xref: /openbmc/linux/drivers/pci/pci.c (revision 7587cdef)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * PCI Bus Services, see include/linux/pci.h for further explanation.
4  *
5  * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6  * David Mosberger-Tang
7  *
8  * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/msi.h>
17 #include <linux/of.h>
18 #include <linux/pci.h>
19 #include <linux/pm.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/log2.h>
25 #include <linux/logic_pio.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/pci_hotplug.h>
31 #include <linux/vmalloc.h>
32 #include <asm/dma.h>
33 #include <linux/aer.h>
34 #include <linux/bitfield.h>
35 #include "pci.h"
36 
37 DEFINE_MUTEX(pci_slot_mutex);
38 
39 const char *pci_power_names[] = {
40 	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
41 };
42 EXPORT_SYMBOL_GPL(pci_power_names);
43 
44 #ifdef CONFIG_X86_32
45 int isa_dma_bridge_buggy;
46 EXPORT_SYMBOL(isa_dma_bridge_buggy);
47 #endif
48 
49 int pci_pci_problems;
50 EXPORT_SYMBOL(pci_pci_problems);
51 
52 unsigned int pci_pm_d3hot_delay;
53 
54 static void pci_pme_list_scan(struct work_struct *work);
55 
56 static LIST_HEAD(pci_pme_list);
57 static DEFINE_MUTEX(pci_pme_list_mutex);
58 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
59 
60 struct pci_pme_device {
61 	struct list_head list;
62 	struct pci_dev *dev;
63 };
64 
65 #define PME_TIMEOUT 1000 /* How long between PME checks */
66 
67 static void pci_dev_d3_sleep(struct pci_dev *dev)
68 {
69 	unsigned int delay_ms = max(dev->d3hot_delay, pci_pm_d3hot_delay);
70 	unsigned int upper;
71 
72 	if (delay_ms) {
73 		/* Use a 20% upper bound, 1ms minimum */
74 		upper = max(DIV_ROUND_CLOSEST(delay_ms, 5), 1U);
75 		usleep_range(delay_ms * USEC_PER_MSEC,
76 			     (delay_ms + upper) * USEC_PER_MSEC);
77 	}
78 }
79 
80 bool pci_reset_supported(struct pci_dev *dev)
81 {
82 	return dev->reset_methods[0] != 0;
83 }
84 
85 #ifdef CONFIG_PCI_DOMAINS
86 int pci_domains_supported = 1;
87 #endif
88 
89 #define DEFAULT_CARDBUS_IO_SIZE		(256)
90 #define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
91 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
92 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
93 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
94 
95 #define DEFAULT_HOTPLUG_IO_SIZE		(256)
96 #define DEFAULT_HOTPLUG_MMIO_SIZE	(2*1024*1024)
97 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE	(2*1024*1024)
98 /* hpiosize=nn can override this */
99 unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
100 /*
101  * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
102  * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
103  * pci=hpmemsize=nnM overrides both
104  */
105 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
106 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
107 
108 #define DEFAULT_HOTPLUG_BUS_SIZE	1
109 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
110 
111 
112 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
113 #ifdef CONFIG_PCIE_BUS_TUNE_OFF
114 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
115 #elif defined CONFIG_PCIE_BUS_SAFE
116 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
117 #elif defined CONFIG_PCIE_BUS_PERFORMANCE
118 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
119 #elif defined CONFIG_PCIE_BUS_PEER2PEER
120 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
121 #else
122 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
123 #endif
124 
125 /*
126  * The default CLS is used if arch didn't set CLS explicitly and not
127  * all pci devices agree on the same value.  Arch can override either
128  * the dfl or actual value as it sees fit.  Don't forget this is
129  * measured in 32-bit words, not bytes.
130  */
131 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
132 u8 pci_cache_line_size;
133 
134 /*
135  * If we set up a device for bus mastering, we need to check the latency
136  * timer as certain BIOSes forget to set it properly.
137  */
138 unsigned int pcibios_max_latency = 255;
139 
140 /* If set, the PCIe ARI capability will not be used. */
141 static bool pcie_ari_disabled;
142 
143 /* If set, the PCIe ATS capability will not be used. */
144 static bool pcie_ats_disabled;
145 
146 /* If set, the PCI config space of each device is printed during boot. */
147 bool pci_early_dump;
148 
149 bool pci_ats_disabled(void)
150 {
151 	return pcie_ats_disabled;
152 }
153 EXPORT_SYMBOL_GPL(pci_ats_disabled);
154 
155 /* Disable bridge_d3 for all PCIe ports */
156 static bool pci_bridge_d3_disable;
157 /* Force bridge_d3 for all PCIe ports */
158 static bool pci_bridge_d3_force;
159 
160 static int __init pcie_port_pm_setup(char *str)
161 {
162 	if (!strcmp(str, "off"))
163 		pci_bridge_d3_disable = true;
164 	else if (!strcmp(str, "force"))
165 		pci_bridge_d3_force = true;
166 	return 1;
167 }
168 __setup("pcie_port_pm=", pcie_port_pm_setup);
169 
170 /* Time to wait after a reset for device to become responsive */
171 #define PCIE_RESET_READY_POLL_MS 60000
172 
173 /**
174  * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
175  * @bus: pointer to PCI bus structure to search
176  *
177  * Given a PCI bus, returns the highest PCI bus number present in the set
178  * including the given PCI bus and its list of child PCI buses.
179  */
180 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
181 {
182 	struct pci_bus *tmp;
183 	unsigned char max, n;
184 
185 	max = bus->busn_res.end;
186 	list_for_each_entry(tmp, &bus->children, node) {
187 		n = pci_bus_max_busnr(tmp);
188 		if (n > max)
189 			max = n;
190 	}
191 	return max;
192 }
193 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
194 
195 /**
196  * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
197  * @pdev: the PCI device
198  *
199  * Returns error bits set in PCI_STATUS and clears them.
200  */
201 int pci_status_get_and_clear_errors(struct pci_dev *pdev)
202 {
203 	u16 status;
204 	int ret;
205 
206 	ret = pci_read_config_word(pdev, PCI_STATUS, &status);
207 	if (ret != PCIBIOS_SUCCESSFUL)
208 		return -EIO;
209 
210 	status &= PCI_STATUS_ERROR_BITS;
211 	if (status)
212 		pci_write_config_word(pdev, PCI_STATUS, status);
213 
214 	return status;
215 }
216 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
217 
218 #ifdef CONFIG_HAS_IOMEM
219 static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar,
220 					    bool write_combine)
221 {
222 	struct resource *res = &pdev->resource[bar];
223 	resource_size_t start = res->start;
224 	resource_size_t size = resource_size(res);
225 
226 	/*
227 	 * Make sure the BAR is actually a memory resource, not an IO resource
228 	 */
229 	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
230 		pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
231 		return NULL;
232 	}
233 
234 	if (write_combine)
235 		return ioremap_wc(start, size);
236 
237 	return ioremap(start, size);
238 }
239 
240 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
241 {
242 	return __pci_ioremap_resource(pdev, bar, false);
243 }
244 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
245 
246 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
247 {
248 	return __pci_ioremap_resource(pdev, bar, true);
249 }
250 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
251 #endif
252 
253 /**
254  * pci_dev_str_match_path - test if a path string matches a device
255  * @dev: the PCI device to test
256  * @path: string to match the device against
257  * @endptr: pointer to the string after the match
258  *
259  * Test if a string (typically from a kernel parameter) formatted as a
260  * path of device/function addresses matches a PCI device. The string must
261  * be of the form:
262  *
263  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
264  *
265  * A path for a device can be obtained using 'lspci -t'.  Using a path
266  * is more robust against bus renumbering than using only a single bus,
267  * device and function address.
268  *
269  * Returns 1 if the string matches the device, 0 if it does not and
270  * a negative error code if it fails to parse the string.
271  */
272 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
273 				  const char **endptr)
274 {
275 	int ret;
276 	unsigned int seg, bus, slot, func;
277 	char *wpath, *p;
278 	char end;
279 
280 	*endptr = strchrnul(path, ';');
281 
282 	wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC);
283 	if (!wpath)
284 		return -ENOMEM;
285 
286 	while (1) {
287 		p = strrchr(wpath, '/');
288 		if (!p)
289 			break;
290 		ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
291 		if (ret != 2) {
292 			ret = -EINVAL;
293 			goto free_and_exit;
294 		}
295 
296 		if (dev->devfn != PCI_DEVFN(slot, func)) {
297 			ret = 0;
298 			goto free_and_exit;
299 		}
300 
301 		/*
302 		 * Note: we don't need to get a reference to the upstream
303 		 * bridge because we hold a reference to the top level
304 		 * device which should hold a reference to the bridge,
305 		 * and so on.
306 		 */
307 		dev = pci_upstream_bridge(dev);
308 		if (!dev) {
309 			ret = 0;
310 			goto free_and_exit;
311 		}
312 
313 		*p = 0;
314 	}
315 
316 	ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
317 		     &func, &end);
318 	if (ret != 4) {
319 		seg = 0;
320 		ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
321 		if (ret != 3) {
322 			ret = -EINVAL;
323 			goto free_and_exit;
324 		}
325 	}
326 
327 	ret = (seg == pci_domain_nr(dev->bus) &&
328 	       bus == dev->bus->number &&
329 	       dev->devfn == PCI_DEVFN(slot, func));
330 
331 free_and_exit:
332 	kfree(wpath);
333 	return ret;
334 }
335 
336 /**
337  * pci_dev_str_match - test if a string matches a device
338  * @dev: the PCI device to test
339  * @p: string to match the device against
340  * @endptr: pointer to the string after the match
341  *
342  * Test if a string (typically from a kernel parameter) matches a specified
343  * PCI device. The string may be of one of the following formats:
344  *
345  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
346  *   pci:<vendor>:<device>[:<subvendor>:<subdevice>]
347  *
348  * The first format specifies a PCI bus/device/function address which
349  * may change if new hardware is inserted, if motherboard firmware changes,
350  * or due to changes caused in kernel parameters. If the domain is
351  * left unspecified, it is taken to be 0.  In order to be robust against
352  * bus renumbering issues, a path of PCI device/function numbers may be used
353  * to address the specific device.  The path for a device can be determined
354  * through the use of 'lspci -t'.
355  *
356  * The second format matches devices using IDs in the configuration
357  * space which may match multiple devices in the system. A value of 0
358  * for any field will match all devices. (Note: this differs from
359  * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
360  * legacy reasons and convenience so users don't have to specify
361  * FFFFFFFFs on the command line.)
362  *
363  * Returns 1 if the string matches the device, 0 if it does not and
364  * a negative error code if the string cannot be parsed.
365  */
366 static int pci_dev_str_match(struct pci_dev *dev, const char *p,
367 			     const char **endptr)
368 {
369 	int ret;
370 	int count;
371 	unsigned short vendor, device, subsystem_vendor, subsystem_device;
372 
373 	if (strncmp(p, "pci:", 4) == 0) {
374 		/* PCI vendor/device (subvendor/subdevice) IDs are specified */
375 		p += 4;
376 		ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
377 			     &subsystem_vendor, &subsystem_device, &count);
378 		if (ret != 4) {
379 			ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
380 			if (ret != 2)
381 				return -EINVAL;
382 
383 			subsystem_vendor = 0;
384 			subsystem_device = 0;
385 		}
386 
387 		p += count;
388 
389 		if ((!vendor || vendor == dev->vendor) &&
390 		    (!device || device == dev->device) &&
391 		    (!subsystem_vendor ||
392 			    subsystem_vendor == dev->subsystem_vendor) &&
393 		    (!subsystem_device ||
394 			    subsystem_device == dev->subsystem_device))
395 			goto found;
396 	} else {
397 		/*
398 		 * PCI Bus, Device, Function IDs are specified
399 		 * (optionally, may include a path of devfns following it)
400 		 */
401 		ret = pci_dev_str_match_path(dev, p, &p);
402 		if (ret < 0)
403 			return ret;
404 		else if (ret)
405 			goto found;
406 	}
407 
408 	*endptr = p;
409 	return 0;
410 
411 found:
412 	*endptr = p;
413 	return 1;
414 }
415 
416 static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
417 				  u8 pos, int cap, int *ttl)
418 {
419 	u8 id;
420 	u16 ent;
421 
422 	pci_bus_read_config_byte(bus, devfn, pos, &pos);
423 
424 	while ((*ttl)--) {
425 		if (pos < 0x40)
426 			break;
427 		pos &= ~3;
428 		pci_bus_read_config_word(bus, devfn, pos, &ent);
429 
430 		id = ent & 0xff;
431 		if (id == 0xff)
432 			break;
433 		if (id == cap)
434 			return pos;
435 		pos = (ent >> 8);
436 	}
437 	return 0;
438 }
439 
440 static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
441 			      u8 pos, int cap)
442 {
443 	int ttl = PCI_FIND_CAP_TTL;
444 
445 	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
446 }
447 
448 u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
449 {
450 	return __pci_find_next_cap(dev->bus, dev->devfn,
451 				   pos + PCI_CAP_LIST_NEXT, cap);
452 }
453 EXPORT_SYMBOL_GPL(pci_find_next_capability);
454 
455 static u8 __pci_bus_find_cap_start(struct pci_bus *bus,
456 				    unsigned int devfn, u8 hdr_type)
457 {
458 	u16 status;
459 
460 	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
461 	if (!(status & PCI_STATUS_CAP_LIST))
462 		return 0;
463 
464 	switch (hdr_type) {
465 	case PCI_HEADER_TYPE_NORMAL:
466 	case PCI_HEADER_TYPE_BRIDGE:
467 		return PCI_CAPABILITY_LIST;
468 	case PCI_HEADER_TYPE_CARDBUS:
469 		return PCI_CB_CAPABILITY_LIST;
470 	}
471 
472 	return 0;
473 }
474 
475 /**
476  * pci_find_capability - query for devices' capabilities
477  * @dev: PCI device to query
478  * @cap: capability code
479  *
480  * Tell if a device supports a given PCI capability.
481  * Returns the address of the requested capability structure within the
482  * device's PCI configuration space or 0 in case the device does not
483  * support it.  Possible values for @cap include:
484  *
485  *  %PCI_CAP_ID_PM           Power Management
486  *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
487  *  %PCI_CAP_ID_VPD          Vital Product Data
488  *  %PCI_CAP_ID_SLOTID       Slot Identification
489  *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
490  *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
491  *  %PCI_CAP_ID_PCIX         PCI-X
492  *  %PCI_CAP_ID_EXP          PCI Express
493  */
494 u8 pci_find_capability(struct pci_dev *dev, int cap)
495 {
496 	u8 pos;
497 
498 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
499 	if (pos)
500 		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
501 
502 	return pos;
503 }
504 EXPORT_SYMBOL(pci_find_capability);
505 
506 /**
507  * pci_bus_find_capability - query for devices' capabilities
508  * @bus: the PCI bus to query
509  * @devfn: PCI device to query
510  * @cap: capability code
511  *
512  * Like pci_find_capability() but works for PCI devices that do not have a
513  * pci_dev structure set up yet.
514  *
515  * Returns the address of the requested capability structure within the
516  * device's PCI configuration space or 0 in case the device does not
517  * support it.
518  */
519 u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
520 {
521 	u8 hdr_type, pos;
522 
523 	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
524 
525 	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
526 	if (pos)
527 		pos = __pci_find_next_cap(bus, devfn, pos, cap);
528 
529 	return pos;
530 }
531 EXPORT_SYMBOL(pci_bus_find_capability);
532 
533 /**
534  * pci_find_next_ext_capability - Find an extended capability
535  * @dev: PCI device to query
536  * @start: address at which to start looking (0 to start at beginning of list)
537  * @cap: capability code
538  *
539  * Returns the address of the next matching extended capability structure
540  * within the device's PCI configuration space or 0 if the device does
541  * not support it.  Some capabilities can occur several times, e.g., the
542  * vendor-specific capability, and this provides a way to find them all.
543  */
544 u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap)
545 {
546 	u32 header;
547 	int ttl;
548 	u16 pos = PCI_CFG_SPACE_SIZE;
549 
550 	/* minimum 8 bytes per capability */
551 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
552 
553 	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
554 		return 0;
555 
556 	if (start)
557 		pos = start;
558 
559 	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
560 		return 0;
561 
562 	/*
563 	 * If we have no capabilities, this is indicated by cap ID,
564 	 * cap version and next pointer all being 0.
565 	 */
566 	if (header == 0)
567 		return 0;
568 
569 	while (ttl-- > 0) {
570 		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
571 			return pos;
572 
573 		pos = PCI_EXT_CAP_NEXT(header);
574 		if (pos < PCI_CFG_SPACE_SIZE)
575 			break;
576 
577 		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
578 			break;
579 	}
580 
581 	return 0;
582 }
583 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
584 
585 /**
586  * pci_find_ext_capability - Find an extended capability
587  * @dev: PCI device to query
588  * @cap: capability code
589  *
590  * Returns the address of the requested extended capability structure
591  * within the device's PCI configuration space or 0 if the device does
592  * not support it.  Possible values for @cap include:
593  *
594  *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
595  *  %PCI_EXT_CAP_ID_VC		Virtual Channel
596  *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
597  *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
598  */
599 u16 pci_find_ext_capability(struct pci_dev *dev, int cap)
600 {
601 	return pci_find_next_ext_capability(dev, 0, cap);
602 }
603 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
604 
605 /**
606  * pci_get_dsn - Read and return the 8-byte Device Serial Number
607  * @dev: PCI device to query
608  *
609  * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
610  * Number.
611  *
612  * Returns the DSN, or zero if the capability does not exist.
613  */
614 u64 pci_get_dsn(struct pci_dev *dev)
615 {
616 	u32 dword;
617 	u64 dsn;
618 	int pos;
619 
620 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
621 	if (!pos)
622 		return 0;
623 
624 	/*
625 	 * The Device Serial Number is two dwords offset 4 bytes from the
626 	 * capability position. The specification says that the first dword is
627 	 * the lower half, and the second dword is the upper half.
628 	 */
629 	pos += 4;
630 	pci_read_config_dword(dev, pos, &dword);
631 	dsn = (u64)dword;
632 	pci_read_config_dword(dev, pos + 4, &dword);
633 	dsn |= ((u64)dword) << 32;
634 
635 	return dsn;
636 }
637 EXPORT_SYMBOL_GPL(pci_get_dsn);
638 
639 static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap)
640 {
641 	int rc, ttl = PCI_FIND_CAP_TTL;
642 	u8 cap, mask;
643 
644 	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
645 		mask = HT_3BIT_CAP_MASK;
646 	else
647 		mask = HT_5BIT_CAP_MASK;
648 
649 	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
650 				      PCI_CAP_ID_HT, &ttl);
651 	while (pos) {
652 		rc = pci_read_config_byte(dev, pos + 3, &cap);
653 		if (rc != PCIBIOS_SUCCESSFUL)
654 			return 0;
655 
656 		if ((cap & mask) == ht_cap)
657 			return pos;
658 
659 		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
660 					      pos + PCI_CAP_LIST_NEXT,
661 					      PCI_CAP_ID_HT, &ttl);
662 	}
663 
664 	return 0;
665 }
666 
667 /**
668  * pci_find_next_ht_capability - query a device's HyperTransport capabilities
669  * @dev: PCI device to query
670  * @pos: Position from which to continue searching
671  * @ht_cap: HyperTransport capability code
672  *
673  * To be used in conjunction with pci_find_ht_capability() to search for
674  * all capabilities matching @ht_cap. @pos should always be a value returned
675  * from pci_find_ht_capability().
676  *
677  * NB. To be 100% safe against broken PCI devices, the caller should take
678  * steps to avoid an infinite loop.
679  */
680 u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap)
681 {
682 	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
683 }
684 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
685 
686 /**
687  * pci_find_ht_capability - query a device's HyperTransport capabilities
688  * @dev: PCI device to query
689  * @ht_cap: HyperTransport capability code
690  *
691  * Tell if a device supports a given HyperTransport capability.
692  * Returns an address within the device's PCI configuration space
693  * or 0 in case the device does not support the request capability.
694  * The address points to the PCI capability, of type PCI_CAP_ID_HT,
695  * which has a HyperTransport capability matching @ht_cap.
696  */
697 u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
698 {
699 	u8 pos;
700 
701 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
702 	if (pos)
703 		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
704 
705 	return pos;
706 }
707 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
708 
709 /**
710  * pci_find_vsec_capability - Find a vendor-specific extended capability
711  * @dev: PCI device to query
712  * @vendor: Vendor ID for which capability is defined
713  * @cap: Vendor-specific capability ID
714  *
715  * If @dev has Vendor ID @vendor, search for a VSEC capability with
716  * VSEC ID @cap. If found, return the capability offset in
717  * config space; otherwise return 0.
718  */
719 u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap)
720 {
721 	u16 vsec = 0;
722 	u32 header;
723 
724 	if (vendor != dev->vendor)
725 		return 0;
726 
727 	while ((vsec = pci_find_next_ext_capability(dev, vsec,
728 						     PCI_EXT_CAP_ID_VNDR))) {
729 		if (pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER,
730 					  &header) == PCIBIOS_SUCCESSFUL &&
731 		    PCI_VNDR_HEADER_ID(header) == cap)
732 			return vsec;
733 	}
734 
735 	return 0;
736 }
737 EXPORT_SYMBOL_GPL(pci_find_vsec_capability);
738 
739 /**
740  * pci_find_dvsec_capability - Find DVSEC for vendor
741  * @dev: PCI device to query
742  * @vendor: Vendor ID to match for the DVSEC
743  * @dvsec: Designated Vendor-specific capability ID
744  *
745  * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability
746  * offset in config space; otherwise return 0.
747  */
748 u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec)
749 {
750 	int pos;
751 
752 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC);
753 	if (!pos)
754 		return 0;
755 
756 	while (pos) {
757 		u16 v, id;
758 
759 		pci_read_config_word(dev, pos + PCI_DVSEC_HEADER1, &v);
760 		pci_read_config_word(dev, pos + PCI_DVSEC_HEADER2, &id);
761 		if (vendor == v && dvsec == id)
762 			return pos;
763 
764 		pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC);
765 	}
766 
767 	return 0;
768 }
769 EXPORT_SYMBOL_GPL(pci_find_dvsec_capability);
770 
771 /**
772  * pci_find_parent_resource - return resource region of parent bus of given
773  *			      region
774  * @dev: PCI device structure contains resources to be searched
775  * @res: child resource record for which parent is sought
776  *
777  * For given resource region of given device, return the resource region of
778  * parent bus the given region is contained in.
779  */
780 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
781 					  struct resource *res)
782 {
783 	const struct pci_bus *bus = dev->bus;
784 	struct resource *r;
785 	int i;
786 
787 	pci_bus_for_each_resource(bus, r, i) {
788 		if (!r)
789 			continue;
790 		if (resource_contains(r, res)) {
791 
792 			/*
793 			 * If the window is prefetchable but the BAR is
794 			 * not, the allocator made a mistake.
795 			 */
796 			if (r->flags & IORESOURCE_PREFETCH &&
797 			    !(res->flags & IORESOURCE_PREFETCH))
798 				return NULL;
799 
800 			/*
801 			 * If we're below a transparent bridge, there may
802 			 * be both a positively-decoded aperture and a
803 			 * subtractively-decoded region that contain the BAR.
804 			 * We want the positively-decoded one, so this depends
805 			 * on pci_bus_for_each_resource() giving us those
806 			 * first.
807 			 */
808 			return r;
809 		}
810 	}
811 	return NULL;
812 }
813 EXPORT_SYMBOL(pci_find_parent_resource);
814 
815 /**
816  * pci_find_resource - Return matching PCI device resource
817  * @dev: PCI device to query
818  * @res: Resource to look for
819  *
820  * Goes over standard PCI resources (BARs) and checks if the given resource
821  * is partially or fully contained in any of them. In that case the
822  * matching resource is returned, %NULL otherwise.
823  */
824 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
825 {
826 	int i;
827 
828 	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
829 		struct resource *r = &dev->resource[i];
830 
831 		if (r->start && resource_contains(r, res))
832 			return r;
833 	}
834 
835 	return NULL;
836 }
837 EXPORT_SYMBOL(pci_find_resource);
838 
839 /**
840  * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
841  * @dev: the PCI device to operate on
842  * @pos: config space offset of status word
843  * @mask: mask of bit(s) to care about in status word
844  *
845  * Return 1 when mask bit(s) in status word clear, 0 otherwise.
846  */
847 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
848 {
849 	int i;
850 
851 	/* Wait for Transaction Pending bit clean */
852 	for (i = 0; i < 4; i++) {
853 		u16 status;
854 		if (i)
855 			msleep((1 << (i - 1)) * 100);
856 
857 		pci_read_config_word(dev, pos, &status);
858 		if (!(status & mask))
859 			return 1;
860 	}
861 
862 	return 0;
863 }
864 
865 static int pci_acs_enable;
866 
867 /**
868  * pci_request_acs - ask for ACS to be enabled if supported
869  */
870 void pci_request_acs(void)
871 {
872 	pci_acs_enable = 1;
873 }
874 
875 static const char *disable_acs_redir_param;
876 
877 /**
878  * pci_disable_acs_redir - disable ACS redirect capabilities
879  * @dev: the PCI device
880  *
881  * For only devices specified in the disable_acs_redir parameter.
882  */
883 static void pci_disable_acs_redir(struct pci_dev *dev)
884 {
885 	int ret = 0;
886 	const char *p;
887 	int pos;
888 	u16 ctrl;
889 
890 	if (!disable_acs_redir_param)
891 		return;
892 
893 	p = disable_acs_redir_param;
894 	while (*p) {
895 		ret = pci_dev_str_match(dev, p, &p);
896 		if (ret < 0) {
897 			pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
898 				     disable_acs_redir_param);
899 
900 			break;
901 		} else if (ret == 1) {
902 			/* Found a match */
903 			break;
904 		}
905 
906 		if (*p != ';' && *p != ',') {
907 			/* End of param or invalid format */
908 			break;
909 		}
910 		p++;
911 	}
912 
913 	if (ret != 1)
914 		return;
915 
916 	if (!pci_dev_specific_disable_acs_redir(dev))
917 		return;
918 
919 	pos = dev->acs_cap;
920 	if (!pos) {
921 		pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
922 		return;
923 	}
924 
925 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
926 
927 	/* P2P Request & Completion Redirect */
928 	ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
929 
930 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
931 
932 	pci_info(dev, "disabled ACS redirect\n");
933 }
934 
935 /**
936  * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
937  * @dev: the PCI device
938  */
939 static void pci_std_enable_acs(struct pci_dev *dev)
940 {
941 	int pos;
942 	u16 cap;
943 	u16 ctrl;
944 
945 	pos = dev->acs_cap;
946 	if (!pos)
947 		return;
948 
949 	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
950 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
951 
952 	/* Source Validation */
953 	ctrl |= (cap & PCI_ACS_SV);
954 
955 	/* P2P Request Redirect */
956 	ctrl |= (cap & PCI_ACS_RR);
957 
958 	/* P2P Completion Redirect */
959 	ctrl |= (cap & PCI_ACS_CR);
960 
961 	/* Upstream Forwarding */
962 	ctrl |= (cap & PCI_ACS_UF);
963 
964 	/* Enable Translation Blocking for external devices and noats */
965 	if (pci_ats_disabled() || dev->external_facing || dev->untrusted)
966 		ctrl |= (cap & PCI_ACS_TB);
967 
968 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
969 }
970 
971 /**
972  * pci_enable_acs - enable ACS if hardware support it
973  * @dev: the PCI device
974  */
975 static void pci_enable_acs(struct pci_dev *dev)
976 {
977 	if (!pci_acs_enable)
978 		goto disable_acs_redir;
979 
980 	if (!pci_dev_specific_enable_acs(dev))
981 		goto disable_acs_redir;
982 
983 	pci_std_enable_acs(dev);
984 
985 disable_acs_redir:
986 	/*
987 	 * Note: pci_disable_acs_redir() must be called even if ACS was not
988 	 * enabled by the kernel because it may have been enabled by
989 	 * platform firmware.  So if we are told to disable it, we should
990 	 * always disable it after setting the kernel's default
991 	 * preferences.
