1 /* 2 * PCI Bus Services, see include/linux/pci.h for further explanation. 3 * 4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter, 5 * David Mosberger-Tang 6 * 7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz> 8 */ 9 10 #include <linux/kernel.h> 11 #include <linux/delay.h> 12 #include <linux/init.h> 13 #include <linux/pci.h> 14 #include <linux/pm.h> 15 #include <linux/slab.h> 16 #include <linux/module.h> 17 #include <linux/spinlock.h> 18 #include <linux/string.h> 19 #include <linux/log2.h> 20 #include <linux/pci-aspm.h> 21 #include <linux/pm_wakeup.h> 22 #include <linux/interrupt.h> 23 #include <linux/device.h> 24 #include <linux/pm_runtime.h> 25 #include <linux/pci_hotplug.h> 26 #include <asm-generic/pci-bridge.h> 27 #include <asm/setup.h> 28 #include "pci.h" 29 30 const char *pci_power_names[] = { 31 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown", 32 }; 33 EXPORT_SYMBOL_GPL(pci_power_names); 34 35 int isa_dma_bridge_buggy; 36 EXPORT_SYMBOL(isa_dma_bridge_buggy); 37 38 int pci_pci_problems; 39 EXPORT_SYMBOL(pci_pci_problems); 40 41 unsigned int pci_pm_d3_delay; 42 43 static void pci_pme_list_scan(struct work_struct *work); 44 45 static LIST_HEAD(pci_pme_list); 46 static DEFINE_MUTEX(pci_pme_list_mutex); 47 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan); 48 49 struct pci_pme_device { 50 struct list_head list; 51 struct pci_dev *dev; 52 }; 53 54 #define PME_TIMEOUT 1000 /* How long between PME checks */ 55 56 static void pci_dev_d3_sleep(struct pci_dev *dev) 57 { 58 unsigned int delay = dev->d3_delay; 59 60 if (delay < pci_pm_d3_delay) 61 delay = pci_pm_d3_delay; 62 63 msleep(delay); 64 } 65 66 #ifdef CONFIG_PCI_DOMAINS 67 int pci_domains_supported = 1; 68 #endif 69 70 #define DEFAULT_CARDBUS_IO_SIZE (256) 71 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024) 72 /* pci=cbmemsize=nnM,cbiosize=nn can override this */ 73 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE; 74 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE; 75 76 #define DEFAULT_HOTPLUG_IO_SIZE (256) 77 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024) 78 /* pci=hpmemsize=nnM,hpiosize=nn can override this */ 79 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE; 80 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE; 81 82 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF; 83 84 /* 85 * The default CLS is used if arch didn't set CLS explicitly and not 86 * all pci devices agree on the same value. Arch can override either 87 * the dfl or actual value as it sees fit. Don't forget this is 88 * measured in 32-bit words, not bytes. 89 */ 90 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2; 91 u8 pci_cache_line_size; 92 93 /* 94 * If we set up a device for bus mastering, we need to check the latency 95 * timer as certain BIOSes forget to set it properly. 96 */ 97 unsigned int pcibios_max_latency = 255; 98 99 /* If set, the PCIe ARI capability will not be used. */ 100 static bool pcie_ari_disabled; 101 102 /** 103 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children 104 * @bus: pointer to PCI bus structure to search 105 * 106 * Given a PCI bus, returns the highest PCI bus number present in the set 107 * including the given PCI bus and its list of child PCI buses. 108 */ 109 unsigned char pci_bus_max_busnr(struct pci_bus *bus) 110 { 111 struct pci_bus *tmp; 112 unsigned char max, n; 113 114 max = bus->busn_res.end; 115 list_for_each_entry(tmp, &bus->children, node) { 116 n = pci_bus_max_busnr(tmp); 117 if (n > max) 118 max = n; 119 } 120 return max; 121 } 122 EXPORT_SYMBOL_GPL(pci_bus_max_busnr); 123 124 #ifdef CONFIG_HAS_IOMEM 125 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar) 126 { 127 /* 128 * Make sure the BAR is actually a memory resource, not an IO resource 129 */ 130 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) { 131 WARN_ON(1); 132 return NULL; 133 } 134 return ioremap_nocache(pci_resource_start(pdev, bar), 135 pci_resource_len(pdev, bar)); 136 } 137 EXPORT_SYMBOL_GPL(pci_ioremap_bar); 138 #endif 139 140 #define PCI_FIND_CAP_TTL 48 141 142 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn, 143 u8 pos, int cap, int *ttl) 144 { 145 u8 id; 146 147 while ((*ttl)--) { 148 pci_bus_read_config_byte(bus, devfn, pos, &pos); 149 if (pos < 0x40) 150 break; 151 pos &= ~3; 152 pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID, 153 &id); 154 if (id == 0xff) 155 break; 156 if (id == cap) 157 return pos; 158 pos += PCI_CAP_LIST_NEXT; 159 } 160 return 0; 161 } 162 163 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn, 164 u8 pos, int cap) 165 { 166 int ttl = PCI_FIND_CAP_TTL; 167 168 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl); 169 } 170 171 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap) 172 { 173 return __pci_find_next_cap(dev->bus, dev->devfn, 174 pos + PCI_CAP_LIST_NEXT, cap); 175 } 176 EXPORT_SYMBOL_GPL(pci_find_next_capability); 177 178 static int __pci_bus_find_cap_start(struct pci_bus *bus, 179 unsigned int devfn, u8 hdr_type) 180 { 181 u16 status; 182 183 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status); 184 if (!(status & PCI_STATUS_CAP_LIST)) 185 return 0; 186 187 switch (hdr_type) { 188 case PCI_HEADER_TYPE_NORMAL: 189 case PCI_HEADER_TYPE_BRIDGE: 190 return PCI_CAPABILITY_LIST; 191 case PCI_HEADER_TYPE_CARDBUS: 192 return PCI_CB_CAPABILITY_LIST; 193 default: 194 return 0; 195 } 196 197 return 0; 198 } 199 200 /** 201 * pci_find_capability - query for devices' capabilities 202 * @dev: PCI device to query 203 * @cap: capability code 204 * 205 * Tell if a device supports a given PCI capability. 206 * Returns the address of the requested capability structure within the 207 * device's PCI configuration space or 0 in case the device does not 208 * support it. Possible values for @cap: 209 * 210 * %PCI_CAP_ID_PM Power Management 211 * %PCI_CAP_ID_AGP Accelerated Graphics Port 212 * %PCI_CAP_ID_VPD Vital Product Data 213 * %PCI_CAP_ID_SLOTID Slot Identification 214 * %PCI_CAP_ID_MSI Message Signalled Interrupts 215 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap 216 * %PCI_CAP_ID_PCIX PCI-X 217 * %PCI_CAP_ID_EXP PCI Express 218 */ 219 int pci_find_capability(struct pci_dev *dev, int cap) 220 { 221 int pos; 222 223 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 224 if (pos) 225 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap); 226 227 return pos; 228 } 229 EXPORT_SYMBOL(pci_find_capability); 230 231 /** 232 * pci_bus_find_capability - query for devices' capabilities 233 * @bus: the PCI bus to query 234 * @devfn: PCI device to query 235 * @cap: capability code 236 * 237 * Like pci_find_capability() but works for pci devices that do not have a 238 * pci_dev structure set up yet. 239 * 240 * Returns the address of the requested capability structure within the 241 * device's PCI configuration space or 0 in case the device does not 242 * support it. 243 */ 244 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap) 245 { 246 int pos; 247 u8 hdr_type; 248 249 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type); 250 251 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f); 252 if (pos) 253 pos = __pci_find_next_cap(bus, devfn, pos, cap); 254 255 return pos; 256 } 257 EXPORT_SYMBOL(pci_bus_find_capability); 258 259 /** 260 * pci_find_next_ext_capability - Find an extended capability 261 * @dev: PCI device to query 262 * @start: address at which to start looking (0 to start at beginning of list) 263 * @cap: capability code 264 * 265 * Returns the address of the next matching extended capability structure 266 * within the device's PCI configuration space or 0 if the device does 267 * not support it. Some capabilities can occur several times, e.g., the 268 * vendor-specific capability, and this provides a way to find them all. 269 */ 270 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap) 271 { 272 u32 header; 273 int ttl; 274 int pos = PCI_CFG_SPACE_SIZE; 275 276 /* minimum 8 bytes per capability */ 277 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8; 278 279 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE) 280 return 0; 281 282 if (start) 283 pos = start; 284 285 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 286 return 0; 287 288 /* 289 * If we have no capabilities, this is indicated by cap ID, 290 * cap version and next pointer all being 0. 291 */ 292 if (header == 0) 293 return 0; 294 295 while (ttl-- > 0) { 296 if (PCI_EXT_CAP_ID(header) == cap && pos != start) 297 return pos; 298 299 pos = PCI_EXT_CAP_NEXT(header); 300 if (pos < PCI_CFG_SPACE_SIZE) 301 break; 302 303 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 304 break; 305 } 306 307 return 0; 308 } 309 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability); 310 311 /** 312 * pci_find_ext_capability - Find an extended capability 313 * @dev: PCI device to query 314 * @cap: capability code 315 * 316 * Returns the address of the requested extended capability structure 317 * within the device's PCI configuration space or 0 if the device does 318 * not support it. Possible values for @cap: 319 * 320 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting 321 * %PCI_EXT_CAP_ID_VC Virtual Channel 322 * %PCI_EXT_CAP_ID_DSN Device Serial Number 323 * %PCI_EXT_CAP_ID_PWR Power Budgeting 324 */ 325 int pci_find_ext_capability(struct pci_dev *dev, int cap) 326 { 327 return pci_find_next_ext_capability(dev, 0, cap); 328 } 329 EXPORT_SYMBOL_GPL(pci_find_ext_capability); 330 331 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap) 332 { 333 int rc, ttl = PCI_FIND_CAP_TTL; 334 u8 cap, mask; 335 336 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST) 337 mask = HT_3BIT_CAP_MASK; 338 else 339 mask = HT_5BIT_CAP_MASK; 340 341 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos, 342 PCI_CAP_ID_HT, &ttl); 343 while (pos) { 344 rc = pci_read_config_byte(dev, pos + 3, &cap); 345 if (rc != PCIBIOS_SUCCESSFUL) 346 return 0; 347 348 if ((cap & mask) == ht_cap) 349 return pos; 350 351 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, 352 pos + PCI_CAP_LIST_NEXT, 353 PCI_CAP_ID_HT, &ttl); 354 } 355 356 return 0; 357 } 358 /** 359 * pci_find_next_ht_capability - query a device's Hypertransport capabilities 360 * @dev: PCI device to query 361 * @pos: Position from which to continue searching 362 * @ht_cap: Hypertransport capability code 363 * 364 * To be used in conjunction with pci_find_ht_capability() to search for 365 * all capabilities matching @ht_cap. @pos should always be a value returned 366 * from pci_find_ht_capability(). 367 * 368 * NB. To be 100% safe against broken PCI devices, the caller should take 369 * steps to avoid an infinite loop. 370 */ 371 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap) 372 { 373 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap); 374 } 375 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability); 376 377 /** 378 * pci_find_ht_capability - query a device's Hypertransport capabilities 379 * @dev: PCI device to query 380 * @ht_cap: Hypertransport capability code 381 * 382 * Tell if a device supports a given Hypertransport capability. 383 * Returns an address within the device's PCI configuration space 384 * or 0 in case the device does not support the request capability. 385 * The address points to the PCI capability, of type PCI_CAP_ID_HT, 386 * which has a Hypertransport capability matching @ht_cap. 387 */ 388 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap) 389 { 390 int pos; 391 392 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 393 if (pos) 394 pos = __pci_find_next_ht_cap(dev, pos, ht_cap); 395 396 return pos; 397 } 398 EXPORT_SYMBOL_GPL(pci_find_ht_capability); 399 400 /** 401 * pci_find_parent_resource - return resource region of parent bus of given region 402 * @dev: PCI device structure contains resources to be searched 403 * @res: child resource record for which parent is sought 404 * 405 * For given resource region of given device, return the resource 406 * region of parent bus the given region is contained in. 407 */ 408 struct resource *pci_find_parent_resource(const struct pci_dev *dev, 409 struct resource *res) 410 { 411 const struct pci_bus *bus = dev->bus; 412 struct resource *r; 413 int i; 414 415 pci_bus_for_each_resource(bus, r, i) { 416 if (!r) 417 continue; 418 if (res->start && resource_contains(r, res)) { 419 420 /* 421 * If the window is prefetchable but the BAR is 422 * not, the allocator made a mistake. 423 */ 424 if (r->flags & IORESOURCE_PREFETCH && 425 !(res->flags & IORESOURCE_PREFETCH)) 426 return NULL; 427 428 /* 429 * If we're below a transparent bridge, there may 430 * be both a positively-decoded aperture and a 431 * subtractively-decoded region that contain the BAR. 432 * We want the positively-decoded one, so this depends 433 * on pci_bus_for_each_resource() giving us those 434 * first. 435 */ 436 return r; 437 } 438 } 439 return NULL; 440 } 441 EXPORT_SYMBOL(pci_find_parent_resource); 442 443 /** 444 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos 445 * @dev: the PCI device to operate on 446 * @pos: config space offset of status word 447 * @mask: mask of bit(s) to care about in status word 448 * 449 * Return 1 when mask bit(s) in status word clear, 0 otherwise. 450 */ 451 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask) 452 { 453 int i; 454 455 /* Wait for Transaction Pending bit clean */ 456 for (i = 0; i < 4; i++) { 457 u16 status; 458 if (i) 459 msleep((1 << (i - 1)) * 100); 460 461 pci_read_config_word(dev, pos, &status); 462 if (!(status & mask)) 463 return 1; 464 } 465 466 return 0; 467 } 468 469 /** 470 * pci_restore_bars - restore a devices BAR values (e.g. after wake-up) 471 * @dev: PCI device to have its BARs restored 472 * 473 * Restore the BAR values for a given device, so as to make it 474 * accessible by its driver. 475 */ 476 static void pci_restore_bars(struct pci_dev *dev) 477 { 478 int i; 479 480 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) 481 pci_update_resource(dev, i); 482 } 483 484 static struct pci_platform_pm_ops *pci_platform_pm; 485 486 int pci_set_platform_pm(struct pci_platform_pm_ops *ops) 487 { 488 if (!ops->is_manageable || !ops->set_state || !ops->choose_state 489 || !ops->sleep_wake) 490 return -EINVAL; 491 pci_platform_pm = ops; 492 return 0; 493 } 494 495 static inline bool platform_pci_power_manageable(struct pci_dev *dev) 496 { 497 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false; 498 } 499 500 static inline int platform_pci_set_power_state(struct pci_dev *dev, 501 pci_power_t t) 502 { 503 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS; 504 } 505 506 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev) 507 { 508 return pci_platform_pm ? 509 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR; 510 } 511 512 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable) 513 { 514 return pci_platform_pm ? 515 pci_platform_pm->sleep_wake(dev, enable) : -ENODEV; 516 } 517 518 static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable) 519 { 520 return pci_platform_pm ? 521 pci_platform_pm->run_wake(dev, enable) : -ENODEV; 522 } 523 524 /** 525 * pci_raw_set_power_state - Use PCI PM registers to set the power state of 526 * given PCI device 527 * @dev: PCI device to handle. 528 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 529 * 530 * RETURN VALUE: 531 * -EINVAL if the requested state is invalid. 532 * -EIO if device does not support PCI PM or its PM capabilities register has a 533 * wrong version, or device doesn't support the requested state. 534 * 0 if device already is in the requested state. 535 * 0 if device's power state has been successfully changed. 536 */ 537 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state) 538 { 539 u16 pmcsr; 540 bool need_restore = false; 541 542 /* Check if we're already there */ 543 if (dev->current_state == state) 544 return 0; 545 546 if (!dev->pm_cap) 547 return -EIO; 548 549 if (state < PCI_D0 || state > PCI_D3hot) 550 return -EINVAL; 551 552 /* Validate current state: 553 * Can enter D0 from any state, but if we can only go deeper 554 * to sleep if we're already in a low power state 555 */ 556 if (state != PCI_D0 && dev->current_state <= PCI_D3cold 557 && dev->current_state > state) { 558 dev_err(&dev->dev, "invalid power transition (from state %d to %d)\n", 559 dev->current_state, state); 560 return -EINVAL; 561 } 562 563 /* check if this device supports the desired state */ 564 if ((state == PCI_D1 && !dev->d1_support) 565 || (state == PCI_D2 && !dev->d2_support)) 566 return -EIO; 567 568 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 569 570 /* If we're (effectively) in D3, force entire word to 0. 