xref: /openbmc/linux/drivers/pci/pci.c (revision 6dfcd296)
1 /*
2  *	PCI Bus Services, see include/linux/pci.h for further explanation.
3  *
4  *	Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5  *	David Mosberger-Tang
6  *
7  *	Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8  */
9 
10 #include <linux/acpi.h>
11 #include <linux/kernel.h>
12 #include <linux/delay.h>
13 #include <linux/dmi.h>
14 #include <linux/init.h>
15 #include <linux/of.h>
16 #include <linux/of_pci.h>
17 #include <linux/pci.h>
18 #include <linux/pm.h>
19 #include <linux/slab.h>
20 #include <linux/module.h>
21 #include <linux/spinlock.h>
22 #include <linux/string.h>
23 #include <linux/log2.h>
24 #include <linux/pci-aspm.h>
25 #include <linux/pm_wakeup.h>
26 #include <linux/interrupt.h>
27 #include <linux/device.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/pci_hotplug.h>
30 #include <linux/vmalloc.h>
31 #include <asm/setup.h>
32 #include <asm/dma.h>
33 #include <linux/aer.h>
34 #include "pci.h"
35 
36 const char *pci_power_names[] = {
37 	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
38 };
39 EXPORT_SYMBOL_GPL(pci_power_names);
40 
41 int isa_dma_bridge_buggy;
42 EXPORT_SYMBOL(isa_dma_bridge_buggy);
43 
44 int pci_pci_problems;
45 EXPORT_SYMBOL(pci_pci_problems);
46 
47 unsigned int pci_pm_d3_delay;
48 
49 static void pci_pme_list_scan(struct work_struct *work);
50 
51 static LIST_HEAD(pci_pme_list);
52 static DEFINE_MUTEX(pci_pme_list_mutex);
53 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
54 
55 struct pci_pme_device {
56 	struct list_head list;
57 	struct pci_dev *dev;
58 };
59 
60 #define PME_TIMEOUT 1000 /* How long between PME checks */
61 
62 static void pci_dev_d3_sleep(struct pci_dev *dev)
63 {
64 	unsigned int delay = dev->d3_delay;
65 
66 	if (delay < pci_pm_d3_delay)
67 		delay = pci_pm_d3_delay;
68 
69 	msleep(delay);
70 }
71 
72 #ifdef CONFIG_PCI_DOMAINS
73 int pci_domains_supported = 1;
74 #endif
75 
76 #define DEFAULT_CARDBUS_IO_SIZE		(256)
77 #define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
78 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
79 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
80 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
81 
82 #define DEFAULT_HOTPLUG_IO_SIZE		(256)
83 #define DEFAULT_HOTPLUG_MEM_SIZE	(2*1024*1024)
84 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
85 unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
86 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
87 
88 #define DEFAULT_HOTPLUG_BUS_SIZE	1
89 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
90 
91 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
92 
93 /*
94  * The default CLS is used if arch didn't set CLS explicitly and not
95  * all pci devices agree on the same value.  Arch can override either
96  * the dfl or actual value as it sees fit.  Don't forget this is
97  * measured in 32-bit words, not bytes.
98  */
99 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
100 u8 pci_cache_line_size;
101 
102 /*
103  * If we set up a device for bus mastering, we need to check the latency
104  * timer as certain BIOSes forget to set it properly.
105  */
106 unsigned int pcibios_max_latency = 255;
107 
108 /* If set, the PCIe ARI capability will not be used. */
109 static bool pcie_ari_disabled;
110 
111 /* Disable bridge_d3 for all PCIe ports */
112 static bool pci_bridge_d3_disable;
113 /* Force bridge_d3 for all PCIe ports */
114 static bool pci_bridge_d3_force;
115 
116 static int __init pcie_port_pm_setup(char *str)
117 {
118 	if (!strcmp(str, "off"))
119 		pci_bridge_d3_disable = true;
120 	else if (!strcmp(str, "force"))
121 		pci_bridge_d3_force = true;
122 	return 1;
123 }
124 __setup("pcie_port_pm=", pcie_port_pm_setup);
125 
126 /**
127  * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
128  * @bus: pointer to PCI bus structure to search
129  *
130  * Given a PCI bus, returns the highest PCI bus number present in the set
131  * including the given PCI bus and its list of child PCI buses.
132  */
133 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
134 {
135 	struct pci_bus *tmp;
136 	unsigned char max, n;
137 
138 	max = bus->busn_res.end;
139 	list_for_each_entry(tmp, &bus->children, node) {
140 		n = pci_bus_max_busnr(tmp);
141 		if (n > max)
142 			max = n;
143 	}
144 	return max;
145 }
146 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
147 
148 #ifdef CONFIG_HAS_IOMEM
149 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
150 {
151 	struct resource *res = &pdev->resource[bar];
152 
153 	/*
154 	 * Make sure the BAR is actually a memory resource, not an IO resource
155 	 */
156 	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
157 		dev_warn(&pdev->dev, "can't ioremap BAR %d: %pR\n", bar, res);
158 		return NULL;
159 	}
160 	return ioremap_nocache(res->start, resource_size(res));
161 }
162 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
163 
164 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
165 {
166 	/*
167 	 * Make sure the BAR is actually a memory resource, not an IO resource
168 	 */
169 	if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
170 		WARN_ON(1);
171 		return NULL;
172 	}
173 	return ioremap_wc(pci_resource_start(pdev, bar),
174 			  pci_resource_len(pdev, bar));
175 }
176 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
177 #endif
178 
179 
180 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
181 				   u8 pos, int cap, int *ttl)
182 {
183 	u8 id;
184 	u16 ent;
185 
186 	pci_bus_read_config_byte(bus, devfn, pos, &pos);
187 
188 	while ((*ttl)--) {
189 		if (pos < 0x40)
190 			break;
191 		pos &= ~3;
192 		pci_bus_read_config_word(bus, devfn, pos, &ent);
193 
194 		id = ent & 0xff;
195 		if (id == 0xff)
196 			break;
197 		if (id == cap)
198 			return pos;
199 		pos = (ent >> 8);
200 	}
201 	return 0;
202 }
203 
204 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
205 			       u8 pos, int cap)
206 {
207 	int ttl = PCI_FIND_CAP_TTL;
208 
209 	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
210 }
211 
212 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
213 {
214 	return __pci_find_next_cap(dev->bus, dev->devfn,
215 				   pos + PCI_CAP_LIST_NEXT, cap);
216 }
217 EXPORT_SYMBOL_GPL(pci_find_next_capability);
218 
219 static int __pci_bus_find_cap_start(struct pci_bus *bus,
220 				    unsigned int devfn, u8 hdr_type)
221 {
222 	u16 status;
223 
224 	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
225 	if (!(status & PCI_STATUS_CAP_LIST))
226 		return 0;
227 
228 	switch (hdr_type) {
229 	case PCI_HEADER_TYPE_NORMAL:
230 	case PCI_HEADER_TYPE_BRIDGE:
231 		return PCI_CAPABILITY_LIST;
232 	case PCI_HEADER_TYPE_CARDBUS:
233 		return PCI_CB_CAPABILITY_LIST;
234 	}
235 
236 	return 0;
237 }
238 
239 /**
240  * pci_find_capability - query for devices' capabilities
241  * @dev: PCI device to query
242  * @cap: capability code
243  *
244  * Tell if a device supports a given PCI capability.
245  * Returns the address of the requested capability structure within the
246  * device's PCI configuration space or 0 in case the device does not
247  * support it.  Possible values for @cap:
248  *
249  *  %PCI_CAP_ID_PM           Power Management
250  *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
251  *  %PCI_CAP_ID_VPD          Vital Product Data
252  *  %PCI_CAP_ID_SLOTID       Slot Identification
253  *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
254  *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
255  *  %PCI_CAP_ID_PCIX         PCI-X
256  *  %PCI_CAP_ID_EXP          PCI Express
257  */
258 int pci_find_capability(struct pci_dev *dev, int cap)
259 {
260 	int pos;
261 
262 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
263 	if (pos)
264 		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
265 
266 	return pos;
267 }
268 EXPORT_SYMBOL(pci_find_capability);
269 
270 /**
271  * pci_bus_find_capability - query for devices' capabilities
272  * @bus:   the PCI bus to query
273  * @devfn: PCI device to query
274  * @cap:   capability code
275  *
276  * Like pci_find_capability() but works for pci devices that do not have a
277  * pci_dev structure set up yet.
278  *
279  * Returns the address of the requested capability structure within the
280  * device's PCI configuration space or 0 in case the device does not
281  * support it.
282  */
283 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
284 {
285 	int pos;
286 	u8 hdr_type;
287 
288 	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
289 
290 	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
291 	if (pos)
292 		pos = __pci_find_next_cap(bus, devfn, pos, cap);
293 
294 	return pos;
295 }
296 EXPORT_SYMBOL(pci_bus_find_capability);
297 
298 /**
299  * pci_find_next_ext_capability - Find an extended capability
300  * @dev: PCI device to query
301  * @start: address at which to start looking (0 to start at beginning of list)
302  * @cap: capability code
303  *
304  * Returns the address of the next matching extended capability structure
305  * within the device's PCI configuration space or 0 if the device does
306  * not support it.  Some capabilities can occur several times, e.g., the
307  * vendor-specific capability, and this provides a way to find them all.
308  */
309 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
310 {
311 	u32 header;
312 	int ttl;
313 	int pos = PCI_CFG_SPACE_SIZE;
314 
315 	/* minimum 8 bytes per capability */
316 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
317 
318 	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
319 		return 0;
320 
321 	if (start)
322 		pos = start;
323 
324 	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
325 		return 0;
326 
327 	/*
328 	 * If we have no capabilities, this is indicated by cap ID,
329 	 * cap version and next pointer all being 0.
330 	 */
331 	if (header == 0)
332 		return 0;
333 
334 	while (ttl-- > 0) {
335 		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
336 			return pos;
337 
338 		pos = PCI_EXT_CAP_NEXT(header);
339 		if (pos < PCI_CFG_SPACE_SIZE)
340 			break;
341 
342 		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
343 			break;
344 	}
345 
346 	return 0;
347 }
348 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
349 
350 /**
351  * pci_find_ext_capability - Find an extended capability
352  * @dev: PCI device to query
353  * @cap: capability code
354  *
355  * Returns the address of the requested extended capability structure
356  * within the device's PCI configuration space or 0 if the device does
357  * not support it.  Possible values for @cap:
358  *
359  *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
360  *  %PCI_EXT_CAP_ID_VC		Virtual Channel
361  *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
362  *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
363  */
364 int pci_find_ext_capability(struct pci_dev *dev, int cap)
365 {
366 	return pci_find_next_ext_capability(dev, 0, cap);
367 }
368 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
369 
370 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
371 {
372 	int rc, ttl = PCI_FIND_CAP_TTL;
373 	u8 cap, mask;
374 
375 	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
376 		mask = HT_3BIT_CAP_MASK;
377 	else
378 		mask = HT_5BIT_CAP_MASK;
379 
380 	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
381 				      PCI_CAP_ID_HT, &ttl);
382 	while (pos) {
383 		rc = pci_read_config_byte(dev, pos + 3, &cap);
384 		if (rc != PCIBIOS_SUCCESSFUL)
385 			return 0;
386 
387 		if ((cap & mask) == ht_cap)
388 			return pos;
389 
390 		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
391 					      pos + PCI_CAP_LIST_NEXT,
392 					      PCI_CAP_ID_HT, &ttl);
393 	}
394 
395 	return 0;
396 }
397 /**
398  * pci_find_next_ht_capability - query a device's Hypertransport capabilities
399  * @dev: PCI device to query
400  * @pos: Position from which to continue searching
401  * @ht_cap: Hypertransport capability code
402  *
403  * To be used in conjunction with pci_find_ht_capability() to search for
404  * all capabilities matching @ht_cap. @pos should always be a value returned
405  * from pci_find_ht_capability().
406  *
407  * NB. To be 100% safe against broken PCI devices, the caller should take
408  * steps to avoid an infinite loop.
409  */
410 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
411 {
412 	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
413 }
414 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
415 
416 /**
417  * pci_find_ht_capability - query a device's Hypertransport capabilities
418  * @dev: PCI device to query
419  * @ht_cap: Hypertransport capability code
420  *
421  * Tell if a device supports a given Hypertransport capability.
422  * Returns an address within the device's PCI configuration space
423  * or 0 in case the device does not support the request capability.
424  * The address points to the PCI capability, of type PCI_CAP_ID_HT,
425  * which has a Hypertransport capability matching @ht_cap.
426  */
427 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
428 {
429 	int pos;
430 
431 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
432 	if (pos)
433 		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
434 
435 	return pos;
436 }
437 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
438 
439 /**
440  * pci_find_parent_resource - return resource region of parent bus of given region
441  * @dev: PCI device structure contains resources to be searched
442  * @res: child resource record for which parent is sought
443  *
444  *  For given resource region of given device, return the resource
445  *  region of parent bus the given region is contained in.
446  */
447 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
448 					  struct resource *res)
449 {
450 	const struct pci_bus *bus = dev->bus;
451 	struct resource *r;
452 	int i;
453 
454 	pci_bus_for_each_resource(bus, r, i) {
455 		if (!r)
456 			continue;
457 		if (res->start && resource_contains(r, res)) {
458 
459 			/*
460 			 * If the window is prefetchable but the BAR is
461 			 * not, the allocator made a mistake.
462 			 */
463 			if (r->flags & IORESOURCE_PREFETCH &&
464 			    !(res->flags & IORESOURCE_PREFETCH))
465 				return NULL;
466 
467 			/*
468 			 * If we're below a transparent bridge, there may
469 			 * be both a positively-decoded aperture and a
470 			 * subtractively-decoded region that contain the BAR.
471 			 * We want the positively-decoded one, so this depends
472 			 * on pci_bus_for_each_resource() giving us those
473 			 * first.
474 			 */
475 			return r;
476 		}
477 	}
478 	return NULL;
479 }
480 EXPORT_SYMBOL(pci_find_parent_resource);
481 
482 /**
483  * pci_find_resource - Return matching PCI device resource
484  * @dev: PCI device to query
485  * @res: Resource to look for
486  *
487  * Goes over standard PCI resources (BARs) and checks if the given resource
488  * is partially or fully contained in any of them. In that case the
489  * matching resource is returned, %NULL otherwise.
490  */
491 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
492 {
493 	int i;
494 
495 	for (i = 0; i < PCI_ROM_RESOURCE; i++) {
496 		struct resource *r = &dev->resource[i];
497 
498 		if (r->start && resource_contains(r, res))
499 			return r;
500 	}
501 
502 	return NULL;
503 }
504 EXPORT_SYMBOL(pci_find_resource);
505 
506 /**
507  * pci_find_pcie_root_port - return PCIe Root Port
508  * @dev: PCI device to query
509  *
510  * Traverse up the parent chain and return the PCIe Root Port PCI Device
511  * for a given PCI Device.
512  */
513 struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev)
514 {
515 	struct pci_dev *bridge, *highest_pcie_bridge = NULL;
516 
517 	bridge = pci_upstream_bridge(dev);
518 	while (bridge && pci_is_pcie(bridge)) {
519 		highest_pcie_bridge = bridge;
520 		bridge = pci_upstream_bridge(bridge);
521 	}
522 
523 	if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT)
524 		return NULL;
525 
526 	return highest_pcie_bridge;
527 }
528 EXPORT_SYMBOL(pci_find_pcie_root_port);
529 
530 /**
531  * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
532  * @dev: the PCI device to operate on
533  * @pos: config space offset of status word
534  * @mask: mask of bit(s) to care about in status word
535  *
536  * Return 1 when mask bit(s) in status word clear, 0 otherwise.
537  */
538 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
539 {
540 	int i;
541 
542 	/* Wait for Transaction Pending bit clean */
543 	for (i = 0; i < 4; i++) {
544 		u16 status;
545 		if (i)
546 			msleep((1 << (i - 1)) * 100);
547 
548 		pci_read_config_word(dev, pos, &status);
549 		if (!(status & mask))
550 			return 1;
551 	}
552 
553 	return 0;
554 }
555 
556 /**
557  * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
558  * @dev: PCI device to have its BARs restored
559  *
560  * Restore the BAR values for a given device, so as to make it
561  * accessible by its driver.
562  */
563 static void pci_restore_bars(struct pci_dev *dev)
564 {
565 	int i;
566 
567 	/* Per SR-IOV spec 3.4.1.11, VF BARs are RO zero */
568 	if (dev->is_virtfn)
569 		return;
570 
571 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
572 		pci_update_resource(dev, i);
573 }
574 
575 static const struct pci_platform_pm_ops *pci_platform_pm;
576 
577 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
578 {
579 	if (!ops->is_manageable || !ops->set_state  || !ops->get_state ||
580 	    !ops->choose_state  || !ops->sleep_wake || !ops->run_wake  ||
581 	    !ops->need_resume)
582 		return -EINVAL;
583 	pci_platform_pm = ops;
584 	return 0;
585 }
586 
587 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
588 {
589 	return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
590 }
591 
592 static inline int platform_pci_set_power_state(struct pci_dev *dev,
593 					       pci_power_t t)
594 {
595 	return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
596 }
597 
598 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
599 {
600 	return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
601 }
602 
603 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
604 {
605 	return pci_platform_pm ?
606 			pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
607 }
608 
609 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
610 {
611 	return pci_platform_pm ?
612 			pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
613 }
614 
615 static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable)
616 {
617 	return pci_platform_pm ?
618 			pci_platform_pm->run_wake(dev, enable) : -ENODEV;
619 }
620 
621 static inline bool platform_pci_need_resume(struct pci_dev *dev)
622 {
623 	return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
624 }
625 
626 /**
627  * pci_raw_set_power_state - Use PCI PM registers to set the power state of
628  *                           given PCI device
629  * @dev: PCI device to handle.
630  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
631  *
632  * RETURN VALUE:
633  * -EINVAL if the requested state is invalid.
634  * -EIO if device does not support PCI PM or its PM capabilities register has a
635  * wrong version, or device doesn't support the requested state.
636  * 0 if device already is in the requested state.
637  * 0 if device's power state has been successfully changed.
638  */
639 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
640 {
641 	u16 pmcsr;
642 	bool need_restore = false;
643 
644 	/* Check if we're already there */
645 	if (dev->current_state == state)
646 		return 0;
647 
648 	if (!dev->pm_cap)
649 		return -EIO;
650 
651 	if (state < PCI_D0 || state > PCI_D3hot)
652 		return -EINVAL;
653 
654 	/* Validate current state:
655 	 * Can enter D0 from any state, but if we can only go deeper
656 	 * to sleep if we're already in a low power state
657 	 */
658 	if (state != PCI_D0 && dev->current_state <= PCI_D3cold
659 	    && dev->current_state > state) {
660 		dev_err(&dev->dev, "invalid power transition (from state %d to %d)\n",
661 			dev->current_state, state);
662 		return -EINVAL;
663 	}
664 
665 	/* check if this device supports the desired state */
666 	if ((state == PCI_D1 && !dev->d1_support)
667 	   || (state == PCI_D2 && !dev->d2_support))
668 		return -EIO;
669 
670 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
671 
672 	/* If we're (effectively) in D3, force entire word to 0.
673 	 * This doesn't affect PME_Status, disables PME_En, and
674 	 * sets PowerState to 0.
675 	 */
676 	switch (dev->current_state) {
677 	case PCI_D0:
678 	case PCI_D1:
679 	case PCI_D2:
680 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
681 		pmcsr |= state;
682 		break;
683 	case PCI_D3hot:
684 	case PCI_D3cold:
685 	case PCI_UNKNOWN: /* Boot-up */
686 		if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
687 		 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
688 			need_restore = true;
689 		/* Fall-through: force to D0 */
690 	default:
691 		pmcsr = 0;
692 		break;
693 	}
694 
695 	/* enter specified state */
696 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
697 
698 	/* Mandatory power management transition delays */
699 	/* see PCI PM 1.1 5.6.1 table 18 */
700 	if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
701 		pci_dev_d3_sleep(dev);
702 	else if (state == PCI_D2 || dev->current_state == PCI_D2)
703 		udelay(PCI_PM_D2_DELAY);
704 
705 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
706 	dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
707 	if (dev->current_state != state && printk_ratelimit())
708 		dev_info(&dev->dev, "Refused to change power state, currently in D%d\n",
709 			 dev->current_state);
710 
711 	/*
712 	 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
713 	 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
714 	 * from D3hot to D0 _may_ perform an internal reset, thereby
715 	 * going to "D0 Uninitialized" rather than "D0 Initialized".
716 	 * For example, at least some versions of the 3c905B and the
717 	 * 3c556B exhibit this behaviour.
718 	 *
719 	 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
720 	 * devices in a D3hot state at boot.  Consequently, we need to
721 	 * restore at least the BARs so that the device will be
722 	 * accessible to its driver.
723 	 */
724 	if (need_restore)
725 		pci_restore_bars(dev);
726 
727 	if (dev->bus->self)
728 		pcie_aspm_pm_state_change(dev->bus->self);
729 
730 	return 0;
731 }
732 
733 /**
734  * pci_update_current_state - Read power state of given device and cache it
735  * @dev: PCI device to handle.
