1 /* 2 * PCI Bus Services, see include/linux/pci.h for further explanation. 3 * 4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter, 5 * David Mosberger-Tang 6 * 7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz> 8 */ 9 10 #include <linux/kernel.h> 11 #include <linux/delay.h> 12 #include <linux/init.h> 13 #include <linux/pci.h> 14 #include <linux/pm.h> 15 #include <linux/slab.h> 16 #include <linux/module.h> 17 #include <linux/spinlock.h> 18 #include <linux/string.h> 19 #include <linux/log2.h> 20 #include <linux/pci-aspm.h> 21 #include <linux/pm_wakeup.h> 22 #include <linux/interrupt.h> 23 #include <linux/device.h> 24 #include <linux/pm_runtime.h> 25 #include <linux/pci_hotplug.h> 26 #include <asm-generic/pci-bridge.h> 27 #include <asm/setup.h> 28 #include "pci.h" 29 30 const char *pci_power_names[] = { 31 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown", 32 }; 33 EXPORT_SYMBOL_GPL(pci_power_names); 34 35 int isa_dma_bridge_buggy; 36 EXPORT_SYMBOL(isa_dma_bridge_buggy); 37 38 int pci_pci_problems; 39 EXPORT_SYMBOL(pci_pci_problems); 40 41 unsigned int pci_pm_d3_delay; 42 43 static void pci_pme_list_scan(struct work_struct *work); 44 45 static LIST_HEAD(pci_pme_list); 46 static DEFINE_MUTEX(pci_pme_list_mutex); 47 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan); 48 49 struct pci_pme_device { 50 struct list_head list; 51 struct pci_dev *dev; 52 }; 53 54 #define PME_TIMEOUT 1000 /* How long between PME checks */ 55 56 static void pci_dev_d3_sleep(struct pci_dev *dev) 57 { 58 unsigned int delay = dev->d3_delay; 59 60 if (delay < pci_pm_d3_delay) 61 delay = pci_pm_d3_delay; 62 63 msleep(delay); 64 } 65 66 #ifdef CONFIG_PCI_DOMAINS 67 int pci_domains_supported = 1; 68 #endif 69 70 #define DEFAULT_CARDBUS_IO_SIZE (256) 71 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024) 72 /* pci=cbmemsize=nnM,cbiosize=nn can override this */ 73 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE; 74 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE; 75 76 #define DEFAULT_HOTPLUG_IO_SIZE (256) 77 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024) 78 /* pci=hpmemsize=nnM,hpiosize=nn can override this */ 79 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE; 80 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE; 81 82 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF; 83 84 /* 85 * The default CLS is used if arch didn't set CLS explicitly and not 86 * all pci devices agree on the same value. Arch can override either 87 * the dfl or actual value as it sees fit. Don't forget this is 88 * measured in 32-bit words, not bytes. 89 */ 90 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2; 91 u8 pci_cache_line_size; 92 93 /* 94 * If we set up a device for bus mastering, we need to check the latency 95 * timer as certain BIOSes forget to set it properly. 96 */ 97 unsigned int pcibios_max_latency = 255; 98 99 /* If set, the PCIe ARI capability will not be used. */ 100 static bool pcie_ari_disabled; 101 102 /** 103 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children 104 * @bus: pointer to PCI bus structure to search 105 * 106 * Given a PCI bus, returns the highest PCI bus number present in the set 107 * including the given PCI bus and its list of child PCI buses. 108 */ 109 unsigned char pci_bus_max_busnr(struct pci_bus* bus) 110 { 111 struct list_head *tmp; 112 unsigned char max, n; 113 114 max = bus->busn_res.end; 115 list_for_each(tmp, &bus->children) { 116 n = pci_bus_max_busnr(pci_bus_b(tmp)); 117 if(n > max) 118 max = n; 119 } 120 return max; 121 } 122 EXPORT_SYMBOL_GPL(pci_bus_max_busnr); 123 124 #ifdef CONFIG_HAS_IOMEM 125 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar) 126 { 127 /* 128 * Make sure the BAR is actually a memory resource, not an IO resource 129 */ 130 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) { 131 WARN_ON(1); 132 return NULL; 133 } 134 return ioremap_nocache(pci_resource_start(pdev, bar), 135 pci_resource_len(pdev, bar)); 136 } 137 EXPORT_SYMBOL_GPL(pci_ioremap_bar); 138 #endif 139 140 #define PCI_FIND_CAP_TTL 48 141 142 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn, 143 u8 pos, int cap, int *ttl) 144 { 145 u8 id; 146 147 while ((*ttl)--) { 148 pci_bus_read_config_byte(bus, devfn, pos, &pos); 149 if (pos < 0x40) 150 break; 151 pos &= ~3; 152 pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID, 153 &id); 154 if (id == 0xff) 155 break; 156 if (id == cap) 157 return pos; 158 pos += PCI_CAP_LIST_NEXT; 159 } 160 return 0; 161 } 162 163 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn, 164 u8 pos, int cap) 165 { 166 int ttl = PCI_FIND_CAP_TTL; 167 168 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl); 169 } 170 171 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap) 172 { 173 return __pci_find_next_cap(dev->bus, dev->devfn, 174 pos + PCI_CAP_LIST_NEXT, cap); 175 } 176 EXPORT_SYMBOL_GPL(pci_find_next_capability); 177 178 static int __pci_bus_find_cap_start(struct pci_bus *bus, 179 unsigned int devfn, u8 hdr_type) 180 { 181 u16 status; 182 183 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status); 184 if (!(status & PCI_STATUS_CAP_LIST)) 185 return 0; 186 187 switch (hdr_type) { 188 case PCI_HEADER_TYPE_NORMAL: 189 case PCI_HEADER_TYPE_BRIDGE: 190 return PCI_CAPABILITY_LIST; 191 case PCI_HEADER_TYPE_CARDBUS: 192 return PCI_CB_CAPABILITY_LIST; 193 default: 194 return 0; 195 } 196 197 return 0; 198 } 199 200 /** 201 * pci_find_capability - query for devices' capabilities 202 * @dev: PCI device to query 203 * @cap: capability code 204 * 205 * Tell if a device supports a given PCI capability. 206 * Returns the address of the requested capability structure within the 207 * device's PCI configuration space or 0 in case the device does not 208 * support it. Possible values for @cap: 209 * 210 * %PCI_CAP_ID_PM Power Management 211 * %PCI_CAP_ID_AGP Accelerated Graphics Port 212 * %PCI_CAP_ID_VPD Vital Product Data 213 * %PCI_CAP_ID_SLOTID Slot Identification 214 * %PCI_CAP_ID_MSI Message Signalled Interrupts 215 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap 216 * %PCI_CAP_ID_PCIX PCI-X 217 * %PCI_CAP_ID_EXP PCI Express 218 */ 219 int pci_find_capability(struct pci_dev *dev, int cap) 220 { 221 int pos; 222 223 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 224 if (pos) 225 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap); 226 227 return pos; 228 } 229 230 /** 231 * pci_bus_find_capability - query for devices' capabilities 232 * @bus: the PCI bus to query 233 * @devfn: PCI device to query 234 * @cap: capability code 235 * 236 * Like pci_find_capability() but works for pci devices that do not have a 237 * pci_dev structure set up yet. 238 * 239 * Returns the address of the requested capability structure within the 240 * device's PCI configuration space or 0 in case the device does not 241 * support it. 242 */ 243 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap) 244 { 245 int pos; 246 u8 hdr_type; 247 248 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type); 249 250 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f); 251 if (pos) 252 pos = __pci_find_next_cap(bus, devfn, pos, cap); 253 254 return pos; 255 } 256 257 /** 258 * pci_find_next_ext_capability - Find an extended capability 259 * @dev: PCI device to query 260 * @start: address at which to start looking (0 to start at beginning of list) 261 * @cap: capability code 262 * 263 * Returns the address of the next matching extended capability structure 264 * within the device's PCI configuration space or 0 if the device does 265 * not support it. Some capabilities can occur several times, e.g., the 266 * vendor-specific capability, and this provides a way to find them all. 267 */ 268 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap) 269 { 270 u32 header; 271 int ttl; 272 int pos = PCI_CFG_SPACE_SIZE; 273 274 /* minimum 8 bytes per capability */ 275 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8; 276 277 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE) 278 return 0; 279 280 if (start) 281 pos = start; 282 283 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 284 return 0; 285 286 /* 287 * If we have no capabilities, this is indicated by cap ID, 288 * cap version and next pointer all being 0. 289 */ 290 if (header == 0) 291 return 0; 292 293 while (ttl-- > 0) { 294 if (PCI_EXT_CAP_ID(header) == cap && pos != start) 295 return pos; 296 297 pos = PCI_EXT_CAP_NEXT(header); 298 if (pos < PCI_CFG_SPACE_SIZE) 299 break; 300 301 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 302 break; 303 } 304 305 return 0; 306 } 307 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability); 308 309 /** 310 * pci_find_ext_capability - Find an extended capability 311 * @dev: PCI device to query 312 * @cap: capability code 313 * 314 * Returns the address of the requested extended capability structure 315 * within the device's PCI configuration space or 0 if the device does 316 * not support it. Possible values for @cap: 317 * 318 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting 319 * %PCI_EXT_CAP_ID_VC Virtual Channel 320 * %PCI_EXT_CAP_ID_DSN Device Serial Number 321 * %PCI_EXT_CAP_ID_PWR Power Budgeting 322 */ 323 int pci_find_ext_capability(struct pci_dev *dev, int cap) 324 { 325 return pci_find_next_ext_capability(dev, 0, cap); 326 } 327 EXPORT_SYMBOL_GPL(pci_find_ext_capability); 328 329 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap) 330 { 331 int rc, ttl = PCI_FIND_CAP_TTL; 332 u8 cap, mask; 333 334 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST) 335 mask = HT_3BIT_CAP_MASK; 336 else 337 mask = HT_5BIT_CAP_MASK; 338 339 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos, 340 PCI_CAP_ID_HT, &ttl); 341 while (pos) { 342 rc = pci_read_config_byte(dev, pos + 3, &cap); 343 if (rc != PCIBIOS_SUCCESSFUL) 344 return 0; 345 346 if ((cap & mask) == ht_cap) 347 return pos; 348 349 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, 350 pos + PCI_CAP_LIST_NEXT, 351 PCI_CAP_ID_HT, &ttl); 352 } 353 354 return 0; 355 } 356 /** 357 * pci_find_next_ht_capability - query a device's Hypertransport capabilities 358 * @dev: PCI device to query 359 * @pos: Position from which to continue searching 360 * @ht_cap: Hypertransport capability code 361 * 362 * To be used in conjunction with pci_find_ht_capability() to search for 363 * all capabilities matching @ht_cap. @pos should always be a value returned 364 * from pci_find_ht_capability(). 365 * 366 * NB. To be 100% safe against broken PCI devices, the caller should take 367 * steps to avoid an infinite loop. 368 */ 369 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap) 370 { 371 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap); 372 } 373 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability); 374 375 /** 376 * pci_find_ht_capability - query a device's Hypertransport capabilities 377 * @dev: PCI device to query 378 * @ht_cap: Hypertransport capability code 379 * 380 * Tell if a device supports a given Hypertransport capability. 381 * Returns an address within the device's PCI configuration space 382 * or 0 in case the device does not support the request capability. 383 * The address points to the PCI capability, of type PCI_CAP_ID_HT, 384 * which has a Hypertransport capability matching @ht_cap. 385 */ 386 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap) 387 { 388 int pos; 389 390 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 391 if (pos) 392 pos = __pci_find_next_ht_cap(dev, pos, ht_cap); 393 394 return pos; 395 } 396 EXPORT_SYMBOL_GPL(pci_find_ht_capability); 397 398 /** 399 * pci_find_parent_resource - return resource region of parent bus of given region 400 * @dev: PCI device structure contains resources to be searched 401 * @res: child resource record for which parent is sought 402 * 403 * For given resource region of given device, return the resource 404 * region of parent bus the given region is contained in or where 405 * it should be allocated from. 406 */ 407 struct resource * 408 pci_find_parent_resource(const struct pci_dev *dev, struct resource *res) 409 { 410 const struct pci_bus *bus = dev->bus; 411 int i; 412 struct resource *best = NULL, *r; 413 414 pci_bus_for_each_resource(bus, r, i) { 415 if (!r) 416 continue; 417 if (res->start && !(res->start >= r->start && res->end <= r->end)) 418 continue; /* Not contained */ 419 if ((res->flags ^ r->flags) & (IORESOURCE_IO | IORESOURCE_MEM)) 420 continue; /* Wrong type */ 421 if (!((res->flags ^ r->flags) & IORESOURCE_PREFETCH)) 422 return r; /* Exact match */ 423 /* We can't insert a non-prefetch resource inside a prefetchable parent .. */ 424 if (r->flags & IORESOURCE_PREFETCH) 425 continue; 426 /* .. but we can put a prefetchable resource inside a non-prefetchable one */ 427 if (!best) 428 best = r; 429 } 430 return best; 431 } 432 433 /** 434 * pci_restore_bars - restore a devices BAR values (e.g. after wake-up) 435 * @dev: PCI device to have its BARs restored 436 * 437 * Restore the BAR values for a given device, so as to make it 438 * accessible by its driver. 439 */ 440 static void 441 pci_restore_bars(struct pci_dev *dev) 442 { 443 int i; 444 445 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) 446 pci_update_resource(dev, i); 447 } 448 449 static struct pci_platform_pm_ops *pci_platform_pm; 450 451 int pci_set_platform_pm(struct pci_platform_pm_ops *ops) 452 { 453 if (!ops->is_manageable || !ops->set_state || !ops->choose_state 454 || !ops->sleep_wake) 455 return -EINVAL; 456 pci_platform_pm = ops; 457 return 0; 458 } 459 460 static inline bool platform_pci_power_manageable(struct pci_dev *dev) 461 { 462 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false; 463 } 464 465 static inline int platform_pci_set_power_state(struct pci_dev *dev, 466 pci_power_t t) 467 { 468 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS; 469 } 470 471 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev) 472 { 473 return pci_platform_pm ? 474 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR; 475 } 476 477 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable) 478 { 479 return pci_platform_pm ? 480 pci_platform_pm->sleep_wake(dev, enable) : -ENODEV; 481 } 482 483 static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable) 484 { 485 return pci_platform_pm ? 486 pci_platform_pm->run_wake(dev, enable) : -ENODEV; 487 } 488 489 /** 490 * pci_raw_set_power_state - Use PCI PM registers to set the power state of 491 * given PCI device 492 * @dev: PCI device to handle. 493 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 494 * 495 * RETURN VALUE: 496 * -EINVAL if the requested state is invalid. 497 * -EIO if device does not support PCI PM or its PM capabilities register has a 498 * wrong version, or device doesn't support the requested state. 499 * 0 if device already is in the requested state. 500 * 0 if device's power state has been successfully changed. 501 */ 502 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state) 503 { 504 u16 pmcsr; 505 bool need_restore = false; 506 507 /* Check if we're already there */ 508 if (dev->current_state == state) 509 return 0; 510 511 if (!dev->pm_cap) 512 return -EIO; 513 514 if (state < PCI_D0 || state > PCI_D3hot) 515 return -EINVAL; 516 517 /* Validate current state: 518 * Can enter D0 from any state, but if we can only go deeper 519 * to sleep if we're already in a low power state 520 */ 521 if (state != PCI_D0 && dev->current_state <= PCI_D3cold 522 && dev->current_state > state) { 523 dev_err(&dev->dev, "invalid power transition " 524 "(from state %d to %d)\n", dev->current_state, state); 525 return -EINVAL; 526 } 527 528 /* check if this device supports the desired state */ 529 if ((state == PCI_D1 && !dev->d1_support) 530 || (state == PCI_D2 && !dev->d2_support)) 531 return -EIO; 532 533 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 534 535 /* If we're (effectively) in D3, force entire word to 0. 536 * This doesn't affect PME_Status, disables PME_En, and 537 * sets PowerState to 0. 