xref: /openbmc/linux/drivers/pci/pci.c (revision 5b448065)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * PCI Bus Services, see include/linux/pci.h for further explanation.
4  *
5  * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6  * David Mosberger-Tang
7  *
8  * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/msi.h>
17 #include <linux/of.h>
18 #include <linux/pci.h>
19 #include <linux/pm.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/log2.h>
25 #include <linux/logic_pio.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/pci_hotplug.h>
31 #include <linux/vmalloc.h>
32 #include <asm/dma.h>
33 #include <linux/aer.h>
34 #include "pci.h"
35 
36 DEFINE_MUTEX(pci_slot_mutex);
37 
38 const char *pci_power_names[] = {
39 	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
40 };
41 EXPORT_SYMBOL_GPL(pci_power_names);
42 
43 int isa_dma_bridge_buggy;
44 EXPORT_SYMBOL(isa_dma_bridge_buggy);
45 
46 int pci_pci_problems;
47 EXPORT_SYMBOL(pci_pci_problems);
48 
49 unsigned int pci_pm_d3hot_delay;
50 
51 static void pci_pme_list_scan(struct work_struct *work);
52 
53 static LIST_HEAD(pci_pme_list);
54 static DEFINE_MUTEX(pci_pme_list_mutex);
55 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
56 
57 struct pci_pme_device {
58 	struct list_head list;
59 	struct pci_dev *dev;
60 };
61 
62 #define PME_TIMEOUT 1000 /* How long between PME checks */
63 
64 static void pci_dev_d3_sleep(struct pci_dev *dev)
65 {
66 	unsigned int delay = dev->d3hot_delay;
67 
68 	if (delay < pci_pm_d3hot_delay)
69 		delay = pci_pm_d3hot_delay;
70 
71 	if (delay)
72 		msleep(delay);
73 }
74 
75 #ifdef CONFIG_PCI_DOMAINS
76 int pci_domains_supported = 1;
77 #endif
78 
79 #define DEFAULT_CARDBUS_IO_SIZE		(256)
80 #define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
81 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
82 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
83 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
84 
85 #define DEFAULT_HOTPLUG_IO_SIZE		(256)
86 #define DEFAULT_HOTPLUG_MMIO_SIZE	(2*1024*1024)
87 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE	(2*1024*1024)
88 /* hpiosize=nn can override this */
89 unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
90 /*
91  * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
92  * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
93  * pci=hpmemsize=nnM overrides both
94  */
95 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
96 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
97 
98 #define DEFAULT_HOTPLUG_BUS_SIZE	1
99 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
100 
101 
102 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
103 #ifdef CONFIG_PCIE_BUS_TUNE_OFF
104 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
105 #elif defined CONFIG_PCIE_BUS_SAFE
106 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
107 #elif defined CONFIG_PCIE_BUS_PERFORMANCE
108 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
109 #elif defined CONFIG_PCIE_BUS_PEER2PEER
110 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
111 #else
112 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
113 #endif
114 
115 /*
116  * The default CLS is used if arch didn't set CLS explicitly and not
117  * all pci devices agree on the same value.  Arch can override either
118  * the dfl or actual value as it sees fit.  Don't forget this is
119  * measured in 32-bit words, not bytes.
120  */
121 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
122 u8 pci_cache_line_size;
123 
124 /*
125  * If we set up a device for bus mastering, we need to check the latency
126  * timer as certain BIOSes forget to set it properly.
127  */
128 unsigned int pcibios_max_latency = 255;
129 
130 /* If set, the PCIe ARI capability will not be used. */
131 static bool pcie_ari_disabled;
132 
133 /* If set, the PCIe ATS capability will not be used. */
134 static bool pcie_ats_disabled;
135 
136 /* If set, the PCI config space of each device is printed during boot. */
137 bool pci_early_dump;
138 
139 bool pci_ats_disabled(void)
140 {
141 	return pcie_ats_disabled;
142 }
143 EXPORT_SYMBOL_GPL(pci_ats_disabled);
144 
145 /* Disable bridge_d3 for all PCIe ports */
146 static bool pci_bridge_d3_disable;
147 /* Force bridge_d3 for all PCIe ports */
148 static bool pci_bridge_d3_force;
149 
150 static int __init pcie_port_pm_setup(char *str)
151 {
152 	if (!strcmp(str, "off"))
153 		pci_bridge_d3_disable = true;
154 	else if (!strcmp(str, "force"))
155 		pci_bridge_d3_force = true;
156 	return 1;
157 }
158 __setup("pcie_port_pm=", pcie_port_pm_setup);
159 
160 /* Time to wait after a reset for device to become responsive */
161 #define PCIE_RESET_READY_POLL_MS 60000
162 
163 /**
164  * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
165  * @bus: pointer to PCI bus structure to search
166  *
167  * Given a PCI bus, returns the highest PCI bus number present in the set
168  * including the given PCI bus and its list of child PCI buses.
169  */
170 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
171 {
172 	struct pci_bus *tmp;
173 	unsigned char max, n;
174 
175 	max = bus->busn_res.end;
176 	list_for_each_entry(tmp, &bus->children, node) {
177 		n = pci_bus_max_busnr(tmp);
178 		if (n > max)
179 			max = n;
180 	}
181 	return max;
182 }
183 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
184 
185 /**
186  * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
187  * @pdev: the PCI device
188  *
189  * Returns error bits set in PCI_STATUS and clears them.
190  */
191 int pci_status_get_and_clear_errors(struct pci_dev *pdev)
192 {
193 	u16 status;
194 	int ret;
195 
196 	ret = pci_read_config_word(pdev, PCI_STATUS, &status);
197 	if (ret != PCIBIOS_SUCCESSFUL)
198 		return -EIO;
199 
200 	status &= PCI_STATUS_ERROR_BITS;
201 	if (status)
202 		pci_write_config_word(pdev, PCI_STATUS, status);
203 
204 	return status;
205 }
206 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
207 
208 #ifdef CONFIG_HAS_IOMEM
209 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
210 {
211 	struct resource *res = &pdev->resource[bar];
212 
213 	/*
214 	 * Make sure the BAR is actually a memory resource, not an IO resource
215 	 */
216 	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
217 		pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
218 		return NULL;
219 	}
220 	return ioremap(res->start, resource_size(res));
221 }
222 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
223 
224 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
225 {
226 	/*
227 	 * Make sure the BAR is actually a memory resource, not an IO resource
228 	 */
229 	if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
230 		WARN_ON(1);
231 		return NULL;
232 	}
233 	return ioremap_wc(pci_resource_start(pdev, bar),
234 			  pci_resource_len(pdev, bar));
235 }
236 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
237 #endif
238 
239 /**
240  * pci_dev_str_match_path - test if a path string matches a device
241  * @dev: the PCI device to test
242  * @path: string to match the device against
243  * @endptr: pointer to the string after the match
244  *
245  * Test if a string (typically from a kernel parameter) formatted as a
246  * path of device/function addresses matches a PCI device. The string must
247  * be of the form:
248  *
249  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
250  *
251  * A path for a device can be obtained using 'lspci -t'.  Using a path
252  * is more robust against bus renumbering than using only a single bus,
253  * device and function address.
254  *
255  * Returns 1 if the string matches the device, 0 if it does not and
256  * a negative error code if it fails to parse the string.
257  */
258 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
259 				  const char **endptr)
260 {
261 	int ret;
262 	int seg, bus, slot, func;
263 	char *wpath, *p;
264 	char end;
265 
266 	*endptr = strchrnul(path, ';');
267 
268 	wpath = kmemdup_nul(path, *endptr - path, GFP_KERNEL);
269 	if (!wpath)
270 		return -ENOMEM;
271 
272 	while (1) {
273 		p = strrchr(wpath, '/');
274 		if (!p)
275 			break;
276 		ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
277 		if (ret != 2) {
278 			ret = -EINVAL;
279 			goto free_and_exit;
280 		}
281 
282 		if (dev->devfn != PCI_DEVFN(slot, func)) {
283 			ret = 0;
284 			goto free_and_exit;
285 		}
286 
287 		/*
288 		 * Note: we don't need to get a reference to the upstream
289 		 * bridge because we hold a reference to the top level
290 		 * device which should hold a reference to the bridge,
291 		 * and so on.
292 		 */
293 		dev = pci_upstream_bridge(dev);
294 		if (!dev) {
295 			ret = 0;
296 			goto free_and_exit;
297 		}
298 
299 		*p = 0;
300 	}
301 
302 	ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
303 		     &func, &end);
304 	if (ret != 4) {
305 		seg = 0;
306 		ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
307 		if (ret != 3) {
308 			ret = -EINVAL;
309 			goto free_and_exit;
310 		}
311 	}
312 
313 	ret = (seg == pci_domain_nr(dev->bus) &&
314 	       bus == dev->bus->number &&
315 	       dev->devfn == PCI_DEVFN(slot, func));
316 
317 free_and_exit:
318 	kfree(wpath);
319 	return ret;
320 }
321 
322 /**
323  * pci_dev_str_match - test if a string matches a device
324  * @dev: the PCI device to test
325  * @p: string to match the device against
326  * @endptr: pointer to the string after the match
327  *
328  * Test if a string (typically from a kernel parameter) matches a specified
329  * PCI device. The string may be of one of the following formats:
330  *
331  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
332  *   pci:<vendor>:<device>[:<subvendor>:<subdevice>]
333  *
334  * The first format specifies a PCI bus/device/function address which
335  * may change if new hardware is inserted, if motherboard firmware changes,
336  * or due to changes caused in kernel parameters. If the domain is
337  * left unspecified, it is taken to be 0.  In order to be robust against
338  * bus renumbering issues, a path of PCI device/function numbers may be used
339  * to address the specific device.  The path for a device can be determined
340  * through the use of 'lspci -t'.
341  *
342  * The second format matches devices using IDs in the configuration
343  * space which may match multiple devices in the system. A value of 0
344  * for any field will match all devices. (Note: this differs from
345  * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
346  * legacy reasons and convenience so users don't have to specify
347  * FFFFFFFFs on the command line.)
348  *
349  * Returns 1 if the string matches the device, 0 if it does not and
350  * a negative error code if the string cannot be parsed.
351  */
352 static int pci_dev_str_match(struct pci_dev *dev, const char *p,
353 			     const char **endptr)
354 {
355 	int ret;
356 	int count;
357 	unsigned short vendor, device, subsystem_vendor, subsystem_device;
358 
359 	if (strncmp(p, "pci:", 4) == 0) {
360 		/* PCI vendor/device (subvendor/subdevice) IDs are specified */
361 		p += 4;
362 		ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
363 			     &subsystem_vendor, &subsystem_device, &count);
364 		if (ret != 4) {
365 			ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
366 			if (ret != 2)
367 				return -EINVAL;
368 
369 			subsystem_vendor = 0;
370 			subsystem_device = 0;
371 		}
372 
373 		p += count;
374 
375 		if ((!vendor || vendor == dev->vendor) &&
376 		    (!device || device == dev->device) &&
377 		    (!subsystem_vendor ||
378 			    subsystem_vendor == dev->subsystem_vendor) &&
379 		    (!subsystem_device ||
380 			    subsystem_device == dev->subsystem_device))
381 			goto found;
382 	} else {
383 		/*
384 		 * PCI Bus, Device, Function IDs are specified
385 		 * (optionally, may include a path of devfns following it)
386 		 */
387 		ret = pci_dev_str_match_path(dev, p, &p);
388 		if (ret < 0)
389 			return ret;
390 		else if (ret)
391 			goto found;
392 	}
393 
394 	*endptr = p;
395 	return 0;
396 
397 found:
398 	*endptr = p;
399 	return 1;
400 }
401 
402 static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
403 				  u8 pos, int cap, int *ttl)
404 {
405 	u8 id;
406 	u16 ent;
407 
408 	pci_bus_read_config_byte(bus, devfn, pos, &pos);
409 
410 	while ((*ttl)--) {
411 		if (pos < 0x40)
412 			break;
413 		pos &= ~3;
414 		pci_bus_read_config_word(bus, devfn, pos, &ent);
415 
416 		id = ent & 0xff;
417 		if (id == 0xff)
418 			break;
419 		if (id == cap)
420 			return pos;
421 		pos = (ent >> 8);
422 	}
423 	return 0;
424 }
425 
426 static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
427 			      u8 pos, int cap)
428 {
429 	int ttl = PCI_FIND_CAP_TTL;
430 
431 	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
432 }
433 
434 u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
435 {
436 	return __pci_find_next_cap(dev->bus, dev->devfn,
437 				   pos + PCI_CAP_LIST_NEXT, cap);
438 }
439 EXPORT_SYMBOL_GPL(pci_find_next_capability);
440 
441 static u8 __pci_bus_find_cap_start(struct pci_bus *bus,
442 				    unsigned int devfn, u8 hdr_type)
443 {
444 	u16 status;
445 
446 	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
447 	if (!(status & PCI_STATUS_CAP_LIST))
448 		return 0;
449 
450 	switch (hdr_type) {
451 	case PCI_HEADER_TYPE_NORMAL:
452 	case PCI_HEADER_TYPE_BRIDGE:
453 		return PCI_CAPABILITY_LIST;
454 	case PCI_HEADER_TYPE_CARDBUS:
455 		return PCI_CB_CAPABILITY_LIST;
456 	}
457 
458 	return 0;
459 }
460 
461 /**
462  * pci_find_capability - query for devices' capabilities
463  * @dev: PCI device to query
464  * @cap: capability code
465  *
466  * Tell if a device supports a given PCI capability.
467  * Returns the address of the requested capability structure within the
468  * device's PCI configuration space or 0 in case the device does not
469  * support it.  Possible values for @cap include:
470  *
471  *  %PCI_CAP_ID_PM           Power Management
472  *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
473  *  %PCI_CAP_ID_VPD          Vital Product Data
474  *  %PCI_CAP_ID_SLOTID       Slot Identification
475  *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
476  *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
477  *  %PCI_CAP_ID_PCIX         PCI-X
478  *  %PCI_CAP_ID_EXP          PCI Express
479  */
480 u8 pci_find_capability(struct pci_dev *dev, int cap)
481 {
482 	u8 pos;
483 
484 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
485 	if (pos)
486 		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
487 
488 	return pos;
489 }
490 EXPORT_SYMBOL(pci_find_capability);
491 
492 /**
493  * pci_bus_find_capability - query for devices' capabilities
494  * @bus: the PCI bus to query
495  * @devfn: PCI device to query
496  * @cap: capability code
497  *
498  * Like pci_find_capability() but works for PCI devices that do not have a
499  * pci_dev structure set up yet.
500  *
501  * Returns the address of the requested capability structure within the
502  * device's PCI configuration space or 0 in case the device does not
503  * support it.
504  */
505 u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
506 {
507 	u8 hdr_type, pos;
508 
509 	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
510 
511 	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
512 	if (pos)
513 		pos = __pci_find_next_cap(bus, devfn, pos, cap);
514 
515 	return pos;
516 }
517 EXPORT_SYMBOL(pci_bus_find_capability);
518 
519 /**
520  * pci_find_next_ext_capability - Find an extended capability
521  * @dev: PCI device to query
522  * @start: address at which to start looking (0 to start at beginning of list)
523  * @cap: capability code
524  *
525  * Returns the address of the next matching extended capability structure
526  * within the device's PCI configuration space or 0 if the device does
527  * not support it.  Some capabilities can occur several times, e.g., the
528  * vendor-specific capability, and this provides a way to find them all.
529  */
530 u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap)
531 {
532 	u32 header;
533 	int ttl;
534 	u16 pos = PCI_CFG_SPACE_SIZE;
535 
536 	/* minimum 8 bytes per capability */
537 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
538 
539 	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
540 		return 0;
541 
542 	if (start)
543 		pos = start;
544 
545 	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
546 		return 0;
547 
548 	/*
549 	 * If we have no capabilities, this is indicated by cap ID,
550 	 * cap version and next pointer all being 0.
551 	 */
552 	if (header == 0)
553 		return 0;
554 
555 	while (ttl-- > 0) {
556 		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
557 			return pos;
558 
559 		pos = PCI_EXT_CAP_NEXT(header);
560 		if (pos < PCI_CFG_SPACE_SIZE)
561 			break;
562 
563 		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
564 			break;
565 	}
566 
567 	return 0;
568 }
569 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
570 
571 /**
572  * pci_find_ext_capability - Find an extended capability
573  * @dev: PCI device to query
574  * @cap: capability code
575  *
576  * Returns the address of the requested extended capability structure
577  * within the device's PCI configuration space or 0 if the device does
578  * not support it.  Possible values for @cap include:
579  *
580  *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
581  *  %PCI_EXT_CAP_ID_VC		Virtual Channel
582  *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
583  *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
584  */
585 u16 pci_find_ext_capability(struct pci_dev *dev, int cap)
586 {
587 	return pci_find_next_ext_capability(dev, 0, cap);
588 }
589 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
590 
591 /**
592  * pci_get_dsn - Read and return the 8-byte Device Serial Number
593  * @dev: PCI device to query
594  *
595  * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
596  * Number.
597  *
598  * Returns the DSN, or zero if the capability does not exist.
599  */
600 u64 pci_get_dsn(struct pci_dev *dev)
601 {
602 	u32 dword;
603 	u64 dsn;
604 	int pos;
605 
606 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
607 	if (!pos)
608 		return 0;
609 
610 	/*
611 	 * The Device Serial Number is two dwords offset 4 bytes from the
612 	 * capability position. The specification says that the first dword is
613 	 * the lower half, and the second dword is the upper half.
614 	 */
615 	pos += 4;
616 	pci_read_config_dword(dev, pos, &dword);
617 	dsn = (u64)dword;
618 	pci_read_config_dword(dev, pos + 4, &dword);
619 	dsn |= ((u64)dword) << 32;
620 
621 	return dsn;
622 }
623 EXPORT_SYMBOL_GPL(pci_get_dsn);
624 
625 static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap)
626 {
627 	int rc, ttl = PCI_FIND_CAP_TTL;
628 	u8 cap, mask;
629 
630 	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
631 		mask = HT_3BIT_CAP_MASK;
632 	else
633 		mask = HT_5BIT_CAP_MASK;
634 
635 	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
636 				      PCI_CAP_ID_HT, &ttl);
637 	while (pos) {
638 		rc = pci_read_config_byte(dev, pos + 3, &cap);
639 		if (rc != PCIBIOS_SUCCESSFUL)
640 			return 0;
641 
642 		if ((cap & mask) == ht_cap)
643 			return pos;
644 
645 		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
646 					      pos + PCI_CAP_LIST_NEXT,
647 					      PCI_CAP_ID_HT, &ttl);
648 	}
649 
650 	return 0;
651 }
652 
653 /**
654  * pci_find_next_ht_capability - query a device's HyperTransport capabilities
655  * @dev: PCI device to query
656  * @pos: Position from which to continue searching
657  * @ht_cap: HyperTransport capability code
658  *
659  * To be used in conjunction with pci_find_ht_capability() to search for
660  * all capabilities matching @ht_cap. @pos should always be a value returned
661  * from pci_find_ht_capability().
662  *
663  * NB. To be 100% safe against broken PCI devices, the caller should take
664  * steps to avoid an infinite loop.
