xref: /openbmc/linux/drivers/pci/pci.c (revision 7b6d864b)
1 /*
2  *	PCI Bus Services, see include/linux/pci.h for further explanation.
3  *
4  *	Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5  *	David Mosberger-Tang
6  *
7  *	Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/pci.h>
14 #include <linux/pm.h>
15 #include <linux/slab.h>
16 #include <linux/module.h>
17 #include <linux/spinlock.h>
18 #include <linux/string.h>
19 #include <linux/log2.h>
20 #include <linux/pci-aspm.h>
21 #include <linux/pm_wakeup.h>
22 #include <linux/interrupt.h>
23 #include <linux/device.h>
24 #include <linux/pm_runtime.h>
25 #include <asm-generic/pci-bridge.h>
26 #include <asm/setup.h>
27 #include "pci.h"
28 
29 const char *pci_power_names[] = {
30 	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
31 };
32 EXPORT_SYMBOL_GPL(pci_power_names);
33 
34 int isa_dma_bridge_buggy;
35 EXPORT_SYMBOL(isa_dma_bridge_buggy);
36 
37 int pci_pci_problems;
38 EXPORT_SYMBOL(pci_pci_problems);
39 
40 unsigned int pci_pm_d3_delay;
41 
42 static void pci_pme_list_scan(struct work_struct *work);
43 
44 static LIST_HEAD(pci_pme_list);
45 static DEFINE_MUTEX(pci_pme_list_mutex);
46 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
47 
48 struct pci_pme_device {
49 	struct list_head list;
50 	struct pci_dev *dev;
51 };
52 
53 #define PME_TIMEOUT 1000 /* How long between PME checks */
54 
55 static void pci_dev_d3_sleep(struct pci_dev *dev)
56 {
57 	unsigned int delay = dev->d3_delay;
58 
59 	if (delay < pci_pm_d3_delay)
60 		delay = pci_pm_d3_delay;
61 
62 	msleep(delay);
63 }
64 
65 #ifdef CONFIG_PCI_DOMAINS
66 int pci_domains_supported = 1;
67 #endif
68 
69 #define DEFAULT_CARDBUS_IO_SIZE		(256)
70 #define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
71 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
72 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
73 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
74 
75 #define DEFAULT_HOTPLUG_IO_SIZE		(256)
76 #define DEFAULT_HOTPLUG_MEM_SIZE	(2*1024*1024)
77 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
78 unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
79 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
80 
81 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
82 
83 /*
84  * The default CLS is used if arch didn't set CLS explicitly and not
85  * all pci devices agree on the same value.  Arch can override either
86  * the dfl or actual value as it sees fit.  Don't forget this is
87  * measured in 32-bit words, not bytes.
88  */
89 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
90 u8 pci_cache_line_size;
91 
92 /*
93  * If we set up a device for bus mastering, we need to check the latency
94  * timer as certain BIOSes forget to set it properly.
95  */
96 unsigned int pcibios_max_latency = 255;
97 
98 /* If set, the PCIe ARI capability will not be used. */
99 static bool pcie_ari_disabled;
100 
101 /**
102  * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
103  * @bus: pointer to PCI bus structure to search
104  *
105  * Given a PCI bus, returns the highest PCI bus number present in the set
106  * including the given PCI bus and its list of child PCI buses.
107  */
108 unsigned char pci_bus_max_busnr(struct pci_bus* bus)
109 {
110 	struct list_head *tmp;
111 	unsigned char max, n;
112 
113 	max = bus->busn_res.end;
114 	list_for_each(tmp, &bus->children) {
115 		n = pci_bus_max_busnr(pci_bus_b(tmp));
116 		if(n > max)
117 			max = n;
118 	}
119 	return max;
120 }
121 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
122 
123 #ifdef CONFIG_HAS_IOMEM
124 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
125 {
126 	/*
127 	 * Make sure the BAR is actually a memory resource, not an IO resource
128 	 */
129 	if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
130 		WARN_ON(1);
131 		return NULL;
132 	}
133 	return ioremap_nocache(pci_resource_start(pdev, bar),
134 				     pci_resource_len(pdev, bar));
135 }
136 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
137 #endif
138 
139 #define PCI_FIND_CAP_TTL	48
140 
141 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
142 				   u8 pos, int cap, int *ttl)
143 {
144 	u8 id;
145 
146 	while ((*ttl)--) {
147 		pci_bus_read_config_byte(bus, devfn, pos, &pos);
148 		if (pos < 0x40)
149 			break;
150 		pos &= ~3;
151 		pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID,
152 					 &id);
153 		if (id == 0xff)
154 			break;
155 		if (id == cap)
156 			return pos;
157 		pos += PCI_CAP_LIST_NEXT;
158 	}
159 	return 0;
160 }
161 
162 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
163 			       u8 pos, int cap)
164 {
165 	int ttl = PCI_FIND_CAP_TTL;
166 
167 	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
168 }
169 
170 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
171 {
172 	return __pci_find_next_cap(dev->bus, dev->devfn,
173 				   pos + PCI_CAP_LIST_NEXT, cap);
174 }
175 EXPORT_SYMBOL_GPL(pci_find_next_capability);
176 
177 static int __pci_bus_find_cap_start(struct pci_bus *bus,
178 				    unsigned int devfn, u8 hdr_type)
179 {
180 	u16 status;
181 
182 	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
183 	if (!(status & PCI_STATUS_CAP_LIST))
184 		return 0;
185 
186 	switch (hdr_type) {
187 	case PCI_HEADER_TYPE_NORMAL:
188 	case PCI_HEADER_TYPE_BRIDGE:
189 		return PCI_CAPABILITY_LIST;
190 	case PCI_HEADER_TYPE_CARDBUS:
191 		return PCI_CB_CAPABILITY_LIST;
192 	default:
193 		return 0;
194 	}
195 
196 	return 0;
197 }
198 
199 /**
200  * pci_find_capability - query for devices' capabilities
201  * @dev: PCI device to query
202  * @cap: capability code
203  *
204  * Tell if a device supports a given PCI capability.
205  * Returns the address of the requested capability structure within the
206  * device's PCI configuration space or 0 in case the device does not
207  * support it.  Possible values for @cap:
208  *
209  *  %PCI_CAP_ID_PM           Power Management
210  *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
211  *  %PCI_CAP_ID_VPD          Vital Product Data
212  *  %PCI_CAP_ID_SLOTID       Slot Identification
213  *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
214  *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
215  *  %PCI_CAP_ID_PCIX         PCI-X
216  *  %PCI_CAP_ID_EXP          PCI Express
217  */
218 int pci_find_capability(struct pci_dev *dev, int cap)
219 {
220 	int pos;
221 
222 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
223 	if (pos)
224 		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
225 
226 	return pos;
227 }
228 
229 /**
230  * pci_bus_find_capability - query for devices' capabilities
231  * @bus:   the PCI bus to query
232  * @devfn: PCI device to query
233  * @cap:   capability code
234  *
235  * Like pci_find_capability() but works for pci devices that do not have a
236  * pci_dev structure set up yet.
237  *
238  * Returns the address of the requested capability structure within the
239  * device's PCI configuration space or 0 in case the device does not
240  * support it.
241  */
242 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
243 {
244 	int pos;
245 	u8 hdr_type;
246 
247 	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
248 
249 	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
250 	if (pos)
251 		pos = __pci_find_next_cap(bus, devfn, pos, cap);
252 
253 	return pos;
254 }
255 
256 /**
257  * pci_find_next_ext_capability - Find an extended capability
258  * @dev: PCI device to query
259  * @start: address at which to start looking (0 to start at beginning of list)
260  * @cap: capability code
261  *
262  * Returns the address of the next matching extended capability structure
263  * within the device's PCI configuration space or 0 if the device does
264  * not support it.  Some capabilities can occur several times, e.g., the
265  * vendor-specific capability, and this provides a way to find them all.
266  */
267 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
268 {
269 	u32 header;
270 	int ttl;
271 	int pos = PCI_CFG_SPACE_SIZE;
272 
273 	/* minimum 8 bytes per capability */
274 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
275 
276 	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
277 		return 0;
278 
279 	if (start)
280 		pos = start;
281 
282 	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
283 		return 0;
284 
285 	/*
286 	 * If we have no capabilities, this is indicated by cap ID,
287 	 * cap version and next pointer all being 0.
288 	 */
289 	if (header == 0)
290 		return 0;
291 
292 	while (ttl-- > 0) {
293 		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
294 			return pos;
295 
296 		pos = PCI_EXT_CAP_NEXT(header);
297 		if (pos < PCI_CFG_SPACE_SIZE)
298 			break;
299 
300 		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
301 			break;
302 	}
303 
304 	return 0;
305 }
306 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
307 
308 /**
309  * pci_find_ext_capability - Find an extended capability
310  * @dev: PCI device to query
311  * @cap: capability code
312  *
313  * Returns the address of the requested extended capability structure
314  * within the device's PCI configuration space or 0 if the device does
315  * not support it.  Possible values for @cap:
316  *
317  *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
318  *  %PCI_EXT_CAP_ID_VC		Virtual Channel
319  *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
320  *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
321  */
322 int pci_find_ext_capability(struct pci_dev *dev, int cap)
323 {
324 	return pci_find_next_ext_capability(dev, 0, cap);
325 }
326 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
327 
328 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
329 {
330 	int rc, ttl = PCI_FIND_CAP_TTL;
331 	u8 cap, mask;
332 
333 	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
334 		mask = HT_3BIT_CAP_MASK;
335 	else
336 		mask = HT_5BIT_CAP_MASK;
337 
338 	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
339 				      PCI_CAP_ID_HT, &ttl);
340 	while (pos) {
341 		rc = pci_read_config_byte(dev, pos + 3, &cap);
342 		if (rc != PCIBIOS_SUCCESSFUL)
343 			return 0;
344 
345 		if ((cap & mask) == ht_cap)
346 			return pos;
347 
348 		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
349 					      pos + PCI_CAP_LIST_NEXT,
350 					      PCI_CAP_ID_HT, &ttl);
351 	}
352 
353 	return 0;
354 }
355 /**
356  * pci_find_next_ht_capability - query a device's Hypertransport capabilities
357  * @dev: PCI device to query
358  * @pos: Position from which to continue searching
359  * @ht_cap: Hypertransport capability code
360  *
361  * To be used in conjunction with pci_find_ht_capability() to search for
362  * all capabilities matching @ht_cap. @pos should always be a value returned
363  * from pci_find_ht_capability().
364  *
365  * NB. To be 100% safe against broken PCI devices, the caller should take
366  * steps to avoid an infinite loop.
367  */
368 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
369 {
370 	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
371 }
372 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
373 
374 /**
375  * pci_find_ht_capability - query a device's Hypertransport capabilities
376  * @dev: PCI device to query
377  * @ht_cap: Hypertransport capability code
378  *
379  * Tell if a device supports a given Hypertransport capability.
380  * Returns an address within the device's PCI configuration space
381  * or 0 in case the device does not support the request capability.
382  * The address points to the PCI capability, of type PCI_CAP_ID_HT,
383  * which has a Hypertransport capability matching @ht_cap.
384  */
385 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
386 {
387 	int pos;
388 
389 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
390 	if (pos)
391 		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
392 
393 	return pos;
394 }
395 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
396 
397 /**
398  * pci_find_parent_resource - return resource region of parent bus of given region
399  * @dev: PCI device structure contains resources to be searched
400  * @res: child resource record for which parent is sought
401  *
402  *  For given resource region of given device, return the resource
403  *  region of parent bus the given region is contained in or where
404  *  it should be allocated from.
405  */
406 struct resource *
407 pci_find_parent_resource(const struct pci_dev *dev, struct resource *res)
408 {
409 	const struct pci_bus *bus = dev->bus;
410 	int i;
411 	struct resource *best = NULL, *r;
412 
413 	pci_bus_for_each_resource(bus, r, i) {
414 		if (!r)
415 			continue;
416 		if (res->start && !(res->start >= r->start && res->end <= r->end))
417 			continue;	/* Not contained */
418 		if ((res->flags ^ r->flags) & (IORESOURCE_IO | IORESOURCE_MEM))
419 			continue;	/* Wrong type */
420 		if (!((res->flags ^ r->flags) & IORESOURCE_PREFETCH))
421 			return r;	/* Exact match */
422 		/* We can't insert a non-prefetch resource inside a prefetchable parent .. */
423 		if (r->flags & IORESOURCE_PREFETCH)
424 			continue;
425 		/* .. but we can put a prefetchable resource inside a non-prefetchable one */
426 		if (!best)
427 			best = r;
428 	}
429 	return best;
430 }
431 
432 /**
433  * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
434  * @dev: PCI device to have its BARs restored
435  *
436  * Restore the BAR values for a given device, so as to make it
437  * accessible by its driver.
438  */
439 static void
440 pci_restore_bars(struct pci_dev *dev)
441 {
442 	int i;
443 
444 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
445 		pci_update_resource(dev, i);
446 }
447 
448 static struct pci_platform_pm_ops *pci_platform_pm;
449 
450 int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
451 {
452 	if (!ops->is_manageable || !ops->set_state || !ops->choose_state
453 	    || !ops->sleep_wake)
454 		return -EINVAL;
455 	pci_platform_pm = ops;
456 	return 0;
457 }
458 
459 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
460 {
461 	return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
462 }
463 
464 static inline int platform_pci_set_power_state(struct pci_dev *dev,
465                                                 pci_power_t t)
466 {
467 	return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
468 }
469 
470 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
471 {
472 	return pci_platform_pm ?
473 			pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
474 }
475 
476 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
477 {
478 	return pci_platform_pm ?
479 			pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
480 }
481 
482 static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable)
483 {
484 	return pci_platform_pm ?
485 			pci_platform_pm->run_wake(dev, enable) : -ENODEV;
486 }
487 
488 /**
489  * pci_raw_set_power_state - Use PCI PM registers to set the power state of
490  *                           given PCI device
491  * @dev: PCI device to handle.
492  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
493  *
494  * RETURN VALUE:
495  * -EINVAL if the requested state is invalid.
496  * -EIO if device does not support PCI PM or its PM capabilities register has a
497  * wrong version, or device doesn't support the requested state.
498  * 0 if device already is in the requested state.
499  * 0 if device's power state has been successfully changed.
500  */
501 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
502 {
503 	u16 pmcsr;
504 	bool need_restore = false;
505 
506 	/* Check if we're already there */
507 	if (dev->current_state == state)
508 		return 0;
509 
510 	if (!dev->pm_cap)
511 		return -EIO;
512 
513 	if (state < PCI_D0 || state > PCI_D3hot)
514 		return -EINVAL;
515 
516 	/* Validate current state:
517 	 * Can enter D0 from any state, but if we can only go deeper
518 	 * to sleep if we're already in a low power state
519 	 */
520 	if (state != PCI_D0 && dev->current_state <= PCI_D3cold
521 	    && dev->current_state > state) {
522 		dev_err(&dev->dev, "invalid power transition "
523 			"(from state %d to %d)\n", dev->current_state, state);
524 		return -EINVAL;
525 	}
526 
527 	/* check if this device supports the desired state */
528 	if ((state == PCI_D1 && !dev->d1_support)
529 	   || (state == PCI_D2 && !dev->d2_support))
530 		return -EIO;
531 
532 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
533 
534 	/* If we're (effectively) in D3, force entire word to 0.
535 	 * This doesn't affect PME_Status, disables PME_En, and
536 	 * sets PowerState to 0.
