xref: /openbmc/linux/drivers/pci/pci.c (revision 7e6f7d24)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * PCI Bus Services, see include/linux/pci.h for further explanation.
4  *
5  * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6  * David Mosberger-Tang
7  *
8  * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/of.h>
17 #include <linux/of_pci.h>
18 #include <linux/pci.h>
19 #include <linux/pm.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/log2.h>
25 #include <linux/logic_pio.h>
26 #include <linux/pci-aspm.h>
27 #include <linux/pm_wakeup.h>
28 #include <linux/interrupt.h>
29 #include <linux/device.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/pci_hotplug.h>
32 #include <linux/vmalloc.h>
33 #include <linux/pci-ats.h>
34 #include <asm/setup.h>
35 #include <asm/dma.h>
36 #include <linux/aer.h>
37 #include "pci.h"
38 
39 const char *pci_power_names[] = {
40 	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
41 };
42 EXPORT_SYMBOL_GPL(pci_power_names);
43 
44 int isa_dma_bridge_buggy;
45 EXPORT_SYMBOL(isa_dma_bridge_buggy);
46 
47 int pci_pci_problems;
48 EXPORT_SYMBOL(pci_pci_problems);
49 
50 unsigned int pci_pm_d3_delay;
51 
52 static void pci_pme_list_scan(struct work_struct *work);
53 
54 static LIST_HEAD(pci_pme_list);
55 static DEFINE_MUTEX(pci_pme_list_mutex);
56 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
57 
58 struct pci_pme_device {
59 	struct list_head list;
60 	struct pci_dev *dev;
61 };
62 
63 #define PME_TIMEOUT 1000 /* How long between PME checks */
64 
65 static void pci_dev_d3_sleep(struct pci_dev *dev)
66 {
67 	unsigned int delay = dev->d3_delay;
68 
69 	if (delay < pci_pm_d3_delay)
70 		delay = pci_pm_d3_delay;
71 
72 	if (delay)
73 		msleep(delay);
74 }
75 
76 #ifdef CONFIG_PCI_DOMAINS
77 int pci_domains_supported = 1;
78 #endif
79 
80 #define DEFAULT_CARDBUS_IO_SIZE		(256)
81 #define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
82 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
83 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
84 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
85 
86 #define DEFAULT_HOTPLUG_IO_SIZE		(256)
87 #define DEFAULT_HOTPLUG_MEM_SIZE	(2*1024*1024)
88 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
89 unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
90 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
91 
92 #define DEFAULT_HOTPLUG_BUS_SIZE	1
93 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
94 
95 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
96 
97 /*
98  * The default CLS is used if arch didn't set CLS explicitly and not
99  * all pci devices agree on the same value.  Arch can override either
100  * the dfl or actual value as it sees fit.  Don't forget this is
101  * measured in 32-bit words, not bytes.
102  */
103 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
104 u8 pci_cache_line_size;
105 
106 /*
107  * If we set up a device for bus mastering, we need to check the latency
108  * timer as certain BIOSes forget to set it properly.
109  */
110 unsigned int pcibios_max_latency = 255;
111 
112 /* If set, the PCIe ARI capability will not be used. */
113 static bool pcie_ari_disabled;
114 
115 /* If set, the PCIe ATS capability will not be used. */
116 static bool pcie_ats_disabled;
117 
118 bool pci_ats_disabled(void)
119 {
120 	return pcie_ats_disabled;
121 }
122 
123 /* Disable bridge_d3 for all PCIe ports */
124 static bool pci_bridge_d3_disable;
125 /* Force bridge_d3 for all PCIe ports */
126 static bool pci_bridge_d3_force;
127 
128 static int __init pcie_port_pm_setup(char *str)
129 {
130 	if (!strcmp(str, "off"))
131 		pci_bridge_d3_disable = true;
132 	else if (!strcmp(str, "force"))
133 		pci_bridge_d3_force = true;
134 	return 1;
135 }
136 __setup("pcie_port_pm=", pcie_port_pm_setup);
137 
138 /* Time to wait after a reset for device to become responsive */
139 #define PCIE_RESET_READY_POLL_MS 60000
140 
141 /**
142  * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
143  * @bus: pointer to PCI bus structure to search
144  *
145  * Given a PCI bus, returns the highest PCI bus number present in the set
146  * including the given PCI bus and its list of child PCI buses.
147  */
148 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
149 {
150 	struct pci_bus *tmp;
151 	unsigned char max, n;
152 
153 	max = bus->busn_res.end;
154 	list_for_each_entry(tmp, &bus->children, node) {
155 		n = pci_bus_max_busnr(tmp);
156 		if (n > max)
157 			max = n;
158 	}
159 	return max;
160 }
161 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
162 
163 #ifdef CONFIG_HAS_IOMEM
164 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
165 {
166 	struct resource *res = &pdev->resource[bar];
167 
168 	/*
169 	 * Make sure the BAR is actually a memory resource, not an IO resource
170 	 */
171 	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
172 		pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
173 		return NULL;
174 	}
175 	return ioremap_nocache(res->start, resource_size(res));
176 }
177 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
178 
179 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
180 {
181 	/*
182 	 * Make sure the BAR is actually a memory resource, not an IO resource
183 	 */
184 	if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
185 		WARN_ON(1);
186 		return NULL;
187 	}
188 	return ioremap_wc(pci_resource_start(pdev, bar),
189 			  pci_resource_len(pdev, bar));
190 }
191 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
192 #endif
193 
194 
195 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
196 				   u8 pos, int cap, int *ttl)
197 {
198 	u8 id;
199 	u16 ent;
200 
201 	pci_bus_read_config_byte(bus, devfn, pos, &pos);
202 
203 	while ((*ttl)--) {
204 		if (pos < 0x40)
205 			break;
206 		pos &= ~3;
207 		pci_bus_read_config_word(bus, devfn, pos, &ent);
208 
209 		id = ent & 0xff;
210 		if (id == 0xff)
211 			break;
212 		if (id == cap)
213 			return pos;
214 		pos = (ent >> 8);
215 	}
216 	return 0;
217 }
218 
219 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
220 			       u8 pos, int cap)
221 {
222 	int ttl = PCI_FIND_CAP_TTL;
223 
224 	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
225 }
226 
227 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
228 {
229 	return __pci_find_next_cap(dev->bus, dev->devfn,
230 				   pos + PCI_CAP_LIST_NEXT, cap);
231 }
232 EXPORT_SYMBOL_GPL(pci_find_next_capability);
233 
234 static int __pci_bus_find_cap_start(struct pci_bus *bus,
235 				    unsigned int devfn, u8 hdr_type)
236 {
237 	u16 status;
238 
239 	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
240 	if (!(status & PCI_STATUS_CAP_LIST))
241 		return 0;
242 
243 	switch (hdr_type) {
244 	case PCI_HEADER_TYPE_NORMAL:
245 	case PCI_HEADER_TYPE_BRIDGE:
246 		return PCI_CAPABILITY_LIST;
247 	case PCI_HEADER_TYPE_CARDBUS:
248 		return PCI_CB_CAPABILITY_LIST;
249 	}
250 
251 	return 0;
252 }
253 
254 /**
255  * pci_find_capability - query for devices' capabilities
256  * @dev: PCI device to query
257  * @cap: capability code
258  *
259  * Tell if a device supports a given PCI capability.
260  * Returns the address of the requested capability structure within the
261  * device's PCI configuration space or 0 in case the device does not
262  * support it.  Possible values for @cap:
263  *
264  *  %PCI_CAP_ID_PM           Power Management
265  *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
266  *  %PCI_CAP_ID_VPD          Vital Product Data
267  *  %PCI_CAP_ID_SLOTID       Slot Identification
268  *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
269  *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
270  *  %PCI_CAP_ID_PCIX         PCI-X
271  *  %PCI_CAP_ID_EXP          PCI Express
272  */
273 int pci_find_capability(struct pci_dev *dev, int cap)
274 {
275 	int pos;
276 
277 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
278 	if (pos)
279 		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
280 
281 	return pos;
282 }
283 EXPORT_SYMBOL(pci_find_capability);
284 
285 /**
286  * pci_bus_find_capability - query for devices' capabilities
287  * @bus:   the PCI bus to query
288  * @devfn: PCI device to query
289  * @cap:   capability code
290  *
291  * Like pci_find_capability() but works for pci devices that do not have a
292  * pci_dev structure set up yet.
293  *
294  * Returns the address of the requested capability structure within the
295  * device's PCI configuration space or 0 in case the device does not
296  * support it.
297  */
298 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
299 {
300 	int pos;
301 	u8 hdr_type;
302 
303 	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
304 
305 	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
306 	if (pos)
307 		pos = __pci_find_next_cap(bus, devfn, pos, cap);
308 
309 	return pos;
310 }
311 EXPORT_SYMBOL(pci_bus_find_capability);
312 
313 /**
314  * pci_find_next_ext_capability - Find an extended capability
315  * @dev: PCI device to query
316  * @start: address at which to start looking (0 to start at beginning of list)
317  * @cap: capability code
318  *
319  * Returns the address of the next matching extended capability structure
320  * within the device's PCI configuration space or 0 if the device does
321  * not support it.  Some capabilities can occur several times, e.g., the
322  * vendor-specific capability, and this provides a way to find them all.
323  */
324 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
325 {
326 	u32 header;
327 	int ttl;
328 	int pos = PCI_CFG_SPACE_SIZE;
329 
330 	/* minimum 8 bytes per capability */
331 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
332 
333 	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
334 		return 0;
335 
336 	if (start)
337 		pos = start;
338 
339 	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
340 		return 0;
341 
342 	/*
343 	 * If we have no capabilities, this is indicated by cap ID,
344 	 * cap version and next pointer all being 0.
345 	 */
346 	if (header == 0)
347 		return 0;
348 
349 	while (ttl-- > 0) {
350 		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
351 			return pos;
352 
353 		pos = PCI_EXT_CAP_NEXT(header);
354 		if (pos < PCI_CFG_SPACE_SIZE)
355 			break;
356 
357 		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
358 			break;
359 	}
360 
361 	return 0;
362 }
363 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
364 
365 /**
366  * pci_find_ext_capability - Find an extended capability
367  * @dev: PCI device to query
368  * @cap: capability code
369  *
370  * Returns the address of the requested extended capability structure
371  * within the device's PCI configuration space or 0 if the device does
372  * not support it.  Possible values for @cap:
373  *
374  *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
375  *  %PCI_EXT_CAP_ID_VC		Virtual Channel
376  *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
377  *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
378  */
379 int pci_find_ext_capability(struct pci_dev *dev, int cap)
380 {
381 	return pci_find_next_ext_capability(dev, 0, cap);
382 }
383 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
384 
385 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
386 {
387 	int rc, ttl = PCI_FIND_CAP_TTL;
388 	u8 cap, mask;
389 
390 	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
391 		mask = HT_3BIT_CAP_MASK;
392 	else
393 		mask = HT_5BIT_CAP_MASK;
394 
395 	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
396 				      PCI_CAP_ID_HT, &ttl);
397 	while (pos) {
398 		rc = pci_read_config_byte(dev, pos + 3, &cap);
399 		if (rc != PCIBIOS_SUCCESSFUL)
400 			return 0;
401 
402 		if ((cap & mask) == ht_cap)
403 			return pos;
404 
405 		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
406 					      pos + PCI_CAP_LIST_NEXT,
407 					      PCI_CAP_ID_HT, &ttl);
408 	}
409 
410 	return 0;
411 }
412 /**
413  * pci_find_next_ht_capability - query a device's Hypertransport capabilities
414  * @dev: PCI device to query
415  * @pos: Position from which to continue searching
416  * @ht_cap: Hypertransport capability code
417  *
418  * To be used in conjunction with pci_find_ht_capability() to search for
419  * all capabilities matching @ht_cap. @pos should always be a value returned
420  * from pci_find_ht_capability().
421  *
422  * NB. To be 100% safe against broken PCI devices, the caller should take
423  * steps to avoid an infinite loop.
424  */
425 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
426 {
427 	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
428 }
429 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
430 
431 /**
432  * pci_find_ht_capability - query a device's Hypertransport capabilities
433  * @dev: PCI device to query
434  * @ht_cap: Hypertransport capability code
435  *
436  * Tell if a device supports a given Hypertransport capability.
437  * Returns an address within the device's PCI configuration space
438  * or 0 in case the device does not support the request capability.
439  * The address points to the PCI capability, of type PCI_CAP_ID_HT,
440  * which has a Hypertransport capability matching @ht_cap.
441  */
442 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
443 {
444 	int pos;
445 
446 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
447 	if (pos)
448 		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
449 
450 	return pos;
451 }
452 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
453 
454 /**
455  * pci_find_parent_resource - return resource region of parent bus of given region
456  * @dev: PCI device structure contains resources to be searched
457  * @res: child resource record for which parent is sought
458  *
459  *  For given resource region of given device, return the resource
460  *  region of parent bus the given region is contained in.
461  */
462 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
463 					  struct resource *res)
464 {
465 	const struct pci_bus *bus = dev->bus;
466 	struct resource *r;
467 	int i;
468 
469 	pci_bus_for_each_resource(bus, r, i) {
470 		if (!r)
471 			continue;
472 		if (resource_contains(r, res)) {
473 
474 			/*
475 			 * If the window is prefetchable but the BAR is
476 			 * not, the allocator made a mistake.
477 			 */
478 			if (r->flags & IORESOURCE_PREFETCH &&
479 			    !(res->flags & IORESOURCE_PREFETCH))
480 				return NULL;
481 
482 			/*
483 			 * If we're below a transparent bridge, there may
484 			 * be both a positively-decoded aperture and a
485 			 * subtractively-decoded region that contain the BAR.
486 			 * We want the positively-decoded one, so this depends
487 			 * on pci_bus_for_each_resource() giving us those
488 			 * first.
489 			 */
490 			return r;
491 		}
492 	}
493 	return NULL;
494 }
495 EXPORT_SYMBOL(pci_find_parent_resource);
496 
497 /**
498  * pci_find_resource - Return matching PCI device resource
499  * @dev: PCI device to query
500  * @res: Resource to look for
501  *
502  * Goes over standard PCI resources (BARs) and checks if the given resource
503  * is partially or fully contained in any of them. In that case the
504  * matching resource is returned, %NULL otherwise.
505  */
506 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
507 {
508 	int i;
509 
510 	for (i = 0; i < PCI_ROM_RESOURCE; i++) {
511 		struct resource *r = &dev->resource[i];
512 
513 		if (r->start && resource_contains(r, res))
514 			return r;
515 	}
516 
517 	return NULL;
518 }
519 EXPORT_SYMBOL(pci_find_resource);
520 
521 /**
522  * pci_find_pcie_root_port - return PCIe Root Port
523  * @dev: PCI device to query
524  *
525  * Traverse up the parent chain and return the PCIe Root Port PCI Device
526  * for a given PCI Device.
527  */
528 struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev)
529 {
530 	struct pci_dev *bridge, *highest_pcie_bridge = dev;
531 
532 	bridge = pci_upstream_bridge(dev);
533 	while (bridge && pci_is_pcie(bridge)) {
534 		highest_pcie_bridge = bridge;
535 		bridge = pci_upstream_bridge(bridge);
536 	}
537 
538 	if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT)
539 		return NULL;
540 
541 	return highest_pcie_bridge;
542 }
543 EXPORT_SYMBOL(pci_find_pcie_root_port);
544 
545 /**
546  * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
547  * @dev: the PCI device to operate on
548  * @pos: config space offset of status word
549  * @mask: mask of bit(s) to care about in status word
550  *
551  * Return 1 when mask bit(s) in status word clear, 0 otherwise.
552  */
553 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
554 {
555 	int i;
556 
557 	/* Wait for Transaction Pending bit clean */
558 	for (i = 0; i < 4; i++) {
559 		u16 status;
560 		if (i)
561 			msleep((1 << (i - 1)) * 100);
562 
563 		pci_read_config_word(dev, pos, &status);
564 		if (!(status & mask))
565 			return 1;
566 	}
567 
568 	return 0;
569 }
570 
571 /**
572  * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
573  * @dev: PCI device to have its BARs restored
574  *
575  * Restore the BAR values for a given device, so as to make it
576  * accessible by its driver.
577  */
578 static void pci_restore_bars(struct pci_dev *dev)
579 {
580 	int i;
581 
582 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
583 		pci_update_resource(dev, i);
584 }
585 
586 static const struct pci_platform_pm_ops *pci_platform_pm;
587 
588 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
589 {
590 	if (!ops->is_manageable || !ops->set_state  || !ops->get_state ||
591 	    !ops->choose_state  || !ops->set_wakeup || !ops->need_resume)
592 		return -EINVAL;
593 	pci_platform_pm = ops;
594 	return 0;
595 }
596 
597 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
598 {
599 	return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
600 }
601 
602 static inline int platform_pci_set_power_state(struct pci_dev *dev,
603 					       pci_power_t t)
604 {
605 	return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
606 }
607 
608 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
609 {
610 	return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
611 }
612 
613 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
614 {
615 	return pci_platform_pm ?
616 			pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
617 }
618 
619 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
620 {
621 	return pci_platform_pm ?
622 			pci_platform_pm->set_wakeup(dev, enable) : -ENODEV;
623 }
624 
625 static inline bool platform_pci_need_resume(struct pci_dev *dev)
626 {
627 	return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
628 }
629 
630 /**
631  * pci_raw_set_power_state - Use PCI PM registers to set the power state of
632  *                           given PCI device
633  * @dev: PCI device to handle.
634  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
635  *
636  * RETURN VALUE:
637  * -EINVAL if the requested state is invalid.
638  * -EIO if device does not support PCI PM or its PM capabilities register has a
639  * wrong version, or device doesn't support the requested state.
640  * 0 if device already is in the requested state.
641  * 0 if device's power state has been successfully changed.
642  */
643 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
644 {
645 	u16 pmcsr;
646 	bool need_restore = false;
647 
648 	/* Check if we're already there */
649 	if (dev->current_state == state)
650 		return 0;
651 
652 	if (!dev->pm_cap)
653 		return -EIO;
654 
655 	if (state < PCI_D0 || state > PCI_D3hot)
656 		return -EINVAL;
657 
658 	/* Validate current state:
659 	 * Can enter D0 from any state, but if we can only go deeper
660 	 * to sleep if we're already in a low power state
661 	 */
662 	if (state != PCI_D0 && dev->current_state <= PCI_D3cold
663 	    && dev->current_state > state) {
664 		pci_err(dev, "invalid power transition (from state %d to %d)\n",
665 			dev->current_state, state);
666 		return -EINVAL;
667 	}
668 
669 	/* check if this device supports the desired state */
670 	if ((state == PCI_D1 && !dev->d1_support)
671 	   || (state == PCI_D2 && !dev->d2_support))
672 		return -EIO;
673 
674 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
675 
676 	/* If we're (effectively) in D3, force entire word to 0.
677 	 * This doesn't affect PME_Status, disables PME_En, and
678 	 * sets PowerState to 0.
679 	 */
680 	switch (dev->current_state) {
681 	case PCI_D0:
682 	case PCI_D1:
683 	case PCI_D2:
684 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
685 		pmcsr |= state;
686 		break;
687 	case PCI_D3hot:
688 	case PCI_D3cold:
689 	case PCI_UNKNOWN: /* Boot-up */
690 		if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
691 		 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
692 			need_restore = true;
693 		/* Fall-through: force to D0 */
694 	default:
695 		pmcsr = 0;
696 		break;
697 	}
698 
699 	/* enter specified state */
700 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
701 
702 	/* Mandatory power management transition delays */
703 	/* see PCI PM 1.1 5.6.1 table 18 */
704 	if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
705 		pci_dev_d3_sleep(dev);
706 	else if (state == PCI_D2 || dev->current_state == PCI_D2)
707 		udelay(PCI_PM_D2_DELAY);
708 
709 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
710 	dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
711 	if (dev->current_state != state && printk_ratelimit())
712 		pci_info(dev, "Refused to change power state, currently in D%d\n",
713 			 dev->current_state);
714 
715 	/*
716 	 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
717 	 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
718 	 * from D3hot to D0 _may_ perform an internal reset, thereby
719 	 * going to "D0 Uninitialized" rather than "D0 Initialized".
720 	 * For example, at least some versions of the 3c905B and the
721 	 * 3c556B exhibit this behaviour.
722 	 *
723 	 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
724 	 * devices in a D3hot state at boot.  Consequently, we need to
725 	 * restore at least the BARs so that the device will be
726 	 * accessible to its driver.
727 	 */
728 	if (need_restore)
729 		pci_restore_bars(dev);
730 
731 	if (dev->bus->self)
732 		pcie_aspm_pm_state_change(dev->bus->self);
733 
734 	return 0;
735 }
736 
737 /**
738  * pci_update_current_state - Read power state of given device and cache it
739  * @dev: PCI device to handle.
740  * @state: State to cache in case the device doesn't have the PM capability
741  *
742  * The power state is read from the PMCSR register, which however is
743  * inaccessible in D3cold.  The platform firmware is therefore queried first
744  * to detect accessibility of the register.  In case the platform firmware
745  * reports an incorrect state or the device isn't power manageable by the
746  * platform at all, we try to detect D3cold by testing accessibility of the
747  * vendor ID in config space.
748  */
749 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
750 {
751 	if (platform_pci_get_power_state(dev) == PCI_D3cold ||
752 	    !pci_device_is_present(dev)) {
753 		dev->current_state = PCI_D3cold;
754 	} else if (dev->pm_cap) {
755 		u16 pmcsr;
756 
757 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
758 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
759 	} else {
760 		dev->current_state = state;
761 	}
762 }
763 
764 /**
765  * pci_power_up - Put the given device into D0 forcibly
766  * @dev: PCI device to power up
767  */
768 void pci_power_up(struct pci_dev *dev)
769 {
770 	if (platform_pci_power_manageable(dev))
771 		platform_pci_set_power_state(dev, PCI_D0);
772 
773 	pci_raw_set_power_state(dev, PCI_D0);
774 	pci_update_current_state(dev, PCI_D0);
775 }
776 
777 /**
778  * pci_platform_power_transition - Use platform to change device power state
779  * @dev: PCI device to handle.
780  * @state: State to put the device into.
781  */
782 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
783 {
784 	int error;
785 
786 	if (platform_pci_power_manageable(dev)) {
787 		error = platform_pci_set_power_state(dev, state);
788 		if (!error)
789 			pci_update_current_state(dev, state);
790 	} else
791 		error = -ENODEV;
792 
793 	if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
794 		dev->current_state = PCI_D0;
795 
796 	return error;
797 }
798 
799 /**
800  * pci_wakeup - Wake up a PCI device
801  * @pci_dev: Device to handle.
802  * @ign: ignored parameter
803  */
804 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
805 {
806 	pci_wakeup_event(pci_dev);
807 	pm_request_resume(&pci_dev->dev);
808 	return 0;
809 }
810 
811 /**
812  * pci_wakeup_bus - Walk given bus and wake up devices on it
813  * @bus: Top bus of the subtree to walk.