665  */
666 u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap)
667 {
668 	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
669 }
670 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
671 
672 /**
673  * pci_find_ht_capability - query a device's HyperTransport capabilities
674  * @dev: PCI device to query
675  * @ht_cap: HyperTransport capability code
676  *
677  * Tell if a device supports a given HyperTransport capability.
678  * Returns an address within the device's PCI configuration space
679  * or 0 in case the device does not support the request capability.
680  * The address points to the PCI capability, of type PCI_CAP_ID_HT,
681  * which has a HyperTransport capability matching @ht_cap.
682  */
683 u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
684 {
685 	u8 pos;
686 
687 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
688 	if (pos)
689 		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
690 
691 	return pos;
692 }
693 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
694 
695 /**
696  * pci_find_vsec_capability - Find a vendor-specific extended capability
697  * @dev: PCI device to query
698  * @vendor: Vendor ID for which capability is defined
699  * @cap: Vendor-specific capability ID
700  *
701  * If @dev has Vendor ID @vendor, search for a VSEC capability with
702  * VSEC ID @cap. If found, return the capability offset in
703  * config space; otherwise return 0.
704  */
705 u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap)
706 {
707 	u16 vsec = 0;
708 	u32 header;
709 
710 	if (vendor != dev->vendor)
711 		return 0;
712 
713 	while ((vsec = pci_find_next_ext_capability(dev, vsec,
714 						     PCI_EXT_CAP_ID_VNDR))) {
715 		if (pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER,
716 					  &header) == PCIBIOS_SUCCESSFUL &&
717 		    PCI_VNDR_HEADER_ID(header) == cap)
718 			return vsec;
719 	}
720 
721 	return 0;
722 }
723 EXPORT_SYMBOL_GPL(pci_find_vsec_capability);
724 
725 /**
726  * pci_find_parent_resource - return resource region of parent bus of given
727  *			      region
728  * @dev: PCI device structure contains resources to be searched
729  * @res: child resource record for which parent is sought
730  *
731  * For given resource region of given device, return the resource region of
732  * parent bus the given region is contained in.
733  */
734 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
735 					  struct resource *res)
736 {
737 	const struct pci_bus *bus = dev->bus;
738 	struct resource *r;
739 	int i;
740 
741 	pci_bus_for_each_resource(bus, r, i) {
742 		if (!r)
743 			continue;
744 		if (resource_contains(r, res)) {
745 
746 			/*
747 			 * If the window is prefetchable but the BAR is
748 			 * not, the allocator made a mistake.
749 			 */
750 			if (r->flags & IORESOURCE_PREFETCH &&
751 			    !(res->flags & IORESOURCE_PREFETCH))
752 				return NULL;
753 
754 			/*
755 			 * If we're below a transparent bridge, there may
756 			 * be both a positively-decoded aperture and a
757 			 * subtractively-decoded region that contain the BAR.
758 			 * We want the positively-decoded one, so this depends
759 			 * on pci_bus_for_each_resource() giving us those
760 			 * first.
761 			 */
762 			return r;
763 		}
764 	}
765 	return NULL;
766 }
767 EXPORT_SYMBOL(pci_find_parent_resource);
768 
769 /**
770  * pci_find_resource - Return matching PCI device resource
771  * @dev: PCI device to query
772  * @res: Resource to look for
773  *
774  * Goes over standard PCI resources (BARs) and checks if the given resource
775  * is partially or fully contained in any of them. In that case the
776  * matching resource is returned, %NULL otherwise.
777  */
778 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
779 {
780 	int i;
781 
782 	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
783 		struct resource *r = &dev->resource[i];
784 
785 		if (r->start && resource_contains(r, res))
786 			return r;
787 	}
788 
789 	return NULL;
790 }
791 EXPORT_SYMBOL(pci_find_resource);
792 
793 /**
794  * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
795  * @dev: the PCI device to operate on
796  * @pos: config space offset of status word
797  * @mask: mask of bit(s) to care about in status word
798  *
799  * Return 1 when mask bit(s) in status word clear, 0 otherwise.
800  */
801 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
802 {
803 	int i;
804 
805 	/* Wait for Transaction Pending bit clean */
806 	for (i = 0; i < 4; i++) {
807 		u16 status;
808 		if (i)
809 			msleep((1 << (i - 1)) * 100);
810 
811 		pci_read_config_word(dev, pos, &status);
812 		if (!(status & mask))
813 			return 1;
814 	}
815 
816 	return 0;
817 }
818 
819 static int pci_acs_enable;
820 
821 /**
822  * pci_request_acs - ask for ACS to be enabled if supported
823  */
824 void pci_request_acs(void)
825 {
826 	pci_acs_enable = 1;
827 }
828 
829 static const char *disable_acs_redir_param;
830 
831 /**
832  * pci_disable_acs_redir - disable ACS redirect capabilities
833  * @dev: the PCI device
834  *
835  * For only devices specified in the disable_acs_redir parameter.
836  */
837 static void pci_disable_acs_redir(struct pci_dev *dev)
838 {
839 	int ret = 0;
840 	const char *p;
841 	int pos;
842 	u16 ctrl;
843 
844 	if (!disable_acs_redir_param)
845 		return;
846 
847 	p = disable_acs_redir_param;
848 	while (*p) {
849 		ret = pci_dev_str_match(dev, p, &p);
850 		if (ret < 0) {
851 			pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
852 				     disable_acs_redir_param);
853 
854 			break;
855 		} else if (ret == 1) {
856 			/* Found a match */
857 			break;
858 		}
859 
860 		if (*p != ';' && *p != ',') {
861 			/* End of param or invalid format */
862 			break;
863 		}
864 		p++;
865 	}
866 
867 	if (ret != 1)
868 		return;
869 
870 	if (!pci_dev_specific_disable_acs_redir(dev))
871 		return;
872 
873 	pos = dev->acs_cap;
874 	if (!pos) {
875 		pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
876 		return;
877 	}
878 
879 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
880 
881 	/* P2P Request & Completion Redirect */
882 	ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
883 
884 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
885 
886 	pci_info(dev, "disabled ACS redirect\n");
887 }
888 
889 /**
890  * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
891  * @dev: the PCI device
892  */
893 static void pci_std_enable_acs(struct pci_dev *dev)
894 {
895 	int pos;
896 	u16 cap;
897 	u16 ctrl;
898 
899 	pos = dev->acs_cap;
900 	if (!pos)
901 		return;
902 
903 	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
904 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
905 
906 	/* Source Validation */
907 	ctrl |= (cap & PCI_ACS_SV);
908 
909 	/* P2P Request Redirect */
910 	ctrl |= (cap & PCI_ACS_RR);
911 
912 	/* P2P Completion Redirect */
913 	ctrl |= (cap & PCI_ACS_CR);
914 
915 	/* Upstream Forwarding */
916 	ctrl |= (cap & PCI_ACS_UF);
917 
918 	/* Enable Translation Blocking for external devices */
919 	if (dev->external_facing || dev->untrusted)
920 		ctrl |= (cap & PCI_ACS_TB);
921 
922 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
923 }
924 
925 /**
926  * pci_enable_acs - enable ACS if hardware support it
927  * @dev: the PCI device
928  */
929 static void pci_enable_acs(struct pci_dev *dev)
930 {
931 	if (!pci_acs_enable)
932 		goto disable_acs_redir;
933 
934 	if (!pci_dev_specific_enable_acs(dev))
935 		goto disable_acs_redir;
936 
937 	pci_std_enable_acs(dev);
938 
939 disable_acs_redir:
940 	/*
941 	 * Note: pci_disable_acs_redir() must be called even if ACS was not
942 	 * enabled by the kernel because it may have been enabled by
943 	 * platform firmware.  So if we are told to disable it, we should
944 	 * always disable it after setting the kernel's default
945 	 * preferences.
946 	 */
947 	pci_disable_acs_redir(dev);
948 }
949 
950 /**
951  * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
952  * @dev: PCI device to have its BARs restored
953  *
954  * Restore the BAR values for a given device, so as to make it
955  * accessible by its driver.
956  */
957 static void pci_restore_bars(struct pci_dev *dev)
958 {
959 	int i;
960 
961 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
962 		pci_update_resource(dev, i);
963 }
964 
965 static const struct pci_platform_pm_ops *pci_platform_pm;
966 
967 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
968 {
969 	if (!ops->is_manageable || !ops->set_state  || !ops->get_state ||
970 	    !ops->choose_state  || !ops->set_wakeup || !ops->need_resume)
971 		return -EINVAL;
972 	pci_platform_pm = ops;
973 	return 0;
974 }
975 
976 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
977 {
978 	return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
979 }
980 
981 static inline int platform_pci_set_power_state(struct pci_dev *dev,
982 					       pci_power_t t)
983 {
984 	return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
985 }
986 
987 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
988 {
989 	return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
990 }
991 
992 static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
993 {
994 	if (pci_platform_pm && pci_platform_pm->refresh_state)
995 		pci_platform_pm->refresh_state(dev);
996 }
997 
998 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
999 {
1000 	return pci_platform_pm ?
1001 			pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
1002 }
1003 
1004 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
1005 {
1006 	return pci_platform_pm ?
1007 			pci_platform_pm->set_wakeup(dev, enable) : -ENODEV;
1008 }
1009 
1010 static inline bool platform_pci_need_resume(struct pci_dev *dev)
1011 {
1012 	return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
1013 }
1014 
1015 static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
1016 {
1017 	if (pci_platform_pm && pci_platform_pm->bridge_d3)
1018 		return pci_platform_pm->bridge_d3(dev);
1019 	return false;
1020 }
1021 
1022 /**
1023  * pci_raw_set_power_state - Use PCI PM registers to set the power state of
1024  *			     given PCI device
1025  * @dev: PCI device to handle.
1026  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1027  *
1028  * RETURN VALUE:
1029  * -EINVAL if the requested state is invalid.
1030  * -EIO if device does not support PCI PM or its PM capabilities register has a
1031  * wrong version, or device doesn't support the requested state.
1032  * 0 if device already is in the requested state.
1033  * 0 if device's power state has been successfully changed.
1034  */
1035 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
1036 {
1037 	u16 pmcsr;
1038 	bool need_restore = false;
1039 
1040 	/* Check if we're already there */
1041 	if (dev->current_state == state)
1042 		return 0;
1043 
1044 	if (!dev->pm_cap)
1045 		return -EIO;
1046 
1047 	if (state < PCI_D0 || state > PCI_D3hot)
1048 		return -EINVAL;
1049 
1050 	/*
1051 	 * Validate transition: We can enter D0 from any state, but if
1052 	 * we're already in a low-power state, we can only go deeper.  E.g.,
1053 	 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1054 	 * we'd have to go from D3 to D0, then to D1.
1055 	 */
1056 	if (state != PCI_D0 && dev->current_state <= PCI_D3cold
1057 	    && dev->current_state > state) {
1058 		pci_err(dev, "invalid power transition (from %s to %s)\n",
1059 			pci_power_name(dev->current_state),
1060 			pci_power_name(state));
1061 		return -EINVAL;
1062 	}
1063 
1064 	/* Check if this device supports the desired state */
1065 	if ((state == PCI_D1 && !dev->d1_support)
1066 	   || (state == PCI_D2 && !dev->d2_support))
1067 		return -EIO;
1068 
1069 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1070 	if (pmcsr == (u16) ~0) {
1071 		pci_err(dev, "can't change power state from %s to %s (config space inaccessible)\n",
1072 			pci_power_name(dev->current_state),
1073 			pci_power_name(state));
1074 		return -EIO;
1075 	}
1076 
1077 	/*
1078 	 * If we're (effectively) in D3, force entire word to 0.
1079 	 * This doesn't affect PME_Status, disables PME_En, and
1080 	 * sets PowerState to 0.
1081 	 */
1082 	switch (dev->current_state) {
1083 	case PCI_D0:
1084 	case PCI_D1:
1085 	case PCI_D2:
1086 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1087 		pmcsr |= state;
1088 		break;
1089 	case PCI_D3hot:
1090 	case PCI_D3cold:
1091 	case PCI_UNKNOWN: /* Boot-up */
1092 		if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
1093 		 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
1094 			need_restore = true;
1095 		fallthrough;	/* force to D0 */
1096 	default:
1097 		pmcsr = 0;
1098 		break;
1099 	}
1100 
1101 	/* Enter specified state */
1102 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1103 
1104 	/*
1105 	 * Mandatory power management transition delays; see PCI PM 1.1
1106 	 * 5.6.1 table 18
1107 	 */
1108 	if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
1109 		pci_dev_d3_sleep(dev);
1110 	else if (state == PCI_D2 || dev->current_state == PCI_D2)
1111 		udelay(PCI_PM_D2_DELAY);
1112 
1113 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1114 	dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1115 	if (dev->current_state != state)
1116 		pci_info_ratelimited(dev, "refused to change power state from %s to %s\n",
1117 			 pci_power_name(dev->current_state),
1118 			 pci_power_name(state));
1119 
1120 	/*
1121 	 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1122 	 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1123 	 * from D3hot to D0 _may_ perform an internal reset, thereby
1124 	 * going to "D0 Uninitialized" rather than "D0 Initialized".
1125 	 * For example, at least some versions of the 3c905B and the
1126 	 * 3c556B exhibit this behaviour.
1127 	 *
1128 	 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1129 	 * devices in a D3hot state at boot.  Consequently, we need to
1130 	 * restore at least the BARs so that the device will be
1131 	 * accessible to its driver.
1132 	 */
1133 	if (need_restore)
1134 		pci_restore_bars(dev);
1135 
1136 	if (dev->bus->self)
1137 		pcie_aspm_pm_state_change(dev->bus->self);
1138 
1139 	return 0;
1140 }
1141 
1142 /**
1143  * pci_update_current_state - Read power state of given device and cache it
1144  * @dev: PCI device to handle.
1145  * @state: State to cache in case the device doesn't have the PM capability
1146  *
1147  * The power state is read from the PMCSR register, which however is
1148  * inaccessible in D3cold.  The platform firmware is therefore queried first
1149  * to detect accessibility of the register.  In case the platform firmware
1150  * reports an incorrect state or the device isn't power manageable by the
1151  * platform at all, we try to detect D3cold by testing accessibility of the
1152  * vendor ID in config space.
1153  */
1154 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1155 {
1156 	if (platform_pci_get_power_state(dev) == PCI_D3cold ||
1157 	    !pci_device_is_present(dev)) {
1158 		dev->current_state = PCI_D3cold;
1159 	} else if (dev->pm_cap) {
1160 		u16 pmcsr;
1161 
1162 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1163 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1164 	} else {
1165 		dev->current_state = state;
1166 	}
1167 }
1168 
1169 /**
1170  * pci_refresh_power_state - Refresh the given device's power state data
1171  * @dev: Target PCI device.
1172  *
1173  * Ask the platform to refresh the devices power state information and invoke
1174  * pci_update_current_state() to update its current PCI power state.
1175  */
1176 void pci_refresh_power_state(struct pci_dev *dev)
1177 {
1178 	if (platform_pci_power_manageable(dev))
1179 		platform_pci_refresh_power_state(dev);
1180 
1181 	pci_update_current_state(dev, dev->current_state);
1182 }
1183 
1184 /**
1185  * pci_platform_power_transition - Use platform to change device power state
1186  * @dev: PCI device to handle.
1187  * @state: State to put the device into.
1188  */
1189 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1190 {
1191 	int error;
1192 
1193 	if (platform_pci_power_manageable(dev)) {
1194 		error = platform_pci_set_power_state(dev, state);
1195 		if (!error)
1196 			pci_update_current_state(dev, state);
1197 	} else
1198 		error = -ENODEV;
1199 
1200 	if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
1201 		dev->current_state = PCI_D0;
1202 
1203 	return error;
1204 }
1205 EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1206 
1207 static int pci_resume_one(struct pci_dev *pci_dev, void *ign)
1208 {
1209 	pm_request_resume(&pci_dev->dev);
1210 	return 0;
1211 }
1212 
1213 /**
1214  * pci_resume_bus - Walk given bus and runtime resume devices on it
1215  * @bus: Top bus of the subtree to walk.
1216  */
1217 void pci_resume_bus(struct pci_bus *bus)
1218 {
1219 	if (bus)
1220 		pci_walk_bus(bus, pci_resume_one, NULL);
1221 }
1222 
1223 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1224 {
1225 	int delay = 1;
1226 	u32 id;
1227 
1228 	/*
1229 	 * After reset, the device should not silently discard config
1230 	 * requests, but it may still indicate that it needs more time by
1231 	 * responding to them with CRS completions.  The Root Port will
1232 	 * generally synthesize ~0 data to complete the read (except when
1233 	 * CRS SV is enabled and the read was for the Vendor ID; in that
1234 	 * case it synthesizes 0x0001 data).
1235 	 *
1236 	 * Wait for the device to return a non-CRS completion.  Read the
1237 	 * Command register instead of Vendor ID so we don't have to
1238 	 * contend with the CRS SV value.
1239 	 */
1240 	pci_read_config_dword(dev, PCI_COMMAND, &id);
1241 	while (id == ~0) {
1242 		if (delay > timeout) {
1243 			pci_warn(dev, "not ready %dms after %s; giving up\n",
1244 				 delay - 1, reset_type);
1245 			return -ENOTTY;
1246 		}
1247 
1248 		if (delay > 1000)
1249 			pci_info(dev, "not ready %dms after %s; waiting\n",
1250 				 delay - 1, reset_type);
1251 
1252 		msleep(delay);
1253 		delay *= 2;
1254 		pci_read_config_dword(dev, PCI_COMMAND, &id);
1255 	}
1256 
1257 	if (delay > 1000)
1258 		pci_info(dev, "ready %dms after %s\n", delay - 1,
1259 			 reset_type);
1260 
1261 	return 0;
1262 }
1263 
1264 /**
1265  * pci_power_up - Put the given device into D0
1266  * @dev: PCI device to power up
1267  */
1268 int pci_power_up(struct pci_dev *dev)
1269 {
1270 	pci_platform_power_transition(dev, PCI_D0);
1271 
1272 	/*
1273 	 * Mandatory power management transition delays are handled in
1274 	 * pci_pm_resume_noirq() and pci_pm_runtime_resume() of the
1275 	 * corresponding bridge.
1276 	 */
1277 	if (dev->runtime_d3cold) {
1278 		/*
1279 		 * When powering on a bridge from D3cold, the whole hierarchy
1280 		 * may be powered on into D0uninitialized state, resume them to
1281 		 * give them a chance to suspend again
1282 		 */
1283 		pci_resume_bus(dev->subordinate);
1284 	}
1285 
1286 	return pci_raw_set_power_state(dev, PCI_D0);
1287 }
1288 
1289 /**
1290  * __pci_dev_set_current_state - Set current state of a PCI device
1291  * @dev: Device to handle
1292  * @data: pointer to state to be set
1293  */
1294 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1295 {
1296 	pci_power_t state = *(pci_power_t *)data;
1297 
1298 	dev->current_state = state;
1299 	return 0;
1300 }
1301 
1302 /**
1303  * pci_bus_set_current_state - Walk given bus and set current state of devices
1304  * @bus: Top bus of the subtree to walk.