537 	 */
538 	switch (dev->current_state) {
539 	case PCI_D0:
540 	case PCI_D1:
541 	case PCI_D2:
542 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
543 		pmcsr |= state;
544 		break;
545 	case PCI_D3hot:
546 	case PCI_D3cold:
547 	case PCI_UNKNOWN: /* Boot-up */
548 		if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
549 		 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
550 			need_restore = true;
551 		/* Fall-through: force to D0 */
552 	default:
553 		pmcsr = 0;
554 		break;
555 	}
556 
557 	/* enter specified state */
558 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
559 
560 	/* Mandatory power management transition delays */
561 	/* see PCI PM 1.1 5.6.1 table 18 */
562 	if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
563 		pci_dev_d3_sleep(dev);
564 	else if (state == PCI_D2 || dev->current_state == PCI_D2)
565 		udelay(PCI_PM_D2_DELAY);
566 
567 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
568 	dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
569 	if (dev->current_state != state && printk_ratelimit())
570 		dev_info(&dev->dev, "Refused to change power state, "
571 			"currently in D%d\n", dev->current_state);
572 
573 	/*
574 	 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
575 	 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
576 	 * from D3hot to D0 _may_ perform an internal reset, thereby
577 	 * going to "D0 Uninitialized" rather than "D0 Initialized".
578 	 * For example, at least some versions of the 3c905B and the
579 	 * 3c556B exhibit this behaviour.
580 	 *
581 	 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
582 	 * devices in a D3hot state at boot.  Consequently, we need to
583 	 * restore at least the BARs so that the device will be
584 	 * accessible to its driver.
585 	 */
586 	if (need_restore)
587 		pci_restore_bars(dev);
588 
589 	if (dev->bus->self)
590 		pcie_aspm_pm_state_change(dev->bus->self);
591 
592 	return 0;
593 }
594 
595 /**
596  * pci_update_current_state - Read PCI power state of given device from its
597  *                            PCI PM registers and cache it
598  * @dev: PCI device to handle.
599  * @state: State to cache in case the device doesn't have the PM capability
600  */
601 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
602 {
603 	if (dev->pm_cap) {
604 		u16 pmcsr;
605 
606 		/*
607 		 * Configuration space is not accessible for device in
608 		 * D3cold, so just keep or set D3cold for safety
609 		 */
610 		if (dev->current_state == PCI_D3cold)
611 			return;
612 		if (state == PCI_D3cold) {
613 			dev->current_state = PCI_D3cold;
614 			return;
615 		}
616 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
617 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
618 	} else {
619 		dev->current_state = state;
620 	}
621 }
622 
623 /**
624  * pci_power_up - Put the given device into D0 forcibly
625  * @dev: PCI device to power up
626  */
627 void pci_power_up(struct pci_dev *dev)
628 {
629 	if (platform_pci_power_manageable(dev))
630 		platform_pci_set_power_state(dev, PCI_D0);
631 
632 	pci_raw_set_power_state(dev, PCI_D0);
633 	pci_update_current_state(dev, PCI_D0);
634 }
635 
636 /**
637  * pci_platform_power_transition - Use platform to change device power state
638  * @dev: PCI device to handle.
639  * @state: State to put the device into.
640  */
641 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
642 {
643 	int error;
644 
645 	if (platform_pci_power_manageable(dev)) {
646 		error = platform_pci_set_power_state(dev, state);
647 		if (!error)
648 			pci_update_current_state(dev, state);
649 	} else
650 		error = -ENODEV;
651 
652 	if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
653 		dev->current_state = PCI_D0;
654 
655 	return error;
656 }
657 
658 /**
659  * __pci_start_power_transition - Start power transition of a PCI device
660  * @dev: PCI device to handle.
661  * @state: State to put the device into.
662  */
663 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
664 {
665 	if (state == PCI_D0) {
666 		pci_platform_power_transition(dev, PCI_D0);
667 		/*
668 		 * Mandatory power management transition delays, see
669 		 * PCI Express Base Specification Revision 2.0 Section
670 		 * 6.6.1: Conventional Reset.  Do not delay for
671 		 * devices powered on/off by corresponding bridge,
672 		 * because have already delayed for the bridge.
673 		 */
674 		if (dev->runtime_d3cold) {
675 			msleep(dev->d3cold_delay);
676 			/*
677 			 * When powering on a bridge from D3cold, the
678 			 * whole hierarchy may be powered on into
679 			 * D0uninitialized state, resume them to give
680 			 * them a chance to suspend again
681 			 */
682 			pci_wakeup_bus(dev->subordinate);
683 		}
684 	}
685 }
686 
687 /**
688  * __pci_dev_set_current_state - Set current state of a PCI device
689  * @dev: Device to handle
690  * @data: pointer to state to be set
691  */
692 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
693 {
694 	pci_power_t state = *(pci_power_t *)data;
695 
696 	dev->current_state = state;
697 	return 0;
698 }
699 
700 /**
701  * __pci_bus_set_current_state - Walk given bus and set current state of devices
702  * @bus: Top bus of the subtree to walk.
703  * @state: state to be set
704  */
705 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
706 {
707 	if (bus)
708 		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
709 }
710 
711 /**
712  * __pci_complete_power_transition - Complete power transition of a PCI device
713  * @dev: PCI device to handle.
714  * @state: State to put the device into.
715  *
716  * This function should not be called directly by device drivers.
717  */
718 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
719 {
720 	int ret;
721 
722 	if (state <= PCI_D0)
723 		return -EINVAL;
724 	ret = pci_platform_power_transition(dev, state);
725 	/* Power off the bridge may power off the whole hierarchy */
726 	if (!ret && state == PCI_D3cold)
727 		__pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
728 	return ret;
729 }
730 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
731 
732 /**
733  * pci_set_power_state - Set the power state of a PCI device
734  * @dev: PCI device to handle.
735  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
736  *
737  * Transition a device to a new power state, using the platform firmware and/or
738  * the device's PCI PM registers.
739  *
740  * RETURN VALUE:
741  * -EINVAL if the requested state is invalid.
742  * -EIO if device does not support PCI PM or its PM capabilities register has a
743  * wrong version, or device doesn't support the requested state.
744  * 0 if device already is in the requested state.
745  * 0 if device's power state has been successfully changed.
746  */
747 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
748 {
749 	int error;
750 
751 	/* bound the state we're entering */
752 	if (state > PCI_D3cold)
753 		state = PCI_D3cold;
754 	else if (state < PCI_D0)
755 		state = PCI_D0;
756 	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
757 		/*
758 		 * If the device or the parent bridge do not support PCI PM,
759 		 * ignore the request if we're doing anything other than putting
760 		 * it into D0 (which would only happen on boot).
761 		 */
762 		return 0;
763 
764 	/* Check if we're already there */
765 	if (dev->current_state == state)
766 		return 0;
767 
768 	__pci_start_power_transition(dev, state);
769 
770 	/* This device is quirked not to be put into D3, so
771 	   don't put it in D3 */
772 	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
773 		return 0;
774 
775 	/*
776 	 * To put device in D3cold, we put device into D3hot in native
777 	 * way, then put device into D3cold with platform ops
778 	 */
779 	error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
780 					PCI_D3hot : state);
781 
782 	if (!__pci_complete_power_transition(dev, state))
783 		error = 0;
784 	/*
785 	 * When aspm_policy is "powersave" this call ensures
786 	 * that ASPM is configured.
787 	 */
788 	if (!error && dev->bus->self)
789 		pcie_aspm_powersave_config_link(dev->bus->self);
790 
791 	return error;
792 }
793 
794 /**
795  * pci_choose_state - Choose the power state of a PCI device
796  * @dev: PCI device to be suspended
797  * @state: target sleep state for the whole system. This is the value
798  *	that is passed to suspend() function.
799  *
800  * Returns PCI power state suitable for given device and given system
801  * message.
802  */
803 
804 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
805 {
806 	pci_power_t ret;
807 
808 	if (!dev->pm_cap)
809 		return PCI_D0;
810 
811 	ret = platform_pci_choose_state(dev);
812 	if (ret != PCI_POWER_ERROR)
813 		return ret;
814 
815 	switch (state.event) {
816 	case PM_EVENT_ON:
817 		return PCI_D0;
818 	case PM_EVENT_FREEZE:
819 	case PM_EVENT_PRETHAW:
820 		/* REVISIT both freeze and pre-thaw "should" use D0 */
821 	case PM_EVENT_SUSPEND:
822 	case PM_EVENT_HIBERNATE:
823 		return PCI_D3hot;
824 	default:
825 		dev_info(&dev->dev, "unrecognized suspend event %d\n",
826 			 state.event);
827 		BUG();
828 	}
829 	return PCI_D0;
830 }
831 
832 EXPORT_SYMBOL(pci_choose_state);
833 
834 #define PCI_EXP_SAVE_REGS	7
835 
836 
837 static struct pci_cap_saved_state *pci_find_saved_cap(
838 	struct pci_dev *pci_dev, char cap)
839 {
840 	struct pci_cap_saved_state *tmp;
841 
842 	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
843 		if (tmp->cap.cap_nr == cap)
844 			return tmp;
845 	}
846 	return NULL;
847 }
848 
849 static int pci_save_pcie_state(struct pci_dev *dev)
850 {
851 	int i = 0;
852 	struct pci_cap_saved_state *save_state;
853 	u16 *cap;
854 
855 	if (!pci_is_pcie(dev))
856 		return 0;
857 
858 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
859 	if (!save_state) {
860 		dev_err(&dev->dev, "buffer not found in %s\n", __func__);
861 		return -ENOMEM;
862 	}
863 
864 	cap = (u16 *)&save_state->cap.data[0];
865 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
866 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
867 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
868 	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
869 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
870 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
871 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
872 
873 	return 0;
874 }
875 
876 static void pci_restore_pcie_state(struct pci_dev *dev)
877 {
878 	int i = 0;
879 	struct pci_cap_saved_state *save_state;
880 	u16 *cap;
881 
882 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
883 	if (!save_state)
884 		return;
885 
886 	cap = (u16 *)&save_state->cap.data[0];
887 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
888 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
889 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
890 	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
891 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
892 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
893 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
894 }
895 
896 
897 static int pci_save_pcix_state(struct pci_dev *dev)
898 {
899 	int pos;
900 	struct pci_cap_saved_state *save_state;
901 
902 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
903 	if (pos <= 0)
904 		return 0;
905 
906 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
907 	if (!save_state) {
908 		dev_err(&dev->dev, "buffer not found in %s\n", __func__);
909 		return -ENOMEM;
910 	}
911 
912 	pci_read_config_word(dev, pos + PCI_X_CMD,
913 			     (u16 *)save_state->cap.data);
914 
915 	return 0;
916 }
917 
918 static void pci_restore_pcix_state(struct pci_dev *dev)
919 {
920 	int i = 0, pos;
921 	struct pci_cap_saved_state *save_state;
922 	u16 *cap;
923 
924 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
925 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
926 	if (!save_state || pos <= 0)
927 		return;
928 	cap = (u16 *)&save_state->cap.data[0];
929 
930 	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
931 }
932 
933 
934 /**
935  * pci_save_state - save the PCI configuration space of a device before suspending
936  * @dev: - PCI device that we're dealing with
937  */
938 int
939 pci_save_state(struct pci_dev *dev)
940 {
941 	int i;
942 	/* XXX: 100% dword access ok here? */
943 	for (i = 0; i < 16; i++)
944 		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
945 	dev->state_saved = true;
946 	if ((i = pci_save_pcie_state(dev)) != 0)
947 		return i;
948 	if ((i = pci_save_pcix_state(dev)) != 0)
949 		return i;
950 	return 0;
951 }
952 
953 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
954 				     u32 saved_val, int retry)
955 {
956 	u32 val;
957 
958 	pci_read_config_dword(pdev, offset, &val);
959 	if (val == saved_val)
960 		return;
961 
962 	for (;;) {
963 		dev_dbg(&pdev->dev, "restoring config space at offset "
964 			"%#x (was %#x, writing %#x)\n", offset, val, saved_val);
965 		pci_write_config_dword(pdev, offset, saved_val);
966 		if (retry-- <= 0)
967 			return;
968 
969 		pci_read_config_dword(pdev, offset, &val);
970 		if (val == saved_val)
971 			return;
972 
973 		mdelay(1);
974 	}
975 }
976 
977 static void pci_restore_config_space_range(struct pci_dev *pdev,
978 					   int start, int end, int retry)
979 {
980 	int index;
981 
982 	for (index = end; index >= start; index--)
983 		pci_restore_config_dword(pdev, 4 * index,
984 					 pdev->saved_config_space[index],
985 					 retry);
986 }
987 
988 static void pci_restore_config_space(struct pci_dev *pdev)
989 {
990 	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
991 		pci_restore_config_space_range(pdev, 10, 15, 0);
992 		/* Restore BARs before the command register. */
993 		pci_restore_config_space_range(pdev, 4, 9, 10);
994 		pci_restore_config_space_range(pdev, 0, 3, 0);
995 	} else {
996 		pci_restore_config_space_range(pdev, 0, 15, 0);
997 	}
998 }
999 
1000 /**
1001  * pci_restore_state - Restore the saved state of a PCI device
1002  * @dev: - PCI device that we're dealing with
1003  */
1004 void pci_restore_state(struct pci_dev *dev)
1005 {
1006 	if (!dev->state_saved)
1007 		return;
1008 
1009 	/* PCI Express register must be restored first */
1010 	pci_restore_pcie_state(dev);
1011 	pci_restore_ats_state(dev);
1012 
1013 	pci_restore_config_space(dev);
1014 
1015 	pci_restore_pcix_state(dev);
1016 	pci_restore_msi_state(dev);
1017 	pci_restore_iov_state(dev);
1018 
1019 	dev->state_saved = false;
1020 }
1021 
1022 struct pci_saved_state {
1023 	u32 config_space[16];
1024 	struct pci_cap_saved_data cap[0];
1025 };
1026 
1027 /**
1028  * pci_store_saved_state - Allocate and return an opaque struct containing
1029  *			   the device saved state.
1030  * @dev: PCI device that we're dealing with
1031  *
1032  * Rerturn NULL if no state or error.
1033  */
1034 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1035 {
1036 	struct pci_saved_state *state;
1037 	struct pci_cap_saved_state *tmp;
1038 	struct pci_cap_saved_data *cap;
1039 	size_t size;
1040 
1041 	if (!dev->state_saved)
1042 		return NULL;
1043 
1044 	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1045 
1046 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1047 		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1048 
1049 	state = kzalloc(size, GFP_KERNEL);
1050 	if (!state)
1051 		return NULL;
1052 
1053 	memcpy(state->config_space, dev->saved_config_space,
1054 	       sizeof(state->config_space));
1055 
1056 	cap = state->cap;
1057 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1058 		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1059 		memcpy(cap, &tmp->cap, len);
1060 		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1061 	}
1062 	/* Empty cap_save terminates list */
1063 
1064 	return state;
1065 }
1066 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1067 
1068 /**
1069  * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1070  * @dev: PCI device that we're dealing with
1071  * @state: Saved state returned from pci_store_saved_state()
1072  */
1073 int pci_load_saved_state(struct pci_dev *dev, struct pci_saved_state *state)
1074 {
1075 	struct pci_cap_saved_data *cap;
1076 
1077 	dev->state_saved = false;
1078 
1079 	if (!state)
1080 		return 0;
1081 
1082 	memcpy(dev->saved_config_space, state->config_space,
1083 	       sizeof(state->config_space));
1084 
1085 	cap = state->cap;
1086 	while (cap->size) {
1087 		struct pci_cap_saved_state *tmp;
1088 
1089 		tmp = pci_find_saved_cap(dev, cap->cap_nr);
1090 		if (!tmp || tmp->cap.size != cap->size)
1091 			return -EINVAL;
1092 
1093 		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1094 		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1095 		       sizeof(struct pci_cap_saved_data) + cap->size);
1096 	}
1097 
1098 	dev->state_saved = true;
1099 	return 0;
1100 }
1101 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1102 
1103 /**
1104  * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1105  *				   and free the memory allocated for it.
