1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * PCI Bus Services, see include/linux/pci.h for further explanation. 4 * 5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter, 6 * David Mosberger-Tang 7 * 8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz> 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/kernel.h> 13 #include <linux/delay.h> 14 #include <linux/dmi.h> 15 #include <linux/init.h> 16 #include <linux/msi.h> 17 #include <linux/of.h> 18 #include <linux/of_pci.h> 19 #include <linux/pci.h> 20 #include <linux/pm.h> 21 #include <linux/slab.h> 22 #include <linux/module.h> 23 #include <linux/spinlock.h> 24 #include <linux/string.h> 25 #include <linux/log2.h> 26 #include <linux/logic_pio.h> 27 #include <linux/pm_wakeup.h> 28 #include <linux/interrupt.h> 29 #include <linux/device.h> 30 #include <linux/pm_runtime.h> 31 #include <linux/pci_hotplug.h> 32 #include <linux/vmalloc.h> 33 #include <linux/pci-ats.h> 34 #include <asm/setup.h> 35 #include <asm/dma.h> 36 #include <linux/aer.h> 37 #include "pci.h" 38 39 DEFINE_MUTEX(pci_slot_mutex); 40 41 const char *pci_power_names[] = { 42 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown", 43 }; 44 EXPORT_SYMBOL_GPL(pci_power_names); 45 46 int isa_dma_bridge_buggy; 47 EXPORT_SYMBOL(isa_dma_bridge_buggy); 48 49 int pci_pci_problems; 50 EXPORT_SYMBOL(pci_pci_problems); 51 52 unsigned int pci_pm_d3_delay; 53 54 static void pci_pme_list_scan(struct work_struct *work); 55 56 static LIST_HEAD(pci_pme_list); 57 static DEFINE_MUTEX(pci_pme_list_mutex); 58 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan); 59 60 struct pci_pme_device { 61 struct list_head list; 62 struct pci_dev *dev; 63 }; 64 65 #define PME_TIMEOUT 1000 /* How long between PME checks */ 66 67 static void pci_dev_d3_sleep(struct pci_dev *dev) 68 { 69 unsigned int delay = dev->d3_delay; 70 71 if (delay < pci_pm_d3_delay) 72 delay = pci_pm_d3_delay; 73 74 if (delay) 75 msleep(delay); 76 } 77 78 #ifdef CONFIG_PCI_DOMAINS 79 int pci_domains_supported = 1; 80 #endif 81 82 #define DEFAULT_CARDBUS_IO_SIZE (256) 83 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024) 84 /* pci=cbmemsize=nnM,cbiosize=nn can override this */ 85 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE; 86 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE; 87 88 #define DEFAULT_HOTPLUG_IO_SIZE (256) 89 #define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024) 90 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024) 91 /* hpiosize=nn can override this */ 92 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE; 93 /* 94 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size, 95 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size; 96 * pci=hpmemsize=nnM overrides both 97 */ 98 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE; 99 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE; 100 101 #define DEFAULT_HOTPLUG_BUS_SIZE 1 102 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 103 104 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT; 105 106 /* 107 * The default CLS is used if arch didn't set CLS explicitly and not 108 * all pci devices agree on the same value. Arch can override either 109 * the dfl or actual value as it sees fit. Don't forget this is 110 * measured in 32-bit words, not bytes. 111 */ 112 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2; 113 u8 pci_cache_line_size; 114 115 /* 116 * If we set up a device for bus mastering, we need to check the latency 117 * timer as certain BIOSes forget to set it properly. 118 */ 119 unsigned int pcibios_max_latency = 255; 120 121 /* If set, the PCIe ARI capability will not be used. */ 122 static bool pcie_ari_disabled; 123 124 /* If set, the PCIe ATS capability will not be used. */ 125 static bool pcie_ats_disabled; 126 127 /* If set, the PCI config space of each device is printed during boot. */ 128 bool pci_early_dump; 129 130 bool pci_ats_disabled(void) 131 { 132 return pcie_ats_disabled; 133 } 134 135 /* Disable bridge_d3 for all PCIe ports */ 136 static bool pci_bridge_d3_disable; 137 /* Force bridge_d3 for all PCIe ports */ 138 static bool pci_bridge_d3_force; 139 140 static int __init pcie_port_pm_setup(char *str) 141 { 142 if (!strcmp(str, "off")) 143 pci_bridge_d3_disable = true; 144 else if (!strcmp(str, "force")) 145 pci_bridge_d3_force = true; 146 return 1; 147 } 148 __setup("pcie_port_pm=", pcie_port_pm_setup); 149 150 /* Time to wait after a reset for device to become responsive */ 151 #define PCIE_RESET_READY_POLL_MS 60000 152 153 /** 154 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children 155 * @bus: pointer to PCI bus structure to search 156 * 157 * Given a PCI bus, returns the highest PCI bus number present in the set 158 * including the given PCI bus and its list of child PCI buses. 159 */ 160 unsigned char pci_bus_max_busnr(struct pci_bus *bus) 161 { 162 struct pci_bus *tmp; 163 unsigned char max, n; 164 165 max = bus->busn_res.end; 166 list_for_each_entry(tmp, &bus->children, node) { 167 n = pci_bus_max_busnr(tmp); 168 if (n > max) 169 max = n; 170 } 171 return max; 172 } 173 EXPORT_SYMBOL_GPL(pci_bus_max_busnr); 174 175 #ifdef CONFIG_HAS_IOMEM 176 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar) 177 { 178 struct resource *res = &pdev->resource[bar]; 179 180 /* 181 * Make sure the BAR is actually a memory resource, not an IO resource 182 */ 183 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) { 184 pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res); 185 return NULL; 186 } 187 return ioremap(res->start, resource_size(res)); 188 } 189 EXPORT_SYMBOL_GPL(pci_ioremap_bar); 190 191 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar) 192 { 193 /* 194 * Make sure the BAR is actually a memory resource, not an IO resource 195 */ 196 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) { 197 WARN_ON(1); 198 return NULL; 199 } 200 return ioremap_wc(pci_resource_start(pdev, bar), 201 pci_resource_len(pdev, bar)); 202 } 203 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar); 204 #endif 205 206 /** 207 * pci_dev_str_match_path - test if a path string matches a device 208 * @dev: the PCI device to test 209 * @path: string to match the device against 210 * @endptr: pointer to the string after the match 211 * 212 * Test if a string (typically from a kernel parameter) formatted as a 213 * path of device/function addresses matches a PCI device. The string must 214 * be of the form: 215 * 216 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 217 * 218 * A path for a device can be obtained using 'lspci -t'. Using a path 219 * is more robust against bus renumbering than using only a single bus, 220 * device and function address. 221 * 222 * Returns 1 if the string matches the device, 0 if it does not and 223 * a negative error code if it fails to parse the string. 224 */ 225 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path, 226 const char **endptr) 227 { 228 int ret; 229 int seg, bus, slot, func; 230 char *wpath, *p; 231 char end; 232 233 *endptr = strchrnul(path, ';'); 234 235 wpath = kmemdup_nul(path, *endptr - path, GFP_KERNEL); 236 if (!wpath) 237 return -ENOMEM; 238 239 while (1) { 240 p = strrchr(wpath, '/'); 241 if (!p) 242 break; 243 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end); 244 if (ret != 2) { 245 ret = -EINVAL; 246 goto free_and_exit; 247 } 248 249 if (dev->devfn != PCI_DEVFN(slot, func)) { 250 ret = 0; 251 goto free_and_exit; 252 } 253 254 /* 255 * Note: we don't need to get a reference to the upstream 256 * bridge because we hold a reference to the top level 257 * device which should hold a reference to the bridge, 258 * and so on. 259 */ 260 dev = pci_upstream_bridge(dev); 261 if (!dev) { 262 ret = 0; 263 goto free_and_exit; 264 } 265 266 *p = 0; 267 } 268 269 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot, 270 &func, &end); 271 if (ret != 4) { 272 seg = 0; 273 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end); 274 if (ret != 3) { 275 ret = -EINVAL; 276 goto free_and_exit; 277 } 278 } 279 280 ret = (seg == pci_domain_nr(dev->bus) && 281 bus == dev->bus->number && 282 dev->devfn == PCI_DEVFN(slot, func)); 283 284 free_and_exit: 285 kfree(wpath); 286 return ret; 287 } 288 289 /** 290 * pci_dev_str_match - test if a string matches a device 291 * @dev: the PCI device to test 292 * @p: string to match the device against 293 * @endptr: pointer to the string after the match 294 * 295 * Test if a string (typically from a kernel parameter) matches a specified 296 * PCI device. The string may be of one of the following formats: 297 * 298 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 299 * pci:<vendor>:<device>[:<subvendor>:<subdevice>] 300 * 301 * The first format specifies a PCI bus/device/function address which 302 * may change if new hardware is inserted, if motherboard firmware changes, 303 * or due to changes caused in kernel parameters. If the domain is 304 * left unspecified, it is taken to be 0. In order to be robust against 305 * bus renumbering issues, a path of PCI device/function numbers may be used 306 * to address the specific device. The path for a device can be determined 307 * through the use of 'lspci -t'. 308 * 309 * The second format matches devices using IDs in the configuration 310 * space which may match multiple devices in the system. A value of 0 311 * for any field will match all devices. (Note: this differs from 312 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for 313 * legacy reasons and convenience so users don't have to specify 314 * FFFFFFFFs on the command line.) 315 * 316 * Returns 1 if the string matches the device, 0 if it does not and 317 * a negative error code if the string cannot be parsed. 318 */ 319 static int pci_dev_str_match(struct pci_dev *dev, const char *p, 320 const char **endptr) 321 { 322 int ret; 323 int count; 324 unsigned short vendor, device, subsystem_vendor, subsystem_device; 325 326 if (strncmp(p, "pci:", 4) == 0) { 327 /* PCI vendor/device (subvendor/subdevice) IDs are specified */ 328 p += 4; 329 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device, 330 &subsystem_vendor, &subsystem_device, &count); 331 if (ret != 4) { 332 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count); 333 if (ret != 2) 334 return -EINVAL; 335 336 subsystem_vendor = 0; 337 subsystem_device = 0; 338 } 339 340 p += count; 341 342 if ((!vendor || vendor == dev->vendor) && 343 (!device || device == dev->device) && 344 (!subsystem_vendor || 345 subsystem_vendor == dev->subsystem_vendor) && 346 (!subsystem_device || 347 subsystem_device == dev->subsystem_device)) 348 goto found; 349 } else { 350 /* 351 * PCI Bus, Device, Function IDs are specified 352 * (optionally, may include a path of devfns following it) 353 */ 354 ret = pci_dev_str_match_path(dev, p, &p); 355 if (ret < 0) 356 return ret; 357 else if (ret) 358 goto found; 359 } 360 361 *endptr = p; 362 return 0; 363 364 found: 365 *endptr = p; 366 return 1; 367 } 368 369 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn, 370 u8 pos, int cap, int *ttl) 371 { 372 u8 id; 373 u16 ent; 374 375 pci_bus_read_config_byte(bus, devfn, pos, &pos); 376 377 while ((*ttl)--) { 378 if (pos < 0x40) 379 break; 380 pos &= ~3; 381 pci_bus_read_config_word(bus, devfn, pos, &ent); 382 383 id = ent & 0xff; 384 if (id == 0xff) 385 break; 386 if (id == cap) 387 return pos; 388 pos = (ent >> 8); 389 } 390 return 0; 391 } 392 393 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn, 394 u8 pos, int cap) 395 { 396 int ttl = PCI_FIND_CAP_TTL; 397 398 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl); 399 } 400 401 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap) 402 { 403 return __pci_find_next_cap(dev->bus, dev->devfn, 404 pos + PCI_CAP_LIST_NEXT, cap); 405 } 406 EXPORT_SYMBOL_GPL(pci_find_next_capability); 407 408 static int __pci_bus_find_cap_start(struct pci_bus *bus, 409 unsigned int devfn, u8 hdr_type) 410 { 411 u16 status; 412 413 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status); 414 if (!(status & PCI_STATUS_CAP_LIST)) 415 return 0; 416 417 switch (hdr_type) { 418 case PCI_HEADER_TYPE_NORMAL: 419 case PCI_HEADER_TYPE_BRIDGE: 420 return PCI_CAPABILITY_LIST; 421 case PCI_HEADER_TYPE_CARDBUS: 422 return PCI_CB_CAPABILITY_LIST; 423 } 424 425 return 0; 426 } 427 428 /** 429 * pci_find_capability - query for devices' capabilities 430 * @dev: PCI device to query 431 * @cap: capability code 432 * 433 * Tell if a device supports a given PCI capability. 434 * Returns the address of the requested capability structure within the 435 * device's PCI configuration space or 0 in case the device does not 436 * support it. Possible values for @cap include: 437 * 438 * %PCI_CAP_ID_PM Power Management 439 * %PCI_CAP_ID_AGP Accelerated Graphics Port 440 * %PCI_CAP_ID_VPD Vital Product Data 441 * %PCI_CAP_ID_SLOTID Slot Identification 442 * %PCI_CAP_ID_MSI Message Signalled Interrupts 443 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap 444 * %PCI_CAP_ID_PCIX PCI-X 445 * %PCI_CAP_ID_EXP PCI Express 446 */ 447 int pci_find_capability(struct pci_dev *dev, int cap) 448 { 449 int pos; 450 451 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 452 if (pos) 453 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap); 454 455 return pos; 456 } 457 EXPORT_SYMBOL(pci_find_capability); 458 459 /** 460 * pci_bus_find_capability - query for devices' capabilities 461 * @bus: the PCI bus to query 462 * @devfn: PCI device to query 463 * @cap: capability code 464 * 465 * Like pci_find_capability() but works for PCI devices that do not have a 466 * pci_dev structure set up yet. 467 * 468 * Returns the address of the requested capability structure within the 469 * device's PCI configuration space or 0 in case the device does not 470 * support it. 471 */ 472 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap) 473 { 474 int pos; 475 u8 hdr_type; 476 477 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type); 478 479 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f); 480 if (pos) 481 pos = __pci_find_next_cap(bus, devfn, pos, cap); 482 483 return pos; 484 } 485 EXPORT_SYMBOL(pci_bus_find_capability); 486 487 /** 488 * pci_find_next_ext_capability - Find an extended capability 489 * @dev: PCI device to query 490 * @start: address at which to start looking (0 to start at beginning of list) 491 * @cap: capability code 492 * 493 * Returns the address of the next matching extended capability structure 494 * within the device's PCI configuration space or 0 if the device does 495 * not support it. Some capabilities can occur several times, e.g., the 496 * vendor-specific capability, and this provides a way to find them all. 497 */ 498 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap) 499 { 500 u32 header; 501 int ttl; 502 int pos = PCI_CFG_SPACE_SIZE; 503 504 /* minimum 8 bytes per capability */ 505 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8; 506 507 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE) 508 return 0; 509 510 if (start) 511 pos = start; 512 513 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 514 return 0; 515 516 /* 517 * If we have no capabilities, this is indicated by cap ID, 518 * cap version and next pointer all being 0. 519 */ 520 if (header == 0) 521 return 0; 522 523 while (ttl-- > 0) { 524 if (PCI_EXT_CAP_ID(header) == cap && pos != start) 525 return pos; 526 527 pos = PCI_EXT_CAP_NEXT(header); 528 if (pos < PCI_CFG_SPACE_SIZE) 529 break; 530 531 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 532 break; 533 } 534 535 return 0; 536 } 537 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability); 538 539 /** 540 * pci_find_ext_capability - Find an extended capability 541 * @dev: PCI device to query 542 * @cap: capability code 543 * 544 * Returns the address of the requested extended capability structure 545 * within the device's PCI configuration space or 0 if the device does 546 * not support it. Possible values for @cap include: 547 * 548 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting 549 * %PCI_EXT_CAP_ID_VC Virtual Channel 550 * %PCI_EXT_CAP_ID_DSN Device Serial Number 551 * %PCI_EXT_CAP_ID_PWR Power Budgeting 552 */ 553 int pci_find_ext_capability(struct pci_dev *dev, int cap) 554 { 555 return pci_find_next_ext_capability(dev, 0, cap); 556 } 557 EXPORT_SYMBOL_GPL(pci_find_ext_capability); 558 559 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap) 560 { 561 int rc, ttl = PCI_FIND_CAP_TTL; 562 u8 cap, mask; 563 564 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST) 565 mask = HT_3BIT_CAP_MASK; 566 else 567 mask = HT_5BIT_CAP_MASK; 568 569 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos, 570 PCI_CAP_ID_HT, &ttl); 571 while (pos) { 572 rc = pci_read_config_byte(dev, pos + 3, &cap); 573 if (rc != PCIBIOS_SUCCESSFUL) 574 return 0; 575 576 if ((cap & mask) == ht_cap) 577 return pos; 578 579 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, 580 pos + PCI_CAP_LIST_NEXT, 581 PCI_CAP_ID_HT, &ttl); 582 } 583 584 return 0; 585 } 586 /** 587 * pci_find_next_ht_capability - query a device's Hypertransport capabilities 588 * @dev: PCI device to query 589 * @pos: Position from which to continue searching 590 * @ht_cap: Hypertransport capability code 591 * 592 * To be used in conjunction with pci_find_ht_capability() to search for 593 * all capabilities matching @ht_cap. @pos should always be a value returned 594 * from pci_find_ht_capability(). 595 * 596 * NB. To be 100% safe against broken PCI devices, the caller should take 597 * steps to avoid an infinite loop. 598 */ 599 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap) 600 { 601 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap); 602 } 603 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability); 604 605 /** 606 * pci_find_ht_capability - query a device's Hypertransport capabilities 607 * @dev: PCI device to query 608 * @ht_cap: Hypertransport capability code 609 * 610 * Tell if a device supports a given Hypertransport capability. 611 * Returns an address within the device's PCI configuration space 612 * or 0 in case the device does not support the request capability. 613 * The address points to the PCI capability, of type PCI_CAP_ID_HT, 614 * which has a Hypertransport capability matching @ht_cap. 615 */ 616 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap) 617 { 618 int pos; 619 620 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 621 if (pos) 622 pos = __pci_find_next_ht_cap(dev, pos, ht_cap); 623 624 return pos; 625 } 626 EXPORT_SYMBOL_GPL(pci_find_ht_capability); 627 628 /** 629 * pci_find_parent_resource - return resource region of parent bus of given 630 * region 631 * @dev: PCI device structure contains resources to be searched 632 * @res: child resource record for which parent is sought 633 * 634 * For given resource region of given device, return the resource region of 635 * parent bus the given region is contained in. 636 */ 637 struct resource *pci_find_parent_resource(const struct pci_dev *dev, 638 struct resource *res) 639 { 640 const struct pci_bus *bus = dev->bus; 641 struct resource *r; 642 int i; 643 644 pci_bus_for_each_resource(bus, r, i) { 645 if (!r) 646 continue; 647 if (resource_contains(r, res)) { 648 649 /* 650 * If the window is prefetchable but the BAR is 651 * not, the allocator made a mistake. 652 */ 653 if (r->flags & IORESOURCE_PREFETCH && 654 !(res->flags & IORESOURCE_PREFETCH)) 655 return NULL; 656 657 /* 658 * If we're below a transparent bridge, there may 659 * be both a positively-decoded aperture and a 660 * subtractively-decoded region that contain the BAR. 661 * We want the positively-decoded one, so this depends 662 * on pci_bus_for_each_resource() giving us those 663 * first. 664 */ 665 return r; 666 } 667 } 668 return NULL; 669 } 670 EXPORT_SYMBOL(pci_find_parent_resource); 671 672 /** 673 * pci_find_resource - Return matching PCI device resource 674 * @dev: PCI device to query 675 * @res: Resource to look for 676 * 677 * Goes over standard PCI resources (BARs) and checks if the given resource 678 * is partially or fully contained in any of them. In that case the 679 * matching resource is returned, %NULL otherwise. 680 */ 681 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res) 682 { 683 int i; 684 685 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 686 struct resource *r = &dev->resource[i]; 687 688 if (r->start && resource_contains(r, res)) 689 return r; 690 } 691 692 return NULL; 693 } 694 EXPORT_SYMBOL(pci_find_resource); 695 696 /** 697 * pci_find_pcie_root_port - return PCIe Root Port 698 * @dev: PCI device to query 699 * 700 * Traverse up the parent chain and return the PCIe Root Port PCI Device 701 * for a given PCI Device. 702 */ 703 struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev) 704 { 705 struct pci_dev *bridge, *highest_pcie_bridge = dev; 706 707 bridge = pci_upstream_bridge(dev); 708 while (bridge && pci_is_pcie(bridge)) { 709 highest_pcie_bridge = bridge; 710 bridge = pci_upstream_bridge(bridge); 711 } 712 713 if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT) 714 return NULL; 715 716 return highest_pcie_bridge; 717 } 718 EXPORT_SYMBOL(pci_find_pcie_root_port); 719 720 /** 721 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos 722 * @dev: the PCI device to operate on 723 * @pos: config space offset of status word 724 * @mask: mask of bit(s) to care about in status word 725 * 726 * Return 1 when mask bit(s) in status word clear, 0 otherwise. 727 */ 728 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask) 729 { 730 int i; 731 732 /* Wait for Transaction Pending bit clean */ 733 for (i = 0; i < 4; i++) { 734 u16 status; 735 if (i) 736 msleep((1 << (i - 1)) * 100); 737 738 pci_read_config_word(dev, pos, &status); 739 if (!(status & mask)) 740 return 1; 741 } 742 743 return 0; 744 } 745 746 /** 747 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up) 748 * @dev: PCI device to have its BARs restored 749 * 750 * Restore the BAR values for a given device, so as to make it 751 * accessible by its driver. 752 */ 753 static void pci_restore_bars(struct pci_dev *dev) 754 { 755 int i; 756 757 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) 758 pci_update_resource(dev, i); 759 } 760 761 static const struct pci_platform_pm_ops *pci_platform_pm; 762 763 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops) 764 { 765 if (!ops->is_manageable || !ops->set_state || !ops->get_state || 766 !ops->choose_state || !ops->set_wakeup || !ops->need_resume) 767 return -EINVAL; 768 pci_platform_pm = ops; 769 return 0; 770 } 771 772 static inline bool platform_pci_power_manageable(struct pci_dev *dev) 773 { 774 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false; 775 } 776 777 static inline int platform_pci_set_power_state(struct pci_dev *dev, 778 pci_power_t t) 779 { 780 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS; 781 } 782 783 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev) 784 { 785 return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN; 786 } 787 788 static inline void platform_pci_refresh_power_state(struct pci_dev *dev) 789 { 790 if (pci_platform_pm && pci_platform_pm->refresh_state) 791 pci_platform_pm->refresh_state(dev); 792 } 793 794 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev) 795 { 796 return pci_platform_pm ? 797 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR; 798 } 799 800 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable) 801 { 802 return pci_platform_pm ? 803 pci_platform_pm->set_wakeup(dev, enable) : -ENODEV; 804 } 805 806 static inline bool platform_pci_need_resume(struct pci_dev *dev) 807 { 808 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false; 809 } 810 811 static inline bool platform_pci_bridge_d3(struct pci_dev *dev) 812 { 813 return pci_platform_pm ? pci_platform_pm->bridge_d3(dev) : false; 814 } 815 816 /** 817 * pci_raw_set_power_state - Use PCI PM registers to set the power state of 818 * given PCI device 819 * @dev: PCI device to handle. 820 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 821 * 822 * RETURN VALUE: 823 * -EINVAL if the requested state is invalid. 824 * -EIO if device does not support PCI PM or its PM capabilities register has a 825 * wrong version, or device doesn't support the requested state. 826 * 0 if device already is in the requested state. 827 * 0 if device's power state has been successfully changed. 