571 * This doesn't affect PME_Status, disables PME_En, and 572 * sets PowerState to 0. 573 */ 574 switch (dev->current_state) { 575 case PCI_D0: 576 case PCI_D1: 577 case PCI_D2: 578 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 579 pmcsr |= state; 580 break; 581 case PCI_D3hot: 582 case PCI_D3cold: 583 case PCI_UNKNOWN: /* Boot-up */ 584 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot 585 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET)) 586 need_restore = true; 587 /* Fall-through: force to D0 */ 588 default: 589 pmcsr = 0; 590 break; 591 } 592 593 /* enter specified state */ 594 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 595 596 /* Mandatory power management transition delays */ 597 /* see PCI PM 1.1 5.6.1 table 18 */ 598 if (state == PCI_D3hot || dev->current_state == PCI_D3hot) 599 pci_dev_d3_sleep(dev); 600 else if (state == PCI_D2 || dev->current_state == PCI_D2) 601 udelay(PCI_PM_D2_DELAY); 602 603 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 604 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 605 if (dev->current_state != state && printk_ratelimit()) 606 dev_info(&dev->dev, "Refused to change power state, currently in D%d\n", 607 dev->current_state); 608 609 /* 610 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT 611 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning 612 * from D3hot to D0 _may_ perform an internal reset, thereby 613 * going to "D0 Uninitialized" rather than "D0 Initialized". 614 * For example, at least some versions of the 3c905B and the 615 * 3c556B exhibit this behaviour. 616 * 617 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave 618 * devices in a D3hot state at boot. Consequently, we need to 619 * restore at least the BARs so that the device will be 620 * accessible to its driver. 621 */ 622 if (need_restore) 623 pci_restore_bars(dev); 624 625 if (dev->bus->self) 626 pcie_aspm_pm_state_change(dev->bus->self); 627 628 return 0; 629 } 630 631 /** 632 * pci_update_current_state - Read PCI power state of given device from its 633 * PCI PM registers and cache it 634 * @dev: PCI device to handle. 635 * @state: State to cache in case the device doesn't have the PM capability 636 */ 637 void pci_update_current_state(struct pci_dev *dev, pci_power_t state) 638 { 639 if (dev->pm_cap) { 640 u16 pmcsr; 641 642 /* 643 * Configuration space is not accessible for device in 644 * D3cold, so just keep or set D3cold for safety 645 */ 646 if (dev->current_state == PCI_D3cold) 647 return; 648 if (state == PCI_D3cold) { 649 dev->current_state = PCI_D3cold; 650 return; 651 } 652 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 653 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 654 } else { 655 dev->current_state = state; 656 } 657 } 658 659 /** 660 * pci_power_up - Put the given device into D0 forcibly 661 * @dev: PCI device to power up 662 */ 663 void pci_power_up(struct pci_dev *dev) 664 { 665 if (platform_pci_power_manageable(dev)) 666 platform_pci_set_power_state(dev, PCI_D0); 667 668 pci_raw_set_power_state(dev, PCI_D0); 669 pci_update_current_state(dev, PCI_D0); 670 } 671 672 /** 673 * pci_platform_power_transition - Use platform to change device power state 674 * @dev: PCI device to handle. 675 * @state: State to put the device into. 676 */ 677 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state) 678 { 679 int error; 680 681 if (platform_pci_power_manageable(dev)) { 682 error = platform_pci_set_power_state(dev, state); 683 if (!error) 684 pci_update_current_state(dev, state); 685 } else 686 error = -ENODEV; 687 688 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */ 689 dev->current_state = PCI_D0; 690 691 return error; 692 } 693 694 /** 695 * pci_wakeup - Wake up a PCI device 696 * @pci_dev: Device to handle. 697 * @ign: ignored parameter 698 */ 699 static int pci_wakeup(struct pci_dev *pci_dev, void *ign) 700 { 701 pci_wakeup_event(pci_dev); 702 pm_request_resume(&pci_dev->dev); 703 return 0; 704 } 705 706 /** 707 * pci_wakeup_bus - Walk given bus and wake up devices on it 708 * @bus: Top bus of the subtree to walk. 709 */ 710 static void pci_wakeup_bus(struct pci_bus *bus) 711 { 712 if (bus) 713 pci_walk_bus(bus, pci_wakeup, NULL); 714 } 715 716 /** 717 * __pci_start_power_transition - Start power transition of a PCI device 718 * @dev: PCI device to handle. 719 * @state: State to put the device into. 720 */ 721 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state) 722 { 723 if (state == PCI_D0) { 724 pci_platform_power_transition(dev, PCI_D0); 725 /* 726 * Mandatory power management transition delays, see 727 * PCI Express Base Specification Revision 2.0 Section 728 * 6.6.1: Conventional Reset. Do not delay for 729 * devices powered on/off by corresponding bridge, 730 * because have already delayed for the bridge. 731 */ 732 if (dev->runtime_d3cold) { 733 msleep(dev->d3cold_delay); 734 /* 735 * When powering on a bridge from D3cold, the 736 * whole hierarchy may be powered on into 737 * D0uninitialized state, resume them to give 738 * them a chance to suspend again 739 */ 740 pci_wakeup_bus(dev->subordinate); 741 } 742 } 743 } 744 745 /** 746 * __pci_dev_set_current_state - Set current state of a PCI device 747 * @dev: Device to handle 748 * @data: pointer to state to be set 749 */ 750 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data) 751 { 752 pci_power_t state = *(pci_power_t *)data; 753 754 dev->current_state = state; 755 return 0; 756 } 757 758 /** 759 * __pci_bus_set_current_state - Walk given bus and set current state of devices 760 * @bus: Top bus of the subtree to walk. 761 * @state: state to be set 762 */ 763 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state) 764 { 765 if (bus) 766 pci_walk_bus(bus, __pci_dev_set_current_state, &state); 767 } 768 769 /** 770 * __pci_complete_power_transition - Complete power transition of a PCI device 771 * @dev: PCI device to handle. 772 * @state: State to put the device into. 773 * 774 * This function should not be called directly by device drivers. 775 */ 776 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state) 777 { 778 int ret; 779 780 if (state <= PCI_D0) 781 return -EINVAL; 782 ret = pci_platform_power_transition(dev, state); 783 /* Power off the bridge may power off the whole hierarchy */ 784 if (!ret && state == PCI_D3cold) 785 __pci_bus_set_current_state(dev->subordinate, PCI_D3cold); 786 return ret; 787 } 788 EXPORT_SYMBOL_GPL(__pci_complete_power_transition); 789 790 /** 791 * pci_set_power_state - Set the power state of a PCI device 792 * @dev: PCI device to handle. 793 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 794 * 795 * Transition a device to a new power state, using the platform firmware and/or 796 * the device's PCI PM registers. 797 * 798 * RETURN VALUE: 799 * -EINVAL if the requested state is invalid. 800 * -EIO if device does not support PCI PM or its PM capabilities register has a 801 * wrong version, or device doesn't support the requested state. 802 * 0 if device already is in the requested state. 803 * 0 if device's power state has been successfully changed. 804 */ 805 int pci_set_power_state(struct pci_dev *dev, pci_power_t state) 806 { 807 int error; 808 809 /* bound the state we're entering */ 810 if (state > PCI_D3cold) 811 state = PCI_D3cold; 812 else if (state < PCI_D0) 813 state = PCI_D0; 814 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev)) 815 /* 816 * If the device or the parent bridge do not support PCI PM, 817 * ignore the request if we're doing anything other than putting 818 * it into D0 (which would only happen on boot). 819 */ 820 return 0; 821 822 /* Check if we're already there */ 823 if (dev->current_state == state) 824 return 0; 825 826 __pci_start_power_transition(dev, state); 827 828 /* This device is quirked not to be put into D3, so 829 don't put it in D3 */ 830 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3)) 831 return 0; 832 833 /* 834 * To put device in D3cold, we put device into D3hot in native 835 * way, then put device into D3cold with platform ops 836 */ 837 error = pci_raw_set_power_state(dev, state > PCI_D3hot ? 838 PCI_D3hot : state); 839 840 if (!__pci_complete_power_transition(dev, state)) 841 error = 0; 842 843 return error; 844 } 845 EXPORT_SYMBOL(pci_set_power_state); 846 847 /** 848 * pci_choose_state - Choose the power state of a PCI device 849 * @dev: PCI device to be suspended 850 * @state: target sleep state for the whole system. This is the value 851 * that is passed to suspend() function. 852 * 853 * Returns PCI power state suitable for given device and given system 854 * message. 855 */ 856 857 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state) 858 { 859 pci_power_t ret; 860 861 if (!dev->pm_cap) 862 return PCI_D0; 863 864 ret = platform_pci_choose_state(dev); 865 if (ret != PCI_POWER_ERROR) 866 return ret; 867 868 switch (state.event) { 869 case PM_EVENT_ON: 870 return PCI_D0; 871 case PM_EVENT_FREEZE: 872 case PM_EVENT_PRETHAW: 873 /* REVISIT both freeze and pre-thaw "should" use D0 */ 874 case PM_EVENT_SUSPEND: 875 case PM_EVENT_HIBERNATE: 876 return PCI_D3hot; 877 default: 878 dev_info(&dev->dev, "unrecognized suspend event %d\n", 879 state.event); 880 BUG(); 881 } 882 return PCI_D0; 883 } 884 EXPORT_SYMBOL(pci_choose_state); 885 886 #define PCI_EXP_SAVE_REGS 7 887 888 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev, 889 u16 cap, bool extended) 890 { 891 struct pci_cap_saved_state *tmp; 892 893 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) { 894 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap) 895 return tmp; 896 } 897 return NULL; 898 } 899 900 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap) 901 { 902 return _pci_find_saved_cap(dev, cap, false); 903 } 904 905 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap) 906 { 907 return _pci_find_saved_cap(dev, cap, true); 908 } 909 910 static int pci_save_pcie_state(struct pci_dev *dev) 911 { 912 int i = 0; 913 struct pci_cap_saved_state *save_state; 914 u16 *cap; 915 916 if (!pci_is_pcie(dev)) 917 return 0; 918 919 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 920 if (!save_state) { 921 dev_err(&dev->dev, "buffer not found in %s\n", __func__); 922 return -ENOMEM; 923 } 924 925 cap = (u16 *)&save_state->cap.data[0]; 926 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]); 927 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]); 928 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]); 929 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]); 930 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]); 931 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]); 932 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]); 933 934 return 0; 935 } 936 937 static void pci_restore_pcie_state(struct pci_dev *dev) 938 { 939 int i = 0; 940 struct pci_cap_saved_state *save_state; 941 u16 *cap; 942 943 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 944 if (!save_state) 945 return; 946 947 cap = (u16 *)&save_state->cap.data[0]; 948 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]); 949 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]); 950 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]); 951 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]); 952 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]); 953 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]); 954 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]); 955 } 956 957 958 static int pci_save_pcix_state(struct pci_dev *dev) 959 { 960 int pos; 961 struct pci_cap_saved_state *save_state; 962 963 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 964 if (pos <= 0) 965 return 0; 966 967 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 968 if (!save_state) { 969 dev_err(&dev->dev, "buffer not found in %s\n", __func__); 970 return -ENOMEM; 971 } 972 973 pci_read_config_word(dev, pos + PCI_X_CMD, 974 (u16 *)save_state->cap.data); 975 976 return 0; 977 } 978 979 static void pci_restore_pcix_state(struct pci_dev *dev) 980 { 981 int i = 0, pos; 982 struct pci_cap_saved_state *save_state; 983 u16 *cap; 984 985 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 986 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 987 if (!save_state || pos <= 0) 988 return; 989 cap = (u16 *)&save_state->cap.data[0]; 990 991 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]); 992 } 993 994 995 /** 996 * pci_save_state - save the PCI configuration space of a device before suspending 997 * @dev: - PCI device that we're dealing with 998 */ 999 int pci_save_state(struct pci_dev *dev) 1000 { 1001 int i; 1002 /* XXX: 100% dword access ok here? */ 1003 for (i = 0; i < 16; i++) 1004 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]); 1005 dev->state_saved = true; 1006 1007 i = pci_save_pcie_state(dev); 1008 if (i != 0) 1009 return i; 1010 1011 i = pci_save_pcix_state(dev); 1012 if (i != 0) 1013 return i; 1014 1015 i = pci_save_vc_state(dev); 1016 if (i != 0) 1017 return i; 1018 1019 return 0; 1020 } 1021 EXPORT_SYMBOL(pci_save_state); 1022 1023 static void pci_restore_config_dword(struct pci_dev *pdev, int offset, 1024 u32 saved_val, int retry) 1025 { 1026 u32 val; 1027 1028 pci_read_config_dword(pdev, offset, &val); 1029 if (val == saved_val) 1030 return; 1031 1032 for (;;) { 1033 dev_dbg(&pdev->dev, "restoring config space at offset %#x (was %#x, writing %#x)\n", 1034 offset, val, saved_val); 1035 pci_write_config_dword(pdev, offset, saved_val); 1036 if (retry-- <= 0) 1037 return; 1038 1039 pci_read_config_dword(pdev, offset, &val); 1040 if (val == saved_val) 1041 return; 1042 1043 mdelay(1); 1044 } 1045 } 1046 1047 static void pci_restore_config_space_range(struct pci_dev *pdev, 1048 int start, int end, int retry) 1049 { 1050 int index; 1051 1052 for (index = end; index >= start; index--) 1053 pci_restore_config_dword(pdev, 4 * index, 1054 pdev->saved_config_space[index], 1055 retry); 1056 } 1057 1058 static void pci_restore_config_space(struct pci_dev *pdev) 1059 { 1060 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) { 1061 pci_restore_config_space_range(pdev, 10, 15, 0); 1062 /* Restore BARs before the command register. */ 1063 pci_restore_config_space_range(pdev, 4, 9, 10); 1064 pci_restore_config_space_range(pdev, 0, 3, 0); 1065 } else { 1066 pci_restore_config_space_range(pdev, 0, 15, 0); 1067 } 1068 } 1069 1070 /** 1071 * pci_restore_state - Restore the saved state of a PCI device 1072 * @dev: - PCI device that we're dealing with 1073 */ 1074 void pci_restore_state(struct pci_dev *dev) 1075 { 1076 if (!dev->state_saved) 1077 return; 1078 1079 /* PCI Express register must be restored first */ 1080 pci_restore_pcie_state(dev); 1081 pci_restore_ats_state(dev); 1082 pci_restore_vc_state(dev); 1083 1084 pci_restore_config_space(dev); 1085 1086 pci_restore_pcix_state(dev); 1087 pci_restore_msi_state(dev); 1088 pci_restore_iov_state(dev); 1089 1090 dev->state_saved = false; 1091 } 1092 EXPORT_SYMBOL(pci_restore_state); 1093 1094 struct pci_saved_state { 1095 u32 config_space[16]; 1096 struct pci_cap_saved_data cap[0]; 1097 }; 1098 1099 /** 1100 * pci_store_saved_state - Allocate and return an opaque struct containing 1101 * the device saved state. 1102 * @dev: PCI device that we're dealing with 1103 * 1104 * Return NULL if no state or error. 