xref: /openbmc/linux/drivers/pci/pci.c (revision 5ed132db5ad4f58156ae9d28219396b6f764a9cb)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * PCI Bus Services, see include/linux/pci.h for further explanation.
4  *
5  * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6  * David Mosberger-Tang
7  *
8  * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/msi.h>
17 #include <linux/of.h>
18 #include <linux/pci.h>
19 #include <linux/pm.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/log2.h>
25 #include <linux/logic_pio.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/pci_hotplug.h>
31 #include <linux/vmalloc.h>
32 #include <asm/dma.h>
33 #include <linux/aer.h>
34 #include "pci.h"
35 
36 DEFINE_MUTEX(pci_slot_mutex);
37 
38 const char *pci_power_names[] = {
39 	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
40 };
41 EXPORT_SYMBOL_GPL(pci_power_names);
42 
43 int isa_dma_bridge_buggy;
44 EXPORT_SYMBOL(isa_dma_bridge_buggy);
45 
46 int pci_pci_problems;
47 EXPORT_SYMBOL(pci_pci_problems);
48 
49 unsigned int pci_pm_d3hot_delay;
50 
51 static void pci_pme_list_scan(struct work_struct *work);
52 
53 static LIST_HEAD(pci_pme_list);
54 static DEFINE_MUTEX(pci_pme_list_mutex);
55 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
56 
57 struct pci_pme_device {
58 	struct list_head list;
59 	struct pci_dev *dev;
60 };
61 
62 #define PME_TIMEOUT 1000 /* How long between PME checks */
63 
64 static void pci_dev_d3_sleep(struct pci_dev *dev)
65 {
66 	unsigned int delay = dev->d3hot_delay;
67 
68 	if (delay < pci_pm_d3hot_delay)
69 		delay = pci_pm_d3hot_delay;
70 
71 	if (delay)
72 		msleep(delay);
73 }
74 
75 #ifdef CONFIG_PCI_DOMAINS
76 int pci_domains_supported = 1;
77 #endif
78 
79 #define DEFAULT_CARDBUS_IO_SIZE		(256)
80 #define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
81 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
82 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
83 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
84 
85 #define DEFAULT_HOTPLUG_IO_SIZE		(256)
86 #define DEFAULT_HOTPLUG_MMIO_SIZE	(2*1024*1024)
87 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE	(2*1024*1024)
88 /* hpiosize=nn can override this */
89 unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
90 /*
91  * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
92  * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
93  * pci=hpmemsize=nnM overrides both
94  */
95 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
96 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
97 
98 #define DEFAULT_HOTPLUG_BUS_SIZE	1
99 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
100 
101 
102 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
103 #ifdef CONFIG_PCIE_BUS_TUNE_OFF
104 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
105 #elif defined CONFIG_PCIE_BUS_SAFE
106 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
107 #elif defined CONFIG_PCIE_BUS_PERFORMANCE
108 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
109 #elif defined CONFIG_PCIE_BUS_PEER2PEER
110 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
111 #else
112 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
113 #endif
114 
115 /*
116  * The default CLS is used if arch didn't set CLS explicitly and not
117  * all pci devices agree on the same value.  Arch can override either
118  * the dfl or actual value as it sees fit.  Don't forget this is
119  * measured in 32-bit words, not bytes.
120  */
121 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
122 u8 pci_cache_line_size;
123 
124 /*
125  * If we set up a device for bus mastering, we need to check the latency
126  * timer as certain BIOSes forget to set it properly.
127  */
128 unsigned int pcibios_max_latency = 255;
129 
130 /* If set, the PCIe ARI capability will not be used. */
131 static bool pcie_ari_disabled;
132 
133 /* If set, the PCIe ATS capability will not be used. */
134 static bool pcie_ats_disabled;
135 
136 /* If set, the PCI config space of each device is printed during boot. */
137 bool pci_early_dump;
138 
139 bool pci_ats_disabled(void)
140 {
141 	return pcie_ats_disabled;
142 }
143 EXPORT_SYMBOL_GPL(pci_ats_disabled);
144 
145 /* Disable bridge_d3 for all PCIe ports */
146 static bool pci_bridge_d3_disable;
147 /* Force bridge_d3 for all PCIe ports */
148 static bool pci_bridge_d3_force;
149 
150 static int __init pcie_port_pm_setup(char *str)
151 {
152 	if (!strcmp(str, "off"))
153 		pci_bridge_d3_disable = true;
154 	else if (!strcmp(str, "force"))
155 		pci_bridge_d3_force = true;
156 	return 1;
157 }
158 __setup("pcie_port_pm=", pcie_port_pm_setup);
159 
160 /* Time to wait after a reset for device to become responsive */
161 #define PCIE_RESET_READY_POLL_MS 60000
162 
163 /**
164  * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
165  * @bus: pointer to PCI bus structure to search
166  *
167  * Given a PCI bus, returns the highest PCI bus number present in the set
168  * including the given PCI bus and its list of child PCI buses.
169  */
170 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
171 {
172 	struct pci_bus *tmp;
173 	unsigned char max, n;
174 
175 	max = bus->busn_res.end;
176 	list_for_each_entry(tmp, &bus->children, node) {
177 		n = pci_bus_max_busnr(tmp);
178 		if (n > max)
179 			max = n;
180 	}
181 	return max;
182 }
183 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
184 
185 /**
186  * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
187  * @pdev: the PCI device
188  *
189  * Returns error bits set in PCI_STATUS and clears them.
190  */
191 int pci_status_get_and_clear_errors(struct pci_dev *pdev)
192 {
193 	u16 status;
194 	int ret;
195 
196 	ret = pci_read_config_word(pdev, PCI_STATUS, &status);
197 	if (ret != PCIBIOS_SUCCESSFUL)
198 		return -EIO;
199 
200 	status &= PCI_STATUS_ERROR_BITS;
201 	if (status)
202 		pci_write_config_word(pdev, PCI_STATUS, status);
203 
204 	return status;
205 }
206 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
207 
208 #ifdef CONFIG_HAS_IOMEM
209 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
210 {
211 	struct resource *res = &pdev->resource[bar];
212 
213 	/*
214 	 * Make sure the BAR is actually a memory resource, not an IO resource
215 	 */
216 	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
217 		pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
218 		return NULL;
219 	}
220 	return ioremap(res->start, resource_size(res));
221 }
222 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
223 
224 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
225 {
226 	/*
227 	 * Make sure the BAR is actually a memory resource, not an IO resource
228 	 */
229 	if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
230 		WARN_ON(1);
231 		return NULL;
232 	}
233 	return ioremap_wc(pci_resource_start(pdev, bar),
234 			  pci_resource_len(pdev, bar));
235 }
236 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
237 #endif
238 
239 /**
240  * pci_dev_str_match_path - test if a path string matches a device
241  * @dev: the PCI device to test
242  * @path: string to match the device against
243  * @endptr: pointer to the string after the match
244  *
245  * Test if a string (typically from a kernel parameter) formatted as a
246  * path of device/function addresses matches a PCI device. The string must
247  * be of the form:
248  *
249  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
250  *
251  * A path for a device can be obtained using 'lspci -t'.  Using a path
252  * is more robust against bus renumbering than using only a single bus,
253  * device and function address.
254  *
255  * Returns 1 if the string matches the device, 0 if it does not and
256  * a negative error code if it fails to parse the string.
257  */
258 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
259 				  const char **endptr)
260 {
261 	int ret;
262 	int seg, bus, slot, func;
263 	char *wpath, *p;
264 	char end;
265 
266 	*endptr = strchrnul(path, ';');
267 
268 	wpath = kmemdup_nul(path, *endptr - path, GFP_KERNEL);
269 	if (!wpath)
270 		return -ENOMEM;
271 
272 	while (1) {
273 		p = strrchr(wpath, '/');
274 		if (!p)
275 			break;
276 		ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
277 		if (ret != 2) {
278 			ret = -EINVAL;
279 			goto free_and_exit;
280 		}
281 
282 		if (dev->devfn != PCI_DEVFN(slot, func)) {
283 			ret = 0;
284 			goto free_and_exit;
285 		}
286 
287 		/*
288 		 * Note: we don't need to get a reference to the upstream
289 		 * bridge because we hold a reference to the top level
290 		 * device which should hold a reference to the bridge,
291 		 * and so on.
292 		 */
293 		dev = pci_upstream_bridge(dev);
294 		if (!dev) {
295 			ret = 0;
296 			goto free_and_exit;
297 		}
298 
299 		*p = 0;
300 	}
301 
302 	ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
303 		     &func, &end);
304 	if (ret != 4) {
305 		seg = 0;
306 		ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
307 		if (ret != 3) {
308 			ret = -EINVAL;
309 			goto free_and_exit;
310 		}
311 	}
312 
313 	ret = (seg == pci_domain_nr(dev->bus) &&
314 	       bus == dev->bus->number &&
315 	       dev->devfn == PCI_DEVFN(slot, func));
316 
317 free_and_exit:
318 	kfree(wpath);
319 	return ret;
320 }
321 
322 /**
323  * pci_dev_str_match - test if a string matches a device
324  * @dev: the PCI device to test
325  * @p: string to match the device against
326  * @endptr: pointer to the string after the match
327  *
328  * Test if a string (typically from a kernel parameter) matches a specified
329  * PCI device. The string may be of one of the following formats:
330  *
331  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
332  *   pci:<vendor>:<device>[:<subvendor>:<subdevice>]
333  *
334  * The first format specifies a PCI bus/device/function address which
335  * may change if new hardware is inserted, if motherboard firmware changes,
336  * or due to changes caused in kernel parameters. If the domain is
337  * left unspecified, it is taken to be 0.  In order to be robust against
338  * bus renumbering issues, a path of PCI device/function numbers may be used
339  * to address the specific device.  The path for a device can be determined
340  * through the use of 'lspci -t'.
341  *
342  * The second format matches devices using IDs in the configuration
343  * space which may match multiple devices in the system. A value of 0
344  * for any field will match all devices. (Note: this differs from
345  * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
346  * legacy reasons and convenience so users don't have to specify
347  * FFFFFFFFs on the command line.)
348  *
349  * Returns 1 if the string matches the device, 0 if it does not and
350  * a negative error code if the string cannot be parsed.
351  */
352 static int pci_dev_str_match(struct pci_dev *dev, const char *p,
353 			     const char **endptr)
354 {
355 	int ret;
356 	int count;
357 	unsigned short vendor, device, subsystem_vendor, subsystem_device;
358 
359 	if (strncmp(p, "pci:", 4) == 0) {
360 		/* PCI vendor/device (subvendor/subdevice) IDs are specified */
361 		p += 4;
362 		ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
363 			     &subsystem_vendor, &subsystem_device, &count);
364 		if (ret != 4) {
365 			ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
366 			if (ret != 2)
367 				return -EINVAL;
368 
369 			subsystem_vendor = 0;
370 			subsystem_device = 0;
371 		}
372 
373 		p += count;
374 
375 		if ((!vendor || vendor == dev->vendor) &&
376 		    (!device || device == dev->device) &&
377 		    (!subsystem_vendor ||
378 			    subsystem_vendor == dev->subsystem_vendor) &&
379 		    (!subsystem_device ||
380 			    subsystem_device == dev->subsystem_device))
381 			goto found;
382 	} else {
383 		/*
384 		 * PCI Bus, Device, Function IDs are specified
385 		 * (optionally, may include a path of devfns following it)
386 		 */
387 		ret = pci_dev_str_match_path(dev, p, &p);
388 		if (ret < 0)
389 			return ret;
390 		else if (ret)
391 			goto found;
392 	}
393 
394 	*endptr = p;
395 	return 0;
396 
397 found:
398 	*endptr = p;
399 	return 1;
400 }
401 
402 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
403 				   u8 pos, int cap, int *ttl)
404 {
405 	u8 id;
406 	u16 ent;
407 
408 	pci_bus_read_config_byte(bus, devfn, pos, &pos);
409 
410 	while ((*ttl)--) {
411 		if (pos < 0x40)
412 			break;
413 		pos &= ~3;
414 		pci_bus_read_config_word(bus, devfn, pos, &ent);
415 
416 		id = ent & 0xff;
417 		if (id == 0xff)
418 			break;
419 		if (id == cap)
420 			return pos;
421 		pos = (ent >> 8);
422 	}
423 	return 0;
424 }
425 
426 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
427 			       u8 pos, int cap)
428 {
429 	int ttl = PCI_FIND_CAP_TTL;
430 
431 	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
432 }
433 
434 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
435 {
436 	return __pci_find_next_cap(dev->bus, dev->devfn,
437 				   pos + PCI_CAP_LIST_NEXT, cap);
438 }
439 EXPORT_SYMBOL_GPL(pci_find_next_capability);
440 
441 static int __pci_bus_find_cap_start(struct pci_bus *bus,
442 				    unsigned int devfn, u8 hdr_type)
443 {
444 	u16 status;
445 
446 	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
447 	if (!(status & PCI_STATUS_CAP_LIST))
448 		return 0;
449 
450 	switch (hdr_type) {
451 	case PCI_HEADER_TYPE_NORMAL:
452 	case PCI_HEADER_TYPE_BRIDGE:
453 		return PCI_CAPABILITY_LIST;
454 	case PCI_HEADER_TYPE_CARDBUS:
455 		return PCI_CB_CAPABILITY_LIST;
456 	}
457 
458 	return 0;
459 }
460 
461 /**
462  * pci_find_capability - query for devices' capabilities
463  * @dev: PCI device to query
464  * @cap: capability code
465  *
466  * Tell if a device supports a given PCI capability.
467  * Returns the address of the requested capability structure within the
468  * device's PCI configuration space or 0 in case the device does not
469  * support it.  Possible values for @cap include:
470  *
471  *  %PCI_CAP_ID_PM           Power Management
472  *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
473  *  %PCI_CAP_ID_VPD          Vital Product Data
474  *  %PCI_CAP_ID_SLOTID       Slot Identification
475  *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
476  *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
477  *  %PCI_CAP_ID_PCIX         PCI-X
478  *  %PCI_CAP_ID_EXP          PCI Express
479  */
480 int pci_find_capability(struct pci_dev *dev, int cap)
481 {
482 	int pos;
483 
484 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
485 	if (pos)
486 		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
487 
488 	return pos;
489 }
490 EXPORT_SYMBOL(pci_find_capability);
491 
492 /**
493  * pci_bus_find_capability - query for devices' capabilities
494  * @bus: the PCI bus to query
495  * @devfn: PCI device to query
496  * @cap: capability code
497  *
498  * Like pci_find_capability() but works for PCI devices that do not have a
499  * pci_dev structure set up yet.
500  *
501  * Returns the address of the requested capability structure within the
502  * device's PCI configuration space or 0 in case the device does not
503  * support it.
504  */
505 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
506 {
507 	int pos;
508 	u8 hdr_type;
509 
510 	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
511 
512 	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
513 	if (pos)
514 		pos = __pci_find_next_cap(bus, devfn, pos, cap);
515 
516 	return pos;
517 }
518 EXPORT_SYMBOL(pci_bus_find_capability);
519 
520 /**
521  * pci_find_next_ext_capability - Find an extended capability
522  * @dev: PCI device to query
523  * @start: address at which to start looking (0 to start at beginning of list)
524  * @cap: capability code
525  *
526  * Returns the address of the next matching extended capability structure
527  * within the device's PCI configuration space or 0 if the device does
528  * not support it.  Some capabilities can occur several times, e.g., the
529  * vendor-specific capability, and this provides a way to find them all.
530  */
531 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
532 {
533 	u32 header;
534 	int ttl;
535 	int pos = PCI_CFG_SPACE_SIZE;
536 
537 	/* minimum 8 bytes per capability */
538 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
539 
540 	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
541 		return 0;
542 
543 	if (start)
544 		pos = start;
545 
546 	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
547 		return 0;
548 
549 	/*
550 	 * If we have no capabilities, this is indicated by cap ID,
551 	 * cap version and next pointer all being 0.
552 	 */
553 	if (header == 0)
554 		return 0;
555 
556 	while (ttl-- > 0) {
557 		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
558 			return pos;
559 
560 		pos = PCI_EXT_CAP_NEXT(header);
561 		if (pos < PCI_CFG_SPACE_SIZE)
562 			break;
563 
564 		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
565 			break;
566 	}
567 
568 	return 0;
569 }
570 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
571 
572 /**
573  * pci_find_ext_capability - Find an extended capability
574  * @dev: PCI device to query
575  * @cap: capability code
576  *
577  * Returns the address of the requested extended capability structure
578  * within the device's PCI configuration space or 0 if the device does
579  * not support it.  Possible values for @cap include:
580  *
581  *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
582  *  %PCI_EXT_CAP_ID_VC		Virtual Channel
583  *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
584  *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
585  */
586 int pci_find_ext_capability(struct pci_dev *dev, int cap)
587 {
588 	return pci_find_next_ext_capability(dev, 0, cap);
589 }
590 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
591 
592 /**
593  * pci_get_dsn - Read and return the 8-byte Device Serial Number
594  * @dev: PCI device to query
595  *
596  * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
597  * Number.
598  *
599  * Returns the DSN, or zero if the capability does not exist.
600  */
601 u64 pci_get_dsn(struct pci_dev *dev)
602 {
603 	u32 dword;
604 	u64 dsn;
605 	int pos;
606 
607 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
608 	if (!pos)
609 		return 0;
610 
611 	/*
612 	 * The Device Serial Number is two dwords offset 4 bytes from the
613 	 * capability position. The specification says that the first dword is
614 	 * the lower half, and the second dword is the upper half.
615 	 */
616 	pos += 4;
617 	pci_read_config_dword(dev, pos, &dword);
618 	dsn = (u64)dword;
619 	pci_read_config_dword(dev, pos + 4, &dword);
620 	dsn |= ((u64)dword) << 32;
621 
622 	return dsn;
623 }
624 EXPORT_SYMBOL_GPL(pci_get_dsn);
625 
626 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
627 {
628 	int rc, ttl = PCI_FIND_CAP_TTL;
629 	u8 cap, mask;
630 
631 	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
632 		mask = HT_3BIT_CAP_MASK;
633 	else
634 		mask = HT_5BIT_CAP_MASK;
635 
636 	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
637 				      PCI_CAP_ID_HT, &ttl);
638 	while (pos) {
639 		rc = pci_read_config_byte(dev, pos + 3, &cap);
640 		if (rc != PCIBIOS_SUCCESSFUL)
641 			return 0;
642 
643 		if ((cap & mask) == ht_cap)
644 			return pos;
645 
646 		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
647 					      pos + PCI_CAP_LIST_NEXT,
648 					      PCI_CAP_ID_HT, &ttl);
649 	}
650 
651 	return 0;
652 }
653 /**
654  * pci_find_next_ht_capability - query a device's Hypertransport capabilities
655  * @dev: PCI device to query
656  * @pos: Position from which to continue searching
657  * @ht_cap: Hypertransport capability code
658  *
659  * To be used in conjunction with pci_find_ht_capability() to search for
660  * all capabilities matching @ht_cap. @pos should always be a value returned
661  * from pci_find_ht_capability().
662  *
663  * NB. To be 100% safe against broken PCI devices, the caller should take
664  * steps to avoid an infinite loop.
665  */
666 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
667 {
668 	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
669 }
670 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
671 
672 /**
673  * pci_find_ht_capability - query a device's Hypertransport capabilities
674  * @dev: PCI device to query
675  * @ht_cap: Hypertransport capability code
676  *
677  * Tell if a device supports a given Hypertransport capability.
678  * Returns an address within the device's PCI configuration space
679  * or 0 in case the device does not support the request capability.
680  * The address points to the PCI capability, of type PCI_CAP_ID_HT,
681  * which has a Hypertransport capability matching @ht_cap.
682  */
683 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
684 {
685 	int pos;
686 
687 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
688 	if (pos)
689 		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
690 
691 	return pos;
692 }
693 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
694 
695 /**
696  * pci_find_parent_resource - return resource region of parent bus of given
697  *			      region
698  * @dev: PCI device structure contains resources to be searched
699  * @res: child resource record for which parent is sought
700  *
701  * For given resource region of given device, return the resource region of
702  * parent bus the given region is contained in.
703  */
704 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
705 					  struct resource *res)
706 {
707 	const struct pci_bus *bus = dev->bus;
708 	struct resource *r;
709 	int i;
710 
711 	pci_bus_for_each_resource(bus, r, i) {
712 		if (!r)
713 			continue;
714 		if (resource_contains(r, res)) {
715 
716 			/*
717 			 * If the window is prefetchable but the BAR is
718 			 * not, the allocator made a mistake.
719 			 */
720 			if (r->flags & IORESOURCE_PREFETCH &&
721 			    !(res->flags & IORESOURCE_PREFETCH))
722 				return NULL;
723 
724 			/*
725 			 * If we're below a transparent bridge, there may
726 			 * be both a positively-decoded aperture and a
727 			 * subtractively-decoded region that contain the BAR.
728 			 * We want the positively-decoded one, so this depends
729 			 * on pci_bus_for_each_resource() giving us those
730 			 * first.
731 			 */
732 			return r;
733 		}
734 	}
735 	return NULL;
736 }
737 EXPORT_SYMBOL(pci_find_parent_resource);
738 
739 /**
740  * pci_find_resource - Return matching PCI device resource
741  * @dev: PCI device to query
742  * @res: Resource to look for
743  *
744  * Goes over standard PCI resources (BARs) and checks if the given resource
745  * is partially or fully contained in any of them. In that case the
746  * matching resource is returned, %NULL otherwise.
747  */
748 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
749 {
750 	int i;
751 
752 	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
753 		struct resource *r = &dev->resource[i];
754 
755 		if (r->start && resource_contains(r, res))
756 			return r;
757 	}
758 
759 	return NULL;
760 }
761 EXPORT_SYMBOL(pci_find_resource);
762 
763 /**
764  * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
765  * @dev: the PCI device to operate on
766  * @pos: config space offset of status word
767  * @mask: mask of bit(s) to care about in status word
768  *
769  * Return 1 when mask bit(s) in status word clear, 0 otherwise.
770  */
771 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
772 {
773 	int i;
774 
775 	/* Wait for Transaction Pending bit clean */
776 	for (i = 0; i < 4; i++) {
777 		u16 status;
778 		if (i)
779 			msleep((1 << (i - 1)) * 100);
780 
781 		pci_read_config_word(dev, pos, &status);
782 		if (!(status & mask))
783 			return 1;
784 	}
785 
786 	return 0;
787 }
788 
789 static int pci_acs_enable;
790 
791 /**
792  * pci_request_acs - ask for ACS to be enabled if supported
793  */
794 void pci_request_acs(void)
795 {
796 	pci_acs_enable = 1;
797 }
798 
799 static const char *disable_acs_redir_param;
800 
801 /**
802  * pci_disable_acs_redir - disable ACS redirect capabilities
803  * @dev: the PCI device
804  *
805  * For only devices specified in the disable_acs_redir parameter.
806  */
807 static void pci_disable_acs_redir(struct pci_dev *dev)
808 {
809 	int ret = 0;
810 	const char *p;
811 	int pos;
812 	u16 ctrl;
813 
814 	if (!disable_acs_redir_param)
815 		return;
816 
817 	p = disable_acs_redir_param;
818 	while (*p) {
819 		ret = pci_dev_str_match(dev, p, &p);
820 		if (ret < 0) {
821 			pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
822 				     disable_acs_redir_param);
823 
824 			break;
825 		} else if (ret == 1) {
826 			/* Found a match */
827 			break;
828 		}
829 
830 		if (*p != ';' && *p != ',') {
831 			/* End of param or invalid format */
832 			break;
833 		}
834 		p++;
835 	}
836 
837 	if (ret != 1)
838 		return;
839 
840 	if (!pci_dev_specific_disable_acs_redir(dev))
841 		return;
842 
843 	pos = dev->acs_cap;
844 	if (!pos) {
845 		pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
846 		return;
847 	}
848 
849 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
850 
851 	/* P2P Request & Completion Redirect */
852 	ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
853 
854 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
855 
856 	pci_info(dev, "disabled ACS redirect\n");
857 }
858 
859 /**
860  * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
861  * @dev: the PCI device
862  */
863 static void pci_std_enable_acs(struct pci_dev *dev)
864 {
865 	int pos;
866 	u16 cap;
867 	u16 ctrl;
868 
869 	pos = dev->acs_cap;
870 	if (!pos)
871 		return;
872 
873 	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
874 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
875 
876 	/* Source Validation */
877 	ctrl |= (cap & PCI_ACS_SV);
878 
879 	/* P2P Request Redirect */
880 	ctrl |= (cap & PCI_ACS_RR);
881 
882 	/* P2P Completion Redirect */
883 	ctrl |= (cap & PCI_ACS_CR);
884 
885 	/* Upstream Forwarding */
886 	ctrl |= (cap & PCI_ACS_UF);
887 
888 	/* Enable Translation Blocking for external devices */
889 	if (dev->external_facing || dev->untrusted)
890 		ctrl |= (cap & PCI_ACS_TB);
891 
892 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
893 }
894 
895 /**
896  * pci_enable_acs - enable ACS if hardware support it
897  * @dev: the PCI device
898  */
899 static void pci_enable_acs(struct pci_dev *dev)
900 {
901 	if (!pci_acs_enable)
902 		goto disable_acs_redir;
903 
904 	if (!pci_dev_specific_enable_acs(dev))
905 		goto disable_acs_redir;
906 
907 	pci_std_enable_acs(dev);
908 
909 disable_acs_redir:
910 	/*
911 	 * Note: pci_disable_acs_redir() must be called even if ACS was not
912 	 * enabled by the kernel because it may have been enabled by
913 	 * platform firmware.  So if we are told to disable it, we should
914 	 * always disable it after setting the kernel's default
915 	 * preferences.
