xref: /openbmc/linux/drivers/pci/pci.c (revision 5f2fb52fac15a8a8e10ce020dd532504a8abfc4e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * PCI Bus Services, see include/linux/pci.h for further explanation.
4  *
5  * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6  * David Mosberger-Tang
7  *
8  * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/msi.h>
17 #include <linux/of.h>
18 #include <linux/of_pci.h>
19 #include <linux/pci.h>
20 #include <linux/pm.h>
21 #include <linux/slab.h>
22 #include <linux/module.h>
23 #include <linux/spinlock.h>
24 #include <linux/string.h>
25 #include <linux/log2.h>
26 #include <linux/logic_pio.h>
27 #include <linux/pm_wakeup.h>
28 #include <linux/interrupt.h>
29 #include <linux/device.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/pci_hotplug.h>
32 #include <linux/vmalloc.h>
33 #include <linux/pci-ats.h>
34 #include <asm/setup.h>
35 #include <asm/dma.h>
36 #include <linux/aer.h>
37 #include "pci.h"
38 
39 DEFINE_MUTEX(pci_slot_mutex);
40 
41 const char *pci_power_names[] = {
42 	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
43 };
44 EXPORT_SYMBOL_GPL(pci_power_names);
45 
46 int isa_dma_bridge_buggy;
47 EXPORT_SYMBOL(isa_dma_bridge_buggy);
48 
49 int pci_pci_problems;
50 EXPORT_SYMBOL(pci_pci_problems);
51 
52 unsigned int pci_pm_d3_delay;
53 
54 static void pci_pme_list_scan(struct work_struct *work);
55 
56 static LIST_HEAD(pci_pme_list);
57 static DEFINE_MUTEX(pci_pme_list_mutex);
58 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
59 
60 struct pci_pme_device {
61 	struct list_head list;
62 	struct pci_dev *dev;
63 };
64 
65 #define PME_TIMEOUT 1000 /* How long between PME checks */
66 
67 static void pci_dev_d3_sleep(struct pci_dev *dev)
68 {
69 	unsigned int delay = dev->d3_delay;
70 
71 	if (delay < pci_pm_d3_delay)
72 		delay = pci_pm_d3_delay;
73 
74 	if (delay)
75 		msleep(delay);
76 }
77 
78 #ifdef CONFIG_PCI_DOMAINS
79 int pci_domains_supported = 1;
80 #endif
81 
82 #define DEFAULT_CARDBUS_IO_SIZE		(256)
83 #define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
84 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
85 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
86 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
87 
88 #define DEFAULT_HOTPLUG_IO_SIZE		(256)
89 #define DEFAULT_HOTPLUG_MMIO_SIZE	(2*1024*1024)
90 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE	(2*1024*1024)
91 /* hpiosize=nn can override this */
92 unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
93 /*
94  * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
95  * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
96  * pci=hpmemsize=nnM overrides both
97  */
98 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
99 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
100 
101 #define DEFAULT_HOTPLUG_BUS_SIZE	1
102 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
103 
104 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
105 
106 /*
107  * The default CLS is used if arch didn't set CLS explicitly and not
108  * all pci devices agree on the same value.  Arch can override either
109  * the dfl or actual value as it sees fit.  Don't forget this is
110  * measured in 32-bit words, not bytes.
111  */
112 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
113 u8 pci_cache_line_size;
114 
115 /*
116  * If we set up a device for bus mastering, we need to check the latency
117  * timer as certain BIOSes forget to set it properly.
118  */
119 unsigned int pcibios_max_latency = 255;
120 
121 /* If set, the PCIe ARI capability will not be used. */
122 static bool pcie_ari_disabled;
123 
124 /* If set, the PCIe ATS capability will not be used. */
125 static bool pcie_ats_disabled;
126 
127 /* If set, the PCI config space of each device is printed during boot. */
128 bool pci_early_dump;
129 
130 bool pci_ats_disabled(void)
131 {
132 	return pcie_ats_disabled;
133 }
134 
135 /* Disable bridge_d3 for all PCIe ports */
136 static bool pci_bridge_d3_disable;
137 /* Force bridge_d3 for all PCIe ports */
138 static bool pci_bridge_d3_force;
139 
140 static int __init pcie_port_pm_setup(char *str)
141 {
142 	if (!strcmp(str, "off"))
143 		pci_bridge_d3_disable = true;
144 	else if (!strcmp(str, "force"))
145 		pci_bridge_d3_force = true;
146 	return 1;
147 }
148 __setup("pcie_port_pm=", pcie_port_pm_setup);
149 
150 /* Time to wait after a reset for device to become responsive */
151 #define PCIE_RESET_READY_POLL_MS 60000
152 
153 /**
154  * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
155  * @bus: pointer to PCI bus structure to search
156  *
157  * Given a PCI bus, returns the highest PCI bus number present in the set
158  * including the given PCI bus and its list of child PCI buses.
159  */
160 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
161 {
162 	struct pci_bus *tmp;
163 	unsigned char max, n;
164 
165 	max = bus->busn_res.end;
166 	list_for_each_entry(tmp, &bus->children, node) {
167 		n = pci_bus_max_busnr(tmp);
168 		if (n > max)
169 			max = n;
170 	}
171 	return max;
172 }
173 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
174 
175 #ifdef CONFIG_HAS_IOMEM
176 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
177 {
178 	struct resource *res = &pdev->resource[bar];
179 
180 	/*
181 	 * Make sure the BAR is actually a memory resource, not an IO resource
182 	 */
183 	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
184 		pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
185 		return NULL;
186 	}
187 	return ioremap(res->start, resource_size(res));
188 }
189 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
190 
191 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
192 {
193 	/*
194 	 * Make sure the BAR is actually a memory resource, not an IO resource
195 	 */
196 	if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
197 		WARN_ON(1);
198 		return NULL;
199 	}
200 	return ioremap_wc(pci_resource_start(pdev, bar),
201 			  pci_resource_len(pdev, bar));
202 }
203 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
204 #endif
205 
206 /**
207  * pci_dev_str_match_path - test if a path string matches a device
208  * @dev: the PCI device to test
209  * @path: string to match the device against
210  * @endptr: pointer to the string after the match
211  *
212  * Test if a string (typically from a kernel parameter) formatted as a
213  * path of device/function addresses matches a PCI device. The string must
214  * be of the form:
215  *
216  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
217  *
218  * A path for a device can be obtained using 'lspci -t'.  Using a path
219  * is more robust against bus renumbering than using only a single bus,
220  * device and function address.
221  *
222  * Returns 1 if the string matches the device, 0 if it does not and
223  * a negative error code if it fails to parse the string.
224  */
225 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
226 				  const char **endptr)
227 {
228 	int ret;
229 	int seg, bus, slot, func;
230 	char *wpath, *p;
231 	char end;
232 
233 	*endptr = strchrnul(path, ';');
234 
235 	wpath = kmemdup_nul(path, *endptr - path, GFP_KERNEL);
236 	if (!wpath)
237 		return -ENOMEM;
238 
239 	while (1) {
240 		p = strrchr(wpath, '/');
241 		if (!p)
242 			break;
243 		ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
244 		if (ret != 2) {
245 			ret = -EINVAL;
246 			goto free_and_exit;
247 		}
248 
249 		if (dev->devfn != PCI_DEVFN(slot, func)) {
250 			ret = 0;
251 			goto free_and_exit;
252 		}
253 
254 		/*
255 		 * Note: we don't need to get a reference to the upstream
256 		 * bridge because we hold a reference to the top level
257 		 * device which should hold a reference to the bridge,
258 		 * and so on.
259 		 */
260 		dev = pci_upstream_bridge(dev);
261 		if (!dev) {
262 			ret = 0;
263 			goto free_and_exit;
264 		}
265 
266 		*p = 0;
267 	}
268 
269 	ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
270 		     &func, &end);
271 	if (ret != 4) {
272 		seg = 0;
273 		ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
274 		if (ret != 3) {
275 			ret = -EINVAL;
276 			goto free_and_exit;
277 		}
278 	}
279 
280 	ret = (seg == pci_domain_nr(dev->bus) &&
281 	       bus == dev->bus->number &&
282 	       dev->devfn == PCI_DEVFN(slot, func));
283 
284 free_and_exit:
285 	kfree(wpath);
286 	return ret;
287 }
288 
289 /**
290  * pci_dev_str_match - test if a string matches a device
291  * @dev: the PCI device to test
292  * @p: string to match the device against
293  * @endptr: pointer to the string after the match
294  *
295  * Test if a string (typically from a kernel parameter) matches a specified
296  * PCI device. The string may be of one of the following formats:
297  *
298  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
299  *   pci:<vendor>:<device>[:<subvendor>:<subdevice>]
300  *
301  * The first format specifies a PCI bus/device/function address which
302  * may change if new hardware is inserted, if motherboard firmware changes,
303  * or due to changes caused in kernel parameters. If the domain is
304  * left unspecified, it is taken to be 0.  In order to be robust against
305  * bus renumbering issues, a path of PCI device/function numbers may be used
306  * to address the specific device.  The path for a device can be determined
307  * through the use of 'lspci -t'.
308  *
309  * The second format matches devices using IDs in the configuration
310  * space which may match multiple devices in the system. A value of 0
311  * for any field will match all devices. (Note: this differs from
312  * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
313  * legacy reasons and convenience so users don't have to specify
314  * FFFFFFFFs on the command line.)
315  *
316  * Returns 1 if the string matches the device, 0 if it does not and
317  * a negative error code if the string cannot be parsed.
318  */
319 static int pci_dev_str_match(struct pci_dev *dev, const char *p,
320 			     const char **endptr)
321 {
322 	int ret;
323 	int count;
324 	unsigned short vendor, device, subsystem_vendor, subsystem_device;
325 
326 	if (strncmp(p, "pci:", 4) == 0) {
327 		/* PCI vendor/device (subvendor/subdevice) IDs are specified */
328 		p += 4;
329 		ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
330 			     &subsystem_vendor, &subsystem_device, &count);
331 		if (ret != 4) {
332 			ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
333 			if (ret != 2)
334 				return -EINVAL;
335 
336 			subsystem_vendor = 0;
337 			subsystem_device = 0;
338 		}
339 
340 		p += count;
341 
342 		if ((!vendor || vendor == dev->vendor) &&
343 		    (!device || device == dev->device) &&
344 		    (!subsystem_vendor ||
345 			    subsystem_vendor == dev->subsystem_vendor) &&
346 		    (!subsystem_device ||
347 			    subsystem_device == dev->subsystem_device))
348 			goto found;
349 	} else {
350 		/*
351 		 * PCI Bus, Device, Function IDs are specified
352 		 * (optionally, may include a path of devfns following it)
353 		 */
354 		ret = pci_dev_str_match_path(dev, p, &p);
355 		if (ret < 0)
356 			return ret;
357 		else if (ret)
358 			goto found;
359 	}
360 
361 	*endptr = p;
362 	return 0;
363 
364 found:
365 	*endptr = p;
366 	return 1;
367 }
368 
369 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
370 				   u8 pos, int cap, int *ttl)
371 {
372 	u8 id;
373 	u16 ent;
374 
375 	pci_bus_read_config_byte(bus, devfn, pos, &pos);
376 
377 	while ((*ttl)--) {
378 		if (pos < 0x40)
379 			break;
380 		pos &= ~3;
381 		pci_bus_read_config_word(bus, devfn, pos, &ent);
382 
383 		id = ent & 0xff;
384 		if (id == 0xff)
385 			break;
386 		if (id == cap)
387 			return pos;
388 		pos = (ent >> 8);
389 	}
390 	return 0;
391 }
392 
393 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
394 			       u8 pos, int cap)
395 {
396 	int ttl = PCI_FIND_CAP_TTL;
397 
398 	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
399 }
400 
401 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
402 {
403 	return __pci_find_next_cap(dev->bus, dev->devfn,
404 				   pos + PCI_CAP_LIST_NEXT, cap);
405 }
406 EXPORT_SYMBOL_GPL(pci_find_next_capability);
407 
408 static int __pci_bus_find_cap_start(struct pci_bus *bus,
409 				    unsigned int devfn, u8 hdr_type)
410 {
411 	u16 status;
412 
413 	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
414 	if (!(status & PCI_STATUS_CAP_LIST))
415 		return 0;
416 
417 	switch (hdr_type) {
418 	case PCI_HEADER_TYPE_NORMAL:
419 	case PCI_HEADER_TYPE_BRIDGE:
420 		return PCI_CAPABILITY_LIST;
421 	case PCI_HEADER_TYPE_CARDBUS:
422 		return PCI_CB_CAPABILITY_LIST;
423 	}
424 
425 	return 0;
426 }
427 
428 /**
429  * pci_find_capability - query for devices' capabilities
430  * @dev: PCI device to query
431  * @cap: capability code
432  *
433  * Tell if a device supports a given PCI capability.
434  * Returns the address of the requested capability structure within the
435  * device's PCI configuration space or 0 in case the device does not
436  * support it.  Possible values for @cap include:
437  *
438  *  %PCI_CAP_ID_PM           Power Management
439  *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
440  *  %PCI_CAP_ID_VPD          Vital Product Data
441  *  %PCI_CAP_ID_SLOTID       Slot Identification
442  *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
443  *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
444  *  %PCI_CAP_ID_PCIX         PCI-X
445  *  %PCI_CAP_ID_EXP          PCI Express
446  */
447 int pci_find_capability(struct pci_dev *dev, int cap)
448 {
449 	int pos;
450 
451 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
452 	if (pos)
453 		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
454 
455 	return pos;
456 }
457 EXPORT_SYMBOL(pci_find_capability);
458 
459 /**
460  * pci_bus_find_capability - query for devices' capabilities
461  * @bus: the PCI bus to query
462  * @devfn: PCI device to query
463  * @cap: capability code
464  *
465  * Like pci_find_capability() but works for PCI devices that do not have a
466  * pci_dev structure set up yet.
467  *
468  * Returns the address of the requested capability structure within the
469  * device's PCI configuration space or 0 in case the device does not
470  * support it.
471  */
472 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
473 {
474 	int pos;
475 	u8 hdr_type;
476 
477 	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
478 
479 	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
480 	if (pos)
481 		pos = __pci_find_next_cap(bus, devfn, pos, cap);
482 
483 	return pos;
484 }
485 EXPORT_SYMBOL(pci_bus_find_capability);
486 
487 /**
488  * pci_find_next_ext_capability - Find an extended capability
489  * @dev: PCI device to query
490  * @start: address at which to start looking (0 to start at beginning of list)
491  * @cap: capability code
492  *
493  * Returns the address of the next matching extended capability structure
494  * within the device's PCI configuration space or 0 if the device does
495  * not support it.  Some capabilities can occur several times, e.g., the
496  * vendor-specific capability, and this provides a way to find them all.
497  */
498 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
499 {
500 	u32 header;
501 	int ttl;
502 	int pos = PCI_CFG_SPACE_SIZE;
503 
504 	/* minimum 8 bytes per capability */
505 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
506 
507 	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
508 		return 0;
509 
510 	if (start)
511 		pos = start;
512 
513 	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
514 		return 0;
515 
516 	/*
517 	 * If we have no capabilities, this is indicated by cap ID,
518 	 * cap version and next pointer all being 0.
519 	 */
520 	if (header == 0)
521 		return 0;
522 
523 	while (ttl-- > 0) {
524 		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
525 			return pos;
526 
527 		pos = PCI_EXT_CAP_NEXT(header);
528 		if (pos < PCI_CFG_SPACE_SIZE)
529 			break;
530 
531 		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
532 			break;
533 	}
534 
535 	return 0;
536 }
537 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
538 
539 /**
540  * pci_find_ext_capability - Find an extended capability
541  * @dev: PCI device to query
542  * @cap: capability code
543  *
544  * Returns the address of the requested extended capability structure
545  * within the device's PCI configuration space or 0 if the device does
546  * not support it.  Possible values for @cap include:
547  *
548  *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
549  *  %PCI_EXT_CAP_ID_VC		Virtual Channel
550  *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
551  *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
552  */
553 int pci_find_ext_capability(struct pci_dev *dev, int cap)
554 {
555 	return pci_find_next_ext_capability(dev, 0, cap);
556 }
557 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
558 
559 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
560 {
561 	int rc, ttl = PCI_FIND_CAP_TTL;
562 	u8 cap, mask;
563 
564 	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
565 		mask = HT_3BIT_CAP_MASK;
566 	else
567 		mask = HT_5BIT_CAP_MASK;
568 
569 	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
570 				      PCI_CAP_ID_HT, &ttl);
571 	while (pos) {
572 		rc = pci_read_config_byte(dev, pos + 3, &cap);
573 		if (rc != PCIBIOS_SUCCESSFUL)
574 			return 0;
575 
576 		if ((cap & mask) == ht_cap)
577 			return pos;
578 
579 		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
580 					      pos + PCI_CAP_LIST_NEXT,
581 					      PCI_CAP_ID_HT, &ttl);
582 	}
583 
584 	return 0;
585 }
586 /**
587  * pci_find_next_ht_capability - query a device's Hypertransport capabilities
588  * @dev: PCI device to query
589  * @pos: Position from which to continue searching
590  * @ht_cap: Hypertransport capability code
591  *
592  * To be used in conjunction with pci_find_ht_capability() to search for
593  * all capabilities matching @ht_cap. @pos should always be a value returned
594  * from pci_find_ht_capability().
595  *
596  * NB. To be 100% safe against broken PCI devices, the caller should take
597  * steps to avoid an infinite loop.
598  */
599 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
600 {
601 	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
602 }
603 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
604 
605 /**
606  * pci_find_ht_capability - query a device's Hypertransport capabilities
607  * @dev: PCI device to query
608  * @ht_cap: Hypertransport capability code
609  *
610  * Tell if a device supports a given Hypertransport capability.
611  * Returns an address within the device's PCI configuration space
612  * or 0 in case the device does not support the request capability.
613  * The address points to the PCI capability, of type PCI_CAP_ID_HT,
614  * which has a Hypertransport capability matching @ht_cap.
615  */
616 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
617 {
618 	int pos;
619 
620 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
621 	if (pos)
622 		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
623 
624 	return pos;
625 }
626 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
627 
628 /**
629  * pci_find_parent_resource - return resource region of parent bus of given
630  *			      region
631  * @dev: PCI device structure contains resources to be searched
632  * @res: child resource record for which parent is sought
633  *
634  * For given resource region of given device, return the resource region of
635  * parent bus the given region is contained in.
636  */
637 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
638 					  struct resource *res)
639 {
640 	const struct pci_bus *bus = dev->bus;
641 	struct resource *r;
642 	int i;
643 
644 	pci_bus_for_each_resource(bus, r, i) {
645 		if (!r)
646 			continue;
647 		if (resource_contains(r, res)) {
648 
649 			/*
650 			 * If the window is prefetchable but the BAR is
651 			 * not, the allocator made a mistake.
652 			 */
653 			if (r->flags & IORESOURCE_PREFETCH &&
654 			    !(res->flags & IORESOURCE_PREFETCH))
655 				return NULL;
656 
657 			/*
658 			 * If we're below a transparent bridge, there may
659 			 * be both a positively-decoded aperture and a
660 			 * subtractively-decoded region that contain the BAR.
661 			 * We want the positively-decoded one, so this depends
662 			 * on pci_bus_for_each_resource() giving us those
663 			 * first.
664 			 */
665 			return r;
666 		}
667 	}
668 	return NULL;
669 }
670 EXPORT_SYMBOL(pci_find_parent_resource);
671 
672 /**
673  * pci_find_resource - Return matching PCI device resource
674  * @dev: PCI device to query
675  * @res: Resource to look for
676  *
677  * Goes over standard PCI resources (BARs) and checks if the given resource
678  * is partially or fully contained in any of them. In that case the
679  * matching resource is returned, %NULL otherwise.
680  */
681 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
682 {
683 	int i;
684 
685 	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
686 		struct resource *r = &dev->resource[i];
687 
688 		if (r->start && resource_contains(r, res))
689 			return r;
690 	}
691 
692 	return NULL;
693 }
694 EXPORT_SYMBOL(pci_find_resource);
695 
696 /**
697  * pci_find_pcie_root_port - return PCIe Root Port
698  * @dev: PCI device to query
699  *
700  * Traverse up the parent chain and return the PCIe Root Port PCI Device
701  * for a given PCI Device.
702  */
703 struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev)
704 {
705 	struct pci_dev *bridge, *highest_pcie_bridge = dev;
706 
707 	bridge = pci_upstream_bridge(dev);
708 	while (bridge && pci_is_pcie(bridge)) {
709 		highest_pcie_bridge = bridge;
710 		bridge = pci_upstream_bridge(bridge);
711 	}
712 
713 	if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT)
714 		return NULL;
715 
716 	return highest_pcie_bridge;
717 }
718 EXPORT_SYMBOL(pci_find_pcie_root_port);
719 
720 /**
721  * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
722  * @dev: the PCI device to operate on
723  * @pos: config space offset of status word
724  * @mask: mask of bit(s) to care about in status word
725  *
726  * Return 1 when mask bit(s) in status word clear, 0 otherwise.
727  */
728 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
729 {
730 	int i;
731 
732 	/* Wait for Transaction Pending bit clean */
733 	for (i = 0; i < 4; i++) {
734 		u16 status;
735 		if (i)
736 			msleep((1 << (i - 1)) * 100);
737 
738 		pci_read_config_word(dev, pos, &status);
739 		if (!(status & mask))
740 			return 1;
741 	}
742 
743 	return 0;
744 }
745 
746 /**
747  * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
748  * @dev: PCI device to have its BARs restored
749  *
750  * Restore the BAR values for a given device, so as to make it
751  * accessible by its driver.
752  */
753 static void pci_restore_bars(struct pci_dev *dev)
754 {
755 	int i;
756 
757 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
758 		pci_update_resource(dev, i);
759 }
760 
761 static const struct pci_platform_pm_ops *pci_platform_pm;
762 
763 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
764 {
765 	if (!ops->is_manageable || !ops->set_state  || !ops->get_state ||
766 	    !ops->choose_state  || !ops->set_wakeup || !ops->need_resume)
767 		return -EINVAL;
768 	pci_platform_pm = ops;
769 	return 0;
770 }
771 
772 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
773 {
774 	return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
775 }
776 
777 static inline int platform_pci_set_power_state(struct pci_dev *dev,
778 					       pci_power_t t)
779 {
780 	return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
781 }
782 
783 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
784 {
785 	return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
786 }
787 
788 static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
789 {
790 	if (pci_platform_pm && pci_platform_pm->refresh_state)
791 		pci_platform_pm->refresh_state(dev);
792 }
793 
794 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
795 {
796 	return pci_platform_pm ?
797 			pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
798 }
799 
800 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
801 {
802 	return pci_platform_pm ?
803 			pci_platform_pm->set_wakeup(dev, enable) : -ENODEV;
804 }
805 
806 static inline bool platform_pci_need_resume(struct pci_dev *dev)
807 {
808 	return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
809 }
810 
811 static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
812 {
813 	return pci_platform_pm ? pci_platform_pm->bridge_d3(dev) : false;
814 }
815 
816 /**
817  * pci_raw_set_power_state - Use PCI PM registers to set the power state of
818  *			     given PCI device
819  * @dev: PCI device to handle.
820  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
821  *
822  * RETURN VALUE:
823  * -EINVAL if the requested state is invalid.
824  * -EIO if device does not support PCI PM or its PM capabilities register has a
825  * wrong version, or device doesn't support the requested state.
826  * 0 if device already is in the requested state.
827  * 0 if device's power state has been successfully changed.
828  */
829 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
830 {
831 	u16 pmcsr;
832 	bool need_restore = false;
833 
834 	/* Check if we're already there */
835 	if (dev->current_state == state)
836 		return 0;
837 
838 	if (!dev->pm_cap)
839 		return -EIO;
840 
841 	if (state < PCI_D0 || state > PCI_D3hot)
842 		return -EINVAL;
843 
844 	/*
845 	 * Validate transition: We can enter D0 from any state, but if
846 	 * we're already in a low-power state, we can only go deeper.  E.g.,
847 	 * we can go from D1 to D3, but we can't go directly from D3 to D1;
848 	 * we'd have to go from D3 to D0, then to D1.
849 	 */
850 	if (state != PCI_D0 && dev->current_state <= PCI_D3cold
851 	    && dev->current_state > state) {
852 		pci_err(dev, "invalid power transition (from %s to %s)\n",
853 			pci_power_name(dev->current_state),
854 			pci_power_name(state));
855 		return -EINVAL;
856 	}
857 
858 	/* Check if this device supports the desired state */
859 	if ((state == PCI_D1 && !dev->d1_support)
860 	   || (state == PCI_D2 && !dev->d2_support))
861 		return -EIO;
862 
863 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
864 	if (pmcsr == (u16) ~0) {
865 		pci_err(dev, "can't change power state from %s to %s (config space inaccessible)\n",
866 			pci_power_name(dev->current_state),
867 			pci_power_name(state));
868 		return -EIO;
869 	}
870 
871 	/*
872 	 * If we're (effectively) in D3, force entire word to 0.
873 	 * This doesn't affect PME_Status, disables PME_En, and
874 	 * sets PowerState to 0.
