xref: /openbmc/linux/drivers/pci/pci.c (revision 840ef8b7cc584a23c4f9d05352f4dbaf8e56e5ab)
1 /*
2  *	PCI Bus Services, see include/linux/pci.h for further explanation.
3  *
4  *	Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5  *	David Mosberger-Tang
6  *
7  *	Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/pci.h>
14 #include <linux/pm.h>
15 #include <linux/slab.h>
16 #include <linux/module.h>
17 #include <linux/spinlock.h>
18 #include <linux/string.h>
19 #include <linux/log2.h>
20 #include <linux/pci-aspm.h>
21 #include <linux/pm_wakeup.h>
22 #include <linux/interrupt.h>
23 #include <linux/device.h>
24 #include <linux/pm_runtime.h>
25 #include <asm-generic/pci-bridge.h>
26 #include <asm/setup.h>
27 #include "pci.h"
28 
29 const char *pci_power_names[] = {
30 	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
31 };
32 EXPORT_SYMBOL_GPL(pci_power_names);
33 
34 int isa_dma_bridge_buggy;
35 EXPORT_SYMBOL(isa_dma_bridge_buggy);
36 
37 int pci_pci_problems;
38 EXPORT_SYMBOL(pci_pci_problems);
39 
40 unsigned int pci_pm_d3_delay;
41 
42 static void pci_pme_list_scan(struct work_struct *work);
43 
44 static LIST_HEAD(pci_pme_list);
45 static DEFINE_MUTEX(pci_pme_list_mutex);
46 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
47 
48 struct pci_pme_device {
49 	struct list_head list;
50 	struct pci_dev *dev;
51 };
52 
53 #define PME_TIMEOUT 1000 /* How long between PME checks */
54 
55 static void pci_dev_d3_sleep(struct pci_dev *dev)
56 {
57 	unsigned int delay = dev->d3_delay;
58 
59 	if (delay < pci_pm_d3_delay)
60 		delay = pci_pm_d3_delay;
61 
62 	msleep(delay);
63 }
64 
65 #ifdef CONFIG_PCI_DOMAINS
66 int pci_domains_supported = 1;
67 #endif
68 
69 #define DEFAULT_CARDBUS_IO_SIZE		(256)
70 #define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
71 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
72 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
73 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
74 
75 #define DEFAULT_HOTPLUG_IO_SIZE		(256)
76 #define DEFAULT_HOTPLUG_MEM_SIZE	(2*1024*1024)
77 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
78 unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
79 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
80 
81 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
82 
83 /*
84  * The default CLS is used if arch didn't set CLS explicitly and not
85  * all pci devices agree on the same value.  Arch can override either
86  * the dfl or actual value as it sees fit.  Don't forget this is
87  * measured in 32-bit words, not bytes.
88  */
89 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
90 u8 pci_cache_line_size;
91 
92 /*
93  * If we set up a device for bus mastering, we need to check the latency
94  * timer as certain BIOSes forget to set it properly.
95  */
96 unsigned int pcibios_max_latency = 255;
97 
98 /* If set, the PCIe ARI capability will not be used. */
99 static bool pcie_ari_disabled;
100 
101 /**
102  * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
103  * @bus: pointer to PCI bus structure to search
104  *
105  * Given a PCI bus, returns the highest PCI bus number present in the set
106  * including the given PCI bus and its list of child PCI buses.
107  */
108 unsigned char pci_bus_max_busnr(struct pci_bus* bus)
109 {
110 	struct list_head *tmp;
111 	unsigned char max, n;
112 
113 	max = bus->busn_res.end;
114 	list_for_each(tmp, &bus->children) {
115 		n = pci_bus_max_busnr(pci_bus_b(tmp));
116 		if(n > max)
117 			max = n;
118 	}
119 	return max;
120 }
121 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
122 
123 #ifdef CONFIG_HAS_IOMEM
124 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
125 {
126 	/*
127 	 * Make sure the BAR is actually a memory resource, not an IO resource
128 	 */
129 	if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
130 		WARN_ON(1);
131 		return NULL;
132 	}
133 	return ioremap_nocache(pci_resource_start(pdev, bar),
134 				     pci_resource_len(pdev, bar));
135 }
136 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
137 #endif
138 
139 #define PCI_FIND_CAP_TTL	48
140 
141 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
142 				   u8 pos, int cap, int *ttl)
143 {
144 	u8 id;
145 
146 	while ((*ttl)--) {
147 		pci_bus_read_config_byte(bus, devfn, pos, &pos);
148 		if (pos < 0x40)
149 			break;
150 		pos &= ~3;
151 		pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID,
152 					 &id);
153 		if (id == 0xff)
154 			break;
155 		if (id == cap)
156 			return pos;
157 		pos += PCI_CAP_LIST_NEXT;
158 	}
159 	return 0;
160 }
161 
162 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
163 			       u8 pos, int cap)
164 {
165 	int ttl = PCI_FIND_CAP_TTL;
166 
167 	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
168 }
169 
170 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
171 {
172 	return __pci_find_next_cap(dev->bus, dev->devfn,
173 				   pos + PCI_CAP_LIST_NEXT, cap);
174 }
175 EXPORT_SYMBOL_GPL(pci_find_next_capability);
176 
177 static int __pci_bus_find_cap_start(struct pci_bus *bus,
178 				    unsigned int devfn, u8 hdr_type)
179 {
180 	u16 status;
181 
182 	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
183 	if (!(status & PCI_STATUS_CAP_LIST))
184 		return 0;
185 
186 	switch (hdr_type) {
187 	case PCI_HEADER_TYPE_NORMAL:
188 	case PCI_HEADER_TYPE_BRIDGE:
189 		return PCI_CAPABILITY_LIST;
190 	case PCI_HEADER_TYPE_CARDBUS:
191 		return PCI_CB_CAPABILITY_LIST;
192 	default:
193 		return 0;
194 	}
195 
196 	return 0;
197 }
198 
199 /**
200  * pci_find_capability - query for devices' capabilities
201  * @dev: PCI device to query
202  * @cap: capability code
203  *
204  * Tell if a device supports a given PCI capability.
205  * Returns the address of the requested capability structure within the
206  * device's PCI configuration space or 0 in case the device does not
207  * support it.  Possible values for @cap:
208  *
209  *  %PCI_CAP_ID_PM           Power Management
210  *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
211  *  %PCI_CAP_ID_VPD          Vital Product Data
212  *  %PCI_CAP_ID_SLOTID       Slot Identification
213  *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
214  *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
215  *  %PCI_CAP_ID_PCIX         PCI-X
216  *  %PCI_CAP_ID_EXP          PCI Express
217  */
218 int pci_find_capability(struct pci_dev *dev, int cap)
219 {
220 	int pos;
221 
222 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
223 	if (pos)
224 		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
225 
226 	return pos;
227 }
228 
229 /**
230  * pci_bus_find_capability - query for devices' capabilities
231  * @bus:   the PCI bus to query
232  * @devfn: PCI device to query
233  * @cap:   capability code
234  *
235  * Like pci_find_capability() but works for pci devices that do not have a
236  * pci_dev structure set up yet.
237  *
238  * Returns the address of the requested capability structure within the
239  * device's PCI configuration space or 0 in case the device does not
240  * support it.
241  */
242 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
243 {
244 	int pos;
245 	u8 hdr_type;
246 
247 	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
248 
249 	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
250 	if (pos)
251 		pos = __pci_find_next_cap(bus, devfn, pos, cap);
252 
253 	return pos;
254 }
255 
256 /**
257  * pci_find_next_ext_capability - Find an extended capability
258  * @dev: PCI device to query
259  * @start: address at which to start looking (0 to start at beginning of list)
260  * @cap: capability code
261  *
262  * Returns the address of the next matching extended capability structure
263  * within the device's PCI configuration space or 0 if the device does
264  * not support it.  Some capabilities can occur several times, e.g., the
265  * vendor-specific capability, and this provides a way to find them all.
266  */
267 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
268 {
269 	u32 header;
270 	int ttl;
271 	int pos = PCI_CFG_SPACE_SIZE;
272 
273 	/* minimum 8 bytes per capability */
274 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
275 
276 	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
277 		return 0;
278 
279 	if (start)
280 		pos = start;
281 
282 	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
283 		return 0;
284 
285 	/*
286 	 * If we have no capabilities, this is indicated by cap ID,
287 	 * cap version and next pointer all being 0.
288 	 */
289 	if (header == 0)
290 		return 0;
291 
292 	while (ttl-- > 0) {
293 		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
294 			return pos;
295 
296 		pos = PCI_EXT_CAP_NEXT(header);
297 		if (pos < PCI_CFG_SPACE_SIZE)
298 			break;
299 
300 		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
301 			break;
302 	}
303 
304 	return 0;
305 }
306 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
307 
308 /**
309  * pci_find_ext_capability - Find an extended capability
310  * @dev: PCI device to query
311  * @cap: capability code
312  *
313  * Returns the address of the requested extended capability structure
314  * within the device's PCI configuration space or 0 if the device does
315  * not support it.  Possible values for @cap:
316  *
317  *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
318  *  %PCI_EXT_CAP_ID_VC		Virtual Channel
319  *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
320  *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
321  */
322 int pci_find_ext_capability(struct pci_dev *dev, int cap)
323 {
324 	return pci_find_next_ext_capability(dev, 0, cap);
325 }
326 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
327 
328 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
329 {
330 	int rc, ttl = PCI_FIND_CAP_TTL;
331 	u8 cap, mask;
332 
333 	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
334 		mask = HT_3BIT_CAP_MASK;
335 	else
336 		mask = HT_5BIT_CAP_MASK;
337 
338 	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
339 				      PCI_CAP_ID_HT, &ttl);
340 	while (pos) {
341 		rc = pci_read_config_byte(dev, pos + 3, &cap);
342 		if (rc != PCIBIOS_SUCCESSFUL)
343 			return 0;
344 
345 		if ((cap & mask) == ht_cap)
346 			return pos;
347 
348 		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
349 					      pos + PCI_CAP_LIST_NEXT,
350 					      PCI_CAP_ID_HT, &ttl);
351 	}
352 
353 	return 0;
354 }
355 /**
356  * pci_find_next_ht_capability - query a device's Hypertransport capabilities
357  * @dev: PCI device to query
358  * @pos: Position from which to continue searching
359  * @ht_cap: Hypertransport capability code
360  *
361  * To be used in conjunction with pci_find_ht_capability() to search for
362  * all capabilities matching @ht_cap. @pos should always be a value returned
363  * from pci_find_ht_capability().
364  *
365  * NB. To be 100% safe against broken PCI devices, the caller should take
366  * steps to avoid an infinite loop.
367  */
368 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
369 {
370 	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
371 }
372 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
373 
374 /**
375  * pci_find_ht_capability - query a device's Hypertransport capabilities
376  * @dev: PCI device to query
377  * @ht_cap: Hypertransport capability code
378  *
379  * Tell if a device supports a given Hypertransport capability.
380  * Returns an address within the device's PCI configuration space
381  * or 0 in case the device does not support the request capability.
382  * The address points to the PCI capability, of type PCI_CAP_ID_HT,
383  * which has a Hypertransport capability matching @ht_cap.
384  */
385 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
386 {
387 	int pos;
388 
389 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
390 	if (pos)
391 		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
392 
393 	return pos;
394 }
395 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
396 
397 /**
398  * pci_find_parent_resource - return resource region of parent bus of given region
399  * @dev: PCI device structure contains resources to be searched
400  * @res: child resource record for which parent is sought
401  *
402  *  For given resource region of given device, return the resource
403  *  region of parent bus the given region is contained in or where
404  *  it should be allocated from.
405  */
406 struct resource *
407 pci_find_parent_resource(const struct pci_dev *dev, struct resource *res)
408 {
409 	const struct pci_bus *bus = dev->bus;
410 	int i;
411 	struct resource *best = NULL, *r;
412 
413 	pci_bus_for_each_resource(bus, r, i) {
414 		if (!r)
415 			continue;
416 		if (res->start && !(res->start >= r->start && res->end <= r->end))
417 			continue;	/* Not contained */
418 		if ((res->flags ^ r->flags) & (IORESOURCE_IO | IORESOURCE_MEM))
419 			continue;	/* Wrong type */
420 		if (!((res->flags ^ r->flags) & IORESOURCE_PREFETCH))
421 			return r;	/* Exact match */
422 		/* We can't insert a non-prefetch resource inside a prefetchable parent .. */
423 		if (r->flags & IORESOURCE_PREFETCH)
424 			continue;
425 		/* .. but we can put a prefetchable resource inside a non-prefetchable one */
426 		if (!best)
427 			best = r;
428 	}
429 	return best;
430 }
431 
432 /**
433  * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
434  * @dev: PCI device to have its BARs restored
435  *
436  * Restore the BAR values for a given device, so as to make it
437  * accessible by its driver.
438  */
439 static void
440 pci_restore_bars(struct pci_dev *dev)
441 {
442 	int i;
443 
444 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
445 		pci_update_resource(dev, i);
446 }
447 
448 static struct pci_platform_pm_ops *pci_platform_pm;
449 
450 int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
451 {
452 	if (!ops->is_manageable || !ops->set_state || !ops->choose_state
453 	    || !ops->sleep_wake)
454 		return -EINVAL;
455 	pci_platform_pm = ops;
456 	return 0;
457 }
458 
459 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
460 {
461 	return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
462 }
463 
464 static inline int platform_pci_set_power_state(struct pci_dev *dev,
465                                                 pci_power_t t)
466 {
467 	return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
468 }
469 
470 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
471 {
472 	return pci_platform_pm ?
473 			pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
474 }
475 
476 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
477 {
478 	return pci_platform_pm ?
479 			pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
480 }
481 
482 static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable)
483 {
484 	return pci_platform_pm ?
485 			pci_platform_pm->run_wake(dev, enable) : -ENODEV;
486 }
487 
488 /**
489  * pci_raw_set_power_state - Use PCI PM registers to set the power state of
490  *                           given PCI device
491  * @dev: PCI device to handle.
492  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
493  *
494  * RETURN VALUE:
495  * -EINVAL if the requested state is invalid.
496  * -EIO if device does not support PCI PM or its PM capabilities register has a
497  * wrong version, or device doesn't support the requested state.
498  * 0 if device already is in the requested state.
499  * 0 if device's power state has been successfully changed.
500  */
501 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
502 {
503 	u16 pmcsr;
504 	bool need_restore = false;
505 
506 	/* Check if we're already there */
507 	if (dev->current_state == state)
508 		return 0;
509 
510 	if (!dev->pm_cap)
511 		return -EIO;
512 
513 	if (state < PCI_D0 || state > PCI_D3hot)
514 		return -EINVAL;
515 
516 	/* Validate current state:
517 	 * Can enter D0 from any state, but if we can only go deeper
518 	 * to sleep if we're already in a low power state
519 	 */
520 	if (state != PCI_D0 && dev->current_state <= PCI_D3cold
521 	    && dev->current_state > state) {
522 		dev_err(&dev->dev, "invalid power transition "
523 			"(from state %d to %d)\n", dev->current_state, state);
524 		return -EINVAL;
525 	}
526 
527 	/* check if this device supports the desired state */
528 	if ((state == PCI_D1 && !dev->d1_support)
529 	   || (state == PCI_D2 && !dev->d2_support))
530 		return -EIO;
531 
532 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
533 
534 	/* If we're (effectively) in D3, force entire word to 0.
535 	 * This doesn't affect PME_Status, disables PME_En, and
536 	 * sets PowerState to 0.