1106  * @dev: PCI device that we're dealing with
1107  * @state: Pointer to saved state returned from pci_store_saved_state()
1108  */
1109 int pci_load_and_free_saved_state(struct pci_dev *dev,
1110 				  struct pci_saved_state **state)
1111 {
1112 	int ret = pci_load_saved_state(dev, *state);
1113 	kfree(*state);
1114 	*state = NULL;
1115 	return ret;
1116 }
1117 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1118 
1119 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1120 {
1121 	int err;
1122 
1123 	err = pci_set_power_state(dev, PCI_D0);
1124 	if (err < 0 && err != -EIO)
1125 		return err;
1126 	err = pcibios_enable_device(dev, bars);
1127 	if (err < 0)
1128 		return err;
1129 	pci_fixup_device(pci_fixup_enable, dev);
1130 
1131 	return 0;
1132 }
1133 
1134 /**
1135  * pci_reenable_device - Resume abandoned device
1136  * @dev: PCI device to be resumed
1137  *
1138  *  Note this function is a backend of pci_default_resume and is not supposed
1139  *  to be called by normal code, write proper resume handler and use it instead.
1140  */
1141 int pci_reenable_device(struct pci_dev *dev)
1142 {
1143 	if (pci_is_enabled(dev))
1144 		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1145 	return 0;
1146 }
1147 
1148 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1149 {
1150 	int err;
1151 	int i, bars = 0;
1152 
1153 	/*
1154 	 * Power state could be unknown at this point, either due to a fresh
1155 	 * boot or a device removal call.  So get the current power state
1156 	 * so that things like MSI message writing will behave as expected
1157 	 * (e.g. if the device really is in D0 at enable time).
1158 	 */
1159 	if (dev->pm_cap) {
1160 		u16 pmcsr;
1161 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1162 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1163 	}
1164 
1165 	if (atomic_inc_return(&dev->enable_cnt) > 1)
1166 		return 0;		/* already enabled */
1167 
1168 	/* only skip sriov related */
1169 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1170 		if (dev->resource[i].flags & flags)
1171 			bars |= (1 << i);
1172 	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1173 		if (dev->resource[i].flags & flags)
1174 			bars |= (1 << i);
1175 
1176 	err = do_pci_enable_device(dev, bars);
1177 	if (err < 0)
1178 		atomic_dec(&dev->enable_cnt);
1179 	return err;
1180 }
1181 
1182 /**
1183  * pci_enable_device_io - Initialize a device for use with IO space
1184  * @dev: PCI device to be initialized
1185  *
1186  *  Initialize device before it's used by a driver. Ask low-level code
1187  *  to enable I/O resources. Wake up the device if it was suspended.
1188  *  Beware, this function can fail.
1189  */
1190 int pci_enable_device_io(struct pci_dev *dev)
1191 {
1192 	return pci_enable_device_flags(dev, IORESOURCE_IO);
1193 }
1194 
1195 /**
1196  * pci_enable_device_mem - Initialize a device for use with Memory space
1197  * @dev: PCI device to be initialized
1198  *
1199  *  Initialize device before it's used by a driver. Ask low-level code
1200  *  to enable Memory resources. Wake up the device if it was suspended.
1201  *  Beware, this function can fail.
1202  */
1203 int pci_enable_device_mem(struct pci_dev *dev)
1204 {
1205 	return pci_enable_device_flags(dev, IORESOURCE_MEM);
1206 }
1207 
1208 /**
1209  * pci_enable_device - Initialize device before it's used by a driver.
1210  * @dev: PCI device to be initialized
1211  *
1212  *  Initialize device before it's used by a driver. Ask low-level code
1213  *  to enable I/O and memory. Wake up the device if it was suspended.
1214  *  Beware, this function can fail.
1215  *
1216  *  Note we don't actually enable the device many times if we call
1217  *  this function repeatedly (we just increment the count).
1218  */
1219 int pci_enable_device(struct pci_dev *dev)
1220 {
1221 	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1222 }
1223 
1224 /*
1225  * Managed PCI resources.  This manages device on/off, intx/msi/msix
1226  * on/off and BAR regions.  pci_dev itself records msi/msix status, so
1227  * there's no need to track it separately.  pci_devres is initialized
1228  * when a device is enabled using managed PCI device enable interface.
1229  */
1230 struct pci_devres {
1231 	unsigned int enabled:1;
1232 	unsigned int pinned:1;
1233 	unsigned int orig_intx:1;
1234 	unsigned int restore_intx:1;
1235 	u32 region_mask;
1236 };
1237 
1238 static void pcim_release(struct device *gendev, void *res)
1239 {
1240 	struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
1241 	struct pci_devres *this = res;
1242 	int i;
1243 
1244 	if (dev->msi_enabled)
1245 		pci_disable_msi(dev);
1246 	if (dev->msix_enabled)
1247 		pci_disable_msix(dev);
1248 
1249 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1250 		if (this->region_mask & (1 << i))
1251 			pci_release_region(dev, i);
1252 
1253 	if (this->restore_intx)
1254 		pci_intx(dev, this->orig_intx);
1255 
1256 	if (this->enabled && !this->pinned)
1257 		pci_disable_device(dev);
1258 }
1259 
1260 static struct pci_devres * get_pci_dr(struct pci_dev *pdev)
1261 {
1262 	struct pci_devres *dr, *new_dr;
1263 
1264 	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1265 	if (dr)
1266 		return dr;
1267 
1268 	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1269 	if (!new_dr)
1270 		return NULL;
1271 	return devres_get(&pdev->dev, new_dr, NULL, NULL);
1272 }
1273 
1274 static struct pci_devres * find_pci_dr(struct pci_dev *pdev)
1275 {
1276 	if (pci_is_managed(pdev))
1277 		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1278 	return NULL;
1279 }
1280 
1281 /**
1282  * pcim_enable_device - Managed pci_enable_device()
1283  * @pdev: PCI device to be initialized
1284  *
1285  * Managed pci_enable_device().
1286  */
1287 int pcim_enable_device(struct pci_dev *pdev)
1288 {
1289 	struct pci_devres *dr;
1290 	int rc;
1291 
1292 	dr = get_pci_dr(pdev);
1293 	if (unlikely(!dr))
1294 		return -ENOMEM;
1295 	if (dr->enabled)
1296 		return 0;
1297 
1298 	rc = pci_enable_device(pdev);
1299 	if (!rc) {
1300 		pdev->is_managed = 1;
1301 		dr->enabled = 1;
1302 	}
1303 	return rc;
1304 }
1305 
1306 /**
1307  * pcim_pin_device - Pin managed PCI device
1308  * @pdev: PCI device to pin
1309  *
1310  * Pin managed PCI device @pdev.  Pinned device won't be disabled on
1311  * driver detach.  @pdev must have been enabled with
1312  * pcim_enable_device().
1313  */
1314 void pcim_pin_device(struct pci_dev *pdev)
1315 {
1316 	struct pci_devres *dr;
1317 
1318 	dr = find_pci_dr(pdev);
1319 	WARN_ON(!dr || !dr->enabled);
1320 	if (dr)
1321 		dr->pinned = 1;
1322 }
1323 
1324 /*
1325  * pcibios_add_device - provide arch specific hooks when adding device dev
1326  * @dev: the PCI device being added
1327  *
1328  * Permits the platform to provide architecture specific functionality when
1329  * devices are added. This is the default implementation. Architecture
1330  * implementations can override this.
1331  */
1332 int __weak pcibios_add_device (struct pci_dev *dev)
1333 {
1334 	return 0;
1335 }
1336 
1337 /**
1338  * pcibios_release_device - provide arch specific hooks when releasing device dev
1339  * @dev: the PCI device being released
1340  *
1341  * Permits the platform to provide architecture specific functionality when
1342  * devices are released. This is the default implementation. Architecture
1343  * implementations can override this.
1344  */
1345 void __weak pcibios_release_device(struct pci_dev *dev) {}
1346 
1347 /**
1348  * pcibios_disable_device - disable arch specific PCI resources for device dev
1349  * @dev: the PCI device to disable
1350  *
1351  * Disables architecture specific PCI resources for the device. This
1352  * is the default implementation. Architecture implementations can
1353  * override this.
1354  */
1355 void __weak pcibios_disable_device (struct pci_dev *dev) {}
1356 
1357 static void do_pci_disable_device(struct pci_dev *dev)
1358 {
1359 	u16 pci_command;
1360 
1361 	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1362 	if (pci_command & PCI_COMMAND_MASTER) {
1363 		pci_command &= ~PCI_COMMAND_MASTER;
1364 		pci_write_config_word(dev, PCI_COMMAND, pci_command);
1365 	}
1366 
1367 	pcibios_disable_device(dev);
1368 }
1369 
1370 /**
1371  * pci_disable_enabled_device - Disable device without updating enable_cnt
1372  * @dev: PCI device to disable
1373  *
1374  * NOTE: This function is a backend of PCI power management routines and is
1375  * not supposed to be called drivers.
1376  */
1377 void pci_disable_enabled_device(struct pci_dev *dev)
1378 {
1379 	if (pci_is_enabled(dev))
1380 		do_pci_disable_device(dev);
1381 }
1382 
1383 /**
1384  * pci_disable_device - Disable PCI device after use
1385  * @dev: PCI device to be disabled
1386  *
1387  * Signal to the system that the PCI device is not in use by the system
1388  * anymore.  This only involves disabling PCI bus-mastering, if active.
1389  *
1390  * Note we don't actually disable the device until all callers of
1391  * pci_enable_device() have called pci_disable_device().
1392  */
1393 void
1394 pci_disable_device(struct pci_dev *dev)
1395 {
1396 	struct pci_devres *dr;
1397 
1398 	dr = find_pci_dr(dev);
1399 	if (dr)
1400 		dr->enabled = 0;
1401 
1402 	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1403 		      "disabling already-disabled device");
1404 
1405 	if (atomic_dec_return(&dev->enable_cnt) != 0)
1406 		return;
1407 
1408 	do_pci_disable_device(dev);
1409 
1410 	dev->is_busmaster = 0;
1411 }
1412 
1413 /**
1414  * pcibios_set_pcie_reset_state - set reset state for device dev
1415  * @dev: the PCIe device reset
1416  * @state: Reset state to enter into
1417  *
1418  *
1419  * Sets the PCIe reset state for the device. This is the default
1420  * implementation. Architecture implementations can override this.
1421  */
1422 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1423 					enum pcie_reset_state state)
1424 {
1425 	return -EINVAL;
1426 }
1427 
1428 /**
1429  * pci_set_pcie_reset_state - set reset state for device dev
1430  * @dev: the PCIe device reset
1431  * @state: Reset state to enter into
1432  *
1433  *
1434  * Sets the PCI reset state for the device.
1435  */
1436 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1437 {
1438 	return pcibios_set_pcie_reset_state(dev, state);
1439 }
1440 
1441 /**
1442  * pci_check_pme_status - Check if given device has generated PME.
1443  * @dev: Device to check.
1444  *
1445  * Check the PME status of the device and if set, clear it and clear PME enable
1446  * (if set).  Return 'true' if PME status and PME enable were both set or
1447  * 'false' otherwise.
1448  */
1449 bool pci_check_pme_status(struct pci_dev *dev)
1450 {
1451 	int pmcsr_pos;
1452 	u16 pmcsr;
1453 	bool ret = false;
1454 
1455 	if (!dev->pm_cap)
1456 		return false;
1457 
1458 	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1459 	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1460 	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1461 		return false;
1462 
1463 	/* Clear PME status. */
1464 	pmcsr |= PCI_PM_CTRL_PME_STATUS;
1465 	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1466 		/* Disable PME to avoid interrupt flood. */
1467 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1468 		ret = true;
1469 	}
1470 
1471 	pci_write_config_word(dev, pmcsr_pos, pmcsr);
1472 
1473 	return ret;
1474 }
1475 
1476 /**
1477  * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1478  * @dev: Device to handle.
1479  * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1480  *
1481  * Check if @dev has generated PME and queue a resume request for it in that
1482  * case.
1483  */
1484 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1485 {
1486 	if (pme_poll_reset && dev->pme_poll)
1487 		dev->pme_poll = false;
1488 
1489 	if (pci_check_pme_status(dev)) {
1490 		pci_wakeup_event(dev);
1491 		pm_request_resume(&dev->dev);
1492 	}
1493 	return 0;
1494 }
1495 
1496 /**
1497  * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1498  * @bus: Top bus of the subtree to walk.
1499  */
1500 void pci_pme_wakeup_bus(struct pci_bus *bus)
1501 {
1502 	if (bus)
1503 		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1504 }
1505 
1506 /**
1507  * pci_wakeup - Wake up a PCI device
1508  * @pci_dev: Device to handle.
1509  * @ign: ignored parameter
1510  */
1511 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
1512 {
1513 	pci_wakeup_event(pci_dev);
1514 	pm_request_resume(&pci_dev->dev);
1515 	return 0;
1516 }
1517 
1518 /**
1519  * pci_wakeup_bus - Walk given bus and wake up devices on it
1520  * @bus: Top bus of the subtree to walk.
1521  */
1522 void pci_wakeup_bus(struct pci_bus *bus)
1523 {
1524 	if (bus)
1525 		pci_walk_bus(bus, pci_wakeup, NULL);
1526 }
1527 
1528 /**
1529  * pci_pme_capable - check the capability of PCI device to generate PME#
1530  * @dev: PCI device to handle.
1531  * @state: PCI state from which device will issue PME#.
1532  */
1533 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1534 {
1535 	if (!dev->pm_cap)
1536 		return false;
1537 
1538 	return !!(dev->pme_support & (1 << state));
1539 }
1540 
1541 static void pci_pme_list_scan(struct work_struct *work)
1542 {
1543 	struct pci_pme_device *pme_dev, *n;
1544 
1545 	mutex_lock(&pci_pme_list_mutex);
1546 	if (!list_empty(&pci_pme_list)) {
1547 		list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1548 			if (pme_dev->dev->pme_poll) {
1549 				struct pci_dev *bridge;
1550 
1551 				bridge = pme_dev->dev->bus->self;
1552 				/*
1553 				 * If bridge is in low power state, the
1554 				 * configuration space of subordinate devices
1555 				 * may be not accessible
1556 				 */
1557 				if (bridge && bridge->current_state != PCI_D0)
1558 					continue;
1559 				pci_pme_wakeup(pme_dev->dev, NULL);
1560 			} else {
1561 				list_del(&pme_dev->list);
1562 				kfree(pme_dev);
1563 			}
1564 		}
1565 		if (!list_empty(&pci_pme_list))
1566 			schedule_delayed_work(&pci_pme_work,
1567 					      msecs_to_jiffies(PME_TIMEOUT));
1568 	}
1569 	mutex_unlock(&pci_pme_list_mutex);
1570 }
1571 
1572 /**
1573  * pci_pme_active - enable or disable PCI device's PME# function
1574  * @dev: PCI device to handle.
1575  * @enable: 'true' to enable PME# generation; 'false' to disable it.
1576  *
1577  * The caller must verify that the device is capable of generating PME# before
1578  * calling this function with @enable equal to 'true'.
1579  */
1580 void pci_pme_active(struct pci_dev *dev, bool enable)
1581 {
1582 	u16 pmcsr;
1583 
1584 	if (!dev->pme_support)
1585 		return;
1586 
1587 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1588 	/* Clear PME_Status by writing 1 to it and enable PME# */
1589 	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1590 	if (!enable)
1591 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1592 
1593 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1594 
1595 	/*
1596 	 * PCI (as opposed to PCIe) PME requires that the device have
1597 	 * its PME# line hooked up correctly. Not all hardware vendors
1598 	 * do this, so the PME never gets delivered and the device
1599 	 * remains asleep. The easiest way around this is to
1600 	 * periodically walk the list of suspended devices and check
1601 	 * whether any have their PME flag set. The assumption is that
1602 	 * we'll wake up often enough anyway that this won't be a huge
1603 	 * hit, and the power savings from the devices will still be a
1604 	 * win.