814  */
815 void pci_wakeup_bus(struct pci_bus *bus)
816 {
817 	if (bus)
818 		pci_walk_bus(bus, pci_wakeup, NULL);
819 }
820 
821 /**
822  * __pci_start_power_transition - Start power transition of a PCI device
823  * @dev: PCI device to handle.
824  * @state: State to put the device into.
825  */
826 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
827 {
828 	if (state == PCI_D0) {
829 		pci_platform_power_transition(dev, PCI_D0);
830 		/*
831 		 * Mandatory power management transition delays, see
832 		 * PCI Express Base Specification Revision 2.0 Section
833 		 * 6.6.1: Conventional Reset.  Do not delay for
834 		 * devices powered on/off by corresponding bridge,
835 		 * because have already delayed for the bridge.
836 		 */
837 		if (dev->runtime_d3cold) {
838 			if (dev->d3cold_delay)
839 				msleep(dev->d3cold_delay);
840 			/*
841 			 * When powering on a bridge from D3cold, the
842 			 * whole hierarchy may be powered on into
843 			 * D0uninitialized state, resume them to give
844 			 * them a chance to suspend again
845 			 */
846 			pci_wakeup_bus(dev->subordinate);
847 		}
848 	}
849 }
850 
851 /**
852  * __pci_dev_set_current_state - Set current state of a PCI device
853  * @dev: Device to handle
854  * @data: pointer to state to be set
855  */
856 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
857 {
858 	pci_power_t state = *(pci_power_t *)data;
859 
860 	dev->current_state = state;
861 	return 0;
862 }
863 
864 /**
865  * pci_bus_set_current_state - Walk given bus and set current state of devices
866  * @bus: Top bus of the subtree to walk.
867  * @state: state to be set
868  */
869 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
870 {
871 	if (bus)
872 		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
873 }
874 
875 /**
876  * __pci_complete_power_transition - Complete power transition of a PCI device
877  * @dev: PCI device to handle.
878  * @state: State to put the device into.
879  *
880  * This function should not be called directly by device drivers.
881  */
882 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
883 {
884 	int ret;
885 
886 	if (state <= PCI_D0)
887 		return -EINVAL;
888 	ret = pci_platform_power_transition(dev, state);
889 	/* Power off the bridge may power off the whole hierarchy */
890 	if (!ret && state == PCI_D3cold)
891 		pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
892 	return ret;
893 }
894 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
895 
896 /**
897  * pci_set_power_state - Set the power state of a PCI device
898  * @dev: PCI device to handle.
899  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
900  *
901  * Transition a device to a new power state, using the platform firmware and/or
902  * the device's PCI PM registers.
903  *
904  * RETURN VALUE:
905  * -EINVAL if the requested state is invalid.
906  * -EIO if device does not support PCI PM or its PM capabilities register has a
907  * wrong version, or device doesn't support the requested state.
908  * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
909  * 0 if device already is in the requested state.
910  * 0 if the transition is to D3 but D3 is not supported.
911  * 0 if device's power state has been successfully changed.
912  */
913 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
914 {
915 	int error;
916 
917 	/* bound the state we're entering */
918 	if (state > PCI_D3cold)
919 		state = PCI_D3cold;
920 	else if (state < PCI_D0)
921 		state = PCI_D0;
922 	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
923 		/*
924 		 * If the device or the parent bridge do not support PCI PM,
925 		 * ignore the request if we're doing anything other than putting
926 		 * it into D0 (which would only happen on boot).
927 		 */
928 		return 0;
929 
930 	/* Check if we're already there */
931 	if (dev->current_state == state)
932 		return 0;
933 
934 	__pci_start_power_transition(dev, state);
935 
936 	/* This device is quirked not to be put into D3, so
937 	   don't put it in D3 */
938 	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
939 		return 0;
940 
941 	/*
942 	 * To put device in D3cold, we put device into D3hot in native
943 	 * way, then put device into D3cold with platform ops
944 	 */
945 	error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
946 					PCI_D3hot : state);
947 
948 	if (!__pci_complete_power_transition(dev, state))
949 		error = 0;
950 
951 	return error;
952 }
953 EXPORT_SYMBOL(pci_set_power_state);
954 
955 /**
956  * pci_choose_state - Choose the power state of a PCI device
957  * @dev: PCI device to be suspended
958  * @state: target sleep state for the whole system. This is the value
959  *	that is passed to suspend() function.
960  *
961  * Returns PCI power state suitable for given device and given system
962  * message.
963  */
964 
965 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
966 {
967 	pci_power_t ret;
968 
969 	if (!dev->pm_cap)
970 		return PCI_D0;
971 
972 	ret = platform_pci_choose_state(dev);
973 	if (ret != PCI_POWER_ERROR)
974 		return ret;
975 
976 	switch (state.event) {
977 	case PM_EVENT_ON:
978 		return PCI_D0;
979 	case PM_EVENT_FREEZE:
980 	case PM_EVENT_PRETHAW:
981 		/* REVISIT both freeze and pre-thaw "should" use D0 */
982 	case PM_EVENT_SUSPEND:
983 	case PM_EVENT_HIBERNATE:
984 		return PCI_D3hot;
985 	default:
986 		pci_info(dev, "unrecognized suspend event %d\n",
987 			 state.event);
988 		BUG();
989 	}
990 	return PCI_D0;
991 }
992 EXPORT_SYMBOL(pci_choose_state);
993 
994 #define PCI_EXP_SAVE_REGS	7
995 
996 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
997 						       u16 cap, bool extended)
998 {
999 	struct pci_cap_saved_state *tmp;
1000 
1001 	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1002 		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1003 			return tmp;
1004 	}
1005 	return NULL;
1006 }
1007 
1008 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1009 {
1010 	return _pci_find_saved_cap(dev, cap, false);
1011 }
1012 
1013 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1014 {
1015 	return _pci_find_saved_cap(dev, cap, true);
1016 }
1017 
1018 static int pci_save_pcie_state(struct pci_dev *dev)
1019 {
1020 	int i = 0;
1021 	struct pci_cap_saved_state *save_state;
1022 	u16 *cap;
1023 
1024 	if (!pci_is_pcie(dev))
1025 		return 0;
1026 
1027 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1028 	if (!save_state) {
1029 		pci_err(dev, "buffer not found in %s\n", __func__);
1030 		return -ENOMEM;
1031 	}
1032 
1033 	cap = (u16 *)&save_state->cap.data[0];
1034 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1035 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1036 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1037 	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
1038 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1039 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1040 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1041 
1042 	return 0;
1043 }
1044 
1045 static void pci_restore_pcie_state(struct pci_dev *dev)
1046 {
1047 	int i = 0;
1048 	struct pci_cap_saved_state *save_state;
1049 	u16 *cap;
1050 
1051 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1052 	if (!save_state)
1053 		return;
1054 
1055 	cap = (u16 *)&save_state->cap.data[0];
1056 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1057 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1058 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1059 	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1060 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1061 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1062 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1063 }
1064 
1065 
1066 static int pci_save_pcix_state(struct pci_dev *dev)
1067 {
1068 	int pos;
1069 	struct pci_cap_saved_state *save_state;
1070 
1071 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1072 	if (!pos)
1073 		return 0;
1074 
1075 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1076 	if (!save_state) {
1077 		pci_err(dev, "buffer not found in %s\n", __func__);
1078 		return -ENOMEM;
1079 	}
1080 
1081 	pci_read_config_word(dev, pos + PCI_X_CMD,
1082 			     (u16 *)save_state->cap.data);
1083 
1084 	return 0;
1085 }
1086 
1087 static void pci_restore_pcix_state(struct pci_dev *dev)
1088 {
1089 	int i = 0, pos;
1090 	struct pci_cap_saved_state *save_state;
1091 	u16 *cap;
1092 
1093 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1094 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1095 	if (!save_state || !pos)
1096 		return;
1097 	cap = (u16 *)&save_state->cap.data[0];
1098 
1099 	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1100 }
1101 
1102 
1103 /**
1104  * pci_save_state - save the PCI configuration space of a device before suspending
1105  * @dev: - PCI device that we're dealing with
1106  */
1107 int pci_save_state(struct pci_dev *dev)
1108 {
1109 	int i;
1110 	/* XXX: 100% dword access ok here? */
1111 	for (i = 0; i < 16; i++)
1112 		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1113 	dev->state_saved = true;
1114 
1115 	i = pci_save_pcie_state(dev);
1116 	if (i != 0)
1117 		return i;
1118 
1119 	i = pci_save_pcix_state(dev);
1120 	if (i != 0)
1121 		return i;
1122 
1123 	return pci_save_vc_state(dev);
1124 }
1125 EXPORT_SYMBOL(pci_save_state);
1126 
1127 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1128 				     u32 saved_val, int retry)
1129 {
1130 	u32 val;
1131 
1132 	pci_read_config_dword(pdev, offset, &val);
1133 	if (val == saved_val)
1134 		return;
1135 
1136 	for (;;) {
1137 		pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1138 			offset, val, saved_val);
1139 		pci_write_config_dword(pdev, offset, saved_val);
1140 		if (retry-- <= 0)
1141 			return;
1142 
1143 		pci_read_config_dword(pdev, offset, &val);
1144 		if (val == saved_val)
1145 			return;
1146 
1147 		mdelay(1);
1148 	}
1149 }
1150 
1151 static void pci_restore_config_space_range(struct pci_dev *pdev,
1152 					   int start, int end, int retry)
1153 {
1154 	int index;
1155 
1156 	for (index = end; index >= start; index--)
1157 		pci_restore_config_dword(pdev, 4 * index,
1158 					 pdev->saved_config_space[index],
1159 					 retry);
1160 }
1161 
1162 static void pci_restore_config_space(struct pci_dev *pdev)
1163 {
1164 	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1165 		pci_restore_config_space_range(pdev, 10, 15, 0);
1166 		/* Restore BARs before the command register. */
1167 		pci_restore_config_space_range(pdev, 4, 9, 10);
1168 		pci_restore_config_space_range(pdev, 0, 3, 0);
1169 	} else {
1170 		pci_restore_config_space_range(pdev, 0, 15, 0);
1171 	}
1172 }
1173 
1174 /**
1175  * pci_restore_state - Restore the saved state of a PCI device
1176  * @dev: - PCI device that we're dealing with
1177  */
1178 void pci_restore_state(struct pci_dev *dev)
1179 {
1180 	if (!dev->state_saved)
1181 		return;
1182 
1183 	/* PCI Express register must be restored first */
1184 	pci_restore_pcie_state(dev);
1185 	pci_restore_pasid_state(dev);
1186 	pci_restore_pri_state(dev);
1187 	pci_restore_ats_state(dev);
1188 	pci_restore_vc_state(dev);
1189 
1190 	pci_cleanup_aer_error_status_regs(dev);
1191 
1192 	pci_restore_config_space(dev);
1193 
1194 	pci_restore_pcix_state(dev);
1195 	pci_restore_msi_state(dev);
1196 
1197 	/* Restore ACS and IOV configuration state */
1198 	pci_enable_acs(dev);
1199 	pci_restore_iov_state(dev);
1200 
1201 	dev->state_saved = false;
1202 }
1203 EXPORT_SYMBOL(pci_restore_state);
1204 
1205 struct pci_saved_state {
1206 	u32 config_space[16];
1207 	struct pci_cap_saved_data cap[0];
1208 };
1209 
1210 /**
1211  * pci_store_saved_state - Allocate and return an opaque struct containing
1212  *			   the device saved state.
1213  * @dev: PCI device that we're dealing with
1214  *
1215  * Return NULL if no state or error.
1216  */
1217 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1218 {
1219 	struct pci_saved_state *state;
1220 	struct pci_cap_saved_state *tmp;
1221 	struct pci_cap_saved_data *cap;
1222 	size_t size;
1223 
1224 	if (!dev->state_saved)
1225 		return NULL;
1226 
1227 	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1228 
1229 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1230 		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1231 
1232 	state = kzalloc(size, GFP_KERNEL);
1233 	if (!state)
1234 		return NULL;
1235 
1236 	memcpy(state->config_space, dev->saved_config_space,
1237 	       sizeof(state->config_space));
1238 
1239 	cap = state->cap;
1240 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1241 		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1242 		memcpy(cap, &tmp->cap, len);
1243 		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1244 	}
1245 	/* Empty cap_save terminates list */
1246 
1247 	return state;
1248 }
1249 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1250 
1251 /**
1252  * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1253  * @dev: PCI device that we're dealing with
1254  * @state: Saved state returned from pci_store_saved_state()
1255  */
1256 int pci_load_saved_state(struct pci_dev *dev,
1257 			 struct pci_saved_state *state)
1258 {
1259 	struct pci_cap_saved_data *cap;
1260 
1261 	dev->state_saved = false;
1262 
1263 	if (!state)
1264 		return 0;
1265 
1266 	memcpy(dev->saved_config_space, state->config_space,
1267 	       sizeof(state->config_space));
1268 
1269 	cap = state->cap;
1270 	while (cap->size) {
1271 		struct pci_cap_saved_state *tmp;
1272 
1273 		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1274 		if (!tmp || tmp->cap.size != cap->size)
1275 			return -EINVAL;
1276 
1277 		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1278 		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1279 		       sizeof(struct pci_cap_saved_data) + cap->size);
1280 	}
1281 
1282 	dev->state_saved = true;
1283 	return 0;
1284 }
1285 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1286 
1287 /**
1288  * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1289  *				   and free the memory allocated for it.
1290  * @dev: PCI device that we're dealing with
1291  * @state: Pointer to saved state returned from pci_store_saved_state()
1292  */
1293 int pci_load_and_free_saved_state(struct pci_dev *dev,
1294 				  struct pci_saved_state **state)
1295 {
1296 	int ret = pci_load_saved_state(dev, *state);
1297 	kfree(*state);
1298 	*state = NULL;
1299 	return ret;
1300 }
1301 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1302 
1303 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1304 {
1305 	return pci_enable_resources(dev, bars);
1306 }
1307 
1308 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1309 {
1310 	int err;
1311 	struct pci_dev *bridge;
1312 	u16 cmd;
1313 	u8 pin;
1314 
1315 	err = pci_set_power_state(dev, PCI_D0);
1316 	if (err < 0 && err != -EIO)
1317 		return err;
1318 
1319 	bridge = pci_upstream_bridge(dev);
1320 	if (bridge)
1321 		pcie_aspm_powersave_config_link(bridge);
1322 
1323 	err = pcibios_enable_device(dev, bars);
1324 	if (err < 0)
1325 		return err;
1326 	pci_fixup_device(pci_fixup_enable, dev);
1327 
1328 	if (dev->msi_enabled || dev->msix_enabled)
1329 		return 0;
1330 
1331 	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1332 	if (pin) {
1333 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
1334 		if (cmd & PCI_COMMAND_INTX_DISABLE)
1335 			pci_write_config_word(dev, PCI_COMMAND,
1336 					      cmd & ~PCI_COMMAND_INTX_DISABLE);
1337 	}
1338 
1339 	return 0;
1340 }
1341 
1342 /**
1343  * pci_reenable_device - Resume abandoned device
1344  * @dev: PCI device to be resumed
1345  *
1346  *  Note this function is a backend of pci_default_resume and is not supposed
1347  *  to be called by normal code, write proper resume handler and use it instead.
1348  */
1349 int pci_reenable_device(struct pci_dev *dev)
1350 {
1351 	if (pci_is_enabled(dev))
1352 		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1353 	return 0;
1354 }
1355 EXPORT_SYMBOL(pci_reenable_device);
1356 
1357 static void pci_enable_bridge(struct pci_dev *dev)
1358 {
1359 	struct pci_dev *bridge;
1360 	int retval;
1361 
1362 	bridge = pci_upstream_bridge(dev);
1363 	if (bridge)
1364 		pci_enable_bridge(bridge);
1365 
1366 	if (pci_is_enabled(dev)) {
1367 		if (!dev->is_busmaster)
1368 			pci_set_master(dev);
1369 		return;
1370 	}
1371 
1372 	retval = pci_enable_device(dev);
1373 	if (retval)
1374 		pci_err(dev, "Error enabling bridge (%d), continuing\n",
1375 			retval);
1376 	pci_set_master(dev);
1377 }
1378 
1379 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1380 {
1381 	struct pci_dev *bridge;
1382 	int err;
1383 	int i, bars = 0;
1384 
1385 	/*
1386 	 * Power state could be unknown at this point, either due to a fresh
1387 	 * boot or a device removal call.  So get the current power state
1388 	 * so that things like MSI message writing will behave as expected
1389 	 * (e.g. if the device really is in D0 at enable time).
1390 	 */
1391 	if (dev->pm_cap) {
1392 		u16 pmcsr;
1393 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1394 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1395 	}
1396 
1397 	if (atomic_inc_return(&dev->enable_cnt) > 1)
1398 		return 0;		/* already enabled */
1399 
1400 	bridge = pci_upstream_bridge(dev);
1401 	if (bridge)
1402 		pci_enable_bridge(bridge);
1403 
1404 	/* only skip sriov related */
1405 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1406 		if (dev->resource[i].flags & flags)
1407 			bars |= (1 << i);
1408 	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1409 		if (dev->resource[i].flags & flags)
1410 			bars |= (1 << i);
1411 
1412 	err = do_pci_enable_device(dev, bars);
1413 	if (err < 0)
1414 		atomic_dec(&dev->enable_cnt);
1415 	return err;
1416 }
1417 
1418 /**
1419  * pci_enable_device_io - Initialize a device for use with IO space
1420  * @dev: PCI device to be initialized
1421  *
1422  *  Initialize device before it's used by a driver. Ask low-level code
1423  *  to enable I/O resources. Wake up the device if it was suspended.
1424  *  Beware, this function can fail.
1425  */
1426 int pci_enable_device_io(struct pci_dev *dev)
1427 {
1428 	return pci_enable_device_flags(dev, IORESOURCE_IO);
1429 }
1430 EXPORT_SYMBOL(pci_enable_device_io);
1431 
1432 /**
1433  * pci_enable_device_mem - Initialize a device for use with Memory space
1434  * @dev: PCI device to be initialized
1435  *
1436  *  Initialize device before it's used by a driver. Ask low-level code
1437  *  to enable Memory resources. Wake up the device if it was suspended.
1438  *  Beware, this function can fail.
1439  */
1440 int pci_enable_device_mem(struct pci_dev *dev)
1441 {
1442 	return pci_enable_device_flags(dev, IORESOURCE_MEM);
1443 }
1444 EXPORT_SYMBOL(pci_enable_device_mem);
1445 
1446 /**
1447  * pci_enable_device - Initialize device before it's used by a driver.
1448  * @dev: PCI device to be initialized
1449  *
1450  *  Initialize device before it's used by a driver. Ask low-level code
1451  *  to enable I/O and memory. Wake up the device if it was suspended.
1452  *  Beware, this function can fail.
1453  *
1454  *  Note we don't actually enable the device many times if we call
1455  *  this function repeatedly (we just increment the count).
1456  */
1457 int pci_enable_device(struct pci_dev *dev)
1458 {
1459 	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1460 }
1461 EXPORT_SYMBOL(pci_enable_device);
1462 
1463 /*
1464  * Managed PCI resources.  This manages device on/off, intx/msi/msix
1465  * on/off and BAR regions.  pci_dev itself records msi/msix status, so
1466  * there's no need to track it separately.  pci_devres is initialized
1467  * when a device is enabled using managed PCI device enable interface.
1468  */
1469 struct pci_devres {
1470 	unsigned int enabled:1;
1471 	unsigned int pinned:1;
1472 	unsigned int orig_intx:1;
1473 	unsigned int restore_intx:1;
1474 	unsigned int mwi:1;
1475 	u32 region_mask;
1476 };
1477 
1478 static void pcim_release(struct device *gendev, void *res)
1479 {
1480 	struct pci_dev *dev = to_pci_dev(gendev);
1481 	struct pci_devres *this = res;
1482 	int i;
1483 
1484 	if (dev->msi_enabled)
1485 		pci_disable_msi(dev);
1486 	if (dev->msix_enabled)
1487 		pci_disable_msix(dev);
1488 
1489 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1490 		if (this->region_mask & (1 << i))
1491 			pci_release_region(dev, i);
1492 
1493 	if (this->mwi)
1494 		pci_clear_mwi(dev);
1495 
1496 	if (this->restore_intx)
1497 		pci_intx(dev, this->orig_intx);
1498 
1499 	if (this->enabled && !this->pinned)
1500 		pci_disable_device(dev);
1501 }
1502 
1503 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1504 {
1505 	struct pci_devres *dr, *new_dr;
1506 
1507 	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1508 	if (dr)
1509 		return dr;
1510 
1511 	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1512 	if (!new_dr)
1513 		return NULL;
1514 	return devres_get(&pdev->dev, new_dr, NULL, NULL);
1515 }
1516 
1517 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1518 {
1519 	if (pci_is_managed(pdev))
1520 		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1521 	return NULL;
1522 }
1523 
1524 /**
1525  * pcim_enable_device - Managed pci_enable_device()
1526  * @pdev: PCI device to be initialized
1527  *
1528  * Managed pci_enable_device().
1529  */
1530 int pcim_enable_device(struct pci_dev *pdev)
1531 {
1532 	struct pci_devres *dr;
1533 	int rc;
1534 
1535 	dr = get_pci_dr(pdev);
1536 	if (unlikely(!dr))
1537 		return -ENOMEM;
1538 	if (dr->enabled)
1539 		return 0;
1540 
1541 	rc = pci_enable_device(pdev);
1542 	if (!rc) {
1543 		pdev->is_managed = 1;
1544 		dr->enabled = 1;
1545 	}
1546 	return rc;
1547 }
1548 EXPORT_SYMBOL(pcim_enable_device);
1549 
1550 /**
1551  * pcim_pin_device - Pin managed PCI device
1552  * @pdev: PCI device to pin
1553  *
1554  * Pin managed PCI device @pdev.  Pinned device won't be disabled on
1555  * driver detach.  @pdev must have been enabled with
1556  * pcim_enable_device().
1557  */
1558 void pcim_pin_device(struct pci_dev *pdev)
1559 {
1560 	struct pci_devres *dr;
1561 
1562 	dr = find_pci_dr(pdev);
1563 	WARN_ON(!dr || !dr->enabled);
1564 	if (dr)
1565 		dr->pinned = 1;
1566 }
1567 EXPORT_SYMBOL(pcim_pin_device);
1568 
1569 /*
1570  * pcibios_add_device - provide arch specific hooks when adding device dev
1571  * @dev: the PCI device being added
1572  *
1573  * Permits the platform to provide architecture specific functionality when
1574  * devices are added. This is the default implementation. Architecture
1575  * implementations can override this.
1576  */
1577 int __weak pcibios_add_device(struct pci_dev *dev)
1578 {
1579 	return 0;
1580 }
1581 
1582 /**
1583  * pcibios_release_device - provide arch specific hooks when releasing device dev
1584  * @dev: the PCI device being released
1585  *
1586  * Permits the platform to provide architecture specific functionality when
1587  * devices are released. This is the default implementation. Architecture
1588  * implementations can override this.