538 */ 539 switch (dev->current_state) { 540 case PCI_D0: 541 case PCI_D1: 542 case PCI_D2: 543 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 544 pmcsr |= state; 545 break; 546 case PCI_D3hot: 547 case PCI_D3cold: 548 case PCI_UNKNOWN: /* Boot-up */ 549 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot 550 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET)) 551 need_restore = true; 552 /* Fall-through: force to D0 */ 553 default: 554 pmcsr = 0; 555 break; 556 } 557 558 /* enter specified state */ 559 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 560 561 /* Mandatory power management transition delays */ 562 /* see PCI PM 1.1 5.6.1 table 18 */ 563 if (state == PCI_D3hot || dev->current_state == PCI_D3hot) 564 pci_dev_d3_sleep(dev); 565 else if (state == PCI_D2 || dev->current_state == PCI_D2) 566 udelay(PCI_PM_D2_DELAY); 567 568 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 569 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 570 if (dev->current_state != state && printk_ratelimit()) 571 dev_info(&dev->dev, "Refused to change power state, " 572 "currently in D%d\n", dev->current_state); 573 574 /* 575 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT 576 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning 577 * from D3hot to D0 _may_ perform an internal reset, thereby 578 * going to "D0 Uninitialized" rather than "D0 Initialized". 579 * For example, at least some versions of the 3c905B and the 580 * 3c556B exhibit this behaviour. 581 * 582 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave 583 * devices in a D3hot state at boot. Consequently, we need to 584 * restore at least the BARs so that the device will be 585 * accessible to its driver. 586 */ 587 if (need_restore) 588 pci_restore_bars(dev); 589 590 if (dev->bus->self) 591 pcie_aspm_pm_state_change(dev->bus->self); 592 593 return 0; 594 } 595 596 /** 597 * pci_update_current_state - Read PCI power state of given device from its 598 * PCI PM registers and cache it 599 * @dev: PCI device to handle. 600 * @state: State to cache in case the device doesn't have the PM capability 601 */ 602 void pci_update_current_state(struct pci_dev *dev, pci_power_t state) 603 { 604 if (dev->pm_cap) { 605 u16 pmcsr; 606 607 /* 608 * Configuration space is not accessible for device in 609 * D3cold, so just keep or set D3cold for safety 610 */ 611 if (dev->current_state == PCI_D3cold) 612 return; 613 if (state == PCI_D3cold) { 614 dev->current_state = PCI_D3cold; 615 return; 616 } 617 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 618 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 619 } else { 620 dev->current_state = state; 621 } 622 } 623 624 /** 625 * pci_power_up - Put the given device into D0 forcibly 626 * @dev: PCI device to power up 627 */ 628 void pci_power_up(struct pci_dev *dev) 629 { 630 if (platform_pci_power_manageable(dev)) 631 platform_pci_set_power_state(dev, PCI_D0); 632 633 pci_raw_set_power_state(dev, PCI_D0); 634 pci_update_current_state(dev, PCI_D0); 635 } 636 637 /** 638 * pci_platform_power_transition - Use platform to change device power state 639 * @dev: PCI device to handle. 640 * @state: State to put the device into. 641 */ 642 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state) 643 { 644 int error; 645 646 if (platform_pci_power_manageable(dev)) { 647 error = platform_pci_set_power_state(dev, state); 648 if (!error) 649 pci_update_current_state(dev, state); 650 } else 651 error = -ENODEV; 652 653 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */ 654 dev->current_state = PCI_D0; 655 656 return error; 657 } 658 659 /** 660 * __pci_start_power_transition - Start power transition of a PCI device 661 * @dev: PCI device to handle. 662 * @state: State to put the device into. 663 */ 664 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state) 665 { 666 if (state == PCI_D0) { 667 pci_platform_power_transition(dev, PCI_D0); 668 /* 669 * Mandatory power management transition delays, see 670 * PCI Express Base Specification Revision 2.0 Section 671 * 6.6.1: Conventional Reset. Do not delay for 672 * devices powered on/off by corresponding bridge, 673 * because have already delayed for the bridge. 674 */ 675 if (dev->runtime_d3cold) { 676 msleep(dev->d3cold_delay); 677 /* 678 * When powering on a bridge from D3cold, the 679 * whole hierarchy may be powered on into 680 * D0uninitialized state, resume them to give 681 * them a chance to suspend again 682 */ 683 pci_wakeup_bus(dev->subordinate); 684 } 685 } 686 } 687 688 /** 689 * __pci_dev_set_current_state - Set current state of a PCI device 690 * @dev: Device to handle 691 * @data: pointer to state to be set 692 */ 693 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data) 694 { 695 pci_power_t state = *(pci_power_t *)data; 696 697 dev->current_state = state; 698 return 0; 699 } 700 701 /** 702 * __pci_bus_set_current_state - Walk given bus and set current state of devices 703 * @bus: Top bus of the subtree to walk. 704 * @state: state to be set 705 */ 706 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state) 707 { 708 if (bus) 709 pci_walk_bus(bus, __pci_dev_set_current_state, &state); 710 } 711 712 /** 713 * __pci_complete_power_transition - Complete power transition of a PCI device 714 * @dev: PCI device to handle. 715 * @state: State to put the device into. 716 * 717 * This function should not be called directly by device drivers. 718 */ 719 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state) 720 { 721 int ret; 722 723 if (state <= PCI_D0) 724 return -EINVAL; 725 ret = pci_platform_power_transition(dev, state); 726 /* Power off the bridge may power off the whole hierarchy */ 727 if (!ret && state == PCI_D3cold) 728 __pci_bus_set_current_state(dev->subordinate, PCI_D3cold); 729 return ret; 730 } 731 EXPORT_SYMBOL_GPL(__pci_complete_power_transition); 732 733 /** 734 * pci_set_power_state - Set the power state of a PCI device 735 * @dev: PCI device to handle. 736 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 737 * 738 * Transition a device to a new power state, using the platform firmware and/or 739 * the device's PCI PM registers. 740 * 741 * RETURN VALUE: 742 * -EINVAL if the requested state is invalid. 743 * -EIO if device does not support PCI PM or its PM capabilities register has a 744 * wrong version, or device doesn't support the requested state. 745 * 0 if device already is in the requested state. 746 * 0 if device's power state has been successfully changed. 747 */ 748 int pci_set_power_state(struct pci_dev *dev, pci_power_t state) 749 { 750 int error; 751 752 /* bound the state we're entering */ 753 if (state > PCI_D3cold) 754 state = PCI_D3cold; 755 else if (state < PCI_D0) 756 state = PCI_D0; 757 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev)) 758 /* 759 * If the device or the parent bridge do not support PCI PM, 760 * ignore the request if we're doing anything other than putting 761 * it into D0 (which would only happen on boot). 762 */ 763 return 0; 764 765 /* Check if we're already there */ 766 if (dev->current_state == state) 767 return 0; 768 769 __pci_start_power_transition(dev, state); 770 771 /* This device is quirked not to be put into D3, so 772 don't put it in D3 */ 773 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3)) 774 return 0; 775 776 /* 777 * To put device in D3cold, we put device into D3hot in native 778 * way, then put device into D3cold with platform ops 779 */ 780 error = pci_raw_set_power_state(dev, state > PCI_D3hot ? 781 PCI_D3hot : state); 782 783 if (!__pci_complete_power_transition(dev, state)) 784 error = 0; 785 /* 786 * When aspm_policy is "powersave" this call ensures 787 * that ASPM is configured. 788 */ 789 if (!error && dev->bus->self) 790 pcie_aspm_powersave_config_link(dev->bus->self); 791 792 return error; 793 } 794 795 /** 796 * pci_choose_state - Choose the power state of a PCI device 797 * @dev: PCI device to be suspended 798 * @state: target sleep state for the whole system. This is the value 799 * that is passed to suspend() function. 800 * 801 * Returns PCI power state suitable for given device and given system 802 * message. 803 */ 804 805 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state) 806 { 807 pci_power_t ret; 808 809 if (!dev->pm_cap) 810 return PCI_D0; 811 812 ret = platform_pci_choose_state(dev); 813 if (ret != PCI_POWER_ERROR) 814 return ret; 815 816 switch (state.event) { 817 case PM_EVENT_ON: 818 return PCI_D0; 819 case PM_EVENT_FREEZE: 820 case PM_EVENT_PRETHAW: 821 /* REVISIT both freeze and pre-thaw "should" use D0 */ 822 case PM_EVENT_SUSPEND: 823 case PM_EVENT_HIBERNATE: 824 return PCI_D3hot; 825 default: 826 dev_info(&dev->dev, "unrecognized suspend event %d\n", 827 state.event); 828 BUG(); 829 } 830 return PCI_D0; 831 } 832 833 EXPORT_SYMBOL(pci_choose_state); 834 835 #define PCI_EXP_SAVE_REGS 7 836 837 838 static struct pci_cap_saved_state *pci_find_saved_cap( 839 struct pci_dev *pci_dev, char cap) 840 { 841 struct pci_cap_saved_state *tmp; 842 843 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) { 844 if (tmp->cap.cap_nr == cap) 845 return tmp; 846 } 847 return NULL; 848 } 849 850 static int pci_save_pcie_state(struct pci_dev *dev) 851 { 852 int i = 0; 853 struct pci_cap_saved_state *save_state; 854 u16 *cap; 855 856 if (!pci_is_pcie(dev)) 857 return 0; 858 859 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 860 if (!save_state) { 861 dev_err(&dev->dev, "buffer not found in %s\n", __func__); 862 return -ENOMEM; 863 } 864 865 cap = (u16 *)&save_state->cap.data[0]; 866 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]); 867 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]); 868 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]); 869 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]); 870 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]); 871 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]); 872 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]); 873 874 return 0; 875 } 876 877 static void pci_restore_pcie_state(struct pci_dev *dev) 878 { 879 int i = 0; 880 struct pci_cap_saved_state *save_state; 881 u16 *cap; 882 883 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 884 if (!save_state) 885 return; 886 887 cap = (u16 *)&save_state->cap.data[0]; 888 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]); 889 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]); 890 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]); 891 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]); 892 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]); 893 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]); 894 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]); 895 } 896 897 898 static int pci_save_pcix_state(struct pci_dev *dev) 899 { 900 int pos; 901 struct pci_cap_saved_state *save_state; 902 903 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 904 if (pos <= 0) 905 return 0; 906 907 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 908 if (!save_state) { 909 dev_err(&dev->dev, "buffer not found in %s\n", __func__); 910 return -ENOMEM; 911 } 912 913 pci_read_config_word(dev, pos + PCI_X_CMD, 914 (u16 *)save_state->cap.data); 915 916 return 0; 917 } 918 919 static void pci_restore_pcix_state(struct pci_dev *dev) 920 { 921 int i = 0, pos; 922 struct pci_cap_saved_state *save_state; 923 u16 *cap; 924 925 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 926 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 927 if (!save_state || pos <= 0) 928 return; 929 cap = (u16 *)&save_state->cap.data[0]; 930 931 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]); 932 } 933 934 935 /** 936 * pci_save_state - save the PCI configuration space of a device before suspending 937 * @dev: - PCI device that we're dealing with 938 */ 939 int 940 pci_save_state(struct pci_dev *dev) 941 { 942 int i; 943 /* XXX: 100% dword access ok here? */ 944 for (i = 0; i < 16; i++) 945 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]); 946 dev->state_saved = true; 947 if ((i = pci_save_pcie_state(dev)) != 0) 948 return i; 949 if ((i = pci_save_pcix_state(dev)) != 0) 950 return i; 951 return 0; 952 } 953 954 static void pci_restore_config_dword(struct pci_dev *pdev, int offset, 955 u32 saved_val, int retry) 956 { 957 u32 val; 958 959 pci_read_config_dword(pdev, offset, &val); 960 if (val == saved_val) 961 return; 962 963 for (;;) { 964 dev_dbg(&pdev->dev, "restoring config space at offset " 965 "%#x (was %#x, writing %#x)\n", offset, val, saved_val); 966 pci_write_config_dword(pdev, offset, saved_val); 967 if (retry-- <= 0) 968 return; 969 970 pci_read_config_dword(pdev, offset, &val); 971 if (val == saved_val) 972 return; 973 974 mdelay(1); 975 } 976 } 977 978 static void pci_restore_config_space_range(struct pci_dev *pdev, 979 int start, int end, int retry) 980 { 981 int index; 982 983 for (index = end; index >= start; index--) 984 pci_restore_config_dword(pdev, 4 * index, 985 pdev->saved_config_space[index], 986 retry); 987 } 988 989 static void pci_restore_config_space(struct pci_dev *pdev) 990 { 991 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) { 992 pci_restore_config_space_range(pdev, 10, 15, 0); 993 /* Restore BARs before the command register. */ 994 pci_restore_config_space_range(pdev, 4, 9, 10); 995 pci_restore_config_space_range(pdev, 0, 3, 0); 996 } else { 997 pci_restore_config_space_range(pdev, 0, 15, 0); 998 } 999 } 1000 1001 /** 1002 * pci_restore_state - Restore the saved state of a PCI device 1003 * @dev: - PCI device that we're dealing with 1004 */ 1005 void pci_restore_state(struct pci_dev *dev) 1006 { 1007 if (!dev->state_saved) 1008 return; 1009 1010 /* PCI Express register must be restored first */ 1011 pci_restore_pcie_state(dev); 1012 pci_restore_ats_state(dev); 1013 1014 pci_restore_config_space(dev); 1015 1016 pci_restore_pcix_state(dev); 1017 pci_restore_msi_state(dev); 1018 pci_restore_iov_state(dev); 1019 1020 dev->state_saved = false; 1021 } 1022 1023 struct pci_saved_state { 1024 u32 config_space[16]; 1025 struct pci_cap_saved_data cap[0]; 1026 }; 1027 1028 /** 1029 * pci_store_saved_state - Allocate and return an opaque struct containing 1030 * the device saved state. 1031 * @dev: PCI device that we're dealing with 1032 * 1033 * Rerturn NULL if no state or error. 1034 */ 1035 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev) 1036 { 1037 struct pci_saved_state *state; 1038 struct pci_cap_saved_state *tmp; 1039 struct pci_cap_saved_data *cap; 1040 size_t size; 1041 1042 if (!dev->state_saved) 1043 return NULL; 1044 1045 size = sizeof(*state) + sizeof(struct pci_cap_saved_data); 1046 1047 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) 1048 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1049 1050 state = kzalloc(size, GFP_KERNEL); 1051 if (!state) 1052 return NULL; 1053 1054 memcpy(state->config_space, dev->saved_config_space, 1055 sizeof(state->config_space)); 1056 1057 cap = state->cap; 1058 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) { 1059 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1060 memcpy(cap, &tmp->cap, len); 1061 cap = (struct pci_cap_saved_data *)((u8 *)cap + len); 1062 } 1063 /* Empty cap_save terminates list */ 1064 1065 return state; 1066 } 1067 EXPORT_SYMBOL_GPL(pci_store_saved_state); 1068 1069 /** 1070 * pci_load_saved_state - Reload the provided save state into struct pci_dev. 1071 * @dev: PCI device that we're dealing with 1072 * @state: Saved state returned from pci_store_saved_state() 1073 */ 1074 int pci_load_saved_state(struct pci_dev *dev, struct pci_saved_state *state) 1075 { 1076 struct pci_cap_saved_data *cap; 1077 1078 dev->state_saved = false; 1079 1080 if (!state) 1081 return 0; 1082 1083 memcpy(dev->saved_config_space, state->config_space, 1084 sizeof(state->config_space)); 1085 1086 cap = state->cap; 1087 while (cap->size) { 1088 struct pci_cap_saved_state *tmp; 1089 1090 tmp = pci_find_saved_cap(dev, cap->cap_nr); 1091 if (!tmp || tmp->cap.size != cap->size) 1092 return -EINVAL; 1093 1094 memcpy(tmp->cap.data, cap->data, tmp->cap.size); 1095 cap = (struct pci_cap_saved_data *)((u8 *)cap + 1096 sizeof(struct pci_cap_saved_data) + cap->size); 1097 } 1098 1099 dev->state_saved = true; 1100 return 0; 1101 } 1102 EXPORT_SYMBOL_GPL(pci_load_saved_state); 1103 1104 /** 1105 * pci_load_and_free_saved_state - Reload the save state pointed to by state, 1106 * and free the memory allocated for it. 1107 * @dev: PCI device that we're dealing with 1108 * @state: Pointer to saved state returned from pci_store_saved_state() 1109 */ 1110 int pci_load_and_free_saved_state(struct pci_dev *dev, 1111 struct pci_saved_state **state) 1112 { 1113 int ret = pci_load_saved_state(dev, *state); 1114 kfree(*state); 1115 *state = NULL; 1116 return ret; 1117 } 1118 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state); 1119 1120 static int do_pci_enable_device(struct pci_dev *dev, int bars) 1121 { 1122 int err; 1123 1124 err = pci_set_power_state(dev, PCI_D0); 1125 if (err < 0 && err != -EIO) 1126 return err; 1127 err = pcibios_enable_device(dev, bars); 1128 if (err < 0) 1129 return err; 1130 pci_fixup_device(pci_fixup_enable, dev); 1131 1132 return 0; 1133 } 1134 1135 /** 1136 * pci_reenable_device - Resume abandoned device 1137 * @dev: PCI device to be resumed 1138 * 1139 * Note this function is a backend of pci_default_resume and is not supposed 1140 * to be called by normal code, write proper resume handler and use it instead. 