1105 */ 1106 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev) 1107 { 1108 struct pci_saved_state *state; 1109 struct pci_cap_saved_state *tmp; 1110 struct pci_cap_saved_data *cap; 1111 size_t size; 1112 1113 if (!dev->state_saved) 1114 return NULL; 1115 1116 size = sizeof(*state) + sizeof(struct pci_cap_saved_data); 1117 1118 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) 1119 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1120 1121 state = kzalloc(size, GFP_KERNEL); 1122 if (!state) 1123 return NULL; 1124 1125 memcpy(state->config_space, dev->saved_config_space, 1126 sizeof(state->config_space)); 1127 1128 cap = state->cap; 1129 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) { 1130 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1131 memcpy(cap, &tmp->cap, len); 1132 cap = (struct pci_cap_saved_data *)((u8 *)cap + len); 1133 } 1134 /* Empty cap_save terminates list */ 1135 1136 return state; 1137 } 1138 EXPORT_SYMBOL_GPL(pci_store_saved_state); 1139 1140 /** 1141 * pci_load_saved_state - Reload the provided save state into struct pci_dev. 1142 * @dev: PCI device that we're dealing with 1143 * @state: Saved state returned from pci_store_saved_state() 1144 */ 1145 static int pci_load_saved_state(struct pci_dev *dev, 1146 struct pci_saved_state *state) 1147 { 1148 struct pci_cap_saved_data *cap; 1149 1150 dev->state_saved = false; 1151 1152 if (!state) 1153 return 0; 1154 1155 memcpy(dev->saved_config_space, state->config_space, 1156 sizeof(state->config_space)); 1157 1158 cap = state->cap; 1159 while (cap->size) { 1160 struct pci_cap_saved_state *tmp; 1161 1162 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended); 1163 if (!tmp || tmp->cap.size != cap->size) 1164 return -EINVAL; 1165 1166 memcpy(tmp->cap.data, cap->data, tmp->cap.size); 1167 cap = (struct pci_cap_saved_data *)((u8 *)cap + 1168 sizeof(struct pci_cap_saved_data) + cap->size); 1169 } 1170 1171 dev->state_saved = true; 1172 return 0; 1173 } 1174 1175 /** 1176 * pci_load_and_free_saved_state - Reload the save state pointed to by state, 1177 * and free the memory allocated for it. 1178 * @dev: PCI device that we're dealing with 1179 * @state: Pointer to saved state returned from pci_store_saved_state() 1180 */ 1181 int pci_load_and_free_saved_state(struct pci_dev *dev, 1182 struct pci_saved_state **state) 1183 { 1184 int ret = pci_load_saved_state(dev, *state); 1185 kfree(*state); 1186 *state = NULL; 1187 return ret; 1188 } 1189 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state); 1190 1191 int __weak pcibios_enable_device(struct pci_dev *dev, int bars) 1192 { 1193 return pci_enable_resources(dev, bars); 1194 } 1195 1196 static int do_pci_enable_device(struct pci_dev *dev, int bars) 1197 { 1198 int err; 1199 struct pci_dev *bridge; 1200 u16 cmd; 1201 u8 pin; 1202 1203 err = pci_set_power_state(dev, PCI_D0); 1204 if (err < 0 && err != -EIO) 1205 return err; 1206 1207 bridge = pci_upstream_bridge(dev); 1208 if (bridge) 1209 pcie_aspm_powersave_config_link(bridge); 1210 1211 err = pcibios_enable_device(dev, bars); 1212 if (err < 0) 1213 return err; 1214 pci_fixup_device(pci_fixup_enable, dev); 1215 1216 if (dev->msi_enabled || dev->msix_enabled) 1217 return 0; 1218 1219 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin); 1220 if (pin) { 1221 pci_read_config_word(dev, PCI_COMMAND, &cmd); 1222 if (cmd & PCI_COMMAND_INTX_DISABLE) 1223 pci_write_config_word(dev, PCI_COMMAND, 1224 cmd & ~PCI_COMMAND_INTX_DISABLE); 1225 } 1226 1227 return 0; 1228 } 1229 1230 /** 1231 * pci_reenable_device - Resume abandoned device 1232 * @dev: PCI device to be resumed 1233 * 1234 * Note this function is a backend of pci_default_resume and is not supposed 1235 * to be called by normal code, write proper resume handler and use it instead. 1236 */ 1237 int pci_reenable_device(struct pci_dev *dev) 1238 { 1239 if (pci_is_enabled(dev)) 1240 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1); 1241 return 0; 1242 } 1243 EXPORT_SYMBOL(pci_reenable_device); 1244 1245 static void pci_enable_bridge(struct pci_dev *dev) 1246 { 1247 struct pci_dev *bridge; 1248 int retval; 1249 1250 bridge = pci_upstream_bridge(dev); 1251 if (bridge) 1252 pci_enable_bridge(bridge); 1253 1254 if (pci_is_enabled(dev)) { 1255 if (!dev->is_busmaster) 1256 pci_set_master(dev); 1257 return; 1258 } 1259 1260 retval = pci_enable_device(dev); 1261 if (retval) 1262 dev_err(&dev->dev, "Error enabling bridge (%d), continuing\n", 1263 retval); 1264 pci_set_master(dev); 1265 } 1266 1267 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags) 1268 { 1269 struct pci_dev *bridge; 1270 int err; 1271 int i, bars = 0; 1272 1273 /* 1274 * Power state could be unknown at this point, either due to a fresh 1275 * boot or a device removal call. So get the current power state 1276 * so that things like MSI message writing will behave as expected 1277 * (e.g. if the device really is in D0 at enable time). 1278 */ 1279 if (dev->pm_cap) { 1280 u16 pmcsr; 1281 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1282 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 1283 } 1284 1285 if (atomic_inc_return(&dev->enable_cnt) > 1) 1286 return 0; /* already enabled */ 1287 1288 bridge = pci_upstream_bridge(dev); 1289 if (bridge) 1290 pci_enable_bridge(bridge); 1291 1292 /* only skip sriov related */ 1293 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 1294 if (dev->resource[i].flags & flags) 1295 bars |= (1 << i); 1296 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++) 1297 if (dev->resource[i].flags & flags) 1298 bars |= (1 << i); 1299 1300 err = do_pci_enable_device(dev, bars); 1301 if (err < 0) 1302 atomic_dec(&dev->enable_cnt); 1303 return err; 1304 } 1305 1306 /** 1307 * pci_enable_device_io - Initialize a device for use with IO space 1308 * @dev: PCI device to be initialized 1309 * 1310 * Initialize device before it's used by a driver. Ask low-level code 1311 * to enable I/O resources. Wake up the device if it was suspended. 1312 * Beware, this function can fail. 1313 */ 1314 int pci_enable_device_io(struct pci_dev *dev) 1315 { 1316 return pci_enable_device_flags(dev, IORESOURCE_IO); 1317 } 1318 EXPORT_SYMBOL(pci_enable_device_io); 1319 1320 /** 1321 * pci_enable_device_mem - Initialize a device for use with Memory space 1322 * @dev: PCI device to be initialized 1323 * 1324 * Initialize device before it's used by a driver. Ask low-level code 1325 * to enable Memory resources. Wake up the device if it was suspended. 1326 * Beware, this function can fail. 1327 */ 1328 int pci_enable_device_mem(struct pci_dev *dev) 1329 { 1330 return pci_enable_device_flags(dev, IORESOURCE_MEM); 1331 } 1332 EXPORT_SYMBOL(pci_enable_device_mem); 1333 1334 /** 1335 * pci_enable_device - Initialize device before it's used by a driver. 1336 * @dev: PCI device to be initialized 1337 * 1338 * Initialize device before it's used by a driver. Ask low-level code 1339 * to enable I/O and memory. Wake up the device if it was suspended. 1340 * Beware, this function can fail. 1341 * 1342 * Note we don't actually enable the device many times if we call 1343 * this function repeatedly (we just increment the count). 1344 */ 1345 int pci_enable_device(struct pci_dev *dev) 1346 { 1347 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO); 1348 } 1349 EXPORT_SYMBOL(pci_enable_device); 1350 1351 /* 1352 * Managed PCI resources. This manages device on/off, intx/msi/msix 1353 * on/off and BAR regions. pci_dev itself records msi/msix status, so 1354 * there's no need to track it separately. pci_devres is initialized 1355 * when a device is enabled using managed PCI device enable interface. 1356 */ 1357 struct pci_devres { 1358 unsigned int enabled:1; 1359 unsigned int pinned:1; 1360 unsigned int orig_intx:1; 1361 unsigned int restore_intx:1; 1362 u32 region_mask; 1363 }; 1364 1365 static void pcim_release(struct device *gendev, void *res) 1366 { 1367 struct pci_dev *dev = container_of(gendev, struct pci_dev, dev); 1368 struct pci_devres *this = res; 1369 int i; 1370 1371 if (dev->msi_enabled) 1372 pci_disable_msi(dev); 1373 if (dev->msix_enabled) 1374 pci_disable_msix(dev); 1375 1376 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) 1377 if (this->region_mask & (1 << i)) 1378 pci_release_region(dev, i); 1379 1380 if (this->restore_intx) 1381 pci_intx(dev, this->orig_intx); 1382 1383 if (this->enabled && !this->pinned) 1384 pci_disable_device(dev); 1385 } 1386 1387 static struct pci_devres *get_pci_dr(struct pci_dev *pdev) 1388 { 1389 struct pci_devres *dr, *new_dr; 1390 1391 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL); 1392 if (dr) 1393 return dr; 1394 1395 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL); 1396 if (!new_dr) 1397 return NULL; 1398 return devres_get(&pdev->dev, new_dr, NULL, NULL); 1399 } 1400 1401 static struct pci_devres *find_pci_dr(struct pci_dev *pdev) 1402 { 1403 if (pci_is_managed(pdev)) 1404 return devres_find(&pdev->dev, pcim_release, NULL, NULL); 1405 return NULL; 1406 } 1407 1408 /** 1409 * pcim_enable_device - Managed pci_enable_device() 1410 * @pdev: PCI device to be initialized 1411 * 1412 * Managed pci_enable_device(). 1413 */ 1414 int pcim_enable_device(struct pci_dev *pdev) 1415 { 1416 struct pci_devres *dr; 1417 int rc; 1418 1419 dr = get_pci_dr(pdev); 1420 if (unlikely(!dr)) 1421 return -ENOMEM; 1422 if (dr->enabled) 1423 return 0; 1424 1425 rc = pci_enable_device(pdev); 1426 if (!rc) { 1427 pdev->is_managed = 1; 1428 dr->enabled = 1; 1429 } 1430 return rc; 1431 } 1432 EXPORT_SYMBOL(pcim_enable_device); 1433 1434 /** 1435 * pcim_pin_device - Pin managed PCI device 1436 * @pdev: PCI device to pin 1437 * 1438 * Pin managed PCI device @pdev. Pinned device won't be disabled on 1439 * driver detach. @pdev must have been enabled with 1440 * pcim_enable_device(). 1441 */ 1442 void pcim_pin_device(struct pci_dev *pdev) 1443 { 1444 struct pci_devres *dr; 1445 1446 dr = find_pci_dr(pdev); 1447 WARN_ON(!dr || !dr->enabled); 1448 if (dr) 1449 dr->pinned = 1; 1450 } 1451 EXPORT_SYMBOL(pcim_pin_device); 1452 1453 /* 1454 * pcibios_add_device - provide arch specific hooks when adding device dev 1455 * @dev: the PCI device being added 1456 * 1457 * Permits the platform to provide architecture specific functionality when 1458 * devices are added. This is the default implementation. Architecture 1459 * implementations can override this. 1460 */ 1461 int __weak pcibios_add_device(struct pci_dev *dev) 1462 { 1463 return 0; 1464 } 1465 1466 /** 1467 * pcibios_release_device - provide arch specific hooks when releasing device dev 1468 * @dev: the PCI device being released 1469 * 1470 * Permits the platform to provide architecture specific functionality when 1471 * devices are released. This is the default implementation. Architecture 1472 * implementations can override this. 1473 */ 1474 void __weak pcibios_release_device(struct pci_dev *dev) {} 1475 1476 /** 1477 * pcibios_disable_device - disable arch specific PCI resources for device dev 1478 * @dev: the PCI device to disable 1479 * 1480 * Disables architecture specific PCI resources for the device. This 1481 * is the default implementation. Architecture implementations can 1482 * override this. 1483 */ 1484 void __weak pcibios_disable_device (struct pci_dev *dev) {} 1485 1486 /** 1487 * pcibios_penalize_isa_irq - penalize an ISA IRQ 1488 * @irq: ISA IRQ to penalize 1489 * @active: IRQ active or not 1490 * 1491 * Permits the platform to provide architecture-specific functionality when 1492 * penalizing ISA IRQs. This is the default implementation. Architecture 1493 * implementations can override this. 1494 */ 1495 void __weak pcibios_penalize_isa_irq(int irq, int active) {} 1496 1497 static void do_pci_disable_device(struct pci_dev *dev) 1498 { 1499 u16 pci_command; 1500 1501 pci_read_config_word(dev, PCI_COMMAND, &pci_command); 1502 if (pci_command & PCI_COMMAND_MASTER) { 1503 pci_command &= ~PCI_COMMAND_MASTER; 1504 pci_write_config_word(dev, PCI_COMMAND, pci_command); 1505 } 1506 1507 pcibios_disable_device(dev); 1508 } 1509 1510 /** 1511 * pci_disable_enabled_device - Disable device without updating enable_cnt 1512 * @dev: PCI device to disable 1513 * 1514 * NOTE: This function is a backend of PCI power management routines and is 1515 * not supposed to be called drivers. 1516 */ 1517 void pci_disable_enabled_device(struct pci_dev *dev) 1518 { 1519 if (pci_is_enabled(dev)) 1520 do_pci_disable_device(dev); 1521 } 1522 1523 /** 1524 * pci_disable_device - Disable PCI device after use 1525 * @dev: PCI device to be disabled 1526 * 1527 * Signal to the system that the PCI device is not in use by the system 1528 * anymore. This only involves disabling PCI bus-mastering, if active. 1529 * 1530 * Note we don't actually disable the device until all callers of 1531 * pci_enable_device() have called pci_disable_device(). 1532 */ 1533 void pci_disable_device(struct pci_dev *dev) 1534 { 1535 struct pci_devres *dr; 1536 1537 dr = find_pci_dr(dev); 1538 if (dr) 1539 dr->enabled = 0; 1540 1541 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0, 1542 "disabling already-disabled device"); 1543 1544 if (atomic_dec_return(&dev->enable_cnt) != 0) 1545 return; 1546 1547 do_pci_disable_device(dev); 1548 1549 dev->is_busmaster = 0; 1550 } 1551 EXPORT_SYMBOL(pci_disable_device); 1552 1553 /** 1554 * pcibios_set_pcie_reset_state - set reset state for device dev 1555 * @dev: the PCIe device reset 1556 * @state: Reset state to enter into 1557 * 1558 * 1559 * Sets the PCIe reset state for the device. This is the default 1560 * implementation. Architecture implementations can override this. 1561 */ 1562 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev, 1563 enum pcie_reset_state state) 1564 { 1565 return -EINVAL; 1566 } 1567 1568 /** 1569 * pci_set_pcie_reset_state - set reset state for device dev 1570 * @dev: the PCIe device reset 1571 * @state: Reset state to enter into 1572 * 1573 * 1574 * Sets the PCI reset state for the device. 1575 */ 1576 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state) 1577 { 1578 return pcibios_set_pcie_reset_state(dev, state); 1579 } 1580 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state); 1581 1582 /** 1583 * pci_check_pme_status - Check if given device has generated PME. 1584 * @dev: Device to check. 1585 * 1586 * Check the PME status of the device and if set, clear it and clear PME enable 1587 * (if set). Return 'true' if PME status and PME enable were both set or 1588 * 'false' otherwise. 1589 */ 1590 bool pci_check_pme_status(struct pci_dev *dev) 1591 { 1592 int pmcsr_pos; 1593 u16 pmcsr; 1594 bool ret = false; 1595 1596 if (!dev->pm_cap) 1597 return false; 1598 1599 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL; 1600 pci_read_config_word(dev, pmcsr_pos, &pmcsr); 1601 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS)) 1602 return false; 1603 1604 /* Clear PME status. */ 1605 pmcsr |= PCI_PM_CTRL_PME_STATUS; 1606 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) { 1607 /* Disable PME to avoid interrupt flood. */ 1608 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 1609 ret = true; 1610 } 1611 1612 pci_write_config_word(dev, pmcsr_pos, pmcsr); 1613 1614 return ret; 1615 } 1616 1617 /** 1618 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set. 1619 * @dev: Device to handle. 1620 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag. 1621 * 1622 * Check if @dev has generated PME and queue a resume request for it in that 1623 * case. 1624 */ 1625 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset) 1626 { 1627 if (pme_poll_reset && dev->pme_poll) 1628 dev->pme_poll = false; 1629 1630 if (pci_check_pme_status(dev)) { 1631 pci_wakeup_event(dev); 1632 pm_request_resume(&dev->dev); 1633 } 1634 return 0; 1635 } 1636 1637 /** 1638 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary. 1639 * @bus: Top bus of the subtree to walk. 1640 */ 1641 void pci_pme_wakeup_bus(struct pci_bus *bus) 1642 { 1643 if (bus) 1644 pci_walk_bus(bus, pci_pme_wakeup, (void *)true); 1645 } 1646 1647 1648 /** 1649 * pci_pme_capable - check the capability of PCI device to generate PME# 1650 * @dev: PCI device to handle. 1651 * @state: PCI state from which device will issue PME#. 1652 */ 1653 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state) 1654 { 1655 if (!dev->pm_cap) 1656 return false; 1657 1658 return !!(dev->pme_support & (1 << state)); 1659 } 1660 EXPORT_SYMBOL(pci_pme_capable); 1661 1662 static void pci_pme_list_scan(struct work_struct *work) 1663 { 1664 struct pci_pme_device *pme_dev, *n; 1665 1666 mutex_lock(&pci_pme_list_mutex); 1667 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) { 1668 if (pme_dev->dev->pme_poll) { 1669 struct pci_dev *bridge; 1670 1671 bridge = pme_dev->dev->bus->self; 1672 /* 1673 * If bridge is in low power state, the 1674 * configuration space of subordinate devices 1675 * may be not accessible 1676 */ 1677 if (bridge && bridge->current_state != PCI_D0) 1678 continue; 1679 pci_pme_wakeup(pme_dev->dev, NULL); 1680 } else { 1681 list_del(&pme_dev->list); 1682 kfree(pme_dev); 1683 } 1684 } 1685 if (!list_empty(&pci_pme_list)) 1686 schedule_delayed_work(&pci_pme_work, 1687 msecs_to_jiffies(PME_TIMEOUT)); 1688 mutex_unlock(&pci_pme_list_mutex); 1689 } 1690 1691 /** 1692 * pci_pme_active - enable or disable PCI device's PME# function 1693 * @dev: PCI device to handle. 1694 * @enable: 'true' to enable PME# generation; 'false' to disable it. 1695 * 1696 * The caller must verify that the device is capable of generating PME# before 1697 * calling this function with @enable equal to 'true'. 