1589  */
1590 void __weak pcibios_release_device(struct pci_dev *dev) {}
1591 
1592 /**
1593  * pcibios_disable_device - disable arch specific PCI resources for device dev
1594  * @dev: the PCI device to disable
1595  *
1596  * Disables architecture specific PCI resources for the device. This
1597  * is the default implementation. Architecture implementations can
1598  * override this.
1599  */
1600 void __weak pcibios_disable_device(struct pci_dev *dev) {}
1601 
1602 /**
1603  * pcibios_penalize_isa_irq - penalize an ISA IRQ
1604  * @irq: ISA IRQ to penalize
1605  * @active: IRQ active or not
1606  *
1607  * Permits the platform to provide architecture-specific functionality when
1608  * penalizing ISA IRQs. This is the default implementation. Architecture
1609  * implementations can override this.
1610  */
1611 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1612 
1613 static void do_pci_disable_device(struct pci_dev *dev)
1614 {
1615 	u16 pci_command;
1616 
1617 	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1618 	if (pci_command & PCI_COMMAND_MASTER) {
1619 		pci_command &= ~PCI_COMMAND_MASTER;
1620 		pci_write_config_word(dev, PCI_COMMAND, pci_command);
1621 	}
1622 
1623 	pcibios_disable_device(dev);
1624 }
1625 
1626 /**
1627  * pci_disable_enabled_device - Disable device without updating enable_cnt
1628  * @dev: PCI device to disable
1629  *
1630  * NOTE: This function is a backend of PCI power management routines and is
1631  * not supposed to be called drivers.
1632  */
1633 void pci_disable_enabled_device(struct pci_dev *dev)
1634 {
1635 	if (pci_is_enabled(dev))
1636 		do_pci_disable_device(dev);
1637 }
1638 
1639 /**
1640  * pci_disable_device - Disable PCI device after use
1641  * @dev: PCI device to be disabled
1642  *
1643  * Signal to the system that the PCI device is not in use by the system
1644  * anymore.  This only involves disabling PCI bus-mastering, if active.
1645  *
1646  * Note we don't actually disable the device until all callers of
1647  * pci_enable_device() have called pci_disable_device().
1648  */
1649 void pci_disable_device(struct pci_dev *dev)
1650 {
1651 	struct pci_devres *dr;
1652 
1653 	dr = find_pci_dr(dev);
1654 	if (dr)
1655 		dr->enabled = 0;
1656 
1657 	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1658 		      "disabling already-disabled device");
1659 
1660 	if (atomic_dec_return(&dev->enable_cnt) != 0)
1661 		return;
1662 
1663 	do_pci_disable_device(dev);
1664 
1665 	dev->is_busmaster = 0;
1666 }
1667 EXPORT_SYMBOL(pci_disable_device);
1668 
1669 /**
1670  * pcibios_set_pcie_reset_state - set reset state for device dev
1671  * @dev: the PCIe device reset
1672  * @state: Reset state to enter into
1673  *
1674  *
1675  * Sets the PCIe reset state for the device. This is the default
1676  * implementation. Architecture implementations can override this.
1677  */
1678 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1679 					enum pcie_reset_state state)
1680 {
1681 	return -EINVAL;
1682 }
1683 
1684 /**
1685  * pci_set_pcie_reset_state - set reset state for device dev
1686  * @dev: the PCIe device reset
1687  * @state: Reset state to enter into
1688  *
1689  *
1690  * Sets the PCI reset state for the device.
1691  */
1692 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1693 {
1694 	return pcibios_set_pcie_reset_state(dev, state);
1695 }
1696 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
1697 
1698 /**
1699  * pcie_clear_root_pme_status - Clear root port PME interrupt status.
1700  * @dev: PCIe root port or event collector.
1701  */
1702 void pcie_clear_root_pme_status(struct pci_dev *dev)
1703 {
1704 	pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
1705 }
1706 
1707 /**
1708  * pci_check_pme_status - Check if given device has generated PME.
1709  * @dev: Device to check.
1710  *
1711  * Check the PME status of the device and if set, clear it and clear PME enable
1712  * (if set).  Return 'true' if PME status and PME enable were both set or
1713  * 'false' otherwise.
1714  */
1715 bool pci_check_pme_status(struct pci_dev *dev)
1716 {
1717 	int pmcsr_pos;
1718 	u16 pmcsr;
1719 	bool ret = false;
1720 
1721 	if (!dev->pm_cap)
1722 		return false;
1723 
1724 	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1725 	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1726 	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1727 		return false;
1728 
1729 	/* Clear PME status. */
1730 	pmcsr |= PCI_PM_CTRL_PME_STATUS;
1731 	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1732 		/* Disable PME to avoid interrupt flood. */
1733 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1734 		ret = true;
1735 	}
1736 
1737 	pci_write_config_word(dev, pmcsr_pos, pmcsr);
1738 
1739 	return ret;
1740 }
1741 
1742 /**
1743  * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1744  * @dev: Device to handle.
1745  * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1746  *
1747  * Check if @dev has generated PME and queue a resume request for it in that
1748  * case.
1749  */
1750 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1751 {
1752 	if (pme_poll_reset && dev->pme_poll)
1753 		dev->pme_poll = false;
1754 
1755 	if (pci_check_pme_status(dev)) {
1756 		pci_wakeup_event(dev);
1757 		pm_request_resume(&dev->dev);
1758 	}
1759 	return 0;
1760 }
1761 
1762 /**
1763  * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1764  * @bus: Top bus of the subtree to walk.
1765  */
1766 void pci_pme_wakeup_bus(struct pci_bus *bus)
1767 {
1768 	if (bus)
1769 		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1770 }
1771 
1772 
1773 /**
1774  * pci_pme_capable - check the capability of PCI device to generate PME#
1775  * @dev: PCI device to handle.
1776  * @state: PCI state from which device will issue PME#.
1777  */
1778 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1779 {
1780 	if (!dev->pm_cap)
1781 		return false;
1782 
1783 	return !!(dev->pme_support & (1 << state));
1784 }
1785 EXPORT_SYMBOL(pci_pme_capable);
1786 
1787 static void pci_pme_list_scan(struct work_struct *work)
1788 {
1789 	struct pci_pme_device *pme_dev, *n;
1790 
1791 	mutex_lock(&pci_pme_list_mutex);
1792 	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1793 		if (pme_dev->dev->pme_poll) {
1794 			struct pci_dev *bridge;
1795 
1796 			bridge = pme_dev->dev->bus->self;
1797 			/*
1798 			 * If bridge is in low power state, the
1799 			 * configuration space of subordinate devices
1800 			 * may be not accessible
1801 			 */
1802 			if (bridge && bridge->current_state != PCI_D0)
1803 				continue;
1804 			pci_pme_wakeup(pme_dev->dev, NULL);
1805 		} else {
1806 			list_del(&pme_dev->list);
1807 			kfree(pme_dev);
1808 		}
1809 	}
1810 	if (!list_empty(&pci_pme_list))
1811 		queue_delayed_work(system_freezable_wq, &pci_pme_work,
1812 				   msecs_to_jiffies(PME_TIMEOUT));
1813 	mutex_unlock(&pci_pme_list_mutex);
1814 }
1815 
1816 static void __pci_pme_active(struct pci_dev *dev, bool enable)
1817 {
1818 	u16 pmcsr;
1819 
1820 	if (!dev->pme_support)
1821 		return;
1822 
1823 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1824 	/* Clear PME_Status by writing 1 to it and enable PME# */
1825 	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1826 	if (!enable)
1827 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1828 
1829 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1830 }
1831 
1832 /**
1833  * pci_pme_restore - Restore PME configuration after config space restore.
1834  * @dev: PCI device to update.
1835  */
1836 void pci_pme_restore(struct pci_dev *dev)
1837 {
1838 	u16 pmcsr;
1839 
1840 	if (!dev->pme_support)
1841 		return;
1842 
1843 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1844 	if (dev->wakeup_prepared) {
1845 		pmcsr |= PCI_PM_CTRL_PME_ENABLE;
1846 		pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
1847 	} else {
1848 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1849 		pmcsr |= PCI_PM_CTRL_PME_STATUS;
1850 	}
1851 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1852 }
1853 
1854 /**
1855  * pci_pme_active - enable or disable PCI device's PME# function
1856  * @dev: PCI device to handle.
1857  * @enable: 'true' to enable PME# generation; 'false' to disable it.
1858  *
1859  * The caller must verify that the device is capable of generating PME# before
1860  * calling this function with @enable equal to 'true'.
1861  */
1862 void pci_pme_active(struct pci_dev *dev, bool enable)
1863 {
1864 	__pci_pme_active(dev, enable);
1865 
1866 	/*
1867 	 * PCI (as opposed to PCIe) PME requires that the device have
1868 	 * its PME# line hooked up correctly. Not all hardware vendors
1869 	 * do this, so the PME never gets delivered and the device
1870 	 * remains asleep. The easiest way around this is to
1871 	 * periodically walk the list of suspended devices and check
1872 	 * whether any have their PME flag set. The assumption is that
1873 	 * we'll wake up often enough anyway that this won't be a huge
1874 	 * hit, and the power savings from the devices will still be a
1875 	 * win.
1876 	 *
1877 	 * Although PCIe uses in-band PME message instead of PME# line
1878 	 * to report PME, PME does not work for some PCIe devices in
1879 	 * reality.  For example, there are devices that set their PME
1880 	 * status bits, but don't really bother to send a PME message;
1881 	 * there are PCI Express Root Ports that don't bother to
1882 	 * trigger interrupts when they receive PME messages from the
1883 	 * devices below.  So PME poll is used for PCIe devices too.
1884 	 */
1885 
1886 	if (dev->pme_poll) {
1887 		struct pci_pme_device *pme_dev;
1888 		if (enable) {
1889 			pme_dev = kmalloc(sizeof(struct pci_pme_device),
1890 					  GFP_KERNEL);
1891 			if (!pme_dev) {
1892 				pci_warn(dev, "can't enable PME#\n");
1893 				return;
1894 			}
1895 			pme_dev->dev = dev;
1896 			mutex_lock(&pci_pme_list_mutex);
1897 			list_add(&pme_dev->list, &pci_pme_list);
1898 			if (list_is_singular(&pci_pme_list))
1899 				queue_delayed_work(system_freezable_wq,
1900 						   &pci_pme_work,
1901 						   msecs_to_jiffies(PME_TIMEOUT));
1902 			mutex_unlock(&pci_pme_list_mutex);
1903 		} else {
1904 			mutex_lock(&pci_pme_list_mutex);
1905 			list_for_each_entry(pme_dev, &pci_pme_list, list) {
1906 				if (pme_dev->dev == dev) {
1907 					list_del(&pme_dev->list);
1908 					kfree(pme_dev);
1909 					break;
1910 				}
1911 			}
1912 			mutex_unlock(&pci_pme_list_mutex);
1913 		}
1914 	}
1915 
1916 	pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
1917 }
1918 EXPORT_SYMBOL(pci_pme_active);
1919 
1920 /**
1921  * __pci_enable_wake - enable PCI device as wakeup event source
1922  * @dev: PCI device affected
1923  * @state: PCI state from which device will issue wakeup events
1924  * @enable: True to enable event generation; false to disable
1925  *
1926  * This enables the device as a wakeup event source, or disables it.
1927  * When such events involves platform-specific hooks, those hooks are
1928  * called automatically by this routine.
1929  *
1930  * Devices with legacy power management (no standard PCI PM capabilities)
1931  * always require such platform hooks.
1932  *
1933  * RETURN VALUE:
1934  * 0 is returned on success
1935  * -EINVAL is returned if device is not supposed to wake up the system
1936  * Error code depending on the platform is returned if both the platform and
1937  * the native mechanism fail to enable the generation of wake-up events
1938  */
1939 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
1940 {
1941 	int ret = 0;
1942 
1943 	/*
1944 	 * Bridges can only signal wakeup on behalf of subordinate devices,
1945 	 * but that is set up elsewhere, so skip them.
1946 	 */
1947 	if (pci_has_subordinate(dev))
1948 		return 0;
1949 
1950 	/* Don't do the same thing twice in a row for one device. */
1951 	if (!!enable == !!dev->wakeup_prepared)
1952 		return 0;
1953 
1954 	/*
1955 	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1956 	 * Anderson we should be doing PME# wake enable followed by ACPI wake
1957 	 * enable.  To disable wake-up we call the platform first, for symmetry.
1958 	 */
1959 
1960 	if (enable) {
1961 		int error;
1962 
1963 		if (pci_pme_capable(dev, state))
1964 			pci_pme_active(dev, true);
1965 		else
1966 			ret = 1;
1967 		error = platform_pci_set_wakeup(dev, true);
1968 		if (ret)
1969 			ret = error;
1970 		if (!ret)
1971 			dev->wakeup_prepared = true;
1972 	} else {
1973 		platform_pci_set_wakeup(dev, false);
1974 		pci_pme_active(dev, false);
1975 		dev->wakeup_prepared = false;
1976 	}
1977 
1978 	return ret;
1979 }
1980 
1981 /**
1982  * pci_enable_wake - change wakeup settings for a PCI device
1983  * @pci_dev: Target device
1984  * @state: PCI state from which device will issue wakeup events
1985  * @enable: Whether or not to enable event generation
1986  *
1987  * If @enable is set, check device_may_wakeup() for the device before calling
1988  * __pci_enable_wake() for it.
1989  */
1990 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
1991 {
1992 	if (enable && !device_may_wakeup(&pci_dev->dev))
1993 		return -EINVAL;
1994 
1995 	return __pci_enable_wake(pci_dev, state, enable);
1996 }
1997 EXPORT_SYMBOL(pci_enable_wake);
1998 
1999 /**
2000  * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2001  * @dev: PCI device to prepare
2002  * @enable: True to enable wake-up event generation; false to disable
2003  *
2004  * Many drivers want the device to wake up the system from D3_hot or D3_cold
2005  * and this function allows them to set that up cleanly - pci_enable_wake()
2006  * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2007  * ordering constraints.
2008  *
2009  * This function only returns error code if the device is not allowed to wake
2010  * up the system from sleep or it is not capable of generating PME# from both
2011  * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2012  */
2013 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2014 {
2015 	return pci_pme_capable(dev, PCI_D3cold) ?
2016 			pci_enable_wake(dev, PCI_D3cold, enable) :
2017 			pci_enable_wake(dev, PCI_D3hot, enable);
2018 }
2019 EXPORT_SYMBOL(pci_wake_from_d3);
2020 
2021 /**
2022  * pci_target_state - find an appropriate low power state for a given PCI dev
2023  * @dev: PCI device
2024  * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2025  *
2026  * Use underlying platform code to find a supported low power state for @dev.
2027  * If the platform can't manage @dev, return the deepest state from which it
2028  * can generate wake events, based on any available PME info.
2029  */
2030 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2031 {
2032 	pci_power_t target_state = PCI_D3hot;
2033 
2034 	if (platform_pci_power_manageable(dev)) {
2035 		/*
2036 		 * Call the platform to find the target state for the device.
2037 		 */
2038 		pci_power_t state = platform_pci_choose_state(dev);
2039 
2040 		switch (state) {
2041 		case PCI_POWER_ERROR:
2042 		case PCI_UNKNOWN:
2043 			break;
2044 		case PCI_D1:
2045 		case PCI_D2:
2046 			if (pci_no_d1d2(dev))
2047 				break;
2048 		default:
2049 			target_state = state;
2050 		}
2051 
2052 		return target_state;
2053 	}
2054 
2055 	if (!dev->pm_cap)
2056 		target_state = PCI_D0;
2057 
2058 	/*
2059 	 * If the device is in D3cold even though it's not power-manageable by
2060 	 * the platform, it may have been powered down by non-standard means.
2061 	 * Best to let it slumber.
2062 	 */
2063 	if (dev->current_state == PCI_D3cold)
2064 		target_state = PCI_D3cold;
2065 
2066 	if (wakeup) {
2067 		/*
2068 		 * Find the deepest state from which the device can generate
2069 		 * PME#.
2070 		 */
2071 		if (dev->pme_support) {
2072 			while (target_state
2073 			      && !(dev->pme_support & (1 << target_state)))
2074 				target_state--;
2075 		}
2076 	}
2077 
2078 	return target_state;
2079 }
2080 
2081 /**
2082  * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
2083  * @dev: Device to handle.
2084  *
2085  * Choose the power state appropriate for the device depending on whether
2086  * it can wake up the system and/or is power manageable by the platform
2087  * (PCI_D3hot is the default) and put the device into that state.
2088  */
2089 int pci_prepare_to_sleep(struct pci_dev *dev)
2090 {
2091 	bool wakeup = device_may_wakeup(&dev->dev);
2092 	pci_power_t target_state = pci_target_state(dev, wakeup);
2093 	int error;
2094 
2095 	if (target_state == PCI_POWER_ERROR)
2096 		return -EIO;
2097 
2098 	pci_enable_wake(dev, target_state, wakeup);
2099 
2100 	error = pci_set_power_state(dev, target_state);
2101 
2102 	if (error)
2103 		pci_enable_wake(dev, target_state, false);
2104 
2105 	return error;
2106 }
2107 EXPORT_SYMBOL(pci_prepare_to_sleep);
2108 
2109 /**
2110  * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
2111  * @dev: Device to handle.
2112  *
2113  * Disable device's system wake-up capability and put it into D0.
2114  */
2115 int pci_back_from_sleep(struct pci_dev *dev)
2116 {
2117 	pci_enable_wake(dev, PCI_D0, false);
2118 	return pci_set_power_state(dev, PCI_D0);
2119 }
2120 EXPORT_SYMBOL(pci_back_from_sleep);
2121 
2122 /**
2123  * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2124  * @dev: PCI device being suspended.
2125  *
2126  * Prepare @dev to generate wake-up events at run time and put it into a low
2127  * power state.
2128  */
2129 int pci_finish_runtime_suspend(struct pci_dev *dev)
2130 {
2131 	pci_power_t target_state;
2132 	int error;
2133 
2134 	target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2135 	if (target_state == PCI_POWER_ERROR)
2136 		return -EIO;
2137 
2138 	dev->runtime_d3cold = target_state == PCI_D3cold;
2139 
2140 	__pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2141 
2142 	error = pci_set_power_state(dev, target_state);
2143 
2144 	if (error) {
2145 		pci_enable_wake(dev, target_state, false);
2146 		dev->runtime_d3cold = false;
2147 	}
2148 
2149 	return error;
2150 }
2151 
2152 /**
2153  * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2154  * @dev: Device to check.
2155  *
2156  * Return true if the device itself is capable of generating wake-up events
2157  * (through the platform or using the native PCIe PME) or if the device supports
2158  * PME and one of its upstream bridges can generate wake-up events.
2159  */
2160 bool pci_dev_run_wake(struct pci_dev *dev)
2161 {
2162 	struct pci_bus *bus = dev->bus;
2163 
2164 	if (!dev->pme_support)
2165 		return false;
2166 
2167 	/* PME-capable in principle, but not from the target power state */
2168 	if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2169 		return false;
2170 
2171 	if (device_can_wakeup(&dev->dev))
2172 		return true;
2173 
2174 	while (bus->parent) {
2175 		struct pci_dev *bridge = bus->self;
2176 
2177 		if (device_can_wakeup(&bridge->dev))
2178 			return true;
2179 
2180 		bus = bus->parent;
2181 	}
2182 
2183 	/* We have reached the root bus. */
2184 	if (bus->bridge)
2185 		return device_can_wakeup(bus->bridge);
2186 
2187 	return false;
2188 }
2189 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2190 
2191 /**
2192  * pci_dev_keep_suspended - Check if the device can stay in the suspended state.
2193  * @pci_dev: Device to check.
2194  *
2195  * Return 'true' if the device is runtime-suspended, it doesn't have to be
2196  * reconfigured due to wakeup settings difference between system and runtime
2197  * suspend and the current power state of it is suitable for the upcoming
2198  * (system) transition.
2199  *
2200  * If the device is not configured for system wakeup, disable PME for it before
2201  * returning 'true' to prevent it from waking up the system unnecessarily.
2202  */
2203 bool pci_dev_keep_suspended(struct pci_dev *pci_dev)
2204 {
2205 	struct device *dev = &pci_dev->dev;
2206 	bool wakeup = device_may_wakeup(dev);
2207 
2208 	if (!pm_runtime_suspended(dev)
2209 	    || pci_target_state(pci_dev, wakeup) != pci_dev->current_state
2210 	    || platform_pci_need_resume(pci_dev))
2211 		return false;
2212 
2213 	/*
2214 	 * At this point the device is good to go unless it's been configured
2215 	 * to generate PME at the runtime suspend time, but it is not supposed
2216 	 * to wake up the system.  In that case, simply disable PME for it
2217 	 * (it will have to be re-enabled on exit from system resume).
2218 	 *
2219 	 * If the device's power state is D3cold and the platform check above
2220 	 * hasn't triggered, the device's configuration is suitable and we don't
2221 	 * need to manipulate it at all.
2222 	 */
2223 	spin_lock_irq(&dev->power.lock);
2224 
2225 	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold &&
2226 	    !wakeup)
2227 		__pci_pme_active(pci_dev, false);
2228 
2229 	spin_unlock_irq(&dev->power.lock);
2230 	return true;
2231 }
2232 
2233 /**
2234  * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2235  * @pci_dev: Device to handle.
2236  *
2237  * If the device is runtime suspended and wakeup-capable, enable PME for it as
2238  * it might have been disabled during the prepare phase of system suspend if
2239  * the device was not configured for system wakeup.
2240  */
2241 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2242 {
2243 	struct device *dev = &pci_dev->dev;
2244 
2245 	if (!pci_dev_run_wake(pci_dev))
2246 		return;
2247 
2248 	spin_lock_irq(&dev->power.lock);
2249 
2250 	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2251 		__pci_pme_active(pci_dev, true);
2252 
2253 	spin_unlock_irq(&dev->power.lock);
2254 }
2255 
2256 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2257 {
2258 	struct device *dev = &pdev->dev;
2259 	struct device *parent = dev->parent;
2260 
2261 	if (parent)
2262 		pm_runtime_get_sync(parent);
2263 	pm_runtime_get_noresume(dev);
2264 	/*
2265 	 * pdev->current_state is set to PCI_D3cold during suspending,
2266 	 * so wait until suspending completes
2267 	 */
2268 	pm_runtime_barrier(dev);
2269 	/*
2270 	 * Only need to resume devices in D3cold, because config
2271 	 * registers are still accessible for devices suspended but
2272 	 * not in D3cold.
2273 	 */
2274 	if (pdev->current_state == PCI_D3cold)
2275 		pm_runtime_resume(dev);
2276 }
2277 
2278 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2279 {
2280 	struct device *dev = &pdev->dev;
2281 	struct device *parent = dev->parent;
2282 
2283 	pm_runtime_put(dev);
2284 	if (parent)
2285 		pm_runtime_put_sync(parent);
2286 }
2287 
2288 /**
2289  * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2290  * @bridge: Bridge to check
2291  *
2292  * This function checks if it is possible to move the bridge to D3.