1141 */ 1142 int pci_reenable_device(struct pci_dev *dev) 1143 { 1144 if (pci_is_enabled(dev)) 1145 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1); 1146 return 0; 1147 } 1148 1149 static void pci_enable_bridge(struct pci_dev *dev) 1150 { 1151 int retval; 1152 1153 if (!dev) 1154 return; 1155 1156 pci_enable_bridge(dev->bus->self); 1157 1158 if (pci_is_enabled(dev)) 1159 return; 1160 retval = pci_enable_device(dev); 1161 if (retval) 1162 dev_err(&dev->dev, "Error enabling bridge (%d), continuing\n", 1163 retval); 1164 pci_set_master(dev); 1165 } 1166 1167 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags) 1168 { 1169 int err; 1170 int i, bars = 0; 1171 1172 /* 1173 * Power state could be unknown at this point, either due to a fresh 1174 * boot or a device removal call. So get the current power state 1175 * so that things like MSI message writing will behave as expected 1176 * (e.g. if the device really is in D0 at enable time). 1177 */ 1178 if (dev->pm_cap) { 1179 u16 pmcsr; 1180 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1181 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 1182 } 1183 1184 if (atomic_inc_return(&dev->enable_cnt) > 1) 1185 return 0; /* already enabled */ 1186 1187 pci_enable_bridge(dev->bus->self); 1188 1189 /* only skip sriov related */ 1190 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 1191 if (dev->resource[i].flags & flags) 1192 bars |= (1 << i); 1193 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++) 1194 if (dev->resource[i].flags & flags) 1195 bars |= (1 << i); 1196 1197 err = do_pci_enable_device(dev, bars); 1198 if (err < 0) 1199 atomic_dec(&dev->enable_cnt); 1200 return err; 1201 } 1202 1203 /** 1204 * pci_enable_device_io - Initialize a device for use with IO space 1205 * @dev: PCI device to be initialized 1206 * 1207 * Initialize device before it's used by a driver. Ask low-level code 1208 * to enable I/O resources. Wake up the device if it was suspended. 1209 * Beware, this function can fail. 1210 */ 1211 int pci_enable_device_io(struct pci_dev *dev) 1212 { 1213 return pci_enable_device_flags(dev, IORESOURCE_IO); 1214 } 1215 1216 /** 1217 * pci_enable_device_mem - Initialize a device for use with Memory space 1218 * @dev: PCI device to be initialized 1219 * 1220 * Initialize device before it's used by a driver. Ask low-level code 1221 * to enable Memory resources. Wake up the device if it was suspended. 1222 * Beware, this function can fail. 1223 */ 1224 int pci_enable_device_mem(struct pci_dev *dev) 1225 { 1226 return pci_enable_device_flags(dev, IORESOURCE_MEM); 1227 } 1228 1229 /** 1230 * pci_enable_device - Initialize device before it's used by a driver. 1231 * @dev: PCI device to be initialized 1232 * 1233 * Initialize device before it's used by a driver. Ask low-level code 1234 * to enable I/O and memory. Wake up the device if it was suspended. 1235 * Beware, this function can fail. 1236 * 1237 * Note we don't actually enable the device many times if we call 1238 * this function repeatedly (we just increment the count). 1239 */ 1240 int pci_enable_device(struct pci_dev *dev) 1241 { 1242 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO); 1243 } 1244 1245 /* 1246 * Managed PCI resources. This manages device on/off, intx/msi/msix 1247 * on/off and BAR regions. pci_dev itself records msi/msix status, so 1248 * there's no need to track it separately. pci_devres is initialized 1249 * when a device is enabled using managed PCI device enable interface. 1250 */ 1251 struct pci_devres { 1252 unsigned int enabled:1; 1253 unsigned int pinned:1; 1254 unsigned int orig_intx:1; 1255 unsigned int restore_intx:1; 1256 u32 region_mask; 1257 }; 1258 1259 static void pcim_release(struct device *gendev, void *res) 1260 { 1261 struct pci_dev *dev = container_of(gendev, struct pci_dev, dev); 1262 struct pci_devres *this = res; 1263 int i; 1264 1265 if (dev->msi_enabled) 1266 pci_disable_msi(dev); 1267 if (dev->msix_enabled) 1268 pci_disable_msix(dev); 1269 1270 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) 1271 if (this->region_mask & (1 << i)) 1272 pci_release_region(dev, i); 1273 1274 if (this->restore_intx) 1275 pci_intx(dev, this->orig_intx); 1276 1277 if (this->enabled && !this->pinned) 1278 pci_disable_device(dev); 1279 } 1280 1281 static struct pci_devres * get_pci_dr(struct pci_dev *pdev) 1282 { 1283 struct pci_devres *dr, *new_dr; 1284 1285 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL); 1286 if (dr) 1287 return dr; 1288 1289 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL); 1290 if (!new_dr) 1291 return NULL; 1292 return devres_get(&pdev->dev, new_dr, NULL, NULL); 1293 } 1294 1295 static struct pci_devres * find_pci_dr(struct pci_dev *pdev) 1296 { 1297 if (pci_is_managed(pdev)) 1298 return devres_find(&pdev->dev, pcim_release, NULL, NULL); 1299 return NULL; 1300 } 1301 1302 /** 1303 * pcim_enable_device - Managed pci_enable_device() 1304 * @pdev: PCI device to be initialized 1305 * 1306 * Managed pci_enable_device(). 1307 */ 1308 int pcim_enable_device(struct pci_dev *pdev) 1309 { 1310 struct pci_devres *dr; 1311 int rc; 1312 1313 dr = get_pci_dr(pdev); 1314 if (unlikely(!dr)) 1315 return -ENOMEM; 1316 if (dr->enabled) 1317 return 0; 1318 1319 rc = pci_enable_device(pdev); 1320 if (!rc) { 1321 pdev->is_managed = 1; 1322 dr->enabled = 1; 1323 } 1324 return rc; 1325 } 1326 1327 /** 1328 * pcim_pin_device - Pin managed PCI device 1329 * @pdev: PCI device to pin 1330 * 1331 * Pin managed PCI device @pdev. Pinned device won't be disabled on 1332 * driver detach. @pdev must have been enabled with 1333 * pcim_enable_device(). 1334 */ 1335 void pcim_pin_device(struct pci_dev *pdev) 1336 { 1337 struct pci_devres *dr; 1338 1339 dr = find_pci_dr(pdev); 1340 WARN_ON(!dr || !dr->enabled); 1341 if (dr) 1342 dr->pinned = 1; 1343 } 1344 1345 /* 1346 * pcibios_add_device - provide arch specific hooks when adding device dev 1347 * @dev: the PCI device being added 1348 * 1349 * Permits the platform to provide architecture specific functionality when 1350 * devices are added. This is the default implementation. Architecture 1351 * implementations can override this. 1352 */ 1353 int __weak pcibios_add_device (struct pci_dev *dev) 1354 { 1355 return 0; 1356 } 1357 1358 /** 1359 * pcibios_release_device - provide arch specific hooks when releasing device dev 1360 * @dev: the PCI device being released 1361 * 1362 * Permits the platform to provide architecture specific functionality when 1363 * devices are released. This is the default implementation. Architecture 1364 * implementations can override this. 1365 */ 1366 void __weak pcibios_release_device(struct pci_dev *dev) {} 1367 1368 /** 1369 * pcibios_disable_device - disable arch specific PCI resources for device dev 1370 * @dev: the PCI device to disable 1371 * 1372 * Disables architecture specific PCI resources for the device. This 1373 * is the default implementation. Architecture implementations can 1374 * override this. 1375 */ 1376 void __weak pcibios_disable_device (struct pci_dev *dev) {} 1377 1378 static void do_pci_disable_device(struct pci_dev *dev) 1379 { 1380 u16 pci_command; 1381 1382 pci_read_config_word(dev, PCI_COMMAND, &pci_command); 1383 if (pci_command & PCI_COMMAND_MASTER) { 1384 pci_command &= ~PCI_COMMAND_MASTER; 1385 pci_write_config_word(dev, PCI_COMMAND, pci_command); 1386 } 1387 1388 pcibios_disable_device(dev); 1389 } 1390 1391 /** 1392 * pci_disable_enabled_device - Disable device without updating enable_cnt 1393 * @dev: PCI device to disable 1394 * 1395 * NOTE: This function is a backend of PCI power management routines and is 1396 * not supposed to be called drivers. 1397 */ 1398 void pci_disable_enabled_device(struct pci_dev *dev) 1399 { 1400 if (pci_is_enabled(dev)) 1401 do_pci_disable_device(dev); 1402 } 1403 1404 /** 1405 * pci_disable_device - Disable PCI device after use 1406 * @dev: PCI device to be disabled 1407 * 1408 * Signal to the system that the PCI device is not in use by the system 1409 * anymore. This only involves disabling PCI bus-mastering, if active. 1410 * 1411 * Note we don't actually disable the device until all callers of 1412 * pci_enable_device() have called pci_disable_device(). 1413 */ 1414 void 1415 pci_disable_device(struct pci_dev *dev) 1416 { 1417 struct pci_devres *dr; 1418 1419 dr = find_pci_dr(dev); 1420 if (dr) 1421 dr->enabled = 0; 1422 1423 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0, 1424 "disabling already-disabled device"); 1425 1426 if (atomic_dec_return(&dev->enable_cnt) != 0) 1427 return; 1428 1429 do_pci_disable_device(dev); 1430 1431 dev->is_busmaster = 0; 1432 } 1433 1434 /** 1435 * pcibios_set_pcie_reset_state - set reset state for device dev 1436 * @dev: the PCIe device reset 1437 * @state: Reset state to enter into 1438 * 1439 * 1440 * Sets the PCIe reset state for the device. This is the default 1441 * implementation. Architecture implementations can override this. 1442 */ 1443 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev, 1444 enum pcie_reset_state state) 1445 { 1446 return -EINVAL; 1447 } 1448 1449 /** 1450 * pci_set_pcie_reset_state - set reset state for device dev 1451 * @dev: the PCIe device reset 1452 * @state: Reset state to enter into 1453 * 1454 * 1455 * Sets the PCI reset state for the device. 1456 */ 1457 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state) 1458 { 1459 return pcibios_set_pcie_reset_state(dev, state); 1460 } 1461 1462 /** 1463 * pci_check_pme_status - Check if given device has generated PME. 1464 * @dev: Device to check. 1465 * 1466 * Check the PME status of the device and if set, clear it and clear PME enable 1467 * (if set). Return 'true' if PME status and PME enable were both set or 1468 * 'false' otherwise. 1469 */ 1470 bool pci_check_pme_status(struct pci_dev *dev) 1471 { 1472 int pmcsr_pos; 1473 u16 pmcsr; 1474 bool ret = false; 1475 1476 if (!dev->pm_cap) 1477 return false; 1478 1479 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL; 1480 pci_read_config_word(dev, pmcsr_pos, &pmcsr); 1481 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS)) 1482 return false; 1483 1484 /* Clear PME status. */ 1485 pmcsr |= PCI_PM_CTRL_PME_STATUS; 1486 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) { 1487 /* Disable PME to avoid interrupt flood. */ 1488 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 1489 ret = true; 1490 } 1491 1492 pci_write_config_word(dev, pmcsr_pos, pmcsr); 1493 1494 return ret; 1495 } 1496 1497 /** 1498 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set. 1499 * @dev: Device to handle. 1500 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag. 1501 * 1502 * Check if @dev has generated PME and queue a resume request for it in that 1503 * case. 1504 */ 1505 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset) 1506 { 1507 if (pme_poll_reset && dev->pme_poll) 1508 dev->pme_poll = false; 1509 1510 if (pci_check_pme_status(dev)) { 1511 pci_wakeup_event(dev); 1512 pm_request_resume(&dev->dev); 1513 } 1514 return 0; 1515 } 1516 1517 /** 1518 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary. 1519 * @bus: Top bus of the subtree to walk. 1520 */ 1521 void pci_pme_wakeup_bus(struct pci_bus *bus) 1522 { 1523 if (bus) 1524 pci_walk_bus(bus, pci_pme_wakeup, (void *)true); 1525 } 1526 1527 /** 1528 * pci_wakeup - Wake up a PCI device 1529 * @pci_dev: Device to handle. 1530 * @ign: ignored parameter 1531 */ 1532 static int pci_wakeup(struct pci_dev *pci_dev, void *ign) 1533 { 1534 pci_wakeup_event(pci_dev); 1535 pm_request_resume(&pci_dev->dev); 1536 return 0; 1537 } 1538 1539 /** 1540 * pci_wakeup_bus - Walk given bus and wake up devices on it 1541 * @bus: Top bus of the subtree to walk. 1542 */ 1543 void pci_wakeup_bus(struct pci_bus *bus) 1544 { 1545 if (bus) 1546 pci_walk_bus(bus, pci_wakeup, NULL); 1547 } 1548 1549 /** 1550 * pci_pme_capable - check the capability of PCI device to generate PME# 1551 * @dev: PCI device to handle. 1552 * @state: PCI state from which device will issue PME#. 1553 */ 1554 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state) 1555 { 1556 if (!dev->pm_cap) 1557 return false; 1558 1559 return !!(dev->pme_support & (1 << state)); 1560 } 1561 1562 static void pci_pme_list_scan(struct work_struct *work) 1563 { 1564 struct pci_pme_device *pme_dev, *n; 1565 1566 mutex_lock(&pci_pme_list_mutex); 1567 if (!list_empty(&pci_pme_list)) { 1568 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) { 1569 if (pme_dev->dev->pme_poll) { 1570 struct pci_dev *bridge; 1571 1572 bridge = pme_dev->dev->bus->self; 1573 /* 1574 * If bridge is in low power state, the 1575 * configuration space of subordinate devices 1576 * may be not accessible 1577 */ 1578 if (bridge && bridge->current_state != PCI_D0) 1579 continue; 1580 pci_pme_wakeup(pme_dev->dev, NULL); 1581 } else { 1582 list_del(&pme_dev->list); 1583 kfree(pme_dev); 1584 } 1585 } 1586 if (!list_empty(&pci_pme_list)) 1587 schedule_delayed_work(&pci_pme_work, 1588 msecs_to_jiffies(PME_TIMEOUT)); 1589 } 1590 mutex_unlock(&pci_pme_list_mutex); 1591 } 1592 1593 /** 1594 * pci_pme_active - enable or disable PCI device's PME# function 1595 * @dev: PCI device to handle. 1596 * @enable: 'true' to enable PME# generation; 'false' to disable it. 1597 * 1598 * The caller must verify that the device is capable of generating PME# before 1599 * calling this function with @enable equal to 'true'. 1600 */ 1601 void pci_pme_active(struct pci_dev *dev, bool enable) 1602 { 1603 u16 pmcsr; 1604 1605 if (!dev->pme_support) 1606 return; 1607 1608 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1609 /* Clear PME_Status by writing 1 to it and enable PME# */ 1610 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE; 1611 if (!enable) 1612 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 1613 1614 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 1615 1616 /* 1617 * PCI (as opposed to PCIe) PME requires that the device have 1618 * its PME# line hooked up correctly. Not all hardware vendors 1619 * do this, so the PME never gets delivered and the device 1620 * remains asleep. The easiest way around this is to 1621 * periodically walk the list of suspended devices and check 1622 * whether any have their PME flag set. The assumption is that 1623 * we'll wake up often enough anyway that this won't be a huge 1624 * hit, and the power savings from the devices will still be a 1625 * win. 1626 * 1627 * Although PCIe uses in-band PME message instead of PME# line 1628 * to report PME, PME does not work for some PCIe devices in 1629 * reality. For example, there are devices that set their PME 1630 * status bits, but don't really bother to send a PME message; 1631 * there are PCI Express Root Ports that don't bother to 1632 * trigger interrupts when they receive PME messages from the 1633 * devices below. So PME poll is used for PCIe devices too. 1634 */ 1635 1636 if (dev->pme_poll) { 1637 struct pci_pme_device *pme_dev; 1638 if (enable) { 1639 pme_dev = kmalloc(sizeof(struct pci_pme_device), 1640 GFP_KERNEL); 1641 if (!pme_dev) 1642 goto out; 1643 pme_dev->dev = dev; 1644 mutex_lock(&pci_pme_list_mutex); 1645 list_add(&pme_dev->list, &pci_pme_list); 1646 if (list_is_singular(&pci_pme_list)) 1647 schedule_delayed_work(&pci_pme_work, 1648 msecs_to_jiffies(PME_TIMEOUT)); 1649 mutex_unlock(&pci_pme_list_mutex); 1650 } else { 1651 mutex_lock(&pci_pme_list_mutex); 1652 list_for_each_entry(pme_dev, &pci_pme_list, list) { 1653 if (pme_dev->dev == dev) { 1654 list_del(&pme_dev->list); 1655 kfree(pme_dev); 1656 break; 1657 } 1658 } 1659 mutex_unlock(&pci_pme_list_mutex); 1660 } 1661 } 1662 1663 out: 1664 dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled"); 1665 } 1666 1667 /** 1668 * __pci_enable_wake - enable PCI device as wakeup event source 1669 * @dev: PCI device affected 1670 * @state: PCI state from which device will issue wakeup events 1671 * @runtime: True if the events are to be generated at run time 1672 * @enable: True to enable event generation; false to disable 1673 * 1674 * This enables the device as a wakeup event source, or disables it. 1675 * When such events involves platform-specific hooks, those hooks are 1676 * called automatically by this routine. 