1 /* 2 * PCI Bus Services, see include/linux/pci.h for further explanation. 3 * 4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter, 5 * David Mosberger-Tang 6 * 7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz> 8 */ 9 10 #include <linux/acpi.h> 11 #include <linux/kernel.h> 12 #include <linux/delay.h> 13 #include <linux/dmi.h> 14 #include <linux/init.h> 15 #include <linux/of.h> 16 #include <linux/of_pci.h> 17 #include <linux/pci.h> 18 #include <linux/pm.h> 19 #include <linux/slab.h> 20 #include <linux/module.h> 21 #include <linux/spinlock.h> 22 #include <linux/string.h> 23 #include <linux/log2.h> 24 #include <linux/pci-aspm.h> 25 #include <linux/pm_wakeup.h> 26 #include <linux/interrupt.h> 27 #include <linux/device.h> 28 #include <linux/pm_runtime.h> 29 #include <linux/pci_hotplug.h> 30 #include <linux/vmalloc.h> 31 #include <asm/setup.h> 32 #include <asm/dma.h> 33 #include <linux/aer.h> 34 #include "pci.h" 35 36 const char *pci_power_names[] = { 37 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown", 38 }; 39 EXPORT_SYMBOL_GPL(pci_power_names); 40 41 int isa_dma_bridge_buggy; 42 EXPORT_SYMBOL(isa_dma_bridge_buggy); 43 44 int pci_pci_problems; 45 EXPORT_SYMBOL(pci_pci_problems); 46 47 unsigned int pci_pm_d3_delay; 48 49 static void pci_pme_list_scan(struct work_struct *work); 50 51 static LIST_HEAD(pci_pme_list); 52 static DEFINE_MUTEX(pci_pme_list_mutex); 53 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan); 54 55 struct pci_pme_device { 56 struct list_head list; 57 struct pci_dev *dev; 58 }; 59 60 #define PME_TIMEOUT 1000 /* How long between PME checks */ 61 62 static void pci_dev_d3_sleep(struct pci_dev *dev) 63 { 64 unsigned int delay = dev->d3_delay; 65 66 if (delay < pci_pm_d3_delay) 67 delay = pci_pm_d3_delay; 68 69 msleep(delay); 70 } 71 72 #ifdef CONFIG_PCI_DOMAINS 73 int pci_domains_supported = 1; 74 #endif 75 76 #define DEFAULT_CARDBUS_IO_SIZE (256) 77 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024) 78 /* pci=cbmemsize=nnM,cbiosize=nn can override this */ 79 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE; 80 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE; 81 82 #define DEFAULT_HOTPLUG_IO_SIZE (256) 83 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024) 84 /* pci=hpmemsize=nnM,hpiosize=nn can override this */ 85 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE; 86 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE; 87 88 #define DEFAULT_HOTPLUG_BUS_SIZE 1 89 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 90 91 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT; 92 93 /* 94 * The default CLS is used if arch didn't set CLS explicitly and not 95 * all pci devices agree on the same value. Arch can override either 96 * the dfl or actual value as it sees fit. Don't forget this is 97 * measured in 32-bit words, not bytes. 98 */ 99 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2; 100 u8 pci_cache_line_size; 101 102 /* 103 * If we set up a device for bus mastering, we need to check the latency 104 * timer as certain BIOSes forget to set it properly. 105 */ 106 unsigned int pcibios_max_latency = 255; 107 108 /* If set, the PCIe ARI capability will not be used. */ 109 static bool pcie_ari_disabled; 110 111 /* Disable bridge_d3 for all PCIe ports */ 112 static bool pci_bridge_d3_disable; 113 /* Force bridge_d3 for all PCIe ports */ 114 static bool pci_bridge_d3_force; 115 116 static int __init pcie_port_pm_setup(char *str) 117 { 118 if (!strcmp(str, "off")) 119 pci_bridge_d3_disable = true; 120 else if (!strcmp(str, "force")) 121 pci_bridge_d3_force = true; 122 return 1; 123 } 124 __setup("pcie_port_pm=", pcie_port_pm_setup); 125 126 /** 127 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children 128 * @bus: pointer to PCI bus structure to search 129 * 130 * Given a PCI bus, returns the highest PCI bus number present in the set 131 * including the given PCI bus and its list of child PCI buses. 132 */ 133 unsigned char pci_bus_max_busnr(struct pci_bus *bus) 134 { 135 struct pci_bus *tmp; 136 unsigned char max, n; 137 138 max = bus->busn_res.end; 139 list_for_each_entry(tmp, &bus->children, node) { 140 n = pci_bus_max_busnr(tmp); 141 if (n > max) 142 max = n; 143 } 144 return max; 145 } 146 EXPORT_SYMBOL_GPL(pci_bus_max_busnr); 147 148 #ifdef CONFIG_HAS_IOMEM 149 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar) 150 { 151 struct resource *res = &pdev->resource[bar]; 152 153 /* 154 * Make sure the BAR is actually a memory resource, not an IO resource 155 */ 156 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) { 157 dev_warn(&pdev->dev, "can't ioremap BAR %d: %pR\n", bar, res); 158 return NULL; 159 } 160 return ioremap_nocache(res->start, resource_size(res)); 161 } 162 EXPORT_SYMBOL_GPL(pci_ioremap_bar); 163 164 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar) 165 { 166 /* 167 * Make sure the BAR is actually a memory resource, not an IO resource 168 */ 169 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) { 170 WARN_ON(1); 171 return NULL; 172 } 173 return ioremap_wc(pci_resource_start(pdev, bar), 174 pci_resource_len(pdev, bar)); 175 } 176 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar); 177 #endif 178 179 180 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn, 181 u8 pos, int cap, int *ttl) 182 { 183 u8 id; 184 u16 ent; 185 186 pci_bus_read_config_byte(bus, devfn, pos, &pos); 187 188 while ((*ttl)--) { 189 if (pos < 0x40) 190 break; 191 pos &= ~3; 192 pci_bus_read_config_word(bus, devfn, pos, &ent); 193 194 id = ent & 0xff; 195 if (id == 0xff) 196 break; 197 if (id == cap) 198 return pos; 199 pos = (ent >> 8); 200 } 201 return 0; 202 } 203 204 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn, 205 u8 pos, int cap) 206 { 207 int ttl = PCI_FIND_CAP_TTL; 208 209 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl); 210 } 211 212 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap) 213 { 214 return __pci_find_next_cap(dev->bus, dev->devfn, 215 pos + PCI_CAP_LIST_NEXT, cap); 216 } 217 EXPORT_SYMBOL_GPL(pci_find_next_capability); 218 219 static int __pci_bus_find_cap_start(struct pci_bus *bus, 220 unsigned int devfn, u8 hdr_type) 221 { 222 u16 status; 223 224 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status); 225 if (!(status & PCI_STATUS_CAP_LIST)) 226 return 0; 227 228 switch (hdr_type) { 229 case PCI_HEADER_TYPE_NORMAL: 230 case PCI_HEADER_TYPE_BRIDGE: 231 return PCI_CAPABILITY_LIST; 232 case PCI_HEADER_TYPE_CARDBUS: 233 return PCI_CB_CAPABILITY_LIST; 234 } 235 236 return 0; 237 } 238 239 /** 240 * pci_find_capability - query for devices' capabilities 241 * @dev: PCI device to query 242 * @cap: capability code 243 * 244 * Tell if a device supports a given PCI capability. 245 * Returns the address of the requested capability structure within the 246 * device's PCI configuration space or 0 in case the device does not 247 * support it. Possible values for @cap: 248 * 249 * %PCI_CAP_ID_PM Power Management 250 * %PCI_CAP_ID_AGP Accelerated Graphics Port 251 * %PCI_CAP_ID_VPD Vital Product Data 252 * %PCI_CAP_ID_SLOTID Slot Identification 253 * %PCI_CAP_ID_MSI Message Signalled Interrupts 254 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap 255 * %PCI_CAP_ID_PCIX PCI-X 256 * %PCI_CAP_ID_EXP PCI Express 257 */ 258 int pci_find_capability(struct pci_dev *dev, int cap) 259 { 260 int pos; 261 262 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 263 if (pos) 264 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap); 265 266 return pos; 267 } 268 EXPORT_SYMBOL(pci_find_capability); 269 270 /** 271 * pci_bus_find_capability - query for devices' capabilities 272 * @bus: the PCI bus to query 273 * @devfn: PCI device to query 274 * @cap: capability code 275 * 276 * Like pci_find_capability() but works for pci devices that do not have a 277 * pci_dev structure set up yet. 278 * 279 * Returns the address of the requested capability structure within the 280 * device's PCI configuration space or 0 in case the device does not 281 * support it. 282 */ 283 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap) 284 { 285 int pos; 286 u8 hdr_type; 287 288 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type); 289 290 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f); 291 if (pos) 292 pos = __pci_find_next_cap(bus, devfn, pos, cap); 293 294 return pos; 295 } 296 EXPORT_SYMBOL(pci_bus_find_capability); 297 298 /** 299 * pci_find_next_ext_capability - Find an extended capability 300 * @dev: PCI device to query 301 * @start: address at which to start looking (0 to start at beginning of list) 302 * @cap: capability code 303 * 304 * Returns the address of the next matching extended capability structure 305 * within the device's PCI configuration space or 0 if the device does 306 * not support it. Some capabilities can occur several times, e.g., the 307 * vendor-specific capability, and this provides a way to find them all. 308 */ 309 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap) 310 { 311 u32 header; 312 int ttl; 313 int pos = PCI_CFG_SPACE_SIZE; 314 315 /* minimum 8 bytes per capability */ 316 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8; 317 318 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE) 319 return 0; 320 321 if (start) 322 pos = start; 323 324 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 325 return 0; 326 327 /* 328 * If we have no capabilities, this is indicated by cap ID, 329 * cap version and next pointer all being 0. 330 */ 331 if (header == 0) 332 return 0; 333 334 while (ttl-- > 0) { 335 if (PCI_EXT_CAP_ID(header) == cap && pos != start) 336 return pos; 337 338 pos = PCI_EXT_CAP_NEXT(header); 339 if (pos < PCI_CFG_SPACE_SIZE) 340 break; 341 342 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 343 break; 344 } 345 346 return 0; 347 } 348 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability); 349 350 /** 351 * pci_find_ext_capability - Find an extended capability 352 * @dev: PCI device to query 353 * @cap: capability code 354 * 355 * Returns the address of the requested extended capability structure 356 * within the device's PCI configuration space or 0 if the device does 357 * not support it. Possible values for @cap: 358 * 359 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting 360 * %PCI_EXT_CAP_ID_VC Virtual Channel 361 * %PCI_EXT_CAP_ID_DSN Device Serial Number 362 * %PCI_EXT_CAP_ID_PWR Power Budgeting 363 */ 364 int pci_find_ext_capability(struct pci_dev *dev, int cap) 365 { 366 return pci_find_next_ext_capability(dev, 0, cap); 367 } 368 EXPORT_SYMBOL_GPL(pci_find_ext_capability); 369 370 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap) 371 { 372 int rc, ttl = PCI_FIND_CAP_TTL; 373 u8 cap, mask; 374 375 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST) 376 mask = HT_3BIT_CAP_MASK; 377 else 378 mask = HT_5BIT_CAP_MASK; 379 380 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos, 381 PCI_CAP_ID_HT, &ttl); 382 while (pos) { 383 rc = pci_read_config_byte(dev, pos + 3, &cap); 384 if (rc != PCIBIOS_SUCCESSFUL) 385 return 0; 386 387 if ((cap & mask) == ht_cap) 388 return pos; 389 390 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, 391 pos + PCI_CAP_LIST_NEXT, 392 PCI_CAP_ID_HT, &ttl); 393 } 394 395 return 0; 396 } 397 /** 398 * pci_find_next_ht_capability - query a device's Hypertransport capabilities 399 * @dev: PCI device to query 400 * @pos: Position from which to continue searching 401 * @ht_cap: Hypertransport capability code 402 * 403 * To be used in conjunction with pci_find_ht_capability() to search for 404 * all capabilities matching @ht_cap. @pos should always be a value returned 405 * from pci_find_ht_capability(). 406 * 407 * NB. To be 100% safe against broken PCI devices, the caller should take 408 * steps to avoid an infinite loop. 409 */ 410 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap) 411 { 412 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap); 413 } 414 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability); 415 416 /** 417 * pci_find_ht_capability - query a device's Hypertransport capabilities 418 * @dev: PCI device to query 419 * @ht_cap: Hypertransport capability code 420 * 421 * Tell if a device supports a given Hypertransport capability. 422 * Returns an address within the device's PCI configuration space 423 * or 0 in case the device does not support the request capability. 424 * The address points to the PCI capability, of type PCI_CAP_ID_HT, 425 * which has a Hypertransport capability matching @ht_cap. 426 */ 427 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap) 428 { 429 int pos; 430 431 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 432 if (pos) 433 pos = __pci_find_next_ht_cap(dev, pos, ht_cap); 434 435 return pos; 436 } 437 EXPORT_SYMBOL_GPL(pci_find_ht_capability); 438 439 /** 440 * pci_find_parent_resource - return resource region of parent bus of given region 441 * @dev: PCI device structure contains resources to be searched 442 * @res: child resource record for which parent is sought 443 * 444 * For given resource region of given device, return the resource 445 * region of parent bus the given region is contained in. 446 */ 447 struct resource *pci_find_parent_resource(const struct pci_dev *dev, 448 struct resource *res) 449 { 450 const struct pci_bus *bus = dev->bus; 451 struct resource *r; 452 int i; 453 454 pci_bus_for_each_resource(bus, r, i) { 455 if (!r) 456 continue; 457 if (res->start && resource_contains(r, res)) { 458 459 /* 460 * If the window is prefetchable but the BAR is 461 * not, the allocator made a mistake. 462 */ 463 if (r->flags & IORESOURCE_PREFETCH && 464 !(res->flags & IORESOURCE_PREFETCH)) 465 return NULL; 466 467 /* 468 * If we're below a transparent bridge, there may 469 * be both a positively-decoded aperture and a 470 * subtractively-decoded region that contain the BAR. 471 * We want the positively-decoded one, so this depends 472 * on pci_bus_for_each_resource() giving us those 473 * first. 474 */ 475 return r; 476 } 477 } 478 return NULL; 479 } 480 EXPORT_SYMBOL(pci_find_parent_resource); 481 482 /** 483 * pci_find_resource - Return matching PCI device resource 484 * @dev: PCI device to query 485 * @res: Resource to look for 486 * 487 * Goes over standard PCI resources (BARs) and checks if the given resource 488 * is partially or fully contained in any of them. In that case the 489 * matching resource is returned, %NULL otherwise. 490 */ 491 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res) 492 { 493 int i; 494 495 for (i = 0; i < PCI_ROM_RESOURCE; i++) { 496 struct resource *r = &dev->resource[i]; 497 498 if (r->start && resource_contains(r, res)) 499 return r; 500 } 501 502 return NULL; 503 } 504 EXPORT_SYMBOL(pci_find_resource); 505 506 /** 507 * pci_find_pcie_root_port - return PCIe Root Port 508 * @dev: PCI device to query 509 * 510 * Traverse up the parent chain and return the PCIe Root Port PCI Device 511 * for a given PCI Device. 512 */ 513 struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev) 514 { 515 struct pci_dev *bridge, *highest_pcie_bridge = NULL; 516 517 bridge = pci_upstream_bridge(dev); 518 while (bridge && pci_is_pcie(bridge)) { 519 highest_pcie_bridge = bridge; 520 bridge = pci_upstream_bridge(bridge); 521 } 522 523 if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT) 524 return NULL; 525 526 return highest_pcie_bridge; 527 } 528 EXPORT_SYMBOL(pci_find_pcie_root_port); 529 530 /** 531 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos 532 * @dev: the PCI device to operate on 533 * @pos: config space offset of status word 534 * @mask: mask of bit(s) to care about in status word 535 * 536 * Return 1 when mask bit(s) in status word clear, 0 otherwise. 537 */ 538 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask) 539 { 540 int i; 541 542 /* Wait for Transaction Pending bit clean */ 543 for (i = 0; i < 4; i++) { 544 u16 status; 545 if (i) 546 msleep((1 << (i - 1)) * 100); 547 548 pci_read_config_word(dev, pos, &status); 549 if (!(status & mask)) 550 return 1; 551 } 552 553 return 0; 554 } 555 556 /** 557 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up) 558 * @dev: PCI device to have its BARs restored 559 * 560 * Restore the BAR values for a given device, so as to make it 561 * accessible by its driver. 562 */ 563 static void pci_restore_bars(struct pci_dev *dev) 564 { 565 int i; 566 567 /* Per SR-IOV spec 3.4.1.11, VF BARs are RO zero */ 568 if (dev->is_virtfn) 569 return; 570 571 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) 572 pci_update_resource(dev, i); 573 } 574 575 static const struct pci_platform_pm_ops *pci_platform_pm; 576 577 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops) 578 { 579 if (!ops->is_manageable || !ops->set_state || !ops->get_state || 580 !ops->choose_state || !ops->sleep_wake || !ops->run_wake || 581 !ops->need_resume) 582 return -EINVAL; 583 pci_platform_pm = ops; 584 return 0; 585 } 586 587 static inline bool platform_pci_power_manageable(struct pci_dev *dev) 588 { 589 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false; 590 } 591 592 static inline int platform_pci_set_power_state(struct pci_dev *dev, 593 pci_power_t t) 594 { 595 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS; 596 } 597 598 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev) 599 { 600 return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN; 601 } 602 603 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev) 604 { 605 return pci_platform_pm ? 606 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR; 607 } 608 609 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable) 610 { 611 return pci_platform_pm ? 612 pci_platform_pm->sleep_wake(dev, enable) : -ENODEV; 613 } 614 615 static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable) 616 { 617 return pci_platform_pm ? 618 pci_platform_pm->run_wake(dev, enable) : -ENODEV; 619 } 620 621 static inline bool platform_pci_need_resume(struct pci_dev *dev) 622 { 623 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false; 624 } 625 626 /** 627 * pci_raw_set_power_state - Use PCI PM registers to set the power state of 628 * given PCI device 629 * @dev: PCI device to handle. 630 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 631 * 632 * RETURN VALUE: 633 * -EINVAL if the requested state is invalid. 634 * -EIO if device does not support PCI PM or its PM capabilities register has a 635 * wrong version, or device doesn't support the requested state. 636 * 0 if device already is in the requested state. 637 * 0 if device's power state has been successfully changed. 638 */ 639 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state) 640 { 641 u16 pmcsr; 642 bool need_restore = false; 643 644 /* Check if we're already there */ 645 if (dev->current_state == state) 646 return 0; 647 648 if (!dev->pm_cap) 649 return -EIO; 650 651 if (state < PCI_D0 || state > PCI_D3hot) 652 return -EINVAL; 653 654 /* Validate current state: 655 * Can enter D0 from any state, but if we can only go deeper 656 * to sleep if we're already in a low power state 657 */ 658 if (state != PCI_D0 && dev->current_state <= PCI_D3cold 659 && dev->current_state > state) { 660 dev_err(&dev->dev, "invalid power transition (from state %d to %d)\n", 661 dev->current_state, state); 662 return -EINVAL; 663 } 664 665 /* check if this device supports the desired state */ 666 if ((state == PCI_D1 && !dev->d1_support) 667 || (state == PCI_D2 && !dev->d2_support)) 668 return -EIO; 669 670 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 671 672 /* If we're (effectively) in D3, force entire word to 0. 673 * This doesn't affect PME_Status, disables PME_En, and 674 * sets PowerState to 0. 