xref: /openbmc/linux/drivers/pci/pci.c (revision 6774def6)
1 /*
2  *	PCI Bus Services, see include/linux/pci.h for further explanation.
3  *
4  *	Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5  *	David Mosberger-Tang
6  *
7  *	Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/pci.h>
14 #include <linux/pm.h>
15 #include <linux/slab.h>
16 #include <linux/module.h>
17 #include <linux/spinlock.h>
18 #include <linux/string.h>
19 #include <linux/log2.h>
20 #include <linux/pci-aspm.h>
21 #include <linux/pm_wakeup.h>
22 #include <linux/interrupt.h>
23 #include <linux/device.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/pci_hotplug.h>
26 #include <asm-generic/pci-bridge.h>
27 #include <asm/setup.h>
28 #include "pci.h"
29 
30 const char *pci_power_names[] = {
31 	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
32 };
33 EXPORT_SYMBOL_GPL(pci_power_names);
34 
35 int isa_dma_bridge_buggy;
36 EXPORT_SYMBOL(isa_dma_bridge_buggy);
37 
38 int pci_pci_problems;
39 EXPORT_SYMBOL(pci_pci_problems);
40 
41 unsigned int pci_pm_d3_delay;
42 
43 static void pci_pme_list_scan(struct work_struct *work);
44 
45 static LIST_HEAD(pci_pme_list);
46 static DEFINE_MUTEX(pci_pme_list_mutex);
47 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
48 
49 struct pci_pme_device {
50 	struct list_head list;
51 	struct pci_dev *dev;
52 };
53 
54 #define PME_TIMEOUT 1000 /* How long between PME checks */
55 
56 static void pci_dev_d3_sleep(struct pci_dev *dev)
57 {
58 	unsigned int delay = dev->d3_delay;
59 
60 	if (delay < pci_pm_d3_delay)
61 		delay = pci_pm_d3_delay;
62 
63 	msleep(delay);
64 }
65 
66 #ifdef CONFIG_PCI_DOMAINS
67 int pci_domains_supported = 1;
68 #endif
69 
70 #define DEFAULT_CARDBUS_IO_SIZE		(256)
71 #define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
72 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
73 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
74 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
75 
76 #define DEFAULT_HOTPLUG_IO_SIZE		(256)
77 #define DEFAULT_HOTPLUG_MEM_SIZE	(2*1024*1024)
78 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
79 unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
80 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
81 
82 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
83 
84 /*
85  * The default CLS is used if arch didn't set CLS explicitly and not
86  * all pci devices agree on the same value.  Arch can override either
87  * the dfl or actual value as it sees fit.  Don't forget this is
88  * measured in 32-bit words, not bytes.
89  */
90 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
91 u8 pci_cache_line_size;
92 
93 /*
94  * If we set up a device for bus mastering, we need to check the latency
95  * timer as certain BIOSes forget to set it properly.
96  */
97 unsigned int pcibios_max_latency = 255;
98 
99 /* If set, the PCIe ARI capability will not be used. */
100 static bool pcie_ari_disabled;
101 
102 /**
103  * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
104  * @bus: pointer to PCI bus structure to search
105  *
106  * Given a PCI bus, returns the highest PCI bus number present in the set
107  * including the given PCI bus and its list of child PCI buses.
108  */
109 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
110 {
111 	struct pci_bus *tmp;
112 	unsigned char max, n;
113 
114 	max = bus->busn_res.end;
115 	list_for_each_entry(tmp, &bus->children, node) {
116 		n = pci_bus_max_busnr(tmp);
117 		if (n > max)
118 			max = n;
119 	}
120 	return max;
121 }
122 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
123 
124 #ifdef CONFIG_HAS_IOMEM
125 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
126 {
127 	/*
128 	 * Make sure the BAR is actually a memory resource, not an IO resource
129 	 */
130 	if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
131 		WARN_ON(1);
132 		return NULL;
133 	}
134 	return ioremap_nocache(pci_resource_start(pdev, bar),
135 				     pci_resource_len(pdev, bar));
136 }
137 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
138 #endif
139 
140 #define PCI_FIND_CAP_TTL	48
141 
142 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
143 				   u8 pos, int cap, int *ttl)
144 {
145 	u8 id;
146 
147 	while ((*ttl)--) {
148 		pci_bus_read_config_byte(bus, devfn, pos, &pos);
149 		if (pos < 0x40)
150 			break;
151 		pos &= ~3;
152 		pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID,
153 					 &id);
154 		if (id == 0xff)
155 			break;
156 		if (id == cap)
157 			return pos;
158 		pos += PCI_CAP_LIST_NEXT;
159 	}
160 	return 0;
161 }
162 
163 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
164 			       u8 pos, int cap)
165 {
166 	int ttl = PCI_FIND_CAP_TTL;
167 
168 	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
169 }
170 
171 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
172 {
173 	return __pci_find_next_cap(dev->bus, dev->devfn,
174 				   pos + PCI_CAP_LIST_NEXT, cap);
175 }
176 EXPORT_SYMBOL_GPL(pci_find_next_capability);
177 
178 static int __pci_bus_find_cap_start(struct pci_bus *bus,
179 				    unsigned int devfn, u8 hdr_type)
180 {
181 	u16 status;
182 
183 	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
184 	if (!(status & PCI_STATUS_CAP_LIST))
185 		return 0;
186 
187 	switch (hdr_type) {
188 	case PCI_HEADER_TYPE_NORMAL:
189 	case PCI_HEADER_TYPE_BRIDGE:
190 		return PCI_CAPABILITY_LIST;
191 	case PCI_HEADER_TYPE_CARDBUS:
192 		return PCI_CB_CAPABILITY_LIST;
193 	default:
194 		return 0;
195 	}
196 
197 	return 0;
198 }
199 
200 /**
201  * pci_find_capability - query for devices' capabilities
202  * @dev: PCI device to query
203  * @cap: capability code
204  *
205  * Tell if a device supports a given PCI capability.
206  * Returns the address of the requested capability structure within the
207  * device's PCI configuration space or 0 in case the device does not
208  * support it.  Possible values for @cap:
209  *
210  *  %PCI_CAP_ID_PM           Power Management
211  *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
212  *  %PCI_CAP_ID_VPD          Vital Product Data
213  *  %PCI_CAP_ID_SLOTID       Slot Identification
214  *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
215  *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
216  *  %PCI_CAP_ID_PCIX         PCI-X
217  *  %PCI_CAP_ID_EXP          PCI Express
218  */
219 int pci_find_capability(struct pci_dev *dev, int cap)
220 {
221 	int pos;
222 
223 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
224 	if (pos)
225 		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
226 
227 	return pos;
228 }
229 EXPORT_SYMBOL(pci_find_capability);
230 
231 /**
232  * pci_bus_find_capability - query for devices' capabilities
233  * @bus:   the PCI bus to query
234  * @devfn: PCI device to query
235  * @cap:   capability code
236  *
237  * Like pci_find_capability() but works for pci devices that do not have a
238  * pci_dev structure set up yet.
239  *
240  * Returns the address of the requested capability structure within the
241  * device's PCI configuration space or 0 in case the device does not
242  * support it.
243  */
244 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
245 {
246 	int pos;
247 	u8 hdr_type;
248 
249 	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
250 
251 	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
252 	if (pos)
253 		pos = __pci_find_next_cap(bus, devfn, pos, cap);
254 
255 	return pos;
256 }
257 EXPORT_SYMBOL(pci_bus_find_capability);
258 
259 /**
260  * pci_find_next_ext_capability - Find an extended capability
261  * @dev: PCI device to query
262  * @start: address at which to start looking (0 to start at beginning of list)
263  * @cap: capability code
264  *
265  * Returns the address of the next matching extended capability structure
266  * within the device's PCI configuration space or 0 if the device does
267  * not support it.  Some capabilities can occur several times, e.g., the
268  * vendor-specific capability, and this provides a way to find them all.
269  */
270 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
271 {
272 	u32 header;
273 	int ttl;
274 	int pos = PCI_CFG_SPACE_SIZE;
275 
276 	/* minimum 8 bytes per capability */
277 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
278 
279 	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
280 		return 0;
281 
282 	if (start)
283 		pos = start;
284 
285 	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
286 		return 0;
287 
288 	/*
289 	 * If we have no capabilities, this is indicated by cap ID,
290 	 * cap version and next pointer all being 0.
291 	 */
292 	if (header == 0)
293 		return 0;
294 
295 	while (ttl-- > 0) {
296 		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
297 			return pos;
298 
299 		pos = PCI_EXT_CAP_NEXT(header);
300 		if (pos < PCI_CFG_SPACE_SIZE)
301 			break;
302 
303 		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
304 			break;
305 	}
306 
307 	return 0;
308 }
309 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
310 
311 /**
312  * pci_find_ext_capability - Find an extended capability
313  * @dev: PCI device to query
314  * @cap: capability code
315  *
316  * Returns the address of the requested extended capability structure
317  * within the device's PCI configuration space or 0 if the device does
318  * not support it.  Possible values for @cap:
319  *
320  *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
321  *  %PCI_EXT_CAP_ID_VC		Virtual Channel
322  *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
323  *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
324  */
325 int pci_find_ext_capability(struct pci_dev *dev, int cap)
326 {
327 	return pci_find_next_ext_capability(dev, 0, cap);
328 }
329 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
330 
331 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
332 {
333 	int rc, ttl = PCI_FIND_CAP_TTL;
334 	u8 cap, mask;
335 
336 	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
337 		mask = HT_3BIT_CAP_MASK;
338 	else
339 		mask = HT_5BIT_CAP_MASK;
340 
341 	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
342 				      PCI_CAP_ID_HT, &ttl);
343 	while (pos) {
344 		rc = pci_read_config_byte(dev, pos + 3, &cap);
345 		if (rc != PCIBIOS_SUCCESSFUL)
346 			return 0;
347 
348 		if ((cap & mask) == ht_cap)
349 			return pos;
350 
351 		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
352 					      pos + PCI_CAP_LIST_NEXT,
353 					      PCI_CAP_ID_HT, &ttl);
354 	}
355 
356 	return 0;
357 }
358 /**
359  * pci_find_next_ht_capability - query a device's Hypertransport capabilities
360  * @dev: PCI device to query
361  * @pos: Position from which to continue searching
362  * @ht_cap: Hypertransport capability code
363  *
364  * To be used in conjunction with pci_find_ht_capability() to search for
365  * all capabilities matching @ht_cap. @pos should always be a value returned
366  * from pci_find_ht_capability().
367  *
368  * NB. To be 100% safe against broken PCI devices, the caller should take
369  * steps to avoid an infinite loop.
370  */
371 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
372 {
373 	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
374 }
375 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
376 
377 /**
378  * pci_find_ht_capability - query a device's Hypertransport capabilities
379  * @dev: PCI device to query
380  * @ht_cap: Hypertransport capability code
381  *
382  * Tell if a device supports a given Hypertransport capability.
383  * Returns an address within the device's PCI configuration space
384  * or 0 in case the device does not support the request capability.
385  * The address points to the PCI capability, of type PCI_CAP_ID_HT,
386  * which has a Hypertransport capability matching @ht_cap.
387  */
388 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
389 {
390 	int pos;
391 
392 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
393 	if (pos)
394 		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
395 
396 	return pos;
397 }
398 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
399 
400 /**
401  * pci_find_parent_resource - return resource region of parent bus of given region
402  * @dev: PCI device structure contains resources to be searched
403  * @res: child resource record for which parent is sought
404  *
405  *  For given resource region of given device, return the resource
406  *  region of parent bus the given region is contained in.
407  */
408 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
409 					  struct resource *res)
410 {
411 	const struct pci_bus *bus = dev->bus;
412 	struct resource *r;
413 	int i;
414 
415 	pci_bus_for_each_resource(bus, r, i) {
416 		if (!r)
417 			continue;
418 		if (res->start && resource_contains(r, res)) {
419 
420 			/*
421 			 * If the window is prefetchable but the BAR is
422 			 * not, the allocator made a mistake.
423 			 */
424 			if (r->flags & IORESOURCE_PREFETCH &&
425 			    !(res->flags & IORESOURCE_PREFETCH))
426 				return NULL;
427 
428 			/*
429 			 * If we're below a transparent bridge, there may
430 			 * be both a positively-decoded aperture and a
431 			 * subtractively-decoded region that contain the BAR.
432 			 * We want the positively-decoded one, so this depends
433 			 * on pci_bus_for_each_resource() giving us those
434 			 * first.
435 			 */
436 			return r;
437 		}
438 	}
439 	return NULL;
440 }
441 EXPORT_SYMBOL(pci_find_parent_resource);
442 
443 /**
444  * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
445  * @dev: the PCI device to operate on
446  * @pos: config space offset of status word
447  * @mask: mask of bit(s) to care about in status word
448  *
449  * Return 1 when mask bit(s) in status word clear, 0 otherwise.
450  */
451 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
452 {
453 	int i;
454 
455 	/* Wait for Transaction Pending bit clean */
456 	for (i = 0; i < 4; i++) {
457 		u16 status;
458 		if (i)
459 			msleep((1 << (i - 1)) * 100);
460 
461 		pci_read_config_word(dev, pos, &status);
462 		if (!(status & mask))
463 			return 1;
464 	}
465 
466 	return 0;
467 }
468 
469 /**
470  * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
471  * @dev: PCI device to have its BARs restored
472  *
473  * Restore the BAR values for a given device, so as to make it
474  * accessible by its driver.
475  */
476 static void pci_restore_bars(struct pci_dev *dev)
477 {
478 	int i;
479 
480 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
481 		pci_update_resource(dev, i);
482 }
483 
484 static struct pci_platform_pm_ops *pci_platform_pm;
485 
486 int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
487 {
488 	if (!ops->is_manageable || !ops->set_state || !ops->choose_state
489 	    || !ops->sleep_wake)
490 		return -EINVAL;
491 	pci_platform_pm = ops;
492 	return 0;
493 }
494 
495 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
496 {
497 	return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
498 }
499 
500 static inline int platform_pci_set_power_state(struct pci_dev *dev,
501 					       pci_power_t t)
502 {
503 	return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
504 }
505 
506 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
507 {
508 	return pci_platform_pm ?
509 			pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
510 }
511 
512 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
513 {
514 	return pci_platform_pm ?
515 			pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
516 }
517 
518 static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable)
519 {
520 	return pci_platform_pm ?
521 			pci_platform_pm->run_wake(dev, enable) : -ENODEV;
522 }
523 
524 /**
525  * pci_raw_set_power_state - Use PCI PM registers to set the power state of
526  *                           given PCI device
527  * @dev: PCI device to handle.
528  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
529  *
530  * RETURN VALUE:
531  * -EINVAL if the requested state is invalid.
532  * -EIO if device does not support PCI PM or its PM capabilities register has a
533  * wrong version, or device doesn't support the requested state.
534  * 0 if device already is in the requested state.
535  * 0 if device's power state has been successfully changed.
536  */
537 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
538 {
539 	u16 pmcsr;
540 	bool need_restore = false;
541 
542 	/* Check if we're already there */
543 	if (dev->current_state == state)
544 		return 0;
545 
546 	if (!dev->pm_cap)
547 		return -EIO;
548 
549 	if (state < PCI_D0 || state > PCI_D3hot)
550 		return -EINVAL;
551 
552 	/* Validate current state:
553 	 * Can enter D0 from any state, but if we can only go deeper
554 	 * to sleep if we're already in a low power state
555 	 */
556 	if (state != PCI_D0 && dev->current_state <= PCI_D3cold
557 	    && dev->current_state > state) {
558 		dev_err(&dev->dev, "invalid power transition (from state %d to %d)\n",
559 			dev->current_state, state);
560 		return -EINVAL;
561 	}
562 
563 	/* check if this device supports the desired state */
564 	if ((state == PCI_D1 && !dev->d1_support)
565 	   || (state == PCI_D2 && !dev->d2_support))
566 		return -EIO;
567 
568 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
569 
570 	/* If we're (effectively) in D3, force entire word to 0.
571 	 * This doesn't affect PME_Status, disables PME_En, and
572 	 * sets PowerState to 0.
573 	 */
574 	switch (dev->current_state) {
575 	case PCI_D0:
576 	case PCI_D1:
577 	case PCI_D2:
578 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
579 		pmcsr |= state;
580 		break;
581 	case PCI_D3hot:
582 	case PCI_D3cold:
583 	case PCI_UNKNOWN: /* Boot-up */
584 		if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
585 		 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
586 			need_restore = true;
587 		/* Fall-through: force to D0 */
588 	default:
589 		pmcsr = 0;
590 		break;
591 	}
592 
593 	/* enter specified state */
594 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
595 
596 	/* Mandatory power management transition delays */
597 	/* see PCI PM 1.1 5.6.1 table 18 */
598 	if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
599 		pci_dev_d3_sleep(dev);
600 	else if (state == PCI_D2 || dev->current_state == PCI_D2)
601 		udelay(PCI_PM_D2_DELAY);
602 
603 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
604 	dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
605 	if (dev->current_state != state && printk_ratelimit())
606 		dev_info(&dev->dev, "Refused to change power state, currently in D%d\n",
607 			 dev->current_state);
608 
609 	/*
610 	 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
611 	 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
612 	 * from D3hot to D0 _may_ perform an internal reset, thereby
613 	 * going to "D0 Uninitialized" rather than "D0 Initialized".
614 	 * For example, at least some versions of the 3c905B and the
615 	 * 3c556B exhibit this behaviour.
616 	 *
617 	 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
618 	 * devices in a D3hot state at boot.  Consequently, we need to
619 	 * restore at least the BARs so that the device will be
620 	 * accessible to its driver.