992 	 */
993 	pci_disable_acs_redir(dev);
994 }
995 
996 /**
997  * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
998  * @dev: PCI device to have its BARs restored
999  *
1000  * Restore the BAR values for a given device, so as to make it
1001  * accessible by its driver.
1002  */
1003 static void pci_restore_bars(struct pci_dev *dev)
1004 {
1005 	int i;
1006 
1007 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
1008 		pci_update_resource(dev, i);
1009 }
1010 
1011 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
1012 {
1013 	if (pci_use_mid_pm())
1014 		return true;
1015 
1016 	return acpi_pci_power_manageable(dev);
1017 }
1018 
1019 static inline int platform_pci_set_power_state(struct pci_dev *dev,
1020 					       pci_power_t t)
1021 {
1022 	if (pci_use_mid_pm())
1023 		return mid_pci_set_power_state(dev, t);
1024 
1025 	return acpi_pci_set_power_state(dev, t);
1026 }
1027 
1028 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
1029 {
1030 	if (pci_use_mid_pm())
1031 		return mid_pci_get_power_state(dev);
1032 
1033 	return acpi_pci_get_power_state(dev);
1034 }
1035 
1036 static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
1037 {
1038 	if (!pci_use_mid_pm())
1039 		acpi_pci_refresh_power_state(dev);
1040 }
1041 
1042 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
1043 {
1044 	if (pci_use_mid_pm())
1045 		return PCI_POWER_ERROR;
1046 
1047 	return acpi_pci_choose_state(dev);
1048 }
1049 
1050 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
1051 {
1052 	if (pci_use_mid_pm())
1053 		return PCI_POWER_ERROR;
1054 
1055 	return acpi_pci_wakeup(dev, enable);
1056 }
1057 
1058 static inline bool platform_pci_need_resume(struct pci_dev *dev)
1059 {
1060 	if (pci_use_mid_pm())
1061 		return false;
1062 
1063 	return acpi_pci_need_resume(dev);
1064 }
1065 
1066 static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
1067 {
1068 	if (pci_use_mid_pm())
1069 		return false;
1070 
1071 	return acpi_pci_bridge_d3(dev);
1072 }
1073 
1074 /**
1075  * pci_update_current_state - Read power state of given device and cache it
1076  * @dev: PCI device to handle.
1077  * @state: State to cache in case the device doesn't have the PM capability
1078  *
1079  * The power state is read from the PMCSR register, which however is
1080  * inaccessible in D3cold.  The platform firmware is therefore queried first
1081  * to detect accessibility of the register.  In case the platform firmware
1082  * reports an incorrect state or the device isn't power manageable by the
1083  * platform at all, we try to detect D3cold by testing accessibility of the
1084  * vendor ID in config space.
1085  */
1086 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1087 {
1088 	if (platform_pci_get_power_state(dev) == PCI_D3cold) {
1089 		dev->current_state = PCI_D3cold;
1090 	} else if (dev->pm_cap) {
1091 		u16 pmcsr;
1092 
1093 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1094 		if (PCI_POSSIBLE_ERROR(pmcsr)) {
1095 			dev->current_state = PCI_D3cold;
1096 			return;
1097 		}
1098 		dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1099 	} else {
1100 		dev->current_state = state;
1101 	}
1102 }
1103 
1104 /**
1105  * pci_refresh_power_state - Refresh the given device's power state data
1106  * @dev: Target PCI device.
1107  *
1108  * Ask the platform to refresh the devices power state information and invoke
1109  * pci_update_current_state() to update its current PCI power state.
1110  */
1111 void pci_refresh_power_state(struct pci_dev *dev)
1112 {
1113 	platform_pci_refresh_power_state(dev);
1114 	pci_update_current_state(dev, dev->current_state);
1115 }
1116 
1117 /**
1118  * pci_platform_power_transition - Use platform to change device power state
1119  * @dev: PCI device to handle.
1120  * @state: State to put the device into.
1121  */
1122 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1123 {
1124 	int error;
1125 
1126 	error = platform_pci_set_power_state(dev, state);
1127 	if (!error)
1128 		pci_update_current_state(dev, state);
1129 	else if (!dev->pm_cap) /* Fall back to PCI_D0 */
1130 		dev->current_state = PCI_D0;
1131 
1132 	return error;
1133 }
1134 EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1135 
1136 static int pci_resume_one(struct pci_dev *pci_dev, void *ign)
1137 {
1138 	pm_request_resume(&pci_dev->dev);
1139 	return 0;
1140 }
1141 
1142 /**
1143  * pci_resume_bus - Walk given bus and runtime resume devices on it
1144  * @bus: Top bus of the subtree to walk.
1145  */
1146 void pci_resume_bus(struct pci_bus *bus)
1147 {
1148 	if (bus)
1149 		pci_walk_bus(bus, pci_resume_one, NULL);
1150 }
1151 
1152 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1153 {
1154 	int delay = 1;
1155 	u32 id;
1156 
1157 	/*
1158 	 * After reset, the device should not silently discard config
1159 	 * requests, but it may still indicate that it needs more time by
1160 	 * responding to them with CRS completions.  The Root Port will
1161 	 * generally synthesize ~0 (PCI_ERROR_RESPONSE) data to complete
1162 	 * the read (except when CRS SV is enabled and the read was for the
1163 	 * Vendor ID; in that case it synthesizes 0x0001 data).
1164 	 *
1165 	 * Wait for the device to return a non-CRS completion.  Read the
1166 	 * Command register instead of Vendor ID so we don't have to
1167 	 * contend with the CRS SV value.
1168 	 */
1169 	pci_read_config_dword(dev, PCI_COMMAND, &id);
1170 	while (PCI_POSSIBLE_ERROR(id)) {
1171 		if (delay > timeout) {
1172 			pci_warn(dev, "not ready %dms after %s; giving up\n",
1173 				 delay - 1, reset_type);
1174 			return -ENOTTY;
1175 		}
1176 
1177 		if (delay > 1000)
1178 			pci_info(dev, "not ready %dms after %s; waiting\n",
1179 				 delay - 1, reset_type);
1180 
1181 		msleep(delay);
1182 		delay *= 2;
1183 		pci_read_config_dword(dev, PCI_COMMAND, &id);
1184 	}
1185 
1186 	if (delay > 1000)
1187 		pci_info(dev, "ready %dms after %s\n", delay - 1,
1188 			 reset_type);
1189 
1190 	return 0;
1191 }
1192 
1193 /**
1194  * pci_power_up - Put the given device into D0
1195  * @dev: PCI device to power up
1196  *
1197  * On success, return 0 or 1, depending on whether or not it is necessary to
1198  * restore the device's BARs subsequently (1 is returned in that case).
1199  */
1200 int pci_power_up(struct pci_dev *dev)
1201 {
1202 	bool need_restore;
1203 	pci_power_t state;
1204 	u16 pmcsr;
1205 
1206 	platform_pci_set_power_state(dev, PCI_D0);
1207 
1208 	if (!dev->pm_cap) {
1209 		state = platform_pci_get_power_state(dev);
1210 		if (state == PCI_UNKNOWN)
1211 			dev->current_state = PCI_D0;
1212 		else
1213 			dev->current_state = state;
1214 
1215 		if (state == PCI_D0)
1216 			return 0;
1217 
1218 		return -EIO;
1219 	}
1220 
1221 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1222 	if (PCI_POSSIBLE_ERROR(pmcsr)) {
1223 		pci_err(dev, "Unable to change power state from %s to D0, device inaccessible\n",
1224 			pci_power_name(dev->current_state));
1225 		dev->current_state = PCI_D3cold;
1226 		return -EIO;
1227 	}
1228 
1229 	state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1230 
1231 	need_restore = (state == PCI_D3hot || dev->current_state >= PCI_D3hot) &&
1232 			!(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET);
1233 
1234 	if (state == PCI_D0)
1235 		goto end;
1236 
1237 	/*
1238 	 * Force the entire word to 0. This doesn't affect PME_Status, disables
1239 	 * PME_En, and sets PowerState to 0.
1240 	 */
1241 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, 0);
1242 
1243 	/* Mandatory transition delays; see PCI PM 1.2. */
1244 	if (state == PCI_D3hot)
1245 		pci_dev_d3_sleep(dev);
1246 	else if (state == PCI_D2)
1247 		udelay(PCI_PM_D2_DELAY);
1248 
1249 end:
1250 	dev->current_state = PCI_D0;
1251 	if (need_restore)
1252 		return 1;
1253 
1254 	return 0;
1255 }
1256 
1257 /**
1258  * pci_set_full_power_state - Put a PCI device into D0 and update its state
1259  * @dev: PCI device to power up
1260  *
1261  * Call pci_power_up() to put @dev into D0, read from its PCI_PM_CTRL register
1262  * to confirm the state change, restore its BARs if they might be lost and
1263  * reconfigure ASPM in acordance with the new power state.
1264  *
1265  * If pci_restore_state() is going to be called right after a power state change
1266  * to D0, it is more efficient to use pci_power_up() directly instead of this
1267  * function.
1268  */
1269 static int pci_set_full_power_state(struct pci_dev *dev)
1270 {
1271 	u16 pmcsr;
1272 	int ret;
1273 
1274 	ret = pci_power_up(dev);
1275 	if (ret < 0)
1276 		return ret;
1277 
1278 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1279 	dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1280 	if (dev->current_state != PCI_D0) {
1281 		pci_info_ratelimited(dev, "Refused to change power state from %s to D0\n",
1282 				     pci_power_name(dev->current_state));
1283 	} else if (ret > 0) {
1284 		/*
1285 		 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1286 		 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1287 		 * from D3hot to D0 _may_ perform an internal reset, thereby
1288 		 * going to "D0 Uninitialized" rather than "D0 Initialized".
1289 		 * For example, at least some versions of the 3c905B and the
1290 		 * 3c556B exhibit this behaviour.
1291 		 *
1292 		 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1293 		 * devices in a D3hot state at boot.  Consequently, we need to
1294 		 * restore at least the BARs so that the device will be
1295 		 * accessible to its driver.
1296 		 */
1297 		pci_restore_bars(dev);
1298 	}
1299 
1300 	return 0;
1301 }
1302 
1303 /**
1304  * __pci_dev_set_current_state - Set current state of a PCI device
1305  * @dev: Device to handle
1306  * @data: pointer to state to be set
1307  */
1308 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1309 {
1310 	pci_power_t state = *(pci_power_t *)data;
1311 
1312 	dev->current_state = state;
1313 	return 0;
1314 }
1315 
1316 /**
1317  * pci_bus_set_current_state - Walk given bus and set current state of devices
1318  * @bus: Top bus of the subtree to walk.
1319  * @state: state to be set
1320  */
1321 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1322 {
1323 	if (bus)
1324 		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1325 }
1326 
1327 /**
1328  * pci_set_low_power_state - Put a PCI device into a low-power state.
1329  * @dev: PCI device to handle.
1330  * @state: PCI power state (D1, D2, D3hot) to put the device into.
1331  *
1332  * Use the device's PCI_PM_CTRL register to put it into a low-power state.
1333  *
1334  * RETURN VALUE:
1335  * -EINVAL if the requested state is invalid.
1336  * -EIO if device does not support PCI PM or its PM capabilities register has a
1337  * wrong version, or device doesn't support the requested state.
1338  * 0 if device already is in the requested state.
1339  * 0 if device's power state has been successfully changed.
1340  */
1341 static int pci_set_low_power_state(struct pci_dev *dev, pci_power_t state)
1342 {
1343 	u16 pmcsr;
1344 
1345 	if (!dev->pm_cap)
1346 		return -EIO;
1347 
1348 	/*
1349 	 * Validate transition: We can enter D0 from any state, but if
1350 	 * we're already in a low-power state, we can only go deeper.  E.g.,
1351 	 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1352 	 * we'd have to go from D3 to D0, then to D1.
1353 	 */
1354 	if (dev->current_state <= PCI_D3cold && dev->current_state > state) {
1355 		pci_dbg(dev, "Invalid power transition (from %s to %s)\n",
1356 			pci_power_name(dev->current_state),
1357 			pci_power_name(state));
1358 		return -EINVAL;
1359 	}
1360 
1361 	/* Check if this device supports the desired state */
1362 	if ((state == PCI_D1 && !dev->d1_support)
1363 	   || (state == PCI_D2 && !dev->d2_support))
1364 		return -EIO;
1365 
1366 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1367 	if (PCI_POSSIBLE_ERROR(pmcsr)) {
1368 		pci_err(dev, "Unable to change power state from %s to %s, device inaccessible\n",
1369 			pci_power_name(dev->current_state),
1370 			pci_power_name(state));
1371 		dev->current_state = PCI_D3cold;
1372 		return -EIO;
1373 	}
1374 
1375 	pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1376 	pmcsr |= state;
1377 
1378 	/* Enter specified state */
1379 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1380 
1381 	/* Mandatory power management transition delays; see PCI PM 1.2. */
1382 	if (state == PCI_D3hot)
1383 		pci_dev_d3_sleep(dev);
1384 	else if (state == PCI_D2)
1385 		udelay(PCI_PM_D2_DELAY);
1386 
1387 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1388 	dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1389 	if (dev->current_state != state)
1390 		pci_info_ratelimited(dev, "Refused to change power state from %s to %s\n",
1391 				     pci_power_name(dev->current_state),
1392 				     pci_power_name(state));
1393 
1394 	return 0;
1395 }
1396 
1397 /**
1398  * pci_set_power_state - Set the power state of a PCI device
1399  * @dev: PCI device to handle.
1400  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1401  *
1402  * Transition a device to a new power state, using the platform firmware and/or
1403  * the device's PCI PM registers.
1404  *
1405  * RETURN VALUE:
1406  * -EINVAL if the requested state is invalid.
1407  * -EIO if device does not support PCI PM or its PM capabilities register has a
1408  * wrong version, or device doesn't support the requested state.
1409  * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1410  * 0 if device already is in the requested state.
1411  * 0 if the transition is to D3 but D3 is not supported.
1412  * 0 if device's power state has been successfully changed.
1413  */
1414 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1415 {
1416 	int error;
1417 
1418 	/* Bound the state we're entering */
1419 	if (state > PCI_D3cold)
1420 		state = PCI_D3cold;
1421 	else if (state < PCI_D0)
1422 		state = PCI_D0;
1423 	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1424 
1425 		/*
1426 		 * If the device or the parent bridge do not support PCI
1427 		 * PM, ignore the request if we're doing anything other
1428 		 * than putting it into D0 (which would only happen on
1429 		 * boot).
1430 		 */
1431 		return 0;
1432 
1433 	/* Check if we're already there */
1434 	if (dev->current_state == state)
1435 		return 0;
1436 
1437 	if (state == PCI_D0)
1438 		return pci_set_full_power_state(dev);
1439 
1440 	/*
1441 	 * This device is quirked not to be put into D3, so don't put it in
1442 	 * D3
1443 	 */
1444 	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1445 		return 0;
1446 
1447 	if (state == PCI_D3cold) {
1448 		/*
1449 		 * To put the device in D3cold, put it into D3hot in the native
1450 		 * way, then put it into D3cold using platform ops.
1451 		 */
1452 		error = pci_set_low_power_state(dev, PCI_D3hot);
1453 
1454 		if (pci_platform_power_transition(dev, PCI_D3cold))
1455 			return error;
1456 
1457 		/* Powering off a bridge may power off the whole hierarchy */
1458 		if (dev->current_state == PCI_D3cold)
1459 			pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1460 	} else {
1461 		error = pci_set_low_power_state(dev, state);
1462 
1463 		if (pci_platform_power_transition(dev, state))
1464 			return error;
1465 	}
1466 
1467 	return 0;
1468 }
1469 EXPORT_SYMBOL(pci_set_power_state);
1470 
1471 #define PCI_EXP_SAVE_REGS	7
1472 
1473 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1474 						       u16 cap, bool extended)
1475 {
1476 	struct pci_cap_saved_state *tmp;
1477 
1478 	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1479 		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1480 			return tmp;
1481 	}
1482 	return NULL;
1483 }
1484 
1485 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1486 {
1487 	return _pci_find_saved_cap(dev, cap, false);
1488 }
1489 
1490 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1491 {
1492 	return _pci_find_saved_cap(dev, cap, true);
1493 }
1494 
1495 static int pci_save_pcie_state(struct pci_dev *dev)
1496 {
1497 	int i = 0;
1498 	struct pci_cap_saved_state *save_state;
1499 	u16 *cap;
1500 
1501 	if (!pci_is_pcie(dev))
1502 		return 0;
1503 
1504 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1505 	if (!save_state) {
1506 		pci_err(dev, "buffer not found in %s\n", __func__);
1507 		return -ENOMEM;
1508 	}
1509 
1510 	cap = (u16 *)&save_state->cap.data[0];
1511 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1512 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1513 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1514 	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
1515 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1516 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1517 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1518 
1519 	return 0;
1520 }
1521 
1522 void pci_bridge_reconfigure_ltr(struct pci_dev *dev)
1523 {
1524 #ifdef CONFIG_PCIEASPM
1525 	struct pci_dev *bridge;
1526 	u32 ctl;
1527 
1528 	bridge = pci_upstream_bridge(dev);
1529 	if (bridge && bridge->ltr_path) {
1530 		pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, &ctl);
1531 		if (!(ctl & PCI_EXP_DEVCTL2_LTR_EN)) {
1532 			pci_dbg(bridge, "re-enabling LTR\n");
1533 			pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
1534 						 PCI_EXP_DEVCTL2_LTR_EN);
1535 		}
1536 	}
1537 #endif
1538 }
1539 
1540 static void pci_restore_pcie_state(struct pci_dev *dev)
1541 {
1542 	int i = 0;
1543 	struct pci_cap_saved_state *save_state;
1544 	u16 *cap;
1545 
1546 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1547 	if (!save_state)
1548 		return;
1549 
1550 	/*
1551 	 * Downstream ports reset the LTR enable bit when link goes down.
1552 	 * Check and re-configure the bit here before restoring device.
1553 	 * PCIe r5.0, sec 7.5.3.16.
1554 	 */
1555 	pci_bridge_reconfigure_ltr(dev);
1556 
1557 	cap = (u16 *)&save_state->cap.data[0];
1558 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1559 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1560 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1561 	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1562 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1563 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1564 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1565 }
1566 
1567 static int pci_save_pcix_state(struct pci_dev *dev)
1568 {
1569 	int pos;
1570 	struct pci_cap_saved_state *save_state;
1571 
1572 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1573 	if (!pos)
1574 		return 0;
1575 
1576 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1577 	if (!save_state) {
1578 		pci_err(dev, "buffer not found in %s\n", __func__);
1579 		return -ENOMEM;
1580 	}
1581 
1582 	pci_read_config_word(dev, pos + PCI_X_CMD,
1583 			     (u16 *)save_state->cap.data);
1584 
1585 	return 0;
1586 }
1587 
1588 static void pci_restore_pcix_state(struct pci_dev *dev)
1589 {
1590 	int i = 0, pos;
1591 	struct pci_cap_saved_state *save_state;
1592 	u16 *cap;
1593 
1594 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1595 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1596 	if (!save_state || !pos)
1597 		return;
1598 	cap = (u16 *)&save_state->cap.data[0];
1599 
1600 	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1601 }
1602 
1603 static void pci_save_ltr_state(struct pci_dev *dev)
1604 {
1605 	int ltr;
1606 	struct pci_cap_saved_state *save_state;
1607 	u32 *cap;
1608 
1609 	if (!pci_is_pcie(dev))
1610 		return;
1611 
1612 	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1613 	if (!ltr)
1614 		return;
1615 
1616 	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1617 	if (!save_state) {
1618 		pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1619 		return;
1620 	}
1621 
1622 	/* Some broken devices only support dword access to LTR */
1623 	cap = &save_state->cap.data[0];
1624 	pci_read_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap);
1625 }
1626 
1627 static void pci_restore_ltr_state(struct pci_dev *dev)
1628 {
1629 	struct pci_cap_saved_state *save_state;
1630 	int ltr;
1631 	u32 *cap;
1632 
1633 	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1634 	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1635 	if (!save_state || !ltr)
1636 		return;
1637 
1638 	/* Some broken devices only support dword access to LTR */
1639 	cap = &save_state->cap.data[0];
1640 	pci_write_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap);
1641 }
1642 
1643 /**
1644  * pci_save_state - save the PCI configuration space of a device before
1645  *		    suspending
1646  * @dev: PCI device that we're dealing with
1647  */
1648 int pci_save_state(struct pci_dev *dev)
1649 {
1650 	int i;
1651 	/* XXX: 100% dword access ok here? */
1652 	for (i = 0; i < 16; i++) {
1653 		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1654 		pci_dbg(dev, "saving config space at offset %#x (reading %#x)\n",
1655 			i * 4, dev->saved_config_space[i]);
1656 	}
1657 	dev->state_saved = true;
1658 
1659 	i = pci_save_pcie_state(dev);
1660 	if (i != 0)
1661 		return i;
1662 
1663 	i = pci_save_pcix_state(dev);
1664 	if (i != 0)
1665 		return i;
1666 
1667 	pci_save_ltr_state(dev);
1668 	pci_save_aspm_l1ss_state(dev);
1669 	pci_save_dpc_state(dev);
1670 	pci_save_aer_state(dev);
1671 	pci_save_ptm_state(dev);
1672 	return pci_save_vc_state(dev);
1673 }
1674 EXPORT_SYMBOL(pci_save_state);
1675 
1676 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1677 				     u32 saved_val, int retry, bool force)
1678 {
1679 	u32 val;
1680 
1681 	pci_read_config_dword(pdev, offset, &val);
1682 	if (!force && val == saved_val)
1683 		return;
1684 
1685 	for (;;) {
1686 		pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1687 			offset, val, saved_val);
1688 		pci_write_config_dword(pdev, offset, saved_val);
1689 		if (retry-- <= 0)
1690 			return;
1691 
1692 		pci_read_config_dword(pdev, offset, &val);
1693 		if (val == saved_val)
1694 			return;
1695 
1696 		mdelay(1);
1697 	}
1698 }
1699 
1700 static void pci_restore_config_space_range(struct pci_dev *pdev,
1701 					   int start, int end, int retry,
1702 					   bool force)
1703 {
1704 	int index;
1705 
1706 	for (index = end; index >= start; index--)
1707 		pci_restore_config_dword(pdev, 4 * index,
1708 					 pdev->saved_config_space[index],
1709 					 retry, force);
1710 }
1711 
1712 static void pci_restore_config_space(struct pci_dev *pdev)
1713 {
1714 	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1715 		pci_restore_config_space_range(pdev, 10, 15, 0, false);
1716 		/* Restore BARs before the command register. */
1717 		pci_restore_config_space_range(pdev, 4, 9, 10, false);
1718 		pci_restore_config_space_range(pdev, 0, 3, 0, false);
1719 	} else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1720 		pci_restore_config_space_range(pdev, 12, 15, 0, false);
1721 
1722 		/*
1723 		 * Force rewriting of prefetch registers to avoid S3 resume
1724 		 * issues on Intel PCI bridges that occur when these
1725 		 * registers are not explicitly written.
1726 		 */
1727 		pci_restore_config_space_range(pdev, 9, 11, 0, true);
1728 		pci_restore_config_space_range(pdev, 0, 8, 0, false);
1729 	} else {
1730 		pci_restore_config_space_range(pdev, 0, 15, 0, false);
1731 	}
1732 }
1733 
1734 static void pci_restore_rebar_state(struct pci_dev *pdev)
1735 {
1736 	unsigned int pos, nbars, i;
1737 	u32 ctrl;
1738 
1739 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1740 	if (!pos)
1741 		return;
1742 
1743 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1744 	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1745 		    PCI_REBAR_CTRL_NBAR_SHIFT;
1746 
1747 	for (i = 0; i < nbars; i++, pos += 8) {
1748 		struct resource *res;
1749 		int bar_idx, size;
1750 
1751 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1752 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1753 		res = pdev->resource + bar_idx;
1754 		size = pci_rebar_bytes_to_size(resource_size(res));
1755 		ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1756 		ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1757 		pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1758 	}
1759 }
1760 
1761 /**
1762  * pci_restore_state - Restore the saved state of a PCI device
1763  * @dev: PCI device that we're dealing with
1764  */
1765 void pci_restore_state(struct pci_dev *dev)
1766 {
1767 	if (!dev->state_saved)
1768 		return;
1769 
1770 	/*
1771 	 * Restore max latencies (in the LTR capability) before enabling
1772 	 * LTR itself (in the PCIe capability).
1773 	 */
1774 	pci_restore_ltr_state(dev);
1775 	pci_restore_aspm_l1ss_state(dev);
1776 
1777 	pci_restore_pcie_state(dev);
1778 	pci_restore_pasid_state(dev);
1779 	pci_restore_pri_state(dev);
1780 	pci_restore_ats_state(dev);
1781 	pci_restore_vc_state(dev);
1782 	pci_restore_rebar_state(dev);
1783 	pci_restore_dpc_state(dev);
1784 	pci_restore_ptm_state(dev);
1785 
1786 	pci_aer_clear_status(dev);
1787 	pci_restore_aer_state(dev);
1788 
1789 	pci_restore_config_space(dev);
1790 
1791 	pci_restore_pcix_state(dev);
1792 	pci_restore_msi_state(dev);
1793 
1794 	/* Restore ACS and IOV configuration state */
1795 	pci_enable_acs(dev);
1796 	pci_restore_iov_state(dev);
1797 
1798 	dev->state_saved = false;
1799 }
1800 EXPORT_SYMBOL(pci_restore_state);
1801 
1802 struct pci_saved_state {
1803 	u32 config_space[16];
1804 	struct pci_cap_saved_data cap[];
1805 };
1806 
1807 /**
1808  * pci_store_saved_state - Allocate and return an opaque struct containing
1809  *			   the device saved state.