675 */ 676 switch (dev->current_state) { 677 case PCI_D0: 678 case PCI_D1: 679 case PCI_D2: 680 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 681 pmcsr |= state; 682 break; 683 case PCI_D3hot: 684 case PCI_D3cold: 685 case PCI_UNKNOWN: /* Boot-up */ 686 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot 687 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET)) 688 need_restore = true; 689 /* Fall-through: force to D0 */ 690 default: 691 pmcsr = 0; 692 break; 693 } 694 695 /* enter specified state */ 696 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 697 698 /* Mandatory power management transition delays */ 699 /* see PCI PM 1.1 5.6.1 table 18 */ 700 if (state == PCI_D3hot || dev->current_state == PCI_D3hot) 701 pci_dev_d3_sleep(dev); 702 else if (state == PCI_D2 || dev->current_state == PCI_D2) 703 udelay(PCI_PM_D2_DELAY); 704 705 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 706 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 707 if (dev->current_state != state && printk_ratelimit()) 708 dev_info(&dev->dev, "Refused to change power state, currently in D%d\n", 709 dev->current_state); 710 711 /* 712 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT 713 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning 714 * from D3hot to D0 _may_ perform an internal reset, thereby 715 * going to "D0 Uninitialized" rather than "D0 Initialized". 716 * For example, at least some versions of the 3c905B and the 717 * 3c556B exhibit this behaviour. 718 * 719 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave 720 * devices in a D3hot state at boot. Consequently, we need to 721 * restore at least the BARs so that the device will be 722 * accessible to its driver. 723 */ 724 if (need_restore) 725 pci_restore_bars(dev); 726 727 if (dev->bus->self) 728 pcie_aspm_pm_state_change(dev->bus->self); 729 730 return 0; 731 } 732 733 /** 734 * pci_update_current_state - Read power state of given device and cache it 735 * @dev: PCI device to handle. 736 * @state: State to cache in case the device doesn't have the PM capability 737 * 738 * The power state is read from the PMCSR register, which however is 739 * inaccessible in D3cold. The platform firmware is therefore queried first 740 * to detect accessibility of the register. In case the platform firmware 741 * reports an incorrect state or the device isn't power manageable by the 742 * platform at all, we try to detect D3cold by testing accessibility of the 743 * vendor ID in config space. 744 */ 745 void pci_update_current_state(struct pci_dev *dev, pci_power_t state) 746 { 747 if (platform_pci_get_power_state(dev) == PCI_D3cold || 748 !pci_device_is_present(dev)) { 749 dev->current_state = PCI_D3cold; 750 } else if (dev->pm_cap) { 751 u16 pmcsr; 752 753 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 754 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 755 } else { 756 dev->current_state = state; 757 } 758 } 759 760 /** 761 * pci_power_up - Put the given device into D0 forcibly 762 * @dev: PCI device to power up 763 */ 764 void pci_power_up(struct pci_dev *dev) 765 { 766 if (platform_pci_power_manageable(dev)) 767 platform_pci_set_power_state(dev, PCI_D0); 768 769 pci_raw_set_power_state(dev, PCI_D0); 770 pci_update_current_state(dev, PCI_D0); 771 } 772 773 /** 774 * pci_platform_power_transition - Use platform to change device power state 775 * @dev: PCI device to handle. 776 * @state: State to put the device into. 777 */ 778 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state) 779 { 780 int error; 781 782 if (platform_pci_power_manageable(dev)) { 783 error = platform_pci_set_power_state(dev, state); 784 if (!error) 785 pci_update_current_state(dev, state); 786 } else 787 error = -ENODEV; 788 789 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */ 790 dev->current_state = PCI_D0; 791 792 return error; 793 } 794 795 /** 796 * pci_wakeup - Wake up a PCI device 797 * @pci_dev: Device to handle. 798 * @ign: ignored parameter 799 */ 800 static int pci_wakeup(struct pci_dev *pci_dev, void *ign) 801 { 802 pci_wakeup_event(pci_dev); 803 pm_request_resume(&pci_dev->dev); 804 return 0; 805 } 806 807 /** 808 * pci_wakeup_bus - Walk given bus and wake up devices on it 809 * @bus: Top bus of the subtree to walk. 810 */ 811 static void pci_wakeup_bus(struct pci_bus *bus) 812 { 813 if (bus) 814 pci_walk_bus(bus, pci_wakeup, NULL); 815 } 816 817 /** 818 * __pci_start_power_transition - Start power transition of a PCI device 819 * @dev: PCI device to handle. 820 * @state: State to put the device into. 821 */ 822 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state) 823 { 824 if (state == PCI_D0) { 825 pci_platform_power_transition(dev, PCI_D0); 826 /* 827 * Mandatory power management transition delays, see 828 * PCI Express Base Specification Revision 2.0 Section 829 * 6.6.1: Conventional Reset. Do not delay for 830 * devices powered on/off by corresponding bridge, 831 * because have already delayed for the bridge. 832 */ 833 if (dev->runtime_d3cold) { 834 msleep(dev->d3cold_delay); 835 /* 836 * When powering on a bridge from D3cold, the 837 * whole hierarchy may be powered on into 838 * D0uninitialized state, resume them to give 839 * them a chance to suspend again 840 */ 841 pci_wakeup_bus(dev->subordinate); 842 } 843 } 844 } 845 846 /** 847 * __pci_dev_set_current_state - Set current state of a PCI device 848 * @dev: Device to handle 849 * @data: pointer to state to be set 850 */ 851 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data) 852 { 853 pci_power_t state = *(pci_power_t *)data; 854 855 dev->current_state = state; 856 return 0; 857 } 858 859 /** 860 * __pci_bus_set_current_state - Walk given bus and set current state of devices 861 * @bus: Top bus of the subtree to walk. 862 * @state: state to be set 863 */ 864 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state) 865 { 866 if (bus) 867 pci_walk_bus(bus, __pci_dev_set_current_state, &state); 868 } 869 870 /** 871 * __pci_complete_power_transition - Complete power transition of a PCI device 872 * @dev: PCI device to handle. 873 * @state: State to put the device into. 874 * 875 * This function should not be called directly by device drivers. 876 */ 877 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state) 878 { 879 int ret; 880 881 if (state <= PCI_D0) 882 return -EINVAL; 883 ret = pci_platform_power_transition(dev, state); 884 /* Power off the bridge may power off the whole hierarchy */ 885 if (!ret && state == PCI_D3cold) 886 __pci_bus_set_current_state(dev->subordinate, PCI_D3cold); 887 return ret; 888 } 889 EXPORT_SYMBOL_GPL(__pci_complete_power_transition); 890 891 /** 892 * pci_set_power_state - Set the power state of a PCI device 893 * @dev: PCI device to handle. 894 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 895 * 896 * Transition a device to a new power state, using the platform firmware and/or 897 * the device's PCI PM registers. 898 * 899 * RETURN VALUE: 900 * -EINVAL if the requested state is invalid. 901 * -EIO if device does not support PCI PM or its PM capabilities register has a 902 * wrong version, or device doesn't support the requested state. 903 * 0 if device already is in the requested state. 904 * 0 if device's power state has been successfully changed. 905 */ 906 int pci_set_power_state(struct pci_dev *dev, pci_power_t state) 907 { 908 int error; 909 910 /* bound the state we're entering */ 911 if (state > PCI_D3cold) 912 state = PCI_D3cold; 913 else if (state < PCI_D0) 914 state = PCI_D0; 915 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev)) 916 /* 917 * If the device or the parent bridge do not support PCI PM, 918 * ignore the request if we're doing anything other than putting 919 * it into D0 (which would only happen on boot). 920 */ 921 return 0; 922 923 /* Check if we're already there */ 924 if (dev->current_state == state) 925 return 0; 926 927 __pci_start_power_transition(dev, state); 928 929 /* This device is quirked not to be put into D3, so 930 don't put it in D3 */ 931 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3)) 932 return 0; 933 934 /* 935 * To put device in D3cold, we put device into D3hot in native 936 * way, then put device into D3cold with platform ops 937 */ 938 error = pci_raw_set_power_state(dev, state > PCI_D3hot ? 939 PCI_D3hot : state); 940 941 if (!__pci_complete_power_transition(dev, state)) 942 error = 0; 943 944 return error; 945 } 946 EXPORT_SYMBOL(pci_set_power_state); 947 948 /** 949 * pci_choose_state - Choose the power state of a PCI device 950 * @dev: PCI device to be suspended 951 * @state: target sleep state for the whole system. This is the value 952 * that is passed to suspend() function. 953 * 954 * Returns PCI power state suitable for given device and given system 955 * message. 956 */ 957 958 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state) 959 { 960 pci_power_t ret; 961 962 if (!dev->pm_cap) 963 return PCI_D0; 964 965 ret = platform_pci_choose_state(dev); 966 if (ret != PCI_POWER_ERROR) 967 return ret; 968 969 switch (state.event) { 970 case PM_EVENT_ON: 971 return PCI_D0; 972 case PM_EVENT_FREEZE: 973 case PM_EVENT_PRETHAW: 974 /* REVISIT both freeze and pre-thaw "should" use D0 */ 975 case PM_EVENT_SUSPEND: 976 case PM_EVENT_HIBERNATE: 977 return PCI_D3hot; 978 default: 979 dev_info(&dev->dev, "unrecognized suspend event %d\n", 980 state.event); 981 BUG(); 982 } 983 return PCI_D0; 984 } 985 EXPORT_SYMBOL(pci_choose_state); 986 987 #define PCI_EXP_SAVE_REGS 7 988 989 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev, 990 u16 cap, bool extended) 991 { 992 struct pci_cap_saved_state *tmp; 993 994 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) { 995 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap) 996 return tmp; 997 } 998 return NULL; 999 } 1000 1001 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap) 1002 { 1003 return _pci_find_saved_cap(dev, cap, false); 1004 } 1005 1006 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap) 1007 { 1008 return _pci_find_saved_cap(dev, cap, true); 1009 } 1010 1011 static int pci_save_pcie_state(struct pci_dev *dev) 1012 { 1013 int i = 0; 1014 struct pci_cap_saved_state *save_state; 1015 u16 *cap; 1016 1017 if (!pci_is_pcie(dev)) 1018 return 0; 1019 1020 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1021 if (!save_state) { 1022 dev_err(&dev->dev, "buffer not found in %s\n", __func__); 1023 return -ENOMEM; 1024 } 1025 1026 cap = (u16 *)&save_state->cap.data[0]; 1027 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]); 1028 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]); 1029 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]); 1030 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]); 1031 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]); 1032 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]); 1033 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]); 1034 1035 return 0; 1036 } 1037 1038 static void pci_restore_pcie_state(struct pci_dev *dev) 1039 { 1040 int i = 0; 1041 struct pci_cap_saved_state *save_state; 1042 u16 *cap; 1043 1044 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1045 if (!save_state) 1046 return; 1047 1048 cap = (u16 *)&save_state->cap.data[0]; 1049 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]); 1050 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]); 1051 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]); 1052 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]); 1053 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]); 1054 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]); 1055 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]); 1056 } 1057 1058 1059 static int pci_save_pcix_state(struct pci_dev *dev) 1060 { 1061 int pos; 1062 struct pci_cap_saved_state *save_state; 1063 1064 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1065 if (!pos) 1066 return 0; 1067 1068 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1069 if (!save_state) { 1070 dev_err(&dev->dev, "buffer not found in %s\n", __func__); 1071 return -ENOMEM; 1072 } 1073 1074 pci_read_config_word(dev, pos + PCI_X_CMD, 1075 (u16 *)save_state->cap.data); 1076 1077 return 0; 1078 } 1079 1080 static void pci_restore_pcix_state(struct pci_dev *dev) 1081 { 1082 int i = 0, pos; 1083 struct pci_cap_saved_state *save_state; 1084 u16 *cap; 1085 1086 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1087 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1088 if (!save_state || !pos) 1089 return; 1090 cap = (u16 *)&save_state->cap.data[0]; 1091 1092 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]); 1093 } 1094 1095 1096 /** 1097 * pci_save_state - save the PCI configuration space of a device before suspending 1098 * @dev: - PCI device that we're dealing with 1099 */ 1100 int pci_save_state(struct pci_dev *dev) 1101 { 1102 int i; 1103 /* XXX: 100% dword access ok here? */ 1104 for (i = 0; i < 16; i++) 1105 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]); 1106 dev->state_saved = true; 1107 1108 i = pci_save_pcie_state(dev); 1109 if (i != 0) 1110 return i; 1111 1112 i = pci_save_pcix_state(dev); 1113 if (i != 0) 1114 return i; 1115 1116 return pci_save_vc_state(dev); 1117 } 1118 EXPORT_SYMBOL(pci_save_state); 1119 1120 static void pci_restore_config_dword(struct pci_dev *pdev, int offset, 1121 u32 saved_val, int retry) 1122 { 1123 u32 val; 1124 1125 pci_read_config_dword(pdev, offset, &val); 1126 if (val == saved_val) 1127 return; 1128 1129 for (;;) { 1130 dev_dbg(&pdev->dev, "restoring config space at offset %#x (was %#x, writing %#x)\n", 1131 offset, val, saved_val); 1132 pci_write_config_dword(pdev, offset, saved_val); 1133 if (retry-- <= 0) 1134 return; 1135 1136 pci_read_config_dword(pdev, offset, &val); 1137 if (val == saved_val) 1138 return; 1139 1140 mdelay(1); 1141 } 1142 } 1143 1144 static void pci_restore_config_space_range(struct pci_dev *pdev, 1145 int start, int end, int retry) 1146 { 1147 int index; 1148 1149 for (index = end; index >= start; index--) 1150 pci_restore_config_dword(pdev, 4 * index, 1151 pdev->saved_config_space[index], 1152 retry); 1153 } 1154 1155 static void pci_restore_config_space(struct pci_dev *pdev) 1156 { 1157 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) { 1158 pci_restore_config_space_range(pdev, 10, 15, 0); 1159 /* Restore BARs before the command register. */ 1160 pci_restore_config_space_range(pdev, 4, 9, 10); 1161 pci_restore_config_space_range(pdev, 0, 3, 0); 1162 } else { 1163 pci_restore_config_space_range(pdev, 0, 15, 0); 1164 } 1165 } 1166 1167 /** 1168 * pci_restore_state - Restore the saved state of a PCI device 1169 * @dev: - PCI device that we're dealing with 1170 */ 1171 void pci_restore_state(struct pci_dev *dev) 1172 { 1173 if (!dev->state_saved) 1174 return; 1175 1176 /* PCI Express register must be restored first */ 1177 pci_restore_pcie_state(dev); 1178 pci_restore_ats_state(dev); 1179 pci_restore_vc_state(dev); 1180 1181 pci_cleanup_aer_error_status_regs(dev); 1182 1183 pci_restore_config_space(dev); 1184 1185 pci_restore_pcix_state(dev); 1186 pci_restore_msi_state(dev); 1187 1188 /* Restore ACS and IOV configuration state */ 1189 pci_enable_acs(dev); 1190 pci_restore_iov_state(dev); 1191 1192 dev->state_saved = false; 1193 } 1194 EXPORT_SYMBOL(pci_restore_state); 1195 1196 struct pci_saved_state { 1197 u32 config_space[16]; 1198 struct pci_cap_saved_data cap[0]; 1199 }; 1200 1201 /** 1202 * pci_store_saved_state - Allocate and return an opaque struct containing 1203 * the device saved state. 1204 * @dev: PCI device that we're dealing with 1205 * 1206 * Return NULL if no state or error. 1207 */ 1208 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev) 1209 { 1210 struct pci_saved_state *state; 1211 struct pci_cap_saved_state *tmp; 1212 struct pci_cap_saved_data *cap; 1213 size_t size; 1214 1215 if (!dev->state_saved) 1216 return NULL; 1217 1218 size = sizeof(*state) + sizeof(struct pci_cap_saved_data); 1219 1220 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) 1221 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1222 1223 state = kzalloc(size, GFP_KERNEL); 1224 if (!state) 1225 return NULL; 1226 1227 memcpy(state->config_space, dev->saved_config_space, 1228 sizeof(state->config_space)); 1229 1230 cap = state->cap; 1231 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) { 1232 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1233 memcpy(cap, &tmp->cap, len); 1234 cap = (struct pci_cap_saved_data *)((u8 *)cap + len); 1235 } 1236 /* Empty cap_save terminates list */ 1237 1238 return state; 1239 } 1240 EXPORT_SYMBOL_GPL(pci_store_saved_state); 1241 1242 /** 1243 * pci_load_saved_state - Reload the provided save state into struct pci_dev. 1244 * @dev: PCI device that we're dealing with 1245 * @state: Saved state returned from pci_store_saved_state() 1246 */ 1247 int pci_load_saved_state(struct pci_dev *dev, 1248 struct pci_saved_state *state) 1249 { 1250 struct pci_cap_saved_data *cap; 1251 1252 dev->state_saved = false; 1253 1254 if (!state) 1255 return 0; 1256 1257 memcpy(dev->saved_config_space, state->config_space, 1258 sizeof(state->config_space)); 1259 1260 cap = state->cap; 1261 while (cap->size) { 1262 struct pci_cap_saved_state *tmp; 1263 1264 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended); 1265 if (!tmp || tmp->cap.size != cap->size) 1266 return -EINVAL; 1267 1268 memcpy(tmp->cap.data, cap->data, tmp->cap.size); 1269 cap = (struct pci_cap_saved_data *)((u8 *)cap + 1270 sizeof(struct pci_cap_saved_data) + cap->size); 1271 } 1272 1273 dev->state_saved = true; 1274 return 0; 1275 } 1276 EXPORT_SYMBOL_GPL(pci_load_saved_state); 1277 1278 /** 1279 * pci_load_and_free_saved_state - Reload the save state pointed to by state, 1280 * and free the memory allocated for it. 1281 * @dev: PCI device that we're dealing with 1282 * @state: Pointer to saved state returned from pci_store_saved_state() 1283 */ 1284 int pci_load_and_free_saved_state(struct pci_dev *dev, 1285 struct pci_saved_state **state) 1286 { 1287 int ret = pci_load_saved_state(dev, *state); 1288 kfree(*state); 1289 *state = NULL; 1290 return ret; 1291 } 1292 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state); 1293 1294 int __weak pcibios_enable_device(struct pci_dev *dev, int bars) 1295 { 1296 return pci_enable_resources(dev, bars); 1297 } 1298 1299 static int do_pci_enable_device(struct pci_dev *dev, int bars) 1300 { 1301 int err; 1302 struct pci_dev *bridge; 1303 u16 cmd; 1304 u8 pin; 1305 1306 err = pci_set_power_state(dev, PCI_D0); 1307 if (err < 0 && err != -EIO) 1308 return err; 1309 1310 bridge = pci_upstream_bridge(dev); 1311 if (bridge) 1312 pcie_aspm_powersave_config_link(bridge); 1313 1314 err = pcibios_enable_device(dev, bars); 1315 if (err < 0) 1316 return err; 1317 pci_fixup_device(pci_fixup_enable, dev); 1318 1319 if (dev->msi_enabled || dev->msix_enabled) 1320 return 0; 1321 1322 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin); 1323 if (pin) { 1324 pci_read_config_word(dev, PCI_COMMAND, &cmd); 1325 if (cmd & PCI_COMMAND_INTX_DISABLE) 1326 pci_write_config_word(dev, PCI_COMMAND, 1327 cmd & ~PCI_COMMAND_INTX_DISABLE); 1328 } 1329 1330 return 0; 1331 } 1332 1333 /** 1334 * pci_reenable_device - Resume abandoned device 1335 * @dev: PCI device to be resumed 1336 * 1337 * Note this function is a backend of pci_default_resume and is not supposed 1338 * to be called by normal code, write proper resume handler and use it instead. 