736  * @state: State to cache in case the device doesn't have the PM capability
737  *
738  * The power state is read from the PMCSR register, which however is
739  * inaccessible in D3cold.  The platform firmware is therefore queried first
740  * to detect accessibility of the register.  In case the platform firmware
741  * reports an incorrect state or the device isn't power manageable by the
742  * platform at all, we try to detect D3cold by testing accessibility of the
743  * vendor ID in config space.
744  */
745 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
746 {
747 	if (platform_pci_get_power_state(dev) == PCI_D3cold ||
748 	    !pci_device_is_present(dev)) {
749 		dev->current_state = PCI_D3cold;
750 	} else if (dev->pm_cap) {
751 		u16 pmcsr;
752 
753 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
754 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
755 	} else {
756 		dev->current_state = state;
757 	}
758 }
759 
760 /**
761  * pci_power_up - Put the given device into D0 forcibly
762  * @dev: PCI device to power up
763  */
764 void pci_power_up(struct pci_dev *dev)
765 {
766 	if (platform_pci_power_manageable(dev))
767 		platform_pci_set_power_state(dev, PCI_D0);
768 
769 	pci_raw_set_power_state(dev, PCI_D0);
770 	pci_update_current_state(dev, PCI_D0);
771 }
772 
773 /**
774  * pci_platform_power_transition - Use platform to change device power state
775  * @dev: PCI device to handle.
776  * @state: State to put the device into.
777  */
778 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
779 {
780 	int error;
781 
782 	if (platform_pci_power_manageable(dev)) {
783 		error = platform_pci_set_power_state(dev, state);
784 		if (!error)
785 			pci_update_current_state(dev, state);
786 	} else
787 		error = -ENODEV;
788 
789 	if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
790 		dev->current_state = PCI_D0;
791 
792 	return error;
793 }
794 
795 /**
796  * pci_wakeup - Wake up a PCI device
797  * @pci_dev: Device to handle.
798  * @ign: ignored parameter
799  */
800 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
801 {
802 	pci_wakeup_event(pci_dev);
803 	pm_request_resume(&pci_dev->dev);
804 	return 0;
805 }
806 
807 /**
808  * pci_wakeup_bus - Walk given bus and wake up devices on it
809  * @bus: Top bus of the subtree to walk.
810  */
811 static void pci_wakeup_bus(struct pci_bus *bus)
812 {
813 	if (bus)
814 		pci_walk_bus(bus, pci_wakeup, NULL);
815 }
816 
817 /**
818  * __pci_start_power_transition - Start power transition of a PCI device
819  * @dev: PCI device to handle.
820  * @state: State to put the device into.
821  */
822 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
823 {
824 	if (state == PCI_D0) {
825 		pci_platform_power_transition(dev, PCI_D0);
826 		/*
827 		 * Mandatory power management transition delays, see
828 		 * PCI Express Base Specification Revision 2.0 Section
829 		 * 6.6.1: Conventional Reset.  Do not delay for
830 		 * devices powered on/off by corresponding bridge,
831 		 * because have already delayed for the bridge.
832 		 */
833 		if (dev->runtime_d3cold) {
834 			msleep(dev->d3cold_delay);
835 			/*
836 			 * When powering on a bridge from D3cold, the
837 			 * whole hierarchy may be powered on into
838 			 * D0uninitialized state, resume them to give
839 			 * them a chance to suspend again
840 			 */
841 			pci_wakeup_bus(dev->subordinate);
842 		}
843 	}
844 }
845 
846 /**
847  * __pci_dev_set_current_state - Set current state of a PCI device
848  * @dev: Device to handle
849  * @data: pointer to state to be set
850  */
851 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
852 {
853 	pci_power_t state = *(pci_power_t *)data;
854 
855 	dev->current_state = state;
856 	return 0;
857 }
858 
859 /**
860  * __pci_bus_set_current_state - Walk given bus and set current state of devices
861  * @bus: Top bus of the subtree to walk.
862  * @state: state to be set
863  */
864 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
865 {
866 	if (bus)
867 		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
868 }
869 
870 /**
871  * __pci_complete_power_transition - Complete power transition of a PCI device
872  * @dev: PCI device to handle.
873  * @state: State to put the device into.
874  *
875  * This function should not be called directly by device drivers.
876  */
877 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
878 {
879 	int ret;
880 
881 	if (state <= PCI_D0)
882 		return -EINVAL;
883 	ret = pci_platform_power_transition(dev, state);
884 	/* Power off the bridge may power off the whole hierarchy */
885 	if (!ret && state == PCI_D3cold)
886 		__pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
887 	return ret;
888 }
889 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
890 
891 /**
892  * pci_set_power_state - Set the power state of a PCI device
893  * @dev: PCI device to handle.
894  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
895  *
896  * Transition a device to a new power state, using the platform firmware and/or
897  * the device's PCI PM registers.
898  *
899  * RETURN VALUE:
900  * -EINVAL if the requested state is invalid.
901  * -EIO if device does not support PCI PM or its PM capabilities register has a
902  * wrong version, or device doesn't support the requested state.
903  * 0 if device already is in the requested state.
904  * 0 if device's power state has been successfully changed.
905  */
906 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
907 {
908 	int error;
909 
910 	/* bound the state we're entering */
911 	if (state > PCI_D3cold)
912 		state = PCI_D3cold;
913 	else if (state < PCI_D0)
914 		state = PCI_D0;
915 	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
916 		/*
917 		 * If the device or the parent bridge do not support PCI PM,
918 		 * ignore the request if we're doing anything other than putting
919 		 * it into D0 (which would only happen on boot).
920 		 */
921 		return 0;
922 
923 	/* Check if we're already there */
924 	if (dev->current_state == state)
925 		return 0;
926 
927 	__pci_start_power_transition(dev, state);
928 
929 	/* This device is quirked not to be put into D3, so
930 	   don't put it in D3 */
931 	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
932 		return 0;
933 
934 	/*
935 	 * To put device in D3cold, we put device into D3hot in native
936 	 * way, then put device into D3cold with platform ops
937 	 */
938 	error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
939 					PCI_D3hot : state);
940 
941 	if (!__pci_complete_power_transition(dev, state))
942 		error = 0;
943 
944 	return error;
945 }
946 EXPORT_SYMBOL(pci_set_power_state);
947 
948 /**
949  * pci_choose_state - Choose the power state of a PCI device
950  * @dev: PCI device to be suspended
951  * @state: target sleep state for the whole system. This is the value
952  *	that is passed to suspend() function.
953  *
954  * Returns PCI power state suitable for given device and given system
955  * message.
956  */
957 
958 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
959 {
960 	pci_power_t ret;
961 
962 	if (!dev->pm_cap)
963 		return PCI_D0;
964 
965 	ret = platform_pci_choose_state(dev);
966 	if (ret != PCI_POWER_ERROR)
967 		return ret;
968 
969 	switch (state.event) {
970 	case PM_EVENT_ON:
971 		return PCI_D0;
972 	case PM_EVENT_FREEZE:
973 	case PM_EVENT_PRETHAW:
974 		/* REVISIT both freeze and pre-thaw "should" use D0 */
975 	case PM_EVENT_SUSPEND:
976 	case PM_EVENT_HIBERNATE:
977 		return PCI_D3hot;
978 	default:
979 		dev_info(&dev->dev, "unrecognized suspend event %d\n",
980 			 state.event);
981 		BUG();
982 	}
983 	return PCI_D0;
984 }
985 EXPORT_SYMBOL(pci_choose_state);
986 
987 #define PCI_EXP_SAVE_REGS	7
988 
989 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
990 						       u16 cap, bool extended)
991 {
992 	struct pci_cap_saved_state *tmp;
993 
994 	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
995 		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
996 			return tmp;
997 	}
998 	return NULL;
999 }
1000 
1001 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1002 {
1003 	return _pci_find_saved_cap(dev, cap, false);
1004 }
1005 
1006 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1007 {
1008 	return _pci_find_saved_cap(dev, cap, true);
1009 }
1010 
1011 static int pci_save_pcie_state(struct pci_dev *dev)
1012 {
1013 	int i = 0;
1014 	struct pci_cap_saved_state *save_state;
1015 	u16 *cap;
1016 
1017 	if (!pci_is_pcie(dev))
1018 		return 0;
1019 
1020 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1021 	if (!save_state) {
1022 		dev_err(&dev->dev, "buffer not found in %s\n", __func__);
1023 		return -ENOMEM;
1024 	}
1025 
1026 	cap = (u16 *)&save_state->cap.data[0];
1027 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1028 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1029 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1030 	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
1031 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1032 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1033 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1034 
1035 	return 0;
1036 }
1037 
1038 static void pci_restore_pcie_state(struct pci_dev *dev)
1039 {
1040 	int i = 0;
1041 	struct pci_cap_saved_state *save_state;
1042 	u16 *cap;
1043 
1044 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1045 	if (!save_state)
1046 		return;
1047 
1048 	cap = (u16 *)&save_state->cap.data[0];
1049 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1050 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1051 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1052 	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1053 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1054 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1055 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1056 }
1057 
1058 
1059 static int pci_save_pcix_state(struct pci_dev *dev)
1060 {
1061 	int pos;
1062 	struct pci_cap_saved_state *save_state;
1063 
1064 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1065 	if (!pos)
1066 		return 0;
1067 
1068 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1069 	if (!save_state) {
1070 		dev_err(&dev->dev, "buffer not found in %s\n", __func__);
1071 		return -ENOMEM;
1072 	}
1073 
1074 	pci_read_config_word(dev, pos + PCI_X_CMD,
1075 			     (u16 *)save_state->cap.data);
1076 
1077 	return 0;
1078 }
1079 
1080 static void pci_restore_pcix_state(struct pci_dev *dev)
1081 {
1082 	int i = 0, pos;
1083 	struct pci_cap_saved_state *save_state;
1084 	u16 *cap;
1085 
1086 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1087 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1088 	if (!save_state || !pos)
1089 		return;
1090 	cap = (u16 *)&save_state->cap.data[0];
1091 
1092 	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1093 }
1094 
1095 
1096 /**
1097  * pci_save_state - save the PCI configuration space of a device before suspending
1098  * @dev: - PCI device that we're dealing with
1099  */
1100 int pci_save_state(struct pci_dev *dev)
1101 {
1102 	int i;
1103 	/* XXX: 100% dword access ok here? */
1104 	for (i = 0; i < 16; i++)
1105 		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1106 	dev->state_saved = true;
1107 
1108 	i = pci_save_pcie_state(dev);
1109 	if (i != 0)
1110 		return i;
1111 
1112 	i = pci_save_pcix_state(dev);
1113 	if (i != 0)
1114 		return i;
1115 
1116 	return pci_save_vc_state(dev);
1117 }
1118 EXPORT_SYMBOL(pci_save_state);
1119 
1120 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1121 				     u32 saved_val, int retry)
1122 {
1123 	u32 val;
1124 
1125 	pci_read_config_dword(pdev, offset, &val);
1126 	if (val == saved_val)
1127 		return;
1128 
1129 	for (;;) {
1130 		dev_dbg(&pdev->dev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1131 			offset, val, saved_val);
1132 		pci_write_config_dword(pdev, offset, saved_val);
1133 		if (retry-- <= 0)
1134 			return;
1135 
1136 		pci_read_config_dword(pdev, offset, &val);
1137 		if (val == saved_val)
1138 			return;
1139 
1140 		mdelay(1);
1141 	}
1142 }
1143 
1144 static void pci_restore_config_space_range(struct pci_dev *pdev,
1145 					   int start, int end, int retry)
1146 {
1147 	int index;
1148 
1149 	for (index = end; index >= start; index--)
1150 		pci_restore_config_dword(pdev, 4 * index,
1151 					 pdev->saved_config_space[index],
1152 					 retry);
1153 }
1154 
1155 static void pci_restore_config_space(struct pci_dev *pdev)
1156 {
1157 	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1158 		pci_restore_config_space_range(pdev, 10, 15, 0);
1159 		/* Restore BARs before the command register. */
1160 		pci_restore_config_space_range(pdev, 4, 9, 10);
1161 		pci_restore_config_space_range(pdev, 0, 3, 0);
1162 	} else {
1163 		pci_restore_config_space_range(pdev, 0, 15, 0);
1164 	}
1165 }
1166 
1167 /**
1168  * pci_restore_state - Restore the saved state of a PCI device
1169  * @dev: - PCI device that we're dealing with
1170  */
1171 void pci_restore_state(struct pci_dev *dev)
1172 {
1173 	if (!dev->state_saved)
1174 		return;
1175 
1176 	/* PCI Express register must be restored first */
1177 	pci_restore_pcie_state(dev);
1178 	pci_restore_ats_state(dev);
1179 	pci_restore_vc_state(dev);
1180 
1181 	pci_cleanup_aer_error_status_regs(dev);
1182 
1183 	pci_restore_config_space(dev);
1184 
1185 	pci_restore_pcix_state(dev);
1186 	pci_restore_msi_state(dev);
1187 
1188 	/* Restore ACS and IOV configuration state */
1189 	pci_enable_acs(dev);
1190 	pci_restore_iov_state(dev);
1191 
1192 	dev->state_saved = false;
1193 }
1194 EXPORT_SYMBOL(pci_restore_state);
1195 
1196 struct pci_saved_state {
1197 	u32 config_space[16];
1198 	struct pci_cap_saved_data cap[0];
1199 };
1200 
1201 /**
1202  * pci_store_saved_state - Allocate and return an opaque struct containing
1203  *			   the device saved state.
1204  * @dev: PCI device that we're dealing with
1205  *
1206  * Return NULL if no state or error.
1207  */
1208 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1209 {
1210 	struct pci_saved_state *state;
1211 	struct pci_cap_saved_state *tmp;
1212 	struct pci_cap_saved_data *cap;
1213 	size_t size;
1214 
1215 	if (!dev->state_saved)
1216 		return NULL;
1217 
1218 	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1219 
1220 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1221 		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1222 
1223 	state = kzalloc(size, GFP_KERNEL);
1224 	if (!state)
1225 		return NULL;
1226 
1227 	memcpy(state->config_space, dev->saved_config_space,
1228 	       sizeof(state->config_space));
1229 
1230 	cap = state->cap;
1231 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1232 		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1233 		memcpy(cap, &tmp->cap, len);
1234 		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1235 	}
1236 	/* Empty cap_save terminates list */
1237 
1238 	return state;
1239 }
1240 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1241 
1242 /**
1243  * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1244  * @dev: PCI device that we're dealing with
1245  * @state: Saved state returned from pci_store_saved_state()
1246  */
1247 int pci_load_saved_state(struct pci_dev *dev,
1248 			 struct pci_saved_state *state)
1249 {
1250 	struct pci_cap_saved_data *cap;
1251 
1252 	dev->state_saved = false;
1253 
1254 	if (!state)
1255 		return 0;
1256 
1257 	memcpy(dev->saved_config_space, state->config_space,
1258 	       sizeof(state->config_space));
1259 
1260 	cap = state->cap;
1261 	while (cap->size) {
1262 		struct pci_cap_saved_state *tmp;
1263 
1264 		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1265 		if (!tmp || tmp->cap.size != cap->size)
1266 			return -EINVAL;
1267 
1268 		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1269 		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1270 		       sizeof(struct pci_cap_saved_data) + cap->size);
1271 	}
1272 
1273 	dev->state_saved = true;
1274 	return 0;
1275 }
1276 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1277 
1278 /**
1279  * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1280  *				   and free the memory allocated for it.
1281  * @dev: PCI device that we're dealing with
1282  * @state: Pointer to saved state returned from pci_store_saved_state()
1283  */
1284 int pci_load_and_free_saved_state(struct pci_dev *dev,
1285 				  struct pci_saved_state **state)
1286 {
1287 	int ret = pci_load_saved_state(dev, *state);
1288 	kfree(*state);
1289 	*state = NULL;
1290 	return ret;
1291 }
1292 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1293 
1294 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1295 {
1296 	return pci_enable_resources(dev, bars);
1297 }
1298 
1299 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1300 {
1301 	int err;
1302 	struct pci_dev *bridge;
1303 	u16 cmd;
1304 	u8 pin;
1305 
1306 	err = pci_set_power_state(dev, PCI_D0);
1307 	if (err < 0 && err != -EIO)
1308 		return err;
1309 
1310 	bridge = pci_upstream_bridge(dev);
1311 	if (bridge)
1312 		pcie_aspm_powersave_config_link(bridge);
1313 
1314 	err = pcibios_enable_device(dev, bars);
1315 	if (err < 0)
1316 		return err;
1317 	pci_fixup_device(pci_fixup_enable, dev);
1318 
1319 	if (dev->msi_enabled || dev->msix_enabled)
1320 		return 0;
1321 
1322 	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1323 	if (pin) {
1324 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
1325 		if (cmd & PCI_COMMAND_INTX_DISABLE)
1326 			pci_write_config_word(dev, PCI_COMMAND,
1327 					      cmd & ~PCI_COMMAND_INTX_DISABLE);
1328 	}
1329 
1330 	return 0;
1331 }
1332 
1333 /**
1334  * pci_reenable_device - Resume abandoned device
1335  * @dev: PCI device to be resumed
1336  *
1337  *  Note this function is a backend of pci_default_resume and is not supposed
1338  *  to be called by normal code, write proper resume handler and use it instead.
1339  */
1340 int pci_reenable_device(struct pci_dev *dev)
1341 {
1342 	if (pci_is_enabled(dev))
1343 		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1344 	return 0;
1345 }
1346 EXPORT_SYMBOL(pci_reenable_device);
1347 
1348 static void pci_enable_bridge(struct pci_dev *dev)
1349 {
1350 	struct pci_dev *bridge;
1351 	int retval;
1352 
1353 	bridge = pci_upstream_bridge(dev);
1354 	if (bridge)
1355 		pci_enable_bridge(bridge);
1356 
1357 	if (pci_is_enabled(dev)) {
1358 		if (!dev->is_busmaster)
1359 			pci_set_master(dev);
1360 		return;
1361 	}
1362 
1363 	retval = pci_enable_device(dev);
1364 	if (retval)
1365 		dev_err(&dev->dev, "Error enabling bridge (%d), continuing\n",
1366 			retval);
1367 	pci_set_master(dev);
1368 }
1369 
1370 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1371 {
1372 	struct pci_dev *bridge;
1373 	int err;
1374 	int i, bars = 0;
1375 
1376 	/*
1377 	 * Power state could be unknown at this point, either due to a fresh
1378 	 * boot or a device removal call.  So get the current power state
1379 	 * so that things like MSI message writing will behave as expected
1380 	 * (e.g. if the device really is in D0 at enable time).
1381 	 */
1382 	if (dev->pm_cap) {
1383 		u16 pmcsr;
1384 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1385 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1386 	}
1387 
1388 	if (atomic_inc_return(&dev->enable_cnt) > 1)
1389 		return 0;		/* already enabled */
1390 
1391 	bridge = pci_upstream_bridge(dev);
1392 	if (bridge)
1393 		pci_enable_bridge(bridge);
1394 
1395 	/* only skip sriov related */
1396 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1397 		if (dev->resource[i].flags & flags)
1398 			bars |= (1 << i);
1399 	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1400 		if (dev->resource[i].flags & flags)
1401 			bars |= (1 << i);
1402 
1403 	err = do_pci_enable_device(dev, bars);
1404 	if (err < 0)
1405 		atomic_dec(&dev->enable_cnt);
1406 	return err;
1407 }
1408 
1409 /**
1410  * pci_enable_device_io - Initialize a device for use with IO space
1411  * @dev: PCI device to be initialized
1412  *
1413  *  Initialize device before it's used by a driver. Ask low-level code
1414  *  to enable I/O resources. Wake up the device if it was suspended.
1415  *  Beware, this function can fail.
1416  */
1417 int pci_enable_device_io(struct pci_dev *dev)
1418 {
1419 	return pci_enable_device_flags(dev, IORESOURCE_IO);
1420 }
1421 EXPORT_SYMBOL(pci_enable_device_io);
1422 
1423 /**
1424  * pci_enable_device_mem - Initialize a device for use with Memory space
1425  * @dev: PCI device to be initialized
1426  *
1427  *  Initialize device before it's used by a driver. Ask low-level code
1428  *  to enable Memory resources. Wake up the device if it was suspended.
1429  *  Beware, this function can fail.
1430  */
1431 int pci_enable_device_mem(struct pci_dev *dev)
1432 {
1433 	return pci_enable_device_flags(dev, IORESOURCE_MEM);
1434 }
1435 EXPORT_SYMBOL(pci_enable_device_mem);
1436 
1437 /**
1438  * pci_enable_device - Initialize device before it's used by a driver.
1439  * @dev: PCI device to be initialized
1440  *
1441  *  Initialize device before it's used by a driver. Ask low-level code
1442  *  to enable I/O and memory. Wake up the device if it was suspended.
1443  *  Beware, this function can fail.
1444  *
1445  *  Note we don't actually enable the device many times if we call
1446  *  this function repeatedly (we just increment the count).