828 */ 829 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state) 830 { 831 u16 pmcsr; 832 bool need_restore = false; 833 834 /* Check if we're already there */ 835 if (dev->current_state == state) 836 return 0; 837 838 if (!dev->pm_cap) 839 return -EIO; 840 841 if (state < PCI_D0 || state > PCI_D3hot) 842 return -EINVAL; 843 844 /* 845 * Validate transition: We can enter D0 from any state, but if 846 * we're already in a low-power state, we can only go deeper. E.g., 847 * we can go from D1 to D3, but we can't go directly from D3 to D1; 848 * we'd have to go from D3 to D0, then to D1. 849 */ 850 if (state != PCI_D0 && dev->current_state <= PCI_D3cold 851 && dev->current_state > state) { 852 pci_err(dev, "invalid power transition (from %s to %s)\n", 853 pci_power_name(dev->current_state), 854 pci_power_name(state)); 855 return -EINVAL; 856 } 857 858 /* Check if this device supports the desired state */ 859 if ((state == PCI_D1 && !dev->d1_support) 860 || (state == PCI_D2 && !dev->d2_support)) 861 return -EIO; 862 863 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 864 if (pmcsr == (u16) ~0) { 865 pci_err(dev, "can't change power state from %s to %s (config space inaccessible)\n", 866 pci_power_name(dev->current_state), 867 pci_power_name(state)); 868 return -EIO; 869 } 870 871 /* 872 * If we're (effectively) in D3, force entire word to 0. 873 * This doesn't affect PME_Status, disables PME_En, and 874 * sets PowerState to 0. 875 */ 876 switch (dev->current_state) { 877 case PCI_D0: 878 case PCI_D1: 879 case PCI_D2: 880 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 881 pmcsr |= state; 882 break; 883 case PCI_D3hot: 884 case PCI_D3cold: 885 case PCI_UNKNOWN: /* Boot-up */ 886 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot 887 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET)) 888 need_restore = true; 889 /* Fall-through - force to D0 */ 890 default: 891 pmcsr = 0; 892 break; 893 } 894 895 /* Enter specified state */ 896 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 897 898 /* 899 * Mandatory power management transition delays; see PCI PM 1.1 900 * 5.6.1 table 18 901 */ 902 if (state == PCI_D3hot || dev->current_state == PCI_D3hot) 903 pci_dev_d3_sleep(dev); 904 else if (state == PCI_D2 || dev->current_state == PCI_D2) 905 msleep(PCI_PM_D2_DELAY); 906 907 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 908 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 909 if (dev->current_state != state) 910 pci_info_ratelimited(dev, "refused to change power state from %s to %s\n", 911 pci_power_name(dev->current_state), 912 pci_power_name(state)); 913 914 /* 915 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT 916 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning 917 * from D3hot to D0 _may_ perform an internal reset, thereby 918 * going to "D0 Uninitialized" rather than "D0 Initialized". 919 * For example, at least some versions of the 3c905B and the 920 * 3c556B exhibit this behaviour. 921 * 922 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave 923 * devices in a D3hot state at boot. Consequently, we need to 924 * restore at least the BARs so that the device will be 925 * accessible to its driver. 926 */ 927 if (need_restore) 928 pci_restore_bars(dev); 929 930 if (dev->bus->self) 931 pcie_aspm_pm_state_change(dev->bus->self); 932 933 return 0; 934 } 935 936 /** 937 * pci_update_current_state - Read power state of given device and cache it 938 * @dev: PCI device to handle. 939 * @state: State to cache in case the device doesn't have the PM capability 940 * 941 * The power state is read from the PMCSR register, which however is 942 * inaccessible in D3cold. The platform firmware is therefore queried first 943 * to detect accessibility of the register. In case the platform firmware 944 * reports an incorrect state or the device isn't power manageable by the 945 * platform at all, we try to detect D3cold by testing accessibility of the 946 * vendor ID in config space. 947 */ 948 void pci_update_current_state(struct pci_dev *dev, pci_power_t state) 949 { 950 if (platform_pci_get_power_state(dev) == PCI_D3cold || 951 !pci_device_is_present(dev)) { 952 dev->current_state = PCI_D3cold; 953 } else if (dev->pm_cap) { 954 u16 pmcsr; 955 956 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 957 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 958 } else { 959 dev->current_state = state; 960 } 961 } 962 963 /** 964 * pci_refresh_power_state - Refresh the given device's power state data 965 * @dev: Target PCI device. 966 * 967 * Ask the platform to refresh the devices power state information and invoke 968 * pci_update_current_state() to update its current PCI power state. 969 */ 970 void pci_refresh_power_state(struct pci_dev *dev) 971 { 972 if (platform_pci_power_manageable(dev)) 973 platform_pci_refresh_power_state(dev); 974 975 pci_update_current_state(dev, dev->current_state); 976 } 977 978 /** 979 * pci_platform_power_transition - Use platform to change device power state 980 * @dev: PCI device to handle. 981 * @state: State to put the device into. 982 */ 983 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state) 984 { 985 int error; 986 987 if (platform_pci_power_manageable(dev)) { 988 error = platform_pci_set_power_state(dev, state); 989 if (!error) 990 pci_update_current_state(dev, state); 991 } else 992 error = -ENODEV; 993 994 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */ 995 dev->current_state = PCI_D0; 996 997 return error; 998 } 999 EXPORT_SYMBOL_GPL(pci_platform_power_transition); 1000 1001 /** 1002 * pci_wakeup - Wake up a PCI device 1003 * @pci_dev: Device to handle. 1004 * @ign: ignored parameter 1005 */ 1006 static int pci_wakeup(struct pci_dev *pci_dev, void *ign) 1007 { 1008 pci_wakeup_event(pci_dev); 1009 pm_request_resume(&pci_dev->dev); 1010 return 0; 1011 } 1012 1013 /** 1014 * pci_wakeup_bus - Walk given bus and wake up devices on it 1015 * @bus: Top bus of the subtree to walk. 1016 */ 1017 void pci_wakeup_bus(struct pci_bus *bus) 1018 { 1019 if (bus) 1020 pci_walk_bus(bus, pci_wakeup, NULL); 1021 } 1022 1023 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout) 1024 { 1025 int delay = 1; 1026 u32 id; 1027 1028 /* 1029 * After reset, the device should not silently discard config 1030 * requests, but it may still indicate that it needs more time by 1031 * responding to them with CRS completions. The Root Port will 1032 * generally synthesize ~0 data to complete the read (except when 1033 * CRS SV is enabled and the read was for the Vendor ID; in that 1034 * case it synthesizes 0x0001 data). 1035 * 1036 * Wait for the device to return a non-CRS completion. Read the 1037 * Command register instead of Vendor ID so we don't have to 1038 * contend with the CRS SV value. 1039 */ 1040 pci_read_config_dword(dev, PCI_COMMAND, &id); 1041 while (id == ~0) { 1042 if (delay > timeout) { 1043 pci_warn(dev, "not ready %dms after %s; giving up\n", 1044 delay - 1, reset_type); 1045 return -ENOTTY; 1046 } 1047 1048 if (delay > 1000) 1049 pci_info(dev, "not ready %dms after %s; waiting\n", 1050 delay - 1, reset_type); 1051 1052 msleep(delay); 1053 delay *= 2; 1054 pci_read_config_dword(dev, PCI_COMMAND, &id); 1055 } 1056 1057 if (delay > 1000) 1058 pci_info(dev, "ready %dms after %s\n", delay - 1, 1059 reset_type); 1060 1061 return 0; 1062 } 1063 1064 /** 1065 * pci_power_up - Put the given device into D0 1066 * @dev: PCI device to power up 1067 */ 1068 int pci_power_up(struct pci_dev *dev) 1069 { 1070 pci_platform_power_transition(dev, PCI_D0); 1071 1072 /* 1073 * Mandatory power management transition delays are handled in 1074 * pci_pm_resume_noirq() and pci_pm_runtime_resume() of the 1075 * corresponding bridge. 1076 */ 1077 if (dev->runtime_d3cold) { 1078 /* 1079 * When powering on a bridge from D3cold, the whole hierarchy 1080 * may be powered on into D0uninitialized state, resume them to 1081 * give them a chance to suspend again 1082 */ 1083 pci_wakeup_bus(dev->subordinate); 1084 } 1085 1086 return pci_raw_set_power_state(dev, PCI_D0); 1087 } 1088 1089 /** 1090 * __pci_dev_set_current_state - Set current state of a PCI device 1091 * @dev: Device to handle 1092 * @data: pointer to state to be set 1093 */ 1094 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data) 1095 { 1096 pci_power_t state = *(pci_power_t *)data; 1097 1098 dev->current_state = state; 1099 return 0; 1100 } 1101 1102 /** 1103 * pci_bus_set_current_state - Walk given bus and set current state of devices 1104 * @bus: Top bus of the subtree to walk. 1105 * @state: state to be set 1106 */ 1107 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state) 1108 { 1109 if (bus) 1110 pci_walk_bus(bus, __pci_dev_set_current_state, &state); 1111 } 1112 1113 /** 1114 * pci_set_power_state - Set the power state of a PCI device 1115 * @dev: PCI device to handle. 1116 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 1117 * 1118 * Transition a device to a new power state, using the platform firmware and/or 1119 * the device's PCI PM registers. 1120 * 1121 * RETURN VALUE: 1122 * -EINVAL if the requested state is invalid. 1123 * -EIO if device does not support PCI PM or its PM capabilities register has a 1124 * wrong version, or device doesn't support the requested state. 1125 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported. 1126 * 0 if device already is in the requested state. 1127 * 0 if the transition is to D3 but D3 is not supported. 1128 * 0 if device's power state has been successfully changed. 1129 */ 1130 int pci_set_power_state(struct pci_dev *dev, pci_power_t state) 1131 { 1132 int error; 1133 1134 /* Bound the state we're entering */ 1135 if (state > PCI_D3cold) 1136 state = PCI_D3cold; 1137 else if (state < PCI_D0) 1138 state = PCI_D0; 1139 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev)) 1140 1141 /* 1142 * If the device or the parent bridge do not support PCI 1143 * PM, ignore the request if we're doing anything other 1144 * than putting it into D0 (which would only happen on 1145 * boot). 1146 */ 1147 return 0; 1148 1149 /* Check if we're already there */ 1150 if (dev->current_state == state) 1151 return 0; 1152 1153 if (state == PCI_D0) 1154 return pci_power_up(dev); 1155 1156 /* 1157 * This device is quirked not to be put into D3, so don't put it in 1158 * D3 1159 */ 1160 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3)) 1161 return 0; 1162 1163 /* 1164 * To put device in D3cold, we put device into D3hot in native 1165 * way, then put device into D3cold with platform ops 1166 */ 1167 error = pci_raw_set_power_state(dev, state > PCI_D3hot ? 1168 PCI_D3hot : state); 1169 1170 if (pci_platform_power_transition(dev, state)) 1171 return error; 1172 1173 /* Powering off a bridge may power off the whole hierarchy */ 1174 if (state == PCI_D3cold) 1175 pci_bus_set_current_state(dev->subordinate, PCI_D3cold); 1176 1177 return 0; 1178 } 1179 EXPORT_SYMBOL(pci_set_power_state); 1180 1181 /** 1182 * pci_choose_state - Choose the power state of a PCI device 1183 * @dev: PCI device to be suspended 1184 * @state: target sleep state for the whole system. This is the value 1185 * that is passed to suspend() function. 1186 * 1187 * Returns PCI power state suitable for given device and given system 1188 * message. 1189 */ 1190 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state) 1191 { 1192 pci_power_t ret; 1193 1194 if (!dev->pm_cap) 1195 return PCI_D0; 1196 1197 ret = platform_pci_choose_state(dev); 1198 if (ret != PCI_POWER_ERROR) 1199 return ret; 1200 1201 switch (state.event) { 1202 case PM_EVENT_ON: 1203 return PCI_D0; 1204 case PM_EVENT_FREEZE: 1205 case PM_EVENT_PRETHAW: 1206 /* REVISIT both freeze and pre-thaw "should" use D0 */ 1207 case PM_EVENT_SUSPEND: 1208 case PM_EVENT_HIBERNATE: 1209 return PCI_D3hot; 1210 default: 1211 pci_info(dev, "unrecognized suspend event %d\n", 1212 state.event); 1213 BUG(); 1214 } 1215 return PCI_D0; 1216 } 1217 EXPORT_SYMBOL(pci_choose_state); 1218 1219 #define PCI_EXP_SAVE_REGS 7 1220 1221 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev, 1222 u16 cap, bool extended) 1223 { 1224 struct pci_cap_saved_state *tmp; 1225 1226 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) { 1227 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap) 1228 return tmp; 1229 } 1230 return NULL; 1231 } 1232 1233 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap) 1234 { 1235 return _pci_find_saved_cap(dev, cap, false); 1236 } 1237 1238 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap) 1239 { 1240 return _pci_find_saved_cap(dev, cap, true); 1241 } 1242 1243 static int pci_save_pcie_state(struct pci_dev *dev) 1244 { 1245 int i = 0; 1246 struct pci_cap_saved_state *save_state; 1247 u16 *cap; 1248 1249 if (!pci_is_pcie(dev)) 1250 return 0; 1251 1252 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1253 if (!save_state) { 1254 pci_err(dev, "buffer not found in %s\n", __func__); 1255 return -ENOMEM; 1256 } 1257 1258 cap = (u16 *)&save_state->cap.data[0]; 1259 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]); 1260 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]); 1261 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]); 1262 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]); 1263 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]); 1264 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]); 1265 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]); 1266 1267 return 0; 1268 } 1269 1270 static void pci_restore_pcie_state(struct pci_dev *dev) 1271 { 1272 int i = 0; 1273 struct pci_cap_saved_state *save_state; 1274 u16 *cap; 1275 1276 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1277 if (!save_state) 1278 return; 1279 1280 cap = (u16 *)&save_state->cap.data[0]; 1281 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]); 1282 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]); 1283 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]); 1284 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]); 1285 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]); 1286 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]); 1287 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]); 1288 } 1289 1290 static int pci_save_pcix_state(struct pci_dev *dev) 1291 { 1292 int pos; 1293 struct pci_cap_saved_state *save_state; 1294 1295 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1296 if (!pos) 1297 return 0; 1298 1299 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1300 if (!save_state) { 1301 pci_err(dev, "buffer not found in %s\n", __func__); 1302 return -ENOMEM; 1303 } 1304 1305 pci_read_config_word(dev, pos + PCI_X_CMD, 1306 (u16 *)save_state->cap.data); 1307 1308 return 0; 1309 } 1310 1311 static void pci_restore_pcix_state(struct pci_dev *dev) 1312 { 1313 int i = 0, pos; 1314 struct pci_cap_saved_state *save_state; 1315 u16 *cap; 1316 1317 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1318 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1319 if (!save_state || !pos) 1320 return; 1321 cap = (u16 *)&save_state->cap.data[0]; 1322 1323 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]); 1324 } 1325 1326 static void pci_save_ltr_state(struct pci_dev *dev) 1327 { 1328 int ltr; 1329 struct pci_cap_saved_state *save_state; 1330 u16 *cap; 1331 1332 if (!pci_is_pcie(dev)) 1333 return; 1334 1335 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR); 1336 if (!ltr) 1337 return; 1338 1339 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR); 1340 if (!save_state) { 1341 pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n"); 1342 return; 1343 } 1344 1345 cap = (u16 *)&save_state->cap.data[0]; 1346 pci_read_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap++); 1347 pci_read_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, cap++); 1348 } 1349 1350 static void pci_restore_ltr_state(struct pci_dev *dev) 1351 { 1352 struct pci_cap_saved_state *save_state; 1353 int ltr; 1354 u16 *cap; 1355 1356 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR); 1357 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR); 1358 if (!save_state || !ltr) 1359 return; 1360 1361 cap = (u16 *)&save_state->cap.data[0]; 1362 pci_write_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap++); 1363 pci_write_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, *cap++); 1364 } 1365 1366 /** 1367 * pci_save_state - save the PCI configuration space of a device before 1368 * suspending 1369 * @dev: PCI device that we're dealing with 1370 */ 1371 int pci_save_state(struct pci_dev *dev) 1372 { 1373 int i; 1374 /* XXX: 100% dword access ok here? */ 1375 for (i = 0; i < 16; i++) { 1376 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]); 1377 pci_dbg(dev, "saving config space at offset %#x (reading %#x)\n", 1378 i * 4, dev->saved_config_space[i]); 1379 } 1380 dev->state_saved = true; 1381 1382 i = pci_save_pcie_state(dev); 1383 if (i != 0) 1384 return i; 1385 1386 i = pci_save_pcix_state(dev); 1387 if (i != 0) 1388 return i; 1389 1390 pci_save_ltr_state(dev); 1391 pci_save_dpc_state(dev); 1392 pci_save_aer_state(dev); 1393 return pci_save_vc_state(dev); 1394 } 1395 EXPORT_SYMBOL(pci_save_state); 1396 1397 static void pci_restore_config_dword(struct pci_dev *pdev, int offset, 1398 u32 saved_val, int retry, bool force) 1399 { 1400 u32 val; 1401 1402 pci_read_config_dword(pdev, offset, &val); 1403 if (!force && val == saved_val) 1404 return; 1405 1406 for (;;) { 1407 pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n", 1408 offset, val, saved_val); 1409 pci_write_config_dword(pdev, offset, saved_val); 1410 if (retry-- <= 0) 1411 return; 1412 1413 pci_read_config_dword(pdev, offset, &val); 1414 if (val == saved_val) 1415 return; 1416 1417 mdelay(1); 1418 } 1419 } 1420 1421 static void pci_restore_config_space_range(struct pci_dev *pdev, 1422 int start, int end, int retry, 1423 bool force) 1424 { 1425 int index; 1426 1427 for (index = end; index >= start; index--) 1428 pci_restore_config_dword(pdev, 4 * index, 1429 pdev->saved_config_space[index], 1430 retry, force); 1431 } 1432 1433 static void pci_restore_config_space(struct pci_dev *pdev) 1434 { 1435 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) { 1436 pci_restore_config_space_range(pdev, 10, 15, 0, false); 1437 /* Restore BARs before the command register. */ 1438 pci_restore_config_space_range(pdev, 4, 9, 10, false); 1439 pci_restore_config_space_range(pdev, 0, 3, 0, false); 1440 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 1441 pci_restore_config_space_range(pdev, 12, 15, 0, false); 1442 1443 /* 1444 * Force rewriting of prefetch registers to avoid S3 resume 1445 * issues on Intel PCI bridges that occur when these 1446 * registers are not explicitly written. 1447 */ 1448 pci_restore_config_space_range(pdev, 9, 11, 0, true); 1449 pci_restore_config_space_range(pdev, 0, 8, 0, false); 1450 } else { 1451 pci_restore_config_space_range(pdev, 0, 15, 0, false); 1452 } 1453 } 1454 1455 static void pci_restore_rebar_state(struct pci_dev *pdev) 1456 { 1457 unsigned int pos, nbars, i; 1458 u32 ctrl; 1459 1460 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 1461 if (!pos) 1462 return; 1463 1464 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1465 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >> 1466 PCI_REBAR_CTRL_NBAR_SHIFT; 1467 1468 for (i = 0; i < nbars; i++, pos += 8) { 1469 struct resource *res; 1470 int bar_idx, size; 1471 1472 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1473 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX; 1474 res = pdev->resource + bar_idx; 1475 size = ilog2(resource_size(res)) - 20; 1476 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 1477 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT; 1478 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 1479 } 1480 } 1481 1482 /** 1483 * pci_restore_state - Restore the saved state of a PCI device 1484 * @dev: PCI device that we're dealing with 1485 */ 1486 void pci_restore_state(struct pci_dev *dev) 1487 { 1488 if (!dev->state_saved) 1489 return; 1490 1491 /* 1492 * Restore max latencies (in the LTR capability) before enabling 1493 * LTR itself (in the PCIe capability). 1494 */ 1495 pci_restore_ltr_state(dev); 1496 1497 pci_restore_pcie_state(dev); 1498 pci_restore_pasid_state(dev); 1499 pci_restore_pri_state(dev); 1500 pci_restore_ats_state(dev); 1501 pci_restore_vc_state(dev); 1502 pci_restore_rebar_state(dev); 1503 pci_restore_dpc_state(dev); 1504 1505 pci_cleanup_aer_error_status_regs(dev); 1506 pci_restore_aer_state(dev); 1507 1508 pci_restore_config_space(dev); 1509 1510 pci_restore_pcix_state(dev); 1511 pci_restore_msi_state(dev); 1512 1513 /* Restore ACS and IOV configuration state */ 1514 pci_enable_acs(dev); 1515 pci_restore_iov_state(dev); 1516 1517 dev->state_saved = false; 1518 } 1519 EXPORT_SYMBOL(pci_restore_state); 1520 1521 struct pci_saved_state { 1522 u32 config_space[16]; 1523 struct pci_cap_saved_data cap[0]; 1524 }; 1525 1526 /** 1527 * pci_store_saved_state - Allocate and return an opaque struct containing 1528 * the device saved state. 1529 * @dev: PCI device that we're dealing with 1530 * 1531 * Return NULL if no state or error. 1532 */ 1533 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev) 1534 { 1535 struct pci_saved_state *state; 1536 struct pci_cap_saved_state *tmp; 1537 struct pci_cap_saved_data *cap; 1538 size_t size; 1539 1540 if (!dev->state_saved) 1541 return NULL; 1542 1543 size = sizeof(*state) + sizeof(struct pci_cap_saved_data); 1544 1545 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) 1546 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1547 1548 state = kzalloc(size, GFP_KERNEL); 1549 if (!state) 1550 return NULL; 1551 1552 memcpy(state->config_space, dev->saved_config_space, 1553 sizeof(state->config_space)); 1554 1555 cap = state->cap; 1556 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) { 1557 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1558 memcpy(cap, &tmp->cap, len); 1559 cap = (struct pci_cap_saved_data *)((u8 *)cap + len); 1560 } 1561 /* Empty cap_save terminates list */ 1562 1563 return state; 1564 } 1565 EXPORT_SYMBOL_GPL(pci_store_saved_state); 1566 1567 /** 1568 * pci_load_saved_state - Reload the provided save state into struct pci_dev. 1569 * @dev: PCI device that we're dealing with 1570 * @state: Saved state returned from pci_store_saved_state() 1571 */ 1572 int pci_load_saved_state(struct pci_dev *dev, 1573 struct pci_saved_state *state) 1574 { 1575 struct pci_cap_saved_data *cap; 1576 1577 dev->state_saved = false; 1578 1579 if (!state) 1580 return 0; 1581 1582 memcpy(dev->saved_config_space, state->config_space, 1583 sizeof(state->config_space)); 1584 1585 cap = state->cap; 1586 while (cap->size) { 1587 struct pci_cap_saved_state *tmp; 1588 1589 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended); 1590 if (!tmp || tmp->cap.size != cap->size) 1591 return -EINVAL; 1592 1593 memcpy(tmp->cap.data, cap->data, tmp->cap.size); 1594 cap = (struct pci_cap_saved_data *)((u8 *)cap + 1595 sizeof(struct pci_cap_saved_data) + cap->size); 1596 } 1597 1598 dev->state_saved = true; 1599 return 0; 1600 } 1601 EXPORT_SYMBOL_GPL(pci_load_saved_state); 1602 1603 /** 1604 * pci_load_and_free_saved_state - Reload the save state pointed to by state, 1605 * and free the memory allocated for it. 1606 * @dev: PCI device that we're dealing with 1607 * @state: Pointer to saved state returned from pci_store_saved_state() 1608 */ 1609 int pci_load_and_free_saved_state(struct pci_dev *dev, 1610 struct pci_saved_state **state) 1611 { 1612 int ret = pci_load_saved_state(dev, *state); 1613 kfree(*state); 1614 *state = NULL; 1615 return ret; 1616 } 1617 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state); 1618 1619 int __weak pcibios_enable_device(struct pci_dev *dev, int bars) 1620 { 1621 return pci_enable_resources(dev, bars); 1622 } 1623 1624 static int do_pci_enable_device(struct pci_dev *dev, int bars) 1625 { 1626 int err; 1627 struct pci_dev *bridge; 1628 u16 cmd; 1629 u8 pin; 1630 1631 err = pci_set_power_state(dev, PCI_D0); 1632 if (err < 0 && err != -EIO) 1633 return err; 1634 1635 bridge = pci_upstream_bridge(dev); 1636 if (bridge) 1637 pcie_aspm_powersave_config_link(bridge); 1638 1639 err = pcibios_enable_device(dev, bars); 1640 if (err < 0) 1641 return err; 1642 pci_fixup_device(pci_fixup_enable, dev); 1643 1644 if (dev->msi_enabled || dev->msix_enabled) 1645 return 0; 1646 1647 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin); 1648 if (pin) { 1649 pci_read_config_word(dev, PCI_COMMAND, &cmd); 1650 if (cmd & PCI_COMMAND_INTX_DISABLE) 1651 pci_write_config_word(dev, PCI_COMMAND, 1652 cmd & ~PCI_COMMAND_INTX_DISABLE); 1653 } 1654 1655 return 0; 1656 } 1657 1658 /** 1659 * pci_reenable_device - Resume abandoned device 1660 * @dev: PCI device to be resumed 1661 * 1662 * NOTE: This function is a backend of pci_default_resume() and is not supposed 1663 * to be called by normal code, write proper resume handler and use it instead. 