1305  * @state: state to be set
1306  */
1307 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1308 {
1309 	if (bus)
1310 		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1311 }
1312 
1313 /**
1314  * pci_set_power_state - Set the power state of a PCI device
1315  * @dev: PCI device to handle.
1316  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1317  *
1318  * Transition a device to a new power state, using the platform firmware and/or
1319  * the device's PCI PM registers.
1320  *
1321  * RETURN VALUE:
1322  * -EINVAL if the requested state is invalid.
1323  * -EIO if device does not support PCI PM or its PM capabilities register has a
1324  * wrong version, or device doesn't support the requested state.
1325  * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1326  * 0 if device already is in the requested state.
1327  * 0 if the transition is to D3 but D3 is not supported.
1328  * 0 if device's power state has been successfully changed.
1329  */
1330 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1331 {
1332 	int error;
1333 
1334 	/* Bound the state we're entering */
1335 	if (state > PCI_D3cold)
1336 		state = PCI_D3cold;
1337 	else if (state < PCI_D0)
1338 		state = PCI_D0;
1339 	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1340 
1341 		/*
1342 		 * If the device or the parent bridge do not support PCI
1343 		 * PM, ignore the request if we're doing anything other
1344 		 * than putting it into D0 (which would only happen on
1345 		 * boot).
1346 		 */
1347 		return 0;
1348 
1349 	/* Check if we're already there */
1350 	if (dev->current_state == state)
1351 		return 0;
1352 
1353 	if (state == PCI_D0)
1354 		return pci_power_up(dev);
1355 
1356 	/*
1357 	 * This device is quirked not to be put into D3, so don't put it in
1358 	 * D3
1359 	 */
1360 	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1361 		return 0;
1362 
1363 	/*
1364 	 * To put device in D3cold, we put device into D3hot in native
1365 	 * way, then put device into D3cold with platform ops
1366 	 */
1367 	error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
1368 					PCI_D3hot : state);
1369 
1370 	if (pci_platform_power_transition(dev, state))
1371 		return error;
1372 
1373 	/* Powering off a bridge may power off the whole hierarchy */
1374 	if (state == PCI_D3cold)
1375 		pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1376 
1377 	return 0;
1378 }
1379 EXPORT_SYMBOL(pci_set_power_state);
1380 
1381 /**
1382  * pci_choose_state - Choose the power state of a PCI device
1383  * @dev: PCI device to be suspended
1384  * @state: target sleep state for the whole system. This is the value
1385  *	   that is passed to suspend() function.
1386  *
1387  * Returns PCI power state suitable for given device and given system
1388  * message.
1389  */
1390 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
1391 {
1392 	pci_power_t ret;
1393 
1394 	if (!dev->pm_cap)
1395 		return PCI_D0;
1396 
1397 	ret = platform_pci_choose_state(dev);
1398 	if (ret != PCI_POWER_ERROR)
1399 		return ret;
1400 
1401 	switch (state.event) {
1402 	case PM_EVENT_ON:
1403 		return PCI_D0;
1404 	case PM_EVENT_FREEZE:
1405 	case PM_EVENT_PRETHAW:
1406 		/* REVISIT both freeze and pre-thaw "should" use D0 */
1407 	case PM_EVENT_SUSPEND:
1408 	case PM_EVENT_HIBERNATE:
1409 		return PCI_D3hot;
1410 	default:
1411 		pci_info(dev, "unrecognized suspend event %d\n",
1412 			 state.event);
1413 		BUG();
1414 	}
1415 	return PCI_D0;
1416 }
1417 EXPORT_SYMBOL(pci_choose_state);
1418 
1419 #define PCI_EXP_SAVE_REGS	7
1420 
1421 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1422 						       u16 cap, bool extended)
1423 {
1424 	struct pci_cap_saved_state *tmp;
1425 
1426 	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1427 		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1428 			return tmp;
1429 	}
1430 	return NULL;
1431 }
1432 
1433 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1434 {
1435 	return _pci_find_saved_cap(dev, cap, false);
1436 }
1437 
1438 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1439 {
1440 	return _pci_find_saved_cap(dev, cap, true);
1441 }
1442 
1443 static int pci_save_pcie_state(struct pci_dev *dev)
1444 {
1445 	int i = 0;
1446 	struct pci_cap_saved_state *save_state;
1447 	u16 *cap;
1448 
1449 	if (!pci_is_pcie(dev))
1450 		return 0;
1451 
1452 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1453 	if (!save_state) {
1454 		pci_err(dev, "buffer not found in %s\n", __func__);
1455 		return -ENOMEM;
1456 	}
1457 
1458 	cap = (u16 *)&save_state->cap.data[0];
1459 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1460 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1461 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1462 	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
1463 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1464 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1465 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1466 
1467 	return 0;
1468 }
1469 
1470 static void pci_restore_pcie_state(struct pci_dev *dev)
1471 {
1472 	int i = 0;
1473 	struct pci_cap_saved_state *save_state;
1474 	u16 *cap;
1475 
1476 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1477 	if (!save_state)
1478 		return;
1479 
1480 	cap = (u16 *)&save_state->cap.data[0];
1481 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1482 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1483 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1484 	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1485 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1486 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1487 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1488 }
1489 
1490 static int pci_save_pcix_state(struct pci_dev *dev)
1491 {
1492 	int pos;
1493 	struct pci_cap_saved_state *save_state;
1494 
1495 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1496 	if (!pos)
1497 		return 0;
1498 
1499 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1500 	if (!save_state) {
1501 		pci_err(dev, "buffer not found in %s\n", __func__);
1502 		return -ENOMEM;
1503 	}
1504 
1505 	pci_read_config_word(dev, pos + PCI_X_CMD,
1506 			     (u16 *)save_state->cap.data);
1507 
1508 	return 0;
1509 }
1510 
1511 static void pci_restore_pcix_state(struct pci_dev *dev)
1512 {
1513 	int i = 0, pos;
1514 	struct pci_cap_saved_state *save_state;
1515 	u16 *cap;
1516 
1517 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1518 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1519 	if (!save_state || !pos)
1520 		return;
1521 	cap = (u16 *)&save_state->cap.data[0];
1522 
1523 	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1524 }
1525 
1526 static void pci_save_ltr_state(struct pci_dev *dev)
1527 {
1528 	int ltr;
1529 	struct pci_cap_saved_state *save_state;
1530 	u16 *cap;
1531 
1532 	if (!pci_is_pcie(dev))
1533 		return;
1534 
1535 	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1536 	if (!ltr)
1537 		return;
1538 
1539 	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1540 	if (!save_state) {
1541 		pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1542 		return;
1543 	}
1544 
1545 	cap = (u16 *)&save_state->cap.data[0];
1546 	pci_read_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap++);
1547 	pci_read_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, cap++);
1548 }
1549 
1550 static void pci_restore_ltr_state(struct pci_dev *dev)
1551 {
1552 	struct pci_cap_saved_state *save_state;
1553 	int ltr;
1554 	u16 *cap;
1555 
1556 	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1557 	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1558 	if (!save_state || !ltr)
1559 		return;
1560 
1561 	cap = (u16 *)&save_state->cap.data[0];
1562 	pci_write_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap++);
1563 	pci_write_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, *cap++);
1564 }
1565 
1566 /**
1567  * pci_save_state - save the PCI configuration space of a device before
1568  *		    suspending
1569  * @dev: PCI device that we're dealing with
1570  */
1571 int pci_save_state(struct pci_dev *dev)
1572 {
1573 	int i;
1574 	/* XXX: 100% dword access ok here? */
1575 	for (i = 0; i < 16; i++) {
1576 		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1577 		pci_dbg(dev, "saving config space at offset %#x (reading %#x)\n",
1578 			i * 4, dev->saved_config_space[i]);
1579 	}
1580 	dev->state_saved = true;
1581 
1582 	i = pci_save_pcie_state(dev);
1583 	if (i != 0)
1584 		return i;
1585 
1586 	i = pci_save_pcix_state(dev);
1587 	if (i != 0)
1588 		return i;
1589 
1590 	pci_save_ltr_state(dev);
1591 	pci_save_dpc_state(dev);
1592 	pci_save_aer_state(dev);
1593 	pci_save_ptm_state(dev);
1594 	return pci_save_vc_state(dev);
1595 }
1596 EXPORT_SYMBOL(pci_save_state);
1597 
1598 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1599 				     u32 saved_val, int retry, bool force)
1600 {
1601 	u32 val;
1602 
1603 	pci_read_config_dword(pdev, offset, &val);
1604 	if (!force && val == saved_val)
1605 		return;
1606 
1607 	for (;;) {
1608 		pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1609 			offset, val, saved_val);
1610 		pci_write_config_dword(pdev, offset, saved_val);
1611 		if (retry-- <= 0)
1612 			return;
1613 
1614 		pci_read_config_dword(pdev, offset, &val);
1615 		if (val == saved_val)
1616 			return;
1617 
1618 		mdelay(1);
1619 	}
1620 }
1621 
1622 static void pci_restore_config_space_range(struct pci_dev *pdev,
1623 					   int start, int end, int retry,
1624 					   bool force)
1625 {
1626 	int index;
1627 
1628 	for (index = end; index >= start; index--)
1629 		pci_restore_config_dword(pdev, 4 * index,
1630 					 pdev->saved_config_space[index],
1631 					 retry, force);
1632 }
1633 
1634 static void pci_restore_config_space(struct pci_dev *pdev)
1635 {
1636 	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1637 		pci_restore_config_space_range(pdev, 10, 15, 0, false);
1638 		/* Restore BARs before the command register. */
1639 		pci_restore_config_space_range(pdev, 4, 9, 10, false);
1640 		pci_restore_config_space_range(pdev, 0, 3, 0, false);
1641 	} else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1642 		pci_restore_config_space_range(pdev, 12, 15, 0, false);
1643 
1644 		/*
1645 		 * Force rewriting of prefetch registers to avoid S3 resume
1646 		 * issues on Intel PCI bridges that occur when these
1647 		 * registers are not explicitly written.
1648 		 */
1649 		pci_restore_config_space_range(pdev, 9, 11, 0, true);
1650 		pci_restore_config_space_range(pdev, 0, 8, 0, false);
1651 	} else {
1652 		pci_restore_config_space_range(pdev, 0, 15, 0, false);
1653 	}
1654 }
1655 
1656 static void pci_restore_rebar_state(struct pci_dev *pdev)
1657 {
1658 	unsigned int pos, nbars, i;
1659 	u32 ctrl;
1660 
1661 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1662 	if (!pos)
1663 		return;
1664 
1665 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1666 	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1667 		    PCI_REBAR_CTRL_NBAR_SHIFT;
1668 
1669 	for (i = 0; i < nbars; i++, pos += 8) {
1670 		struct resource *res;
1671 		int bar_idx, size;
1672 
1673 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1674 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1675 		res = pdev->resource + bar_idx;
1676 		size = pci_rebar_bytes_to_size(resource_size(res));
1677 		ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1678 		ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1679 		pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1680 	}
1681 }
1682 
1683 /**
1684  * pci_restore_state - Restore the saved state of a PCI device
1685  * @dev: PCI device that we're dealing with
1686  */
1687 void pci_restore_state(struct pci_dev *dev)
1688 {
1689 	if (!dev->state_saved)
1690 		return;
1691 
1692 	/*
1693 	 * Restore max latencies (in the LTR capability) before enabling
1694 	 * LTR itself (in the PCIe capability).
1695 	 */
1696 	pci_restore_ltr_state(dev);
1697 
1698 	pci_restore_pcie_state(dev);
1699 	pci_restore_pasid_state(dev);
1700 	pci_restore_pri_state(dev);
1701 	pci_restore_ats_state(dev);
1702 	pci_restore_vc_state(dev);
1703 	pci_restore_rebar_state(dev);
1704 	pci_restore_dpc_state(dev);
1705 	pci_restore_ptm_state(dev);
1706 
1707 	pci_aer_clear_status(dev);
1708 	pci_restore_aer_state(dev);
1709 
1710 	pci_restore_config_space(dev);
1711 
1712 	pci_restore_pcix_state(dev);
1713 	pci_restore_msi_state(dev);
1714 
1715 	/* Restore ACS and IOV configuration state */
1716 	pci_enable_acs(dev);
1717 	pci_restore_iov_state(dev);
1718 
1719 	dev->state_saved = false;
1720 }
1721 EXPORT_SYMBOL(pci_restore_state);
1722 
1723 struct pci_saved_state {
1724 	u32 config_space[16];
1725 	struct pci_cap_saved_data cap[];
1726 };
1727 
1728 /**
1729  * pci_store_saved_state - Allocate and return an opaque struct containing
1730  *			   the device saved state.
1731  * @dev: PCI device that we're dealing with
1732  *
1733  * Return NULL if no state or error.
1734  */
1735 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1736 {
1737 	struct pci_saved_state *state;
1738 	struct pci_cap_saved_state *tmp;
1739 	struct pci_cap_saved_data *cap;
1740 	size_t size;
1741 
1742 	if (!dev->state_saved)
1743 		return NULL;
1744 
1745 	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1746 
1747 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1748 		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1749 
1750 	state = kzalloc(size, GFP_KERNEL);
1751 	if (!state)
1752 		return NULL;
1753 
1754 	memcpy(state->config_space, dev->saved_config_space,
1755 	       sizeof(state->config_space));
1756 
1757 	cap = state->cap;
1758 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1759 		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1760 		memcpy(cap, &tmp->cap, len);
1761 		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1762 	}
1763 	/* Empty cap_save terminates list */
1764 
1765 	return state;
1766 }
1767 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1768 
1769 /**
1770  * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1771  * @dev: PCI device that we're dealing with
1772  * @state: Saved state returned from pci_store_saved_state()
1773  */
1774 int pci_load_saved_state(struct pci_dev *dev,
1775 			 struct pci_saved_state *state)
1776 {
1777 	struct pci_cap_saved_data *cap;
1778 
1779 	dev->state_saved = false;
1780 
1781 	if (!state)
1782 		return 0;
1783 
1784 	memcpy(dev->saved_config_space, state->config_space,
1785 	       sizeof(state->config_space));
1786 
1787 	cap = state->cap;
1788 	while (cap->size) {
1789 		struct pci_cap_saved_state *tmp;
1790 
1791 		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1792 		if (!tmp || tmp->cap.size != cap->size)
1793 			return -EINVAL;
1794 
1795 		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1796 		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1797 		       sizeof(struct pci_cap_saved_data) + cap->size);
1798 	}
1799 
1800 	dev->state_saved = true;
1801 	return 0;
1802 }
1803 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1804 
1805 /**
1806  * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1807  *				   and free the memory allocated for it.
1808  * @dev: PCI device that we're dealing with
1809  * @state: Pointer to saved state returned from pci_store_saved_state()
1810  */
1811 int pci_load_and_free_saved_state(struct pci_dev *dev,
1812 				  struct pci_saved_state **state)
1813 {
1814 	int ret = pci_load_saved_state(dev, *state);
1815 	kfree(*state);
1816 	*state = NULL;
1817 	return ret;
1818 }
1819 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1820 
1821 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1822 {
1823 	return pci_enable_resources(dev, bars);
1824 }
1825 
1826 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1827 {
1828 	int err;
1829 	struct pci_dev *bridge;
1830 	u16 cmd;
1831 	u8 pin;
1832 
1833 	err = pci_set_power_state(dev, PCI_D0);
1834 	if (err < 0 && err != -EIO)
1835 		return err;
1836 
1837 	bridge = pci_upstream_bridge(dev);
1838 	if (bridge)
1839 		pcie_aspm_powersave_config_link(bridge);
1840 
1841 	err = pcibios_enable_device(dev, bars);
1842 	if (err < 0)
1843 		return err;
1844 	pci_fixup_device(pci_fixup_enable, dev);
1845 
1846 	if (dev->msi_enabled || dev->msix_enabled)
1847 		return 0;
1848 
1849 	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1850 	if (pin) {
1851 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
1852 		if (cmd & PCI_COMMAND_INTX_DISABLE)
1853 			pci_write_config_word(dev, PCI_COMMAND,
1854 					      cmd & ~PCI_COMMAND_INTX_DISABLE);
1855 	}
1856 
1857 	return 0;
1858 }
1859 
1860 /**
1861  * pci_reenable_device - Resume abandoned device
1862  * @dev: PCI device to be resumed
1863  *
1864  * NOTE: This function is a backend of pci_default_resume() and is not supposed
1865  * to be called by normal code, write proper resume handler and use it instead.
1866  */
1867 int pci_reenable_device(struct pci_dev *dev)
1868 {
1869 	if (pci_is_enabled(dev))
1870 		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1871 	return 0;
1872 }
1873 EXPORT_SYMBOL(pci_reenable_device);
1874 
1875 static void pci_enable_bridge(struct pci_dev *dev)
1876 {
1877 	struct pci_dev *bridge;
1878 	int retval;
1879 
1880 	bridge = pci_upstream_bridge(dev);
1881 	if (bridge)
1882 		pci_enable_bridge(bridge);
1883 
1884 	if (pci_is_enabled(dev)) {
1885 		if (!dev->is_busmaster)
1886 			pci_set_master(dev);
1887 		return;
1888 	}
1889 
1890 	retval = pci_enable_device(dev);
1891 	if (retval)
1892 		pci_err(dev, "Error enabling bridge (%d), continuing\n",
1893 			retval);
1894 	pci_set_master(dev);
1895 }
1896 
1897 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1898 {
1899 	struct pci_dev *bridge;
1900 	int err;
1901 	int i, bars = 0;
1902 
1903 	if (atomic_inc_return(&dev->enable_cnt) > 1) {
1904 		pci_update_current_state(dev, dev->current_state);
1905 		return 0;		/* already enabled */
1906 	}
1907 
1908 	bridge = pci_upstream_bridge(dev);
1909 	if (bridge)
1910 		pci_enable_bridge(bridge);
1911 
1912 	/* only skip sriov related */
1913 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1914 		if (dev->resource[i].flags & flags)
1915 			bars |= (1 << i);
1916 	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1917 		if (dev->resource[i].flags & flags)
1918 			bars |= (1 << i);
1919 
1920 	err = do_pci_enable_device(dev, bars);
1921 	if (err < 0)
1922 		atomic_dec(&dev->enable_cnt);
1923 	return err;
1924 }
1925 
1926 /**
1927  * pci_enable_device_io - Initialize a device for use with IO space
1928  * @dev: PCI device to be initialized
1929  *
1930  * Initialize device before it's used by a driver. Ask low-level code
1931  * to enable I/O resources. Wake up the device if it was suspended.
1932  * Beware, this function can fail.
1933  */
1934 int pci_enable_device_io(struct pci_dev *dev)
1935 {
1936 	return pci_enable_device_flags(dev, IORESOURCE_IO);
1937 }
1938 EXPORT_SYMBOL(pci_enable_device_io);
1939 
1940 /**
1941  * pci_enable_device_mem - Initialize a device for use with Memory space
1942  * @dev: PCI device to be initialized
1943  *
1944  * Initialize device before it's used by a driver. Ask low-level code
1945  * to enable Memory resources. Wake up the device if it was suspended.
1946  * Beware, this function can fail.