1810  * @dev: PCI device that we're dealing with
1811  *
1812  * Return NULL if no state or error.
1813  */
1814 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1815 {
1816 	struct pci_saved_state *state;
1817 	struct pci_cap_saved_state *tmp;
1818 	struct pci_cap_saved_data *cap;
1819 	size_t size;
1820 
1821 	if (!dev->state_saved)
1822 		return NULL;
1823 
1824 	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1825 
1826 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1827 		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1828 
1829 	state = kzalloc(size, GFP_KERNEL);
1830 	if (!state)
1831 		return NULL;
1832 
1833 	memcpy(state->config_space, dev->saved_config_space,
1834 	       sizeof(state->config_space));
1835 
1836 	cap = state->cap;
1837 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1838 		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1839 		memcpy(cap, &tmp->cap, len);
1840 		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1841 	}
1842 	/* Empty cap_save terminates list */
1843 
1844 	return state;
1845 }
1846 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1847 
1848 /**
1849  * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1850  * @dev: PCI device that we're dealing with
1851  * @state: Saved state returned from pci_store_saved_state()
1852  */
1853 int pci_load_saved_state(struct pci_dev *dev,
1854 			 struct pci_saved_state *state)
1855 {
1856 	struct pci_cap_saved_data *cap;
1857 
1858 	dev->state_saved = false;
1859 
1860 	if (!state)
1861 		return 0;
1862 
1863 	memcpy(dev->saved_config_space, state->config_space,
1864 	       sizeof(state->config_space));
1865 
1866 	cap = state->cap;
1867 	while (cap->size) {
1868 		struct pci_cap_saved_state *tmp;
1869 
1870 		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1871 		if (!tmp || tmp->cap.size != cap->size)
1872 			return -EINVAL;
1873 
1874 		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1875 		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1876 		       sizeof(struct pci_cap_saved_data) + cap->size);
1877 	}
1878 
1879 	dev->state_saved = true;
1880 	return 0;
1881 }
1882 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1883 
1884 /**
1885  * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1886  *				   and free the memory allocated for it.
1887  * @dev: PCI device that we're dealing with
1888  * @state: Pointer to saved state returned from pci_store_saved_state()
1889  */
1890 int pci_load_and_free_saved_state(struct pci_dev *dev,
1891 				  struct pci_saved_state **state)
1892 {
1893 	int ret = pci_load_saved_state(dev, *state);
1894 	kfree(*state);
1895 	*state = NULL;
1896 	return ret;
1897 }
1898 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1899 
1900 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1901 {
1902 	return pci_enable_resources(dev, bars);
1903 }
1904 
1905 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1906 {
1907 	int err;
1908 	struct pci_dev *bridge;
1909 	u16 cmd;
1910 	u8 pin;
1911 
1912 	err = pci_set_power_state(dev, PCI_D0);
1913 	if (err < 0 && err != -EIO)
1914 		return err;
1915 
1916 	bridge = pci_upstream_bridge(dev);
1917 	if (bridge)
1918 		pcie_aspm_powersave_config_link(bridge);
1919 
1920 	err = pcibios_enable_device(dev, bars);
1921 	if (err < 0)
1922 		return err;
1923 	pci_fixup_device(pci_fixup_enable, dev);
1924 
1925 	if (dev->msi_enabled || dev->msix_enabled)
1926 		return 0;
1927 
1928 	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1929 	if (pin) {
1930 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
1931 		if (cmd & PCI_COMMAND_INTX_DISABLE)
1932 			pci_write_config_word(dev, PCI_COMMAND,
1933 					      cmd & ~PCI_COMMAND_INTX_DISABLE);
1934 	}
1935 
1936 	return 0;
1937 }
1938 
1939 /**
1940  * pci_reenable_device - Resume abandoned device
1941  * @dev: PCI device to be resumed
1942  *
1943  * NOTE: This function is a backend of pci_default_resume() and is not supposed
1944  * to be called by normal code, write proper resume handler and use it instead.
1945  */
1946 int pci_reenable_device(struct pci_dev *dev)
1947 {
1948 	if (pci_is_enabled(dev))
1949 		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1950 	return 0;
1951 }
1952 EXPORT_SYMBOL(pci_reenable_device);
1953 
1954 static void pci_enable_bridge(struct pci_dev *dev)
1955 {
1956 	struct pci_dev *bridge;
1957 	int retval;
1958 
1959 	bridge = pci_upstream_bridge(dev);
1960 	if (bridge)
1961 		pci_enable_bridge(bridge);
1962 
1963 	if (pci_is_enabled(dev)) {
1964 		if (!dev->is_busmaster)
1965 			pci_set_master(dev);
1966 		return;
1967 	}
1968 
1969 	retval = pci_enable_device(dev);
1970 	if (retval)
1971 		pci_err(dev, "Error enabling bridge (%d), continuing\n",
1972 			retval);
1973 	pci_set_master(dev);
1974 }
1975 
1976 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1977 {
1978 	struct pci_dev *bridge;
1979 	int err;
1980 	int i, bars = 0;
1981 
1982 	/*
1983 	 * Power state could be unknown at this point, either due to a fresh
1984 	 * boot or a device removal call.  So get the current power state
1985 	 * so that things like MSI message writing will behave as expected
1986 	 * (e.g. if the device really is in D0 at enable time).
1987 	 */
1988 	pci_update_current_state(dev, dev->current_state);
1989 
1990 	if (atomic_inc_return(&dev->enable_cnt) > 1)
1991 		return 0;		/* already enabled */
1992 
1993 	bridge = pci_upstream_bridge(dev);
1994 	if (bridge)
1995 		pci_enable_bridge(bridge);
1996 
1997 	/* only skip sriov related */
1998 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1999 		if (dev->resource[i].flags & flags)
2000 			bars |= (1 << i);
2001 	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
2002 		if (dev->resource[i].flags & flags)
2003 			bars |= (1 << i);
2004 
2005 	err = do_pci_enable_device(dev, bars);
2006 	if (err < 0)
2007 		atomic_dec(&dev->enable_cnt);
2008 	return err;
2009 }
2010 
2011 /**
2012  * pci_enable_device_io - Initialize a device for use with IO space
2013  * @dev: PCI device to be initialized
2014  *
2015  * Initialize device before it's used by a driver. Ask low-level code
2016  * to enable I/O resources. Wake up the device if it was suspended.
2017  * Beware, this function can fail.
2018  */
2019 int pci_enable_device_io(struct pci_dev *dev)
2020 {
2021 	return pci_enable_device_flags(dev, IORESOURCE_IO);
2022 }
2023 EXPORT_SYMBOL(pci_enable_device_io);
2024 
2025 /**
2026  * pci_enable_device_mem - Initialize a device for use with Memory space
2027  * @dev: PCI device to be initialized
2028  *
2029  * Initialize device before it's used by a driver. Ask low-level code
2030  * to enable Memory resources. Wake up the device if it was suspended.
2031  * Beware, this function can fail.
2032  */
2033 int pci_enable_device_mem(struct pci_dev *dev)
2034 {
2035 	return pci_enable_device_flags(dev, IORESOURCE_MEM);
2036 }
2037 EXPORT_SYMBOL(pci_enable_device_mem);
2038 
2039 /**
2040  * pci_enable_device - Initialize device before it's used by a driver.
2041  * @dev: PCI device to be initialized
2042  *
2043  * Initialize device before it's used by a driver. Ask low-level code
2044  * to enable I/O and memory. Wake up the device if it was suspended.
2045  * Beware, this function can fail.
2046  *
2047  * Note we don't actually enable the device many times if we call
2048  * this function repeatedly (we just increment the count).
2049  */
2050 int pci_enable_device(struct pci_dev *dev)
2051 {
2052 	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
2053 }
2054 EXPORT_SYMBOL(pci_enable_device);
2055 
2056 /*
2057  * Managed PCI resources.  This manages device on/off, INTx/MSI/MSI-X
2058  * on/off and BAR regions.  pci_dev itself records MSI/MSI-X status, so
2059  * there's no need to track it separately.  pci_devres is initialized
2060  * when a device is enabled using managed PCI device enable interface.
2061  */
2062 struct pci_devres {
2063 	unsigned int enabled:1;
2064 	unsigned int pinned:1;
2065 	unsigned int orig_intx:1;
2066 	unsigned int restore_intx:1;
2067 	unsigned int mwi:1;
2068 	u32 region_mask;
2069 };
2070 
2071 static void pcim_release(struct device *gendev, void *res)
2072 {
2073 	struct pci_dev *dev = to_pci_dev(gendev);
2074 	struct pci_devres *this = res;
2075 	int i;
2076 
2077 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
2078 		if (this->region_mask & (1 << i))
2079 			pci_release_region(dev, i);
2080 
2081 	if (this->mwi)
2082 		pci_clear_mwi(dev);
2083 
2084 	if (this->restore_intx)
2085 		pci_intx(dev, this->orig_intx);
2086 
2087 	if (this->enabled && !this->pinned)
2088 		pci_disable_device(dev);
2089 }
2090 
2091 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
2092 {
2093 	struct pci_devres *dr, *new_dr;
2094 
2095 	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
2096 	if (dr)
2097 		return dr;
2098 
2099 	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
2100 	if (!new_dr)
2101 		return NULL;
2102 	return devres_get(&pdev->dev, new_dr, NULL, NULL);
2103 }
2104 
2105 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
2106 {
2107 	if (pci_is_managed(pdev))
2108 		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
2109 	return NULL;
2110 }
2111 
2112 /**
2113  * pcim_enable_device - Managed pci_enable_device()
2114  * @pdev: PCI device to be initialized
2115  *
2116  * Managed pci_enable_device().
2117  */
2118 int pcim_enable_device(struct pci_dev *pdev)
2119 {
2120 	struct pci_devres *dr;
2121 	int rc;
2122 
2123 	dr = get_pci_dr(pdev);
2124 	if (unlikely(!dr))
2125 		return -ENOMEM;
2126 	if (dr->enabled)
2127 		return 0;
2128 
2129 	rc = pci_enable_device(pdev);
2130 	if (!rc) {
2131 		pdev->is_managed = 1;
2132 		dr->enabled = 1;
2133 	}
2134 	return rc;
2135 }
2136 EXPORT_SYMBOL(pcim_enable_device);
2137 
2138 /**
2139  * pcim_pin_device - Pin managed PCI device
2140  * @pdev: PCI device to pin
2141  *
2142  * Pin managed PCI device @pdev.  Pinned device won't be disabled on
2143  * driver detach.  @pdev must have been enabled with
2144  * pcim_enable_device().
2145  */
2146 void pcim_pin_device(struct pci_dev *pdev)
2147 {
2148 	struct pci_devres *dr;
2149 
2150 	dr = find_pci_dr(pdev);
2151 	WARN_ON(!dr || !dr->enabled);
2152 	if (dr)
2153 		dr->pinned = 1;
2154 }
2155 EXPORT_SYMBOL(pcim_pin_device);
2156 
2157 /*
2158  * pcibios_device_add - provide arch specific hooks when adding device dev
2159  * @dev: the PCI device being added
2160  *
2161  * Permits the platform to provide architecture specific functionality when
2162  * devices are added. This is the default implementation. Architecture
2163  * implementations can override this.
2164  */
2165 int __weak pcibios_device_add(struct pci_dev *dev)
2166 {
2167 	return 0;
2168 }
2169 
2170 /**
2171  * pcibios_release_device - provide arch specific hooks when releasing
2172  *			    device dev
2173  * @dev: the PCI device being released
2174  *
2175  * Permits the platform to provide architecture specific functionality when
2176  * devices are released. This is the default implementation. Architecture
2177  * implementations can override this.
2178  */
2179 void __weak pcibios_release_device(struct pci_dev *dev) {}
2180 
2181 /**
2182  * pcibios_disable_device - disable arch specific PCI resources for device dev
2183  * @dev: the PCI device to disable
2184  *
2185  * Disables architecture specific PCI resources for the device. This
2186  * is the default implementation. Architecture implementations can
2187  * override this.
2188  */
2189 void __weak pcibios_disable_device(struct pci_dev *dev) {}
2190 
2191 /**
2192  * pcibios_penalize_isa_irq - penalize an ISA IRQ
2193  * @irq: ISA IRQ to penalize
2194  * @active: IRQ active or not
2195  *
2196  * Permits the platform to provide architecture-specific functionality when
2197  * penalizing ISA IRQs. This is the default implementation. Architecture
2198  * implementations can override this.
2199  */
2200 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
2201 
2202 static void do_pci_disable_device(struct pci_dev *dev)
2203 {
2204 	u16 pci_command;
2205 
2206 	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2207 	if (pci_command & PCI_COMMAND_MASTER) {
2208 		pci_command &= ~PCI_COMMAND_MASTER;
2209 		pci_write_config_word(dev, PCI_COMMAND, pci_command);
2210 	}
2211 
2212 	pcibios_disable_device(dev);
2213 }
2214 
2215 /**
2216  * pci_disable_enabled_device - Disable device without updating enable_cnt
2217  * @dev: PCI device to disable
2218  *
2219  * NOTE: This function is a backend of PCI power management routines and is
2220  * not supposed to be called drivers.
2221  */
2222 void pci_disable_enabled_device(struct pci_dev *dev)
2223 {
2224 	if (pci_is_enabled(dev))
2225 		do_pci_disable_device(dev);
2226 }
2227 
2228 /**
2229  * pci_disable_device - Disable PCI device after use
2230  * @dev: PCI device to be disabled
2231  *
2232  * Signal to the system that the PCI device is not in use by the system
2233  * anymore.  This only involves disabling PCI bus-mastering, if active.
2234  *
2235  * Note we don't actually disable the device until all callers of
2236  * pci_enable_device() have called pci_disable_device().
2237  */
2238 void pci_disable_device(struct pci_dev *dev)
2239 {
2240 	struct pci_devres *dr;
2241 
2242 	dr = find_pci_dr(dev);
2243 	if (dr)
2244 		dr->enabled = 0;
2245 
2246 	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2247 		      "disabling already-disabled device");
2248 
2249 	if (atomic_dec_return(&dev->enable_cnt) != 0)
2250 		return;
2251 
2252 	do_pci_disable_device(dev);
2253 
2254 	dev->is_busmaster = 0;
2255 }
2256 EXPORT_SYMBOL(pci_disable_device);
2257 
2258 /**
2259  * pcibios_set_pcie_reset_state - set reset state for device dev
2260  * @dev: the PCIe device reset
2261  * @state: Reset state to enter into
2262  *
2263  * Set the PCIe reset state for the device. This is the default
2264  * implementation. Architecture implementations can override this.
2265  */
2266 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2267 					enum pcie_reset_state state)
2268 {
2269 	return -EINVAL;
2270 }
2271 
2272 /**
2273  * pci_set_pcie_reset_state - set reset state for device dev
2274  * @dev: the PCIe device reset
2275  * @state: Reset state to enter into
2276  *
2277  * Sets the PCI reset state for the device.
2278  */
2279 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2280 {
2281 	return pcibios_set_pcie_reset_state(dev, state);
2282 }
2283 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2284 
2285 #ifdef CONFIG_PCIEAER
2286 void pcie_clear_device_status(struct pci_dev *dev)
2287 {
2288 	u16 sta;
2289 
2290 	pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2291 	pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2292 }
2293 #endif
2294 
2295 /**
2296  * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2297  * @dev: PCIe root port or event collector.
2298  */
2299 void pcie_clear_root_pme_status(struct pci_dev *dev)
2300 {
2301 	pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2302 }
2303 
2304 /**
2305  * pci_check_pme_status - Check if given device has generated PME.
2306  * @dev: Device to check.
2307  *
2308  * Check the PME status of the device and if set, clear it and clear PME enable
2309  * (if set).  Return 'true' if PME status and PME enable were both set or
2310  * 'false' otherwise.
2311  */
2312 bool pci_check_pme_status(struct pci_dev *dev)
2313 {
2314 	int pmcsr_pos;
2315 	u16 pmcsr;
2316 	bool ret = false;
2317 
2318 	if (!dev->pm_cap)
2319 		return false;
2320 
2321 	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2322 	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2323 	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2324 		return false;
2325 
2326 	/* Clear PME status. */
2327 	pmcsr |= PCI_PM_CTRL_PME_STATUS;
2328 	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2329 		/* Disable PME to avoid interrupt flood. */
2330 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2331 		ret = true;
2332 	}
2333 
2334 	pci_write_config_word(dev, pmcsr_pos, pmcsr);
2335 
2336 	return ret;
2337 }
2338 
2339 /**
2340  * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2341  * @dev: Device to handle.
2342  * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2343  *
2344  * Check if @dev has generated PME and queue a resume request for it in that
2345  * case.
2346  */
2347 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2348 {
2349 	if (pme_poll_reset && dev->pme_poll)
2350 		dev->pme_poll = false;
2351 
2352 	if (pci_check_pme_status(dev)) {
2353 		pci_wakeup_event(dev);
2354 		pm_request_resume(&dev->dev);
2355 	}
2356 	return 0;
2357 }
2358 
2359 /**
2360  * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2361  * @bus: Top bus of the subtree to walk.
2362  */
2363 void pci_pme_wakeup_bus(struct pci_bus *bus)
2364 {
2365 	if (bus)
2366 		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2367 }
2368 
2369 
2370 /**
2371  * pci_pme_capable - check the capability of PCI device to generate PME#
2372  * @dev: PCI device to handle.
2373  * @state: PCI state from which device will issue PME#.
2374  */
2375 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2376 {
2377 	if (!dev->pm_cap)
2378 		return false;
2379 
2380 	return !!(dev->pme_support & (1 << state));
2381 }
2382 EXPORT_SYMBOL(pci_pme_capable);
2383 
2384 static void pci_pme_list_scan(struct work_struct *work)
2385 {
2386 	struct pci_pme_device *pme_dev, *n;
2387 
2388 	mutex_lock(&pci_pme_list_mutex);
2389 	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2390 		if (pme_dev->dev->pme_poll) {
2391 			struct pci_dev *bridge;
2392 
2393 			bridge = pme_dev->dev->bus->self;
2394 			/*
2395 			 * If bridge is in low power state, the
2396 			 * configuration space of subordinate devices
2397 			 * may be not accessible
2398 			 */
2399 			if (bridge && bridge->current_state != PCI_D0)
2400 				continue;
2401 			/*
2402 			 * If the device is in D3cold it should not be
2403 			 * polled either.
2404 			 */
2405 			if (pme_dev->dev->current_state == PCI_D3cold)
2406 				continue;
2407 
2408 			pci_pme_wakeup(pme_dev->dev, NULL);
2409 		} else {
2410 			list_del(&pme_dev->list);
2411 			kfree(pme_dev);
2412 		}
2413 	}
2414 	if (!list_empty(&pci_pme_list))
2415 		queue_delayed_work(system_freezable_wq, &pci_pme_work,
2416 				   msecs_to_jiffies(PME_TIMEOUT));
2417 	mutex_unlock(&pci_pme_list_mutex);
2418 }
2419 
2420 static void __pci_pme_active(struct pci_dev *dev, bool enable)
2421 {
2422 	u16 pmcsr;
2423 
2424 	if (!dev->pme_support)
2425 		return;
2426 
2427 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2428 	/* Clear PME_Status by writing 1 to it and enable PME# */
2429 	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2430 	if (!enable)
2431 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2432 
2433 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2434 }
2435 
2436 /**
2437  * pci_pme_restore - Restore PME configuration after config space restore.
2438  * @dev: PCI device to update.
2439  */
2440 void pci_pme_restore(struct pci_dev *dev)
2441 {
2442 	u16 pmcsr;
2443 
2444 	if (!dev->pme_support)
2445 		return;
2446 
2447 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2448 	if (dev->wakeup_prepared) {
2449 		pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2450 		pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2451 	} else {
2452 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2453 		pmcsr |= PCI_PM_CTRL_PME_STATUS;
2454 	}
2455 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2456 }
2457 
2458 /**
2459  * pci_pme_active - enable or disable PCI device's PME# function
2460  * @dev: PCI device to handle.
2461  * @enable: 'true' to enable PME# generation; 'false' to disable it.
2462  *
2463  * The caller must verify that the device is capable of generating PME# before
2464  * calling this function with @enable equal to 'true'.
2465  */
2466 void pci_pme_active(struct pci_dev *dev, bool enable)
2467 {
2468 	__pci_pme_active(dev, enable);
2469 
2470 	/*
2471 	 * PCI (as opposed to PCIe) PME requires that the device have
2472 	 * its PME# line hooked up correctly. Not all hardware vendors
2473 	 * do this, so the PME never gets delivered and the device
2474 	 * remains asleep. The easiest way around this is to
2475 	 * periodically walk the list of suspended devices and check
2476 	 * whether any have their PME flag set. The assumption is that
2477 	 * we'll wake up often enough anyway that this won't be a huge
2478 	 * hit, and the power savings from the devices will still be a
2479 	 * win.
2480 	 *
2481 	 * Although PCIe uses in-band PME message instead of PME# line
2482 	 * to report PME, PME does not work for some PCIe devices in
2483 	 * reality.  For example, there are devices that set their PME
2484 	 * status bits, but don't really bother to send a PME message;
2485 	 * there are PCI Express Root Ports that don't bother to
2486 	 * trigger interrupts when they receive PME messages from the
2487 	 * devices below.  So PME poll is used for PCIe devices too.
2488 	 */
2489 
2490 	if (dev->pme_poll) {
2491 		struct pci_pme_device *pme_dev;
2492 		if (enable) {
2493 			pme_dev = kmalloc(sizeof(struct pci_pme_device),
2494 					  GFP_KERNEL);
2495 			if (!pme_dev) {
2496 				pci_warn(dev, "can't enable PME#\n");
2497 				return;
2498 			}
2499 			pme_dev->dev = dev;
2500 			mutex_lock(&pci_pme_list_mutex);
2501 			list_add(&pme_dev->list, &pci_pme_list);
2502 			if (list_is_singular(&pci_pme_list))
2503 				queue_delayed_work(system_freezable_wq,
2504 						   &pci_pme_work,
2505 						   msecs_to_jiffies(PME_TIMEOUT));
2506 			mutex_unlock(&pci_pme_list_mutex);
2507 		} else {
2508 			mutex_lock(&pci_pme_list_mutex);
2509 			list_for_each_entry(pme_dev, &pci_pme_list, list) {
2510 				if (pme_dev->dev == dev) {
2511 					list_del(&pme_dev->list);
2512 					kfree(pme_dev);
2513 					break;
2514 				}
2515 			}
2516 			mutex_unlock(&pci_pme_list_mutex);
2517 		}
2518 	}
2519 
2520 	pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2521 }
2522 EXPORT_SYMBOL(pci_pme_active);
2523 
2524 /**
2525  * __pci_enable_wake - enable PCI device as wakeup event source
2526  * @dev: PCI device affected
2527  * @state: PCI state from which device will issue wakeup events
2528  * @enable: True to enable event generation; false to disable
2529  *
2530  * This enables the device as a wakeup event source, or disables it.
2531  * When such events involves platform-specific hooks, those hooks are
2532  * called automatically by this routine.
2533  *
2534  * Devices with legacy power management (no standard PCI PM capabilities)
2535  * always require such platform hooks.
2536  *
2537  * RETURN VALUE:
2538  * 0 is returned on success
2539  * -EINVAL is returned if device is not supposed to wake up the system
2540  * Error code depending on the platform is returned if both the platform and
2541  * the native mechanism fail to enable the generation of wake-up events
2542  */
2543 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2544 {
2545 	int ret = 0;
2546 
2547 	/*
2548 	 * Bridges that are not power-manageable directly only signal
2549 	 * wakeup on behalf of subordinate devices which is set up
2550 	 * elsewhere, so skip them. However, bridges that are
2551 	 * power-manageable may signal wakeup for themselves (for example,
2552 	 * on a hotplug event) and they need to be covered here.
2553 	 */
2554 	if (!pci_power_manageable(dev))
2555 		return 0;
2556 
2557 	/* Don't do the same thing twice in a row for one device. */
2558 	if (!!enable == !!dev->wakeup_prepared)
2559 		return 0;
2560 
2561 	/*
2562 	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2563 	 * Anderson we should be doing PME# wake enable followed by ACPI wake
2564 	 * enable.  To disable wake-up we call the platform first, for symmetry.
2565 	 */
2566 
2567 	if (enable) {
2568 		int error;
2569 
2570 		/*
2571 		 * Enable PME signaling if the device can signal PME from
2572 		 * D3cold regardless of whether or not it can signal PME from
2573 		 * the current target state, because that will allow it to
2574 		 * signal PME when the hierarchy above it goes into D3cold and
2575 		 * the device itself ends up in D3cold as a result of that.
2576 		 */
2577 		if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold))
2578 			pci_pme_active(dev, true);
2579 		else
2580 			ret = 1;
2581 		error = platform_pci_set_wakeup(dev, true);
2582 		if (ret)
2583 			ret = error;
2584 		if (!ret)
2585 			dev->wakeup_prepared = true;
2586 	} else {
2587 		platform_pci_set_wakeup(dev, false);
2588 		pci_pme_active(dev, false);
2589 		dev->wakeup_prepared = false;
2590 	}
2591 
2592 	return ret;
2593 }
2594 
2595 /**
2596  * pci_enable_wake - change wakeup settings for a PCI device
2597  * @pci_dev: Target device
2598  * @state: PCI state from which device will issue wakeup events
2599  * @enable: Whether or not to enable event generation
2600  *
2601  * If @enable is set, check device_may_wakeup() for the device before calling
2602  * __pci_enable_wake() for it.
2603  */
2604 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2605 {
2606 	if (enable && !device_may_wakeup(&pci_dev->dev))
2607 		return -EINVAL;
2608 
2609 	return __pci_enable_wake(pci_dev, state, enable);
2610 }
2611 EXPORT_SYMBOL(pci_enable_wake);
2612 
2613 /**
2614  * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2615  * @dev: PCI device to prepare
2616  * @enable: True to enable wake-up event generation; false to disable
2617  *
2618  * Many drivers want the device to wake up the system from D3_hot or D3_cold
2619  * and this function allows them to set that up cleanly - pci_enable_wake()
2620  * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2621  * ordering constraints.
2622  *
2623  * This function only returns error code if the device is not allowed to wake
2624  * up the system from sleep or it is not capable of generating PME# from both
2625  * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2626  */
2627 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2628 {
2629 	return pci_pme_capable(dev, PCI_D3cold) ?
2630 			pci_enable_wake(dev, PCI_D3cold, enable) :
2631 			pci_enable_wake(dev, PCI_D3hot, enable);
2632 }
2633 EXPORT_SYMBOL(pci_wake_from_d3);
2634 
2635 /**
2636  * pci_target_state - find an appropriate low power state for a given PCI dev
2637  * @dev: PCI device
2638  * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2639  *
2640  * Use underlying platform code to find a supported low power state for @dev.
2641  * If the platform can't manage @dev, return the deepest state from which it
2642  * can generate wake events, based on any available PME info.
