
1806 	struct pci_cap_saved_data cap[];
1807 };
1808 
1809 /**
1810  * pci_store_saved_state - Allocate and return an opaque struct containing
1811  *			   the device saved state.
1812  * @dev: PCI device that we're dealing with
1813  *
1814  * Return NULL if no state or error.
1815  */
1816 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1817 {
1818 	struct pci_saved_state *state;
1819 	struct pci_cap_saved_state *tmp;
1820 	struct pci_cap_saved_data *cap;
1821 	size_t size;
1822 
1823 	if (!dev->state_saved)
1824 		return NULL;
1825 
1826 	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1827 
1828 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1829 		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1830 
1831 	state = kzalloc(size, GFP_KERNEL);
1832 	if (!state)
1833 		return NULL;
1834 
1835 	memcpy(state->config_space, dev->saved_config_space,
1836 	       sizeof(state->config_space));
1837 
1838 	cap = state->cap;
1839 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1840 		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1841 		memcpy(cap, &tmp->cap, len);
1842 		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1843 	}
1844 	/* Empty cap_save terminates list */
1845 
1846 	return state;
1847 }
1848 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1849 
1850 /**
1851  * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1852  * @dev: PCI device that we're dealing with
1853  * @state: Saved state returned from pci_store_saved_state()
1854  */
1855 int pci_load_saved_state(struct pci_dev *dev,
1856 			 struct pci_saved_state *state)
1857 {
1858 	struct pci_cap_saved_data *cap;
1859 
1860 	dev->state_saved = false;
1861 
1862 	if (!state)
1863 		return 0;
1864 
1865 	memcpy(dev->saved_config_space, state->config_space,
1866 	       sizeof(state->config_space));
1867 
1868 	cap = state->cap;
1869 	while (cap->size) {
1870 		struct pci_cap_saved_state *tmp;
1871 
1872 		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1873 		if (!tmp || tmp->cap.size != cap->size)
1874 			return -EINVAL;
1875 
1876 		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1877 		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1878 		       sizeof(struct pci_cap_saved_data) + cap->size);
1879 	}
1880 
1881 	dev->state_saved = true;
1882 	return 0;
1883 }
1884 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1885 
1886 /**
1887  * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1888  *				   and free the memory allocated for it.
1889  * @dev: PCI device that we're dealing with
1890  * @state: Pointer to saved state returned from pci_store_saved_state()
1891  */
1892 int pci_load_and_free_saved_state(struct pci_dev *dev,
1893 				  struct pci_saved_state **state)
1894 {
1895 	int ret = pci_load_saved_state(dev, *state);
1896 	kfree(*state);
1897 	*state = NULL;
1898 	return ret;
1899 }
1900 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1901 
1902 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1903 {
1904 	return pci_enable_resources(dev, bars);
1905 }
1906 
1907 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1908 {
1909 	int err;
1910 	struct pci_dev *bridge;
1911 	u16 cmd;
1912 	u8 pin;
1913 
1914 	err = pci_set_power_state(dev, PCI_D0);
1915 	if (err < 0 && err != -EIO)
1916 		return err;
1917 
1918 	bridge = pci_upstream_bridge(dev);
1919 	if (bridge)
1920 		pcie_aspm_powersave_config_link(bridge);
1921 
1922 	err = pcibios_enable_device(dev, bars);
1923 	if (err < 0)
1924 		return err;
1925 	pci_fixup_device(pci_fixup_enable, dev);
1926 
1927 	if (dev->msi_enabled || dev->msix_enabled)
1928 		return 0;
1929 
1930 	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1931 	if (pin) {
1932 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
1933 		if (cmd & PCI_COMMAND_INTX_DISABLE)
1934 			pci_write_config_word(dev, PCI_COMMAND,
1935 					      cmd & ~PCI_COMMAND_INTX_DISABLE);
1936 	}
1937 
1938 	return 0;
1939 }
1940 
1941 /**
1942  * pci_reenable_device - Resume abandoned device
1943  * @dev: PCI device to be resumed
1944  *
1945  * NOTE: This function is a backend of pci_default_resume() and is not supposed
1946  * to be called by normal code, write proper resume handler and use it instead.
1947  */
1948 int pci_reenable_device(struct pci_dev *dev)
1949 {
1950 	if (pci_is_enabled(dev))
1951 		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1952 	return 0;
1953 }
1954 EXPORT_SYMBOL(pci_reenable_device);
1955 
1956 static void pci_enable_bridge(struct pci_dev *dev)
1957 {
1958 	struct pci_dev *bridge;
1959 	int retval;
1960 
1961 	bridge = pci_upstream_bridge(dev);
1962 	if (bridge)
1963 		pci_enable_bridge(bridge);
1964 
1965 	if (pci_is_enabled(dev)) {
1966 		if (!dev->is_busmaster)
1967 			pci_set_master(dev);
1968 		return;
1969 	}
1970 
1971 	retval = pci_enable_device(dev);
1972 	if (retval)
1973 		pci_err(dev, "Error enabling bridge (%d), continuing\n",
1974 			retval);
1975 	pci_set_master(dev);
1976 }
1977 
1978 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1979 {
1980 	struct pci_dev *bridge;
1981 	int err;
1982 	int i, bars = 0;
1983 
1984 	/*
1985 	 * Power state could be unknown at this point, either due to a fresh
1986 	 * boot or a device removal call.  So get the current power state
1987 	 * so that things like MSI message writing will behave as expected
1988 	 * (e.g. if the device really is in D0 at enable time).
1989 	 */
1990 	pci_update_current_state(dev, dev->current_state);
1991 
1992 	if (atomic_inc_return(&dev->enable_cnt) > 1)
1993 		return 0;		/* already enabled */
1994 
1995 	bridge = pci_upstream_bridge(dev);
1996 	if (bridge)
1997 		pci_enable_bridge(bridge);
1998 
1999 	/* only skip sriov related */
2000 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
2001 		if (dev->resource[i].flags & flags)
2002 			bars |= (1 << i);
2003 	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
2004 		if (dev->resource[i].flags & flags)
2005 			bars |= (1 << i);
2006 
2007 	err = do_pci_enable_device(dev, bars);
2008 	if (err < 0)
2009 		atomic_dec(&dev->enable_cnt);
2010 	return err;
2011 }
2012 
2013 /**
2014  * pci_enable_device_io - Initialize a device for use with IO space
2015  * @dev: PCI device to be initialized
2016  *
2017  * Initialize device before it's used by a driver. Ask low-level code
2018  * to enable I/O resources. Wake up the device if it was suspended.
2019  * Beware, this function can fail.
2020  */
2021 int pci_enable_device_io(struct pci_dev *dev)
2022 {
2023 	return pci_enable_device_flags(dev, IORESOURCE_IO);
2024 }
2025 EXPORT_SYMBOL(pci_enable_device_io);
2026 
2027 /**
2028  * pci_enable_device_mem - Initialize a device for use with Memory space
2029  * @dev: PCI device to be initialized
2030  *
2031  * Initialize device before it's used by a driver. Ask low-level code
2032  * to enable Memory resources. Wake up the device if it was suspended.
2033  * Beware, this function can fail.
2034  */
2035 int pci_enable_device_mem(struct pci_dev *dev)
2036 {
2037 	return pci_enable_device_flags(dev, IORESOURCE_MEM);
2038 }
2039 EXPORT_SYMBOL(pci_enable_device_mem);
2040 
2041 /**
2042  * pci_enable_device - Initialize device before it's used by a driver.
2043  * @dev: PCI device to be initialized
2044  *
2045  * Initialize device before it's used by a driver. Ask low-level code
2046  * to enable I/O and memory. Wake up the device if it was suspended.
2047  * Beware, this function can fail.
2048  *
2049  * Note we don't actually enable the device many times if we call
2050  * this function repeatedly (we just increment the count).
2051  */
2052 int pci_enable_device(struct pci_dev *dev)
2053 {
2054 	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
2055 }
2056 EXPORT_SYMBOL(pci_enable_device);
2057 
2058 /*
2059  * Managed PCI resources.  This manages device on/off, INTx/MSI/MSI-X
2060  * on/off and BAR regions.  pci_dev itself records MSI/MSI-X status, so
2061  * there's no need to track it separately.  pci_devres is initialized
2062  * when a device is enabled using managed PCI device enable interface.
2063  */
2064 struct pci_devres {
2065 	unsigned int enabled:1;
2066 	unsigned int pinned:1;
2067 	unsigned int orig_intx:1;
2068 	unsigned int restore_intx:1;
2069 	unsigned int mwi:1;
2070 	u32 region_mask;
2071 };
2072 
2073 static void pcim_release(struct device *gendev, void *res)
2074 {
2075 	struct pci_dev *dev = to_pci_dev(gendev);
2076 	struct pci_devres *this = res;
2077 	int i;
2078 
2079 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
2080 		if (this->region_mask & (1 << i))
2081 			pci_release_region(dev, i);
2082 
2083 	if (this->mwi)
2084 		pci_clear_mwi(dev);
2085 
2086 	if (this->restore_intx)
2087 		pci_intx(dev, this->orig_intx);
2088 
2089 	if (this->enabled && !this->pinned)
2090 		pci_disable_device(dev);
2091 }
2092 
2093 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
2094 {
2095 	struct pci_devres *dr, *new_dr;
2096 
2097 	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
2098 	if (dr)
2099 		return dr;
2100 
2101 	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
2102 	if (!new_dr)
2103 		return NULL;
2104 	return devres_get(&pdev->dev, new_dr, NULL, NULL);
2105 }
2106 
2107 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
2108 {
2109 	if (pci_is_managed(pdev))
2110 		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
2111 	return NULL;
2112 }
2113 
2114 /**
2115  * pcim_enable_device - Managed pci_enable_device()
2116  * @pdev: PCI device to be initialized
2117  *
2118  * Managed pci_enable_device().
2119  */
2120 int pcim_enable_device(struct pci_dev *pdev)
2121 {
2122 	struct pci_devres *dr;
2123 	int rc;
2124 
2125 	dr = get_pci_dr(pdev);
2126 	if (unlikely(!dr))
2127 		return -ENOMEM;
2128 	if (dr->enabled)
2129 		return 0;
2130 
2131 	rc = pci_enable_device(pdev);
2132 	if (!rc) {
2133 		pdev->is_managed = 1;
2134 		dr->enabled = 1;
2135 	}
2136 	return rc;
2137 }
2138 EXPORT_SYMBOL(pcim_enable_device);
2139 
2140 /**
2141  * pcim_pin_device - Pin managed PCI device
2142  * @pdev: PCI device to pin
2143  *
2144  * Pin managed PCI device @pdev.  Pinned device won't be disabled on
2145  * driver detach.  @pdev must have been enabled with
2146  * pcim_enable_device().
2147  */
2148 void pcim_pin_device(struct pci_dev *pdev)
2149 {
2150 	struct pci_devres *dr;
2151 
2152 	dr = find_pci_dr(pdev);
2153 	WARN_ON(!dr || !dr->enabled);
2154 	if (dr)
2155 		dr->pinned = 1;
2156 }
2157 EXPORT_SYMBOL(pcim_pin_device);
2158 
2159 /*
2160  * pcibios_device_add - provide arch specific hooks when adding device dev
2161  * @dev: the PCI device being added
2162  *
2163  * Permits the platform to provide architecture specific functionality when
2164  * devices are added. This is the default implementation. Architecture
2165  * implementations can override this.
2166  */
2167 int __weak pcibios_device_add(struct pci_dev *dev)
2168 {
2169 	return 0;
2170 }
2171 
2172 /**
2173  * pcibios_release_device - provide arch specific hooks when releasing
2174  *			    device dev
2175  * @dev: the PCI device being released
2176  *
2177  * Permits the platform to provide architecture specific functionality when
2178  * devices are released. This is the default implementation. Architecture
2179  * implementations can override this.
2180  */
2181 void __weak pcibios_release_device(struct pci_dev *dev) {}
2182 
2183 /**
2184  * pcibios_disable_device - disable arch specific PCI resources for device dev
2185  * @dev: the PCI device to disable
2186  *
2187  * Disables architecture specific PCI resources for the device. This
2188  * is the default implementation. Architecture implementations can
2189  * override this.
2190  */
2191 void __weak pcibios_disable_device(struct pci_dev *dev) {}
2192 
2193 /**
2194  * pcibios_penalize_isa_irq - penalize an ISA IRQ
2195  * @irq: ISA IRQ to penalize
2196  * @active: IRQ active or not
2197  *
2198  * Permits the platform to provide architecture-specific functionality when
2199  * penalizing ISA IRQs. This is the default implementation. Architecture
2200  * implementations can override this.
2201  */
2202 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
2203 
2204 static void do_pci_disable_device(struct pci_dev *dev)
2205 {
2206 	u16 pci_command;
2207 
2208 	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2209 	if (pci_command & PCI_COMMAND_MASTER) {
2210 		pci_command &= ~PCI_COMMAND_MASTER;
2211 		pci_write_config_word(dev, PCI_COMMAND, pci_command);
2212 	}
2213 
2214 	pcibios_disable_device(dev);
2215 }
2216 
2217 /**
2218  * pci_disable_enabled_device - Disable device without updating enable_cnt
2219  * @dev: PCI device to disable
2220  *
2221  * NOTE: This function is a backend of PCI power management routines and is
2222  * not supposed to be called drivers.
2223  */
2224 void pci_disable_enabled_device(struct pci_dev *dev)
2225 {
2226 	if (pci_is_enabled(dev))
2227 		do_pci_disable_device(dev);
2228 }
2229 
2230 /**
2231  * pci_disable_device - Disable PCI device after use
2232  * @dev: PCI device to be disabled
2233  *
2234  * Signal to the system that the PCI device is not in use by the system
2235  * anymore.  This only involves disabling PCI bus-mastering, if active.
2236  *
2237  * Note we don't actually disable the device until all callers of
2238  * pci_enable_device() have called pci_disable_device().
2239  */
2240 void pci_disable_device(struct pci_dev *dev)
2241 {
2242 	struct pci_devres *dr;
2243 
2244 	dr = find_pci_dr(dev);
2245 	if (dr)
2246 		dr->enabled = 0;
2247 
2248 	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2249 		      "disabling already-disabled device");
2250 
2251 	if (atomic_dec_return(&dev->enable_cnt) != 0)
2252 		return;
2253 
2254 	do_pci_disable_device(dev);
2255 
2256 	dev->is_busmaster = 0;
2257 }
2258 EXPORT_SYMBOL(pci_disable_device);
2259 
2260 /**
2261  * pcibios_set_pcie_reset_state - set reset state for device dev
2262  * @dev: the PCIe device reset
2263  * @state: Reset state to enter into
2264  *
2265  * Set the PCIe reset state for the device. This is the default
2266  * implementation. Architecture implementations can override this.
2267  */
2268 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2269 					enum pcie_reset_state state)
2270 {
2271 	return -EINVAL;
2272 }
2273 
2274 /**
2275  * pci_set_pcie_reset_state - set reset state for device dev
2276  * @dev: the PCIe device reset
2277  * @state: Reset state to enter into
2278  *
2279  * Sets the PCI reset state for the device.
2280  */
2281 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2282 {
2283 	return pcibios_set_pcie_reset_state(dev, state);
2284 }
2285 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2286 
2287 #ifdef CONFIG_PCIEAER
2288 void pcie_clear_device_status(struct pci_dev *dev)
2289 {
2290 	u16 sta;
2291 
2292 	pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2293 	pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2294 }
2295 #endif
2296 
2297 /**
2298  * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2299  * @dev: PCIe root port or event collector.
2300  */
2301 void pcie_clear_root_pme_status(struct pci_dev *dev)
2302 {
2303 	pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2304 }
2305 
2306 /**
2307  * pci_check_pme_status - Check if given device has generated PME.
2308  * @dev: Device to check.
2309  *
2310  * Check the PME status of the device and if set, clear it and clear PME enable
2311  * (if set).  Return 'true' if PME status and PME enable were both set or
2312  * 'false' otherwise.
2313  */
2314 bool pci_check_pme_status(struct pci_dev *dev)
2315 {
2316 	int pmcsr_pos;
2317 	u16 pmcsr;
2318 	bool ret = false;
2319 
2320 	if (!dev->pm_cap)
2321 		return false;
2322 
2323 	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2324 	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2325 	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2326 		return false;
2327 
2328 	/* Clear PME status. */
2329 	pmcsr |= PCI_PM_CTRL_PME_STATUS;
2330 	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2331 		/* Disable PME to avoid interrupt flood. */
2332 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2333 		ret = true;
2334 	}
2335 
2336 	pci_write_config_word(dev, pmcsr_pos, pmcsr);
2337 
2338 	return ret;
2339 }
2340 
2341 /**
2342  * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2343  * @dev: Device to handle.
2344  * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2345  *
2346  * Check if @dev has generated PME and queue a resume request for it in that
2347  * case.
2348  */
2349 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2350 {
2351 	if (pme_poll_reset && dev->pme_poll)
2352 		dev->pme_poll = false;
2353 
2354 	if (pci_check_pme_status(dev)) {
2355 		pci_wakeup_event(dev);
2356 		pm_request_resume(&dev->dev);
2357 	}
2358 	return 0;
2359 }
2360 
2361 /**
2362  * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2363  * @bus: Top bus of the subtree to walk.
2364  */
2365 void pci_pme_wakeup_bus(struct pci_bus *bus)
2366 {
2367 	if (bus)
2368 		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2369 }
2370 
2371 
2372 /**
2373  * pci_pme_capable - check the capability of PCI device to generate PME#
2374  * @dev: PCI device to handle.
2375  * @state: PCI state from which device will issue PME#.
2376  */
2377 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2378 {
2379 	if (!dev->pm_cap)
2380 		return false;
2381 
2382 	return !!(dev->pme_support & (1 << state));
2383 }
2384 EXPORT_SYMBOL(pci_pme_capable);
2385 
2386 static void pci_pme_list_scan(struct work_struct *work)
2387 {
2388 	struct pci_pme_device *pme_dev, *n;
2389 
2390 	mutex_lock(&pci_pme_list_mutex);
2391 	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2392 		if (pme_dev->dev->pme_poll) {
2393 			struct pci_dev *bridge;
2394 
2395 			bridge = pme_dev->dev->bus->self;
2396 			/*
2397 			 * If bridge is in low power state, the
2398 			 * configuration space of subordinate devices
2399 			 * may be not accessible
2400 			 */
2401 			if (bridge && bridge->current_state != PCI_D0)
2402 				continue;
2403 			/*
2404 			 * If the device is in D3cold it should not be
2405 			 * polled either.
2406 			 */
2407 			if (pme_dev->dev->current_state == PCI_D3cold)
2408 				continue;
2409 
2410 			pci_pme_wakeup(pme_dev->dev, NULL);
2411 		} else {
2412 			list_del(&pme_dev->list);
2413 			kfree(pme_dev);
2414 		}
2415 	}
2416 	if (!list_empty(&pci_pme_list))
2417 		queue_delayed_work(system_freezable_wq, &pci_pme_work,
2418 				   msecs_to_jiffies(PME_TIMEOUT));
2419 	mutex_unlock(&pci_pme_list_mutex);
2420 }
2421 
2422 static void __pci_pme_active(struct pci_dev *dev, bool enable)
2423 {
2424 	u16 pmcsr;
2425 
2426 	if (!dev->pme_support)
2427 		return;
2428 
2429 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2430 	/* Clear PME_Status by writing 1 to it and enable PME# */
2431 	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2432 	if (!enable)
2433 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2434 
2435 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2436 }
2437 
2438 /**
2439  * pci_pme_restore - Restore PME configuration after config space restore.
2440  * @dev: PCI device to update.
2441  */
2442 void pci_pme_restore(struct pci_dev *dev)
2443 {
2444 	u16 pmcsr;
2445 
2446 	if (!dev->pme_support)
2447 		return;
2448 
2449 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2450 	if (dev->wakeup_prepared) {
2451 		pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2452 		pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2453 	} else {
2454 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2455 		pmcsr |= PCI_PM_CTRL_PME_STATUS;
2456 	}
2457 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2458 }
2459 
2460 /**
2461  * pci_pme_active - enable or disable PCI device's PME# function
2462  * @dev: PCI device to handle.
2463  * @enable: 'true' to enable PME# generation; 'false' to disable it.
2464  *
2465  * The caller must verify that the device is capable of generating PME# before
2466  * calling this function with @enable equal to 'true'.