1698 */ 1699 void pci_pme_active(struct pci_dev *dev, bool enable) 1700 { 1701 u16 pmcsr; 1702 1703 if (!dev->pme_support) 1704 return; 1705 1706 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1707 /* Clear PME_Status by writing 1 to it and enable PME# */ 1708 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE; 1709 if (!enable) 1710 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 1711 1712 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 1713 1714 /* 1715 * PCI (as opposed to PCIe) PME requires that the device have 1716 * its PME# line hooked up correctly. Not all hardware vendors 1717 * do this, so the PME never gets delivered and the device 1718 * remains asleep. The easiest way around this is to 1719 * periodically walk the list of suspended devices and check 1720 * whether any have their PME flag set. The assumption is that 1721 * we'll wake up often enough anyway that this won't be a huge 1722 * hit, and the power savings from the devices will still be a 1723 * win. 1724 * 1725 * Although PCIe uses in-band PME message instead of PME# line 1726 * to report PME, PME does not work for some PCIe devices in 1727 * reality. For example, there are devices that set their PME 1728 * status bits, but don't really bother to send a PME message; 1729 * there are PCI Express Root Ports that don't bother to 1730 * trigger interrupts when they receive PME messages from the 1731 * devices below. So PME poll is used for PCIe devices too. 1732 */ 1733 1734 if (dev->pme_poll) { 1735 struct pci_pme_device *pme_dev; 1736 if (enable) { 1737 pme_dev = kmalloc(sizeof(struct pci_pme_device), 1738 GFP_KERNEL); 1739 if (!pme_dev) { 1740 dev_warn(&dev->dev, "can't enable PME#\n"); 1741 return; 1742 } 1743 pme_dev->dev = dev; 1744 mutex_lock(&pci_pme_list_mutex); 1745 list_add(&pme_dev->list, &pci_pme_list); 1746 if (list_is_singular(&pci_pme_list)) 1747 schedule_delayed_work(&pci_pme_work, 1748 msecs_to_jiffies(PME_TIMEOUT)); 1749 mutex_unlock(&pci_pme_list_mutex); 1750 } else { 1751 mutex_lock(&pci_pme_list_mutex); 1752 list_for_each_entry(pme_dev, &pci_pme_list, list) { 1753 if (pme_dev->dev == dev) { 1754 list_del(&pme_dev->list); 1755 kfree(pme_dev); 1756 break; 1757 } 1758 } 1759 mutex_unlock(&pci_pme_list_mutex); 1760 } 1761 } 1762 1763 dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled"); 1764 } 1765 EXPORT_SYMBOL(pci_pme_active); 1766 1767 /** 1768 * __pci_enable_wake - enable PCI device as wakeup event source 1769 * @dev: PCI device affected 1770 * @state: PCI state from which device will issue wakeup events 1771 * @runtime: True if the events are to be generated at run time 1772 * @enable: True to enable event generation; false to disable 1773 * 1774 * This enables the device as a wakeup event source, or disables it. 1775 * When such events involves platform-specific hooks, those hooks are 1776 * called automatically by this routine. 1777 * 1778 * Devices with legacy power management (no standard PCI PM capabilities) 1779 * always require such platform hooks. 1780 * 1781 * RETURN VALUE: 1782 * 0 is returned on success 1783 * -EINVAL is returned if device is not supposed to wake up the system 1784 * Error code depending on the platform is returned if both the platform and 1785 * the native mechanism fail to enable the generation of wake-up events 1786 */ 1787 int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, 1788 bool runtime, bool enable) 1789 { 1790 int ret = 0; 1791 1792 if (enable && !runtime && !device_may_wakeup(&dev->dev)) 1793 return -EINVAL; 1794 1795 /* Don't do the same thing twice in a row for one device. */ 1796 if (!!enable == !!dev->wakeup_prepared) 1797 return 0; 1798 1799 /* 1800 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don 1801 * Anderson we should be doing PME# wake enable followed by ACPI wake 1802 * enable. To disable wake-up we call the platform first, for symmetry. 1803 */ 1804 1805 if (enable) { 1806 int error; 1807 1808 if (pci_pme_capable(dev, state)) 1809 pci_pme_active(dev, true); 1810 else 1811 ret = 1; 1812 error = runtime ? platform_pci_run_wake(dev, true) : 1813 platform_pci_sleep_wake(dev, true); 1814 if (ret) 1815 ret = error; 1816 if (!ret) 1817 dev->wakeup_prepared = true; 1818 } else { 1819 if (runtime) 1820 platform_pci_run_wake(dev, false); 1821 else 1822 platform_pci_sleep_wake(dev, false); 1823 pci_pme_active(dev, false); 1824 dev->wakeup_prepared = false; 1825 } 1826 1827 return ret; 1828 } 1829 EXPORT_SYMBOL(__pci_enable_wake); 1830 1831 /** 1832 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold 1833 * @dev: PCI device to prepare 1834 * @enable: True to enable wake-up event generation; false to disable 1835 * 1836 * Many drivers want the device to wake up the system from D3_hot or D3_cold 1837 * and this function allows them to set that up cleanly - pci_enable_wake() 1838 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI 1839 * ordering constraints. 1840 * 1841 * This function only returns error code if the device is not capable of 1842 * generating PME# from both D3_hot and D3_cold, and the platform is unable to 1843 * enable wake-up power for it. 1844 */ 1845 int pci_wake_from_d3(struct pci_dev *dev, bool enable) 1846 { 1847 return pci_pme_capable(dev, PCI_D3cold) ? 1848 pci_enable_wake(dev, PCI_D3cold, enable) : 1849 pci_enable_wake(dev, PCI_D3hot, enable); 1850 } 1851 EXPORT_SYMBOL(pci_wake_from_d3); 1852 1853 /** 1854 * pci_target_state - find an appropriate low power state for a given PCI dev 1855 * @dev: PCI device 1856 * 1857 * Use underlying platform code to find a supported low power state for @dev. 1858 * If the platform can't manage @dev, return the deepest state from which it 1859 * can generate wake events, based on any available PME info. 1860 */ 1861 static pci_power_t pci_target_state(struct pci_dev *dev) 1862 { 1863 pci_power_t target_state = PCI_D3hot; 1864 1865 if (platform_pci_power_manageable(dev)) { 1866 /* 1867 * Call the platform to choose the target state of the device 1868 * and enable wake-up from this state if supported. 1869 */ 1870 pci_power_t state = platform_pci_choose_state(dev); 1871 1872 switch (state) { 1873 case PCI_POWER_ERROR: 1874 case PCI_UNKNOWN: 1875 break; 1876 case PCI_D1: 1877 case PCI_D2: 1878 if (pci_no_d1d2(dev)) 1879 break; 1880 default: 1881 target_state = state; 1882 } 1883 } else if (!dev->pm_cap) { 1884 target_state = PCI_D0; 1885 } else if (device_may_wakeup(&dev->dev)) { 1886 /* 1887 * Find the deepest state from which the device can generate 1888 * wake-up events, make it the target state and enable device 1889 * to generate PME#. 1890 */ 1891 if (dev->pme_support) { 1892 while (target_state 1893 && !(dev->pme_support & (1 << target_state))) 1894 target_state--; 1895 } 1896 } 1897 1898 return target_state; 1899 } 1900 1901 /** 1902 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state 1903 * @dev: Device to handle. 1904 * 1905 * Choose the power state appropriate for the device depending on whether 1906 * it can wake up the system and/or is power manageable by the platform 1907 * (PCI_D3hot is the default) and put the device into that state. 1908 */ 1909 int pci_prepare_to_sleep(struct pci_dev *dev) 1910 { 1911 pci_power_t target_state = pci_target_state(dev); 1912 int error; 1913 1914 if (target_state == PCI_POWER_ERROR) 1915 return -EIO; 1916 1917 pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev)); 1918 1919 error = pci_set_power_state(dev, target_state); 1920 1921 if (error) 1922 pci_enable_wake(dev, target_state, false); 1923 1924 return error; 1925 } 1926 EXPORT_SYMBOL(pci_prepare_to_sleep); 1927 1928 /** 1929 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state 1930 * @dev: Device to handle. 1931 * 1932 * Disable device's system wake-up capability and put it into D0. 1933 */ 1934 int pci_back_from_sleep(struct pci_dev *dev) 1935 { 1936 pci_enable_wake(dev, PCI_D0, false); 1937 return pci_set_power_state(dev, PCI_D0); 1938 } 1939 EXPORT_SYMBOL(pci_back_from_sleep); 1940 1941 /** 1942 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend. 1943 * @dev: PCI device being suspended. 1944 * 1945 * Prepare @dev to generate wake-up events at run time and put it into a low 1946 * power state. 1947 */ 1948 int pci_finish_runtime_suspend(struct pci_dev *dev) 1949 { 1950 pci_power_t target_state = pci_target_state(dev); 1951 int error; 1952 1953 if (target_state == PCI_POWER_ERROR) 1954 return -EIO; 1955 1956 dev->runtime_d3cold = target_state == PCI_D3cold; 1957 1958 __pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev)); 1959 1960 error = pci_set_power_state(dev, target_state); 1961 1962 if (error) { 1963 __pci_enable_wake(dev, target_state, true, false); 1964 dev->runtime_d3cold = false; 1965 } 1966 1967 return error; 1968 } 1969 1970 /** 1971 * pci_dev_run_wake - Check if device can generate run-time wake-up events. 1972 * @dev: Device to check. 1973 * 1974 * Return true if the device itself is capable of generating wake-up events 1975 * (through the platform or using the native PCIe PME) or if the device supports 1976 * PME and one of its upstream bridges can generate wake-up events. 1977 */ 1978 bool pci_dev_run_wake(struct pci_dev *dev) 1979 { 1980 struct pci_bus *bus = dev->bus; 1981 1982 if (device_run_wake(&dev->dev)) 1983 return true; 1984 1985 if (!dev->pme_support) 1986 return false; 1987 1988 while (bus->parent) { 1989 struct pci_dev *bridge = bus->self; 1990 1991 if (device_run_wake(&bridge->dev)) 1992 return true; 1993 1994 bus = bus->parent; 1995 } 1996 1997 /* We have reached the root bus. */ 1998 if (bus->bridge) 1999 return device_run_wake(bus->bridge); 2000 2001 return false; 2002 } 2003 EXPORT_SYMBOL_GPL(pci_dev_run_wake); 2004 2005 void pci_config_pm_runtime_get(struct pci_dev *pdev) 2006 { 2007 struct device *dev = &pdev->dev; 2008 struct device *parent = dev->parent; 2009 2010 if (parent) 2011 pm_runtime_get_sync(parent); 2012 pm_runtime_get_noresume(dev); 2013 /* 2014 * pdev->current_state is set to PCI_D3cold during suspending, 2015 * so wait until suspending completes 2016 */ 2017 pm_runtime_barrier(dev); 2018 /* 2019 * Only need to resume devices in D3cold, because config 2020 * registers are still accessible for devices suspended but 2021 * not in D3cold. 2022 */ 2023 if (pdev->current_state == PCI_D3cold) 2024 pm_runtime_resume(dev); 2025 } 2026 2027 void pci_config_pm_runtime_put(struct pci_dev *pdev) 2028 { 2029 struct device *dev = &pdev->dev; 2030 struct device *parent = dev->parent; 2031 2032 pm_runtime_put(dev); 2033 if (parent) 2034 pm_runtime_put_sync(parent); 2035 } 2036 2037 /** 2038 * pci_pm_init - Initialize PM functions of given PCI device 2039 * @dev: PCI device to handle. 2040 */ 2041 void pci_pm_init(struct pci_dev *dev) 2042 { 2043 int pm; 2044 u16 pmc; 2045 2046 pm_runtime_forbid(&dev->dev); 2047 pm_runtime_set_active(&dev->dev); 2048 pm_runtime_enable(&dev->dev); 2049 device_enable_async_suspend(&dev->dev); 2050 dev->wakeup_prepared = false; 2051 2052 dev->pm_cap = 0; 2053 dev->pme_support = 0; 2054 2055 /* find PCI PM capability in list */ 2056 pm = pci_find_capability(dev, PCI_CAP_ID_PM); 2057 if (!pm) 2058 return; 2059 /* Check device's ability to generate PME# */ 2060 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc); 2061 2062 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) { 2063 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n", 2064 pmc & PCI_PM_CAP_VER_MASK); 2065 return; 2066 } 2067 2068 dev->pm_cap = pm; 2069 dev->d3_delay = PCI_PM_D3_WAIT; 2070 dev->d3cold_delay = PCI_PM_D3COLD_WAIT; 2071 dev->d3cold_allowed = true; 2072 2073 dev->d1_support = false; 2074 dev->d2_support = false; 2075 if (!pci_no_d1d2(dev)) { 2076 if (pmc & PCI_PM_CAP_D1) 2077 dev->d1_support = true; 2078 if (pmc & PCI_PM_CAP_D2) 2079 dev->d2_support = true; 2080 2081 if (dev->d1_support || dev->d2_support) 2082 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n", 2083 dev->d1_support ? " D1" : "", 2084 dev->d2_support ? " D2" : ""); 2085 } 2086 2087 pmc &= PCI_PM_CAP_PME_MASK; 2088 if (pmc) { 2089 dev_printk(KERN_DEBUG, &dev->dev, 2090 "PME# supported from%s%s%s%s%s\n", 2091 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "", 2092 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "", 2093 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "", 2094 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "", 2095 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : ""); 2096 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT; 2097 dev->pme_poll = true; 2098 /* 2099 * Make device's PM flags reflect the wake-up capability, but 2100 * let the user space enable it to wake up the system as needed. 2101 */ 2102 device_set_wakeup_capable(&dev->dev, true); 2103 /* Disable the PME# generation functionality */ 2104 pci_pme_active(dev, false); 2105 } 2106 } 2107 2108 static void pci_add_saved_cap(struct pci_dev *pci_dev, 2109 struct pci_cap_saved_state *new_cap) 2110 { 2111 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space); 2112 } 2113 2114 /** 2115 * _pci_add_cap_save_buffer - allocate buffer for saving given 2116 * capability registers 2117 * @dev: the PCI device 2118 * @cap: the capability to allocate the buffer for 2119 * @extended: Standard or Extended capability ID 2120 * @size: requested size of the buffer 2121 */ 2122 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap, 2123 bool extended, unsigned int size) 2124 { 2125 int pos; 2126 struct pci_cap_saved_state *save_state; 2127 2128 if (extended) 2129 pos = pci_find_ext_capability(dev, cap); 2130 else 2131 pos = pci_find_capability(dev, cap); 2132 2133 if (pos <= 0) 2134 return 0; 2135 2136 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL); 2137 if (!save_state) 2138 return -ENOMEM; 2139 2140 save_state->cap.cap_nr = cap; 2141 save_state->cap.cap_extended = extended; 2142 save_state->cap.size = size; 2143 pci_add_saved_cap(dev, save_state); 2144 2145 return 0; 2146 } 2147 2148 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size) 2149 { 2150 return _pci_add_cap_save_buffer(dev, cap, false, size); 2151 } 2152 2153 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size) 2154 { 2155 return _pci_add_cap_save_buffer(dev, cap, true, size); 2156 } 2157 2158 /** 2159 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities 2160 * @dev: the PCI device 2161 */ 2162 void pci_allocate_cap_save_buffers(struct pci_dev *dev) 2163 { 2164 int error; 2165 2166 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP, 2167 PCI_EXP_SAVE_REGS * sizeof(u16)); 2168 if (error) 2169 dev_err(&dev->dev, 2170 "unable to preallocate PCI Express save buffer\n"); 2171 2172 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16)); 2173 if (error) 2174 dev_err(&dev->dev, 2175 "unable to preallocate PCI-X save buffer\n"); 2176 2177 pci_allocate_vc_save_buffers(dev); 2178 } 2179 2180 void pci_free_cap_save_buffers(struct pci_dev *dev) 2181 { 2182 struct pci_cap_saved_state *tmp; 2183 struct hlist_node *n; 2184 2185 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next) 2186 kfree(tmp); 2187 } 2188 2189 /** 2190 * pci_configure_ari - enable or disable ARI forwarding 2191 * @dev: the PCI device 2192 * 2193 * If @dev and its upstream bridge both support ARI, enable ARI in the 2194 * bridge. Otherwise, disable ARI in the bridge. 2195 */ 2196 void pci_configure_ari(struct pci_dev *dev) 2197 { 2198 u32 cap; 2199 struct pci_dev *bridge; 2200 2201 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn) 2202 return; 2203 2204 bridge = dev->bus->self; 2205 if (!bridge) 2206 return; 2207 2208 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 2209 if (!(cap & PCI_EXP_DEVCAP2_ARI)) 2210 return; 2211 2212 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) { 2213 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, 2214 PCI_EXP_DEVCTL2_ARI); 2215 bridge->ari_enabled = 1; 2216 } else { 2217 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2, 2218 PCI_EXP_DEVCTL2_ARI); 2219 bridge->ari_enabled = 0; 2220 } 2221 } 2222 2223 static int pci_acs_enable; 2224 2225 /** 2226 * pci_request_acs - ask for ACS to be enabled if supported 2227 */ 2228 void pci_request_acs(void) 2229 { 2230 pci_acs_enable = 1; 2231 } 2232 2233 /** 2234 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites 2235 * @dev: the PCI device 2236 */ 2237 static int pci_std_enable_acs(struct pci_dev *dev) 2238 { 2239 int pos; 2240 u16 cap; 2241 u16 ctrl; 2242 2243 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS); 2244 if (!pos) 2245 return -ENODEV; 2246 2247 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap); 2248 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 2249 2250 /* Source Validation */ 2251 ctrl |= (cap & PCI_ACS_SV); 2252 2253 /* P2P Request Redirect */ 2254 ctrl |= (cap & PCI_ACS_RR); 2255 2256 /* P2P Completion Redirect */ 2257 ctrl |= (cap & PCI_ACS_CR); 2258 2259 /* Upstream Forwarding */ 2260 ctrl |= (cap & PCI_ACS_UF); 2261 2262 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 2263 2264 return 0; 2265 } 2266 2267 /** 2268 * pci_enable_acs - enable ACS if hardware support it 2269 * @dev: the PCI device 2270 */ 2271 void pci_enable_acs(struct pci_dev *dev) 2272 { 2273 if (!pci_acs_enable) 2274 return; 2275 2276 if (!pci_std_enable_acs(dev)) 2277 return; 2278 2279 pci_dev_specific_enable_acs(dev); 2280 } 2281 2282 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags) 2283 { 2284 int pos; 2285 u16 cap, ctrl; 2286 2287 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS); 2288 if (!pos) 2289 return false; 2290 2291 /* 2292 * Except for egress control, capabilities are either required 2293 * or only required if controllable. Features missing from the 2294 * capability field can therefore be assumed as hard-wired enabled. 