xref: /openbmc/linux/drivers/pci/pci.c (revision 5bd8e16d)
1 /*
2  *	PCI Bus Services, see include/linux/pci.h for further explanation.
3  *
4  *	Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5  *	David Mosberger-Tang
6  *
7  *	Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/pci.h>
14 #include <linux/pm.h>
15 #include <linux/slab.h>
16 #include <linux/module.h>
17 #include <linux/spinlock.h>
18 #include <linux/string.h>
19 #include <linux/log2.h>
20 #include <linux/pci-aspm.h>
21 #include <linux/pm_wakeup.h>
22 #include <linux/interrupt.h>
23 #include <linux/device.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/pci_hotplug.h>
26 #include <asm-generic/pci-bridge.h>
27 #include <asm/setup.h>
28 #include "pci.h"
29 
30 const char *pci_power_names[] = {
31 	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
32 };
33 EXPORT_SYMBOL_GPL(pci_power_names);
34 
35 int isa_dma_bridge_buggy;
36 EXPORT_SYMBOL(isa_dma_bridge_buggy);
37 
38 int pci_pci_problems;
39 EXPORT_SYMBOL(pci_pci_problems);
40 
41 unsigned int pci_pm_d3_delay;
42 
43 static void pci_pme_list_scan(struct work_struct *work);
44 
45 static LIST_HEAD(pci_pme_list);
46 static DEFINE_MUTEX(pci_pme_list_mutex);
47 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
48 
49 struct pci_pme_device {
50 	struct list_head list;
51 	struct pci_dev *dev;
52 };
53 
54 #define PME_TIMEOUT 1000 /* How long between PME checks */
55 
56 static void pci_dev_d3_sleep(struct pci_dev *dev)
57 {
58 	unsigned int delay = dev->d3_delay;
59 
60 	if (delay < pci_pm_d3_delay)
61 		delay = pci_pm_d3_delay;
62 
63 	msleep(delay);
64 }
65 
66 #ifdef CONFIG_PCI_DOMAINS
67 int pci_domains_supported = 1;
68 #endif
69 
70 #define DEFAULT_CARDBUS_IO_SIZE		(256)
71 #define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
72 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
73 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
74 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
75 
76 #define DEFAULT_HOTPLUG_IO_SIZE		(256)
77 #define DEFAULT_HOTPLUG_MEM_SIZE	(2*1024*1024)
78 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
79 unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
80 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
81 
82 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
83 
84 /*
85  * The default CLS is used if arch didn't set CLS explicitly and not
86  * all pci devices agree on the same value.  Arch can override either
87  * the dfl or actual value as it sees fit.  Don't forget this is
88  * measured in 32-bit words, not bytes.
89  */
90 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
91 u8 pci_cache_line_size;
92 
93 /*
94  * If we set up a device for bus mastering, we need to check the latency
95  * timer as certain BIOSes forget to set it properly.
96  */
97 unsigned int pcibios_max_latency = 255;
98 
99 /* If set, the PCIe ARI capability will not be used. */
100 static bool pcie_ari_disabled;
101 
102 /**
103  * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
104  * @bus: pointer to PCI bus structure to search
105  *
106  * Given a PCI bus, returns the highest PCI bus number present in the set
107  * including the given PCI bus and its list of child PCI buses.
108  */
109 unsigned char pci_bus_max_busnr(struct pci_bus* bus)
110 {
111 	struct list_head *tmp;
112 	unsigned char max, n;
113 
114 	max = bus->busn_res.end;
115 	list_for_each(tmp, &bus->children) {
116 		n = pci_bus_max_busnr(pci_bus_b(tmp));
117 		if(n > max)
118 			max = n;
119 	}
120 	return max;
121 }
122 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
123 
124 #ifdef CONFIG_HAS_IOMEM
125 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
126 {
127 	/*
128 	 * Make sure the BAR is actually a memory resource, not an IO resource
129 	 */
130 	if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
131 		WARN_ON(1);
132 		return NULL;
133 	}
134 	return ioremap_nocache(pci_resource_start(pdev, bar),
135 				     pci_resource_len(pdev, bar));
136 }
137 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
138 #endif
139 
140 #define PCI_FIND_CAP_TTL	48
141 
142 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
143 				   u8 pos, int cap, int *ttl)
144 {
145 	u8 id;
146 
147 	while ((*ttl)--) {
148 		pci_bus_read_config_byte(bus, devfn, pos, &pos);
149 		if (pos < 0x40)
150 			break;
151 		pos &= ~3;
152 		pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID,
153 					 &id);
154 		if (id == 0xff)
155 			break;
156 		if (id == cap)
157 			return pos;
158 		pos += PCI_CAP_LIST_NEXT;
159 	}
160 	return 0;
161 }
162 
163 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
164 			       u8 pos, int cap)
165 {
166 	int ttl = PCI_FIND_CAP_TTL;
167 
168 	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
169 }
170 
171 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
172 {
173 	return __pci_find_next_cap(dev->bus, dev->devfn,
174 				   pos + PCI_CAP_LIST_NEXT, cap);
175 }
176 EXPORT_SYMBOL_GPL(pci_find_next_capability);
177 
178 static int __pci_bus_find_cap_start(struct pci_bus *bus,
179 				    unsigned int devfn, u8 hdr_type)
180 {
181 	u16 status;
182 
183 	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
184 	if (!(status & PCI_STATUS_CAP_LIST))
185 		return 0;
186 
187 	switch (hdr_type) {
188 	case PCI_HEADER_TYPE_NORMAL:
189 	case PCI_HEADER_TYPE_BRIDGE:
190 		return PCI_CAPABILITY_LIST;
191 	case PCI_HEADER_TYPE_CARDBUS:
192 		return PCI_CB_CAPABILITY_LIST;
193 	default:
194 		return 0;
195 	}
196 
197 	return 0;
198 }
199 
200 /**
201  * pci_find_capability - query for devices' capabilities
202  * @dev: PCI device to query
203  * @cap: capability code
204  *
205  * Tell if a device supports a given PCI capability.
206  * Returns the address of the requested capability structure within the
207  * device's PCI configuration space or 0 in case the device does not
208  * support it.  Possible values for @cap:
209  *
210  *  %PCI_CAP_ID_PM           Power Management
211  *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
212  *  %PCI_CAP_ID_VPD          Vital Product Data
213  *  %PCI_CAP_ID_SLOTID       Slot Identification
214  *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
215  *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
216  *  %PCI_CAP_ID_PCIX         PCI-X
217  *  %PCI_CAP_ID_EXP          PCI Express
218  */
219 int pci_find_capability(struct pci_dev *dev, int cap)
220 {
221 	int pos;
222 
223 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
224 	if (pos)
225 		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
226 
227 	return pos;
228 }
229 
230 /**
231  * pci_bus_find_capability - query for devices' capabilities
232  * @bus:   the PCI bus to query
233  * @devfn: PCI device to query
234  * @cap:   capability code
235  *
236  * Like pci_find_capability() but works for pci devices that do not have a
237  * pci_dev structure set up yet.
238  *
239  * Returns the address of the requested capability structure within the
240  * device's PCI configuration space or 0 in case the device does not
241  * support it.
242  */
243 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
244 {
245 	int pos;
246 	u8 hdr_type;
247 
248 	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
249 
250 	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
251 	if (pos)
252 		pos = __pci_find_next_cap(bus, devfn, pos, cap);
253 
254 	return pos;
255 }
256 
257 /**
258  * pci_find_next_ext_capability - Find an extended capability
259  * @dev: PCI device to query
260  * @start: address at which to start looking (0 to start at beginning of list)
261  * @cap: capability code
262  *
263  * Returns the address of the next matching extended capability structure
264  * within the device's PCI configuration space or 0 if the device does
265  * not support it.  Some capabilities can occur several times, e.g., the
266  * vendor-specific capability, and this provides a way to find them all.
267  */
268 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
269 {
270 	u32 header;
271 	int ttl;
272 	int pos = PCI_CFG_SPACE_SIZE;
273 
274 	/* minimum 8 bytes per capability */
275 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
276 
277 	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
278 		return 0;
279 
280 	if (start)
281 		pos = start;
282 
283 	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
284 		return 0;
285 
286 	/*
287 	 * If we have no capabilities, this is indicated by cap ID,
288 	 * cap version and next pointer all being 0.
289 	 */
290 	if (header == 0)
291 		return 0;
292 
293 	while (ttl-- > 0) {
294 		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
295 			return pos;
296 
297 		pos = PCI_EXT_CAP_NEXT(header);
298 		if (pos < PCI_CFG_SPACE_SIZE)
299 			break;
300 
301 		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
302 			break;
303 	}
304 
305 	return 0;
306 }
307 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
308 
309 /**
310  * pci_find_ext_capability - Find an extended capability
311  * @dev: PCI device to query
312  * @cap: capability code
313  *
314  * Returns the address of the requested extended capability structure
315  * within the device's PCI configuration space or 0 if the device does
316  * not support it.  Possible values for @cap:
317  *
318  *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
319  *  %PCI_EXT_CAP_ID_VC		Virtual Channel
320  *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
321  *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
322  */
323 int pci_find_ext_capability(struct pci_dev *dev, int cap)
324 {
325 	return pci_find_next_ext_capability(dev, 0, cap);
326 }
327 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
328 
329 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
330 {
331 	int rc, ttl = PCI_FIND_CAP_TTL;
332 	u8 cap, mask;
333 
334 	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
335 		mask = HT_3BIT_CAP_MASK;
336 	else
337 		mask = HT_5BIT_CAP_MASK;
338 
339 	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
340 				      PCI_CAP_ID_HT, &ttl);
341 	while (pos) {
342 		rc = pci_read_config_byte(dev, pos + 3, &cap);
343 		if (rc != PCIBIOS_SUCCESSFUL)
344 			return 0;
345 
346 		if ((cap & mask) == ht_cap)
347 			return pos;
348 
349 		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
350 					      pos + PCI_CAP_LIST_NEXT,
351 					      PCI_CAP_ID_HT, &ttl);
352 	}
353 
354 	return 0;
355 }
356 /**
357  * pci_find_next_ht_capability - query a device's Hypertransport capabilities
358  * @dev: PCI device to query
359  * @pos: Position from which to continue searching
360  * @ht_cap: Hypertransport capability code
361  *
362  * To be used in conjunction with pci_find_ht_capability() to search for
363  * all capabilities matching @ht_cap. @pos should always be a value returned
364  * from pci_find_ht_capability().
365  *
366  * NB. To be 100% safe against broken PCI devices, the caller should take
367  * steps to avoid an infinite loop.
368  */
369 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
370 {
371 	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
372 }
373 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
374 
375 /**
376  * pci_find_ht_capability - query a device's Hypertransport capabilities
377  * @dev: PCI device to query
378  * @ht_cap: Hypertransport capability code
379  *
380  * Tell if a device supports a given Hypertransport capability.
381  * Returns an address within the device's PCI configuration space
382  * or 0 in case the device does not support the request capability.
383  * The address points to the PCI capability, of type PCI_CAP_ID_HT,
384  * which has a Hypertransport capability matching @ht_cap.
385  */
386 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
387 {
388 	int pos;
389 
390 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
391 	if (pos)
392 		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
393 
394 	return pos;
395 }
396 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
397 
398 /**
399  * pci_find_parent_resource - return resource region of parent bus of given region
400  * @dev: PCI device structure contains resources to be searched
401  * @res: child resource record for which parent is sought
402  *
403  *  For given resource region of given device, return the resource
404  *  region of parent bus the given region is contained in or where
405  *  it should be allocated from.
406  */
407 struct resource *
408 pci_find_parent_resource(const struct pci_dev *dev, struct resource *res)
409 {
410 	const struct pci_bus *bus = dev->bus;
411 	int i;
412 	struct resource *best = NULL, *r;
413 
414 	pci_bus_for_each_resource(bus, r, i) {
415 		if (!r)
416 			continue;
417 		if (res->start && !(res->start >= r->start && res->end <= r->end))
418 			continue;	/* Not contained */
419 		if ((res->flags ^ r->flags) & (IORESOURCE_IO | IORESOURCE_MEM))
420 			continue;	/* Wrong type */
421 		if (!((res->flags ^ r->flags) & IORESOURCE_PREFETCH))
422 			return r;	/* Exact match */
423 		/* We can't insert a non-prefetch resource inside a prefetchable parent .. */
424 		if (r->flags & IORESOURCE_PREFETCH)
425 			continue;
426 		/* .. but we can put a prefetchable resource inside a non-prefetchable one */
427 		if (!best)
428 			best = r;
429 	}
430 	return best;
431 }
432 
433 /**
434  * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
435  * @dev: PCI device to have its BARs restored
436  *
437  * Restore the BAR values for a given device, so as to make it
438  * accessible by its driver.
439  */
440 static void
441 pci_restore_bars(struct pci_dev *dev)
442 {
443 	int i;
444 
445 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
446 		pci_update_resource(dev, i);
447 }
448 
449 static struct pci_platform_pm_ops *pci_platform_pm;
450 
451 int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
452 {
453 	if (!ops->is_manageable || !ops->set_state || !ops->choose_state
454 	    || !ops->sleep_wake)
455 		return -EINVAL;
456 	pci_platform_pm = ops;
457 	return 0;
458 }
459 
460 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
461 {
462 	return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
463 }
464 
465 static inline int platform_pci_set_power_state(struct pci_dev *dev,
466                                                 pci_power_t t)
467 {
468 	return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
469 }
470 
471 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
472 {
473 	return pci_platform_pm ?
474 			pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
475 }
476 
477 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
478 {
479 	return pci_platform_pm ?
480 			pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
481 }
482 
483 static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable)
484 {
485 	return pci_platform_pm ?
486 			pci_platform_pm->run_wake(dev, enable) : -ENODEV;
487 }
488 
489 /**
490  * pci_raw_set_power_state - Use PCI PM registers to set the power state of
491  *                           given PCI device
492  * @dev: PCI device to handle.
493  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
494  *
495  * RETURN VALUE:
496  * -EINVAL if the requested state is invalid.
497  * -EIO if device does not support PCI PM or its PM capabilities register has a
498  * wrong version, or device doesn't support the requested state.
499  * 0 if device already is in the requested state.
500  * 0 if device's power state has been successfully changed.
501  */
502 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
503 {
504 	u16 pmcsr;
505 	bool need_restore = false;
506 
507 	/* Check if we're already there */
508 	if (dev->current_state == state)
509 		return 0;
510 
511 	if (!dev->pm_cap)
512 		return -EIO;
513 
514 	if (state < PCI_D0 || state > PCI_D3hot)
515 		return -EINVAL;
516 
517 	/* Validate current state:
518 	 * Can enter D0 from any state, but if we can only go deeper
519 	 * to sleep if we're already in a low power state
520 	 */
521 	if (state != PCI_D0 && dev->current_state <= PCI_D3cold
522 	    && dev->current_state > state) {
523 		dev_err(&dev->dev, "invalid power transition "
524 			"(from state %d to %d)\n", dev->current_state, state);
525 		return -EINVAL;
526 	}
527 
528 	/* check if this device supports the desired state */
529 	if ((state == PCI_D1 && !dev->d1_support)
530 	   || (state == PCI_D2 && !dev->d2_support))
531 		return -EIO;
532 
533 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
534 
535 	/* If we're (effectively) in D3, force entire word to 0.
536 	 * This doesn't affect PME_Status, disables PME_En, and
537 	 * sets PowerState to 0.
538 	 */
539 	switch (dev->current_state) {
540 	case PCI_D0:
541 	case PCI_D1:
542 	case PCI_D2:
543 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
544 		pmcsr |= state;
545 		break;
546 	case PCI_D3hot:
547 	case PCI_D3cold:
548 	case PCI_UNKNOWN: /* Boot-up */
549 		if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
550 		 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
551 			need_restore = true;
552 		/* Fall-through: force to D0 */
553 	default:
554 		pmcsr = 0;
555 		break;
556 	}
557 
558 	/* enter specified state */
559 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
560 
561 	/* Mandatory power management transition delays */
562 	/* see PCI PM 1.1 5.6.1 table 18 */
563 	if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
564 		pci_dev_d3_sleep(dev);
565 	else if (state == PCI_D2 || dev->current_state == PCI_D2)
566 		udelay(PCI_PM_D2_DELAY);
567 
568 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
569 	dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
570 	if (dev->current_state != state && printk_ratelimit())
571 		dev_info(&dev->dev, "Refused to change power state, "
572 			"currently in D%d\n", dev->current_state);
573 
574 	/*
575 	 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
576 	 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
577 	 * from D3hot to D0 _may_ perform an internal reset, thereby
578 	 * going to "D0 Uninitialized" rather than "D0 Initialized".
579 	 * For example, at least some versions of the 3c905B and the
580 	 * 3c556B exhibit this behaviour.
581 	 *
582 	 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
583 	 * devices in a D3hot state at boot.  Consequently, we need to
584 	 * restore at least the BARs so that the device will be
585 	 * accessible to its driver.
586 	 */
587 	if (need_restore)
588 		pci_restore_bars(dev);
589 
590 	if (dev->bus->self)
591 		pcie_aspm_pm_state_change(dev->bus->self);
592 
593 	return 0;
594 }
595 
596 /**
597  * pci_update_current_state - Read PCI power state of given device from its
598  *                            PCI PM registers and cache it
599  * @dev: PCI device to handle.