2467  */
2468 void pci_pme_active(struct pci_dev *dev, bool enable)
2469 {
2470 	__pci_pme_active(dev, enable);
2471 
2472 	/*
2473 	 * PCI (as opposed to PCIe) PME requires that the device have
2474 	 * its PME# line hooked up correctly. Not all hardware vendors
2475 	 * do this, so the PME never gets delivered and the device
2476 	 * remains asleep. The easiest way around this is to
2477 	 * periodically walk the list of suspended devices and check
2478 	 * whether any have their PME flag set. The assumption is that
2479 	 * we'll wake up often enough anyway that this won't be a huge
2480 	 * hit, and the power savings from the devices will still be a
2481 	 * win.
2482 	 *
2483 	 * Although PCIe uses in-band PME message instead of PME# line
2484 	 * to report PME, PME does not work for some PCIe devices in
2485 	 * reality.  For example, there are devices that set their PME
2486 	 * status bits, but don't really bother to send a PME message;
2487 	 * there are PCI Express Root Ports that don't bother to
2488 	 * trigger interrupts when they receive PME messages from the
2489 	 * devices below.  So PME poll is used for PCIe devices too.
2490 	 */
2491 
2492 	if (dev->pme_poll) {
2493 		struct pci_pme_device *pme_dev;
2494 		if (enable) {
2495 			pme_dev = kmalloc(sizeof(struct pci_pme_device),
2496 					  GFP_KERNEL);
2497 			if (!pme_dev) {
2498 				pci_warn(dev, "can't enable PME#\n");
2499 				return;
2500 			}
2501 			pme_dev->dev = dev;
2502 			mutex_lock(&pci_pme_list_mutex);
2503 			list_add(&pme_dev->list, &pci_pme_list);
2504 			if (list_is_singular(&pci_pme_list))
2505 				queue_delayed_work(system_freezable_wq,
2506 						   &pci_pme_work,
2507 						   msecs_to_jiffies(PME_TIMEOUT));
2508 			mutex_unlock(&pci_pme_list_mutex);
2509 		} else {
2510 			mutex_lock(&pci_pme_list_mutex);
2511 			list_for_each_entry(pme_dev, &pci_pme_list, list) {
2512 				if (pme_dev->dev == dev) {
2513 					list_del(&pme_dev->list);
2514 					kfree(pme_dev);
2515 					break;
2516 				}
2517 			}
2518 			mutex_unlock(&pci_pme_list_mutex);
2519 		}
2520 	}
2521 
2522 	pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2523 }
2524 EXPORT_SYMBOL(pci_pme_active);
2525 
2526 /**
2527  * __pci_enable_wake - enable PCI device as wakeup event source
2528  * @dev: PCI device affected
2529  * @state: PCI state from which device will issue wakeup events
2530  * @enable: True to enable event generation; false to disable
2531  *
2532  * This enables the device as a wakeup event source, or disables it.
2533  * When such events involves platform-specific hooks, those hooks are
2534  * called automatically by this routine.
2535  *
2536  * Devices with legacy power management (no standard PCI PM capabilities)
2537  * always require such platform hooks.
2538  *
2539  * RETURN VALUE:
2540  * 0 is returned on success
2541  * -EINVAL is returned if device is not supposed to wake up the system
2542  * Error code depending on the platform is returned if both the platform and
2543  * the native mechanism fail to enable the generation of wake-up events
2544  */
2545 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2546 {
2547 	int ret = 0;
2548 
2549 	/*
2550 	 * Bridges that are not power-manageable directly only signal
2551 	 * wakeup on behalf of subordinate devices which is set up
2552 	 * elsewhere, so skip them. However, bridges that are
2553 	 * power-manageable may signal wakeup for themselves (for example,
2554 	 * on a hotplug event) and they need to be covered here.
2555 	 */
2556 	if (!pci_power_manageable(dev))
2557 		return 0;
2558 
2559 	/* Don't do the same thing twice in a row for one device. */
2560 	if (!!enable == !!dev->wakeup_prepared)
2561 		return 0;
2562 
2563 	/*
2564 	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2565 	 * Anderson we should be doing PME# wake enable followed by ACPI wake
2566 	 * enable.  To disable wake-up we call the platform first, for symmetry.
2567 	 */
2568 
2569 	if (enable) {
2570 		int error;
2571 
2572 		/*
2573 		 * Enable PME signaling if the device can signal PME from
2574 		 * D3cold regardless of whether or not it can signal PME from
2575 		 * the current target state, because that will allow it to
2576 		 * signal PME when the hierarchy above it goes into D3cold and
2577 		 * the device itself ends up in D3cold as a result of that.
2578 		 */
2579 		if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold))
2580 			pci_pme_active(dev, true);
2581 		else
2582 			ret = 1;
2583 		error = platform_pci_set_wakeup(dev, true);
2584 		if (ret)
2585 			ret = error;
2586 		if (!ret)
2587 			dev->wakeup_prepared = true;
2588 	} else {
2589 		platform_pci_set_wakeup(dev, false);
2590 		pci_pme_active(dev, false);
2591 		dev->wakeup_prepared = false;
2592 	}
2593 
2594 	return ret;
2595 }
2596 
2597 /**
2598  * pci_enable_wake - change wakeup settings for a PCI device
2599  * @pci_dev: Target device
2600  * @state: PCI state from which device will issue wakeup events
2601  * @enable: Whether or not to enable event generation
2602  *
2603  * If @enable is set, check device_may_wakeup() for the device before calling
2604  * __pci_enable_wake() for it.
2605  */
2606 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2607 {
2608 	if (enable && !device_may_wakeup(&pci_dev->dev))
2609 		return -EINVAL;
2610 
2611 	return __pci_enable_wake(pci_dev, state, enable);
2612 }
2613 EXPORT_SYMBOL(pci_enable_wake);
2614 
2615 /**
2616  * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2617  * @dev: PCI device to prepare
2618  * @enable: True to enable wake-up event generation; false to disable
2619  *
2620  * Many drivers want the device to wake up the system from D3_hot or D3_cold
2621  * and this function allows them to set that up cleanly - pci_enable_wake()
2622  * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2623  * ordering constraints.
2624  *
2625  * This function only returns error code if the device is not allowed to wake
2626  * up the system from sleep or it is not capable of generating PME# from both
2627  * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2628  */
2629 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2630 {
2631 	return pci_pme_capable(dev, PCI_D3cold) ?
2632 			pci_enable_wake(dev, PCI_D3cold, enable) :
2633 			pci_enable_wake(dev, PCI_D3hot, enable);
2634 }
2635 EXPORT_SYMBOL(pci_wake_from_d3);
2636 
2637 /**
2638  * pci_target_state - find an appropriate low power state for a given PCI dev
2639  * @dev: PCI device
2640  * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2641  *
2642  * Use underlying platform code to find a supported low power state for @dev.
2643  * If the platform can't manage @dev, return the deepest state from which it
2644  * can generate wake events, based on any available PME info.
2645  */
2646 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2647 {
2648 	if (platform_pci_power_manageable(dev)) {
2649 		/*
2650 		 * Call the platform to find the target state for the device.
2651 		 */
2652 		pci_power_t state = platform_pci_choose_state(dev);
2653 
2654 		switch (state) {
2655 		case PCI_POWER_ERROR:
2656 		case PCI_UNKNOWN:
2657 			return PCI_D3hot;
2658 
2659 		case PCI_D1:
2660 		case PCI_D2:
2661 			if (pci_no_d1d2(dev))
2662 				return PCI_D3hot;
2663 		}
2664 
2665 		return state;
2666 	}
2667 
2668 	/*
2669 	 * If the device is in D3cold even though it's not power-manageable by
2670 	 * the platform, it may have been powered down by non-standard means.
2671 	 * Best to let it slumber.
2672 	 */
2673 	if (dev->current_state == PCI_D3cold)
2674 		return PCI_D3cold;
2675 	else if (!dev->pm_cap)
2676 		return PCI_D0;
2677 
2678 	if (wakeup && dev->pme_support) {
2679 		pci_power_t state = PCI_D3hot;
2680 
2681 		/*
2682 		 * Find the deepest state from which the device can generate
2683 		 * PME#.
2684 		 */
2685 		while (state && !(dev->pme_support & (1 << state)))
2686 			state--;
2687 
2688 		if (state)
2689 			return state;
2690 		else if (dev->pme_support & 1)
2691 			return PCI_D0;
2692 	}
2693 
2694 	return PCI_D3hot;
2695 }
2696 
2697 /**
2698  * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2699  *			  into a sleep state
2700  * @dev: Device to handle.
2701  *
2702  * Choose the power state appropriate for the device depending on whether
2703  * it can wake up the system and/or is power manageable by the platform
2704  * (PCI_D3hot is the default) and put the device into that state.
2705  */
2706 int pci_prepare_to_sleep(struct pci_dev *dev)
2707 {
2708 	bool wakeup = device_may_wakeup(&dev->dev);
2709 	pci_power_t target_state = pci_target_state(dev, wakeup);
2710 	int error;
2711 
2712 	if (target_state == PCI_POWER_ERROR)
2713 		return -EIO;
2714 
2715 	pci_enable_wake(dev, target_state, wakeup);
2716 
2717 	error = pci_set_power_state(dev, target_state);
2718 
2719 	if (error)
2720 		pci_enable_wake(dev, target_state, false);
2721 
2722 	return error;
2723 }
2724 EXPORT_SYMBOL(pci_prepare_to_sleep);
2725 
2726 /**
2727  * pci_back_from_sleep - turn PCI device on during system-wide transition
2728  *			 into working state
2729  * @dev: Device to handle.
2730  *
2731  * Disable device's system wake-up capability and put it into D0.
2732  */
2733 int pci_back_from_sleep(struct pci_dev *dev)
2734 {
2735 	int ret = pci_set_power_state(dev, PCI_D0);
2736 
2737 	if (ret)
2738 		return ret;
2739 
2740 	pci_enable_wake(dev, PCI_D0, false);
2741 	return 0;
2742 }
2743 EXPORT_SYMBOL(pci_back_from_sleep);
2744 
2745 /**
2746  * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2747  * @dev: PCI device being suspended.
2748  *
2749  * Prepare @dev to generate wake-up events at run time and put it into a low
2750  * power state.
2751  */
2752 int pci_finish_runtime_suspend(struct pci_dev *dev)
2753 {
2754 	pci_power_t target_state;
2755 	int error;
2756 
2757 	target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2758 	if (target_state == PCI_POWER_ERROR)
2759 		return -EIO;
2760 
2761 	__pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2762 
2763 	error = pci_set_power_state(dev, target_state);
2764 
2765 	if (error)
2766 		pci_enable_wake(dev, target_state, false);
2767 
2768 	return error;
2769 }
2770 
2771 /**
2772  * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2773  * @dev: Device to check.
2774  *
2775  * Return true if the device itself is capable of generating wake-up events
2776  * (through the platform or using the native PCIe PME) or if the device supports
2777  * PME and one of its upstream bridges can generate wake-up events.
2778  */
2779 bool pci_dev_run_wake(struct pci_dev *dev)
2780 {
2781 	struct pci_bus *bus = dev->bus;
2782 
2783 	if (!dev->pme_support)
2784 		return false;
2785 
2786 	/* PME-capable in principle, but not from the target power state */
2787 	if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2788 		return false;
2789 
2790 	if (device_can_wakeup(&dev->dev))
2791 		return true;
2792 
2793 	while (bus->parent) {
2794 		struct pci_dev *bridge = bus->self;
2795 
2796 		if (device_can_wakeup(&bridge->dev))
2797 			return true;
2798 
2799 		bus = bus->parent;
2800 	}
2801 
2802 	/* We have reached the root bus. */
2803 	if (bus->bridge)
2804 		return device_can_wakeup(bus->bridge);
2805 
2806 	return false;
2807 }
2808 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2809 
2810 /**
2811  * pci_dev_need_resume - Check if it is necessary to resume the device.
2812  * @pci_dev: Device to check.
2813  *
2814  * Return 'true' if the device is not runtime-suspended or it has to be
2815  * reconfigured due to wakeup settings difference between system and runtime
2816  * suspend, or the current power state of it is not suitable for the upcoming
2817  * (system-wide) transition.
2818  */
2819 bool pci_dev_need_resume(struct pci_dev *pci_dev)
2820 {
2821 	struct device *dev = &pci_dev->dev;
2822 	pci_power_t target_state;
2823 
2824 	if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2825 		return true;
2826 
2827 	target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2828 
2829 	/*
2830 	 * If the earlier platform check has not triggered, D3cold is just power
2831 	 * removal on top of D3hot, so no need to resume the device in that
2832 	 * case.
2833 	 */
2834 	return target_state != pci_dev->current_state &&
2835 		target_state != PCI_D3cold &&
2836 		pci_dev->current_state != PCI_D3hot;
2837 }
2838 
2839 /**
2840  * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2841  * @pci_dev: Device to check.
2842  *
2843  * If the device is suspended and it is not configured for system wakeup,
2844  * disable PME for it to prevent it from waking up the system unnecessarily.
2845  *
2846  * Note that if the device's power state is D3cold and the platform check in
2847  * pci_dev_need_resume() has not triggered, the device's configuration need not
2848  * be changed.
2849  */
2850 void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2851 {
2852 	struct device *dev = &pci_dev->dev;
2853 
2854 	spin_lock_irq(&dev->power.lock);
2855 
2856 	if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2857 	    pci_dev->current_state < PCI_D3cold)
2858 		__pci_pme_active(pci_dev, false);
2859 
2860 	spin_unlock_irq(&dev->power.lock);
2861 }
2862 
2863 /**
2864  * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2865  * @pci_dev: Device to handle.
2866  *
2867  * If the device is runtime suspended and wakeup-capable, enable PME for it as
2868  * it might have been disabled during the prepare phase of system suspend if
2869  * the device was not configured for system wakeup.
2870  */
2871 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2872 {
2873 	struct device *dev = &pci_dev->dev;
2874 
2875 	if (!pci_dev_run_wake(pci_dev))
2876 		return;
2877 
2878 	spin_lock_irq(&dev->power.lock);
2879 
2880 	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2881 		__pci_pme_active(pci_dev, true);
2882 
2883 	spin_unlock_irq(&dev->power.lock);
2884 }
2885 
2886 /**
2887  * pci_choose_state - Choose the power state of a PCI device.
2888  * @dev: Target PCI device.
2889  * @state: Target state for the whole system.
2890  *
2891  * Returns PCI power state suitable for @dev and @state.
2892  */
2893 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
2894 {
2895 	if (state.event == PM_EVENT_ON)
2896 		return PCI_D0;
2897 
2898 	return pci_target_state(dev, false);
2899 }
2900 EXPORT_SYMBOL(pci_choose_state);
2901 
2902 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2903 {
2904 	struct device *dev = &pdev->dev;
2905 	struct device *parent = dev->parent;
2906 
2907 	if (parent)
2908 		pm_runtime_get_sync(parent);
2909 	pm_runtime_get_noresume(dev);
2910 	/*
2911 	 * pdev->current_state is set to PCI_D3cold during suspending,
2912 	 * so wait until suspending completes
2913 	 */
2914 	pm_runtime_barrier(dev);
2915 	/*
2916 	 * Only need to resume devices in D3cold, because config
2917 	 * registers are still accessible for devices suspended but
2918 	 * not in D3cold.
2919 	 */
2920 	if (pdev->current_state == PCI_D3cold)
2921 		pm_runtime_resume(dev);
2922 }
2923 
2924 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2925 {
2926 	struct device *dev = &pdev->dev;
2927 	struct device *parent = dev->parent;
2928 
2929 	pm_runtime_put(dev);
2930 	if (parent)
2931 		pm_runtime_put_sync(parent);
2932 }
2933 
2934 static const struct dmi_system_id bridge_d3_blacklist[] = {
2935 #ifdef CONFIG_X86
2936 	{
2937 		/*
2938 		 * Gigabyte X299 root port is not marked as hotplug capable
2939 		 * which allows Linux to power manage it.  However, this
2940 		 * confuses the BIOS SMI handler so don't power manage root
2941 		 * ports on that system.
2942 		 */
2943 		.ident = "X299 DESIGNARE EX-CF",
2944 		.matches = {
2945 			DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2946 			DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2947 		},
2948 	},
2949 	{
2950 		/*
2951 		 * Downstream device is not accessible after putting a root port
2952 		 * into D3cold and back into D0 on Elo i2.
2953 		 */
2954 		.ident = "Elo i2",
2955 		.matches = {
2956 			DMI_MATCH(DMI_SYS_VENDOR, "Elo Touch Solutions"),
2957 			DMI_MATCH(DMI_PRODUCT_NAME, "Elo i2"),
2958 			DMI_MATCH(DMI_PRODUCT_VERSION, "RevB"),
2959 		},
2960 	},
2961 #endif
2962 	{ }
2963 };
2964 
2965 /**
2966  * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2967  * @bridge: Bridge to check
2968  *
2969  * This function checks if it is possible to move the bridge to D3.
2970  * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2971  */
2972 bool pci_bridge_d3_possible(struct pci_dev *bridge)
2973 {
2974 	if (!pci_is_pcie(bridge))
2975 		return false;
2976 
2977 	switch (pci_pcie_type(bridge)) {
2978 	case PCI_EXP_TYPE_ROOT_PORT:
2979 	case PCI_EXP_TYPE_UPSTREAM:
2980 	case PCI_EXP_TYPE_DOWNSTREAM:
2981 		if (pci_bridge_d3_disable)
2982 			return false;
2983 
2984 		/*
2985 		 * Hotplug ports handled by firmware in System Management Mode
2986 		 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2987 		 */
2988 		if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
2989 			return false;
2990 
2991 		if (pci_bridge_d3_force)
2992 			return true;
2993 
2994 		/* Even the oldest 2010 Thunderbolt controller supports D3. */
2995 		if (bridge->is_thunderbolt)
2996 			return true;
2997 
2998 		/* Platform might know better if the bridge supports D3 */
2999 		if (platform_pci_bridge_d3(bridge))
3000 			return true;
3001 
3002 		/*
3003 		 * Hotplug ports handled natively by the OS were not validated
3004 		 * by vendors for runtime D3 at least until 2018 because there
3005 		 * was no OS support.
3006 		 */
3007 		if (bridge->is_hotplug_bridge)
3008 			return false;
3009 
3010 		if (dmi_check_system(bridge_d3_blacklist))
3011 			return false;
3012 
3013 		/*
3014 		 * It should be safe to put PCIe ports from 2015 or newer
3015 		 * to D3.
3016 		 */
3017 		if (dmi_get_bios_year() >= 2015)
3018 			return true;
3019 		break;
3020 	}
3021 
3022 	return false;
3023 }
3024 
3025 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
3026 {
3027 	bool *d3cold_ok = data;
3028 
3029 	if (/* The device needs to be allowed to go D3cold ... */
3030 	    dev->no_d3cold || !dev->d3cold_allowed ||
3031 
3032 	    /* ... and if it is wakeup capable to do so from D3cold. */
3033 	    (device_may_wakeup(&dev->dev) &&
3034 	     !pci_pme_capable(dev, PCI_D3cold)) ||
3035 
3036 	    /* If it is a bridge it must be allowed to go to D3. */
3037 	    !pci_power_manageable(dev))
3038 
3039 		*d3cold_ok = false;
3040 
3041 	return !*d3cold_ok;
3042 }
3043 
3044 /*
3045  * pci_bridge_d3_update - Update bridge D3 capabilities
3046  * @dev: PCI device which is changed
3047  *
3048  * Update upstream bridge PM capabilities accordingly depending on if the
3049  * device PM configuration was changed or the device is being removed.  The
3050  * change is also propagated upstream.
3051  */
3052 void pci_bridge_d3_update(struct pci_dev *dev)
3053 {
3054 	bool remove = !device_is_registered(&dev->dev);
3055 	struct pci_dev *bridge;
3056 	bool d3cold_ok = true;
3057 
3058 	bridge = pci_upstream_bridge(dev);
3059 	if (!bridge || !pci_bridge_d3_possible(bridge))
3060 		return;
3061 
3062 	/*
3063 	 * If D3 is currently allowed for the bridge, removing one of its
3064 	 * children won't change that.
3065 	 */
3066 	if (remove && bridge->bridge_d3)
3067 		return;
3068 
3069 	/*
3070 	 * If D3 is currently allowed for the bridge and a child is added or
3071 	 * changed, disallowance of D3 can only be caused by that child, so
3072 	 * we only need to check that single device, not any of its siblings.