1447  */
1448 int pci_enable_device(struct pci_dev *dev)
1449 {
1450 	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1451 }
1452 EXPORT_SYMBOL(pci_enable_device);
1453 
1454 /*
1455  * Managed PCI resources.  This manages device on/off, intx/msi/msix
1456  * on/off and BAR regions.  pci_dev itself records msi/msix status, so
1457  * there's no need to track it separately.  pci_devres is initialized
1458  * when a device is enabled using managed PCI device enable interface.
1459  */
1460 struct pci_devres {
1461 	unsigned int enabled:1;
1462 	unsigned int pinned:1;
1463 	unsigned int orig_intx:1;
1464 	unsigned int restore_intx:1;
1465 	u32 region_mask;
1466 };
1467 
1468 static void pcim_release(struct device *gendev, void *res)
1469 {
1470 	struct pci_dev *dev = to_pci_dev(gendev);
1471 	struct pci_devres *this = res;
1472 	int i;
1473 
1474 	if (dev->msi_enabled)
1475 		pci_disable_msi(dev);
1476 	if (dev->msix_enabled)
1477 		pci_disable_msix(dev);
1478 
1479 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1480 		if (this->region_mask & (1 << i))
1481 			pci_release_region(dev, i);
1482 
1483 	if (this->restore_intx)
1484 		pci_intx(dev, this->orig_intx);
1485 
1486 	if (this->enabled && !this->pinned)
1487 		pci_disable_device(dev);
1488 }
1489 
1490 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1491 {
1492 	struct pci_devres *dr, *new_dr;
1493 
1494 	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1495 	if (dr)
1496 		return dr;
1497 
1498 	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1499 	if (!new_dr)
1500 		return NULL;
1501 	return devres_get(&pdev->dev, new_dr, NULL, NULL);
1502 }
1503 
1504 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1505 {
1506 	if (pci_is_managed(pdev))
1507 		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1508 	return NULL;
1509 }
1510 
1511 /**
1512  * pcim_enable_device - Managed pci_enable_device()
1513  * @pdev: PCI device to be initialized
1514  *
1515  * Managed pci_enable_device().
1516  */
1517 int pcim_enable_device(struct pci_dev *pdev)
1518 {
1519 	struct pci_devres *dr;
1520 	int rc;
1521 
1522 	dr = get_pci_dr(pdev);
1523 	if (unlikely(!dr))
1524 		return -ENOMEM;
1525 	if (dr->enabled)
1526 		return 0;
1527 
1528 	rc = pci_enable_device(pdev);
1529 	if (!rc) {
1530 		pdev->is_managed = 1;
1531 		dr->enabled = 1;
1532 	}
1533 	return rc;
1534 }
1535 EXPORT_SYMBOL(pcim_enable_device);
1536 
1537 /**
1538  * pcim_pin_device - Pin managed PCI device
1539  * @pdev: PCI device to pin
1540  *
1541  * Pin managed PCI device @pdev.  Pinned device won't be disabled on
1542  * driver detach.  @pdev must have been enabled with
1543  * pcim_enable_device().
1544  */
1545 void pcim_pin_device(struct pci_dev *pdev)
1546 {
1547 	struct pci_devres *dr;
1548 
1549 	dr = find_pci_dr(pdev);
1550 	WARN_ON(!dr || !dr->enabled);
1551 	if (dr)
1552 		dr->pinned = 1;
1553 }
1554 EXPORT_SYMBOL(pcim_pin_device);
1555 
1556 /*
1557  * pcibios_add_device - provide arch specific hooks when adding device dev
1558  * @dev: the PCI device being added
1559  *
1560  * Permits the platform to provide architecture specific functionality when
1561  * devices are added. This is the default implementation. Architecture
1562  * implementations can override this.
1563  */
1564 int __weak pcibios_add_device(struct pci_dev *dev)
1565 {
1566 	return 0;
1567 }
1568 
1569 /**
1570  * pcibios_release_device - provide arch specific hooks when releasing device dev
1571  * @dev: the PCI device being released
1572  *
1573  * Permits the platform to provide architecture specific functionality when
1574  * devices are released. This is the default implementation. Architecture
1575  * implementations can override this.
1576  */
1577 void __weak pcibios_release_device(struct pci_dev *dev) {}
1578 
1579 /**
1580  * pcibios_disable_device - disable arch specific PCI resources for device dev
1581  * @dev: the PCI device to disable
1582  *
1583  * Disables architecture specific PCI resources for the device. This
1584  * is the default implementation. Architecture implementations can
1585  * override this.
1586  */
1587 void __weak pcibios_disable_device(struct pci_dev *dev) {}
1588 
1589 /**
1590  * pcibios_penalize_isa_irq - penalize an ISA IRQ
1591  * @irq: ISA IRQ to penalize
1592  * @active: IRQ active or not
1593  *
1594  * Permits the platform to provide architecture-specific functionality when
1595  * penalizing ISA IRQs. This is the default implementation. Architecture
1596  * implementations can override this.
1597  */
1598 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1599 
1600 static void do_pci_disable_device(struct pci_dev *dev)
1601 {
1602 	u16 pci_command;
1603 
1604 	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1605 	if (pci_command & PCI_COMMAND_MASTER) {
1606 		pci_command &= ~PCI_COMMAND_MASTER;
1607 		pci_write_config_word(dev, PCI_COMMAND, pci_command);
1608 	}
1609 
1610 	pcibios_disable_device(dev);
1611 }
1612 
1613 /**
1614  * pci_disable_enabled_device - Disable device without updating enable_cnt
1615  * @dev: PCI device to disable
1616  *
1617  * NOTE: This function is a backend of PCI power management routines and is
1618  * not supposed to be called drivers.
1619  */
1620 void pci_disable_enabled_device(struct pci_dev *dev)
1621 {
1622 	if (pci_is_enabled(dev))
1623 		do_pci_disable_device(dev);
1624 }
1625 
1626 /**
1627  * pci_disable_device - Disable PCI device after use
1628  * @dev: PCI device to be disabled
1629  *
1630  * Signal to the system that the PCI device is not in use by the system
1631  * anymore.  This only involves disabling PCI bus-mastering, if active.
1632  *
1633  * Note we don't actually disable the device until all callers of
1634  * pci_enable_device() have called pci_disable_device().
1635  */
1636 void pci_disable_device(struct pci_dev *dev)
1637 {
1638 	struct pci_devres *dr;
1639 
1640 	dr = find_pci_dr(dev);
1641 	if (dr)
1642 		dr->enabled = 0;
1643 
1644 	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1645 		      "disabling already-disabled device");
1646 
1647 	if (atomic_dec_return(&dev->enable_cnt) != 0)
1648 		return;
1649 
1650 	do_pci_disable_device(dev);
1651 
1652 	dev->is_busmaster = 0;
1653 }
1654 EXPORT_SYMBOL(pci_disable_device);
1655 
1656 /**
1657  * pcibios_set_pcie_reset_state - set reset state for device dev
1658  * @dev: the PCIe device reset
1659  * @state: Reset state to enter into
1660  *
1661  *
1662  * Sets the PCIe reset state for the device. This is the default
1663  * implementation. Architecture implementations can override this.
1664  */
1665 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1666 					enum pcie_reset_state state)
1667 {
1668 	return -EINVAL;
1669 }
1670 
1671 /**
1672  * pci_set_pcie_reset_state - set reset state for device dev
1673  * @dev: the PCIe device reset
1674  * @state: Reset state to enter into
1675  *
1676  *
1677  * Sets the PCI reset state for the device.
1678  */
1679 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1680 {
1681 	return pcibios_set_pcie_reset_state(dev, state);
1682 }
1683 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
1684 
1685 /**
1686  * pci_check_pme_status - Check if given device has generated PME.
1687  * @dev: Device to check.
1688  *
1689  * Check the PME status of the device and if set, clear it and clear PME enable
1690  * (if set).  Return 'true' if PME status and PME enable were both set or
1691  * 'false' otherwise.
1692  */
1693 bool pci_check_pme_status(struct pci_dev *dev)
1694 {
1695 	int pmcsr_pos;
1696 	u16 pmcsr;
1697 	bool ret = false;
1698 
1699 	if (!dev->pm_cap)
1700 		return false;
1701 
1702 	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1703 	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1704 	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1705 		return false;
1706 
1707 	/* Clear PME status. */
1708 	pmcsr |= PCI_PM_CTRL_PME_STATUS;
1709 	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1710 		/* Disable PME to avoid interrupt flood. */
1711 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1712 		ret = true;
1713 	}
1714 
1715 	pci_write_config_word(dev, pmcsr_pos, pmcsr);
1716 
1717 	return ret;
1718 }
1719 
1720 /**
1721  * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1722  * @dev: Device to handle.
1723  * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1724  *
1725  * Check if @dev has generated PME and queue a resume request for it in that
1726  * case.
1727  */
1728 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1729 {
1730 	if (pme_poll_reset && dev->pme_poll)
1731 		dev->pme_poll = false;
1732 
1733 	if (pci_check_pme_status(dev)) {
1734 		pci_wakeup_event(dev);
1735 		pm_request_resume(&dev->dev);
1736 	}
1737 	return 0;
1738 }
1739 
1740 /**
1741  * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1742  * @bus: Top bus of the subtree to walk.
1743  */
1744 void pci_pme_wakeup_bus(struct pci_bus *bus)
1745 {
1746 	if (bus)
1747 		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1748 }
1749 
1750 
1751 /**
1752  * pci_pme_capable - check the capability of PCI device to generate PME#
1753  * @dev: PCI device to handle.
1754  * @state: PCI state from which device will issue PME#.
1755  */
1756 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1757 {
1758 	if (!dev->pm_cap)
1759 		return false;
1760 
1761 	return !!(dev->pme_support & (1 << state));
1762 }
1763 EXPORT_SYMBOL(pci_pme_capable);
1764 
1765 static void pci_pme_list_scan(struct work_struct *work)
1766 {
1767 	struct pci_pme_device *pme_dev, *n;
1768 
1769 	mutex_lock(&pci_pme_list_mutex);
1770 	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1771 		if (pme_dev->dev->pme_poll) {
1772 			struct pci_dev *bridge;
1773 
1774 			bridge = pme_dev->dev->bus->self;
1775 			/*
1776 			 * If bridge is in low power state, the
1777 			 * configuration space of subordinate devices
1778 			 * may be not accessible
1779 			 */
1780 			if (bridge && bridge->current_state != PCI_D0)
1781 				continue;
1782 			pci_pme_wakeup(pme_dev->dev, NULL);
1783 		} else {
1784 			list_del(&pme_dev->list);
1785 			kfree(pme_dev);
1786 		}
1787 	}
1788 	if (!list_empty(&pci_pme_list))
1789 		schedule_delayed_work(&pci_pme_work,
1790 				      msecs_to_jiffies(PME_TIMEOUT));
1791 	mutex_unlock(&pci_pme_list_mutex);
1792 }
1793 
1794 static void __pci_pme_active(struct pci_dev *dev, bool enable)
1795 {
1796 	u16 pmcsr;
1797 
1798 	if (!dev->pme_support)
1799 		return;
1800 
1801 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1802 	/* Clear PME_Status by writing 1 to it and enable PME# */
1803 	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1804 	if (!enable)
1805 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1806 
1807 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1808 }
1809 
1810 /**
1811  * pci_pme_active - enable or disable PCI device's PME# function
1812  * @dev: PCI device to handle.
1813  * @enable: 'true' to enable PME# generation; 'false' to disable it.
1814  *
1815  * The caller must verify that the device is capable of generating PME# before
1816  * calling this function with @enable equal to 'true'.
1817  */
1818 void pci_pme_active(struct pci_dev *dev, bool enable)
1819 {
1820 	__pci_pme_active(dev, enable);
1821 
1822 	/*
1823 	 * PCI (as opposed to PCIe) PME requires that the device have
1824 	 * its PME# line hooked up correctly. Not all hardware vendors
1825 	 * do this, so the PME never gets delivered and the device
1826 	 * remains asleep. The easiest way around this is to
1827 	 * periodically walk the list of suspended devices and check
1828 	 * whether any have their PME flag set. The assumption is that
1829 	 * we'll wake up often enough anyway that this won't be a huge
1830 	 * hit, and the power savings from the devices will still be a
1831 	 * win.
1832 	 *
1833 	 * Although PCIe uses in-band PME message instead of PME# line
1834 	 * to report PME, PME does not work for some PCIe devices in
1835 	 * reality.  For example, there are devices that set their PME
1836 	 * status bits, but don't really bother to send a PME message;
1837 	 * there are PCI Express Root Ports that don't bother to
1838 	 * trigger interrupts when they receive PME messages from the
1839 	 * devices below.  So PME poll is used for PCIe devices too.
1840 	 */
1841 
1842 	if (dev->pme_poll) {
1843 		struct pci_pme_device *pme_dev;
1844 		if (enable) {
1845 			pme_dev = kmalloc(sizeof(struct pci_pme_device),
1846 					  GFP_KERNEL);
1847 			if (!pme_dev) {
1848 				dev_warn(&dev->dev, "can't enable PME#\n");
1849 				return;
1850 			}
1851 			pme_dev->dev = dev;
1852 			mutex_lock(&pci_pme_list_mutex);
1853 			list_add(&pme_dev->list, &pci_pme_list);
1854 			if (list_is_singular(&pci_pme_list))
1855 				schedule_delayed_work(&pci_pme_work,
1856 						      msecs_to_jiffies(PME_TIMEOUT));
1857 			mutex_unlock(&pci_pme_list_mutex);
1858 		} else {
1859 			mutex_lock(&pci_pme_list_mutex);
1860 			list_for_each_entry(pme_dev, &pci_pme_list, list) {
1861 				if (pme_dev->dev == dev) {
1862 					list_del(&pme_dev->list);
1863 					kfree(pme_dev);
1864 					break;
1865 				}
1866 			}
1867 			mutex_unlock(&pci_pme_list_mutex);
1868 		}
1869 	}
1870 
1871 	dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled");
1872 }
1873 EXPORT_SYMBOL(pci_pme_active);
1874 
1875 /**
1876  * __pci_enable_wake - enable PCI device as wakeup event source
1877  * @dev: PCI device affected
1878  * @state: PCI state from which device will issue wakeup events
1879  * @runtime: True if the events are to be generated at run time
1880  * @enable: True to enable event generation; false to disable
1881  *
1882  * This enables the device as a wakeup event source, or disables it.
1883  * When such events involves platform-specific hooks, those hooks are
1884  * called automatically by this routine.
1885  *
1886  * Devices with legacy power management (no standard PCI PM capabilities)
1887  * always require such platform hooks.
1888  *
1889  * RETURN VALUE:
1890  * 0 is returned on success
1891  * -EINVAL is returned if device is not supposed to wake up the system
1892  * Error code depending on the platform is returned if both the platform and
1893  * the native mechanism fail to enable the generation of wake-up events
1894  */
1895 int __pci_enable_wake(struct pci_dev *dev, pci_power_t state,
1896 		      bool runtime, bool enable)
1897 {
1898 	int ret = 0;
1899 
1900 	if (enable && !runtime && !device_may_wakeup(&dev->dev))
1901 		return -EINVAL;
1902 
1903 	/* Don't do the same thing twice in a row for one device. */
1904 	if (!!enable == !!dev->wakeup_prepared)
1905 		return 0;
1906 
1907 	/*
1908 	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1909 	 * Anderson we should be doing PME# wake enable followed by ACPI wake
1910 	 * enable.  To disable wake-up we call the platform first, for symmetry.
1911 	 */
1912 
1913 	if (enable) {
1914 		int error;
1915 
1916 		if (pci_pme_capable(dev, state))
1917 			pci_pme_active(dev, true);
1918 		else
1919 			ret = 1;
1920 		error = runtime ? platform_pci_run_wake(dev, true) :
1921 					platform_pci_sleep_wake(dev, true);
1922 		if (ret)
1923 			ret = error;
1924 		if (!ret)
1925 			dev->wakeup_prepared = true;
1926 	} else {
1927 		if (runtime)
1928 			platform_pci_run_wake(dev, false);
1929 		else
1930 			platform_pci_sleep_wake(dev, false);
1931 		pci_pme_active(dev, false);
1932 		dev->wakeup_prepared = false;
1933 	}
1934 
1935 	return ret;
1936 }
1937 EXPORT_SYMBOL(__pci_enable_wake);
1938 
1939 /**
1940  * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1941  * @dev: PCI device to prepare
1942  * @enable: True to enable wake-up event generation; false to disable
1943  *
1944  * Many drivers want the device to wake up the system from D3_hot or D3_cold
1945  * and this function allows them to set that up cleanly - pci_enable_wake()
1946  * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1947  * ordering constraints.
1948  *
1949  * This function only returns error code if the device is not capable of
1950  * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1951  * enable wake-up power for it.
1952  */
1953 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1954 {
1955 	return pci_pme_capable(dev, PCI_D3cold) ?
1956 			pci_enable_wake(dev, PCI_D3cold, enable) :
1957 			pci_enable_wake(dev, PCI_D3hot, enable);
1958 }
1959 EXPORT_SYMBOL(pci_wake_from_d3);
1960 
1961 /**
1962  * pci_target_state - find an appropriate low power state for a given PCI dev
1963  * @dev: PCI device
1964  *
1965  * Use underlying platform code to find a supported low power state for @dev.
1966  * If the platform can't manage @dev, return the deepest state from which it
1967  * can generate wake events, based on any available PME info.
1968  */
1969 static pci_power_t pci_target_state(struct pci_dev *dev)
1970 {
1971 	pci_power_t target_state = PCI_D3hot;
1972 
1973 	if (platform_pci_power_manageable(dev)) {
1974 		/*
1975 		 * Call the platform to choose the target state of the device
1976 		 * and enable wake-up from this state if supported.
1977 		 */
1978 		pci_power_t state = platform_pci_choose_state(dev);
1979 
1980 		switch (state) {
1981 		case PCI_POWER_ERROR:
1982 		case PCI_UNKNOWN:
1983 			break;
1984 		case PCI_D1:
1985 		case PCI_D2:
1986 			if (pci_no_d1d2(dev))
1987 				break;
1988 		default:
1989 			target_state = state;
1990 		}
1991 
1992 		return target_state;
1993 	}
1994 
1995 	if (!dev->pm_cap)
1996 		target_state = PCI_D0;
1997 
1998 	/*
1999 	 * If the device is in D3cold even though it's not power-manageable by
2000 	 * the platform, it may have been powered down by non-standard means.
2001 	 * Best to let it slumber.
2002 	 */
2003 	if (dev->current_state == PCI_D3cold)
2004 		target_state = PCI_D3cold;
2005 
2006 	if (device_may_wakeup(&dev->dev)) {
2007 		/*
2008 		 * Find the deepest state from which the device can generate
2009 		 * wake-up events, make it the target state and enable device
2010 		 * to generate PME#.
2011 		 */
2012 		if (dev->pme_support) {
2013 			while (target_state
2014 			      && !(dev->pme_support & (1 << target_state)))
2015 				target_state--;
2016 		}
2017 	}
2018 
2019 	return target_state;
2020 }
2021 
2022 /**
2023  * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
2024  * @dev: Device to handle.
2025  *
2026  * Choose the power state appropriate for the device depending on whether
2027  * it can wake up the system and/or is power manageable by the platform
2028  * (PCI_D3hot is the default) and put the device into that state.
2029  */
2030 int pci_prepare_to_sleep(struct pci_dev *dev)
2031 {
2032 	pci_power_t target_state = pci_target_state(dev);
2033 	int error;
2034 
2035 	if (target_state == PCI_POWER_ERROR)
2036 		return -EIO;
2037 
2038 	pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
2039 
2040 	error = pci_set_power_state(dev, target_state);
2041 
2042 	if (error)
2043 		pci_enable_wake(dev, target_state, false);
2044 
2045 	return error;
2046 }
2047 EXPORT_SYMBOL(pci_prepare_to_sleep);
2048 
2049 /**
2050  * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
2051  * @dev: Device to handle.
2052  *
2053  * Disable device's system wake-up capability and put it into D0.
2054  */
2055 int pci_back_from_sleep(struct pci_dev *dev)
2056 {
2057 	pci_enable_wake(dev, PCI_D0, false);
2058 	return pci_set_power_state(dev, PCI_D0);
2059 }
2060 EXPORT_SYMBOL(pci_back_from_sleep);
2061 
2062 /**
2063  * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2064  * @dev: PCI device being suspended.
2065  *
2066  * Prepare @dev to generate wake-up events at run time and put it into a low
2067  * power state.
2068  */
2069 int pci_finish_runtime_suspend(struct pci_dev *dev)
2070 {
2071 	pci_power_t target_state = pci_target_state(dev);
2072 	int error;
2073 
2074 	if (target_state == PCI_POWER_ERROR)
2075 		return -EIO;
2076 
2077 	dev->runtime_d3cold = target_state == PCI_D3cold;
2078 
2079 	__pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev));
2080 
2081 	error = pci_set_power_state(dev, target_state);
2082 
2083 	if (error) {
2084 		__pci_enable_wake(dev, target_state, true, false);
2085 		dev->runtime_d3cold = false;
2086 	}
2087 
2088 	return error;
2089 }
2090 
2091 /**
2092  * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2093  * @dev: Device to check.