600  * @state: State to cache in case the device doesn't have the PM capability
601  */
602 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
603 {
604 	if (dev->pm_cap) {
605 		u16 pmcsr;
606 
607 		/*
608 		 * Configuration space is not accessible for device in
609 		 * D3cold, so just keep or set D3cold for safety
610 		 */
611 		if (dev->current_state == PCI_D3cold)
612 			return;
613 		if (state == PCI_D3cold) {
614 			dev->current_state = PCI_D3cold;
615 			return;
616 		}
617 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
618 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
619 	} else {
620 		dev->current_state = state;
621 	}
622 }
623 
624 /**
625  * pci_power_up - Put the given device into D0 forcibly
626  * @dev: PCI device to power up
627  */
628 void pci_power_up(struct pci_dev *dev)
629 {
630 	if (platform_pci_power_manageable(dev))
631 		platform_pci_set_power_state(dev, PCI_D0);
632 
633 	pci_raw_set_power_state(dev, PCI_D0);
634 	pci_update_current_state(dev, PCI_D0);
635 }
636 
637 /**
638  * pci_platform_power_transition - Use platform to change device power state
639  * @dev: PCI device to handle.
640  * @state: State to put the device into.
641  */
642 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
643 {
644 	int error;
645 
646 	if (platform_pci_power_manageable(dev)) {
647 		error = platform_pci_set_power_state(dev, state);
648 		if (!error)
649 			pci_update_current_state(dev, state);
650 	} else
651 		error = -ENODEV;
652 
653 	if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
654 		dev->current_state = PCI_D0;
655 
656 	return error;
657 }
658 
659 /**
660  * __pci_start_power_transition - Start power transition of a PCI device
661  * @dev: PCI device to handle.
662  * @state: State to put the device into.
663  */
664 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
665 {
666 	if (state == PCI_D0) {
667 		pci_platform_power_transition(dev, PCI_D0);
668 		/*
669 		 * Mandatory power management transition delays, see
670 		 * PCI Express Base Specification Revision 2.0 Section
671 		 * 6.6.1: Conventional Reset.  Do not delay for
672 		 * devices powered on/off by corresponding bridge,
673 		 * because have already delayed for the bridge.
674 		 */
675 		if (dev->runtime_d3cold) {
676 			msleep(dev->d3cold_delay);
677 			/*
678 			 * When powering on a bridge from D3cold, the
679 			 * whole hierarchy may be powered on into
680 			 * D0uninitialized state, resume them to give
681 			 * them a chance to suspend again
682 			 */
683 			pci_wakeup_bus(dev->subordinate);
684 		}
685 	}
686 }
687 
688 /**
689  * __pci_dev_set_current_state - Set current state of a PCI device
690  * @dev: Device to handle
691  * @data: pointer to state to be set
692  */
693 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
694 {
695 	pci_power_t state = *(pci_power_t *)data;
696 
697 	dev->current_state = state;
698 	return 0;
699 }
700 
701 /**
702  * __pci_bus_set_current_state - Walk given bus and set current state of devices
703  * @bus: Top bus of the subtree to walk.
704  * @state: state to be set
705  */
706 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
707 {
708 	if (bus)
709 		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
710 }
711 
712 /**
713  * __pci_complete_power_transition - Complete power transition of a PCI device
714  * @dev: PCI device to handle.
715  * @state: State to put the device into.
716  *
717  * This function should not be called directly by device drivers.
718  */
719 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
720 {
721 	int ret;
722 
723 	if (state <= PCI_D0)
724 		return -EINVAL;
725 	ret = pci_platform_power_transition(dev, state);
726 	/* Power off the bridge may power off the whole hierarchy */
727 	if (!ret && state == PCI_D3cold)
728 		__pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
729 	return ret;
730 }
731 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
732 
733 /**
734  * pci_set_power_state - Set the power state of a PCI device
735  * @dev: PCI device to handle.
736  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
737  *
738  * Transition a device to a new power state, using the platform firmware and/or
739  * the device's PCI PM registers.
740  *
741  * RETURN VALUE:
742  * -EINVAL if the requested state is invalid.
743  * -EIO if device does not support PCI PM or its PM capabilities register has a
744  * wrong version, or device doesn't support the requested state.
745  * 0 if device already is in the requested state.
746  * 0 if device's power state has been successfully changed.
747  */
748 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
749 {
750 	int error;
751 
752 	/* bound the state we're entering */
753 	if (state > PCI_D3cold)
754 		state = PCI_D3cold;
755 	else if (state < PCI_D0)
756 		state = PCI_D0;
757 	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
758 		/*
759 		 * If the device or the parent bridge do not support PCI PM,
760 		 * ignore the request if we're doing anything other than putting
761 		 * it into D0 (which would only happen on boot).
762 		 */
763 		return 0;
764 
765 	/* Check if we're already there */
766 	if (dev->current_state == state)
767 		return 0;
768 
769 	__pci_start_power_transition(dev, state);
770 
771 	/* This device is quirked not to be put into D3, so
772 	   don't put it in D3 */
773 	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
774 		return 0;
775 
776 	/*
777 	 * To put device in D3cold, we put device into D3hot in native
778 	 * way, then put device into D3cold with platform ops
779 	 */
780 	error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
781 					PCI_D3hot : state);
782 
783 	if (!__pci_complete_power_transition(dev, state))
784 		error = 0;
785 	/*
786 	 * When aspm_policy is "powersave" this call ensures
787 	 * that ASPM is configured.
788 	 */
789 	if (!error && dev->bus->self)
790 		pcie_aspm_powersave_config_link(dev->bus->self);
791 
792 	return error;
793 }
794 
795 /**
796  * pci_choose_state - Choose the power state of a PCI device
797  * @dev: PCI device to be suspended
798  * @state: target sleep state for the whole system. This is the value
799  *	that is passed to suspend() function.
800  *
801  * Returns PCI power state suitable for given device and given system
802  * message.
803  */
804 
805 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
806 {
807 	pci_power_t ret;
808 
809 	if (!dev->pm_cap)
810 		return PCI_D0;
811 
812 	ret = platform_pci_choose_state(dev);
813 	if (ret != PCI_POWER_ERROR)
814 		return ret;
815 
816 	switch (state.event) {
817 	case PM_EVENT_ON:
818 		return PCI_D0;
819 	case PM_EVENT_FREEZE:
820 	case PM_EVENT_PRETHAW:
821 		/* REVISIT both freeze and pre-thaw "should" use D0 */
822 	case PM_EVENT_SUSPEND:
823 	case PM_EVENT_HIBERNATE:
824 		return PCI_D3hot;
825 	default:
826 		dev_info(&dev->dev, "unrecognized suspend event %d\n",
827 			 state.event);
828 		BUG();
829 	}
830 	return PCI_D0;
831 }
832 
833 EXPORT_SYMBOL(pci_choose_state);
834 
835 #define PCI_EXP_SAVE_REGS	7
836 
837 
838 static struct pci_cap_saved_state *pci_find_saved_cap(
839 	struct pci_dev *pci_dev, char cap)
840 {
841 	struct pci_cap_saved_state *tmp;
842 
843 	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
844 		if (tmp->cap.cap_nr == cap)
845 			return tmp;
846 	}
847 	return NULL;
848 }
849 
850 static int pci_save_pcie_state(struct pci_dev *dev)
851 {
852 	int i = 0;
853 	struct pci_cap_saved_state *save_state;
854 	u16 *cap;
855 
856 	if (!pci_is_pcie(dev))
857 		return 0;
858 
859 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
860 	if (!save_state) {
861 		dev_err(&dev->dev, "buffer not found in %s\n", __func__);
862 		return -ENOMEM;
863 	}
864 
865 	cap = (u16 *)&save_state->cap.data[0];
866 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
867 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
868 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
869 	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
870 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
871 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
872 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
873 
874 	return 0;
875 }
876 
877 static void pci_restore_pcie_state(struct pci_dev *dev)
878 {
879 	int i = 0;
880 	struct pci_cap_saved_state *save_state;
881 	u16 *cap;
882 
883 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
884 	if (!save_state)
885 		return;
886 
887 	cap = (u16 *)&save_state->cap.data[0];
888 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
889 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
890 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
891 	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
892 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
893 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
894 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
895 }
896 
897 
898 static int pci_save_pcix_state(struct pci_dev *dev)
899 {
900 	int pos;
901 	struct pci_cap_saved_state *save_state;
902 
903 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
904 	if (pos <= 0)
905 		return 0;
906 
907 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
908 	if (!save_state) {
909 		dev_err(&dev->dev, "buffer not found in %s\n", __func__);
910 		return -ENOMEM;
911 	}
912 
913 	pci_read_config_word(dev, pos + PCI_X_CMD,
914 			     (u16 *)save_state->cap.data);
915 
916 	return 0;
917 }
918 
919 static void pci_restore_pcix_state(struct pci_dev *dev)
920 {
921 	int i = 0, pos;
922 	struct pci_cap_saved_state *save_state;
923 	u16 *cap;
924 
925 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
926 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
927 	if (!save_state || pos <= 0)
928 		return;
929 	cap = (u16 *)&save_state->cap.data[0];
930 
931 	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
932 }
933 
934 
935 /**
936  * pci_save_state - save the PCI configuration space of a device before suspending
937  * @dev: - PCI device that we're dealing with
938  */
939 int
940 pci_save_state(struct pci_dev *dev)
941 {
942 	int i;
943 	/* XXX: 100% dword access ok here? */
944 	for (i = 0; i < 16; i++)
945 		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
946 	dev->state_saved = true;
947 	if ((i = pci_save_pcie_state(dev)) != 0)
948 		return i;
949 	if ((i = pci_save_pcix_state(dev)) != 0)
950 		return i;
951 	return 0;
952 }
953 
954 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
955 				     u32 saved_val, int retry)
956 {
957 	u32 val;
958 
959 	pci_read_config_dword(pdev, offset, &val);
960 	if (val == saved_val)
961 		return;
962 
963 	for (;;) {
964 		dev_dbg(&pdev->dev, "restoring config space at offset "
965 			"%#x (was %#x, writing %#x)\n", offset, val, saved_val);
966 		pci_write_config_dword(pdev, offset, saved_val);
967 		if (retry-- <= 0)
968 			return;
969 
970 		pci_read_config_dword(pdev, offset, &val);
971 		if (val == saved_val)
972 			return;
973 
974 		mdelay(1);
975 	}
976 }
977 
978 static void pci_restore_config_space_range(struct pci_dev *pdev,
979 					   int start, int end, int retry)
980 {
981 	int index;
982 
983 	for (index = end; index >= start; index--)
984 		pci_restore_config_dword(pdev, 4 * index,
985 					 pdev->saved_config_space[index],
986 					 retry);
987 }
988 
989 static void pci_restore_config_space(struct pci_dev *pdev)
990 {
991 	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
992 		pci_restore_config_space_range(pdev, 10, 15, 0);
993 		/* Restore BARs before the command register. */
994 		pci_restore_config_space_range(pdev, 4, 9, 10);
995 		pci_restore_config_space_range(pdev, 0, 3, 0);
996 	} else {
997 		pci_restore_config_space_range(pdev, 0, 15, 0);
998 	}
999 }
1000 
1001 /**
1002  * pci_restore_state - Restore the saved state of a PCI device
1003  * @dev: - PCI device that we're dealing with
1004  */
1005 void pci_restore_state(struct pci_dev *dev)
1006 {
1007 	if (!dev->state_saved)
1008 		return;
1009 
1010 	/* PCI Express register must be restored first */
1011 	pci_restore_pcie_state(dev);
1012 	pci_restore_ats_state(dev);
1013 
1014 	pci_restore_config_space(dev);
1015 
1016 	pci_restore_pcix_state(dev);
1017 	pci_restore_msi_state(dev);
1018 	pci_restore_iov_state(dev);
1019 
1020 	dev->state_saved = false;
1021 }
1022 
1023 struct pci_saved_state {
1024 	u32 config_space[16];
1025 	struct pci_cap_saved_data cap[0];
1026 };
1027 
1028 /**
1029  * pci_store_saved_state - Allocate and return an opaque struct containing
1030  *			   the device saved state.
1031  * @dev: PCI device that we're dealing with
1032  *
1033  * Rerturn NULL if no state or error.
1034  */
1035 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1036 {
1037 	struct pci_saved_state *state;
1038 	struct pci_cap_saved_state *tmp;
1039 	struct pci_cap_saved_data *cap;
1040 	size_t size;
1041 
1042 	if (!dev->state_saved)
1043 		return NULL;
1044 
1045 	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1046 
1047 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1048 		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1049 
1050 	state = kzalloc(size, GFP_KERNEL);
1051 	if (!state)
1052 		return NULL;
1053 
1054 	memcpy(state->config_space, dev->saved_config_space,
1055 	       sizeof(state->config_space));
1056 
1057 	cap = state->cap;
1058 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1059 		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1060 		memcpy(cap, &tmp->cap, len);
1061 		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1062 	}
1063 	/* Empty cap_save terminates list */
1064 
1065 	return state;
1066 }
1067 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1068 
1069 /**
1070  * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1071  * @dev: PCI device that we're dealing with
1072  * @state: Saved state returned from pci_store_saved_state()
1073  */
1074 int pci_load_saved_state(struct pci_dev *dev, struct pci_saved_state *state)
1075 {
1076 	struct pci_cap_saved_data *cap;
1077 
1078 	dev->state_saved = false;
1079 
1080 	if (!state)
1081 		return 0;
1082 
1083 	memcpy(dev->saved_config_space, state->config_space,
1084 	       sizeof(state->config_space));
1085 
1086 	cap = state->cap;
1087 	while (cap->size) {
1088 		struct pci_cap_saved_state *tmp;
1089 
1090 		tmp = pci_find_saved_cap(dev, cap->cap_nr);
1091 		if (!tmp || tmp->cap.size != cap->size)
1092 			return -EINVAL;
1093 
1094 		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1095 		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1096 		       sizeof(struct pci_cap_saved_data) + cap->size);
1097 	}
1098 
1099 	dev->state_saved = true;
1100 	return 0;
1101 }
1102 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1103 
1104 /**
1105  * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1106  *				   and free the memory allocated for it.
1107  * @dev: PCI device that we're dealing with
1108  * @state: Pointer to saved state returned from pci_store_saved_state()
1109  */
1110 int pci_load_and_free_saved_state(struct pci_dev *dev,
1111 				  struct pci_saved_state **state)
1112 {
1113 	int ret = pci_load_saved_state(dev, *state);
1114 	kfree(*state);
1115 	*state = NULL;
1116 	return ret;
1117 }
1118 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1119 
1120 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1121 {
1122 	int err;
1123 
1124 	err = pci_set_power_state(dev, PCI_D0);
1125 	if (err < 0 && err != -EIO)
1126 		return err;
1127 	err = pcibios_enable_device(dev, bars);
1128 	if (err < 0)
1129 		return err;
1130 	pci_fixup_device(pci_fixup_enable, dev);
1131 
1132 	return 0;
1133 }
1134 
1135 /**
1136  * pci_reenable_device - Resume abandoned device
1137  * @dev: PCI device to be resumed
1138  *
1139  *  Note this function is a backend of pci_default_resume and is not supposed
1140  *  to be called by normal code, write proper resume handler and use it instead.
1141  */
1142 int pci_reenable_device(struct pci_dev *dev)
1143 {
1144 	if (pci_is_enabled(dev))
1145 		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1146 	return 0;
1147 }
1148 
1149 static void pci_enable_bridge(struct pci_dev *dev)
1150 {
1151 	int retval;
1152 
1153 	if (!dev)
1154 		return;
1155 
1156 	pci_enable_bridge(dev->bus->self);
1157 
1158 	if (pci_is_enabled(dev))
1159 		return;
1160 	retval = pci_enable_device(dev);
1161 	if (retval)
1162 		dev_err(&dev->dev, "Error enabling bridge (%d), continuing\n",
1163 			retval);
1164 	pci_set_master(dev);
1165 }
1166 
1167 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1168 {
1169 	int err;
1170 	int i, bars = 0;
1171 
1172 	/*
1173 	 * Power state could be unknown at this point, either due to a fresh
1174 	 * boot or a device removal call.  So get the current power state
1175 	 * so that things like MSI message writing will behave as expected
1176 	 * (e.g. if the device really is in D0 at enable time).
1177 	 */
1178 	if (dev->pm_cap) {
1179 		u16 pmcsr;
1180 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1181 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1182 	}
1183 
1184 	if (atomic_inc_return(&dev->enable_cnt) > 1)
1185 		return 0;		/* already enabled */
1186 
1187 	pci_enable_bridge(dev->bus->self);
1188 
1189 	/* only skip sriov related */
1190 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1191 		if (dev->resource[i].flags & flags)
1192 			bars |= (1 << i);
1193 	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1194 		if (dev->resource[i].flags & flags)
1195 			bars |= (1 << i);
1196 
1197 	err = do_pci_enable_device(dev, bars);
1198 	if (err < 0)
1199 		atomic_dec(&dev->enable_cnt);
1200 	return err;
1201 }
1202 
1203 /**
1204  * pci_enable_device_io - Initialize a device for use with IO space
1205  * @dev: PCI device to be initialized
1206  *
1207  *  Initialize device before it's used by a driver. Ask low-level code
1208  *  to enable I/O resources. Wake up the device if it was suspended.
1209  *  Beware, this function can fail.
1210  */
1211 int pci_enable_device_io(struct pci_dev *dev)
1212 {
1213 	return pci_enable_device_flags(dev, IORESOURCE_IO);
1214 }
1215 
1216 /**
1217  * pci_enable_device_mem - Initialize a device for use with Memory space
1218  * @dev: PCI device to be initialized
1219  *
1220  *  Initialize device before it's used by a driver. Ask low-level code
1221  *  to enable Memory resources. Wake up the device if it was suspended.
1222  *  Beware, this function can fail.
1223  */
1224 int pci_enable_device_mem(struct pci_dev *dev)
1225 {
1226 	return pci_enable_device_flags(dev, IORESOURCE_MEM);
1227 }
1228 
1229 /**
1230  * pci_enable_device - Initialize device before it's used by a driver.