1947  */
1948 int pci_enable_device_mem(struct pci_dev *dev)
1949 {
1950 	return pci_enable_device_flags(dev, IORESOURCE_MEM);
1951 }
1952 EXPORT_SYMBOL(pci_enable_device_mem);
1953 
1954 /**
1955  * pci_enable_device - Initialize device before it's used by a driver.
1956  * @dev: PCI device to be initialized
1957  *
1958  * Initialize device before it's used by a driver. Ask low-level code
1959  * to enable I/O and memory. Wake up the device if it was suspended.
1960  * Beware, this function can fail.
1961  *
1962  * Note we don't actually enable the device many times if we call
1963  * this function repeatedly (we just increment the count).
1964  */
1965 int pci_enable_device(struct pci_dev *dev)
1966 {
1967 	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1968 }
1969 EXPORT_SYMBOL(pci_enable_device);
1970 
1971 /*
1972  * Managed PCI resources.  This manages device on/off, INTx/MSI/MSI-X
1973  * on/off and BAR regions.  pci_dev itself records MSI/MSI-X status, so
1974  * there's no need to track it separately.  pci_devres is initialized
1975  * when a device is enabled using managed PCI device enable interface.
1976  */
1977 struct pci_devres {
1978 	unsigned int enabled:1;
1979 	unsigned int pinned:1;
1980 	unsigned int orig_intx:1;
1981 	unsigned int restore_intx:1;
1982 	unsigned int mwi:1;
1983 	u32 region_mask;
1984 };
1985 
1986 static void pcim_release(struct device *gendev, void *res)
1987 {
1988 	struct pci_dev *dev = to_pci_dev(gendev);
1989 	struct pci_devres *this = res;
1990 	int i;
1991 
1992 	if (dev->msi_enabled)
1993 		pci_disable_msi(dev);
1994 	if (dev->msix_enabled)
1995 		pci_disable_msix(dev);
1996 
1997 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1998 		if (this->region_mask & (1 << i))
1999 			pci_release_region(dev, i);
2000 
2001 	if (this->mwi)
2002 		pci_clear_mwi(dev);
2003 
2004 	if (this->restore_intx)
2005 		pci_intx(dev, this->orig_intx);
2006 
2007 	if (this->enabled && !this->pinned)
2008 		pci_disable_device(dev);
2009 }
2010 
2011 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
2012 {
2013 	struct pci_devres *dr, *new_dr;
2014 
2015 	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
2016 	if (dr)
2017 		return dr;
2018 
2019 	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
2020 	if (!new_dr)
2021 		return NULL;
2022 	return devres_get(&pdev->dev, new_dr, NULL, NULL);
2023 }
2024 
2025 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
2026 {
2027 	if (pci_is_managed(pdev))
2028 		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
2029 	return NULL;
2030 }
2031 
2032 /**
2033  * pcim_enable_device - Managed pci_enable_device()
2034  * @pdev: PCI device to be initialized
2035  *
2036  * Managed pci_enable_device().
2037  */
2038 int pcim_enable_device(struct pci_dev *pdev)
2039 {
2040 	struct pci_devres *dr;
2041 	int rc;
2042 
2043 	dr = get_pci_dr(pdev);
2044 	if (unlikely(!dr))
2045 		return -ENOMEM;
2046 	if (dr->enabled)
2047 		return 0;
2048 
2049 	rc = pci_enable_device(pdev);
2050 	if (!rc) {
2051 		pdev->is_managed = 1;
2052 		dr->enabled = 1;
2053 	}
2054 	return rc;
2055 }
2056 EXPORT_SYMBOL(pcim_enable_device);
2057 
2058 /**
2059  * pcim_pin_device - Pin managed PCI device
2060  * @pdev: PCI device to pin
2061  *
2062  * Pin managed PCI device @pdev.  Pinned device won't be disabled on
2063  * driver detach.  @pdev must have been enabled with
2064  * pcim_enable_device().
2065  */
2066 void pcim_pin_device(struct pci_dev *pdev)
2067 {
2068 	struct pci_devres *dr;
2069 
2070 	dr = find_pci_dr(pdev);
2071 	WARN_ON(!dr || !dr->enabled);
2072 	if (dr)
2073 		dr->pinned = 1;
2074 }
2075 EXPORT_SYMBOL(pcim_pin_device);
2076 
2077 /*
2078  * pcibios_add_device - provide arch specific hooks when adding device dev
2079  * @dev: the PCI device being added
2080  *
2081  * Permits the platform to provide architecture specific functionality when
2082  * devices are added. This is the default implementation. Architecture
2083  * implementations can override this.
2084  */
2085 int __weak pcibios_add_device(struct pci_dev *dev)
2086 {
2087 	return 0;
2088 }
2089 
2090 /**
2091  * pcibios_release_device - provide arch specific hooks when releasing
2092  *			    device dev
2093  * @dev: the PCI device being released
2094  *
2095  * Permits the platform to provide architecture specific functionality when
2096  * devices are released. This is the default implementation. Architecture
2097  * implementations can override this.
2098  */
2099 void __weak pcibios_release_device(struct pci_dev *dev) {}
2100 
2101 /**
2102  * pcibios_disable_device - disable arch specific PCI resources for device dev
2103  * @dev: the PCI device to disable
2104  *
2105  * Disables architecture specific PCI resources for the device. This
2106  * is the default implementation. Architecture implementations can
2107  * override this.
2108  */
2109 void __weak pcibios_disable_device(struct pci_dev *dev) {}
2110 
2111 /**
2112  * pcibios_penalize_isa_irq - penalize an ISA IRQ
2113  * @irq: ISA IRQ to penalize
2114  * @active: IRQ active or not
2115  *
2116  * Permits the platform to provide architecture-specific functionality when
2117  * penalizing ISA IRQs. This is the default implementation. Architecture
2118  * implementations can override this.
2119  */
2120 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
2121 
2122 static void do_pci_disable_device(struct pci_dev *dev)
2123 {
2124 	u16 pci_command;
2125 
2126 	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2127 	if (pci_command & PCI_COMMAND_MASTER) {
2128 		pci_command &= ~PCI_COMMAND_MASTER;
2129 		pci_write_config_word(dev, PCI_COMMAND, pci_command);
2130 	}
2131 
2132 	pcibios_disable_device(dev);
2133 }
2134 
2135 /**
2136  * pci_disable_enabled_device - Disable device without updating enable_cnt
2137  * @dev: PCI device to disable
2138  *
2139  * NOTE: This function is a backend of PCI power management routines and is
2140  * not supposed to be called drivers.
2141  */
2142 void pci_disable_enabled_device(struct pci_dev *dev)
2143 {
2144 	if (pci_is_enabled(dev))
2145 		do_pci_disable_device(dev);
2146 }
2147 
2148 /**
2149  * pci_disable_device - Disable PCI device after use
2150  * @dev: PCI device to be disabled
2151  *
2152  * Signal to the system that the PCI device is not in use by the system
2153  * anymore.  This only involves disabling PCI bus-mastering, if active.
2154  *
2155  * Note we don't actually disable the device until all callers of
2156  * pci_enable_device() have called pci_disable_device().
2157  */
2158 void pci_disable_device(struct pci_dev *dev)
2159 {
2160 	struct pci_devres *dr;
2161 
2162 	dr = find_pci_dr(dev);
2163 	if (dr)
2164 		dr->enabled = 0;
2165 
2166 	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2167 		      "disabling already-disabled device");
2168 
2169 	if (atomic_dec_return(&dev->enable_cnt) != 0)
2170 		return;
2171 
2172 	do_pci_disable_device(dev);
2173 
2174 	dev->is_busmaster = 0;
2175 }
2176 EXPORT_SYMBOL(pci_disable_device);
2177 
2178 /**
2179  * pcibios_set_pcie_reset_state - set reset state for device dev
2180  * @dev: the PCIe device reset
2181  * @state: Reset state to enter into
2182  *
2183  * Set the PCIe reset state for the device. This is the default
2184  * implementation. Architecture implementations can override this.
2185  */
2186 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2187 					enum pcie_reset_state state)
2188 {
2189 	return -EINVAL;
2190 }
2191 
2192 /**
2193  * pci_set_pcie_reset_state - set reset state for device dev
2194  * @dev: the PCIe device reset
2195  * @state: Reset state to enter into
2196  *
2197  * Sets the PCI reset state for the device.
2198  */
2199 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2200 {
2201 	return pcibios_set_pcie_reset_state(dev, state);
2202 }
2203 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2204 
2205 void pcie_clear_device_status(struct pci_dev *dev)
2206 {
2207 	u16 sta;
2208 
2209 	pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2210 	pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2211 }
2212 
2213 /**
2214  * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2215  * @dev: PCIe root port or event collector.
2216  */
2217 void pcie_clear_root_pme_status(struct pci_dev *dev)
2218 {
2219 	pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2220 }
2221 
2222 /**
2223  * pci_check_pme_status - Check if given device has generated PME.
2224  * @dev: Device to check.
2225  *
2226  * Check the PME status of the device and if set, clear it and clear PME enable
2227  * (if set).  Return 'true' if PME status and PME enable were both set or
2228  * 'false' otherwise.
2229  */
2230 bool pci_check_pme_status(struct pci_dev *dev)
2231 {
2232 	int pmcsr_pos;
2233 	u16 pmcsr;
2234 	bool ret = false;
2235 
2236 	if (!dev->pm_cap)
2237 		return false;
2238 
2239 	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2240 	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2241 	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2242 		return false;
2243 
2244 	/* Clear PME status. */
2245 	pmcsr |= PCI_PM_CTRL_PME_STATUS;
2246 	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2247 		/* Disable PME to avoid interrupt flood. */
2248 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2249 		ret = true;
2250 	}
2251 
2252 	pci_write_config_word(dev, pmcsr_pos, pmcsr);
2253 
2254 	return ret;
2255 }
2256 
2257 /**
2258  * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2259  * @dev: Device to handle.
2260  * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2261  *
2262  * Check if @dev has generated PME and queue a resume request for it in that
2263  * case.
2264  */
2265 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2266 {
2267 	if (pme_poll_reset && dev->pme_poll)
2268 		dev->pme_poll = false;
2269 
2270 	if (pci_check_pme_status(dev)) {
2271 		pci_wakeup_event(dev);
2272 		pm_request_resume(&dev->dev);
2273 	}
2274 	return 0;
2275 }
2276 
2277 /**
2278  * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2279  * @bus: Top bus of the subtree to walk.
2280  */
2281 void pci_pme_wakeup_bus(struct pci_bus *bus)
2282 {
2283 	if (bus)
2284 		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2285 }
2286 
2287 
2288 /**
2289  * pci_pme_capable - check the capability of PCI device to generate PME#
2290  * @dev: PCI device to handle.
2291  * @state: PCI state from which device will issue PME#.
2292  */
2293 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2294 {
2295 	if (!dev->pm_cap)
2296 		return false;
2297 
2298 	return !!(dev->pme_support & (1 << state));
2299 }
2300 EXPORT_SYMBOL(pci_pme_capable);
2301 
2302 static void pci_pme_list_scan(struct work_struct *work)
2303 {
2304 	struct pci_pme_device *pme_dev, *n;
2305 
2306 	mutex_lock(&pci_pme_list_mutex);
2307 	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2308 		if (pme_dev->dev->pme_poll) {
2309 			struct pci_dev *bridge;
2310 
2311 			bridge = pme_dev->dev->bus->self;
2312 			/*
2313 			 * If bridge is in low power state, the
2314 			 * configuration space of subordinate devices
2315 			 * may be not accessible
2316 			 */
2317 			if (bridge && bridge->current_state != PCI_D0)
2318 				continue;
2319 			/*
2320 			 * If the device is in D3cold it should not be
2321 			 * polled either.
2322 			 */
2323 			if (pme_dev->dev->current_state == PCI_D3cold)
2324 				continue;
2325 
2326 			pci_pme_wakeup(pme_dev->dev, NULL);
2327 		} else {
2328 			list_del(&pme_dev->list);
2329 			kfree(pme_dev);
2330 		}
2331 	}
2332 	if (!list_empty(&pci_pme_list))
2333 		queue_delayed_work(system_freezable_wq, &pci_pme_work,
2334 				   msecs_to_jiffies(PME_TIMEOUT));
2335 	mutex_unlock(&pci_pme_list_mutex);
2336 }
2337 
2338 static void __pci_pme_active(struct pci_dev *dev, bool enable)
2339 {
2340 	u16 pmcsr;
2341 
2342 	if (!dev->pme_support)
2343 		return;
2344 
2345 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2346 	/* Clear PME_Status by writing 1 to it and enable PME# */
2347 	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2348 	if (!enable)
2349 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2350 
2351 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2352 }
2353 
2354 /**
2355  * pci_pme_restore - Restore PME configuration after config space restore.
2356  * @dev: PCI device to update.
2357  */
2358 void pci_pme_restore(struct pci_dev *dev)
2359 {
2360 	u16 pmcsr;
2361 
2362 	if (!dev->pme_support)
2363 		return;
2364 
2365 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2366 	if (dev->wakeup_prepared) {
2367 		pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2368 		pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2369 	} else {
2370 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2371 		pmcsr |= PCI_PM_CTRL_PME_STATUS;
2372 	}
2373 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2374 }
2375 
2376 /**
2377  * pci_pme_active - enable or disable PCI device's PME# function
2378  * @dev: PCI device to handle.
2379  * @enable: 'true' to enable PME# generation; 'false' to disable it.
2380  *
2381  * The caller must verify that the device is capable of generating PME# before
2382  * calling this function with @enable equal to 'true'.
2383  */
2384 void pci_pme_active(struct pci_dev *dev, bool enable)
2385 {
2386 	__pci_pme_active(dev, enable);
2387 
2388 	/*
2389 	 * PCI (as opposed to PCIe) PME requires that the device have
2390 	 * its PME# line hooked up correctly. Not all hardware vendors
2391 	 * do this, so the PME never gets delivered and the device
2392 	 * remains asleep. The easiest way around this is to
2393 	 * periodically walk the list of suspended devices and check
2394 	 * whether any have their PME flag set. The assumption is that
2395 	 * we'll wake up often enough anyway that this won't be a huge
2396 	 * hit, and the power savings from the devices will still be a
2397 	 * win.
2398 	 *
2399 	 * Although PCIe uses in-band PME message instead of PME# line
2400 	 * to report PME, PME does not work for some PCIe devices in
2401 	 * reality.  For example, there are devices that set their PME
2402 	 * status bits, but don't really bother to send a PME message;
2403 	 * there are PCI Express Root Ports that don't bother to
2404 	 * trigger interrupts when they receive PME messages from the
2405 	 * devices below.  So PME poll is used for PCIe devices too.
2406 	 */
2407 
2408 	if (dev->pme_poll) {
2409 		struct pci_pme_device *pme_dev;
2410 		if (enable) {
2411 			pme_dev = kmalloc(sizeof(struct pci_pme_device),
2412 					  GFP_KERNEL);
2413 			if (!pme_dev) {
2414 				pci_warn(dev, "can't enable PME#\n");
2415 				return;
2416 			}
2417 			pme_dev->dev = dev;
2418 			mutex_lock(&pci_pme_list_mutex);
2419 			list_add(&pme_dev->list, &pci_pme_list);
2420 			if (list_is_singular(&pci_pme_list))
2421 				queue_delayed_work(system_freezable_wq,
2422 						   &pci_pme_work,
2423 						   msecs_to_jiffies(PME_TIMEOUT));
2424 			mutex_unlock(&pci_pme_list_mutex);
2425 		} else {
2426 			mutex_lock(&pci_pme_list_mutex);
2427 			list_for_each_entry(pme_dev, &pci_pme_list, list) {
2428 				if (pme_dev->dev == dev) {
2429 					list_del(&pme_dev->list);
2430 					kfree(pme_dev);
2431 					break;
2432 				}
2433 			}
2434 			mutex_unlock(&pci_pme_list_mutex);
2435 		}
2436 	}
2437 
2438 	pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2439 }
2440 EXPORT_SYMBOL(pci_pme_active);
2441 
2442 /**
2443  * __pci_enable_wake - enable PCI device as wakeup event source
2444  * @dev: PCI device affected
2445  * @state: PCI state from which device will issue wakeup events
2446  * @enable: True to enable event generation; false to disable
2447  *
2448  * This enables the device as a wakeup event source, or disables it.
2449  * When such events involves platform-specific hooks, those hooks are
2450  * called automatically by this routine.
2451  *
2452  * Devices with legacy power management (no standard PCI PM capabilities)
2453  * always require such platform hooks.
2454  *
2455  * RETURN VALUE:
2456  * 0 is returned on success
2457  * -EINVAL is returned if device is not supposed to wake up the system
2458  * Error code depending on the platform is returned if both the platform and
2459  * the native mechanism fail to enable the generation of wake-up events
2460  */
2461 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2462 {
2463 	int ret = 0;
2464 
2465 	/*
2466 	 * Bridges that are not power-manageable directly only signal
2467 	 * wakeup on behalf of subordinate devices which is set up
2468 	 * elsewhere, so skip them. However, bridges that are
2469 	 * power-manageable may signal wakeup for themselves (for example,
2470 	 * on a hotplug event) and they need to be covered here.
2471 	 */
2472 	if (!pci_power_manageable(dev))
2473 		return 0;
2474 
2475 	/* Don't do the same thing twice in a row for one device. */
2476 	if (!!enable == !!dev->wakeup_prepared)
2477 		return 0;
2478 
2479 	/*
2480 	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2481 	 * Anderson we should be doing PME# wake enable followed by ACPI wake
2482 	 * enable.  To disable wake-up we call the platform first, for symmetry.
2483 	 */
2484 
2485 	if (enable) {
2486 		int error;
2487 
2488 		if (pci_pme_capable(dev, state))
2489 			pci_pme_active(dev, true);
2490 		else
2491 			ret = 1;
2492 		error = platform_pci_set_wakeup(dev, true);
2493 		if (ret)
2494 			ret = error;
2495 		if (!ret)
2496 			dev->wakeup_prepared = true;
2497 	} else {
2498 		platform_pci_set_wakeup(dev, false);
2499 		pci_pme_active(dev, false);
2500 		dev->wakeup_prepared = false;
2501 	}
2502 
2503 	return ret;
2504 }
2505 
2506 /**
2507  * pci_enable_wake - change wakeup settings for a PCI device
2508  * @pci_dev: Target device
2509  * @state: PCI state from which device will issue wakeup events
2510  * @enable: Whether or not to enable event generation
2511  *
2512  * If @enable is set, check device_may_wakeup() for the device before calling
2513  * __pci_enable_wake() for it.
2514  */
2515 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2516 {
2517 	if (enable && !device_may_wakeup(&pci_dev->dev))
2518 		return -EINVAL;
2519 
2520 	return __pci_enable_wake(pci_dev, state, enable);
2521 }
2522 EXPORT_SYMBOL(pci_enable_wake);
2523 
2524 /**
2525  * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2526  * @dev: PCI device to prepare
2527  * @enable: True to enable wake-up event generation; false to disable
2528  *
2529  * Many drivers want the device to wake up the system from D3_hot or D3_cold
2530  * and this function allows them to set that up cleanly - pci_enable_wake()
2531  * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2532  * ordering constraints.