537 	 */
538 	switch (dev->current_state) {
539 	case PCI_D0:
540 	case PCI_D1:
541 	case PCI_D2:
542 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
543 		pmcsr |= state;
544 		break;
545 	case PCI_D3hot:
546 	case PCI_D3cold:
547 	case PCI_UNKNOWN: /* Boot-up */
548 		if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
549 		 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
550 			need_restore = true;
551 		/* Fall-through: force to D0 */
552 	default:
553 		pmcsr = 0;
554 		break;
555 	}
556 
557 	/* enter specified state */
558 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
559 
560 	/* Mandatory power management transition delays */
561 	/* see PCI PM 1.1 5.6.1 table 18 */
562 	if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
563 		pci_dev_d3_sleep(dev);
564 	else if (state == PCI_D2 || dev->current_state == PCI_D2)
565 		udelay(PCI_PM_D2_DELAY);
566 
567 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
568 	dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
569 	if (dev->current_state != state && printk_ratelimit())
570 		dev_info(&dev->dev, "Refused to change power state, "
571 			"currently in D%d\n", dev->current_state);
572 
573 	/*
574 	 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
575 	 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
576 	 * from D3hot to D0 _may_ perform an internal reset, thereby
577 	 * going to "D0 Uninitialized" rather than "D0 Initialized".
578 	 * For example, at least some versions of the 3c905B and the
579 	 * 3c556B exhibit this behaviour.
580 	 *
581 	 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
582 	 * devices in a D3hot state at boot.  Consequently, we need to
583 	 * restore at least the BARs so that the device will be
584 	 * accessible to its driver.
585 	 */
586 	if (need_restore)
587 		pci_restore_bars(dev);
588 
589 	if (dev->bus->self)
590 		pcie_aspm_pm_state_change(dev->bus->self);
591 
592 	return 0;
593 }
594 
595 /**
596  * pci_update_current_state - Read PCI power state of given device from its
597  *                            PCI PM registers and cache it
598  * @dev: PCI device to handle.
599  * @state: State to cache in case the device doesn't have the PM capability
600  */
601 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
602 {
603 	if (dev->pm_cap) {
604 		u16 pmcsr;
605 
606 		/*
607 		 * Configuration space is not accessible for device in
608 		 * D3cold, so just keep or set D3cold for safety
609 		 */
610 		if (dev->current_state == PCI_D3cold)
611 			return;
612 		if (state == PCI_D3cold) {
613 			dev->current_state = PCI_D3cold;
614 			return;
615 		}
616 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
617 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
618 	} else {
619 		dev->current_state = state;
620 	}
621 }
622 
623 /**
624  * pci_power_up - Put the given device into D0 forcibly
625  * @dev: PCI device to power up
626  */
627 void pci_power_up(struct pci_dev *dev)
628 {
629 	if (platform_pci_power_manageable(dev))
630 		platform_pci_set_power_state(dev, PCI_D0);
631 
632 	pci_raw_set_power_state(dev, PCI_D0);
633 	pci_update_current_state(dev, PCI_D0);
634 }
635 
636 /**
637  * pci_platform_power_transition - Use platform to change device power state
638  * @dev: PCI device to handle.
639  * @state: State to put the device into.
640  */
641 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
642 {
643 	int error;
644 
645 	if (platform_pci_power_manageable(dev)) {
646 		error = platform_pci_set_power_state(dev, state);
647 		if (!error)
648 			pci_update_current_state(dev, state);
649 		/* Fall back to PCI_D0 if native PM is not supported */
650 		if (!dev->pm_cap)
651 			dev->current_state = PCI_D0;
652 	} else {
653 		error = -ENODEV;
654 		/* Fall back to PCI_D0 if native PM is not supported */
655 		if (!dev->pm_cap)
656 			dev->current_state = PCI_D0;
657 	}
658 
659 	return error;
660 }
661 
662 /**
663  * __pci_start_power_transition - Start power transition of a PCI device
664  * @dev: PCI device to handle.
665  * @state: State to put the device into.
666  */
667 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
668 {
669 	if (state == PCI_D0) {
670 		pci_platform_power_transition(dev, PCI_D0);
671 		/*
672 		 * Mandatory power management transition delays, see
673 		 * PCI Express Base Specification Revision 2.0 Section
674 		 * 6.6.1: Conventional Reset.  Do not delay for
675 		 * devices powered on/off by corresponding bridge,
676 		 * because have already delayed for the bridge.
677 		 */
678 		if (dev->runtime_d3cold) {
679 			msleep(dev->d3cold_delay);
680 			/*
681 			 * When powering on a bridge from D3cold, the
682 			 * whole hierarchy may be powered on into
683 			 * D0uninitialized state, resume them to give
684 			 * them a chance to suspend again
685 			 */
686 			pci_wakeup_bus(dev->subordinate);
687 		}
688 	}
689 }
690 
691 /**
692  * __pci_dev_set_current_state - Set current state of a PCI device
693  * @dev: Device to handle
694  * @data: pointer to state to be set
695  */
696 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
697 {
698 	pci_power_t state = *(pci_power_t *)data;
699 
700 	dev->current_state = state;
701 	return 0;
702 }
703 
704 /**
705  * __pci_bus_set_current_state - Walk given bus and set current state of devices
706  * @bus: Top bus of the subtree to walk.
707  * @state: state to be set
708  */
709 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
710 {
711 	if (bus)
712 		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
713 }
714 
715 /**
716  * __pci_complete_power_transition - Complete power transition of a PCI device
717  * @dev: PCI device to handle.
718  * @state: State to put the device into.
719  *
720  * This function should not be called directly by device drivers.
721  */
722 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
723 {
724 	int ret;
725 
726 	if (state <= PCI_D0)
727 		return -EINVAL;
728 	ret = pci_platform_power_transition(dev, state);
729 	/* Power off the bridge may power off the whole hierarchy */
730 	if (!ret && state == PCI_D3cold)
731 		__pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
732 	return ret;
733 }
734 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
735 
736 /**
737  * pci_set_power_state - Set the power state of a PCI device
738  * @dev: PCI device to handle.
739  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
740  *
741  * Transition a device to a new power state, using the platform firmware and/or
742  * the device's PCI PM registers.
743  *
744  * RETURN VALUE:
745  * -EINVAL if the requested state is invalid.
746  * -EIO if device does not support PCI PM or its PM capabilities register has a
747  * wrong version, or device doesn't support the requested state.
748  * 0 if device already is in the requested state.
749  * 0 if device's power state has been successfully changed.
750  */
751 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
752 {
753 	int error;
754 
755 	/* bound the state we're entering */
756 	if (state > PCI_D3cold)
757 		state = PCI_D3cold;
758 	else if (state < PCI_D0)
759 		state = PCI_D0;
760 	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
761 		/*
762 		 * If the device or the parent bridge do not support PCI PM,
763 		 * ignore the request if we're doing anything other than putting
764 		 * it into D0 (which would only happen on boot).
765 		 */
766 		return 0;
767 
768 	/* Check if we're already there */
769 	if (dev->current_state == state)
770 		return 0;
771 
772 	__pci_start_power_transition(dev, state);
773 
774 	/* This device is quirked not to be put into D3, so
775 	   don't put it in D3 */
776 	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
777 		return 0;
778 
779 	/*
780 	 * To put device in D3cold, we put device into D3hot in native
781 	 * way, then put device into D3cold with platform ops
782 	 */
783 	error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
784 					PCI_D3hot : state);
785 
786 	if (!__pci_complete_power_transition(dev, state))
787 		error = 0;
788 	/*
789 	 * When aspm_policy is "powersave" this call ensures
790 	 * that ASPM is configured.
791 	 */
792 	if (!error && dev->bus->self)
793 		pcie_aspm_powersave_config_link(dev->bus->self);
794 
795 	return error;
796 }
797 
798 /**
799  * pci_choose_state - Choose the power state of a PCI device
800  * @dev: PCI device to be suspended
801  * @state: target sleep state for the whole system. This is the value
802  *	that is passed to suspend() function.
803  *
804  * Returns PCI power state suitable for given device and given system
805  * message.
806  */
807 
808 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
809 {
810 	pci_power_t ret;
811 
812 	if (!pci_find_capability(dev, PCI_CAP_ID_PM))
813 		return PCI_D0;
814 
815 	ret = platform_pci_choose_state(dev);
816 	if (ret != PCI_POWER_ERROR)
817 		return ret;
818 
819 	switch (state.event) {
820 	case PM_EVENT_ON:
821 		return PCI_D0;
822 	case PM_EVENT_FREEZE:
823 	case PM_EVENT_PRETHAW:
824 		/* REVISIT both freeze and pre-thaw "should" use D0 */
825 	case PM_EVENT_SUSPEND:
826 	case PM_EVENT_HIBERNATE:
827 		return PCI_D3hot;
828 	default:
829 		dev_info(&dev->dev, "unrecognized suspend event %d\n",
830 			 state.event);
831 		BUG();
832 	}
833 	return PCI_D0;
834 }
835 
836 EXPORT_SYMBOL(pci_choose_state);
837 
838 #define PCI_EXP_SAVE_REGS	7
839 
840 
841 static struct pci_cap_saved_state *pci_find_saved_cap(
842 	struct pci_dev *pci_dev, char cap)
843 {
844 	struct pci_cap_saved_state *tmp;
845 
846 	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
847 		if (tmp->cap.cap_nr == cap)
848 			return tmp;
849 	}
850 	return NULL;
851 }
852 
853 static int pci_save_pcie_state(struct pci_dev *dev)
854 {
855 	int i = 0;
856 	struct pci_cap_saved_state *save_state;
857 	u16 *cap;
858 
859 	if (!pci_is_pcie(dev))
860 		return 0;
861 
862 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
863 	if (!save_state) {
864 		dev_err(&dev->dev, "buffer not found in %s\n", __func__);
865 		return -ENOMEM;
866 	}
867 
868 	cap = (u16 *)&save_state->cap.data[0];
869 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
870 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
871 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
872 	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
873 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
874 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
875 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
876 
877 	return 0;
878 }
879 
880 static void pci_restore_pcie_state(struct pci_dev *dev)
881 {
882 	int i = 0;
883 	struct pci_cap_saved_state *save_state;
884 	u16 *cap;
885 
886 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
887 	if (!save_state)
888 		return;
889 
890 	cap = (u16 *)&save_state->cap.data[0];
891 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
892 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
893 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
894 	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
895 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
896 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
897 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
898 }
899 
900 
901 static int pci_save_pcix_state(struct pci_dev *dev)
902 {
903 	int pos;
904 	struct pci_cap_saved_state *save_state;
905 
906 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
907 	if (pos <= 0)
908 		return 0;
909 
910 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
911 	if (!save_state) {
912 		dev_err(&dev->dev, "buffer not found in %s\n", __func__);
913 		return -ENOMEM;
914 	}
915 
916 	pci_read_config_word(dev, pos + PCI_X_CMD,
917 			     (u16 *)save_state->cap.data);
918 
919 	return 0;
920 }
921 
922 static void pci_restore_pcix_state(struct pci_dev *dev)
923 {
924 	int i = 0, pos;
925 	struct pci_cap_saved_state *save_state;
926 	u16 *cap;
927 
928 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
929 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
930 	if (!save_state || pos <= 0)
931 		return;
932 	cap = (u16 *)&save_state->cap.data[0];
933 
934 	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
935 }
936 
937 
938 /**
939  * pci_save_state - save the PCI configuration space of a device before suspending
940  * @dev: - PCI device that we're dealing with
941  */
942 int
943 pci_save_state(struct pci_dev *dev)
944 {
945 	int i;
946 	/* XXX: 100% dword access ok here? */
947 	for (i = 0; i < 16; i++)
948 		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
949 	dev->state_saved = true;
950 	if ((i = pci_save_pcie_state(dev)) != 0)
951 		return i;
952 	if ((i = pci_save_pcix_state(dev)) != 0)
953 		return i;
954 	return 0;
955 }
956 
957 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
958 				     u32 saved_val, int retry)
959 {
960 	u32 val;
961 
962 	pci_read_config_dword(pdev, offset, &val);
963 	if (val == saved_val)
964 		return;
965 
966 	for (;;) {
967 		dev_dbg(&pdev->dev, "restoring config space at offset "
968 			"%#x (was %#x, writing %#x)\n", offset, val, saved_val);
969 		pci_write_config_dword(pdev, offset, saved_val);
970 		if (retry-- <= 0)
971 			return;
972 
973 		pci_read_config_dword(pdev, offset, &val);
974 		if (val == saved_val)
975 			return;
976 
977 		mdelay(1);
978 	}
979 }
980 
981 static void pci_restore_config_space_range(struct pci_dev *pdev,
982 					   int start, int end, int retry)
983 {
984 	int index;
985 
986 	for (index = end; index >= start; index--)
987 		pci_restore_config_dword(pdev, 4 * index,
988 					 pdev->saved_config_space[index],
989 					 retry);
990 }
991 
992 static void pci_restore_config_space(struct pci_dev *pdev)
993 {
994 	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
995 		pci_restore_config_space_range(pdev, 10, 15, 0);
996 		/* Restore BARs before the command register. */
997 		pci_restore_config_space_range(pdev, 4, 9, 10);
998 		pci_restore_config_space_range(pdev, 0, 3, 0);
999 	} else {
1000 		pci_restore_config_space_range(pdev, 0, 15, 0);
1001 	}
1002 }
1003 
1004 /**
1005  * pci_restore_state - Restore the saved state of a PCI device
1006  * @dev: - PCI device that we're dealing with
1007  */
1008 void pci_restore_state(struct pci_dev *dev)
1009 {
1010 	if (!dev->state_saved)
1011 		return;
1012 
1013 	/* PCI Express register must be restored first */
1014 	pci_restore_pcie_state(dev);
1015 	pci_restore_ats_state(dev);
1016 
1017 	pci_restore_config_space(dev);
1018 
1019 	pci_restore_pcix_state(dev);
1020 	pci_restore_msi_state(dev);
1021 	pci_restore_iov_state(dev);
1022 
1023 	dev->state_saved = false;
1024 }
1025 
1026 struct pci_saved_state {
1027 	u32 config_space[16];
1028 	struct pci_cap_saved_data cap[0];
1029 };
1030 
1031 /**
1032  * pci_store_saved_state - Allocate and return an opaque struct containing
1033  *			   the device saved state.
1034  * @dev: PCI device that we're dealing with
1035  *
1036  * Rerturn NULL if no state or error.
1037  */
1038 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1039 {
1040 	struct pci_saved_state *state;
1041 	struct pci_cap_saved_state *tmp;
1042 	struct pci_cap_saved_data *cap;
1043 	size_t size;
1044 
1045 	if (!dev->state_saved)
1046 		return NULL;
1047 
1048 	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1049 
1050 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1051 		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1052 
1053 	state = kzalloc(size, GFP_KERNEL);
1054 	if (!state)
1055 		return NULL;
1056 
1057 	memcpy(state->config_space, dev->saved_config_space,
1058 	       sizeof(state->config_space));
1059 
1060 	cap = state->cap;
1061 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1062 		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1063 		memcpy(cap, &tmp->cap, len);
1064 		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1065 	}
1066 	/* Empty cap_save terminates list */
1067 
1068 	return state;
1069 }
1070 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1071 
1072 /**
1073  * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1074  * @dev: PCI device that we're dealing with
1075  * @state: Saved state returned from pci_store_saved_state()
1076  */
1077 int pci_load_saved_state(struct pci_dev *dev, struct pci_saved_state *state)
1078 {
1079 	struct pci_cap_saved_data *cap;
1080 
1081 	dev->state_saved = false;
1082 
1083 	if (!state)
1084 		return 0;
1085 
1086 	memcpy(dev->saved_config_space, state->config_space,
1087 	       sizeof(state->config_space));
1088 
1089 	cap = state->cap;
1090 	while (cap->size) {
1091 		struct pci_cap_saved_state *tmp;
1092 
1093 		tmp = pci_find_saved_cap(dev, cap->cap_nr);
1094 		if (!tmp || tmp->cap.size != cap->size)
1095 			return -EINVAL;
1096 
1097 		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1098 		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1099 		       sizeof(struct pci_cap_saved_data) + cap->size);
1100 	}
1101 
1102 	dev->state_saved = true;
1103 	return 0;
1104 }
1105 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1106 
1107 /**
1108  * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1109  *				   and free the memory allocated for it.