1231  * @dev: PCI device to be initialized
1232  *
1233  *  Initialize device before it's used by a driver. Ask low-level code
1234  *  to enable I/O and memory. Wake up the device if it was suspended.
1235  *  Beware, this function can fail.
1236  *
1237  *  Note we don't actually enable the device many times if we call
1238  *  this function repeatedly (we just increment the count).
1239  */
1240 int pci_enable_device(struct pci_dev *dev)
1241 {
1242 	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1243 }
1244 
1245 /*
1246  * Managed PCI resources.  This manages device on/off, intx/msi/msix
1247  * on/off and BAR regions.  pci_dev itself records msi/msix status, so
1248  * there's no need to track it separately.  pci_devres is initialized
1249  * when a device is enabled using managed PCI device enable interface.
1250  */
1251 struct pci_devres {
1252 	unsigned int enabled:1;
1253 	unsigned int pinned:1;
1254 	unsigned int orig_intx:1;
1255 	unsigned int restore_intx:1;
1256 	u32 region_mask;
1257 };
1258 
1259 static void pcim_release(struct device *gendev, void *res)
1260 {
1261 	struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
1262 	struct pci_devres *this = res;
1263 	int i;
1264 
1265 	if (dev->msi_enabled)
1266 		pci_disable_msi(dev);
1267 	if (dev->msix_enabled)
1268 		pci_disable_msix(dev);
1269 
1270 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1271 		if (this->region_mask & (1 << i))
1272 			pci_release_region(dev, i);
1273 
1274 	if (this->restore_intx)
1275 		pci_intx(dev, this->orig_intx);
1276 
1277 	if (this->enabled && !this->pinned)
1278 		pci_disable_device(dev);
1279 }
1280 
1281 static struct pci_devres * get_pci_dr(struct pci_dev *pdev)
1282 {
1283 	struct pci_devres *dr, *new_dr;
1284 
1285 	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1286 	if (dr)
1287 		return dr;
1288 
1289 	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1290 	if (!new_dr)
1291 		return NULL;
1292 	return devres_get(&pdev->dev, new_dr, NULL, NULL);
1293 }
1294 
1295 static struct pci_devres * find_pci_dr(struct pci_dev *pdev)
1296 {
1297 	if (pci_is_managed(pdev))
1298 		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1299 	return NULL;
1300 }
1301 
1302 /**
1303  * pcim_enable_device - Managed pci_enable_device()
1304  * @pdev: PCI device to be initialized
1305  *
1306  * Managed pci_enable_device().
1307  */
1308 int pcim_enable_device(struct pci_dev *pdev)
1309 {
1310 	struct pci_devres *dr;
1311 	int rc;
1312 
1313 	dr = get_pci_dr(pdev);
1314 	if (unlikely(!dr))
1315 		return -ENOMEM;
1316 	if (dr->enabled)
1317 		return 0;
1318 
1319 	rc = pci_enable_device(pdev);
1320 	if (!rc) {
1321 		pdev->is_managed = 1;
1322 		dr->enabled = 1;
1323 	}
1324 	return rc;
1325 }
1326 
1327 /**
1328  * pcim_pin_device - Pin managed PCI device
1329  * @pdev: PCI device to pin
1330  *
1331  * Pin managed PCI device @pdev.  Pinned device won't be disabled on
1332  * driver detach.  @pdev must have been enabled with
1333  * pcim_enable_device().
1334  */
1335 void pcim_pin_device(struct pci_dev *pdev)
1336 {
1337 	struct pci_devres *dr;
1338 
1339 	dr = find_pci_dr(pdev);
1340 	WARN_ON(!dr || !dr->enabled);
1341 	if (dr)
1342 		dr->pinned = 1;
1343 }
1344 
1345 /*
1346  * pcibios_add_device - provide arch specific hooks when adding device dev
1347  * @dev: the PCI device being added
1348  *
1349  * Permits the platform to provide architecture specific functionality when
1350  * devices are added. This is the default implementation. Architecture
1351  * implementations can override this.
1352  */
1353 int __weak pcibios_add_device (struct pci_dev *dev)
1354 {
1355 	return 0;
1356 }
1357 
1358 /**
1359  * pcibios_release_device - provide arch specific hooks when releasing device dev
1360  * @dev: the PCI device being released
1361  *
1362  * Permits the platform to provide architecture specific functionality when
1363  * devices are released. This is the default implementation. Architecture
1364  * implementations can override this.
1365  */
1366 void __weak pcibios_release_device(struct pci_dev *dev) {}
1367 
1368 /**
1369  * pcibios_disable_device - disable arch specific PCI resources for device dev
1370  * @dev: the PCI device to disable
1371  *
1372  * Disables architecture specific PCI resources for the device. This
1373  * is the default implementation. Architecture implementations can
1374  * override this.
1375  */
1376 void __weak pcibios_disable_device (struct pci_dev *dev) {}
1377 
1378 static void do_pci_disable_device(struct pci_dev *dev)
1379 {
1380 	u16 pci_command;
1381 
1382 	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1383 	if (pci_command & PCI_COMMAND_MASTER) {
1384 		pci_command &= ~PCI_COMMAND_MASTER;
1385 		pci_write_config_word(dev, PCI_COMMAND, pci_command);
1386 	}
1387 
1388 	pcibios_disable_device(dev);
1389 }
1390 
1391 /**
1392  * pci_disable_enabled_device - Disable device without updating enable_cnt
1393  * @dev: PCI device to disable
1394  *
1395  * NOTE: This function is a backend of PCI power management routines and is
1396  * not supposed to be called drivers.
1397  */
1398 void pci_disable_enabled_device(struct pci_dev *dev)
1399 {
1400 	if (pci_is_enabled(dev))
1401 		do_pci_disable_device(dev);
1402 }
1403 
1404 /**
1405  * pci_disable_device - Disable PCI device after use
1406  * @dev: PCI device to be disabled
1407  *
1408  * Signal to the system that the PCI device is not in use by the system
1409  * anymore.  This only involves disabling PCI bus-mastering, if active.
1410  *
1411  * Note we don't actually disable the device until all callers of
1412  * pci_enable_device() have called pci_disable_device().
1413  */
1414 void
1415 pci_disable_device(struct pci_dev *dev)
1416 {
1417 	struct pci_devres *dr;
1418 
1419 	dr = find_pci_dr(dev);
1420 	if (dr)
1421 		dr->enabled = 0;
1422 
1423 	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1424 		      "disabling already-disabled device");
1425 
1426 	if (atomic_dec_return(&dev->enable_cnt) != 0)
1427 		return;
1428 
1429 	do_pci_disable_device(dev);
1430 
1431 	dev->is_busmaster = 0;
1432 }
1433 
1434 /**
1435  * pcibios_set_pcie_reset_state - set reset state for device dev
1436  * @dev: the PCIe device reset
1437  * @state: Reset state to enter into
1438  *
1439  *
1440  * Sets the PCIe reset state for the device. This is the default
1441  * implementation. Architecture implementations can override this.
1442  */
1443 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1444 					enum pcie_reset_state state)
1445 {
1446 	return -EINVAL;
1447 }
1448 
1449 /**
1450  * pci_set_pcie_reset_state - set reset state for device dev
1451  * @dev: the PCIe device reset
1452  * @state: Reset state to enter into
1453  *
1454  *
1455  * Sets the PCI reset state for the device.
1456  */
1457 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1458 {
1459 	return pcibios_set_pcie_reset_state(dev, state);
1460 }
1461 
1462 /**
1463  * pci_check_pme_status - Check if given device has generated PME.
1464  * @dev: Device to check.
1465  *
1466  * Check the PME status of the device and if set, clear it and clear PME enable
1467  * (if set).  Return 'true' if PME status and PME enable were both set or
1468  * 'false' otherwise.
1469  */
1470 bool pci_check_pme_status(struct pci_dev *dev)
1471 {
1472 	int pmcsr_pos;
1473 	u16 pmcsr;
1474 	bool ret = false;
1475 
1476 	if (!dev->pm_cap)
1477 		return false;
1478 
1479 	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1480 	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1481 	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1482 		return false;
1483 
1484 	/* Clear PME status. */
1485 	pmcsr |= PCI_PM_CTRL_PME_STATUS;
1486 	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1487 		/* Disable PME to avoid interrupt flood. */
1488 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1489 		ret = true;
1490 	}
1491 
1492 	pci_write_config_word(dev, pmcsr_pos, pmcsr);
1493 
1494 	return ret;
1495 }
1496 
1497 /**
1498  * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1499  * @dev: Device to handle.
1500  * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1501  *
1502  * Check if @dev has generated PME and queue a resume request for it in that
1503  * case.
1504  */
1505 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1506 {
1507 	if (pme_poll_reset && dev->pme_poll)
1508 		dev->pme_poll = false;
1509 
1510 	if (pci_check_pme_status(dev)) {
1511 		pci_wakeup_event(dev);
1512 		pm_request_resume(&dev->dev);
1513 	}
1514 	return 0;
1515 }
1516 
1517 /**
1518  * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1519  * @bus: Top bus of the subtree to walk.
1520  */
1521 void pci_pme_wakeup_bus(struct pci_bus *bus)
1522 {
1523 	if (bus)
1524 		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1525 }
1526 
1527 /**
1528  * pci_wakeup - Wake up a PCI device
1529  * @pci_dev: Device to handle.
1530  * @ign: ignored parameter
1531  */
1532 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
1533 {
1534 	pci_wakeup_event(pci_dev);
1535 	pm_request_resume(&pci_dev->dev);
1536 	return 0;
1537 }
1538 
1539 /**
1540  * pci_wakeup_bus - Walk given bus and wake up devices on it
1541  * @bus: Top bus of the subtree to walk.
1542  */
1543 void pci_wakeup_bus(struct pci_bus *bus)
1544 {
1545 	if (bus)
1546 		pci_walk_bus(bus, pci_wakeup, NULL);
1547 }
1548 
1549 /**
1550  * pci_pme_capable - check the capability of PCI device to generate PME#
1551  * @dev: PCI device to handle.
1552  * @state: PCI state from which device will issue PME#.
1553  */
1554 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1555 {
1556 	if (!dev->pm_cap)
1557 		return false;
1558 
1559 	return !!(dev->pme_support & (1 << state));
1560 }
1561 
1562 static void pci_pme_list_scan(struct work_struct *work)
1563 {
1564 	struct pci_pme_device *pme_dev, *n;
1565 
1566 	mutex_lock(&pci_pme_list_mutex);
1567 	if (!list_empty(&pci_pme_list)) {
1568 		list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1569 			if (pme_dev->dev->pme_poll) {
1570 				struct pci_dev *bridge;
1571 
1572 				bridge = pme_dev->dev->bus->self;
1573 				/*
1574 				 * If bridge is in low power state, the
1575 				 * configuration space of subordinate devices
1576 				 * may be not accessible
1577 				 */
1578 				if (bridge && bridge->current_state != PCI_D0)
1579 					continue;
1580 				pci_pme_wakeup(pme_dev->dev, NULL);
1581 			} else {
1582 				list_del(&pme_dev->list);
1583 				kfree(pme_dev);
1584 			}
1585 		}
1586 		if (!list_empty(&pci_pme_list))
1587 			schedule_delayed_work(&pci_pme_work,
1588 					      msecs_to_jiffies(PME_TIMEOUT));
1589 	}
1590 	mutex_unlock(&pci_pme_list_mutex);
1591 }
1592 
1593 /**
1594  * pci_pme_active - enable or disable PCI device's PME# function
1595  * @dev: PCI device to handle.
1596  * @enable: 'true' to enable PME# generation; 'false' to disable it.
1597  *
1598  * The caller must verify that the device is capable of generating PME# before
1599  * calling this function with @enable equal to 'true'.
1600  */
1601 void pci_pme_active(struct pci_dev *dev, bool enable)
1602 {
1603 	u16 pmcsr;
1604 
1605 	if (!dev->pme_support)
1606 		return;
1607 
1608 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1609 	/* Clear PME_Status by writing 1 to it and enable PME# */
1610 	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1611 	if (!enable)
1612 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1613 
1614 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1615 
1616 	/*
1617 	 * PCI (as opposed to PCIe) PME requires that the device have
1618 	 * its PME# line hooked up correctly. Not all hardware vendors
1619 	 * do this, so the PME never gets delivered and the device
1620 	 * remains asleep. The easiest way around this is to
1621 	 * periodically walk the list of suspended devices and check
1622 	 * whether any have their PME flag set. The assumption is that
1623 	 * we'll wake up often enough anyway that this won't be a huge
1624 	 * hit, and the power savings from the devices will still be a
1625 	 * win.
1626 	 *
1627 	 * Although PCIe uses in-band PME message instead of PME# line
1628 	 * to report PME, PME does not work for some PCIe devices in
1629 	 * reality.  For example, there are devices that set their PME
1630 	 * status bits, but don't really bother to send a PME message;
1631 	 * there are PCI Express Root Ports that don't bother to
1632 	 * trigger interrupts when they receive PME messages from the
1633 	 * devices below.  So PME poll is used for PCIe devices too.
1634 	 */
1635 
1636 	if (dev->pme_poll) {
1637 		struct pci_pme_device *pme_dev;
1638 		if (enable) {
1639 			pme_dev = kmalloc(sizeof(struct pci_pme_device),
1640 					  GFP_KERNEL);
1641 			if (!pme_dev)
1642 				goto out;
1643 			pme_dev->dev = dev;
1644 			mutex_lock(&pci_pme_list_mutex);
1645 			list_add(&pme_dev->list, &pci_pme_list);
1646 			if (list_is_singular(&pci_pme_list))
1647 				schedule_delayed_work(&pci_pme_work,
1648 						      msecs_to_jiffies(PME_TIMEOUT));
1649 			mutex_unlock(&pci_pme_list_mutex);
1650 		} else {
1651 			mutex_lock(&pci_pme_list_mutex);
1652 			list_for_each_entry(pme_dev, &pci_pme_list, list) {
1653 				if (pme_dev->dev == dev) {
1654 					list_del(&pme_dev->list);
1655 					kfree(pme_dev);
1656 					break;
1657 				}
1658 			}
1659 			mutex_unlock(&pci_pme_list_mutex);
1660 		}
1661 	}
1662 
1663 out:
1664 	dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled");
1665 }
1666 
1667 /**
1668  * __pci_enable_wake - enable PCI device as wakeup event source
1669  * @dev: PCI device affected
1670  * @state: PCI state from which device will issue wakeup events
1671  * @runtime: True if the events are to be generated at run time
1672  * @enable: True to enable event generation; false to disable
1673  *
1674  * This enables the device as a wakeup event source, or disables it.
1675  * When such events involves platform-specific hooks, those hooks are
1676  * called automatically by this routine.
1677  *
1678  * Devices with legacy power management (no standard PCI PM capabilities)
1679  * always require such platform hooks.
1680  *
1681  * RETURN VALUE:
1682  * 0 is returned on success
1683  * -EINVAL is returned if device is not supposed to wake up the system
1684  * Error code depending on the platform is returned if both the platform and
1685  * the native mechanism fail to enable the generation of wake-up events
1686  */
1687 int __pci_enable_wake(struct pci_dev *dev, pci_power_t state,
1688 		      bool runtime, bool enable)
1689 {
1690 	int ret = 0;
1691 
1692 	if (enable && !runtime && !device_may_wakeup(&dev->dev))
1693 		return -EINVAL;
1694 
1695 	/* Don't do the same thing twice in a row for one device. */
1696 	if (!!enable == !!dev->wakeup_prepared)
1697 		return 0;
1698 
1699 	/*
1700 	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1701 	 * Anderson we should be doing PME# wake enable followed by ACPI wake
1702 	 * enable.  To disable wake-up we call the platform first, for symmetry.
1703 	 */
1704 
1705 	if (enable) {
1706 		int error;
1707 
1708 		if (pci_pme_capable(dev, state))
1709 			pci_pme_active(dev, true);
1710 		else
1711 			ret = 1;
1712 		error = runtime ? platform_pci_run_wake(dev, true) :
1713 					platform_pci_sleep_wake(dev, true);
1714 		if (ret)
1715 			ret = error;
1716 		if (!ret)
1717 			dev->wakeup_prepared = true;
1718 	} else {
1719 		if (runtime)
1720 			platform_pci_run_wake(dev, false);
1721 		else
1722 			platform_pci_sleep_wake(dev, false);
1723 		pci_pme_active(dev, false);
1724 		dev->wakeup_prepared = false;
1725 	}
1726 
1727 	return ret;
1728 }
1729 EXPORT_SYMBOL(__pci_enable_wake);
1730 
1731 /**
1732  * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1733  * @dev: PCI device to prepare
1734  * @enable: True to enable wake-up event generation; false to disable
1735  *
1736  * Many drivers want the device to wake up the system from D3_hot or D3_cold
1737  * and this function allows them to set that up cleanly - pci_enable_wake()
1738  * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1739  * ordering constraints.
1740  *
1741  * This function only returns error code if the device is not capable of
1742  * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1743  * enable wake-up power for it.
1744  */
1745 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1746 {
1747 	return pci_pme_capable(dev, PCI_D3cold) ?
1748 			pci_enable_wake(dev, PCI_D3cold, enable) :
1749 			pci_enable_wake(dev, PCI_D3hot, enable);
1750 }
1751 
1752 /**
1753  * pci_target_state - find an appropriate low power state for a given PCI dev
1754  * @dev: PCI device
1755  *
1756  * Use underlying platform code to find a supported low power state for @dev.
1757  * If the platform can't manage @dev, return the deepest state from which it
1758  * can generate wake events, based on any available PME info.