2094  *
2095  * Return true if the device itself is capable of generating wake-up events
2096  * (through the platform or using the native PCIe PME) or if the device supports
2097  * PME and one of its upstream bridges can generate wake-up events.
2098  */
2099 bool pci_dev_run_wake(struct pci_dev *dev)
2100 {
2101 	struct pci_bus *bus = dev->bus;
2102 
2103 	if (device_run_wake(&dev->dev))
2104 		return true;
2105 
2106 	if (!dev->pme_support)
2107 		return false;
2108 
2109 	while (bus->parent) {
2110 		struct pci_dev *bridge = bus->self;
2111 
2112 		if (device_run_wake(&bridge->dev))
2113 			return true;
2114 
2115 		bus = bus->parent;
2116 	}
2117 
2118 	/* We have reached the root bus. */
2119 	if (bus->bridge)
2120 		return device_run_wake(bus->bridge);
2121 
2122 	return false;
2123 }
2124 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2125 
2126 /**
2127  * pci_dev_keep_suspended - Check if the device can stay in the suspended state.
2128  * @pci_dev: Device to check.
2129  *
2130  * Return 'true' if the device is runtime-suspended, it doesn't have to be
2131  * reconfigured due to wakeup settings difference between system and runtime
2132  * suspend and the current power state of it is suitable for the upcoming
2133  * (system) transition.
2134  *
2135  * If the device is not configured for system wakeup, disable PME for it before
2136  * returning 'true' to prevent it from waking up the system unnecessarily.
2137  */
2138 bool pci_dev_keep_suspended(struct pci_dev *pci_dev)
2139 {
2140 	struct device *dev = &pci_dev->dev;
2141 
2142 	if (!pm_runtime_suspended(dev)
2143 	    || pci_target_state(pci_dev) != pci_dev->current_state
2144 	    || platform_pci_need_resume(pci_dev))
2145 		return false;
2146 
2147 	/*
2148 	 * At this point the device is good to go unless it's been configured
2149 	 * to generate PME at the runtime suspend time, but it is not supposed
2150 	 * to wake up the system.  In that case, simply disable PME for it
2151 	 * (it will have to be re-enabled on exit from system resume).
2152 	 *
2153 	 * If the device's power state is D3cold and the platform check above
2154 	 * hasn't triggered, the device's configuration is suitable and we don't
2155 	 * need to manipulate it at all.
2156 	 */
2157 	spin_lock_irq(&dev->power.lock);
2158 
2159 	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold &&
2160 	    !device_may_wakeup(dev))
2161 		__pci_pme_active(pci_dev, false);
2162 
2163 	spin_unlock_irq(&dev->power.lock);
2164 	return true;
2165 }
2166 
2167 /**
2168  * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2169  * @pci_dev: Device to handle.
2170  *
2171  * If the device is runtime suspended and wakeup-capable, enable PME for it as
2172  * it might have been disabled during the prepare phase of system suspend if
2173  * the device was not configured for system wakeup.
2174  */
2175 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2176 {
2177 	struct device *dev = &pci_dev->dev;
2178 
2179 	if (!pci_dev_run_wake(pci_dev))
2180 		return;
2181 
2182 	spin_lock_irq(&dev->power.lock);
2183 
2184 	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2185 		__pci_pme_active(pci_dev, true);
2186 
2187 	spin_unlock_irq(&dev->power.lock);
2188 }
2189 
2190 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2191 {
2192 	struct device *dev = &pdev->dev;
2193 	struct device *parent = dev->parent;
2194 
2195 	if (parent)
2196 		pm_runtime_get_sync(parent);
2197 	pm_runtime_get_noresume(dev);
2198 	/*
2199 	 * pdev->current_state is set to PCI_D3cold during suspending,
2200 	 * so wait until suspending completes
2201 	 */
2202 	pm_runtime_barrier(dev);
2203 	/*
2204 	 * Only need to resume devices in D3cold, because config
2205 	 * registers are still accessible for devices suspended but
2206 	 * not in D3cold.
2207 	 */
2208 	if (pdev->current_state == PCI_D3cold)
2209 		pm_runtime_resume(dev);
2210 }
2211 
2212 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2213 {
2214 	struct device *dev = &pdev->dev;
2215 	struct device *parent = dev->parent;
2216 
2217 	pm_runtime_put(dev);
2218 	if (parent)
2219 		pm_runtime_put_sync(parent);
2220 }
2221 
2222 /**
2223  * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2224  * @bridge: Bridge to check
2225  *
2226  * This function checks if it is possible to move the bridge to D3.
2227  * Currently we only allow D3 for recent enough PCIe ports.
2228  */
2229 static bool pci_bridge_d3_possible(struct pci_dev *bridge)
2230 {
2231 	unsigned int year;
2232 
2233 	if (!pci_is_pcie(bridge))
2234 		return false;
2235 
2236 	switch (pci_pcie_type(bridge)) {
2237 	case PCI_EXP_TYPE_ROOT_PORT:
2238 	case PCI_EXP_TYPE_UPSTREAM:
2239 	case PCI_EXP_TYPE_DOWNSTREAM:
2240 		if (pci_bridge_d3_disable)
2241 			return false;
2242 		if (pci_bridge_d3_force)
2243 			return true;
2244 
2245 		/*
2246 		 * It should be safe to put PCIe ports from 2015 or newer
2247 		 * to D3.
2248 		 */
2249 		if (dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL) &&
2250 		    year >= 2015) {
2251 			return true;
2252 		}
2253 		break;
2254 	}
2255 
2256 	return false;
2257 }
2258 
2259 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2260 {
2261 	bool *d3cold_ok = data;
2262 	bool no_d3cold;
2263 
2264 	/*
2265 	 * The device needs to be allowed to go D3cold and if it is wake
2266 	 * capable to do so from D3cold.
2267 	 */
2268 	no_d3cold = dev->no_d3cold || !dev->d3cold_allowed ||
2269 		(device_may_wakeup(&dev->dev) && !pci_pme_capable(dev, PCI_D3cold)) ||
2270 		!pci_power_manageable(dev);
2271 
2272 	*d3cold_ok = !no_d3cold;
2273 
2274 	return no_d3cold;
2275 }
2276 
2277 /*
2278  * pci_bridge_d3_update - Update bridge D3 capabilities
2279  * @dev: PCI device which is changed
2280  * @remove: Is the device being removed
2281  *
2282  * Update upstream bridge PM capabilities accordingly depending on if the
2283  * device PM configuration was changed or the device is being removed.  The
2284  * change is also propagated upstream.
2285  */
2286 static void pci_bridge_d3_update(struct pci_dev *dev, bool remove)
2287 {
2288 	struct pci_dev *bridge;
2289 	bool d3cold_ok = true;
2290 
2291 	bridge = pci_upstream_bridge(dev);
2292 	if (!bridge || !pci_bridge_d3_possible(bridge))
2293 		return;
2294 
2295 	pci_dev_get(bridge);
2296 	/*
2297 	 * If the device is removed we do not care about its D3cold
2298 	 * capabilities.
2299 	 */
2300 	if (!remove)
2301 		pci_dev_check_d3cold(dev, &d3cold_ok);
2302 
2303 	if (d3cold_ok) {
2304 		/*
2305 		 * We need to go through all children to find out if all of
2306 		 * them can still go to D3cold.
2307 		 */
2308 		pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
2309 			     &d3cold_ok);
2310 	}
2311 
2312 	if (bridge->bridge_d3 != d3cold_ok) {
2313 		bridge->bridge_d3 = d3cold_ok;
2314 		/* Propagate change to upstream bridges */
2315 		pci_bridge_d3_update(bridge, false);
2316 	}
2317 
2318 	pci_dev_put(bridge);
2319 }
2320 
2321 /**
2322  * pci_bridge_d3_device_changed - Update bridge D3 capabilities on change
2323  * @dev: PCI device that was changed
2324  *
2325  * If a device is added or its PM configuration, such as is it allowed to
2326  * enter D3cold, is changed this function updates upstream bridge PM
2327  * capabilities accordingly.
2328  */
2329 void pci_bridge_d3_device_changed(struct pci_dev *dev)
2330 {
2331 	pci_bridge_d3_update(dev, false);
2332 }
2333 
2334 /**
2335  * pci_bridge_d3_device_removed - Update bridge D3 capabilities on remove
2336  * @dev: PCI device being removed
2337  *
2338  * Function updates upstream bridge PM capabilities based on other devices
2339  * still left on the bus.
2340  */
2341 void pci_bridge_d3_device_removed(struct pci_dev *dev)
2342 {
2343 	pci_bridge_d3_update(dev, true);
2344 }
2345 
2346 /**
2347  * pci_d3cold_enable - Enable D3cold for device
2348  * @dev: PCI device to handle
2349  *
2350  * This function can be used in drivers to enable D3cold from the device
2351  * they handle.  It also updates upstream PCI bridge PM capabilities
2352  * accordingly.
2353  */
2354 void pci_d3cold_enable(struct pci_dev *dev)
2355 {
2356 	if (dev->no_d3cold) {
2357 		dev->no_d3cold = false;
2358 		pci_bridge_d3_device_changed(dev);
2359 	}
2360 }
2361 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
2362 
2363 /**
2364  * pci_d3cold_disable - Disable D3cold for device
2365  * @dev: PCI device to handle
2366  *
2367  * This function can be used in drivers to disable D3cold from the device
2368  * they handle.  It also updates upstream PCI bridge PM capabilities
2369  * accordingly.
2370  */
2371 void pci_d3cold_disable(struct pci_dev *dev)
2372 {
2373 	if (!dev->no_d3cold) {
2374 		dev->no_d3cold = true;
2375 		pci_bridge_d3_device_changed(dev);
2376 	}
2377 }
2378 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
2379 
2380 /**
2381  * pci_pm_init - Initialize PM functions of given PCI device
2382  * @dev: PCI device to handle.
2383  */
2384 void pci_pm_init(struct pci_dev *dev)
2385 {
2386 	int pm;
2387 	u16 pmc;
2388 
2389 	pm_runtime_forbid(&dev->dev);
2390 	pm_runtime_set_active(&dev->dev);
2391 	pm_runtime_enable(&dev->dev);
2392 	device_enable_async_suspend(&dev->dev);
2393 	dev->wakeup_prepared = false;
2394 
2395 	dev->pm_cap = 0;
2396 	dev->pme_support = 0;
2397 
2398 	/* find PCI PM capability in list */
2399 	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2400 	if (!pm)
2401 		return;
2402 	/* Check device's ability to generate PME# */
2403 	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2404 
2405 	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2406 		dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
2407 			pmc & PCI_PM_CAP_VER_MASK);
2408 		return;
2409 	}
2410 
2411 	dev->pm_cap = pm;
2412 	dev->d3_delay = PCI_PM_D3_WAIT;
2413 	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2414 	dev->bridge_d3 = pci_bridge_d3_possible(dev);
2415 	dev->d3cold_allowed = true;
2416 
2417 	dev->d1_support = false;
2418 	dev->d2_support = false;
2419 	if (!pci_no_d1d2(dev)) {
2420 		if (pmc & PCI_PM_CAP_D1)
2421 			dev->d1_support = true;
2422 		if (pmc & PCI_PM_CAP_D2)
2423 			dev->d2_support = true;
2424 
2425 		if (dev->d1_support || dev->d2_support)
2426 			dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
2427 				   dev->d1_support ? " D1" : "",
2428 				   dev->d2_support ? " D2" : "");
2429 	}
2430 
2431 	pmc &= PCI_PM_CAP_PME_MASK;
2432 	if (pmc) {
2433 		dev_printk(KERN_DEBUG, &dev->dev,
2434 			 "PME# supported from%s%s%s%s%s\n",
2435 			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2436 			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2437 			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2438 			 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2439 			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2440 		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2441 		dev->pme_poll = true;
2442 		/*
2443 		 * Make device's PM flags reflect the wake-up capability, but
2444 		 * let the user space enable it to wake up the system as needed.
2445 		 */
2446 		device_set_wakeup_capable(&dev->dev, true);
2447 		/* Disable the PME# generation functionality */
2448 		pci_pme_active(dev, false);
2449 	}
2450 }
2451 
2452 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
2453 {
2454 	unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
2455 
2456 	switch (prop) {
2457 	case PCI_EA_P_MEM:
2458 	case PCI_EA_P_VF_MEM:
2459 		flags |= IORESOURCE_MEM;
2460 		break;
2461 	case PCI_EA_P_MEM_PREFETCH:
2462 	case PCI_EA_P_VF_MEM_PREFETCH:
2463 		flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
2464 		break;
2465 	case PCI_EA_P_IO:
2466 		flags |= IORESOURCE_IO;
2467 		break;
2468 	default:
2469 		return 0;
2470 	}
2471 
2472 	return flags;
2473 }
2474 
2475 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
2476 					    u8 prop)
2477 {
2478 	if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
2479 		return &dev->resource[bei];
2480 #ifdef CONFIG_PCI_IOV
2481 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
2482 		 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
2483 		return &dev->resource[PCI_IOV_RESOURCES +
2484 				      bei - PCI_EA_BEI_VF_BAR0];
2485 #endif
2486 	else if (bei == PCI_EA_BEI_ROM)
2487 		return &dev->resource[PCI_ROM_RESOURCE];
2488 	else
2489 		return NULL;
2490 }
2491 
2492 /* Read an Enhanced Allocation (EA) entry */
2493 static int pci_ea_read(struct pci_dev *dev, int offset)
2494 {
2495 	struct resource *res;
2496 	int ent_size, ent_offset = offset;
2497 	resource_size_t start, end;
2498 	unsigned long flags;
2499 	u32 dw0, bei, base, max_offset;
2500 	u8 prop;
2501 	bool support_64 = (sizeof(resource_size_t) >= 8);
2502 
2503 	pci_read_config_dword(dev, ent_offset, &dw0);
2504 	ent_offset += 4;
2505 
2506 	/* Entry size field indicates DWORDs after 1st */
2507 	ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
2508 
2509 	if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
2510 		goto out;
2511 
2512 	bei = (dw0 & PCI_EA_BEI) >> 4;
2513 	prop = (dw0 & PCI_EA_PP) >> 8;
2514 
2515 	/*
2516 	 * If the Property is in the reserved range, try the Secondary
2517 	 * Property instead.
2518 	 */
2519 	if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
2520 		prop = (dw0 & PCI_EA_SP) >> 16;
2521 	if (prop > PCI_EA_P_BRIDGE_IO)
2522 		goto out;
2523 
2524 	res = pci_ea_get_resource(dev, bei, prop);
2525 	if (!res) {
2526 		dev_err(&dev->dev, "Unsupported EA entry BEI: %u\n", bei);
2527 		goto out;
2528 	}
2529 
2530 	flags = pci_ea_flags(dev, prop);
2531 	if (!flags) {
2532 		dev_err(&dev->dev, "Unsupported EA properties: %#x\n", prop);
2533 		goto out;
2534 	}
2535 
2536 	/* Read Base */
2537 	pci_read_config_dword(dev, ent_offset, &base);
2538 	start = (base & PCI_EA_FIELD_MASK);
2539 	ent_offset += 4;
2540 
2541 	/* Read MaxOffset */
2542 	pci_read_config_dword(dev, ent_offset, &max_offset);
2543 	ent_offset += 4;
2544 
2545 	/* Read Base MSBs (if 64-bit entry) */
2546 	if (base & PCI_EA_IS_64) {
2547 		u32 base_upper;
2548 
2549 		pci_read_config_dword(dev, ent_offset, &base_upper);
2550 		ent_offset += 4;
2551 
2552 		flags |= IORESOURCE_MEM_64;
2553 
2554 		/* entry starts above 32-bit boundary, can't use */
2555 		if (!support_64 && base_upper)
2556 			goto out;
2557 
2558 		if (support_64)
2559 			start |= ((u64)base_upper << 32);
2560 	}
2561 
2562 	end = start + (max_offset | 0x03);
2563 
2564 	/* Read MaxOffset MSBs (if 64-bit entry) */
2565 	if (max_offset & PCI_EA_IS_64) {
2566 		u32 max_offset_upper;
2567 
2568 		pci_read_config_dword(dev, ent_offset, &max_offset_upper);
2569 		ent_offset += 4;
2570 
2571 		flags |= IORESOURCE_MEM_64;
2572 
2573 		/* entry too big, can't use */
2574 		if (!support_64 && max_offset_upper)
2575 			goto out;
2576 
2577 		if (support_64)
2578 			end += ((u64)max_offset_upper << 32);
2579 	}
2580 
2581 	if (end < start) {
2582 		dev_err(&dev->dev, "EA Entry crosses address boundary\n");
2583 		goto out;
2584 	}
2585 
2586 	if (ent_size != ent_offset - offset) {
2587 		dev_err(&dev->dev,
2588 			"EA Entry Size (%d) does not match length read (%d)\n",
2589 			ent_size, ent_offset - offset);
2590 		goto out;
2591 	}
2592 
2593 	res->name = pci_name(dev);
2594 	res->start = start;
2595 	res->end = end;
2596 	res->flags = flags;
2597 
2598 	if (bei <= PCI_EA_BEI_BAR5)
2599 		dev_printk(KERN_DEBUG, &dev->dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2600 			   bei, res, prop);
2601 	else if (bei == PCI_EA_BEI_ROM)
2602 		dev_printk(KERN_DEBUG, &dev->dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
2603 			   res, prop);
2604 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
2605 		dev_printk(KERN_DEBUG, &dev->dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2606 			   bei - PCI_EA_BEI_VF_BAR0, res, prop);
2607 	else
2608 		dev_printk(KERN_DEBUG, &dev->dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
2609 			   bei, res, prop);
2610 
2611 out:
2612 	return offset + ent_size;
2613 }
2614 
2615 /* Enhanced Allocation Initialization */
2616 void pci_ea_init(struct pci_dev *dev)
2617 {
2618 	int ea;
2619 	u8 num_ent;
2620 	int offset;
2621 	int i;
2622 
2623 	/* find PCI EA capability in list */
2624 	ea = pci_find_capability(dev, PCI_CAP_ID_EA);
2625 	if (!ea)
2626 		return;
2627 
2628 	/* determine the number of entries */
2629 	pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
2630 					&num_ent);
2631 	num_ent &= PCI_EA_NUM_ENT_MASK;
2632 
2633 	offset = ea + PCI_EA_FIRST_ENT;
2634 
2635 	/* Skip DWORD 2 for type 1 functions */
2636 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
2637 		offset += 4;
2638 
2639 	/* parse each EA entry */
2640 	for (i = 0; i < num_ent; ++i)
2641 		offset = pci_ea_read(dev, offset);
2642 }
2643 
2644 static void pci_add_saved_cap(struct pci_dev *pci_dev,
2645 	struct pci_cap_saved_state *new_cap)
2646 {
2647 	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
2648 }
2649 
2650 /**
2651  * _pci_add_cap_save_buffer - allocate buffer for saving given
2652  *                            capability registers
2653  * @dev: the PCI device
2654  * @cap: the capability to allocate the buffer for
2655  * @extended: Standard or Extended capability ID
2656  * @size: requested size of the buffer
2657  */
2658 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
2659 				    bool extended, unsigned int size)
2660 {
2661 	int pos;
2662 	struct pci_cap_saved_state *save_state;
2663 
2664 	if (extended)
2665 		pos = pci_find_ext_capability(dev, cap);
2666 	else
2667 		pos = pci_find_capability(dev, cap);
2668 
2669 	if (!pos)
2670 		return 0;
2671 
2672 	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2673 	if (!save_state)
2674 		return -ENOMEM;
2675 
2676 	save_state->cap.cap_nr = cap;
2677 	save_state->cap.cap_extended = extended;
2678 	save_state->cap.size = size;
2679 	pci_add_saved_cap(dev, save_state);
2680 
2681 	return 0;
2682 }
2683 
2684 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
2685 {
2686 	return _pci_add_cap_save_buffer(dev, cap, false, size);
2687 }
2688 
2689 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
2690 {
2691 	return _pci_add_cap_save_buffer(dev, cap, true, size);
2692 }
2693 
2694 /**
2695  * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2696  * @dev: the PCI device
2697  */
2698 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2699 {
2700 	int error;
2701 
2702 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2703 					PCI_EXP_SAVE_REGS * sizeof(u16));
2704 	if (error)
2705 		dev_err(&dev->dev,
2706 			"unable to preallocate PCI Express save buffer\n");
2707 
2708 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2709 	if (error)
2710 		dev_err(&dev->dev,
2711 			"unable to preallocate PCI-X save buffer\n");
2712 
2713 	pci_allocate_vc_save_buffers(dev);
2714 }
2715 
2716 void pci_free_cap_save_buffers(struct pci_dev *dev)
2717 {
2718 	struct pci_cap_saved_state *tmp;
2719 	struct hlist_node *n;
2720 
2721 	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
2722 		kfree(tmp);
2723 }
2724 
2725 /**
2726  * pci_configure_ari - enable or disable ARI forwarding
2727  * @dev: the PCI device
2728  *
2729  * If @dev and its upstream bridge both support ARI, enable ARI in the
2730  * bridge.  Otherwise, disable ARI in the bridge.
