xref: /openbmc/linux/drivers/pci/pci.c (revision 88f4ede4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * PCI Bus Services, see include/linux/pci.h for further explanation.
4  *
5  * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6  * David Mosberger-Tang
7  *
8  * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/msi.h>
17 #include <linux/of.h>
18 #include <linux/pci.h>
19 #include <linux/pm.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/log2.h>
25 #include <linux/logic_pio.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/pci_hotplug.h>
31 #include <linux/vmalloc.h>
32 #include <asm/dma.h>
33 #include <linux/aer.h>
34 #include "pci.h"
35 
36 DEFINE_MUTEX(pci_slot_mutex);
37 
38 const char *pci_power_names[] = {
39 	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
40 };
41 EXPORT_SYMBOL_GPL(pci_power_names);
42 
43 int isa_dma_bridge_buggy;
44 EXPORT_SYMBOL(isa_dma_bridge_buggy);
45 
46 int pci_pci_problems;
47 EXPORT_SYMBOL(pci_pci_problems);
48 
49 unsigned int pci_pm_d3hot_delay;
50 
51 static void pci_pme_list_scan(struct work_struct *work);
52 
53 static LIST_HEAD(pci_pme_list);
54 static DEFINE_MUTEX(pci_pme_list_mutex);
55 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
56 
57 struct pci_pme_device {
58 	struct list_head list;
59 	struct pci_dev *dev;
60 };
61 
62 #define PME_TIMEOUT 1000 /* How long between PME checks */
63 
64 static void pci_dev_d3_sleep(struct pci_dev *dev)
65 {
66 	unsigned int delay = dev->d3hot_delay;
67 
68 	if (delay < pci_pm_d3hot_delay)
69 		delay = pci_pm_d3hot_delay;
70 
71 	if (delay)
72 		msleep(delay);
73 }
74 
75 #ifdef CONFIG_PCI_DOMAINS
76 int pci_domains_supported = 1;
77 #endif
78 
79 #define DEFAULT_CARDBUS_IO_SIZE		(256)
80 #define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
81 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
82 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
83 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
84 
85 #define DEFAULT_HOTPLUG_IO_SIZE		(256)
86 #define DEFAULT_HOTPLUG_MMIO_SIZE	(2*1024*1024)
87 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE	(2*1024*1024)
88 /* hpiosize=nn can override this */
89 unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
90 /*
91  * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
92  * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
93  * pci=hpmemsize=nnM overrides both
94  */
95 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
96 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
97 
98 #define DEFAULT_HOTPLUG_BUS_SIZE	1
99 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
100 
101 
102 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
103 #ifdef CONFIG_PCIE_BUS_TUNE_OFF
104 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
105 #elif defined CONFIG_PCIE_BUS_SAFE
106 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
107 #elif defined CONFIG_PCIE_BUS_PERFORMANCE
108 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
109 #elif defined CONFIG_PCIE_BUS_PEER2PEER
110 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
111 #else
112 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
113 #endif
114 
115 /*
116  * The default CLS is used if arch didn't set CLS explicitly and not
117  * all pci devices agree on the same value.  Arch can override either
118  * the dfl or actual value as it sees fit.  Don't forget this is
119  * measured in 32-bit words, not bytes.
120  */
121 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
122 u8 pci_cache_line_size;
123 
124 /*
125  * If we set up a device for bus mastering, we need to check the latency
126  * timer as certain BIOSes forget to set it properly.
127  */
128 unsigned int pcibios_max_latency = 255;
129 
130 /* If set, the PCIe ARI capability will not be used. */
131 static bool pcie_ari_disabled;
132 
133 /* If set, the PCIe ATS capability will not be used. */
134 static bool pcie_ats_disabled;
135 
136 /* If set, the PCI config space of each device is printed during boot. */
137 bool pci_early_dump;
138 
139 bool pci_ats_disabled(void)
140 {
141 	return pcie_ats_disabled;
142 }
143 EXPORT_SYMBOL_GPL(pci_ats_disabled);
144 
145 /* Disable bridge_d3 for all PCIe ports */
146 static bool pci_bridge_d3_disable;
147 /* Force bridge_d3 for all PCIe ports */
148 static bool pci_bridge_d3_force;
149 
150 static int __init pcie_port_pm_setup(char *str)
151 {
152 	if (!strcmp(str, "off"))
153 		pci_bridge_d3_disable = true;
154 	else if (!strcmp(str, "force"))
155 		pci_bridge_d3_force = true;
156 	return 1;
157 }
158 __setup("pcie_port_pm=", pcie_port_pm_setup);
159 
160 /* Time to wait after a reset for device to become responsive */
161 #define PCIE_RESET_READY_POLL_MS 60000
162 
163 /**
164  * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
165  * @bus: pointer to PCI bus structure to search
166  *
167  * Given a PCI bus, returns the highest PCI bus number present in the set
168  * including the given PCI bus and its list of child PCI buses.
169  */
170 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
171 {
172 	struct pci_bus *tmp;
173 	unsigned char max, n;
174 
175 	max = bus->busn_res.end;
176 	list_for_each_entry(tmp, &bus->children, node) {
177 		n = pci_bus_max_busnr(tmp);
178 		if (n > max)
179 			max = n;
180 	}
181 	return max;
182 }
183 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
184 
185 /**
186  * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
187  * @pdev: the PCI device
188  *
189  * Returns error bits set in PCI_STATUS and clears them.
190  */
191 int pci_status_get_and_clear_errors(struct pci_dev *pdev)
192 {
193 	u16 status;
194 	int ret;
195 
196 	ret = pci_read_config_word(pdev, PCI_STATUS, &status);
197 	if (ret != PCIBIOS_SUCCESSFUL)
198 		return -EIO;
199 
200 	status &= PCI_STATUS_ERROR_BITS;
201 	if (status)
202 		pci_write_config_word(pdev, PCI_STATUS, status);
203 
204 	return status;
205 }
206 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
207 
208 #ifdef CONFIG_HAS_IOMEM
209 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
210 {
211 	struct resource *res = &pdev->resource[bar];
212 
213 	/*
214 	 * Make sure the BAR is actually a memory resource, not an IO resource
215 	 */
216 	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
217 		pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
218 		return NULL;
219 	}
220 	return ioremap(res->start, resource_size(res));
221 }
222 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
223 
224 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
225 {
226 	/*
227 	 * Make sure the BAR is actually a memory resource, not an IO resource
228 	 */
229 	if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
230 		WARN_ON(1);
231 		return NULL;
232 	}
233 	return ioremap_wc(pci_resource_start(pdev, bar),
234 			  pci_resource_len(pdev, bar));
235 }
236 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
237 #endif
238 
239 /**
240  * pci_dev_str_match_path - test if a path string matches a device
241  * @dev: the PCI device to test
242  * @path: string to match the device against
243  * @endptr: pointer to the string after the match
244  *
245  * Test if a string (typically from a kernel parameter) formatted as a
246  * path of device/function addresses matches a PCI device. The string must
247  * be of the form:
248  *
249  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
250  *
251  * A path for a device can be obtained using 'lspci -t'.  Using a path
252  * is more robust against bus renumbering than using only a single bus,
253  * device and function address.
254  *
255  * Returns 1 if the string matches the device, 0 if it does not and
256  * a negative error code if it fails to parse the string.
257  */
258 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
259 				  const char **endptr)
260 {
261 	int ret;
262 	int seg, bus, slot, func;
263 	char *wpath, *p;
264 	char end;
265 
266 	*endptr = strchrnul(path, ';');
267 
268 	wpath = kmemdup_nul(path, *endptr - path, GFP_KERNEL);
269 	if (!wpath)
270 		return -ENOMEM;
271 
272 	while (1) {
273 		p = strrchr(wpath, '/');
274 		if (!p)
275 			break;
276 		ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
277 		if (ret != 2) {
278 			ret = -EINVAL;
279 			goto free_and_exit;
280 		}
281 
282 		if (dev->devfn != PCI_DEVFN(slot, func)) {
283 			ret = 0;
284 			goto free_and_exit;
285 		}
286 
287 		/*
288 		 * Note: we don't need to get a reference to the upstream
289 		 * bridge because we hold a reference to the top level
290 		 * device which should hold a reference to the bridge,
291 		 * and so on.
292 		 */
293 		dev = pci_upstream_bridge(dev);
294 		if (!dev) {
295 			ret = 0;
296 			goto free_and_exit;
297 		}
298 
299 		*p = 0;
300 	}
301 
302 	ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
303 		     &func, &end);
304 	if (ret != 4) {
305 		seg = 0;
306 		ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
307 		if (ret != 3) {
308 			ret = -EINVAL;
309 			goto free_and_exit;
310 		}
311 	}
312 
313 	ret = (seg == pci_domain_nr(dev->bus) &&
314 	       bus == dev->bus->number &&
315 	       dev->devfn == PCI_DEVFN(slot, func));
316 
317 free_and_exit:
318 	kfree(wpath);
319 	return ret;
320 }
321 
322 /**
323  * pci_dev_str_match - test if a string matches a device
324  * @dev: the PCI device to test
325  * @p: string to match the device against
326  * @endptr: pointer to the string after the match
327  *
328  * Test if a string (typically from a kernel parameter) matches a specified
329  * PCI device. The string may be of one of the following formats:
330  *
331  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
332  *   pci:<vendor>:<device>[:<subvendor>:<subdevice>]
333  *
334  * The first format specifies a PCI bus/device/function address which
335  * may change if new hardware is inserted, if motherboard firmware changes,
336  * or due to changes caused in kernel parameters. If the domain is
337  * left unspecified, it is taken to be 0.  In order to be robust against
338  * bus renumbering issues, a path of PCI device/function numbers may be used
339  * to address the specific device.  The path for a device can be determined
340  * through the use of 'lspci -t'.
341  *
342  * The second format matches devices using IDs in the configuration
343  * space which may match multiple devices in the system. A value of 0
344  * for any field will match all devices. (Note: this differs from
345  * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
346  * legacy reasons and convenience so users don't have to specify
347  * FFFFFFFFs on the command line.)
348  *
349  * Returns 1 if the string matches the device, 0 if it does not and
350  * a negative error code if the string cannot be parsed.
351  */
352 static int pci_dev_str_match(struct pci_dev *dev, const char *p,
353 			     const char **endptr)
354 {
355 	int ret;
356 	int count;
357 	unsigned short vendor, device, subsystem_vendor, subsystem_device;
358 
359 	if (strncmp(p, "pci:", 4) == 0) {
360 		/* PCI vendor/device (subvendor/subdevice) IDs are specified */
361 		p += 4;
362 		ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
363 			     &subsystem_vendor, &subsystem_device, &count);
364 		if (ret != 4) {
365 			ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
366 			if (ret != 2)
367 				return -EINVAL;
368 
369 			subsystem_vendor = 0;
370 			subsystem_device = 0;
371 		}
372 
373 		p += count;
374 
375 		if ((!vendor || vendor == dev->vendor) &&
376 		    (!device || device == dev->device) &&
377 		    (!subsystem_vendor ||
378 			    subsystem_vendor == dev->subsystem_vendor) &&
379 		    (!subsystem_device ||
380 			    subsystem_device == dev->subsystem_device))
381 			goto found;
382 	} else {
383 		/*
384 		 * PCI Bus, Device, Function IDs are specified
385 		 * (optionally, may include a path of devfns following it)
386 		 */
387 		ret = pci_dev_str_match_path(dev, p, &p);
388 		if (ret < 0)
389 			return ret;
390 		else if (ret)
391 			goto found;
392 	}
393 
394 	*endptr = p;
395 	return 0;
396 
397 found:
398 	*endptr = p;
399 	return 1;
400 }
401 
402 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
403 				   u8 pos, int cap, int *ttl)
404 {
405 	u8 id;
406 	u16 ent;
407 
408 	pci_bus_read_config_byte(bus, devfn, pos, &pos);
409 
410 	while ((*ttl)--) {
411 		if (pos < 0x40)
412 			break;
413 		pos &= ~3;
414 		pci_bus_read_config_word(bus, devfn, pos, &ent);
415 
416 		id = ent & 0xff;
417 		if (id == 0xff)
418 			break;
419 		if (id == cap)
420 			return pos;
421 		pos = (ent >> 8);
422 	}
423 	return 0;
424 }
425 
426 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
427 			       u8 pos, int cap)
428 {
429 	int ttl = PCI_FIND_CAP_TTL;
430 
431 	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
432 }
433 
434 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
435 {
436 	return __pci_find_next_cap(dev->bus, dev->devfn,
437 				   pos + PCI_CAP_LIST_NEXT, cap);
438 }
439 EXPORT_SYMBOL_GPL(pci_find_next_capability);
440 
441 static int __pci_bus_find_cap_start(struct pci_bus *bus,
442 				    unsigned int devfn, u8 hdr_type)
443 {
444 	u16 status;
445 
446 	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
447 	if (!(status & PCI_STATUS_CAP_LIST))
448 		return 0;
449 
450 	switch (hdr_type) {
451 	case PCI_HEADER_TYPE_NORMAL:
452 	case PCI_HEADER_TYPE_BRIDGE:
453 		return PCI_CAPABILITY_LIST;
454 	case PCI_HEADER_TYPE_CARDBUS:
455 		return PCI_CB_CAPABILITY_LIST;
456 	}
457 
458 	return 0;
459 }
460 
461 /**
462  * pci_find_capability - query for devices' capabilities
463  * @dev: PCI device to query
464  * @cap: capability code
465  *
466  * Tell if a device supports a given PCI capability.
467  * Returns the address of the requested capability structure within the
468  * device's PCI configuration space or 0 in case the device does not
469  * support it.  Possible values for @cap include:
470  *
471  *  %PCI_CAP_ID_PM           Power Management
472  *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
473  *  %PCI_CAP_ID_VPD          Vital Product Data
474  *  %PCI_CAP_ID_SLOTID       Slot Identification
475  *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
476  *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
477  *  %PCI_CAP_ID_PCIX         PCI-X
478  *  %PCI_CAP_ID_EXP          PCI Express
479  */
480 int pci_find_capability(struct pci_dev *dev, int cap)
481 {
482 	int pos;
483 
484 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
485 	if (pos)
486 		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
487 
488 	return pos;
489 }
490 EXPORT_SYMBOL(pci_find_capability);
491 
492 /**
493  * pci_bus_find_capability - query for devices' capabilities
494  * @bus: the PCI bus to query
495  * @devfn: PCI device to query
496  * @cap: capability code
497  *
498  * Like pci_find_capability() but works for PCI devices that do not have a
499  * pci_dev structure set up yet.
500  *
501  * Returns the address of the requested capability structure within the
502  * device's PCI configuration space or 0 in case the device does not
503  * support it.
504  */
505 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
506 {
507 	int pos;
508 	u8 hdr_type;
509 
510 	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
511 
512 	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
513 	if (pos)
514 		pos = __pci_find_next_cap(bus, devfn, pos, cap);
515 
516 	return pos;
517 }
518 EXPORT_SYMBOL(pci_bus_find_capability);
519 
520 /**
521  * pci_find_next_ext_capability - Find an extended capability
522  * @dev: PCI device to query
523  * @start: address at which to start looking (0 to start at beginning of list)
524  * @cap: capability code
525  *
526  * Returns the address of the next matching extended capability structure
527  * within the device's PCI configuration space or 0 if the device does
528  * not support it.  Some capabilities can occur several times, e.g., the
529  * vendor-specific capability, and this provides a way to find them all.
530  */
531 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
532 {
533 	u32 header;
534 	int ttl;
535 	int pos = PCI_CFG_SPACE_SIZE;
536 
537 	/* minimum 8 bytes per capability */
538 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
539 
540 	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
541 		return 0;
542 
543 	if (start)
544 		pos = start;
545 
546 	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
547 		return 0;
548 
549 	/*
550 	 * If we have no capabilities, this is indicated by cap ID,
551 	 * cap version and next pointer all being 0.
552 	 */
553 	if (header == 0)
554 		return 0;
555 
556 	while (ttl-- > 0) {
557 		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
558 			return pos;
559 
560 		pos = PCI_EXT_CAP_NEXT(header);
561 		if (pos < PCI_CFG_SPACE_SIZE)
562 			break;
563 
564 		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
565 			break;
566 	}
567 
568 	return 0;
569 }
570 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
571 
572 /**
573  * pci_find_ext_capability - Find an extended capability
574  * @dev: PCI device to query
575  * @cap: capability code
576  *
577  * Returns the address of the requested extended capability structure
578  * within the device's PCI configuration space or 0 if the device does
579  * not support it.  Possible values for @cap include:
580  *
581  *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
582  *  %PCI_EXT_CAP_ID_VC		Virtual Channel
583  *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
584  *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
585  */
586 int pci_find_ext_capability(struct pci_dev *dev, int cap)
587 {
588 	return pci_find_next_ext_capability(dev, 0, cap);
589 }
590 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
591 
592 /**
593  * pci_get_dsn - Read and return the 8-byte Device Serial Number
594  * @dev: PCI device to query
595  *
596  * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
597  * Number.
598  *
599  * Returns the DSN, or zero if the capability does not exist.
600  */
601 u64 pci_get_dsn(struct pci_dev *dev)
602 {
603 	u32 dword;
604 	u64 dsn;
605 	int pos;
606 
607 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
608 	if (!pos)
609 		return 0;
610 
611 	/*
612 	 * The Device Serial Number is two dwords offset 4 bytes from the
613 	 * capability position. The specification says that the first dword is
614 	 * the lower half, and the second dword is the upper half.
615 	 */
616 	pos += 4;
617 	pci_read_config_dword(dev, pos, &dword);
618 	dsn = (u64)dword;
619 	pci_read_config_dword(dev, pos + 4, &dword);
620 	dsn |= ((u64)dword) << 32;
621 
622 	return dsn;
623 }
624 EXPORT_SYMBOL_GPL(pci_get_dsn);
625 
626 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
627 {
628 	int rc, ttl = PCI_FIND_CAP_TTL;
629 	u8 cap, mask;
630 
631 	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
632 		mask = HT_3BIT_CAP_MASK;
633 	else
634 		mask = HT_5BIT_CAP_MASK;
635 
636 	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
637 				      PCI_CAP_ID_HT, &ttl);
638 	while (pos) {
639 		rc = pci_read_config_byte(dev, pos + 3, &cap);
640 		if (rc != PCIBIOS_SUCCESSFUL)
641 			return 0;
642 
643 		if ((cap & mask) == ht_cap)
644 			return pos;
645 
646 		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
647 					      pos + PCI_CAP_LIST_NEXT,
648 					      PCI_CAP_ID_HT, &ttl);
649 	}
650 
651 	return 0;
652 }
653 /**
654  * pci_find_next_ht_capability - query a device's Hypertransport capabilities
655  * @dev: PCI device to query
656  * @pos: Position from which to continue searching
657  * @ht_cap: Hypertransport capability code
658  *
659  * To be used in conjunction with pci_find_ht_capability() to search for
660  * all capabilities matching @ht_cap. @pos should always be a value returned
661  * from pci_find_ht_capability().
662  *
663  * NB. To be 100% safe against broken PCI devices, the caller should take
664  * steps to avoid an infinite loop.
665  */
666 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
667 {
668 	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
669 }
670 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
671 
672 /**
673  * pci_find_ht_capability - query a device's Hypertransport capabilities
674  * @dev: PCI device to query
675  * @ht_cap: Hypertransport capability code
676  *
677  * Tell if a device supports a given Hypertransport capability.
678  * Returns an address within the device's PCI configuration space
679  * or 0 in case the device does not support the request capability.
680  * The address points to the PCI capability, of type PCI_CAP_ID_HT,
681  * which has a Hypertransport capability matching @ht_cap.
682  */
683 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
684 {
685 	int pos;
686 
687 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
688 	if (pos)
689 		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
690 
691 	return pos;
692 }
693 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
694 
695 /**
696  * pci_find_parent_resource - return resource region of parent bus of given
697  *			      region
698  * @dev: PCI device structure contains resources to be searched
699  * @res: child resource record for which parent is sought
700  *
701  * For given resource region of given device, return the resource region of
702  * parent bus the given region is contained in.
703  */
704 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
705 					  struct resource *res)
706 {
707 	const struct pci_bus *bus = dev->bus;
708 	struct resource *r;
709 	int i;
710 
711 	pci_bus_for_each_resource(bus, r, i) {
712 		if (!r)
713 			continue;
714 		if (resource_contains(r, res)) {
715 
716 			/*
717 			 * If the window is prefetchable but the BAR is
718 			 * not, the allocator made a mistake.
719 			 */
720 			if (r->flags & IORESOURCE_PREFETCH &&
721 			    !(res->flags & IORESOURCE_PREFETCH))
722 				return NULL;
723 
724 			/*
725 			 * If we're below a transparent bridge, there may
726 			 * be both a positively-decoded aperture and a
727 			 * subtractively-decoded region that contain the BAR.
728 			 * We want the positively-decoded one, so this depends
729 			 * on pci_bus_for_each_resource() giving us those
730 			 * first.
731 			 */
732 			return r;
733 		}
734 	}
735 	return NULL;
736 }
737 EXPORT_SYMBOL(pci_find_parent_resource);
738 
739 /**
740  * pci_find_resource - Return matching PCI device resource
741  * @dev: PCI device to query
742  * @res: Resource to look for
743  *
744  * Goes over standard PCI resources (BARs) and checks if the given resource
745  * is partially or fully contained in any of them. In that case the
746  * matching resource is returned, %NULL otherwise.
747  */
748 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
749 {
750 	int i;
751 
752 	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
753 		struct resource *r = &dev->resource[i];
754 
755 		if (r->start && resource_contains(r, res))
756 			return r;
757 	}
758 
759 	return NULL;
760 }
761 EXPORT_SYMBOL(pci_find_resource);
762 
763 /**
764  * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
765  * @dev: the PCI device to operate on
766  * @pos: config space offset of status word
767  * @mask: mask of bit(s) to care about in status word
768  *
769  * Return 1 when mask bit(s) in status word clear, 0 otherwise.
770  */
771 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
772 {
773 	int i;
774 
775 	/* Wait for Transaction Pending bit clean */
776 	for (i = 0; i < 4; i++) {
777 		u16 status;
778 		if (i)
779 			msleep((1 << (i - 1)) * 100);
780 
781 		pci_read_config_word(dev, pos, &status);
782 		if (!(status & mask))
783 			return 1;
784 	}
785 
786 	return 0;
787 }
788 
789 static int pci_acs_enable;
790 
791 /**
792  * pci_request_acs - ask for ACS to be enabled if supported
793  */
794 void pci_request_acs(void)
795 {
796 	pci_acs_enable = 1;
797 }
798 
799 static const char *disable_acs_redir_param;
800 
801 /**
802  * pci_disable_acs_redir - disable ACS redirect capabilities
803  * @dev: the PCI device
804  *
805  * For only devices specified in the disable_acs_redir parameter.
806  */
807 static void pci_disable_acs_redir(struct pci_dev *dev)
808 {
809 	int ret = 0;
810 	const char *p;
811 	int pos;
812 	u16 ctrl;
813 
814 	if (!disable_acs_redir_param)
815 		return;
816 
817 	p = disable_acs_redir_param;
818 	while (*p) {
819 		ret = pci_dev_str_match(dev, p, &p);
820 		if (ret < 0) {
821 			pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
822 				     disable_acs_redir_param);
823 
824 			break;
825 		} else if (ret == 1) {
826 			/* Found a match */
827 			break;
828 		}
829 
830 		if (*p != ';' && *p != ',') {
831 			/* End of param or invalid format */
832 			break;
833 		}
834 		p++;
835 	}
836 
837 	if (ret != 1)
838 		return;
839 
840 	if (!pci_dev_specific_disable_acs_redir(dev))
841 		return;
842 
843 	pos = dev->acs_cap;
844 	if (!pos) {
845 		pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
846 		return;
847 	}
848 
849 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
850 
851 	/* P2P Request & Completion Redirect */
852 	ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
853 
854 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
855 
856 	pci_info(dev, "disabled ACS redirect\n");
857 }
858 
859 /**
860  * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
861  * @dev: the PCI device
862  */
863 static void pci_std_enable_acs(struct pci_dev *dev)
864 {
865 	int pos;
866 	u16 cap;
867 	u16 ctrl;
868 
869 	pos = dev->acs_cap;
870 	if (!pos)
871 		return;
872 
873 	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
874 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
875 
876 	/* Source Validation */
877 	ctrl |= (cap & PCI_ACS_SV);
878 
879 	/* P2P Request Redirect */
880 	ctrl |= (cap & PCI_ACS_RR);
881 
882 	/* P2P Completion Redirect */
883 	ctrl |= (cap & PCI_ACS_CR);
884 
885 	/* Upstream Forwarding */
886 	ctrl |= (cap & PCI_ACS_UF);
887 
888 	/* Enable Translation Blocking for external devices */
889 	if (dev->external_facing || dev->untrusted)
890 		ctrl |= (cap & PCI_ACS_TB);
891 
892 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
893 }
894 
895 /**
896  * pci_enable_acs - enable ACS if hardware support it
897  * @dev: the PCI device
898  */
899 static void pci_enable_acs(struct pci_dev *dev)
900 {
901 	if (!pci_acs_enable)
902 		goto disable_acs_redir;
903 
904 	if (!pci_dev_specific_enable_acs(dev))
905 		goto disable_acs_redir;
906 
907 	pci_std_enable_acs(dev);
908 
909 disable_acs_redir:
910 	/*
911 	 * Note: pci_disable_acs_redir() must be called even if ACS was not
912 	 * enabled by the kernel because it may have been enabled by
913 	 * platform firmware.  So if we are told to disable it, we should
914 	 * always disable it after setting the kernel's default
915 	 * preferences.