3073 	 *
3074 	 * If D3 is currently not allowed for the bridge, checking the device
3075 	 * first may allow us to skip checking its siblings.
3076 	 */
3077 	if (!remove)
3078 		pci_dev_check_d3cold(dev, &d3cold_ok);
3079 
3080 	/*
3081 	 * If D3 is currently not allowed for the bridge, this may be caused
3082 	 * either by the device being changed/removed or any of its siblings,
3083 	 * so we need to go through all children to find out if one of them
3084 	 * continues to block D3.
3085 	 */
3086 	if (d3cold_ok && !bridge->bridge_d3)
3087 		pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
3088 			     &d3cold_ok);
3089 
3090 	if (bridge->bridge_d3 != d3cold_ok) {
3091 		bridge->bridge_d3 = d3cold_ok;
3092 		/* Propagate change to upstream bridges */
3093 		pci_bridge_d3_update(bridge);
3094 	}
3095 }
3096 
3097 /**
3098  * pci_d3cold_enable - Enable D3cold for device
3099  * @dev: PCI device to handle
3100  *
3101  * This function can be used in drivers to enable D3cold from the device
3102  * they handle.  It also updates upstream PCI bridge PM capabilities
3103  * accordingly.
3104  */
3105 void pci_d3cold_enable(struct pci_dev *dev)
3106 {
3107 	if (dev->no_d3cold) {
3108 		dev->no_d3cold = false;
3109 		pci_bridge_d3_update(dev);
3110 	}
3111 }
3112 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
3113 
3114 /**
3115  * pci_d3cold_disable - Disable D3cold for device
3116  * @dev: PCI device to handle
3117  *
3118  * This function can be used in drivers to disable D3cold from the device
3119  * they handle.  It also updates upstream PCI bridge PM capabilities
3120  * accordingly.
3121  */
3122 void pci_d3cold_disable(struct pci_dev *dev)
3123 {
3124 	if (!dev->no_d3cold) {
3125 		dev->no_d3cold = true;
3126 		pci_bridge_d3_update(dev);
3127 	}
3128 }
3129 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3130 
3131 /**
3132  * pci_pm_init - Initialize PM functions of given PCI device
3133  * @dev: PCI device to handle.
3134  */
3135 void pci_pm_init(struct pci_dev *dev)
3136 {
3137 	int pm;
3138 	u16 status;
3139 	u16 pmc;
3140 
3141 	pm_runtime_forbid(&dev->dev);
3142 	pm_runtime_set_active(&dev->dev);
3143 	pm_runtime_enable(&dev->dev);
3144 	device_enable_async_suspend(&dev->dev);
3145 	dev->wakeup_prepared = false;
3146 
3147 	dev->pm_cap = 0;
3148 	dev->pme_support = 0;
3149 
3150 	/* find PCI PM capability in list */
3151 	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3152 	if (!pm)
3153 		return;
3154 	/* Check device's ability to generate PME# */
3155 	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3156 
3157 	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3158 		pci_err(dev, "unsupported PM cap regs version (%u)\n",
3159 			pmc & PCI_PM_CAP_VER_MASK);
3160 		return;
3161 	}
3162 
3163 	dev->pm_cap = pm;
3164 	dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3165 	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3166 	dev->bridge_d3 = pci_bridge_d3_possible(dev);
3167 	dev->d3cold_allowed = true;
3168 
3169 	dev->d1_support = false;
3170 	dev->d2_support = false;
3171 	if (!pci_no_d1d2(dev)) {
3172 		if (pmc & PCI_PM_CAP_D1)
3173 			dev->d1_support = true;
3174 		if (pmc & PCI_PM_CAP_D2)
3175 			dev->d2_support = true;
3176 
3177 		if (dev->d1_support || dev->d2_support)
3178 			pci_info(dev, "supports%s%s\n",
3179 				   dev->d1_support ? " D1" : "",
3180 				   dev->d2_support ? " D2" : "");
3181 	}
3182 
3183 	pmc &= PCI_PM_CAP_PME_MASK;
3184 	if (pmc) {
3185 		pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3186 			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3187 			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3188 			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3189 			 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3190 			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3191 		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
3192 		dev->pme_poll = true;
3193 		/*
3194 		 * Make device's PM flags reflect the wake-up capability, but
3195 		 * let the user space enable it to wake up the system as needed.
3196 		 */
3197 		device_set_wakeup_capable(&dev->dev, true);
3198 		/* Disable the PME# generation functionality */
3199 		pci_pme_active(dev, false);
3200 	}
3201 
3202 	pci_read_config_word(dev, PCI_STATUS, &status);
3203 	if (status & PCI_STATUS_IMM_READY)
3204 		dev->imm_ready = 1;
3205 }
3206 
3207 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3208 {
3209 	unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3210 
3211 	switch (prop) {
3212 	case PCI_EA_P_MEM:
3213 	case PCI_EA_P_VF_MEM:
3214 		flags |= IORESOURCE_MEM;
3215 		break;
3216 	case PCI_EA_P_MEM_PREFETCH:
3217 	case PCI_EA_P_VF_MEM_PREFETCH:
3218 		flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3219 		break;
3220 	case PCI_EA_P_IO:
3221 		flags |= IORESOURCE_IO;
3222 		break;
3223 	default:
3224 		return 0;
3225 	}
3226 
3227 	return flags;
3228 }
3229 
3230 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3231 					    u8 prop)
3232 {
3233 	if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3234 		return &dev->resource[bei];
3235 #ifdef CONFIG_PCI_IOV
3236 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3237 		 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3238 		return &dev->resource[PCI_IOV_RESOURCES +
3239 				      bei - PCI_EA_BEI_VF_BAR0];
3240 #endif
3241 	else if (bei == PCI_EA_BEI_ROM)
3242 		return &dev->resource[PCI_ROM_RESOURCE];
3243 	else
3244 		return NULL;
3245 }
3246 
3247 /* Read an Enhanced Allocation (EA) entry */
3248 static int pci_ea_read(struct pci_dev *dev, int offset)
3249 {
3250 	struct resource *res;
3251 	int ent_size, ent_offset = offset;
3252 	resource_size_t start, end;
3253 	unsigned long flags;
3254 	u32 dw0, bei, base, max_offset;
3255 	u8 prop;
3256 	bool support_64 = (sizeof(resource_size_t) >= 8);
3257 
3258 	pci_read_config_dword(dev, ent_offset, &dw0);
3259 	ent_offset += 4;
3260 
3261 	/* Entry size field indicates DWORDs after 1st */
3262 	ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
3263 
3264 	if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3265 		goto out;
3266 
3267 	bei = (dw0 & PCI_EA_BEI) >> 4;
3268 	prop = (dw0 & PCI_EA_PP) >> 8;
3269 
3270 	/*
3271 	 * If the Property is in the reserved range, try the Secondary
3272 	 * Property instead.
3273 	 */
3274 	if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3275 		prop = (dw0 & PCI_EA_SP) >> 16;
3276 	if (prop > PCI_EA_P_BRIDGE_IO)
3277 		goto out;
3278 
3279 	res = pci_ea_get_resource(dev, bei, prop);
3280 	if (!res) {
3281 		pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3282 		goto out;
3283 	}
3284 
3285 	flags = pci_ea_flags(dev, prop);
3286 	if (!flags) {
3287 		pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3288 		goto out;
3289 	}
3290 
3291 	/* Read Base */
3292 	pci_read_config_dword(dev, ent_offset, &base);
3293 	start = (base & PCI_EA_FIELD_MASK);
3294 	ent_offset += 4;
3295 
3296 	/* Read MaxOffset */
3297 	pci_read_config_dword(dev, ent_offset, &max_offset);
3298 	ent_offset += 4;
3299 
3300 	/* Read Base MSBs (if 64-bit entry) */
3301 	if (base & PCI_EA_IS_64) {
3302 		u32 base_upper;
3303 
3304 		pci_read_config_dword(dev, ent_offset, &base_upper);
3305 		ent_offset += 4;
3306 
3307 		flags |= IORESOURCE_MEM_64;
3308 
3309 		/* entry starts above 32-bit boundary, can't use */
3310 		if (!support_64 && base_upper)
3311 			goto out;
3312 
3313 		if (support_64)
3314 			start |= ((u64)base_upper << 32);
3315 	}
3316 
3317 	end = start + (max_offset | 0x03);
3318 
3319 	/* Read MaxOffset MSBs (if 64-bit entry) */
3320 	if (max_offset & PCI_EA_IS_64) {
3321 		u32 max_offset_upper;
3322 
3323 		pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3324 		ent_offset += 4;
3325 
3326 		flags |= IORESOURCE_MEM_64;
3327 
3328 		/* entry too big, can't use */
3329 		if (!support_64 && max_offset_upper)
3330 			goto out;
3331 
3332 		if (support_64)
3333 			end += ((u64)max_offset_upper << 32);
3334 	}
3335 
3336 	if (end < start) {
3337 		pci_err(dev, "EA Entry crosses address boundary\n");
3338 		goto out;
3339 	}
3340 
3341 	if (ent_size != ent_offset - offset) {
3342 		pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3343 			ent_size, ent_offset - offset);
3344 		goto out;
3345 	}
3346 
3347 	res->name = pci_name(dev);
3348 	res->start = start;
3349 	res->end = end;
3350 	res->flags = flags;
3351 
3352 	if (bei <= PCI_EA_BEI_BAR5)
3353 		pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3354 			   bei, res, prop);
3355 	else if (bei == PCI_EA_BEI_ROM)
3356 		pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3357 			   res, prop);
3358 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3359 		pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3360 			   bei - PCI_EA_BEI_VF_BAR0, res, prop);
3361 	else
3362 		pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3363 			   bei, res, prop);
3364 
3365 out:
3366 	return offset + ent_size;
3367 }
3368 
3369 /* Enhanced Allocation Initialization */
3370 void pci_ea_init(struct pci_dev *dev)
3371 {
3372 	int ea;
3373 	u8 num_ent;
3374 	int offset;
3375 	int i;
3376 
3377 	/* find PCI EA capability in list */
3378 	ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3379 	if (!ea)
3380 		return;
3381 
3382 	/* determine the number of entries */
3383 	pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3384 					&num_ent);
3385 	num_ent &= PCI_EA_NUM_ENT_MASK;
3386 
3387 	offset = ea + PCI_EA_FIRST_ENT;
3388 
3389 	/* Skip DWORD 2 for type 1 functions */
3390 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3391 		offset += 4;
3392 
3393 	/* parse each EA entry */
3394 	for (i = 0; i < num_ent; ++i)
3395 		offset = pci_ea_read(dev, offset);
3396 }
3397 
3398 static void pci_add_saved_cap(struct pci_dev *pci_dev,
3399 	struct pci_cap_saved_state *new_cap)
3400 {
3401 	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3402 }
3403 
3404 /**
3405  * _pci_add_cap_save_buffer - allocate buffer for saving given
3406  *			      capability registers
3407  * @dev: the PCI device
3408  * @cap: the capability to allocate the buffer for
3409  * @extended: Standard or Extended capability ID
3410  * @size: requested size of the buffer
3411  */
3412 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3413 				    bool extended, unsigned int size)
3414 {
3415 	int pos;
3416 	struct pci_cap_saved_state *save_state;
3417 
3418 	if (extended)
3419 		pos = pci_find_ext_capability(dev, cap);
3420 	else
3421 		pos = pci_find_capability(dev, cap);
3422 
3423 	if (!pos)
3424 		return 0;
3425 
3426 	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3427 	if (!save_state)
3428 		return -ENOMEM;
3429 
3430 	save_state->cap.cap_nr = cap;
3431 	save_state->cap.cap_extended = extended;
3432 	save_state->cap.size = size;
3433 	pci_add_saved_cap(dev, save_state);
3434 
3435 	return 0;
3436 }
3437 
3438 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3439 {
3440 	return _pci_add_cap_save_buffer(dev, cap, false, size);
3441 }
3442 
3443 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3444 {
3445 	return _pci_add_cap_save_buffer(dev, cap, true, size);
3446 }
3447 
3448 /**
3449  * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3450  * @dev: the PCI device
3451  */
3452 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3453 {
3454 	int error;
3455 
3456 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3457 					PCI_EXP_SAVE_REGS * sizeof(u16));
3458 	if (error)
3459 		pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3460 
3461 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3462 	if (error)
3463 		pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3464 
3465 	error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3466 					    2 * sizeof(u16));
3467 	if (error)
3468 		pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3469 
3470 	pci_allocate_vc_save_buffers(dev);
3471 }
3472 
3473 void pci_free_cap_save_buffers(struct pci_dev *dev)
3474 {
3475 	struct pci_cap_saved_state *tmp;
3476 	struct hlist_node *n;
3477 
3478 	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3479 		kfree(tmp);
3480 }
3481 
3482 /**
3483  * pci_configure_ari - enable or disable ARI forwarding
3484  * @dev: the PCI device
3485  *
3486  * If @dev and its upstream bridge both support ARI, enable ARI in the
3487  * bridge.  Otherwise, disable ARI in the bridge.
3488  */
3489 void pci_configure_ari(struct pci_dev *dev)
3490 {
3491 	u32 cap;
3492 	struct pci_dev *bridge;
3493 
3494 	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3495 		return;
3496 
3497 	bridge = dev->bus->self;
3498 	if (!bridge)
3499 		return;
3500 
3501 	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3502 	if (!(cap & PCI_EXP_DEVCAP2_ARI))
3503 		return;
3504 
3505 	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3506 		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3507 					 PCI_EXP_DEVCTL2_ARI);
3508 		bridge->ari_enabled = 1;
3509 	} else {
3510 		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3511 					   PCI_EXP_DEVCTL2_ARI);
3512 		bridge->ari_enabled = 0;
3513 	}
3514 }
3515 
3516 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3517 {
3518 	int pos;
3519 	u16 cap, ctrl;
3520 
3521 	pos = pdev->acs_cap;
3522 	if (!pos)
3523 		return false;
3524 
3525 	/*
3526 	 * Except for egress control, capabilities are either required
3527 	 * or only required if controllable.  Features missing from the
3528 	 * capability field can therefore be assumed as hard-wired enabled.
3529 	 */
3530 	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3531 	acs_flags &= (cap | PCI_ACS_EC);
3532 
3533 	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3534 	return (ctrl & acs_flags) == acs_flags;
3535 }
3536 
3537 /**
3538  * pci_acs_enabled - test ACS against required flags for a given device
3539  * @pdev: device to test
3540  * @acs_flags: required PCI ACS flags
3541  *
3542  * Return true if the device supports the provided flags.  Automatically
3543  * filters out flags that are not implemented on multifunction devices.
3544  *
3545  * Note that this interface checks the effective ACS capabilities of the
3546  * device rather than the actual capabilities.  For instance, most single
3547  * function endpoints are not required to support ACS because they have no
3548  * opportunity for peer-to-peer access.  We therefore return 'true'
3549  * regardless of whether the device exposes an ACS capability.  This makes
3550  * it much easier for callers of this function to ignore the actual type
3551  * or topology of the device when testing ACS support.
3552  */
3553 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3554 {
3555 	int ret;
3556 
3557 	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3558 	if (ret >= 0)
3559 		return ret > 0;
3560 
3561 	/*
3562 	 * Conventional PCI and PCI-X devices never support ACS, either
3563 	 * effectively or actually.  The shared bus topology implies that
3564 	 * any device on the bus can receive or snoop DMA.
3565 	 */
3566 	if (!pci_is_pcie(pdev))
3567 		return false;
3568 
3569 	switch (pci_pcie_type(pdev)) {
3570 	/*
3571 	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3572 	 * but since their primary interface is PCI/X, we conservatively
3573 	 * handle them as we would a non-PCIe device.
3574 	 */
3575 	case PCI_EXP_TYPE_PCIE_BRIDGE:
3576 	/*
3577 	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
3578 	 * applicable... must never implement an ACS Extended Capability...".
3579 	 * This seems arbitrary, but we take a conservative interpretation
3580 	 * of this statement.
3581 	 */
3582 	case PCI_EXP_TYPE_PCI_BRIDGE:
3583 	case PCI_EXP_TYPE_RC_EC:
3584 		return false;
3585 	/*
3586 	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3587 	 * implement ACS in order to indicate their peer-to-peer capabilities,
3588 	 * regardless of whether they are single- or multi-function devices.
3589 	 */
3590 	case PCI_EXP_TYPE_DOWNSTREAM:
3591 	case PCI_EXP_TYPE_ROOT_PORT:
3592 		return pci_acs_flags_enabled(pdev, acs_flags);
3593 	/*
3594 	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3595 	 * implemented by the remaining PCIe types to indicate peer-to-peer
3596 	 * capabilities, but only when they are part of a multifunction
3597 	 * device.  The footnote for section 6.12 indicates the specific
3598 	 * PCIe types included here.
3599 	 */
3600 	case PCI_EXP_TYPE_ENDPOINT:
3601 	case PCI_EXP_TYPE_UPSTREAM:
3602 	case PCI_EXP_TYPE_LEG_END:
3603 	case PCI_EXP_TYPE_RC_END:
3604 		if (!pdev->multifunction)
3605 			break;
3606 
3607 		return pci_acs_flags_enabled(pdev, acs_flags);
3608 	}
3609 
3610 	/*
3611 	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3612 	 * to single function devices with the exception of downstream ports.
3613 	 */
3614 	return true;
3615 }
3616 
3617 /**
3618  * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
3619  * @start: starting downstream device
3620  * @end: ending upstream device or NULL to search to the root bus
3621  * @acs_flags: required flags
3622  *
3623  * Walk up a device tree from start to end testing PCI ACS support.  If
3624  * any step along the way does not support the required flags, return false.
3625  */
3626 bool pci_acs_path_enabled(struct pci_dev *start,
3627 			  struct pci_dev *end, u16 acs_flags)
3628 {
3629 	struct pci_dev *pdev, *parent = start;
3630 
3631 	do {
3632 		pdev = parent;
3633 
3634 		if (!pci_acs_enabled(pdev, acs_flags))
3635 			return false;
3636 
3637 		if (pci_is_root_bus(pdev->bus))
3638 			return (end == NULL);
3639 
3640 		parent = pdev->bus->self;
3641 	} while (pdev != end);
3642 
3643 	return true;
3644 }
3645 
3646 /**
3647  * pci_acs_init - Initialize ACS if hardware supports it
3648  * @dev: the PCI device
3649  */
3650 void pci_acs_init(struct pci_dev *dev)
3651 {
3652 	dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3653 
3654 	/*
3655 	 * Attempt to enable ACS regardless of capability because some Root
3656 	 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3657 	 * the standard ACS capability but still support ACS via those
3658 	 * quirks.
3659 	 */
3660 	pci_enable_acs(dev);
3661 }
3662 
3663 /**
3664  * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3665  * @pdev: PCI device
3666  * @bar: BAR to find
3667  *
3668  * Helper to find the position of the ctrl register for a BAR.
3669  * Returns -ENOTSUPP if resizable BARs are not supported at all.
3670  * Returns -ENOENT if no ctrl register for the BAR could be found.
3671  */
3672 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3673 {
3674 	unsigned int pos, nbars, i;
3675 	u32 ctrl;
3676 
3677 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3678 	if (!pos)
3679 		return -ENOTSUPP;
3680 
3681 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3682 	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3683 		    PCI_REBAR_CTRL_NBAR_SHIFT;
3684 
3685 	for (i = 0; i < nbars; i++, pos += 8) {
3686 		int bar_idx;
3687 
3688 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3689 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3690 		if (bar_idx == bar)
3691 			return pos;
3692 	}
3693 
3694 	return -ENOENT;
3695 }
3696 
3697 /**
3698  * pci_rebar_get_possible_sizes - get possible sizes for BAR
3699  * @pdev: PCI device
3700  * @bar: BAR to query
3701  *
3702  * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3703  * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3704  */
3705 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3706 {
3707 	int pos;
3708 	u32 cap;
3709 
3710 	pos = pci_rebar_find_pos(pdev, bar);
3711 	if (pos < 0)
3712 		return 0;
3713 
3714 	pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3715 	cap &= PCI_REBAR_CAP_SIZES;
3716 
3717 	/* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
3718 	if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
3719 	    bar == 0 && cap == 0x7000)
3720 		cap = 0x3f000;
3721 
3722 	return cap >> 4;
3723 }
3724 EXPORT_SYMBOL(pci_rebar_get_possible_sizes);
3725 
3726 /**
3727  * pci_rebar_get_current_size - get the current size of a BAR
3728  * @pdev: PCI device
3729  * @bar: BAR to set size to
3730  *
3731  * Read the size of a BAR from the resizable BAR config.