1110  * @dev: PCI device that we're dealing with
1111  * @state: Pointer to saved state returned from pci_store_saved_state()
1112  */
1113 int pci_load_and_free_saved_state(struct pci_dev *dev,
1114 				  struct pci_saved_state **state)
1115 {
1116 	int ret = pci_load_saved_state(dev, *state);
1117 	kfree(*state);
1118 	*state = NULL;
1119 	return ret;
1120 }
1121 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1122 
1123 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1124 {
1125 	int err;
1126 
1127 	err = pci_set_power_state(dev, PCI_D0);
1128 	if (err < 0 && err != -EIO)
1129 		return err;
1130 	err = pcibios_enable_device(dev, bars);
1131 	if (err < 0)
1132 		return err;
1133 	pci_fixup_device(pci_fixup_enable, dev);
1134 
1135 	return 0;
1136 }
1137 
1138 /**
1139  * pci_reenable_device - Resume abandoned device
1140  * @dev: PCI device to be resumed
1141  *
1142  *  Note this function is a backend of pci_default_resume and is not supposed
1143  *  to be called by normal code, write proper resume handler and use it instead.
1144  */
1145 int pci_reenable_device(struct pci_dev *dev)
1146 {
1147 	if (pci_is_enabled(dev))
1148 		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1149 	return 0;
1150 }
1151 
1152 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1153 {
1154 	int err;
1155 	int i, bars = 0;
1156 
1157 	/*
1158 	 * Power state could be unknown at this point, either due to a fresh
1159 	 * boot or a device removal call.  So get the current power state
1160 	 * so that things like MSI message writing will behave as expected
1161 	 * (e.g. if the device really is in D0 at enable time).
1162 	 */
1163 	if (dev->pm_cap) {
1164 		u16 pmcsr;
1165 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1166 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1167 	}
1168 
1169 	if (atomic_inc_return(&dev->enable_cnt) > 1)
1170 		return 0;		/* already enabled */
1171 
1172 	/* only skip sriov related */
1173 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1174 		if (dev->resource[i].flags & flags)
1175 			bars |= (1 << i);
1176 	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1177 		if (dev->resource[i].flags & flags)
1178 			bars |= (1 << i);
1179 
1180 	err = do_pci_enable_device(dev, bars);
1181 	if (err < 0)
1182 		atomic_dec(&dev->enable_cnt);
1183 	return err;
1184 }
1185 
1186 /**
1187  * pci_enable_device_io - Initialize a device for use with IO space
1188  * @dev: PCI device to be initialized
1189  *
1190  *  Initialize device before it's used by a driver. Ask low-level code
1191  *  to enable I/O resources. Wake up the device if it was suspended.
1192  *  Beware, this function can fail.
1193  */
1194 int pci_enable_device_io(struct pci_dev *dev)
1195 {
1196 	return pci_enable_device_flags(dev, IORESOURCE_IO);
1197 }
1198 
1199 /**
1200  * pci_enable_device_mem - Initialize a device for use with Memory space
1201  * @dev: PCI device to be initialized
1202  *
1203  *  Initialize device before it's used by a driver. Ask low-level code
1204  *  to enable Memory resources. Wake up the device if it was suspended.
1205  *  Beware, this function can fail.
1206  */
1207 int pci_enable_device_mem(struct pci_dev *dev)
1208 {
1209 	return pci_enable_device_flags(dev, IORESOURCE_MEM);
1210 }
1211 
1212 /**
1213  * pci_enable_device - Initialize device before it's used by a driver.
1214  * @dev: PCI device to be initialized
1215  *
1216  *  Initialize device before it's used by a driver. Ask low-level code
1217  *  to enable I/O and memory. Wake up the device if it was suspended.
1218  *  Beware, this function can fail.
1219  *
1220  *  Note we don't actually enable the device many times if we call
1221  *  this function repeatedly (we just increment the count).
1222  */
1223 int pci_enable_device(struct pci_dev *dev)
1224 {
1225 	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1226 }
1227 
1228 /*
1229  * Managed PCI resources.  This manages device on/off, intx/msi/msix
1230  * on/off and BAR regions.  pci_dev itself records msi/msix status, so
1231  * there's no need to track it separately.  pci_devres is initialized
1232  * when a device is enabled using managed PCI device enable interface.
1233  */
1234 struct pci_devres {
1235 	unsigned int enabled:1;
1236 	unsigned int pinned:1;
1237 	unsigned int orig_intx:1;
1238 	unsigned int restore_intx:1;
1239 	u32 region_mask;
1240 };
1241 
1242 static void pcim_release(struct device *gendev, void *res)
1243 {
1244 	struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
1245 	struct pci_devres *this = res;
1246 	int i;
1247 
1248 	if (dev->msi_enabled)
1249 		pci_disable_msi(dev);
1250 	if (dev->msix_enabled)
1251 		pci_disable_msix(dev);
1252 
1253 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1254 		if (this->region_mask & (1 << i))
1255 			pci_release_region(dev, i);
1256 
1257 	if (this->restore_intx)
1258 		pci_intx(dev, this->orig_intx);
1259 
1260 	if (this->enabled && !this->pinned)
1261 		pci_disable_device(dev);
1262 }
1263 
1264 static struct pci_devres * get_pci_dr(struct pci_dev *pdev)
1265 {
1266 	struct pci_devres *dr, *new_dr;
1267 
1268 	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1269 	if (dr)
1270 		return dr;
1271 
1272 	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1273 	if (!new_dr)
1274 		return NULL;
1275 	return devres_get(&pdev->dev, new_dr, NULL, NULL);
1276 }
1277 
1278 static struct pci_devres * find_pci_dr(struct pci_dev *pdev)
1279 {
1280 	if (pci_is_managed(pdev))
1281 		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1282 	return NULL;
1283 }
1284 
1285 /**
1286  * pcim_enable_device - Managed pci_enable_device()
1287  * @pdev: PCI device to be initialized
1288  *
1289  * Managed pci_enable_device().
1290  */
1291 int pcim_enable_device(struct pci_dev *pdev)
1292 {
1293 	struct pci_devres *dr;
1294 	int rc;
1295 
1296 	dr = get_pci_dr(pdev);
1297 	if (unlikely(!dr))
1298 		return -ENOMEM;
1299 	if (dr->enabled)
1300 		return 0;
1301 
1302 	rc = pci_enable_device(pdev);
1303 	if (!rc) {
1304 		pdev->is_managed = 1;
1305 		dr->enabled = 1;
1306 	}
1307 	return rc;
1308 }
1309 
1310 /**
1311  * pcim_pin_device - Pin managed PCI device
1312  * @pdev: PCI device to pin
1313  *
1314  * Pin managed PCI device @pdev.  Pinned device won't be disabled on
1315  * driver detach.  @pdev must have been enabled with
1316  * pcim_enable_device().
1317  */
1318 void pcim_pin_device(struct pci_dev *pdev)
1319 {
1320 	struct pci_devres *dr;
1321 
1322 	dr = find_pci_dr(pdev);
1323 	WARN_ON(!dr || !dr->enabled);
1324 	if (dr)
1325 		dr->pinned = 1;
1326 }
1327 
1328 /*
1329  * pcibios_add_device - provide arch specific hooks when adding device dev
1330  * @dev: the PCI device being added
1331  *
1332  * Permits the platform to provide architecture specific functionality when
1333  * devices are added. This is the default implementation. Architecture
1334  * implementations can override this.
1335  */
1336 int __weak pcibios_add_device (struct pci_dev *dev)
1337 {
1338 	return 0;
1339 }
1340 
1341 /**
1342  * pcibios_disable_device - disable arch specific PCI resources for device dev
1343  * @dev: the PCI device to disable
1344  *
1345  * Disables architecture specific PCI resources for the device. This
1346  * is the default implementation. Architecture implementations can
1347  * override this.
1348  */
1349 void __weak pcibios_disable_device (struct pci_dev *dev) {}
1350 
1351 static void do_pci_disable_device(struct pci_dev *dev)
1352 {
1353 	u16 pci_command;
1354 
1355 	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1356 	if (pci_command & PCI_COMMAND_MASTER) {
1357 		pci_command &= ~PCI_COMMAND_MASTER;
1358 		pci_write_config_word(dev, PCI_COMMAND, pci_command);
1359 	}
1360 
1361 	pcibios_disable_device(dev);
1362 }
1363 
1364 /**
1365  * pci_disable_enabled_device - Disable device without updating enable_cnt
1366  * @dev: PCI device to disable
1367  *
1368  * NOTE: This function is a backend of PCI power management routines and is
1369  * not supposed to be called drivers.
1370  */
1371 void pci_disable_enabled_device(struct pci_dev *dev)
1372 {
1373 	if (pci_is_enabled(dev))
1374 		do_pci_disable_device(dev);
1375 }
1376 
1377 /**
1378  * pci_disable_device - Disable PCI device after use
1379  * @dev: PCI device to be disabled
1380  *
1381  * Signal to the system that the PCI device is not in use by the system
1382  * anymore.  This only involves disabling PCI bus-mastering, if active.
1383  *
1384  * Note we don't actually disable the device until all callers of
1385  * pci_enable_device() have called pci_disable_device().
1386  */
1387 void
1388 pci_disable_device(struct pci_dev *dev)
1389 {
1390 	struct pci_devres *dr;
1391 
1392 	dr = find_pci_dr(dev);
1393 	if (dr)
1394 		dr->enabled = 0;
1395 
1396 	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1397 		      "disabling already-disabled device");
1398 
1399 	if (atomic_dec_return(&dev->enable_cnt) != 0)
1400 		return;
1401 
1402 	do_pci_disable_device(dev);
1403 
1404 	dev->is_busmaster = 0;
1405 }
1406 
1407 /**
1408  * pcibios_set_pcie_reset_state - set reset state for device dev
1409  * @dev: the PCIe device reset
1410  * @state: Reset state to enter into
1411  *
1412  *
1413  * Sets the PCIe reset state for the device. This is the default
1414  * implementation. Architecture implementations can override this.
1415  */
1416 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1417 					enum pcie_reset_state state)
1418 {
1419 	return -EINVAL;
1420 }
1421 
1422 /**
1423  * pci_set_pcie_reset_state - set reset state for device dev
1424  * @dev: the PCIe device reset
1425  * @state: Reset state to enter into
1426  *
1427  *
1428  * Sets the PCI reset state for the device.
1429  */
1430 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1431 {
1432 	return pcibios_set_pcie_reset_state(dev, state);
1433 }
1434 
1435 /**
1436  * pci_check_pme_status - Check if given device has generated PME.
1437  * @dev: Device to check.
1438  *
1439  * Check the PME status of the device and if set, clear it and clear PME enable
1440  * (if set).  Return 'true' if PME status and PME enable were both set or
1441  * 'false' otherwise.
1442  */
1443 bool pci_check_pme_status(struct pci_dev *dev)
1444 {
1445 	int pmcsr_pos;
1446 	u16 pmcsr;
1447 	bool ret = false;
1448 
1449 	if (!dev->pm_cap)
1450 		return false;
1451 
1452 	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1453 	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1454 	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1455 		return false;
1456 
1457 	/* Clear PME status. */
1458 	pmcsr |= PCI_PM_CTRL_PME_STATUS;
1459 	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1460 		/* Disable PME to avoid interrupt flood. */
1461 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1462 		ret = true;
1463 	}
1464 
1465 	pci_write_config_word(dev, pmcsr_pos, pmcsr);
1466 
1467 	return ret;
1468 }
1469 
1470 /**
1471  * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1472  * @dev: Device to handle.
1473  * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1474  *
1475  * Check if @dev has generated PME and queue a resume request for it in that
1476  * case.
1477  */
1478 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1479 {
1480 	if (pme_poll_reset && dev->pme_poll)
1481 		dev->pme_poll = false;
1482 
1483 	if (pci_check_pme_status(dev)) {
1484 		pci_wakeup_event(dev);
1485 		pm_request_resume(&dev->dev);
1486 	}
1487 	return 0;
1488 }
1489 
1490 /**
1491  * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1492  * @bus: Top bus of the subtree to walk.
1493  */
1494 void pci_pme_wakeup_bus(struct pci_bus *bus)
1495 {
1496 	if (bus)
1497 		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1498 }
1499 
1500 /**
1501  * pci_wakeup - Wake up a PCI device
1502  * @pci_dev: Device to handle.
1503  * @ign: ignored parameter
1504  */
1505 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
1506 {
1507 	pci_wakeup_event(pci_dev);
1508 	pm_request_resume(&pci_dev->dev);
1509 	return 0;
1510 }
1511 
1512 /**
1513  * pci_wakeup_bus - Walk given bus and wake up devices on it
1514  * @bus: Top bus of the subtree to walk.
1515  */
1516 void pci_wakeup_bus(struct pci_bus *bus)
1517 {
1518 	if (bus)
1519 		pci_walk_bus(bus, pci_wakeup, NULL);
1520 }
1521 
1522 /**
1523  * pci_pme_capable - check the capability of PCI device to generate PME#
1524  * @dev: PCI device to handle.
1525  * @state: PCI state from which device will issue PME#.
1526  */
1527 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1528 {
1529 	if (!dev->pm_cap)
1530 		return false;
1531 
1532 	return !!(dev->pme_support & (1 << state));
1533 }
1534 
1535 static void pci_pme_list_scan(struct work_struct *work)
1536 {
1537 	struct pci_pme_device *pme_dev, *n;
1538 
1539 	mutex_lock(&pci_pme_list_mutex);
1540 	if (!list_empty(&pci_pme_list)) {
1541 		list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1542 			if (pme_dev->dev->pme_poll) {
1543 				struct pci_dev *bridge;
1544 
1545 				bridge = pme_dev->dev->bus->self;
1546 				/*
1547 				 * If bridge is in low power state, the
1548 				 * configuration space of subordinate devices
1549 				 * may be not accessible
1550 				 */
1551 				if (bridge && bridge->current_state != PCI_D0)
1552 					continue;
1553 				pci_pme_wakeup(pme_dev->dev, NULL);
1554 			} else {
1555 				list_del(&pme_dev->list);
1556 				kfree(pme_dev);
1557 			}
1558 		}
1559 		if (!list_empty(&pci_pme_list))
1560 			schedule_delayed_work(&pci_pme_work,
1561 					      msecs_to_jiffies(PME_TIMEOUT));
1562 	}
1563 	mutex_unlock(&pci_pme_list_mutex);
1564 }
1565 
1566 /**
1567  * pci_pme_active - enable or disable PCI device's PME# function
1568  * @dev: PCI device to handle.
1569  * @enable: 'true' to enable PME# generation; 'false' to disable it.
1570  *
1571  * The caller must verify that the device is capable of generating PME# before
1572  * calling this function with @enable equal to 'true'.
1573  */
1574 void pci_pme_active(struct pci_dev *dev, bool enable)
1575 {
1576 	u16 pmcsr;
1577 
1578 	if (!dev->pm_cap)
1579 		return;
1580 
1581 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1582 	/* Clear PME_Status by writing 1 to it and enable PME# */
1583 	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1584 	if (!enable)
1585 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1586 
1587 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1588 
1589 	/*
1590 	 * PCI (as opposed to PCIe) PME requires that the device have
1591 	 * its PME# line hooked up correctly. Not all hardware vendors
1592 	 * do this, so the PME never gets delivered and the device
1593 	 * remains asleep. The easiest way around this is to
1594 	 * periodically walk the list of suspended devices and check
1595 	 * whether any have their PME flag set. The assumption is that
1596 	 * we'll wake up often enough anyway that this won't be a huge
1597 	 * hit, and the power savings from the devices will still be a
1598 	 * win.