1339 */ 1340 int pci_reenable_device(struct pci_dev *dev) 1341 { 1342 if (pci_is_enabled(dev)) 1343 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1); 1344 return 0; 1345 } 1346 EXPORT_SYMBOL(pci_reenable_device); 1347 1348 static void pci_enable_bridge(struct pci_dev *dev) 1349 { 1350 struct pci_dev *bridge; 1351 int retval; 1352 1353 bridge = pci_upstream_bridge(dev); 1354 if (bridge) 1355 pci_enable_bridge(bridge); 1356 1357 if (pci_is_enabled(dev)) { 1358 if (!dev->is_busmaster) 1359 pci_set_master(dev); 1360 return; 1361 } 1362 1363 retval = pci_enable_device(dev); 1364 if (retval) 1365 dev_err(&dev->dev, "Error enabling bridge (%d), continuing\n", 1366 retval); 1367 pci_set_master(dev); 1368 } 1369 1370 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags) 1371 { 1372 struct pci_dev *bridge; 1373 int err; 1374 int i, bars = 0; 1375 1376 /* 1377 * Power state could be unknown at this point, either due to a fresh 1378 * boot or a device removal call. So get the current power state 1379 * so that things like MSI message writing will behave as expected 1380 * (e.g. if the device really is in D0 at enable time). 1381 */ 1382 if (dev->pm_cap) { 1383 u16 pmcsr; 1384 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1385 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 1386 } 1387 1388 if (atomic_inc_return(&dev->enable_cnt) > 1) 1389 return 0; /* already enabled */ 1390 1391 bridge = pci_upstream_bridge(dev); 1392 if (bridge) 1393 pci_enable_bridge(bridge); 1394 1395 /* only skip sriov related */ 1396 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 1397 if (dev->resource[i].flags & flags) 1398 bars |= (1 << i); 1399 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++) 1400 if (dev->resource[i].flags & flags) 1401 bars |= (1 << i); 1402 1403 err = do_pci_enable_device(dev, bars); 1404 if (err < 0) 1405 atomic_dec(&dev->enable_cnt); 1406 return err; 1407 } 1408 1409 /** 1410 * pci_enable_device_io - Initialize a device for use with IO space 1411 * @dev: PCI device to be initialized 1412 * 1413 * Initialize device before it's used by a driver. Ask low-level code 1414 * to enable I/O resources. Wake up the device if it was suspended. 1415 * Beware, this function can fail. 1416 */ 1417 int pci_enable_device_io(struct pci_dev *dev) 1418 { 1419 return pci_enable_device_flags(dev, IORESOURCE_IO); 1420 } 1421 EXPORT_SYMBOL(pci_enable_device_io); 1422 1423 /** 1424 * pci_enable_device_mem - Initialize a device for use with Memory space 1425 * @dev: PCI device to be initialized 1426 * 1427 * Initialize device before it's used by a driver. Ask low-level code 1428 * to enable Memory resources. Wake up the device if it was suspended. 1429 * Beware, this function can fail. 1430 */ 1431 int pci_enable_device_mem(struct pci_dev *dev) 1432 { 1433 return pci_enable_device_flags(dev, IORESOURCE_MEM); 1434 } 1435 EXPORT_SYMBOL(pci_enable_device_mem); 1436 1437 /** 1438 * pci_enable_device - Initialize device before it's used by a driver. 1439 * @dev: PCI device to be initialized 1440 * 1441 * Initialize device before it's used by a driver. Ask low-level code 1442 * to enable I/O and memory. Wake up the device if it was suspended. 1443 * Beware, this function can fail. 1444 * 1445 * Note we don't actually enable the device many times if we call 1446 * this function repeatedly (we just increment the count). 1447 */ 1448 int pci_enable_device(struct pci_dev *dev) 1449 { 1450 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO); 1451 } 1452 EXPORT_SYMBOL(pci_enable_device); 1453 1454 /* 1455 * Managed PCI resources. This manages device on/off, intx/msi/msix 1456 * on/off and BAR regions. pci_dev itself records msi/msix status, so 1457 * there's no need to track it separately. pci_devres is initialized 1458 * when a device is enabled using managed PCI device enable interface. 1459 */ 1460 struct pci_devres { 1461 unsigned int enabled:1; 1462 unsigned int pinned:1; 1463 unsigned int orig_intx:1; 1464 unsigned int restore_intx:1; 1465 u32 region_mask; 1466 }; 1467 1468 static void pcim_release(struct device *gendev, void *res) 1469 { 1470 struct pci_dev *dev = to_pci_dev(gendev); 1471 struct pci_devres *this = res; 1472 int i; 1473 1474 if (dev->msi_enabled) 1475 pci_disable_msi(dev); 1476 if (dev->msix_enabled) 1477 pci_disable_msix(dev); 1478 1479 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) 1480 if (this->region_mask & (1 << i)) 1481 pci_release_region(dev, i); 1482 1483 if (this->restore_intx) 1484 pci_intx(dev, this->orig_intx); 1485 1486 if (this->enabled && !this->pinned) 1487 pci_disable_device(dev); 1488 } 1489 1490 static struct pci_devres *get_pci_dr(struct pci_dev *pdev) 1491 { 1492 struct pci_devres *dr, *new_dr; 1493 1494 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL); 1495 if (dr) 1496 return dr; 1497 1498 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL); 1499 if (!new_dr) 1500 return NULL; 1501 return devres_get(&pdev->dev, new_dr, NULL, NULL); 1502 } 1503 1504 static struct pci_devres *find_pci_dr(struct pci_dev *pdev) 1505 { 1506 if (pci_is_managed(pdev)) 1507 return devres_find(&pdev->dev, pcim_release, NULL, NULL); 1508 return NULL; 1509 } 1510 1511 /** 1512 * pcim_enable_device - Managed pci_enable_device() 1513 * @pdev: PCI device to be initialized 1514 * 1515 * Managed pci_enable_device(). 1516 */ 1517 int pcim_enable_device(struct pci_dev *pdev) 1518 { 1519 struct pci_devres *dr; 1520 int rc; 1521 1522 dr = get_pci_dr(pdev); 1523 if (unlikely(!dr)) 1524 return -ENOMEM; 1525 if (dr->enabled) 1526 return 0; 1527 1528 rc = pci_enable_device(pdev); 1529 if (!rc) { 1530 pdev->is_managed = 1; 1531 dr->enabled = 1; 1532 } 1533 return rc; 1534 } 1535 EXPORT_SYMBOL(pcim_enable_device); 1536 1537 /** 1538 * pcim_pin_device - Pin managed PCI device 1539 * @pdev: PCI device to pin 1540 * 1541 * Pin managed PCI device @pdev. Pinned device won't be disabled on 1542 * driver detach. @pdev must have been enabled with 1543 * pcim_enable_device(). 1544 */ 1545 void pcim_pin_device(struct pci_dev *pdev) 1546 { 1547 struct pci_devres *dr; 1548 1549 dr = find_pci_dr(pdev); 1550 WARN_ON(!dr || !dr->enabled); 1551 if (dr) 1552 dr->pinned = 1; 1553 } 1554 EXPORT_SYMBOL(pcim_pin_device); 1555 1556 /* 1557 * pcibios_add_device - provide arch specific hooks when adding device dev 1558 * @dev: the PCI device being added 1559 * 1560 * Permits the platform to provide architecture specific functionality when 1561 * devices are added. This is the default implementation. Architecture 1562 * implementations can override this. 1563 */ 1564 int __weak pcibios_add_device(struct pci_dev *dev) 1565 { 1566 return 0; 1567 } 1568 1569 /** 1570 * pcibios_release_device - provide arch specific hooks when releasing device dev 1571 * @dev: the PCI device being released 1572 * 1573 * Permits the platform to provide architecture specific functionality when 1574 * devices are released. This is the default implementation. Architecture 1575 * implementations can override this. 1576 */ 1577 void __weak pcibios_release_device(struct pci_dev *dev) {} 1578 1579 /** 1580 * pcibios_disable_device - disable arch specific PCI resources for device dev 1581 * @dev: the PCI device to disable 1582 * 1583 * Disables architecture specific PCI resources for the device. This 1584 * is the default implementation. Architecture implementations can 1585 * override this. 1586 */ 1587 void __weak pcibios_disable_device(struct pci_dev *dev) {} 1588 1589 /** 1590 * pcibios_penalize_isa_irq - penalize an ISA IRQ 1591 * @irq: ISA IRQ to penalize 1592 * @active: IRQ active or not 1593 * 1594 * Permits the platform to provide architecture-specific functionality when 1595 * penalizing ISA IRQs. This is the default implementation. Architecture 1596 * implementations can override this. 1597 */ 1598 void __weak pcibios_penalize_isa_irq(int irq, int active) {} 1599 1600 static void do_pci_disable_device(struct pci_dev *dev) 1601 { 1602 u16 pci_command; 1603 1604 pci_read_config_word(dev, PCI_COMMAND, &pci_command); 1605 if (pci_command & PCI_COMMAND_MASTER) { 1606 pci_command &= ~PCI_COMMAND_MASTER; 1607 pci_write_config_word(dev, PCI_COMMAND, pci_command); 1608 } 1609 1610 pcibios_disable_device(dev); 1611 } 1612 1613 /** 1614 * pci_disable_enabled_device - Disable device without updating enable_cnt 1615 * @dev: PCI device to disable 1616 * 1617 * NOTE: This function is a backend of PCI power management routines and is 1618 * not supposed to be called drivers. 1619 */ 1620 void pci_disable_enabled_device(struct pci_dev *dev) 1621 { 1622 if (pci_is_enabled(dev)) 1623 do_pci_disable_device(dev); 1624 } 1625 1626 /** 1627 * pci_disable_device - Disable PCI device after use 1628 * @dev: PCI device to be disabled 1629 * 1630 * Signal to the system that the PCI device is not in use by the system 1631 * anymore. This only involves disabling PCI bus-mastering, if active. 1632 * 1633 * Note we don't actually disable the device until all callers of 1634 * pci_enable_device() have called pci_disable_device(). 1635 */ 1636 void pci_disable_device(struct pci_dev *dev) 1637 { 1638 struct pci_devres *dr; 1639 1640 dr = find_pci_dr(dev); 1641 if (dr) 1642 dr->enabled = 0; 1643 1644 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0, 1645 "disabling already-disabled device"); 1646 1647 if (atomic_dec_return(&dev->enable_cnt) != 0) 1648 return; 1649 1650 do_pci_disable_device(dev); 1651 1652 dev->is_busmaster = 0; 1653 } 1654 EXPORT_SYMBOL(pci_disable_device); 1655 1656 /** 1657 * pcibios_set_pcie_reset_state - set reset state for device dev 1658 * @dev: the PCIe device reset 1659 * @state: Reset state to enter into 1660 * 1661 * 1662 * Sets the PCIe reset state for the device. This is the default 1663 * implementation. Architecture implementations can override this. 1664 */ 1665 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev, 1666 enum pcie_reset_state state) 1667 { 1668 return -EINVAL; 1669 } 1670 1671 /** 1672 * pci_set_pcie_reset_state - set reset state for device dev 1673 * @dev: the PCIe device reset 1674 * @state: Reset state to enter into 1675 * 1676 * 1677 * Sets the PCI reset state for the device. 1678 */ 1679 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state) 1680 { 1681 return pcibios_set_pcie_reset_state(dev, state); 1682 } 1683 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state); 1684 1685 /** 1686 * pci_check_pme_status - Check if given device has generated PME. 1687 * @dev: Device to check. 1688 * 1689 * Check the PME status of the device and if set, clear it and clear PME enable 1690 * (if set). Return 'true' if PME status and PME enable were both set or 1691 * 'false' otherwise. 1692 */ 1693 bool pci_check_pme_status(struct pci_dev *dev) 1694 { 1695 int pmcsr_pos; 1696 u16 pmcsr; 1697 bool ret = false; 1698 1699 if (!dev->pm_cap) 1700 return false; 1701 1702 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL; 1703 pci_read_config_word(dev, pmcsr_pos, &pmcsr); 1704 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS)) 1705 return false; 1706 1707 /* Clear PME status. */ 1708 pmcsr |= PCI_PM_CTRL_PME_STATUS; 1709 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) { 1710 /* Disable PME to avoid interrupt flood. */ 1711 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 1712 ret = true; 1713 } 1714 1715 pci_write_config_word(dev, pmcsr_pos, pmcsr); 1716 1717 return ret; 1718 } 1719 1720 /** 1721 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set. 1722 * @dev: Device to handle. 1723 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag. 1724 * 1725 * Check if @dev has generated PME and queue a resume request for it in that 1726 * case. 1727 */ 1728 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset) 1729 { 1730 if (pme_poll_reset && dev->pme_poll) 1731 dev->pme_poll = false; 1732 1733 if (pci_check_pme_status(dev)) { 1734 pci_wakeup_event(dev); 1735 pm_request_resume(&dev->dev); 1736 } 1737 return 0; 1738 } 1739 1740 /** 1741 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary. 1742 * @bus: Top bus of the subtree to walk. 1743 */ 1744 void pci_pme_wakeup_bus(struct pci_bus *bus) 1745 { 1746 if (bus) 1747 pci_walk_bus(bus, pci_pme_wakeup, (void *)true); 1748 } 1749 1750 1751 /** 1752 * pci_pme_capable - check the capability of PCI device to generate PME# 1753 * @dev: PCI device to handle. 1754 * @state: PCI state from which device will issue PME#. 1755 */ 1756 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state) 1757 { 1758 if (!dev->pm_cap) 1759 return false; 1760 1761 return !!(dev->pme_support & (1 << state)); 1762 } 1763 EXPORT_SYMBOL(pci_pme_capable); 1764 1765 static void pci_pme_list_scan(struct work_struct *work) 1766 { 1767 struct pci_pme_device *pme_dev, *n; 1768 1769 mutex_lock(&pci_pme_list_mutex); 1770 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) { 1771 if (pme_dev->dev->pme_poll) { 1772 struct pci_dev *bridge; 1773 1774 bridge = pme_dev->dev->bus->self; 1775 /* 1776 * If bridge is in low power state, the 1777 * configuration space of subordinate devices 1778 * may be not accessible 1779 */ 1780 if (bridge && bridge->current_state != PCI_D0) 1781 continue; 1782 pci_pme_wakeup(pme_dev->dev, NULL); 1783 } else { 1784 list_del(&pme_dev->list); 1785 kfree(pme_dev); 1786 } 1787 } 1788 if (!list_empty(&pci_pme_list)) 1789 schedule_delayed_work(&pci_pme_work, 1790 msecs_to_jiffies(PME_TIMEOUT)); 1791 mutex_unlock(&pci_pme_list_mutex); 1792 } 1793 1794 static void __pci_pme_active(struct pci_dev *dev, bool enable) 1795 { 1796 u16 pmcsr; 1797 1798 if (!dev->pme_support) 1799 return; 1800 1801 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1802 /* Clear PME_Status by writing 1 to it and enable PME# */ 1803 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE; 1804 if (!enable) 1805 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 1806 1807 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 1808 } 1809 1810 /** 1811 * pci_pme_active - enable or disable PCI device's PME# function 1812 * @dev: PCI device to handle. 1813 * @enable: 'true' to enable PME# generation; 'false' to disable it. 1814 * 1815 * The caller must verify that the device is capable of generating PME# before 1816 * calling this function with @enable equal to 'true'. 1817 */ 1818 void pci_pme_active(struct pci_dev *dev, bool enable) 1819 { 1820 __pci_pme_active(dev, enable); 1821 1822 /* 1823 * PCI (as opposed to PCIe) PME requires that the device have 1824 * its PME# line hooked up correctly. Not all hardware vendors 1825 * do this, so the PME never gets delivered and the device 1826 * remains asleep. The easiest way around this is to 1827 * periodically walk the list of suspended devices and check 1828 * whether any have their PME flag set. The assumption is that 1829 * we'll wake up often enough anyway that this won't be a huge 1830 * hit, and the power savings from the devices will still be a 1831 * win. 1832 * 1833 * Although PCIe uses in-band PME message instead of PME# line 1834 * to report PME, PME does not work for some PCIe devices in 1835 * reality. For example, there are devices that set their PME 1836 * status bits, but don't really bother to send a PME message; 1837 * there are PCI Express Root Ports that don't bother to 1838 * trigger interrupts when they receive PME messages from the 1839 * devices below. So PME poll is used for PCIe devices too. 1840 */ 1841 1842 if (dev->pme_poll) { 1843 struct pci_pme_device *pme_dev; 1844 if (enable) { 1845 pme_dev = kmalloc(sizeof(struct pci_pme_device), 1846 GFP_KERNEL); 1847 if (!pme_dev) { 1848 dev_warn(&dev->dev, "can't enable PME#\n"); 1849 return; 1850 } 1851 pme_dev->dev = dev; 1852 mutex_lock(&pci_pme_list_mutex); 1853 list_add(&pme_dev->list, &pci_pme_list); 1854 if (list_is_singular(&pci_pme_list)) 1855 schedule_delayed_work(&pci_pme_work, 1856 msecs_to_jiffies(PME_TIMEOUT)); 1857 mutex_unlock(&pci_pme_list_mutex); 1858 } else { 1859 mutex_lock(&pci_pme_list_mutex); 1860 list_for_each_entry(pme_dev, &pci_pme_list, list) { 1861 if (pme_dev->dev == dev) { 1862 list_del(&pme_dev->list); 1863 kfree(pme_dev); 1864 break; 1865 } 1866 } 1867 mutex_unlock(&pci_pme_list_mutex); 1868 } 1869 } 1870 1871 dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled"); 1872 } 1873 EXPORT_SYMBOL(pci_pme_active); 1874 1875 /** 1876 * __pci_enable_wake - enable PCI device as wakeup event source 1877 * @dev: PCI device affected 1878 * @state: PCI state from which device will issue wakeup events 1879 * @runtime: True if the events are to be generated at run time 1880 * @enable: True to enable event generation; false to disable 1881 * 1882 * This enables the device as a wakeup event source, or disables it. 1883 * When such events involves platform-specific hooks, those hooks are 1884 * called automatically by this routine. 1885 * 1886 * Devices with legacy power management (no standard PCI PM capabilities) 1887 * always require such platform hooks. 1888 * 1889 * RETURN VALUE: 1890 * 0 is returned on success 1891 * -EINVAL is returned if device is not supposed to wake up the system 1892 * Error code depending on the platform is returned if both the platform and 1893 * the native mechanism fail to enable the generation of wake-up events 1894 */ 1895 int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, 1896 bool runtime, bool enable) 1897 { 1898 int ret = 0; 1899 1900 if (enable && !runtime && !device_may_wakeup(&dev->dev)) 1901 return -EINVAL; 1902 1903 /* Don't do the same thing twice in a row for one device. */ 1904 if (!!enable == !!dev->wakeup_prepared) 1905 return 0; 1906 1907 /* 1908 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don 1909 * Anderson we should be doing PME# wake enable followed by ACPI wake 1910 * enable. To disable wake-up we call the platform first, for symmetry. 1911 */ 1912 1913 if (enable) { 1914 int error; 1915 1916 if (pci_pme_capable(dev, state)) 1917 pci_pme_active(dev, true); 1918 else 1919 ret = 1; 1920 error = runtime ? platform_pci_run_wake(dev, true) : 1921 platform_pci_sleep_wake(dev, true); 1922 if (ret) 1923 ret = error; 1924 if (!ret) 1925 dev->wakeup_prepared = true; 1926 } else { 1927 if (runtime) 1928 platform_pci_run_wake(dev, false); 1929 else 1930 platform_pci_sleep_wake(dev, false); 1931 pci_pme_active(dev, false); 1932 dev->wakeup_prepared = false; 1933 } 1934 1935 return ret; 1936 } 1937 EXPORT_SYMBOL(__pci_enable_wake); 1938 1939 /** 1940 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold 1941 * @dev: PCI device to prepare 1942 * @enable: True to enable wake-up event generation; false to disable 1943 * 1944 * Many drivers want the device to wake up the system from D3_hot or D3_cold 1945 * and this function allows them to set that up cleanly - pci_enable_wake() 1946 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI 1947 * ordering constraints. 1948 * 1949 * This function only returns error code if the device is not capable of 1950 * generating PME# from both D3_hot and D3_cold, and the platform is unable to 1951 * enable wake-up power for it. 1952 */ 1953 int pci_wake_from_d3(struct pci_dev *dev, bool enable) 1954 { 1955 return pci_pme_capable(dev, PCI_D3cold) ? 1956 pci_enable_wake(dev, PCI_D3cold, enable) : 1957 pci_enable_wake(dev, PCI_D3hot, enable); 1958 } 1959 EXPORT_SYMBOL(pci_wake_from_d3); 1960 1961 /** 1962 * pci_target_state - find an appropriate low power state for a given PCI dev 1963 * @dev: PCI device 1964 * 1965 * Use underlying platform code to find a supported low power state for @dev. 1966 * If the platform can't manage @dev, return the deepest state from which it 1967 * can generate wake events, based on any available PME info. 1968 */ 1969 static pci_power_t pci_target_state(struct pci_dev *dev) 1970 { 1971 pci_power_t target_state = PCI_D3hot; 1972 1973 if (platform_pci_power_manageable(dev)) { 1974 /* 1975 * Call the platform to choose the target state of the device 1976 * and enable wake-up from this state if supported. 