1759  */
1760 pci_power_t pci_target_state(struct pci_dev *dev)
1761 {
1762 	pci_power_t target_state = PCI_D3hot;
1763 
1764 	if (platform_pci_power_manageable(dev)) {
1765 		/*
1766 		 * Call the platform to choose the target state of the device
1767 		 * and enable wake-up from this state if supported.
1768 		 */
1769 		pci_power_t state = platform_pci_choose_state(dev);
1770 
1771 		switch (state) {
1772 		case PCI_POWER_ERROR:
1773 		case PCI_UNKNOWN:
1774 			break;
1775 		case PCI_D1:
1776 		case PCI_D2:
1777 			if (pci_no_d1d2(dev))
1778 				break;
1779 		default:
1780 			target_state = state;
1781 		}
1782 	} else if (!dev->pm_cap) {
1783 		target_state = PCI_D0;
1784 	} else if (device_may_wakeup(&dev->dev)) {
1785 		/*
1786 		 * Find the deepest state from which the device can generate
1787 		 * wake-up events, make it the target state and enable device
1788 		 * to generate PME#.
1789 		 */
1790 		if (dev->pme_support) {
1791 			while (target_state
1792 			      && !(dev->pme_support & (1 << target_state)))
1793 				target_state--;
1794 		}
1795 	}
1796 
1797 	return target_state;
1798 }
1799 
1800 /**
1801  * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1802  * @dev: Device to handle.
1803  *
1804  * Choose the power state appropriate for the device depending on whether
1805  * it can wake up the system and/or is power manageable by the platform
1806  * (PCI_D3hot is the default) and put the device into that state.
1807  */
1808 int pci_prepare_to_sleep(struct pci_dev *dev)
1809 {
1810 	pci_power_t target_state = pci_target_state(dev);
1811 	int error;
1812 
1813 	if (target_state == PCI_POWER_ERROR)
1814 		return -EIO;
1815 
1816 	/* D3cold during system suspend/hibernate is not supported */
1817 	if (target_state > PCI_D3hot)
1818 		target_state = PCI_D3hot;
1819 
1820 	pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
1821 
1822 	error = pci_set_power_state(dev, target_state);
1823 
1824 	if (error)
1825 		pci_enable_wake(dev, target_state, false);
1826 
1827 	return error;
1828 }
1829 
1830 /**
1831  * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1832  * @dev: Device to handle.
1833  *
1834  * Disable device's system wake-up capability and put it into D0.
1835  */
1836 int pci_back_from_sleep(struct pci_dev *dev)
1837 {
1838 	pci_enable_wake(dev, PCI_D0, false);
1839 	return pci_set_power_state(dev, PCI_D0);
1840 }
1841 
1842 /**
1843  * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
1844  * @dev: PCI device being suspended.
1845  *
1846  * Prepare @dev to generate wake-up events at run time and put it into a low
1847  * power state.
1848  */
1849 int pci_finish_runtime_suspend(struct pci_dev *dev)
1850 {
1851 	pci_power_t target_state = pci_target_state(dev);
1852 	int error;
1853 
1854 	if (target_state == PCI_POWER_ERROR)
1855 		return -EIO;
1856 
1857 	dev->runtime_d3cold = target_state == PCI_D3cold;
1858 
1859 	__pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev));
1860 
1861 	error = pci_set_power_state(dev, target_state);
1862 
1863 	if (error) {
1864 		__pci_enable_wake(dev, target_state, true, false);
1865 		dev->runtime_d3cold = false;
1866 	}
1867 
1868 	return error;
1869 }
1870 
1871 /**
1872  * pci_dev_run_wake - Check if device can generate run-time wake-up events.
1873  * @dev: Device to check.
1874  *
1875  * Return true if the device itself is cabable of generating wake-up events
1876  * (through the platform or using the native PCIe PME) or if the device supports
1877  * PME and one of its upstream bridges can generate wake-up events.
1878  */
1879 bool pci_dev_run_wake(struct pci_dev *dev)
1880 {
1881 	struct pci_bus *bus = dev->bus;
1882 
1883 	if (device_run_wake(&dev->dev))
1884 		return true;
1885 
1886 	if (!dev->pme_support)
1887 		return false;
1888 
1889 	while (bus->parent) {
1890 		struct pci_dev *bridge = bus->self;
1891 
1892 		if (device_run_wake(&bridge->dev))
1893 			return true;
1894 
1895 		bus = bus->parent;
1896 	}
1897 
1898 	/* We have reached the root bus. */
1899 	if (bus->bridge)
1900 		return device_run_wake(bus->bridge);
1901 
1902 	return false;
1903 }
1904 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
1905 
1906 void pci_config_pm_runtime_get(struct pci_dev *pdev)
1907 {
1908 	struct device *dev = &pdev->dev;
1909 	struct device *parent = dev->parent;
1910 
1911 	if (parent)
1912 		pm_runtime_get_sync(parent);
1913 	pm_runtime_get_noresume(dev);
1914 	/*
1915 	 * pdev->current_state is set to PCI_D3cold during suspending,
1916 	 * so wait until suspending completes
1917 	 */
1918 	pm_runtime_barrier(dev);
1919 	/*
1920 	 * Only need to resume devices in D3cold, because config
1921 	 * registers are still accessible for devices suspended but
1922 	 * not in D3cold.
1923 	 */
1924 	if (pdev->current_state == PCI_D3cold)
1925 		pm_runtime_resume(dev);
1926 }
1927 
1928 void pci_config_pm_runtime_put(struct pci_dev *pdev)
1929 {
1930 	struct device *dev = &pdev->dev;
1931 	struct device *parent = dev->parent;
1932 
1933 	pm_runtime_put(dev);
1934 	if (parent)
1935 		pm_runtime_put_sync(parent);
1936 }
1937 
1938 /**
1939  * pci_pm_init - Initialize PM functions of given PCI device
1940  * @dev: PCI device to handle.
1941  */
1942 void pci_pm_init(struct pci_dev *dev)
1943 {
1944 	int pm;
1945 	u16 pmc;
1946 
1947 	pm_runtime_forbid(&dev->dev);
1948 	pm_runtime_set_active(&dev->dev);
1949 	pm_runtime_enable(&dev->dev);
1950 	device_enable_async_suspend(&dev->dev);
1951 	dev->wakeup_prepared = false;
1952 
1953 	dev->pm_cap = 0;
1954 	dev->pme_support = 0;
1955 
1956 	/* find PCI PM capability in list */
1957 	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
1958 	if (!pm)
1959 		return;
1960 	/* Check device's ability to generate PME# */
1961 	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
1962 
1963 	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
1964 		dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
1965 			pmc & PCI_PM_CAP_VER_MASK);
1966 		return;
1967 	}
1968 
1969 	dev->pm_cap = pm;
1970 	dev->d3_delay = PCI_PM_D3_WAIT;
1971 	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
1972 	dev->d3cold_allowed = true;
1973 
1974 	dev->d1_support = false;
1975 	dev->d2_support = false;
1976 	if (!pci_no_d1d2(dev)) {
1977 		if (pmc & PCI_PM_CAP_D1)
1978 			dev->d1_support = true;
1979 		if (pmc & PCI_PM_CAP_D2)
1980 			dev->d2_support = true;
1981 
1982 		if (dev->d1_support || dev->d2_support)
1983 			dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
1984 				   dev->d1_support ? " D1" : "",
1985 				   dev->d2_support ? " D2" : "");
1986 	}
1987 
1988 	pmc &= PCI_PM_CAP_PME_MASK;
1989 	if (pmc) {
1990 		dev_printk(KERN_DEBUG, &dev->dev,
1991 			 "PME# supported from%s%s%s%s%s\n",
1992 			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
1993 			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
1994 			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
1995 			 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
1996 			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
1997 		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
1998 		dev->pme_poll = true;
1999 		/*
2000 		 * Make device's PM flags reflect the wake-up capability, but
2001 		 * let the user space enable it to wake up the system as needed.
2002 		 */
2003 		device_set_wakeup_capable(&dev->dev, true);
2004 		/* Disable the PME# generation functionality */
2005 		pci_pme_active(dev, false);
2006 	}
2007 }
2008 
2009 static void pci_add_saved_cap(struct pci_dev *pci_dev,
2010 	struct pci_cap_saved_state *new_cap)
2011 {
2012 	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
2013 }
2014 
2015 /**
2016  * pci_add_cap_save_buffer - allocate buffer for saving given capability registers
2017  * @dev: the PCI device
2018  * @cap: the capability to allocate the buffer for
2019  * @size: requested size of the buffer
2020  */
2021 static int pci_add_cap_save_buffer(
2022 	struct pci_dev *dev, char cap, unsigned int size)
2023 {
2024 	int pos;
2025 	struct pci_cap_saved_state *save_state;
2026 
2027 	pos = pci_find_capability(dev, cap);
2028 	if (pos <= 0)
2029 		return 0;
2030 
2031 	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2032 	if (!save_state)
2033 		return -ENOMEM;
2034 
2035 	save_state->cap.cap_nr = cap;
2036 	save_state->cap.size = size;
2037 	pci_add_saved_cap(dev, save_state);
2038 
2039 	return 0;
2040 }
2041 
2042 /**
2043  * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2044  * @dev: the PCI device
2045  */
2046 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2047 {
2048 	int error;
2049 
2050 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2051 					PCI_EXP_SAVE_REGS * sizeof(u16));
2052 	if (error)
2053 		dev_err(&dev->dev,
2054 			"unable to preallocate PCI Express save buffer\n");
2055 
2056 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2057 	if (error)
2058 		dev_err(&dev->dev,
2059 			"unable to preallocate PCI-X save buffer\n");
2060 }
2061 
2062 void pci_free_cap_save_buffers(struct pci_dev *dev)
2063 {
2064 	struct pci_cap_saved_state *tmp;
2065 	struct hlist_node *n;
2066 
2067 	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
2068 		kfree(tmp);
2069 }
2070 
2071 /**
2072  * pci_configure_ari - enable or disable ARI forwarding
2073  * @dev: the PCI device
2074  *
2075  * If @dev and its upstream bridge both support ARI, enable ARI in the
2076  * bridge.  Otherwise, disable ARI in the bridge.
2077  */
2078 void pci_configure_ari(struct pci_dev *dev)
2079 {
2080 	u32 cap;
2081 	struct pci_dev *bridge;
2082 
2083 	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
2084 		return;
2085 
2086 	bridge = dev->bus->self;
2087 	if (!bridge)
2088 		return;
2089 
2090 	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
2091 	if (!(cap & PCI_EXP_DEVCAP2_ARI))
2092 		return;
2093 
2094 	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
2095 		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
2096 					 PCI_EXP_DEVCTL2_ARI);
2097 		bridge->ari_enabled = 1;
2098 	} else {
2099 		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
2100 					   PCI_EXP_DEVCTL2_ARI);
2101 		bridge->ari_enabled = 0;
2102 	}
2103 }
2104 
2105 /**
2106  * pci_enable_ido - enable ID-based Ordering on a device
2107  * @dev: the PCI device
2108  * @type: which types of IDO to enable
2109  *
2110  * Enable ID-based ordering on @dev.  @type can contain the bits
2111  * %PCI_EXP_IDO_REQUEST and/or %PCI_EXP_IDO_COMPLETION to indicate
2112  * which types of transactions are allowed to be re-ordered.
2113  */
2114 void pci_enable_ido(struct pci_dev *dev, unsigned long type)
2115 {
2116 	u16 ctrl = 0;
2117 
2118 	if (type & PCI_EXP_IDO_REQUEST)
2119 		ctrl |= PCI_EXP_DEVCTL2_IDO_REQ_EN;
2120 	if (type & PCI_EXP_IDO_COMPLETION)
2121 		ctrl |= PCI_EXP_DEVCTL2_IDO_CMP_EN;
2122 	if (ctrl)
2123 		pcie_capability_set_word(dev, PCI_EXP_DEVCTL2, ctrl);
2124 }
2125 EXPORT_SYMBOL(pci_enable_ido);
2126 
2127 /**
2128  * pci_disable_ido - disable ID-based ordering on a device
2129  * @dev: the PCI device
2130  * @type: which types of IDO to disable
2131  */
2132 void pci_disable_ido(struct pci_dev *dev, unsigned long type)
2133 {
2134 	u16 ctrl = 0;
2135 
2136 	if (type & PCI_EXP_IDO_REQUEST)
2137 		ctrl |= PCI_EXP_DEVCTL2_IDO_REQ_EN;
2138 	if (type & PCI_EXP_IDO_COMPLETION)
2139 		ctrl |= PCI_EXP_DEVCTL2_IDO_CMP_EN;
2140 	if (ctrl)
2141 		pcie_capability_clear_word(dev, PCI_EXP_DEVCTL2, ctrl);
2142 }
2143 EXPORT_SYMBOL(pci_disable_ido);
2144 
2145 /**
2146  * pci_enable_obff - enable optimized buffer flush/fill
2147  * @dev: PCI device
2148  * @type: type of signaling to use
2149  *
2150  * Try to enable @type OBFF signaling on @dev.  It will try using WAKE#
2151  * signaling if possible, falling back to message signaling only if
2152  * WAKE# isn't supported.  @type should indicate whether the PCIe link
2153  * be brought out of L0s or L1 to send the message.  It should be either
2154  * %PCI_EXP_OBFF_SIGNAL_ALWAYS or %PCI_OBFF_SIGNAL_L0.
2155  *
2156  * If your device can benefit from receiving all messages, even at the
2157  * power cost of bringing the link back up from a low power state, use
2158  * %PCI_EXP_OBFF_SIGNAL_ALWAYS.  Otherwise, use %PCI_OBFF_SIGNAL_L0 (the
2159  * preferred type).
2160  *
2161  * RETURNS:
2162  * Zero on success, appropriate error number on failure.
2163  */
2164 int pci_enable_obff(struct pci_dev *dev, enum pci_obff_signal_type type)
2165 {
2166 	u32 cap;
2167 	u16 ctrl;
2168 	int ret;
2169 
2170 	pcie_capability_read_dword(dev, PCI_EXP_DEVCAP2, &cap);
2171 	if (!(cap & PCI_EXP_DEVCAP2_OBFF_MASK))
2172 		return -ENOTSUPP; /* no OBFF support at all */
2173 
2174 	/* Make sure the topology supports OBFF as well */
2175 	if (dev->bus->self) {
2176 		ret = pci_enable_obff(dev->bus->self, type);
2177 		if (ret)
2178 			return ret;
2179 	}
2180 
2181 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &ctrl);
2182 	if (cap & PCI_EXP_DEVCAP2_OBFF_WAKE)
2183 		ctrl |= PCI_EXP_DEVCTL2_OBFF_WAKE_EN;
2184 	else {
2185 		switch (type) {
2186 		case PCI_EXP_OBFF_SIGNAL_L0:
2187 			if (!(ctrl & PCI_EXP_DEVCTL2_OBFF_WAKE_EN))
2188 				ctrl |= PCI_EXP_DEVCTL2_OBFF_MSGA_EN;
2189 			break;
2190 		case PCI_EXP_OBFF_SIGNAL_ALWAYS:
2191 			ctrl &= ~PCI_EXP_DEVCTL2_OBFF_WAKE_EN;
2192 			ctrl |= PCI_EXP_DEVCTL2_OBFF_MSGB_EN;
2193 			break;
2194 		default:
2195 			WARN(1, "bad OBFF signal type\n");
2196 			return -ENOTSUPP;
2197 		}
2198 	}
2199 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, ctrl);
2200 
2201 	return 0;
2202 }
2203 EXPORT_SYMBOL(pci_enable_obff);
2204 
2205 /**
2206  * pci_disable_obff - disable optimized buffer flush/fill
2207  * @dev: PCI device
2208  *
2209  * Disable OBFF on @dev.
2210  */
2211 void pci_disable_obff(struct pci_dev *dev)
2212 {
2213 	pcie_capability_clear_word(dev, PCI_EXP_DEVCTL2,
2214 				   PCI_EXP_DEVCTL2_OBFF_WAKE_EN);
2215 }
2216 EXPORT_SYMBOL(pci_disable_obff);
2217 
2218 /**
2219  * pci_ltr_supported - check whether a device supports LTR
2220  * @dev: PCI device
2221  *
2222  * RETURNS:
2223  * True if @dev supports latency tolerance reporting, false otherwise.
2224  */
2225 static bool pci_ltr_supported(struct pci_dev *dev)
2226 {
2227 	u32 cap;
2228 
2229 	pcie_capability_read_dword(dev, PCI_EXP_DEVCAP2, &cap);
2230 
2231 	return cap & PCI_EXP_DEVCAP2_LTR;
2232 }
2233 
2234 /**
2235  * pci_enable_ltr - enable latency tolerance reporting
2236  * @dev: PCI device
2237  *
2238  * Enable LTR on @dev if possible, which means enabling it first on
2239  * upstream ports.
2240  *
2241  * RETURNS:
2242  * Zero on success, errno on failure.