1599 	 *
1600 	 * Although PCIe uses in-band PME message instead of PME# line
1601 	 * to report PME, PME does not work for some PCIe devices in
1602 	 * reality.  For example, there are devices that set their PME
1603 	 * status bits, but don't really bother to send a PME message;
1604 	 * there are PCI Express Root Ports that don't bother to
1605 	 * trigger interrupts when they receive PME messages from the
1606 	 * devices below.  So PME poll is used for PCIe devices too.
1607 	 */
1608 
1609 	if (dev->pme_poll) {
1610 		struct pci_pme_device *pme_dev;
1611 		if (enable) {
1612 			pme_dev = kmalloc(sizeof(struct pci_pme_device),
1613 					  GFP_KERNEL);
1614 			if (!pme_dev)
1615 				goto out;
1616 			pme_dev->dev = dev;
1617 			mutex_lock(&pci_pme_list_mutex);
1618 			list_add(&pme_dev->list, &pci_pme_list);
1619 			if (list_is_singular(&pci_pme_list))
1620 				schedule_delayed_work(&pci_pme_work,
1621 						      msecs_to_jiffies(PME_TIMEOUT));
1622 			mutex_unlock(&pci_pme_list_mutex);
1623 		} else {
1624 			mutex_lock(&pci_pme_list_mutex);
1625 			list_for_each_entry(pme_dev, &pci_pme_list, list) {
1626 				if (pme_dev->dev == dev) {
1627 					list_del(&pme_dev->list);
1628 					kfree(pme_dev);
1629 					break;
1630 				}
1631 			}
1632 			mutex_unlock(&pci_pme_list_mutex);
1633 		}
1634 	}
1635 
1636 out:
1637 	dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled");
1638 }
1639 
1640 /**
1641  * __pci_enable_wake - enable PCI device as wakeup event source
1642  * @dev: PCI device affected
1643  * @state: PCI state from which device will issue wakeup events
1644  * @runtime: True if the events are to be generated at run time
1645  * @enable: True to enable event generation; false to disable
1646  *
1647  * This enables the device as a wakeup event source, or disables it.
1648  * When such events involves platform-specific hooks, those hooks are
1649  * called automatically by this routine.
1650  *
1651  * Devices with legacy power management (no standard PCI PM capabilities)
1652  * always require such platform hooks.
1653  *
1654  * RETURN VALUE:
1655  * 0 is returned on success
1656  * -EINVAL is returned if device is not supposed to wake up the system
1657  * Error code depending on the platform is returned if both the platform and
1658  * the native mechanism fail to enable the generation of wake-up events
1659  */
1660 int __pci_enable_wake(struct pci_dev *dev, pci_power_t state,
1661 		      bool runtime, bool enable)
1662 {
1663 	int ret = 0;
1664 
1665 	if (enable && !runtime && !device_may_wakeup(&dev->dev))
1666 		return -EINVAL;
1667 
1668 	/* Don't do the same thing twice in a row for one device. */
1669 	if (!!enable == !!dev->wakeup_prepared)
1670 		return 0;
1671 
1672 	/*
1673 	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1674 	 * Anderson we should be doing PME# wake enable followed by ACPI wake
1675 	 * enable.  To disable wake-up we call the platform first, for symmetry.
1676 	 */
1677 
1678 	if (enable) {
1679 		int error;
1680 
1681 		if (pci_pme_capable(dev, state))
1682 			pci_pme_active(dev, true);
1683 		else
1684 			ret = 1;
1685 		error = runtime ? platform_pci_run_wake(dev, true) :
1686 					platform_pci_sleep_wake(dev, true);
1687 		if (ret)
1688 			ret = error;
1689 		if (!ret)
1690 			dev->wakeup_prepared = true;
1691 	} else {
1692 		if (runtime)
1693 			platform_pci_run_wake(dev, false);
1694 		else
1695 			platform_pci_sleep_wake(dev, false);
1696 		pci_pme_active(dev, false);
1697 		dev->wakeup_prepared = false;
1698 	}
1699 
1700 	return ret;
1701 }
1702 EXPORT_SYMBOL(__pci_enable_wake);
1703 
1704 /**
1705  * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1706  * @dev: PCI device to prepare
1707  * @enable: True to enable wake-up event generation; false to disable
1708  *
1709  * Many drivers want the device to wake up the system from D3_hot or D3_cold
1710  * and this function allows them to set that up cleanly - pci_enable_wake()
1711  * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1712  * ordering constraints.
1713  *
1714  * This function only returns error code if the device is not capable of
1715  * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1716  * enable wake-up power for it.
1717  */
1718 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1719 {
1720 	return pci_pme_capable(dev, PCI_D3cold) ?
1721 			pci_enable_wake(dev, PCI_D3cold, enable) :
1722 			pci_enable_wake(dev, PCI_D3hot, enable);
1723 }
1724 
1725 /**
1726  * pci_target_state - find an appropriate low power state for a given PCI dev
1727  * @dev: PCI device
1728  *
1729  * Use underlying platform code to find a supported low power state for @dev.
1730  * If the platform can't manage @dev, return the deepest state from which it
1731  * can generate wake events, based on any available PME info.
1732  */
1733 pci_power_t pci_target_state(struct pci_dev *dev)
1734 {
1735 	pci_power_t target_state = PCI_D3hot;
1736 
1737 	if (platform_pci_power_manageable(dev)) {
1738 		/*
1739 		 * Call the platform to choose the target state of the device
1740 		 * and enable wake-up from this state if supported.
1741 		 */
1742 		pci_power_t state = platform_pci_choose_state(dev);
1743 
1744 		switch (state) {
1745 		case PCI_POWER_ERROR:
1746 		case PCI_UNKNOWN:
1747 			break;
1748 		case PCI_D1:
1749 		case PCI_D2:
1750 			if (pci_no_d1d2(dev))
1751 				break;
1752 		default:
1753 			target_state = state;
1754 		}
1755 	} else if (!dev->pm_cap) {
1756 		target_state = PCI_D0;
1757 	} else if (device_may_wakeup(&dev->dev)) {
1758 		/*
1759 		 * Find the deepest state from which the device can generate
1760 		 * wake-up events, make it the target state and enable device
1761 		 * to generate PME#.
1762 		 */
1763 		if (dev->pme_support) {
1764 			while (target_state
1765 			      && !(dev->pme_support & (1 << target_state)))
1766 				target_state--;
1767 		}
1768 	}
1769 
1770 	return target_state;
1771 }
1772 
1773 /**
1774  * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1775  * @dev: Device to handle.
1776  *
1777  * Choose the power state appropriate for the device depending on whether
1778  * it can wake up the system and/or is power manageable by the platform
1779  * (PCI_D3hot is the default) and put the device into that state.
1780  */
1781 int pci_prepare_to_sleep(struct pci_dev *dev)
1782 {
1783 	pci_power_t target_state = pci_target_state(dev);
1784 	int error;
1785 
1786 	if (target_state == PCI_POWER_ERROR)
1787 		return -EIO;
1788 
1789 	/* D3cold during system suspend/hibernate is not supported */
1790 	if (target_state > PCI_D3hot)
1791 		target_state = PCI_D3hot;
1792 
1793 	pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
1794 
1795 	error = pci_set_power_state(dev, target_state);
1796 
1797 	if (error)
1798 		pci_enable_wake(dev, target_state, false);
1799 
1800 	return error;
1801 }
1802 
1803 /**
1804  * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1805  * @dev: Device to handle.
1806  *
1807  * Disable device's system wake-up capability and put it into D0.
1808  */
1809 int pci_back_from_sleep(struct pci_dev *dev)
1810 {
1811 	pci_enable_wake(dev, PCI_D0, false);
1812 	return pci_set_power_state(dev, PCI_D0);
1813 }
1814 
1815 /**
1816  * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
1817  * @dev: PCI device being suspended.
1818  *
1819  * Prepare @dev to generate wake-up events at run time and put it into a low
1820  * power state.
1821  */
1822 int pci_finish_runtime_suspend(struct pci_dev *dev)
1823 {
1824 	pci_power_t target_state = pci_target_state(dev);
1825 	int error;
1826 
1827 	if (target_state == PCI_POWER_ERROR)
1828 		return -EIO;
1829 
1830 	dev->runtime_d3cold = target_state == PCI_D3cold;
1831 
1832 	__pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev));
1833 
1834 	error = pci_set_power_state(dev, target_state);
1835 
1836 	if (error) {
1837 		__pci_enable_wake(dev, target_state, true, false);
1838 		dev->runtime_d3cold = false;
1839 	}
1840 
1841 	return error;
1842 }
1843 
1844 /**
1845  * pci_dev_run_wake - Check if device can generate run-time wake-up events.
1846  * @dev: Device to check.
1847  *
1848  * Return true if the device itself is cabable of generating wake-up events
1849  * (through the platform or using the native PCIe PME) or if the device supports
1850  * PME and one of its upstream bridges can generate wake-up events.
1851  */
1852 bool pci_dev_run_wake(struct pci_dev *dev)
1853 {
1854 	struct pci_bus *bus = dev->bus;
1855 
1856 	if (device_run_wake(&dev->dev))
1857 		return true;
1858 
1859 	if (!dev->pme_support)
1860 		return false;
1861 
1862 	while (bus->parent) {
1863 		struct pci_dev *bridge = bus->self;
1864 
1865 		if (device_run_wake(&bridge->dev))
1866 			return true;
1867 
1868 		bus = bus->parent;
1869 	}
1870 
1871 	/* We have reached the root bus. */
1872 	if (bus->bridge)
1873 		return device_run_wake(bus->bridge);
1874 
1875 	return false;
1876 }
1877 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
1878 
1879 void pci_config_pm_runtime_get(struct pci_dev *pdev)
1880 {
1881 	struct device *dev = &pdev->dev;
1882 	struct device *parent = dev->parent;
1883 
1884 	if (parent)
1885 		pm_runtime_get_sync(parent);
1886 	pm_runtime_get_noresume(dev);
1887 	/*
1888 	 * pdev->current_state is set to PCI_D3cold during suspending,
1889 	 * so wait until suspending completes
1890 	 */
1891 	pm_runtime_barrier(dev);
1892 	/*
1893 	 * Only need to resume devices in D3cold, because config
1894 	 * registers are still accessible for devices suspended but
1895 	 * not in D3cold.
1896 	 */
1897 	if (pdev->current_state == PCI_D3cold)
1898 		pm_runtime_resume(dev);
1899 }
1900 
1901 void pci_config_pm_runtime_put(struct pci_dev *pdev)
1902 {
1903 	struct device *dev = &pdev->dev;
1904 	struct device *parent = dev->parent;
1905 
1906 	pm_runtime_put(dev);
1907 	if (parent)
1908 		pm_runtime_put_sync(parent);
1909 }
1910 
1911 /**
1912  * pci_pm_init - Initialize PM functions of given PCI device
1913  * @dev: PCI device to handle.
1914  */
1915 void pci_pm_init(struct pci_dev *dev)
1916 {
1917 	int pm;
1918 	u16 pmc;
1919 
1920 	pm_runtime_forbid(&dev->dev);
1921 	pm_runtime_set_active(&dev->dev);
1922 	pm_runtime_enable(&dev->dev);
1923 	device_enable_async_suspend(&dev->dev);
1924 	dev->wakeup_prepared = false;
1925 
1926 	dev->pm_cap = 0;
1927 
1928 	/* find PCI PM capability in list */
1929 	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
1930 	if (!pm)
1931 		return;
1932 	/* Check device's ability to generate PME# */
1933 	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
1934 
1935 	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
1936 		dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
1937 			pmc & PCI_PM_CAP_VER_MASK);
1938 		return;
1939 	}
1940 
1941 	dev->pm_cap = pm;
1942 	dev->d3_delay = PCI_PM_D3_WAIT;
1943 	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
1944 	dev->d3cold_allowed = true;
1945 
1946 	dev->d1_support = false;
1947 	dev->d2_support = false;
1948 	if (!pci_no_d1d2(dev)) {
1949 		if (pmc & PCI_PM_CAP_D1)
1950 			dev->d1_support = true;
1951 		if (pmc & PCI_PM_CAP_D2)
1952 			dev->d2_support = true;
1953 
1954 		if (dev->d1_support || dev->d2_support)
1955 			dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
1956 				   dev->d1_support ? " D1" : "",
1957 				   dev->d2_support ? " D2" : "");
1958 	}
1959 
1960 	pmc &= PCI_PM_CAP_PME_MASK;
1961 	if (pmc) {
1962 		dev_printk(KERN_DEBUG, &dev->dev,
1963 			 "PME# supported from%s%s%s%s%s\n",
1964 			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
1965 			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
1966 			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
1967 			 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
1968 			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
1969 		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
1970 		dev->pme_poll = true;
1971 		/*
1972 		 * Make device's PM flags reflect the wake-up capability, but
1973 		 * let the user space enable it to wake up the system as needed.
1974 		 */
1975 		device_set_wakeup_capable(&dev->dev, true);
1976 		/* Disable the PME# generation functionality */
1977 		pci_pme_active(dev, false);
1978 	} else {
1979 		dev->pme_support = 0;
1980 	}
1981 }
1982 
1983 static void pci_add_saved_cap(struct pci_dev *pci_dev,
1984 	struct pci_cap_saved_state *new_cap)
1985 {
1986 	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
1987 }
1988 
1989 /**
1990  * pci_add_save_buffer - allocate buffer for saving given capability registers
1991  * @dev: the PCI device
1992  * @cap: the capability to allocate the buffer for
1993  * @size: requested size of the buffer
1994  */
1995 static int pci_add_cap_save_buffer(
1996 	struct pci_dev *dev, char cap, unsigned int size)
1997 {
1998 	int pos;
1999 	struct pci_cap_saved_state *save_state;
2000 
2001 	pos = pci_find_capability(dev, cap);
2002 	if (pos <= 0)
2003 		return 0;
2004 
2005 	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2006 	if (!save_state)
2007 		return -ENOMEM;
2008 
2009 	save_state->cap.cap_nr = cap;
2010 	save_state->cap.size = size;
2011 	pci_add_saved_cap(dev, save_state);
2012 
2013 	return 0;
2014 }
2015 
2016 /**
2017  * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2018  * @dev: the PCI device
2019  */
2020 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2021 {
2022 	int error;
2023 
2024 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2025 					PCI_EXP_SAVE_REGS * sizeof(u16));
2026 	if (error)
2027 		dev_err(&dev->dev,
2028 			"unable to preallocate PCI Express save buffer\n");
2029 
2030 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2031 	if (error)
2032 		dev_err(&dev->dev,
2033 			"unable to preallocate PCI-X save buffer\n");
2034 }
2035 
2036 void pci_free_cap_save_buffers(struct pci_dev *dev)
2037 {
2038 	struct pci_cap_saved_state *tmp;
2039 	struct hlist_node *n;
2040 
2041 	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
2042 		kfree(tmp);
2043 }
2044 
2045 /**
2046  * pci_configure_ari - enable or disable ARI forwarding
2047  * @dev: the PCI device
2048  *
2049  * If @dev and its upstream bridge both support ARI, enable ARI in the
2050  * bridge.  Otherwise, disable ARI in the bridge.
2051  */
2052 void pci_configure_ari(struct pci_dev *dev)
2053 {
2054 	u32 cap;
2055 	struct pci_dev *bridge;
2056 
2057 	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
2058 		return;
2059 
2060 	bridge = dev->bus->self;
2061 	if (!bridge)
2062 		return;
2063 
2064 	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
2065 	if (!(cap & PCI_EXP_DEVCAP2_ARI))
2066 		return;
2067 
2068 	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
2069 		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
2070 					 PCI_EXP_DEVCTL2_ARI);
2071 		bridge->ari_enabled = 1;
2072 	} else {
2073 		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
2074 					   PCI_EXP_DEVCTL2_ARI);
2075 		bridge->ari_enabled = 0;
2076 	}
2077 }
2078 
2079 /**
2080  * pci_enable_ido - enable ID-based Ordering on a device
2081  * @dev: the PCI device
2082  * @type: which types of IDO to enable
2083  *
2084  * Enable ID-based ordering on @dev.  @type can contain the bits
2085  * %PCI_EXP_IDO_REQUEST and/or %PCI_EXP_IDO_COMPLETION to indicate
2086  * which types of transactions are allowed to be re-ordered.
