xref: /openbmc/linux/drivers/pci/pci.c (revision 82ced6fd)
1 /*
2  *	PCI Bus Services, see include/linux/pci.h for further explanation.
3  *
4  *	Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5  *	David Mosberger-Tang
6  *
7  *	Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/pci.h>
14 #include <linux/pm.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/string.h>
18 #include <linux/log2.h>
19 #include <linux/pci-aspm.h>
20 #include <linux/pm_wakeup.h>
21 #include <linux/interrupt.h>
22 #include <asm/dma.h>	/* isa_dma_bridge_buggy */
23 #include <linux/device.h>
24 #include <asm/setup.h>
25 #include "pci.h"
26 
27 unsigned int pci_pm_d3_delay = PCI_PM_D3_WAIT;
28 
29 #ifdef CONFIG_PCI_DOMAINS
30 int pci_domains_supported = 1;
31 #endif
32 
33 #define DEFAULT_CARDBUS_IO_SIZE		(256)
34 #define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
35 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
36 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
37 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
38 
39 /**
40  * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
41  * @bus: pointer to PCI bus structure to search
42  *
43  * Given a PCI bus, returns the highest PCI bus number present in the set
44  * including the given PCI bus and its list of child PCI buses.
45  */
46 unsigned char pci_bus_max_busnr(struct pci_bus* bus)
47 {
48 	struct list_head *tmp;
49 	unsigned char max, n;
50 
51 	max = bus->subordinate;
52 	list_for_each(tmp, &bus->children) {
53 		n = pci_bus_max_busnr(pci_bus_b(tmp));
54 		if(n > max)
55 			max = n;
56 	}
57 	return max;
58 }
59 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
60 
61 #ifdef CONFIG_HAS_IOMEM
62 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
63 {
64 	/*
65 	 * Make sure the BAR is actually a memory resource, not an IO resource
66 	 */
67 	if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
68 		WARN_ON(1);
69 		return NULL;
70 	}
71 	return ioremap_nocache(pci_resource_start(pdev, bar),
72 				     pci_resource_len(pdev, bar));
73 }
74 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
75 #endif
76 
77 #if 0
78 /**
79  * pci_max_busnr - returns maximum PCI bus number
80  *
81  * Returns the highest PCI bus number present in the system global list of
82  * PCI buses.
83  */
84 unsigned char __devinit
85 pci_max_busnr(void)
86 {
87 	struct pci_bus *bus = NULL;
88 	unsigned char max, n;
89 
90 	max = 0;
91 	while ((bus = pci_find_next_bus(bus)) != NULL) {
92 		n = pci_bus_max_busnr(bus);
93 		if(n > max)
94 			max = n;
95 	}
96 	return max;
97 }
98 
99 #endif  /*  0  */
100 
101 #define PCI_FIND_CAP_TTL	48
102 
103 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
104 				   u8 pos, int cap, int *ttl)
105 {
106 	u8 id;
107 
108 	while ((*ttl)--) {
109 		pci_bus_read_config_byte(bus, devfn, pos, &pos);
110 		if (pos < 0x40)
111 			break;
112 		pos &= ~3;
113 		pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID,
114 					 &id);
115 		if (id == 0xff)
116 			break;
117 		if (id == cap)
118 			return pos;
119 		pos += PCI_CAP_LIST_NEXT;
120 	}
121 	return 0;
122 }
123 
124 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
125 			       u8 pos, int cap)
126 {
127 	int ttl = PCI_FIND_CAP_TTL;
128 
129 	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
130 }
131 
132 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
133 {
134 	return __pci_find_next_cap(dev->bus, dev->devfn,
135 				   pos + PCI_CAP_LIST_NEXT, cap);
136 }
137 EXPORT_SYMBOL_GPL(pci_find_next_capability);
138 
139 static int __pci_bus_find_cap_start(struct pci_bus *bus,
140 				    unsigned int devfn, u8 hdr_type)
141 {
142 	u16 status;
143 
144 	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
145 	if (!(status & PCI_STATUS_CAP_LIST))
146 		return 0;
147 
148 	switch (hdr_type) {
149 	case PCI_HEADER_TYPE_NORMAL:
150 	case PCI_HEADER_TYPE_BRIDGE:
151 		return PCI_CAPABILITY_LIST;
152 	case PCI_HEADER_TYPE_CARDBUS:
153 		return PCI_CB_CAPABILITY_LIST;
154 	default:
155 		return 0;
156 	}
157 
158 	return 0;
159 }
160 
161 /**
162  * pci_find_capability - query for devices' capabilities
163  * @dev: PCI device to query
164  * @cap: capability code
165  *
166  * Tell if a device supports a given PCI capability.
167  * Returns the address of the requested capability structure within the
168  * device's PCI configuration space or 0 in case the device does not
169  * support it.  Possible values for @cap:
170  *
171  *  %PCI_CAP_ID_PM           Power Management
172  *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
173  *  %PCI_CAP_ID_VPD          Vital Product Data
174  *  %PCI_CAP_ID_SLOTID       Slot Identification
175  *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
176  *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
177  *  %PCI_CAP_ID_PCIX         PCI-X
178  *  %PCI_CAP_ID_EXP          PCI Express
179  */
180 int pci_find_capability(struct pci_dev *dev, int cap)
181 {
182 	int pos;
183 
184 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
185 	if (pos)
186 		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
187 
188 	return pos;
189 }
190 
191 /**
192  * pci_bus_find_capability - query for devices' capabilities
193  * @bus:   the PCI bus to query
194  * @devfn: PCI device to query
195  * @cap:   capability code
196  *
197  * Like pci_find_capability() but works for pci devices that do not have a
198  * pci_dev structure set up yet.
199  *
200  * Returns the address of the requested capability structure within the
201  * device's PCI configuration space or 0 in case the device does not
202  * support it.
203  */
204 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
205 {
206 	int pos;
207 	u8 hdr_type;
208 
209 	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
210 
211 	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
212 	if (pos)
213 		pos = __pci_find_next_cap(bus, devfn, pos, cap);
214 
215 	return pos;
216 }
217 
218 /**
219  * pci_find_ext_capability - Find an extended capability
220  * @dev: PCI device to query
221  * @cap: capability code
222  *
223  * Returns the address of the requested extended capability structure
224  * within the device's PCI configuration space or 0 if the device does
225  * not support it.  Possible values for @cap:
226  *
227  *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
228  *  %PCI_EXT_CAP_ID_VC		Virtual Channel
229  *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
230  *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
231  */
232 int pci_find_ext_capability(struct pci_dev *dev, int cap)
233 {
234 	u32 header;
235 	int ttl;
236 	int pos = PCI_CFG_SPACE_SIZE;
237 
238 	/* minimum 8 bytes per capability */
239 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
240 
241 	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
242 		return 0;
243 
244 	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
245 		return 0;
246 
247 	/*
248 	 * If we have no capabilities, this is indicated by cap ID,
249 	 * cap version and next pointer all being 0.
250 	 */
251 	if (header == 0)
252 		return 0;
253 
254 	while (ttl-- > 0) {
255 		if (PCI_EXT_CAP_ID(header) == cap)
256 			return pos;
257 
258 		pos = PCI_EXT_CAP_NEXT(header);
259 		if (pos < PCI_CFG_SPACE_SIZE)
260 			break;
261 
262 		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
263 			break;
264 	}
265 
266 	return 0;
267 }
268 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
269 
270 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
271 {
272 	int rc, ttl = PCI_FIND_CAP_TTL;
273 	u8 cap, mask;
274 
275 	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
276 		mask = HT_3BIT_CAP_MASK;
277 	else
278 		mask = HT_5BIT_CAP_MASK;
279 
280 	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
281 				      PCI_CAP_ID_HT, &ttl);
282 	while (pos) {
283 		rc = pci_read_config_byte(dev, pos + 3, &cap);
284 		if (rc != PCIBIOS_SUCCESSFUL)
285 			return 0;
286 
287 		if ((cap & mask) == ht_cap)
288 			return pos;
289 
290 		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
291 					      pos + PCI_CAP_LIST_NEXT,
292 					      PCI_CAP_ID_HT, &ttl);
293 	}
294 
295 	return 0;
296 }
297 /**
298  * pci_find_next_ht_capability - query a device's Hypertransport capabilities
299  * @dev: PCI device to query
300  * @pos: Position from which to continue searching
301  * @ht_cap: Hypertransport capability code
302  *
303  * To be used in conjunction with pci_find_ht_capability() to search for
304  * all capabilities matching @ht_cap. @pos should always be a value returned
305  * from pci_find_ht_capability().
306  *
307  * NB. To be 100% safe against broken PCI devices, the caller should take
308  * steps to avoid an infinite loop.
309  */
310 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
311 {
312 	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
313 }
314 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
315 
316 /**
317  * pci_find_ht_capability - query a device's Hypertransport capabilities
318  * @dev: PCI device to query
319  * @ht_cap: Hypertransport capability code
320  *
321  * Tell if a device supports a given Hypertransport capability.
322  * Returns an address within the device's PCI configuration space
323  * or 0 in case the device does not support the request capability.
324  * The address points to the PCI capability, of type PCI_CAP_ID_HT,
325  * which has a Hypertransport capability matching @ht_cap.
326  */
327 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
328 {
329 	int pos;
330 
331 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
332 	if (pos)
333 		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
334 
335 	return pos;
336 }
337 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
338 
339 /**
340  * pci_find_parent_resource - return resource region of parent bus of given region
341  * @dev: PCI device structure contains resources to be searched
342  * @res: child resource record for which parent is sought
343  *
344  *  For given resource region of given device, return the resource
345  *  region of parent bus the given region is contained in or where
346  *  it should be allocated from.
347  */
348 struct resource *
349 pci_find_parent_resource(const struct pci_dev *dev, struct resource *res)
350 {
351 	const struct pci_bus *bus = dev->bus;
352 	int i;
353 	struct resource *best = NULL;
354 
355 	for(i = 0; i < PCI_BUS_NUM_RESOURCES; i++) {
356 		struct resource *r = bus->resource[i];
357 		if (!r)
358 			continue;
359 		if (res->start && !(res->start >= r->start && res->end <= r->end))
360 			continue;	/* Not contained */
361 		if ((res->flags ^ r->flags) & (IORESOURCE_IO | IORESOURCE_MEM))
362 			continue;	/* Wrong type */
363 		if (!((res->flags ^ r->flags) & IORESOURCE_PREFETCH))
364 			return r;	/* Exact match */
365 		if ((res->flags & IORESOURCE_PREFETCH) && !(r->flags & IORESOURCE_PREFETCH))
366 			best = r;	/* Approximating prefetchable by non-prefetchable */
367 	}
368 	return best;
369 }
370 
371 /**
372  * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
373  * @dev: PCI device to have its BARs restored
374  *
375  * Restore the BAR values for a given device, so as to make it
376  * accessible by its driver.