2533  *
2534  * This function only returns error code if the device is not allowed to wake
2535  * up the system from sleep or it is not capable of generating PME# from both
2536  * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2537  */
2538 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2539 {
2540 	return pci_pme_capable(dev, PCI_D3cold) ?
2541 			pci_enable_wake(dev, PCI_D3cold, enable) :
2542 			pci_enable_wake(dev, PCI_D3hot, enable);
2543 }
2544 EXPORT_SYMBOL(pci_wake_from_d3);
2545 
2546 /**
2547  * pci_target_state - find an appropriate low power state for a given PCI dev
2548  * @dev: PCI device
2549  * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2550  *
2551  * Use underlying platform code to find a supported low power state for @dev.
2552  * If the platform can't manage @dev, return the deepest state from which it
2553  * can generate wake events, based on any available PME info.
2554  */
2555 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2556 {
2557 	pci_power_t target_state = PCI_D3hot;
2558 
2559 	if (platform_pci_power_manageable(dev)) {
2560 		/*
2561 		 * Call the platform to find the target state for the device.
2562 		 */
2563 		pci_power_t state = platform_pci_choose_state(dev);
2564 
2565 		switch (state) {
2566 		case PCI_POWER_ERROR:
2567 		case PCI_UNKNOWN:
2568 			break;
2569 		case PCI_D1:
2570 		case PCI_D2:
2571 			if (pci_no_d1d2(dev))
2572 				break;
2573 			fallthrough;
2574 		default:
2575 			target_state = state;
2576 		}
2577 
2578 		return target_state;
2579 	}
2580 
2581 	if (!dev->pm_cap)
2582 		target_state = PCI_D0;
2583 
2584 	/*
2585 	 * If the device is in D3cold even though it's not power-manageable by
2586 	 * the platform, it may have been powered down by non-standard means.
2587 	 * Best to let it slumber.
2588 	 */
2589 	if (dev->current_state == PCI_D3cold)
2590 		target_state = PCI_D3cold;
2591 
2592 	if (wakeup) {
2593 		/*
2594 		 * Find the deepest state from which the device can generate
2595 		 * PME#.
2596 		 */
2597 		if (dev->pme_support) {
2598 			while (target_state
2599 			      && !(dev->pme_support & (1 << target_state)))
2600 				target_state--;
2601 		}
2602 	}
2603 
2604 	return target_state;
2605 }
2606 
2607 /**
2608  * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2609  *			  into a sleep state
2610  * @dev: Device to handle.
2611  *
2612  * Choose the power state appropriate for the device depending on whether
2613  * it can wake up the system and/or is power manageable by the platform
2614  * (PCI_D3hot is the default) and put the device into that state.
2615  */
2616 int pci_prepare_to_sleep(struct pci_dev *dev)
2617 {
2618 	bool wakeup = device_may_wakeup(&dev->dev);
2619 	pci_power_t target_state = pci_target_state(dev, wakeup);
2620 	int error;
2621 
2622 	if (target_state == PCI_POWER_ERROR)
2623 		return -EIO;
2624 
2625 	/*
2626 	 * There are systems (for example, Intel mobile chips since Coffee
2627 	 * Lake) where the power drawn while suspended can be significantly
2628 	 * reduced by disabling PTM on PCIe root ports as this allows the
2629 	 * port to enter a lower-power PM state and the SoC to reach a
2630 	 * lower-power idle state as a whole.
2631 	 */
2632 	if (pci_pcie_type(dev) == PCI_EXP_TYPE_ROOT_PORT)
2633 		pci_disable_ptm(dev);
2634 
2635 	pci_enable_wake(dev, target_state, wakeup);
2636 
2637 	error = pci_set_power_state(dev, target_state);
2638 
2639 	if (error) {
2640 		pci_enable_wake(dev, target_state, false);
2641 		pci_restore_ptm_state(dev);
2642 	}
2643 
2644 	return error;
2645 }
2646 EXPORT_SYMBOL(pci_prepare_to_sleep);
2647 
2648 /**
2649  * pci_back_from_sleep - turn PCI device on during system-wide transition
2650  *			 into working state
2651  * @dev: Device to handle.
2652  *
2653  * Disable device's system wake-up capability and put it into D0.
2654  */
2655 int pci_back_from_sleep(struct pci_dev *dev)
2656 {
2657 	pci_enable_wake(dev, PCI_D0, false);
2658 	return pci_set_power_state(dev, PCI_D0);
2659 }
2660 EXPORT_SYMBOL(pci_back_from_sleep);
2661 
2662 /**
2663  * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2664  * @dev: PCI device being suspended.
2665  *
2666  * Prepare @dev to generate wake-up events at run time and put it into a low
2667  * power state.
2668  */
2669 int pci_finish_runtime_suspend(struct pci_dev *dev)
2670 {
2671 	pci_power_t target_state;
2672 	int error;
2673 
2674 	target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2675 	if (target_state == PCI_POWER_ERROR)
2676 		return -EIO;
2677 
2678 	dev->runtime_d3cold = target_state == PCI_D3cold;
2679 
2680 	/*
2681 	 * There are systems (for example, Intel mobile chips since Coffee
2682 	 * Lake) where the power drawn while suspended can be significantly
2683 	 * reduced by disabling PTM on PCIe root ports as this allows the
2684 	 * port to enter a lower-power PM state and the SoC to reach a
2685 	 * lower-power idle state as a whole.
2686 	 */
2687 	if (pci_pcie_type(dev) == PCI_EXP_TYPE_ROOT_PORT)
2688 		pci_disable_ptm(dev);
2689 
2690 	__pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2691 
2692 	error = pci_set_power_state(dev, target_state);
2693 
2694 	if (error) {
2695 		pci_enable_wake(dev, target_state, false);
2696 		pci_restore_ptm_state(dev);
2697 		dev->runtime_d3cold = false;
2698 	}
2699 
2700 	return error;
2701 }
2702 
2703 /**
2704  * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2705  * @dev: Device to check.
2706  *
2707  * Return true if the device itself is capable of generating wake-up events
2708  * (through the platform or using the native PCIe PME) or if the device supports
2709  * PME and one of its upstream bridges can generate wake-up events.
2710  */
2711 bool pci_dev_run_wake(struct pci_dev *dev)
2712 {
2713 	struct pci_bus *bus = dev->bus;
2714 
2715 	if (!dev->pme_support)
2716 		return false;
2717 
2718 	/* PME-capable in principle, but not from the target power state */
2719 	if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2720 		return false;
2721 
2722 	if (device_can_wakeup(&dev->dev))
2723 		return true;
2724 
2725 	while (bus->parent) {
2726 		struct pci_dev *bridge = bus->self;
2727 
2728 		if (device_can_wakeup(&bridge->dev))
2729 			return true;
2730 
2731 		bus = bus->parent;
2732 	}
2733 
2734 	/* We have reached the root bus. */
2735 	if (bus->bridge)
2736 		return device_can_wakeup(bus->bridge);
2737 
2738 	return false;
2739 }
2740 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2741 
2742 /**
2743  * pci_dev_need_resume - Check if it is necessary to resume the device.
2744  * @pci_dev: Device to check.
2745  *
2746  * Return 'true' if the device is not runtime-suspended or it has to be
2747  * reconfigured due to wakeup settings difference between system and runtime
2748  * suspend, or the current power state of it is not suitable for the upcoming
2749  * (system-wide) transition.
2750  */
2751 bool pci_dev_need_resume(struct pci_dev *pci_dev)
2752 {
2753 	struct device *dev = &pci_dev->dev;
2754 	pci_power_t target_state;
2755 
2756 	if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2757 		return true;
2758 
2759 	target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2760 
2761 	/*
2762 	 * If the earlier platform check has not triggered, D3cold is just power
2763 	 * removal on top of D3hot, so no need to resume the device in that
2764 	 * case.
2765 	 */
2766 	return target_state != pci_dev->current_state &&
2767 		target_state != PCI_D3cold &&
2768 		pci_dev->current_state != PCI_D3hot;
2769 }
2770 
2771 /**
2772  * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2773  * @pci_dev: Device to check.
2774  *
2775  * If the device is suspended and it is not configured for system wakeup,
2776  * disable PME for it to prevent it from waking up the system unnecessarily.
2777  *
2778  * Note that if the device's power state is D3cold and the platform check in
2779  * pci_dev_need_resume() has not triggered, the device's configuration need not
2780  * be changed.
2781  */
2782 void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2783 {
2784 	struct device *dev = &pci_dev->dev;
2785 
2786 	spin_lock_irq(&dev->power.lock);
2787 
2788 	if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2789 	    pci_dev->current_state < PCI_D3cold)
2790 		__pci_pme_active(pci_dev, false);
2791 
2792 	spin_unlock_irq(&dev->power.lock);
2793 }
2794 
2795 /**
2796  * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2797  * @pci_dev: Device to handle.
2798  *
2799  * If the device is runtime suspended and wakeup-capable, enable PME for it as
2800  * it might have been disabled during the prepare phase of system suspend if
2801  * the device was not configured for system wakeup.
2802  */
2803 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2804 {
2805 	struct device *dev = &pci_dev->dev;
2806 
2807 	if (!pci_dev_run_wake(pci_dev))
2808 		return;
2809 
2810 	spin_lock_irq(&dev->power.lock);
2811 
2812 	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2813 		__pci_pme_active(pci_dev, true);
2814 
2815 	spin_unlock_irq(&dev->power.lock);
2816 }
2817 
2818 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2819 {
2820 	struct device *dev = &pdev->dev;
2821 	struct device *parent = dev->parent;
2822 
2823 	if (parent)
2824 		pm_runtime_get_sync(parent);
2825 	pm_runtime_get_noresume(dev);
2826 	/*
2827 	 * pdev->current_state is set to PCI_D3cold during suspending,
2828 	 * so wait until suspending completes
2829 	 */
2830 	pm_runtime_barrier(dev);
2831 	/*
2832 	 * Only need to resume devices in D3cold, because config
2833 	 * registers are still accessible for devices suspended but
2834 	 * not in D3cold.
2835 	 */
2836 	if (pdev->current_state == PCI_D3cold)
2837 		pm_runtime_resume(dev);
2838 }
2839 
2840 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2841 {
2842 	struct device *dev = &pdev->dev;
2843 	struct device *parent = dev->parent;
2844 
2845 	pm_runtime_put(dev);
2846 	if (parent)
2847 		pm_runtime_put_sync(parent);
2848 }
2849 
2850 static const struct dmi_system_id bridge_d3_blacklist[] = {
2851 #ifdef CONFIG_X86
2852 	{
2853 		/*
2854 		 * Gigabyte X299 root port is not marked as hotplug capable
2855 		 * which allows Linux to power manage it.  However, this
2856 		 * confuses the BIOS SMI handler so don't power manage root
2857 		 * ports on that system.
2858 		 */
2859 		.ident = "X299 DESIGNARE EX-CF",
2860 		.matches = {
2861 			DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2862 			DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2863 		},
2864 	},
2865 #endif
2866 	{ }
2867 };
2868 
2869 /**
2870  * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2871  * @bridge: Bridge to check
2872  *
2873  * This function checks if it is possible to move the bridge to D3.
2874  * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2875  */
2876 bool pci_bridge_d3_possible(struct pci_dev *bridge)
2877 {
2878 	if (!pci_is_pcie(bridge))
2879 		return false;
2880 
2881 	switch (pci_pcie_type(bridge)) {
2882 	case PCI_EXP_TYPE_ROOT_PORT:
2883 	case PCI_EXP_TYPE_UPSTREAM:
2884 	case PCI_EXP_TYPE_DOWNSTREAM:
2885 		if (pci_bridge_d3_disable)
2886 			return false;
2887 
2888 		/*
2889 		 * Hotplug ports handled by firmware in System Management Mode
2890 		 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2891 		 */
2892 		if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
2893 			return false;
2894 
2895 		if (pci_bridge_d3_force)
2896 			return true;
2897 
2898 		/* Even the oldest 2010 Thunderbolt controller supports D3. */
2899 		if (bridge->is_thunderbolt)
2900 			return true;
2901 
2902 		/* Platform might know better if the bridge supports D3 */
2903 		if (platform_pci_bridge_d3(bridge))
2904 			return true;
2905 
2906 		/*
2907 		 * Hotplug ports handled natively by the OS were not validated
2908 		 * by vendors for runtime D3 at least until 2018 because there
2909 		 * was no OS support.
2910 		 */
2911 		if (bridge->is_hotplug_bridge)
2912 			return false;
2913 
2914 		if (dmi_check_system(bridge_d3_blacklist))
2915 			return false;
2916 
2917 		/*
2918 		 * It should be safe to put PCIe ports from 2015 or newer
2919 		 * to D3.
2920 		 */
2921 		if (dmi_get_bios_year() >= 2015)
2922 			return true;
2923 		break;
2924 	}
2925 
2926 	return false;
2927 }
2928 
2929 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2930 {
2931 	bool *d3cold_ok = data;
2932 
2933 	if (/* The device needs to be allowed to go D3cold ... */
2934 	    dev->no_d3cold || !dev->d3cold_allowed ||
2935 
2936 	    /* ... and if it is wakeup capable to do so from D3cold. */
2937 	    (device_may_wakeup(&dev->dev) &&
2938 	     !pci_pme_capable(dev, PCI_D3cold)) ||
2939 
2940 	    /* If it is a bridge it must be allowed to go to D3. */
2941 	    !pci_power_manageable(dev))
2942 
2943 		*d3cold_ok = false;
2944 
2945 	return !*d3cold_ok;
2946 }
2947 
2948 /*
2949  * pci_bridge_d3_update - Update bridge D3 capabilities
2950  * @dev: PCI device which is changed
2951  *
2952  * Update upstream bridge PM capabilities accordingly depending on if the
2953  * device PM configuration was changed or the device is being removed.  The
2954  * change is also propagated upstream.
2955  */
2956 void pci_bridge_d3_update(struct pci_dev *dev)
2957 {
2958 	bool remove = !device_is_registered(&dev->dev);
2959 	struct pci_dev *bridge;
2960 	bool d3cold_ok = true;
2961 
2962 	bridge = pci_upstream_bridge(dev);
2963 	if (!bridge || !pci_bridge_d3_possible(bridge))
2964 		return;
2965 
2966 	/*
2967 	 * If D3 is currently allowed for the bridge, removing one of its
2968 	 * children won't change that.
2969 	 */
2970 	if (remove && bridge->bridge_d3)
2971 		return;
2972 
2973 	/*
2974 	 * If D3 is currently allowed for the bridge and a child is added or
2975 	 * changed, disallowance of D3 can only be caused by that child, so
2976 	 * we only need to check that single device, not any of its siblings.
2977 	 *
2978 	 * If D3 is currently not allowed for the bridge, checking the device
2979 	 * first may allow us to skip checking its siblings.
2980 	 */
2981 	if (!remove)
2982 		pci_dev_check_d3cold(dev, &d3cold_ok);
2983 
2984 	/*
2985 	 * If D3 is currently not allowed for the bridge, this may be caused
2986 	 * either by the device being changed/removed or any of its siblings,
2987 	 * so we need to go through all children to find out if one of them
2988 	 * continues to block D3.
2989 	 */
2990 	if (d3cold_ok && !bridge->bridge_d3)
2991 		pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
2992 			     &d3cold_ok);
2993 
2994 	if (bridge->bridge_d3 != d3cold_ok) {
2995 		bridge->bridge_d3 = d3cold_ok;
2996 		/* Propagate change to upstream bridges */
2997 		pci_bridge_d3_update(bridge);
2998 	}
2999 }
3000 
3001 /**
3002  * pci_d3cold_enable - Enable D3cold for device
3003  * @dev: PCI device to handle
3004  *
3005  * This function can be used in drivers to enable D3cold from the device
3006  * they handle.  It also updates upstream PCI bridge PM capabilities
3007  * accordingly.
3008  */
3009 void pci_d3cold_enable(struct pci_dev *dev)
3010 {
3011 	if (dev->no_d3cold) {
3012 		dev->no_d3cold = false;
3013 		pci_bridge_d3_update(dev);
3014 	}
3015 }
3016 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
3017 
3018 /**
3019  * pci_d3cold_disable - Disable D3cold for device
3020  * @dev: PCI device to handle
3021  *
3022  * This function can be used in drivers to disable D3cold from the device
3023  * they handle.  It also updates upstream PCI bridge PM capabilities
3024  * accordingly.
3025  */
3026 void pci_d3cold_disable(struct pci_dev *dev)
3027 {
3028 	if (!dev->no_d3cold) {
3029 		dev->no_d3cold = true;
3030 		pci_bridge_d3_update(dev);
3031 	}
3032 }
3033 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3034 
3035 /**
3036  * pci_pm_init - Initialize PM functions of given PCI device
3037  * @dev: PCI device to handle.
3038  */
3039 void pci_pm_init(struct pci_dev *dev)
3040 {
3041 	int pm;
3042 	u16 status;
3043 	u16 pmc;
3044 
3045 	pm_runtime_forbid(&dev->dev);
3046 	pm_runtime_set_active(&dev->dev);
3047 	pm_runtime_enable(&dev->dev);
3048 	device_enable_async_suspend(&dev->dev);
3049 	dev->wakeup_prepared = false;
3050 
3051 	dev->pm_cap = 0;
3052 	dev->pme_support = 0;
3053 
3054 	/* find PCI PM capability in list */
3055 	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3056 	if (!pm)
3057 		return;
3058 	/* Check device's ability to generate PME# */
3059 	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3060 
3061 	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3062 		pci_err(dev, "unsupported PM cap regs version (%u)\n",
3063 			pmc & PCI_PM_CAP_VER_MASK);
3064 		return;
3065 	}
3066 
3067 	dev->pm_cap = pm;
3068 	dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3069 	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3070 	dev->bridge_d3 = pci_bridge_d3_possible(dev);
3071 	dev->d3cold_allowed = true;
3072 
3073 	dev->d1_support = false;
3074 	dev->d2_support = false;
3075 	if (!pci_no_d1d2(dev)) {
3076 		if (pmc & PCI_PM_CAP_D1)
3077 			dev->d1_support = true;
3078 		if (pmc & PCI_PM_CAP_D2)
3079 			dev->d2_support = true;
3080 
3081 		if (dev->d1_support || dev->d2_support)
3082 			pci_info(dev, "supports%s%s\n",
3083 				   dev->d1_support ? " D1" : "",
3084 				   dev->d2_support ? " D2" : "");
3085 	}
3086 
3087 	pmc &= PCI_PM_CAP_PME_MASK;
3088 	if (pmc) {
3089 		pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3090 			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3091 			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3092 			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3093 			 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3094 			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3095 		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
3096 		dev->pme_poll = true;
3097 		/*
3098 		 * Make device's PM flags reflect the wake-up capability, but
3099 		 * let the user space enable it to wake up the system as needed.