2087  */
2088 void pci_enable_ido(struct pci_dev *dev, unsigned long type)
2089 {
2090 	u16 ctrl = 0;
2091 
2092 	if (type & PCI_EXP_IDO_REQUEST)
2093 		ctrl |= PCI_EXP_IDO_REQ_EN;
2094 	if (type & PCI_EXP_IDO_COMPLETION)
2095 		ctrl |= PCI_EXP_IDO_CMP_EN;
2096 	if (ctrl)
2097 		pcie_capability_set_word(dev, PCI_EXP_DEVCTL2, ctrl);
2098 }
2099 EXPORT_SYMBOL(pci_enable_ido);
2100 
2101 /**
2102  * pci_disable_ido - disable ID-based ordering on a device
2103  * @dev: the PCI device
2104  * @type: which types of IDO to disable
2105  */
2106 void pci_disable_ido(struct pci_dev *dev, unsigned long type)
2107 {
2108 	u16 ctrl = 0;
2109 
2110 	if (type & PCI_EXP_IDO_REQUEST)
2111 		ctrl |= PCI_EXP_IDO_REQ_EN;
2112 	if (type & PCI_EXP_IDO_COMPLETION)
2113 		ctrl |= PCI_EXP_IDO_CMP_EN;
2114 	if (ctrl)
2115 		pcie_capability_clear_word(dev, PCI_EXP_DEVCTL2, ctrl);
2116 }
2117 EXPORT_SYMBOL(pci_disable_ido);
2118 
2119 /**
2120  * pci_enable_obff - enable optimized buffer flush/fill
2121  * @dev: PCI device
2122  * @type: type of signaling to use
2123  *
2124  * Try to enable @type OBFF signaling on @dev.  It will try using WAKE#
2125  * signaling if possible, falling back to message signaling only if
2126  * WAKE# isn't supported.  @type should indicate whether the PCIe link
2127  * be brought out of L0s or L1 to send the message.  It should be either
2128  * %PCI_EXP_OBFF_SIGNAL_ALWAYS or %PCI_OBFF_SIGNAL_L0.
2129  *
2130  * If your device can benefit from receiving all messages, even at the
2131  * power cost of bringing the link back up from a low power state, use
2132  * %PCI_EXP_OBFF_SIGNAL_ALWAYS.  Otherwise, use %PCI_OBFF_SIGNAL_L0 (the
2133  * preferred type).
2134  *
2135  * RETURNS:
2136  * Zero on success, appropriate error number on failure.
2137  */
2138 int pci_enable_obff(struct pci_dev *dev, enum pci_obff_signal_type type)
2139 {
2140 	u32 cap;
2141 	u16 ctrl;
2142 	int ret;
2143 
2144 	pcie_capability_read_dword(dev, PCI_EXP_DEVCAP2, &cap);
2145 	if (!(cap & PCI_EXP_OBFF_MASK))
2146 		return -ENOTSUPP; /* no OBFF support at all */
2147 
2148 	/* Make sure the topology supports OBFF as well */
2149 	if (dev->bus->self) {
2150 		ret = pci_enable_obff(dev->bus->self, type);
2151 		if (ret)
2152 			return ret;
2153 	}
2154 
2155 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &ctrl);
2156 	if (cap & PCI_EXP_OBFF_WAKE)
2157 		ctrl |= PCI_EXP_OBFF_WAKE_EN;
2158 	else {
2159 		switch (type) {
2160 		case PCI_EXP_OBFF_SIGNAL_L0:
2161 			if (!(ctrl & PCI_EXP_OBFF_WAKE_EN))
2162 				ctrl |= PCI_EXP_OBFF_MSGA_EN;
2163 			break;
2164 		case PCI_EXP_OBFF_SIGNAL_ALWAYS:
2165 			ctrl &= ~PCI_EXP_OBFF_WAKE_EN;
2166 			ctrl |= PCI_EXP_OBFF_MSGB_EN;
2167 			break;
2168 		default:
2169 			WARN(1, "bad OBFF signal type\n");
2170 			return -ENOTSUPP;
2171 		}
2172 	}
2173 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, ctrl);
2174 
2175 	return 0;
2176 }
2177 EXPORT_SYMBOL(pci_enable_obff);
2178 
2179 /**
2180  * pci_disable_obff - disable optimized buffer flush/fill
2181  * @dev: PCI device
2182  *
2183  * Disable OBFF on @dev.
2184  */
2185 void pci_disable_obff(struct pci_dev *dev)
2186 {
2187 	pcie_capability_clear_word(dev, PCI_EXP_DEVCTL2, PCI_EXP_OBFF_WAKE_EN);
2188 }
2189 EXPORT_SYMBOL(pci_disable_obff);
2190 
2191 /**
2192  * pci_ltr_supported - check whether a device supports LTR
2193  * @dev: PCI device
2194  *
2195  * RETURNS:
2196  * True if @dev supports latency tolerance reporting, false otherwise.
2197  */
2198 static bool pci_ltr_supported(struct pci_dev *dev)
2199 {
2200 	u32 cap;
2201 
2202 	pcie_capability_read_dword(dev, PCI_EXP_DEVCAP2, &cap);
2203 
2204 	return cap & PCI_EXP_DEVCAP2_LTR;
2205 }
2206 
2207 /**
2208  * pci_enable_ltr - enable latency tolerance reporting
2209  * @dev: PCI device
2210  *
2211  * Enable LTR on @dev if possible, which means enabling it first on
2212  * upstream ports.
2213  *
2214  * RETURNS:
2215  * Zero on success, errno on failure.
2216  */
2217 int pci_enable_ltr(struct pci_dev *dev)
2218 {
2219 	int ret;
2220 
2221 	/* Only primary function can enable/disable LTR */
2222 	if (PCI_FUNC(dev->devfn) != 0)
2223 		return -EINVAL;
2224 
2225 	if (!pci_ltr_supported(dev))
2226 		return -ENOTSUPP;
2227 
2228 	/* Enable upstream ports first */
2229 	if (dev->bus->self) {
2230 		ret = pci_enable_ltr(dev->bus->self);
2231 		if (ret)
2232 			return ret;
2233 	}
2234 
2235 	return pcie_capability_set_word(dev, PCI_EXP_DEVCTL2, PCI_EXP_LTR_EN);
2236 }
2237 EXPORT_SYMBOL(pci_enable_ltr);
2238 
2239 /**
2240  * pci_disable_ltr - disable latency tolerance reporting
2241  * @dev: PCI device
2242  */
2243 void pci_disable_ltr(struct pci_dev *dev)
2244 {
2245 	/* Only primary function can enable/disable LTR */
2246 	if (PCI_FUNC(dev->devfn) != 0)
2247 		return;
2248 
2249 	if (!pci_ltr_supported(dev))
2250 		return;
2251 
2252 	pcie_capability_clear_word(dev, PCI_EXP_DEVCTL2, PCI_EXP_LTR_EN);
2253 }
2254 EXPORT_SYMBOL(pci_disable_ltr);
2255 
2256 static int __pci_ltr_scale(int *val)
2257 {
2258 	int scale = 0;
2259 
2260 	while (*val > 1023) {
2261 		*val = (*val + 31) / 32;
2262 		scale++;
2263 	}
2264 	return scale;
2265 }
2266 
2267 /**
2268  * pci_set_ltr - set LTR latency values
2269  * @dev: PCI device
2270  * @snoop_lat_ns: snoop latency in nanoseconds
2271  * @nosnoop_lat_ns: nosnoop latency in nanoseconds
2272  *
2273  * Figure out the scale and set the LTR values accordingly.
2274  */
2275 int pci_set_ltr(struct pci_dev *dev, int snoop_lat_ns, int nosnoop_lat_ns)
2276 {
2277 	int pos, ret, snoop_scale, nosnoop_scale;
2278 	u16 val;
2279 
2280 	if (!pci_ltr_supported(dev))
2281 		return -ENOTSUPP;
2282 
2283 	snoop_scale = __pci_ltr_scale(&snoop_lat_ns);
2284 	nosnoop_scale = __pci_ltr_scale(&nosnoop_lat_ns);
2285 
2286 	if (snoop_lat_ns > PCI_LTR_VALUE_MASK ||
2287 	    nosnoop_lat_ns > PCI_LTR_VALUE_MASK)
2288 		return -EINVAL;
2289 
2290 	if ((snoop_scale > (PCI_LTR_SCALE_MASK >> PCI_LTR_SCALE_SHIFT)) ||
2291 	    (nosnoop_scale > (PCI_LTR_SCALE_MASK >> PCI_LTR_SCALE_SHIFT)))
2292 		return -EINVAL;
2293 
2294 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
2295 	if (!pos)
2296 		return -ENOTSUPP;
2297 
2298 	val = (snoop_scale << PCI_LTR_SCALE_SHIFT) | snoop_lat_ns;
2299 	ret = pci_write_config_word(dev, pos + PCI_LTR_MAX_SNOOP_LAT, val);
2300 	if (ret != 4)
2301 		return -EIO;
2302 
2303 	val = (nosnoop_scale << PCI_LTR_SCALE_SHIFT) | nosnoop_lat_ns;
2304 	ret = pci_write_config_word(dev, pos + PCI_LTR_MAX_NOSNOOP_LAT, val);
2305 	if (ret != 4)
2306 		return -EIO;
2307 
2308 	return 0;
2309 }
2310 EXPORT_SYMBOL(pci_set_ltr);
2311 
2312 static int pci_acs_enable;
2313 
2314 /**
2315  * pci_request_acs - ask for ACS to be enabled if supported
2316  */
2317 void pci_request_acs(void)
2318 {
2319 	pci_acs_enable = 1;
2320 }
2321 
2322 /**
2323  * pci_enable_acs - enable ACS if hardware support it
2324  * @dev: the PCI device
2325  */
2326 void pci_enable_acs(struct pci_dev *dev)
2327 {
2328 	int pos;
2329 	u16 cap;
2330 	u16 ctrl;
2331 
2332 	if (!pci_acs_enable)
2333 		return;
2334 
2335 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2336 	if (!pos)
2337 		return;
2338 
2339 	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2340 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2341 
2342 	/* Source Validation */
2343 	ctrl |= (cap & PCI_ACS_SV);
2344 
2345 	/* P2P Request Redirect */
2346 	ctrl |= (cap & PCI_ACS_RR);
2347 
2348 	/* P2P Completion Redirect */
2349 	ctrl |= (cap & PCI_ACS_CR);
2350 
2351 	/* Upstream Forwarding */
2352 	ctrl |= (cap & PCI_ACS_UF);
2353 
2354 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2355 }
2356 
2357 /**
2358  * pci_acs_enabled - test ACS against required flags for a given device
2359  * @pdev: device to test
2360  * @acs_flags: required PCI ACS flags
2361  *
2362  * Return true if the device supports the provided flags.  Automatically
2363  * filters out flags that are not implemented on multifunction devices.
2364  */
2365 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2366 {
2367 	int pos, ret;
2368 	u16 ctrl;
2369 
2370 	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2371 	if (ret >= 0)
2372 		return ret > 0;
2373 
2374 	if (!pci_is_pcie(pdev))
2375 		return false;
2376 
2377 	/* Filter out flags not applicable to multifunction */
2378 	if (pdev->multifunction)
2379 		acs_flags &= (PCI_ACS_RR | PCI_ACS_CR |
2380 			      PCI_ACS_EC | PCI_ACS_DT);
2381 
2382 	if (pci_pcie_type(pdev) == PCI_EXP_TYPE_DOWNSTREAM ||
2383 	    pci_pcie_type(pdev) == PCI_EXP_TYPE_ROOT_PORT ||
2384 	    pdev->multifunction) {
2385 		pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2386 		if (!pos)
2387 			return false;
2388 
2389 		pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2390 		if ((ctrl & acs_flags) != acs_flags)
2391 			return false;
2392 	}
2393 
2394 	return true;
2395 }
2396 
2397 /**
2398  * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2399  * @start: starting downstream device
2400  * @end: ending upstream device or NULL to search to the root bus
2401  * @acs_flags: required flags
2402  *
2403  * Walk up a device tree from start to end testing PCI ACS support.  If
2404  * any step along the way does not support the required flags, return false.
2405  */
2406 bool pci_acs_path_enabled(struct pci_dev *start,
2407 			  struct pci_dev *end, u16 acs_flags)
2408 {
2409 	struct pci_dev *pdev, *parent = start;
2410 
2411 	do {
2412 		pdev = parent;
2413 
2414 		if (!pci_acs_enabled(pdev, acs_flags))
2415 			return false;
2416 
2417 		if (pci_is_root_bus(pdev->bus))
2418 			return (end == NULL);
2419 
2420 		parent = pdev->bus->self;
2421 	} while (pdev != end);
2422 
2423 	return true;
2424 }
2425 
2426 /**
2427  * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2428  * @dev: the PCI device
2429  * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2430  *
2431  * Perform INTx swizzling for a device behind one level of bridge.  This is
2432  * required by section 9.1 of the PCI-to-PCI bridge specification for devices
2433  * behind bridges on add-in cards.  For devices with ARI enabled, the slot
2434  * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2435  * the PCI Express Base Specification, Revision 2.1)
2436  */
2437 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
2438 {
2439 	int slot;
2440 
2441 	if (pci_ari_enabled(dev->bus))
2442 		slot = 0;
2443 	else
2444 		slot = PCI_SLOT(dev->devfn);
2445 
2446 	return (((pin - 1) + slot) % 4) + 1;
2447 }
2448 
2449 int
2450 pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
2451 {
2452 	u8 pin;
2453 
2454 	pin = dev->pin;
2455 	if (!pin)
2456 		return -1;
2457 
2458 	while (!pci_is_root_bus(dev->bus)) {
2459 		pin = pci_swizzle_interrupt_pin(dev, pin);
2460 		dev = dev->bus->self;
2461 	}
2462 	*bridge = dev;
2463 	return pin;
2464 }
2465 
2466 /**
2467  * pci_common_swizzle - swizzle INTx all the way to root bridge
2468  * @dev: the PCI device
2469  * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2470  *
2471  * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
2472  * bridges all the way up to a PCI root bus.
2473  */
2474 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
2475 {
2476 	u8 pin = *pinp;
2477 
2478 	while (!pci_is_root_bus(dev->bus)) {
2479 		pin = pci_swizzle_interrupt_pin(dev, pin);
2480 		dev = dev->bus->self;
2481 	}
2482 	*pinp = pin;
2483 	return PCI_SLOT(dev->devfn);
2484 }
2485 
2486 /**
2487  *	pci_release_region - Release a PCI bar
2488  *	@pdev: PCI device whose resources were previously reserved by pci_request_region
2489  *	@bar: BAR to release
2490  *
2491  *	Releases the PCI I/O and memory resources previously reserved by a
2492  *	successful call to pci_request_region.  Call this function only
2493  *	after all use of the PCI regions has ceased.
2494  */
2495 void pci_release_region(struct pci_dev *pdev, int bar)
2496 {
2497 	struct pci_devres *dr;
2498 
2499 	if (pci_resource_len(pdev, bar) == 0)
2500 		return;
2501 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
2502 		release_region(pci_resource_start(pdev, bar),
2503 				pci_resource_len(pdev, bar));
2504 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
2505 		release_mem_region(pci_resource_start(pdev, bar),
2506 				pci_resource_len(pdev, bar));
2507 
2508 	dr = find_pci_dr(pdev);
2509 	if (dr)
2510 		dr->region_mask &= ~(1 << bar);
2511 }
2512 
2513 /**
2514  *	__pci_request_region - Reserved PCI I/O and memory resource
2515  *	@pdev: PCI device whose resources are to be reserved
2516  *	@bar: BAR to be reserved
2517  *	@res_name: Name to be associated with resource.