1677 * 1678 * Devices with legacy power management (no standard PCI PM capabilities) 1679 * always require such platform hooks. 1680 * 1681 * RETURN VALUE: 1682 * 0 is returned on success 1683 * -EINVAL is returned if device is not supposed to wake up the system 1684 * Error code depending on the platform is returned if both the platform and 1685 * the native mechanism fail to enable the generation of wake-up events 1686 */ 1687 int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, 1688 bool runtime, bool enable) 1689 { 1690 int ret = 0; 1691 1692 if (enable && !runtime && !device_may_wakeup(&dev->dev)) 1693 return -EINVAL; 1694 1695 /* Don't do the same thing twice in a row for one device. */ 1696 if (!!enable == !!dev->wakeup_prepared) 1697 return 0; 1698 1699 /* 1700 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don 1701 * Anderson we should be doing PME# wake enable followed by ACPI wake 1702 * enable. To disable wake-up we call the platform first, for symmetry. 1703 */ 1704 1705 if (enable) { 1706 int error; 1707 1708 if (pci_pme_capable(dev, state)) 1709 pci_pme_active(dev, true); 1710 else 1711 ret = 1; 1712 error = runtime ? platform_pci_run_wake(dev, true) : 1713 platform_pci_sleep_wake(dev, true); 1714 if (ret) 1715 ret = error; 1716 if (!ret) 1717 dev->wakeup_prepared = true; 1718 } else { 1719 if (runtime) 1720 platform_pci_run_wake(dev, false); 1721 else 1722 platform_pci_sleep_wake(dev, false); 1723 pci_pme_active(dev, false); 1724 dev->wakeup_prepared = false; 1725 } 1726 1727 return ret; 1728 } 1729 EXPORT_SYMBOL(__pci_enable_wake); 1730 1731 /** 1732 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold 1733 * @dev: PCI device to prepare 1734 * @enable: True to enable wake-up event generation; false to disable 1735 * 1736 * Many drivers want the device to wake up the system from D3_hot or D3_cold 1737 * and this function allows them to set that up cleanly - pci_enable_wake() 1738 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI 1739 * ordering constraints. 1740 * 1741 * This function only returns error code if the device is not capable of 1742 * generating PME# from both D3_hot and D3_cold, and the platform is unable to 1743 * enable wake-up power for it. 1744 */ 1745 int pci_wake_from_d3(struct pci_dev *dev, bool enable) 1746 { 1747 return pci_pme_capable(dev, PCI_D3cold) ? 1748 pci_enable_wake(dev, PCI_D3cold, enable) : 1749 pci_enable_wake(dev, PCI_D3hot, enable); 1750 } 1751 1752 /** 1753 * pci_target_state - find an appropriate low power state for a given PCI dev 1754 * @dev: PCI device 1755 * 1756 * Use underlying platform code to find a supported low power state for @dev. 1757 * If the platform can't manage @dev, return the deepest state from which it 1758 * can generate wake events, based on any available PME info. 1759 */ 1760 pci_power_t pci_target_state(struct pci_dev *dev) 1761 { 1762 pci_power_t target_state = PCI_D3hot; 1763 1764 if (platform_pci_power_manageable(dev)) { 1765 /* 1766 * Call the platform to choose the target state of the device 1767 * and enable wake-up from this state if supported. 1768 */ 1769 pci_power_t state = platform_pci_choose_state(dev); 1770 1771 switch (state) { 1772 case PCI_POWER_ERROR: 1773 case PCI_UNKNOWN: 1774 break; 1775 case PCI_D1: 1776 case PCI_D2: 1777 if (pci_no_d1d2(dev)) 1778 break; 1779 default: 1780 target_state = state; 1781 } 1782 } else if (!dev->pm_cap) { 1783 target_state = PCI_D0; 1784 } else if (device_may_wakeup(&dev->dev)) { 1785 /* 1786 * Find the deepest state from which the device can generate 1787 * wake-up events, make it the target state and enable device 1788 * to generate PME#. 1789 */ 1790 if (dev->pme_support) { 1791 while (target_state 1792 && !(dev->pme_support & (1 << target_state))) 1793 target_state--; 1794 } 1795 } 1796 1797 return target_state; 1798 } 1799 1800 /** 1801 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state 1802 * @dev: Device to handle. 1803 * 1804 * Choose the power state appropriate for the device depending on whether 1805 * it can wake up the system and/or is power manageable by the platform 1806 * (PCI_D3hot is the default) and put the device into that state. 1807 */ 1808 int pci_prepare_to_sleep(struct pci_dev *dev) 1809 { 1810 pci_power_t target_state = pci_target_state(dev); 1811 int error; 1812 1813 if (target_state == PCI_POWER_ERROR) 1814 return -EIO; 1815 1816 /* D3cold during system suspend/hibernate is not supported */ 1817 if (target_state > PCI_D3hot) 1818 target_state = PCI_D3hot; 1819 1820 pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev)); 1821 1822 error = pci_set_power_state(dev, target_state); 1823 1824 if (error) 1825 pci_enable_wake(dev, target_state, false); 1826 1827 return error; 1828 } 1829 1830 /** 1831 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state 1832 * @dev: Device to handle. 1833 * 1834 * Disable device's system wake-up capability and put it into D0. 1835 */ 1836 int pci_back_from_sleep(struct pci_dev *dev) 1837 { 1838 pci_enable_wake(dev, PCI_D0, false); 1839 return pci_set_power_state(dev, PCI_D0); 1840 } 1841 1842 /** 1843 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend. 1844 * @dev: PCI device being suspended. 1845 * 1846 * Prepare @dev to generate wake-up events at run time and put it into a low 1847 * power state. 1848 */ 1849 int pci_finish_runtime_suspend(struct pci_dev *dev) 1850 { 1851 pci_power_t target_state = pci_target_state(dev); 1852 int error; 1853 1854 if (target_state == PCI_POWER_ERROR) 1855 return -EIO; 1856 1857 dev->runtime_d3cold = target_state == PCI_D3cold; 1858 1859 __pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev)); 1860 1861 error = pci_set_power_state(dev, target_state); 1862 1863 if (error) { 1864 __pci_enable_wake(dev, target_state, true, false); 1865 dev->runtime_d3cold = false; 1866 } 1867 1868 return error; 1869 } 1870 1871 /** 1872 * pci_dev_run_wake - Check if device can generate run-time wake-up events. 1873 * @dev: Device to check. 1874 * 1875 * Return true if the device itself is cabable of generating wake-up events 1876 * (through the platform or using the native PCIe PME) or if the device supports 1877 * PME and one of its upstream bridges can generate wake-up events. 1878 */ 1879 bool pci_dev_run_wake(struct pci_dev *dev) 1880 { 1881 struct pci_bus *bus = dev->bus; 1882 1883 if (device_run_wake(&dev->dev)) 1884 return true; 1885 1886 if (!dev->pme_support) 1887 return false; 1888 1889 while (bus->parent) { 1890 struct pci_dev *bridge = bus->self; 1891 1892 if (device_run_wake(&bridge->dev)) 1893 return true; 1894 1895 bus = bus->parent; 1896 } 1897 1898 /* We have reached the root bus. */ 1899 if (bus->bridge) 1900 return device_run_wake(bus->bridge); 1901 1902 return false; 1903 } 1904 EXPORT_SYMBOL_GPL(pci_dev_run_wake); 1905 1906 void pci_config_pm_runtime_get(struct pci_dev *pdev) 1907 { 1908 struct device *dev = &pdev->dev; 1909 struct device *parent = dev->parent; 1910 1911 if (parent) 1912 pm_runtime_get_sync(parent); 1913 pm_runtime_get_noresume(dev); 1914 /* 1915 * pdev->current_state is set to PCI_D3cold during suspending, 1916 * so wait until suspending completes 1917 */ 1918 pm_runtime_barrier(dev); 1919 /* 1920 * Only need to resume devices in D3cold, because config 1921 * registers are still accessible for devices suspended but 1922 * not in D3cold. 1923 */ 1924 if (pdev->current_state == PCI_D3cold) 1925 pm_runtime_resume(dev); 1926 } 1927 1928 void pci_config_pm_runtime_put(struct pci_dev *pdev) 1929 { 1930 struct device *dev = &pdev->dev; 1931 struct device *parent = dev->parent; 1932 1933 pm_runtime_put(dev); 1934 if (parent) 1935 pm_runtime_put_sync(parent); 1936 } 1937 1938 /** 1939 * pci_pm_init - Initialize PM functions of given PCI device 1940 * @dev: PCI device to handle. 1941 */ 1942 void pci_pm_init(struct pci_dev *dev) 1943 { 1944 int pm; 1945 u16 pmc; 1946 1947 pm_runtime_forbid(&dev->dev); 1948 pm_runtime_set_active(&dev->dev); 1949 pm_runtime_enable(&dev->dev); 1950 device_enable_async_suspend(&dev->dev); 1951 dev->wakeup_prepared = false; 1952 1953 dev->pm_cap = 0; 1954 dev->pme_support = 0; 1955 1956 /* find PCI PM capability in list */ 1957 pm = pci_find_capability(dev, PCI_CAP_ID_PM); 1958 if (!pm) 1959 return; 1960 /* Check device's ability to generate PME# */ 1961 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc); 1962 1963 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) { 1964 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n", 1965 pmc & PCI_PM_CAP_VER_MASK); 1966 return; 1967 } 1968 1969 dev->pm_cap = pm; 1970 dev->d3_delay = PCI_PM_D3_WAIT; 1971 dev->d3cold_delay = PCI_PM_D3COLD_WAIT; 1972 dev->d3cold_allowed = true; 1973 1974 dev->d1_support = false; 1975 dev->d2_support = false; 1976 if (!pci_no_d1d2(dev)) { 1977 if (pmc & PCI_PM_CAP_D1) 1978 dev->d1_support = true; 1979 if (pmc & PCI_PM_CAP_D2) 1980 dev->d2_support = true; 1981 1982 if (dev->d1_support || dev->d2_support) 1983 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n", 1984 dev->d1_support ? " D1" : "", 1985 dev->d2_support ? " D2" : ""); 1986 } 1987 1988 pmc &= PCI_PM_CAP_PME_MASK; 1989 if (pmc) { 1990 dev_printk(KERN_DEBUG, &dev->dev, 1991 "PME# supported from%s%s%s%s%s\n", 1992 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "", 1993 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "", 1994 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "", 1995 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "", 1996 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : ""); 1997 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT; 1998 dev->pme_poll = true; 1999 /* 2000 * Make device's PM flags reflect the wake-up capability, but 2001 * let the user space enable it to wake up the system as needed. 2002 */ 2003 device_set_wakeup_capable(&dev->dev, true); 2004 /* Disable the PME# generation functionality */ 2005 pci_pme_active(dev, false); 2006 } 2007 } 2008 2009 static void pci_add_saved_cap(struct pci_dev *pci_dev, 2010 struct pci_cap_saved_state *new_cap) 2011 { 2012 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space); 2013 } 2014 2015 /** 2016 * pci_add_cap_save_buffer - allocate buffer for saving given capability registers 2017 * @dev: the PCI device 2018 * @cap: the capability to allocate the buffer for 2019 * @size: requested size of the buffer 2020 */ 2021 static int pci_add_cap_save_buffer( 2022 struct pci_dev *dev, char cap, unsigned int size) 2023 { 2024 int pos; 2025 struct pci_cap_saved_state *save_state; 2026 2027 pos = pci_find_capability(dev, cap); 2028 if (pos <= 0) 2029 return 0; 2030 2031 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL); 2032 if (!save_state) 2033 return -ENOMEM; 2034 2035 save_state->cap.cap_nr = cap; 2036 save_state->cap.size = size; 2037 pci_add_saved_cap(dev, save_state); 2038 2039 return 0; 2040 } 2041 2042 /** 2043 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities 2044 * @dev: the PCI device 2045 */ 2046 void pci_allocate_cap_save_buffers(struct pci_dev *dev) 2047 { 2048 int error; 2049 2050 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP, 2051 PCI_EXP_SAVE_REGS * sizeof(u16)); 2052 if (error) 2053 dev_err(&dev->dev, 2054 "unable to preallocate PCI Express save buffer\n"); 2055 2056 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16)); 2057 if (error) 2058 dev_err(&dev->dev, 2059 "unable to preallocate PCI-X save buffer\n"); 2060 } 2061 2062 void pci_free_cap_save_buffers(struct pci_dev *dev) 2063 { 2064 struct pci_cap_saved_state *tmp; 2065 struct hlist_node *n; 2066 2067 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next) 2068 kfree(tmp); 2069 } 2070 2071 /** 2072 * pci_configure_ari - enable or disable ARI forwarding 2073 * @dev: the PCI device 2074 * 2075 * If @dev and its upstream bridge both support ARI, enable ARI in the 2076 * bridge. Otherwise, disable ARI in the bridge. 2077 */ 2078 void pci_configure_ari(struct pci_dev *dev) 2079 { 2080 u32 cap; 2081 struct pci_dev *bridge; 2082 2083 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn) 2084 return; 2085 2086 bridge = dev->bus->self; 2087 if (!bridge) 2088 return; 2089 2090 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 2091 if (!(cap & PCI_EXP_DEVCAP2_ARI)) 2092 return; 2093 2094 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) { 2095 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, 2096 PCI_EXP_DEVCTL2_ARI); 2097 bridge->ari_enabled = 1; 2098 } else { 2099 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2, 2100 PCI_EXP_DEVCTL2_ARI); 2101 bridge->ari_enabled = 0; 2102 } 2103 } 2104 2105 /** 2106 * pci_enable_ido - enable ID-based Ordering on a device 2107 * @dev: the PCI device 2108 * @type: which types of IDO to enable 2109 * 2110 * Enable ID-based ordering on @dev. @type can contain the bits 2111 * %PCI_EXP_IDO_REQUEST and/or %PCI_EXP_IDO_COMPLETION to indicate 2112 * which types of transactions are allowed to be re-ordered. 2113 */ 2114 void pci_enable_ido(struct pci_dev *dev, unsigned long type) 2115 { 2116 u16 ctrl = 0; 2117 2118 if (type & PCI_EXP_IDO_REQUEST) 2119 ctrl |= PCI_EXP_DEVCTL2_IDO_REQ_EN; 2120 if (type & PCI_EXP_IDO_COMPLETION) 2121 ctrl |= PCI_EXP_DEVCTL2_IDO_CMP_EN; 2122 if (ctrl) 2123 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2, ctrl); 2124 } 2125 EXPORT_SYMBOL(pci_enable_ido); 2126 2127 /** 2128 * pci_disable_ido - disable ID-based ordering on a device 2129 * @dev: the PCI device 2130 * @type: which types of IDO to disable 2131 */ 2132 void pci_disable_ido(struct pci_dev *dev, unsigned long type) 2133 { 2134 u16 ctrl = 0; 2135 2136 if (type & PCI_EXP_IDO_REQUEST) 2137 ctrl |= PCI_EXP_DEVCTL2_IDO_REQ_EN; 2138 if (type & PCI_EXP_IDO_COMPLETION) 2139 ctrl |= PCI_EXP_DEVCTL2_IDO_CMP_EN; 2140 if (ctrl) 2141 pcie_capability_clear_word(dev, PCI_EXP_DEVCTL2, ctrl); 2142 } 2143 EXPORT_SYMBOL(pci_disable_ido); 2144 2145 /** 2146 * pci_enable_obff - enable optimized buffer flush/fill 2147 * @dev: PCI device 2148 * @type: type of signaling to use 2149 * 2150 * Try to enable @type OBFF signaling on @dev. It will try using WAKE# 2151 * signaling if possible, falling back to message signaling only if 2152 * WAKE# isn't supported. @type should indicate whether the PCIe link 2153 * be brought out of L0s or L1 to send the message. It should be either 2154 * %PCI_EXP_OBFF_SIGNAL_ALWAYS or %PCI_OBFF_SIGNAL_L0. 2155 * 2156 * If your device can benefit from receiving all messages, even at the 2157 * power cost of bringing the link back up from a low power state, use 2158 * %PCI_EXP_OBFF_SIGNAL_ALWAYS. Otherwise, use %PCI_OBFF_SIGNAL_L0 (the 2159 * preferred type). 2160 * 2161 * RETURNS: 2162 * Zero on success, appropriate error number on failure. 2163 */ 2164 int pci_enable_obff(struct pci_dev *dev, enum pci_obff_signal_type type) 2165 { 2166 u32 cap; 2167 u16 ctrl; 2168 int ret; 2169 2170 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP2, &cap); 2171 if (!(cap & PCI_EXP_DEVCAP2_OBFF_MASK)) 2172 return -ENOTSUPP; /* no OBFF support at all */ 2173 2174 /* Make sure the topology supports OBFF as well */ 2175 if (dev->bus->self) { 2176 ret = pci_enable_obff(dev->bus->self, type); 2177 if (ret) 2178 return ret; 2179 } 2180 2181 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &ctrl); 2182 if (cap & PCI_EXP_DEVCAP2_OBFF_WAKE) 2183 ctrl |= PCI_EXP_DEVCTL2_OBFF_WAKE_EN; 2184 else { 2185 switch (type) { 2186 case PCI_EXP_OBFF_SIGNAL_L0: 2187 if (!(ctrl & PCI_EXP_DEVCTL2_OBFF_WAKE_EN)) 2188 ctrl |= PCI_EXP_DEVCTL2_OBFF_MSGA_EN; 2189 break; 2190 case PCI_EXP_OBFF_SIGNAL_ALWAYS: 2191 ctrl &= ~PCI_EXP_DEVCTL2_OBFF_WAKE_EN; 2192 ctrl |= PCI_EXP_DEVCTL2_OBFF_MSGB_EN; 2193 break; 2194 default: 2195 WARN(1, "bad OBFF signal type\n"); 2196 return -ENOTSUPP; 2197 } 2198 } 2199 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, ctrl); 2200 2201 return 0; 2202 } 2203 EXPORT_SYMBOL(pci_enable_obff); 2204 2205 /** 2206 * pci_disable_obff - disable optimized buffer flush/fill 2207 * @dev: PCI device 2208 * 2209 * Disable OBFF on @dev. 2210 */ 2211 void pci_disable_obff(struct pci_dev *dev) 2212 { 2213 pcie_capability_clear_word(dev, PCI_EXP_DEVCTL2, 2214 PCI_EXP_DEVCTL2_OBFF_WAKE_EN); 2215 } 2216 EXPORT_SYMBOL(pci_disable_obff); 2217 2218 /** 2219 * pci_ltr_supported - check whether a device supports LTR 2220 * @dev: PCI device 2221 * 2222 * RETURNS: 2223 * True if @dev supports latency tolerance reporting, false otherwise. 