377  */
378 static void
379 pci_restore_bars(struct pci_dev *dev)
380 {
381 	int i;
382 
383 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
384 		pci_update_resource(dev, i);
385 }
386 
387 static struct pci_platform_pm_ops *pci_platform_pm;
388 
389 int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
390 {
391 	if (!ops->is_manageable || !ops->set_state || !ops->choose_state
392 	    || !ops->sleep_wake || !ops->can_wakeup)
393 		return -EINVAL;
394 	pci_platform_pm = ops;
395 	return 0;
396 }
397 
398 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
399 {
400 	return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
401 }
402 
403 static inline int platform_pci_set_power_state(struct pci_dev *dev,
404                                                 pci_power_t t)
405 {
406 	return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
407 }
408 
409 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
410 {
411 	return pci_platform_pm ?
412 			pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
413 }
414 
415 static inline bool platform_pci_can_wakeup(struct pci_dev *dev)
416 {
417 	return pci_platform_pm ? pci_platform_pm->can_wakeup(dev) : false;
418 }
419 
420 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
421 {
422 	return pci_platform_pm ?
423 			pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
424 }
425 
426 /**
427  * pci_raw_set_power_state - Use PCI PM registers to set the power state of
428  *                           given PCI device
429  * @dev: PCI device to handle.
430  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
431  *
432  * RETURN VALUE:
433  * -EINVAL if the requested state is invalid.
434  * -EIO if device does not support PCI PM or its PM capabilities register has a
435  * wrong version, or device doesn't support the requested state.
436  * 0 if device already is in the requested state.
437  * 0 if device's power state has been successfully changed.
438  */
439 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
440 {
441 	u16 pmcsr;
442 	bool need_restore = false;
443 
444 	/* Check if we're already there */
445 	if (dev->current_state == state)
446 		return 0;
447 
448 	if (!dev->pm_cap)
449 		return -EIO;
450 
451 	if (state < PCI_D0 || state > PCI_D3hot)
452 		return -EINVAL;
453 
454 	/* Validate current state:
455 	 * Can enter D0 from any state, but if we can only go deeper
456 	 * to sleep if we're already in a low power state
457 	 */
458 	if (state != PCI_D0 && dev->current_state <= PCI_D3cold
459 	    && dev->current_state > state) {
460 		dev_err(&dev->dev, "invalid power transition "
461 			"(from state %d to %d)\n", dev->current_state, state);
462 		return -EINVAL;
463 	}
464 
465 	/* check if this device supports the desired state */
466 	if ((state == PCI_D1 && !dev->d1_support)
467 	   || (state == PCI_D2 && !dev->d2_support))
468 		return -EIO;
469 
470 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
471 
472 	/* If we're (effectively) in D3, force entire word to 0.
473 	 * This doesn't affect PME_Status, disables PME_En, and
474 	 * sets PowerState to 0.
475 	 */
476 	switch (dev->current_state) {
477 	case PCI_D0:
478 	case PCI_D1:
479 	case PCI_D2:
480 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
481 		pmcsr |= state;
482 		break;
483 	case PCI_UNKNOWN: /* Boot-up */
484 		if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
485 		 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
486 			need_restore = true;
487 		/* Fall-through: force to D0 */
488 	default:
489 		pmcsr = 0;
490 		break;
491 	}
492 
493 	/* enter specified state */
494 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
495 
496 	/* Mandatory power management transition delays */
497 	/* see PCI PM 1.1 5.6.1 table 18 */
498 	if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
499 		msleep(pci_pm_d3_delay);
500 	else if (state == PCI_D2 || dev->current_state == PCI_D2)
501 		udelay(PCI_PM_D2_DELAY);
502 
503 	dev->current_state = state;
504 
505 	/* According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
506 	 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
507 	 * from D3hot to D0 _may_ perform an internal reset, thereby
508 	 * going to "D0 Uninitialized" rather than "D0 Initialized".
509 	 * For example, at least some versions of the 3c905B and the
510 	 * 3c556B exhibit this behaviour.
511 	 *
512 	 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
513 	 * devices in a D3hot state at boot.  Consequently, we need to
514 	 * restore at least the BARs so that the device will be
515 	 * accessible to its driver.
516 	 */
517 	if (need_restore)
518 		pci_restore_bars(dev);
519 
520 	if (dev->bus->self)
521 		pcie_aspm_pm_state_change(dev->bus->self);
522 
523 	return 0;
524 }
525 
526 /**
527  * pci_update_current_state - Read PCI power state of given device from its
528  *                            PCI PM registers and cache it
529  * @dev: PCI device to handle.
530  * @state: State to cache in case the device doesn't have the PM capability
531  */
532 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
533 {
534 	if (dev->pm_cap) {
535 		u16 pmcsr;
536 
537 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
538 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
539 	} else {
540 		dev->current_state = state;
541 	}
542 }
543 
544 /**
545  * pci_platform_power_transition - Use platform to change device power state
546  * @dev: PCI device to handle.
547  * @state: State to put the device into.
548  */
549 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
550 {
551 	int error;
552 
553 	if (platform_pci_power_manageable(dev)) {
554 		error = platform_pci_set_power_state(dev, state);
555 		if (!error)
556 			pci_update_current_state(dev, state);
557 	} else {
558 		error = -ENODEV;
559 		/* Fall back to PCI_D0 if native PM is not supported */
560 		if (!dev->pm_cap)
561 			dev->current_state = PCI_D0;
562 	}
563 
564 	return error;
565 }
566 
567 /**
568  * __pci_start_power_transition - Start power transition of a PCI device
569  * @dev: PCI device to handle.
570  * @state: State to put the device into.
571  */
572 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
573 {
574 	if (state == PCI_D0)
575 		pci_platform_power_transition(dev, PCI_D0);
576 }
577 
578 /**
579  * __pci_complete_power_transition - Complete power transition of a PCI device
580  * @dev: PCI device to handle.
581  * @state: State to put the device into.
582  *
583  * This function should not be called directly by device drivers.
584  */
585 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
586 {
587 	return state > PCI_D0 ?
588 			pci_platform_power_transition(dev, state) : -EINVAL;
589 }
590 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
591 
592 /**
593  * pci_set_power_state - Set the power state of a PCI device
594  * @dev: PCI device to handle.
595  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
596  *
597  * Transition a device to a new power state, using the platform firmware and/or
598  * the device's PCI PM registers.
599  *
600  * RETURN VALUE:
601  * -EINVAL if the requested state is invalid.
602  * -EIO if device does not support PCI PM or its PM capabilities register has a
603  * wrong version, or device doesn't support the requested state.
604  * 0 if device already is in the requested state.
605  * 0 if device's power state has been successfully changed.
606  */
607 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
608 {
609 	int error;
610 
611 	/* bound the state we're entering */
612 	if (state > PCI_D3hot)
613 		state = PCI_D3hot;
614 	else if (state < PCI_D0)
615 		state = PCI_D0;
616 	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
617 		/*
618 		 * If the device or the parent bridge do not support PCI PM,
619 		 * ignore the request if we're doing anything other than putting
620 		 * it into D0 (which would only happen on boot).
621 		 */
622 		return 0;
623 
624 	/* Check if we're already there */
625 	if (dev->current_state == state)
626 		return 0;
627 
628 	__pci_start_power_transition(dev, state);
629 
630 	/* This device is quirked not to be put into D3, so
631 	   don't put it in D3 */
632 	if (state == PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
633 		return 0;
634 
635 	error = pci_raw_set_power_state(dev, state);
636 
637 	if (!__pci_complete_power_transition(dev, state))
638 		error = 0;
639 
640 	return error;
641 }
642 
643 /**
644  * pci_choose_state - Choose the power state of a PCI device
645  * @dev: PCI device to be suspended
646  * @state: target sleep state for the whole system. This is the value
647  *	that is passed to suspend() function.
648  *
649  * Returns PCI power state suitable for given device and given system
650  * message.