2293  * Currently we only allow D3 for recent enough PCIe ports.
2294  */
2295 bool pci_bridge_d3_possible(struct pci_dev *bridge)
2296 {
2297 	if (!pci_is_pcie(bridge))
2298 		return false;
2299 
2300 	switch (pci_pcie_type(bridge)) {
2301 	case PCI_EXP_TYPE_ROOT_PORT:
2302 	case PCI_EXP_TYPE_UPSTREAM:
2303 	case PCI_EXP_TYPE_DOWNSTREAM:
2304 		if (pci_bridge_d3_disable)
2305 			return false;
2306 
2307 		/*
2308 		 * Hotplug interrupts cannot be delivered if the link is down,
2309 		 * so parents of a hotplug port must stay awake. In addition,
2310 		 * hotplug ports handled by firmware in System Management Mode
2311 		 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2312 		 * For simplicity, disallow in general for now.
2313 		 */
2314 		if (bridge->is_hotplug_bridge)
2315 			return false;
2316 
2317 		if (pci_bridge_d3_force)
2318 			return true;
2319 
2320 		/*
2321 		 * It should be safe to put PCIe ports from 2015 or newer
2322 		 * to D3.
2323 		 */
2324 		if (dmi_get_bios_year() >= 2015)
2325 			return true;
2326 		break;
2327 	}
2328 
2329 	return false;
2330 }
2331 
2332 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2333 {
2334 	bool *d3cold_ok = data;
2335 
2336 	if (/* The device needs to be allowed to go D3cold ... */
2337 	    dev->no_d3cold || !dev->d3cold_allowed ||
2338 
2339 	    /* ... and if it is wakeup capable to do so from D3cold. */
2340 	    (device_may_wakeup(&dev->dev) &&
2341 	     !pci_pme_capable(dev, PCI_D3cold)) ||
2342 
2343 	    /* If it is a bridge it must be allowed to go to D3. */
2344 	    !pci_power_manageable(dev))
2345 
2346 		*d3cold_ok = false;
2347 
2348 	return !*d3cold_ok;
2349 }
2350 
2351 /*
2352  * pci_bridge_d3_update - Update bridge D3 capabilities
2353  * @dev: PCI device which is changed
2354  *
2355  * Update upstream bridge PM capabilities accordingly depending on if the
2356  * device PM configuration was changed or the device is being removed.  The
2357  * change is also propagated upstream.
2358  */
2359 void pci_bridge_d3_update(struct pci_dev *dev)
2360 {
2361 	bool remove = !device_is_registered(&dev->dev);
2362 	struct pci_dev *bridge;
2363 	bool d3cold_ok = true;
2364 
2365 	bridge = pci_upstream_bridge(dev);
2366 	if (!bridge || !pci_bridge_d3_possible(bridge))
2367 		return;
2368 
2369 	/*
2370 	 * If D3 is currently allowed for the bridge, removing one of its
2371 	 * children won't change that.
2372 	 */
2373 	if (remove && bridge->bridge_d3)
2374 		return;
2375 
2376 	/*
2377 	 * If D3 is currently allowed for the bridge and a child is added or
2378 	 * changed, disallowance of D3 can only be caused by that child, so
2379 	 * we only need to check that single device, not any of its siblings.
2380 	 *
2381 	 * If D3 is currently not allowed for the bridge, checking the device
2382 	 * first may allow us to skip checking its siblings.
2383 	 */
2384 	if (!remove)
2385 		pci_dev_check_d3cold(dev, &d3cold_ok);
2386 
2387 	/*
2388 	 * If D3 is currently not allowed for the bridge, this may be caused
2389 	 * either by the device being changed/removed or any of its siblings,
2390 	 * so we need to go through all children to find out if one of them
2391 	 * continues to block D3.
2392 	 */
2393 	if (d3cold_ok && !bridge->bridge_d3)
2394 		pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
2395 			     &d3cold_ok);
2396 
2397 	if (bridge->bridge_d3 != d3cold_ok) {
2398 		bridge->bridge_d3 = d3cold_ok;
2399 		/* Propagate change to upstream bridges */
2400 		pci_bridge_d3_update(bridge);
2401 	}
2402 }
2403 
2404 /**
2405  * pci_d3cold_enable - Enable D3cold for device
2406  * @dev: PCI device to handle
2407  *
2408  * This function can be used in drivers to enable D3cold from the device
2409  * they handle.  It also updates upstream PCI bridge PM capabilities
2410  * accordingly.
2411  */
2412 void pci_d3cold_enable(struct pci_dev *dev)
2413 {
2414 	if (dev->no_d3cold) {
2415 		dev->no_d3cold = false;
2416 		pci_bridge_d3_update(dev);
2417 	}
2418 }
2419 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
2420 
2421 /**
2422  * pci_d3cold_disable - Disable D3cold for device
2423  * @dev: PCI device to handle
2424  *
2425  * This function can be used in drivers to disable D3cold from the device
2426  * they handle.  It also updates upstream PCI bridge PM capabilities
2427  * accordingly.
2428  */
2429 void pci_d3cold_disable(struct pci_dev *dev)
2430 {
2431 	if (!dev->no_d3cold) {
2432 		dev->no_d3cold = true;
2433 		pci_bridge_d3_update(dev);
2434 	}
2435 }
2436 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
2437 
2438 /**
2439  * pci_pm_init - Initialize PM functions of given PCI device
2440  * @dev: PCI device to handle.
2441  */
2442 void pci_pm_init(struct pci_dev *dev)
2443 {
2444 	int pm;
2445 	u16 pmc;
2446 
2447 	pm_runtime_forbid(&dev->dev);
2448 	pm_runtime_set_active(&dev->dev);
2449 	pm_runtime_enable(&dev->dev);
2450 	device_enable_async_suspend(&dev->dev);
2451 	dev->wakeup_prepared = false;
2452 
2453 	dev->pm_cap = 0;
2454 	dev->pme_support = 0;
2455 
2456 	/* find PCI PM capability in list */
2457 	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2458 	if (!pm)
2459 		return;
2460 	/* Check device's ability to generate PME# */
2461 	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2462 
2463 	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2464 		pci_err(dev, "unsupported PM cap regs version (%u)\n",
2465 			pmc & PCI_PM_CAP_VER_MASK);
2466 		return;
2467 	}
2468 
2469 	dev->pm_cap = pm;
2470 	dev->d3_delay = PCI_PM_D3_WAIT;
2471 	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2472 	dev->bridge_d3 = pci_bridge_d3_possible(dev);
2473 	dev->d3cold_allowed = true;
2474 
2475 	dev->d1_support = false;
2476 	dev->d2_support = false;
2477 	if (!pci_no_d1d2(dev)) {
2478 		if (pmc & PCI_PM_CAP_D1)
2479 			dev->d1_support = true;
2480 		if (pmc & PCI_PM_CAP_D2)
2481 			dev->d2_support = true;
2482 
2483 		if (dev->d1_support || dev->d2_support)
2484 			pci_printk(KERN_DEBUG, dev, "supports%s%s\n",
2485 				   dev->d1_support ? " D1" : "",
2486 				   dev->d2_support ? " D2" : "");
2487 	}
2488 
2489 	pmc &= PCI_PM_CAP_PME_MASK;
2490 	if (pmc) {
2491 		pci_printk(KERN_DEBUG, dev, "PME# supported from%s%s%s%s%s\n",
2492 			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2493 			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2494 			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2495 			 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2496 			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2497 		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2498 		dev->pme_poll = true;
2499 		/*
2500 		 * Make device's PM flags reflect the wake-up capability, but
2501 		 * let the user space enable it to wake up the system as needed.
2502 		 */
2503 		device_set_wakeup_capable(&dev->dev, true);
2504 		/* Disable the PME# generation functionality */
2505 		pci_pme_active(dev, false);
2506 	}
2507 }
2508 
2509 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
2510 {
2511 	unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
2512 
2513 	switch (prop) {
2514 	case PCI_EA_P_MEM:
2515 	case PCI_EA_P_VF_MEM:
2516 		flags |= IORESOURCE_MEM;
2517 		break;
2518 	case PCI_EA_P_MEM_PREFETCH:
2519 	case PCI_EA_P_VF_MEM_PREFETCH:
2520 		flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
2521 		break;
2522 	case PCI_EA_P_IO:
2523 		flags |= IORESOURCE_IO;
2524 		break;
2525 	default:
2526 		return 0;
2527 	}
2528 
2529 	return flags;
2530 }
2531 
2532 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
2533 					    u8 prop)
2534 {
2535 	if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
2536 		return &dev->resource[bei];
2537 #ifdef CONFIG_PCI_IOV
2538 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
2539 		 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
2540 		return &dev->resource[PCI_IOV_RESOURCES +
2541 				      bei - PCI_EA_BEI_VF_BAR0];
2542 #endif
2543 	else if (bei == PCI_EA_BEI_ROM)
2544 		return &dev->resource[PCI_ROM_RESOURCE];
2545 	else
2546 		return NULL;
2547 }
2548 
2549 /* Read an Enhanced Allocation (EA) entry */
2550 static int pci_ea_read(struct pci_dev *dev, int offset)
2551 {
2552 	struct resource *res;
2553 	int ent_size, ent_offset = offset;
2554 	resource_size_t start, end;
2555 	unsigned long flags;
2556 	u32 dw0, bei, base, max_offset;
2557 	u8 prop;
2558 	bool support_64 = (sizeof(resource_size_t) >= 8);
2559 
2560 	pci_read_config_dword(dev, ent_offset, &dw0);
2561 	ent_offset += 4;
2562 
2563 	/* Entry size field indicates DWORDs after 1st */
2564 	ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
2565 
2566 	if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
2567 		goto out;
2568 
2569 	bei = (dw0 & PCI_EA_BEI) >> 4;
2570 	prop = (dw0 & PCI_EA_PP) >> 8;
2571 
2572 	/*
2573 	 * If the Property is in the reserved range, try the Secondary
2574 	 * Property instead.
2575 	 */
2576 	if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
2577 		prop = (dw0 & PCI_EA_SP) >> 16;
2578 	if (prop > PCI_EA_P_BRIDGE_IO)
2579 		goto out;
2580 
2581 	res = pci_ea_get_resource(dev, bei, prop);
2582 	if (!res) {
2583 		pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
2584 		goto out;
2585 	}
2586 
2587 	flags = pci_ea_flags(dev, prop);
2588 	if (!flags) {
2589 		pci_err(dev, "Unsupported EA properties: %#x\n", prop);
2590 		goto out;
2591 	}
2592 
2593 	/* Read Base */
2594 	pci_read_config_dword(dev, ent_offset, &base);
2595 	start = (base & PCI_EA_FIELD_MASK);
2596 	ent_offset += 4;
2597 
2598 	/* Read MaxOffset */
2599 	pci_read_config_dword(dev, ent_offset, &max_offset);
2600 	ent_offset += 4;
2601 
2602 	/* Read Base MSBs (if 64-bit entry) */
2603 	if (base & PCI_EA_IS_64) {
2604 		u32 base_upper;
2605 
2606 		pci_read_config_dword(dev, ent_offset, &base_upper);
2607 		ent_offset += 4;
2608 
2609 		flags |= IORESOURCE_MEM_64;
2610 
2611 		/* entry starts above 32-bit boundary, can't use */
2612 		if (!support_64 && base_upper)
2613 			goto out;
2614 
2615 		if (support_64)
2616 			start |= ((u64)base_upper << 32);
2617 	}
2618 
2619 	end = start + (max_offset | 0x03);
2620 
2621 	/* Read MaxOffset MSBs (if 64-bit entry) */
2622 	if (max_offset & PCI_EA_IS_64) {
2623 		u32 max_offset_upper;
2624 
2625 		pci_read_config_dword(dev, ent_offset, &max_offset_upper);
2626 		ent_offset += 4;
2627 
2628 		flags |= IORESOURCE_MEM_64;
2629 
2630 		/* entry too big, can't use */
2631 		if (!support_64 && max_offset_upper)
2632 			goto out;
2633 
2634 		if (support_64)
2635 			end += ((u64)max_offset_upper << 32);
2636 	}
2637 
2638 	if (end < start) {
2639 		pci_err(dev, "EA Entry crosses address boundary\n");
2640 		goto out;
2641 	}
2642 
2643 	if (ent_size != ent_offset - offset) {
2644 		pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
2645 			ent_size, ent_offset - offset);
2646 		goto out;
2647 	}
2648 
2649 	res->name = pci_name(dev);
2650 	res->start = start;
2651 	res->end = end;
2652 	res->flags = flags;
2653 
2654 	if (bei <= PCI_EA_BEI_BAR5)
2655 		pci_printk(KERN_DEBUG, dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2656 			   bei, res, prop);
2657 	else if (bei == PCI_EA_BEI_ROM)
2658 		pci_printk(KERN_DEBUG, dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
2659 			   res, prop);
2660 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
2661 		pci_printk(KERN_DEBUG, dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2662 			   bei - PCI_EA_BEI_VF_BAR0, res, prop);
2663 	else
2664 		pci_printk(KERN_DEBUG, dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
2665 			   bei, res, prop);
2666 
2667 out:
2668 	return offset + ent_size;
2669 }
2670 
2671 /* Enhanced Allocation Initialization */
2672 void pci_ea_init(struct pci_dev *dev)
2673 {
2674 	int ea;
2675 	u8 num_ent;
2676 	int offset;
2677 	int i;
2678 
2679 	/* find PCI EA capability in list */
2680 	ea = pci_find_capability(dev, PCI_CAP_ID_EA);
2681 	if (!ea)
2682 		return;
2683 
2684 	/* determine the number of entries */
2685 	pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
2686 					&num_ent);
2687 	num_ent &= PCI_EA_NUM_ENT_MASK;
2688 
2689 	offset = ea + PCI_EA_FIRST_ENT;
2690 
2691 	/* Skip DWORD 2 for type 1 functions */
2692 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
2693 		offset += 4;
2694 
2695 	/* parse each EA entry */
2696 	for (i = 0; i < num_ent; ++i)
2697 		offset = pci_ea_read(dev, offset);
2698 }
2699 
2700 static void pci_add_saved_cap(struct pci_dev *pci_dev,
2701 	struct pci_cap_saved_state *new_cap)
2702 {
2703 	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
2704 }
2705 
2706 /**
2707  * _pci_add_cap_save_buffer - allocate buffer for saving given
2708  *                            capability registers
2709  * @dev: the PCI device
2710  * @cap: the capability to allocate the buffer for
2711  * @extended: Standard or Extended capability ID
2712  * @size: requested size of the buffer
2713  */
2714 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
2715 				    bool extended, unsigned int size)
2716 {
2717 	int pos;
2718 	struct pci_cap_saved_state *save_state;
2719 
2720 	if (extended)
2721 		pos = pci_find_ext_capability(dev, cap);
2722 	else
2723 		pos = pci_find_capability(dev, cap);
2724 
2725 	if (!pos)
2726 		return 0;
2727 
2728 	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2729 	if (!save_state)
2730 		return -ENOMEM;
2731 
2732 	save_state->cap.cap_nr = cap;
2733 	save_state->cap.cap_extended = extended;
2734 	save_state->cap.size = size;
2735 	pci_add_saved_cap(dev, save_state);
2736 
2737 	return 0;
2738 }
2739 
2740 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
2741 {
2742 	return _pci_add_cap_save_buffer(dev, cap, false, size);
2743 }
2744 
2745 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
2746 {
2747 	return _pci_add_cap_save_buffer(dev, cap, true, size);
2748 }
2749 
2750 /**
2751  * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2752  * @dev: the PCI device
2753  */
2754 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2755 {
2756 	int error;
2757 
2758 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2759 					PCI_EXP_SAVE_REGS * sizeof(u16));
2760 	if (error)
2761 		pci_err(dev, "unable to preallocate PCI Express save buffer\n");
2762 
2763 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2764 	if (error)
2765 		pci_err(dev, "unable to preallocate PCI-X save buffer\n");
2766 
2767 	pci_allocate_vc_save_buffers(dev);
2768 }
2769 
2770 void pci_free_cap_save_buffers(struct pci_dev *dev)
2771 {
2772 	struct pci_cap_saved_state *tmp;
2773 	struct hlist_node *n;
2774 
2775 	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
2776 		kfree(tmp);
2777 }
2778 
2779 /**
2780  * pci_configure_ari - enable or disable ARI forwarding
2781  * @dev: the PCI device
2782  *
2783  * If @dev and its upstream bridge both support ARI, enable ARI in the
2784  * bridge.  Otherwise, disable ARI in the bridge.
2785  */
2786 void pci_configure_ari(struct pci_dev *dev)
2787 {
2788 	u32 cap;
2789 	struct pci_dev *bridge;
2790 
2791 	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
2792 		return;
2793 
2794 	bridge = dev->bus->self;
2795 	if (!bridge)
2796 		return;
2797 
2798 	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
2799 	if (!(cap & PCI_EXP_DEVCAP2_ARI))
2800 		return;
2801 
2802 	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
2803 		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
2804 					 PCI_EXP_DEVCTL2_ARI);
2805 		bridge->ari_enabled = 1;
2806 	} else {
2807 		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
2808 					   PCI_EXP_DEVCTL2_ARI);
2809 		bridge->ari_enabled = 0;
2810 	}
2811 }
2812 
2813 static int pci_acs_enable;
2814 
2815 /**
2816  * pci_request_acs - ask for ACS to be enabled if supported
2817  */
2818 void pci_request_acs(void)
2819 {
2820 	pci_acs_enable = 1;
2821 }
2822 
2823 /**
2824  * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites
2825  * @dev: the PCI device
2826  */
2827 static void pci_std_enable_acs(struct pci_dev *dev)
2828 {
2829 	int pos;
2830 	u16 cap;
2831 	u16 ctrl;
2832 
2833 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2834 	if (!pos)
2835 		return;
2836 
2837 	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2838 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2839 
2840 	/* Source Validation */
2841 	ctrl |= (cap & PCI_ACS_SV);
2842 
2843 	/* P2P Request Redirect */
2844 	ctrl |= (cap & PCI_ACS_RR);
2845 
2846 	/* P2P Completion Redirect */
2847 	ctrl |= (cap & PCI_ACS_CR);
2848 
2849 	/* Upstream Forwarding */
2850 	ctrl |= (cap & PCI_ACS_UF);
2851 
2852 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2853 }
2854 
2855 /**
2856  * pci_enable_acs - enable ACS if hardware support it
2857  * @dev: the PCI device
2858  */
2859 void pci_enable_acs(struct pci_dev *dev)
2860 {
2861 	if (!pci_acs_enable)
2862 		return;
2863 
2864 	if (!pci_dev_specific_enable_acs(dev))
2865 		return;
2866 
2867 	pci_std_enable_acs(dev);
2868 }
2869 
2870 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
2871 {
2872 	int pos;
2873 	u16 cap, ctrl;
2874 
2875 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2876 	if (!pos)
2877 		return false;
2878 
2879 	/*
2880 	 * Except for egress control, capabilities are either required
2881 	 * or only required if controllable.  Features missing from the
2882 	 * capability field can therefore be assumed as hard-wired enabled.
2883 	 */
2884 	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
2885 	acs_flags &= (cap | PCI_ACS_EC);
2886 
2887 	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2888 	return (ctrl & acs_flags) == acs_flags;
2889 }
2890 
2891 /**
2892  * pci_acs_enabled - test ACS against required flags for a given device
2893  * @pdev: device to test
2894  * @acs_flags: required PCI ACS flags
2895  *
2896  * Return true if the device supports the provided flags.  Automatically
2897  * filters out flags that are not implemented on multifunction devices.
2898  *
2899  * Note that this interface checks the effective ACS capabilities of the
2900  * device rather than the actual capabilities.  For instance, most single
2901  * function endpoints are not required to support ACS because they have no
2902  * opportunity for peer-to-peer access.  We therefore return 'true'
2903  * regardless of whether the device exposes an ACS capability.  This makes
2904  * it much easier for callers of this function to ignore the actual type
2905  * or topology of the device when testing ACS support.
2906  */
2907 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2908 {
2909 	int ret;
2910 
2911 	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2912 	if (ret >= 0)
2913 		return ret > 0;
2914 
2915 	/*
2916 	 * Conventional PCI and PCI-X devices never support ACS, either
2917 	 * effectively or actually.  The shared bus topology implies that
2918 	 * any device on the bus can receive or snoop DMA.
2919 	 */
2920 	if (!pci_is_pcie(pdev))
2921 		return false;
2922 
2923 	switch (pci_pcie_type(pdev)) {
2924 	/*
2925 	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
2926 	 * but since their primary interface is PCI/X, we conservatively
2927 	 * handle them as we would a non-PCIe device.
2928 	 */
2929 	case PCI_EXP_TYPE_PCIE_BRIDGE:
2930 	/*
2931 	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
2932 	 * applicable... must never implement an ACS Extended Capability...".
2933 	 * This seems arbitrary, but we take a conservative interpretation
2934 	 * of this statement.
2935 	 */
2936 	case PCI_EXP_TYPE_PCI_BRIDGE:
2937 	case PCI_EXP_TYPE_RC_EC:
2938 		return false;
2939 	/*
2940 	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
2941 	 * implement ACS in order to indicate their peer-to-peer capabilities,
2942 	 * regardless of whether they are single- or multi-function devices.
2943 	 */
2944 	case PCI_EXP_TYPE_DOWNSTREAM:
2945 	case PCI_EXP_TYPE_ROOT_PORT:
2946 		return pci_acs_flags_enabled(pdev, acs_flags);
2947 	/*
2948 	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
2949 	 * implemented by the remaining PCIe types to indicate peer-to-peer
2950 	 * capabilities, but only when they are part of a multifunction
2951 	 * device.  The footnote for section 6.12 indicates the specific
2952 	 * PCIe types included here.
2953 	 */
2954 	case PCI_EXP_TYPE_ENDPOINT:
2955 	case PCI_EXP_TYPE_UPSTREAM:
2956 	case PCI_EXP_TYPE_LEG_END:
2957 	case PCI_EXP_TYPE_RC_END:
2958 		if (!pdev->multifunction)
2959 			break;
2960 
2961 		return pci_acs_flags_enabled(pdev, acs_flags);
2962 	}
2963 
2964 	/*
2965 	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
2966 	 * to single function devices with the exception of downstream ports.
2967 	 */
2968 	return true;
2969 }
2970 
2971 /**
2972  * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2973  * @start: starting downstream device
2974  * @end: ending upstream device or NULL to search to the root bus
2975  * @acs_flags: required flags
2976  *
2977  * Walk up a device tree from start to end testing PCI ACS support.  If
2978  * any step along the way does not support the required flags, return false.
2979  */
2980 bool pci_acs_path_enabled(struct pci_dev *start,
2981 			  struct pci_dev *end, u16 acs_flags)
2982 {
2983 	struct pci_dev *pdev, *parent = start;
2984 
2985 	do {
2986 		pdev = parent;
2987 
2988 		if (!pci_acs_enabled(pdev, acs_flags))
2989 			return false;
2990 
2991 		if (pci_is_root_bus(pdev->bus))
2992 			return (end == NULL);
2993 
2994 		parent = pdev->bus->self;
2995 	} while (pdev != end);
2996 
2997 	return true;
2998 }
2999 
3000 /**
3001  * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3002  * @pdev: PCI device
3003  * @bar: BAR to find
3004  *
3005  * Helper to find the position of the ctrl register for a BAR.