916 	 */
917 	pci_disable_acs_redir(dev);
918 }
919 
920 /**
921  * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
922  * @dev: PCI device to have its BARs restored
923  *
924  * Restore the BAR values for a given device, so as to make it
925  * accessible by its driver.
926  */
927 static void pci_restore_bars(struct pci_dev *dev)
928 {
929 	int i;
930 
931 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
932 		pci_update_resource(dev, i);
933 }
934 
935 static const struct pci_platform_pm_ops *pci_platform_pm;
936 
937 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
938 {
939 	if (!ops->is_manageable || !ops->set_state  || !ops->get_state ||
940 	    !ops->choose_state  || !ops->set_wakeup || !ops->need_resume)
941 		return -EINVAL;
942 	pci_platform_pm = ops;
943 	return 0;
944 }
945 
946 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
947 {
948 	return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
949 }
950 
951 static inline int platform_pci_set_power_state(struct pci_dev *dev,
952 					       pci_power_t t)
953 {
954 	return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
955 }
956 
957 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
958 {
959 	return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
960 }
961 
962 static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
963 {
964 	if (pci_platform_pm && pci_platform_pm->refresh_state)
965 		pci_platform_pm->refresh_state(dev);
966 }
967 
968 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
969 {
970 	return pci_platform_pm ?
971 			pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
972 }
973 
974 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
975 {
976 	return pci_platform_pm ?
977 			pci_platform_pm->set_wakeup(dev, enable) : -ENODEV;
978 }
979 
980 static inline bool platform_pci_need_resume(struct pci_dev *dev)
981 {
982 	return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
983 }
984 
985 static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
986 {
987 	if (pci_platform_pm && pci_platform_pm->bridge_d3)
988 		return pci_platform_pm->bridge_d3(dev);
989 	return false;
990 }
991 
992 /**
993  * pci_raw_set_power_state - Use PCI PM registers to set the power state of
994  *			     given PCI device
995  * @dev: PCI device to handle.
996  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
997  *
998  * RETURN VALUE:
999  * -EINVAL if the requested state is invalid.
1000  * -EIO if device does not support PCI PM or its PM capabilities register has a
1001  * wrong version, or device doesn't support the requested state.
1002  * 0 if device already is in the requested state.
1003  * 0 if device's power state has been successfully changed.
1004  */
1005 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
1006 {
1007 	u16 pmcsr;
1008 	bool need_restore = false;
1009 
1010 	/* Check if we're already there */
1011 	if (dev->current_state == state)
1012 		return 0;
1013 
1014 	if (!dev->pm_cap)
1015 		return -EIO;
1016 
1017 	if (state < PCI_D0 || state > PCI_D3hot)
1018 		return -EINVAL;
1019 
1020 	/*
1021 	 * Validate transition: We can enter D0 from any state, but if
1022 	 * we're already in a low-power state, we can only go deeper.  E.g.,
1023 	 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1024 	 * we'd have to go from D3 to D0, then to D1.
1025 	 */
1026 	if (state != PCI_D0 && dev->current_state <= PCI_D3cold
1027 	    && dev->current_state > state) {
1028 		pci_err(dev, "invalid power transition (from %s to %s)\n",
1029 			pci_power_name(dev->current_state),
1030 			pci_power_name(state));
1031 		return -EINVAL;
1032 	}
1033 
1034 	/* Check if this device supports the desired state */
1035 	if ((state == PCI_D1 && !dev->d1_support)
1036 	   || (state == PCI_D2 && !dev->d2_support))
1037 		return -EIO;
1038 
1039 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1040 	if (pmcsr == (u16) ~0) {
1041 		pci_err(dev, "can't change power state from %s to %s (config space inaccessible)\n",
1042 			pci_power_name(dev->current_state),
1043 			pci_power_name(state));
1044 		return -EIO;
1045 	}
1046 
1047 	/*
1048 	 * If we're (effectively) in D3, force entire word to 0.
1049 	 * This doesn't affect PME_Status, disables PME_En, and
1050 	 * sets PowerState to 0.
1051 	 */
1052 	switch (dev->current_state) {
1053 	case PCI_D0:
1054 	case PCI_D1:
1055 	case PCI_D2:
1056 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1057 		pmcsr |= state;
1058 		break;
1059 	case PCI_D3hot:
1060 	case PCI_D3cold:
1061 	case PCI_UNKNOWN: /* Boot-up */
1062 		if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
1063 		 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
1064 			need_restore = true;
1065 		fallthrough;	/* force to D0 */
1066 	default:
1067 		pmcsr = 0;
1068 		break;
1069 	}
1070 
1071 	/* Enter specified state */
1072 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1073 
1074 	/*
1075 	 * Mandatory power management transition delays; see PCI PM 1.1
1076 	 * 5.6.1 table 18
1077 	 */
1078 	if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
1079 		pci_dev_d3_sleep(dev);
1080 	else if (state == PCI_D2 || dev->current_state == PCI_D2)
1081 		udelay(PCI_PM_D2_DELAY);
1082 
1083 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1084 	dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1085 	if (dev->current_state != state)
1086 		pci_info_ratelimited(dev, "refused to change power state from %s to %s\n",
1087 			 pci_power_name(dev->current_state),
1088 			 pci_power_name(state));
1089 
1090 	/*
1091 	 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1092 	 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1093 	 * from D3hot to D0 _may_ perform an internal reset, thereby
1094 	 * going to "D0 Uninitialized" rather than "D0 Initialized".
1095 	 * For example, at least some versions of the 3c905B and the
1096 	 * 3c556B exhibit this behaviour.
1097 	 *
1098 	 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1099 	 * devices in a D3hot state at boot.  Consequently, we need to
1100 	 * restore at least the BARs so that the device will be
1101 	 * accessible to its driver.
1102 	 */
1103 	if (need_restore)
1104 		pci_restore_bars(dev);
1105 
1106 	if (dev->bus->self)
1107 		pcie_aspm_pm_state_change(dev->bus->self);
1108 
1109 	return 0;
1110 }
1111 
1112 /**
1113  * pci_update_current_state - Read power state of given device and cache it
1114  * @dev: PCI device to handle.
1115  * @state: State to cache in case the device doesn't have the PM capability
1116  *
1117  * The power state is read from the PMCSR register, which however is
1118  * inaccessible in D3cold.  The platform firmware is therefore queried first
1119  * to detect accessibility of the register.  In case the platform firmware
1120  * reports an incorrect state or the device isn't power manageable by the
1121  * platform at all, we try to detect D3cold by testing accessibility of the
1122  * vendor ID in config space.
1123  */
1124 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1125 {
1126 	if (platform_pci_get_power_state(dev) == PCI_D3cold ||
1127 	    !pci_device_is_present(dev)) {
1128 		dev->current_state = PCI_D3cold;
1129 	} else if (dev->pm_cap) {
1130 		u16 pmcsr;
1131 
1132 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1133 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1134 	} else {
1135 		dev->current_state = state;
1136 	}
1137 }
1138 
1139 /**
1140  * pci_refresh_power_state - Refresh the given device's power state data
1141  * @dev: Target PCI device.
1142  *
1143  * Ask the platform to refresh the devices power state information and invoke
1144  * pci_update_current_state() to update its current PCI power state.
1145  */
1146 void pci_refresh_power_state(struct pci_dev *dev)
1147 {
1148 	if (platform_pci_power_manageable(dev))
1149 		platform_pci_refresh_power_state(dev);
1150 
1151 	pci_update_current_state(dev, dev->current_state);
1152 }
1153 
1154 /**
1155  * pci_platform_power_transition - Use platform to change device power state
1156  * @dev: PCI device to handle.
1157  * @state: State to put the device into.
1158  */
1159 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1160 {
1161 	int error;
1162 
1163 	if (platform_pci_power_manageable(dev)) {
1164 		error = platform_pci_set_power_state(dev, state);
1165 		if (!error)
1166 			pci_update_current_state(dev, state);
1167 	} else
1168 		error = -ENODEV;
1169 
1170 	if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
1171 		dev->current_state = PCI_D0;
1172 
1173 	return error;
1174 }
1175 EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1176 
1177 /**
1178  * pci_wakeup - Wake up a PCI device
1179  * @pci_dev: Device to handle.
1180  * @ign: ignored parameter
1181  */
1182 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
1183 {
1184 	pci_wakeup_event(pci_dev);
1185 	pm_request_resume(&pci_dev->dev);
1186 	return 0;
1187 }
1188 
1189 /**
1190  * pci_wakeup_bus - Walk given bus and wake up devices on it
1191  * @bus: Top bus of the subtree to walk.
1192  */
1193 void pci_wakeup_bus(struct pci_bus *bus)
1194 {
1195 	if (bus)
1196 		pci_walk_bus(bus, pci_wakeup, NULL);
1197 }
1198 
1199 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1200 {
1201 	int delay = 1;
1202 	u32 id;
1203 
1204 	/*
1205 	 * After reset, the device should not silently discard config
1206 	 * requests, but it may still indicate that it needs more time by
1207 	 * responding to them with CRS completions.  The Root Port will
1208 	 * generally synthesize ~0 data to complete the read (except when
1209 	 * CRS SV is enabled and the read was for the Vendor ID; in that
1210 	 * case it synthesizes 0x0001 data).
1211 	 *
1212 	 * Wait for the device to return a non-CRS completion.  Read the
1213 	 * Command register instead of Vendor ID so we don't have to
1214 	 * contend with the CRS SV value.
1215 	 */
1216 	pci_read_config_dword(dev, PCI_COMMAND, &id);
1217 	while (id == ~0) {
1218 		if (delay > timeout) {
1219 			pci_warn(dev, "not ready %dms after %s; giving up\n",
1220 				 delay - 1, reset_type);
1221 			return -ENOTTY;
1222 		}
1223 
1224 		if (delay > 1000)
1225 			pci_info(dev, "not ready %dms after %s; waiting\n",
1226 				 delay - 1, reset_type);
1227 
1228 		msleep(delay);
1229 		delay *= 2;
1230 		pci_read_config_dword(dev, PCI_COMMAND, &id);
1231 	}
1232 
1233 	if (delay > 1000)
1234 		pci_info(dev, "ready %dms after %s\n", delay - 1,
1235 			 reset_type);
1236 
1237 	return 0;
1238 }
1239 
1240 /**
1241  * pci_power_up - Put the given device into D0
1242  * @dev: PCI device to power up
1243  */
1244 int pci_power_up(struct pci_dev *dev)
1245 {
1246 	pci_platform_power_transition(dev, PCI_D0);
1247 
1248 	/*
1249 	 * Mandatory power management transition delays are handled in
1250 	 * pci_pm_resume_noirq() and pci_pm_runtime_resume() of the
1251 	 * corresponding bridge.
1252 	 */
1253 	if (dev->runtime_d3cold) {
1254 		/*
1255 		 * When powering on a bridge from D3cold, the whole hierarchy
1256 		 * may be powered on into D0uninitialized state, resume them to
1257 		 * give them a chance to suspend again
1258 		 */
1259 		pci_wakeup_bus(dev->subordinate);
1260 	}
1261 
1262 	return pci_raw_set_power_state(dev, PCI_D0);
1263 }
1264 
1265 /**
1266  * __pci_dev_set_current_state - Set current state of a PCI device
1267  * @dev: Device to handle
1268  * @data: pointer to state to be set
1269  */
1270 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1271 {
1272 	pci_power_t state = *(pci_power_t *)data;
1273 
1274 	dev->current_state = state;
1275 	return 0;
1276 }
1277 
1278 /**
1279  * pci_bus_set_current_state - Walk given bus and set current state of devices
1280  * @bus: Top bus of the subtree to walk.
1281  * @state: state to be set
1282  */
1283 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1284 {
1285 	if (bus)
1286 		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1287 }
1288 
1289 /**
1290  * pci_set_power_state - Set the power state of a PCI device
1291  * @dev: PCI device to handle.
1292  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1293  *
1294  * Transition a device to a new power state, using the platform firmware and/or
1295  * the device's PCI PM registers.
1296  *
1297  * RETURN VALUE:
1298  * -EINVAL if the requested state is invalid.
1299  * -EIO if device does not support PCI PM or its PM capabilities register has a
1300  * wrong version, or device doesn't support the requested state.
1301  * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1302  * 0 if device already is in the requested state.
1303  * 0 if the transition is to D3 but D3 is not supported.
1304  * 0 if device's power state has been successfully changed.
1305  */
1306 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1307 {
1308 	int error;
1309 
1310 	/* Bound the state we're entering */
1311 	if (state > PCI_D3cold)
1312 		state = PCI_D3cold;
1313 	else if (state < PCI_D0)
1314 		state = PCI_D0;
1315 	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1316 
1317 		/*
1318 		 * If the device or the parent bridge do not support PCI
1319 		 * PM, ignore the request if we're doing anything other
1320 		 * than putting it into D0 (which would only happen on
1321 		 * boot).
1322 		 */
1323 		return 0;
1324 
1325 	/* Check if we're already there */
1326 	if (dev->current_state == state)
1327 		return 0;
1328 
1329 	if (state == PCI_D0)
1330 		return pci_power_up(dev);
1331 
1332 	/*
1333 	 * This device is quirked not to be put into D3, so don't put it in
1334 	 * D3
1335 	 */
1336 	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1337 		return 0;
1338 
1339 	/*
1340 	 * To put device in D3cold, we put device into D3hot in native
1341 	 * way, then put device into D3cold with platform ops
1342 	 */
1343 	error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
1344 					PCI_D3hot : state);
1345 
1346 	if (pci_platform_power_transition(dev, state))
1347 		return error;
1348 
1349 	/* Powering off a bridge may power off the whole hierarchy */
1350 	if (state == PCI_D3cold)
1351 		pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1352 
1353 	return 0;
1354 }
1355 EXPORT_SYMBOL(pci_set_power_state);
1356 
1357 /**
1358  * pci_choose_state - Choose the power state of a PCI device
1359  * @dev: PCI device to be suspended
1360  * @state: target sleep state for the whole system. This is the value
1361  *	   that is passed to suspend() function.
1362  *
1363  * Returns PCI power state suitable for given device and given system
1364  * message.
1365  */
1366 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
1367 {
1368 	pci_power_t ret;
1369 
1370 	if (!dev->pm_cap)
1371 		return PCI_D0;
1372 
1373 	ret = platform_pci_choose_state(dev);
1374 	if (ret != PCI_POWER_ERROR)
1375 		return ret;
1376 
1377 	switch (state.event) {
1378 	case PM_EVENT_ON:
1379 		return PCI_D0;
1380 	case PM_EVENT_FREEZE:
1381 	case PM_EVENT_PRETHAW:
1382 		/* REVISIT both freeze and pre-thaw "should" use D0 */
1383 	case PM_EVENT_SUSPEND:
1384 	case PM_EVENT_HIBERNATE:
1385 		return PCI_D3hot;
1386 	default:
1387 		pci_info(dev, "unrecognized suspend event %d\n",
1388 			 state.event);
1389 		BUG();
1390 	}
1391 	return PCI_D0;
1392 }
1393 EXPORT_SYMBOL(pci_choose_state);
1394 
1395 #define PCI_EXP_SAVE_REGS	7
1396 
1397 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1398 						       u16 cap, bool extended)
1399 {
1400 	struct pci_cap_saved_state *tmp;
1401 
1402 	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1403 		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1404 			return tmp;
1405 	}
1406 	return NULL;
1407 }
1408 
1409 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1410 {
1411 	return _pci_find_saved_cap(dev, cap, false);
1412 }
1413 
1414 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1415 {
1416 	return _pci_find_saved_cap(dev, cap, true);
1417 }
1418 
1419 static int pci_save_pcie_state(struct pci_dev *dev)
1420 {
1421 	int i = 0;
1422 	struct pci_cap_saved_state *save_state;
1423 	u16 *cap;
1424 
1425 	if (!pci_is_pcie(dev))
1426 		return 0;
1427 
1428 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1429 	if (!save_state) {
1430 		pci_err(dev, "buffer not found in %s\n", __func__);
1431 		return -ENOMEM;
1432 	}
1433 
1434 	cap = (u16 *)&save_state->cap.data[0];
1435 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1436 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1437 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1438 	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
1439 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1440 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1441 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1442 
1443 	return 0;
1444 }
1445 
1446 static void pci_restore_pcie_state(struct pci_dev *dev)
1447 {
1448 	int i = 0;
1449 	struct pci_cap_saved_state *save_state;
1450 	u16 *cap;
1451 
1452 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1453 	if (!save_state)
1454 		return;
1455 
1456 	cap = (u16 *)&save_state->cap.data[0];
1457 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1458 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1459 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1460 	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1461 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1462 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1463 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1464 }
1465 
1466 static int pci_save_pcix_state(struct pci_dev *dev)
1467 {
1468 	int pos;
1469 	struct pci_cap_saved_state *save_state;
1470 
1471 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1472 	if (!pos)
1473 		return 0;
1474 
1475 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1476 	if (!save_state) {
1477 		pci_err(dev, "buffer not found in %s\n", __func__);
1478 		return -ENOMEM;
1479 	}
1480 
1481 	pci_read_config_word(dev, pos + PCI_X_CMD,
1482 			     (u16 *)save_state->cap.data);
1483 
1484 	return 0;
1485 }
1486 
1487 static void pci_restore_pcix_state(struct pci_dev *dev)
1488 {
1489 	int i = 0, pos;
1490 	struct pci_cap_saved_state *save_state;
1491 	u16 *cap;
1492 
1493 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1494 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1495 	if (!save_state || !pos)
1496 		return;
1497 	cap = (u16 *)&save_state->cap.data[0];
1498 
1499 	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1500 }
1501 
1502 static void pci_save_ltr_state(struct pci_dev *dev)
1503 {
1504 	int ltr;
1505 	struct pci_cap_saved_state *save_state;
1506 	u16 *cap;
1507 
1508 	if (!pci_is_pcie(dev))
1509 		return;
1510 
1511 	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1512 	if (!ltr)
1513 		return;
1514 
1515 	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1516 	if (!save_state) {
1517 		pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1518 		return;
1519 	}
1520 
1521 	cap = (u16 *)&save_state->cap.data[0];
1522 	pci_read_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap++);
1523 	pci_read_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, cap++);
1524 }
1525 
1526 static void pci_restore_ltr_state(struct pci_dev *dev)
1527 {
1528 	struct pci_cap_saved_state *save_state;
1529 	int ltr;
1530 	u16 *cap;
1531 
1532 	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1533 	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1534 	if (!save_state || !ltr)
1535 		return;
1536 
1537 	cap = (u16 *)&save_state->cap.data[0];
1538 	pci_write_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap++);
1539 	pci_write_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, *cap++);
1540 }
1541 
1542 /**
1543  * pci_save_state - save the PCI configuration space of a device before
1544  *		    suspending
1545  * @dev: PCI device that we're dealing with
1546  */
1547 int pci_save_state(struct pci_dev *dev)
1548 {
1549 	int i;
1550 	/* XXX: 100% dword access ok here? */
1551 	for (i = 0; i < 16; i++) {
1552 		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1553 		pci_dbg(dev, "saving config space at offset %#x (reading %#x)\n",
1554 			i * 4, dev->saved_config_space[i]);
1555 	}
1556 	dev->state_saved = true;
1557 
1558 	i = pci_save_pcie_state(dev);
1559 	if (i != 0)
1560 		return i;
1561 
1562 	i = pci_save_pcix_state(dev);
1563 	if (i != 0)
1564 		return i;
1565 
1566 	pci_save_ltr_state(dev);
1567 	pci_save_dpc_state(dev);
1568 	pci_save_aer_state(dev);
1569 	return pci_save_vc_state(dev);
1570 }
1571 EXPORT_SYMBOL(pci_save_state);
1572 
1573 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1574 				     u32 saved_val, int retry, bool force)
1575 {
1576 	u32 val;
1577 
1578 	pci_read_config_dword(pdev, offset, &val);
1579 	if (!force && val == saved_val)
1580 		return;
1581 
1582 	for (;;) {
1583 		pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1584 			offset, val, saved_val);
1585 		pci_write_config_dword(pdev, offset, saved_val);
1586 		if (retry-- <= 0)
1587 			return;
1588 
1589 		pci_read_config_dword(pdev, offset, &val);
1590 		if (val == saved_val)
1591 			return;
1592 
1593 		mdelay(1);
1594 	}
1595 }
1596 
1597 static void pci_restore_config_space_range(struct pci_dev *pdev,
1598 					   int start, int end, int retry,
1599 					   bool force)
1600 {
1601 	int index;
1602 
1603 	for (index = end; index >= start; index--)
1604 		pci_restore_config_dword(pdev, 4 * index,
1605 					 pdev->saved_config_space[index],
1606 					 retry, force);
1607 }
1608 
1609 static void pci_restore_config_space(struct pci_dev *pdev)
1610 {
1611 	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1612 		pci_restore_config_space_range(pdev, 10, 15, 0, false);
1613 		/* Restore BARs before the command register. */
1614 		pci_restore_config_space_range(pdev, 4, 9, 10, false);
1615 		pci_restore_config_space_range(pdev, 0, 3, 0, false);
1616 	} else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1617 		pci_restore_config_space_range(pdev, 12, 15, 0, false);
1618 
1619 		/*
1620 		 * Force rewriting of prefetch registers to avoid S3 resume
1621 		 * issues on Intel PCI bridges that occur when these
1622 		 * registers are not explicitly written.
1623 		 */
1624 		pci_restore_config_space_range(pdev, 9, 11, 0, true);
1625 		pci_restore_config_space_range(pdev, 0, 8, 0, false);
1626 	} else {
1627 		pci_restore_config_space_range(pdev, 0, 15, 0, false);
1628 	}
1629 }
1630 
1631 static void pci_restore_rebar_state(struct pci_dev *pdev)
1632 {
1633 	unsigned int pos, nbars, i;
1634 	u32 ctrl;
1635 
1636 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1637 	if (!pos)
1638 		return;
1639 
1640 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1641 	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1642 		    PCI_REBAR_CTRL_NBAR_SHIFT;
1643 
1644 	for (i = 0; i < nbars; i++, pos += 8) {
1645 		struct resource *res;
1646 		int bar_idx, size;
1647 
1648 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1649 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1650 		res = pdev->resource + bar_idx;
1651 		size = ilog2(resource_size(res)) - 20;
1652 		ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1653 		ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1654 		pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1655 	}
1656 }
1657 
1658 /**
1659  * pci_restore_state - Restore the saved state of a PCI device
1660  * @dev: PCI device that we're dealing with
1661  */
1662 void pci_restore_state(struct pci_dev *dev)
1663 {
1664 	if (!dev->state_saved)
1665 		return;
1666 
1667 	/*
1668 	 * Restore max latencies (in the LTR capability) before enabling
1669 	 * LTR itself (in the PCIe capability).
1670 	 */
1671 	pci_restore_ltr_state(dev);
1672 
1673 	pci_restore_pcie_state(dev);
1674 	pci_restore_pasid_state(dev);
1675 	pci_restore_pri_state(dev);
1676 	pci_restore_ats_state(dev);
1677 	pci_restore_vc_state(dev);
1678 	pci_restore_rebar_state(dev);
1679 	pci_restore_dpc_state(dev);
1680 
1681 	pci_aer_clear_status(dev);
1682 	pci_restore_aer_state(dev);
1683 
1684 	pci_restore_config_space(dev);
1685 
1686 	pci_restore_pcix_state(dev);
1687 	pci_restore_msi_state(dev);
1688 
1689 	/* Restore ACS and IOV configuration state */
1690 	pci_enable_acs(dev);
1691 	pci_restore_iov_state(dev);
1692 
1693 	dev->state_saved = false;
1694 }
1695 EXPORT_SYMBOL(pci_restore_state);
1696 
1697 struct pci_saved_state {
1698 	u32 config_space[16];
1699 	struct pci_cap_saved_data cap[];
1700 };
1701 
1702 /**
1703  * pci_store_saved_state - Allocate and return an opaque struct containing
1704  *			   the device saved state.
1705  * @dev: PCI device that we're dealing with
1706  *
1707  * Return NULL if no state or error.
1708  */
1709 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1710 {
1711 	struct pci_saved_state *state;
1712 	struct pci_cap_saved_state *tmp;
1713 	struct pci_cap_saved_data *cap;
1714 	size_t size;
1715 
1716 	if (!dev->state_saved)
1717 		return NULL;
1718 
1719 	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1720 
1721 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1722 		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1723 
1724 	state = kzalloc(size, GFP_KERNEL);
1725 	if (!state)
1726 		return NULL;
1727 
1728 	memcpy(state->config_space, dev->saved_config_space,
1729 	       sizeof(state->config_space));
1730 
1731 	cap = state->cap;
1732 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1733 		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1734 		memcpy(cap, &tmp->cap, len);
1735 		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1736 	}
1737 	/* Empty cap_save terminates list */
1738 
1739 	return state;
1740 }
1741 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1742 
1743 /**
1744  * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1745  * @dev: PCI device that we're dealing with
1746  * @state: Saved state returned from pci_store_saved_state()
1747  */
1748 int pci_load_saved_state(struct pci_dev *dev,
1749 			 struct pci_saved_state *state)
1750 {
1751 	struct pci_cap_saved_data *cap;
1752 
1753 	dev->state_saved = false;
1754 
1755 	if (!state)
1756 		return 0;
1757 
1758 	memcpy(dev->saved_config_space, state->config_space,
1759 	       sizeof(state->config_space));
1760 
1761 	cap = state->cap;
1762 	while (cap->size) {
1763 		struct pci_cap_saved_state *tmp;
1764 
1765 		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1766 		if (!tmp || tmp->cap.size != cap->size)
1767 			return -EINVAL;
1768 
1769 		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1770 		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1771 		       sizeof(struct pci_cap_saved_data) + cap->size);
1772 	}
1773 
1774 	dev->state_saved = true;
1775 	return 0;
1776 }
1777 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1778 
1779 /**
1780  * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1781  *				   and free the memory allocated for it.