916 	 */
917 	pci_disable_acs_redir(dev);
918 }
919 
920 /**
921  * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
922  * @dev: PCI device to have its BARs restored
923  *
924  * Restore the BAR values for a given device, so as to make it
925  * accessible by its driver.
926  */
927 static void pci_restore_bars(struct pci_dev *dev)
928 {
929 	int i;
930 
931 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
932 		pci_update_resource(dev, i);
933 }
934 
935 static const struct pci_platform_pm_ops *pci_platform_pm;
936 
937 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
938 {
939 	if (!ops->is_manageable || !ops->set_state  || !ops->get_state ||
940 	    !ops->choose_state  || !ops->set_wakeup || !ops->need_resume)
941 		return -EINVAL;
942 	pci_platform_pm = ops;
943 	return 0;
944 }
945 
946 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
947 {
948 	return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
949 }
950 
951 static inline int platform_pci_set_power_state(struct pci_dev *dev,
952 					       pci_power_t t)
953 {
954 	return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
955 }
956 
957 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
958 {
959 	return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
960 }
961 
962 static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
963 {
964 	if (pci_platform_pm && pci_platform_pm->refresh_state)
965 		pci_platform_pm->refresh_state(dev);
966 }
967 
968 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
969 {
970 	return pci_platform_pm ?
971 			pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
972 }
973 
974 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
975 {
976 	return pci_platform_pm ?
977 			pci_platform_pm->set_wakeup(dev, enable) : -ENODEV;
978 }
979 
980 static inline bool platform_pci_need_resume(struct pci_dev *dev)
981 {
982 	return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
983 }
984 
985 static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
986 {
987 	if (pci_platform_pm && pci_platform_pm->bridge_d3)
988 		return pci_platform_pm->bridge_d3(dev);
989 	return false;
990 }
991 
992 /**
993  * pci_raw_set_power_state - Use PCI PM registers to set the power state of
994  *			     given PCI device
995  * @dev: PCI device to handle.
996  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
997  *
998  * RETURN VALUE:
999  * -EINVAL if the requested state is invalid.
1000  * -EIO if device does not support PCI PM or its PM capabilities register has a
1001  * wrong version, or device doesn't support the requested state.
1002  * 0 if device already is in the requested state.
1003  * 0 if device's power state has been successfully changed.
1004  */
1005 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
1006 {
1007 	u16 pmcsr;
1008 	bool need_restore = false;
1009 
1010 	/* Check if we're already there */
1011 	if (dev->current_state == state)
1012 		return 0;
1013 
1014 	if (!dev->pm_cap)
1015 		return -EIO;
1016 
1017 	if (state < PCI_D0 || state > PCI_D3hot)
1018 		return -EINVAL;
1019 
1020 	/*
1021 	 * Validate transition: We can enter D0 from any state, but if
1022 	 * we're already in a low-power state, we can only go deeper.  E.g.,
1023 	 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1024 	 * we'd have to go from D3 to D0, then to D1.
1025 	 */
1026 	if (state != PCI_D0 && dev->current_state <= PCI_D3cold
1027 	    && dev->current_state > state) {
1028 		pci_err(dev, "invalid power transition (from %s to %s)\n",
1029 			pci_power_name(dev->current_state),
1030 			pci_power_name(state));
1031 		return -EINVAL;
1032 	}
1033 
1034 	/* Check if this device supports the desired state */
1035 	if ((state == PCI_D1 && !dev->d1_support)
1036 	   || (state == PCI_D2 && !dev->d2_support))
1037 		return -EIO;
1038 
1039 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1040 	if (pmcsr == (u16) ~0) {
1041 		pci_err(dev, "can't change power state from %s to %s (config space inaccessible)\n",
1042 			pci_power_name(dev->current_state),
1043 			pci_power_name(state));
1044 		return -EIO;
1045 	}
1046 
1047 	/*
1048 	 * If we're (effectively) in D3, force entire word to 0.
1049 	 * This doesn't affect PME_Status, disables PME_En, and
1050 	 * sets PowerState to 0.
1051 	 */
1052 	switch (dev->current_state) {
1053 	case PCI_D0:
1054 	case PCI_D1:
1055 	case PCI_D2:
1056 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1057 		pmcsr |= state;
1058 		break;
1059 	case PCI_D3hot:
1060 	case PCI_D3cold:
1061 	case PCI_UNKNOWN: /* Boot-up */
1062 		if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
1063 		 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
1064 			need_restore = true;
1065 		fallthrough;	/* force to D0 */
1066 	default:
1067 		pmcsr = 0;
1068 		break;
1069 	}
1070 
1071 	/* Enter specified state */
1072 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1073 
1074 	/*
1075 	 * Mandatory power management transition delays; see PCI PM 1.1
1076 	 * 5.6.1 table 18
1077 	 */
1078 	if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
1079 		pci_dev_d3_sleep(dev);
1080 	else if (state == PCI_D2 || dev->current_state == PCI_D2)
1081 		udelay(PCI_PM_D2_DELAY);
1082 
1083 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1084 	dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1085 	if (dev->current_state != state)
1086 		pci_info_ratelimited(dev, "refused to change power state from %s to %s\n",
1087 			 pci_power_name(dev->current_state),
1088 			 pci_power_name(state));
1089 
1090 	/*
1091 	 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1092 	 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1093 	 * from D3hot to D0 _may_ perform an internal reset, thereby
1094 	 * going to "D0 Uninitialized" rather than "D0 Initialized".
1095 	 * For example, at least some versions of the 3c905B and the
1096 	 * 3c556B exhibit this behaviour.
1097 	 *
1098 	 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1099 	 * devices in a D3hot state at boot.  Consequently, we need to
1100 	 * restore at least the BARs so that the device will be
1101 	 * accessible to its driver.
1102 	 */
1103 	if (need_restore)
1104 		pci_restore_bars(dev);
1105 
1106 	if (dev->bus->self)
1107 		pcie_aspm_pm_state_change(dev->bus->self);
1108 
1109 	return 0;
1110 }
1111 
1112 /**
1113  * pci_update_current_state - Read power state of given device and cache it
1114  * @dev: PCI device to handle.
1115  * @state: State to cache in case the device doesn't have the PM capability
1116  *
1117  * The power state is read from the PMCSR register, which however is
1118  * inaccessible in D3cold.  The platform firmware is therefore queried first
1119  * to detect accessibility of the register.  In case the platform firmware
1120  * reports an incorrect state or the device isn't power manageable by the
1121  * platform at all, we try to detect D3cold by testing accessibility of the
1122  * vendor ID in config space.
1123  */
1124 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1125 {
1126 	if (platform_pci_get_power_state(dev) == PCI_D3cold ||
1127 	    !pci_device_is_present(dev)) {
1128 		dev->current_state = PCI_D3cold;
1129 	} else if (dev->pm_cap) {
1130 		u16 pmcsr;
1131 
1132 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1133 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1134 	} else {
1135 		dev->current_state = state;
1136 	}
1137 }
1138 
1139 /**
1140  * pci_refresh_power_state - Refresh the given device's power state data
1141  * @dev: Target PCI device.
1142  *
1143  * Ask the platform to refresh the devices power state information and invoke
1144  * pci_update_current_state() to update its current PCI power state.
1145  */
1146 void pci_refresh_power_state(struct pci_dev *dev)
1147 {
1148 	if (platform_pci_power_manageable(dev))
1149 		platform_pci_refresh_power_state(dev);
1150 
1151 	pci_update_current_state(dev, dev->current_state);
1152 }
1153 
1154 /**
1155  * pci_platform_power_transition - Use platform to change device power state
1156  * @dev: PCI device to handle.
1157  * @state: State to put the device into.
1158  */
1159 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1160 {
1161 	int error;
1162 
1163 	if (platform_pci_power_manageable(dev)) {
1164 		error = platform_pci_set_power_state(dev, state);
1165 		if (!error)
1166 			pci_update_current_state(dev, state);
1167 	} else
1168 		error = -ENODEV;
1169 
1170 	if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
1171 		dev->current_state = PCI_D0;
1172 
1173 	return error;
1174 }
1175 EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1176 
1177 /**
1178  * pci_wakeup - Wake up a PCI device
1179  * @pci_dev: Device to handle.
1180  * @ign: ignored parameter
1181  */
1182 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
1183 {
1184 	pci_wakeup_event(pci_dev);
1185 	pm_request_resume(&pci_dev->dev);
1186 	return 0;
1187 }
1188 
1189 /**
1190  * pci_wakeup_bus - Walk given bus and wake up devices on it
1191  * @bus: Top bus of the subtree to walk.
1192  */
1193 void pci_wakeup_bus(struct pci_bus *bus)
1194 {
1195 	if (bus)
1196 		pci_walk_bus(bus, pci_wakeup, NULL);
1197 }
1198 
1199 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1200 {
1201 	int delay = 1;
1202 	u32 id;
1203 
1204 	/*
1205 	 * After reset, the device should not silently discard config
1206 	 * requests, but it may still indicate that it needs more time by
1207 	 * responding to them with CRS completions.  The Root Port will
1208 	 * generally synthesize ~0 data to complete the read (except when
1209 	 * CRS SV is enabled and the read was for the Vendor ID; in that
1210 	 * case it synthesizes 0x0001 data).
1211 	 *
1212 	 * Wait for the device to return a non-CRS completion.  Read the
1213 	 * Command register instead of Vendor ID so we don't have to
1214 	 * contend with the CRS SV value.
1215 	 */
1216 	pci_read_config_dword(dev, PCI_COMMAND, &id);
1217 	while (id == ~0) {
1218 		if (delay > timeout) {
1219 			pci_warn(dev, "not ready %dms after %s; giving up\n",
1220 				 delay - 1, reset_type);
1221 			return -ENOTTY;
1222 		}
1223 
1224 		if (delay > 1000)
1225 			pci_info(dev, "not ready %dms after %s; waiting\n",
1226 				 delay - 1, reset_type);
1227 
1228 		msleep(delay);
1229 		delay *= 2;
1230 		pci_read_config_dword(dev, PCI_COMMAND, &id);
1231 	}
1232 
1233 	if (delay > 1000)
1234 		pci_info(dev, "ready %dms after %s\n", delay - 1,
1235 			 reset_type);
1236 
1237 	return 0;
1238 }
1239 
1240 /**
1241  * pci_power_up - Put the given device into D0
1242  * @dev: PCI device to power up
1243  */
1244 int pci_power_up(struct pci_dev *dev)
1245 {
1246 	pci_platform_power_transition(dev, PCI_D0);
1247 
1248 	/*
1249 	 * Mandatory power management transition delays are handled in
1250 	 * pci_pm_resume_noirq() and pci_pm_runtime_resume() of the
1251 	 * corresponding bridge.
1252 	 */
1253 	if (dev->runtime_d3cold) {
1254 		/*
1255 		 * When powering on a bridge from D3cold, the whole hierarchy
1256 		 * may be powered on into D0uninitialized state, resume them to
1257 		 * give them a chance to suspend again
1258 		 */
1259 		pci_wakeup_bus(dev->subordinate);
1260 	}
1261 
1262 	return pci_raw_set_power_state(dev, PCI_D0);
1263 }
1264 
1265 /**
1266  * __pci_dev_set_current_state - Set current state of a PCI device
1267  * @dev: Device to handle
1268  * @data: pointer to state to be set
1269  */
1270 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1271 {
1272 	pci_power_t state = *(pci_power_t *)data;
1273 
1274 	dev->current_state = state;
1275 	return 0;
1276 }
1277 
1278 /**
1279  * pci_bus_set_current_state - Walk given bus and set current state of devices
1280  * @bus: Top bus of the subtree to walk.
1281  * @state: state to be set
1282  */
1283 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1284 {
1285 	if (bus)
1286 		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1287 }
1288 
1289 /**
1290  * pci_set_power_state - Set the power state of a PCI device
1291  * @dev: PCI device to handle.
1292  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1293  *
1294  * Transition a device to a new power state, using the platform firmware and/or
1295  * the device's PCI PM registers.
1296  *
1297  * RETURN VALUE:
1298  * -EINVAL if the requested state is invalid.
1299  * -EIO if device does not support PCI PM or its PM capabilities register has a
1300  * wrong version, or device doesn't support the requested state.
1301  * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1302  * 0 if device already is in the requested state.
1303  * 0 if the transition is to D3 but D3 is not supported.
1304  * 0 if device's power state has been successfully changed.
1305  */
1306 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1307 {
1308 	int error;
1309 
1310 	/* Bound the state we're entering */
1311 	if (state > PCI_D3cold)
1312 		state = PCI_D3cold;
1313 	else if (state < PCI_D0)
1314 		state = PCI_D0;
1315 	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1316 
1317 		/*
1318 		 * If the device or the parent bridge do not support PCI
1319 		 * PM, ignore the request if we're doing anything other
1320 		 * than putting it into D0 (which would only happen on
1321 		 * boot).
1322 		 */
1323 		return 0;
1324 
1325 	/* Check if we're already there */
1326 	if (dev->current_state == state)
1327 		return 0;
1328 
1329 	if (state == PCI_D0)
1330 		return pci_power_up(dev);
1331 
1332 	/*
1333 	 * This device is quirked not to be put into D3, so don't put it in
1334 	 * D3
1335 	 */
1336 	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1337 		return 0;
1338 
1339 	/*
1340 	 * To put device in D3cold, we put device into D3hot in native
1341 	 * way, then put device into D3cold with platform ops
1342 	 */
1343 	error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
1344 					PCI_D3hot : state);
1345 
1346 	if (pci_platform_power_transition(dev, state))
1347 		return error;
1348 
1349 	/* Powering off a bridge may power off the whole hierarchy */
1350 	if (state == PCI_D3cold)
1351 		pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1352 
1353 	return 0;
1354 }
1355 EXPORT_SYMBOL(pci_set_power_state);
1356 
1357 /**
1358  * pci_choose_state - Choose the power state of a PCI device
1359  * @dev: PCI device to be suspended
1360  * @state: target sleep state for the whole system. This is the value
1361  *	   that is passed to suspend() function.
1362  *
1363  * Returns PCI power state suitable for given device and given system
1364  * message.
1365  */
1366 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
1367 {
1368 	pci_power_t ret;
1369 
1370 	if (!dev->pm_cap)
1371 		return PCI_D0;
1372 
1373 	ret = platform_pci_choose_state(dev);
1374 	if (ret != PCI_POWER_ERROR)
1375 		return ret;
1376 
1377 	switch (state.event) {
1378 	case PM_EVENT_ON:
1379 		return PCI_D0;
1380 	case PM_EVENT_FREEZE:
1381 	case PM_EVENT_PRETHAW:
1382 		/* REVISIT both freeze and pre-thaw "should" use D0 */
1383 	case PM_EVENT_SUSPEND:
1384 	case PM_EVENT_HIBERNATE:
1385 		return PCI_D3hot;
1386 	default:
1387 		pci_info(dev, "unrecognized suspend event %d\n",
1388 			 state.event);
1389 		BUG();
1390 	}
1391 	return PCI_D0;
1392 }
1393 EXPORT_SYMBOL(pci_choose_state);
1394 
1395 #define PCI_EXP_SAVE_REGS	7
1396 
1397 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1398 						       u16 cap, bool extended)
1399 {
1400 	struct pci_cap_saved_state *tmp;
1401 
1402 	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1403 		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1404 			return tmp;
1405 	}
1406 	return NULL;
1407 }
1408 
1409 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1410 {
1411 	return _pci_find_saved_cap(dev, cap, false);
1412 }
1413 
1414 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1415 {
1416 	return _pci_find_saved_cap(dev, cap, true);
1417 }
1418 
1419 static int pci_save_pcie_state(struct pci_dev *dev)
1420 {
1421 	int i = 0;
1422 	struct pci_cap_saved_state *save_state;
1423 	u16 *cap;
1424 
1425 	if (!pci_is_pcie(dev))
1426 		return 0;
1427 
1428 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1429 	if (!save_state) {
1430 		pci_err(dev, "buffer not found in %s\n", __func__);
1431 		return -ENOMEM;
1432 	}
1433 
1434 	cap = (u16 *)&save_state->cap.data[0];
1435 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1436 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1437 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1438 	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
1439 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1440 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1441 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1442 
1443 	return 0;
1444 }
1445 
1446 static void pci_restore_pcie_state(struct pci_dev *dev)
1447 {
1448 	int i = 0;
1449 	struct pci_cap_saved_state *save_state;
1450 	u16 *cap;
1451 
1452 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1453 	if (!save_state)
1454 		return;
1455 
1456 	cap = (u16 *)&save_state->cap.data[0];
1457 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1458 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1459 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1460 	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1461 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1462 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1463 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1464 }
1465 
1466 static int pci_save_pcix_state(struct pci_dev *dev)
1467 {
1468 	int pos;
1469 	struct pci_cap_saved_state *save_state;
1470 
1471 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1472 	if (!pos)
1473 		return 0;
1474 
1475 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1476 	if (!save_state) {
1477 		pci_err(dev, "buffer not found in %s\n", __func__);
1478 		return -ENOMEM;
1479 	}
1480 
1481 	pci_read_config_word(dev, pos + PCI_X_CMD,
1482 			     (u16 *)save_state->cap.data);
1483 
1484 	return 0;
1485 }
1486 
1487 static void pci_restore_pcix_state(struct pci_dev *dev)
1488 {
1489 	int i = 0, pos;
1490 	struct pci_cap_saved_state *save_state;
1491 	u16 *cap;
1492 
1493 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1494 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1495 	if (!save_state || !pos)
1496 		return;
1497 	cap = (u16 *)&save_state->cap.data[0];
1498 
1499 	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1500 }
1501 
1502 static void pci_save_ltr_state(struct pci_dev *dev)
1503 {
1504 	int ltr;
1505 	struct pci_cap_saved_state *save_state;
1506 	u16 *cap;
1507 
1508 	if (!pci_is_pcie(dev))
1509 		return;
1510 
1511 	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1512 	if (!ltr)
1513 		return;
1514 
1515 	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1516 	if (!save_state) {
1517 		pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1518 		return;
1519 	}
1520 
1521 	cap = (u16 *)&save_state->cap.data[0];
1522 	pci_read_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap++);
1523 	pci_read_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, cap++);
1524 }
1525 
1526 static void pci_restore_ltr_state(struct pci_dev *dev)
1527 {
1528 	struct pci_cap_saved_state *save_state;
1529 	int ltr;
1530 	u16 *cap;
1531 
1532 	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1533 	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1534 	if (!save_state || !ltr)
1535 		return;
1536 
1537 	cap = (u16 *)&save_state->cap.data[0];
1538 	pci_write_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap++);
1539 	pci_write_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, *cap++);
1540 }
1541 
1542 /**
1543  * pci_save_state - save the PCI configuration space of a device before
1544  *		    suspending
1545  * @dev: PCI device that we're dealing with
1546  */
1547 int pci_save_state(struct pci_dev *dev)
1548 {
1549 	int i;
1550 	/* XXX: 100% dword access ok here? */
1551 	for (i = 0; i < 16; i++) {
1552 		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1553 		pci_dbg(dev, "saving config space at offset %#x (reading %#x)\n",
1554 			i * 4, dev->saved_config_space[i]);
1555 	}
1556 	dev->state_saved = true;
1557 
1558 	i = pci_save_pcie_state(dev);
1559 	if (i != 0)
1560 		return i;
1561 
1562 	i = pci_save_pcix_state(dev);
1563 	if (i != 0)
1564 		return i;
1565 
1566 	pci_save_ltr_state(dev);
1567 	pci_save_dpc_state(dev);
1568 	pci_save_aer_state(dev);
1569 	return pci_save_vc_state(dev);
1570 }
1571 EXPORT_SYMBOL(pci_save_state);
1572 
1573 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1574 				     u32 saved_val, int retry, bool force)
1575 {
1576 	u32 val;
1577 
1578 	pci_read_config_dword(pdev, offset, &val);
1579 	if (!force && val == saved_val)
1580 		return;
1581 
1582 	for (;;) {
1583 		pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1584 			offset, val, saved_val);
1585 		pci_write_config_dword(pdev, offset, saved_val);
1586 		if (retry-- <= 0)
1587 			return;
1588 
1589 		pci_read_config_dword(pdev, offset, &val);
1590 		if (val == saved_val)
1591 			return;
1592 
1593 		mdelay(1);
1594 	}
1595 }
1596 
1597 static void pci_restore_config_space_range(struct pci_dev *pdev,
1598 					   int start, int end, int retry,
1599 					   bool force)
1600 {
1601 	int index;
1602 
1603 	for (index = end; index >= start; index--)
1604 		pci_restore_config_dword(pdev, 4 * index,
1605 					 pdev->saved_config_space[index],
1606 					 retry, force);
1607 }
1608 
1609 static void pci_restore_config_space(struct pci_dev *pdev)
1610 {
1611 	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1612 		pci_restore_config_space_range(pdev, 10, 15, 0, false);
1613 		/* Restore BARs before the command register. */
1614 		pci_restore_config_space_range(pdev, 4, 9, 10, false);
1615 		pci_restore_config_space_range(pdev, 0, 3, 0, false);
1616 	} else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1617 		pci_restore_config_space_range(pdev, 12, 15, 0, false);
1618 
1619 		/*
1620 		 * Force rewriting of prefetch registers to avoid S3 resume
1621 		 * issues on Intel PCI bridges that occur when these
1622 		 * registers are not explicitly written.
1623 		 */
1624 		pci_restore_config_space_range(pdev, 9, 11, 0, true);
1625 		pci_restore_config_space_range(pdev, 0, 8, 0, false);
1626 	} else {
1627 		pci_restore_config_space_range(pdev, 0, 15, 0, false);
1628 	}
1629 }
1630 
1631 static void pci_restore_rebar_state(struct pci_dev *pdev)
1632 {
1633 	unsigned int pos, nbars, i;
1634 	u32 ctrl;
1635 
1636 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1637 	if (!pos)
1638 		return;
1639 
1640 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1641 	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1642 		    PCI_REBAR_CTRL_NBAR_SHIFT;
1643 
1644 	for (i = 0; i < nbars; i++, pos += 8) {
1645 		struct resource *res;
1646 		int bar_idx, size;
1647 
1648 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1649 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1650 		res = pdev->resource + bar_idx;
1651 		size = ilog2(resource_size(res)) - 20;
1652 		ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1653 		ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1654 		pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1655 	}
1656 }
1657 
1658 /**
1659  * pci_restore_state - Restore the saved state of a PCI device
1660  * @dev: PCI device that we're dealing with
1661  */
1662 void pci_restore_state(struct pci_dev *dev)
1663 {
1664 	if (!dev->state_saved)
1665 		return;
1666 
1667 	/*
1668 	 * Restore max latencies (in the LTR capability) before enabling
1669 	 * LTR itself (in the PCIe capability).
1670 	 */
1671 	pci_restore_ltr_state(dev);
1672 
1673 	pci_restore_pcie_state(dev);
1674 	pci_restore_pasid_state(dev);
1675 	pci_restore_pri_state(dev);
1676 	pci_restore_ats_state(dev);
1677 	pci_restore_vc_state(dev);
1678 	pci_restore_rebar_state(dev);
1679 	pci_restore_dpc_state(dev);
1680 
1681 	pci_aer_clear_status(dev);
1682 	pci_restore_aer_state(dev);
1683 
1684 	pci_restore_config_space(dev);
1685 
1686 	pci_restore_pcix_state(dev);
1687 	pci_restore_msi_state(dev);
1688 
1689 	/* Restore ACS and IOV configuration state */
1690 	pci_enable_acs(dev);
1691 	pci_restore_iov_state(dev);
1692 
1693 	dev->state_saved = false;
1694 }
1695 EXPORT_SYMBOL(pci_restore_state);
1696 
1697 struct pci_saved_state {
1698 	u32 config_space[16];
1699 	struct pci_cap_saved_data cap[];
1700 };
1701 
1702 /**
1703  * pci_store_saved_state - Allocate and return an opaque struct containing
1704  *			   the device saved state.
1705  * @dev: PCI device that we're dealing with
1706  *
1707  * Return NULL if no state or error.
1708  */
1709 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1710 {
1711 	struct pci_saved_state *state;
1712 	struct pci_cap_saved_state *tmp;
1713 	struct pci_cap_saved_data *cap;
1714 	size_t size;
1715 
1716 	if (!dev->state_saved)
1717 		return NULL;
1718 
1719 	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1720 
1721 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1722 		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1723 
1724 	state = kzalloc(size, GFP_KERNEL);
1725 	if (!state)
1726 		return NULL;
1727 
1728 	memcpy(state->config_space, dev->saved_config_space,
1729 	       sizeof(state->config_space));
1730 
1731 	cap = state->cap;
1732 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1733 		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1734 		memcpy(cap, &tmp->cap, len);
1735 		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1736 	}
1737 	/* Empty cap_save terminates list */
1738 
1739 	return state;
1740 }
1741 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1742 
1743 /**
1744  * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1745  * @dev: PCI device that we're dealing with
1746  * @state: Saved state returned from pci_store_saved_state()
1747  */
1748 int pci_load_saved_state(struct pci_dev *dev,
1749 			 struct pci_saved_state *state)
1750 {
1751 	struct pci_cap_saved_data *cap;
1752 
1753 	dev->state_saved = false;
1754 
1755 	if (!state)
1756 		return 0;
1757 
1758 	memcpy(dev->saved_config_space, state->config_space,
1759 	       sizeof(state->config_space));
1760 
1761 	cap = state->cap;
1762 	while (cap->size) {
1763 		struct pci_cap_saved_state *tmp;
1764 
1765 		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1766 		if (!tmp || tmp->cap.size != cap->size)
1767 			return -EINVAL;
1768 
1769 		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1770 		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1771 		       sizeof(struct pci_cap_saved_data) + cap->size);
1772 	}
1773 
1774 	dev->state_saved = true;
1775 	return 0;
1776 }
1777 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1778 
1779 /**
1780  * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1781  *				   and free the memory allocated for it.