651  */
652 
653 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
654 {
655 	pci_power_t ret;
656 
657 	if (!pci_find_capability(dev, PCI_CAP_ID_PM))
658 		return PCI_D0;
659 
660 	ret = platform_pci_choose_state(dev);
661 	if (ret != PCI_POWER_ERROR)
662 		return ret;
663 
664 	switch (state.event) {
665 	case PM_EVENT_ON:
666 		return PCI_D0;
667 	case PM_EVENT_FREEZE:
668 	case PM_EVENT_PRETHAW:
669 		/* REVISIT both freeze and pre-thaw "should" use D0 */
670 	case PM_EVENT_SUSPEND:
671 	case PM_EVENT_HIBERNATE:
672 		return PCI_D3hot;
673 	default:
674 		dev_info(&dev->dev, "unrecognized suspend event %d\n",
675 			 state.event);
676 		BUG();
677 	}
678 	return PCI_D0;
679 }
680 
681 EXPORT_SYMBOL(pci_choose_state);
682 
683 #define PCI_EXP_SAVE_REGS	7
684 
685 #define pcie_cap_has_devctl(type, flags)	1
686 #define pcie_cap_has_lnkctl(type, flags)		\
687 		((flags & PCI_EXP_FLAGS_VERS) > 1 ||	\
688 		 (type == PCI_EXP_TYPE_ROOT_PORT ||	\
689 		  type == PCI_EXP_TYPE_ENDPOINT ||	\
690 		  type == PCI_EXP_TYPE_LEG_END))
691 #define pcie_cap_has_sltctl(type, flags)		\
692 		((flags & PCI_EXP_FLAGS_VERS) > 1 ||	\
693 		 ((type == PCI_EXP_TYPE_ROOT_PORT) ||	\
694 		  (type == PCI_EXP_TYPE_DOWNSTREAM &&	\
695 		   (flags & PCI_EXP_FLAGS_SLOT))))
696 #define pcie_cap_has_rtctl(type, flags)			\
697 		((flags & PCI_EXP_FLAGS_VERS) > 1 ||	\
698 		 (type == PCI_EXP_TYPE_ROOT_PORT ||	\
699 		  type == PCI_EXP_TYPE_RC_EC))
700 #define pcie_cap_has_devctl2(type, flags)		\
701 		((flags & PCI_EXP_FLAGS_VERS) > 1)
702 #define pcie_cap_has_lnkctl2(type, flags)		\
703 		((flags & PCI_EXP_FLAGS_VERS) > 1)
704 #define pcie_cap_has_sltctl2(type, flags)		\
705 		((flags & PCI_EXP_FLAGS_VERS) > 1)
706 
707 static int pci_save_pcie_state(struct pci_dev *dev)
708 {
709 	int pos, i = 0;
710 	struct pci_cap_saved_state *save_state;
711 	u16 *cap;
712 	u16 flags;
713 
714 	pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
715 	if (pos <= 0)
716 		return 0;
717 
718 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
719 	if (!save_state) {
720 		dev_err(&dev->dev, "buffer not found in %s\n", __func__);
721 		return -ENOMEM;
722 	}
723 	cap = (u16 *)&save_state->data[0];
724 
725 	pci_read_config_word(dev, pos + PCI_EXP_FLAGS, &flags);
726 
727 	if (pcie_cap_has_devctl(dev->pcie_type, flags))
728 		pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &cap[i++]);
729 	if (pcie_cap_has_lnkctl(dev->pcie_type, flags))
730 		pci_read_config_word(dev, pos + PCI_EXP_LNKCTL, &cap[i++]);
731 	if (pcie_cap_has_sltctl(dev->pcie_type, flags))
732 		pci_read_config_word(dev, pos + PCI_EXP_SLTCTL, &cap[i++]);
733 	if (pcie_cap_has_rtctl(dev->pcie_type, flags))
734 		pci_read_config_word(dev, pos + PCI_EXP_RTCTL, &cap[i++]);
735 	if (pcie_cap_has_devctl2(dev->pcie_type, flags))
736 		pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &cap[i++]);
737 	if (pcie_cap_has_lnkctl2(dev->pcie_type, flags))
738 		pci_read_config_word(dev, pos + PCI_EXP_LNKCTL2, &cap[i++]);
739 	if (pcie_cap_has_sltctl2(dev->pcie_type, flags))
740 		pci_read_config_word(dev, pos + PCI_EXP_SLTCTL2, &cap[i++]);
741 
742 	return 0;
743 }
744 
745 static void pci_restore_pcie_state(struct pci_dev *dev)
746 {
747 	int i = 0, pos;
748 	struct pci_cap_saved_state *save_state;
749 	u16 *cap;
750 	u16 flags;
751 
752 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
753 	pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
754 	if (!save_state || pos <= 0)
755 		return;
756 	cap = (u16 *)&save_state->data[0];
757 
758 	pci_read_config_word(dev, pos + PCI_EXP_FLAGS, &flags);
759 
760 	if (pcie_cap_has_devctl(dev->pcie_type, flags))
761 		pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, cap[i++]);
762 	if (pcie_cap_has_lnkctl(dev->pcie_type, flags))
763 		pci_write_config_word(dev, pos + PCI_EXP_LNKCTL, cap[i++]);
764 	if (pcie_cap_has_sltctl(dev->pcie_type, flags))
765 		pci_write_config_word(dev, pos + PCI_EXP_SLTCTL, cap[i++]);
766 	if (pcie_cap_has_rtctl(dev->pcie_type, flags))
767 		pci_write_config_word(dev, pos + PCI_EXP_RTCTL, cap[i++]);
768 	if (pcie_cap_has_devctl2(dev->pcie_type, flags))
769 		pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, cap[i++]);
770 	if (pcie_cap_has_lnkctl2(dev->pcie_type, flags))
771 		pci_write_config_word(dev, pos + PCI_EXP_LNKCTL2, cap[i++]);
772 	if (pcie_cap_has_sltctl2(dev->pcie_type, flags))
773 		pci_write_config_word(dev, pos + PCI_EXP_SLTCTL2, cap[i++]);
774 }
775 
776 
777 static int pci_save_pcix_state(struct pci_dev *dev)
778 {
779 	int pos;
780 	struct pci_cap_saved_state *save_state;
781 
782 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
783 	if (pos <= 0)
784 		return 0;
785 
786 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
787 	if (!save_state) {
788 		dev_err(&dev->dev, "buffer not found in %s\n", __func__);
789 		return -ENOMEM;
790 	}
791 
792 	pci_read_config_word(dev, pos + PCI_X_CMD, (u16 *)save_state->data);
793 
794 	return 0;
795 }
796 
797 static void pci_restore_pcix_state(struct pci_dev *dev)
798 {
799 	int i = 0, pos;
800 	struct pci_cap_saved_state *save_state;
801 	u16 *cap;
802 
803 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
804 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
805 	if (!save_state || pos <= 0)
806 		return;
807 	cap = (u16 *)&save_state->data[0];
808 
809 	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
810 }
811 
812 
813 /**
814  * pci_save_state - save the PCI configuration space of a device before suspending
815  * @dev: - PCI device that we're dealing with
816  */
817 int
818 pci_save_state(struct pci_dev *dev)
819 {
820 	int i;
821 	/* XXX: 100% dword access ok here? */
822 	for (i = 0; i < 16; i++)
823 		pci_read_config_dword(dev, i * 4,&dev->saved_config_space[i]);
824 	dev->state_saved = true;
825 	if ((i = pci_save_pcie_state(dev)) != 0)
826 		return i;
827 	if ((i = pci_save_pcix_state(dev)) != 0)
828 		return i;
829 	return 0;
830 }
831 
832 /**
833  * pci_restore_state - Restore the saved state of a PCI device
834  * @dev: - PCI device that we're dealing with
835  */
836 int
837 pci_restore_state(struct pci_dev *dev)
838 {
839 	int i;
840 	u32 val;
841 
842 	/* PCI Express register must be restored first */
843 	pci_restore_pcie_state(dev);
844 
845 	/*
846 	 * The Base Address register should be programmed before the command
847 	 * register(s)
848 	 */
849 	for (i = 15; i >= 0; i--) {
850 		pci_read_config_dword(dev, i * 4, &val);
851 		if (val != dev->saved_config_space[i]) {
852 			dev_printk(KERN_DEBUG, &dev->dev, "restoring config "
853 				"space at offset %#x (was %#x, writing %#x)\n",
854 				i, val, (int)dev->saved_config_space[i]);
855 			pci_write_config_dword(dev,i * 4,
856 				dev->saved_config_space[i]);
857 		}
858 	}
859 	pci_restore_pcix_state(dev);
860 	pci_restore_msi_state(dev);
861 	pci_restore_iov_state(dev);
862 
863 	return 0;
864 }
865 
866 static int do_pci_enable_device(struct pci_dev *dev, int bars)
867 {
868 	int err;
869 
870 	err = pci_set_power_state(dev, PCI_D0);
871 	if (err < 0 && err != -EIO)
872 		return err;
873 	err = pcibios_enable_device(dev, bars);
874 	if (err < 0)
875 		return err;
876 	pci_fixup_device(pci_fixup_enable, dev);
877 
878 	return 0;
879 }
880 
881 /**
882  * pci_reenable_device - Resume abandoned device
883  * @dev: PCI device to be resumed
884  *
885  *  Note this function is a backend of pci_default_resume and is not supposed
886  *  to be called by normal code, write proper resume handler and use it instead.
887  */
888 int pci_reenable_device(struct pci_dev *dev)
889 {
890 	if (pci_is_enabled(dev))
891 		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
892 	return 0;
893 }
894 
895 static int __pci_enable_device_flags(struct pci_dev *dev,
896 				     resource_size_t flags)
897 {
898 	int err;
899 	int i, bars = 0;
900 
901 	if (atomic_add_return(1, &dev->enable_cnt) > 1)
902 		return 0;		/* already enabled */
903 
904 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
905 		if (dev->resource[i].flags & flags)
906 			bars |= (1 << i);
907 
908 	err = do_pci_enable_device(dev, bars);
909 	if (err < 0)
910 		atomic_dec(&dev->enable_cnt);
911 	return err;
912 }
913 
914 /**
915  * pci_enable_device_io - Initialize a device for use with IO space
916  * @dev: PCI device to be initialized
917  *
918  *  Initialize device before it's used by a driver. Ask low-level code
919  *  to enable I/O resources. Wake up the device if it was suspended.
920  *  Beware, this function can fail.
921  */
922 int pci_enable_device_io(struct pci_dev *dev)
923 {
924 	return __pci_enable_device_flags(dev, IORESOURCE_IO);
925 }
926 
927 /**
928  * pci_enable_device_mem - Initialize a device for use with Memory space
929  * @dev: PCI device to be initialized
930  *
931  *  Initialize device before it's used by a driver. Ask low-level code
932  *  to enable Memory resources. Wake up the device if it was suspended.
933  *  Beware, this function can fail.
934  */
935 int pci_enable_device_mem(struct pci_dev *dev)
936 {
937 	return __pci_enable_device_flags(dev, IORESOURCE_MEM);
938 }
939 
940 /**
941  * pci_enable_device - Initialize device before it's used by a driver.
942  * @dev: PCI device to be initialized
943  *
944  *  Initialize device before it's used by a driver. Ask low-level code
945  *  to enable I/O and memory. Wake up the device if it was suspended.
946  *  Beware, this function can fail.
947  *
948  *  Note we don't actually enable the device many times if we call
949  *  this function repeatedly (we just increment the count).
950  */
951 int pci_enable_device(struct pci_dev *dev)
952 {
953 	return __pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
954 }
955 
956 /*
957  * Managed PCI resources.  This manages device on/off, intx/msi/msix
958  * on/off and BAR regions.  pci_dev itself records msi/msix status, so
959  * there's no need to track it separately.  pci_devres is initialized
960  * when a device is enabled using managed PCI device enable interface.
961  */
962 struct pci_devres {
963 	unsigned int enabled:1;
964 	unsigned int pinned:1;
965 	unsigned int orig_intx:1;
966 	unsigned int restore_intx:1;
967 	u32 region_mask;
968 };
969 
970 static void pcim_release(struct device *gendev, void *res)
971 {
972 	struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
973 	struct pci_devres *this = res;
974 	int i;
975 
976 	if (dev->msi_enabled)
977 		pci_disable_msi(dev);
978 	if (dev->msix_enabled)
979 		pci_disable_msix(dev);
980 
981 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
982 		if (this->region_mask & (1 << i))
983 			pci_release_region(dev, i);
984 
985 	if (this->restore_intx)
986 		pci_intx(dev, this->orig_intx);
987 
988 	if (this->enabled && !this->pinned)
989 		pci_disable_device(dev);
990 }
991 
992 static struct pci_devres * get_pci_dr(struct pci_dev *pdev)
993 {
994 	struct pci_devres *dr, *new_dr;
995 
996 	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
997 	if (dr)
998 		return dr;
999 
1000 	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1001 	if (!new_dr)
1002 		return NULL;
1003 	return devres_get(&pdev->dev, new_dr, NULL, NULL);
1004 }
1005 
1006 static struct pci_devres * find_pci_dr(struct pci_dev *pdev)
1007 {
1008 	if (pci_is_managed(pdev))
1009 		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1010 	return NULL;
1011 }
1012 
1013 /**
1014  * pcim_enable_device - Managed pci_enable_device()
1015  * @pdev: PCI device to be initialized
1016  *
1017  * Managed pci_enable_device().
1018  */
1019 int pcim_enable_device(struct pci_dev *pdev)
1020 {
1021 	struct pci_devres *dr;
1022 	int rc;
1023 
1024 	dr = get_pci_dr(pdev);
1025 	if (unlikely(!dr))
1026 		return -ENOMEM;
1027 	if (dr->enabled)
1028 		return 0;
1029 
1030 	rc = pci_enable_device(pdev);
1031 	if (!rc) {
1032 		pdev->is_managed = 1;
1033 		dr->enabled = 1;
1034 	}
1035 	return rc;
1036 }
1037 
1038 /**
1039  * pcim_pin_device - Pin managed PCI device
1040  * @pdev: PCI device to pin
1041  *
1042  * Pin managed PCI device @pdev.  Pinned device won't be disabled on
1043  * driver detach.  @pdev must have been enabled with
1044  * pcim_enable_device().