2295 */ 2296 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap); 2297 acs_flags &= (cap | PCI_ACS_EC); 2298 2299 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl); 2300 return (ctrl & acs_flags) == acs_flags; 2301 } 2302 2303 /** 2304 * pci_acs_enabled - test ACS against required flags for a given device 2305 * @pdev: device to test 2306 * @acs_flags: required PCI ACS flags 2307 * 2308 * Return true if the device supports the provided flags. Automatically 2309 * filters out flags that are not implemented on multifunction devices. 2310 * 2311 * Note that this interface checks the effective ACS capabilities of the 2312 * device rather than the actual capabilities. For instance, most single 2313 * function endpoints are not required to support ACS because they have no 2314 * opportunity for peer-to-peer access. We therefore return 'true' 2315 * regardless of whether the device exposes an ACS capability. This makes 2316 * it much easier for callers of this function to ignore the actual type 2317 * or topology of the device when testing ACS support. 2318 */ 2319 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags) 2320 { 2321 int ret; 2322 2323 ret = pci_dev_specific_acs_enabled(pdev, acs_flags); 2324 if (ret >= 0) 2325 return ret > 0; 2326 2327 /* 2328 * Conventional PCI and PCI-X devices never support ACS, either 2329 * effectively or actually. The shared bus topology implies that 2330 * any device on the bus can receive or snoop DMA. 2331 */ 2332 if (!pci_is_pcie(pdev)) 2333 return false; 2334 2335 switch (pci_pcie_type(pdev)) { 2336 /* 2337 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec, 2338 * but since their primary interface is PCI/X, we conservatively 2339 * handle them as we would a non-PCIe device. 2340 */ 2341 case PCI_EXP_TYPE_PCIE_BRIDGE: 2342 /* 2343 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never 2344 * applicable... must never implement an ACS Extended Capability...". 2345 * This seems arbitrary, but we take a conservative interpretation 2346 * of this statement. 2347 */ 2348 case PCI_EXP_TYPE_PCI_BRIDGE: 2349 case PCI_EXP_TYPE_RC_EC: 2350 return false; 2351 /* 2352 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should 2353 * implement ACS in order to indicate their peer-to-peer capabilities, 2354 * regardless of whether they are single- or multi-function devices. 2355 */ 2356 case PCI_EXP_TYPE_DOWNSTREAM: 2357 case PCI_EXP_TYPE_ROOT_PORT: 2358 return pci_acs_flags_enabled(pdev, acs_flags); 2359 /* 2360 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be 2361 * implemented by the remaining PCIe types to indicate peer-to-peer 2362 * capabilities, but only when they are part of a multifunction 2363 * device. The footnote for section 6.12 indicates the specific 2364 * PCIe types included here. 2365 */ 2366 case PCI_EXP_TYPE_ENDPOINT: 2367 case PCI_EXP_TYPE_UPSTREAM: 2368 case PCI_EXP_TYPE_LEG_END: 2369 case PCI_EXP_TYPE_RC_END: 2370 if (!pdev->multifunction) 2371 break; 2372 2373 return pci_acs_flags_enabled(pdev, acs_flags); 2374 } 2375 2376 /* 2377 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable 2378 * to single function devices with the exception of downstream ports. 2379 */ 2380 return true; 2381 } 2382 2383 /** 2384 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy 2385 * @start: starting downstream device 2386 * @end: ending upstream device or NULL to search to the root bus 2387 * @acs_flags: required flags 2388 * 2389 * Walk up a device tree from start to end testing PCI ACS support. If 2390 * any step along the way does not support the required flags, return false. 2391 */ 2392 bool pci_acs_path_enabled(struct pci_dev *start, 2393 struct pci_dev *end, u16 acs_flags) 2394 { 2395 struct pci_dev *pdev, *parent = start; 2396 2397 do { 2398 pdev = parent; 2399 2400 if (!pci_acs_enabled(pdev, acs_flags)) 2401 return false; 2402 2403 if (pci_is_root_bus(pdev->bus)) 2404 return (end == NULL); 2405 2406 parent = pdev->bus->self; 2407 } while (pdev != end); 2408 2409 return true; 2410 } 2411 2412 /** 2413 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge 2414 * @dev: the PCI device 2415 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD) 2416 * 2417 * Perform INTx swizzling for a device behind one level of bridge. This is 2418 * required by section 9.1 of the PCI-to-PCI bridge specification for devices 2419 * behind bridges on add-in cards. For devices with ARI enabled, the slot 2420 * number is always 0 (see the Implementation Note in section 2.2.8.1 of 2421 * the PCI Express Base Specification, Revision 2.1) 2422 */ 2423 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin) 2424 { 2425 int slot; 2426 2427 if (pci_ari_enabled(dev->bus)) 2428 slot = 0; 2429 else 2430 slot = PCI_SLOT(dev->devfn); 2431 2432 return (((pin - 1) + slot) % 4) + 1; 2433 } 2434 2435 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge) 2436 { 2437 u8 pin; 2438 2439 pin = dev->pin; 2440 if (!pin) 2441 return -1; 2442 2443 while (!pci_is_root_bus(dev->bus)) { 2444 pin = pci_swizzle_interrupt_pin(dev, pin); 2445 dev = dev->bus->self; 2446 } 2447 *bridge = dev; 2448 return pin; 2449 } 2450 2451 /** 2452 * pci_common_swizzle - swizzle INTx all the way to root bridge 2453 * @dev: the PCI device 2454 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD) 2455 * 2456 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI 2457 * bridges all the way up to a PCI root bus. 2458 */ 2459 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp) 2460 { 2461 u8 pin = *pinp; 2462 2463 while (!pci_is_root_bus(dev->bus)) { 2464 pin = pci_swizzle_interrupt_pin(dev, pin); 2465 dev = dev->bus->self; 2466 } 2467 *pinp = pin; 2468 return PCI_SLOT(dev->devfn); 2469 } 2470 2471 /** 2472 * pci_release_region - Release a PCI bar 2473 * @pdev: PCI device whose resources were previously reserved by pci_request_region 2474 * @bar: BAR to release 2475 * 2476 * Releases the PCI I/O and memory resources previously reserved by a 2477 * successful call to pci_request_region. Call this function only 2478 * after all use of the PCI regions has ceased. 2479 */ 2480 void pci_release_region(struct pci_dev *pdev, int bar) 2481 { 2482 struct pci_devres *dr; 2483 2484 if (pci_resource_len(pdev, bar) == 0) 2485 return; 2486 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) 2487 release_region(pci_resource_start(pdev, bar), 2488 pci_resource_len(pdev, bar)); 2489 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) 2490 release_mem_region(pci_resource_start(pdev, bar), 2491 pci_resource_len(pdev, bar)); 2492 2493 dr = find_pci_dr(pdev); 2494 if (dr) 2495 dr->region_mask &= ~(1 << bar); 2496 } 2497 EXPORT_SYMBOL(pci_release_region); 2498 2499 /** 2500 * __pci_request_region - Reserved PCI I/O and memory resource 2501 * @pdev: PCI device whose resources are to be reserved 2502 * @bar: BAR to be reserved 2503 * @res_name: Name to be associated with resource. 2504 * @exclusive: whether the region access is exclusive or not 2505 * 2506 * Mark the PCI region associated with PCI device @pdev BR @bar as 2507 * being reserved by owner @res_name. Do not access any 2508 * address inside the PCI regions unless this call returns 2509 * successfully. 2510 * 2511 * If @exclusive is set, then the region is marked so that userspace 2512 * is explicitly not allowed to map the resource via /dev/mem or 2513 * sysfs MMIO access. 2514 * 2515 * Returns 0 on success, or %EBUSY on error. A warning 2516 * message is also printed on failure. 2517 */ 2518 static int __pci_request_region(struct pci_dev *pdev, int bar, 2519 const char *res_name, int exclusive) 2520 { 2521 struct pci_devres *dr; 2522 2523 if (pci_resource_len(pdev, bar) == 0) 2524 return 0; 2525 2526 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) { 2527 if (!request_region(pci_resource_start(pdev, bar), 2528 pci_resource_len(pdev, bar), res_name)) 2529 goto err_out; 2530 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) { 2531 if (!__request_mem_region(pci_resource_start(pdev, bar), 2532 pci_resource_len(pdev, bar), res_name, 2533 exclusive)) 2534 goto err_out; 2535 } 2536 2537 dr = find_pci_dr(pdev); 2538 if (dr) 2539 dr->region_mask |= 1 << bar; 2540 2541 return 0; 2542 2543 err_out: 2544 dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar, 2545 &pdev->resource[bar]); 2546 return -EBUSY; 2547 } 2548 2549 /** 2550 * pci_request_region - Reserve PCI I/O and memory resource 2551 * @pdev: PCI device whose resources are to be reserved 2552 * @bar: BAR to be reserved 2553 * @res_name: Name to be associated with resource 2554 * 2555 * Mark the PCI region associated with PCI device @pdev BAR @bar as 2556 * being reserved by owner @res_name. Do not access any 2557 * address inside the PCI regions unless this call returns 2558 * successfully. 2559 * 2560 * Returns 0 on success, or %EBUSY on error. A warning 2561 * message is also printed on failure. 2562 */ 2563 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name) 2564 { 2565 return __pci_request_region(pdev, bar, res_name, 0); 2566 } 2567 EXPORT_SYMBOL(pci_request_region); 2568 2569 /** 2570 * pci_request_region_exclusive - Reserved PCI I/O and memory resource 2571 * @pdev: PCI device whose resources are to be reserved 2572 * @bar: BAR to be reserved 2573 * @res_name: Name to be associated with resource. 2574 * 2575 * Mark the PCI region associated with PCI device @pdev BR @bar as 2576 * being reserved by owner @res_name. Do not access any 2577 * address inside the PCI regions unless this call returns 2578 * successfully. 2579 * 2580 * Returns 0 on success, or %EBUSY on error. A warning 2581 * message is also printed on failure. 2582 * 2583 * The key difference that _exclusive makes it that userspace is 2584 * explicitly not allowed to map the resource via /dev/mem or 2585 * sysfs. 2586 */ 2587 int pci_request_region_exclusive(struct pci_dev *pdev, int bar, 2588 const char *res_name) 2589 { 2590 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE); 2591 } 2592 EXPORT_SYMBOL(pci_request_region_exclusive); 2593 2594 /** 2595 * pci_release_selected_regions - Release selected PCI I/O and memory resources 2596 * @pdev: PCI device whose resources were previously reserved 2597 * @bars: Bitmask of BARs to be released 2598 * 2599 * Release selected PCI I/O and memory resources previously reserved. 2600 * Call this function only after all use of the PCI regions has ceased. 2601 */ 2602 void pci_release_selected_regions(struct pci_dev *pdev, int bars) 2603 { 2604 int i; 2605 2606 for (i = 0; i < 6; i++) 2607 if (bars & (1 << i)) 2608 pci_release_region(pdev, i); 2609 } 2610 EXPORT_SYMBOL(pci_release_selected_regions); 2611 2612 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars, 2613 const char *res_name, int excl) 2614 { 2615 int i; 2616 2617 for (i = 0; i < 6; i++) 2618 if (bars & (1 << i)) 2619 if (__pci_request_region(pdev, i, res_name, excl)) 2620 goto err_out; 2621 return 0; 2622 2623 err_out: 2624 while (--i >= 0) 2625 if (bars & (1 << i)) 2626 pci_release_region(pdev, i); 2627 2628 return -EBUSY; 2629 } 2630 2631 2632 /** 2633 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources 2634 * @pdev: PCI device whose resources are to be reserved 2635 * @bars: Bitmask of BARs to be requested 2636 * @res_name: Name to be associated with resource 2637 */ 2638 int pci_request_selected_regions(struct pci_dev *pdev, int bars, 2639 const char *res_name) 2640 { 2641 return __pci_request_selected_regions(pdev, bars, res_name, 0); 2642 } 2643 EXPORT_SYMBOL(pci_request_selected_regions); 2644 2645 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars, 2646 const char *res_name) 2647 { 2648 return __pci_request_selected_regions(pdev, bars, res_name, 2649 IORESOURCE_EXCLUSIVE); 2650 } 2651 EXPORT_SYMBOL(pci_request_selected_regions_exclusive); 2652 2653 /** 2654 * pci_release_regions - Release reserved PCI I/O and memory resources 2655 * @pdev: PCI device whose resources were previously reserved by pci_request_regions 2656 * 2657 * Releases all PCI I/O and memory resources previously reserved by a 2658 * successful call to pci_request_regions. Call this function only 2659 * after all use of the PCI regions has ceased. 2660 */ 2661 2662 void pci_release_regions(struct pci_dev *pdev) 2663 { 2664 pci_release_selected_regions(pdev, (1 << 6) - 1); 2665 } 2666 EXPORT_SYMBOL(pci_release_regions); 2667 2668 /** 2669 * pci_request_regions - Reserved PCI I/O and memory resources 2670 * @pdev: PCI device whose resources are to be reserved 2671 * @res_name: Name to be associated with resource. 2672 * 2673 * Mark all PCI regions associated with PCI device @pdev as 2674 * being reserved by owner @res_name. Do not access any 2675 * address inside the PCI regions unless this call returns 2676 * successfully. 2677 * 2678 * Returns 0 on success, or %EBUSY on error. A warning 2679 * message is also printed on failure. 2680 */ 2681 int pci_request_regions(struct pci_dev *pdev, const char *res_name) 2682 { 2683 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name); 2684 } 2685 EXPORT_SYMBOL(pci_request_regions); 2686 2687 /** 2688 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources 2689 * @pdev: PCI device whose resources are to be reserved 2690 * @res_name: Name to be associated with resource. 2691 * 2692 * Mark all PCI regions associated with PCI device @pdev as 2693 * being reserved by owner @res_name. Do not access any 2694 * address inside the PCI regions unless this call returns 2695 * successfully. 2696 * 2697 * pci_request_regions_exclusive() will mark the region so that 2698 * /dev/mem and the sysfs MMIO access will not be allowed. 2699 * 2700 * Returns 0 on success, or %EBUSY on error. A warning 2701 * message is also printed on failure. 2702 */ 2703 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name) 2704 { 2705 return pci_request_selected_regions_exclusive(pdev, 2706 ((1 << 6) - 1), res_name); 2707 } 2708 EXPORT_SYMBOL(pci_request_regions_exclusive); 2709 2710 /** 2711 * pci_remap_iospace - Remap the memory mapped I/O space 2712 * @res: Resource describing the I/O space 2713 * @phys_addr: physical address of range to be mapped 2714 * 2715 * Remap the memory mapped I/O space described by the @res 2716 * and the CPU physical address @phys_addr into virtual address space. 2717 * Only architectures that have memory mapped IO functions defined 2718 * (and the PCI_IOBASE value defined) should call this function. 2719 */ 2720 int __weak pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr) 2721 { 2722 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 2723 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 2724 2725 if (!(res->flags & IORESOURCE_IO)) 2726 return -EINVAL; 2727 2728 if (res->end > IO_SPACE_LIMIT) 2729 return -EINVAL; 2730 2731 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr, 2732 pgprot_device(PAGE_KERNEL)); 2733 #else 2734 /* this architecture does not have memory mapped I/O space, 2735 so this function should never be called */ 2736 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n"); 2737 return -ENODEV; 2738 #endif 2739 } 2740 2741 static void __pci_set_master(struct pci_dev *dev, bool enable) 2742 { 2743 u16 old_cmd, cmd; 2744 2745 pci_read_config_word(dev, PCI_COMMAND, &old_cmd); 2746 if (enable) 2747 cmd = old_cmd | PCI_COMMAND_MASTER; 2748 else 2749 cmd = old_cmd & ~PCI_COMMAND_MASTER; 2750 if (cmd != old_cmd) { 2751 dev_dbg(&dev->dev, "%s bus mastering\n", 2752 enable ? "enabling" : "disabling"); 2753 pci_write_config_word(dev, PCI_COMMAND, cmd); 2754 } 2755 dev->is_busmaster = enable; 2756 } 2757 2758 /** 2759 * pcibios_setup - process "pci=" kernel boot arguments 2760 * @str: string used to pass in "pci=" kernel boot arguments 2761 * 2762 * Process kernel boot arguments. This is the default implementation. 2763 * Architecture specific implementations can override this as necessary. 