1605 	 *
1606 	 * Although PCIe uses in-band PME message instead of PME# line
1607 	 * to report PME, PME does not work for some PCIe devices in
1608 	 * reality.  For example, there are devices that set their PME
1609 	 * status bits, but don't really bother to send a PME message;
1610 	 * there are PCI Express Root Ports that don't bother to
1611 	 * trigger interrupts when they receive PME messages from the
1612 	 * devices below.  So PME poll is used for PCIe devices too.
1613 	 */
1614 
1615 	if (dev->pme_poll) {
1616 		struct pci_pme_device *pme_dev;
1617 		if (enable) {
1618 			pme_dev = kmalloc(sizeof(struct pci_pme_device),
1619 					  GFP_KERNEL);
1620 			if (!pme_dev)
1621 				goto out;
1622 			pme_dev->dev = dev;
1623 			mutex_lock(&pci_pme_list_mutex);
1624 			list_add(&pme_dev->list, &pci_pme_list);
1625 			if (list_is_singular(&pci_pme_list))
1626 				schedule_delayed_work(&pci_pme_work,
1627 						      msecs_to_jiffies(PME_TIMEOUT));
1628 			mutex_unlock(&pci_pme_list_mutex);
1629 		} else {
1630 			mutex_lock(&pci_pme_list_mutex);
1631 			list_for_each_entry(pme_dev, &pci_pme_list, list) {
1632 				if (pme_dev->dev == dev) {
1633 					list_del(&pme_dev->list);
1634 					kfree(pme_dev);
1635 					break;
1636 				}
1637 			}
1638 			mutex_unlock(&pci_pme_list_mutex);
1639 		}
1640 	}
1641 
1642 out:
1643 	dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled");
1644 }
1645 
1646 /**
1647  * __pci_enable_wake - enable PCI device as wakeup event source
1648  * @dev: PCI device affected
1649  * @state: PCI state from which device will issue wakeup events
1650  * @runtime: True if the events are to be generated at run time
1651  * @enable: True to enable event generation; false to disable
1652  *
1653  * This enables the device as a wakeup event source, or disables it.
1654  * When such events involves platform-specific hooks, those hooks are
1655  * called automatically by this routine.
1656  *
1657  * Devices with legacy power management (no standard PCI PM capabilities)
1658  * always require such platform hooks.
1659  *
1660  * RETURN VALUE:
1661  * 0 is returned on success
1662  * -EINVAL is returned if device is not supposed to wake up the system
1663  * Error code depending on the platform is returned if both the platform and
1664  * the native mechanism fail to enable the generation of wake-up events
1665  */
1666 int __pci_enable_wake(struct pci_dev *dev, pci_power_t state,
1667 		      bool runtime, bool enable)
1668 {
1669 	int ret = 0;
1670 
1671 	if (enable && !runtime && !device_may_wakeup(&dev->dev))
1672 		return -EINVAL;
1673 
1674 	/* Don't do the same thing twice in a row for one device. */
1675 	if (!!enable == !!dev->wakeup_prepared)
1676 		return 0;
1677 
1678 	/*
1679 	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1680 	 * Anderson we should be doing PME# wake enable followed by ACPI wake
1681 	 * enable.  To disable wake-up we call the platform first, for symmetry.
1682 	 */
1683 
1684 	if (enable) {
1685 		int error;
1686 
1687 		if (pci_pme_capable(dev, state))
1688 			pci_pme_active(dev, true);
1689 		else
1690 			ret = 1;
1691 		error = runtime ? platform_pci_run_wake(dev, true) :
1692 					platform_pci_sleep_wake(dev, true);
1693 		if (ret)
1694 			ret = error;
1695 		if (!ret)
1696 			dev->wakeup_prepared = true;
1697 	} else {
1698 		if (runtime)
1699 			platform_pci_run_wake(dev, false);
1700 		else
1701 			platform_pci_sleep_wake(dev, false);
1702 		pci_pme_active(dev, false);
1703 		dev->wakeup_prepared = false;
1704 	}
1705 
1706 	return ret;
1707 }
1708 EXPORT_SYMBOL(__pci_enable_wake);
1709 
1710 /**
1711  * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1712  * @dev: PCI device to prepare
1713  * @enable: True to enable wake-up event generation; false to disable
1714  *
1715  * Many drivers want the device to wake up the system from D3_hot or D3_cold
1716  * and this function allows them to set that up cleanly - pci_enable_wake()
1717  * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1718  * ordering constraints.
1719  *
1720  * This function only returns error code if the device is not capable of
1721  * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1722  * enable wake-up power for it.
1723  */
1724 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1725 {
1726 	return pci_pme_capable(dev, PCI_D3cold) ?
1727 			pci_enable_wake(dev, PCI_D3cold, enable) :
1728 			pci_enable_wake(dev, PCI_D3hot, enable);
1729 }
1730 
1731 /**
1732  * pci_target_state - find an appropriate low power state for a given PCI dev
1733  * @dev: PCI device
1734  *
1735  * Use underlying platform code to find a supported low power state for @dev.
1736  * If the platform can't manage @dev, return the deepest state from which it
1737  * can generate wake events, based on any available PME info.
1738  */
1739 pci_power_t pci_target_state(struct pci_dev *dev)
1740 {
1741 	pci_power_t target_state = PCI_D3hot;
1742 
1743 	if (platform_pci_power_manageable(dev)) {
1744 		/*
1745 		 * Call the platform to choose the target state of the device
1746 		 * and enable wake-up from this state if supported.
1747 		 */
1748 		pci_power_t state = platform_pci_choose_state(dev);
1749 
1750 		switch (state) {
1751 		case PCI_POWER_ERROR:
1752 		case PCI_UNKNOWN:
1753 			break;
1754 		case PCI_D1:
1755 		case PCI_D2:
1756 			if (pci_no_d1d2(dev))
1757 				break;
1758 		default:
1759 			target_state = state;
1760 		}
1761 	} else if (!dev->pm_cap) {
1762 		target_state = PCI_D0;
1763 	} else if (device_may_wakeup(&dev->dev)) {
1764 		/*
1765 		 * Find the deepest state from which the device can generate
1766 		 * wake-up events, make it the target state and enable device
1767 		 * to generate PME#.
1768 		 */
1769 		if (dev->pme_support) {
1770 			while (target_state
1771 			      && !(dev->pme_support & (1 << target_state)))
1772 				target_state--;
1773 		}
1774 	}
1775 
1776 	return target_state;
1777 }
1778 
1779 /**
1780  * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1781  * @dev: Device to handle.
1782  *
1783  * Choose the power state appropriate for the device depending on whether
1784  * it can wake up the system and/or is power manageable by the platform
1785  * (PCI_D3hot is the default) and put the device into that state.
1786  */
1787 int pci_prepare_to_sleep(struct pci_dev *dev)
1788 {
1789 	pci_power_t target_state = pci_target_state(dev);
1790 	int error;
1791 
1792 	if (target_state == PCI_POWER_ERROR)
1793 		return -EIO;
1794 
1795 	/* D3cold during system suspend/hibernate is not supported */
1796 	if (target_state > PCI_D3hot)
1797 		target_state = PCI_D3hot;
1798 
1799 	pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
1800 
1801 	error = pci_set_power_state(dev, target_state);
1802 
1803 	if (error)
1804 		pci_enable_wake(dev, target_state, false);
1805 
1806 	return error;
1807 }
1808 
1809 /**
1810  * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1811  * @dev: Device to handle.
1812  *
1813  * Disable device's system wake-up capability and put it into D0.
1814  */
1815 int pci_back_from_sleep(struct pci_dev *dev)
1816 {
1817 	pci_enable_wake(dev, PCI_D0, false);
1818 	return pci_set_power_state(dev, PCI_D0);
1819 }
1820 
1821 /**
1822  * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
1823  * @dev: PCI device being suspended.
1824  *
1825  * Prepare @dev to generate wake-up events at run time and put it into a low
1826  * power state.
1827  */
1828 int pci_finish_runtime_suspend(struct pci_dev *dev)
1829 {
1830 	pci_power_t target_state = pci_target_state(dev);
1831 	int error;
1832 
1833 	if (target_state == PCI_POWER_ERROR)
1834 		return -EIO;
1835 
1836 	dev->runtime_d3cold = target_state == PCI_D3cold;
1837 
1838 	__pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev));
1839 
1840 	error = pci_set_power_state(dev, target_state);
1841 
1842 	if (error) {
1843 		__pci_enable_wake(dev, target_state, true, false);
1844 		dev->runtime_d3cold = false;
1845 	}
1846 
1847 	return error;
1848 }
1849 
1850 /**
1851  * pci_dev_run_wake - Check if device can generate run-time wake-up events.
1852  * @dev: Device to check.
1853  *
1854  * Return true if the device itself is cabable of generating wake-up events
1855  * (through the platform or using the native PCIe PME) or if the device supports
1856  * PME and one of its upstream bridges can generate wake-up events.
1857  */
1858 bool pci_dev_run_wake(struct pci_dev *dev)
1859 {
1860 	struct pci_bus *bus = dev->bus;
1861 
1862 	if (device_run_wake(&dev->dev))
1863 		return true;
1864 
1865 	if (!dev->pme_support)
1866 		return false;
1867 
1868 	while (bus->parent) {
1869 		struct pci_dev *bridge = bus->self;
1870 
1871 		if (device_run_wake(&bridge->dev))
1872 			return true;
1873 
1874 		bus = bus->parent;
1875 	}
1876 
1877 	/* We have reached the root bus. */
1878 	if (bus->bridge)
1879 		return device_run_wake(bus->bridge);
1880 
1881 	return false;
1882 }
1883 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
1884 
1885 void pci_config_pm_runtime_get(struct pci_dev *pdev)
1886 {
1887 	struct device *dev = &pdev->dev;
1888 	struct device *parent = dev->parent;
1889 
1890 	if (parent)
1891 		pm_runtime_get_sync(parent);
1892 	pm_runtime_get_noresume(dev);
1893 	/*
1894 	 * pdev->current_state is set to PCI_D3cold during suspending,
1895 	 * so wait until suspending completes
1896 	 */
1897 	pm_runtime_barrier(dev);
1898 	/*
1899 	 * Only need to resume devices in D3cold, because config
1900 	 * registers are still accessible for devices suspended but
1901 	 * not in D3cold.
1902 	 */
1903 	if (pdev->current_state == PCI_D3cold)
1904 		pm_runtime_resume(dev);
1905 }
1906 
1907 void pci_config_pm_runtime_put(struct pci_dev *pdev)
1908 {
1909 	struct device *dev = &pdev->dev;
1910 	struct device *parent = dev->parent;
1911 
1912 	pm_runtime_put(dev);
1913 	if (parent)
1914 		pm_runtime_put_sync(parent);
1915 }
1916 
1917 /**
1918  * pci_pm_init - Initialize PM functions of given PCI device
1919  * @dev: PCI device to handle.
1920  */
1921 void pci_pm_init(struct pci_dev *dev)
1922 {
1923 	int pm;
1924 	u16 pmc;
1925 
1926 	pm_runtime_forbid(&dev->dev);
1927 	pm_runtime_set_active(&dev->dev);
1928 	pm_runtime_enable(&dev->dev);
1929 	device_enable_async_suspend(&dev->dev);
1930 	dev->wakeup_prepared = false;
1931 
1932 	dev->pm_cap = 0;
1933 	dev->pme_support = 0;
1934 
1935 	/* find PCI PM capability in list */
1936 	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
1937 	if (!pm)
1938 		return;
1939 	/* Check device's ability to generate PME# */
1940 	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
1941 
1942 	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
1943 		dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
1944 			pmc & PCI_PM_CAP_VER_MASK);
1945 		return;
1946 	}
1947 
1948 	dev->pm_cap = pm;
1949 	dev->d3_delay = PCI_PM_D3_WAIT;
1950 	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
1951 	dev->d3cold_allowed = true;
1952 
1953 	dev->d1_support = false;
1954 	dev->d2_support = false;
1955 	if (!pci_no_d1d2(dev)) {
1956 		if (pmc & PCI_PM_CAP_D1)
1957 			dev->d1_support = true;
1958 		if (pmc & PCI_PM_CAP_D2)
1959 			dev->d2_support = true;
1960 
1961 		if (dev->d1_support || dev->d2_support)
1962 			dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
1963 				   dev->d1_support ? " D1" : "",
1964 				   dev->d2_support ? " D2" : "");
1965 	}
1966 
1967 	pmc &= PCI_PM_CAP_PME_MASK;
1968 	if (pmc) {
1969 		dev_printk(KERN_DEBUG, &dev->dev,
1970 			 "PME# supported from%s%s%s%s%s\n",
1971 			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
1972 			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
1973 			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
1974 			 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
1975 			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
1976 		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
1977 		dev->pme_poll = true;
1978 		/*
1979 		 * Make device's PM flags reflect the wake-up capability, but
1980 		 * let the user space enable it to wake up the system as needed.
1981 		 */
1982 		device_set_wakeup_capable(&dev->dev, true);
1983 		/* Disable the PME# generation functionality */
1984 		pci_pme_active(dev, false);
1985 	}
1986 }
1987 
1988 static void pci_add_saved_cap(struct pci_dev *pci_dev,
1989 	struct pci_cap_saved_state *new_cap)
1990 {
1991 	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
1992 }
1993 
1994 /**
1995  * pci_add_save_buffer - allocate buffer for saving given capability registers
1996  * @dev: the PCI device
1997  * @cap: the capability to allocate the buffer for
1998  * @size: requested size of the buffer
1999  */
2000 static int pci_add_cap_save_buffer(
2001 	struct pci_dev *dev, char cap, unsigned int size)
2002 {
2003 	int pos;
2004 	struct pci_cap_saved_state *save_state;
2005 
2006 	pos = pci_find_capability(dev, cap);
2007 	if (pos <= 0)
2008 		return 0;
2009 
2010 	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2011 	if (!save_state)
2012 		return -ENOMEM;
2013 
2014 	save_state->cap.cap_nr = cap;
2015 	save_state->cap.size = size;
2016 	pci_add_saved_cap(dev, save_state);
2017 
2018 	return 0;
2019 }
2020 
2021 /**
2022  * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2023  * @dev: the PCI device
2024  */
2025 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2026 {
2027 	int error;
2028 
2029 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2030 					PCI_EXP_SAVE_REGS * sizeof(u16));
2031 	if (error)
2032 		dev_err(&dev->dev,
2033 			"unable to preallocate PCI Express save buffer\n");
2034 
2035 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2036 	if (error)
2037 		dev_err(&dev->dev,
2038 			"unable to preallocate PCI-X save buffer\n");
2039 }
2040 
2041 void pci_free_cap_save_buffers(struct pci_dev *dev)
2042 {
2043 	struct pci_cap_saved_state *tmp;
2044 	struct hlist_node *n;
2045 
2046 	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
2047 		kfree(tmp);
2048 }
2049 
2050 /**
2051  * pci_configure_ari - enable or disable ARI forwarding
2052  * @dev: the PCI device
2053  *
2054  * If @dev and its upstream bridge both support ARI, enable ARI in the
2055  * bridge.  Otherwise, disable ARI in the bridge.
2056  */
2057 void pci_configure_ari(struct pci_dev *dev)
2058 {
2059 	u32 cap;
2060 	struct pci_dev *bridge;
2061 
2062 	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
2063 		return;
2064 
2065 	bridge = dev->bus->self;
2066 	if (!bridge)
2067 		return;
2068 
2069 	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
2070 	if (!(cap & PCI_EXP_DEVCAP2_ARI))
2071 		return;
2072 
2073 	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
2074 		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
2075 					 PCI_EXP_DEVCTL2_ARI);
2076 		bridge->ari_enabled = 1;
2077 	} else {
2078 		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
2079 					   PCI_EXP_DEVCTL2_ARI);
2080 		bridge->ari_enabled = 0;
2081 	}
2082 }
2083 
2084 /**
2085  * pci_enable_ido - enable ID-based Ordering on a device
2086  * @dev: the PCI device
2087  * @type: which types of IDO to enable
2088  *
2089  * Enable ID-based ordering on @dev.  @type can contain the bits
2090  * %PCI_EXP_IDO_REQUEST and/or %PCI_EXP_IDO_COMPLETION to indicate
2091  * which types of transactions are allowed to be re-ordered.