3100 		 */
3101 		device_set_wakeup_capable(&dev->dev, true);
3102 		/* Disable the PME# generation functionality */
3103 		pci_pme_active(dev, false);
3104 	}
3105 
3106 	pci_read_config_word(dev, PCI_STATUS, &status);
3107 	if (status & PCI_STATUS_IMM_READY)
3108 		dev->imm_ready = 1;
3109 }
3110 
3111 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3112 {
3113 	unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3114 
3115 	switch (prop) {
3116 	case PCI_EA_P_MEM:
3117 	case PCI_EA_P_VF_MEM:
3118 		flags |= IORESOURCE_MEM;
3119 		break;
3120 	case PCI_EA_P_MEM_PREFETCH:
3121 	case PCI_EA_P_VF_MEM_PREFETCH:
3122 		flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3123 		break;
3124 	case PCI_EA_P_IO:
3125 		flags |= IORESOURCE_IO;
3126 		break;
3127 	default:
3128 		return 0;
3129 	}
3130 
3131 	return flags;
3132 }
3133 
3134 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3135 					    u8 prop)
3136 {
3137 	if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3138 		return &dev->resource[bei];
3139 #ifdef CONFIG_PCI_IOV
3140 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3141 		 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3142 		return &dev->resource[PCI_IOV_RESOURCES +
3143 				      bei - PCI_EA_BEI_VF_BAR0];
3144 #endif
3145 	else if (bei == PCI_EA_BEI_ROM)
3146 		return &dev->resource[PCI_ROM_RESOURCE];
3147 	else
3148 		return NULL;
3149 }
3150 
3151 /* Read an Enhanced Allocation (EA) entry */
3152 static int pci_ea_read(struct pci_dev *dev, int offset)
3153 {
3154 	struct resource *res;
3155 	int ent_size, ent_offset = offset;
3156 	resource_size_t start, end;
3157 	unsigned long flags;
3158 	u32 dw0, bei, base, max_offset;
3159 	u8 prop;
3160 	bool support_64 = (sizeof(resource_size_t) >= 8);
3161 
3162 	pci_read_config_dword(dev, ent_offset, &dw0);
3163 	ent_offset += 4;
3164 
3165 	/* Entry size field indicates DWORDs after 1st */
3166 	ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
3167 
3168 	if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3169 		goto out;
3170 
3171 	bei = (dw0 & PCI_EA_BEI) >> 4;
3172 	prop = (dw0 & PCI_EA_PP) >> 8;
3173 
3174 	/*
3175 	 * If the Property is in the reserved range, try the Secondary
3176 	 * Property instead.
3177 	 */
3178 	if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3179 		prop = (dw0 & PCI_EA_SP) >> 16;
3180 	if (prop > PCI_EA_P_BRIDGE_IO)
3181 		goto out;
3182 
3183 	res = pci_ea_get_resource(dev, bei, prop);
3184 	if (!res) {
3185 		pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3186 		goto out;
3187 	}
3188 
3189 	flags = pci_ea_flags(dev, prop);
3190 	if (!flags) {
3191 		pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3192 		goto out;
3193 	}
3194 
3195 	/* Read Base */
3196 	pci_read_config_dword(dev, ent_offset, &base);
3197 	start = (base & PCI_EA_FIELD_MASK);
3198 	ent_offset += 4;
3199 
3200 	/* Read MaxOffset */
3201 	pci_read_config_dword(dev, ent_offset, &max_offset);
3202 	ent_offset += 4;
3203 
3204 	/* Read Base MSBs (if 64-bit entry) */
3205 	if (base & PCI_EA_IS_64) {
3206 		u32 base_upper;
3207 
3208 		pci_read_config_dword(dev, ent_offset, &base_upper);
3209 		ent_offset += 4;
3210 
3211 		flags |= IORESOURCE_MEM_64;
3212 
3213 		/* entry starts above 32-bit boundary, can't use */
3214 		if (!support_64 && base_upper)
3215 			goto out;
3216 
3217 		if (support_64)
3218 			start |= ((u64)base_upper << 32);
3219 	}
3220 
3221 	end = start + (max_offset | 0x03);
3222 
3223 	/* Read MaxOffset MSBs (if 64-bit entry) */
3224 	if (max_offset & PCI_EA_IS_64) {
3225 		u32 max_offset_upper;
3226 
3227 		pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3228 		ent_offset += 4;
3229 
3230 		flags |= IORESOURCE_MEM_64;
3231 
3232 		/* entry too big, can't use */
3233 		if (!support_64 && max_offset_upper)
3234 			goto out;
3235 
3236 		if (support_64)
3237 			end += ((u64)max_offset_upper << 32);
3238 	}
3239 
3240 	if (end < start) {
3241 		pci_err(dev, "EA Entry crosses address boundary\n");
3242 		goto out;
3243 	}
3244 
3245 	if (ent_size != ent_offset - offset) {
3246 		pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3247 			ent_size, ent_offset - offset);
3248 		goto out;
3249 	}
3250 
3251 	res->name = pci_name(dev);
3252 	res->start = start;
3253 	res->end = end;
3254 	res->flags = flags;
3255 
3256 	if (bei <= PCI_EA_BEI_BAR5)
3257 		pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3258 			   bei, res, prop);
3259 	else if (bei == PCI_EA_BEI_ROM)
3260 		pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3261 			   res, prop);
3262 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3263 		pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3264 			   bei - PCI_EA_BEI_VF_BAR0, res, prop);
3265 	else
3266 		pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3267 			   bei, res, prop);
3268 
3269 out:
3270 	return offset + ent_size;
3271 }
3272 
3273 /* Enhanced Allocation Initialization */
3274 void pci_ea_init(struct pci_dev *dev)
3275 {
3276 	int ea;
3277 	u8 num_ent;
3278 	int offset;
3279 	int i;
3280 
3281 	/* find PCI EA capability in list */
3282 	ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3283 	if (!ea)
3284 		return;
3285 
3286 	/* determine the number of entries */
3287 	pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3288 					&num_ent);
3289 	num_ent &= PCI_EA_NUM_ENT_MASK;
3290 
3291 	offset = ea + PCI_EA_FIRST_ENT;
3292 
3293 	/* Skip DWORD 2 for type 1 functions */
3294 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3295 		offset += 4;
3296 
3297 	/* parse each EA entry */
3298 	for (i = 0; i < num_ent; ++i)
3299 		offset = pci_ea_read(dev, offset);
3300 }
3301 
3302 static void pci_add_saved_cap(struct pci_dev *pci_dev,
3303 	struct pci_cap_saved_state *new_cap)
3304 {
3305 	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3306 }
3307 
3308 /**
3309  * _pci_add_cap_save_buffer - allocate buffer for saving given
3310  *			      capability registers
3311  * @dev: the PCI device
3312  * @cap: the capability to allocate the buffer for
3313  * @extended: Standard or Extended capability ID
3314  * @size: requested size of the buffer
3315  */
3316 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3317 				    bool extended, unsigned int size)
3318 {
3319 	int pos;
3320 	struct pci_cap_saved_state *save_state;
3321 
3322 	if (extended)
3323 		pos = pci_find_ext_capability(dev, cap);
3324 	else
3325 		pos = pci_find_capability(dev, cap);
3326 
3327 	if (!pos)
3328 		return 0;
3329 
3330 	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3331 	if (!save_state)
3332 		return -ENOMEM;
3333 
3334 	save_state->cap.cap_nr = cap;
3335 	save_state->cap.cap_extended = extended;
3336 	save_state->cap.size = size;
3337 	pci_add_saved_cap(dev, save_state);
3338 
3339 	return 0;
3340 }
3341 
3342 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3343 {
3344 	return _pci_add_cap_save_buffer(dev, cap, false, size);
3345 }
3346 
3347 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3348 {
3349 	return _pci_add_cap_save_buffer(dev, cap, true, size);
3350 }
3351 
3352 /**
3353  * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3354  * @dev: the PCI device
3355  */
3356 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3357 {
3358 	int error;
3359 
3360 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3361 					PCI_EXP_SAVE_REGS * sizeof(u16));
3362 	if (error)
3363 		pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3364 
3365 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3366 	if (error)
3367 		pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3368 
3369 	error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3370 					    2 * sizeof(u16));
3371 	if (error)
3372 		pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3373 
3374 	pci_allocate_vc_save_buffers(dev);
3375 }
3376 
3377 void pci_free_cap_save_buffers(struct pci_dev *dev)
3378 {
3379 	struct pci_cap_saved_state *tmp;
3380 	struct hlist_node *n;
3381 
3382 	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3383 		kfree(tmp);
3384 }
3385 
3386 /**
3387  * pci_configure_ari - enable or disable ARI forwarding
3388  * @dev: the PCI device
3389  *
3390  * If @dev and its upstream bridge both support ARI, enable ARI in the
3391  * bridge.  Otherwise, disable ARI in the bridge.
3392  */
3393 void pci_configure_ari(struct pci_dev *dev)
3394 {
3395 	u32 cap;
3396 	struct pci_dev *bridge;
3397 
3398 	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3399 		return;
3400 
3401 	bridge = dev->bus->self;
3402 	if (!bridge)
3403 		return;
3404 
3405 	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3406 	if (!(cap & PCI_EXP_DEVCAP2_ARI))
3407 		return;
3408 
3409 	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3410 		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3411 					 PCI_EXP_DEVCTL2_ARI);
3412 		bridge->ari_enabled = 1;
3413 	} else {
3414 		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3415 					   PCI_EXP_DEVCTL2_ARI);
3416 		bridge->ari_enabled = 0;
3417 	}
3418 }
3419 
3420 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3421 {
3422 	int pos;
3423 	u16 cap, ctrl;
3424 
3425 	pos = pdev->acs_cap;
3426 	if (!pos)
3427 		return false;
3428 
3429 	/*
3430 	 * Except for egress control, capabilities are either required
3431 	 * or only required if controllable.  Features missing from the
3432 	 * capability field can therefore be assumed as hard-wired enabled.
3433 	 */
3434 	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3435 	acs_flags &= (cap | PCI_ACS_EC);
3436 
3437 	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3438 	return (ctrl & acs_flags) == acs_flags;
3439 }
3440 
3441 /**
3442  * pci_acs_enabled - test ACS against required flags for a given device
3443  * @pdev: device to test
3444  * @acs_flags: required PCI ACS flags
3445  *
3446  * Return true if the device supports the provided flags.  Automatically
3447  * filters out flags that are not implemented on multifunction devices.
3448  *
3449  * Note that this interface checks the effective ACS capabilities of the
3450  * device rather than the actual capabilities.  For instance, most single
3451  * function endpoints are not required to support ACS because they have no
3452  * opportunity for peer-to-peer access.  We therefore return 'true'
3453  * regardless of whether the device exposes an ACS capability.  This makes
3454  * it much easier for callers of this function to ignore the actual type
3455  * or topology of the device when testing ACS support.
3456  */
3457 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3458 {
3459 	int ret;
3460 
3461 	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3462 	if (ret >= 0)
3463 		return ret > 0;
3464 
3465 	/*
3466 	 * Conventional PCI and PCI-X devices never support ACS, either
3467 	 * effectively or actually.  The shared bus topology implies that
3468 	 * any device on the bus can receive or snoop DMA.
3469 	 */
3470 	if (!pci_is_pcie(pdev))
3471 		return false;
3472 
3473 	switch (pci_pcie_type(pdev)) {
3474 	/*
3475 	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3476 	 * but since their primary interface is PCI/X, we conservatively
3477 	 * handle them as we would a non-PCIe device.
3478 	 */
3479 	case PCI_EXP_TYPE_PCIE_BRIDGE:
3480 	/*
3481 	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
3482 	 * applicable... must never implement an ACS Extended Capability...".
3483 	 * This seems arbitrary, but we take a conservative interpretation
3484 	 * of this statement.
3485 	 */
3486 	case PCI_EXP_TYPE_PCI_BRIDGE:
3487 	case PCI_EXP_TYPE_RC_EC:
3488 		return false;
3489 	/*
3490 	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3491 	 * implement ACS in order to indicate their peer-to-peer capabilities,
3492 	 * regardless of whether they are single- or multi-function devices.
3493 	 */
3494 	case PCI_EXP_TYPE_DOWNSTREAM:
3495 	case PCI_EXP_TYPE_ROOT_PORT:
3496 		return pci_acs_flags_enabled(pdev, acs_flags);
3497 	/*
3498 	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3499 	 * implemented by the remaining PCIe types to indicate peer-to-peer
3500 	 * capabilities, but only when they are part of a multifunction
3501 	 * device.  The footnote for section 6.12 indicates the specific
3502 	 * PCIe types included here.
3503 	 */
3504 	case PCI_EXP_TYPE_ENDPOINT:
3505 	case PCI_EXP_TYPE_UPSTREAM:
3506 	case PCI_EXP_TYPE_LEG_END:
3507 	case PCI_EXP_TYPE_RC_END:
3508 		if (!pdev->multifunction)
3509 			break;
3510 
3511 		return pci_acs_flags_enabled(pdev, acs_flags);
3512 	}
3513 
3514 	/*
3515 	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3516 	 * to single function devices with the exception of downstream ports.
3517 	 */
3518 	return true;
3519 }
3520 
3521 /**
3522  * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
3523  * @start: starting downstream device
3524  * @end: ending upstream device or NULL to search to the root bus
3525  * @acs_flags: required flags
3526  *
3527  * Walk up a device tree from start to end testing PCI ACS support.  If
3528  * any step along the way does not support the required flags, return false.
3529  */
3530 bool pci_acs_path_enabled(struct pci_dev *start,
3531 			  struct pci_dev *end, u16 acs_flags)
3532 {
3533 	struct pci_dev *pdev, *parent = start;
3534 
3535 	do {
3536 		pdev = parent;
3537 
3538 		if (!pci_acs_enabled(pdev, acs_flags))
3539 			return false;
3540 
3541 		if (pci_is_root_bus(pdev->bus))
3542 			return (end == NULL);
3543 
3544 		parent = pdev->bus->self;
3545 	} while (pdev != end);
3546 
3547 	return true;
3548 }
3549 
3550 /**
3551  * pci_acs_init - Initialize ACS if hardware supports it
3552  * @dev: the PCI device
3553  */
3554 void pci_acs_init(struct pci_dev *dev)
3555 {
3556 	dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3557 
3558 	/*
3559 	 * Attempt to enable ACS regardless of capability because some Root
3560 	 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3561 	 * the standard ACS capability but still support ACS via those
3562 	 * quirks.
3563 	 */
3564 	pci_enable_acs(dev);
3565 }
3566 
3567 /**
3568  * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3569  * @pdev: PCI device
3570  * @bar: BAR to find
3571  *
3572  * Helper to find the position of the ctrl register for a BAR.
3573  * Returns -ENOTSUPP if resizable BARs are not supported at all.
3574  * Returns -ENOENT if no ctrl register for the BAR could be found.
3575  */
3576 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3577 {
3578 	unsigned int pos, nbars, i;
3579 	u32 ctrl;
3580 
3581 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3582 	if (!pos)
3583 		return -ENOTSUPP;
3584 
3585 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3586 	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3587 		    PCI_REBAR_CTRL_NBAR_SHIFT;
3588 
3589 	for (i = 0; i < nbars; i++, pos += 8) {
3590 		int bar_idx;
3591 
3592 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3593 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3594 		if (bar_idx == bar)
3595 			return pos;
3596 	}
3597 
3598 	return -ENOENT;
3599 }
3600 
3601 /**
3602  * pci_rebar_get_possible_sizes - get possible sizes for BAR
3603  * @pdev: PCI device
3604  * @bar: BAR to query
3605  *
3606  * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3607  * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3608  */
3609 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3610 {
3611 	int pos;
3612 	u32 cap;
3613 
3614 	pos = pci_rebar_find_pos(pdev, bar);
3615 	if (pos < 0)
3616 		return 0;
3617 
3618 	pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3619 	cap &= PCI_REBAR_CAP_SIZES;
3620 
3621 	/* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
3622 	if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
3623 	    bar == 0 && cap == 0x7000)
3624 		cap = 0x3f000;
3625 
3626 	return cap >> 4;
3627 }
3628 EXPORT_SYMBOL(pci_rebar_get_possible_sizes);
3629 
3630 /**
3631  * pci_rebar_get_current_size - get the current size of a BAR
3632  * @pdev: PCI device
3633  * @bar: BAR to set size to
3634  *
3635  * Read the size of a BAR from the resizable BAR config.
3636  * Returns size if found or negative error code.
3637  */
3638 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3639 {
3640 	int pos;
3641 	u32 ctrl;
3642 
3643 	pos = pci_rebar_find_pos(pdev, bar);
3644 	if (pos < 0)
3645 		return pos;
3646 
3647 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3648 	return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3649 }
3650 
3651 /**
3652  * pci_rebar_set_size - set a new size for a BAR
3653  * @pdev: PCI device
3654  * @bar: BAR to set size to
3655  * @size: new size as defined in the spec (0=1MB, 19=512GB)
3656  *
3657  * Set the new size of a BAR as defined in the spec.
3658  * Returns zero if resizing was successful, error code otherwise.
3659  */
3660 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3661 {
3662 	int pos;
3663 	u32 ctrl;
3664 
3665 	pos = pci_rebar_find_pos(pdev, bar);
3666 	if (pos < 0)
3667 		return pos;
3668 
3669 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3670 	ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3671 	ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3672 	pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3673 	return 0;
3674 }
3675 
3676 /**
3677  * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3678  * @dev: the PCI device
3679  * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3680  *	PCI_EXP_DEVCAP2_ATOMIC_COMP32
3681  *	PCI_EXP_DEVCAP2_ATOMIC_COMP64
3682  *	PCI_EXP_DEVCAP2_ATOMIC_COMP128
3683  *
3684  * Return 0 if all upstream bridges support AtomicOp routing, egress
3685  * blocking is disabled on all upstream ports, and the root port supports
3686  * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3687  * AtomicOp completion), or negative otherwise.
3688  */
3689 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3690 {
3691 	struct pci_bus *bus = dev->bus;
3692 	struct pci_dev *bridge;
3693 	u32 cap, ctl2;
3694 
3695 	if (!pci_is_pcie(dev))
3696 		return -EINVAL;
3697 
3698 	/*
3699 	 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3700 	 * AtomicOp requesters.  For now, we only support endpoints as
3701 	 * requesters and root ports as completers.  No endpoints as
3702 	 * completers, and no peer-to-peer.