2764 */ 2765 char * __weak __init pcibios_setup(char *str) 2766 { 2767 return str; 2768 } 2769 2770 /** 2771 * pcibios_set_master - enable PCI bus-mastering for device dev 2772 * @dev: the PCI device to enable 2773 * 2774 * Enables PCI bus-mastering for the device. This is the default 2775 * implementation. Architecture specific implementations can override 2776 * this if necessary. 2777 */ 2778 void __weak pcibios_set_master(struct pci_dev *dev) 2779 { 2780 u8 lat; 2781 2782 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */ 2783 if (pci_is_pcie(dev)) 2784 return; 2785 2786 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat); 2787 if (lat < 16) 2788 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency; 2789 else if (lat > pcibios_max_latency) 2790 lat = pcibios_max_latency; 2791 else 2792 return; 2793 2794 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat); 2795 } 2796 2797 /** 2798 * pci_set_master - enables bus-mastering for device dev 2799 * @dev: the PCI device to enable 2800 * 2801 * Enables bus-mastering on the device and calls pcibios_set_master() 2802 * to do the needed arch specific settings. 2803 */ 2804 void pci_set_master(struct pci_dev *dev) 2805 { 2806 __pci_set_master(dev, true); 2807 pcibios_set_master(dev); 2808 } 2809 EXPORT_SYMBOL(pci_set_master); 2810 2811 /** 2812 * pci_clear_master - disables bus-mastering for device dev 2813 * @dev: the PCI device to disable 2814 */ 2815 void pci_clear_master(struct pci_dev *dev) 2816 { 2817 __pci_set_master(dev, false); 2818 } 2819 EXPORT_SYMBOL(pci_clear_master); 2820 2821 /** 2822 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed 2823 * @dev: the PCI device for which MWI is to be enabled 2824 * 2825 * Helper function for pci_set_mwi. 2826 * Originally copied from drivers/net/acenic.c. 2827 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. 2828 * 2829 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 2830 */ 2831 int pci_set_cacheline_size(struct pci_dev *dev) 2832 { 2833 u8 cacheline_size; 2834 2835 if (!pci_cache_line_size) 2836 return -EINVAL; 2837 2838 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be 2839 equal to or multiple of the right value. */ 2840 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 2841 if (cacheline_size >= pci_cache_line_size && 2842 (cacheline_size % pci_cache_line_size) == 0) 2843 return 0; 2844 2845 /* Write the correct value. */ 2846 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size); 2847 /* Read it back. */ 2848 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 2849 if (cacheline_size == pci_cache_line_size) 2850 return 0; 2851 2852 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not supported\n", 2853 pci_cache_line_size << 2); 2854 2855 return -EINVAL; 2856 } 2857 EXPORT_SYMBOL_GPL(pci_set_cacheline_size); 2858 2859 /** 2860 * pci_set_mwi - enables memory-write-invalidate PCI transaction 2861 * @dev: the PCI device for which MWI is enabled 2862 * 2863 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 2864 * 2865 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 2866 */ 2867 int pci_set_mwi(struct pci_dev *dev) 2868 { 2869 #ifdef PCI_DISABLE_MWI 2870 return 0; 2871 #else 2872 int rc; 2873 u16 cmd; 2874 2875 rc = pci_set_cacheline_size(dev); 2876 if (rc) 2877 return rc; 2878 2879 pci_read_config_word(dev, PCI_COMMAND, &cmd); 2880 if (!(cmd & PCI_COMMAND_INVALIDATE)) { 2881 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n"); 2882 cmd |= PCI_COMMAND_INVALIDATE; 2883 pci_write_config_word(dev, PCI_COMMAND, cmd); 2884 } 2885 return 0; 2886 #endif 2887 } 2888 EXPORT_SYMBOL(pci_set_mwi); 2889 2890 /** 2891 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction 2892 * @dev: the PCI device for which MWI is enabled 2893 * 2894 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 2895 * Callers are not required to check the return value. 2896 * 2897 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 2898 */ 2899 int pci_try_set_mwi(struct pci_dev *dev) 2900 { 2901 #ifdef PCI_DISABLE_MWI 2902 return 0; 2903 #else 2904 return pci_set_mwi(dev); 2905 #endif 2906 } 2907 EXPORT_SYMBOL(pci_try_set_mwi); 2908 2909 /** 2910 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev 2911 * @dev: the PCI device to disable 2912 * 2913 * Disables PCI Memory-Write-Invalidate transaction on the device 2914 */ 2915 void pci_clear_mwi(struct pci_dev *dev) 2916 { 2917 #ifndef PCI_DISABLE_MWI 2918 u16 cmd; 2919 2920 pci_read_config_word(dev, PCI_COMMAND, &cmd); 2921 if (cmd & PCI_COMMAND_INVALIDATE) { 2922 cmd &= ~PCI_COMMAND_INVALIDATE; 2923 pci_write_config_word(dev, PCI_COMMAND, cmd); 2924 } 2925 #endif 2926 } 2927 EXPORT_SYMBOL(pci_clear_mwi); 2928 2929 /** 2930 * pci_intx - enables/disables PCI INTx for device dev 2931 * @pdev: the PCI device to operate on 2932 * @enable: boolean: whether to enable or disable PCI INTx 2933 * 2934 * Enables/disables PCI INTx for device dev 2935 */ 2936 void pci_intx(struct pci_dev *pdev, int enable) 2937 { 2938 u16 pci_command, new; 2939 2940 pci_read_config_word(pdev, PCI_COMMAND, &pci_command); 2941 2942 if (enable) 2943 new = pci_command & ~PCI_COMMAND_INTX_DISABLE; 2944 else 2945 new = pci_command | PCI_COMMAND_INTX_DISABLE; 2946 2947 if (new != pci_command) { 2948 struct pci_devres *dr; 2949 2950 pci_write_config_word(pdev, PCI_COMMAND, new); 2951 2952 dr = find_pci_dr(pdev); 2953 if (dr && !dr->restore_intx) { 2954 dr->restore_intx = 1; 2955 dr->orig_intx = !enable; 2956 } 2957 } 2958 } 2959 EXPORT_SYMBOL_GPL(pci_intx); 2960 2961 /** 2962 * pci_intx_mask_supported - probe for INTx masking support 2963 * @dev: the PCI device to operate on 2964 * 2965 * Check if the device dev support INTx masking via the config space 2966 * command word. 2967 */ 2968 bool pci_intx_mask_supported(struct pci_dev *dev) 2969 { 2970 bool mask_supported = false; 2971 u16 orig, new; 2972 2973 if (dev->broken_intx_masking) 2974 return false; 2975 2976 pci_cfg_access_lock(dev); 2977 2978 pci_read_config_word(dev, PCI_COMMAND, &orig); 2979 pci_write_config_word(dev, PCI_COMMAND, 2980 orig ^ PCI_COMMAND_INTX_DISABLE); 2981 pci_read_config_word(dev, PCI_COMMAND, &new); 2982 2983 /* 2984 * There's no way to protect against hardware bugs or detect them 2985 * reliably, but as long as we know what the value should be, let's 2986 * go ahead and check it. 2987 */ 2988 if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) { 2989 dev_err(&dev->dev, "Command register changed from 0x%x to 0x%x: driver or hardware bug?\n", 2990 orig, new); 2991 } else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) { 2992 mask_supported = true; 2993 pci_write_config_word(dev, PCI_COMMAND, orig); 2994 } 2995 2996 pci_cfg_access_unlock(dev); 2997 return mask_supported; 2998 } 2999 EXPORT_SYMBOL_GPL(pci_intx_mask_supported); 3000 3001 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask) 3002 { 3003 struct pci_bus *bus = dev->bus; 3004 bool mask_updated = true; 3005 u32 cmd_status_dword; 3006 u16 origcmd, newcmd; 3007 unsigned long flags; 3008 bool irq_pending; 3009 3010 /* 3011 * We do a single dword read to retrieve both command and status. 3012 * Document assumptions that make this possible. 3013 */ 3014 BUILD_BUG_ON(PCI_COMMAND % 4); 3015 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS); 3016 3017 raw_spin_lock_irqsave(&pci_lock, flags); 3018 3019 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword); 3020 3021 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT; 3022 3023 /* 3024 * Check interrupt status register to see whether our device 3025 * triggered the interrupt (when masking) or the next IRQ is 3026 * already pending (when unmasking). 3027 */ 3028 if (mask != irq_pending) { 3029 mask_updated = false; 3030 goto done; 3031 } 3032 3033 origcmd = cmd_status_dword; 3034 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE; 3035 if (mask) 3036 newcmd |= PCI_COMMAND_INTX_DISABLE; 3037 if (newcmd != origcmd) 3038 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd); 3039 3040 done: 3041 raw_spin_unlock_irqrestore(&pci_lock, flags); 3042 3043 return mask_updated; 3044 } 3045 3046 /** 3047 * pci_check_and_mask_intx - mask INTx on pending interrupt 3048 * @dev: the PCI device to operate on 3049 * 3050 * Check if the device dev has its INTx line asserted, mask it and 3051 * return true in that case. False is returned if not interrupt was 3052 * pending. 3053 */ 3054 bool pci_check_and_mask_intx(struct pci_dev *dev) 3055 { 3056 return pci_check_and_set_intx_mask(dev, true); 3057 } 3058 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx); 3059 3060 /** 3061 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending 3062 * @dev: the PCI device to operate on 3063 * 3064 * Check if the device dev has its INTx line asserted, unmask it if not 3065 * and return true. False is returned and the mask remains active if 3066 * there was still an interrupt pending. 3067 */ 3068 bool pci_check_and_unmask_intx(struct pci_dev *dev) 3069 { 3070 return pci_check_and_set_intx_mask(dev, false); 3071 } 3072 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx); 3073 3074 /** 3075 * pci_msi_off - disables any MSI or MSI-X capabilities 3076 * @dev: the PCI device to operate on 3077 * 3078 * If you want to use MSI, see pci_enable_msi() and friends. 3079 * This is a lower-level primitive that allows us to disable 3080 * MSI operation at the device level. 3081 */ 3082 void pci_msi_off(struct pci_dev *dev) 3083 { 3084 int pos; 3085 u16 control; 3086 3087 /* 3088 * This looks like it could go in msi.c, but we need it even when 3089 * CONFIG_PCI_MSI=n. For the same reason, we can't use 3090 * dev->msi_cap or dev->msix_cap here. 3091 */ 3092 pos = pci_find_capability(dev, PCI_CAP_ID_MSI); 3093 if (pos) { 3094 pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control); 3095 control &= ~PCI_MSI_FLAGS_ENABLE; 3096 pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control); 3097 } 3098 pos = pci_find_capability(dev, PCI_CAP_ID_MSIX); 3099 if (pos) { 3100 pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control); 3101 control &= ~PCI_MSIX_FLAGS_ENABLE; 3102 pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control); 3103 } 3104 } 3105 EXPORT_SYMBOL_GPL(pci_msi_off); 3106 3107 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size) 3108 { 3109 return dma_set_max_seg_size(&dev->dev, size); 3110 } 3111 EXPORT_SYMBOL(pci_set_dma_max_seg_size); 3112 3113 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask) 3114 { 3115 return dma_set_seg_boundary(&dev->dev, mask); 3116 } 3117 EXPORT_SYMBOL(pci_set_dma_seg_boundary); 3118 3119 /** 3120 * pci_wait_for_pending_transaction - waits for pending transaction 3121 * @dev: the PCI device to operate on 3122 * 3123 * Return 0 if transaction is pending 1 otherwise. 3124 */ 3125 int pci_wait_for_pending_transaction(struct pci_dev *dev) 3126 { 3127 if (!pci_is_pcie(dev)) 3128 return 1; 3129 3130 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA, 3131 PCI_EXP_DEVSTA_TRPND); 3132 } 3133 EXPORT_SYMBOL(pci_wait_for_pending_transaction); 3134 3135 static int pcie_flr(struct pci_dev *dev, int probe) 3136 { 3137 u32 cap; 3138 3139 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap); 3140 if (!(cap & PCI_EXP_DEVCAP_FLR)) 3141 return -ENOTTY; 3142 3143 if (probe) 3144 return 0; 3145 3146 if (!pci_wait_for_pending_transaction(dev)) 3147 dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n"); 3148 3149 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR); 3150 3151 msleep(100); 3152 3153 return 0; 3154 } 3155 3156 static int pci_af_flr(struct pci_dev *dev, int probe) 3157 { 3158 int pos; 3159 u8 cap; 3160 3161 pos = pci_find_capability(dev, PCI_CAP_ID_AF); 3162 if (!pos) 3163 return -ENOTTY; 3164 3165 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap); 3166 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR)) 3167 return -ENOTTY; 3168 3169 if (probe) 3170 return 0; 3171 3172 /* 3173 * Wait for Transaction Pending bit to clear. A word-aligned test 3174 * is used, so we use the conrol offset rather than status and shift 3175 * the test bit to match. 3176 */ 3177 if (pci_wait_for_pending(dev, pos + PCI_AF_CTRL, 3178 PCI_AF_STATUS_TP << 8)) 3179 goto clear; 3180 3181 dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n"); 3182 3183 clear: 3184 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR); 3185 msleep(100); 3186 3187 return 0; 3188 } 3189 3190 /** 3191 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0. 3192 * @dev: Device to reset. 3193 * @probe: If set, only check if the device can be reset this way. 3194 * 3195 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is 3196 * unset, it will be reinitialized internally when going from PCI_D3hot to 3197 * PCI_D0. If that's the case and the device is not in a low-power state 3198 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset. 3199 * 3200 * NOTE: This causes the caller to sleep for twice the device power transition 3201 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms 3202 * by default (i.e. unless the @dev's d3_delay field has a different value). 3203 * Moreover, only devices in D0 can be reset by this function. 3204 */ 3205 static int pci_pm_reset(struct pci_dev *dev, int probe) 3206 { 3207 u16 csr; 3208 3209 if (!dev->pm_cap) 3210 return -ENOTTY; 3211 3212 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr); 3213 if (csr & PCI_PM_CTRL_NO_SOFT_RESET) 3214 return -ENOTTY; 3215 3216 if (probe) 3217 return 0; 3218 3219 if (dev->current_state != PCI_D0) 3220 return -EINVAL; 3221 3222 csr &= ~PCI_PM_CTRL_STATE_MASK; 3223 csr |= PCI_D3hot; 3224 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 3225 pci_dev_d3_sleep(dev); 3226 3227 csr &= ~PCI_PM_CTRL_STATE_MASK; 3228 csr |= PCI_D0; 3229 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 3230 pci_dev_d3_sleep(dev); 3231 3232 return 0; 3233 } 3234 3235 void pci_reset_secondary_bus(struct pci_dev *dev) 3236 { 3237 u16 ctrl; 3238 3239 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl); 3240 ctrl |= PCI_BRIDGE_CTL_BUS_RESET; 3241 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 3242 /* 3243 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double 3244 * this to 2ms to ensure that we meet the minimum requirement. 3245 */ 3246 msleep(2); 3247 3248 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET; 3249 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 3250 3251 /* 3252 * Trhfa for conventional PCI is 2^25 clock cycles. 3253 * Assuming a minimum 33MHz clock this results in a 1s 3254 * delay before we can consider subordinate devices to 3255 * be re-initialized. PCIe has some ways to shorten this, 3256 * but we don't make use of them yet. 3257 */ 3258 ssleep(1); 3259 } 3260 3261 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev) 3262 { 3263 pci_reset_secondary_bus(dev); 3264 } 3265 3266 /** 3267 * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge. 3268 * @dev: Bridge device 3269 * 3270 * Use the bridge control register to assert reset on the secondary bus. 3271 * Devices on the secondary bus are left in power-on state. 3272 */ 3273 void pci_reset_bridge_secondary_bus(struct pci_dev *dev) 3274 { 3275 pcibios_reset_secondary_bus(dev); 3276 } 3277 EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus); 3278 3279 static int pci_parent_bus_reset(struct pci_dev *dev, int probe) 3280 { 3281 struct pci_dev *pdev; 3282 3283 if (pci_is_root_bus(dev->bus) || dev->subordinate || !dev->bus->self) 3284 return -ENOTTY; 3285 3286 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 3287 if (pdev != dev) 3288 return -ENOTTY; 3289 3290 if (probe) 3291 return 0; 3292 3293 pci_reset_bridge_secondary_bus(dev->bus->self); 3294 3295 return 0; 3296 } 3297 3298 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe) 3299 { 3300 int rc = -ENOTTY; 3301 3302 if (!hotplug || !try_module_get(hotplug->ops->owner)) 3303 return rc; 3304 3305 if (hotplug->ops->reset_slot) 3306 rc = hotplug->ops->reset_slot(hotplug, probe); 3307 3308 module_put(hotplug->ops->owner); 3309 3310 return rc; 3311 } 3312 3313 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe) 3314 { 3315 struct pci_dev *pdev; 3316 3317 if (dev->subordinate || !dev->slot) 3318 return -ENOTTY; 3319 3320 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 3321 if (pdev != dev && pdev->slot == dev->slot) 3322 return -ENOTTY; 3323 3324 return pci_reset_hotplug_slot(dev->slot->hotplug, probe); 3325 } 3326 3327 static int __pci_dev_reset(struct pci_dev *dev, int probe) 3328 { 3329 int rc; 3330 3331 might_sleep(); 3332 3333 rc = pci_dev_specific_reset(dev, probe); 3334 if (rc != -ENOTTY) 3335 goto done; 3336 3337 rc = pcie_flr(dev, probe); 3338 if (rc != -ENOTTY) 3339 goto done; 3340 3341 rc = pci_af_flr(dev, probe); 3342 if (rc != -ENOTTY) 3343 goto done; 3344 3345 rc = pci_pm_reset(dev, probe); 3346 if (rc != -ENOTTY) 3347 goto done; 3348 3349 rc = pci_dev_reset_slot_function(dev, probe); 3350 if (rc != -ENOTTY) 3351 goto done; 3352 3353 rc = pci_parent_bus_reset(dev, probe); 3354 done: 3355 return rc; 3356 } 3357 3358 static void pci_dev_lock(struct pci_dev *dev) 3359 { 3360 pci_cfg_access_lock(dev); 3361 /* block PM suspend, driver probe, etc. */ 3362 device_lock(&dev->dev); 3363 } 3364 3365 /* Return 1 on successful lock, 0 on contention */ 3366 static int pci_dev_trylock(struct pci_dev *dev) 3367 { 3368 if (pci_cfg_access_trylock(dev)) { 3369 if (device_trylock(&dev->dev)) 3370 return 1; 3371 pci_cfg_access_unlock(dev); 3372 } 3373 3374 return 0; 3375 } 3376 3377 static void pci_dev_unlock(struct pci_dev *dev) 3378 { 3379 device_unlock(&dev->dev); 3380 pci_cfg_access_unlock(dev); 3381 } 3382 3383 /** 3384 * pci_reset_notify - notify device driver of reset 3385 * @dev: device to be notified of reset 3386 * @prepare: 'true' if device is about to be reset; 'false' if reset attempt 3387 * completed 3388 * 3389 * Must be called prior to device access being disabled and after device 3390 * access is restored. 