2092  */
2093 void pci_enable_ido(struct pci_dev *dev, unsigned long type)
2094 {
2095 	u16 ctrl = 0;
2096 
2097 	if (type & PCI_EXP_IDO_REQUEST)
2098 		ctrl |= PCI_EXP_IDO_REQ_EN;
2099 	if (type & PCI_EXP_IDO_COMPLETION)
2100 		ctrl |= PCI_EXP_IDO_CMP_EN;
2101 	if (ctrl)
2102 		pcie_capability_set_word(dev, PCI_EXP_DEVCTL2, ctrl);
2103 }
2104 EXPORT_SYMBOL(pci_enable_ido);
2105 
2106 /**
2107  * pci_disable_ido - disable ID-based ordering on a device
2108  * @dev: the PCI device
2109  * @type: which types of IDO to disable
2110  */
2111 void pci_disable_ido(struct pci_dev *dev, unsigned long type)
2112 {
2113 	u16 ctrl = 0;
2114 
2115 	if (type & PCI_EXP_IDO_REQUEST)
2116 		ctrl |= PCI_EXP_IDO_REQ_EN;
2117 	if (type & PCI_EXP_IDO_COMPLETION)
2118 		ctrl |= PCI_EXP_IDO_CMP_EN;
2119 	if (ctrl)
2120 		pcie_capability_clear_word(dev, PCI_EXP_DEVCTL2, ctrl);
2121 }
2122 EXPORT_SYMBOL(pci_disable_ido);
2123 
2124 /**
2125  * pci_enable_obff - enable optimized buffer flush/fill
2126  * @dev: PCI device
2127  * @type: type of signaling to use
2128  *
2129  * Try to enable @type OBFF signaling on @dev.  It will try using WAKE#
2130  * signaling if possible, falling back to message signaling only if
2131  * WAKE# isn't supported.  @type should indicate whether the PCIe link
2132  * be brought out of L0s or L1 to send the message.  It should be either
2133  * %PCI_EXP_OBFF_SIGNAL_ALWAYS or %PCI_OBFF_SIGNAL_L0.
2134  *
2135  * If your device can benefit from receiving all messages, even at the
2136  * power cost of bringing the link back up from a low power state, use
2137  * %PCI_EXP_OBFF_SIGNAL_ALWAYS.  Otherwise, use %PCI_OBFF_SIGNAL_L0 (the
2138  * preferred type).
2139  *
2140  * RETURNS:
2141  * Zero on success, appropriate error number on failure.
2142  */
2143 int pci_enable_obff(struct pci_dev *dev, enum pci_obff_signal_type type)
2144 {
2145 	u32 cap;
2146 	u16 ctrl;
2147 	int ret;
2148 
2149 	pcie_capability_read_dword(dev, PCI_EXP_DEVCAP2, &cap);
2150 	if (!(cap & PCI_EXP_OBFF_MASK))
2151 		return -ENOTSUPP; /* no OBFF support at all */
2152 
2153 	/* Make sure the topology supports OBFF as well */
2154 	if (dev->bus->self) {
2155 		ret = pci_enable_obff(dev->bus->self, type);
2156 		if (ret)
2157 			return ret;
2158 	}
2159 
2160 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &ctrl);
2161 	if (cap & PCI_EXP_OBFF_WAKE)
2162 		ctrl |= PCI_EXP_OBFF_WAKE_EN;
2163 	else {
2164 		switch (type) {
2165 		case PCI_EXP_OBFF_SIGNAL_L0:
2166 			if (!(ctrl & PCI_EXP_OBFF_WAKE_EN))
2167 				ctrl |= PCI_EXP_OBFF_MSGA_EN;
2168 			break;
2169 		case PCI_EXP_OBFF_SIGNAL_ALWAYS:
2170 			ctrl &= ~PCI_EXP_OBFF_WAKE_EN;
2171 			ctrl |= PCI_EXP_OBFF_MSGB_EN;
2172 			break;
2173 		default:
2174 			WARN(1, "bad OBFF signal type\n");
2175 			return -ENOTSUPP;
2176 		}
2177 	}
2178 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, ctrl);
2179 
2180 	return 0;
2181 }
2182 EXPORT_SYMBOL(pci_enable_obff);
2183 
2184 /**
2185  * pci_disable_obff - disable optimized buffer flush/fill
2186  * @dev: PCI device
2187  *
2188  * Disable OBFF on @dev.
2189  */
2190 void pci_disable_obff(struct pci_dev *dev)
2191 {
2192 	pcie_capability_clear_word(dev, PCI_EXP_DEVCTL2, PCI_EXP_OBFF_WAKE_EN);
2193 }
2194 EXPORT_SYMBOL(pci_disable_obff);
2195 
2196 /**
2197  * pci_ltr_supported - check whether a device supports LTR
2198  * @dev: PCI device
2199  *
2200  * RETURNS:
2201  * True if @dev supports latency tolerance reporting, false otherwise.
2202  */
2203 static bool pci_ltr_supported(struct pci_dev *dev)
2204 {
2205 	u32 cap;
2206 
2207 	pcie_capability_read_dword(dev, PCI_EXP_DEVCAP2, &cap);
2208 
2209 	return cap & PCI_EXP_DEVCAP2_LTR;
2210 }
2211 
2212 /**
2213  * pci_enable_ltr - enable latency tolerance reporting
2214  * @dev: PCI device
2215  *
2216  * Enable LTR on @dev if possible, which means enabling it first on
2217  * upstream ports.
2218  *
2219  * RETURNS:
2220  * Zero on success, errno on failure.
2221  */
2222 int pci_enable_ltr(struct pci_dev *dev)
2223 {
2224 	int ret;
2225 
2226 	/* Only primary function can enable/disable LTR */
2227 	if (PCI_FUNC(dev->devfn) != 0)
2228 		return -EINVAL;
2229 
2230 	if (!pci_ltr_supported(dev))
2231 		return -ENOTSUPP;
2232 
2233 	/* Enable upstream ports first */
2234 	if (dev->bus->self) {
2235 		ret = pci_enable_ltr(dev->bus->self);
2236 		if (ret)
2237 			return ret;
2238 	}
2239 
2240 	return pcie_capability_set_word(dev, PCI_EXP_DEVCTL2, PCI_EXP_LTR_EN);
2241 }
2242 EXPORT_SYMBOL(pci_enable_ltr);
2243 
2244 /**
2245  * pci_disable_ltr - disable latency tolerance reporting
2246  * @dev: PCI device
2247  */
2248 void pci_disable_ltr(struct pci_dev *dev)
2249 {
2250 	/* Only primary function can enable/disable LTR */
2251 	if (PCI_FUNC(dev->devfn) != 0)
2252 		return;
2253 
2254 	if (!pci_ltr_supported(dev))
2255 		return;
2256 
2257 	pcie_capability_clear_word(dev, PCI_EXP_DEVCTL2, PCI_EXP_LTR_EN);
2258 }
2259 EXPORT_SYMBOL(pci_disable_ltr);
2260 
2261 static int __pci_ltr_scale(int *val)
2262 {
2263 	int scale = 0;
2264 
2265 	while (*val > 1023) {
2266 		*val = (*val + 31) / 32;
2267 		scale++;
2268 	}
2269 	return scale;
2270 }
2271 
2272 /**
2273  * pci_set_ltr - set LTR latency values
2274  * @dev: PCI device
2275  * @snoop_lat_ns: snoop latency in nanoseconds
2276  * @nosnoop_lat_ns: nosnoop latency in nanoseconds
2277  *
2278  * Figure out the scale and set the LTR values accordingly.
2279  */
2280 int pci_set_ltr(struct pci_dev *dev, int snoop_lat_ns, int nosnoop_lat_ns)
2281 {
2282 	int pos, ret, snoop_scale, nosnoop_scale;
2283 	u16 val;
2284 
2285 	if (!pci_ltr_supported(dev))
2286 		return -ENOTSUPP;
2287 
2288 	snoop_scale = __pci_ltr_scale(&snoop_lat_ns);
2289 	nosnoop_scale = __pci_ltr_scale(&nosnoop_lat_ns);
2290 
2291 	if (snoop_lat_ns > PCI_LTR_VALUE_MASK ||
2292 	    nosnoop_lat_ns > PCI_LTR_VALUE_MASK)
2293 		return -EINVAL;
2294 
2295 	if ((snoop_scale > (PCI_LTR_SCALE_MASK >> PCI_LTR_SCALE_SHIFT)) ||
2296 	    (nosnoop_scale > (PCI_LTR_SCALE_MASK >> PCI_LTR_SCALE_SHIFT)))
2297 		return -EINVAL;
2298 
2299 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
2300 	if (!pos)
2301 		return -ENOTSUPP;
2302 
2303 	val = (snoop_scale << PCI_LTR_SCALE_SHIFT) | snoop_lat_ns;
2304 	ret = pci_write_config_word(dev, pos + PCI_LTR_MAX_SNOOP_LAT, val);
2305 	if (ret != 4)
2306 		return -EIO;
2307 
2308 	val = (nosnoop_scale << PCI_LTR_SCALE_SHIFT) | nosnoop_lat_ns;
2309 	ret = pci_write_config_word(dev, pos + PCI_LTR_MAX_NOSNOOP_LAT, val);
2310 	if (ret != 4)
2311 		return -EIO;
2312 
2313 	return 0;
2314 }
2315 EXPORT_SYMBOL(pci_set_ltr);
2316 
2317 static int pci_acs_enable;
2318 
2319 /**
2320  * pci_request_acs - ask for ACS to be enabled if supported
2321  */
2322 void pci_request_acs(void)
2323 {
2324 	pci_acs_enable = 1;
2325 }
2326 
2327 /**
2328  * pci_enable_acs - enable ACS if hardware support it
2329  * @dev: the PCI device
2330  */
2331 void pci_enable_acs(struct pci_dev *dev)
2332 {
2333 	int pos;
2334 	u16 cap;
2335 	u16 ctrl;
2336 
2337 	if (!pci_acs_enable)
2338 		return;
2339 
2340 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2341 	if (!pos)
2342 		return;
2343 
2344 	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2345 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2346 
2347 	/* Source Validation */
2348 	ctrl |= (cap & PCI_ACS_SV);
2349 
2350 	/* P2P Request Redirect */
2351 	ctrl |= (cap & PCI_ACS_RR);
2352 
2353 	/* P2P Completion Redirect */
2354 	ctrl |= (cap & PCI_ACS_CR);
2355 
2356 	/* Upstream Forwarding */
2357 	ctrl |= (cap & PCI_ACS_UF);
2358 
2359 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2360 }
2361 
2362 /**
2363  * pci_acs_enabled - test ACS against required flags for a given device
2364  * @pdev: device to test
2365  * @acs_flags: required PCI ACS flags
2366  *
2367  * Return true if the device supports the provided flags.  Automatically
2368  * filters out flags that are not implemented on multifunction devices.
2369  */
2370 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2371 {
2372 	int pos, ret;
2373 	u16 ctrl;
2374 
2375 	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2376 	if (ret >= 0)
2377 		return ret > 0;
2378 
2379 	if (!pci_is_pcie(pdev))
2380 		return false;
2381 
2382 	/* Filter out flags not applicable to multifunction */
2383 	if (pdev->multifunction)
2384 		acs_flags &= (PCI_ACS_RR | PCI_ACS_CR |
2385 			      PCI_ACS_EC | PCI_ACS_DT);
2386 
2387 	if (pci_pcie_type(pdev) == PCI_EXP_TYPE_DOWNSTREAM ||
2388 	    pci_pcie_type(pdev) == PCI_EXP_TYPE_ROOT_PORT ||
2389 	    pdev->multifunction) {
2390 		pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2391 		if (!pos)
2392 			return false;
2393 
2394 		pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2395 		if ((ctrl & acs_flags) != acs_flags)
2396 			return false;
2397 	}
2398 
2399 	return true;
2400 }
2401 
2402 /**
2403  * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2404  * @start: starting downstream device
2405  * @end: ending upstream device or NULL to search to the root bus
2406  * @acs_flags: required flags
2407  *
2408  * Walk up a device tree from start to end testing PCI ACS support.  If
2409  * any step along the way does not support the required flags, return false.
2410  */
2411 bool pci_acs_path_enabled(struct pci_dev *start,
2412 			  struct pci_dev *end, u16 acs_flags)
2413 {
2414 	struct pci_dev *pdev, *parent = start;
2415 
2416 	do {
2417 		pdev = parent;
2418 
2419 		if (!pci_acs_enabled(pdev, acs_flags))
2420 			return false;
2421 
2422 		if (pci_is_root_bus(pdev->bus))
2423 			return (end == NULL);
2424 
2425 		parent = pdev->bus->self;
2426 	} while (pdev != end);
2427 
2428 	return true;
2429 }
2430 
2431 /**
2432  * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2433  * @dev: the PCI device
2434  * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
2435  *
2436  * Perform INTx swizzling for a device behind one level of bridge.  This is
2437  * required by section 9.1 of the PCI-to-PCI bridge specification for devices
2438  * behind bridges on add-in cards.  For devices with ARI enabled, the slot
2439  * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2440  * the PCI Express Base Specification, Revision 2.1)
2441  */
2442 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
2443 {
2444 	int slot;
2445 
2446 	if (pci_ari_enabled(dev->bus))
2447 		slot = 0;
2448 	else
2449 		slot = PCI_SLOT(dev->devfn);
2450 
2451 	return (((pin - 1) + slot) % 4) + 1;
2452 }
2453 
2454 int
2455 pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
2456 {
2457 	u8 pin;
2458 
2459 	pin = dev->pin;
2460 	if (!pin)
2461 		return -1;
2462 
2463 	while (!pci_is_root_bus(dev->bus)) {
2464 		pin = pci_swizzle_interrupt_pin(dev, pin);
2465 		dev = dev->bus->self;
2466 	}
2467 	*bridge = dev;
2468 	return pin;
2469 }
2470 
2471 /**
2472  * pci_common_swizzle - swizzle INTx all the way to root bridge
2473  * @dev: the PCI device
2474  * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2475  *
2476  * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
2477  * bridges all the way up to a PCI root bus.
2478  */
2479 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
2480 {
2481 	u8 pin = *pinp;
2482 
2483 	while (!pci_is_root_bus(dev->bus)) {
2484 		pin = pci_swizzle_interrupt_pin(dev, pin);
2485 		dev = dev->bus->self;
2486 	}
2487 	*pinp = pin;
2488 	return PCI_SLOT(dev->devfn);
2489 }
2490 
2491 /**
2492  *	pci_release_region - Release a PCI bar
2493  *	@pdev: PCI device whose resources were previously reserved by pci_request_region
2494  *	@bar: BAR to release
2495  *
2496  *	Releases the PCI I/O and memory resources previously reserved by a
2497  *	successful call to pci_request_region.  Call this function only
2498  *	after all use of the PCI regions has ceased.
2499  */
2500 void pci_release_region(struct pci_dev *pdev, int bar)
2501 {
2502 	struct pci_devres *dr;
2503 
2504 	if (pci_resource_len(pdev, bar) == 0)
2505 		return;
2506 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
2507 		release_region(pci_resource_start(pdev, bar),
2508 				pci_resource_len(pdev, bar));
2509 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
2510 		release_mem_region(pci_resource_start(pdev, bar),
2511 				pci_resource_len(pdev, bar));
2512 
2513 	dr = find_pci_dr(pdev);
2514 	if (dr)
2515 		dr->region_mask &= ~(1 << bar);
2516 }
2517 
2518 /**
2519  *	__pci_request_region - Reserved PCI I/O and memory resource
2520  *	@pdev: PCI device whose resources are to be reserved
2521  *	@bar: BAR to be reserved
2522  *	@res_name: Name to be associated with resource.