875 	 */
876 	switch (dev->current_state) {
877 	case PCI_D0:
878 	case PCI_D1:
879 	case PCI_D2:
880 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
881 		pmcsr |= state;
882 		break;
883 	case PCI_D3hot:
884 	case PCI_D3cold:
885 	case PCI_UNKNOWN: /* Boot-up */
886 		if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
887 		 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
888 			need_restore = true;
889 		/* Fall-through - force to D0 */
890 	default:
891 		pmcsr = 0;
892 		break;
893 	}
894 
895 	/* Enter specified state */
896 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
897 
898 	/*
899 	 * Mandatory power management transition delays; see PCI PM 1.1
900 	 * 5.6.1 table 18
901 	 */
902 	if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
903 		pci_dev_d3_sleep(dev);
904 	else if (state == PCI_D2 || dev->current_state == PCI_D2)
905 		msleep(PCI_PM_D2_DELAY);
906 
907 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
908 	dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
909 	if (dev->current_state != state)
910 		pci_info_ratelimited(dev, "refused to change power state from %s to %s\n",
911 			 pci_power_name(dev->current_state),
912 			 pci_power_name(state));
913 
914 	/*
915 	 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
916 	 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
917 	 * from D3hot to D0 _may_ perform an internal reset, thereby
918 	 * going to "D0 Uninitialized" rather than "D0 Initialized".
919 	 * For example, at least some versions of the 3c905B and the
920 	 * 3c556B exhibit this behaviour.
921 	 *
922 	 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
923 	 * devices in a D3hot state at boot.  Consequently, we need to
924 	 * restore at least the BARs so that the device will be
925 	 * accessible to its driver.
926 	 */
927 	if (need_restore)
928 		pci_restore_bars(dev);
929 
930 	if (dev->bus->self)
931 		pcie_aspm_pm_state_change(dev->bus->self);
932 
933 	return 0;
934 }
935 
936 /**
937  * pci_update_current_state - Read power state of given device and cache it
938  * @dev: PCI device to handle.
939  * @state: State to cache in case the device doesn't have the PM capability
940  *
941  * The power state is read from the PMCSR register, which however is
942  * inaccessible in D3cold.  The platform firmware is therefore queried first
943  * to detect accessibility of the register.  In case the platform firmware
944  * reports an incorrect state or the device isn't power manageable by the
945  * platform at all, we try to detect D3cold by testing accessibility of the
946  * vendor ID in config space.
947  */
948 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
949 {
950 	if (platform_pci_get_power_state(dev) == PCI_D3cold ||
951 	    !pci_device_is_present(dev)) {
952 		dev->current_state = PCI_D3cold;
953 	} else if (dev->pm_cap) {
954 		u16 pmcsr;
955 
956 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
957 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
958 	} else {
959 		dev->current_state = state;
960 	}
961 }
962 
963 /**
964  * pci_refresh_power_state - Refresh the given device's power state data
965  * @dev: Target PCI device.
966  *
967  * Ask the platform to refresh the devices power state information and invoke
968  * pci_update_current_state() to update its current PCI power state.
969  */
970 void pci_refresh_power_state(struct pci_dev *dev)
971 {
972 	if (platform_pci_power_manageable(dev))
973 		platform_pci_refresh_power_state(dev);
974 
975 	pci_update_current_state(dev, dev->current_state);
976 }
977 
978 /**
979  * pci_platform_power_transition - Use platform to change device power state
980  * @dev: PCI device to handle.
981  * @state: State to put the device into.
982  */
983 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
984 {
985 	int error;
986 
987 	if (platform_pci_power_manageable(dev)) {
988 		error = platform_pci_set_power_state(dev, state);
989 		if (!error)
990 			pci_update_current_state(dev, state);
991 	} else
992 		error = -ENODEV;
993 
994 	if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
995 		dev->current_state = PCI_D0;
996 
997 	return error;
998 }
999 EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1000 
1001 /**
1002  * pci_wakeup - Wake up a PCI device
1003  * @pci_dev: Device to handle.
1004  * @ign: ignored parameter
1005  */
1006 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
1007 {
1008 	pci_wakeup_event(pci_dev);
1009 	pm_request_resume(&pci_dev->dev);
1010 	return 0;
1011 }
1012 
1013 /**
1014  * pci_wakeup_bus - Walk given bus and wake up devices on it
1015  * @bus: Top bus of the subtree to walk.
1016  */
1017 void pci_wakeup_bus(struct pci_bus *bus)
1018 {
1019 	if (bus)
1020 		pci_walk_bus(bus, pci_wakeup, NULL);
1021 }
1022 
1023 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1024 {
1025 	int delay = 1;
1026 	u32 id;
1027 
1028 	/*
1029 	 * After reset, the device should not silently discard config
1030 	 * requests, but it may still indicate that it needs more time by
1031 	 * responding to them with CRS completions.  The Root Port will
1032 	 * generally synthesize ~0 data to complete the read (except when
1033 	 * CRS SV is enabled and the read was for the Vendor ID; in that
1034 	 * case it synthesizes 0x0001 data).
1035 	 *
1036 	 * Wait for the device to return a non-CRS completion.  Read the
1037 	 * Command register instead of Vendor ID so we don't have to
1038 	 * contend with the CRS SV value.
1039 	 */
1040 	pci_read_config_dword(dev, PCI_COMMAND, &id);
1041 	while (id == ~0) {
1042 		if (delay > timeout) {
1043 			pci_warn(dev, "not ready %dms after %s; giving up\n",
1044 				 delay - 1, reset_type);
1045 			return -ENOTTY;
1046 		}
1047 
1048 		if (delay > 1000)
1049 			pci_info(dev, "not ready %dms after %s; waiting\n",
1050 				 delay - 1, reset_type);
1051 
1052 		msleep(delay);
1053 		delay *= 2;
1054 		pci_read_config_dword(dev, PCI_COMMAND, &id);
1055 	}
1056 
1057 	if (delay > 1000)
1058 		pci_info(dev, "ready %dms after %s\n", delay - 1,
1059 			 reset_type);
1060 
1061 	return 0;
1062 }
1063 
1064 /**
1065  * pci_power_up - Put the given device into D0
1066  * @dev: PCI device to power up
1067  */
1068 int pci_power_up(struct pci_dev *dev)
1069 {
1070 	pci_platform_power_transition(dev, PCI_D0);
1071 
1072 	/*
1073 	 * Mandatory power management transition delays are handled in
1074 	 * pci_pm_resume_noirq() and pci_pm_runtime_resume() of the
1075 	 * corresponding bridge.
1076 	 */
1077 	if (dev->runtime_d3cold) {
1078 		/*
1079 		 * When powering on a bridge from D3cold, the whole hierarchy
1080 		 * may be powered on into D0uninitialized state, resume them to
1081 		 * give them a chance to suspend again
1082 		 */
1083 		pci_wakeup_bus(dev->subordinate);
1084 	}
1085 
1086 	return pci_raw_set_power_state(dev, PCI_D0);
1087 }
1088 
1089 /**
1090  * __pci_dev_set_current_state - Set current state of a PCI device
1091  * @dev: Device to handle
1092  * @data: pointer to state to be set
1093  */
1094 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1095 {
1096 	pci_power_t state = *(pci_power_t *)data;
1097 
1098 	dev->current_state = state;
1099 	return 0;
1100 }
1101 
1102 /**
1103  * pci_bus_set_current_state - Walk given bus and set current state of devices
1104  * @bus: Top bus of the subtree to walk.
1105  * @state: state to be set
1106  */
1107 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1108 {
1109 	if (bus)
1110 		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1111 }
1112 
1113 /**
1114  * pci_set_power_state - Set the power state of a PCI device
1115  * @dev: PCI device to handle.
1116  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1117  *
1118  * Transition a device to a new power state, using the platform firmware and/or
1119  * the device's PCI PM registers.
1120  *
1121  * RETURN VALUE:
1122  * -EINVAL if the requested state is invalid.
1123  * -EIO if device does not support PCI PM or its PM capabilities register has a
1124  * wrong version, or device doesn't support the requested state.
1125  * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1126  * 0 if device already is in the requested state.
1127  * 0 if the transition is to D3 but D3 is not supported.
1128  * 0 if device's power state has been successfully changed.
1129  */
1130 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1131 {
1132 	int error;
1133 
1134 	/* Bound the state we're entering */
1135 	if (state > PCI_D3cold)
1136 		state = PCI_D3cold;
1137 	else if (state < PCI_D0)
1138 		state = PCI_D0;
1139 	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1140 
1141 		/*
1142 		 * If the device or the parent bridge do not support PCI
1143 		 * PM, ignore the request if we're doing anything other
1144 		 * than putting it into D0 (which would only happen on
1145 		 * boot).
1146 		 */
1147 		return 0;
1148 
1149 	/* Check if we're already there */
1150 	if (dev->current_state == state)
1151 		return 0;
1152 
1153 	if (state == PCI_D0)
1154 		return pci_power_up(dev);
1155 
1156 	/*
1157 	 * This device is quirked not to be put into D3, so don't put it in
1158 	 * D3
1159 	 */
1160 	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1161 		return 0;
1162 
1163 	/*
1164 	 * To put device in D3cold, we put device into D3hot in native
1165 	 * way, then put device into D3cold with platform ops
1166 	 */
1167 	error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
1168 					PCI_D3hot : state);
1169 
1170 	if (pci_platform_power_transition(dev, state))
1171 		return error;
1172 
1173 	/* Powering off a bridge may power off the whole hierarchy */
1174 	if (state == PCI_D3cold)
1175 		pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1176 
1177 	return 0;
1178 }
1179 EXPORT_SYMBOL(pci_set_power_state);
1180 
1181 /**
1182  * pci_choose_state - Choose the power state of a PCI device
1183  * @dev: PCI device to be suspended
1184  * @state: target sleep state for the whole system. This is the value
1185  *	   that is passed to suspend() function.
1186  *
1187  * Returns PCI power state suitable for given device and given system
1188  * message.
1189  */
1190 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
1191 {
1192 	pci_power_t ret;
1193 
1194 	if (!dev->pm_cap)
1195 		return PCI_D0;
1196 
1197 	ret = platform_pci_choose_state(dev);
1198 	if (ret != PCI_POWER_ERROR)
1199 		return ret;
1200 
1201 	switch (state.event) {
1202 	case PM_EVENT_ON:
1203 		return PCI_D0;
1204 	case PM_EVENT_FREEZE:
1205 	case PM_EVENT_PRETHAW:
1206 		/* REVISIT both freeze and pre-thaw "should" use D0 */
1207 	case PM_EVENT_SUSPEND:
1208 	case PM_EVENT_HIBERNATE:
1209 		return PCI_D3hot;
1210 	default:
1211 		pci_info(dev, "unrecognized suspend event %d\n",
1212 			 state.event);
1213 		BUG();
1214 	}
1215 	return PCI_D0;
1216 }
1217 EXPORT_SYMBOL(pci_choose_state);
1218 
1219 #define PCI_EXP_SAVE_REGS	7
1220 
1221 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1222 						       u16 cap, bool extended)
1223 {
1224 	struct pci_cap_saved_state *tmp;
1225 
1226 	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1227 		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1228 			return tmp;
1229 	}
1230 	return NULL;
1231 }
1232 
1233 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1234 {
1235 	return _pci_find_saved_cap(dev, cap, false);
1236 }
1237 
1238 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1239 {
1240 	return _pci_find_saved_cap(dev, cap, true);
1241 }
1242 
1243 static int pci_save_pcie_state(struct pci_dev *dev)
1244 {
1245 	int i = 0;
1246 	struct pci_cap_saved_state *save_state;
1247 	u16 *cap;
1248 
1249 	if (!pci_is_pcie(dev))
1250 		return 0;
1251 
1252 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1253 	if (!save_state) {
1254 		pci_err(dev, "buffer not found in %s\n", __func__);
1255 		return -ENOMEM;
1256 	}
1257 
1258 	cap = (u16 *)&save_state->cap.data[0];
1259 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1260 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1261 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1262 	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
1263 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1264 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1265 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1266 
1267 	return 0;
1268 }
1269 
1270 static void pci_restore_pcie_state(struct pci_dev *dev)
1271 {
1272 	int i = 0;
1273 	struct pci_cap_saved_state *save_state;
1274 	u16 *cap;
1275 
1276 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1277 	if (!save_state)
1278 		return;
1279 
1280 	cap = (u16 *)&save_state->cap.data[0];
1281 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1282 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1283 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1284 	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1285 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1286 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1287 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1288 }
1289 
1290 static int pci_save_pcix_state(struct pci_dev *dev)
1291 {
1292 	int pos;
1293 	struct pci_cap_saved_state *save_state;
1294 
1295 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1296 	if (!pos)
1297 		return 0;
1298 
1299 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1300 	if (!save_state) {
1301 		pci_err(dev, "buffer not found in %s\n", __func__);
1302 		return -ENOMEM;
1303 	}
1304 
1305 	pci_read_config_word(dev, pos + PCI_X_CMD,
1306 			     (u16 *)save_state->cap.data);
1307 
1308 	return 0;
1309 }
1310 
1311 static void pci_restore_pcix_state(struct pci_dev *dev)
1312 {
1313 	int i = 0, pos;
1314 	struct pci_cap_saved_state *save_state;
1315 	u16 *cap;
1316 
1317 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1318 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1319 	if (!save_state || !pos)
1320 		return;
1321 	cap = (u16 *)&save_state->cap.data[0];
1322 
1323 	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1324 }
1325 
1326 static void pci_save_ltr_state(struct pci_dev *dev)
1327 {
1328 	int ltr;
1329 	struct pci_cap_saved_state *save_state;
1330 	u16 *cap;
1331 
1332 	if (!pci_is_pcie(dev))
1333 		return;
1334 
1335 	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1336 	if (!ltr)
1337 		return;
1338 
1339 	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1340 	if (!save_state) {
1341 		pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1342 		return;
1343 	}
1344 
1345 	cap = (u16 *)&save_state->cap.data[0];
1346 	pci_read_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap++);
1347 	pci_read_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, cap++);
1348 }
1349 
1350 static void pci_restore_ltr_state(struct pci_dev *dev)
1351 {
1352 	struct pci_cap_saved_state *save_state;
1353 	int ltr;
1354 	u16 *cap;
1355 
1356 	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1357 	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1358 	if (!save_state || !ltr)
1359 		return;
1360 
1361 	cap = (u16 *)&save_state->cap.data[0];
1362 	pci_write_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap++);
1363 	pci_write_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, *cap++);
1364 }
1365 
1366 /**
1367  * pci_save_state - save the PCI configuration space of a device before
1368  *		    suspending
1369  * @dev: PCI device that we're dealing with
1370  */
1371 int pci_save_state(struct pci_dev *dev)
1372 {
1373 	int i;
1374 	/* XXX: 100% dword access ok here? */
1375 	for (i = 0; i < 16; i++) {
1376 		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1377 		pci_dbg(dev, "saving config space at offset %#x (reading %#x)\n",
1378 			i * 4, dev->saved_config_space[i]);
1379 	}
1380 	dev->state_saved = true;
1381 
1382 	i = pci_save_pcie_state(dev);
1383 	if (i != 0)
1384 		return i;
1385 
1386 	i = pci_save_pcix_state(dev);
1387 	if (i != 0)
1388 		return i;
1389 
1390 	pci_save_ltr_state(dev);
1391 	pci_save_dpc_state(dev);
1392 	pci_save_aer_state(dev);
1393 	return pci_save_vc_state(dev);
1394 }
1395 EXPORT_SYMBOL(pci_save_state);
1396 
1397 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1398 				     u32 saved_val, int retry, bool force)
1399 {
1400 	u32 val;
1401 
1402 	pci_read_config_dword(pdev, offset, &val);
1403 	if (!force && val == saved_val)
1404 		return;
1405 
1406 	for (;;) {
1407 		pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1408 			offset, val, saved_val);
1409 		pci_write_config_dword(pdev, offset, saved_val);
1410 		if (retry-- <= 0)
1411 			return;
1412 
1413 		pci_read_config_dword(pdev, offset, &val);
1414 		if (val == saved_val)
1415 			return;
1416 
1417 		mdelay(1);
1418 	}
1419 }
1420 
1421 static void pci_restore_config_space_range(struct pci_dev *pdev,
1422 					   int start, int end, int retry,
1423 					   bool force)
1424 {
1425 	int index;
1426 
1427 	for (index = end; index >= start; index--)
1428 		pci_restore_config_dword(pdev, 4 * index,
1429 					 pdev->saved_config_space[index],
1430 					 retry, force);
1431 }
1432 
1433 static void pci_restore_config_space(struct pci_dev *pdev)
1434 {
1435 	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1436 		pci_restore_config_space_range(pdev, 10, 15, 0, false);
1437 		/* Restore BARs before the command register. */
1438 		pci_restore_config_space_range(pdev, 4, 9, 10, false);
1439 		pci_restore_config_space_range(pdev, 0, 3, 0, false);
1440 	} else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1441 		pci_restore_config_space_range(pdev, 12, 15, 0, false);
1442 
1443 		/*
1444 		 * Force rewriting of prefetch registers to avoid S3 resume
1445 		 * issues on Intel PCI bridges that occur when these
1446 		 * registers are not explicitly written.
1447 		 */
1448 		pci_restore_config_space_range(pdev, 9, 11, 0, true);
1449 		pci_restore_config_space_range(pdev, 0, 8, 0, false);
1450 	} else {
1451 		pci_restore_config_space_range(pdev, 0, 15, 0, false);
1452 	}
1453 }
1454 
1455 static void pci_restore_rebar_state(struct pci_dev *pdev)
1456 {
1457 	unsigned int pos, nbars, i;
1458 	u32 ctrl;
1459 
1460 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1461 	if (!pos)
1462 		return;
1463 
1464 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1465 	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1466 		    PCI_REBAR_CTRL_NBAR_SHIFT;
1467 
1468 	for (i = 0; i < nbars; i++, pos += 8) {
1469 		struct resource *res;
1470 		int bar_idx, size;
1471 
1472 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1473 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1474 		res = pdev->resource + bar_idx;
1475 		size = ilog2(resource_size(res)) - 20;
1476 		ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1477 		ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1478 		pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1479 	}
1480 }
1481 
1482 /**
1483  * pci_restore_state - Restore the saved state of a PCI device
1484  * @dev: PCI device that we're dealing with
1485  */
1486 void pci_restore_state(struct pci_dev *dev)
1487 {
1488 	if (!dev->state_saved)
1489 		return;
1490 
1491 	/*
1492 	 * Restore max latencies (in the LTR capability) before enabling
1493 	 * LTR itself (in the PCIe capability).
1494 	 */
1495 	pci_restore_ltr_state(dev);
1496 
1497 	pci_restore_pcie_state(dev);
1498 	pci_restore_pasid_state(dev);
1499 	pci_restore_pri_state(dev);
1500 	pci_restore_ats_state(dev);
1501 	pci_restore_vc_state(dev);
1502 	pci_restore_rebar_state(dev);
1503 	pci_restore_dpc_state(dev);
1504 
1505 	pci_cleanup_aer_error_status_regs(dev);
1506 	pci_restore_aer_state(dev);
1507 
1508 	pci_restore_config_space(dev);
1509 
1510 	pci_restore_pcix_state(dev);
1511 	pci_restore_msi_state(dev);
1512 
1513 	/* Restore ACS and IOV configuration state */
1514 	pci_enable_acs(dev);
1515 	pci_restore_iov_state(dev);
1516 
1517 	dev->state_saved = false;
1518 }
1519 EXPORT_SYMBOL(pci_restore_state);
1520 
1521 struct pci_saved_state {
1522 	u32 config_space[16];
1523 	struct pci_cap_saved_data cap[0];
1524 };
1525 
1526 /**
1527  * pci_store_saved_state - Allocate and return an opaque struct containing
1528  *			   the device saved state.
1529  * @dev: PCI device that we're dealing with
1530  *
1531  * Return NULL if no state or error.
1532  */
1533 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1534 {
1535 	struct pci_saved_state *state;
1536 	struct pci_cap_saved_state *tmp;
1537 	struct pci_cap_saved_data *cap;
1538 	size_t size;
1539 
1540 	if (!dev->state_saved)
1541 		return NULL;
1542 
1543 	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1544 
1545 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1546 		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1547 
1548 	state = kzalloc(size, GFP_KERNEL);
1549 	if (!state)
1550 		return NULL;
1551 
1552 	memcpy(state->config_space, dev->saved_config_space,
1553 	       sizeof(state->config_space));
1554 
1555 	cap = state->cap;
1556 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1557 		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1558 		memcpy(cap, &tmp->cap, len);
1559 		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1560 	}
1561 	/* Empty cap_save terminates list */
1562 
1563 	return state;
1564 }
1565 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1566 
1567 /**
1568  * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1569  * @dev: PCI device that we're dealing with
1570  * @state: Saved state returned from pci_store_saved_state()
1571  */
1572 int pci_load_saved_state(struct pci_dev *dev,
1573 			 struct pci_saved_state *state)
1574 {
1575 	struct pci_cap_saved_data *cap;
1576 
1577 	dev->state_saved = false;
1578 
1579 	if (!state)
1580 		return 0;
1581 
1582 	memcpy(dev->saved_config_space, state->config_space,
1583 	       sizeof(state->config_space));
1584 
1585 	cap = state->cap;
1586 	while (cap->size) {
1587 		struct pci_cap_saved_state *tmp;
1588 
1589 		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1590 		if (!tmp || tmp->cap.size != cap->size)
1591 			return -EINVAL;
1592 
1593 		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1594 		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1595 		       sizeof(struct pci_cap_saved_data) + cap->size);
1596 	}
1597 
1598 	dev->state_saved = true;
1599 	return 0;
1600 }
1601 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1602 
1603 /**
1604  * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1605  *				   and free the memory allocated for it.
1606  * @dev: PCI device that we're dealing with
1607  * @state: Pointer to saved state returned from pci_store_saved_state()
1608  */
1609 int pci_load_and_free_saved_state(struct pci_dev *dev,
1610 				  struct pci_saved_state **state)
1611 {
1612 	int ret = pci_load_saved_state(dev, *state);
1613 	kfree(*state);
1614 	*state = NULL;
1615 	return ret;
1616 }
1617 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1618 
1619 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1620 {
1621 	return pci_enable_resources(dev, bars);
1622 }
1623 
1624 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1625 {
1626 	int err;
1627 	struct pci_dev *bridge;
1628 	u16 cmd;
1629 	u8 pin;
1630 
1631 	err = pci_set_power_state(dev, PCI_D0);
1632 	if (err < 0 && err != -EIO)
1633 		return err;
1634 
1635 	bridge = pci_upstream_bridge(dev);
1636 	if (bridge)
1637 		pcie_aspm_powersave_config_link(bridge);
1638 
1639 	err = pcibios_enable_device(dev, bars);
1640 	if (err < 0)
1641 		return err;
1642 	pci_fixup_device(pci_fixup_enable, dev);
1643 
1644 	if (dev->msi_enabled || dev->msix_enabled)
1645 		return 0;
1646 
1647 	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1648 	if (pin) {
1649 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
1650 		if (cmd & PCI_COMMAND_INTX_DISABLE)
1651 			pci_write_config_word(dev, PCI_COMMAND,
1652 					      cmd & ~PCI_COMMAND_INTX_DISABLE);
1653 	}
1654 
1655 	return 0;
1656 }
1657 
1658 /**
1659  * pci_reenable_device - Resume abandoned device
1660  * @dev: PCI device to be resumed
1661  *
1662  * NOTE: This function is a backend of pci_default_resume() and is not supposed
1663  * to be called by normal code, write proper resume handler and use it instead.
1664  */
1665 int pci_reenable_device(struct pci_dev *dev)
1666 {
1667 	if (pci_is_enabled(dev))
1668 		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1669 	return 0;
1670 }
1671 EXPORT_SYMBOL(pci_reenable_device);
1672 
1673 static void pci_enable_bridge(struct pci_dev *dev)
1674 {
1675 	struct pci_dev *bridge;
1676 	int retval;
1677 
1678 	bridge = pci_upstream_bridge(dev);
1679 	if (bridge)
1680 		pci_enable_bridge(bridge);
1681 
1682 	if (pci_is_enabled(dev)) {
1683 		if (!dev->is_busmaster)
1684 			pci_set_master(dev);
1685 		return;
1686 	}
1687 
1688 	retval = pci_enable_device(dev);
1689 	if (retval)
1690 		pci_err(dev, "Error enabling bridge (%d), continuing\n",
1691 			retval);
1692 	pci_set_master(dev);
1693 }
1694 
1695 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1696 {
1697 	struct pci_dev *bridge;
1698 	int err;
1699 	int i, bars = 0;
1700 
1701 	/*
1702 	 * Power state could be unknown at this point, either due to a fresh
1703 	 * boot or a device removal call.  So get the current power state
1704 	 * so that things like MSI message writing will behave as expected
1705 	 * (e.g. if the device really is in D0 at enable time).
1706 	 */
1707 	if (dev->pm_cap) {
1708 		u16 pmcsr;
1709 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1710 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1711 	}
1712 
1713 	if (atomic_inc_return(&dev->enable_cnt) > 1)
1714 		return 0;		/* already enabled */
1715 
1716 	bridge = pci_upstream_bridge(dev);
1717 	if (bridge)
1718 		pci_enable_bridge(bridge);
1719 
1720 	/* only skip sriov related */
1721 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1722 		if (dev->resource[i].flags & flags)
1723 			bars |= (1 << i);
1724 	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1725 		if (dev->resource[i].flags & flags)
1726 			bars |= (1 << i);
1727 
1728 	err = do_pci_enable_device(dev, bars);
1729 	if (err < 0)
1730 		atomic_dec(&dev->enable_cnt);
1731 	return err;
1732 }
1733 
1734 /**
1735  * pci_enable_device_io - Initialize a device for use with IO space
1736  * @dev: PCI device to be initialized
1737  *
1738  * Initialize device before it's used by a driver. Ask low-level code
1739  * to enable I/O resources. Wake up the device if it was suspended.