1782  * @dev: PCI device that we're dealing with
1783  * @state: Pointer to saved state returned from pci_store_saved_state()
1784  */
1785 int pci_load_and_free_saved_state(struct pci_dev *dev,
1786 				  struct pci_saved_state **state)
1787 {
1788 	int ret = pci_load_saved_state(dev, *state);
1789 	kfree(*state);
1790 	*state = NULL;
1791 	return ret;
1792 }
1793 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1794 
1795 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1796 {
1797 	return pci_enable_resources(dev, bars);
1798 }
1799 
1800 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1801 {
1802 	int err;
1803 	struct pci_dev *bridge;
1804 	u16 cmd;
1805 	u8 pin;
1806 
1807 	err = pci_set_power_state(dev, PCI_D0);
1808 	if (err < 0 && err != -EIO)
1809 		return err;
1810 
1811 	bridge = pci_upstream_bridge(dev);
1812 	if (bridge)
1813 		pcie_aspm_powersave_config_link(bridge);
1814 
1815 	err = pcibios_enable_device(dev, bars);
1816 	if (err < 0)
1817 		return err;
1818 	pci_fixup_device(pci_fixup_enable, dev);
1819 
1820 	if (dev->msi_enabled || dev->msix_enabled)
1821 		return 0;
1822 
1823 	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1824 	if (pin) {
1825 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
1826 		if (cmd & PCI_COMMAND_INTX_DISABLE)
1827 			pci_write_config_word(dev, PCI_COMMAND,
1828 					      cmd & ~PCI_COMMAND_INTX_DISABLE);
1829 	}
1830 
1831 	return 0;
1832 }
1833 
1834 /**
1835  * pci_reenable_device - Resume abandoned device
1836  * @dev: PCI device to be resumed
1837  *
1838  * NOTE: This function is a backend of pci_default_resume() and is not supposed
1839  * to be called by normal code, write proper resume handler and use it instead.
1840  */
1841 int pci_reenable_device(struct pci_dev *dev)
1842 {
1843 	if (pci_is_enabled(dev))
1844 		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1845 	return 0;
1846 }
1847 EXPORT_SYMBOL(pci_reenable_device);
1848 
1849 static void pci_enable_bridge(struct pci_dev *dev)
1850 {
1851 	struct pci_dev *bridge;
1852 	int retval;
1853 
1854 	bridge = pci_upstream_bridge(dev);
1855 	if (bridge)
1856 		pci_enable_bridge(bridge);
1857 
1858 	if (pci_is_enabled(dev)) {
1859 		if (!dev->is_busmaster)
1860 			pci_set_master(dev);
1861 		return;
1862 	}
1863 
1864 	retval = pci_enable_device(dev);
1865 	if (retval)
1866 		pci_err(dev, "Error enabling bridge (%d), continuing\n",
1867 			retval);
1868 	pci_set_master(dev);
1869 }
1870 
1871 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1872 {
1873 	struct pci_dev *bridge;
1874 	int err;
1875 	int i, bars = 0;
1876 
1877 	/*
1878 	 * Power state could be unknown at this point, either due to a fresh
1879 	 * boot or a device removal call.  So get the current power state
1880 	 * so that things like MSI message writing will behave as expected
1881 	 * (e.g. if the device really is in D0 at enable time).
1882 	 */
1883 	if (dev->pm_cap) {
1884 		u16 pmcsr;
1885 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1886 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1887 	}
1888 
1889 	if (atomic_inc_return(&dev->enable_cnt) > 1)
1890 		return 0;		/* already enabled */
1891 
1892 	bridge = pci_upstream_bridge(dev);
1893 	if (bridge)
1894 		pci_enable_bridge(bridge);
1895 
1896 	/* only skip sriov related */
1897 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1898 		if (dev->resource[i].flags & flags)
1899 			bars |= (1 << i);
1900 	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1901 		if (dev->resource[i].flags & flags)
1902 			bars |= (1 << i);
1903 
1904 	err = do_pci_enable_device(dev, bars);
1905 	if (err < 0)
1906 		atomic_dec(&dev->enable_cnt);
1907 	return err;
1908 }
1909 
1910 /**
1911  * pci_enable_device_io - Initialize a device for use with IO space
1912  * @dev: PCI device to be initialized
1913  *
1914  * Initialize device before it's used by a driver. Ask low-level code
1915  * to enable I/O resources. Wake up the device if it was suspended.
1916  * Beware, this function can fail.
1917  */
1918 int pci_enable_device_io(struct pci_dev *dev)
1919 {
1920 	return pci_enable_device_flags(dev, IORESOURCE_IO);
1921 }
1922 EXPORT_SYMBOL(pci_enable_device_io);
1923 
1924 /**
1925  * pci_enable_device_mem - Initialize a device for use with Memory space
1926  * @dev: PCI device to be initialized
1927  *
1928  * Initialize device before it's used by a driver. Ask low-level code
1929  * to enable Memory resources. Wake up the device if it was suspended.
1930  * Beware, this function can fail.
1931  */
1932 int pci_enable_device_mem(struct pci_dev *dev)
1933 {
1934 	return pci_enable_device_flags(dev, IORESOURCE_MEM);
1935 }
1936 EXPORT_SYMBOL(pci_enable_device_mem);
1937 
1938 /**
1939  * pci_enable_device - Initialize device before it's used by a driver.
1940  * @dev: PCI device to be initialized
1941  *
1942  * Initialize device before it's used by a driver. Ask low-level code
1943  * to enable I/O and memory. Wake up the device if it was suspended.
1944  * Beware, this function can fail.
1945  *
1946  * Note we don't actually enable the device many times if we call
1947  * this function repeatedly (we just increment the count).
1948  */
1949 int pci_enable_device(struct pci_dev *dev)
1950 {
1951 	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1952 }
1953 EXPORT_SYMBOL(pci_enable_device);
1954 
1955 /*
1956  * Managed PCI resources.  This manages device on/off, INTx/MSI/MSI-X
1957  * on/off and BAR regions.  pci_dev itself records MSI/MSI-X status, so
1958  * there's no need to track it separately.  pci_devres is initialized
1959  * when a device is enabled using managed PCI device enable interface.
1960  */
1961 struct pci_devres {
1962 	unsigned int enabled:1;
1963 	unsigned int pinned:1;
1964 	unsigned int orig_intx:1;
1965 	unsigned int restore_intx:1;
1966 	unsigned int mwi:1;
1967 	u32 region_mask;
1968 };
1969 
1970 static void pcim_release(struct device *gendev, void *res)
1971 {
1972 	struct pci_dev *dev = to_pci_dev(gendev);
1973 	struct pci_devres *this = res;
1974 	int i;
1975 
1976 	if (dev->msi_enabled)
1977 		pci_disable_msi(dev);
1978 	if (dev->msix_enabled)
1979 		pci_disable_msix(dev);
1980 
1981 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1982 		if (this->region_mask & (1 << i))
1983 			pci_release_region(dev, i);
1984 
1985 	if (this->mwi)
1986 		pci_clear_mwi(dev);
1987 
1988 	if (this->restore_intx)
1989 		pci_intx(dev, this->orig_intx);
1990 
1991 	if (this->enabled && !this->pinned)
1992 		pci_disable_device(dev);
1993 }
1994 
1995 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1996 {
1997 	struct pci_devres *dr, *new_dr;
1998 
1999 	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
2000 	if (dr)
2001 		return dr;
2002 
2003 	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
2004 	if (!new_dr)
2005 		return NULL;
2006 	return devres_get(&pdev->dev, new_dr, NULL, NULL);
2007 }
2008 
2009 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
2010 {
2011 	if (pci_is_managed(pdev))
2012 		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
2013 	return NULL;
2014 }
2015 
2016 /**
2017  * pcim_enable_device - Managed pci_enable_device()
2018  * @pdev: PCI device to be initialized
2019  *
2020  * Managed pci_enable_device().
2021  */
2022 int pcim_enable_device(struct pci_dev *pdev)
2023 {
2024 	struct pci_devres *dr;
2025 	int rc;
2026 
2027 	dr = get_pci_dr(pdev);
2028 	if (unlikely(!dr))
2029 		return -ENOMEM;
2030 	if (dr->enabled)
2031 		return 0;
2032 
2033 	rc = pci_enable_device(pdev);
2034 	if (!rc) {
2035 		pdev->is_managed = 1;
2036 		dr->enabled = 1;
2037 	}
2038 	return rc;
2039 }
2040 EXPORT_SYMBOL(pcim_enable_device);
2041 
2042 /**
2043  * pcim_pin_device - Pin managed PCI device
2044  * @pdev: PCI device to pin
2045  *
2046  * Pin managed PCI device @pdev.  Pinned device won't be disabled on
2047  * driver detach.  @pdev must have been enabled with
2048  * pcim_enable_device().
2049  */
2050 void pcim_pin_device(struct pci_dev *pdev)
2051 {
2052 	struct pci_devres *dr;
2053 
2054 	dr = find_pci_dr(pdev);
2055 	WARN_ON(!dr || !dr->enabled);
2056 	if (dr)
2057 		dr->pinned = 1;
2058 }
2059 EXPORT_SYMBOL(pcim_pin_device);
2060 
2061 /*
2062  * pcibios_add_device - provide arch specific hooks when adding device dev
2063  * @dev: the PCI device being added
2064  *
2065  * Permits the platform to provide architecture specific functionality when
2066  * devices are added. This is the default implementation. Architecture
2067  * implementations can override this.
2068  */
2069 int __weak pcibios_add_device(struct pci_dev *dev)
2070 {
2071 	return 0;
2072 }
2073 
2074 /**
2075  * pcibios_release_device - provide arch specific hooks when releasing
2076  *			    device dev
2077  * @dev: the PCI device being released
2078  *
2079  * Permits the platform to provide architecture specific functionality when
2080  * devices are released. This is the default implementation. Architecture
2081  * implementations can override this.
2082  */
2083 void __weak pcibios_release_device(struct pci_dev *dev) {}
2084 
2085 /**
2086  * pcibios_disable_device - disable arch specific PCI resources for device dev
2087  * @dev: the PCI device to disable
2088  *
2089  * Disables architecture specific PCI resources for the device. This
2090  * is the default implementation. Architecture implementations can
2091  * override this.
2092  */
2093 void __weak pcibios_disable_device(struct pci_dev *dev) {}
2094 
2095 /**
2096  * pcibios_penalize_isa_irq - penalize an ISA IRQ
2097  * @irq: ISA IRQ to penalize
2098  * @active: IRQ active or not
2099  *
2100  * Permits the platform to provide architecture-specific functionality when
2101  * penalizing ISA IRQs. This is the default implementation. Architecture
2102  * implementations can override this.
2103  */
2104 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
2105 
2106 static void do_pci_disable_device(struct pci_dev *dev)
2107 {
2108 	u16 pci_command;
2109 
2110 	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2111 	if (pci_command & PCI_COMMAND_MASTER) {
2112 		pci_command &= ~PCI_COMMAND_MASTER;
2113 		pci_write_config_word(dev, PCI_COMMAND, pci_command);
2114 	}
2115 
2116 	pcibios_disable_device(dev);
2117 }
2118 
2119 /**
2120  * pci_disable_enabled_device - Disable device without updating enable_cnt
2121  * @dev: PCI device to disable
2122  *
2123  * NOTE: This function is a backend of PCI power management routines and is
2124  * not supposed to be called drivers.
2125  */
2126 void pci_disable_enabled_device(struct pci_dev *dev)
2127 {
2128 	if (pci_is_enabled(dev))
2129 		do_pci_disable_device(dev);
2130 }
2131 
2132 /**
2133  * pci_disable_device - Disable PCI device after use
2134  * @dev: PCI device to be disabled
2135  *
2136  * Signal to the system that the PCI device is not in use by the system
2137  * anymore.  This only involves disabling PCI bus-mastering, if active.
2138  *
2139  * Note we don't actually disable the device until all callers of
2140  * pci_enable_device() have called pci_disable_device().
2141  */
2142 void pci_disable_device(struct pci_dev *dev)
2143 {
2144 	struct pci_devres *dr;
2145 
2146 	dr = find_pci_dr(dev);
2147 	if (dr)
2148 		dr->enabled = 0;
2149 
2150 	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2151 		      "disabling already-disabled device");
2152 
2153 	if (atomic_dec_return(&dev->enable_cnt) != 0)
2154 		return;
2155 
2156 	do_pci_disable_device(dev);
2157 
2158 	dev->is_busmaster = 0;
2159 }
2160 EXPORT_SYMBOL(pci_disable_device);
2161 
2162 /**
2163  * pcibios_set_pcie_reset_state - set reset state for device dev
2164  * @dev: the PCIe device reset
2165  * @state: Reset state to enter into
2166  *
2167  * Set the PCIe reset state for the device. This is the default
2168  * implementation. Architecture implementations can override this.
2169  */
2170 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2171 					enum pcie_reset_state state)
2172 {
2173 	return -EINVAL;
2174 }
2175 
2176 /**
2177  * pci_set_pcie_reset_state - set reset state for device dev
2178  * @dev: the PCIe device reset
2179  * @state: Reset state to enter into
2180  *
2181  * Sets the PCI reset state for the device.
2182  */
2183 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2184 {
2185 	return pcibios_set_pcie_reset_state(dev, state);
2186 }
2187 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2188 
2189 void pcie_clear_device_status(struct pci_dev *dev)
2190 {
2191 	u16 sta;
2192 
2193 	pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2194 	pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2195 }
2196 
2197 /**
2198  * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2199  * @dev: PCIe root port or event collector.
2200  */
2201 void pcie_clear_root_pme_status(struct pci_dev *dev)
2202 {
2203 	pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2204 }
2205 
2206 /**
2207  * pci_check_pme_status - Check if given device has generated PME.
2208  * @dev: Device to check.
2209  *
2210  * Check the PME status of the device and if set, clear it and clear PME enable
2211  * (if set).  Return 'true' if PME status and PME enable were both set or
2212  * 'false' otherwise.
2213  */
2214 bool pci_check_pme_status(struct pci_dev *dev)
2215 {
2216 	int pmcsr_pos;
2217 	u16 pmcsr;
2218 	bool ret = false;
2219 
2220 	if (!dev->pm_cap)
2221 		return false;
2222 
2223 	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2224 	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2225 	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2226 		return false;
2227 
2228 	/* Clear PME status. */
2229 	pmcsr |= PCI_PM_CTRL_PME_STATUS;
2230 	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2231 		/* Disable PME to avoid interrupt flood. */
2232 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2233 		ret = true;
2234 	}
2235 
2236 	pci_write_config_word(dev, pmcsr_pos, pmcsr);
2237 
2238 	return ret;
2239 }
2240 
2241 /**
2242  * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2243  * @dev: Device to handle.
2244  * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2245  *
2246  * Check if @dev has generated PME and queue a resume request for it in that
2247  * case.
2248  */
2249 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2250 {
2251 	if (pme_poll_reset && dev->pme_poll)
2252 		dev->pme_poll = false;
2253 
2254 	if (pci_check_pme_status(dev)) {
2255 		pci_wakeup_event(dev);
2256 		pm_request_resume(&dev->dev);
2257 	}
2258 	return 0;
2259 }
2260 
2261 /**
2262  * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2263  * @bus: Top bus of the subtree to walk.
2264  */
2265 void pci_pme_wakeup_bus(struct pci_bus *bus)
2266 {
2267 	if (bus)
2268 		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2269 }
2270 
2271 
2272 /**
2273  * pci_pme_capable - check the capability of PCI device to generate PME#
2274  * @dev: PCI device to handle.
2275  * @state: PCI state from which device will issue PME#.
2276  */
2277 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2278 {
2279 	if (!dev->pm_cap)
2280 		return false;
2281 
2282 	return !!(dev->pme_support & (1 << state));
2283 }
2284 EXPORT_SYMBOL(pci_pme_capable);
2285 
2286 static void pci_pme_list_scan(struct work_struct *work)
2287 {
2288 	struct pci_pme_device *pme_dev, *n;
2289 
2290 	mutex_lock(&pci_pme_list_mutex);
2291 	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2292 		if (pme_dev->dev->pme_poll) {
2293 			struct pci_dev *bridge;
2294 
2295 			bridge = pme_dev->dev->bus->self;
2296 			/*
2297 			 * If bridge is in low power state, the
2298 			 * configuration space of subordinate devices
2299 			 * may be not accessible
2300 			 */
2301 			if (bridge && bridge->current_state != PCI_D0)
2302 				continue;
2303 			/*
2304 			 * If the device is in D3cold it should not be
2305 			 * polled either.
2306 			 */
2307 			if (pme_dev->dev->current_state == PCI_D3cold)
2308 				continue;
2309 
2310 			pci_pme_wakeup(pme_dev->dev, NULL);
2311 		} else {
2312 			list_del(&pme_dev->list);
2313 			kfree(pme_dev);
2314 		}
2315 	}
2316 	if (!list_empty(&pci_pme_list))
2317 		queue_delayed_work(system_freezable_wq, &pci_pme_work,
2318 				   msecs_to_jiffies(PME_TIMEOUT));
2319 	mutex_unlock(&pci_pme_list_mutex);
2320 }
2321 
2322 static void __pci_pme_active(struct pci_dev *dev, bool enable)
2323 {
2324 	u16 pmcsr;
2325 
2326 	if (!dev->pme_support)
2327 		return;
2328 
2329 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2330 	/* Clear PME_Status by writing 1 to it and enable PME# */
2331 	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2332 	if (!enable)
2333 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2334 
2335 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2336 }
2337 
2338 /**
2339  * pci_pme_restore - Restore PME configuration after config space restore.
2340  * @dev: PCI device to update.
2341  */
2342 void pci_pme_restore(struct pci_dev *dev)
2343 {
2344 	u16 pmcsr;
2345 
2346 	if (!dev->pme_support)
2347 		return;
2348 
2349 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2350 	if (dev->wakeup_prepared) {
2351 		pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2352 		pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2353 	} else {
2354 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2355 		pmcsr |= PCI_PM_CTRL_PME_STATUS;
2356 	}
2357 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2358 }
2359 
2360 /**
2361  * pci_pme_active - enable or disable PCI device's PME# function
2362  * @dev: PCI device to handle.
2363  * @enable: 'true' to enable PME# generation; 'false' to disable it.
2364  *
2365  * The caller must verify that the device is capable of generating PME# before
2366  * calling this function with @enable equal to 'true'.
2367  */
2368 void pci_pme_active(struct pci_dev *dev, bool enable)
2369 {
2370 	__pci_pme_active(dev, enable);
2371 
2372 	/*
2373 	 * PCI (as opposed to PCIe) PME requires that the device have
2374 	 * its PME# line hooked up correctly. Not all hardware vendors
2375 	 * do this, so the PME never gets delivered and the device
2376 	 * remains asleep. The easiest way around this is to
2377 	 * periodically walk the list of suspended devices and check
2378 	 * whether any have their PME flag set. The assumption is that
2379 	 * we'll wake up often enough anyway that this won't be a huge
2380 	 * hit, and the power savings from the devices will still be a
2381 	 * win.
2382 	 *
2383 	 * Although PCIe uses in-band PME message instead of PME# line
2384 	 * to report PME, PME does not work for some PCIe devices in
2385 	 * reality.  For example, there are devices that set their PME
2386 	 * status bits, but don't really bother to send a PME message;
2387 	 * there are PCI Express Root Ports that don't bother to
2388 	 * trigger interrupts when they receive PME messages from the
2389 	 * devices below.  So PME poll is used for PCIe devices too.
2390 	 */
2391 
2392 	if (dev->pme_poll) {
2393 		struct pci_pme_device *pme_dev;
2394 		if (enable) {
2395 			pme_dev = kmalloc(sizeof(struct pci_pme_device),
2396 					  GFP_KERNEL);
2397 			if (!pme_dev) {
2398 				pci_warn(dev, "can't enable PME#\n");
2399 				return;
2400 			}
2401 			pme_dev->dev = dev;
2402 			mutex_lock(&pci_pme_list_mutex);
2403 			list_add(&pme_dev->list, &pci_pme_list);
2404 			if (list_is_singular(&pci_pme_list))
2405 				queue_delayed_work(system_freezable_wq,
2406 						   &pci_pme_work,
2407 						   msecs_to_jiffies(PME_TIMEOUT));
2408 			mutex_unlock(&pci_pme_list_mutex);
2409 		} else {
2410 			mutex_lock(&pci_pme_list_mutex);
2411 			list_for_each_entry(pme_dev, &pci_pme_list, list) {
2412 				if (pme_dev->dev == dev) {
2413 					list_del(&pme_dev->list);
2414 					kfree(pme_dev);
2415 					break;
2416 				}
2417 			}
2418 			mutex_unlock(&pci_pme_list_mutex);
2419 		}
2420 	}
2421 
2422 	pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2423 }
2424 EXPORT_SYMBOL(pci_pme_active);
2425 
2426 /**
2427  * __pci_enable_wake - enable PCI device as wakeup event source
2428  * @dev: PCI device affected
2429  * @state: PCI state from which device will issue wakeup events
2430  * @enable: True to enable event generation; false to disable
2431  *
2432  * This enables the device as a wakeup event source, or disables it.
2433  * When such events involves platform-specific hooks, those hooks are
2434  * called automatically by this routine.
2435  *
2436  * Devices with legacy power management (no standard PCI PM capabilities)
2437  * always require such platform hooks.
2438  *
2439  * RETURN VALUE:
2440  * 0 is returned on success
2441  * -EINVAL is returned if device is not supposed to wake up the system
2442  * Error code depending on the platform is returned if both the platform and
2443  * the native mechanism fail to enable the generation of wake-up events
2444  */
2445 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2446 {
2447 	int ret = 0;
2448 
2449 	/*
2450 	 * Bridges that are not power-manageable directly only signal
2451 	 * wakeup on behalf of subordinate devices which is set up
2452 	 * elsewhere, so skip them. However, bridges that are
2453 	 * power-manageable may signal wakeup for themselves (for example,
2454 	 * on a hotplug event) and they need to be covered here.
2455 	 */
2456 	if (!pci_power_manageable(dev))
2457 		return 0;
2458 
2459 	/* Don't do the same thing twice in a row for one device. */
2460 	if (!!enable == !!dev->wakeup_prepared)
2461 		return 0;
2462 
2463 	/*
2464 	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2465 	 * Anderson we should be doing PME# wake enable followed by ACPI wake
2466 	 * enable.  To disable wake-up we call the platform first, for symmetry.
2467 	 */
2468 
2469 	if (enable) {
2470 		int error;
2471 
2472 		if (pci_pme_capable(dev, state))
2473 			pci_pme_active(dev, true);
2474 		else
2475 			ret = 1;
2476 		error = platform_pci_set_wakeup(dev, true);
2477 		if (ret)
2478 			ret = error;
2479 		if (!ret)
2480 			dev->wakeup_prepared = true;
2481 	} else {
2482 		platform_pci_set_wakeup(dev, false);
2483 		pci_pme_active(dev, false);
2484 		dev->wakeup_prepared = false;
2485 	}
2486 
2487 	return ret;
2488 }
2489 
2490 /**
2491  * pci_enable_wake - change wakeup settings for a PCI device
2492  * @pci_dev: Target device
2493  * @state: PCI state from which device will issue wakeup events
2494  * @enable: Whether or not to enable event generation
2495  *
2496  * If @enable is set, check device_may_wakeup() for the device before calling
2497  * __pci_enable_wake() for it.
2498  */
2499 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2500 {
2501 	if (enable && !device_may_wakeup(&pci_dev->dev))
2502 		return -EINVAL;
2503 
2504 	return __pci_enable_wake(pci_dev, state, enable);
2505 }
2506 EXPORT_SYMBOL(pci_enable_wake);
2507 
2508 /**
2509  * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2510  * @dev: PCI device to prepare
2511  * @enable: True to enable wake-up event generation; false to disable
2512  *
2513  * Many drivers want the device to wake up the system from D3_hot or D3_cold
2514  * and this function allows them to set that up cleanly - pci_enable_wake()
2515  * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2516  * ordering constraints.
2517  *
2518  * This function only returns error code if the device is not allowed to wake
2519  * up the system from sleep or it is not capable of generating PME# from both
2520  * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2521  */
2522 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2523 {
2524 	return pci_pme_capable(dev, PCI_D3cold) ?
2525 			pci_enable_wake(dev, PCI_D3cold, enable) :
2526 			pci_enable_wake(dev, PCI_D3hot, enable);
2527 }
2528 EXPORT_SYMBOL(pci_wake_from_d3);
2529 
2530 /**
2531  * pci_target_state - find an appropriate low power state for a given PCI dev
2532  * @dev: PCI device
2533  * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2534  *
2535  * Use underlying platform code to find a supported low power state for @dev.
2536  * If the platform can't manage @dev, return the deepest state from which it
2537  * can generate wake events, based on any available PME info.
2538  */
2539 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2540 {
2541 	pci_power_t target_state = PCI_D3hot;
2542 
2543 	if (platform_pci_power_manageable(dev)) {
2544 		/*
2545 		 * Call the platform to find the target state for the device.
