1 /* 2 * PCI Bus Services, see include/linux/pci.h for further explanation. 3 * 4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter, 5 * David Mosberger-Tang 6 * 7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz> 8 */ 9 10 #include <linux/kernel.h> 11 #include <linux/delay.h> 12 #include <linux/init.h> 13 #include <linux/pci.h> 14 #include <linux/pm.h> 15 #include <linux/slab.h> 16 #include <linux/module.h> 17 #include <linux/spinlock.h> 18 #include <linux/string.h> 19 #include <linux/log2.h> 20 #include <linux/pci-aspm.h> 21 #include <linux/pm_wakeup.h> 22 #include <linux/interrupt.h> 23 #include <linux/device.h> 24 #include <linux/pm_runtime.h> 25 #include <linux/pci_hotplug.h> 26 #include <asm-generic/pci-bridge.h> 27 #include <asm/setup.h> 28 #include "pci.h" 29 30 const char *pci_power_names[] = { 31 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown", 32 }; 33 EXPORT_SYMBOL_GPL(pci_power_names); 34 35 int isa_dma_bridge_buggy; 36 EXPORT_SYMBOL(isa_dma_bridge_buggy); 37 38 int pci_pci_problems; 39 EXPORT_SYMBOL(pci_pci_problems); 40 41 unsigned int pci_pm_d3_delay; 42 43 static void pci_pme_list_scan(struct work_struct *work); 44 45 static LIST_HEAD(pci_pme_list); 46 static DEFINE_MUTEX(pci_pme_list_mutex); 47 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan); 48 49 struct pci_pme_device { 50 struct list_head list; 51 struct pci_dev *dev; 52 }; 53 54 #define PME_TIMEOUT 1000 /* How long between PME checks */ 55 56 static void pci_dev_d3_sleep(struct pci_dev *dev) 57 { 58 unsigned int delay = dev->d3_delay; 59 60 if (delay < pci_pm_d3_delay) 61 delay = pci_pm_d3_delay; 62 63 msleep(delay); 64 } 65 66 #ifdef CONFIG_PCI_DOMAINS 67 int pci_domains_supported = 1; 68 #endif 69 70 #define DEFAULT_CARDBUS_IO_SIZE (256) 71 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024) 72 /* pci=cbmemsize=nnM,cbiosize=nn can override this */ 73 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE; 74 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE; 75 76 #define DEFAULT_HOTPLUG_IO_SIZE (256) 77 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024) 78 /* pci=hpmemsize=nnM,hpiosize=nn can override this */ 79 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE; 80 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE; 81 82 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF; 83 84 /* 85 * The default CLS is used if arch didn't set CLS explicitly and not 86 * all pci devices agree on the same value. Arch can override either 87 * the dfl or actual value as it sees fit. Don't forget this is 88 * measured in 32-bit words, not bytes. 89 */ 90 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2; 91 u8 pci_cache_line_size; 92 93 /* 94 * If we set up a device for bus mastering, we need to check the latency 95 * timer as certain BIOSes forget to set it properly. 96 */ 97 unsigned int pcibios_max_latency = 255; 98 99 /* If set, the PCIe ARI capability will not be used. */ 100 static bool pcie_ari_disabled; 101 102 /** 103 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children 104 * @bus: pointer to PCI bus structure to search 105 * 106 * Given a PCI bus, returns the highest PCI bus number present in the set 107 * including the given PCI bus and its list of child PCI buses. 108 */ 109 unsigned char pci_bus_max_busnr(struct pci_bus* bus) 110 { 111 struct list_head *tmp; 112 unsigned char max, n; 113 114 max = bus->busn_res.end; 115 list_for_each(tmp, &bus->children) { 116 n = pci_bus_max_busnr(pci_bus_b(tmp)); 117 if(n > max) 118 max = n; 119 } 120 return max; 121 } 122 EXPORT_SYMBOL_GPL(pci_bus_max_busnr); 123 124 #ifdef CONFIG_HAS_IOMEM 125 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar) 126 { 127 /* 128 * Make sure the BAR is actually a memory resource, not an IO resource 129 */ 130 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) { 131 WARN_ON(1); 132 return NULL; 133 } 134 return ioremap_nocache(pci_resource_start(pdev, bar), 135 pci_resource_len(pdev, bar)); 136 } 137 EXPORT_SYMBOL_GPL(pci_ioremap_bar); 138 #endif 139 140 #define PCI_FIND_CAP_TTL 48 141 142 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn, 143 u8 pos, int cap, int *ttl) 144 { 145 u8 id; 146 147 while ((*ttl)--) { 148 pci_bus_read_config_byte(bus, devfn, pos, &pos); 149 if (pos < 0x40) 150 break; 151 pos &= ~3; 152 pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID, 153 &id); 154 if (id == 0xff) 155 break; 156 if (id == cap) 157 return pos; 158 pos += PCI_CAP_LIST_NEXT; 159 } 160 return 0; 161 } 162 163 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn, 164 u8 pos, int cap) 165 { 166 int ttl = PCI_FIND_CAP_TTL; 167 168 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl); 169 } 170 171 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap) 172 { 173 return __pci_find_next_cap(dev->bus, dev->devfn, 174 pos + PCI_CAP_LIST_NEXT, cap); 175 } 176 EXPORT_SYMBOL_GPL(pci_find_next_capability); 177 178 static int __pci_bus_find_cap_start(struct pci_bus *bus, 179 unsigned int devfn, u8 hdr_type) 180 { 181 u16 status; 182 183 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status); 184 if (!(status & PCI_STATUS_CAP_LIST)) 185 return 0; 186 187 switch (hdr_type) { 188 case PCI_HEADER_TYPE_NORMAL: 189 case PCI_HEADER_TYPE_BRIDGE: 190 return PCI_CAPABILITY_LIST; 191 case PCI_HEADER_TYPE_CARDBUS: 192 return PCI_CB_CAPABILITY_LIST; 193 default: 194 return 0; 195 } 196 197 return 0; 198 } 199 200 /** 201 * pci_find_capability - query for devices' capabilities 202 * @dev: PCI device to query 203 * @cap: capability code 204 * 205 * Tell if a device supports a given PCI capability. 206 * Returns the address of the requested capability structure within the 207 * device's PCI configuration space or 0 in case the device does not 208 * support it. Possible values for @cap: 209 * 210 * %PCI_CAP_ID_PM Power Management 211 * %PCI_CAP_ID_AGP Accelerated Graphics Port 212 * %PCI_CAP_ID_VPD Vital Product Data 213 * %PCI_CAP_ID_SLOTID Slot Identification 214 * %PCI_CAP_ID_MSI Message Signalled Interrupts 215 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap 216 * %PCI_CAP_ID_PCIX PCI-X 217 * %PCI_CAP_ID_EXP PCI Express 218 */ 219 int pci_find_capability(struct pci_dev *dev, int cap) 220 { 221 int pos; 222 223 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 224 if (pos) 225 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap); 226 227 return pos; 228 } 229 230 /** 231 * pci_bus_find_capability - query for devices' capabilities 232 * @bus: the PCI bus to query 233 * @devfn: PCI device to query 234 * @cap: capability code 235 * 236 * Like pci_find_capability() but works for pci devices that do not have a 237 * pci_dev structure set up yet. 238 * 239 * Returns the address of the requested capability structure within the 240 * device's PCI configuration space or 0 in case the device does not 241 * support it. 242 */ 243 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap) 244 { 245 int pos; 246 u8 hdr_type; 247 248 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type); 249 250 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f); 251 if (pos) 252 pos = __pci_find_next_cap(bus, devfn, pos, cap); 253 254 return pos; 255 } 256 257 /** 258 * pci_find_next_ext_capability - Find an extended capability 259 * @dev: PCI device to query 260 * @start: address at which to start looking (0 to start at beginning of list) 261 * @cap: capability code 262 * 263 * Returns the address of the next matching extended capability structure 264 * within the device's PCI configuration space or 0 if the device does 265 * not support it. Some capabilities can occur several times, e.g., the 266 * vendor-specific capability, and this provides a way to find them all. 267 */ 268 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap) 269 { 270 u32 header; 271 int ttl; 272 int pos = PCI_CFG_SPACE_SIZE; 273 274 /* minimum 8 bytes per capability */ 275 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8; 276 277 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE) 278 return 0; 279 280 if (start) 281 pos = start; 282 283 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 284 return 0; 285 286 /* 287 * If we have no capabilities, this is indicated by cap ID, 288 * cap version and next pointer all being 0. 289 */ 290 if (header == 0) 291 return 0; 292 293 while (ttl-- > 0) { 294 if (PCI_EXT_CAP_ID(header) == cap && pos != start) 295 return pos; 296 297 pos = PCI_EXT_CAP_NEXT(header); 298 if (pos < PCI_CFG_SPACE_SIZE) 299 break; 300 301 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 302 break; 303 } 304 305 return 0; 306 } 307 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability); 308 309 /** 310 * pci_find_ext_capability - Find an extended capability 311 * @dev: PCI device to query 312 * @cap: capability code 313 * 314 * Returns the address of the requested extended capability structure 315 * within the device's PCI configuration space or 0 if the device does 316 * not support it. Possible values for @cap: 317 * 318 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting 319 * %PCI_EXT_CAP_ID_VC Virtual Channel 320 * %PCI_EXT_CAP_ID_DSN Device Serial Number 321 * %PCI_EXT_CAP_ID_PWR Power Budgeting 322 */ 323 int pci_find_ext_capability(struct pci_dev *dev, int cap) 324 { 325 return pci_find_next_ext_capability(dev, 0, cap); 326 } 327 EXPORT_SYMBOL_GPL(pci_find_ext_capability); 328 329 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap) 330 { 331 int rc, ttl = PCI_FIND_CAP_TTL; 332 u8 cap, mask; 333 334 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST) 335 mask = HT_3BIT_CAP_MASK; 336 else 337 mask = HT_5BIT_CAP_MASK; 338 339 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos, 340 PCI_CAP_ID_HT, &ttl); 341 while (pos) { 342 rc = pci_read_config_byte(dev, pos + 3, &cap); 343 if (rc != PCIBIOS_SUCCESSFUL) 344 return 0; 345 346 if ((cap & mask) == ht_cap) 347 return pos; 348 349 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, 350 pos + PCI_CAP_LIST_NEXT, 351 PCI_CAP_ID_HT, &ttl); 352 } 353 354 return 0; 355 } 356 /** 357 * pci_find_next_ht_capability - query a device's Hypertransport capabilities 358 * @dev: PCI device to query 359 * @pos: Position from which to continue searching 360 * @ht_cap: Hypertransport capability code 361 * 362 * To be used in conjunction with pci_find_ht_capability() to search for 363 * all capabilities matching @ht_cap. @pos should always be a value returned 364 * from pci_find_ht_capability(). 365 * 366 * NB. To be 100% safe against broken PCI devices, the caller should take 367 * steps to avoid an infinite loop. 368 */ 369 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap) 370 { 371 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap); 372 } 373 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability); 374 375 /** 376 * pci_find_ht_capability - query a device's Hypertransport capabilities 377 * @dev: PCI device to query 378 * @ht_cap: Hypertransport capability code 379 * 380 * Tell if a device supports a given Hypertransport capability. 381 * Returns an address within the device's PCI configuration space 382 * or 0 in case the device does not support the request capability. 383 * The address points to the PCI capability, of type PCI_CAP_ID_HT, 384 * which has a Hypertransport capability matching @ht_cap. 385 */ 386 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap) 387 { 388 int pos; 389 390 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 391 if (pos) 392 pos = __pci_find_next_ht_cap(dev, pos, ht_cap); 393 394 return pos; 395 } 396 EXPORT_SYMBOL_GPL(pci_find_ht_capability); 397 398 /** 399 * pci_find_parent_resource - return resource region of parent bus of given region 400 * @dev: PCI device structure contains resources to be searched 401 * @res: child resource record for which parent is sought 402 * 403 * For given resource region of given device, return the resource 404 * region of parent bus the given region is contained in or where 405 * it should be allocated from. 406 */ 407 struct resource * 408 pci_find_parent_resource(const struct pci_dev *dev, struct resource *res) 409 { 410 const struct pci_bus *bus = dev->bus; 411 int i; 412 struct resource *best = NULL, *r; 413 414 pci_bus_for_each_resource(bus, r, i) { 415 if (!r) 416 continue; 417 if (res->start && !(res->start >= r->start && res->end <= r->end)) 418 continue; /* Not contained */ 419 if ((res->flags ^ r->flags) & (IORESOURCE_IO | IORESOURCE_MEM)) 420 continue; /* Wrong type */ 421 if (!((res->flags ^ r->flags) & IORESOURCE_PREFETCH)) 422 return r; /* Exact match */ 423 /* We can't insert a non-prefetch resource inside a prefetchable parent .. */ 424 if (r->flags & IORESOURCE_PREFETCH) 425 continue; 426 /* .. but we can put a prefetchable resource inside a non-prefetchable one */ 427 if (!best) 428 best = r; 429 } 430 return best; 431 } 432 433 /** 434 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos 435 * @dev: the PCI device to operate on 436 * @pos: config space offset of status word 437 * @mask: mask of bit(s) to care about in status word 438 * 439 * Return 1 when mask bit(s) in status word clear, 0 otherwise. 440 */ 441 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask) 442 { 443 int i; 444 445 /* Wait for Transaction Pending bit clean */ 446 for (i = 0; i < 4; i++) { 447 u16 status; 448 if (i) 449 msleep((1 << (i - 1)) * 100); 450 451 pci_read_config_word(dev, pos, &status); 452 if (!(status & mask)) 453 return 1; 454 } 455 456 return 0; 457 } 458 459 /** 460 * pci_restore_bars - restore a devices BAR values (e.g. after wake-up) 461 * @dev: PCI device to have its BARs restored 462 * 463 * Restore the BAR values for a given device, so as to make it 464 * accessible by its driver. 465 */ 466 static void 467 pci_restore_bars(struct pci_dev *dev) 468 { 469 int i; 470 471 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) 472 pci_update_resource(dev, i); 473 } 474 475 static struct pci_platform_pm_ops *pci_platform_pm; 476 477 int pci_set_platform_pm(struct pci_platform_pm_ops *ops) 478 { 479 if (!ops->is_manageable || !ops->set_state || !ops->choose_state 480 || !ops->sleep_wake) 481 return -EINVAL; 482 pci_platform_pm = ops; 483 return 0; 484 } 485 486 static inline bool platform_pci_power_manageable(struct pci_dev *dev) 487 { 488 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false; 489 } 490 491 static inline int platform_pci_set_power_state(struct pci_dev *dev, 492 pci_power_t t) 493 { 494 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS; 495 } 496 497 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev) 498 { 499 return pci_platform_pm ? 500 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR; 501 } 502 503 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable) 504 { 505 return pci_platform_pm ? 506 pci_platform_pm->sleep_wake(dev, enable) : -ENODEV; 507 } 508 509 static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable) 510 { 511 return pci_platform_pm ? 512 pci_platform_pm->run_wake(dev, enable) : -ENODEV; 513 } 514 515 /** 516 * pci_raw_set_power_state - Use PCI PM registers to set the power state of 517 * given PCI device 518 * @dev: PCI device to handle. 519 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 520 * 521 * RETURN VALUE: 522 * -EINVAL if the requested state is invalid. 523 * -EIO if device does not support PCI PM or its PM capabilities register has a 524 * wrong version, or device doesn't support the requested state. 525 * 0 if device already is in the requested state. 526 * 0 if device's power state has been successfully changed. 527 */ 528 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state) 529 { 530 u16 pmcsr; 531 bool need_restore = false; 532 533 /* Check if we're already there */ 534 if (dev->current_state == state) 535 return 0; 536 537 if (!dev->pm_cap) 538 return -EIO; 539 540 if (state < PCI_D0 || state > PCI_D3hot) 541 return -EINVAL; 542 543 /* Validate current state: 544 * Can enter D0 from any state, but if we can only go deeper 545 * to sleep if we're already in a low power state 546 */ 547 if (state != PCI_D0 && dev->current_state <= PCI_D3cold 548 && dev->current_state > state) { 549 dev_err(&dev->dev, "invalid power transition " 550 "(from state %d to %d)\n", dev->current_state, state); 551 return -EINVAL; 552 } 553 554 /* check if this device supports the desired state */ 555 if ((state == PCI_D1 && !dev->d1_support) 556 || (state == PCI_D2 && !dev->d2_support)) 557 return -EIO; 558 559 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 560 561 /* If we're (effectively) in D3, force entire word to 0. 