1782  * @dev: PCI device that we're dealing with
1783  * @state: Pointer to saved state returned from pci_store_saved_state()
1784  */
1785 int pci_load_and_free_saved_state(struct pci_dev *dev,
1786 				  struct pci_saved_state **state)
1787 {
1788 	int ret = pci_load_saved_state(dev, *state);
1789 	kfree(*state);
1790 	*state = NULL;
1791 	return ret;
1792 }
1793 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1794 
1795 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1796 {
1797 	return pci_enable_resources(dev, bars);
1798 }
1799 
1800 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1801 {
1802 	int err;
1803 	struct pci_dev *bridge;
1804 	u16 cmd;
1805 	u8 pin;
1806 
1807 	err = pci_set_power_state(dev, PCI_D0);
1808 	if (err < 0 && err != -EIO)
1809 		return err;
1810 
1811 	bridge = pci_upstream_bridge(dev);
1812 	if (bridge)
1813 		pcie_aspm_powersave_config_link(bridge);
1814 
1815 	err = pcibios_enable_device(dev, bars);
1816 	if (err < 0)
1817 		return err;
1818 	pci_fixup_device(pci_fixup_enable, dev);
1819 
1820 	if (dev->msi_enabled || dev->msix_enabled)
1821 		return 0;
1822 
1823 	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1824 	if (pin) {
1825 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
1826 		if (cmd & PCI_COMMAND_INTX_DISABLE)
1827 			pci_write_config_word(dev, PCI_COMMAND,
1828 					      cmd & ~PCI_COMMAND_INTX_DISABLE);
1829 	}
1830 
1831 	return 0;
1832 }
1833 
1834 /**
1835  * pci_reenable_device - Resume abandoned device
1836  * @dev: PCI device to be resumed
1837  *
1838  * NOTE: This function is a backend of pci_default_resume() and is not supposed
1839  * to be called by normal code, write proper resume handler and use it instead.
1840  */
1841 int pci_reenable_device(struct pci_dev *dev)
1842 {
1843 	if (pci_is_enabled(dev))
1844 		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1845 	return 0;
1846 }
1847 EXPORT_SYMBOL(pci_reenable_device);
1848 
1849 static void pci_enable_bridge(struct pci_dev *dev)
1850 {
1851 	struct pci_dev *bridge;
1852 	int retval;
1853 
1854 	bridge = pci_upstream_bridge(dev);
1855 	if (bridge)
1856 		pci_enable_bridge(bridge);
1857 
1858 	if (pci_is_enabled(dev)) {
1859 		if (!dev->is_busmaster)
1860 			pci_set_master(dev);
1861 		return;
1862 	}
1863 
1864 	retval = pci_enable_device(dev);
1865 	if (retval)
1866 		pci_err(dev, "Error enabling bridge (%d), continuing\n",
1867 			retval);
1868 	pci_set_master(dev);
1869 }
1870 
1871 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1872 {
1873 	struct pci_dev *bridge;
1874 	int err;
1875 	int i, bars = 0;
1876 
1877 	/*
1878 	 * Power state could be unknown at this point, either due to a fresh
1879 	 * boot or a device removal call.  So get the current power state
1880 	 * so that things like MSI message writing will behave as expected
1881 	 * (e.g. if the device really is in D0 at enable time).
1882 	 */
1883 	if (dev->pm_cap) {
1884 		u16 pmcsr;
1885 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1886 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1887 	}
1888 
1889 	if (atomic_inc_return(&dev->enable_cnt) > 1)
1890 		return 0;		/* already enabled */
1891 
1892 	bridge = pci_upstream_bridge(dev);
1893 	if (bridge)
1894 		pci_enable_bridge(bridge);
1895 
1896 	/* only skip sriov related */
1897 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1898 		if (dev->resource[i].flags & flags)
1899 			bars |= (1 << i);
1900 	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1901 		if (dev->resource[i].flags & flags)
1902 			bars |= (1 << i);
1903 
1904 	err = do_pci_enable_device(dev, bars);
1905 	if (err < 0)
1906 		atomic_dec(&dev->enable_cnt);
1907 	return err;
1908 }
1909 
1910 /**
1911  * pci_enable_device_io - Initialize a device for use with IO space
1912  * @dev: PCI device to be initialized
1913  *
1914  * Initialize device before it's used by a driver. Ask low-level code
1915  * to enable I/O resources. Wake up the device if it was suspended.
1916  * Beware, this function can fail.
1917  */
1918 int pci_enable_device_io(struct pci_dev *dev)
1919 {
1920 	return pci_enable_device_flags(dev, IORESOURCE_IO);
1921 }
1922 EXPORT_SYMBOL(pci_enable_device_io);
1923 
1924 /**
1925  * pci_enable_device_mem - Initialize a device for use with Memory space
1926  * @dev: PCI device to be initialized
1927  *
1928  * Initialize device before it's used by a driver. Ask low-level code
1929  * to enable Memory resources. Wake up the device if it was suspended.
1930  * Beware, this function can fail.
1931  */
1932 int pci_enable_device_mem(struct pci_dev *dev)
1933 {
1934 	return pci_enable_device_flags(dev, IORESOURCE_MEM);
1935 }
1936 EXPORT_SYMBOL(pci_enable_device_mem);
1937 
1938 /**
1939  * pci_enable_device - Initialize device before it's used by a driver.
1940  * @dev: PCI device to be initialized
1941  *
1942  * Initialize device before it's used by a driver. Ask low-level code
1943  * to enable I/O and memory. Wake up the device if it was suspended.
1944  * Beware, this function can fail.
1945  *
1946  * Note we don't actually enable the device many times if we call
1947  * this function repeatedly (we just increment the count).
1948  */
1949 int pci_enable_device(struct pci_dev *dev)
1950 {
1951 	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1952 }
1953 EXPORT_SYMBOL(pci_enable_device);
1954 
1955 /*
1956  * Managed PCI resources.  This manages device on/off, INTx/MSI/MSI-X
1957  * on/off and BAR regions.  pci_dev itself records MSI/MSI-X status, so
1958  * there's no need to track it separately.  pci_devres is initialized
1959  * when a device is enabled using managed PCI device enable interface.
1960  */
1961 struct pci_devres {
1962 	unsigned int enabled:1;
1963 	unsigned int pinned:1;
1964 	unsigned int orig_intx:1;
1965 	unsigned int restore_intx:1;
1966 	unsigned int mwi:1;
1967 	u32 region_mask;
1968 };
1969 
1970 static void pcim_release(struct device *gendev, void *res)
1971 {
1972 	struct pci_dev *dev = to_pci_dev(gendev);
1973 	struct pci_devres *this = res;
1974 	int i;
1975 
1976 	if (dev->msi_enabled)
1977 		pci_disable_msi(dev);
1978 	if (dev->msix_enabled)
1979 		pci_disable_msix(dev);
1980 
1981 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1982 		if (this->region_mask & (1 << i))
1983 			pci_release_region(dev, i);
1984 
1985 	if (this->mwi)
1986 		pci_clear_mwi(dev);
1987 
1988 	if (this->restore_intx)
1989 		pci_intx(dev, this->orig_intx);
1990 
1991 	if (this->enabled && !this->pinned)
1992 		pci_disable_device(dev);
1993 }
1994 
1995 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1996 {
1997 	struct pci_devres *dr, *new_dr;
1998 
1999 	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
2000 	if (dr)
2001 		return dr;
2002 
2003 	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
2004 	if (!new_dr)
2005 		return NULL;
2006 	return devres_get(&pdev->dev, new_dr, NULL, NULL);
2007 }
2008 
2009 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
2010 {
2011 	if (pci_is_managed(pdev))
2012 		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
2013 	return NULL;
2014 }
2015 
2016 /**
2017  * pcim_enable_device - Managed pci_enable_device()
2018  * @pdev: PCI device to be initialized
2019  *
2020  * Managed pci_enable_device().
2021  */
2022 int pcim_enable_device(struct pci_dev *pdev)
2023 {
2024 	struct pci_devres *dr;
2025 	int rc;
2026 
2027 	dr = get_pci_dr(pdev);
2028 	if (unlikely(!dr))
2029 		return -ENOMEM;
2030 	if (dr->enabled)
2031 		return 0;
2032 
2033 	rc = pci_enable_device(pdev);
2034 	if (!rc) {
2035 		pdev->is_managed = 1;
2036 		dr->enabled = 1;
2037 	}
2038 	return rc;
2039 }
2040 EXPORT_SYMBOL(pcim_enable_device);
2041 
2042 /**
2043  * pcim_pin_device - Pin managed PCI device
2044  * @pdev: PCI device to pin
2045  *
2046  * Pin managed PCI device @pdev.  Pinned device won't be disabled on
2047  * driver detach.  @pdev must have been enabled with
2048  * pcim_enable_device().
2049  */
2050 void pcim_pin_device(struct pci_dev *pdev)
2051 {
2052 	struct pci_devres *dr;
2053 
2054 	dr = find_pci_dr(pdev);
2055 	WARN_ON(!dr || !dr->enabled);
2056 	if (dr)
2057 		dr->pinned = 1;
2058 }
2059 EXPORT_SYMBOL(pcim_pin_device);
2060 
2061 /*
2062  * pcibios_add_device - provide arch specific hooks when adding device dev
2063  * @dev: the PCI device being added
2064  *
2065  * Permits the platform to provide architecture specific functionality when
2066  * devices are added. This is the default implementation. Architecture
2067  * implementations can override this.
2068  */
2069 int __weak pcibios_add_device(struct pci_dev *dev)
2070 {
2071 	return 0;
2072 }
2073 
2074 /**
2075  * pcibios_release_device - provide arch specific hooks when releasing
2076  *			    device dev
2077  * @dev: the PCI device being released
2078  *
2079  * Permits the platform to provide architecture specific functionality when
2080  * devices are released. This is the default implementation. Architecture
2081  * implementations can override this.
2082  */
2083 void __weak pcibios_release_device(struct pci_dev *dev) {}
2084 
2085 /**
2086  * pcibios_disable_device - disable arch specific PCI resources for device dev
2087  * @dev: the PCI device to disable
2088  *
2089  * Disables architecture specific PCI resources for the device. This
2090  * is the default implementation. Architecture implementations can
2091  * override this.
2092  */
2093 void __weak pcibios_disable_device(struct pci_dev *dev) {}
2094 
2095 /**
2096  * pcibios_penalize_isa_irq - penalize an ISA IRQ
2097  * @irq: ISA IRQ to penalize
2098  * @active: IRQ active or not
2099  *
2100  * Permits the platform to provide architecture-specific functionality when
2101  * penalizing ISA IRQs. This is the default implementation. Architecture
2102  * implementations can override this.
2103  */
2104 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
2105 
2106 static void do_pci_disable_device(struct pci_dev *dev)
2107 {
2108 	u16 pci_command;
2109 
2110 	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2111 	if (pci_command & PCI_COMMAND_MASTER) {
2112 		pci_command &= ~PCI_COMMAND_MASTER;
2113 		pci_write_config_word(dev, PCI_COMMAND, pci_command);
2114 	}
2115 
2116 	pcibios_disable_device(dev);
2117 }
2118 
2119 /**
2120  * pci_disable_enabled_device - Disable device without updating enable_cnt
2121  * @dev: PCI device to disable
2122  *
2123  * NOTE: This function is a backend of PCI power management routines and is
2124  * not supposed to be called drivers.
2125  */
2126 void pci_disable_enabled_device(struct pci_dev *dev)
2127 {
2128 	if (pci_is_enabled(dev))
2129 		do_pci_disable_device(dev);
2130 }
2131 
2132 /**
2133  * pci_disable_device - Disable PCI device after use
2134  * @dev: PCI device to be disabled
2135  *
2136  * Signal to the system that the PCI device is not in use by the system
2137  * anymore.  This only involves disabling PCI bus-mastering, if active.
2138  *
2139  * Note we don't actually disable the device until all callers of
2140  * pci_enable_device() have called pci_disable_device().
2141  */
2142 void pci_disable_device(struct pci_dev *dev)
2143 {
2144 	struct pci_devres *dr;
2145 
2146 	dr = find_pci_dr(dev);
2147 	if (dr)
2148 		dr->enabled = 0;
2149 
2150 	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2151 		      "disabling already-disabled device");
2152 
2153 	if (atomic_dec_return(&dev->enable_cnt) != 0)
2154 		return;
2155 
2156 	do_pci_disable_device(dev);
2157 
2158 	dev->is_busmaster = 0;
2159 }
2160 EXPORT_SYMBOL(pci_disable_device);
2161 
2162 /**
2163  * pcibios_set_pcie_reset_state - set reset state for device dev
2164  * @dev: the PCIe device reset
2165  * @state: Reset state to enter into
2166  *
2167  * Set the PCIe reset state for the device. This is the default
2168  * implementation. Architecture implementations can override this.
2169  */
2170 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2171 					enum pcie_reset_state state)
2172 {
2173 	return -EINVAL;
2174 }
2175 
2176 /**
2177  * pci_set_pcie_reset_state - set reset state for device dev
2178  * @dev: the PCIe device reset
2179  * @state: Reset state to enter into
2180  *
2181  * Sets the PCI reset state for the device.
2182  */
2183 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2184 {
2185 	return pcibios_set_pcie_reset_state(dev, state);
2186 }
2187 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2188 
2189 void pcie_clear_device_status(struct pci_dev *dev)
2190 {
2191 	u16 sta;
2192 
2193 	pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2194 	pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2195 }
2196 
2197 /**
2198  * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2199  * @dev: PCIe root port or event collector.
2200  */
2201 void pcie_clear_root_pme_status(struct pci_dev *dev)
2202 {
2203 	pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2204 }
2205 
2206 /**
2207  * pci_check_pme_status - Check if given device has generated PME.
2208  * @dev: Device to check.
2209  *
2210  * Check the PME status of the device and if set, clear it and clear PME enable
2211  * (if set).  Return 'true' if PME status and PME enable were both set or
2212  * 'false' otherwise.
2213  */
2214 bool pci_check_pme_status(struct pci_dev *dev)
2215 {
2216 	int pmcsr_pos;
2217 	u16 pmcsr;
2218 	bool ret = false;
2219 
2220 	if (!dev->pm_cap)
2221 		return false;
2222 
2223 	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2224 	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2225 	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2226 		return false;
2227 
2228 	/* Clear PME status. */
2229 	pmcsr |= PCI_PM_CTRL_PME_STATUS;
2230 	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2231 		/* Disable PME to avoid interrupt flood. */
2232 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2233 		ret = true;
2234 	}
2235 
2236 	pci_write_config_word(dev, pmcsr_pos, pmcsr);
2237 
2238 	return ret;
2239 }
2240 
2241 /**
2242  * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2243  * @dev: Device to handle.
2244  * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2245  *
2246  * Check if @dev has generated PME and queue a resume request for it in that
2247  * case.
2248  */
2249 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2250 {
2251 	if (pme_poll_reset && dev->pme_poll)
2252 		dev->pme_poll = false;
2253 
2254 	if (pci_check_pme_status(dev)) {
2255 		pci_wakeup_event(dev);
2256 		pm_request_resume(&dev->dev);
2257 	}
2258 	return 0;
2259 }
2260 
2261 /**
2262  * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2263  * @bus: Top bus of the subtree to walk.
2264  */
2265 void pci_pme_wakeup_bus(struct pci_bus *bus)
2266 {
2267 	if (bus)
2268 		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2269 }
2270 
2271 
2272 /**
2273  * pci_pme_capable - check the capability of PCI device to generate PME#
2274  * @dev: PCI device to handle.
2275  * @state: PCI state from which device will issue PME#.
2276  */
2277 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2278 {
2279 	if (!dev->pm_cap)
2280 		return false;
2281 
2282 	return !!(dev->pme_support & (1 << state));
2283 }
2284 EXPORT_SYMBOL(pci_pme_capable);
2285 
2286 static void pci_pme_list_scan(struct work_struct *work)
2287 {
2288 	struct pci_pme_device *pme_dev, *n;
2289 
2290 	mutex_lock(&pci_pme_list_mutex);
2291 	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2292 		if (pme_dev->dev->pme_poll) {
2293 			struct pci_dev *bridge;
2294 
2295 			bridge = pme_dev->dev->bus->self;
2296 			/*
2297 			 * If bridge is in low power state, the
2298 			 * configuration space of subordinate devices
2299 			 * may be not accessible
2300 			 */
2301 			if (bridge && bridge->current_state != PCI_D0)
2302 				continue;
2303 			/*
2304 			 * If the device is in D3cold it should not be
2305 			 * polled either.
2306 			 */
2307 			if (pme_dev->dev->current_state == PCI_D3cold)
2308 				continue;
2309 
2310 			pci_pme_wakeup(pme_dev->dev, NULL);
2311 		} else {
2312 			list_del(&pme_dev->list);
2313 			kfree(pme_dev);
2314 		}
2315 	}
2316 	if (!list_empty(&pci_pme_list))
2317 		queue_delayed_work(system_freezable_wq, &pci_pme_work,
2318 				   msecs_to_jiffies(PME_TIMEOUT));
2319 	mutex_unlock(&pci_pme_list_mutex);
2320 }
2321 
2322 static void __pci_pme_active(struct pci_dev *dev, bool enable)
2323 {
2324 	u16 pmcsr;
2325 
2326 	if (!dev->pme_support)
2327 		return;
2328 
2329 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2330 	/* Clear PME_Status by writing 1 to it and enable PME# */
2331 	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2332 	if (!enable)
2333 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2334 
2335 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2336 }
2337 
2338 /**
2339  * pci_pme_restore - Restore PME configuration after config space restore.
2340  * @dev: PCI device to update.
2341  */
2342 void pci_pme_restore(struct pci_dev *dev)
2343 {
2344 	u16 pmcsr;
2345 
2346 	if (!dev->pme_support)
2347 		return;
2348 
2349 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2350 	if (dev->wakeup_prepared) {
2351 		pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2352 		pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2353 	} else {
2354 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2355 		pmcsr |= PCI_PM_CTRL_PME_STATUS;
2356 	}
2357 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2358 }
2359 
2360 /**
2361  * pci_pme_active - enable or disable PCI device's PME# function
2362  * @dev: PCI device to handle.
2363  * @enable: 'true' to enable PME# generation; 'false' to disable it.
2364  *
2365  * The caller must verify that the device is capable of generating PME# before
2366  * calling this function with @enable equal to 'true'.
2367  */
2368 void pci_pme_active(struct pci_dev *dev, bool enable)
2369 {
2370 	__pci_pme_active(dev, enable);
2371 
2372 	/*
2373 	 * PCI (as opposed to PCIe) PME requires that the device have
2374 	 * its PME# line hooked up correctly. Not all hardware vendors
2375 	 * do this, so the PME never gets delivered and the device
2376 	 * remains asleep. The easiest way around this is to
2377 	 * periodically walk the list of suspended devices and check
2378 	 * whether any have their PME flag set. The assumption is that
2379 	 * we'll wake up often enough anyway that this won't be a huge
2380 	 * hit, and the power savings from the devices will still be a
2381 	 * win.
2382 	 *
2383 	 * Although PCIe uses in-band PME message instead of PME# line
2384 	 * to report PME, PME does not work for some PCIe devices in
2385 	 * reality.  For example, there are devices that set their PME
2386 	 * status bits, but don't really bother to send a PME message;
2387 	 * there are PCI Express Root Ports that don't bother to
2388 	 * trigger interrupts when they receive PME messages from the
2389 	 * devices below.  So PME poll is used for PCIe devices too.
2390 	 */
2391 
2392 	if (dev->pme_poll) {
2393 		struct pci_pme_device *pme_dev;
2394 		if (enable) {
2395 			pme_dev = kmalloc(sizeof(struct pci_pme_device),
2396 					  GFP_KERNEL);
2397 			if (!pme_dev) {
2398 				pci_warn(dev, "can't enable PME#\n");
2399 				return;
2400 			}
2401 			pme_dev->dev = dev;
2402 			mutex_lock(&pci_pme_list_mutex);
2403 			list_add(&pme_dev->list, &pci_pme_list);
2404 			if (list_is_singular(&pci_pme_list))
2405 				queue_delayed_work(system_freezable_wq,
2406 						   &pci_pme_work,
2407 						   msecs_to_jiffies(PME_TIMEOUT));
2408 			mutex_unlock(&pci_pme_list_mutex);
2409 		} else {
2410 			mutex_lock(&pci_pme_list_mutex);
2411 			list_for_each_entry(pme_dev, &pci_pme_list, list) {
2412 				if (pme_dev->dev == dev) {
2413 					list_del(&pme_dev->list);
2414 					kfree(pme_dev);
2415 					break;
2416 				}
2417 			}
2418 			mutex_unlock(&pci_pme_list_mutex);
2419 		}
2420 	}
2421 
2422 	pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2423 }
2424 EXPORT_SYMBOL(pci_pme_active);
2425 
2426 /**
2427  * __pci_enable_wake - enable PCI device as wakeup event source
2428  * @dev: PCI device affected
2429  * @state: PCI state from which device will issue wakeup events
2430  * @enable: True to enable event generation; false to disable
2431  *
2432  * This enables the device as a wakeup event source, or disables it.
2433  * When such events involves platform-specific hooks, those hooks are
2434  * called automatically by this routine.
2435  *
2436  * Devices with legacy power management (no standard PCI PM capabilities)
2437  * always require such platform hooks.
2438  *
2439  * RETURN VALUE:
2440  * 0 is returned on success
2441  * -EINVAL is returned if device is not supposed to wake up the system
2442  * Error code depending on the platform is returned if both the platform and
2443  * the native mechanism fail to enable the generation of wake-up events
2444  */
2445 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2446 {
2447 	int ret = 0;
2448 
2449 	/*
2450 	 * Bridges that are not power-manageable directly only signal
2451 	 * wakeup on behalf of subordinate devices which is set up
2452 	 * elsewhere, so skip them. However, bridges that are
2453 	 * power-manageable may signal wakeup for themselves (for example,
2454 	 * on a hotplug event) and they need to be covered here.
2455 	 */
2456 	if (!pci_power_manageable(dev))
2457 		return 0;
2458 
2459 	/* Don't do the same thing twice in a row for one device. */
2460 	if (!!enable == !!dev->wakeup_prepared)
2461 		return 0;
2462 
2463 	/*
2464 	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2465 	 * Anderson we should be doing PME# wake enable followed by ACPI wake
2466 	 * enable.  To disable wake-up we call the platform first, for symmetry.
2467 	 */
2468 
2469 	if (enable) {
2470 		int error;
2471 
2472 		if (pci_pme_capable(dev, state))
2473 			pci_pme_active(dev, true);
2474 		else
2475 			ret = 1;
2476 		error = platform_pci_set_wakeup(dev, true);
2477 		if (ret)
2478 			ret = error;
2479 		if (!ret)
2480 			dev->wakeup_prepared = true;
2481 	} else {
2482 		platform_pci_set_wakeup(dev, false);
2483 		pci_pme_active(dev, false);
2484 		dev->wakeup_prepared = false;
2485 	}
2486 
2487 	return ret;
2488 }
2489 
2490 /**
2491  * pci_enable_wake - change wakeup settings for a PCI device
2492  * @pci_dev: Target device
2493  * @state: PCI state from which device will issue wakeup events
2494  * @enable: Whether or not to enable event generation
2495  *
2496  * If @enable is set, check device_may_wakeup() for the device before calling
2497  * __pci_enable_wake() for it.
2498  */
2499 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2500 {
2501 	if (enable && !device_may_wakeup(&pci_dev->dev))
2502 		return -EINVAL;
2503 
2504 	return __pci_enable_wake(pci_dev, state, enable);
2505 }
2506 EXPORT_SYMBOL(pci_enable_wake);
2507 
2508 /**
2509  * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2510  * @dev: PCI device to prepare
2511  * @enable: True to enable wake-up event generation; false to disable
2512  *
2513  * Many drivers want the device to wake up the system from D3_hot or D3_cold
2514  * and this function allows them to set that up cleanly - pci_enable_wake()
2515  * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2516  * ordering constraints.
2517  *
2518  * This function only returns error code if the device is not allowed to wake
2519  * up the system from sleep or it is not capable of generating PME# from both
2520  * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2521  */
2522 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2523 {
2524 	return pci_pme_capable(dev, PCI_D3cold) ?
2525 			pci_enable_wake(dev, PCI_D3cold, enable) :
2526 			pci_enable_wake(dev, PCI_D3hot, enable);
2527 }
2528 EXPORT_SYMBOL(pci_wake_from_d3);
2529 
2530 /**
2531  * pci_target_state - find an appropriate low power state for a given PCI dev
2532  * @dev: PCI device
2533  * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2534  *
2535  * Use underlying platform code to find a supported low power state for @dev.
2536  * If the platform can't manage @dev, return the deepest state from which it
2537  * can generate wake events, based on any available PME info.