1977 */ 1978 pci_power_t state = platform_pci_choose_state(dev); 1979 1980 switch (state) { 1981 case PCI_POWER_ERROR: 1982 case PCI_UNKNOWN: 1983 break; 1984 case PCI_D1: 1985 case PCI_D2: 1986 if (pci_no_d1d2(dev)) 1987 break; 1988 default: 1989 target_state = state; 1990 } 1991 1992 return target_state; 1993 } 1994 1995 if (!dev->pm_cap) 1996 target_state = PCI_D0; 1997 1998 /* 1999 * If the device is in D3cold even though it's not power-manageable by 2000 * the platform, it may have been powered down by non-standard means. 2001 * Best to let it slumber. 2002 */ 2003 if (dev->current_state == PCI_D3cold) 2004 target_state = PCI_D3cold; 2005 2006 if (device_may_wakeup(&dev->dev)) { 2007 /* 2008 * Find the deepest state from which the device can generate 2009 * wake-up events, make it the target state and enable device 2010 * to generate PME#. 2011 */ 2012 if (dev->pme_support) { 2013 while (target_state 2014 && !(dev->pme_support & (1 << target_state))) 2015 target_state--; 2016 } 2017 } 2018 2019 return target_state; 2020 } 2021 2022 /** 2023 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state 2024 * @dev: Device to handle. 2025 * 2026 * Choose the power state appropriate for the device depending on whether 2027 * it can wake up the system and/or is power manageable by the platform 2028 * (PCI_D3hot is the default) and put the device into that state. 2029 */ 2030 int pci_prepare_to_sleep(struct pci_dev *dev) 2031 { 2032 pci_power_t target_state = pci_target_state(dev); 2033 int error; 2034 2035 if (target_state == PCI_POWER_ERROR) 2036 return -EIO; 2037 2038 pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev)); 2039 2040 error = pci_set_power_state(dev, target_state); 2041 2042 if (error) 2043 pci_enable_wake(dev, target_state, false); 2044 2045 return error; 2046 } 2047 EXPORT_SYMBOL(pci_prepare_to_sleep); 2048 2049 /** 2050 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state 2051 * @dev: Device to handle. 2052 * 2053 * Disable device's system wake-up capability and put it into D0. 2054 */ 2055 int pci_back_from_sleep(struct pci_dev *dev) 2056 { 2057 pci_enable_wake(dev, PCI_D0, false); 2058 return pci_set_power_state(dev, PCI_D0); 2059 } 2060 EXPORT_SYMBOL(pci_back_from_sleep); 2061 2062 /** 2063 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend. 2064 * @dev: PCI device being suspended. 2065 * 2066 * Prepare @dev to generate wake-up events at run time and put it into a low 2067 * power state. 2068 */ 2069 int pci_finish_runtime_suspend(struct pci_dev *dev) 2070 { 2071 pci_power_t target_state = pci_target_state(dev); 2072 int error; 2073 2074 if (target_state == PCI_POWER_ERROR) 2075 return -EIO; 2076 2077 dev->runtime_d3cold = target_state == PCI_D3cold; 2078 2079 __pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev)); 2080 2081 error = pci_set_power_state(dev, target_state); 2082 2083 if (error) { 2084 __pci_enable_wake(dev, target_state, true, false); 2085 dev->runtime_d3cold = false; 2086 } 2087 2088 return error; 2089 } 2090 2091 /** 2092 * pci_dev_run_wake - Check if device can generate run-time wake-up events. 2093 * @dev: Device to check. 2094 * 2095 * Return true if the device itself is capable of generating wake-up events 2096 * (through the platform or using the native PCIe PME) or if the device supports 2097 * PME and one of its upstream bridges can generate wake-up events. 2098 */ 2099 bool pci_dev_run_wake(struct pci_dev *dev) 2100 { 2101 struct pci_bus *bus = dev->bus; 2102 2103 if (device_run_wake(&dev->dev)) 2104 return true; 2105 2106 if (!dev->pme_support) 2107 return false; 2108 2109 while (bus->parent) { 2110 struct pci_dev *bridge = bus->self; 2111 2112 if (device_run_wake(&bridge->dev)) 2113 return true; 2114 2115 bus = bus->parent; 2116 } 2117 2118 /* We have reached the root bus. */ 2119 if (bus->bridge) 2120 return device_run_wake(bus->bridge); 2121 2122 return false; 2123 } 2124 EXPORT_SYMBOL_GPL(pci_dev_run_wake); 2125 2126 /** 2127 * pci_dev_keep_suspended - Check if the device can stay in the suspended state. 2128 * @pci_dev: Device to check. 2129 * 2130 * Return 'true' if the device is runtime-suspended, it doesn't have to be 2131 * reconfigured due to wakeup settings difference between system and runtime 2132 * suspend and the current power state of it is suitable for the upcoming 2133 * (system) transition. 2134 * 2135 * If the device is not configured for system wakeup, disable PME for it before 2136 * returning 'true' to prevent it from waking up the system unnecessarily. 2137 */ 2138 bool pci_dev_keep_suspended(struct pci_dev *pci_dev) 2139 { 2140 struct device *dev = &pci_dev->dev; 2141 2142 if (!pm_runtime_suspended(dev) 2143 || pci_target_state(pci_dev) != pci_dev->current_state 2144 || platform_pci_need_resume(pci_dev)) 2145 return false; 2146 2147 /* 2148 * At this point the device is good to go unless it's been configured 2149 * to generate PME at the runtime suspend time, but it is not supposed 2150 * to wake up the system. In that case, simply disable PME for it 2151 * (it will have to be re-enabled on exit from system resume). 2152 * 2153 * If the device's power state is D3cold and the platform check above 2154 * hasn't triggered, the device's configuration is suitable and we don't 2155 * need to manipulate it at all. 2156 */ 2157 spin_lock_irq(&dev->power.lock); 2158 2159 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold && 2160 !device_may_wakeup(dev)) 2161 __pci_pme_active(pci_dev, false); 2162 2163 spin_unlock_irq(&dev->power.lock); 2164 return true; 2165 } 2166 2167 /** 2168 * pci_dev_complete_resume - Finalize resume from system sleep for a device. 2169 * @pci_dev: Device to handle. 2170 * 2171 * If the device is runtime suspended and wakeup-capable, enable PME for it as 2172 * it might have been disabled during the prepare phase of system suspend if 2173 * the device was not configured for system wakeup. 2174 */ 2175 void pci_dev_complete_resume(struct pci_dev *pci_dev) 2176 { 2177 struct device *dev = &pci_dev->dev; 2178 2179 if (!pci_dev_run_wake(pci_dev)) 2180 return; 2181 2182 spin_lock_irq(&dev->power.lock); 2183 2184 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold) 2185 __pci_pme_active(pci_dev, true); 2186 2187 spin_unlock_irq(&dev->power.lock); 2188 } 2189 2190 void pci_config_pm_runtime_get(struct pci_dev *pdev) 2191 { 2192 struct device *dev = &pdev->dev; 2193 struct device *parent = dev->parent; 2194 2195 if (parent) 2196 pm_runtime_get_sync(parent); 2197 pm_runtime_get_noresume(dev); 2198 /* 2199 * pdev->current_state is set to PCI_D3cold during suspending, 2200 * so wait until suspending completes 2201 */ 2202 pm_runtime_barrier(dev); 2203 /* 2204 * Only need to resume devices in D3cold, because config 2205 * registers are still accessible for devices suspended but 2206 * not in D3cold. 2207 */ 2208 if (pdev->current_state == PCI_D3cold) 2209 pm_runtime_resume(dev); 2210 } 2211 2212 void pci_config_pm_runtime_put(struct pci_dev *pdev) 2213 { 2214 struct device *dev = &pdev->dev; 2215 struct device *parent = dev->parent; 2216 2217 pm_runtime_put(dev); 2218 if (parent) 2219 pm_runtime_put_sync(parent); 2220 } 2221 2222 /** 2223 * pci_bridge_d3_possible - Is it possible to put the bridge into D3 2224 * @bridge: Bridge to check 2225 * 2226 * This function checks if it is possible to move the bridge to D3. 2227 * Currently we only allow D3 for recent enough PCIe ports. 2228 */ 2229 static bool pci_bridge_d3_possible(struct pci_dev *bridge) 2230 { 2231 unsigned int year; 2232 2233 if (!pci_is_pcie(bridge)) 2234 return false; 2235 2236 switch (pci_pcie_type(bridge)) { 2237 case PCI_EXP_TYPE_ROOT_PORT: 2238 case PCI_EXP_TYPE_UPSTREAM: 2239 case PCI_EXP_TYPE_DOWNSTREAM: 2240 if (pci_bridge_d3_disable) 2241 return false; 2242 if (pci_bridge_d3_force) 2243 return true; 2244 2245 /* 2246 * It should be safe to put PCIe ports from 2015 or newer 2247 * to D3. 2248 */ 2249 if (dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL) && 2250 year >= 2015) { 2251 return true; 2252 } 2253 break; 2254 } 2255 2256 return false; 2257 } 2258 2259 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data) 2260 { 2261 bool *d3cold_ok = data; 2262 bool no_d3cold; 2263 2264 /* 2265 * The device needs to be allowed to go D3cold and if it is wake 2266 * capable to do so from D3cold. 2267 */ 2268 no_d3cold = dev->no_d3cold || !dev->d3cold_allowed || 2269 (device_may_wakeup(&dev->dev) && !pci_pme_capable(dev, PCI_D3cold)) || 2270 !pci_power_manageable(dev); 2271 2272 *d3cold_ok = !no_d3cold; 2273 2274 return no_d3cold; 2275 } 2276 2277 /* 2278 * pci_bridge_d3_update - Update bridge D3 capabilities 2279 * @dev: PCI device which is changed 2280 * @remove: Is the device being removed 2281 * 2282 * Update upstream bridge PM capabilities accordingly depending on if the 2283 * device PM configuration was changed or the device is being removed. The 2284 * change is also propagated upstream. 2285 */ 2286 static void pci_bridge_d3_update(struct pci_dev *dev, bool remove) 2287 { 2288 struct pci_dev *bridge; 2289 bool d3cold_ok = true; 2290 2291 bridge = pci_upstream_bridge(dev); 2292 if (!bridge || !pci_bridge_d3_possible(bridge)) 2293 return; 2294 2295 pci_dev_get(bridge); 2296 /* 2297 * If the device is removed we do not care about its D3cold 2298 * capabilities. 2299 */ 2300 if (!remove) 2301 pci_dev_check_d3cold(dev, &d3cold_ok); 2302 2303 if (d3cold_ok) { 2304 /* 2305 * We need to go through all children to find out if all of 2306 * them can still go to D3cold. 2307 */ 2308 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold, 2309 &d3cold_ok); 2310 } 2311 2312 if (bridge->bridge_d3 != d3cold_ok) { 2313 bridge->bridge_d3 = d3cold_ok; 2314 /* Propagate change to upstream bridges */ 2315 pci_bridge_d3_update(bridge, false); 2316 } 2317 2318 pci_dev_put(bridge); 2319 } 2320 2321 /** 2322 * pci_bridge_d3_device_changed - Update bridge D3 capabilities on change 2323 * @dev: PCI device that was changed 2324 * 2325 * If a device is added or its PM configuration, such as is it allowed to 2326 * enter D3cold, is changed this function updates upstream bridge PM 2327 * capabilities accordingly. 2328 */ 2329 void pci_bridge_d3_device_changed(struct pci_dev *dev) 2330 { 2331 pci_bridge_d3_update(dev, false); 2332 } 2333 2334 /** 2335 * pci_bridge_d3_device_removed - Update bridge D3 capabilities on remove 2336 * @dev: PCI device being removed 2337 * 2338 * Function updates upstream bridge PM capabilities based on other devices 2339 * still left on the bus. 2340 */ 2341 void pci_bridge_d3_device_removed(struct pci_dev *dev) 2342 { 2343 pci_bridge_d3_update(dev, true); 2344 } 2345 2346 /** 2347 * pci_d3cold_enable - Enable D3cold for device 2348 * @dev: PCI device to handle 2349 * 2350 * This function can be used in drivers to enable D3cold from the device 2351 * they handle. It also updates upstream PCI bridge PM capabilities 2352 * accordingly. 2353 */ 2354 void pci_d3cold_enable(struct pci_dev *dev) 2355 { 2356 if (dev->no_d3cold) { 2357 dev->no_d3cold = false; 2358 pci_bridge_d3_device_changed(dev); 2359 } 2360 } 2361 EXPORT_SYMBOL_GPL(pci_d3cold_enable); 2362 2363 /** 2364 * pci_d3cold_disable - Disable D3cold for device 2365 * @dev: PCI device to handle 2366 * 2367 * This function can be used in drivers to disable D3cold from the device 2368 * they handle. It also updates upstream PCI bridge PM capabilities 2369 * accordingly. 2370 */ 2371 void pci_d3cold_disable(struct pci_dev *dev) 2372 { 2373 if (!dev->no_d3cold) { 2374 dev->no_d3cold = true; 2375 pci_bridge_d3_device_changed(dev); 2376 } 2377 } 2378 EXPORT_SYMBOL_GPL(pci_d3cold_disable); 2379 2380 /** 2381 * pci_pm_init - Initialize PM functions of given PCI device 2382 * @dev: PCI device to handle. 2383 */ 2384 void pci_pm_init(struct pci_dev *dev) 2385 { 2386 int pm; 2387 u16 pmc; 2388 2389 pm_runtime_forbid(&dev->dev); 2390 pm_runtime_set_active(&dev->dev); 2391 pm_runtime_enable(&dev->dev); 2392 device_enable_async_suspend(&dev->dev); 2393 dev->wakeup_prepared = false; 2394 2395 dev->pm_cap = 0; 2396 dev->pme_support = 0; 2397 2398 /* find PCI PM capability in list */ 2399 pm = pci_find_capability(dev, PCI_CAP_ID_PM); 2400 if (!pm) 2401 return; 2402 /* Check device's ability to generate PME# */ 2403 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc); 2404 2405 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) { 2406 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n", 2407 pmc & PCI_PM_CAP_VER_MASK); 2408 return; 2409 } 2410 2411 dev->pm_cap = pm; 2412 dev->d3_delay = PCI_PM_D3_WAIT; 2413 dev->d3cold_delay = PCI_PM_D3COLD_WAIT; 2414 dev->bridge_d3 = pci_bridge_d3_possible(dev); 2415 dev->d3cold_allowed = true; 2416 2417 dev->d1_support = false; 2418 dev->d2_support = false; 2419 if (!pci_no_d1d2(dev)) { 2420 if (pmc & PCI_PM_CAP_D1) 2421 dev->d1_support = true; 2422 if (pmc & PCI_PM_CAP_D2) 2423 dev->d2_support = true; 2424 2425 if (dev->d1_support || dev->d2_support) 2426 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n", 2427 dev->d1_support ? " D1" : "", 2428 dev->d2_support ? " D2" : ""); 2429 } 2430 2431 pmc &= PCI_PM_CAP_PME_MASK; 2432 if (pmc) { 2433 dev_printk(KERN_DEBUG, &dev->dev, 2434 "PME# supported from%s%s%s%s%s\n", 2435 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "", 2436 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "", 2437 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "", 2438 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "", 2439 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : ""); 2440 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT; 2441 dev->pme_poll = true; 2442 /* 2443 * Make device's PM flags reflect the wake-up capability, but 2444 * let the user space enable it to wake up the system as needed. 2445 */ 2446 device_set_wakeup_capable(&dev->dev, true); 2447 /* Disable the PME# generation functionality */ 2448 pci_pme_active(dev, false); 2449 } 2450 } 2451 2452 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop) 2453 { 2454 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI; 2455 2456 switch (prop) { 2457 case PCI_EA_P_MEM: 2458 case PCI_EA_P_VF_MEM: 2459 flags |= IORESOURCE_MEM; 2460 break; 2461 case PCI_EA_P_MEM_PREFETCH: 2462 case PCI_EA_P_VF_MEM_PREFETCH: 2463 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH; 2464 break; 2465 case PCI_EA_P_IO: 2466 flags |= IORESOURCE_IO; 2467 break; 2468 default: 2469 return 0; 2470 } 2471 2472 return flags; 2473 } 2474 2475 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei, 2476 u8 prop) 2477 { 2478 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO) 2479 return &dev->resource[bei]; 2480 #ifdef CONFIG_PCI_IOV 2481 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 && 2482 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH)) 2483 return &dev->resource[PCI_IOV_RESOURCES + 2484 bei - PCI_EA_BEI_VF_BAR0]; 2485 #endif 2486 else if (bei == PCI_EA_BEI_ROM) 2487 return &dev->resource[PCI_ROM_RESOURCE]; 2488 else 2489 return NULL; 2490 } 2491 2492 /* Read an Enhanced Allocation (EA) entry */ 2493 static int pci_ea_read(struct pci_dev *dev, int offset) 2494 { 2495 struct resource *res; 2496 int ent_size, ent_offset = offset; 2497 resource_size_t start, end; 2498 unsigned long flags; 2499 u32 dw0, bei, base, max_offset; 2500 u8 prop; 2501 bool support_64 = (sizeof(resource_size_t) >= 8); 2502 2503 pci_read_config_dword(dev, ent_offset, &dw0); 2504 ent_offset += 4; 2505 2506 /* Entry size field indicates DWORDs after 1st */ 2507 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2; 2508 2509 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */ 2510 goto out; 2511 2512 bei = (dw0 & PCI_EA_BEI) >> 4; 2513 prop = (dw0 & PCI_EA_PP) >> 8; 2514 2515 /* 2516 * If the Property is in the reserved range, try the Secondary 2517 * Property instead. 2518 */ 2519 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED) 2520 prop = (dw0 & PCI_EA_SP) >> 16; 2521 if (prop > PCI_EA_P_BRIDGE_IO) 2522 goto out; 2523 2524 res = pci_ea_get_resource(dev, bei, prop); 2525 if (!res) { 2526 dev_err(&dev->dev, "Unsupported EA entry BEI: %u\n", bei); 2527 goto out; 2528 } 2529 2530 flags = pci_ea_flags(dev, prop); 2531 if (!flags) { 2532 dev_err(&dev->dev, "Unsupported EA properties: %#x\n", prop); 2533 goto out; 2534 } 2535 2536 /* Read Base */ 2537 pci_read_config_dword(dev, ent_offset, &base); 2538 start = (base & PCI_EA_FIELD_MASK); 2539 ent_offset += 4; 2540 2541 /* Read MaxOffset */ 2542 pci_read_config_dword(dev, ent_offset, &max_offset); 2543 ent_offset += 4; 2544 2545 /* Read Base MSBs (if 64-bit entry) */ 2546 if (base & PCI_EA_IS_64) { 2547 u32 base_upper; 2548 2549 pci_read_config_dword(dev, ent_offset, &base_upper); 2550 ent_offset += 4; 2551 2552 flags |= IORESOURCE_MEM_64; 2553 2554 /* entry starts above 32-bit boundary, can't use */ 2555 if (!support_64 && base_upper) 2556 goto out; 2557 2558 if (support_64) 2559 start |= ((u64)base_upper << 32); 2560 } 2561 2562 end = start + (max_offset | 0x03); 2563 2564 /* Read MaxOffset MSBs (if 64-bit entry) */ 2565 if (max_offset & PCI_EA_IS_64) { 2566 u32 max_offset_upper; 2567 2568 pci_read_config_dword(dev, ent_offset, &max_offset_upper); 2569 ent_offset += 4; 2570 2571 flags |= IORESOURCE_MEM_64; 2572 2573 /* entry too big, can't use */ 2574 if (!support_64 && max_offset_upper) 2575 goto out; 2576 2577 if (support_64) 2578 end += ((u64)max_offset_upper << 32); 2579 } 2580 2581 if (end < start) { 2582 dev_err(&dev->dev, "EA Entry crosses address boundary\n"); 2583 goto out; 2584 } 2585 2586 if (ent_size != ent_offset - offset) { 2587 dev_err(&dev->dev, 2588 "EA Entry Size (%d) does not match length read (%d)\n", 2589 ent_size, ent_offset - offset); 2590 goto out; 2591 } 2592 2593 res->name = pci_name(dev); 2594 res->start = start; 2595 res->end = end; 2596 res->flags = flags; 2597 2598 if (bei <= PCI_EA_BEI_BAR5) 2599 dev_printk(KERN_DEBUG, &dev->dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 2600 bei, res, prop); 2601 else if (bei == PCI_EA_BEI_ROM) 2602 dev_printk(KERN_DEBUG, &dev->dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n", 2603 res, prop); 2604 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5) 2605 dev_printk(KERN_DEBUG, &dev->dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 2606 bei - PCI_EA_BEI_VF_BAR0, res, prop); 2607 else 2608 dev_printk(KERN_DEBUG, &dev->dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n", 2609 bei, res, prop); 2610 2611 out: 2612 return offset + ent_size; 2613 } 2614 2615 /* Enhanced Allocation Initialization */ 2616 void pci_ea_init(struct pci_dev *dev) 2617 { 2618 int ea; 2619 u8 num_ent; 2620 int offset; 2621 int i; 2622 2623 /* find PCI EA capability in list */ 2624 ea = pci_find_capability(dev, PCI_CAP_ID_EA); 2625 if (!ea) 2626 return; 2627 2628 /* determine the number of entries */ 2629 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT, 2630 &num_ent); 2631 num_ent &= PCI_EA_NUM_ENT_MASK; 2632 2633 offset = ea + PCI_EA_FIRST_ENT; 2634 2635 /* Skip DWORD 2 for type 1 functions */ 2636 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) 2637 offset += 4; 2638 2639 /* parse each EA entry */ 2640 for (i = 0; i < num_ent; ++i) 2641 offset = pci_ea_read(dev, offset); 2642 } 2643 2644 static void pci_add_saved_cap(struct pci_dev *pci_dev, 2645 struct pci_cap_saved_state *new_cap) 2646 { 2647 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space); 2648 } 2649 2650 /** 2651 * _pci_add_cap_save_buffer - allocate buffer for saving given 2652 * capability registers 2653 * @dev: the PCI device 2654 * @cap: the capability to allocate the buffer for 2655 * @extended: Standard or Extended capability ID 2656 * @size: requested size of the buffer 2657 */ 2658 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap, 2659 bool extended, unsigned int size) 2660 { 2661 int pos; 2662 struct pci_cap_saved_state *save_state; 2663 2664 if (extended) 2665 pos = pci_find_ext_capability(dev, cap); 2666 else 2667 pos = pci_find_capability(dev, cap); 2668 2669 if (!pos) 2670 return 0; 2671 2672 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL); 2673 if (!save_state) 2674 return -ENOMEM; 2675 2676 save_state->cap.cap_nr = cap; 2677 save_state->cap.cap_extended = extended; 2678 save_state->cap.size = size; 2679 pci_add_saved_cap(dev, save_state); 2680 2681 return 0; 2682 } 2683 2684 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size) 2685 { 2686 return _pci_add_cap_save_buffer(dev, cap, false, size); 2687 } 2688 2689 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size) 2690 { 2691 return _pci_add_cap_save_buffer(dev, cap, true, size); 2692 } 2693 2694 /** 2695 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities 2696 * @dev: the PCI device 2697 */ 2698 void pci_allocate_cap_save_buffers(struct pci_dev *dev) 2699 { 2700 int error; 2701 2702 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP, 2703 PCI_EXP_SAVE_REGS * sizeof(u16)); 2704 if (error) 2705 dev_err(&dev->dev, 2706 "unable to preallocate PCI Express save buffer\n"); 2707 2708 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16)); 2709 if (error) 2710 dev_err(&dev->dev, 2711 "unable to preallocate PCI-X save buffer\n"); 2712 2713 pci_allocate_vc_save_buffers(dev); 2714 } 2715 2716 void pci_free_cap_save_buffers(struct pci_dev *dev) 2717 { 2718 struct pci_cap_saved_state *tmp; 2719 struct hlist_node *n; 2720 2721 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next) 2722 kfree(tmp); 2723 } 2724 2725 /** 2726 * pci_configure_ari - enable or disable ARI forwarding 2727 * @dev: the PCI device 2728 * 2729 * If @dev and its upstream bridge both support ARI, enable ARI in the 2730 * bridge. Otherwise, disable ARI in the bridge. 