621 	 */
622 	if (need_restore)
623 		pci_restore_bars(dev);
624 
625 	if (dev->bus->self)
626 		pcie_aspm_pm_state_change(dev->bus->self);
627 
628 	return 0;
629 }
630 
631 /**
632  * pci_update_current_state - Read PCI power state of given device from its
633  *                            PCI PM registers and cache it
634  * @dev: PCI device to handle.
635  * @state: State to cache in case the device doesn't have the PM capability
636  */
637 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
638 {
639 	if (dev->pm_cap) {
640 		u16 pmcsr;
641 
642 		/*
643 		 * Configuration space is not accessible for device in
644 		 * D3cold, so just keep or set D3cold for safety
645 		 */
646 		if (dev->current_state == PCI_D3cold)
647 			return;
648 		if (state == PCI_D3cold) {
649 			dev->current_state = PCI_D3cold;
650 			return;
651 		}
652 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
653 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
654 	} else {
655 		dev->current_state = state;
656 	}
657 }
658 
659 /**
660  * pci_power_up - Put the given device into D0 forcibly
661  * @dev: PCI device to power up
662  */
663 void pci_power_up(struct pci_dev *dev)
664 {
665 	if (platform_pci_power_manageable(dev))
666 		platform_pci_set_power_state(dev, PCI_D0);
667 
668 	pci_raw_set_power_state(dev, PCI_D0);
669 	pci_update_current_state(dev, PCI_D0);
670 }
671 
672 /**
673  * pci_platform_power_transition - Use platform to change device power state
674  * @dev: PCI device to handle.
675  * @state: State to put the device into.
676  */
677 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
678 {
679 	int error;
680 
681 	if (platform_pci_power_manageable(dev)) {
682 		error = platform_pci_set_power_state(dev, state);
683 		if (!error)
684 			pci_update_current_state(dev, state);
685 	} else
686 		error = -ENODEV;
687 
688 	if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
689 		dev->current_state = PCI_D0;
690 
691 	return error;
692 }
693 
694 /**
695  * pci_wakeup - Wake up a PCI device
696  * @pci_dev: Device to handle.
697  * @ign: ignored parameter
698  */
699 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
700 {
701 	pci_wakeup_event(pci_dev);
702 	pm_request_resume(&pci_dev->dev);
703 	return 0;
704 }
705 
706 /**
707  * pci_wakeup_bus - Walk given bus and wake up devices on it
708  * @bus: Top bus of the subtree to walk.
709  */
710 static void pci_wakeup_bus(struct pci_bus *bus)
711 {
712 	if (bus)
713 		pci_walk_bus(bus, pci_wakeup, NULL);
714 }
715 
716 /**
717  * __pci_start_power_transition - Start power transition of a PCI device
718  * @dev: PCI device to handle.
719  * @state: State to put the device into.
720  */
721 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
722 {
723 	if (state == PCI_D0) {
724 		pci_platform_power_transition(dev, PCI_D0);
725 		/*
726 		 * Mandatory power management transition delays, see
727 		 * PCI Express Base Specification Revision 2.0 Section
728 		 * 6.6.1: Conventional Reset.  Do not delay for
729 		 * devices powered on/off by corresponding bridge,
730 		 * because have already delayed for the bridge.
731 		 */
732 		if (dev->runtime_d3cold) {
733 			msleep(dev->d3cold_delay);
734 			/*
735 			 * When powering on a bridge from D3cold, the
736 			 * whole hierarchy may be powered on into
737 			 * D0uninitialized state, resume them to give
738 			 * them a chance to suspend again
739 			 */
740 			pci_wakeup_bus(dev->subordinate);
741 		}
742 	}
743 }
744 
745 /**
746  * __pci_dev_set_current_state - Set current state of a PCI device
747  * @dev: Device to handle
748  * @data: pointer to state to be set
749  */
750 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
751 {
752 	pci_power_t state = *(pci_power_t *)data;
753 
754 	dev->current_state = state;
755 	return 0;
756 }
757 
758 /**
759  * __pci_bus_set_current_state - Walk given bus and set current state of devices
760  * @bus: Top bus of the subtree to walk.
761  * @state: state to be set
762  */
763 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
764 {
765 	if (bus)
766 		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
767 }
768 
769 /**
770  * __pci_complete_power_transition - Complete power transition of a PCI device
771  * @dev: PCI device to handle.
772  * @state: State to put the device into.
773  *
774  * This function should not be called directly by device drivers.
775  */
776 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
777 {
778 	int ret;
779 
780 	if (state <= PCI_D0)
781 		return -EINVAL;
782 	ret = pci_platform_power_transition(dev, state);
783 	/* Power off the bridge may power off the whole hierarchy */
784 	if (!ret && state == PCI_D3cold)
785 		__pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
786 	return ret;
787 }
788 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
789 
790 /**
791  * pci_set_power_state - Set the power state of a PCI device
792  * @dev: PCI device to handle.
793  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
794  *
795  * Transition a device to a new power state, using the platform firmware and/or
796  * the device's PCI PM registers.
797  *
798  * RETURN VALUE:
799  * -EINVAL if the requested state is invalid.
800  * -EIO if device does not support PCI PM or its PM capabilities register has a
801  * wrong version, or device doesn't support the requested state.
802  * 0 if device already is in the requested state.
803  * 0 if device's power state has been successfully changed.
804  */
805 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
806 {
807 	int error;
808 
809 	/* bound the state we're entering */
810 	if (state > PCI_D3cold)
811 		state = PCI_D3cold;
812 	else if (state < PCI_D0)
813 		state = PCI_D0;
814 	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
815 		/*
816 		 * If the device or the parent bridge do not support PCI PM,
817 		 * ignore the request if we're doing anything other than putting
818 		 * it into D0 (which would only happen on boot).
819 		 */
820 		return 0;
821 
822 	/* Check if we're already there */
823 	if (dev->current_state == state)
824 		return 0;
825 
826 	__pci_start_power_transition(dev, state);
827 
828 	/* This device is quirked not to be put into D3, so
829 	   don't put it in D3 */
830 	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
831 		return 0;
832 
833 	/*
834 	 * To put device in D3cold, we put device into D3hot in native
835 	 * way, then put device into D3cold with platform ops
836 	 */
837 	error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
838 					PCI_D3hot : state);
839 
840 	if (!__pci_complete_power_transition(dev, state))
841 		error = 0;
842 
843 	return error;
844 }
845 EXPORT_SYMBOL(pci_set_power_state);
846 
847 /**
848  * pci_choose_state - Choose the power state of a PCI device
849  * @dev: PCI device to be suspended
850  * @state: target sleep state for the whole system. This is the value
851  *	that is passed to suspend() function.
852  *
853  * Returns PCI power state suitable for given device and given system
854  * message.
855  */
856 
857 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
858 {
859 	pci_power_t ret;
860 
861 	if (!dev->pm_cap)
862 		return PCI_D0;
863 
864 	ret = platform_pci_choose_state(dev);
865 	if (ret != PCI_POWER_ERROR)
866 		return ret;
867 
868 	switch (state.event) {
869 	case PM_EVENT_ON:
870 		return PCI_D0;
871 	case PM_EVENT_FREEZE:
872 	case PM_EVENT_PRETHAW:
873 		/* REVISIT both freeze and pre-thaw "should" use D0 */
874 	case PM_EVENT_SUSPEND:
875 	case PM_EVENT_HIBERNATE:
876 		return PCI_D3hot;
877 	default:
878 		dev_info(&dev->dev, "unrecognized suspend event %d\n",
879 			 state.event);
880 		BUG();
881 	}
882 	return PCI_D0;
883 }
884 EXPORT_SYMBOL(pci_choose_state);
885 
886 #define PCI_EXP_SAVE_REGS	7
887 
888 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
889 						       u16 cap, bool extended)
890 {
891 	struct pci_cap_saved_state *tmp;
892 
893 	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
894 		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
895 			return tmp;
896 	}
897 	return NULL;
898 }
899 
900 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
901 {
902 	return _pci_find_saved_cap(dev, cap, false);
903 }
904 
905 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
906 {
907 	return _pci_find_saved_cap(dev, cap, true);
908 }
909 
910 static int pci_save_pcie_state(struct pci_dev *dev)
911 {
912 	int i = 0;
913 	struct pci_cap_saved_state *save_state;
914 	u16 *cap;
915 
916 	if (!pci_is_pcie(dev))
917 		return 0;
918 
919 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
920 	if (!save_state) {
921 		dev_err(&dev->dev, "buffer not found in %s\n", __func__);
922 		return -ENOMEM;
923 	}
924 
925 	cap = (u16 *)&save_state->cap.data[0];
926 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
927 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
928 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
929 	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
930 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
931 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
932 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
933 
934 	return 0;
935 }
936 
937 static void pci_restore_pcie_state(struct pci_dev *dev)
938 {
939 	int i = 0;
940 	struct pci_cap_saved_state *save_state;
941 	u16 *cap;
942 
943 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
944 	if (!save_state)
945 		return;
946 
947 	cap = (u16 *)&save_state->cap.data[0];
948 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
949 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
950 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
951 	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
952 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
953 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
954 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
955 }
956 
957 
958 static int pci_save_pcix_state(struct pci_dev *dev)
959 {
960 	int pos;
961 	struct pci_cap_saved_state *save_state;
962 
963 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
964 	if (pos <= 0)
965 		return 0;
966 
967 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
968 	if (!save_state) {
969 		dev_err(&dev->dev, "buffer not found in %s\n", __func__);
970 		return -ENOMEM;
971 	}
972 
973 	pci_read_config_word(dev, pos + PCI_X_CMD,
974 			     (u16 *)save_state->cap.data);
975 
976 	return 0;
977 }
978 
979 static void pci_restore_pcix_state(struct pci_dev *dev)
980 {
981 	int i = 0, pos;
982 	struct pci_cap_saved_state *save_state;
983 	u16 *cap;
984 
985 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
986 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
987 	if (!save_state || pos <= 0)
988 		return;
989 	cap = (u16 *)&save_state->cap.data[0];
990 
991 	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
992 }
993 
994 
995 /**
996  * pci_save_state - save the PCI configuration space of a device before suspending
997  * @dev: - PCI device that we're dealing with
998  */
999 int pci_save_state(struct pci_dev *dev)
1000 {
1001 	int i;
1002 	/* XXX: 100% dword access ok here? */
1003 	for (i = 0; i < 16; i++)
1004 		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1005 	dev->state_saved = true;
1006 
1007 	i = pci_save_pcie_state(dev);
1008 	if (i != 0)
1009 		return i;
1010 
1011 	i = pci_save_pcix_state(dev);
1012 	if (i != 0)
1013 		return i;
1014 
1015 	i = pci_save_vc_state(dev);
1016 	if (i != 0)
1017 		return i;
1018 
1019 	return 0;
1020 }
1021 EXPORT_SYMBOL(pci_save_state);
1022 
1023 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1024 				     u32 saved_val, int retry)
1025 {
1026 	u32 val;
1027 
1028 	pci_read_config_dword(pdev, offset, &val);
1029 	if (val == saved_val)
1030 		return;
1031 
1032 	for (;;) {
1033 		dev_dbg(&pdev->dev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1034 			offset, val, saved_val);
1035 		pci_write_config_dword(pdev, offset, saved_val);
1036 		if (retry-- <= 0)
1037 			return;
1038 
1039 		pci_read_config_dword(pdev, offset, &val);
1040 		if (val == saved_val)
1041 			return;
1042 
1043 		mdelay(1);
1044 	}
1045 }
1046 
1047 static void pci_restore_config_space_range(struct pci_dev *pdev,
1048 					   int start, int end, int retry)
1049 {
1050 	int index;
1051 
1052 	for (index = end; index >= start; index--)
1053 		pci_restore_config_dword(pdev, 4 * index,
1054 					 pdev->saved_config_space[index],
1055 					 retry);
1056 }
1057 
1058 static void pci_restore_config_space(struct pci_dev *pdev)
1059 {
1060 	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1061 		pci_restore_config_space_range(pdev, 10, 15, 0);
1062 		/* Restore BARs before the command register. */
1063 		pci_restore_config_space_range(pdev, 4, 9, 10);
1064 		pci_restore_config_space_range(pdev, 0, 3, 0);
1065 	} else {
1066 		pci_restore_config_space_range(pdev, 0, 15, 0);
1067 	}
1068 }
1069 
1070 /**
1071  * pci_restore_state - Restore the saved state of a PCI device
1072  * @dev: - PCI device that we're dealing with
1073  */
1074 void pci_restore_state(struct pci_dev *dev)
1075 {
1076 	if (!dev->state_saved)
1077 		return;
1078 
1079 	/* PCI Express register must be restored first */
1080 	pci_restore_pcie_state(dev);
1081 	pci_restore_ats_state(dev);
1082 	pci_restore_vc_state(dev);
1083 
1084 	pci_restore_config_space(dev);
1085 
1086 	pci_restore_pcix_state(dev);
1087 	pci_restore_msi_state(dev);
1088 	pci_restore_iov_state(dev);
1089 
1090 	dev->state_saved = false;
1091 }
1092 EXPORT_SYMBOL(pci_restore_state);
1093 
1094 struct pci_saved_state {
1095 	u32 config_space[16];
1096 	struct pci_cap_saved_data cap[0];
1097 };
1098 
1099 /**
1100  * pci_store_saved_state - Allocate and return an opaque struct containing
1101  *			   the device saved state.
1102  * @dev: PCI device that we're dealing with
1103  *
1104  * Return NULL if no state or error.
1105  */
1106 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1107 {
1108 	struct pci_saved_state *state;
1109 	struct pci_cap_saved_state *tmp;
1110 	struct pci_cap_saved_data *cap;
1111 	size_t size;
1112 
1113 	if (!dev->state_saved)
1114 		return NULL;
1115 
1116 	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1117 
1118 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1119 		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1120 
1121 	state = kzalloc(size, GFP_KERNEL);
1122 	if (!state)
1123 		return NULL;
1124 
1125 	memcpy(state->config_space, dev->saved_config_space,
1126 	       sizeof(state->config_space));
1127 
1128 	cap = state->cap;
1129 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1130 		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1131 		memcpy(cap, &tmp->cap, len);
1132 		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1133 	}
1134 	/* Empty cap_save terminates list */
1135 
1136 	return state;
1137 }
1138 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1139 
1140 /**
1141  * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1142  * @dev: PCI device that we're dealing with
1143  * @state: Saved state returned from pci_store_saved_state()
1144  */
1145 static int pci_load_saved_state(struct pci_dev *dev,
1146 				struct pci_saved_state *state)
1147 {
1148 	struct pci_cap_saved_data *cap;
1149 
1150 	dev->state_saved = false;
1151 
1152 	if (!state)
1153 		return 0;
1154 
1155 	memcpy(dev->saved_config_space, state->config_space,
1156 	       sizeof(state->config_space));
1157 
1158 	cap = state->cap;
1159 	while (cap->size) {
1160 		struct pci_cap_saved_state *tmp;
1161 
1162 		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1163 		if (!tmp || tmp->cap.size != cap->size)
1164 			return -EINVAL;
1165 
1166 		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1167 		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1168 		       sizeof(struct pci_cap_saved_data) + cap->size);
1169 	}
1170 
1171 	dev->state_saved = true;
1172 	return 0;
1173 }
1174 
1175 /**
1176  * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1177  *				   and free the memory allocated for it.
1178  * @dev: PCI device that we're dealing with
1179  * @state: Pointer to saved state returned from pci_store_saved_state()
1180  */
1181 int pci_load_and_free_saved_state(struct pci_dev *dev,
1182 				  struct pci_saved_state **state)
1183 {
1184 	int ret = pci_load_saved_state(dev, *state);
1185 	kfree(*state);
1186 	*state = NULL;
1187 	return ret;
1188 }
1189 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1190 
1191 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1192 {
1193 	return pci_enable_resources(dev, bars);
1194 }
1195 
1196 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1197 {
1198 	int err;
1199 	struct pci_dev *bridge;
1200 	u16 cmd;
1201 	u8 pin;
1202 
1203 	err = pci_set_power_state(dev, PCI_D0);
1204 	if (err < 0 && err != -EIO)
1205 		return err;
1206 
1207 	bridge = pci_upstream_bridge(dev);
1208 	if (bridge)
1209 		pcie_aspm_powersave_config_link(bridge);
1210 
1211 	err = pcibios_enable_device(dev, bars);
1212 	if (err < 0)
1213 		return err;
1214 	pci_fixup_device(pci_fixup_enable, dev);
1215 
1216 	if (dev->msi_enabled || dev->msix_enabled)
1217 		return 0;
1218 
1219 	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1220 	if (pin) {
1221 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
1222 		if (cmd & PCI_COMMAND_INTX_DISABLE)
1223 			pci_write_config_word(dev, PCI_COMMAND,
1224 					      cmd & ~PCI_COMMAND_INTX_DISABLE);
1225 	}
1226 
1227 	return 0;
1228 }
1229 
1230 /**
1231  * pci_reenable_device - Resume abandoned device
1232  * @dev: PCI device to be resumed
1233  *
1234  *  Note this function is a backend of pci_default_resume and is not supposed
1235  *  to be called by normal code, write proper resume handler and use it instead.