1664 */ 1665 int pci_reenable_device(struct pci_dev *dev) 1666 { 1667 if (pci_is_enabled(dev)) 1668 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1); 1669 return 0; 1670 } 1671 EXPORT_SYMBOL(pci_reenable_device); 1672 1673 static void pci_enable_bridge(struct pci_dev *dev) 1674 { 1675 struct pci_dev *bridge; 1676 int retval; 1677 1678 bridge = pci_upstream_bridge(dev); 1679 if (bridge) 1680 pci_enable_bridge(bridge); 1681 1682 if (pci_is_enabled(dev)) { 1683 if (!dev->is_busmaster) 1684 pci_set_master(dev); 1685 return; 1686 } 1687 1688 retval = pci_enable_device(dev); 1689 if (retval) 1690 pci_err(dev, "Error enabling bridge (%d), continuing\n", 1691 retval); 1692 pci_set_master(dev); 1693 } 1694 1695 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags) 1696 { 1697 struct pci_dev *bridge; 1698 int err; 1699 int i, bars = 0; 1700 1701 /* 1702 * Power state could be unknown at this point, either due to a fresh 1703 * boot or a device removal call. So get the current power state 1704 * so that things like MSI message writing will behave as expected 1705 * (e.g. if the device really is in D0 at enable time). 1706 */ 1707 if (dev->pm_cap) { 1708 u16 pmcsr; 1709 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1710 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 1711 } 1712 1713 if (atomic_inc_return(&dev->enable_cnt) > 1) 1714 return 0; /* already enabled */ 1715 1716 bridge = pci_upstream_bridge(dev); 1717 if (bridge) 1718 pci_enable_bridge(bridge); 1719 1720 /* only skip sriov related */ 1721 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 1722 if (dev->resource[i].flags & flags) 1723 bars |= (1 << i); 1724 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++) 1725 if (dev->resource[i].flags & flags) 1726 bars |= (1 << i); 1727 1728 err = do_pci_enable_device(dev, bars); 1729 if (err < 0) 1730 atomic_dec(&dev->enable_cnt); 1731 return err; 1732 } 1733 1734 /** 1735 * pci_enable_device_io - Initialize a device for use with IO space 1736 * @dev: PCI device to be initialized 1737 * 1738 * Initialize device before it's used by a driver. Ask low-level code 1739 * to enable I/O resources. Wake up the device if it was suspended. 1740 * Beware, this function can fail. 1741 */ 1742 int pci_enable_device_io(struct pci_dev *dev) 1743 { 1744 return pci_enable_device_flags(dev, IORESOURCE_IO); 1745 } 1746 EXPORT_SYMBOL(pci_enable_device_io); 1747 1748 /** 1749 * pci_enable_device_mem - Initialize a device for use with Memory space 1750 * @dev: PCI device to be initialized 1751 * 1752 * Initialize device before it's used by a driver. Ask low-level code 1753 * to enable Memory resources. Wake up the device if it was suspended. 1754 * Beware, this function can fail. 1755 */ 1756 int pci_enable_device_mem(struct pci_dev *dev) 1757 { 1758 return pci_enable_device_flags(dev, IORESOURCE_MEM); 1759 } 1760 EXPORT_SYMBOL(pci_enable_device_mem); 1761 1762 /** 1763 * pci_enable_device - Initialize device before it's used by a driver. 1764 * @dev: PCI device to be initialized 1765 * 1766 * Initialize device before it's used by a driver. Ask low-level code 1767 * to enable I/O and memory. Wake up the device if it was suspended. 1768 * Beware, this function can fail. 1769 * 1770 * Note we don't actually enable the device many times if we call 1771 * this function repeatedly (we just increment the count). 1772 */ 1773 int pci_enable_device(struct pci_dev *dev) 1774 { 1775 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO); 1776 } 1777 EXPORT_SYMBOL(pci_enable_device); 1778 1779 /* 1780 * Managed PCI resources. This manages device on/off, INTx/MSI/MSI-X 1781 * on/off and BAR regions. pci_dev itself records MSI/MSI-X status, so 1782 * there's no need to track it separately. pci_devres is initialized 1783 * when a device is enabled using managed PCI device enable interface. 1784 */ 1785 struct pci_devres { 1786 unsigned int enabled:1; 1787 unsigned int pinned:1; 1788 unsigned int orig_intx:1; 1789 unsigned int restore_intx:1; 1790 unsigned int mwi:1; 1791 u32 region_mask; 1792 }; 1793 1794 static void pcim_release(struct device *gendev, void *res) 1795 { 1796 struct pci_dev *dev = to_pci_dev(gendev); 1797 struct pci_devres *this = res; 1798 int i; 1799 1800 if (dev->msi_enabled) 1801 pci_disable_msi(dev); 1802 if (dev->msix_enabled) 1803 pci_disable_msix(dev); 1804 1805 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) 1806 if (this->region_mask & (1 << i)) 1807 pci_release_region(dev, i); 1808 1809 if (this->mwi) 1810 pci_clear_mwi(dev); 1811 1812 if (this->restore_intx) 1813 pci_intx(dev, this->orig_intx); 1814 1815 if (this->enabled && !this->pinned) 1816 pci_disable_device(dev); 1817 } 1818 1819 static struct pci_devres *get_pci_dr(struct pci_dev *pdev) 1820 { 1821 struct pci_devres *dr, *new_dr; 1822 1823 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL); 1824 if (dr) 1825 return dr; 1826 1827 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL); 1828 if (!new_dr) 1829 return NULL; 1830 return devres_get(&pdev->dev, new_dr, NULL, NULL); 1831 } 1832 1833 static struct pci_devres *find_pci_dr(struct pci_dev *pdev) 1834 { 1835 if (pci_is_managed(pdev)) 1836 return devres_find(&pdev->dev, pcim_release, NULL, NULL); 1837 return NULL; 1838 } 1839 1840 /** 1841 * pcim_enable_device - Managed pci_enable_device() 1842 * @pdev: PCI device to be initialized 1843 * 1844 * Managed pci_enable_device(). 1845 */ 1846 int pcim_enable_device(struct pci_dev *pdev) 1847 { 1848 struct pci_devres *dr; 1849 int rc; 1850 1851 dr = get_pci_dr(pdev); 1852 if (unlikely(!dr)) 1853 return -ENOMEM; 1854 if (dr->enabled) 1855 return 0; 1856 1857 rc = pci_enable_device(pdev); 1858 if (!rc) { 1859 pdev->is_managed = 1; 1860 dr->enabled = 1; 1861 } 1862 return rc; 1863 } 1864 EXPORT_SYMBOL(pcim_enable_device); 1865 1866 /** 1867 * pcim_pin_device - Pin managed PCI device 1868 * @pdev: PCI device to pin 1869 * 1870 * Pin managed PCI device @pdev. Pinned device won't be disabled on 1871 * driver detach. @pdev must have been enabled with 1872 * pcim_enable_device(). 1873 */ 1874 void pcim_pin_device(struct pci_dev *pdev) 1875 { 1876 struct pci_devres *dr; 1877 1878 dr = find_pci_dr(pdev); 1879 WARN_ON(!dr || !dr->enabled); 1880 if (dr) 1881 dr->pinned = 1; 1882 } 1883 EXPORT_SYMBOL(pcim_pin_device); 1884 1885 /* 1886 * pcibios_add_device - provide arch specific hooks when adding device dev 1887 * @dev: the PCI device being added 1888 * 1889 * Permits the platform to provide architecture specific functionality when 1890 * devices are added. This is the default implementation. Architecture 1891 * implementations can override this. 1892 */ 1893 int __weak pcibios_add_device(struct pci_dev *dev) 1894 { 1895 return 0; 1896 } 1897 1898 /** 1899 * pcibios_release_device - provide arch specific hooks when releasing 1900 * device dev 1901 * @dev: the PCI device being released 1902 * 1903 * Permits the platform to provide architecture specific functionality when 1904 * devices are released. This is the default implementation. Architecture 1905 * implementations can override this. 1906 */ 1907 void __weak pcibios_release_device(struct pci_dev *dev) {} 1908 1909 /** 1910 * pcibios_disable_device - disable arch specific PCI resources for device dev 1911 * @dev: the PCI device to disable 1912 * 1913 * Disables architecture specific PCI resources for the device. This 1914 * is the default implementation. Architecture implementations can 1915 * override this. 1916 */ 1917 void __weak pcibios_disable_device(struct pci_dev *dev) {} 1918 1919 /** 1920 * pcibios_penalize_isa_irq - penalize an ISA IRQ 1921 * @irq: ISA IRQ to penalize 1922 * @active: IRQ active or not 1923 * 1924 * Permits the platform to provide architecture-specific functionality when 1925 * penalizing ISA IRQs. This is the default implementation. Architecture 1926 * implementations can override this. 1927 */ 1928 void __weak pcibios_penalize_isa_irq(int irq, int active) {} 1929 1930 static void do_pci_disable_device(struct pci_dev *dev) 1931 { 1932 u16 pci_command; 1933 1934 pci_read_config_word(dev, PCI_COMMAND, &pci_command); 1935 if (pci_command & PCI_COMMAND_MASTER) { 1936 pci_command &= ~PCI_COMMAND_MASTER; 1937 pci_write_config_word(dev, PCI_COMMAND, pci_command); 1938 } 1939 1940 pcibios_disable_device(dev); 1941 } 1942 1943 /** 1944 * pci_disable_enabled_device - Disable device without updating enable_cnt 1945 * @dev: PCI device to disable 1946 * 1947 * NOTE: This function is a backend of PCI power management routines and is 1948 * not supposed to be called drivers. 1949 */ 1950 void pci_disable_enabled_device(struct pci_dev *dev) 1951 { 1952 if (pci_is_enabled(dev)) 1953 do_pci_disable_device(dev); 1954 } 1955 1956 /** 1957 * pci_disable_device - Disable PCI device after use 1958 * @dev: PCI device to be disabled 1959 * 1960 * Signal to the system that the PCI device is not in use by the system 1961 * anymore. This only involves disabling PCI bus-mastering, if active. 1962 * 1963 * Note we don't actually disable the device until all callers of 1964 * pci_enable_device() have called pci_disable_device(). 1965 */ 1966 void pci_disable_device(struct pci_dev *dev) 1967 { 1968 struct pci_devres *dr; 1969 1970 dr = find_pci_dr(dev); 1971 if (dr) 1972 dr->enabled = 0; 1973 1974 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0, 1975 "disabling already-disabled device"); 1976 1977 if (atomic_dec_return(&dev->enable_cnt) != 0) 1978 return; 1979 1980 do_pci_disable_device(dev); 1981 1982 dev->is_busmaster = 0; 1983 } 1984 EXPORT_SYMBOL(pci_disable_device); 1985 1986 /** 1987 * pcibios_set_pcie_reset_state - set reset state for device dev 1988 * @dev: the PCIe device reset 1989 * @state: Reset state to enter into 1990 * 1991 * Set the PCIe reset state for the device. This is the default 1992 * implementation. Architecture implementations can override this. 1993 */ 1994 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev, 1995 enum pcie_reset_state state) 1996 { 1997 return -EINVAL; 1998 } 1999 2000 /** 2001 * pci_set_pcie_reset_state - set reset state for device dev 2002 * @dev: the PCIe device reset 2003 * @state: Reset state to enter into 2004 * 2005 * Sets the PCI reset state for the device. 2006 */ 2007 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state) 2008 { 2009 return pcibios_set_pcie_reset_state(dev, state); 2010 } 2011 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state); 2012 2013 /** 2014 * pcie_clear_root_pme_status - Clear root port PME interrupt status. 2015 * @dev: PCIe root port or event collector. 2016 */ 2017 void pcie_clear_root_pme_status(struct pci_dev *dev) 2018 { 2019 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME); 2020 } 2021 2022 /** 2023 * pci_check_pme_status - Check if given device has generated PME. 2024 * @dev: Device to check. 2025 * 2026 * Check the PME status of the device and if set, clear it and clear PME enable 2027 * (if set). Return 'true' if PME status and PME enable were both set or 2028 * 'false' otherwise. 2029 */ 2030 bool pci_check_pme_status(struct pci_dev *dev) 2031 { 2032 int pmcsr_pos; 2033 u16 pmcsr; 2034 bool ret = false; 2035 2036 if (!dev->pm_cap) 2037 return false; 2038 2039 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL; 2040 pci_read_config_word(dev, pmcsr_pos, &pmcsr); 2041 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS)) 2042 return false; 2043 2044 /* Clear PME status. */ 2045 pmcsr |= PCI_PM_CTRL_PME_STATUS; 2046 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) { 2047 /* Disable PME to avoid interrupt flood. */ 2048 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2049 ret = true; 2050 } 2051 2052 pci_write_config_word(dev, pmcsr_pos, pmcsr); 2053 2054 return ret; 2055 } 2056 2057 /** 2058 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set. 2059 * @dev: Device to handle. 2060 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag. 2061 * 2062 * Check if @dev has generated PME and queue a resume request for it in that 2063 * case. 2064 */ 2065 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset) 2066 { 2067 if (pme_poll_reset && dev->pme_poll) 2068 dev->pme_poll = false; 2069 2070 if (pci_check_pme_status(dev)) { 2071 pci_wakeup_event(dev); 2072 pm_request_resume(&dev->dev); 2073 } 2074 return 0; 2075 } 2076 2077 /** 2078 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary. 2079 * @bus: Top bus of the subtree to walk. 2080 */ 2081 void pci_pme_wakeup_bus(struct pci_bus *bus) 2082 { 2083 if (bus) 2084 pci_walk_bus(bus, pci_pme_wakeup, (void *)true); 2085 } 2086 2087 2088 /** 2089 * pci_pme_capable - check the capability of PCI device to generate PME# 2090 * @dev: PCI device to handle. 2091 * @state: PCI state from which device will issue PME#. 2092 */ 2093 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state) 2094 { 2095 if (!dev->pm_cap) 2096 return false; 2097 2098 return !!(dev->pme_support & (1 << state)); 2099 } 2100 EXPORT_SYMBOL(pci_pme_capable); 2101 2102 static void pci_pme_list_scan(struct work_struct *work) 2103 { 2104 struct pci_pme_device *pme_dev, *n; 2105 2106 mutex_lock(&pci_pme_list_mutex); 2107 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) { 2108 if (pme_dev->dev->pme_poll) { 2109 struct pci_dev *bridge; 2110 2111 bridge = pme_dev->dev->bus->self; 2112 /* 2113 * If bridge is in low power state, the 2114 * configuration space of subordinate devices 2115 * may be not accessible 2116 */ 2117 if (bridge && bridge->current_state != PCI_D0) 2118 continue; 2119 /* 2120 * If the device is in D3cold it should not be 2121 * polled either. 2122 */ 2123 if (pme_dev->dev->current_state == PCI_D3cold) 2124 continue; 2125 2126 pci_pme_wakeup(pme_dev->dev, NULL); 2127 } else { 2128 list_del(&pme_dev->list); 2129 kfree(pme_dev); 2130 } 2131 } 2132 if (!list_empty(&pci_pme_list)) 2133 queue_delayed_work(system_freezable_wq, &pci_pme_work, 2134 msecs_to_jiffies(PME_TIMEOUT)); 2135 mutex_unlock(&pci_pme_list_mutex); 2136 } 2137 2138 static void __pci_pme_active(struct pci_dev *dev, bool enable) 2139 { 2140 u16 pmcsr; 2141 2142 if (!dev->pme_support) 2143 return; 2144 2145 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2146 /* Clear PME_Status by writing 1 to it and enable PME# */ 2147 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE; 2148 if (!enable) 2149 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2150 2151 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2152 } 2153 2154 /** 2155 * pci_pme_restore - Restore PME configuration after config space restore. 2156 * @dev: PCI device to update. 2157 */ 2158 void pci_pme_restore(struct pci_dev *dev) 2159 { 2160 u16 pmcsr; 2161 2162 if (!dev->pme_support) 2163 return; 2164 2165 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2166 if (dev->wakeup_prepared) { 2167 pmcsr |= PCI_PM_CTRL_PME_ENABLE; 2168 pmcsr &= ~PCI_PM_CTRL_PME_STATUS; 2169 } else { 2170 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2171 pmcsr |= PCI_PM_CTRL_PME_STATUS; 2172 } 2173 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2174 } 2175 2176 /** 2177 * pci_pme_active - enable or disable PCI device's PME# function 2178 * @dev: PCI device to handle. 2179 * @enable: 'true' to enable PME# generation; 'false' to disable it. 2180 * 2181 * The caller must verify that the device is capable of generating PME# before 2182 * calling this function with @enable equal to 'true'. 2183 */ 2184 void pci_pme_active(struct pci_dev *dev, bool enable) 2185 { 2186 __pci_pme_active(dev, enable); 2187 2188 /* 2189 * PCI (as opposed to PCIe) PME requires that the device have 2190 * its PME# line hooked up correctly. Not all hardware vendors 2191 * do this, so the PME never gets delivered and the device 2192 * remains asleep. The easiest way around this is to 2193 * periodically walk the list of suspended devices and check 2194 * whether any have their PME flag set. The assumption is that 2195 * we'll wake up often enough anyway that this won't be a huge 2196 * hit, and the power savings from the devices will still be a 2197 * win. 2198 * 2199 * Although PCIe uses in-band PME message instead of PME# line 2200 * to report PME, PME does not work for some PCIe devices in 2201 * reality. For example, there are devices that set their PME 2202 * status bits, but don't really bother to send a PME message; 2203 * there are PCI Express Root Ports that don't bother to 2204 * trigger interrupts when they receive PME messages from the 2205 * devices below. So PME poll is used for PCIe devices too. 2206 */ 2207 2208 if (dev->pme_poll) { 2209 struct pci_pme_device *pme_dev; 2210 if (enable) { 2211 pme_dev = kmalloc(sizeof(struct pci_pme_device), 2212 GFP_KERNEL); 2213 if (!pme_dev) { 2214 pci_warn(dev, "can't enable PME#\n"); 2215 return; 2216 } 2217 pme_dev->dev = dev; 2218 mutex_lock(&pci_pme_list_mutex); 2219 list_add(&pme_dev->list, &pci_pme_list); 2220 if (list_is_singular(&pci_pme_list)) 2221 queue_delayed_work(system_freezable_wq, 2222 &pci_pme_work, 2223 msecs_to_jiffies(PME_TIMEOUT)); 2224 mutex_unlock(&pci_pme_list_mutex); 2225 } else { 2226 mutex_lock(&pci_pme_list_mutex); 2227 list_for_each_entry(pme_dev, &pci_pme_list, list) { 2228 if (pme_dev->dev == dev) { 2229 list_del(&pme_dev->list); 2230 kfree(pme_dev); 2231 break; 2232 } 2233 } 2234 mutex_unlock(&pci_pme_list_mutex); 2235 } 2236 } 2237 2238 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled"); 2239 } 2240 EXPORT_SYMBOL(pci_pme_active); 2241 2242 /** 2243 * __pci_enable_wake - enable PCI device as wakeup event source 2244 * @dev: PCI device affected 2245 * @state: PCI state from which device will issue wakeup events 2246 * @enable: True to enable event generation; false to disable 2247 * 2248 * This enables the device as a wakeup event source, or disables it. 2249 * When such events involves platform-specific hooks, those hooks are 2250 * called automatically by this routine. 2251 * 2252 * Devices with legacy power management (no standard PCI PM capabilities) 2253 * always require such platform hooks. 2254 * 2255 * RETURN VALUE: 2256 * 0 is returned on success 2257 * -EINVAL is returned if device is not supposed to wake up the system 2258 * Error code depending on the platform is returned if both the platform and 2259 * the native mechanism fail to enable the generation of wake-up events 2260 */ 2261 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable) 2262 { 2263 int ret = 0; 2264 2265 /* 2266 * Bridges that are not power-manageable directly only signal 2267 * wakeup on behalf of subordinate devices which is set up 2268 * elsewhere, so skip them. However, bridges that are 2269 * power-manageable may signal wakeup for themselves (for example, 2270 * on a hotplug event) and they need to be covered here. 2271 */ 2272 if (!pci_power_manageable(dev)) 2273 return 0; 2274 2275 /* Don't do the same thing twice in a row for one device. */ 2276 if (!!enable == !!dev->wakeup_prepared) 2277 return 0; 2278 2279 /* 2280 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don 2281 * Anderson we should be doing PME# wake enable followed by ACPI wake 2282 * enable. To disable wake-up we call the platform first, for symmetry. 2283 */ 2284 2285 if (enable) { 2286 int error; 2287 2288 if (pci_pme_capable(dev, state)) 2289 pci_pme_active(dev, true); 2290 else 2291 ret = 1; 2292 error = platform_pci_set_wakeup(dev, true); 2293 if (ret) 2294 ret = error; 2295 if (!ret) 2296 dev->wakeup_prepared = true; 2297 } else { 2298 platform_pci_set_wakeup(dev, false); 2299 pci_pme_active(dev, false); 2300 dev->wakeup_prepared = false; 2301 } 2302 2303 return ret; 2304 } 2305 2306 /** 2307 * pci_enable_wake - change wakeup settings for a PCI device 2308 * @pci_dev: Target device 2309 * @state: PCI state from which device will issue wakeup events 2310 * @enable: Whether or not to enable event generation 2311 * 2312 * If @enable is set, check device_may_wakeup() for the device before calling 2313 * __pci_enable_wake() for it. 2314 */ 2315 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable) 2316 { 2317 if (enable && !device_may_wakeup(&pci_dev->dev)) 2318 return -EINVAL; 2319 2320 return __pci_enable_wake(pci_dev, state, enable); 2321 } 2322 EXPORT_SYMBOL(pci_enable_wake); 2323 2324 /** 2325 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold 2326 * @dev: PCI device to prepare 2327 * @enable: True to enable wake-up event generation; false to disable 2328 * 2329 * Many drivers want the device to wake up the system from D3_hot or D3_cold 2330 * and this function allows them to set that up cleanly - pci_enable_wake() 2331 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI 2332 * ordering constraints. 2333 * 2334 * This function only returns error code if the device is not allowed to wake 2335 * up the system from sleep or it is not capable of generating PME# from both 2336 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it. 2337 */ 2338 int pci_wake_from_d3(struct pci_dev *dev, bool enable) 2339 { 2340 return pci_pme_capable(dev, PCI_D3cold) ? 2341 pci_enable_wake(dev, PCI_D3cold, enable) : 2342 pci_enable_wake(dev, PCI_D3hot, enable); 2343 } 2344 EXPORT_SYMBOL(pci_wake_from_d3); 2345 2346 /** 2347 * pci_target_state - find an appropriate low power state for a given PCI dev 2348 * @dev: PCI device 2349 * @wakeup: Whether or not wakeup functionality will be enabled for the device. 2350 * 2351 * Use underlying platform code to find a supported low power state for @dev. 2352 * If the platform can't manage @dev, return the deepest state from which it 2353 * can generate wake events, based on any available PME info. 2354 */ 2355 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup) 2356 { 2357 pci_power_t target_state = PCI_D3hot; 2358 2359 if (platform_pci_power_manageable(dev)) { 2360 /* 2361 * Call the platform to find the target state for the device. 2362 */ 2363 pci_power_t state = platform_pci_choose_state(dev); 2364 2365 switch (state) { 2366 case PCI_POWER_ERROR: 2367 case PCI_UNKNOWN: 2368 break; 2369 case PCI_D1: 2370 case PCI_D2: 2371 if (pci_no_d1d2(dev)) 2372 break; 2373 /* else, fall through */ 2374 default: 2375 target_state = state; 2376 } 2377 2378 return target_state; 2379 } 2380 2381 if (!dev->pm_cap) 2382 target_state = PCI_D0; 2383 2384 /* 2385 * If the device is in D3cold even though it's not power-manageable by 2386 * the platform, it may have been powered down by non-standard means. 2387 * Best to let it slumber. 2388 */ 2389 if (dev->current_state == PCI_D3cold) 2390 target_state = PCI_D3cold; 2391 2392 if (wakeup) { 2393 /* 2394 * Find the deepest state from which the device can generate 2395 * PME#. 2396 */ 2397 if (dev->pme_support) { 2398 while (target_state 2399 && !(dev->pme_support & (1 << target_state))) 2400 target_state--; 2401 } 2402 } 2403 2404 return target_state; 2405 } 2406 2407 /** 2408 * pci_prepare_to_sleep - prepare PCI device for system-wide transition 2409 * into a sleep state 2410 * @dev: Device to handle. 2411 * 2412 * Choose the power state appropriate for the device depending on whether 2413 * it can wake up the system and/or is power manageable by the platform 2414 * (PCI_D3hot is the default) and put the device into that state. 2415 */ 2416 int pci_prepare_to_sleep(struct pci_dev *dev) 2417 { 2418 bool wakeup = device_may_wakeup(&dev->dev); 2419 pci_power_t target_state = pci_target_state(dev, wakeup); 2420 int error; 2421 2422 if (target_state == PCI_POWER_ERROR) 2423 return -EIO; 2424 2425 pci_enable_wake(dev, target_state, wakeup); 2426 2427 error = pci_set_power_state(dev, target_state); 2428 2429 if (error) 2430 pci_enable_wake(dev, target_state, false); 2431 2432 return error; 2433 } 2434 EXPORT_SYMBOL(pci_prepare_to_sleep); 2435 2436 /** 2437 * pci_back_from_sleep - turn PCI device on during system-wide transition 2438 * into working state 2439 * @dev: Device to handle. 2440 * 2441 * Disable device's system wake-up capability and put it into D0. 2442 */ 2443 int pci_back_from_sleep(struct pci_dev *dev) 2444 { 2445 pci_enable_wake(dev, PCI_D0, false); 2446 return pci_set_power_state(dev, PCI_D0); 2447 } 2448 EXPORT_SYMBOL(pci_back_from_sleep); 2449 2450 /** 2451 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend. 2452 * @dev: PCI device being suspended. 