2518  *	@exclusive: whether the region access is exclusive or not
2519  *
2520  *	Mark the PCI region associated with PCI device @pdev BR @bar as
2521  *	being reserved by owner @res_name.  Do not access any
2522  *	address inside the PCI regions unless this call returns
2523  *	successfully.
2524  *
2525  *	If @exclusive is set, then the region is marked so that userspace
2526  *	is explicitly not allowed to map the resource via /dev/mem or
2527  * 	sysfs MMIO access.
2528  *
2529  *	Returns 0 on success, or %EBUSY on error.  A warning
2530  *	message is also printed on failure.
2531  */
2532 static int __pci_request_region(struct pci_dev *pdev, int bar, const char *res_name,
2533 									int exclusive)
2534 {
2535 	struct pci_devres *dr;
2536 
2537 	if (pci_resource_len(pdev, bar) == 0)
2538 		return 0;
2539 
2540 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
2541 		if (!request_region(pci_resource_start(pdev, bar),
2542 			    pci_resource_len(pdev, bar), res_name))
2543 			goto err_out;
2544 	}
2545 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
2546 		if (!__request_mem_region(pci_resource_start(pdev, bar),
2547 					pci_resource_len(pdev, bar), res_name,
2548 					exclusive))
2549 			goto err_out;
2550 	}
2551 
2552 	dr = find_pci_dr(pdev);
2553 	if (dr)
2554 		dr->region_mask |= 1 << bar;
2555 
2556 	return 0;
2557 
2558 err_out:
2559 	dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
2560 		 &pdev->resource[bar]);
2561 	return -EBUSY;
2562 }
2563 
2564 /**
2565  *	pci_request_region - Reserve PCI I/O and memory resource
2566  *	@pdev: PCI device whose resources are to be reserved
2567  *	@bar: BAR to be reserved
2568  *	@res_name: Name to be associated with resource
2569  *
2570  *	Mark the PCI region associated with PCI device @pdev BAR @bar as
2571  *	being reserved by owner @res_name.  Do not access any
2572  *	address inside the PCI regions unless this call returns
2573  *	successfully.
2574  *
2575  *	Returns 0 on success, or %EBUSY on error.  A warning
2576  *	message is also printed on failure.
2577  */
2578 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
2579 {
2580 	return __pci_request_region(pdev, bar, res_name, 0);
2581 }
2582 
2583 /**
2584  *	pci_request_region_exclusive - Reserved PCI I/O and memory resource
2585  *	@pdev: PCI device whose resources are to be reserved
2586  *	@bar: BAR to be reserved
2587  *	@res_name: Name to be associated with resource.
2588  *
2589  *	Mark the PCI region associated with PCI device @pdev BR @bar as
2590  *	being reserved by owner @res_name.  Do not access any
2591  *	address inside the PCI regions unless this call returns
2592  *	successfully.
2593  *
2594  *	Returns 0 on success, or %EBUSY on error.  A warning
2595  *	message is also printed on failure.
2596  *
2597  *	The key difference that _exclusive makes it that userspace is
2598  *	explicitly not allowed to map the resource via /dev/mem or
2599  * 	sysfs.
2600  */
2601 int pci_request_region_exclusive(struct pci_dev *pdev, int bar, const char *res_name)
2602 {
2603 	return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
2604 }
2605 /**
2606  * pci_release_selected_regions - Release selected PCI I/O and memory resources
2607  * @pdev: PCI device whose resources were previously reserved
2608  * @bars: Bitmask of BARs to be released
2609  *
2610  * Release selected PCI I/O and memory resources previously reserved.
2611  * Call this function only after all use of the PCI regions has ceased.
2612  */
2613 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
2614 {
2615 	int i;
2616 
2617 	for (i = 0; i < 6; i++)
2618 		if (bars & (1 << i))
2619 			pci_release_region(pdev, i);
2620 }
2621 
2622 int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
2623 				 const char *res_name, int excl)
2624 {
2625 	int i;
2626 
2627 	for (i = 0; i < 6; i++)
2628 		if (bars & (1 << i))
2629 			if (__pci_request_region(pdev, i, res_name, excl))
2630 				goto err_out;
2631 	return 0;
2632 
2633 err_out:
2634 	while(--i >= 0)
2635 		if (bars & (1 << i))
2636 			pci_release_region(pdev, i);
2637 
2638 	return -EBUSY;
2639 }
2640 
2641 
2642 /**
2643  * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
2644  * @pdev: PCI device whose resources are to be reserved
2645  * @bars: Bitmask of BARs to be requested
2646  * @res_name: Name to be associated with resource
2647  */
2648 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
2649 				 const char *res_name)
2650 {
2651 	return __pci_request_selected_regions(pdev, bars, res_name, 0);
2652 }
2653 
2654 int pci_request_selected_regions_exclusive(struct pci_dev *pdev,
2655 				 int bars, const char *res_name)
2656 {
2657 	return __pci_request_selected_regions(pdev, bars, res_name,
2658 			IORESOURCE_EXCLUSIVE);
2659 }
2660 
2661 /**
2662  *	pci_release_regions - Release reserved PCI I/O and memory resources
2663  *	@pdev: PCI device whose resources were previously reserved by pci_request_regions
2664  *
2665  *	Releases all PCI I/O and memory resources previously reserved by a
2666  *	successful call to pci_request_regions.  Call this function only
2667  *	after all use of the PCI regions has ceased.
2668  */
2669 
2670 void pci_release_regions(struct pci_dev *pdev)
2671 {
2672 	pci_release_selected_regions(pdev, (1 << 6) - 1);
2673 }
2674 
2675 /**
2676  *	pci_request_regions - Reserved PCI I/O and memory resources
2677  *	@pdev: PCI device whose resources are to be reserved
2678  *	@res_name: Name to be associated with resource.
2679  *
2680  *	Mark all PCI regions associated with PCI device @pdev as
2681  *	being reserved by owner @res_name.  Do not access any
2682  *	address inside the PCI regions unless this call returns
2683  *	successfully.
2684  *
2685  *	Returns 0 on success, or %EBUSY on error.  A warning
2686  *	message is also printed on failure.
2687  */
2688 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
2689 {
2690 	return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
2691 }
2692 
2693 /**
2694  *	pci_request_regions_exclusive - Reserved PCI I/O and memory resources
2695  *	@pdev: PCI device whose resources are to be reserved
2696  *	@res_name: Name to be associated with resource.
2697  *
2698  *	Mark all PCI regions associated with PCI device @pdev as
2699  *	being reserved by owner @res_name.  Do not access any
2700  *	address inside the PCI regions unless this call returns
2701  *	successfully.
2702  *
2703  *	pci_request_regions_exclusive() will mark the region so that
2704  * 	/dev/mem and the sysfs MMIO access will not be allowed.
2705  *
2706  *	Returns 0 on success, or %EBUSY on error.  A warning
2707  *	message is also printed on failure.
2708  */
2709 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
2710 {
2711 	return pci_request_selected_regions_exclusive(pdev,
2712 					((1 << 6) - 1), res_name);
2713 }
2714 
2715 static void __pci_set_master(struct pci_dev *dev, bool enable)
2716 {
2717 	u16 old_cmd, cmd;
2718 
2719 	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
2720 	if (enable)
2721 		cmd = old_cmd | PCI_COMMAND_MASTER;
2722 	else
2723 		cmd = old_cmd & ~PCI_COMMAND_MASTER;
2724 	if (cmd != old_cmd) {
2725 		dev_dbg(&dev->dev, "%s bus mastering\n",
2726 			enable ? "enabling" : "disabling");
2727 		pci_write_config_word(dev, PCI_COMMAND, cmd);
2728 	}
2729 	dev->is_busmaster = enable;
2730 }
2731 
2732 /**
2733  * pcibios_setup - process "pci=" kernel boot arguments
2734  * @str: string used to pass in "pci=" kernel boot arguments
2735  *
2736  * Process kernel boot arguments.  This is the default implementation.
2737  * Architecture specific implementations can override this as necessary.
2738  */
2739 char * __weak __init pcibios_setup(char *str)
2740 {
2741 	return str;
2742 }
2743 
2744 /**
2745  * pcibios_set_master - enable PCI bus-mastering for device dev
2746  * @dev: the PCI device to enable
2747  *
2748  * Enables PCI bus-mastering for the device.  This is the default
2749  * implementation.  Architecture specific implementations can override
2750  * this if necessary.
2751  */
2752 void __weak pcibios_set_master(struct pci_dev *dev)
2753 {
2754 	u8 lat;
2755 
2756 	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
2757 	if (pci_is_pcie(dev))
2758 		return;
2759 
2760 	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
2761 	if (lat < 16)
2762 		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
2763 	else if (lat > pcibios_max_latency)
2764 		lat = pcibios_max_latency;
2765 	else
2766 		return;
2767 	dev_printk(KERN_DEBUG, &dev->dev, "setting latency timer to %d\n", lat);
2768 	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
2769 }
2770 
2771 /**
2772  * pci_set_master - enables bus-mastering for device dev
2773  * @dev: the PCI device to enable
2774  *
2775  * Enables bus-mastering on the device and calls pcibios_set_master()
2776  * to do the needed arch specific settings.
2777  */
2778 void pci_set_master(struct pci_dev *dev)
2779 {
2780 	__pci_set_master(dev, true);
2781 	pcibios_set_master(dev);
2782 }
2783 
2784 /**
2785  * pci_clear_master - disables bus-mastering for device dev
2786  * @dev: the PCI device to disable
2787  */
2788 void pci_clear_master(struct pci_dev *dev)
2789 {
2790 	__pci_set_master(dev, false);
2791 }
2792 
2793 /**
2794  * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
2795  * @dev: the PCI device for which MWI is to be enabled
2796  *
2797  * Helper function for pci_set_mwi.
2798  * Originally copied from drivers/net/acenic.c.
2799  * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
2800  *
2801  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2802  */
2803 int pci_set_cacheline_size(struct pci_dev *dev)
2804 {
2805 	u8 cacheline_size;
2806 
2807 	if (!pci_cache_line_size)
2808 		return -EINVAL;
2809 
2810 	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
2811 	   equal to or multiple of the right value. */
2812 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2813 	if (cacheline_size >= pci_cache_line_size &&
2814 	    (cacheline_size % pci_cache_line_size) == 0)
2815 		return 0;
2816 
2817 	/* Write the correct value. */
2818 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
2819 	/* Read it back. */
2820 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2821 	if (cacheline_size == pci_cache_line_size)
2822 		return 0;
2823 
2824 	dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not "
2825 		   "supported\n", pci_cache_line_size << 2);
2826 
2827 	return -EINVAL;
2828 }
2829 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
2830 
2831 #ifdef PCI_DISABLE_MWI
2832 int pci_set_mwi(struct pci_dev *dev)
2833 {
2834 	return 0;
2835 }
2836 
2837 int pci_try_set_mwi(struct pci_dev *dev)
2838 {
2839 	return 0;
2840 }
2841 
2842 void pci_clear_mwi(struct pci_dev *dev)
2843 {
2844 }
2845 
2846 #else
2847 
2848 /**
2849  * pci_set_mwi - enables memory-write-invalidate PCI transaction
2850  * @dev: the PCI device for which MWI is enabled
2851  *
2852  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2853  *
2854  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2855  */
2856 int
2857 pci_set_mwi(struct pci_dev *dev)
2858 {
2859 	int rc;
2860 	u16 cmd;
2861 
2862 	rc = pci_set_cacheline_size(dev);
2863 	if (rc)
2864 		return rc;
2865 
2866 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
2867 	if (! (cmd & PCI_COMMAND_INVALIDATE)) {
2868 		dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
2869 		cmd |= PCI_COMMAND_INVALIDATE;
2870 		pci_write_config_word(dev, PCI_COMMAND, cmd);
2871 	}
2872 
2873 	return 0;
2874 }
2875 
2876 /**
2877  * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
2878  * @dev: the PCI device for which MWI is enabled
2879  *
2880  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2881  * Callers are not required to check the return value.
2882  *
2883  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2884  */
2885 int pci_try_set_mwi(struct pci_dev *dev)
2886 {
2887 	int rc = pci_set_mwi(dev);
2888 	return rc;
2889 }
2890 
2891 /**
2892  * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
2893  * @dev: the PCI device to disable
2894  *
2895  * Disables PCI Memory-Write-Invalidate transaction on the device
2896  */
2897 void
2898 pci_clear_mwi(struct pci_dev *dev)
2899 {
2900 	u16 cmd;
2901 
2902 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
2903 	if (cmd & PCI_COMMAND_INVALIDATE) {
2904 		cmd &= ~PCI_COMMAND_INVALIDATE;
2905 		pci_write_config_word(dev, PCI_COMMAND, cmd);
2906 	}
2907 }
2908 #endif /* ! PCI_DISABLE_MWI */
2909 
2910 /**
2911  * pci_intx - enables/disables PCI INTx for device dev
2912  * @pdev: the PCI device to operate on
2913  * @enable: boolean: whether to enable or disable PCI INTx
2914  *
2915  * Enables/disables PCI INTx for device dev
2916  */
2917 void
2918 pci_intx(struct pci_dev *pdev, int enable)
2919 {
2920 	u16 pci_command, new;
2921 
2922 	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
2923 
2924 	if (enable) {
2925 		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
2926 	} else {
2927 		new = pci_command | PCI_COMMAND_INTX_DISABLE;
2928 	}
2929 
2930 	if (new != pci_command) {
2931 		struct pci_devres *dr;
2932 
2933 		pci_write_config_word(pdev, PCI_COMMAND, new);
2934 
2935 		dr = find_pci_dr(pdev);
2936 		if (dr && !dr->restore_intx) {
2937 			dr->restore_intx = 1;
2938 			dr->orig_intx = !enable;
2939 		}
2940 	}
2941 }
2942 
2943 /**
2944  * pci_intx_mask_supported - probe for INTx masking support
2945  * @dev: the PCI device to operate on
2946  *
2947  * Check if the device dev support INTx masking via the config space
2948  * command word.
2949  */
2950 bool pci_intx_mask_supported(struct pci_dev *dev)
2951 {
2952 	bool mask_supported = false;
2953 	u16 orig, new;
2954 
2955 	if (dev->broken_intx_masking)
2956 		return false;
2957 
2958 	pci_cfg_access_lock(dev);
2959 
2960 	pci_read_config_word(dev, PCI_COMMAND, &orig);
2961 	pci_write_config_word(dev, PCI_COMMAND,
2962 			      orig ^ PCI_COMMAND_INTX_DISABLE);
2963 	pci_read_config_word(dev, PCI_COMMAND, &new);
2964 
2965 	/*
2966 	 * There's no way to protect against hardware bugs or detect them
2967 	 * reliably, but as long as we know what the value should be, let's
2968 	 * go ahead and check it.
2969 	 */
2970 	if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) {
2971 		dev_err(&dev->dev, "Command register changed from "
2972 			"0x%x to 0x%x: driver or hardware bug?\n", orig, new);
2973 	} else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) {
2974 		mask_supported = true;
2975 		pci_write_config_word(dev, PCI_COMMAND, orig);
2976 	}
2977 
2978 	pci_cfg_access_unlock(dev);
2979 	return mask_supported;
2980 }
2981 EXPORT_SYMBOL_GPL(pci_intx_mask_supported);
2982 
2983 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
2984 {
2985 	struct pci_bus *bus = dev->bus;
2986 	bool mask_updated = true;
2987 	u32 cmd_status_dword;
2988 	u16 origcmd, newcmd;
2989 	unsigned long flags;
2990 	bool irq_pending;
2991 
2992 	/*
2993 	 * We do a single dword read to retrieve both command and status.