3006  * Returns -ENOTSUPP if resizable BARs are not supported at all.
3007  * Returns -ENOENT if no ctrl register for the BAR could be found.
3008  */
3009 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3010 {
3011 	unsigned int pos, nbars, i;
3012 	u32 ctrl;
3013 
3014 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3015 	if (!pos)
3016 		return -ENOTSUPP;
3017 
3018 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3019 	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3020 		    PCI_REBAR_CTRL_NBAR_SHIFT;
3021 
3022 	for (i = 0; i < nbars; i++, pos += 8) {
3023 		int bar_idx;
3024 
3025 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3026 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3027 		if (bar_idx == bar)
3028 			return pos;
3029 	}
3030 
3031 	return -ENOENT;
3032 }
3033 
3034 /**
3035  * pci_rebar_get_possible_sizes - get possible sizes for BAR
3036  * @pdev: PCI device
3037  * @bar: BAR to query
3038  *
3039  * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3040  * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3041  */
3042 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3043 {
3044 	int pos;
3045 	u32 cap;
3046 
3047 	pos = pci_rebar_find_pos(pdev, bar);
3048 	if (pos < 0)
3049 		return 0;
3050 
3051 	pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3052 	return (cap & PCI_REBAR_CAP_SIZES) >> 4;
3053 }
3054 
3055 /**
3056  * pci_rebar_get_current_size - get the current size of a BAR
3057  * @pdev: PCI device
3058  * @bar: BAR to set size to
3059  *
3060  * Read the size of a BAR from the resizable BAR config.
3061  * Returns size if found or negative error code.
3062  */
3063 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3064 {
3065 	int pos;
3066 	u32 ctrl;
3067 
3068 	pos = pci_rebar_find_pos(pdev, bar);
3069 	if (pos < 0)
3070 		return pos;
3071 
3072 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3073 	return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> 8;
3074 }
3075 
3076 /**
3077  * pci_rebar_set_size - set a new size for a BAR
3078  * @pdev: PCI device
3079  * @bar: BAR to set size to
3080  * @size: new size as defined in the spec (0=1MB, 19=512GB)
3081  *
3082  * Set the new size of a BAR as defined in the spec.
3083  * Returns zero if resizing was successful, error code otherwise.
3084  */
3085 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3086 {
3087 	int pos;
3088 	u32 ctrl;
3089 
3090 	pos = pci_rebar_find_pos(pdev, bar);
3091 	if (pos < 0)
3092 		return pos;
3093 
3094 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3095 	ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3096 	ctrl |= size << 8;
3097 	pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3098 	return 0;
3099 }
3100 
3101 /**
3102  * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3103  * @dev: the PCI device
3104  * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3105  *	PCI_EXP_DEVCAP2_ATOMIC_COMP32
3106  *	PCI_EXP_DEVCAP2_ATOMIC_COMP64
3107  *	PCI_EXP_DEVCAP2_ATOMIC_COMP128
3108  *
3109  * Return 0 if all upstream bridges support AtomicOp routing, egress
3110  * blocking is disabled on all upstream ports, and the root port supports
3111  * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3112  * AtomicOp completion), or negative otherwise.
3113  */
3114 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3115 {
3116 	struct pci_bus *bus = dev->bus;
3117 	struct pci_dev *bridge;
3118 	u32 cap, ctl2;
3119 
3120 	if (!pci_is_pcie(dev))
3121 		return -EINVAL;
3122 
3123 	/*
3124 	 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3125 	 * AtomicOp requesters.  For now, we only support endpoints as
3126 	 * requesters and root ports as completers.  No endpoints as
3127 	 * completers, and no peer-to-peer.
3128 	 */
3129 
3130 	switch (pci_pcie_type(dev)) {
3131 	case PCI_EXP_TYPE_ENDPOINT:
3132 	case PCI_EXP_TYPE_LEG_END:
3133 	case PCI_EXP_TYPE_RC_END:
3134 		break;
3135 	default:
3136 		return -EINVAL;
3137 	}
3138 
3139 	while (bus->parent) {
3140 		bridge = bus->self;
3141 
3142 		pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3143 
3144 		switch (pci_pcie_type(bridge)) {
3145 		/* Ensure switch ports support AtomicOp routing */
3146 		case PCI_EXP_TYPE_UPSTREAM:
3147 		case PCI_EXP_TYPE_DOWNSTREAM:
3148 			if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3149 				return -EINVAL;
3150 			break;
3151 
3152 		/* Ensure root port supports all the sizes we care about */
3153 		case PCI_EXP_TYPE_ROOT_PORT:
3154 			if ((cap & cap_mask) != cap_mask)
3155 				return -EINVAL;
3156 			break;
3157 		}
3158 
3159 		/* Ensure upstream ports don't block AtomicOps on egress */
3160 		if (!bridge->has_secondary_link) {
3161 			pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3162 						   &ctl2);
3163 			if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3164 				return -EINVAL;
3165 		}
3166 
3167 		bus = bus->parent;
3168 	}
3169 
3170 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3171 				 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3172 	return 0;
3173 }
3174 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3175 
3176 /**
3177  * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3178  * @dev: the PCI device
3179  * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3180  *
3181  * Perform INTx swizzling for a device behind one level of bridge.  This is
3182  * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3183  * behind bridges on add-in cards.  For devices with ARI enabled, the slot
3184  * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3185  * the PCI Express Base Specification, Revision 2.1)
3186  */
3187 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3188 {
3189 	int slot;
3190 
3191 	if (pci_ari_enabled(dev->bus))
3192 		slot = 0;
3193 	else
3194 		slot = PCI_SLOT(dev->devfn);
3195 
3196 	return (((pin - 1) + slot) % 4) + 1;
3197 }
3198 
3199 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3200 {
3201 	u8 pin;
3202 
3203 	pin = dev->pin;
3204 	if (!pin)
3205 		return -1;
3206 
3207 	while (!pci_is_root_bus(dev->bus)) {
3208 		pin = pci_swizzle_interrupt_pin(dev, pin);
3209 		dev = dev->bus->self;
3210 	}
3211 	*bridge = dev;
3212 	return pin;
3213 }
3214 
3215 /**
3216  * pci_common_swizzle - swizzle INTx all the way to root bridge
3217  * @dev: the PCI device
3218  * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3219  *
3220  * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
3221  * bridges all the way up to a PCI root bus.
3222  */
3223 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3224 {
3225 	u8 pin = *pinp;
3226 
3227 	while (!pci_is_root_bus(dev->bus)) {
3228 		pin = pci_swizzle_interrupt_pin(dev, pin);
3229 		dev = dev->bus->self;
3230 	}
3231 	*pinp = pin;
3232 	return PCI_SLOT(dev->devfn);
3233 }
3234 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3235 
3236 /**
3237  *	pci_release_region - Release a PCI bar
3238  *	@pdev: PCI device whose resources were previously reserved by pci_request_region
3239  *	@bar: BAR to release
3240  *
3241  *	Releases the PCI I/O and memory resources previously reserved by a
3242  *	successful call to pci_request_region.  Call this function only
3243  *	after all use of the PCI regions has ceased.
3244  */
3245 void pci_release_region(struct pci_dev *pdev, int bar)
3246 {
3247 	struct pci_devres *dr;
3248 
3249 	if (pci_resource_len(pdev, bar) == 0)
3250 		return;
3251 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3252 		release_region(pci_resource_start(pdev, bar),
3253 				pci_resource_len(pdev, bar));
3254 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3255 		release_mem_region(pci_resource_start(pdev, bar),
3256 				pci_resource_len(pdev, bar));
3257 
3258 	dr = find_pci_dr(pdev);
3259 	if (dr)
3260 		dr->region_mask &= ~(1 << bar);
3261 }
3262 EXPORT_SYMBOL(pci_release_region);
3263 
3264 /**
3265  *	__pci_request_region - Reserved PCI I/O and memory resource
3266  *	@pdev: PCI device whose resources are to be reserved
3267  *	@bar: BAR to be reserved
3268  *	@res_name: Name to be associated with resource.
3269  *	@exclusive: whether the region access is exclusive or not
3270  *
3271  *	Mark the PCI region associated with PCI device @pdev BR @bar as
3272  *	being reserved by owner @res_name.  Do not access any
3273  *	address inside the PCI regions unless this call returns
3274  *	successfully.
3275  *
3276  *	If @exclusive is set, then the region is marked so that userspace
3277  *	is explicitly not allowed to map the resource via /dev/mem or
3278  *	sysfs MMIO access.
3279  *
3280  *	Returns 0 on success, or %EBUSY on error.  A warning
3281  *	message is also printed on failure.
3282  */
3283 static int __pci_request_region(struct pci_dev *pdev, int bar,
3284 				const char *res_name, int exclusive)
3285 {
3286 	struct pci_devres *dr;
3287 
3288 	if (pci_resource_len(pdev, bar) == 0)
3289 		return 0;
3290 
3291 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3292 		if (!request_region(pci_resource_start(pdev, bar),
3293 			    pci_resource_len(pdev, bar), res_name))
3294 			goto err_out;
3295 	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3296 		if (!__request_mem_region(pci_resource_start(pdev, bar),
3297 					pci_resource_len(pdev, bar), res_name,
3298 					exclusive))
3299 			goto err_out;
3300 	}
3301 
3302 	dr = find_pci_dr(pdev);
3303 	if (dr)
3304 		dr->region_mask |= 1 << bar;
3305 
3306 	return 0;
3307 
3308 err_out:
3309 	pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3310 		 &pdev->resource[bar]);
3311 	return -EBUSY;
3312 }
3313 
3314 /**
3315  *	pci_request_region - Reserve PCI I/O and memory resource
3316  *	@pdev: PCI device whose resources are to be reserved
3317  *	@bar: BAR to be reserved
3318  *	@res_name: Name to be associated with resource
3319  *
3320  *	Mark the PCI region associated with PCI device @pdev BAR @bar as
3321  *	being reserved by owner @res_name.  Do not access any
3322  *	address inside the PCI regions unless this call returns
3323  *	successfully.
3324  *
3325  *	Returns 0 on success, or %EBUSY on error.  A warning
3326  *	message is also printed on failure.
3327  */
3328 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3329 {
3330 	return __pci_request_region(pdev, bar, res_name, 0);
3331 }
3332 EXPORT_SYMBOL(pci_request_region);
3333 
3334 /**
3335  *	pci_request_region_exclusive - Reserved PCI I/O and memory resource
3336  *	@pdev: PCI device whose resources are to be reserved
3337  *	@bar: BAR to be reserved
3338  *	@res_name: Name to be associated with resource.
3339  *
3340  *	Mark the PCI region associated with PCI device @pdev BR @bar as
3341  *	being reserved by owner @res_name.  Do not access any
3342  *	address inside the PCI regions unless this call returns
3343  *	successfully.
3344  *
3345  *	Returns 0 on success, or %EBUSY on error.  A warning
3346  *	message is also printed on failure.
3347  *
3348  *	The key difference that _exclusive makes it that userspace is
3349  *	explicitly not allowed to map the resource via /dev/mem or
3350  *	sysfs.
3351  */
3352 int pci_request_region_exclusive(struct pci_dev *pdev, int bar,
3353 				 const char *res_name)
3354 {
3355 	return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
3356 }
3357 EXPORT_SYMBOL(pci_request_region_exclusive);
3358 
3359 /**
3360  * pci_release_selected_regions - Release selected PCI I/O and memory resources
3361  * @pdev: PCI device whose resources were previously reserved
3362  * @bars: Bitmask of BARs to be released
3363  *
3364  * Release selected PCI I/O and memory resources previously reserved.
3365  * Call this function only after all use of the PCI regions has ceased.
3366  */
3367 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3368 {
3369 	int i;
3370 
3371 	for (i = 0; i < 6; i++)
3372 		if (bars & (1 << i))
3373 			pci_release_region(pdev, i);
3374 }
3375 EXPORT_SYMBOL(pci_release_selected_regions);
3376 
3377 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3378 					  const char *res_name, int excl)
3379 {
3380 	int i;
3381 
3382 	for (i = 0; i < 6; i++)
3383 		if (bars & (1 << i))
3384 			if (__pci_request_region(pdev, i, res_name, excl))
3385 				goto err_out;
3386 	return 0;
3387 
3388 err_out:
3389 	while (--i >= 0)
3390 		if (bars & (1 << i))
3391 			pci_release_region(pdev, i);
3392 
3393 	return -EBUSY;
3394 }
3395 
3396 
3397 /**
3398  * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3399  * @pdev: PCI device whose resources are to be reserved
3400  * @bars: Bitmask of BARs to be requested
3401  * @res_name: Name to be associated with resource
3402  */
3403 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3404 				 const char *res_name)
3405 {
3406 	return __pci_request_selected_regions(pdev, bars, res_name, 0);
3407 }
3408 EXPORT_SYMBOL(pci_request_selected_regions);
3409 
3410 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3411 					   const char *res_name)
3412 {
3413 	return __pci_request_selected_regions(pdev, bars, res_name,
3414 			IORESOURCE_EXCLUSIVE);
3415 }
3416 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3417 
3418 /**
3419  *	pci_release_regions - Release reserved PCI I/O and memory resources
3420  *	@pdev: PCI device whose resources were previously reserved by pci_request_regions
3421  *
3422  *	Releases all PCI I/O and memory resources previously reserved by a
3423  *	successful call to pci_request_regions.  Call this function only
3424  *	after all use of the PCI regions has ceased.
3425  */
3426 
3427 void pci_release_regions(struct pci_dev *pdev)
3428 {
3429 	pci_release_selected_regions(pdev, (1 << 6) - 1);
3430 }
3431 EXPORT_SYMBOL(pci_release_regions);
3432 
3433 /**
3434  *	pci_request_regions - Reserved PCI I/O and memory resources
3435  *	@pdev: PCI device whose resources are to be reserved
3436  *	@res_name: Name to be associated with resource.
3437  *
3438  *	Mark all PCI regions associated with PCI device @pdev as
3439  *	being reserved by owner @res_name.  Do not access any
3440  *	address inside the PCI regions unless this call returns
3441  *	successfully.
3442  *
3443  *	Returns 0 on success, or %EBUSY on error.  A warning
3444  *	message is also printed on failure.
3445  */
3446 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
3447 {
3448 	return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
3449 }
3450 EXPORT_SYMBOL(pci_request_regions);
3451 
3452 /**
3453  *	pci_request_regions_exclusive - Reserved PCI I/O and memory resources
3454  *	@pdev: PCI device whose resources are to be reserved
3455  *	@res_name: Name to be associated with resource.
3456  *
3457  *	Mark all PCI regions associated with PCI device @pdev as
3458  *	being reserved by owner @res_name.  Do not access any
3459  *	address inside the PCI regions unless this call returns
3460  *	successfully.
3461  *
3462  *	pci_request_regions_exclusive() will mark the region so that
3463  *	/dev/mem and the sysfs MMIO access will not be allowed.
3464  *
3465  *	Returns 0 on success, or %EBUSY on error.  A warning
3466  *	message is also printed on failure.
3467  */
3468 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3469 {
3470 	return pci_request_selected_regions_exclusive(pdev,
3471 					((1 << 6) - 1), res_name);
3472 }
3473 EXPORT_SYMBOL(pci_request_regions_exclusive);
3474 
3475 /*
3476  * Record the PCI IO range (expressed as CPU physical address + size).
3477  * Return a negative value if an error has occured, zero otherwise
3478  */
3479 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
3480 			resource_size_t	size)
3481 {
3482 	int ret = 0;
3483 #ifdef PCI_IOBASE
3484 	struct logic_pio_hwaddr *range;
3485 
3486 	if (!size || addr + size < addr)
3487 		return -EINVAL;
3488 
3489 	range = kzalloc(sizeof(*range), GFP_ATOMIC);
3490 	if (!range)
3491 		return -ENOMEM;
3492 
3493 	range->fwnode = fwnode;
3494 	range->size = size;
3495 	range->hw_start = addr;
3496 	range->flags = LOGIC_PIO_CPU_MMIO;
3497 
3498 	ret = logic_pio_register_range(range);
3499 	if (ret)
3500 		kfree(range);
3501 #endif
3502 
3503 	return ret;
3504 }
3505 
3506 phys_addr_t pci_pio_to_address(unsigned long pio)
3507 {
3508 	phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
3509 
3510 #ifdef PCI_IOBASE
3511 	if (pio >= MMIO_UPPER_LIMIT)
3512 		return address;
3513 
3514 	address = logic_pio_to_hwaddr(pio);
3515 #endif
3516 
3517 	return address;
3518 }
3519 
3520 unsigned long __weak pci_address_to_pio(phys_addr_t address)
3521 {
3522 #ifdef PCI_IOBASE
3523 	return logic_pio_trans_cpuaddr(address);
3524 #else
3525 	if (address > IO_SPACE_LIMIT)
3526 		return (unsigned long)-1;
3527 
3528 	return (unsigned long) address;
3529 #endif
3530 }
3531 
3532 /**
3533  *	pci_remap_iospace - Remap the memory mapped I/O space
3534  *	@res: Resource describing the I/O space
3535  *	@phys_addr: physical address of range to be mapped
3536  *
3537  *	Remap the memory mapped I/O space described by the @res
3538  *	and the CPU physical address @phys_addr into virtual address space.
3539  *	Only architectures that have memory mapped IO functions defined
3540  *	(and the PCI_IOBASE value defined) should call this function.
3541  */
3542 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
3543 {
3544 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3545 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3546 
3547 	if (!(res->flags & IORESOURCE_IO))
3548 		return -EINVAL;
3549 
3550 	if (res->end > IO_SPACE_LIMIT)
3551 		return -EINVAL;
3552 
3553 	return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
3554 				  pgprot_device(PAGE_KERNEL));
3555 #else
3556 	/* this architecture does not have memory mapped I/O space,
3557 	   so this function should never be called */
3558 	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
3559 	return -ENODEV;
3560 #endif
3561 }
3562 EXPORT_SYMBOL(pci_remap_iospace);
3563 
3564 /**
3565  *	pci_unmap_iospace - Unmap the memory mapped I/O space
3566  *	@res: resource to be unmapped
3567  *
3568  *	Unmap the CPU virtual address @res from virtual address space.
3569  *	Only architectures that have memory mapped IO functions defined
3570  *	(and the PCI_IOBASE value defined) should call this function.
3571  */
3572 void pci_unmap_iospace(struct resource *res)
3573 {
3574 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3575 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3576 
3577 	unmap_kernel_range(vaddr, resource_size(res));
3578 #endif
3579 }
3580 EXPORT_SYMBOL(pci_unmap_iospace);
3581 
3582 /**
3583  * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
3584  * @dev: Generic device to remap IO address for
3585  * @offset: Resource address to map
3586  * @size: Size of map
3587  *
3588  * Managed pci_remap_cfgspace().  Map is automatically unmapped on driver
3589  * detach.
3590  */
3591 void __iomem *devm_pci_remap_cfgspace(struct device *dev,
3592 				      resource_size_t offset,
3593 				      resource_size_t size)
3594 {
3595 	void __iomem **ptr, *addr;
3596 
3597 	ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
3598 	if (!ptr)
3599 		return NULL;
3600 
3601 	addr = pci_remap_cfgspace(offset, size);
3602 	if (addr) {
3603 		*ptr = addr;
3604 		devres_add(dev, ptr);
3605 	} else
3606 		devres_free(ptr);
3607 
3608 	return addr;
3609 }
3610 EXPORT_SYMBOL(devm_pci_remap_cfgspace);
3611 
3612 /**
3613  * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
3614  * @dev: generic device to handle the resource for
3615  * @res: configuration space resource to be handled
3616  *
3617  * Checks that a resource is a valid memory region, requests the memory
3618  * region and ioremaps with pci_remap_cfgspace() API that ensures the
3619  * proper PCI configuration space memory attributes are guaranteed.
3620  *
3621  * All operations are managed and will be undone on driver detach.
3622  *
3623  * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
3624  * on failure. Usage example::
3625  *
3626  *	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3627  *	base = devm_pci_remap_cfg_resource(&pdev->dev, res);
3628  *	if (IS_ERR(base))
3629  *		return PTR_ERR(base);
3630  */
3631 void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
3632 					  struct resource *res)
3633 {
3634 	resource_size_t size;
3635 	const char *name;
3636 	void __iomem *dest_ptr;
3637 
3638 	BUG_ON(!dev);
3639 
3640 	if (!res || resource_type(res) != IORESOURCE_MEM) {
3641 		dev_err(dev, "invalid resource\n");
3642 		return IOMEM_ERR_PTR(-EINVAL);
3643 	}
3644 
3645 	size = resource_size(res);
3646 	name = res->name ?: dev_name(dev);
3647 
3648 	if (!devm_request_mem_region(dev, res->start, size, name)) {
3649 		dev_err(dev, "can't request region for resource %pR\n", res);
3650 		return IOMEM_ERR_PTR(-EBUSY);
3651 	}
3652 
3653 	dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
3654 	if (!dest_ptr) {
3655 		dev_err(dev, "ioremap failed for resource %pR\n", res);
3656 		devm_release_mem_region(dev, res->start, size);
3657 		dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
3658 	}
3659 
3660 	return dest_ptr;
3661 }
3662 EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
3663 
3664 static void __pci_set_master(struct pci_dev *dev, bool enable)
3665 {
3666 	u16 old_cmd, cmd;
3667 
3668 	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
3669 	if (enable)
3670 		cmd = old_cmd | PCI_COMMAND_MASTER;
3671 	else
3672 		cmd = old_cmd & ~PCI_COMMAND_MASTER;
3673 	if (cmd != old_cmd) {
3674 		pci_dbg(dev, "%s bus mastering\n",
3675 			enable ? "enabling" : "disabling");
3676 		pci_write_config_word(dev, PCI_COMMAND, cmd);
3677 	}
3678 	dev->is_busmaster = enable;
3679 }
3680 
3681 /**
3682  * pcibios_setup - process "pci=" kernel boot arguments
3683  * @str: string used to pass in "pci=" kernel boot arguments
3684  *
3685  * Process kernel boot arguments.  This is the default implementation.
3686  * Architecture specific implementations can override this as necessary.
3687  */
3688 char * __weak __init pcibios_setup(char *str)
3689 {
3690 	return str;
3691 }
3692 
3693 /**
3694  * pcibios_set_master - enable PCI bus-mastering for device dev
3695  * @dev: the PCI device to enable
3696  *
3697  * Enables PCI bus-mastering for the device.  This is the default
3698  * implementation.  Architecture specific implementations can override
3699  * this if necessary.