2453 * 2454 * Prepare @dev to generate wake-up events at run time and put it into a low 2455 * power state. 2456 */ 2457 int pci_finish_runtime_suspend(struct pci_dev *dev) 2458 { 2459 pci_power_t target_state; 2460 int error; 2461 2462 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev)); 2463 if (target_state == PCI_POWER_ERROR) 2464 return -EIO; 2465 2466 dev->runtime_d3cold = target_state == PCI_D3cold; 2467 2468 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev)); 2469 2470 error = pci_set_power_state(dev, target_state); 2471 2472 if (error) { 2473 pci_enable_wake(dev, target_state, false); 2474 dev->runtime_d3cold = false; 2475 } 2476 2477 return error; 2478 } 2479 2480 /** 2481 * pci_dev_run_wake - Check if device can generate run-time wake-up events. 2482 * @dev: Device to check. 2483 * 2484 * Return true if the device itself is capable of generating wake-up events 2485 * (through the platform or using the native PCIe PME) or if the device supports 2486 * PME and one of its upstream bridges can generate wake-up events. 2487 */ 2488 bool pci_dev_run_wake(struct pci_dev *dev) 2489 { 2490 struct pci_bus *bus = dev->bus; 2491 2492 if (!dev->pme_support) 2493 return false; 2494 2495 /* PME-capable in principle, but not from the target power state */ 2496 if (!pci_pme_capable(dev, pci_target_state(dev, true))) 2497 return false; 2498 2499 if (device_can_wakeup(&dev->dev)) 2500 return true; 2501 2502 while (bus->parent) { 2503 struct pci_dev *bridge = bus->self; 2504 2505 if (device_can_wakeup(&bridge->dev)) 2506 return true; 2507 2508 bus = bus->parent; 2509 } 2510 2511 /* We have reached the root bus. */ 2512 if (bus->bridge) 2513 return device_can_wakeup(bus->bridge); 2514 2515 return false; 2516 } 2517 EXPORT_SYMBOL_GPL(pci_dev_run_wake); 2518 2519 /** 2520 * pci_dev_need_resume - Check if it is necessary to resume the device. 2521 * @pci_dev: Device to check. 2522 * 2523 * Return 'true' if the device is not runtime-suspended or it has to be 2524 * reconfigured due to wakeup settings difference between system and runtime 2525 * suspend, or the current power state of it is not suitable for the upcoming 2526 * (system-wide) transition. 2527 */ 2528 bool pci_dev_need_resume(struct pci_dev *pci_dev) 2529 { 2530 struct device *dev = &pci_dev->dev; 2531 pci_power_t target_state; 2532 2533 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev)) 2534 return true; 2535 2536 target_state = pci_target_state(pci_dev, device_may_wakeup(dev)); 2537 2538 /* 2539 * If the earlier platform check has not triggered, D3cold is just power 2540 * removal on top of D3hot, so no need to resume the device in that 2541 * case. 2542 */ 2543 return target_state != pci_dev->current_state && 2544 target_state != PCI_D3cold && 2545 pci_dev->current_state != PCI_D3hot; 2546 } 2547 2548 /** 2549 * pci_dev_adjust_pme - Adjust PME setting for a suspended device. 2550 * @pci_dev: Device to check. 2551 * 2552 * If the device is suspended and it is not configured for system wakeup, 2553 * disable PME for it to prevent it from waking up the system unnecessarily. 2554 * 2555 * Note that if the device's power state is D3cold and the platform check in 2556 * pci_dev_need_resume() has not triggered, the device's configuration need not 2557 * be changed. 2558 */ 2559 void pci_dev_adjust_pme(struct pci_dev *pci_dev) 2560 { 2561 struct device *dev = &pci_dev->dev; 2562 2563 spin_lock_irq(&dev->power.lock); 2564 2565 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) && 2566 pci_dev->current_state < PCI_D3cold) 2567 __pci_pme_active(pci_dev, false); 2568 2569 spin_unlock_irq(&dev->power.lock); 2570 } 2571 2572 /** 2573 * pci_dev_complete_resume - Finalize resume from system sleep for a device. 2574 * @pci_dev: Device to handle. 2575 * 2576 * If the device is runtime suspended and wakeup-capable, enable PME for it as 2577 * it might have been disabled during the prepare phase of system suspend if 2578 * the device was not configured for system wakeup. 2579 */ 2580 void pci_dev_complete_resume(struct pci_dev *pci_dev) 2581 { 2582 struct device *dev = &pci_dev->dev; 2583 2584 if (!pci_dev_run_wake(pci_dev)) 2585 return; 2586 2587 spin_lock_irq(&dev->power.lock); 2588 2589 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold) 2590 __pci_pme_active(pci_dev, true); 2591 2592 spin_unlock_irq(&dev->power.lock); 2593 } 2594 2595 void pci_config_pm_runtime_get(struct pci_dev *pdev) 2596 { 2597 struct device *dev = &pdev->dev; 2598 struct device *parent = dev->parent; 2599 2600 if (parent) 2601 pm_runtime_get_sync(parent); 2602 pm_runtime_get_noresume(dev); 2603 /* 2604 * pdev->current_state is set to PCI_D3cold during suspending, 2605 * so wait until suspending completes 2606 */ 2607 pm_runtime_barrier(dev); 2608 /* 2609 * Only need to resume devices in D3cold, because config 2610 * registers are still accessible for devices suspended but 2611 * not in D3cold. 2612 */ 2613 if (pdev->current_state == PCI_D3cold) 2614 pm_runtime_resume(dev); 2615 } 2616 2617 void pci_config_pm_runtime_put(struct pci_dev *pdev) 2618 { 2619 struct device *dev = &pdev->dev; 2620 struct device *parent = dev->parent; 2621 2622 pm_runtime_put(dev); 2623 if (parent) 2624 pm_runtime_put_sync(parent); 2625 } 2626 2627 static const struct dmi_system_id bridge_d3_blacklist[] = { 2628 #ifdef CONFIG_X86 2629 { 2630 /* 2631 * Gigabyte X299 root port is not marked as hotplug capable 2632 * which allows Linux to power manage it. However, this 2633 * confuses the BIOS SMI handler so don't power manage root 2634 * ports on that system. 2635 */ 2636 .ident = "X299 DESIGNARE EX-CF", 2637 .matches = { 2638 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."), 2639 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"), 2640 }, 2641 }, 2642 #endif 2643 { } 2644 }; 2645 2646 /** 2647 * pci_bridge_d3_possible - Is it possible to put the bridge into D3 2648 * @bridge: Bridge to check 2649 * 2650 * This function checks if it is possible to move the bridge to D3. 2651 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt. 2652 */ 2653 bool pci_bridge_d3_possible(struct pci_dev *bridge) 2654 { 2655 if (!pci_is_pcie(bridge)) 2656 return false; 2657 2658 switch (pci_pcie_type(bridge)) { 2659 case PCI_EXP_TYPE_ROOT_PORT: 2660 case PCI_EXP_TYPE_UPSTREAM: 2661 case PCI_EXP_TYPE_DOWNSTREAM: 2662 if (pci_bridge_d3_disable) 2663 return false; 2664 2665 /* 2666 * Hotplug ports handled by firmware in System Management Mode 2667 * may not be put into D3 by the OS (Thunderbolt on non-Macs). 2668 */ 2669 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge)) 2670 return false; 2671 2672 if (pci_bridge_d3_force) 2673 return true; 2674 2675 /* Even the oldest 2010 Thunderbolt controller supports D3. */ 2676 if (bridge->is_thunderbolt) 2677 return true; 2678 2679 /* Platform might know better if the bridge supports D3 */ 2680 if (platform_pci_bridge_d3(bridge)) 2681 return true; 2682 2683 /* 2684 * Hotplug ports handled natively by the OS were not validated 2685 * by vendors for runtime D3 at least until 2018 because there 2686 * was no OS support. 2687 */ 2688 if (bridge->is_hotplug_bridge) 2689 return false; 2690 2691 if (dmi_check_system(bridge_d3_blacklist)) 2692 return false; 2693 2694 /* 2695 * It should be safe to put PCIe ports from 2015 or newer 2696 * to D3. 2697 */ 2698 if (dmi_get_bios_year() >= 2015) 2699 return true; 2700 break; 2701 } 2702 2703 return false; 2704 } 2705 2706 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data) 2707 { 2708 bool *d3cold_ok = data; 2709 2710 if (/* The device needs to be allowed to go D3cold ... */ 2711 dev->no_d3cold || !dev->d3cold_allowed || 2712 2713 /* ... and if it is wakeup capable to do so from D3cold. */ 2714 (device_may_wakeup(&dev->dev) && 2715 !pci_pme_capable(dev, PCI_D3cold)) || 2716 2717 /* If it is a bridge it must be allowed to go to D3. */ 2718 !pci_power_manageable(dev)) 2719 2720 *d3cold_ok = false; 2721 2722 return !*d3cold_ok; 2723 } 2724 2725 /* 2726 * pci_bridge_d3_update - Update bridge D3 capabilities 2727 * @dev: PCI device which is changed 2728 * 2729 * Update upstream bridge PM capabilities accordingly depending on if the 2730 * device PM configuration was changed or the device is being removed. The 2731 * change is also propagated upstream. 2732 */ 2733 void pci_bridge_d3_update(struct pci_dev *dev) 2734 { 2735 bool remove = !device_is_registered(&dev->dev); 2736 struct pci_dev *bridge; 2737 bool d3cold_ok = true; 2738 2739 bridge = pci_upstream_bridge(dev); 2740 if (!bridge || !pci_bridge_d3_possible(bridge)) 2741 return; 2742 2743 /* 2744 * If D3 is currently allowed for the bridge, removing one of its 2745 * children won't change that. 2746 */ 2747 if (remove && bridge->bridge_d3) 2748 return; 2749 2750 /* 2751 * If D3 is currently allowed for the bridge and a child is added or 2752 * changed, disallowance of D3 can only be caused by that child, so 2753 * we only need to check that single device, not any of its siblings. 2754 * 2755 * If D3 is currently not allowed for the bridge, checking the device 2756 * first may allow us to skip checking its siblings. 2757 */ 2758 if (!remove) 2759 pci_dev_check_d3cold(dev, &d3cold_ok); 2760 2761 /* 2762 * If D3 is currently not allowed for the bridge, this may be caused 2763 * either by the device being changed/removed or any of its siblings, 2764 * so we need to go through all children to find out if one of them 2765 * continues to block D3. 2766 */ 2767 if (d3cold_ok && !bridge->bridge_d3) 2768 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold, 2769 &d3cold_ok); 2770 2771 if (bridge->bridge_d3 != d3cold_ok) { 2772 bridge->bridge_d3 = d3cold_ok; 2773 /* Propagate change to upstream bridges */ 2774 pci_bridge_d3_update(bridge); 2775 } 2776 } 2777 2778 /** 2779 * pci_d3cold_enable - Enable D3cold for device 2780 * @dev: PCI device to handle 2781 * 2782 * This function can be used in drivers to enable D3cold from the device 2783 * they handle. It also updates upstream PCI bridge PM capabilities 2784 * accordingly. 2785 */ 2786 void pci_d3cold_enable(struct pci_dev *dev) 2787 { 2788 if (dev->no_d3cold) { 2789 dev->no_d3cold = false; 2790 pci_bridge_d3_update(dev); 2791 } 2792 } 2793 EXPORT_SYMBOL_GPL(pci_d3cold_enable); 2794 2795 /** 2796 * pci_d3cold_disable - Disable D3cold for device 2797 * @dev: PCI device to handle 2798 * 2799 * This function can be used in drivers to disable D3cold from the device 2800 * they handle. It also updates upstream PCI bridge PM capabilities 2801 * accordingly. 2802 */ 2803 void pci_d3cold_disable(struct pci_dev *dev) 2804 { 2805 if (!dev->no_d3cold) { 2806 dev->no_d3cold = true; 2807 pci_bridge_d3_update(dev); 2808 } 2809 } 2810 EXPORT_SYMBOL_GPL(pci_d3cold_disable); 2811 2812 /** 2813 * pci_pm_init - Initialize PM functions of given PCI device 2814 * @dev: PCI device to handle. 2815 */ 2816 void pci_pm_init(struct pci_dev *dev) 2817 { 2818 int pm; 2819 u16 status; 2820 u16 pmc; 2821 2822 pm_runtime_forbid(&dev->dev); 2823 pm_runtime_set_active(&dev->dev); 2824 pm_runtime_enable(&dev->dev); 2825 device_enable_async_suspend(&dev->dev); 2826 dev->wakeup_prepared = false; 2827 2828 dev->pm_cap = 0; 2829 dev->pme_support = 0; 2830 2831 /* find PCI PM capability in list */ 2832 pm = pci_find_capability(dev, PCI_CAP_ID_PM); 2833 if (!pm) 2834 return; 2835 /* Check device's ability to generate PME# */ 2836 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc); 2837 2838 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) { 2839 pci_err(dev, "unsupported PM cap regs version (%u)\n", 2840 pmc & PCI_PM_CAP_VER_MASK); 2841 return; 2842 } 2843 2844 dev->pm_cap = pm; 2845 dev->d3_delay = PCI_PM_D3_WAIT; 2846 dev->d3cold_delay = PCI_PM_D3COLD_WAIT; 2847 dev->bridge_d3 = pci_bridge_d3_possible(dev); 2848 dev->d3cold_allowed = true; 2849 2850 dev->d1_support = false; 2851 dev->d2_support = false; 2852 if (!pci_no_d1d2(dev)) { 2853 if (pmc & PCI_PM_CAP_D1) 2854 dev->d1_support = true; 2855 if (pmc & PCI_PM_CAP_D2) 2856 dev->d2_support = true; 2857 2858 if (dev->d1_support || dev->d2_support) 2859 pci_info(dev, "supports%s%s\n", 2860 dev->d1_support ? " D1" : "", 2861 dev->d2_support ? " D2" : ""); 2862 } 2863 2864 pmc &= PCI_PM_CAP_PME_MASK; 2865 if (pmc) { 2866 pci_info(dev, "PME# supported from%s%s%s%s%s\n", 2867 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "", 2868 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "", 2869 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "", 2870 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "", 2871 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : ""); 2872 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT; 2873 dev->pme_poll = true; 2874 /* 2875 * Make device's PM flags reflect the wake-up capability, but 2876 * let the user space enable it to wake up the system as needed. 2877 */ 2878 device_set_wakeup_capable(&dev->dev, true); 2879 /* Disable the PME# generation functionality */ 2880 pci_pme_active(dev, false); 2881 } 2882 2883 pci_read_config_word(dev, PCI_STATUS, &status); 2884 if (status & PCI_STATUS_IMM_READY) 2885 dev->imm_ready = 1; 2886 } 2887 2888 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop) 2889 { 2890 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI; 2891 2892 switch (prop) { 2893 case PCI_EA_P_MEM: 2894 case PCI_EA_P_VF_MEM: 2895 flags |= IORESOURCE_MEM; 2896 break; 2897 case PCI_EA_P_MEM_PREFETCH: 2898 case PCI_EA_P_VF_MEM_PREFETCH: 2899 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH; 2900 break; 2901 case PCI_EA_P_IO: 2902 flags |= IORESOURCE_IO; 2903 break; 2904 default: 2905 return 0; 2906 } 2907 2908 return flags; 2909 } 2910 2911 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei, 2912 u8 prop) 2913 { 2914 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO) 2915 return &dev->resource[bei]; 2916 #ifdef CONFIG_PCI_IOV 2917 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 && 2918 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH)) 2919 return &dev->resource[PCI_IOV_RESOURCES + 2920 bei - PCI_EA_BEI_VF_BAR0]; 2921 #endif 2922 else if (bei == PCI_EA_BEI_ROM) 2923 return &dev->resource[PCI_ROM_RESOURCE]; 2924 else 2925 return NULL; 2926 } 2927 2928 /* Read an Enhanced Allocation (EA) entry */ 2929 static int pci_ea_read(struct pci_dev *dev, int offset) 2930 { 2931 struct resource *res; 2932 int ent_size, ent_offset = offset; 2933 resource_size_t start, end; 2934 unsigned long flags; 2935 u32 dw0, bei, base, max_offset; 2936 u8 prop; 2937 bool support_64 = (sizeof(resource_size_t) >= 8); 2938 2939 pci_read_config_dword(dev, ent_offset, &dw0); 2940 ent_offset += 4; 2941 2942 /* Entry size field indicates DWORDs after 1st */ 2943 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2; 2944 2945 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */ 2946 goto out; 2947 2948 bei = (dw0 & PCI_EA_BEI) >> 4; 2949 prop = (dw0 & PCI_EA_PP) >> 8; 2950 2951 /* 2952 * If the Property is in the reserved range, try the Secondary 2953 * Property instead. 2954 */ 2955 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED) 2956 prop = (dw0 & PCI_EA_SP) >> 16; 2957 if (prop > PCI_EA_P_BRIDGE_IO) 2958 goto out; 2959 2960 res = pci_ea_get_resource(dev, bei, prop); 2961 if (!res) { 2962 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei); 2963 goto out; 2964 } 2965 2966 flags = pci_ea_flags(dev, prop); 2967 if (!flags) { 2968 pci_err(dev, "Unsupported EA properties: %#x\n", prop); 2969 goto out; 2970 } 2971 2972 /* Read Base */ 2973 pci_read_config_dword(dev, ent_offset, &base); 2974 start = (base & PCI_EA_FIELD_MASK); 2975 ent_offset += 4; 2976 2977 /* Read MaxOffset */ 2978 pci_read_config_dword(dev, ent_offset, &max_offset); 2979 ent_offset += 4; 2980 2981 /* Read Base MSBs (if 64-bit entry) */ 2982 if (base & PCI_EA_IS_64) { 2983 u32 base_upper; 2984 2985 pci_read_config_dword(dev, ent_offset, &base_upper); 2986 ent_offset += 4; 2987 2988 flags |= IORESOURCE_MEM_64; 2989 2990 /* entry starts above 32-bit boundary, can't use */ 2991 if (!support_64 && base_upper) 2992 goto out; 2993 2994 if (support_64) 2995 start |= ((u64)base_upper << 32); 2996 } 2997 2998 end = start + (max_offset | 0x03); 2999 3000 /* Read MaxOffset MSBs (if 64-bit entry) */ 3001 if (max_offset & PCI_EA_IS_64) { 3002 u32 max_offset_upper; 3003 3004 pci_read_config_dword(dev, ent_offset, &max_offset_upper); 3005 ent_offset += 4; 3006 3007 flags |= IORESOURCE_MEM_64; 3008 3009 /* entry too big, can't use */ 3010 if (!support_64 && max_offset_upper) 3011 goto out; 3012 3013 if (support_64) 3014 end += ((u64)max_offset_upper << 32); 3015 } 3016 3017 if (end < start) { 3018 pci_err(dev, "EA Entry crosses address boundary\n"); 3019 goto out; 3020 } 3021 3022 if (ent_size != ent_offset - offset) { 3023 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n", 3024 ent_size, ent_offset - offset); 3025 goto out; 3026 } 3027 3028 res->name = pci_name(dev); 3029 res->start = start; 3030 res->end = end; 3031 res->flags = flags; 3032 3033 if (bei <= PCI_EA_BEI_BAR5) 3034 pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 3035 bei, res, prop); 3036 else if (bei == PCI_EA_BEI_ROM) 3037 pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n", 3038 res, prop); 3039 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5) 3040 pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 3041 bei - PCI_EA_BEI_VF_BAR0, res, prop); 3042 else 3043 pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n", 3044 bei, res, prop); 3045 3046 out: 3047 return offset + ent_size; 3048 } 3049 3050 /* Enhanced Allocation Initialization */ 3051 void pci_ea_init(struct pci_dev *dev) 3052 { 3053 int ea; 3054 u8 num_ent; 3055 int offset; 3056 int i; 3057 3058 /* find PCI EA capability in list */ 3059 ea = pci_find_capability(dev, PCI_CAP_ID_EA); 3060 if (!ea) 3061 return; 3062 3063 /* determine the number of entries */ 3064 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT, 3065 &num_ent); 3066 num_ent &= PCI_EA_NUM_ENT_MASK; 3067 3068 offset = ea + PCI_EA_FIRST_ENT; 3069 3070 /* Skip DWORD 2 for type 1 functions */ 3071 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) 3072 offset += 4; 3073 3074 /* parse each EA entry */ 3075 for (i = 0; i < num_ent; ++i) 3076 offset = pci_ea_read(dev, offset); 3077 } 3078 3079 static void pci_add_saved_cap(struct pci_dev *pci_dev, 3080 struct pci_cap_saved_state *new_cap) 3081 { 3082 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space); 3083 } 3084 3085 /** 3086 * _pci_add_cap_save_buffer - allocate buffer for saving given 3087 * capability registers 3088 * @dev: the PCI device 3089 * @cap: the capability to allocate the buffer for 3090 * @extended: Standard or Extended capability ID 3091 * @size: requested size of the buffer 3092 */ 3093 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap, 3094 bool extended, unsigned int size) 3095 { 3096 int pos; 3097 struct pci_cap_saved_state *save_state; 3098 3099 if (extended) 3100 pos = pci_find_ext_capability(dev, cap); 3101 else 3102 pos = pci_find_capability(dev, cap); 3103 3104 if (!pos) 3105 return 0; 3106 3107 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL); 3108 if (!save_state) 3109 return -ENOMEM; 3110 3111 save_state->cap.cap_nr = cap; 3112 save_state->cap.cap_extended = extended; 3113 save_state->cap.size = size; 3114 pci_add_saved_cap(dev, save_state); 3115 3116 return 0; 3117 } 3118 3119 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size) 3120 { 3121 return _pci_add_cap_save_buffer(dev, cap, false, size); 3122 } 3123 3124 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size) 3125 { 3126 return _pci_add_cap_save_buffer(dev, cap, true, size); 3127 } 3128 3129 /** 3130 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities 3131 * @dev: the PCI device 3132 */ 3133 void pci_allocate_cap_save_buffers(struct pci_dev *dev) 3134 { 3135 int error; 3136 3137 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP, 3138 PCI_EXP_SAVE_REGS * sizeof(u16)); 3139 if (error) 3140 pci_err(dev, "unable to preallocate PCI Express save buffer\n"); 3141 3142 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16)); 3143 if (error) 3144 pci_err(dev, "unable to preallocate PCI-X save buffer\n"); 3145 3146 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR, 3147 2 * sizeof(u16)); 3148 if (error) 3149 pci_err(dev, "unable to allocate suspend buffer for LTR\n"); 3150 3151 pci_allocate_vc_save_buffers(dev); 3152 } 3153 3154 void pci_free_cap_save_buffers(struct pci_dev *dev) 3155 { 3156 struct pci_cap_saved_state *tmp; 3157 struct hlist_node *n; 3158 3159 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next) 3160 kfree(tmp); 3161 } 3162 3163 /** 3164 * pci_configure_ari - enable or disable ARI forwarding 3165 * @dev: the PCI device 3166 * 3167 * If @dev and its upstream bridge both support ARI, enable ARI in the 3168 * bridge. Otherwise, disable ARI in the bridge. 3169 */ 3170 void pci_configure_ari(struct pci_dev *dev) 3171 { 3172 u32 cap; 3173 struct pci_dev *bridge; 3174 3175 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn) 3176 return; 3177 3178 bridge = dev->bus->self; 3179 if (!bridge) 3180 return; 3181 3182 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3183 if (!(cap & PCI_EXP_DEVCAP2_ARI)) 3184 return; 3185 3186 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) { 3187 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, 3188 PCI_EXP_DEVCTL2_ARI); 3189 bridge->ari_enabled = 1; 3190 } else { 3191 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2, 3192 PCI_EXP_DEVCTL2_ARI); 3193 bridge->ari_enabled = 0; 3194 } 3195 } 3196 3197 static int pci_acs_enable; 3198 3199 /** 3200 * pci_request_acs - ask for ACS to be enabled if supported 3201 */ 3202 void pci_request_acs(void) 3203 { 3204 pci_acs_enable = 1; 3205 } 3206 3207 static const char *disable_acs_redir_param; 3208 3209 /** 3210 * pci_disable_acs_redir - disable ACS redirect capabilities 3211 * @dev: the PCI device 3212 * 3213 * For only devices specified in the disable_acs_redir parameter. 3214 */ 3215 static void pci_disable_acs_redir(struct pci_dev *dev) 3216 { 3217 int ret = 0; 3218 const char *p; 3219 int pos; 3220 u16 ctrl; 3221 3222 if (!disable_acs_redir_param) 3223 return; 3224 3225 p = disable_acs_redir_param; 3226 while (*p) { 3227 ret = pci_dev_str_match(dev, p, &p); 3228 if (ret < 0) { 3229 pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n", 3230 disable_acs_redir_param); 3231 3232 break; 3233 } else if (ret == 1) { 3234 /* Found a match */ 3235 break; 3236 } 3237 3238 if (*p != ';' && *p != ',') { 3239 /* End of param or invalid format */ 3240 break; 3241 } 3242 p++; 3243 } 3244 3245 if (ret != 1) 3246 return; 3247 3248 if (!pci_dev_specific_disable_acs_redir(dev)) 3249 return; 3250 3251 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS); 3252 if (!pos) { 3253 pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n"); 3254 return; 3255 } 3256 3257 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 3258 3259 /* P2P Request & Completion Redirect */ 3260 ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC); 3261 3262 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 3263 3264 pci_info(dev, "disabled ACS redirect\n"); 3265 } 3266 3267 /** 3268 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities 3269 * @dev: the PCI device 3270 */ 3271 static void pci_std_enable_acs(struct pci_dev *dev) 3272 { 3273 int pos; 3274 u16 cap; 3275 u16 ctrl; 3276 3277 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS); 3278 if (!pos) 3279 return; 3280 3281 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap); 3282 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 3283 3284 /* Source Validation */ 3285 ctrl |= (cap & PCI_ACS_SV); 3286 3287 /* P2P Request Redirect */ 3288 ctrl |= (cap & PCI_ACS_RR); 3289 3290 /* P2P Completion Redirect */ 3291 ctrl |= (cap & PCI_ACS_CR); 3292 3293 /* Upstream Forwarding */ 3294 ctrl |= (cap & PCI_ACS_UF); 3295 3296 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 3297 } 3298 3299 /** 3300 * pci_enable_acs - enable ACS if hardware support it 3301 * @dev: the PCI device 3302 */ 3303 void pci_enable_acs(struct pci_dev *dev) 3304 { 3305 if (!pci_acs_enable) 3306 goto disable_acs_redir; 3307 3308 if (!pci_dev_specific_enable_acs(dev)) 3309 goto disable_acs_redir; 3310 3311 pci_std_enable_acs(dev); 3312 3313 disable_acs_redir: 3314 /* 3315 * Note: pci_disable_acs_redir() must be called even if ACS was not 3316 * enabled by the kernel because it may have been enabled by 3317 * platform firmware. So if we are told to disable it, we should 3318 * always disable it after setting the kernel's default 3319 * preferences. 