2523  *	@exclusive: whether the region access is exclusive or not
2524  *
2525  *	Mark the PCI region associated with PCI device @pdev BR @bar as
2526  *	being reserved by owner @res_name.  Do not access any
2527  *	address inside the PCI regions unless this call returns
2528  *	successfully.
2529  *
2530  *	If @exclusive is set, then the region is marked so that userspace
2531  *	is explicitly not allowed to map the resource via /dev/mem or
2532  * 	sysfs MMIO access.
2533  *
2534  *	Returns 0 on success, or %EBUSY on error.  A warning
2535  *	message is also printed on failure.
2536  */
2537 static int __pci_request_region(struct pci_dev *pdev, int bar, const char *res_name,
2538 									int exclusive)
2539 {
2540 	struct pci_devres *dr;
2541 
2542 	if (pci_resource_len(pdev, bar) == 0)
2543 		return 0;
2544 
2545 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
2546 		if (!request_region(pci_resource_start(pdev, bar),
2547 			    pci_resource_len(pdev, bar), res_name))
2548 			goto err_out;
2549 	}
2550 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
2551 		if (!__request_mem_region(pci_resource_start(pdev, bar),
2552 					pci_resource_len(pdev, bar), res_name,
2553 					exclusive))
2554 			goto err_out;
2555 	}
2556 
2557 	dr = find_pci_dr(pdev);
2558 	if (dr)
2559 		dr->region_mask |= 1 << bar;
2560 
2561 	return 0;
2562 
2563 err_out:
2564 	dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
2565 		 &pdev->resource[bar]);
2566 	return -EBUSY;
2567 }
2568 
2569 /**
2570  *	pci_request_region - Reserve PCI I/O and memory resource
2571  *	@pdev: PCI device whose resources are to be reserved
2572  *	@bar: BAR to be reserved
2573  *	@res_name: Name to be associated with resource
2574  *
2575  *	Mark the PCI region associated with PCI device @pdev BAR @bar as
2576  *	being reserved by owner @res_name.  Do not access any
2577  *	address inside the PCI regions unless this call returns
2578  *	successfully.
2579  *
2580  *	Returns 0 on success, or %EBUSY on error.  A warning
2581  *	message is also printed on failure.
2582  */
2583 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
2584 {
2585 	return __pci_request_region(pdev, bar, res_name, 0);
2586 }
2587 
2588 /**
2589  *	pci_request_region_exclusive - Reserved PCI I/O and memory resource
2590  *	@pdev: PCI device whose resources are to be reserved
2591  *	@bar: BAR to be reserved
2592  *	@res_name: Name to be associated with resource.
2593  *
2594  *	Mark the PCI region associated with PCI device @pdev BR @bar as
2595  *	being reserved by owner @res_name.  Do not access any
2596  *	address inside the PCI regions unless this call returns
2597  *	successfully.
2598  *
2599  *	Returns 0 on success, or %EBUSY on error.  A warning
2600  *	message is also printed on failure.
2601  *
2602  *	The key difference that _exclusive makes it that userspace is
2603  *	explicitly not allowed to map the resource via /dev/mem or
2604  * 	sysfs.
2605  */
2606 int pci_request_region_exclusive(struct pci_dev *pdev, int bar, const char *res_name)
2607 {
2608 	return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
2609 }
2610 /**
2611  * pci_release_selected_regions - Release selected PCI I/O and memory resources
2612  * @pdev: PCI device whose resources were previously reserved
2613  * @bars: Bitmask of BARs to be released
2614  *
2615  * Release selected PCI I/O and memory resources previously reserved.
2616  * Call this function only after all use of the PCI regions has ceased.
2617  */
2618 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
2619 {
2620 	int i;
2621 
2622 	for (i = 0; i < 6; i++)
2623 		if (bars & (1 << i))
2624 			pci_release_region(pdev, i);
2625 }
2626 
2627 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
2628 				 const char *res_name, int excl)
2629 {
2630 	int i;
2631 
2632 	for (i = 0; i < 6; i++)
2633 		if (bars & (1 << i))
2634 			if (__pci_request_region(pdev, i, res_name, excl))
2635 				goto err_out;
2636 	return 0;
2637 
2638 err_out:
2639 	while(--i >= 0)
2640 		if (bars & (1 << i))
2641 			pci_release_region(pdev, i);
2642 
2643 	return -EBUSY;
2644 }
2645 
2646 
2647 /**
2648  * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
2649  * @pdev: PCI device whose resources are to be reserved
2650  * @bars: Bitmask of BARs to be requested
2651  * @res_name: Name to be associated with resource
2652  */
2653 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
2654 				 const char *res_name)
2655 {
2656 	return __pci_request_selected_regions(pdev, bars, res_name, 0);
2657 }
2658 
2659 int pci_request_selected_regions_exclusive(struct pci_dev *pdev,
2660 				 int bars, const char *res_name)
2661 {
2662 	return __pci_request_selected_regions(pdev, bars, res_name,
2663 			IORESOURCE_EXCLUSIVE);
2664 }
2665 
2666 /**
2667  *	pci_release_regions - Release reserved PCI I/O and memory resources
2668  *	@pdev: PCI device whose resources were previously reserved by pci_request_regions
2669  *
2670  *	Releases all PCI I/O and memory resources previously reserved by a
2671  *	successful call to pci_request_regions.  Call this function only
2672  *	after all use of the PCI regions has ceased.
2673  */
2674 
2675 void pci_release_regions(struct pci_dev *pdev)
2676 {
2677 	pci_release_selected_regions(pdev, (1 << 6) - 1);
2678 }
2679 
2680 /**
2681  *	pci_request_regions - Reserved PCI I/O and memory resources
2682  *	@pdev: PCI device whose resources are to be reserved
2683  *	@res_name: Name to be associated with resource.
2684  *
2685  *	Mark all PCI regions associated with PCI device @pdev as
2686  *	being reserved by owner @res_name.  Do not access any
2687  *	address inside the PCI regions unless this call returns
2688  *	successfully.
2689  *
2690  *	Returns 0 on success, or %EBUSY on error.  A warning
2691  *	message is also printed on failure.
2692  */
2693 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
2694 {
2695 	return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
2696 }
2697 
2698 /**
2699  *	pci_request_regions_exclusive - Reserved PCI I/O and memory resources
2700  *	@pdev: PCI device whose resources are to be reserved
2701  *	@res_name: Name to be associated with resource.
2702  *
2703  *	Mark all PCI regions associated with PCI device @pdev as
2704  *	being reserved by owner @res_name.  Do not access any
2705  *	address inside the PCI regions unless this call returns
2706  *	successfully.
2707  *
2708  *	pci_request_regions_exclusive() will mark the region so that
2709  * 	/dev/mem and the sysfs MMIO access will not be allowed.
2710  *
2711  *	Returns 0 on success, or %EBUSY on error.  A warning
2712  *	message is also printed on failure.
2713  */
2714 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
2715 {
2716 	return pci_request_selected_regions_exclusive(pdev,
2717 					((1 << 6) - 1), res_name);
2718 }
2719 
2720 static void __pci_set_master(struct pci_dev *dev, bool enable)
2721 {
2722 	u16 old_cmd, cmd;
2723 
2724 	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
2725 	if (enable)
2726 		cmd = old_cmd | PCI_COMMAND_MASTER;
2727 	else
2728 		cmd = old_cmd & ~PCI_COMMAND_MASTER;
2729 	if (cmd != old_cmd) {
2730 		dev_dbg(&dev->dev, "%s bus mastering\n",
2731 			enable ? "enabling" : "disabling");
2732 		pci_write_config_word(dev, PCI_COMMAND, cmd);
2733 	}
2734 	dev->is_busmaster = enable;
2735 }
2736 
2737 /**
2738  * pcibios_setup - process "pci=" kernel boot arguments
2739  * @str: string used to pass in "pci=" kernel boot arguments
2740  *
2741  * Process kernel boot arguments.  This is the default implementation.
2742  * Architecture specific implementations can override this as necessary.
2743  */
2744 char * __weak __init pcibios_setup(char *str)
2745 {
2746 	return str;
2747 }
2748 
2749 /**
2750  * pcibios_set_master - enable PCI bus-mastering for device dev
2751  * @dev: the PCI device to enable
2752  *
2753  * Enables PCI bus-mastering for the device.  This is the default
2754  * implementation.  Architecture specific implementations can override
2755  * this if necessary.
2756  */
2757 void __weak pcibios_set_master(struct pci_dev *dev)
2758 {
2759 	u8 lat;
2760 
2761 	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
2762 	if (pci_is_pcie(dev))
2763 		return;
2764 
2765 	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
2766 	if (lat < 16)
2767 		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
2768 	else if (lat > pcibios_max_latency)
2769 		lat = pcibios_max_latency;
2770 	else
2771 		return;
2772 	dev_printk(KERN_DEBUG, &dev->dev, "setting latency timer to %d\n", lat);
2773 	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
2774 }
2775 
2776 /**
2777  * pci_set_master - enables bus-mastering for device dev
2778  * @dev: the PCI device to enable
2779  *
2780  * Enables bus-mastering on the device and calls pcibios_set_master()
2781  * to do the needed arch specific settings.
2782  */
2783 void pci_set_master(struct pci_dev *dev)
2784 {
2785 	__pci_set_master(dev, true);
2786 	pcibios_set_master(dev);
2787 }
2788 
2789 /**
2790  * pci_clear_master - disables bus-mastering for device dev
2791  * @dev: the PCI device to disable
2792  */
2793 void pci_clear_master(struct pci_dev *dev)
2794 {
2795 	__pci_set_master(dev, false);
2796 }
2797 
2798 /**
2799  * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
2800  * @dev: the PCI device for which MWI is to be enabled
2801  *
2802  * Helper function for pci_set_mwi.
2803  * Originally copied from drivers/net/acenic.c.
2804  * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
2805  *
2806  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2807  */
2808 int pci_set_cacheline_size(struct pci_dev *dev)
2809 {
2810 	u8 cacheline_size;
2811 
2812 	if (!pci_cache_line_size)
2813 		return -EINVAL;
2814 
2815 	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
2816 	   equal to or multiple of the right value. */
2817 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2818 	if (cacheline_size >= pci_cache_line_size &&
2819 	    (cacheline_size % pci_cache_line_size) == 0)
2820 		return 0;
2821 
2822 	/* Write the correct value. */
2823 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
2824 	/* Read it back. */
2825 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2826 	if (cacheline_size == pci_cache_line_size)
2827 		return 0;
2828 
2829 	dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not "
2830 		   "supported\n", pci_cache_line_size << 2);
2831 
2832 	return -EINVAL;
2833 }
2834 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
2835 
2836 #ifdef PCI_DISABLE_MWI
2837 int pci_set_mwi(struct pci_dev *dev)
2838 {
2839 	return 0;
2840 }
2841 
2842 int pci_try_set_mwi(struct pci_dev *dev)
2843 {
2844 	return 0;
2845 }
2846 
2847 void pci_clear_mwi(struct pci_dev *dev)
2848 {
2849 }
2850 
2851 #else
2852 
2853 /**
2854  * pci_set_mwi - enables memory-write-invalidate PCI transaction
2855  * @dev: the PCI device for which MWI is enabled
2856  *
2857  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2858  *
2859  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2860  */
2861 int
2862 pci_set_mwi(struct pci_dev *dev)
2863 {
2864 	int rc;
2865 	u16 cmd;
2866 
2867 	rc = pci_set_cacheline_size(dev);
2868 	if (rc)
2869 		return rc;
2870 
2871 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
2872 	if (! (cmd & PCI_COMMAND_INVALIDATE)) {
2873 		dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
2874 		cmd |= PCI_COMMAND_INVALIDATE;
2875 		pci_write_config_word(dev, PCI_COMMAND, cmd);
2876 	}
2877 
2878 	return 0;
2879 }
2880 
2881 /**
2882  * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
2883  * @dev: the PCI device for which MWI is enabled
2884  *
2885  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2886  * Callers are not required to check the return value.
2887  *
2888  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2889  */
2890 int pci_try_set_mwi(struct pci_dev *dev)
2891 {
2892 	int rc = pci_set_mwi(dev);
2893 	return rc;
2894 }
2895 
2896 /**
2897  * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
2898  * @dev: the PCI device to disable
2899  *
2900  * Disables PCI Memory-Write-Invalidate transaction on the device
2901  */
2902 void
2903 pci_clear_mwi(struct pci_dev *dev)
2904 {
2905 	u16 cmd;
2906 
2907 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
2908 	if (cmd & PCI_COMMAND_INVALIDATE) {
2909 		cmd &= ~PCI_COMMAND_INVALIDATE;
2910 		pci_write_config_word(dev, PCI_COMMAND, cmd);
2911 	}
2912 }
2913 #endif /* ! PCI_DISABLE_MWI */
2914 
2915 /**
2916  * pci_intx - enables/disables PCI INTx for device dev
2917  * @pdev: the PCI device to operate on
2918  * @enable: boolean: whether to enable or disable PCI INTx
2919  *
2920  * Enables/disables PCI INTx for device dev
2921  */
2922 void
2923 pci_intx(struct pci_dev *pdev, int enable)
2924 {
2925 	u16 pci_command, new;
2926 
2927 	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
2928 
2929 	if (enable) {
2930 		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
2931 	} else {
2932 		new = pci_command | PCI_COMMAND_INTX_DISABLE;
2933 	}
2934 
2935 	if (new != pci_command) {
2936 		struct pci_devres *dr;
2937 
2938 		pci_write_config_word(pdev, PCI_COMMAND, new);
2939 
2940 		dr = find_pci_dr(pdev);
2941 		if (dr && !dr->restore_intx) {
2942 			dr->restore_intx = 1;
2943 			dr->orig_intx = !enable;
2944 		}
2945 	}
2946 }
2947 
2948 /**
2949  * pci_intx_mask_supported - probe for INTx masking support
2950  * @dev: the PCI device to operate on
2951  *
2952  * Check if the device dev support INTx masking via the config space
2953  * command word.
2954  */
2955 bool pci_intx_mask_supported(struct pci_dev *dev)
2956 {
2957 	bool mask_supported = false;
2958 	u16 orig, new;
2959 
2960 	if (dev->broken_intx_masking)
2961 		return false;
2962 
2963 	pci_cfg_access_lock(dev);
2964 
2965 	pci_read_config_word(dev, PCI_COMMAND, &orig);
2966 	pci_write_config_word(dev, PCI_COMMAND,
2967 			      orig ^ PCI_COMMAND_INTX_DISABLE);
2968 	pci_read_config_word(dev, PCI_COMMAND, &new);
2969 
2970 	/*
2971 	 * There's no way to protect against hardware bugs or detect them
2972 	 * reliably, but as long as we know what the value should be, let's
2973 	 * go ahead and check it.
2974 	 */
2975 	if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) {
2976 		dev_err(&dev->dev, "Command register changed from "
2977 			"0x%x to 0x%x: driver or hardware bug?\n", orig, new);
2978 	} else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) {
2979 		mask_supported = true;
2980 		pci_write_config_word(dev, PCI_COMMAND, orig);
2981 	}
2982 
2983 	pci_cfg_access_unlock(dev);
2984 	return mask_supported;
2985 }
2986 EXPORT_SYMBOL_GPL(pci_intx_mask_supported);
2987 
2988 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
2989 {
2990 	struct pci_bus *bus = dev->bus;
2991 	bool mask_updated = true;
2992 	u32 cmd_status_dword;
2993 	u16 origcmd, newcmd;
2994 	unsigned long flags;
2995 	bool irq_pending;
2996 
2997 	/*
2998 	 * We do a single dword read to retrieve both command and status.