2994 	 * Document assumptions that make this possible.
2995 	 */
2996 	BUILD_BUG_ON(PCI_COMMAND % 4);
2997 	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
2998 
2999 	raw_spin_lock_irqsave(&pci_lock, flags);
3000 
3001 	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
3002 
3003 	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
3004 
3005 	/*
3006 	 * Check interrupt status register to see whether our device
3007 	 * triggered the interrupt (when masking) or the next IRQ is
3008 	 * already pending (when unmasking).
3009 	 */
3010 	if (mask != irq_pending) {
3011 		mask_updated = false;
3012 		goto done;
3013 	}
3014 
3015 	origcmd = cmd_status_dword;
3016 	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
3017 	if (mask)
3018 		newcmd |= PCI_COMMAND_INTX_DISABLE;
3019 	if (newcmd != origcmd)
3020 		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
3021 
3022 done:
3023 	raw_spin_unlock_irqrestore(&pci_lock, flags);
3024 
3025 	return mask_updated;
3026 }
3027 
3028 /**
3029  * pci_check_and_mask_intx - mask INTx on pending interrupt
3030  * @dev: the PCI device to operate on
3031  *
3032  * Check if the device dev has its INTx line asserted, mask it and
3033  * return true in that case. False is returned if not interrupt was
3034  * pending.
3035  */
3036 bool pci_check_and_mask_intx(struct pci_dev *dev)
3037 {
3038 	return pci_check_and_set_intx_mask(dev, true);
3039 }
3040 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
3041 
3042 /**
3043  * pci_check_and_mask_intx - unmask INTx of no interrupt is pending
3044  * @dev: the PCI device to operate on
3045  *
3046  * Check if the device dev has its INTx line asserted, unmask it if not
3047  * and return true. False is returned and the mask remains active if
3048  * there was still an interrupt pending.
3049  */
3050 bool pci_check_and_unmask_intx(struct pci_dev *dev)
3051 {
3052 	return pci_check_and_set_intx_mask(dev, false);
3053 }
3054 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
3055 
3056 /**
3057  * pci_msi_off - disables any msi or msix capabilities
3058  * @dev: the PCI device to operate on
3059  *
3060  * If you want to use msi see pci_enable_msi and friends.
3061  * This is a lower level primitive that allows us to disable
3062  * msi operation at the device level.
3063  */
3064 void pci_msi_off(struct pci_dev *dev)
3065 {
3066 	int pos;
3067 	u16 control;
3068 
3069 	pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
3070 	if (pos) {
3071 		pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
3072 		control &= ~PCI_MSI_FLAGS_ENABLE;
3073 		pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
3074 	}
3075 	pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
3076 	if (pos) {
3077 		pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
3078 		control &= ~PCI_MSIX_FLAGS_ENABLE;
3079 		pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
3080 	}
3081 }
3082 EXPORT_SYMBOL_GPL(pci_msi_off);
3083 
3084 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
3085 {
3086 	return dma_set_max_seg_size(&dev->dev, size);
3087 }
3088 EXPORT_SYMBOL(pci_set_dma_max_seg_size);
3089 
3090 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
3091 {
3092 	return dma_set_seg_boundary(&dev->dev, mask);
3093 }
3094 EXPORT_SYMBOL(pci_set_dma_seg_boundary);
3095 
3096 static int pcie_flr(struct pci_dev *dev, int probe)
3097 {
3098 	int i;
3099 	u32 cap;
3100 	u16 status;
3101 
3102 	pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
3103 	if (!(cap & PCI_EXP_DEVCAP_FLR))
3104 		return -ENOTTY;
3105 
3106 	if (probe)
3107 		return 0;
3108 
3109 	/* Wait for Transaction Pending bit clean */
3110 	for (i = 0; i < 4; i++) {
3111 		if (i)
3112 			msleep((1 << (i - 1)) * 100);
3113 
3114 		pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
3115 		if (!(status & PCI_EXP_DEVSTA_TRPND))
3116 			goto clear;
3117 	}
3118 
3119 	dev_err(&dev->dev, "transaction is not cleared; "
3120 			"proceeding with reset anyway\n");
3121 
3122 clear:
3123 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
3124 
3125 	msleep(100);
3126 
3127 	return 0;
3128 }
3129 
3130 static int pci_af_flr(struct pci_dev *dev, int probe)
3131 {
3132 	int i;
3133 	int pos;
3134 	u8 cap;
3135 	u8 status;
3136 
3137 	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
3138 	if (!pos)
3139 		return -ENOTTY;
3140 
3141 	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
3142 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
3143 		return -ENOTTY;
3144 
3145 	if (probe)
3146 		return 0;
3147 
3148 	/* Wait for Transaction Pending bit clean */
3149 	for (i = 0; i < 4; i++) {
3150 		if (i)
3151 			msleep((1 << (i - 1)) * 100);
3152 
3153 		pci_read_config_byte(dev, pos + PCI_AF_STATUS, &status);
3154 		if (!(status & PCI_AF_STATUS_TP))
3155 			goto clear;
3156 	}
3157 
3158 	dev_err(&dev->dev, "transaction is not cleared; "
3159 			"proceeding with reset anyway\n");
3160 
3161 clear:
3162 	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
3163 	msleep(100);
3164 
3165 	return 0;
3166 }
3167 
3168 /**
3169  * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
3170  * @dev: Device to reset.
3171  * @probe: If set, only check if the device can be reset this way.
3172  *
3173  * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
3174  * unset, it will be reinitialized internally when going from PCI_D3hot to
3175  * PCI_D0.  If that's the case and the device is not in a low-power state
3176  * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
3177  *
3178  * NOTE: This causes the caller to sleep for twice the device power transition
3179  * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
3180  * by devault (i.e. unless the @dev's d3_delay field has a different value).
3181  * Moreover, only devices in D0 can be reset by this function.
3182  */
3183 static int pci_pm_reset(struct pci_dev *dev, int probe)
3184 {
3185 	u16 csr;
3186 
3187 	if (!dev->pm_cap)
3188 		return -ENOTTY;
3189 
3190 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
3191 	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
3192 		return -ENOTTY;
3193 
3194 	if (probe)
3195 		return 0;
3196 
3197 	if (dev->current_state != PCI_D0)
3198 		return -EINVAL;
3199 
3200 	csr &= ~PCI_PM_CTRL_STATE_MASK;
3201 	csr |= PCI_D3hot;
3202 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3203 	pci_dev_d3_sleep(dev);
3204 
3205 	csr &= ~PCI_PM_CTRL_STATE_MASK;
3206 	csr |= PCI_D0;
3207 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3208 	pci_dev_d3_sleep(dev);
3209 
3210 	return 0;
3211 }
3212 
3213 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
3214 {
3215 	u16 ctrl;
3216 	struct pci_dev *pdev;
3217 
3218 	if (pci_is_root_bus(dev->bus) || dev->subordinate || !dev->bus->self)
3219 		return -ENOTTY;
3220 
3221 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3222 		if (pdev != dev)
3223 			return -ENOTTY;
3224 
3225 	if (probe)
3226 		return 0;
3227 
3228 	pci_read_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, &ctrl);
3229 	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
3230 	pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl);
3231 	msleep(100);
3232 
3233 	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
3234 	pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl);
3235 	msleep(100);
3236 
3237 	return 0;
3238 }
3239 
3240 static int __pci_dev_reset(struct pci_dev *dev, int probe)
3241 {
3242 	int rc;
3243 
3244 	might_sleep();
3245 
3246 	rc = pci_dev_specific_reset(dev, probe);
3247 	if (rc != -ENOTTY)
3248 		goto done;
3249 
3250 	rc = pcie_flr(dev, probe);
3251 	if (rc != -ENOTTY)
3252 		goto done;
3253 
3254 	rc = pci_af_flr(dev, probe);
3255 	if (rc != -ENOTTY)
3256 		goto done;
3257 
3258 	rc = pci_pm_reset(dev, probe);
3259 	if (rc != -ENOTTY)
3260 		goto done;
3261 
3262 	rc = pci_parent_bus_reset(dev, probe);
3263 done:
3264 	return rc;
3265 }
3266 
3267 static int pci_dev_reset(struct pci_dev *dev, int probe)
3268 {
3269 	int rc;
3270 
3271 	if (!probe) {
3272 		pci_cfg_access_lock(dev);
3273 		/* block PM suspend, driver probe, etc. */
3274 		device_lock(&dev->dev);
3275 	}
3276 
3277 	rc = __pci_dev_reset(dev, probe);
3278 
3279 	if (!probe) {
3280 		device_unlock(&dev->dev);
3281 		pci_cfg_access_unlock(dev);
3282 	}
3283 	return rc;
3284 }
3285 /**
3286  * __pci_reset_function - reset a PCI device function
3287  * @dev: PCI device to reset
3288  *
3289  * Some devices allow an individual function to be reset without affecting
3290  * other functions in the same device.  The PCI device must be responsive
3291  * to PCI config space in order to use this function.
3292  *
3293  * The device function is presumed to be unused when this function is called.
3294  * Resetting the device will make the contents of PCI configuration space
3295  * random, so any caller of this must be prepared to reinitialise the
3296  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3297  * etc.
3298  *
3299  * Returns 0 if the device function was successfully reset or negative if the
3300  * device doesn't support resetting a single function.
3301  */
3302 int __pci_reset_function(struct pci_dev *dev)
3303 {
3304 	return pci_dev_reset(dev, 0);
3305 }
3306 EXPORT_SYMBOL_GPL(__pci_reset_function);
3307 
3308 /**
3309  * __pci_reset_function_locked - reset a PCI device function while holding
3310  * the @dev mutex lock.
3311  * @dev: PCI device to reset
3312  *
3313  * Some devices allow an individual function to be reset without affecting
3314  * other functions in the same device.  The PCI device must be responsive
3315  * to PCI config space in order to use this function.
3316  *
3317  * The device function is presumed to be unused and the caller is holding
3318  * the device mutex lock when this function is called.
3319  * Resetting the device will make the contents of PCI configuration space
3320  * random, so any caller of this must be prepared to reinitialise the
3321  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3322  * etc.
3323  *
3324  * Returns 0 if the device function was successfully reset or negative if the
3325  * device doesn't support resetting a single function.
3326  */
3327 int __pci_reset_function_locked(struct pci_dev *dev)
3328 {
3329 	return __pci_dev_reset(dev, 0);
3330 }
3331 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
3332 
3333 /**
3334  * pci_probe_reset_function - check whether the device can be safely reset
3335  * @dev: PCI device to reset
3336  *
3337  * Some devices allow an individual function to be reset without affecting
3338  * other functions in the same device.  The PCI device must be responsive
3339  * to PCI config space in order to use this function.
3340  *
3341  * Returns 0 if the device function can be reset or negative if the
3342  * device doesn't support resetting a single function.
3343  */
3344 int pci_probe_reset_function(struct pci_dev *dev)
3345 {
3346 	return pci_dev_reset(dev, 1);
3347 }
3348 
3349 /**
3350  * pci_reset_function - quiesce and reset a PCI device function
3351  * @dev: PCI device to reset
3352  *
3353  * Some devices allow an individual function to be reset without affecting
3354  * other functions in the same device.  The PCI device must be responsive
3355  * to PCI config space in order to use this function.
3356  *
3357  * This function does not just reset the PCI portion of a device, but
3358  * clears all the state associated with the device.  This function differs
3359  * from __pci_reset_function in that it saves and restores device state
3360  * over the reset.
3361  *
3362  * Returns 0 if the device function was successfully reset or negative if the
3363  * device doesn't support resetting a single function.
3364  */
3365 int pci_reset_function(struct pci_dev *dev)
3366 {
3367 	int rc;
3368 
3369 	rc = pci_dev_reset(dev, 1);
3370 	if (rc)
3371 		return rc;
3372 
3373 	pci_save_state(dev);
3374 
3375 	/*
3376 	 * both INTx and MSI are disabled after the Interrupt Disable bit
3377 	 * is set and the Bus Master bit is cleared.
3378 	 */
3379 	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
3380 
3381 	rc = pci_dev_reset(dev, 0);
3382 
3383 	pci_restore_state(dev);
3384 
3385 	return rc;
3386 }
3387 EXPORT_SYMBOL_GPL(pci_reset_function);
3388 
3389 /**
3390  * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
3391  * @dev: PCI device to query
3392  *
3393  * Returns mmrbc: maximum designed memory read count in bytes
3394  *    or appropriate error value.
3395  */
3396 int pcix_get_max_mmrbc(struct pci_dev *dev)
3397 {
3398 	int cap;
3399 	u32 stat;
3400 
3401 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3402 	if (!cap)
3403 		return -EINVAL;
3404 
3405 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3406 		return -EINVAL;
3407 
3408 	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
3409 }
3410 EXPORT_SYMBOL(pcix_get_max_mmrbc);
3411 
3412 /**
3413  * pcix_get_mmrbc - get PCI-X maximum memory read byte count
3414  * @dev: PCI device to query
3415  *
3416  * Returns mmrbc: maximum memory read count in bytes
3417  *    or appropriate error value.
3418  */
3419 int pcix_get_mmrbc(struct pci_dev *dev)
3420 {
3421 	int cap;
3422 	u16 cmd;
3423 
3424 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3425 	if (!cap)
3426 		return -EINVAL;
3427 
3428 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3429 		return -EINVAL;
3430 
3431 	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
3432 }
3433 EXPORT_SYMBOL(pcix_get_mmrbc);
3434 
3435 /**
3436  * pcix_set_mmrbc - set PCI-X maximum memory read byte count
3437  * @dev: PCI device to query
3438  * @mmrbc: maximum memory read count in bytes
3439  *    valid values are 512, 1024, 2048, 4096
3440  *
3441  * If possible sets maximum memory read byte count, some bridges have erratas
3442  * that prevent this.
3443  */
3444 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
3445 {
3446 	int cap;
3447 	u32 stat, v, o;
3448 	u16 cmd;
3449 
3450 	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
3451 		return -EINVAL;
3452 
3453 	v = ffs(mmrbc) - 10;
3454 
3455 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3456 	if (!cap)
3457 		return -EINVAL;
3458 
3459 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3460 		return -EINVAL;
3461 
3462 	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
3463 		return -E2BIG;
3464 
3465 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3466 		return -EINVAL;
3467 
3468 	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
3469 	if (o != v) {
3470 		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
3471 			return -EIO;
3472 
3473 		cmd &= ~PCI_X_CMD_MAX_READ;
3474 		cmd |= v << 2;
3475 		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
3476 			return -EIO;
3477 	}
3478 	return 0;
3479 }
3480 EXPORT_SYMBOL(pcix_set_mmrbc);
3481 
3482 /**
3483  * pcie_get_readrq - get PCI Express read request size
3484  * @dev: PCI device to query
3485  *
3486  * Returns maximum memory read request in bytes
3487  *    or appropriate error value.
3488  */
3489 int pcie_get_readrq(struct pci_dev *dev)
3490 {
3491 	u16 ctl;
3492 
3493 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
3494 
3495 	return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
3496 }
3497 EXPORT_SYMBOL(pcie_get_readrq);
3498 
3499 /**
3500  * pcie_set_readrq - set PCI Express maximum memory read request
3501  * @dev: PCI device to query
3502  * @rq: maximum memory read count in bytes
3503  *    valid values are 128, 256, 512, 1024, 2048, 4096
3504  *
3505  * If possible sets maximum memory read request in bytes
3506  */
3507 int pcie_set_readrq(struct pci_dev *dev, int rq)
3508 {
3509 	u16 v;
3510 
3511 	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
3512 		return -EINVAL;
3513 
3514 	/*
3515 	 * If using the "performance" PCIe config, we clamp the
3516 	 * read rq size to the max packet size to prevent the
3517 	 * host bridge generating requests larger than we can
3518 	 * cope with
3519 	 */
3520 	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
3521 		int mps = pcie_get_mps(dev);
3522 
3523 		if (mps < 0)
3524 			return mps;
3525 		if (mps < rq)
3526 			rq = mps;
3527 	}
3528 
3529 	v = (ffs(rq) - 8) << 12;
3530 
3531 	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
3532 						  PCI_EXP_DEVCTL_READRQ, v);
3533 }
3534 EXPORT_SYMBOL(pcie_set_readrq);
3535 
3536 /**
3537  * pcie_get_mps - get PCI Express maximum payload size
3538  * @dev: PCI device to query
3539  *
3540  * Returns maximum payload size in bytes
3541  *    or appropriate error value.