3320 */ 3321 pci_disable_acs_redir(dev); 3322 } 3323 3324 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags) 3325 { 3326 int pos; 3327 u16 cap, ctrl; 3328 3329 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS); 3330 if (!pos) 3331 return false; 3332 3333 /* 3334 * Except for egress control, capabilities are either required 3335 * or only required if controllable. Features missing from the 3336 * capability field can therefore be assumed as hard-wired enabled. 3337 */ 3338 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap); 3339 acs_flags &= (cap | PCI_ACS_EC); 3340 3341 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl); 3342 return (ctrl & acs_flags) == acs_flags; 3343 } 3344 3345 /** 3346 * pci_acs_enabled - test ACS against required flags for a given device 3347 * @pdev: device to test 3348 * @acs_flags: required PCI ACS flags 3349 * 3350 * Return true if the device supports the provided flags. Automatically 3351 * filters out flags that are not implemented on multifunction devices. 3352 * 3353 * Note that this interface checks the effective ACS capabilities of the 3354 * device rather than the actual capabilities. For instance, most single 3355 * function endpoints are not required to support ACS because they have no 3356 * opportunity for peer-to-peer access. We therefore return 'true' 3357 * regardless of whether the device exposes an ACS capability. This makes 3358 * it much easier for callers of this function to ignore the actual type 3359 * or topology of the device when testing ACS support. 3360 */ 3361 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags) 3362 { 3363 int ret; 3364 3365 ret = pci_dev_specific_acs_enabled(pdev, acs_flags); 3366 if (ret >= 0) 3367 return ret > 0; 3368 3369 /* 3370 * Conventional PCI and PCI-X devices never support ACS, either 3371 * effectively or actually. The shared bus topology implies that 3372 * any device on the bus can receive or snoop DMA. 3373 */ 3374 if (!pci_is_pcie(pdev)) 3375 return false; 3376 3377 switch (pci_pcie_type(pdev)) { 3378 /* 3379 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec, 3380 * but since their primary interface is PCI/X, we conservatively 3381 * handle them as we would a non-PCIe device. 3382 */ 3383 case PCI_EXP_TYPE_PCIE_BRIDGE: 3384 /* 3385 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never 3386 * applicable... must never implement an ACS Extended Capability...". 3387 * This seems arbitrary, but we take a conservative interpretation 3388 * of this statement. 3389 */ 3390 case PCI_EXP_TYPE_PCI_BRIDGE: 3391 case PCI_EXP_TYPE_RC_EC: 3392 return false; 3393 /* 3394 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should 3395 * implement ACS in order to indicate their peer-to-peer capabilities, 3396 * regardless of whether they are single- or multi-function devices. 3397 */ 3398 case PCI_EXP_TYPE_DOWNSTREAM: 3399 case PCI_EXP_TYPE_ROOT_PORT: 3400 return pci_acs_flags_enabled(pdev, acs_flags); 3401 /* 3402 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be 3403 * implemented by the remaining PCIe types to indicate peer-to-peer 3404 * capabilities, but only when they are part of a multifunction 3405 * device. The footnote for section 6.12 indicates the specific 3406 * PCIe types included here. 3407 */ 3408 case PCI_EXP_TYPE_ENDPOINT: 3409 case PCI_EXP_TYPE_UPSTREAM: 3410 case PCI_EXP_TYPE_LEG_END: 3411 case PCI_EXP_TYPE_RC_END: 3412 if (!pdev->multifunction) 3413 break; 3414 3415 return pci_acs_flags_enabled(pdev, acs_flags); 3416 } 3417 3418 /* 3419 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable 3420 * to single function devices with the exception of downstream ports. 3421 */ 3422 return true; 3423 } 3424 3425 /** 3426 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy 3427 * @start: starting downstream device 3428 * @end: ending upstream device or NULL to search to the root bus 3429 * @acs_flags: required flags 3430 * 3431 * Walk up a device tree from start to end testing PCI ACS support. If 3432 * any step along the way does not support the required flags, return false. 3433 */ 3434 bool pci_acs_path_enabled(struct pci_dev *start, 3435 struct pci_dev *end, u16 acs_flags) 3436 { 3437 struct pci_dev *pdev, *parent = start; 3438 3439 do { 3440 pdev = parent; 3441 3442 if (!pci_acs_enabled(pdev, acs_flags)) 3443 return false; 3444 3445 if (pci_is_root_bus(pdev->bus)) 3446 return (end == NULL); 3447 3448 parent = pdev->bus->self; 3449 } while (pdev != end); 3450 3451 return true; 3452 } 3453 3454 /** 3455 * pci_rebar_find_pos - find position of resize ctrl reg for BAR 3456 * @pdev: PCI device 3457 * @bar: BAR to find 3458 * 3459 * Helper to find the position of the ctrl register for a BAR. 3460 * Returns -ENOTSUPP if resizable BARs are not supported at all. 3461 * Returns -ENOENT if no ctrl register for the BAR could be found. 3462 */ 3463 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar) 3464 { 3465 unsigned int pos, nbars, i; 3466 u32 ctrl; 3467 3468 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 3469 if (!pos) 3470 return -ENOTSUPP; 3471 3472 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3473 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >> 3474 PCI_REBAR_CTRL_NBAR_SHIFT; 3475 3476 for (i = 0; i < nbars; i++, pos += 8) { 3477 int bar_idx; 3478 3479 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3480 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX; 3481 if (bar_idx == bar) 3482 return pos; 3483 } 3484 3485 return -ENOENT; 3486 } 3487 3488 /** 3489 * pci_rebar_get_possible_sizes - get possible sizes for BAR 3490 * @pdev: PCI device 3491 * @bar: BAR to query 3492 * 3493 * Get the possible sizes of a resizable BAR as bitmask defined in the spec 3494 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable. 3495 */ 3496 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar) 3497 { 3498 int pos; 3499 u32 cap; 3500 3501 pos = pci_rebar_find_pos(pdev, bar); 3502 if (pos < 0) 3503 return 0; 3504 3505 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap); 3506 return (cap & PCI_REBAR_CAP_SIZES) >> 4; 3507 } 3508 3509 /** 3510 * pci_rebar_get_current_size - get the current size of a BAR 3511 * @pdev: PCI device 3512 * @bar: BAR to set size to 3513 * 3514 * Read the size of a BAR from the resizable BAR config. 3515 * Returns size if found or negative error code. 3516 */ 3517 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar) 3518 { 3519 int pos; 3520 u32 ctrl; 3521 3522 pos = pci_rebar_find_pos(pdev, bar); 3523 if (pos < 0) 3524 return pos; 3525 3526 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3527 return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT; 3528 } 3529 3530 /** 3531 * pci_rebar_set_size - set a new size for a BAR 3532 * @pdev: PCI device 3533 * @bar: BAR to set size to 3534 * @size: new size as defined in the spec (0=1MB, 19=512GB) 3535 * 3536 * Set the new size of a BAR as defined in the spec. 3537 * Returns zero if resizing was successful, error code otherwise. 3538 */ 3539 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size) 3540 { 3541 int pos; 3542 u32 ctrl; 3543 3544 pos = pci_rebar_find_pos(pdev, bar); 3545 if (pos < 0) 3546 return pos; 3547 3548 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3549 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 3550 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT; 3551 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 3552 return 0; 3553 } 3554 3555 /** 3556 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port 3557 * @dev: the PCI device 3558 * @cap_mask: mask of desired AtomicOp sizes, including one or more of: 3559 * PCI_EXP_DEVCAP2_ATOMIC_COMP32 3560 * PCI_EXP_DEVCAP2_ATOMIC_COMP64 3561 * PCI_EXP_DEVCAP2_ATOMIC_COMP128 3562 * 3563 * Return 0 if all upstream bridges support AtomicOp routing, egress 3564 * blocking is disabled on all upstream ports, and the root port supports 3565 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit 3566 * AtomicOp completion), or negative otherwise. 3567 */ 3568 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask) 3569 { 3570 struct pci_bus *bus = dev->bus; 3571 struct pci_dev *bridge; 3572 u32 cap, ctl2; 3573 3574 if (!pci_is_pcie(dev)) 3575 return -EINVAL; 3576 3577 /* 3578 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be 3579 * AtomicOp requesters. For now, we only support endpoints as 3580 * requesters and root ports as completers. No endpoints as 3581 * completers, and no peer-to-peer. 3582 */ 3583 3584 switch (pci_pcie_type(dev)) { 3585 case PCI_EXP_TYPE_ENDPOINT: 3586 case PCI_EXP_TYPE_LEG_END: 3587 case PCI_EXP_TYPE_RC_END: 3588 break; 3589 default: 3590 return -EINVAL; 3591 } 3592 3593 while (bus->parent) { 3594 bridge = bus->self; 3595 3596 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3597 3598 switch (pci_pcie_type(bridge)) { 3599 /* Ensure switch ports support AtomicOp routing */ 3600 case PCI_EXP_TYPE_UPSTREAM: 3601 case PCI_EXP_TYPE_DOWNSTREAM: 3602 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE)) 3603 return -EINVAL; 3604 break; 3605 3606 /* Ensure root port supports all the sizes we care about */ 3607 case PCI_EXP_TYPE_ROOT_PORT: 3608 if ((cap & cap_mask) != cap_mask) 3609 return -EINVAL; 3610 break; 3611 } 3612 3613 /* Ensure upstream ports don't block AtomicOps on egress */ 3614 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) { 3615 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, 3616 &ctl2); 3617 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK) 3618 return -EINVAL; 3619 } 3620 3621 bus = bus->parent; 3622 } 3623 3624 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2, 3625 PCI_EXP_DEVCTL2_ATOMIC_REQ); 3626 return 0; 3627 } 3628 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root); 3629 3630 /** 3631 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge 3632 * @dev: the PCI device 3633 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD) 3634 * 3635 * Perform INTx swizzling for a device behind one level of bridge. This is 3636 * required by section 9.1 of the PCI-to-PCI bridge specification for devices 3637 * behind bridges on add-in cards. For devices with ARI enabled, the slot 3638 * number is always 0 (see the Implementation Note in section 2.2.8.1 of 3639 * the PCI Express Base Specification, Revision 2.1) 3640 */ 3641 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin) 3642 { 3643 int slot; 3644 3645 if (pci_ari_enabled(dev->bus)) 3646 slot = 0; 3647 else 3648 slot = PCI_SLOT(dev->devfn); 3649 3650 return (((pin - 1) + slot) % 4) + 1; 3651 } 3652 3653 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge) 3654 { 3655 u8 pin; 3656 3657 pin = dev->pin; 3658 if (!pin) 3659 return -1; 3660 3661 while (!pci_is_root_bus(dev->bus)) { 3662 pin = pci_swizzle_interrupt_pin(dev, pin); 3663 dev = dev->bus->self; 3664 } 3665 *bridge = dev; 3666 return pin; 3667 } 3668 3669 /** 3670 * pci_common_swizzle - swizzle INTx all the way to root bridge 3671 * @dev: the PCI device 3672 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD) 3673 * 3674 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI 3675 * bridges all the way up to a PCI root bus. 3676 */ 3677 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp) 3678 { 3679 u8 pin = *pinp; 3680 3681 while (!pci_is_root_bus(dev->bus)) { 3682 pin = pci_swizzle_interrupt_pin(dev, pin); 3683 dev = dev->bus->self; 3684 } 3685 *pinp = pin; 3686 return PCI_SLOT(dev->devfn); 3687 } 3688 EXPORT_SYMBOL_GPL(pci_common_swizzle); 3689 3690 /** 3691 * pci_release_region - Release a PCI bar 3692 * @pdev: PCI device whose resources were previously reserved by 3693 * pci_request_region() 3694 * @bar: BAR to release 3695 * 3696 * Releases the PCI I/O and memory resources previously reserved by a 3697 * successful call to pci_request_region(). Call this function only 3698 * after all use of the PCI regions has ceased. 3699 */ 3700 void pci_release_region(struct pci_dev *pdev, int bar) 3701 { 3702 struct pci_devres *dr; 3703 3704 if (pci_resource_len(pdev, bar) == 0) 3705 return; 3706 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) 3707 release_region(pci_resource_start(pdev, bar), 3708 pci_resource_len(pdev, bar)); 3709 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) 3710 release_mem_region(pci_resource_start(pdev, bar), 3711 pci_resource_len(pdev, bar)); 3712 3713 dr = find_pci_dr(pdev); 3714 if (dr) 3715 dr->region_mask &= ~(1 << bar); 3716 } 3717 EXPORT_SYMBOL(pci_release_region); 3718 3719 /** 3720 * __pci_request_region - Reserved PCI I/O and memory resource 3721 * @pdev: PCI device whose resources are to be reserved 3722 * @bar: BAR to be reserved 3723 * @res_name: Name to be associated with resource. 3724 * @exclusive: whether the region access is exclusive or not 3725 * 3726 * Mark the PCI region associated with PCI device @pdev BAR @bar as 3727 * being reserved by owner @res_name. Do not access any 3728 * address inside the PCI regions unless this call returns 3729 * successfully. 3730 * 3731 * If @exclusive is set, then the region is marked so that userspace 3732 * is explicitly not allowed to map the resource via /dev/mem or 3733 * sysfs MMIO access. 3734 * 3735 * Returns 0 on success, or %EBUSY on error. A warning 3736 * message is also printed on failure. 3737 */ 3738 static int __pci_request_region(struct pci_dev *pdev, int bar, 3739 const char *res_name, int exclusive) 3740 { 3741 struct pci_devres *dr; 3742 3743 if (pci_resource_len(pdev, bar) == 0) 3744 return 0; 3745 3746 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) { 3747 if (!request_region(pci_resource_start(pdev, bar), 3748 pci_resource_len(pdev, bar), res_name)) 3749 goto err_out; 3750 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) { 3751 if (!__request_mem_region(pci_resource_start(pdev, bar), 3752 pci_resource_len(pdev, bar), res_name, 3753 exclusive)) 3754 goto err_out; 3755 } 3756 3757 dr = find_pci_dr(pdev); 3758 if (dr) 3759 dr->region_mask |= 1 << bar; 3760 3761 return 0; 3762 3763 err_out: 3764 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar, 3765 &pdev->resource[bar]); 3766 return -EBUSY; 3767 } 3768 3769 /** 3770 * pci_request_region - Reserve PCI I/O and memory resource 3771 * @pdev: PCI device whose resources are to be reserved 3772 * @bar: BAR to be reserved 3773 * @res_name: Name to be associated with resource 3774 * 3775 * Mark the PCI region associated with PCI device @pdev BAR @bar as 3776 * being reserved by owner @res_name. Do not access any 3777 * address inside the PCI regions unless this call returns 3778 * successfully. 3779 * 3780 * Returns 0 on success, or %EBUSY on error. A warning 3781 * message is also printed on failure. 3782 */ 3783 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name) 3784 { 3785 return __pci_request_region(pdev, bar, res_name, 0); 3786 } 3787 EXPORT_SYMBOL(pci_request_region); 3788 3789 /** 3790 * pci_release_selected_regions - Release selected PCI I/O and memory resources 3791 * @pdev: PCI device whose resources were previously reserved 3792 * @bars: Bitmask of BARs to be released 3793 * 3794 * Release selected PCI I/O and memory resources previously reserved. 3795 * Call this function only after all use of the PCI regions has ceased. 3796 */ 3797 void pci_release_selected_regions(struct pci_dev *pdev, int bars) 3798 { 3799 int i; 3800 3801 for (i = 0; i < PCI_STD_NUM_BARS; i++) 3802 if (bars & (1 << i)) 3803 pci_release_region(pdev, i); 3804 } 3805 EXPORT_SYMBOL(pci_release_selected_regions); 3806 3807 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars, 3808 const char *res_name, int excl) 3809 { 3810 int i; 3811 3812 for (i = 0; i < PCI_STD_NUM_BARS; i++) 3813 if (bars & (1 << i)) 3814 if (__pci_request_region(pdev, i, res_name, excl)) 3815 goto err_out; 3816 return 0; 3817 3818 err_out: 3819 while (--i >= 0) 3820 if (bars & (1 << i)) 3821 pci_release_region(pdev, i); 3822 3823 return -EBUSY; 3824 } 3825 3826 3827 /** 3828 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources 3829 * @pdev: PCI device whose resources are to be reserved 3830 * @bars: Bitmask of BARs to be requested 3831 * @res_name: Name to be associated with resource 3832 */ 3833 int pci_request_selected_regions(struct pci_dev *pdev, int bars, 3834 const char *res_name) 3835 { 3836 return __pci_request_selected_regions(pdev, bars, res_name, 0); 3837 } 3838 EXPORT_SYMBOL(pci_request_selected_regions); 3839 3840 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars, 3841 const char *res_name) 3842 { 3843 return __pci_request_selected_regions(pdev, bars, res_name, 3844 IORESOURCE_EXCLUSIVE); 3845 } 3846 EXPORT_SYMBOL(pci_request_selected_regions_exclusive); 3847 3848 /** 3849 * pci_release_regions - Release reserved PCI I/O and memory resources 3850 * @pdev: PCI device whose resources were previously reserved by 3851 * pci_request_regions() 3852 * 3853 * Releases all PCI I/O and memory resources previously reserved by a 3854 * successful call to pci_request_regions(). Call this function only 3855 * after all use of the PCI regions has ceased. 3856 */ 3857 3858 void pci_release_regions(struct pci_dev *pdev) 3859 { 3860 pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1); 3861 } 3862 EXPORT_SYMBOL(pci_release_regions); 3863 3864 /** 3865 * pci_request_regions - Reserve PCI I/O and memory resources 3866 * @pdev: PCI device whose resources are to be reserved 3867 * @res_name: Name to be associated with resource. 3868 * 3869 * Mark all PCI regions associated with PCI device @pdev as 3870 * being reserved by owner @res_name. Do not access any 3871 * address inside the PCI regions unless this call returns 3872 * successfully. 3873 * 3874 * Returns 0 on success, or %EBUSY on error. A warning 3875 * message is also printed on failure. 3876 */ 3877 int pci_request_regions(struct pci_dev *pdev, const char *res_name) 3878 { 3879 return pci_request_selected_regions(pdev, 3880 ((1 << PCI_STD_NUM_BARS) - 1), res_name); 3881 } 3882 EXPORT_SYMBOL(pci_request_regions); 3883 3884 /** 3885 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources 3886 * @pdev: PCI device whose resources are to be reserved 3887 * @res_name: Name to be associated with resource. 3888 * 3889 * Mark all PCI regions associated with PCI device @pdev as being reserved 3890 * by owner @res_name. Do not access any address inside the PCI regions 3891 * unless this call returns successfully. 3892 * 3893 * pci_request_regions_exclusive() will mark the region so that /dev/mem 3894 * and the sysfs MMIO access will not be allowed. 3895 * 3896 * Returns 0 on success, or %EBUSY on error. A warning message is also 3897 * printed on failure. 3898 */ 3899 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name) 3900 { 3901 return pci_request_selected_regions_exclusive(pdev, 3902 ((1 << PCI_STD_NUM_BARS) - 1), res_name); 3903 } 3904 EXPORT_SYMBOL(pci_request_regions_exclusive); 3905 3906 /* 3907 * Record the PCI IO range (expressed as CPU physical address + size). 3908 * Return a negative value if an error has occurred, zero otherwise 3909 */ 3910 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr, 3911 resource_size_t size) 3912 { 3913 int ret = 0; 3914 #ifdef PCI_IOBASE 3915 struct logic_pio_hwaddr *range; 3916 3917 if (!size || addr + size < addr) 3918 return -EINVAL; 3919 3920 range = kzalloc(sizeof(*range), GFP_ATOMIC); 3921 if (!range) 3922 return -ENOMEM; 3923 3924 range->fwnode = fwnode; 3925 range->size = size; 3926 range->hw_start = addr; 3927 range->flags = LOGIC_PIO_CPU_MMIO; 3928 3929 ret = logic_pio_register_range(range); 3930 if (ret) 3931 kfree(range); 3932 #endif 3933 3934 return ret; 3935 } 3936 3937 phys_addr_t pci_pio_to_address(unsigned long pio) 3938 { 3939 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR; 3940 3941 #ifdef PCI_IOBASE 3942 if (pio >= MMIO_UPPER_LIMIT) 3943 return address; 3944 3945 address = logic_pio_to_hwaddr(pio); 3946 #endif 3947 3948 return address; 3949 } 3950 3951 unsigned long __weak pci_address_to_pio(phys_addr_t address) 3952 { 3953 #ifdef PCI_IOBASE 3954 return logic_pio_trans_cpuaddr(address); 3955 #else 3956 if (address > IO_SPACE_LIMIT) 3957 return (unsigned long)-1; 3958 3959 return (unsigned long) address; 3960 #endif 3961 } 3962 3963 /** 3964 * pci_remap_iospace - Remap the memory mapped I/O space 3965 * @res: Resource describing the I/O space 3966 * @phys_addr: physical address of range to be mapped 3967 * 3968 * Remap the memory mapped I/O space described by the @res and the CPU 3969 * physical address @phys_addr into virtual address space. Only 3970 * architectures that have memory mapped IO functions defined (and the 3971 * PCI_IOBASE value defined) should call this function. 3972 */ 3973 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr) 3974 { 3975 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 3976 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 3977 3978 if (!(res->flags & IORESOURCE_IO)) 3979 return -EINVAL; 3980 3981 if (res->end > IO_SPACE_LIMIT) 3982 return -EINVAL; 3983 3984 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr, 3985 pgprot_device(PAGE_KERNEL)); 3986 #else 3987 /* 3988 * This architecture does not have memory mapped I/O space, 3989 * so this function should never be called 3990 */ 3991 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n"); 3992 return -ENODEV; 3993 #endif 3994 } 3995 EXPORT_SYMBOL(pci_remap_iospace); 3996 3997 /** 3998 * pci_unmap_iospace - Unmap the memory mapped I/O space 3999 * @res: resource to be unmapped 4000 * 4001 * Unmap the CPU virtual address @res from virtual address space. Only 4002 * architectures that have memory mapped IO functions defined (and the 4003 * PCI_IOBASE value defined) should call this function. 4004 */ 4005 void pci_unmap_iospace(struct resource *res) 4006 { 4007 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 4008 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 4009 4010 unmap_kernel_range(vaddr, resource_size(res)); 4011 #endif 4012 } 4013 EXPORT_SYMBOL(pci_unmap_iospace); 4014 4015 static void devm_pci_unmap_iospace(struct device *dev, void *ptr) 4016 { 4017 struct resource **res = ptr; 4018 4019 pci_unmap_iospace(*res); 4020 } 4021 4022 /** 4023 * devm_pci_remap_iospace - Managed pci_remap_iospace() 4024 * @dev: Generic device to remap IO address for 4025 * @res: Resource describing the I/O space 4026 * @phys_addr: physical address of range to be mapped 4027 * 4028 * Managed pci_remap_iospace(). Map is automatically unmapped on driver 4029 * detach. 4030 */ 4031 int devm_pci_remap_iospace(struct device *dev, const struct resource *res, 4032 phys_addr_t phys_addr) 4033 { 4034 const struct resource **ptr; 4035 int error; 4036 4037 ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL); 4038 if (!ptr) 4039 return -ENOMEM; 4040 4041 error = pci_remap_iospace(res, phys_addr); 4042 if (error) { 4043 devres_free(ptr); 4044 } else { 4045 *ptr = res; 4046 devres_add(dev, ptr); 4047 } 4048 4049 return error; 4050 } 4051 EXPORT_SYMBOL(devm_pci_remap_iospace); 4052 4053 /** 4054 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace() 4055 * @dev: Generic device to remap IO address for 4056 * @offset: Resource address to map 4057 * @size: Size of map 4058 * 4059 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver 4060 * detach. 4061 */ 4062 void __iomem *devm_pci_remap_cfgspace(struct device *dev, 4063 resource_size_t offset, 4064 resource_size_t size) 4065 { 4066 void __iomem **ptr, *addr; 4067 4068 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL); 4069 if (!ptr) 4070 return NULL; 4071 4072 addr = pci_remap_cfgspace(offset, size); 4073 if (addr) { 4074 *ptr = addr; 4075 devres_add(dev, ptr); 4076 } else 4077 devres_free(ptr); 4078 4079 return addr; 4080 } 4081 EXPORT_SYMBOL(devm_pci_remap_cfgspace); 4082 4083 /** 4084 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource 4085 * @dev: generic device to handle the resource for 4086 * @res: configuration space resource to be handled 4087 * 4088 * Checks that a resource is a valid memory region, requests the memory 4089 * region and ioremaps with pci_remap_cfgspace() API that ensures the 4090 * proper PCI configuration space memory attributes are guaranteed. 4091 * 4092 * All operations are managed and will be undone on driver detach. 