562 * This doesn't affect PME_Status, disables PME_En, and 563 * sets PowerState to 0. 564 */ 565 switch (dev->current_state) { 566 case PCI_D0: 567 case PCI_D1: 568 case PCI_D2: 569 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 570 pmcsr |= state; 571 break; 572 case PCI_D3hot: 573 case PCI_D3cold: 574 case PCI_UNKNOWN: /* Boot-up */ 575 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot 576 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET)) 577 need_restore = true; 578 /* Fall-through: force to D0 */ 579 default: 580 pmcsr = 0; 581 break; 582 } 583 584 /* enter specified state */ 585 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 586 587 /* Mandatory power management transition delays */ 588 /* see PCI PM 1.1 5.6.1 table 18 */ 589 if (state == PCI_D3hot || dev->current_state == PCI_D3hot) 590 pci_dev_d3_sleep(dev); 591 else if (state == PCI_D2 || dev->current_state == PCI_D2) 592 udelay(PCI_PM_D2_DELAY); 593 594 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 595 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 596 if (dev->current_state != state && printk_ratelimit()) 597 dev_info(&dev->dev, "Refused to change power state, " 598 "currently in D%d\n", dev->current_state); 599 600 /* 601 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT 602 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning 603 * from D3hot to D0 _may_ perform an internal reset, thereby 604 * going to "D0 Uninitialized" rather than "D0 Initialized". 605 * For example, at least some versions of the 3c905B and the 606 * 3c556B exhibit this behaviour. 607 * 608 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave 609 * devices in a D3hot state at boot. Consequently, we need to 610 * restore at least the BARs so that the device will be 611 * accessible to its driver. 612 */ 613 if (need_restore) 614 pci_restore_bars(dev); 615 616 if (dev->bus->self) 617 pcie_aspm_pm_state_change(dev->bus->self); 618 619 return 0; 620 } 621 622 /** 623 * pci_update_current_state - Read PCI power state of given device from its 624 * PCI PM registers and cache it 625 * @dev: PCI device to handle. 626 * @state: State to cache in case the device doesn't have the PM capability 627 */ 628 void pci_update_current_state(struct pci_dev *dev, pci_power_t state) 629 { 630 if (dev->pm_cap) { 631 u16 pmcsr; 632 633 /* 634 * Configuration space is not accessible for device in 635 * D3cold, so just keep or set D3cold for safety 636 */ 637 if (dev->current_state == PCI_D3cold) 638 return; 639 if (state == PCI_D3cold) { 640 dev->current_state = PCI_D3cold; 641 return; 642 } 643 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 644 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 645 } else { 646 dev->current_state = state; 647 } 648 } 649 650 /** 651 * pci_power_up - Put the given device into D0 forcibly 652 * @dev: PCI device to power up 653 */ 654 void pci_power_up(struct pci_dev *dev) 655 { 656 if (platform_pci_power_manageable(dev)) 657 platform_pci_set_power_state(dev, PCI_D0); 658 659 pci_raw_set_power_state(dev, PCI_D0); 660 pci_update_current_state(dev, PCI_D0); 661 } 662 663 /** 664 * pci_platform_power_transition - Use platform to change device power state 665 * @dev: PCI device to handle. 666 * @state: State to put the device into. 667 */ 668 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state) 669 { 670 int error; 671 672 if (platform_pci_power_manageable(dev)) { 673 error = platform_pci_set_power_state(dev, state); 674 if (!error) 675 pci_update_current_state(dev, state); 676 } else 677 error = -ENODEV; 678 679 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */ 680 dev->current_state = PCI_D0; 681 682 return error; 683 } 684 685 /** 686 * pci_wakeup - Wake up a PCI device 687 * @pci_dev: Device to handle. 688 * @ign: ignored parameter 689 */ 690 static int pci_wakeup(struct pci_dev *pci_dev, void *ign) 691 { 692 pci_wakeup_event(pci_dev); 693 pm_request_resume(&pci_dev->dev); 694 return 0; 695 } 696 697 /** 698 * pci_wakeup_bus - Walk given bus and wake up devices on it 699 * @bus: Top bus of the subtree to walk. 700 */ 701 static void pci_wakeup_bus(struct pci_bus *bus) 702 { 703 if (bus) 704 pci_walk_bus(bus, pci_wakeup, NULL); 705 } 706 707 /** 708 * __pci_start_power_transition - Start power transition of a PCI device 709 * @dev: PCI device to handle. 710 * @state: State to put the device into. 711 */ 712 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state) 713 { 714 if (state == PCI_D0) { 715 pci_platform_power_transition(dev, PCI_D0); 716 /* 717 * Mandatory power management transition delays, see 718 * PCI Express Base Specification Revision 2.0 Section 719 * 6.6.1: Conventional Reset. Do not delay for 720 * devices powered on/off by corresponding bridge, 721 * because have already delayed for the bridge. 722 */ 723 if (dev->runtime_d3cold) { 724 msleep(dev->d3cold_delay); 725 /* 726 * When powering on a bridge from D3cold, the 727 * whole hierarchy may be powered on into 728 * D0uninitialized state, resume them to give 729 * them a chance to suspend again 730 */ 731 pci_wakeup_bus(dev->subordinate); 732 } 733 } 734 } 735 736 /** 737 * __pci_dev_set_current_state - Set current state of a PCI device 738 * @dev: Device to handle 739 * @data: pointer to state to be set 740 */ 741 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data) 742 { 743 pci_power_t state = *(pci_power_t *)data; 744 745 dev->current_state = state; 746 return 0; 747 } 748 749 /** 750 * __pci_bus_set_current_state - Walk given bus and set current state of devices 751 * @bus: Top bus of the subtree to walk. 752 * @state: state to be set 753 */ 754 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state) 755 { 756 if (bus) 757 pci_walk_bus(bus, __pci_dev_set_current_state, &state); 758 } 759 760 /** 761 * __pci_complete_power_transition - Complete power transition of a PCI device 762 * @dev: PCI device to handle. 763 * @state: State to put the device into. 764 * 765 * This function should not be called directly by device drivers. 766 */ 767 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state) 768 { 769 int ret; 770 771 if (state <= PCI_D0) 772 return -EINVAL; 773 ret = pci_platform_power_transition(dev, state); 774 /* Power off the bridge may power off the whole hierarchy */ 775 if (!ret && state == PCI_D3cold) 776 __pci_bus_set_current_state(dev->subordinate, PCI_D3cold); 777 return ret; 778 } 779 EXPORT_SYMBOL_GPL(__pci_complete_power_transition); 780 781 /** 782 * pci_set_power_state - Set the power state of a PCI device 783 * @dev: PCI device to handle. 784 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 785 * 786 * Transition a device to a new power state, using the platform firmware and/or 787 * the device's PCI PM registers. 788 * 789 * RETURN VALUE: 790 * -EINVAL if the requested state is invalid. 791 * -EIO if device does not support PCI PM or its PM capabilities register has a 792 * wrong version, or device doesn't support the requested state. 793 * 0 if device already is in the requested state. 794 * 0 if device's power state has been successfully changed. 795 */ 796 int pci_set_power_state(struct pci_dev *dev, pci_power_t state) 797 { 798 int error; 799 800 /* bound the state we're entering */ 801 if (state > PCI_D3cold) 802 state = PCI_D3cold; 803 else if (state < PCI_D0) 804 state = PCI_D0; 805 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev)) 806 /* 807 * If the device or the parent bridge do not support PCI PM, 808 * ignore the request if we're doing anything other than putting 809 * it into D0 (which would only happen on boot). 810 */ 811 return 0; 812 813 /* Check if we're already there */ 814 if (dev->current_state == state) 815 return 0; 816 817 __pci_start_power_transition(dev, state); 818 819 /* This device is quirked not to be put into D3, so 820 don't put it in D3 */ 821 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3)) 822 return 0; 823 824 /* 825 * To put device in D3cold, we put device into D3hot in native 826 * way, then put device into D3cold with platform ops 827 */ 828 error = pci_raw_set_power_state(dev, state > PCI_D3hot ? 829 PCI_D3hot : state); 830 831 if (!__pci_complete_power_transition(dev, state)) 832 error = 0; 833 /* 834 * When aspm_policy is "powersave" this call ensures 835 * that ASPM is configured. 836 */ 837 if (!error && dev->bus->self) 838 pcie_aspm_powersave_config_link(dev->bus->self); 839 840 return error; 841 } 842 843 /** 844 * pci_choose_state - Choose the power state of a PCI device 845 * @dev: PCI device to be suspended 846 * @state: target sleep state for the whole system. This is the value 847 * that is passed to suspend() function. 848 * 849 * Returns PCI power state suitable for given device and given system 850 * message. 851 */ 852 853 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state) 854 { 855 pci_power_t ret; 856 857 if (!dev->pm_cap) 858 return PCI_D0; 859 860 ret = platform_pci_choose_state(dev); 861 if (ret != PCI_POWER_ERROR) 862 return ret; 863 864 switch (state.event) { 865 case PM_EVENT_ON: 866 return PCI_D0; 867 case PM_EVENT_FREEZE: 868 case PM_EVENT_PRETHAW: 869 /* REVISIT both freeze and pre-thaw "should" use D0 */ 870 case PM_EVENT_SUSPEND: 871 case PM_EVENT_HIBERNATE: 872 return PCI_D3hot; 873 default: 874 dev_info(&dev->dev, "unrecognized suspend event %d\n", 875 state.event); 876 BUG(); 877 } 878 return PCI_D0; 879 } 880 881 EXPORT_SYMBOL(pci_choose_state); 882 883 #define PCI_EXP_SAVE_REGS 7 884 885 886 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev, 887 u16 cap, bool extended) 888 { 889 struct pci_cap_saved_state *tmp; 890 891 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) { 892 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap) 893 return tmp; 894 } 895 return NULL; 896 } 897 898 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap) 899 { 900 return _pci_find_saved_cap(dev, cap, false); 901 } 902 903 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap) 904 { 905 return _pci_find_saved_cap(dev, cap, true); 906 } 907 908 static int pci_save_pcie_state(struct pci_dev *dev) 909 { 910 int i = 0; 911 struct pci_cap_saved_state *save_state; 912 u16 *cap; 913 914 if (!pci_is_pcie(dev)) 915 return 0; 916 917 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 918 if (!save_state) { 919 dev_err(&dev->dev, "buffer not found in %s\n", __func__); 920 return -ENOMEM; 921 } 922 923 cap = (u16 *)&save_state->cap.data[0]; 924 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]); 925 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]); 926 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]); 927 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]); 928 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]); 929 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]); 930 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]); 931 932 return 0; 933 } 934 935 static void pci_restore_pcie_state(struct pci_dev *dev) 936 { 937 int i = 0; 938 struct pci_cap_saved_state *save_state; 939 u16 *cap; 940 941 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 942 if (!save_state) 943 return; 944 945 cap = (u16 *)&save_state->cap.data[0]; 946 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]); 947 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]); 948 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]); 949 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]); 950 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]); 951 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]); 952 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]); 953 } 954 955 956 static int pci_save_pcix_state(struct pci_dev *dev) 957 { 958 int pos; 959 struct pci_cap_saved_state *save_state; 960 961 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 962 if (pos <= 0) 963 return 0; 964 965 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 966 if (!save_state) { 967 dev_err(&dev->dev, "buffer not found in %s\n", __func__); 968 return -ENOMEM; 969 } 970 971 pci_read_config_word(dev, pos + PCI_X_CMD, 972 (u16 *)save_state->cap.data); 973 974 return 0; 975 } 976 977 static void pci_restore_pcix_state(struct pci_dev *dev) 978 { 979 int i = 0, pos; 980 struct pci_cap_saved_state *save_state; 981 u16 *cap; 982 983 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 984 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 985 if (!save_state || pos <= 0) 986 return; 987 cap = (u16 *)&save_state->cap.data[0]; 988 989 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]); 990 } 991 992 993 /** 994 * pci_save_state - save the PCI configuration space of a device before suspending 995 * @dev: - PCI device that we're dealing with 996 */ 997 int 998 pci_save_state(struct pci_dev *dev) 999 { 1000 int i; 1001 /* XXX: 100% dword access ok here? */ 1002 for (i = 0; i < 16; i++) 1003 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]); 1004 dev->state_saved = true; 1005 if ((i = pci_save_pcie_state(dev)) != 0) 1006 return i; 1007 if ((i = pci_save_pcix_state(dev)) != 0) 1008 return i; 1009 if ((i = pci_save_vc_state(dev)) != 0) 1010 return i; 1011 return 0; 1012 } 1013 1014 static void pci_restore_config_dword(struct pci_dev *pdev, int offset, 1015 u32 saved_val, int retry) 1016 { 1017 u32 val; 1018 1019 pci_read_config_dword(pdev, offset, &val); 1020 if (val == saved_val) 1021 return; 1022 1023 for (;;) { 1024 dev_dbg(&pdev->dev, "restoring config space at offset " 1025 "%#x (was %#x, writing %#x)\n", offset, val, saved_val); 1026 pci_write_config_dword(pdev, offset, saved_val); 1027 if (retry-- <= 0) 1028 return; 1029 1030 pci_read_config_dword(pdev, offset, &val); 1031 if (val == saved_val) 1032 return; 1033 1034 mdelay(1); 1035 } 1036 } 1037 1038 static void pci_restore_config_space_range(struct pci_dev *pdev, 1039 int start, int end, int retry) 1040 { 1041 int index; 1042 1043 for (index = end; index >= start; index--) 1044 pci_restore_config_dword(pdev, 4 * index, 1045 pdev->saved_config_space[index], 1046 retry); 1047 } 1048 1049 static void pci_restore_config_space(struct pci_dev *pdev) 1050 { 1051 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) { 1052 pci_restore_config_space_range(pdev, 10, 15, 0); 1053 /* Restore BARs before the command register. */ 1054 pci_restore_config_space_range(pdev, 4, 9, 10); 1055 pci_restore_config_space_range(pdev, 0, 3, 0); 1056 } else { 1057 pci_restore_config_space_range(pdev, 0, 15, 0); 1058 } 1059 } 1060 1061 /** 1062 * pci_restore_state - Restore the saved state of a PCI device 1063 * @dev: - PCI device that we're dealing with 1064 */ 1065 void pci_restore_state(struct pci_dev *dev) 1066 { 1067 if (!dev->state_saved) 1068 return; 1069 1070 /* PCI Express register must be restored first */ 1071 pci_restore_pcie_state(dev); 1072 pci_restore_ats_state(dev); 1073 pci_restore_vc_state(dev); 1074 1075 pci_restore_config_space(dev); 1076 1077 pci_restore_pcix_state(dev); 1078 pci_restore_msi_state(dev); 1079 pci_restore_iov_state(dev); 1080 1081 dev->state_saved = false; 1082 } 1083 1084 struct pci_saved_state { 1085 u32 config_space[16]; 1086 struct pci_cap_saved_data cap[0]; 1087 }; 1088 1089 /** 1090 * pci_store_saved_state - Allocate and return an opaque struct containing 1091 * the device saved state. 1092 * @dev: PCI device that we're dealing with 1093 * 1094 * Return NULL if no state or error. 