2538  */
2539 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2540 {
2541 	pci_power_t target_state = PCI_D3hot;
2542 
2543 	if (platform_pci_power_manageable(dev)) {
2544 		/*
2545 		 * Call the platform to find the target state for the device.
2546 		 */
2547 		pci_power_t state = platform_pci_choose_state(dev);
2548 
2549 		switch (state) {
2550 		case PCI_POWER_ERROR:
2551 		case PCI_UNKNOWN:
2552 			break;
2553 		case PCI_D1:
2554 		case PCI_D2:
2555 			if (pci_no_d1d2(dev))
2556 				break;
2557 			fallthrough;
2558 		default:
2559 			target_state = state;
2560 		}
2561 
2562 		return target_state;
2563 	}
2564 
2565 	if (!dev->pm_cap)
2566 		target_state = PCI_D0;
2567 
2568 	/*
2569 	 * If the device is in D3cold even though it's not power-manageable by
2570 	 * the platform, it may have been powered down by non-standard means.
2571 	 * Best to let it slumber.
2572 	 */
2573 	if (dev->current_state == PCI_D3cold)
2574 		target_state = PCI_D3cold;
2575 
2576 	if (wakeup) {
2577 		/*
2578 		 * Find the deepest state from which the device can generate
2579 		 * PME#.
2580 		 */
2581 		if (dev->pme_support) {
2582 			while (target_state
2583 			      && !(dev->pme_support & (1 << target_state)))
2584 				target_state--;
2585 		}
2586 	}
2587 
2588 	return target_state;
2589 }
2590 
2591 /**
2592  * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2593  *			  into a sleep state
2594  * @dev: Device to handle.
2595  *
2596  * Choose the power state appropriate for the device depending on whether
2597  * it can wake up the system and/or is power manageable by the platform
2598  * (PCI_D3hot is the default) and put the device into that state.
2599  */
2600 int pci_prepare_to_sleep(struct pci_dev *dev)
2601 {
2602 	bool wakeup = device_may_wakeup(&dev->dev);
2603 	pci_power_t target_state = pci_target_state(dev, wakeup);
2604 	int error;
2605 
2606 	if (target_state == PCI_POWER_ERROR)
2607 		return -EIO;
2608 
2609 	pci_enable_wake(dev, target_state, wakeup);
2610 
2611 	error = pci_set_power_state(dev, target_state);
2612 
2613 	if (error)
2614 		pci_enable_wake(dev, target_state, false);
2615 
2616 	return error;
2617 }
2618 EXPORT_SYMBOL(pci_prepare_to_sleep);
2619 
2620 /**
2621  * pci_back_from_sleep - turn PCI device on during system-wide transition
2622  *			 into working state
2623  * @dev: Device to handle.
2624  *
2625  * Disable device's system wake-up capability and put it into D0.
2626  */
2627 int pci_back_from_sleep(struct pci_dev *dev)
2628 {
2629 	pci_enable_wake(dev, PCI_D0, false);
2630 	return pci_set_power_state(dev, PCI_D0);
2631 }
2632 EXPORT_SYMBOL(pci_back_from_sleep);
2633 
2634 /**
2635  * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2636  * @dev: PCI device being suspended.
2637  *
2638  * Prepare @dev to generate wake-up events at run time and put it into a low
2639  * power state.
2640  */
2641 int pci_finish_runtime_suspend(struct pci_dev *dev)
2642 {
2643 	pci_power_t target_state;
2644 	int error;
2645 
2646 	target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2647 	if (target_state == PCI_POWER_ERROR)
2648 		return -EIO;
2649 
2650 	dev->runtime_d3cold = target_state == PCI_D3cold;
2651 
2652 	__pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2653 
2654 	error = pci_set_power_state(dev, target_state);
2655 
2656 	if (error) {
2657 		pci_enable_wake(dev, target_state, false);
2658 		dev->runtime_d3cold = false;
2659 	}
2660 
2661 	return error;
2662 }
2663 
2664 /**
2665  * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2666  * @dev: Device to check.
2667  *
2668  * Return true if the device itself is capable of generating wake-up events
2669  * (through the platform or using the native PCIe PME) or if the device supports
2670  * PME and one of its upstream bridges can generate wake-up events.
2671  */
2672 bool pci_dev_run_wake(struct pci_dev *dev)
2673 {
2674 	struct pci_bus *bus = dev->bus;
2675 
2676 	if (!dev->pme_support)
2677 		return false;
2678 
2679 	/* PME-capable in principle, but not from the target power state */
2680 	if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2681 		return false;
2682 
2683 	if (device_can_wakeup(&dev->dev))
2684 		return true;
2685 
2686 	while (bus->parent) {
2687 		struct pci_dev *bridge = bus->self;
2688 
2689 		if (device_can_wakeup(&bridge->dev))
2690 			return true;
2691 
2692 		bus = bus->parent;
2693 	}
2694 
2695 	/* We have reached the root bus. */
2696 	if (bus->bridge)
2697 		return device_can_wakeup(bus->bridge);
2698 
2699 	return false;
2700 }
2701 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2702 
2703 /**
2704  * pci_dev_need_resume - Check if it is necessary to resume the device.
2705  * @pci_dev: Device to check.
2706  *
2707  * Return 'true' if the device is not runtime-suspended or it has to be
2708  * reconfigured due to wakeup settings difference between system and runtime
2709  * suspend, or the current power state of it is not suitable for the upcoming
2710  * (system-wide) transition.
2711  */
2712 bool pci_dev_need_resume(struct pci_dev *pci_dev)
2713 {
2714 	struct device *dev = &pci_dev->dev;
2715 	pci_power_t target_state;
2716 
2717 	if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2718 		return true;
2719 
2720 	target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2721 
2722 	/*
2723 	 * If the earlier platform check has not triggered, D3cold is just power
2724 	 * removal on top of D3hot, so no need to resume the device in that
2725 	 * case.
2726 	 */
2727 	return target_state != pci_dev->current_state &&
2728 		target_state != PCI_D3cold &&
2729 		pci_dev->current_state != PCI_D3hot;
2730 }
2731 
2732 /**
2733  * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2734  * @pci_dev: Device to check.
2735  *
2736  * If the device is suspended and it is not configured for system wakeup,
2737  * disable PME for it to prevent it from waking up the system unnecessarily.
2738  *
2739  * Note that if the device's power state is D3cold and the platform check in
2740  * pci_dev_need_resume() has not triggered, the device's configuration need not
2741  * be changed.
2742  */
2743 void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2744 {
2745 	struct device *dev = &pci_dev->dev;
2746 
2747 	spin_lock_irq(&dev->power.lock);
2748 
2749 	if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2750 	    pci_dev->current_state < PCI_D3cold)
2751 		__pci_pme_active(pci_dev, false);
2752 
2753 	spin_unlock_irq(&dev->power.lock);
2754 }
2755 
2756 /**
2757  * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2758  * @pci_dev: Device to handle.
2759  *
2760  * If the device is runtime suspended and wakeup-capable, enable PME for it as
2761  * it might have been disabled during the prepare phase of system suspend if
2762  * the device was not configured for system wakeup.
2763  */
2764 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2765 {
2766 	struct device *dev = &pci_dev->dev;
2767 
2768 	if (!pci_dev_run_wake(pci_dev))
2769 		return;
2770 
2771 	spin_lock_irq(&dev->power.lock);
2772 
2773 	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2774 		__pci_pme_active(pci_dev, true);
2775 
2776 	spin_unlock_irq(&dev->power.lock);
2777 }
2778 
2779 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2780 {
2781 	struct device *dev = &pdev->dev;
2782 	struct device *parent = dev->parent;
2783 
2784 	if (parent)
2785 		pm_runtime_get_sync(parent);
2786 	pm_runtime_get_noresume(dev);
2787 	/*
2788 	 * pdev->current_state is set to PCI_D3cold during suspending,
2789 	 * so wait until suspending completes
2790 	 */
2791 	pm_runtime_barrier(dev);
2792 	/*
2793 	 * Only need to resume devices in D3cold, because config
2794 	 * registers are still accessible for devices suspended but
2795 	 * not in D3cold.
2796 	 */
2797 	if (pdev->current_state == PCI_D3cold)
2798 		pm_runtime_resume(dev);
2799 }
2800 
2801 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2802 {
2803 	struct device *dev = &pdev->dev;
2804 	struct device *parent = dev->parent;
2805 
2806 	pm_runtime_put(dev);
2807 	if (parent)
2808 		pm_runtime_put_sync(parent);
2809 }
2810 
2811 static const struct dmi_system_id bridge_d3_blacklist[] = {
2812 #ifdef CONFIG_X86
2813 	{
2814 		/*
2815 		 * Gigabyte X299 root port is not marked as hotplug capable
2816 		 * which allows Linux to power manage it.  However, this
2817 		 * confuses the BIOS SMI handler so don't power manage root
2818 		 * ports on that system.
2819 		 */
2820 		.ident = "X299 DESIGNARE EX-CF",
2821 		.matches = {
2822 			DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2823 			DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2824 		},
2825 	},
2826 #endif
2827 	{ }
2828 };
2829 
2830 /**
2831  * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2832  * @bridge: Bridge to check
2833  *
2834  * This function checks if it is possible to move the bridge to D3.
2835  * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2836  */
2837 bool pci_bridge_d3_possible(struct pci_dev *bridge)
2838 {
2839 	if (!pci_is_pcie(bridge))
2840 		return false;
2841 
2842 	switch (pci_pcie_type(bridge)) {
2843 	case PCI_EXP_TYPE_ROOT_PORT:
2844 	case PCI_EXP_TYPE_UPSTREAM:
2845 	case PCI_EXP_TYPE_DOWNSTREAM:
2846 		if (pci_bridge_d3_disable)
2847 			return false;
2848 
2849 		/*
2850 		 * Hotplug ports handled by firmware in System Management Mode
2851 		 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2852 		 */
2853 		if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
2854 			return false;
2855 
2856 		if (pci_bridge_d3_force)
2857 			return true;
2858 
2859 		/* Even the oldest 2010 Thunderbolt controller supports D3. */
2860 		if (bridge->is_thunderbolt)
2861 			return true;
2862 
2863 		/* Platform might know better if the bridge supports D3 */
2864 		if (platform_pci_bridge_d3(bridge))
2865 			return true;
2866 
2867 		/*
2868 		 * Hotplug ports handled natively by the OS were not validated
2869 		 * by vendors for runtime D3 at least until 2018 because there
2870 		 * was no OS support.
2871 		 */
2872 		if (bridge->is_hotplug_bridge)
2873 			return false;
2874 
2875 		if (dmi_check_system(bridge_d3_blacklist))
2876 			return false;
2877 
2878 		/*
2879 		 * It should be safe to put PCIe ports from 2015 or newer
2880 		 * to D3.
2881 		 */
2882 		if (dmi_get_bios_year() >= 2015)
2883 			return true;
2884 		break;
2885 	}
2886 
2887 	return false;
2888 }
2889 
2890 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2891 {
2892 	bool *d3cold_ok = data;
2893 
2894 	if (/* The device needs to be allowed to go D3cold ... */
2895 	    dev->no_d3cold || !dev->d3cold_allowed ||
2896 
2897 	    /* ... and if it is wakeup capable to do so from D3cold. */
2898 	    (device_may_wakeup(&dev->dev) &&
2899 	     !pci_pme_capable(dev, PCI_D3cold)) ||
2900 
2901 	    /* If it is a bridge it must be allowed to go to D3. */
2902 	    !pci_power_manageable(dev))
2903 
2904 		*d3cold_ok = false;
2905 
2906 	return !*d3cold_ok;
2907 }
2908 
2909 /*
2910  * pci_bridge_d3_update - Update bridge D3 capabilities
2911  * @dev: PCI device which is changed
2912  *
2913  * Update upstream bridge PM capabilities accordingly depending on if the
2914  * device PM configuration was changed or the device is being removed.  The
2915  * change is also propagated upstream.
2916  */
2917 void pci_bridge_d3_update(struct pci_dev *dev)
2918 {
2919 	bool remove = !device_is_registered(&dev->dev);
2920 	struct pci_dev *bridge;
2921 	bool d3cold_ok = true;
2922 
2923 	bridge = pci_upstream_bridge(dev);
2924 	if (!bridge || !pci_bridge_d3_possible(bridge))
2925 		return;
2926 
2927 	/*
2928 	 * If D3 is currently allowed for the bridge, removing one of its
2929 	 * children won't change that.
2930 	 */
2931 	if (remove && bridge->bridge_d3)
2932 		return;
2933 
2934 	/*
2935 	 * If D3 is currently allowed for the bridge and a child is added or
2936 	 * changed, disallowance of D3 can only be caused by that child, so
2937 	 * we only need to check that single device, not any of its siblings.
2938 	 *
2939 	 * If D3 is currently not allowed for the bridge, checking the device
2940 	 * first may allow us to skip checking its siblings.
2941 	 */
2942 	if (!remove)
2943 		pci_dev_check_d3cold(dev, &d3cold_ok);
2944 
2945 	/*
2946 	 * If D3 is currently not allowed for the bridge, this may be caused
2947 	 * either by the device being changed/removed or any of its siblings,
2948 	 * so we need to go through all children to find out if one of them
2949 	 * continues to block D3.
2950 	 */
2951 	if (d3cold_ok && !bridge->bridge_d3)
2952 		pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
2953 			     &d3cold_ok);
2954 
2955 	if (bridge->bridge_d3 != d3cold_ok) {
2956 		bridge->bridge_d3 = d3cold_ok;
2957 		/* Propagate change to upstream bridges */
2958 		pci_bridge_d3_update(bridge);
2959 	}
2960 }
2961 
2962 /**
2963  * pci_d3cold_enable - Enable D3cold for device
2964  * @dev: PCI device to handle
2965  *
2966  * This function can be used in drivers to enable D3cold from the device
2967  * they handle.  It also updates upstream PCI bridge PM capabilities
2968  * accordingly.
2969  */
2970 void pci_d3cold_enable(struct pci_dev *dev)
2971 {
2972 	if (dev->no_d3cold) {
2973 		dev->no_d3cold = false;
2974 		pci_bridge_d3_update(dev);
2975 	}
2976 }
2977 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
2978 
2979 /**
2980  * pci_d3cold_disable - Disable D3cold for device
2981  * @dev: PCI device to handle
2982  *
2983  * This function can be used in drivers to disable D3cold from the device
2984  * they handle.  It also updates upstream PCI bridge PM capabilities
2985  * accordingly.
2986  */
2987 void pci_d3cold_disable(struct pci_dev *dev)
2988 {
2989 	if (!dev->no_d3cold) {
2990 		dev->no_d3cold = true;
2991 		pci_bridge_d3_update(dev);
2992 	}
2993 }
2994 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
2995 
2996 /**
2997  * pci_pm_init - Initialize PM functions of given PCI device
2998  * @dev: PCI device to handle.
2999  */
3000 void pci_pm_init(struct pci_dev *dev)
3001 {
3002 	int pm;
3003 	u16 status;
3004 	u16 pmc;
3005 
3006 	pm_runtime_forbid(&dev->dev);
3007 	pm_runtime_set_active(&dev->dev);
3008 	pm_runtime_enable(&dev->dev);
3009 	device_enable_async_suspend(&dev->dev);
3010 	dev->wakeup_prepared = false;
3011 
3012 	dev->pm_cap = 0;
3013 	dev->pme_support = 0;
3014 
3015 	/* find PCI PM capability in list */
3016 	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3017 	if (!pm)
3018 		return;
3019 	/* Check device's ability to generate PME# */
3020 	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3021 
3022 	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3023 		pci_err(dev, "unsupported PM cap regs version (%u)\n",
3024 			pmc & PCI_PM_CAP_VER_MASK);
3025 		return;
3026 	}
3027 
3028 	dev->pm_cap = pm;
3029 	dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3030 	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3031 	dev->bridge_d3 = pci_bridge_d3_possible(dev);
3032 	dev->d3cold_allowed = true;
3033 
3034 	dev->d1_support = false;
3035 	dev->d2_support = false;
3036 	if (!pci_no_d1d2(dev)) {
3037 		if (pmc & PCI_PM_CAP_D1)
3038 			dev->d1_support = true;
3039 		if (pmc & PCI_PM_CAP_D2)
3040 			dev->d2_support = true;
3041 
3042 		if (dev->d1_support || dev->d2_support)
3043 			pci_info(dev, "supports%s%s\n",
3044 				   dev->d1_support ? " D1" : "",
3045 				   dev->d2_support ? " D2" : "");
3046 	}
3047 
3048 	pmc &= PCI_PM_CAP_PME_MASK;
3049 	if (pmc) {
3050 		pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3051 			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3052 			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3053 			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3054 			 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3055 			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3056 		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
3057 		dev->pme_poll = true;
3058 		/*
3059 		 * Make device's PM flags reflect the wake-up capability, but
3060 		 * let the user space enable it to wake up the system as needed.
3061 		 */
3062 		device_set_wakeup_capable(&dev->dev, true);
3063 		/* Disable the PME# generation functionality */
3064 		pci_pme_active(dev, false);
3065 	}
3066 
3067 	pci_read_config_word(dev, PCI_STATUS, &status);
3068 	if (status & PCI_STATUS_IMM_READY)
3069 		dev->imm_ready = 1;
3070 }
3071 
3072 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3073 {
3074 	unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3075 
3076 	switch (prop) {
3077 	case PCI_EA_P_MEM:
3078 	case PCI_EA_P_VF_MEM:
3079 		flags |= IORESOURCE_MEM;
3080 		break;
3081 	case PCI_EA_P_MEM_PREFETCH:
3082 	case PCI_EA_P_VF_MEM_PREFETCH:
3083 		flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3084 		break;
3085 	case PCI_EA_P_IO:
3086 		flags |= IORESOURCE_IO;
3087 		break;
3088 	default:
3089 		return 0;
3090 	}
3091 
3092 	return flags;
3093 }
3094 
3095 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3096 					    u8 prop)
3097 {
3098 	if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3099 		return &dev->resource[bei];
3100 #ifdef CONFIG_PCI_IOV
3101 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3102 		 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3103 		return &dev->resource[PCI_IOV_RESOURCES +
3104 				      bei - PCI_EA_BEI_VF_BAR0];
3105 #endif
3106 	else if (bei == PCI_EA_BEI_ROM)
3107 		return &dev->resource[PCI_ROM_RESOURCE];
3108 	else
3109 		return NULL;
3110 }
3111 
3112 /* Read an Enhanced Allocation (EA) entry */
3113 static int pci_ea_read(struct pci_dev *dev, int offset)
3114 {
3115 	struct resource *res;
3116 	int ent_size, ent_offset = offset;
3117 	resource_size_t start, end;
3118 	unsigned long flags;
3119 	u32 dw0, bei, base, max_offset;
3120 	u8 prop;
3121 	bool support_64 = (sizeof(resource_size_t) >= 8);
3122 
3123 	pci_read_config_dword(dev, ent_offset, &dw0);
3124 	ent_offset += 4;
3125 
3126 	/* Entry size field indicates DWORDs after 1st */
3127 	ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
3128 
3129 	if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3130 		goto out;
3131 
3132 	bei = (dw0 & PCI_EA_BEI) >> 4;
3133 	prop = (dw0 & PCI_EA_PP) >> 8;
3134 
3135 	/*
3136 	 * If the Property is in the reserved range, try the Secondary
3137 	 * Property instead.
3138 	 */
3139 	if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3140 		prop = (dw0 & PCI_EA_SP) >> 16;
3141 	if (prop > PCI_EA_P_BRIDGE_IO)
3142 		goto out;
3143 
3144 	res = pci_ea_get_resource(dev, bei, prop);
3145 	if (!res) {
3146 		pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3147 		goto out;
3148 	}
3149 
3150 	flags = pci_ea_flags(dev, prop);
3151 	if (!flags) {
3152 		pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3153 		goto out;
3154 	}
3155 
3156 	/* Read Base */
3157 	pci_read_config_dword(dev, ent_offset, &base);
3158 	start = (base & PCI_EA_FIELD_MASK);
3159 	ent_offset += 4;
3160 
3161 	/* Read MaxOffset */
3162 	pci_read_config_dword(dev, ent_offset, &max_offset);
3163 	ent_offset += 4;
3164 
3165 	/* Read Base MSBs (if 64-bit entry) */
3166 	if (base & PCI_EA_IS_64) {
3167 		u32 base_upper;
3168 
3169 		pci_read_config_dword(dev, ent_offset, &base_upper);
3170 		ent_offset += 4;
3171 
3172 		flags |= IORESOURCE_MEM_64;
3173 
3174 		/* entry starts above 32-bit boundary, can't use */
3175 		if (!support_64 && base_upper)
3176 			goto out;
3177 
3178 		if (support_64)
3179 			start |= ((u64)base_upper << 32);
3180 	}
3181 
3182 	end = start + (max_offset | 0x03);
3183 
3184 	/* Read MaxOffset MSBs (if 64-bit entry) */
3185 	if (max_offset & PCI_EA_IS_64) {
3186 		u32 max_offset_upper;
3187 
3188 		pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3189 		ent_offset += 4;
3190 
3191 		flags |= IORESOURCE_MEM_64;
3192 
3193 		/* entry too big, can't use */
3194 		if (!support_64 && max_offset_upper)
3195 			goto out;
3196 
3197 		if (support_64)
3198 			end += ((u64)max_offset_upper << 32);
3199 	}
3200 
3201 	if (end < start) {
3202 		pci_err(dev, "EA Entry crosses address boundary\n");
3203 		goto out;
3204 	}
3205 
3206 	if (ent_size != ent_offset - offset) {
3207 		pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3208 			ent_size, ent_offset - offset);
3209 		goto out;
3210 	}
3211 
3212 	res->name = pci_name(dev);
3213 	res->start = start;
3214 	res->end = end;
3215 	res->flags = flags;
3216 
3217 	if (bei <= PCI_EA_BEI_BAR5)
3218 		pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3219 			   bei, res, prop);
3220 	else if (bei == PCI_EA_BEI_ROM)
3221 		pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3222 			   res, prop);
3223 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3224 		pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3225 			   bei - PCI_EA_BEI_VF_BAR0, res, prop);
3226 	else
3227 		pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3228 			   bei, res, prop);
3229 
3230 out:
3231 	return offset + ent_size;
3232 }
3233 
3234 /* Enhanced Allocation Initialization */
3235 void pci_ea_init(struct pci_dev *dev)
3236 {
3237 	int ea;
3238 	u8 num_ent;
3239 	int offset;
3240 	int i;
3241 
3242 	/* find PCI EA capability in list */
3243 	ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3244 	if (!ea)
3245 		return;
3246 
3247 	/* determine the number of entries */
3248 	pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3249 					&num_ent);
3250 	num_ent &= PCI_EA_NUM_ENT_MASK;
3251 
3252 	offset = ea + PCI_EA_FIRST_ENT;
3253 
3254 	/* Skip DWORD 2 for type 1 functions */
3255 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3256 		offset += 4;
3257 
3258 	/* parse each EA entry */
3259 	for (i = 0; i < num_ent; ++i)
3260 		offset = pci_ea_read(dev, offset);
3261 }
3262 
3263 static void pci_add_saved_cap(struct pci_dev *pci_dev,
3264 	struct pci_cap_saved_state *new_cap)
3265 {
3266 	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3267 }
3268 
3269 /**
3270  * _pci_add_cap_save_buffer - allocate buffer for saving given
3271  *			      capability registers
3272  * @dev: the PCI device
3273  * @cap: the capability to allocate the buffer for
3274  * @extended: Standard or Extended capability ID
3275  * @size: requested size of the buffer
3276  */
3277 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3278 				    bool extended, unsigned int size)
3279 {
3280 	int pos;
3281 	struct pci_cap_saved_state *save_state;
3282 
3283 	if (extended)
3284 		pos = pci_find_ext_capability(dev, cap);
3285 	else
3286 		pos = pci_find_capability(dev, cap);
3287 
3288 	if (!pos)
3289 		return 0;
3290 
3291 	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3292 	if (!save_state)
3293 		return -ENOMEM;
3294 
3295 	save_state->cap.cap_nr = cap;
3296 	save_state->cap.cap_extended = extended;
3297 	save_state->cap.size = size;
3298 	pci_add_saved_cap(dev, save_state);
3299 
3300 	return 0;
3301 }
3302 
3303 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3304 {
3305 	return _pci_add_cap_save_buffer(dev, cap, false, size);
3306 }
3307 
3308 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3309 {
3310 	return _pci_add_cap_save_buffer(dev, cap, true, size);
3311 }
3312 
3313 /**
3314  * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3315  * @dev: the PCI device
3316  */
3317 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3318 {
3319 	int error;
3320 
3321 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3322 					PCI_EXP_SAVE_REGS * sizeof(u16));
3323 	if (error)
3324 		pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3325 
3326 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3327 	if (error)
3328 		pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3329 
3330 	error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3331 					    2 * sizeof(u16));
3332 	if (error)
3333 		pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3334 
3335 	pci_allocate_vc_save_buffers(dev);
3336 }
3337 
3338 void pci_free_cap_save_buffers(struct pci_dev *dev)
3339 {
3340 	struct pci_cap_saved_state *tmp;
3341 	struct hlist_node *n;
3342 
3343 	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3344 		kfree(tmp);
3345 }
3346 
3347 /**
3348  * pci_configure_ari - enable or disable ARI forwarding
3349  * @dev: the PCI device
3350  *
3351  * If @dev and its upstream bridge both support ARI, enable ARI in the
3352  * bridge.  Otherwise, disable ARI in the bridge.