4093 * 4094 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code 4095 * on failure. Usage example:: 4096 * 4097 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 4098 * base = devm_pci_remap_cfg_resource(&pdev->dev, res); 4099 * if (IS_ERR(base)) 4100 * return PTR_ERR(base); 4101 */ 4102 void __iomem *devm_pci_remap_cfg_resource(struct device *dev, 4103 struct resource *res) 4104 { 4105 resource_size_t size; 4106 const char *name; 4107 void __iomem *dest_ptr; 4108 4109 BUG_ON(!dev); 4110 4111 if (!res || resource_type(res) != IORESOURCE_MEM) { 4112 dev_err(dev, "invalid resource\n"); 4113 return IOMEM_ERR_PTR(-EINVAL); 4114 } 4115 4116 size = resource_size(res); 4117 name = res->name ?: dev_name(dev); 4118 4119 if (!devm_request_mem_region(dev, res->start, size, name)) { 4120 dev_err(dev, "can't request region for resource %pR\n", res); 4121 return IOMEM_ERR_PTR(-EBUSY); 4122 } 4123 4124 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size); 4125 if (!dest_ptr) { 4126 dev_err(dev, "ioremap failed for resource %pR\n", res); 4127 devm_release_mem_region(dev, res->start, size); 4128 dest_ptr = IOMEM_ERR_PTR(-ENOMEM); 4129 } 4130 4131 return dest_ptr; 4132 } 4133 EXPORT_SYMBOL(devm_pci_remap_cfg_resource); 4134 4135 static void __pci_set_master(struct pci_dev *dev, bool enable) 4136 { 4137 u16 old_cmd, cmd; 4138 4139 pci_read_config_word(dev, PCI_COMMAND, &old_cmd); 4140 if (enable) 4141 cmd = old_cmd | PCI_COMMAND_MASTER; 4142 else 4143 cmd = old_cmd & ~PCI_COMMAND_MASTER; 4144 if (cmd != old_cmd) { 4145 pci_dbg(dev, "%s bus mastering\n", 4146 enable ? "enabling" : "disabling"); 4147 pci_write_config_word(dev, PCI_COMMAND, cmd); 4148 } 4149 dev->is_busmaster = enable; 4150 } 4151 4152 /** 4153 * pcibios_setup - process "pci=" kernel boot arguments 4154 * @str: string used to pass in "pci=" kernel boot arguments 4155 * 4156 * Process kernel boot arguments. This is the default implementation. 4157 * Architecture specific implementations can override this as necessary. 4158 */ 4159 char * __weak __init pcibios_setup(char *str) 4160 { 4161 return str; 4162 } 4163 4164 /** 4165 * pcibios_set_master - enable PCI bus-mastering for device dev 4166 * @dev: the PCI device to enable 4167 * 4168 * Enables PCI bus-mastering for the device. This is the default 4169 * implementation. Architecture specific implementations can override 4170 * this if necessary. 4171 */ 4172 void __weak pcibios_set_master(struct pci_dev *dev) 4173 { 4174 u8 lat; 4175 4176 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */ 4177 if (pci_is_pcie(dev)) 4178 return; 4179 4180 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat); 4181 if (lat < 16) 4182 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency; 4183 else if (lat > pcibios_max_latency) 4184 lat = pcibios_max_latency; 4185 else 4186 return; 4187 4188 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat); 4189 } 4190 4191 /** 4192 * pci_set_master - enables bus-mastering for device dev 4193 * @dev: the PCI device to enable 4194 * 4195 * Enables bus-mastering on the device and calls pcibios_set_master() 4196 * to do the needed arch specific settings. 4197 */ 4198 void pci_set_master(struct pci_dev *dev) 4199 { 4200 __pci_set_master(dev, true); 4201 pcibios_set_master(dev); 4202 } 4203 EXPORT_SYMBOL(pci_set_master); 4204 4205 /** 4206 * pci_clear_master - disables bus-mastering for device dev 4207 * @dev: the PCI device to disable 4208 */ 4209 void pci_clear_master(struct pci_dev *dev) 4210 { 4211 __pci_set_master(dev, false); 4212 } 4213 EXPORT_SYMBOL(pci_clear_master); 4214 4215 /** 4216 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed 4217 * @dev: the PCI device for which MWI is to be enabled 4218 * 4219 * Helper function for pci_set_mwi. 4220 * Originally copied from drivers/net/acenic.c. 4221 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. 4222 * 4223 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4224 */ 4225 int pci_set_cacheline_size(struct pci_dev *dev) 4226 { 4227 u8 cacheline_size; 4228 4229 if (!pci_cache_line_size) 4230 return -EINVAL; 4231 4232 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be 4233 equal to or multiple of the right value. */ 4234 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4235 if (cacheline_size >= pci_cache_line_size && 4236 (cacheline_size % pci_cache_line_size) == 0) 4237 return 0; 4238 4239 /* Write the correct value. */ 4240 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size); 4241 /* Read it back. */ 4242 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4243 if (cacheline_size == pci_cache_line_size) 4244 return 0; 4245 4246 pci_info(dev, "cache line size of %d is not supported\n", 4247 pci_cache_line_size << 2); 4248 4249 return -EINVAL; 4250 } 4251 EXPORT_SYMBOL_GPL(pci_set_cacheline_size); 4252 4253 /** 4254 * pci_set_mwi - enables memory-write-invalidate PCI transaction 4255 * @dev: the PCI device for which MWI is enabled 4256 * 4257 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4258 * 4259 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4260 */ 4261 int pci_set_mwi(struct pci_dev *dev) 4262 { 4263 #ifdef PCI_DISABLE_MWI 4264 return 0; 4265 #else 4266 int rc; 4267 u16 cmd; 4268 4269 rc = pci_set_cacheline_size(dev); 4270 if (rc) 4271 return rc; 4272 4273 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4274 if (!(cmd & PCI_COMMAND_INVALIDATE)) { 4275 pci_dbg(dev, "enabling Mem-Wr-Inval\n"); 4276 cmd |= PCI_COMMAND_INVALIDATE; 4277 pci_write_config_word(dev, PCI_COMMAND, cmd); 4278 } 4279 return 0; 4280 #endif 4281 } 4282 EXPORT_SYMBOL(pci_set_mwi); 4283 4284 /** 4285 * pcim_set_mwi - a device-managed pci_set_mwi() 4286 * @dev: the PCI device for which MWI is enabled 4287 * 4288 * Managed pci_set_mwi(). 4289 * 4290 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4291 */ 4292 int pcim_set_mwi(struct pci_dev *dev) 4293 { 4294 struct pci_devres *dr; 4295 4296 dr = find_pci_dr(dev); 4297 if (!dr) 4298 return -ENOMEM; 4299 4300 dr->mwi = 1; 4301 return pci_set_mwi(dev); 4302 } 4303 EXPORT_SYMBOL(pcim_set_mwi); 4304 4305 /** 4306 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction 4307 * @dev: the PCI device for which MWI is enabled 4308 * 4309 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4310 * Callers are not required to check the return value. 4311 * 4312 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4313 */ 4314 int pci_try_set_mwi(struct pci_dev *dev) 4315 { 4316 #ifdef PCI_DISABLE_MWI 4317 return 0; 4318 #else 4319 return pci_set_mwi(dev); 4320 #endif 4321 } 4322 EXPORT_SYMBOL(pci_try_set_mwi); 4323 4324 /** 4325 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev 4326 * @dev: the PCI device to disable 4327 * 4328 * Disables PCI Memory-Write-Invalidate transaction on the device 4329 */ 4330 void pci_clear_mwi(struct pci_dev *dev) 4331 { 4332 #ifndef PCI_DISABLE_MWI 4333 u16 cmd; 4334 4335 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4336 if (cmd & PCI_COMMAND_INVALIDATE) { 4337 cmd &= ~PCI_COMMAND_INVALIDATE; 4338 pci_write_config_word(dev, PCI_COMMAND, cmd); 4339 } 4340 #endif 4341 } 4342 EXPORT_SYMBOL(pci_clear_mwi); 4343 4344 /** 4345 * pci_intx - enables/disables PCI INTx for device dev 4346 * @pdev: the PCI device to operate on 4347 * @enable: boolean: whether to enable or disable PCI INTx 4348 * 4349 * Enables/disables PCI INTx for device @pdev 4350 */ 4351 void pci_intx(struct pci_dev *pdev, int enable) 4352 { 4353 u16 pci_command, new; 4354 4355 pci_read_config_word(pdev, PCI_COMMAND, &pci_command); 4356 4357 if (enable) 4358 new = pci_command & ~PCI_COMMAND_INTX_DISABLE; 4359 else 4360 new = pci_command | PCI_COMMAND_INTX_DISABLE; 4361 4362 if (new != pci_command) { 4363 struct pci_devres *dr; 4364 4365 pci_write_config_word(pdev, PCI_COMMAND, new); 4366 4367 dr = find_pci_dr(pdev); 4368 if (dr && !dr->restore_intx) { 4369 dr->restore_intx = 1; 4370 dr->orig_intx = !enable; 4371 } 4372 } 4373 } 4374 EXPORT_SYMBOL_GPL(pci_intx); 4375 4376 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask) 4377 { 4378 struct pci_bus *bus = dev->bus; 4379 bool mask_updated = true; 4380 u32 cmd_status_dword; 4381 u16 origcmd, newcmd; 4382 unsigned long flags; 4383 bool irq_pending; 4384 4385 /* 4386 * We do a single dword read to retrieve both command and status. 4387 * Document assumptions that make this possible. 4388 */ 4389 BUILD_BUG_ON(PCI_COMMAND % 4); 4390 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS); 4391 4392 raw_spin_lock_irqsave(&pci_lock, flags); 4393 4394 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword); 4395 4396 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT; 4397 4398 /* 4399 * Check interrupt status register to see whether our device 4400 * triggered the interrupt (when masking) or the next IRQ is 4401 * already pending (when unmasking). 4402 */ 4403 if (mask != irq_pending) { 4404 mask_updated = false; 4405 goto done; 4406 } 4407 4408 origcmd = cmd_status_dword; 4409 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE; 4410 if (mask) 4411 newcmd |= PCI_COMMAND_INTX_DISABLE; 4412 if (newcmd != origcmd) 4413 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd); 4414 4415 done: 4416 raw_spin_unlock_irqrestore(&pci_lock, flags); 4417 4418 return mask_updated; 4419 } 4420 4421 /** 4422 * pci_check_and_mask_intx - mask INTx on pending interrupt 4423 * @dev: the PCI device to operate on 4424 * 4425 * Check if the device dev has its INTx line asserted, mask it and return 4426 * true in that case. False is returned if no interrupt was pending. 4427 */ 4428 bool pci_check_and_mask_intx(struct pci_dev *dev) 4429 { 4430 return pci_check_and_set_intx_mask(dev, true); 4431 } 4432 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx); 4433 4434 /** 4435 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending 4436 * @dev: the PCI device to operate on 4437 * 4438 * Check if the device dev has its INTx line asserted, unmask it if not and 4439 * return true. False is returned and the mask remains active if there was 4440 * still an interrupt pending. 4441 */ 4442 bool pci_check_and_unmask_intx(struct pci_dev *dev) 4443 { 4444 return pci_check_and_set_intx_mask(dev, false); 4445 } 4446 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx); 4447 4448 /** 4449 * pci_wait_for_pending_transaction - wait for pending transaction 4450 * @dev: the PCI device to operate on 4451 * 4452 * Return 0 if transaction is pending 1 otherwise. 4453 */ 4454 int pci_wait_for_pending_transaction(struct pci_dev *dev) 4455 { 4456 if (!pci_is_pcie(dev)) 4457 return 1; 4458 4459 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA, 4460 PCI_EXP_DEVSTA_TRPND); 4461 } 4462 EXPORT_SYMBOL(pci_wait_for_pending_transaction); 4463 4464 /** 4465 * pcie_has_flr - check if a device supports function level resets 4466 * @dev: device to check 4467 * 4468 * Returns true if the device advertises support for PCIe function level 4469 * resets. 4470 */ 4471 bool pcie_has_flr(struct pci_dev *dev) 4472 { 4473 u32 cap; 4474 4475 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4476 return false; 4477 4478 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap); 4479 return cap & PCI_EXP_DEVCAP_FLR; 4480 } 4481 EXPORT_SYMBOL_GPL(pcie_has_flr); 4482 4483 /** 4484 * pcie_flr - initiate a PCIe function level reset 4485 * @dev: device to reset 4486 * 4487 * Initiate a function level reset on @dev. The caller should ensure the 4488 * device supports FLR before calling this function, e.g. by using the 4489 * pcie_has_flr() helper. 4490 */ 4491 int pcie_flr(struct pci_dev *dev) 4492 { 4493 if (!pci_wait_for_pending_transaction(dev)) 4494 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n"); 4495 4496 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR); 4497 4498 if (dev->imm_ready) 4499 return 0; 4500 4501 /* 4502 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within 4503 * 100ms, but may silently discard requests while the FLR is in 4504 * progress. Wait 100ms before trying to access the device. 4505 */ 4506 msleep(100); 4507 4508 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS); 4509 } 4510 EXPORT_SYMBOL_GPL(pcie_flr); 4511 4512 static int pci_af_flr(struct pci_dev *dev, int probe) 4513 { 4514 int pos; 4515 u8 cap; 4516 4517 pos = pci_find_capability(dev, PCI_CAP_ID_AF); 4518 if (!pos) 4519 return -ENOTTY; 4520 4521 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4522 return -ENOTTY; 4523 4524 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap); 4525 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR)) 4526 return -ENOTTY; 4527 4528 if (probe) 4529 return 0; 4530 4531 /* 4532 * Wait for Transaction Pending bit to clear. A word-aligned test 4533 * is used, so we use the control offset rather than status and shift 4534 * the test bit to match. 4535 */ 4536 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL, 4537 PCI_AF_STATUS_TP << 8)) 4538 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n"); 4539 4540 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR); 4541 4542 if (dev->imm_ready) 4543 return 0; 4544 4545 /* 4546 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006, 4547 * updated 27 July 2006; a device must complete an FLR within 4548 * 100ms, but may silently discard requests while the FLR is in 4549 * progress. Wait 100ms before trying to access the device. 4550 */ 4551 msleep(100); 4552 4553 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS); 4554 } 4555 4556 /** 4557 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0. 4558 * @dev: Device to reset. 4559 * @probe: If set, only check if the device can be reset this way. 4560 * 4561 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is 4562 * unset, it will be reinitialized internally when going from PCI_D3hot to 4563 * PCI_D0. If that's the case and the device is not in a low-power state 4564 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset. 4565 * 4566 * NOTE: This causes the caller to sleep for twice the device power transition 4567 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms 4568 * by default (i.e. unless the @dev's d3_delay field has a different value). 4569 * Moreover, only devices in D0 can be reset by this function. 4570 */ 4571 static int pci_pm_reset(struct pci_dev *dev, int probe) 4572 { 4573 u16 csr; 4574 4575 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET) 4576 return -ENOTTY; 4577 4578 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr); 4579 if (csr & PCI_PM_CTRL_NO_SOFT_RESET) 4580 return -ENOTTY; 4581 4582 if (probe) 4583 return 0; 4584 4585 if (dev->current_state != PCI_D0) 4586 return -EINVAL; 4587 4588 csr &= ~PCI_PM_CTRL_STATE_MASK; 4589 csr |= PCI_D3hot; 4590 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4591 pci_dev_d3_sleep(dev); 4592 4593 csr &= ~PCI_PM_CTRL_STATE_MASK; 4594 csr |= PCI_D0; 4595 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4596 pci_dev_d3_sleep(dev); 4597 4598 return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS); 4599 } 4600 4601 /** 4602 * pcie_wait_for_link_delay - Wait until link is active or inactive 4603 * @pdev: Bridge device 4604 * @active: waiting for active or inactive? 4605 * @delay: Delay to wait after link has become active (in ms) 4606 * 4607 * Use this to wait till link becomes active or inactive. 4608 */ 4609 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active, 4610 int delay) 4611 { 4612 int timeout = 1000; 4613 bool ret; 4614 u16 lnk_status; 4615 4616 /* 4617 * Some controllers might not implement link active reporting. In this 4618 * case, we wait for 1000 + 100 ms. 4619 */ 4620 if (!pdev->link_active_reporting) { 4621 msleep(1100); 4622 return true; 4623 } 4624 4625 /* 4626 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms, 4627 * after which we should expect an link active if the reset was 4628 * successful. If so, software must wait a minimum 100ms before sending 4629 * configuration requests to devices downstream this port. 4630 * 4631 * If the link fails to activate, either the device was physically 4632 * removed or the link is permanently failed. 4633 */ 4634 if (active) 4635 msleep(20); 4636 for (;;) { 4637 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status); 4638 ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA); 4639 if (ret == active) 4640 break; 4641 if (timeout <= 0) 4642 break; 4643 msleep(10); 4644 timeout -= 10; 4645 } 4646 if (active && ret) 4647 msleep(delay); 4648 else if (ret != active) 4649 pci_info(pdev, "Data Link Layer Link Active not %s in 1000 msec\n", 4650 active ? "set" : "cleared"); 4651 return ret == active; 4652 } 4653 4654 /** 4655 * pcie_wait_for_link - Wait until link is active or inactive 4656 * @pdev: Bridge device 4657 * @active: waiting for active or inactive? 4658 * 4659 * Use this to wait till link becomes active or inactive. 4660 */ 4661 bool pcie_wait_for_link(struct pci_dev *pdev, bool active) 4662 { 4663 return pcie_wait_for_link_delay(pdev, active, 100); 4664 } 4665 4666 /* 4667 * Find maximum D3cold delay required by all the devices on the bus. The 4668 * spec says 100 ms, but firmware can lower it and we allow drivers to 4669 * increase it as well. 4670 * 4671 * Called with @pci_bus_sem locked for reading. 4672 */ 4673 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus) 4674 { 4675 const struct pci_dev *pdev; 4676 int min_delay = 100; 4677 int max_delay = 0; 4678 4679 list_for_each_entry(pdev, &bus->devices, bus_list) { 4680 if (pdev->d3cold_delay < min_delay) 4681 min_delay = pdev->d3cold_delay; 4682 if (pdev->d3cold_delay > max_delay) 4683 max_delay = pdev->d3cold_delay; 4684 } 4685 4686 return max(min_delay, max_delay); 4687 } 4688 4689 /** 4690 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible 4691 * @dev: PCI bridge 4692 * 4693 * Handle necessary delays before access to the devices on the secondary 4694 * side of the bridge are permitted after D3cold to D0 transition. 4695 * 4696 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For 4697 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section 4698 * 4.3.2. 4699 */ 4700 void pci_bridge_wait_for_secondary_bus(struct pci_dev *dev) 4701 { 4702 struct pci_dev *child; 4703 int delay; 4704 4705 if (pci_dev_is_disconnected(dev)) 4706 return; 4707 4708 if (!pci_is_bridge(dev) || !dev->bridge_d3) 4709 return; 4710 4711 down_read(&pci_bus_sem); 4712 4713 /* 4714 * We only deal with devices that are present currently on the bus. 4715 * For any hot-added devices the access delay is handled in pciehp 4716 * board_added(). In case of ACPI hotplug the firmware is expected 4717 * to configure the devices before OS is notified. 4718 */ 4719 if (!dev->subordinate || list_empty(&dev->subordinate->devices)) { 4720 up_read(&pci_bus_sem); 4721 return; 4722 } 4723 4724 /* Take d3cold_delay requirements into account */ 4725 delay = pci_bus_max_d3cold_delay(dev->subordinate); 4726 if (!delay) { 4727 up_read(&pci_bus_sem); 4728 return; 4729 } 4730 4731 child = list_first_entry(&dev->subordinate->devices, struct pci_dev, 4732 bus_list); 4733 up_read(&pci_bus_sem); 4734 4735 /* 4736 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before 4737 * accessing the device after reset (that is 1000 ms + 100 ms). In 4738 * practice this should not be needed because we don't do power 4739 * management for them (see pci_bridge_d3_possible()). 4740 */ 4741 if (!pci_is_pcie(dev)) { 4742 pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay); 4743 msleep(1000 + delay); 4744 return; 4745 } 4746 4747 /* 4748 * For PCIe downstream and root ports that do not support speeds 4749 * greater than 5 GT/s need to wait minimum 100 ms. For higher 4750 * speeds (gen3) we need to wait first for the data link layer to 4751 * become active. 4752 * 4753 * However, 100 ms is the minimum and the PCIe spec says the 4754 * software must allow at least 1s before it can determine that the 4755 * device that did not respond is a broken device. There is 4756 * evidence that 100 ms is not always enough, for example certain 4757 * Titan Ridge xHCI controller does not always respond to 4758 * configuration requests if we only wait for 100 ms (see 4759 * https://bugzilla.kernel.org/show_bug.cgi?id=203885). 4760 * 4761 * Therefore we wait for 100 ms and check for the device presence. 4762 * If it is still not present give it an additional 100 ms. 4763 */ 4764 if (!pcie_downstream_port(dev)) 4765 return; 4766 4767 if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) { 4768 pci_dbg(dev, "waiting %d ms for downstream link\n", delay); 4769 msleep(delay); 4770 } else { 4771 pci_dbg(dev, "waiting %d ms for downstream link, after activation\n", 4772 delay); 4773 if (!pcie_wait_for_link_delay(dev, true, delay)) { 4774 /* Did not train, no need to wait any further */ 4775 return; 4776 } 4777 } 4778 4779 if (!pci_device_is_present(child)) { 4780 pci_dbg(child, "waiting additional %d ms to become accessible\n", delay); 4781 msleep(delay); 4782 } 4783 } 4784 4785 void pci_reset_secondary_bus(struct pci_dev *dev) 4786 { 4787 u16 ctrl; 4788 4789 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl); 4790 ctrl |= PCI_BRIDGE_CTL_BUS_RESET; 4791 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 4792 4793 /* 4794 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double 4795 * this to 2ms to ensure that we meet the minimum requirement. 4796 */ 4797 msleep(2); 4798 4799 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET; 4800 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 4801 4802 /* 4803 * Trhfa for conventional PCI is 2^25 clock cycles. 4804 * Assuming a minimum 33MHz clock this results in a 1s 4805 * delay before we can consider subordinate devices to 4806 * be re-initialized. PCIe has some ways to shorten this, 4807 * but we don't make use of them yet. 4808 */ 4809 ssleep(1); 4810 } 4811 4812 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev) 4813 { 4814 pci_reset_secondary_bus(dev); 4815 } 4816 4817 /** 4818 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge. 4819 * @dev: Bridge device 4820 * 4821 * Use the bridge control register to assert reset on the secondary bus. 4822 * Devices on the secondary bus are left in power-on state. 4823 */ 4824 int pci_bridge_secondary_bus_reset(struct pci_dev *dev) 4825 { 4826 pcibios_reset_secondary_bus(dev); 4827 4828 return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS); 4829 } 4830 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset); 4831 4832 static int pci_parent_bus_reset(struct pci_dev *dev, int probe) 4833 { 4834 struct pci_dev *pdev; 4835 4836 if (pci_is_root_bus(dev->bus) || dev->subordinate || 4837 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 4838 return -ENOTTY; 4839 4840 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 4841 if (pdev != dev) 4842 return -ENOTTY; 4843 4844 if (probe) 4845 return 0; 4846 4847 return pci_bridge_secondary_bus_reset(dev->bus->self); 4848 } 4849 4850 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe) 4851 { 4852 int rc = -ENOTTY; 4853 4854 if (!hotplug || !try_module_get(hotplug->owner)) 4855 return rc; 4856 4857 if (hotplug->ops->reset_slot) 4858 rc = hotplug->ops->reset_slot(hotplug, probe); 4859 4860 module_put(hotplug->owner); 4861 4862 return rc; 4863 } 4864 4865 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe) 4866 { 4867 struct pci_dev *pdev; 4868 4869 if (dev->subordinate || !dev->slot || 4870 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 4871 return -ENOTTY; 4872 4873 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 4874 if (pdev != dev && pdev->slot == dev->slot) 4875 return -ENOTTY; 4876 4877 return pci_reset_hotplug_slot(dev->slot->hotplug, probe); 4878 } 4879 4880 static void pci_dev_lock(struct pci_dev *dev) 4881 { 4882 pci_cfg_access_lock(dev); 4883 /* block PM suspend, driver probe, etc. */ 4884 device_lock(&dev->dev); 4885 } 4886 4887 /* Return 1 on successful lock, 0 on contention */ 4888 static int pci_dev_trylock(struct pci_dev *dev) 4889 { 4890 if (pci_cfg_access_trylock(dev)) { 4891 if (device_trylock(&dev->dev)) 4892 return 1; 4893 pci_cfg_access_unlock(dev); 4894 } 4895 4896 return 0; 4897 } 4898 4899 static void pci_dev_unlock(struct pci_dev *dev) 4900 { 4901 device_unlock(&dev->dev); 4902 pci_cfg_access_unlock(dev); 4903 } 4904 4905 static void pci_dev_save_and_disable(struct pci_dev *dev) 4906 { 4907 const struct pci_error_handlers *err_handler = 4908 dev->driver ? dev->driver->err_handler : NULL; 4909 4910 /* 4911 * dev->driver->err_handler->reset_prepare() is protected against 4912 * races with ->remove() by the device lock, which must be held by 4913 * the caller. 