1740  * Beware, this function can fail.
1741  */
1742 int pci_enable_device_io(struct pci_dev *dev)
1743 {
1744 	return pci_enable_device_flags(dev, IORESOURCE_IO);
1745 }
1746 EXPORT_SYMBOL(pci_enable_device_io);
1747 
1748 /**
1749  * pci_enable_device_mem - Initialize a device for use with Memory space
1750  * @dev: PCI device to be initialized
1751  *
1752  * Initialize device before it's used by a driver. Ask low-level code
1753  * to enable Memory resources. Wake up the device if it was suspended.
1754  * Beware, this function can fail.
1755  */
1756 int pci_enable_device_mem(struct pci_dev *dev)
1757 {
1758 	return pci_enable_device_flags(dev, IORESOURCE_MEM);
1759 }
1760 EXPORT_SYMBOL(pci_enable_device_mem);
1761 
1762 /**
1763  * pci_enable_device - Initialize device before it's used by a driver.
1764  * @dev: PCI device to be initialized
1765  *
1766  * Initialize device before it's used by a driver. Ask low-level code
1767  * to enable I/O and memory. Wake up the device if it was suspended.
1768  * Beware, this function can fail.
1769  *
1770  * Note we don't actually enable the device many times if we call
1771  * this function repeatedly (we just increment the count).
1772  */
1773 int pci_enable_device(struct pci_dev *dev)
1774 {
1775 	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1776 }
1777 EXPORT_SYMBOL(pci_enable_device);
1778 
1779 /*
1780  * Managed PCI resources.  This manages device on/off, INTx/MSI/MSI-X
1781  * on/off and BAR regions.  pci_dev itself records MSI/MSI-X status, so
1782  * there's no need to track it separately.  pci_devres is initialized
1783  * when a device is enabled using managed PCI device enable interface.
1784  */
1785 struct pci_devres {
1786 	unsigned int enabled:1;
1787 	unsigned int pinned:1;
1788 	unsigned int orig_intx:1;
1789 	unsigned int restore_intx:1;
1790 	unsigned int mwi:1;
1791 	u32 region_mask;
1792 };
1793 
1794 static void pcim_release(struct device *gendev, void *res)
1795 {
1796 	struct pci_dev *dev = to_pci_dev(gendev);
1797 	struct pci_devres *this = res;
1798 	int i;
1799 
1800 	if (dev->msi_enabled)
1801 		pci_disable_msi(dev);
1802 	if (dev->msix_enabled)
1803 		pci_disable_msix(dev);
1804 
1805 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1806 		if (this->region_mask & (1 << i))
1807 			pci_release_region(dev, i);
1808 
1809 	if (this->mwi)
1810 		pci_clear_mwi(dev);
1811 
1812 	if (this->restore_intx)
1813 		pci_intx(dev, this->orig_intx);
1814 
1815 	if (this->enabled && !this->pinned)
1816 		pci_disable_device(dev);
1817 }
1818 
1819 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1820 {
1821 	struct pci_devres *dr, *new_dr;
1822 
1823 	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1824 	if (dr)
1825 		return dr;
1826 
1827 	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1828 	if (!new_dr)
1829 		return NULL;
1830 	return devres_get(&pdev->dev, new_dr, NULL, NULL);
1831 }
1832 
1833 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1834 {
1835 	if (pci_is_managed(pdev))
1836 		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1837 	return NULL;
1838 }
1839 
1840 /**
1841  * pcim_enable_device - Managed pci_enable_device()
1842  * @pdev: PCI device to be initialized
1843  *
1844  * Managed pci_enable_device().
1845  */
1846 int pcim_enable_device(struct pci_dev *pdev)
1847 {
1848 	struct pci_devres *dr;
1849 	int rc;
1850 
1851 	dr = get_pci_dr(pdev);
1852 	if (unlikely(!dr))
1853 		return -ENOMEM;
1854 	if (dr->enabled)
1855 		return 0;
1856 
1857 	rc = pci_enable_device(pdev);
1858 	if (!rc) {
1859 		pdev->is_managed = 1;
1860 		dr->enabled = 1;
1861 	}
1862 	return rc;
1863 }
1864 EXPORT_SYMBOL(pcim_enable_device);
1865 
1866 /**
1867  * pcim_pin_device - Pin managed PCI device
1868  * @pdev: PCI device to pin
1869  *
1870  * Pin managed PCI device @pdev.  Pinned device won't be disabled on
1871  * driver detach.  @pdev must have been enabled with
1872  * pcim_enable_device().
1873  */
1874 void pcim_pin_device(struct pci_dev *pdev)
1875 {
1876 	struct pci_devres *dr;
1877 
1878 	dr = find_pci_dr(pdev);
1879 	WARN_ON(!dr || !dr->enabled);
1880 	if (dr)
1881 		dr->pinned = 1;
1882 }
1883 EXPORT_SYMBOL(pcim_pin_device);
1884 
1885 /*
1886  * pcibios_add_device - provide arch specific hooks when adding device dev
1887  * @dev: the PCI device being added
1888  *
1889  * Permits the platform to provide architecture specific functionality when
1890  * devices are added. This is the default implementation. Architecture
1891  * implementations can override this.
1892  */
1893 int __weak pcibios_add_device(struct pci_dev *dev)
1894 {
1895 	return 0;
1896 }
1897 
1898 /**
1899  * pcibios_release_device - provide arch specific hooks when releasing
1900  *			    device dev
1901  * @dev: the PCI device being released
1902  *
1903  * Permits the platform to provide architecture specific functionality when
1904  * devices are released. This is the default implementation. Architecture
1905  * implementations can override this.
1906  */
1907 void __weak pcibios_release_device(struct pci_dev *dev) {}
1908 
1909 /**
1910  * pcibios_disable_device - disable arch specific PCI resources for device dev
1911  * @dev: the PCI device to disable
1912  *
1913  * Disables architecture specific PCI resources for the device. This
1914  * is the default implementation. Architecture implementations can
1915  * override this.
1916  */
1917 void __weak pcibios_disable_device(struct pci_dev *dev) {}
1918 
1919 /**
1920  * pcibios_penalize_isa_irq - penalize an ISA IRQ
1921  * @irq: ISA IRQ to penalize
1922  * @active: IRQ active or not
1923  *
1924  * Permits the platform to provide architecture-specific functionality when
1925  * penalizing ISA IRQs. This is the default implementation. Architecture
1926  * implementations can override this.
1927  */
1928 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1929 
1930 static void do_pci_disable_device(struct pci_dev *dev)
1931 {
1932 	u16 pci_command;
1933 
1934 	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1935 	if (pci_command & PCI_COMMAND_MASTER) {
1936 		pci_command &= ~PCI_COMMAND_MASTER;
1937 		pci_write_config_word(dev, PCI_COMMAND, pci_command);
1938 	}
1939 
1940 	pcibios_disable_device(dev);
1941 }
1942 
1943 /**
1944  * pci_disable_enabled_device - Disable device without updating enable_cnt
1945  * @dev: PCI device to disable
1946  *
1947  * NOTE: This function is a backend of PCI power management routines and is
1948  * not supposed to be called drivers.
1949  */
1950 void pci_disable_enabled_device(struct pci_dev *dev)
1951 {
1952 	if (pci_is_enabled(dev))
1953 		do_pci_disable_device(dev);
1954 }
1955 
1956 /**
1957  * pci_disable_device - Disable PCI device after use
1958  * @dev: PCI device to be disabled
1959  *
1960  * Signal to the system that the PCI device is not in use by the system
1961  * anymore.  This only involves disabling PCI bus-mastering, if active.
1962  *
1963  * Note we don't actually disable the device until all callers of
1964  * pci_enable_device() have called pci_disable_device().
1965  */
1966 void pci_disable_device(struct pci_dev *dev)
1967 {
1968 	struct pci_devres *dr;
1969 
1970 	dr = find_pci_dr(dev);
1971 	if (dr)
1972 		dr->enabled = 0;
1973 
1974 	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1975 		      "disabling already-disabled device");
1976 
1977 	if (atomic_dec_return(&dev->enable_cnt) != 0)
1978 		return;
1979 
1980 	do_pci_disable_device(dev);
1981 
1982 	dev->is_busmaster = 0;
1983 }
1984 EXPORT_SYMBOL(pci_disable_device);
1985 
1986 /**
1987  * pcibios_set_pcie_reset_state - set reset state for device dev
1988  * @dev: the PCIe device reset
1989  * @state: Reset state to enter into
1990  *
1991  * Set the PCIe reset state for the device. This is the default
1992  * implementation. Architecture implementations can override this.
1993  */
1994 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1995 					enum pcie_reset_state state)
1996 {
1997 	return -EINVAL;
1998 }
1999 
2000 /**
2001  * pci_set_pcie_reset_state - set reset state for device dev
2002  * @dev: the PCIe device reset
2003  * @state: Reset state to enter into
2004  *
2005  * Sets the PCI reset state for the device.
2006  */
2007 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2008 {
2009 	return pcibios_set_pcie_reset_state(dev, state);
2010 }
2011 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2012 
2013 /**
2014  * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2015  * @dev: PCIe root port or event collector.
2016  */
2017 void pcie_clear_root_pme_status(struct pci_dev *dev)
2018 {
2019 	pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2020 }
2021 
2022 /**
2023  * pci_check_pme_status - Check if given device has generated PME.
2024  * @dev: Device to check.
2025  *
2026  * Check the PME status of the device and if set, clear it and clear PME enable
2027  * (if set).  Return 'true' if PME status and PME enable were both set or
2028  * 'false' otherwise.
2029  */
2030 bool pci_check_pme_status(struct pci_dev *dev)
2031 {
2032 	int pmcsr_pos;
2033 	u16 pmcsr;
2034 	bool ret = false;
2035 
2036 	if (!dev->pm_cap)
2037 		return false;
2038 
2039 	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2040 	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2041 	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2042 		return false;
2043 
2044 	/* Clear PME status. */
2045 	pmcsr |= PCI_PM_CTRL_PME_STATUS;
2046 	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2047 		/* Disable PME to avoid interrupt flood. */
2048 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2049 		ret = true;
2050 	}
2051 
2052 	pci_write_config_word(dev, pmcsr_pos, pmcsr);
2053 
2054 	return ret;
2055 }
2056 
2057 /**
2058  * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2059  * @dev: Device to handle.
2060  * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2061  *
2062  * Check if @dev has generated PME and queue a resume request for it in that
2063  * case.
2064  */
2065 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2066 {
2067 	if (pme_poll_reset && dev->pme_poll)
2068 		dev->pme_poll = false;
2069 
2070 	if (pci_check_pme_status(dev)) {
2071 		pci_wakeup_event(dev);
2072 		pm_request_resume(&dev->dev);
2073 	}
2074 	return 0;
2075 }
2076 
2077 /**
2078  * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2079  * @bus: Top bus of the subtree to walk.
2080  */
2081 void pci_pme_wakeup_bus(struct pci_bus *bus)
2082 {
2083 	if (bus)
2084 		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2085 }
2086 
2087 
2088 /**
2089  * pci_pme_capable - check the capability of PCI device to generate PME#
2090  * @dev: PCI device to handle.
2091  * @state: PCI state from which device will issue PME#.
2092  */
2093 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2094 {
2095 	if (!dev->pm_cap)
2096 		return false;
2097 
2098 	return !!(dev->pme_support & (1 << state));
2099 }
2100 EXPORT_SYMBOL(pci_pme_capable);
2101 
2102 static void pci_pme_list_scan(struct work_struct *work)
2103 {
2104 	struct pci_pme_device *pme_dev, *n;
2105 
2106 	mutex_lock(&pci_pme_list_mutex);
2107 	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2108 		if (pme_dev->dev->pme_poll) {
2109 			struct pci_dev *bridge;
2110 
2111 			bridge = pme_dev->dev->bus->self;
2112 			/*
2113 			 * If bridge is in low power state, the
2114 			 * configuration space of subordinate devices
2115 			 * may be not accessible
2116 			 */
2117 			if (bridge && bridge->current_state != PCI_D0)
2118 				continue;
2119 			/*
2120 			 * If the device is in D3cold it should not be
2121 			 * polled either.
2122 			 */
2123 			if (pme_dev->dev->current_state == PCI_D3cold)
2124 				continue;
2125 
2126 			pci_pme_wakeup(pme_dev->dev, NULL);
2127 		} else {
2128 			list_del(&pme_dev->list);
2129 			kfree(pme_dev);
2130 		}
2131 	}
2132 	if (!list_empty(&pci_pme_list))
2133 		queue_delayed_work(system_freezable_wq, &pci_pme_work,
2134 				   msecs_to_jiffies(PME_TIMEOUT));
2135 	mutex_unlock(&pci_pme_list_mutex);
2136 }
2137 
2138 static void __pci_pme_active(struct pci_dev *dev, bool enable)
2139 {
2140 	u16 pmcsr;
2141 
2142 	if (!dev->pme_support)
2143 		return;
2144 
2145 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2146 	/* Clear PME_Status by writing 1 to it and enable PME# */
2147 	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2148 	if (!enable)
2149 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2150 
2151 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2152 }
2153 
2154 /**
2155  * pci_pme_restore - Restore PME configuration after config space restore.
2156  * @dev: PCI device to update.
2157  */
2158 void pci_pme_restore(struct pci_dev *dev)
2159 {
2160 	u16 pmcsr;
2161 
2162 	if (!dev->pme_support)
2163 		return;
2164 
2165 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2166 	if (dev->wakeup_prepared) {
2167 		pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2168 		pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2169 	} else {
2170 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2171 		pmcsr |= PCI_PM_CTRL_PME_STATUS;
2172 	}
2173 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2174 }
2175 
2176 /**
2177  * pci_pme_active - enable or disable PCI device's PME# function
2178  * @dev: PCI device to handle.
2179  * @enable: 'true' to enable PME# generation; 'false' to disable it.
2180  *
2181  * The caller must verify that the device is capable of generating PME# before
2182  * calling this function with @enable equal to 'true'.
2183  */
2184 void pci_pme_active(struct pci_dev *dev, bool enable)
2185 {
2186 	__pci_pme_active(dev, enable);
2187 
2188 	/*
2189 	 * PCI (as opposed to PCIe) PME requires that the device have
2190 	 * its PME# line hooked up correctly. Not all hardware vendors
2191 	 * do this, so the PME never gets delivered and the device
2192 	 * remains asleep. The easiest way around this is to
2193 	 * periodically walk the list of suspended devices and check
2194 	 * whether any have their PME flag set. The assumption is that
2195 	 * we'll wake up often enough anyway that this won't be a huge
2196 	 * hit, and the power savings from the devices will still be a
2197 	 * win.
2198 	 *
2199 	 * Although PCIe uses in-band PME message instead of PME# line
2200 	 * to report PME, PME does not work for some PCIe devices in
2201 	 * reality.  For example, there are devices that set their PME
2202 	 * status bits, but don't really bother to send a PME message;
2203 	 * there are PCI Express Root Ports that don't bother to
2204 	 * trigger interrupts when they receive PME messages from the
2205 	 * devices below.  So PME poll is used for PCIe devices too.
2206 	 */
2207 
2208 	if (dev->pme_poll) {
2209 		struct pci_pme_device *pme_dev;
2210 		if (enable) {
2211 			pme_dev = kmalloc(sizeof(struct pci_pme_device),
2212 					  GFP_KERNEL);
2213 			if (!pme_dev) {
2214 				pci_warn(dev, "can't enable PME#\n");
2215 				return;
2216 			}
2217 			pme_dev->dev = dev;
2218 			mutex_lock(&pci_pme_list_mutex);
2219 			list_add(&pme_dev->list, &pci_pme_list);
2220 			if (list_is_singular(&pci_pme_list))
2221 				queue_delayed_work(system_freezable_wq,
2222 						   &pci_pme_work,
2223 						   msecs_to_jiffies(PME_TIMEOUT));
2224 			mutex_unlock(&pci_pme_list_mutex);
2225 		} else {
2226 			mutex_lock(&pci_pme_list_mutex);
2227 			list_for_each_entry(pme_dev, &pci_pme_list, list) {
2228 				if (pme_dev->dev == dev) {
2229 					list_del(&pme_dev->list);
2230 					kfree(pme_dev);
2231 					break;
2232 				}
2233 			}
2234 			mutex_unlock(&pci_pme_list_mutex);
2235 		}
2236 	}
2237 
2238 	pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2239 }
2240 EXPORT_SYMBOL(pci_pme_active);
2241 
2242 /**
2243  * __pci_enable_wake - enable PCI device as wakeup event source
2244  * @dev: PCI device affected
2245  * @state: PCI state from which device will issue wakeup events
2246  * @enable: True to enable event generation; false to disable
2247  *
2248  * This enables the device as a wakeup event source, or disables it.
2249  * When such events involves platform-specific hooks, those hooks are
2250  * called automatically by this routine.
2251  *
2252  * Devices with legacy power management (no standard PCI PM capabilities)
2253  * always require such platform hooks.
2254  *
2255  * RETURN VALUE:
2256  * 0 is returned on success
2257  * -EINVAL is returned if device is not supposed to wake up the system
2258  * Error code depending on the platform is returned if both the platform and
2259  * the native mechanism fail to enable the generation of wake-up events
2260  */
2261 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2262 {
2263 	int ret = 0;
2264 
2265 	/*
2266 	 * Bridges that are not power-manageable directly only signal
2267 	 * wakeup on behalf of subordinate devices which is set up
2268 	 * elsewhere, so skip them. However, bridges that are
2269 	 * power-manageable may signal wakeup for themselves (for example,
2270 	 * on a hotplug event) and they need to be covered here.
2271 	 */
2272 	if (!pci_power_manageable(dev))
2273 		return 0;
2274 
2275 	/* Don't do the same thing twice in a row for one device. */
2276 	if (!!enable == !!dev->wakeup_prepared)
2277 		return 0;
2278 
2279 	/*
2280 	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2281 	 * Anderson we should be doing PME# wake enable followed by ACPI wake
2282 	 * enable.  To disable wake-up we call the platform first, for symmetry.
2283 	 */
2284 
2285 	if (enable) {
2286 		int error;
2287 
2288 		if (pci_pme_capable(dev, state))
2289 			pci_pme_active(dev, true);
2290 		else
2291 			ret = 1;
2292 		error = platform_pci_set_wakeup(dev, true);
2293 		if (ret)
2294 			ret = error;
2295 		if (!ret)
2296 			dev->wakeup_prepared = true;
2297 	} else {
2298 		platform_pci_set_wakeup(dev, false);
2299 		pci_pme_active(dev, false);
2300 		dev->wakeup_prepared = false;
2301 	}
2302 
2303 	return ret;
2304 }
2305 
2306 /**
2307  * pci_enable_wake - change wakeup settings for a PCI device
2308  * @pci_dev: Target device
2309  * @state: PCI state from which device will issue wakeup events
2310  * @enable: Whether or not to enable event generation
2311  *
2312  * If @enable is set, check device_may_wakeup() for the device before calling
2313  * __pci_enable_wake() for it.
2314  */
2315 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2316 {
2317 	if (enable && !device_may_wakeup(&pci_dev->dev))
2318 		return -EINVAL;
2319 
2320 	return __pci_enable_wake(pci_dev, state, enable);
2321 }
2322 EXPORT_SYMBOL(pci_enable_wake);
2323 
2324 /**
2325  * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2326  * @dev: PCI device to prepare
2327  * @enable: True to enable wake-up event generation; false to disable
2328  *
2329  * Many drivers want the device to wake up the system from D3_hot or D3_cold
2330  * and this function allows them to set that up cleanly - pci_enable_wake()
2331  * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2332  * ordering constraints.
2333  *
2334  * This function only returns error code if the device is not allowed to wake
2335  * up the system from sleep or it is not capable of generating PME# from both
2336  * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2337  */
2338 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2339 {
2340 	return pci_pme_capable(dev, PCI_D3cold) ?
2341 			pci_enable_wake(dev, PCI_D3cold, enable) :
2342 			pci_enable_wake(dev, PCI_D3hot, enable);
2343 }
2344 EXPORT_SYMBOL(pci_wake_from_d3);
2345 
2346 /**
2347  * pci_target_state - find an appropriate low power state for a given PCI dev
2348  * @dev: PCI device
2349  * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2350  *
2351  * Use underlying platform code to find a supported low power state for @dev.
2352  * If the platform can't manage @dev, return the deepest state from which it
2353  * can generate wake events, based on any available PME info.
2354  */
2355 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2356 {
2357 	pci_power_t target_state = PCI_D3hot;
2358 
2359 	if (platform_pci_power_manageable(dev)) {
2360 		/*
2361 		 * Call the platform to find the target state for the device.
2362 		 */
2363 		pci_power_t state = platform_pci_choose_state(dev);
2364 
2365 		switch (state) {
2366 		case PCI_POWER_ERROR:
2367 		case PCI_UNKNOWN:
2368 			break;
2369 		case PCI_D1:
2370 		case PCI_D2:
2371 			if (pci_no_d1d2(dev))
2372 				break;
2373 			/* else, fall through */
2374 		default:
2375 			target_state = state;
2376 		}
2377 
2378 		return target_state;
2379 	}
2380 
2381 	if (!dev->pm_cap)
2382 		target_state = PCI_D0;
2383 
2384 	/*
2385 	 * If the device is in D3cold even though it's not power-manageable by
2386 	 * the platform, it may have been powered down by non-standard means.
2387 	 * Best to let it slumber.
2388 	 */
2389 	if (dev->current_state == PCI_D3cold)
2390 		target_state = PCI_D3cold;
2391 
2392 	if (wakeup) {
2393 		/*
2394 		 * Find the deepest state from which the device can generate
2395 		 * PME#.
2396 		 */
2397 		if (dev->pme_support) {
2398 			while (target_state
2399 			      && !(dev->pme_support & (1 << target_state)))
2400 				target_state--;
2401 		}
2402 	}
2403 
2404 	return target_state;
2405 }
2406 
2407 /**
2408  * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2409  *			  into a sleep state
2410  * @dev: Device to handle.
2411  *
2412  * Choose the power state appropriate for the device depending on whether
2413  * it can wake up the system and/or is power manageable by the platform
2414  * (PCI_D3hot is the default) and put the device into that state.
2415  */
2416 int pci_prepare_to_sleep(struct pci_dev *dev)
2417 {
2418 	bool wakeup = device_may_wakeup(&dev->dev);
2419 	pci_power_t target_state = pci_target_state(dev, wakeup);
2420 	int error;
2421 
2422 	if (target_state == PCI_POWER_ERROR)
2423 		return -EIO;
2424 
2425 	pci_enable_wake(dev, target_state, wakeup);
2426 
2427 	error = pci_set_power_state(dev, target_state);
2428 
2429 	if (error)
2430 		pci_enable_wake(dev, target_state, false);
2431 
2432 	return error;
2433 }
2434 EXPORT_SYMBOL(pci_prepare_to_sleep);
2435 
2436 /**
2437  * pci_back_from_sleep - turn PCI device on during system-wide transition
2438  *			 into working state
2439  * @dev: Device to handle.
2440  *
2441  * Disable device's system wake-up capability and put it into D0.
2442  */
2443 int pci_back_from_sleep(struct pci_dev *dev)
2444 {
2445 	pci_enable_wake(dev, PCI_D0, false);
2446 	return pci_set_power_state(dev, PCI_D0);
2447 }
2448 EXPORT_SYMBOL(pci_back_from_sleep);
2449 
2450 /**
2451  * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2452  * @dev: PCI device being suspended.
2453  *
2454  * Prepare @dev to generate wake-up events at run time and put it into a low
2455  * power state.
2456  */
2457 int pci_finish_runtime_suspend(struct pci_dev *dev)
2458 {
2459 	pci_power_t target_state;
2460 	int error;
2461 
2462 	target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2463 	if (target_state == PCI_POWER_ERROR)
2464 		return -EIO;
2465 
2466 	dev->runtime_d3cold = target_state == PCI_D3cold;
2467 
2468 	__pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2469 
2470 	error = pci_set_power_state(dev, target_state);
2471 
2472 	if (error) {
2473 		pci_enable_wake(dev, target_state, false);
2474 		dev->runtime_d3cold = false;
2475 	}
2476 
2477 	return error;
2478 }
2479 
2480 /**
2481  * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2482  * @dev: Device to check.
2483  *
2484  * Return true if the device itself is capable of generating wake-up events
2485  * (through the platform or using the native PCIe PME) or if the device supports
2486  * PME and one of its upstream bridges can generate wake-up events.
2487  */
2488 bool pci_dev_run_wake(struct pci_dev *dev)
2489 {
2490 	struct pci_bus *bus = dev->bus;
2491 
2492 	if (!dev->pme_support)
2493 		return false;
2494 
2495 	/* PME-capable in principle, but not from the target power state */
2496 	if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2497 		return false;
2498 
2499 	if (device_can_wakeup(&dev->dev))
2500 		return true;
2501 
2502 	while (bus->parent) {
2503 		struct pci_dev *bridge = bus->self;
2504 
2505 		if (device_can_wakeup(&bridge->dev))
2506 			return true;
2507 
2508 		bus = bus->parent;
2509 	}
2510 
2511 	/* We have reached the root bus. */
2512 	if (bus->bridge)
2513 		return device_can_wakeup(bus->bridge);
2514 
2515 	return false;
2516 }
2517 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2518 
2519 /**
2520  * pci_dev_need_resume - Check if it is necessary to resume the device.