2731  */
2732 void pci_configure_ari(struct pci_dev *dev)
2733 {
2734 	u32 cap;
2735 	struct pci_dev *bridge;
2736 
2737 	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
2738 		return;
2739 
2740 	bridge = dev->bus->self;
2741 	if (!bridge)
2742 		return;
2743 
2744 	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
2745 	if (!(cap & PCI_EXP_DEVCAP2_ARI))
2746 		return;
2747 
2748 	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
2749 		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
2750 					 PCI_EXP_DEVCTL2_ARI);
2751 		bridge->ari_enabled = 1;
2752 	} else {
2753 		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
2754 					   PCI_EXP_DEVCTL2_ARI);
2755 		bridge->ari_enabled = 0;
2756 	}
2757 }
2758 
2759 static int pci_acs_enable;
2760 
2761 /**
2762  * pci_request_acs - ask for ACS to be enabled if supported
2763  */
2764 void pci_request_acs(void)
2765 {
2766 	pci_acs_enable = 1;
2767 }
2768 
2769 /**
2770  * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites
2771  * @dev: the PCI device
2772  */
2773 static void pci_std_enable_acs(struct pci_dev *dev)
2774 {
2775 	int pos;
2776 	u16 cap;
2777 	u16 ctrl;
2778 
2779 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2780 	if (!pos)
2781 		return;
2782 
2783 	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2784 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2785 
2786 	/* Source Validation */
2787 	ctrl |= (cap & PCI_ACS_SV);
2788 
2789 	/* P2P Request Redirect */
2790 	ctrl |= (cap & PCI_ACS_RR);
2791 
2792 	/* P2P Completion Redirect */
2793 	ctrl |= (cap & PCI_ACS_CR);
2794 
2795 	/* Upstream Forwarding */
2796 	ctrl |= (cap & PCI_ACS_UF);
2797 
2798 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2799 }
2800 
2801 /**
2802  * pci_enable_acs - enable ACS if hardware support it
2803  * @dev: the PCI device
2804  */
2805 void pci_enable_acs(struct pci_dev *dev)
2806 {
2807 	if (!pci_acs_enable)
2808 		return;
2809 
2810 	if (!pci_dev_specific_enable_acs(dev))
2811 		return;
2812 
2813 	pci_std_enable_acs(dev);
2814 }
2815 
2816 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
2817 {
2818 	int pos;
2819 	u16 cap, ctrl;
2820 
2821 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2822 	if (!pos)
2823 		return false;
2824 
2825 	/*
2826 	 * Except for egress control, capabilities are either required
2827 	 * or only required if controllable.  Features missing from the
2828 	 * capability field can therefore be assumed as hard-wired enabled.
2829 	 */
2830 	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
2831 	acs_flags &= (cap | PCI_ACS_EC);
2832 
2833 	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2834 	return (ctrl & acs_flags) == acs_flags;
2835 }
2836 
2837 /**
2838  * pci_acs_enabled - test ACS against required flags for a given device
2839  * @pdev: device to test
2840  * @acs_flags: required PCI ACS flags
2841  *
2842  * Return true if the device supports the provided flags.  Automatically
2843  * filters out flags that are not implemented on multifunction devices.
2844  *
2845  * Note that this interface checks the effective ACS capabilities of the
2846  * device rather than the actual capabilities.  For instance, most single
2847  * function endpoints are not required to support ACS because they have no
2848  * opportunity for peer-to-peer access.  We therefore return 'true'
2849  * regardless of whether the device exposes an ACS capability.  This makes
2850  * it much easier for callers of this function to ignore the actual type
2851  * or topology of the device when testing ACS support.
2852  */
2853 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2854 {
2855 	int ret;
2856 
2857 	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2858 	if (ret >= 0)
2859 		return ret > 0;
2860 
2861 	/*
2862 	 * Conventional PCI and PCI-X devices never support ACS, either
2863 	 * effectively or actually.  The shared bus topology implies that
2864 	 * any device on the bus can receive or snoop DMA.
2865 	 */
2866 	if (!pci_is_pcie(pdev))
2867 		return false;
2868 
2869 	switch (pci_pcie_type(pdev)) {
2870 	/*
2871 	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
2872 	 * but since their primary interface is PCI/X, we conservatively
2873 	 * handle them as we would a non-PCIe device.
2874 	 */
2875 	case PCI_EXP_TYPE_PCIE_BRIDGE:
2876 	/*
2877 	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
2878 	 * applicable... must never implement an ACS Extended Capability...".
2879 	 * This seems arbitrary, but we take a conservative interpretation
2880 	 * of this statement.
2881 	 */
2882 	case PCI_EXP_TYPE_PCI_BRIDGE:
2883 	case PCI_EXP_TYPE_RC_EC:
2884 		return false;
2885 	/*
2886 	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
2887 	 * implement ACS in order to indicate their peer-to-peer capabilities,
2888 	 * regardless of whether they are single- or multi-function devices.
2889 	 */
2890 	case PCI_EXP_TYPE_DOWNSTREAM:
2891 	case PCI_EXP_TYPE_ROOT_PORT:
2892 		return pci_acs_flags_enabled(pdev, acs_flags);
2893 	/*
2894 	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
2895 	 * implemented by the remaining PCIe types to indicate peer-to-peer
2896 	 * capabilities, but only when they are part of a multifunction
2897 	 * device.  The footnote for section 6.12 indicates the specific
2898 	 * PCIe types included here.
2899 	 */
2900 	case PCI_EXP_TYPE_ENDPOINT:
2901 	case PCI_EXP_TYPE_UPSTREAM:
2902 	case PCI_EXP_TYPE_LEG_END:
2903 	case PCI_EXP_TYPE_RC_END:
2904 		if (!pdev->multifunction)
2905 			break;
2906 
2907 		return pci_acs_flags_enabled(pdev, acs_flags);
2908 	}
2909 
2910 	/*
2911 	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
2912 	 * to single function devices with the exception of downstream ports.
2913 	 */
2914 	return true;
2915 }
2916 
2917 /**
2918  * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2919  * @start: starting downstream device
2920  * @end: ending upstream device or NULL to search to the root bus
2921  * @acs_flags: required flags
2922  *
2923  * Walk up a device tree from start to end testing PCI ACS support.  If
2924  * any step along the way does not support the required flags, return false.
2925  */
2926 bool pci_acs_path_enabled(struct pci_dev *start,
2927 			  struct pci_dev *end, u16 acs_flags)
2928 {
2929 	struct pci_dev *pdev, *parent = start;
2930 
2931 	do {
2932 		pdev = parent;
2933 
2934 		if (!pci_acs_enabled(pdev, acs_flags))
2935 			return false;
2936 
2937 		if (pci_is_root_bus(pdev->bus))
2938 			return (end == NULL);
2939 
2940 		parent = pdev->bus->self;
2941 	} while (pdev != end);
2942 
2943 	return true;
2944 }
2945 
2946 /**
2947  * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2948  * @dev: the PCI device
2949  * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
2950  *
2951  * Perform INTx swizzling for a device behind one level of bridge.  This is
2952  * required by section 9.1 of the PCI-to-PCI bridge specification for devices
2953  * behind bridges on add-in cards.  For devices with ARI enabled, the slot
2954  * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2955  * the PCI Express Base Specification, Revision 2.1)
2956  */
2957 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
2958 {
2959 	int slot;
2960 
2961 	if (pci_ari_enabled(dev->bus))
2962 		slot = 0;
2963 	else
2964 		slot = PCI_SLOT(dev->devfn);
2965 
2966 	return (((pin - 1) + slot) % 4) + 1;
2967 }
2968 
2969 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
2970 {
2971 	u8 pin;
2972 
2973 	pin = dev->pin;
2974 	if (!pin)
2975 		return -1;
2976 
2977 	while (!pci_is_root_bus(dev->bus)) {
2978 		pin = pci_swizzle_interrupt_pin(dev, pin);
2979 		dev = dev->bus->self;
2980 	}
2981 	*bridge = dev;
2982 	return pin;
2983 }
2984 
2985 /**
2986  * pci_common_swizzle - swizzle INTx all the way to root bridge
2987  * @dev: the PCI device
2988  * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2989  *
2990  * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
2991  * bridges all the way up to a PCI root bus.
2992  */
2993 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
2994 {
2995 	u8 pin = *pinp;
2996 
2997 	while (!pci_is_root_bus(dev->bus)) {
2998 		pin = pci_swizzle_interrupt_pin(dev, pin);
2999 		dev = dev->bus->self;
3000 	}
3001 	*pinp = pin;
3002 	return PCI_SLOT(dev->devfn);
3003 }
3004 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3005 
3006 /**
3007  *	pci_release_region - Release a PCI bar
3008  *	@pdev: PCI device whose resources were previously reserved by pci_request_region
3009  *	@bar: BAR to release
3010  *
3011  *	Releases the PCI I/O and memory resources previously reserved by a
3012  *	successful call to pci_request_region.  Call this function only
3013  *	after all use of the PCI regions has ceased.
3014  */
3015 void pci_release_region(struct pci_dev *pdev, int bar)
3016 {
3017 	struct pci_devres *dr;
3018 
3019 	if (pci_resource_len(pdev, bar) == 0)
3020 		return;
3021 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3022 		release_region(pci_resource_start(pdev, bar),
3023 				pci_resource_len(pdev, bar));
3024 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3025 		release_mem_region(pci_resource_start(pdev, bar),
3026 				pci_resource_len(pdev, bar));
3027 
3028 	dr = find_pci_dr(pdev);
3029 	if (dr)
3030 		dr->region_mask &= ~(1 << bar);
3031 }
3032 EXPORT_SYMBOL(pci_release_region);
3033 
3034 /**
3035  *	__pci_request_region - Reserved PCI I/O and memory resource
3036  *	@pdev: PCI device whose resources are to be reserved
3037  *	@bar: BAR to be reserved
3038  *	@res_name: Name to be associated with resource.
3039  *	@exclusive: whether the region access is exclusive or not
3040  *
3041  *	Mark the PCI region associated with PCI device @pdev BR @bar as
3042  *	being reserved by owner @res_name.  Do not access any
3043  *	address inside the PCI regions unless this call returns
3044  *	successfully.
3045  *
3046  *	If @exclusive is set, then the region is marked so that userspace
3047  *	is explicitly not allowed to map the resource via /dev/mem or
3048  *	sysfs MMIO access.
3049  *
3050  *	Returns 0 on success, or %EBUSY on error.  A warning
3051  *	message is also printed on failure.
3052  */
3053 static int __pci_request_region(struct pci_dev *pdev, int bar,
3054 				const char *res_name, int exclusive)
3055 {
3056 	struct pci_devres *dr;
3057 
3058 	if (pci_resource_len(pdev, bar) == 0)
3059 		return 0;
3060 
3061 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3062 		if (!request_region(pci_resource_start(pdev, bar),
3063 			    pci_resource_len(pdev, bar), res_name))
3064 			goto err_out;
3065 	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3066 		if (!__request_mem_region(pci_resource_start(pdev, bar),
3067 					pci_resource_len(pdev, bar), res_name,
3068 					exclusive))
3069 			goto err_out;
3070 	}
3071 
3072 	dr = find_pci_dr(pdev);
3073 	if (dr)
3074 		dr->region_mask |= 1 << bar;
3075 
3076 	return 0;
3077 
3078 err_out:
3079 	dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
3080 		 &pdev->resource[bar]);
3081 	return -EBUSY;
3082 }
3083 
3084 /**
3085  *	pci_request_region - Reserve PCI I/O and memory resource
3086  *	@pdev: PCI device whose resources are to be reserved
3087  *	@bar: BAR to be reserved
3088  *	@res_name: Name to be associated with resource
3089  *
3090  *	Mark the PCI region associated with PCI device @pdev BAR @bar as
3091  *	being reserved by owner @res_name.  Do not access any
3092  *	address inside the PCI regions unless this call returns
3093  *	successfully.
3094  *
3095  *	Returns 0 on success, or %EBUSY on error.  A warning
3096  *	message is also printed on failure.
3097  */
3098 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3099 {
3100 	return __pci_request_region(pdev, bar, res_name, 0);
3101 }
3102 EXPORT_SYMBOL(pci_request_region);
3103 
3104 /**
3105  *	pci_request_region_exclusive - Reserved PCI I/O and memory resource
3106  *	@pdev: PCI device whose resources are to be reserved
3107  *	@bar: BAR to be reserved
3108  *	@res_name: Name to be associated with resource.
3109  *
3110  *	Mark the PCI region associated with PCI device @pdev BR @bar as
3111  *	being reserved by owner @res_name.  Do not access any
3112  *	address inside the PCI regions unless this call returns
3113  *	successfully.
3114  *
3115  *	Returns 0 on success, or %EBUSY on error.  A warning
3116  *	message is also printed on failure.
3117  *
3118  *	The key difference that _exclusive makes it that userspace is
3119  *	explicitly not allowed to map the resource via /dev/mem or
3120  *	sysfs.
3121  */
3122 int pci_request_region_exclusive(struct pci_dev *pdev, int bar,
3123 				 const char *res_name)
3124 {
3125 	return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
3126 }
3127 EXPORT_SYMBOL(pci_request_region_exclusive);
3128 
3129 /**
3130  * pci_release_selected_regions - Release selected PCI I/O and memory resources
3131  * @pdev: PCI device whose resources were previously reserved
3132  * @bars: Bitmask of BARs to be released
3133  *
3134  * Release selected PCI I/O and memory resources previously reserved.
3135  * Call this function only after all use of the PCI regions has ceased.
3136  */
3137 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3138 {
3139 	int i;
3140 
3141 	for (i = 0; i < 6; i++)
3142 		if (bars & (1 << i))
3143 			pci_release_region(pdev, i);
3144 }
3145 EXPORT_SYMBOL(pci_release_selected_regions);
3146 
3147 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3148 					  const char *res_name, int excl)
3149 {
3150 	int i;
3151 
3152 	for (i = 0; i < 6; i++)
3153 		if (bars & (1 << i))
3154 			if (__pci_request_region(pdev, i, res_name, excl))
3155 				goto err_out;
3156 	return 0;
3157 
3158 err_out:
3159 	while (--i >= 0)
3160 		if (bars & (1 << i))
3161 			pci_release_region(pdev, i);
3162 
3163 	return -EBUSY;
3164 }
3165 
3166 
3167 /**
3168  * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3169  * @pdev: PCI device whose resources are to be reserved
3170  * @bars: Bitmask of BARs to be requested
3171  * @res_name: Name to be associated with resource
3172  */
3173 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3174 				 const char *res_name)
3175 {
3176 	return __pci_request_selected_regions(pdev, bars, res_name, 0);
3177 }
3178 EXPORT_SYMBOL(pci_request_selected_regions);
3179 
3180 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3181 					   const char *res_name)
3182 {
3183 	return __pci_request_selected_regions(pdev, bars, res_name,
3184 			IORESOURCE_EXCLUSIVE);
3185 }
3186 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3187 
3188 /**
3189  *	pci_release_regions - Release reserved PCI I/O and memory resources
3190  *	@pdev: PCI device whose resources were previously reserved by pci_request_regions
3191  *
3192  *	Releases all PCI I/O and memory resources previously reserved by a
3193  *	successful call to pci_request_regions.  Call this function only
3194  *	after all use of the PCI regions has ceased.
3195  */
3196 
3197 void pci_release_regions(struct pci_dev *pdev)
3198 {
3199 	pci_release_selected_regions(pdev, (1 << 6) - 1);
3200 }
3201 EXPORT_SYMBOL(pci_release_regions);
3202 
3203 /**
3204  *	pci_request_regions - Reserved PCI I/O and memory resources
3205  *	@pdev: PCI device whose resources are to be reserved
3206  *	@res_name: Name to be associated with resource.
3207  *
3208  *	Mark all PCI regions associated with PCI device @pdev as
3209  *	being reserved by owner @res_name.  Do not access any
3210  *	address inside the PCI regions unless this call returns
3211  *	successfully.
3212  *
3213  *	Returns 0 on success, or %EBUSY on error.  A warning
3214  *	message is also printed on failure.
3215  */
3216 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
3217 {
3218 	return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
3219 }
3220 EXPORT_SYMBOL(pci_request_regions);
3221 
3222 /**
3223  *	pci_request_regions_exclusive - Reserved PCI I/O and memory resources
3224  *	@pdev: PCI device whose resources are to be reserved
3225  *	@res_name: Name to be associated with resource.
3226  *
3227  *	Mark all PCI regions associated with PCI device @pdev as
3228  *	being reserved by owner @res_name.  Do not access any
3229  *	address inside the PCI regions unless this call returns
3230  *	successfully.
3231  *
3232  *	pci_request_regions_exclusive() will mark the region so that
3233  *	/dev/mem and the sysfs MMIO access will not be allowed.
3234  *
3235  *	Returns 0 on success, or %EBUSY on error.  A warning
3236  *	message is also printed on failure.
3237  */
3238 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3239 {
3240 	return pci_request_selected_regions_exclusive(pdev,
3241 					((1 << 6) - 1), res_name);
3242 }
3243 EXPORT_SYMBOL(pci_request_regions_exclusive);
3244 
3245 #ifdef PCI_IOBASE
3246 struct io_range {
3247 	struct list_head list;
3248 	phys_addr_t start;
3249 	resource_size_t size;
3250 };
3251 
3252 static LIST_HEAD(io_range_list);
3253 static DEFINE_SPINLOCK(io_range_lock);
3254 #endif
3255 
3256 /*
3257  * Record the PCI IO range (expressed as CPU physical address + size).
3258  * Return a negative value if an error has occured, zero otherwise
3259  */
3260 int __weak pci_register_io_range(phys_addr_t addr, resource_size_t size)
3261 {
3262 	int err = 0;
3263 
3264 #ifdef PCI_IOBASE
3265 	struct io_range *range;
3266 	resource_size_t allocated_size = 0;
3267 
3268 	/* check if the range hasn't been previously recorded */
3269 	spin_lock(&io_range_lock);
3270 	list_for_each_entry(range, &io_range_list, list) {
3271 		if (addr >= range->start && addr + size <= range->start + size) {
3272 			/* range already registered, bail out */
3273 			goto end_register;
3274 		}
3275 		allocated_size += range->size;
3276 	}
3277 
3278 	/* range not registed yet, check for available space */
3279 	if (allocated_size + size - 1 > IO_SPACE_LIMIT) {
3280 		/* if it's too big check if 64K space can be reserved */
3281 		if (allocated_size + SZ_64K - 1 > IO_SPACE_LIMIT) {
3282 			err = -E2BIG;
3283 			goto end_register;
3284 		}
3285 
3286 		size = SZ_64K;
3287 		pr_warn("Requested IO range too big, new size set to 64K\n");
3288 	}
3289 
3290 	/* add the range to the list */
3291 	range = kzalloc(sizeof(*range), GFP_ATOMIC);
3292 	if (!range) {
3293 		err = -ENOMEM;
3294 		goto end_register;
3295 	}
3296 
3297 	range->start = addr;
3298 	range->size = size;
3299 
3300 	list_add_tail(&range->list, &io_range_list);
3301 
3302 end_register:
3303 	spin_unlock(&io_range_lock);
3304 #endif
3305 
3306 	return err;
3307 }
3308 
3309 phys_addr_t pci_pio_to_address(unsigned long pio)
3310 {
3311 	phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
3312 
3313 #ifdef PCI_IOBASE
3314 	struct io_range *range;
3315 	resource_size_t allocated_size = 0;
3316 
3317 	if (pio > IO_SPACE_LIMIT)
3318 		return address;
3319 
3320 	spin_lock(&io_range_lock);
3321 	list_for_each_entry(range, &io_range_list, list) {
3322 		if (pio >= allocated_size && pio < allocated_size + range->size) {
3323 			address = range->start + pio - allocated_size;
3324 			break;
3325 		}
3326 		allocated_size += range->size;
3327 	}
3328 	spin_unlock(&io_range_lock);
3329 #endif
3330 
3331 	return address;
3332 }
3333 
3334 unsigned long __weak pci_address_to_pio(phys_addr_t address)
3335 {
3336 #ifdef PCI_IOBASE
3337 	struct io_range *res;
3338 	resource_size_t offset = 0;
3339 	unsigned long addr = -1;
3340 
3341 	spin_lock(&io_range_lock);
3342 	list_for_each_entry(res, &io_range_list, list) {
3343 		if (address >= res->start && address < res->start + res->size) {
3344 			addr = address - res->start + offset;
3345 			break;
3346 		}
3347 		offset += res->size;
3348 	}
3349 	spin_unlock(&io_range_lock);
3350 
3351 	return addr;
3352 #else
3353 	if (address > IO_SPACE_LIMIT)
3354 		return (unsigned long)-1;
3355 
3356 	return (unsigned long) address;
3357 #endif
3358 }
3359 
3360 /**
3361  *	pci_remap_iospace - Remap the memory mapped I/O space
3362  *	@res: Resource describing the I/O space
3363  *	@phys_addr: physical address of range to be mapped
3364  *
3365  *	Remap the memory mapped I/O space described by the @res
3366  *	and the CPU physical address @phys_addr into virtual address space.