1095 */ 1096 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev) 1097 { 1098 struct pci_saved_state *state; 1099 struct pci_cap_saved_state *tmp; 1100 struct pci_cap_saved_data *cap; 1101 size_t size; 1102 1103 if (!dev->state_saved) 1104 return NULL; 1105 1106 size = sizeof(*state) + sizeof(struct pci_cap_saved_data); 1107 1108 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) 1109 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1110 1111 state = kzalloc(size, GFP_KERNEL); 1112 if (!state) 1113 return NULL; 1114 1115 memcpy(state->config_space, dev->saved_config_space, 1116 sizeof(state->config_space)); 1117 1118 cap = state->cap; 1119 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) { 1120 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1121 memcpy(cap, &tmp->cap, len); 1122 cap = (struct pci_cap_saved_data *)((u8 *)cap + len); 1123 } 1124 /* Empty cap_save terminates list */ 1125 1126 return state; 1127 } 1128 EXPORT_SYMBOL_GPL(pci_store_saved_state); 1129 1130 /** 1131 * pci_load_saved_state - Reload the provided save state into struct pci_dev. 1132 * @dev: PCI device that we're dealing with 1133 * @state: Saved state returned from pci_store_saved_state() 1134 */ 1135 static int pci_load_saved_state(struct pci_dev *dev, 1136 struct pci_saved_state *state) 1137 { 1138 struct pci_cap_saved_data *cap; 1139 1140 dev->state_saved = false; 1141 1142 if (!state) 1143 return 0; 1144 1145 memcpy(dev->saved_config_space, state->config_space, 1146 sizeof(state->config_space)); 1147 1148 cap = state->cap; 1149 while (cap->size) { 1150 struct pci_cap_saved_state *tmp; 1151 1152 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended); 1153 if (!tmp || tmp->cap.size != cap->size) 1154 return -EINVAL; 1155 1156 memcpy(tmp->cap.data, cap->data, tmp->cap.size); 1157 cap = (struct pci_cap_saved_data *)((u8 *)cap + 1158 sizeof(struct pci_cap_saved_data) + cap->size); 1159 } 1160 1161 dev->state_saved = true; 1162 return 0; 1163 } 1164 1165 /** 1166 * pci_load_and_free_saved_state - Reload the save state pointed to by state, 1167 * and free the memory allocated for it. 1168 * @dev: PCI device that we're dealing with 1169 * @state: Pointer to saved state returned from pci_store_saved_state() 1170 */ 1171 int pci_load_and_free_saved_state(struct pci_dev *dev, 1172 struct pci_saved_state **state) 1173 { 1174 int ret = pci_load_saved_state(dev, *state); 1175 kfree(*state); 1176 *state = NULL; 1177 return ret; 1178 } 1179 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state); 1180 1181 static int do_pci_enable_device(struct pci_dev *dev, int bars) 1182 { 1183 int err; 1184 1185 err = pci_set_power_state(dev, PCI_D0); 1186 if (err < 0 && err != -EIO) 1187 return err; 1188 err = pcibios_enable_device(dev, bars); 1189 if (err < 0) 1190 return err; 1191 pci_fixup_device(pci_fixup_enable, dev); 1192 1193 return 0; 1194 } 1195 1196 /** 1197 * pci_reenable_device - Resume abandoned device 1198 * @dev: PCI device to be resumed 1199 * 1200 * Note this function is a backend of pci_default_resume and is not supposed 1201 * to be called by normal code, write proper resume handler and use it instead. 1202 */ 1203 int pci_reenable_device(struct pci_dev *dev) 1204 { 1205 if (pci_is_enabled(dev)) 1206 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1); 1207 return 0; 1208 } 1209 1210 static void pci_enable_bridge(struct pci_dev *dev) 1211 { 1212 struct pci_dev *bridge; 1213 int retval; 1214 1215 bridge = pci_upstream_bridge(dev); 1216 if (bridge) 1217 pci_enable_bridge(bridge); 1218 1219 if (pci_is_enabled(dev)) { 1220 if (!dev->is_busmaster) 1221 pci_set_master(dev); 1222 return; 1223 } 1224 1225 retval = pci_enable_device(dev); 1226 if (retval) 1227 dev_err(&dev->dev, "Error enabling bridge (%d), continuing\n", 1228 retval); 1229 pci_set_master(dev); 1230 } 1231 1232 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags) 1233 { 1234 struct pci_dev *bridge; 1235 int err; 1236 int i, bars = 0; 1237 1238 /* 1239 * Power state could be unknown at this point, either due to a fresh 1240 * boot or a device removal call. So get the current power state 1241 * so that things like MSI message writing will behave as expected 1242 * (e.g. if the device really is in D0 at enable time). 1243 */ 1244 if (dev->pm_cap) { 1245 u16 pmcsr; 1246 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1247 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 1248 } 1249 1250 if (atomic_inc_return(&dev->enable_cnt) > 1) 1251 return 0; /* already enabled */ 1252 1253 bridge = pci_upstream_bridge(dev); 1254 if (bridge) 1255 pci_enable_bridge(bridge); 1256 1257 /* only skip sriov related */ 1258 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 1259 if (dev->resource[i].flags & flags) 1260 bars |= (1 << i); 1261 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++) 1262 if (dev->resource[i].flags & flags) 1263 bars |= (1 << i); 1264 1265 err = do_pci_enable_device(dev, bars); 1266 if (err < 0) 1267 atomic_dec(&dev->enable_cnt); 1268 return err; 1269 } 1270 1271 /** 1272 * pci_enable_device_io - Initialize a device for use with IO space 1273 * @dev: PCI device to be initialized 1274 * 1275 * Initialize device before it's used by a driver. Ask low-level code 1276 * to enable I/O resources. Wake up the device if it was suspended. 1277 * Beware, this function can fail. 1278 */ 1279 int pci_enable_device_io(struct pci_dev *dev) 1280 { 1281 return pci_enable_device_flags(dev, IORESOURCE_IO); 1282 } 1283 1284 /** 1285 * pci_enable_device_mem - Initialize a device for use with Memory space 1286 * @dev: PCI device to be initialized 1287 * 1288 * Initialize device before it's used by a driver. Ask low-level code 1289 * to enable Memory resources. Wake up the device if it was suspended. 1290 * Beware, this function can fail. 1291 */ 1292 int pci_enable_device_mem(struct pci_dev *dev) 1293 { 1294 return pci_enable_device_flags(dev, IORESOURCE_MEM); 1295 } 1296 1297 /** 1298 * pci_enable_device - Initialize device before it's used by a driver. 1299 * @dev: PCI device to be initialized 1300 * 1301 * Initialize device before it's used by a driver. Ask low-level code 1302 * to enable I/O and memory. Wake up the device if it was suspended. 1303 * Beware, this function can fail. 1304 * 1305 * Note we don't actually enable the device many times if we call 1306 * this function repeatedly (we just increment the count). 1307 */ 1308 int pci_enable_device(struct pci_dev *dev) 1309 { 1310 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO); 1311 } 1312 1313 /* 1314 * Managed PCI resources. This manages device on/off, intx/msi/msix 1315 * on/off and BAR regions. pci_dev itself records msi/msix status, so 1316 * there's no need to track it separately. pci_devres is initialized 1317 * when a device is enabled using managed PCI device enable interface. 1318 */ 1319 struct pci_devres { 1320 unsigned int enabled:1; 1321 unsigned int pinned:1; 1322 unsigned int orig_intx:1; 1323 unsigned int restore_intx:1; 1324 u32 region_mask; 1325 }; 1326 1327 static void pcim_release(struct device *gendev, void *res) 1328 { 1329 struct pci_dev *dev = container_of(gendev, struct pci_dev, dev); 1330 struct pci_devres *this = res; 1331 int i; 1332 1333 if (dev->msi_enabled) 1334 pci_disable_msi(dev); 1335 if (dev->msix_enabled) 1336 pci_disable_msix(dev); 1337 1338 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) 1339 if (this->region_mask & (1 << i)) 1340 pci_release_region(dev, i); 1341 1342 if (this->restore_intx) 1343 pci_intx(dev, this->orig_intx); 1344 1345 if (this->enabled && !this->pinned) 1346 pci_disable_device(dev); 1347 } 1348 1349 static struct pci_devres * get_pci_dr(struct pci_dev *pdev) 1350 { 1351 struct pci_devres *dr, *new_dr; 1352 1353 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL); 1354 if (dr) 1355 return dr; 1356 1357 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL); 1358 if (!new_dr) 1359 return NULL; 1360 return devres_get(&pdev->dev, new_dr, NULL, NULL); 1361 } 1362 1363 static struct pci_devres * find_pci_dr(struct pci_dev *pdev) 1364 { 1365 if (pci_is_managed(pdev)) 1366 return devres_find(&pdev->dev, pcim_release, NULL, NULL); 1367 return NULL; 1368 } 1369 1370 /** 1371 * pcim_enable_device - Managed pci_enable_device() 1372 * @pdev: PCI device to be initialized 1373 * 1374 * Managed pci_enable_device(). 1375 */ 1376 int pcim_enable_device(struct pci_dev *pdev) 1377 { 1378 struct pci_devres *dr; 1379 int rc; 1380 1381 dr = get_pci_dr(pdev); 1382 if (unlikely(!dr)) 1383 return -ENOMEM; 1384 if (dr->enabled) 1385 return 0; 1386 1387 rc = pci_enable_device(pdev); 1388 if (!rc) { 1389 pdev->is_managed = 1; 1390 dr->enabled = 1; 1391 } 1392 return rc; 1393 } 1394 1395 /** 1396 * pcim_pin_device - Pin managed PCI device 1397 * @pdev: PCI device to pin 1398 * 1399 * Pin managed PCI device @pdev. Pinned device won't be disabled on 1400 * driver detach. @pdev must have been enabled with 1401 * pcim_enable_device(). 1402 */ 1403 void pcim_pin_device(struct pci_dev *pdev) 1404 { 1405 struct pci_devres *dr; 1406 1407 dr = find_pci_dr(pdev); 1408 WARN_ON(!dr || !dr->enabled); 1409 if (dr) 1410 dr->pinned = 1; 1411 } 1412 1413 /* 1414 * pcibios_add_device - provide arch specific hooks when adding device dev 1415 * @dev: the PCI device being added 1416 * 1417 * Permits the platform to provide architecture specific functionality when 1418 * devices are added. This is the default implementation. Architecture 1419 * implementations can override this. 1420 */ 1421 int __weak pcibios_add_device (struct pci_dev *dev) 1422 { 1423 return 0; 1424 } 1425 1426 /** 1427 * pcibios_release_device - provide arch specific hooks when releasing device dev 1428 * @dev: the PCI device being released 1429 * 1430 * Permits the platform to provide architecture specific functionality when 1431 * devices are released. This is the default implementation. Architecture 1432 * implementations can override this. 1433 */ 1434 void __weak pcibios_release_device(struct pci_dev *dev) {} 1435 1436 /** 1437 * pcibios_disable_device - disable arch specific PCI resources for device dev 1438 * @dev: the PCI device to disable 1439 * 1440 * Disables architecture specific PCI resources for the device. This 1441 * is the default implementation. Architecture implementations can 1442 * override this. 1443 */ 1444 void __weak pcibios_disable_device (struct pci_dev *dev) {} 1445 1446 static void do_pci_disable_device(struct pci_dev *dev) 1447 { 1448 u16 pci_command; 1449 1450 pci_read_config_word(dev, PCI_COMMAND, &pci_command); 1451 if (pci_command & PCI_COMMAND_MASTER) { 1452 pci_command &= ~PCI_COMMAND_MASTER; 1453 pci_write_config_word(dev, PCI_COMMAND, pci_command); 1454 } 1455 1456 pcibios_disable_device(dev); 1457 } 1458 1459 /** 1460 * pci_disable_enabled_device - Disable device without updating enable_cnt 1461 * @dev: PCI device to disable 1462 * 1463 * NOTE: This function is a backend of PCI power management routines and is 1464 * not supposed to be called drivers. 1465 */ 1466 void pci_disable_enabled_device(struct pci_dev *dev) 1467 { 1468 if (pci_is_enabled(dev)) 1469 do_pci_disable_device(dev); 1470 } 1471 1472 /** 1473 * pci_disable_device - Disable PCI device after use 1474 * @dev: PCI device to be disabled 1475 * 1476 * Signal to the system that the PCI device is not in use by the system 1477 * anymore. This only involves disabling PCI bus-mastering, if active. 1478 * 1479 * Note we don't actually disable the device until all callers of 1480 * pci_enable_device() have called pci_disable_device(). 1481 */ 1482 void 1483 pci_disable_device(struct pci_dev *dev) 1484 { 1485 struct pci_devres *dr; 1486 1487 dr = find_pci_dr(dev); 1488 if (dr) 1489 dr->enabled = 0; 1490 1491 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0, 1492 "disabling already-disabled device"); 1493 1494 if (atomic_dec_return(&dev->enable_cnt) != 0) 1495 return; 1496 1497 do_pci_disable_device(dev); 1498 1499 dev->is_busmaster = 0; 1500 } 1501 1502 /** 1503 * pcibios_set_pcie_reset_state - set reset state for device dev 1504 * @dev: the PCIe device reset 1505 * @state: Reset state to enter into 1506 * 1507 * 1508 * Sets the PCIe reset state for the device. This is the default 1509 * implementation. Architecture implementations can override this. 1510 */ 1511 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev, 1512 enum pcie_reset_state state) 1513 { 1514 return -EINVAL; 1515 } 1516 1517 /** 1518 * pci_set_pcie_reset_state - set reset state for device dev 1519 * @dev: the PCIe device reset 1520 * @state: Reset state to enter into 1521 * 1522 * 1523 * Sets the PCI reset state for the device. 1524 */ 1525 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state) 1526 { 1527 return pcibios_set_pcie_reset_state(dev, state); 1528 } 1529 1530 /** 1531 * pci_check_pme_status - Check if given device has generated PME. 1532 * @dev: Device to check. 1533 * 1534 * Check the PME status of the device and if set, clear it and clear PME enable 1535 * (if set). Return 'true' if PME status and PME enable were both set or 1536 * 'false' otherwise. 1537 */ 1538 bool pci_check_pme_status(struct pci_dev *dev) 1539 { 1540 int pmcsr_pos; 1541 u16 pmcsr; 1542 bool ret = false; 1543 1544 if (!dev->pm_cap) 1545 return false; 1546 1547 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL; 1548 pci_read_config_word(dev, pmcsr_pos, &pmcsr); 1549 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS)) 1550 return false; 1551 1552 /* Clear PME status. */ 1553 pmcsr |= PCI_PM_CTRL_PME_STATUS; 1554 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) { 1555 /* Disable PME to avoid interrupt flood. */ 1556 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 1557 ret = true; 1558 } 1559 1560 pci_write_config_word(dev, pmcsr_pos, pmcsr); 1561 1562 return ret; 1563 } 1564 1565 /** 1566 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set. 1567 * @dev: Device to handle. 1568 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag. 1569 * 1570 * Check if @dev has generated PME and queue a resume request for it in that 1571 * case. 1572 */ 1573 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset) 1574 { 1575 if (pme_poll_reset && dev->pme_poll) 1576 dev->pme_poll = false; 1577 1578 if (pci_check_pme_status(dev)) { 1579 pci_wakeup_event(dev); 1580 pm_request_resume(&dev->dev); 1581 } 1582 return 0; 1583 } 1584 1585 /** 1586 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary. 1587 * @bus: Top bus of the subtree to walk. 1588 */ 1589 void pci_pme_wakeup_bus(struct pci_bus *bus) 1590 { 1591 if (bus) 1592 pci_walk_bus(bus, pci_pme_wakeup, (void *)true); 1593 } 1594 1595 1596 /** 1597 * pci_pme_capable - check the capability of PCI device to generate PME# 1598 * @dev: PCI device to handle. 1599 * @state: PCI state from which device will issue PME#. 1600 */ 1601 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state) 1602 { 1603 if (!dev->pm_cap) 1604 return false; 1605 1606 return !!(dev->pme_support & (1 << state)); 1607 } 1608 1609 static void pci_pme_list_scan(struct work_struct *work) 1610 { 1611 struct pci_pme_device *pme_dev, *n; 1612 1613 mutex_lock(&pci_pme_list_mutex); 1614 if (!list_empty(&pci_pme_list)) { 1615 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) { 1616 if (pme_dev->dev->pme_poll) { 1617 struct pci_dev *bridge; 1618 1619 bridge = pme_dev->dev->bus->self; 1620 /* 1621 * If bridge is in low power state, the 1622 * configuration space of subordinate devices 1623 * may be not accessible 1624 */ 1625 if (bridge && bridge->current_state != PCI_D0) 1626 continue; 1627 pci_pme_wakeup(pme_dev->dev, NULL); 1628 } else { 1629 list_del(&pme_dev->list); 1630 kfree(pme_dev); 1631 } 1632 } 1633 if (!list_empty(&pci_pme_list)) 1634 schedule_delayed_work(&pci_pme_work, 1635 msecs_to_jiffies(PME_TIMEOUT)); 1636 } 1637 mutex_unlock(&pci_pme_list_mutex); 1638 } 1639 1640 /** 1641 * pci_pme_active - enable or disable PCI device's PME# function 1642 * @dev: PCI device to handle. 1643 * @enable: 'true' to enable PME# generation; 'false' to disable it. 1644 * 1645 * The caller must verify that the device is capable of generating PME# before 1646 * calling this function with @enable equal to 'true'. 