2546 		 */
2547 		pci_power_t state = platform_pci_choose_state(dev);
2548 
2549 		switch (state) {
2550 		case PCI_POWER_ERROR:
2551 		case PCI_UNKNOWN:
2552 			break;
2553 		case PCI_D1:
2554 		case PCI_D2:
2555 			if (pci_no_d1d2(dev))
2556 				break;
2557 			fallthrough;
2558 		default:
2559 			target_state = state;
2560 		}
2561 
2562 		return target_state;
2563 	}
2564 
2565 	if (!dev->pm_cap)
2566 		target_state = PCI_D0;
2567 
2568 	/*
2569 	 * If the device is in D3cold even though it's not power-manageable by
2570 	 * the platform, it may have been powered down by non-standard means.
2571 	 * Best to let it slumber.
2572 	 */
2573 	if (dev->current_state == PCI_D3cold)
2574 		target_state = PCI_D3cold;
2575 
2576 	if (wakeup) {
2577 		/*
2578 		 * Find the deepest state from which the device can generate
2579 		 * PME#.
2580 		 */
2581 		if (dev->pme_support) {
2582 			while (target_state
2583 			      && !(dev->pme_support & (1 << target_state)))
2584 				target_state--;
2585 		}
2586 	}
2587 
2588 	return target_state;
2589 }
2590 
2591 /**
2592  * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2593  *			  into a sleep state
2594  * @dev: Device to handle.
2595  *
2596  * Choose the power state appropriate for the device depending on whether
2597  * it can wake up the system and/or is power manageable by the platform
2598  * (PCI_D3hot is the default) and put the device into that state.
2599  */
2600 int pci_prepare_to_sleep(struct pci_dev *dev)
2601 {
2602 	bool wakeup = device_may_wakeup(&dev->dev);
2603 	pci_power_t target_state = pci_target_state(dev, wakeup);
2604 	int error;
2605 
2606 	if (target_state == PCI_POWER_ERROR)
2607 		return -EIO;
2608 
2609 	pci_enable_wake(dev, target_state, wakeup);
2610 
2611 	error = pci_set_power_state(dev, target_state);
2612 
2613 	if (error)
2614 		pci_enable_wake(dev, target_state, false);
2615 
2616 	return error;
2617 }
2618 EXPORT_SYMBOL(pci_prepare_to_sleep);
2619 
2620 /**
2621  * pci_back_from_sleep - turn PCI device on during system-wide transition
2622  *			 into working state
2623  * @dev: Device to handle.
2624  *
2625  * Disable device's system wake-up capability and put it into D0.
2626  */
2627 int pci_back_from_sleep(struct pci_dev *dev)
2628 {
2629 	pci_enable_wake(dev, PCI_D0, false);
2630 	return pci_set_power_state(dev, PCI_D0);
2631 }
2632 EXPORT_SYMBOL(pci_back_from_sleep);
2633 
2634 /**
2635  * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2636  * @dev: PCI device being suspended.
2637  *
2638  * Prepare @dev to generate wake-up events at run time and put it into a low
2639  * power state.
2640  */
2641 int pci_finish_runtime_suspend(struct pci_dev *dev)
2642 {
2643 	pci_power_t target_state;
2644 	int error;
2645 
2646 	target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2647 	if (target_state == PCI_POWER_ERROR)
2648 		return -EIO;
2649 
2650 	dev->runtime_d3cold = target_state == PCI_D3cold;
2651 
2652 	__pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2653 
2654 	error = pci_set_power_state(dev, target_state);
2655 
2656 	if (error) {
2657 		pci_enable_wake(dev, target_state, false);
2658 		dev->runtime_d3cold = false;
2659 	}
2660 
2661 	return error;
2662 }
2663 
2664 /**
2665  * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2666  * @dev: Device to check.
2667  *
2668  * Return true if the device itself is capable of generating wake-up events
2669  * (through the platform or using the native PCIe PME) or if the device supports
2670  * PME and one of its upstream bridges can generate wake-up events.
2671  */
2672 bool pci_dev_run_wake(struct pci_dev *dev)
2673 {
2674 	struct pci_bus *bus = dev->bus;
2675 
2676 	if (!dev->pme_support)
2677 		return false;
2678 
2679 	/* PME-capable in principle, but not from the target power state */
2680 	if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2681 		return false;
2682 
2683 	if (device_can_wakeup(&dev->dev))
2684 		return true;
2685 
2686 	while (bus->parent) {
2687 		struct pci_dev *bridge = bus->self;
2688 
2689 		if (device_can_wakeup(&bridge->dev))
2690 			return true;
2691 
2692 		bus = bus->parent;
2693 	}
2694 
2695 	/* We have reached the root bus. */
2696 	if (bus->bridge)
2697 		return device_can_wakeup(bus->bridge);
2698 
2699 	return false;
2700 }
2701 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2702 
2703 /**
2704  * pci_dev_need_resume - Check if it is necessary to resume the device.
2705  * @pci_dev: Device to check.
2706  *
2707  * Return 'true' if the device is not runtime-suspended or it has to be
2708  * reconfigured due to wakeup settings difference between system and runtime
2709  * suspend, or the current power state of it is not suitable for the upcoming
2710  * (system-wide) transition.
2711  */
2712 bool pci_dev_need_resume(struct pci_dev *pci_dev)
2713 {
2714 	struct device *dev = &pci_dev->dev;
2715 	pci_power_t target_state;
2716 
2717 	if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2718 		return true;
2719 
2720 	target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2721 
2722 	/*
2723 	 * If the earlier platform check has not triggered, D3cold is just power
2724 	 * removal on top of D3hot, so no need to resume the device in that
2725 	 * case.
2726 	 */
2727 	return target_state != pci_dev->current_state &&
2728 		target_state != PCI_D3cold &&
2729 		pci_dev->current_state != PCI_D3hot;
2730 }
2731 
2732 /**
2733  * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2734  * @pci_dev: Device to check.
2735  *
2736  * If the device is suspended and it is not configured for system wakeup,
2737  * disable PME for it to prevent it from waking up the system unnecessarily.
2738  *
2739  * Note that if the device's power state is D3cold and the platform check in
2740  * pci_dev_need_resume() has not triggered, the device's configuration need not
2741  * be changed.
2742  */
2743 void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2744 {
2745 	struct device *dev = &pci_dev->dev;
2746 
2747 	spin_lock_irq(&dev->power.lock);
2748 
2749 	if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2750 	    pci_dev->current_state < PCI_D3cold)
2751 		__pci_pme_active(pci_dev, false);
2752 
2753 	spin_unlock_irq(&dev->power.lock);
2754 }
2755 
2756 /**
2757  * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2758  * @pci_dev: Device to handle.
2759  *
2760  * If the device is runtime suspended and wakeup-capable, enable PME for it as
2761  * it might have been disabled during the prepare phase of system suspend if
2762  * the device was not configured for system wakeup.
2763  */
2764 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2765 {
2766 	struct device *dev = &pci_dev->dev;
2767 
2768 	if (!pci_dev_run_wake(pci_dev))
2769 		return;
2770 
2771 	spin_lock_irq(&dev->power.lock);
2772 
2773 	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2774 		__pci_pme_active(pci_dev, true);
2775 
2776 	spin_unlock_irq(&dev->power.lock);
2777 }
2778 
2779 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2780 {
2781 	struct device *dev = &pdev->dev;
2782 	struct device *parent = dev->parent;
2783 
2784 	if (parent)
2785 		pm_runtime_get_sync(parent);
2786 	pm_runtime_get_noresume(dev);
2787 	/*
2788 	 * pdev->current_state is set to PCI_D3cold during suspending,
2789 	 * so wait until suspending completes
2790 	 */
2791 	pm_runtime_barrier(dev);
2792 	/*
2793 	 * Only need to resume devices in D3cold, because config
2794 	 * registers are still accessible for devices suspended but
2795 	 * not in D3cold.
2796 	 */
2797 	if (pdev->current_state == PCI_D3cold)
2798 		pm_runtime_resume(dev);
2799 }
2800 
2801 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2802 {
2803 	struct device *dev = &pdev->dev;
2804 	struct device *parent = dev->parent;
2805 
2806 	pm_runtime_put(dev);
2807 	if (parent)
2808 		pm_runtime_put_sync(parent);
2809 }
2810 
2811 static const struct dmi_system_id bridge_d3_blacklist[] = {
2812 #ifdef CONFIG_X86
2813 	{
2814 		/*
2815 		 * Gigabyte X299 root port is not marked as hotplug capable
2816 		 * which allows Linux to power manage it.  However, this
2817 		 * confuses the BIOS SMI handler so don't power manage root
2818 		 * ports on that system.
2819 		 */
2820 		.ident = "X299 DESIGNARE EX-CF",
2821 		.matches = {
2822 			DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2823 			DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2824 		},
2825 	},
2826 #endif
2827 	{ }
2828 };
2829 
2830 /**
2831  * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2832  * @bridge: Bridge to check
2833  *
2834  * This function checks if it is possible to move the bridge to D3.
2835  * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2836  */
2837 bool pci_bridge_d3_possible(struct pci_dev *bridge)
2838 {
2839 	if (!pci_is_pcie(bridge))
2840 		return false;
2841 
2842 	switch (pci_pcie_type(bridge)) {
2843 	case PCI_EXP_TYPE_ROOT_PORT:
2844 	case PCI_EXP_TYPE_UPSTREAM:
2845 	case PCI_EXP_TYPE_DOWNSTREAM:
2846 		if (pci_bridge_d3_disable)
2847 			return false;
2848 
2849 		/*
2850 		 * Hotplug ports handled by firmware in System Management Mode
2851 		 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2852 		 */
2853 		if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
2854 			return false;
2855 
2856 		if (pci_bridge_d3_force)
2857 			return true;
2858 
2859 		/* Even the oldest 2010 Thunderbolt controller supports D3. */
2860 		if (bridge->is_thunderbolt)
2861 			return true;
2862 
2863 		/* Platform might know better if the bridge supports D3 */
2864 		if (platform_pci_bridge_d3(bridge))
2865 			return true;
2866 
2867 		/*
2868 		 * Hotplug ports handled natively by the OS were not validated
2869 		 * by vendors for runtime D3 at least until 2018 because there
2870 		 * was no OS support.
2871 		 */
2872 		if (bridge->is_hotplug_bridge)
2873 			return false;
2874 
2875 		if (dmi_check_system(bridge_d3_blacklist))
2876 			return false;
2877 
2878 		/*
2879 		 * It should be safe to put PCIe ports from 2015 or newer
2880 		 * to D3.
2881 		 */
2882 		if (dmi_get_bios_year() >= 2015)
2883 			return true;
2884 		break;
2885 	}
2886 
2887 	return false;
2888 }
2889 
2890 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2891 {
2892 	bool *d3cold_ok = data;
2893 
2894 	if (/* The device needs to be allowed to go D3cold ... */
2895 	    dev->no_d3cold || !dev->d3cold_allowed ||
2896 
2897 	    /* ... and if it is wakeup capable to do so from D3cold. */
2898 	    (device_may_wakeup(&dev->dev) &&
2899 	     !pci_pme_capable(dev, PCI_D3cold)) ||
2900 
2901 	    /* If it is a bridge it must be allowed to go to D3. */
2902 	    !pci_power_manageable(dev))
2903 
2904 		*d3cold_ok = false;
2905 
2906 	return !*d3cold_ok;
2907 }
2908 
2909 /*
2910  * pci_bridge_d3_update - Update bridge D3 capabilities
2911  * @dev: PCI device which is changed
2912  *
2913  * Update upstream bridge PM capabilities accordingly depending on if the
2914  * device PM configuration was changed or the device is being removed.  The
2915  * change is also propagated upstream.
2916  */
2917 void pci_bridge_d3_update(struct pci_dev *dev)
2918 {
2919 	bool remove = !device_is_registered(&dev->dev);
2920 	struct pci_dev *bridge;
2921 	bool d3cold_ok = true;
2922 
2923 	bridge = pci_upstream_bridge(dev);
2924 	if (!bridge || !pci_bridge_d3_possible(bridge))
2925 		return;
2926 
2927 	/*
2928 	 * If D3 is currently allowed for the bridge, removing one of its
2929 	 * children won't change that.
2930 	 */
2931 	if (remove && bridge->bridge_d3)
2932 		return;
2933 
2934 	/*
2935 	 * If D3 is currently allowed for the bridge and a child is added or
2936 	 * changed, disallowance of D3 can only be caused by that child, so
2937 	 * we only need to check that single device, not any of its siblings.
2938 	 *
2939 	 * If D3 is currently not allowed for the bridge, checking the device
2940 	 * first may allow us to skip checking its siblings.
2941 	 */
2942 	if (!remove)
2943 		pci_dev_check_d3cold(dev, &d3cold_ok);
2944 
2945 	/*
2946 	 * If D3 is currently not allowed for the bridge, this may be caused
2947 	 * either by the device being changed/removed or any of its siblings,
2948 	 * so we need to go through all children to find out if one of them
2949 	 * continues to block D3.
2950 	 */
2951 	if (d3cold_ok && !bridge->bridge_d3)
2952 		pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
2953 			     &d3cold_ok);
2954 
2955 	if (bridge->bridge_d3 != d3cold_ok) {
2956 		bridge->bridge_d3 = d3cold_ok;
2957 		/* Propagate change to upstream bridges */
2958 		pci_bridge_d3_update(bridge);
2959 	}
2960 }
2961 
2962 /**
2963  * pci_d3cold_enable - Enable D3cold for device
2964  * @dev: PCI device to handle
2965  *
2966  * This function can be used in drivers to enable D3cold from the device
2967  * they handle.  It also updates upstream PCI bridge PM capabilities
2968  * accordingly.
2969  */
2970 void pci_d3cold_enable(struct pci_dev *dev)
2971 {
2972 	if (dev->no_d3cold) {
2973 		dev->no_d3cold = false;
2974 		pci_bridge_d3_update(dev);
2975 	}
2976 }
2977 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
2978 
2979 /**
2980  * pci_d3cold_disable - Disable D3cold for device
2981  * @dev: PCI device to handle
2982  *
2983  * This function can be used in drivers to disable D3cold from the device
2984  * they handle.  It also updates upstream PCI bridge PM capabilities
2985  * accordingly.
2986  */
2987 void pci_d3cold_disable(struct pci_dev *dev)
2988 {
2989 	if (!dev->no_d3cold) {
2990 		dev->no_d3cold = true;
2991 		pci_bridge_d3_update(dev);
2992 	}
2993 }
2994 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
2995 
2996 /**
2997  * pci_pm_init - Initialize PM functions of given PCI device
2998  * @dev: PCI device to handle.
2999  */
3000 void pci_pm_init(struct pci_dev *dev)
3001 {
3002 	int pm;
3003 	u16 status;
3004 	u16 pmc;
3005 
3006 	pm_runtime_forbid(&dev->dev);
3007 	pm_runtime_set_active(&dev->dev);
3008 	pm_runtime_enable(&dev->dev);
3009 	device_enable_async_suspend(&dev->dev);
3010 	dev->wakeup_prepared = false;
3011 
3012 	dev->pm_cap = 0;
3013 	dev->pme_support = 0;
3014 
3015 	/* find PCI PM capability in list */
3016 	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3017 	if (!pm)
3018 		return;
3019 	/* Check device's ability to generate PME# */
3020 	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3021 
3022 	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3023 		pci_err(dev, "unsupported PM cap regs version (%u)\n",
3024 			pmc & PCI_PM_CAP_VER_MASK);
3025 		return;
3026 	}
3027 
3028 	dev->pm_cap = pm;
3029 	dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3030 	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3031 	dev->bridge_d3 = pci_bridge_d3_possible(dev);
3032 	dev->d3cold_allowed = true;
3033 
3034 	dev->d1_support = false;
3035 	dev->d2_support = false;
3036 	if (!pci_no_d1d2(dev)) {
3037 		if (pmc & PCI_PM_CAP_D1)
3038 			dev->d1_support = true;
3039 		if (pmc & PCI_PM_CAP_D2)
3040 			dev->d2_support = true;
3041 
3042 		if (dev->d1_support || dev->d2_support)
3043 			pci_info(dev, "supports%s%s\n",
3044 				   dev->d1_support ? " D1" : "",
3045 				   dev->d2_support ? " D2" : "");
3046 	}
3047 
3048 	pmc &= PCI_PM_CAP_PME_MASK;
3049 	if (pmc) {
3050 		pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3051 			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3052 			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3053 			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3054 			 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3055 			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3056 		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
3057 		dev->pme_poll = true;
3058 		/*
3059 		 * Make device's PM flags reflect the wake-up capability, but
3060 		 * let the user space enable it to wake up the system as needed.
3061 		 */
3062 		device_set_wakeup_capable(&dev->dev, true);
3063 		/* Disable the PME# generation functionality */
3064 		pci_pme_active(dev, false);
3065 	}
3066 
3067 	pci_read_config_word(dev, PCI_STATUS, &status);
3068 	if (status & PCI_STATUS_IMM_READY)
3069 		dev->imm_ready = 1;
3070 }
3071 
3072 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3073 {
3074 	unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3075 
3076 	switch (prop) {
3077 	case PCI_EA_P_MEM:
3078 	case PCI_EA_P_VF_MEM:
3079 		flags |= IORESOURCE_MEM;
3080 		break;
3081 	case PCI_EA_P_MEM_PREFETCH:
3082 	case PCI_EA_P_VF_MEM_PREFETCH:
3083 		flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3084 		break;
3085 	case PCI_EA_P_IO:
3086 		flags |= IORESOURCE_IO;
3087 		break;
3088 	default:
3089 		return 0;
3090 	}
3091 
3092 	return flags;
3093 }
3094 
3095 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3096 					    u8 prop)
3097 {
3098 	if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3099 		return &dev->resource[bei];
3100 #ifdef CONFIG_PCI_IOV
3101 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3102 		 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3103 		return &dev->resource[PCI_IOV_RESOURCES +
3104 				      bei - PCI_EA_BEI_VF_BAR0];
3105 #endif
3106 	else if (bei == PCI_EA_BEI_ROM)
3107 		return &dev->resource[PCI_ROM_RESOURCE];
3108 	else
3109 		return NULL;
3110 }
3111 
3112 /* Read an Enhanced Allocation (EA) entry */
3113 static int pci_ea_read(struct pci_dev *dev, int offset)
3114 {
3115 	struct resource *res;
3116 	int ent_size, ent_offset = offset;
3117 	resource_size_t start, end;
3118 	unsigned long flags;
3119 	u32 dw0, bei, base, max_offset;
3120 	u8 prop;
3121 	bool support_64 = (sizeof(resource_size_t) >= 8);
3122 
3123 	pci_read_config_dword(dev, ent_offset, &dw0);
3124 	ent_offset += 4;
3125 
3126 	/* Entry size field indicates DWORDs after 1st */
3127 	ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
3128 
3129 	if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3130 		goto out;
3131 
3132 	bei = (dw0 & PCI_EA_BEI) >> 4;
3133 	prop = (dw0 & PCI_EA_PP) >> 8;
3134 
3135 	/*
3136 	 * If the Property is in the reserved range, try the Secondary
3137 	 * Property instead.
3138 	 */
3139 	if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3140 		prop = (dw0 & PCI_EA_SP) >> 16;
3141 	if (prop > PCI_EA_P_BRIDGE_IO)
3142 		goto out;
3143 
3144 	res = pci_ea_get_resource(dev, bei, prop);
3145 	if (!res) {
3146 		pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3147 		goto out;
3148 	}
3149 
3150 	flags = pci_ea_flags(dev, prop);
3151 	if (!flags) {
3152 		pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3153 		goto out;
3154 	}
3155 
3156 	/* Read Base */
3157 	pci_read_config_dword(dev, ent_offset, &base);
3158 	start = (base & PCI_EA_FIELD_MASK);
3159 	ent_offset += 4;
3160 
3161 	/* Read MaxOffset */
3162 	pci_read_config_dword(dev, ent_offset, &max_offset);
3163 	ent_offset += 4;
3164 
3165 	/* Read Base MSBs (if 64-bit entry) */
3166 	if (base & PCI_EA_IS_64) {
3167 		u32 base_upper;
3168 
3169 		pci_read_config_dword(dev, ent_offset, &base_upper);
3170 		ent_offset += 4;
3171 
3172 		flags |= IORESOURCE_MEM_64;
3173 
3174 		/* entry starts above 32-bit boundary, can't use */
3175 		if (!support_64 && base_upper)
3176 			goto out;
3177 
3178 		if (support_64)
3179 			start |= ((u64)base_upper << 32);
3180 	}
3181 
3182 	end = start + (max_offset | 0x03);
3183 
3184 	/* Read MaxOffset MSBs (if 64-bit entry) */
3185 	if (max_offset & PCI_EA_IS_64) {
3186 		u32 max_offset_upper;
3187 
3188 		pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3189 		ent_offset += 4;
3190 
3191 		flags |= IORESOURCE_MEM_64;
3192 
3193 		/* entry too big, can't use */
3194 		if (!support_64 && max_offset_upper)
3195 			goto out;
3196 
3197 		if (support_64)
3198 			end += ((u64)max_offset_upper << 32);
3199 	}
3200 
3201 	if (end < start) {
3202 		pci_err(dev, "EA Entry crosses address boundary\n");
3203 		goto out;
3204 	}
3205 
3206 	if (ent_size != ent_offset - offset) {
3207 		pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3208 			ent_size, ent_offset - offset);
3209 		goto out;
3210 	}
3211 
3212 	res->name = pci_name(dev);
3213 	res->start = start;
3214 	res->end = end;
3215 	res->flags = flags;
3216 
3217 	if (bei <= PCI_EA_BEI_BAR5)
3218 		pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3219 			   bei, res, prop);
3220 	else if (bei == PCI_EA_BEI_ROM)
3221 		pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3222 			   res, prop);
3223 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3224 		pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3225 			   bei - PCI_EA_BEI_VF_BAR0, res, prop);
3226 	else
3227 		pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3228 			   bei, res, prop);
3229 
3230 out:
3231 	return offset + ent_size;
3232 }
3233 
3234 /* Enhanced Allocation Initialization */
3235 void pci_ea_init(struct pci_dev *dev)
3236 {
3237 	int ea;
3238 	u8 num_ent;
3239 	int offset;
3240 	int i;
3241 
3242 	/* find PCI EA capability in list */
3243 	ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3244 	if (!ea)
3245 		return;
3246 
3247 	/* determine the number of entries */
3248 	pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3249 					&num_ent);
3250 	num_ent &= PCI_EA_NUM_ENT_MASK;
3251 
3252 	offset = ea + PCI_EA_FIRST_ENT;
3253 
3254 	/* Skip DWORD 2 for type 1 functions */
3255 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3256 		offset += 4;
3257 
3258 	/* parse each EA entry */
3259 	for (i = 0; i < num_ent; ++i)
3260 		offset = pci_ea_read(dev, offset);
3261 }
3262 
3263 static void pci_add_saved_cap(struct pci_dev *pci_dev,
3264 	struct pci_cap_saved_state *new_cap)
3265 {
3266 	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3267 }
3268 
3269 /**
3270  * _pci_add_cap_save_buffer - allocate buffer for saving given
3271  *			      capability registers
3272  * @dev: the PCI device
3273  * @cap: the capability to allocate the buffer for
3274  * @extended: Standard or Extended capability ID
3275  * @size: requested size of the buffer
3276  */
3277 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3278 				    bool extended, unsigned int size)
3279 {
3280 	int pos;
3281 	struct pci_cap_saved_state *save_state;
3282 
3283 	if (extended)
3284 		pos = pci_find_ext_capability(dev, cap);
3285 	else
3286 		pos = pci_find_capability(dev, cap);
3287 
3288 	if (!pos)
3289 		return 0;
3290 
3291 	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3292 	if (!save_state)
3293 		return -ENOMEM;
3294 
3295 	save_state->cap.cap_nr = cap;
3296 	save_state->cap.cap_extended = extended;
3297 	save_state->cap.size = size;
3298 	pci_add_saved_cap(dev, save_state);
3299 
3300 	return 0;
3301 }
3302 
3303 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3304 {
3305 	return _pci_add_cap_save_buffer(dev, cap, false, size);
3306 }
3307 
3308 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3309 {
3310 	return _pci_add_cap_save_buffer(dev, cap, true, size);
3311 }
3312 
3313 /**
3314  * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3315  * @dev: the PCI device
3316  */
3317 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3318 {
3319 	int error;
3320 
3321 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3322 					PCI_EXP_SAVE_REGS * sizeof(u16));
3323 	if (error)
3324 		pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3325 
3326 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3327 	if (error)
3328 		pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3329 
3330 	error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3331 					    2 * sizeof(u16));
3332 	if (error)
3333 		pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3334 
3335 	pci_allocate_vc_save_buffers(dev);
3336 }
3337 
3338 void pci_free_cap_save_buffers(struct pci_dev *dev)
3339 {
3340 	struct pci_cap_saved_state *tmp;
3341 	struct hlist_node *n;
3342 
3343 	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3344 		kfree(tmp);
3345 }
3346 
3347 /**
3348  * pci_configure_ari - enable or disable ARI forwarding
3349  * @dev: the PCI device
3350  *
3351  * If @dev and its upstream bridge both support ARI, enable ARI in the
3352  * bridge.  Otherwise, disable ARI in the bridge.