2731 */ 2732 void pci_configure_ari(struct pci_dev *dev) 2733 { 2734 u32 cap; 2735 struct pci_dev *bridge; 2736 2737 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn) 2738 return; 2739 2740 bridge = dev->bus->self; 2741 if (!bridge) 2742 return; 2743 2744 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 2745 if (!(cap & PCI_EXP_DEVCAP2_ARI)) 2746 return; 2747 2748 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) { 2749 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, 2750 PCI_EXP_DEVCTL2_ARI); 2751 bridge->ari_enabled = 1; 2752 } else { 2753 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2, 2754 PCI_EXP_DEVCTL2_ARI); 2755 bridge->ari_enabled = 0; 2756 } 2757 } 2758 2759 static int pci_acs_enable; 2760 2761 /** 2762 * pci_request_acs - ask for ACS to be enabled if supported 2763 */ 2764 void pci_request_acs(void) 2765 { 2766 pci_acs_enable = 1; 2767 } 2768 2769 /** 2770 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites 2771 * @dev: the PCI device 2772 */ 2773 static void pci_std_enable_acs(struct pci_dev *dev) 2774 { 2775 int pos; 2776 u16 cap; 2777 u16 ctrl; 2778 2779 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS); 2780 if (!pos) 2781 return; 2782 2783 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap); 2784 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 2785 2786 /* Source Validation */ 2787 ctrl |= (cap & PCI_ACS_SV); 2788 2789 /* P2P Request Redirect */ 2790 ctrl |= (cap & PCI_ACS_RR); 2791 2792 /* P2P Completion Redirect */ 2793 ctrl |= (cap & PCI_ACS_CR); 2794 2795 /* Upstream Forwarding */ 2796 ctrl |= (cap & PCI_ACS_UF); 2797 2798 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 2799 } 2800 2801 /** 2802 * pci_enable_acs - enable ACS if hardware support it 2803 * @dev: the PCI device 2804 */ 2805 void pci_enable_acs(struct pci_dev *dev) 2806 { 2807 if (!pci_acs_enable) 2808 return; 2809 2810 if (!pci_dev_specific_enable_acs(dev)) 2811 return; 2812 2813 pci_std_enable_acs(dev); 2814 } 2815 2816 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags) 2817 { 2818 int pos; 2819 u16 cap, ctrl; 2820 2821 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS); 2822 if (!pos) 2823 return false; 2824 2825 /* 2826 * Except for egress control, capabilities are either required 2827 * or only required if controllable. Features missing from the 2828 * capability field can therefore be assumed as hard-wired enabled. 2829 */ 2830 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap); 2831 acs_flags &= (cap | PCI_ACS_EC); 2832 2833 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl); 2834 return (ctrl & acs_flags) == acs_flags; 2835 } 2836 2837 /** 2838 * pci_acs_enabled - test ACS against required flags for a given device 2839 * @pdev: device to test 2840 * @acs_flags: required PCI ACS flags 2841 * 2842 * Return true if the device supports the provided flags. Automatically 2843 * filters out flags that are not implemented on multifunction devices. 2844 * 2845 * Note that this interface checks the effective ACS capabilities of the 2846 * device rather than the actual capabilities. For instance, most single 2847 * function endpoints are not required to support ACS because they have no 2848 * opportunity for peer-to-peer access. We therefore return 'true' 2849 * regardless of whether the device exposes an ACS capability. This makes 2850 * it much easier for callers of this function to ignore the actual type 2851 * or topology of the device when testing ACS support. 2852 */ 2853 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags) 2854 { 2855 int ret; 2856 2857 ret = pci_dev_specific_acs_enabled(pdev, acs_flags); 2858 if (ret >= 0) 2859 return ret > 0; 2860 2861 /* 2862 * Conventional PCI and PCI-X devices never support ACS, either 2863 * effectively or actually. The shared bus topology implies that 2864 * any device on the bus can receive or snoop DMA. 2865 */ 2866 if (!pci_is_pcie(pdev)) 2867 return false; 2868 2869 switch (pci_pcie_type(pdev)) { 2870 /* 2871 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec, 2872 * but since their primary interface is PCI/X, we conservatively 2873 * handle them as we would a non-PCIe device. 2874 */ 2875 case PCI_EXP_TYPE_PCIE_BRIDGE: 2876 /* 2877 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never 2878 * applicable... must never implement an ACS Extended Capability...". 2879 * This seems arbitrary, but we take a conservative interpretation 2880 * of this statement. 2881 */ 2882 case PCI_EXP_TYPE_PCI_BRIDGE: 2883 case PCI_EXP_TYPE_RC_EC: 2884 return false; 2885 /* 2886 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should 2887 * implement ACS in order to indicate their peer-to-peer capabilities, 2888 * regardless of whether they are single- or multi-function devices. 2889 */ 2890 case PCI_EXP_TYPE_DOWNSTREAM: 2891 case PCI_EXP_TYPE_ROOT_PORT: 2892 return pci_acs_flags_enabled(pdev, acs_flags); 2893 /* 2894 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be 2895 * implemented by the remaining PCIe types to indicate peer-to-peer 2896 * capabilities, but only when they are part of a multifunction 2897 * device. The footnote for section 6.12 indicates the specific 2898 * PCIe types included here. 2899 */ 2900 case PCI_EXP_TYPE_ENDPOINT: 2901 case PCI_EXP_TYPE_UPSTREAM: 2902 case PCI_EXP_TYPE_LEG_END: 2903 case PCI_EXP_TYPE_RC_END: 2904 if (!pdev->multifunction) 2905 break; 2906 2907 return pci_acs_flags_enabled(pdev, acs_flags); 2908 } 2909 2910 /* 2911 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable 2912 * to single function devices with the exception of downstream ports. 2913 */ 2914 return true; 2915 } 2916 2917 /** 2918 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy 2919 * @start: starting downstream device 2920 * @end: ending upstream device or NULL to search to the root bus 2921 * @acs_flags: required flags 2922 * 2923 * Walk up a device tree from start to end testing PCI ACS support. If 2924 * any step along the way does not support the required flags, return false. 2925 */ 2926 bool pci_acs_path_enabled(struct pci_dev *start, 2927 struct pci_dev *end, u16 acs_flags) 2928 { 2929 struct pci_dev *pdev, *parent = start; 2930 2931 do { 2932 pdev = parent; 2933 2934 if (!pci_acs_enabled(pdev, acs_flags)) 2935 return false; 2936 2937 if (pci_is_root_bus(pdev->bus)) 2938 return (end == NULL); 2939 2940 parent = pdev->bus->self; 2941 } while (pdev != end); 2942 2943 return true; 2944 } 2945 2946 /** 2947 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge 2948 * @dev: the PCI device 2949 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD) 2950 * 2951 * Perform INTx swizzling for a device behind one level of bridge. This is 2952 * required by section 9.1 of the PCI-to-PCI bridge specification for devices 2953 * behind bridges on add-in cards. For devices with ARI enabled, the slot 2954 * number is always 0 (see the Implementation Note in section 2.2.8.1 of 2955 * the PCI Express Base Specification, Revision 2.1) 2956 */ 2957 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin) 2958 { 2959 int slot; 2960 2961 if (pci_ari_enabled(dev->bus)) 2962 slot = 0; 2963 else 2964 slot = PCI_SLOT(dev->devfn); 2965 2966 return (((pin - 1) + slot) % 4) + 1; 2967 } 2968 2969 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge) 2970 { 2971 u8 pin; 2972 2973 pin = dev->pin; 2974 if (!pin) 2975 return -1; 2976 2977 while (!pci_is_root_bus(dev->bus)) { 2978 pin = pci_swizzle_interrupt_pin(dev, pin); 2979 dev = dev->bus->self; 2980 } 2981 *bridge = dev; 2982 return pin; 2983 } 2984 2985 /** 2986 * pci_common_swizzle - swizzle INTx all the way to root bridge 2987 * @dev: the PCI device 2988 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD) 2989 * 2990 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI 2991 * bridges all the way up to a PCI root bus. 2992 */ 2993 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp) 2994 { 2995 u8 pin = *pinp; 2996 2997 while (!pci_is_root_bus(dev->bus)) { 2998 pin = pci_swizzle_interrupt_pin(dev, pin); 2999 dev = dev->bus->self; 3000 } 3001 *pinp = pin; 3002 return PCI_SLOT(dev->devfn); 3003 } 3004 EXPORT_SYMBOL_GPL(pci_common_swizzle); 3005 3006 /** 3007 * pci_release_region - Release a PCI bar 3008 * @pdev: PCI device whose resources were previously reserved by pci_request_region 3009 * @bar: BAR to release 3010 * 3011 * Releases the PCI I/O and memory resources previously reserved by a 3012 * successful call to pci_request_region. Call this function only 3013 * after all use of the PCI regions has ceased. 3014 */ 3015 void pci_release_region(struct pci_dev *pdev, int bar) 3016 { 3017 struct pci_devres *dr; 3018 3019 if (pci_resource_len(pdev, bar) == 0) 3020 return; 3021 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) 3022 release_region(pci_resource_start(pdev, bar), 3023 pci_resource_len(pdev, bar)); 3024 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) 3025 release_mem_region(pci_resource_start(pdev, bar), 3026 pci_resource_len(pdev, bar)); 3027 3028 dr = find_pci_dr(pdev); 3029 if (dr) 3030 dr->region_mask &= ~(1 << bar); 3031 } 3032 EXPORT_SYMBOL(pci_release_region); 3033 3034 /** 3035 * __pci_request_region - Reserved PCI I/O and memory resource 3036 * @pdev: PCI device whose resources are to be reserved 3037 * @bar: BAR to be reserved 3038 * @res_name: Name to be associated with resource. 3039 * @exclusive: whether the region access is exclusive or not 3040 * 3041 * Mark the PCI region associated with PCI device @pdev BR @bar as 3042 * being reserved by owner @res_name. Do not access any 3043 * address inside the PCI regions unless this call returns 3044 * successfully. 3045 * 3046 * If @exclusive is set, then the region is marked so that userspace 3047 * is explicitly not allowed to map the resource via /dev/mem or 3048 * sysfs MMIO access. 3049 * 3050 * Returns 0 on success, or %EBUSY on error. A warning 3051 * message is also printed on failure. 3052 */ 3053 static int __pci_request_region(struct pci_dev *pdev, int bar, 3054 const char *res_name, int exclusive) 3055 { 3056 struct pci_devres *dr; 3057 3058 if (pci_resource_len(pdev, bar) == 0) 3059 return 0; 3060 3061 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) { 3062 if (!request_region(pci_resource_start(pdev, bar), 3063 pci_resource_len(pdev, bar), res_name)) 3064 goto err_out; 3065 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) { 3066 if (!__request_mem_region(pci_resource_start(pdev, bar), 3067 pci_resource_len(pdev, bar), res_name, 3068 exclusive)) 3069 goto err_out; 3070 } 3071 3072 dr = find_pci_dr(pdev); 3073 if (dr) 3074 dr->region_mask |= 1 << bar; 3075 3076 return 0; 3077 3078 err_out: 3079 dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar, 3080 &pdev->resource[bar]); 3081 return -EBUSY; 3082 } 3083 3084 /** 3085 * pci_request_region - Reserve PCI I/O and memory resource 3086 * @pdev: PCI device whose resources are to be reserved 3087 * @bar: BAR to be reserved 3088 * @res_name: Name to be associated with resource 3089 * 3090 * Mark the PCI region associated with PCI device @pdev BAR @bar as 3091 * being reserved by owner @res_name. Do not access any 3092 * address inside the PCI regions unless this call returns 3093 * successfully. 3094 * 3095 * Returns 0 on success, or %EBUSY on error. A warning 3096 * message is also printed on failure. 3097 */ 3098 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name) 3099 { 3100 return __pci_request_region(pdev, bar, res_name, 0); 3101 } 3102 EXPORT_SYMBOL(pci_request_region); 3103 3104 /** 3105 * pci_request_region_exclusive - Reserved PCI I/O and memory resource 3106 * @pdev: PCI device whose resources are to be reserved 3107 * @bar: BAR to be reserved 3108 * @res_name: Name to be associated with resource. 3109 * 3110 * Mark the PCI region associated with PCI device @pdev BR @bar as 3111 * being reserved by owner @res_name. Do not access any 3112 * address inside the PCI regions unless this call returns 3113 * successfully. 3114 * 3115 * Returns 0 on success, or %EBUSY on error. A warning 3116 * message is also printed on failure. 3117 * 3118 * The key difference that _exclusive makes it that userspace is 3119 * explicitly not allowed to map the resource via /dev/mem or 3120 * sysfs. 3121 */ 3122 int pci_request_region_exclusive(struct pci_dev *pdev, int bar, 3123 const char *res_name) 3124 { 3125 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE); 3126 } 3127 EXPORT_SYMBOL(pci_request_region_exclusive); 3128 3129 /** 3130 * pci_release_selected_regions - Release selected PCI I/O and memory resources 3131 * @pdev: PCI device whose resources were previously reserved 3132 * @bars: Bitmask of BARs to be released 3133 * 3134 * Release selected PCI I/O and memory resources previously reserved. 3135 * Call this function only after all use of the PCI regions has ceased. 3136 */ 3137 void pci_release_selected_regions(struct pci_dev *pdev, int bars) 3138 { 3139 int i; 3140 3141 for (i = 0; i < 6; i++) 3142 if (bars & (1 << i)) 3143 pci_release_region(pdev, i); 3144 } 3145 EXPORT_SYMBOL(pci_release_selected_regions); 3146 3147 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars, 3148 const char *res_name, int excl) 3149 { 3150 int i; 3151 3152 for (i = 0; i < 6; i++) 3153 if (bars & (1 << i)) 3154 if (__pci_request_region(pdev, i, res_name, excl)) 3155 goto err_out; 3156 return 0; 3157 3158 err_out: 3159 while (--i >= 0) 3160 if (bars & (1 << i)) 3161 pci_release_region(pdev, i); 3162 3163 return -EBUSY; 3164 } 3165 3166 3167 /** 3168 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources 3169 * @pdev: PCI device whose resources are to be reserved 3170 * @bars: Bitmask of BARs to be requested 3171 * @res_name: Name to be associated with resource 3172 */ 3173 int pci_request_selected_regions(struct pci_dev *pdev, int bars, 3174 const char *res_name) 3175 { 3176 return __pci_request_selected_regions(pdev, bars, res_name, 0); 3177 } 3178 EXPORT_SYMBOL(pci_request_selected_regions); 3179 3180 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars, 3181 const char *res_name) 3182 { 3183 return __pci_request_selected_regions(pdev, bars, res_name, 3184 IORESOURCE_EXCLUSIVE); 3185 } 3186 EXPORT_SYMBOL(pci_request_selected_regions_exclusive); 3187 3188 /** 3189 * pci_release_regions - Release reserved PCI I/O and memory resources 3190 * @pdev: PCI device whose resources were previously reserved by pci_request_regions 3191 * 3192 * Releases all PCI I/O and memory resources previously reserved by a 3193 * successful call to pci_request_regions. Call this function only 3194 * after all use of the PCI regions has ceased. 3195 */ 3196 3197 void pci_release_regions(struct pci_dev *pdev) 3198 { 3199 pci_release_selected_regions(pdev, (1 << 6) - 1); 3200 } 3201 EXPORT_SYMBOL(pci_release_regions); 3202 3203 /** 3204 * pci_request_regions - Reserved PCI I/O and memory resources 3205 * @pdev: PCI device whose resources are to be reserved 3206 * @res_name: Name to be associated with resource. 3207 * 3208 * Mark all PCI regions associated with PCI device @pdev as 3209 * being reserved by owner @res_name. Do not access any 3210 * address inside the PCI regions unless this call returns 3211 * successfully. 3212 * 3213 * Returns 0 on success, or %EBUSY on error. A warning 3214 * message is also printed on failure. 3215 */ 3216 int pci_request_regions(struct pci_dev *pdev, const char *res_name) 3217 { 3218 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name); 3219 } 3220 EXPORT_SYMBOL(pci_request_regions); 3221 3222 /** 3223 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources 3224 * @pdev: PCI device whose resources are to be reserved 3225 * @res_name: Name to be associated with resource. 3226 * 3227 * Mark all PCI regions associated with PCI device @pdev as 3228 * being reserved by owner @res_name. Do not access any 3229 * address inside the PCI regions unless this call returns 3230 * successfully. 3231 * 3232 * pci_request_regions_exclusive() will mark the region so that 3233 * /dev/mem and the sysfs MMIO access will not be allowed. 3234 * 3235 * Returns 0 on success, or %EBUSY on error. A warning 3236 * message is also printed on failure. 3237 */ 3238 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name) 3239 { 3240 return pci_request_selected_regions_exclusive(pdev, 3241 ((1 << 6) - 1), res_name); 3242 } 3243 EXPORT_SYMBOL(pci_request_regions_exclusive); 3244 3245 #ifdef PCI_IOBASE 3246 struct io_range { 3247 struct list_head list; 3248 phys_addr_t start; 3249 resource_size_t size; 3250 }; 3251 3252 static LIST_HEAD(io_range_list); 3253 static DEFINE_SPINLOCK(io_range_lock); 3254 #endif 3255 3256 /* 3257 * Record the PCI IO range (expressed as CPU physical address + size). 