2521  * @pci_dev: Device to check.
2522  *
2523  * Return 'true' if the device is not runtime-suspended or it has to be
2524  * reconfigured due to wakeup settings difference between system and runtime
2525  * suspend, or the current power state of it is not suitable for the upcoming
2526  * (system-wide) transition.
2527  */
2528 bool pci_dev_need_resume(struct pci_dev *pci_dev)
2529 {
2530 	struct device *dev = &pci_dev->dev;
2531 	pci_power_t target_state;
2532 
2533 	if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2534 		return true;
2535 
2536 	target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2537 
2538 	/*
2539 	 * If the earlier platform check has not triggered, D3cold is just power
2540 	 * removal on top of D3hot, so no need to resume the device in that
2541 	 * case.
2542 	 */
2543 	return target_state != pci_dev->current_state &&
2544 		target_state != PCI_D3cold &&
2545 		pci_dev->current_state != PCI_D3hot;
2546 }
2547 
2548 /**
2549  * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2550  * @pci_dev: Device to check.
2551  *
2552  * If the device is suspended and it is not configured for system wakeup,
2553  * disable PME for it to prevent it from waking up the system unnecessarily.
2554  *
2555  * Note that if the device's power state is D3cold and the platform check in
2556  * pci_dev_need_resume() has not triggered, the device's configuration need not
2557  * be changed.
2558  */
2559 void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2560 {
2561 	struct device *dev = &pci_dev->dev;
2562 
2563 	spin_lock_irq(&dev->power.lock);
2564 
2565 	if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2566 	    pci_dev->current_state < PCI_D3cold)
2567 		__pci_pme_active(pci_dev, false);
2568 
2569 	spin_unlock_irq(&dev->power.lock);
2570 }
2571 
2572 /**
2573  * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2574  * @pci_dev: Device to handle.
2575  *
2576  * If the device is runtime suspended and wakeup-capable, enable PME for it as
2577  * it might have been disabled during the prepare phase of system suspend if
2578  * the device was not configured for system wakeup.
2579  */
2580 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2581 {
2582 	struct device *dev = &pci_dev->dev;
2583 
2584 	if (!pci_dev_run_wake(pci_dev))
2585 		return;
2586 
2587 	spin_lock_irq(&dev->power.lock);
2588 
2589 	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2590 		__pci_pme_active(pci_dev, true);
2591 
2592 	spin_unlock_irq(&dev->power.lock);
2593 }
2594 
2595 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2596 {
2597 	struct device *dev = &pdev->dev;
2598 	struct device *parent = dev->parent;
2599 
2600 	if (parent)
2601 		pm_runtime_get_sync(parent);
2602 	pm_runtime_get_noresume(dev);
2603 	/*
2604 	 * pdev->current_state is set to PCI_D3cold during suspending,
2605 	 * so wait until suspending completes
2606 	 */
2607 	pm_runtime_barrier(dev);
2608 	/*
2609 	 * Only need to resume devices in D3cold, because config
2610 	 * registers are still accessible for devices suspended but
2611 	 * not in D3cold.
2612 	 */
2613 	if (pdev->current_state == PCI_D3cold)
2614 		pm_runtime_resume(dev);
2615 }
2616 
2617 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2618 {
2619 	struct device *dev = &pdev->dev;
2620 	struct device *parent = dev->parent;
2621 
2622 	pm_runtime_put(dev);
2623 	if (parent)
2624 		pm_runtime_put_sync(parent);
2625 }
2626 
2627 static const struct dmi_system_id bridge_d3_blacklist[] = {
2628 #ifdef CONFIG_X86
2629 	{
2630 		/*
2631 		 * Gigabyte X299 root port is not marked as hotplug capable
2632 		 * which allows Linux to power manage it.  However, this
2633 		 * confuses the BIOS SMI handler so don't power manage root
2634 		 * ports on that system.
2635 		 */
2636 		.ident = "X299 DESIGNARE EX-CF",
2637 		.matches = {
2638 			DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2639 			DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2640 		},
2641 	},
2642 #endif
2643 	{ }
2644 };
2645 
2646 /**
2647  * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2648  * @bridge: Bridge to check
2649  *
2650  * This function checks if it is possible to move the bridge to D3.
2651  * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2652  */
2653 bool pci_bridge_d3_possible(struct pci_dev *bridge)
2654 {
2655 	if (!pci_is_pcie(bridge))
2656 		return false;
2657 
2658 	switch (pci_pcie_type(bridge)) {
2659 	case PCI_EXP_TYPE_ROOT_PORT:
2660 	case PCI_EXP_TYPE_UPSTREAM:
2661 	case PCI_EXP_TYPE_DOWNSTREAM:
2662 		if (pci_bridge_d3_disable)
2663 			return false;
2664 
2665 		/*
2666 		 * Hotplug ports handled by firmware in System Management Mode
2667 		 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2668 		 */
2669 		if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
2670 			return false;
2671 
2672 		if (pci_bridge_d3_force)
2673 			return true;
2674 
2675 		/* Even the oldest 2010 Thunderbolt controller supports D3. */
2676 		if (bridge->is_thunderbolt)
2677 			return true;
2678 
2679 		/* Platform might know better if the bridge supports D3 */
2680 		if (platform_pci_bridge_d3(bridge))
2681 			return true;
2682 
2683 		/*
2684 		 * Hotplug ports handled natively by the OS were not validated
2685 		 * by vendors for runtime D3 at least until 2018 because there
2686 		 * was no OS support.
2687 		 */
2688 		if (bridge->is_hotplug_bridge)
2689 			return false;
2690 
2691 		if (dmi_check_system(bridge_d3_blacklist))
2692 			return false;
2693 
2694 		/*
2695 		 * It should be safe to put PCIe ports from 2015 or newer
2696 		 * to D3.
2697 		 */
2698 		if (dmi_get_bios_year() >= 2015)
2699 			return true;
2700 		break;
2701 	}
2702 
2703 	return false;
2704 }
2705 
2706 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2707 {
2708 	bool *d3cold_ok = data;
2709 
2710 	if (/* The device needs to be allowed to go D3cold ... */
2711 	    dev->no_d3cold || !dev->d3cold_allowed ||
2712 
2713 	    /* ... and if it is wakeup capable to do so from D3cold. */
2714 	    (device_may_wakeup(&dev->dev) &&
2715 	     !pci_pme_capable(dev, PCI_D3cold)) ||
2716 
2717 	    /* If it is a bridge it must be allowed to go to D3. */
2718 	    !pci_power_manageable(dev))
2719 
2720 		*d3cold_ok = false;
2721 
2722 	return !*d3cold_ok;
2723 }
2724 
2725 /*
2726  * pci_bridge_d3_update - Update bridge D3 capabilities
2727  * @dev: PCI device which is changed
2728  *
2729  * Update upstream bridge PM capabilities accordingly depending on if the
2730  * device PM configuration was changed or the device is being removed.  The
2731  * change is also propagated upstream.
2732  */
2733 void pci_bridge_d3_update(struct pci_dev *dev)
2734 {
2735 	bool remove = !device_is_registered(&dev->dev);
2736 	struct pci_dev *bridge;
2737 	bool d3cold_ok = true;
2738 
2739 	bridge = pci_upstream_bridge(dev);
2740 	if (!bridge || !pci_bridge_d3_possible(bridge))
2741 		return;
2742 
2743 	/*
2744 	 * If D3 is currently allowed for the bridge, removing one of its
2745 	 * children won't change that.
2746 	 */
2747 	if (remove && bridge->bridge_d3)
2748 		return;
2749 
2750 	/*
2751 	 * If D3 is currently allowed for the bridge and a child is added or
2752 	 * changed, disallowance of D3 can only be caused by that child, so
2753 	 * we only need to check that single device, not any of its siblings.
2754 	 *
2755 	 * If D3 is currently not allowed for the bridge, checking the device
2756 	 * first may allow us to skip checking its siblings.
2757 	 */
2758 	if (!remove)
2759 		pci_dev_check_d3cold(dev, &d3cold_ok);
2760 
2761 	/*
2762 	 * If D3 is currently not allowed for the bridge, this may be caused
2763 	 * either by the device being changed/removed or any of its siblings,
2764 	 * so we need to go through all children to find out if one of them
2765 	 * continues to block D3.
2766 	 */
2767 	if (d3cold_ok && !bridge->bridge_d3)
2768 		pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
2769 			     &d3cold_ok);
2770 
2771 	if (bridge->bridge_d3 != d3cold_ok) {
2772 		bridge->bridge_d3 = d3cold_ok;
2773 		/* Propagate change to upstream bridges */
2774 		pci_bridge_d3_update(bridge);
2775 	}
2776 }
2777 
2778 /**
2779  * pci_d3cold_enable - Enable D3cold for device
2780  * @dev: PCI device to handle
2781  *
2782  * This function can be used in drivers to enable D3cold from the device
2783  * they handle.  It also updates upstream PCI bridge PM capabilities
2784  * accordingly.
2785  */
2786 void pci_d3cold_enable(struct pci_dev *dev)
2787 {
2788 	if (dev->no_d3cold) {
2789 		dev->no_d3cold = false;
2790 		pci_bridge_d3_update(dev);
2791 	}
2792 }
2793 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
2794 
2795 /**
2796  * pci_d3cold_disable - Disable D3cold for device
2797  * @dev: PCI device to handle
2798  *
2799  * This function can be used in drivers to disable D3cold from the device
2800  * they handle.  It also updates upstream PCI bridge PM capabilities
2801  * accordingly.
2802  */
2803 void pci_d3cold_disable(struct pci_dev *dev)
2804 {
2805 	if (!dev->no_d3cold) {
2806 		dev->no_d3cold = true;
2807 		pci_bridge_d3_update(dev);
2808 	}
2809 }
2810 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
2811 
2812 /**
2813  * pci_pm_init - Initialize PM functions of given PCI device
2814  * @dev: PCI device to handle.
2815  */
2816 void pci_pm_init(struct pci_dev *dev)
2817 {
2818 	int pm;
2819 	u16 status;
2820 	u16 pmc;
2821 
2822 	pm_runtime_forbid(&dev->dev);
2823 	pm_runtime_set_active(&dev->dev);
2824 	pm_runtime_enable(&dev->dev);
2825 	device_enable_async_suspend(&dev->dev);
2826 	dev->wakeup_prepared = false;
2827 
2828 	dev->pm_cap = 0;
2829 	dev->pme_support = 0;
2830 
2831 	/* find PCI PM capability in list */
2832 	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2833 	if (!pm)
2834 		return;
2835 	/* Check device's ability to generate PME# */
2836 	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2837 
2838 	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2839 		pci_err(dev, "unsupported PM cap regs version (%u)\n",
2840 			pmc & PCI_PM_CAP_VER_MASK);
2841 		return;
2842 	}
2843 
2844 	dev->pm_cap = pm;
2845 	dev->d3_delay = PCI_PM_D3_WAIT;
2846 	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2847 	dev->bridge_d3 = pci_bridge_d3_possible(dev);
2848 	dev->d3cold_allowed = true;
2849 
2850 	dev->d1_support = false;
2851 	dev->d2_support = false;
2852 	if (!pci_no_d1d2(dev)) {
2853 		if (pmc & PCI_PM_CAP_D1)
2854 			dev->d1_support = true;
2855 		if (pmc & PCI_PM_CAP_D2)
2856 			dev->d2_support = true;
2857 
2858 		if (dev->d1_support || dev->d2_support)
2859 			pci_info(dev, "supports%s%s\n",
2860 				   dev->d1_support ? " D1" : "",
2861 				   dev->d2_support ? " D2" : "");
2862 	}
2863 
2864 	pmc &= PCI_PM_CAP_PME_MASK;
2865 	if (pmc) {
2866 		pci_info(dev, "PME# supported from%s%s%s%s%s\n",
2867 			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2868 			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2869 			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2870 			 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2871 			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2872 		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2873 		dev->pme_poll = true;
2874 		/*
2875 		 * Make device's PM flags reflect the wake-up capability, but
2876 		 * let the user space enable it to wake up the system as needed.
2877 		 */
2878 		device_set_wakeup_capable(&dev->dev, true);
2879 		/* Disable the PME# generation functionality */
2880 		pci_pme_active(dev, false);
2881 	}
2882 
2883 	pci_read_config_word(dev, PCI_STATUS, &status);
2884 	if (status & PCI_STATUS_IMM_READY)
2885 		dev->imm_ready = 1;
2886 }
2887 
2888 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
2889 {
2890 	unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
2891 
2892 	switch (prop) {
2893 	case PCI_EA_P_MEM:
2894 	case PCI_EA_P_VF_MEM:
2895 		flags |= IORESOURCE_MEM;
2896 		break;
2897 	case PCI_EA_P_MEM_PREFETCH:
2898 	case PCI_EA_P_VF_MEM_PREFETCH:
2899 		flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
2900 		break;
2901 	case PCI_EA_P_IO:
2902 		flags |= IORESOURCE_IO;
2903 		break;
2904 	default:
2905 		return 0;
2906 	}
2907 
2908 	return flags;
2909 }
2910 
2911 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
2912 					    u8 prop)
2913 {
2914 	if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
2915 		return &dev->resource[bei];
2916 #ifdef CONFIG_PCI_IOV
2917 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
2918 		 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
2919 		return &dev->resource[PCI_IOV_RESOURCES +
2920 				      bei - PCI_EA_BEI_VF_BAR0];
2921 #endif
2922 	else if (bei == PCI_EA_BEI_ROM)
2923 		return &dev->resource[PCI_ROM_RESOURCE];
2924 	else
2925 		return NULL;
2926 }
2927 
2928 /* Read an Enhanced Allocation (EA) entry */
2929 static int pci_ea_read(struct pci_dev *dev, int offset)
2930 {
2931 	struct resource *res;
2932 	int ent_size, ent_offset = offset;
2933 	resource_size_t start, end;
2934 	unsigned long flags;
2935 	u32 dw0, bei, base, max_offset;
2936 	u8 prop;
2937 	bool support_64 = (sizeof(resource_size_t) >= 8);
2938 
2939 	pci_read_config_dword(dev, ent_offset, &dw0);
2940 	ent_offset += 4;
2941 
2942 	/* Entry size field indicates DWORDs after 1st */
2943 	ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
2944 
2945 	if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
2946 		goto out;
2947 
2948 	bei = (dw0 & PCI_EA_BEI) >> 4;
2949 	prop = (dw0 & PCI_EA_PP) >> 8;
2950 
2951 	/*
2952 	 * If the Property is in the reserved range, try the Secondary
2953 	 * Property instead.
2954 	 */
2955 	if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
2956 		prop = (dw0 & PCI_EA_SP) >> 16;
2957 	if (prop > PCI_EA_P_BRIDGE_IO)
2958 		goto out;
2959 
2960 	res = pci_ea_get_resource(dev, bei, prop);
2961 	if (!res) {
2962 		pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
2963 		goto out;
2964 	}
2965 
2966 	flags = pci_ea_flags(dev, prop);
2967 	if (!flags) {
2968 		pci_err(dev, "Unsupported EA properties: %#x\n", prop);
2969 		goto out;
2970 	}
2971 
2972 	/* Read Base */
2973 	pci_read_config_dword(dev, ent_offset, &base);
2974 	start = (base & PCI_EA_FIELD_MASK);
2975 	ent_offset += 4;
2976 
2977 	/* Read MaxOffset */
2978 	pci_read_config_dword(dev, ent_offset, &max_offset);
2979 	ent_offset += 4;
2980 
2981 	/* Read Base MSBs (if 64-bit entry) */
2982 	if (base & PCI_EA_IS_64) {
2983 		u32 base_upper;
2984 
2985 		pci_read_config_dword(dev, ent_offset, &base_upper);
2986 		ent_offset += 4;
2987 
2988 		flags |= IORESOURCE_MEM_64;
2989 
2990 		/* entry starts above 32-bit boundary, can't use */
2991 		if (!support_64 && base_upper)
2992 			goto out;
2993 
2994 		if (support_64)
2995 			start |= ((u64)base_upper << 32);
2996 	}
2997 
2998 	end = start + (max_offset | 0x03);
2999 
3000 	/* Read MaxOffset MSBs (if 64-bit entry) */
3001 	if (max_offset & PCI_EA_IS_64) {
3002 		u32 max_offset_upper;
3003 
3004 		pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3005 		ent_offset += 4;
3006 
3007 		flags |= IORESOURCE_MEM_64;
3008 
3009 		/* entry too big, can't use */
3010 		if (!support_64 && max_offset_upper)
3011 			goto out;
3012 
3013 		if (support_64)
3014 			end += ((u64)max_offset_upper << 32);
3015 	}
3016 
3017 	if (end < start) {
3018 		pci_err(dev, "EA Entry crosses address boundary\n");
3019 		goto out;
3020 	}
3021 
3022 	if (ent_size != ent_offset - offset) {
3023 		pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3024 			ent_size, ent_offset - offset);
3025 		goto out;
3026 	}
3027 
3028 	res->name = pci_name(dev);
3029 	res->start = start;
3030 	res->end = end;
3031 	res->flags = flags;
3032 
3033 	if (bei <= PCI_EA_BEI_BAR5)
3034 		pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3035 			   bei, res, prop);
3036 	else if (bei == PCI_EA_BEI_ROM)
3037 		pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3038 			   res, prop);
3039 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3040 		pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3041 			   bei - PCI_EA_BEI_VF_BAR0, res, prop);
3042 	else
3043 		pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3044 			   bei, res, prop);
3045 
3046 out:
3047 	return offset + ent_size;
3048 }
3049 
3050 /* Enhanced Allocation Initialization */
3051 void pci_ea_init(struct pci_dev *dev)
3052 {
3053 	int ea;
3054 	u8 num_ent;
3055 	int offset;
3056 	int i;
3057 
3058 	/* find PCI EA capability in list */
3059 	ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3060 	if (!ea)
3061 		return;
3062 
3063 	/* determine the number of entries */
3064 	pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3065 					&num_ent);
3066 	num_ent &= PCI_EA_NUM_ENT_MASK;
3067 
3068 	offset = ea + PCI_EA_FIRST_ENT;
3069 
3070 	/* Skip DWORD 2 for type 1 functions */
3071 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3072 		offset += 4;
3073 
3074 	/* parse each EA entry */
3075 	for (i = 0; i < num_ent; ++i)
3076 		offset = pci_ea_read(dev, offset);
3077 }
3078 
3079 static void pci_add_saved_cap(struct pci_dev *pci_dev,
3080 	struct pci_cap_saved_state *new_cap)
3081 {
3082 	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3083 }
3084 
3085 /**
3086  * _pci_add_cap_save_buffer - allocate buffer for saving given
3087  *			      capability registers
3088  * @dev: the PCI device
3089  * @cap: the capability to allocate the buffer for
3090  * @extended: Standard or Extended capability ID
3091  * @size: requested size of the buffer
3092  */
3093 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3094 				    bool extended, unsigned int size)
3095 {
3096 	int pos;
3097 	struct pci_cap_saved_state *save_state;
3098 
3099 	if (extended)
3100 		pos = pci_find_ext_capability(dev, cap);
3101 	else
3102 		pos = pci_find_capability(dev, cap);
3103 
3104 	if (!pos)
3105 		return 0;
3106 
3107 	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3108 	if (!save_state)
3109 		return -ENOMEM;
3110 
3111 	save_state->cap.cap_nr = cap;
3112 	save_state->cap.cap_extended = extended;
3113 	save_state->cap.size = size;
3114 	pci_add_saved_cap(dev, save_state);
3115 
3116 	return 0;
3117 }
3118 
3119 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3120 {
3121 	return _pci_add_cap_save_buffer(dev, cap, false, size);
3122 }
3123 
3124 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3125 {
3126 	return _pci_add_cap_save_buffer(dev, cap, true, size);
3127 }
3128 
3129 /**
3130  * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3131  * @dev: the PCI device
3132  */
3133 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3134 {
3135 	int error;
3136 
3137 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3138 					PCI_EXP_SAVE_REGS * sizeof(u16));
3139 	if (error)
3140 		pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3141 
3142 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3143 	if (error)
3144 		pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3145 
3146 	error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3147 					    2 * sizeof(u16));
3148 	if (error)
3149 		pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3150 
3151 	pci_allocate_vc_save_buffers(dev);
3152 }
3153 
3154 void pci_free_cap_save_buffers(struct pci_dev *dev)
3155 {
3156 	struct pci_cap_saved_state *tmp;
3157 	struct hlist_node *n;
3158 
3159 	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3160 		kfree(tmp);
3161 }
3162 
3163 /**
3164  * pci_configure_ari - enable or disable ARI forwarding
3165  * @dev: the PCI device
3166  *
3167  * If @dev and its upstream bridge both support ARI, enable ARI in the
3168  * bridge.  Otherwise, disable ARI in the bridge.
3169  */
3170 void pci_configure_ari(struct pci_dev *dev)
3171 {
3172 	u32 cap;
3173 	struct pci_dev *bridge;
3174 
3175 	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3176 		return;
3177 
3178 	bridge = dev->bus->self;
3179 	if (!bridge)
3180 		return;
3181 
3182 	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3183 	if (!(cap & PCI_EXP_DEVCAP2_ARI))
3184 		return;
3185 
3186 	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3187 		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3188 					 PCI_EXP_DEVCTL2_ARI);
3189 		bridge->ari_enabled = 1;
3190 	} else {
3191 		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3192 					   PCI_EXP_DEVCTL2_ARI);
3193 		bridge->ari_enabled = 0;
3194 	}
3195 }
3196 
3197 static int pci_acs_enable;
3198 
3199 /**
3200  * pci_request_acs - ask for ACS to be enabled if supported
3201  */
3202 void pci_request_acs(void)
3203 {
3204 	pci_acs_enable = 1;
3205 }
3206 
3207 static const char *disable_acs_redir_param;
3208 
3209 /**
3210  * pci_disable_acs_redir - disable ACS redirect capabilities
3211  * @dev: the PCI device
3212  *
3213  * For only devices specified in the disable_acs_redir parameter.
3214  */
3215 static void pci_disable_acs_redir(struct pci_dev *dev)
3216 {
3217 	int ret = 0;
3218 	const char *p;
3219 	int pos;
3220 	u16 ctrl;
3221 
3222 	if (!disable_acs_redir_param)
3223 		return;
3224 
3225 	p = disable_acs_redir_param;
3226 	while (*p) {
3227 		ret = pci_dev_str_match(dev, p, &p);
3228 		if (ret < 0) {
3229 			pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
3230 				     disable_acs_redir_param);
3231 
3232 			break;
3233 		} else if (ret == 1) {
3234 			/* Found a match */
3235 			break;
3236 		}
3237 
3238 		if (*p != ';' && *p != ',') {
3239 			/* End of param or invalid format */
3240 			break;
3241 		}
3242 		p++;
3243 	}
3244 
3245 	if (ret != 1)
3246 		return;
3247 
3248 	if (!pci_dev_specific_disable_acs_redir(dev))
3249 		return;
3250 
3251 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3252 	if (!pos) {
3253 		pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
3254 		return;
3255 	}
3256 
3257 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
3258 
3259 	/* P2P Request & Completion Redirect */
3260 	ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
3261 
3262 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
3263 
3264 	pci_info(dev, "disabled ACS redirect\n");
3265 }
3266 
3267 /**
3268  * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
3269  * @dev: the PCI device
3270  */
3271 static void pci_std_enable_acs(struct pci_dev *dev)
3272 {
3273 	int pos;
3274 	u16 cap;
3275 	u16 ctrl;
3276 
3277 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3278 	if (!pos)
3279 		return;
3280 
3281 	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
3282 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
3283 
3284 	/* Source Validation */
3285 	ctrl |= (cap & PCI_ACS_SV);
3286 
3287 	/* P2P Request Redirect */
3288 	ctrl |= (cap & PCI_ACS_RR);
3289 
3290 	/* P2P Completion Redirect */
3291 	ctrl |= (cap & PCI_ACS_CR);
3292 
3293 	/* Upstream Forwarding */
3294 	ctrl |= (cap & PCI_ACS_UF);
3295 
3296 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
3297 }
3298 
3299 /**
3300  * pci_enable_acs - enable ACS if hardware support it
3301  * @dev: the PCI device
3302  */
3303 void pci_enable_acs(struct pci_dev *dev)
3304 {
3305 	if (!pci_acs_enable)
3306 		goto disable_acs_redir;
3307 
3308 	if (!pci_dev_specific_enable_acs(dev))
3309 		goto disable_acs_redir;
3310 
3311 	pci_std_enable_acs(dev);
3312 
3313 disable_acs_redir:
3314 	/*
3315 	 * Note: pci_disable_acs_redir() must be called even if ACS was not
3316 	 * enabled by the kernel because it may have been enabled by
3317 	 * platform firmware.  So if we are told to disable it, we should
3318 	 * always disable it after setting the kernel's default
3319 	 * preferences.