3367  *	Only architectures that have memory mapped IO functions defined
3368  *	(and the PCI_IOBASE value defined) should call this function.
3369  */
3370 int __weak pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
3371 {
3372 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3373 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3374 
3375 	if (!(res->flags & IORESOURCE_IO))
3376 		return -EINVAL;
3377 
3378 	if (res->end > IO_SPACE_LIMIT)
3379 		return -EINVAL;
3380 
3381 	return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
3382 				  pgprot_device(PAGE_KERNEL));
3383 #else
3384 	/* this architecture does not have memory mapped I/O space,
3385 	   so this function should never be called */
3386 	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
3387 	return -ENODEV;
3388 #endif
3389 }
3390 
3391 /**
3392  *	pci_unmap_iospace - Unmap the memory mapped I/O space
3393  *	@res: resource to be unmapped
3394  *
3395  *	Unmap the CPU virtual address @res from virtual address space.
3396  *	Only architectures that have memory mapped IO functions defined
3397  *	(and the PCI_IOBASE value defined) should call this function.
3398  */
3399 void pci_unmap_iospace(struct resource *res)
3400 {
3401 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3402 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3403 
3404 	unmap_kernel_range(vaddr, resource_size(res));
3405 #endif
3406 }
3407 
3408 static void __pci_set_master(struct pci_dev *dev, bool enable)
3409 {
3410 	u16 old_cmd, cmd;
3411 
3412 	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
3413 	if (enable)
3414 		cmd = old_cmd | PCI_COMMAND_MASTER;
3415 	else
3416 		cmd = old_cmd & ~PCI_COMMAND_MASTER;
3417 	if (cmd != old_cmd) {
3418 		dev_dbg(&dev->dev, "%s bus mastering\n",
3419 			enable ? "enabling" : "disabling");
3420 		pci_write_config_word(dev, PCI_COMMAND, cmd);
3421 	}
3422 	dev->is_busmaster = enable;
3423 }
3424 
3425 /**
3426  * pcibios_setup - process "pci=" kernel boot arguments
3427  * @str: string used to pass in "pci=" kernel boot arguments
3428  *
3429  * Process kernel boot arguments.  This is the default implementation.
3430  * Architecture specific implementations can override this as necessary.
3431  */
3432 char * __weak __init pcibios_setup(char *str)
3433 {
3434 	return str;
3435 }
3436 
3437 /**
3438  * pcibios_set_master - enable PCI bus-mastering for device dev
3439  * @dev: the PCI device to enable
3440  *
3441  * Enables PCI bus-mastering for the device.  This is the default
3442  * implementation.  Architecture specific implementations can override
3443  * this if necessary.
3444  */
3445 void __weak pcibios_set_master(struct pci_dev *dev)
3446 {
3447 	u8 lat;
3448 
3449 	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
3450 	if (pci_is_pcie(dev))
3451 		return;
3452 
3453 	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
3454 	if (lat < 16)
3455 		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
3456 	else if (lat > pcibios_max_latency)
3457 		lat = pcibios_max_latency;
3458 	else
3459 		return;
3460 
3461 	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
3462 }
3463 
3464 /**
3465  * pci_set_master - enables bus-mastering for device dev
3466  * @dev: the PCI device to enable
3467  *
3468  * Enables bus-mastering on the device and calls pcibios_set_master()
3469  * to do the needed arch specific settings.
3470  */
3471 void pci_set_master(struct pci_dev *dev)
3472 {
3473 	__pci_set_master(dev, true);
3474 	pcibios_set_master(dev);
3475 }
3476 EXPORT_SYMBOL(pci_set_master);
3477 
3478 /**
3479  * pci_clear_master - disables bus-mastering for device dev
3480  * @dev: the PCI device to disable
3481  */
3482 void pci_clear_master(struct pci_dev *dev)
3483 {
3484 	__pci_set_master(dev, false);
3485 }
3486 EXPORT_SYMBOL(pci_clear_master);
3487 
3488 /**
3489  * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
3490  * @dev: the PCI device for which MWI is to be enabled
3491  *
3492  * Helper function for pci_set_mwi.
3493  * Originally copied from drivers/net/acenic.c.
3494  * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
3495  *
3496  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3497  */
3498 int pci_set_cacheline_size(struct pci_dev *dev)
3499 {
3500 	u8 cacheline_size;
3501 
3502 	if (!pci_cache_line_size)
3503 		return -EINVAL;
3504 
3505 	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
3506 	   equal to or multiple of the right value. */
3507 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3508 	if (cacheline_size >= pci_cache_line_size &&
3509 	    (cacheline_size % pci_cache_line_size) == 0)
3510 		return 0;
3511 
3512 	/* Write the correct value. */
3513 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
3514 	/* Read it back. */
3515 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3516 	if (cacheline_size == pci_cache_line_size)
3517 		return 0;
3518 
3519 	dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not supported\n",
3520 		   pci_cache_line_size << 2);
3521 
3522 	return -EINVAL;
3523 }
3524 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
3525 
3526 /**
3527  * pci_set_mwi - enables memory-write-invalidate PCI transaction
3528  * @dev: the PCI device for which MWI is enabled
3529  *
3530  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3531  *
3532  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3533  */
3534 int pci_set_mwi(struct pci_dev *dev)
3535 {
3536 #ifdef PCI_DISABLE_MWI
3537 	return 0;
3538 #else
3539 	int rc;
3540 	u16 cmd;
3541 
3542 	rc = pci_set_cacheline_size(dev);
3543 	if (rc)
3544 		return rc;
3545 
3546 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
3547 	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
3548 		dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
3549 		cmd |= PCI_COMMAND_INVALIDATE;
3550 		pci_write_config_word(dev, PCI_COMMAND, cmd);
3551 	}
3552 	return 0;
3553 #endif
3554 }
3555 EXPORT_SYMBOL(pci_set_mwi);
3556 
3557 /**
3558  * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
3559  * @dev: the PCI device for which MWI is enabled
3560  *
3561  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3562  * Callers are not required to check the return value.
3563  *
3564  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3565  */
3566 int pci_try_set_mwi(struct pci_dev *dev)
3567 {
3568 #ifdef PCI_DISABLE_MWI
3569 	return 0;
3570 #else
3571 	return pci_set_mwi(dev);
3572 #endif
3573 }
3574 EXPORT_SYMBOL(pci_try_set_mwi);
3575 
3576 /**
3577  * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
3578  * @dev: the PCI device to disable
3579  *
3580  * Disables PCI Memory-Write-Invalidate transaction on the device
3581  */
3582 void pci_clear_mwi(struct pci_dev *dev)
3583 {
3584 #ifndef PCI_DISABLE_MWI
3585 	u16 cmd;
3586 
3587 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
3588 	if (cmd & PCI_COMMAND_INVALIDATE) {
3589 		cmd &= ~PCI_COMMAND_INVALIDATE;
3590 		pci_write_config_word(dev, PCI_COMMAND, cmd);
3591 	}
3592 #endif
3593 }
3594 EXPORT_SYMBOL(pci_clear_mwi);
3595 
3596 /**
3597  * pci_intx - enables/disables PCI INTx for device dev
3598  * @pdev: the PCI device to operate on
3599  * @enable: boolean: whether to enable or disable PCI INTx
3600  *
3601  * Enables/disables PCI INTx for device dev
3602  */
3603 void pci_intx(struct pci_dev *pdev, int enable)
3604 {
3605 	u16 pci_command, new;
3606 
3607 	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
3608 
3609 	if (enable)
3610 		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
3611 	else
3612 		new = pci_command | PCI_COMMAND_INTX_DISABLE;
3613 
3614 	if (new != pci_command) {
3615 		struct pci_devres *dr;
3616 
3617 		pci_write_config_word(pdev, PCI_COMMAND, new);
3618 
3619 		dr = find_pci_dr(pdev);
3620 		if (dr && !dr->restore_intx) {
3621 			dr->restore_intx = 1;
3622 			dr->orig_intx = !enable;
3623 		}
3624 	}
3625 }
3626 EXPORT_SYMBOL_GPL(pci_intx);
3627 
3628 /**
3629  * pci_intx_mask_supported - probe for INTx masking support
3630  * @dev: the PCI device to operate on
3631  *
3632  * Check if the device dev support INTx masking via the config space
3633  * command word.
3634  */
3635 bool pci_intx_mask_supported(struct pci_dev *dev)
3636 {
3637 	bool mask_supported = false;
3638 	u16 orig, new;
3639 
3640 	if (dev->broken_intx_masking)
3641 		return false;
3642 
3643 	pci_cfg_access_lock(dev);
3644 
3645 	pci_read_config_word(dev, PCI_COMMAND, &orig);
3646 	pci_write_config_word(dev, PCI_COMMAND,
3647 			      orig ^ PCI_COMMAND_INTX_DISABLE);
3648 	pci_read_config_word(dev, PCI_COMMAND, &new);
3649 
3650 	/*
3651 	 * There's no way to protect against hardware bugs or detect them
3652 	 * reliably, but as long as we know what the value should be, let's
3653 	 * go ahead and check it.
3654 	 */
3655 	if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) {
3656 		dev_err(&dev->dev, "Command register changed from 0x%x to 0x%x: driver or hardware bug?\n",
3657 			orig, new);
3658 	} else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) {
3659 		mask_supported = true;
3660 		pci_write_config_word(dev, PCI_COMMAND, orig);
3661 	}
3662 
3663 	pci_cfg_access_unlock(dev);
3664 	return mask_supported;
3665 }
3666 EXPORT_SYMBOL_GPL(pci_intx_mask_supported);
3667 
3668 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
3669 {
3670 	struct pci_bus *bus = dev->bus;
3671 	bool mask_updated = true;
3672 	u32 cmd_status_dword;
3673 	u16 origcmd, newcmd;
3674 	unsigned long flags;
3675 	bool irq_pending;
3676 
3677 	/*
3678 	 * We do a single dword read to retrieve both command and status.
3679 	 * Document assumptions that make this possible.
3680 	 */
3681 	BUILD_BUG_ON(PCI_COMMAND % 4);
3682 	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
3683 
3684 	raw_spin_lock_irqsave(&pci_lock, flags);
3685 
3686 	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
3687 
3688 	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
3689 
3690 	/*
3691 	 * Check interrupt status register to see whether our device
3692 	 * triggered the interrupt (when masking) or the next IRQ is
3693 	 * already pending (when unmasking).
3694 	 */
3695 	if (mask != irq_pending) {
3696 		mask_updated = false;
3697 		goto done;
3698 	}
3699 
3700 	origcmd = cmd_status_dword;
3701 	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
3702 	if (mask)
3703 		newcmd |= PCI_COMMAND_INTX_DISABLE;
3704 	if (newcmd != origcmd)
3705 		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
3706 
3707 done:
3708 	raw_spin_unlock_irqrestore(&pci_lock, flags);
3709 
3710 	return mask_updated;
3711 }
3712 
3713 /**
3714  * pci_check_and_mask_intx - mask INTx on pending interrupt
3715  * @dev: the PCI device to operate on
3716  *
3717  * Check if the device dev has its INTx line asserted, mask it and
3718  * return true in that case. False is returned if not interrupt was
3719  * pending.
3720  */
3721 bool pci_check_and_mask_intx(struct pci_dev *dev)
3722 {
3723 	return pci_check_and_set_intx_mask(dev, true);
3724 }
3725 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
3726 
3727 /**
3728  * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
3729  * @dev: the PCI device to operate on
3730  *
3731  * Check if the device dev has its INTx line asserted, unmask it if not
3732  * and return true. False is returned and the mask remains active if
3733  * there was still an interrupt pending.
3734  */
3735 bool pci_check_and_unmask_intx(struct pci_dev *dev)
3736 {
3737 	return pci_check_and_set_intx_mask(dev, false);
3738 }
3739 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
3740 
3741 /**
3742  * pci_wait_for_pending_transaction - waits for pending transaction
3743  * @dev: the PCI device to operate on
3744  *
3745  * Return 0 if transaction is pending 1 otherwise.
3746  */
3747 int pci_wait_for_pending_transaction(struct pci_dev *dev)
3748 {
3749 	if (!pci_is_pcie(dev))
3750 		return 1;
3751 
3752 	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
3753 				    PCI_EXP_DEVSTA_TRPND);
3754 }
3755 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
3756 
3757 /*
3758  * We should only need to wait 100ms after FLR, but some devices take longer.
3759  * Wait for up to 1000ms for config space to return something other than -1.
3760  * Intel IGD requires this when an LCD panel is attached.  We read the 2nd
3761  * dword because VFs don't implement the 1st dword.
3762  */
3763 static void pci_flr_wait(struct pci_dev *dev)
3764 {
3765 	int i = 0;
3766 	u32 id;
3767 
3768 	do {
3769 		msleep(100);
3770 		pci_read_config_dword(dev, PCI_COMMAND, &id);
3771 	} while (i++ < 10 && id == ~0);
3772 
3773 	if (id == ~0)
3774 		dev_warn(&dev->dev, "Failed to return from FLR\n");
3775 	else if (i > 1)
3776 		dev_info(&dev->dev, "Required additional %dms to return from FLR\n",
3777 			 (i - 1) * 100);
3778 }
3779 
3780 static int pcie_flr(struct pci_dev *dev, int probe)
3781 {
3782 	u32 cap;
3783 
3784 	pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
3785 	if (!(cap & PCI_EXP_DEVCAP_FLR))
3786 		return -ENOTTY;
3787 
3788 	if (probe)
3789 		return 0;
3790 
3791 	if (!pci_wait_for_pending_transaction(dev))
3792 		dev_err(&dev->dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
3793 
3794 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
3795 	pci_flr_wait(dev);
3796 	return 0;
3797 }
3798 
3799 static int pci_af_flr(struct pci_dev *dev, int probe)
3800 {
3801 	int pos;
3802 	u8 cap;
3803 
3804 	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
3805 	if (!pos)
3806 		return -ENOTTY;
3807 
3808 	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
3809 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
3810 		return -ENOTTY;
3811 
3812 	if (probe)
3813 		return 0;
3814 
3815 	/*
3816 	 * Wait for Transaction Pending bit to clear.  A word-aligned test
3817 	 * is used, so we use the conrol offset rather than status and shift
3818 	 * the test bit to match.
3819 	 */
3820 	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
3821 				 PCI_AF_STATUS_TP << 8))
3822 		dev_err(&dev->dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
3823 
3824 	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
3825 	pci_flr_wait(dev);
3826 	return 0;
3827 }
3828 
3829 /**
3830  * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
3831  * @dev: Device to reset.
3832  * @probe: If set, only check if the device can be reset this way.
3833  *
3834  * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
3835  * unset, it will be reinitialized internally when going from PCI_D3hot to
3836  * PCI_D0.  If that's the case and the device is not in a low-power state
3837  * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
3838  *
3839  * NOTE: This causes the caller to sleep for twice the device power transition
3840  * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
3841  * by default (i.e. unless the @dev's d3_delay field has a different value).
3842  * Moreover, only devices in D0 can be reset by this function.
3843  */
3844 static int pci_pm_reset(struct pci_dev *dev, int probe)
3845 {
3846 	u16 csr;
3847 
3848 	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
3849 		return -ENOTTY;
3850 
3851 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
3852 	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
3853 		return -ENOTTY;
3854 
3855 	if (probe)
3856 		return 0;
3857 
3858 	if (dev->current_state != PCI_D0)
3859 		return -EINVAL;
3860 
3861 	csr &= ~PCI_PM_CTRL_STATE_MASK;
3862 	csr |= PCI_D3hot;
3863 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3864 	pci_dev_d3_sleep(dev);
3865 
3866 	csr &= ~PCI_PM_CTRL_STATE_MASK;
3867 	csr |= PCI_D0;
3868 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3869 	pci_dev_d3_sleep(dev);
3870 
3871 	return 0;
3872 }
3873 
3874 void pci_reset_secondary_bus(struct pci_dev *dev)
3875 {
3876 	u16 ctrl;
3877 
3878 	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
3879 	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
3880 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3881 	/*
3882 	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
3883 	 * this to 2ms to ensure that we meet the minimum requirement.
3884 	 */
3885 	msleep(2);
3886 
3887 	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
3888 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3889 
3890 	/*
3891 	 * Trhfa for conventional PCI is 2^25 clock cycles.
3892 	 * Assuming a minimum 33MHz clock this results in a 1s
3893 	 * delay before we can consider subordinate devices to
3894 	 * be re-initialized.  PCIe has some ways to shorten this,
3895 	 * but we don't make use of them yet.
3896 	 */
3897 	ssleep(1);
3898 }
3899 
3900 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
3901 {
3902 	pci_reset_secondary_bus(dev);
3903 }
3904 
3905 /**
3906  * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge.
3907  * @dev: Bridge device
3908  *
3909  * Use the bridge control register to assert reset on the secondary bus.
3910  * Devices on the secondary bus are left in power-on state.
3911  */
3912 void pci_reset_bridge_secondary_bus(struct pci_dev *dev)
3913 {
3914 	pcibios_reset_secondary_bus(dev);
3915 }
3916 EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus);
3917 
3918 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
3919 {
3920 	struct pci_dev *pdev;
3921 
3922 	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
3923 	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
3924 		return -ENOTTY;
3925 
3926 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3927 		if (pdev != dev)
3928 			return -ENOTTY;
3929 
3930 	if (probe)
3931 		return 0;
3932 
3933 	pci_reset_bridge_secondary_bus(dev->bus->self);
3934 
3935 	return 0;
3936 }
3937 
3938 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
3939 {
3940 	int rc = -ENOTTY;
3941 
3942 	if (!hotplug || !try_module_get(hotplug->ops->owner))
3943 		return rc;
3944 
3945 	if (hotplug->ops->reset_slot)
3946 		rc = hotplug->ops->reset_slot(hotplug, probe);
3947 
3948 	module_put(hotplug->ops->owner);
3949 
3950 	return rc;
3951 }
3952 
3953 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
3954 {
3955 	struct pci_dev *pdev;
3956 
3957 	if (dev->subordinate || !dev->slot ||
3958 	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
3959 		return -ENOTTY;
3960 
3961 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3962 		if (pdev != dev && pdev->slot == dev->slot)
3963 			return -ENOTTY;
3964 
3965 	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
3966 }
3967 
3968 static int __pci_dev_reset(struct pci_dev *dev, int probe)
3969 {
3970 	int rc;
3971 
3972 	might_sleep();
3973 
3974 	rc = pci_dev_specific_reset(dev, probe);
3975 	if (rc != -ENOTTY)
3976 		goto done;
3977 
3978 	rc = pcie_flr(dev, probe);
3979 	if (rc != -ENOTTY)
3980 		goto done;
3981 
3982 	rc = pci_af_flr(dev, probe);
3983 	if (rc != -ENOTTY)
3984 		goto done;
3985 
3986 	rc = pci_pm_reset(dev, probe);
3987 	if (rc != -ENOTTY)
3988 		goto done;
3989 
3990 	rc = pci_dev_reset_slot_function(dev, probe);
3991 	if (rc != -ENOTTY)
3992 		goto done;
3993 
3994 	rc = pci_parent_bus_reset(dev, probe);
3995 done:
3996 	return rc;
3997 }
3998 
3999 static void pci_dev_lock(struct pci_dev *dev)
4000 {
4001 	pci_cfg_access_lock(dev);
4002 	/* block PM suspend, driver probe, etc. */
4003 	device_lock(&dev->dev);
4004 }
4005 
4006 /* Return 1 on successful lock, 0 on contention */
4007 static int pci_dev_trylock(struct pci_dev *dev)
4008 {
4009 	if (pci_cfg_access_trylock(dev)) {
4010 		if (device_trylock(&dev->dev))
4011 			return 1;
4012 		pci_cfg_access_unlock(dev);
4013 	}
4014 
4015 	return 0;
4016 }
4017 
4018 static void pci_dev_unlock(struct pci_dev *dev)
4019 {
4020 	device_unlock(&dev->dev);
4021 	pci_cfg_access_unlock(dev);
4022 }
4023 
4024 /**
4025  * pci_reset_notify - notify device driver of reset
4026  * @dev: device to be notified of reset
4027  * @prepare: 'true' if device is about to be reset; 'false' if reset attempt
4028  *           completed
4029  *
4030  * Must be called prior to device access being disabled and after device
4031  * access is restored.
4032  */
4033 static void pci_reset_notify(struct pci_dev *dev, bool prepare)
4034 {
4035 	const struct pci_error_handlers *err_handler =
4036 			dev->driver ? dev->driver->err_handler : NULL;
4037 	if (err_handler && err_handler->reset_notify)
4038 		err_handler->reset_notify(dev, prepare);
4039 }
4040 
4041 static void pci_dev_save_and_disable(struct pci_dev *dev)
4042 {
4043 	pci_reset_notify(dev, true);
4044 
4045 	/*
4046 	 * Wake-up device prior to save.  PM registers default to D0 after
4047 	 * reset and a simple register restore doesn't reliably return
4048 	 * to a non-D0 state anyway.