3353  */
3354 void pci_configure_ari(struct pci_dev *dev)
3355 {
3356 	u32 cap;
3357 	struct pci_dev *bridge;
3358 
3359 	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3360 		return;
3361 
3362 	bridge = dev->bus->self;
3363 	if (!bridge)
3364 		return;
3365 
3366 	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3367 	if (!(cap & PCI_EXP_DEVCAP2_ARI))
3368 		return;
3369 
3370 	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3371 		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3372 					 PCI_EXP_DEVCTL2_ARI);
3373 		bridge->ari_enabled = 1;
3374 	} else {
3375 		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3376 					   PCI_EXP_DEVCTL2_ARI);
3377 		bridge->ari_enabled = 0;
3378 	}
3379 }
3380 
3381 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3382 {
3383 	int pos;
3384 	u16 cap, ctrl;
3385 
3386 	pos = pdev->acs_cap;
3387 	if (!pos)
3388 		return false;
3389 
3390 	/*
3391 	 * Except for egress control, capabilities are either required
3392 	 * or only required if controllable.  Features missing from the
3393 	 * capability field can therefore be assumed as hard-wired enabled.
3394 	 */
3395 	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3396 	acs_flags &= (cap | PCI_ACS_EC);
3397 
3398 	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3399 	return (ctrl & acs_flags) == acs_flags;
3400 }
3401 
3402 /**
3403  * pci_acs_enabled - test ACS against required flags for a given device
3404  * @pdev: device to test
3405  * @acs_flags: required PCI ACS flags
3406  *
3407  * Return true if the device supports the provided flags.  Automatically
3408  * filters out flags that are not implemented on multifunction devices.
3409  *
3410  * Note that this interface checks the effective ACS capabilities of the
3411  * device rather than the actual capabilities.  For instance, most single
3412  * function endpoints are not required to support ACS because they have no
3413  * opportunity for peer-to-peer access.  We therefore return 'true'
3414  * regardless of whether the device exposes an ACS capability.  This makes
3415  * it much easier for callers of this function to ignore the actual type
3416  * or topology of the device when testing ACS support.
3417  */
3418 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3419 {
3420 	int ret;
3421 
3422 	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3423 	if (ret >= 0)
3424 		return ret > 0;
3425 
3426 	/*
3427 	 * Conventional PCI and PCI-X devices never support ACS, either
3428 	 * effectively or actually.  The shared bus topology implies that
3429 	 * any device on the bus can receive or snoop DMA.
3430 	 */
3431 	if (!pci_is_pcie(pdev))
3432 		return false;
3433 
3434 	switch (pci_pcie_type(pdev)) {
3435 	/*
3436 	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3437 	 * but since their primary interface is PCI/X, we conservatively
3438 	 * handle them as we would a non-PCIe device.
3439 	 */
3440 	case PCI_EXP_TYPE_PCIE_BRIDGE:
3441 	/*
3442 	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
3443 	 * applicable... must never implement an ACS Extended Capability...".
3444 	 * This seems arbitrary, but we take a conservative interpretation
3445 	 * of this statement.
3446 	 */
3447 	case PCI_EXP_TYPE_PCI_BRIDGE:
3448 	case PCI_EXP_TYPE_RC_EC:
3449 		return false;
3450 	/*
3451 	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3452 	 * implement ACS in order to indicate their peer-to-peer capabilities,
3453 	 * regardless of whether they are single- or multi-function devices.
3454 	 */
3455 	case PCI_EXP_TYPE_DOWNSTREAM:
3456 	case PCI_EXP_TYPE_ROOT_PORT:
3457 		return pci_acs_flags_enabled(pdev, acs_flags);
3458 	/*
3459 	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3460 	 * implemented by the remaining PCIe types to indicate peer-to-peer
3461 	 * capabilities, but only when they are part of a multifunction
3462 	 * device.  The footnote for section 6.12 indicates the specific
3463 	 * PCIe types included here.
3464 	 */
3465 	case PCI_EXP_TYPE_ENDPOINT:
3466 	case PCI_EXP_TYPE_UPSTREAM:
3467 	case PCI_EXP_TYPE_LEG_END:
3468 	case PCI_EXP_TYPE_RC_END:
3469 		if (!pdev->multifunction)
3470 			break;
3471 
3472 		return pci_acs_flags_enabled(pdev, acs_flags);
3473 	}
3474 
3475 	/*
3476 	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3477 	 * to single function devices with the exception of downstream ports.
3478 	 */
3479 	return true;
3480 }
3481 
3482 /**
3483  * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
3484  * @start: starting downstream device
3485  * @end: ending upstream device or NULL to search to the root bus
3486  * @acs_flags: required flags
3487  *
3488  * Walk up a device tree from start to end testing PCI ACS support.  If
3489  * any step along the way does not support the required flags, return false.
3490  */
3491 bool pci_acs_path_enabled(struct pci_dev *start,
3492 			  struct pci_dev *end, u16 acs_flags)
3493 {
3494 	struct pci_dev *pdev, *parent = start;
3495 
3496 	do {
3497 		pdev = parent;
3498 
3499 		if (!pci_acs_enabled(pdev, acs_flags))
3500 			return false;
3501 
3502 		if (pci_is_root_bus(pdev->bus))
3503 			return (end == NULL);
3504 
3505 		parent = pdev->bus->self;
3506 	} while (pdev != end);
3507 
3508 	return true;
3509 }
3510 
3511 /**
3512  * pci_acs_init - Initialize ACS if hardware supports it
3513  * @dev: the PCI device
3514  */
3515 void pci_acs_init(struct pci_dev *dev)
3516 {
3517 	dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3518 
3519 	/*
3520 	 * Attempt to enable ACS regardless of capability because some Root
3521 	 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3522 	 * the standard ACS capability but still support ACS via those
3523 	 * quirks.
3524 	 */
3525 	pci_enable_acs(dev);
3526 }
3527 
3528 /**
3529  * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3530  * @pdev: PCI device
3531  * @bar: BAR to find
3532  *
3533  * Helper to find the position of the ctrl register for a BAR.
3534  * Returns -ENOTSUPP if resizable BARs are not supported at all.
3535  * Returns -ENOENT if no ctrl register for the BAR could be found.
3536  */
3537 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3538 {
3539 	unsigned int pos, nbars, i;
3540 	u32 ctrl;
3541 
3542 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3543 	if (!pos)
3544 		return -ENOTSUPP;
3545 
3546 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3547 	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3548 		    PCI_REBAR_CTRL_NBAR_SHIFT;
3549 
3550 	for (i = 0; i < nbars; i++, pos += 8) {
3551 		int bar_idx;
3552 
3553 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3554 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3555 		if (bar_idx == bar)
3556 			return pos;
3557 	}
3558 
3559 	return -ENOENT;
3560 }
3561 
3562 /**
3563  * pci_rebar_get_possible_sizes - get possible sizes for BAR
3564  * @pdev: PCI device
3565  * @bar: BAR to query
3566  *
3567  * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3568  * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3569  */
3570 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3571 {
3572 	int pos;
3573 	u32 cap;
3574 
3575 	pos = pci_rebar_find_pos(pdev, bar);
3576 	if (pos < 0)
3577 		return 0;
3578 
3579 	pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3580 	return (cap & PCI_REBAR_CAP_SIZES) >> 4;
3581 }
3582 
3583 /**
3584  * pci_rebar_get_current_size - get the current size of a BAR
3585  * @pdev: PCI device
3586  * @bar: BAR to set size to
3587  *
3588  * Read the size of a BAR from the resizable BAR config.
3589  * Returns size if found or negative error code.
3590  */
3591 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3592 {
3593 	int pos;
3594 	u32 ctrl;
3595 
3596 	pos = pci_rebar_find_pos(pdev, bar);
3597 	if (pos < 0)
3598 		return pos;
3599 
3600 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3601 	return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3602 }
3603 
3604 /**
3605  * pci_rebar_set_size - set a new size for a BAR
3606  * @pdev: PCI device
3607  * @bar: BAR to set size to
3608  * @size: new size as defined in the spec (0=1MB, 19=512GB)
3609  *
3610  * Set the new size of a BAR as defined in the spec.
3611  * Returns zero if resizing was successful, error code otherwise.
3612  */
3613 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3614 {
3615 	int pos;
3616 	u32 ctrl;
3617 
3618 	pos = pci_rebar_find_pos(pdev, bar);
3619 	if (pos < 0)
3620 		return pos;
3621 
3622 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3623 	ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3624 	ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3625 	pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3626 	return 0;
3627 }
3628 
3629 /**
3630  * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3631  * @dev: the PCI device
3632  * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3633  *	PCI_EXP_DEVCAP2_ATOMIC_COMP32
3634  *	PCI_EXP_DEVCAP2_ATOMIC_COMP64
3635  *	PCI_EXP_DEVCAP2_ATOMIC_COMP128
3636  *
3637  * Return 0 if all upstream bridges support AtomicOp routing, egress
3638  * blocking is disabled on all upstream ports, and the root port supports
3639  * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3640  * AtomicOp completion), or negative otherwise.
3641  */
3642 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3643 {
3644 	struct pci_bus *bus = dev->bus;
3645 	struct pci_dev *bridge;
3646 	u32 cap, ctl2;
3647 
3648 	if (!pci_is_pcie(dev))
3649 		return -EINVAL;
3650 
3651 	/*
3652 	 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3653 	 * AtomicOp requesters.  For now, we only support endpoints as
3654 	 * requesters and root ports as completers.  No endpoints as
3655 	 * completers, and no peer-to-peer.
3656 	 */
3657 
3658 	switch (pci_pcie_type(dev)) {
3659 	case PCI_EXP_TYPE_ENDPOINT:
3660 	case PCI_EXP_TYPE_LEG_END:
3661 	case PCI_EXP_TYPE_RC_END:
3662 		break;
3663 	default:
3664 		return -EINVAL;
3665 	}
3666 
3667 	while (bus->parent) {
3668 		bridge = bus->self;
3669 
3670 		pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3671 
3672 		switch (pci_pcie_type(bridge)) {
3673 		/* Ensure switch ports support AtomicOp routing */
3674 		case PCI_EXP_TYPE_UPSTREAM:
3675 		case PCI_EXP_TYPE_DOWNSTREAM:
3676 			if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3677 				return -EINVAL;
3678 			break;
3679 
3680 		/* Ensure root port supports all the sizes we care about */
3681 		case PCI_EXP_TYPE_ROOT_PORT:
3682 			if ((cap & cap_mask) != cap_mask)
3683 				return -EINVAL;
3684 			break;
3685 		}
3686 
3687 		/* Ensure upstream ports don't block AtomicOps on egress */
3688 		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3689 			pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3690 						   &ctl2);
3691 			if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3692 				return -EINVAL;
3693 		}
3694 
3695 		bus = bus->parent;
3696 	}
3697 
3698 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3699 				 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3700 	return 0;
3701 }
3702 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3703 
3704 /**
3705  * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3706  * @dev: the PCI device
3707  * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3708  *
3709  * Perform INTx swizzling for a device behind one level of bridge.  This is
3710  * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3711  * behind bridges on add-in cards.  For devices with ARI enabled, the slot
3712  * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3713  * the PCI Express Base Specification, Revision 2.1)
3714  */
3715 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3716 {
3717 	int slot;
3718 
3719 	if (pci_ari_enabled(dev->bus))
3720 		slot = 0;
3721 	else
3722 		slot = PCI_SLOT(dev->devfn);
3723 
3724 	return (((pin - 1) + slot) % 4) + 1;
3725 }
3726 
3727 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3728 {
3729 	u8 pin;
3730 
3731 	pin = dev->pin;
3732 	if (!pin)
3733 		return -1;
3734 
3735 	while (!pci_is_root_bus(dev->bus)) {
3736 		pin = pci_swizzle_interrupt_pin(dev, pin);
3737 		dev = dev->bus->self;
3738 	}
3739 	*bridge = dev;
3740 	return pin;
3741 }
3742 
3743 /**
3744  * pci_common_swizzle - swizzle INTx all the way to root bridge
3745  * @dev: the PCI device
3746  * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3747  *
3748  * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
3749  * bridges all the way up to a PCI root bus.
3750  */
3751 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3752 {
3753 	u8 pin = *pinp;
3754 
3755 	while (!pci_is_root_bus(dev->bus)) {
3756 		pin = pci_swizzle_interrupt_pin(dev, pin);
3757 		dev = dev->bus->self;
3758 	}
3759 	*pinp = pin;
3760 	return PCI_SLOT(dev->devfn);
3761 }
3762 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3763 
3764 /**
3765  * pci_release_region - Release a PCI bar
3766  * @pdev: PCI device whose resources were previously reserved by
3767  *	  pci_request_region()
3768  * @bar: BAR to release
3769  *
3770  * Releases the PCI I/O and memory resources previously reserved by a
3771  * successful call to pci_request_region().  Call this function only
3772  * after all use of the PCI regions has ceased.
3773  */
3774 void pci_release_region(struct pci_dev *pdev, int bar)
3775 {
3776 	struct pci_devres *dr;
3777 
3778 	if (pci_resource_len(pdev, bar) == 0)
3779 		return;
3780 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3781 		release_region(pci_resource_start(pdev, bar),
3782 				pci_resource_len(pdev, bar));
3783 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3784 		release_mem_region(pci_resource_start(pdev, bar),
3785 				pci_resource_len(pdev, bar));
3786 
3787 	dr = find_pci_dr(pdev);
3788 	if (dr)
3789 		dr->region_mask &= ~(1 << bar);
3790 }
3791 EXPORT_SYMBOL(pci_release_region);
3792 
3793 /**
3794  * __pci_request_region - Reserved PCI I/O and memory resource
3795  * @pdev: PCI device whose resources are to be reserved
3796  * @bar: BAR to be reserved
3797  * @res_name: Name to be associated with resource.
3798  * @exclusive: whether the region access is exclusive or not
3799  *
3800  * Mark the PCI region associated with PCI device @pdev BAR @bar as
3801  * being reserved by owner @res_name.  Do not access any
3802  * address inside the PCI regions unless this call returns
3803  * successfully.
3804  *
3805  * If @exclusive is set, then the region is marked so that userspace
3806  * is explicitly not allowed to map the resource via /dev/mem or
3807  * sysfs MMIO access.
3808  *
3809  * Returns 0 on success, or %EBUSY on error.  A warning
3810  * message is also printed on failure.
3811  */
3812 static int __pci_request_region(struct pci_dev *pdev, int bar,
3813 				const char *res_name, int exclusive)
3814 {
3815 	struct pci_devres *dr;
3816 
3817 	if (pci_resource_len(pdev, bar) == 0)
3818 		return 0;
3819 
3820 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3821 		if (!request_region(pci_resource_start(pdev, bar),
3822 			    pci_resource_len(pdev, bar), res_name))
3823 			goto err_out;
3824 	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3825 		if (!__request_mem_region(pci_resource_start(pdev, bar),
3826 					pci_resource_len(pdev, bar), res_name,
3827 					exclusive))
3828 			goto err_out;
3829 	}
3830 
3831 	dr = find_pci_dr(pdev);
3832 	if (dr)
3833 		dr->region_mask |= 1 << bar;
3834 
3835 	return 0;
3836 
3837 err_out:
3838 	pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3839 		 &pdev->resource[bar]);
3840 	return -EBUSY;
3841 }
3842 
3843 /**
3844  * pci_request_region - Reserve PCI I/O and memory resource
3845  * @pdev: PCI device whose resources are to be reserved
3846  * @bar: BAR to be reserved
3847  * @res_name: Name to be associated with resource
3848  *
3849  * Mark the PCI region associated with PCI device @pdev BAR @bar as
3850  * being reserved by owner @res_name.  Do not access any
3851  * address inside the PCI regions unless this call returns
3852  * successfully.
3853  *
3854  * Returns 0 on success, or %EBUSY on error.  A warning
3855  * message is also printed on failure.
3856  */
3857 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3858 {
3859 	return __pci_request_region(pdev, bar, res_name, 0);
3860 }
3861 EXPORT_SYMBOL(pci_request_region);
3862 
3863 /**
3864  * pci_release_selected_regions - Release selected PCI I/O and memory resources
3865  * @pdev: PCI device whose resources were previously reserved
3866  * @bars: Bitmask of BARs to be released
3867  *
3868  * Release selected PCI I/O and memory resources previously reserved.
3869  * Call this function only after all use of the PCI regions has ceased.
3870  */
3871 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3872 {
3873 	int i;
3874 
3875 	for (i = 0; i < PCI_STD_NUM_BARS; i++)
3876 		if (bars & (1 << i))
3877 			pci_release_region(pdev, i);
3878 }
3879 EXPORT_SYMBOL(pci_release_selected_regions);
3880 
3881 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3882 					  const char *res_name, int excl)
3883 {
3884 	int i;
3885 
3886 	for (i = 0; i < PCI_STD_NUM_BARS; i++)
3887 		if (bars & (1 << i))
3888 			if (__pci_request_region(pdev, i, res_name, excl))
3889 				goto err_out;
3890 	return 0;
3891 
3892 err_out:
3893 	while (--i >= 0)
3894 		if (bars & (1 << i))
3895 			pci_release_region(pdev, i);
3896 
3897 	return -EBUSY;
3898 }
3899 
3900 
3901 /**
3902  * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3903  * @pdev: PCI device whose resources are to be reserved
3904  * @bars: Bitmask of BARs to be requested
3905  * @res_name: Name to be associated with resource
3906  */
3907 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3908 				 const char *res_name)
3909 {
3910 	return __pci_request_selected_regions(pdev, bars, res_name, 0);
3911 }
3912 EXPORT_SYMBOL(pci_request_selected_regions);
3913 
3914 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3915 					   const char *res_name)
3916 {
3917 	return __pci_request_selected_regions(pdev, bars, res_name,
3918 			IORESOURCE_EXCLUSIVE);
3919 }
3920 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3921 
3922 /**
3923  * pci_release_regions - Release reserved PCI I/O and memory resources
3924  * @pdev: PCI device whose resources were previously reserved by
3925  *	  pci_request_regions()
3926  *
3927  * Releases all PCI I/O and memory resources previously reserved by a
3928  * successful call to pci_request_regions().  Call this function only
3929  * after all use of the PCI regions has ceased.
3930  */
3931 
3932 void pci_release_regions(struct pci_dev *pdev)
3933 {
3934 	pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
3935 }
3936 EXPORT_SYMBOL(pci_release_regions);
3937 
3938 /**
3939  * pci_request_regions - Reserve PCI I/O and memory resources
3940  * @pdev: PCI device whose resources are to be reserved
3941  * @res_name: Name to be associated with resource.
3942  *
3943  * Mark all PCI regions associated with PCI device @pdev as
3944  * being reserved by owner @res_name.  Do not access any
3945  * address inside the PCI regions unless this call returns
3946  * successfully.
3947  *
3948  * Returns 0 on success, or %EBUSY on error.  A warning
3949  * message is also printed on failure.
3950  */
3951 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
3952 {
3953 	return pci_request_selected_regions(pdev,
3954 			((1 << PCI_STD_NUM_BARS) - 1), res_name);
3955 }
3956 EXPORT_SYMBOL(pci_request_regions);
3957 
3958 /**
3959  * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
3960  * @pdev: PCI device whose resources are to be reserved
3961  * @res_name: Name to be associated with resource.
3962  *
3963  * Mark all PCI regions associated with PCI device @pdev as being reserved
3964  * by owner @res_name.  Do not access any address inside the PCI regions
3965  * unless this call returns successfully.
3966  *
3967  * pci_request_regions_exclusive() will mark the region so that /dev/mem
3968  * and the sysfs MMIO access will not be allowed.
3969  *
3970  * Returns 0 on success, or %EBUSY on error.  A warning message is also
3971  * printed on failure.
3972  */
3973 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3974 {
3975 	return pci_request_selected_regions_exclusive(pdev,
3976 				((1 << PCI_STD_NUM_BARS) - 1), res_name);
3977 }
3978 EXPORT_SYMBOL(pci_request_regions_exclusive);
3979 
3980 /*
3981  * Record the PCI IO range (expressed as CPU physical address + size).
3982  * Return a negative value if an error has occurred, zero otherwise
3983  */
3984 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
3985 			resource_size_t	size)
3986 {
3987 	int ret = 0;
3988 #ifdef PCI_IOBASE
3989 	struct logic_pio_hwaddr *range;
3990 
3991 	if (!size || addr + size < addr)
3992 		return -EINVAL;
3993 
3994 	range = kzalloc(sizeof(*range), GFP_ATOMIC);
3995 	if (!range)
3996 		return -ENOMEM;
3997 
3998 	range->fwnode = fwnode;
3999 	range->size = size;
4000 	range->hw_start = addr;
4001 	range->flags = LOGIC_PIO_CPU_MMIO;
4002 
4003 	ret = logic_pio_register_range(range);
4004 	if (ret)
4005 		kfree(range);
4006 #endif
4007 
4008 	return ret;
4009 }
4010 
4011 phys_addr_t pci_pio_to_address(unsigned long pio)
4012 {
4013 	phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
4014 
4015 #ifdef PCI_IOBASE
4016 	if (pio >= MMIO_UPPER_LIMIT)
4017 		return address;
4018 
4019 	address = logic_pio_to_hwaddr(pio);
4020 #endif
4021 
4022 	return address;
4023 }
4024 
4025 unsigned long __weak pci_address_to_pio(phys_addr_t address)
4026 {
4027 #ifdef PCI_IOBASE
4028 	return logic_pio_trans_cpuaddr(address);
4029 #else
4030 	if (address > IO_SPACE_LIMIT)
4031 		return (unsigned long)-1;
4032 
4033 	return (unsigned long) address;
4034 #endif
4035 }
4036 
4037 /**
4038  * pci_remap_iospace - Remap the memory mapped I/O space
4039  * @res: Resource describing the I/O space
4040  * @phys_addr: physical address of range to be mapped
4041  *
4042  * Remap the memory mapped I/O space described by the @res and the CPU
4043  * physical address @phys_addr into virtual address space.  Only
4044  * architectures that have memory mapped IO functions defined (and the
4045  * PCI_IOBASE value defined) should call this function.
4046  */
4047 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4048 {
4049 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4050 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4051 
4052 	if (!(res->flags & IORESOURCE_IO))
4053 		return -EINVAL;
4054 
4055 	if (res->end > IO_SPACE_LIMIT)
4056 		return -EINVAL;
4057 
4058 	return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4059 				  pgprot_device(PAGE_KERNEL));
4060 #else
4061 	/*
4062 	 * This architecture does not have memory mapped I/O space,
4063 	 * so this function should never be called
4064 	 */
4065 	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4066 	return -ENODEV;
4067 #endif
4068 }
4069 EXPORT_SYMBOL(pci_remap_iospace);
4070 
4071 /**
4072  * pci_unmap_iospace - Unmap the memory mapped I/O space
4073  * @res: resource to be unmapped
4074  *
4075  * Unmap the CPU virtual address @res from virtual address space.  Only
4076  * architectures that have memory mapped IO functions defined (and the
4077  * PCI_IOBASE value defined) should call this function.
4078  */
4079 void pci_unmap_iospace(struct resource *res)
4080 {
4081 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4082 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4083 
4084 	unmap_kernel_range(vaddr, resource_size(res));
4085 #endif
4086 }
4087 EXPORT_SYMBOL(pci_unmap_iospace);
4088 
4089 static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
4090 {
4091 	struct resource **res = ptr;
4092 
4093 	pci_unmap_iospace(*res);
4094 }
4095 
4096 /**
4097  * devm_pci_remap_iospace - Managed pci_remap_iospace()
4098  * @dev: Generic device to remap IO address for
4099  * @res: Resource describing the I/O space
4100  * @phys_addr: physical address of range to be mapped
4101  *
4102  * Managed pci_remap_iospace().  Map is automatically unmapped on driver
4103  * detach.
4104  */
4105 int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4106 			   phys_addr_t phys_addr)
4107 {
4108 	const struct resource **ptr;
4109 	int error;
4110 
4111 	ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4112 	if (!ptr)
4113 		return -ENOMEM;
4114 
4115 	error = pci_remap_iospace(res, phys_addr);
4116 	if (error) {
4117 		devres_free(ptr);
4118 	} else	{
4119 		*ptr = res;
4120 		devres_add(dev, ptr);
4121 	}
4122 
4123 	return error;
4124 }
4125 EXPORT_SYMBOL(devm_pci_remap_iospace);
4126 
4127 /**
4128  * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4129  * @dev: Generic device to remap IO address for
4130  * @offset: Resource address to map
4131  * @size: Size of map
4132  *
4133  * Managed pci_remap_cfgspace().  Map is automatically unmapped on driver
4134  * detach.
4135  */
4136 void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4137 				      resource_size_t offset,
4138 				      resource_size_t size)
4139 {
4140 	void __iomem **ptr, *addr;
4141 
4142 	ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4143 	if (!ptr)
4144 		return NULL;
4145 
4146 	addr = pci_remap_cfgspace(offset, size);
4147 	if (addr) {
4148 		*ptr = addr;
4149 		devres_add(dev, ptr);
4150 	} else
4151 		devres_free(ptr);
4152 
4153 	return addr;
4154 }
4155 EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4156 
4157 /**
4158  * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4159  * @dev: generic device to handle the resource for
4160  * @res: configuration space resource to be handled
4161  *
4162  * Checks that a resource is a valid memory region, requests the memory
4163  * region and ioremaps with pci_remap_cfgspace() API that ensures the
4164  * proper PCI configuration space memory attributes are guaranteed.
4165  *
4166  * All operations are managed and will be undone on driver detach.