2643  */
2644 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2645 {
2646 	if (platform_pci_power_manageable(dev)) {
2647 		/*
2648 		 * Call the platform to find the target state for the device.
2649 		 */
2650 		pci_power_t state = platform_pci_choose_state(dev);
2651 
2652 		switch (state) {
2653 		case PCI_POWER_ERROR:
2654 		case PCI_UNKNOWN:
2655 			return PCI_D3hot;
2656 
2657 		case PCI_D1:
2658 		case PCI_D2:
2659 			if (pci_no_d1d2(dev))
2660 				return PCI_D3hot;
2661 		}
2662 
2663 		return state;
2664 	}
2665 
2666 	/*
2667 	 * If the device is in D3cold even though it's not power-manageable by
2668 	 * the platform, it may have been powered down by non-standard means.
2669 	 * Best to let it slumber.
2670 	 */
2671 	if (dev->current_state == PCI_D3cold)
2672 		return PCI_D3cold;
2673 	else if (!dev->pm_cap)
2674 		return PCI_D0;
2675 
2676 	if (wakeup && dev->pme_support) {
2677 		pci_power_t state = PCI_D3hot;
2678 
2679 		/*
2680 		 * Find the deepest state from which the device can generate
2681 		 * PME#.
2682 		 */
2683 		while (state && !(dev->pme_support & (1 << state)))
2684 			state--;
2685 
2686 		if (state)
2687 			return state;
2688 		else if (dev->pme_support & 1)
2689 			return PCI_D0;
2690 	}
2691 
2692 	return PCI_D3hot;
2693 }
2694 
2695 /**
2696  * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2697  *			  into a sleep state
2698  * @dev: Device to handle.
2699  *
2700  * Choose the power state appropriate for the device depending on whether
2701  * it can wake up the system and/or is power manageable by the platform
2702  * (PCI_D3hot is the default) and put the device into that state.
2703  */
2704 int pci_prepare_to_sleep(struct pci_dev *dev)
2705 {
2706 	bool wakeup = device_may_wakeup(&dev->dev);
2707 	pci_power_t target_state = pci_target_state(dev, wakeup);
2708 	int error;
2709 
2710 	if (target_state == PCI_POWER_ERROR)
2711 		return -EIO;
2712 
2713 	pci_enable_wake(dev, target_state, wakeup);
2714 
2715 	error = pci_set_power_state(dev, target_state);
2716 
2717 	if (error)
2718 		pci_enable_wake(dev, target_state, false);
2719 
2720 	return error;
2721 }
2722 EXPORT_SYMBOL(pci_prepare_to_sleep);
2723 
2724 /**
2725  * pci_back_from_sleep - turn PCI device on during system-wide transition
2726  *			 into working state
2727  * @dev: Device to handle.
2728  *
2729  * Disable device's system wake-up capability and put it into D0.
2730  */
2731 int pci_back_from_sleep(struct pci_dev *dev)
2732 {
2733 	int ret = pci_set_power_state(dev, PCI_D0);
2734 
2735 	if (ret)
2736 		return ret;
2737 
2738 	pci_enable_wake(dev, PCI_D0, false);
2739 	return 0;
2740 }
2741 EXPORT_SYMBOL(pci_back_from_sleep);
2742 
2743 /**
2744  * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2745  * @dev: PCI device being suspended.
2746  *
2747  * Prepare @dev to generate wake-up events at run time and put it into a low
2748  * power state.
2749  */
2750 int pci_finish_runtime_suspend(struct pci_dev *dev)
2751 {
2752 	pci_power_t target_state;
2753 	int error;
2754 
2755 	target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2756 	if (target_state == PCI_POWER_ERROR)
2757 		return -EIO;
2758 
2759 	__pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2760 
2761 	error = pci_set_power_state(dev, target_state);
2762 
2763 	if (error)
2764 		pci_enable_wake(dev, target_state, false);
2765 
2766 	return error;
2767 }
2768 
2769 /**
2770  * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2771  * @dev: Device to check.
2772  *
2773  * Return true if the device itself is capable of generating wake-up events
2774  * (through the platform or using the native PCIe PME) or if the device supports
2775  * PME and one of its upstream bridges can generate wake-up events.
2776  */
2777 bool pci_dev_run_wake(struct pci_dev *dev)
2778 {
2779 	struct pci_bus *bus = dev->bus;
2780 
2781 	if (!dev->pme_support)
2782 		return false;
2783 
2784 	/* PME-capable in principle, but not from the target power state */
2785 	if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2786 		return false;
2787 
2788 	if (device_can_wakeup(&dev->dev))
2789 		return true;
2790 
2791 	while (bus->parent) {
2792 		struct pci_dev *bridge = bus->self;
2793 
2794 		if (device_can_wakeup(&bridge->dev))
2795 			return true;
2796 
2797 		bus = bus->parent;
2798 	}
2799 
2800 	/* We have reached the root bus. */
2801 	if (bus->bridge)
2802 		return device_can_wakeup(bus->bridge);
2803 
2804 	return false;
2805 }
2806 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2807 
2808 /**
2809  * pci_dev_need_resume - Check if it is necessary to resume the device.
2810  * @pci_dev: Device to check.
2811  *
2812  * Return 'true' if the device is not runtime-suspended or it has to be
2813  * reconfigured due to wakeup settings difference between system and runtime
2814  * suspend, or the current power state of it is not suitable for the upcoming
2815  * (system-wide) transition.
2816  */
2817 bool pci_dev_need_resume(struct pci_dev *pci_dev)
2818 {
2819 	struct device *dev = &pci_dev->dev;
2820 	pci_power_t target_state;
2821 
2822 	if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2823 		return true;
2824 
2825 	target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2826 
2827 	/*
2828 	 * If the earlier platform check has not triggered, D3cold is just power
2829 	 * removal on top of D3hot, so no need to resume the device in that
2830 	 * case.
2831 	 */
2832 	return target_state != pci_dev->current_state &&
2833 		target_state != PCI_D3cold &&
2834 		pci_dev->current_state != PCI_D3hot;
2835 }
2836 
2837 /**
2838  * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2839  * @pci_dev: Device to check.
2840  *
2841  * If the device is suspended and it is not configured for system wakeup,
2842  * disable PME for it to prevent it from waking up the system unnecessarily.
2843  *
2844  * Note that if the device's power state is D3cold and the platform check in
2845  * pci_dev_need_resume() has not triggered, the device's configuration need not
2846  * be changed.
2847  */
2848 void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2849 {
2850 	struct device *dev = &pci_dev->dev;
2851 
2852 	spin_lock_irq(&dev->power.lock);
2853 
2854 	if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2855 	    pci_dev->current_state < PCI_D3cold)
2856 		__pci_pme_active(pci_dev, false);
2857 
2858 	spin_unlock_irq(&dev->power.lock);
2859 }
2860 
2861 /**
2862  * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2863  * @pci_dev: Device to handle.
2864  *
2865  * If the device is runtime suspended and wakeup-capable, enable PME for it as
2866  * it might have been disabled during the prepare phase of system suspend if
2867  * the device was not configured for system wakeup.
2868  */
2869 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2870 {
2871 	struct device *dev = &pci_dev->dev;
2872 
2873 	if (!pci_dev_run_wake(pci_dev))
2874 		return;
2875 
2876 	spin_lock_irq(&dev->power.lock);
2877 
2878 	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2879 		__pci_pme_active(pci_dev, true);
2880 
2881 	spin_unlock_irq(&dev->power.lock);
2882 }
2883 
2884 /**
2885  * pci_choose_state - Choose the power state of a PCI device.
2886  * @dev: Target PCI device.
2887  * @state: Target state for the whole system.
2888  *
2889  * Returns PCI power state suitable for @dev and @state.
2890  */
2891 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
2892 {
2893 	if (state.event == PM_EVENT_ON)
2894 		return PCI_D0;
2895 
2896 	return pci_target_state(dev, false);
2897 }
2898 EXPORT_SYMBOL(pci_choose_state);
2899 
2900 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2901 {
2902 	struct device *dev = &pdev->dev;
2903 	struct device *parent = dev->parent;
2904 
2905 	if (parent)
2906 		pm_runtime_get_sync(parent);
2907 	pm_runtime_get_noresume(dev);
2908 	/*
2909 	 * pdev->current_state is set to PCI_D3cold during suspending,
2910 	 * so wait until suspending completes
2911 	 */
2912 	pm_runtime_barrier(dev);
2913 	/*
2914 	 * Only need to resume devices in D3cold, because config
2915 	 * registers are still accessible for devices suspended but
2916 	 * not in D3cold.
2917 	 */
2918 	if (pdev->current_state == PCI_D3cold)
2919 		pm_runtime_resume(dev);
2920 }
2921 
2922 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2923 {
2924 	struct device *dev = &pdev->dev;
2925 	struct device *parent = dev->parent;
2926 
2927 	pm_runtime_put(dev);
2928 	if (parent)
2929 		pm_runtime_put_sync(parent);
2930 }
2931 
2932 static const struct dmi_system_id bridge_d3_blacklist[] = {
2933 #ifdef CONFIG_X86
2934 	{
2935 		/*
2936 		 * Gigabyte X299 root port is not marked as hotplug capable
2937 		 * which allows Linux to power manage it.  However, this
2938 		 * confuses the BIOS SMI handler so don't power manage root
2939 		 * ports on that system.
2940 		 */
2941 		.ident = "X299 DESIGNARE EX-CF",
2942 		.matches = {
2943 			DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2944 			DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2945 		},
2946 	},
2947 	{
2948 		/*
2949 		 * Downstream device is not accessible after putting a root port
2950 		 * into D3cold and back into D0 on Elo i2.
2951 		 */
2952 		.ident = "Elo i2",
2953 		.matches = {
2954 			DMI_MATCH(DMI_SYS_VENDOR, "Elo Touch Solutions"),
2955 			DMI_MATCH(DMI_PRODUCT_NAME, "Elo i2"),
2956 			DMI_MATCH(DMI_PRODUCT_VERSION, "RevB"),
2957 		},
2958 	},
2959 #endif
2960 	{ }
2961 };
2962 
2963 /**
2964  * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2965  * @bridge: Bridge to check
2966  *
2967  * This function checks if it is possible to move the bridge to D3.
2968  * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2969  */
2970 bool pci_bridge_d3_possible(struct pci_dev *bridge)
2971 {
2972 	if (!pci_is_pcie(bridge))
2973 		return false;
2974 
2975 	switch (pci_pcie_type(bridge)) {
2976 	case PCI_EXP_TYPE_ROOT_PORT:
2977 	case PCI_EXP_TYPE_UPSTREAM:
2978 	case PCI_EXP_TYPE_DOWNSTREAM:
2979 		if (pci_bridge_d3_disable)
2980 			return false;
2981 
2982 		/*
2983 		 * Hotplug ports handled by firmware in System Management Mode
2984 		 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2985 		 */
2986 		if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
2987 			return false;
2988 
2989 		if (pci_bridge_d3_force)
2990 			return true;
2991 
2992 		/* Even the oldest 2010 Thunderbolt controller supports D3. */
2993 		if (bridge->is_thunderbolt)
2994 			return true;
2995 
2996 		/* Platform might know better if the bridge supports D3 */
2997 		if (platform_pci_bridge_d3(bridge))
2998 			return true;
2999 
3000 		/*
3001 		 * Hotplug ports handled natively by the OS were not validated
3002 		 * by vendors for runtime D3 at least until 2018 because there
3003 		 * was no OS support.
3004 		 */
3005 		if (bridge->is_hotplug_bridge)
3006 			return false;
3007 
3008 		if (dmi_check_system(bridge_d3_blacklist))
3009 			return false;
3010 
3011 		/*
3012 		 * It should be safe to put PCIe ports from 2015 or newer
3013 		 * to D3.
3014 		 */
3015 		if (dmi_get_bios_year() >= 2015)
3016 			return true;
3017 		break;
3018 	}
3019 
3020 	return false;
3021 }
3022 
3023 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
3024 {
3025 	bool *d3cold_ok = data;
3026 
3027 	if (/* The device needs to be allowed to go D3cold ... */
3028 	    dev->no_d3cold || !dev->d3cold_allowed ||
3029 
3030 	    /* ... and if it is wakeup capable to do so from D3cold. */
3031 	    (device_may_wakeup(&dev->dev) &&
3032 	     !pci_pme_capable(dev, PCI_D3cold)) ||
3033 
3034 	    /* If it is a bridge it must be allowed to go to D3. */
3035 	    !pci_power_manageable(dev))
3036 
3037 		*d3cold_ok = false;
3038 
3039 	return !*d3cold_ok;
3040 }
3041 
3042 /*
3043  * pci_bridge_d3_update - Update bridge D3 capabilities
3044  * @dev: PCI device which is changed
3045  *
3046  * Update upstream bridge PM capabilities accordingly depending on if the
3047  * device PM configuration was changed or the device is being removed.  The
3048  * change is also propagated upstream.
3049  */
3050 void pci_bridge_d3_update(struct pci_dev *dev)
3051 {
3052 	bool remove = !device_is_registered(&dev->dev);
3053 	struct pci_dev *bridge;
3054 	bool d3cold_ok = true;
3055 
3056 	bridge = pci_upstream_bridge(dev);
3057 	if (!bridge || !pci_bridge_d3_possible(bridge))
3058 		return;
3059 
3060 	/*
3061 	 * If D3 is currently allowed for the bridge, removing one of its
3062 	 * children won't change that.
3063 	 */
3064 	if (remove && bridge->bridge_d3)
3065 		return;
3066 
3067 	/*
3068 	 * If D3 is currently allowed for the bridge and a child is added or
3069 	 * changed, disallowance of D3 can only be caused by that child, so
3070 	 * we only need to check that single device, not any of its siblings.
3071 	 *
3072 	 * If D3 is currently not allowed for the bridge, checking the device
3073 	 * first may allow us to skip checking its siblings.
3074 	 */
3075 	if (!remove)
3076 		pci_dev_check_d3cold(dev, &d3cold_ok);
3077 
3078 	/*
3079 	 * If D3 is currently not allowed for the bridge, this may be caused
3080 	 * either by the device being changed/removed or any of its siblings,
3081 	 * so we need to go through all children to find out if one of them
3082 	 * continues to block D3.
3083 	 */
3084 	if (d3cold_ok && !bridge->bridge_d3)
3085 		pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
3086 			     &d3cold_ok);
3087 
3088 	if (bridge->bridge_d3 != d3cold_ok) {
3089 		bridge->bridge_d3 = d3cold_ok;
3090 		/* Propagate change to upstream bridges */
3091 		pci_bridge_d3_update(bridge);
3092 	}
3093 }
3094 
3095 /**
3096  * pci_d3cold_enable - Enable D3cold for device
3097  * @dev: PCI device to handle
3098  *
3099  * This function can be used in drivers to enable D3cold from the device
3100  * they handle.  It also updates upstream PCI bridge PM capabilities
3101  * accordingly.
3102  */
3103 void pci_d3cold_enable(struct pci_dev *dev)
3104 {
3105 	if (dev->no_d3cold) {
3106 		dev->no_d3cold = false;
3107 		pci_bridge_d3_update(dev);
3108 	}
3109 }
3110 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
3111 
3112 /**
3113  * pci_d3cold_disable - Disable D3cold for device
3114  * @dev: PCI device to handle
3115  *
3116  * This function can be used in drivers to disable D3cold from the device
3117  * they handle.  It also updates upstream PCI bridge PM capabilities
3118  * accordingly.
3119  */
3120 void pci_d3cold_disable(struct pci_dev *dev)
3121 {
3122 	if (!dev->no_d3cold) {
3123 		dev->no_d3cold = true;
3124 		pci_bridge_d3_update(dev);
3125 	}
3126 }
3127 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3128 
3129 /**
3130  * pci_pm_init - Initialize PM functions of given PCI device
3131  * @dev: PCI device to handle.
3132  */
3133 void pci_pm_init(struct pci_dev *dev)
3134 {
3135 	int pm;
3136 	u16 status;
3137 	u16 pmc;
3138 
3139 	pm_runtime_forbid(&dev->dev);
3140 	pm_runtime_set_active(&dev->dev);
3141 	pm_runtime_enable(&dev->dev);
3142 	device_enable_async_suspend(&dev->dev);
3143 	dev->wakeup_prepared = false;
3144 
3145 	dev->pm_cap = 0;
3146 	dev->pme_support = 0;
3147 
3148 	/* find PCI PM capability in list */
3149 	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3150 	if (!pm)
3151 		return;
3152 	/* Check device's ability to generate PME# */
3153 	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3154 
3155 	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3156 		pci_err(dev, "unsupported PM cap regs version (%u)\n",
3157 			pmc & PCI_PM_CAP_VER_MASK);
3158 		return;
3159 	}
3160 
3161 	dev->pm_cap = pm;
3162 	dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3163 	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3164 	dev->bridge_d3 = pci_bridge_d3_possible(dev);
3165 	dev->d3cold_allowed = true;
3166 
3167 	dev->d1_support = false;
3168 	dev->d2_support = false;
3169 	if (!pci_no_d1d2(dev)) {
3170 		if (pmc & PCI_PM_CAP_D1)
3171 			dev->d1_support = true;
3172 		if (pmc & PCI_PM_CAP_D2)
3173 			dev->d2_support = true;
3174 
3175 		if (dev->d1_support || dev->d2_support)
3176 			pci_info(dev, "supports%s%s\n",
3177 				   dev->d1_support ? " D1" : "",
3178 				   dev->d2_support ? " D2" : "");
3179 	}
3180 
3181 	pmc &= PCI_PM_CAP_PME_MASK;
3182 	if (pmc) {
3183 		pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3184 			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3185 			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3186 			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3187 			 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3188 			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3189 		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
3190 		dev->pme_poll = true;
3191 		/*
3192 		 * Make device's PM flags reflect the wake-up capability, but
3193 		 * let the user space enable it to wake up the system as needed.
3194 		 */
3195 		device_set_wakeup_capable(&dev->dev, true);
3196 		/* Disable the PME# generation functionality */
3197 		pci_pme_active(dev, false);
3198 	}
3199 
3200 	pci_read_config_word(dev, PCI_STATUS, &status);
3201 	if (status & PCI_STATUS_IMM_READY)
3202 		dev->imm_ready = 1;
3203 }
3204 
3205 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3206 {
3207 	unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3208 
3209 	switch (prop) {
3210 	case PCI_EA_P_MEM:
3211 	case PCI_EA_P_VF_MEM:
3212 		flags |= IORESOURCE_MEM;
3213 		break;
3214 	case PCI_EA_P_MEM_PREFETCH:
3215 	case PCI_EA_P_VF_MEM_PREFETCH:
3216 		flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3217 		break;
3218 	case PCI_EA_P_IO:
3219 		flags |= IORESOURCE_IO;
3220 		break;
3221 	default:
3222 		return 0;
3223 	}
3224 
3225 	return flags;
3226 }
3227 
3228 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3229 					    u8 prop)
3230 {
3231 	if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3232 		return &dev->resource[bei];
3233 #ifdef CONFIG_PCI_IOV
3234 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3235 		 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3236 		return &dev->resource[PCI_IOV_RESOURCES +
3237 				      bei - PCI_EA_BEI_VF_BAR0];
3238 #endif
3239 	else if (bei == PCI_EA_BEI_ROM)
3240 		return &dev->resource[PCI_ROM_RESOURCE];
3241 	else
3242 		return NULL;
3243 }
3244 
3245 /* Read an Enhanced Allocation (EA) entry */
3246 static int pci_ea_read(struct pci_dev *dev, int offset)
3247 {
3248 	struct resource *res;
3249 	int ent_size, ent_offset = offset;
3250 	resource_size_t start, end;
3251 	unsigned long flags;
3252 	u32 dw0, bei, base, max_offset;
3253 	u8 prop;
3254 	bool support_64 = (sizeof(resource_size_t) >= 8);
3255 
3256 	pci_read_config_dword(dev, ent_offset, &dw0);
3257 	ent_offset += 4;
3258 
3259 	/* Entry size field indicates DWORDs after 1st */
3260 	ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
3261 
3262 	if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3263 		goto out;
3264 
3265 	bei = (dw0 & PCI_EA_BEI) >> 4;
3266 	prop = (dw0 & PCI_EA_PP) >> 8;
3267 
3268 	/*
3269 	 * If the Property is in the reserved range, try the Secondary
3270 	 * Property instead.
3271 	 */
3272 	if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3273 		prop = (dw0 & PCI_EA_SP) >> 16;
3274 	if (prop > PCI_EA_P_BRIDGE_IO)
3275 		goto out;
3276 
3277 	res = pci_ea_get_resource(dev, bei, prop);
3278 	if (!res) {
3279 		pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3280 		goto out;
3281 	}
3282 
3283 	flags = pci_ea_flags(dev, prop);
3284 	if (!flags) {
3285 		pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3286 		goto out;
3287 	}
3288 
3289 	/* Read Base */
3290 	pci_read_config_dword(dev, ent_offset, &base);
3291 	start = (base & PCI_EA_FIELD_MASK);
3292 	ent_offset += 4;
3293 
3294 	/* Read MaxOffset */
3295 	pci_read_config_dword(dev, ent_offset, &max_offset);
3296 	ent_offset += 4;
3297 
3298 	/* Read Base MSBs (if 64-bit entry) */
3299 	if (base & PCI_EA_IS_64) {
3300 		u32 base_upper;
3301 
3302 		pci_read_config_dword(dev, ent_offset, &base_upper);
3303 		ent_offset += 4;
3304 
3305 		flags |= IORESOURCE_MEM_64;
3306 
3307 		/* entry starts above 32-bit boundary, can't use */
3308 		if (!support_64 && base_upper)
3309 			goto out;
3310 
3311 		if (support_64)
3312 			start |= ((u64)base_upper << 32);
3313 	}
3314 
3315 	end = start + (max_offset | 0x03);
3316 
3317 	/* Read MaxOffset MSBs (if 64-bit entry) */
3318 	if (max_offset & PCI_EA_IS_64) {
3319 		u32 max_offset_upper;
3320 
3321 		pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3322 		ent_offset += 4;
3323 
3324 		flags |= IORESOURCE_MEM_64;
3325 
3326 		/* entry too big, can't use */
3327 		if (!support_64 && max_offset_upper)
3328 			goto out;
3329 
3330 		if (support_64)
3331 			end += ((u64)max_offset_upper << 32);
3332 	}
3333 
3334 	if (end < start) {
3335 		pci_err(dev, "EA Entry crosses address boundary\n");
3336 		goto out;
3337 	}
3338 
3339 	if (ent_size != ent_offset - offset) {
3340 		pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3341 			ent_size, ent_offset - offset);
3342 		goto out;
3343 	}
3344 
3345 	res->name = pci_name(dev);
3346 	res->start = start;
3347 	res->end = end;
3348 	res->flags = flags;
3349 
3350 	if (bei <= PCI_EA_BEI_BAR5)
3351 		pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3352 			   bei, res, prop);
3353 	else if (bei == PCI_EA_BEI_ROM)
3354 		pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3355 			   res, prop);
3356 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3357 		pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3358 			   bei - PCI_EA_BEI_VF_BAR0, res, prop);
3359 	else
3360 		pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3361 			   bei, res, prop);
3362 
3363 out:
3364 	return offset + ent_size;
3365 }
3366 
3367 /* Enhanced Allocation Initialization */
3368 void pci_ea_init(struct pci_dev *dev)
3369 {
3370 	int ea;
3371 	u8 num_ent;
3372 	int offset;
3373 	int i;
3374 
3375 	/* find PCI EA capability in list */
3376 	ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3377 	if (!ea)
3378 		return;
3379 
3380 	/* determine the number of entries */
3381 	pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3382 					&num_ent);
3383 	num_ent &= PCI_EA_NUM_ENT_MASK;
3384 
3385 	offset = ea + PCI_EA_FIRST_ENT;
3386 
3387 	/* Skip DWORD 2 for type 1 functions */
3388 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3389 		offset += 4;
3390 
3391 	/* parse each EA entry */
3392 	for (i = 0; i < num_ent; ++i)
3393 		offset = pci_ea_read(dev, offset);
3394 }
3395 
3396 static void pci_add_saved_cap(struct pci_dev *pci_dev,
3397 	struct pci_cap_saved_state *new_cap)
3398 {
3399 	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3400 }
3401 
3402 /**
3403  * _pci_add_cap_save_buffer - allocate buffer for saving given
3404  *			      capability registers
3405  * @dev: the PCI device
3406  * @cap: the capability to allocate the buffer for
3407  * @extended: Standard or Extended capability ID
3408  * @size: requested size of the buffer
3409  */
3410 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3411 				    bool extended, unsigned int size)
3412 {
3413 	int pos;
3414 	struct pci_cap_saved_state *save_state;
3415 
3416 	if (extended)
3417 		pos = pci_find_ext_capability(dev, cap);
3418 	else
3419 		pos = pci_find_capability(dev, cap);
3420 
3421 	if (!pos)
3422 		return 0;
3423 
3424 	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3425 	if (!save_state)
3426 		return -ENOMEM;
3427 
3428 	save_state->cap.cap_nr = cap;
3429 	save_state->cap.cap_extended = extended;
3430 	save_state->cap.size = size;
3431 	pci_add_saved_cap(dev, save_state);
3432 
3433 	return 0;
3434 }
3435 
3436 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3437 {
3438 	return _pci_add_cap_save_buffer(dev, cap, false, size);
3439 }
3440 
3441 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3442 {
3443 	return _pci_add_cap_save_buffer(dev, cap, true, size);
3444 }
3445 
3446 /**
3447  * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3448  * @dev: the PCI device
3449  */
3450 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3451 {
3452 	int error;
3453 
3454 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3455 					PCI_EXP_SAVE_REGS * sizeof(u16));
3456 	if (error)
3457 		pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3458 
3459 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3460 	if (error)
3461 		pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3462 
3463 	error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3464 					    2 * sizeof(u16));
3465 	if (error)
3466 		pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3467 
3468 	error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_L1SS,
3469 					    2 * sizeof(u32));
3470 	if (error)
3471 		pci_err(dev, "unable to allocate suspend buffer for ASPM-L1SS\n");
3472 
3473 	pci_allocate_vc_save_buffers(dev);
3474 }
3475 
3476 void pci_free_cap_save_buffers(struct pci_dev *dev)
3477 {
3478 	struct pci_cap_saved_state *tmp;
3479 	struct hlist_node *n;
3480 
3481 	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3482 		kfree(tmp);
3483 }
3484 
3485 /**
3486  * pci_configure_ari - enable or disable ARI forwarding
3487  * @dev: the PCI device
3488  *
3489  * If @dev and its upstream bridge both support ARI, enable ARI in the
3490  * bridge.  Otherwise, disable ARI in the bridge.