1647 */ 1648 void pci_pme_active(struct pci_dev *dev, bool enable) 1649 { 1650 u16 pmcsr; 1651 1652 if (!dev->pme_support) 1653 return; 1654 1655 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1656 /* Clear PME_Status by writing 1 to it and enable PME# */ 1657 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE; 1658 if (!enable) 1659 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 1660 1661 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 1662 1663 /* 1664 * PCI (as opposed to PCIe) PME requires that the device have 1665 * its PME# line hooked up correctly. Not all hardware vendors 1666 * do this, so the PME never gets delivered and the device 1667 * remains asleep. The easiest way around this is to 1668 * periodically walk the list of suspended devices and check 1669 * whether any have their PME flag set. The assumption is that 1670 * we'll wake up often enough anyway that this won't be a huge 1671 * hit, and the power savings from the devices will still be a 1672 * win. 1673 * 1674 * Although PCIe uses in-band PME message instead of PME# line 1675 * to report PME, PME does not work for some PCIe devices in 1676 * reality. For example, there are devices that set their PME 1677 * status bits, but don't really bother to send a PME message; 1678 * there are PCI Express Root Ports that don't bother to 1679 * trigger interrupts when they receive PME messages from the 1680 * devices below. So PME poll is used for PCIe devices too. 1681 */ 1682 1683 if (dev->pme_poll) { 1684 struct pci_pme_device *pme_dev; 1685 if (enable) { 1686 pme_dev = kmalloc(sizeof(struct pci_pme_device), 1687 GFP_KERNEL); 1688 if (!pme_dev) { 1689 dev_warn(&dev->dev, "can't enable PME#\n"); 1690 return; 1691 } 1692 pme_dev->dev = dev; 1693 mutex_lock(&pci_pme_list_mutex); 1694 list_add(&pme_dev->list, &pci_pme_list); 1695 if (list_is_singular(&pci_pme_list)) 1696 schedule_delayed_work(&pci_pme_work, 1697 msecs_to_jiffies(PME_TIMEOUT)); 1698 mutex_unlock(&pci_pme_list_mutex); 1699 } else { 1700 mutex_lock(&pci_pme_list_mutex); 1701 list_for_each_entry(pme_dev, &pci_pme_list, list) { 1702 if (pme_dev->dev == dev) { 1703 list_del(&pme_dev->list); 1704 kfree(pme_dev); 1705 break; 1706 } 1707 } 1708 mutex_unlock(&pci_pme_list_mutex); 1709 } 1710 } 1711 1712 dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled"); 1713 } 1714 1715 /** 1716 * __pci_enable_wake - enable PCI device as wakeup event source 1717 * @dev: PCI device affected 1718 * @state: PCI state from which device will issue wakeup events 1719 * @runtime: True if the events are to be generated at run time 1720 * @enable: True to enable event generation; false to disable 1721 * 1722 * This enables the device as a wakeup event source, or disables it. 1723 * When such events involves platform-specific hooks, those hooks are 1724 * called automatically by this routine. 1725 * 1726 * Devices with legacy power management (no standard PCI PM capabilities) 1727 * always require such platform hooks. 1728 * 1729 * RETURN VALUE: 1730 * 0 is returned on success 1731 * -EINVAL is returned if device is not supposed to wake up the system 1732 * Error code depending on the platform is returned if both the platform and 1733 * the native mechanism fail to enable the generation of wake-up events 1734 */ 1735 int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, 1736 bool runtime, bool enable) 1737 { 1738 int ret = 0; 1739 1740 if (enable && !runtime && !device_may_wakeup(&dev->dev)) 1741 return -EINVAL; 1742 1743 /* Don't do the same thing twice in a row for one device. */ 1744 if (!!enable == !!dev->wakeup_prepared) 1745 return 0; 1746 1747 /* 1748 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don 1749 * Anderson we should be doing PME# wake enable followed by ACPI wake 1750 * enable. To disable wake-up we call the platform first, for symmetry. 1751 */ 1752 1753 if (enable) { 1754 int error; 1755 1756 if (pci_pme_capable(dev, state)) 1757 pci_pme_active(dev, true); 1758 else 1759 ret = 1; 1760 error = runtime ? platform_pci_run_wake(dev, true) : 1761 platform_pci_sleep_wake(dev, true); 1762 if (ret) 1763 ret = error; 1764 if (!ret) 1765 dev->wakeup_prepared = true; 1766 } else { 1767 if (runtime) 1768 platform_pci_run_wake(dev, false); 1769 else 1770 platform_pci_sleep_wake(dev, false); 1771 pci_pme_active(dev, false); 1772 dev->wakeup_prepared = false; 1773 } 1774 1775 return ret; 1776 } 1777 EXPORT_SYMBOL(__pci_enable_wake); 1778 1779 /** 1780 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold 1781 * @dev: PCI device to prepare 1782 * @enable: True to enable wake-up event generation; false to disable 1783 * 1784 * Many drivers want the device to wake up the system from D3_hot or D3_cold 1785 * and this function allows them to set that up cleanly - pci_enable_wake() 1786 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI 1787 * ordering constraints. 1788 * 1789 * This function only returns error code if the device is not capable of 1790 * generating PME# from both D3_hot and D3_cold, and the platform is unable to 1791 * enable wake-up power for it. 1792 */ 1793 int pci_wake_from_d3(struct pci_dev *dev, bool enable) 1794 { 1795 return pci_pme_capable(dev, PCI_D3cold) ? 1796 pci_enable_wake(dev, PCI_D3cold, enable) : 1797 pci_enable_wake(dev, PCI_D3hot, enable); 1798 } 1799 1800 /** 1801 * pci_target_state - find an appropriate low power state for a given PCI dev 1802 * @dev: PCI device 1803 * 1804 * Use underlying platform code to find a supported low power state for @dev. 1805 * If the platform can't manage @dev, return the deepest state from which it 1806 * can generate wake events, based on any available PME info. 1807 */ 1808 static pci_power_t pci_target_state(struct pci_dev *dev) 1809 { 1810 pci_power_t target_state = PCI_D3hot; 1811 1812 if (platform_pci_power_manageable(dev)) { 1813 /* 1814 * Call the platform to choose the target state of the device 1815 * and enable wake-up from this state if supported. 1816 */ 1817 pci_power_t state = platform_pci_choose_state(dev); 1818 1819 switch (state) { 1820 case PCI_POWER_ERROR: 1821 case PCI_UNKNOWN: 1822 break; 1823 case PCI_D1: 1824 case PCI_D2: 1825 if (pci_no_d1d2(dev)) 1826 break; 1827 default: 1828 target_state = state; 1829 } 1830 } else if (!dev->pm_cap) { 1831 target_state = PCI_D0; 1832 } else if (device_may_wakeup(&dev->dev)) { 1833 /* 1834 * Find the deepest state from which the device can generate 1835 * wake-up events, make it the target state and enable device 1836 * to generate PME#. 1837 */ 1838 if (dev->pme_support) { 1839 while (target_state 1840 && !(dev->pme_support & (1 << target_state))) 1841 target_state--; 1842 } 1843 } 1844 1845 return target_state; 1846 } 1847 1848 /** 1849 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state 1850 * @dev: Device to handle. 1851 * 1852 * Choose the power state appropriate for the device depending on whether 1853 * it can wake up the system and/or is power manageable by the platform 1854 * (PCI_D3hot is the default) and put the device into that state. 1855 */ 1856 int pci_prepare_to_sleep(struct pci_dev *dev) 1857 { 1858 pci_power_t target_state = pci_target_state(dev); 1859 int error; 1860 1861 if (target_state == PCI_POWER_ERROR) 1862 return -EIO; 1863 1864 /* D3cold during system suspend/hibernate is not supported */ 1865 if (target_state > PCI_D3hot) 1866 target_state = PCI_D3hot; 1867 1868 pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev)); 1869 1870 error = pci_set_power_state(dev, target_state); 1871 1872 if (error) 1873 pci_enable_wake(dev, target_state, false); 1874 1875 return error; 1876 } 1877 1878 /** 1879 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state 1880 * @dev: Device to handle. 1881 * 1882 * Disable device's system wake-up capability and put it into D0. 1883 */ 1884 int pci_back_from_sleep(struct pci_dev *dev) 1885 { 1886 pci_enable_wake(dev, PCI_D0, false); 1887 return pci_set_power_state(dev, PCI_D0); 1888 } 1889 1890 /** 1891 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend. 1892 * @dev: PCI device being suspended. 1893 * 1894 * Prepare @dev to generate wake-up events at run time and put it into a low 1895 * power state. 1896 */ 1897 int pci_finish_runtime_suspend(struct pci_dev *dev) 1898 { 1899 pci_power_t target_state = pci_target_state(dev); 1900 int error; 1901 1902 if (target_state == PCI_POWER_ERROR) 1903 return -EIO; 1904 1905 dev->runtime_d3cold = target_state == PCI_D3cold; 1906 1907 __pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev)); 1908 1909 error = pci_set_power_state(dev, target_state); 1910 1911 if (error) { 1912 __pci_enable_wake(dev, target_state, true, false); 1913 dev->runtime_d3cold = false; 1914 } 1915 1916 return error; 1917 } 1918 1919 /** 1920 * pci_dev_run_wake - Check if device can generate run-time wake-up events. 1921 * @dev: Device to check. 1922 * 1923 * Return true if the device itself is capable of generating wake-up events 1924 * (through the platform or using the native PCIe PME) or if the device supports 1925 * PME and one of its upstream bridges can generate wake-up events. 1926 */ 1927 bool pci_dev_run_wake(struct pci_dev *dev) 1928 { 1929 struct pci_bus *bus = dev->bus; 1930 1931 if (device_run_wake(&dev->dev)) 1932 return true; 1933 1934 if (!dev->pme_support) 1935 return false; 1936 1937 while (bus->parent) { 1938 struct pci_dev *bridge = bus->self; 1939 1940 if (device_run_wake(&bridge->dev)) 1941 return true; 1942 1943 bus = bus->parent; 1944 } 1945 1946 /* We have reached the root bus. */ 1947 if (bus->bridge) 1948 return device_run_wake(bus->bridge); 1949 1950 return false; 1951 } 1952 EXPORT_SYMBOL_GPL(pci_dev_run_wake); 1953 1954 void pci_config_pm_runtime_get(struct pci_dev *pdev) 1955 { 1956 struct device *dev = &pdev->dev; 1957 struct device *parent = dev->parent; 1958 1959 if (parent) 1960 pm_runtime_get_sync(parent); 1961 pm_runtime_get_noresume(dev); 1962 /* 1963 * pdev->current_state is set to PCI_D3cold during suspending, 1964 * so wait until suspending completes 1965 */ 1966 pm_runtime_barrier(dev); 1967 /* 1968 * Only need to resume devices in D3cold, because config 1969 * registers are still accessible for devices suspended but 1970 * not in D3cold. 1971 */ 1972 if (pdev->current_state == PCI_D3cold) 1973 pm_runtime_resume(dev); 1974 } 1975 1976 void pci_config_pm_runtime_put(struct pci_dev *pdev) 1977 { 1978 struct device *dev = &pdev->dev; 1979 struct device *parent = dev->parent; 1980 1981 pm_runtime_put(dev); 1982 if (parent) 1983 pm_runtime_put_sync(parent); 1984 } 1985 1986 /** 1987 * pci_pm_init - Initialize PM functions of given PCI device 1988 * @dev: PCI device to handle. 1989 */ 1990 void pci_pm_init(struct pci_dev *dev) 1991 { 1992 int pm; 1993 u16 pmc; 1994 1995 pm_runtime_forbid(&dev->dev); 1996 pm_runtime_set_active(&dev->dev); 1997 pm_runtime_enable(&dev->dev); 1998 device_enable_async_suspend(&dev->dev); 1999 dev->wakeup_prepared = false; 2000 2001 dev->pm_cap = 0; 2002 dev->pme_support = 0; 2003 2004 /* find PCI PM capability in list */ 2005 pm = pci_find_capability(dev, PCI_CAP_ID_PM); 2006 if (!pm) 2007 return; 2008 /* Check device's ability to generate PME# */ 2009 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc); 2010 2011 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) { 2012 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n", 2013 pmc & PCI_PM_CAP_VER_MASK); 2014 return; 2015 } 2016 2017 dev->pm_cap = pm; 2018 dev->d3_delay = PCI_PM_D3_WAIT; 2019 dev->d3cold_delay = PCI_PM_D3COLD_WAIT; 2020 dev->d3cold_allowed = true; 2021 2022 dev->d1_support = false; 2023 dev->d2_support = false; 2024 if (!pci_no_d1d2(dev)) { 2025 if (pmc & PCI_PM_CAP_D1) 2026 dev->d1_support = true; 2027 if (pmc & PCI_PM_CAP_D2) 2028 dev->d2_support = true; 2029 2030 if (dev->d1_support || dev->d2_support) 2031 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n", 2032 dev->d1_support ? " D1" : "", 2033 dev->d2_support ? " D2" : ""); 2034 } 2035 2036 pmc &= PCI_PM_CAP_PME_MASK; 2037 if (pmc) { 2038 dev_printk(KERN_DEBUG, &dev->dev, 2039 "PME# supported from%s%s%s%s%s\n", 2040 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "", 2041 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "", 2042 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "", 2043 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "", 2044 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : ""); 2045 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT; 2046 dev->pme_poll = true; 2047 /* 2048 * Make device's PM flags reflect the wake-up capability, but 2049 * let the user space enable it to wake up the system as needed. 2050 */ 2051 device_set_wakeup_capable(&dev->dev, true); 2052 /* Disable the PME# generation functionality */ 2053 pci_pme_active(dev, false); 2054 } 2055 } 2056 2057 static void pci_add_saved_cap(struct pci_dev *pci_dev, 2058 struct pci_cap_saved_state *new_cap) 2059 { 2060 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space); 2061 } 2062 2063 /** 2064 * _pci_add_cap_save_buffer - allocate buffer for saving given 2065 * capability registers 2066 * @dev: the PCI device 2067 * @cap: the capability to allocate the buffer for 2068 * @extended: Standard or Extended capability ID 2069 * @size: requested size of the buffer 2070 */ 2071 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap, 2072 bool extended, unsigned int size) 2073 { 2074 int pos; 2075 struct pci_cap_saved_state *save_state; 2076 2077 if (extended) 2078 pos = pci_find_ext_capability(dev, cap); 2079 else 2080 pos = pci_find_capability(dev, cap); 2081 2082 if (pos <= 0) 2083 return 0; 2084 2085 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL); 2086 if (!save_state) 2087 return -ENOMEM; 2088 2089 save_state->cap.cap_nr = cap; 2090 save_state->cap.cap_extended = extended; 2091 save_state->cap.size = size; 2092 pci_add_saved_cap(dev, save_state); 2093 2094 return 0; 2095 } 2096 2097 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size) 2098 { 2099 return _pci_add_cap_save_buffer(dev, cap, false, size); 2100 } 2101 2102 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size) 2103 { 2104 return _pci_add_cap_save_buffer(dev, cap, true, size); 2105 } 2106 2107 /** 2108 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities 2109 * @dev: the PCI device 2110 */ 2111 void pci_allocate_cap_save_buffers(struct pci_dev *dev) 2112 { 2113 int error; 2114 2115 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP, 2116 PCI_EXP_SAVE_REGS * sizeof(u16)); 2117 if (error) 2118 dev_err(&dev->dev, 2119 "unable to preallocate PCI Express save buffer\n"); 2120 2121 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16)); 2122 if (error) 2123 dev_err(&dev->dev, 2124 "unable to preallocate PCI-X save buffer\n"); 2125 2126 pci_allocate_vc_save_buffers(dev); 2127 } 2128 2129 void pci_free_cap_save_buffers(struct pci_dev *dev) 2130 { 2131 struct pci_cap_saved_state *tmp; 2132 struct hlist_node *n; 2133 2134 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next) 2135 kfree(tmp); 2136 } 2137 2138 /** 2139 * pci_configure_ari - enable or disable ARI forwarding 2140 * @dev: the PCI device 2141 * 2142 * If @dev and its upstream bridge both support ARI, enable ARI in the 2143 * bridge. Otherwise, disable ARI in the bridge. 2144 */ 2145 void pci_configure_ari(struct pci_dev *dev) 2146 { 2147 u32 cap; 2148 struct pci_dev *bridge; 2149 2150 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn) 2151 return; 2152 2153 bridge = dev->bus->self; 2154 if (!bridge) 2155 return; 2156 2157 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 2158 if (!(cap & PCI_EXP_DEVCAP2_ARI)) 2159 return; 2160 2161 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) { 2162 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, 2163 PCI_EXP_DEVCTL2_ARI); 2164 bridge->ari_enabled = 1; 2165 } else { 2166 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2, 2167 PCI_EXP_DEVCTL2_ARI); 2168 bridge->ari_enabled = 0; 2169 } 2170 } 2171 2172 static int pci_acs_enable; 2173 2174 /** 2175 * pci_request_acs - ask for ACS to be enabled if supported 2176 */ 2177 void pci_request_acs(void) 2178 { 2179 pci_acs_enable = 1; 2180 } 2181 2182 /** 2183 * pci_enable_acs - enable ACS if hardware support it 2184 * @dev: the PCI device 2185 */ 2186 void pci_enable_acs(struct pci_dev *dev) 2187 { 2188 int pos; 2189 u16 cap; 2190 u16 ctrl; 2191 2192 if (!pci_acs_enable) 2193 return; 2194 2195 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS); 2196 if (!pos) 2197 return; 2198 2199 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap); 2200 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 2201 2202 /* Source Validation */ 2203 ctrl |= (cap & PCI_ACS_SV); 2204 2205 /* P2P Request Redirect */ 2206 ctrl |= (cap & PCI_ACS_RR); 2207 2208 /* P2P Completion Redirect */ 2209 ctrl |= (cap & PCI_ACS_CR); 2210 2211 /* Upstream Forwarding */ 2212 ctrl |= (cap & PCI_ACS_UF); 2213 2214 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 2215 } 2216 2217 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags) 2218 { 2219 int pos; 2220 u16 cap, ctrl; 2221 2222 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS); 2223 if (!pos) 2224 return false; 2225 2226 /* 2227 * Except for egress control, capabilities are either required 2228 * or only required if controllable. Features missing from the 2229 * capability field can therefore be assumed as hard-wired enabled. 