1045  */
1046 void pcim_pin_device(struct pci_dev *pdev)
1047 {
1048 	struct pci_devres *dr;
1049 
1050 	dr = find_pci_dr(pdev);
1051 	WARN_ON(!dr || !dr->enabled);
1052 	if (dr)
1053 		dr->pinned = 1;
1054 }
1055 
1056 /**
1057  * pcibios_disable_device - disable arch specific PCI resources for device dev
1058  * @dev: the PCI device to disable
1059  *
1060  * Disables architecture specific PCI resources for the device. This
1061  * is the default implementation. Architecture implementations can
1062  * override this.
1063  */
1064 void __attribute__ ((weak)) pcibios_disable_device (struct pci_dev *dev) {}
1065 
1066 static void do_pci_disable_device(struct pci_dev *dev)
1067 {
1068 	u16 pci_command;
1069 
1070 	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1071 	if (pci_command & PCI_COMMAND_MASTER) {
1072 		pci_command &= ~PCI_COMMAND_MASTER;
1073 		pci_write_config_word(dev, PCI_COMMAND, pci_command);
1074 	}
1075 
1076 	pcibios_disable_device(dev);
1077 }
1078 
1079 /**
1080  * pci_disable_enabled_device - Disable device without updating enable_cnt
1081  * @dev: PCI device to disable
1082  *
1083  * NOTE: This function is a backend of PCI power management routines and is
1084  * not supposed to be called drivers.
1085  */
1086 void pci_disable_enabled_device(struct pci_dev *dev)
1087 {
1088 	if (pci_is_enabled(dev))
1089 		do_pci_disable_device(dev);
1090 }
1091 
1092 /**
1093  * pci_disable_device - Disable PCI device after use
1094  * @dev: PCI device to be disabled
1095  *
1096  * Signal to the system that the PCI device is not in use by the system
1097  * anymore.  This only involves disabling PCI bus-mastering, if active.
1098  *
1099  * Note we don't actually disable the device until all callers of
1100  * pci_device_enable() have called pci_device_disable().
1101  */
1102 void
1103 pci_disable_device(struct pci_dev *dev)
1104 {
1105 	struct pci_devres *dr;
1106 
1107 	dr = find_pci_dr(dev);
1108 	if (dr)
1109 		dr->enabled = 0;
1110 
1111 	if (atomic_sub_return(1, &dev->enable_cnt) != 0)
1112 		return;
1113 
1114 	do_pci_disable_device(dev);
1115 
1116 	dev->is_busmaster = 0;
1117 }
1118 
1119 /**
1120  * pcibios_set_pcie_reset_state - set reset state for device dev
1121  * @dev: the PCI-E device reset
1122  * @state: Reset state to enter into
1123  *
1124  *
1125  * Sets the PCI-E reset state for the device. This is the default
1126  * implementation. Architecture implementations can override this.
1127  */
1128 int __attribute__ ((weak)) pcibios_set_pcie_reset_state(struct pci_dev *dev,
1129 							enum pcie_reset_state state)
1130 {
1131 	return -EINVAL;
1132 }
1133 
1134 /**
1135  * pci_set_pcie_reset_state - set reset state for device dev
1136  * @dev: the PCI-E device reset
1137  * @state: Reset state to enter into
1138  *
1139  *
1140  * Sets the PCI reset state for the device.
1141  */
1142 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1143 {
1144 	return pcibios_set_pcie_reset_state(dev, state);
1145 }
1146 
1147 /**
1148  * pci_pme_capable - check the capability of PCI device to generate PME#
1149  * @dev: PCI device to handle.
1150  * @state: PCI state from which device will issue PME#.
1151  */
1152 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1153 {
1154 	if (!dev->pm_cap)
1155 		return false;
1156 
1157 	return !!(dev->pme_support & (1 << state));
1158 }
1159 
1160 /**
1161  * pci_pme_active - enable or disable PCI device's PME# function
1162  * @dev: PCI device to handle.
1163  * @enable: 'true' to enable PME# generation; 'false' to disable it.
1164  *
1165  * The caller must verify that the device is capable of generating PME# before
1166  * calling this function with @enable equal to 'true'.
1167  */
1168 void pci_pme_active(struct pci_dev *dev, bool enable)
1169 {
1170 	u16 pmcsr;
1171 
1172 	if (!dev->pm_cap)
1173 		return;
1174 
1175 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1176 	/* Clear PME_Status by writing 1 to it and enable PME# */
1177 	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1178 	if (!enable)
1179 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1180 
1181 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1182 
1183 	dev_printk(KERN_INFO, &dev->dev, "PME# %s\n",
1184 			enable ? "enabled" : "disabled");
1185 }
1186 
1187 /**
1188  * pci_enable_wake - enable PCI device as wakeup event source
1189  * @dev: PCI device affected
1190  * @state: PCI state from which device will issue wakeup events
1191  * @enable: True to enable event generation; false to disable
1192  *
1193  * This enables the device as a wakeup event source, or disables it.
1194  * When such events involves platform-specific hooks, those hooks are
1195  * called automatically by this routine.
1196  *
1197  * Devices with legacy power management (no standard PCI PM capabilities)
1198  * always require such platform hooks.
1199  *
1200  * RETURN VALUE:
1201  * 0 is returned on success
1202  * -EINVAL is returned if device is not supposed to wake up the system
1203  * Error code depending on the platform is returned if both the platform and
1204  * the native mechanism fail to enable the generation of wake-up events
1205  */
1206 int pci_enable_wake(struct pci_dev *dev, pci_power_t state, int enable)
1207 {
1208 	int error = 0;
1209 	bool pme_done = false;
1210 
1211 	if (enable && !device_may_wakeup(&dev->dev))
1212 		return -EINVAL;
1213 
1214 	/*
1215 	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1216 	 * Anderson we should be doing PME# wake enable followed by ACPI wake
1217 	 * enable.  To disable wake-up we call the platform first, for symmetry.
1218 	 */
1219 
1220 	if (!enable && platform_pci_can_wakeup(dev))
1221 		error = platform_pci_sleep_wake(dev, false);
1222 
1223 	if (!enable || pci_pme_capable(dev, state)) {
1224 		pci_pme_active(dev, enable);
1225 		pme_done = true;
1226 	}
1227 
1228 	if (enable && platform_pci_can_wakeup(dev))
1229 		error = platform_pci_sleep_wake(dev, true);
1230 
1231 	return pme_done ? 0 : error;
1232 }
1233 
1234 /**
1235  * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1236  * @dev: PCI device to prepare
1237  * @enable: True to enable wake-up event generation; false to disable
1238  *
1239  * Many drivers want the device to wake up the system from D3_hot or D3_cold
1240  * and this function allows them to set that up cleanly - pci_enable_wake()
1241  * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1242  * ordering constraints.
1243  *
1244  * This function only returns error code if the device is not capable of
1245  * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1246  * enable wake-up power for it.
1247  */
1248 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1249 {
1250 	return pci_pme_capable(dev, PCI_D3cold) ?
1251 			pci_enable_wake(dev, PCI_D3cold, enable) :
1252 			pci_enable_wake(dev, PCI_D3hot, enable);
1253 }
1254 
1255 /**
1256  * pci_target_state - find an appropriate low power state for a given PCI dev
1257  * @dev: PCI device
1258  *
1259  * Use underlying platform code to find a supported low power state for @dev.
1260  * If the platform can't manage @dev, return the deepest state from which it
1261  * can generate wake events, based on any available PME info.
1262  */
1263 pci_power_t pci_target_state(struct pci_dev *dev)
1264 {
1265 	pci_power_t target_state = PCI_D3hot;
1266 
1267 	if (platform_pci_power_manageable(dev)) {
1268 		/*
1269 		 * Call the platform to choose the target state of the device
1270 		 * and enable wake-up from this state if supported.
1271 		 */
1272 		pci_power_t state = platform_pci_choose_state(dev);
1273 
1274 		switch (state) {
1275 		case PCI_POWER_ERROR:
1276 		case PCI_UNKNOWN:
1277 			break;
1278 		case PCI_D1:
1279 		case PCI_D2:
1280 			if (pci_no_d1d2(dev))
1281 				break;
1282 		default:
1283 			target_state = state;
1284 		}
1285 	} else if (device_may_wakeup(&dev->dev)) {
1286 		/*
1287 		 * Find the deepest state from which the device can generate
1288 		 * wake-up events, make it the target state and enable device
1289 		 * to generate PME#.
1290 		 */
1291 		if (!dev->pm_cap)
1292 			return PCI_POWER_ERROR;
1293 
1294 		if (dev->pme_support) {
1295 			while (target_state
1296 			      && !(dev->pme_support & (1 << target_state)))
1297 				target_state--;
1298 		}
1299 	}
1300 
1301 	return target_state;
1302 }
1303 
1304 /**
1305  * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1306  * @dev: Device to handle.
1307  *
1308  * Choose the power state appropriate for the device depending on whether
1309  * it can wake up the system and/or is power manageable by the platform
1310  * (PCI_D3hot is the default) and put the device into that state.
1311  */
1312 int pci_prepare_to_sleep(struct pci_dev *dev)
1313 {
1314 	pci_power_t target_state = pci_target_state(dev);
1315 	int error;
1316 
1317 	if (target_state == PCI_POWER_ERROR)
1318 		return -EIO;
1319 
1320 	pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
1321 
1322 	error = pci_set_power_state(dev, target_state);
1323 
1324 	if (error)
1325 		pci_enable_wake(dev, target_state, false);
1326 
1327 	return error;
1328 }
1329 
1330 /**
1331  * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1332  * @dev: Device to handle.
1333  *
1334  * Disable device's sytem wake-up capability and put it into D0.
1335  */
1336 int pci_back_from_sleep(struct pci_dev *dev)
1337 {
1338 	pci_enable_wake(dev, PCI_D0, false);
1339 	return pci_set_power_state(dev, PCI_D0);
1340 }
1341 
1342 /**
1343  * pci_pm_init - Initialize PM functions of given PCI device
1344  * @dev: PCI device to handle.
1345  */
1346 void pci_pm_init(struct pci_dev *dev)
1347 {
1348 	int pm;
1349 	u16 pmc;
1350 
1351 	dev->pm_cap = 0;
1352 
1353 	/* find PCI PM capability in list */
1354 	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
1355 	if (!pm)
1356 		return;
1357 	/* Check device's ability to generate PME# */
1358 	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
1359 
1360 	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
1361 		dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
1362 			pmc & PCI_PM_CAP_VER_MASK);
1363 		return;
1364 	}
1365 
1366 	dev->pm_cap = pm;
1367 
1368 	dev->d1_support = false;
1369 	dev->d2_support = false;
1370 	if (!pci_no_d1d2(dev)) {
1371 		if (pmc & PCI_PM_CAP_D1)
1372 			dev->d1_support = true;
1373 		if (pmc & PCI_PM_CAP_D2)
1374 			dev->d2_support = true;
1375 
1376 		if (dev->d1_support || dev->d2_support)
1377 			dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
1378 				   dev->d1_support ? " D1" : "",
1379 				   dev->d2_support ? " D2" : "");
1380 	}
1381 
1382 	pmc &= PCI_PM_CAP_PME_MASK;
1383 	if (pmc) {
1384 		dev_info(&dev->dev, "PME# supported from%s%s%s%s%s\n",
1385 			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
1386 			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
1387 			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
1388 			 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
1389 			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
1390 		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
1391 		/*
1392 		 * Make device's PM flags reflect the wake-up capability, but
1393 		 * let the user space enable it to wake up the system as needed.