4914 */ 4915 if (err_handler && err_handler->reset_prepare) 4916 err_handler->reset_prepare(dev); 4917 4918 /* 4919 * Wake-up device prior to save. PM registers default to D0 after 4920 * reset and a simple register restore doesn't reliably return 4921 * to a non-D0 state anyway. 4922 */ 4923 pci_set_power_state(dev, PCI_D0); 4924 4925 pci_save_state(dev); 4926 /* 4927 * Disable the device by clearing the Command register, except for 4928 * INTx-disable which is set. This not only disables MMIO and I/O port 4929 * BARs, but also prevents the device from being Bus Master, preventing 4930 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3 4931 * compliant devices, INTx-disable prevents legacy interrupts. 4932 */ 4933 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE); 4934 } 4935 4936 static void pci_dev_restore(struct pci_dev *dev) 4937 { 4938 const struct pci_error_handlers *err_handler = 4939 dev->driver ? dev->driver->err_handler : NULL; 4940 4941 pci_restore_state(dev); 4942 4943 /* 4944 * dev->driver->err_handler->reset_done() is protected against 4945 * races with ->remove() by the device lock, which must be held by 4946 * the caller. 4947 */ 4948 if (err_handler && err_handler->reset_done) 4949 err_handler->reset_done(dev); 4950 } 4951 4952 /** 4953 * __pci_reset_function_locked - reset a PCI device function while holding 4954 * the @dev mutex lock. 4955 * @dev: PCI device to reset 4956 * 4957 * Some devices allow an individual function to be reset without affecting 4958 * other functions in the same device. The PCI device must be responsive 4959 * to PCI config space in order to use this function. 4960 * 4961 * The device function is presumed to be unused and the caller is holding 4962 * the device mutex lock when this function is called. 4963 * 4964 * Resetting the device will make the contents of PCI configuration space 4965 * random, so any caller of this must be prepared to reinitialise the 4966 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 4967 * etc. 4968 * 4969 * Returns 0 if the device function was successfully reset or negative if the 4970 * device doesn't support resetting a single function. 4971 */ 4972 int __pci_reset_function_locked(struct pci_dev *dev) 4973 { 4974 int rc; 4975 4976 might_sleep(); 4977 4978 /* 4979 * A reset method returns -ENOTTY if it doesn't support this device 4980 * and we should try the next method. 4981 * 4982 * If it returns 0 (success), we're finished. If it returns any 4983 * other error, we're also finished: this indicates that further 4984 * reset mechanisms might be broken on the device. 4985 */ 4986 rc = pci_dev_specific_reset(dev, 0); 4987 if (rc != -ENOTTY) 4988 return rc; 4989 if (pcie_has_flr(dev)) { 4990 rc = pcie_flr(dev); 4991 if (rc != -ENOTTY) 4992 return rc; 4993 } 4994 rc = pci_af_flr(dev, 0); 4995 if (rc != -ENOTTY) 4996 return rc; 4997 rc = pci_pm_reset(dev, 0); 4998 if (rc != -ENOTTY) 4999 return rc; 5000 rc = pci_dev_reset_slot_function(dev, 0); 5001 if (rc != -ENOTTY) 5002 return rc; 5003 return pci_parent_bus_reset(dev, 0); 5004 } 5005 EXPORT_SYMBOL_GPL(__pci_reset_function_locked); 5006 5007 /** 5008 * pci_probe_reset_function - check whether the device can be safely reset 5009 * @dev: PCI device to reset 5010 * 5011 * Some devices allow an individual function to be reset without affecting 5012 * other functions in the same device. The PCI device must be responsive 5013 * to PCI config space in order to use this function. 5014 * 5015 * Returns 0 if the device function can be reset or negative if the 5016 * device doesn't support resetting a single function. 5017 */ 5018 int pci_probe_reset_function(struct pci_dev *dev) 5019 { 5020 int rc; 5021 5022 might_sleep(); 5023 5024 rc = pci_dev_specific_reset(dev, 1); 5025 if (rc != -ENOTTY) 5026 return rc; 5027 if (pcie_has_flr(dev)) 5028 return 0; 5029 rc = pci_af_flr(dev, 1); 5030 if (rc != -ENOTTY) 5031 return rc; 5032 rc = pci_pm_reset(dev, 1); 5033 if (rc != -ENOTTY) 5034 return rc; 5035 rc = pci_dev_reset_slot_function(dev, 1); 5036 if (rc != -ENOTTY) 5037 return rc; 5038 5039 return pci_parent_bus_reset(dev, 1); 5040 } 5041 5042 /** 5043 * pci_reset_function - quiesce and reset a PCI device function 5044 * @dev: PCI device to reset 5045 * 5046 * Some devices allow an individual function to be reset without affecting 5047 * other functions in the same device. The PCI device must be responsive 5048 * to PCI config space in order to use this function. 5049 * 5050 * This function does not just reset the PCI portion of a device, but 5051 * clears all the state associated with the device. This function differs 5052 * from __pci_reset_function_locked() in that it saves and restores device state 5053 * over the reset and takes the PCI device lock. 5054 * 5055 * Returns 0 if the device function was successfully reset or negative if the 5056 * device doesn't support resetting a single function. 5057 */ 5058 int pci_reset_function(struct pci_dev *dev) 5059 { 5060 int rc; 5061 5062 if (!dev->reset_fn) 5063 return -ENOTTY; 5064 5065 pci_dev_lock(dev); 5066 pci_dev_save_and_disable(dev); 5067 5068 rc = __pci_reset_function_locked(dev); 5069 5070 pci_dev_restore(dev); 5071 pci_dev_unlock(dev); 5072 5073 return rc; 5074 } 5075 EXPORT_SYMBOL_GPL(pci_reset_function); 5076 5077 /** 5078 * pci_reset_function_locked - quiesce and reset a PCI device function 5079 * @dev: PCI device to reset 5080 * 5081 * Some devices allow an individual function to be reset without affecting 5082 * other functions in the same device. The PCI device must be responsive 5083 * to PCI config space in order to use this function. 5084 * 5085 * This function does not just reset the PCI portion of a device, but 5086 * clears all the state associated with the device. This function differs 5087 * from __pci_reset_function_locked() in that it saves and restores device state 5088 * over the reset. It also differs from pci_reset_function() in that it 5089 * requires the PCI device lock to be held. 5090 * 5091 * Returns 0 if the device function was successfully reset or negative if the 5092 * device doesn't support resetting a single function. 5093 */ 5094 int pci_reset_function_locked(struct pci_dev *dev) 5095 { 5096 int rc; 5097 5098 if (!dev->reset_fn) 5099 return -ENOTTY; 5100 5101 pci_dev_save_and_disable(dev); 5102 5103 rc = __pci_reset_function_locked(dev); 5104 5105 pci_dev_restore(dev); 5106 5107 return rc; 5108 } 5109 EXPORT_SYMBOL_GPL(pci_reset_function_locked); 5110 5111 /** 5112 * pci_try_reset_function - quiesce and reset a PCI device function 5113 * @dev: PCI device to reset 5114 * 5115 * Same as above, except return -EAGAIN if unable to lock device. 5116 */ 5117 int pci_try_reset_function(struct pci_dev *dev) 5118 { 5119 int rc; 5120 5121 if (!dev->reset_fn) 5122 return -ENOTTY; 5123 5124 if (!pci_dev_trylock(dev)) 5125 return -EAGAIN; 5126 5127 pci_dev_save_and_disable(dev); 5128 rc = __pci_reset_function_locked(dev); 5129 pci_dev_restore(dev); 5130 pci_dev_unlock(dev); 5131 5132 return rc; 5133 } 5134 EXPORT_SYMBOL_GPL(pci_try_reset_function); 5135 5136 /* Do any devices on or below this bus prevent a bus reset? */ 5137 static bool pci_bus_resetable(struct pci_bus *bus) 5138 { 5139 struct pci_dev *dev; 5140 5141 5142 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 5143 return false; 5144 5145 list_for_each_entry(dev, &bus->devices, bus_list) { 5146 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 5147 (dev->subordinate && !pci_bus_resetable(dev->subordinate))) 5148 return false; 5149 } 5150 5151 return true; 5152 } 5153 5154 /* Lock devices from the top of the tree down */ 5155 static void pci_bus_lock(struct pci_bus *bus) 5156 { 5157 struct pci_dev *dev; 5158 5159 list_for_each_entry(dev, &bus->devices, bus_list) { 5160 pci_dev_lock(dev); 5161 if (dev->subordinate) 5162 pci_bus_lock(dev->subordinate); 5163 } 5164 } 5165 5166 /* Unlock devices from the bottom of the tree up */ 5167 static void pci_bus_unlock(struct pci_bus *bus) 5168 { 5169 struct pci_dev *dev; 5170 5171 list_for_each_entry(dev, &bus->devices, bus_list) { 5172 if (dev->subordinate) 5173 pci_bus_unlock(dev->subordinate); 5174 pci_dev_unlock(dev); 5175 } 5176 } 5177 5178 /* Return 1 on successful lock, 0 on contention */ 5179 static int pci_bus_trylock(struct pci_bus *bus) 5180 { 5181 struct pci_dev *dev; 5182 5183 list_for_each_entry(dev, &bus->devices, bus_list) { 5184 if (!pci_dev_trylock(dev)) 5185 goto unlock; 5186 if (dev->subordinate) { 5187 if (!pci_bus_trylock(dev->subordinate)) { 5188 pci_dev_unlock(dev); 5189 goto unlock; 5190 } 5191 } 5192 } 5193 return 1; 5194 5195 unlock: 5196 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) { 5197 if (dev->subordinate) 5198 pci_bus_unlock(dev->subordinate); 5199 pci_dev_unlock(dev); 5200 } 5201 return 0; 5202 } 5203 5204 /* Do any devices on or below this slot prevent a bus reset? */ 5205 static bool pci_slot_resetable(struct pci_slot *slot) 5206 { 5207 struct pci_dev *dev; 5208 5209 if (slot->bus->self && 5210 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 5211 return false; 5212 5213 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5214 if (!dev->slot || dev->slot != slot) 5215 continue; 5216 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 5217 (dev->subordinate && !pci_bus_resetable(dev->subordinate))) 5218 return false; 5219 } 5220 5221 return true; 5222 } 5223 5224 /* Lock devices from the top of the tree down */ 5225 static void pci_slot_lock(struct pci_slot *slot) 5226 { 5227 struct pci_dev *dev; 5228 5229 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5230 if (!dev->slot || dev->slot != slot) 5231 continue; 5232 pci_dev_lock(dev); 5233 if (dev->subordinate) 5234 pci_bus_lock(dev->subordinate); 5235 } 5236 } 5237 5238 /* Unlock devices from the bottom of the tree up */ 5239 static void pci_slot_unlock(struct pci_slot *slot) 5240 { 5241 struct pci_dev *dev; 5242 5243 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5244 if (!dev->slot || dev->slot != slot) 5245 continue; 5246 if (dev->subordinate) 5247 pci_bus_unlock(dev->subordinate); 5248 pci_dev_unlock(dev); 5249 } 5250 } 5251 5252 /* Return 1 on successful lock, 0 on contention */ 5253 static int pci_slot_trylock(struct pci_slot *slot) 5254 { 5255 struct pci_dev *dev; 5256 5257 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5258 if (!dev->slot || dev->slot != slot) 5259 continue; 5260 if (!pci_dev_trylock(dev)) 5261 goto unlock; 5262 if (dev->subordinate) { 5263 if (!pci_bus_trylock(dev->subordinate)) { 5264 pci_dev_unlock(dev); 5265 goto unlock; 5266 } 5267 } 5268 } 5269 return 1; 5270 5271 unlock: 5272 list_for_each_entry_continue_reverse(dev, 5273 &slot->bus->devices, bus_list) { 5274 if (!dev->slot || dev->slot != slot) 5275 continue; 5276 if (dev->subordinate) 5277 pci_bus_unlock(dev->subordinate); 5278 pci_dev_unlock(dev); 5279 } 5280 return 0; 5281 } 5282 5283 /* 5284 * Save and disable devices from the top of the tree down while holding 5285 * the @dev mutex lock for the entire tree. 5286 */ 5287 static void pci_bus_save_and_disable_locked(struct pci_bus *bus) 5288 { 5289 struct pci_dev *dev; 5290 5291 list_for_each_entry(dev, &bus->devices, bus_list) { 5292 pci_dev_save_and_disable(dev); 5293 if (dev->subordinate) 5294 pci_bus_save_and_disable_locked(dev->subordinate); 5295 } 5296 } 5297 5298 /* 5299 * Restore devices from top of the tree down while holding @dev mutex lock 5300 * for the entire tree. Parent bridges need to be restored before we can 5301 * get to subordinate devices. 5302 */ 5303 static void pci_bus_restore_locked(struct pci_bus *bus) 5304 { 5305 struct pci_dev *dev; 5306 5307 list_for_each_entry(dev, &bus->devices, bus_list) { 5308 pci_dev_restore(dev); 5309 if (dev->subordinate) 5310 pci_bus_restore_locked(dev->subordinate); 5311 } 5312 } 5313 5314 /* 5315 * Save and disable devices from the top of the tree down while holding 5316 * the @dev mutex lock for the entire tree. 5317 */ 5318 static void pci_slot_save_and_disable_locked(struct pci_slot *slot) 5319 { 5320 struct pci_dev *dev; 5321 5322 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5323 if (!dev->slot || dev->slot != slot) 5324 continue; 5325 pci_dev_save_and_disable(dev); 5326 if (dev->subordinate) 5327 pci_bus_save_and_disable_locked(dev->subordinate); 5328 } 5329 } 5330 5331 /* 5332 * Restore devices from top of the tree down while holding @dev mutex lock 5333 * for the entire tree. Parent bridges need to be restored before we can 5334 * get to subordinate devices. 5335 */ 5336 static void pci_slot_restore_locked(struct pci_slot *slot) 5337 { 5338 struct pci_dev *dev; 5339 5340 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5341 if (!dev->slot || dev->slot != slot) 5342 continue; 5343 pci_dev_restore(dev); 5344 if (dev->subordinate) 5345 pci_bus_restore_locked(dev->subordinate); 5346 } 5347 } 5348 5349 static int pci_slot_reset(struct pci_slot *slot, int probe) 5350 { 5351 int rc; 5352 5353 if (!slot || !pci_slot_resetable(slot)) 5354 return -ENOTTY; 5355 5356 if (!probe) 5357 pci_slot_lock(slot); 5358 5359 might_sleep(); 5360 5361 rc = pci_reset_hotplug_slot(slot->hotplug, probe); 5362 5363 if (!probe) 5364 pci_slot_unlock(slot); 5365 5366 return rc; 5367 } 5368 5369 /** 5370 * pci_probe_reset_slot - probe whether a PCI slot can be reset 5371 * @slot: PCI slot to probe 5372 * 5373 * Return 0 if slot can be reset, negative if a slot reset is not supported. 5374 */ 5375 int pci_probe_reset_slot(struct pci_slot *slot) 5376 { 5377 return pci_slot_reset(slot, 1); 5378 } 5379 EXPORT_SYMBOL_GPL(pci_probe_reset_slot); 5380 5381 /** 5382 * __pci_reset_slot - Try to reset a PCI slot 5383 * @slot: PCI slot to reset 5384 * 5385 * A PCI bus may host multiple slots, each slot may support a reset mechanism 5386 * independent of other slots. For instance, some slots may support slot power 5387 * control. In the case of a 1:1 bus to slot architecture, this function may 5388 * wrap the bus reset to avoid spurious slot related events such as hotplug. 5389 * Generally a slot reset should be attempted before a bus reset. All of the 5390 * function of the slot and any subordinate buses behind the slot are reset 5391 * through this function. PCI config space of all devices in the slot and 5392 * behind the slot is saved before and restored after reset. 5393 * 5394 * Same as above except return -EAGAIN if the slot cannot be locked 5395 */ 5396 static int __pci_reset_slot(struct pci_slot *slot) 5397 { 5398 int rc; 5399 5400 rc = pci_slot_reset(slot, 1); 5401 if (rc) 5402 return rc; 5403 5404 if (pci_slot_trylock(slot)) { 5405 pci_slot_save_and_disable_locked(slot); 5406 might_sleep(); 5407 rc = pci_reset_hotplug_slot(slot->hotplug, 0); 5408 pci_slot_restore_locked(slot); 5409 pci_slot_unlock(slot); 5410 } else 5411 rc = -EAGAIN; 5412 5413 return rc; 5414 } 5415 5416 static int pci_bus_reset(struct pci_bus *bus, int probe) 5417 { 5418 int ret; 5419 5420 if (!bus->self || !pci_bus_resetable(bus)) 5421 return -ENOTTY; 5422 5423 if (probe) 5424 return 0; 5425 5426 pci_bus_lock(bus); 5427 5428 might_sleep(); 5429 5430 ret = pci_bridge_secondary_bus_reset(bus->self); 5431 5432 pci_bus_unlock(bus); 5433 5434 return ret; 5435 } 5436 5437 /** 5438 * pci_bus_error_reset - reset the bridge's subordinate bus 5439 * @bridge: The parent device that connects to the bus to reset 5440 * 5441 * This function will first try to reset the slots on this bus if the method is 5442 * available. If slot reset fails or is not available, this will fall back to a 5443 * secondary bus reset. 5444 */ 5445 int pci_bus_error_reset(struct pci_dev *bridge) 5446 { 5447 struct pci_bus *bus = bridge->subordinate; 5448 struct pci_slot *slot; 5449 5450 if (!bus) 5451 return -ENOTTY; 5452 5453 mutex_lock(&pci_slot_mutex); 5454 if (list_empty(&bus->slots)) 5455 goto bus_reset; 5456 5457 list_for_each_entry(slot, &bus->slots, list) 5458 if (pci_probe_reset_slot(slot)) 5459 goto bus_reset; 5460 5461 list_for_each_entry(slot, &bus->slots, list) 5462 if (pci_slot_reset(slot, 0)) 5463 goto bus_reset; 5464 5465 mutex_unlock(&pci_slot_mutex); 5466 return 0; 5467 bus_reset: 5468 mutex_unlock(&pci_slot_mutex); 5469 return pci_bus_reset(bridge->subordinate, 0); 5470 } 5471 5472 /** 5473 * pci_probe_reset_bus - probe whether a PCI bus can be reset 5474 * @bus: PCI bus to probe 5475 * 5476 * Return 0 if bus can be reset, negative if a bus reset is not supported. 5477 */ 5478 int pci_probe_reset_bus(struct pci_bus *bus) 5479 { 5480 return pci_bus_reset(bus, 1); 5481 } 5482 EXPORT_SYMBOL_GPL(pci_probe_reset_bus); 5483 5484 /** 5485 * __pci_reset_bus - Try to reset a PCI bus 5486 * @bus: top level PCI bus to reset 5487 * 5488 * Same as above except return -EAGAIN if the bus cannot be locked 5489 */ 5490 static int __pci_reset_bus(struct pci_bus *bus) 5491 { 5492 int rc; 5493 5494 rc = pci_bus_reset(bus, 1); 5495 if (rc) 5496 return rc; 5497 5498 if (pci_bus_trylock(bus)) { 5499 pci_bus_save_and_disable_locked(bus); 5500 might_sleep(); 5501 rc = pci_bridge_secondary_bus_reset(bus->self); 5502 pci_bus_restore_locked(bus); 5503 pci_bus_unlock(bus); 5504 } else 5505 rc = -EAGAIN; 5506 5507 return rc; 5508 } 5509 5510 /** 5511 * pci_reset_bus - Try to reset a PCI bus 5512 * @pdev: top level PCI device to reset via slot/bus 5513 * 5514 * Same as above except return -EAGAIN if the bus cannot be locked 5515 */ 5516 int pci_reset_bus(struct pci_dev *pdev) 5517 { 5518 return (!pci_probe_reset_slot(pdev->slot)) ? 5519 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus); 5520 } 5521 EXPORT_SYMBOL_GPL(pci_reset_bus); 5522 5523 /** 5524 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count 5525 * @dev: PCI device to query 5526 * 5527 * Returns mmrbc: maximum designed memory read count in bytes or 5528 * appropriate error value. 5529 */ 5530 int pcix_get_max_mmrbc(struct pci_dev *dev) 5531 { 5532 int cap; 5533 u32 stat; 5534 5535 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5536 if (!cap) 5537 return -EINVAL; 5538 5539 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 5540 return -EINVAL; 5541 5542 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21); 5543 } 5544 EXPORT_SYMBOL(pcix_get_max_mmrbc); 5545 5546 /** 5547 * pcix_get_mmrbc - get PCI-X maximum memory read byte count 5548 * @dev: PCI device to query 5549 * 5550 * Returns mmrbc: maximum memory read count in bytes or appropriate error 5551 * value. 5552 */ 5553 int pcix_get_mmrbc(struct pci_dev *dev) 5554 { 5555 int cap; 5556 u16 cmd; 5557 5558 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5559 if (!cap) 5560 return -EINVAL; 5561 5562 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 5563 return -EINVAL; 5564 5565 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2); 5566 } 5567 EXPORT_SYMBOL(pcix_get_mmrbc); 5568 5569 /** 5570 * pcix_set_mmrbc - set PCI-X maximum memory read byte count 5571 * @dev: PCI device to query 5572 * @mmrbc: maximum memory read count in bytes 5573 * valid values are 512, 1024, 2048, 4096 5574 * 5575 * If possible sets maximum memory read byte count, some bridges have errata 5576 * that prevent this. 5577 */ 5578 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc) 5579 { 5580 int cap; 5581 u32 stat, v, o; 5582 u16 cmd; 5583 5584 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc)) 5585 return -EINVAL; 5586 5587 v = ffs(mmrbc) - 10; 5588 5589 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5590 if (!cap) 5591 return -EINVAL; 5592 5593 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 5594 return -EINVAL; 5595 5596 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21) 5597 return -E2BIG; 5598 5599 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 5600 return -EINVAL; 5601 5602 o = (cmd & PCI_X_CMD_MAX_READ) >> 2; 5603 if (o != v) { 5604 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC)) 5605 return -EIO; 5606 5607 cmd &= ~PCI_X_CMD_MAX_READ; 5608 cmd |= v << 2; 5609 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd)) 5610 return -EIO; 5611 } 5612 return 0; 5613 } 5614 EXPORT_SYMBOL(pcix_set_mmrbc); 5615 5616 /** 5617 * pcie_get_readrq - get PCI Express read request size 5618 * @dev: PCI device to query 5619 * 5620 * Returns maximum memory read request in bytes or appropriate error value. 5621 */ 5622 int pcie_get_readrq(struct pci_dev *dev) 5623 { 5624 u16 ctl; 5625 5626 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 5627 5628 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12); 5629 } 5630 EXPORT_SYMBOL(pcie_get_readrq); 5631 5632 /** 5633 * pcie_set_readrq - set PCI Express maximum memory read request 5634 * @dev: PCI device to query 5635 * @rq: maximum memory read count in bytes 5636 * valid values are 128, 256, 512, 1024, 2048, 4096 5637 * 5638 * If possible sets maximum memory read request in bytes 5639 */ 5640 int pcie_set_readrq(struct pci_dev *dev, int rq) 5641 { 5642 u16 v; 5643 5644 if (rq < 128 || rq > 4096 || !is_power_of_2(rq)) 5645 return -EINVAL; 5646 5647 /* 5648 * If using the "performance" PCIe config, we clamp the read rq 5649 * size to the max packet size to keep the host bridge from 5650 * generating requests larger than we can cope with. 5651 */ 5652 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) { 5653 int mps = pcie_get_mps(dev); 5654 5655 if (mps < rq) 5656 rq = mps; 5657 } 5658 5659 v = (ffs(rq) - 8) << 12; 5660 5661 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 5662 PCI_EXP_DEVCTL_READRQ, v); 5663 } 5664 EXPORT_SYMBOL(pcie_set_readrq); 5665 5666 /** 5667 * pcie_get_mps - get PCI Express maximum payload size 5668 * @dev: PCI device to query 5669 * 5670 * Returns maximum payload size in bytes 5671 */ 5672 int pcie_get_mps(struct pci_dev *dev) 5673 { 5674 u16 ctl; 5675 5676 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 5677 5678 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5); 5679 } 5680 EXPORT_SYMBOL(pcie_get_mps); 5681 5682 /** 5683 * pcie_set_mps - set PCI Express maximum payload size 5684 * @dev: PCI device to query 5685 * @mps: maximum payload size in bytes 5686 * valid values are 128, 256, 512, 1024, 2048, 4096 5687 * 5688 * If possible sets maximum payload size 5689 */ 5690 int pcie_set_mps(struct pci_dev *dev, int mps) 5691 { 5692 u16 v; 5693 5694 if (mps < 128 || mps > 4096 || !is_power_of_2(mps)) 5695 return -EINVAL; 5696 5697 v = ffs(mps) - 8; 5698 if (v > dev->pcie_mpss) 5699 return -EINVAL; 5700 v <<= 5; 5701 5702 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 5703 PCI_EXP_DEVCTL_PAYLOAD, v); 5704 } 5705 EXPORT_SYMBOL(pcie_set_mps); 5706 5707 /** 5708 * pcie_bandwidth_available - determine minimum link settings of a PCIe 5709 * device and its bandwidth limitation 5710 * @dev: PCI device to query 5711 * @limiting_dev: storage for device causing the bandwidth limitation 5712 * @speed: storage for speed of limiting device 5713 * @width: storage for width of limiting device 5714 * 5715 * Walk up the PCI device chain and find the point where the minimum 5716 * bandwidth is available. Return the bandwidth available there and (if 5717 * limiting_dev, speed, and width pointers are supplied) information about 5718 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of 5719 * raw bandwidth. 5720 */ 5721 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev, 5722 enum pci_bus_speed *speed, 5723 enum pcie_link_width *width) 5724 { 5725 u16 lnksta; 5726 enum pci_bus_speed next_speed; 5727 enum pcie_link_width next_width; 5728 u32 bw, next_bw; 5729 5730 if (speed) 5731 *speed = PCI_SPEED_UNKNOWN; 5732 if (width) 5733 *width = PCIE_LNK_WIDTH_UNKNOWN; 5734 5735 bw = 0; 5736 5737 while (dev) { 5738 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta); 5739 5740 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS]; 5741 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >> 5742 PCI_EXP_LNKSTA_NLW_SHIFT; 5743 5744 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed); 5745 5746 /* Check if current device limits the total bandwidth */ 5747 if (!bw || next_bw <= bw) { 5748 bw = next_bw; 5749 5750 if (limiting_dev) 5751 *limiting_dev = dev; 5752 if (speed) 5753 *speed = next_speed; 5754 if (width) 5755 *width = next_width; 5756 } 5757 5758 dev = pci_upstream_bridge(dev); 5759 } 5760 5761 return bw; 5762 } 5763 EXPORT_SYMBOL(pcie_bandwidth_available); 5764 5765 /** 5766 * pcie_get_speed_cap - query for the PCI device's link speed capability 5767 * @dev: PCI device to query 5768 * 5769 * Query the PCI device speed capability. Return the maximum link speed 5770 * supported by the device. 