4049 	 */
4050 	pci_set_power_state(dev, PCI_D0);
4051 
4052 	pci_save_state(dev);
4053 	/*
4054 	 * Disable the device by clearing the Command register, except for
4055 	 * INTx-disable which is set.  This not only disables MMIO and I/O port
4056 	 * BARs, but also prevents the device from being Bus Master, preventing
4057 	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
4058 	 * compliant devices, INTx-disable prevents legacy interrupts.
4059 	 */
4060 	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
4061 }
4062 
4063 static void pci_dev_restore(struct pci_dev *dev)
4064 {
4065 	pci_restore_state(dev);
4066 	pci_reset_notify(dev, false);
4067 }
4068 
4069 static int pci_dev_reset(struct pci_dev *dev, int probe)
4070 {
4071 	int rc;
4072 
4073 	if (!probe)
4074 		pci_dev_lock(dev);
4075 
4076 	rc = __pci_dev_reset(dev, probe);
4077 
4078 	if (!probe)
4079 		pci_dev_unlock(dev);
4080 
4081 	return rc;
4082 }
4083 
4084 /**
4085  * __pci_reset_function - reset a PCI device function
4086  * @dev: PCI device to reset
4087  *
4088  * Some devices allow an individual function to be reset without affecting
4089  * other functions in the same device.  The PCI device must be responsive
4090  * to PCI config space in order to use this function.
4091  *
4092  * The device function is presumed to be unused when this function is called.
4093  * Resetting the device will make the contents of PCI configuration space
4094  * random, so any caller of this must be prepared to reinitialise the
4095  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4096  * etc.
4097  *
4098  * Returns 0 if the device function was successfully reset or negative if the
4099  * device doesn't support resetting a single function.
4100  */
4101 int __pci_reset_function(struct pci_dev *dev)
4102 {
4103 	return pci_dev_reset(dev, 0);
4104 }
4105 EXPORT_SYMBOL_GPL(__pci_reset_function);
4106 
4107 /**
4108  * __pci_reset_function_locked - reset a PCI device function while holding
4109  * the @dev mutex lock.
4110  * @dev: PCI device to reset
4111  *
4112  * Some devices allow an individual function to be reset without affecting
4113  * other functions in the same device.  The PCI device must be responsive
4114  * to PCI config space in order to use this function.
4115  *
4116  * The device function is presumed to be unused and the caller is holding
4117  * the device mutex lock when this function is called.
4118  * Resetting the device will make the contents of PCI configuration space
4119  * random, so any caller of this must be prepared to reinitialise the
4120  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4121  * etc.
4122  *
4123  * Returns 0 if the device function was successfully reset or negative if the
4124  * device doesn't support resetting a single function.
4125  */
4126 int __pci_reset_function_locked(struct pci_dev *dev)
4127 {
4128 	return __pci_dev_reset(dev, 0);
4129 }
4130 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
4131 
4132 /**
4133  * pci_probe_reset_function - check whether the device can be safely reset
4134  * @dev: PCI device to reset
4135  *
4136  * Some devices allow an individual function to be reset without affecting
4137  * other functions in the same device.  The PCI device must be responsive
4138  * to PCI config space in order to use this function.
4139  *
4140  * Returns 0 if the device function can be reset or negative if the
4141  * device doesn't support resetting a single function.
4142  */
4143 int pci_probe_reset_function(struct pci_dev *dev)
4144 {
4145 	return pci_dev_reset(dev, 1);
4146 }
4147 
4148 /**
4149  * pci_reset_function - quiesce and reset a PCI device function
4150  * @dev: PCI device to reset
4151  *
4152  * Some devices allow an individual function to be reset without affecting
4153  * other functions in the same device.  The PCI device must be responsive
4154  * to PCI config space in order to use this function.
4155  *
4156  * This function does not just reset the PCI portion of a device, but
4157  * clears all the state associated with the device.  This function differs
4158  * from __pci_reset_function in that it saves and restores device state
4159  * over the reset.
4160  *
4161  * Returns 0 if the device function was successfully reset or negative if the
4162  * device doesn't support resetting a single function.
4163  */
4164 int pci_reset_function(struct pci_dev *dev)
4165 {
4166 	int rc;
4167 
4168 	rc = pci_dev_reset(dev, 1);
4169 	if (rc)
4170 		return rc;
4171 
4172 	pci_dev_save_and_disable(dev);
4173 
4174 	rc = pci_dev_reset(dev, 0);
4175 
4176 	pci_dev_restore(dev);
4177 
4178 	return rc;
4179 }
4180 EXPORT_SYMBOL_GPL(pci_reset_function);
4181 
4182 /**
4183  * pci_try_reset_function - quiesce and reset a PCI device function
4184  * @dev: PCI device to reset
4185  *
4186  * Same as above, except return -EAGAIN if unable to lock device.
4187  */
4188 int pci_try_reset_function(struct pci_dev *dev)
4189 {
4190 	int rc;
4191 
4192 	rc = pci_dev_reset(dev, 1);
4193 	if (rc)
4194 		return rc;
4195 
4196 	pci_dev_save_and_disable(dev);
4197 
4198 	if (pci_dev_trylock(dev)) {
4199 		rc = __pci_dev_reset(dev, 0);
4200 		pci_dev_unlock(dev);
4201 	} else
4202 		rc = -EAGAIN;
4203 
4204 	pci_dev_restore(dev);
4205 
4206 	return rc;
4207 }
4208 EXPORT_SYMBOL_GPL(pci_try_reset_function);
4209 
4210 /* Do any devices on or below this bus prevent a bus reset? */
4211 static bool pci_bus_resetable(struct pci_bus *bus)
4212 {
4213 	struct pci_dev *dev;
4214 
4215 	list_for_each_entry(dev, &bus->devices, bus_list) {
4216 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
4217 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
4218 			return false;
4219 	}
4220 
4221 	return true;
4222 }
4223 
4224 /* Lock devices from the top of the tree down */
4225 static void pci_bus_lock(struct pci_bus *bus)
4226 {
4227 	struct pci_dev *dev;
4228 
4229 	list_for_each_entry(dev, &bus->devices, bus_list) {
4230 		pci_dev_lock(dev);
4231 		if (dev->subordinate)
4232 			pci_bus_lock(dev->subordinate);
4233 	}
4234 }
4235 
4236 /* Unlock devices from the bottom of the tree up */
4237 static void pci_bus_unlock(struct pci_bus *bus)
4238 {
4239 	struct pci_dev *dev;
4240 
4241 	list_for_each_entry(dev, &bus->devices, bus_list) {
4242 		if (dev->subordinate)
4243 			pci_bus_unlock(dev->subordinate);
4244 		pci_dev_unlock(dev);
4245 	}
4246 }
4247 
4248 /* Return 1 on successful lock, 0 on contention */
4249 static int pci_bus_trylock(struct pci_bus *bus)
4250 {
4251 	struct pci_dev *dev;
4252 
4253 	list_for_each_entry(dev, &bus->devices, bus_list) {
4254 		if (!pci_dev_trylock(dev))
4255 			goto unlock;
4256 		if (dev->subordinate) {
4257 			if (!pci_bus_trylock(dev->subordinate)) {
4258 				pci_dev_unlock(dev);
4259 				goto unlock;
4260 			}
4261 		}
4262 	}
4263 	return 1;
4264 
4265 unlock:
4266 	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
4267 		if (dev->subordinate)
4268 			pci_bus_unlock(dev->subordinate);
4269 		pci_dev_unlock(dev);
4270 	}
4271 	return 0;
4272 }
4273 
4274 /* Do any devices on or below this slot prevent a bus reset? */
4275 static bool pci_slot_resetable(struct pci_slot *slot)
4276 {
4277 	struct pci_dev *dev;
4278 
4279 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4280 		if (!dev->slot || dev->slot != slot)
4281 			continue;
4282 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
4283 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
4284 			return false;
4285 	}
4286 
4287 	return true;
4288 }
4289 
4290 /* Lock devices from the top of the tree down */
4291 static void pci_slot_lock(struct pci_slot *slot)
4292 {
4293 	struct pci_dev *dev;
4294 
4295 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4296 		if (!dev->slot || dev->slot != slot)
4297 			continue;
4298 		pci_dev_lock(dev);
4299 		if (dev->subordinate)
4300 			pci_bus_lock(dev->subordinate);
4301 	}
4302 }
4303 
4304 /* Unlock devices from the bottom of the tree up */
4305 static void pci_slot_unlock(struct pci_slot *slot)
4306 {
4307 	struct pci_dev *dev;
4308 
4309 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4310 		if (!dev->slot || dev->slot != slot)
4311 			continue;
4312 		if (dev->subordinate)
4313 			pci_bus_unlock(dev->subordinate);
4314 		pci_dev_unlock(dev);
4315 	}
4316 }
4317 
4318 /* Return 1 on successful lock, 0 on contention */
4319 static int pci_slot_trylock(struct pci_slot *slot)
4320 {
4321 	struct pci_dev *dev;
4322 
4323 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4324 		if (!dev->slot || dev->slot != slot)
4325 			continue;
4326 		if (!pci_dev_trylock(dev))
4327 			goto unlock;
4328 		if (dev->subordinate) {
4329 			if (!pci_bus_trylock(dev->subordinate)) {
4330 				pci_dev_unlock(dev);
4331 				goto unlock;
4332 			}
4333 		}
4334 	}
4335 	return 1;
4336 
4337 unlock:
4338 	list_for_each_entry_continue_reverse(dev,
4339 					     &slot->bus->devices, bus_list) {
4340 		if (!dev->slot || dev->slot != slot)
4341 			continue;
4342 		if (dev->subordinate)
4343 			pci_bus_unlock(dev->subordinate);
4344 		pci_dev_unlock(dev);
4345 	}
4346 	return 0;
4347 }
4348 
4349 /* Save and disable devices from the top of the tree down */
4350 static void pci_bus_save_and_disable(struct pci_bus *bus)
4351 {
4352 	struct pci_dev *dev;
4353 
4354 	list_for_each_entry(dev, &bus->devices, bus_list) {
4355 		pci_dev_save_and_disable(dev);
4356 		if (dev->subordinate)
4357 			pci_bus_save_and_disable(dev->subordinate);
4358 	}
4359 }
4360 
4361 /*
4362  * Restore devices from top of the tree down - parent bridges need to be
4363  * restored before we can get to subordinate devices.
4364  */
4365 static void pci_bus_restore(struct pci_bus *bus)
4366 {
4367 	struct pci_dev *dev;
4368 
4369 	list_for_each_entry(dev, &bus->devices, bus_list) {
4370 		pci_dev_restore(dev);
4371 		if (dev->subordinate)
4372 			pci_bus_restore(dev->subordinate);
4373 	}
4374 }
4375 
4376 /* Save and disable devices from the top of the tree down */
4377 static void pci_slot_save_and_disable(struct pci_slot *slot)
4378 {
4379 	struct pci_dev *dev;
4380 
4381 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4382 		if (!dev->slot || dev->slot != slot)
4383 			continue;
4384 		pci_dev_save_and_disable(dev);
4385 		if (dev->subordinate)
4386 			pci_bus_save_and_disable(dev->subordinate);
4387 	}
4388 }
4389 
4390 /*
4391  * Restore devices from top of the tree down - parent bridges need to be
4392  * restored before we can get to subordinate devices.
4393  */
4394 static void pci_slot_restore(struct pci_slot *slot)
4395 {
4396 	struct pci_dev *dev;
4397 
4398 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4399 		if (!dev->slot || dev->slot != slot)
4400 			continue;
4401 		pci_dev_restore(dev);
4402 		if (dev->subordinate)
4403 			pci_bus_restore(dev->subordinate);
4404 	}
4405 }
4406 
4407 static int pci_slot_reset(struct pci_slot *slot, int probe)
4408 {
4409 	int rc;
4410 
4411 	if (!slot || !pci_slot_resetable(slot))
4412 		return -ENOTTY;
4413 
4414 	if (!probe)
4415 		pci_slot_lock(slot);
4416 
4417 	might_sleep();
4418 
4419 	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
4420 
4421 	if (!probe)
4422 		pci_slot_unlock(slot);
4423 
4424 	return rc;
4425 }
4426 
4427 /**
4428  * pci_probe_reset_slot - probe whether a PCI slot can be reset
4429  * @slot: PCI slot to probe
4430  *
4431  * Return 0 if slot can be reset, negative if a slot reset is not supported.
4432  */
4433 int pci_probe_reset_slot(struct pci_slot *slot)
4434 {
4435 	return pci_slot_reset(slot, 1);
4436 }
4437 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
4438 
4439 /**
4440  * pci_reset_slot - reset a PCI slot
4441  * @slot: PCI slot to reset
4442  *
4443  * A PCI bus may host multiple slots, each slot may support a reset mechanism
4444  * independent of other slots.  For instance, some slots may support slot power
4445  * control.  In the case of a 1:1 bus to slot architecture, this function may
4446  * wrap the bus reset to avoid spurious slot related events such as hotplug.
4447  * Generally a slot reset should be attempted before a bus reset.  All of the
4448  * function of the slot and any subordinate buses behind the slot are reset
4449  * through this function.  PCI config space of all devices in the slot and
4450  * behind the slot is saved before and restored after reset.
4451  *
4452  * Return 0 on success, non-zero on error.
4453  */
4454 int pci_reset_slot(struct pci_slot *slot)
4455 {
4456 	int rc;
4457 
4458 	rc = pci_slot_reset(slot, 1);
4459 	if (rc)
4460 		return rc;
4461 
4462 	pci_slot_save_and_disable(slot);
4463 
4464 	rc = pci_slot_reset(slot, 0);
4465 
4466 	pci_slot_restore(slot);
4467 
4468 	return rc;
4469 }
4470 EXPORT_SYMBOL_GPL(pci_reset_slot);
4471 
4472 /**
4473  * pci_try_reset_slot - Try to reset a PCI slot
4474  * @slot: PCI slot to reset
4475  *
4476  * Same as above except return -EAGAIN if the slot cannot be locked
4477  */
4478 int pci_try_reset_slot(struct pci_slot *slot)
4479 {
4480 	int rc;
4481 
4482 	rc = pci_slot_reset(slot, 1);
4483 	if (rc)
4484 		return rc;
4485 
4486 	pci_slot_save_and_disable(slot);
4487 
4488 	if (pci_slot_trylock(slot)) {
4489 		might_sleep();
4490 		rc = pci_reset_hotplug_slot(slot->hotplug, 0);
4491 		pci_slot_unlock(slot);
4492 	} else
4493 		rc = -EAGAIN;
4494 
4495 	pci_slot_restore(slot);
4496 
4497 	return rc;
4498 }
4499 EXPORT_SYMBOL_GPL(pci_try_reset_slot);
4500 
4501 static int pci_bus_reset(struct pci_bus *bus, int probe)
4502 {
4503 	if (!bus->self || !pci_bus_resetable(bus))
4504 		return -ENOTTY;
4505 
4506 	if (probe)
4507 		return 0;
4508 
4509 	pci_bus_lock(bus);
4510 
4511 	might_sleep();
4512 
4513 	pci_reset_bridge_secondary_bus(bus->self);
4514 
4515 	pci_bus_unlock(bus);
4516 
4517 	return 0;
4518 }
4519 
4520 /**
4521  * pci_probe_reset_bus - probe whether a PCI bus can be reset
4522  * @bus: PCI bus to probe
4523  *
4524  * Return 0 if bus can be reset, negative if a bus reset is not supported.
4525  */
4526 int pci_probe_reset_bus(struct pci_bus *bus)
4527 {
4528 	return pci_bus_reset(bus, 1);
4529 }
4530 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
4531 
4532 /**
4533  * pci_reset_bus - reset a PCI bus
4534  * @bus: top level PCI bus to reset
4535  *
4536  * Do a bus reset on the given bus and any subordinate buses, saving
4537  * and restoring state of all devices.
4538  *
4539  * Return 0 on success, non-zero on error.
4540  */
4541 int pci_reset_bus(struct pci_bus *bus)
4542 {
4543 	int rc;
4544 
4545 	rc = pci_bus_reset(bus, 1);
4546 	if (rc)
4547 		return rc;
4548 
4549 	pci_bus_save_and_disable(bus);
4550 
4551 	rc = pci_bus_reset(bus, 0);
4552 
4553 	pci_bus_restore(bus);
4554 
4555 	return rc;
4556 }
4557 EXPORT_SYMBOL_GPL(pci_reset_bus);
4558 
4559 /**
4560  * pci_try_reset_bus - Try to reset a PCI bus
4561  * @bus: top level PCI bus to reset
4562  *
4563  * Same as above except return -EAGAIN if the bus cannot be locked
4564  */
4565 int pci_try_reset_bus(struct pci_bus *bus)
4566 {
4567 	int rc;
4568 
4569 	rc = pci_bus_reset(bus, 1);
4570 	if (rc)
4571 		return rc;
4572 
4573 	pci_bus_save_and_disable(bus);
4574 
4575 	if (pci_bus_trylock(bus)) {
4576 		might_sleep();
4577 		pci_reset_bridge_secondary_bus(bus->self);
4578 		pci_bus_unlock(bus);
4579 	} else
4580 		rc = -EAGAIN;
4581 
4582 	pci_bus_restore(bus);
4583 
4584 	return rc;
4585 }
4586 EXPORT_SYMBOL_GPL(pci_try_reset_bus);
4587 
4588 /**
4589  * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
4590  * @dev: PCI device to query
4591  *
4592  * Returns mmrbc: maximum designed memory read count in bytes
4593  *    or appropriate error value.
4594  */
4595 int pcix_get_max_mmrbc(struct pci_dev *dev)
4596 {
4597 	int cap;
4598 	u32 stat;
4599 
4600 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4601 	if (!cap)
4602 		return -EINVAL;
4603 
4604 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4605 		return -EINVAL;
4606 
4607 	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
4608 }
4609 EXPORT_SYMBOL(pcix_get_max_mmrbc);
4610 
4611 /**
4612  * pcix_get_mmrbc - get PCI-X maximum memory read byte count
4613  * @dev: PCI device to query
4614  *
4615  * Returns mmrbc: maximum memory read count in bytes
4616  *    or appropriate error value.
4617  */
4618 int pcix_get_mmrbc(struct pci_dev *dev)
4619 {
4620 	int cap;
4621 	u16 cmd;
4622 
4623 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4624 	if (!cap)
4625 		return -EINVAL;
4626 
4627 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4628 		return -EINVAL;
4629 
4630 	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
4631 }
4632 EXPORT_SYMBOL(pcix_get_mmrbc);
4633 
4634 /**
4635  * pcix_set_mmrbc - set PCI-X maximum memory read byte count
4636  * @dev: PCI device to query
4637  * @mmrbc: maximum memory read count in bytes
4638  *    valid values are 512, 1024, 2048, 4096
4639  *
4640  * If possible sets maximum memory read byte count, some bridges have erratas
4641  * that prevent this.
4642  */
4643 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
4644 {
4645 	int cap;
4646 	u32 stat, v, o;
4647 	u16 cmd;
4648 
4649 	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
4650 		return -EINVAL;
4651 
4652 	v = ffs(mmrbc) - 10;
4653 
4654 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4655 	if (!cap)
4656 		return -EINVAL;
4657 
4658 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4659 		return -EINVAL;
4660 
4661 	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
4662 		return -E2BIG;
4663 
4664 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4665 		return -EINVAL;
4666 
4667 	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
4668 	if (o != v) {
4669 		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
4670 			return -EIO;
4671 
4672 		cmd &= ~PCI_X_CMD_MAX_READ;
4673 		cmd |= v << 2;
4674 		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
4675 			return -EIO;
4676 	}
4677 	return 0;
4678 }
4679 EXPORT_SYMBOL(pcix_set_mmrbc);
4680 
4681 /**
4682  * pcie_get_readrq - get PCI Express read request size
4683  * @dev: PCI device to query
4684  *
4685  * Returns maximum memory read request in bytes
4686  *    or appropriate error value.