2243  */
2244 int pci_enable_ltr(struct pci_dev *dev)
2245 {
2246 	int ret;
2247 
2248 	/* Only primary function can enable/disable LTR */
2249 	if (PCI_FUNC(dev->devfn) != 0)
2250 		return -EINVAL;
2251 
2252 	if (!pci_ltr_supported(dev))
2253 		return -ENOTSUPP;
2254 
2255 	/* Enable upstream ports first */
2256 	if (dev->bus->self) {
2257 		ret = pci_enable_ltr(dev->bus->self);
2258 		if (ret)
2259 			return ret;
2260 	}
2261 
2262 	return pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
2263 					PCI_EXP_DEVCTL2_LTR_EN);
2264 }
2265 EXPORT_SYMBOL(pci_enable_ltr);
2266 
2267 /**
2268  * pci_disable_ltr - disable latency tolerance reporting
2269  * @dev: PCI device
2270  */
2271 void pci_disable_ltr(struct pci_dev *dev)
2272 {
2273 	/* Only primary function can enable/disable LTR */
2274 	if (PCI_FUNC(dev->devfn) != 0)
2275 		return;
2276 
2277 	if (!pci_ltr_supported(dev))
2278 		return;
2279 
2280 	pcie_capability_clear_word(dev, PCI_EXP_DEVCTL2,
2281 				   PCI_EXP_DEVCTL2_LTR_EN);
2282 }
2283 EXPORT_SYMBOL(pci_disable_ltr);
2284 
2285 static int __pci_ltr_scale(int *val)
2286 {
2287 	int scale = 0;
2288 
2289 	while (*val > 1023) {
2290 		*val = (*val + 31) / 32;
2291 		scale++;
2292 	}
2293 	return scale;
2294 }
2295 
2296 /**
2297  * pci_set_ltr - set LTR latency values
2298  * @dev: PCI device
2299  * @snoop_lat_ns: snoop latency in nanoseconds
2300  * @nosnoop_lat_ns: nosnoop latency in nanoseconds
2301  *
2302  * Figure out the scale and set the LTR values accordingly.
2303  */
2304 int pci_set_ltr(struct pci_dev *dev, int snoop_lat_ns, int nosnoop_lat_ns)
2305 {
2306 	int pos, ret, snoop_scale, nosnoop_scale;
2307 	u16 val;
2308 
2309 	if (!pci_ltr_supported(dev))
2310 		return -ENOTSUPP;
2311 
2312 	snoop_scale = __pci_ltr_scale(&snoop_lat_ns);
2313 	nosnoop_scale = __pci_ltr_scale(&nosnoop_lat_ns);
2314 
2315 	if (snoop_lat_ns > PCI_LTR_VALUE_MASK ||
2316 	    nosnoop_lat_ns > PCI_LTR_VALUE_MASK)
2317 		return -EINVAL;
2318 
2319 	if ((snoop_scale > (PCI_LTR_SCALE_MASK >> PCI_LTR_SCALE_SHIFT)) ||
2320 	    (nosnoop_scale > (PCI_LTR_SCALE_MASK >> PCI_LTR_SCALE_SHIFT)))
2321 		return -EINVAL;
2322 
2323 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
2324 	if (!pos)
2325 		return -ENOTSUPP;
2326 
2327 	val = (snoop_scale << PCI_LTR_SCALE_SHIFT) | snoop_lat_ns;
2328 	ret = pci_write_config_word(dev, pos + PCI_LTR_MAX_SNOOP_LAT, val);
2329 	if (ret != 4)
2330 		return -EIO;
2331 
2332 	val = (nosnoop_scale << PCI_LTR_SCALE_SHIFT) | nosnoop_lat_ns;
2333 	ret = pci_write_config_word(dev, pos + PCI_LTR_MAX_NOSNOOP_LAT, val);
2334 	if (ret != 4)
2335 		return -EIO;
2336 
2337 	return 0;
2338 }
2339 EXPORT_SYMBOL(pci_set_ltr);
2340 
2341 static int pci_acs_enable;
2342 
2343 /**
2344  * pci_request_acs - ask for ACS to be enabled if supported
2345  */
2346 void pci_request_acs(void)
2347 {
2348 	pci_acs_enable = 1;
2349 }
2350 
2351 /**
2352  * pci_enable_acs - enable ACS if hardware support it
2353  * @dev: the PCI device
2354  */
2355 void pci_enable_acs(struct pci_dev *dev)
2356 {
2357 	int pos;
2358 	u16 cap;
2359 	u16 ctrl;
2360 
2361 	if (!pci_acs_enable)
2362 		return;
2363 
2364 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2365 	if (!pos)
2366 		return;
2367 
2368 	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2369 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2370 
2371 	/* Source Validation */
2372 	ctrl |= (cap & PCI_ACS_SV);
2373 
2374 	/* P2P Request Redirect */
2375 	ctrl |= (cap & PCI_ACS_RR);
2376 
2377 	/* P2P Completion Redirect */
2378 	ctrl |= (cap & PCI_ACS_CR);
2379 
2380 	/* Upstream Forwarding */
2381 	ctrl |= (cap & PCI_ACS_UF);
2382 
2383 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2384 }
2385 
2386 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
2387 {
2388 	int pos;
2389 	u16 cap, ctrl;
2390 
2391 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2392 	if (!pos)
2393 		return false;
2394 
2395 	/*
2396 	 * Except for egress control, capabilities are either required
2397 	 * or only required if controllable.  Features missing from the
2398 	 * capability field can therefore be assumed as hard-wired enabled.
2399 	 */
2400 	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
2401 	acs_flags &= (cap | PCI_ACS_EC);
2402 
2403 	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2404 	return (ctrl & acs_flags) == acs_flags;
2405 }
2406 
2407 /**
2408  * pci_acs_enabled - test ACS against required flags for a given device
2409  * @pdev: device to test
2410  * @acs_flags: required PCI ACS flags
2411  *
2412  * Return true if the device supports the provided flags.  Automatically
2413  * filters out flags that are not implemented on multifunction devices.
2414  *
2415  * Note that this interface checks the effective ACS capabilities of the
2416  * device rather than the actual capabilities.  For instance, most single
2417  * function endpoints are not required to support ACS because they have no
2418  * opportunity for peer-to-peer access.  We therefore return 'true'
2419  * regardless of whether the device exposes an ACS capability.  This makes
2420  * it much easier for callers of this function to ignore the actual type
2421  * or topology of the device when testing ACS support.
2422  */
2423 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2424 {
2425 	int ret;
2426 
2427 	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2428 	if (ret >= 0)
2429 		return ret > 0;
2430 
2431 	/*
2432 	 * Conventional PCI and PCI-X devices never support ACS, either
2433 	 * effectively or actually.  The shared bus topology implies that
2434 	 * any device on the bus can receive or snoop DMA.
2435 	 */
2436 	if (!pci_is_pcie(pdev))
2437 		return false;
2438 
2439 	switch (pci_pcie_type(pdev)) {
2440 	/*
2441 	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
2442 	 * but since their primary inteface is PCI/X, we conservatively
2443 	 * handle them as we would a non-PCIe device.
2444 	 */
2445 	case PCI_EXP_TYPE_PCIE_BRIDGE:
2446 	/*
2447 	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
2448 	 * applicable... must never implement an ACS Extended Capability...".
2449 	 * This seems arbitrary, but we take a conservative interpretation
2450 	 * of this statement.
2451 	 */
2452 	case PCI_EXP_TYPE_PCI_BRIDGE:
2453 	case PCI_EXP_TYPE_RC_EC:
2454 		return false;
2455 	/*
2456 	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
2457 	 * implement ACS in order to indicate their peer-to-peer capabilities,
2458 	 * regardless of whether they are single- or multi-function devices.
2459 	 */
2460 	case PCI_EXP_TYPE_DOWNSTREAM:
2461 	case PCI_EXP_TYPE_ROOT_PORT:
2462 		return pci_acs_flags_enabled(pdev, acs_flags);
2463 	/*
2464 	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
2465 	 * implemented by the remaining PCIe types to indicate peer-to-peer
2466 	 * capabilities, but only when they are part of a multifunciton
2467 	 * device.  The footnote for section 6.12 indicates the specific
2468 	 * PCIe types included here.
2469 	 */
2470 	case PCI_EXP_TYPE_ENDPOINT:
2471 	case PCI_EXP_TYPE_UPSTREAM:
2472 	case PCI_EXP_TYPE_LEG_END:
2473 	case PCI_EXP_TYPE_RC_END:
2474 		if (!pdev->multifunction)
2475 			break;
2476 
2477 		return pci_acs_flags_enabled(pdev, acs_flags);
2478 	}
2479 
2480 	/*
2481 	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilties are applicable
2482 	 * to single function devices with the exception of downstream ports.
2483 	 */
2484 	return true;
2485 }
2486 
2487 /**
2488  * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2489  * @start: starting downstream device
2490  * @end: ending upstream device or NULL to search to the root bus
2491  * @acs_flags: required flags
2492  *
2493  * Walk up a device tree from start to end testing PCI ACS support.  If
2494  * any step along the way does not support the required flags, return false.
2495  */
2496 bool pci_acs_path_enabled(struct pci_dev *start,
2497 			  struct pci_dev *end, u16 acs_flags)
2498 {
2499 	struct pci_dev *pdev, *parent = start;
2500 
2501 	do {
2502 		pdev = parent;
2503 
2504 		if (!pci_acs_enabled(pdev, acs_flags))
2505 			return false;
2506 
2507 		if (pci_is_root_bus(pdev->bus))
2508 			return (end == NULL);
2509 
2510 		parent = pdev->bus->self;
2511 	} while (pdev != end);
2512 
2513 	return true;
2514 }
2515 
2516 /**
2517  * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2518  * @dev: the PCI device
2519  * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
2520  *
2521  * Perform INTx swizzling for a device behind one level of bridge.  This is
2522  * required by section 9.1 of the PCI-to-PCI bridge specification for devices
2523  * behind bridges on add-in cards.  For devices with ARI enabled, the slot
2524  * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2525  * the PCI Express Base Specification, Revision 2.1)
2526  */
2527 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
2528 {
2529 	int slot;
2530 
2531 	if (pci_ari_enabled(dev->bus))
2532 		slot = 0;
2533 	else
2534 		slot = PCI_SLOT(dev->devfn);
2535 
2536 	return (((pin - 1) + slot) % 4) + 1;
2537 }
2538 
2539 int
2540 pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
2541 {
2542 	u8 pin;
2543 
2544 	pin = dev->pin;
2545 	if (!pin)
2546 		return -1;
2547 
2548 	while (!pci_is_root_bus(dev->bus)) {
2549 		pin = pci_swizzle_interrupt_pin(dev, pin);
2550 		dev = dev->bus->self;
2551 	}
2552 	*bridge = dev;
2553 	return pin;
2554 }
2555 
2556 /**
2557  * pci_common_swizzle - swizzle INTx all the way to root bridge
2558  * @dev: the PCI device
2559  * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2560  *
2561  * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
2562  * bridges all the way up to a PCI root bus.
2563  */
2564 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
2565 {
2566 	u8 pin = *pinp;
2567 
2568 	while (!pci_is_root_bus(dev->bus)) {
2569 		pin = pci_swizzle_interrupt_pin(dev, pin);
2570 		dev = dev->bus->self;
2571 	}
2572 	*pinp = pin;
2573 	return PCI_SLOT(dev->devfn);
2574 }
2575 
2576 /**
2577  *	pci_release_region - Release a PCI bar
2578  *	@pdev: PCI device whose resources were previously reserved by pci_request_region
2579  *	@bar: BAR to release
2580  *
2581  *	Releases the PCI I/O and memory resources previously reserved by a
2582  *	successful call to pci_request_region.  Call this function only
2583  *	after all use of the PCI regions has ceased.
2584  */
2585 void pci_release_region(struct pci_dev *pdev, int bar)
2586 {
2587 	struct pci_devres *dr;
2588 
2589 	if (pci_resource_len(pdev, bar) == 0)
2590 		return;
2591 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
2592 		release_region(pci_resource_start(pdev, bar),
2593 				pci_resource_len(pdev, bar));
2594 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
2595 		release_mem_region(pci_resource_start(pdev, bar),
2596 				pci_resource_len(pdev, bar));
2597 
2598 	dr = find_pci_dr(pdev);
2599 	if (dr)
2600 		dr->region_mask &= ~(1 << bar);
2601 }
2602 
2603 /**
2604  *	__pci_request_region - Reserved PCI I/O and memory resource
2605  *	@pdev: PCI device whose resources are to be reserved
2606  *	@bar: BAR to be reserved
2607  *	@res_name: Name to be associated with resource.
2608  *	@exclusive: whether the region access is exclusive or not
2609  *
2610  *	Mark the PCI region associated with PCI device @pdev BR @bar as
2611  *	being reserved by owner @res_name.  Do not access any
2612  *	address inside the PCI regions unless this call returns
2613  *	successfully.
2614  *
2615  *	If @exclusive is set, then the region is marked so that userspace
2616  *	is explicitly not allowed to map the resource via /dev/mem or
2617  * 	sysfs MMIO access.
2618  *
2619  *	Returns 0 on success, or %EBUSY on error.  A warning
2620  *	message is also printed on failure.
2621  */
2622 static int __pci_request_region(struct pci_dev *pdev, int bar, const char *res_name,
2623 									int exclusive)
2624 {
2625 	struct pci_devres *dr;
2626 
2627 	if (pci_resource_len(pdev, bar) == 0)
2628 		return 0;
2629 
2630 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
2631 		if (!request_region(pci_resource_start(pdev, bar),
2632 			    pci_resource_len(pdev, bar), res_name))
2633 			goto err_out;
2634 	}
2635 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
2636 		if (!__request_mem_region(pci_resource_start(pdev, bar),
2637 					pci_resource_len(pdev, bar), res_name,
2638 					exclusive))
2639 			goto err_out;
2640 	}
2641 
2642 	dr = find_pci_dr(pdev);
2643 	if (dr)
2644 		dr->region_mask |= 1 << bar;
2645 
2646 	return 0;
2647 
2648 err_out:
2649 	dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
2650 		 &pdev->resource[bar]);
2651 	return -EBUSY;
2652 }
2653 
2654 /**
2655  *	pci_request_region - Reserve PCI I/O and memory resource
2656  *	@pdev: PCI device whose resources are to be reserved
2657  *	@bar: BAR to be reserved
2658  *	@res_name: Name to be associated with resource
2659  *
2660  *	Mark the PCI region associated with PCI device @pdev BAR @bar as
2661  *	being reserved by owner @res_name.  Do not access any
2662  *	address inside the PCI regions unless this call returns
2663  *	successfully.
2664  *
2665  *	Returns 0 on success, or %EBUSY on error.  A warning
2666  *	message is also printed on failure.
2667  */
2668 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
2669 {
2670 	return __pci_request_region(pdev, bar, res_name, 0);
2671 }
2672 
2673 /**
2674  *	pci_request_region_exclusive - Reserved PCI I/O and memory resource
2675  *	@pdev: PCI device whose resources are to be reserved
2676  *	@bar: BAR to be reserved
2677  *	@res_name: Name to be associated with resource.
2678  *
2679  *	Mark the PCI region associated with PCI device @pdev BR @bar as
2680  *	being reserved by owner @res_name.  Do not access any
2681  *	address inside the PCI regions unless this call returns
2682  *	successfully.
2683  *
2684  *	Returns 0 on success, or %EBUSY on error.  A warning
2685  *	message is also printed on failure.
2686  *
2687  *	The key difference that _exclusive makes it that userspace is
2688  *	explicitly not allowed to map the resource via /dev/mem or
2689  * 	sysfs.
2690  */
2691 int pci_request_region_exclusive(struct pci_dev *pdev, int bar, const char *res_name)
2692 {
2693 	return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
2694 }
2695 /**
2696  * pci_release_selected_regions - Release selected PCI I/O and memory resources
2697  * @pdev: PCI device whose resources were previously reserved
2698  * @bars: Bitmask of BARs to be released
2699  *
2700  * Release selected PCI I/O and memory resources previously reserved.
2701  * Call this function only after all use of the PCI regions has ceased.
2702  */
2703 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
2704 {
2705 	int i;
2706 
2707 	for (i = 0; i < 6; i++)
2708 		if (bars & (1 << i))
2709 			pci_release_region(pdev, i);
2710 }
2711 
2712 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
2713 				 const char *res_name, int excl)
2714 {
2715 	int i;
2716 
2717 	for (i = 0; i < 6; i++)
2718 		if (bars & (1 << i))
2719 			if (__pci_request_region(pdev, i, res_name, excl))
2720 				goto err_out;
2721 	return 0;
2722 
2723 err_out:
2724 	while(--i >= 0)
2725 		if (bars & (1 << i))
2726 			pci_release_region(pdev, i);
2727 
2728 	return -EBUSY;
2729 }
2730 
2731 
2732 /**
2733  * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
2734  * @pdev: PCI device whose resources are to be reserved
2735  * @bars: Bitmask of BARs to be requested
2736  * @res_name: Name to be associated with resource
2737  */
2738 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
2739 				 const char *res_name)
2740 {
2741 	return __pci_request_selected_regions(pdev, bars, res_name, 0);
2742 }
2743 
2744 int pci_request_selected_regions_exclusive(struct pci_dev *pdev,
2745 				 int bars, const char *res_name)
2746 {
2747 	return __pci_request_selected_regions(pdev, bars, res_name,
2748 			IORESOURCE_EXCLUSIVE);
2749 }
2750 
2751 /**
2752  *	pci_release_regions - Release reserved PCI I/O and memory resources
2753  *	@pdev: PCI device whose resources were previously reserved by pci_request_regions
2754  *
2755  *	Releases all PCI I/O and memory resources previously reserved by a
2756  *	successful call to pci_request_regions.  Call this function only
2757  *	after all use of the PCI regions has ceased.
2758  */
2759 
2760 void pci_release_regions(struct pci_dev *pdev)
2761 {
2762 	pci_release_selected_regions(pdev, (1 << 6) - 1);
2763 }
2764 
2765 /**
2766  *	pci_request_regions - Reserved PCI I/O and memory resources
2767  *	@pdev: PCI device whose resources are to be reserved
2768  *	@res_name: Name to be associated with resource.
2769  *
2770  *	Mark all PCI regions associated with PCI device @pdev as
2771  *	being reserved by owner @res_name.  Do not access any
2772  *	address inside the PCI regions unless this call returns
2773  *	successfully.