3320 	 */
3321 	pci_disable_acs_redir(dev);
3322 }
3323 
3324 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3325 {
3326 	int pos;
3327 	u16 cap, ctrl;
3328 
3329 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
3330 	if (!pos)
3331 		return false;
3332 
3333 	/*
3334 	 * Except for egress control, capabilities are either required
3335 	 * or only required if controllable.  Features missing from the
3336 	 * capability field can therefore be assumed as hard-wired enabled.
3337 	 */
3338 	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3339 	acs_flags &= (cap | PCI_ACS_EC);
3340 
3341 	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3342 	return (ctrl & acs_flags) == acs_flags;
3343 }
3344 
3345 /**
3346  * pci_acs_enabled - test ACS against required flags for a given device
3347  * @pdev: device to test
3348  * @acs_flags: required PCI ACS flags
3349  *
3350  * Return true if the device supports the provided flags.  Automatically
3351  * filters out flags that are not implemented on multifunction devices.
3352  *
3353  * Note that this interface checks the effective ACS capabilities of the
3354  * device rather than the actual capabilities.  For instance, most single
3355  * function endpoints are not required to support ACS because they have no
3356  * opportunity for peer-to-peer access.  We therefore return 'true'
3357  * regardless of whether the device exposes an ACS capability.  This makes
3358  * it much easier for callers of this function to ignore the actual type
3359  * or topology of the device when testing ACS support.
3360  */
3361 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3362 {
3363 	int ret;
3364 
3365 	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3366 	if (ret >= 0)
3367 		return ret > 0;
3368 
3369 	/*
3370 	 * Conventional PCI and PCI-X devices never support ACS, either
3371 	 * effectively or actually.  The shared bus topology implies that
3372 	 * any device on the bus can receive or snoop DMA.
3373 	 */
3374 	if (!pci_is_pcie(pdev))
3375 		return false;
3376 
3377 	switch (pci_pcie_type(pdev)) {
3378 	/*
3379 	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3380 	 * but since their primary interface is PCI/X, we conservatively
3381 	 * handle them as we would a non-PCIe device.
3382 	 */
3383 	case PCI_EXP_TYPE_PCIE_BRIDGE:
3384 	/*
3385 	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
3386 	 * applicable... must never implement an ACS Extended Capability...".
3387 	 * This seems arbitrary, but we take a conservative interpretation
3388 	 * of this statement.
3389 	 */
3390 	case PCI_EXP_TYPE_PCI_BRIDGE:
3391 	case PCI_EXP_TYPE_RC_EC:
3392 		return false;
3393 	/*
3394 	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3395 	 * implement ACS in order to indicate their peer-to-peer capabilities,
3396 	 * regardless of whether they are single- or multi-function devices.
3397 	 */
3398 	case PCI_EXP_TYPE_DOWNSTREAM:
3399 	case PCI_EXP_TYPE_ROOT_PORT:
3400 		return pci_acs_flags_enabled(pdev, acs_flags);
3401 	/*
3402 	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3403 	 * implemented by the remaining PCIe types to indicate peer-to-peer
3404 	 * capabilities, but only when they are part of a multifunction
3405 	 * device.  The footnote for section 6.12 indicates the specific
3406 	 * PCIe types included here.
3407 	 */
3408 	case PCI_EXP_TYPE_ENDPOINT:
3409 	case PCI_EXP_TYPE_UPSTREAM:
3410 	case PCI_EXP_TYPE_LEG_END:
3411 	case PCI_EXP_TYPE_RC_END:
3412 		if (!pdev->multifunction)
3413 			break;
3414 
3415 		return pci_acs_flags_enabled(pdev, acs_flags);
3416 	}
3417 
3418 	/*
3419 	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3420 	 * to single function devices with the exception of downstream ports.
3421 	 */
3422 	return true;
3423 }
3424 
3425 /**
3426  * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
3427  * @start: starting downstream device
3428  * @end: ending upstream device or NULL to search to the root bus
3429  * @acs_flags: required flags
3430  *
3431  * Walk up a device tree from start to end testing PCI ACS support.  If
3432  * any step along the way does not support the required flags, return false.
3433  */
3434 bool pci_acs_path_enabled(struct pci_dev *start,
3435 			  struct pci_dev *end, u16 acs_flags)
3436 {
3437 	struct pci_dev *pdev, *parent = start;
3438 
3439 	do {
3440 		pdev = parent;
3441 
3442 		if (!pci_acs_enabled(pdev, acs_flags))
3443 			return false;
3444 
3445 		if (pci_is_root_bus(pdev->bus))
3446 			return (end == NULL);
3447 
3448 		parent = pdev->bus->self;
3449 	} while (pdev != end);
3450 
3451 	return true;
3452 }
3453 
3454 /**
3455  * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3456  * @pdev: PCI device
3457  * @bar: BAR to find
3458  *
3459  * Helper to find the position of the ctrl register for a BAR.
3460  * Returns -ENOTSUPP if resizable BARs are not supported at all.
3461  * Returns -ENOENT if no ctrl register for the BAR could be found.
3462  */
3463 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3464 {
3465 	unsigned int pos, nbars, i;
3466 	u32 ctrl;
3467 
3468 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3469 	if (!pos)
3470 		return -ENOTSUPP;
3471 
3472 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3473 	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3474 		    PCI_REBAR_CTRL_NBAR_SHIFT;
3475 
3476 	for (i = 0; i < nbars; i++, pos += 8) {
3477 		int bar_idx;
3478 
3479 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3480 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3481 		if (bar_idx == bar)
3482 			return pos;
3483 	}
3484 
3485 	return -ENOENT;
3486 }
3487 
3488 /**
3489  * pci_rebar_get_possible_sizes - get possible sizes for BAR
3490  * @pdev: PCI device
3491  * @bar: BAR to query
3492  *
3493  * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3494  * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3495  */
3496 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3497 {
3498 	int pos;
3499 	u32 cap;
3500 
3501 	pos = pci_rebar_find_pos(pdev, bar);
3502 	if (pos < 0)
3503 		return 0;
3504 
3505 	pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3506 	return (cap & PCI_REBAR_CAP_SIZES) >> 4;
3507 }
3508 
3509 /**
3510  * pci_rebar_get_current_size - get the current size of a BAR
3511  * @pdev: PCI device
3512  * @bar: BAR to set size to
3513  *
3514  * Read the size of a BAR from the resizable BAR config.
3515  * Returns size if found or negative error code.
3516  */
3517 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3518 {
3519 	int pos;
3520 	u32 ctrl;
3521 
3522 	pos = pci_rebar_find_pos(pdev, bar);
3523 	if (pos < 0)
3524 		return pos;
3525 
3526 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3527 	return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3528 }
3529 
3530 /**
3531  * pci_rebar_set_size - set a new size for a BAR
3532  * @pdev: PCI device
3533  * @bar: BAR to set size to
3534  * @size: new size as defined in the spec (0=1MB, 19=512GB)
3535  *
3536  * Set the new size of a BAR as defined in the spec.
3537  * Returns zero if resizing was successful, error code otherwise.
3538  */
3539 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3540 {
3541 	int pos;
3542 	u32 ctrl;
3543 
3544 	pos = pci_rebar_find_pos(pdev, bar);
3545 	if (pos < 0)
3546 		return pos;
3547 
3548 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3549 	ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3550 	ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3551 	pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3552 	return 0;
3553 }
3554 
3555 /**
3556  * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3557  * @dev: the PCI device
3558  * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3559  *	PCI_EXP_DEVCAP2_ATOMIC_COMP32
3560  *	PCI_EXP_DEVCAP2_ATOMIC_COMP64
3561  *	PCI_EXP_DEVCAP2_ATOMIC_COMP128
3562  *
3563  * Return 0 if all upstream bridges support AtomicOp routing, egress
3564  * blocking is disabled on all upstream ports, and the root port supports
3565  * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3566  * AtomicOp completion), or negative otherwise.
3567  */
3568 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3569 {
3570 	struct pci_bus *bus = dev->bus;
3571 	struct pci_dev *bridge;
3572 	u32 cap, ctl2;
3573 
3574 	if (!pci_is_pcie(dev))
3575 		return -EINVAL;
3576 
3577 	/*
3578 	 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3579 	 * AtomicOp requesters.  For now, we only support endpoints as
3580 	 * requesters and root ports as completers.  No endpoints as
3581 	 * completers, and no peer-to-peer.
3582 	 */
3583 
3584 	switch (pci_pcie_type(dev)) {
3585 	case PCI_EXP_TYPE_ENDPOINT:
3586 	case PCI_EXP_TYPE_LEG_END:
3587 	case PCI_EXP_TYPE_RC_END:
3588 		break;
3589 	default:
3590 		return -EINVAL;
3591 	}
3592 
3593 	while (bus->parent) {
3594 		bridge = bus->self;
3595 
3596 		pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3597 
3598 		switch (pci_pcie_type(bridge)) {
3599 		/* Ensure switch ports support AtomicOp routing */
3600 		case PCI_EXP_TYPE_UPSTREAM:
3601 		case PCI_EXP_TYPE_DOWNSTREAM:
3602 			if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3603 				return -EINVAL;
3604 			break;
3605 
3606 		/* Ensure root port supports all the sizes we care about */
3607 		case PCI_EXP_TYPE_ROOT_PORT:
3608 			if ((cap & cap_mask) != cap_mask)
3609 				return -EINVAL;
3610 			break;
3611 		}
3612 
3613 		/* Ensure upstream ports don't block AtomicOps on egress */
3614 		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3615 			pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3616 						   &ctl2);
3617 			if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3618 				return -EINVAL;
3619 		}
3620 
3621 		bus = bus->parent;
3622 	}
3623 
3624 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3625 				 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3626 	return 0;
3627 }
3628 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3629 
3630 /**
3631  * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3632  * @dev: the PCI device
3633  * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3634  *
3635  * Perform INTx swizzling for a device behind one level of bridge.  This is
3636  * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3637  * behind bridges on add-in cards.  For devices with ARI enabled, the slot
3638  * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3639  * the PCI Express Base Specification, Revision 2.1)
3640  */
3641 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3642 {
3643 	int slot;
3644 
3645 	if (pci_ari_enabled(dev->bus))
3646 		slot = 0;
3647 	else
3648 		slot = PCI_SLOT(dev->devfn);
3649 
3650 	return (((pin - 1) + slot) % 4) + 1;
3651 }
3652 
3653 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3654 {
3655 	u8 pin;
3656 
3657 	pin = dev->pin;
3658 	if (!pin)
3659 		return -1;
3660 
3661 	while (!pci_is_root_bus(dev->bus)) {
3662 		pin = pci_swizzle_interrupt_pin(dev, pin);
3663 		dev = dev->bus->self;
3664 	}
3665 	*bridge = dev;
3666 	return pin;
3667 }
3668 
3669 /**
3670  * pci_common_swizzle - swizzle INTx all the way to root bridge
3671  * @dev: the PCI device
3672  * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3673  *
3674  * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
3675  * bridges all the way up to a PCI root bus.
3676  */
3677 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3678 {
3679 	u8 pin = *pinp;
3680 
3681 	while (!pci_is_root_bus(dev->bus)) {
3682 		pin = pci_swizzle_interrupt_pin(dev, pin);
3683 		dev = dev->bus->self;
3684 	}
3685 	*pinp = pin;
3686 	return PCI_SLOT(dev->devfn);
3687 }
3688 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3689 
3690 /**
3691  * pci_release_region - Release a PCI bar
3692  * @pdev: PCI device whose resources were previously reserved by
3693  *	  pci_request_region()
3694  * @bar: BAR to release
3695  *
3696  * Releases the PCI I/O and memory resources previously reserved by a
3697  * successful call to pci_request_region().  Call this function only
3698  * after all use of the PCI regions has ceased.
3699  */
3700 void pci_release_region(struct pci_dev *pdev, int bar)
3701 {
3702 	struct pci_devres *dr;
3703 
3704 	if (pci_resource_len(pdev, bar) == 0)
3705 		return;
3706 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3707 		release_region(pci_resource_start(pdev, bar),
3708 				pci_resource_len(pdev, bar));
3709 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3710 		release_mem_region(pci_resource_start(pdev, bar),
3711 				pci_resource_len(pdev, bar));
3712 
3713 	dr = find_pci_dr(pdev);
3714 	if (dr)
3715 		dr->region_mask &= ~(1 << bar);
3716 }
3717 EXPORT_SYMBOL(pci_release_region);
3718 
3719 /**
3720  * __pci_request_region - Reserved PCI I/O and memory resource
3721  * @pdev: PCI device whose resources are to be reserved
3722  * @bar: BAR to be reserved
3723  * @res_name: Name to be associated with resource.
3724  * @exclusive: whether the region access is exclusive or not
3725  *
3726  * Mark the PCI region associated with PCI device @pdev BAR @bar as
3727  * being reserved by owner @res_name.  Do not access any
3728  * address inside the PCI regions unless this call returns
3729  * successfully.
3730  *
3731  * If @exclusive is set, then the region is marked so that userspace
3732  * is explicitly not allowed to map the resource via /dev/mem or
3733  * sysfs MMIO access.
3734  *
3735  * Returns 0 on success, or %EBUSY on error.  A warning
3736  * message is also printed on failure.
3737  */
3738 static int __pci_request_region(struct pci_dev *pdev, int bar,
3739 				const char *res_name, int exclusive)
3740 {
3741 	struct pci_devres *dr;
3742 
3743 	if (pci_resource_len(pdev, bar) == 0)
3744 		return 0;
3745 
3746 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3747 		if (!request_region(pci_resource_start(pdev, bar),
3748 			    pci_resource_len(pdev, bar), res_name))
3749 			goto err_out;
3750 	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3751 		if (!__request_mem_region(pci_resource_start(pdev, bar),
3752 					pci_resource_len(pdev, bar), res_name,
3753 					exclusive))
3754 			goto err_out;
3755 	}
3756 
3757 	dr = find_pci_dr(pdev);
3758 	if (dr)
3759 		dr->region_mask |= 1 << bar;
3760 
3761 	return 0;
3762 
3763 err_out:
3764 	pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3765 		 &pdev->resource[bar]);
3766 	return -EBUSY;
3767 }
3768 
3769 /**
3770  * pci_request_region - Reserve PCI I/O and memory resource
3771  * @pdev: PCI device whose resources are to be reserved
3772  * @bar: BAR to be reserved
3773  * @res_name: Name to be associated with resource
3774  *
3775  * Mark the PCI region associated with PCI device @pdev BAR @bar as
3776  * being reserved by owner @res_name.  Do not access any
3777  * address inside the PCI regions unless this call returns
3778  * successfully.
3779  *
3780  * Returns 0 on success, or %EBUSY on error.  A warning
3781  * message is also printed on failure.
3782  */
3783 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3784 {
3785 	return __pci_request_region(pdev, bar, res_name, 0);
3786 }
3787 EXPORT_SYMBOL(pci_request_region);
3788 
3789 /**
3790  * pci_release_selected_regions - Release selected PCI I/O and memory resources
3791  * @pdev: PCI device whose resources were previously reserved
3792  * @bars: Bitmask of BARs to be released
3793  *
3794  * Release selected PCI I/O and memory resources previously reserved.
3795  * Call this function only after all use of the PCI regions has ceased.
3796  */
3797 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3798 {
3799 	int i;
3800 
3801 	for (i = 0; i < PCI_STD_NUM_BARS; i++)
3802 		if (bars & (1 << i))
3803 			pci_release_region(pdev, i);
3804 }
3805 EXPORT_SYMBOL(pci_release_selected_regions);
3806 
3807 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3808 					  const char *res_name, int excl)
3809 {
3810 	int i;
3811 
3812 	for (i = 0; i < PCI_STD_NUM_BARS; i++)
3813 		if (bars & (1 << i))
3814 			if (__pci_request_region(pdev, i, res_name, excl))
3815 				goto err_out;
3816 	return 0;
3817 
3818 err_out:
3819 	while (--i >= 0)
3820 		if (bars & (1 << i))
3821 			pci_release_region(pdev, i);
3822 
3823 	return -EBUSY;
3824 }
3825 
3826 
3827 /**
3828  * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3829  * @pdev: PCI device whose resources are to be reserved
3830  * @bars: Bitmask of BARs to be requested
3831  * @res_name: Name to be associated with resource
3832  */
3833 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3834 				 const char *res_name)
3835 {
3836 	return __pci_request_selected_regions(pdev, bars, res_name, 0);
3837 }
3838 EXPORT_SYMBOL(pci_request_selected_regions);
3839 
3840 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3841 					   const char *res_name)
3842 {
3843 	return __pci_request_selected_regions(pdev, bars, res_name,
3844 			IORESOURCE_EXCLUSIVE);
3845 }
3846 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3847 
3848 /**
3849  * pci_release_regions - Release reserved PCI I/O and memory resources
3850  * @pdev: PCI device whose resources were previously reserved by
3851  *	  pci_request_regions()
3852  *
3853  * Releases all PCI I/O and memory resources previously reserved by a
3854  * successful call to pci_request_regions().  Call this function only
3855  * after all use of the PCI regions has ceased.
3856  */
3857 
3858 void pci_release_regions(struct pci_dev *pdev)
3859 {
3860 	pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
3861 }
3862 EXPORT_SYMBOL(pci_release_regions);
3863 
3864 /**
3865  * pci_request_regions - Reserve PCI I/O and memory resources
3866  * @pdev: PCI device whose resources are to be reserved
3867  * @res_name: Name to be associated with resource.
3868  *
3869  * Mark all PCI regions associated with PCI device @pdev as
3870  * being reserved by owner @res_name.  Do not access any
3871  * address inside the PCI regions unless this call returns
3872  * successfully.
3873  *
3874  * Returns 0 on success, or %EBUSY on error.  A warning
3875  * message is also printed on failure.
3876  */
3877 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
3878 {
3879 	return pci_request_selected_regions(pdev,
3880 			((1 << PCI_STD_NUM_BARS) - 1), res_name);
3881 }
3882 EXPORT_SYMBOL(pci_request_regions);
3883 
3884 /**
3885  * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
3886  * @pdev: PCI device whose resources are to be reserved
3887  * @res_name: Name to be associated with resource.
3888  *
3889  * Mark all PCI regions associated with PCI device @pdev as being reserved
3890  * by owner @res_name.  Do not access any address inside the PCI regions
3891  * unless this call returns successfully.
3892  *
3893  * pci_request_regions_exclusive() will mark the region so that /dev/mem
3894  * and the sysfs MMIO access will not be allowed.
3895  *
3896  * Returns 0 on success, or %EBUSY on error.  A warning message is also
3897  * printed on failure.
3898  */
3899 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3900 {
3901 	return pci_request_selected_regions_exclusive(pdev,
3902 				((1 << PCI_STD_NUM_BARS) - 1), res_name);
3903 }
3904 EXPORT_SYMBOL(pci_request_regions_exclusive);
3905 
3906 /*
3907  * Record the PCI IO range (expressed as CPU physical address + size).
3908  * Return a negative value if an error has occurred, zero otherwise
3909  */
3910 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
3911 			resource_size_t	size)
3912 {
3913 	int ret = 0;
3914 #ifdef PCI_IOBASE
3915 	struct logic_pio_hwaddr *range;
3916 
3917 	if (!size || addr + size < addr)
3918 		return -EINVAL;
3919 
3920 	range = kzalloc(sizeof(*range), GFP_ATOMIC);
3921 	if (!range)
3922 		return -ENOMEM;
3923 
3924 	range->fwnode = fwnode;
3925 	range->size = size;
3926 	range->hw_start = addr;
3927 	range->flags = LOGIC_PIO_CPU_MMIO;
3928 
3929 	ret = logic_pio_register_range(range);
3930 	if (ret)
3931 		kfree(range);
3932 #endif
3933 
3934 	return ret;
3935 }
3936 
3937 phys_addr_t pci_pio_to_address(unsigned long pio)
3938 {
3939 	phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
3940 
3941 #ifdef PCI_IOBASE
3942 	if (pio >= MMIO_UPPER_LIMIT)
3943 		return address;
3944 
3945 	address = logic_pio_to_hwaddr(pio);
3946 #endif
3947 
3948 	return address;
3949 }
3950 
3951 unsigned long __weak pci_address_to_pio(phys_addr_t address)
3952 {
3953 #ifdef PCI_IOBASE
3954 	return logic_pio_trans_cpuaddr(address);
3955 #else
3956 	if (address > IO_SPACE_LIMIT)
3957 		return (unsigned long)-1;
3958 
3959 	return (unsigned long) address;
3960 #endif
3961 }
3962 
3963 /**
3964  * pci_remap_iospace - Remap the memory mapped I/O space
3965  * @res: Resource describing the I/O space
3966  * @phys_addr: physical address of range to be mapped
3967  *
3968  * Remap the memory mapped I/O space described by the @res and the CPU
3969  * physical address @phys_addr into virtual address space.  Only
3970  * architectures that have memory mapped IO functions defined (and the
3971  * PCI_IOBASE value defined) should call this function.
3972  */
3973 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
3974 {
3975 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3976 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3977 
3978 	if (!(res->flags & IORESOURCE_IO))
3979 		return -EINVAL;
3980 
3981 	if (res->end > IO_SPACE_LIMIT)
3982 		return -EINVAL;
3983 
3984 	return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
3985 				  pgprot_device(PAGE_KERNEL));
3986 #else
3987 	/*
3988 	 * This architecture does not have memory mapped I/O space,
3989 	 * so this function should never be called
3990 	 */
3991 	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
3992 	return -ENODEV;
3993 #endif
3994 }
3995 EXPORT_SYMBOL(pci_remap_iospace);
3996 
3997 /**
3998  * pci_unmap_iospace - Unmap the memory mapped I/O space
3999  * @res: resource to be unmapped
4000  *
4001  * Unmap the CPU virtual address @res from virtual address space.  Only
4002  * architectures that have memory mapped IO functions defined (and the
4003  * PCI_IOBASE value defined) should call this function.
4004  */
4005 void pci_unmap_iospace(struct resource *res)
4006 {
4007 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4008 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4009 
4010 	unmap_kernel_range(vaddr, resource_size(res));
4011 #endif
4012 }
4013 EXPORT_SYMBOL(pci_unmap_iospace);
4014 
4015 static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
4016 {
4017 	struct resource **res = ptr;
4018 
4019 	pci_unmap_iospace(*res);
4020 }
4021 
4022 /**
4023  * devm_pci_remap_iospace - Managed pci_remap_iospace()
4024  * @dev: Generic device to remap IO address for
4025  * @res: Resource describing the I/O space
4026  * @phys_addr: physical address of range to be mapped
4027  *
4028  * Managed pci_remap_iospace().  Map is automatically unmapped on driver
4029  * detach.
4030  */
4031 int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4032 			   phys_addr_t phys_addr)
4033 {
4034 	const struct resource **ptr;
4035 	int error;
4036 
4037 	ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4038 	if (!ptr)
4039 		return -ENOMEM;
4040 
4041 	error = pci_remap_iospace(res, phys_addr);
4042 	if (error) {
4043 		devres_free(ptr);
4044 	} else	{
4045 		*ptr = res;
4046 		devres_add(dev, ptr);
4047 	}
4048 
4049 	return error;
4050 }
4051 EXPORT_SYMBOL(devm_pci_remap_iospace);
4052 
4053 /**
4054  * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4055  * @dev: Generic device to remap IO address for
4056  * @offset: Resource address to map
4057  * @size: Size of map
4058  *
4059  * Managed pci_remap_cfgspace().  Map is automatically unmapped on driver
4060  * detach.
4061  */
4062 void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4063 				      resource_size_t offset,
4064 				      resource_size_t size)
4065 {
4066 	void __iomem **ptr, *addr;
4067 
4068 	ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4069 	if (!ptr)
4070 		return NULL;
4071 
4072 	addr = pci_remap_cfgspace(offset, size);
4073 	if (addr) {
4074 		*ptr = addr;
4075 		devres_add(dev, ptr);
4076 	} else
4077 		devres_free(ptr);
4078 
4079 	return addr;
4080 }
4081 EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4082 
4083 /**
4084  * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4085  * @dev: generic device to handle the resource for
4086  * @res: configuration space resource to be handled
4087  *
4088  * Checks that a resource is a valid memory region, requests the memory
4089  * region and ioremaps with pci_remap_cfgspace() API that ensures the
4090  * proper PCI configuration space memory attributes are guaranteed.
4091  *
4092  * All operations are managed and will be undone on driver detach.
4093  *
4094  * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4095  * on failure. Usage example::
4096  *
4097  *	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4098  *	base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4099  *	if (IS_ERR(base))
4100  *		return PTR_ERR(base);
4101  */
4102 void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4103 					  struct resource *res)
4104 {
4105 	resource_size_t size;
4106 	const char *name;
4107 	void __iomem *dest_ptr;
4108 
4109 	BUG_ON(!dev);
4110 
4111 	if (!res || resource_type(res) != IORESOURCE_MEM) {
4112 		dev_err(dev, "invalid resource\n");
4113 		return IOMEM_ERR_PTR(-EINVAL);
4114 	}
4115 
4116 	size = resource_size(res);
4117 	name = res->name ?: dev_name(dev);
4118 
4119 	if (!devm_request_mem_region(dev, res->start, size, name)) {
4120 		dev_err(dev, "can't request region for resource %pR\n", res);
4121 		return IOMEM_ERR_PTR(-EBUSY);
4122 	}
4123 
4124 	dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4125 	if (!dest_ptr) {
4126 		dev_err(dev, "ioremap failed for resource %pR\n", res);
4127 		devm_release_mem_region(dev, res->start, size);
4128 		dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4129 	}
4130 
4131 	return dest_ptr;
4132 }
4133 EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4134 
4135 static void __pci_set_master(struct pci_dev *dev, bool enable)
4136 {
4137 	u16 old_cmd, cmd;
4138 
4139 	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4140 	if (enable)
4141 		cmd = old_cmd | PCI_COMMAND_MASTER;
4142 	else
4143 		cmd = old_cmd & ~PCI_COMMAND_MASTER;
4144 	if (cmd != old_cmd) {
4145 		pci_dbg(dev, "%s bus mastering\n",
4146 			enable ? "enabling" : "disabling");
4147 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4148 	}
4149 	dev->is_busmaster = enable;
4150 }
4151 
4152 /**
4153  * pcibios_setup - process "pci=" kernel boot arguments
4154  * @str: string used to pass in "pci=" kernel boot arguments
4155  *
4156  * Process kernel boot arguments.  This is the default implementation.