1236  */
1237 int pci_reenable_device(struct pci_dev *dev)
1238 {
1239 	if (pci_is_enabled(dev))
1240 		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1241 	return 0;
1242 }
1243 EXPORT_SYMBOL(pci_reenable_device);
1244 
1245 static void pci_enable_bridge(struct pci_dev *dev)
1246 {
1247 	struct pci_dev *bridge;
1248 	int retval;
1249 
1250 	bridge = pci_upstream_bridge(dev);
1251 	if (bridge)
1252 		pci_enable_bridge(bridge);
1253 
1254 	if (pci_is_enabled(dev)) {
1255 		if (!dev->is_busmaster)
1256 			pci_set_master(dev);
1257 		return;
1258 	}
1259 
1260 	retval = pci_enable_device(dev);
1261 	if (retval)
1262 		dev_err(&dev->dev, "Error enabling bridge (%d), continuing\n",
1263 			retval);
1264 	pci_set_master(dev);
1265 }
1266 
1267 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1268 {
1269 	struct pci_dev *bridge;
1270 	int err;
1271 	int i, bars = 0;
1272 
1273 	/*
1274 	 * Power state could be unknown at this point, either due to a fresh
1275 	 * boot or a device removal call.  So get the current power state
1276 	 * so that things like MSI message writing will behave as expected
1277 	 * (e.g. if the device really is in D0 at enable time).
1278 	 */
1279 	if (dev->pm_cap) {
1280 		u16 pmcsr;
1281 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1282 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1283 	}
1284 
1285 	if (atomic_inc_return(&dev->enable_cnt) > 1)
1286 		return 0;		/* already enabled */
1287 
1288 	bridge = pci_upstream_bridge(dev);
1289 	if (bridge)
1290 		pci_enable_bridge(bridge);
1291 
1292 	/* only skip sriov related */
1293 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1294 		if (dev->resource[i].flags & flags)
1295 			bars |= (1 << i);
1296 	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1297 		if (dev->resource[i].flags & flags)
1298 			bars |= (1 << i);
1299 
1300 	err = do_pci_enable_device(dev, bars);
1301 	if (err < 0)
1302 		atomic_dec(&dev->enable_cnt);
1303 	return err;
1304 }
1305 
1306 /**
1307  * pci_enable_device_io - Initialize a device for use with IO space
1308  * @dev: PCI device to be initialized
1309  *
1310  *  Initialize device before it's used by a driver. Ask low-level code
1311  *  to enable I/O resources. Wake up the device if it was suspended.
1312  *  Beware, this function can fail.
1313  */
1314 int pci_enable_device_io(struct pci_dev *dev)
1315 {
1316 	return pci_enable_device_flags(dev, IORESOURCE_IO);
1317 }
1318 EXPORT_SYMBOL(pci_enable_device_io);
1319 
1320 /**
1321  * pci_enable_device_mem - Initialize a device for use with Memory space
1322  * @dev: PCI device to be initialized
1323  *
1324  *  Initialize device before it's used by a driver. Ask low-level code
1325  *  to enable Memory resources. Wake up the device if it was suspended.
1326  *  Beware, this function can fail.
1327  */
1328 int pci_enable_device_mem(struct pci_dev *dev)
1329 {
1330 	return pci_enable_device_flags(dev, IORESOURCE_MEM);
1331 }
1332 EXPORT_SYMBOL(pci_enable_device_mem);
1333 
1334 /**
1335  * pci_enable_device - Initialize device before it's used by a driver.
1336  * @dev: PCI device to be initialized
1337  *
1338  *  Initialize device before it's used by a driver. Ask low-level code
1339  *  to enable I/O and memory. Wake up the device if it was suspended.
1340  *  Beware, this function can fail.
1341  *
1342  *  Note we don't actually enable the device many times if we call
1343  *  this function repeatedly (we just increment the count).
1344  */
1345 int pci_enable_device(struct pci_dev *dev)
1346 {
1347 	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1348 }
1349 EXPORT_SYMBOL(pci_enable_device);
1350 
1351 /*
1352  * Managed PCI resources.  This manages device on/off, intx/msi/msix
1353  * on/off and BAR regions.  pci_dev itself records msi/msix status, so
1354  * there's no need to track it separately.  pci_devres is initialized
1355  * when a device is enabled using managed PCI device enable interface.
1356  */
1357 struct pci_devres {
1358 	unsigned int enabled:1;
1359 	unsigned int pinned:1;
1360 	unsigned int orig_intx:1;
1361 	unsigned int restore_intx:1;
1362 	u32 region_mask;
1363 };
1364 
1365 static void pcim_release(struct device *gendev, void *res)
1366 {
1367 	struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
1368 	struct pci_devres *this = res;
1369 	int i;
1370 
1371 	if (dev->msi_enabled)
1372 		pci_disable_msi(dev);
1373 	if (dev->msix_enabled)
1374 		pci_disable_msix(dev);
1375 
1376 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1377 		if (this->region_mask & (1 << i))
1378 			pci_release_region(dev, i);
1379 
1380 	if (this->restore_intx)
1381 		pci_intx(dev, this->orig_intx);
1382 
1383 	if (this->enabled && !this->pinned)
1384 		pci_disable_device(dev);
1385 }
1386 
1387 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1388 {
1389 	struct pci_devres *dr, *new_dr;
1390 
1391 	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1392 	if (dr)
1393 		return dr;
1394 
1395 	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1396 	if (!new_dr)
1397 		return NULL;
1398 	return devres_get(&pdev->dev, new_dr, NULL, NULL);
1399 }
1400 
1401 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1402 {
1403 	if (pci_is_managed(pdev))
1404 		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1405 	return NULL;
1406 }
1407 
1408 /**
1409  * pcim_enable_device - Managed pci_enable_device()
1410  * @pdev: PCI device to be initialized
1411  *
1412  * Managed pci_enable_device().
1413  */
1414 int pcim_enable_device(struct pci_dev *pdev)
1415 {
1416 	struct pci_devres *dr;
1417 	int rc;
1418 
1419 	dr = get_pci_dr(pdev);
1420 	if (unlikely(!dr))
1421 		return -ENOMEM;
1422 	if (dr->enabled)
1423 		return 0;
1424 
1425 	rc = pci_enable_device(pdev);
1426 	if (!rc) {
1427 		pdev->is_managed = 1;
1428 		dr->enabled = 1;
1429 	}
1430 	return rc;
1431 }
1432 EXPORT_SYMBOL(pcim_enable_device);
1433 
1434 /**
1435  * pcim_pin_device - Pin managed PCI device
1436  * @pdev: PCI device to pin
1437  *
1438  * Pin managed PCI device @pdev.  Pinned device won't be disabled on
1439  * driver detach.  @pdev must have been enabled with
1440  * pcim_enable_device().
1441  */
1442 void pcim_pin_device(struct pci_dev *pdev)
1443 {
1444 	struct pci_devres *dr;
1445 
1446 	dr = find_pci_dr(pdev);
1447 	WARN_ON(!dr || !dr->enabled);
1448 	if (dr)
1449 		dr->pinned = 1;
1450 }
1451 EXPORT_SYMBOL(pcim_pin_device);
1452 
1453 /*
1454  * pcibios_add_device - provide arch specific hooks when adding device dev
1455  * @dev: the PCI device being added
1456  *
1457  * Permits the platform to provide architecture specific functionality when
1458  * devices are added. This is the default implementation. Architecture
1459  * implementations can override this.
1460  */
1461 int __weak pcibios_add_device(struct pci_dev *dev)
1462 {
1463 	return 0;
1464 }
1465 
1466 /**
1467  * pcibios_release_device - provide arch specific hooks when releasing device dev
1468  * @dev: the PCI device being released
1469  *
1470  * Permits the platform to provide architecture specific functionality when
1471  * devices are released. This is the default implementation. Architecture
1472  * implementations can override this.
1473  */
1474 void __weak pcibios_release_device(struct pci_dev *dev) {}
1475 
1476 /**
1477  * pcibios_disable_device - disable arch specific PCI resources for device dev
1478  * @dev: the PCI device to disable
1479  *
1480  * Disables architecture specific PCI resources for the device. This
1481  * is the default implementation. Architecture implementations can
1482  * override this.
1483  */
1484 void __weak pcibios_disable_device (struct pci_dev *dev) {}
1485 
1486 /**
1487  * pcibios_penalize_isa_irq - penalize an ISA IRQ
1488  * @irq: ISA IRQ to penalize
1489  * @active: IRQ active or not
1490  *
1491  * Permits the platform to provide architecture-specific functionality when
1492  * penalizing ISA IRQs. This is the default implementation. Architecture
1493  * implementations can override this.
1494  */
1495 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1496 
1497 static void do_pci_disable_device(struct pci_dev *dev)
1498 {
1499 	u16 pci_command;
1500 
1501 	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1502 	if (pci_command & PCI_COMMAND_MASTER) {
1503 		pci_command &= ~PCI_COMMAND_MASTER;
1504 		pci_write_config_word(dev, PCI_COMMAND, pci_command);
1505 	}
1506 
1507 	pcibios_disable_device(dev);
1508 }
1509 
1510 /**
1511  * pci_disable_enabled_device - Disable device without updating enable_cnt
1512  * @dev: PCI device to disable
1513  *
1514  * NOTE: This function is a backend of PCI power management routines and is
1515  * not supposed to be called drivers.
1516  */
1517 void pci_disable_enabled_device(struct pci_dev *dev)
1518 {
1519 	if (pci_is_enabled(dev))
1520 		do_pci_disable_device(dev);
1521 }
1522 
1523 /**
1524  * pci_disable_device - Disable PCI device after use
1525  * @dev: PCI device to be disabled
1526  *
1527  * Signal to the system that the PCI device is not in use by the system
1528  * anymore.  This only involves disabling PCI bus-mastering, if active.
1529  *
1530  * Note we don't actually disable the device until all callers of
1531  * pci_enable_device() have called pci_disable_device().
1532  */
1533 void pci_disable_device(struct pci_dev *dev)
1534 {
1535 	struct pci_devres *dr;
1536 
1537 	dr = find_pci_dr(dev);
1538 	if (dr)
1539 		dr->enabled = 0;
1540 
1541 	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1542 		      "disabling already-disabled device");
1543 
1544 	if (atomic_dec_return(&dev->enable_cnt) != 0)
1545 		return;
1546 
1547 	do_pci_disable_device(dev);
1548 
1549 	dev->is_busmaster = 0;
1550 }
1551 EXPORT_SYMBOL(pci_disable_device);
1552 
1553 /**
1554  * pcibios_set_pcie_reset_state - set reset state for device dev
1555  * @dev: the PCIe device reset
1556  * @state: Reset state to enter into
1557  *
1558  *
1559  * Sets the PCIe reset state for the device. This is the default
1560  * implementation. Architecture implementations can override this.
1561  */
1562 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1563 					enum pcie_reset_state state)
1564 {
1565 	return -EINVAL;
1566 }
1567 
1568 /**
1569  * pci_set_pcie_reset_state - set reset state for device dev
1570  * @dev: the PCIe device reset
1571  * @state: Reset state to enter into
1572  *
1573  *
1574  * Sets the PCI reset state for the device.
1575  */
1576 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1577 {
1578 	return pcibios_set_pcie_reset_state(dev, state);
1579 }
1580 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
1581 
1582 /**
1583  * pci_check_pme_status - Check if given device has generated PME.
1584  * @dev: Device to check.
1585  *
1586  * Check the PME status of the device and if set, clear it and clear PME enable
1587  * (if set).  Return 'true' if PME status and PME enable were both set or
1588  * 'false' otherwise.
1589  */
1590 bool pci_check_pme_status(struct pci_dev *dev)
1591 {
1592 	int pmcsr_pos;
1593 	u16 pmcsr;
1594 	bool ret = false;
1595 
1596 	if (!dev->pm_cap)
1597 		return false;
1598 
1599 	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1600 	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1601 	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1602 		return false;
1603 
1604 	/* Clear PME status. */
1605 	pmcsr |= PCI_PM_CTRL_PME_STATUS;
1606 	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1607 		/* Disable PME to avoid interrupt flood. */
1608 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1609 		ret = true;
1610 	}
1611 
1612 	pci_write_config_word(dev, pmcsr_pos, pmcsr);
1613 
1614 	return ret;
1615 }
1616 
1617 /**
1618  * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1619  * @dev: Device to handle.
1620  * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1621  *
1622  * Check if @dev has generated PME and queue a resume request for it in that
1623  * case.
1624  */
1625 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1626 {
1627 	if (pme_poll_reset && dev->pme_poll)
1628 		dev->pme_poll = false;
1629 
1630 	if (pci_check_pme_status(dev)) {
1631 		pci_wakeup_event(dev);
1632 		pm_request_resume(&dev->dev);
1633 	}
1634 	return 0;
1635 }
1636 
1637 /**
1638  * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1639  * @bus: Top bus of the subtree to walk.
1640  */
1641 void pci_pme_wakeup_bus(struct pci_bus *bus)
1642 {
1643 	if (bus)
1644 		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1645 }
1646 
1647 
1648 /**
1649  * pci_pme_capable - check the capability of PCI device to generate PME#
1650  * @dev: PCI device to handle.
1651  * @state: PCI state from which device will issue PME#.
1652  */
1653 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1654 {
1655 	if (!dev->pm_cap)
1656 		return false;
1657 
1658 	return !!(dev->pme_support & (1 << state));
1659 }
1660 EXPORT_SYMBOL(pci_pme_capable);
1661 
1662 static void pci_pme_list_scan(struct work_struct *work)
1663 {
1664 	struct pci_pme_device *pme_dev, *n;
1665 
1666 	mutex_lock(&pci_pme_list_mutex);
1667 	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1668 		if (pme_dev->dev->pme_poll) {
1669 			struct pci_dev *bridge;
1670 
1671 			bridge = pme_dev->dev->bus->self;
1672 			/*
1673 			 * If bridge is in low power state, the
1674 			 * configuration space of subordinate devices
1675 			 * may be not accessible
1676 			 */
1677 			if (bridge && bridge->current_state != PCI_D0)
1678 				continue;
1679 			pci_pme_wakeup(pme_dev->dev, NULL);
1680 		} else {
1681 			list_del(&pme_dev->list);
1682 			kfree(pme_dev);
1683 		}
1684 	}
1685 	if (!list_empty(&pci_pme_list))
1686 		schedule_delayed_work(&pci_pme_work,
1687 				      msecs_to_jiffies(PME_TIMEOUT));
1688 	mutex_unlock(&pci_pme_list_mutex);
1689 }
1690 
1691 /**
1692  * pci_pme_active - enable or disable PCI device's PME# function
1693  * @dev: PCI device to handle.
1694  * @enable: 'true' to enable PME# generation; 'false' to disable it.
1695  *
1696  * The caller must verify that the device is capable of generating PME# before
1697  * calling this function with @enable equal to 'true'.
1698  */
1699 void pci_pme_active(struct pci_dev *dev, bool enable)
1700 {
1701 	u16 pmcsr;
1702 
1703 	if (!dev->pme_support)
1704 		return;
1705 
1706 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1707 	/* Clear PME_Status by writing 1 to it and enable PME# */
1708 	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1709 	if (!enable)
1710 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1711 
1712 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1713 
1714 	/*
1715 	 * PCI (as opposed to PCIe) PME requires that the device have
1716 	 * its PME# line hooked up correctly. Not all hardware vendors
1717 	 * do this, so the PME never gets delivered and the device
1718 	 * remains asleep. The easiest way around this is to
1719 	 * periodically walk the list of suspended devices and check
1720 	 * whether any have their PME flag set. The assumption is that
1721 	 * we'll wake up often enough anyway that this won't be a huge
1722 	 * hit, and the power savings from the devices will still be a
1723 	 * win.
1724 	 *
1725 	 * Although PCIe uses in-band PME message instead of PME# line
1726 	 * to report PME, PME does not work for some PCIe devices in
1727 	 * reality.  For example, there are devices that set their PME
1728 	 * status bits, but don't really bother to send a PME message;
1729 	 * there are PCI Express Root Ports that don't bother to
1730 	 * trigger interrupts when they receive PME messages from the
1731 	 * devices below.  So PME poll is used for PCIe devices too.
1732 	 */
1733 
1734 	if (dev->pme_poll) {
1735 		struct pci_pme_device *pme_dev;
1736 		if (enable) {
1737 			pme_dev = kmalloc(sizeof(struct pci_pme_device),
1738 					  GFP_KERNEL);
1739 			if (!pme_dev) {
1740 				dev_warn(&dev->dev, "can't enable PME#\n");
1741 				return;
1742 			}
1743 			pme_dev->dev = dev;
1744 			mutex_lock(&pci_pme_list_mutex);
1745 			list_add(&pme_dev->list, &pci_pme_list);
1746 			if (list_is_singular(&pci_pme_list))
1747 				schedule_delayed_work(&pci_pme_work,
1748 						      msecs_to_jiffies(PME_TIMEOUT));
1749 			mutex_unlock(&pci_pme_list_mutex);
1750 		} else {
1751 			mutex_lock(&pci_pme_list_mutex);
1752 			list_for_each_entry(pme_dev, &pci_pme_list, list) {
1753 				if (pme_dev->dev == dev) {
1754 					list_del(&pme_dev->list);
1755 					kfree(pme_dev);
1756 					break;
1757 				}
1758 			}
1759 			mutex_unlock(&pci_pme_list_mutex);
1760 		}
1761 	}
1762 
1763 	dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled");
1764 }
1765 EXPORT_SYMBOL(pci_pme_active);
1766 
1767 /**
1768  * __pci_enable_wake - enable PCI device as wakeup event source
1769  * @dev: PCI device affected
1770  * @state: PCI state from which device will issue wakeup events
1771  * @runtime: True if the events are to be generated at run time
1772  * @enable: True to enable event generation; false to disable
1773  *
1774  * This enables the device as a wakeup event source, or disables it.