3732  * Returns size if found or negative error code.
3733  */
3734 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3735 {
3736 	int pos;
3737 	u32 ctrl;
3738 
3739 	pos = pci_rebar_find_pos(pdev, bar);
3740 	if (pos < 0)
3741 		return pos;
3742 
3743 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3744 	return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3745 }
3746 
3747 /**
3748  * pci_rebar_set_size - set a new size for a BAR
3749  * @pdev: PCI device
3750  * @bar: BAR to set size to
3751  * @size: new size as defined in the spec (0=1MB, 19=512GB)
3752  *
3753  * Set the new size of a BAR as defined in the spec.
3754  * Returns zero if resizing was successful, error code otherwise.
3755  */
3756 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3757 {
3758 	int pos;
3759 	u32 ctrl;
3760 
3761 	pos = pci_rebar_find_pos(pdev, bar);
3762 	if (pos < 0)
3763 		return pos;
3764 
3765 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3766 	ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3767 	ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3768 	pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3769 	return 0;
3770 }
3771 
3772 /**
3773  * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3774  * @dev: the PCI device
3775  * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3776  *	PCI_EXP_DEVCAP2_ATOMIC_COMP32
3777  *	PCI_EXP_DEVCAP2_ATOMIC_COMP64
3778  *	PCI_EXP_DEVCAP2_ATOMIC_COMP128
3779  *
3780  * Return 0 if all upstream bridges support AtomicOp routing, egress
3781  * blocking is disabled on all upstream ports, and the root port supports
3782  * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3783  * AtomicOp completion), or negative otherwise.
3784  */
3785 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3786 {
3787 	struct pci_bus *bus = dev->bus;
3788 	struct pci_dev *bridge;
3789 	u32 cap, ctl2;
3790 
3791 	/*
3792 	 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit
3793 	 * in Device Control 2 is reserved in VFs and the PF value applies
3794 	 * to all associated VFs.
3795 	 */
3796 	if (dev->is_virtfn)
3797 		return -EINVAL;
3798 
3799 	if (!pci_is_pcie(dev))
3800 		return -EINVAL;
3801 
3802 	/*
3803 	 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3804 	 * AtomicOp requesters.  For now, we only support endpoints as
3805 	 * requesters and root ports as completers.  No endpoints as
3806 	 * completers, and no peer-to-peer.
3807 	 */
3808 
3809 	switch (pci_pcie_type(dev)) {
3810 	case PCI_EXP_TYPE_ENDPOINT:
3811 	case PCI_EXP_TYPE_LEG_END:
3812 	case PCI_EXP_TYPE_RC_END:
3813 		break;
3814 	default:
3815 		return -EINVAL;
3816 	}
3817 
3818 	while (bus->parent) {
3819 		bridge = bus->self;
3820 
3821 		pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3822 
3823 		switch (pci_pcie_type(bridge)) {
3824 		/* Ensure switch ports support AtomicOp routing */
3825 		case PCI_EXP_TYPE_UPSTREAM:
3826 		case PCI_EXP_TYPE_DOWNSTREAM:
3827 			if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3828 				return -EINVAL;
3829 			break;
3830 
3831 		/* Ensure root port supports all the sizes we care about */
3832 		case PCI_EXP_TYPE_ROOT_PORT:
3833 			if ((cap & cap_mask) != cap_mask)
3834 				return -EINVAL;
3835 			break;
3836 		}
3837 
3838 		/* Ensure upstream ports don't block AtomicOps on egress */
3839 		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3840 			pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3841 						   &ctl2);
3842 			if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3843 				return -EINVAL;
3844 		}
3845 
3846 		bus = bus->parent;
3847 	}
3848 
3849 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3850 				 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3851 	return 0;
3852 }
3853 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3854 
3855 /**
3856  * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3857  * @dev: the PCI device
3858  * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3859  *
3860  * Perform INTx swizzling for a device behind one level of bridge.  This is
3861  * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3862  * behind bridges on add-in cards.  For devices with ARI enabled, the slot
3863  * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3864  * the PCI Express Base Specification, Revision 2.1)
3865  */
3866 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3867 {
3868 	int slot;
3869 
3870 	if (pci_ari_enabled(dev->bus))
3871 		slot = 0;
3872 	else
3873 		slot = PCI_SLOT(dev->devfn);
3874 
3875 	return (((pin - 1) + slot) % 4) + 1;
3876 }
3877 
3878 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3879 {
3880 	u8 pin;
3881 
3882 	pin = dev->pin;
3883 	if (!pin)
3884 		return -1;
3885 
3886 	while (!pci_is_root_bus(dev->bus)) {
3887 		pin = pci_swizzle_interrupt_pin(dev, pin);
3888 		dev = dev->bus->self;
3889 	}
3890 	*bridge = dev;
3891 	return pin;
3892 }
3893 
3894 /**
3895  * pci_common_swizzle - swizzle INTx all the way to root bridge
3896  * @dev: the PCI device
3897  * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3898  *
3899  * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
3900  * bridges all the way up to a PCI root bus.
3901  */
3902 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3903 {
3904 	u8 pin = *pinp;
3905 
3906 	while (!pci_is_root_bus(dev->bus)) {
3907 		pin = pci_swizzle_interrupt_pin(dev, pin);
3908 		dev = dev->bus->self;
3909 	}
3910 	*pinp = pin;
3911 	return PCI_SLOT(dev->devfn);
3912 }
3913 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3914 
3915 /**
3916  * pci_release_region - Release a PCI bar
3917  * @pdev: PCI device whose resources were previously reserved by
3918  *	  pci_request_region()
3919  * @bar: BAR to release
3920  *
3921  * Releases the PCI I/O and memory resources previously reserved by a
3922  * successful call to pci_request_region().  Call this function only
3923  * after all use of the PCI regions has ceased.
3924  */
3925 void pci_release_region(struct pci_dev *pdev, int bar)
3926 {
3927 	struct pci_devres *dr;
3928 
3929 	if (pci_resource_len(pdev, bar) == 0)
3930 		return;
3931 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3932 		release_region(pci_resource_start(pdev, bar),
3933 				pci_resource_len(pdev, bar));
3934 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3935 		release_mem_region(pci_resource_start(pdev, bar),
3936 				pci_resource_len(pdev, bar));
3937 
3938 	dr = find_pci_dr(pdev);
3939 	if (dr)
3940 		dr->region_mask &= ~(1 << bar);
3941 }
3942 EXPORT_SYMBOL(pci_release_region);
3943 
3944 /**
3945  * __pci_request_region - Reserved PCI I/O and memory resource
3946  * @pdev: PCI device whose resources are to be reserved
3947  * @bar: BAR to be reserved
3948  * @res_name: Name to be associated with resource.
3949  * @exclusive: whether the region access is exclusive or not
3950  *
3951  * Mark the PCI region associated with PCI device @pdev BAR @bar as
3952  * being reserved by owner @res_name.  Do not access any
3953  * address inside the PCI regions unless this call returns
3954  * successfully.
3955  *
3956  * If @exclusive is set, then the region is marked so that userspace
3957  * is explicitly not allowed to map the resource via /dev/mem or
3958  * sysfs MMIO access.
3959  *
3960  * Returns 0 on success, or %EBUSY on error.  A warning
3961  * message is also printed on failure.
3962  */
3963 static int __pci_request_region(struct pci_dev *pdev, int bar,
3964 				const char *res_name, int exclusive)
3965 {
3966 	struct pci_devres *dr;
3967 
3968 	if (pci_resource_len(pdev, bar) == 0)
3969 		return 0;
3970 
3971 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3972 		if (!request_region(pci_resource_start(pdev, bar),
3973 			    pci_resource_len(pdev, bar), res_name))
3974 			goto err_out;
3975 	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3976 		if (!__request_mem_region(pci_resource_start(pdev, bar),
3977 					pci_resource_len(pdev, bar), res_name,
3978 					exclusive))
3979 			goto err_out;
3980 	}
3981 
3982 	dr = find_pci_dr(pdev);
3983 	if (dr)
3984 		dr->region_mask |= 1 << bar;
3985 
3986 	return 0;
3987 
3988 err_out:
3989 	pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3990 		 &pdev->resource[bar]);
3991 	return -EBUSY;
3992 }
3993 
3994 /**
3995  * pci_request_region - Reserve PCI I/O and memory resource
3996  * @pdev: PCI device whose resources are to be reserved
3997  * @bar: BAR to be reserved
3998  * @res_name: Name to be associated with resource
3999  *
4000  * Mark the PCI region associated with PCI device @pdev BAR @bar as
4001  * being reserved by owner @res_name.  Do not access any
4002  * address inside the PCI regions unless this call returns
4003  * successfully.
4004  *
4005  * Returns 0 on success, or %EBUSY on error.  A warning
4006  * message is also printed on failure.
4007  */
4008 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
4009 {
4010 	return __pci_request_region(pdev, bar, res_name, 0);
4011 }
4012 EXPORT_SYMBOL(pci_request_region);
4013 
4014 /**
4015  * pci_release_selected_regions - Release selected PCI I/O and memory resources
4016  * @pdev: PCI device whose resources were previously reserved
4017  * @bars: Bitmask of BARs to be released
4018  *
4019  * Release selected PCI I/O and memory resources previously reserved.
4020  * Call this function only after all use of the PCI regions has ceased.
4021  */
4022 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
4023 {
4024 	int i;
4025 
4026 	for (i = 0; i < PCI_STD_NUM_BARS; i++)
4027 		if (bars & (1 << i))
4028 			pci_release_region(pdev, i);
4029 }
4030 EXPORT_SYMBOL(pci_release_selected_regions);
4031 
4032 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
4033 					  const char *res_name, int excl)
4034 {
4035 	int i;
4036 
4037 	for (i = 0; i < PCI_STD_NUM_BARS; i++)
4038 		if (bars & (1 << i))
4039 			if (__pci_request_region(pdev, i, res_name, excl))
4040 				goto err_out;
4041 	return 0;
4042 
4043 err_out:
4044 	while (--i >= 0)
4045 		if (bars & (1 << i))
4046 			pci_release_region(pdev, i);
4047 
4048 	return -EBUSY;
4049 }
4050 
4051 
4052 /**
4053  * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
4054  * @pdev: PCI device whose resources are to be reserved
4055  * @bars: Bitmask of BARs to be requested
4056  * @res_name: Name to be associated with resource
4057  */
4058 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
4059 				 const char *res_name)
4060 {
4061 	return __pci_request_selected_regions(pdev, bars, res_name, 0);
4062 }
4063 EXPORT_SYMBOL(pci_request_selected_regions);
4064 
4065 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
4066 					   const char *res_name)
4067 {
4068 	return __pci_request_selected_regions(pdev, bars, res_name,
4069 			IORESOURCE_EXCLUSIVE);
4070 }
4071 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
4072 
4073 /**
4074  * pci_release_regions - Release reserved PCI I/O and memory resources
4075  * @pdev: PCI device whose resources were previously reserved by
4076  *	  pci_request_regions()
4077  *
4078  * Releases all PCI I/O and memory resources previously reserved by a
4079  * successful call to pci_request_regions().  Call this function only
4080  * after all use of the PCI regions has ceased.
4081  */
4082 
4083 void pci_release_regions(struct pci_dev *pdev)
4084 {
4085 	pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
4086 }
4087 EXPORT_SYMBOL(pci_release_regions);
4088 
4089 /**
4090  * pci_request_regions - Reserve PCI I/O and memory resources
4091  * @pdev: PCI device whose resources are to be reserved
4092  * @res_name: Name to be associated with resource.
4093  *
4094  * Mark all PCI regions associated with PCI device @pdev as
4095  * being reserved by owner @res_name.  Do not access any
4096  * address inside the PCI regions unless this call returns
4097  * successfully.
4098  *
4099  * Returns 0 on success, or %EBUSY on error.  A warning
4100  * message is also printed on failure.
4101  */
4102 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
4103 {
4104 	return pci_request_selected_regions(pdev,
4105 			((1 << PCI_STD_NUM_BARS) - 1), res_name);
4106 }
4107 EXPORT_SYMBOL(pci_request_regions);
4108 
4109 /**
4110  * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
4111  * @pdev: PCI device whose resources are to be reserved
4112  * @res_name: Name to be associated with resource.
4113  *
4114  * Mark all PCI regions associated with PCI device @pdev as being reserved
4115  * by owner @res_name.  Do not access any address inside the PCI regions
4116  * unless this call returns successfully.
4117  *
4118  * pci_request_regions_exclusive() will mark the region so that /dev/mem
4119  * and the sysfs MMIO access will not be allowed.
4120  *
4121  * Returns 0 on success, or %EBUSY on error.  A warning message is also
4122  * printed on failure.
4123  */
4124 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
4125 {
4126 	return pci_request_selected_regions_exclusive(pdev,
4127 				((1 << PCI_STD_NUM_BARS) - 1), res_name);
4128 }
4129 EXPORT_SYMBOL(pci_request_regions_exclusive);
4130 
4131 /*
4132  * Record the PCI IO range (expressed as CPU physical address + size).
4133  * Return a negative value if an error has occurred, zero otherwise
4134  */
4135 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
4136 			resource_size_t	size)
4137 {
4138 	int ret = 0;
4139 #ifdef PCI_IOBASE
4140 	struct logic_pio_hwaddr *range;
4141 
4142 	if (!size || addr + size < addr)
4143 		return -EINVAL;
4144 
4145 	range = kzalloc(sizeof(*range), GFP_ATOMIC);
4146 	if (!range)
4147 		return -ENOMEM;
4148 
4149 	range->fwnode = fwnode;
4150 	range->size = size;
4151 	range->hw_start = addr;
4152 	range->flags = LOGIC_PIO_CPU_MMIO;
4153 
4154 	ret = logic_pio_register_range(range);
4155 	if (ret)
4156 		kfree(range);
4157 
4158 	/* Ignore duplicates due to deferred probing */
4159 	if (ret == -EEXIST)
4160 		ret = 0;
4161 #endif
4162 
4163 	return ret;
4164 }
4165 
4166 phys_addr_t pci_pio_to_address(unsigned long pio)
4167 {
4168 	phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
4169 
4170 #ifdef PCI_IOBASE
4171 	if (pio >= MMIO_UPPER_LIMIT)
4172 		return address;
4173 
4174 	address = logic_pio_to_hwaddr(pio);
4175 #endif
4176 
4177 	return address;
4178 }
4179 EXPORT_SYMBOL_GPL(pci_pio_to_address);
4180 
4181 unsigned long __weak pci_address_to_pio(phys_addr_t address)
4182 {
4183 #ifdef PCI_IOBASE
4184 	return logic_pio_trans_cpuaddr(address);
4185 #else
4186 	if (address > IO_SPACE_LIMIT)
4187 		return (unsigned long)-1;
4188 
4189 	return (unsigned long) address;
4190 #endif
4191 }
4192 
4193 /**
4194  * pci_remap_iospace - Remap the memory mapped I/O space
4195  * @res: Resource describing the I/O space
4196  * @phys_addr: physical address of range to be mapped
4197  *
4198  * Remap the memory mapped I/O space described by the @res and the CPU
4199  * physical address @phys_addr into virtual address space.  Only
4200  * architectures that have memory mapped IO functions defined (and the
4201  * PCI_IOBASE value defined) should call this function.
4202  */
4203 #ifndef pci_remap_iospace
4204 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4205 {
4206 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4207 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4208 
4209 	if (!(res->flags & IORESOURCE_IO))
4210 		return -EINVAL;
4211 
4212 	if (res->end > IO_SPACE_LIMIT)
4213 		return -EINVAL;
4214 
4215 	return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4216 				  pgprot_device(PAGE_KERNEL));
4217 #else
4218 	/*
4219 	 * This architecture does not have memory mapped I/O space,
4220 	 * so this function should never be called
4221 	 */
4222 	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4223 	return -ENODEV;
4224 #endif
4225 }
4226 EXPORT_SYMBOL(pci_remap_iospace);
4227 #endif
4228 
4229 /**
4230  * pci_unmap_iospace - Unmap the memory mapped I/O space
4231  * @res: resource to be unmapped
4232  *
4233  * Unmap the CPU virtual address @res from virtual address space.  Only
4234  * architectures that have memory mapped IO functions defined (and the
4235  * PCI_IOBASE value defined) should call this function.
4236  */
4237 void pci_unmap_iospace(struct resource *res)
4238 {
4239 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4240 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4241 
4242 	vunmap_range(vaddr, vaddr + resource_size(res));
4243 #endif
4244 }
4245 EXPORT_SYMBOL(pci_unmap_iospace);
4246 
4247 static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
4248 {
4249 	struct resource **res = ptr;
4250 
4251 	pci_unmap_iospace(*res);
4252 }
4253 
4254 /**
4255  * devm_pci_remap_iospace - Managed pci_remap_iospace()
4256  * @dev: Generic device to remap IO address for
4257  * @res: Resource describing the I/O space
4258  * @phys_addr: physical address of range to be mapped
4259  *
4260  * Managed pci_remap_iospace().  Map is automatically unmapped on driver
4261  * detach.
4262  */
4263 int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4264 			   phys_addr_t phys_addr)
4265 {
4266 	const struct resource **ptr;
4267 	int error;
4268 
4269 	ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4270 	if (!ptr)
4271 		return -ENOMEM;
4272 
4273 	error = pci_remap_iospace(res, phys_addr);
4274 	if (error) {
4275 		devres_free(ptr);
4276 	} else	{
4277 		*ptr = res;
4278 		devres_add(dev, ptr);
4279 	}
4280 
4281 	return error;
4282 }
4283 EXPORT_SYMBOL(devm_pci_remap_iospace);
4284 
4285 /**
4286  * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4287  * @dev: Generic device to remap IO address for
4288  * @offset: Resource address to map
4289  * @size: Size of map
4290  *
4291  * Managed pci_remap_cfgspace().  Map is automatically unmapped on driver
4292  * detach.
4293  */
4294 void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4295 				      resource_size_t offset,
4296 				      resource_size_t size)
4297 {
4298 	void __iomem **ptr, *addr;
4299 
4300 	ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4301 	if (!ptr)
4302 		return NULL;
4303 
4304 	addr = pci_remap_cfgspace(offset, size);
4305 	if (addr) {
4306 		*ptr = addr;
4307 		devres_add(dev, ptr);
4308 	} else
4309 		devres_free(ptr);
4310 
4311 	return addr;
4312 }
4313 EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4314 
4315 /**
4316  * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4317  * @dev: generic device to handle the resource for
4318  * @res: configuration space resource to be handled
4319  *
4320  * Checks that a resource is a valid memory region, requests the memory
4321  * region and ioremaps with pci_remap_cfgspace() API that ensures the
4322  * proper PCI configuration space memory attributes are guaranteed.
4323  *
4324  * All operations are managed and will be undone on driver detach.
4325  *
4326  * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4327  * on failure. Usage example::
4328  *
4329  *	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4330  *	base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4331  *	if (IS_ERR(base))
4332  *		return PTR_ERR(base);
4333  */
4334 void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4335 					  struct resource *res)
4336 {
4337 	resource_size_t size;
4338 	const char *name;
4339 	void __iomem *dest_ptr;
4340 
4341 	BUG_ON(!dev);
4342 
4343 	if (!res || resource_type(res) != IORESOURCE_MEM) {
4344 		dev_err(dev, "invalid resource\n");
4345 		return IOMEM_ERR_PTR(-EINVAL);
4346 	}
4347 
4348 	size = resource_size(res);
4349 
4350 	if (res->name)
4351 		name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev),
4352 				      res->name);
4353 	else
4354 		name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL);
4355 	if (!name)
4356 		return IOMEM_ERR_PTR(-ENOMEM);
4357 
4358 	if (!devm_request_mem_region(dev, res->start, size, name)) {
4359 		dev_err(dev, "can't request region for resource %pR\n", res);
4360 		return IOMEM_ERR_PTR(-EBUSY);
4361 	}
4362 
4363 	dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4364 	if (!dest_ptr) {
4365 		dev_err(dev, "ioremap failed for resource %pR\n", res);
4366 		devm_release_mem_region(dev, res->start, size);
4367 		dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4368 	}
4369 
4370 	return dest_ptr;
4371 }
4372 EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4373 
4374 static void __pci_set_master(struct pci_dev *dev, bool enable)
4375 {
4376 	u16 old_cmd, cmd;
4377 
4378 	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4379 	if (enable)
4380 		cmd = old_cmd | PCI_COMMAND_MASTER;
4381 	else
4382 		cmd = old_cmd & ~PCI_COMMAND_MASTER;
4383 	if (cmd != old_cmd) {
4384 		pci_dbg(dev, "%s bus mastering\n",
4385 			enable ? "enabling" : "disabling");
4386 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4387 	}
4388 	dev->is_busmaster = enable;
4389 }
4390 
4391 /**
4392  * pcibios_setup - process "pci=" kernel boot arguments
4393  * @str: string used to pass in "pci=" kernel boot arguments
4394  *
4395  * Process kernel boot arguments.  This is the default implementation.