3491  */
3492 void pci_configure_ari(struct pci_dev *dev)
3493 {
3494 	u32 cap;
3495 	struct pci_dev *bridge;
3496 
3497 	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3498 		return;
3499 
3500 	bridge = dev->bus->self;
3501 	if (!bridge)
3502 		return;
3503 
3504 	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3505 	if (!(cap & PCI_EXP_DEVCAP2_ARI))
3506 		return;
3507 
3508 	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3509 		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3510 					 PCI_EXP_DEVCTL2_ARI);
3511 		bridge->ari_enabled = 1;
3512 	} else {
3513 		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3514 					   PCI_EXP_DEVCTL2_ARI);
3515 		bridge->ari_enabled = 0;
3516 	}
3517 }
3518 
3519 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3520 {
3521 	int pos;
3522 	u16 cap, ctrl;
3523 
3524 	pos = pdev->acs_cap;
3525 	if (!pos)
3526 		return false;
3527 
3528 	/*
3529 	 * Except for egress control, capabilities are either required
3530 	 * or only required if controllable.  Features missing from the
3531 	 * capability field can therefore be assumed as hard-wired enabled.
3532 	 */
3533 	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3534 	acs_flags &= (cap | PCI_ACS_EC);
3535 
3536 	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3537 	return (ctrl & acs_flags) == acs_flags;
3538 }
3539 
3540 /**
3541  * pci_acs_enabled - test ACS against required flags for a given device
3542  * @pdev: device to test
3543  * @acs_flags: required PCI ACS flags
3544  *
3545  * Return true if the device supports the provided flags.  Automatically
3546  * filters out flags that are not implemented on multifunction devices.
3547  *
3548  * Note that this interface checks the effective ACS capabilities of the
3549  * device rather than the actual capabilities.  For instance, most single
3550  * function endpoints are not required to support ACS because they have no
3551  * opportunity for peer-to-peer access.  We therefore return 'true'
3552  * regardless of whether the device exposes an ACS capability.  This makes
3553  * it much easier for callers of this function to ignore the actual type
3554  * or topology of the device when testing ACS support.
3555  */
3556 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3557 {
3558 	int ret;
3559 
3560 	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3561 	if (ret >= 0)
3562 		return ret > 0;
3563 
3564 	/*
3565 	 * Conventional PCI and PCI-X devices never support ACS, either
3566 	 * effectively or actually.  The shared bus topology implies that
3567 	 * any device on the bus can receive or snoop DMA.
3568 	 */
3569 	if (!pci_is_pcie(pdev))
3570 		return false;
3571 
3572 	switch (pci_pcie_type(pdev)) {
3573 	/*
3574 	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3575 	 * but since their primary interface is PCI/X, we conservatively
3576 	 * handle them as we would a non-PCIe device.
3577 	 */
3578 	case PCI_EXP_TYPE_PCIE_BRIDGE:
3579 	/*
3580 	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
3581 	 * applicable... must never implement an ACS Extended Capability...".
3582 	 * This seems arbitrary, but we take a conservative interpretation
3583 	 * of this statement.
3584 	 */
3585 	case PCI_EXP_TYPE_PCI_BRIDGE:
3586 	case PCI_EXP_TYPE_RC_EC:
3587 		return false;
3588 	/*
3589 	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3590 	 * implement ACS in order to indicate their peer-to-peer capabilities,
3591 	 * regardless of whether they are single- or multi-function devices.
3592 	 */
3593 	case PCI_EXP_TYPE_DOWNSTREAM:
3594 	case PCI_EXP_TYPE_ROOT_PORT:
3595 		return pci_acs_flags_enabled(pdev, acs_flags);
3596 	/*
3597 	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3598 	 * implemented by the remaining PCIe types to indicate peer-to-peer
3599 	 * capabilities, but only when they are part of a multifunction
3600 	 * device.  The footnote for section 6.12 indicates the specific
3601 	 * PCIe types included here.
3602 	 */
3603 	case PCI_EXP_TYPE_ENDPOINT:
3604 	case PCI_EXP_TYPE_UPSTREAM:
3605 	case PCI_EXP_TYPE_LEG_END:
3606 	case PCI_EXP_TYPE_RC_END:
3607 		if (!pdev->multifunction)
3608 			break;
3609 
3610 		return pci_acs_flags_enabled(pdev, acs_flags);
3611 	}
3612 
3613 	/*
3614 	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3615 	 * to single function devices with the exception of downstream ports.
3616 	 */
3617 	return true;
3618 }
3619 
3620 /**
3621  * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
3622  * @start: starting downstream device
3623  * @end: ending upstream device or NULL to search to the root bus
3624  * @acs_flags: required flags
3625  *
3626  * Walk up a device tree from start to end testing PCI ACS support.  If
3627  * any step along the way does not support the required flags, return false.
3628  */
3629 bool pci_acs_path_enabled(struct pci_dev *start,
3630 			  struct pci_dev *end, u16 acs_flags)
3631 {
3632 	struct pci_dev *pdev, *parent = start;
3633 
3634 	do {
3635 		pdev = parent;
3636 
3637 		if (!pci_acs_enabled(pdev, acs_flags))
3638 			return false;
3639 
3640 		if (pci_is_root_bus(pdev->bus))
3641 			return (end == NULL);
3642 
3643 		parent = pdev->bus->self;
3644 	} while (pdev != end);
3645 
3646 	return true;
3647 }
3648 
3649 /**
3650  * pci_acs_init - Initialize ACS if hardware supports it
3651  * @dev: the PCI device
3652  */
3653 void pci_acs_init(struct pci_dev *dev)
3654 {
3655 	dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3656 
3657 	/*
3658 	 * Attempt to enable ACS regardless of capability because some Root
3659 	 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3660 	 * the standard ACS capability but still support ACS via those
3661 	 * quirks.
3662 	 */
3663 	pci_enable_acs(dev);
3664 }
3665 
3666 /**
3667  * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3668  * @pdev: PCI device
3669  * @bar: BAR to find
3670  *
3671  * Helper to find the position of the ctrl register for a BAR.
3672  * Returns -ENOTSUPP if resizable BARs are not supported at all.
3673  * Returns -ENOENT if no ctrl register for the BAR could be found.
3674  */
3675 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3676 {
3677 	unsigned int pos, nbars, i;
3678 	u32 ctrl;
3679 
3680 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3681 	if (!pos)
3682 		return -ENOTSUPP;
3683 
3684 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3685 	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3686 		    PCI_REBAR_CTRL_NBAR_SHIFT;
3687 
3688 	for (i = 0; i < nbars; i++, pos += 8) {
3689 		int bar_idx;
3690 
3691 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3692 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3693 		if (bar_idx == bar)
3694 			return pos;
3695 	}
3696 
3697 	return -ENOENT;
3698 }
3699 
3700 /**
3701  * pci_rebar_get_possible_sizes - get possible sizes for BAR
3702  * @pdev: PCI device
3703  * @bar: BAR to query
3704  *
3705  * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3706  * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3707  */
3708 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3709 {
3710 	int pos;
3711 	u32 cap;
3712 
3713 	pos = pci_rebar_find_pos(pdev, bar);
3714 	if (pos < 0)
3715 		return 0;
3716 
3717 	pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3718 	cap &= PCI_REBAR_CAP_SIZES;
3719 
3720 	/* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
3721 	if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
3722 	    bar == 0 && cap == 0x7000)
3723 		cap = 0x3f000;
3724 
3725 	return cap >> 4;
3726 }
3727 EXPORT_SYMBOL(pci_rebar_get_possible_sizes);
3728 
3729 /**
3730  * pci_rebar_get_current_size - get the current size of a BAR
3731  * @pdev: PCI device
3732  * @bar: BAR to set size to
3733  *
3734  * Read the size of a BAR from the resizable BAR config.
3735  * Returns size if found or negative error code.
3736  */
3737 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3738 {
3739 	int pos;
3740 	u32 ctrl;
3741 
3742 	pos = pci_rebar_find_pos(pdev, bar);
3743 	if (pos < 0)
3744 		return pos;
3745 
3746 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3747 	return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3748 }
3749 
3750 /**
3751  * pci_rebar_set_size - set a new size for a BAR
3752  * @pdev: PCI device
3753  * @bar: BAR to set size to
3754  * @size: new size as defined in the spec (0=1MB, 19=512GB)
3755  *
3756  * Set the new size of a BAR as defined in the spec.
3757  * Returns zero if resizing was successful, error code otherwise.
3758  */
3759 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3760 {
3761 	int pos;
3762 	u32 ctrl;
3763 
3764 	pos = pci_rebar_find_pos(pdev, bar);
3765 	if (pos < 0)
3766 		return pos;
3767 
3768 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3769 	ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3770 	ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3771 	pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3772 	return 0;
3773 }
3774 
3775 /**
3776  * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3777  * @dev: the PCI device
3778  * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3779  *	PCI_EXP_DEVCAP2_ATOMIC_COMP32
3780  *	PCI_EXP_DEVCAP2_ATOMIC_COMP64
3781  *	PCI_EXP_DEVCAP2_ATOMIC_COMP128
3782  *
3783  * Return 0 if all upstream bridges support AtomicOp routing, egress
3784  * blocking is disabled on all upstream ports, and the root port supports
3785  * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3786  * AtomicOp completion), or negative otherwise.
3787  */
3788 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3789 {
3790 	struct pci_bus *bus = dev->bus;
3791 	struct pci_dev *bridge;
3792 	u32 cap, ctl2;
3793 
3794 	/*
3795 	 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit
3796 	 * in Device Control 2 is reserved in VFs and the PF value applies
3797 	 * to all associated VFs.
3798 	 */
3799 	if (dev->is_virtfn)
3800 		return -EINVAL;
3801 
3802 	if (!pci_is_pcie(dev))
3803 		return -EINVAL;
3804 
3805 	/*
3806 	 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3807 	 * AtomicOp requesters.  For now, we only support endpoints as
3808 	 * requesters and root ports as completers.  No endpoints as
3809 	 * completers, and no peer-to-peer.
3810 	 */
3811 
3812 	switch (pci_pcie_type(dev)) {
3813 	case PCI_EXP_TYPE_ENDPOINT:
3814 	case PCI_EXP_TYPE_LEG_END:
3815 	case PCI_EXP_TYPE_RC_END:
3816 		break;
3817 	default:
3818 		return -EINVAL;
3819 	}
3820 
3821 	while (bus->parent) {
3822 		bridge = bus->self;
3823 
3824 		pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3825 
3826 		switch (pci_pcie_type(bridge)) {
3827 		/* Ensure switch ports support AtomicOp routing */
3828 		case PCI_EXP_TYPE_UPSTREAM:
3829 		case PCI_EXP_TYPE_DOWNSTREAM:
3830 			if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3831 				return -EINVAL;
3832 			break;
3833 
3834 		/* Ensure root port supports all the sizes we care about */
3835 		case PCI_EXP_TYPE_ROOT_PORT:
3836 			if ((cap & cap_mask) != cap_mask)
3837 				return -EINVAL;
3838 			break;
3839 		}
3840 
3841 		/* Ensure upstream ports don't block AtomicOps on egress */
3842 		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3843 			pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3844 						   &ctl2);
3845 			if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3846 				return -EINVAL;
3847 		}
3848 
3849 		bus = bus->parent;
3850 	}
3851 
3852 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3853 				 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3854 	return 0;
3855 }
3856 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3857 
3858 /**
3859  * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3860  * @dev: the PCI device
3861  * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3862  *
3863  * Perform INTx swizzling for a device behind one level of bridge.  This is
3864  * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3865  * behind bridges on add-in cards.  For devices with ARI enabled, the slot
3866  * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3867  * the PCI Express Base Specification, Revision 2.1)
3868  */
3869 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3870 {
3871 	int slot;
3872 
3873 	if (pci_ari_enabled(dev->bus))
3874 		slot = 0;
3875 	else
3876 		slot = PCI_SLOT(dev->devfn);
3877 
3878 	return (((pin - 1) + slot) % 4) + 1;
3879 }
3880 
3881 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3882 {
3883 	u8 pin;
3884 
3885 	pin = dev->pin;
3886 	if (!pin)
3887 		return -1;
3888 
3889 	while (!pci_is_root_bus(dev->bus)) {
3890 		pin = pci_swizzle_interrupt_pin(dev, pin);
3891 		dev = dev->bus->self;
3892 	}
3893 	*bridge = dev;
3894 	return pin;
3895 }
3896 
3897 /**
3898  * pci_common_swizzle - swizzle INTx all the way to root bridge
3899  * @dev: the PCI device
3900  * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3901  *
3902  * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
3903  * bridges all the way up to a PCI root bus.
3904  */
3905 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3906 {
3907 	u8 pin = *pinp;
3908 
3909 	while (!pci_is_root_bus(dev->bus)) {
3910 		pin = pci_swizzle_interrupt_pin(dev, pin);
3911 		dev = dev->bus->self;
3912 	}
3913 	*pinp = pin;
3914 	return PCI_SLOT(dev->devfn);
3915 }
3916 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3917 
3918 /**
3919  * pci_release_region - Release a PCI bar
3920  * @pdev: PCI device whose resources were previously reserved by
3921  *	  pci_request_region()
3922  * @bar: BAR to release
3923  *
3924  * Releases the PCI I/O and memory resources previously reserved by a
3925  * successful call to pci_request_region().  Call this function only
3926  * after all use of the PCI regions has ceased.
3927  */
3928 void pci_release_region(struct pci_dev *pdev, int bar)
3929 {
3930 	struct pci_devres *dr;
3931 
3932 	if (pci_resource_len(pdev, bar) == 0)
3933 		return;
3934 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3935 		release_region(pci_resource_start(pdev, bar),
3936 				pci_resource_len(pdev, bar));
3937 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3938 		release_mem_region(pci_resource_start(pdev, bar),
3939 				pci_resource_len(pdev, bar));
3940 
3941 	dr = find_pci_dr(pdev);
3942 	if (dr)
3943 		dr->region_mask &= ~(1 << bar);
3944 }
3945 EXPORT_SYMBOL(pci_release_region);
3946 
3947 /**
3948  * __pci_request_region - Reserved PCI I/O and memory resource
3949  * @pdev: PCI device whose resources are to be reserved
3950  * @bar: BAR to be reserved
3951  * @res_name: Name to be associated with resource.
3952  * @exclusive: whether the region access is exclusive or not
3953  *
3954  * Mark the PCI region associated with PCI device @pdev BAR @bar as
3955  * being reserved by owner @res_name.  Do not access any
3956  * address inside the PCI regions unless this call returns
3957  * successfully.
3958  *
3959  * If @exclusive is set, then the region is marked so that userspace
3960  * is explicitly not allowed to map the resource via /dev/mem or
3961  * sysfs MMIO access.
3962  *
3963  * Returns 0 on success, or %EBUSY on error.  A warning
3964  * message is also printed on failure.
3965  */
3966 static int __pci_request_region(struct pci_dev *pdev, int bar,
3967 				const char *res_name, int exclusive)
3968 {
3969 	struct pci_devres *dr;
3970 
3971 	if (pci_resource_len(pdev, bar) == 0)
3972 		return 0;
3973 
3974 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3975 		if (!request_region(pci_resource_start(pdev, bar),
3976 			    pci_resource_len(pdev, bar), res_name))
3977 			goto err_out;
3978 	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3979 		if (!__request_mem_region(pci_resource_start(pdev, bar),
3980 					pci_resource_len(pdev, bar), res_name,
3981 					exclusive))
3982 			goto err_out;
3983 	}
3984 
3985 	dr = find_pci_dr(pdev);
3986 	if (dr)
3987 		dr->region_mask |= 1 << bar;
3988 
3989 	return 0;
3990 
3991 err_out:
3992 	pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3993 		 &pdev->resource[bar]);
3994 	return -EBUSY;
3995 }
3996 
3997 /**
3998  * pci_request_region - Reserve PCI I/O and memory resource
3999  * @pdev: PCI device whose resources are to be reserved
4000  * @bar: BAR to be reserved
4001  * @res_name: Name to be associated with resource
4002  *
4003  * Mark the PCI region associated with PCI device @pdev BAR @bar as
4004  * being reserved by owner @res_name.  Do not access any
4005  * address inside the PCI regions unless this call returns
4006  * successfully.
4007  *
4008  * Returns 0 on success, or %EBUSY on error.  A warning
4009  * message is also printed on failure.
4010  */
4011 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
4012 {
4013 	return __pci_request_region(pdev, bar, res_name, 0);
4014 }
4015 EXPORT_SYMBOL(pci_request_region);
4016 
4017 /**
4018  * pci_release_selected_regions - Release selected PCI I/O and memory resources
4019  * @pdev: PCI device whose resources were previously reserved
4020  * @bars: Bitmask of BARs to be released
4021  *
4022  * Release selected PCI I/O and memory resources previously reserved.
4023  * Call this function only after all use of the PCI regions has ceased.
4024  */
4025 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
4026 {
4027 	int i;
4028 
4029 	for (i = 0; i < PCI_STD_NUM_BARS; i++)
4030 		if (bars & (1 << i))
4031 			pci_release_region(pdev, i);
4032 }
4033 EXPORT_SYMBOL(pci_release_selected_regions);
4034 
4035 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
4036 					  const char *res_name, int excl)
4037 {
4038 	int i;
4039 
4040 	for (i = 0; i < PCI_STD_NUM_BARS; i++)
4041 		if (bars & (1 << i))
4042 			if (__pci_request_region(pdev, i, res_name, excl))
4043 				goto err_out;
4044 	return 0;
4045 
4046 err_out:
4047 	while (--i >= 0)
4048 		if (bars & (1 << i))
4049 			pci_release_region(pdev, i);
4050 
4051 	return -EBUSY;
4052 }
4053 
4054 
4055 /**
4056  * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
4057  * @pdev: PCI device whose resources are to be reserved
4058  * @bars: Bitmask of BARs to be requested
4059  * @res_name: Name to be associated with resource
4060  */
4061 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
4062 				 const char *res_name)
4063 {
4064 	return __pci_request_selected_regions(pdev, bars, res_name, 0);
4065 }
4066 EXPORT_SYMBOL(pci_request_selected_regions);
4067 
4068 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
4069 					   const char *res_name)
4070 {
4071 	return __pci_request_selected_regions(pdev, bars, res_name,
4072 			IORESOURCE_EXCLUSIVE);
4073 }
4074 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
4075 
4076 /**
4077  * pci_release_regions - Release reserved PCI I/O and memory resources
4078  * @pdev: PCI device whose resources were previously reserved by
4079  *	  pci_request_regions()
4080  *
4081  * Releases all PCI I/O and memory resources previously reserved by a
4082  * successful call to pci_request_regions().  Call this function only
4083  * after all use of the PCI regions has ceased.
4084  */
4085 
4086 void pci_release_regions(struct pci_dev *pdev)
4087 {
4088 	pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
4089 }
4090 EXPORT_SYMBOL(pci_release_regions);
4091 
4092 /**
4093  * pci_request_regions - Reserve PCI I/O and memory resources
4094  * @pdev: PCI device whose resources are to be reserved
4095  * @res_name: Name to be associated with resource.
4096  *
4097  * Mark all PCI regions associated with PCI device @pdev as
4098  * being reserved by owner @res_name.  Do not access any
4099  * address inside the PCI regions unless this call returns
4100  * successfully.
4101  *
4102  * Returns 0 on success, or %EBUSY on error.  A warning
4103  * message is also printed on failure.
4104  */
4105 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
4106 {
4107 	return pci_request_selected_regions(pdev,
4108 			((1 << PCI_STD_NUM_BARS) - 1), res_name);
4109 }
4110 EXPORT_SYMBOL(pci_request_regions);
4111 
4112 /**
4113  * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
4114  * @pdev: PCI device whose resources are to be reserved
4115  * @res_name: Name to be associated with resource.
4116  *
4117  * Mark all PCI regions associated with PCI device @pdev as being reserved
4118  * by owner @res_name.  Do not access any address inside the PCI regions
4119  * unless this call returns successfully.
4120  *
4121  * pci_request_regions_exclusive() will mark the region so that /dev/mem
4122  * and the sysfs MMIO access will not be allowed.
4123  *
4124  * Returns 0 on success, or %EBUSY on error.  A warning message is also
4125  * printed on failure.
4126  */
4127 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
4128 {
4129 	return pci_request_selected_regions_exclusive(pdev,
4130 				((1 << PCI_STD_NUM_BARS) - 1), res_name);
4131 }
4132 EXPORT_SYMBOL(pci_request_regions_exclusive);
4133 
4134 /*
4135  * Record the PCI IO range (expressed as CPU physical address + size).
4136  * Return a negative value if an error has occurred, zero otherwise
4137  */
4138 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
4139 			resource_size_t	size)
4140 {
4141 	int ret = 0;
4142 #ifdef PCI_IOBASE
4143 	struct logic_pio_hwaddr *range;
4144 
4145 	if (!size || addr + size < addr)
4146 		return -EINVAL;
4147 
4148 	range = kzalloc(sizeof(*range), GFP_ATOMIC);
4149 	if (!range)
4150 		return -ENOMEM;
4151 
4152 	range->fwnode = fwnode;
4153 	range->size = size;
4154 	range->hw_start = addr;
4155 	range->flags = LOGIC_PIO_CPU_MMIO;
4156 
4157 	ret = logic_pio_register_range(range);
4158 	if (ret)
4159 		kfree(range);
4160 
4161 	/* Ignore duplicates due to deferred probing */
4162 	if (ret == -EEXIST)
4163 		ret = 0;
4164 #endif
4165 
4166 	return ret;
4167 }
4168 
4169 phys_addr_t pci_pio_to_address(unsigned long pio)
4170 {
4171 	phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
4172 
4173 #ifdef PCI_IOBASE
4174 	if (pio >= MMIO_UPPER_LIMIT)
4175 		return address;
4176 
4177 	address = logic_pio_to_hwaddr(pio);
4178 #endif
4179 
4180 	return address;
4181 }
4182 EXPORT_SYMBOL_GPL(pci_pio_to_address);
4183 
4184 unsigned long __weak pci_address_to_pio(phys_addr_t address)
4185 {
4186 #ifdef PCI_IOBASE
4187 	return logic_pio_trans_cpuaddr(address);
4188 #else
4189 	if (address > IO_SPACE_LIMIT)
4190 		return (unsigned long)-1;
4191 
4192 	return (unsigned long) address;
4193 #endif
4194 }
4195 
4196 /**
4197  * pci_remap_iospace - Remap the memory mapped I/O space
4198  * @res: Resource describing the I/O space
4199  * @phys_addr: physical address of range to be mapped
4200  *
4201  * Remap the memory mapped I/O space described by the @res and the CPU
4202  * physical address @phys_addr into virtual address space.  Only
4203  * architectures that have memory mapped IO functions defined (and the
4204  * PCI_IOBASE value defined) should call this function.
4205  */
4206 #ifndef pci_remap_iospace
4207 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4208 {
4209 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4210 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4211 
4212 	if (!(res->flags & IORESOURCE_IO))
4213 		return -EINVAL;
4214 
4215 	if (res->end > IO_SPACE_LIMIT)
4216 		return -EINVAL;
4217 
4218 	return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4219 				  pgprot_device(PAGE_KERNEL));
4220 #else
4221 	/*
4222 	 * This architecture does not have memory mapped I/O space,
4223 	 * so this function should never be called
4224 	 */
4225 	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4226 	return -ENODEV;
4227 #endif
4228 }
4229 EXPORT_SYMBOL(pci_remap_iospace);
4230 #endif
4231 
4232 /**
4233  * pci_unmap_iospace - Unmap the memory mapped I/O space
4234  * @res: resource to be unmapped
4235  *
4236  * Unmap the CPU virtual address @res from virtual address space.  Only
4237  * architectures that have memory mapped IO functions defined (and the
4238  * PCI_IOBASE value defined) should call this function.
4239  */
4240 void pci_unmap_iospace(struct resource *res)
4241 {
4242 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4243 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4244 
4245 	vunmap_range(vaddr, vaddr + resource_size(res));
4246 #endif
4247 }
4248 EXPORT_SYMBOL(pci_unmap_iospace);
4249 
4250 static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
4251 {
4252 	struct resource **res = ptr;
4253 
4254 	pci_unmap_iospace(*res);
4255 }
4256 
4257 /**
4258  * devm_pci_remap_iospace - Managed pci_remap_iospace()
4259  * @dev: Generic device to remap IO address for
4260  * @res: Resource describing the I/O space
4261  * @phys_addr: physical address of range to be mapped
4262  *
4263  * Managed pci_remap_iospace().  Map is automatically unmapped on driver
4264  * detach.
4265  */
4266 int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4267 			   phys_addr_t phys_addr)
4268 {
4269 	const struct resource **ptr;
4270 	int error;
4271 
4272 	ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4273 	if (!ptr)
4274 		return -ENOMEM;
4275 
4276 	error = pci_remap_iospace(res, phys_addr);
4277 	if (error) {
4278 		devres_free(ptr);
4279 	} else	{
4280 		*ptr = res;
4281 		devres_add(dev, ptr);
4282 	}
4283 
4284 	return error;
4285 }
4286 EXPORT_SYMBOL(devm_pci_remap_iospace);
4287 
4288 /**
4289  * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4290  * @dev: Generic device to remap IO address for
4291  * @offset: Resource address to map
4292  * @size: Size of map
4293  *
4294  * Managed pci_remap_cfgspace().  Map is automatically unmapped on driver
4295  * detach.
4296  */
4297 void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4298 				      resource_size_t offset,
4299 				      resource_size_t size)
4300 {
4301 	void __iomem **ptr, *addr;
4302 
4303 	ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4304 	if (!ptr)
4305 		return NULL;
4306 
4307 	addr = pci_remap_cfgspace(offset, size);
4308 	if (addr) {
4309 		*ptr = addr;
4310 		devres_add(dev, ptr);
4311 	} else
4312 		devres_free(ptr);
4313 
4314 	return addr;
4315 }
4316 EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4317 
4318 /**
4319  * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4320  * @dev: generic device to handle the resource for
4321  * @res: configuration space resource to be handled
4322  *
4323  * Checks that a resource is a valid memory region, requests the memory
4324  * region and ioremaps with pci_remap_cfgspace() API that ensures the
4325  * proper PCI configuration space memory attributes are guaranteed.
4326  *
4327  * All operations are managed and will be undone on driver detach.