2230 */ 2231 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap); 2232 acs_flags &= (cap | PCI_ACS_EC); 2233 2234 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl); 2235 return (ctrl & acs_flags) == acs_flags; 2236 } 2237 2238 /** 2239 * pci_acs_enabled - test ACS against required flags for a given device 2240 * @pdev: device to test 2241 * @acs_flags: required PCI ACS flags 2242 * 2243 * Return true if the device supports the provided flags. Automatically 2244 * filters out flags that are not implemented on multifunction devices. 2245 * 2246 * Note that this interface checks the effective ACS capabilities of the 2247 * device rather than the actual capabilities. For instance, most single 2248 * function endpoints are not required to support ACS because they have no 2249 * opportunity for peer-to-peer access. We therefore return 'true' 2250 * regardless of whether the device exposes an ACS capability. This makes 2251 * it much easier for callers of this function to ignore the actual type 2252 * or topology of the device when testing ACS support. 2253 */ 2254 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags) 2255 { 2256 int ret; 2257 2258 ret = pci_dev_specific_acs_enabled(pdev, acs_flags); 2259 if (ret >= 0) 2260 return ret > 0; 2261 2262 /* 2263 * Conventional PCI and PCI-X devices never support ACS, either 2264 * effectively or actually. The shared bus topology implies that 2265 * any device on the bus can receive or snoop DMA. 2266 */ 2267 if (!pci_is_pcie(pdev)) 2268 return false; 2269 2270 switch (pci_pcie_type(pdev)) { 2271 /* 2272 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec, 2273 * but since their primary interface is PCI/X, we conservatively 2274 * handle them as we would a non-PCIe device. 2275 */ 2276 case PCI_EXP_TYPE_PCIE_BRIDGE: 2277 /* 2278 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never 2279 * applicable... must never implement an ACS Extended Capability...". 2280 * This seems arbitrary, but we take a conservative interpretation 2281 * of this statement. 2282 */ 2283 case PCI_EXP_TYPE_PCI_BRIDGE: 2284 case PCI_EXP_TYPE_RC_EC: 2285 return false; 2286 /* 2287 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should 2288 * implement ACS in order to indicate their peer-to-peer capabilities, 2289 * regardless of whether they are single- or multi-function devices. 2290 */ 2291 case PCI_EXP_TYPE_DOWNSTREAM: 2292 case PCI_EXP_TYPE_ROOT_PORT: 2293 return pci_acs_flags_enabled(pdev, acs_flags); 2294 /* 2295 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be 2296 * implemented by the remaining PCIe types to indicate peer-to-peer 2297 * capabilities, but only when they are part of a multifunction 2298 * device. The footnote for section 6.12 indicates the specific 2299 * PCIe types included here. 2300 */ 2301 case PCI_EXP_TYPE_ENDPOINT: 2302 case PCI_EXP_TYPE_UPSTREAM: 2303 case PCI_EXP_TYPE_LEG_END: 2304 case PCI_EXP_TYPE_RC_END: 2305 if (!pdev->multifunction) 2306 break; 2307 2308 return pci_acs_flags_enabled(pdev, acs_flags); 2309 } 2310 2311 /* 2312 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable 2313 * to single function devices with the exception of downstream ports. 2314 */ 2315 return true; 2316 } 2317 2318 /** 2319 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy 2320 * @start: starting downstream device 2321 * @end: ending upstream device or NULL to search to the root bus 2322 * @acs_flags: required flags 2323 * 2324 * Walk up a device tree from start to end testing PCI ACS support. If 2325 * any step along the way does not support the required flags, return false. 2326 */ 2327 bool pci_acs_path_enabled(struct pci_dev *start, 2328 struct pci_dev *end, u16 acs_flags) 2329 { 2330 struct pci_dev *pdev, *parent = start; 2331 2332 do { 2333 pdev = parent; 2334 2335 if (!pci_acs_enabled(pdev, acs_flags)) 2336 return false; 2337 2338 if (pci_is_root_bus(pdev->bus)) 2339 return (end == NULL); 2340 2341 parent = pdev->bus->self; 2342 } while (pdev != end); 2343 2344 return true; 2345 } 2346 2347 /** 2348 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge 2349 * @dev: the PCI device 2350 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD) 2351 * 2352 * Perform INTx swizzling for a device behind one level of bridge. This is 2353 * required by section 9.1 of the PCI-to-PCI bridge specification for devices 2354 * behind bridges on add-in cards. For devices with ARI enabled, the slot 2355 * number is always 0 (see the Implementation Note in section 2.2.8.1 of 2356 * the PCI Express Base Specification, Revision 2.1) 2357 */ 2358 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin) 2359 { 2360 int slot; 2361 2362 if (pci_ari_enabled(dev->bus)) 2363 slot = 0; 2364 else 2365 slot = PCI_SLOT(dev->devfn); 2366 2367 return (((pin - 1) + slot) % 4) + 1; 2368 } 2369 2370 int 2371 pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge) 2372 { 2373 u8 pin; 2374 2375 pin = dev->pin; 2376 if (!pin) 2377 return -1; 2378 2379 while (!pci_is_root_bus(dev->bus)) { 2380 pin = pci_swizzle_interrupt_pin(dev, pin); 2381 dev = dev->bus->self; 2382 } 2383 *bridge = dev; 2384 return pin; 2385 } 2386 2387 /** 2388 * pci_common_swizzle - swizzle INTx all the way to root bridge 2389 * @dev: the PCI device 2390 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD) 2391 * 2392 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI 2393 * bridges all the way up to a PCI root bus. 2394 */ 2395 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp) 2396 { 2397 u8 pin = *pinp; 2398 2399 while (!pci_is_root_bus(dev->bus)) { 2400 pin = pci_swizzle_interrupt_pin(dev, pin); 2401 dev = dev->bus->self; 2402 } 2403 *pinp = pin; 2404 return PCI_SLOT(dev->devfn); 2405 } 2406 2407 /** 2408 * pci_release_region - Release a PCI bar 2409 * @pdev: PCI device whose resources were previously reserved by pci_request_region 2410 * @bar: BAR to release 2411 * 2412 * Releases the PCI I/O and memory resources previously reserved by a 2413 * successful call to pci_request_region. Call this function only 2414 * after all use of the PCI regions has ceased. 2415 */ 2416 void pci_release_region(struct pci_dev *pdev, int bar) 2417 { 2418 struct pci_devres *dr; 2419 2420 if (pci_resource_len(pdev, bar) == 0) 2421 return; 2422 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) 2423 release_region(pci_resource_start(pdev, bar), 2424 pci_resource_len(pdev, bar)); 2425 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) 2426 release_mem_region(pci_resource_start(pdev, bar), 2427 pci_resource_len(pdev, bar)); 2428 2429 dr = find_pci_dr(pdev); 2430 if (dr) 2431 dr->region_mask &= ~(1 << bar); 2432 } 2433 2434 /** 2435 * __pci_request_region - Reserved PCI I/O and memory resource 2436 * @pdev: PCI device whose resources are to be reserved 2437 * @bar: BAR to be reserved 2438 * @res_name: Name to be associated with resource. 2439 * @exclusive: whether the region access is exclusive or not 2440 * 2441 * Mark the PCI region associated with PCI device @pdev BR @bar as 2442 * being reserved by owner @res_name. Do not access any 2443 * address inside the PCI regions unless this call returns 2444 * successfully. 2445 * 2446 * If @exclusive is set, then the region is marked so that userspace 2447 * is explicitly not allowed to map the resource via /dev/mem or 2448 * sysfs MMIO access. 2449 * 2450 * Returns 0 on success, or %EBUSY on error. A warning 2451 * message is also printed on failure. 2452 */ 2453 static int __pci_request_region(struct pci_dev *pdev, int bar, const char *res_name, 2454 int exclusive) 2455 { 2456 struct pci_devres *dr; 2457 2458 if (pci_resource_len(pdev, bar) == 0) 2459 return 0; 2460 2461 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) { 2462 if (!request_region(pci_resource_start(pdev, bar), 2463 pci_resource_len(pdev, bar), res_name)) 2464 goto err_out; 2465 } 2466 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) { 2467 if (!__request_mem_region(pci_resource_start(pdev, bar), 2468 pci_resource_len(pdev, bar), res_name, 2469 exclusive)) 2470 goto err_out; 2471 } 2472 2473 dr = find_pci_dr(pdev); 2474 if (dr) 2475 dr->region_mask |= 1 << bar; 2476 2477 return 0; 2478 2479 err_out: 2480 dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar, 2481 &pdev->resource[bar]); 2482 return -EBUSY; 2483 } 2484 2485 /** 2486 * pci_request_region - Reserve PCI I/O and memory resource 2487 * @pdev: PCI device whose resources are to be reserved 2488 * @bar: BAR to be reserved 2489 * @res_name: Name to be associated with resource 2490 * 2491 * Mark the PCI region associated with PCI device @pdev BAR @bar as 2492 * being reserved by owner @res_name. Do not access any 2493 * address inside the PCI regions unless this call returns 2494 * successfully. 2495 * 2496 * Returns 0 on success, or %EBUSY on error. A warning 2497 * message is also printed on failure. 2498 */ 2499 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name) 2500 { 2501 return __pci_request_region(pdev, bar, res_name, 0); 2502 } 2503 2504 /** 2505 * pci_request_region_exclusive - Reserved PCI I/O and memory resource 2506 * @pdev: PCI device whose resources are to be reserved 2507 * @bar: BAR to be reserved 2508 * @res_name: Name to be associated with resource. 2509 * 2510 * Mark the PCI region associated with PCI device @pdev BR @bar as 2511 * being reserved by owner @res_name. Do not access any 2512 * address inside the PCI regions unless this call returns 2513 * successfully. 2514 * 2515 * Returns 0 on success, or %EBUSY on error. A warning 2516 * message is also printed on failure. 2517 * 2518 * The key difference that _exclusive makes it that userspace is 2519 * explicitly not allowed to map the resource via /dev/mem or 2520 * sysfs. 2521 */ 2522 int pci_request_region_exclusive(struct pci_dev *pdev, int bar, const char *res_name) 2523 { 2524 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE); 2525 } 2526 /** 2527 * pci_release_selected_regions - Release selected PCI I/O and memory resources 2528 * @pdev: PCI device whose resources were previously reserved 2529 * @bars: Bitmask of BARs to be released 2530 * 2531 * Release selected PCI I/O and memory resources previously reserved. 2532 * Call this function only after all use of the PCI regions has ceased. 2533 */ 2534 void pci_release_selected_regions(struct pci_dev *pdev, int bars) 2535 { 2536 int i; 2537 2538 for (i = 0; i < 6; i++) 2539 if (bars & (1 << i)) 2540 pci_release_region(pdev, i); 2541 } 2542 2543 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars, 2544 const char *res_name, int excl) 2545 { 2546 int i; 2547 2548 for (i = 0; i < 6; i++) 2549 if (bars & (1 << i)) 2550 if (__pci_request_region(pdev, i, res_name, excl)) 2551 goto err_out; 2552 return 0; 2553 2554 err_out: 2555 while(--i >= 0) 2556 if (bars & (1 << i)) 2557 pci_release_region(pdev, i); 2558 2559 return -EBUSY; 2560 } 2561 2562 2563 /** 2564 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources 2565 * @pdev: PCI device whose resources are to be reserved 2566 * @bars: Bitmask of BARs to be requested 2567 * @res_name: Name to be associated with resource 2568 */ 2569 int pci_request_selected_regions(struct pci_dev *pdev, int bars, 2570 const char *res_name) 2571 { 2572 return __pci_request_selected_regions(pdev, bars, res_name, 0); 2573 } 2574 2575 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, 2576 int bars, const char *res_name) 2577 { 2578 return __pci_request_selected_regions(pdev, bars, res_name, 2579 IORESOURCE_EXCLUSIVE); 2580 } 2581 2582 /** 2583 * pci_release_regions - Release reserved PCI I/O and memory resources 2584 * @pdev: PCI device whose resources were previously reserved by pci_request_regions 2585 * 2586 * Releases all PCI I/O and memory resources previously reserved by a 2587 * successful call to pci_request_regions. Call this function only 2588 * after all use of the PCI regions has ceased. 2589 */ 2590 2591 void pci_release_regions(struct pci_dev *pdev) 2592 { 2593 pci_release_selected_regions(pdev, (1 << 6) - 1); 2594 } 2595 2596 /** 2597 * pci_request_regions - Reserved PCI I/O and memory resources 2598 * @pdev: PCI device whose resources are to be reserved 2599 * @res_name: Name to be associated with resource. 2600 * 2601 * Mark all PCI regions associated with PCI device @pdev as 2602 * being reserved by owner @res_name. Do not access any 2603 * address inside the PCI regions unless this call returns 2604 * successfully. 2605 * 2606 * Returns 0 on success, or %EBUSY on error. A warning 2607 * message is also printed on failure. 2608 */ 2609 int pci_request_regions(struct pci_dev *pdev, const char *res_name) 2610 { 2611 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name); 2612 } 2613 2614 /** 2615 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources 2616 * @pdev: PCI device whose resources are to be reserved 2617 * @res_name: Name to be associated with resource. 2618 * 2619 * Mark all PCI regions associated with PCI device @pdev as 2620 * being reserved by owner @res_name. Do not access any 2621 * address inside the PCI regions unless this call returns 2622 * successfully. 2623 * 2624 * pci_request_regions_exclusive() will mark the region so that 2625 * /dev/mem and the sysfs MMIO access will not be allowed. 2626 * 2627 * Returns 0 on success, or %EBUSY on error. A warning 2628 * message is also printed on failure. 2629 */ 2630 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name) 2631 { 2632 return pci_request_selected_regions_exclusive(pdev, 2633 ((1 << 6) - 1), res_name); 2634 } 2635 2636 static void __pci_set_master(struct pci_dev *dev, bool enable) 2637 { 2638 u16 old_cmd, cmd; 2639 2640 pci_read_config_word(dev, PCI_COMMAND, &old_cmd); 2641 if (enable) 2642 cmd = old_cmd | PCI_COMMAND_MASTER; 2643 else 2644 cmd = old_cmd & ~PCI_COMMAND_MASTER; 2645 if (cmd != old_cmd) { 2646 dev_dbg(&dev->dev, "%s bus mastering\n", 2647 enable ? "enabling" : "disabling"); 2648 pci_write_config_word(dev, PCI_COMMAND, cmd); 2649 } 2650 dev->is_busmaster = enable; 2651 } 2652 2653 /** 2654 * pcibios_setup - process "pci=" kernel boot arguments 2655 * @str: string used to pass in "pci=" kernel boot arguments 2656 * 2657 * Process kernel boot arguments. This is the default implementation. 2658 * Architecture specific implementations can override this as necessary. 2659 */ 2660 char * __weak __init pcibios_setup(char *str) 2661 { 2662 return str; 2663 } 2664 2665 /** 2666 * pcibios_set_master - enable PCI bus-mastering for device dev 2667 * @dev: the PCI device to enable 2668 * 2669 * Enables PCI bus-mastering for the device. This is the default 2670 * implementation. Architecture specific implementations can override 2671 * this if necessary. 2672 */ 2673 void __weak pcibios_set_master(struct pci_dev *dev) 2674 { 2675 u8 lat; 2676 2677 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */ 2678 if (pci_is_pcie(dev)) 2679 return; 2680 2681 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat); 2682 if (lat < 16) 2683 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency; 2684 else if (lat > pcibios_max_latency) 2685 lat = pcibios_max_latency; 2686 else 2687 return; 2688 2689 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat); 2690 } 2691 2692 /** 2693 * pci_set_master - enables bus-mastering for device dev 2694 * @dev: the PCI device to enable 2695 * 2696 * Enables bus-mastering on the device and calls pcibios_set_master() 2697 * to do the needed arch specific settings. 