1394 		 */
1395 		device_set_wakeup_capable(&dev->dev, true);
1396 		device_set_wakeup_enable(&dev->dev, false);
1397 		/* Disable the PME# generation functionality */
1398 		pci_pme_active(dev, false);
1399 	} else {
1400 		dev->pme_support = 0;
1401 	}
1402 }
1403 
1404 /**
1405  * platform_pci_wakeup_init - init platform wakeup if present
1406  * @dev: PCI device
1407  *
1408  * Some devices don't have PCI PM caps but can still generate wakeup
1409  * events through platform methods (like ACPI events).  If @dev supports
1410  * platform wakeup events, set the device flag to indicate as much.  This
1411  * may be redundant if the device also supports PCI PM caps, but double
1412  * initialization should be safe in that case.
1413  */
1414 void platform_pci_wakeup_init(struct pci_dev *dev)
1415 {
1416 	if (!platform_pci_can_wakeup(dev))
1417 		return;
1418 
1419 	device_set_wakeup_capable(&dev->dev, true);
1420 	device_set_wakeup_enable(&dev->dev, false);
1421 	platform_pci_sleep_wake(dev, false);
1422 }
1423 
1424 /**
1425  * pci_add_save_buffer - allocate buffer for saving given capability registers
1426  * @dev: the PCI device
1427  * @cap: the capability to allocate the buffer for
1428  * @size: requested size of the buffer
1429  */
1430 static int pci_add_cap_save_buffer(
1431 	struct pci_dev *dev, char cap, unsigned int size)
1432 {
1433 	int pos;
1434 	struct pci_cap_saved_state *save_state;
1435 
1436 	pos = pci_find_capability(dev, cap);
1437 	if (pos <= 0)
1438 		return 0;
1439 
1440 	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
1441 	if (!save_state)
1442 		return -ENOMEM;
1443 
1444 	save_state->cap_nr = cap;
1445 	pci_add_saved_cap(dev, save_state);
1446 
1447 	return 0;
1448 }
1449 
1450 /**
1451  * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
1452  * @dev: the PCI device
1453  */
1454 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
1455 {
1456 	int error;
1457 
1458 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
1459 					PCI_EXP_SAVE_REGS * sizeof(u16));
1460 	if (error)
1461 		dev_err(&dev->dev,
1462 			"unable to preallocate PCI Express save buffer\n");
1463 
1464 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
1465 	if (error)
1466 		dev_err(&dev->dev,
1467 			"unable to preallocate PCI-X save buffer\n");
1468 }
1469 
1470 /**
1471  * pci_enable_ari - enable ARI forwarding if hardware support it
1472  * @dev: the PCI device
1473  */
1474 void pci_enable_ari(struct pci_dev *dev)
1475 {
1476 	int pos;
1477 	u32 cap;
1478 	u16 ctrl;
1479 	struct pci_dev *bridge;
1480 
1481 	if (!dev->is_pcie || dev->devfn)
1482 		return;
1483 
1484 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI);
1485 	if (!pos)
1486 		return;
1487 
1488 	bridge = dev->bus->self;
1489 	if (!bridge || !bridge->is_pcie)
1490 		return;
1491 
1492 	pos = pci_find_capability(bridge, PCI_CAP_ID_EXP);
1493 	if (!pos)
1494 		return;
1495 
1496 	pci_read_config_dword(bridge, pos + PCI_EXP_DEVCAP2, &cap);
1497 	if (!(cap & PCI_EXP_DEVCAP2_ARI))
1498 		return;
1499 
1500 	pci_read_config_word(bridge, pos + PCI_EXP_DEVCTL2, &ctrl);
1501 	ctrl |= PCI_EXP_DEVCTL2_ARI;
1502 	pci_write_config_word(bridge, pos + PCI_EXP_DEVCTL2, ctrl);
1503 
1504 	bridge->ari_enabled = 1;
1505 }
1506 
1507 /**
1508  * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
1509  * @dev: the PCI device
1510  * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTD, 4=INTD)
1511  *
1512  * Perform INTx swizzling for a device behind one level of bridge.  This is
1513  * required by section 9.1 of the PCI-to-PCI bridge specification for devices
1514  * behind bridges on add-in cards.
1515  */
1516 u8 pci_swizzle_interrupt_pin(struct pci_dev *dev, u8 pin)
1517 {
1518 	return (((pin - 1) + PCI_SLOT(dev->devfn)) % 4) + 1;
1519 }
1520 
1521 int
1522 pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
1523 {
1524 	u8 pin;
1525 
1526 	pin = dev->pin;
1527 	if (!pin)
1528 		return -1;
1529 
1530 	while (dev->bus->parent) {
1531 		pin = pci_swizzle_interrupt_pin(dev, pin);
1532 		dev = dev->bus->self;
1533 	}
1534 	*bridge = dev;
1535 	return pin;
1536 }
1537 
1538 /**
1539  * pci_common_swizzle - swizzle INTx all the way to root bridge
1540  * @dev: the PCI device
1541  * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
1542  *
1543  * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
1544  * bridges all the way up to a PCI root bus.
1545  */
1546 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
1547 {
1548 	u8 pin = *pinp;
1549 
1550 	while (dev->bus->parent) {
1551 		pin = pci_swizzle_interrupt_pin(dev, pin);
1552 		dev = dev->bus->self;
1553 	}
1554 	*pinp = pin;
1555 	return PCI_SLOT(dev->devfn);
1556 }
1557 
1558 /**
1559  *	pci_release_region - Release a PCI bar
1560  *	@pdev: PCI device whose resources were previously reserved by pci_request_region
1561  *	@bar: BAR to release
1562  *
1563  *	Releases the PCI I/O and memory resources previously reserved by a
1564  *	successful call to pci_request_region.  Call this function only
1565  *	after all use of the PCI regions has ceased.
1566  */
1567 void pci_release_region(struct pci_dev *pdev, int bar)
1568 {
1569 	struct pci_devres *dr;
1570 
1571 	if (pci_resource_len(pdev, bar) == 0)
1572 		return;
1573 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
1574 		release_region(pci_resource_start(pdev, bar),
1575 				pci_resource_len(pdev, bar));
1576 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
1577 		release_mem_region(pci_resource_start(pdev, bar),
1578 				pci_resource_len(pdev, bar));
1579 
1580 	dr = find_pci_dr(pdev);
1581 	if (dr)
1582 		dr->region_mask &= ~(1 << bar);
1583 }
1584 
1585 /**
1586  *	__pci_request_region - Reserved PCI I/O and memory resource
1587  *	@pdev: PCI device whose resources are to be reserved
1588  *	@bar: BAR to be reserved
1589  *	@res_name: Name to be associated with resource.
1590  *	@exclusive: whether the region access is exclusive or not
1591  *
1592  *	Mark the PCI region associated with PCI device @pdev BR @bar as
1593  *	being reserved by owner @res_name.  Do not access any
1594  *	address inside the PCI regions unless this call returns
1595  *	successfully.
1596  *
1597  *	If @exclusive is set, then the region is marked so that userspace
1598  *	is explicitly not allowed to map the resource via /dev/mem or
1599  * 	sysfs MMIO access.
1600  *
1601  *	Returns 0 on success, or %EBUSY on error.  A warning
1602  *	message is also printed on failure.
1603  */
1604 static int __pci_request_region(struct pci_dev *pdev, int bar, const char *res_name,
1605 									int exclusive)
1606 {
1607 	struct pci_devres *dr;
1608 
1609 	if (pci_resource_len(pdev, bar) == 0)
1610 		return 0;
1611 
1612 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
1613 		if (!request_region(pci_resource_start(pdev, bar),
1614 			    pci_resource_len(pdev, bar), res_name))
1615 			goto err_out;
1616 	}
1617 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
1618 		if (!__request_mem_region(pci_resource_start(pdev, bar),
1619 					pci_resource_len(pdev, bar), res_name,
1620 					exclusive))
1621 			goto err_out;
1622 	}
1623 
1624 	dr = find_pci_dr(pdev);
1625 	if (dr)
1626 		dr->region_mask |= 1 << bar;
1627 
1628 	return 0;
1629 
1630 err_out:
1631 	dev_warn(&pdev->dev, "BAR %d: can't reserve %s region %pR\n",
1632 		 bar,
1633 		 pci_resource_flags(pdev, bar) & IORESOURCE_IO ? "I/O" : "mem",
1634 		 &pdev->resource[bar]);
1635 	return -EBUSY;
1636 }
1637 
1638 /**
1639  *	pci_request_region - Reserve PCI I/O and memory resource
1640  *	@pdev: PCI device whose resources are to be reserved
1641  *	@bar: BAR to be reserved
1642  *	@res_name: Name to be associated with resource
1643  *
1644  *	Mark the PCI region associated with PCI device @pdev BAR @bar as
1645  *	being reserved by owner @res_name.  Do not access any
1646  *	address inside the PCI regions unless this call returns
1647  *	successfully.
1648  *
1649  *	Returns 0 on success, or %EBUSY on error.  A warning
1650  *	message is also printed on failure.
1651  */
1652 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
1653 {
1654 	return __pci_request_region(pdev, bar, res_name, 0);
1655 }
1656 
1657 /**
1658  *	pci_request_region_exclusive - Reserved PCI I/O and memory resource
1659  *	@pdev: PCI device whose resources are to be reserved
1660  *	@bar: BAR to be reserved
1661  *	@res_name: Name to be associated with resource.
1662  *
1663  *	Mark the PCI region associated with PCI device @pdev BR @bar as
1664  *	being reserved by owner @res_name.  Do not access any
1665  *	address inside the PCI regions unless this call returns
1666  *	successfully.
1667  *
1668  *	Returns 0 on success, or %EBUSY on error.  A warning
1669  *	message is also printed on failure.
1670  *
1671  *	The key difference that _exclusive makes it that userspace is
1672  *	explicitly not allowed to map the resource via /dev/mem or
1673  * 	sysfs.
1674  */
1675 int pci_request_region_exclusive(struct pci_dev *pdev, int bar, const char *res_name)
1676 {
1677 	return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
1678 }
1679 /**
1680  * pci_release_selected_regions - Release selected PCI I/O and memory resources
1681  * @pdev: PCI device whose resources were previously reserved
1682  * @bars: Bitmask of BARs to be released
1683  *
1684  * Release selected PCI I/O and memory resources previously reserved.