5771 */ 5772 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev) 5773 { 5774 u32 lnkcap2, lnkcap; 5775 5776 /* 5777 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The 5778 * implementation note there recommends using the Supported Link 5779 * Speeds Vector in Link Capabilities 2 when supported. 5780 * 5781 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software 5782 * should use the Supported Link Speeds field in Link Capabilities, 5783 * where only 2.5 GT/s and 5.0 GT/s speeds were defined. 5784 */ 5785 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2); 5786 if (lnkcap2) { /* PCIe r3.0-compliant */ 5787 if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_32_0GB) 5788 return PCIE_SPEED_32_0GT; 5789 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_16_0GB) 5790 return PCIE_SPEED_16_0GT; 5791 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB) 5792 return PCIE_SPEED_8_0GT; 5793 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB) 5794 return PCIE_SPEED_5_0GT; 5795 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB) 5796 return PCIE_SPEED_2_5GT; 5797 return PCI_SPEED_UNKNOWN; 5798 } 5799 5800 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 5801 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB) 5802 return PCIE_SPEED_5_0GT; 5803 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB) 5804 return PCIE_SPEED_2_5GT; 5805 5806 return PCI_SPEED_UNKNOWN; 5807 } 5808 EXPORT_SYMBOL(pcie_get_speed_cap); 5809 5810 /** 5811 * pcie_get_width_cap - query for the PCI device's link width capability 5812 * @dev: PCI device to query 5813 * 5814 * Query the PCI device width capability. Return the maximum link width 5815 * supported by the device. 5816 */ 5817 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev) 5818 { 5819 u32 lnkcap; 5820 5821 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 5822 if (lnkcap) 5823 return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4; 5824 5825 return PCIE_LNK_WIDTH_UNKNOWN; 5826 } 5827 EXPORT_SYMBOL(pcie_get_width_cap); 5828 5829 /** 5830 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability 5831 * @dev: PCI device 5832 * @speed: storage for link speed 5833 * @width: storage for link width 5834 * 5835 * Calculate a PCI device's link bandwidth by querying for its link speed 5836 * and width, multiplying them, and applying encoding overhead. The result 5837 * is in Mb/s, i.e., megabits/second of raw bandwidth. 5838 */ 5839 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed, 5840 enum pcie_link_width *width) 5841 { 5842 *speed = pcie_get_speed_cap(dev); 5843 *width = pcie_get_width_cap(dev); 5844 5845 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN) 5846 return 0; 5847 5848 return *width * PCIE_SPEED2MBS_ENC(*speed); 5849 } 5850 5851 /** 5852 * __pcie_print_link_status - Report the PCI device's link speed and width 5853 * @dev: PCI device to query 5854 * @verbose: Print info even when enough bandwidth is available 5855 * 5856 * If the available bandwidth at the device is less than the device is 5857 * capable of, report the device's maximum possible bandwidth and the 5858 * upstream link that limits its performance. If @verbose, always print 5859 * the available bandwidth, even if the device isn't constrained. 5860 */ 5861 void __pcie_print_link_status(struct pci_dev *dev, bool verbose) 5862 { 5863 enum pcie_link_width width, width_cap; 5864 enum pci_bus_speed speed, speed_cap; 5865 struct pci_dev *limiting_dev = NULL; 5866 u32 bw_avail, bw_cap; 5867 5868 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap); 5869 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width); 5870 5871 if (bw_avail >= bw_cap && verbose) 5872 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n", 5873 bw_cap / 1000, bw_cap % 1000, 5874 PCIE_SPEED2STR(speed_cap), width_cap); 5875 else if (bw_avail < bw_cap) 5876 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n", 5877 bw_avail / 1000, bw_avail % 1000, 5878 PCIE_SPEED2STR(speed), width, 5879 limiting_dev ? pci_name(limiting_dev) : "<unknown>", 5880 bw_cap / 1000, bw_cap % 1000, 5881 PCIE_SPEED2STR(speed_cap), width_cap); 5882 } 5883 5884 /** 5885 * pcie_print_link_status - Report the PCI device's link speed and width 5886 * @dev: PCI device to query 5887 * 5888 * Report the available bandwidth at the device. 5889 */ 5890 void pcie_print_link_status(struct pci_dev *dev) 5891 { 5892 __pcie_print_link_status(dev, true); 5893 } 5894 EXPORT_SYMBOL(pcie_print_link_status); 5895 5896 /** 5897 * pci_select_bars - Make BAR mask from the type of resource 5898 * @dev: the PCI device for which BAR mask is made 5899 * @flags: resource type mask to be selected 5900 * 5901 * This helper routine makes bar mask from the type of resource. 5902 */ 5903 int pci_select_bars(struct pci_dev *dev, unsigned long flags) 5904 { 5905 int i, bars = 0; 5906 for (i = 0; i < PCI_NUM_RESOURCES; i++) 5907 if (pci_resource_flags(dev, i) & flags) 5908 bars |= (1 << i); 5909 return bars; 5910 } 5911 EXPORT_SYMBOL(pci_select_bars); 5912 5913 /* Some architectures require additional programming to enable VGA */ 5914 static arch_set_vga_state_t arch_set_vga_state; 5915 5916 void __init pci_register_set_vga_state(arch_set_vga_state_t func) 5917 { 5918 arch_set_vga_state = func; /* NULL disables */ 5919 } 5920 5921 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode, 5922 unsigned int command_bits, u32 flags) 5923 { 5924 if (arch_set_vga_state) 5925 return arch_set_vga_state(dev, decode, command_bits, 5926 flags); 5927 return 0; 5928 } 5929 5930 /** 5931 * pci_set_vga_state - set VGA decode state on device and parents if requested 5932 * @dev: the PCI device 5933 * @decode: true = enable decoding, false = disable decoding 5934 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY 5935 * @flags: traverse ancestors and change bridges 5936 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE 5937 */ 5938 int pci_set_vga_state(struct pci_dev *dev, bool decode, 5939 unsigned int command_bits, u32 flags) 5940 { 5941 struct pci_bus *bus; 5942 struct pci_dev *bridge; 5943 u16 cmd; 5944 int rc; 5945 5946 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY))); 5947 5948 /* ARCH specific VGA enables */ 5949 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags); 5950 if (rc) 5951 return rc; 5952 5953 if (flags & PCI_VGA_STATE_CHANGE_DECODES) { 5954 pci_read_config_word(dev, PCI_COMMAND, &cmd); 5955 if (decode == true) 5956 cmd |= command_bits; 5957 else 5958 cmd &= ~command_bits; 5959 pci_write_config_word(dev, PCI_COMMAND, cmd); 5960 } 5961 5962 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE)) 5963 return 0; 5964 5965 bus = dev->bus; 5966 while (bus) { 5967 bridge = bus->self; 5968 if (bridge) { 5969 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL, 5970 &cmd); 5971 if (decode == true) 5972 cmd |= PCI_BRIDGE_CTL_VGA; 5973 else 5974 cmd &= ~PCI_BRIDGE_CTL_VGA; 5975 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL, 5976 cmd); 5977 } 5978 bus = bus->parent; 5979 } 5980 return 0; 5981 } 5982 5983 #ifdef CONFIG_ACPI 5984 bool pci_pr3_present(struct pci_dev *pdev) 5985 { 5986 struct acpi_device *adev; 5987 5988 if (acpi_disabled) 5989 return false; 5990 5991 adev = ACPI_COMPANION(&pdev->dev); 5992 if (!adev) 5993 return false; 5994 5995 return adev->power.flags.power_resources && 5996 acpi_has_method(adev->handle, "_PR3"); 5997 } 5998 EXPORT_SYMBOL_GPL(pci_pr3_present); 5999 #endif 6000 6001 /** 6002 * pci_add_dma_alias - Add a DMA devfn alias for a device 6003 * @dev: the PCI device for which alias is added 6004 * @devfn_from: alias slot and function 6005 * @nr_devfns: number of subsequent devfns to alias 6006 * 6007 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask 6008 * which is used to program permissible bus-devfn source addresses for DMA 6009 * requests in an IOMMU. These aliases factor into IOMMU group creation 6010 * and are useful for devices generating DMA requests beyond or different 6011 * from their logical bus-devfn. Examples include device quirks where the 6012 * device simply uses the wrong devfn, as well as non-transparent bridges 6013 * where the alias may be a proxy for devices in another domain. 6014 * 6015 * IOMMU group creation is performed during device discovery or addition, 6016 * prior to any potential DMA mapping and therefore prior to driver probing 6017 * (especially for userspace assigned devices where IOMMU group definition 6018 * cannot be left as a userspace activity). DMA aliases should therefore 6019 * be configured via quirks, such as the PCI fixup header quirk. 6020 */ 6021 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from, unsigned nr_devfns) 6022 { 6023 int devfn_to; 6024 6025 nr_devfns = min(nr_devfns, (unsigned) MAX_NR_DEVFNS - devfn_from); 6026 devfn_to = devfn_from + nr_devfns - 1; 6027 6028 if (!dev->dma_alias_mask) 6029 dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL); 6030 if (!dev->dma_alias_mask) { 6031 pci_warn(dev, "Unable to allocate DMA alias mask\n"); 6032 return; 6033 } 6034 6035 bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns); 6036 6037 if (nr_devfns == 1) 6038 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n", 6039 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from)); 6040 else if (nr_devfns > 1) 6041 pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n", 6042 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from), 6043 PCI_SLOT(devfn_to), PCI_FUNC(devfn_to)); 6044 } 6045 6046 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2) 6047 { 6048 return (dev1->dma_alias_mask && 6049 test_bit(dev2->devfn, dev1->dma_alias_mask)) || 6050 (dev2->dma_alias_mask && 6051 test_bit(dev1->devfn, dev2->dma_alias_mask)) || 6052 pci_real_dma_dev(dev1) == dev2 || 6053 pci_real_dma_dev(dev2) == dev1; 6054 } 6055 6056 bool pci_device_is_present(struct pci_dev *pdev) 6057 { 6058 u32 v; 6059 6060 if (pci_dev_is_disconnected(pdev)) 6061 return false; 6062 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0); 6063 } 6064 EXPORT_SYMBOL_GPL(pci_device_is_present); 6065 6066 void pci_ignore_hotplug(struct pci_dev *dev) 6067 { 6068 struct pci_dev *bridge = dev->bus->self; 6069 6070 dev->ignore_hotplug = 1; 6071 /* Propagate the "ignore hotplug" setting to the parent bridge. */ 6072 if (bridge) 6073 bridge->ignore_hotplug = 1; 6074 } 6075 EXPORT_SYMBOL_GPL(pci_ignore_hotplug); 6076 6077 /** 6078 * pci_real_dma_dev - Get PCI DMA device for PCI device 6079 * @dev: the PCI device that may have a PCI DMA alias 6080 * 6081 * Permits the platform to provide architecture-specific functionality to 6082 * devices needing to alias DMA to another PCI device on another PCI bus. If 6083 * the PCI device is on the same bus, it is recommended to use 6084 * pci_add_dma_alias(). This is the default implementation. Architecture 6085 * implementations can override this. 6086 */ 6087 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev) 6088 { 6089 return dev; 6090 } 6091 6092 resource_size_t __weak pcibios_default_alignment(void) 6093 { 6094 return 0; 6095 } 6096 6097 /* 6098 * Arches that don't want to expose struct resource to userland as-is in 6099 * sysfs and /proc can implement their own pci_resource_to_user(). 6100 */ 6101 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar, 6102 const struct resource *rsrc, 6103 resource_size_t *start, resource_size_t *end) 6104 { 6105 *start = rsrc->start; 6106 *end = rsrc->end; 6107 } 6108 6109 static char *resource_alignment_param; 6110 static DEFINE_SPINLOCK(resource_alignment_lock); 6111 6112 /** 6113 * pci_specified_resource_alignment - get resource alignment specified by user. 6114 * @dev: the PCI device to get 6115 * @resize: whether or not to change resources' size when reassigning alignment 6116 * 6117 * RETURNS: Resource alignment if it is specified. 6118 * Zero if it is not specified. 6119 */ 6120 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev, 6121 bool *resize) 6122 { 6123 int align_order, count; 6124 resource_size_t align = pcibios_default_alignment(); 6125 const char *p; 6126 int ret; 6127 6128 spin_lock(&resource_alignment_lock); 6129 p = resource_alignment_param; 6130 if (!p || !*p) 6131 goto out; 6132 if (pci_has_flag(PCI_PROBE_ONLY)) { 6133 align = 0; 6134 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n"); 6135 goto out; 6136 } 6137 6138 while (*p) { 6139 count = 0; 6140 if (sscanf(p, "%d%n", &align_order, &count) == 1 && 6141 p[count] == '@') { 6142 p += count + 1; 6143 } else { 6144 align_order = -1; 6145 } 6146 6147 ret = pci_dev_str_match(dev, p, &p); 6148 if (ret == 1) { 6149 *resize = true; 6150 if (align_order == -1) 6151 align = PAGE_SIZE; 6152 else 6153 align = 1 << align_order; 6154 break; 6155 } else if (ret < 0) { 6156 pr_err("PCI: Can't parse resource_alignment parameter: %s\n", 6157 p); 6158 break; 6159 } 6160 6161 if (*p != ';' && *p != ',') { 6162 /* End of param or invalid format */ 6163 break; 6164 } 6165 p++; 6166 } 6167 out: 6168 spin_unlock(&resource_alignment_lock); 6169 return align; 6170 } 6171 6172 static void pci_request_resource_alignment(struct pci_dev *dev, int bar, 6173 resource_size_t align, bool resize) 6174 { 6175 struct resource *r = &dev->resource[bar]; 6176 resource_size_t size; 6177 6178 if (!(r->flags & IORESOURCE_MEM)) 6179 return; 6180 6181 if (r->flags & IORESOURCE_PCI_FIXED) { 6182 pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n", 6183 bar, r, (unsigned long long)align); 6184 return; 6185 } 6186 6187 size = resource_size(r); 6188 if (size >= align) 6189 return; 6190 6191 /* 6192 * Increase the alignment of the resource. There are two ways we 6193 * can do this: 6194 * 6195 * 1) Increase the size of the resource. BARs are aligned on their 6196 * size, so when we reallocate space for this resource, we'll 6197 * allocate it with the larger alignment. This also prevents 6198 * assignment of any other BARs inside the alignment region, so 6199 * if we're requesting page alignment, this means no other BARs 6200 * will share the page. 6201 * 6202 * The disadvantage is that this makes the resource larger than 6203 * the hardware BAR, which may break drivers that compute things 6204 * based on the resource size, e.g., to find registers at a 6205 * fixed offset before the end of the BAR. 6206 * 6207 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and 6208 * set r->start to the desired alignment. By itself this 6209 * doesn't prevent other BARs being put inside the alignment 6210 * region, but if we realign *every* resource of every device in 6211 * the system, none of them will share an alignment region. 6212 * 6213 * When the user has requested alignment for only some devices via 6214 * the "pci=resource_alignment" argument, "resize" is true and we 6215 * use the first method. Otherwise we assume we're aligning all 6216 * devices and we use the second. 6217 */ 6218 6219 pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n", 6220 bar, r, (unsigned long long)align); 6221 6222 if (resize) { 6223 r->start = 0; 6224 r->end = align - 1; 6225 } else { 6226 r->flags &= ~IORESOURCE_SIZEALIGN; 6227 r->flags |= IORESOURCE_STARTALIGN; 6228 r->start = align; 6229 r->end = r->start + size - 1; 6230 } 6231 r->flags |= IORESOURCE_UNSET; 6232 } 6233 6234 /* 6235 * This function disables memory decoding and releases memory resources 6236 * of the device specified by kernel's boot parameter 'pci=resource_alignment='. 6237 * It also rounds up size to specified alignment. 6238 * Later on, the kernel will assign page-aligned memory resource back 6239 * to the device. 6240 */ 6241 void pci_reassigndev_resource_alignment(struct pci_dev *dev) 6242 { 6243 int i; 6244 struct resource *r; 6245 resource_size_t align; 6246 u16 command; 6247 bool resize = false; 6248 6249 /* 6250 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec 6251 * 3.4.1.11. Their resources are allocated from the space 6252 * described by the VF BARx register in the PF's SR-IOV capability. 6253 * We can't influence their alignment here. 6254 */ 6255 if (dev->is_virtfn) 6256 return; 6257 6258 /* check if specified PCI is target device to reassign */ 6259 align = pci_specified_resource_alignment(dev, &resize); 6260 if (!align) 6261 return; 6262 6263 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL && 6264 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) { 6265 pci_warn(dev, "Can't reassign resources to host bridge\n"); 6266 return; 6267 } 6268 6269 pci_read_config_word(dev, PCI_COMMAND, &command); 6270 command &= ~PCI_COMMAND_MEMORY; 6271 pci_write_config_word(dev, PCI_COMMAND, command); 6272 6273 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 6274 pci_request_resource_alignment(dev, i, align, resize); 6275 6276 /* 6277 * Need to disable bridge's resource window, 6278 * to enable the kernel to reassign new resource 6279 * window later on. 6280 */ 6281 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 6282 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) { 6283 r = &dev->resource[i]; 6284 if (!(r->flags & IORESOURCE_MEM)) 6285 continue; 6286 r->flags |= IORESOURCE_UNSET; 6287 r->end = resource_size(r) - 1; 6288 r->start = 0; 6289 } 6290 pci_disable_bridge_window(dev); 6291 } 6292 } 6293 6294 static ssize_t resource_alignment_show(struct bus_type *bus, char *buf) 6295 { 6296 size_t count = 0; 6297 6298 spin_lock(&resource_alignment_lock); 6299 if (resource_alignment_param) 6300 count = snprintf(buf, PAGE_SIZE, "%s", resource_alignment_param); 6301 spin_unlock(&resource_alignment_lock); 6302 6303 /* 6304 * When set by the command line, resource_alignment_param will not 6305 * have a trailing line feed, which is ugly. So conditionally add 6306 * it here. 6307 */ 6308 if (count >= 2 && buf[count - 2] != '\n' && count < PAGE_SIZE - 1) { 6309 buf[count - 1] = '\n'; 6310 buf[count++] = 0; 6311 } 6312 6313 return count; 6314 } 6315 6316 static ssize_t resource_alignment_store(struct bus_type *bus, 6317 const char *buf, size_t count) 6318 { 6319 char *param = kstrndup(buf, count, GFP_KERNEL); 6320 6321 if (!param) 6322 return -ENOMEM; 6323 6324 spin_lock(&resource_alignment_lock); 6325 kfree(resource_alignment_param); 6326 resource_alignment_param = param; 6327 spin_unlock(&resource_alignment_lock); 6328 return count; 6329 } 6330 6331 static BUS_ATTR_RW(resource_alignment); 6332 6333 static int __init pci_resource_alignment_sysfs_init(void) 6334 { 6335 return bus_create_file(&pci_bus_type, 6336 &bus_attr_resource_alignment); 6337 } 6338 late_initcall(pci_resource_alignment_sysfs_init); 6339 6340 static void pci_no_domains(void) 6341 { 6342 #ifdef CONFIG_PCI_DOMAINS 6343 pci_domains_supported = 0; 6344 #endif 6345 } 6346 6347 #ifdef CONFIG_PCI_DOMAINS_GENERIC 6348 static atomic_t __domain_nr = ATOMIC_INIT(-1); 6349 6350 static int pci_get_new_domain_nr(void) 6351 { 6352 return atomic_inc_return(&__domain_nr); 6353 } 6354 6355 static int of_pci_bus_find_domain_nr(struct device *parent) 6356 { 6357 static int use_dt_domains = -1; 6358 int domain = -1; 6359 6360 if (parent) 6361 domain = of_get_pci_domain_nr(parent->of_node); 6362 6363 /* 6364 * Check DT domain and use_dt_domains values. 6365 * 6366 * If DT domain property is valid (domain >= 0) and 6367 * use_dt_domains != 0, the DT assignment is valid since this means 6368 * we have not previously allocated a domain number by using 6369 * pci_get_new_domain_nr(); we should also update use_dt_domains to 6370 * 1, to indicate that we have just assigned a domain number from 6371 * DT. 6372 * 6373 * If DT domain property value is not valid (ie domain < 0), and we 6374 * have not previously assigned a domain number from DT 6375 * (use_dt_domains != 1) we should assign a domain number by 6376 * using the: 6377 * 6378 * pci_get_new_domain_nr() 6379 * 6380 * API and update the use_dt_domains value to keep track of method we 6381 * are using to assign domain numbers (use_dt_domains = 0). 6382 * 6383 * All other combinations imply we have a platform that is trying 6384 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(), 6385 * which is a recipe for domain mishandling and it is prevented by 6386 * invalidating the domain value (domain = -1) and printing a 6387 * corresponding error. 6388 */ 6389 if (domain >= 0 && use_dt_domains) { 6390 use_dt_domains = 1; 6391 } else if (domain < 0 && use_dt_domains != 1) { 6392 use_dt_domains = 0; 6393 domain = pci_get_new_domain_nr(); 6394 } else { 6395 if (parent) 6396 pr_err("Node %pOF has ", parent->of_node); 6397 pr_err("Inconsistent \"linux,pci-domain\" property in DT\n"); 6398 domain = -1; 6399 } 6400 6401 return domain; 6402 } 6403 6404 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent) 6405 { 6406 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) : 6407 acpi_pci_bus_find_domain_nr(bus); 6408 } 6409 #endif 6410 6411 /** 6412 * pci_ext_cfg_avail - can we access extended PCI config space? 6413 * 6414 * Returns 1 if we can access PCI extended config space (offsets 6415 * greater than 0xff). This is the default implementation. Architecture 6416 * implementations can override this. 6417 */ 6418 int __weak pci_ext_cfg_avail(void) 6419 { 6420 return 1; 6421 } 6422 6423 void __weak pci_fixup_cardbus(struct pci_bus *bus) 6424 { 6425 } 6426 EXPORT_SYMBOL(pci_fixup_cardbus); 6427 6428 static int __init pci_setup(char *str) 6429 { 6430 while (str) { 6431 char *k = strchr(str, ','); 6432 if (k) 6433 *k++ = 0; 6434 if (*str && (str = pcibios_setup(str)) && *str) { 6435 if (!strcmp(str, "nomsi")) { 6436 pci_no_msi(); 6437 } else if (!strncmp(str, "noats", 5)) { 6438 pr_info("PCIe: ATS is disabled\n"); 6439 pcie_ats_disabled = true; 6440 } else if (!strcmp(str, "noaer")) { 6441 pci_no_aer(); 6442 } else if (!strcmp(str, "earlydump")) { 6443 pci_early_dump = true; 6444 } else if (!strncmp(str, "realloc=", 8)) { 6445 pci_realloc_get_opt(str + 8); 6446 } else if (!strncmp(str, "realloc", 7)) { 6447 pci_realloc_get_opt("on"); 6448 } else if (!strcmp(str, "nodomains")) { 6449 pci_no_domains(); 6450 } else if (!strncmp(str, "noari", 5)) { 6451 pcie_ari_disabled = true; 6452 } else if (!strncmp(str, "cbiosize=", 9)) { 6453 pci_cardbus_io_size = memparse(str + 9, &str); 6454 } else if (!strncmp(str, "cbmemsize=", 10)) { 6455 pci_cardbus_mem_size = memparse(str + 10, &str); 6456 } else if (!strncmp(str, "resource_alignment=", 19)) { 6457 resource_alignment_param = str + 19; 6458 } else if (!strncmp(str, "ecrc=", 5)) { 6459 pcie_ecrc_get_policy(str + 5); 6460 } else if (!strncmp(str, "hpiosize=", 9)) { 6461 pci_hotplug_io_size = memparse(str + 9, &str); 6462 } else if (!strncmp(str, "hpmmiosize=", 11)) { 6463 pci_hotplug_mmio_size = memparse(str + 11, &str); 6464 } else if (!strncmp(str, "hpmmioprefsize=", 15)) { 6465 pci_hotplug_mmio_pref_size = memparse(str + 15, &str); 6466 } else if (!strncmp(str, "hpmemsize=", 10)) { 6467 pci_hotplug_mmio_size = memparse(str + 10, &str); 6468 pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size; 6469 } else if (!strncmp(str, "hpbussize=", 10)) { 6470 pci_hotplug_bus_size = 6471 simple_strtoul(str + 10, &str, 0); 6472 if (pci_hotplug_bus_size > 0xff) 6473 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 6474 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) { 6475 pcie_bus_config = PCIE_BUS_TUNE_OFF; 6476 } else if (!strncmp(str, "pcie_bus_safe", 13)) { 6477 pcie_bus_config = PCIE_BUS_SAFE; 6478 } else if (!strncmp(str, "pcie_bus_perf", 13)) { 6479 pcie_bus_config = PCIE_BUS_PERFORMANCE; 6480 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) { 6481 pcie_bus_config = PCIE_BUS_PEER2PEER; 6482 } else if (!strncmp(str, "pcie_scan_all", 13)) { 6483 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS); 6484 } else if (!strncmp(str, "disable_acs_redir=", 18)) { 6485 disable_acs_redir_param = str + 18; 6486 } else { 6487 pr_err("PCI: Unknown option `%s'\n", str); 6488 } 6489 } 6490 str = k; 6491 } 6492 return 0; 6493 } 6494 early_param("pci", pci_setup); 6495 6496 /* 6497 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized 6498 * in pci_setup(), above, to point to data in the __initdata section which 6499 * will be freed after the init sequence is complete. We can't allocate memory 6500 * in pci_setup() because some architectures do not have any memory allocation 6501 * service available during an early_param() call. So we allocate memory and 6502 * copy the variable here before the init section is freed. 6503 * 6504 */ 6505 static int __init pci_realloc_setup_params(void) 6506 { 6507 resource_alignment_param = kstrdup(resource_alignment_param, 6508 GFP_KERNEL); 6509 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL); 6510 6511 return 0; 6512 } 6513 pure_initcall(pci_realloc_setup_params); 6514