3703 	 */
3704 
3705 	switch (pci_pcie_type(dev)) {
3706 	case PCI_EXP_TYPE_ENDPOINT:
3707 	case PCI_EXP_TYPE_LEG_END:
3708 	case PCI_EXP_TYPE_RC_END:
3709 		break;
3710 	default:
3711 		return -EINVAL;
3712 	}
3713 
3714 	while (bus->parent) {
3715 		bridge = bus->self;
3716 
3717 		pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3718 
3719 		switch (pci_pcie_type(bridge)) {
3720 		/* Ensure switch ports support AtomicOp routing */
3721 		case PCI_EXP_TYPE_UPSTREAM:
3722 		case PCI_EXP_TYPE_DOWNSTREAM:
3723 			if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3724 				return -EINVAL;
3725 			break;
3726 
3727 		/* Ensure root port supports all the sizes we care about */
3728 		case PCI_EXP_TYPE_ROOT_PORT:
3729 			if ((cap & cap_mask) != cap_mask)
3730 				return -EINVAL;
3731 			break;
3732 		}
3733 
3734 		/* Ensure upstream ports don't block AtomicOps on egress */
3735 		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3736 			pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3737 						   &ctl2);
3738 			if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3739 				return -EINVAL;
3740 		}
3741 
3742 		bus = bus->parent;
3743 	}
3744 
3745 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3746 				 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3747 	return 0;
3748 }
3749 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3750 
3751 /**
3752  * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3753  * @dev: the PCI device
3754  * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3755  *
3756  * Perform INTx swizzling for a device behind one level of bridge.  This is
3757  * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3758  * behind bridges on add-in cards.  For devices with ARI enabled, the slot
3759  * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3760  * the PCI Express Base Specification, Revision 2.1)
3761  */
3762 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3763 {
3764 	int slot;
3765 
3766 	if (pci_ari_enabled(dev->bus))
3767 		slot = 0;
3768 	else
3769 		slot = PCI_SLOT(dev->devfn);
3770 
3771 	return (((pin - 1) + slot) % 4) + 1;
3772 }
3773 
3774 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3775 {
3776 	u8 pin;
3777 
3778 	pin = dev->pin;
3779 	if (!pin)
3780 		return -1;
3781 
3782 	while (!pci_is_root_bus(dev->bus)) {
3783 		pin = pci_swizzle_interrupt_pin(dev, pin);
3784 		dev = dev->bus->self;
3785 	}
3786 	*bridge = dev;
3787 	return pin;
3788 }
3789 
3790 /**
3791  * pci_common_swizzle - swizzle INTx all the way to root bridge
3792  * @dev: the PCI device
3793  * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3794  *
3795  * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
3796  * bridges all the way up to a PCI root bus.
3797  */
3798 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3799 {
3800 	u8 pin = *pinp;
3801 
3802 	while (!pci_is_root_bus(dev->bus)) {
3803 		pin = pci_swizzle_interrupt_pin(dev, pin);
3804 		dev = dev->bus->self;
3805 	}
3806 	*pinp = pin;
3807 	return PCI_SLOT(dev->devfn);
3808 }
3809 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3810 
3811 /**
3812  * pci_release_region - Release a PCI bar
3813  * @pdev: PCI device whose resources were previously reserved by
3814  *	  pci_request_region()
3815  * @bar: BAR to release
3816  *
3817  * Releases the PCI I/O and memory resources previously reserved by a
3818  * successful call to pci_request_region().  Call this function only
3819  * after all use of the PCI regions has ceased.
3820  */
3821 void pci_release_region(struct pci_dev *pdev, int bar)
3822 {
3823 	struct pci_devres *dr;
3824 
3825 	if (pci_resource_len(pdev, bar) == 0)
3826 		return;
3827 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3828 		release_region(pci_resource_start(pdev, bar),
3829 				pci_resource_len(pdev, bar));
3830 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3831 		release_mem_region(pci_resource_start(pdev, bar),
3832 				pci_resource_len(pdev, bar));
3833 
3834 	dr = find_pci_dr(pdev);
3835 	if (dr)
3836 		dr->region_mask &= ~(1 << bar);
3837 }
3838 EXPORT_SYMBOL(pci_release_region);
3839 
3840 /**
3841  * __pci_request_region - Reserved PCI I/O and memory resource
3842  * @pdev: PCI device whose resources are to be reserved
3843  * @bar: BAR to be reserved
3844  * @res_name: Name to be associated with resource.
3845  * @exclusive: whether the region access is exclusive or not
3846  *
3847  * Mark the PCI region associated with PCI device @pdev BAR @bar as
3848  * being reserved by owner @res_name.  Do not access any
3849  * address inside the PCI regions unless this call returns
3850  * successfully.
3851  *
3852  * If @exclusive is set, then the region is marked so that userspace
3853  * is explicitly not allowed to map the resource via /dev/mem or
3854  * sysfs MMIO access.
3855  *
3856  * Returns 0 on success, or %EBUSY on error.  A warning
3857  * message is also printed on failure.
3858  */
3859 static int __pci_request_region(struct pci_dev *pdev, int bar,
3860 				const char *res_name, int exclusive)
3861 {
3862 	struct pci_devres *dr;
3863 
3864 	if (pci_resource_len(pdev, bar) == 0)
3865 		return 0;
3866 
3867 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3868 		if (!request_region(pci_resource_start(pdev, bar),
3869 			    pci_resource_len(pdev, bar), res_name))
3870 			goto err_out;
3871 	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3872 		if (!__request_mem_region(pci_resource_start(pdev, bar),
3873 					pci_resource_len(pdev, bar), res_name,
3874 					exclusive))
3875 			goto err_out;
3876 	}
3877 
3878 	dr = find_pci_dr(pdev);
3879 	if (dr)
3880 		dr->region_mask |= 1 << bar;
3881 
3882 	return 0;
3883 
3884 err_out:
3885 	pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3886 		 &pdev->resource[bar]);
3887 	return -EBUSY;
3888 }
3889 
3890 /**
3891  * pci_request_region - Reserve PCI I/O and memory resource
3892  * @pdev: PCI device whose resources are to be reserved
3893  * @bar: BAR to be reserved
3894  * @res_name: Name to be associated with resource
3895  *
3896  * Mark the PCI region associated with PCI device @pdev BAR @bar as
3897  * being reserved by owner @res_name.  Do not access any
3898  * address inside the PCI regions unless this call returns
3899  * successfully.
3900  *
3901  * Returns 0 on success, or %EBUSY on error.  A warning
3902  * message is also printed on failure.
3903  */
3904 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3905 {
3906 	return __pci_request_region(pdev, bar, res_name, 0);
3907 }
3908 EXPORT_SYMBOL(pci_request_region);
3909 
3910 /**
3911  * pci_release_selected_regions - Release selected PCI I/O and memory resources
3912  * @pdev: PCI device whose resources were previously reserved
3913  * @bars: Bitmask of BARs to be released
3914  *
3915  * Release selected PCI I/O and memory resources previously reserved.
3916  * Call this function only after all use of the PCI regions has ceased.
3917  */
3918 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3919 {
3920 	int i;
3921 
3922 	for (i = 0; i < PCI_STD_NUM_BARS; i++)
3923 		if (bars & (1 << i))
3924 			pci_release_region(pdev, i);
3925 }
3926 EXPORT_SYMBOL(pci_release_selected_regions);
3927 
3928 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3929 					  const char *res_name, int excl)
3930 {
3931 	int i;
3932 
3933 	for (i = 0; i < PCI_STD_NUM_BARS; i++)
3934 		if (bars & (1 << i))
3935 			if (__pci_request_region(pdev, i, res_name, excl))
3936 				goto err_out;
3937 	return 0;
3938 
3939 err_out:
3940 	while (--i >= 0)
3941 		if (bars & (1 << i))
3942 			pci_release_region(pdev, i);
3943 
3944 	return -EBUSY;
3945 }
3946 
3947 
3948 /**
3949  * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3950  * @pdev: PCI device whose resources are to be reserved
3951  * @bars: Bitmask of BARs to be requested
3952  * @res_name: Name to be associated with resource
3953  */
3954 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3955 				 const char *res_name)
3956 {
3957 	return __pci_request_selected_regions(pdev, bars, res_name, 0);
3958 }
3959 EXPORT_SYMBOL(pci_request_selected_regions);
3960 
3961 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3962 					   const char *res_name)
3963 {
3964 	return __pci_request_selected_regions(pdev, bars, res_name,
3965 			IORESOURCE_EXCLUSIVE);
3966 }
3967 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3968 
3969 /**
3970  * pci_release_regions - Release reserved PCI I/O and memory resources
3971  * @pdev: PCI device whose resources were previously reserved by
3972  *	  pci_request_regions()
3973  *
3974  * Releases all PCI I/O and memory resources previously reserved by a
3975  * successful call to pci_request_regions().  Call this function only
3976  * after all use of the PCI regions has ceased.
3977  */
3978 
3979 void pci_release_regions(struct pci_dev *pdev)
3980 {
3981 	pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
3982 }
3983 EXPORT_SYMBOL(pci_release_regions);
3984 
3985 /**
3986  * pci_request_regions - Reserve PCI I/O and memory resources
3987  * @pdev: PCI device whose resources are to be reserved
3988  * @res_name: Name to be associated with resource.
3989  *
3990  * Mark all PCI regions associated with PCI device @pdev as
3991  * being reserved by owner @res_name.  Do not access any
3992  * address inside the PCI regions unless this call returns
3993  * successfully.
3994  *
3995  * Returns 0 on success, or %EBUSY on error.  A warning
3996  * message is also printed on failure.
3997  */
3998 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
3999 {
4000 	return pci_request_selected_regions(pdev,
4001 			((1 << PCI_STD_NUM_BARS) - 1), res_name);
4002 }
4003 EXPORT_SYMBOL(pci_request_regions);
4004 
4005 /**
4006  * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
4007  * @pdev: PCI device whose resources are to be reserved
4008  * @res_name: Name to be associated with resource.
4009  *
4010  * Mark all PCI regions associated with PCI device @pdev as being reserved
4011  * by owner @res_name.  Do not access any address inside the PCI regions
4012  * unless this call returns successfully.
4013  *
4014  * pci_request_regions_exclusive() will mark the region so that /dev/mem
4015  * and the sysfs MMIO access will not be allowed.
4016  *
4017  * Returns 0 on success, or %EBUSY on error.  A warning message is also
4018  * printed on failure.
4019  */
4020 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
4021 {
4022 	return pci_request_selected_regions_exclusive(pdev,
4023 				((1 << PCI_STD_NUM_BARS) - 1), res_name);
4024 }
4025 EXPORT_SYMBOL(pci_request_regions_exclusive);
4026 
4027 /*
4028  * Record the PCI IO range (expressed as CPU physical address + size).
4029  * Return a negative value if an error has occurred, zero otherwise
4030  */
4031 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
4032 			resource_size_t	size)
4033 {
4034 	int ret = 0;
4035 #ifdef PCI_IOBASE
4036 	struct logic_pio_hwaddr *range;
4037 
4038 	if (!size || addr + size < addr)
4039 		return -EINVAL;
4040 
4041 	range = kzalloc(sizeof(*range), GFP_ATOMIC);
4042 	if (!range)
4043 		return -ENOMEM;
4044 
4045 	range->fwnode = fwnode;
4046 	range->size = size;
4047 	range->hw_start = addr;
4048 	range->flags = LOGIC_PIO_CPU_MMIO;
4049 
4050 	ret = logic_pio_register_range(range);
4051 	if (ret)
4052 		kfree(range);
4053 
4054 	/* Ignore duplicates due to deferred probing */
4055 	if (ret == -EEXIST)
4056 		ret = 0;
4057 #endif
4058 
4059 	return ret;
4060 }
4061 
4062 phys_addr_t pci_pio_to_address(unsigned long pio)
4063 {
4064 	phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
4065 
4066 #ifdef PCI_IOBASE
4067 	if (pio >= MMIO_UPPER_LIMIT)
4068 		return address;
4069 
4070 	address = logic_pio_to_hwaddr(pio);
4071 #endif
4072 
4073 	return address;
4074 }
4075 EXPORT_SYMBOL_GPL(pci_pio_to_address);
4076 
4077 unsigned long __weak pci_address_to_pio(phys_addr_t address)
4078 {
4079 #ifdef PCI_IOBASE
4080 	return logic_pio_trans_cpuaddr(address);
4081 #else
4082 	if (address > IO_SPACE_LIMIT)
4083 		return (unsigned long)-1;
4084 
4085 	return (unsigned long) address;
4086 #endif
4087 }
4088 
4089 /**
4090  * pci_remap_iospace - Remap the memory mapped I/O space
4091  * @res: Resource describing the I/O space
4092  * @phys_addr: physical address of range to be mapped
4093  *
4094  * Remap the memory mapped I/O space described by the @res and the CPU
4095  * physical address @phys_addr into virtual address space.  Only
4096  * architectures that have memory mapped IO functions defined (and the
4097  * PCI_IOBASE value defined) should call this function.
4098  */
4099 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4100 {
4101 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4102 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4103 
4104 	if (!(res->flags & IORESOURCE_IO))
4105 		return -EINVAL;
4106 
4107 	if (res->end > IO_SPACE_LIMIT)
4108 		return -EINVAL;
4109 
4110 	return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4111 				  pgprot_device(PAGE_KERNEL));
4112 #else
4113 	/*
4114 	 * This architecture does not have memory mapped I/O space,
4115 	 * so this function should never be called
4116 	 */
4117 	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4118 	return -ENODEV;
4119 #endif
4120 }
4121 EXPORT_SYMBOL(pci_remap_iospace);
4122 
4123 /**
4124  * pci_unmap_iospace - Unmap the memory mapped I/O space
4125  * @res: resource to be unmapped
4126  *
4127  * Unmap the CPU virtual address @res from virtual address space.  Only
4128  * architectures that have memory mapped IO functions defined (and the
4129  * PCI_IOBASE value defined) should call this function.
4130  */
4131 void pci_unmap_iospace(struct resource *res)
4132 {
4133 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4134 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4135 
4136 	vunmap_range(vaddr, vaddr + resource_size(res));
4137 #endif
4138 }
4139 EXPORT_SYMBOL(pci_unmap_iospace);
4140 
4141 static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
4142 {
4143 	struct resource **res = ptr;
4144 
4145 	pci_unmap_iospace(*res);
4146 }
4147 
4148 /**
4149  * devm_pci_remap_iospace - Managed pci_remap_iospace()
4150  * @dev: Generic device to remap IO address for
4151  * @res: Resource describing the I/O space
4152  * @phys_addr: physical address of range to be mapped
4153  *
4154  * Managed pci_remap_iospace().  Map is automatically unmapped on driver
4155  * detach.
4156  */
4157 int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4158 			   phys_addr_t phys_addr)
4159 {
4160 	const struct resource **ptr;
4161 	int error;
4162 
4163 	ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4164 	if (!ptr)
4165 		return -ENOMEM;
4166 
4167 	error = pci_remap_iospace(res, phys_addr);
4168 	if (error) {
4169 		devres_free(ptr);
4170 	} else	{
4171 		*ptr = res;
4172 		devres_add(dev, ptr);
4173 	}
4174 
4175 	return error;
4176 }
4177 EXPORT_SYMBOL(devm_pci_remap_iospace);
4178 
4179 /**
4180  * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4181  * @dev: Generic device to remap IO address for
4182  * @offset: Resource address to map
4183  * @size: Size of map
4184  *
4185  * Managed pci_remap_cfgspace().  Map is automatically unmapped on driver
4186  * detach.
4187  */
4188 void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4189 				      resource_size_t offset,
4190 				      resource_size_t size)
4191 {
4192 	void __iomem **ptr, *addr;
4193 
4194 	ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4195 	if (!ptr)
4196 		return NULL;
4197 
4198 	addr = pci_remap_cfgspace(offset, size);
4199 	if (addr) {
4200 		*ptr = addr;
4201 		devres_add(dev, ptr);
4202 	} else
4203 		devres_free(ptr);
4204 
4205 	return addr;
4206 }
4207 EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4208 
4209 /**
4210  * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4211  * @dev: generic device to handle the resource for
4212  * @res: configuration space resource to be handled
4213  *
4214  * Checks that a resource is a valid memory region, requests the memory
4215  * region and ioremaps with pci_remap_cfgspace() API that ensures the
4216  * proper PCI configuration space memory attributes are guaranteed.
4217  *
4218  * All operations are managed and will be undone on driver detach.
4219  *
4220  * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4221  * on failure. Usage example::
4222  *
4223  *	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4224  *	base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4225  *	if (IS_ERR(base))
4226  *		return PTR_ERR(base);
4227  */
4228 void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4229 					  struct resource *res)
4230 {
4231 	resource_size_t size;
4232 	const char *name;
4233 	void __iomem *dest_ptr;
4234 
4235 	BUG_ON(!dev);
4236 
4237 	if (!res || resource_type(res) != IORESOURCE_MEM) {
4238 		dev_err(dev, "invalid resource\n");
4239 		return IOMEM_ERR_PTR(-EINVAL);
4240 	}
4241 
4242 	size = resource_size(res);
4243 
4244 	if (res->name)
4245 		name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev),
4246 				      res->name);
4247 	else
4248 		name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL);
4249 	if (!name)
4250 		return IOMEM_ERR_PTR(-ENOMEM);
4251 
4252 	if (!devm_request_mem_region(dev, res->start, size, name)) {
4253 		dev_err(dev, "can't request region for resource %pR\n", res);
4254 		return IOMEM_ERR_PTR(-EBUSY);
4255 	}
4256 
4257 	dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4258 	if (!dest_ptr) {
4259 		dev_err(dev, "ioremap failed for resource %pR\n", res);
4260 		devm_release_mem_region(dev, res->start, size);
4261 		dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4262 	}
4263 
4264 	return dest_ptr;
4265 }
4266 EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4267 
4268 static void __pci_set_master(struct pci_dev *dev, bool enable)
4269 {
4270 	u16 old_cmd, cmd;
4271 
4272 	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4273 	if (enable)
4274 		cmd = old_cmd | PCI_COMMAND_MASTER;
4275 	else
4276 		cmd = old_cmd & ~PCI_COMMAND_MASTER;
4277 	if (cmd != old_cmd) {
4278 		pci_dbg(dev, "%s bus mastering\n",
4279 			enable ? "enabling" : "disabling");
4280 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4281 	}
4282 	dev->is_busmaster = enable;
4283 }
4284 
4285 /**
4286  * pcibios_setup - process "pci=" kernel boot arguments
4287  * @str: string used to pass in "pci=" kernel boot arguments
4288  *
4289  * Process kernel boot arguments.  This is the default implementation.
4290  * Architecture specific implementations can override this as necessary.
4291  */
4292 char * __weak __init pcibios_setup(char *str)
4293 {
4294 	return str;
4295 }
4296 
4297 /**
4298  * pcibios_set_master - enable PCI bus-mastering for device dev
4299  * @dev: the PCI device to enable
4300  *
4301  * Enables PCI bus-mastering for the device.  This is the default
4302  * implementation.  Architecture specific implementations can override
4303  * this if necessary.
4304  */
4305 void __weak pcibios_set_master(struct pci_dev *dev)
4306 {
4307 	u8 lat;
4308 
4309 	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4310 	if (pci_is_pcie(dev))
4311 		return;
4312 
4313 	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4314 	if (lat < 16)
4315 		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4316 	else if (lat > pcibios_max_latency)
4317 		lat = pcibios_max_latency;
4318 	else
4319 		return;
4320 
4321 	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4322 }
4323 
4324 /**
4325  * pci_set_master - enables bus-mastering for device dev
4326  * @dev: the PCI device to enable
4327  *
4328  * Enables bus-mastering on the device and calls pcibios_set_master()
4329  * to do the needed arch specific settings.
4330  */
4331 void pci_set_master(struct pci_dev *dev)
4332 {
4333 	__pci_set_master(dev, true);
4334 	pcibios_set_master(dev);
4335 }
4336 EXPORT_SYMBOL(pci_set_master);
4337 
4338 /**
4339  * pci_clear_master - disables bus-mastering for device dev
4340  * @dev: the PCI device to disable
4341  */
4342 void pci_clear_master(struct pci_dev *dev)
4343 {
4344 	__pci_set_master(dev, false);
4345 }
4346 EXPORT_SYMBOL(pci_clear_master);
4347 
4348 /**
4349  * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4350  * @dev: the PCI device for which MWI is to be enabled
4351  *
4352  * Helper function for pci_set_mwi.