3700  */
3701 void __weak pcibios_set_master(struct pci_dev *dev)
3702 {
3703 	u8 lat;
3704 
3705 	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
3706 	if (pci_is_pcie(dev))
3707 		return;
3708 
3709 	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
3710 	if (lat < 16)
3711 		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
3712 	else if (lat > pcibios_max_latency)
3713 		lat = pcibios_max_latency;
3714 	else
3715 		return;
3716 
3717 	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
3718 }
3719 
3720 /**
3721  * pci_set_master - enables bus-mastering for device dev
3722  * @dev: the PCI device to enable
3723  *
3724  * Enables bus-mastering on the device and calls pcibios_set_master()
3725  * to do the needed arch specific settings.
3726  */
3727 void pci_set_master(struct pci_dev *dev)
3728 {
3729 	__pci_set_master(dev, true);
3730 	pcibios_set_master(dev);
3731 }
3732 EXPORT_SYMBOL(pci_set_master);
3733 
3734 /**
3735  * pci_clear_master - disables bus-mastering for device dev
3736  * @dev: the PCI device to disable
3737  */
3738 void pci_clear_master(struct pci_dev *dev)
3739 {
3740 	__pci_set_master(dev, false);
3741 }
3742 EXPORT_SYMBOL(pci_clear_master);
3743 
3744 /**
3745  * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
3746  * @dev: the PCI device for which MWI is to be enabled
3747  *
3748  * Helper function for pci_set_mwi.
3749  * Originally copied from drivers/net/acenic.c.
3750  * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
3751  *
3752  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3753  */
3754 int pci_set_cacheline_size(struct pci_dev *dev)
3755 {
3756 	u8 cacheline_size;
3757 
3758 	if (!pci_cache_line_size)
3759 		return -EINVAL;
3760 
3761 	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
3762 	   equal to or multiple of the right value. */
3763 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3764 	if (cacheline_size >= pci_cache_line_size &&
3765 	    (cacheline_size % pci_cache_line_size) == 0)
3766 		return 0;
3767 
3768 	/* Write the correct value. */
3769 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
3770 	/* Read it back. */
3771 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3772 	if (cacheline_size == pci_cache_line_size)
3773 		return 0;
3774 
3775 	pci_printk(KERN_DEBUG, dev, "cache line size of %d is not supported\n",
3776 		   pci_cache_line_size << 2);
3777 
3778 	return -EINVAL;
3779 }
3780 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
3781 
3782 /**
3783  * pci_set_mwi - enables memory-write-invalidate PCI transaction
3784  * @dev: the PCI device for which MWI is enabled
3785  *
3786  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3787  *
3788  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3789  */
3790 int pci_set_mwi(struct pci_dev *dev)
3791 {
3792 #ifdef PCI_DISABLE_MWI
3793 	return 0;
3794 #else
3795 	int rc;
3796 	u16 cmd;
3797 
3798 	rc = pci_set_cacheline_size(dev);
3799 	if (rc)
3800 		return rc;
3801 
3802 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
3803 	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
3804 		pci_dbg(dev, "enabling Mem-Wr-Inval\n");
3805 		cmd |= PCI_COMMAND_INVALIDATE;
3806 		pci_write_config_word(dev, PCI_COMMAND, cmd);
3807 	}
3808 	return 0;
3809 #endif
3810 }
3811 EXPORT_SYMBOL(pci_set_mwi);
3812 
3813 /**
3814  * pcim_set_mwi - a device-managed pci_set_mwi()
3815  * @dev: the PCI device for which MWI is enabled
3816  *
3817  * Managed pci_set_mwi().
3818  *
3819  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3820  */
3821 int pcim_set_mwi(struct pci_dev *dev)
3822 {
3823 	struct pci_devres *dr;
3824 
3825 	dr = find_pci_dr(dev);
3826 	if (!dr)
3827 		return -ENOMEM;
3828 
3829 	dr->mwi = 1;
3830 	return pci_set_mwi(dev);
3831 }
3832 EXPORT_SYMBOL(pcim_set_mwi);
3833 
3834 /**
3835  * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
3836  * @dev: the PCI device for which MWI is enabled
3837  *
3838  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3839  * Callers are not required to check the return value.
3840  *
3841  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3842  */
3843 int pci_try_set_mwi(struct pci_dev *dev)
3844 {
3845 #ifdef PCI_DISABLE_MWI
3846 	return 0;
3847 #else
3848 	return pci_set_mwi(dev);
3849 #endif
3850 }
3851 EXPORT_SYMBOL(pci_try_set_mwi);
3852 
3853 /**
3854  * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
3855  * @dev: the PCI device to disable
3856  *
3857  * Disables PCI Memory-Write-Invalidate transaction on the device
3858  */
3859 void pci_clear_mwi(struct pci_dev *dev)
3860 {
3861 #ifndef PCI_DISABLE_MWI
3862 	u16 cmd;
3863 
3864 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
3865 	if (cmd & PCI_COMMAND_INVALIDATE) {
3866 		cmd &= ~PCI_COMMAND_INVALIDATE;
3867 		pci_write_config_word(dev, PCI_COMMAND, cmd);
3868 	}
3869 #endif
3870 }
3871 EXPORT_SYMBOL(pci_clear_mwi);
3872 
3873 /**
3874  * pci_intx - enables/disables PCI INTx for device dev
3875  * @pdev: the PCI device to operate on
3876  * @enable: boolean: whether to enable or disable PCI INTx
3877  *
3878  * Enables/disables PCI INTx for device dev
3879  */
3880 void pci_intx(struct pci_dev *pdev, int enable)
3881 {
3882 	u16 pci_command, new;
3883 
3884 	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
3885 
3886 	if (enable)
3887 		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
3888 	else
3889 		new = pci_command | PCI_COMMAND_INTX_DISABLE;
3890 
3891 	if (new != pci_command) {
3892 		struct pci_devres *dr;
3893 
3894 		pci_write_config_word(pdev, PCI_COMMAND, new);
3895 
3896 		dr = find_pci_dr(pdev);
3897 		if (dr && !dr->restore_intx) {
3898 			dr->restore_intx = 1;
3899 			dr->orig_intx = !enable;
3900 		}
3901 	}
3902 }
3903 EXPORT_SYMBOL_GPL(pci_intx);
3904 
3905 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
3906 {
3907 	struct pci_bus *bus = dev->bus;
3908 	bool mask_updated = true;
3909 	u32 cmd_status_dword;
3910 	u16 origcmd, newcmd;
3911 	unsigned long flags;
3912 	bool irq_pending;
3913 
3914 	/*
3915 	 * We do a single dword read to retrieve both command and status.
3916 	 * Document assumptions that make this possible.
3917 	 */
3918 	BUILD_BUG_ON(PCI_COMMAND % 4);
3919 	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
3920 
3921 	raw_spin_lock_irqsave(&pci_lock, flags);
3922 
3923 	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
3924 
3925 	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
3926 
3927 	/*
3928 	 * Check interrupt status register to see whether our device
3929 	 * triggered the interrupt (when masking) or the next IRQ is
3930 	 * already pending (when unmasking).
3931 	 */
3932 	if (mask != irq_pending) {
3933 		mask_updated = false;
3934 		goto done;
3935 	}
3936 
3937 	origcmd = cmd_status_dword;
3938 	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
3939 	if (mask)
3940 		newcmd |= PCI_COMMAND_INTX_DISABLE;
3941 	if (newcmd != origcmd)
3942 		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
3943 
3944 done:
3945 	raw_spin_unlock_irqrestore(&pci_lock, flags);
3946 
3947 	return mask_updated;
3948 }
3949 
3950 /**
3951  * pci_check_and_mask_intx - mask INTx on pending interrupt
3952  * @dev: the PCI device to operate on
3953  *
3954  * Check if the device dev has its INTx line asserted, mask it and
3955  * return true in that case. False is returned if no interrupt was
3956  * pending.
3957  */
3958 bool pci_check_and_mask_intx(struct pci_dev *dev)
3959 {
3960 	return pci_check_and_set_intx_mask(dev, true);
3961 }
3962 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
3963 
3964 /**
3965  * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
3966  * @dev: the PCI device to operate on
3967  *
3968  * Check if the device dev has its INTx line asserted, unmask it if not
3969  * and return true. False is returned and the mask remains active if
3970  * there was still an interrupt pending.
3971  */
3972 bool pci_check_and_unmask_intx(struct pci_dev *dev)
3973 {
3974 	return pci_check_and_set_intx_mask(dev, false);
3975 }
3976 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
3977 
3978 /**
3979  * pci_wait_for_pending_transaction - waits for pending transaction
3980  * @dev: the PCI device to operate on
3981  *
3982  * Return 0 if transaction is pending 1 otherwise.
3983  */
3984 int pci_wait_for_pending_transaction(struct pci_dev *dev)
3985 {
3986 	if (!pci_is_pcie(dev))
3987 		return 1;
3988 
3989 	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
3990 				    PCI_EXP_DEVSTA_TRPND);
3991 }
3992 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
3993 
3994 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
3995 {
3996 	int delay = 1;
3997 	u32 id;
3998 
3999 	/*
4000 	 * After reset, the device should not silently discard config
4001 	 * requests, but it may still indicate that it needs more time by
4002 	 * responding to them with CRS completions.  The Root Port will
4003 	 * generally synthesize ~0 data to complete the read (except when
4004 	 * CRS SV is enabled and the read was for the Vendor ID; in that
4005 	 * case it synthesizes 0x0001 data).
4006 	 *
4007 	 * Wait for the device to return a non-CRS completion.  Read the
4008 	 * Command register instead of Vendor ID so we don't have to
4009 	 * contend with the CRS SV value.
4010 	 */
4011 	pci_read_config_dword(dev, PCI_COMMAND, &id);
4012 	while (id == ~0) {
4013 		if (delay > timeout) {
4014 			pci_warn(dev, "not ready %dms after %s; giving up\n",
4015 				 delay - 1, reset_type);
4016 			return -ENOTTY;
4017 		}
4018 
4019 		if (delay > 1000)
4020 			pci_info(dev, "not ready %dms after %s; waiting\n",
4021 				 delay - 1, reset_type);
4022 
4023 		msleep(delay);
4024 		delay *= 2;
4025 		pci_read_config_dword(dev, PCI_COMMAND, &id);
4026 	}
4027 
4028 	if (delay > 1000)
4029 		pci_info(dev, "ready %dms after %s\n", delay - 1,
4030 			 reset_type);
4031 
4032 	return 0;
4033 }
4034 
4035 /**
4036  * pcie_has_flr - check if a device supports function level resets
4037  * @dev:	device to check
4038  *
4039  * Returns true if the device advertises support for PCIe function level
4040  * resets.
4041  */
4042 static bool pcie_has_flr(struct pci_dev *dev)
4043 {
4044 	u32 cap;
4045 
4046 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4047 		return false;
4048 
4049 	pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
4050 	return cap & PCI_EXP_DEVCAP_FLR;
4051 }
4052 
4053 /**
4054  * pcie_flr - initiate a PCIe function level reset
4055  * @dev:	device to reset
4056  *
4057  * Initiate a function level reset on @dev.  The caller should ensure the
4058  * device supports FLR before calling this function, e.g. by using the
4059  * pcie_has_flr() helper.
4060  */
4061 int pcie_flr(struct pci_dev *dev)
4062 {
4063 	if (!pci_wait_for_pending_transaction(dev))
4064 		pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4065 
4066 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4067 
4068 	/*
4069 	 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4070 	 * 100ms, but may silently discard requests while the FLR is in
4071 	 * progress.  Wait 100ms before trying to access the device.
4072 	 */
4073 	msleep(100);
4074 
4075 	return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4076 }
4077 EXPORT_SYMBOL_GPL(pcie_flr);
4078 
4079 static int pci_af_flr(struct pci_dev *dev, int probe)
4080 {
4081 	int pos;
4082 	u8 cap;
4083 
4084 	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4085 	if (!pos)
4086 		return -ENOTTY;
4087 
4088 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4089 		return -ENOTTY;
4090 
4091 	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4092 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4093 		return -ENOTTY;
4094 
4095 	if (probe)
4096 		return 0;
4097 
4098 	/*
4099 	 * Wait for Transaction Pending bit to clear.  A word-aligned test
4100 	 * is used, so we use the conrol offset rather than status and shift
4101 	 * the test bit to match.
4102 	 */
4103 	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4104 				 PCI_AF_STATUS_TP << 8))
4105 		pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4106 
4107 	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4108 
4109 	/*
4110 	 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4111 	 * updated 27 July 2006; a device must complete an FLR within
4112 	 * 100ms, but may silently discard requests while the FLR is in
4113 	 * progress.  Wait 100ms before trying to access the device.
4114 	 */
4115 	msleep(100);
4116 
4117 	return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4118 }
4119 
4120 /**
4121  * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4122  * @dev: Device to reset.
4123  * @probe: If set, only check if the device can be reset this way.
4124  *
4125  * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4126  * unset, it will be reinitialized internally when going from PCI_D3hot to
4127  * PCI_D0.  If that's the case and the device is not in a low-power state
4128  * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4129  *
4130  * NOTE: This causes the caller to sleep for twice the device power transition
4131  * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4132  * by default (i.e. unless the @dev's d3_delay field has a different value).
4133  * Moreover, only devices in D0 can be reset by this function.
4134  */
4135 static int pci_pm_reset(struct pci_dev *dev, int probe)
4136 {
4137 	u16 csr;
4138 
4139 	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4140 		return -ENOTTY;
4141 
4142 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4143 	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4144 		return -ENOTTY;
4145 
4146 	if (probe)
4147 		return 0;
4148 
4149 	if (dev->current_state != PCI_D0)
4150 		return -EINVAL;
4151 
4152 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4153 	csr |= PCI_D3hot;
4154 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4155 	pci_dev_d3_sleep(dev);
4156 
4157 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4158 	csr |= PCI_D0;
4159 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4160 	pci_dev_d3_sleep(dev);
4161 
4162 	return pci_dev_wait(dev, "PM D3->D0", PCIE_RESET_READY_POLL_MS);
4163 }
4164 /**
4165  * pcie_wait_for_link - Wait until link is active or inactive
4166  * @pdev: Bridge device
4167  * @active: waiting for active or inactive?
4168  *
4169  * Use this to wait till link becomes active or inactive.
4170  */
4171 bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4172 {
4173 	int timeout = 1000;
4174 	bool ret;
4175 	u16 lnk_status;
4176 
4177 	for (;;) {
4178 		pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
4179 		ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA);
4180 		if (ret == active)
4181 			return true;
4182 		if (timeout <= 0)
4183 			break;
4184 		msleep(10);
4185 		timeout -= 10;
4186 	}
4187 
4188 	pci_info(pdev, "Data Link Layer Link Active not %s in 1000 msec\n",
4189 		 active ? "set" : "cleared");
4190 
4191 	return false;
4192 }
4193 
4194 void pci_reset_secondary_bus(struct pci_dev *dev)
4195 {
4196 	u16 ctrl;
4197 
4198 	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4199 	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4200 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4201 
4202 	/*
4203 	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
4204 	 * this to 2ms to ensure that we meet the minimum requirement.
4205 	 */
4206 	msleep(2);
4207 
4208 	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4209 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4210 
4211 	/*
4212 	 * Trhfa for conventional PCI is 2^25 clock cycles.
4213 	 * Assuming a minimum 33MHz clock this results in a 1s
4214 	 * delay before we can consider subordinate devices to
4215 	 * be re-initialized.  PCIe has some ways to shorten this,
4216 	 * but we don't make use of them yet.
4217 	 */
4218 	ssleep(1);
4219 }
4220 
4221 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4222 {
4223 	pci_reset_secondary_bus(dev);
4224 }
4225 
4226 /**
4227  * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge.
4228  * @dev: Bridge device
4229  *
4230  * Use the bridge control register to assert reset on the secondary bus.
4231  * Devices on the secondary bus are left in power-on state.
4232  */
4233 int pci_reset_bridge_secondary_bus(struct pci_dev *dev)
4234 {
4235 	pcibios_reset_secondary_bus(dev);
4236 
4237 	return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS);
4238 }
4239 EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus);
4240 
4241 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
4242 {
4243 	struct pci_dev *pdev;
4244 
4245 	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4246 	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4247 		return -ENOTTY;
4248 
4249 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4250 		if (pdev != dev)
4251 			return -ENOTTY;
4252 
4253 	if (probe)
4254 		return 0;
4255 
4256 	pci_reset_bridge_secondary_bus(dev->bus->self);
4257 
4258 	return 0;
4259 }
4260 
4261 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
4262 {
4263 	int rc = -ENOTTY;
4264 
4265 	if (!hotplug || !try_module_get(hotplug->ops->owner))
4266 		return rc;
4267 
4268 	if (hotplug->ops->reset_slot)
4269 		rc = hotplug->ops->reset_slot(hotplug, probe);
4270 
4271 	module_put(hotplug->ops->owner);
4272 
4273 	return rc;
4274 }
4275 
4276 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
4277 {
4278 	struct pci_dev *pdev;
4279 
4280 	if (dev->subordinate || !dev->slot ||
4281 	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4282 		return -ENOTTY;
4283 
4284 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4285 		if (pdev != dev && pdev->slot == dev->slot)
4286 			return -ENOTTY;
4287 
4288 	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
4289 }
4290 
4291 static void pci_dev_lock(struct pci_dev *dev)
4292 {
4293 	pci_cfg_access_lock(dev);
4294 	/* block PM suspend, driver probe, etc. */
4295 	device_lock(&dev->dev);
4296 }
4297 
4298 /* Return 1 on successful lock, 0 on contention */
4299 static int pci_dev_trylock(struct pci_dev *dev)
4300 {
4301 	if (pci_cfg_access_trylock(dev)) {
4302 		if (device_trylock(&dev->dev))
4303 			return 1;
4304 		pci_cfg_access_unlock(dev);
4305 	}
4306 
4307 	return 0;
4308 }
4309 
4310 static void pci_dev_unlock(struct pci_dev *dev)
4311 {
4312 	device_unlock(&dev->dev);
4313 	pci_cfg_access_unlock(dev);
4314 }
4315 
4316 static void pci_dev_save_and_disable(struct pci_dev *dev)
4317 {
4318 	const struct pci_error_handlers *err_handler =
4319 			dev->driver ? dev->driver->err_handler : NULL;
4320 
4321 	/*
4322 	 * dev->driver->err_handler->reset_prepare() is protected against
4323 	 * races with ->remove() by the device lock, which must be held by
4324 	 * the caller.
4325 	 */
4326 	if (err_handler && err_handler->reset_prepare)
4327 		err_handler->reset_prepare(dev);
4328 
4329 	/*
4330 	 * Wake-up device prior to save.  PM registers default to D0 after
4331 	 * reset and a simple register restore doesn't reliably return
4332 	 * to a non-D0 state anyway.
4333 	 */
4334 	pci_set_power_state(dev, PCI_D0);
4335 
4336 	pci_save_state(dev);
4337 	/*
4338 	 * Disable the device by clearing the Command register, except for
4339 	 * INTx-disable which is set.  This not only disables MMIO and I/O port
4340 	 * BARs, but also prevents the device from being Bus Master, preventing
4341 	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
4342 	 * compliant devices, INTx-disable prevents legacy interrupts.
4343 	 */
4344 	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
4345 }
4346 
4347 static void pci_dev_restore(struct pci_dev *dev)
4348 {
4349 	const struct pci_error_handlers *err_handler =
4350 			dev->driver ? dev->driver->err_handler : NULL;
4351 
4352 	pci_restore_state(dev);
4353 
4354 	/*
4355 	 * dev->driver->err_handler->reset_done() is protected against
4356 	 * races with ->remove() by the device lock, which must be held by
4357 	 * the caller.
4358 	 */
4359 	if (err_handler && err_handler->reset_done)
4360 		err_handler->reset_done(dev);
4361 }
4362 
4363 /**
4364  * __pci_reset_function_locked - reset a PCI device function while holding
4365  * the @dev mutex lock.
4366  * @dev: PCI device to reset
4367  *
4368  * Some devices allow an individual function to be reset without affecting
4369  * other functions in the same device.  The PCI device must be responsive
4370  * to PCI config space in order to use this function.
4371  *
4372  * The device function is presumed to be unused and the caller is holding
4373  * the device mutex lock when this function is called.
4374  * Resetting the device will make the contents of PCI configuration space
4375  * random, so any caller of this must be prepared to reinitialise the
4376  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4377  * etc.
4378  *
4379  * Returns 0 if the device function was successfully reset or negative if the
4380  * device doesn't support resetting a single function.
4381  */
4382 int __pci_reset_function_locked(struct pci_dev *dev)
4383 {
4384 	int rc;
4385 
4386 	might_sleep();
4387 
4388 	/*
4389 	 * A reset method returns -ENOTTY if it doesn't support this device
4390 	 * and we should try the next method.
4391 	 *
4392 	 * If it returns 0 (success), we're finished.  If it returns any
4393 	 * other error, we're also finished: this indicates that further
4394 	 * reset mechanisms might be broken on the device.
4395 	 */
4396 	rc = pci_dev_specific_reset(dev, 0);
4397 	if (rc != -ENOTTY)
4398 		return rc;
4399 	if (pcie_has_flr(dev)) {
4400 		rc = pcie_flr(dev);
4401 		if (rc != -ENOTTY)
4402 			return rc;
4403 	}
4404 	rc = pci_af_flr(dev, 0);
4405 	if (rc != -ENOTTY)
4406 		return rc;
4407 	rc = pci_pm_reset(dev, 0);
4408 	if (rc != -ENOTTY)
4409 		return rc;
4410 	rc = pci_dev_reset_slot_function(dev, 0);
4411 	if (rc != -ENOTTY)
4412 		return rc;
4413 	return pci_parent_bus_reset(dev, 0);
4414 }
4415 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
4416 
4417 /**
4418  * pci_probe_reset_function - check whether the device can be safely reset
4419  * @dev: PCI device to reset
4420  *
4421  * Some devices allow an individual function to be reset without affecting
4422  * other functions in the same device.  The PCI device must be responsive
4423  * to PCI config space in order to use this function.
4424  *
4425  * Returns 0 if the device function can be reset or negative if the
4426  * device doesn't support resetting a single function.
4427  */
4428 int pci_probe_reset_function(struct pci_dev *dev)
4429 {
4430 	int rc;
4431 
4432 	might_sleep();
4433 
4434 	rc = pci_dev_specific_reset(dev, 1);
4435 	if (rc != -ENOTTY)
4436 		return rc;
4437 	if (pcie_has_flr(dev))
4438 		return 0;
4439 	rc = pci_af_flr(dev, 1);
4440 	if (rc != -ENOTTY)
4441 		return rc;
4442 	rc = pci_pm_reset(dev, 1);
4443 	if (rc != -ENOTTY)
4444 		return rc;
4445 	rc = pci_dev_reset_slot_function(dev, 1);
4446 	if (rc != -ENOTTY)
4447 		return rc;
4448 
4449 	return pci_parent_bus_reset(dev, 1);
4450 }
4451 
4452 /**
4453  * pci_reset_function - quiesce and reset a PCI device function
4454  * @dev: PCI device to reset
4455  *
4456  * Some devices allow an individual function to be reset without affecting
4457  * other functions in the same device.  The PCI device must be responsive
4458  * to PCI config space in order to use this function.