2224 */ 2225 static bool pci_ltr_supported(struct pci_dev *dev) 2226 { 2227 u32 cap; 2228 2229 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP2, &cap); 2230 2231 return cap & PCI_EXP_DEVCAP2_LTR; 2232 } 2233 2234 /** 2235 * pci_enable_ltr - enable latency tolerance reporting 2236 * @dev: PCI device 2237 * 2238 * Enable LTR on @dev if possible, which means enabling it first on 2239 * upstream ports. 2240 * 2241 * RETURNS: 2242 * Zero on success, errno on failure. 2243 */ 2244 int pci_enable_ltr(struct pci_dev *dev) 2245 { 2246 int ret; 2247 2248 /* Only primary function can enable/disable LTR */ 2249 if (PCI_FUNC(dev->devfn) != 0) 2250 return -EINVAL; 2251 2252 if (!pci_ltr_supported(dev)) 2253 return -ENOTSUPP; 2254 2255 /* Enable upstream ports first */ 2256 if (dev->bus->self) { 2257 ret = pci_enable_ltr(dev->bus->self); 2258 if (ret) 2259 return ret; 2260 } 2261 2262 return pcie_capability_set_word(dev, PCI_EXP_DEVCTL2, 2263 PCI_EXP_DEVCTL2_LTR_EN); 2264 } 2265 EXPORT_SYMBOL(pci_enable_ltr); 2266 2267 /** 2268 * pci_disable_ltr - disable latency tolerance reporting 2269 * @dev: PCI device 2270 */ 2271 void pci_disable_ltr(struct pci_dev *dev) 2272 { 2273 /* Only primary function can enable/disable LTR */ 2274 if (PCI_FUNC(dev->devfn) != 0) 2275 return; 2276 2277 if (!pci_ltr_supported(dev)) 2278 return; 2279 2280 pcie_capability_clear_word(dev, PCI_EXP_DEVCTL2, 2281 PCI_EXP_DEVCTL2_LTR_EN); 2282 } 2283 EXPORT_SYMBOL(pci_disable_ltr); 2284 2285 static int __pci_ltr_scale(int *val) 2286 { 2287 int scale = 0; 2288 2289 while (*val > 1023) { 2290 *val = (*val + 31) / 32; 2291 scale++; 2292 } 2293 return scale; 2294 } 2295 2296 /** 2297 * pci_set_ltr - set LTR latency values 2298 * @dev: PCI device 2299 * @snoop_lat_ns: snoop latency in nanoseconds 2300 * @nosnoop_lat_ns: nosnoop latency in nanoseconds 2301 * 2302 * Figure out the scale and set the LTR values accordingly. 2303 */ 2304 int pci_set_ltr(struct pci_dev *dev, int snoop_lat_ns, int nosnoop_lat_ns) 2305 { 2306 int pos, ret, snoop_scale, nosnoop_scale; 2307 u16 val; 2308 2309 if (!pci_ltr_supported(dev)) 2310 return -ENOTSUPP; 2311 2312 snoop_scale = __pci_ltr_scale(&snoop_lat_ns); 2313 nosnoop_scale = __pci_ltr_scale(&nosnoop_lat_ns); 2314 2315 if (snoop_lat_ns > PCI_LTR_VALUE_MASK || 2316 nosnoop_lat_ns > PCI_LTR_VALUE_MASK) 2317 return -EINVAL; 2318 2319 if ((snoop_scale > (PCI_LTR_SCALE_MASK >> PCI_LTR_SCALE_SHIFT)) || 2320 (nosnoop_scale > (PCI_LTR_SCALE_MASK >> PCI_LTR_SCALE_SHIFT))) 2321 return -EINVAL; 2322 2323 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR); 2324 if (!pos) 2325 return -ENOTSUPP; 2326 2327 val = (snoop_scale << PCI_LTR_SCALE_SHIFT) | snoop_lat_ns; 2328 ret = pci_write_config_word(dev, pos + PCI_LTR_MAX_SNOOP_LAT, val); 2329 if (ret != 4) 2330 return -EIO; 2331 2332 val = (nosnoop_scale << PCI_LTR_SCALE_SHIFT) | nosnoop_lat_ns; 2333 ret = pci_write_config_word(dev, pos + PCI_LTR_MAX_NOSNOOP_LAT, val); 2334 if (ret != 4) 2335 return -EIO; 2336 2337 return 0; 2338 } 2339 EXPORT_SYMBOL(pci_set_ltr); 2340 2341 static int pci_acs_enable; 2342 2343 /** 2344 * pci_request_acs - ask for ACS to be enabled if supported 2345 */ 2346 void pci_request_acs(void) 2347 { 2348 pci_acs_enable = 1; 2349 } 2350 2351 /** 2352 * pci_enable_acs - enable ACS if hardware support it 2353 * @dev: the PCI device 2354 */ 2355 void pci_enable_acs(struct pci_dev *dev) 2356 { 2357 int pos; 2358 u16 cap; 2359 u16 ctrl; 2360 2361 if (!pci_acs_enable) 2362 return; 2363 2364 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS); 2365 if (!pos) 2366 return; 2367 2368 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap); 2369 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 2370 2371 /* Source Validation */ 2372 ctrl |= (cap & PCI_ACS_SV); 2373 2374 /* P2P Request Redirect */ 2375 ctrl |= (cap & PCI_ACS_RR); 2376 2377 /* P2P Completion Redirect */ 2378 ctrl |= (cap & PCI_ACS_CR); 2379 2380 /* Upstream Forwarding */ 2381 ctrl |= (cap & PCI_ACS_UF); 2382 2383 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 2384 } 2385 2386 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags) 2387 { 2388 int pos; 2389 u16 cap, ctrl; 2390 2391 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS); 2392 if (!pos) 2393 return false; 2394 2395 /* 2396 * Except for egress control, capabilities are either required 2397 * or only required if controllable. Features missing from the 2398 * capability field can therefore be assumed as hard-wired enabled. 2399 */ 2400 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap); 2401 acs_flags &= (cap | PCI_ACS_EC); 2402 2403 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl); 2404 return (ctrl & acs_flags) == acs_flags; 2405 } 2406 2407 /** 2408 * pci_acs_enabled - test ACS against required flags for a given device 2409 * @pdev: device to test 2410 * @acs_flags: required PCI ACS flags 2411 * 2412 * Return true if the device supports the provided flags. Automatically 2413 * filters out flags that are not implemented on multifunction devices. 2414 * 2415 * Note that this interface checks the effective ACS capabilities of the 2416 * device rather than the actual capabilities. For instance, most single 2417 * function endpoints are not required to support ACS because they have no 2418 * opportunity for peer-to-peer access. We therefore return 'true' 2419 * regardless of whether the device exposes an ACS capability. This makes 2420 * it much easier for callers of this function to ignore the actual type 2421 * or topology of the device when testing ACS support. 2422 */ 2423 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags) 2424 { 2425 int ret; 2426 2427 ret = pci_dev_specific_acs_enabled(pdev, acs_flags); 2428 if (ret >= 0) 2429 return ret > 0; 2430 2431 /* 2432 * Conventional PCI and PCI-X devices never support ACS, either 2433 * effectively or actually. The shared bus topology implies that 2434 * any device on the bus can receive or snoop DMA. 2435 */ 2436 if (!pci_is_pcie(pdev)) 2437 return false; 2438 2439 switch (pci_pcie_type(pdev)) { 2440 /* 2441 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec, 2442 * but since their primary inteface is PCI/X, we conservatively 2443 * handle them as we would a non-PCIe device. 2444 */ 2445 case PCI_EXP_TYPE_PCIE_BRIDGE: 2446 /* 2447 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never 2448 * applicable... must never implement an ACS Extended Capability...". 2449 * This seems arbitrary, but we take a conservative interpretation 2450 * of this statement. 2451 */ 2452 case PCI_EXP_TYPE_PCI_BRIDGE: 2453 case PCI_EXP_TYPE_RC_EC: 2454 return false; 2455 /* 2456 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should 2457 * implement ACS in order to indicate their peer-to-peer capabilities, 2458 * regardless of whether they are single- or multi-function devices. 2459 */ 2460 case PCI_EXP_TYPE_DOWNSTREAM: 2461 case PCI_EXP_TYPE_ROOT_PORT: 2462 return pci_acs_flags_enabled(pdev, acs_flags); 2463 /* 2464 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be 2465 * implemented by the remaining PCIe types to indicate peer-to-peer 2466 * capabilities, but only when they are part of a multifunciton 2467 * device. The footnote for section 6.12 indicates the specific 2468 * PCIe types included here. 2469 */ 2470 case PCI_EXP_TYPE_ENDPOINT: 2471 case PCI_EXP_TYPE_UPSTREAM: 2472 case PCI_EXP_TYPE_LEG_END: 2473 case PCI_EXP_TYPE_RC_END: 2474 if (!pdev->multifunction) 2475 break; 2476 2477 return pci_acs_flags_enabled(pdev, acs_flags); 2478 } 2479 2480 /* 2481 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilties are applicable 2482 * to single function devices with the exception of downstream ports. 2483 */ 2484 return true; 2485 } 2486 2487 /** 2488 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy 2489 * @start: starting downstream device 2490 * @end: ending upstream device or NULL to search to the root bus 2491 * @acs_flags: required flags 2492 * 2493 * Walk up a device tree from start to end testing PCI ACS support. If 2494 * any step along the way does not support the required flags, return false. 2495 */ 2496 bool pci_acs_path_enabled(struct pci_dev *start, 2497 struct pci_dev *end, u16 acs_flags) 2498 { 2499 struct pci_dev *pdev, *parent = start; 2500 2501 do { 2502 pdev = parent; 2503 2504 if (!pci_acs_enabled(pdev, acs_flags)) 2505 return false; 2506 2507 if (pci_is_root_bus(pdev->bus)) 2508 return (end == NULL); 2509 2510 parent = pdev->bus->self; 2511 } while (pdev != end); 2512 2513 return true; 2514 } 2515 2516 /** 2517 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge 2518 * @dev: the PCI device 2519 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD) 2520 * 2521 * Perform INTx swizzling for a device behind one level of bridge. This is 2522 * required by section 9.1 of the PCI-to-PCI bridge specification for devices 2523 * behind bridges on add-in cards. For devices with ARI enabled, the slot 2524 * number is always 0 (see the Implementation Note in section 2.2.8.1 of 2525 * the PCI Express Base Specification, Revision 2.1) 2526 */ 2527 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin) 2528 { 2529 int slot; 2530 2531 if (pci_ari_enabled(dev->bus)) 2532 slot = 0; 2533 else 2534 slot = PCI_SLOT(dev->devfn); 2535 2536 return (((pin - 1) + slot) % 4) + 1; 2537 } 2538 2539 int 2540 pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge) 2541 { 2542 u8 pin; 2543 2544 pin = dev->pin; 2545 if (!pin) 2546 return -1; 2547 2548 while (!pci_is_root_bus(dev->bus)) { 2549 pin = pci_swizzle_interrupt_pin(dev, pin); 2550 dev = dev->bus->self; 2551 } 2552 *bridge = dev; 2553 return pin; 2554 } 2555 2556 /** 2557 * pci_common_swizzle - swizzle INTx all the way to root bridge 2558 * @dev: the PCI device 2559 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD) 2560 * 2561 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI 2562 * bridges all the way up to a PCI root bus. 2563 */ 2564 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp) 2565 { 2566 u8 pin = *pinp; 2567 2568 while (!pci_is_root_bus(dev->bus)) { 2569 pin = pci_swizzle_interrupt_pin(dev, pin); 2570 dev = dev->bus->self; 2571 } 2572 *pinp = pin; 2573 return PCI_SLOT(dev->devfn); 2574 } 2575 2576 /** 2577 * pci_release_region - Release a PCI bar 2578 * @pdev: PCI device whose resources were previously reserved by pci_request_region 2579 * @bar: BAR to release 2580 * 2581 * Releases the PCI I/O and memory resources previously reserved by a 2582 * successful call to pci_request_region. Call this function only 2583 * after all use of the PCI regions has ceased. 2584 */ 2585 void pci_release_region(struct pci_dev *pdev, int bar) 2586 { 2587 struct pci_devres *dr; 2588 2589 if (pci_resource_len(pdev, bar) == 0) 2590 return; 2591 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) 2592 release_region(pci_resource_start(pdev, bar), 2593 pci_resource_len(pdev, bar)); 2594 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) 2595 release_mem_region(pci_resource_start(pdev, bar), 2596 pci_resource_len(pdev, bar)); 2597 2598 dr = find_pci_dr(pdev); 2599 if (dr) 2600 dr->region_mask &= ~(1 << bar); 2601 } 2602 2603 /** 2604 * __pci_request_region - Reserved PCI I/O and memory resource 2605 * @pdev: PCI device whose resources are to be reserved 2606 * @bar: BAR to be reserved 2607 * @res_name: Name to be associated with resource. 2608 * @exclusive: whether the region access is exclusive or not 2609 * 2610 * Mark the PCI region associated with PCI device @pdev BR @bar as 2611 * being reserved by owner @res_name. Do not access any 2612 * address inside the PCI regions unless this call returns 2613 * successfully. 2614 * 2615 * If @exclusive is set, then the region is marked so that userspace 2616 * is explicitly not allowed to map the resource via /dev/mem or 2617 * sysfs MMIO access. 2618 * 2619 * Returns 0 on success, or %EBUSY on error. A warning 2620 * message is also printed on failure. 2621 */ 2622 static int __pci_request_region(struct pci_dev *pdev, int bar, const char *res_name, 2623 int exclusive) 2624 { 2625 struct pci_devres *dr; 2626 2627 if (pci_resource_len(pdev, bar) == 0) 2628 return 0; 2629 2630 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) { 2631 if (!request_region(pci_resource_start(pdev, bar), 2632 pci_resource_len(pdev, bar), res_name)) 2633 goto err_out; 2634 } 2635 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) { 2636 if (!__request_mem_region(pci_resource_start(pdev, bar), 2637 pci_resource_len(pdev, bar), res_name, 2638 exclusive)) 2639 goto err_out; 2640 } 2641 2642 dr = find_pci_dr(pdev); 2643 if (dr) 2644 dr->region_mask |= 1 << bar; 2645 2646 return 0; 2647 2648 err_out: 2649 dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar, 2650 &pdev->resource[bar]); 2651 return -EBUSY; 2652 } 2653 2654 /** 2655 * pci_request_region - Reserve PCI I/O and memory resource 2656 * @pdev: PCI device whose resources are to be reserved 2657 * @bar: BAR to be reserved 2658 * @res_name: Name to be associated with resource 2659 * 2660 * Mark the PCI region associated with PCI device @pdev BAR @bar as 2661 * being reserved by owner @res_name. Do not access any 2662 * address inside the PCI regions unless this call returns 2663 * successfully. 2664 * 2665 * Returns 0 on success, or %EBUSY on error. A warning 2666 * message is also printed on failure. 2667 */ 2668 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name) 2669 { 2670 return __pci_request_region(pdev, bar, res_name, 0); 2671 } 2672 2673 /** 2674 * pci_request_region_exclusive - Reserved PCI I/O and memory resource 2675 * @pdev: PCI device whose resources are to be reserved 2676 * @bar: BAR to be reserved 2677 * @res_name: Name to be associated with resource. 2678 * 2679 * Mark the PCI region associated with PCI device @pdev BR @bar as 2680 * being reserved by owner @res_name. Do not access any 2681 * address inside the PCI regions unless this call returns 2682 * successfully. 2683 * 2684 * Returns 0 on success, or %EBUSY on error. A warning 2685 * message is also printed on failure. 2686 * 2687 * The key difference that _exclusive makes it that userspace is 2688 * explicitly not allowed to map the resource via /dev/mem or 2689 * sysfs. 2690 */ 2691 int pci_request_region_exclusive(struct pci_dev *pdev, int bar, const char *res_name) 2692 { 2693 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE); 2694 } 2695 /** 2696 * pci_release_selected_regions - Release selected PCI I/O and memory resources 2697 * @pdev: PCI device whose resources were previously reserved 2698 * @bars: Bitmask of BARs to be released 2699 * 2700 * Release selected PCI I/O and memory resources previously reserved. 2701 * Call this function only after all use of the PCI regions has ceased. 2702 */ 2703 void pci_release_selected_regions(struct pci_dev *pdev, int bars) 2704 { 2705 int i; 2706 2707 for (i = 0; i < 6; i++) 2708 if (bars & (1 << i)) 2709 pci_release_region(pdev, i); 2710 } 2711 2712 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars, 2713 const char *res_name, int excl) 2714 { 2715 int i; 2716 2717 for (i = 0; i < 6; i++) 2718 if (bars & (1 << i)) 2719 if (__pci_request_region(pdev, i, res_name, excl)) 2720 goto err_out; 2721 return 0; 2722 2723 err_out: 2724 while(--i >= 0) 2725 if (bars & (1 << i)) 2726 pci_release_region(pdev, i); 2727 2728 return -EBUSY; 2729 } 2730 2731 2732 /** 2733 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources 2734 * @pdev: PCI device whose resources are to be reserved 2735 * @bars: Bitmask of BARs to be requested 2736 * @res_name: Name to be associated with resource 2737 */ 2738 int pci_request_selected_regions(struct pci_dev *pdev, int bars, 2739 const char *res_name) 2740 { 2741 return __pci_request_selected_regions(pdev, bars, res_name, 0); 2742 } 2743 2744 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, 2745 int bars, const char *res_name) 2746 { 2747 return __pci_request_selected_regions(pdev, bars, res_name, 2748 IORESOURCE_EXCLUSIVE); 2749 } 2750 2751 /** 2752 * pci_release_regions - Release reserved PCI I/O and memory resources 2753 * @pdev: PCI device whose resources were previously reserved by pci_request_regions 2754 * 2755 * Releases all PCI I/O and memory resources previously reserved by a 2756 * successful call to pci_request_regions. Call this function only 2757 * after all use of the PCI regions has ceased. 