1775  * When such events involves platform-specific hooks, those hooks are
1776  * called automatically by this routine.
1777  *
1778  * Devices with legacy power management (no standard PCI PM capabilities)
1779  * always require such platform hooks.
1780  *
1781  * RETURN VALUE:
1782  * 0 is returned on success
1783  * -EINVAL is returned if device is not supposed to wake up the system
1784  * Error code depending on the platform is returned if both the platform and
1785  * the native mechanism fail to enable the generation of wake-up events
1786  */
1787 int __pci_enable_wake(struct pci_dev *dev, pci_power_t state,
1788 		      bool runtime, bool enable)
1789 {
1790 	int ret = 0;
1791 
1792 	if (enable && !runtime && !device_may_wakeup(&dev->dev))
1793 		return -EINVAL;
1794 
1795 	/* Don't do the same thing twice in a row for one device. */
1796 	if (!!enable == !!dev->wakeup_prepared)
1797 		return 0;
1798 
1799 	/*
1800 	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1801 	 * Anderson we should be doing PME# wake enable followed by ACPI wake
1802 	 * enable.  To disable wake-up we call the platform first, for symmetry.
1803 	 */
1804 
1805 	if (enable) {
1806 		int error;
1807 
1808 		if (pci_pme_capable(dev, state))
1809 			pci_pme_active(dev, true);
1810 		else
1811 			ret = 1;
1812 		error = runtime ? platform_pci_run_wake(dev, true) :
1813 					platform_pci_sleep_wake(dev, true);
1814 		if (ret)
1815 			ret = error;
1816 		if (!ret)
1817 			dev->wakeup_prepared = true;
1818 	} else {
1819 		if (runtime)
1820 			platform_pci_run_wake(dev, false);
1821 		else
1822 			platform_pci_sleep_wake(dev, false);
1823 		pci_pme_active(dev, false);
1824 		dev->wakeup_prepared = false;
1825 	}
1826 
1827 	return ret;
1828 }
1829 EXPORT_SYMBOL(__pci_enable_wake);
1830 
1831 /**
1832  * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1833  * @dev: PCI device to prepare
1834  * @enable: True to enable wake-up event generation; false to disable
1835  *
1836  * Many drivers want the device to wake up the system from D3_hot or D3_cold
1837  * and this function allows them to set that up cleanly - pci_enable_wake()
1838  * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1839  * ordering constraints.
1840  *
1841  * This function only returns error code if the device is not capable of
1842  * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1843  * enable wake-up power for it.
1844  */
1845 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1846 {
1847 	return pci_pme_capable(dev, PCI_D3cold) ?
1848 			pci_enable_wake(dev, PCI_D3cold, enable) :
1849 			pci_enable_wake(dev, PCI_D3hot, enable);
1850 }
1851 EXPORT_SYMBOL(pci_wake_from_d3);
1852 
1853 /**
1854  * pci_target_state - find an appropriate low power state for a given PCI dev
1855  * @dev: PCI device
1856  *
1857  * Use underlying platform code to find a supported low power state for @dev.
1858  * If the platform can't manage @dev, return the deepest state from which it
1859  * can generate wake events, based on any available PME info.
1860  */
1861 static pci_power_t pci_target_state(struct pci_dev *dev)
1862 {
1863 	pci_power_t target_state = PCI_D3hot;
1864 
1865 	if (platform_pci_power_manageable(dev)) {
1866 		/*
1867 		 * Call the platform to choose the target state of the device
1868 		 * and enable wake-up from this state if supported.
1869 		 */
1870 		pci_power_t state = platform_pci_choose_state(dev);
1871 
1872 		switch (state) {
1873 		case PCI_POWER_ERROR:
1874 		case PCI_UNKNOWN:
1875 			break;
1876 		case PCI_D1:
1877 		case PCI_D2:
1878 			if (pci_no_d1d2(dev))
1879 				break;
1880 		default:
1881 			target_state = state;
1882 		}
1883 	} else if (!dev->pm_cap) {
1884 		target_state = PCI_D0;
1885 	} else if (device_may_wakeup(&dev->dev)) {
1886 		/*
1887 		 * Find the deepest state from which the device can generate
1888 		 * wake-up events, make it the target state and enable device
1889 		 * to generate PME#.
1890 		 */
1891 		if (dev->pme_support) {
1892 			while (target_state
1893 			      && !(dev->pme_support & (1 << target_state)))
1894 				target_state--;
1895 		}
1896 	}
1897 
1898 	return target_state;
1899 }
1900 
1901 /**
1902  * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1903  * @dev: Device to handle.
1904  *
1905  * Choose the power state appropriate for the device depending on whether
1906  * it can wake up the system and/or is power manageable by the platform
1907  * (PCI_D3hot is the default) and put the device into that state.
1908  */
1909 int pci_prepare_to_sleep(struct pci_dev *dev)
1910 {
1911 	pci_power_t target_state = pci_target_state(dev);
1912 	int error;
1913 
1914 	if (target_state == PCI_POWER_ERROR)
1915 		return -EIO;
1916 
1917 	pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
1918 
1919 	error = pci_set_power_state(dev, target_state);
1920 
1921 	if (error)
1922 		pci_enable_wake(dev, target_state, false);
1923 
1924 	return error;
1925 }
1926 EXPORT_SYMBOL(pci_prepare_to_sleep);
1927 
1928 /**
1929  * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1930  * @dev: Device to handle.
1931  *
1932  * Disable device's system wake-up capability and put it into D0.
1933  */
1934 int pci_back_from_sleep(struct pci_dev *dev)
1935 {
1936 	pci_enable_wake(dev, PCI_D0, false);
1937 	return pci_set_power_state(dev, PCI_D0);
1938 }
1939 EXPORT_SYMBOL(pci_back_from_sleep);
1940 
1941 /**
1942  * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
1943  * @dev: PCI device being suspended.
1944  *
1945  * Prepare @dev to generate wake-up events at run time and put it into a low
1946  * power state.
1947  */
1948 int pci_finish_runtime_suspend(struct pci_dev *dev)
1949 {
1950 	pci_power_t target_state = pci_target_state(dev);
1951 	int error;
1952 
1953 	if (target_state == PCI_POWER_ERROR)
1954 		return -EIO;
1955 
1956 	dev->runtime_d3cold = target_state == PCI_D3cold;
1957 
1958 	__pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev));
1959 
1960 	error = pci_set_power_state(dev, target_state);
1961 
1962 	if (error) {
1963 		__pci_enable_wake(dev, target_state, true, false);
1964 		dev->runtime_d3cold = false;
1965 	}
1966 
1967 	return error;
1968 }
1969 
1970 /**
1971  * pci_dev_run_wake - Check if device can generate run-time wake-up events.
1972  * @dev: Device to check.
1973  *
1974  * Return true if the device itself is capable of generating wake-up events
1975  * (through the platform or using the native PCIe PME) or if the device supports
1976  * PME and one of its upstream bridges can generate wake-up events.
1977  */
1978 bool pci_dev_run_wake(struct pci_dev *dev)
1979 {
1980 	struct pci_bus *bus = dev->bus;
1981 
1982 	if (device_run_wake(&dev->dev))
1983 		return true;
1984 
1985 	if (!dev->pme_support)
1986 		return false;
1987 
1988 	while (bus->parent) {
1989 		struct pci_dev *bridge = bus->self;
1990 
1991 		if (device_run_wake(&bridge->dev))
1992 			return true;
1993 
1994 		bus = bus->parent;
1995 	}
1996 
1997 	/* We have reached the root bus. */
1998 	if (bus->bridge)
1999 		return device_run_wake(bus->bridge);
2000 
2001 	return false;
2002 }
2003 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2004 
2005 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2006 {
2007 	struct device *dev = &pdev->dev;
2008 	struct device *parent = dev->parent;
2009 
2010 	if (parent)
2011 		pm_runtime_get_sync(parent);
2012 	pm_runtime_get_noresume(dev);
2013 	/*
2014 	 * pdev->current_state is set to PCI_D3cold during suspending,
2015 	 * so wait until suspending completes
2016 	 */
2017 	pm_runtime_barrier(dev);
2018 	/*
2019 	 * Only need to resume devices in D3cold, because config
2020 	 * registers are still accessible for devices suspended but
2021 	 * not in D3cold.
2022 	 */
2023 	if (pdev->current_state == PCI_D3cold)
2024 		pm_runtime_resume(dev);
2025 }
2026 
2027 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2028 {
2029 	struct device *dev = &pdev->dev;
2030 	struct device *parent = dev->parent;
2031 
2032 	pm_runtime_put(dev);
2033 	if (parent)
2034 		pm_runtime_put_sync(parent);
2035 }
2036 
2037 /**
2038  * pci_pm_init - Initialize PM functions of given PCI device
2039  * @dev: PCI device to handle.
2040  */
2041 void pci_pm_init(struct pci_dev *dev)
2042 {
2043 	int pm;
2044 	u16 pmc;
2045 
2046 	pm_runtime_forbid(&dev->dev);
2047 	pm_runtime_set_active(&dev->dev);
2048 	pm_runtime_enable(&dev->dev);
2049 	device_enable_async_suspend(&dev->dev);
2050 	dev->wakeup_prepared = false;
2051 
2052 	dev->pm_cap = 0;
2053 	dev->pme_support = 0;
2054 
2055 	/* find PCI PM capability in list */
2056 	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2057 	if (!pm)
2058 		return;
2059 	/* Check device's ability to generate PME# */
2060 	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2061 
2062 	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2063 		dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
2064 			pmc & PCI_PM_CAP_VER_MASK);
2065 		return;
2066 	}
2067 
2068 	dev->pm_cap = pm;
2069 	dev->d3_delay = PCI_PM_D3_WAIT;
2070 	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2071 	dev->d3cold_allowed = true;
2072 
2073 	dev->d1_support = false;
2074 	dev->d2_support = false;
2075 	if (!pci_no_d1d2(dev)) {
2076 		if (pmc & PCI_PM_CAP_D1)
2077 			dev->d1_support = true;
2078 		if (pmc & PCI_PM_CAP_D2)
2079 			dev->d2_support = true;
2080 
2081 		if (dev->d1_support || dev->d2_support)
2082 			dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
2083 				   dev->d1_support ? " D1" : "",
2084 				   dev->d2_support ? " D2" : "");
2085 	}
2086 
2087 	pmc &= PCI_PM_CAP_PME_MASK;
2088 	if (pmc) {
2089 		dev_printk(KERN_DEBUG, &dev->dev,
2090 			 "PME# supported from%s%s%s%s%s\n",
2091 			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2092 			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2093 			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2094 			 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2095 			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2096 		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2097 		dev->pme_poll = true;
2098 		/*
2099 		 * Make device's PM flags reflect the wake-up capability, but
2100 		 * let the user space enable it to wake up the system as needed.
2101 		 */
2102 		device_set_wakeup_capable(&dev->dev, true);
2103 		/* Disable the PME# generation functionality */
2104 		pci_pme_active(dev, false);
2105 	}
2106 }
2107 
2108 static void pci_add_saved_cap(struct pci_dev *pci_dev,
2109 	struct pci_cap_saved_state *new_cap)
2110 {
2111 	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
2112 }
2113 
2114 /**
2115  * _pci_add_cap_save_buffer - allocate buffer for saving given
2116  *                            capability registers
2117  * @dev: the PCI device
2118  * @cap: the capability to allocate the buffer for
2119  * @extended: Standard or Extended capability ID
2120  * @size: requested size of the buffer
2121  */
2122 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
2123 				    bool extended, unsigned int size)
2124 {
2125 	int pos;
2126 	struct pci_cap_saved_state *save_state;
2127 
2128 	if (extended)
2129 		pos = pci_find_ext_capability(dev, cap);
2130 	else
2131 		pos = pci_find_capability(dev, cap);
2132 
2133 	if (pos <= 0)
2134 		return 0;
2135 
2136 	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2137 	if (!save_state)
2138 		return -ENOMEM;
2139 
2140 	save_state->cap.cap_nr = cap;
2141 	save_state->cap.cap_extended = extended;
2142 	save_state->cap.size = size;
2143 	pci_add_saved_cap(dev, save_state);
2144 
2145 	return 0;
2146 }
2147 
2148 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
2149 {
2150 	return _pci_add_cap_save_buffer(dev, cap, false, size);
2151 }
2152 
2153 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
2154 {
2155 	return _pci_add_cap_save_buffer(dev, cap, true, size);
2156 }
2157 
2158 /**
2159  * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2160  * @dev: the PCI device
2161  */
2162 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2163 {
2164 	int error;
2165 
2166 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2167 					PCI_EXP_SAVE_REGS * sizeof(u16));
2168 	if (error)
2169 		dev_err(&dev->dev,
2170 			"unable to preallocate PCI Express save buffer\n");
2171 
2172 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2173 	if (error)
2174 		dev_err(&dev->dev,
2175 			"unable to preallocate PCI-X save buffer\n");
2176 
2177 	pci_allocate_vc_save_buffers(dev);
2178 }
2179 
2180 void pci_free_cap_save_buffers(struct pci_dev *dev)
2181 {
2182 	struct pci_cap_saved_state *tmp;
2183 	struct hlist_node *n;
2184 
2185 	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
2186 		kfree(tmp);
2187 }
2188 
2189 /**
2190  * pci_configure_ari - enable or disable ARI forwarding
2191  * @dev: the PCI device
2192  *
2193  * If @dev and its upstream bridge both support ARI, enable ARI in the
2194  * bridge.  Otherwise, disable ARI in the bridge.
2195  */
2196 void pci_configure_ari(struct pci_dev *dev)
2197 {
2198 	u32 cap;
2199 	struct pci_dev *bridge;
2200 
2201 	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
2202 		return;
2203 
2204 	bridge = dev->bus->self;
2205 	if (!bridge)
2206 		return;
2207 
2208 	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
2209 	if (!(cap & PCI_EXP_DEVCAP2_ARI))
2210 		return;
2211 
2212 	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
2213 		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
2214 					 PCI_EXP_DEVCTL2_ARI);
2215 		bridge->ari_enabled = 1;
2216 	} else {
2217 		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
2218 					   PCI_EXP_DEVCTL2_ARI);
2219 		bridge->ari_enabled = 0;
2220 	}
2221 }
2222 
2223 static int pci_acs_enable;
2224 
2225 /**
2226  * pci_request_acs - ask for ACS to be enabled if supported
2227  */
2228 void pci_request_acs(void)
2229 {
2230 	pci_acs_enable = 1;
2231 }
2232 
2233 /**
2234  * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites
2235  * @dev: the PCI device
2236  */
2237 static int pci_std_enable_acs(struct pci_dev *dev)
2238 {
2239 	int pos;
2240 	u16 cap;
2241 	u16 ctrl;
2242 
2243 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2244 	if (!pos)
2245 		return -ENODEV;
2246 
2247 	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2248 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2249 
2250 	/* Source Validation */
2251 	ctrl |= (cap & PCI_ACS_SV);
2252 
2253 	/* P2P Request Redirect */
2254 	ctrl |= (cap & PCI_ACS_RR);
2255 
2256 	/* P2P Completion Redirect */
2257 	ctrl |= (cap & PCI_ACS_CR);
2258 
2259 	/* Upstream Forwarding */
2260 	ctrl |= (cap & PCI_ACS_UF);
2261 
2262 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2263 
2264 	return 0;
2265 }
2266 
2267 /**
2268  * pci_enable_acs - enable ACS if hardware support it
2269  * @dev: the PCI device
2270  */
2271 void pci_enable_acs(struct pci_dev *dev)
2272 {
2273 	if (!pci_acs_enable)
2274 		return;
2275 
2276 	if (!pci_std_enable_acs(dev))
2277 		return;
2278 
2279 	pci_dev_specific_enable_acs(dev);
2280 }
2281 
2282 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
2283 {
2284 	int pos;
2285 	u16 cap, ctrl;
2286 
2287 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2288 	if (!pos)
2289 		return false;
2290 
2291 	/*
2292 	 * Except for egress control, capabilities are either required
2293 	 * or only required if controllable.  Features missing from the
2294 	 * capability field can therefore be assumed as hard-wired enabled.
2295 	 */
2296 	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
2297 	acs_flags &= (cap | PCI_ACS_EC);
2298 
2299 	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2300 	return (ctrl & acs_flags) == acs_flags;
2301 }
2302 
2303 /**
2304  * pci_acs_enabled - test ACS against required flags for a given device
2305  * @pdev: device to test
2306  * @acs_flags: required PCI ACS flags
2307  *
2308  * Return true if the device supports the provided flags.  Automatically
2309  * filters out flags that are not implemented on multifunction devices.
2310  *
2311  * Note that this interface checks the effective ACS capabilities of the
2312  * device rather than the actual capabilities.  For instance, most single
2313  * function endpoints are not required to support ACS because they have no
2314  * opportunity for peer-to-peer access.  We therefore return 'true'
2315  * regardless of whether the device exposes an ACS capability.  This makes
2316  * it much easier for callers of this function to ignore the actual type
2317  * or topology of the device when testing ACS support.
2318  */
2319 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2320 {
2321 	int ret;
2322 
2323 	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2324 	if (ret >= 0)
2325 		return ret > 0;
2326 
2327 	/*
2328 	 * Conventional PCI and PCI-X devices never support ACS, either
2329 	 * effectively or actually.  The shared bus topology implies that
2330 	 * any device on the bus can receive or snoop DMA.