2698 */ 2699 void pci_set_master(struct pci_dev *dev) 2700 { 2701 __pci_set_master(dev, true); 2702 pcibios_set_master(dev); 2703 } 2704 2705 /** 2706 * pci_clear_master - disables bus-mastering for device dev 2707 * @dev: the PCI device to disable 2708 */ 2709 void pci_clear_master(struct pci_dev *dev) 2710 { 2711 __pci_set_master(dev, false); 2712 } 2713 2714 /** 2715 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed 2716 * @dev: the PCI device for which MWI is to be enabled 2717 * 2718 * Helper function for pci_set_mwi. 2719 * Originally copied from drivers/net/acenic.c. 2720 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. 2721 * 2722 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 2723 */ 2724 int pci_set_cacheline_size(struct pci_dev *dev) 2725 { 2726 u8 cacheline_size; 2727 2728 if (!pci_cache_line_size) 2729 return -EINVAL; 2730 2731 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be 2732 equal to or multiple of the right value. */ 2733 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 2734 if (cacheline_size >= pci_cache_line_size && 2735 (cacheline_size % pci_cache_line_size) == 0) 2736 return 0; 2737 2738 /* Write the correct value. */ 2739 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size); 2740 /* Read it back. */ 2741 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 2742 if (cacheline_size == pci_cache_line_size) 2743 return 0; 2744 2745 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not " 2746 "supported\n", pci_cache_line_size << 2); 2747 2748 return -EINVAL; 2749 } 2750 EXPORT_SYMBOL_GPL(pci_set_cacheline_size); 2751 2752 #ifdef PCI_DISABLE_MWI 2753 int pci_set_mwi(struct pci_dev *dev) 2754 { 2755 return 0; 2756 } 2757 2758 int pci_try_set_mwi(struct pci_dev *dev) 2759 { 2760 return 0; 2761 } 2762 2763 void pci_clear_mwi(struct pci_dev *dev) 2764 { 2765 } 2766 2767 #else 2768 2769 /** 2770 * pci_set_mwi - enables memory-write-invalidate PCI transaction 2771 * @dev: the PCI device for which MWI is enabled 2772 * 2773 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 2774 * 2775 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 2776 */ 2777 int 2778 pci_set_mwi(struct pci_dev *dev) 2779 { 2780 int rc; 2781 u16 cmd; 2782 2783 rc = pci_set_cacheline_size(dev); 2784 if (rc) 2785 return rc; 2786 2787 pci_read_config_word(dev, PCI_COMMAND, &cmd); 2788 if (! (cmd & PCI_COMMAND_INVALIDATE)) { 2789 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n"); 2790 cmd |= PCI_COMMAND_INVALIDATE; 2791 pci_write_config_word(dev, PCI_COMMAND, cmd); 2792 } 2793 2794 return 0; 2795 } 2796 2797 /** 2798 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction 2799 * @dev: the PCI device for which MWI is enabled 2800 * 2801 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 2802 * Callers are not required to check the return value. 2803 * 2804 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 2805 */ 2806 int pci_try_set_mwi(struct pci_dev *dev) 2807 { 2808 int rc = pci_set_mwi(dev); 2809 return rc; 2810 } 2811 2812 /** 2813 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev 2814 * @dev: the PCI device to disable 2815 * 2816 * Disables PCI Memory-Write-Invalidate transaction on the device 2817 */ 2818 void 2819 pci_clear_mwi(struct pci_dev *dev) 2820 { 2821 u16 cmd; 2822 2823 pci_read_config_word(dev, PCI_COMMAND, &cmd); 2824 if (cmd & PCI_COMMAND_INVALIDATE) { 2825 cmd &= ~PCI_COMMAND_INVALIDATE; 2826 pci_write_config_word(dev, PCI_COMMAND, cmd); 2827 } 2828 } 2829 #endif /* ! PCI_DISABLE_MWI */ 2830 2831 /** 2832 * pci_intx - enables/disables PCI INTx for device dev 2833 * @pdev: the PCI device to operate on 2834 * @enable: boolean: whether to enable or disable PCI INTx 2835 * 2836 * Enables/disables PCI INTx for device dev 2837 */ 2838 void 2839 pci_intx(struct pci_dev *pdev, int enable) 2840 { 2841 u16 pci_command, new; 2842 2843 pci_read_config_word(pdev, PCI_COMMAND, &pci_command); 2844 2845 if (enable) { 2846 new = pci_command & ~PCI_COMMAND_INTX_DISABLE; 2847 } else { 2848 new = pci_command | PCI_COMMAND_INTX_DISABLE; 2849 } 2850 2851 if (new != pci_command) { 2852 struct pci_devres *dr; 2853 2854 pci_write_config_word(pdev, PCI_COMMAND, new); 2855 2856 dr = find_pci_dr(pdev); 2857 if (dr && !dr->restore_intx) { 2858 dr->restore_intx = 1; 2859 dr->orig_intx = !enable; 2860 } 2861 } 2862 } 2863 2864 /** 2865 * pci_intx_mask_supported - probe for INTx masking support 2866 * @dev: the PCI device to operate on 2867 * 2868 * Check if the device dev support INTx masking via the config space 2869 * command word. 2870 */ 2871 bool pci_intx_mask_supported(struct pci_dev *dev) 2872 { 2873 bool mask_supported = false; 2874 u16 orig, new; 2875 2876 if (dev->broken_intx_masking) 2877 return false; 2878 2879 pci_cfg_access_lock(dev); 2880 2881 pci_read_config_word(dev, PCI_COMMAND, &orig); 2882 pci_write_config_word(dev, PCI_COMMAND, 2883 orig ^ PCI_COMMAND_INTX_DISABLE); 2884 pci_read_config_word(dev, PCI_COMMAND, &new); 2885 2886 /* 2887 * There's no way to protect against hardware bugs or detect them 2888 * reliably, but as long as we know what the value should be, let's 2889 * go ahead and check it. 2890 */ 2891 if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) { 2892 dev_err(&dev->dev, "Command register changed from " 2893 "0x%x to 0x%x: driver or hardware bug?\n", orig, new); 2894 } else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) { 2895 mask_supported = true; 2896 pci_write_config_word(dev, PCI_COMMAND, orig); 2897 } 2898 2899 pci_cfg_access_unlock(dev); 2900 return mask_supported; 2901 } 2902 EXPORT_SYMBOL_GPL(pci_intx_mask_supported); 2903 2904 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask) 2905 { 2906 struct pci_bus *bus = dev->bus; 2907 bool mask_updated = true; 2908 u32 cmd_status_dword; 2909 u16 origcmd, newcmd; 2910 unsigned long flags; 2911 bool irq_pending; 2912 2913 /* 2914 * We do a single dword read to retrieve both command and status. 2915 * Document assumptions that make this possible. 2916 */ 2917 BUILD_BUG_ON(PCI_COMMAND % 4); 2918 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS); 2919 2920 raw_spin_lock_irqsave(&pci_lock, flags); 2921 2922 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword); 2923 2924 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT; 2925 2926 /* 2927 * Check interrupt status register to see whether our device 2928 * triggered the interrupt (when masking) or the next IRQ is 2929 * already pending (when unmasking). 2930 */ 2931 if (mask != irq_pending) { 2932 mask_updated = false; 2933 goto done; 2934 } 2935 2936 origcmd = cmd_status_dword; 2937 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE; 2938 if (mask) 2939 newcmd |= PCI_COMMAND_INTX_DISABLE; 2940 if (newcmd != origcmd) 2941 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd); 2942 2943 done: 2944 raw_spin_unlock_irqrestore(&pci_lock, flags); 2945 2946 return mask_updated; 2947 } 2948 2949 /** 2950 * pci_check_and_mask_intx - mask INTx on pending interrupt 2951 * @dev: the PCI device to operate on 2952 * 2953 * Check if the device dev has its INTx line asserted, mask it and 2954 * return true in that case. False is returned if not interrupt was 2955 * pending. 2956 */ 2957 bool pci_check_and_mask_intx(struct pci_dev *dev) 2958 { 2959 return pci_check_and_set_intx_mask(dev, true); 2960 } 2961 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx); 2962 2963 /** 2964 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending 2965 * @dev: the PCI device to operate on 2966 * 2967 * Check if the device dev has its INTx line asserted, unmask it if not 2968 * and return true. False is returned and the mask remains active if 2969 * there was still an interrupt pending. 2970 */ 2971 bool pci_check_and_unmask_intx(struct pci_dev *dev) 2972 { 2973 return pci_check_and_set_intx_mask(dev, false); 2974 } 2975 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx); 2976 2977 /** 2978 * pci_msi_off - disables any MSI or MSI-X capabilities 2979 * @dev: the PCI device to operate on 2980 * 2981 * If you want to use MSI, see pci_enable_msi() and friends. 2982 * This is a lower-level primitive that allows us to disable 2983 * MSI operation at the device level. 2984 */ 2985 void pci_msi_off(struct pci_dev *dev) 2986 { 2987 int pos; 2988 u16 control; 2989 2990 /* 2991 * This looks like it could go in msi.c, but we need it even when 2992 * CONFIG_PCI_MSI=n. For the same reason, we can't use 2993 * dev->msi_cap or dev->msix_cap here. 2994 */ 2995 pos = pci_find_capability(dev, PCI_CAP_ID_MSI); 2996 if (pos) { 2997 pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control); 2998 control &= ~PCI_MSI_FLAGS_ENABLE; 2999 pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control); 3000 } 3001 pos = pci_find_capability(dev, PCI_CAP_ID_MSIX); 3002 if (pos) { 3003 pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control); 3004 control &= ~PCI_MSIX_FLAGS_ENABLE; 3005 pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control); 3006 } 3007 } 3008 EXPORT_SYMBOL_GPL(pci_msi_off); 3009 3010 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size) 3011 { 3012 return dma_set_max_seg_size(&dev->dev, size); 3013 } 3014 EXPORT_SYMBOL(pci_set_dma_max_seg_size); 3015 3016 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask) 3017 { 3018 return dma_set_seg_boundary(&dev->dev, mask); 3019 } 3020 EXPORT_SYMBOL(pci_set_dma_seg_boundary); 3021 3022 /** 3023 * pci_wait_for_pending_transaction - waits for pending transaction 3024 * @dev: the PCI device to operate on 3025 * 3026 * Return 0 if transaction is pending 1 otherwise. 3027 */ 3028 int pci_wait_for_pending_transaction(struct pci_dev *dev) 3029 { 3030 if (!pci_is_pcie(dev)) 3031 return 1; 3032 3033 return pci_wait_for_pending(dev, PCI_EXP_DEVSTA, PCI_EXP_DEVSTA_TRPND); 3034 } 3035 EXPORT_SYMBOL(pci_wait_for_pending_transaction); 3036 3037 static int pcie_flr(struct pci_dev *dev, int probe) 3038 { 3039 u32 cap; 3040 3041 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap); 3042 if (!(cap & PCI_EXP_DEVCAP_FLR)) 3043 return -ENOTTY; 3044 3045 if (probe) 3046 return 0; 3047 3048 if (!pci_wait_for_pending_transaction(dev)) 3049 dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n"); 3050 3051 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR); 3052 3053 msleep(100); 3054 3055 return 0; 3056 } 3057 3058 static int pci_af_flr(struct pci_dev *dev, int probe) 3059 { 3060 int pos; 3061 u8 cap; 3062 3063 pos = pci_find_capability(dev, PCI_CAP_ID_AF); 3064 if (!pos) 3065 return -ENOTTY; 3066 3067 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap); 3068 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR)) 3069 return -ENOTTY; 3070 3071 if (probe) 3072 return 0; 3073 3074 /* Wait for Transaction Pending bit clean */ 3075 if (pci_wait_for_pending(dev, PCI_AF_STATUS, PCI_AF_STATUS_TP)) 3076 goto clear; 3077 3078 dev_err(&dev->dev, "transaction is not cleared; " 3079 "proceeding with reset anyway\n"); 3080 3081 clear: 3082 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR); 3083 msleep(100); 3084 3085 return 0; 3086 } 3087 3088 /** 3089 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0. 3090 * @dev: Device to reset. 3091 * @probe: If set, only check if the device can be reset this way. 3092 * 3093 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is 3094 * unset, it will be reinitialized internally when going from PCI_D3hot to 3095 * PCI_D0. If that's the case and the device is not in a low-power state 3096 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset. 3097 * 3098 * NOTE: This causes the caller to sleep for twice the device power transition 3099 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms 3100 * by default (i.e. unless the @dev's d3_delay field has a different value). 3101 * Moreover, only devices in D0 can be reset by this function. 3102 */ 3103 static int pci_pm_reset(struct pci_dev *dev, int probe) 3104 { 3105 u16 csr; 3106 3107 if (!dev->pm_cap) 3108 return -ENOTTY; 3109 3110 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr); 3111 if (csr & PCI_PM_CTRL_NO_SOFT_RESET) 3112 return -ENOTTY; 3113 3114 if (probe) 3115 return 0; 3116 3117 if (dev->current_state != PCI_D0) 3118 return -EINVAL; 3119 3120 csr &= ~PCI_PM_CTRL_STATE_MASK; 3121 csr |= PCI_D3hot; 3122 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 3123 pci_dev_d3_sleep(dev); 3124 3125 csr &= ~PCI_PM_CTRL_STATE_MASK; 3126 csr |= PCI_D0; 3127 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 3128 pci_dev_d3_sleep(dev); 3129 3130 return 0; 3131 } 3132 3133 /** 3134 * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge. 3135 * @dev: Bridge device 3136 * 3137 * Use the bridge control register to assert reset on the secondary bus. 3138 * Devices on the secondary bus are left in power-on state. 3139 */ 3140 void pci_reset_bridge_secondary_bus(struct pci_dev *dev) 3141 { 3142 u16 ctrl; 3143 3144 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl); 3145 ctrl |= PCI_BRIDGE_CTL_BUS_RESET; 3146 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 3147 /* 3148 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double 3149 * this to 2ms to ensure that we meet the minimum requirement. 3150 */ 3151 msleep(2); 3152 3153 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET; 3154 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 3155 3156 /* 3157 * Trhfa for conventional PCI is 2^25 clock cycles. 3158 * Assuming a minimum 33MHz clock this results in a 1s 3159 * delay before we can consider subordinate devices to 3160 * be re-initialized. PCIe has some ways to shorten this, 3161 * but we don't make use of them yet. 3162 */ 3163 ssleep(1); 3164 } 3165 EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus); 3166 3167 static int pci_parent_bus_reset(struct pci_dev *dev, int probe) 3168 { 3169 struct pci_dev *pdev; 3170 3171 if (pci_is_root_bus(dev->bus) || dev->subordinate || !dev->bus->self) 3172 return -ENOTTY; 3173 3174 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 3175 if (pdev != dev) 3176 return -ENOTTY; 3177 3178 if (probe) 3179 return 0; 3180 3181 pci_reset_bridge_secondary_bus(dev->bus->self); 3182 3183 return 0; 3184 } 3185 3186 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe) 3187 { 3188 int rc = -ENOTTY; 3189 3190 if (!hotplug || !try_module_get(hotplug->ops->owner)) 3191 return rc; 3192 3193 if (hotplug->ops->reset_slot) 3194 rc = hotplug->ops->reset_slot(hotplug, probe); 3195 3196 module_put(hotplug->ops->owner); 3197 3198 return rc; 3199 } 3200 3201 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe) 3202 { 3203 struct pci_dev *pdev; 3204 3205 if (dev->subordinate || !dev->slot) 3206 return -ENOTTY; 3207 3208 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 3209 if (pdev != dev && pdev->slot == dev->slot) 3210 return -ENOTTY; 3211 3212 return pci_reset_hotplug_slot(dev->slot->hotplug, probe); 3213 } 3214 3215 static int __pci_dev_reset(struct pci_dev *dev, int probe) 3216 { 3217 int rc; 3218 3219 might_sleep(); 3220 3221 rc = pci_dev_specific_reset(dev, probe); 3222 if (rc != -ENOTTY) 3223 goto done; 3224 3225 rc = pcie_flr(dev, probe); 3226 if (rc != -ENOTTY) 3227 goto done; 3228 3229 rc = pci_af_flr(dev, probe); 3230 if (rc != -ENOTTY) 3231 goto done; 3232 3233 rc = pci_pm_reset(dev, probe); 3234 if (rc != -ENOTTY) 3235 goto done; 3236 3237 rc = pci_dev_reset_slot_function(dev, probe); 3238 if (rc != -ENOTTY) 3239 goto done; 3240 3241 rc = pci_parent_bus_reset(dev, probe); 3242 done: 3243 return rc; 3244 } 3245 3246 static void pci_dev_lock(struct pci_dev *dev) 3247 { 3248 pci_cfg_access_lock(dev); 3249 /* block PM suspend, driver probe, etc. */ 3250 device_lock(&dev->dev); 3251 } 3252 3253 /* Return 1 on successful lock, 0 on contention */ 3254 static int pci_dev_trylock(struct pci_dev *dev) 3255 { 3256 if (pci_cfg_access_trylock(dev)) { 3257 if (device_trylock(&dev->dev)) 3258 return 1; 3259 pci_cfg_access_unlock(dev); 3260 } 3261 3262 return 0; 3263 } 3264 3265 static void pci_dev_unlock(struct pci_dev *dev) 3266 { 3267 device_unlock(&dev->dev); 3268 pci_cfg_access_unlock(dev); 3269 } 3270 3271 static void pci_dev_save_and_disable(struct pci_dev *dev) 3272 { 3273 /* 3274 * Wake-up device prior to save. PM registers default to D0 after 3275 * reset and a simple register restore doesn't reliably return 3276 * to a non-D0 state anyway. 