2758 */ 2759 2760 void pci_release_regions(struct pci_dev *pdev) 2761 { 2762 pci_release_selected_regions(pdev, (1 << 6) - 1); 2763 } 2764 2765 /** 2766 * pci_request_regions - Reserved PCI I/O and memory resources 2767 * @pdev: PCI device whose resources are to be reserved 2768 * @res_name: Name to be associated with resource. 2769 * 2770 * Mark all PCI regions associated with PCI device @pdev as 2771 * being reserved by owner @res_name. Do not access any 2772 * address inside the PCI regions unless this call returns 2773 * successfully. 2774 * 2775 * Returns 0 on success, or %EBUSY on error. A warning 2776 * message is also printed on failure. 2777 */ 2778 int pci_request_regions(struct pci_dev *pdev, const char *res_name) 2779 { 2780 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name); 2781 } 2782 2783 /** 2784 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources 2785 * @pdev: PCI device whose resources are to be reserved 2786 * @res_name: Name to be associated with resource. 2787 * 2788 * Mark all PCI regions associated with PCI device @pdev as 2789 * being reserved by owner @res_name. Do not access any 2790 * address inside the PCI regions unless this call returns 2791 * successfully. 2792 * 2793 * pci_request_regions_exclusive() will mark the region so that 2794 * /dev/mem and the sysfs MMIO access will not be allowed. 2795 * 2796 * Returns 0 on success, or %EBUSY on error. A warning 2797 * message is also printed on failure. 2798 */ 2799 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name) 2800 { 2801 return pci_request_selected_regions_exclusive(pdev, 2802 ((1 << 6) - 1), res_name); 2803 } 2804 2805 static void __pci_set_master(struct pci_dev *dev, bool enable) 2806 { 2807 u16 old_cmd, cmd; 2808 2809 pci_read_config_word(dev, PCI_COMMAND, &old_cmd); 2810 if (enable) 2811 cmd = old_cmd | PCI_COMMAND_MASTER; 2812 else 2813 cmd = old_cmd & ~PCI_COMMAND_MASTER; 2814 if (cmd != old_cmd) { 2815 dev_dbg(&dev->dev, "%s bus mastering\n", 2816 enable ? "enabling" : "disabling"); 2817 pci_write_config_word(dev, PCI_COMMAND, cmd); 2818 } 2819 dev->is_busmaster = enable; 2820 } 2821 2822 /** 2823 * pcibios_setup - process "pci=" kernel boot arguments 2824 * @str: string used to pass in "pci=" kernel boot arguments 2825 * 2826 * Process kernel boot arguments. This is the default implementation. 2827 * Architecture specific implementations can override this as necessary. 2828 */ 2829 char * __weak __init pcibios_setup(char *str) 2830 { 2831 return str; 2832 } 2833 2834 /** 2835 * pcibios_set_master - enable PCI bus-mastering for device dev 2836 * @dev: the PCI device to enable 2837 * 2838 * Enables PCI bus-mastering for the device. This is the default 2839 * implementation. Architecture specific implementations can override 2840 * this if necessary. 2841 */ 2842 void __weak pcibios_set_master(struct pci_dev *dev) 2843 { 2844 u8 lat; 2845 2846 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */ 2847 if (pci_is_pcie(dev)) 2848 return; 2849 2850 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat); 2851 if (lat < 16) 2852 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency; 2853 else if (lat > pcibios_max_latency) 2854 lat = pcibios_max_latency; 2855 else 2856 return; 2857 dev_printk(KERN_DEBUG, &dev->dev, "setting latency timer to %d\n", lat); 2858 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat); 2859 } 2860 2861 /** 2862 * pci_set_master - enables bus-mastering for device dev 2863 * @dev: the PCI device to enable 2864 * 2865 * Enables bus-mastering on the device and calls pcibios_set_master() 2866 * to do the needed arch specific settings. 2867 */ 2868 void pci_set_master(struct pci_dev *dev) 2869 { 2870 __pci_set_master(dev, true); 2871 pcibios_set_master(dev); 2872 } 2873 2874 /** 2875 * pci_clear_master - disables bus-mastering for device dev 2876 * @dev: the PCI device to disable 2877 */ 2878 void pci_clear_master(struct pci_dev *dev) 2879 { 2880 __pci_set_master(dev, false); 2881 } 2882 2883 /** 2884 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed 2885 * @dev: the PCI device for which MWI is to be enabled 2886 * 2887 * Helper function for pci_set_mwi. 2888 * Originally copied from drivers/net/acenic.c. 2889 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. 2890 * 2891 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 2892 */ 2893 int pci_set_cacheline_size(struct pci_dev *dev) 2894 { 2895 u8 cacheline_size; 2896 2897 if (!pci_cache_line_size) 2898 return -EINVAL; 2899 2900 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be 2901 equal to or multiple of the right value. */ 2902 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 2903 if (cacheline_size >= pci_cache_line_size && 2904 (cacheline_size % pci_cache_line_size) == 0) 2905 return 0; 2906 2907 /* Write the correct value. */ 2908 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size); 2909 /* Read it back. */ 2910 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 2911 if (cacheline_size == pci_cache_line_size) 2912 return 0; 2913 2914 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not " 2915 "supported\n", pci_cache_line_size << 2); 2916 2917 return -EINVAL; 2918 } 2919 EXPORT_SYMBOL_GPL(pci_set_cacheline_size); 2920 2921 #ifdef PCI_DISABLE_MWI 2922 int pci_set_mwi(struct pci_dev *dev) 2923 { 2924 return 0; 2925 } 2926 2927 int pci_try_set_mwi(struct pci_dev *dev) 2928 { 2929 return 0; 2930 } 2931 2932 void pci_clear_mwi(struct pci_dev *dev) 2933 { 2934 } 2935 2936 #else 2937 2938 /** 2939 * pci_set_mwi - enables memory-write-invalidate PCI transaction 2940 * @dev: the PCI device for which MWI is enabled 2941 * 2942 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 2943 * 2944 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 2945 */ 2946 int 2947 pci_set_mwi(struct pci_dev *dev) 2948 { 2949 int rc; 2950 u16 cmd; 2951 2952 rc = pci_set_cacheline_size(dev); 2953 if (rc) 2954 return rc; 2955 2956 pci_read_config_word(dev, PCI_COMMAND, &cmd); 2957 if (! (cmd & PCI_COMMAND_INVALIDATE)) { 2958 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n"); 2959 cmd |= PCI_COMMAND_INVALIDATE; 2960 pci_write_config_word(dev, PCI_COMMAND, cmd); 2961 } 2962 2963 return 0; 2964 } 2965 2966 /** 2967 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction 2968 * @dev: the PCI device for which MWI is enabled 2969 * 2970 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 2971 * Callers are not required to check the return value. 2972 * 2973 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 2974 */ 2975 int pci_try_set_mwi(struct pci_dev *dev) 2976 { 2977 int rc = pci_set_mwi(dev); 2978 return rc; 2979 } 2980 2981 /** 2982 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev 2983 * @dev: the PCI device to disable 2984 * 2985 * Disables PCI Memory-Write-Invalidate transaction on the device 2986 */ 2987 void 2988 pci_clear_mwi(struct pci_dev *dev) 2989 { 2990 u16 cmd; 2991 2992 pci_read_config_word(dev, PCI_COMMAND, &cmd); 2993 if (cmd & PCI_COMMAND_INVALIDATE) { 2994 cmd &= ~PCI_COMMAND_INVALIDATE; 2995 pci_write_config_word(dev, PCI_COMMAND, cmd); 2996 } 2997 } 2998 #endif /* ! PCI_DISABLE_MWI */ 2999 3000 /** 3001 * pci_intx - enables/disables PCI INTx for device dev 3002 * @pdev: the PCI device to operate on 3003 * @enable: boolean: whether to enable or disable PCI INTx 3004 * 3005 * Enables/disables PCI INTx for device dev 3006 */ 3007 void 3008 pci_intx(struct pci_dev *pdev, int enable) 3009 { 3010 u16 pci_command, new; 3011 3012 pci_read_config_word(pdev, PCI_COMMAND, &pci_command); 3013 3014 if (enable) { 3015 new = pci_command & ~PCI_COMMAND_INTX_DISABLE; 3016 } else { 3017 new = pci_command | PCI_COMMAND_INTX_DISABLE; 3018 } 3019 3020 if (new != pci_command) { 3021 struct pci_devres *dr; 3022 3023 pci_write_config_word(pdev, PCI_COMMAND, new); 3024 3025 dr = find_pci_dr(pdev); 3026 if (dr && !dr->restore_intx) { 3027 dr->restore_intx = 1; 3028 dr->orig_intx = !enable; 3029 } 3030 } 3031 } 3032 3033 /** 3034 * pci_intx_mask_supported - probe for INTx masking support 3035 * @dev: the PCI device to operate on 3036 * 3037 * Check if the device dev support INTx masking via the config space 3038 * command word. 3039 */ 3040 bool pci_intx_mask_supported(struct pci_dev *dev) 3041 { 3042 bool mask_supported = false; 3043 u16 orig, new; 3044 3045 if (dev->broken_intx_masking) 3046 return false; 3047 3048 pci_cfg_access_lock(dev); 3049 3050 pci_read_config_word(dev, PCI_COMMAND, &orig); 3051 pci_write_config_word(dev, PCI_COMMAND, 3052 orig ^ PCI_COMMAND_INTX_DISABLE); 3053 pci_read_config_word(dev, PCI_COMMAND, &new); 3054 3055 /* 3056 * There's no way to protect against hardware bugs or detect them 3057 * reliably, but as long as we know what the value should be, let's 3058 * go ahead and check it. 3059 */ 3060 if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) { 3061 dev_err(&dev->dev, "Command register changed from " 3062 "0x%x to 0x%x: driver or hardware bug?\n", orig, new); 3063 } else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) { 3064 mask_supported = true; 3065 pci_write_config_word(dev, PCI_COMMAND, orig); 3066 } 3067 3068 pci_cfg_access_unlock(dev); 3069 return mask_supported; 3070 } 3071 EXPORT_SYMBOL_GPL(pci_intx_mask_supported); 3072 3073 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask) 3074 { 3075 struct pci_bus *bus = dev->bus; 3076 bool mask_updated = true; 3077 u32 cmd_status_dword; 3078 u16 origcmd, newcmd; 3079 unsigned long flags; 3080 bool irq_pending; 3081 3082 /* 3083 * We do a single dword read to retrieve both command and status. 3084 * Document assumptions that make this possible. 3085 */ 3086 BUILD_BUG_ON(PCI_COMMAND % 4); 3087 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS); 3088 3089 raw_spin_lock_irqsave(&pci_lock, flags); 3090 3091 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword); 3092 3093 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT; 3094 3095 /* 3096 * Check interrupt status register to see whether our device 3097 * triggered the interrupt (when masking) or the next IRQ is 3098 * already pending (when unmasking). 3099 */ 3100 if (mask != irq_pending) { 3101 mask_updated = false; 3102 goto done; 3103 } 3104 3105 origcmd = cmd_status_dword; 3106 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE; 3107 if (mask) 3108 newcmd |= PCI_COMMAND_INTX_DISABLE; 3109 if (newcmd != origcmd) 3110 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd); 3111 3112 done: 3113 raw_spin_unlock_irqrestore(&pci_lock, flags); 3114 3115 return mask_updated; 3116 } 3117 3118 /** 3119 * pci_check_and_mask_intx - mask INTx on pending interrupt 3120 * @dev: the PCI device to operate on 3121 * 3122 * Check if the device dev has its INTx line asserted, mask it and 3123 * return true in that case. False is returned if not interrupt was 3124 * pending. 3125 */ 3126 bool pci_check_and_mask_intx(struct pci_dev *dev) 3127 { 3128 return pci_check_and_set_intx_mask(dev, true); 3129 } 3130 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx); 3131 3132 /** 3133 * pci_check_and_mask_intx - unmask INTx of no interrupt is pending 3134 * @dev: the PCI device to operate on 3135 * 3136 * Check if the device dev has its INTx line asserted, unmask it if not 3137 * and return true. False is returned and the mask remains active if 3138 * there was still an interrupt pending. 3139 */ 3140 bool pci_check_and_unmask_intx(struct pci_dev *dev) 3141 { 3142 return pci_check_and_set_intx_mask(dev, false); 3143 } 3144 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx); 3145 3146 /** 3147 * pci_msi_off - disables any MSI or MSI-X capabilities 3148 * @dev: the PCI device to operate on 3149 * 3150 * If you want to use MSI, see pci_enable_msi() and friends. 3151 * This is a lower-level primitive that allows us to disable 3152 * MSI operation at the device level. 3153 */ 3154 void pci_msi_off(struct pci_dev *dev) 3155 { 3156 int pos; 3157 u16 control; 3158 3159 /* 3160 * This looks like it could go in msi.c, but we need it even when 3161 * CONFIG_PCI_MSI=n. For the same reason, we can't use 3162 * dev->msi_cap or dev->msix_cap here. 3163 */ 3164 pos = pci_find_capability(dev, PCI_CAP_ID_MSI); 3165 if (pos) { 3166 pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control); 3167 control &= ~PCI_MSI_FLAGS_ENABLE; 3168 pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control); 3169 } 3170 pos = pci_find_capability(dev, PCI_CAP_ID_MSIX); 3171 if (pos) { 3172 pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control); 3173 control &= ~PCI_MSIX_FLAGS_ENABLE; 3174 pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control); 3175 } 3176 } 3177 EXPORT_SYMBOL_GPL(pci_msi_off); 3178 3179 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size) 3180 { 3181 return dma_set_max_seg_size(&dev->dev, size); 3182 } 3183 EXPORT_SYMBOL(pci_set_dma_max_seg_size); 3184 3185 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask) 3186 { 3187 return dma_set_seg_boundary(&dev->dev, mask); 3188 } 3189 EXPORT_SYMBOL(pci_set_dma_seg_boundary); 3190 3191 /** 3192 * pci_wait_for_pending_transaction - waits for pending transaction 3193 * @dev: the PCI device to operate on 3194 * 3195 * Return 0 if transaction is pending 1 otherwise. 3196 */ 3197 int pci_wait_for_pending_transaction(struct pci_dev *dev) 3198 { 3199 int i; 3200 u16 status; 3201 3202 /* Wait for Transaction Pending bit clean */ 3203 for (i = 0; i < 4; i++) { 3204 if (i) 3205 msleep((1 << (i - 1)) * 100); 3206 3207 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status); 3208 if (!(status & PCI_EXP_DEVSTA_TRPND)) 3209 return 1; 3210 } 3211 3212 return 0; 3213 } 3214 EXPORT_SYMBOL(pci_wait_for_pending_transaction); 3215 3216 static int pcie_flr(struct pci_dev *dev, int probe) 3217 { 3218 u32 cap; 3219 3220 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap); 3221 if (!(cap & PCI_EXP_DEVCAP_FLR)) 3222 return -ENOTTY; 3223 3224 if (probe) 3225 return 0; 3226 3227 if (!pci_wait_for_pending_transaction(dev)) 3228 dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n"); 3229 3230 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR); 3231 3232 msleep(100); 3233 3234 return 0; 3235 } 3236 3237 static int pci_af_flr(struct pci_dev *dev, int probe) 3238 { 3239 int i; 3240 int pos; 3241 u8 cap; 3242 u8 status; 3243 3244 pos = pci_find_capability(dev, PCI_CAP_ID_AF); 3245 if (!pos) 3246 return -ENOTTY; 3247 3248 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap); 3249 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR)) 3250 return -ENOTTY; 3251 3252 if (probe) 3253 return 0; 3254 3255 /* Wait for Transaction Pending bit clean */ 3256 for (i = 0; i < 4; i++) { 3257 if (i) 3258 msleep((1 << (i - 1)) * 100); 3259 3260 pci_read_config_byte(dev, pos + PCI_AF_STATUS, &status); 3261 if (!(status & PCI_AF_STATUS_TP)) 3262 goto clear; 3263 } 3264 3265 dev_err(&dev->dev, "transaction is not cleared; " 3266 "proceeding with reset anyway\n"); 3267 3268 clear: 3269 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR); 3270 msleep(100); 3271 3272 return 0; 3273 } 3274 3275 /** 3276 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0. 3277 * @dev: Device to reset. 3278 * @probe: If set, only check if the device can be reset this way. 3279 * 3280 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is 3281 * unset, it will be reinitialized internally when going from PCI_D3hot to 3282 * PCI_D0. If that's the case and the device is not in a low-power state 3283 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset. 3284 * 3285 * NOTE: This causes the caller to sleep for twice the device power transition 3286 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms 3287 * by devault (i.e. unless the @dev's d3_delay field has a different value). 3288 * Moreover, only devices in D0 can be reset by this function. 