3353  */
3354 void pci_configure_ari(struct pci_dev *dev)
3355 {
3356 	u32 cap;
3357 	struct pci_dev *bridge;
3358 
3359 	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3360 		return;
3361 
3362 	bridge = dev->bus->self;
3363 	if (!bridge)
3364 		return;
3365 
3366 	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3367 	if (!(cap & PCI_EXP_DEVCAP2_ARI))
3368 		return;
3369 
3370 	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3371 		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3372 					 PCI_EXP_DEVCTL2_ARI);
3373 		bridge->ari_enabled = 1;
3374 	} else {
3375 		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3376 					   PCI_EXP_DEVCTL2_ARI);
3377 		bridge->ari_enabled = 0;
3378 	}
3379 }
3380 
3381 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3382 {
3383 	int pos;
3384 	u16 cap, ctrl;
3385 
3386 	pos = pdev->acs_cap;
3387 	if (!pos)
3388 		return false;
3389 
3390 	/*
3391 	 * Except for egress control, capabilities are either required
3392 	 * or only required if controllable.  Features missing from the
3393 	 * capability field can therefore be assumed as hard-wired enabled.
3394 	 */
3395 	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3396 	acs_flags &= (cap | PCI_ACS_EC);
3397 
3398 	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3399 	return (ctrl & acs_flags) == acs_flags;
3400 }
3401 
3402 /**
3403  * pci_acs_enabled - test ACS against required flags for a given device
3404  * @pdev: device to test
3405  * @acs_flags: required PCI ACS flags
3406  *
3407  * Return true if the device supports the provided flags.  Automatically
3408  * filters out flags that are not implemented on multifunction devices.
3409  *
3410  * Note that this interface checks the effective ACS capabilities of the
3411  * device rather than the actual capabilities.  For instance, most single
3412  * function endpoints are not required to support ACS because they have no
3413  * opportunity for peer-to-peer access.  We therefore return 'true'
3414  * regardless of whether the device exposes an ACS capability.  This makes
3415  * it much easier for callers of this function to ignore the actual type
3416  * or topology of the device when testing ACS support.
3417  */
3418 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3419 {
3420 	int ret;
3421 
3422 	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3423 	if (ret >= 0)
3424 		return ret > 0;
3425 
3426 	/*
3427 	 * Conventional PCI and PCI-X devices never support ACS, either
3428 	 * effectively or actually.  The shared bus topology implies that
3429 	 * any device on the bus can receive or snoop DMA.
3430 	 */
3431 	if (!pci_is_pcie(pdev))
3432 		return false;
3433 
3434 	switch (pci_pcie_type(pdev)) {
3435 	/*
3436 	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3437 	 * but since their primary interface is PCI/X, we conservatively
3438 	 * handle them as we would a non-PCIe device.
3439 	 */
3440 	case PCI_EXP_TYPE_PCIE_BRIDGE:
3441 	/*
3442 	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
3443 	 * applicable... must never implement an ACS Extended Capability...".
3444 	 * This seems arbitrary, but we take a conservative interpretation
3445 	 * of this statement.
3446 	 */
3447 	case PCI_EXP_TYPE_PCI_BRIDGE:
3448 	case PCI_EXP_TYPE_RC_EC:
3449 		return false;
3450 	/*
3451 	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3452 	 * implement ACS in order to indicate their peer-to-peer capabilities,
3453 	 * regardless of whether they are single- or multi-function devices.
3454 	 */
3455 	case PCI_EXP_TYPE_DOWNSTREAM:
3456 	case PCI_EXP_TYPE_ROOT_PORT:
3457 		return pci_acs_flags_enabled(pdev, acs_flags);
3458 	/*
3459 	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3460 	 * implemented by the remaining PCIe types to indicate peer-to-peer
3461 	 * capabilities, but only when they are part of a multifunction
3462 	 * device.  The footnote for section 6.12 indicates the specific
3463 	 * PCIe types included here.
3464 	 */
3465 	case PCI_EXP_TYPE_ENDPOINT:
3466 	case PCI_EXP_TYPE_UPSTREAM:
3467 	case PCI_EXP_TYPE_LEG_END:
3468 	case PCI_EXP_TYPE_RC_END:
3469 		if (!pdev->multifunction)
3470 			break;
3471 
3472 		return pci_acs_flags_enabled(pdev, acs_flags);
3473 	}
3474 
3475 	/*
3476 	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3477 	 * to single function devices with the exception of downstream ports.
3478 	 */
3479 	return true;
3480 }
3481 
3482 /**
3483  * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
3484  * @start: starting downstream device
3485  * @end: ending upstream device or NULL to search to the root bus
3486  * @acs_flags: required flags
3487  *
3488  * Walk up a device tree from start to end testing PCI ACS support.  If
3489  * any step along the way does not support the required flags, return false.
3490  */
3491 bool pci_acs_path_enabled(struct pci_dev *start,
3492 			  struct pci_dev *end, u16 acs_flags)
3493 {
3494 	struct pci_dev *pdev, *parent = start;
3495 
3496 	do {
3497 		pdev = parent;
3498 
3499 		if (!pci_acs_enabled(pdev, acs_flags))
3500 			return false;
3501 
3502 		if (pci_is_root_bus(pdev->bus))
3503 			return (end == NULL);
3504 
3505 		parent = pdev->bus->self;
3506 	} while (pdev != end);
3507 
3508 	return true;
3509 }
3510 
3511 /**
3512  * pci_acs_init - Initialize ACS if hardware supports it
3513  * @dev: the PCI device
3514  */
3515 void pci_acs_init(struct pci_dev *dev)
3516 {
3517 	dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3518 
3519 	if (dev->acs_cap)
3520 		pci_enable_acs(dev);
3521 }
3522 
3523 /**
3524  * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3525  * @pdev: PCI device
3526  * @bar: BAR to find
3527  *
3528  * Helper to find the position of the ctrl register for a BAR.
3529  * Returns -ENOTSUPP if resizable BARs are not supported at all.
3530  * Returns -ENOENT if no ctrl register for the BAR could be found.
3531  */
3532 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3533 {
3534 	unsigned int pos, nbars, i;
3535 	u32 ctrl;
3536 
3537 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3538 	if (!pos)
3539 		return -ENOTSUPP;
3540 
3541 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3542 	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3543 		    PCI_REBAR_CTRL_NBAR_SHIFT;
3544 
3545 	for (i = 0; i < nbars; i++, pos += 8) {
3546 		int bar_idx;
3547 
3548 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3549 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3550 		if (bar_idx == bar)
3551 			return pos;
3552 	}
3553 
3554 	return -ENOENT;
3555 }
3556 
3557 /**
3558  * pci_rebar_get_possible_sizes - get possible sizes for BAR
3559  * @pdev: PCI device
3560  * @bar: BAR to query
3561  *
3562  * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3563  * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3564  */
3565 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3566 {
3567 	int pos;
3568 	u32 cap;
3569 
3570 	pos = pci_rebar_find_pos(pdev, bar);
3571 	if (pos < 0)
3572 		return 0;
3573 
3574 	pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3575 	return (cap & PCI_REBAR_CAP_SIZES) >> 4;
3576 }
3577 
3578 /**
3579  * pci_rebar_get_current_size - get the current size of a BAR
3580  * @pdev: PCI device
3581  * @bar: BAR to set size to
3582  *
3583  * Read the size of a BAR from the resizable BAR config.
3584  * Returns size if found or negative error code.
3585  */
3586 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3587 {
3588 	int pos;
3589 	u32 ctrl;
3590 
3591 	pos = pci_rebar_find_pos(pdev, bar);
3592 	if (pos < 0)
3593 		return pos;
3594 
3595 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3596 	return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3597 }
3598 
3599 /**
3600  * pci_rebar_set_size - set a new size for a BAR
3601  * @pdev: PCI device
3602  * @bar: BAR to set size to
3603  * @size: new size as defined in the spec (0=1MB, 19=512GB)
3604  *
3605  * Set the new size of a BAR as defined in the spec.
3606  * Returns zero if resizing was successful, error code otherwise.
3607  */
3608 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3609 {
3610 	int pos;
3611 	u32 ctrl;
3612 
3613 	pos = pci_rebar_find_pos(pdev, bar);
3614 	if (pos < 0)
3615 		return pos;
3616 
3617 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3618 	ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3619 	ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3620 	pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3621 	return 0;
3622 }
3623 
3624 /**
3625  * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3626  * @dev: the PCI device
3627  * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3628  *	PCI_EXP_DEVCAP2_ATOMIC_COMP32
3629  *	PCI_EXP_DEVCAP2_ATOMIC_COMP64
3630  *	PCI_EXP_DEVCAP2_ATOMIC_COMP128
3631  *
3632  * Return 0 if all upstream bridges support AtomicOp routing, egress
3633  * blocking is disabled on all upstream ports, and the root port supports
3634  * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3635  * AtomicOp completion), or negative otherwise.
3636  */
3637 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3638 {
3639 	struct pci_bus *bus = dev->bus;
3640 	struct pci_dev *bridge;
3641 	u32 cap, ctl2;
3642 
3643 	if (!pci_is_pcie(dev))
3644 		return -EINVAL;
3645 
3646 	/*
3647 	 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3648 	 * AtomicOp requesters.  For now, we only support endpoints as
3649 	 * requesters and root ports as completers.  No endpoints as
3650 	 * completers, and no peer-to-peer.
3651 	 */
3652 
3653 	switch (pci_pcie_type(dev)) {
3654 	case PCI_EXP_TYPE_ENDPOINT:
3655 	case PCI_EXP_TYPE_LEG_END:
3656 	case PCI_EXP_TYPE_RC_END:
3657 		break;
3658 	default:
3659 		return -EINVAL;
3660 	}
3661 
3662 	while (bus->parent) {
3663 		bridge = bus->self;
3664 
3665 		pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3666 
3667 		switch (pci_pcie_type(bridge)) {
3668 		/* Ensure switch ports support AtomicOp routing */
3669 		case PCI_EXP_TYPE_UPSTREAM:
3670 		case PCI_EXP_TYPE_DOWNSTREAM:
3671 			if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3672 				return -EINVAL;
3673 			break;
3674 
3675 		/* Ensure root port supports all the sizes we care about */
3676 		case PCI_EXP_TYPE_ROOT_PORT:
3677 			if ((cap & cap_mask) != cap_mask)
3678 				return -EINVAL;
3679 			break;
3680 		}
3681 
3682 		/* Ensure upstream ports don't block AtomicOps on egress */
3683 		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3684 			pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3685 						   &ctl2);
3686 			if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3687 				return -EINVAL;
3688 		}
3689 
3690 		bus = bus->parent;
3691 	}
3692 
3693 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3694 				 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3695 	return 0;
3696 }
3697 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3698 
3699 /**
3700  * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3701  * @dev: the PCI device
3702  * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3703  *
3704  * Perform INTx swizzling for a device behind one level of bridge.  This is
3705  * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3706  * behind bridges on add-in cards.  For devices with ARI enabled, the slot
3707  * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3708  * the PCI Express Base Specification, Revision 2.1)
3709  */
3710 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3711 {
3712 	int slot;
3713 
3714 	if (pci_ari_enabled(dev->bus))
3715 		slot = 0;
3716 	else
3717 		slot = PCI_SLOT(dev->devfn);
3718 
3719 	return (((pin - 1) + slot) % 4) + 1;
3720 }
3721 
3722 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3723 {
3724 	u8 pin;
3725 
3726 	pin = dev->pin;
3727 	if (!pin)
3728 		return -1;
3729 
3730 	while (!pci_is_root_bus(dev->bus)) {
3731 		pin = pci_swizzle_interrupt_pin(dev, pin);
3732 		dev = dev->bus->self;
3733 	}
3734 	*bridge = dev;
3735 	return pin;
3736 }
3737 
3738 /**
3739  * pci_common_swizzle - swizzle INTx all the way to root bridge
3740  * @dev: the PCI device
3741  * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3742  *
3743  * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
3744  * bridges all the way up to a PCI root bus.
3745  */
3746 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3747 {
3748 	u8 pin = *pinp;
3749 
3750 	while (!pci_is_root_bus(dev->bus)) {
3751 		pin = pci_swizzle_interrupt_pin(dev, pin);
3752 		dev = dev->bus->self;
3753 	}
3754 	*pinp = pin;
3755 	return PCI_SLOT(dev->devfn);
3756 }
3757 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3758 
3759 /**
3760  * pci_release_region - Release a PCI bar
3761  * @pdev: PCI device whose resources were previously reserved by
3762  *	  pci_request_region()
3763  * @bar: BAR to release
3764  *
3765  * Releases the PCI I/O and memory resources previously reserved by a
3766  * successful call to pci_request_region().  Call this function only
3767  * after all use of the PCI regions has ceased.
3768  */
3769 void pci_release_region(struct pci_dev *pdev, int bar)
3770 {
3771 	struct pci_devres *dr;
3772 
3773 	if (pci_resource_len(pdev, bar) == 0)
3774 		return;
3775 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3776 		release_region(pci_resource_start(pdev, bar),
3777 				pci_resource_len(pdev, bar));
3778 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3779 		release_mem_region(pci_resource_start(pdev, bar),
3780 				pci_resource_len(pdev, bar));
3781 
3782 	dr = find_pci_dr(pdev);
3783 	if (dr)
3784 		dr->region_mask &= ~(1 << bar);
3785 }
3786 EXPORT_SYMBOL(pci_release_region);
3787 
3788 /**
3789  * __pci_request_region - Reserved PCI I/O and memory resource
3790  * @pdev: PCI device whose resources are to be reserved
3791  * @bar: BAR to be reserved
3792  * @res_name: Name to be associated with resource.
3793  * @exclusive: whether the region access is exclusive or not
3794  *
3795  * Mark the PCI region associated with PCI device @pdev BAR @bar as
3796  * being reserved by owner @res_name.  Do not access any
3797  * address inside the PCI regions unless this call returns
3798  * successfully.
3799  *
3800  * If @exclusive is set, then the region is marked so that userspace
3801  * is explicitly not allowed to map the resource via /dev/mem or
3802  * sysfs MMIO access.
3803  *
3804  * Returns 0 on success, or %EBUSY on error.  A warning
3805  * message is also printed on failure.
3806  */
3807 static int __pci_request_region(struct pci_dev *pdev, int bar,
3808 				const char *res_name, int exclusive)
3809 {
3810 	struct pci_devres *dr;
3811 
3812 	if (pci_resource_len(pdev, bar) == 0)
3813 		return 0;
3814 
3815 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3816 		if (!request_region(pci_resource_start(pdev, bar),
3817 			    pci_resource_len(pdev, bar), res_name))
3818 			goto err_out;
3819 	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3820 		if (!__request_mem_region(pci_resource_start(pdev, bar),
3821 					pci_resource_len(pdev, bar), res_name,
3822 					exclusive))
3823 			goto err_out;
3824 	}
3825 
3826 	dr = find_pci_dr(pdev);
3827 	if (dr)
3828 		dr->region_mask |= 1 << bar;
3829 
3830 	return 0;
3831 
3832 err_out:
3833 	pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3834 		 &pdev->resource[bar]);
3835 	return -EBUSY;
3836 }
3837 
3838 /**
3839  * pci_request_region - Reserve PCI I/O and memory resource
3840  * @pdev: PCI device whose resources are to be reserved
3841  * @bar: BAR to be reserved
3842  * @res_name: Name to be associated with resource
3843  *
3844  * Mark the PCI region associated with PCI device @pdev BAR @bar as
3845  * being reserved by owner @res_name.  Do not access any
3846  * address inside the PCI regions unless this call returns
3847  * successfully.
3848  *
3849  * Returns 0 on success, or %EBUSY on error.  A warning
3850  * message is also printed on failure.
3851  */
3852 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3853 {
3854 	return __pci_request_region(pdev, bar, res_name, 0);
3855 }
3856 EXPORT_SYMBOL(pci_request_region);
3857 
3858 /**
3859  * pci_release_selected_regions - Release selected PCI I/O and memory resources
3860  * @pdev: PCI device whose resources were previously reserved
3861  * @bars: Bitmask of BARs to be released
3862  *
3863  * Release selected PCI I/O and memory resources previously reserved.
3864  * Call this function only after all use of the PCI regions has ceased.
3865  */
3866 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3867 {
3868 	int i;
3869 
3870 	for (i = 0; i < PCI_STD_NUM_BARS; i++)
3871 		if (bars & (1 << i))
3872 			pci_release_region(pdev, i);
3873 }
3874 EXPORT_SYMBOL(pci_release_selected_regions);
3875 
3876 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3877 					  const char *res_name, int excl)
3878 {
3879 	int i;
3880 
3881 	for (i = 0; i < PCI_STD_NUM_BARS; i++)
3882 		if (bars & (1 << i))
3883 			if (__pci_request_region(pdev, i, res_name, excl))
3884 				goto err_out;
3885 	return 0;
3886 
3887 err_out:
3888 	while (--i >= 0)
3889 		if (bars & (1 << i))
3890 			pci_release_region(pdev, i);
3891 
3892 	return -EBUSY;
3893 }
3894 
3895 
3896 /**
3897  * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3898  * @pdev: PCI device whose resources are to be reserved
3899  * @bars: Bitmask of BARs to be requested
3900  * @res_name: Name to be associated with resource
3901  */
3902 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3903 				 const char *res_name)
3904 {
3905 	return __pci_request_selected_regions(pdev, bars, res_name, 0);
3906 }
3907 EXPORT_SYMBOL(pci_request_selected_regions);
3908 
3909 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3910 					   const char *res_name)
3911 {
3912 	return __pci_request_selected_regions(pdev, bars, res_name,
3913 			IORESOURCE_EXCLUSIVE);
3914 }
3915 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3916 
3917 /**
3918  * pci_release_regions - Release reserved PCI I/O and memory resources
3919  * @pdev: PCI device whose resources were previously reserved by
3920  *	  pci_request_regions()
3921  *
3922  * Releases all PCI I/O and memory resources previously reserved by a
3923  * successful call to pci_request_regions().  Call this function only
3924  * after all use of the PCI regions has ceased.
3925  */
3926 
3927 void pci_release_regions(struct pci_dev *pdev)
3928 {
3929 	pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
3930 }
3931 EXPORT_SYMBOL(pci_release_regions);
3932 
3933 /**
3934  * pci_request_regions - Reserve PCI I/O and memory resources
3935  * @pdev: PCI device whose resources are to be reserved
3936  * @res_name: Name to be associated with resource.
3937  *
3938  * Mark all PCI regions associated with PCI device @pdev as
3939  * being reserved by owner @res_name.  Do not access any
3940  * address inside the PCI regions unless this call returns
3941  * successfully.
3942  *
3943  * Returns 0 on success, or %EBUSY on error.  A warning
3944  * message is also printed on failure.
3945  */
3946 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
3947 {
3948 	return pci_request_selected_regions(pdev,
3949 			((1 << PCI_STD_NUM_BARS) - 1), res_name);
3950 }
3951 EXPORT_SYMBOL(pci_request_regions);
3952 
3953 /**
3954  * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
3955  * @pdev: PCI device whose resources are to be reserved
3956  * @res_name: Name to be associated with resource.
3957  *
3958  * Mark all PCI regions associated with PCI device @pdev as being reserved
3959  * by owner @res_name.  Do not access any address inside the PCI regions
3960  * unless this call returns successfully.
3961  *
3962  * pci_request_regions_exclusive() will mark the region so that /dev/mem
3963  * and the sysfs MMIO access will not be allowed.
3964  *
3965  * Returns 0 on success, or %EBUSY on error.  A warning message is also
3966  * printed on failure.
3967  */
3968 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3969 {
3970 	return pci_request_selected_regions_exclusive(pdev,
3971 				((1 << PCI_STD_NUM_BARS) - 1), res_name);
3972 }
3973 EXPORT_SYMBOL(pci_request_regions_exclusive);
3974 
3975 /*
3976  * Record the PCI IO range (expressed as CPU physical address + size).
3977  * Return a negative value if an error has occurred, zero otherwise
3978  */
3979 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
3980 			resource_size_t	size)
3981 {
3982 	int ret = 0;
3983 #ifdef PCI_IOBASE
3984 	struct logic_pio_hwaddr *range;
3985 
3986 	if (!size || addr + size < addr)
3987 		return -EINVAL;
3988 
3989 	range = kzalloc(sizeof(*range), GFP_ATOMIC);
3990 	if (!range)
3991 		return -ENOMEM;
3992 
3993 	range->fwnode = fwnode;
3994 	range->size = size;
3995 	range->hw_start = addr;
3996 	range->flags = LOGIC_PIO_CPU_MMIO;
3997 
3998 	ret = logic_pio_register_range(range);
3999 	if (ret)
4000 		kfree(range);
4001 #endif
4002 
4003 	return ret;
4004 }
4005 
4006 phys_addr_t pci_pio_to_address(unsigned long pio)
4007 {
4008 	phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
4009 
4010 #ifdef PCI_IOBASE
4011 	if (pio >= MMIO_UPPER_LIMIT)
4012 		return address;
4013 
4014 	address = logic_pio_to_hwaddr(pio);
4015 #endif
4016 
4017 	return address;
4018 }
4019 
4020 unsigned long __weak pci_address_to_pio(phys_addr_t address)
4021 {
4022 #ifdef PCI_IOBASE
4023 	return logic_pio_trans_cpuaddr(address);
4024 #else
4025 	if (address > IO_SPACE_LIMIT)
4026 		return (unsigned long)-1;
4027 
4028 	return (unsigned long) address;
4029 #endif
4030 }
4031 
4032 /**
4033  * pci_remap_iospace - Remap the memory mapped I/O space
4034  * @res: Resource describing the I/O space
4035  * @phys_addr: physical address of range to be mapped
4036  *
4037  * Remap the memory mapped I/O space described by the @res and the CPU
4038  * physical address @phys_addr into virtual address space.  Only
4039  * architectures that have memory mapped IO functions defined (and the
4040  * PCI_IOBASE value defined) should call this function.
4041  */
4042 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4043 {
4044 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4045 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4046 
4047 	if (!(res->flags & IORESOURCE_IO))
4048 		return -EINVAL;
4049 
4050 	if (res->end > IO_SPACE_LIMIT)
4051 		return -EINVAL;
4052 
4053 	return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4054 				  pgprot_device(PAGE_KERNEL));
4055 #else
4056 	/*
4057 	 * This architecture does not have memory mapped I/O space,
4058 	 * so this function should never be called
4059 	 */
4060 	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4061 	return -ENODEV;
4062 #endif
4063 }
4064 EXPORT_SYMBOL(pci_remap_iospace);
4065 
4066 /**
4067  * pci_unmap_iospace - Unmap the memory mapped I/O space
4068  * @res: resource to be unmapped
4069  *
4070  * Unmap the CPU virtual address @res from virtual address space.  Only
4071  * architectures that have memory mapped IO functions defined (and the
4072  * PCI_IOBASE value defined) should call this function.
4073  */
4074 void pci_unmap_iospace(struct resource *res)
4075 {
4076 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4077 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4078 
4079 	unmap_kernel_range(vaddr, resource_size(res));
4080 #endif
4081 }
4082 EXPORT_SYMBOL(pci_unmap_iospace);
4083 
4084 static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
4085 {
4086 	struct resource **res = ptr;
4087 
4088 	pci_unmap_iospace(*res);
4089 }
4090 
4091 /**
4092  * devm_pci_remap_iospace - Managed pci_remap_iospace()
4093  * @dev: Generic device to remap IO address for
4094  * @res: Resource describing the I/O space
4095  * @phys_addr: physical address of range to be mapped
4096  *
4097  * Managed pci_remap_iospace().  Map is automatically unmapped on driver
4098  * detach.
4099  */
4100 int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4101 			   phys_addr_t phys_addr)
4102 {
4103 	const struct resource **ptr;
4104 	int error;
4105 
4106 	ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4107 	if (!ptr)
4108 		return -ENOMEM;
4109 
4110 	error = pci_remap_iospace(res, phys_addr);
4111 	if (error) {
4112 		devres_free(ptr);
4113 	} else	{
4114 		*ptr = res;
4115 		devres_add(dev, ptr);
4116 	}
4117 
4118 	return error;
4119 }
4120 EXPORT_SYMBOL(devm_pci_remap_iospace);
4121 
4122 /**
4123  * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4124  * @dev: Generic device to remap IO address for
4125  * @offset: Resource address to map
4126  * @size: Size of map
4127  *
4128  * Managed pci_remap_cfgspace().  Map is automatically unmapped on driver
4129  * detach.
4130  */
4131 void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4132 				      resource_size_t offset,
4133 				      resource_size_t size)
4134 {
4135 	void __iomem **ptr, *addr;
4136 
4137 	ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4138 	if (!ptr)
4139 		return NULL;
4140 
4141 	addr = pci_remap_cfgspace(offset, size);
4142 	if (addr) {
4143 		*ptr = addr;
4144 		devres_add(dev, ptr);
4145 	} else
4146 		devres_free(ptr);
4147 
4148 	return addr;
4149 }
4150 EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4151 
4152 /**
4153  * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4154  * @dev: generic device to handle the resource for
4155  * @res: configuration space resource to be handled
4156  *
4157  * Checks that a resource is a valid memory region, requests the memory
4158  * region and ioremaps with pci_remap_cfgspace() API that ensures the
4159  * proper PCI configuration space memory attributes are guaranteed.
4160  *
4161  * All operations are managed and will be undone on driver detach.