4167  *
4168  * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4169  * on failure. Usage example::
4170  *
4171  *	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4172  *	base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4173  *	if (IS_ERR(base))
4174  *		return PTR_ERR(base);
4175  */
4176 void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4177 					  struct resource *res)
4178 {
4179 	resource_size_t size;
4180 	const char *name;
4181 	void __iomem *dest_ptr;
4182 
4183 	BUG_ON(!dev);
4184 
4185 	if (!res || resource_type(res) != IORESOURCE_MEM) {
4186 		dev_err(dev, "invalid resource\n");
4187 		return IOMEM_ERR_PTR(-EINVAL);
4188 	}
4189 
4190 	size = resource_size(res);
4191 	name = res->name ?: dev_name(dev);
4192 
4193 	if (!devm_request_mem_region(dev, res->start, size, name)) {
4194 		dev_err(dev, "can't request region for resource %pR\n", res);
4195 		return IOMEM_ERR_PTR(-EBUSY);
4196 	}
4197 
4198 	dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4199 	if (!dest_ptr) {
4200 		dev_err(dev, "ioremap failed for resource %pR\n", res);
4201 		devm_release_mem_region(dev, res->start, size);
4202 		dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4203 	}
4204 
4205 	return dest_ptr;
4206 }
4207 EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4208 
4209 static void __pci_set_master(struct pci_dev *dev, bool enable)
4210 {
4211 	u16 old_cmd, cmd;
4212 
4213 	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4214 	if (enable)
4215 		cmd = old_cmd | PCI_COMMAND_MASTER;
4216 	else
4217 		cmd = old_cmd & ~PCI_COMMAND_MASTER;
4218 	if (cmd != old_cmd) {
4219 		pci_dbg(dev, "%s bus mastering\n",
4220 			enable ? "enabling" : "disabling");
4221 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4222 	}
4223 	dev->is_busmaster = enable;
4224 }
4225 
4226 /**
4227  * pcibios_setup - process "pci=" kernel boot arguments
4228  * @str: string used to pass in "pci=" kernel boot arguments
4229  *
4230  * Process kernel boot arguments.  This is the default implementation.
4231  * Architecture specific implementations can override this as necessary.
4232  */
4233 char * __weak __init pcibios_setup(char *str)
4234 {
4235 	return str;
4236 }
4237 
4238 /**
4239  * pcibios_set_master - enable PCI bus-mastering for device dev
4240  * @dev: the PCI device to enable
4241  *
4242  * Enables PCI bus-mastering for the device.  This is the default
4243  * implementation.  Architecture specific implementations can override
4244  * this if necessary.
4245  */
4246 void __weak pcibios_set_master(struct pci_dev *dev)
4247 {
4248 	u8 lat;
4249 
4250 	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4251 	if (pci_is_pcie(dev))
4252 		return;
4253 
4254 	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4255 	if (lat < 16)
4256 		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4257 	else if (lat > pcibios_max_latency)
4258 		lat = pcibios_max_latency;
4259 	else
4260 		return;
4261 
4262 	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4263 }
4264 
4265 /**
4266  * pci_set_master - enables bus-mastering for device dev
4267  * @dev: the PCI device to enable
4268  *
4269  * Enables bus-mastering on the device and calls pcibios_set_master()
4270  * to do the needed arch specific settings.
4271  */
4272 void pci_set_master(struct pci_dev *dev)
4273 {
4274 	__pci_set_master(dev, true);
4275 	pcibios_set_master(dev);
4276 }
4277 EXPORT_SYMBOL(pci_set_master);
4278 
4279 /**
4280  * pci_clear_master - disables bus-mastering for device dev
4281  * @dev: the PCI device to disable
4282  */
4283 void pci_clear_master(struct pci_dev *dev)
4284 {
4285 	__pci_set_master(dev, false);
4286 }
4287 EXPORT_SYMBOL(pci_clear_master);
4288 
4289 /**
4290  * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4291  * @dev: the PCI device for which MWI is to be enabled
4292  *
4293  * Helper function for pci_set_mwi.
4294  * Originally copied from drivers/net/acenic.c.
4295  * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4296  *
4297  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4298  */
4299 int pci_set_cacheline_size(struct pci_dev *dev)
4300 {
4301 	u8 cacheline_size;
4302 
4303 	if (!pci_cache_line_size)
4304 		return -EINVAL;
4305 
4306 	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4307 	   equal to or multiple of the right value. */
4308 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4309 	if (cacheline_size >= pci_cache_line_size &&
4310 	    (cacheline_size % pci_cache_line_size) == 0)
4311 		return 0;
4312 
4313 	/* Write the correct value. */
4314 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4315 	/* Read it back. */
4316 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4317 	if (cacheline_size == pci_cache_line_size)
4318 		return 0;
4319 
4320 	pci_info(dev, "cache line size of %d is not supported\n",
4321 		   pci_cache_line_size << 2);
4322 
4323 	return -EINVAL;
4324 }
4325 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4326 
4327 /**
4328  * pci_set_mwi - enables memory-write-invalidate PCI transaction
4329  * @dev: the PCI device for which MWI is enabled
4330  *
4331  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4332  *
4333  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4334  */
4335 int pci_set_mwi(struct pci_dev *dev)
4336 {
4337 #ifdef PCI_DISABLE_MWI
4338 	return 0;
4339 #else
4340 	int rc;
4341 	u16 cmd;
4342 
4343 	rc = pci_set_cacheline_size(dev);
4344 	if (rc)
4345 		return rc;
4346 
4347 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4348 	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4349 		pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4350 		cmd |= PCI_COMMAND_INVALIDATE;
4351 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4352 	}
4353 	return 0;
4354 #endif
4355 }
4356 EXPORT_SYMBOL(pci_set_mwi);
4357 
4358 /**
4359  * pcim_set_mwi - a device-managed pci_set_mwi()
4360  * @dev: the PCI device for which MWI is enabled
4361  *
4362  * Managed pci_set_mwi().
4363  *
4364  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4365  */
4366 int pcim_set_mwi(struct pci_dev *dev)
4367 {
4368 	struct pci_devres *dr;
4369 
4370 	dr = find_pci_dr(dev);
4371 	if (!dr)
4372 		return -ENOMEM;
4373 
4374 	dr->mwi = 1;
4375 	return pci_set_mwi(dev);
4376 }
4377 EXPORT_SYMBOL(pcim_set_mwi);
4378 
4379 /**
4380  * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4381  * @dev: the PCI device for which MWI is enabled
4382  *
4383  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4384  * Callers are not required to check the return value.
4385  *
4386  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4387  */
4388 int pci_try_set_mwi(struct pci_dev *dev)
4389 {
4390 #ifdef PCI_DISABLE_MWI
4391 	return 0;
4392 #else
4393 	return pci_set_mwi(dev);
4394 #endif
4395 }
4396 EXPORT_SYMBOL(pci_try_set_mwi);
4397 
4398 /**
4399  * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4400  * @dev: the PCI device to disable
4401  *
4402  * Disables PCI Memory-Write-Invalidate transaction on the device
4403  */
4404 void pci_clear_mwi(struct pci_dev *dev)
4405 {
4406 #ifndef PCI_DISABLE_MWI
4407 	u16 cmd;
4408 
4409 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4410 	if (cmd & PCI_COMMAND_INVALIDATE) {
4411 		cmd &= ~PCI_COMMAND_INVALIDATE;
4412 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4413 	}
4414 #endif
4415 }
4416 EXPORT_SYMBOL(pci_clear_mwi);
4417 
4418 /**
4419  * pci_intx - enables/disables PCI INTx for device dev
4420  * @pdev: the PCI device to operate on
4421  * @enable: boolean: whether to enable or disable PCI INTx
4422  *
4423  * Enables/disables PCI INTx for device @pdev
4424  */
4425 void pci_intx(struct pci_dev *pdev, int enable)
4426 {
4427 	u16 pci_command, new;
4428 
4429 	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4430 
4431 	if (enable)
4432 		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4433 	else
4434 		new = pci_command | PCI_COMMAND_INTX_DISABLE;
4435 
4436 	if (new != pci_command) {
4437 		struct pci_devres *dr;
4438 
4439 		pci_write_config_word(pdev, PCI_COMMAND, new);
4440 
4441 		dr = find_pci_dr(pdev);
4442 		if (dr && !dr->restore_intx) {
4443 			dr->restore_intx = 1;
4444 			dr->orig_intx = !enable;
4445 		}
4446 	}
4447 }
4448 EXPORT_SYMBOL_GPL(pci_intx);
4449 
4450 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4451 {
4452 	struct pci_bus *bus = dev->bus;
4453 	bool mask_updated = true;
4454 	u32 cmd_status_dword;
4455 	u16 origcmd, newcmd;
4456 	unsigned long flags;
4457 	bool irq_pending;
4458 
4459 	/*
4460 	 * We do a single dword read to retrieve both command and status.
4461 	 * Document assumptions that make this possible.
4462 	 */
4463 	BUILD_BUG_ON(PCI_COMMAND % 4);
4464 	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4465 
4466 	raw_spin_lock_irqsave(&pci_lock, flags);
4467 
4468 	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4469 
4470 	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4471 
4472 	/*
4473 	 * Check interrupt status register to see whether our device
4474 	 * triggered the interrupt (when masking) or the next IRQ is
4475 	 * already pending (when unmasking).
4476 	 */
4477 	if (mask != irq_pending) {
4478 		mask_updated = false;
4479 		goto done;
4480 	}
4481 
4482 	origcmd = cmd_status_dword;
4483 	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4484 	if (mask)
4485 		newcmd |= PCI_COMMAND_INTX_DISABLE;
4486 	if (newcmd != origcmd)
4487 		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4488 
4489 done:
4490 	raw_spin_unlock_irqrestore(&pci_lock, flags);
4491 
4492 	return mask_updated;
4493 }
4494 
4495 /**
4496  * pci_check_and_mask_intx - mask INTx on pending interrupt
4497  * @dev: the PCI device to operate on
4498  *
4499  * Check if the device dev has its INTx line asserted, mask it and return
4500  * true in that case. False is returned if no interrupt was pending.
4501  */
4502 bool pci_check_and_mask_intx(struct pci_dev *dev)
4503 {
4504 	return pci_check_and_set_intx_mask(dev, true);
4505 }
4506 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4507 
4508 /**
4509  * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4510  * @dev: the PCI device to operate on
4511  *
4512  * Check if the device dev has its INTx line asserted, unmask it if not and
4513  * return true. False is returned and the mask remains active if there was
4514  * still an interrupt pending.
4515  */
4516 bool pci_check_and_unmask_intx(struct pci_dev *dev)
4517 {
4518 	return pci_check_and_set_intx_mask(dev, false);
4519 }
4520 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4521 
4522 /**
4523  * pci_wait_for_pending_transaction - wait for pending transaction
4524  * @dev: the PCI device to operate on
4525  *
4526  * Return 0 if transaction is pending 1 otherwise.
4527  */
4528 int pci_wait_for_pending_transaction(struct pci_dev *dev)
4529 {
4530 	if (!pci_is_pcie(dev))
4531 		return 1;
4532 
4533 	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4534 				    PCI_EXP_DEVSTA_TRPND);
4535 }
4536 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4537 
4538 /**
4539  * pcie_has_flr - check if a device supports function level resets
4540  * @dev: device to check
4541  *
4542  * Returns true if the device advertises support for PCIe function level
4543  * resets.
4544  */
4545 bool pcie_has_flr(struct pci_dev *dev)
4546 {
4547 	u32 cap;
4548 
4549 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4550 		return false;
4551 
4552 	pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
4553 	return cap & PCI_EXP_DEVCAP_FLR;
4554 }
4555 EXPORT_SYMBOL_GPL(pcie_has_flr);
4556 
4557 /**
4558  * pcie_flr - initiate a PCIe function level reset
4559  * @dev: device to reset
4560  *
4561  * Initiate a function level reset on @dev.  The caller should ensure the
4562  * device supports FLR before calling this function, e.g. by using the
4563  * pcie_has_flr() helper.
4564  */
4565 int pcie_flr(struct pci_dev *dev)
4566 {
4567 	if (!pci_wait_for_pending_transaction(dev))
4568 		pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4569 
4570 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4571 
4572 	if (dev->imm_ready)
4573 		return 0;
4574 
4575 	/*
4576 	 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4577 	 * 100ms, but may silently discard requests while the FLR is in
4578 	 * progress.  Wait 100ms before trying to access the device.
4579 	 */
4580 	msleep(100);
4581 
4582 	return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4583 }
4584 EXPORT_SYMBOL_GPL(pcie_flr);
4585 
4586 static int pci_af_flr(struct pci_dev *dev, int probe)
4587 {
4588 	int pos;
4589 	u8 cap;
4590 
4591 	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4592 	if (!pos)
4593 		return -ENOTTY;
4594 
4595 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4596 		return -ENOTTY;
4597 
4598 	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4599 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4600 		return -ENOTTY;
4601 
4602 	if (probe)
4603 		return 0;
4604 
4605 	/*
4606 	 * Wait for Transaction Pending bit to clear.  A word-aligned test
4607 	 * is used, so we use the control offset rather than status and shift
4608 	 * the test bit to match.
4609 	 */
4610 	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4611 				 PCI_AF_STATUS_TP << 8))
4612 		pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4613 
4614 	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4615 
4616 	if (dev->imm_ready)
4617 		return 0;
4618 
4619 	/*
4620 	 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4621 	 * updated 27 July 2006; a device must complete an FLR within
4622 	 * 100ms, but may silently discard requests while the FLR is in
4623 	 * progress.  Wait 100ms before trying to access the device.
4624 	 */
4625 	msleep(100);
4626 
4627 	return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4628 }
4629 
4630 /**
4631  * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4632  * @dev: Device to reset.
4633  * @probe: If set, only check if the device can be reset this way.
4634  *
4635  * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4636  * unset, it will be reinitialized internally when going from PCI_D3hot to
4637  * PCI_D0.  If that's the case and the device is not in a low-power state
4638  * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4639  *
4640  * NOTE: This causes the caller to sleep for twice the device power transition
4641  * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4642  * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4643  * Moreover, only devices in D0 can be reset by this function.
4644  */
4645 static int pci_pm_reset(struct pci_dev *dev, int probe)
4646 {
4647 	u16 csr;
4648 
4649 	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4650 		return -ENOTTY;
4651 
4652 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4653 	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4654 		return -ENOTTY;
4655 
4656 	if (probe)
4657 		return 0;
4658 
4659 	if (dev->current_state != PCI_D0)
4660 		return -EINVAL;
4661 
4662 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4663 	csr |= PCI_D3hot;
4664 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4665 	pci_dev_d3_sleep(dev);
4666 
4667 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4668 	csr |= PCI_D0;
4669 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4670 	pci_dev_d3_sleep(dev);
4671 
4672 	return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4673 }
4674 
4675 /**
4676  * pcie_wait_for_link_delay - Wait until link is active or inactive
4677  * @pdev: Bridge device
4678  * @active: waiting for active or inactive?
4679  * @delay: Delay to wait after link has become active (in ms)
4680  *
4681  * Use this to wait till link becomes active or inactive.
4682  */
4683 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4684 				     int delay)
4685 {
4686 	int timeout = 1000;
4687 	bool ret;
4688 	u16 lnk_status;
4689 
4690 	/*
4691 	 * Some controllers might not implement link active reporting. In this
4692 	 * case, we wait for 1000 ms + any delay requested by the caller.
4693 	 */
4694 	if (!pdev->link_active_reporting) {
4695 		msleep(timeout + delay);
4696 		return true;
4697 	}
4698 
4699 	/*
4700 	 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4701 	 * after which we should expect an link active if the reset was
4702 	 * successful. If so, software must wait a minimum 100ms before sending
4703 	 * configuration requests to devices downstream this port.
4704 	 *
4705 	 * If the link fails to activate, either the device was physically
4706 	 * removed or the link is permanently failed.
4707 	 */
4708 	if (active)
4709 		msleep(20);
4710 	for (;;) {
4711 		pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
4712 		ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA);
4713 		if (ret == active)
4714 			break;
4715 		if (timeout <= 0)
4716 			break;
4717 		msleep(10);
4718 		timeout -= 10;
4719 	}
4720 	if (active && ret)
4721 		msleep(delay);
4722 
4723 	return ret == active;
4724 }
4725 
4726 /**
4727  * pcie_wait_for_link - Wait until link is active or inactive
4728  * @pdev: Bridge device
4729  * @active: waiting for active or inactive?
4730  *
4731  * Use this to wait till link becomes active or inactive.
4732  */
4733 bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4734 {
4735 	return pcie_wait_for_link_delay(pdev, active, 100);
4736 }
4737 
4738 /*
4739  * Find maximum D3cold delay required by all the devices on the bus.  The
4740  * spec says 100 ms, but firmware can lower it and we allow drivers to
4741  * increase it as well.
4742  *
4743  * Called with @pci_bus_sem locked for reading.
4744  */
4745 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
4746 {
4747 	const struct pci_dev *pdev;
4748 	int min_delay = 100;
4749 	int max_delay = 0;
4750 
4751 	list_for_each_entry(pdev, &bus->devices, bus_list) {
4752 		if (pdev->d3cold_delay < min_delay)
4753 			min_delay = pdev->d3cold_delay;
4754 		if (pdev->d3cold_delay > max_delay)
4755 			max_delay = pdev->d3cold_delay;
4756 	}
4757 
4758 	return max(min_delay, max_delay);
4759 }
4760 
4761 /**
4762  * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4763  * @dev: PCI bridge
4764  *
4765  * Handle necessary delays before access to the devices on the secondary
4766  * side of the bridge are permitted after D3cold to D0 transition.
4767  *
4768  * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4769  * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4770  * 4.3.2.
4771  */
4772 void pci_bridge_wait_for_secondary_bus(struct pci_dev *dev)
4773 {
4774 	struct pci_dev *child;
4775 	int delay;
4776 
4777 	if (pci_dev_is_disconnected(dev))
4778 		return;
4779 
4780 	if (!pci_is_bridge(dev) || !dev->bridge_d3)
4781 		return;
4782 
4783 	down_read(&pci_bus_sem);
4784 
4785 	/*
4786 	 * We only deal with devices that are present currently on the bus.
4787 	 * For any hot-added devices the access delay is handled in pciehp
4788 	 * board_added(). In case of ACPI hotplug the firmware is expected
4789 	 * to configure the devices before OS is notified.
4790 	 */
4791 	if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
4792 		up_read(&pci_bus_sem);
4793 		return;
4794 	}
4795 
4796 	/* Take d3cold_delay requirements into account */
4797 	delay = pci_bus_max_d3cold_delay(dev->subordinate);
4798 	if (!delay) {
4799 		up_read(&pci_bus_sem);
4800 		return;
4801 	}
4802 
4803 	child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
4804 				 bus_list);
4805 	up_read(&pci_bus_sem);
4806 
4807 	/*
4808 	 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
4809 	 * accessing the device after reset (that is 1000 ms + 100 ms). In
4810 	 * practice this should not be needed because we don't do power
4811 	 * management for them (see pci_bridge_d3_possible()).
4812 	 */
4813 	if (!pci_is_pcie(dev)) {
4814 		pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
4815 		msleep(1000 + delay);
4816 		return;
4817 	}
4818 
4819 	/*
4820 	 * For PCIe downstream and root ports that do not support speeds
4821 	 * greater than 5 GT/s need to wait minimum 100 ms. For higher
4822 	 * speeds (gen3) we need to wait first for the data link layer to
4823 	 * become active.
4824 	 *
4825 	 * However, 100 ms is the minimum and the PCIe spec says the
4826 	 * software must allow at least 1s before it can determine that the
4827 	 * device that did not respond is a broken device. There is
4828 	 * evidence that 100 ms is not always enough, for example certain
4829 	 * Titan Ridge xHCI controller does not always respond to
4830 	 * configuration requests if we only wait for 100 ms (see
4831 	 * https://bugzilla.kernel.org/show_bug.cgi?id=203885).
4832 	 *
4833 	 * Therefore we wait for 100 ms and check for the device presence.
4834 	 * If it is still not present give it an additional 100 ms.
4835 	 */
4836 	if (!pcie_downstream_port(dev))
4837 		return;
4838 
4839 	if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
4840 		pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
4841 		msleep(delay);
4842 	} else {
4843 		pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
4844 			delay);
4845 		if (!pcie_wait_for_link_delay(dev, true, delay)) {
4846 			/* Did not train, no need to wait any further */
4847 			pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
4848 			return;
4849 		}
4850 	}
4851 
4852 	if (!pci_device_is_present(child)) {
4853 		pci_dbg(child, "waiting additional %d ms to become accessible\n", delay);
4854 		msleep(delay);
4855 	}
4856 }
4857 
4858 void pci_reset_secondary_bus(struct pci_dev *dev)
4859 {
4860 	u16 ctrl;
4861 
4862 	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4863 	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4864 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4865 
4866 	/*
4867 	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
4868 	 * this to 2ms to ensure that we meet the minimum requirement.
4869 	 */
4870 	msleep(2);
4871 
4872 	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4873 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4874 
4875 	/*
4876 	 * Trhfa for conventional PCI is 2^25 clock cycles.
4877 	 * Assuming a minimum 33MHz clock this results in a 1s
4878 	 * delay before we can consider subordinate devices to
4879 	 * be re-initialized.  PCIe has some ways to shorten this,
4880 	 * but we don't make use of them yet.
4881 	 */
4882 	ssleep(1);
4883 }
4884 
4885 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4886 {
4887 	pci_reset_secondary_bus(dev);
4888 }
4889 
4890 /**
4891  * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
4892  * @dev: Bridge device
4893  *
4894  * Use the bridge control register to assert reset on the secondary bus.
4895  * Devices on the secondary bus are left in power-on state.
4896  */
4897 int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
4898 {
4899 	pcibios_reset_secondary_bus(dev);
4900 
4901 	return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS);
4902 }
4903 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
4904 
4905 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
4906 {
4907 	struct pci_dev *pdev;
4908 
4909 	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4910 	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4911 		return -ENOTTY;
4912 
4913 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4914 		if (pdev != dev)
4915 			return -ENOTTY;
4916 
4917 	if (probe)
4918 		return 0;
4919 
4920 	return pci_bridge_secondary_bus_reset(dev->bus->self);
4921 }
4922 
4923 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
4924 {
4925 	int rc = -ENOTTY;
4926 
4927 	if (!hotplug || !try_module_get(hotplug->owner))
4928 		return rc;
4929 
4930 	if (hotplug->ops->reset_slot)
4931 		rc = hotplug->ops->reset_slot(hotplug, probe);
4932 
4933 	module_put(hotplug->owner);
4934 
4935 	return rc;
4936 }
4937 
4938 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
4939 {
4940 	if (dev->multifunction || dev->subordinate || !dev->slot ||
4941 	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4942 		return -ENOTTY;
4943 
4944 	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
4945 }
4946 
4947 static void pci_dev_lock(struct pci_dev *dev)
4948 {
4949 	pci_cfg_access_lock(dev);
4950 	/* block PM suspend, driver probe, etc. */
4951 	device_lock(&dev->dev);
4952 }
4953 
4954 /* Return 1 on successful lock, 0 on contention */
4955 static int pci_dev_trylock(struct pci_dev *dev)
4956 {
4957 	if (pci_cfg_access_trylock(dev)) {
4958 		if (device_trylock(&dev->dev))
4959 			return 1;
4960 		pci_cfg_access_unlock(dev);
4961 	}
4962 
4963 	return 0;
4964 }
4965 
4966 static void pci_dev_unlock(struct pci_dev *dev)
4967 {
4968 	device_unlock(&dev->dev);
4969 	pci_cfg_access_unlock(dev);
4970 }
4971 
4972 static void pci_dev_save_and_disable(struct pci_dev *dev)
4973 {
4974 	const struct pci_error_handlers *err_handler =
4975 			dev->driver ? dev->driver->err_handler : NULL;
4976 
4977 	/*
4978 	 * dev->driver->err_handler->reset_prepare() is protected against
4979 	 * races with ->remove() by the device lock, which must be held by
4980 	 * the caller.
4981 	 */
4982 	if (err_handler && err_handler->reset_prepare)
4983 		err_handler->reset_prepare(dev);
4984 
4985 	/*
4986 	 * Wake-up device prior to save.  PM registers default to D0 after
4987 	 * reset and a simple register restore doesn't reliably return
4988 	 * to a non-D0 state anyway.
4989 	 */
4990 	pci_set_power_state(dev, PCI_D0);
4991 
4992 	pci_save_state(dev);
4993 	/*
4994 	 * Disable the device by clearing the Command register, except for
4995 	 * INTx-disable which is set.  This not only disables MMIO and I/O port
4996 	 * BARs, but also prevents the device from being Bus Master, preventing
4997 	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
4998 	 * compliant devices, INTx-disable prevents legacy interrupts.
4999 	 */
5000 	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
5001 }
5002 
5003 static void pci_dev_restore(struct pci_dev *dev)
5004 {
5005 	const struct pci_error_handlers *err_handler =
5006 			dev->driver ? dev->driver->err_handler : NULL;
5007 
5008 	pci_restore_state(dev);
5009 
5010 	/*
5011 	 * dev->driver->err_handler->reset_done() is protected against
5012 	 * races with ->remove() by the device lock, which must be held by
5013 	 * the caller.
5014 	 */
5015 	if (err_handler && err_handler->reset_done)
5016 		err_handler->reset_done(dev);
5017 }
5018 
5019 /**
5020  * __pci_reset_function_locked - reset a PCI device function while holding
5021  * the @dev mutex lock.
5022  * @dev: PCI device to reset
5023  *
5024  * Some devices allow an individual function to be reset without affecting
5025  * other functions in the same device.  The PCI device must be responsive
5026  * to PCI config space in order to use this function.