3391 */ 3392 static void pci_reset_notify(struct pci_dev *dev, bool prepare) 3393 { 3394 const struct pci_error_handlers *err_handler = 3395 dev->driver ? dev->driver->err_handler : NULL; 3396 if (err_handler && err_handler->reset_notify) 3397 err_handler->reset_notify(dev, prepare); 3398 } 3399 3400 static void pci_dev_save_and_disable(struct pci_dev *dev) 3401 { 3402 pci_reset_notify(dev, true); 3403 3404 /* 3405 * Wake-up device prior to save. PM registers default to D0 after 3406 * reset and a simple register restore doesn't reliably return 3407 * to a non-D0 state anyway. 3408 */ 3409 pci_set_power_state(dev, PCI_D0); 3410 3411 pci_save_state(dev); 3412 /* 3413 * Disable the device by clearing the Command register, except for 3414 * INTx-disable which is set. This not only disables MMIO and I/O port 3415 * BARs, but also prevents the device from being Bus Master, preventing 3416 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3 3417 * compliant devices, INTx-disable prevents legacy interrupts. 3418 */ 3419 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE); 3420 } 3421 3422 static void pci_dev_restore(struct pci_dev *dev) 3423 { 3424 pci_restore_state(dev); 3425 pci_reset_notify(dev, false); 3426 } 3427 3428 static int pci_dev_reset(struct pci_dev *dev, int probe) 3429 { 3430 int rc; 3431 3432 if (!probe) 3433 pci_dev_lock(dev); 3434 3435 rc = __pci_dev_reset(dev, probe); 3436 3437 if (!probe) 3438 pci_dev_unlock(dev); 3439 3440 return rc; 3441 } 3442 3443 /** 3444 * __pci_reset_function - reset a PCI device function 3445 * @dev: PCI device to reset 3446 * 3447 * Some devices allow an individual function to be reset without affecting 3448 * other functions in the same device. The PCI device must be responsive 3449 * to PCI config space in order to use this function. 3450 * 3451 * The device function is presumed to be unused when this function is called. 3452 * Resetting the device will make the contents of PCI configuration space 3453 * random, so any caller of this must be prepared to reinitialise the 3454 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 3455 * etc. 3456 * 3457 * Returns 0 if the device function was successfully reset or negative if the 3458 * device doesn't support resetting a single function. 3459 */ 3460 int __pci_reset_function(struct pci_dev *dev) 3461 { 3462 return pci_dev_reset(dev, 0); 3463 } 3464 EXPORT_SYMBOL_GPL(__pci_reset_function); 3465 3466 /** 3467 * __pci_reset_function_locked - reset a PCI device function while holding 3468 * the @dev mutex lock. 3469 * @dev: PCI device to reset 3470 * 3471 * Some devices allow an individual function to be reset without affecting 3472 * other functions in the same device. The PCI device must be responsive 3473 * to PCI config space in order to use this function. 3474 * 3475 * The device function is presumed to be unused and the caller is holding 3476 * the device mutex lock when this function is called. 3477 * Resetting the device will make the contents of PCI configuration space 3478 * random, so any caller of this must be prepared to reinitialise the 3479 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 3480 * etc. 3481 * 3482 * Returns 0 if the device function was successfully reset or negative if the 3483 * device doesn't support resetting a single function. 3484 */ 3485 int __pci_reset_function_locked(struct pci_dev *dev) 3486 { 3487 return __pci_dev_reset(dev, 0); 3488 } 3489 EXPORT_SYMBOL_GPL(__pci_reset_function_locked); 3490 3491 /** 3492 * pci_probe_reset_function - check whether the device can be safely reset 3493 * @dev: PCI device to reset 3494 * 3495 * Some devices allow an individual function to be reset without affecting 3496 * other functions in the same device. The PCI device must be responsive 3497 * to PCI config space in order to use this function. 3498 * 3499 * Returns 0 if the device function can be reset or negative if the 3500 * device doesn't support resetting a single function. 3501 */ 3502 int pci_probe_reset_function(struct pci_dev *dev) 3503 { 3504 return pci_dev_reset(dev, 1); 3505 } 3506 3507 /** 3508 * pci_reset_function - quiesce and reset a PCI device function 3509 * @dev: PCI device to reset 3510 * 3511 * Some devices allow an individual function to be reset without affecting 3512 * other functions in the same device. The PCI device must be responsive 3513 * to PCI config space in order to use this function. 3514 * 3515 * This function does not just reset the PCI portion of a device, but 3516 * clears all the state associated with the device. This function differs 3517 * from __pci_reset_function in that it saves and restores device state 3518 * over the reset. 3519 * 3520 * Returns 0 if the device function was successfully reset or negative if the 3521 * device doesn't support resetting a single function. 3522 */ 3523 int pci_reset_function(struct pci_dev *dev) 3524 { 3525 int rc; 3526 3527 rc = pci_dev_reset(dev, 1); 3528 if (rc) 3529 return rc; 3530 3531 pci_dev_save_and_disable(dev); 3532 3533 rc = pci_dev_reset(dev, 0); 3534 3535 pci_dev_restore(dev); 3536 3537 return rc; 3538 } 3539 EXPORT_SYMBOL_GPL(pci_reset_function); 3540 3541 /** 3542 * pci_try_reset_function - quiesce and reset a PCI device function 3543 * @dev: PCI device to reset 3544 * 3545 * Same as above, except return -EAGAIN if unable to lock device. 3546 */ 3547 int pci_try_reset_function(struct pci_dev *dev) 3548 { 3549 int rc; 3550 3551 rc = pci_dev_reset(dev, 1); 3552 if (rc) 3553 return rc; 3554 3555 pci_dev_save_and_disable(dev); 3556 3557 if (pci_dev_trylock(dev)) { 3558 rc = __pci_dev_reset(dev, 0); 3559 pci_dev_unlock(dev); 3560 } else 3561 rc = -EAGAIN; 3562 3563 pci_dev_restore(dev); 3564 3565 return rc; 3566 } 3567 EXPORT_SYMBOL_GPL(pci_try_reset_function); 3568 3569 /* Lock devices from the top of the tree down */ 3570 static void pci_bus_lock(struct pci_bus *bus) 3571 { 3572 struct pci_dev *dev; 3573 3574 list_for_each_entry(dev, &bus->devices, bus_list) { 3575 pci_dev_lock(dev); 3576 if (dev->subordinate) 3577 pci_bus_lock(dev->subordinate); 3578 } 3579 } 3580 3581 /* Unlock devices from the bottom of the tree up */ 3582 static void pci_bus_unlock(struct pci_bus *bus) 3583 { 3584 struct pci_dev *dev; 3585 3586 list_for_each_entry(dev, &bus->devices, bus_list) { 3587 if (dev->subordinate) 3588 pci_bus_unlock(dev->subordinate); 3589 pci_dev_unlock(dev); 3590 } 3591 } 3592 3593 /* Return 1 on successful lock, 0 on contention */ 3594 static int pci_bus_trylock(struct pci_bus *bus) 3595 { 3596 struct pci_dev *dev; 3597 3598 list_for_each_entry(dev, &bus->devices, bus_list) { 3599 if (!pci_dev_trylock(dev)) 3600 goto unlock; 3601 if (dev->subordinate) { 3602 if (!pci_bus_trylock(dev->subordinate)) { 3603 pci_dev_unlock(dev); 3604 goto unlock; 3605 } 3606 } 3607 } 3608 return 1; 3609 3610 unlock: 3611 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) { 3612 if (dev->subordinate) 3613 pci_bus_unlock(dev->subordinate); 3614 pci_dev_unlock(dev); 3615 } 3616 return 0; 3617 } 3618 3619 /* Lock devices from the top of the tree down */ 3620 static void pci_slot_lock(struct pci_slot *slot) 3621 { 3622 struct pci_dev *dev; 3623 3624 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 3625 if (!dev->slot || dev->slot != slot) 3626 continue; 3627 pci_dev_lock(dev); 3628 if (dev->subordinate) 3629 pci_bus_lock(dev->subordinate); 3630 } 3631 } 3632 3633 /* Unlock devices from the bottom of the tree up */ 3634 static void pci_slot_unlock(struct pci_slot *slot) 3635 { 3636 struct pci_dev *dev; 3637 3638 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 3639 if (!dev->slot || dev->slot != slot) 3640 continue; 3641 if (dev->subordinate) 3642 pci_bus_unlock(dev->subordinate); 3643 pci_dev_unlock(dev); 3644 } 3645 } 3646 3647 /* Return 1 on successful lock, 0 on contention */ 3648 static int pci_slot_trylock(struct pci_slot *slot) 3649 { 3650 struct pci_dev *dev; 3651 3652 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 3653 if (!dev->slot || dev->slot != slot) 3654 continue; 3655 if (!pci_dev_trylock(dev)) 3656 goto unlock; 3657 if (dev->subordinate) { 3658 if (!pci_bus_trylock(dev->subordinate)) { 3659 pci_dev_unlock(dev); 3660 goto unlock; 3661 } 3662 } 3663 } 3664 return 1; 3665 3666 unlock: 3667 list_for_each_entry_continue_reverse(dev, 3668 &slot->bus->devices, bus_list) { 3669 if (!dev->slot || dev->slot != slot) 3670 continue; 3671 if (dev->subordinate) 3672 pci_bus_unlock(dev->subordinate); 3673 pci_dev_unlock(dev); 3674 } 3675 return 0; 3676 } 3677 3678 /* Save and disable devices from the top of the tree down */ 3679 static void pci_bus_save_and_disable(struct pci_bus *bus) 3680 { 3681 struct pci_dev *dev; 3682 3683 list_for_each_entry(dev, &bus->devices, bus_list) { 3684 pci_dev_save_and_disable(dev); 3685 if (dev->subordinate) 3686 pci_bus_save_and_disable(dev->subordinate); 3687 } 3688 } 3689 3690 /* 3691 * Restore devices from top of the tree down - parent bridges need to be 3692 * restored before we can get to subordinate devices. 3693 */ 3694 static void pci_bus_restore(struct pci_bus *bus) 3695 { 3696 struct pci_dev *dev; 3697 3698 list_for_each_entry(dev, &bus->devices, bus_list) { 3699 pci_dev_restore(dev); 3700 if (dev->subordinate) 3701 pci_bus_restore(dev->subordinate); 3702 } 3703 } 3704 3705 /* Save and disable devices from the top of the tree down */ 3706 static void pci_slot_save_and_disable(struct pci_slot *slot) 3707 { 3708 struct pci_dev *dev; 3709 3710 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 3711 if (!dev->slot || dev->slot != slot) 3712 continue; 3713 pci_dev_save_and_disable(dev); 3714 if (dev->subordinate) 3715 pci_bus_save_and_disable(dev->subordinate); 3716 } 3717 } 3718 3719 /* 3720 * Restore devices from top of the tree down - parent bridges need to be 3721 * restored before we can get to subordinate devices. 3722 */ 3723 static void pci_slot_restore(struct pci_slot *slot) 3724 { 3725 struct pci_dev *dev; 3726 3727 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 3728 if (!dev->slot || dev->slot != slot) 3729 continue; 3730 pci_dev_restore(dev); 3731 if (dev->subordinate) 3732 pci_bus_restore(dev->subordinate); 3733 } 3734 } 3735 3736 static int pci_slot_reset(struct pci_slot *slot, int probe) 3737 { 3738 int rc; 3739 3740 if (!slot) 3741 return -ENOTTY; 3742 3743 if (!probe) 3744 pci_slot_lock(slot); 3745 3746 might_sleep(); 3747 3748 rc = pci_reset_hotplug_slot(slot->hotplug, probe); 3749 3750 if (!probe) 3751 pci_slot_unlock(slot); 3752 3753 return rc; 3754 } 3755 3756 /** 3757 * pci_probe_reset_slot - probe whether a PCI slot can be reset 3758 * @slot: PCI slot to probe 3759 * 3760 * Return 0 if slot can be reset, negative if a slot reset is not supported. 3761 */ 3762 int pci_probe_reset_slot(struct pci_slot *slot) 3763 { 3764 return pci_slot_reset(slot, 1); 3765 } 3766 EXPORT_SYMBOL_GPL(pci_probe_reset_slot); 3767 3768 /** 3769 * pci_reset_slot - reset a PCI slot 3770 * @slot: PCI slot to reset 3771 * 3772 * A PCI bus may host multiple slots, each slot may support a reset mechanism 3773 * independent of other slots. For instance, some slots may support slot power 3774 * control. In the case of a 1:1 bus to slot architecture, this function may 3775 * wrap the bus reset to avoid spurious slot related events such as hotplug. 3776 * Generally a slot reset should be attempted before a bus reset. All of the 3777 * function of the slot and any subordinate buses behind the slot are reset 3778 * through this function. PCI config space of all devices in the slot and 3779 * behind the slot is saved before and restored after reset. 3780 * 3781 * Return 0 on success, non-zero on error. 3782 */ 3783 int pci_reset_slot(struct pci_slot *slot) 3784 { 3785 int rc; 3786 3787 rc = pci_slot_reset(slot, 1); 3788 if (rc) 3789 return rc; 3790 3791 pci_slot_save_and_disable(slot); 3792 3793 rc = pci_slot_reset(slot, 0); 3794 3795 pci_slot_restore(slot); 3796 3797 return rc; 3798 } 3799 EXPORT_SYMBOL_GPL(pci_reset_slot); 3800 3801 /** 3802 * pci_try_reset_slot - Try to reset a PCI slot 3803 * @slot: PCI slot to reset 3804 * 3805 * Same as above except return -EAGAIN if the slot cannot be locked 3806 */ 3807 int pci_try_reset_slot(struct pci_slot *slot) 3808 { 3809 int rc; 3810 3811 rc = pci_slot_reset(slot, 1); 3812 if (rc) 3813 return rc; 3814 3815 pci_slot_save_and_disable(slot); 3816 3817 if (pci_slot_trylock(slot)) { 3818 might_sleep(); 3819 rc = pci_reset_hotplug_slot(slot->hotplug, 0); 3820 pci_slot_unlock(slot); 3821 } else 3822 rc = -EAGAIN; 3823 3824 pci_slot_restore(slot); 3825 3826 return rc; 3827 } 3828 EXPORT_SYMBOL_GPL(pci_try_reset_slot); 3829 3830 static int pci_bus_reset(struct pci_bus *bus, int probe) 3831 { 3832 if (!bus->self) 3833 return -ENOTTY; 3834 3835 if (probe) 3836 return 0; 3837 3838 pci_bus_lock(bus); 3839 3840 might_sleep(); 3841 3842 pci_reset_bridge_secondary_bus(bus->self); 3843 3844 pci_bus_unlock(bus); 3845 3846 return 0; 3847 } 3848 3849 /** 3850 * pci_probe_reset_bus - probe whether a PCI bus can be reset 3851 * @bus: PCI bus to probe 3852 * 3853 * Return 0 if bus can be reset, negative if a bus reset is not supported. 3854 */ 3855 int pci_probe_reset_bus(struct pci_bus *bus) 3856 { 3857 return pci_bus_reset(bus, 1); 3858 } 3859 EXPORT_SYMBOL_GPL(pci_probe_reset_bus); 3860 3861 /** 3862 * pci_reset_bus - reset a PCI bus 3863 * @bus: top level PCI bus to reset 3864 * 3865 * Do a bus reset on the given bus and any subordinate buses, saving 3866 * and restoring state of all devices. 3867 * 3868 * Return 0 on success, non-zero on error. 3869 */ 3870 int pci_reset_bus(struct pci_bus *bus) 3871 { 3872 int rc; 3873 3874 rc = pci_bus_reset(bus, 1); 3875 if (rc) 3876 return rc; 3877 3878 pci_bus_save_and_disable(bus); 3879 3880 rc = pci_bus_reset(bus, 0); 3881 3882 pci_bus_restore(bus); 3883 3884 return rc; 3885 } 3886 EXPORT_SYMBOL_GPL(pci_reset_bus); 3887 3888 /** 3889 * pci_try_reset_bus - Try to reset a PCI bus 3890 * @bus: top level PCI bus to reset 3891 * 3892 * Same as above except return -EAGAIN if the bus cannot be locked 3893 */ 3894 int pci_try_reset_bus(struct pci_bus *bus) 3895 { 3896 int rc; 3897 3898 rc = pci_bus_reset(bus, 1); 3899 if (rc) 3900 return rc; 3901 3902 pci_bus_save_and_disable(bus); 3903 3904 if (pci_bus_trylock(bus)) { 3905 might_sleep(); 3906 pci_reset_bridge_secondary_bus(bus->self); 3907 pci_bus_unlock(bus); 3908 } else 3909 rc = -EAGAIN; 3910 3911 pci_bus_restore(bus); 3912 3913 return rc; 3914 } 3915 EXPORT_SYMBOL_GPL(pci_try_reset_bus); 3916 3917 /** 3918 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count 3919 * @dev: PCI device to query 3920 * 3921 * Returns mmrbc: maximum designed memory read count in bytes 3922 * or appropriate error value. 3923 */ 3924 int pcix_get_max_mmrbc(struct pci_dev *dev) 3925 { 3926 int cap; 3927 u32 stat; 3928 3929 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 3930 if (!cap) 3931 return -EINVAL; 3932 3933 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 3934 return -EINVAL; 3935 3936 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21); 3937 } 3938 EXPORT_SYMBOL(pcix_get_max_mmrbc); 3939 3940 /** 3941 * pcix_get_mmrbc - get PCI-X maximum memory read byte count 3942 * @dev: PCI device to query 3943 * 3944 * Returns mmrbc: maximum memory read count in bytes 3945 * or appropriate error value. 