3258 * Return a negative value if an error has occured, zero otherwise 3259 */ 3260 int __weak pci_register_io_range(phys_addr_t addr, resource_size_t size) 3261 { 3262 int err = 0; 3263 3264 #ifdef PCI_IOBASE 3265 struct io_range *range; 3266 resource_size_t allocated_size = 0; 3267 3268 /* check if the range hasn't been previously recorded */ 3269 spin_lock(&io_range_lock); 3270 list_for_each_entry(range, &io_range_list, list) { 3271 if (addr >= range->start && addr + size <= range->start + size) { 3272 /* range already registered, bail out */ 3273 goto end_register; 3274 } 3275 allocated_size += range->size; 3276 } 3277 3278 /* range not registed yet, check for available space */ 3279 if (allocated_size + size - 1 > IO_SPACE_LIMIT) { 3280 /* if it's too big check if 64K space can be reserved */ 3281 if (allocated_size + SZ_64K - 1 > IO_SPACE_LIMIT) { 3282 err = -E2BIG; 3283 goto end_register; 3284 } 3285 3286 size = SZ_64K; 3287 pr_warn("Requested IO range too big, new size set to 64K\n"); 3288 } 3289 3290 /* add the range to the list */ 3291 range = kzalloc(sizeof(*range), GFP_ATOMIC); 3292 if (!range) { 3293 err = -ENOMEM; 3294 goto end_register; 3295 } 3296 3297 range->start = addr; 3298 range->size = size; 3299 3300 list_add_tail(&range->list, &io_range_list); 3301 3302 end_register: 3303 spin_unlock(&io_range_lock); 3304 #endif 3305 3306 return err; 3307 } 3308 3309 phys_addr_t pci_pio_to_address(unsigned long pio) 3310 { 3311 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR; 3312 3313 #ifdef PCI_IOBASE 3314 struct io_range *range; 3315 resource_size_t allocated_size = 0; 3316 3317 if (pio > IO_SPACE_LIMIT) 3318 return address; 3319 3320 spin_lock(&io_range_lock); 3321 list_for_each_entry(range, &io_range_list, list) { 3322 if (pio >= allocated_size && pio < allocated_size + range->size) { 3323 address = range->start + pio - allocated_size; 3324 break; 3325 } 3326 allocated_size += range->size; 3327 } 3328 spin_unlock(&io_range_lock); 3329 #endif 3330 3331 return address; 3332 } 3333 3334 unsigned long __weak pci_address_to_pio(phys_addr_t address) 3335 { 3336 #ifdef PCI_IOBASE 3337 struct io_range *res; 3338 resource_size_t offset = 0; 3339 unsigned long addr = -1; 3340 3341 spin_lock(&io_range_lock); 3342 list_for_each_entry(res, &io_range_list, list) { 3343 if (address >= res->start && address < res->start + res->size) { 3344 addr = address - res->start + offset; 3345 break; 3346 } 3347 offset += res->size; 3348 } 3349 spin_unlock(&io_range_lock); 3350 3351 return addr; 3352 #else 3353 if (address > IO_SPACE_LIMIT) 3354 return (unsigned long)-1; 3355 3356 return (unsigned long) address; 3357 #endif 3358 } 3359 3360 /** 3361 * pci_remap_iospace - Remap the memory mapped I/O space 3362 * @res: Resource describing the I/O space 3363 * @phys_addr: physical address of range to be mapped 3364 * 3365 * Remap the memory mapped I/O space described by the @res 3366 * and the CPU physical address @phys_addr into virtual address space. 3367 * Only architectures that have memory mapped IO functions defined 3368 * (and the PCI_IOBASE value defined) should call this function. 3369 */ 3370 int __weak pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr) 3371 { 3372 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 3373 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 3374 3375 if (!(res->flags & IORESOURCE_IO)) 3376 return -EINVAL; 3377 3378 if (res->end > IO_SPACE_LIMIT) 3379 return -EINVAL; 3380 3381 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr, 3382 pgprot_device(PAGE_KERNEL)); 3383 #else 3384 /* this architecture does not have memory mapped I/O space, 3385 so this function should never be called */ 3386 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n"); 3387 return -ENODEV; 3388 #endif 3389 } 3390 3391 /** 3392 * pci_unmap_iospace - Unmap the memory mapped I/O space 3393 * @res: resource to be unmapped 3394 * 3395 * Unmap the CPU virtual address @res from virtual address space. 3396 * Only architectures that have memory mapped IO functions defined 3397 * (and the PCI_IOBASE value defined) should call this function. 3398 */ 3399 void pci_unmap_iospace(struct resource *res) 3400 { 3401 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 3402 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 3403 3404 unmap_kernel_range(vaddr, resource_size(res)); 3405 #endif 3406 } 3407 3408 static void __pci_set_master(struct pci_dev *dev, bool enable) 3409 { 3410 u16 old_cmd, cmd; 3411 3412 pci_read_config_word(dev, PCI_COMMAND, &old_cmd); 3413 if (enable) 3414 cmd = old_cmd | PCI_COMMAND_MASTER; 3415 else 3416 cmd = old_cmd & ~PCI_COMMAND_MASTER; 3417 if (cmd != old_cmd) { 3418 dev_dbg(&dev->dev, "%s bus mastering\n", 3419 enable ? "enabling" : "disabling"); 3420 pci_write_config_word(dev, PCI_COMMAND, cmd); 3421 } 3422 dev->is_busmaster = enable; 3423 } 3424 3425 /** 3426 * pcibios_setup - process "pci=" kernel boot arguments 3427 * @str: string used to pass in "pci=" kernel boot arguments 3428 * 3429 * Process kernel boot arguments. This is the default implementation. 3430 * Architecture specific implementations can override this as necessary. 3431 */ 3432 char * __weak __init pcibios_setup(char *str) 3433 { 3434 return str; 3435 } 3436 3437 /** 3438 * pcibios_set_master - enable PCI bus-mastering for device dev 3439 * @dev: the PCI device to enable 3440 * 3441 * Enables PCI bus-mastering for the device. This is the default 3442 * implementation. Architecture specific implementations can override 3443 * this if necessary. 3444 */ 3445 void __weak pcibios_set_master(struct pci_dev *dev) 3446 { 3447 u8 lat; 3448 3449 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */ 3450 if (pci_is_pcie(dev)) 3451 return; 3452 3453 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat); 3454 if (lat < 16) 3455 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency; 3456 else if (lat > pcibios_max_latency) 3457 lat = pcibios_max_latency; 3458 else 3459 return; 3460 3461 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat); 3462 } 3463 3464 /** 3465 * pci_set_master - enables bus-mastering for device dev 3466 * @dev: the PCI device to enable 3467 * 3468 * Enables bus-mastering on the device and calls pcibios_set_master() 3469 * to do the needed arch specific settings. 3470 */ 3471 void pci_set_master(struct pci_dev *dev) 3472 { 3473 __pci_set_master(dev, true); 3474 pcibios_set_master(dev); 3475 } 3476 EXPORT_SYMBOL(pci_set_master); 3477 3478 /** 3479 * pci_clear_master - disables bus-mastering for device dev 3480 * @dev: the PCI device to disable 3481 */ 3482 void pci_clear_master(struct pci_dev *dev) 3483 { 3484 __pci_set_master(dev, false); 3485 } 3486 EXPORT_SYMBOL(pci_clear_master); 3487 3488 /** 3489 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed 3490 * @dev: the PCI device for which MWI is to be enabled 3491 * 3492 * Helper function for pci_set_mwi. 3493 * Originally copied from drivers/net/acenic.c. 3494 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. 3495 * 3496 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 3497 */ 3498 int pci_set_cacheline_size(struct pci_dev *dev) 3499 { 3500 u8 cacheline_size; 3501 3502 if (!pci_cache_line_size) 3503 return -EINVAL; 3504 3505 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be 3506 equal to or multiple of the right value. */ 3507 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 3508 if (cacheline_size >= pci_cache_line_size && 3509 (cacheline_size % pci_cache_line_size) == 0) 3510 return 0; 3511 3512 /* Write the correct value. */ 3513 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size); 3514 /* Read it back. */ 3515 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 3516 if (cacheline_size == pci_cache_line_size) 3517 return 0; 3518 3519 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not supported\n", 3520 pci_cache_line_size << 2); 3521 3522 return -EINVAL; 3523 } 3524 EXPORT_SYMBOL_GPL(pci_set_cacheline_size); 3525 3526 /** 3527 * pci_set_mwi - enables memory-write-invalidate PCI transaction 3528 * @dev: the PCI device for which MWI is enabled 3529 * 3530 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 3531 * 3532 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 3533 */ 3534 int pci_set_mwi(struct pci_dev *dev) 3535 { 3536 #ifdef PCI_DISABLE_MWI 3537 return 0; 3538 #else 3539 int rc; 3540 u16 cmd; 3541 3542 rc = pci_set_cacheline_size(dev); 3543 if (rc) 3544 return rc; 3545 3546 pci_read_config_word(dev, PCI_COMMAND, &cmd); 3547 if (!(cmd & PCI_COMMAND_INVALIDATE)) { 3548 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n"); 3549 cmd |= PCI_COMMAND_INVALIDATE; 3550 pci_write_config_word(dev, PCI_COMMAND, cmd); 3551 } 3552 return 0; 3553 #endif 3554 } 3555 EXPORT_SYMBOL(pci_set_mwi); 3556 3557 /** 3558 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction 3559 * @dev: the PCI device for which MWI is enabled 3560 * 3561 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 3562 * Callers are not required to check the return value. 3563 * 3564 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 3565 */ 3566 int pci_try_set_mwi(struct pci_dev *dev) 3567 { 3568 #ifdef PCI_DISABLE_MWI 3569 return 0; 3570 #else 3571 return pci_set_mwi(dev); 3572 #endif 3573 } 3574 EXPORT_SYMBOL(pci_try_set_mwi); 3575 3576 /** 3577 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev 3578 * @dev: the PCI device to disable 3579 * 3580 * Disables PCI Memory-Write-Invalidate transaction on the device 3581 */ 3582 void pci_clear_mwi(struct pci_dev *dev) 3583 { 3584 #ifndef PCI_DISABLE_MWI 3585 u16 cmd; 3586 3587 pci_read_config_word(dev, PCI_COMMAND, &cmd); 3588 if (cmd & PCI_COMMAND_INVALIDATE) { 3589 cmd &= ~PCI_COMMAND_INVALIDATE; 3590 pci_write_config_word(dev, PCI_COMMAND, cmd); 3591 } 3592 #endif 3593 } 3594 EXPORT_SYMBOL(pci_clear_mwi); 3595 3596 /** 3597 * pci_intx - enables/disables PCI INTx for device dev 3598 * @pdev: the PCI device to operate on 3599 * @enable: boolean: whether to enable or disable PCI INTx 3600 * 3601 * Enables/disables PCI INTx for device dev 3602 */ 3603 void pci_intx(struct pci_dev *pdev, int enable) 3604 { 3605 u16 pci_command, new; 3606 3607 pci_read_config_word(pdev, PCI_COMMAND, &pci_command); 3608 3609 if (enable) 3610 new = pci_command & ~PCI_COMMAND_INTX_DISABLE; 3611 else 3612 new = pci_command | PCI_COMMAND_INTX_DISABLE; 3613 3614 if (new != pci_command) { 3615 struct pci_devres *dr; 3616 3617 pci_write_config_word(pdev, PCI_COMMAND, new); 3618 3619 dr = find_pci_dr(pdev); 3620 if (dr && !dr->restore_intx) { 3621 dr->restore_intx = 1; 3622 dr->orig_intx = !enable; 3623 } 3624 } 3625 } 3626 EXPORT_SYMBOL_GPL(pci_intx); 3627 3628 /** 3629 * pci_intx_mask_supported - probe for INTx masking support 3630 * @dev: the PCI device to operate on 3631 * 3632 * Check if the device dev support INTx masking via the config space 3633 * command word. 3634 */ 3635 bool pci_intx_mask_supported(struct pci_dev *dev) 3636 { 3637 bool mask_supported = false; 3638 u16 orig, new; 3639 3640 if (dev->broken_intx_masking) 3641 return false; 3642 3643 pci_cfg_access_lock(dev); 3644 3645 pci_read_config_word(dev, PCI_COMMAND, &orig); 3646 pci_write_config_word(dev, PCI_COMMAND, 3647 orig ^ PCI_COMMAND_INTX_DISABLE); 3648 pci_read_config_word(dev, PCI_COMMAND, &new); 3649 3650 /* 3651 * There's no way to protect against hardware bugs or detect them 3652 * reliably, but as long as we know what the value should be, let's 3653 * go ahead and check it. 3654 */ 3655 if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) { 3656 dev_err(&dev->dev, "Command register changed from 0x%x to 0x%x: driver or hardware bug?\n", 3657 orig, new); 3658 } else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) { 3659 mask_supported = true; 3660 pci_write_config_word(dev, PCI_COMMAND, orig); 3661 } 3662 3663 pci_cfg_access_unlock(dev); 3664 return mask_supported; 3665 } 3666 EXPORT_SYMBOL_GPL(pci_intx_mask_supported); 3667 3668 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask) 3669 { 3670 struct pci_bus *bus = dev->bus; 3671 bool mask_updated = true; 3672 u32 cmd_status_dword; 3673 u16 origcmd, newcmd; 3674 unsigned long flags; 3675 bool irq_pending; 3676 3677 /* 3678 * We do a single dword read to retrieve both command and status. 3679 * Document assumptions that make this possible. 3680 */ 3681 BUILD_BUG_ON(PCI_COMMAND % 4); 3682 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS); 3683 3684 raw_spin_lock_irqsave(&pci_lock, flags); 3685 3686 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword); 3687 3688 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT; 3689 3690 /* 3691 * Check interrupt status register to see whether our device 3692 * triggered the interrupt (when masking) or the next IRQ is 3693 * already pending (when unmasking). 3694 */ 3695 if (mask != irq_pending) { 3696 mask_updated = false; 3697 goto done; 3698 } 3699 3700 origcmd = cmd_status_dword; 3701 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE; 3702 if (mask) 3703 newcmd |= PCI_COMMAND_INTX_DISABLE; 3704 if (newcmd != origcmd) 3705 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd); 3706 3707 done: 3708 raw_spin_unlock_irqrestore(&pci_lock, flags); 3709 3710 return mask_updated; 3711 } 3712 3713 /** 3714 * pci_check_and_mask_intx - mask INTx on pending interrupt 3715 * @dev: the PCI device to operate on 3716 * 3717 * Check if the device dev has its INTx line asserted, mask it and 3718 * return true in that case. False is returned if not interrupt was 3719 * pending. 3720 */ 3721 bool pci_check_and_mask_intx(struct pci_dev *dev) 3722 { 3723 return pci_check_and_set_intx_mask(dev, true); 3724 } 3725 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx); 3726 3727 /** 3728 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending 3729 * @dev: the PCI device to operate on 3730 * 3731 * Check if the device dev has its INTx line asserted, unmask it if not 3732 * and return true. False is returned and the mask remains active if 3733 * there was still an interrupt pending. 3734 */ 3735 bool pci_check_and_unmask_intx(struct pci_dev *dev) 3736 { 3737 return pci_check_and_set_intx_mask(dev, false); 3738 } 3739 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx); 3740 3741 /** 3742 * pci_wait_for_pending_transaction - waits for pending transaction 3743 * @dev: the PCI device to operate on 3744 * 3745 * Return 0 if transaction is pending 1 otherwise. 3746 */ 3747 int pci_wait_for_pending_transaction(struct pci_dev *dev) 3748 { 3749 if (!pci_is_pcie(dev)) 3750 return 1; 3751 3752 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA, 3753 PCI_EXP_DEVSTA_TRPND); 3754 } 3755 EXPORT_SYMBOL(pci_wait_for_pending_transaction); 3756 3757 /* 3758 * We should only need to wait 100ms after FLR, but some devices take longer. 3759 * Wait for up to 1000ms for config space to return something other than -1. 3760 * Intel IGD requires this when an LCD panel is attached. We read the 2nd 3761 * dword because VFs don't implement the 1st dword. 3762 */ 3763 static void pci_flr_wait(struct pci_dev *dev) 3764 { 3765 int i = 0; 3766 u32 id; 3767 3768 do { 3769 msleep(100); 3770 pci_read_config_dword(dev, PCI_COMMAND, &id); 3771 } while (i++ < 10 && id == ~0); 3772 3773 if (id == ~0) 3774 dev_warn(&dev->dev, "Failed to return from FLR\n"); 3775 else if (i > 1) 3776 dev_info(&dev->dev, "Required additional %dms to return from FLR\n", 3777 (i - 1) * 100); 3778 } 3779 3780 static int pcie_flr(struct pci_dev *dev, int probe) 3781 { 3782 u32 cap; 3783 3784 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap); 3785 if (!(cap & PCI_EXP_DEVCAP_FLR)) 3786 return -ENOTTY; 3787 3788 if (probe) 3789 return 0; 3790 3791 if (!pci_wait_for_pending_transaction(dev)) 3792 dev_err(&dev->dev, "timed out waiting for pending transaction; performing function level reset anyway\n"); 3793 3794 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR); 3795 pci_flr_wait(dev); 3796 return 0; 3797 } 3798 3799 static int pci_af_flr(struct pci_dev *dev, int probe) 3800 { 3801 int pos; 3802 u8 cap; 3803 3804 pos = pci_find_capability(dev, PCI_CAP_ID_AF); 3805 if (!pos) 3806 return -ENOTTY; 3807 3808 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap); 3809 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR)) 3810 return -ENOTTY; 3811 3812 if (probe) 3813 return 0; 3814 3815 /* 3816 * Wait for Transaction Pending bit to clear. A word-aligned test 3817 * is used, so we use the conrol offset rather than status and shift 3818 * the test bit to match. 3819 */ 3820 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL, 3821 PCI_AF_STATUS_TP << 8)) 3822 dev_err(&dev->dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n"); 3823 3824 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR); 3825 pci_flr_wait(dev); 3826 return 0; 3827 } 3828 3829 /** 3830 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0. 3831 * @dev: Device to reset. 3832 * @probe: If set, only check if the device can be reset this way. 3833 * 3834 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is 3835 * unset, it will be reinitialized internally when going from PCI_D3hot to 3836 * PCI_D0. If that's the case and the device is not in a low-power state 3837 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset. 3838 * 3839 * NOTE: This causes the caller to sleep for twice the device power transition 3840 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms 3841 * by default (i.e. unless the @dev's d3_delay field has a different value). 3842 * Moreover, only devices in D0 can be reset by this function. 3843 */ 3844 static int pci_pm_reset(struct pci_dev *dev, int probe) 3845 { 3846 u16 csr; 3847 3848 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET) 3849 return -ENOTTY; 3850 3851 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr); 3852 if (csr & PCI_PM_CTRL_NO_SOFT_RESET) 3853 return -ENOTTY; 3854 3855 if (probe) 3856 return 0; 3857 3858 if (dev->current_state != PCI_D0) 3859 return -EINVAL; 3860 3861 csr &= ~PCI_PM_CTRL_STATE_MASK; 3862 csr |= PCI_D3hot; 3863 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 3864 pci_dev_d3_sleep(dev); 3865 3866 csr &= ~PCI_PM_CTRL_STATE_MASK; 3867 csr |= PCI_D0; 3868 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 3869 pci_dev_d3_sleep(dev); 3870 3871 return 0; 3872 } 3873 3874 void pci_reset_secondary_bus(struct pci_dev *dev) 3875 { 3876 u16 ctrl; 3877 3878 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl); 3879 ctrl |= PCI_BRIDGE_CTL_BUS_RESET; 3880 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 3881 /* 3882 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double 3883 * this to 2ms to ensure that we meet the minimum requirement. 3884 */ 3885 msleep(2); 3886 3887 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET; 3888 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 3889 3890 /* 3891 * Trhfa for conventional PCI is 2^25 clock cycles. 3892 * Assuming a minimum 33MHz clock this results in a 1s 3893 * delay before we can consider subordinate devices to 3894 * be re-initialized. PCIe has some ways to shorten this, 3895 * but we don't make use of them yet. 3896 */ 3897 ssleep(1); 3898 } 3899 3900 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev) 3901 { 3902 pci_reset_secondary_bus(dev); 3903 } 3904 3905 /** 3906 * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge. 3907 * @dev: Bridge device 3908 * 3909 * Use the bridge control register to assert reset on the secondary bus. 3910 * Devices on the secondary bus are left in power-on state. 3911 */ 3912 void pci_reset_bridge_secondary_bus(struct pci_dev *dev) 3913 { 3914 pcibios_reset_secondary_bus(dev); 3915 } 3916 EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus); 3917 3918 static int pci_parent_bus_reset(struct pci_dev *dev, int probe) 3919 { 3920 struct pci_dev *pdev; 3921 3922 if (pci_is_root_bus(dev->bus) || dev->subordinate || 3923 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 3924 return -ENOTTY; 3925 3926 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 3927 if (pdev != dev) 3928 return -ENOTTY; 3929 3930 if (probe) 3931 return 0; 3932 3933 pci_reset_bridge_secondary_bus(dev->bus->self); 3934 3935 return 0; 3936 } 3937 3938 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe) 3939 { 3940 int rc = -ENOTTY; 3941 3942 if (!hotplug || !try_module_get(hotplug->ops->owner)) 3943 return rc; 3944 3945 if (hotplug->ops->reset_slot) 3946 rc = hotplug->ops->reset_slot(hotplug, probe); 3947 3948 module_put(hotplug->ops->owner); 3949 3950 return rc; 3951 } 3952 3953 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe) 3954 { 3955 struct pci_dev *pdev; 3956 3957 if (dev->subordinate || !dev->slot || 3958 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 3959 return -ENOTTY; 3960 3961 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 3962 if (pdev != dev && pdev->slot == dev->slot) 3963 return -ENOTTY; 3964 3965 return pci_reset_hotplug_slot(dev->slot->hotplug, probe); 3966 } 3967 3968 static int __pci_dev_reset(struct pci_dev *dev, int probe) 3969 { 3970 int rc; 3971 3972 might_sleep(); 3973 3974 rc = pci_dev_specific_reset(dev, probe); 3975 if (rc != -ENOTTY) 3976 goto done; 3977 3978 rc = pcie_flr(dev, probe); 3979 if (rc != -ENOTTY) 3980 goto done; 3981 3982 rc = pci_af_flr(dev, probe); 3983 if (rc != -ENOTTY) 3984 goto done; 3985 3986 rc = pci_pm_reset(dev, probe); 3987 if (rc != -ENOTTY) 3988 goto done; 3989 3990 rc = pci_dev_reset_slot_function(dev, probe); 3991 if (rc != -ENOTTY) 3992 goto done; 3993 3994 rc = pci_parent_bus_reset(dev, probe); 3995 done: 3996 return rc; 3997 } 3998 3999 static void pci_dev_lock(struct pci_dev *dev) 4000 { 4001 pci_cfg_access_lock(dev); 4002 /* block PM suspend, driver probe, etc. */ 4003 device_lock(&dev->dev); 4004 } 4005 4006 /* Return 1 on successful lock, 0 on contention */ 4007 static int pci_dev_trylock(struct pci_dev *dev) 4008 { 4009 if (pci_cfg_access_trylock(dev)) { 4010 if (device_trylock(&dev->dev)) 4011 return 1; 4012 pci_cfg_access_unlock(dev); 4013 } 4014 4015 return 0; 4016 } 4017 4018 static void pci_dev_unlock(struct pci_dev *dev) 4019 { 4020 device_unlock(&dev->dev); 4021 pci_cfg_access_unlock(dev); 4022 } 4023 4024 /** 4025 * pci_reset_notify - notify device driver of reset 4026 * @dev: device to be notified of reset 4027 * @prepare: 'true' if device is about to be reset; 'false' if reset attempt 4028 * completed 4029 * 4030 * Must be called prior to device access being disabled and after device 4031 * access is restored. 