4157  * Architecture specific implementations can override this as necessary.
4158  */
4159 char * __weak __init pcibios_setup(char *str)
4160 {
4161 	return str;
4162 }
4163 
4164 /**
4165  * pcibios_set_master - enable PCI bus-mastering for device dev
4166  * @dev: the PCI device to enable
4167  *
4168  * Enables PCI bus-mastering for the device.  This is the default
4169  * implementation.  Architecture specific implementations can override
4170  * this if necessary.
4171  */
4172 void __weak pcibios_set_master(struct pci_dev *dev)
4173 {
4174 	u8 lat;
4175 
4176 	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4177 	if (pci_is_pcie(dev))
4178 		return;
4179 
4180 	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4181 	if (lat < 16)
4182 		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4183 	else if (lat > pcibios_max_latency)
4184 		lat = pcibios_max_latency;
4185 	else
4186 		return;
4187 
4188 	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4189 }
4190 
4191 /**
4192  * pci_set_master - enables bus-mastering for device dev
4193  * @dev: the PCI device to enable
4194  *
4195  * Enables bus-mastering on the device and calls pcibios_set_master()
4196  * to do the needed arch specific settings.
4197  */
4198 void pci_set_master(struct pci_dev *dev)
4199 {
4200 	__pci_set_master(dev, true);
4201 	pcibios_set_master(dev);
4202 }
4203 EXPORT_SYMBOL(pci_set_master);
4204 
4205 /**
4206  * pci_clear_master - disables bus-mastering for device dev
4207  * @dev: the PCI device to disable
4208  */
4209 void pci_clear_master(struct pci_dev *dev)
4210 {
4211 	__pci_set_master(dev, false);
4212 }
4213 EXPORT_SYMBOL(pci_clear_master);
4214 
4215 /**
4216  * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4217  * @dev: the PCI device for which MWI is to be enabled
4218  *
4219  * Helper function for pci_set_mwi.
4220  * Originally copied from drivers/net/acenic.c.
4221  * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4222  *
4223  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4224  */
4225 int pci_set_cacheline_size(struct pci_dev *dev)
4226 {
4227 	u8 cacheline_size;
4228 
4229 	if (!pci_cache_line_size)
4230 		return -EINVAL;
4231 
4232 	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4233 	   equal to or multiple of the right value. */
4234 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4235 	if (cacheline_size >= pci_cache_line_size &&
4236 	    (cacheline_size % pci_cache_line_size) == 0)
4237 		return 0;
4238 
4239 	/* Write the correct value. */
4240 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4241 	/* Read it back. */
4242 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4243 	if (cacheline_size == pci_cache_line_size)
4244 		return 0;
4245 
4246 	pci_info(dev, "cache line size of %d is not supported\n",
4247 		   pci_cache_line_size << 2);
4248 
4249 	return -EINVAL;
4250 }
4251 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4252 
4253 /**
4254  * pci_set_mwi - enables memory-write-invalidate PCI transaction
4255  * @dev: the PCI device for which MWI is enabled
4256  *
4257  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4258  *
4259  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4260  */
4261 int pci_set_mwi(struct pci_dev *dev)
4262 {
4263 #ifdef PCI_DISABLE_MWI
4264 	return 0;
4265 #else
4266 	int rc;
4267 	u16 cmd;
4268 
4269 	rc = pci_set_cacheline_size(dev);
4270 	if (rc)
4271 		return rc;
4272 
4273 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4274 	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4275 		pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4276 		cmd |= PCI_COMMAND_INVALIDATE;
4277 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4278 	}
4279 	return 0;
4280 #endif
4281 }
4282 EXPORT_SYMBOL(pci_set_mwi);
4283 
4284 /**
4285  * pcim_set_mwi - a device-managed pci_set_mwi()
4286  * @dev: the PCI device for which MWI is enabled
4287  *
4288  * Managed pci_set_mwi().
4289  *
4290  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4291  */
4292 int pcim_set_mwi(struct pci_dev *dev)
4293 {
4294 	struct pci_devres *dr;
4295 
4296 	dr = find_pci_dr(dev);
4297 	if (!dr)
4298 		return -ENOMEM;
4299 
4300 	dr->mwi = 1;
4301 	return pci_set_mwi(dev);
4302 }
4303 EXPORT_SYMBOL(pcim_set_mwi);
4304 
4305 /**
4306  * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4307  * @dev: the PCI device for which MWI is enabled
4308  *
4309  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4310  * Callers are not required to check the return value.
4311  *
4312  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4313  */
4314 int pci_try_set_mwi(struct pci_dev *dev)
4315 {
4316 #ifdef PCI_DISABLE_MWI
4317 	return 0;
4318 #else
4319 	return pci_set_mwi(dev);
4320 #endif
4321 }
4322 EXPORT_SYMBOL(pci_try_set_mwi);
4323 
4324 /**
4325  * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4326  * @dev: the PCI device to disable
4327  *
4328  * Disables PCI Memory-Write-Invalidate transaction on the device
4329  */
4330 void pci_clear_mwi(struct pci_dev *dev)
4331 {
4332 #ifndef PCI_DISABLE_MWI
4333 	u16 cmd;
4334 
4335 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4336 	if (cmd & PCI_COMMAND_INVALIDATE) {
4337 		cmd &= ~PCI_COMMAND_INVALIDATE;
4338 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4339 	}
4340 #endif
4341 }
4342 EXPORT_SYMBOL(pci_clear_mwi);
4343 
4344 /**
4345  * pci_intx - enables/disables PCI INTx for device dev
4346  * @pdev: the PCI device to operate on
4347  * @enable: boolean: whether to enable or disable PCI INTx
4348  *
4349  * Enables/disables PCI INTx for device @pdev
4350  */
4351 void pci_intx(struct pci_dev *pdev, int enable)
4352 {
4353 	u16 pci_command, new;
4354 
4355 	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4356 
4357 	if (enable)
4358 		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4359 	else
4360 		new = pci_command | PCI_COMMAND_INTX_DISABLE;
4361 
4362 	if (new != pci_command) {
4363 		struct pci_devres *dr;
4364 
4365 		pci_write_config_word(pdev, PCI_COMMAND, new);
4366 
4367 		dr = find_pci_dr(pdev);
4368 		if (dr && !dr->restore_intx) {
4369 			dr->restore_intx = 1;
4370 			dr->orig_intx = !enable;
4371 		}
4372 	}
4373 }
4374 EXPORT_SYMBOL_GPL(pci_intx);
4375 
4376 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4377 {
4378 	struct pci_bus *bus = dev->bus;
4379 	bool mask_updated = true;
4380 	u32 cmd_status_dword;
4381 	u16 origcmd, newcmd;
4382 	unsigned long flags;
4383 	bool irq_pending;
4384 
4385 	/*
4386 	 * We do a single dword read to retrieve both command and status.
4387 	 * Document assumptions that make this possible.
4388 	 */
4389 	BUILD_BUG_ON(PCI_COMMAND % 4);
4390 	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4391 
4392 	raw_spin_lock_irqsave(&pci_lock, flags);
4393 
4394 	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4395 
4396 	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4397 
4398 	/*
4399 	 * Check interrupt status register to see whether our device
4400 	 * triggered the interrupt (when masking) or the next IRQ is
4401 	 * already pending (when unmasking).
4402 	 */
4403 	if (mask != irq_pending) {
4404 		mask_updated = false;
4405 		goto done;
4406 	}
4407 
4408 	origcmd = cmd_status_dword;
4409 	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4410 	if (mask)
4411 		newcmd |= PCI_COMMAND_INTX_DISABLE;
4412 	if (newcmd != origcmd)
4413 		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4414 
4415 done:
4416 	raw_spin_unlock_irqrestore(&pci_lock, flags);
4417 
4418 	return mask_updated;
4419 }
4420 
4421 /**
4422  * pci_check_and_mask_intx - mask INTx on pending interrupt
4423  * @dev: the PCI device to operate on
4424  *
4425  * Check if the device dev has its INTx line asserted, mask it and return
4426  * true in that case. False is returned if no interrupt was pending.
4427  */
4428 bool pci_check_and_mask_intx(struct pci_dev *dev)
4429 {
4430 	return pci_check_and_set_intx_mask(dev, true);
4431 }
4432 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4433 
4434 /**
4435  * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4436  * @dev: the PCI device to operate on
4437  *
4438  * Check if the device dev has its INTx line asserted, unmask it if not and
4439  * return true. False is returned and the mask remains active if there was
4440  * still an interrupt pending.
4441  */
4442 bool pci_check_and_unmask_intx(struct pci_dev *dev)
4443 {
4444 	return pci_check_and_set_intx_mask(dev, false);
4445 }
4446 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4447 
4448 /**
4449  * pci_wait_for_pending_transaction - wait for pending transaction
4450  * @dev: the PCI device to operate on
4451  *
4452  * Return 0 if transaction is pending 1 otherwise.
4453  */
4454 int pci_wait_for_pending_transaction(struct pci_dev *dev)
4455 {
4456 	if (!pci_is_pcie(dev))
4457 		return 1;
4458 
4459 	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4460 				    PCI_EXP_DEVSTA_TRPND);
4461 }
4462 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4463 
4464 /**
4465  * pcie_has_flr - check if a device supports function level resets
4466  * @dev: device to check
4467  *
4468  * Returns true if the device advertises support for PCIe function level
4469  * resets.
4470  */
4471 bool pcie_has_flr(struct pci_dev *dev)
4472 {
4473 	u32 cap;
4474 
4475 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4476 		return false;
4477 
4478 	pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
4479 	return cap & PCI_EXP_DEVCAP_FLR;
4480 }
4481 EXPORT_SYMBOL_GPL(pcie_has_flr);
4482 
4483 /**
4484  * pcie_flr - initiate a PCIe function level reset
4485  * @dev: device to reset
4486  *
4487  * Initiate a function level reset on @dev.  The caller should ensure the
4488  * device supports FLR before calling this function, e.g. by using the
4489  * pcie_has_flr() helper.
4490  */
4491 int pcie_flr(struct pci_dev *dev)
4492 {
4493 	if (!pci_wait_for_pending_transaction(dev))
4494 		pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4495 
4496 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4497 
4498 	if (dev->imm_ready)
4499 		return 0;
4500 
4501 	/*
4502 	 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4503 	 * 100ms, but may silently discard requests while the FLR is in
4504 	 * progress.  Wait 100ms before trying to access the device.
4505 	 */
4506 	msleep(100);
4507 
4508 	return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4509 }
4510 EXPORT_SYMBOL_GPL(pcie_flr);
4511 
4512 static int pci_af_flr(struct pci_dev *dev, int probe)
4513 {
4514 	int pos;
4515 	u8 cap;
4516 
4517 	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4518 	if (!pos)
4519 		return -ENOTTY;
4520 
4521 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4522 		return -ENOTTY;
4523 
4524 	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4525 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4526 		return -ENOTTY;
4527 
4528 	if (probe)
4529 		return 0;
4530 
4531 	/*
4532 	 * Wait for Transaction Pending bit to clear.  A word-aligned test
4533 	 * is used, so we use the control offset rather than status and shift
4534 	 * the test bit to match.
4535 	 */
4536 	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4537 				 PCI_AF_STATUS_TP << 8))
4538 		pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4539 
4540 	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4541 
4542 	if (dev->imm_ready)
4543 		return 0;
4544 
4545 	/*
4546 	 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4547 	 * updated 27 July 2006; a device must complete an FLR within
4548 	 * 100ms, but may silently discard requests while the FLR is in
4549 	 * progress.  Wait 100ms before trying to access the device.
4550 	 */
4551 	msleep(100);
4552 
4553 	return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4554 }
4555 
4556 /**
4557  * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4558  * @dev: Device to reset.
4559  * @probe: If set, only check if the device can be reset this way.
4560  *
4561  * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4562  * unset, it will be reinitialized internally when going from PCI_D3hot to
4563  * PCI_D0.  If that's the case and the device is not in a low-power state
4564  * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4565  *
4566  * NOTE: This causes the caller to sleep for twice the device power transition
4567  * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4568  * by default (i.e. unless the @dev's d3_delay field has a different value).
4569  * Moreover, only devices in D0 can be reset by this function.
4570  */
4571 static int pci_pm_reset(struct pci_dev *dev, int probe)
4572 {
4573 	u16 csr;
4574 
4575 	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4576 		return -ENOTTY;
4577 
4578 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4579 	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4580 		return -ENOTTY;
4581 
4582 	if (probe)
4583 		return 0;
4584 
4585 	if (dev->current_state != PCI_D0)
4586 		return -EINVAL;
4587 
4588 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4589 	csr |= PCI_D3hot;
4590 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4591 	pci_dev_d3_sleep(dev);
4592 
4593 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4594 	csr |= PCI_D0;
4595 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4596 	pci_dev_d3_sleep(dev);
4597 
4598 	return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4599 }
4600 
4601 /**
4602  * pcie_wait_for_link_delay - Wait until link is active or inactive
4603  * @pdev: Bridge device
4604  * @active: waiting for active or inactive?
4605  * @delay: Delay to wait after link has become active (in ms)
4606  *
4607  * Use this to wait till link becomes active or inactive.
4608  */
4609 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4610 				     int delay)
4611 {
4612 	int timeout = 1000;
4613 	bool ret;
4614 	u16 lnk_status;
4615 
4616 	/*
4617 	 * Some controllers might not implement link active reporting. In this
4618 	 * case, we wait for 1000 + 100 ms.
4619 	 */
4620 	if (!pdev->link_active_reporting) {
4621 		msleep(1100);
4622 		return true;
4623 	}
4624 
4625 	/*
4626 	 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4627 	 * after which we should expect an link active if the reset was
4628 	 * successful. If so, software must wait a minimum 100ms before sending
4629 	 * configuration requests to devices downstream this port.
4630 	 *
4631 	 * If the link fails to activate, either the device was physically
4632 	 * removed or the link is permanently failed.
4633 	 */
4634 	if (active)
4635 		msleep(20);
4636 	for (;;) {
4637 		pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
4638 		ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA);
4639 		if (ret == active)
4640 			break;
4641 		if (timeout <= 0)
4642 			break;
4643 		msleep(10);
4644 		timeout -= 10;
4645 	}
4646 	if (active && ret)
4647 		msleep(delay);
4648 	else if (ret != active)
4649 		pci_info(pdev, "Data Link Layer Link Active not %s in 1000 msec\n",
4650 			active ? "set" : "cleared");
4651 	return ret == active;
4652 }
4653 
4654 /**
4655  * pcie_wait_for_link - Wait until link is active or inactive
4656  * @pdev: Bridge device
4657  * @active: waiting for active or inactive?
4658  *
4659  * Use this to wait till link becomes active or inactive.
4660  */
4661 bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4662 {
4663 	return pcie_wait_for_link_delay(pdev, active, 100);
4664 }
4665 
4666 /*
4667  * Find maximum D3cold delay required by all the devices on the bus.  The
4668  * spec says 100 ms, but firmware can lower it and we allow drivers to
4669  * increase it as well.
4670  *
4671  * Called with @pci_bus_sem locked for reading.
4672  */
4673 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
4674 {
4675 	const struct pci_dev *pdev;
4676 	int min_delay = 100;
4677 	int max_delay = 0;
4678 
4679 	list_for_each_entry(pdev, &bus->devices, bus_list) {
4680 		if (pdev->d3cold_delay < min_delay)
4681 			min_delay = pdev->d3cold_delay;
4682 		if (pdev->d3cold_delay > max_delay)
4683 			max_delay = pdev->d3cold_delay;
4684 	}
4685 
4686 	return max(min_delay, max_delay);
4687 }
4688 
4689 /**
4690  * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4691  * @dev: PCI bridge
4692  *
4693  * Handle necessary delays before access to the devices on the secondary
4694  * side of the bridge are permitted after D3cold to D0 transition.
4695  *
4696  * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4697  * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4698  * 4.3.2.
4699  */
4700 void pci_bridge_wait_for_secondary_bus(struct pci_dev *dev)
4701 {
4702 	struct pci_dev *child;
4703 	int delay;
4704 
4705 	if (pci_dev_is_disconnected(dev))
4706 		return;
4707 
4708 	if (!pci_is_bridge(dev) || !dev->bridge_d3)
4709 		return;
4710 
4711 	down_read(&pci_bus_sem);
4712 
4713 	/*
4714 	 * We only deal with devices that are present currently on the bus.
4715 	 * For any hot-added devices the access delay is handled in pciehp
4716 	 * board_added(). In case of ACPI hotplug the firmware is expected
4717 	 * to configure the devices before OS is notified.
4718 	 */
4719 	if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
4720 		up_read(&pci_bus_sem);
4721 		return;
4722 	}
4723 
4724 	/* Take d3cold_delay requirements into account */
4725 	delay = pci_bus_max_d3cold_delay(dev->subordinate);
4726 	if (!delay) {
4727 		up_read(&pci_bus_sem);
4728 		return;
4729 	}
4730 
4731 	child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
4732 				 bus_list);
4733 	up_read(&pci_bus_sem);
4734 
4735 	/*
4736 	 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
4737 	 * accessing the device after reset (that is 1000 ms + 100 ms). In
4738 	 * practice this should not be needed because we don't do power
4739 	 * management for them (see pci_bridge_d3_possible()).
4740 	 */
4741 	if (!pci_is_pcie(dev)) {
4742 		pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
4743 		msleep(1000 + delay);
4744 		return;
4745 	}
4746 
4747 	/*
4748 	 * For PCIe downstream and root ports that do not support speeds
4749 	 * greater than 5 GT/s need to wait minimum 100 ms. For higher
4750 	 * speeds (gen3) we need to wait first for the data link layer to
4751 	 * become active.
4752 	 *
4753 	 * However, 100 ms is the minimum and the PCIe spec says the
4754 	 * software must allow at least 1s before it can determine that the
4755 	 * device that did not respond is a broken device. There is
4756 	 * evidence that 100 ms is not always enough, for example certain
4757 	 * Titan Ridge xHCI controller does not always respond to
4758 	 * configuration requests if we only wait for 100 ms (see
4759 	 * https://bugzilla.kernel.org/show_bug.cgi?id=203885).
4760 	 *
4761 	 * Therefore we wait for 100 ms and check for the device presence.
4762 	 * If it is still not present give it an additional 100 ms.
4763 	 */
4764 	if (!pcie_downstream_port(dev))
4765 		return;
4766 
4767 	if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
4768 		pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
4769 		msleep(delay);
4770 	} else {
4771 		pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
4772 			delay);
4773 		if (!pcie_wait_for_link_delay(dev, true, delay)) {
4774 			/* Did not train, no need to wait any further */
4775 			return;
4776 		}
4777 	}
4778 
4779 	if (!pci_device_is_present(child)) {
4780 		pci_dbg(child, "waiting additional %d ms to become accessible\n", delay);
4781 		msleep(delay);
4782 	}
4783 }
4784 
4785 void pci_reset_secondary_bus(struct pci_dev *dev)
4786 {
4787 	u16 ctrl;
4788 
4789 	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4790 	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4791 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4792 
4793 	/*
4794 	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
4795 	 * this to 2ms to ensure that we meet the minimum requirement.
4796 	 */
4797 	msleep(2);
4798 
4799 	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4800 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4801 
4802 	/*
4803 	 * Trhfa for conventional PCI is 2^25 clock cycles.
4804 	 * Assuming a minimum 33MHz clock this results in a 1s
4805 	 * delay before we can consider subordinate devices to
4806 	 * be re-initialized.  PCIe has some ways to shorten this,
4807 	 * but we don't make use of them yet.
4808 	 */
4809 	ssleep(1);
4810 }
4811 
4812 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4813 {
4814 	pci_reset_secondary_bus(dev);
4815 }
4816 
4817 /**
4818  * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
4819  * @dev: Bridge device
4820  *
4821  * Use the bridge control register to assert reset on the secondary bus.
4822  * Devices on the secondary bus are left in power-on state.
4823  */
4824 int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
4825 {
4826 	pcibios_reset_secondary_bus(dev);
4827 
4828 	return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS);
4829 }
4830 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
4831 
4832 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
4833 {
4834 	struct pci_dev *pdev;
4835 
4836 	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4837 	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4838 		return -ENOTTY;
4839 
4840 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4841 		if (pdev != dev)
4842 			return -ENOTTY;
4843 
4844 	if (probe)
4845 		return 0;
4846 
4847 	return pci_bridge_secondary_bus_reset(dev->bus->self);
4848 }
4849 
4850 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
4851 {
4852 	int rc = -ENOTTY;
4853 
4854 	if (!hotplug || !try_module_get(hotplug->owner))
4855 		return rc;
4856 
4857 	if (hotplug->ops->reset_slot)
4858 		rc = hotplug->ops->reset_slot(hotplug, probe);
4859 
4860 	module_put(hotplug->owner);
4861 
4862 	return rc;
4863 }
4864 
4865 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
4866 {
4867 	struct pci_dev *pdev;
4868 
4869 	if (dev->subordinate || !dev->slot ||
4870 	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4871 		return -ENOTTY;
4872 
4873 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4874 		if (pdev != dev && pdev->slot == dev->slot)
4875 			return -ENOTTY;
4876 
4877 	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
4878 }
4879 
4880 static void pci_dev_lock(struct pci_dev *dev)
4881 {
4882 	pci_cfg_access_lock(dev);
4883 	/* block PM suspend, driver probe, etc. */
4884 	device_lock(&dev->dev);
4885 }
4886 
4887 /* Return 1 on successful lock, 0 on contention */
4888 static int pci_dev_trylock(struct pci_dev *dev)
4889 {
4890 	if (pci_cfg_access_trylock(dev)) {
4891 		if (device_trylock(&dev->dev))
4892 			return 1;
4893 		pci_cfg_access_unlock(dev);
4894 	}
4895 
4896 	return 0;
4897 }
4898 
4899 static void pci_dev_unlock(struct pci_dev *dev)
4900 {
4901 	device_unlock(&dev->dev);
4902 	pci_cfg_access_unlock(dev);
4903 }
4904 
4905 static void pci_dev_save_and_disable(struct pci_dev *dev)
4906 {
4907 	const struct pci_error_handlers *err_handler =
4908 			dev->driver ? dev->driver->err_handler : NULL;
4909 
4910 	/*
4911 	 * dev->driver->err_handler->reset_prepare() is protected against
4912 	 * races with ->remove() by the device lock, which must be held by
4913 	 * the caller.
4914 	 */
4915 	if (err_handler && err_handler->reset_prepare)
4916 		err_handler->reset_prepare(dev);
4917 
4918 	/*
4919 	 * Wake-up device prior to save.  PM registers default to D0 after
4920 	 * reset and a simple register restore doesn't reliably return
4921 	 * to a non-D0 state anyway.
4922 	 */
4923 	pci_set_power_state(dev, PCI_D0);
4924 
4925 	pci_save_state(dev);
4926 	/*
4927 	 * Disable the device by clearing the Command register, except for
4928 	 * INTx-disable which is set.  This not only disables MMIO and I/O port
4929 	 * BARs, but also prevents the device from being Bus Master, preventing
4930 	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
4931 	 * compliant devices, INTx-disable prevents legacy interrupts.
4932 	 */
4933 	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
4934 }
4935 
4936 static void pci_dev_restore(struct pci_dev *dev)
4937 {
4938 	const struct pci_error_handlers *err_handler =
4939 			dev->driver ? dev->driver->err_handler : NULL;
4940 
4941 	pci_restore_state(dev);
4942 
4943 	/*
4944 	 * dev->driver->err_handler->reset_done() is protected against
4945 	 * races with ->remove() by the device lock, which must be held by
4946 	 * the caller.
4947 	 */
4948 	if (err_handler && err_handler->reset_done)
4949 		err_handler->reset_done(dev);
4950 }
4951 
4952 /**
4953  * __pci_reset_function_locked - reset a PCI device function while holding
4954  * the @dev mutex lock.
4955  * @dev: PCI device to reset
4956  *
4957  * Some devices allow an individual function to be reset without affecting
4958  * other functions in the same device.  The PCI device must be responsive
4959  * to PCI config space in order to use this function.
4960  *
4961  * The device function is presumed to be unused and the caller is holding
4962  * the device mutex lock when this function is called.
4963  *
4964  * Resetting the device will make the contents of PCI configuration space
4965  * random, so any caller of this must be prepared to reinitialise the
4966  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4967  * etc.
4968  *
4969  * Returns 0 if the device function was successfully reset or negative if the
4970  * device doesn't support resetting a single function.
4971  */
4972 int __pci_reset_function_locked(struct pci_dev *dev)
4973 {
4974 	int rc;
4975 
4976 	might_sleep();
4977 
4978 	/*
4979 	 * A reset method returns -ENOTTY if it doesn't support this device
4980 	 * and we should try the next method.