3946 */ 3947 int pcix_get_mmrbc(struct pci_dev *dev) 3948 { 3949 int cap; 3950 u16 cmd; 3951 3952 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 3953 if (!cap) 3954 return -EINVAL; 3955 3956 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 3957 return -EINVAL; 3958 3959 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2); 3960 } 3961 EXPORT_SYMBOL(pcix_get_mmrbc); 3962 3963 /** 3964 * pcix_set_mmrbc - set PCI-X maximum memory read byte count 3965 * @dev: PCI device to query 3966 * @mmrbc: maximum memory read count in bytes 3967 * valid values are 512, 1024, 2048, 4096 3968 * 3969 * If possible sets maximum memory read byte count, some bridges have erratas 3970 * that prevent this. 3971 */ 3972 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc) 3973 { 3974 int cap; 3975 u32 stat, v, o; 3976 u16 cmd; 3977 3978 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc)) 3979 return -EINVAL; 3980 3981 v = ffs(mmrbc) - 10; 3982 3983 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 3984 if (!cap) 3985 return -EINVAL; 3986 3987 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 3988 return -EINVAL; 3989 3990 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21) 3991 return -E2BIG; 3992 3993 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 3994 return -EINVAL; 3995 3996 o = (cmd & PCI_X_CMD_MAX_READ) >> 2; 3997 if (o != v) { 3998 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC)) 3999 return -EIO; 4000 4001 cmd &= ~PCI_X_CMD_MAX_READ; 4002 cmd |= v << 2; 4003 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd)) 4004 return -EIO; 4005 } 4006 return 0; 4007 } 4008 EXPORT_SYMBOL(pcix_set_mmrbc); 4009 4010 /** 4011 * pcie_get_readrq - get PCI Express read request size 4012 * @dev: PCI device to query 4013 * 4014 * Returns maximum memory read request in bytes 4015 * or appropriate error value. 4016 */ 4017 int pcie_get_readrq(struct pci_dev *dev) 4018 { 4019 u16 ctl; 4020 4021 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 4022 4023 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12); 4024 } 4025 EXPORT_SYMBOL(pcie_get_readrq); 4026 4027 /** 4028 * pcie_set_readrq - set PCI Express maximum memory read request 4029 * @dev: PCI device to query 4030 * @rq: maximum memory read count in bytes 4031 * valid values are 128, 256, 512, 1024, 2048, 4096 4032 * 4033 * If possible sets maximum memory read request in bytes 4034 */ 4035 int pcie_set_readrq(struct pci_dev *dev, int rq) 4036 { 4037 u16 v; 4038 4039 if (rq < 128 || rq > 4096 || !is_power_of_2(rq)) 4040 return -EINVAL; 4041 4042 /* 4043 * If using the "performance" PCIe config, we clamp the 4044 * read rq size to the max packet size to prevent the 4045 * host bridge generating requests larger than we can 4046 * cope with 4047 */ 4048 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) { 4049 int mps = pcie_get_mps(dev); 4050 4051 if (mps < rq) 4052 rq = mps; 4053 } 4054 4055 v = (ffs(rq) - 8) << 12; 4056 4057 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 4058 PCI_EXP_DEVCTL_READRQ, v); 4059 } 4060 EXPORT_SYMBOL(pcie_set_readrq); 4061 4062 /** 4063 * pcie_get_mps - get PCI Express maximum payload size 4064 * @dev: PCI device to query 4065 * 4066 * Returns maximum payload size in bytes 4067 */ 4068 int pcie_get_mps(struct pci_dev *dev) 4069 { 4070 u16 ctl; 4071 4072 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 4073 4074 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5); 4075 } 4076 EXPORT_SYMBOL(pcie_get_mps); 4077 4078 /** 4079 * pcie_set_mps - set PCI Express maximum payload size 4080 * @dev: PCI device to query 4081 * @mps: maximum payload size in bytes 4082 * valid values are 128, 256, 512, 1024, 2048, 4096 4083 * 4084 * If possible sets maximum payload size 4085 */ 4086 int pcie_set_mps(struct pci_dev *dev, int mps) 4087 { 4088 u16 v; 4089 4090 if (mps < 128 || mps > 4096 || !is_power_of_2(mps)) 4091 return -EINVAL; 4092 4093 v = ffs(mps) - 8; 4094 if (v > dev->pcie_mpss) 4095 return -EINVAL; 4096 v <<= 5; 4097 4098 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 4099 PCI_EXP_DEVCTL_PAYLOAD, v); 4100 } 4101 EXPORT_SYMBOL(pcie_set_mps); 4102 4103 /** 4104 * pcie_get_minimum_link - determine minimum link settings of a PCI device 4105 * @dev: PCI device to query 4106 * @speed: storage for minimum speed 4107 * @width: storage for minimum width 4108 * 4109 * This function will walk up the PCI device chain and determine the minimum 4110 * link width and speed of the device. 4111 */ 4112 int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed, 4113 enum pcie_link_width *width) 4114 { 4115 int ret; 4116 4117 *speed = PCI_SPEED_UNKNOWN; 4118 *width = PCIE_LNK_WIDTH_UNKNOWN; 4119 4120 while (dev) { 4121 u16 lnksta; 4122 enum pci_bus_speed next_speed; 4123 enum pcie_link_width next_width; 4124 4125 ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta); 4126 if (ret) 4127 return ret; 4128 4129 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS]; 4130 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >> 4131 PCI_EXP_LNKSTA_NLW_SHIFT; 4132 4133 if (next_speed < *speed) 4134 *speed = next_speed; 4135 4136 if (next_width < *width) 4137 *width = next_width; 4138 4139 dev = dev->bus->self; 4140 } 4141 4142 return 0; 4143 } 4144 EXPORT_SYMBOL(pcie_get_minimum_link); 4145 4146 /** 4147 * pci_select_bars - Make BAR mask from the type of resource 4148 * @dev: the PCI device for which BAR mask is made 4149 * @flags: resource type mask to be selected 4150 * 4151 * This helper routine makes bar mask from the type of resource. 4152 */ 4153 int pci_select_bars(struct pci_dev *dev, unsigned long flags) 4154 { 4155 int i, bars = 0; 4156 for (i = 0; i < PCI_NUM_RESOURCES; i++) 4157 if (pci_resource_flags(dev, i) & flags) 4158 bars |= (1 << i); 4159 return bars; 4160 } 4161 EXPORT_SYMBOL(pci_select_bars); 4162 4163 /** 4164 * pci_resource_bar - get position of the BAR associated with a resource 4165 * @dev: the PCI device 4166 * @resno: the resource number 4167 * @type: the BAR type to be filled in 4168 * 4169 * Returns BAR position in config space, or 0 if the BAR is invalid. 4170 */ 4171 int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type) 4172 { 4173 int reg; 4174 4175 if (resno < PCI_ROM_RESOURCE) { 4176 *type = pci_bar_unknown; 4177 return PCI_BASE_ADDRESS_0 + 4 * resno; 4178 } else if (resno == PCI_ROM_RESOURCE) { 4179 *type = pci_bar_mem32; 4180 return dev->rom_base_reg; 4181 } else if (resno < PCI_BRIDGE_RESOURCES) { 4182 /* device specific resource */ 4183 reg = pci_iov_resource_bar(dev, resno, type); 4184 if (reg) 4185 return reg; 4186 } 4187 4188 dev_err(&dev->dev, "BAR %d: invalid resource\n", resno); 4189 return 0; 4190 } 4191 4192 /* Some architectures require additional programming to enable VGA */ 4193 static arch_set_vga_state_t arch_set_vga_state; 4194 4195 void __init pci_register_set_vga_state(arch_set_vga_state_t func) 4196 { 4197 arch_set_vga_state = func; /* NULL disables */ 4198 } 4199 4200 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode, 4201 unsigned int command_bits, u32 flags) 4202 { 4203 if (arch_set_vga_state) 4204 return arch_set_vga_state(dev, decode, command_bits, 4205 flags); 4206 return 0; 4207 } 4208 4209 /** 4210 * pci_set_vga_state - set VGA decode state on device and parents if requested 4211 * @dev: the PCI device 4212 * @decode: true = enable decoding, false = disable decoding 4213 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY 4214 * @flags: traverse ancestors and change bridges 4215 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE 4216 */ 4217 int pci_set_vga_state(struct pci_dev *dev, bool decode, 4218 unsigned int command_bits, u32 flags) 4219 { 4220 struct pci_bus *bus; 4221 struct pci_dev *bridge; 4222 u16 cmd; 4223 int rc; 4224 4225 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY))); 4226 4227 /* ARCH specific VGA enables */ 4228 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags); 4229 if (rc) 4230 return rc; 4231 4232 if (flags & PCI_VGA_STATE_CHANGE_DECODES) { 4233 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4234 if (decode == true) 4235 cmd |= command_bits; 4236 else 4237 cmd &= ~command_bits; 4238 pci_write_config_word(dev, PCI_COMMAND, cmd); 4239 } 4240 4241 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE)) 4242 return 0; 4243 4244 bus = dev->bus; 4245 while (bus) { 4246 bridge = bus->self; 4247 if (bridge) { 4248 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL, 4249 &cmd); 4250 if (decode == true) 4251 cmd |= PCI_BRIDGE_CTL_VGA; 4252 else 4253 cmd &= ~PCI_BRIDGE_CTL_VGA; 4254 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL, 4255 cmd); 4256 } 4257 bus = bus->parent; 4258 } 4259 return 0; 4260 } 4261 4262 bool pci_device_is_present(struct pci_dev *pdev) 4263 { 4264 u32 v; 4265 4266 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0); 4267 } 4268 EXPORT_SYMBOL_GPL(pci_device_is_present); 4269 4270 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE 4271 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0}; 4272 static DEFINE_SPINLOCK(resource_alignment_lock); 4273 4274 /** 4275 * pci_specified_resource_alignment - get resource alignment specified by user. 4276 * @dev: the PCI device to get 4277 * 4278 * RETURNS: Resource alignment if it is specified. 4279 * Zero if it is not specified. 4280 */ 4281 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev) 4282 { 4283 int seg, bus, slot, func, align_order, count; 4284 resource_size_t align = 0; 4285 char *p; 4286 4287 spin_lock(&resource_alignment_lock); 4288 p = resource_alignment_param; 4289 while (*p) { 4290 count = 0; 4291 if (sscanf(p, "%d%n", &align_order, &count) == 1 && 4292 p[count] == '@') { 4293 p += count + 1; 4294 } else { 4295 align_order = -1; 4296 } 4297 if (sscanf(p, "%x:%x:%x.%x%n", 4298 &seg, &bus, &slot, &func, &count) != 4) { 4299 seg = 0; 4300 if (sscanf(p, "%x:%x.%x%n", 4301 &bus, &slot, &func, &count) != 3) { 4302 /* Invalid format */ 4303 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n", 4304 p); 4305 break; 4306 } 4307 } 4308 p += count; 4309 if (seg == pci_domain_nr(dev->bus) && 4310 bus == dev->bus->number && 4311 slot == PCI_SLOT(dev->devfn) && 4312 func == PCI_FUNC(dev->devfn)) { 4313 if (align_order == -1) 4314 align = PAGE_SIZE; 4315 else 4316 align = 1 << align_order; 4317 /* Found */ 4318 break; 4319 } 4320 if (*p != ';' && *p != ',') { 4321 /* End of param or invalid format */ 4322 break; 4323 } 4324 p++; 4325 } 4326 spin_unlock(&resource_alignment_lock); 4327 return align; 4328 } 4329 4330 /* 4331 * This function disables memory decoding and releases memory resources 4332 * of the device specified by kernel's boot parameter 'pci=resource_alignment='. 4333 * It also rounds up size to specified alignment. 4334 * Later on, the kernel will assign page-aligned memory resource back 4335 * to the device. 4336 */ 4337 void pci_reassigndev_resource_alignment(struct pci_dev *dev) 4338 { 4339 int i; 4340 struct resource *r; 4341 resource_size_t align, size; 4342 u16 command; 4343 4344 /* check if specified PCI is target device to reassign */ 4345 align = pci_specified_resource_alignment(dev); 4346 if (!align) 4347 return; 4348 4349 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL && 4350 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) { 4351 dev_warn(&dev->dev, 4352 "Can't reassign resources to host bridge.\n"); 4353 return; 4354 } 4355 4356 dev_info(&dev->dev, 4357 "Disabling memory decoding and releasing memory resources.\n"); 4358 pci_read_config_word(dev, PCI_COMMAND, &command); 4359 command &= ~PCI_COMMAND_MEMORY; 4360 pci_write_config_word(dev, PCI_COMMAND, command); 4361 4362 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) { 4363 r = &dev->resource[i]; 4364 if (!(r->flags & IORESOURCE_MEM)) 4365 continue; 4366 size = resource_size(r); 4367 if (size < align) { 4368 size = align; 4369 dev_info(&dev->dev, 4370 "Rounding up size of resource #%d to %#llx.\n", 4371 i, (unsigned long long)size); 4372 } 4373 r->flags |= IORESOURCE_UNSET; 4374 r->end = size - 1; 4375 r->start = 0; 4376 } 4377 /* Need to disable bridge's resource window, 4378 * to enable the kernel to reassign new resource 4379 * window later on. 4380 */ 4381 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE && 4382 (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) { 4383 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) { 4384 r = &dev->resource[i]; 4385 if (!(r->flags & IORESOURCE_MEM)) 4386 continue; 4387 r->flags |= IORESOURCE_UNSET; 4388 r->end = resource_size(r) - 1; 4389 r->start = 0; 4390 } 4391 pci_disable_bridge_window(dev); 4392 } 4393 } 4394 4395 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count) 4396 { 4397 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1) 4398 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1; 4399 spin_lock(&resource_alignment_lock); 4400 strncpy(resource_alignment_param, buf, count); 4401 resource_alignment_param[count] = '\0'; 4402 spin_unlock(&resource_alignment_lock); 4403 return count; 4404 } 4405 4406 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size) 4407 { 4408 size_t count; 4409 spin_lock(&resource_alignment_lock); 4410 count = snprintf(buf, size, "%s", resource_alignment_param); 4411 spin_unlock(&resource_alignment_lock); 4412 return count; 4413 } 4414 4415 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf) 4416 { 4417 return pci_get_resource_alignment_param(buf, PAGE_SIZE); 4418 } 4419 4420 static ssize_t pci_resource_alignment_store(struct bus_type *bus, 4421 const char *buf, size_t count) 4422 { 4423 return pci_set_resource_alignment_param(buf, count); 4424 } 4425 4426 BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show, 4427 pci_resource_alignment_store); 4428 4429 static int __init pci_resource_alignment_sysfs_init(void) 4430 { 4431 return bus_create_file(&pci_bus_type, 4432 &bus_attr_resource_alignment); 4433 } 4434 late_initcall(pci_resource_alignment_sysfs_init); 4435 4436 static void pci_no_domains(void) 4437 { 4438 #ifdef CONFIG_PCI_DOMAINS 4439 pci_domains_supported = 0; 4440 #endif 4441 } 4442 4443 #ifdef CONFIG_PCI_DOMAINS 4444 static atomic_t __domain_nr = ATOMIC_INIT(-1); 4445 4446 int pci_get_new_domain_nr(void) 4447 { 4448 return atomic_inc_return(&__domain_nr); 4449 } 4450 #endif 4451 4452 /** 4453 * pci_ext_cfg_avail - can we access extended PCI config space? 4454 * 4455 * Returns 1 if we can access PCI extended config space (offsets 4456 * greater than 0xff). This is the default implementation. Architecture 4457 * implementations can override this. 4458 */ 4459 int __weak pci_ext_cfg_avail(void) 4460 { 4461 return 1; 4462 } 4463 4464 void __weak pci_fixup_cardbus(struct pci_bus *bus) 4465 { 4466 } 4467 EXPORT_SYMBOL(pci_fixup_cardbus); 4468 4469 static int __init pci_setup(char *str) 4470 { 4471 while (str) { 4472 char *k = strchr(str, ','); 4473 if (k) 4474 *k++ = 0; 4475 if (*str && (str = pcibios_setup(str)) && *str) { 4476 if (!strcmp(str, "nomsi")) { 4477 pci_no_msi(); 4478 } else if (!strcmp(str, "noaer")) { 4479 pci_no_aer(); 4480 } else if (!strncmp(str, "realloc=", 8)) { 4481 pci_realloc_get_opt(str + 8); 4482 } else if (!strncmp(str, "realloc", 7)) { 4483 pci_realloc_get_opt("on"); 4484 } else if (!strcmp(str, "nodomains")) { 4485 pci_no_domains(); 4486 } else if (!strncmp(str, "noari", 5)) { 4487 pcie_ari_disabled = true; 4488 } else if (!strncmp(str, "cbiosize=", 9)) { 4489 pci_cardbus_io_size = memparse(str + 9, &str); 4490 } else if (!strncmp(str, "cbmemsize=", 10)) { 4491 pci_cardbus_mem_size = memparse(str + 10, &str); 4492 } else if (!strncmp(str, "resource_alignment=", 19)) { 4493 pci_set_resource_alignment_param(str + 19, 4494 strlen(str + 19)); 4495 } else if (!strncmp(str, "ecrc=", 5)) { 4496 pcie_ecrc_get_policy(str + 5); 4497 } else if (!strncmp(str, "hpiosize=", 9)) { 4498 pci_hotplug_io_size = memparse(str + 9, &str); 4499 } else if (!strncmp(str, "hpmemsize=", 10)) { 4500 pci_hotplug_mem_size = memparse(str + 10, &str); 4501 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) { 4502 pcie_bus_config = PCIE_BUS_TUNE_OFF; 4503 } else if (!strncmp(str, "pcie_bus_safe", 13)) { 4504 pcie_bus_config = PCIE_BUS_SAFE; 4505 } else if (!strncmp(str, "pcie_bus_perf", 13)) { 4506 pcie_bus_config = PCIE_BUS_PERFORMANCE; 4507 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) { 4508 pcie_bus_config = PCIE_BUS_PEER2PEER; 4509 } else if (!strncmp(str, "pcie_scan_all", 13)) { 4510 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS); 4511 } else { 4512 printk(KERN_ERR "PCI: Unknown option `%s'\n", 4513 str); 4514 } 4515 } 4516 str = k; 4517 } 4518 return 0; 4519 } 4520 early_param("pci", pci_setup); 4521