2331 	 */
2332 	if (!pci_is_pcie(pdev))
2333 		return false;
2334 
2335 	switch (pci_pcie_type(pdev)) {
2336 	/*
2337 	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
2338 	 * but since their primary interface is PCI/X, we conservatively
2339 	 * handle them as we would a non-PCIe device.
2340 	 */
2341 	case PCI_EXP_TYPE_PCIE_BRIDGE:
2342 	/*
2343 	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
2344 	 * applicable... must never implement an ACS Extended Capability...".
2345 	 * This seems arbitrary, but we take a conservative interpretation
2346 	 * of this statement.
2347 	 */
2348 	case PCI_EXP_TYPE_PCI_BRIDGE:
2349 	case PCI_EXP_TYPE_RC_EC:
2350 		return false;
2351 	/*
2352 	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
2353 	 * implement ACS in order to indicate their peer-to-peer capabilities,
2354 	 * regardless of whether they are single- or multi-function devices.
2355 	 */
2356 	case PCI_EXP_TYPE_DOWNSTREAM:
2357 	case PCI_EXP_TYPE_ROOT_PORT:
2358 		return pci_acs_flags_enabled(pdev, acs_flags);
2359 	/*
2360 	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
2361 	 * implemented by the remaining PCIe types to indicate peer-to-peer
2362 	 * capabilities, but only when they are part of a multifunction
2363 	 * device.  The footnote for section 6.12 indicates the specific
2364 	 * PCIe types included here.
2365 	 */
2366 	case PCI_EXP_TYPE_ENDPOINT:
2367 	case PCI_EXP_TYPE_UPSTREAM:
2368 	case PCI_EXP_TYPE_LEG_END:
2369 	case PCI_EXP_TYPE_RC_END:
2370 		if (!pdev->multifunction)
2371 			break;
2372 
2373 		return pci_acs_flags_enabled(pdev, acs_flags);
2374 	}
2375 
2376 	/*
2377 	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
2378 	 * to single function devices with the exception of downstream ports.
2379 	 */
2380 	return true;
2381 }
2382 
2383 /**
2384  * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2385  * @start: starting downstream device
2386  * @end: ending upstream device or NULL to search to the root bus
2387  * @acs_flags: required flags
2388  *
2389  * Walk up a device tree from start to end testing PCI ACS support.  If
2390  * any step along the way does not support the required flags, return false.
2391  */
2392 bool pci_acs_path_enabled(struct pci_dev *start,
2393 			  struct pci_dev *end, u16 acs_flags)
2394 {
2395 	struct pci_dev *pdev, *parent = start;
2396 
2397 	do {
2398 		pdev = parent;
2399 
2400 		if (!pci_acs_enabled(pdev, acs_flags))
2401 			return false;
2402 
2403 		if (pci_is_root_bus(pdev->bus))
2404 			return (end == NULL);
2405 
2406 		parent = pdev->bus->self;
2407 	} while (pdev != end);
2408 
2409 	return true;
2410 }
2411 
2412 /**
2413  * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2414  * @dev: the PCI device
2415  * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
2416  *
2417  * Perform INTx swizzling for a device behind one level of bridge.  This is
2418  * required by section 9.1 of the PCI-to-PCI bridge specification for devices
2419  * behind bridges on add-in cards.  For devices with ARI enabled, the slot
2420  * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2421  * the PCI Express Base Specification, Revision 2.1)
2422  */
2423 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
2424 {
2425 	int slot;
2426 
2427 	if (pci_ari_enabled(dev->bus))
2428 		slot = 0;
2429 	else
2430 		slot = PCI_SLOT(dev->devfn);
2431 
2432 	return (((pin - 1) + slot) % 4) + 1;
2433 }
2434 
2435 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
2436 {
2437 	u8 pin;
2438 
2439 	pin = dev->pin;
2440 	if (!pin)
2441 		return -1;
2442 
2443 	while (!pci_is_root_bus(dev->bus)) {
2444 		pin = pci_swizzle_interrupt_pin(dev, pin);
2445 		dev = dev->bus->self;
2446 	}
2447 	*bridge = dev;
2448 	return pin;
2449 }
2450 
2451 /**
2452  * pci_common_swizzle - swizzle INTx all the way to root bridge
2453  * @dev: the PCI device
2454  * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2455  *
2456  * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
2457  * bridges all the way up to a PCI root bus.
2458  */
2459 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
2460 {
2461 	u8 pin = *pinp;
2462 
2463 	while (!pci_is_root_bus(dev->bus)) {
2464 		pin = pci_swizzle_interrupt_pin(dev, pin);
2465 		dev = dev->bus->self;
2466 	}
2467 	*pinp = pin;
2468 	return PCI_SLOT(dev->devfn);
2469 }
2470 
2471 /**
2472  *	pci_release_region - Release a PCI bar
2473  *	@pdev: PCI device whose resources were previously reserved by pci_request_region
2474  *	@bar: BAR to release
2475  *
2476  *	Releases the PCI I/O and memory resources previously reserved by a
2477  *	successful call to pci_request_region.  Call this function only
2478  *	after all use of the PCI regions has ceased.
2479  */
2480 void pci_release_region(struct pci_dev *pdev, int bar)
2481 {
2482 	struct pci_devres *dr;
2483 
2484 	if (pci_resource_len(pdev, bar) == 0)
2485 		return;
2486 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
2487 		release_region(pci_resource_start(pdev, bar),
2488 				pci_resource_len(pdev, bar));
2489 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
2490 		release_mem_region(pci_resource_start(pdev, bar),
2491 				pci_resource_len(pdev, bar));
2492 
2493 	dr = find_pci_dr(pdev);
2494 	if (dr)
2495 		dr->region_mask &= ~(1 << bar);
2496 }
2497 EXPORT_SYMBOL(pci_release_region);
2498 
2499 /**
2500  *	__pci_request_region - Reserved PCI I/O and memory resource
2501  *	@pdev: PCI device whose resources are to be reserved
2502  *	@bar: BAR to be reserved
2503  *	@res_name: Name to be associated with resource.
2504  *	@exclusive: whether the region access is exclusive or not
2505  *
2506  *	Mark the PCI region associated with PCI device @pdev BR @bar as
2507  *	being reserved by owner @res_name.  Do not access any
2508  *	address inside the PCI regions unless this call returns
2509  *	successfully.
2510  *
2511  *	If @exclusive is set, then the region is marked so that userspace
2512  *	is explicitly not allowed to map the resource via /dev/mem or
2513  *	sysfs MMIO access.
2514  *
2515  *	Returns 0 on success, or %EBUSY on error.  A warning
2516  *	message is also printed on failure.
2517  */
2518 static int __pci_request_region(struct pci_dev *pdev, int bar,
2519 				const char *res_name, int exclusive)
2520 {
2521 	struct pci_devres *dr;
2522 
2523 	if (pci_resource_len(pdev, bar) == 0)
2524 		return 0;
2525 
2526 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
2527 		if (!request_region(pci_resource_start(pdev, bar),
2528 			    pci_resource_len(pdev, bar), res_name))
2529 			goto err_out;
2530 	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
2531 		if (!__request_mem_region(pci_resource_start(pdev, bar),
2532 					pci_resource_len(pdev, bar), res_name,
2533 					exclusive))
2534 			goto err_out;
2535 	}
2536 
2537 	dr = find_pci_dr(pdev);
2538 	if (dr)
2539 		dr->region_mask |= 1 << bar;
2540 
2541 	return 0;
2542 
2543 err_out:
2544 	dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
2545 		 &pdev->resource[bar]);
2546 	return -EBUSY;
2547 }
2548 
2549 /**
2550  *	pci_request_region - Reserve PCI I/O and memory resource
2551  *	@pdev: PCI device whose resources are to be reserved
2552  *	@bar: BAR to be reserved
2553  *	@res_name: Name to be associated with resource
2554  *
2555  *	Mark the PCI region associated with PCI device @pdev BAR @bar as
2556  *	being reserved by owner @res_name.  Do not access any
2557  *	address inside the PCI regions unless this call returns
2558  *	successfully.
2559  *
2560  *	Returns 0 on success, or %EBUSY on error.  A warning
2561  *	message is also printed on failure.
2562  */
2563 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
2564 {
2565 	return __pci_request_region(pdev, bar, res_name, 0);
2566 }
2567 EXPORT_SYMBOL(pci_request_region);
2568 
2569 /**
2570  *	pci_request_region_exclusive - Reserved PCI I/O and memory resource
2571  *	@pdev: PCI device whose resources are to be reserved
2572  *	@bar: BAR to be reserved
2573  *	@res_name: Name to be associated with resource.
2574  *
2575  *	Mark the PCI region associated with PCI device @pdev BR @bar as
2576  *	being reserved by owner @res_name.  Do not access any
2577  *	address inside the PCI regions unless this call returns
2578  *	successfully.
2579  *
2580  *	Returns 0 on success, or %EBUSY on error.  A warning
2581  *	message is also printed on failure.
2582  *
2583  *	The key difference that _exclusive makes it that userspace is
2584  *	explicitly not allowed to map the resource via /dev/mem or
2585  *	sysfs.
2586  */
2587 int pci_request_region_exclusive(struct pci_dev *pdev, int bar,
2588 				 const char *res_name)
2589 {
2590 	return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
2591 }
2592 EXPORT_SYMBOL(pci_request_region_exclusive);
2593 
2594 /**
2595  * pci_release_selected_regions - Release selected PCI I/O and memory resources
2596  * @pdev: PCI device whose resources were previously reserved
2597  * @bars: Bitmask of BARs to be released
2598  *
2599  * Release selected PCI I/O and memory resources previously reserved.
2600  * Call this function only after all use of the PCI regions has ceased.
2601  */
2602 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
2603 {
2604 	int i;
2605 
2606 	for (i = 0; i < 6; i++)
2607 		if (bars & (1 << i))
2608 			pci_release_region(pdev, i);
2609 }
2610 EXPORT_SYMBOL(pci_release_selected_regions);
2611 
2612 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
2613 					  const char *res_name, int excl)
2614 {
2615 	int i;
2616 
2617 	for (i = 0; i < 6; i++)
2618 		if (bars & (1 << i))
2619 			if (__pci_request_region(pdev, i, res_name, excl))
2620 				goto err_out;
2621 	return 0;
2622 
2623 err_out:
2624 	while (--i >= 0)
2625 		if (bars & (1 << i))
2626 			pci_release_region(pdev, i);
2627 
2628 	return -EBUSY;
2629 }
2630 
2631 
2632 /**
2633  * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
2634  * @pdev: PCI device whose resources are to be reserved
2635  * @bars: Bitmask of BARs to be requested
2636  * @res_name: Name to be associated with resource
2637  */
2638 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
2639 				 const char *res_name)
2640 {
2641 	return __pci_request_selected_regions(pdev, bars, res_name, 0);
2642 }
2643 EXPORT_SYMBOL(pci_request_selected_regions);
2644 
2645 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
2646 					   const char *res_name)
2647 {
2648 	return __pci_request_selected_regions(pdev, bars, res_name,
2649 			IORESOURCE_EXCLUSIVE);
2650 }
2651 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
2652 
2653 /**
2654  *	pci_release_regions - Release reserved PCI I/O and memory resources
2655  *	@pdev: PCI device whose resources were previously reserved by pci_request_regions
2656  *
2657  *	Releases all PCI I/O and memory resources previously reserved by a
2658  *	successful call to pci_request_regions.  Call this function only
2659  *	after all use of the PCI regions has ceased.
2660  */
2661 
2662 void pci_release_regions(struct pci_dev *pdev)
2663 {
2664 	pci_release_selected_regions(pdev, (1 << 6) - 1);
2665 }
2666 EXPORT_SYMBOL(pci_release_regions);
2667 
2668 /**
2669  *	pci_request_regions - Reserved PCI I/O and memory resources
2670  *	@pdev: PCI device whose resources are to be reserved
2671  *	@res_name: Name to be associated with resource.
2672  *
2673  *	Mark all PCI regions associated with PCI device @pdev as
2674  *	being reserved by owner @res_name.  Do not access any
2675  *	address inside the PCI regions unless this call returns
2676  *	successfully.
2677  *
2678  *	Returns 0 on success, or %EBUSY on error.  A warning
2679  *	message is also printed on failure.
2680  */
2681 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
2682 {
2683 	return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
2684 }
2685 EXPORT_SYMBOL(pci_request_regions);
2686 
2687 /**
2688  *	pci_request_regions_exclusive - Reserved PCI I/O and memory resources
2689  *	@pdev: PCI device whose resources are to be reserved
2690  *	@res_name: Name to be associated with resource.
2691  *
2692  *	Mark all PCI regions associated with PCI device @pdev as
2693  *	being reserved by owner @res_name.  Do not access any
2694  *	address inside the PCI regions unless this call returns
2695  *	successfully.
2696  *
2697  *	pci_request_regions_exclusive() will mark the region so that
2698  *	/dev/mem and the sysfs MMIO access will not be allowed.
2699  *
2700  *	Returns 0 on success, or %EBUSY on error.  A warning
2701  *	message is also printed on failure.
2702  */
2703 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
2704 {
2705 	return pci_request_selected_regions_exclusive(pdev,
2706 					((1 << 6) - 1), res_name);
2707 }
2708 EXPORT_SYMBOL(pci_request_regions_exclusive);
2709 
2710 /**
2711  *	pci_remap_iospace - Remap the memory mapped I/O space
2712  *	@res: Resource describing the I/O space
2713  *	@phys_addr: physical address of range to be mapped
2714  *
2715  *	Remap the memory mapped I/O space described by the @res
2716  *	and the CPU physical address @phys_addr into virtual address space.
2717  *	Only architectures that have memory mapped IO functions defined
2718  *	(and the PCI_IOBASE value defined) should call this function.
2719  */
2720 int __weak pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
2721 {
2722 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
2723 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
2724 
2725 	if (!(res->flags & IORESOURCE_IO))
2726 		return -EINVAL;
2727 
2728 	if (res->end > IO_SPACE_LIMIT)
2729 		return -EINVAL;
2730 
2731 	return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
2732 				  pgprot_device(PAGE_KERNEL));
2733 #else
2734 	/* this architecture does not have memory mapped I/O space,
2735 	   so this function should never be called */
2736 	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
2737 	return -ENODEV;
2738 #endif
2739 }
2740 
2741 static void __pci_set_master(struct pci_dev *dev, bool enable)
2742 {
2743 	u16 old_cmd, cmd;
2744 
2745 	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
2746 	if (enable)
2747 		cmd = old_cmd | PCI_COMMAND_MASTER;
2748 	else
2749 		cmd = old_cmd & ~PCI_COMMAND_MASTER;
2750 	if (cmd != old_cmd) {
2751 		dev_dbg(&dev->dev, "%s bus mastering\n",
2752 			enable ? "enabling" : "disabling");
2753 		pci_write_config_word(dev, PCI_COMMAND, cmd);
2754 	}
2755 	dev->is_busmaster = enable;
2756 }
2757 
2758 /**
2759  * pcibios_setup - process "pci=" kernel boot arguments
2760  * @str: string used to pass in "pci=" kernel boot arguments
2761  *
2762  * Process kernel boot arguments.  This is the default implementation.
2763  * Architecture specific implementations can override this as necessary.
2764  */
2765 char * __weak __init pcibios_setup(char *str)
2766 {
2767 	return str;
2768 }
2769 
2770 /**
2771  * pcibios_set_master - enable PCI bus-mastering for device dev
2772  * @dev: the PCI device to enable
2773  *
2774  * Enables PCI bus-mastering for the device.  This is the default
2775  * implementation.  Architecture specific implementations can override
2776  * this if necessary.
2777  */
2778 void __weak pcibios_set_master(struct pci_dev *dev)
2779 {
2780 	u8 lat;
2781 
2782 	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
2783 	if (pci_is_pcie(dev))
2784 		return;
2785 
2786 	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
2787 	if (lat < 16)
2788 		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
2789 	else if (lat > pcibios_max_latency)
2790 		lat = pcibios_max_latency;
2791 	else
2792 		return;
2793 
2794 	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
2795 }
2796 
2797 /**
2798  * pci_set_master - enables bus-mastering for device dev
2799  * @dev: the PCI device to enable
2800  *
2801  * Enables bus-mastering on the device and calls pcibios_set_master()
2802  * to do the needed arch specific settings.
2803  */
2804 void pci_set_master(struct pci_dev *dev)
2805 {
2806 	__pci_set_master(dev, true);
2807 	pcibios_set_master(dev);
2808 }
2809 EXPORT_SYMBOL(pci_set_master);
2810 
2811 /**
2812  * pci_clear_master - disables bus-mastering for device dev
2813  * @dev: the PCI device to disable
2814  */
2815 void pci_clear_master(struct pci_dev *dev)
2816 {
2817 	__pci_set_master(dev, false);
2818 }
2819 EXPORT_SYMBOL(pci_clear_master);
2820 
2821 /**
2822  * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
2823  * @dev: the PCI device for which MWI is to be enabled
2824  *
2825  * Helper function for pci_set_mwi.
2826  * Originally copied from drivers/net/acenic.c.