3277 */ 3278 pci_set_power_state(dev, PCI_D0); 3279 3280 pci_save_state(dev); 3281 /* 3282 * Disable the device by clearing the Command register, except for 3283 * INTx-disable which is set. This not only disables MMIO and I/O port 3284 * BARs, but also prevents the device from being Bus Master, preventing 3285 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3 3286 * compliant devices, INTx-disable prevents legacy interrupts. 3287 */ 3288 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE); 3289 } 3290 3291 static void pci_dev_restore(struct pci_dev *dev) 3292 { 3293 pci_restore_state(dev); 3294 } 3295 3296 static int pci_dev_reset(struct pci_dev *dev, int probe) 3297 { 3298 int rc; 3299 3300 if (!probe) 3301 pci_dev_lock(dev); 3302 3303 rc = __pci_dev_reset(dev, probe); 3304 3305 if (!probe) 3306 pci_dev_unlock(dev); 3307 3308 return rc; 3309 } 3310 /** 3311 * __pci_reset_function - reset a PCI device function 3312 * @dev: PCI device to reset 3313 * 3314 * Some devices allow an individual function to be reset without affecting 3315 * other functions in the same device. The PCI device must be responsive 3316 * to PCI config space in order to use this function. 3317 * 3318 * The device function is presumed to be unused when this function is called. 3319 * Resetting the device will make the contents of PCI configuration space 3320 * random, so any caller of this must be prepared to reinitialise the 3321 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 3322 * etc. 3323 * 3324 * Returns 0 if the device function was successfully reset or negative if the 3325 * device doesn't support resetting a single function. 3326 */ 3327 int __pci_reset_function(struct pci_dev *dev) 3328 { 3329 return pci_dev_reset(dev, 0); 3330 } 3331 EXPORT_SYMBOL_GPL(__pci_reset_function); 3332 3333 /** 3334 * __pci_reset_function_locked - reset a PCI device function while holding 3335 * the @dev mutex lock. 3336 * @dev: PCI device to reset 3337 * 3338 * Some devices allow an individual function to be reset without affecting 3339 * other functions in the same device. The PCI device must be responsive 3340 * to PCI config space in order to use this function. 3341 * 3342 * The device function is presumed to be unused and the caller is holding 3343 * the device mutex lock when this function is called. 3344 * Resetting the device will make the contents of PCI configuration space 3345 * random, so any caller of this must be prepared to reinitialise the 3346 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 3347 * etc. 3348 * 3349 * Returns 0 if the device function was successfully reset or negative if the 3350 * device doesn't support resetting a single function. 3351 */ 3352 int __pci_reset_function_locked(struct pci_dev *dev) 3353 { 3354 return __pci_dev_reset(dev, 0); 3355 } 3356 EXPORT_SYMBOL_GPL(__pci_reset_function_locked); 3357 3358 /** 3359 * pci_probe_reset_function - check whether the device can be safely reset 3360 * @dev: PCI device to reset 3361 * 3362 * Some devices allow an individual function to be reset without affecting 3363 * other functions in the same device. The PCI device must be responsive 3364 * to PCI config space in order to use this function. 3365 * 3366 * Returns 0 if the device function can be reset or negative if the 3367 * device doesn't support resetting a single function. 3368 */ 3369 int pci_probe_reset_function(struct pci_dev *dev) 3370 { 3371 return pci_dev_reset(dev, 1); 3372 } 3373 3374 /** 3375 * pci_reset_function - quiesce and reset a PCI device function 3376 * @dev: PCI device to reset 3377 * 3378 * Some devices allow an individual function to be reset without affecting 3379 * other functions in the same device. The PCI device must be responsive 3380 * to PCI config space in order to use this function. 3381 * 3382 * This function does not just reset the PCI portion of a device, but 3383 * clears all the state associated with the device. This function differs 3384 * from __pci_reset_function in that it saves and restores device state 3385 * over the reset. 3386 * 3387 * Returns 0 if the device function was successfully reset or negative if the 3388 * device doesn't support resetting a single function. 3389 */ 3390 int pci_reset_function(struct pci_dev *dev) 3391 { 3392 int rc; 3393 3394 rc = pci_dev_reset(dev, 1); 3395 if (rc) 3396 return rc; 3397 3398 pci_dev_save_and_disable(dev); 3399 3400 rc = pci_dev_reset(dev, 0); 3401 3402 pci_dev_restore(dev); 3403 3404 return rc; 3405 } 3406 EXPORT_SYMBOL_GPL(pci_reset_function); 3407 3408 /** 3409 * pci_try_reset_function - quiesce and reset a PCI device function 3410 * @dev: PCI device to reset 3411 * 3412 * Same as above, except return -EAGAIN if unable to lock device. 3413 */ 3414 int pci_try_reset_function(struct pci_dev *dev) 3415 { 3416 int rc; 3417 3418 rc = pci_dev_reset(dev, 1); 3419 if (rc) 3420 return rc; 3421 3422 pci_dev_save_and_disable(dev); 3423 3424 if (pci_dev_trylock(dev)) { 3425 rc = __pci_dev_reset(dev, 0); 3426 pci_dev_unlock(dev); 3427 } else 3428 rc = -EAGAIN; 3429 3430 pci_dev_restore(dev); 3431 3432 return rc; 3433 } 3434 EXPORT_SYMBOL_GPL(pci_try_reset_function); 3435 3436 /* Lock devices from the top of the tree down */ 3437 static void pci_bus_lock(struct pci_bus *bus) 3438 { 3439 struct pci_dev *dev; 3440 3441 list_for_each_entry(dev, &bus->devices, bus_list) { 3442 pci_dev_lock(dev); 3443 if (dev->subordinate) 3444 pci_bus_lock(dev->subordinate); 3445 } 3446 } 3447 3448 /* Unlock devices from the bottom of the tree up */ 3449 static void pci_bus_unlock(struct pci_bus *bus) 3450 { 3451 struct pci_dev *dev; 3452 3453 list_for_each_entry(dev, &bus->devices, bus_list) { 3454 if (dev->subordinate) 3455 pci_bus_unlock(dev->subordinate); 3456 pci_dev_unlock(dev); 3457 } 3458 } 3459 3460 /* Return 1 on successful lock, 0 on contention */ 3461 static int pci_bus_trylock(struct pci_bus *bus) 3462 { 3463 struct pci_dev *dev; 3464 3465 list_for_each_entry(dev, &bus->devices, bus_list) { 3466 if (!pci_dev_trylock(dev)) 3467 goto unlock; 3468 if (dev->subordinate) { 3469 if (!pci_bus_trylock(dev->subordinate)) { 3470 pci_dev_unlock(dev); 3471 goto unlock; 3472 } 3473 } 3474 } 3475 return 1; 3476 3477 unlock: 3478 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) { 3479 if (dev->subordinate) 3480 pci_bus_unlock(dev->subordinate); 3481 pci_dev_unlock(dev); 3482 } 3483 return 0; 3484 } 3485 3486 /* Lock devices from the top of the tree down */ 3487 static void pci_slot_lock(struct pci_slot *slot) 3488 { 3489 struct pci_dev *dev; 3490 3491 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 3492 if (!dev->slot || dev->slot != slot) 3493 continue; 3494 pci_dev_lock(dev); 3495 if (dev->subordinate) 3496 pci_bus_lock(dev->subordinate); 3497 } 3498 } 3499 3500 /* Unlock devices from the bottom of the tree up */ 3501 static void pci_slot_unlock(struct pci_slot *slot) 3502 { 3503 struct pci_dev *dev; 3504 3505 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 3506 if (!dev->slot || dev->slot != slot) 3507 continue; 3508 if (dev->subordinate) 3509 pci_bus_unlock(dev->subordinate); 3510 pci_dev_unlock(dev); 3511 } 3512 } 3513 3514 /* Return 1 on successful lock, 0 on contention */ 3515 static int pci_slot_trylock(struct pci_slot *slot) 3516 { 3517 struct pci_dev *dev; 3518 3519 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 3520 if (!dev->slot || dev->slot != slot) 3521 continue; 3522 if (!pci_dev_trylock(dev)) 3523 goto unlock; 3524 if (dev->subordinate) { 3525 if (!pci_bus_trylock(dev->subordinate)) { 3526 pci_dev_unlock(dev); 3527 goto unlock; 3528 } 3529 } 3530 } 3531 return 1; 3532 3533 unlock: 3534 list_for_each_entry_continue_reverse(dev, 3535 &slot->bus->devices, bus_list) { 3536 if (!dev->slot || dev->slot != slot) 3537 continue; 3538 if (dev->subordinate) 3539 pci_bus_unlock(dev->subordinate); 3540 pci_dev_unlock(dev); 3541 } 3542 return 0; 3543 } 3544 3545 /* Save and disable devices from the top of the tree down */ 3546 static void pci_bus_save_and_disable(struct pci_bus *bus) 3547 { 3548 struct pci_dev *dev; 3549 3550 list_for_each_entry(dev, &bus->devices, bus_list) { 3551 pci_dev_save_and_disable(dev); 3552 if (dev->subordinate) 3553 pci_bus_save_and_disable(dev->subordinate); 3554 } 3555 } 3556 3557 /* 3558 * Restore devices from top of the tree down - parent bridges need to be 3559 * restored before we can get to subordinate devices. 3560 */ 3561 static void pci_bus_restore(struct pci_bus *bus) 3562 { 3563 struct pci_dev *dev; 3564 3565 list_for_each_entry(dev, &bus->devices, bus_list) { 3566 pci_dev_restore(dev); 3567 if (dev->subordinate) 3568 pci_bus_restore(dev->subordinate); 3569 } 3570 } 3571 3572 /* Save and disable devices from the top of the tree down */ 3573 static void pci_slot_save_and_disable(struct pci_slot *slot) 3574 { 3575 struct pci_dev *dev; 3576 3577 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 3578 if (!dev->slot || dev->slot != slot) 3579 continue; 3580 pci_dev_save_and_disable(dev); 3581 if (dev->subordinate) 3582 pci_bus_save_and_disable(dev->subordinate); 3583 } 3584 } 3585 3586 /* 3587 * Restore devices from top of the tree down - parent bridges need to be 3588 * restored before we can get to subordinate devices. 3589 */ 3590 static void pci_slot_restore(struct pci_slot *slot) 3591 { 3592 struct pci_dev *dev; 3593 3594 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 3595 if (!dev->slot || dev->slot != slot) 3596 continue; 3597 pci_dev_restore(dev); 3598 if (dev->subordinate) 3599 pci_bus_restore(dev->subordinate); 3600 } 3601 } 3602 3603 static int pci_slot_reset(struct pci_slot *slot, int probe) 3604 { 3605 int rc; 3606 3607 if (!slot) 3608 return -ENOTTY; 3609 3610 if (!probe) 3611 pci_slot_lock(slot); 3612 3613 might_sleep(); 3614 3615 rc = pci_reset_hotplug_slot(slot->hotplug, probe); 3616 3617 if (!probe) 3618 pci_slot_unlock(slot); 3619 3620 return rc; 3621 } 3622 3623 /** 3624 * pci_probe_reset_slot - probe whether a PCI slot can be reset 3625 * @slot: PCI slot to probe 3626 * 3627 * Return 0 if slot can be reset, negative if a slot reset is not supported. 3628 */ 3629 int pci_probe_reset_slot(struct pci_slot *slot) 3630 { 3631 return pci_slot_reset(slot, 1); 3632 } 3633 EXPORT_SYMBOL_GPL(pci_probe_reset_slot); 3634 3635 /** 3636 * pci_reset_slot - reset a PCI slot 3637 * @slot: PCI slot to reset 3638 * 3639 * A PCI bus may host multiple slots, each slot may support a reset mechanism 3640 * independent of other slots. For instance, some slots may support slot power 3641 * control. In the case of a 1:1 bus to slot architecture, this function may 3642 * wrap the bus reset to avoid spurious slot related events such as hotplug. 3643 * Generally a slot reset should be attempted before a bus reset. All of the 3644 * function of the slot and any subordinate buses behind the slot are reset 3645 * through this function. PCI config space of all devices in the slot and 3646 * behind the slot is saved before and restored after reset. 3647 * 3648 * Return 0 on success, non-zero on error. 3649 */ 3650 int pci_reset_slot(struct pci_slot *slot) 3651 { 3652 int rc; 3653 3654 rc = pci_slot_reset(slot, 1); 3655 if (rc) 3656 return rc; 3657 3658 pci_slot_save_and_disable(slot); 3659 3660 rc = pci_slot_reset(slot, 0); 3661 3662 pci_slot_restore(slot); 3663 3664 return rc; 3665 } 3666 EXPORT_SYMBOL_GPL(pci_reset_slot); 3667 3668 /** 3669 * pci_try_reset_slot - Try to reset a PCI slot 3670 * @slot: PCI slot to reset 3671 * 3672 * Same as above except return -EAGAIN if the slot cannot be locked 3673 */ 3674 int pci_try_reset_slot(struct pci_slot *slot) 3675 { 3676 int rc; 3677 3678 rc = pci_slot_reset(slot, 1); 3679 if (rc) 3680 return rc; 3681 3682 pci_slot_save_and_disable(slot); 3683 3684 if (pci_slot_trylock(slot)) { 3685 might_sleep(); 3686 rc = pci_reset_hotplug_slot(slot->hotplug, 0); 3687 pci_slot_unlock(slot); 3688 } else 3689 rc = -EAGAIN; 3690 3691 pci_slot_restore(slot); 3692 3693 return rc; 3694 } 3695 EXPORT_SYMBOL_GPL(pci_try_reset_slot); 3696 3697 static int pci_bus_reset(struct pci_bus *bus, int probe) 3698 { 3699 if (!bus->self) 3700 return -ENOTTY; 3701 3702 if (probe) 3703 return 0; 3704 3705 pci_bus_lock(bus); 3706 3707 might_sleep(); 3708 3709 pci_reset_bridge_secondary_bus(bus->self); 3710 3711 pci_bus_unlock(bus); 3712 3713 return 0; 3714 } 3715 3716 /** 3717 * pci_probe_reset_bus - probe whether a PCI bus can be reset 3718 * @bus: PCI bus to probe 3719 * 3720 * Return 0 if bus can be reset, negative if a bus reset is not supported. 3721 */ 3722 int pci_probe_reset_bus(struct pci_bus *bus) 3723 { 3724 return pci_bus_reset(bus, 1); 3725 } 3726 EXPORT_SYMBOL_GPL(pci_probe_reset_bus); 3727 3728 /** 3729 * pci_reset_bus - reset a PCI bus 3730 * @bus: top level PCI bus to reset 3731 * 3732 * Do a bus reset on the given bus and any subordinate buses, saving 3733 * and restoring state of all devices. 3734 * 3735 * Return 0 on success, non-zero on error. 3736 */ 3737 int pci_reset_bus(struct pci_bus *bus) 3738 { 3739 int rc; 3740 3741 rc = pci_bus_reset(bus, 1); 3742 if (rc) 3743 return rc; 3744 3745 pci_bus_save_and_disable(bus); 3746 3747 rc = pci_bus_reset(bus, 0); 3748 3749 pci_bus_restore(bus); 3750 3751 return rc; 3752 } 3753 EXPORT_SYMBOL_GPL(pci_reset_bus); 3754 3755 /** 3756 * pci_try_reset_bus - Try to reset a PCI bus 3757 * @bus: top level PCI bus to reset 3758 * 3759 * Same as above except return -EAGAIN if the bus cannot be locked 3760 */ 3761 int pci_try_reset_bus(struct pci_bus *bus) 3762 { 3763 int rc; 3764 3765 rc = pci_bus_reset(bus, 1); 3766 if (rc) 3767 return rc; 3768 3769 pci_bus_save_and_disable(bus); 3770 3771 if (pci_bus_trylock(bus)) { 3772 might_sleep(); 3773 pci_reset_bridge_secondary_bus(bus->self); 3774 pci_bus_unlock(bus); 3775 } else 3776 rc = -EAGAIN; 3777 3778 pci_bus_restore(bus); 3779 3780 return rc; 3781 } 3782 EXPORT_SYMBOL_GPL(pci_try_reset_bus); 3783 3784 /** 3785 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count 3786 * @dev: PCI device to query 3787 * 3788 * Returns mmrbc: maximum designed memory read count in bytes 3789 * or appropriate error value. 3790 */ 3791 int pcix_get_max_mmrbc(struct pci_dev *dev) 3792 { 3793 int cap; 3794 u32 stat; 3795 3796 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 3797 if (!cap) 3798 return -EINVAL; 3799 3800 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 3801 return -EINVAL; 3802 3803 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21); 3804 } 3805 EXPORT_SYMBOL(pcix_get_max_mmrbc); 3806 3807 /** 3808 * pcix_get_mmrbc - get PCI-X maximum memory read byte count 3809 * @dev: PCI device to query 3810 * 3811 * Returns mmrbc: maximum memory read count in bytes 3812 * or appropriate error value. 3813 */ 3814 int pcix_get_mmrbc(struct pci_dev *dev) 3815 { 3816 int cap; 3817 u16 cmd; 3818 3819 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 3820 if (!cap) 3821 return -EINVAL; 3822 3823 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 3824 return -EINVAL; 3825 3826 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2); 3827 } 3828 EXPORT_SYMBOL(pcix_get_mmrbc); 3829 3830 /** 3831 * pcix_set_mmrbc - set PCI-X maximum memory read byte count 3832 * @dev: PCI device to query 3833 * @mmrbc: maximum memory read count in bytes 3834 * valid values are 512, 1024, 2048, 4096 3835 * 3836 * If possible sets maximum memory read byte count, some bridges have erratas 3837 * that prevent this. 3838 */ 3839 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc) 3840 { 3841 int cap; 3842 u32 stat, v, o; 3843 u16 cmd; 3844 3845 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc)) 3846 return -EINVAL; 3847 3848 v = ffs(mmrbc) - 10; 3849 3850 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 3851 if (!cap) 3852 return -EINVAL; 3853 3854 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 3855 return -EINVAL; 3856 3857 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21) 3858 return -E2BIG; 3859 3860 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 3861 return -EINVAL; 3862 3863 o = (cmd & PCI_X_CMD_MAX_READ) >> 2; 3864 if (o != v) { 3865 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC)) 3866 return -EIO; 3867 3868 cmd &= ~PCI_X_CMD_MAX_READ; 3869 cmd |= v << 2; 3870 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd)) 3871 return -EIO; 3872 } 3873 return 0; 3874 } 3875 EXPORT_SYMBOL(pcix_set_mmrbc); 3876 3877 /** 3878 * pcie_get_readrq - get PCI Express read request size 3879 * @dev: PCI device to query 3880 * 3881 * Returns maximum memory read request in bytes 3882 * or appropriate error value. 