4396  * Architecture specific implementations can override this as necessary.
4397  */
4398 char * __weak __init pcibios_setup(char *str)
4399 {
4400 	return str;
4401 }
4402 
4403 /**
4404  * pcibios_set_master - enable PCI bus-mastering for device dev
4405  * @dev: the PCI device to enable
4406  *
4407  * Enables PCI bus-mastering for the device.  This is the default
4408  * implementation.  Architecture specific implementations can override
4409  * this if necessary.
4410  */
4411 void __weak pcibios_set_master(struct pci_dev *dev)
4412 {
4413 	u8 lat;
4414 
4415 	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4416 	if (pci_is_pcie(dev))
4417 		return;
4418 
4419 	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4420 	if (lat < 16)
4421 		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4422 	else if (lat > pcibios_max_latency)
4423 		lat = pcibios_max_latency;
4424 	else
4425 		return;
4426 
4427 	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4428 }
4429 
4430 /**
4431  * pci_set_master - enables bus-mastering for device dev
4432  * @dev: the PCI device to enable
4433  *
4434  * Enables bus-mastering on the device and calls pcibios_set_master()
4435  * to do the needed arch specific settings.
4436  */
4437 void pci_set_master(struct pci_dev *dev)
4438 {
4439 	__pci_set_master(dev, true);
4440 	pcibios_set_master(dev);
4441 }
4442 EXPORT_SYMBOL(pci_set_master);
4443 
4444 /**
4445  * pci_clear_master - disables bus-mastering for device dev
4446  * @dev: the PCI device to disable
4447  */
4448 void pci_clear_master(struct pci_dev *dev)
4449 {
4450 	__pci_set_master(dev, false);
4451 }
4452 EXPORT_SYMBOL(pci_clear_master);
4453 
4454 /**
4455  * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4456  * @dev: the PCI device for which MWI is to be enabled
4457  *
4458  * Helper function for pci_set_mwi.
4459  * Originally copied from drivers/net/acenic.c.
4460  * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4461  *
4462  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4463  */
4464 int pci_set_cacheline_size(struct pci_dev *dev)
4465 {
4466 	u8 cacheline_size;
4467 
4468 	if (!pci_cache_line_size)
4469 		return -EINVAL;
4470 
4471 	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4472 	   equal to or multiple of the right value. */
4473 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4474 	if (cacheline_size >= pci_cache_line_size &&
4475 	    (cacheline_size % pci_cache_line_size) == 0)
4476 		return 0;
4477 
4478 	/* Write the correct value. */
4479 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4480 	/* Read it back. */
4481 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4482 	if (cacheline_size == pci_cache_line_size)
4483 		return 0;
4484 
4485 	pci_dbg(dev, "cache line size of %d is not supported\n",
4486 		   pci_cache_line_size << 2);
4487 
4488 	return -EINVAL;
4489 }
4490 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4491 
4492 /**
4493  * pci_set_mwi - enables memory-write-invalidate PCI transaction
4494  * @dev: the PCI device for which MWI is enabled
4495  *
4496  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4497  *
4498  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4499  */
4500 int pci_set_mwi(struct pci_dev *dev)
4501 {
4502 #ifdef PCI_DISABLE_MWI
4503 	return 0;
4504 #else
4505 	int rc;
4506 	u16 cmd;
4507 
4508 	rc = pci_set_cacheline_size(dev);
4509 	if (rc)
4510 		return rc;
4511 
4512 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4513 	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4514 		pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4515 		cmd |= PCI_COMMAND_INVALIDATE;
4516 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4517 	}
4518 	return 0;
4519 #endif
4520 }
4521 EXPORT_SYMBOL(pci_set_mwi);
4522 
4523 /**
4524  * pcim_set_mwi - a device-managed pci_set_mwi()
4525  * @dev: the PCI device for which MWI is enabled
4526  *
4527  * Managed pci_set_mwi().
4528  *
4529  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4530  */
4531 int pcim_set_mwi(struct pci_dev *dev)
4532 {
4533 	struct pci_devres *dr;
4534 
4535 	dr = find_pci_dr(dev);
4536 	if (!dr)
4537 		return -ENOMEM;
4538 
4539 	dr->mwi = 1;
4540 	return pci_set_mwi(dev);
4541 }
4542 EXPORT_SYMBOL(pcim_set_mwi);
4543 
4544 /**
4545  * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4546  * @dev: the PCI device for which MWI is enabled
4547  *
4548  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4549  * Callers are not required to check the return value.
4550  *
4551  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4552  */
4553 int pci_try_set_mwi(struct pci_dev *dev)
4554 {
4555 #ifdef PCI_DISABLE_MWI
4556 	return 0;
4557 #else
4558 	return pci_set_mwi(dev);
4559 #endif
4560 }
4561 EXPORT_SYMBOL(pci_try_set_mwi);
4562 
4563 /**
4564  * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4565  * @dev: the PCI device to disable
4566  *
4567  * Disables PCI Memory-Write-Invalidate transaction on the device
4568  */
4569 void pci_clear_mwi(struct pci_dev *dev)
4570 {
4571 #ifndef PCI_DISABLE_MWI
4572 	u16 cmd;
4573 
4574 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4575 	if (cmd & PCI_COMMAND_INVALIDATE) {
4576 		cmd &= ~PCI_COMMAND_INVALIDATE;
4577 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4578 	}
4579 #endif
4580 }
4581 EXPORT_SYMBOL(pci_clear_mwi);
4582 
4583 /**
4584  * pci_disable_parity - disable parity checking for device
4585  * @dev: the PCI device to operate on
4586  *
4587  * Disable parity checking for device @dev
4588  */
4589 void pci_disable_parity(struct pci_dev *dev)
4590 {
4591 	u16 cmd;
4592 
4593 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4594 	if (cmd & PCI_COMMAND_PARITY) {
4595 		cmd &= ~PCI_COMMAND_PARITY;
4596 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4597 	}
4598 }
4599 
4600 /**
4601  * pci_intx - enables/disables PCI INTx for device dev
4602  * @pdev: the PCI device to operate on
4603  * @enable: boolean: whether to enable or disable PCI INTx
4604  *
4605  * Enables/disables PCI INTx for device @pdev
4606  */
4607 void pci_intx(struct pci_dev *pdev, int enable)
4608 {
4609 	u16 pci_command, new;
4610 
4611 	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4612 
4613 	if (enable)
4614 		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4615 	else
4616 		new = pci_command | PCI_COMMAND_INTX_DISABLE;
4617 
4618 	if (new != pci_command) {
4619 		struct pci_devres *dr;
4620 
4621 		pci_write_config_word(pdev, PCI_COMMAND, new);
4622 
4623 		dr = find_pci_dr(pdev);
4624 		if (dr && !dr->restore_intx) {
4625 			dr->restore_intx = 1;
4626 			dr->orig_intx = !enable;
4627 		}
4628 	}
4629 }
4630 EXPORT_SYMBOL_GPL(pci_intx);
4631 
4632 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4633 {
4634 	struct pci_bus *bus = dev->bus;
4635 	bool mask_updated = true;
4636 	u32 cmd_status_dword;
4637 	u16 origcmd, newcmd;
4638 	unsigned long flags;
4639 	bool irq_pending;
4640 
4641 	/*
4642 	 * We do a single dword read to retrieve both command and status.
4643 	 * Document assumptions that make this possible.
4644 	 */
4645 	BUILD_BUG_ON(PCI_COMMAND % 4);
4646 	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4647 
4648 	raw_spin_lock_irqsave(&pci_lock, flags);
4649 
4650 	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4651 
4652 	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4653 
4654 	/*
4655 	 * Check interrupt status register to see whether our device
4656 	 * triggered the interrupt (when masking) or the next IRQ is
4657 	 * already pending (when unmasking).
4658 	 */
4659 	if (mask != irq_pending) {
4660 		mask_updated = false;
4661 		goto done;
4662 	}
4663 
4664 	origcmd = cmd_status_dword;
4665 	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4666 	if (mask)
4667 		newcmd |= PCI_COMMAND_INTX_DISABLE;
4668 	if (newcmd != origcmd)
4669 		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4670 
4671 done:
4672 	raw_spin_unlock_irqrestore(&pci_lock, flags);
4673 
4674 	return mask_updated;
4675 }
4676 
4677 /**
4678  * pci_check_and_mask_intx - mask INTx on pending interrupt
4679  * @dev: the PCI device to operate on
4680  *
4681  * Check if the device dev has its INTx line asserted, mask it and return
4682  * true in that case. False is returned if no interrupt was pending.
4683  */
4684 bool pci_check_and_mask_intx(struct pci_dev *dev)
4685 {
4686 	return pci_check_and_set_intx_mask(dev, true);
4687 }
4688 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4689 
4690 /**
4691  * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4692  * @dev: the PCI device to operate on
4693  *
4694  * Check if the device dev has its INTx line asserted, unmask it if not and
4695  * return true. False is returned and the mask remains active if there was
4696  * still an interrupt pending.
4697  */
4698 bool pci_check_and_unmask_intx(struct pci_dev *dev)
4699 {
4700 	return pci_check_and_set_intx_mask(dev, false);
4701 }
4702 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4703 
4704 /**
4705  * pci_wait_for_pending_transaction - wait for pending transaction
4706  * @dev: the PCI device to operate on
4707  *
4708  * Return 0 if transaction is pending 1 otherwise.
4709  */
4710 int pci_wait_for_pending_transaction(struct pci_dev *dev)
4711 {
4712 	if (!pci_is_pcie(dev))
4713 		return 1;
4714 
4715 	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4716 				    PCI_EXP_DEVSTA_TRPND);
4717 }
4718 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4719 
4720 /**
4721  * pcie_flr - initiate a PCIe function level reset
4722  * @dev: device to reset
4723  *
4724  * Initiate a function level reset unconditionally on @dev without
4725  * checking any flags and DEVCAP
4726  */
4727 int pcie_flr(struct pci_dev *dev)
4728 {
4729 	if (!pci_wait_for_pending_transaction(dev))
4730 		pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4731 
4732 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4733 
4734 	if (dev->imm_ready)
4735 		return 0;
4736 
4737 	/*
4738 	 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4739 	 * 100ms, but may silently discard requests while the FLR is in
4740 	 * progress.  Wait 100ms before trying to access the device.
4741 	 */
4742 	msleep(100);
4743 
4744 	return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4745 }
4746 EXPORT_SYMBOL_GPL(pcie_flr);
4747 
4748 /**
4749  * pcie_reset_flr - initiate a PCIe function level reset
4750  * @dev: device to reset
4751  * @probe: if true, return 0 if device can be reset this way
4752  *
4753  * Initiate a function level reset on @dev.
4754  */
4755 int pcie_reset_flr(struct pci_dev *dev, bool probe)
4756 {
4757 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4758 		return -ENOTTY;
4759 
4760 	if (!(dev->devcap & PCI_EXP_DEVCAP_FLR))
4761 		return -ENOTTY;
4762 
4763 	if (probe)
4764 		return 0;
4765 
4766 	return pcie_flr(dev);
4767 }
4768 EXPORT_SYMBOL_GPL(pcie_reset_flr);
4769 
4770 static int pci_af_flr(struct pci_dev *dev, bool probe)
4771 {
4772 	int pos;
4773 	u8 cap;
4774 
4775 	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4776 	if (!pos)
4777 		return -ENOTTY;
4778 
4779 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4780 		return -ENOTTY;
4781 
4782 	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4783 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4784 		return -ENOTTY;
4785 
4786 	if (probe)
4787 		return 0;
4788 
4789 	/*
4790 	 * Wait for Transaction Pending bit to clear.  A word-aligned test
4791 	 * is used, so we use the control offset rather than status and shift
4792 	 * the test bit to match.
4793 	 */
4794 	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4795 				 PCI_AF_STATUS_TP << 8))
4796 		pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4797 
4798 	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4799 
4800 	if (dev->imm_ready)
4801 		return 0;
4802 
4803 	/*
4804 	 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4805 	 * updated 27 July 2006; a device must complete an FLR within
4806 	 * 100ms, but may silently discard requests while the FLR is in
4807 	 * progress.  Wait 100ms before trying to access the device.
4808 	 */
4809 	msleep(100);
4810 
4811 	return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4812 }
4813 
4814 /**
4815  * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4816  * @dev: Device to reset.
4817  * @probe: if true, return 0 if the device can be reset this way.
4818  *
4819  * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4820  * unset, it will be reinitialized internally when going from PCI_D3hot to
4821  * PCI_D0.  If that's the case and the device is not in a low-power state
4822  * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4823  *
4824  * NOTE: This causes the caller to sleep for twice the device power transition
4825  * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4826  * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4827  * Moreover, only devices in D0 can be reset by this function.
4828  */
4829 static int pci_pm_reset(struct pci_dev *dev, bool probe)
4830 {
4831 	u16 csr;
4832 
4833 	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4834 		return -ENOTTY;
4835 
4836 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4837 	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4838 		return -ENOTTY;
4839 
4840 	if (probe)
4841 		return 0;
4842 
4843 	if (dev->current_state != PCI_D0)
4844 		return -EINVAL;
4845 
4846 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4847 	csr |= PCI_D3hot;
4848 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4849 	pci_dev_d3_sleep(dev);
4850 
4851 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4852 	csr |= PCI_D0;
4853 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4854 	pci_dev_d3_sleep(dev);
4855 
4856 	return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4857 }
4858 
4859 /**
4860  * pcie_wait_for_link_delay - Wait until link is active or inactive
4861  * @pdev: Bridge device
4862  * @active: waiting for active or inactive?
4863  * @delay: Delay to wait after link has become active (in ms)
4864  *
4865  * Use this to wait till link becomes active or inactive.
4866  */
4867 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4868 				     int delay)
4869 {
4870 	int timeout = 1000;
4871 	bool ret;
4872 	u16 lnk_status;
4873 
4874 	/*
4875 	 * Some controllers might not implement link active reporting. In this
4876 	 * case, we wait for 1000 ms + any delay requested by the caller.
4877 	 */
4878 	if (!pdev->link_active_reporting) {
4879 		msleep(timeout + delay);
4880 		return true;
4881 	}
4882 
4883 	/*
4884 	 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4885 	 * after which we should expect an link active if the reset was
4886 	 * successful. If so, software must wait a minimum 100ms before sending
4887 	 * configuration requests to devices downstream this port.
4888 	 *
4889 	 * If the link fails to activate, either the device was physically
4890 	 * removed or the link is permanently failed.
4891 	 */
4892 	if (active)
4893 		msleep(20);
4894 	for (;;) {
4895 		pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
4896 		ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA);
4897 		if (ret == active)
4898 			break;
4899 		if (timeout <= 0)
4900 			break;
4901 		msleep(10);
4902 		timeout -= 10;
4903 	}
4904 	if (active && ret)
4905 		msleep(delay);
4906 
4907 	return ret == active;
4908 }
4909 
4910 /**
4911  * pcie_wait_for_link - Wait until link is active or inactive
4912  * @pdev: Bridge device
4913  * @active: waiting for active or inactive?
4914  *
4915  * Use this to wait till link becomes active or inactive.
4916  */
4917 bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4918 {
4919 	return pcie_wait_for_link_delay(pdev, active, 100);
4920 }
4921 
4922 /*
4923  * Find maximum D3cold delay required by all the devices on the bus.  The
4924  * spec says 100 ms, but firmware can lower it and we allow drivers to
4925  * increase it as well.
4926  *
4927  * Called with @pci_bus_sem locked for reading.
4928  */
4929 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
4930 {
4931 	const struct pci_dev *pdev;
4932 	int min_delay = 100;
4933 	int max_delay = 0;
4934 
4935 	list_for_each_entry(pdev, &bus->devices, bus_list) {
4936 		if (pdev->d3cold_delay < min_delay)
4937 			min_delay = pdev->d3cold_delay;
4938 		if (pdev->d3cold_delay > max_delay)
4939 			max_delay = pdev->d3cold_delay;
4940 	}
4941 
4942 	return max(min_delay, max_delay);
4943 }
4944 
4945 /**
4946  * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4947  * @dev: PCI bridge
4948  * @reset_type: reset type in human-readable form
4949  *
4950  * Handle necessary delays before access to the devices on the secondary
4951  * side of the bridge are permitted after D3cold to D0 transition
4952  * or Conventional Reset.
4953  *
4954  * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4955  * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4956  * 4.3.2.
4957  *
4958  * Return 0 on success or -ENOTTY if the first device on the secondary bus
4959  * failed to become accessible.
4960  */
4961 int pci_bridge_wait_for_secondary_bus(struct pci_dev *dev, char *reset_type)
4962 {
4963 	struct pci_dev *child;
4964 	int delay;
4965 
4966 	if (pci_dev_is_disconnected(dev))
4967 		return 0;
4968 
4969 	if (!pci_is_bridge(dev))
4970 		return 0;
4971 
4972 	down_read(&pci_bus_sem);
4973 
4974 	/*
4975 	 * We only deal with devices that are present currently on the bus.
4976 	 * For any hot-added devices the access delay is handled in pciehp
4977 	 * board_added(). In case of ACPI hotplug the firmware is expected
4978 	 * to configure the devices before OS is notified.
4979 	 */
4980 	if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
4981 		up_read(&pci_bus_sem);
4982 		return 0;
4983 	}
4984 
4985 	/* Take d3cold_delay requirements into account */
4986 	delay = pci_bus_max_d3cold_delay(dev->subordinate);
4987 	if (!delay) {
4988 		up_read(&pci_bus_sem);
4989 		return 0;
4990 	}
4991 
4992 	child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
4993 				 bus_list);
4994 	up_read(&pci_bus_sem);
4995 
4996 	/*
4997 	 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
4998 	 * accessing the device after reset (that is 1000 ms + 100 ms).
4999 	 */
5000 	if (!pci_is_pcie(dev)) {
5001 		pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
5002 		msleep(1000 + delay);
5003 		return 0;
5004 	}
5005 
5006 	/*
5007 	 * For PCIe downstream and root ports that do not support speeds
5008 	 * greater than 5 GT/s need to wait minimum 100 ms. For higher
5009 	 * speeds (gen3) we need to wait first for the data link layer to
5010 	 * become active.
5011 	 *
5012 	 * However, 100 ms is the minimum and the PCIe spec says the
5013 	 * software must allow at least 1s before it can determine that the
5014 	 * device that did not respond is a broken device. There is
5015 	 * evidence that 100 ms is not always enough, for example certain
5016 	 * Titan Ridge xHCI controller does not always respond to
5017 	 * configuration requests if we only wait for 100 ms (see
5018 	 * https://bugzilla.kernel.org/show_bug.cgi?id=203885).
5019 	 *
5020 	 * Therefore we wait for 100 ms and check for the device presence
5021 	 * until the timeout expires.
5022 	 */
5023 	if (!pcie_downstream_port(dev))
5024 		return 0;
5025 
5026 	if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
5027 		pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
5028 		msleep(delay);
5029 	} else {
5030 		pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
5031 			delay);
5032 		if (!pcie_wait_for_link_delay(dev, true, delay)) {
5033 			/* Did not train, no need to wait any further */
5034 			pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
5035 			return -ENOTTY;
5036 		}
5037 	}
5038 
5039 	return pci_dev_wait(child, reset_type,
5040 			    PCIE_RESET_READY_POLL_MS - delay);
5041 }
5042 
5043 void pci_reset_secondary_bus(struct pci_dev *dev)
5044 {
5045 	u16 ctrl;
5046 
5047 	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
5048 	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
5049 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
5050 
5051 	/*
5052 	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
5053 	 * this to 2ms to ensure that we meet the minimum requirement.