2827  * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
2828  *
2829  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2830  */
2831 int pci_set_cacheline_size(struct pci_dev *dev)
2832 {
2833 	u8 cacheline_size;
2834 
2835 	if (!pci_cache_line_size)
2836 		return -EINVAL;
2837 
2838 	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
2839 	   equal to or multiple of the right value. */
2840 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2841 	if (cacheline_size >= pci_cache_line_size &&
2842 	    (cacheline_size % pci_cache_line_size) == 0)
2843 		return 0;
2844 
2845 	/* Write the correct value. */
2846 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
2847 	/* Read it back. */
2848 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2849 	if (cacheline_size == pci_cache_line_size)
2850 		return 0;
2851 
2852 	dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not supported\n",
2853 		   pci_cache_line_size << 2);
2854 
2855 	return -EINVAL;
2856 }
2857 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
2858 
2859 /**
2860  * pci_set_mwi - enables memory-write-invalidate PCI transaction
2861  * @dev: the PCI device for which MWI is enabled
2862  *
2863  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2864  *
2865  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2866  */
2867 int pci_set_mwi(struct pci_dev *dev)
2868 {
2869 #ifdef PCI_DISABLE_MWI
2870 	return 0;
2871 #else
2872 	int rc;
2873 	u16 cmd;
2874 
2875 	rc = pci_set_cacheline_size(dev);
2876 	if (rc)
2877 		return rc;
2878 
2879 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
2880 	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
2881 		dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
2882 		cmd |= PCI_COMMAND_INVALIDATE;
2883 		pci_write_config_word(dev, PCI_COMMAND, cmd);
2884 	}
2885 	return 0;
2886 #endif
2887 }
2888 EXPORT_SYMBOL(pci_set_mwi);
2889 
2890 /**
2891  * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
2892  * @dev: the PCI device for which MWI is enabled
2893  *
2894  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2895  * Callers are not required to check the return value.
2896  *
2897  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2898  */
2899 int pci_try_set_mwi(struct pci_dev *dev)
2900 {
2901 #ifdef PCI_DISABLE_MWI
2902 	return 0;
2903 #else
2904 	return pci_set_mwi(dev);
2905 #endif
2906 }
2907 EXPORT_SYMBOL(pci_try_set_mwi);
2908 
2909 /**
2910  * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
2911  * @dev: the PCI device to disable
2912  *
2913  * Disables PCI Memory-Write-Invalidate transaction on the device
2914  */
2915 void pci_clear_mwi(struct pci_dev *dev)
2916 {
2917 #ifndef PCI_DISABLE_MWI
2918 	u16 cmd;
2919 
2920 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
2921 	if (cmd & PCI_COMMAND_INVALIDATE) {
2922 		cmd &= ~PCI_COMMAND_INVALIDATE;
2923 		pci_write_config_word(dev, PCI_COMMAND, cmd);
2924 	}
2925 #endif
2926 }
2927 EXPORT_SYMBOL(pci_clear_mwi);
2928 
2929 /**
2930  * pci_intx - enables/disables PCI INTx for device dev
2931  * @pdev: the PCI device to operate on
2932  * @enable: boolean: whether to enable or disable PCI INTx
2933  *
2934  * Enables/disables PCI INTx for device dev
2935  */
2936 void pci_intx(struct pci_dev *pdev, int enable)
2937 {
2938 	u16 pci_command, new;
2939 
2940 	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
2941 
2942 	if (enable)
2943 		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
2944 	else
2945 		new = pci_command | PCI_COMMAND_INTX_DISABLE;
2946 
2947 	if (new != pci_command) {
2948 		struct pci_devres *dr;
2949 
2950 		pci_write_config_word(pdev, PCI_COMMAND, new);
2951 
2952 		dr = find_pci_dr(pdev);
2953 		if (dr && !dr->restore_intx) {
2954 			dr->restore_intx = 1;
2955 			dr->orig_intx = !enable;
2956 		}
2957 	}
2958 }
2959 EXPORT_SYMBOL_GPL(pci_intx);
2960 
2961 /**
2962  * pci_intx_mask_supported - probe for INTx masking support
2963  * @dev: the PCI device to operate on
2964  *
2965  * Check if the device dev support INTx masking via the config space
2966  * command word.
2967  */
2968 bool pci_intx_mask_supported(struct pci_dev *dev)
2969 {
2970 	bool mask_supported = false;
2971 	u16 orig, new;
2972 
2973 	if (dev->broken_intx_masking)
2974 		return false;
2975 
2976 	pci_cfg_access_lock(dev);
2977 
2978 	pci_read_config_word(dev, PCI_COMMAND, &orig);
2979 	pci_write_config_word(dev, PCI_COMMAND,
2980 			      orig ^ PCI_COMMAND_INTX_DISABLE);
2981 	pci_read_config_word(dev, PCI_COMMAND, &new);
2982 
2983 	/*
2984 	 * There's no way to protect against hardware bugs or detect them
2985 	 * reliably, but as long as we know what the value should be, let's
2986 	 * go ahead and check it.
2987 	 */
2988 	if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) {
2989 		dev_err(&dev->dev, "Command register changed from 0x%x to 0x%x: driver or hardware bug?\n",
2990 			orig, new);
2991 	} else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) {
2992 		mask_supported = true;
2993 		pci_write_config_word(dev, PCI_COMMAND, orig);
2994 	}
2995 
2996 	pci_cfg_access_unlock(dev);
2997 	return mask_supported;
2998 }
2999 EXPORT_SYMBOL_GPL(pci_intx_mask_supported);
3000 
3001 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
3002 {
3003 	struct pci_bus *bus = dev->bus;
3004 	bool mask_updated = true;
3005 	u32 cmd_status_dword;
3006 	u16 origcmd, newcmd;
3007 	unsigned long flags;
3008 	bool irq_pending;
3009 
3010 	/*
3011 	 * We do a single dword read to retrieve both command and status.
3012 	 * Document assumptions that make this possible.
3013 	 */
3014 	BUILD_BUG_ON(PCI_COMMAND % 4);
3015 	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
3016 
3017 	raw_spin_lock_irqsave(&pci_lock, flags);
3018 
3019 	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
3020 
3021 	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
3022 
3023 	/*
3024 	 * Check interrupt status register to see whether our device
3025 	 * triggered the interrupt (when masking) or the next IRQ is
3026 	 * already pending (when unmasking).
3027 	 */
3028 	if (mask != irq_pending) {
3029 		mask_updated = false;
3030 		goto done;
3031 	}
3032 
3033 	origcmd = cmd_status_dword;
3034 	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
3035 	if (mask)
3036 		newcmd |= PCI_COMMAND_INTX_DISABLE;
3037 	if (newcmd != origcmd)
3038 		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
3039 
3040 done:
3041 	raw_spin_unlock_irqrestore(&pci_lock, flags);
3042 
3043 	return mask_updated;
3044 }
3045 
3046 /**
3047  * pci_check_and_mask_intx - mask INTx on pending interrupt
3048  * @dev: the PCI device to operate on
3049  *
3050  * Check if the device dev has its INTx line asserted, mask it and
3051  * return true in that case. False is returned if not interrupt was
3052  * pending.
3053  */
3054 bool pci_check_and_mask_intx(struct pci_dev *dev)
3055 {
3056 	return pci_check_and_set_intx_mask(dev, true);
3057 }
3058 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
3059 
3060 /**
3061  * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
3062  * @dev: the PCI device to operate on
3063  *
3064  * Check if the device dev has its INTx line asserted, unmask it if not
3065  * and return true. False is returned and the mask remains active if
3066  * there was still an interrupt pending.
3067  */
3068 bool pci_check_and_unmask_intx(struct pci_dev *dev)
3069 {
3070 	return pci_check_and_set_intx_mask(dev, false);
3071 }
3072 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
3073 
3074 /**
3075  * pci_msi_off - disables any MSI or MSI-X capabilities
3076  * @dev: the PCI device to operate on
3077  *
3078  * If you want to use MSI, see pci_enable_msi() and friends.
3079  * This is a lower-level primitive that allows us to disable
3080  * MSI operation at the device level.
3081  */
3082 void pci_msi_off(struct pci_dev *dev)
3083 {
3084 	int pos;
3085 	u16 control;
3086 
3087 	/*
3088 	 * This looks like it could go in msi.c, but we need it even when
3089 	 * CONFIG_PCI_MSI=n.  For the same reason, we can't use
3090 	 * dev->msi_cap or dev->msix_cap here.
3091 	 */
3092 	pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
3093 	if (pos) {
3094 		pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
3095 		control &= ~PCI_MSI_FLAGS_ENABLE;
3096 		pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
3097 	}
3098 	pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
3099 	if (pos) {
3100 		pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
3101 		control &= ~PCI_MSIX_FLAGS_ENABLE;
3102 		pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
3103 	}
3104 }
3105 EXPORT_SYMBOL_GPL(pci_msi_off);
3106 
3107 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
3108 {
3109 	return dma_set_max_seg_size(&dev->dev, size);
3110 }
3111 EXPORT_SYMBOL(pci_set_dma_max_seg_size);
3112 
3113 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
3114 {
3115 	return dma_set_seg_boundary(&dev->dev, mask);
3116 }
3117 EXPORT_SYMBOL(pci_set_dma_seg_boundary);
3118 
3119 /**
3120  * pci_wait_for_pending_transaction - waits for pending transaction
3121  * @dev: the PCI device to operate on
3122  *
3123  * Return 0 if transaction is pending 1 otherwise.
3124  */
3125 int pci_wait_for_pending_transaction(struct pci_dev *dev)
3126 {
3127 	if (!pci_is_pcie(dev))
3128 		return 1;
3129 
3130 	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
3131 				    PCI_EXP_DEVSTA_TRPND);
3132 }
3133 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
3134 
3135 static int pcie_flr(struct pci_dev *dev, int probe)
3136 {
3137 	u32 cap;
3138 
3139 	pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
3140 	if (!(cap & PCI_EXP_DEVCAP_FLR))
3141 		return -ENOTTY;
3142 
3143 	if (probe)
3144 		return 0;
3145 
3146 	if (!pci_wait_for_pending_transaction(dev))
3147 		dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
3148 
3149 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
3150 
3151 	msleep(100);
3152 
3153 	return 0;
3154 }
3155 
3156 static int pci_af_flr(struct pci_dev *dev, int probe)
3157 {
3158 	int pos;
3159 	u8 cap;
3160 
3161 	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
3162 	if (!pos)
3163 		return -ENOTTY;
3164 
3165 	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
3166 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
3167 		return -ENOTTY;
3168 
3169 	if (probe)
3170 		return 0;
3171 
3172 	/*
3173 	 * Wait for Transaction Pending bit to clear.  A word-aligned test
3174 	 * is used, so we use the conrol offset rather than status and shift
3175 	 * the test bit to match.
3176 	 */
3177 	if (pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
3178 				 PCI_AF_STATUS_TP << 8))
3179 		goto clear;
3180 
3181 	dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
3182 
3183 clear:
3184 	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
3185 	msleep(100);
3186 
3187 	return 0;
3188 }
3189 
3190 /**
3191  * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
3192  * @dev: Device to reset.
3193  * @probe: If set, only check if the device can be reset this way.
3194  *
3195  * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
3196  * unset, it will be reinitialized internally when going from PCI_D3hot to
3197  * PCI_D0.  If that's the case and the device is not in a low-power state
3198  * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
3199  *
3200  * NOTE: This causes the caller to sleep for twice the device power transition
3201  * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
3202  * by default (i.e. unless the @dev's d3_delay field has a different value).
3203  * Moreover, only devices in D0 can be reset by this function.
3204  */
3205 static int pci_pm_reset(struct pci_dev *dev, int probe)
3206 {
3207 	u16 csr;
3208 
3209 	if (!dev->pm_cap)
3210 		return -ENOTTY;
3211 
3212 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
3213 	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
3214 		return -ENOTTY;
3215 
3216 	if (probe)
3217 		return 0;
3218 
3219 	if (dev->current_state != PCI_D0)
3220 		return -EINVAL;
3221 
3222 	csr &= ~PCI_PM_CTRL_STATE_MASK;
3223 	csr |= PCI_D3hot;
3224 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3225 	pci_dev_d3_sleep(dev);
3226 
3227 	csr &= ~PCI_PM_CTRL_STATE_MASK;
3228 	csr |= PCI_D0;
3229 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3230 	pci_dev_d3_sleep(dev);
3231 
3232 	return 0;
3233 }
3234 
3235 void pci_reset_secondary_bus(struct pci_dev *dev)
3236 {
3237 	u16 ctrl;
3238 
3239 	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
3240 	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
3241 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3242 	/*
3243 	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
3244 	 * this to 2ms to ensure that we meet the minimum requirement.
3245 	 */
3246 	msleep(2);
3247 
3248 	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
3249 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3250 
3251 	/*
3252 	 * Trhfa for conventional PCI is 2^25 clock cycles.
3253 	 * Assuming a minimum 33MHz clock this results in a 1s
3254 	 * delay before we can consider subordinate devices to
3255 	 * be re-initialized.  PCIe has some ways to shorten this,
3256 	 * but we don't make use of them yet.
3257 	 */
3258 	ssleep(1);
3259 }
3260 
3261 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
3262 {
3263 	pci_reset_secondary_bus(dev);
3264 }
3265 
3266 /**
3267  * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge.
3268  * @dev: Bridge device
3269  *
3270  * Use the bridge control register to assert reset on the secondary bus.
3271  * Devices on the secondary bus are left in power-on state.
3272  */
3273 void pci_reset_bridge_secondary_bus(struct pci_dev *dev)
3274 {
3275 	pcibios_reset_secondary_bus(dev);
3276 }
3277 EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus);
3278 
3279 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
3280 {
3281 	struct pci_dev *pdev;
3282 
3283 	if (pci_is_root_bus(dev->bus) || dev->subordinate || !dev->bus->self)
3284 		return -ENOTTY;
3285 
3286 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3287 		if (pdev != dev)
3288 			return -ENOTTY;
3289 
3290 	if (probe)
3291 		return 0;
3292 
3293 	pci_reset_bridge_secondary_bus(dev->bus->self);
3294 
3295 	return 0;
3296 }
3297 
3298 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
3299 {
3300 	int rc = -ENOTTY;
3301 
3302 	if (!hotplug || !try_module_get(hotplug->ops->owner))
3303 		return rc;
3304 
3305 	if (hotplug->ops->reset_slot)
3306 		rc = hotplug->ops->reset_slot(hotplug, probe);
3307 
3308 	module_put(hotplug->ops->owner);
3309 
3310 	return rc;
3311 }
3312 
3313 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
3314 {
3315 	struct pci_dev *pdev;
3316 
3317 	if (dev->subordinate || !dev->slot)
3318 		return -ENOTTY;
3319 
3320 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3321 		if (pdev != dev && pdev->slot == dev->slot)
3322 			return -ENOTTY;
3323 
3324 	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
3325 }
3326 
3327 static int __pci_dev_reset(struct pci_dev *dev, int probe)
3328 {
3329 	int rc;
3330 
3331 	might_sleep();
3332 
3333 	rc = pci_dev_specific_reset(dev, probe);
3334 	if (rc != -ENOTTY)
3335 		goto done;
3336 
3337 	rc = pcie_flr(dev, probe);
3338 	if (rc != -ENOTTY)
3339 		goto done;
3340 
3341 	rc = pci_af_flr(dev, probe);
3342 	if (rc != -ENOTTY)
3343 		goto done;
3344 
3345 	rc = pci_pm_reset(dev, probe);
3346 	if (rc != -ENOTTY)
3347 		goto done;
3348 
3349 	rc = pci_dev_reset_slot_function(dev, probe);
3350 	if (rc != -ENOTTY)
3351 		goto done;
3352 
3353 	rc = pci_parent_bus_reset(dev, probe);
3354 done:
3355 	return rc;
3356 }
3357 
3358 static void pci_dev_lock(struct pci_dev *dev)
3359 {
3360 	pci_cfg_access_lock(dev);
3361 	/* block PM suspend, driver probe, etc. */
3362 	device_lock(&dev->dev);
3363 }
3364 
3365 /* Return 1 on successful lock, 0 on contention */
3366 static int pci_dev_trylock(struct pci_dev *dev)
3367 {
3368 	if (pci_cfg_access_trylock(dev)) {
3369 		if (device_trylock(&dev->dev))
3370 			return 1;
3371 		pci_cfg_access_unlock(dev);
3372 	}
3373 
3374 	return 0;
3375 }
3376 
3377 static void pci_dev_unlock(struct pci_dev *dev)
3378 {
3379 	device_unlock(&dev->dev);
3380 	pci_cfg_access_unlock(dev);
3381 }
3382 
3383 /**
3384  * pci_reset_notify - notify device driver of reset
3385  * @dev: device to be notified of reset
3386  * @prepare: 'true' if device is about to be reset; 'false' if reset attempt
3387  *           completed
3388  *
3389  * Must be called prior to device access being disabled and after device
3390  * access is restored.
3391  */
3392 static void pci_reset_notify(struct pci_dev *dev, bool prepare)
3393 {
3394 	const struct pci_error_handlers *err_handler =
3395 			dev->driver ? dev->driver->err_handler : NULL;
3396 	if (err_handler && err_handler->reset_notify)
3397 		err_handler->reset_notify(dev, prepare);
3398 }
3399 
3400 static void pci_dev_save_and_disable(struct pci_dev *dev)
3401 {
3402 	pci_reset_notify(dev, true);
3403 
3404 	/*
3405 	 * Wake-up device prior to save.  PM registers default to D0 after
3406 	 * reset and a simple register restore doesn't reliably return
3407 	 * to a non-D0 state anyway.
3408 	 */
3409 	pci_set_power_state(dev, PCI_D0);
3410 
3411 	pci_save_state(dev);
3412 	/*
3413 	 * Disable the device by clearing the Command register, except for
3414 	 * INTx-disable which is set.  This not only disables MMIO and I/O port
3415 	 * BARs, but also prevents the device from being Bus Master, preventing
3416 	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
3417 	 * compliant devices, INTx-disable prevents legacy interrupts.