5027  *
5028  * The device function is presumed to be unused and the caller is holding
5029  * the device mutex lock when this function is called.
5030  *
5031  * Resetting the device will make the contents of PCI configuration space
5032  * random, so any caller of this must be prepared to reinitialise the
5033  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5034  * etc.
5035  *
5036  * Returns 0 if the device function was successfully reset or negative if the
5037  * device doesn't support resetting a single function.
5038  */
5039 int __pci_reset_function_locked(struct pci_dev *dev)
5040 {
5041 	int rc;
5042 
5043 	might_sleep();
5044 
5045 	/*
5046 	 * A reset method returns -ENOTTY if it doesn't support this device
5047 	 * and we should try the next method.
5048 	 *
5049 	 * If it returns 0 (success), we're finished.  If it returns any
5050 	 * other error, we're also finished: this indicates that further
5051 	 * reset mechanisms might be broken on the device.
5052 	 */
5053 	rc = pci_dev_specific_reset(dev, 0);
5054 	if (rc != -ENOTTY)
5055 		return rc;
5056 	if (pcie_has_flr(dev)) {
5057 		rc = pcie_flr(dev);
5058 		if (rc != -ENOTTY)
5059 			return rc;
5060 	}
5061 	rc = pci_af_flr(dev, 0);
5062 	if (rc != -ENOTTY)
5063 		return rc;
5064 	rc = pci_pm_reset(dev, 0);
5065 	if (rc != -ENOTTY)
5066 		return rc;
5067 	rc = pci_dev_reset_slot_function(dev, 0);
5068 	if (rc != -ENOTTY)
5069 		return rc;
5070 	return pci_parent_bus_reset(dev, 0);
5071 }
5072 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5073 
5074 /**
5075  * pci_probe_reset_function - check whether the device can be safely reset
5076  * @dev: PCI device to reset
5077  *
5078  * Some devices allow an individual function to be reset without affecting
5079  * other functions in the same device.  The PCI device must be responsive
5080  * to PCI config space in order to use this function.
5081  *
5082  * Returns 0 if the device function can be reset or negative if the
5083  * device doesn't support resetting a single function.
5084  */
5085 int pci_probe_reset_function(struct pci_dev *dev)
5086 {
5087 	int rc;
5088 
5089 	might_sleep();
5090 
5091 	rc = pci_dev_specific_reset(dev, 1);
5092 	if (rc != -ENOTTY)
5093 		return rc;
5094 	if (pcie_has_flr(dev))
5095 		return 0;
5096 	rc = pci_af_flr(dev, 1);
5097 	if (rc != -ENOTTY)
5098 		return rc;
5099 	rc = pci_pm_reset(dev, 1);
5100 	if (rc != -ENOTTY)
5101 		return rc;
5102 	rc = pci_dev_reset_slot_function(dev, 1);
5103 	if (rc != -ENOTTY)
5104 		return rc;
5105 
5106 	return pci_parent_bus_reset(dev, 1);
5107 }
5108 
5109 /**
5110  * pci_reset_function - quiesce and reset a PCI device function
5111  * @dev: PCI device to reset
5112  *
5113  * Some devices allow an individual function to be reset without affecting
5114  * other functions in the same device.  The PCI device must be responsive
5115  * to PCI config space in order to use this function.
5116  *
5117  * This function does not just reset the PCI portion of a device, but
5118  * clears all the state associated with the device.  This function differs
5119  * from __pci_reset_function_locked() in that it saves and restores device state
5120  * over the reset and takes the PCI device lock.
5121  *
5122  * Returns 0 if the device function was successfully reset or negative if the
5123  * device doesn't support resetting a single function.
5124  */
5125 int pci_reset_function(struct pci_dev *dev)
5126 {
5127 	int rc;
5128 
5129 	if (!dev->reset_fn)
5130 		return -ENOTTY;
5131 
5132 	pci_dev_lock(dev);
5133 	pci_dev_save_and_disable(dev);
5134 
5135 	rc = __pci_reset_function_locked(dev);
5136 
5137 	pci_dev_restore(dev);
5138 	pci_dev_unlock(dev);
5139 
5140 	return rc;
5141 }
5142 EXPORT_SYMBOL_GPL(pci_reset_function);
5143 
5144 /**
5145  * pci_reset_function_locked - quiesce and reset a PCI device function
5146  * @dev: PCI device to reset
5147  *
5148  * Some devices allow an individual function to be reset without affecting
5149  * other functions in the same device.  The PCI device must be responsive
5150  * to PCI config space in order to use this function.
5151  *
5152  * This function does not just reset the PCI portion of a device, but
5153  * clears all the state associated with the device.  This function differs
5154  * from __pci_reset_function_locked() in that it saves and restores device state
5155  * over the reset.  It also differs from pci_reset_function() in that it
5156  * requires the PCI device lock to be held.
5157  *
5158  * Returns 0 if the device function was successfully reset or negative if the
5159  * device doesn't support resetting a single function.
5160  */
5161 int pci_reset_function_locked(struct pci_dev *dev)
5162 {
5163 	int rc;
5164 
5165 	if (!dev->reset_fn)
5166 		return -ENOTTY;
5167 
5168 	pci_dev_save_and_disable(dev);
5169 
5170 	rc = __pci_reset_function_locked(dev);
5171 
5172 	pci_dev_restore(dev);
5173 
5174 	return rc;
5175 }
5176 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5177 
5178 /**
5179  * pci_try_reset_function - quiesce and reset a PCI device function
5180  * @dev: PCI device to reset
5181  *
5182  * Same as above, except return -EAGAIN if unable to lock device.
5183  */
5184 int pci_try_reset_function(struct pci_dev *dev)
5185 {
5186 	int rc;
5187 
5188 	if (!dev->reset_fn)
5189 		return -ENOTTY;
5190 
5191 	if (!pci_dev_trylock(dev))
5192 		return -EAGAIN;
5193 
5194 	pci_dev_save_and_disable(dev);
5195 	rc = __pci_reset_function_locked(dev);
5196 	pci_dev_restore(dev);
5197 	pci_dev_unlock(dev);
5198 
5199 	return rc;
5200 }
5201 EXPORT_SYMBOL_GPL(pci_try_reset_function);
5202 
5203 /* Do any devices on or below this bus prevent a bus reset? */
5204 static bool pci_bus_resetable(struct pci_bus *bus)
5205 {
5206 	struct pci_dev *dev;
5207 
5208 
5209 	if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5210 		return false;
5211 
5212 	list_for_each_entry(dev, &bus->devices, bus_list) {
5213 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5214 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5215 			return false;
5216 	}
5217 
5218 	return true;
5219 }
5220 
5221 /* Lock devices from the top of the tree down */
5222 static void pci_bus_lock(struct pci_bus *bus)
5223 {
5224 	struct pci_dev *dev;
5225 
5226 	list_for_each_entry(dev, &bus->devices, bus_list) {
5227 		pci_dev_lock(dev);
5228 		if (dev->subordinate)
5229 			pci_bus_lock(dev->subordinate);
5230 	}
5231 }
5232 
5233 /* Unlock devices from the bottom of the tree up */
5234 static void pci_bus_unlock(struct pci_bus *bus)
5235 {
5236 	struct pci_dev *dev;
5237 
5238 	list_for_each_entry(dev, &bus->devices, bus_list) {
5239 		if (dev->subordinate)
5240 			pci_bus_unlock(dev->subordinate);
5241 		pci_dev_unlock(dev);
5242 	}
5243 }
5244 
5245 /* Return 1 on successful lock, 0 on contention */
5246 static int pci_bus_trylock(struct pci_bus *bus)
5247 {
5248 	struct pci_dev *dev;
5249 
5250 	list_for_each_entry(dev, &bus->devices, bus_list) {
5251 		if (!pci_dev_trylock(dev))
5252 			goto unlock;
5253 		if (dev->subordinate) {
5254 			if (!pci_bus_trylock(dev->subordinate)) {
5255 				pci_dev_unlock(dev);
5256 				goto unlock;
5257 			}
5258 		}
5259 	}
5260 	return 1;
5261 
5262 unlock:
5263 	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5264 		if (dev->subordinate)
5265 			pci_bus_unlock(dev->subordinate);
5266 		pci_dev_unlock(dev);
5267 	}
5268 	return 0;
5269 }
5270 
5271 /* Do any devices on or below this slot prevent a bus reset? */
5272 static bool pci_slot_resetable(struct pci_slot *slot)
5273 {
5274 	struct pci_dev *dev;
5275 
5276 	if (slot->bus->self &&
5277 	    (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5278 		return false;
5279 
5280 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5281 		if (!dev->slot || dev->slot != slot)
5282 			continue;
5283 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5284 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5285 			return false;
5286 	}
5287 
5288 	return true;
5289 }
5290 
5291 /* Lock devices from the top of the tree down */
5292 static void pci_slot_lock(struct pci_slot *slot)
5293 {
5294 	struct pci_dev *dev;
5295 
5296 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5297 		if (!dev->slot || dev->slot != slot)
5298 			continue;
5299 		pci_dev_lock(dev);
5300 		if (dev->subordinate)
5301 			pci_bus_lock(dev->subordinate);
5302 	}
5303 }
5304 
5305 /* Unlock devices from the bottom of the tree up */
5306 static void pci_slot_unlock(struct pci_slot *slot)
5307 {
5308 	struct pci_dev *dev;
5309 
5310 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5311 		if (!dev->slot || dev->slot != slot)
5312 			continue;
5313 		if (dev->subordinate)
5314 			pci_bus_unlock(dev->subordinate);
5315 		pci_dev_unlock(dev);
5316 	}
5317 }
5318 
5319 /* Return 1 on successful lock, 0 on contention */
5320 static int pci_slot_trylock(struct pci_slot *slot)
5321 {
5322 	struct pci_dev *dev;
5323 
5324 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5325 		if (!dev->slot || dev->slot != slot)
5326 			continue;
5327 		if (!pci_dev_trylock(dev))
5328 			goto unlock;
5329 		if (dev->subordinate) {
5330 			if (!pci_bus_trylock(dev->subordinate)) {
5331 				pci_dev_unlock(dev);
5332 				goto unlock;
5333 			}
5334 		}
5335 	}
5336 	return 1;
5337 
5338 unlock:
5339 	list_for_each_entry_continue_reverse(dev,
5340 					     &slot->bus->devices, bus_list) {
5341 		if (!dev->slot || dev->slot != slot)
5342 			continue;
5343 		if (dev->subordinate)
5344 			pci_bus_unlock(dev->subordinate);
5345 		pci_dev_unlock(dev);
5346 	}
5347 	return 0;
5348 }
5349 
5350 /*
5351  * Save and disable devices from the top of the tree down while holding
5352  * the @dev mutex lock for the entire tree.
5353  */
5354 static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5355 {
5356 	struct pci_dev *dev;
5357 
5358 	list_for_each_entry(dev, &bus->devices, bus_list) {
5359 		pci_dev_save_and_disable(dev);
5360 		if (dev->subordinate)
5361 			pci_bus_save_and_disable_locked(dev->subordinate);
5362 	}
5363 }
5364 
5365 /*
5366  * Restore devices from top of the tree down while holding @dev mutex lock
5367  * for the entire tree.  Parent bridges need to be restored before we can
5368  * get to subordinate devices.
5369  */
5370 static void pci_bus_restore_locked(struct pci_bus *bus)
5371 {
5372 	struct pci_dev *dev;
5373 
5374 	list_for_each_entry(dev, &bus->devices, bus_list) {
5375 		pci_dev_restore(dev);
5376 		if (dev->subordinate)
5377 			pci_bus_restore_locked(dev->subordinate);
5378 	}
5379 }
5380 
5381 /*
5382  * Save and disable devices from the top of the tree down while holding
5383  * the @dev mutex lock for the entire tree.
5384  */
5385 static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5386 {
5387 	struct pci_dev *dev;
5388 
5389 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5390 		if (!dev->slot || dev->slot != slot)
5391 			continue;
5392 		pci_dev_save_and_disable(dev);
5393 		if (dev->subordinate)
5394 			pci_bus_save_and_disable_locked(dev->subordinate);
5395 	}
5396 }
5397 
5398 /*
5399  * Restore devices from top of the tree down while holding @dev mutex lock
5400  * for the entire tree.  Parent bridges need to be restored before we can
5401  * get to subordinate devices.
5402  */
5403 static void pci_slot_restore_locked(struct pci_slot *slot)
5404 {
5405 	struct pci_dev *dev;
5406 
5407 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5408 		if (!dev->slot || dev->slot != slot)
5409 			continue;
5410 		pci_dev_restore(dev);
5411 		if (dev->subordinate)
5412 			pci_bus_restore_locked(dev->subordinate);
5413 	}
5414 }
5415 
5416 static int pci_slot_reset(struct pci_slot *slot, int probe)
5417 {
5418 	int rc;
5419 
5420 	if (!slot || !pci_slot_resetable(slot))
5421 		return -ENOTTY;
5422 
5423 	if (!probe)
5424 		pci_slot_lock(slot);
5425 
5426 	might_sleep();
5427 
5428 	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5429 
5430 	if (!probe)
5431 		pci_slot_unlock(slot);
5432 
5433 	return rc;
5434 }
5435 
5436 /**
5437  * pci_probe_reset_slot - probe whether a PCI slot can be reset
5438  * @slot: PCI slot to probe
5439  *
5440  * Return 0 if slot can be reset, negative if a slot reset is not supported.
5441  */
5442 int pci_probe_reset_slot(struct pci_slot *slot)
5443 {
5444 	return pci_slot_reset(slot, 1);
5445 }
5446 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5447 
5448 /**
5449  * __pci_reset_slot - Try to reset a PCI slot
5450  * @slot: PCI slot to reset
5451  *
5452  * A PCI bus may host multiple slots, each slot may support a reset mechanism
5453  * independent of other slots.  For instance, some slots may support slot power
5454  * control.  In the case of a 1:1 bus to slot architecture, this function may
5455  * wrap the bus reset to avoid spurious slot related events such as hotplug.
5456  * Generally a slot reset should be attempted before a bus reset.  All of the
5457  * function of the slot and any subordinate buses behind the slot are reset
5458  * through this function.  PCI config space of all devices in the slot and
5459  * behind the slot is saved before and restored after reset.
5460  *
5461  * Same as above except return -EAGAIN if the slot cannot be locked
5462  */
5463 static int __pci_reset_slot(struct pci_slot *slot)
5464 {
5465 	int rc;
5466 
5467 	rc = pci_slot_reset(slot, 1);
5468 	if (rc)
5469 		return rc;
5470 
5471 	if (pci_slot_trylock(slot)) {
5472 		pci_slot_save_and_disable_locked(slot);
5473 		might_sleep();
5474 		rc = pci_reset_hotplug_slot(slot->hotplug, 0);
5475 		pci_slot_restore_locked(slot);
5476 		pci_slot_unlock(slot);
5477 	} else
5478 		rc = -EAGAIN;
5479 
5480 	return rc;
5481 }
5482 
5483 static int pci_bus_reset(struct pci_bus *bus, int probe)
5484 {
5485 	int ret;
5486 
5487 	if (!bus->self || !pci_bus_resetable(bus))
5488 		return -ENOTTY;
5489 
5490 	if (probe)
5491 		return 0;
5492 
5493 	pci_bus_lock(bus);
5494 
5495 	might_sleep();
5496 
5497 	ret = pci_bridge_secondary_bus_reset(bus->self);
5498 
5499 	pci_bus_unlock(bus);
5500 
5501 	return ret;
5502 }
5503 
5504 /**
5505  * pci_bus_error_reset - reset the bridge's subordinate bus
5506  * @bridge: The parent device that connects to the bus to reset
5507  *
5508  * This function will first try to reset the slots on this bus if the method is
5509  * available. If slot reset fails or is not available, this will fall back to a
5510  * secondary bus reset.
5511  */
5512 int pci_bus_error_reset(struct pci_dev *bridge)
5513 {
5514 	struct pci_bus *bus = bridge->subordinate;
5515 	struct pci_slot *slot;
5516 
5517 	if (!bus)
5518 		return -ENOTTY;
5519 
5520 	mutex_lock(&pci_slot_mutex);
5521 	if (list_empty(&bus->slots))
5522 		goto bus_reset;
5523 
5524 	list_for_each_entry(slot, &bus->slots, list)
5525 		if (pci_probe_reset_slot(slot))
5526 			goto bus_reset;
5527 
5528 	list_for_each_entry(slot, &bus->slots, list)
5529 		if (pci_slot_reset(slot, 0))
5530 			goto bus_reset;
5531 
5532 	mutex_unlock(&pci_slot_mutex);
5533 	return 0;
5534 bus_reset:
5535 	mutex_unlock(&pci_slot_mutex);
5536 	return pci_bus_reset(bridge->subordinate, 0);
5537 }
5538 
5539 /**
5540  * pci_probe_reset_bus - probe whether a PCI bus can be reset
5541  * @bus: PCI bus to probe
5542  *
5543  * Return 0 if bus can be reset, negative if a bus reset is not supported.
5544  */
5545 int pci_probe_reset_bus(struct pci_bus *bus)
5546 {
5547 	return pci_bus_reset(bus, 1);
5548 }
5549 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5550 
5551 /**
5552  * __pci_reset_bus - Try to reset a PCI bus
5553  * @bus: top level PCI bus to reset
5554  *
5555  * Same as above except return -EAGAIN if the bus cannot be locked
5556  */
5557 static int __pci_reset_bus(struct pci_bus *bus)
5558 {
5559 	int rc;
5560 
5561 	rc = pci_bus_reset(bus, 1);
5562 	if (rc)
5563 		return rc;
5564 
5565 	if (pci_bus_trylock(bus)) {
5566 		pci_bus_save_and_disable_locked(bus);
5567 		might_sleep();
5568 		rc = pci_bridge_secondary_bus_reset(bus->self);
5569 		pci_bus_restore_locked(bus);
5570 		pci_bus_unlock(bus);
5571 	} else
5572 		rc = -EAGAIN;
5573 
5574 	return rc;
5575 }
5576 
5577 /**
5578  * pci_reset_bus - Try to reset a PCI bus
5579  * @pdev: top level PCI device to reset via slot/bus
5580  *
5581  * Same as above except return -EAGAIN if the bus cannot be locked
5582  */
5583 int pci_reset_bus(struct pci_dev *pdev)
5584 {
5585 	return (!pci_probe_reset_slot(pdev->slot)) ?
5586 	    __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5587 }
5588 EXPORT_SYMBOL_GPL(pci_reset_bus);
5589 
5590 /**
5591  * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5592  * @dev: PCI device to query
5593  *
5594  * Returns mmrbc: maximum designed memory read count in bytes or
5595  * appropriate error value.
5596  */
5597 int pcix_get_max_mmrbc(struct pci_dev *dev)
5598 {
5599 	int cap;
5600 	u32 stat;
5601 
5602 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5603 	if (!cap)
5604 		return -EINVAL;
5605 
5606 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5607 		return -EINVAL;
5608 
5609 	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
5610 }
5611 EXPORT_SYMBOL(pcix_get_max_mmrbc);
5612 
5613 /**
5614  * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5615  * @dev: PCI device to query
5616  *
5617  * Returns mmrbc: maximum memory read count in bytes or appropriate error
5618  * value.
5619  */
5620 int pcix_get_mmrbc(struct pci_dev *dev)
5621 {
5622 	int cap;
5623 	u16 cmd;
5624 
5625 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5626 	if (!cap)
5627 		return -EINVAL;
5628 
5629 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5630 		return -EINVAL;
5631 
5632 	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
5633 }
5634 EXPORT_SYMBOL(pcix_get_mmrbc);
5635 
5636 /**
5637  * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5638  * @dev: PCI device to query
5639  * @mmrbc: maximum memory read count in bytes
5640  *    valid values are 512, 1024, 2048, 4096
5641  *
5642  * If possible sets maximum memory read byte count, some bridges have errata
5643  * that prevent this.
5644  */
5645 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5646 {
5647 	int cap;
5648 	u32 stat, v, o;
5649 	u16 cmd;
5650 
5651 	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5652 		return -EINVAL;
5653 
5654 	v = ffs(mmrbc) - 10;
5655 
5656 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5657 	if (!cap)
5658 		return -EINVAL;
5659 
5660 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5661 		return -EINVAL;
5662 
5663 	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
5664 		return -E2BIG;
5665 
5666 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5667 		return -EINVAL;
5668 
5669 	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
5670 	if (o != v) {
5671 		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5672 			return -EIO;
5673 
5674 		cmd &= ~PCI_X_CMD_MAX_READ;
5675 		cmd |= v << 2;
5676 		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5677 			return -EIO;
5678 	}
5679 	return 0;
5680 }
5681 EXPORT_SYMBOL(pcix_set_mmrbc);
5682 
5683 /**
5684  * pcie_get_readrq - get PCI Express read request size
5685  * @dev: PCI device to query
5686  *
5687  * Returns maximum memory read request in bytes or appropriate error value.
5688  */
5689 int pcie_get_readrq(struct pci_dev *dev)
5690 {
5691 	u16 ctl;
5692 
5693 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5694 
5695 	return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5696 }
5697 EXPORT_SYMBOL(pcie_get_readrq);
5698 
5699 /**
5700  * pcie_set_readrq - set PCI Express maximum memory read request
5701  * @dev: PCI device to query
5702  * @rq: maximum memory read count in bytes
5703  *    valid values are 128, 256, 512, 1024, 2048, 4096
5704  *
5705  * If possible sets maximum memory read request in bytes
5706  */
5707 int pcie_set_readrq(struct pci_dev *dev, int rq)
5708 {
5709 	u16 v;
5710 	int ret;
5711 
5712 	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
5713 		return -EINVAL;
5714 
5715 	/*
5716 	 * If using the "performance" PCIe config, we clamp the read rq
5717 	 * size to the max packet size to keep the host bridge from
5718 	 * generating requests larger than we can cope with.
5719 	 */
5720 	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
5721 		int mps = pcie_get_mps(dev);
5722 
5723 		if (mps < rq)
5724 			rq = mps;
5725 	}
5726 
5727 	v = (ffs(rq) - 8) << 12;
5728 
5729 	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5730 						  PCI_EXP_DEVCTL_READRQ, v);
5731 
5732 	return pcibios_err_to_errno(ret);
5733 }
5734 EXPORT_SYMBOL(pcie_set_readrq);
5735 
5736 /**
5737  * pcie_get_mps - get PCI Express maximum payload size
5738  * @dev: PCI device to query
5739  *
5740  * Returns maximum payload size in bytes
5741  */
5742 int pcie_get_mps(struct pci_dev *dev)
5743 {
5744 	u16 ctl;
5745 
5746 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5747 
5748 	return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
5749 }
5750 EXPORT_SYMBOL(pcie_get_mps);
5751 
5752 /**
5753  * pcie_set_mps - set PCI Express maximum payload size
5754  * @dev: PCI device to query
5755  * @mps: maximum payload size in bytes
5756  *    valid values are 128, 256, 512, 1024, 2048, 4096
5757  *
5758  * If possible sets maximum payload size
5759  */
5760 int pcie_set_mps(struct pci_dev *dev, int mps)
5761 {
5762 	u16 v;
5763 	int ret;
5764 
5765 	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
5766 		return -EINVAL;
5767 
5768 	v = ffs(mps) - 8;
5769 	if (v > dev->pcie_mpss)
5770 		return -EINVAL;
5771 	v <<= 5;
5772 
5773 	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5774 						  PCI_EXP_DEVCTL_PAYLOAD, v);
5775 
5776 	return pcibios_err_to_errno(ret);
5777 }
5778 EXPORT_SYMBOL(pcie_set_mps);
5779 
5780 /**
5781  * pcie_bandwidth_available - determine minimum link settings of a PCIe
5782  *			      device and its bandwidth limitation
5783  * @dev: PCI device to query
5784  * @limiting_dev: storage for device causing the bandwidth limitation
5785  * @speed: storage for speed of limiting device
5786  * @width: storage for width of limiting device
5787  *
5788  * Walk up the PCI device chain and find the point where the minimum
5789  * bandwidth is available.  Return the bandwidth available there and (if
5790  * limiting_dev, speed, and width pointers are supplied) information about
5791  * that point.  The bandwidth returned is in Mb/s, i.e., megabits/second of
5792  * raw bandwidth.
5793  */
5794 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
5795 			     enum pci_bus_speed *speed,
5796 			     enum pcie_link_width *width)
5797 {
5798 	u16 lnksta;
5799 	enum pci_bus_speed next_speed;
5800 	enum pcie_link_width next_width;
5801 	u32 bw, next_bw;
5802 
5803 	if (speed)
5804 		*speed = PCI_SPEED_UNKNOWN;
5805 	if (width)
5806 		*width = PCIE_LNK_WIDTH_UNKNOWN;
5807 
5808 	bw = 0;
5809 
5810 	while (dev) {
5811 		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
5812 
5813 		next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
5814 		next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
5815 			PCI_EXP_LNKSTA_NLW_SHIFT;
5816 
5817 		next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
5818 
5819 		/* Check if current device limits the total bandwidth */
5820 		if (!bw || next_bw <= bw) {
5821 			bw = next_bw;
5822 
5823 			if (limiting_dev)
5824 				*limiting_dev = dev;
5825 			if (speed)
5826 				*speed = next_speed;
5827 			if (width)
5828 				*width = next_width;
5829 		}
5830 
5831 		dev = pci_upstream_bridge(dev);
5832 	}
5833 
5834 	return bw;
5835 }
5836 EXPORT_SYMBOL(pcie_bandwidth_available);
5837 
5838 /**
5839  * pcie_get_speed_cap - query for the PCI device's link speed capability
5840  * @dev: PCI device to query
5841  *
5842  * Query the PCI device speed capability.  Return the maximum link speed
5843  * supported by the device.