3289 */ 3290 static int pci_pm_reset(struct pci_dev *dev, int probe) 3291 { 3292 u16 csr; 3293 3294 if (!dev->pm_cap) 3295 return -ENOTTY; 3296 3297 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr); 3298 if (csr & PCI_PM_CTRL_NO_SOFT_RESET) 3299 return -ENOTTY; 3300 3301 if (probe) 3302 return 0; 3303 3304 if (dev->current_state != PCI_D0) 3305 return -EINVAL; 3306 3307 csr &= ~PCI_PM_CTRL_STATE_MASK; 3308 csr |= PCI_D3hot; 3309 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 3310 pci_dev_d3_sleep(dev); 3311 3312 csr &= ~PCI_PM_CTRL_STATE_MASK; 3313 csr |= PCI_D0; 3314 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 3315 pci_dev_d3_sleep(dev); 3316 3317 return 0; 3318 } 3319 3320 /** 3321 * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge. 3322 * @dev: Bridge device 3323 * 3324 * Use the bridge control register to assert reset on the secondary bus. 3325 * Devices on the secondary bus are left in power-on state. 3326 */ 3327 void pci_reset_bridge_secondary_bus(struct pci_dev *dev) 3328 { 3329 u16 ctrl; 3330 3331 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl); 3332 ctrl |= PCI_BRIDGE_CTL_BUS_RESET; 3333 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 3334 /* 3335 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double 3336 * this to 2ms to ensure that we meet the minium requirement. 3337 */ 3338 msleep(2); 3339 3340 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET; 3341 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 3342 3343 /* 3344 * Trhfa for conventional PCI is 2^25 clock cycles. 3345 * Assuming a minimum 33MHz clock this results in a 1s 3346 * delay before we can consider subordinate devices to 3347 * be re-initialized. PCIe has some ways to shorten this, 3348 * but we don't make use of them yet. 3349 */ 3350 ssleep(1); 3351 } 3352 EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus); 3353 3354 static int pci_parent_bus_reset(struct pci_dev *dev, int probe) 3355 { 3356 struct pci_dev *pdev; 3357 3358 if (pci_is_root_bus(dev->bus) || dev->subordinate || !dev->bus->self) 3359 return -ENOTTY; 3360 3361 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 3362 if (pdev != dev) 3363 return -ENOTTY; 3364 3365 if (probe) 3366 return 0; 3367 3368 pci_reset_bridge_secondary_bus(dev->bus->self); 3369 3370 return 0; 3371 } 3372 3373 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe) 3374 { 3375 int rc = -ENOTTY; 3376 3377 if (!hotplug || !try_module_get(hotplug->ops->owner)) 3378 return rc; 3379 3380 if (hotplug->ops->reset_slot) 3381 rc = hotplug->ops->reset_slot(hotplug, probe); 3382 3383 module_put(hotplug->ops->owner); 3384 3385 return rc; 3386 } 3387 3388 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe) 3389 { 3390 struct pci_dev *pdev; 3391 3392 if (dev->subordinate || !dev->slot) 3393 return -ENOTTY; 3394 3395 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 3396 if (pdev != dev && pdev->slot == dev->slot) 3397 return -ENOTTY; 3398 3399 return pci_reset_hotplug_slot(dev->slot->hotplug, probe); 3400 } 3401 3402 static int __pci_dev_reset(struct pci_dev *dev, int probe) 3403 { 3404 int rc; 3405 3406 might_sleep(); 3407 3408 rc = pci_dev_specific_reset(dev, probe); 3409 if (rc != -ENOTTY) 3410 goto done; 3411 3412 rc = pcie_flr(dev, probe); 3413 if (rc != -ENOTTY) 3414 goto done; 3415 3416 rc = pci_af_flr(dev, probe); 3417 if (rc != -ENOTTY) 3418 goto done; 3419 3420 rc = pci_pm_reset(dev, probe); 3421 if (rc != -ENOTTY) 3422 goto done; 3423 3424 rc = pci_dev_reset_slot_function(dev, probe); 3425 if (rc != -ENOTTY) 3426 goto done; 3427 3428 rc = pci_parent_bus_reset(dev, probe); 3429 done: 3430 return rc; 3431 } 3432 3433 static void pci_dev_lock(struct pci_dev *dev) 3434 { 3435 pci_cfg_access_lock(dev); 3436 /* block PM suspend, driver probe, etc. */ 3437 device_lock(&dev->dev); 3438 } 3439 3440 static void pci_dev_unlock(struct pci_dev *dev) 3441 { 3442 device_unlock(&dev->dev); 3443 pci_cfg_access_unlock(dev); 3444 } 3445 3446 static void pci_dev_save_and_disable(struct pci_dev *dev) 3447 { 3448 /* 3449 * Wake-up device prior to save. PM registers default to D0 after 3450 * reset and a simple register restore doesn't reliably return 3451 * to a non-D0 state anyway. 3452 */ 3453 pci_set_power_state(dev, PCI_D0); 3454 3455 pci_save_state(dev); 3456 /* 3457 * Disable the device by clearing the Command register, except for 3458 * INTx-disable which is set. This not only disables MMIO and I/O port 3459 * BARs, but also prevents the device from being Bus Master, preventing 3460 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3 3461 * compliant devices, INTx-disable prevents legacy interrupts. 3462 */ 3463 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE); 3464 } 3465 3466 static void pci_dev_restore(struct pci_dev *dev) 3467 { 3468 pci_restore_state(dev); 3469 } 3470 3471 static int pci_dev_reset(struct pci_dev *dev, int probe) 3472 { 3473 int rc; 3474 3475 if (!probe) 3476 pci_dev_lock(dev); 3477 3478 rc = __pci_dev_reset(dev, probe); 3479 3480 if (!probe) 3481 pci_dev_unlock(dev); 3482 3483 return rc; 3484 } 3485 /** 3486 * __pci_reset_function - reset a PCI device function 3487 * @dev: PCI device to reset 3488 * 3489 * Some devices allow an individual function to be reset without affecting 3490 * other functions in the same device. The PCI device must be responsive 3491 * to PCI config space in order to use this function. 3492 * 3493 * The device function is presumed to be unused when this function is called. 3494 * Resetting the device will make the contents of PCI configuration space 3495 * random, so any caller of this must be prepared to reinitialise the 3496 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 3497 * etc. 3498 * 3499 * Returns 0 if the device function was successfully reset or negative if the 3500 * device doesn't support resetting a single function. 3501 */ 3502 int __pci_reset_function(struct pci_dev *dev) 3503 { 3504 return pci_dev_reset(dev, 0); 3505 } 3506 EXPORT_SYMBOL_GPL(__pci_reset_function); 3507 3508 /** 3509 * __pci_reset_function_locked - reset a PCI device function while holding 3510 * the @dev mutex lock. 3511 * @dev: PCI device to reset 3512 * 3513 * Some devices allow an individual function to be reset without affecting 3514 * other functions in the same device. The PCI device must be responsive 3515 * to PCI config space in order to use this function. 3516 * 3517 * The device function is presumed to be unused and the caller is holding 3518 * the device mutex lock when this function is called. 3519 * Resetting the device will make the contents of PCI configuration space 3520 * random, so any caller of this must be prepared to reinitialise the 3521 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 3522 * etc. 3523 * 3524 * Returns 0 if the device function was successfully reset or negative if the 3525 * device doesn't support resetting a single function. 3526 */ 3527 int __pci_reset_function_locked(struct pci_dev *dev) 3528 { 3529 return __pci_dev_reset(dev, 0); 3530 } 3531 EXPORT_SYMBOL_GPL(__pci_reset_function_locked); 3532 3533 /** 3534 * pci_probe_reset_function - check whether the device can be safely reset 3535 * @dev: PCI device to reset 3536 * 3537 * Some devices allow an individual function to be reset without affecting 3538 * other functions in the same device. The PCI device must be responsive 3539 * to PCI config space in order to use this function. 3540 * 3541 * Returns 0 if the device function can be reset or negative if the 3542 * device doesn't support resetting a single function. 3543 */ 3544 int pci_probe_reset_function(struct pci_dev *dev) 3545 { 3546 return pci_dev_reset(dev, 1); 3547 } 3548 3549 /** 3550 * pci_reset_function - quiesce and reset a PCI device function 3551 * @dev: PCI device to reset 3552 * 3553 * Some devices allow an individual function to be reset without affecting 3554 * other functions in the same device. The PCI device must be responsive 3555 * to PCI config space in order to use this function. 3556 * 3557 * This function does not just reset the PCI portion of a device, but 3558 * clears all the state associated with the device. This function differs 3559 * from __pci_reset_function in that it saves and restores device state 3560 * over the reset. 3561 * 3562 * Returns 0 if the device function was successfully reset or negative if the 3563 * device doesn't support resetting a single function. 3564 */ 3565 int pci_reset_function(struct pci_dev *dev) 3566 { 3567 int rc; 3568 3569 rc = pci_dev_reset(dev, 1); 3570 if (rc) 3571 return rc; 3572 3573 pci_dev_save_and_disable(dev); 3574 3575 rc = pci_dev_reset(dev, 0); 3576 3577 pci_dev_restore(dev); 3578 3579 return rc; 3580 } 3581 EXPORT_SYMBOL_GPL(pci_reset_function); 3582 3583 /* Lock devices from the top of the tree down */ 3584 static void pci_bus_lock(struct pci_bus *bus) 3585 { 3586 struct pci_dev *dev; 3587 3588 list_for_each_entry(dev, &bus->devices, bus_list) { 3589 pci_dev_lock(dev); 3590 if (dev->subordinate) 3591 pci_bus_lock(dev->subordinate); 3592 } 3593 } 3594 3595 /* Unlock devices from the bottom of the tree up */ 3596 static void pci_bus_unlock(struct pci_bus *bus) 3597 { 3598 struct pci_dev *dev; 3599 3600 list_for_each_entry(dev, &bus->devices, bus_list) { 3601 if (dev->subordinate) 3602 pci_bus_unlock(dev->subordinate); 3603 pci_dev_unlock(dev); 3604 } 3605 } 3606 3607 /* Lock devices from the top of the tree down */ 3608 static void pci_slot_lock(struct pci_slot *slot) 3609 { 3610 struct pci_dev *dev; 3611 3612 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 3613 if (!dev->slot || dev->slot != slot) 3614 continue; 3615 pci_dev_lock(dev); 3616 if (dev->subordinate) 3617 pci_bus_lock(dev->subordinate); 3618 } 3619 } 3620 3621 /* Unlock devices from the bottom of the tree up */ 3622 static void pci_slot_unlock(struct pci_slot *slot) 3623 { 3624 struct pci_dev *dev; 3625 3626 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 3627 if (!dev->slot || dev->slot != slot) 3628 continue; 3629 if (dev->subordinate) 3630 pci_bus_unlock(dev->subordinate); 3631 pci_dev_unlock(dev); 3632 } 3633 } 3634 3635 /* Save and disable devices from the top of the tree down */ 3636 static void pci_bus_save_and_disable(struct pci_bus *bus) 3637 { 3638 struct pci_dev *dev; 3639 3640 list_for_each_entry(dev, &bus->devices, bus_list) { 3641 pci_dev_save_and_disable(dev); 3642 if (dev->subordinate) 3643 pci_bus_save_and_disable(dev->subordinate); 3644 } 3645 } 3646 3647 /* 3648 * Restore devices from top of the tree down - parent bridges need to be 3649 * restored before we can get to subordinate devices. 3650 */ 3651 static void pci_bus_restore(struct pci_bus *bus) 3652 { 3653 struct pci_dev *dev; 3654 3655 list_for_each_entry(dev, &bus->devices, bus_list) { 3656 pci_dev_restore(dev); 3657 if (dev->subordinate) 3658 pci_bus_restore(dev->subordinate); 3659 } 3660 } 3661 3662 /* Save and disable devices from the top of the tree down */ 3663 static void pci_slot_save_and_disable(struct pci_slot *slot) 3664 { 3665 struct pci_dev *dev; 3666 3667 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 3668 if (!dev->slot || dev->slot != slot) 3669 continue; 3670 pci_dev_save_and_disable(dev); 3671 if (dev->subordinate) 3672 pci_bus_save_and_disable(dev->subordinate); 3673 } 3674 } 3675 3676 /* 3677 * Restore devices from top of the tree down - parent bridges need to be 3678 * restored before we can get to subordinate devices. 3679 */ 3680 static void pci_slot_restore(struct pci_slot *slot) 3681 { 3682 struct pci_dev *dev; 3683 3684 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 3685 if (!dev->slot || dev->slot != slot) 3686 continue; 3687 pci_dev_restore(dev); 3688 if (dev->subordinate) 3689 pci_bus_restore(dev->subordinate); 3690 } 3691 } 3692 3693 static int pci_slot_reset(struct pci_slot *slot, int probe) 3694 { 3695 int rc; 3696 3697 if (!slot) 3698 return -ENOTTY; 3699 3700 if (!probe) 3701 pci_slot_lock(slot); 3702 3703 might_sleep(); 3704 3705 rc = pci_reset_hotplug_slot(slot->hotplug, probe); 3706 3707 if (!probe) 3708 pci_slot_unlock(slot); 3709 3710 return rc; 3711 } 3712 3713 /** 3714 * pci_probe_reset_slot - probe whether a PCI slot can be reset 3715 * @slot: PCI slot to probe 3716 * 3717 * Return 0 if slot can be reset, negative if a slot reset is not supported. 3718 */ 3719 int pci_probe_reset_slot(struct pci_slot *slot) 3720 { 3721 return pci_slot_reset(slot, 1); 3722 } 3723 EXPORT_SYMBOL_GPL(pci_probe_reset_slot); 3724 3725 /** 3726 * pci_reset_slot - reset a PCI slot 3727 * @slot: PCI slot to reset 3728 * 3729 * A PCI bus may host multiple slots, each slot may support a reset mechanism 3730 * independent of other slots. For instance, some slots may support slot power 3731 * control. In the case of a 1:1 bus to slot architecture, this function may 3732 * wrap the bus reset to avoid spurious slot related events such as hotplug. 3733 * Generally a slot reset should be attempted before a bus reset. All of the 3734 * function of the slot and any subordinate buses behind the slot are reset 3735 * through this function. PCI config space of all devices in the slot and 3736 * behind the slot is saved before and restored after reset. 3737 * 3738 * Return 0 on success, non-zero on error. 3739 */ 3740 int pci_reset_slot(struct pci_slot *slot) 3741 { 3742 int rc; 3743 3744 rc = pci_slot_reset(slot, 1); 3745 if (rc) 3746 return rc; 3747 3748 pci_slot_save_and_disable(slot); 3749 3750 rc = pci_slot_reset(slot, 0); 3751 3752 pci_slot_restore(slot); 3753 3754 return rc; 3755 } 3756 EXPORT_SYMBOL_GPL(pci_reset_slot); 3757 3758 static int pci_bus_reset(struct pci_bus *bus, int probe) 3759 { 3760 if (!bus->self) 3761 return -ENOTTY; 3762 3763 if (probe) 3764 return 0; 3765 3766 pci_bus_lock(bus); 3767 3768 might_sleep(); 3769 3770 pci_reset_bridge_secondary_bus(bus->self); 3771 3772 pci_bus_unlock(bus); 3773 3774 return 0; 3775 } 3776 3777 /** 3778 * pci_probe_reset_bus - probe whether a PCI bus can be reset 3779 * @bus: PCI bus to probe 3780 * 3781 * Return 0 if bus can be reset, negative if a bus reset is not supported. 3782 */ 3783 int pci_probe_reset_bus(struct pci_bus *bus) 3784 { 3785 return pci_bus_reset(bus, 1); 3786 } 3787 EXPORT_SYMBOL_GPL(pci_probe_reset_bus); 3788 3789 /** 3790 * pci_reset_bus - reset a PCI bus 3791 * @bus: top level PCI bus to reset 3792 * 3793 * Do a bus reset on the given bus and any subordinate buses, saving 3794 * and restoring state of all devices. 3795 * 3796 * Return 0 on success, non-zero on error. 3797 */ 3798 int pci_reset_bus(struct pci_bus *bus) 3799 { 3800 int rc; 3801 3802 rc = pci_bus_reset(bus, 1); 3803 if (rc) 3804 return rc; 3805 3806 pci_bus_save_and_disable(bus); 3807 3808 rc = pci_bus_reset(bus, 0); 3809 3810 pci_bus_restore(bus); 3811 3812 return rc; 3813 } 3814 EXPORT_SYMBOL_GPL(pci_reset_bus); 3815 3816 /** 3817 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count 3818 * @dev: PCI device to query 3819 * 3820 * Returns mmrbc: maximum designed memory read count in bytes 3821 * or appropriate error value. 3822 */ 3823 int pcix_get_max_mmrbc(struct pci_dev *dev) 3824 { 3825 int cap; 3826 u32 stat; 3827 3828 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 3829 if (!cap) 3830 return -EINVAL; 3831 3832 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 3833 return -EINVAL; 3834 3835 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21); 3836 } 3837 EXPORT_SYMBOL(pcix_get_max_mmrbc); 3838 3839 /** 3840 * pcix_get_mmrbc - get PCI-X maximum memory read byte count 3841 * @dev: PCI device to query 3842 * 3843 * Returns mmrbc: maximum memory read count in bytes 3844 * or appropriate error value. 3845 */ 3846 int pcix_get_mmrbc(struct pci_dev *dev) 3847 { 3848 int cap; 3849 u16 cmd; 3850 3851 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 3852 if (!cap) 3853 return -EINVAL; 3854 3855 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 3856 return -EINVAL; 3857 3858 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2); 3859 } 3860 EXPORT_SYMBOL(pcix_get_mmrbc); 3861 3862 /** 3863 * pcix_set_mmrbc - set PCI-X maximum memory read byte count 3864 * @dev: PCI device to query 3865 * @mmrbc: maximum memory read count in bytes 3866 * valid values are 512, 1024, 2048, 4096 3867 * 3868 * If possible sets maximum memory read byte count, some bridges have erratas 3869 * that prevent this. 3870 */ 3871 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc) 3872 { 3873 int cap; 3874 u32 stat, v, o; 3875 u16 cmd; 3876 3877 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc)) 3878 return -EINVAL; 3879 3880 v = ffs(mmrbc) - 10; 3881 3882 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 3883 if (!cap) 3884 return -EINVAL; 3885 3886 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 3887 return -EINVAL; 3888 3889 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21) 3890 return -E2BIG; 3891 3892 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 3893 return -EINVAL; 3894 3895 o = (cmd & PCI_X_CMD_MAX_READ) >> 2; 3896 if (o != v) { 3897 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC)) 3898 return -EIO; 3899 3900 cmd &= ~PCI_X_CMD_MAX_READ; 3901 cmd |= v << 2; 3902 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd)) 3903 return -EIO; 3904 } 3905 return 0; 3906 } 3907 EXPORT_SYMBOL(pcix_set_mmrbc); 3908 3909 /** 3910 * pcie_get_readrq - get PCI Express read request size 3911 * @dev: PCI device to query 3912 * 3913 * Returns maximum memory read request in bytes 3914 * or appropriate error value. 