3418 	 */
3419 	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
3420 }
3421 
3422 static void pci_dev_restore(struct pci_dev *dev)
3423 {
3424 	pci_restore_state(dev);
3425 	pci_reset_notify(dev, false);
3426 }
3427 
3428 static int pci_dev_reset(struct pci_dev *dev, int probe)
3429 {
3430 	int rc;
3431 
3432 	if (!probe)
3433 		pci_dev_lock(dev);
3434 
3435 	rc = __pci_dev_reset(dev, probe);
3436 
3437 	if (!probe)
3438 		pci_dev_unlock(dev);
3439 
3440 	return rc;
3441 }
3442 
3443 /**
3444  * __pci_reset_function - reset a PCI device function
3445  * @dev: PCI device to reset
3446  *
3447  * Some devices allow an individual function to be reset without affecting
3448  * other functions in the same device.  The PCI device must be responsive
3449  * to PCI config space in order to use this function.
3450  *
3451  * The device function is presumed to be unused when this function is called.
3452  * Resetting the device will make the contents of PCI configuration space
3453  * random, so any caller of this must be prepared to reinitialise the
3454  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3455  * etc.
3456  *
3457  * Returns 0 if the device function was successfully reset or negative if the
3458  * device doesn't support resetting a single function.
3459  */
3460 int __pci_reset_function(struct pci_dev *dev)
3461 {
3462 	return pci_dev_reset(dev, 0);
3463 }
3464 EXPORT_SYMBOL_GPL(__pci_reset_function);
3465 
3466 /**
3467  * __pci_reset_function_locked - reset a PCI device function while holding
3468  * the @dev mutex lock.
3469  * @dev: PCI device to reset
3470  *
3471  * Some devices allow an individual function to be reset without affecting
3472  * other functions in the same device.  The PCI device must be responsive
3473  * to PCI config space in order to use this function.
3474  *
3475  * The device function is presumed to be unused and the caller is holding
3476  * the device mutex lock when this function is called.
3477  * Resetting the device will make the contents of PCI configuration space
3478  * random, so any caller of this must be prepared to reinitialise the
3479  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3480  * etc.
3481  *
3482  * Returns 0 if the device function was successfully reset or negative if the
3483  * device doesn't support resetting a single function.
3484  */
3485 int __pci_reset_function_locked(struct pci_dev *dev)
3486 {
3487 	return __pci_dev_reset(dev, 0);
3488 }
3489 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
3490 
3491 /**
3492  * pci_probe_reset_function - check whether the device can be safely reset
3493  * @dev: PCI device to reset
3494  *
3495  * Some devices allow an individual function to be reset without affecting
3496  * other functions in the same device.  The PCI device must be responsive
3497  * to PCI config space in order to use this function.
3498  *
3499  * Returns 0 if the device function can be reset or negative if the
3500  * device doesn't support resetting a single function.
3501  */
3502 int pci_probe_reset_function(struct pci_dev *dev)
3503 {
3504 	return pci_dev_reset(dev, 1);
3505 }
3506 
3507 /**
3508  * pci_reset_function - quiesce and reset a PCI device function
3509  * @dev: PCI device to reset
3510  *
3511  * Some devices allow an individual function to be reset without affecting
3512  * other functions in the same device.  The PCI device must be responsive
3513  * to PCI config space in order to use this function.
3514  *
3515  * This function does not just reset the PCI portion of a device, but
3516  * clears all the state associated with the device.  This function differs
3517  * from __pci_reset_function in that it saves and restores device state
3518  * over the reset.
3519  *
3520  * Returns 0 if the device function was successfully reset or negative if the
3521  * device doesn't support resetting a single function.
3522  */
3523 int pci_reset_function(struct pci_dev *dev)
3524 {
3525 	int rc;
3526 
3527 	rc = pci_dev_reset(dev, 1);
3528 	if (rc)
3529 		return rc;
3530 
3531 	pci_dev_save_and_disable(dev);
3532 
3533 	rc = pci_dev_reset(dev, 0);
3534 
3535 	pci_dev_restore(dev);
3536 
3537 	return rc;
3538 }
3539 EXPORT_SYMBOL_GPL(pci_reset_function);
3540 
3541 /**
3542  * pci_try_reset_function - quiesce and reset a PCI device function
3543  * @dev: PCI device to reset
3544  *
3545  * Same as above, except return -EAGAIN if unable to lock device.
3546  */
3547 int pci_try_reset_function(struct pci_dev *dev)
3548 {
3549 	int rc;
3550 
3551 	rc = pci_dev_reset(dev, 1);
3552 	if (rc)
3553 		return rc;
3554 
3555 	pci_dev_save_and_disable(dev);
3556 
3557 	if (pci_dev_trylock(dev)) {
3558 		rc = __pci_dev_reset(dev, 0);
3559 		pci_dev_unlock(dev);
3560 	} else
3561 		rc = -EAGAIN;
3562 
3563 	pci_dev_restore(dev);
3564 
3565 	return rc;
3566 }
3567 EXPORT_SYMBOL_GPL(pci_try_reset_function);
3568 
3569 /* Lock devices from the top of the tree down */
3570 static void pci_bus_lock(struct pci_bus *bus)
3571 {
3572 	struct pci_dev *dev;
3573 
3574 	list_for_each_entry(dev, &bus->devices, bus_list) {
3575 		pci_dev_lock(dev);
3576 		if (dev->subordinate)
3577 			pci_bus_lock(dev->subordinate);
3578 	}
3579 }
3580 
3581 /* Unlock devices from the bottom of the tree up */
3582 static void pci_bus_unlock(struct pci_bus *bus)
3583 {
3584 	struct pci_dev *dev;
3585 
3586 	list_for_each_entry(dev, &bus->devices, bus_list) {
3587 		if (dev->subordinate)
3588 			pci_bus_unlock(dev->subordinate);
3589 		pci_dev_unlock(dev);
3590 	}
3591 }
3592 
3593 /* Return 1 on successful lock, 0 on contention */
3594 static int pci_bus_trylock(struct pci_bus *bus)
3595 {
3596 	struct pci_dev *dev;
3597 
3598 	list_for_each_entry(dev, &bus->devices, bus_list) {
3599 		if (!pci_dev_trylock(dev))
3600 			goto unlock;
3601 		if (dev->subordinate) {
3602 			if (!pci_bus_trylock(dev->subordinate)) {
3603 				pci_dev_unlock(dev);
3604 				goto unlock;
3605 			}
3606 		}
3607 	}
3608 	return 1;
3609 
3610 unlock:
3611 	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
3612 		if (dev->subordinate)
3613 			pci_bus_unlock(dev->subordinate);
3614 		pci_dev_unlock(dev);
3615 	}
3616 	return 0;
3617 }
3618 
3619 /* Lock devices from the top of the tree down */
3620 static void pci_slot_lock(struct pci_slot *slot)
3621 {
3622 	struct pci_dev *dev;
3623 
3624 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3625 		if (!dev->slot || dev->slot != slot)
3626 			continue;
3627 		pci_dev_lock(dev);
3628 		if (dev->subordinate)
3629 			pci_bus_lock(dev->subordinate);
3630 	}
3631 }
3632 
3633 /* Unlock devices from the bottom of the tree up */
3634 static void pci_slot_unlock(struct pci_slot *slot)
3635 {
3636 	struct pci_dev *dev;
3637 
3638 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3639 		if (!dev->slot || dev->slot != slot)
3640 			continue;
3641 		if (dev->subordinate)
3642 			pci_bus_unlock(dev->subordinate);
3643 		pci_dev_unlock(dev);
3644 	}
3645 }
3646 
3647 /* Return 1 on successful lock, 0 on contention */
3648 static int pci_slot_trylock(struct pci_slot *slot)
3649 {
3650 	struct pci_dev *dev;
3651 
3652 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3653 		if (!dev->slot || dev->slot != slot)
3654 			continue;
3655 		if (!pci_dev_trylock(dev))
3656 			goto unlock;
3657 		if (dev->subordinate) {
3658 			if (!pci_bus_trylock(dev->subordinate)) {
3659 				pci_dev_unlock(dev);
3660 				goto unlock;
3661 			}
3662 		}
3663 	}
3664 	return 1;
3665 
3666 unlock:
3667 	list_for_each_entry_continue_reverse(dev,
3668 					     &slot->bus->devices, bus_list) {
3669 		if (!dev->slot || dev->slot != slot)
3670 			continue;
3671 		if (dev->subordinate)
3672 			pci_bus_unlock(dev->subordinate);
3673 		pci_dev_unlock(dev);
3674 	}
3675 	return 0;
3676 }
3677 
3678 /* Save and disable devices from the top of the tree down */
3679 static void pci_bus_save_and_disable(struct pci_bus *bus)
3680 {
3681 	struct pci_dev *dev;
3682 
3683 	list_for_each_entry(dev, &bus->devices, bus_list) {
3684 		pci_dev_save_and_disable(dev);
3685 		if (dev->subordinate)
3686 			pci_bus_save_and_disable(dev->subordinate);
3687 	}
3688 }
3689 
3690 /*
3691  * Restore devices from top of the tree down - parent bridges need to be
3692  * restored before we can get to subordinate devices.
3693  */
3694 static void pci_bus_restore(struct pci_bus *bus)
3695 {
3696 	struct pci_dev *dev;
3697 
3698 	list_for_each_entry(dev, &bus->devices, bus_list) {
3699 		pci_dev_restore(dev);
3700 		if (dev->subordinate)
3701 			pci_bus_restore(dev->subordinate);
3702 	}
3703 }
3704 
3705 /* Save and disable devices from the top of the tree down */
3706 static void pci_slot_save_and_disable(struct pci_slot *slot)
3707 {
3708 	struct pci_dev *dev;
3709 
3710 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3711 		if (!dev->slot || dev->slot != slot)
3712 			continue;
3713 		pci_dev_save_and_disable(dev);
3714 		if (dev->subordinate)
3715 			pci_bus_save_and_disable(dev->subordinate);
3716 	}
3717 }
3718 
3719 /*
3720  * Restore devices from top of the tree down - parent bridges need to be
3721  * restored before we can get to subordinate devices.
3722  */
3723 static void pci_slot_restore(struct pci_slot *slot)
3724 {
3725 	struct pci_dev *dev;
3726 
3727 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3728 		if (!dev->slot || dev->slot != slot)
3729 			continue;
3730 		pci_dev_restore(dev);
3731 		if (dev->subordinate)
3732 			pci_bus_restore(dev->subordinate);
3733 	}
3734 }
3735 
3736 static int pci_slot_reset(struct pci_slot *slot, int probe)
3737 {
3738 	int rc;
3739 
3740 	if (!slot)
3741 		return -ENOTTY;
3742 
3743 	if (!probe)
3744 		pci_slot_lock(slot);
3745 
3746 	might_sleep();
3747 
3748 	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
3749 
3750 	if (!probe)
3751 		pci_slot_unlock(slot);
3752 
3753 	return rc;
3754 }
3755 
3756 /**
3757  * pci_probe_reset_slot - probe whether a PCI slot can be reset
3758  * @slot: PCI slot to probe
3759  *
3760  * Return 0 if slot can be reset, negative if a slot reset is not supported.
3761  */
3762 int pci_probe_reset_slot(struct pci_slot *slot)
3763 {
3764 	return pci_slot_reset(slot, 1);
3765 }
3766 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
3767 
3768 /**
3769  * pci_reset_slot - reset a PCI slot
3770  * @slot: PCI slot to reset
3771  *
3772  * A PCI bus may host multiple slots, each slot may support a reset mechanism
3773  * independent of other slots.  For instance, some slots may support slot power
3774  * control.  In the case of a 1:1 bus to slot architecture, this function may
3775  * wrap the bus reset to avoid spurious slot related events such as hotplug.
3776  * Generally a slot reset should be attempted before a bus reset.  All of the
3777  * function of the slot and any subordinate buses behind the slot are reset
3778  * through this function.  PCI config space of all devices in the slot and
3779  * behind the slot is saved before and restored after reset.
3780  *
3781  * Return 0 on success, non-zero on error.
3782  */
3783 int pci_reset_slot(struct pci_slot *slot)
3784 {
3785 	int rc;
3786 
3787 	rc = pci_slot_reset(slot, 1);
3788 	if (rc)
3789 		return rc;
3790 
3791 	pci_slot_save_and_disable(slot);
3792 
3793 	rc = pci_slot_reset(slot, 0);
3794 
3795 	pci_slot_restore(slot);
3796 
3797 	return rc;
3798 }
3799 EXPORT_SYMBOL_GPL(pci_reset_slot);
3800 
3801 /**
3802  * pci_try_reset_slot - Try to reset a PCI slot
3803  * @slot: PCI slot to reset
3804  *
3805  * Same as above except return -EAGAIN if the slot cannot be locked
3806  */
3807 int pci_try_reset_slot(struct pci_slot *slot)
3808 {
3809 	int rc;
3810 
3811 	rc = pci_slot_reset(slot, 1);
3812 	if (rc)
3813 		return rc;
3814 
3815 	pci_slot_save_and_disable(slot);
3816 
3817 	if (pci_slot_trylock(slot)) {
3818 		might_sleep();
3819 		rc = pci_reset_hotplug_slot(slot->hotplug, 0);
3820 		pci_slot_unlock(slot);
3821 	} else
3822 		rc = -EAGAIN;
3823 
3824 	pci_slot_restore(slot);
3825 
3826 	return rc;
3827 }
3828 EXPORT_SYMBOL_GPL(pci_try_reset_slot);
3829 
3830 static int pci_bus_reset(struct pci_bus *bus, int probe)
3831 {
3832 	if (!bus->self)
3833 		return -ENOTTY;
3834 
3835 	if (probe)
3836 		return 0;
3837 
3838 	pci_bus_lock(bus);
3839 
3840 	might_sleep();
3841 
3842 	pci_reset_bridge_secondary_bus(bus->self);
3843 
3844 	pci_bus_unlock(bus);
3845 
3846 	return 0;
3847 }
3848 
3849 /**
3850  * pci_probe_reset_bus - probe whether a PCI bus can be reset
3851  * @bus: PCI bus to probe
3852  *
3853  * Return 0 if bus can be reset, negative if a bus reset is not supported.
3854  */
3855 int pci_probe_reset_bus(struct pci_bus *bus)
3856 {
3857 	return pci_bus_reset(bus, 1);
3858 }
3859 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
3860 
3861 /**
3862  * pci_reset_bus - reset a PCI bus
3863  * @bus: top level PCI bus to reset
3864  *
3865  * Do a bus reset on the given bus and any subordinate buses, saving
3866  * and restoring state of all devices.
3867  *
3868  * Return 0 on success, non-zero on error.
3869  */
3870 int pci_reset_bus(struct pci_bus *bus)
3871 {
3872 	int rc;
3873 
3874 	rc = pci_bus_reset(bus, 1);
3875 	if (rc)
3876 		return rc;
3877 
3878 	pci_bus_save_and_disable(bus);
3879 
3880 	rc = pci_bus_reset(bus, 0);
3881 
3882 	pci_bus_restore(bus);
3883 
3884 	return rc;
3885 }
3886 EXPORT_SYMBOL_GPL(pci_reset_bus);
3887 
3888 /**
3889  * pci_try_reset_bus - Try to reset a PCI bus
3890  * @bus: top level PCI bus to reset
3891  *
3892  * Same as above except return -EAGAIN if the bus cannot be locked
3893  */
3894 int pci_try_reset_bus(struct pci_bus *bus)
3895 {
3896 	int rc;
3897 
3898 	rc = pci_bus_reset(bus, 1);
3899 	if (rc)
3900 		return rc;
3901 
3902 	pci_bus_save_and_disable(bus);
3903 
3904 	if (pci_bus_trylock(bus)) {
3905 		might_sleep();
3906 		pci_reset_bridge_secondary_bus(bus->self);
3907 		pci_bus_unlock(bus);
3908 	} else
3909 		rc = -EAGAIN;
3910 
3911 	pci_bus_restore(bus);
3912 
3913 	return rc;
3914 }
3915 EXPORT_SYMBOL_GPL(pci_try_reset_bus);
3916 
3917 /**
3918  * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
3919  * @dev: PCI device to query
3920  *
3921  * Returns mmrbc: maximum designed memory read count in bytes
3922  *    or appropriate error value.
3923  */
3924 int pcix_get_max_mmrbc(struct pci_dev *dev)
3925 {
3926 	int cap;
3927 	u32 stat;
3928 
3929 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3930 	if (!cap)
3931 		return -EINVAL;
3932 
3933 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3934 		return -EINVAL;
3935 
3936 	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
3937 }
3938 EXPORT_SYMBOL(pcix_get_max_mmrbc);
3939 
3940 /**
3941  * pcix_get_mmrbc - get PCI-X maximum memory read byte count
3942  * @dev: PCI device to query
3943  *
3944  * Returns mmrbc: maximum memory read count in bytes
3945  *    or appropriate error value.
3946  */
3947 int pcix_get_mmrbc(struct pci_dev *dev)
3948 {
3949 	int cap;
3950 	u16 cmd;
3951 
3952 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3953 	if (!cap)
3954 		return -EINVAL;
3955 
3956 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3957 		return -EINVAL;
3958 
3959 	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
3960 }
3961 EXPORT_SYMBOL(pcix_get_mmrbc);
3962 
3963 /**
3964  * pcix_set_mmrbc - set PCI-X maximum memory read byte count
3965  * @dev: PCI device to query
3966  * @mmrbc: maximum memory read count in bytes
3967  *    valid values are 512, 1024, 2048, 4096
3968  *
3969  * If possible sets maximum memory read byte count, some bridges have erratas
3970  * that prevent this.