1685  * Call this function only after all use of the PCI regions has ceased.
1686  */
1687 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
1688 {
1689 	int i;
1690 
1691 	for (i = 0; i < 6; i++)
1692 		if (bars & (1 << i))
1693 			pci_release_region(pdev, i);
1694 }
1695 
1696 int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
1697 				 const char *res_name, int excl)
1698 {
1699 	int i;
1700 
1701 	for (i = 0; i < 6; i++)
1702 		if (bars & (1 << i))
1703 			if (__pci_request_region(pdev, i, res_name, excl))
1704 				goto err_out;
1705 	return 0;
1706 
1707 err_out:
1708 	while(--i >= 0)
1709 		if (bars & (1 << i))
1710 			pci_release_region(pdev, i);
1711 
1712 	return -EBUSY;
1713 }
1714 
1715 
1716 /**
1717  * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
1718  * @pdev: PCI device whose resources are to be reserved
1719  * @bars: Bitmask of BARs to be requested
1720  * @res_name: Name to be associated with resource
1721  */
1722 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
1723 				 const char *res_name)
1724 {
1725 	return __pci_request_selected_regions(pdev, bars, res_name, 0);
1726 }
1727 
1728 int pci_request_selected_regions_exclusive(struct pci_dev *pdev,
1729 				 int bars, const char *res_name)
1730 {
1731 	return __pci_request_selected_regions(pdev, bars, res_name,
1732 			IORESOURCE_EXCLUSIVE);
1733 }
1734 
1735 /**
1736  *	pci_release_regions - Release reserved PCI I/O and memory resources
1737  *	@pdev: PCI device whose resources were previously reserved by pci_request_regions
1738  *
1739  *	Releases all PCI I/O and memory resources previously reserved by a
1740  *	successful call to pci_request_regions.  Call this function only
1741  *	after all use of the PCI regions has ceased.
1742  */
1743 
1744 void pci_release_regions(struct pci_dev *pdev)
1745 {
1746 	pci_release_selected_regions(pdev, (1 << 6) - 1);
1747 }
1748 
1749 /**
1750  *	pci_request_regions - Reserved PCI I/O and memory resources
1751  *	@pdev: PCI device whose resources are to be reserved
1752  *	@res_name: Name to be associated with resource.
1753  *
1754  *	Mark all PCI regions associated with PCI device @pdev as
1755  *	being reserved by owner @res_name.  Do not access any
1756  *	address inside the PCI regions unless this call returns
1757  *	successfully.
1758  *
1759  *	Returns 0 on success, or %EBUSY on error.  A warning
1760  *	message is also printed on failure.
1761  */
1762 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
1763 {
1764 	return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
1765 }
1766 
1767 /**
1768  *	pci_request_regions_exclusive - Reserved PCI I/O and memory resources
1769  *	@pdev: PCI device whose resources are to be reserved
1770  *	@res_name: Name to be associated with resource.
1771  *
1772  *	Mark all PCI regions associated with PCI device @pdev as
1773  *	being reserved by owner @res_name.  Do not access any
1774  *	address inside the PCI regions unless this call returns
1775  *	successfully.
1776  *
1777  *	pci_request_regions_exclusive() will mark the region so that
1778  * 	/dev/mem and the sysfs MMIO access will not be allowed.
1779  *
1780  *	Returns 0 on success, or %EBUSY on error.  A warning
1781  *	message is also printed on failure.
1782  */
1783 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
1784 {
1785 	return pci_request_selected_regions_exclusive(pdev,
1786 					((1 << 6) - 1), res_name);
1787 }
1788 
1789 static void __pci_set_master(struct pci_dev *dev, bool enable)
1790 {
1791 	u16 old_cmd, cmd;
1792 
1793 	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
1794 	if (enable)
1795 		cmd = old_cmd | PCI_COMMAND_MASTER;
1796 	else
1797 		cmd = old_cmd & ~PCI_COMMAND_MASTER;
1798 	if (cmd != old_cmd) {
1799 		dev_dbg(&dev->dev, "%s bus mastering\n",
1800 			enable ? "enabling" : "disabling");
1801 		pci_write_config_word(dev, PCI_COMMAND, cmd);
1802 	}
1803 	dev->is_busmaster = enable;
1804 }
1805 
1806 /**
1807  * pci_set_master - enables bus-mastering for device dev
1808  * @dev: the PCI device to enable
1809  *
1810  * Enables bus-mastering on the device and calls pcibios_set_master()
1811  * to do the needed arch specific settings.
1812  */
1813 void pci_set_master(struct pci_dev *dev)
1814 {
1815 	__pci_set_master(dev, true);
1816 	pcibios_set_master(dev);
1817 }
1818 
1819 /**
1820  * pci_clear_master - disables bus-mastering for device dev
1821  * @dev: the PCI device to disable
1822  */
1823 void pci_clear_master(struct pci_dev *dev)
1824 {
1825 	__pci_set_master(dev, false);
1826 }
1827 
1828 #ifdef PCI_DISABLE_MWI
1829 int pci_set_mwi(struct pci_dev *dev)
1830 {
1831 	return 0;
1832 }
1833 
1834 int pci_try_set_mwi(struct pci_dev *dev)
1835 {
1836 	return 0;
1837 }
1838 
1839 void pci_clear_mwi(struct pci_dev *dev)
1840 {
1841 }
1842 
1843 #else
1844 
1845 #ifndef PCI_CACHE_LINE_BYTES
1846 #define PCI_CACHE_LINE_BYTES L1_CACHE_BYTES
1847 #endif
1848 
1849 /* This can be overridden by arch code. */
1850 /* Don't forget this is measured in 32-bit words, not bytes */
1851 u8 pci_cache_line_size = PCI_CACHE_LINE_BYTES / 4;
1852 
1853 /**
1854  * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
1855  * @dev: the PCI device for which MWI is to be enabled
1856  *
1857  * Helper function for pci_set_mwi.
1858  * Originally copied from drivers/net/acenic.c.
1859  * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
1860  *
1861  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1862  */
1863 static int
1864 pci_set_cacheline_size(struct pci_dev *dev)
1865 {
1866 	u8 cacheline_size;
1867 
1868 	if (!pci_cache_line_size)
1869 		return -EINVAL;		/* The system doesn't support MWI. */
1870 
1871 	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
1872 	   equal to or multiple of the right value. */
1873 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
1874 	if (cacheline_size >= pci_cache_line_size &&
1875 	    (cacheline_size % pci_cache_line_size) == 0)
1876 		return 0;
1877 
1878 	/* Write the correct value. */
1879 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
1880 	/* Read it back. */
1881 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
1882 	if (cacheline_size == pci_cache_line_size)
1883 		return 0;
1884 
1885 	dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not "
1886 		   "supported\n", pci_cache_line_size << 2);
1887 
1888 	return -EINVAL;
1889 }
1890 
1891 /**
1892  * pci_set_mwi - enables memory-write-invalidate PCI transaction
1893  * @dev: the PCI device for which MWI is enabled
1894  *
1895  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
1896  *
1897  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1898  */
1899 int
1900 pci_set_mwi(struct pci_dev *dev)
1901 {
1902 	int rc;
1903 	u16 cmd;
1904 
1905 	rc = pci_set_cacheline_size(dev);
1906 	if (rc)
1907 		return rc;
1908 
1909 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
1910 	if (! (cmd & PCI_COMMAND_INVALIDATE)) {
1911 		dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
1912 		cmd |= PCI_COMMAND_INVALIDATE;
1913 		pci_write_config_word(dev, PCI_COMMAND, cmd);
1914 	}
1915 
1916 	return 0;
1917 }
1918 
1919 /**
1920  * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
1921  * @dev: the PCI device for which MWI is enabled
1922  *
1923  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
1924  * Callers are not required to check the return value.
1925  *
1926  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1927  */
1928 int pci_try_set_mwi(struct pci_dev *dev)
1929 {
1930 	int rc = pci_set_mwi(dev);
1931 	return rc;
1932 }
1933 
1934 /**
1935  * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
1936  * @dev: the PCI device to disable
1937  *
1938  * Disables PCI Memory-Write-Invalidate transaction on the device
1939  */
1940 void
1941 pci_clear_mwi(struct pci_dev *dev)
1942 {
1943 	u16 cmd;
1944 
1945 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
1946 	if (cmd & PCI_COMMAND_INVALIDATE) {
1947 		cmd &= ~PCI_COMMAND_INVALIDATE;
1948 		pci_write_config_word(dev, PCI_COMMAND, cmd);
1949 	}
1950 }
1951 #endif /* ! PCI_DISABLE_MWI */
1952 
1953 /**
1954  * pci_intx - enables/disables PCI INTx for device dev
1955  * @pdev: the PCI device to operate on
1956  * @enable: boolean: whether to enable or disable PCI INTx
1957  *
1958  * Enables/disables PCI INTx for device dev
1959  */
1960 void
1961 pci_intx(struct pci_dev *pdev, int enable)
1962 {
1963 	u16 pci_command, new;
1964 
1965 	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
1966 
1967 	if (enable) {
1968 		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
1969 	} else {
1970 		new = pci_command | PCI_COMMAND_INTX_DISABLE;
1971 	}
1972 
1973 	if (new != pci_command) {
1974 		struct pci_devres *dr;
1975 
1976 		pci_write_config_word(pdev, PCI_COMMAND, new);
1977 
1978 		dr = find_pci_dr(pdev);
1979 		if (dr && !dr->restore_intx) {
1980 			dr->restore_intx = 1;
1981 			dr->orig_intx = !enable;
1982 		}
1983 	}
1984 }
1985 
1986 /**
1987  * pci_msi_off - disables any msi or msix capabilities
1988  * @dev: the PCI device to operate on
1989  *
1990  * If you want to use msi see pci_enable_msi and friends.
1991  * This is a lower level primitive that allows us to disable
1992  * msi operation at the device level.