3915 */ 3916 int pcie_get_readrq(struct pci_dev *dev) 3917 { 3918 u16 ctl; 3919 3920 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 3921 3922 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12); 3923 } 3924 EXPORT_SYMBOL(pcie_get_readrq); 3925 3926 /** 3927 * pcie_set_readrq - set PCI Express maximum memory read request 3928 * @dev: PCI device to query 3929 * @rq: maximum memory read count in bytes 3930 * valid values are 128, 256, 512, 1024, 2048, 4096 3931 * 3932 * If possible sets maximum memory read request in bytes 3933 */ 3934 int pcie_set_readrq(struct pci_dev *dev, int rq) 3935 { 3936 u16 v; 3937 3938 if (rq < 128 || rq > 4096 || !is_power_of_2(rq)) 3939 return -EINVAL; 3940 3941 /* 3942 * If using the "performance" PCIe config, we clamp the 3943 * read rq size to the max packet size to prevent the 3944 * host bridge generating requests larger than we can 3945 * cope with 3946 */ 3947 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) { 3948 int mps = pcie_get_mps(dev); 3949 3950 if (mps < rq) 3951 rq = mps; 3952 } 3953 3954 v = (ffs(rq) - 8) << 12; 3955 3956 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 3957 PCI_EXP_DEVCTL_READRQ, v); 3958 } 3959 EXPORT_SYMBOL(pcie_set_readrq); 3960 3961 /** 3962 * pcie_get_mps - get PCI Express maximum payload size 3963 * @dev: PCI device to query 3964 * 3965 * Returns maximum payload size in bytes 3966 */ 3967 int pcie_get_mps(struct pci_dev *dev) 3968 { 3969 u16 ctl; 3970 3971 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 3972 3973 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5); 3974 } 3975 3976 /** 3977 * pcie_set_mps - set PCI Express maximum payload size 3978 * @dev: PCI device to query 3979 * @mps: maximum payload size in bytes 3980 * valid values are 128, 256, 512, 1024, 2048, 4096 3981 * 3982 * If possible sets maximum payload size 3983 */ 3984 int pcie_set_mps(struct pci_dev *dev, int mps) 3985 { 3986 u16 v; 3987 3988 if (mps < 128 || mps > 4096 || !is_power_of_2(mps)) 3989 return -EINVAL; 3990 3991 v = ffs(mps) - 8; 3992 if (v > dev->pcie_mpss) 3993 return -EINVAL; 3994 v <<= 5; 3995 3996 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 3997 PCI_EXP_DEVCTL_PAYLOAD, v); 3998 } 3999 4000 /** 4001 * pcie_get_minimum_link - determine minimum link settings of a PCI device 4002 * @dev: PCI device to query 4003 * @speed: storage for minimum speed 4004 * @width: storage for minimum width 4005 * 4006 * This function will walk up the PCI device chain and determine the minimum 4007 * link width and speed of the device. 4008 */ 4009 int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed, 4010 enum pcie_link_width *width) 4011 { 4012 int ret; 4013 4014 *speed = PCI_SPEED_UNKNOWN; 4015 *width = PCIE_LNK_WIDTH_UNKNOWN; 4016 4017 while (dev) { 4018 u16 lnksta; 4019 enum pci_bus_speed next_speed; 4020 enum pcie_link_width next_width; 4021 4022 ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta); 4023 if (ret) 4024 return ret; 4025 4026 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS]; 4027 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >> 4028 PCI_EXP_LNKSTA_NLW_SHIFT; 4029 4030 if (next_speed < *speed) 4031 *speed = next_speed; 4032 4033 if (next_width < *width) 4034 *width = next_width; 4035 4036 dev = dev->bus->self; 4037 } 4038 4039 return 0; 4040 } 4041 EXPORT_SYMBOL(pcie_get_minimum_link); 4042 4043 /** 4044 * pci_select_bars - Make BAR mask from the type of resource 4045 * @dev: the PCI device for which BAR mask is made 4046 * @flags: resource type mask to be selected 4047 * 4048 * This helper routine makes bar mask from the type of resource. 4049 */ 4050 int pci_select_bars(struct pci_dev *dev, unsigned long flags) 4051 { 4052 int i, bars = 0; 4053 for (i = 0; i < PCI_NUM_RESOURCES; i++) 4054 if (pci_resource_flags(dev, i) & flags) 4055 bars |= (1 << i); 4056 return bars; 4057 } 4058 4059 /** 4060 * pci_resource_bar - get position of the BAR associated with a resource 4061 * @dev: the PCI device 4062 * @resno: the resource number 4063 * @type: the BAR type to be filled in 4064 * 4065 * Returns BAR position in config space, or 0 if the BAR is invalid. 4066 */ 4067 int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type) 4068 { 4069 int reg; 4070 4071 if (resno < PCI_ROM_RESOURCE) { 4072 *type = pci_bar_unknown; 4073 return PCI_BASE_ADDRESS_0 + 4 * resno; 4074 } else if (resno == PCI_ROM_RESOURCE) { 4075 *type = pci_bar_mem32; 4076 return dev->rom_base_reg; 4077 } else if (resno < PCI_BRIDGE_RESOURCES) { 4078 /* device specific resource */ 4079 reg = pci_iov_resource_bar(dev, resno, type); 4080 if (reg) 4081 return reg; 4082 } 4083 4084 dev_err(&dev->dev, "BAR %d: invalid resource\n", resno); 4085 return 0; 4086 } 4087 4088 /* Some architectures require additional programming to enable VGA */ 4089 static arch_set_vga_state_t arch_set_vga_state; 4090 4091 void __init pci_register_set_vga_state(arch_set_vga_state_t func) 4092 { 4093 arch_set_vga_state = func; /* NULL disables */ 4094 } 4095 4096 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode, 4097 unsigned int command_bits, u32 flags) 4098 { 4099 if (arch_set_vga_state) 4100 return arch_set_vga_state(dev, decode, command_bits, 4101 flags); 4102 return 0; 4103 } 4104 4105 /** 4106 * pci_set_vga_state - set VGA decode state on device and parents if requested 4107 * @dev: the PCI device 4108 * @decode: true = enable decoding, false = disable decoding 4109 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY 4110 * @flags: traverse ancestors and change bridges 4111 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE 4112 */ 4113 int pci_set_vga_state(struct pci_dev *dev, bool decode, 4114 unsigned int command_bits, u32 flags) 4115 { 4116 struct pci_bus *bus; 4117 struct pci_dev *bridge; 4118 u16 cmd; 4119 int rc; 4120 4121 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) & (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY))); 4122 4123 /* ARCH specific VGA enables */ 4124 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags); 4125 if (rc) 4126 return rc; 4127 4128 if (flags & PCI_VGA_STATE_CHANGE_DECODES) { 4129 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4130 if (decode == true) 4131 cmd |= command_bits; 4132 else 4133 cmd &= ~command_bits; 4134 pci_write_config_word(dev, PCI_COMMAND, cmd); 4135 } 4136 4137 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE)) 4138 return 0; 4139 4140 bus = dev->bus; 4141 while (bus) { 4142 bridge = bus->self; 4143 if (bridge) { 4144 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL, 4145 &cmd); 4146 if (decode == true) 4147 cmd |= PCI_BRIDGE_CTL_VGA; 4148 else 4149 cmd &= ~PCI_BRIDGE_CTL_VGA; 4150 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL, 4151 cmd); 4152 } 4153 bus = bus->parent; 4154 } 4155 return 0; 4156 } 4157 4158 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE 4159 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0}; 4160 static DEFINE_SPINLOCK(resource_alignment_lock); 4161 4162 /** 4163 * pci_specified_resource_alignment - get resource alignment specified by user. 4164 * @dev: the PCI device to get 4165 * 4166 * RETURNS: Resource alignment if it is specified. 4167 * Zero if it is not specified. 4168 */ 4169 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev) 4170 { 4171 int seg, bus, slot, func, align_order, count; 4172 resource_size_t align = 0; 4173 char *p; 4174 4175 spin_lock(&resource_alignment_lock); 4176 p = resource_alignment_param; 4177 while (*p) { 4178 count = 0; 4179 if (sscanf(p, "%d%n", &align_order, &count) == 1 && 4180 p[count] == '@') { 4181 p += count + 1; 4182 } else { 4183 align_order = -1; 4184 } 4185 if (sscanf(p, "%x:%x:%x.%x%n", 4186 &seg, &bus, &slot, &func, &count) != 4) { 4187 seg = 0; 4188 if (sscanf(p, "%x:%x.%x%n", 4189 &bus, &slot, &func, &count) != 3) { 4190 /* Invalid format */ 4191 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n", 4192 p); 4193 break; 4194 } 4195 } 4196 p += count; 4197 if (seg == pci_domain_nr(dev->bus) && 4198 bus == dev->bus->number && 4199 slot == PCI_SLOT(dev->devfn) && 4200 func == PCI_FUNC(dev->devfn)) { 4201 if (align_order == -1) { 4202 align = PAGE_SIZE; 4203 } else { 4204 align = 1 << align_order; 4205 } 4206 /* Found */ 4207 break; 4208 } 4209 if (*p != ';' && *p != ',') { 4210 /* End of param or invalid format */ 4211 break; 4212 } 4213 p++; 4214 } 4215 spin_unlock(&resource_alignment_lock); 4216 return align; 4217 } 4218 4219 /* 4220 * This function disables memory decoding and releases memory resources 4221 * of the device specified by kernel's boot parameter 'pci=resource_alignment='. 4222 * It also rounds up size to specified alignment. 4223 * Later on, the kernel will assign page-aligned memory resource back 4224 * to the device. 4225 */ 4226 void pci_reassigndev_resource_alignment(struct pci_dev *dev) 4227 { 4228 int i; 4229 struct resource *r; 4230 resource_size_t align, size; 4231 u16 command; 4232 4233 /* check if specified PCI is target device to reassign */ 4234 align = pci_specified_resource_alignment(dev); 4235 if (!align) 4236 return; 4237 4238 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL && 4239 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) { 4240 dev_warn(&dev->dev, 4241 "Can't reassign resources to host bridge.\n"); 4242 return; 4243 } 4244 4245 dev_info(&dev->dev, 4246 "Disabling memory decoding and releasing memory resources.\n"); 4247 pci_read_config_word(dev, PCI_COMMAND, &command); 4248 command &= ~PCI_COMMAND_MEMORY; 4249 pci_write_config_word(dev, PCI_COMMAND, command); 4250 4251 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) { 4252 r = &dev->resource[i]; 4253 if (!(r->flags & IORESOURCE_MEM)) 4254 continue; 4255 size = resource_size(r); 4256 if (size < align) { 4257 size = align; 4258 dev_info(&dev->dev, 4259 "Rounding up size of resource #%d to %#llx.\n", 4260 i, (unsigned long long)size); 4261 } 4262 r->end = size - 1; 4263 r->start = 0; 4264 } 4265 /* Need to disable bridge's resource window, 4266 * to enable the kernel to reassign new resource 4267 * window later on. 4268 */ 4269 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE && 4270 (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) { 4271 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) { 4272 r = &dev->resource[i]; 4273 if (!(r->flags & IORESOURCE_MEM)) 4274 continue; 4275 r->end = resource_size(r) - 1; 4276 r->start = 0; 4277 } 4278 pci_disable_bridge_window(dev); 4279 } 4280 } 4281 4282 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count) 4283 { 4284 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1) 4285 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1; 4286 spin_lock(&resource_alignment_lock); 4287 strncpy(resource_alignment_param, buf, count); 4288 resource_alignment_param[count] = '\0'; 4289 spin_unlock(&resource_alignment_lock); 4290 return count; 4291 } 4292 4293 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size) 4294 { 4295 size_t count; 4296 spin_lock(&resource_alignment_lock); 4297 count = snprintf(buf, size, "%s", resource_alignment_param); 4298 spin_unlock(&resource_alignment_lock); 4299 return count; 4300 } 4301 4302 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf) 4303 { 4304 return pci_get_resource_alignment_param(buf, PAGE_SIZE); 4305 } 4306 4307 static ssize_t pci_resource_alignment_store(struct bus_type *bus, 4308 const char *buf, size_t count) 4309 { 4310 return pci_set_resource_alignment_param(buf, count); 4311 } 4312 4313 BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show, 4314 pci_resource_alignment_store); 4315 4316 static int __init pci_resource_alignment_sysfs_init(void) 4317 { 4318 return bus_create_file(&pci_bus_type, 4319 &bus_attr_resource_alignment); 4320 } 4321 4322 late_initcall(pci_resource_alignment_sysfs_init); 4323 4324 static void pci_no_domains(void) 4325 { 4326 #ifdef CONFIG_PCI_DOMAINS 4327 pci_domains_supported = 0; 4328 #endif 4329 } 4330 4331 /** 4332 * pci_ext_cfg_avail - can we access extended PCI config space? 4333 * 4334 * Returns 1 if we can access PCI extended config space (offsets 4335 * greater than 0xff). This is the default implementation. Architecture 4336 * implementations can override this. 4337 */ 4338 int __weak pci_ext_cfg_avail(void) 4339 { 4340 return 1; 4341 } 4342 4343 void __weak pci_fixup_cardbus(struct pci_bus *bus) 4344 { 4345 } 4346 EXPORT_SYMBOL(pci_fixup_cardbus); 4347 4348 static int __init pci_setup(char *str) 4349 { 4350 while (str) { 4351 char *k = strchr(str, ','); 4352 if (k) 4353 *k++ = 0; 4354 if (*str && (str = pcibios_setup(str)) && *str) { 4355 if (!strcmp(str, "nomsi")) { 4356 pci_no_msi(); 4357 } else if (!strcmp(str, "noaer")) { 4358 pci_no_aer(); 4359 } else if (!strncmp(str, "realloc=", 8)) { 4360 pci_realloc_get_opt(str + 8); 4361 } else if (!strncmp(str, "realloc", 7)) { 4362 pci_realloc_get_opt("on"); 4363 } else if (!strcmp(str, "nodomains")) { 4364 pci_no_domains(); 4365 } else if (!strncmp(str, "noari", 5)) { 4366 pcie_ari_disabled = true; 4367 } else if (!strncmp(str, "cbiosize=", 9)) { 4368 pci_cardbus_io_size = memparse(str + 9, &str); 4369 } else if (!strncmp(str, "cbmemsize=", 10)) { 4370 pci_cardbus_mem_size = memparse(str + 10, &str); 4371 } else if (!strncmp(str, "resource_alignment=", 19)) { 4372 pci_set_resource_alignment_param(str + 19, 4373 strlen(str + 19)); 4374 } else if (!strncmp(str, "ecrc=", 5)) { 4375 pcie_ecrc_get_policy(str + 5); 4376 } else if (!strncmp(str, "hpiosize=", 9)) { 4377 pci_hotplug_io_size = memparse(str + 9, &str); 4378 } else if (!strncmp(str, "hpmemsize=", 10)) { 4379 pci_hotplug_mem_size = memparse(str + 10, &str); 4380 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) { 4381 pcie_bus_config = PCIE_BUS_TUNE_OFF; 4382 } else if (!strncmp(str, "pcie_bus_safe", 13)) { 4383 pcie_bus_config = PCIE_BUS_SAFE; 4384 } else if (!strncmp(str, "pcie_bus_perf", 13)) { 4385 pcie_bus_config = PCIE_BUS_PERFORMANCE; 4386 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) { 4387 pcie_bus_config = PCIE_BUS_PEER2PEER; 4388 } else if (!strncmp(str, "pcie_scan_all", 13)) { 4389 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS); 4390 } else { 4391 printk(KERN_ERR "PCI: Unknown option `%s'\n", 4392 str); 4393 } 4394 } 4395 str = k; 4396 } 4397 return 0; 4398 } 4399 early_param("pci", pci_setup); 4400 4401 EXPORT_SYMBOL(pci_reenable_device); 4402 EXPORT_SYMBOL(pci_enable_device_io); 4403 EXPORT_SYMBOL(pci_enable_device_mem); 4404 EXPORT_SYMBOL(pci_enable_device); 4405 EXPORT_SYMBOL(pcim_enable_device); 4406 EXPORT_SYMBOL(pcim_pin_device); 4407 EXPORT_SYMBOL(pci_disable_device); 4408 EXPORT_SYMBOL(pci_find_capability); 4409 EXPORT_SYMBOL(pci_bus_find_capability); 4410 EXPORT_SYMBOL(pci_release_regions); 4411 EXPORT_SYMBOL(pci_request_regions); 4412 EXPORT_SYMBOL(pci_request_regions_exclusive); 4413 EXPORT_SYMBOL(pci_release_region); 4414 EXPORT_SYMBOL(pci_request_region); 4415 EXPORT_SYMBOL(pci_request_region_exclusive); 4416 EXPORT_SYMBOL(pci_release_selected_regions); 4417 EXPORT_SYMBOL(pci_request_selected_regions); 4418 EXPORT_SYMBOL(pci_request_selected_regions_exclusive); 4419 EXPORT_SYMBOL(pci_set_master); 4420 EXPORT_SYMBOL(pci_clear_master); 4421 EXPORT_SYMBOL(pci_set_mwi); 4422 EXPORT_SYMBOL(pci_try_set_mwi); 4423 EXPORT_SYMBOL(pci_clear_mwi); 4424 EXPORT_SYMBOL_GPL(pci_intx); 4425 EXPORT_SYMBOL(pci_assign_resource); 4426 EXPORT_SYMBOL(pci_find_parent_resource); 4427 EXPORT_SYMBOL(pci_select_bars); 4428 4429 EXPORT_SYMBOL(pci_set_power_state); 4430 EXPORT_SYMBOL(pci_save_state); 4431 EXPORT_SYMBOL(pci_restore_state); 4432 EXPORT_SYMBOL(pci_pme_capable); 4433 EXPORT_SYMBOL(pci_pme_active); 4434 EXPORT_SYMBOL(pci_wake_from_d3); 4435 EXPORT_SYMBOL(pci_target_state); 4436 EXPORT_SYMBOL(pci_prepare_to_sleep); 4437 EXPORT_SYMBOL(pci_back_from_sleep); 4438 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state); 4439