4981 	 *
4982 	 * If it returns 0 (success), we're finished.  If it returns any
4983 	 * other error, we're also finished: this indicates that further
4984 	 * reset mechanisms might be broken on the device.
4985 	 */
4986 	rc = pci_dev_specific_reset(dev, 0);
4987 	if (rc != -ENOTTY)
4988 		return rc;
4989 	if (pcie_has_flr(dev)) {
4990 		rc = pcie_flr(dev);
4991 		if (rc != -ENOTTY)
4992 			return rc;
4993 	}
4994 	rc = pci_af_flr(dev, 0);
4995 	if (rc != -ENOTTY)
4996 		return rc;
4997 	rc = pci_pm_reset(dev, 0);
4998 	if (rc != -ENOTTY)
4999 		return rc;
5000 	rc = pci_dev_reset_slot_function(dev, 0);
5001 	if (rc != -ENOTTY)
5002 		return rc;
5003 	return pci_parent_bus_reset(dev, 0);
5004 }
5005 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5006 
5007 /**
5008  * pci_probe_reset_function - check whether the device can be safely reset
5009  * @dev: PCI device to reset
5010  *
5011  * Some devices allow an individual function to be reset without affecting
5012  * other functions in the same device.  The PCI device must be responsive
5013  * to PCI config space in order to use this function.
5014  *
5015  * Returns 0 if the device function can be reset or negative if the
5016  * device doesn't support resetting a single function.
5017  */
5018 int pci_probe_reset_function(struct pci_dev *dev)
5019 {
5020 	int rc;
5021 
5022 	might_sleep();
5023 
5024 	rc = pci_dev_specific_reset(dev, 1);
5025 	if (rc != -ENOTTY)
5026 		return rc;
5027 	if (pcie_has_flr(dev))
5028 		return 0;
5029 	rc = pci_af_flr(dev, 1);
5030 	if (rc != -ENOTTY)
5031 		return rc;
5032 	rc = pci_pm_reset(dev, 1);
5033 	if (rc != -ENOTTY)
5034 		return rc;
5035 	rc = pci_dev_reset_slot_function(dev, 1);
5036 	if (rc != -ENOTTY)
5037 		return rc;
5038 
5039 	return pci_parent_bus_reset(dev, 1);
5040 }
5041 
5042 /**
5043  * pci_reset_function - quiesce and reset a PCI device function
5044  * @dev: PCI device to reset
5045  *
5046  * Some devices allow an individual function to be reset without affecting
5047  * other functions in the same device.  The PCI device must be responsive
5048  * to PCI config space in order to use this function.
5049  *
5050  * This function does not just reset the PCI portion of a device, but
5051  * clears all the state associated with the device.  This function differs
5052  * from __pci_reset_function_locked() in that it saves and restores device state
5053  * over the reset and takes the PCI device lock.
5054  *
5055  * Returns 0 if the device function was successfully reset or negative if the
5056  * device doesn't support resetting a single function.
5057  */
5058 int pci_reset_function(struct pci_dev *dev)
5059 {
5060 	int rc;
5061 
5062 	if (!dev->reset_fn)
5063 		return -ENOTTY;
5064 
5065 	pci_dev_lock(dev);
5066 	pci_dev_save_and_disable(dev);
5067 
5068 	rc = __pci_reset_function_locked(dev);
5069 
5070 	pci_dev_restore(dev);
5071 	pci_dev_unlock(dev);
5072 
5073 	return rc;
5074 }
5075 EXPORT_SYMBOL_GPL(pci_reset_function);
5076 
5077 /**
5078  * pci_reset_function_locked - quiesce and reset a PCI device function
5079  * @dev: PCI device to reset
5080  *
5081  * Some devices allow an individual function to be reset without affecting
5082  * other functions in the same device.  The PCI device must be responsive
5083  * to PCI config space in order to use this function.
5084  *
5085  * This function does not just reset the PCI portion of a device, but
5086  * clears all the state associated with the device.  This function differs
5087  * from __pci_reset_function_locked() in that it saves and restores device state
5088  * over the reset.  It also differs from pci_reset_function() in that it
5089  * requires the PCI device lock to be held.
5090  *
5091  * Returns 0 if the device function was successfully reset or negative if the
5092  * device doesn't support resetting a single function.
5093  */
5094 int pci_reset_function_locked(struct pci_dev *dev)
5095 {
5096 	int rc;
5097 
5098 	if (!dev->reset_fn)
5099 		return -ENOTTY;
5100 
5101 	pci_dev_save_and_disable(dev);
5102 
5103 	rc = __pci_reset_function_locked(dev);
5104 
5105 	pci_dev_restore(dev);
5106 
5107 	return rc;
5108 }
5109 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5110 
5111 /**
5112  * pci_try_reset_function - quiesce and reset a PCI device function
5113  * @dev: PCI device to reset
5114  *
5115  * Same as above, except return -EAGAIN if unable to lock device.
5116  */
5117 int pci_try_reset_function(struct pci_dev *dev)
5118 {
5119 	int rc;
5120 
5121 	if (!dev->reset_fn)
5122 		return -ENOTTY;
5123 
5124 	if (!pci_dev_trylock(dev))
5125 		return -EAGAIN;
5126 
5127 	pci_dev_save_and_disable(dev);
5128 	rc = __pci_reset_function_locked(dev);
5129 	pci_dev_restore(dev);
5130 	pci_dev_unlock(dev);
5131 
5132 	return rc;
5133 }
5134 EXPORT_SYMBOL_GPL(pci_try_reset_function);
5135 
5136 /* Do any devices on or below this bus prevent a bus reset? */
5137 static bool pci_bus_resetable(struct pci_bus *bus)
5138 {
5139 	struct pci_dev *dev;
5140 
5141 
5142 	if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5143 		return false;
5144 
5145 	list_for_each_entry(dev, &bus->devices, bus_list) {
5146 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5147 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5148 			return false;
5149 	}
5150 
5151 	return true;
5152 }
5153 
5154 /* Lock devices from the top of the tree down */
5155 static void pci_bus_lock(struct pci_bus *bus)
5156 {
5157 	struct pci_dev *dev;
5158 
5159 	list_for_each_entry(dev, &bus->devices, bus_list) {
5160 		pci_dev_lock(dev);
5161 		if (dev->subordinate)
5162 			pci_bus_lock(dev->subordinate);
5163 	}
5164 }
5165 
5166 /* Unlock devices from the bottom of the tree up */
5167 static void pci_bus_unlock(struct pci_bus *bus)
5168 {
5169 	struct pci_dev *dev;
5170 
5171 	list_for_each_entry(dev, &bus->devices, bus_list) {
5172 		if (dev->subordinate)
5173 			pci_bus_unlock(dev->subordinate);
5174 		pci_dev_unlock(dev);
5175 	}
5176 }
5177 
5178 /* Return 1 on successful lock, 0 on contention */
5179 static int pci_bus_trylock(struct pci_bus *bus)
5180 {
5181 	struct pci_dev *dev;
5182 
5183 	list_for_each_entry(dev, &bus->devices, bus_list) {
5184 		if (!pci_dev_trylock(dev))
5185 			goto unlock;
5186 		if (dev->subordinate) {
5187 			if (!pci_bus_trylock(dev->subordinate)) {
5188 				pci_dev_unlock(dev);
5189 				goto unlock;
5190 			}
5191 		}
5192 	}
5193 	return 1;
5194 
5195 unlock:
5196 	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5197 		if (dev->subordinate)
5198 			pci_bus_unlock(dev->subordinate);
5199 		pci_dev_unlock(dev);
5200 	}
5201 	return 0;
5202 }
5203 
5204 /* Do any devices on or below this slot prevent a bus reset? */
5205 static bool pci_slot_resetable(struct pci_slot *slot)
5206 {
5207 	struct pci_dev *dev;
5208 
5209 	if (slot->bus->self &&
5210 	    (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5211 		return false;
5212 
5213 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5214 		if (!dev->slot || dev->slot != slot)
5215 			continue;
5216 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5217 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5218 			return false;
5219 	}
5220 
5221 	return true;
5222 }
5223 
5224 /* Lock devices from the top of the tree down */
5225 static void pci_slot_lock(struct pci_slot *slot)
5226 {
5227 	struct pci_dev *dev;
5228 
5229 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5230 		if (!dev->slot || dev->slot != slot)
5231 			continue;
5232 		pci_dev_lock(dev);
5233 		if (dev->subordinate)
5234 			pci_bus_lock(dev->subordinate);
5235 	}
5236 }
5237 
5238 /* Unlock devices from the bottom of the tree up */
5239 static void pci_slot_unlock(struct pci_slot *slot)
5240 {
5241 	struct pci_dev *dev;
5242 
5243 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5244 		if (!dev->slot || dev->slot != slot)
5245 			continue;
5246 		if (dev->subordinate)
5247 			pci_bus_unlock(dev->subordinate);
5248 		pci_dev_unlock(dev);
5249 	}
5250 }
5251 
5252 /* Return 1 on successful lock, 0 on contention */
5253 static int pci_slot_trylock(struct pci_slot *slot)
5254 {
5255 	struct pci_dev *dev;
5256 
5257 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5258 		if (!dev->slot || dev->slot != slot)
5259 			continue;
5260 		if (!pci_dev_trylock(dev))
5261 			goto unlock;
5262 		if (dev->subordinate) {
5263 			if (!pci_bus_trylock(dev->subordinate)) {
5264 				pci_dev_unlock(dev);
5265 				goto unlock;
5266 			}
5267 		}
5268 	}
5269 	return 1;
5270 
5271 unlock:
5272 	list_for_each_entry_continue_reverse(dev,
5273 					     &slot->bus->devices, bus_list) {
5274 		if (!dev->slot || dev->slot != slot)
5275 			continue;
5276 		if (dev->subordinate)
5277 			pci_bus_unlock(dev->subordinate);
5278 		pci_dev_unlock(dev);
5279 	}
5280 	return 0;
5281 }
5282 
5283 /*
5284  * Save and disable devices from the top of the tree down while holding
5285  * the @dev mutex lock for the entire tree.
5286  */
5287 static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5288 {
5289 	struct pci_dev *dev;
5290 
5291 	list_for_each_entry(dev, &bus->devices, bus_list) {
5292 		pci_dev_save_and_disable(dev);
5293 		if (dev->subordinate)
5294 			pci_bus_save_and_disable_locked(dev->subordinate);
5295 	}
5296 }
5297 
5298 /*
5299  * Restore devices from top of the tree down while holding @dev mutex lock
5300  * for the entire tree.  Parent bridges need to be restored before we can
5301  * get to subordinate devices.
5302  */
5303 static void pci_bus_restore_locked(struct pci_bus *bus)
5304 {
5305 	struct pci_dev *dev;
5306 
5307 	list_for_each_entry(dev, &bus->devices, bus_list) {
5308 		pci_dev_restore(dev);
5309 		if (dev->subordinate)
5310 			pci_bus_restore_locked(dev->subordinate);
5311 	}
5312 }
5313 
5314 /*
5315  * Save and disable devices from the top of the tree down while holding
5316  * the @dev mutex lock for the entire tree.
5317  */
5318 static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5319 {
5320 	struct pci_dev *dev;
5321 
5322 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5323 		if (!dev->slot || dev->slot != slot)
5324 			continue;
5325 		pci_dev_save_and_disable(dev);
5326 		if (dev->subordinate)
5327 			pci_bus_save_and_disable_locked(dev->subordinate);
5328 	}
5329 }
5330 
5331 /*
5332  * Restore devices from top of the tree down while holding @dev mutex lock
5333  * for the entire tree.  Parent bridges need to be restored before we can
5334  * get to subordinate devices.
5335  */
5336 static void pci_slot_restore_locked(struct pci_slot *slot)
5337 {
5338 	struct pci_dev *dev;
5339 
5340 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5341 		if (!dev->slot || dev->slot != slot)
5342 			continue;
5343 		pci_dev_restore(dev);
5344 		if (dev->subordinate)
5345 			pci_bus_restore_locked(dev->subordinate);
5346 	}
5347 }
5348 
5349 static int pci_slot_reset(struct pci_slot *slot, int probe)
5350 {
5351 	int rc;
5352 
5353 	if (!slot || !pci_slot_resetable(slot))
5354 		return -ENOTTY;
5355 
5356 	if (!probe)
5357 		pci_slot_lock(slot);
5358 
5359 	might_sleep();
5360 
5361 	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5362 
5363 	if (!probe)
5364 		pci_slot_unlock(slot);
5365 
5366 	return rc;
5367 }
5368 
5369 /**
5370  * pci_probe_reset_slot - probe whether a PCI slot can be reset
5371  * @slot: PCI slot to probe
5372  *
5373  * Return 0 if slot can be reset, negative if a slot reset is not supported.
5374  */
5375 int pci_probe_reset_slot(struct pci_slot *slot)
5376 {
5377 	return pci_slot_reset(slot, 1);
5378 }
5379 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5380 
5381 /**
5382  * __pci_reset_slot - Try to reset a PCI slot
5383  * @slot: PCI slot to reset
5384  *
5385  * A PCI bus may host multiple slots, each slot may support a reset mechanism
5386  * independent of other slots.  For instance, some slots may support slot power
5387  * control.  In the case of a 1:1 bus to slot architecture, this function may
5388  * wrap the bus reset to avoid spurious slot related events such as hotplug.
5389  * Generally a slot reset should be attempted before a bus reset.  All of the
5390  * function of the slot and any subordinate buses behind the slot are reset
5391  * through this function.  PCI config space of all devices in the slot and
5392  * behind the slot is saved before and restored after reset.
5393  *
5394  * Same as above except return -EAGAIN if the slot cannot be locked
5395  */
5396 static int __pci_reset_slot(struct pci_slot *slot)
5397 {
5398 	int rc;
5399 
5400 	rc = pci_slot_reset(slot, 1);
5401 	if (rc)
5402 		return rc;
5403 
5404 	if (pci_slot_trylock(slot)) {
5405 		pci_slot_save_and_disable_locked(slot);
5406 		might_sleep();
5407 		rc = pci_reset_hotplug_slot(slot->hotplug, 0);
5408 		pci_slot_restore_locked(slot);
5409 		pci_slot_unlock(slot);
5410 	} else
5411 		rc = -EAGAIN;
5412 
5413 	return rc;
5414 }
5415 
5416 static int pci_bus_reset(struct pci_bus *bus, int probe)
5417 {
5418 	int ret;
5419 
5420 	if (!bus->self || !pci_bus_resetable(bus))
5421 		return -ENOTTY;
5422 
5423 	if (probe)
5424 		return 0;
5425 
5426 	pci_bus_lock(bus);
5427 
5428 	might_sleep();
5429 
5430 	ret = pci_bridge_secondary_bus_reset(bus->self);
5431 
5432 	pci_bus_unlock(bus);
5433 
5434 	return ret;
5435 }
5436 
5437 /**
5438  * pci_bus_error_reset - reset the bridge's subordinate bus
5439  * @bridge: The parent device that connects to the bus to reset
5440  *
5441  * This function will first try to reset the slots on this bus if the method is
5442  * available. If slot reset fails or is not available, this will fall back to a
5443  * secondary bus reset.
5444  */
5445 int pci_bus_error_reset(struct pci_dev *bridge)
5446 {
5447 	struct pci_bus *bus = bridge->subordinate;
5448 	struct pci_slot *slot;
5449 
5450 	if (!bus)
5451 		return -ENOTTY;
5452 
5453 	mutex_lock(&pci_slot_mutex);
5454 	if (list_empty(&bus->slots))
5455 		goto bus_reset;
5456 
5457 	list_for_each_entry(slot, &bus->slots, list)
5458 		if (pci_probe_reset_slot(slot))
5459 			goto bus_reset;
5460 
5461 	list_for_each_entry(slot, &bus->slots, list)
5462 		if (pci_slot_reset(slot, 0))
5463 			goto bus_reset;
5464 
5465 	mutex_unlock(&pci_slot_mutex);
5466 	return 0;
5467 bus_reset:
5468 	mutex_unlock(&pci_slot_mutex);
5469 	return pci_bus_reset(bridge->subordinate, 0);
5470 }
5471 
5472 /**
5473  * pci_probe_reset_bus - probe whether a PCI bus can be reset
5474  * @bus: PCI bus to probe
5475  *
5476  * Return 0 if bus can be reset, negative if a bus reset is not supported.
5477  */
5478 int pci_probe_reset_bus(struct pci_bus *bus)
5479 {
5480 	return pci_bus_reset(bus, 1);
5481 }
5482 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5483 
5484 /**
5485  * __pci_reset_bus - Try to reset a PCI bus
5486  * @bus: top level PCI bus to reset
5487  *
5488  * Same as above except return -EAGAIN if the bus cannot be locked
5489  */
5490 static int __pci_reset_bus(struct pci_bus *bus)
5491 {
5492 	int rc;
5493 
5494 	rc = pci_bus_reset(bus, 1);
5495 	if (rc)
5496 		return rc;
5497 
5498 	if (pci_bus_trylock(bus)) {
5499 		pci_bus_save_and_disable_locked(bus);
5500 		might_sleep();
5501 		rc = pci_bridge_secondary_bus_reset(bus->self);
5502 		pci_bus_restore_locked(bus);
5503 		pci_bus_unlock(bus);
5504 	} else
5505 		rc = -EAGAIN;
5506 
5507 	return rc;
5508 }
5509 
5510 /**
5511  * pci_reset_bus - Try to reset a PCI bus
5512  * @pdev: top level PCI device to reset via slot/bus
5513  *
5514  * Same as above except return -EAGAIN if the bus cannot be locked
5515  */
5516 int pci_reset_bus(struct pci_dev *pdev)
5517 {
5518 	return (!pci_probe_reset_slot(pdev->slot)) ?
5519 	    __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5520 }
5521 EXPORT_SYMBOL_GPL(pci_reset_bus);
5522 
5523 /**
5524  * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5525  * @dev: PCI device to query
5526  *
5527  * Returns mmrbc: maximum designed memory read count in bytes or
5528  * appropriate error value.
5529  */
5530 int pcix_get_max_mmrbc(struct pci_dev *dev)
5531 {
5532 	int cap;
5533 	u32 stat;
5534 
5535 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5536 	if (!cap)
5537 		return -EINVAL;
5538 
5539 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5540 		return -EINVAL;
5541 
5542 	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
5543 }
5544 EXPORT_SYMBOL(pcix_get_max_mmrbc);
5545 
5546 /**
5547  * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5548  * @dev: PCI device to query
5549  *
5550  * Returns mmrbc: maximum memory read count in bytes or appropriate error
5551  * value.
5552  */
5553 int pcix_get_mmrbc(struct pci_dev *dev)
5554 {
5555 	int cap;
5556 	u16 cmd;
5557 
5558 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5559 	if (!cap)
5560 		return -EINVAL;
5561 
5562 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5563 		return -EINVAL;
5564 
5565 	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
5566 }
5567 EXPORT_SYMBOL(pcix_get_mmrbc);
5568 
5569 /**
5570  * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5571  * @dev: PCI device to query
5572  * @mmrbc: maximum memory read count in bytes
5573  *    valid values are 512, 1024, 2048, 4096
5574  *
5575  * If possible sets maximum memory read byte count, some bridges have errata
5576  * that prevent this.
5577  */
5578 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5579 {
5580 	int cap;
5581 	u32 stat, v, o;
5582 	u16 cmd;
5583 
5584 	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5585 		return -EINVAL;
5586 
5587 	v = ffs(mmrbc) - 10;
5588 
5589 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5590 	if (!cap)
5591 		return -EINVAL;
5592 
5593 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5594 		return -EINVAL;
5595 
5596 	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
5597 		return -E2BIG;
5598 
5599 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5600 		return -EINVAL;
5601 
5602 	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
5603 	if (o != v) {
5604 		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5605 			return -EIO;
5606 
5607 		cmd &= ~PCI_X_CMD_MAX_READ;
5608 		cmd |= v << 2;
5609 		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5610 			return -EIO;
5611 	}
5612 	return 0;
5613 }
5614 EXPORT_SYMBOL(pcix_set_mmrbc);
5615 
5616 /**
5617  * pcie_get_readrq - get PCI Express read request size
5618  * @dev: PCI device to query
5619  *
5620  * Returns maximum memory read request in bytes or appropriate error value.
5621  */
5622 int pcie_get_readrq(struct pci_dev *dev)
5623 {
5624 	u16 ctl;
5625 
5626 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5627 
5628 	return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5629 }
5630 EXPORT_SYMBOL(pcie_get_readrq);
5631 
5632 /**
5633  * pcie_set_readrq - set PCI Express maximum memory read request
5634  * @dev: PCI device to query
5635  * @rq: maximum memory read count in bytes
5636  *    valid values are 128, 256, 512, 1024, 2048, 4096
5637  *
5638  * If possible sets maximum memory read request in bytes
5639  */
5640 int pcie_set_readrq(struct pci_dev *dev, int rq)
5641 {
5642 	u16 v;
5643 
5644 	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
5645 		return -EINVAL;
5646 
5647 	/*
5648 	 * If using the "performance" PCIe config, we clamp the read rq
5649 	 * size to the max packet size to keep the host bridge from
5650 	 * generating requests larger than we can cope with.
5651 	 */
5652 	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
5653 		int mps = pcie_get_mps(dev);
5654 
5655 		if (mps < rq)
5656 			rq = mps;
5657 	}
5658 
5659 	v = (ffs(rq) - 8) << 12;
5660 
5661 	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5662 						  PCI_EXP_DEVCTL_READRQ, v);
5663 }
5664 EXPORT_SYMBOL(pcie_set_readrq);
5665 
5666 /**
5667  * pcie_get_mps - get PCI Express maximum payload size
5668  * @dev: PCI device to query
5669  *
5670  * Returns maximum payload size in bytes
5671  */
5672 int pcie_get_mps(struct pci_dev *dev)
5673 {
5674 	u16 ctl;
5675 
5676 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5677 
5678 	return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
5679 }
5680 EXPORT_SYMBOL(pcie_get_mps);
5681 
5682 /**
5683  * pcie_set_mps - set PCI Express maximum payload size
5684  * @dev: PCI device to query
5685  * @mps: maximum payload size in bytes
5686  *    valid values are 128, 256, 512, 1024, 2048, 4096
5687  *
5688  * If possible sets maximum payload size
5689  */
5690 int pcie_set_mps(struct pci_dev *dev, int mps)
5691 {
5692 	u16 v;
5693 
5694 	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
5695 		return -EINVAL;
5696 
5697 	v = ffs(mps) - 8;
5698 	if (v > dev->pcie_mpss)
5699 		return -EINVAL;
5700 	v <<= 5;
5701 
5702 	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5703 						  PCI_EXP_DEVCTL_PAYLOAD, v);
5704 }
5705 EXPORT_SYMBOL(pcie_set_mps);
5706 
5707 /**
5708  * pcie_bandwidth_available - determine minimum link settings of a PCIe
5709  *			      device and its bandwidth limitation
5710  * @dev: PCI device to query
5711  * @limiting_dev: storage for device causing the bandwidth limitation
5712  * @speed: storage for speed of limiting device
5713  * @width: storage for width of limiting device
5714  *
5715  * Walk up the PCI device chain and find the point where the minimum
5716  * bandwidth is available.  Return the bandwidth available there and (if
5717  * limiting_dev, speed, and width pointers are supplied) information about
5718  * that point.  The bandwidth returned is in Mb/s, i.e., megabits/second of
5719  * raw bandwidth.
5720  */
5721 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
5722 			     enum pci_bus_speed *speed,
5723 			     enum pcie_link_width *width)
5724 {
5725 	u16 lnksta;
5726 	enum pci_bus_speed next_speed;
5727 	enum pcie_link_width next_width;
5728 	u32 bw, next_bw;
5729 
5730 	if (speed)
5731 		*speed = PCI_SPEED_UNKNOWN;
5732 	if (width)
5733 		*width = PCIE_LNK_WIDTH_UNKNOWN;
5734 
5735 	bw = 0;
5736 
5737 	while (dev) {
5738 		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
5739 
5740 		next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
5741 		next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
5742 			PCI_EXP_LNKSTA_NLW_SHIFT;
5743 
5744 		next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
5745 
5746 		/* Check if current device limits the total bandwidth */
5747 		if (!bw || next_bw <= bw) {
5748 			bw = next_bw;
5749 
5750 			if (limiting_dev)
5751 				*limiting_dev = dev;
5752 			if (speed)
5753 				*speed = next_speed;
5754 			if (width)
5755 				*width = next_width;
5756 		}
5757 
5758 		dev = pci_upstream_bridge(dev);
5759 	}
5760 
5761 	return bw;
5762 }
5763 EXPORT_SYMBOL(pcie_bandwidth_available);
5764 
5765 /**
5766  * pcie_get_speed_cap - query for the PCI device's link speed capability
5767  * @dev: PCI device to query
5768  *
5769  * Query the PCI device speed capability.  Return the maximum link speed
5770  * supported by the device.
5771  */
5772 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
5773 {
5774 	u32 lnkcap2, lnkcap;
5775 
5776 	/*
5777 	 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18.  The
5778 	 * implementation note there recommends using the Supported Link
5779 	 * Speeds Vector in Link Capabilities 2 when supported.