4162  *
4163  * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4164  * on failure. Usage example::
4165  *
4166  *	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4167  *	base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4168  *	if (IS_ERR(base))
4169  *		return PTR_ERR(base);
4170  */
4171 void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4172 					  struct resource *res)
4173 {
4174 	resource_size_t size;
4175 	const char *name;
4176 	void __iomem *dest_ptr;
4177 
4178 	BUG_ON(!dev);
4179 
4180 	if (!res || resource_type(res) != IORESOURCE_MEM) {
4181 		dev_err(dev, "invalid resource\n");
4182 		return IOMEM_ERR_PTR(-EINVAL);
4183 	}
4184 
4185 	size = resource_size(res);
4186 	name = res->name ?: dev_name(dev);
4187 
4188 	if (!devm_request_mem_region(dev, res->start, size, name)) {
4189 		dev_err(dev, "can't request region for resource %pR\n", res);
4190 		return IOMEM_ERR_PTR(-EBUSY);
4191 	}
4192 
4193 	dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4194 	if (!dest_ptr) {
4195 		dev_err(dev, "ioremap failed for resource %pR\n", res);
4196 		devm_release_mem_region(dev, res->start, size);
4197 		dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4198 	}
4199 
4200 	return dest_ptr;
4201 }
4202 EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4203 
4204 static void __pci_set_master(struct pci_dev *dev, bool enable)
4205 {
4206 	u16 old_cmd, cmd;
4207 
4208 	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4209 	if (enable)
4210 		cmd = old_cmd | PCI_COMMAND_MASTER;
4211 	else
4212 		cmd = old_cmd & ~PCI_COMMAND_MASTER;
4213 	if (cmd != old_cmd) {
4214 		pci_dbg(dev, "%s bus mastering\n",
4215 			enable ? "enabling" : "disabling");
4216 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4217 	}
4218 	dev->is_busmaster = enable;
4219 }
4220 
4221 /**
4222  * pcibios_setup - process "pci=" kernel boot arguments
4223  * @str: string used to pass in "pci=" kernel boot arguments
4224  *
4225  * Process kernel boot arguments.  This is the default implementation.
4226  * Architecture specific implementations can override this as necessary.
4227  */
4228 char * __weak __init pcibios_setup(char *str)
4229 {
4230 	return str;
4231 }
4232 
4233 /**
4234  * pcibios_set_master - enable PCI bus-mastering for device dev
4235  * @dev: the PCI device to enable
4236  *
4237  * Enables PCI bus-mastering for the device.  This is the default
4238  * implementation.  Architecture specific implementations can override
4239  * this if necessary.
4240  */
4241 void __weak pcibios_set_master(struct pci_dev *dev)
4242 {
4243 	u8 lat;
4244 
4245 	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4246 	if (pci_is_pcie(dev))
4247 		return;
4248 
4249 	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4250 	if (lat < 16)
4251 		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4252 	else if (lat > pcibios_max_latency)
4253 		lat = pcibios_max_latency;
4254 	else
4255 		return;
4256 
4257 	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4258 }
4259 
4260 /**
4261  * pci_set_master - enables bus-mastering for device dev
4262  * @dev: the PCI device to enable
4263  *
4264  * Enables bus-mastering on the device and calls pcibios_set_master()
4265  * to do the needed arch specific settings.
4266  */
4267 void pci_set_master(struct pci_dev *dev)
4268 {
4269 	__pci_set_master(dev, true);
4270 	pcibios_set_master(dev);
4271 }
4272 EXPORT_SYMBOL(pci_set_master);
4273 
4274 /**
4275  * pci_clear_master - disables bus-mastering for device dev
4276  * @dev: the PCI device to disable
4277  */
4278 void pci_clear_master(struct pci_dev *dev)
4279 {
4280 	__pci_set_master(dev, false);
4281 }
4282 EXPORT_SYMBOL(pci_clear_master);
4283 
4284 /**
4285  * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4286  * @dev: the PCI device for which MWI is to be enabled
4287  *
4288  * Helper function for pci_set_mwi.
4289  * Originally copied from drivers/net/acenic.c.
4290  * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4291  *
4292  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4293  */
4294 int pci_set_cacheline_size(struct pci_dev *dev)
4295 {
4296 	u8 cacheline_size;
4297 
4298 	if (!pci_cache_line_size)
4299 		return -EINVAL;
4300 
4301 	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4302 	   equal to or multiple of the right value. */
4303 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4304 	if (cacheline_size >= pci_cache_line_size &&
4305 	    (cacheline_size % pci_cache_line_size) == 0)
4306 		return 0;
4307 
4308 	/* Write the correct value. */
4309 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4310 	/* Read it back. */
4311 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4312 	if (cacheline_size == pci_cache_line_size)
4313 		return 0;
4314 
4315 	pci_info(dev, "cache line size of %d is not supported\n",
4316 		   pci_cache_line_size << 2);
4317 
4318 	return -EINVAL;
4319 }
4320 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4321 
4322 /**
4323  * pci_set_mwi - enables memory-write-invalidate PCI transaction
4324  * @dev: the PCI device for which MWI is enabled
4325  *
4326  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4327  *
4328  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4329  */
4330 int pci_set_mwi(struct pci_dev *dev)
4331 {
4332 #ifdef PCI_DISABLE_MWI
4333 	return 0;
4334 #else
4335 	int rc;
4336 	u16 cmd;
4337 
4338 	rc = pci_set_cacheline_size(dev);
4339 	if (rc)
4340 		return rc;
4341 
4342 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4343 	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4344 		pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4345 		cmd |= PCI_COMMAND_INVALIDATE;
4346 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4347 	}
4348 	return 0;
4349 #endif
4350 }
4351 EXPORT_SYMBOL(pci_set_mwi);
4352 
4353 /**
4354  * pcim_set_mwi - a device-managed pci_set_mwi()
4355  * @dev: the PCI device for which MWI is enabled
4356  *
4357  * Managed pci_set_mwi().
4358  *
4359  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4360  */
4361 int pcim_set_mwi(struct pci_dev *dev)
4362 {
4363 	struct pci_devres *dr;
4364 
4365 	dr = find_pci_dr(dev);
4366 	if (!dr)
4367 		return -ENOMEM;
4368 
4369 	dr->mwi = 1;
4370 	return pci_set_mwi(dev);
4371 }
4372 EXPORT_SYMBOL(pcim_set_mwi);
4373 
4374 /**
4375  * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4376  * @dev: the PCI device for which MWI is enabled
4377  *
4378  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4379  * Callers are not required to check the return value.
4380  *
4381  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4382  */
4383 int pci_try_set_mwi(struct pci_dev *dev)
4384 {
4385 #ifdef PCI_DISABLE_MWI
4386 	return 0;
4387 #else
4388 	return pci_set_mwi(dev);
4389 #endif
4390 }
4391 EXPORT_SYMBOL(pci_try_set_mwi);
4392 
4393 /**
4394  * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4395  * @dev: the PCI device to disable
4396  *
4397  * Disables PCI Memory-Write-Invalidate transaction on the device
4398  */
4399 void pci_clear_mwi(struct pci_dev *dev)
4400 {
4401 #ifndef PCI_DISABLE_MWI
4402 	u16 cmd;
4403 
4404 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4405 	if (cmd & PCI_COMMAND_INVALIDATE) {
4406 		cmd &= ~PCI_COMMAND_INVALIDATE;
4407 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4408 	}
4409 #endif
4410 }
4411 EXPORT_SYMBOL(pci_clear_mwi);
4412 
4413 /**
4414  * pci_intx - enables/disables PCI INTx for device dev
4415  * @pdev: the PCI device to operate on
4416  * @enable: boolean: whether to enable or disable PCI INTx
4417  *
4418  * Enables/disables PCI INTx for device @pdev
4419  */
4420 void pci_intx(struct pci_dev *pdev, int enable)
4421 {
4422 	u16 pci_command, new;
4423 
4424 	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4425 
4426 	if (enable)
4427 		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4428 	else
4429 		new = pci_command | PCI_COMMAND_INTX_DISABLE;
4430 
4431 	if (new != pci_command) {
4432 		struct pci_devres *dr;
4433 
4434 		pci_write_config_word(pdev, PCI_COMMAND, new);
4435 
4436 		dr = find_pci_dr(pdev);
4437 		if (dr && !dr->restore_intx) {
4438 			dr->restore_intx = 1;
4439 			dr->orig_intx = !enable;
4440 		}
4441 	}
4442 }
4443 EXPORT_SYMBOL_GPL(pci_intx);
4444 
4445 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4446 {
4447 	struct pci_bus *bus = dev->bus;
4448 	bool mask_updated = true;
4449 	u32 cmd_status_dword;
4450 	u16 origcmd, newcmd;
4451 	unsigned long flags;
4452 	bool irq_pending;
4453 
4454 	/*
4455 	 * We do a single dword read to retrieve both command and status.
4456 	 * Document assumptions that make this possible.
4457 	 */
4458 	BUILD_BUG_ON(PCI_COMMAND % 4);
4459 	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4460 
4461 	raw_spin_lock_irqsave(&pci_lock, flags);
4462 
4463 	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4464 
4465 	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4466 
4467 	/*
4468 	 * Check interrupt status register to see whether our device
4469 	 * triggered the interrupt (when masking) or the next IRQ is
4470 	 * already pending (when unmasking).
4471 	 */
4472 	if (mask != irq_pending) {
4473 		mask_updated = false;
4474 		goto done;
4475 	}
4476 
4477 	origcmd = cmd_status_dword;
4478 	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4479 	if (mask)
4480 		newcmd |= PCI_COMMAND_INTX_DISABLE;
4481 	if (newcmd != origcmd)
4482 		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4483 
4484 done:
4485 	raw_spin_unlock_irqrestore(&pci_lock, flags);
4486 
4487 	return mask_updated;
4488 }
4489 
4490 /**
4491  * pci_check_and_mask_intx - mask INTx on pending interrupt
4492  * @dev: the PCI device to operate on
4493  *
4494  * Check if the device dev has its INTx line asserted, mask it and return
4495  * true in that case. False is returned if no interrupt was pending.
4496  */
4497 bool pci_check_and_mask_intx(struct pci_dev *dev)
4498 {
4499 	return pci_check_and_set_intx_mask(dev, true);
4500 }
4501 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4502 
4503 /**
4504  * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4505  * @dev: the PCI device to operate on
4506  *
4507  * Check if the device dev has its INTx line asserted, unmask it if not and
4508  * return true. False is returned and the mask remains active if there was
4509  * still an interrupt pending.
4510  */
4511 bool pci_check_and_unmask_intx(struct pci_dev *dev)
4512 {
4513 	return pci_check_and_set_intx_mask(dev, false);
4514 }
4515 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4516 
4517 /**
4518  * pci_wait_for_pending_transaction - wait for pending transaction
4519  * @dev: the PCI device to operate on
4520  *
4521  * Return 0 if transaction is pending 1 otherwise.
4522  */
4523 int pci_wait_for_pending_transaction(struct pci_dev *dev)
4524 {
4525 	if (!pci_is_pcie(dev))
4526 		return 1;
4527 
4528 	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4529 				    PCI_EXP_DEVSTA_TRPND);
4530 }
4531 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4532 
4533 /**
4534  * pcie_has_flr - check if a device supports function level resets
4535  * @dev: device to check
4536  *
4537  * Returns true if the device advertises support for PCIe function level
4538  * resets.
4539  */
4540 bool pcie_has_flr(struct pci_dev *dev)
4541 {
4542 	u32 cap;
4543 
4544 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4545 		return false;
4546 
4547 	pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
4548 	return cap & PCI_EXP_DEVCAP_FLR;
4549 }
4550 EXPORT_SYMBOL_GPL(pcie_has_flr);
4551 
4552 /**
4553  * pcie_flr - initiate a PCIe function level reset
4554  * @dev: device to reset
4555  *
4556  * Initiate a function level reset on @dev.  The caller should ensure the
4557  * device supports FLR before calling this function, e.g. by using the
4558  * pcie_has_flr() helper.
4559  */
4560 int pcie_flr(struct pci_dev *dev)
4561 {
4562 	if (!pci_wait_for_pending_transaction(dev))
4563 		pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4564 
4565 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4566 
4567 	if (dev->imm_ready)
4568 		return 0;
4569 
4570 	/*
4571 	 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4572 	 * 100ms, but may silently discard requests while the FLR is in
4573 	 * progress.  Wait 100ms before trying to access the device.
4574 	 */
4575 	msleep(100);
4576 
4577 	return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4578 }
4579 EXPORT_SYMBOL_GPL(pcie_flr);
4580 
4581 static int pci_af_flr(struct pci_dev *dev, int probe)
4582 {
4583 	int pos;
4584 	u8 cap;
4585 
4586 	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4587 	if (!pos)
4588 		return -ENOTTY;
4589 
4590 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4591 		return -ENOTTY;
4592 
4593 	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4594 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4595 		return -ENOTTY;
4596 
4597 	if (probe)
4598 		return 0;
4599 
4600 	/*
4601 	 * Wait for Transaction Pending bit to clear.  A word-aligned test
4602 	 * is used, so we use the control offset rather than status and shift
4603 	 * the test bit to match.
4604 	 */
4605 	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4606 				 PCI_AF_STATUS_TP << 8))
4607 		pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4608 
4609 	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4610 
4611 	if (dev->imm_ready)
4612 		return 0;
4613 
4614 	/*
4615 	 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4616 	 * updated 27 July 2006; a device must complete an FLR within
4617 	 * 100ms, but may silently discard requests while the FLR is in
4618 	 * progress.  Wait 100ms before trying to access the device.
4619 	 */
4620 	msleep(100);
4621 
4622 	return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4623 }
4624 
4625 /**
4626  * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4627  * @dev: Device to reset.
4628  * @probe: If set, only check if the device can be reset this way.
4629  *
4630  * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4631  * unset, it will be reinitialized internally when going from PCI_D3hot to
4632  * PCI_D0.  If that's the case and the device is not in a low-power state
4633  * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4634  *
4635  * NOTE: This causes the caller to sleep for twice the device power transition
4636  * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4637  * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4638  * Moreover, only devices in D0 can be reset by this function.
4639  */
4640 static int pci_pm_reset(struct pci_dev *dev, int probe)
4641 {
4642 	u16 csr;
4643 
4644 	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4645 		return -ENOTTY;
4646 
4647 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4648 	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4649 		return -ENOTTY;
4650 
4651 	if (probe)
4652 		return 0;
4653 
4654 	if (dev->current_state != PCI_D0)
4655 		return -EINVAL;
4656 
4657 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4658 	csr |= PCI_D3hot;
4659 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4660 	pci_dev_d3_sleep(dev);
4661 
4662 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4663 	csr |= PCI_D0;
4664 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4665 	pci_dev_d3_sleep(dev);
4666 
4667 	return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4668 }
4669 
4670 /**
4671  * pcie_wait_for_link_delay - Wait until link is active or inactive
4672  * @pdev: Bridge device
4673  * @active: waiting for active or inactive?
4674  * @delay: Delay to wait after link has become active (in ms)
4675  *
4676  * Use this to wait till link becomes active or inactive.
4677  */
4678 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4679 				     int delay)
4680 {
4681 	int timeout = 1000;
4682 	bool ret;
4683 	u16 lnk_status;
4684 
4685 	/*
4686 	 * Some controllers might not implement link active reporting. In this
4687 	 * case, we wait for 1000 ms + any delay requested by the caller.
4688 	 */
4689 	if (!pdev->link_active_reporting) {
4690 		msleep(timeout + delay);
4691 		return true;
4692 	}
4693 
4694 	/*
4695 	 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4696 	 * after which we should expect an link active if the reset was
4697 	 * successful. If so, software must wait a minimum 100ms before sending
4698 	 * configuration requests to devices downstream this port.
4699 	 *
4700 	 * If the link fails to activate, either the device was physically
4701 	 * removed or the link is permanently failed.
4702 	 */
4703 	if (active)
4704 		msleep(20);
4705 	for (;;) {
4706 		pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
4707 		ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA);
4708 		if (ret == active)
4709 			break;
4710 		if (timeout <= 0)
4711 			break;
4712 		msleep(10);
4713 		timeout -= 10;
4714 	}
4715 	if (active && ret)
4716 		msleep(delay);
4717 
4718 	return ret == active;
4719 }
4720 
4721 /**
4722  * pcie_wait_for_link - Wait until link is active or inactive
4723  * @pdev: Bridge device
4724  * @active: waiting for active or inactive?
4725  *
4726  * Use this to wait till link becomes active or inactive.
4727  */
4728 bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4729 {
4730 	return pcie_wait_for_link_delay(pdev, active, 100);
4731 }
4732 
4733 /*
4734  * Find maximum D3cold delay required by all the devices on the bus.  The
4735  * spec says 100 ms, but firmware can lower it and we allow drivers to
4736  * increase it as well.
4737  *
4738  * Called with @pci_bus_sem locked for reading.
4739  */
4740 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
4741 {
4742 	const struct pci_dev *pdev;
4743 	int min_delay = 100;
4744 	int max_delay = 0;
4745 
4746 	list_for_each_entry(pdev, &bus->devices, bus_list) {
4747 		if (pdev->d3cold_delay < min_delay)
4748 			min_delay = pdev->d3cold_delay;
4749 		if (pdev->d3cold_delay > max_delay)
4750 			max_delay = pdev->d3cold_delay;
4751 	}
4752 
4753 	return max(min_delay, max_delay);
4754 }
4755 
4756 /**
4757  * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4758  * @dev: PCI bridge
4759  *
4760  * Handle necessary delays before access to the devices on the secondary
4761  * side of the bridge are permitted after D3cold to D0 transition.
4762  *
4763  * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4764  * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4765  * 4.3.2.
4766  */
4767 void pci_bridge_wait_for_secondary_bus(struct pci_dev *dev)
4768 {
4769 	struct pci_dev *child;
4770 	int delay;
4771 
4772 	if (pci_dev_is_disconnected(dev))
4773 		return;
4774 
4775 	if (!pci_is_bridge(dev) || !dev->bridge_d3)
4776 		return;
4777 
4778 	down_read(&pci_bus_sem);
4779 
4780 	/*
4781 	 * We only deal with devices that are present currently on the bus.
4782 	 * For any hot-added devices the access delay is handled in pciehp
4783 	 * board_added(). In case of ACPI hotplug the firmware is expected
4784 	 * to configure the devices before OS is notified.
4785 	 */
4786 	if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
4787 		up_read(&pci_bus_sem);
4788 		return;
4789 	}
4790 
4791 	/* Take d3cold_delay requirements into account */
4792 	delay = pci_bus_max_d3cold_delay(dev->subordinate);
4793 	if (!delay) {
4794 		up_read(&pci_bus_sem);
4795 		return;
4796 	}
4797 
4798 	child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
4799 				 bus_list);
4800 	up_read(&pci_bus_sem);
4801 
4802 	/*
4803 	 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
4804 	 * accessing the device after reset (that is 1000 ms + 100 ms). In
4805 	 * practice this should not be needed because we don't do power
4806 	 * management for them (see pci_bridge_d3_possible()).
4807 	 */
4808 	if (!pci_is_pcie(dev)) {
4809 		pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
4810 		msleep(1000 + delay);
4811 		return;
4812 	}
4813 
4814 	/*
4815 	 * For PCIe downstream and root ports that do not support speeds
4816 	 * greater than 5 GT/s need to wait minimum 100 ms. For higher
4817 	 * speeds (gen3) we need to wait first for the data link layer to
4818 	 * become active.
4819 	 *
4820 	 * However, 100 ms is the minimum and the PCIe spec says the
4821 	 * software must allow at least 1s before it can determine that the
4822 	 * device that did not respond is a broken device. There is
4823 	 * evidence that 100 ms is not always enough, for example certain
4824 	 * Titan Ridge xHCI controller does not always respond to
4825 	 * configuration requests if we only wait for 100 ms (see
4826 	 * https://bugzilla.kernel.org/show_bug.cgi?id=203885).
4827 	 *
4828 	 * Therefore we wait for 100 ms and check for the device presence.
4829 	 * If it is still not present give it an additional 100 ms.
4830 	 */
4831 	if (!pcie_downstream_port(dev))
4832 		return;
4833 
4834 	if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
4835 		pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
4836 		msleep(delay);
4837 	} else {
4838 		pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
4839 			delay);
4840 		if (!pcie_wait_for_link_delay(dev, true, delay)) {
4841 			/* Did not train, no need to wait any further */
4842 			pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
4843 			return;
4844 		}
4845 	}
4846 
4847 	if (!pci_device_is_present(child)) {
4848 		pci_dbg(child, "waiting additional %d ms to become accessible\n", delay);
4849 		msleep(delay);
4850 	}
4851 }
4852 
4853 void pci_reset_secondary_bus(struct pci_dev *dev)
4854 {
4855 	u16 ctrl;
4856 
4857 	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4858 	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4859 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4860 
4861 	/*
4862 	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
4863 	 * this to 2ms to ensure that we meet the minimum requirement.
4864 	 */
4865 	msleep(2);
4866 
4867 	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4868 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4869 
4870 	/*
4871 	 * Trhfa for conventional PCI is 2^25 clock cycles.
4872 	 * Assuming a minimum 33MHz clock this results in a 1s
4873 	 * delay before we can consider subordinate devices to
4874 	 * be re-initialized.  PCIe has some ways to shorten this,
4875 	 * but we don't make use of them yet.
4876 	 */
4877 	ssleep(1);
4878 }
4879 
4880 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4881 {
4882 	pci_reset_secondary_bus(dev);
4883 }
4884 
4885 /**
4886  * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
4887  * @dev: Bridge device
4888  *
4889  * Use the bridge control register to assert reset on the secondary bus.
4890  * Devices on the secondary bus are left in power-on state.
4891  */
4892 int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
4893 {
4894 	pcibios_reset_secondary_bus(dev);
4895 
4896 	return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS);
4897 }
4898 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
4899 
4900 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
4901 {
4902 	struct pci_dev *pdev;
4903 
4904 	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4905 	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4906 		return -ENOTTY;
4907 
4908 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4909 		if (pdev != dev)
4910 			return -ENOTTY;
4911 
4912 	if (probe)
4913 		return 0;
4914 
4915 	return pci_bridge_secondary_bus_reset(dev->bus->self);
4916 }
4917 
4918 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
4919 {
4920 	int rc = -ENOTTY;
4921 
4922 	if (!hotplug || !try_module_get(hotplug->owner))
4923 		return rc;
4924 
4925 	if (hotplug->ops->reset_slot)
4926 		rc = hotplug->ops->reset_slot(hotplug, probe);
4927 
4928 	module_put(hotplug->owner);
4929 
4930 	return rc;
4931 }
4932 
4933 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
4934 {
4935 	if (dev->multifunction || dev->subordinate || !dev->slot ||
4936 	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4937 		return -ENOTTY;
4938 
4939 	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
4940 }
4941 
4942 static void pci_dev_lock(struct pci_dev *dev)
4943 {
4944 	pci_cfg_access_lock(dev);
4945 	/* block PM suspend, driver probe, etc. */
4946 	device_lock(&dev->dev);
4947 }
4948 
4949 /* Return 1 on successful lock, 0 on contention */
4950 static int pci_dev_trylock(struct pci_dev *dev)
4951 {
4952 	if (pci_cfg_access_trylock(dev)) {
4953 		if (device_trylock(&dev->dev))
4954 			return 1;
4955 		pci_cfg_access_unlock(dev);
4956 	}
4957 
4958 	return 0;
4959 }
4960 
4961 static void pci_dev_unlock(struct pci_dev *dev)
4962 {
4963 	device_unlock(&dev->dev);
4964 	pci_cfg_access_unlock(dev);
4965 }
4966 
4967 static void pci_dev_save_and_disable(struct pci_dev *dev)
4968 {
4969 	const struct pci_error_handlers *err_handler =
4970 			dev->driver ? dev->driver->err_handler : NULL;
4971 
4972 	/*
4973 	 * dev->driver->err_handler->reset_prepare() is protected against
4974 	 * races with ->remove() by the device lock, which must be held by
4975 	 * the caller.
4976 	 */
4977 	if (err_handler && err_handler->reset_prepare)
4978 		err_handler->reset_prepare(dev);
4979 
4980 	/*
4981 	 * Wake-up device prior to save.  PM registers default to D0 after
4982 	 * reset and a simple register restore doesn't reliably return
4983 	 * to a non-D0 state anyway.
4984 	 */
4985 	pci_set_power_state(dev, PCI_D0);
4986 
4987 	pci_save_state(dev);
4988 	/*
4989 	 * Disable the device by clearing the Command register, except for
4990 	 * INTx-disable which is set.  This not only disables MMIO and I/O port
4991 	 * BARs, but also prevents the device from being Bus Master, preventing
4992 	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
4993 	 * compliant devices, INTx-disable prevents legacy interrupts.
4994 	 */
4995 	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
4996 }
4997 
4998 static void pci_dev_restore(struct pci_dev *dev)
4999 {
5000 	const struct pci_error_handlers *err_handler =
5001 			dev->driver ? dev->driver->err_handler : NULL;
5002 
5003 	pci_restore_state(dev);
5004 
5005 	/*
5006 	 * dev->driver->err_handler->reset_done() is protected against
5007 	 * races with ->remove() by the device lock, which must be held by
5008 	 * the caller.
5009 	 */
5010 	if (err_handler && err_handler->reset_done)
5011 		err_handler->reset_done(dev);
5012 }
5013 
5014 /**
5015  * __pci_reset_function_locked - reset a PCI device function while holding
5016  * the @dev mutex lock.
5017  * @dev: PCI device to reset
5018  *
5019  * Some devices allow an individual function to be reset without affecting
5020  * other functions in the same device.  The PCI device must be responsive
5021  * to PCI config space in order to use this function.