2999 	 * Document assumptions that make this possible.
3000 	 */
3001 	BUILD_BUG_ON(PCI_COMMAND % 4);
3002 	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
3003 
3004 	raw_spin_lock_irqsave(&pci_lock, flags);
3005 
3006 	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
3007 
3008 	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
3009 
3010 	/*
3011 	 * Check interrupt status register to see whether our device
3012 	 * triggered the interrupt (when masking) or the next IRQ is
3013 	 * already pending (when unmasking).
3014 	 */
3015 	if (mask != irq_pending) {
3016 		mask_updated = false;
3017 		goto done;
3018 	}
3019 
3020 	origcmd = cmd_status_dword;
3021 	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
3022 	if (mask)
3023 		newcmd |= PCI_COMMAND_INTX_DISABLE;
3024 	if (newcmd != origcmd)
3025 		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
3026 
3027 done:
3028 	raw_spin_unlock_irqrestore(&pci_lock, flags);
3029 
3030 	return mask_updated;
3031 }
3032 
3033 /**
3034  * pci_check_and_mask_intx - mask INTx on pending interrupt
3035  * @dev: the PCI device to operate on
3036  *
3037  * Check if the device dev has its INTx line asserted, mask it and
3038  * return true in that case. False is returned if not interrupt was
3039  * pending.
3040  */
3041 bool pci_check_and_mask_intx(struct pci_dev *dev)
3042 {
3043 	return pci_check_and_set_intx_mask(dev, true);
3044 }
3045 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
3046 
3047 /**
3048  * pci_check_and_mask_intx - unmask INTx of no interrupt is pending
3049  * @dev: the PCI device to operate on
3050  *
3051  * Check if the device dev has its INTx line asserted, unmask it if not
3052  * and return true. False is returned and the mask remains active if
3053  * there was still an interrupt pending.
3054  */
3055 bool pci_check_and_unmask_intx(struct pci_dev *dev)
3056 {
3057 	return pci_check_and_set_intx_mask(dev, false);
3058 }
3059 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
3060 
3061 /**
3062  * pci_msi_off - disables any msi or msix capabilities
3063  * @dev: the PCI device to operate on
3064  *
3065  * If you want to use msi see pci_enable_msi and friends.
3066  * This is a lower level primitive that allows us to disable
3067  * msi operation at the device level.
3068  */
3069 void pci_msi_off(struct pci_dev *dev)
3070 {
3071 	int pos;
3072 	u16 control;
3073 
3074 	pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
3075 	if (pos) {
3076 		pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
3077 		control &= ~PCI_MSI_FLAGS_ENABLE;
3078 		pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
3079 	}
3080 	pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
3081 	if (pos) {
3082 		pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
3083 		control &= ~PCI_MSIX_FLAGS_ENABLE;
3084 		pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
3085 	}
3086 }
3087 EXPORT_SYMBOL_GPL(pci_msi_off);
3088 
3089 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
3090 {
3091 	return dma_set_max_seg_size(&dev->dev, size);
3092 }
3093 EXPORT_SYMBOL(pci_set_dma_max_seg_size);
3094 
3095 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
3096 {
3097 	return dma_set_seg_boundary(&dev->dev, mask);
3098 }
3099 EXPORT_SYMBOL(pci_set_dma_seg_boundary);
3100 
3101 static int pcie_flr(struct pci_dev *dev, int probe)
3102 {
3103 	int i;
3104 	u32 cap;
3105 	u16 status;
3106 
3107 	pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
3108 	if (!(cap & PCI_EXP_DEVCAP_FLR))
3109 		return -ENOTTY;
3110 
3111 	if (probe)
3112 		return 0;
3113 
3114 	/* Wait for Transaction Pending bit clean */
3115 	for (i = 0; i < 4; i++) {
3116 		if (i)
3117 			msleep((1 << (i - 1)) * 100);
3118 
3119 		pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
3120 		if (!(status & PCI_EXP_DEVSTA_TRPND))
3121 			goto clear;
3122 	}
3123 
3124 	dev_err(&dev->dev, "transaction is not cleared; "
3125 			"proceeding with reset anyway\n");
3126 
3127 clear:
3128 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
3129 
3130 	msleep(100);
3131 
3132 	return 0;
3133 }
3134 
3135 static int pci_af_flr(struct pci_dev *dev, int probe)
3136 {
3137 	int i;
3138 	int pos;
3139 	u8 cap;
3140 	u8 status;
3141 
3142 	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
3143 	if (!pos)
3144 		return -ENOTTY;
3145 
3146 	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
3147 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
3148 		return -ENOTTY;
3149 
3150 	if (probe)
3151 		return 0;
3152 
3153 	/* Wait for Transaction Pending bit clean */
3154 	for (i = 0; i < 4; i++) {
3155 		if (i)
3156 			msleep((1 << (i - 1)) * 100);
3157 
3158 		pci_read_config_byte(dev, pos + PCI_AF_STATUS, &status);
3159 		if (!(status & PCI_AF_STATUS_TP))
3160 			goto clear;
3161 	}
3162 
3163 	dev_err(&dev->dev, "transaction is not cleared; "
3164 			"proceeding with reset anyway\n");
3165 
3166 clear:
3167 	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
3168 	msleep(100);
3169 
3170 	return 0;
3171 }
3172 
3173 /**
3174  * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
3175  * @dev: Device to reset.
3176  * @probe: If set, only check if the device can be reset this way.
3177  *
3178  * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
3179  * unset, it will be reinitialized internally when going from PCI_D3hot to
3180  * PCI_D0.  If that's the case and the device is not in a low-power state
3181  * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
3182  *
3183  * NOTE: This causes the caller to sleep for twice the device power transition
3184  * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
3185  * by devault (i.e. unless the @dev's d3_delay field has a different value).
3186  * Moreover, only devices in D0 can be reset by this function.
3187  */
3188 static int pci_pm_reset(struct pci_dev *dev, int probe)
3189 {
3190 	u16 csr;
3191 
3192 	if (!dev->pm_cap)
3193 		return -ENOTTY;
3194 
3195 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
3196 	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
3197 		return -ENOTTY;
3198 
3199 	if (probe)
3200 		return 0;
3201 
3202 	if (dev->current_state != PCI_D0)
3203 		return -EINVAL;
3204 
3205 	csr &= ~PCI_PM_CTRL_STATE_MASK;
3206 	csr |= PCI_D3hot;
3207 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3208 	pci_dev_d3_sleep(dev);
3209 
3210 	csr &= ~PCI_PM_CTRL_STATE_MASK;
3211 	csr |= PCI_D0;
3212 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3213 	pci_dev_d3_sleep(dev);
3214 
3215 	return 0;
3216 }
3217 
3218 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
3219 {
3220 	u16 ctrl;
3221 	struct pci_dev *pdev;
3222 
3223 	if (pci_is_root_bus(dev->bus) || dev->subordinate || !dev->bus->self)
3224 		return -ENOTTY;
3225 
3226 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3227 		if (pdev != dev)
3228 			return -ENOTTY;
3229 
3230 	if (probe)
3231 		return 0;
3232 
3233 	pci_read_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, &ctrl);
3234 	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
3235 	pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl);
3236 	msleep(100);
3237 
3238 	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
3239 	pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl);
3240 	msleep(100);
3241 
3242 	return 0;
3243 }
3244 
3245 static int __pci_dev_reset(struct pci_dev *dev, int probe)
3246 {
3247 	int rc;
3248 
3249 	might_sleep();
3250 
3251 	rc = pci_dev_specific_reset(dev, probe);
3252 	if (rc != -ENOTTY)
3253 		goto done;
3254 
3255 	rc = pcie_flr(dev, probe);
3256 	if (rc != -ENOTTY)
3257 		goto done;
3258 
3259 	rc = pci_af_flr(dev, probe);
3260 	if (rc != -ENOTTY)
3261 		goto done;
3262 
3263 	rc = pci_pm_reset(dev, probe);
3264 	if (rc != -ENOTTY)
3265 		goto done;
3266 
3267 	rc = pci_parent_bus_reset(dev, probe);
3268 done:
3269 	return rc;
3270 }
3271 
3272 static int pci_dev_reset(struct pci_dev *dev, int probe)
3273 {
3274 	int rc;
3275 
3276 	if (!probe) {
3277 		pci_cfg_access_lock(dev);
3278 		/* block PM suspend, driver probe, etc. */
3279 		device_lock(&dev->dev);
3280 	}
3281 
3282 	rc = __pci_dev_reset(dev, probe);
3283 
3284 	if (!probe) {
3285 		device_unlock(&dev->dev);
3286 		pci_cfg_access_unlock(dev);
3287 	}
3288 	return rc;
3289 }
3290 /**
3291  * __pci_reset_function - reset a PCI device function
3292  * @dev: PCI device to reset
3293  *
3294  * Some devices allow an individual function to be reset without affecting
3295  * other functions in the same device.  The PCI device must be responsive
3296  * to PCI config space in order to use this function.
3297  *
3298  * The device function is presumed to be unused when this function is called.
3299  * Resetting the device will make the contents of PCI configuration space
3300  * random, so any caller of this must be prepared to reinitialise the
3301  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3302  * etc.
3303  *
3304  * Returns 0 if the device function was successfully reset or negative if the
3305  * device doesn't support resetting a single function.
3306  */
3307 int __pci_reset_function(struct pci_dev *dev)
3308 {
3309 	return pci_dev_reset(dev, 0);
3310 }
3311 EXPORT_SYMBOL_GPL(__pci_reset_function);
3312 
3313 /**
3314  * __pci_reset_function_locked - reset a PCI device function while holding
3315  * the @dev mutex lock.
3316  * @dev: PCI device to reset
3317  *
3318  * Some devices allow an individual function to be reset without affecting
3319  * other functions in the same device.  The PCI device must be responsive
3320  * to PCI config space in order to use this function.
3321  *
3322  * The device function is presumed to be unused and the caller is holding
3323  * the device mutex lock when this function is called.
3324  * Resetting the device will make the contents of PCI configuration space
3325  * random, so any caller of this must be prepared to reinitialise the
3326  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3327  * etc.
3328  *
3329  * Returns 0 if the device function was successfully reset or negative if the
3330  * device doesn't support resetting a single function.
3331  */
3332 int __pci_reset_function_locked(struct pci_dev *dev)
3333 {
3334 	return __pci_dev_reset(dev, 0);
3335 }
3336 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
3337 
3338 /**
3339  * pci_probe_reset_function - check whether the device can be safely reset
3340  * @dev: PCI device to reset
3341  *
3342  * Some devices allow an individual function to be reset without affecting
3343  * other functions in the same device.  The PCI device must be responsive
3344  * to PCI config space in order to use this function.
3345  *
3346  * Returns 0 if the device function can be reset or negative if the
3347  * device doesn't support resetting a single function.
3348  */
3349 int pci_probe_reset_function(struct pci_dev *dev)
3350 {
3351 	return pci_dev_reset(dev, 1);
3352 }
3353 
3354 /**
3355  * pci_reset_function - quiesce and reset a PCI device function
3356  * @dev: PCI device to reset
3357  *
3358  * Some devices allow an individual function to be reset without affecting
3359  * other functions in the same device.  The PCI device must be responsive
3360  * to PCI config space in order to use this function.
3361  *
3362  * This function does not just reset the PCI portion of a device, but
3363  * clears all the state associated with the device.  This function differs
3364  * from __pci_reset_function in that it saves and restores device state
3365  * over the reset.
3366  *
3367  * Returns 0 if the device function was successfully reset or negative if the
3368  * device doesn't support resetting a single function.
3369  */
3370 int pci_reset_function(struct pci_dev *dev)
3371 {
3372 	int rc;
3373 
3374 	rc = pci_dev_reset(dev, 1);
3375 	if (rc)
3376 		return rc;
3377 
3378 	pci_save_state(dev);
3379 
3380 	/*
3381 	 * both INTx and MSI are disabled after the Interrupt Disable bit
3382 	 * is set and the Bus Master bit is cleared.
3383 	 */
3384 	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
3385 
3386 	rc = pci_dev_reset(dev, 0);
3387 
3388 	pci_restore_state(dev);
3389 
3390 	return rc;
3391 }
3392 EXPORT_SYMBOL_GPL(pci_reset_function);
3393 
3394 /**
3395  * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
3396  * @dev: PCI device to query
3397  *
3398  * Returns mmrbc: maximum designed memory read count in bytes
3399  *    or appropriate error value.
3400  */
3401 int pcix_get_max_mmrbc(struct pci_dev *dev)
3402 {
3403 	int cap;
3404 	u32 stat;
3405 
3406 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3407 	if (!cap)
3408 		return -EINVAL;
3409 
3410 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3411 		return -EINVAL;
3412 
3413 	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
3414 }
3415 EXPORT_SYMBOL(pcix_get_max_mmrbc);
3416 
3417 /**
3418  * pcix_get_mmrbc - get PCI-X maximum memory read byte count
3419  * @dev: PCI device to query
3420  *
3421  * Returns mmrbc: maximum memory read count in bytes
3422  *    or appropriate error value.
3423  */
3424 int pcix_get_mmrbc(struct pci_dev *dev)
3425 {
3426 	int cap;
3427 	u16 cmd;
3428 
3429 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3430 	if (!cap)
3431 		return -EINVAL;
3432 
3433 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3434 		return -EINVAL;
3435 
3436 	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
3437 }
3438 EXPORT_SYMBOL(pcix_get_mmrbc);
3439 
3440 /**
3441  * pcix_set_mmrbc - set PCI-X maximum memory read byte count
3442  * @dev: PCI device to query
3443  * @mmrbc: maximum memory read count in bytes
3444  *    valid values are 512, 1024, 2048, 4096
3445  *
3446  * If possible sets maximum memory read byte count, some bridges have erratas
3447  * that prevent this.
3448  */
3449 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
3450 {
3451 	int cap;
3452 	u32 stat, v, o;
3453 	u16 cmd;
3454 
3455 	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
3456 		return -EINVAL;
3457 
3458 	v = ffs(mmrbc) - 10;
3459 
3460 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3461 	if (!cap)
3462 		return -EINVAL;
3463 
3464 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3465 		return -EINVAL;
3466 
3467 	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
3468 		return -E2BIG;
3469 
3470 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3471 		return -EINVAL;
3472 
3473 	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
3474 	if (o != v) {
3475 		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
3476 			return -EIO;
3477 
3478 		cmd &= ~PCI_X_CMD_MAX_READ;
3479 		cmd |= v << 2;
3480 		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
3481 			return -EIO;
3482 	}
3483 	return 0;
3484 }
3485 EXPORT_SYMBOL(pcix_set_mmrbc);
3486 
3487 /**
3488  * pcie_get_readrq - get PCI Express read request size
3489  * @dev: PCI device to query
3490  *
3491  * Returns maximum memory read request in bytes
3492  *    or appropriate error value.
3493  */
3494 int pcie_get_readrq(struct pci_dev *dev)
3495 {
3496 	u16 ctl;
3497 
3498 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
3499 
3500 	return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
3501 }
3502 EXPORT_SYMBOL(pcie_get_readrq);
3503 
3504 /**
3505  * pcie_set_readrq - set PCI Express maximum memory read request
3506  * @dev: PCI device to query
3507  * @rq: maximum memory read count in bytes
3508  *    valid values are 128, 256, 512, 1024, 2048, 4096
3509  *
3510  * If possible sets maximum memory read request in bytes
3511  */
3512 int pcie_set_readrq(struct pci_dev *dev, int rq)
3513 {
3514 	u16 v;
3515 
3516 	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
3517 		return -EINVAL;
3518 
3519 	/*
3520 	 * If using the "performance" PCIe config, we clamp the
3521 	 * read rq size to the max packet size to prevent the
3522 	 * host bridge generating requests larger than we can
3523 	 * cope with
3524 	 */
3525 	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
3526 		int mps = pcie_get_mps(dev);
3527 
3528 		if (mps < 0)
3529 			return mps;
3530 		if (mps < rq)
3531 			rq = mps;
3532 	}
3533 
3534 	v = (ffs(rq) - 8) << 12;
3535 
3536 	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
3537 						  PCI_EXP_DEVCTL_READRQ, v);
3538 }
3539 EXPORT_SYMBOL(pcie_set_readrq);
3540 
3541 /**
3542  * pcie_get_mps - get PCI Express maximum payload size
3543  * @dev: PCI device to query
3544  *
3545  * Returns maximum payload size in bytes
3546  *    or appropriate error value.