4032 */ 4033 static void pci_reset_notify(struct pci_dev *dev, bool prepare) 4034 { 4035 const struct pci_error_handlers *err_handler = 4036 dev->driver ? dev->driver->err_handler : NULL; 4037 if (err_handler && err_handler->reset_notify) 4038 err_handler->reset_notify(dev, prepare); 4039 } 4040 4041 static void pci_dev_save_and_disable(struct pci_dev *dev) 4042 { 4043 pci_reset_notify(dev, true); 4044 4045 /* 4046 * Wake-up device prior to save. PM registers default to D0 after 4047 * reset and a simple register restore doesn't reliably return 4048 * to a non-D0 state anyway. 4049 */ 4050 pci_set_power_state(dev, PCI_D0); 4051 4052 pci_save_state(dev); 4053 /* 4054 * Disable the device by clearing the Command register, except for 4055 * INTx-disable which is set. This not only disables MMIO and I/O port 4056 * BARs, but also prevents the device from being Bus Master, preventing 4057 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3 4058 * compliant devices, INTx-disable prevents legacy interrupts. 4059 */ 4060 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE); 4061 } 4062 4063 static void pci_dev_restore(struct pci_dev *dev) 4064 { 4065 pci_restore_state(dev); 4066 pci_reset_notify(dev, false); 4067 } 4068 4069 static int pci_dev_reset(struct pci_dev *dev, int probe) 4070 { 4071 int rc; 4072 4073 if (!probe) 4074 pci_dev_lock(dev); 4075 4076 rc = __pci_dev_reset(dev, probe); 4077 4078 if (!probe) 4079 pci_dev_unlock(dev); 4080 4081 return rc; 4082 } 4083 4084 /** 4085 * __pci_reset_function - reset a PCI device function 4086 * @dev: PCI device to reset 4087 * 4088 * Some devices allow an individual function to be reset without affecting 4089 * other functions in the same device. The PCI device must be responsive 4090 * to PCI config space in order to use this function. 4091 * 4092 * The device function is presumed to be unused when this function is called. 4093 * Resetting the device will make the contents of PCI configuration space 4094 * random, so any caller of this must be prepared to reinitialise the 4095 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 4096 * etc. 4097 * 4098 * Returns 0 if the device function was successfully reset or negative if the 4099 * device doesn't support resetting a single function. 4100 */ 4101 int __pci_reset_function(struct pci_dev *dev) 4102 { 4103 return pci_dev_reset(dev, 0); 4104 } 4105 EXPORT_SYMBOL_GPL(__pci_reset_function); 4106 4107 /** 4108 * __pci_reset_function_locked - reset a PCI device function while holding 4109 * the @dev mutex lock. 4110 * @dev: PCI device to reset 4111 * 4112 * Some devices allow an individual function to be reset without affecting 4113 * other functions in the same device. The PCI device must be responsive 4114 * to PCI config space in order to use this function. 4115 * 4116 * The device function is presumed to be unused and the caller is holding 4117 * the device mutex lock when this function is called. 4118 * Resetting the device will make the contents of PCI configuration space 4119 * random, so any caller of this must be prepared to reinitialise the 4120 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 4121 * etc. 4122 * 4123 * Returns 0 if the device function was successfully reset or negative if the 4124 * device doesn't support resetting a single function. 4125 */ 4126 int __pci_reset_function_locked(struct pci_dev *dev) 4127 { 4128 return __pci_dev_reset(dev, 0); 4129 } 4130 EXPORT_SYMBOL_GPL(__pci_reset_function_locked); 4131 4132 /** 4133 * pci_probe_reset_function - check whether the device can be safely reset 4134 * @dev: PCI device to reset 4135 * 4136 * Some devices allow an individual function to be reset without affecting 4137 * other functions in the same device. The PCI device must be responsive 4138 * to PCI config space in order to use this function. 4139 * 4140 * Returns 0 if the device function can be reset or negative if the 4141 * device doesn't support resetting a single function. 4142 */ 4143 int pci_probe_reset_function(struct pci_dev *dev) 4144 { 4145 return pci_dev_reset(dev, 1); 4146 } 4147 4148 /** 4149 * pci_reset_function - quiesce and reset a PCI device function 4150 * @dev: PCI device to reset 4151 * 4152 * Some devices allow an individual function to be reset without affecting 4153 * other functions in the same device. The PCI device must be responsive 4154 * to PCI config space in order to use this function. 4155 * 4156 * This function does not just reset the PCI portion of a device, but 4157 * clears all the state associated with the device. This function differs 4158 * from __pci_reset_function in that it saves and restores device state 4159 * over the reset. 4160 * 4161 * Returns 0 if the device function was successfully reset or negative if the 4162 * device doesn't support resetting a single function. 4163 */ 4164 int pci_reset_function(struct pci_dev *dev) 4165 { 4166 int rc; 4167 4168 rc = pci_dev_reset(dev, 1); 4169 if (rc) 4170 return rc; 4171 4172 pci_dev_save_and_disable(dev); 4173 4174 rc = pci_dev_reset(dev, 0); 4175 4176 pci_dev_restore(dev); 4177 4178 return rc; 4179 } 4180 EXPORT_SYMBOL_GPL(pci_reset_function); 4181 4182 /** 4183 * pci_try_reset_function - quiesce and reset a PCI device function 4184 * @dev: PCI device to reset 4185 * 4186 * Same as above, except return -EAGAIN if unable to lock device. 4187 */ 4188 int pci_try_reset_function(struct pci_dev *dev) 4189 { 4190 int rc; 4191 4192 rc = pci_dev_reset(dev, 1); 4193 if (rc) 4194 return rc; 4195 4196 pci_dev_save_and_disable(dev); 4197 4198 if (pci_dev_trylock(dev)) { 4199 rc = __pci_dev_reset(dev, 0); 4200 pci_dev_unlock(dev); 4201 } else 4202 rc = -EAGAIN; 4203 4204 pci_dev_restore(dev); 4205 4206 return rc; 4207 } 4208 EXPORT_SYMBOL_GPL(pci_try_reset_function); 4209 4210 /* Do any devices on or below this bus prevent a bus reset? */ 4211 static bool pci_bus_resetable(struct pci_bus *bus) 4212 { 4213 struct pci_dev *dev; 4214 4215 list_for_each_entry(dev, &bus->devices, bus_list) { 4216 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 4217 (dev->subordinate && !pci_bus_resetable(dev->subordinate))) 4218 return false; 4219 } 4220 4221 return true; 4222 } 4223 4224 /* Lock devices from the top of the tree down */ 4225 static void pci_bus_lock(struct pci_bus *bus) 4226 { 4227 struct pci_dev *dev; 4228 4229 list_for_each_entry(dev, &bus->devices, bus_list) { 4230 pci_dev_lock(dev); 4231 if (dev->subordinate) 4232 pci_bus_lock(dev->subordinate); 4233 } 4234 } 4235 4236 /* Unlock devices from the bottom of the tree up */ 4237 static void pci_bus_unlock(struct pci_bus *bus) 4238 { 4239 struct pci_dev *dev; 4240 4241 list_for_each_entry(dev, &bus->devices, bus_list) { 4242 if (dev->subordinate) 4243 pci_bus_unlock(dev->subordinate); 4244 pci_dev_unlock(dev); 4245 } 4246 } 4247 4248 /* Return 1 on successful lock, 0 on contention */ 4249 static int pci_bus_trylock(struct pci_bus *bus) 4250 { 4251 struct pci_dev *dev; 4252 4253 list_for_each_entry(dev, &bus->devices, bus_list) { 4254 if (!pci_dev_trylock(dev)) 4255 goto unlock; 4256 if (dev->subordinate) { 4257 if (!pci_bus_trylock(dev->subordinate)) { 4258 pci_dev_unlock(dev); 4259 goto unlock; 4260 } 4261 } 4262 } 4263 return 1; 4264 4265 unlock: 4266 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) { 4267 if (dev->subordinate) 4268 pci_bus_unlock(dev->subordinate); 4269 pci_dev_unlock(dev); 4270 } 4271 return 0; 4272 } 4273 4274 /* Do any devices on or below this slot prevent a bus reset? */ 4275 static bool pci_slot_resetable(struct pci_slot *slot) 4276 { 4277 struct pci_dev *dev; 4278 4279 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 4280 if (!dev->slot || dev->slot != slot) 4281 continue; 4282 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 4283 (dev->subordinate && !pci_bus_resetable(dev->subordinate))) 4284 return false; 4285 } 4286 4287 return true; 4288 } 4289 4290 /* Lock devices from the top of the tree down */ 4291 static void pci_slot_lock(struct pci_slot *slot) 4292 { 4293 struct pci_dev *dev; 4294 4295 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 4296 if (!dev->slot || dev->slot != slot) 4297 continue; 4298 pci_dev_lock(dev); 4299 if (dev->subordinate) 4300 pci_bus_lock(dev->subordinate); 4301 } 4302 } 4303 4304 /* Unlock devices from the bottom of the tree up */ 4305 static void pci_slot_unlock(struct pci_slot *slot) 4306 { 4307 struct pci_dev *dev; 4308 4309 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 4310 if (!dev->slot || dev->slot != slot) 4311 continue; 4312 if (dev->subordinate) 4313 pci_bus_unlock(dev->subordinate); 4314 pci_dev_unlock(dev); 4315 } 4316 } 4317 4318 /* Return 1 on successful lock, 0 on contention */ 4319 static int pci_slot_trylock(struct pci_slot *slot) 4320 { 4321 struct pci_dev *dev; 4322 4323 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 4324 if (!dev->slot || dev->slot != slot) 4325 continue; 4326 if (!pci_dev_trylock(dev)) 4327 goto unlock; 4328 if (dev->subordinate) { 4329 if (!pci_bus_trylock(dev->subordinate)) { 4330 pci_dev_unlock(dev); 4331 goto unlock; 4332 } 4333 } 4334 } 4335 return 1; 4336 4337 unlock: 4338 list_for_each_entry_continue_reverse(dev, 4339 &slot->bus->devices, bus_list) { 4340 if (!dev->slot || dev->slot != slot) 4341 continue; 4342 if (dev->subordinate) 4343 pci_bus_unlock(dev->subordinate); 4344 pci_dev_unlock(dev); 4345 } 4346 return 0; 4347 } 4348 4349 /* Save and disable devices from the top of the tree down */ 4350 static void pci_bus_save_and_disable(struct pci_bus *bus) 4351 { 4352 struct pci_dev *dev; 4353 4354 list_for_each_entry(dev, &bus->devices, bus_list) { 4355 pci_dev_save_and_disable(dev); 4356 if (dev->subordinate) 4357 pci_bus_save_and_disable(dev->subordinate); 4358 } 4359 } 4360 4361 /* 4362 * Restore devices from top of the tree down - parent bridges need to be 4363 * restored before we can get to subordinate devices. 4364 */ 4365 static void pci_bus_restore(struct pci_bus *bus) 4366 { 4367 struct pci_dev *dev; 4368 4369 list_for_each_entry(dev, &bus->devices, bus_list) { 4370 pci_dev_restore(dev); 4371 if (dev->subordinate) 4372 pci_bus_restore(dev->subordinate); 4373 } 4374 } 4375 4376 /* Save and disable devices from the top of the tree down */ 4377 static void pci_slot_save_and_disable(struct pci_slot *slot) 4378 { 4379 struct pci_dev *dev; 4380 4381 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 4382 if (!dev->slot || dev->slot != slot) 4383 continue; 4384 pci_dev_save_and_disable(dev); 4385 if (dev->subordinate) 4386 pci_bus_save_and_disable(dev->subordinate); 4387 } 4388 } 4389 4390 /* 4391 * Restore devices from top of the tree down - parent bridges need to be 4392 * restored before we can get to subordinate devices. 4393 */ 4394 static void pci_slot_restore(struct pci_slot *slot) 4395 { 4396 struct pci_dev *dev; 4397 4398 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 4399 if (!dev->slot || dev->slot != slot) 4400 continue; 4401 pci_dev_restore(dev); 4402 if (dev->subordinate) 4403 pci_bus_restore(dev->subordinate); 4404 } 4405 } 4406 4407 static int pci_slot_reset(struct pci_slot *slot, int probe) 4408 { 4409 int rc; 4410 4411 if (!slot || !pci_slot_resetable(slot)) 4412 return -ENOTTY; 4413 4414 if (!probe) 4415 pci_slot_lock(slot); 4416 4417 might_sleep(); 4418 4419 rc = pci_reset_hotplug_slot(slot->hotplug, probe); 4420 4421 if (!probe) 4422 pci_slot_unlock(slot); 4423 4424 return rc; 4425 } 4426 4427 /** 4428 * pci_probe_reset_slot - probe whether a PCI slot can be reset 4429 * @slot: PCI slot to probe 4430 * 4431 * Return 0 if slot can be reset, negative if a slot reset is not supported. 4432 */ 4433 int pci_probe_reset_slot(struct pci_slot *slot) 4434 { 4435 return pci_slot_reset(slot, 1); 4436 } 4437 EXPORT_SYMBOL_GPL(pci_probe_reset_slot); 4438 4439 /** 4440 * pci_reset_slot - reset a PCI slot 4441 * @slot: PCI slot to reset 4442 * 4443 * A PCI bus may host multiple slots, each slot may support a reset mechanism 4444 * independent of other slots. For instance, some slots may support slot power 4445 * control. In the case of a 1:1 bus to slot architecture, this function may 4446 * wrap the bus reset to avoid spurious slot related events such as hotplug. 4447 * Generally a slot reset should be attempted before a bus reset. All of the 4448 * function of the slot and any subordinate buses behind the slot are reset 4449 * through this function. PCI config space of all devices in the slot and 4450 * behind the slot is saved before and restored after reset. 4451 * 4452 * Return 0 on success, non-zero on error. 4453 */ 4454 int pci_reset_slot(struct pci_slot *slot) 4455 { 4456 int rc; 4457 4458 rc = pci_slot_reset(slot, 1); 4459 if (rc) 4460 return rc; 4461 4462 pci_slot_save_and_disable(slot); 4463 4464 rc = pci_slot_reset(slot, 0); 4465 4466 pci_slot_restore(slot); 4467 4468 return rc; 4469 } 4470 EXPORT_SYMBOL_GPL(pci_reset_slot); 4471 4472 /** 4473 * pci_try_reset_slot - Try to reset a PCI slot 4474 * @slot: PCI slot to reset 4475 * 4476 * Same as above except return -EAGAIN if the slot cannot be locked 4477 */ 4478 int pci_try_reset_slot(struct pci_slot *slot) 4479 { 4480 int rc; 4481 4482 rc = pci_slot_reset(slot, 1); 4483 if (rc) 4484 return rc; 4485 4486 pci_slot_save_and_disable(slot); 4487 4488 if (pci_slot_trylock(slot)) { 4489 might_sleep(); 4490 rc = pci_reset_hotplug_slot(slot->hotplug, 0); 4491 pci_slot_unlock(slot); 4492 } else 4493 rc = -EAGAIN; 4494 4495 pci_slot_restore(slot); 4496 4497 return rc; 4498 } 4499 EXPORT_SYMBOL_GPL(pci_try_reset_slot); 4500 4501 static int pci_bus_reset(struct pci_bus *bus, int probe) 4502 { 4503 if (!bus->self || !pci_bus_resetable(bus)) 4504 return -ENOTTY; 4505 4506 if (probe) 4507 return 0; 4508 4509 pci_bus_lock(bus); 4510 4511 might_sleep(); 4512 4513 pci_reset_bridge_secondary_bus(bus->self); 4514 4515 pci_bus_unlock(bus); 4516 4517 return 0; 4518 } 4519 4520 /** 4521 * pci_probe_reset_bus - probe whether a PCI bus can be reset 4522 * @bus: PCI bus to probe 4523 * 4524 * Return 0 if bus can be reset, negative if a bus reset is not supported. 4525 */ 4526 int pci_probe_reset_bus(struct pci_bus *bus) 4527 { 4528 return pci_bus_reset(bus, 1); 4529 } 4530 EXPORT_SYMBOL_GPL(pci_probe_reset_bus); 4531 4532 /** 4533 * pci_reset_bus - reset a PCI bus 4534 * @bus: top level PCI bus to reset 4535 * 4536 * Do a bus reset on the given bus and any subordinate buses, saving 4537 * and restoring state of all devices. 4538 * 4539 * Return 0 on success, non-zero on error. 4540 */ 4541 int pci_reset_bus(struct pci_bus *bus) 4542 { 4543 int rc; 4544 4545 rc = pci_bus_reset(bus, 1); 4546 if (rc) 4547 return rc; 4548 4549 pci_bus_save_and_disable(bus); 4550 4551 rc = pci_bus_reset(bus, 0); 4552 4553 pci_bus_restore(bus); 4554 4555 return rc; 4556 } 4557 EXPORT_SYMBOL_GPL(pci_reset_bus); 4558 4559 /** 4560 * pci_try_reset_bus - Try to reset a PCI bus 4561 * @bus: top level PCI bus to reset 4562 * 4563 * Same as above except return -EAGAIN if the bus cannot be locked 4564 */ 4565 int pci_try_reset_bus(struct pci_bus *bus) 4566 { 4567 int rc; 4568 4569 rc = pci_bus_reset(bus, 1); 4570 if (rc) 4571 return rc; 4572 4573 pci_bus_save_and_disable(bus); 4574 4575 if (pci_bus_trylock(bus)) { 4576 might_sleep(); 4577 pci_reset_bridge_secondary_bus(bus->self); 4578 pci_bus_unlock(bus); 4579 } else 4580 rc = -EAGAIN; 4581 4582 pci_bus_restore(bus); 4583 4584 return rc; 4585 } 4586 EXPORT_SYMBOL_GPL(pci_try_reset_bus); 4587 4588 /** 4589 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count 4590 * @dev: PCI device to query 4591 * 4592 * Returns mmrbc: maximum designed memory read count in bytes 4593 * or appropriate error value. 4594 */ 4595 int pcix_get_max_mmrbc(struct pci_dev *dev) 4596 { 4597 int cap; 4598 u32 stat; 4599 4600 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 4601 if (!cap) 4602 return -EINVAL; 4603 4604 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 4605 return -EINVAL; 4606 4607 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21); 4608 } 4609 EXPORT_SYMBOL(pcix_get_max_mmrbc); 4610 4611 /** 4612 * pcix_get_mmrbc - get PCI-X maximum memory read byte count 4613 * @dev: PCI device to query 4614 * 4615 * Returns mmrbc: maximum memory read count in bytes 4616 * or appropriate error value. 4617 */ 4618 int pcix_get_mmrbc(struct pci_dev *dev) 4619 { 4620 int cap; 4621 u16 cmd; 4622 4623 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 4624 if (!cap) 4625 return -EINVAL; 4626 4627 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 4628 return -EINVAL; 4629 4630 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2); 4631 } 4632 EXPORT_SYMBOL(pcix_get_mmrbc); 4633 4634 /** 4635 * pcix_set_mmrbc - set PCI-X maximum memory read byte count 4636 * @dev: PCI device to query 4637 * @mmrbc: maximum memory read count in bytes 4638 * valid values are 512, 1024, 2048, 4096 4639 * 4640 * If possible sets maximum memory read byte count, some bridges have erratas 4641 * that prevent this. 4642 */ 4643 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc) 4644 { 4645 int cap; 4646 u32 stat, v, o; 4647 u16 cmd; 4648 4649 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc)) 4650 return -EINVAL; 4651 4652 v = ffs(mmrbc) - 10; 4653 4654 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 4655 if (!cap) 4656 return -EINVAL; 4657 4658 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 4659 return -EINVAL; 4660 4661 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21) 4662 return -E2BIG; 4663 4664 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 4665 return -EINVAL; 4666 4667 o = (cmd & PCI_X_CMD_MAX_READ) >> 2; 4668 if (o != v) { 4669 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC)) 4670 return -EIO; 4671 4672 cmd &= ~PCI_X_CMD_MAX_READ; 4673 cmd |= v << 2; 4674 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd)) 4675 return -EIO; 4676 } 4677 return 0; 4678 } 4679 EXPORT_SYMBOL(pcix_set_mmrbc); 4680 4681 /** 4682 * pcie_get_readrq - get PCI Express read request size 4683 * @dev: PCI device to query 4684 * 4685 * Returns maximum memory read request in bytes 4686 * or appropriate error value. 