3971  */
3972 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
3973 {
3974 	int cap;
3975 	u32 stat, v, o;
3976 	u16 cmd;
3977 
3978 	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
3979 		return -EINVAL;
3980 
3981 	v = ffs(mmrbc) - 10;
3982 
3983 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3984 	if (!cap)
3985 		return -EINVAL;
3986 
3987 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3988 		return -EINVAL;
3989 
3990 	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
3991 		return -E2BIG;
3992 
3993 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3994 		return -EINVAL;
3995 
3996 	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
3997 	if (o != v) {
3998 		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
3999 			return -EIO;
4000 
4001 		cmd &= ~PCI_X_CMD_MAX_READ;
4002 		cmd |= v << 2;
4003 		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
4004 			return -EIO;
4005 	}
4006 	return 0;
4007 }
4008 EXPORT_SYMBOL(pcix_set_mmrbc);
4009 
4010 /**
4011  * pcie_get_readrq - get PCI Express read request size
4012  * @dev: PCI device to query
4013  *
4014  * Returns maximum memory read request in bytes
4015  *    or appropriate error value.
4016  */
4017 int pcie_get_readrq(struct pci_dev *dev)
4018 {
4019 	u16 ctl;
4020 
4021 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4022 
4023 	return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
4024 }
4025 EXPORT_SYMBOL(pcie_get_readrq);
4026 
4027 /**
4028  * pcie_set_readrq - set PCI Express maximum memory read request
4029  * @dev: PCI device to query
4030  * @rq: maximum memory read count in bytes
4031  *    valid values are 128, 256, 512, 1024, 2048, 4096
4032  *
4033  * If possible sets maximum memory read request in bytes
4034  */
4035 int pcie_set_readrq(struct pci_dev *dev, int rq)
4036 {
4037 	u16 v;
4038 
4039 	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
4040 		return -EINVAL;
4041 
4042 	/*
4043 	 * If using the "performance" PCIe config, we clamp the
4044 	 * read rq size to the max packet size to prevent the
4045 	 * host bridge generating requests larger than we can
4046 	 * cope with
4047 	 */
4048 	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
4049 		int mps = pcie_get_mps(dev);
4050 
4051 		if (mps < rq)
4052 			rq = mps;
4053 	}
4054 
4055 	v = (ffs(rq) - 8) << 12;
4056 
4057 	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4058 						  PCI_EXP_DEVCTL_READRQ, v);
4059 }
4060 EXPORT_SYMBOL(pcie_set_readrq);
4061 
4062 /**
4063  * pcie_get_mps - get PCI Express maximum payload size
4064  * @dev: PCI device to query
4065  *
4066  * Returns maximum payload size in bytes
4067  */
4068 int pcie_get_mps(struct pci_dev *dev)
4069 {
4070 	u16 ctl;
4071 
4072 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4073 
4074 	return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
4075 }
4076 EXPORT_SYMBOL(pcie_get_mps);
4077 
4078 /**
4079  * pcie_set_mps - set PCI Express maximum payload size
4080  * @dev: PCI device to query
4081  * @mps: maximum payload size in bytes
4082  *    valid values are 128, 256, 512, 1024, 2048, 4096
4083  *
4084  * If possible sets maximum payload size
4085  */
4086 int pcie_set_mps(struct pci_dev *dev, int mps)
4087 {
4088 	u16 v;
4089 
4090 	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
4091 		return -EINVAL;
4092 
4093 	v = ffs(mps) - 8;
4094 	if (v > dev->pcie_mpss)
4095 		return -EINVAL;
4096 	v <<= 5;
4097 
4098 	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4099 						  PCI_EXP_DEVCTL_PAYLOAD, v);
4100 }
4101 EXPORT_SYMBOL(pcie_set_mps);
4102 
4103 /**
4104  * pcie_get_minimum_link - determine minimum link settings of a PCI device
4105  * @dev: PCI device to query
4106  * @speed: storage for minimum speed
4107  * @width: storage for minimum width
4108  *
4109  * This function will walk up the PCI device chain and determine the minimum
4110  * link width and speed of the device.
4111  */
4112 int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed,
4113 			  enum pcie_link_width *width)
4114 {
4115 	int ret;
4116 
4117 	*speed = PCI_SPEED_UNKNOWN;
4118 	*width = PCIE_LNK_WIDTH_UNKNOWN;
4119 
4120 	while (dev) {
4121 		u16 lnksta;
4122 		enum pci_bus_speed next_speed;
4123 		enum pcie_link_width next_width;
4124 
4125 		ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
4126 		if (ret)
4127 			return ret;
4128 
4129 		next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
4130 		next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
4131 			PCI_EXP_LNKSTA_NLW_SHIFT;
4132 
4133 		if (next_speed < *speed)
4134 			*speed = next_speed;
4135 
4136 		if (next_width < *width)
4137 			*width = next_width;
4138 
4139 		dev = dev->bus->self;
4140 	}
4141 
4142 	return 0;
4143 }
4144 EXPORT_SYMBOL(pcie_get_minimum_link);
4145 
4146 /**
4147  * pci_select_bars - Make BAR mask from the type of resource
4148  * @dev: the PCI device for which BAR mask is made
4149  * @flags: resource type mask to be selected
4150  *
4151  * This helper routine makes bar mask from the type of resource.
4152  */
4153 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
4154 {
4155 	int i, bars = 0;
4156 	for (i = 0; i < PCI_NUM_RESOURCES; i++)
4157 		if (pci_resource_flags(dev, i) & flags)
4158 			bars |= (1 << i);
4159 	return bars;
4160 }
4161 EXPORT_SYMBOL(pci_select_bars);
4162 
4163 /**
4164  * pci_resource_bar - get position of the BAR associated with a resource
4165  * @dev: the PCI device
4166  * @resno: the resource number
4167  * @type: the BAR type to be filled in
4168  *
4169  * Returns BAR position in config space, or 0 if the BAR is invalid.
4170  */
4171 int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
4172 {
4173 	int reg;
4174 
4175 	if (resno < PCI_ROM_RESOURCE) {
4176 		*type = pci_bar_unknown;
4177 		return PCI_BASE_ADDRESS_0 + 4 * resno;
4178 	} else if (resno == PCI_ROM_RESOURCE) {
4179 		*type = pci_bar_mem32;
4180 		return dev->rom_base_reg;
4181 	} else if (resno < PCI_BRIDGE_RESOURCES) {
4182 		/* device specific resource */
4183 		reg = pci_iov_resource_bar(dev, resno, type);
4184 		if (reg)
4185 			return reg;
4186 	}
4187 
4188 	dev_err(&dev->dev, "BAR %d: invalid resource\n", resno);
4189 	return 0;
4190 }
4191 
4192 /* Some architectures require additional programming to enable VGA */
4193 static arch_set_vga_state_t arch_set_vga_state;
4194 
4195 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
4196 {
4197 	arch_set_vga_state = func;	/* NULL disables */
4198 }
4199 
4200 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
4201 				  unsigned int command_bits, u32 flags)
4202 {
4203 	if (arch_set_vga_state)
4204 		return arch_set_vga_state(dev, decode, command_bits,
4205 						flags);
4206 	return 0;
4207 }
4208 
4209 /**
4210  * pci_set_vga_state - set VGA decode state on device and parents if requested
4211  * @dev: the PCI device
4212  * @decode: true = enable decoding, false = disable decoding
4213  * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
4214  * @flags: traverse ancestors and change bridges
4215  * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
4216  */
4217 int pci_set_vga_state(struct pci_dev *dev, bool decode,
4218 		      unsigned int command_bits, u32 flags)
4219 {
4220 	struct pci_bus *bus;
4221 	struct pci_dev *bridge;
4222 	u16 cmd;
4223 	int rc;
4224 
4225 	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
4226 
4227 	/* ARCH specific VGA enables */
4228 	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
4229 	if (rc)
4230 		return rc;
4231 
4232 	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
4233 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
4234 		if (decode == true)
4235 			cmd |= command_bits;
4236 		else
4237 			cmd &= ~command_bits;
4238 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4239 	}
4240 
4241 	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
4242 		return 0;
4243 
4244 	bus = dev->bus;
4245 	while (bus) {
4246 		bridge = bus->self;
4247 		if (bridge) {
4248 			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
4249 					     &cmd);
4250 			if (decode == true)
4251 				cmd |= PCI_BRIDGE_CTL_VGA;
4252 			else
4253 				cmd &= ~PCI_BRIDGE_CTL_VGA;
4254 			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
4255 					      cmd);
4256 		}
4257 		bus = bus->parent;
4258 	}
4259 	return 0;
4260 }
4261 
4262 bool pci_device_is_present(struct pci_dev *pdev)
4263 {
4264 	u32 v;
4265 
4266 	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
4267 }
4268 EXPORT_SYMBOL_GPL(pci_device_is_present);
4269 
4270 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
4271 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
4272 static DEFINE_SPINLOCK(resource_alignment_lock);
4273 
4274 /**
4275  * pci_specified_resource_alignment - get resource alignment specified by user.
4276  * @dev: the PCI device to get
4277  *
4278  * RETURNS: Resource alignment if it is specified.
4279  *          Zero if it is not specified.
4280  */
4281 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
4282 {
4283 	int seg, bus, slot, func, align_order, count;
4284 	resource_size_t align = 0;
4285 	char *p;
4286 
4287 	spin_lock(&resource_alignment_lock);
4288 	p = resource_alignment_param;
4289 	while (*p) {
4290 		count = 0;
4291 		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
4292 							p[count] == '@') {
4293 			p += count + 1;
4294 		} else {
4295 			align_order = -1;
4296 		}
4297 		if (sscanf(p, "%x:%x:%x.%x%n",
4298 			&seg, &bus, &slot, &func, &count) != 4) {
4299 			seg = 0;
4300 			if (sscanf(p, "%x:%x.%x%n",
4301 					&bus, &slot, &func, &count) != 3) {
4302 				/* Invalid format */
4303 				printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
4304 					p);
4305 				break;
4306 			}
4307 		}
4308 		p += count;
4309 		if (seg == pci_domain_nr(dev->bus) &&
4310 			bus == dev->bus->number &&
4311 			slot == PCI_SLOT(dev->devfn) &&
4312 			func == PCI_FUNC(dev->devfn)) {
4313 			if (align_order == -1)
4314 				align = PAGE_SIZE;
4315 			else
4316 				align = 1 << align_order;
4317 			/* Found */
4318 			break;
4319 		}
4320 		if (*p != ';' && *p != ',') {
4321 			/* End of param or invalid format */
4322 			break;
4323 		}
4324 		p++;
4325 	}
4326 	spin_unlock(&resource_alignment_lock);
4327 	return align;
4328 }
4329 
4330 /*
4331  * This function disables memory decoding and releases memory resources
4332  * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
4333  * It also rounds up size to specified alignment.
4334  * Later on, the kernel will assign page-aligned memory resource back
4335  * to the device.
4336  */
4337 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
4338 {
4339 	int i;
4340 	struct resource *r;
4341 	resource_size_t align, size;
4342 	u16 command;
4343 
4344 	/* check if specified PCI is target device to reassign */
4345 	align = pci_specified_resource_alignment(dev);
4346 	if (!align)
4347 		return;
4348 
4349 	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
4350 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
4351 		dev_warn(&dev->dev,
4352 			"Can't reassign resources to host bridge.\n");
4353 		return;
4354 	}
4355 
4356 	dev_info(&dev->dev,
4357 		"Disabling memory decoding and releasing memory resources.\n");
4358 	pci_read_config_word(dev, PCI_COMMAND, &command);
4359 	command &= ~PCI_COMMAND_MEMORY;
4360 	pci_write_config_word(dev, PCI_COMMAND, command);
4361 
4362 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) {
4363 		r = &dev->resource[i];
4364 		if (!(r->flags & IORESOURCE_MEM))
4365 			continue;
4366 		size = resource_size(r);
4367 		if (size < align) {
4368 			size = align;
4369 			dev_info(&dev->dev,
4370 				"Rounding up size of resource #%d to %#llx.\n",
4371 				i, (unsigned long long)size);
4372 		}
4373 		r->flags |= IORESOURCE_UNSET;
4374 		r->end = size - 1;
4375 		r->start = 0;
4376 	}
4377 	/* Need to disable bridge's resource window,
4378 	 * to enable the kernel to reassign new resource
4379 	 * window later on.
4380 	 */
4381 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
4382 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
4383 		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
4384 			r = &dev->resource[i];
4385 			if (!(r->flags & IORESOURCE_MEM))
4386 				continue;
4387 			r->flags |= IORESOURCE_UNSET;
4388 			r->end = resource_size(r) - 1;
4389 			r->start = 0;
4390 		}
4391 		pci_disable_bridge_window(dev);
4392 	}
4393 }
4394 
4395 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
4396 {
4397 	if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
4398 		count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
4399 	spin_lock(&resource_alignment_lock);
4400 	strncpy(resource_alignment_param, buf, count);
4401 	resource_alignment_param[count] = '\0';
4402 	spin_unlock(&resource_alignment_lock);
4403 	return count;
4404 }
4405 
4406 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
4407 {
4408 	size_t count;
4409 	spin_lock(&resource_alignment_lock);
4410 	count = snprintf(buf, size, "%s", resource_alignment_param);
4411 	spin_unlock(&resource_alignment_lock);
4412 	return count;
4413 }
4414 
4415 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
4416 {
4417 	return pci_get_resource_alignment_param(buf, PAGE_SIZE);
4418 }
4419 
4420 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
4421 					const char *buf, size_t count)
4422 {
4423 	return pci_set_resource_alignment_param(buf, count);
4424 }
4425 
4426 BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
4427 					pci_resource_alignment_store);
4428 
4429 static int __init pci_resource_alignment_sysfs_init(void)
4430 {
4431 	return bus_create_file(&pci_bus_type,
4432 					&bus_attr_resource_alignment);
4433 }
4434 late_initcall(pci_resource_alignment_sysfs_init);
4435 
4436 static void pci_no_domains(void)
4437 {
4438 #ifdef CONFIG_PCI_DOMAINS
4439 	pci_domains_supported = 0;
4440 #endif
4441 }
4442 
4443 #ifdef CONFIG_PCI_DOMAINS
4444 static atomic_t __domain_nr = ATOMIC_INIT(-1);
4445 
4446 int pci_get_new_domain_nr(void)
4447 {
4448 	return atomic_inc_return(&__domain_nr);
4449 }
4450 #endif
4451 
4452 /**
4453  * pci_ext_cfg_avail - can we access extended PCI config space?
4454  *
4455  * Returns 1 if we can access PCI extended config space (offsets
4456  * greater than 0xff). This is the default implementation. Architecture
4457  * implementations can override this.
4458  */
4459 int __weak pci_ext_cfg_avail(void)
4460 {
4461 	return 1;
4462 }
4463 
4464 void __weak pci_fixup_cardbus(struct pci_bus *bus)
4465 {
4466 }
4467 EXPORT_SYMBOL(pci_fixup_cardbus);
4468 
4469 static int __init pci_setup(char *str)
4470 {
4471 	while (str) {
4472 		char *k = strchr(str, ',');
4473 		if (k)
4474 			*k++ = 0;
4475 		if (*str && (str = pcibios_setup(str)) && *str) {
4476 			if (!strcmp(str, "nomsi")) {
4477 				pci_no_msi();
4478 			} else if (!strcmp(str, "noaer")) {
4479 				pci_no_aer();
4480 			} else if (!strncmp(str, "realloc=", 8)) {
4481 				pci_realloc_get_opt(str + 8);
4482 			} else if (!strncmp(str, "realloc", 7)) {
4483 				pci_realloc_get_opt("on");
4484 			} else if (!strcmp(str, "nodomains")) {
4485 				pci_no_domains();
4486 			} else if (!strncmp(str, "noari", 5)) {
4487 				pcie_ari_disabled = true;
4488 			} else if (!strncmp(str, "cbiosize=", 9)) {
4489 				pci_cardbus_io_size = memparse(str + 9, &str);
4490 			} else if (!strncmp(str, "cbmemsize=", 10)) {
4491 				pci_cardbus_mem_size = memparse(str + 10, &str);
4492 			} else if (!strncmp(str, "resource_alignment=", 19)) {
4493 				pci_set_resource_alignment_param(str + 19,
4494 							strlen(str + 19));
4495 			} else if (!strncmp(str, "ecrc=", 5)) {
4496 				pcie_ecrc_get_policy(str + 5);
4497 			} else if (!strncmp(str, "hpiosize=", 9)) {
4498 				pci_hotplug_io_size = memparse(str + 9, &str);
4499 			} else if (!strncmp(str, "hpmemsize=", 10)) {
4500 				pci_hotplug_mem_size = memparse(str + 10, &str);
4501 			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
4502 				pcie_bus_config = PCIE_BUS_TUNE_OFF;
4503 			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
4504 				pcie_bus_config = PCIE_BUS_SAFE;
4505 			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
4506 				pcie_bus_config = PCIE_BUS_PERFORMANCE;
4507 			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
4508 				pcie_bus_config = PCIE_BUS_PEER2PEER;
4509 			} else if (!strncmp(str, "pcie_scan_all", 13)) {
4510 				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
4511 			} else {
4512 				printk(KERN_ERR "PCI: Unknown option `%s'\n",
4513 						str);
4514 			}
4515 		}
4516 		str = k;
4517 	}
4518 	return 0;
4519 }
4520 early_param("pci", pci_setup);
4521