4328  *
4329  * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4330  * on failure. Usage example::
4331  *
4332  *	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4333  *	base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4334  *	if (IS_ERR(base))
4335  *		return PTR_ERR(base);
4336  */
4337 void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4338 					  struct resource *res)
4339 {
4340 	resource_size_t size;
4341 	const char *name;
4342 	void __iomem *dest_ptr;
4343 
4344 	BUG_ON(!dev);
4345 
4346 	if (!res || resource_type(res) != IORESOURCE_MEM) {
4347 		dev_err(dev, "invalid resource\n");
4348 		return IOMEM_ERR_PTR(-EINVAL);
4349 	}
4350 
4351 	size = resource_size(res);
4352 
4353 	if (res->name)
4354 		name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev),
4355 				      res->name);
4356 	else
4357 		name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL);
4358 	if (!name)
4359 		return IOMEM_ERR_PTR(-ENOMEM);
4360 
4361 	if (!devm_request_mem_region(dev, res->start, size, name)) {
4362 		dev_err(dev, "can't request region for resource %pR\n", res);
4363 		return IOMEM_ERR_PTR(-EBUSY);
4364 	}
4365 
4366 	dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4367 	if (!dest_ptr) {
4368 		dev_err(dev, "ioremap failed for resource %pR\n", res);
4369 		devm_release_mem_region(dev, res->start, size);
4370 		dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4371 	}
4372 
4373 	return dest_ptr;
4374 }
4375 EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4376 
4377 static void __pci_set_master(struct pci_dev *dev, bool enable)
4378 {
4379 	u16 old_cmd, cmd;
4380 
4381 	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4382 	if (enable)
4383 		cmd = old_cmd | PCI_COMMAND_MASTER;
4384 	else
4385 		cmd = old_cmd & ~PCI_COMMAND_MASTER;
4386 	if (cmd != old_cmd) {
4387 		pci_dbg(dev, "%s bus mastering\n",
4388 			enable ? "enabling" : "disabling");
4389 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4390 	}
4391 	dev->is_busmaster = enable;
4392 }
4393 
4394 /**
4395  * pcibios_setup - process "pci=" kernel boot arguments
4396  * @str: string used to pass in "pci=" kernel boot arguments
4397  *
4398  * Process kernel boot arguments.  This is the default implementation.
4399  * Architecture specific implementations can override this as necessary.
4400  */
4401 char * __weak __init pcibios_setup(char *str)
4402 {
4403 	return str;
4404 }
4405 
4406 /**
4407  * pcibios_set_master - enable PCI bus-mastering for device dev
4408  * @dev: the PCI device to enable
4409  *
4410  * Enables PCI bus-mastering for the device.  This is the default
4411  * implementation.  Architecture specific implementations can override
4412  * this if necessary.
4413  */
4414 void __weak pcibios_set_master(struct pci_dev *dev)
4415 {
4416 	u8 lat;
4417 
4418 	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4419 	if (pci_is_pcie(dev))
4420 		return;
4421 
4422 	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4423 	if (lat < 16)
4424 		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4425 	else if (lat > pcibios_max_latency)
4426 		lat = pcibios_max_latency;
4427 	else
4428 		return;
4429 
4430 	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4431 }
4432 
4433 /**
4434  * pci_set_master - enables bus-mastering for device dev
4435  * @dev: the PCI device to enable
4436  *
4437  * Enables bus-mastering on the device and calls pcibios_set_master()
4438  * to do the needed arch specific settings.
4439  */
4440 void pci_set_master(struct pci_dev *dev)
4441 {
4442 	__pci_set_master(dev, true);
4443 	pcibios_set_master(dev);
4444 }
4445 EXPORT_SYMBOL(pci_set_master);
4446 
4447 /**
4448  * pci_clear_master - disables bus-mastering for device dev
4449  * @dev: the PCI device to disable
4450  */
4451 void pci_clear_master(struct pci_dev *dev)
4452 {
4453 	__pci_set_master(dev, false);
4454 }
4455 EXPORT_SYMBOL(pci_clear_master);
4456 
4457 /**
4458  * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4459  * @dev: the PCI device for which MWI is to be enabled
4460  *
4461  * Helper function for pci_set_mwi.
4462  * Originally copied from drivers/net/acenic.c.
4463  * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4464  *
4465  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4466  */
4467 int pci_set_cacheline_size(struct pci_dev *dev)
4468 {
4469 	u8 cacheline_size;
4470 
4471 	if (!pci_cache_line_size)
4472 		return -EINVAL;
4473 
4474 	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4475 	   equal to or multiple of the right value. */
4476 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4477 	if (cacheline_size >= pci_cache_line_size &&
4478 	    (cacheline_size % pci_cache_line_size) == 0)
4479 		return 0;
4480 
4481 	/* Write the correct value. */
4482 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4483 	/* Read it back. */
4484 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4485 	if (cacheline_size == pci_cache_line_size)
4486 		return 0;
4487 
4488 	pci_dbg(dev, "cache line size of %d is not supported\n",
4489 		   pci_cache_line_size << 2);
4490 
4491 	return -EINVAL;
4492 }
4493 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4494 
4495 /**
4496  * pci_set_mwi - enables memory-write-invalidate PCI transaction
4497  * @dev: the PCI device for which MWI is enabled
4498  *
4499  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4500  *
4501  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4502  */
4503 int pci_set_mwi(struct pci_dev *dev)
4504 {
4505 #ifdef PCI_DISABLE_MWI
4506 	return 0;
4507 #else
4508 	int rc;
4509 	u16 cmd;
4510 
4511 	rc = pci_set_cacheline_size(dev);
4512 	if (rc)
4513 		return rc;
4514 
4515 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4516 	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4517 		pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4518 		cmd |= PCI_COMMAND_INVALIDATE;
4519 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4520 	}
4521 	return 0;
4522 #endif
4523 }
4524 EXPORT_SYMBOL(pci_set_mwi);
4525 
4526 /**
4527  * pcim_set_mwi - a device-managed pci_set_mwi()
4528  * @dev: the PCI device for which MWI is enabled
4529  *
4530  * Managed pci_set_mwi().
4531  *
4532  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4533  */
4534 int pcim_set_mwi(struct pci_dev *dev)
4535 {
4536 	struct pci_devres *dr;
4537 
4538 	dr = find_pci_dr(dev);
4539 	if (!dr)
4540 		return -ENOMEM;
4541 
4542 	dr->mwi = 1;
4543 	return pci_set_mwi(dev);
4544 }
4545 EXPORT_SYMBOL(pcim_set_mwi);
4546 
4547 /**
4548  * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4549  * @dev: the PCI device for which MWI is enabled
4550  *
4551  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4552  * Callers are not required to check the return value.
4553  *
4554  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4555  */
4556 int pci_try_set_mwi(struct pci_dev *dev)
4557 {
4558 #ifdef PCI_DISABLE_MWI
4559 	return 0;
4560 #else
4561 	return pci_set_mwi(dev);
4562 #endif
4563 }
4564 EXPORT_SYMBOL(pci_try_set_mwi);
4565 
4566 /**
4567  * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4568  * @dev: the PCI device to disable
4569  *
4570  * Disables PCI Memory-Write-Invalidate transaction on the device
4571  */
4572 void pci_clear_mwi(struct pci_dev *dev)
4573 {
4574 #ifndef PCI_DISABLE_MWI
4575 	u16 cmd;
4576 
4577 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4578 	if (cmd & PCI_COMMAND_INVALIDATE) {
4579 		cmd &= ~PCI_COMMAND_INVALIDATE;
4580 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4581 	}
4582 #endif
4583 }
4584 EXPORT_SYMBOL(pci_clear_mwi);
4585 
4586 /**
4587  * pci_disable_parity - disable parity checking for device
4588  * @dev: the PCI device to operate on
4589  *
4590  * Disable parity checking for device @dev
4591  */
4592 void pci_disable_parity(struct pci_dev *dev)
4593 {
4594 	u16 cmd;
4595 
4596 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4597 	if (cmd & PCI_COMMAND_PARITY) {
4598 		cmd &= ~PCI_COMMAND_PARITY;
4599 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4600 	}
4601 }
4602 
4603 /**
4604  * pci_intx - enables/disables PCI INTx for device dev
4605  * @pdev: the PCI device to operate on
4606  * @enable: boolean: whether to enable or disable PCI INTx
4607  *
4608  * Enables/disables PCI INTx for device @pdev
4609  */
4610 void pci_intx(struct pci_dev *pdev, int enable)
4611 {
4612 	u16 pci_command, new;
4613 
4614 	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4615 
4616 	if (enable)
4617 		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4618 	else
4619 		new = pci_command | PCI_COMMAND_INTX_DISABLE;
4620 
4621 	if (new != pci_command) {
4622 		struct pci_devres *dr;
4623 
4624 		pci_write_config_word(pdev, PCI_COMMAND, new);
4625 
4626 		dr = find_pci_dr(pdev);
4627 		if (dr && !dr->restore_intx) {
4628 			dr->restore_intx = 1;
4629 			dr->orig_intx = !enable;
4630 		}
4631 	}
4632 }
4633 EXPORT_SYMBOL_GPL(pci_intx);
4634 
4635 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4636 {
4637 	struct pci_bus *bus = dev->bus;
4638 	bool mask_updated = true;
4639 	u32 cmd_status_dword;
4640 	u16 origcmd, newcmd;
4641 	unsigned long flags;
4642 	bool irq_pending;
4643 
4644 	/*
4645 	 * We do a single dword read to retrieve both command and status.
4646 	 * Document assumptions that make this possible.
4647 	 */
4648 	BUILD_BUG_ON(PCI_COMMAND % 4);
4649 	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4650 
4651 	raw_spin_lock_irqsave(&pci_lock, flags);
4652 
4653 	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4654 
4655 	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4656 
4657 	/*
4658 	 * Check interrupt status register to see whether our device
4659 	 * triggered the interrupt (when masking) or the next IRQ is
4660 	 * already pending (when unmasking).
4661 	 */
4662 	if (mask != irq_pending) {
4663 		mask_updated = false;
4664 		goto done;
4665 	}
4666 
4667 	origcmd = cmd_status_dword;
4668 	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4669 	if (mask)
4670 		newcmd |= PCI_COMMAND_INTX_DISABLE;
4671 	if (newcmd != origcmd)
4672 		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4673 
4674 done:
4675 	raw_spin_unlock_irqrestore(&pci_lock, flags);
4676 
4677 	return mask_updated;
4678 }
4679 
4680 /**
4681  * pci_check_and_mask_intx - mask INTx on pending interrupt
4682  * @dev: the PCI device to operate on
4683  *
4684  * Check if the device dev has its INTx line asserted, mask it and return
4685  * true in that case. False is returned if no interrupt was pending.
4686  */
4687 bool pci_check_and_mask_intx(struct pci_dev *dev)
4688 {
4689 	return pci_check_and_set_intx_mask(dev, true);
4690 }
4691 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4692 
4693 /**
4694  * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4695  * @dev: the PCI device to operate on
4696  *
4697  * Check if the device dev has its INTx line asserted, unmask it if not and
4698  * return true. False is returned and the mask remains active if there was
4699  * still an interrupt pending.
4700  */
4701 bool pci_check_and_unmask_intx(struct pci_dev *dev)
4702 {
4703 	return pci_check_and_set_intx_mask(dev, false);
4704 }
4705 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4706 
4707 /**
4708  * pci_wait_for_pending_transaction - wait for pending transaction
4709  * @dev: the PCI device to operate on
4710  *
4711  * Return 0 if transaction is pending 1 otherwise.
4712  */
4713 int pci_wait_for_pending_transaction(struct pci_dev *dev)
4714 {
4715 	if (!pci_is_pcie(dev))
4716 		return 1;
4717 
4718 	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4719 				    PCI_EXP_DEVSTA_TRPND);
4720 }
4721 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4722 
4723 /**
4724  * pcie_flr - initiate a PCIe function level reset
4725  * @dev: device to reset
4726  *
4727  * Initiate a function level reset unconditionally on @dev without
4728  * checking any flags and DEVCAP
4729  */
4730 int pcie_flr(struct pci_dev *dev)
4731 {
4732 	if (!pci_wait_for_pending_transaction(dev))
4733 		pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4734 
4735 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4736 
4737 	if (dev->imm_ready)
4738 		return 0;
4739 
4740 	/*
4741 	 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4742 	 * 100ms, but may silently discard requests while the FLR is in
4743 	 * progress.  Wait 100ms before trying to access the device.
4744 	 */
4745 	msleep(100);
4746 
4747 	return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4748 }
4749 EXPORT_SYMBOL_GPL(pcie_flr);
4750 
4751 /**
4752  * pcie_reset_flr - initiate a PCIe function level reset
4753  * @dev: device to reset
4754  * @probe: if true, return 0 if device can be reset this way
4755  *
4756  * Initiate a function level reset on @dev.
4757  */
4758 int pcie_reset_flr(struct pci_dev *dev, bool probe)
4759 {
4760 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4761 		return -ENOTTY;
4762 
4763 	if (!(dev->devcap & PCI_EXP_DEVCAP_FLR))
4764 		return -ENOTTY;
4765 
4766 	if (probe)
4767 		return 0;
4768 
4769 	return pcie_flr(dev);
4770 }
4771 EXPORT_SYMBOL_GPL(pcie_reset_flr);
4772 
4773 static int pci_af_flr(struct pci_dev *dev, bool probe)
4774 {
4775 	int pos;
4776 	u8 cap;
4777 
4778 	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4779 	if (!pos)
4780 		return -ENOTTY;
4781 
4782 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4783 		return -ENOTTY;
4784 
4785 	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4786 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4787 		return -ENOTTY;
4788 
4789 	if (probe)
4790 		return 0;
4791 
4792 	/*
4793 	 * Wait for Transaction Pending bit to clear.  A word-aligned test
4794 	 * is used, so we use the control offset rather than status and shift
4795 	 * the test bit to match.
4796 	 */
4797 	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4798 				 PCI_AF_STATUS_TP << 8))
4799 		pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4800 
4801 	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4802 
4803 	if (dev->imm_ready)
4804 		return 0;
4805 
4806 	/*
4807 	 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4808 	 * updated 27 July 2006; a device must complete an FLR within
4809 	 * 100ms, but may silently discard requests while the FLR is in
4810 	 * progress.  Wait 100ms before trying to access the device.
4811 	 */
4812 	msleep(100);
4813 
4814 	return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4815 }
4816 
4817 /**
4818  * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4819  * @dev: Device to reset.
4820  * @probe: if true, return 0 if the device can be reset this way.
4821  *
4822  * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4823  * unset, it will be reinitialized internally when going from PCI_D3hot to
4824  * PCI_D0.  If that's the case and the device is not in a low-power state
4825  * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4826  *
4827  * NOTE: This causes the caller to sleep for twice the device power transition
4828  * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4829  * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4830  * Moreover, only devices in D0 can be reset by this function.
4831  */
4832 static int pci_pm_reset(struct pci_dev *dev, bool probe)
4833 {
4834 	u16 csr;
4835 
4836 	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4837 		return -ENOTTY;
4838 
4839 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4840 	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4841 		return -ENOTTY;
4842 
4843 	if (probe)
4844 		return 0;
4845 
4846 	if (dev->current_state != PCI_D0)
4847 		return -EINVAL;
4848 
4849 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4850 	csr |= PCI_D3hot;
4851 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4852 	pci_dev_d3_sleep(dev);
4853 
4854 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4855 	csr |= PCI_D0;
4856 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4857 	pci_dev_d3_sleep(dev);
4858 
4859 	return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4860 }
4861 
4862 /**
4863  * pcie_wait_for_link_delay - Wait until link is active or inactive
4864  * @pdev: Bridge device
4865  * @active: waiting for active or inactive?
4866  * @delay: Delay to wait after link has become active (in ms)
4867  *
4868  * Use this to wait till link becomes active or inactive.
4869  */
4870 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4871 				     int delay)
4872 {
4873 	int timeout = 1000;
4874 	bool ret;
4875 	u16 lnk_status;
4876 
4877 	/*
4878 	 * Some controllers might not implement link active reporting. In this
4879 	 * case, we wait for 1000 ms + any delay requested by the caller.
4880 	 */
4881 	if (!pdev->link_active_reporting) {
4882 		msleep(timeout + delay);
4883 		return true;
4884 	}
4885 
4886 	/*
4887 	 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4888 	 * after which we should expect an link active if the reset was
4889 	 * successful. If so, software must wait a minimum 100ms before sending
4890 	 * configuration requests to devices downstream this port.
4891 	 *
4892 	 * If the link fails to activate, either the device was physically
4893 	 * removed or the link is permanently failed.
4894 	 */
4895 	if (active)
4896 		msleep(20);
4897 	for (;;) {
4898 		pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
4899 		ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA);
4900 		if (ret == active)
4901 			break;
4902 		if (timeout <= 0)
4903 			break;
4904 		msleep(10);
4905 		timeout -= 10;
4906 	}
4907 	if (active && ret)
4908 		msleep(delay);
4909 
4910 	return ret == active;
4911 }
4912 
4913 /**
4914  * pcie_wait_for_link - Wait until link is active or inactive
4915  * @pdev: Bridge device
4916  * @active: waiting for active or inactive?
4917  *
4918  * Use this to wait till link becomes active or inactive.
4919  */
4920 bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4921 {
4922 	return pcie_wait_for_link_delay(pdev, active, 100);
4923 }
4924 
4925 /*
4926  * Find maximum D3cold delay required by all the devices on the bus.  The
4927  * spec says 100 ms, but firmware can lower it and we allow drivers to
4928  * increase it as well.
4929  *
4930  * Called with @pci_bus_sem locked for reading.
4931  */
4932 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
4933 {
4934 	const struct pci_dev *pdev;
4935 	int min_delay = 100;
4936 	int max_delay = 0;
4937 
4938 	list_for_each_entry(pdev, &bus->devices, bus_list) {
4939 		if (pdev->d3cold_delay < min_delay)
4940 			min_delay = pdev->d3cold_delay;
4941 		if (pdev->d3cold_delay > max_delay)
4942 			max_delay = pdev->d3cold_delay;
4943 	}
4944 
4945 	return max(min_delay, max_delay);
4946 }
4947 
4948 /**
4949  * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4950  * @dev: PCI bridge
4951  *
4952  * Handle necessary delays before access to the devices on the secondary
4953  * side of the bridge are permitted after D3cold to D0 transition.
4954  *
4955  * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4956  * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4957  * 4.3.2.
4958  */
4959 void pci_bridge_wait_for_secondary_bus(struct pci_dev *dev)
4960 {
4961 	struct pci_dev *child;
4962 	int delay;
4963 
4964 	if (pci_dev_is_disconnected(dev))
4965 		return;
4966 
4967 	if (!pci_is_bridge(dev) || !dev->bridge_d3)
4968 		return;
4969 
4970 	down_read(&pci_bus_sem);
4971 
4972 	/*
4973 	 * We only deal with devices that are present currently on the bus.
4974 	 * For any hot-added devices the access delay is handled in pciehp
4975 	 * board_added(). In case of ACPI hotplug the firmware is expected
4976 	 * to configure the devices before OS is notified.
4977 	 */
4978 	if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
4979 		up_read(&pci_bus_sem);
4980 		return;
4981 	}
4982 
4983 	/* Take d3cold_delay requirements into account */
4984 	delay = pci_bus_max_d3cold_delay(dev->subordinate);
4985 	if (!delay) {
4986 		up_read(&pci_bus_sem);
4987 		return;
4988 	}
4989 
4990 	child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
4991 				 bus_list);
4992 	up_read(&pci_bus_sem);
4993 
4994 	/*
4995 	 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
4996 	 * accessing the device after reset (that is 1000 ms + 100 ms). In
4997 	 * practice this should not be needed because we don't do power
4998 	 * management for them (see pci_bridge_d3_possible()).
4999 	 */
5000 	if (!pci_is_pcie(dev)) {
5001 		pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
5002 		msleep(1000 + delay);
5003 		return;
5004 	}
5005 
5006 	/*
5007 	 * For PCIe downstream and root ports that do not support speeds
5008 	 * greater than 5 GT/s need to wait minimum 100 ms. For higher
5009 	 * speeds (gen3) we need to wait first for the data link layer to
5010 	 * become active.
5011 	 *
5012 	 * However, 100 ms is the minimum and the PCIe spec says the
5013 	 * software must allow at least 1s before it can determine that the
5014 	 * device that did not respond is a broken device. There is
5015 	 * evidence that 100 ms is not always enough, for example certain
5016 	 * Titan Ridge xHCI controller does not always respond to
5017 	 * configuration requests if we only wait for 100 ms (see
5018 	 * https://bugzilla.kernel.org/show_bug.cgi?id=203885).
5019 	 *
5020 	 * Therefore we wait for 100 ms and check for the device presence.
5021 	 * If it is still not present give it an additional 100 ms.
5022 	 */
5023 	if (!pcie_downstream_port(dev))
5024 		return;
5025 
5026 	if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
5027 		pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
5028 		msleep(delay);
5029 	} else {
5030 		pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
5031 			delay);
5032 		if (!pcie_wait_for_link_delay(dev, true, delay)) {
5033 			/* Did not train, no need to wait any further */
5034 			pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
5035 			return;
5036 		}
5037 	}
5038 
5039 	if (!pci_device_is_present(child)) {
5040 		pci_dbg(child, "waiting additional %d ms to become accessible\n", delay);
5041 		msleep(delay);
5042 	}
5043 }
5044 
5045 void pci_reset_secondary_bus(struct pci_dev *dev)
5046 {
5047 	u16 ctrl;
5048 
5049 	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
5050 	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
5051 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
5052 
5053 	/*
5054 	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
5055 	 * this to 2ms to ensure that we meet the minimum requirement.
5056 	 */
5057 	msleep(2);
5058 
5059 	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
5060 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
5061 
5062 	/*
5063 	 * Trhfa for conventional PCI is 2^25 clock cycles.
5064 	 * Assuming a minimum 33MHz clock this results in a 1s
5065 	 * delay before we can consider subordinate devices to
5066 	 * be re-initialized.  PCIe has some ways to shorten this,
5067 	 * but we don't make use of them yet.
5068 	 */
5069 	ssleep(1);
5070 }
5071 
5072 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
5073 {
5074 	pci_reset_secondary_bus(dev);
5075 }
5076 
5077 /**
5078  * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
5079  * @dev: Bridge device
5080  *
5081  * Use the bridge control register to assert reset on the secondary bus.
5082  * Devices on the secondary bus are left in power-on state.
5083  */
5084 int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
5085 {
5086 	pcibios_reset_secondary_bus(dev);
5087 
5088 	return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS);
5089 }
5090 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
5091 
5092 static int pci_parent_bus_reset(struct pci_dev *dev, bool probe)
5093 {
5094 	struct pci_dev *pdev;
5095 
5096 	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
5097 	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5098 		return -ENOTTY;
5099 
5100 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
5101 		if (pdev != dev)
5102 			return -ENOTTY;
5103 
5104 	if (probe)
5105 		return 0;
5106 
5107 	return pci_bridge_secondary_bus_reset(dev->bus->self);
5108 }
5109 
5110 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe)
5111 {
5112 	int rc = -ENOTTY;
5113 
5114 	if (!hotplug || !try_module_get(hotplug->owner))
5115 		return rc;
5116 
5117 	if (hotplug->ops->reset_slot)
5118 		rc = hotplug->ops->reset_slot(hotplug, probe);
5119 
5120 	module_put(hotplug->owner);
5121 
5122 	return rc;
5123 }
5124 
5125 static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe)
5126 {
5127 	if (dev->multifunction || dev->subordinate || !dev->slot ||
5128 	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5129 		return -ENOTTY;
5130 
5131 	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
5132 }
5133 
5134 static int pci_reset_bus_function(struct pci_dev *dev, bool probe)
5135 {
5136 	int rc;
5137 
5138 	rc = pci_dev_reset_slot_function(dev, probe);
5139 	if (rc != -ENOTTY)
5140 		return rc;
5141 	return pci_parent_bus_reset(dev, probe);
5142 }
5143 
5144 void pci_dev_lock(struct pci_dev *dev)
5145 {
5146 	/* block PM suspend, driver probe, etc. */
5147 	device_lock(&dev->dev);
5148 	pci_cfg_access_lock(dev);
5149 }
5150 EXPORT_SYMBOL_GPL(pci_dev_lock);
5151 
5152 /* Return 1 on successful lock, 0 on contention */
5153 int pci_dev_trylock(struct pci_dev *dev)
5154 {
5155 	if (device_trylock(&dev->dev)) {
5156 		if (pci_cfg_access_trylock(dev))
5157 			return 1;
5158 		device_unlock(&dev->dev);
5159 	}
5160 
5161 	return 0;
5162 }
5163 EXPORT_SYMBOL_GPL(pci_dev_trylock);
5164 
5165 void pci_dev_unlock(struct pci_dev *dev)
5166 {
5167 	pci_cfg_access_unlock(dev);
5168 	device_unlock(&dev->dev);
5169 }
5170 EXPORT_SYMBOL_GPL(pci_dev_unlock);
5171 
5172 static void pci_dev_save_and_disable(struct pci_dev *dev)
5173 {
5174 	const struct pci_error_handlers *err_handler =
5175 			dev->driver ? dev->driver->err_handler : NULL;
5176 
5177 	/*
5178 	 * dev->driver->err_handler->reset_prepare() is protected against
5179 	 * races with ->remove() by the device lock, which must be held by
5180 	 * the caller.
5181 	 */
5182 	if (err_handler && err_handler->reset_prepare)
5183 		err_handler->reset_prepare(dev);
5184 
5185 	/*
5186 	 * Wake-up device prior to save.  PM registers default to D0 after
5187 	 * reset and a simple register restore doesn't reliably return
5188 	 * to a non-D0 state anyway.
5189 	 */
5190 	pci_set_power_state(dev, PCI_D0);
5191 
5192 	pci_save_state(dev);
5193 	/*
5194 	 * Disable the device by clearing the Command register, except for
5195 	 * INTx-disable which is set.  This not only disables MMIO and I/O port
5196 	 * BARs, but also prevents the device from being Bus Master, preventing
5197 	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
5198 	 * compliant devices, INTx-disable prevents legacy interrupts.
5199 	 */
5200 	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
5201 }
5202 
5203 static void pci_dev_restore(struct pci_dev *dev)
5204 {
5205 	const struct pci_error_handlers *err_handler =
5206 			dev->driver ? dev->driver->err_handler : NULL;
5207 
5208 	pci_restore_state(dev);
5209 
5210 	/*
5211 	 * dev->driver->err_handler->reset_done() is protected against
5212 	 * races with ->remove() by the device lock, which must be held by
5213 	 * the caller.