4687 */ 4688 int pcie_get_readrq(struct pci_dev *dev) 4689 { 4690 u16 ctl; 4691 4692 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 4693 4694 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12); 4695 } 4696 EXPORT_SYMBOL(pcie_get_readrq); 4697 4698 /** 4699 * pcie_set_readrq - set PCI Express maximum memory read request 4700 * @dev: PCI device to query 4701 * @rq: maximum memory read count in bytes 4702 * valid values are 128, 256, 512, 1024, 2048, 4096 4703 * 4704 * If possible sets maximum memory read request in bytes 4705 */ 4706 int pcie_set_readrq(struct pci_dev *dev, int rq) 4707 { 4708 u16 v; 4709 4710 if (rq < 128 || rq > 4096 || !is_power_of_2(rq)) 4711 return -EINVAL; 4712 4713 /* 4714 * If using the "performance" PCIe config, we clamp the 4715 * read rq size to the max packet size to prevent the 4716 * host bridge generating requests larger than we can 4717 * cope with 4718 */ 4719 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) { 4720 int mps = pcie_get_mps(dev); 4721 4722 if (mps < rq) 4723 rq = mps; 4724 } 4725 4726 v = (ffs(rq) - 8) << 12; 4727 4728 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 4729 PCI_EXP_DEVCTL_READRQ, v); 4730 } 4731 EXPORT_SYMBOL(pcie_set_readrq); 4732 4733 /** 4734 * pcie_get_mps - get PCI Express maximum payload size 4735 * @dev: PCI device to query 4736 * 4737 * Returns maximum payload size in bytes 4738 */ 4739 int pcie_get_mps(struct pci_dev *dev) 4740 { 4741 u16 ctl; 4742 4743 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 4744 4745 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5); 4746 } 4747 EXPORT_SYMBOL(pcie_get_mps); 4748 4749 /** 4750 * pcie_set_mps - set PCI Express maximum payload size 4751 * @dev: PCI device to query 4752 * @mps: maximum payload size in bytes 4753 * valid values are 128, 256, 512, 1024, 2048, 4096 4754 * 4755 * If possible sets maximum payload size 4756 */ 4757 int pcie_set_mps(struct pci_dev *dev, int mps) 4758 { 4759 u16 v; 4760 4761 if (mps < 128 || mps > 4096 || !is_power_of_2(mps)) 4762 return -EINVAL; 4763 4764 v = ffs(mps) - 8; 4765 if (v > dev->pcie_mpss) 4766 return -EINVAL; 4767 v <<= 5; 4768 4769 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 4770 PCI_EXP_DEVCTL_PAYLOAD, v); 4771 } 4772 EXPORT_SYMBOL(pcie_set_mps); 4773 4774 /** 4775 * pcie_get_minimum_link - determine minimum link settings of a PCI device 4776 * @dev: PCI device to query 4777 * @speed: storage for minimum speed 4778 * @width: storage for minimum width 4779 * 4780 * This function will walk up the PCI device chain and determine the minimum 4781 * link width and speed of the device. 4782 */ 4783 int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed, 4784 enum pcie_link_width *width) 4785 { 4786 int ret; 4787 4788 *speed = PCI_SPEED_UNKNOWN; 4789 *width = PCIE_LNK_WIDTH_UNKNOWN; 4790 4791 while (dev) { 4792 u16 lnksta; 4793 enum pci_bus_speed next_speed; 4794 enum pcie_link_width next_width; 4795 4796 ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta); 4797 if (ret) 4798 return ret; 4799 4800 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS]; 4801 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >> 4802 PCI_EXP_LNKSTA_NLW_SHIFT; 4803 4804 if (next_speed < *speed) 4805 *speed = next_speed; 4806 4807 if (next_width < *width) 4808 *width = next_width; 4809 4810 dev = dev->bus->self; 4811 } 4812 4813 return 0; 4814 } 4815 EXPORT_SYMBOL(pcie_get_minimum_link); 4816 4817 /** 4818 * pci_select_bars - Make BAR mask from the type of resource 4819 * @dev: the PCI device for which BAR mask is made 4820 * @flags: resource type mask to be selected 4821 * 4822 * This helper routine makes bar mask from the type of resource. 4823 */ 4824 int pci_select_bars(struct pci_dev *dev, unsigned long flags) 4825 { 4826 int i, bars = 0; 4827 for (i = 0; i < PCI_NUM_RESOURCES; i++) 4828 if (pci_resource_flags(dev, i) & flags) 4829 bars |= (1 << i); 4830 return bars; 4831 } 4832 EXPORT_SYMBOL(pci_select_bars); 4833 4834 /** 4835 * pci_resource_bar - get position of the BAR associated with a resource 4836 * @dev: the PCI device 4837 * @resno: the resource number 4838 * @type: the BAR type to be filled in 4839 * 4840 * Returns BAR position in config space, or 0 if the BAR is invalid. 4841 */ 4842 int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type) 4843 { 4844 int reg; 4845 4846 if (resno < PCI_ROM_RESOURCE) { 4847 *type = pci_bar_unknown; 4848 return PCI_BASE_ADDRESS_0 + 4 * resno; 4849 } else if (resno == PCI_ROM_RESOURCE) { 4850 *type = pci_bar_mem32; 4851 return dev->rom_base_reg; 4852 } else if (resno < PCI_BRIDGE_RESOURCES) { 4853 /* device specific resource */ 4854 *type = pci_bar_unknown; 4855 reg = pci_iov_resource_bar(dev, resno); 4856 if (reg) 4857 return reg; 4858 } 4859 4860 dev_err(&dev->dev, "BAR %d: invalid resource\n", resno); 4861 return 0; 4862 } 4863 4864 /* Some architectures require additional programming to enable VGA */ 4865 static arch_set_vga_state_t arch_set_vga_state; 4866 4867 void __init pci_register_set_vga_state(arch_set_vga_state_t func) 4868 { 4869 arch_set_vga_state = func; /* NULL disables */ 4870 } 4871 4872 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode, 4873 unsigned int command_bits, u32 flags) 4874 { 4875 if (arch_set_vga_state) 4876 return arch_set_vga_state(dev, decode, command_bits, 4877 flags); 4878 return 0; 4879 } 4880 4881 /** 4882 * pci_set_vga_state - set VGA decode state on device and parents if requested 4883 * @dev: the PCI device 4884 * @decode: true = enable decoding, false = disable decoding 4885 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY 4886 * @flags: traverse ancestors and change bridges 4887 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE 4888 */ 4889 int pci_set_vga_state(struct pci_dev *dev, bool decode, 4890 unsigned int command_bits, u32 flags) 4891 { 4892 struct pci_bus *bus; 4893 struct pci_dev *bridge; 4894 u16 cmd; 4895 int rc; 4896 4897 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY))); 4898 4899 /* ARCH specific VGA enables */ 4900 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags); 4901 if (rc) 4902 return rc; 4903 4904 if (flags & PCI_VGA_STATE_CHANGE_DECODES) { 4905 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4906 if (decode == true) 4907 cmd |= command_bits; 4908 else 4909 cmd &= ~command_bits; 4910 pci_write_config_word(dev, PCI_COMMAND, cmd); 4911 } 4912 4913 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE)) 4914 return 0; 4915 4916 bus = dev->bus; 4917 while (bus) { 4918 bridge = bus->self; 4919 if (bridge) { 4920 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL, 4921 &cmd); 4922 if (decode == true) 4923 cmd |= PCI_BRIDGE_CTL_VGA; 4924 else 4925 cmd &= ~PCI_BRIDGE_CTL_VGA; 4926 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL, 4927 cmd); 4928 } 4929 bus = bus->parent; 4930 } 4931 return 0; 4932 } 4933 4934 /** 4935 * pci_add_dma_alias - Add a DMA devfn alias for a device 4936 * @dev: the PCI device for which alias is added 4937 * @devfn: alias slot and function 4938 * 4939 * This helper encodes 8-bit devfn as bit number in dma_alias_mask. 4940 * It should be called early, preferably as PCI fixup header quirk. 4941 */ 4942 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn) 4943 { 4944 if (!dev->dma_alias_mask) 4945 dev->dma_alias_mask = kcalloc(BITS_TO_LONGS(U8_MAX), 4946 sizeof(long), GFP_KERNEL); 4947 if (!dev->dma_alias_mask) { 4948 dev_warn(&dev->dev, "Unable to allocate DMA alias mask\n"); 4949 return; 4950 } 4951 4952 set_bit(devfn, dev->dma_alias_mask); 4953 dev_info(&dev->dev, "Enabling fixed DMA alias to %02x.%d\n", 4954 PCI_SLOT(devfn), PCI_FUNC(devfn)); 4955 } 4956 4957 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2) 4958 { 4959 return (dev1->dma_alias_mask && 4960 test_bit(dev2->devfn, dev1->dma_alias_mask)) || 4961 (dev2->dma_alias_mask && 4962 test_bit(dev1->devfn, dev2->dma_alias_mask)); 4963 } 4964 4965 bool pci_device_is_present(struct pci_dev *pdev) 4966 { 4967 u32 v; 4968 4969 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0); 4970 } 4971 EXPORT_SYMBOL_GPL(pci_device_is_present); 4972 4973 void pci_ignore_hotplug(struct pci_dev *dev) 4974 { 4975 struct pci_dev *bridge = dev->bus->self; 4976 4977 dev->ignore_hotplug = 1; 4978 /* Propagate the "ignore hotplug" setting to the parent bridge. */ 4979 if (bridge) 4980 bridge->ignore_hotplug = 1; 4981 } 4982 EXPORT_SYMBOL_GPL(pci_ignore_hotplug); 4983 4984 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE 4985 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0}; 4986 static DEFINE_SPINLOCK(resource_alignment_lock); 4987 4988 /** 4989 * pci_specified_resource_alignment - get resource alignment specified by user. 4990 * @dev: the PCI device to get 4991 * 4992 * RETURNS: Resource alignment if it is specified. 4993 * Zero if it is not specified. 4994 */ 4995 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev) 4996 { 4997 int seg, bus, slot, func, align_order, count; 4998 unsigned short vendor, device, subsystem_vendor, subsystem_device; 4999 resource_size_t align = 0; 5000 char *p; 5001 5002 spin_lock(&resource_alignment_lock); 5003 p = resource_alignment_param; 5004 if (!*p) 5005 goto out; 5006 if (pci_has_flag(PCI_PROBE_ONLY)) { 5007 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n"); 5008 goto out; 5009 } 5010 5011 while (*p) { 5012 count = 0; 5013 if (sscanf(p, "%d%n", &align_order, &count) == 1 && 5014 p[count] == '@') { 5015 p += count + 1; 5016 } else { 5017 align_order = -1; 5018 } 5019 if (strncmp(p, "pci:", 4) == 0) { 5020 /* PCI vendor/device (subvendor/subdevice) ids are specified */ 5021 p += 4; 5022 if (sscanf(p, "%hx:%hx:%hx:%hx%n", 5023 &vendor, &device, &subsystem_vendor, &subsystem_device, &count) != 4) { 5024 if (sscanf(p, "%hx:%hx%n", &vendor, &device, &count) != 2) { 5025 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: pci:%s\n", 5026 p); 5027 break; 5028 } 5029 subsystem_vendor = subsystem_device = 0; 5030 } 5031 p += count; 5032 if ((!vendor || (vendor == dev->vendor)) && 5033 (!device || (device == dev->device)) && 5034 (!subsystem_vendor || (subsystem_vendor == dev->subsystem_vendor)) && 5035 (!subsystem_device || (subsystem_device == dev->subsystem_device))) { 5036 if (align_order == -1) 5037 align = PAGE_SIZE; 5038 else 5039 align = 1 << align_order; 5040 /* Found */ 5041 break; 5042 } 5043 } 5044 else { 5045 if (sscanf(p, "%x:%x:%x.%x%n", 5046 &seg, &bus, &slot, &func, &count) != 4) { 5047 seg = 0; 5048 if (sscanf(p, "%x:%x.%x%n", 5049 &bus, &slot, &func, &count) != 3) { 5050 /* Invalid format */ 5051 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n", 5052 p); 5053 break; 5054 } 5055 } 5056 p += count; 5057 if (seg == pci_domain_nr(dev->bus) && 5058 bus == dev->bus->number && 5059 slot == PCI_SLOT(dev->devfn) && 5060 func == PCI_FUNC(dev->devfn)) { 5061 if (align_order == -1) 5062 align = PAGE_SIZE; 5063 else 5064 align = 1 << align_order; 5065 /* Found */ 5066 break; 5067 } 5068 } 5069 if (*p != ';' && *p != ',') { 5070 /* End of param or invalid format */ 5071 break; 5072 } 5073 p++; 5074 } 5075 out: 5076 spin_unlock(&resource_alignment_lock); 5077 return align; 5078 } 5079 5080 /* 5081 * This function disables memory decoding and releases memory resources 5082 * of the device specified by kernel's boot parameter 'pci=resource_alignment='. 5083 * It also rounds up size to specified alignment. 5084 * Later on, the kernel will assign page-aligned memory resource back 5085 * to the device. 5086 */ 5087 void pci_reassigndev_resource_alignment(struct pci_dev *dev) 5088 { 5089 int i; 5090 struct resource *r; 5091 resource_size_t align, size; 5092 u16 command; 5093 5094 /* 5095 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec 5096 * 3.4.1.11. Their resources are allocated from the space 5097 * described by the VF BARx register in the PF's SR-IOV capability. 5098 * We can't influence their alignment here. 5099 */ 5100 if (dev->is_virtfn) 5101 return; 5102 5103 /* check if specified PCI is target device to reassign */ 5104 align = pci_specified_resource_alignment(dev); 5105 if (!align) 5106 return; 5107 5108 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL && 5109 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) { 5110 dev_warn(&dev->dev, 5111 "Can't reassign resources to host bridge.\n"); 5112 return; 5113 } 5114 5115 dev_info(&dev->dev, 5116 "Disabling memory decoding and releasing memory resources.\n"); 5117 pci_read_config_word(dev, PCI_COMMAND, &command); 5118 command &= ~PCI_COMMAND_MEMORY; 5119 pci_write_config_word(dev, PCI_COMMAND, command); 5120 5121 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) { 5122 r = &dev->resource[i]; 5123 if (!(r->flags & IORESOURCE_MEM)) 5124 continue; 5125 if (r->flags & IORESOURCE_PCI_FIXED) { 5126 dev_info(&dev->dev, "Ignoring requested alignment for BAR%d: %pR\n", 5127 i, r); 5128 continue; 5129 } 5130 5131 size = resource_size(r); 5132 if (size < align) { 5133 size = align; 5134 dev_info(&dev->dev, 5135 "Rounding up size of resource #%d to %#llx.\n", 5136 i, (unsigned long long)size); 5137 } 5138 r->flags |= IORESOURCE_UNSET; 5139 r->end = size - 1; 5140 r->start = 0; 5141 } 5142 /* Need to disable bridge's resource window, 5143 * to enable the kernel to reassign new resource 5144 * window later on. 5145 */ 5146 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE && 5147 (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) { 5148 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) { 5149 r = &dev->resource[i]; 5150 if (!(r->flags & IORESOURCE_MEM)) 5151 continue; 5152 r->flags |= IORESOURCE_UNSET; 5153 r->end = resource_size(r) - 1; 5154 r->start = 0; 5155 } 5156 pci_disable_bridge_window(dev); 5157 } 5158 } 5159 5160 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count) 5161 { 5162 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1) 5163 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1; 5164 spin_lock(&resource_alignment_lock); 5165 strncpy(resource_alignment_param, buf, count); 5166 resource_alignment_param[count] = '\0'; 5167 spin_unlock(&resource_alignment_lock); 5168 return count; 5169 } 5170 5171 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size) 5172 { 5173 size_t count; 5174 spin_lock(&resource_alignment_lock); 5175 count = snprintf(buf, size, "%s", resource_alignment_param); 5176 spin_unlock(&resource_alignment_lock); 5177 return count; 5178 } 5179 5180 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf) 5181 { 5182 return pci_get_resource_alignment_param(buf, PAGE_SIZE); 5183 } 5184 5185 static ssize_t pci_resource_alignment_store(struct bus_type *bus, 5186 const char *buf, size_t count) 5187 { 5188 return pci_set_resource_alignment_param(buf, count); 5189 } 5190 5191 static BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show, 5192 pci_resource_alignment_store); 5193 5194 static int __init pci_resource_alignment_sysfs_init(void) 5195 { 5196 return bus_create_file(&pci_bus_type, 5197 &bus_attr_resource_alignment); 5198 } 5199 late_initcall(pci_resource_alignment_sysfs_init); 5200 5201 static void pci_no_domains(void) 5202 { 5203 #ifdef CONFIG_PCI_DOMAINS 5204 pci_domains_supported = 0; 5205 #endif 5206 } 5207 5208 #ifdef CONFIG_PCI_DOMAINS 5209 static atomic_t __domain_nr = ATOMIC_INIT(-1); 5210 5211 int pci_get_new_domain_nr(void) 5212 { 5213 return atomic_inc_return(&__domain_nr); 5214 } 5215 5216 #ifdef CONFIG_PCI_DOMAINS_GENERIC 5217 static int of_pci_bus_find_domain_nr(struct device *parent) 5218 { 5219 static int use_dt_domains = -1; 5220 int domain = -1; 5221 5222 if (parent) 5223 domain = of_get_pci_domain_nr(parent->of_node); 5224 /* 5225 * Check DT domain and use_dt_domains values. 5226 * 5227 * If DT domain property is valid (domain >= 0) and 5228 * use_dt_domains != 0, the DT assignment is valid since this means 5229 * we have not previously allocated a domain number by using 5230 * pci_get_new_domain_nr(); we should also update use_dt_domains to 5231 * 1, to indicate that we have just assigned a domain number from 5232 * DT. 5233 * 5234 * If DT domain property value is not valid (ie domain < 0), and we 5235 * have not previously assigned a domain number from DT 5236 * (use_dt_domains != 1) we should assign a domain number by 5237 * using the: 5238 * 5239 * pci_get_new_domain_nr() 5240 * 5241 * API and update the use_dt_domains value to keep track of method we 5242 * are using to assign domain numbers (use_dt_domains = 0). 5243 * 5244 * All other combinations imply we have a platform that is trying 5245 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(), 5246 * which is a recipe for domain mishandling and it is prevented by 5247 * invalidating the domain value (domain = -1) and printing a 5248 * corresponding error. 5249 */ 5250 if (domain >= 0 && use_dt_domains) { 5251 use_dt_domains = 1; 5252 } else if (domain < 0 && use_dt_domains != 1) { 5253 use_dt_domains = 0; 5254 domain = pci_get_new_domain_nr(); 5255 } else { 5256 dev_err(parent, "Node %s has inconsistent \"linux,pci-domain\" property in DT\n", 5257 parent->of_node->full_name); 5258 domain = -1; 5259 } 5260 5261 return domain; 5262 } 5263 5264 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent) 5265 { 5266 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) : 5267 acpi_pci_bus_find_domain_nr(bus); 5268 } 5269 #endif 5270 #endif 5271 5272 /** 5273 * pci_ext_cfg_avail - can we access extended PCI config space? 5274 * 5275 * Returns 1 if we can access PCI extended config space (offsets 5276 * greater than 0xff). This is the default implementation. Architecture 5277 * implementations can override this. 5278 */ 5279 int __weak pci_ext_cfg_avail(void) 5280 { 5281 return 1; 5282 } 5283 5284 void __weak pci_fixup_cardbus(struct pci_bus *bus) 5285 { 5286 } 5287 EXPORT_SYMBOL(pci_fixup_cardbus); 5288 5289 static int __init pci_setup(char *str) 5290 { 5291 while (str) { 5292 char *k = strchr(str, ','); 5293 if (k) 5294 *k++ = 0; 5295 if (*str && (str = pcibios_setup(str)) && *str) { 5296 if (!strcmp(str, "nomsi")) { 5297 pci_no_msi(); 5298 } else if (!strcmp(str, "noaer")) { 5299 pci_no_aer(); 5300 } else if (!strncmp(str, "realloc=", 8)) { 5301 pci_realloc_get_opt(str + 8); 5302 } else if (!strncmp(str, "realloc", 7)) { 5303 pci_realloc_get_opt("on"); 5304 } else if (!strcmp(str, "nodomains")) { 5305 pci_no_domains(); 5306 } else if (!strncmp(str, "noari", 5)) { 5307 pcie_ari_disabled = true; 5308 } else if (!strncmp(str, "cbiosize=", 9)) { 5309 pci_cardbus_io_size = memparse(str + 9, &str); 5310 } else if (!strncmp(str, "cbmemsize=", 10)) { 5311 pci_cardbus_mem_size = memparse(str + 10, &str); 5312 } else if (!strncmp(str, "resource_alignment=", 19)) { 5313 pci_set_resource_alignment_param(str + 19, 5314 strlen(str + 19)); 5315 } else if (!strncmp(str, "ecrc=", 5)) { 5316 pcie_ecrc_get_policy(str + 5); 5317 } else if (!strncmp(str, "hpiosize=", 9)) { 5318 pci_hotplug_io_size = memparse(str + 9, &str); 5319 } else if (!strncmp(str, "hpmemsize=", 10)) { 5320 pci_hotplug_mem_size = memparse(str + 10, &str); 5321 } else if (!strncmp(str, "hpbussize=", 10)) { 5322 pci_hotplug_bus_size = 5323 simple_strtoul(str + 10, &str, 0); 5324 if (pci_hotplug_bus_size > 0xff) 5325 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 5326 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) { 5327 pcie_bus_config = PCIE_BUS_TUNE_OFF; 5328 } else if (!strncmp(str, "pcie_bus_safe", 13)) { 5329 pcie_bus_config = PCIE_BUS_SAFE; 5330 } else if (!strncmp(str, "pcie_bus_perf", 13)) { 5331 pcie_bus_config = PCIE_BUS_PERFORMANCE; 5332 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) { 5333 pcie_bus_config = PCIE_BUS_PEER2PEER; 5334 } else if (!strncmp(str, "pcie_scan_all", 13)) { 5335 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS); 5336 } else { 5337 printk(KERN_ERR "PCI: Unknown option `%s'\n", 5338 str); 5339 } 5340 } 5341 str = k; 5342 } 5343 return 0; 5344 } 5345 early_param("pci", pci_setup); 5346