4459  *
4460  * This function does not just reset the PCI portion of a device, but
4461  * clears all the state associated with the device.  This function differs
4462  * from __pci_reset_function_locked() in that it saves and restores device state
4463  * over the reset and takes the PCI device lock.
4464  *
4465  * Returns 0 if the device function was successfully reset or negative if the
4466  * device doesn't support resetting a single function.
4467  */
4468 int pci_reset_function(struct pci_dev *dev)
4469 {
4470 	int rc;
4471 
4472 	if (!dev->reset_fn)
4473 		return -ENOTTY;
4474 
4475 	pci_dev_lock(dev);
4476 	pci_dev_save_and_disable(dev);
4477 
4478 	rc = __pci_reset_function_locked(dev);
4479 
4480 	pci_dev_restore(dev);
4481 	pci_dev_unlock(dev);
4482 
4483 	return rc;
4484 }
4485 EXPORT_SYMBOL_GPL(pci_reset_function);
4486 
4487 /**
4488  * pci_reset_function_locked - quiesce and reset a PCI device function
4489  * @dev: PCI device to reset
4490  *
4491  * Some devices allow an individual function to be reset without affecting
4492  * other functions in the same device.  The PCI device must be responsive
4493  * to PCI config space in order to use this function.
4494  *
4495  * This function does not just reset the PCI portion of a device, but
4496  * clears all the state associated with the device.  This function differs
4497  * from __pci_reset_function_locked() in that it saves and restores device state
4498  * over the reset.  It also differs from pci_reset_function() in that it
4499  * requires the PCI device lock to be held.
4500  *
4501  * Returns 0 if the device function was successfully reset or negative if the
4502  * device doesn't support resetting a single function.
4503  */
4504 int pci_reset_function_locked(struct pci_dev *dev)
4505 {
4506 	int rc;
4507 
4508 	if (!dev->reset_fn)
4509 		return -ENOTTY;
4510 
4511 	pci_dev_save_and_disable(dev);
4512 
4513 	rc = __pci_reset_function_locked(dev);
4514 
4515 	pci_dev_restore(dev);
4516 
4517 	return rc;
4518 }
4519 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
4520 
4521 /**
4522  * pci_try_reset_function - quiesce and reset a PCI device function
4523  * @dev: PCI device to reset
4524  *
4525  * Same as above, except return -EAGAIN if unable to lock device.
4526  */
4527 int pci_try_reset_function(struct pci_dev *dev)
4528 {
4529 	int rc;
4530 
4531 	if (!dev->reset_fn)
4532 		return -ENOTTY;
4533 
4534 	if (!pci_dev_trylock(dev))
4535 		return -EAGAIN;
4536 
4537 	pci_dev_save_and_disable(dev);
4538 	rc = __pci_reset_function_locked(dev);
4539 	pci_dev_restore(dev);
4540 	pci_dev_unlock(dev);
4541 
4542 	return rc;
4543 }
4544 EXPORT_SYMBOL_GPL(pci_try_reset_function);
4545 
4546 /* Do any devices on or below this bus prevent a bus reset? */
4547 static bool pci_bus_resetable(struct pci_bus *bus)
4548 {
4549 	struct pci_dev *dev;
4550 
4551 
4552 	if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
4553 		return false;
4554 
4555 	list_for_each_entry(dev, &bus->devices, bus_list) {
4556 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
4557 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
4558 			return false;
4559 	}
4560 
4561 	return true;
4562 }
4563 
4564 /* Lock devices from the top of the tree down */
4565 static void pci_bus_lock(struct pci_bus *bus)
4566 {
4567 	struct pci_dev *dev;
4568 
4569 	list_for_each_entry(dev, &bus->devices, bus_list) {
4570 		pci_dev_lock(dev);
4571 		if (dev->subordinate)
4572 			pci_bus_lock(dev->subordinate);
4573 	}
4574 }
4575 
4576 /* Unlock devices from the bottom of the tree up */
4577 static void pci_bus_unlock(struct pci_bus *bus)
4578 {
4579 	struct pci_dev *dev;
4580 
4581 	list_for_each_entry(dev, &bus->devices, bus_list) {
4582 		if (dev->subordinate)
4583 			pci_bus_unlock(dev->subordinate);
4584 		pci_dev_unlock(dev);
4585 	}
4586 }
4587 
4588 /* Return 1 on successful lock, 0 on contention */
4589 static int pci_bus_trylock(struct pci_bus *bus)
4590 {
4591 	struct pci_dev *dev;
4592 
4593 	list_for_each_entry(dev, &bus->devices, bus_list) {
4594 		if (!pci_dev_trylock(dev))
4595 			goto unlock;
4596 		if (dev->subordinate) {
4597 			if (!pci_bus_trylock(dev->subordinate)) {
4598 				pci_dev_unlock(dev);
4599 				goto unlock;
4600 			}
4601 		}
4602 	}
4603 	return 1;
4604 
4605 unlock:
4606 	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
4607 		if (dev->subordinate)
4608 			pci_bus_unlock(dev->subordinate);
4609 		pci_dev_unlock(dev);
4610 	}
4611 	return 0;
4612 }
4613 
4614 /* Do any devices on or below this slot prevent a bus reset? */
4615 static bool pci_slot_resetable(struct pci_slot *slot)
4616 {
4617 	struct pci_dev *dev;
4618 
4619 	if (slot->bus->self &&
4620 	    (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
4621 		return false;
4622 
4623 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4624 		if (!dev->slot || dev->slot != slot)
4625 			continue;
4626 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
4627 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
4628 			return false;
4629 	}
4630 
4631 	return true;
4632 }
4633 
4634 /* Lock devices from the top of the tree down */
4635 static void pci_slot_lock(struct pci_slot *slot)
4636 {
4637 	struct pci_dev *dev;
4638 
4639 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4640 		if (!dev->slot || dev->slot != slot)
4641 			continue;
4642 		pci_dev_lock(dev);
4643 		if (dev->subordinate)
4644 			pci_bus_lock(dev->subordinate);
4645 	}
4646 }
4647 
4648 /* Unlock devices from the bottom of the tree up */
4649 static void pci_slot_unlock(struct pci_slot *slot)
4650 {
4651 	struct pci_dev *dev;
4652 
4653 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4654 		if (!dev->slot || dev->slot != slot)
4655 			continue;
4656 		if (dev->subordinate)
4657 			pci_bus_unlock(dev->subordinate);
4658 		pci_dev_unlock(dev);
4659 	}
4660 }
4661 
4662 /* Return 1 on successful lock, 0 on contention */
4663 static int pci_slot_trylock(struct pci_slot *slot)
4664 {
4665 	struct pci_dev *dev;
4666 
4667 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4668 		if (!dev->slot || dev->slot != slot)
4669 			continue;
4670 		if (!pci_dev_trylock(dev))
4671 			goto unlock;
4672 		if (dev->subordinate) {
4673 			if (!pci_bus_trylock(dev->subordinate)) {
4674 				pci_dev_unlock(dev);
4675 				goto unlock;
4676 			}
4677 		}
4678 	}
4679 	return 1;
4680 
4681 unlock:
4682 	list_for_each_entry_continue_reverse(dev,
4683 					     &slot->bus->devices, bus_list) {
4684 		if (!dev->slot || dev->slot != slot)
4685 			continue;
4686 		if (dev->subordinate)
4687 			pci_bus_unlock(dev->subordinate);
4688 		pci_dev_unlock(dev);
4689 	}
4690 	return 0;
4691 }
4692 
4693 /* Save and disable devices from the top of the tree down */
4694 static void pci_bus_save_and_disable(struct pci_bus *bus)
4695 {
4696 	struct pci_dev *dev;
4697 
4698 	list_for_each_entry(dev, &bus->devices, bus_list) {
4699 		pci_dev_lock(dev);
4700 		pci_dev_save_and_disable(dev);
4701 		pci_dev_unlock(dev);
4702 		if (dev->subordinate)
4703 			pci_bus_save_and_disable(dev->subordinate);
4704 	}
4705 }
4706 
4707 /*
4708  * Restore devices from top of the tree down - parent bridges need to be
4709  * restored before we can get to subordinate devices.
4710  */
4711 static void pci_bus_restore(struct pci_bus *bus)
4712 {
4713 	struct pci_dev *dev;
4714 
4715 	list_for_each_entry(dev, &bus->devices, bus_list) {
4716 		pci_dev_lock(dev);
4717 		pci_dev_restore(dev);
4718 		pci_dev_unlock(dev);
4719 		if (dev->subordinate)
4720 			pci_bus_restore(dev->subordinate);
4721 	}
4722 }
4723 
4724 /* Save and disable devices from the top of the tree down */
4725 static void pci_slot_save_and_disable(struct pci_slot *slot)
4726 {
4727 	struct pci_dev *dev;
4728 
4729 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4730 		if (!dev->slot || dev->slot != slot)
4731 			continue;
4732 		pci_dev_save_and_disable(dev);
4733 		if (dev->subordinate)
4734 			pci_bus_save_and_disable(dev->subordinate);
4735 	}
4736 }
4737 
4738 /*
4739  * Restore devices from top of the tree down - parent bridges need to be
4740  * restored before we can get to subordinate devices.
4741  */
4742 static void pci_slot_restore(struct pci_slot *slot)
4743 {
4744 	struct pci_dev *dev;
4745 
4746 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4747 		if (!dev->slot || dev->slot != slot)
4748 			continue;
4749 		pci_dev_lock(dev);
4750 		pci_dev_restore(dev);
4751 		pci_dev_unlock(dev);
4752 		if (dev->subordinate)
4753 			pci_bus_restore(dev->subordinate);
4754 	}
4755 }
4756 
4757 static int pci_slot_reset(struct pci_slot *slot, int probe)
4758 {
4759 	int rc;
4760 
4761 	if (!slot || !pci_slot_resetable(slot))
4762 		return -ENOTTY;
4763 
4764 	if (!probe)
4765 		pci_slot_lock(slot);
4766 
4767 	might_sleep();
4768 
4769 	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
4770 
4771 	if (!probe)
4772 		pci_slot_unlock(slot);
4773 
4774 	return rc;
4775 }
4776 
4777 /**
4778  * pci_probe_reset_slot - probe whether a PCI slot can be reset
4779  * @slot: PCI slot to probe
4780  *
4781  * Return 0 if slot can be reset, negative if a slot reset is not supported.
4782  */
4783 int pci_probe_reset_slot(struct pci_slot *slot)
4784 {
4785 	return pci_slot_reset(slot, 1);
4786 }
4787 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
4788 
4789 /**
4790  * pci_reset_slot - reset a PCI slot
4791  * @slot: PCI slot to reset
4792  *
4793  * A PCI bus may host multiple slots, each slot may support a reset mechanism
4794  * independent of other slots.  For instance, some slots may support slot power
4795  * control.  In the case of a 1:1 bus to slot architecture, this function may
4796  * wrap the bus reset to avoid spurious slot related events such as hotplug.
4797  * Generally a slot reset should be attempted before a bus reset.  All of the
4798  * function of the slot and any subordinate buses behind the slot are reset
4799  * through this function.  PCI config space of all devices in the slot and
4800  * behind the slot is saved before and restored after reset.
4801  *
4802  * Return 0 on success, non-zero on error.
4803  */
4804 int pci_reset_slot(struct pci_slot *slot)
4805 {
4806 	int rc;
4807 
4808 	rc = pci_slot_reset(slot, 1);
4809 	if (rc)
4810 		return rc;
4811 
4812 	pci_slot_save_and_disable(slot);
4813 
4814 	rc = pci_slot_reset(slot, 0);
4815 
4816 	pci_slot_restore(slot);
4817 
4818 	return rc;
4819 }
4820 EXPORT_SYMBOL_GPL(pci_reset_slot);
4821 
4822 /**
4823  * pci_try_reset_slot - Try to reset a PCI slot
4824  * @slot: PCI slot to reset
4825  *
4826  * Same as above except return -EAGAIN if the slot cannot be locked
4827  */
4828 int pci_try_reset_slot(struct pci_slot *slot)
4829 {
4830 	int rc;
4831 
4832 	rc = pci_slot_reset(slot, 1);
4833 	if (rc)
4834 		return rc;
4835 
4836 	pci_slot_save_and_disable(slot);
4837 
4838 	if (pci_slot_trylock(slot)) {
4839 		might_sleep();
4840 		rc = pci_reset_hotplug_slot(slot->hotplug, 0);
4841 		pci_slot_unlock(slot);
4842 	} else
4843 		rc = -EAGAIN;
4844 
4845 	pci_slot_restore(slot);
4846 
4847 	return rc;
4848 }
4849 EXPORT_SYMBOL_GPL(pci_try_reset_slot);
4850 
4851 static int pci_bus_reset(struct pci_bus *bus, int probe)
4852 {
4853 	if (!bus->self || !pci_bus_resetable(bus))
4854 		return -ENOTTY;
4855 
4856 	if (probe)
4857 		return 0;
4858 
4859 	pci_bus_lock(bus);
4860 
4861 	might_sleep();
4862 
4863 	pci_reset_bridge_secondary_bus(bus->self);
4864 
4865 	pci_bus_unlock(bus);
4866 
4867 	return 0;
4868 }
4869 
4870 /**
4871  * pci_probe_reset_bus - probe whether a PCI bus can be reset
4872  * @bus: PCI bus to probe
4873  *
4874  * Return 0 if bus can be reset, negative if a bus reset is not supported.
4875  */
4876 int pci_probe_reset_bus(struct pci_bus *bus)
4877 {
4878 	return pci_bus_reset(bus, 1);
4879 }
4880 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
4881 
4882 /**
4883  * pci_reset_bus - reset a PCI bus
4884  * @bus: top level PCI bus to reset
4885  *
4886  * Do a bus reset on the given bus and any subordinate buses, saving
4887  * and restoring state of all devices.
4888  *
4889  * Return 0 on success, non-zero on error.
4890  */
4891 int pci_reset_bus(struct pci_bus *bus)
4892 {
4893 	int rc;
4894 
4895 	rc = pci_bus_reset(bus, 1);
4896 	if (rc)
4897 		return rc;
4898 
4899 	pci_bus_save_and_disable(bus);
4900 
4901 	rc = pci_bus_reset(bus, 0);
4902 
4903 	pci_bus_restore(bus);
4904 
4905 	return rc;
4906 }
4907 EXPORT_SYMBOL_GPL(pci_reset_bus);
4908 
4909 /**
4910  * pci_try_reset_bus - Try to reset a PCI bus
4911  * @bus: top level PCI bus to reset
4912  *
4913  * Same as above except return -EAGAIN if the bus cannot be locked
4914  */
4915 int pci_try_reset_bus(struct pci_bus *bus)
4916 {
4917 	int rc;
4918 
4919 	rc = pci_bus_reset(bus, 1);
4920 	if (rc)
4921 		return rc;
4922 
4923 	pci_bus_save_and_disable(bus);
4924 
4925 	if (pci_bus_trylock(bus)) {
4926 		might_sleep();
4927 		pci_reset_bridge_secondary_bus(bus->self);
4928 		pci_bus_unlock(bus);
4929 	} else
4930 		rc = -EAGAIN;
4931 
4932 	pci_bus_restore(bus);
4933 
4934 	return rc;
4935 }
4936 EXPORT_SYMBOL_GPL(pci_try_reset_bus);
4937 
4938 /**
4939  * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
4940  * @dev: PCI device to query
4941  *
4942  * Returns mmrbc: maximum designed memory read count in bytes
4943  *    or appropriate error value.
4944  */
4945 int pcix_get_max_mmrbc(struct pci_dev *dev)
4946 {
4947 	int cap;
4948 	u32 stat;
4949 
4950 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4951 	if (!cap)
4952 		return -EINVAL;
4953 
4954 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4955 		return -EINVAL;
4956 
4957 	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
4958 }
4959 EXPORT_SYMBOL(pcix_get_max_mmrbc);
4960 
4961 /**
4962  * pcix_get_mmrbc - get PCI-X maximum memory read byte count
4963  * @dev: PCI device to query
4964  *
4965  * Returns mmrbc: maximum memory read count in bytes
4966  *    or appropriate error value.
4967  */
4968 int pcix_get_mmrbc(struct pci_dev *dev)
4969 {
4970 	int cap;
4971 	u16 cmd;
4972 
4973 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4974 	if (!cap)
4975 		return -EINVAL;
4976 
4977 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4978 		return -EINVAL;
4979 
4980 	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
4981 }
4982 EXPORT_SYMBOL(pcix_get_mmrbc);
4983 
4984 /**
4985  * pcix_set_mmrbc - set PCI-X maximum memory read byte count
4986  * @dev: PCI device to query
4987  * @mmrbc: maximum memory read count in bytes
4988  *    valid values are 512, 1024, 2048, 4096
4989  *
4990  * If possible sets maximum memory read byte count, some bridges have erratas
4991  * that prevent this.
4992  */
4993 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
4994 {
4995 	int cap;
4996 	u32 stat, v, o;
4997 	u16 cmd;
4998 
4999 	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5000 		return -EINVAL;
5001 
5002 	v = ffs(mmrbc) - 10;
5003 
5004 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5005 	if (!cap)
5006 		return -EINVAL;
5007 
5008 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5009 		return -EINVAL;
5010 
5011 	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
5012 		return -E2BIG;
5013 
5014 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5015 		return -EINVAL;
5016 
5017 	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
5018 	if (o != v) {
5019 		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5020 			return -EIO;
5021 
5022 		cmd &= ~PCI_X_CMD_MAX_READ;
5023 		cmd |= v << 2;
5024 		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5025 			return -EIO;
5026 	}
5027 	return 0;
5028 }
5029 EXPORT_SYMBOL(pcix_set_mmrbc);
5030 
5031 /**
5032  * pcie_get_readrq - get PCI Express read request size
5033  * @dev: PCI device to query
5034  *
5035  * Returns maximum memory read request in bytes
5036  *    or appropriate error value.
5037  */
5038 int pcie_get_readrq(struct pci_dev *dev)
5039 {
5040 	u16 ctl;
5041 
5042 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5043 
5044 	return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5045 }
5046 EXPORT_SYMBOL(pcie_get_readrq);
5047 
5048 /**
5049  * pcie_set_readrq - set PCI Express maximum memory read request
5050  * @dev: PCI device to query
5051  * @rq: maximum memory read count in bytes
5052  *    valid values are 128, 256, 512, 1024, 2048, 4096
5053  *
5054  * If possible sets maximum memory read request in bytes
5055  */
5056 int pcie_set_readrq(struct pci_dev *dev, int rq)
5057 {
5058 	u16 v;
5059 
5060 	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
5061 		return -EINVAL;
5062 
5063 	/*
5064 	 * If using the "performance" PCIe config, we clamp the
5065 	 * read rq size to the max packet size to prevent the
5066 	 * host bridge generating requests larger than we can
5067 	 * cope with
5068 	 */
5069 	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
5070 		int mps = pcie_get_mps(dev);
5071 
5072 		if (mps < rq)
5073 			rq = mps;
5074 	}
5075 
5076 	v = (ffs(rq) - 8) << 12;
5077 
5078 	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5079 						  PCI_EXP_DEVCTL_READRQ, v);
5080 }
5081 EXPORT_SYMBOL(pcie_set_readrq);
5082 
5083 /**
5084  * pcie_get_mps - get PCI Express maximum payload size
5085  * @dev: PCI device to query
5086  *
5087  * Returns maximum payload size in bytes
5088  */
5089 int pcie_get_mps(struct pci_dev *dev)
5090 {
5091 	u16 ctl;
5092 
5093 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5094 
5095 	return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
5096 }
5097 EXPORT_SYMBOL(pcie_get_mps);
5098 
5099 /**
5100  * pcie_set_mps - set PCI Express maximum payload size
5101  * @dev: PCI device to query
5102  * @mps: maximum payload size in bytes
5103  *    valid values are 128, 256, 512, 1024, 2048, 4096
5104  *
5105  * If possible sets maximum payload size
5106  */
5107 int pcie_set_mps(struct pci_dev *dev, int mps)
5108 {
5109 	u16 v;
5110 
5111 	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
5112 		return -EINVAL;
5113 
5114 	v = ffs(mps) - 8;
5115 	if (v > dev->pcie_mpss)
5116 		return -EINVAL;
5117 	v <<= 5;
5118 
5119 	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5120 						  PCI_EXP_DEVCTL_PAYLOAD, v);
5121 }
5122 EXPORT_SYMBOL(pcie_set_mps);
5123 
5124 /**
5125  * pcie_bandwidth_available - determine minimum link settings of a PCIe
5126  *			      device and its bandwidth limitation
5127  * @dev: PCI device to query
5128  * @limiting_dev: storage for device causing the bandwidth limitation
5129  * @speed: storage for speed of limiting device
5130  * @width: storage for width of limiting device
5131  *
5132  * Walk up the PCI device chain and find the point where the minimum
5133  * bandwidth is available.  Return the bandwidth available there and (if
5134  * limiting_dev, speed, and width pointers are supplied) information about
5135  * that point.  The bandwidth returned is in Mb/s, i.e., megabits/second of
5136  * raw bandwidth.
5137  */
5138 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
5139 			     enum pci_bus_speed *speed,
5140 			     enum pcie_link_width *width)
5141 {
5142 	u16 lnksta;
5143 	enum pci_bus_speed next_speed;
5144 	enum pcie_link_width next_width;
5145 	u32 bw, next_bw;
5146 
5147 	if (speed)
5148 		*speed = PCI_SPEED_UNKNOWN;
5149 	if (width)
5150 		*width = PCIE_LNK_WIDTH_UNKNOWN;
5151 
5152 	bw = 0;
5153 
5154 	while (dev) {
5155 		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
5156 
5157 		next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
5158 		next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
5159 			PCI_EXP_LNKSTA_NLW_SHIFT;
5160 
5161 		next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
5162 
5163 		/* Check if current device limits the total bandwidth */
5164 		if (!bw || next_bw <= bw) {
5165 			bw = next_bw;
5166 
5167 			if (limiting_dev)
5168 				*limiting_dev = dev;
5169 			if (speed)
5170 				*speed = next_speed;
5171 			if (width)
5172 				*width = next_width;
5173 		}
5174 
5175 		dev = pci_upstream_bridge(dev);
5176 	}
5177 
5178 	return bw;
5179 }
5180 EXPORT_SYMBOL(pcie_bandwidth_available);
5181 
5182 /**
5183  * pcie_get_speed_cap - query for the PCI device's link speed capability
5184  * @dev: PCI device to query
5185  *
5186  * Query the PCI device speed capability.  Return the maximum link speed
5187  * supported by the device.
5188  */
5189 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
5190 {
5191 	u32 lnkcap2, lnkcap;
5192 
5193 	/*
5194 	 * PCIe r4.0 sec 7.5.3.18 recommends using the Supported Link
5195 	 * Speeds Vector in Link Capabilities 2 when supported, falling
5196 	 * back to Max Link Speed in Link Capabilities otherwise.