3547  */
3548 int pcie_get_mps(struct pci_dev *dev)
3549 {
3550 	u16 ctl;
3551 
3552 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
3553 
3554 	return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
3555 }
3556 
3557 /**
3558  * pcie_set_mps - set PCI Express maximum payload size
3559  * @dev: PCI device to query
3560  * @mps: maximum payload size in bytes
3561  *    valid values are 128, 256, 512, 1024, 2048, 4096
3562  *
3563  * If possible sets maximum payload size
3564  */
3565 int pcie_set_mps(struct pci_dev *dev, int mps)
3566 {
3567 	u16 v;
3568 
3569 	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
3570 		return -EINVAL;
3571 
3572 	v = ffs(mps) - 8;
3573 	if (v > dev->pcie_mpss)
3574 		return -EINVAL;
3575 	v <<= 5;
3576 
3577 	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
3578 						  PCI_EXP_DEVCTL_PAYLOAD, v);
3579 }
3580 
3581 /**
3582  * pci_select_bars - Make BAR mask from the type of resource
3583  * @dev: the PCI device for which BAR mask is made
3584  * @flags: resource type mask to be selected
3585  *
3586  * This helper routine makes bar mask from the type of resource.
3587  */
3588 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
3589 {
3590 	int i, bars = 0;
3591 	for (i = 0; i < PCI_NUM_RESOURCES; i++)
3592 		if (pci_resource_flags(dev, i) & flags)
3593 			bars |= (1 << i);
3594 	return bars;
3595 }
3596 
3597 /**
3598  * pci_resource_bar - get position of the BAR associated with a resource
3599  * @dev: the PCI device
3600  * @resno: the resource number
3601  * @type: the BAR type to be filled in
3602  *
3603  * Returns BAR position in config space, or 0 if the BAR is invalid.
3604  */
3605 int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
3606 {
3607 	int reg;
3608 
3609 	if (resno < PCI_ROM_RESOURCE) {
3610 		*type = pci_bar_unknown;
3611 		return PCI_BASE_ADDRESS_0 + 4 * resno;
3612 	} else if (resno == PCI_ROM_RESOURCE) {
3613 		*type = pci_bar_mem32;
3614 		return dev->rom_base_reg;
3615 	} else if (resno < PCI_BRIDGE_RESOURCES) {
3616 		/* device specific resource */
3617 		reg = pci_iov_resource_bar(dev, resno, type);
3618 		if (reg)
3619 			return reg;
3620 	}
3621 
3622 	dev_err(&dev->dev, "BAR %d: invalid resource\n", resno);
3623 	return 0;
3624 }
3625 
3626 /* Some architectures require additional programming to enable VGA */
3627 static arch_set_vga_state_t arch_set_vga_state;
3628 
3629 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
3630 {
3631 	arch_set_vga_state = func;	/* NULL disables */
3632 }
3633 
3634 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
3635 		      unsigned int command_bits, u32 flags)
3636 {
3637 	if (arch_set_vga_state)
3638 		return arch_set_vga_state(dev, decode, command_bits,
3639 						flags);
3640 	return 0;
3641 }
3642 
3643 /**
3644  * pci_set_vga_state - set VGA decode state on device and parents if requested
3645  * @dev: the PCI device
3646  * @decode: true = enable decoding, false = disable decoding
3647  * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
3648  * @flags: traverse ancestors and change bridges
3649  * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
3650  */
3651 int pci_set_vga_state(struct pci_dev *dev, bool decode,
3652 		      unsigned int command_bits, u32 flags)
3653 {
3654 	struct pci_bus *bus;
3655 	struct pci_dev *bridge;
3656 	u16 cmd;
3657 	int rc;
3658 
3659 	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) & (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
3660 
3661 	/* ARCH specific VGA enables */
3662 	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
3663 	if (rc)
3664 		return rc;
3665 
3666 	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
3667 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
3668 		if (decode == true)
3669 			cmd |= command_bits;
3670 		else
3671 			cmd &= ~command_bits;
3672 		pci_write_config_word(dev, PCI_COMMAND, cmd);
3673 	}
3674 
3675 	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
3676 		return 0;
3677 
3678 	bus = dev->bus;
3679 	while (bus) {
3680 		bridge = bus->self;
3681 		if (bridge) {
3682 			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
3683 					     &cmd);
3684 			if (decode == true)
3685 				cmd |= PCI_BRIDGE_CTL_VGA;
3686 			else
3687 				cmd &= ~PCI_BRIDGE_CTL_VGA;
3688 			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
3689 					      cmd);
3690 		}
3691 		bus = bus->parent;
3692 	}
3693 	return 0;
3694 }
3695 
3696 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
3697 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
3698 static DEFINE_SPINLOCK(resource_alignment_lock);
3699 
3700 /**
3701  * pci_specified_resource_alignment - get resource alignment specified by user.
3702  * @dev: the PCI device to get
3703  *
3704  * RETURNS: Resource alignment if it is specified.
3705  *          Zero if it is not specified.
3706  */
3707 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
3708 {
3709 	int seg, bus, slot, func, align_order, count;
3710 	resource_size_t align = 0;
3711 	char *p;
3712 
3713 	spin_lock(&resource_alignment_lock);
3714 	p = resource_alignment_param;
3715 	while (*p) {
3716 		count = 0;
3717 		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
3718 							p[count] == '@') {
3719 			p += count + 1;
3720 		} else {
3721 			align_order = -1;
3722 		}
3723 		if (sscanf(p, "%x:%x:%x.%x%n",
3724 			&seg, &bus, &slot, &func, &count) != 4) {
3725 			seg = 0;
3726 			if (sscanf(p, "%x:%x.%x%n",
3727 					&bus, &slot, &func, &count) != 3) {
3728 				/* Invalid format */
3729 				printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
3730 					p);
3731 				break;
3732 			}
3733 		}
3734 		p += count;
3735 		if (seg == pci_domain_nr(dev->bus) &&
3736 			bus == dev->bus->number &&
3737 			slot == PCI_SLOT(dev->devfn) &&
3738 			func == PCI_FUNC(dev->devfn)) {
3739 			if (align_order == -1) {
3740 				align = PAGE_SIZE;
3741 			} else {
3742 				align = 1 << align_order;
3743 			}
3744 			/* Found */
3745 			break;
3746 		}
3747 		if (*p != ';' && *p != ',') {
3748 			/* End of param or invalid format */
3749 			break;
3750 		}
3751 		p++;
3752 	}
3753 	spin_unlock(&resource_alignment_lock);
3754 	return align;
3755 }
3756 
3757 /*
3758  * This function disables memory decoding and releases memory resources
3759  * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
3760  * It also rounds up size to specified alignment.
3761  * Later on, the kernel will assign page-aligned memory resource back
3762  * to the device.
3763  */
3764 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
3765 {
3766 	int i;
3767 	struct resource *r;
3768 	resource_size_t align, size;
3769 	u16 command;
3770 
3771 	/* check if specified PCI is target device to reassign */
3772 	align = pci_specified_resource_alignment(dev);
3773 	if (!align)
3774 		return;
3775 
3776 	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
3777 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
3778 		dev_warn(&dev->dev,
3779 			"Can't reassign resources to host bridge.\n");
3780 		return;
3781 	}
3782 
3783 	dev_info(&dev->dev,
3784 		"Disabling memory decoding and releasing memory resources.\n");
3785 	pci_read_config_word(dev, PCI_COMMAND, &command);
3786 	command &= ~PCI_COMMAND_MEMORY;
3787 	pci_write_config_word(dev, PCI_COMMAND, command);
3788 
3789 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) {
3790 		r = &dev->resource[i];
3791 		if (!(r->flags & IORESOURCE_MEM))
3792 			continue;
3793 		size = resource_size(r);
3794 		if (size < align) {
3795 			size = align;
3796 			dev_info(&dev->dev,
3797 				"Rounding up size of resource #%d to %#llx.\n",
3798 				i, (unsigned long long)size);
3799 		}
3800 		r->end = size - 1;
3801 		r->start = 0;
3802 	}
3803 	/* Need to disable bridge's resource window,
3804 	 * to enable the kernel to reassign new resource
3805 	 * window later on.
3806 	 */
3807 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
3808 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
3809 		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
3810 			r = &dev->resource[i];
3811 			if (!(r->flags & IORESOURCE_MEM))
3812 				continue;
3813 			r->end = resource_size(r) - 1;
3814 			r->start = 0;
3815 		}
3816 		pci_disable_bridge_window(dev);
3817 	}
3818 }
3819 
3820 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
3821 {
3822 	if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
3823 		count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
3824 	spin_lock(&resource_alignment_lock);
3825 	strncpy(resource_alignment_param, buf, count);
3826 	resource_alignment_param[count] = '\0';
3827 	spin_unlock(&resource_alignment_lock);
3828 	return count;
3829 }
3830 
3831 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
3832 {
3833 	size_t count;
3834 	spin_lock(&resource_alignment_lock);
3835 	count = snprintf(buf, size, "%s", resource_alignment_param);
3836 	spin_unlock(&resource_alignment_lock);
3837 	return count;
3838 }
3839 
3840 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
3841 {
3842 	return pci_get_resource_alignment_param(buf, PAGE_SIZE);
3843 }
3844 
3845 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
3846 					const char *buf, size_t count)
3847 {
3848 	return pci_set_resource_alignment_param(buf, count);
3849 }
3850 
3851 BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
3852 					pci_resource_alignment_store);
3853 
3854 static int __init pci_resource_alignment_sysfs_init(void)
3855 {
3856 	return bus_create_file(&pci_bus_type,
3857 					&bus_attr_resource_alignment);
3858 }
3859 
3860 late_initcall(pci_resource_alignment_sysfs_init);
3861 
3862 static void pci_no_domains(void)
3863 {
3864 #ifdef CONFIG_PCI_DOMAINS
3865 	pci_domains_supported = 0;
3866 #endif
3867 }
3868 
3869 /**
3870  * pci_ext_cfg_avail - can we access extended PCI config space?
3871  *
3872  * Returns 1 if we can access PCI extended config space (offsets
3873  * greater than 0xff). This is the default implementation. Architecture
3874  * implementations can override this.
3875  */
3876 int __weak pci_ext_cfg_avail(void)
3877 {
3878 	return 1;
3879 }
3880 
3881 void __weak pci_fixup_cardbus(struct pci_bus *bus)
3882 {
3883 }
3884 EXPORT_SYMBOL(pci_fixup_cardbus);
3885 
3886 static int __init pci_setup(char *str)
3887 {
3888 	while (str) {
3889 		char *k = strchr(str, ',');
3890 		if (k)
3891 			*k++ = 0;
3892 		if (*str && (str = pcibios_setup(str)) && *str) {
3893 			if (!strcmp(str, "nomsi")) {
3894 				pci_no_msi();
3895 			} else if (!strcmp(str, "noaer")) {
3896 				pci_no_aer();
3897 			} else if (!strncmp(str, "realloc=", 8)) {
3898 				pci_realloc_get_opt(str + 8);
3899 			} else if (!strncmp(str, "realloc", 7)) {
3900 				pci_realloc_get_opt("on");
3901 			} else if (!strcmp(str, "nodomains")) {
3902 				pci_no_domains();
3903 			} else if (!strncmp(str, "noari", 5)) {
3904 				pcie_ari_disabled = true;
3905 			} else if (!strncmp(str, "cbiosize=", 9)) {
3906 				pci_cardbus_io_size = memparse(str + 9, &str);
3907 			} else if (!strncmp(str, "cbmemsize=", 10)) {
3908 				pci_cardbus_mem_size = memparse(str + 10, &str);
3909 			} else if (!strncmp(str, "resource_alignment=", 19)) {
3910 				pci_set_resource_alignment_param(str + 19,
3911 							strlen(str + 19));
3912 			} else if (!strncmp(str, "ecrc=", 5)) {
3913 				pcie_ecrc_get_policy(str + 5);
3914 			} else if (!strncmp(str, "hpiosize=", 9)) {
3915 				pci_hotplug_io_size = memparse(str + 9, &str);
3916 			} else if (!strncmp(str, "hpmemsize=", 10)) {
3917 				pci_hotplug_mem_size = memparse(str + 10, &str);
3918 			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
3919 				pcie_bus_config = PCIE_BUS_TUNE_OFF;
3920 			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
3921 				pcie_bus_config = PCIE_BUS_SAFE;
3922 			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
3923 				pcie_bus_config = PCIE_BUS_PERFORMANCE;
3924 			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
3925 				pcie_bus_config = PCIE_BUS_PEER2PEER;
3926 			} else if (!strncmp(str, "pcie_scan_all", 13)) {
3927 				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
3928 			} else {
3929 				printk(KERN_ERR "PCI: Unknown option `%s'\n",
3930 						str);
3931 			}
3932 		}
3933 		str = k;
3934 	}
3935 	return 0;
3936 }
3937 early_param("pci", pci_setup);
3938 
3939 EXPORT_SYMBOL(pci_reenable_device);
3940 EXPORT_SYMBOL(pci_enable_device_io);
3941 EXPORT_SYMBOL(pci_enable_device_mem);
3942 EXPORT_SYMBOL(pci_enable_device);
3943 EXPORT_SYMBOL(pcim_enable_device);
3944 EXPORT_SYMBOL(pcim_pin_device);
3945 EXPORT_SYMBOL(pci_disable_device);
3946 EXPORT_SYMBOL(pci_find_capability);
3947 EXPORT_SYMBOL(pci_bus_find_capability);
3948 EXPORT_SYMBOL(pci_release_regions);
3949 EXPORT_SYMBOL(pci_request_regions);
3950 EXPORT_SYMBOL(pci_request_regions_exclusive);
3951 EXPORT_SYMBOL(pci_release_region);
3952 EXPORT_SYMBOL(pci_request_region);
3953 EXPORT_SYMBOL(pci_request_region_exclusive);
3954 EXPORT_SYMBOL(pci_release_selected_regions);
3955 EXPORT_SYMBOL(pci_request_selected_regions);
3956 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3957 EXPORT_SYMBOL(pci_set_master);
3958 EXPORT_SYMBOL(pci_clear_master);
3959 EXPORT_SYMBOL(pci_set_mwi);
3960 EXPORT_SYMBOL(pci_try_set_mwi);
3961 EXPORT_SYMBOL(pci_clear_mwi);
3962 EXPORT_SYMBOL_GPL(pci_intx);
3963 EXPORT_SYMBOL(pci_assign_resource);
3964 EXPORT_SYMBOL(pci_find_parent_resource);
3965 EXPORT_SYMBOL(pci_select_bars);
3966 
3967 EXPORT_SYMBOL(pci_set_power_state);
3968 EXPORT_SYMBOL(pci_save_state);
3969 EXPORT_SYMBOL(pci_restore_state);
3970 EXPORT_SYMBOL(pci_pme_capable);
3971 EXPORT_SYMBOL(pci_pme_active);
3972 EXPORT_SYMBOL(pci_wake_from_d3);
3973 EXPORT_SYMBOL(pci_target_state);
3974 EXPORT_SYMBOL(pci_prepare_to_sleep);
3975 EXPORT_SYMBOL(pci_back_from_sleep);
3976 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
3977