3883 */ 3884 int pcie_get_readrq(struct pci_dev *dev) 3885 { 3886 u16 ctl; 3887 3888 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 3889 3890 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12); 3891 } 3892 EXPORT_SYMBOL(pcie_get_readrq); 3893 3894 /** 3895 * pcie_set_readrq - set PCI Express maximum memory read request 3896 * @dev: PCI device to query 3897 * @rq: maximum memory read count in bytes 3898 * valid values are 128, 256, 512, 1024, 2048, 4096 3899 * 3900 * If possible sets maximum memory read request in bytes 3901 */ 3902 int pcie_set_readrq(struct pci_dev *dev, int rq) 3903 { 3904 u16 v; 3905 3906 if (rq < 128 || rq > 4096 || !is_power_of_2(rq)) 3907 return -EINVAL; 3908 3909 /* 3910 * If using the "performance" PCIe config, we clamp the 3911 * read rq size to the max packet size to prevent the 3912 * host bridge generating requests larger than we can 3913 * cope with 3914 */ 3915 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) { 3916 int mps = pcie_get_mps(dev); 3917 3918 if (mps < rq) 3919 rq = mps; 3920 } 3921 3922 v = (ffs(rq) - 8) << 12; 3923 3924 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 3925 PCI_EXP_DEVCTL_READRQ, v); 3926 } 3927 EXPORT_SYMBOL(pcie_set_readrq); 3928 3929 /** 3930 * pcie_get_mps - get PCI Express maximum payload size 3931 * @dev: PCI device to query 3932 * 3933 * Returns maximum payload size in bytes 3934 */ 3935 int pcie_get_mps(struct pci_dev *dev) 3936 { 3937 u16 ctl; 3938 3939 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 3940 3941 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5); 3942 } 3943 EXPORT_SYMBOL(pcie_get_mps); 3944 3945 /** 3946 * pcie_set_mps - set PCI Express maximum payload size 3947 * @dev: PCI device to query 3948 * @mps: maximum payload size in bytes 3949 * valid values are 128, 256, 512, 1024, 2048, 4096 3950 * 3951 * If possible sets maximum payload size 3952 */ 3953 int pcie_set_mps(struct pci_dev *dev, int mps) 3954 { 3955 u16 v; 3956 3957 if (mps < 128 || mps > 4096 || !is_power_of_2(mps)) 3958 return -EINVAL; 3959 3960 v = ffs(mps) - 8; 3961 if (v > dev->pcie_mpss) 3962 return -EINVAL; 3963 v <<= 5; 3964 3965 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 3966 PCI_EXP_DEVCTL_PAYLOAD, v); 3967 } 3968 EXPORT_SYMBOL(pcie_set_mps); 3969 3970 /** 3971 * pcie_get_minimum_link - determine minimum link settings of a PCI device 3972 * @dev: PCI device to query 3973 * @speed: storage for minimum speed 3974 * @width: storage for minimum width 3975 * 3976 * This function will walk up the PCI device chain and determine the minimum 3977 * link width and speed of the device. 3978 */ 3979 int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed, 3980 enum pcie_link_width *width) 3981 { 3982 int ret; 3983 3984 *speed = PCI_SPEED_UNKNOWN; 3985 *width = PCIE_LNK_WIDTH_UNKNOWN; 3986 3987 while (dev) { 3988 u16 lnksta; 3989 enum pci_bus_speed next_speed; 3990 enum pcie_link_width next_width; 3991 3992 ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta); 3993 if (ret) 3994 return ret; 3995 3996 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS]; 3997 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >> 3998 PCI_EXP_LNKSTA_NLW_SHIFT; 3999 4000 if (next_speed < *speed) 4001 *speed = next_speed; 4002 4003 if (next_width < *width) 4004 *width = next_width; 4005 4006 dev = dev->bus->self; 4007 } 4008 4009 return 0; 4010 } 4011 EXPORT_SYMBOL(pcie_get_minimum_link); 4012 4013 /** 4014 * pci_select_bars - Make BAR mask from the type of resource 4015 * @dev: the PCI device for which BAR mask is made 4016 * @flags: resource type mask to be selected 4017 * 4018 * This helper routine makes bar mask from the type of resource. 4019 */ 4020 int pci_select_bars(struct pci_dev *dev, unsigned long flags) 4021 { 4022 int i, bars = 0; 4023 for (i = 0; i < PCI_NUM_RESOURCES; i++) 4024 if (pci_resource_flags(dev, i) & flags) 4025 bars |= (1 << i); 4026 return bars; 4027 } 4028 4029 /** 4030 * pci_resource_bar - get position of the BAR associated with a resource 4031 * @dev: the PCI device 4032 * @resno: the resource number 4033 * @type: the BAR type to be filled in 4034 * 4035 * Returns BAR position in config space, or 0 if the BAR is invalid. 4036 */ 4037 int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type) 4038 { 4039 int reg; 4040 4041 if (resno < PCI_ROM_RESOURCE) { 4042 *type = pci_bar_unknown; 4043 return PCI_BASE_ADDRESS_0 + 4 * resno; 4044 } else if (resno == PCI_ROM_RESOURCE) { 4045 *type = pci_bar_mem32; 4046 return dev->rom_base_reg; 4047 } else if (resno < PCI_BRIDGE_RESOURCES) { 4048 /* device specific resource */ 4049 reg = pci_iov_resource_bar(dev, resno, type); 4050 if (reg) 4051 return reg; 4052 } 4053 4054 dev_err(&dev->dev, "BAR %d: invalid resource\n", resno); 4055 return 0; 4056 } 4057 4058 /* Some architectures require additional programming to enable VGA */ 4059 static arch_set_vga_state_t arch_set_vga_state; 4060 4061 void __init pci_register_set_vga_state(arch_set_vga_state_t func) 4062 { 4063 arch_set_vga_state = func; /* NULL disables */ 4064 } 4065 4066 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode, 4067 unsigned int command_bits, u32 flags) 4068 { 4069 if (arch_set_vga_state) 4070 return arch_set_vga_state(dev, decode, command_bits, 4071 flags); 4072 return 0; 4073 } 4074 4075 /** 4076 * pci_set_vga_state - set VGA decode state on device and parents if requested 4077 * @dev: the PCI device 4078 * @decode: true = enable decoding, false = disable decoding 4079 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY 4080 * @flags: traverse ancestors and change bridges 4081 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE 4082 */ 4083 int pci_set_vga_state(struct pci_dev *dev, bool decode, 4084 unsigned int command_bits, u32 flags) 4085 { 4086 struct pci_bus *bus; 4087 struct pci_dev *bridge; 4088 u16 cmd; 4089 int rc; 4090 4091 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) & (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY))); 4092 4093 /* ARCH specific VGA enables */ 4094 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags); 4095 if (rc) 4096 return rc; 4097 4098 if (flags & PCI_VGA_STATE_CHANGE_DECODES) { 4099 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4100 if (decode == true) 4101 cmd |= command_bits; 4102 else 4103 cmd &= ~command_bits; 4104 pci_write_config_word(dev, PCI_COMMAND, cmd); 4105 } 4106 4107 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE)) 4108 return 0; 4109 4110 bus = dev->bus; 4111 while (bus) { 4112 bridge = bus->self; 4113 if (bridge) { 4114 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL, 4115 &cmd); 4116 if (decode == true) 4117 cmd |= PCI_BRIDGE_CTL_VGA; 4118 else 4119 cmd &= ~PCI_BRIDGE_CTL_VGA; 4120 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL, 4121 cmd); 4122 } 4123 bus = bus->parent; 4124 } 4125 return 0; 4126 } 4127 4128 bool pci_device_is_present(struct pci_dev *pdev) 4129 { 4130 u32 v; 4131 4132 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0); 4133 } 4134 EXPORT_SYMBOL_GPL(pci_device_is_present); 4135 4136 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE 4137 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0}; 4138 static DEFINE_SPINLOCK(resource_alignment_lock); 4139 4140 /** 4141 * pci_specified_resource_alignment - get resource alignment specified by user. 4142 * @dev: the PCI device to get 4143 * 4144 * RETURNS: Resource alignment if it is specified. 4145 * Zero if it is not specified. 4146 */ 4147 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev) 4148 { 4149 int seg, bus, slot, func, align_order, count; 4150 resource_size_t align = 0; 4151 char *p; 4152 4153 spin_lock(&resource_alignment_lock); 4154 p = resource_alignment_param; 4155 while (*p) { 4156 count = 0; 4157 if (sscanf(p, "%d%n", &align_order, &count) == 1 && 4158 p[count] == '@') { 4159 p += count + 1; 4160 } else { 4161 align_order = -1; 4162 } 4163 if (sscanf(p, "%x:%x:%x.%x%n", 4164 &seg, &bus, &slot, &func, &count) != 4) { 4165 seg = 0; 4166 if (sscanf(p, "%x:%x.%x%n", 4167 &bus, &slot, &func, &count) != 3) { 4168 /* Invalid format */ 4169 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n", 4170 p); 4171 break; 4172 } 4173 } 4174 p += count; 4175 if (seg == pci_domain_nr(dev->bus) && 4176 bus == dev->bus->number && 4177 slot == PCI_SLOT(dev->devfn) && 4178 func == PCI_FUNC(dev->devfn)) { 4179 if (align_order == -1) { 4180 align = PAGE_SIZE; 4181 } else { 4182 align = 1 << align_order; 4183 } 4184 /* Found */ 4185 break; 4186 } 4187 if (*p != ';' && *p != ',') { 4188 /* End of param or invalid format */ 4189 break; 4190 } 4191 p++; 4192 } 4193 spin_unlock(&resource_alignment_lock); 4194 return align; 4195 } 4196 4197 /* 4198 * This function disables memory decoding and releases memory resources 4199 * of the device specified by kernel's boot parameter 'pci=resource_alignment='. 4200 * It also rounds up size to specified alignment. 4201 * Later on, the kernel will assign page-aligned memory resource back 4202 * to the device. 4203 */ 4204 void pci_reassigndev_resource_alignment(struct pci_dev *dev) 4205 { 4206 int i; 4207 struct resource *r; 4208 resource_size_t align, size; 4209 u16 command; 4210 4211 /* check if specified PCI is target device to reassign */ 4212 align = pci_specified_resource_alignment(dev); 4213 if (!align) 4214 return; 4215 4216 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL && 4217 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) { 4218 dev_warn(&dev->dev, 4219 "Can't reassign resources to host bridge.\n"); 4220 return; 4221 } 4222 4223 dev_info(&dev->dev, 4224 "Disabling memory decoding and releasing memory resources.\n"); 4225 pci_read_config_word(dev, PCI_COMMAND, &command); 4226 command &= ~PCI_COMMAND_MEMORY; 4227 pci_write_config_word(dev, PCI_COMMAND, command); 4228 4229 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) { 4230 r = &dev->resource[i]; 4231 if (!(r->flags & IORESOURCE_MEM)) 4232 continue; 4233 size = resource_size(r); 4234 if (size < align) { 4235 size = align; 4236 dev_info(&dev->dev, 4237 "Rounding up size of resource #%d to %#llx.\n", 4238 i, (unsigned long long)size); 4239 } 4240 r->end = size - 1; 4241 r->start = 0; 4242 } 4243 /* Need to disable bridge's resource window, 4244 * to enable the kernel to reassign new resource 4245 * window later on. 4246 */ 4247 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE && 4248 (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) { 4249 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) { 4250 r = &dev->resource[i]; 4251 if (!(r->flags & IORESOURCE_MEM)) 4252 continue; 4253 r->end = resource_size(r) - 1; 4254 r->start = 0; 4255 } 4256 pci_disable_bridge_window(dev); 4257 } 4258 } 4259 4260 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count) 4261 { 4262 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1) 4263 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1; 4264 spin_lock(&resource_alignment_lock); 4265 strncpy(resource_alignment_param, buf, count); 4266 resource_alignment_param[count] = '\0'; 4267 spin_unlock(&resource_alignment_lock); 4268 return count; 4269 } 4270 4271 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size) 4272 { 4273 size_t count; 4274 spin_lock(&resource_alignment_lock); 4275 count = snprintf(buf, size, "%s", resource_alignment_param); 4276 spin_unlock(&resource_alignment_lock); 4277 return count; 4278 } 4279 4280 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf) 4281 { 4282 return pci_get_resource_alignment_param(buf, PAGE_SIZE); 4283 } 4284 4285 static ssize_t pci_resource_alignment_store(struct bus_type *bus, 4286 const char *buf, size_t count) 4287 { 4288 return pci_set_resource_alignment_param(buf, count); 4289 } 4290 4291 BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show, 4292 pci_resource_alignment_store); 4293 4294 static int __init pci_resource_alignment_sysfs_init(void) 4295 { 4296 return bus_create_file(&pci_bus_type, 4297 &bus_attr_resource_alignment); 4298 } 4299 4300 late_initcall(pci_resource_alignment_sysfs_init); 4301 4302 static void pci_no_domains(void) 4303 { 4304 #ifdef CONFIG_PCI_DOMAINS 4305 pci_domains_supported = 0; 4306 #endif 4307 } 4308 4309 /** 4310 * pci_ext_cfg_avail - can we access extended PCI config space? 4311 * 4312 * Returns 1 if we can access PCI extended config space (offsets 4313 * greater than 0xff). This is the default implementation. Architecture 4314 * implementations can override this. 4315 */ 4316 int __weak pci_ext_cfg_avail(void) 4317 { 4318 return 1; 4319 } 4320 4321 void __weak pci_fixup_cardbus(struct pci_bus *bus) 4322 { 4323 } 4324 EXPORT_SYMBOL(pci_fixup_cardbus); 4325 4326 static int __init pci_setup(char *str) 4327 { 4328 while (str) { 4329 char *k = strchr(str, ','); 4330 if (k) 4331 *k++ = 0; 4332 if (*str && (str = pcibios_setup(str)) && *str) { 4333 if (!strcmp(str, "nomsi")) { 4334 pci_no_msi(); 4335 } else if (!strcmp(str, "noaer")) { 4336 pci_no_aer(); 4337 } else if (!strncmp(str, "realloc=", 8)) { 4338 pci_realloc_get_opt(str + 8); 4339 } else if (!strncmp(str, "realloc", 7)) { 4340 pci_realloc_get_opt("on"); 4341 } else if (!strcmp(str, "nodomains")) { 4342 pci_no_domains(); 4343 } else if (!strncmp(str, "noari", 5)) { 4344 pcie_ari_disabled = true; 4345 } else if (!strncmp(str, "cbiosize=", 9)) { 4346 pci_cardbus_io_size = memparse(str + 9, &str); 4347 } else if (!strncmp(str, "cbmemsize=", 10)) { 4348 pci_cardbus_mem_size = memparse(str + 10, &str); 4349 } else if (!strncmp(str, "resource_alignment=", 19)) { 4350 pci_set_resource_alignment_param(str + 19, 4351 strlen(str + 19)); 4352 } else if (!strncmp(str, "ecrc=", 5)) { 4353 pcie_ecrc_get_policy(str + 5); 4354 } else if (!strncmp(str, "hpiosize=", 9)) { 4355 pci_hotplug_io_size = memparse(str + 9, &str); 4356 } else if (!strncmp(str, "hpmemsize=", 10)) { 4357 pci_hotplug_mem_size = memparse(str + 10, &str); 4358 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) { 4359 pcie_bus_config = PCIE_BUS_TUNE_OFF; 4360 } else if (!strncmp(str, "pcie_bus_safe", 13)) { 4361 pcie_bus_config = PCIE_BUS_SAFE; 4362 } else if (!strncmp(str, "pcie_bus_perf", 13)) { 4363 pcie_bus_config = PCIE_BUS_PERFORMANCE; 4364 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) { 4365 pcie_bus_config = PCIE_BUS_PEER2PEER; 4366 } else if (!strncmp(str, "pcie_scan_all", 13)) { 4367 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS); 4368 } else { 4369 printk(KERN_ERR "PCI: Unknown option `%s'\n", 4370 str); 4371 } 4372 } 4373 str = k; 4374 } 4375 return 0; 4376 } 4377 early_param("pci", pci_setup); 4378 4379 EXPORT_SYMBOL(pci_reenable_device); 4380 EXPORT_SYMBOL(pci_enable_device_io); 4381 EXPORT_SYMBOL(pci_enable_device_mem); 4382 EXPORT_SYMBOL(pci_enable_device); 4383 EXPORT_SYMBOL(pcim_enable_device); 4384 EXPORT_SYMBOL(pcim_pin_device); 4385 EXPORT_SYMBOL(pci_disable_device); 4386 EXPORT_SYMBOL(pci_find_capability); 4387 EXPORT_SYMBOL(pci_bus_find_capability); 4388 EXPORT_SYMBOL(pci_release_regions); 4389 EXPORT_SYMBOL(pci_request_regions); 4390 EXPORT_SYMBOL(pci_request_regions_exclusive); 4391 EXPORT_SYMBOL(pci_release_region); 4392 EXPORT_SYMBOL(pci_request_region); 4393 EXPORT_SYMBOL(pci_request_region_exclusive); 4394 EXPORT_SYMBOL(pci_release_selected_regions); 4395 EXPORT_SYMBOL(pci_request_selected_regions); 4396 EXPORT_SYMBOL(pci_request_selected_regions_exclusive); 4397 EXPORT_SYMBOL(pci_set_master); 4398 EXPORT_SYMBOL(pci_clear_master); 4399 EXPORT_SYMBOL(pci_set_mwi); 4400 EXPORT_SYMBOL(pci_try_set_mwi); 4401 EXPORT_SYMBOL(pci_clear_mwi); 4402 EXPORT_SYMBOL_GPL(pci_intx); 4403 EXPORT_SYMBOL(pci_assign_resource); 4404 EXPORT_SYMBOL(pci_find_parent_resource); 4405 EXPORT_SYMBOL(pci_select_bars); 4406 4407 EXPORT_SYMBOL(pci_set_power_state); 4408 EXPORT_SYMBOL(pci_save_state); 4409 EXPORT_SYMBOL(pci_restore_state); 4410 EXPORT_SYMBOL(pci_pme_capable); 4411 EXPORT_SYMBOL(pci_pme_active); 4412 EXPORT_SYMBOL(pci_wake_from_d3); 4413 EXPORT_SYMBOL(pci_prepare_to_sleep); 4414 EXPORT_SYMBOL(pci_back_from_sleep); 4415 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state); 4416