5054 	 */
5055 	msleep(2);
5056 
5057 	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
5058 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
5059 }
5060 
5061 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
5062 {
5063 	pci_reset_secondary_bus(dev);
5064 }
5065 
5066 /**
5067  * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
5068  * @dev: Bridge device
5069  *
5070  * Use the bridge control register to assert reset on the secondary bus.
5071  * Devices on the secondary bus are left in power-on state.
5072  */
5073 int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
5074 {
5075 	pcibios_reset_secondary_bus(dev);
5076 
5077 	return pci_bridge_wait_for_secondary_bus(dev, "bus reset");
5078 }
5079 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
5080 
5081 static int pci_parent_bus_reset(struct pci_dev *dev, bool probe)
5082 {
5083 	struct pci_dev *pdev;
5084 
5085 	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
5086 	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5087 		return -ENOTTY;
5088 
5089 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
5090 		if (pdev != dev)
5091 			return -ENOTTY;
5092 
5093 	if (probe)
5094 		return 0;
5095 
5096 	return pci_bridge_secondary_bus_reset(dev->bus->self);
5097 }
5098 
5099 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe)
5100 {
5101 	int rc = -ENOTTY;
5102 
5103 	if (!hotplug || !try_module_get(hotplug->owner))
5104 		return rc;
5105 
5106 	if (hotplug->ops->reset_slot)
5107 		rc = hotplug->ops->reset_slot(hotplug, probe);
5108 
5109 	module_put(hotplug->owner);
5110 
5111 	return rc;
5112 }
5113 
5114 static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe)
5115 {
5116 	if (dev->multifunction || dev->subordinate || !dev->slot ||
5117 	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5118 		return -ENOTTY;
5119 
5120 	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
5121 }
5122 
5123 static int pci_reset_bus_function(struct pci_dev *dev, bool probe)
5124 {
5125 	int rc;
5126 
5127 	rc = pci_dev_reset_slot_function(dev, probe);
5128 	if (rc != -ENOTTY)
5129 		return rc;
5130 	return pci_parent_bus_reset(dev, probe);
5131 }
5132 
5133 void pci_dev_lock(struct pci_dev *dev)
5134 {
5135 	/* block PM suspend, driver probe, etc. */
5136 	device_lock(&dev->dev);
5137 	pci_cfg_access_lock(dev);
5138 }
5139 EXPORT_SYMBOL_GPL(pci_dev_lock);
5140 
5141 /* Return 1 on successful lock, 0 on contention */
5142 int pci_dev_trylock(struct pci_dev *dev)
5143 {
5144 	if (device_trylock(&dev->dev)) {
5145 		if (pci_cfg_access_trylock(dev))
5146 			return 1;
5147 		device_unlock(&dev->dev);
5148 	}
5149 
5150 	return 0;
5151 }
5152 EXPORT_SYMBOL_GPL(pci_dev_trylock);
5153 
5154 void pci_dev_unlock(struct pci_dev *dev)
5155 {
5156 	pci_cfg_access_unlock(dev);
5157 	device_unlock(&dev->dev);
5158 }
5159 EXPORT_SYMBOL_GPL(pci_dev_unlock);
5160 
5161 static void pci_dev_save_and_disable(struct pci_dev *dev)
5162 {
5163 	const struct pci_error_handlers *err_handler =
5164 			dev->driver ? dev->driver->err_handler : NULL;
5165 
5166 	/*
5167 	 * dev->driver->err_handler->reset_prepare() is protected against
5168 	 * races with ->remove() by the device lock, which must be held by
5169 	 * the caller.
5170 	 */
5171 	if (err_handler && err_handler->reset_prepare)
5172 		err_handler->reset_prepare(dev);
5173 
5174 	/*
5175 	 * Wake-up device prior to save.  PM registers default to D0 after
5176 	 * reset and a simple register restore doesn't reliably return
5177 	 * to a non-D0 state anyway.
5178 	 */
5179 	pci_set_power_state(dev, PCI_D0);
5180 
5181 	pci_save_state(dev);
5182 	/*
5183 	 * Disable the device by clearing the Command register, except for
5184 	 * INTx-disable which is set.  This not only disables MMIO and I/O port
5185 	 * BARs, but also prevents the device from being Bus Master, preventing
5186 	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
5187 	 * compliant devices, INTx-disable prevents legacy interrupts.
5188 	 */
5189 	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
5190 }
5191 
5192 static void pci_dev_restore(struct pci_dev *dev)
5193 {
5194 	const struct pci_error_handlers *err_handler =
5195 			dev->driver ? dev->driver->err_handler : NULL;
5196 
5197 	pci_restore_state(dev);
5198 
5199 	/*
5200 	 * dev->driver->err_handler->reset_done() is protected against
5201 	 * races with ->remove() by the device lock, which must be held by
5202 	 * the caller.
5203 	 */
5204 	if (err_handler && err_handler->reset_done)
5205 		err_handler->reset_done(dev);
5206 }
5207 
5208 /* dev->reset_methods[] is a 0-terminated list of indices into this array */
5209 static const struct pci_reset_fn_method pci_reset_fn_methods[] = {
5210 	{ },
5211 	{ pci_dev_specific_reset, .name = "device_specific" },
5212 	{ pci_dev_acpi_reset, .name = "acpi" },
5213 	{ pcie_reset_flr, .name = "flr" },
5214 	{ pci_af_flr, .name = "af_flr" },
5215 	{ pci_pm_reset, .name = "pm" },
5216 	{ pci_reset_bus_function, .name = "bus" },
5217 };
5218 
5219 static ssize_t reset_method_show(struct device *dev,
5220 				 struct device_attribute *attr, char *buf)
5221 {
5222 	struct pci_dev *pdev = to_pci_dev(dev);
5223 	ssize_t len = 0;
5224 	int i, m;
5225 
5226 	for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5227 		m = pdev->reset_methods[i];
5228 		if (!m)
5229 			break;
5230 
5231 		len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "",
5232 				     pci_reset_fn_methods[m].name);
5233 	}
5234 
5235 	if (len)
5236 		len += sysfs_emit_at(buf, len, "\n");
5237 
5238 	return len;
5239 }
5240 
5241 static int reset_method_lookup(const char *name)
5242 {
5243 	int m;
5244 
5245 	for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5246 		if (sysfs_streq(name, pci_reset_fn_methods[m].name))
5247 			return m;
5248 	}
5249 
5250 	return 0;	/* not found */
5251 }
5252 
5253 static ssize_t reset_method_store(struct device *dev,
5254 				  struct device_attribute *attr,
5255 				  const char *buf, size_t count)
5256 {
5257 	struct pci_dev *pdev = to_pci_dev(dev);
5258 	char *options, *name;
5259 	int m, n;
5260 	u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 };
5261 
5262 	if (sysfs_streq(buf, "")) {
5263 		pdev->reset_methods[0] = 0;
5264 		pci_warn(pdev, "All device reset methods disabled by user");
5265 		return count;
5266 	}
5267 
5268 	if (sysfs_streq(buf, "default")) {
5269 		pci_init_reset_methods(pdev);
5270 		return count;
5271 	}
5272 
5273 	options = kstrndup(buf, count, GFP_KERNEL);
5274 	if (!options)
5275 		return -ENOMEM;
5276 
5277 	n = 0;
5278 	while ((name = strsep(&options, " ")) != NULL) {
5279 		if (sysfs_streq(name, ""))
5280 			continue;
5281 
5282 		name = strim(name);
5283 
5284 		m = reset_method_lookup(name);
5285 		if (!m) {
5286 			pci_err(pdev, "Invalid reset method '%s'", name);
5287 			goto error;
5288 		}
5289 
5290 		if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) {
5291 			pci_err(pdev, "Unsupported reset method '%s'", name);
5292 			goto error;
5293 		}
5294 
5295 		if (n == PCI_NUM_RESET_METHODS - 1) {
5296 			pci_err(pdev, "Too many reset methods\n");
5297 			goto error;
5298 		}
5299 
5300 		reset_methods[n++] = m;
5301 	}
5302 
5303 	reset_methods[n] = 0;
5304 
5305 	/* Warn if dev-specific supported but not highest priority */
5306 	if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 &&
5307 	    reset_methods[0] != 1)
5308 		pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user");
5309 	memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods));
5310 	kfree(options);
5311 	return count;
5312 
5313 error:
5314 	/* Leave previous methods unchanged */
5315 	kfree(options);
5316 	return -EINVAL;
5317 }
5318 static DEVICE_ATTR_RW(reset_method);
5319 
5320 static struct attribute *pci_dev_reset_method_attrs[] = {
5321 	&dev_attr_reset_method.attr,
5322 	NULL,
5323 };
5324 
5325 static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj,
5326 						    struct attribute *a, int n)
5327 {
5328 	struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj));
5329 
5330 	if (!pci_reset_supported(pdev))
5331 		return 0;
5332 
5333 	return a->mode;
5334 }
5335 
5336 const struct attribute_group pci_dev_reset_method_attr_group = {
5337 	.attrs = pci_dev_reset_method_attrs,
5338 	.is_visible = pci_dev_reset_method_attr_is_visible,
5339 };
5340 
5341 /**
5342  * __pci_reset_function_locked - reset a PCI device function while holding
5343  * the @dev mutex lock.
5344  * @dev: PCI device to reset
5345  *
5346  * Some devices allow an individual function to be reset without affecting
5347  * other functions in the same device.  The PCI device must be responsive
5348  * to PCI config space in order to use this function.
5349  *
5350  * The device function is presumed to be unused and the caller is holding
5351  * the device mutex lock when this function is called.
5352  *
5353  * Resetting the device will make the contents of PCI configuration space
5354  * random, so any caller of this must be prepared to reinitialise the
5355  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5356  * etc.
5357  *
5358  * Returns 0 if the device function was successfully reset or negative if the
5359  * device doesn't support resetting a single function.
5360  */
5361 int __pci_reset_function_locked(struct pci_dev *dev)
5362 {
5363 	int i, m, rc;
5364 
5365 	might_sleep();
5366 
5367 	/*
5368 	 * A reset method returns -ENOTTY if it doesn't support this device and
5369 	 * we should try the next method.
5370 	 *
5371 	 * If it returns 0 (success), we're finished.  If it returns any other
5372 	 * error, we're also finished: this indicates that further reset
5373 	 * mechanisms might be broken on the device.
5374 	 */
5375 	for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5376 		m = dev->reset_methods[i];
5377 		if (!m)
5378 			return -ENOTTY;
5379 
5380 		rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET);
5381 		if (!rc)
5382 			return 0;
5383 		if (rc != -ENOTTY)
5384 			return rc;
5385 	}
5386 
5387 	return -ENOTTY;
5388 }
5389 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5390 
5391 /**
5392  * pci_init_reset_methods - check whether device can be safely reset
5393  * and store supported reset mechanisms.
5394  * @dev: PCI device to check for reset mechanisms
5395  *
5396  * Some devices allow an individual function to be reset without affecting
5397  * other functions in the same device.  The PCI device must be in D0-D3hot
5398  * state.
5399  *
5400  * Stores reset mechanisms supported by device in reset_methods byte array
5401  * which is a member of struct pci_dev.
5402  */
5403 void pci_init_reset_methods(struct pci_dev *dev)
5404 {
5405 	int m, i, rc;
5406 
5407 	BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS);
5408 
5409 	might_sleep();
5410 
5411 	i = 0;
5412 	for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5413 		rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE);
5414 		if (!rc)
5415 			dev->reset_methods[i++] = m;
5416 		else if (rc != -ENOTTY)
5417 			break;
5418 	}
5419 
5420 	dev->reset_methods[i] = 0;
5421 }
5422 
5423 /**
5424  * pci_reset_function - quiesce and reset a PCI device function
5425  * @dev: PCI device to reset
5426  *
5427  * Some devices allow an individual function to be reset without affecting
5428  * other functions in the same device.  The PCI device must be responsive
5429  * to PCI config space in order to use this function.
5430  *
5431  * This function does not just reset the PCI portion of a device, but
5432  * clears all the state associated with the device.  This function differs
5433  * from __pci_reset_function_locked() in that it saves and restores device state
5434  * over the reset and takes the PCI device lock.
5435  *
5436  * Returns 0 if the device function was successfully reset or negative if the
5437  * device doesn't support resetting a single function.
5438  */
5439 int pci_reset_function(struct pci_dev *dev)
5440 {
5441 	int rc;
5442 
5443 	if (!pci_reset_supported(dev))
5444 		return -ENOTTY;
5445 
5446 	pci_dev_lock(dev);
5447 	pci_dev_save_and_disable(dev);
5448 
5449 	rc = __pci_reset_function_locked(dev);
5450 
5451 	pci_dev_restore(dev);
5452 	pci_dev_unlock(dev);
5453 
5454 	return rc;
5455 }
5456 EXPORT_SYMBOL_GPL(pci_reset_function);
5457 
5458 /**
5459  * pci_reset_function_locked - quiesce and reset a PCI device function
5460  * @dev: PCI device to reset
5461  *
5462  * Some devices allow an individual function to be reset without affecting
5463  * other functions in the same device.  The PCI device must be responsive
5464  * to PCI config space in order to use this function.
5465  *
5466  * This function does not just reset the PCI portion of a device, but
5467  * clears all the state associated with the device.  This function differs
5468  * from __pci_reset_function_locked() in that it saves and restores device state
5469  * over the reset.  It also differs from pci_reset_function() in that it
5470  * requires the PCI device lock to be held.
5471  *
5472  * Returns 0 if the device function was successfully reset or negative if the
5473  * device doesn't support resetting a single function.
5474  */
5475 int pci_reset_function_locked(struct pci_dev *dev)
5476 {
5477 	int rc;
5478 
5479 	if (!pci_reset_supported(dev))
5480 		return -ENOTTY;
5481 
5482 	pci_dev_save_and_disable(dev);
5483 
5484 	rc = __pci_reset_function_locked(dev);
5485 
5486 	pci_dev_restore(dev);
5487 
5488 	return rc;
5489 }
5490 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5491 
5492 /**
5493  * pci_try_reset_function - quiesce and reset a PCI device function
5494  * @dev: PCI device to reset
5495  *
5496  * Same as above, except return -EAGAIN if unable to lock device.
5497  */
5498 int pci_try_reset_function(struct pci_dev *dev)
5499 {
5500 	int rc;
5501 
5502 	if (!pci_reset_supported(dev))
5503 		return -ENOTTY;
5504 
5505 	if (!pci_dev_trylock(dev))
5506 		return -EAGAIN;
5507 
5508 	pci_dev_save_and_disable(dev);
5509 	rc = __pci_reset_function_locked(dev);
5510 	pci_dev_restore(dev);
5511 	pci_dev_unlock(dev);
5512 
5513 	return rc;
5514 }
5515 EXPORT_SYMBOL_GPL(pci_try_reset_function);
5516 
5517 /* Do any devices on or below this bus prevent a bus reset? */
5518 static bool pci_bus_resetable(struct pci_bus *bus)
5519 {
5520 	struct pci_dev *dev;
5521 
5522 
5523 	if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5524 		return false;
5525 
5526 	list_for_each_entry(dev, &bus->devices, bus_list) {
5527 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5528 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5529 			return false;
5530 	}
5531 
5532 	return true;
5533 }
5534 
5535 /* Lock devices from the top of the tree down */
5536 static void pci_bus_lock(struct pci_bus *bus)
5537 {
5538 	struct pci_dev *dev;
5539 
5540 	list_for_each_entry(dev, &bus->devices, bus_list) {
5541 		pci_dev_lock(dev);
5542 		if (dev->subordinate)
5543 			pci_bus_lock(dev->subordinate);
5544 	}
5545 }
5546 
5547 /* Unlock devices from the bottom of the tree up */
5548 static void pci_bus_unlock(struct pci_bus *bus)
5549 {
5550 	struct pci_dev *dev;
5551 
5552 	list_for_each_entry(dev, &bus->devices, bus_list) {
5553 		if (dev->subordinate)
5554 			pci_bus_unlock(dev->subordinate);
5555 		pci_dev_unlock(dev);
5556 	}
5557 }
5558 
5559 /* Return 1 on successful lock, 0 on contention */
5560 static int pci_bus_trylock(struct pci_bus *bus)
5561 {
5562 	struct pci_dev *dev;
5563 
5564 	list_for_each_entry(dev, &bus->devices, bus_list) {
5565 		if (!pci_dev_trylock(dev))
5566 			goto unlock;
5567 		if (dev->subordinate) {
5568 			if (!pci_bus_trylock(dev->subordinate)) {
5569 				pci_dev_unlock(dev);
5570 				goto unlock;
5571 			}
5572 		}
5573 	}
5574 	return 1;
5575 
5576 unlock:
5577 	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5578 		if (dev->subordinate)
5579 			pci_bus_unlock(dev->subordinate);
5580 		pci_dev_unlock(dev);
5581 	}
5582 	return 0;
5583 }
5584 
5585 /* Do any devices on or below this slot prevent a bus reset? */
5586 static bool pci_slot_resetable(struct pci_slot *slot)
5587 {
5588 	struct pci_dev *dev;
5589 
5590 	if (slot->bus->self &&
5591 	    (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5592 		return false;
5593 
5594 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5595 		if (!dev->slot || dev->slot != slot)
5596 			continue;
5597 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5598 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5599 			return false;
5600 	}
5601 
5602 	return true;
5603 }
5604 
5605 /* Lock devices from the top of the tree down */
5606 static void pci_slot_lock(struct pci_slot *slot)
5607 {
5608 	struct pci_dev *dev;
5609 
5610 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5611 		if (!dev->slot || dev->slot != slot)
5612 			continue;
5613 		pci_dev_lock(dev);
5614 		if (dev->subordinate)
5615 			pci_bus_lock(dev->subordinate);
5616 	}
5617 }
5618 
5619 /* Unlock devices from the bottom of the tree up */
5620 static void pci_slot_unlock(struct pci_slot *slot)
5621 {
5622 	struct pci_dev *dev;
5623 
5624 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5625 		if (!dev->slot || dev->slot != slot)
5626 			continue;
5627 		if (dev->subordinate)
5628 			pci_bus_unlock(dev->subordinate);
5629 		pci_dev_unlock(dev);
5630 	}
5631 }
5632 
5633 /* Return 1 on successful lock, 0 on contention */
5634 static int pci_slot_trylock(struct pci_slot *slot)
5635 {
5636 	struct pci_dev *dev;
5637 
5638 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5639 		if (!dev->slot || dev->slot != slot)
5640 			continue;
5641 		if (!pci_dev_trylock(dev))
5642 			goto unlock;
5643 		if (dev->subordinate) {
5644 			if (!pci_bus_trylock(dev->subordinate)) {
5645 				pci_dev_unlock(dev);
5646 				goto unlock;
5647 			}
5648 		}
5649 	}
5650 	return 1;
5651 
5652 unlock:
5653 	list_for_each_entry_continue_reverse(dev,
5654 					     &slot->bus->devices, bus_list) {
5655 		if (!dev->slot || dev->slot != slot)
5656 			continue;
5657 		if (dev->subordinate)
5658 			pci_bus_unlock(dev->subordinate);
5659 		pci_dev_unlock(dev);
5660 	}
5661 	return 0;
5662 }
5663 
5664 /*
5665  * Save and disable devices from the top of the tree down while holding
5666  * the @dev mutex lock for the entire tree.
5667  */
5668 static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5669 {
5670 	struct pci_dev *dev;
5671 
5672 	list_for_each_entry(dev, &bus->devices, bus_list) {
5673 		pci_dev_save_and_disable(dev);
5674 		if (dev->subordinate)
5675 			pci_bus_save_and_disable_locked(dev->subordinate);
5676 	}
5677 }
5678 
5679 /*
5680  * Restore devices from top of the tree down while holding @dev mutex lock
5681  * for the entire tree.  Parent bridges need to be restored before we can
5682  * get to subordinate devices.
5683  */
5684 static void pci_bus_restore_locked(struct pci_bus *bus)
5685 {
5686 	struct pci_dev *dev;
5687 
5688 	list_for_each_entry(dev, &bus->devices, bus_list) {
5689 		pci_dev_restore(dev);
5690 		if (dev->subordinate)
5691 			pci_bus_restore_locked(dev->subordinate);
5692 	}
5693 }
5694 
5695 /*
5696  * Save and disable devices from the top of the tree down while holding
5697  * the @dev mutex lock for the entire tree.