1993  */
1994 void pci_msi_off(struct pci_dev *dev)
1995 {
1996 	int pos;
1997 	u16 control;
1998 
1999 	pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
2000 	if (pos) {
2001 		pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
2002 		control &= ~PCI_MSI_FLAGS_ENABLE;
2003 		pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
2004 	}
2005 	pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
2006 	if (pos) {
2007 		pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
2008 		control &= ~PCI_MSIX_FLAGS_ENABLE;
2009 		pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
2010 	}
2011 }
2012 
2013 #ifndef HAVE_ARCH_PCI_SET_DMA_MASK
2014 /*
2015  * These can be overridden by arch-specific implementations
2016  */
2017 int
2018 pci_set_dma_mask(struct pci_dev *dev, u64 mask)
2019 {
2020 	if (!pci_dma_supported(dev, mask))
2021 		return -EIO;
2022 
2023 	dev->dma_mask = mask;
2024 
2025 	return 0;
2026 }
2027 
2028 int
2029 pci_set_consistent_dma_mask(struct pci_dev *dev, u64 mask)
2030 {
2031 	if (!pci_dma_supported(dev, mask))
2032 		return -EIO;
2033 
2034 	dev->dev.coherent_dma_mask = mask;
2035 
2036 	return 0;
2037 }
2038 #endif
2039 
2040 #ifndef HAVE_ARCH_PCI_SET_DMA_MAX_SEGMENT_SIZE
2041 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
2042 {
2043 	return dma_set_max_seg_size(&dev->dev, size);
2044 }
2045 EXPORT_SYMBOL(pci_set_dma_max_seg_size);
2046 #endif
2047 
2048 #ifndef HAVE_ARCH_PCI_SET_DMA_SEGMENT_BOUNDARY
2049 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
2050 {
2051 	return dma_set_seg_boundary(&dev->dev, mask);
2052 }
2053 EXPORT_SYMBOL(pci_set_dma_seg_boundary);
2054 #endif
2055 
2056 static int __pcie_flr(struct pci_dev *dev, int probe)
2057 {
2058 	u16 status;
2059 	u32 cap;
2060 	int exppos = pci_find_capability(dev, PCI_CAP_ID_EXP);
2061 
2062 	if (!exppos)
2063 		return -ENOTTY;
2064 	pci_read_config_dword(dev, exppos + PCI_EXP_DEVCAP, &cap);
2065 	if (!(cap & PCI_EXP_DEVCAP_FLR))
2066 		return -ENOTTY;
2067 
2068 	if (probe)
2069 		return 0;
2070 
2071 	pci_block_user_cfg_access(dev);
2072 
2073 	/* Wait for Transaction Pending bit clean */
2074 	pci_read_config_word(dev, exppos + PCI_EXP_DEVSTA, &status);
2075 	if (!(status & PCI_EXP_DEVSTA_TRPND))
2076 		goto transaction_done;
2077 
2078 	msleep(100);
2079 	pci_read_config_word(dev, exppos + PCI_EXP_DEVSTA, &status);
2080 	if (!(status & PCI_EXP_DEVSTA_TRPND))
2081 		goto transaction_done;
2082 
2083 	dev_info(&dev->dev, "Busy after 100ms while trying to reset; "
2084 			"sleeping for 1 second\n");
2085 	ssleep(1);
2086 	pci_read_config_word(dev, exppos + PCI_EXP_DEVSTA, &status);
2087 	if (status & PCI_EXP_DEVSTA_TRPND)
2088 		dev_info(&dev->dev, "Still busy after 1s; "
2089 				"proceeding with reset anyway\n");
2090 
2091 transaction_done:
2092 	pci_write_config_word(dev, exppos + PCI_EXP_DEVCTL,
2093 				PCI_EXP_DEVCTL_BCR_FLR);
2094 	mdelay(100);
2095 
2096 	pci_unblock_user_cfg_access(dev);
2097 	return 0;
2098 }
2099 
2100 static int __pci_af_flr(struct pci_dev *dev, int probe)
2101 {
2102 	int cappos = pci_find_capability(dev, PCI_CAP_ID_AF);
2103 	u8 status;
2104 	u8 cap;
2105 
2106 	if (!cappos)
2107 		return -ENOTTY;
2108 	pci_read_config_byte(dev, cappos + PCI_AF_CAP, &cap);
2109 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
2110 		return -ENOTTY;
2111 
2112 	if (probe)
2113 		return 0;
2114 
2115 	pci_block_user_cfg_access(dev);
2116 
2117 	/* Wait for Transaction Pending bit clean */
2118 	pci_read_config_byte(dev, cappos + PCI_AF_STATUS, &status);
2119 	if (!(status & PCI_AF_STATUS_TP))
2120 		goto transaction_done;
2121 
2122 	msleep(100);
2123 	pci_read_config_byte(dev, cappos + PCI_AF_STATUS, &status);
2124 	if (!(status & PCI_AF_STATUS_TP))
2125 		goto transaction_done;
2126 
2127 	dev_info(&dev->dev, "Busy after 100ms while trying to"
2128 			" reset; sleeping for 1 second\n");
2129 	ssleep(1);
2130 	pci_read_config_byte(dev, cappos + PCI_AF_STATUS, &status);
2131 	if (status & PCI_AF_STATUS_TP)
2132 		dev_info(&dev->dev, "Still busy after 1s; "
2133 				"proceeding with reset anyway\n");
2134 
2135 transaction_done:
2136 	pci_write_config_byte(dev, cappos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
2137 	mdelay(100);
2138 
2139 	pci_unblock_user_cfg_access(dev);
2140 	return 0;
2141 }
2142 
2143 static int __pci_reset_function(struct pci_dev *pdev, int probe)
2144 {
2145 	int res;
2146 
2147 	res = __pcie_flr(pdev, probe);
2148 	if (res != -ENOTTY)
2149 		return res;
2150 
2151 	res = __pci_af_flr(pdev, probe);
2152 	if (res != -ENOTTY)
2153 		return res;
2154 
2155 	return res;
2156 }
2157 
2158 /**
2159  * pci_execute_reset_function() - Reset a PCI device function
2160  * @dev: Device function to reset
2161  *
2162  * Some devices allow an individual function to be reset without affecting
2163  * other functions in the same device.  The PCI device must be responsive
2164  * to PCI config space in order to use this function.
2165  *
2166  * The device function is presumed to be unused when this function is called.
2167  * Resetting the device will make the contents of PCI configuration space
2168  * random, so any caller of this must be prepared to reinitialise the
2169  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
2170  * etc.
2171  *
2172  * Returns 0 if the device function was successfully reset or -ENOTTY if the
2173  * device doesn't support resetting a single function.
2174  */
2175 int pci_execute_reset_function(struct pci_dev *dev)
2176 {
2177 	return __pci_reset_function(dev, 0);
2178 }
2179 EXPORT_SYMBOL_GPL(pci_execute_reset_function);
2180 
2181 /**
2182  * pci_reset_function() - quiesce and reset a PCI device function
2183  * @dev: Device function to reset
2184  *
2185  * Some devices allow an individual function to be reset without affecting
2186  * other functions in the same device.  The PCI device must be responsive
2187  * to PCI config space in order to use this function.
2188  *
2189  * This function does not just reset the PCI portion of a device, but
2190  * clears all the state associated with the device.  This function differs
2191  * from pci_execute_reset_function in that it saves and restores device state
2192  * over the reset.
2193  *
2194  * Returns 0 if the device function was successfully reset or -ENOTTY if the
2195  * device doesn't support resetting a single function.
2196  */
2197 int pci_reset_function(struct pci_dev *dev)
2198 {
2199 	int r = __pci_reset_function(dev, 1);
2200 
2201 	if (r < 0)
2202 		return r;
2203 
2204 	if (!dev->msi_enabled && !dev->msix_enabled && dev->irq != 0)
2205 		disable_irq(dev->irq);
2206 	pci_save_state(dev);
2207 
2208 	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
2209 
2210 	r = pci_execute_reset_function(dev);
2211 
2212 	pci_restore_state(dev);
2213 	if (!dev->msi_enabled && !dev->msix_enabled && dev->irq != 0)
2214 		enable_irq(dev->irq);
2215 
2216 	return r;
2217 }
2218 EXPORT_SYMBOL_GPL(pci_reset_function);
2219 
2220 /**
2221  * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
2222  * @dev: PCI device to query
2223  *
2224  * Returns mmrbc: maximum designed memory read count in bytes
2225  *    or appropriate error value.
2226  */
2227 int pcix_get_max_mmrbc(struct pci_dev *dev)
2228 {
2229 	int err, cap;
2230 	u32 stat;
2231 
2232 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2233 	if (!cap)
2234 		return -EINVAL;
2235 
2236 	err = pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat);
2237 	if (err)
2238 		return -EINVAL;
2239 
2240 	return (stat & PCI_X_STATUS_MAX_READ) >> 12;
2241 }
2242 EXPORT_SYMBOL(pcix_get_max_mmrbc);
2243 
2244 /**
2245  * pcix_get_mmrbc - get PCI-X maximum memory read byte count
2246  * @dev: PCI device to query
2247  *
2248  * Returns mmrbc: maximum memory read count in bytes
2249  *    or appropriate error value.
2250  */
2251 int pcix_get_mmrbc(struct pci_dev *dev)
2252 {
2253 	int ret, cap;
2254 	u32 cmd;
2255 
2256 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2257 	if (!cap)
2258 		return -EINVAL;
2259 
2260 	ret = pci_read_config_dword(dev, cap + PCI_X_CMD, &cmd);
2261 	if (!ret)
2262 		ret = 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
2263 
2264 	return ret;
2265 }
2266 EXPORT_SYMBOL(pcix_get_mmrbc);
2267 
2268 /**
2269  * pcix_set_mmrbc - set PCI-X maximum memory read byte count
2270  * @dev: PCI device to query
2271  * @mmrbc: maximum memory read count in bytes
2272  *    valid values are 512, 1024, 2048, 4096
2273  *
2274  * If possible sets maximum memory read byte count, some bridges have erratas
2275  * that prevent this.
2276  */
2277 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
2278 {
2279 	int cap, err = -EINVAL;
2280 	u32 stat, cmd, v, o;
2281 
2282 	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
2283 		goto out;
2284 
2285 	v = ffs(mmrbc) - 10;
2286 
2287 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
2288 	if (!cap)
2289 		goto out;
2290 
2291 	err = pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat);
2292 	if (err)
2293 		goto out;
2294 
2295 	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
2296 		return -E2BIG;
2297 
2298 	err = pci_read_config_dword(dev, cap + PCI_X_CMD, &cmd);
2299 	if (err)
2300 		goto out;
2301 
2302 	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
2303 	if (o != v) {
2304 		if (v > o && dev->bus &&
2305 		   (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
2306 			return -EIO;
2307 
2308 		cmd &= ~PCI_X_CMD_MAX_READ;
2309 		cmd |= v << 2;
2310 		err = pci_write_config_dword(dev, cap + PCI_X_CMD, cmd);
2311 	}
2312 out:
2313 	return err;
2314 }
2315 EXPORT_SYMBOL(pcix_set_mmrbc);
2316 
2317 /**
2318  * pcie_get_readrq - get PCI Express read request size
2319  * @dev: PCI device to query
2320  *
2321  * Returns maximum memory read request in bytes
2322  *    or appropriate error value.