5197 	 */
5198 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
5199 	if (lnkcap2) { /* PCIe r3.0-compliant */
5200 		if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_16_0GB)
5201 			return PCIE_SPEED_16_0GT;
5202 		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB)
5203 			return PCIE_SPEED_8_0GT;
5204 		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB)
5205 			return PCIE_SPEED_5_0GT;
5206 		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB)
5207 			return PCIE_SPEED_2_5GT;
5208 		return PCI_SPEED_UNKNOWN;
5209 	}
5210 
5211 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5212 	if (lnkcap) {
5213 		if (lnkcap & PCI_EXP_LNKCAP_SLS_16_0GB)
5214 			return PCIE_SPEED_16_0GT;
5215 		else if (lnkcap & PCI_EXP_LNKCAP_SLS_8_0GB)
5216 			return PCIE_SPEED_8_0GT;
5217 		else if (lnkcap & PCI_EXP_LNKCAP_SLS_5_0GB)
5218 			return PCIE_SPEED_5_0GT;
5219 		else if (lnkcap & PCI_EXP_LNKCAP_SLS_2_5GB)
5220 			return PCIE_SPEED_2_5GT;
5221 	}
5222 
5223 	return PCI_SPEED_UNKNOWN;
5224 }
5225 
5226 /**
5227  * pcie_get_width_cap - query for the PCI device's link width capability
5228  * @dev: PCI device to query
5229  *
5230  * Query the PCI device width capability.  Return the maximum link width
5231  * supported by the device.
5232  */
5233 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
5234 {
5235 	u32 lnkcap;
5236 
5237 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5238 	if (lnkcap)
5239 		return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
5240 
5241 	return PCIE_LNK_WIDTH_UNKNOWN;
5242 }
5243 
5244 /**
5245  * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
5246  * @dev: PCI device
5247  * @speed: storage for link speed
5248  * @width: storage for link width
5249  *
5250  * Calculate a PCI device's link bandwidth by querying for its link speed
5251  * and width, multiplying them, and applying encoding overhead.  The result
5252  * is in Mb/s, i.e., megabits/second of raw bandwidth.
5253  */
5254 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
5255 			   enum pcie_link_width *width)
5256 {
5257 	*speed = pcie_get_speed_cap(dev);
5258 	*width = pcie_get_width_cap(dev);
5259 
5260 	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
5261 		return 0;
5262 
5263 	return *width * PCIE_SPEED2MBS_ENC(*speed);
5264 }
5265 
5266 /**
5267  * pcie_print_link_status - Report the PCI device's link speed and width
5268  * @dev: PCI device to query
5269  *
5270  * Report the available bandwidth at the device.  If this is less than the
5271  * device is capable of, report the device's maximum possible bandwidth and
5272  * the upstream link that limits its performance to less than that.
5273  */
5274 void pcie_print_link_status(struct pci_dev *dev)
5275 {
5276 	enum pcie_link_width width, width_cap;
5277 	enum pci_bus_speed speed, speed_cap;
5278 	struct pci_dev *limiting_dev = NULL;
5279 	u32 bw_avail, bw_cap;
5280 
5281 	bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
5282 	bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
5283 
5284 	if (bw_avail >= bw_cap)
5285 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
5286 			 bw_cap / 1000, bw_cap % 1000,
5287 			 PCIE_SPEED2STR(speed_cap), width_cap);
5288 	else
5289 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
5290 			 bw_avail / 1000, bw_avail % 1000,
5291 			 PCIE_SPEED2STR(speed), width,
5292 			 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
5293 			 bw_cap / 1000, bw_cap % 1000,
5294 			 PCIE_SPEED2STR(speed_cap), width_cap);
5295 }
5296 EXPORT_SYMBOL(pcie_print_link_status);
5297 
5298 /**
5299  * pci_select_bars - Make BAR mask from the type of resource
5300  * @dev: the PCI device for which BAR mask is made
5301  * @flags: resource type mask to be selected
5302  *
5303  * This helper routine makes bar mask from the type of resource.
5304  */
5305 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
5306 {
5307 	int i, bars = 0;
5308 	for (i = 0; i < PCI_NUM_RESOURCES; i++)
5309 		if (pci_resource_flags(dev, i) & flags)
5310 			bars |= (1 << i);
5311 	return bars;
5312 }
5313 EXPORT_SYMBOL(pci_select_bars);
5314 
5315 /* Some architectures require additional programming to enable VGA */
5316 static arch_set_vga_state_t arch_set_vga_state;
5317 
5318 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
5319 {
5320 	arch_set_vga_state = func;	/* NULL disables */
5321 }
5322 
5323 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
5324 				  unsigned int command_bits, u32 flags)
5325 {
5326 	if (arch_set_vga_state)
5327 		return arch_set_vga_state(dev, decode, command_bits,
5328 						flags);
5329 	return 0;
5330 }
5331 
5332 /**
5333  * pci_set_vga_state - set VGA decode state on device and parents if requested
5334  * @dev: the PCI device
5335  * @decode: true = enable decoding, false = disable decoding
5336  * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
5337  * @flags: traverse ancestors and change bridges
5338  * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
5339  */
5340 int pci_set_vga_state(struct pci_dev *dev, bool decode,
5341 		      unsigned int command_bits, u32 flags)
5342 {
5343 	struct pci_bus *bus;
5344 	struct pci_dev *bridge;
5345 	u16 cmd;
5346 	int rc;
5347 
5348 	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
5349 
5350 	/* ARCH specific VGA enables */
5351 	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
5352 	if (rc)
5353 		return rc;
5354 
5355 	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
5356 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
5357 		if (decode == true)
5358 			cmd |= command_bits;
5359 		else
5360 			cmd &= ~command_bits;
5361 		pci_write_config_word(dev, PCI_COMMAND, cmd);
5362 	}
5363 
5364 	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
5365 		return 0;
5366 
5367 	bus = dev->bus;
5368 	while (bus) {
5369 		bridge = bus->self;
5370 		if (bridge) {
5371 			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
5372 					     &cmd);
5373 			if (decode == true)
5374 				cmd |= PCI_BRIDGE_CTL_VGA;
5375 			else
5376 				cmd &= ~PCI_BRIDGE_CTL_VGA;
5377 			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
5378 					      cmd);
5379 		}
5380 		bus = bus->parent;
5381 	}
5382 	return 0;
5383 }
5384 
5385 /**
5386  * pci_add_dma_alias - Add a DMA devfn alias for a device
5387  * @dev: the PCI device for which alias is added
5388  * @devfn: alias slot and function
5389  *
5390  * This helper encodes 8-bit devfn as bit number in dma_alias_mask.
5391  * It should be called early, preferably as PCI fixup header quirk.
5392  */
5393 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn)
5394 {
5395 	if (!dev->dma_alias_mask)
5396 		dev->dma_alias_mask = kcalloc(BITS_TO_LONGS(U8_MAX),
5397 					      sizeof(long), GFP_KERNEL);
5398 	if (!dev->dma_alias_mask) {
5399 		pci_warn(dev, "Unable to allocate DMA alias mask\n");
5400 		return;
5401 	}
5402 
5403 	set_bit(devfn, dev->dma_alias_mask);
5404 	pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
5405 		 PCI_SLOT(devfn), PCI_FUNC(devfn));
5406 }
5407 
5408 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
5409 {
5410 	return (dev1->dma_alias_mask &&
5411 		test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
5412 	       (dev2->dma_alias_mask &&
5413 		test_bit(dev1->devfn, dev2->dma_alias_mask));
5414 }
5415 
5416 bool pci_device_is_present(struct pci_dev *pdev)
5417 {
5418 	u32 v;
5419 
5420 	if (pci_dev_is_disconnected(pdev))
5421 		return false;
5422 	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
5423 }
5424 EXPORT_SYMBOL_GPL(pci_device_is_present);
5425 
5426 void pci_ignore_hotplug(struct pci_dev *dev)
5427 {
5428 	struct pci_dev *bridge = dev->bus->self;
5429 
5430 	dev->ignore_hotplug = 1;
5431 	/* Propagate the "ignore hotplug" setting to the parent bridge. */
5432 	if (bridge)
5433 		bridge->ignore_hotplug = 1;
5434 }
5435 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
5436 
5437 resource_size_t __weak pcibios_default_alignment(void)
5438 {
5439 	return 0;
5440 }
5441 
5442 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
5443 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
5444 static DEFINE_SPINLOCK(resource_alignment_lock);
5445 
5446 /**
5447  * pci_specified_resource_alignment - get resource alignment specified by user.
5448  * @dev: the PCI device to get
5449  * @resize: whether or not to change resources' size when reassigning alignment
5450  *
5451  * RETURNS: Resource alignment if it is specified.
5452  *          Zero if it is not specified.
5453  */
5454 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
5455 							bool *resize)
5456 {
5457 	int seg, bus, slot, func, align_order, count;
5458 	unsigned short vendor, device, subsystem_vendor, subsystem_device;
5459 	resource_size_t align = pcibios_default_alignment();
5460 	char *p;
5461 
5462 	spin_lock(&resource_alignment_lock);
5463 	p = resource_alignment_param;
5464 	if (!*p && !align)
5465 		goto out;
5466 	if (pci_has_flag(PCI_PROBE_ONLY)) {
5467 		align = 0;
5468 		pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
5469 		goto out;
5470 	}
5471 
5472 	while (*p) {
5473 		count = 0;
5474 		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
5475 							p[count] == '@') {
5476 			p += count + 1;
5477 		} else {
5478 			align_order = -1;
5479 		}
5480 		if (strncmp(p, "pci:", 4) == 0) {
5481 			/* PCI vendor/device (subvendor/subdevice) ids are specified */
5482 			p += 4;
5483 			if (sscanf(p, "%hx:%hx:%hx:%hx%n",
5484 				&vendor, &device, &subsystem_vendor, &subsystem_device, &count) != 4) {
5485 				if (sscanf(p, "%hx:%hx%n", &vendor, &device, &count) != 2) {
5486 					printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: pci:%s\n",
5487 						p);
5488 					break;
5489 				}
5490 				subsystem_vendor = subsystem_device = 0;
5491 			}
5492 			p += count;
5493 			if ((!vendor || (vendor == dev->vendor)) &&
5494 				(!device || (device == dev->device)) &&
5495 				(!subsystem_vendor || (subsystem_vendor == dev->subsystem_vendor)) &&
5496 				(!subsystem_device || (subsystem_device == dev->subsystem_device))) {
5497 				*resize = true;
5498 				if (align_order == -1)
5499 					align = PAGE_SIZE;
5500 				else
5501 					align = 1 << align_order;
5502 				/* Found */
5503 				break;
5504 			}
5505 		}
5506 		else {
5507 			if (sscanf(p, "%x:%x:%x.%x%n",
5508 				&seg, &bus, &slot, &func, &count) != 4) {
5509 				seg = 0;
5510 				if (sscanf(p, "%x:%x.%x%n",
5511 						&bus, &slot, &func, &count) != 3) {
5512 					/* Invalid format */
5513 					printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
5514 						p);
5515 					break;
5516 				}
5517 			}
5518 			p += count;
5519 			if (seg == pci_domain_nr(dev->bus) &&
5520 				bus == dev->bus->number &&
5521 				slot == PCI_SLOT(dev->devfn) &&
5522 				func == PCI_FUNC(dev->devfn)) {
5523 				*resize = true;
5524 				if (align_order == -1)
5525 					align = PAGE_SIZE;
5526 				else
5527 					align = 1 << align_order;
5528 				/* Found */
5529 				break;
5530 			}
5531 		}
5532 		if (*p != ';' && *p != ',') {
5533 			/* End of param or invalid format */
5534 			break;
5535 		}
5536 		p++;
5537 	}
5538 out:
5539 	spin_unlock(&resource_alignment_lock);
5540 	return align;
5541 }
5542 
5543 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
5544 					   resource_size_t align, bool resize)
5545 {
5546 	struct resource *r = &dev->resource[bar];
5547 	resource_size_t size;
5548 
5549 	if (!(r->flags & IORESOURCE_MEM))
5550 		return;
5551 
5552 	if (r->flags & IORESOURCE_PCI_FIXED) {
5553 		pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
5554 			 bar, r, (unsigned long long)align);
5555 		return;
5556 	}
5557 
5558 	size = resource_size(r);
5559 	if (size >= align)
5560 		return;
5561 
5562 	/*
5563 	 * Increase the alignment of the resource.  There are two ways we
5564 	 * can do this:
5565 	 *
5566 	 * 1) Increase the size of the resource.  BARs are aligned on their
5567 	 *    size, so when we reallocate space for this resource, we'll
5568 	 *    allocate it with the larger alignment.  This also prevents
5569 	 *    assignment of any other BARs inside the alignment region, so
5570 	 *    if we're requesting page alignment, this means no other BARs
5571 	 *    will share the page.
5572 	 *
5573 	 *    The disadvantage is that this makes the resource larger than
5574 	 *    the hardware BAR, which may break drivers that compute things
5575 	 *    based on the resource size, e.g., to find registers at a
5576 	 *    fixed offset before the end of the BAR.
5577 	 *
5578 	 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
5579 	 *    set r->start to the desired alignment.  By itself this
5580 	 *    doesn't prevent other BARs being put inside the alignment
5581 	 *    region, but if we realign *every* resource of every device in
5582 	 *    the system, none of them will share an alignment region.
5583 	 *
5584 	 * When the user has requested alignment for only some devices via
5585 	 * the "pci=resource_alignment" argument, "resize" is true and we
5586 	 * use the first method.  Otherwise we assume we're aligning all
5587 	 * devices and we use the second.
5588 	 */
5589 
5590 	pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
5591 		 bar, r, (unsigned long long)align);
5592 
5593 	if (resize) {
5594 		r->start = 0;
5595 		r->end = align - 1;
5596 	} else {
5597 		r->flags &= ~IORESOURCE_SIZEALIGN;
5598 		r->flags |= IORESOURCE_STARTALIGN;
5599 		r->start = align;
5600 		r->end = r->start + size - 1;
5601 	}
5602 	r->flags |= IORESOURCE_UNSET;
5603 }
5604 
5605 /*
5606  * This function disables memory decoding and releases memory resources
5607  * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
5608  * It also rounds up size to specified alignment.
5609  * Later on, the kernel will assign page-aligned memory resource back
5610  * to the device.
5611  */
5612 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
5613 {
5614 	int i;
5615 	struct resource *r;
5616 	resource_size_t align;
5617 	u16 command;
5618 	bool resize = false;
5619 
5620 	/*
5621 	 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
5622 	 * 3.4.1.11.  Their resources are allocated from the space
5623 	 * described by the VF BARx register in the PF's SR-IOV capability.
5624 	 * We can't influence their alignment here.
5625 	 */
5626 	if (dev->is_virtfn)
5627 		return;
5628 
5629 	/* check if specified PCI is target device to reassign */
5630 	align = pci_specified_resource_alignment(dev, &resize);
5631 	if (!align)
5632 		return;
5633 
5634 	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
5635 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
5636 		pci_warn(dev, "Can't reassign resources to host bridge\n");
5637 		return;
5638 	}
5639 
5640 	pci_read_config_word(dev, PCI_COMMAND, &command);
5641 	command &= ~PCI_COMMAND_MEMORY;
5642 	pci_write_config_word(dev, PCI_COMMAND, command);
5643 
5644 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
5645 		pci_request_resource_alignment(dev, i, align, resize);
5646 
5647 	/*
5648 	 * Need to disable bridge's resource window,
5649 	 * to enable the kernel to reassign new resource
5650 	 * window later on.
5651 	 */
5652 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
5653 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
5654 		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
5655 			r = &dev->resource[i];
5656 			if (!(r->flags & IORESOURCE_MEM))
5657 				continue;
5658 			r->flags |= IORESOURCE_UNSET;
5659 			r->end = resource_size(r) - 1;
5660 			r->start = 0;
5661 		}
5662 		pci_disable_bridge_window(dev);
5663 	}
5664 }
5665 
5666 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
5667 {
5668 	if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
5669 		count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
5670 	spin_lock(&resource_alignment_lock);
5671 	strncpy(resource_alignment_param, buf, count);
5672 	resource_alignment_param[count] = '\0';
5673 	spin_unlock(&resource_alignment_lock);
5674 	return count;
5675 }
5676 
5677 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
5678 {
5679 	size_t count;
5680 	spin_lock(&resource_alignment_lock);
5681 	count = snprintf(buf, size, "%s", resource_alignment_param);
5682 	spin_unlock(&resource_alignment_lock);
5683 	return count;
5684 }
5685 
5686 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
5687 {
5688 	return pci_get_resource_alignment_param(buf, PAGE_SIZE);
5689 }
5690 
5691 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
5692 					const char *buf, size_t count)
5693 {
5694 	return pci_set_resource_alignment_param(buf, count);
5695 }
5696 
5697 static BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
5698 					pci_resource_alignment_store);
5699 
5700 static int __init pci_resource_alignment_sysfs_init(void)
5701 {
5702 	return bus_create_file(&pci_bus_type,
5703 					&bus_attr_resource_alignment);
5704 }
5705 late_initcall(pci_resource_alignment_sysfs_init);
5706 
5707 static void pci_no_domains(void)
5708 {
5709 #ifdef CONFIG_PCI_DOMAINS
5710 	pci_domains_supported = 0;
5711 #endif
5712 }
5713 
5714 #ifdef CONFIG_PCI_DOMAINS_GENERIC
5715 static atomic_t __domain_nr = ATOMIC_INIT(-1);
5716 
5717 static int pci_get_new_domain_nr(void)
5718 {
5719 	return atomic_inc_return(&__domain_nr);
5720 }
5721 
5722 static int of_pci_bus_find_domain_nr(struct device *parent)
5723 {
5724 	static int use_dt_domains = -1;
5725 	int domain = -1;
5726 
5727 	if (parent)
5728 		domain = of_get_pci_domain_nr(parent->of_node);
5729 	/*
5730 	 * Check DT domain and use_dt_domains values.
5731 	 *
5732 	 * If DT domain property is valid (domain >= 0) and
5733 	 * use_dt_domains != 0, the DT assignment is valid since this means
5734 	 * we have not previously allocated a domain number by using
5735 	 * pci_get_new_domain_nr(); we should also update use_dt_domains to
5736 	 * 1, to indicate that we have just assigned a domain number from
5737 	 * DT.
5738 	 *
5739 	 * If DT domain property value is not valid (ie domain < 0), and we
5740 	 * have not previously assigned a domain number from DT
5741 	 * (use_dt_domains != 1) we should assign a domain number by
5742 	 * using the:
5743 	 *
5744 	 * pci_get_new_domain_nr()
5745 	 *
5746 	 * API and update the use_dt_domains value to keep track of method we
5747 	 * are using to assign domain numbers (use_dt_domains = 0).
5748 	 *
5749 	 * All other combinations imply we have a platform that is trying
5750 	 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
5751 	 * which is a recipe for domain mishandling and it is prevented by
5752 	 * invalidating the domain value (domain = -1) and printing a
5753 	 * corresponding error.
5754 	 */
5755 	if (domain >= 0 && use_dt_domains) {
5756 		use_dt_domains = 1;
5757 	} else if (domain < 0 && use_dt_domains != 1) {
5758 		use_dt_domains = 0;
5759 		domain = pci_get_new_domain_nr();
5760 	} else {
5761 		if (parent)
5762 			pr_err("Node %pOF has ", parent->of_node);
5763 		pr_err("Inconsistent \"linux,pci-domain\" property in DT\n");
5764 		domain = -1;
5765 	}
5766 
5767 	return domain;
5768 }
5769 
5770 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
5771 {
5772 	return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
5773 			       acpi_pci_bus_find_domain_nr(bus);
5774 }
5775 #endif
5776 
5777 /**
5778  * pci_ext_cfg_avail - can we access extended PCI config space?
5779  *
5780  * Returns 1 if we can access PCI extended config space (offsets
5781  * greater than 0xff). This is the default implementation. Architecture
5782  * implementations can override this.
5783  */
5784 int __weak pci_ext_cfg_avail(void)
5785 {
5786 	return 1;
5787 }
5788 
5789 void __weak pci_fixup_cardbus(struct pci_bus *bus)
5790 {
5791 }
5792 EXPORT_SYMBOL(pci_fixup_cardbus);
5793 
5794 static int __init pci_setup(char *str)
5795 {
5796 	while (str) {
5797 		char *k = strchr(str, ',');
5798 		if (k)
5799 			*k++ = 0;
5800 		if (*str && (str = pcibios_setup(str)) && *str) {
5801 			if (!strcmp(str, "nomsi")) {
5802 				pci_no_msi();
5803 			} else if (!strncmp(str, "noats", 5)) {
5804 				pr_info("PCIe: ATS is disabled\n");
5805 				pcie_ats_disabled = true;
5806 			} else if (!strcmp(str, "noaer")) {
5807 				pci_no_aer();
5808 			} else if (!strncmp(str, "realloc=", 8)) {
5809 				pci_realloc_get_opt(str + 8);
5810 			} else if (!strncmp(str, "realloc", 7)) {
5811 				pci_realloc_get_opt("on");
5812 			} else if (!strcmp(str, "nodomains")) {
5813 				pci_no_domains();
5814 			} else if (!strncmp(str, "noari", 5)) {
5815 				pcie_ari_disabled = true;
5816 			} else if (!strncmp(str, "cbiosize=", 9)) {
5817 				pci_cardbus_io_size = memparse(str + 9, &str);
5818 			} else if (!strncmp(str, "cbmemsize=", 10)) {
5819 				pci_cardbus_mem_size = memparse(str + 10, &str);
5820 			} else if (!strncmp(str, "resource_alignment=", 19)) {
5821 				pci_set_resource_alignment_param(str + 19,
5822 							strlen(str + 19));
5823 			} else if (!strncmp(str, "ecrc=", 5)) {
5824 				pcie_ecrc_get_policy(str + 5);
5825 			} else if (!strncmp(str, "hpiosize=", 9)) {
5826 				pci_hotplug_io_size = memparse(str + 9, &str);
5827 			} else if (!strncmp(str, "hpmemsize=", 10)) {
5828 				pci_hotplug_mem_size = memparse(str + 10, &str);
5829 			} else if (!strncmp(str, "hpbussize=", 10)) {
5830 				pci_hotplug_bus_size =
5831 					simple_strtoul(str + 10, &str, 0);
5832 				if (pci_hotplug_bus_size > 0xff)
5833 					pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
5834 			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
5835 				pcie_bus_config = PCIE_BUS_TUNE_OFF;
5836 			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
5837 				pcie_bus_config = PCIE_BUS_SAFE;
5838 			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
5839 				pcie_bus_config = PCIE_BUS_PERFORMANCE;
5840 			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
5841 				pcie_bus_config = PCIE_BUS_PEER2PEER;
5842 			} else if (!strncmp(str, "pcie_scan_all", 13)) {
5843 				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
5844 			} else {
5845 				printk(KERN_ERR "PCI: Unknown option `%s'\n",
5846 						str);
5847 			}
5848 		}
5849 		str = k;
5850 	}
5851 	return 0;
5852 }
5853 early_param("pci", pci_setup);
5854