2774  *
2775  *	Returns 0 on success, or %EBUSY on error.  A warning
2776  *	message is also printed on failure.
2777  */
2778 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
2779 {
2780 	return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
2781 }
2782 
2783 /**
2784  *	pci_request_regions_exclusive - Reserved PCI I/O and memory resources
2785  *	@pdev: PCI device whose resources are to be reserved
2786  *	@res_name: Name to be associated with resource.
2787  *
2788  *	Mark all PCI regions associated with PCI device @pdev as
2789  *	being reserved by owner @res_name.  Do not access any
2790  *	address inside the PCI regions unless this call returns
2791  *	successfully.
2792  *
2793  *	pci_request_regions_exclusive() will mark the region so that
2794  * 	/dev/mem and the sysfs MMIO access will not be allowed.
2795  *
2796  *	Returns 0 on success, or %EBUSY on error.  A warning
2797  *	message is also printed on failure.
2798  */
2799 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
2800 {
2801 	return pci_request_selected_regions_exclusive(pdev,
2802 					((1 << 6) - 1), res_name);
2803 }
2804 
2805 static void __pci_set_master(struct pci_dev *dev, bool enable)
2806 {
2807 	u16 old_cmd, cmd;
2808 
2809 	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
2810 	if (enable)
2811 		cmd = old_cmd | PCI_COMMAND_MASTER;
2812 	else
2813 		cmd = old_cmd & ~PCI_COMMAND_MASTER;
2814 	if (cmd != old_cmd) {
2815 		dev_dbg(&dev->dev, "%s bus mastering\n",
2816 			enable ? "enabling" : "disabling");
2817 		pci_write_config_word(dev, PCI_COMMAND, cmd);
2818 	}
2819 	dev->is_busmaster = enable;
2820 }
2821 
2822 /**
2823  * pcibios_setup - process "pci=" kernel boot arguments
2824  * @str: string used to pass in "pci=" kernel boot arguments
2825  *
2826  * Process kernel boot arguments.  This is the default implementation.
2827  * Architecture specific implementations can override this as necessary.
2828  */
2829 char * __weak __init pcibios_setup(char *str)
2830 {
2831 	return str;
2832 }
2833 
2834 /**
2835  * pcibios_set_master - enable PCI bus-mastering for device dev
2836  * @dev: the PCI device to enable
2837  *
2838  * Enables PCI bus-mastering for the device.  This is the default
2839  * implementation.  Architecture specific implementations can override
2840  * this if necessary.
2841  */
2842 void __weak pcibios_set_master(struct pci_dev *dev)
2843 {
2844 	u8 lat;
2845 
2846 	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
2847 	if (pci_is_pcie(dev))
2848 		return;
2849 
2850 	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
2851 	if (lat < 16)
2852 		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
2853 	else if (lat > pcibios_max_latency)
2854 		lat = pcibios_max_latency;
2855 	else
2856 		return;
2857 	dev_printk(KERN_DEBUG, &dev->dev, "setting latency timer to %d\n", lat);
2858 	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
2859 }
2860 
2861 /**
2862  * pci_set_master - enables bus-mastering for device dev
2863  * @dev: the PCI device to enable
2864  *
2865  * Enables bus-mastering on the device and calls pcibios_set_master()
2866  * to do the needed arch specific settings.
2867  */
2868 void pci_set_master(struct pci_dev *dev)
2869 {
2870 	__pci_set_master(dev, true);
2871 	pcibios_set_master(dev);
2872 }
2873 
2874 /**
2875  * pci_clear_master - disables bus-mastering for device dev
2876  * @dev: the PCI device to disable
2877  */
2878 void pci_clear_master(struct pci_dev *dev)
2879 {
2880 	__pci_set_master(dev, false);
2881 }
2882 
2883 /**
2884  * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
2885  * @dev: the PCI device for which MWI is to be enabled
2886  *
2887  * Helper function for pci_set_mwi.
2888  * Originally copied from drivers/net/acenic.c.
2889  * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
2890  *
2891  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2892  */
2893 int pci_set_cacheline_size(struct pci_dev *dev)
2894 {
2895 	u8 cacheline_size;
2896 
2897 	if (!pci_cache_line_size)
2898 		return -EINVAL;
2899 
2900 	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
2901 	   equal to or multiple of the right value. */
2902 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2903 	if (cacheline_size >= pci_cache_line_size &&
2904 	    (cacheline_size % pci_cache_line_size) == 0)
2905 		return 0;
2906 
2907 	/* Write the correct value. */
2908 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
2909 	/* Read it back. */
2910 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2911 	if (cacheline_size == pci_cache_line_size)
2912 		return 0;
2913 
2914 	dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not "
2915 		   "supported\n", pci_cache_line_size << 2);
2916 
2917 	return -EINVAL;
2918 }
2919 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
2920 
2921 #ifdef PCI_DISABLE_MWI
2922 int pci_set_mwi(struct pci_dev *dev)
2923 {
2924 	return 0;
2925 }
2926 
2927 int pci_try_set_mwi(struct pci_dev *dev)
2928 {
2929 	return 0;
2930 }
2931 
2932 void pci_clear_mwi(struct pci_dev *dev)
2933 {
2934 }
2935 
2936 #else
2937 
2938 /**
2939  * pci_set_mwi - enables memory-write-invalidate PCI transaction
2940  * @dev: the PCI device for which MWI is enabled
2941  *
2942  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2943  *
2944  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2945  */
2946 int
2947 pci_set_mwi(struct pci_dev *dev)
2948 {
2949 	int rc;
2950 	u16 cmd;
2951 
2952 	rc = pci_set_cacheline_size(dev);
2953 	if (rc)
2954 		return rc;
2955 
2956 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
2957 	if (! (cmd & PCI_COMMAND_INVALIDATE)) {
2958 		dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
2959 		cmd |= PCI_COMMAND_INVALIDATE;
2960 		pci_write_config_word(dev, PCI_COMMAND, cmd);
2961 	}
2962 
2963 	return 0;
2964 }
2965 
2966 /**
2967  * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
2968  * @dev: the PCI device for which MWI is enabled
2969  *
2970  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2971  * Callers are not required to check the return value.
2972  *
2973  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2974  */
2975 int pci_try_set_mwi(struct pci_dev *dev)
2976 {
2977 	int rc = pci_set_mwi(dev);
2978 	return rc;
2979 }
2980 
2981 /**
2982  * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
2983  * @dev: the PCI device to disable
2984  *
2985  * Disables PCI Memory-Write-Invalidate transaction on the device
2986  */
2987 void
2988 pci_clear_mwi(struct pci_dev *dev)
2989 {
2990 	u16 cmd;
2991 
2992 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
2993 	if (cmd & PCI_COMMAND_INVALIDATE) {
2994 		cmd &= ~PCI_COMMAND_INVALIDATE;
2995 		pci_write_config_word(dev, PCI_COMMAND, cmd);
2996 	}
2997 }
2998 #endif /* ! PCI_DISABLE_MWI */
2999 
3000 /**
3001  * pci_intx - enables/disables PCI INTx for device dev
3002  * @pdev: the PCI device to operate on
3003  * @enable: boolean: whether to enable or disable PCI INTx
3004  *
3005  * Enables/disables PCI INTx for device dev
3006  */
3007 void
3008 pci_intx(struct pci_dev *pdev, int enable)
3009 {
3010 	u16 pci_command, new;
3011 
3012 	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
3013 
3014 	if (enable) {
3015 		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
3016 	} else {
3017 		new = pci_command | PCI_COMMAND_INTX_DISABLE;
3018 	}
3019 
3020 	if (new != pci_command) {
3021 		struct pci_devres *dr;
3022 
3023 		pci_write_config_word(pdev, PCI_COMMAND, new);
3024 
3025 		dr = find_pci_dr(pdev);
3026 		if (dr && !dr->restore_intx) {
3027 			dr->restore_intx = 1;
3028 			dr->orig_intx = !enable;
3029 		}
3030 	}
3031 }
3032 
3033 /**
3034  * pci_intx_mask_supported - probe for INTx masking support
3035  * @dev: the PCI device to operate on
3036  *
3037  * Check if the device dev support INTx masking via the config space
3038  * command word.
3039  */
3040 bool pci_intx_mask_supported(struct pci_dev *dev)
3041 {
3042 	bool mask_supported = false;
3043 	u16 orig, new;
3044 
3045 	if (dev->broken_intx_masking)
3046 		return false;
3047 
3048 	pci_cfg_access_lock(dev);
3049 
3050 	pci_read_config_word(dev, PCI_COMMAND, &orig);
3051 	pci_write_config_word(dev, PCI_COMMAND,
3052 			      orig ^ PCI_COMMAND_INTX_DISABLE);
3053 	pci_read_config_word(dev, PCI_COMMAND, &new);
3054 
3055 	/*
3056 	 * There's no way to protect against hardware bugs or detect them
3057 	 * reliably, but as long as we know what the value should be, let's
3058 	 * go ahead and check it.
3059 	 */
3060 	if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) {
3061 		dev_err(&dev->dev, "Command register changed from "
3062 			"0x%x to 0x%x: driver or hardware bug?\n", orig, new);
3063 	} else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) {
3064 		mask_supported = true;
3065 		pci_write_config_word(dev, PCI_COMMAND, orig);
3066 	}
3067 
3068 	pci_cfg_access_unlock(dev);
3069 	return mask_supported;
3070 }
3071 EXPORT_SYMBOL_GPL(pci_intx_mask_supported);
3072 
3073 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
3074 {
3075 	struct pci_bus *bus = dev->bus;
3076 	bool mask_updated = true;
3077 	u32 cmd_status_dword;
3078 	u16 origcmd, newcmd;
3079 	unsigned long flags;
3080 	bool irq_pending;
3081 
3082 	/*
3083 	 * We do a single dword read to retrieve both command and status.
3084 	 * Document assumptions that make this possible.
3085 	 */
3086 	BUILD_BUG_ON(PCI_COMMAND % 4);
3087 	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
3088 
3089 	raw_spin_lock_irqsave(&pci_lock, flags);
3090 
3091 	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
3092 
3093 	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
3094 
3095 	/*
3096 	 * Check interrupt status register to see whether our device
3097 	 * triggered the interrupt (when masking) or the next IRQ is
3098 	 * already pending (when unmasking).
3099 	 */
3100 	if (mask != irq_pending) {
3101 		mask_updated = false;
3102 		goto done;
3103 	}
3104 
3105 	origcmd = cmd_status_dword;
3106 	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
3107 	if (mask)
3108 		newcmd |= PCI_COMMAND_INTX_DISABLE;
3109 	if (newcmd != origcmd)
3110 		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
3111 
3112 done:
3113 	raw_spin_unlock_irqrestore(&pci_lock, flags);
3114 
3115 	return mask_updated;
3116 }
3117 
3118 /**
3119  * pci_check_and_mask_intx - mask INTx on pending interrupt
3120  * @dev: the PCI device to operate on
3121  *
3122  * Check if the device dev has its INTx line asserted, mask it and
3123  * return true in that case. False is returned if not interrupt was
3124  * pending.
3125  */
3126 bool pci_check_and_mask_intx(struct pci_dev *dev)
3127 {
3128 	return pci_check_and_set_intx_mask(dev, true);
3129 }
3130 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
3131 
3132 /**
3133  * pci_check_and_mask_intx - unmask INTx of no interrupt is pending
3134  * @dev: the PCI device to operate on
3135  *
3136  * Check if the device dev has its INTx line asserted, unmask it if not
3137  * and return true. False is returned and the mask remains active if
3138  * there was still an interrupt pending.
3139  */
3140 bool pci_check_and_unmask_intx(struct pci_dev *dev)
3141 {
3142 	return pci_check_and_set_intx_mask(dev, false);
3143 }
3144 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
3145 
3146 /**
3147  * pci_msi_off - disables any MSI or MSI-X capabilities
3148  * @dev: the PCI device to operate on
3149  *
3150  * If you want to use MSI, see pci_enable_msi() and friends.
3151  * This is a lower-level primitive that allows us to disable
3152  * MSI operation at the device level.
3153  */
3154 void pci_msi_off(struct pci_dev *dev)
3155 {
3156 	int pos;
3157 	u16 control;
3158 
3159 	/*
3160 	 * This looks like it could go in msi.c, but we need it even when
3161 	 * CONFIG_PCI_MSI=n.  For the same reason, we can't use
3162 	 * dev->msi_cap or dev->msix_cap here.
3163 	 */
3164 	pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
3165 	if (pos) {
3166 		pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
3167 		control &= ~PCI_MSI_FLAGS_ENABLE;
3168 		pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
3169 	}
3170 	pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
3171 	if (pos) {
3172 		pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
3173 		control &= ~PCI_MSIX_FLAGS_ENABLE;
3174 		pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
3175 	}
3176 }
3177 EXPORT_SYMBOL_GPL(pci_msi_off);
3178 
3179 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
3180 {
3181 	return dma_set_max_seg_size(&dev->dev, size);
3182 }
3183 EXPORT_SYMBOL(pci_set_dma_max_seg_size);
3184 
3185 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
3186 {
3187 	return dma_set_seg_boundary(&dev->dev, mask);
3188 }
3189 EXPORT_SYMBOL(pci_set_dma_seg_boundary);
3190 
3191 /**
3192  * pci_wait_for_pending_transaction - waits for pending transaction
3193  * @dev: the PCI device to operate on
3194  *
3195  * Return 0 if transaction is pending 1 otherwise.
3196  */
3197 int pci_wait_for_pending_transaction(struct pci_dev *dev)
3198 {
3199 	int i;
3200 	u16 status;
3201 
3202 	/* Wait for Transaction Pending bit clean */
3203 	for (i = 0; i < 4; i++) {
3204 		if (i)
3205 			msleep((1 << (i - 1)) * 100);
3206 
3207 		pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
3208 		if (!(status & PCI_EXP_DEVSTA_TRPND))
3209 			return 1;
3210 	}
3211 
3212 	return 0;
3213 }
3214 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
3215 
3216 static int pcie_flr(struct pci_dev *dev, int probe)
3217 {
3218 	u32 cap;
3219 
3220 	pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
3221 	if (!(cap & PCI_EXP_DEVCAP_FLR))
3222 		return -ENOTTY;
3223 
3224 	if (probe)
3225 		return 0;
3226 
3227 	if (!pci_wait_for_pending_transaction(dev))
3228 		dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
3229 
3230 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
3231 
3232 	msleep(100);
3233 
3234 	return 0;
3235 }
3236 
3237 static int pci_af_flr(struct pci_dev *dev, int probe)
3238 {
3239 	int i;
3240 	int pos;
3241 	u8 cap;
3242 	u8 status;
3243 
3244 	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
3245 	if (!pos)
3246 		return -ENOTTY;
3247 
3248 	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
3249 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
3250 		return -ENOTTY;
3251 
3252 	if (probe)
3253 		return 0;
3254 
3255 	/* Wait for Transaction Pending bit clean */
3256 	for (i = 0; i < 4; i++) {
3257 		if (i)
3258 			msleep((1 << (i - 1)) * 100);
3259 
3260 		pci_read_config_byte(dev, pos + PCI_AF_STATUS, &status);
3261 		if (!(status & PCI_AF_STATUS_TP))
3262 			goto clear;
3263 	}
3264 
3265 	dev_err(&dev->dev, "transaction is not cleared; "
3266 			"proceeding with reset anyway\n");
3267 
3268 clear:
3269 	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
3270 	msleep(100);
3271 
3272 	return 0;
3273 }
3274 
3275 /**
3276  * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
3277  * @dev: Device to reset.
3278  * @probe: If set, only check if the device can be reset this way.
3279  *
3280  * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
3281  * unset, it will be reinitialized internally when going from PCI_D3hot to
3282  * PCI_D0.  If that's the case and the device is not in a low-power state
3283  * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
3284  *
3285  * NOTE: This causes the caller to sleep for twice the device power transition
3286  * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
3287  * by devault (i.e. unless the @dev's d3_delay field has a different value).
3288  * Moreover, only devices in D0 can be reset by this function.
3289  */
3290 static int pci_pm_reset(struct pci_dev *dev, int probe)
3291 {
3292 	u16 csr;
3293 
3294 	if (!dev->pm_cap)
3295 		return -ENOTTY;
3296 
3297 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
3298 	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
3299 		return -ENOTTY;
3300 
3301 	if (probe)
3302 		return 0;
3303 
3304 	if (dev->current_state != PCI_D0)
3305 		return -EINVAL;
3306 
3307 	csr &= ~PCI_PM_CTRL_STATE_MASK;
3308 	csr |= PCI_D3hot;
3309 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3310 	pci_dev_d3_sleep(dev);
3311 
3312 	csr &= ~PCI_PM_CTRL_STATE_MASK;
3313 	csr |= PCI_D0;
3314 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3315 	pci_dev_d3_sleep(dev);
3316 
3317 	return 0;
3318 }
3319 
3320 /**
3321  * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge.
3322  * @dev: Bridge device
3323  *
3324  * Use the bridge control register to assert reset on the secondary bus.
3325  * Devices on the secondary bus are left in power-on state.
3326  */
3327 void pci_reset_bridge_secondary_bus(struct pci_dev *dev)
3328 {
3329 	u16 ctrl;
3330 
3331 	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
3332 	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
3333 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3334 	/*
3335 	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
3336 	 * this to 2ms to ensure that we meet the minium requirement.
3337 	 */
3338 	msleep(2);
3339 
3340 	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
3341 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3342 
3343 	/*
3344 	 * Trhfa for conventional PCI is 2^25 clock cycles.
3345 	 * Assuming a minimum 33MHz clock this results in a 1s
3346 	 * delay before we can consider subordinate devices to
3347 	 * be re-initialized.  PCIe has some ways to shorten this,
3348 	 * but we don't make use of them yet.