5022  *
5023  * The device function is presumed to be unused and the caller is holding
5024  * the device mutex lock when this function is called.
5025  *
5026  * Resetting the device will make the contents of PCI configuration space
5027  * random, so any caller of this must be prepared to reinitialise the
5028  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5029  * etc.
5030  *
5031  * Returns 0 if the device function was successfully reset or negative if the
5032  * device doesn't support resetting a single function.
5033  */
5034 int __pci_reset_function_locked(struct pci_dev *dev)
5035 {
5036 	int rc;
5037 
5038 	might_sleep();
5039 
5040 	/*
5041 	 * A reset method returns -ENOTTY if it doesn't support this device
5042 	 * and we should try the next method.
5043 	 *
5044 	 * If it returns 0 (success), we're finished.  If it returns any
5045 	 * other error, we're also finished: this indicates that further
5046 	 * reset mechanisms might be broken on the device.
5047 	 */
5048 	rc = pci_dev_specific_reset(dev, 0);
5049 	if (rc != -ENOTTY)
5050 		return rc;
5051 	if (pcie_has_flr(dev)) {
5052 		rc = pcie_flr(dev);
5053 		if (rc != -ENOTTY)
5054 			return rc;
5055 	}
5056 	rc = pci_af_flr(dev, 0);
5057 	if (rc != -ENOTTY)
5058 		return rc;
5059 	rc = pci_pm_reset(dev, 0);
5060 	if (rc != -ENOTTY)
5061 		return rc;
5062 	rc = pci_dev_reset_slot_function(dev, 0);
5063 	if (rc != -ENOTTY)
5064 		return rc;
5065 	return pci_parent_bus_reset(dev, 0);
5066 }
5067 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5068 
5069 /**
5070  * pci_probe_reset_function - check whether the device can be safely reset
5071  * @dev: PCI device to reset
5072  *
5073  * Some devices allow an individual function to be reset without affecting
5074  * other functions in the same device.  The PCI device must be responsive
5075  * to PCI config space in order to use this function.
5076  *
5077  * Returns 0 if the device function can be reset or negative if the
5078  * device doesn't support resetting a single function.
5079  */
5080 int pci_probe_reset_function(struct pci_dev *dev)
5081 {
5082 	int rc;
5083 
5084 	might_sleep();
5085 
5086 	rc = pci_dev_specific_reset(dev, 1);
5087 	if (rc != -ENOTTY)
5088 		return rc;
5089 	if (pcie_has_flr(dev))
5090 		return 0;
5091 	rc = pci_af_flr(dev, 1);
5092 	if (rc != -ENOTTY)
5093 		return rc;
5094 	rc = pci_pm_reset(dev, 1);
5095 	if (rc != -ENOTTY)
5096 		return rc;
5097 	rc = pci_dev_reset_slot_function(dev, 1);
5098 	if (rc != -ENOTTY)
5099 		return rc;
5100 
5101 	return pci_parent_bus_reset(dev, 1);
5102 }
5103 
5104 /**
5105  * pci_reset_function - quiesce and reset a PCI device function
5106  * @dev: PCI device to reset
5107  *
5108  * Some devices allow an individual function to be reset without affecting
5109  * other functions in the same device.  The PCI device must be responsive
5110  * to PCI config space in order to use this function.
5111  *
5112  * This function does not just reset the PCI portion of a device, but
5113  * clears all the state associated with the device.  This function differs
5114  * from __pci_reset_function_locked() in that it saves and restores device state
5115  * over the reset and takes the PCI device lock.
5116  *
5117  * Returns 0 if the device function was successfully reset or negative if the
5118  * device doesn't support resetting a single function.
5119  */
5120 int pci_reset_function(struct pci_dev *dev)
5121 {
5122 	int rc;
5123 
5124 	if (!dev->reset_fn)
5125 		return -ENOTTY;
5126 
5127 	pci_dev_lock(dev);
5128 	pci_dev_save_and_disable(dev);
5129 
5130 	rc = __pci_reset_function_locked(dev);
5131 
5132 	pci_dev_restore(dev);
5133 	pci_dev_unlock(dev);
5134 
5135 	return rc;
5136 }
5137 EXPORT_SYMBOL_GPL(pci_reset_function);
5138 
5139 /**
5140  * pci_reset_function_locked - quiesce and reset a PCI device function
5141  * @dev: PCI device to reset
5142  *
5143  * Some devices allow an individual function to be reset without affecting
5144  * other functions in the same device.  The PCI device must be responsive
5145  * to PCI config space in order to use this function.
5146  *
5147  * This function does not just reset the PCI portion of a device, but
5148  * clears all the state associated with the device.  This function differs
5149  * from __pci_reset_function_locked() in that it saves and restores device state
5150  * over the reset.  It also differs from pci_reset_function() in that it
5151  * requires the PCI device lock to be held.
5152  *
5153  * Returns 0 if the device function was successfully reset or negative if the
5154  * device doesn't support resetting a single function.
5155  */
5156 int pci_reset_function_locked(struct pci_dev *dev)
5157 {
5158 	int rc;
5159 
5160 	if (!dev->reset_fn)
5161 		return -ENOTTY;
5162 
5163 	pci_dev_save_and_disable(dev);
5164 
5165 	rc = __pci_reset_function_locked(dev);
5166 
5167 	pci_dev_restore(dev);
5168 
5169 	return rc;
5170 }
5171 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5172 
5173 /**
5174  * pci_try_reset_function - quiesce and reset a PCI device function
5175  * @dev: PCI device to reset
5176  *
5177  * Same as above, except return -EAGAIN if unable to lock device.
5178  */
5179 int pci_try_reset_function(struct pci_dev *dev)
5180 {
5181 	int rc;
5182 
5183 	if (!dev->reset_fn)
5184 		return -ENOTTY;
5185 
5186 	if (!pci_dev_trylock(dev))
5187 		return -EAGAIN;
5188 
5189 	pci_dev_save_and_disable(dev);
5190 	rc = __pci_reset_function_locked(dev);
5191 	pci_dev_restore(dev);
5192 	pci_dev_unlock(dev);
5193 
5194 	return rc;
5195 }
5196 EXPORT_SYMBOL_GPL(pci_try_reset_function);
5197 
5198 /* Do any devices on or below this bus prevent a bus reset? */
5199 static bool pci_bus_resetable(struct pci_bus *bus)
5200 {
5201 	struct pci_dev *dev;
5202 
5203 
5204 	if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5205 		return false;
5206 
5207 	list_for_each_entry(dev, &bus->devices, bus_list) {
5208 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5209 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5210 			return false;
5211 	}
5212 
5213 	return true;
5214 }
5215 
5216 /* Lock devices from the top of the tree down */
5217 static void pci_bus_lock(struct pci_bus *bus)
5218 {
5219 	struct pci_dev *dev;
5220 
5221 	list_for_each_entry(dev, &bus->devices, bus_list) {
5222 		pci_dev_lock(dev);
5223 		if (dev->subordinate)
5224 			pci_bus_lock(dev->subordinate);
5225 	}
5226 }
5227 
5228 /* Unlock devices from the bottom of the tree up */
5229 static void pci_bus_unlock(struct pci_bus *bus)
5230 {
5231 	struct pci_dev *dev;
5232 
5233 	list_for_each_entry(dev, &bus->devices, bus_list) {
5234 		if (dev->subordinate)
5235 			pci_bus_unlock(dev->subordinate);
5236 		pci_dev_unlock(dev);
5237 	}
5238 }
5239 
5240 /* Return 1 on successful lock, 0 on contention */
5241 static int pci_bus_trylock(struct pci_bus *bus)
5242 {
5243 	struct pci_dev *dev;
5244 
5245 	list_for_each_entry(dev, &bus->devices, bus_list) {
5246 		if (!pci_dev_trylock(dev))
5247 			goto unlock;
5248 		if (dev->subordinate) {
5249 			if (!pci_bus_trylock(dev->subordinate)) {
5250 				pci_dev_unlock(dev);
5251 				goto unlock;
5252 			}
5253 		}
5254 	}
5255 	return 1;
5256 
5257 unlock:
5258 	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5259 		if (dev->subordinate)
5260 			pci_bus_unlock(dev->subordinate);
5261 		pci_dev_unlock(dev);
5262 	}
5263 	return 0;
5264 }
5265 
5266 /* Do any devices on or below this slot prevent a bus reset? */
5267 static bool pci_slot_resetable(struct pci_slot *slot)
5268 {
5269 	struct pci_dev *dev;
5270 
5271 	if (slot->bus->self &&
5272 	    (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5273 		return false;
5274 
5275 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5276 		if (!dev->slot || dev->slot != slot)
5277 			continue;
5278 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5279 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5280 			return false;
5281 	}
5282 
5283 	return true;
5284 }
5285 
5286 /* Lock devices from the top of the tree down */
5287 static void pci_slot_lock(struct pci_slot *slot)
5288 {
5289 	struct pci_dev *dev;
5290 
5291 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5292 		if (!dev->slot || dev->slot != slot)
5293 			continue;
5294 		pci_dev_lock(dev);
5295 		if (dev->subordinate)
5296 			pci_bus_lock(dev->subordinate);
5297 	}
5298 }
5299 
5300 /* Unlock devices from the bottom of the tree up */
5301 static void pci_slot_unlock(struct pci_slot *slot)
5302 {
5303 	struct pci_dev *dev;
5304 
5305 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5306 		if (!dev->slot || dev->slot != slot)
5307 			continue;
5308 		if (dev->subordinate)
5309 			pci_bus_unlock(dev->subordinate);
5310 		pci_dev_unlock(dev);
5311 	}
5312 }
5313 
5314 /* Return 1 on successful lock, 0 on contention */
5315 static int pci_slot_trylock(struct pci_slot *slot)
5316 {
5317 	struct pci_dev *dev;
5318 
5319 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5320 		if (!dev->slot || dev->slot != slot)
5321 			continue;
5322 		if (!pci_dev_trylock(dev))
5323 			goto unlock;
5324 		if (dev->subordinate) {
5325 			if (!pci_bus_trylock(dev->subordinate)) {
5326 				pci_dev_unlock(dev);
5327 				goto unlock;
5328 			}
5329 		}
5330 	}
5331 	return 1;
5332 
5333 unlock:
5334 	list_for_each_entry_continue_reverse(dev,
5335 					     &slot->bus->devices, bus_list) {
5336 		if (!dev->slot || dev->slot != slot)
5337 			continue;
5338 		if (dev->subordinate)
5339 			pci_bus_unlock(dev->subordinate);
5340 		pci_dev_unlock(dev);
5341 	}
5342 	return 0;
5343 }
5344 
5345 /*
5346  * Save and disable devices from the top of the tree down while holding
5347  * the @dev mutex lock for the entire tree.
5348  */
5349 static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5350 {
5351 	struct pci_dev *dev;
5352 
5353 	list_for_each_entry(dev, &bus->devices, bus_list) {
5354 		pci_dev_save_and_disable(dev);
5355 		if (dev->subordinate)
5356 			pci_bus_save_and_disable_locked(dev->subordinate);
5357 	}
5358 }
5359 
5360 /*
5361  * Restore devices from top of the tree down while holding @dev mutex lock
5362  * for the entire tree.  Parent bridges need to be restored before we can
5363  * get to subordinate devices.
5364  */
5365 static void pci_bus_restore_locked(struct pci_bus *bus)
5366 {
5367 	struct pci_dev *dev;
5368 
5369 	list_for_each_entry(dev, &bus->devices, bus_list) {
5370 		pci_dev_restore(dev);
5371 		if (dev->subordinate)
5372 			pci_bus_restore_locked(dev->subordinate);
5373 	}
5374 }
5375 
5376 /*
5377  * Save and disable devices from the top of the tree down while holding
5378  * the @dev mutex lock for the entire tree.
5379  */
5380 static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5381 {
5382 	struct pci_dev *dev;
5383 
5384 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5385 		if (!dev->slot || dev->slot != slot)
5386 			continue;
5387 		pci_dev_save_and_disable(dev);
5388 		if (dev->subordinate)
5389 			pci_bus_save_and_disable_locked(dev->subordinate);
5390 	}
5391 }
5392 
5393 /*
5394  * Restore devices from top of the tree down while holding @dev mutex lock
5395  * for the entire tree.  Parent bridges need to be restored before we can
5396  * get to subordinate devices.
5397  */
5398 static void pci_slot_restore_locked(struct pci_slot *slot)
5399 {
5400 	struct pci_dev *dev;
5401 
5402 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5403 		if (!dev->slot || dev->slot != slot)
5404 			continue;
5405 		pci_dev_restore(dev);
5406 		if (dev->subordinate)
5407 			pci_bus_restore_locked(dev->subordinate);
5408 	}
5409 }
5410 
5411 static int pci_slot_reset(struct pci_slot *slot, int probe)
5412 {
5413 	int rc;
5414 
5415 	if (!slot || !pci_slot_resetable(slot))
5416 		return -ENOTTY;
5417 
5418 	if (!probe)
5419 		pci_slot_lock(slot);
5420 
5421 	might_sleep();
5422 
5423 	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5424 
5425 	if (!probe)
5426 		pci_slot_unlock(slot);
5427 
5428 	return rc;
5429 }
5430 
5431 /**
5432  * pci_probe_reset_slot - probe whether a PCI slot can be reset
5433  * @slot: PCI slot to probe
5434  *
5435  * Return 0 if slot can be reset, negative if a slot reset is not supported.
5436  */
5437 int pci_probe_reset_slot(struct pci_slot *slot)
5438 {
5439 	return pci_slot_reset(slot, 1);
5440 }
5441 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5442 
5443 /**
5444  * __pci_reset_slot - Try to reset a PCI slot
5445  * @slot: PCI slot to reset
5446  *
5447  * A PCI bus may host multiple slots, each slot may support a reset mechanism
5448  * independent of other slots.  For instance, some slots may support slot power
5449  * control.  In the case of a 1:1 bus to slot architecture, this function may
5450  * wrap the bus reset to avoid spurious slot related events such as hotplug.
5451  * Generally a slot reset should be attempted before a bus reset.  All of the
5452  * function of the slot and any subordinate buses behind the slot are reset
5453  * through this function.  PCI config space of all devices in the slot and
5454  * behind the slot is saved before and restored after reset.
5455  *
5456  * Same as above except return -EAGAIN if the slot cannot be locked
5457  */
5458 static int __pci_reset_slot(struct pci_slot *slot)
5459 {
5460 	int rc;
5461 
5462 	rc = pci_slot_reset(slot, 1);
5463 	if (rc)
5464 		return rc;
5465 
5466 	if (pci_slot_trylock(slot)) {
5467 		pci_slot_save_and_disable_locked(slot);
5468 		might_sleep();
5469 		rc = pci_reset_hotplug_slot(slot->hotplug, 0);
5470 		pci_slot_restore_locked(slot);
5471 		pci_slot_unlock(slot);
5472 	} else
5473 		rc = -EAGAIN;
5474 
5475 	return rc;
5476 }
5477 
5478 static int pci_bus_reset(struct pci_bus *bus, int probe)
5479 {
5480 	int ret;
5481 
5482 	if (!bus->self || !pci_bus_resetable(bus))
5483 		return -ENOTTY;
5484 
5485 	if (probe)
5486 		return 0;
5487 
5488 	pci_bus_lock(bus);
5489 
5490 	might_sleep();
5491 
5492 	ret = pci_bridge_secondary_bus_reset(bus->self);
5493 
5494 	pci_bus_unlock(bus);
5495 
5496 	return ret;
5497 }
5498 
5499 /**
5500  * pci_bus_error_reset - reset the bridge's subordinate bus
5501  * @bridge: The parent device that connects to the bus to reset
5502  *
5503  * This function will first try to reset the slots on this bus if the method is
5504  * available. If slot reset fails or is not available, this will fall back to a
5505  * secondary bus reset.
5506  */
5507 int pci_bus_error_reset(struct pci_dev *bridge)
5508 {
5509 	struct pci_bus *bus = bridge->subordinate;
5510 	struct pci_slot *slot;
5511 
5512 	if (!bus)
5513 		return -ENOTTY;
5514 
5515 	mutex_lock(&pci_slot_mutex);
5516 	if (list_empty(&bus->slots))
5517 		goto bus_reset;
5518 
5519 	list_for_each_entry(slot, &bus->slots, list)
5520 		if (pci_probe_reset_slot(slot))
5521 			goto bus_reset;
5522 
5523 	list_for_each_entry(slot, &bus->slots, list)
5524 		if (pci_slot_reset(slot, 0))
5525 			goto bus_reset;
5526 
5527 	mutex_unlock(&pci_slot_mutex);
5528 	return 0;
5529 bus_reset:
5530 	mutex_unlock(&pci_slot_mutex);
5531 	return pci_bus_reset(bridge->subordinate, 0);
5532 }
5533 
5534 /**
5535  * pci_probe_reset_bus - probe whether a PCI bus can be reset
5536  * @bus: PCI bus to probe
5537  *
5538  * Return 0 if bus can be reset, negative if a bus reset is not supported.
5539  */
5540 int pci_probe_reset_bus(struct pci_bus *bus)
5541 {
5542 	return pci_bus_reset(bus, 1);
5543 }
5544 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5545 
5546 /**
5547  * __pci_reset_bus - Try to reset a PCI bus
5548  * @bus: top level PCI bus to reset
5549  *
5550  * Same as above except return -EAGAIN if the bus cannot be locked
5551  */
5552 static int __pci_reset_bus(struct pci_bus *bus)
5553 {
5554 	int rc;
5555 
5556 	rc = pci_bus_reset(bus, 1);
5557 	if (rc)
5558 		return rc;
5559 
5560 	if (pci_bus_trylock(bus)) {
5561 		pci_bus_save_and_disable_locked(bus);
5562 		might_sleep();
5563 		rc = pci_bridge_secondary_bus_reset(bus->self);
5564 		pci_bus_restore_locked(bus);
5565 		pci_bus_unlock(bus);
5566 	} else
5567 		rc = -EAGAIN;
5568 
5569 	return rc;
5570 }
5571 
5572 /**
5573  * pci_reset_bus - Try to reset a PCI bus
5574  * @pdev: top level PCI device to reset via slot/bus
5575  *
5576  * Same as above except return -EAGAIN if the bus cannot be locked
5577  */
5578 int pci_reset_bus(struct pci_dev *pdev)
5579 {
5580 	return (!pci_probe_reset_slot(pdev->slot)) ?
5581 	    __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5582 }
5583 EXPORT_SYMBOL_GPL(pci_reset_bus);
5584 
5585 /**
5586  * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5587  * @dev: PCI device to query
5588  *
5589  * Returns mmrbc: maximum designed memory read count in bytes or
5590  * appropriate error value.
5591  */
5592 int pcix_get_max_mmrbc(struct pci_dev *dev)
5593 {
5594 	int cap;
5595 	u32 stat;
5596 
5597 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5598 	if (!cap)
5599 		return -EINVAL;
5600 
5601 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5602 		return -EINVAL;
5603 
5604 	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
5605 }
5606 EXPORT_SYMBOL(pcix_get_max_mmrbc);
5607 
5608 /**
5609  * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5610  * @dev: PCI device to query
5611  *
5612  * Returns mmrbc: maximum memory read count in bytes or appropriate error
5613  * value.
5614  */
5615 int pcix_get_mmrbc(struct pci_dev *dev)
5616 {
5617 	int cap;
5618 	u16 cmd;
5619 
5620 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5621 	if (!cap)
5622 		return -EINVAL;
5623 
5624 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5625 		return -EINVAL;
5626 
5627 	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
5628 }
5629 EXPORT_SYMBOL(pcix_get_mmrbc);
5630 
5631 /**
5632  * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5633  * @dev: PCI device to query
5634  * @mmrbc: maximum memory read count in bytes
5635  *    valid values are 512, 1024, 2048, 4096
5636  *
5637  * If possible sets maximum memory read byte count, some bridges have errata
5638  * that prevent this.
5639  */
5640 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5641 {
5642 	int cap;
5643 	u32 stat, v, o;
5644 	u16 cmd;
5645 
5646 	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5647 		return -EINVAL;
5648 
5649 	v = ffs(mmrbc) - 10;
5650 
5651 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5652 	if (!cap)
5653 		return -EINVAL;
5654 
5655 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5656 		return -EINVAL;
5657 
5658 	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
5659 		return -E2BIG;
5660 
5661 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5662 		return -EINVAL;
5663 
5664 	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
5665 	if (o != v) {
5666 		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5667 			return -EIO;
5668 
5669 		cmd &= ~PCI_X_CMD_MAX_READ;
5670 		cmd |= v << 2;
5671 		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5672 			return -EIO;
5673 	}
5674 	return 0;
5675 }
5676 EXPORT_SYMBOL(pcix_set_mmrbc);
5677 
5678 /**
5679  * pcie_get_readrq - get PCI Express read request size
5680  * @dev: PCI device to query
5681  *
5682  * Returns maximum memory read request in bytes or appropriate error value.
5683  */
5684 int pcie_get_readrq(struct pci_dev *dev)
5685 {
5686 	u16 ctl;
5687 
5688 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5689 
5690 	return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5691 }
5692 EXPORT_SYMBOL(pcie_get_readrq);
5693 
5694 /**
5695  * pcie_set_readrq - set PCI Express maximum memory read request
5696  * @dev: PCI device to query
5697  * @rq: maximum memory read count in bytes
5698  *    valid values are 128, 256, 512, 1024, 2048, 4096
5699  *
5700  * If possible sets maximum memory read request in bytes
5701  */
5702 int pcie_set_readrq(struct pci_dev *dev, int rq)
5703 {
5704 	u16 v;
5705 	int ret;
5706 
5707 	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
5708 		return -EINVAL;
5709 
5710 	/*
5711 	 * If using the "performance" PCIe config, we clamp the read rq
5712 	 * size to the max packet size to keep the host bridge from
5713 	 * generating requests larger than we can cope with.
5714 	 */
5715 	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
5716 		int mps = pcie_get_mps(dev);
5717 
5718 		if (mps < rq)
5719 			rq = mps;
5720 	}
5721 
5722 	v = (ffs(rq) - 8) << 12;
5723 
5724 	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5725 						  PCI_EXP_DEVCTL_READRQ, v);
5726 
5727 	return pcibios_err_to_errno(ret);
5728 }
5729 EXPORT_SYMBOL(pcie_set_readrq);
5730 
5731 /**
5732  * pcie_get_mps - get PCI Express maximum payload size
5733  * @dev: PCI device to query
5734  *
5735  * Returns maximum payload size in bytes
5736  */
5737 int pcie_get_mps(struct pci_dev *dev)
5738 {
5739 	u16 ctl;
5740 
5741 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5742 
5743 	return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
5744 }
5745 EXPORT_SYMBOL(pcie_get_mps);
5746 
5747 /**
5748  * pcie_set_mps - set PCI Express maximum payload size
5749  * @dev: PCI device to query
5750  * @mps: maximum payload size in bytes
5751  *    valid values are 128, 256, 512, 1024, 2048, 4096
5752  *
5753  * If possible sets maximum payload size
5754  */
5755 int pcie_set_mps(struct pci_dev *dev, int mps)
5756 {
5757 	u16 v;
5758 	int ret;
5759 
5760 	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
5761 		return -EINVAL;
5762 
5763 	v = ffs(mps) - 8;
5764 	if (v > dev->pcie_mpss)
5765 		return -EINVAL;
5766 	v <<= 5;
5767 
5768 	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5769 						  PCI_EXP_DEVCTL_PAYLOAD, v);
5770 
5771 	return pcibios_err_to_errno(ret);
5772 }
5773 EXPORT_SYMBOL(pcie_set_mps);
5774 
5775 /**
5776  * pcie_bandwidth_available - determine minimum link settings of a PCIe
5777  *			      device and its bandwidth limitation
5778  * @dev: PCI device to query
5779  * @limiting_dev: storage for device causing the bandwidth limitation
5780  * @speed: storage for speed of limiting device
5781  * @width: storage for width of limiting device
5782  *
5783  * Walk up the PCI device chain and find the point where the minimum
5784  * bandwidth is available.  Return the bandwidth available there and (if
5785  * limiting_dev, speed, and width pointers are supplied) information about
5786  * that point.  The bandwidth returned is in Mb/s, i.e., megabits/second of
5787  * raw bandwidth.
5788  */
5789 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
5790 			     enum pci_bus_speed *speed,
5791 			     enum pcie_link_width *width)
5792 {
5793 	u16 lnksta;
5794 	enum pci_bus_speed next_speed;
5795 	enum pcie_link_width next_width;
5796 	u32 bw, next_bw;
5797 
5798 	if (speed)
5799 		*speed = PCI_SPEED_UNKNOWN;
5800 	if (width)
5801 		*width = PCIE_LNK_WIDTH_UNKNOWN;
5802 
5803 	bw = 0;
5804 
5805 	while (dev) {
5806 		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
5807 
5808 		next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
5809 		next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
5810 			PCI_EXP_LNKSTA_NLW_SHIFT;
5811 
5812 		next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
5813 
5814 		/* Check if current device limits the total bandwidth */
5815 		if (!bw || next_bw <= bw) {
5816 			bw = next_bw;
5817 
5818 			if (limiting_dev)
5819 				*limiting_dev = dev;
5820 			if (speed)
5821 				*speed = next_speed;
5822 			if (width)
5823 				*width = next_width;
5824 		}
5825 
5826 		dev = pci_upstream_bridge(dev);
5827 	}
5828 
5829 	return bw;
5830 }
5831 EXPORT_SYMBOL(pcie_bandwidth_available);
5832 
5833 /**
5834  * pcie_get_speed_cap - query for the PCI device's link speed capability
5835  * @dev: PCI device to query
5836  *
5837  * Query the PCI device speed capability.  Return the maximum link speed
5838  * supported by the device.