5214 	 */
5215 	if (err_handler && err_handler->reset_done)
5216 		err_handler->reset_done(dev);
5217 }
5218 
5219 /* dev->reset_methods[] is a 0-terminated list of indices into this array */
5220 static const struct pci_reset_fn_method pci_reset_fn_methods[] = {
5221 	{ },
5222 	{ pci_dev_specific_reset, .name = "device_specific" },
5223 	{ pci_dev_acpi_reset, .name = "acpi" },
5224 	{ pcie_reset_flr, .name = "flr" },
5225 	{ pci_af_flr, .name = "af_flr" },
5226 	{ pci_pm_reset, .name = "pm" },
5227 	{ pci_reset_bus_function, .name = "bus" },
5228 };
5229 
5230 static ssize_t reset_method_show(struct device *dev,
5231 				 struct device_attribute *attr, char *buf)
5232 {
5233 	struct pci_dev *pdev = to_pci_dev(dev);
5234 	ssize_t len = 0;
5235 	int i, m;
5236 
5237 	for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5238 		m = pdev->reset_methods[i];
5239 		if (!m)
5240 			break;
5241 
5242 		len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "",
5243 				     pci_reset_fn_methods[m].name);
5244 	}
5245 
5246 	if (len)
5247 		len += sysfs_emit_at(buf, len, "\n");
5248 
5249 	return len;
5250 }
5251 
5252 static int reset_method_lookup(const char *name)
5253 {
5254 	int m;
5255 
5256 	for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5257 		if (sysfs_streq(name, pci_reset_fn_methods[m].name))
5258 			return m;
5259 	}
5260 
5261 	return 0;	/* not found */
5262 }
5263 
5264 static ssize_t reset_method_store(struct device *dev,
5265 				  struct device_attribute *attr,
5266 				  const char *buf, size_t count)
5267 {
5268 	struct pci_dev *pdev = to_pci_dev(dev);
5269 	char *options, *name;
5270 	int m, n;
5271 	u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 };
5272 
5273 	if (sysfs_streq(buf, "")) {
5274 		pdev->reset_methods[0] = 0;
5275 		pci_warn(pdev, "All device reset methods disabled by user");
5276 		return count;
5277 	}
5278 
5279 	if (sysfs_streq(buf, "default")) {
5280 		pci_init_reset_methods(pdev);
5281 		return count;
5282 	}
5283 
5284 	options = kstrndup(buf, count, GFP_KERNEL);
5285 	if (!options)
5286 		return -ENOMEM;
5287 
5288 	n = 0;
5289 	while ((name = strsep(&options, " ")) != NULL) {
5290 		if (sysfs_streq(name, ""))
5291 			continue;
5292 
5293 		name = strim(name);
5294 
5295 		m = reset_method_lookup(name);
5296 		if (!m) {
5297 			pci_err(pdev, "Invalid reset method '%s'", name);
5298 			goto error;
5299 		}
5300 
5301 		if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) {
5302 			pci_err(pdev, "Unsupported reset method '%s'", name);
5303 			goto error;
5304 		}
5305 
5306 		if (n == PCI_NUM_RESET_METHODS - 1) {
5307 			pci_err(pdev, "Too many reset methods\n");
5308 			goto error;
5309 		}
5310 
5311 		reset_methods[n++] = m;
5312 	}
5313 
5314 	reset_methods[n] = 0;
5315 
5316 	/* Warn if dev-specific supported but not highest priority */
5317 	if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 &&
5318 	    reset_methods[0] != 1)
5319 		pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user");
5320 	memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods));
5321 	kfree(options);
5322 	return count;
5323 
5324 error:
5325 	/* Leave previous methods unchanged */
5326 	kfree(options);
5327 	return -EINVAL;
5328 }
5329 static DEVICE_ATTR_RW(reset_method);
5330 
5331 static struct attribute *pci_dev_reset_method_attrs[] = {
5332 	&dev_attr_reset_method.attr,
5333 	NULL,
5334 };
5335 
5336 static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj,
5337 						    struct attribute *a, int n)
5338 {
5339 	struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj));
5340 
5341 	if (!pci_reset_supported(pdev))
5342 		return 0;
5343 
5344 	return a->mode;
5345 }
5346 
5347 const struct attribute_group pci_dev_reset_method_attr_group = {
5348 	.attrs = pci_dev_reset_method_attrs,
5349 	.is_visible = pci_dev_reset_method_attr_is_visible,
5350 };
5351 
5352 /**
5353  * __pci_reset_function_locked - reset a PCI device function while holding
5354  * the @dev mutex lock.
5355  * @dev: PCI device to reset
5356  *
5357  * Some devices allow an individual function to be reset without affecting
5358  * other functions in the same device.  The PCI device must be responsive
5359  * to PCI config space in order to use this function.
5360  *
5361  * The device function is presumed to be unused and the caller is holding
5362  * the device mutex lock when this function is called.
5363  *
5364  * Resetting the device will make the contents of PCI configuration space
5365  * random, so any caller of this must be prepared to reinitialise the
5366  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5367  * etc.
5368  *
5369  * Returns 0 if the device function was successfully reset or negative if the
5370  * device doesn't support resetting a single function.
5371  */
5372 int __pci_reset_function_locked(struct pci_dev *dev)
5373 {
5374 	int i, m, rc;
5375 
5376 	might_sleep();
5377 
5378 	/*
5379 	 * A reset method returns -ENOTTY if it doesn't support this device and
5380 	 * we should try the next method.
5381 	 *
5382 	 * If it returns 0 (success), we're finished.  If it returns any other
5383 	 * error, we're also finished: this indicates that further reset
5384 	 * mechanisms might be broken on the device.
5385 	 */
5386 	for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5387 		m = dev->reset_methods[i];
5388 		if (!m)
5389 			return -ENOTTY;
5390 
5391 		rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET);
5392 		if (!rc)
5393 			return 0;
5394 		if (rc != -ENOTTY)
5395 			return rc;
5396 	}
5397 
5398 	return -ENOTTY;
5399 }
5400 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5401 
5402 /**
5403  * pci_init_reset_methods - check whether device can be safely reset
5404  * and store supported reset mechanisms.
5405  * @dev: PCI device to check for reset mechanisms
5406  *
5407  * Some devices allow an individual function to be reset without affecting
5408  * other functions in the same device.  The PCI device must be in D0-D3hot
5409  * state.
5410  *
5411  * Stores reset mechanisms supported by device in reset_methods byte array
5412  * which is a member of struct pci_dev.
5413  */
5414 void pci_init_reset_methods(struct pci_dev *dev)
5415 {
5416 	int m, i, rc;
5417 
5418 	BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS);
5419 
5420 	might_sleep();
5421 
5422 	i = 0;
5423 	for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5424 		rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE);
5425 		if (!rc)
5426 			dev->reset_methods[i++] = m;
5427 		else if (rc != -ENOTTY)
5428 			break;
5429 	}
5430 
5431 	dev->reset_methods[i] = 0;
5432 }
5433 
5434 /**
5435  * pci_reset_function - quiesce and reset a PCI device function
5436  * @dev: PCI device to reset
5437  *
5438  * Some devices allow an individual function to be reset without affecting
5439  * other functions in the same device.  The PCI device must be responsive
5440  * to PCI config space in order to use this function.
5441  *
5442  * This function does not just reset the PCI portion of a device, but
5443  * clears all the state associated with the device.  This function differs
5444  * from __pci_reset_function_locked() in that it saves and restores device state
5445  * over the reset and takes the PCI device lock.
5446  *
5447  * Returns 0 if the device function was successfully reset or negative if the
5448  * device doesn't support resetting a single function.
5449  */
5450 int pci_reset_function(struct pci_dev *dev)
5451 {
5452 	int rc;
5453 
5454 	if (!pci_reset_supported(dev))
5455 		return -ENOTTY;
5456 
5457 	pci_dev_lock(dev);
5458 	pci_dev_save_and_disable(dev);
5459 
5460 	rc = __pci_reset_function_locked(dev);
5461 
5462 	pci_dev_restore(dev);
5463 	pci_dev_unlock(dev);
5464 
5465 	return rc;
5466 }
5467 EXPORT_SYMBOL_GPL(pci_reset_function);
5468 
5469 /**
5470  * pci_reset_function_locked - quiesce and reset a PCI device function
5471  * @dev: PCI device to reset
5472  *
5473  * Some devices allow an individual function to be reset without affecting
5474  * other functions in the same device.  The PCI device must be responsive
5475  * to PCI config space in order to use this function.
5476  *
5477  * This function does not just reset the PCI portion of a device, but
5478  * clears all the state associated with the device.  This function differs
5479  * from __pci_reset_function_locked() in that it saves and restores device state
5480  * over the reset.  It also differs from pci_reset_function() in that it
5481  * requires the PCI device lock to be held.
5482  *
5483  * Returns 0 if the device function was successfully reset or negative if the
5484  * device doesn't support resetting a single function.
5485  */
5486 int pci_reset_function_locked(struct pci_dev *dev)
5487 {
5488 	int rc;
5489 
5490 	if (!pci_reset_supported(dev))
5491 		return -ENOTTY;
5492 
5493 	pci_dev_save_and_disable(dev);
5494 
5495 	rc = __pci_reset_function_locked(dev);
5496 
5497 	pci_dev_restore(dev);
5498 
5499 	return rc;
5500 }
5501 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5502 
5503 /**
5504  * pci_try_reset_function - quiesce and reset a PCI device function
5505  * @dev: PCI device to reset
5506  *
5507  * Same as above, except return -EAGAIN if unable to lock device.
5508  */
5509 int pci_try_reset_function(struct pci_dev *dev)
5510 {
5511 	int rc;
5512 
5513 	if (!pci_reset_supported(dev))
5514 		return -ENOTTY;
5515 
5516 	if (!pci_dev_trylock(dev))
5517 		return -EAGAIN;
5518 
5519 	pci_dev_save_and_disable(dev);
5520 	rc = __pci_reset_function_locked(dev);
5521 	pci_dev_restore(dev);
5522 	pci_dev_unlock(dev);
5523 
5524 	return rc;
5525 }
5526 EXPORT_SYMBOL_GPL(pci_try_reset_function);
5527 
5528 /* Do any devices on or below this bus prevent a bus reset? */
5529 static bool pci_bus_resetable(struct pci_bus *bus)
5530 {
5531 	struct pci_dev *dev;
5532 
5533 
5534 	if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5535 		return false;
5536 
5537 	list_for_each_entry(dev, &bus->devices, bus_list) {
5538 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5539 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5540 			return false;
5541 	}
5542 
5543 	return true;
5544 }
5545 
5546 /* Lock devices from the top of the tree down */
5547 static void pci_bus_lock(struct pci_bus *bus)
5548 {
5549 	struct pci_dev *dev;
5550 
5551 	list_for_each_entry(dev, &bus->devices, bus_list) {
5552 		pci_dev_lock(dev);
5553 		if (dev->subordinate)
5554 			pci_bus_lock(dev->subordinate);
5555 	}
5556 }
5557 
5558 /* Unlock devices from the bottom of the tree up */
5559 static void pci_bus_unlock(struct pci_bus *bus)
5560 {
5561 	struct pci_dev *dev;
5562 
5563 	list_for_each_entry(dev, &bus->devices, bus_list) {
5564 		if (dev->subordinate)
5565 			pci_bus_unlock(dev->subordinate);
5566 		pci_dev_unlock(dev);
5567 	}
5568 }
5569 
5570 /* Return 1 on successful lock, 0 on contention */
5571 static int pci_bus_trylock(struct pci_bus *bus)
5572 {
5573 	struct pci_dev *dev;
5574 
5575 	list_for_each_entry(dev, &bus->devices, bus_list) {
5576 		if (!pci_dev_trylock(dev))
5577 			goto unlock;
5578 		if (dev->subordinate) {
5579 			if (!pci_bus_trylock(dev->subordinate)) {
5580 				pci_dev_unlock(dev);
5581 				goto unlock;
5582 			}
5583 		}
5584 	}
5585 	return 1;
5586 
5587 unlock:
5588 	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5589 		if (dev->subordinate)
5590 			pci_bus_unlock(dev->subordinate);
5591 		pci_dev_unlock(dev);
5592 	}
5593 	return 0;
5594 }
5595 
5596 /* Do any devices on or below this slot prevent a bus reset? */
5597 static bool pci_slot_resetable(struct pci_slot *slot)
5598 {
5599 	struct pci_dev *dev;
5600 
5601 	if (slot->bus->self &&
5602 	    (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5603 		return false;
5604 
5605 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5606 		if (!dev->slot || dev->slot != slot)
5607 			continue;
5608 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5609 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5610 			return false;
5611 	}
5612 
5613 	return true;
5614 }
5615 
5616 /* Lock devices from the top of the tree down */
5617 static void pci_slot_lock(struct pci_slot *slot)
5618 {
5619 	struct pci_dev *dev;
5620 
5621 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5622 		if (!dev->slot || dev->slot != slot)
5623 			continue;
5624 		pci_dev_lock(dev);
5625 		if (dev->subordinate)
5626 			pci_bus_lock(dev->subordinate);
5627 	}
5628 }
5629 
5630 /* Unlock devices from the bottom of the tree up */
5631 static void pci_slot_unlock(struct pci_slot *slot)
5632 {
5633 	struct pci_dev *dev;
5634 
5635 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5636 		if (!dev->slot || dev->slot != slot)
5637 			continue;
5638 		if (dev->subordinate)
5639 			pci_bus_unlock(dev->subordinate);
5640 		pci_dev_unlock(dev);
5641 	}
5642 }
5643 
5644 /* Return 1 on successful lock, 0 on contention */
5645 static int pci_slot_trylock(struct pci_slot *slot)
5646 {
5647 	struct pci_dev *dev;
5648 
5649 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5650 		if (!dev->slot || dev->slot != slot)
5651 			continue;
5652 		if (!pci_dev_trylock(dev))
5653 			goto unlock;
5654 		if (dev->subordinate) {
5655 			if (!pci_bus_trylock(dev->subordinate)) {
5656 				pci_dev_unlock(dev);
5657 				goto unlock;
5658 			}
5659 		}
5660 	}
5661 	return 1;
5662 
5663 unlock:
5664 	list_for_each_entry_continue_reverse(dev,
5665 					     &slot->bus->devices, bus_list) {
5666 		if (!dev->slot || dev->slot != slot)
5667 			continue;
5668 		if (dev->subordinate)
5669 			pci_bus_unlock(dev->subordinate);
5670 		pci_dev_unlock(dev);
5671 	}
5672 	return 0;
5673 }
5674 
5675 /*
5676  * Save and disable devices from the top of the tree down while holding
5677  * the @dev mutex lock for the entire tree.
5678  */
5679 static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5680 {
5681 	struct pci_dev *dev;
5682 
5683 	list_for_each_entry(dev, &bus->devices, bus_list) {
5684 		pci_dev_save_and_disable(dev);
5685 		if (dev->subordinate)
5686 			pci_bus_save_and_disable_locked(dev->subordinate);
5687 	}
5688 }
5689 
5690 /*
5691  * Restore devices from top of the tree down while holding @dev mutex lock
5692  * for the entire tree.  Parent bridges need to be restored before we can
5693  * get to subordinate devices.
5694  */
5695 static void pci_bus_restore_locked(struct pci_bus *bus)
5696 {
5697 	struct pci_dev *dev;
5698 
5699 	list_for_each_entry(dev, &bus->devices, bus_list) {
5700 		pci_dev_restore(dev);
5701 		if (dev->subordinate)
5702 			pci_bus_restore_locked(dev->subordinate);
5703 	}
5704 }
5705 
5706 /*
5707  * Save and disable devices from the top of the tree down while holding
5708  * the @dev mutex lock for the entire tree.
5709  */
5710 static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5711 {
5712 	struct pci_dev *dev;
5713 
5714 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5715 		if (!dev->slot || dev->slot != slot)
5716 			continue;
5717 		pci_dev_save_and_disable(dev);
5718 		if (dev->subordinate)
5719 			pci_bus_save_and_disable_locked(dev->subordinate);
5720 	}
5721 }
5722 
5723 /*
5724  * Restore devices from top of the tree down while holding @dev mutex lock
5725  * for the entire tree.  Parent bridges need to be restored before we can
5726  * get to subordinate devices.
5727  */
5728 static void pci_slot_restore_locked(struct pci_slot *slot)
5729 {
5730 	struct pci_dev *dev;
5731 
5732 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5733 		if (!dev->slot || dev->slot != slot)
5734 			continue;
5735 		pci_dev_restore(dev);
5736 		if (dev->subordinate)
5737 			pci_bus_restore_locked(dev->subordinate);
5738 	}
5739 }
5740 
5741 static int pci_slot_reset(struct pci_slot *slot, bool probe)
5742 {
5743 	int rc;
5744 
5745 	if (!slot || !pci_slot_resetable(slot))
5746 		return -ENOTTY;
5747 
5748 	if (!probe)
5749 		pci_slot_lock(slot);
5750 
5751 	might_sleep();
5752 
5753 	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5754 
5755 	if (!probe)
5756 		pci_slot_unlock(slot);
5757 
5758 	return rc;
5759 }
5760 
5761 /**
5762  * pci_probe_reset_slot - probe whether a PCI slot can be reset
5763  * @slot: PCI slot to probe
5764  *
5765  * Return 0 if slot can be reset, negative if a slot reset is not supported.
5766  */
5767 int pci_probe_reset_slot(struct pci_slot *slot)
5768 {
5769 	return pci_slot_reset(slot, PCI_RESET_PROBE);
5770 }
5771 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5772 
5773 /**
5774  * __pci_reset_slot - Try to reset a PCI slot
5775  * @slot: PCI slot to reset
5776  *
5777  * A PCI bus may host multiple slots, each slot may support a reset mechanism
5778  * independent of other slots.  For instance, some slots may support slot power
5779  * control.  In the case of a 1:1 bus to slot architecture, this function may
5780  * wrap the bus reset to avoid spurious slot related events such as hotplug.
5781  * Generally a slot reset should be attempted before a bus reset.  All of the
5782  * function of the slot and any subordinate buses behind the slot are reset
5783  * through this function.  PCI config space of all devices in the slot and
5784  * behind the slot is saved before and restored after reset.
5785  *
5786  * Same as above except return -EAGAIN if the slot cannot be locked
5787  */
5788 static int __pci_reset_slot(struct pci_slot *slot)
5789 {
5790 	int rc;
5791 
5792 	rc = pci_slot_reset(slot, PCI_RESET_PROBE);
5793 	if (rc)
5794 		return rc;
5795 
5796 	if (pci_slot_trylock(slot)) {
5797 		pci_slot_save_and_disable_locked(slot);
5798 		might_sleep();
5799 		rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET);
5800 		pci_slot_restore_locked(slot);
5801 		pci_slot_unlock(slot);
5802 	} else
5803 		rc = -EAGAIN;
5804 
5805 	return rc;
5806 }
5807 
5808 static int pci_bus_reset(struct pci_bus *bus, bool probe)
5809 {
5810 	int ret;
5811 
5812 	if (!bus->self || !pci_bus_resetable(bus))
5813 		return -ENOTTY;
5814 
5815 	if (probe)
5816 		return 0;
5817 
5818 	pci_bus_lock(bus);
5819 
5820 	might_sleep();
5821 
5822 	ret = pci_bridge_secondary_bus_reset(bus->self);
5823 
5824 	pci_bus_unlock(bus);
5825 
5826 	return ret;
5827 }
5828 
5829 /**
5830  * pci_bus_error_reset - reset the bridge's subordinate bus
5831  * @bridge: The parent device that connects to the bus to reset
5832  *
5833  * This function will first try to reset the slots on this bus if the method is
5834  * available. If slot reset fails or is not available, this will fall back to a
5835  * secondary bus reset.
5836  */
5837 int pci_bus_error_reset(struct pci_dev *bridge)
5838 {
5839 	struct pci_bus *bus = bridge->subordinate;
5840 	struct pci_slot *slot;
5841 
5842 	if (!bus)
5843 		return -ENOTTY;
5844 
5845 	mutex_lock(&pci_slot_mutex);
5846 	if (list_empty(&bus->slots))
5847 		goto bus_reset;
5848 
5849 	list_for_each_entry(slot, &bus->slots, list)
5850 		if (pci_probe_reset_slot(slot))
5851 			goto bus_reset;
5852 
5853 	list_for_each_entry(slot, &bus->slots, list)
5854 		if (pci_slot_reset(slot, PCI_RESET_DO_RESET))
5855 			goto bus_reset;
5856 
5857 	mutex_unlock(&pci_slot_mutex);
5858 	return 0;
5859 bus_reset:
5860 	mutex_unlock(&pci_slot_mutex);
5861 	return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET);
5862 }
5863 
5864 /**
5865  * pci_probe_reset_bus - probe whether a PCI bus can be reset
5866  * @bus: PCI bus to probe
5867  *
5868  * Return 0 if bus can be reset, negative if a bus reset is not supported.
5869  */
5870 int pci_probe_reset_bus(struct pci_bus *bus)
5871 {
5872 	return pci_bus_reset(bus, PCI_RESET_PROBE);
5873 }
5874 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5875 
5876 /**
5877  * __pci_reset_bus - Try to reset a PCI bus
5878  * @bus: top level PCI bus to reset
5879  *
5880  * Same as above except return -EAGAIN if the bus cannot be locked
5881  */
5882 static int __pci_reset_bus(struct pci_bus *bus)
5883 {
5884 	int rc;
5885 
5886 	rc = pci_bus_reset(bus, PCI_RESET_PROBE);
5887 	if (rc)
5888 		return rc;
5889 
5890 	if (pci_bus_trylock(bus)) {
5891 		pci_bus_save_and_disable_locked(bus);
5892 		might_sleep();
5893 		rc = pci_bridge_secondary_bus_reset(bus->self);
5894 		pci_bus_restore_locked(bus);
5895 		pci_bus_unlock(bus);
5896 	} else
5897 		rc = -EAGAIN;
5898 
5899 	return rc;
5900 }
5901 
5902 /**
5903  * pci_reset_bus - Try to reset a PCI bus
5904  * @pdev: top level PCI device to reset via slot/bus
5905  *
5906  * Same as above except return -EAGAIN if the bus cannot be locked
5907  */
5908 int pci_reset_bus(struct pci_dev *pdev)
5909 {
5910 	return (!pci_probe_reset_slot(pdev->slot)) ?
5911 	    __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5912 }
5913 EXPORT_SYMBOL_GPL(pci_reset_bus);
5914 
5915 /**
5916  * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5917  * @dev: PCI device to query
5918  *
5919  * Returns mmrbc: maximum designed memory read count in bytes or
5920  * appropriate error value.
5921  */
5922 int pcix_get_max_mmrbc(struct pci_dev *dev)
5923 {
5924 	int cap;
5925 	u32 stat;
5926 
5927 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5928 	if (!cap)
5929 		return -EINVAL;
5930 
5931 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5932 		return -EINVAL;
5933 
5934 	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
5935 }
5936 EXPORT_SYMBOL(pcix_get_max_mmrbc);
5937 
5938 /**
5939  * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5940  * @dev: PCI device to query
5941  *
5942  * Returns mmrbc: maximum memory read count in bytes or appropriate error
5943  * value.
5944  */
5945 int pcix_get_mmrbc(struct pci_dev *dev)
5946 {
5947 	int cap;
5948 	u16 cmd;
5949 
5950 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5951 	if (!cap)
5952 		return -EINVAL;
5953 
5954 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5955 		return -EINVAL;
5956 
5957 	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
5958 }
5959 EXPORT_SYMBOL(pcix_get_mmrbc);
5960 
5961 /**
5962  * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5963  * @dev: PCI device to query
5964  * @mmrbc: maximum memory read count in bytes
5965  *    valid values are 512, 1024, 2048, 4096
5966  *
5967  * If possible sets maximum memory read byte count, some bridges have errata
5968  * that prevent this.
5969  */
5970 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5971 {
5972 	int cap;
5973 	u32 stat, v, o;
5974 	u16 cmd;
5975 
5976 	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5977 		return -EINVAL;
5978 
5979 	v = ffs(mmrbc) - 10;
5980 
5981 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5982 	if (!cap)
5983 		return -EINVAL;
5984 
5985 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5986 		return -EINVAL;
5987 
5988 	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
5989 		return -E2BIG;
5990 
5991 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5992 		return -EINVAL;
5993 
5994 	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
5995 	if (o != v) {
5996 		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5997 			return -EIO;
5998 
5999 		cmd &= ~PCI_X_CMD_MAX_READ;
6000 		cmd |= v << 2;
6001 		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
6002 			return -EIO;
6003 	}
6004 	return 0;
6005 }
6006 EXPORT_SYMBOL(pcix_set_mmrbc);
6007 
6008 /**
6009  * pcie_get_readrq - get PCI Express read request size
6010  * @dev: PCI device to query
6011  *
6012  * Returns maximum memory read request in bytes or appropriate error value.
6013  */
6014 int pcie_get_readrq(struct pci_dev *dev)
6015 {
6016 	u16 ctl;
6017 
6018 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6019 
6020 	return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6021 }
6022 EXPORT_SYMBOL(pcie_get_readrq);
6023 
6024 /**
6025  * pcie_set_readrq - set PCI Express maximum memory read request
6026  * @dev: PCI device to query
6027  * @rq: maximum memory read count in bytes
6028  *    valid values are 128, 256, 512, 1024, 2048, 4096
6029  *
6030  * If possible sets maximum memory read request in bytes
6031  */
6032 int pcie_set_readrq(struct pci_dev *dev, int rq)
6033 {
6034 	u16 v;
6035 	int ret;
6036 
6037 	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
6038 		return -EINVAL;
6039 
6040 	/*
6041 	 * If using the "performance" PCIe config, we clamp the read rq
6042 	 * size to the max packet size to keep the host bridge from
6043 	 * generating requests larger than we can cope with.
6044 	 */
6045 	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
6046 		int mps = pcie_get_mps(dev);
6047 
6048 		if (mps < rq)
6049 			rq = mps;
6050 	}
6051 
6052 	v = (ffs(rq) - 8) << 12;
6053 
6054 	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6055 						  PCI_EXP_DEVCTL_READRQ, v);
6056 
6057 	return pcibios_err_to_errno(ret);
6058 }
6059 EXPORT_SYMBOL(pcie_set_readrq);
6060 
6061 /**
6062  * pcie_get_mps - get PCI Express maximum payload size
6063  * @dev: PCI device to query
6064  *
6065  * Returns maximum payload size in bytes
6066  */
6067 int pcie_get_mps(struct pci_dev *dev)
6068 {
6069 	u16 ctl;
6070 
6071 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6072 
6073 	return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6074 }
6075 EXPORT_SYMBOL(pcie_get_mps);
6076 
6077 /**
6078  * pcie_set_mps - set PCI Express maximum payload size
6079  * @dev: PCI device to query
6080  * @mps: maximum payload size in bytes
6081  *    valid values are 128, 256, 512, 1024, 2048, 4096
6082  *
6083  * If possible sets maximum payload size
6084  */
6085 int pcie_set_mps(struct pci_dev *dev, int mps)
6086 {
6087 	u16 v;
6088 	int ret;
6089 
6090 	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
6091 		return -EINVAL;
6092 
6093 	v = ffs(mps) - 8;
6094 	if (v > dev->pcie_mpss)
6095 		return -EINVAL;
6096 	v <<= 5;
6097 
6098 	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6099 						  PCI_EXP_DEVCTL_PAYLOAD, v);
6100 
6101 	return pcibios_err_to_errno(ret);
6102 }
6103 EXPORT_SYMBOL(pcie_set_mps);
6104 
6105 /**
6106  * pcie_bandwidth_available - determine minimum link settings of a PCIe
6107  *			      device and its bandwidth limitation
6108  * @dev: PCI device to query
6109  * @limiting_dev: storage for device causing the bandwidth limitation
6110  * @speed: storage for speed of limiting device
6111  * @width: storage for width of limiting device
6112  *
6113  * Walk up the PCI device chain and find the point where the minimum
6114  * bandwidth is available.  Return the bandwidth available there and (if
6115  * limiting_dev, speed, and width pointers are supplied) information about
6116  * that point.  The bandwidth returned is in Mb/s, i.e., megabits/second of
6117  * raw bandwidth.