3349 	 */
3350 	ssleep(1);
3351 }
3352 EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus);
3353 
3354 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
3355 {
3356 	struct pci_dev *pdev;
3357 
3358 	if (pci_is_root_bus(dev->bus) || dev->subordinate || !dev->bus->self)
3359 		return -ENOTTY;
3360 
3361 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3362 		if (pdev != dev)
3363 			return -ENOTTY;
3364 
3365 	if (probe)
3366 		return 0;
3367 
3368 	pci_reset_bridge_secondary_bus(dev->bus->self);
3369 
3370 	return 0;
3371 }
3372 
3373 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
3374 {
3375 	int rc = -ENOTTY;
3376 
3377 	if (!hotplug || !try_module_get(hotplug->ops->owner))
3378 		return rc;
3379 
3380 	if (hotplug->ops->reset_slot)
3381 		rc = hotplug->ops->reset_slot(hotplug, probe);
3382 
3383 	module_put(hotplug->ops->owner);
3384 
3385 	return rc;
3386 }
3387 
3388 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
3389 {
3390 	struct pci_dev *pdev;
3391 
3392 	if (dev->subordinate || !dev->slot)
3393 		return -ENOTTY;
3394 
3395 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3396 		if (pdev != dev && pdev->slot == dev->slot)
3397 			return -ENOTTY;
3398 
3399 	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
3400 }
3401 
3402 static int __pci_dev_reset(struct pci_dev *dev, int probe)
3403 {
3404 	int rc;
3405 
3406 	might_sleep();
3407 
3408 	rc = pci_dev_specific_reset(dev, probe);
3409 	if (rc != -ENOTTY)
3410 		goto done;
3411 
3412 	rc = pcie_flr(dev, probe);
3413 	if (rc != -ENOTTY)
3414 		goto done;
3415 
3416 	rc = pci_af_flr(dev, probe);
3417 	if (rc != -ENOTTY)
3418 		goto done;
3419 
3420 	rc = pci_pm_reset(dev, probe);
3421 	if (rc != -ENOTTY)
3422 		goto done;
3423 
3424 	rc = pci_dev_reset_slot_function(dev, probe);
3425 	if (rc != -ENOTTY)
3426 		goto done;
3427 
3428 	rc = pci_parent_bus_reset(dev, probe);
3429 done:
3430 	return rc;
3431 }
3432 
3433 static void pci_dev_lock(struct pci_dev *dev)
3434 {
3435 	pci_cfg_access_lock(dev);
3436 	/* block PM suspend, driver probe, etc. */
3437 	device_lock(&dev->dev);
3438 }
3439 
3440 static void pci_dev_unlock(struct pci_dev *dev)
3441 {
3442 	device_unlock(&dev->dev);
3443 	pci_cfg_access_unlock(dev);
3444 }
3445 
3446 static void pci_dev_save_and_disable(struct pci_dev *dev)
3447 {
3448 	/*
3449 	 * Wake-up device prior to save.  PM registers default to D0 after
3450 	 * reset and a simple register restore doesn't reliably return
3451 	 * to a non-D0 state anyway.
3452 	 */
3453 	pci_set_power_state(dev, PCI_D0);
3454 
3455 	pci_save_state(dev);
3456 	/*
3457 	 * Disable the device by clearing the Command register, except for
3458 	 * INTx-disable which is set.  This not only disables MMIO and I/O port
3459 	 * BARs, but also prevents the device from being Bus Master, preventing
3460 	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
3461 	 * compliant devices, INTx-disable prevents legacy interrupts.
3462 	 */
3463 	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
3464 }
3465 
3466 static void pci_dev_restore(struct pci_dev *dev)
3467 {
3468 	pci_restore_state(dev);
3469 }
3470 
3471 static int pci_dev_reset(struct pci_dev *dev, int probe)
3472 {
3473 	int rc;
3474 
3475 	if (!probe)
3476 		pci_dev_lock(dev);
3477 
3478 	rc = __pci_dev_reset(dev, probe);
3479 
3480 	if (!probe)
3481 		pci_dev_unlock(dev);
3482 
3483 	return rc;
3484 }
3485 /**
3486  * __pci_reset_function - reset a PCI device function
3487  * @dev: PCI device to reset
3488  *
3489  * Some devices allow an individual function to be reset without affecting
3490  * other functions in the same device.  The PCI device must be responsive
3491  * to PCI config space in order to use this function.
3492  *
3493  * The device function is presumed to be unused when this function is called.
3494  * Resetting the device will make the contents of PCI configuration space
3495  * random, so any caller of this must be prepared to reinitialise the
3496  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3497  * etc.
3498  *
3499  * Returns 0 if the device function was successfully reset or negative if the
3500  * device doesn't support resetting a single function.
3501  */
3502 int __pci_reset_function(struct pci_dev *dev)
3503 {
3504 	return pci_dev_reset(dev, 0);
3505 }
3506 EXPORT_SYMBOL_GPL(__pci_reset_function);
3507 
3508 /**
3509  * __pci_reset_function_locked - reset a PCI device function while holding
3510  * the @dev mutex lock.
3511  * @dev: PCI device to reset
3512  *
3513  * Some devices allow an individual function to be reset without affecting
3514  * other functions in the same device.  The PCI device must be responsive
3515  * to PCI config space in order to use this function.
3516  *
3517  * The device function is presumed to be unused and the caller is holding
3518  * the device mutex lock when this function is called.
3519  * Resetting the device will make the contents of PCI configuration space
3520  * random, so any caller of this must be prepared to reinitialise the
3521  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3522  * etc.
3523  *
3524  * Returns 0 if the device function was successfully reset or negative if the
3525  * device doesn't support resetting a single function.
3526  */
3527 int __pci_reset_function_locked(struct pci_dev *dev)
3528 {
3529 	return __pci_dev_reset(dev, 0);
3530 }
3531 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
3532 
3533 /**
3534  * pci_probe_reset_function - check whether the device can be safely reset
3535  * @dev: PCI device to reset
3536  *
3537  * Some devices allow an individual function to be reset without affecting
3538  * other functions in the same device.  The PCI device must be responsive
3539  * to PCI config space in order to use this function.
3540  *
3541  * Returns 0 if the device function can be reset or negative if the
3542  * device doesn't support resetting a single function.
3543  */
3544 int pci_probe_reset_function(struct pci_dev *dev)
3545 {
3546 	return pci_dev_reset(dev, 1);
3547 }
3548 
3549 /**
3550  * pci_reset_function - quiesce and reset a PCI device function
3551  * @dev: PCI device to reset
3552  *
3553  * Some devices allow an individual function to be reset without affecting
3554  * other functions in the same device.  The PCI device must be responsive
3555  * to PCI config space in order to use this function.
3556  *
3557  * This function does not just reset the PCI portion of a device, but
3558  * clears all the state associated with the device.  This function differs
3559  * from __pci_reset_function in that it saves and restores device state
3560  * over the reset.
3561  *
3562  * Returns 0 if the device function was successfully reset or negative if the
3563  * device doesn't support resetting a single function.
3564  */
3565 int pci_reset_function(struct pci_dev *dev)
3566 {
3567 	int rc;
3568 
3569 	rc = pci_dev_reset(dev, 1);
3570 	if (rc)
3571 		return rc;
3572 
3573 	pci_dev_save_and_disable(dev);
3574 
3575 	rc = pci_dev_reset(dev, 0);
3576 
3577 	pci_dev_restore(dev);
3578 
3579 	return rc;
3580 }
3581 EXPORT_SYMBOL_GPL(pci_reset_function);
3582 
3583 /* Lock devices from the top of the tree down */
3584 static void pci_bus_lock(struct pci_bus *bus)
3585 {
3586 	struct pci_dev *dev;
3587 
3588 	list_for_each_entry(dev, &bus->devices, bus_list) {
3589 		pci_dev_lock(dev);
3590 		if (dev->subordinate)
3591 			pci_bus_lock(dev->subordinate);
3592 	}
3593 }
3594 
3595 /* Unlock devices from the bottom of the tree up */
3596 static void pci_bus_unlock(struct pci_bus *bus)
3597 {
3598 	struct pci_dev *dev;
3599 
3600 	list_for_each_entry(dev, &bus->devices, bus_list) {
3601 		if (dev->subordinate)
3602 			pci_bus_unlock(dev->subordinate);
3603 		pci_dev_unlock(dev);
3604 	}
3605 }
3606 
3607 /* Lock devices from the top of the tree down */
3608 static void pci_slot_lock(struct pci_slot *slot)
3609 {
3610 	struct pci_dev *dev;
3611 
3612 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3613 		if (!dev->slot || dev->slot != slot)
3614 			continue;
3615 		pci_dev_lock(dev);
3616 		if (dev->subordinate)
3617 			pci_bus_lock(dev->subordinate);
3618 	}
3619 }
3620 
3621 /* Unlock devices from the bottom of the tree up */
3622 static void pci_slot_unlock(struct pci_slot *slot)
3623 {
3624 	struct pci_dev *dev;
3625 
3626 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3627 		if (!dev->slot || dev->slot != slot)
3628 			continue;
3629 		if (dev->subordinate)
3630 			pci_bus_unlock(dev->subordinate);
3631 		pci_dev_unlock(dev);
3632 	}
3633 }
3634 
3635 /* Save and disable devices from the top of the tree down */
3636 static void pci_bus_save_and_disable(struct pci_bus *bus)
3637 {
3638 	struct pci_dev *dev;
3639 
3640 	list_for_each_entry(dev, &bus->devices, bus_list) {
3641 		pci_dev_save_and_disable(dev);
3642 		if (dev->subordinate)
3643 			pci_bus_save_and_disable(dev->subordinate);
3644 	}
3645 }
3646 
3647 /*
3648  * Restore devices from top of the tree down - parent bridges need to be
3649  * restored before we can get to subordinate devices.
3650  */
3651 static void pci_bus_restore(struct pci_bus *bus)
3652 {
3653 	struct pci_dev *dev;
3654 
3655 	list_for_each_entry(dev, &bus->devices, bus_list) {
3656 		pci_dev_restore(dev);
3657 		if (dev->subordinate)
3658 			pci_bus_restore(dev->subordinate);
3659 	}
3660 }
3661 
3662 /* Save and disable devices from the top of the tree down */
3663 static void pci_slot_save_and_disable(struct pci_slot *slot)
3664 {
3665 	struct pci_dev *dev;
3666 
3667 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3668 		if (!dev->slot || dev->slot != slot)
3669 			continue;
3670 		pci_dev_save_and_disable(dev);
3671 		if (dev->subordinate)
3672 			pci_bus_save_and_disable(dev->subordinate);
3673 	}
3674 }
3675 
3676 /*
3677  * Restore devices from top of the tree down - parent bridges need to be
3678  * restored before we can get to subordinate devices.
3679  */
3680 static void pci_slot_restore(struct pci_slot *slot)
3681 {
3682 	struct pci_dev *dev;
3683 
3684 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3685 		if (!dev->slot || dev->slot != slot)
3686 			continue;
3687 		pci_dev_restore(dev);
3688 		if (dev->subordinate)
3689 			pci_bus_restore(dev->subordinate);
3690 	}
3691 }
3692 
3693 static int pci_slot_reset(struct pci_slot *slot, int probe)
3694 {
3695 	int rc;
3696 
3697 	if (!slot)
3698 		return -ENOTTY;
3699 
3700 	if (!probe)
3701 		pci_slot_lock(slot);
3702 
3703 	might_sleep();
3704 
3705 	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
3706 
3707 	if (!probe)
3708 		pci_slot_unlock(slot);
3709 
3710 	return rc;
3711 }
3712 
3713 /**
3714  * pci_probe_reset_slot - probe whether a PCI slot can be reset
3715  * @slot: PCI slot to probe
3716  *
3717  * Return 0 if slot can be reset, negative if a slot reset is not supported.
3718  */
3719 int pci_probe_reset_slot(struct pci_slot *slot)
3720 {
3721 	return pci_slot_reset(slot, 1);
3722 }
3723 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
3724 
3725 /**
3726  * pci_reset_slot - reset a PCI slot
3727  * @slot: PCI slot to reset
3728  *
3729  * A PCI bus may host multiple slots, each slot may support a reset mechanism
3730  * independent of other slots.  For instance, some slots may support slot power
3731  * control.  In the case of a 1:1 bus to slot architecture, this function may
3732  * wrap the bus reset to avoid spurious slot related events such as hotplug.
3733  * Generally a slot reset should be attempted before a bus reset.  All of the
3734  * function of the slot and any subordinate buses behind the slot are reset
3735  * through this function.  PCI config space of all devices in the slot and
3736  * behind the slot is saved before and restored after reset.
3737  *
3738  * Return 0 on success, non-zero on error.
3739  */
3740 int pci_reset_slot(struct pci_slot *slot)
3741 {
3742 	int rc;
3743 
3744 	rc = pci_slot_reset(slot, 1);
3745 	if (rc)
3746 		return rc;
3747 
3748 	pci_slot_save_and_disable(slot);
3749 
3750 	rc = pci_slot_reset(slot, 0);
3751 
3752 	pci_slot_restore(slot);
3753 
3754 	return rc;
3755 }
3756 EXPORT_SYMBOL_GPL(pci_reset_slot);
3757 
3758 static int pci_bus_reset(struct pci_bus *bus, int probe)
3759 {
3760 	if (!bus->self)
3761 		return -ENOTTY;
3762 
3763 	if (probe)
3764 		return 0;
3765 
3766 	pci_bus_lock(bus);
3767 
3768 	might_sleep();
3769 
3770 	pci_reset_bridge_secondary_bus(bus->self);
3771 
3772 	pci_bus_unlock(bus);
3773 
3774 	return 0;
3775 }
3776 
3777 /**
3778  * pci_probe_reset_bus - probe whether a PCI bus can be reset
3779  * @bus: PCI bus to probe
3780  *
3781  * Return 0 if bus can be reset, negative if a bus reset is not supported.
3782  */
3783 int pci_probe_reset_bus(struct pci_bus *bus)
3784 {
3785 	return pci_bus_reset(bus, 1);
3786 }
3787 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
3788 
3789 /**
3790  * pci_reset_bus - reset a PCI bus
3791  * @bus: top level PCI bus to reset
3792  *
3793  * Do a bus reset on the given bus and any subordinate buses, saving
3794  * and restoring state of all devices.
3795  *
3796  * Return 0 on success, non-zero on error.
3797  */
3798 int pci_reset_bus(struct pci_bus *bus)
3799 {
3800 	int rc;
3801 
3802 	rc = pci_bus_reset(bus, 1);
3803 	if (rc)
3804 		return rc;
3805 
3806 	pci_bus_save_and_disable(bus);
3807 
3808 	rc = pci_bus_reset(bus, 0);
3809 
3810 	pci_bus_restore(bus);
3811 
3812 	return rc;
3813 }
3814 EXPORT_SYMBOL_GPL(pci_reset_bus);
3815 
3816 /**
3817  * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
3818  * @dev: PCI device to query
3819  *
3820  * Returns mmrbc: maximum designed memory read count in bytes
3821  *    or appropriate error value.
3822  */
3823 int pcix_get_max_mmrbc(struct pci_dev *dev)
3824 {
3825 	int cap;
3826 	u32 stat;
3827 
3828 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3829 	if (!cap)
3830 		return -EINVAL;
3831 
3832 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3833 		return -EINVAL;
3834 
3835 	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
3836 }
3837 EXPORT_SYMBOL(pcix_get_max_mmrbc);
3838 
3839 /**
3840  * pcix_get_mmrbc - get PCI-X maximum memory read byte count
3841  * @dev: PCI device to query
3842  *
3843  * Returns mmrbc: maximum memory read count in bytes
3844  *    or appropriate error value.
3845  */
3846 int pcix_get_mmrbc(struct pci_dev *dev)
3847 {
3848 	int cap;
3849 	u16 cmd;
3850 
3851 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3852 	if (!cap)
3853 		return -EINVAL;
3854 
3855 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3856 		return -EINVAL;
3857 
3858 	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
3859 }
3860 EXPORT_SYMBOL(pcix_get_mmrbc);
3861 
3862 /**
3863  * pcix_set_mmrbc - set PCI-X maximum memory read byte count
3864  * @dev: PCI device to query
3865  * @mmrbc: maximum memory read count in bytes
3866  *    valid values are 512, 1024, 2048, 4096
3867  *
3868  * If possible sets maximum memory read byte count, some bridges have erratas
3869  * that prevent this.
3870  */
3871 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
3872 {
3873 	int cap;
3874 	u32 stat, v, o;
3875 	u16 cmd;
3876 
3877 	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
3878 		return -EINVAL;
3879 
3880 	v = ffs(mmrbc) - 10;
3881 
3882 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3883 	if (!cap)
3884 		return -EINVAL;
3885 
3886 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3887 		return -EINVAL;
3888 
3889 	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
3890 		return -E2BIG;
3891 
3892 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3893 		return -EINVAL;
3894 
3895 	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
3896 	if (o != v) {
3897 		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
3898 			return -EIO;
3899 
3900 		cmd &= ~PCI_X_CMD_MAX_READ;
3901 		cmd |= v << 2;
3902 		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
3903 			return -EIO;
3904 	}
3905 	return 0;
3906 }
3907 EXPORT_SYMBOL(pcix_set_mmrbc);
3908 
3909 /**
3910  * pcie_get_readrq - get PCI Express read request size
3911  * @dev: PCI device to query
3912  *
3913  * Returns maximum memory read request in bytes
3914  *    or appropriate error value.