5839  */
5840 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
5841 {
5842 	u32 lnkcap2, lnkcap;
5843 
5844 	/*
5845 	 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18.  The
5846 	 * implementation note there recommends using the Supported Link
5847 	 * Speeds Vector in Link Capabilities 2 when supported.
5848 	 *
5849 	 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
5850 	 * should use the Supported Link Speeds field in Link Capabilities,
5851 	 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
5852 	 */
5853 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
5854 
5855 	/* PCIe r3.0-compliant */
5856 	if (lnkcap2)
5857 		return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
5858 
5859 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5860 	if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
5861 		return PCIE_SPEED_5_0GT;
5862 	else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
5863 		return PCIE_SPEED_2_5GT;
5864 
5865 	return PCI_SPEED_UNKNOWN;
5866 }
5867 EXPORT_SYMBOL(pcie_get_speed_cap);
5868 
5869 /**
5870  * pcie_get_width_cap - query for the PCI device's link width capability
5871  * @dev: PCI device to query
5872  *
5873  * Query the PCI device width capability.  Return the maximum link width
5874  * supported by the device.
5875  */
5876 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
5877 {
5878 	u32 lnkcap;
5879 
5880 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5881 	if (lnkcap)
5882 		return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
5883 
5884 	return PCIE_LNK_WIDTH_UNKNOWN;
5885 }
5886 EXPORT_SYMBOL(pcie_get_width_cap);
5887 
5888 /**
5889  * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
5890  * @dev: PCI device
5891  * @speed: storage for link speed
5892  * @width: storage for link width
5893  *
5894  * Calculate a PCI device's link bandwidth by querying for its link speed
5895  * and width, multiplying them, and applying encoding overhead.  The result
5896  * is in Mb/s, i.e., megabits/second of raw bandwidth.
5897  */
5898 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
5899 			   enum pcie_link_width *width)
5900 {
5901 	*speed = pcie_get_speed_cap(dev);
5902 	*width = pcie_get_width_cap(dev);
5903 
5904 	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
5905 		return 0;
5906 
5907 	return *width * PCIE_SPEED2MBS_ENC(*speed);
5908 }
5909 
5910 /**
5911  * __pcie_print_link_status - Report the PCI device's link speed and width
5912  * @dev: PCI device to query
5913  * @verbose: Print info even when enough bandwidth is available
5914  *
5915  * If the available bandwidth at the device is less than the device is
5916  * capable of, report the device's maximum possible bandwidth and the
5917  * upstream link that limits its performance.  If @verbose, always print
5918  * the available bandwidth, even if the device isn't constrained.
5919  */
5920 void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
5921 {
5922 	enum pcie_link_width width, width_cap;
5923 	enum pci_bus_speed speed, speed_cap;
5924 	struct pci_dev *limiting_dev = NULL;
5925 	u32 bw_avail, bw_cap;
5926 
5927 	bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
5928 	bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
5929 
5930 	if (bw_avail >= bw_cap && verbose)
5931 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
5932 			 bw_cap / 1000, bw_cap % 1000,
5933 			 pci_speed_string(speed_cap), width_cap);
5934 	else if (bw_avail < bw_cap)
5935 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
5936 			 bw_avail / 1000, bw_avail % 1000,
5937 			 pci_speed_string(speed), width,
5938 			 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
5939 			 bw_cap / 1000, bw_cap % 1000,
5940 			 pci_speed_string(speed_cap), width_cap);
5941 }
5942 
5943 /**
5944  * pcie_print_link_status - Report the PCI device's link speed and width
5945  * @dev: PCI device to query
5946  *
5947  * Report the available bandwidth at the device.
5948  */
5949 void pcie_print_link_status(struct pci_dev *dev)
5950 {
5951 	__pcie_print_link_status(dev, true);
5952 }
5953 EXPORT_SYMBOL(pcie_print_link_status);
5954 
5955 /**
5956  * pci_select_bars - Make BAR mask from the type of resource
5957  * @dev: the PCI device for which BAR mask is made
5958  * @flags: resource type mask to be selected
5959  *
5960  * This helper routine makes bar mask from the type of resource.
5961  */
5962 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
5963 {
5964 	int i, bars = 0;
5965 	for (i = 0; i < PCI_NUM_RESOURCES; i++)
5966 		if (pci_resource_flags(dev, i) & flags)
5967 			bars |= (1 << i);
5968 	return bars;
5969 }
5970 EXPORT_SYMBOL(pci_select_bars);
5971 
5972 /* Some architectures require additional programming to enable VGA */
5973 static arch_set_vga_state_t arch_set_vga_state;
5974 
5975 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
5976 {
5977 	arch_set_vga_state = func;	/* NULL disables */
5978 }
5979 
5980 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
5981 				  unsigned int command_bits, u32 flags)
5982 {
5983 	if (arch_set_vga_state)
5984 		return arch_set_vga_state(dev, decode, command_bits,
5985 						flags);
5986 	return 0;
5987 }
5988 
5989 /**
5990  * pci_set_vga_state - set VGA decode state on device and parents if requested
5991  * @dev: the PCI device
5992  * @decode: true = enable decoding, false = disable decoding
5993  * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
5994  * @flags: traverse ancestors and change bridges
5995  * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
5996  */
5997 int pci_set_vga_state(struct pci_dev *dev, bool decode,
5998 		      unsigned int command_bits, u32 flags)
5999 {
6000 	struct pci_bus *bus;
6001 	struct pci_dev *bridge;
6002 	u16 cmd;
6003 	int rc;
6004 
6005 	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6006 
6007 	/* ARCH specific VGA enables */
6008 	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6009 	if (rc)
6010 		return rc;
6011 
6012 	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6013 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
6014 		if (decode)
6015 			cmd |= command_bits;
6016 		else
6017 			cmd &= ~command_bits;
6018 		pci_write_config_word(dev, PCI_COMMAND, cmd);
6019 	}
6020 
6021 	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6022 		return 0;
6023 
6024 	bus = dev->bus;
6025 	while (bus) {
6026 		bridge = bus->self;
6027 		if (bridge) {
6028 			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6029 					     &cmd);
6030 			if (decode)
6031 				cmd |= PCI_BRIDGE_CTL_VGA;
6032 			else
6033 				cmd &= ~PCI_BRIDGE_CTL_VGA;
6034 			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6035 					      cmd);
6036 		}
6037 		bus = bus->parent;
6038 	}
6039 	return 0;
6040 }
6041 
6042 #ifdef CONFIG_ACPI
6043 bool pci_pr3_present(struct pci_dev *pdev)
6044 {
6045 	struct acpi_device *adev;
6046 
6047 	if (acpi_disabled)
6048 		return false;
6049 
6050 	adev = ACPI_COMPANION(&pdev->dev);
6051 	if (!adev)
6052 		return false;
6053 
6054 	return adev->power.flags.power_resources &&
6055 		acpi_has_method(adev->handle, "_PR3");
6056 }
6057 EXPORT_SYMBOL_GPL(pci_pr3_present);
6058 #endif
6059 
6060 /**
6061  * pci_add_dma_alias - Add a DMA devfn alias for a device
6062  * @dev: the PCI device for which alias is added
6063  * @devfn_from: alias slot and function
6064  * @nr_devfns: number of subsequent devfns to alias
6065  *
6066  * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6067  * which is used to program permissible bus-devfn source addresses for DMA
6068  * requests in an IOMMU.  These aliases factor into IOMMU group creation
6069  * and are useful for devices generating DMA requests beyond or different
6070  * from their logical bus-devfn.  Examples include device quirks where the
6071  * device simply uses the wrong devfn, as well as non-transparent bridges
6072  * where the alias may be a proxy for devices in another domain.
6073  *
6074  * IOMMU group creation is performed during device discovery or addition,
6075  * prior to any potential DMA mapping and therefore prior to driver probing
6076  * (especially for userspace assigned devices where IOMMU group definition
6077  * cannot be left as a userspace activity).  DMA aliases should therefore
6078  * be configured via quirks, such as the PCI fixup header quirk.
6079  */
6080 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from, unsigned nr_devfns)
6081 {
6082 	int devfn_to;
6083 
6084 	nr_devfns = min(nr_devfns, (unsigned) MAX_NR_DEVFNS - devfn_from);
6085 	devfn_to = devfn_from + nr_devfns - 1;
6086 
6087 	if (!dev->dma_alias_mask)
6088 		dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6089 	if (!dev->dma_alias_mask) {
6090 		pci_warn(dev, "Unable to allocate DMA alias mask\n");
6091 		return;
6092 	}
6093 
6094 	bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6095 
6096 	if (nr_devfns == 1)
6097 		pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6098 				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6099 	else if (nr_devfns > 1)
6100 		pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6101 				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6102 				PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6103 }
6104 
6105 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6106 {
6107 	return (dev1->dma_alias_mask &&
6108 		test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6109 	       (dev2->dma_alias_mask &&
6110 		test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6111 	       pci_real_dma_dev(dev1) == dev2 ||
6112 	       pci_real_dma_dev(dev2) == dev1;
6113 }
6114 
6115 bool pci_device_is_present(struct pci_dev *pdev)
6116 {
6117 	u32 v;
6118 
6119 	if (pci_dev_is_disconnected(pdev))
6120 		return false;
6121 	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6122 }
6123 EXPORT_SYMBOL_GPL(pci_device_is_present);
6124 
6125 void pci_ignore_hotplug(struct pci_dev *dev)
6126 {
6127 	struct pci_dev *bridge = dev->bus->self;
6128 
6129 	dev->ignore_hotplug = 1;
6130 	/* Propagate the "ignore hotplug" setting to the parent bridge. */
6131 	if (bridge)
6132 		bridge->ignore_hotplug = 1;
6133 }
6134 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6135 
6136 /**
6137  * pci_real_dma_dev - Get PCI DMA device for PCI device
6138  * @dev: the PCI device that may have a PCI DMA alias
6139  *
6140  * Permits the platform to provide architecture-specific functionality to
6141  * devices needing to alias DMA to another PCI device on another PCI bus. If
6142  * the PCI device is on the same bus, it is recommended to use
6143  * pci_add_dma_alias(). This is the default implementation. Architecture
6144  * implementations can override this.
6145  */
6146 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6147 {
6148 	return dev;
6149 }
6150 
6151 resource_size_t __weak pcibios_default_alignment(void)
6152 {
6153 	return 0;
6154 }
6155 
6156 /*
6157  * Arches that don't want to expose struct resource to userland as-is in
6158  * sysfs and /proc can implement their own pci_resource_to_user().
6159  */
6160 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6161 				 const struct resource *rsrc,
6162 				 resource_size_t *start, resource_size_t *end)
6163 {
6164 	*start = rsrc->start;
6165 	*end = rsrc->end;
6166 }
6167 
6168 static char *resource_alignment_param;
6169 static DEFINE_SPINLOCK(resource_alignment_lock);
6170 
6171 /**
6172  * pci_specified_resource_alignment - get resource alignment specified by user.
6173  * @dev: the PCI device to get
6174  * @resize: whether or not to change resources' size when reassigning alignment
6175  *
6176  * RETURNS: Resource alignment if it is specified.
6177  *          Zero if it is not specified.
6178  */
6179 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6180 							bool *resize)
6181 {
6182 	int align_order, count;
6183 	resource_size_t align = pcibios_default_alignment();
6184 	const char *p;
6185 	int ret;
6186 
6187 	spin_lock(&resource_alignment_lock);
6188 	p = resource_alignment_param;
6189 	if (!p || !*p)
6190 		goto out;
6191 	if (pci_has_flag(PCI_PROBE_ONLY)) {
6192 		align = 0;
6193 		pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6194 		goto out;
6195 	}
6196 
6197 	while (*p) {
6198 		count = 0;
6199 		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6200 							p[count] == '@') {
6201 			p += count + 1;
6202 		} else {
6203 			align_order = -1;
6204 		}
6205 
6206 		ret = pci_dev_str_match(dev, p, &p);
6207 		if (ret == 1) {
6208 			*resize = true;
6209 			if (align_order == -1)
6210 				align = PAGE_SIZE;
6211 			else
6212 				align = 1 << align_order;
6213 			break;
6214 		} else if (ret < 0) {
6215 			pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6216 			       p);
6217 			break;
6218 		}
6219 
6220 		if (*p != ';' && *p != ',') {
6221 			/* End of param or invalid format */
6222 			break;
6223 		}
6224 		p++;
6225 	}
6226 out:
6227 	spin_unlock(&resource_alignment_lock);
6228 	return align;
6229 }
6230 
6231 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6232 					   resource_size_t align, bool resize)
6233 {
6234 	struct resource *r = &dev->resource[bar];
6235 	resource_size_t size;
6236 
6237 	if (!(r->flags & IORESOURCE_MEM))
6238 		return;
6239 
6240 	if (r->flags & IORESOURCE_PCI_FIXED) {
6241 		pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6242 			 bar, r, (unsigned long long)align);
6243 		return;
6244 	}
6245 
6246 	size = resource_size(r);
6247 	if (size >= align)
6248 		return;
6249 
6250 	/*
6251 	 * Increase the alignment of the resource.  There are two ways we
6252 	 * can do this:
6253 	 *
6254 	 * 1) Increase the size of the resource.  BARs are aligned on their
6255 	 *    size, so when we reallocate space for this resource, we'll
6256 	 *    allocate it with the larger alignment.  This also prevents
6257 	 *    assignment of any other BARs inside the alignment region, so
6258 	 *    if we're requesting page alignment, this means no other BARs
6259 	 *    will share the page.
6260 	 *
6261 	 *    The disadvantage is that this makes the resource larger than
6262 	 *    the hardware BAR, which may break drivers that compute things
6263 	 *    based on the resource size, e.g., to find registers at a
6264 	 *    fixed offset before the end of the BAR.
6265 	 *
6266 	 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6267 	 *    set r->start to the desired alignment.  By itself this
6268 	 *    doesn't prevent other BARs being put inside the alignment
6269 	 *    region, but if we realign *every* resource of every device in
6270 	 *    the system, none of them will share an alignment region.
6271 	 *
6272 	 * When the user has requested alignment for only some devices via
6273 	 * the "pci=resource_alignment" argument, "resize" is true and we
6274 	 * use the first method.  Otherwise we assume we're aligning all
6275 	 * devices and we use the second.
6276 	 */
6277 
6278 	pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6279 		 bar, r, (unsigned long long)align);
6280 
6281 	if (resize) {
6282 		r->start = 0;
6283 		r->end = align - 1;
6284 	} else {
6285 		r->flags &= ~IORESOURCE_SIZEALIGN;
6286 		r->flags |= IORESOURCE_STARTALIGN;
6287 		r->start = align;
6288 		r->end = r->start + size - 1;
6289 	}
6290 	r->flags |= IORESOURCE_UNSET;
6291 }
6292 
6293 /*
6294  * This function disables memory decoding and releases memory resources
6295  * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6296  * It also rounds up size to specified alignment.
6297  * Later on, the kernel will assign page-aligned memory resource back
6298  * to the device.
6299  */
6300 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6301 {
6302 	int i;
6303 	struct resource *r;
6304 	resource_size_t align;
6305 	u16 command;
6306 	bool resize = false;
6307 
6308 	/*
6309 	 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6310 	 * 3.4.1.11.  Their resources are allocated from the space
6311 	 * described by the VF BARx register in the PF's SR-IOV capability.
6312 	 * We can't influence their alignment here.
6313 	 */
6314 	if (dev->is_virtfn)
6315 		return;
6316 
6317 	/* check if specified PCI is target device to reassign */
6318 	align = pci_specified_resource_alignment(dev, &resize);
6319 	if (!align)
6320 		return;
6321 
6322 	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6323 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6324 		pci_warn(dev, "Can't reassign resources to host bridge\n");
6325 		return;
6326 	}
6327 
6328 	pci_read_config_word(dev, PCI_COMMAND, &command);
6329 	command &= ~PCI_COMMAND_MEMORY;
6330 	pci_write_config_word(dev, PCI_COMMAND, command);
6331 
6332 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6333 		pci_request_resource_alignment(dev, i, align, resize);
6334 
6335 	/*
6336 	 * Need to disable bridge's resource window,
6337 	 * to enable the kernel to reassign new resource
6338 	 * window later on.
6339 	 */
6340 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6341 		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6342 			r = &dev->resource[i];
6343 			if (!(r->flags & IORESOURCE_MEM))
6344 				continue;
6345 			r->flags |= IORESOURCE_UNSET;
6346 			r->end = resource_size(r) - 1;
6347 			r->start = 0;
6348 		}
6349 		pci_disable_bridge_window(dev);
6350 	}
6351 }
6352 
6353 static ssize_t resource_alignment_show(struct bus_type *bus, char *buf)
6354 {
6355 	size_t count = 0;
6356 
6357 	spin_lock(&resource_alignment_lock);
6358 	if (resource_alignment_param)
6359 		count = scnprintf(buf, PAGE_SIZE, "%s", resource_alignment_param);
6360 	spin_unlock(&resource_alignment_lock);
6361 
6362 	/*
6363 	 * When set by the command line, resource_alignment_param will not
6364 	 * have a trailing line feed, which is ugly. So conditionally add
6365 	 * it here.
6366 	 */
6367 	if (count >= 2 && buf[count - 2] != '\n' && count < PAGE_SIZE - 1) {
6368 		buf[count - 1] = '\n';
6369 		buf[count++] = 0;
6370 	}
6371 
6372 	return count;
6373 }
6374 
6375 static ssize_t resource_alignment_store(struct bus_type *bus,
6376 					const char *buf, size_t count)
6377 {
6378 	char *param = kstrndup(buf, count, GFP_KERNEL);
6379 
6380 	if (!param)
6381 		return -ENOMEM;
6382 
6383 	spin_lock(&resource_alignment_lock);
6384 	kfree(resource_alignment_param);
6385 	resource_alignment_param = param;
6386 	spin_unlock(&resource_alignment_lock);
6387 	return count;
6388 }
6389 
6390 static BUS_ATTR_RW(resource_alignment);
6391 
6392 static int __init pci_resource_alignment_sysfs_init(void)
6393 {
6394 	return bus_create_file(&pci_bus_type,
6395 					&bus_attr_resource_alignment);
6396 }
6397 late_initcall(pci_resource_alignment_sysfs_init);
6398 
6399 static void pci_no_domains(void)
6400 {
6401 #ifdef CONFIG_PCI_DOMAINS
6402 	pci_domains_supported = 0;
6403 #endif
6404 }
6405 
6406 #ifdef CONFIG_PCI_DOMAINS_GENERIC
6407 static atomic_t __domain_nr = ATOMIC_INIT(-1);
6408 
6409 static int pci_get_new_domain_nr(void)
6410 {
6411 	return atomic_inc_return(&__domain_nr);
6412 }
6413 
6414 static int of_pci_bus_find_domain_nr(struct device *parent)
6415 {
6416 	static int use_dt_domains = -1;
6417 	int domain = -1;
6418 
6419 	if (parent)
6420 		domain = of_get_pci_domain_nr(parent->of_node);
6421 
6422 	/*
6423 	 * Check DT domain and use_dt_domains values.
6424 	 *
6425 	 * If DT domain property is valid (domain >= 0) and
6426 	 * use_dt_domains != 0, the DT assignment is valid since this means
6427 	 * we have not previously allocated a domain number by using
6428 	 * pci_get_new_domain_nr(); we should also update use_dt_domains to
6429 	 * 1, to indicate that we have just assigned a domain number from
6430 	 * DT.
6431 	 *
6432 	 * If DT domain property value is not valid (ie domain < 0), and we
6433 	 * have not previously assigned a domain number from DT
6434 	 * (use_dt_domains != 1) we should assign a domain number by
6435 	 * using the:
6436 	 *
6437 	 * pci_get_new_domain_nr()
6438 	 *
6439 	 * API and update the use_dt_domains value to keep track of method we
6440 	 * are using to assign domain numbers (use_dt_domains = 0).
6441 	 *
6442 	 * All other combinations imply we have a platform that is trying
6443 	 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
6444 	 * which is a recipe for domain mishandling and it is prevented by
6445 	 * invalidating the domain value (domain = -1) and printing a
6446 	 * corresponding error.
6447 	 */
6448 	if (domain >= 0 && use_dt_domains) {
6449 		use_dt_domains = 1;
6450 	} else if (domain < 0 && use_dt_domains != 1) {
6451 		use_dt_domains = 0;
6452 		domain = pci_get_new_domain_nr();
6453 	} else {
6454 		if (parent)
6455 			pr_err("Node %pOF has ", parent->of_node);
6456 		pr_err("Inconsistent \"linux,pci-domain\" property in DT\n");
6457 		domain = -1;
6458 	}
6459 
6460 	return domain;
6461 }
6462 
6463 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6464 {
6465 	return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6466 			       acpi_pci_bus_find_domain_nr(bus);
6467 }
6468 #endif
6469 
6470 /**
6471  * pci_ext_cfg_avail - can we access extended PCI config space?
6472  *
6473  * Returns 1 if we can access PCI extended config space (offsets
6474  * greater than 0xff). This is the default implementation. Architecture
6475  * implementations can override this.
6476  */
6477 int __weak pci_ext_cfg_avail(void)
6478 {
6479 	return 1;
6480 }
6481 
6482 void __weak pci_fixup_cardbus(struct pci_bus *bus)
6483 {
6484 }
6485 EXPORT_SYMBOL(pci_fixup_cardbus);
6486 
6487 static int __init pci_setup(char *str)
6488 {
6489 	while (str) {
6490 		char *k = strchr(str, ',');
6491 		if (k)
6492 			*k++ = 0;
6493 		if (*str && (str = pcibios_setup(str)) && *str) {
6494 			if (!strcmp(str, "nomsi")) {
6495 				pci_no_msi();
6496 			} else if (!strncmp(str, "noats", 5)) {
6497 				pr_info("PCIe: ATS is disabled\n");
6498 				pcie_ats_disabled = true;
6499 			} else if (!strcmp(str, "noaer")) {
6500 				pci_no_aer();
6501 			} else if (!strcmp(str, "earlydump")) {
6502 				pci_early_dump = true;
6503 			} else if (!strncmp(str, "realloc=", 8)) {
6504 				pci_realloc_get_opt(str + 8);
6505 			} else if (!strncmp(str, "realloc", 7)) {
6506 				pci_realloc_get_opt("on");
6507 			} else if (!strcmp(str, "nodomains")) {
6508 				pci_no_domains();
6509 			} else if (!strncmp(str, "noari", 5)) {
6510 				pcie_ari_disabled = true;
6511 			} else if (!strncmp(str, "cbiosize=", 9)) {
6512 				pci_cardbus_io_size = memparse(str + 9, &str);
6513 			} else if (!strncmp(str, "cbmemsize=", 10)) {
6514 				pci_cardbus_mem_size = memparse(str + 10, &str);
6515 			} else if (!strncmp(str, "resource_alignment=", 19)) {
6516 				resource_alignment_param = str + 19;
6517 			} else if (!strncmp(str, "ecrc=", 5)) {
6518 				pcie_ecrc_get_policy(str + 5);
6519 			} else if (!strncmp(str, "hpiosize=", 9)) {
6520 				pci_hotplug_io_size = memparse(str + 9, &str);
6521 			} else if (!strncmp(str, "hpmmiosize=", 11)) {
6522 				pci_hotplug_mmio_size = memparse(str + 11, &str);
6523 			} else if (!strncmp(str, "hpmmioprefsize=", 15)) {
6524 				pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
6525 			} else if (!strncmp(str, "hpmemsize=", 10)) {
6526 				pci_hotplug_mmio_size = memparse(str + 10, &str);
6527 				pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
6528 			} else if (!strncmp(str, "hpbussize=", 10)) {
6529 				pci_hotplug_bus_size =
6530 					simple_strtoul(str + 10, &str, 0);
6531 				if (pci_hotplug_bus_size > 0xff)
6532 					pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6533 			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6534 				pcie_bus_config = PCIE_BUS_TUNE_OFF;
6535 			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
6536 				pcie_bus_config = PCIE_BUS_SAFE;
6537 			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
6538 				pcie_bus_config = PCIE_BUS_PERFORMANCE;
6539 			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6540 				pcie_bus_config = PCIE_BUS_PEER2PEER;
6541 			} else if (!strncmp(str, "pcie_scan_all", 13)) {
6542 				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6543 			} else if (!strncmp(str, "disable_acs_redir=", 18)) {
6544 				disable_acs_redir_param = str + 18;
6545 			} else {
6546 				pr_err("PCI: Unknown option `%s'\n", str);
6547 			}
6548 		}
6549 		str = k;
6550 	}
6551 	return 0;
6552 }
6553 early_param("pci", pci_setup);
6554 
6555 /*
6556  * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6557  * in pci_setup(), above, to point to data in the __initdata section which
6558  * will be freed after the init sequence is complete. We can't allocate memory
6559  * in pci_setup() because some architectures do not have any memory allocation
6560  * service available during an early_param() call. So we allocate memory and
6561  * copy the variable here before the init section is freed.
6562  *
6563  */
6564 static int __init pci_realloc_setup_params(void)
6565 {
6566 	resource_alignment_param = kstrdup(resource_alignment_param,
6567 					   GFP_KERNEL);
6568 	disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6569 
6570 	return 0;
6571 }
6572 pure_initcall(pci_realloc_setup_params);
6573