6118  */
6119 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
6120 			     enum pci_bus_speed *speed,
6121 			     enum pcie_link_width *width)
6122 {
6123 	u16 lnksta;
6124 	enum pci_bus_speed next_speed;
6125 	enum pcie_link_width next_width;
6126 	u32 bw, next_bw;
6127 
6128 	if (speed)
6129 		*speed = PCI_SPEED_UNKNOWN;
6130 	if (width)
6131 		*width = PCIE_LNK_WIDTH_UNKNOWN;
6132 
6133 	bw = 0;
6134 
6135 	while (dev) {
6136 		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
6137 
6138 		next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
6139 		next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
6140 			PCI_EXP_LNKSTA_NLW_SHIFT;
6141 
6142 		next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
6143 
6144 		/* Check if current device limits the total bandwidth */
6145 		if (!bw || next_bw <= bw) {
6146 			bw = next_bw;
6147 
6148 			if (limiting_dev)
6149 				*limiting_dev = dev;
6150 			if (speed)
6151 				*speed = next_speed;
6152 			if (width)
6153 				*width = next_width;
6154 		}
6155 
6156 		dev = pci_upstream_bridge(dev);
6157 	}
6158 
6159 	return bw;
6160 }
6161 EXPORT_SYMBOL(pcie_bandwidth_available);
6162 
6163 /**
6164  * pcie_get_speed_cap - query for the PCI device's link speed capability
6165  * @dev: PCI device to query
6166  *
6167  * Query the PCI device speed capability.  Return the maximum link speed
6168  * supported by the device.
6169  */
6170 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
6171 {
6172 	u32 lnkcap2, lnkcap;
6173 
6174 	/*
6175 	 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18.  The
6176 	 * implementation note there recommends using the Supported Link
6177 	 * Speeds Vector in Link Capabilities 2 when supported.
6178 	 *
6179 	 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
6180 	 * should use the Supported Link Speeds field in Link Capabilities,
6181 	 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
6182 	 */
6183 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
6184 
6185 	/* PCIe r3.0-compliant */
6186 	if (lnkcap2)
6187 		return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
6188 
6189 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6190 	if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
6191 		return PCIE_SPEED_5_0GT;
6192 	else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
6193 		return PCIE_SPEED_2_5GT;
6194 
6195 	return PCI_SPEED_UNKNOWN;
6196 }
6197 EXPORT_SYMBOL(pcie_get_speed_cap);
6198 
6199 /**
6200  * pcie_get_width_cap - query for the PCI device's link width capability
6201  * @dev: PCI device to query
6202  *
6203  * Query the PCI device width capability.  Return the maximum link width
6204  * supported by the device.
6205  */
6206 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
6207 {
6208 	u32 lnkcap;
6209 
6210 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6211 	if (lnkcap)
6212 		return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
6213 
6214 	return PCIE_LNK_WIDTH_UNKNOWN;
6215 }
6216 EXPORT_SYMBOL(pcie_get_width_cap);
6217 
6218 /**
6219  * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
6220  * @dev: PCI device
6221  * @speed: storage for link speed
6222  * @width: storage for link width
6223  *
6224  * Calculate a PCI device's link bandwidth by querying for its link speed
6225  * and width, multiplying them, and applying encoding overhead.  The result
6226  * is in Mb/s, i.e., megabits/second of raw bandwidth.
6227  */
6228 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
6229 			   enum pcie_link_width *width)
6230 {
6231 	*speed = pcie_get_speed_cap(dev);
6232 	*width = pcie_get_width_cap(dev);
6233 
6234 	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
6235 		return 0;
6236 
6237 	return *width * PCIE_SPEED2MBS_ENC(*speed);
6238 }
6239 
6240 /**
6241  * __pcie_print_link_status - Report the PCI device's link speed and width
6242  * @dev: PCI device to query
6243  * @verbose: Print info even when enough bandwidth is available
6244  *
6245  * If the available bandwidth at the device is less than the device is
6246  * capable of, report the device's maximum possible bandwidth and the
6247  * upstream link that limits its performance.  If @verbose, always print
6248  * the available bandwidth, even if the device isn't constrained.
6249  */
6250 void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
6251 {
6252 	enum pcie_link_width width, width_cap;
6253 	enum pci_bus_speed speed, speed_cap;
6254 	struct pci_dev *limiting_dev = NULL;
6255 	u32 bw_avail, bw_cap;
6256 
6257 	bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
6258 	bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
6259 
6260 	if (bw_avail >= bw_cap && verbose)
6261 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
6262 			 bw_cap / 1000, bw_cap % 1000,
6263 			 pci_speed_string(speed_cap), width_cap);
6264 	else if (bw_avail < bw_cap)
6265 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
6266 			 bw_avail / 1000, bw_avail % 1000,
6267 			 pci_speed_string(speed), width,
6268 			 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
6269 			 bw_cap / 1000, bw_cap % 1000,
6270 			 pci_speed_string(speed_cap), width_cap);
6271 }
6272 
6273 /**
6274  * pcie_print_link_status - Report the PCI device's link speed and width
6275  * @dev: PCI device to query
6276  *
6277  * Report the available bandwidth at the device.
6278  */
6279 void pcie_print_link_status(struct pci_dev *dev)
6280 {
6281 	__pcie_print_link_status(dev, true);
6282 }
6283 EXPORT_SYMBOL(pcie_print_link_status);
6284 
6285 /**
6286  * pci_select_bars - Make BAR mask from the type of resource
6287  * @dev: the PCI device for which BAR mask is made
6288  * @flags: resource type mask to be selected
6289  *
6290  * This helper routine makes bar mask from the type of resource.
6291  */
6292 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
6293 {
6294 	int i, bars = 0;
6295 	for (i = 0; i < PCI_NUM_RESOURCES; i++)
6296 		if (pci_resource_flags(dev, i) & flags)
6297 			bars |= (1 << i);
6298 	return bars;
6299 }
6300 EXPORT_SYMBOL(pci_select_bars);
6301 
6302 /* Some architectures require additional programming to enable VGA */
6303 static arch_set_vga_state_t arch_set_vga_state;
6304 
6305 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6306 {
6307 	arch_set_vga_state = func;	/* NULL disables */
6308 }
6309 
6310 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
6311 				  unsigned int command_bits, u32 flags)
6312 {
6313 	if (arch_set_vga_state)
6314 		return arch_set_vga_state(dev, decode, command_bits,
6315 						flags);
6316 	return 0;
6317 }
6318 
6319 /**
6320  * pci_set_vga_state - set VGA decode state on device and parents if requested
6321  * @dev: the PCI device
6322  * @decode: true = enable decoding, false = disable decoding
6323  * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6324  * @flags: traverse ancestors and change bridges
6325  * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6326  */
6327 int pci_set_vga_state(struct pci_dev *dev, bool decode,
6328 		      unsigned int command_bits, u32 flags)
6329 {
6330 	struct pci_bus *bus;
6331 	struct pci_dev *bridge;
6332 	u16 cmd;
6333 	int rc;
6334 
6335 	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6336 
6337 	/* ARCH specific VGA enables */
6338 	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6339 	if (rc)
6340 		return rc;
6341 
6342 	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6343 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
6344 		if (decode)
6345 			cmd |= command_bits;
6346 		else
6347 			cmd &= ~command_bits;
6348 		pci_write_config_word(dev, PCI_COMMAND, cmd);
6349 	}
6350 
6351 	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6352 		return 0;
6353 
6354 	bus = dev->bus;
6355 	while (bus) {
6356 		bridge = bus->self;
6357 		if (bridge) {
6358 			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6359 					     &cmd);
6360 			if (decode)
6361 				cmd |= PCI_BRIDGE_CTL_VGA;
6362 			else
6363 				cmd &= ~PCI_BRIDGE_CTL_VGA;
6364 			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6365 					      cmd);
6366 		}
6367 		bus = bus->parent;
6368 	}
6369 	return 0;
6370 }
6371 
6372 #ifdef CONFIG_ACPI
6373 bool pci_pr3_present(struct pci_dev *pdev)
6374 {
6375 	struct acpi_device *adev;
6376 
6377 	if (acpi_disabled)
6378 		return false;
6379 
6380 	adev = ACPI_COMPANION(&pdev->dev);
6381 	if (!adev)
6382 		return false;
6383 
6384 	return adev->power.flags.power_resources &&
6385 		acpi_has_method(adev->handle, "_PR3");
6386 }
6387 EXPORT_SYMBOL_GPL(pci_pr3_present);
6388 #endif
6389 
6390 /**
6391  * pci_add_dma_alias - Add a DMA devfn alias for a device
6392  * @dev: the PCI device for which alias is added
6393  * @devfn_from: alias slot and function
6394  * @nr_devfns: number of subsequent devfns to alias
6395  *
6396  * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6397  * which is used to program permissible bus-devfn source addresses for DMA
6398  * requests in an IOMMU.  These aliases factor into IOMMU group creation
6399  * and are useful for devices generating DMA requests beyond or different
6400  * from their logical bus-devfn.  Examples include device quirks where the
6401  * device simply uses the wrong devfn, as well as non-transparent bridges
6402  * where the alias may be a proxy for devices in another domain.
6403  *
6404  * IOMMU group creation is performed during device discovery or addition,
6405  * prior to any potential DMA mapping and therefore prior to driver probing
6406  * (especially for userspace assigned devices where IOMMU group definition
6407  * cannot be left as a userspace activity).  DMA aliases should therefore
6408  * be configured via quirks, such as the PCI fixup header quirk.
6409  */
6410 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from,
6411 		       unsigned int nr_devfns)
6412 {
6413 	int devfn_to;
6414 
6415 	nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from);
6416 	devfn_to = devfn_from + nr_devfns - 1;
6417 
6418 	if (!dev->dma_alias_mask)
6419 		dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6420 	if (!dev->dma_alias_mask) {
6421 		pci_warn(dev, "Unable to allocate DMA alias mask\n");
6422 		return;
6423 	}
6424 
6425 	bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6426 
6427 	if (nr_devfns == 1)
6428 		pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6429 				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6430 	else if (nr_devfns > 1)
6431 		pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6432 				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6433 				PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6434 }
6435 
6436 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6437 {
6438 	return (dev1->dma_alias_mask &&
6439 		test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6440 	       (dev2->dma_alias_mask &&
6441 		test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6442 	       pci_real_dma_dev(dev1) == dev2 ||
6443 	       pci_real_dma_dev(dev2) == dev1;
6444 }
6445 
6446 bool pci_device_is_present(struct pci_dev *pdev)
6447 {
6448 	u32 v;
6449 
6450 	if (pci_dev_is_disconnected(pdev))
6451 		return false;
6452 	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6453 }
6454 EXPORT_SYMBOL_GPL(pci_device_is_present);
6455 
6456 void pci_ignore_hotplug(struct pci_dev *dev)
6457 {
6458 	struct pci_dev *bridge = dev->bus->self;
6459 
6460 	dev->ignore_hotplug = 1;
6461 	/* Propagate the "ignore hotplug" setting to the parent bridge. */
6462 	if (bridge)
6463 		bridge->ignore_hotplug = 1;
6464 }
6465 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6466 
6467 /**
6468  * pci_real_dma_dev - Get PCI DMA device for PCI device
6469  * @dev: the PCI device that may have a PCI DMA alias
6470  *
6471  * Permits the platform to provide architecture-specific functionality to
6472  * devices needing to alias DMA to another PCI device on another PCI bus. If
6473  * the PCI device is on the same bus, it is recommended to use
6474  * pci_add_dma_alias(). This is the default implementation. Architecture
6475  * implementations can override this.
6476  */
6477 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6478 {
6479 	return dev;
6480 }
6481 
6482 resource_size_t __weak pcibios_default_alignment(void)
6483 {
6484 	return 0;
6485 }
6486 
6487 /*
6488  * Arches that don't want to expose struct resource to userland as-is in
6489  * sysfs and /proc can implement their own pci_resource_to_user().
6490  */
6491 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6492 				 const struct resource *rsrc,
6493 				 resource_size_t *start, resource_size_t *end)
6494 {
6495 	*start = rsrc->start;
6496 	*end = rsrc->end;
6497 }
6498 
6499 static char *resource_alignment_param;
6500 static DEFINE_SPINLOCK(resource_alignment_lock);
6501 
6502 /**
6503  * pci_specified_resource_alignment - get resource alignment specified by user.
6504  * @dev: the PCI device to get
6505  * @resize: whether or not to change resources' size when reassigning alignment
6506  *
6507  * RETURNS: Resource alignment if it is specified.
6508  *          Zero if it is not specified.
6509  */
6510 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6511 							bool *resize)
6512 {
6513 	int align_order, count;
6514 	resource_size_t align = pcibios_default_alignment();
6515 	const char *p;
6516 	int ret;
6517 
6518 	spin_lock(&resource_alignment_lock);
6519 	p = resource_alignment_param;
6520 	if (!p || !*p)
6521 		goto out;
6522 	if (pci_has_flag(PCI_PROBE_ONLY)) {
6523 		align = 0;
6524 		pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6525 		goto out;
6526 	}
6527 
6528 	while (*p) {
6529 		count = 0;
6530 		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6531 		    p[count] == '@') {
6532 			p += count + 1;
6533 			if (align_order > 63) {
6534 				pr_err("PCI: Invalid requested alignment (order %d)\n",
6535 				       align_order);
6536 				align_order = PAGE_SHIFT;
6537 			}
6538 		} else {
6539 			align_order = PAGE_SHIFT;
6540 		}
6541 
6542 		ret = pci_dev_str_match(dev, p, &p);
6543 		if (ret == 1) {
6544 			*resize = true;
6545 			align = 1ULL << align_order;
6546 			break;
6547 		} else if (ret < 0) {
6548 			pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6549 			       p);
6550 			break;
6551 		}
6552 
6553 		if (*p != ';' && *p != ',') {
6554 			/* End of param or invalid format */
6555 			break;
6556 		}
6557 		p++;
6558 	}
6559 out:
6560 	spin_unlock(&resource_alignment_lock);
6561 	return align;
6562 }
6563 
6564 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6565 					   resource_size_t align, bool resize)
6566 {
6567 	struct resource *r = &dev->resource[bar];
6568 	resource_size_t size;
6569 
6570 	if (!(r->flags & IORESOURCE_MEM))
6571 		return;
6572 
6573 	if (r->flags & IORESOURCE_PCI_FIXED) {
6574 		pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6575 			 bar, r, (unsigned long long)align);
6576 		return;
6577 	}
6578 
6579 	size = resource_size(r);
6580 	if (size >= align)
6581 		return;
6582 
6583 	/*
6584 	 * Increase the alignment of the resource.  There are two ways we
6585 	 * can do this:
6586 	 *
6587 	 * 1) Increase the size of the resource.  BARs are aligned on their
6588 	 *    size, so when we reallocate space for this resource, we'll
6589 	 *    allocate it with the larger alignment.  This also prevents
6590 	 *    assignment of any other BARs inside the alignment region, so
6591 	 *    if we're requesting page alignment, this means no other BARs
6592 	 *    will share the page.
6593 	 *
6594 	 *    The disadvantage is that this makes the resource larger than
6595 	 *    the hardware BAR, which may break drivers that compute things
6596 	 *    based on the resource size, e.g., to find registers at a
6597 	 *    fixed offset before the end of the BAR.
6598 	 *
6599 	 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6600 	 *    set r->start to the desired alignment.  By itself this
6601 	 *    doesn't prevent other BARs being put inside the alignment
6602 	 *    region, but if we realign *every* resource of every device in
6603 	 *    the system, none of them will share an alignment region.
6604 	 *
6605 	 * When the user has requested alignment for only some devices via
6606 	 * the "pci=resource_alignment" argument, "resize" is true and we
6607 	 * use the first method.  Otherwise we assume we're aligning all
6608 	 * devices and we use the second.
6609 	 */
6610 
6611 	pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6612 		 bar, r, (unsigned long long)align);
6613 
6614 	if (resize) {
6615 		r->start = 0;
6616 		r->end = align - 1;
6617 	} else {
6618 		r->flags &= ~IORESOURCE_SIZEALIGN;
6619 		r->flags |= IORESOURCE_STARTALIGN;
6620 		r->start = align;
6621 		r->end = r->start + size - 1;
6622 	}
6623 	r->flags |= IORESOURCE_UNSET;
6624 }
6625 
6626 /*
6627  * This function disables memory decoding and releases memory resources
6628  * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6629  * It also rounds up size to specified alignment.
6630  * Later on, the kernel will assign page-aligned memory resource back
6631  * to the device.
6632  */
6633 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6634 {
6635 	int i;
6636 	struct resource *r;
6637 	resource_size_t align;
6638 	u16 command;
6639 	bool resize = false;
6640 
6641 	/*
6642 	 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6643 	 * 3.4.1.11.  Their resources are allocated from the space
6644 	 * described by the VF BARx register in the PF's SR-IOV capability.
6645 	 * We can't influence their alignment here.
6646 	 */
6647 	if (dev->is_virtfn)
6648 		return;
6649 
6650 	/* check if specified PCI is target device to reassign */
6651 	align = pci_specified_resource_alignment(dev, &resize);
6652 	if (!align)
6653 		return;
6654 
6655 	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6656 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6657 		pci_warn(dev, "Can't reassign resources to host bridge\n");
6658 		return;
6659 	}
6660 
6661 	pci_read_config_word(dev, PCI_COMMAND, &command);
6662 	command &= ~PCI_COMMAND_MEMORY;
6663 	pci_write_config_word(dev, PCI_COMMAND, command);
6664 
6665 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6666 		pci_request_resource_alignment(dev, i, align, resize);
6667 
6668 	/*
6669 	 * Need to disable bridge's resource window,
6670 	 * to enable the kernel to reassign new resource
6671 	 * window later on.
6672 	 */
6673 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6674 		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6675 			r = &dev->resource[i];
6676 			if (!(r->flags & IORESOURCE_MEM))
6677 				continue;
6678 			r->flags |= IORESOURCE_UNSET;
6679 			r->end = resource_size(r) - 1;
6680 			r->start = 0;
6681 		}
6682 		pci_disable_bridge_window(dev);
6683 	}
6684 }
6685 
6686 static ssize_t resource_alignment_show(struct bus_type *bus, char *buf)
6687 {
6688 	size_t count = 0;
6689 
6690 	spin_lock(&resource_alignment_lock);
6691 	if (resource_alignment_param)
6692 		count = sysfs_emit(buf, "%s\n", resource_alignment_param);
6693 	spin_unlock(&resource_alignment_lock);
6694 
6695 	return count;
6696 }
6697 
6698 static ssize_t resource_alignment_store(struct bus_type *bus,
6699 					const char *buf, size_t count)
6700 {
6701 	char *param, *old, *end;
6702 
6703 	if (count >= (PAGE_SIZE - 1))
6704 		return -EINVAL;
6705 
6706 	param = kstrndup(buf, count, GFP_KERNEL);
6707 	if (!param)
6708 		return -ENOMEM;
6709 
6710 	end = strchr(param, '\n');
6711 	if (end)
6712 		*end = '\0';
6713 
6714 	spin_lock(&resource_alignment_lock);
6715 	old = resource_alignment_param;
6716 	if (strlen(param)) {
6717 		resource_alignment_param = param;
6718 	} else {
6719 		kfree(param);
6720 		resource_alignment_param = NULL;
6721 	}
6722 	spin_unlock(&resource_alignment_lock);
6723 
6724 	kfree(old);
6725 
6726 	return count;
6727 }
6728 
6729 static BUS_ATTR_RW(resource_alignment);
6730 
6731 static int __init pci_resource_alignment_sysfs_init(void)
6732 {
6733 	return bus_create_file(&pci_bus_type,
6734 					&bus_attr_resource_alignment);
6735 }
6736 late_initcall(pci_resource_alignment_sysfs_init);
6737 
6738 static void pci_no_domains(void)
6739 {
6740 #ifdef CONFIG_PCI_DOMAINS
6741 	pci_domains_supported = 0;
6742 #endif
6743 }
6744 
6745 #ifdef CONFIG_PCI_DOMAINS_GENERIC
6746 static atomic_t __domain_nr = ATOMIC_INIT(-1);
6747 
6748 static int pci_get_new_domain_nr(void)
6749 {
6750 	return atomic_inc_return(&__domain_nr);
6751 }
6752 
6753 static int of_pci_bus_find_domain_nr(struct device *parent)
6754 {
6755 	static int use_dt_domains = -1;
6756 	int domain = -1;
6757 
6758 	if (parent)
6759 		domain = of_get_pci_domain_nr(parent->of_node);
6760 
6761 	/*
6762 	 * Check DT domain and use_dt_domains values.
6763 	 *
6764 	 * If DT domain property is valid (domain >= 0) and
6765 	 * use_dt_domains != 0, the DT assignment is valid since this means
6766 	 * we have not previously allocated a domain number by using
6767 	 * pci_get_new_domain_nr(); we should also update use_dt_domains to
6768 	 * 1, to indicate that we have just assigned a domain number from
6769 	 * DT.
6770 	 *
6771 	 * If DT domain property value is not valid (ie domain < 0), and we
6772 	 * have not previously assigned a domain number from DT
6773 	 * (use_dt_domains != 1) we should assign a domain number by
6774 	 * using the:
6775 	 *
6776 	 * pci_get_new_domain_nr()
6777 	 *
6778 	 * API and update the use_dt_domains value to keep track of method we
6779 	 * are using to assign domain numbers (use_dt_domains = 0).
6780 	 *
6781 	 * All other combinations imply we have a platform that is trying
6782 	 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
6783 	 * which is a recipe for domain mishandling and it is prevented by
6784 	 * invalidating the domain value (domain = -1) and printing a
6785 	 * corresponding error.
6786 	 */
6787 	if (domain >= 0 && use_dt_domains) {
6788 		use_dt_domains = 1;
6789 	} else if (domain < 0 && use_dt_domains != 1) {
6790 		use_dt_domains = 0;
6791 		domain = pci_get_new_domain_nr();
6792 	} else {
6793 		if (parent)
6794 			pr_err("Node %pOF has ", parent->of_node);
6795 		pr_err("Inconsistent \"linux,pci-domain\" property in DT\n");
6796 		domain = -1;
6797 	}
6798 
6799 	return domain;
6800 }
6801 
6802 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6803 {
6804 	return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6805 			       acpi_pci_bus_find_domain_nr(bus);
6806 }
6807 #endif
6808 
6809 /**
6810  * pci_ext_cfg_avail - can we access extended PCI config space?
6811  *
6812  * Returns 1 if we can access PCI extended config space (offsets
6813  * greater than 0xff). This is the default implementation. Architecture
6814  * implementations can override this.
6815  */
6816 int __weak pci_ext_cfg_avail(void)
6817 {
6818 	return 1;
6819 }
6820 
6821 void __weak pci_fixup_cardbus(struct pci_bus *bus)
6822 {
6823 }
6824 EXPORT_SYMBOL(pci_fixup_cardbus);
6825 
6826 static int __init pci_setup(char *str)
6827 {
6828 	while (str) {
6829 		char *k = strchr(str, ',');
6830 		if (k)
6831 			*k++ = 0;
6832 		if (*str && (str = pcibios_setup(str)) && *str) {
6833 			if (!strcmp(str, "nomsi")) {
6834 				pci_no_msi();
6835 			} else if (!strncmp(str, "noats", 5)) {
6836 				pr_info("PCIe: ATS is disabled\n");
6837 				pcie_ats_disabled = true;
6838 			} else if (!strcmp(str, "noaer")) {
6839 				pci_no_aer();
6840 			} else if (!strcmp(str, "earlydump")) {
6841 				pci_early_dump = true;
6842 			} else if (!strncmp(str, "realloc=", 8)) {
6843 				pci_realloc_get_opt(str + 8);
6844 			} else if (!strncmp(str, "realloc", 7)) {
6845 				pci_realloc_get_opt("on");
6846 			} else if (!strcmp(str, "nodomains")) {
6847 				pci_no_domains();
6848 			} else if (!strncmp(str, "noari", 5)) {
6849 				pcie_ari_disabled = true;
6850 			} else if (!strncmp(str, "cbiosize=", 9)) {
6851 				pci_cardbus_io_size = memparse(str + 9, &str);
6852 			} else if (!strncmp(str, "cbmemsize=", 10)) {
6853 				pci_cardbus_mem_size = memparse(str + 10, &str);
6854 			} else if (!strncmp(str, "resource_alignment=", 19)) {
6855 				resource_alignment_param = str + 19;
6856 			} else if (!strncmp(str, "ecrc=", 5)) {
6857 				pcie_ecrc_get_policy(str + 5);
6858 			} else if (!strncmp(str, "hpiosize=", 9)) {
6859 				pci_hotplug_io_size = memparse(str + 9, &str);
6860 			} else if (!strncmp(str, "hpmmiosize=", 11)) {
6861 				pci_hotplug_mmio_size = memparse(str + 11, &str);
6862 			} else if (!strncmp(str, "hpmmioprefsize=", 15)) {
6863 				pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
6864 			} else if (!strncmp(str, "hpmemsize=", 10)) {
6865 				pci_hotplug_mmio_size = memparse(str + 10, &str);
6866 				pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
6867 			} else if (!strncmp(str, "hpbussize=", 10)) {
6868 				pci_hotplug_bus_size =
6869 					simple_strtoul(str + 10, &str, 0);
6870 				if (pci_hotplug_bus_size > 0xff)
6871 					pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6872 			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6873 				pcie_bus_config = PCIE_BUS_TUNE_OFF;
6874 			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
6875 				pcie_bus_config = PCIE_BUS_SAFE;
6876 			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
6877 				pcie_bus_config = PCIE_BUS_PERFORMANCE;
6878 			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6879 				pcie_bus_config = PCIE_BUS_PEER2PEER;
6880 			} else if (!strncmp(str, "pcie_scan_all", 13)) {
6881 				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6882 			} else if (!strncmp(str, "disable_acs_redir=", 18)) {
6883 				disable_acs_redir_param = str + 18;
6884 			} else {
6885 				pr_err("PCI: Unknown option `%s'\n", str);
6886 			}
6887 		}
6888 		str = k;
6889 	}
6890 	return 0;
6891 }
6892 early_param("pci", pci_setup);
6893 
6894 /*
6895  * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6896  * in pci_setup(), above, to point to data in the __initdata section which
6897  * will be freed after the init sequence is complete. We can't allocate memory
6898  * in pci_setup() because some architectures do not have any memory allocation
6899  * service available during an early_param() call. So we allocate memory and
6900  * copy the variable here before the init section is freed.
6901  *
6902  */
6903 static int __init pci_realloc_setup_params(void)
6904 {
6905 	resource_alignment_param = kstrdup(resource_alignment_param,
6906 					   GFP_KERNEL);
6907 	disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6908 
6909 	return 0;
6910 }
6911 pure_initcall(pci_realloc_setup_params);
6912