4687  */
4688 int pcie_get_readrq(struct pci_dev *dev)
4689 {
4690 	u16 ctl;
4691 
4692 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4693 
4694 	return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
4695 }
4696 EXPORT_SYMBOL(pcie_get_readrq);
4697 
4698 /**
4699  * pcie_set_readrq - set PCI Express maximum memory read request
4700  * @dev: PCI device to query
4701  * @rq: maximum memory read count in bytes
4702  *    valid values are 128, 256, 512, 1024, 2048, 4096
4703  *
4704  * If possible sets maximum memory read request in bytes
4705  */
4706 int pcie_set_readrq(struct pci_dev *dev, int rq)
4707 {
4708 	u16 v;
4709 
4710 	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
4711 		return -EINVAL;
4712 
4713 	/*
4714 	 * If using the "performance" PCIe config, we clamp the
4715 	 * read rq size to the max packet size to prevent the
4716 	 * host bridge generating requests larger than we can
4717 	 * cope with
4718 	 */
4719 	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
4720 		int mps = pcie_get_mps(dev);
4721 
4722 		if (mps < rq)
4723 			rq = mps;
4724 	}
4725 
4726 	v = (ffs(rq) - 8) << 12;
4727 
4728 	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4729 						  PCI_EXP_DEVCTL_READRQ, v);
4730 }
4731 EXPORT_SYMBOL(pcie_set_readrq);
4732 
4733 /**
4734  * pcie_get_mps - get PCI Express maximum payload size
4735  * @dev: PCI device to query
4736  *
4737  * Returns maximum payload size in bytes
4738  */
4739 int pcie_get_mps(struct pci_dev *dev)
4740 {
4741 	u16 ctl;
4742 
4743 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4744 
4745 	return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
4746 }
4747 EXPORT_SYMBOL(pcie_get_mps);
4748 
4749 /**
4750  * pcie_set_mps - set PCI Express maximum payload size
4751  * @dev: PCI device to query
4752  * @mps: maximum payload size in bytes
4753  *    valid values are 128, 256, 512, 1024, 2048, 4096
4754  *
4755  * If possible sets maximum payload size
4756  */
4757 int pcie_set_mps(struct pci_dev *dev, int mps)
4758 {
4759 	u16 v;
4760 
4761 	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
4762 		return -EINVAL;
4763 
4764 	v = ffs(mps) - 8;
4765 	if (v > dev->pcie_mpss)
4766 		return -EINVAL;
4767 	v <<= 5;
4768 
4769 	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4770 						  PCI_EXP_DEVCTL_PAYLOAD, v);
4771 }
4772 EXPORT_SYMBOL(pcie_set_mps);
4773 
4774 /**
4775  * pcie_get_minimum_link - determine minimum link settings of a PCI device
4776  * @dev: PCI device to query
4777  * @speed: storage for minimum speed
4778  * @width: storage for minimum width
4779  *
4780  * This function will walk up the PCI device chain and determine the minimum
4781  * link width and speed of the device.
4782  */
4783 int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed,
4784 			  enum pcie_link_width *width)
4785 {
4786 	int ret;
4787 
4788 	*speed = PCI_SPEED_UNKNOWN;
4789 	*width = PCIE_LNK_WIDTH_UNKNOWN;
4790 
4791 	while (dev) {
4792 		u16 lnksta;
4793 		enum pci_bus_speed next_speed;
4794 		enum pcie_link_width next_width;
4795 
4796 		ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
4797 		if (ret)
4798 			return ret;
4799 
4800 		next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
4801 		next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
4802 			PCI_EXP_LNKSTA_NLW_SHIFT;
4803 
4804 		if (next_speed < *speed)
4805 			*speed = next_speed;
4806 
4807 		if (next_width < *width)
4808 			*width = next_width;
4809 
4810 		dev = dev->bus->self;
4811 	}
4812 
4813 	return 0;
4814 }
4815 EXPORT_SYMBOL(pcie_get_minimum_link);
4816 
4817 /**
4818  * pci_select_bars - Make BAR mask from the type of resource
4819  * @dev: the PCI device for which BAR mask is made
4820  * @flags: resource type mask to be selected
4821  *
4822  * This helper routine makes bar mask from the type of resource.
4823  */
4824 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
4825 {
4826 	int i, bars = 0;
4827 	for (i = 0; i < PCI_NUM_RESOURCES; i++)
4828 		if (pci_resource_flags(dev, i) & flags)
4829 			bars |= (1 << i);
4830 	return bars;
4831 }
4832 EXPORT_SYMBOL(pci_select_bars);
4833 
4834 /**
4835  * pci_resource_bar - get position of the BAR associated with a resource
4836  * @dev: the PCI device
4837  * @resno: the resource number
4838  * @type: the BAR type to be filled in
4839  *
4840  * Returns BAR position in config space, or 0 if the BAR is invalid.
4841  */
4842 int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
4843 {
4844 	int reg;
4845 
4846 	if (resno < PCI_ROM_RESOURCE) {
4847 		*type = pci_bar_unknown;
4848 		return PCI_BASE_ADDRESS_0 + 4 * resno;
4849 	} else if (resno == PCI_ROM_RESOURCE) {
4850 		*type = pci_bar_mem32;
4851 		return dev->rom_base_reg;
4852 	} else if (resno < PCI_BRIDGE_RESOURCES) {
4853 		/* device specific resource */
4854 		*type = pci_bar_unknown;
4855 		reg = pci_iov_resource_bar(dev, resno);
4856 		if (reg)
4857 			return reg;
4858 	}
4859 
4860 	dev_err(&dev->dev, "BAR %d: invalid resource\n", resno);
4861 	return 0;
4862 }
4863 
4864 /* Some architectures require additional programming to enable VGA */
4865 static arch_set_vga_state_t arch_set_vga_state;
4866 
4867 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
4868 {
4869 	arch_set_vga_state = func;	/* NULL disables */
4870 }
4871 
4872 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
4873 				  unsigned int command_bits, u32 flags)
4874 {
4875 	if (arch_set_vga_state)
4876 		return arch_set_vga_state(dev, decode, command_bits,
4877 						flags);
4878 	return 0;
4879 }
4880 
4881 /**
4882  * pci_set_vga_state - set VGA decode state on device and parents if requested
4883  * @dev: the PCI device
4884  * @decode: true = enable decoding, false = disable decoding
4885  * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
4886  * @flags: traverse ancestors and change bridges
4887  * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
4888  */
4889 int pci_set_vga_state(struct pci_dev *dev, bool decode,
4890 		      unsigned int command_bits, u32 flags)
4891 {
4892 	struct pci_bus *bus;
4893 	struct pci_dev *bridge;
4894 	u16 cmd;
4895 	int rc;
4896 
4897 	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
4898 
4899 	/* ARCH specific VGA enables */
4900 	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
4901 	if (rc)
4902 		return rc;
4903 
4904 	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
4905 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
4906 		if (decode == true)
4907 			cmd |= command_bits;
4908 		else
4909 			cmd &= ~command_bits;
4910 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4911 	}
4912 
4913 	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
4914 		return 0;
4915 
4916 	bus = dev->bus;
4917 	while (bus) {
4918 		bridge = bus->self;
4919 		if (bridge) {
4920 			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
4921 					     &cmd);
4922 			if (decode == true)
4923 				cmd |= PCI_BRIDGE_CTL_VGA;
4924 			else
4925 				cmd &= ~PCI_BRIDGE_CTL_VGA;
4926 			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
4927 					      cmd);
4928 		}
4929 		bus = bus->parent;
4930 	}
4931 	return 0;
4932 }
4933 
4934 /**
4935  * pci_add_dma_alias - Add a DMA devfn alias for a device
4936  * @dev: the PCI device for which alias is added
4937  * @devfn: alias slot and function
4938  *
4939  * This helper encodes 8-bit devfn as bit number in dma_alias_mask.
4940  * It should be called early, preferably as PCI fixup header quirk.
4941  */
4942 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn)
4943 {
4944 	if (!dev->dma_alias_mask)
4945 		dev->dma_alias_mask = kcalloc(BITS_TO_LONGS(U8_MAX),
4946 					      sizeof(long), GFP_KERNEL);
4947 	if (!dev->dma_alias_mask) {
4948 		dev_warn(&dev->dev, "Unable to allocate DMA alias mask\n");
4949 		return;
4950 	}
4951 
4952 	set_bit(devfn, dev->dma_alias_mask);
4953 	dev_info(&dev->dev, "Enabling fixed DMA alias to %02x.%d\n",
4954 		 PCI_SLOT(devfn), PCI_FUNC(devfn));
4955 }
4956 
4957 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
4958 {
4959 	return (dev1->dma_alias_mask &&
4960 		test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
4961 	       (dev2->dma_alias_mask &&
4962 		test_bit(dev1->devfn, dev2->dma_alias_mask));
4963 }
4964 
4965 bool pci_device_is_present(struct pci_dev *pdev)
4966 {
4967 	u32 v;
4968 
4969 	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
4970 }
4971 EXPORT_SYMBOL_GPL(pci_device_is_present);
4972 
4973 void pci_ignore_hotplug(struct pci_dev *dev)
4974 {
4975 	struct pci_dev *bridge = dev->bus->self;
4976 
4977 	dev->ignore_hotplug = 1;
4978 	/* Propagate the "ignore hotplug" setting to the parent bridge. */
4979 	if (bridge)
4980 		bridge->ignore_hotplug = 1;
4981 }
4982 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
4983 
4984 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
4985 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
4986 static DEFINE_SPINLOCK(resource_alignment_lock);
4987 
4988 /**
4989  * pci_specified_resource_alignment - get resource alignment specified by user.
4990  * @dev: the PCI device to get
4991  *
4992  * RETURNS: Resource alignment if it is specified.
4993  *          Zero if it is not specified.
4994  */
4995 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
4996 {
4997 	int seg, bus, slot, func, align_order, count;
4998 	unsigned short vendor, device, subsystem_vendor, subsystem_device;
4999 	resource_size_t align = 0;
5000 	char *p;
5001 
5002 	spin_lock(&resource_alignment_lock);
5003 	p = resource_alignment_param;
5004 	if (!*p)
5005 		goto out;
5006 	if (pci_has_flag(PCI_PROBE_ONLY)) {
5007 		pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
5008 		goto out;
5009 	}
5010 
5011 	while (*p) {
5012 		count = 0;
5013 		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
5014 							p[count] == '@') {
5015 			p += count + 1;
5016 		} else {
5017 			align_order = -1;
5018 		}
5019 		if (strncmp(p, "pci:", 4) == 0) {
5020 			/* PCI vendor/device (subvendor/subdevice) ids are specified */
5021 			p += 4;
5022 			if (sscanf(p, "%hx:%hx:%hx:%hx%n",
5023 				&vendor, &device, &subsystem_vendor, &subsystem_device, &count) != 4) {
5024 				if (sscanf(p, "%hx:%hx%n", &vendor, &device, &count) != 2) {
5025 					printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: pci:%s\n",
5026 						p);
5027 					break;
5028 				}
5029 				subsystem_vendor = subsystem_device = 0;
5030 			}
5031 			p += count;
5032 			if ((!vendor || (vendor == dev->vendor)) &&
5033 				(!device || (device == dev->device)) &&
5034 				(!subsystem_vendor || (subsystem_vendor == dev->subsystem_vendor)) &&
5035 				(!subsystem_device || (subsystem_device == dev->subsystem_device))) {
5036 				if (align_order == -1)
5037 					align = PAGE_SIZE;
5038 				else
5039 					align = 1 << align_order;
5040 				/* Found */
5041 				break;
5042 			}
5043 		}
5044 		else {
5045 			if (sscanf(p, "%x:%x:%x.%x%n",
5046 				&seg, &bus, &slot, &func, &count) != 4) {
5047 				seg = 0;
5048 				if (sscanf(p, "%x:%x.%x%n",
5049 						&bus, &slot, &func, &count) != 3) {
5050 					/* Invalid format */
5051 					printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
5052 						p);
5053 					break;
5054 				}
5055 			}
5056 			p += count;
5057 			if (seg == pci_domain_nr(dev->bus) &&
5058 				bus == dev->bus->number &&
5059 				slot == PCI_SLOT(dev->devfn) &&
5060 				func == PCI_FUNC(dev->devfn)) {
5061 				if (align_order == -1)
5062 					align = PAGE_SIZE;
5063 				else
5064 					align = 1 << align_order;
5065 				/* Found */
5066 				break;
5067 			}
5068 		}
5069 		if (*p != ';' && *p != ',') {
5070 			/* End of param or invalid format */
5071 			break;
5072 		}
5073 		p++;
5074 	}
5075 out:
5076 	spin_unlock(&resource_alignment_lock);
5077 	return align;
5078 }
5079 
5080 /*
5081  * This function disables memory decoding and releases memory resources
5082  * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
5083  * It also rounds up size to specified alignment.
5084  * Later on, the kernel will assign page-aligned memory resource back
5085  * to the device.
5086  */
5087 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
5088 {
5089 	int i;
5090 	struct resource *r;
5091 	resource_size_t align, size;
5092 	u16 command;
5093 
5094 	/*
5095 	 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
5096 	 * 3.4.1.11.  Their resources are allocated from the space
5097 	 * described by the VF BARx register in the PF's SR-IOV capability.
5098 	 * We can't influence their alignment here.
5099 	 */
5100 	if (dev->is_virtfn)
5101 		return;
5102 
5103 	/* check if specified PCI is target device to reassign */
5104 	align = pci_specified_resource_alignment(dev);
5105 	if (!align)
5106 		return;
5107 
5108 	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
5109 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
5110 		dev_warn(&dev->dev,
5111 			"Can't reassign resources to host bridge.\n");
5112 		return;
5113 	}
5114 
5115 	dev_info(&dev->dev,
5116 		"Disabling memory decoding and releasing memory resources.\n");
5117 	pci_read_config_word(dev, PCI_COMMAND, &command);
5118 	command &= ~PCI_COMMAND_MEMORY;
5119 	pci_write_config_word(dev, PCI_COMMAND, command);
5120 
5121 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) {
5122 		r = &dev->resource[i];
5123 		if (!(r->flags & IORESOURCE_MEM))
5124 			continue;
5125 		if (r->flags & IORESOURCE_PCI_FIXED) {
5126 			dev_info(&dev->dev, "Ignoring requested alignment for BAR%d: %pR\n",
5127 				i, r);
5128 			continue;
5129 		}
5130 
5131 		size = resource_size(r);
5132 		if (size < align) {
5133 			size = align;
5134 			dev_info(&dev->dev,
5135 				"Rounding up size of resource #%d to %#llx.\n",
5136 				i, (unsigned long long)size);
5137 		}
5138 		r->flags |= IORESOURCE_UNSET;
5139 		r->end = size - 1;
5140 		r->start = 0;
5141 	}
5142 	/* Need to disable bridge's resource window,
5143 	 * to enable the kernel to reassign new resource
5144 	 * window later on.
5145 	 */
5146 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
5147 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
5148 		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
5149 			r = &dev->resource[i];
5150 			if (!(r->flags & IORESOURCE_MEM))
5151 				continue;
5152 			r->flags |= IORESOURCE_UNSET;
5153 			r->end = resource_size(r) - 1;
5154 			r->start = 0;
5155 		}
5156 		pci_disable_bridge_window(dev);
5157 	}
5158 }
5159 
5160 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
5161 {
5162 	if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
5163 		count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
5164 	spin_lock(&resource_alignment_lock);
5165 	strncpy(resource_alignment_param, buf, count);
5166 	resource_alignment_param[count] = '\0';
5167 	spin_unlock(&resource_alignment_lock);
5168 	return count;
5169 }
5170 
5171 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
5172 {
5173 	size_t count;
5174 	spin_lock(&resource_alignment_lock);
5175 	count = snprintf(buf, size, "%s", resource_alignment_param);
5176 	spin_unlock(&resource_alignment_lock);
5177 	return count;
5178 }
5179 
5180 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
5181 {
5182 	return pci_get_resource_alignment_param(buf, PAGE_SIZE);
5183 }
5184 
5185 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
5186 					const char *buf, size_t count)
5187 {
5188 	return pci_set_resource_alignment_param(buf, count);
5189 }
5190 
5191 static BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
5192 					pci_resource_alignment_store);
5193 
5194 static int __init pci_resource_alignment_sysfs_init(void)
5195 {
5196 	return bus_create_file(&pci_bus_type,
5197 					&bus_attr_resource_alignment);
5198 }
5199 late_initcall(pci_resource_alignment_sysfs_init);
5200 
5201 static void pci_no_domains(void)
5202 {
5203 #ifdef CONFIG_PCI_DOMAINS
5204 	pci_domains_supported = 0;
5205 #endif
5206 }
5207 
5208 #ifdef CONFIG_PCI_DOMAINS
5209 static atomic_t __domain_nr = ATOMIC_INIT(-1);
5210 
5211 int pci_get_new_domain_nr(void)
5212 {
5213 	return atomic_inc_return(&__domain_nr);
5214 }
5215 
5216 #ifdef CONFIG_PCI_DOMAINS_GENERIC
5217 static int of_pci_bus_find_domain_nr(struct device *parent)
5218 {
5219 	static int use_dt_domains = -1;
5220 	int domain = -1;
5221 
5222 	if (parent)
5223 		domain = of_get_pci_domain_nr(parent->of_node);
5224 	/*
5225 	 * Check DT domain and use_dt_domains values.
5226 	 *
5227 	 * If DT domain property is valid (domain >= 0) and
5228 	 * use_dt_domains != 0, the DT assignment is valid since this means
5229 	 * we have not previously allocated a domain number by using
5230 	 * pci_get_new_domain_nr(); we should also update use_dt_domains to
5231 	 * 1, to indicate that we have just assigned a domain number from
5232 	 * DT.
5233 	 *
5234 	 * If DT domain property value is not valid (ie domain < 0), and we
5235 	 * have not previously assigned a domain number from DT
5236 	 * (use_dt_domains != 1) we should assign a domain number by
5237 	 * using the:
5238 	 *
5239 	 * pci_get_new_domain_nr()
5240 	 *
5241 	 * API and update the use_dt_domains value to keep track of method we
5242 	 * are using to assign domain numbers (use_dt_domains = 0).
5243 	 *
5244 	 * All other combinations imply we have a platform that is trying
5245 	 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
5246 	 * which is a recipe for domain mishandling and it is prevented by
5247 	 * invalidating the domain value (domain = -1) and printing a
5248 	 * corresponding error.
5249 	 */
5250 	if (domain >= 0 && use_dt_domains) {
5251 		use_dt_domains = 1;
5252 	} else if (domain < 0 && use_dt_domains != 1) {
5253 		use_dt_domains = 0;
5254 		domain = pci_get_new_domain_nr();
5255 	} else {
5256 		dev_err(parent, "Node %s has inconsistent \"linux,pci-domain\" property in DT\n",
5257 			parent->of_node->full_name);
5258 		domain = -1;
5259 	}
5260 
5261 	return domain;
5262 }
5263 
5264 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
5265 {
5266 	return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
5267 			       acpi_pci_bus_find_domain_nr(bus);
5268 }
5269 #endif
5270 #endif
5271 
5272 /**
5273  * pci_ext_cfg_avail - can we access extended PCI config space?
5274  *
5275  * Returns 1 if we can access PCI extended config space (offsets
5276  * greater than 0xff). This is the default implementation. Architecture
5277  * implementations can override this.
5278  */
5279 int __weak pci_ext_cfg_avail(void)
5280 {
5281 	return 1;
5282 }
5283 
5284 void __weak pci_fixup_cardbus(struct pci_bus *bus)
5285 {
5286 }
5287 EXPORT_SYMBOL(pci_fixup_cardbus);
5288 
5289 static int __init pci_setup(char *str)
5290 {
5291 	while (str) {
5292 		char *k = strchr(str, ',');
5293 		if (k)
5294 			*k++ = 0;
5295 		if (*str && (str = pcibios_setup(str)) && *str) {
5296 			if (!strcmp(str, "nomsi")) {
5297 				pci_no_msi();
5298 			} else if (!strcmp(str, "noaer")) {
5299 				pci_no_aer();
5300 			} else if (!strncmp(str, "realloc=", 8)) {
5301 				pci_realloc_get_opt(str + 8);
5302 			} else if (!strncmp(str, "realloc", 7)) {
5303 				pci_realloc_get_opt("on");
5304 			} else if (!strcmp(str, "nodomains")) {
5305 				pci_no_domains();
5306 			} else if (!strncmp(str, "noari", 5)) {
5307 				pcie_ari_disabled = true;
5308 			} else if (!strncmp(str, "cbiosize=", 9)) {
5309 				pci_cardbus_io_size = memparse(str + 9, &str);
5310 			} else if (!strncmp(str, "cbmemsize=", 10)) {
5311 				pci_cardbus_mem_size = memparse(str + 10, &str);
5312 			} else if (!strncmp(str, "resource_alignment=", 19)) {
5313 				pci_set_resource_alignment_param(str + 19,
5314 							strlen(str + 19));
5315 			} else if (!strncmp(str, "ecrc=", 5)) {
5316 				pcie_ecrc_get_policy(str + 5);
5317 			} else if (!strncmp(str, "hpiosize=", 9)) {
5318 				pci_hotplug_io_size = memparse(str + 9, &str);
5319 			} else if (!strncmp(str, "hpmemsize=", 10)) {
5320 				pci_hotplug_mem_size = memparse(str + 10, &str);
5321 			} else if (!strncmp(str, "hpbussize=", 10)) {
5322 				pci_hotplug_bus_size =
5323 					simple_strtoul(str + 10, &str, 0);
5324 				if (pci_hotplug_bus_size > 0xff)
5325 					pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
5326 			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
5327 				pcie_bus_config = PCIE_BUS_TUNE_OFF;
5328 			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
5329 				pcie_bus_config = PCIE_BUS_SAFE;
5330 			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
5331 				pcie_bus_config = PCIE_BUS_PERFORMANCE;
5332 			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
5333 				pcie_bus_config = PCIE_BUS_PEER2PEER;
5334 			} else if (!strncmp(str, "pcie_scan_all", 13)) {
5335 				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
5336 			} else {
5337 				printk(KERN_ERR "PCI: Unknown option `%s'\n",
5338 						str);
5339 			}
5340 		}
5341 		str = k;
5342 	}
5343 	return 0;
5344 }
5345 early_param("pci", pci_setup);
5346