5698  */
5699 static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5700 {
5701 	struct pci_dev *dev;
5702 
5703 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5704 		if (!dev->slot || dev->slot != slot)
5705 			continue;
5706 		pci_dev_save_and_disable(dev);
5707 		if (dev->subordinate)
5708 			pci_bus_save_and_disable_locked(dev->subordinate);
5709 	}
5710 }
5711 
5712 /*
5713  * Restore devices from top of the tree down while holding @dev mutex lock
5714  * for the entire tree.  Parent bridges need to be restored before we can
5715  * get to subordinate devices.
5716  */
5717 static void pci_slot_restore_locked(struct pci_slot *slot)
5718 {
5719 	struct pci_dev *dev;
5720 
5721 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5722 		if (!dev->slot || dev->slot != slot)
5723 			continue;
5724 		pci_dev_restore(dev);
5725 		if (dev->subordinate)
5726 			pci_bus_restore_locked(dev->subordinate);
5727 	}
5728 }
5729 
5730 static int pci_slot_reset(struct pci_slot *slot, bool probe)
5731 {
5732 	int rc;
5733 
5734 	if (!slot || !pci_slot_resetable(slot))
5735 		return -ENOTTY;
5736 
5737 	if (!probe)
5738 		pci_slot_lock(slot);
5739 
5740 	might_sleep();
5741 
5742 	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5743 
5744 	if (!probe)
5745 		pci_slot_unlock(slot);
5746 
5747 	return rc;
5748 }
5749 
5750 /**
5751  * pci_probe_reset_slot - probe whether a PCI slot can be reset
5752  * @slot: PCI slot to probe
5753  *
5754  * Return 0 if slot can be reset, negative if a slot reset is not supported.
5755  */
5756 int pci_probe_reset_slot(struct pci_slot *slot)
5757 {
5758 	return pci_slot_reset(slot, PCI_RESET_PROBE);
5759 }
5760 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5761 
5762 /**
5763  * __pci_reset_slot - Try to reset a PCI slot
5764  * @slot: PCI slot to reset
5765  *
5766  * A PCI bus may host multiple slots, each slot may support a reset mechanism
5767  * independent of other slots.  For instance, some slots may support slot power
5768  * control.  In the case of a 1:1 bus to slot architecture, this function may
5769  * wrap the bus reset to avoid spurious slot related events such as hotplug.
5770  * Generally a slot reset should be attempted before a bus reset.  All of the
5771  * function of the slot and any subordinate buses behind the slot are reset
5772  * through this function.  PCI config space of all devices in the slot and
5773  * behind the slot is saved before and restored after reset.
5774  *
5775  * Same as above except return -EAGAIN if the slot cannot be locked
5776  */
5777 static int __pci_reset_slot(struct pci_slot *slot)
5778 {
5779 	int rc;
5780 
5781 	rc = pci_slot_reset(slot, PCI_RESET_PROBE);
5782 	if (rc)
5783 		return rc;
5784 
5785 	if (pci_slot_trylock(slot)) {
5786 		pci_slot_save_and_disable_locked(slot);
5787 		might_sleep();
5788 		rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET);
5789 		pci_slot_restore_locked(slot);
5790 		pci_slot_unlock(slot);
5791 	} else
5792 		rc = -EAGAIN;
5793 
5794 	return rc;
5795 }
5796 
5797 static int pci_bus_reset(struct pci_bus *bus, bool probe)
5798 {
5799 	int ret;
5800 
5801 	if (!bus->self || !pci_bus_resetable(bus))
5802 		return -ENOTTY;
5803 
5804 	if (probe)
5805 		return 0;
5806 
5807 	pci_bus_lock(bus);
5808 
5809 	might_sleep();
5810 
5811 	ret = pci_bridge_secondary_bus_reset(bus->self);
5812 
5813 	pci_bus_unlock(bus);
5814 
5815 	return ret;
5816 }
5817 
5818 /**
5819  * pci_bus_error_reset - reset the bridge's subordinate bus
5820  * @bridge: The parent device that connects to the bus to reset
5821  *
5822  * This function will first try to reset the slots on this bus if the method is
5823  * available. If slot reset fails or is not available, this will fall back to a
5824  * secondary bus reset.
5825  */
5826 int pci_bus_error_reset(struct pci_dev *bridge)
5827 {
5828 	struct pci_bus *bus = bridge->subordinate;
5829 	struct pci_slot *slot;
5830 
5831 	if (!bus)
5832 		return -ENOTTY;
5833 
5834 	mutex_lock(&pci_slot_mutex);
5835 	if (list_empty(&bus->slots))
5836 		goto bus_reset;
5837 
5838 	list_for_each_entry(slot, &bus->slots, list)
5839 		if (pci_probe_reset_slot(slot))
5840 			goto bus_reset;
5841 
5842 	list_for_each_entry(slot, &bus->slots, list)
5843 		if (pci_slot_reset(slot, PCI_RESET_DO_RESET))
5844 			goto bus_reset;
5845 
5846 	mutex_unlock(&pci_slot_mutex);
5847 	return 0;
5848 bus_reset:
5849 	mutex_unlock(&pci_slot_mutex);
5850 	return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET);
5851 }
5852 
5853 /**
5854  * pci_probe_reset_bus - probe whether a PCI bus can be reset
5855  * @bus: PCI bus to probe
5856  *
5857  * Return 0 if bus can be reset, negative if a bus reset is not supported.
5858  */
5859 int pci_probe_reset_bus(struct pci_bus *bus)
5860 {
5861 	return pci_bus_reset(bus, PCI_RESET_PROBE);
5862 }
5863 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5864 
5865 /**
5866  * __pci_reset_bus - Try to reset a PCI bus
5867  * @bus: top level PCI bus to reset
5868  *
5869  * Same as above except return -EAGAIN if the bus cannot be locked
5870  */
5871 static int __pci_reset_bus(struct pci_bus *bus)
5872 {
5873 	int rc;
5874 
5875 	rc = pci_bus_reset(bus, PCI_RESET_PROBE);
5876 	if (rc)
5877 		return rc;
5878 
5879 	if (pci_bus_trylock(bus)) {
5880 		pci_bus_save_and_disable_locked(bus);
5881 		might_sleep();
5882 		rc = pci_bridge_secondary_bus_reset(bus->self);
5883 		pci_bus_restore_locked(bus);
5884 		pci_bus_unlock(bus);
5885 	} else
5886 		rc = -EAGAIN;
5887 
5888 	return rc;
5889 }
5890 
5891 /**
5892  * pci_reset_bus - Try to reset a PCI bus
5893  * @pdev: top level PCI device to reset via slot/bus
5894  *
5895  * Same as above except return -EAGAIN if the bus cannot be locked
5896  */
5897 int pci_reset_bus(struct pci_dev *pdev)
5898 {
5899 	return (!pci_probe_reset_slot(pdev->slot)) ?
5900 	    __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5901 }
5902 EXPORT_SYMBOL_GPL(pci_reset_bus);
5903 
5904 /**
5905  * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5906  * @dev: PCI device to query
5907  *
5908  * Returns mmrbc: maximum designed memory read count in bytes or
5909  * appropriate error value.
5910  */
5911 int pcix_get_max_mmrbc(struct pci_dev *dev)
5912 {
5913 	int cap;
5914 	u32 stat;
5915 
5916 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5917 	if (!cap)
5918 		return -EINVAL;
5919 
5920 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5921 		return -EINVAL;
5922 
5923 	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
5924 }
5925 EXPORT_SYMBOL(pcix_get_max_mmrbc);
5926 
5927 /**
5928  * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5929  * @dev: PCI device to query
5930  *
5931  * Returns mmrbc: maximum memory read count in bytes or appropriate error
5932  * value.
5933  */
5934 int pcix_get_mmrbc(struct pci_dev *dev)
5935 {
5936 	int cap;
5937 	u16 cmd;
5938 
5939 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5940 	if (!cap)
5941 		return -EINVAL;
5942 
5943 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5944 		return -EINVAL;
5945 
5946 	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
5947 }
5948 EXPORT_SYMBOL(pcix_get_mmrbc);
5949 
5950 /**
5951  * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5952  * @dev: PCI device to query
5953  * @mmrbc: maximum memory read count in bytes
5954  *    valid values are 512, 1024, 2048, 4096
5955  *
5956  * If possible sets maximum memory read byte count, some bridges have errata
5957  * that prevent this.
5958  */
5959 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5960 {
5961 	int cap;
5962 	u32 stat, v, o;
5963 	u16 cmd;
5964 
5965 	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5966 		return -EINVAL;
5967 
5968 	v = ffs(mmrbc) - 10;
5969 
5970 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5971 	if (!cap)
5972 		return -EINVAL;
5973 
5974 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5975 		return -EINVAL;
5976 
5977 	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
5978 		return -E2BIG;
5979 
5980 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5981 		return -EINVAL;
5982 
5983 	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
5984 	if (o != v) {
5985 		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5986 			return -EIO;
5987 
5988 		cmd &= ~PCI_X_CMD_MAX_READ;
5989 		cmd |= v << 2;
5990 		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5991 			return -EIO;
5992 	}
5993 	return 0;
5994 }
5995 EXPORT_SYMBOL(pcix_set_mmrbc);
5996 
5997 /**
5998  * pcie_get_readrq - get PCI Express read request size
5999  * @dev: PCI device to query
6000  *
6001  * Returns maximum memory read request in bytes or appropriate error value.
6002  */
6003 int pcie_get_readrq(struct pci_dev *dev)
6004 {
6005 	u16 ctl;
6006 
6007 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6008 
6009 	return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6010 }
6011 EXPORT_SYMBOL(pcie_get_readrq);
6012 
6013 /**
6014  * pcie_set_readrq - set PCI Express maximum memory read request
6015  * @dev: PCI device to query
6016  * @rq: maximum memory read count in bytes
6017  *    valid values are 128, 256, 512, 1024, 2048, 4096
6018  *
6019  * If possible sets maximum memory read request in bytes
6020  */
6021 int pcie_set_readrq(struct pci_dev *dev, int rq)
6022 {
6023 	u16 v;
6024 	int ret;
6025 	struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
6026 
6027 	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
6028 		return -EINVAL;
6029 
6030 	/*
6031 	 * If using the "performance" PCIe config, we clamp the read rq
6032 	 * size to the max packet size to keep the host bridge from
6033 	 * generating requests larger than we can cope with.
6034 	 */
6035 	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
6036 		int mps = pcie_get_mps(dev);
6037 
6038 		if (mps < rq)
6039 			rq = mps;
6040 	}
6041 
6042 	v = (ffs(rq) - 8) << 12;
6043 
6044 	if (bridge->no_inc_mrrs) {
6045 		int max_mrrs = pcie_get_readrq(dev);
6046 
6047 		if (rq > max_mrrs) {
6048 			pci_info(dev, "can't set Max_Read_Request_Size to %d; max is %d\n", rq, max_mrrs);
6049 			return -EINVAL;
6050 		}
6051 	}
6052 
6053 	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6054 						  PCI_EXP_DEVCTL_READRQ, v);
6055 
6056 	return pcibios_err_to_errno(ret);
6057 }
6058 EXPORT_SYMBOL(pcie_set_readrq);
6059 
6060 /**
6061  * pcie_get_mps - get PCI Express maximum payload size
6062  * @dev: PCI device to query
6063  *
6064  * Returns maximum payload size in bytes
6065  */
6066 int pcie_get_mps(struct pci_dev *dev)
6067 {
6068 	u16 ctl;
6069 
6070 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6071 
6072 	return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6073 }
6074 EXPORT_SYMBOL(pcie_get_mps);
6075 
6076 /**
6077  * pcie_set_mps - set PCI Express maximum payload size
6078  * @dev: PCI device to query
6079  * @mps: maximum payload size in bytes
6080  *    valid values are 128, 256, 512, 1024, 2048, 4096
6081  *
6082  * If possible sets maximum payload size
6083  */
6084 int pcie_set_mps(struct pci_dev *dev, int mps)
6085 {
6086 	u16 v;
6087 	int ret;
6088 
6089 	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
6090 		return -EINVAL;
6091 
6092 	v = ffs(mps) - 8;
6093 	if (v > dev->pcie_mpss)
6094 		return -EINVAL;
6095 	v <<= 5;
6096 
6097 	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6098 						  PCI_EXP_DEVCTL_PAYLOAD, v);
6099 
6100 	return pcibios_err_to_errno(ret);
6101 }
6102 EXPORT_SYMBOL(pcie_set_mps);
6103 
6104 /**
6105  * pcie_bandwidth_available - determine minimum link settings of a PCIe
6106  *			      device and its bandwidth limitation
6107  * @dev: PCI device to query
6108  * @limiting_dev: storage for device causing the bandwidth limitation
6109  * @speed: storage for speed of limiting device
6110  * @width: storage for width of limiting device
6111  *
6112  * Walk up the PCI device chain and find the point where the minimum
6113  * bandwidth is available.  Return the bandwidth available there and (if
6114  * limiting_dev, speed, and width pointers are supplied) information about
6115  * that point.  The bandwidth returned is in Mb/s, i.e., megabits/second of
6116  * raw bandwidth.
6117  */
6118 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
6119 			     enum pci_bus_speed *speed,
6120 			     enum pcie_link_width *width)
6121 {
6122 	u16 lnksta;
6123 	enum pci_bus_speed next_speed;
6124 	enum pcie_link_width next_width;
6125 	u32 bw, next_bw;
6126 
6127 	if (speed)
6128 		*speed = PCI_SPEED_UNKNOWN;
6129 	if (width)
6130 		*width = PCIE_LNK_WIDTH_UNKNOWN;
6131 
6132 	bw = 0;
6133 
6134 	while (dev) {
6135 		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
6136 
6137 		next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
6138 		next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
6139 			PCI_EXP_LNKSTA_NLW_SHIFT;
6140 
6141 		next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
6142 
6143 		/* Check if current device limits the total bandwidth */
6144 		if (!bw || next_bw <= bw) {
6145 			bw = next_bw;
6146 
6147 			if (limiting_dev)
6148 				*limiting_dev = dev;
6149 			if (speed)
6150 				*speed = next_speed;
6151 			if (width)
6152 				*width = next_width;
6153 		}
6154 
6155 		dev = pci_upstream_bridge(dev);
6156 	}
6157 
6158 	return bw;
6159 }
6160 EXPORT_SYMBOL(pcie_bandwidth_available);
6161 
6162 /**
6163  * pcie_get_speed_cap - query for the PCI device's link speed capability
6164  * @dev: PCI device to query
6165  *
6166  * Query the PCI device speed capability.  Return the maximum link speed
6167  * supported by the device.
6168  */
6169 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
6170 {
6171 	u32 lnkcap2, lnkcap;
6172 
6173 	/*
6174 	 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18.  The
6175 	 * implementation note there recommends using the Supported Link
6176 	 * Speeds Vector in Link Capabilities 2 when supported.
6177 	 *
6178 	 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
6179 	 * should use the Supported Link Speeds field in Link Capabilities,
6180 	 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
6181 	 */
6182 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
6183 
6184 	/* PCIe r3.0-compliant */
6185 	if (lnkcap2)
6186 		return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
6187 
6188 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6189 	if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
6190 		return PCIE_SPEED_5_0GT;
6191 	else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
6192 		return PCIE_SPEED_2_5GT;
6193 
6194 	return PCI_SPEED_UNKNOWN;
6195 }
6196 EXPORT_SYMBOL(pcie_get_speed_cap);
6197 
6198 /**
6199  * pcie_get_width_cap - query for the PCI device's link width capability
6200  * @dev: PCI device to query
6201  *
6202  * Query the PCI device width capability.  Return the maximum link width
6203  * supported by the device.
6204  */
6205 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
6206 {
6207 	u32 lnkcap;
6208 
6209 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6210 	if (lnkcap)
6211 		return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
6212 
6213 	return PCIE_LNK_WIDTH_UNKNOWN;
6214 }
6215 EXPORT_SYMBOL(pcie_get_width_cap);
6216 
6217 /**
6218  * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
6219  * @dev: PCI device
6220  * @speed: storage for link speed
6221  * @width: storage for link width
6222  *
6223  * Calculate a PCI device's link bandwidth by querying for its link speed
6224  * and width, multiplying them, and applying encoding overhead.  The result
6225  * is in Mb/s, i.e., megabits/second of raw bandwidth.
6226  */
6227 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
6228 			   enum pcie_link_width *width)
6229 {
6230 	*speed = pcie_get_speed_cap(dev);
6231 	*width = pcie_get_width_cap(dev);
6232 
6233 	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
6234 		return 0;
6235 
6236 	return *width * PCIE_SPEED2MBS_ENC(*speed);
6237 }
6238 
6239 /**
6240  * __pcie_print_link_status - Report the PCI device's link speed and width
6241  * @dev: PCI device to query
6242  * @verbose: Print info even when enough bandwidth is available
6243  *
6244  * If the available bandwidth at the device is less than the device is
6245  * capable of, report the device's maximum possible bandwidth and the
6246  * upstream link that limits its performance.  If @verbose, always print
6247  * the available bandwidth, even if the device isn't constrained.
6248  */
6249 void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
6250 {
6251 	enum pcie_link_width width, width_cap;
6252 	enum pci_bus_speed speed, speed_cap;
6253 	struct pci_dev *limiting_dev = NULL;
6254 	u32 bw_avail, bw_cap;
6255 
6256 	bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
6257 	bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
6258 
6259 	if (bw_avail >= bw_cap && verbose)
6260 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
6261 			 bw_cap / 1000, bw_cap % 1000,
6262 			 pci_speed_string(speed_cap), width_cap);
6263 	else if (bw_avail < bw_cap)
6264 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
6265 			 bw_avail / 1000, bw_avail % 1000,
6266 			 pci_speed_string(speed), width,
6267 			 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
6268 			 bw_cap / 1000, bw_cap % 1000,
6269 			 pci_speed_string(speed_cap), width_cap);
6270 }
6271 
6272 /**
6273  * pcie_print_link_status - Report the PCI device's link speed and width
6274  * @dev: PCI device to query
6275  *
6276  * Report the available bandwidth at the device.
6277  */
6278 void pcie_print_link_status(struct pci_dev *dev)
6279 {
6280 	__pcie_print_link_status(dev, true);
6281 }
6282 EXPORT_SYMBOL(pcie_print_link_status);
6283 
6284 /**
6285  * pci_select_bars - Make BAR mask from the type of resource
6286  * @dev: the PCI device for which BAR mask is made
6287  * @flags: resource type mask to be selected
6288  *
6289  * This helper routine makes bar mask from the type of resource.