3542  */
3543 int pcie_get_mps(struct pci_dev *dev)
3544 {
3545 	u16 ctl;
3546 
3547 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
3548 
3549 	return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
3550 }
3551 
3552 /**
3553  * pcie_set_mps - set PCI Express maximum payload size
3554  * @dev: PCI device to query
3555  * @mps: maximum payload size in bytes
3556  *    valid values are 128, 256, 512, 1024, 2048, 4096
3557  *
3558  * If possible sets maximum payload size
3559  */
3560 int pcie_set_mps(struct pci_dev *dev, int mps)
3561 {
3562 	u16 v;
3563 
3564 	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
3565 		return -EINVAL;
3566 
3567 	v = ffs(mps) - 8;
3568 	if (v > dev->pcie_mpss)
3569 		return -EINVAL;
3570 	v <<= 5;
3571 
3572 	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
3573 						  PCI_EXP_DEVCTL_PAYLOAD, v);
3574 }
3575 
3576 /**
3577  * pci_select_bars - Make BAR mask from the type of resource
3578  * @dev: the PCI device for which BAR mask is made
3579  * @flags: resource type mask to be selected
3580  *
3581  * This helper routine makes bar mask from the type of resource.
3582  */
3583 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
3584 {
3585 	int i, bars = 0;
3586 	for (i = 0; i < PCI_NUM_RESOURCES; i++)
3587 		if (pci_resource_flags(dev, i) & flags)
3588 			bars |= (1 << i);
3589 	return bars;
3590 }
3591 
3592 /**
3593  * pci_resource_bar - get position of the BAR associated with a resource
3594  * @dev: the PCI device
3595  * @resno: the resource number
3596  * @type: the BAR type to be filled in
3597  *
3598  * Returns BAR position in config space, or 0 if the BAR is invalid.
3599  */
3600 int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
3601 {
3602 	int reg;
3603 
3604 	if (resno < PCI_ROM_RESOURCE) {
3605 		*type = pci_bar_unknown;
3606 		return PCI_BASE_ADDRESS_0 + 4 * resno;
3607 	} else if (resno == PCI_ROM_RESOURCE) {
3608 		*type = pci_bar_mem32;
3609 		return dev->rom_base_reg;
3610 	} else if (resno < PCI_BRIDGE_RESOURCES) {
3611 		/* device specific resource */
3612 		reg = pci_iov_resource_bar(dev, resno, type);
3613 		if (reg)
3614 			return reg;
3615 	}
3616 
3617 	dev_err(&dev->dev, "BAR %d: invalid resource\n", resno);
3618 	return 0;
3619 }
3620 
3621 /* Some architectures require additional programming to enable VGA */
3622 static arch_set_vga_state_t arch_set_vga_state;
3623 
3624 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
3625 {
3626 	arch_set_vga_state = func;	/* NULL disables */
3627 }
3628 
3629 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
3630 		      unsigned int command_bits, u32 flags)
3631 {
3632 	if (arch_set_vga_state)
3633 		return arch_set_vga_state(dev, decode, command_bits,
3634 						flags);
3635 	return 0;
3636 }
3637 
3638 /**
3639  * pci_set_vga_state - set VGA decode state on device and parents if requested
3640  * @dev: the PCI device
3641  * @decode: true = enable decoding, false = disable decoding
3642  * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
3643  * @flags: traverse ancestors and change bridges
3644  * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
3645  */
3646 int pci_set_vga_state(struct pci_dev *dev, bool decode,
3647 		      unsigned int command_bits, u32 flags)
3648 {
3649 	struct pci_bus *bus;
3650 	struct pci_dev *bridge;
3651 	u16 cmd;
3652 	int rc;
3653 
3654 	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) & (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
3655 
3656 	/* ARCH specific VGA enables */
3657 	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
3658 	if (rc)
3659 		return rc;
3660 
3661 	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
3662 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
3663 		if (decode == true)
3664 			cmd |= command_bits;
3665 		else
3666 			cmd &= ~command_bits;
3667 		pci_write_config_word(dev, PCI_COMMAND, cmd);
3668 	}
3669 
3670 	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
3671 		return 0;
3672 
3673 	bus = dev->bus;
3674 	while (bus) {
3675 		bridge = bus->self;
3676 		if (bridge) {
3677 			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
3678 					     &cmd);
3679 			if (decode == true)
3680 				cmd |= PCI_BRIDGE_CTL_VGA;
3681 			else
3682 				cmd &= ~PCI_BRIDGE_CTL_VGA;
3683 			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
3684 					      cmd);
3685 		}
3686 		bus = bus->parent;
3687 	}
3688 	return 0;
3689 }
3690 
3691 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
3692 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
3693 static DEFINE_SPINLOCK(resource_alignment_lock);
3694 
3695 /**
3696  * pci_specified_resource_alignment - get resource alignment specified by user.
3697  * @dev: the PCI device to get
3698  *
3699  * RETURNS: Resource alignment if it is specified.
3700  *          Zero if it is not specified.
3701  */
3702 resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
3703 {
3704 	int seg, bus, slot, func, align_order, count;
3705 	resource_size_t align = 0;
3706 	char *p;
3707 
3708 	spin_lock(&resource_alignment_lock);
3709 	p = resource_alignment_param;
3710 	while (*p) {
3711 		count = 0;
3712 		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
3713 							p[count] == '@') {
3714 			p += count + 1;
3715 		} else {
3716 			align_order = -1;
3717 		}
3718 		if (sscanf(p, "%x:%x:%x.%x%n",
3719 			&seg, &bus, &slot, &func, &count) != 4) {
3720 			seg = 0;
3721 			if (sscanf(p, "%x:%x.%x%n",
3722 					&bus, &slot, &func, &count) != 3) {
3723 				/* Invalid format */
3724 				printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
3725 					p);
3726 				break;
3727 			}
3728 		}
3729 		p += count;
3730 		if (seg == pci_domain_nr(dev->bus) &&
3731 			bus == dev->bus->number &&
3732 			slot == PCI_SLOT(dev->devfn) &&
3733 			func == PCI_FUNC(dev->devfn)) {
3734 			if (align_order == -1) {
3735 				align = PAGE_SIZE;
3736 			} else {
3737 				align = 1 << align_order;
3738 			}
3739 			/* Found */
3740 			break;
3741 		}
3742 		if (*p != ';' && *p != ',') {
3743 			/* End of param or invalid format */
3744 			break;
3745 		}
3746 		p++;
3747 	}
3748 	spin_unlock(&resource_alignment_lock);
3749 	return align;
3750 }
3751 
3752 /*
3753  * This function disables memory decoding and releases memory resources
3754  * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
3755  * It also rounds up size to specified alignment.
3756  * Later on, the kernel will assign page-aligned memory resource back
3757  * to the device.
3758  */
3759 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
3760 {
3761 	int i;
3762 	struct resource *r;
3763 	resource_size_t align, size;
3764 	u16 command;
3765 
3766 	/* check if specified PCI is target device to reassign */
3767 	align = pci_specified_resource_alignment(dev);
3768 	if (!align)
3769 		return;
3770 
3771 	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
3772 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
3773 		dev_warn(&dev->dev,
3774 			"Can't reassign resources to host bridge.\n");
3775 		return;
3776 	}
3777 
3778 	dev_info(&dev->dev,
3779 		"Disabling memory decoding and releasing memory resources.\n");
3780 	pci_read_config_word(dev, PCI_COMMAND, &command);
3781 	command &= ~PCI_COMMAND_MEMORY;
3782 	pci_write_config_word(dev, PCI_COMMAND, command);
3783 
3784 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) {
3785 		r = &dev->resource[i];
3786 		if (!(r->flags & IORESOURCE_MEM))
3787 			continue;
3788 		size = resource_size(r);
3789 		if (size < align) {
3790 			size = align;
3791 			dev_info(&dev->dev,
3792 				"Rounding up size of resource #%d to %#llx.\n",
3793 				i, (unsigned long long)size);
3794 		}
3795 		r->end = size - 1;
3796 		r->start = 0;
3797 	}
3798 	/* Need to disable bridge's resource window,
3799 	 * to enable the kernel to reassign new resource
3800 	 * window later on.
3801 	 */
3802 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
3803 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
3804 		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
3805 			r = &dev->resource[i];
3806 			if (!(r->flags & IORESOURCE_MEM))
3807 				continue;
3808 			r->end = resource_size(r) - 1;
3809 			r->start = 0;
3810 		}
3811 		pci_disable_bridge_window(dev);
3812 	}
3813 }
3814 
3815 ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
3816 {
3817 	if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
3818 		count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
3819 	spin_lock(&resource_alignment_lock);
3820 	strncpy(resource_alignment_param, buf, count);
3821 	resource_alignment_param[count] = '\0';
3822 	spin_unlock(&resource_alignment_lock);
3823 	return count;
3824 }
3825 
3826 ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
3827 {
3828 	size_t count;
3829 	spin_lock(&resource_alignment_lock);
3830 	count = snprintf(buf, size, "%s", resource_alignment_param);
3831 	spin_unlock(&resource_alignment_lock);
3832 	return count;
3833 }
3834 
3835 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
3836 {
3837 	return pci_get_resource_alignment_param(buf, PAGE_SIZE);
3838 }
3839 
3840 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
3841 					const char *buf, size_t count)
3842 {
3843 	return pci_set_resource_alignment_param(buf, count);
3844 }
3845 
3846 BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
3847 					pci_resource_alignment_store);
3848 
3849 static int __init pci_resource_alignment_sysfs_init(void)
3850 {
3851 	return bus_create_file(&pci_bus_type,
3852 					&bus_attr_resource_alignment);
3853 }
3854 
3855 late_initcall(pci_resource_alignment_sysfs_init);
3856 
3857 static void pci_no_domains(void)
3858 {
3859 #ifdef CONFIG_PCI_DOMAINS
3860 	pci_domains_supported = 0;
3861 #endif
3862 }
3863 
3864 /**
3865  * pci_ext_cfg_avail - can we access extended PCI config space?
3866  *
3867  * Returns 1 if we can access PCI extended config space (offsets
3868  * greater than 0xff). This is the default implementation. Architecture
3869  * implementations can override this.
3870  */
3871 int __weak pci_ext_cfg_avail(void)
3872 {
3873 	return 1;
3874 }
3875 
3876 void __weak pci_fixup_cardbus(struct pci_bus *bus)
3877 {
3878 }
3879 EXPORT_SYMBOL(pci_fixup_cardbus);
3880 
3881 static int __init pci_setup(char *str)
3882 {
3883 	while (str) {
3884 		char *k = strchr(str, ',');
3885 		if (k)
3886 			*k++ = 0;
3887 		if (*str && (str = pcibios_setup(str)) && *str) {
3888 			if (!strcmp(str, "nomsi")) {
3889 				pci_no_msi();
3890 			} else if (!strcmp(str, "noaer")) {
3891 				pci_no_aer();
3892 			} else if (!strncmp(str, "realloc=", 8)) {
3893 				pci_realloc_get_opt(str + 8);
3894 			} else if (!strncmp(str, "realloc", 7)) {
3895 				pci_realloc_get_opt("on");
3896 			} else if (!strcmp(str, "nodomains")) {
3897 				pci_no_domains();
3898 			} else if (!strncmp(str, "noari", 5)) {
3899 				pcie_ari_disabled = true;
3900 			} else if (!strncmp(str, "cbiosize=", 9)) {
3901 				pci_cardbus_io_size = memparse(str + 9, &str);
3902 			} else if (!strncmp(str, "cbmemsize=", 10)) {
3903 				pci_cardbus_mem_size = memparse(str + 10, &str);
3904 			} else if (!strncmp(str, "resource_alignment=", 19)) {
3905 				pci_set_resource_alignment_param(str + 19,
3906 							strlen(str + 19));
3907 			} else if (!strncmp(str, "ecrc=", 5)) {
3908 				pcie_ecrc_get_policy(str + 5);
3909 			} else if (!strncmp(str, "hpiosize=", 9)) {
3910 				pci_hotplug_io_size = memparse(str + 9, &str);
3911 			} else if (!strncmp(str, "hpmemsize=", 10)) {
3912 				pci_hotplug_mem_size = memparse(str + 10, &str);
3913 			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
3914 				pcie_bus_config = PCIE_BUS_TUNE_OFF;
3915 			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
3916 				pcie_bus_config = PCIE_BUS_SAFE;
3917 			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
3918 				pcie_bus_config = PCIE_BUS_PERFORMANCE;
3919 			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
3920 				pcie_bus_config = PCIE_BUS_PEER2PEER;
3921 			} else if (!strncmp(str, "pcie_scan_all", 13)) {
3922 				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
3923 			} else {
3924 				printk(KERN_ERR "PCI: Unknown option `%s'\n",
3925 						str);
3926 			}
3927 		}
3928 		str = k;
3929 	}
3930 	return 0;
3931 }
3932 early_param("pci", pci_setup);
3933 
3934 EXPORT_SYMBOL(pci_reenable_device);
3935 EXPORT_SYMBOL(pci_enable_device_io);
3936 EXPORT_SYMBOL(pci_enable_device_mem);
3937 EXPORT_SYMBOL(pci_enable_device);
3938 EXPORT_SYMBOL(pcim_enable_device);
3939 EXPORT_SYMBOL(pcim_pin_device);
3940 EXPORT_SYMBOL(pci_disable_device);
3941 EXPORT_SYMBOL(pci_find_capability);
3942 EXPORT_SYMBOL(pci_bus_find_capability);
3943 EXPORT_SYMBOL(pci_release_regions);
3944 EXPORT_SYMBOL(pci_request_regions);
3945 EXPORT_SYMBOL(pci_request_regions_exclusive);
3946 EXPORT_SYMBOL(pci_release_region);
3947 EXPORT_SYMBOL(pci_request_region);
3948 EXPORT_SYMBOL(pci_request_region_exclusive);
3949 EXPORT_SYMBOL(pci_release_selected_regions);
3950 EXPORT_SYMBOL(pci_request_selected_regions);
3951 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3952 EXPORT_SYMBOL(pci_set_master);
3953 EXPORT_SYMBOL(pci_clear_master);
3954 EXPORT_SYMBOL(pci_set_mwi);
3955 EXPORT_SYMBOL(pci_try_set_mwi);
3956 EXPORT_SYMBOL(pci_clear_mwi);
3957 EXPORT_SYMBOL_GPL(pci_intx);
3958 EXPORT_SYMBOL(pci_assign_resource);
3959 EXPORT_SYMBOL(pci_find_parent_resource);
3960 EXPORT_SYMBOL(pci_select_bars);
3961 
3962 EXPORT_SYMBOL(pci_set_power_state);
3963 EXPORT_SYMBOL(pci_save_state);
3964 EXPORT_SYMBOL(pci_restore_state);
3965 EXPORT_SYMBOL(pci_pme_capable);
3966 EXPORT_SYMBOL(pci_pme_active);
3967 EXPORT_SYMBOL(pci_wake_from_d3);
3968 EXPORT_SYMBOL(pci_target_state);
3969 EXPORT_SYMBOL(pci_prepare_to_sleep);
3970 EXPORT_SYMBOL(pci_back_from_sleep);
3971 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
3972