5844  */
5845 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
5846 {
5847 	u32 lnkcap2, lnkcap;
5848 
5849 	/*
5850 	 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18.  The
5851 	 * implementation note there recommends using the Supported Link
5852 	 * Speeds Vector in Link Capabilities 2 when supported.
5853 	 *
5854 	 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
5855 	 * should use the Supported Link Speeds field in Link Capabilities,
5856 	 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
5857 	 */
5858 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
5859 
5860 	/* PCIe r3.0-compliant */
5861 	if (lnkcap2)
5862 		return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
5863 
5864 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5865 	if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
5866 		return PCIE_SPEED_5_0GT;
5867 	else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
5868 		return PCIE_SPEED_2_5GT;
5869 
5870 	return PCI_SPEED_UNKNOWN;
5871 }
5872 EXPORT_SYMBOL(pcie_get_speed_cap);
5873 
5874 /**
5875  * pcie_get_width_cap - query for the PCI device's link width capability
5876  * @dev: PCI device to query
5877  *
5878  * Query the PCI device width capability.  Return the maximum link width
5879  * supported by the device.
5880  */
5881 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
5882 {
5883 	u32 lnkcap;
5884 
5885 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5886 	if (lnkcap)
5887 		return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
5888 
5889 	return PCIE_LNK_WIDTH_UNKNOWN;
5890 }
5891 EXPORT_SYMBOL(pcie_get_width_cap);
5892 
5893 /**
5894  * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
5895  * @dev: PCI device
5896  * @speed: storage for link speed
5897  * @width: storage for link width
5898  *
5899  * Calculate a PCI device's link bandwidth by querying for its link speed
5900  * and width, multiplying them, and applying encoding overhead.  The result
5901  * is in Mb/s, i.e., megabits/second of raw bandwidth.
5902  */
5903 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
5904 			   enum pcie_link_width *width)
5905 {
5906 	*speed = pcie_get_speed_cap(dev);
5907 	*width = pcie_get_width_cap(dev);
5908 
5909 	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
5910 		return 0;
5911 
5912 	return *width * PCIE_SPEED2MBS_ENC(*speed);
5913 }
5914 
5915 /**
5916  * __pcie_print_link_status - Report the PCI device's link speed and width
5917  * @dev: PCI device to query
5918  * @verbose: Print info even when enough bandwidth is available
5919  *
5920  * If the available bandwidth at the device is less than the device is
5921  * capable of, report the device's maximum possible bandwidth and the
5922  * upstream link that limits its performance.  If @verbose, always print
5923  * the available bandwidth, even if the device isn't constrained.
5924  */
5925 void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
5926 {
5927 	enum pcie_link_width width, width_cap;
5928 	enum pci_bus_speed speed, speed_cap;
5929 	struct pci_dev *limiting_dev = NULL;
5930 	u32 bw_avail, bw_cap;
5931 
5932 	bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
5933 	bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
5934 
5935 	if (bw_avail >= bw_cap && verbose)
5936 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
5937 			 bw_cap / 1000, bw_cap % 1000,
5938 			 pci_speed_string(speed_cap), width_cap);
5939 	else if (bw_avail < bw_cap)
5940 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
5941 			 bw_avail / 1000, bw_avail % 1000,
5942 			 pci_speed_string(speed), width,
5943 			 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
5944 			 bw_cap / 1000, bw_cap % 1000,
5945 			 pci_speed_string(speed_cap), width_cap);
5946 }
5947 
5948 /**
5949  * pcie_print_link_status - Report the PCI device's link speed and width
5950  * @dev: PCI device to query
5951  *
5952  * Report the available bandwidth at the device.
5953  */
5954 void pcie_print_link_status(struct pci_dev *dev)
5955 {
5956 	__pcie_print_link_status(dev, true);
5957 }
5958 EXPORT_SYMBOL(pcie_print_link_status);
5959 
5960 /**
5961  * pci_select_bars - Make BAR mask from the type of resource
5962  * @dev: the PCI device for which BAR mask is made
5963  * @flags: resource type mask to be selected
5964  *
5965  * This helper routine makes bar mask from the type of resource.
5966  */
5967 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
5968 {
5969 	int i, bars = 0;
5970 	for (i = 0; i < PCI_NUM_RESOURCES; i++)
5971 		if (pci_resource_flags(dev, i) & flags)
5972 			bars |= (1 << i);
5973 	return bars;
5974 }
5975 EXPORT_SYMBOL(pci_select_bars);
5976 
5977 /* Some architectures require additional programming to enable VGA */
5978 static arch_set_vga_state_t arch_set_vga_state;
5979 
5980 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
5981 {
5982 	arch_set_vga_state = func;	/* NULL disables */
5983 }
5984 
5985 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
5986 				  unsigned int command_bits, u32 flags)
5987 {
5988 	if (arch_set_vga_state)
5989 		return arch_set_vga_state(dev, decode, command_bits,
5990 						flags);
5991 	return 0;
5992 }
5993 
5994 /**
5995  * pci_set_vga_state - set VGA decode state on device and parents if requested
5996  * @dev: the PCI device
5997  * @decode: true = enable decoding, false = disable decoding
5998  * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
5999  * @flags: traverse ancestors and change bridges
6000  * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6001  */
6002 int pci_set_vga_state(struct pci_dev *dev, bool decode,
6003 		      unsigned int command_bits, u32 flags)
6004 {
6005 	struct pci_bus *bus;
6006 	struct pci_dev *bridge;
6007 	u16 cmd;
6008 	int rc;
6009 
6010 	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6011 
6012 	/* ARCH specific VGA enables */
6013 	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6014 	if (rc)
6015 		return rc;
6016 
6017 	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6018 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
6019 		if (decode)
6020 			cmd |= command_bits;
6021 		else
6022 			cmd &= ~command_bits;
6023 		pci_write_config_word(dev, PCI_COMMAND, cmd);
6024 	}
6025 
6026 	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6027 		return 0;
6028 
6029 	bus = dev->bus;
6030 	while (bus) {
6031 		bridge = bus->self;
6032 		if (bridge) {
6033 			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6034 					     &cmd);
6035 			if (decode)
6036 				cmd |= PCI_BRIDGE_CTL_VGA;
6037 			else
6038 				cmd &= ~PCI_BRIDGE_CTL_VGA;
6039 			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6040 					      cmd);
6041 		}
6042 		bus = bus->parent;
6043 	}
6044 	return 0;
6045 }
6046 
6047 #ifdef CONFIG_ACPI
6048 bool pci_pr3_present(struct pci_dev *pdev)
6049 {
6050 	struct acpi_device *adev;
6051 
6052 	if (acpi_disabled)
6053 		return false;
6054 
6055 	adev = ACPI_COMPANION(&pdev->dev);
6056 	if (!adev)
6057 		return false;
6058 
6059 	return adev->power.flags.power_resources &&
6060 		acpi_has_method(adev->handle, "_PR3");
6061 }
6062 EXPORT_SYMBOL_GPL(pci_pr3_present);
6063 #endif
6064 
6065 /**
6066  * pci_add_dma_alias - Add a DMA devfn alias for a device
6067  * @dev: the PCI device for which alias is added
6068  * @devfn_from: alias slot and function
6069  * @nr_devfns: number of subsequent devfns to alias
6070  *
6071  * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6072  * which is used to program permissible bus-devfn source addresses for DMA
6073  * requests in an IOMMU.  These aliases factor into IOMMU group creation
6074  * and are useful for devices generating DMA requests beyond or different
6075  * from their logical bus-devfn.  Examples include device quirks where the
6076  * device simply uses the wrong devfn, as well as non-transparent bridges
6077  * where the alias may be a proxy for devices in another domain.
6078  *
6079  * IOMMU group creation is performed during device discovery or addition,
6080  * prior to any potential DMA mapping and therefore prior to driver probing
6081  * (especially for userspace assigned devices where IOMMU group definition
6082  * cannot be left as a userspace activity).  DMA aliases should therefore
6083  * be configured via quirks, such as the PCI fixup header quirk.
6084  */
6085 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from, unsigned nr_devfns)
6086 {
6087 	int devfn_to;
6088 
6089 	nr_devfns = min(nr_devfns, (unsigned) MAX_NR_DEVFNS - devfn_from);
6090 	devfn_to = devfn_from + nr_devfns - 1;
6091 
6092 	if (!dev->dma_alias_mask)
6093 		dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6094 	if (!dev->dma_alias_mask) {
6095 		pci_warn(dev, "Unable to allocate DMA alias mask\n");
6096 		return;
6097 	}
6098 
6099 	bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6100 
6101 	if (nr_devfns == 1)
6102 		pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6103 				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6104 	else if (nr_devfns > 1)
6105 		pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6106 				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6107 				PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6108 }
6109 
6110 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6111 {
6112 	return (dev1->dma_alias_mask &&
6113 		test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6114 	       (dev2->dma_alias_mask &&
6115 		test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6116 	       pci_real_dma_dev(dev1) == dev2 ||
6117 	       pci_real_dma_dev(dev2) == dev1;
6118 }
6119 
6120 bool pci_device_is_present(struct pci_dev *pdev)
6121 {
6122 	u32 v;
6123 
6124 	if (pci_dev_is_disconnected(pdev))
6125 		return false;
6126 	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6127 }
6128 EXPORT_SYMBOL_GPL(pci_device_is_present);
6129 
6130 void pci_ignore_hotplug(struct pci_dev *dev)
6131 {
6132 	struct pci_dev *bridge = dev->bus->self;
6133 
6134 	dev->ignore_hotplug = 1;
6135 	/* Propagate the "ignore hotplug" setting to the parent bridge. */
6136 	if (bridge)
6137 		bridge->ignore_hotplug = 1;
6138 }
6139 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6140 
6141 /**
6142  * pci_real_dma_dev - Get PCI DMA device for PCI device
6143  * @dev: the PCI device that may have a PCI DMA alias
6144  *
6145  * Permits the platform to provide architecture-specific functionality to
6146  * devices needing to alias DMA to another PCI device on another PCI bus. If
6147  * the PCI device is on the same bus, it is recommended to use
6148  * pci_add_dma_alias(). This is the default implementation. Architecture
6149  * implementations can override this.
6150  */
6151 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6152 {
6153 	return dev;
6154 }
6155 
6156 resource_size_t __weak pcibios_default_alignment(void)
6157 {
6158 	return 0;
6159 }
6160 
6161 /*
6162  * Arches that don't want to expose struct resource to userland as-is in
6163  * sysfs and /proc can implement their own pci_resource_to_user().
6164  */
6165 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6166 				 const struct resource *rsrc,
6167 				 resource_size_t *start, resource_size_t *end)
6168 {
6169 	*start = rsrc->start;
6170 	*end = rsrc->end;
6171 }
6172 
6173 static char *resource_alignment_param;
6174 static DEFINE_SPINLOCK(resource_alignment_lock);
6175 
6176 /**
6177  * pci_specified_resource_alignment - get resource alignment specified by user.
6178  * @dev: the PCI device to get
6179  * @resize: whether or not to change resources' size when reassigning alignment
6180  *
6181  * RETURNS: Resource alignment if it is specified.
6182  *          Zero if it is not specified.
6183  */
6184 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6185 							bool *resize)
6186 {
6187 	int align_order, count;
6188 	resource_size_t align = pcibios_default_alignment();
6189 	const char *p;
6190 	int ret;
6191 
6192 	spin_lock(&resource_alignment_lock);
6193 	p = resource_alignment_param;
6194 	if (!p || !*p)
6195 		goto out;
6196 	if (pci_has_flag(PCI_PROBE_ONLY)) {
6197 		align = 0;
6198 		pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6199 		goto out;
6200 	}
6201 
6202 	while (*p) {
6203 		count = 0;
6204 		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6205 							p[count] == '@') {
6206 			p += count + 1;
6207 		} else {
6208 			align_order = -1;
6209 		}
6210 
6211 		ret = pci_dev_str_match(dev, p, &p);
6212 		if (ret == 1) {
6213 			*resize = true;
6214 			if (align_order == -1)
6215 				align = PAGE_SIZE;
6216 			else
6217 				align = 1 << align_order;
6218 			break;
6219 		} else if (ret < 0) {
6220 			pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6221 			       p);
6222 			break;
6223 		}
6224 
6225 		if (*p != ';' && *p != ',') {
6226 			/* End of param or invalid format */
6227 			break;
6228 		}
6229 		p++;
6230 	}
6231 out:
6232 	spin_unlock(&resource_alignment_lock);
6233 	return align;
6234 }
6235 
6236 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6237 					   resource_size_t align, bool resize)
6238 {
6239 	struct resource *r = &dev->resource[bar];
6240 	resource_size_t size;
6241 
6242 	if (!(r->flags & IORESOURCE_MEM))
6243 		return;
6244 
6245 	if (r->flags & IORESOURCE_PCI_FIXED) {
6246 		pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6247 			 bar, r, (unsigned long long)align);
6248 		return;
6249 	}
6250 
6251 	size = resource_size(r);
6252 	if (size >= align)
6253 		return;
6254 
6255 	/*
6256 	 * Increase the alignment of the resource.  There are two ways we
6257 	 * can do this:
6258 	 *
6259 	 * 1) Increase the size of the resource.  BARs are aligned on their
6260 	 *    size, so when we reallocate space for this resource, we'll
6261 	 *    allocate it with the larger alignment.  This also prevents
6262 	 *    assignment of any other BARs inside the alignment region, so
6263 	 *    if we're requesting page alignment, this means no other BARs
6264 	 *    will share the page.
6265 	 *
6266 	 *    The disadvantage is that this makes the resource larger than
6267 	 *    the hardware BAR, which may break drivers that compute things
6268 	 *    based on the resource size, e.g., to find registers at a
6269 	 *    fixed offset before the end of the BAR.
6270 	 *
6271 	 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6272 	 *    set r->start to the desired alignment.  By itself this
6273 	 *    doesn't prevent other BARs being put inside the alignment
6274 	 *    region, but if we realign *every* resource of every device in
6275 	 *    the system, none of them will share an alignment region.
6276 	 *
6277 	 * When the user has requested alignment for only some devices via
6278 	 * the "pci=resource_alignment" argument, "resize" is true and we
6279 	 * use the first method.  Otherwise we assume we're aligning all
6280 	 * devices and we use the second.
6281 	 */
6282 
6283 	pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6284 		 bar, r, (unsigned long long)align);
6285 
6286 	if (resize) {
6287 		r->start = 0;
6288 		r->end = align - 1;
6289 	} else {
6290 		r->flags &= ~IORESOURCE_SIZEALIGN;
6291 		r->flags |= IORESOURCE_STARTALIGN;
6292 		r->start = align;
6293 		r->end = r->start + size - 1;
6294 	}
6295 	r->flags |= IORESOURCE_UNSET;
6296 }
6297 
6298 /*
6299  * This function disables memory decoding and releases memory resources
6300  * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6301  * It also rounds up size to specified alignment.
6302  * Later on, the kernel will assign page-aligned memory resource back
6303  * to the device.
6304  */
6305 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6306 {
6307 	int i;
6308 	struct resource *r;
6309 	resource_size_t align;
6310 	u16 command;
6311 	bool resize = false;
6312 
6313 	/*
6314 	 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6315 	 * 3.4.1.11.  Their resources are allocated from the space
6316 	 * described by the VF BARx register in the PF's SR-IOV capability.
6317 	 * We can't influence their alignment here.
6318 	 */
6319 	if (dev->is_virtfn)
6320 		return;
6321 
6322 	/* check if specified PCI is target device to reassign */
6323 	align = pci_specified_resource_alignment(dev, &resize);
6324 	if (!align)
6325 		return;
6326 
6327 	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6328 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6329 		pci_warn(dev, "Can't reassign resources to host bridge\n");
6330 		return;
6331 	}
6332 
6333 	pci_read_config_word(dev, PCI_COMMAND, &command);
6334 	command &= ~PCI_COMMAND_MEMORY;
6335 	pci_write_config_word(dev, PCI_COMMAND, command);
6336 
6337 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6338 		pci_request_resource_alignment(dev, i, align, resize);
6339 
6340 	/*
6341 	 * Need to disable bridge's resource window,
6342 	 * to enable the kernel to reassign new resource
6343 	 * window later on.
6344 	 */
6345 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6346 		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6347 			r = &dev->resource[i];
6348 			if (!(r->flags & IORESOURCE_MEM))
6349 				continue;
6350 			r->flags |= IORESOURCE_UNSET;
6351 			r->end = resource_size(r) - 1;
6352 			r->start = 0;
6353 		}
6354 		pci_disable_bridge_window(dev);
6355 	}
6356 }
6357 
6358 static ssize_t resource_alignment_show(struct bus_type *bus, char *buf)
6359 {
6360 	size_t count = 0;
6361 
6362 	spin_lock(&resource_alignment_lock);
6363 	if (resource_alignment_param)
6364 		count = scnprintf(buf, PAGE_SIZE, "%s", resource_alignment_param);
6365 	spin_unlock(&resource_alignment_lock);
6366 
6367 	/*
6368 	 * When set by the command line, resource_alignment_param will not
6369 	 * have a trailing line feed, which is ugly. So conditionally add
6370 	 * it here.
6371 	 */
6372 	if (count >= 2 && buf[count - 2] != '\n' && count < PAGE_SIZE - 1) {
6373 		buf[count - 1] = '\n';
6374 		buf[count++] = 0;
6375 	}
6376 
6377 	return count;
6378 }
6379 
6380 static ssize_t resource_alignment_store(struct bus_type *bus,
6381 					const char *buf, size_t count)
6382 {
6383 	char *param = kstrndup(buf, count, GFP_KERNEL);
6384 
6385 	if (!param)
6386 		return -ENOMEM;
6387 
6388 	spin_lock(&resource_alignment_lock);
6389 	kfree(resource_alignment_param);
6390 	resource_alignment_param = param;
6391 	spin_unlock(&resource_alignment_lock);
6392 	return count;
6393 }
6394 
6395 static BUS_ATTR_RW(resource_alignment);
6396 
6397 static int __init pci_resource_alignment_sysfs_init(void)
6398 {
6399 	return bus_create_file(&pci_bus_type,
6400 					&bus_attr_resource_alignment);
6401 }
6402 late_initcall(pci_resource_alignment_sysfs_init);
6403 
6404 static void pci_no_domains(void)
6405 {
6406 #ifdef CONFIG_PCI_DOMAINS
6407 	pci_domains_supported = 0;
6408 #endif
6409 }
6410 
6411 #ifdef CONFIG_PCI_DOMAINS_GENERIC
6412 static atomic_t __domain_nr = ATOMIC_INIT(-1);
6413 
6414 static int pci_get_new_domain_nr(void)
6415 {
6416 	return atomic_inc_return(&__domain_nr);
6417 }
6418 
6419 static int of_pci_bus_find_domain_nr(struct device *parent)
6420 {
6421 	static int use_dt_domains = -1;
6422 	int domain = -1;
6423 
6424 	if (parent)
6425 		domain = of_get_pci_domain_nr(parent->of_node);
6426 
6427 	/*
6428 	 * Check DT domain and use_dt_domains values.
6429 	 *
6430 	 * If DT domain property is valid (domain >= 0) and
6431 	 * use_dt_domains != 0, the DT assignment is valid since this means
6432 	 * we have not previously allocated a domain number by using
6433 	 * pci_get_new_domain_nr(); we should also update use_dt_domains to
6434 	 * 1, to indicate that we have just assigned a domain number from
6435 	 * DT.
6436 	 *
6437 	 * If DT domain property value is not valid (ie domain < 0), and we
6438 	 * have not previously assigned a domain number from DT
6439 	 * (use_dt_domains != 1) we should assign a domain number by
6440 	 * using the:
6441 	 *
6442 	 * pci_get_new_domain_nr()
6443 	 *
6444 	 * API and update the use_dt_domains value to keep track of method we
6445 	 * are using to assign domain numbers (use_dt_domains = 0).
6446 	 *
6447 	 * All other combinations imply we have a platform that is trying
6448 	 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
6449 	 * which is a recipe for domain mishandling and it is prevented by
6450 	 * invalidating the domain value (domain = -1) and printing a
6451 	 * corresponding error.
6452 	 */
6453 	if (domain >= 0 && use_dt_domains) {
6454 		use_dt_domains = 1;
6455 	} else if (domain < 0 && use_dt_domains != 1) {
6456 		use_dt_domains = 0;
6457 		domain = pci_get_new_domain_nr();
6458 	} else {
6459 		if (parent)
6460 			pr_err("Node %pOF has ", parent->of_node);
6461 		pr_err("Inconsistent \"linux,pci-domain\" property in DT\n");
6462 		domain = -1;
6463 	}
6464 
6465 	return domain;
6466 }
6467 
6468 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6469 {
6470 	return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6471 			       acpi_pci_bus_find_domain_nr(bus);
6472 }
6473 #endif
6474 
6475 /**
6476  * pci_ext_cfg_avail - can we access extended PCI config space?
6477  *
6478  * Returns 1 if we can access PCI extended config space (offsets
6479  * greater than 0xff). This is the default implementation. Architecture
6480  * implementations can override this.
6481  */
6482 int __weak pci_ext_cfg_avail(void)
6483 {
6484 	return 1;
6485 }
6486 
6487 void __weak pci_fixup_cardbus(struct pci_bus *bus)
6488 {
6489 }
6490 EXPORT_SYMBOL(pci_fixup_cardbus);
6491 
6492 static int __init pci_setup(char *str)
6493 {
6494 	while (str) {
6495 		char *k = strchr(str, ',');
6496 		if (k)
6497 			*k++ = 0;
6498 		if (*str && (str = pcibios_setup(str)) && *str) {
6499 			if (!strcmp(str, "nomsi")) {
6500 				pci_no_msi();
6501 			} else if (!strncmp(str, "noats", 5)) {
6502 				pr_info("PCIe: ATS is disabled\n");
6503 				pcie_ats_disabled = true;
6504 			} else if (!strcmp(str, "noaer")) {
6505 				pci_no_aer();
6506 			} else if (!strcmp(str, "earlydump")) {
6507 				pci_early_dump = true;
6508 			} else if (!strncmp(str, "realloc=", 8)) {
6509 				pci_realloc_get_opt(str + 8);
6510 			} else if (!strncmp(str, "realloc", 7)) {
6511 				pci_realloc_get_opt("on");
6512 			} else if (!strcmp(str, "nodomains")) {
6513 				pci_no_domains();
6514 			} else if (!strncmp(str, "noari", 5)) {
6515 				pcie_ari_disabled = true;
6516 			} else if (!strncmp(str, "cbiosize=", 9)) {
6517 				pci_cardbus_io_size = memparse(str + 9, &str);
6518 			} else if (!strncmp(str, "cbmemsize=", 10)) {
6519 				pci_cardbus_mem_size = memparse(str + 10, &str);
6520 			} else if (!strncmp(str, "resource_alignment=", 19)) {
6521 				resource_alignment_param = str + 19;
6522 			} else if (!strncmp(str, "ecrc=", 5)) {
6523 				pcie_ecrc_get_policy(str + 5);
6524 			} else if (!strncmp(str, "hpiosize=", 9)) {
6525 				pci_hotplug_io_size = memparse(str + 9, &str);
6526 			} else if (!strncmp(str, "hpmmiosize=", 11)) {
6527 				pci_hotplug_mmio_size = memparse(str + 11, &str);
6528 			} else if (!strncmp(str, "hpmmioprefsize=", 15)) {
6529 				pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
6530 			} else if (!strncmp(str, "hpmemsize=", 10)) {
6531 				pci_hotplug_mmio_size = memparse(str + 10, &str);
6532 				pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
6533 			} else if (!strncmp(str, "hpbussize=", 10)) {
6534 				pci_hotplug_bus_size =
6535 					simple_strtoul(str + 10, &str, 0);
6536 				if (pci_hotplug_bus_size > 0xff)
6537 					pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6538 			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6539 				pcie_bus_config = PCIE_BUS_TUNE_OFF;
6540 			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
6541 				pcie_bus_config = PCIE_BUS_SAFE;
6542 			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
6543 				pcie_bus_config = PCIE_BUS_PERFORMANCE;
6544 			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6545 				pcie_bus_config = PCIE_BUS_PEER2PEER;
6546 			} else if (!strncmp(str, "pcie_scan_all", 13)) {
6547 				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6548 			} else if (!strncmp(str, "disable_acs_redir=", 18)) {
6549 				disable_acs_redir_param = str + 18;
6550 			} else {
6551 				pr_err("PCI: Unknown option `%s'\n", str);
6552 			}
6553 		}
6554 		str = k;
6555 	}
6556 	return 0;
6557 }
6558 early_param("pci", pci_setup);
6559 
6560 /*
6561  * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6562  * in pci_setup(), above, to point to data in the __initdata section which
6563  * will be freed after the init sequence is complete. We can't allocate memory
6564  * in pci_setup() because some architectures do not have any memory allocation
6565  * service available during an early_param() call. So we allocate memory and
6566  * copy the variable here before the init section is freed.
6567  *
6568  */
6569 static int __init pci_realloc_setup_params(void)
6570 {
6571 	resource_alignment_param = kstrdup(resource_alignment_param,
6572 					   GFP_KERNEL);
6573 	disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6574 
6575 	return 0;
6576 }
6577 pure_initcall(pci_realloc_setup_params);
6578