5780 	 *
5781 	 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
5782 	 * should use the Supported Link Speeds field in Link Capabilities,
5783 	 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
5784 	 */
5785 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
5786 	if (lnkcap2) { /* PCIe r3.0-compliant */
5787 		if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_32_0GB)
5788 			return PCIE_SPEED_32_0GT;
5789 		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_16_0GB)
5790 			return PCIE_SPEED_16_0GT;
5791 		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB)
5792 			return PCIE_SPEED_8_0GT;
5793 		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB)
5794 			return PCIE_SPEED_5_0GT;
5795 		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB)
5796 			return PCIE_SPEED_2_5GT;
5797 		return PCI_SPEED_UNKNOWN;
5798 	}
5799 
5800 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5801 	if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
5802 		return PCIE_SPEED_5_0GT;
5803 	else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
5804 		return PCIE_SPEED_2_5GT;
5805 
5806 	return PCI_SPEED_UNKNOWN;
5807 }
5808 EXPORT_SYMBOL(pcie_get_speed_cap);
5809 
5810 /**
5811  * pcie_get_width_cap - query for the PCI device's link width capability
5812  * @dev: PCI device to query
5813  *
5814  * Query the PCI device width capability.  Return the maximum link width
5815  * supported by the device.
5816  */
5817 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
5818 {
5819 	u32 lnkcap;
5820 
5821 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5822 	if (lnkcap)
5823 		return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
5824 
5825 	return PCIE_LNK_WIDTH_UNKNOWN;
5826 }
5827 EXPORT_SYMBOL(pcie_get_width_cap);
5828 
5829 /**
5830  * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
5831  * @dev: PCI device
5832  * @speed: storage for link speed
5833  * @width: storage for link width
5834  *
5835  * Calculate a PCI device's link bandwidth by querying for its link speed
5836  * and width, multiplying them, and applying encoding overhead.  The result
5837  * is in Mb/s, i.e., megabits/second of raw bandwidth.
5838  */
5839 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
5840 			   enum pcie_link_width *width)
5841 {
5842 	*speed = pcie_get_speed_cap(dev);
5843 	*width = pcie_get_width_cap(dev);
5844 
5845 	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
5846 		return 0;
5847 
5848 	return *width * PCIE_SPEED2MBS_ENC(*speed);
5849 }
5850 
5851 /**
5852  * __pcie_print_link_status - Report the PCI device's link speed and width
5853  * @dev: PCI device to query
5854  * @verbose: Print info even when enough bandwidth is available
5855  *
5856  * If the available bandwidth at the device is less than the device is
5857  * capable of, report the device's maximum possible bandwidth and the
5858  * upstream link that limits its performance.  If @verbose, always print
5859  * the available bandwidth, even if the device isn't constrained.
5860  */
5861 void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
5862 {
5863 	enum pcie_link_width width, width_cap;
5864 	enum pci_bus_speed speed, speed_cap;
5865 	struct pci_dev *limiting_dev = NULL;
5866 	u32 bw_avail, bw_cap;
5867 
5868 	bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
5869 	bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
5870 
5871 	if (bw_avail >= bw_cap && verbose)
5872 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
5873 			 bw_cap / 1000, bw_cap % 1000,
5874 			 PCIE_SPEED2STR(speed_cap), width_cap);
5875 	else if (bw_avail < bw_cap)
5876 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
5877 			 bw_avail / 1000, bw_avail % 1000,
5878 			 PCIE_SPEED2STR(speed), width,
5879 			 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
5880 			 bw_cap / 1000, bw_cap % 1000,
5881 			 PCIE_SPEED2STR(speed_cap), width_cap);
5882 }
5883 
5884 /**
5885  * pcie_print_link_status - Report the PCI device's link speed and width
5886  * @dev: PCI device to query
5887  *
5888  * Report the available bandwidth at the device.
5889  */
5890 void pcie_print_link_status(struct pci_dev *dev)
5891 {
5892 	__pcie_print_link_status(dev, true);
5893 }
5894 EXPORT_SYMBOL(pcie_print_link_status);
5895 
5896 /**
5897  * pci_select_bars - Make BAR mask from the type of resource
5898  * @dev: the PCI device for which BAR mask is made
5899  * @flags: resource type mask to be selected
5900  *
5901  * This helper routine makes bar mask from the type of resource.
5902  */
5903 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
5904 {
5905 	int i, bars = 0;
5906 	for (i = 0; i < PCI_NUM_RESOURCES; i++)
5907 		if (pci_resource_flags(dev, i) & flags)
5908 			bars |= (1 << i);
5909 	return bars;
5910 }
5911 EXPORT_SYMBOL(pci_select_bars);
5912 
5913 /* Some architectures require additional programming to enable VGA */
5914 static arch_set_vga_state_t arch_set_vga_state;
5915 
5916 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
5917 {
5918 	arch_set_vga_state = func;	/* NULL disables */
5919 }
5920 
5921 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
5922 				  unsigned int command_bits, u32 flags)
5923 {
5924 	if (arch_set_vga_state)
5925 		return arch_set_vga_state(dev, decode, command_bits,
5926 						flags);
5927 	return 0;
5928 }
5929 
5930 /**
5931  * pci_set_vga_state - set VGA decode state on device and parents if requested
5932  * @dev: the PCI device
5933  * @decode: true = enable decoding, false = disable decoding
5934  * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
5935  * @flags: traverse ancestors and change bridges
5936  * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
5937  */
5938 int pci_set_vga_state(struct pci_dev *dev, bool decode,
5939 		      unsigned int command_bits, u32 flags)
5940 {
5941 	struct pci_bus *bus;
5942 	struct pci_dev *bridge;
5943 	u16 cmd;
5944 	int rc;
5945 
5946 	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
5947 
5948 	/* ARCH specific VGA enables */
5949 	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
5950 	if (rc)
5951 		return rc;
5952 
5953 	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
5954 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
5955 		if (decode == true)
5956 			cmd |= command_bits;
5957 		else
5958 			cmd &= ~command_bits;
5959 		pci_write_config_word(dev, PCI_COMMAND, cmd);
5960 	}
5961 
5962 	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
5963 		return 0;
5964 
5965 	bus = dev->bus;
5966 	while (bus) {
5967 		bridge = bus->self;
5968 		if (bridge) {
5969 			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
5970 					     &cmd);
5971 			if (decode == true)
5972 				cmd |= PCI_BRIDGE_CTL_VGA;
5973 			else
5974 				cmd &= ~PCI_BRIDGE_CTL_VGA;
5975 			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
5976 					      cmd);
5977 		}
5978 		bus = bus->parent;
5979 	}
5980 	return 0;
5981 }
5982 
5983 #ifdef CONFIG_ACPI
5984 bool pci_pr3_present(struct pci_dev *pdev)
5985 {
5986 	struct acpi_device *adev;
5987 
5988 	if (acpi_disabled)
5989 		return false;
5990 
5991 	adev = ACPI_COMPANION(&pdev->dev);
5992 	if (!adev)
5993 		return false;
5994 
5995 	return adev->power.flags.power_resources &&
5996 		acpi_has_method(adev->handle, "_PR3");
5997 }
5998 EXPORT_SYMBOL_GPL(pci_pr3_present);
5999 #endif
6000 
6001 /**
6002  * pci_add_dma_alias - Add a DMA devfn alias for a device
6003  * @dev: the PCI device for which alias is added
6004  * @devfn_from: alias slot and function
6005  * @nr_devfns: number of subsequent devfns to alias
6006  *
6007  * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6008  * which is used to program permissible bus-devfn source addresses for DMA
6009  * requests in an IOMMU.  These aliases factor into IOMMU group creation
6010  * and are useful for devices generating DMA requests beyond or different
6011  * from their logical bus-devfn.  Examples include device quirks where the
6012  * device simply uses the wrong devfn, as well as non-transparent bridges
6013  * where the alias may be a proxy for devices in another domain.
6014  *
6015  * IOMMU group creation is performed during device discovery or addition,
6016  * prior to any potential DMA mapping and therefore prior to driver probing
6017  * (especially for userspace assigned devices where IOMMU group definition
6018  * cannot be left as a userspace activity).  DMA aliases should therefore
6019  * be configured via quirks, such as the PCI fixup header quirk.
6020  */
6021 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from, unsigned nr_devfns)
6022 {
6023 	int devfn_to;
6024 
6025 	nr_devfns = min(nr_devfns, (unsigned) MAX_NR_DEVFNS - devfn_from);
6026 	devfn_to = devfn_from + nr_devfns - 1;
6027 
6028 	if (!dev->dma_alias_mask)
6029 		dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6030 	if (!dev->dma_alias_mask) {
6031 		pci_warn(dev, "Unable to allocate DMA alias mask\n");
6032 		return;
6033 	}
6034 
6035 	bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6036 
6037 	if (nr_devfns == 1)
6038 		pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6039 				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6040 	else if (nr_devfns > 1)
6041 		pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6042 				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6043 				PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6044 }
6045 
6046 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6047 {
6048 	return (dev1->dma_alias_mask &&
6049 		test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6050 	       (dev2->dma_alias_mask &&
6051 		test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6052 	       pci_real_dma_dev(dev1) == dev2 ||
6053 	       pci_real_dma_dev(dev2) == dev1;
6054 }
6055 
6056 bool pci_device_is_present(struct pci_dev *pdev)
6057 {
6058 	u32 v;
6059 
6060 	if (pci_dev_is_disconnected(pdev))
6061 		return false;
6062 	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6063 }
6064 EXPORT_SYMBOL_GPL(pci_device_is_present);
6065 
6066 void pci_ignore_hotplug(struct pci_dev *dev)
6067 {
6068 	struct pci_dev *bridge = dev->bus->self;
6069 
6070 	dev->ignore_hotplug = 1;
6071 	/* Propagate the "ignore hotplug" setting to the parent bridge. */
6072 	if (bridge)
6073 		bridge->ignore_hotplug = 1;
6074 }
6075 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6076 
6077 /**
6078  * pci_real_dma_dev - Get PCI DMA device for PCI device
6079  * @dev: the PCI device that may have a PCI DMA alias
6080  *
6081  * Permits the platform to provide architecture-specific functionality to
6082  * devices needing to alias DMA to another PCI device on another PCI bus. If
6083  * the PCI device is on the same bus, it is recommended to use
6084  * pci_add_dma_alias(). This is the default implementation. Architecture
6085  * implementations can override this.
6086  */
6087 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6088 {
6089 	return dev;
6090 }
6091 
6092 resource_size_t __weak pcibios_default_alignment(void)
6093 {
6094 	return 0;
6095 }
6096 
6097 /*
6098  * Arches that don't want to expose struct resource to userland as-is in
6099  * sysfs and /proc can implement their own pci_resource_to_user().
6100  */
6101 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6102 				 const struct resource *rsrc,
6103 				 resource_size_t *start, resource_size_t *end)
6104 {
6105 	*start = rsrc->start;
6106 	*end = rsrc->end;
6107 }
6108 
6109 static char *resource_alignment_param;
6110 static DEFINE_SPINLOCK(resource_alignment_lock);
6111 
6112 /**
6113  * pci_specified_resource_alignment - get resource alignment specified by user.
6114  * @dev: the PCI device to get
6115  * @resize: whether or not to change resources' size when reassigning alignment
6116  *
6117  * RETURNS: Resource alignment if it is specified.
6118  *          Zero if it is not specified.
6119  */
6120 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6121 							bool *resize)
6122 {
6123 	int align_order, count;
6124 	resource_size_t align = pcibios_default_alignment();
6125 	const char *p;
6126 	int ret;
6127 
6128 	spin_lock(&resource_alignment_lock);
6129 	p = resource_alignment_param;
6130 	if (!p || !*p)
6131 		goto out;
6132 	if (pci_has_flag(PCI_PROBE_ONLY)) {
6133 		align = 0;
6134 		pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6135 		goto out;
6136 	}
6137 
6138 	while (*p) {
6139 		count = 0;
6140 		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6141 							p[count] == '@') {
6142 			p += count + 1;
6143 		} else {
6144 			align_order = -1;
6145 		}
6146 
6147 		ret = pci_dev_str_match(dev, p, &p);
6148 		if (ret == 1) {
6149 			*resize = true;
6150 			if (align_order == -1)
6151 				align = PAGE_SIZE;
6152 			else
6153 				align = 1 << align_order;
6154 			break;
6155 		} else if (ret < 0) {
6156 			pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6157 			       p);
6158 			break;
6159 		}
6160 
6161 		if (*p != ';' && *p != ',') {
6162 			/* End of param or invalid format */
6163 			break;
6164 		}
6165 		p++;
6166 	}
6167 out:
6168 	spin_unlock(&resource_alignment_lock);
6169 	return align;
6170 }
6171 
6172 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6173 					   resource_size_t align, bool resize)
6174 {
6175 	struct resource *r = &dev->resource[bar];
6176 	resource_size_t size;
6177 
6178 	if (!(r->flags & IORESOURCE_MEM))
6179 		return;
6180 
6181 	if (r->flags & IORESOURCE_PCI_FIXED) {
6182 		pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6183 			 bar, r, (unsigned long long)align);
6184 		return;
6185 	}
6186 
6187 	size = resource_size(r);
6188 	if (size >= align)
6189 		return;
6190 
6191 	/*
6192 	 * Increase the alignment of the resource.  There are two ways we
6193 	 * can do this:
6194 	 *
6195 	 * 1) Increase the size of the resource.  BARs are aligned on their
6196 	 *    size, so when we reallocate space for this resource, we'll
6197 	 *    allocate it with the larger alignment.  This also prevents
6198 	 *    assignment of any other BARs inside the alignment region, so
6199 	 *    if we're requesting page alignment, this means no other BARs
6200 	 *    will share the page.
6201 	 *
6202 	 *    The disadvantage is that this makes the resource larger than
6203 	 *    the hardware BAR, which may break drivers that compute things
6204 	 *    based on the resource size, e.g., to find registers at a
6205 	 *    fixed offset before the end of the BAR.
6206 	 *
6207 	 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6208 	 *    set r->start to the desired alignment.  By itself this
6209 	 *    doesn't prevent other BARs being put inside the alignment
6210 	 *    region, but if we realign *every* resource of every device in
6211 	 *    the system, none of them will share an alignment region.
6212 	 *
6213 	 * When the user has requested alignment for only some devices via
6214 	 * the "pci=resource_alignment" argument, "resize" is true and we
6215 	 * use the first method.  Otherwise we assume we're aligning all
6216 	 * devices and we use the second.
6217 	 */
6218 
6219 	pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6220 		 bar, r, (unsigned long long)align);
6221 
6222 	if (resize) {
6223 		r->start = 0;
6224 		r->end = align - 1;
6225 	} else {
6226 		r->flags &= ~IORESOURCE_SIZEALIGN;
6227 		r->flags |= IORESOURCE_STARTALIGN;
6228 		r->start = align;
6229 		r->end = r->start + size - 1;
6230 	}
6231 	r->flags |= IORESOURCE_UNSET;
6232 }
6233 
6234 /*
6235  * This function disables memory decoding and releases memory resources
6236  * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6237  * It also rounds up size to specified alignment.
6238  * Later on, the kernel will assign page-aligned memory resource back
6239  * to the device.
6240  */
6241 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6242 {
6243 	int i;
6244 	struct resource *r;
6245 	resource_size_t align;
6246 	u16 command;
6247 	bool resize = false;
6248 
6249 	/*
6250 	 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6251 	 * 3.4.1.11.  Their resources are allocated from the space
6252 	 * described by the VF BARx register in the PF's SR-IOV capability.
6253 	 * We can't influence their alignment here.
6254 	 */
6255 	if (dev->is_virtfn)
6256 		return;
6257 
6258 	/* check if specified PCI is target device to reassign */
6259 	align = pci_specified_resource_alignment(dev, &resize);
6260 	if (!align)
6261 		return;
6262 
6263 	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6264 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6265 		pci_warn(dev, "Can't reassign resources to host bridge\n");
6266 		return;
6267 	}
6268 
6269 	pci_read_config_word(dev, PCI_COMMAND, &command);
6270 	command &= ~PCI_COMMAND_MEMORY;
6271 	pci_write_config_word(dev, PCI_COMMAND, command);
6272 
6273 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6274 		pci_request_resource_alignment(dev, i, align, resize);
6275 
6276 	/*
6277 	 * Need to disable bridge's resource window,
6278 	 * to enable the kernel to reassign new resource
6279 	 * window later on.
6280 	 */
6281 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6282 		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6283 			r = &dev->resource[i];
6284 			if (!(r->flags & IORESOURCE_MEM))
6285 				continue;
6286 			r->flags |= IORESOURCE_UNSET;
6287 			r->end = resource_size(r) - 1;
6288 			r->start = 0;
6289 		}
6290 		pci_disable_bridge_window(dev);
6291 	}
6292 }
6293 
6294 static ssize_t resource_alignment_show(struct bus_type *bus, char *buf)
6295 {
6296 	size_t count = 0;
6297 
6298 	spin_lock(&resource_alignment_lock);
6299 	if (resource_alignment_param)
6300 		count = snprintf(buf, PAGE_SIZE, "%s", resource_alignment_param);
6301 	spin_unlock(&resource_alignment_lock);
6302 
6303 	/*
6304 	 * When set by the command line, resource_alignment_param will not
6305 	 * have a trailing line feed, which is ugly. So conditionally add
6306 	 * it here.
6307 	 */
6308 	if (count >= 2 && buf[count - 2] != '\n' && count < PAGE_SIZE - 1) {
6309 		buf[count - 1] = '\n';
6310 		buf[count++] = 0;
6311 	}
6312 
6313 	return count;
6314 }
6315 
6316 static ssize_t resource_alignment_store(struct bus_type *bus,
6317 					const char *buf, size_t count)
6318 {
6319 	char *param = kstrndup(buf, count, GFP_KERNEL);
6320 
6321 	if (!param)
6322 		return -ENOMEM;
6323 
6324 	spin_lock(&resource_alignment_lock);
6325 	kfree(resource_alignment_param);
6326 	resource_alignment_param = param;
6327 	spin_unlock(&resource_alignment_lock);
6328 	return count;
6329 }
6330 
6331 static BUS_ATTR_RW(resource_alignment);
6332 
6333 static int __init pci_resource_alignment_sysfs_init(void)
6334 {
6335 	return bus_create_file(&pci_bus_type,
6336 					&bus_attr_resource_alignment);
6337 }
6338 late_initcall(pci_resource_alignment_sysfs_init);
6339 
6340 static void pci_no_domains(void)
6341 {
6342 #ifdef CONFIG_PCI_DOMAINS
6343 	pci_domains_supported = 0;
6344 #endif
6345 }
6346 
6347 #ifdef CONFIG_PCI_DOMAINS_GENERIC
6348 static atomic_t __domain_nr = ATOMIC_INIT(-1);
6349 
6350 static int pci_get_new_domain_nr(void)
6351 {
6352 	return atomic_inc_return(&__domain_nr);
6353 }
6354 
6355 static int of_pci_bus_find_domain_nr(struct device *parent)
6356 {
6357 	static int use_dt_domains = -1;
6358 	int domain = -1;
6359 
6360 	if (parent)
6361 		domain = of_get_pci_domain_nr(parent->of_node);
6362 
6363 	/*
6364 	 * Check DT domain and use_dt_domains values.
6365 	 *
6366 	 * If DT domain property is valid (domain >= 0) and
6367 	 * use_dt_domains != 0, the DT assignment is valid since this means
6368 	 * we have not previously allocated a domain number by using
6369 	 * pci_get_new_domain_nr(); we should also update use_dt_domains to
6370 	 * 1, to indicate that we have just assigned a domain number from
6371 	 * DT.
6372 	 *
6373 	 * If DT domain property value is not valid (ie domain < 0), and we
6374 	 * have not previously assigned a domain number from DT
6375 	 * (use_dt_domains != 1) we should assign a domain number by
6376 	 * using the:
6377 	 *
6378 	 * pci_get_new_domain_nr()
6379 	 *
6380 	 * API and update the use_dt_domains value to keep track of method we
6381 	 * are using to assign domain numbers (use_dt_domains = 0).
6382 	 *
6383 	 * All other combinations imply we have a platform that is trying
6384 	 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
6385 	 * which is a recipe for domain mishandling and it is prevented by
6386 	 * invalidating the domain value (domain = -1) and printing a
6387 	 * corresponding error.
6388 	 */
6389 	if (domain >= 0 && use_dt_domains) {
6390 		use_dt_domains = 1;
6391 	} else if (domain < 0 && use_dt_domains != 1) {
6392 		use_dt_domains = 0;
6393 		domain = pci_get_new_domain_nr();
6394 	} else {
6395 		if (parent)
6396 			pr_err("Node %pOF has ", parent->of_node);
6397 		pr_err("Inconsistent \"linux,pci-domain\" property in DT\n");
6398 		domain = -1;
6399 	}
6400 
6401 	return domain;
6402 }
6403 
6404 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6405 {
6406 	return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6407 			       acpi_pci_bus_find_domain_nr(bus);
6408 }
6409 #endif
6410 
6411 /**
6412  * pci_ext_cfg_avail - can we access extended PCI config space?
6413  *
6414  * Returns 1 if we can access PCI extended config space (offsets
6415  * greater than 0xff). This is the default implementation. Architecture
6416  * implementations can override this.
6417  */
6418 int __weak pci_ext_cfg_avail(void)
6419 {
6420 	return 1;
6421 }
6422 
6423 void __weak pci_fixup_cardbus(struct pci_bus *bus)
6424 {
6425 }
6426 EXPORT_SYMBOL(pci_fixup_cardbus);
6427 
6428 static int __init pci_setup(char *str)
6429 {
6430 	while (str) {
6431 		char *k = strchr(str, ',');
6432 		if (k)
6433 			*k++ = 0;
6434 		if (*str && (str = pcibios_setup(str)) && *str) {
6435 			if (!strcmp(str, "nomsi")) {
6436 				pci_no_msi();
6437 			} else if (!strncmp(str, "noats", 5)) {
6438 				pr_info("PCIe: ATS is disabled\n");
6439 				pcie_ats_disabled = true;
6440 			} else if (!strcmp(str, "noaer")) {
6441 				pci_no_aer();
6442 			} else if (!strcmp(str, "earlydump")) {
6443 				pci_early_dump = true;
6444 			} else if (!strncmp(str, "realloc=", 8)) {
6445 				pci_realloc_get_opt(str + 8);
6446 			} else if (!strncmp(str, "realloc", 7)) {
6447 				pci_realloc_get_opt("on");
6448 			} else if (!strcmp(str, "nodomains")) {
6449 				pci_no_domains();
6450 			} else if (!strncmp(str, "noari", 5)) {
6451 				pcie_ari_disabled = true;
6452 			} else if (!strncmp(str, "cbiosize=", 9)) {
6453 				pci_cardbus_io_size = memparse(str + 9, &str);
6454 			} else if (!strncmp(str, "cbmemsize=", 10)) {
6455 				pci_cardbus_mem_size = memparse(str + 10, &str);
6456 			} else if (!strncmp(str, "resource_alignment=", 19)) {
6457 				resource_alignment_param = str + 19;
6458 			} else if (!strncmp(str, "ecrc=", 5)) {
6459 				pcie_ecrc_get_policy(str + 5);
6460 			} else if (!strncmp(str, "hpiosize=", 9)) {
6461 				pci_hotplug_io_size = memparse(str + 9, &str);
6462 			} else if (!strncmp(str, "hpmmiosize=", 11)) {
6463 				pci_hotplug_mmio_size = memparse(str + 11, &str);
6464 			} else if (!strncmp(str, "hpmmioprefsize=", 15)) {
6465 				pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
6466 			} else if (!strncmp(str, "hpmemsize=", 10)) {
6467 				pci_hotplug_mmio_size = memparse(str + 10, &str);
6468 				pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
6469 			} else if (!strncmp(str, "hpbussize=", 10)) {
6470 				pci_hotplug_bus_size =
6471 					simple_strtoul(str + 10, &str, 0);
6472 				if (pci_hotplug_bus_size > 0xff)
6473 					pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6474 			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6475 				pcie_bus_config = PCIE_BUS_TUNE_OFF;
6476 			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
6477 				pcie_bus_config = PCIE_BUS_SAFE;
6478 			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
6479 				pcie_bus_config = PCIE_BUS_PERFORMANCE;
6480 			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6481 				pcie_bus_config = PCIE_BUS_PEER2PEER;
6482 			} else if (!strncmp(str, "pcie_scan_all", 13)) {
6483 				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6484 			} else if (!strncmp(str, "disable_acs_redir=", 18)) {
6485 				disable_acs_redir_param = str + 18;
6486 			} else {
6487 				pr_err("PCI: Unknown option `%s'\n", str);
6488 			}
6489 		}
6490 		str = k;
6491 	}
6492 	return 0;
6493 }
6494 early_param("pci", pci_setup);
6495 
6496 /*
6497  * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6498  * in pci_setup(), above, to point to data in the __initdata section which
6499  * will be freed after the init sequence is complete. We can't allocate memory
6500  * in pci_setup() because some architectures do not have any memory allocation
6501  * service available during an early_param() call. So we allocate memory and
6502  * copy the variable here before the init section is freed.
6503  *
6504  */
6505 static int __init pci_realloc_setup_params(void)
6506 {
6507 	resource_alignment_param = kstrdup(resource_alignment_param,
6508 					   GFP_KERNEL);
6509 	disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6510 
6511 	return 0;
6512 }
6513 pure_initcall(pci_realloc_setup_params);
6514