6290  */
6291 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
6292 {
6293 	int i, bars = 0;
6294 	for (i = 0; i < PCI_NUM_RESOURCES; i++)
6295 		if (pci_resource_flags(dev, i) & flags)
6296 			bars |= (1 << i);
6297 	return bars;
6298 }
6299 EXPORT_SYMBOL(pci_select_bars);
6300 
6301 /* Some architectures require additional programming to enable VGA */
6302 static arch_set_vga_state_t arch_set_vga_state;
6303 
6304 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6305 {
6306 	arch_set_vga_state = func;	/* NULL disables */
6307 }
6308 
6309 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
6310 				  unsigned int command_bits, u32 flags)
6311 {
6312 	if (arch_set_vga_state)
6313 		return arch_set_vga_state(dev, decode, command_bits,
6314 						flags);
6315 	return 0;
6316 }
6317 
6318 /**
6319  * pci_set_vga_state - set VGA decode state on device and parents if requested
6320  * @dev: the PCI device
6321  * @decode: true = enable decoding, false = disable decoding
6322  * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6323  * @flags: traverse ancestors and change bridges
6324  * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6325  */
6326 int pci_set_vga_state(struct pci_dev *dev, bool decode,
6327 		      unsigned int command_bits, u32 flags)
6328 {
6329 	struct pci_bus *bus;
6330 	struct pci_dev *bridge;
6331 	u16 cmd;
6332 	int rc;
6333 
6334 	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6335 
6336 	/* ARCH specific VGA enables */
6337 	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6338 	if (rc)
6339 		return rc;
6340 
6341 	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6342 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
6343 		if (decode)
6344 			cmd |= command_bits;
6345 		else
6346 			cmd &= ~command_bits;
6347 		pci_write_config_word(dev, PCI_COMMAND, cmd);
6348 	}
6349 
6350 	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6351 		return 0;
6352 
6353 	bus = dev->bus;
6354 	while (bus) {
6355 		bridge = bus->self;
6356 		if (bridge) {
6357 			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6358 					     &cmd);
6359 			if (decode)
6360 				cmd |= PCI_BRIDGE_CTL_VGA;
6361 			else
6362 				cmd &= ~PCI_BRIDGE_CTL_VGA;
6363 			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6364 					      cmd);
6365 		}
6366 		bus = bus->parent;
6367 	}
6368 	return 0;
6369 }
6370 
6371 #ifdef CONFIG_ACPI
6372 bool pci_pr3_present(struct pci_dev *pdev)
6373 {
6374 	struct acpi_device *adev;
6375 
6376 	if (acpi_disabled)
6377 		return false;
6378 
6379 	adev = ACPI_COMPANION(&pdev->dev);
6380 	if (!adev)
6381 		return false;
6382 
6383 	return adev->power.flags.power_resources &&
6384 		acpi_has_method(adev->handle, "_PR3");
6385 }
6386 EXPORT_SYMBOL_GPL(pci_pr3_present);
6387 #endif
6388 
6389 /**
6390  * pci_add_dma_alias - Add a DMA devfn alias for a device
6391  * @dev: the PCI device for which alias is added
6392  * @devfn_from: alias slot and function
6393  * @nr_devfns: number of subsequent devfns to alias
6394  *
6395  * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6396  * which is used to program permissible bus-devfn source addresses for DMA
6397  * requests in an IOMMU.  These aliases factor into IOMMU group creation
6398  * and are useful for devices generating DMA requests beyond or different
6399  * from their logical bus-devfn.  Examples include device quirks where the
6400  * device simply uses the wrong devfn, as well as non-transparent bridges
6401  * where the alias may be a proxy for devices in another domain.
6402  *
6403  * IOMMU group creation is performed during device discovery or addition,
6404  * prior to any potential DMA mapping and therefore prior to driver probing
6405  * (especially for userspace assigned devices where IOMMU group definition
6406  * cannot be left as a userspace activity).  DMA aliases should therefore
6407  * be configured via quirks, such as the PCI fixup header quirk.
6408  */
6409 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from,
6410 		       unsigned int nr_devfns)
6411 {
6412 	int devfn_to;
6413 
6414 	nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from);
6415 	devfn_to = devfn_from + nr_devfns - 1;
6416 
6417 	if (!dev->dma_alias_mask)
6418 		dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6419 	if (!dev->dma_alias_mask) {
6420 		pci_warn(dev, "Unable to allocate DMA alias mask\n");
6421 		return;
6422 	}
6423 
6424 	bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6425 
6426 	if (nr_devfns == 1)
6427 		pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6428 				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6429 	else if (nr_devfns > 1)
6430 		pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6431 				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6432 				PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6433 }
6434 
6435 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6436 {
6437 	return (dev1->dma_alias_mask &&
6438 		test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6439 	       (dev2->dma_alias_mask &&
6440 		test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6441 	       pci_real_dma_dev(dev1) == dev2 ||
6442 	       pci_real_dma_dev(dev2) == dev1;
6443 }
6444 
6445 bool pci_device_is_present(struct pci_dev *pdev)
6446 {
6447 	u32 v;
6448 
6449 	/* Check PF if pdev is a VF, since VF Vendor/Device IDs are 0xffff */
6450 	pdev = pci_physfn(pdev);
6451 	if (pci_dev_is_disconnected(pdev))
6452 		return false;
6453 	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6454 }
6455 EXPORT_SYMBOL_GPL(pci_device_is_present);
6456 
6457 void pci_ignore_hotplug(struct pci_dev *dev)
6458 {
6459 	struct pci_dev *bridge = dev->bus->self;
6460 
6461 	dev->ignore_hotplug = 1;
6462 	/* Propagate the "ignore hotplug" setting to the parent bridge. */
6463 	if (bridge)
6464 		bridge->ignore_hotplug = 1;
6465 }
6466 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6467 
6468 /**
6469  * pci_real_dma_dev - Get PCI DMA device for PCI device
6470  * @dev: the PCI device that may have a PCI DMA alias
6471  *
6472  * Permits the platform to provide architecture-specific functionality to
6473  * devices needing to alias DMA to another PCI device on another PCI bus. If
6474  * the PCI device is on the same bus, it is recommended to use
6475  * pci_add_dma_alias(). This is the default implementation. Architecture
6476  * implementations can override this.
6477  */
6478 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6479 {
6480 	return dev;
6481 }
6482 
6483 resource_size_t __weak pcibios_default_alignment(void)
6484 {
6485 	return 0;
6486 }
6487 
6488 /*
6489  * Arches that don't want to expose struct resource to userland as-is in
6490  * sysfs and /proc can implement their own pci_resource_to_user().
6491  */
6492 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6493 				 const struct resource *rsrc,
6494 				 resource_size_t *start, resource_size_t *end)
6495 {
6496 	*start = rsrc->start;
6497 	*end = rsrc->end;
6498 }
6499 
6500 static char *resource_alignment_param;
6501 static DEFINE_SPINLOCK(resource_alignment_lock);
6502 
6503 /**
6504  * pci_specified_resource_alignment - get resource alignment specified by user.
6505  * @dev: the PCI device to get
6506  * @resize: whether or not to change resources' size when reassigning alignment
6507  *
6508  * RETURNS: Resource alignment if it is specified.
6509  *          Zero if it is not specified.
6510  */
6511 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6512 							bool *resize)
6513 {
6514 	int align_order, count;
6515 	resource_size_t align = pcibios_default_alignment();
6516 	const char *p;
6517 	int ret;
6518 
6519 	spin_lock(&resource_alignment_lock);
6520 	p = resource_alignment_param;
6521 	if (!p || !*p)
6522 		goto out;
6523 	if (pci_has_flag(PCI_PROBE_ONLY)) {
6524 		align = 0;
6525 		pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6526 		goto out;
6527 	}
6528 
6529 	while (*p) {
6530 		count = 0;
6531 		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6532 		    p[count] == '@') {
6533 			p += count + 1;
6534 			if (align_order > 63) {
6535 				pr_err("PCI: Invalid requested alignment (order %d)\n",
6536 				       align_order);
6537 				align_order = PAGE_SHIFT;
6538 			}
6539 		} else {
6540 			align_order = PAGE_SHIFT;
6541 		}
6542 
6543 		ret = pci_dev_str_match(dev, p, &p);
6544 		if (ret == 1) {
6545 			*resize = true;
6546 			align = 1ULL << align_order;
6547 			break;
6548 		} else if (ret < 0) {
6549 			pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6550 			       p);
6551 			break;
6552 		}
6553 
6554 		if (*p != ';' && *p != ',') {
6555 			/* End of param or invalid format */
6556 			break;
6557 		}
6558 		p++;
6559 	}
6560 out:
6561 	spin_unlock(&resource_alignment_lock);
6562 	return align;
6563 }
6564 
6565 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6566 					   resource_size_t align, bool resize)
6567 {
6568 	struct resource *r = &dev->resource[bar];
6569 	resource_size_t size;
6570 
6571 	if (!(r->flags & IORESOURCE_MEM))
6572 		return;
6573 
6574 	if (r->flags & IORESOURCE_PCI_FIXED) {
6575 		pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6576 			 bar, r, (unsigned long long)align);
6577 		return;
6578 	}
6579 
6580 	size = resource_size(r);
6581 	if (size >= align)
6582 		return;
6583 
6584 	/*
6585 	 * Increase the alignment of the resource.  There are two ways we
6586 	 * can do this:
6587 	 *
6588 	 * 1) Increase the size of the resource.  BARs are aligned on their
6589 	 *    size, so when we reallocate space for this resource, we'll
6590 	 *    allocate it with the larger alignment.  This also prevents
6591 	 *    assignment of any other BARs inside the alignment region, so
6592 	 *    if we're requesting page alignment, this means no other BARs
6593 	 *    will share the page.
6594 	 *
6595 	 *    The disadvantage is that this makes the resource larger than
6596 	 *    the hardware BAR, which may break drivers that compute things
6597 	 *    based on the resource size, e.g., to find registers at a
6598 	 *    fixed offset before the end of the BAR.
6599 	 *
6600 	 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6601 	 *    set r->start to the desired alignment.  By itself this
6602 	 *    doesn't prevent other BARs being put inside the alignment
6603 	 *    region, but if we realign *every* resource of every device in
6604 	 *    the system, none of them will share an alignment region.
6605 	 *
6606 	 * When the user has requested alignment for only some devices via
6607 	 * the "pci=resource_alignment" argument, "resize" is true and we
6608 	 * use the first method.  Otherwise we assume we're aligning all
6609 	 * devices and we use the second.
6610 	 */
6611 
6612 	pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6613 		 bar, r, (unsigned long long)align);
6614 
6615 	if (resize) {
6616 		r->start = 0;
6617 		r->end = align - 1;
6618 	} else {
6619 		r->flags &= ~IORESOURCE_SIZEALIGN;
6620 		r->flags |= IORESOURCE_STARTALIGN;
6621 		r->start = align;
6622 		r->end = r->start + size - 1;
6623 	}
6624 	r->flags |= IORESOURCE_UNSET;
6625 }
6626 
6627 /*
6628  * This function disables memory decoding and releases memory resources
6629  * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6630  * It also rounds up size to specified alignment.
6631  * Later on, the kernel will assign page-aligned memory resource back
6632  * to the device.
6633  */
6634 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6635 {
6636 	int i;
6637 	struct resource *r;
6638 	resource_size_t align;
6639 	u16 command;
6640 	bool resize = false;
6641 
6642 	/*
6643 	 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6644 	 * 3.4.1.11.  Their resources are allocated from the space
6645 	 * described by the VF BARx register in the PF's SR-IOV capability.
6646 	 * We can't influence their alignment here.
6647 	 */
6648 	if (dev->is_virtfn)
6649 		return;
6650 
6651 	/* check if specified PCI is target device to reassign */
6652 	align = pci_specified_resource_alignment(dev, &resize);
6653 	if (!align)
6654 		return;
6655 
6656 	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6657 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6658 		pci_warn(dev, "Can't reassign resources to host bridge\n");
6659 		return;
6660 	}
6661 
6662 	pci_read_config_word(dev, PCI_COMMAND, &command);
6663 	command &= ~PCI_COMMAND_MEMORY;
6664 	pci_write_config_word(dev, PCI_COMMAND, command);
6665 
6666 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6667 		pci_request_resource_alignment(dev, i, align, resize);
6668 
6669 	/*
6670 	 * Need to disable bridge's resource window,
6671 	 * to enable the kernel to reassign new resource
6672 	 * window later on.
6673 	 */
6674 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6675 		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6676 			r = &dev->resource[i];
6677 			if (!(r->flags & IORESOURCE_MEM))
6678 				continue;
6679 			r->flags |= IORESOURCE_UNSET;
6680 			r->end = resource_size(r) - 1;
6681 			r->start = 0;
6682 		}
6683 		pci_disable_bridge_window(dev);
6684 	}
6685 }
6686 
6687 static ssize_t resource_alignment_show(const struct bus_type *bus, char *buf)
6688 {
6689 	size_t count = 0;
6690 
6691 	spin_lock(&resource_alignment_lock);
6692 	if (resource_alignment_param)
6693 		count = sysfs_emit(buf, "%s\n", resource_alignment_param);
6694 	spin_unlock(&resource_alignment_lock);
6695 
6696 	return count;
6697 }
6698 
6699 static ssize_t resource_alignment_store(const struct bus_type *bus,
6700 					const char *buf, size_t count)
6701 {
6702 	char *param, *old, *end;
6703 
6704 	if (count >= (PAGE_SIZE - 1))
6705 		return -EINVAL;
6706 
6707 	param = kstrndup(buf, count, GFP_KERNEL);
6708 	if (!param)
6709 		return -ENOMEM;
6710 
6711 	end = strchr(param, '\n');
6712 	if (end)
6713 		*end = '\0';
6714 
6715 	spin_lock(&resource_alignment_lock);
6716 	old = resource_alignment_param;
6717 	if (strlen(param)) {
6718 		resource_alignment_param = param;
6719 	} else {
6720 		kfree(param);
6721 		resource_alignment_param = NULL;
6722 	}
6723 	spin_unlock(&resource_alignment_lock);
6724 
6725 	kfree(old);
6726 
6727 	return count;
6728 }
6729 
6730 static BUS_ATTR_RW(resource_alignment);
6731 
6732 static int __init pci_resource_alignment_sysfs_init(void)
6733 {
6734 	return bus_create_file(&pci_bus_type,
6735 					&bus_attr_resource_alignment);
6736 }
6737 late_initcall(pci_resource_alignment_sysfs_init);
6738 
6739 static void pci_no_domains(void)
6740 {
6741 #ifdef CONFIG_PCI_DOMAINS
6742 	pci_domains_supported = 0;
6743 #endif
6744 }
6745 
6746 #ifdef CONFIG_PCI_DOMAINS_GENERIC
6747 static DEFINE_IDA(pci_domain_nr_static_ida);
6748 static DEFINE_IDA(pci_domain_nr_dynamic_ida);
6749 
6750 static void of_pci_reserve_static_domain_nr(void)
6751 {
6752 	struct device_node *np;
6753 	int domain_nr;
6754 
6755 	for_each_node_by_type(np, "pci") {
6756 		domain_nr = of_get_pci_domain_nr(np);
6757 		if (domain_nr < 0)
6758 			continue;
6759 		/*
6760 		 * Permanently allocate domain_nr in dynamic_ida
6761 		 * to prevent it from dynamic allocation.
6762 		 */
6763 		ida_alloc_range(&pci_domain_nr_dynamic_ida,
6764 				domain_nr, domain_nr, GFP_KERNEL);
6765 	}
6766 }
6767 
6768 static int of_pci_bus_find_domain_nr(struct device *parent)
6769 {
6770 	static bool static_domains_reserved = false;
6771 	int domain_nr;
6772 
6773 	/* On the first call scan device tree for static allocations. */
6774 	if (!static_domains_reserved) {
6775 		of_pci_reserve_static_domain_nr();
6776 		static_domains_reserved = true;
6777 	}
6778 
6779 	if (parent) {
6780 		/*
6781 		 * If domain is in DT, allocate it in static IDA.  This
6782 		 * prevents duplicate static allocations in case of errors
6783 		 * in DT.
6784 		 */
6785 		domain_nr = of_get_pci_domain_nr(parent->of_node);
6786 		if (domain_nr >= 0)
6787 			return ida_alloc_range(&pci_domain_nr_static_ida,
6788 					       domain_nr, domain_nr,
6789 					       GFP_KERNEL);
6790 	}
6791 
6792 	/*
6793 	 * If domain was not specified in DT, choose a free ID from dynamic
6794 	 * allocations. All domain numbers from DT are permanently in
6795 	 * dynamic allocations to prevent assigning them to other DT nodes
6796 	 * without static domain.
6797 	 */
6798 	return ida_alloc(&pci_domain_nr_dynamic_ida, GFP_KERNEL);
6799 }
6800 
6801 static void of_pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent)
6802 {
6803 	if (bus->domain_nr < 0)
6804 		return;
6805 
6806 	/* Release domain from IDA where it was allocated. */
6807 	if (of_get_pci_domain_nr(parent->of_node) == bus->domain_nr)
6808 		ida_free(&pci_domain_nr_static_ida, bus->domain_nr);
6809 	else
6810 		ida_free(&pci_domain_nr_dynamic_ida, bus->domain_nr);
6811 }
6812 
6813 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6814 {
6815 	return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6816 			       acpi_pci_bus_find_domain_nr(bus);
6817 }
6818 
6819 void pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent)
6820 {
6821 	if (!acpi_disabled)
6822 		return;
6823 	of_pci_bus_release_domain_nr(bus, parent);
6824 }
6825 #endif
6826 
6827 /**
6828  * pci_ext_cfg_avail - can we access extended PCI config space?
6829  *
6830  * Returns 1 if we can access PCI extended config space (offsets
6831  * greater than 0xff). This is the default implementation. Architecture
6832  * implementations can override this.
6833  */
6834 int __weak pci_ext_cfg_avail(void)
6835 {
6836 	return 1;
6837 }
6838 
6839 void __weak pci_fixup_cardbus(struct pci_bus *bus)
6840 {
6841 }
6842 EXPORT_SYMBOL(pci_fixup_cardbus);
6843 
6844 static int __init pci_setup(char *str)
6845 {
6846 	while (str) {
6847 		char *k = strchr(str, ',');
6848 		if (k)
6849 			*k++ = 0;
6850 		if (*str && (str = pcibios_setup(str)) && *str) {
6851 			if (!strcmp(str, "nomsi")) {
6852 				pci_no_msi();
6853 			} else if (!strncmp(str, "noats", 5)) {
6854 				pr_info("PCIe: ATS is disabled\n");
6855 				pcie_ats_disabled = true;
6856 			} else if (!strcmp(str, "noaer")) {
6857 				pci_no_aer();
6858 			} else if (!strcmp(str, "earlydump")) {
6859 				pci_early_dump = true;
6860 			} else if (!strncmp(str, "realloc=", 8)) {
6861 				pci_realloc_get_opt(str + 8);
6862 			} else if (!strncmp(str, "realloc", 7)) {
6863 				pci_realloc_get_opt("on");
6864 			} else if (!strcmp(str, "nodomains")) {
6865 				pci_no_domains();
6866 			} else if (!strncmp(str, "noari", 5)) {
6867 				pcie_ari_disabled = true;
6868 			} else if (!strncmp(str, "cbiosize=", 9)) {
6869 				pci_cardbus_io_size = memparse(str + 9, &str);
6870 			} else if (!strncmp(str, "cbmemsize=", 10)) {
6871 				pci_cardbus_mem_size = memparse(str + 10, &str);
6872 			} else if (!strncmp(str, "resource_alignment=", 19)) {
6873 				resource_alignment_param = str + 19;
6874 			} else if (!strncmp(str, "ecrc=", 5)) {
6875 				pcie_ecrc_get_policy(str + 5);
6876 			} else if (!strncmp(str, "hpiosize=", 9)) {
6877 				pci_hotplug_io_size = memparse(str + 9, &str);
6878 			} else if (!strncmp(str, "hpmmiosize=", 11)) {
6879 				pci_hotplug_mmio_size = memparse(str + 11, &str);
6880 			} else if (!strncmp(str, "hpmmioprefsize=", 15)) {
6881 				pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
6882 			} else if (!strncmp(str, "hpmemsize=", 10)) {
6883 				pci_hotplug_mmio_size = memparse(str + 10, &str);
6884 				pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
6885 			} else if (!strncmp(str, "hpbussize=", 10)) {
6886 				pci_hotplug_bus_size =
6887 					simple_strtoul(str + 10, &str, 0);
6888 				if (pci_hotplug_bus_size > 0xff)
6889 					pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6890 			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6891 				pcie_bus_config = PCIE_BUS_TUNE_OFF;
6892 			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
6893 				pcie_bus_config = PCIE_BUS_SAFE;
6894 			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
6895 				pcie_bus_config = PCIE_BUS_PERFORMANCE;
6896 			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6897 				pcie_bus_config = PCIE_BUS_PEER2PEER;
6898 			} else if (!strncmp(str, "pcie_scan_all", 13)) {
6899 				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6900 			} else if (!strncmp(str, "disable_acs_redir=", 18)) {
6901 				disable_acs_redir_param = str + 18;
6902 			} else {
6903 				pr_err("PCI: Unknown option `%s'\n", str);
6904 			}
6905 		}
6906 		str = k;
6907 	}
6908 	return 0;
6909 }
6910 early_param("pci", pci_setup);
6911 
6912 /*
6913  * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6914  * in pci_setup(), above, to point to data in the __initdata section which
6915  * will be freed after the init sequence is complete. We can't allocate memory
6916  * in pci_setup() because some architectures do not have any memory allocation
6917  * service available during an early_param() call. So we allocate memory and
6918  * copy the variable here before the init section is freed.
6919  *
6920  */
6921 static int __init pci_realloc_setup_params(void)
6922 {
6923 	resource_alignment_param = kstrdup(resource_alignment_param,
6924 					   GFP_KERNEL);
6925 	disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6926 
6927 	return 0;
6928 }
6929 pure_initcall(pci_realloc_setup_params);
6930