2323  */
2324 int pcie_get_readrq(struct pci_dev *dev)
2325 {
2326 	int ret, cap;
2327 	u16 ctl;
2328 
2329 	cap = pci_find_capability(dev, PCI_CAP_ID_EXP);
2330 	if (!cap)
2331 		return -EINVAL;
2332 
2333 	ret = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
2334 	if (!ret)
2335 	ret = 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
2336 
2337 	return ret;
2338 }
2339 EXPORT_SYMBOL(pcie_get_readrq);
2340 
2341 /**
2342  * pcie_set_readrq - set PCI Express maximum memory read request
2343  * @dev: PCI device to query
2344  * @rq: maximum memory read count in bytes
2345  *    valid values are 128, 256, 512, 1024, 2048, 4096
2346  *
2347  * If possible sets maximum read byte count
2348  */
2349 int pcie_set_readrq(struct pci_dev *dev, int rq)
2350 {
2351 	int cap, err = -EINVAL;
2352 	u16 ctl, v;
2353 
2354 	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
2355 		goto out;
2356 
2357 	v = (ffs(rq) - 8) << 12;
2358 
2359 	cap = pci_find_capability(dev, PCI_CAP_ID_EXP);
2360 	if (!cap)
2361 		goto out;
2362 
2363 	err = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
2364 	if (err)
2365 		goto out;
2366 
2367 	if ((ctl & PCI_EXP_DEVCTL_READRQ) != v) {
2368 		ctl &= ~PCI_EXP_DEVCTL_READRQ;
2369 		ctl |= v;
2370 		err = pci_write_config_dword(dev, cap + PCI_EXP_DEVCTL, ctl);
2371 	}
2372 
2373 out:
2374 	return err;
2375 }
2376 EXPORT_SYMBOL(pcie_set_readrq);
2377 
2378 /**
2379  * pci_select_bars - Make BAR mask from the type of resource
2380  * @dev: the PCI device for which BAR mask is made
2381  * @flags: resource type mask to be selected
2382  *
2383  * This helper routine makes bar mask from the type of resource.
2384  */
2385 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
2386 {
2387 	int i, bars = 0;
2388 	for (i = 0; i < PCI_NUM_RESOURCES; i++)
2389 		if (pci_resource_flags(dev, i) & flags)
2390 			bars |= (1 << i);
2391 	return bars;
2392 }
2393 
2394 /**
2395  * pci_resource_bar - get position of the BAR associated with a resource
2396  * @dev: the PCI device
2397  * @resno: the resource number
2398  * @type: the BAR type to be filled in
2399  *
2400  * Returns BAR position in config space, or 0 if the BAR is invalid.
2401  */
2402 int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
2403 {
2404 	int reg;
2405 
2406 	if (resno < PCI_ROM_RESOURCE) {
2407 		*type = pci_bar_unknown;
2408 		return PCI_BASE_ADDRESS_0 + 4 * resno;
2409 	} else if (resno == PCI_ROM_RESOURCE) {
2410 		*type = pci_bar_mem32;
2411 		return dev->rom_base_reg;
2412 	} else if (resno < PCI_BRIDGE_RESOURCES) {
2413 		/* device specific resource */
2414 		reg = pci_iov_resource_bar(dev, resno, type);
2415 		if (reg)
2416 			return reg;
2417 	}
2418 
2419 	dev_err(&dev->dev, "BAR: invalid resource #%d\n", resno);
2420 	return 0;
2421 }
2422 
2423 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
2424 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
2425 spinlock_t resource_alignment_lock = SPIN_LOCK_UNLOCKED;
2426 
2427 /**
2428  * pci_specified_resource_alignment - get resource alignment specified by user.
2429  * @dev: the PCI device to get
2430  *
2431  * RETURNS: Resource alignment if it is specified.
2432  *          Zero if it is not specified.
2433  */
2434 resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
2435 {
2436 	int seg, bus, slot, func, align_order, count;
2437 	resource_size_t align = 0;
2438 	char *p;
2439 
2440 	spin_lock(&resource_alignment_lock);
2441 	p = resource_alignment_param;
2442 	while (*p) {
2443 		count = 0;
2444 		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
2445 							p[count] == '@') {
2446 			p += count + 1;
2447 		} else {
2448 			align_order = -1;
2449 		}
2450 		if (sscanf(p, "%x:%x:%x.%x%n",
2451 			&seg, &bus, &slot, &func, &count) != 4) {
2452 			seg = 0;
2453 			if (sscanf(p, "%x:%x.%x%n",
2454 					&bus, &slot, &func, &count) != 3) {
2455 				/* Invalid format */
2456 				printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
2457 					p);
2458 				break;
2459 			}
2460 		}
2461 		p += count;
2462 		if (seg == pci_domain_nr(dev->bus) &&
2463 			bus == dev->bus->number &&
2464 			slot == PCI_SLOT(dev->devfn) &&
2465 			func == PCI_FUNC(dev->devfn)) {
2466 			if (align_order == -1) {
2467 				align = PAGE_SIZE;
2468 			} else {
2469 				align = 1 << align_order;
2470 			}
2471 			/* Found */
2472 			break;
2473 		}
2474 		if (*p != ';' && *p != ',') {
2475 			/* End of param or invalid format */
2476 			break;
2477 		}
2478 		p++;
2479 	}
2480 	spin_unlock(&resource_alignment_lock);
2481 	return align;
2482 }
2483 
2484 /**
2485  * pci_is_reassigndev - check if specified PCI is target device to reassign
2486  * @dev: the PCI device to check
2487  *
2488  * RETURNS: non-zero for PCI device is a target device to reassign,
2489  *          or zero is not.
2490  */
2491 int pci_is_reassigndev(struct pci_dev *dev)
2492 {
2493 	return (pci_specified_resource_alignment(dev) != 0);
2494 }
2495 
2496 ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
2497 {
2498 	if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
2499 		count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
2500 	spin_lock(&resource_alignment_lock);
2501 	strncpy(resource_alignment_param, buf, count);
2502 	resource_alignment_param[count] = '\0';
2503 	spin_unlock(&resource_alignment_lock);
2504 	return count;
2505 }
2506 
2507 ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
2508 {
2509 	size_t count;
2510 	spin_lock(&resource_alignment_lock);
2511 	count = snprintf(buf, size, "%s", resource_alignment_param);
2512 	spin_unlock(&resource_alignment_lock);
2513 	return count;
2514 }
2515 
2516 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
2517 {
2518 	return pci_get_resource_alignment_param(buf, PAGE_SIZE);
2519 }
2520 
2521 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
2522 					const char *buf, size_t count)
2523 {
2524 	return pci_set_resource_alignment_param(buf, count);
2525 }
2526 
2527 BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
2528 					pci_resource_alignment_store);
2529 
2530 static int __init pci_resource_alignment_sysfs_init(void)
2531 {
2532 	return bus_create_file(&pci_bus_type,
2533 					&bus_attr_resource_alignment);
2534 }
2535 
2536 late_initcall(pci_resource_alignment_sysfs_init);
2537 
2538 static void __devinit pci_no_domains(void)
2539 {
2540 #ifdef CONFIG_PCI_DOMAINS
2541 	pci_domains_supported = 0;
2542 #endif
2543 }
2544 
2545 /**
2546  * pci_ext_cfg_enabled - can we access extended PCI config space?
2547  * @dev: The PCI device of the root bridge.
2548  *
2549  * Returns 1 if we can access PCI extended config space (offsets
2550  * greater than 0xff). This is the default implementation. Architecture
2551  * implementations can override this.
2552  */
2553 int __attribute__ ((weak)) pci_ext_cfg_avail(struct pci_dev *dev)
2554 {
2555 	return 1;
2556 }
2557 
2558 static int __devinit pci_init(void)
2559 {
2560 	struct pci_dev *dev = NULL;
2561 
2562 	while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
2563 		pci_fixup_device(pci_fixup_final, dev);
2564 	}
2565 
2566 	return 0;
2567 }
2568 
2569 static int __init pci_setup(char *str)
2570 {
2571 	while (str) {
2572 		char *k = strchr(str, ',');
2573 		if (k)
2574 			*k++ = 0;
2575 		if (*str && (str = pcibios_setup(str)) && *str) {
2576 			if (!strcmp(str, "nomsi")) {
2577 				pci_no_msi();
2578 			} else if (!strcmp(str, "noaer")) {
2579 				pci_no_aer();
2580 			} else if (!strcmp(str, "nodomains")) {
2581 				pci_no_domains();
2582 			} else if (!strncmp(str, "cbiosize=", 9)) {
2583 				pci_cardbus_io_size = memparse(str + 9, &str);
2584 			} else if (!strncmp(str, "cbmemsize=", 10)) {
2585 				pci_cardbus_mem_size = memparse(str + 10, &str);
2586 			} else if (!strncmp(str, "resource_alignment=", 19)) {
2587 				pci_set_resource_alignment_param(str + 19,
2588 							strlen(str + 19));
2589 			} else {
2590 				printk(KERN_ERR "PCI: Unknown option `%s'\n",
2591 						str);
2592 			}
2593 		}
2594 		str = k;
2595 	}
2596 	return 0;
2597 }
2598 early_param("pci", pci_setup);
2599 
2600 device_initcall(pci_init);
2601 
2602 EXPORT_SYMBOL(pci_reenable_device);
2603 EXPORT_SYMBOL(pci_enable_device_io);
2604 EXPORT_SYMBOL(pci_enable_device_mem);
2605 EXPORT_SYMBOL(pci_enable_device);
2606 EXPORT_SYMBOL(pcim_enable_device);
2607 EXPORT_SYMBOL(pcim_pin_device);
2608 EXPORT_SYMBOL(pci_disable_device);
2609 EXPORT_SYMBOL(pci_find_capability);
2610 EXPORT_SYMBOL(pci_bus_find_capability);
2611 EXPORT_SYMBOL(pci_release_regions);
2612 EXPORT_SYMBOL(pci_request_regions);
2613 EXPORT_SYMBOL(pci_request_regions_exclusive);
2614 EXPORT_SYMBOL(pci_release_region);
2615 EXPORT_SYMBOL(pci_request_region);
2616 EXPORT_SYMBOL(pci_request_region_exclusive);
2617 EXPORT_SYMBOL(pci_release_selected_regions);
2618 EXPORT_SYMBOL(pci_request_selected_regions);
2619 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
2620 EXPORT_SYMBOL(pci_set_master);
2621 EXPORT_SYMBOL(pci_clear_master);
2622 EXPORT_SYMBOL(pci_set_mwi);
2623 EXPORT_SYMBOL(pci_try_set_mwi);
2624 EXPORT_SYMBOL(pci_clear_mwi);
2625 EXPORT_SYMBOL_GPL(pci_intx);
2626 EXPORT_SYMBOL(pci_set_dma_mask);
2627 EXPORT_SYMBOL(pci_set_consistent_dma_mask);
2628 EXPORT_SYMBOL(pci_assign_resource);
2629 EXPORT_SYMBOL(pci_find_parent_resource);
2630 EXPORT_SYMBOL(pci_select_bars);
2631 
2632 EXPORT_SYMBOL(pci_set_power_state);
2633 EXPORT_SYMBOL(pci_save_state);
2634 EXPORT_SYMBOL(pci_restore_state);
2635 EXPORT_SYMBOL(pci_pme_capable);
2636 EXPORT_SYMBOL(pci_pme_active);
2637 EXPORT_SYMBOL(pci_enable_wake);
2638 EXPORT_SYMBOL(pci_wake_from_d3);
2639 EXPORT_SYMBOL(pci_target_state);
2640 EXPORT_SYMBOL(pci_prepare_to_sleep);
2641 EXPORT_SYMBOL(pci_back_from_sleep);
2642 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2643 
2644