3915  */
3916 int pcie_get_readrq(struct pci_dev *dev)
3917 {
3918 	u16 ctl;
3919 
3920 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
3921 
3922 	return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
3923 }
3924 EXPORT_SYMBOL(pcie_get_readrq);
3925 
3926 /**
3927  * pcie_set_readrq - set PCI Express maximum memory read request
3928  * @dev: PCI device to query
3929  * @rq: maximum memory read count in bytes
3930  *    valid values are 128, 256, 512, 1024, 2048, 4096
3931  *
3932  * If possible sets maximum memory read request in bytes
3933  */
3934 int pcie_set_readrq(struct pci_dev *dev, int rq)
3935 {
3936 	u16 v;
3937 
3938 	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
3939 		return -EINVAL;
3940 
3941 	/*
3942 	 * If using the "performance" PCIe config, we clamp the
3943 	 * read rq size to the max packet size to prevent the
3944 	 * host bridge generating requests larger than we can
3945 	 * cope with
3946 	 */
3947 	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
3948 		int mps = pcie_get_mps(dev);
3949 
3950 		if (mps < rq)
3951 			rq = mps;
3952 	}
3953 
3954 	v = (ffs(rq) - 8) << 12;
3955 
3956 	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
3957 						  PCI_EXP_DEVCTL_READRQ, v);
3958 }
3959 EXPORT_SYMBOL(pcie_set_readrq);
3960 
3961 /**
3962  * pcie_get_mps - get PCI Express maximum payload size
3963  * @dev: PCI device to query
3964  *
3965  * Returns maximum payload size in bytes
3966  */
3967 int pcie_get_mps(struct pci_dev *dev)
3968 {
3969 	u16 ctl;
3970 
3971 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
3972 
3973 	return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
3974 }
3975 
3976 /**
3977  * pcie_set_mps - set PCI Express maximum payload size
3978  * @dev: PCI device to query
3979  * @mps: maximum payload size in bytes
3980  *    valid values are 128, 256, 512, 1024, 2048, 4096
3981  *
3982  * If possible sets maximum payload size
3983  */
3984 int pcie_set_mps(struct pci_dev *dev, int mps)
3985 {
3986 	u16 v;
3987 
3988 	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
3989 		return -EINVAL;
3990 
3991 	v = ffs(mps) - 8;
3992 	if (v > dev->pcie_mpss)
3993 		return -EINVAL;
3994 	v <<= 5;
3995 
3996 	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
3997 						  PCI_EXP_DEVCTL_PAYLOAD, v);
3998 }
3999 
4000 /**
4001  * pcie_get_minimum_link - determine minimum link settings of a PCI device
4002  * @dev: PCI device to query
4003  * @speed: storage for minimum speed
4004  * @width: storage for minimum width
4005  *
4006  * This function will walk up the PCI device chain and determine the minimum
4007  * link width and speed of the device.
4008  */
4009 int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed,
4010 			  enum pcie_link_width *width)
4011 {
4012 	int ret;
4013 
4014 	*speed = PCI_SPEED_UNKNOWN;
4015 	*width = PCIE_LNK_WIDTH_UNKNOWN;
4016 
4017 	while (dev) {
4018 		u16 lnksta;
4019 		enum pci_bus_speed next_speed;
4020 		enum pcie_link_width next_width;
4021 
4022 		ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
4023 		if (ret)
4024 			return ret;
4025 
4026 		next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
4027 		next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
4028 			PCI_EXP_LNKSTA_NLW_SHIFT;
4029 
4030 		if (next_speed < *speed)
4031 			*speed = next_speed;
4032 
4033 		if (next_width < *width)
4034 			*width = next_width;
4035 
4036 		dev = dev->bus->self;
4037 	}
4038 
4039 	return 0;
4040 }
4041 EXPORT_SYMBOL(pcie_get_minimum_link);
4042 
4043 /**
4044  * pci_select_bars - Make BAR mask from the type of resource
4045  * @dev: the PCI device for which BAR mask is made
4046  * @flags: resource type mask to be selected
4047  *
4048  * This helper routine makes bar mask from the type of resource.
4049  */
4050 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
4051 {
4052 	int i, bars = 0;
4053 	for (i = 0; i < PCI_NUM_RESOURCES; i++)
4054 		if (pci_resource_flags(dev, i) & flags)
4055 			bars |= (1 << i);
4056 	return bars;
4057 }
4058 
4059 /**
4060  * pci_resource_bar - get position of the BAR associated with a resource
4061  * @dev: the PCI device
4062  * @resno: the resource number
4063  * @type: the BAR type to be filled in
4064  *
4065  * Returns BAR position in config space, or 0 if the BAR is invalid.
4066  */
4067 int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
4068 {
4069 	int reg;
4070 
4071 	if (resno < PCI_ROM_RESOURCE) {
4072 		*type = pci_bar_unknown;
4073 		return PCI_BASE_ADDRESS_0 + 4 * resno;
4074 	} else if (resno == PCI_ROM_RESOURCE) {
4075 		*type = pci_bar_mem32;
4076 		return dev->rom_base_reg;
4077 	} else if (resno < PCI_BRIDGE_RESOURCES) {
4078 		/* device specific resource */
4079 		reg = pci_iov_resource_bar(dev, resno, type);
4080 		if (reg)
4081 			return reg;
4082 	}
4083 
4084 	dev_err(&dev->dev, "BAR %d: invalid resource\n", resno);
4085 	return 0;
4086 }
4087 
4088 /* Some architectures require additional programming to enable VGA */
4089 static arch_set_vga_state_t arch_set_vga_state;
4090 
4091 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
4092 {
4093 	arch_set_vga_state = func;	/* NULL disables */
4094 }
4095 
4096 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
4097 		      unsigned int command_bits, u32 flags)
4098 {
4099 	if (arch_set_vga_state)
4100 		return arch_set_vga_state(dev, decode, command_bits,
4101 						flags);
4102 	return 0;
4103 }
4104 
4105 /**
4106  * pci_set_vga_state - set VGA decode state on device and parents if requested
4107  * @dev: the PCI device
4108  * @decode: true = enable decoding, false = disable decoding
4109  * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
4110  * @flags: traverse ancestors and change bridges
4111  * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
4112  */
4113 int pci_set_vga_state(struct pci_dev *dev, bool decode,
4114 		      unsigned int command_bits, u32 flags)
4115 {
4116 	struct pci_bus *bus;
4117 	struct pci_dev *bridge;
4118 	u16 cmd;
4119 	int rc;
4120 
4121 	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) & (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
4122 
4123 	/* ARCH specific VGA enables */
4124 	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
4125 	if (rc)
4126 		return rc;
4127 
4128 	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
4129 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
4130 		if (decode == true)
4131 			cmd |= command_bits;
4132 		else
4133 			cmd &= ~command_bits;
4134 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4135 	}
4136 
4137 	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
4138 		return 0;
4139 
4140 	bus = dev->bus;
4141 	while (bus) {
4142 		bridge = bus->self;
4143 		if (bridge) {
4144 			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
4145 					     &cmd);
4146 			if (decode == true)
4147 				cmd |= PCI_BRIDGE_CTL_VGA;
4148 			else
4149 				cmd &= ~PCI_BRIDGE_CTL_VGA;
4150 			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
4151 					      cmd);
4152 		}
4153 		bus = bus->parent;
4154 	}
4155 	return 0;
4156 }
4157 
4158 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
4159 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
4160 static DEFINE_SPINLOCK(resource_alignment_lock);
4161 
4162 /**
4163  * pci_specified_resource_alignment - get resource alignment specified by user.
4164  * @dev: the PCI device to get
4165  *
4166  * RETURNS: Resource alignment if it is specified.
4167  *          Zero if it is not specified.
4168  */
4169 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
4170 {
4171 	int seg, bus, slot, func, align_order, count;
4172 	resource_size_t align = 0;
4173 	char *p;
4174 
4175 	spin_lock(&resource_alignment_lock);
4176 	p = resource_alignment_param;
4177 	while (*p) {
4178 		count = 0;
4179 		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
4180 							p[count] == '@') {
4181 			p += count + 1;
4182 		} else {
4183 			align_order = -1;
4184 		}
4185 		if (sscanf(p, "%x:%x:%x.%x%n",
4186 			&seg, &bus, &slot, &func, &count) != 4) {
4187 			seg = 0;
4188 			if (sscanf(p, "%x:%x.%x%n",
4189 					&bus, &slot, &func, &count) != 3) {
4190 				/* Invalid format */
4191 				printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
4192 					p);
4193 				break;
4194 			}
4195 		}
4196 		p += count;
4197 		if (seg == pci_domain_nr(dev->bus) &&
4198 			bus == dev->bus->number &&
4199 			slot == PCI_SLOT(dev->devfn) &&
4200 			func == PCI_FUNC(dev->devfn)) {
4201 			if (align_order == -1) {
4202 				align = PAGE_SIZE;
4203 			} else {
4204 				align = 1 << align_order;
4205 			}
4206 			/* Found */
4207 			break;
4208 		}
4209 		if (*p != ';' && *p != ',') {
4210 			/* End of param or invalid format */
4211 			break;
4212 		}
4213 		p++;
4214 	}
4215 	spin_unlock(&resource_alignment_lock);
4216 	return align;
4217 }
4218 
4219 /*
4220  * This function disables memory decoding and releases memory resources
4221  * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
4222  * It also rounds up size to specified alignment.
4223  * Later on, the kernel will assign page-aligned memory resource back
4224  * to the device.
4225  */
4226 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
4227 {
4228 	int i;
4229 	struct resource *r;
4230 	resource_size_t align, size;
4231 	u16 command;
4232 
4233 	/* check if specified PCI is target device to reassign */
4234 	align = pci_specified_resource_alignment(dev);
4235 	if (!align)
4236 		return;
4237 
4238 	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
4239 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
4240 		dev_warn(&dev->dev,
4241 			"Can't reassign resources to host bridge.\n");
4242 		return;
4243 	}
4244 
4245 	dev_info(&dev->dev,
4246 		"Disabling memory decoding and releasing memory resources.\n");
4247 	pci_read_config_word(dev, PCI_COMMAND, &command);
4248 	command &= ~PCI_COMMAND_MEMORY;
4249 	pci_write_config_word(dev, PCI_COMMAND, command);
4250 
4251 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) {
4252 		r = &dev->resource[i];
4253 		if (!(r->flags & IORESOURCE_MEM))
4254 			continue;
4255 		size = resource_size(r);
4256 		if (size < align) {
4257 			size = align;
4258 			dev_info(&dev->dev,
4259 				"Rounding up size of resource #%d to %#llx.\n",
4260 				i, (unsigned long long)size);
4261 		}
4262 		r->end = size - 1;
4263 		r->start = 0;
4264 	}
4265 	/* Need to disable bridge's resource window,
4266 	 * to enable the kernel to reassign new resource
4267 	 * window later on.
4268 	 */
4269 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
4270 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
4271 		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
4272 			r = &dev->resource[i];
4273 			if (!(r->flags & IORESOURCE_MEM))
4274 				continue;
4275 			r->end = resource_size(r) - 1;
4276 			r->start = 0;
4277 		}
4278 		pci_disable_bridge_window(dev);
4279 	}
4280 }
4281 
4282 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
4283 {
4284 	if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
4285 		count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
4286 	spin_lock(&resource_alignment_lock);
4287 	strncpy(resource_alignment_param, buf, count);
4288 	resource_alignment_param[count] = '\0';
4289 	spin_unlock(&resource_alignment_lock);
4290 	return count;
4291 }
4292 
4293 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
4294 {
4295 	size_t count;
4296 	spin_lock(&resource_alignment_lock);
4297 	count = snprintf(buf, size, "%s", resource_alignment_param);
4298 	spin_unlock(&resource_alignment_lock);
4299 	return count;
4300 }
4301 
4302 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
4303 {
4304 	return pci_get_resource_alignment_param(buf, PAGE_SIZE);
4305 }
4306 
4307 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
4308 					const char *buf, size_t count)
4309 {
4310 	return pci_set_resource_alignment_param(buf, count);
4311 }
4312 
4313 BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
4314 					pci_resource_alignment_store);
4315 
4316 static int __init pci_resource_alignment_sysfs_init(void)
4317 {
4318 	return bus_create_file(&pci_bus_type,
4319 					&bus_attr_resource_alignment);
4320 }
4321 
4322 late_initcall(pci_resource_alignment_sysfs_init);
4323 
4324 static void pci_no_domains(void)
4325 {
4326 #ifdef CONFIG_PCI_DOMAINS
4327 	pci_domains_supported = 0;
4328 #endif
4329 }
4330 
4331 /**
4332  * pci_ext_cfg_avail - can we access extended PCI config space?
4333  *
4334  * Returns 1 if we can access PCI extended config space (offsets
4335  * greater than 0xff). This is the default implementation. Architecture
4336  * implementations can override this.
4337  */
4338 int __weak pci_ext_cfg_avail(void)
4339 {
4340 	return 1;
4341 }
4342 
4343 void __weak pci_fixup_cardbus(struct pci_bus *bus)
4344 {
4345 }
4346 EXPORT_SYMBOL(pci_fixup_cardbus);
4347 
4348 static int __init pci_setup(char *str)
4349 {
4350 	while (str) {
4351 		char *k = strchr(str, ',');
4352 		if (k)
4353 			*k++ = 0;
4354 		if (*str && (str = pcibios_setup(str)) && *str) {
4355 			if (!strcmp(str, "nomsi")) {
4356 				pci_no_msi();
4357 			} else if (!strcmp(str, "noaer")) {
4358 				pci_no_aer();
4359 			} else if (!strncmp(str, "realloc=", 8)) {
4360 				pci_realloc_get_opt(str + 8);
4361 			} else if (!strncmp(str, "realloc", 7)) {
4362 				pci_realloc_get_opt("on");
4363 			} else if (!strcmp(str, "nodomains")) {
4364 				pci_no_domains();
4365 			} else if (!strncmp(str, "noari", 5)) {
4366 				pcie_ari_disabled = true;
4367 			} else if (!strncmp(str, "cbiosize=", 9)) {
4368 				pci_cardbus_io_size = memparse(str + 9, &str);
4369 			} else if (!strncmp(str, "cbmemsize=", 10)) {
4370 				pci_cardbus_mem_size = memparse(str + 10, &str);
4371 			} else if (!strncmp(str, "resource_alignment=", 19)) {
4372 				pci_set_resource_alignment_param(str + 19,
4373 							strlen(str + 19));
4374 			} else if (!strncmp(str, "ecrc=", 5)) {
4375 				pcie_ecrc_get_policy(str + 5);
4376 			} else if (!strncmp(str, "hpiosize=", 9)) {
4377 				pci_hotplug_io_size = memparse(str + 9, &str);
4378 			} else if (!strncmp(str, "hpmemsize=", 10)) {
4379 				pci_hotplug_mem_size = memparse(str + 10, &str);
4380 			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
4381 				pcie_bus_config = PCIE_BUS_TUNE_OFF;
4382 			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
4383 				pcie_bus_config = PCIE_BUS_SAFE;
4384 			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
4385 				pcie_bus_config = PCIE_BUS_PERFORMANCE;
4386 			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
4387 				pcie_bus_config = PCIE_BUS_PEER2PEER;
4388 			} else if (!strncmp(str, "pcie_scan_all", 13)) {
4389 				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
4390 			} else {
4391 				printk(KERN_ERR "PCI: Unknown option `%s'\n",
4392 						str);
4393 			}
4394 		}
4395 		str = k;
4396 	}
4397 	return 0;
4398 }
4399 early_param("pci", pci_setup);
4400 
4401 EXPORT_SYMBOL(pci_reenable_device);
4402 EXPORT_SYMBOL(pci_enable_device_io);
4403 EXPORT_SYMBOL(pci_enable_device_mem);
4404 EXPORT_SYMBOL(pci_enable_device);
4405 EXPORT_SYMBOL(pcim_enable_device);
4406 EXPORT_SYMBOL(pcim_pin_device);
4407 EXPORT_SYMBOL(pci_disable_device);
4408 EXPORT_SYMBOL(pci_find_capability);
4409 EXPORT_SYMBOL(pci_bus_find_capability);
4410 EXPORT_SYMBOL(pci_release_regions);
4411 EXPORT_SYMBOL(pci_request_regions);
4412 EXPORT_SYMBOL(pci_request_regions_exclusive);
4413 EXPORT_SYMBOL(pci_release_region);
4414 EXPORT_SYMBOL(pci_request_region);
4415 EXPORT_SYMBOL(pci_request_region_exclusive);
4416 EXPORT_SYMBOL(pci_release_selected_regions);
4417 EXPORT_SYMBOL(pci_request_selected_regions);
4418 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
4419 EXPORT_SYMBOL(pci_set_master);
4420 EXPORT_SYMBOL(pci_clear_master);
4421 EXPORT_SYMBOL(pci_set_mwi);
4422 EXPORT_SYMBOL(pci_try_set_mwi);
4423 EXPORT_SYMBOL(pci_clear_mwi);
4424 EXPORT_SYMBOL_GPL(pci_intx);
4425 EXPORT_SYMBOL(pci_assign_resource);
4426 EXPORT_SYMBOL(pci_find_parent_resource);
4427 EXPORT_SYMBOL(pci_select_bars);
4428 
4429 EXPORT_SYMBOL(pci_set_power_state);
4430 EXPORT_SYMBOL(pci_save_state);
4431 EXPORT_SYMBOL(pci_restore_state);
4432 EXPORT_SYMBOL(pci_pme_capable);
4433 EXPORT_SYMBOL(pci_pme_active);
4434 EXPORT_SYMBOL(pci_wake_from_d3);
4435 EXPORT_SYMBOL(pci_target_state);
4436 EXPORT_SYMBOL(pci_prepare_to_sleep);
4437 EXPORT_SYMBOL(pci_back_from_sleep);
4438 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
4439