4353  * Originally copied from drivers/net/acenic.c.
4354  * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4355  *
4356  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4357  */
4358 int pci_set_cacheline_size(struct pci_dev *dev)
4359 {
4360 	u8 cacheline_size;
4361 
4362 	if (!pci_cache_line_size)
4363 		return -EINVAL;
4364 
4365 	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4366 	   equal to or multiple of the right value. */
4367 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4368 	if (cacheline_size >= pci_cache_line_size &&
4369 	    (cacheline_size % pci_cache_line_size) == 0)
4370 		return 0;
4371 
4372 	/* Write the correct value. */
4373 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4374 	/* Read it back. */
4375 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4376 	if (cacheline_size == pci_cache_line_size)
4377 		return 0;
4378 
4379 	pci_dbg(dev, "cache line size of %d is not supported\n",
4380 		   pci_cache_line_size << 2);
4381 
4382 	return -EINVAL;
4383 }
4384 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4385 
4386 /**
4387  * pci_set_mwi - enables memory-write-invalidate PCI transaction
4388  * @dev: the PCI device for which MWI is enabled
4389  *
4390  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4391  *
4392  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4393  */
4394 int pci_set_mwi(struct pci_dev *dev)
4395 {
4396 #ifdef PCI_DISABLE_MWI
4397 	return 0;
4398 #else
4399 	int rc;
4400 	u16 cmd;
4401 
4402 	rc = pci_set_cacheline_size(dev);
4403 	if (rc)
4404 		return rc;
4405 
4406 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4407 	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4408 		pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4409 		cmd |= PCI_COMMAND_INVALIDATE;
4410 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4411 	}
4412 	return 0;
4413 #endif
4414 }
4415 EXPORT_SYMBOL(pci_set_mwi);
4416 
4417 /**
4418  * pcim_set_mwi - a device-managed pci_set_mwi()
4419  * @dev: the PCI device for which MWI is enabled
4420  *
4421  * Managed pci_set_mwi().
4422  *
4423  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4424  */
4425 int pcim_set_mwi(struct pci_dev *dev)
4426 {
4427 	struct pci_devres *dr;
4428 
4429 	dr = find_pci_dr(dev);
4430 	if (!dr)
4431 		return -ENOMEM;
4432 
4433 	dr->mwi = 1;
4434 	return pci_set_mwi(dev);
4435 }
4436 EXPORT_SYMBOL(pcim_set_mwi);
4437 
4438 /**
4439  * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4440  * @dev: the PCI device for which MWI is enabled
4441  *
4442  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4443  * Callers are not required to check the return value.
4444  *
4445  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4446  */
4447 int pci_try_set_mwi(struct pci_dev *dev)
4448 {
4449 #ifdef PCI_DISABLE_MWI
4450 	return 0;
4451 #else
4452 	return pci_set_mwi(dev);
4453 #endif
4454 }
4455 EXPORT_SYMBOL(pci_try_set_mwi);
4456 
4457 /**
4458  * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4459  * @dev: the PCI device to disable
4460  *
4461  * Disables PCI Memory-Write-Invalidate transaction on the device
4462  */
4463 void pci_clear_mwi(struct pci_dev *dev)
4464 {
4465 #ifndef PCI_DISABLE_MWI
4466 	u16 cmd;
4467 
4468 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4469 	if (cmd & PCI_COMMAND_INVALIDATE) {
4470 		cmd &= ~PCI_COMMAND_INVALIDATE;
4471 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4472 	}
4473 #endif
4474 }
4475 EXPORT_SYMBOL(pci_clear_mwi);
4476 
4477 /**
4478  * pci_disable_parity - disable parity checking for device
4479  * @dev: the PCI device to operate on
4480  *
4481  * Disable parity checking for device @dev
4482  */
4483 void pci_disable_parity(struct pci_dev *dev)
4484 {
4485 	u16 cmd;
4486 
4487 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4488 	if (cmd & PCI_COMMAND_PARITY) {
4489 		cmd &= ~PCI_COMMAND_PARITY;
4490 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4491 	}
4492 }
4493 
4494 /**
4495  * pci_intx - enables/disables PCI INTx for device dev
4496  * @pdev: the PCI device to operate on
4497  * @enable: boolean: whether to enable or disable PCI INTx
4498  *
4499  * Enables/disables PCI INTx for device @pdev
4500  */
4501 void pci_intx(struct pci_dev *pdev, int enable)
4502 {
4503 	u16 pci_command, new;
4504 
4505 	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4506 
4507 	if (enable)
4508 		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4509 	else
4510 		new = pci_command | PCI_COMMAND_INTX_DISABLE;
4511 
4512 	if (new != pci_command) {
4513 		struct pci_devres *dr;
4514 
4515 		pci_write_config_word(pdev, PCI_COMMAND, new);
4516 
4517 		dr = find_pci_dr(pdev);
4518 		if (dr && !dr->restore_intx) {
4519 			dr->restore_intx = 1;
4520 			dr->orig_intx = !enable;
4521 		}
4522 	}
4523 }
4524 EXPORT_SYMBOL_GPL(pci_intx);
4525 
4526 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4527 {
4528 	struct pci_bus *bus = dev->bus;
4529 	bool mask_updated = true;
4530 	u32 cmd_status_dword;
4531 	u16 origcmd, newcmd;
4532 	unsigned long flags;
4533 	bool irq_pending;
4534 
4535 	/*
4536 	 * We do a single dword read to retrieve both command and status.
4537 	 * Document assumptions that make this possible.
4538 	 */
4539 	BUILD_BUG_ON(PCI_COMMAND % 4);
4540 	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4541 
4542 	raw_spin_lock_irqsave(&pci_lock, flags);
4543 
4544 	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4545 
4546 	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4547 
4548 	/*
4549 	 * Check interrupt status register to see whether our device
4550 	 * triggered the interrupt (when masking) or the next IRQ is
4551 	 * already pending (when unmasking).
4552 	 */
4553 	if (mask != irq_pending) {
4554 		mask_updated = false;
4555 		goto done;
4556 	}
4557 
4558 	origcmd = cmd_status_dword;
4559 	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4560 	if (mask)
4561 		newcmd |= PCI_COMMAND_INTX_DISABLE;
4562 	if (newcmd != origcmd)
4563 		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4564 
4565 done:
4566 	raw_spin_unlock_irqrestore(&pci_lock, flags);
4567 
4568 	return mask_updated;
4569 }
4570 
4571 /**
4572  * pci_check_and_mask_intx - mask INTx on pending interrupt
4573  * @dev: the PCI device to operate on
4574  *
4575  * Check if the device dev has its INTx line asserted, mask it and return
4576  * true in that case. False is returned if no interrupt was pending.
4577  */
4578 bool pci_check_and_mask_intx(struct pci_dev *dev)
4579 {
4580 	return pci_check_and_set_intx_mask(dev, true);
4581 }
4582 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4583 
4584 /**
4585  * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4586  * @dev: the PCI device to operate on
4587  *
4588  * Check if the device dev has its INTx line asserted, unmask it if not and
4589  * return true. False is returned and the mask remains active if there was
4590  * still an interrupt pending.
4591  */
4592 bool pci_check_and_unmask_intx(struct pci_dev *dev)
4593 {
4594 	return pci_check_and_set_intx_mask(dev, false);
4595 }
4596 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4597 
4598 /**
4599  * pci_wait_for_pending_transaction - wait for pending transaction
4600  * @dev: the PCI device to operate on
4601  *
4602  * Return 0 if transaction is pending 1 otherwise.
4603  */
4604 int pci_wait_for_pending_transaction(struct pci_dev *dev)
4605 {
4606 	if (!pci_is_pcie(dev))
4607 		return 1;
4608 
4609 	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4610 				    PCI_EXP_DEVSTA_TRPND);
4611 }
4612 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4613 
4614 /**
4615  * pcie_has_flr - check if a device supports function level resets
4616  * @dev: device to check
4617  *
4618  * Returns true if the device advertises support for PCIe function level
4619  * resets.
4620  */
4621 bool pcie_has_flr(struct pci_dev *dev)
4622 {
4623 	u32 cap;
4624 
4625 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4626 		return false;
4627 
4628 	pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
4629 	return cap & PCI_EXP_DEVCAP_FLR;
4630 }
4631 EXPORT_SYMBOL_GPL(pcie_has_flr);
4632 
4633 /**
4634  * pcie_flr - initiate a PCIe function level reset
4635  * @dev: device to reset
4636  *
4637  * Initiate a function level reset on @dev.  The caller should ensure the
4638  * device supports FLR before calling this function, e.g. by using the
4639  * pcie_has_flr() helper.
4640  */
4641 int pcie_flr(struct pci_dev *dev)
4642 {
4643 	if (!pci_wait_for_pending_transaction(dev))
4644 		pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4645 
4646 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4647 
4648 	if (dev->imm_ready)
4649 		return 0;
4650 
4651 	/*
4652 	 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4653 	 * 100ms, but may silently discard requests while the FLR is in
4654 	 * progress.  Wait 100ms before trying to access the device.
4655 	 */
4656 	msleep(100);
4657 
4658 	return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4659 }
4660 EXPORT_SYMBOL_GPL(pcie_flr);
4661 
4662 static int pci_af_flr(struct pci_dev *dev, int probe)
4663 {
4664 	int pos;
4665 	u8 cap;
4666 
4667 	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4668 	if (!pos)
4669 		return -ENOTTY;
4670 
4671 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4672 		return -ENOTTY;
4673 
4674 	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4675 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4676 		return -ENOTTY;
4677 
4678 	if (probe)
4679 		return 0;
4680 
4681 	/*
4682 	 * Wait for Transaction Pending bit to clear.  A word-aligned test
4683 	 * is used, so we use the control offset rather than status and shift
4684 	 * the test bit to match.
4685 	 */
4686 	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4687 				 PCI_AF_STATUS_TP << 8))
4688 		pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4689 
4690 	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4691 
4692 	if (dev->imm_ready)
4693 		return 0;
4694 
4695 	/*
4696 	 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4697 	 * updated 27 July 2006; a device must complete an FLR within
4698 	 * 100ms, but may silently discard requests while the FLR is in
4699 	 * progress.  Wait 100ms before trying to access the device.
4700 	 */
4701 	msleep(100);
4702 
4703 	return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4704 }
4705 
4706 /**
4707  * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4708  * @dev: Device to reset.
4709  * @probe: If set, only check if the device can be reset this way.
4710  *
4711  * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4712  * unset, it will be reinitialized internally when going from PCI_D3hot to
4713  * PCI_D0.  If that's the case and the device is not in a low-power state
4714  * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4715  *
4716  * NOTE: This causes the caller to sleep for twice the device power transition
4717  * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4718  * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4719  * Moreover, only devices in D0 can be reset by this function.
4720  */
4721 static int pci_pm_reset(struct pci_dev *dev, int probe)
4722 {
4723 	u16 csr;
4724 
4725 	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4726 		return -ENOTTY;
4727 
4728 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4729 	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4730 		return -ENOTTY;
4731 
4732 	if (probe)
4733 		return 0;
4734 
4735 	if (dev->current_state != PCI_D0)
4736 		return -EINVAL;
4737 
4738 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4739 	csr |= PCI_D3hot;
4740 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4741 	pci_dev_d3_sleep(dev);
4742 
4743 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4744 	csr |= PCI_D0;
4745 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4746 	pci_dev_d3_sleep(dev);
4747 
4748 	return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4749 }
4750 
4751 /**
4752  * pcie_wait_for_link_delay - Wait until link is active or inactive
4753  * @pdev: Bridge device
4754  * @active: waiting for active or inactive?
4755  * @delay: Delay to wait after link has become active (in ms)
4756  *
4757  * Use this to wait till link becomes active or inactive.
4758  */
4759 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4760 				     int delay)
4761 {
4762 	int timeout = 1000;
4763 	bool ret;
4764 	u16 lnk_status;
4765 
4766 	/*
4767 	 * Some controllers might not implement link active reporting. In this
4768 	 * case, we wait for 1000 ms + any delay requested by the caller.
4769 	 */
4770 	if (!pdev->link_active_reporting) {
4771 		msleep(timeout + delay);
4772 		return true;
4773 	}
4774 
4775 	/*
4776 	 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4777 	 * after which we should expect an link active if the reset was
4778 	 * successful. If so, software must wait a minimum 100ms before sending
4779 	 * configuration requests to devices downstream this port.
4780 	 *
4781 	 * If the link fails to activate, either the device was physically
4782 	 * removed or the link is permanently failed.
4783 	 */
4784 	if (active)
4785 		msleep(20);
4786 	for (;;) {
4787 		pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
4788 		ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA);
4789 		if (ret == active)
4790 			break;
4791 		if (timeout <= 0)
4792 			break;
4793 		msleep(10);
4794 		timeout -= 10;
4795 	}
4796 	if (active && ret)
4797 		msleep(delay);
4798 
4799 	return ret == active;
4800 }
4801 
4802 /**
4803  * pcie_wait_for_link - Wait until link is active or inactive
4804  * @pdev: Bridge device
4805  * @active: waiting for active or inactive?
4806  *
4807  * Use this to wait till link becomes active or inactive.
4808  */
4809 bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4810 {
4811 	return pcie_wait_for_link_delay(pdev, active, 100);
4812 }
4813 
4814 /*
4815  * Find maximum D3cold delay required by all the devices on the bus.  The
4816  * spec says 100 ms, but firmware can lower it and we allow drivers to
4817  * increase it as well.
4818  *
4819  * Called with @pci_bus_sem locked for reading.
4820  */
4821 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
4822 {
4823 	const struct pci_dev *pdev;
4824 	int min_delay = 100;
4825 	int max_delay = 0;
4826 
4827 	list_for_each_entry(pdev, &bus->devices, bus_list) {
4828 		if (pdev->d3cold_delay < min_delay)
4829 			min_delay = pdev->d3cold_delay;
4830 		if (pdev->d3cold_delay > max_delay)
4831 			max_delay = pdev->d3cold_delay;
4832 	}
4833 
4834 	return max(min_delay, max_delay);
4835 }
4836 
4837 /**
4838  * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4839  * @dev: PCI bridge
4840  *
4841  * Handle necessary delays before access to the devices on the secondary
4842  * side of the bridge are permitted after D3cold to D0 transition.
4843  *
4844  * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4845  * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4846  * 4.3.2.
4847  */
4848 void pci_bridge_wait_for_secondary_bus(struct pci_dev *dev)
4849 {
4850 	struct pci_dev *child;
4851 	int delay;
4852 
4853 	if (pci_dev_is_disconnected(dev))
4854 		return;
4855 
4856 	if (!pci_is_bridge(dev) || !dev->bridge_d3)
4857 		return;
4858 
4859 	down_read(&pci_bus_sem);
4860 
4861 	/*
4862 	 * We only deal with devices that are present currently on the bus.
4863 	 * For any hot-added devices the access delay is handled in pciehp
4864 	 * board_added(). In case of ACPI hotplug the firmware is expected
4865 	 * to configure the devices before OS is notified.
4866 	 */
4867 	if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
4868 		up_read(&pci_bus_sem);
4869 		return;
4870 	}
4871 
4872 	/* Take d3cold_delay requirements into account */
4873 	delay = pci_bus_max_d3cold_delay(dev->subordinate);
4874 	if (!delay) {
4875 		up_read(&pci_bus_sem);
4876 		return;
4877 	}
4878 
4879 	child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
4880 				 bus_list);
4881 	up_read(&pci_bus_sem);
4882 
4883 	/*
4884 	 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
4885 	 * accessing the device after reset (that is 1000 ms + 100 ms). In
4886 	 * practice this should not be needed because we don't do power
4887 	 * management for them (see pci_bridge_d3_possible()).
4888 	 */
4889 	if (!pci_is_pcie(dev)) {
4890 		pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
4891 		msleep(1000 + delay);
4892 		return;
4893 	}
4894 
4895 	/*
4896 	 * For PCIe downstream and root ports that do not support speeds
4897 	 * greater than 5 GT/s need to wait minimum 100 ms. For higher
4898 	 * speeds (gen3) we need to wait first for the data link layer to
4899 	 * become active.
4900 	 *
4901 	 * However, 100 ms is the minimum and the PCIe spec says the
4902 	 * software must allow at least 1s before it can determine that the
4903 	 * device that did not respond is a broken device. There is
4904 	 * evidence that 100 ms is not always enough, for example certain
4905 	 * Titan Ridge xHCI controller does not always respond to
4906 	 * configuration requests if we only wait for 100 ms (see
4907 	 * https://bugzilla.kernel.org/show_bug.cgi?id=203885).
4908 	 *
4909 	 * Therefore we wait for 100 ms and check for the device presence.
4910 	 * If it is still not present give it an additional 100 ms.
4911 	 */
4912 	if (!pcie_downstream_port(dev))
4913 		return;
4914 
4915 	if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
4916 		pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
4917 		msleep(delay);
4918 	} else {
4919 		pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
4920 			delay);
4921 		if (!pcie_wait_for_link_delay(dev, true, delay)) {
4922 			/* Did not train, no need to wait any further */
4923 			pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
4924 			return;
4925 		}
4926 	}
4927 
4928 	if (!pci_device_is_present(child)) {
4929 		pci_dbg(child, "waiting additional %d ms to become accessible\n", delay);
4930 		msleep(delay);
4931 	}
4932 }
4933 
4934 void pci_reset_secondary_bus(struct pci_dev *dev)
4935 {
4936 	u16 ctrl;
4937 
4938 	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4939 	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4940 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4941 
4942 	/*
4943 	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
4944 	 * this to 2ms to ensure that we meet the minimum requirement.
4945 	 */
4946 	msleep(2);
4947 
4948 	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4949 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4950 
4951 	/*
4952 	 * Trhfa for conventional PCI is 2^25 clock cycles.
4953 	 * Assuming a minimum 33MHz clock this results in a 1s
4954 	 * delay before we can consider subordinate devices to
4955 	 * be re-initialized.  PCIe has some ways to shorten this,
4956 	 * but we don't make use of them yet.
4957 	 */
4958 	ssleep(1);
4959 }
4960 
4961 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4962 {
4963 	pci_reset_secondary_bus(dev);
4964 }
4965 
4966 /**
4967  * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
4968  * @dev: Bridge device
4969  *
4970  * Use the bridge control register to assert reset on the secondary bus.
4971  * Devices on the secondary bus are left in power-on state.
4972  */
4973 int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
4974 {
4975 	pcibios_reset_secondary_bus(dev);
4976 
4977 	return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS);
4978 }
4979 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
4980 
4981 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
4982 {
4983 	struct pci_dev *pdev;
4984 
4985 	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4986 	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4987 		return -ENOTTY;
4988 
4989 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4990 		if (pdev != dev)
4991 			return -ENOTTY;
4992 
4993 	if (probe)
4994 		return 0;
4995 
4996 	return pci_bridge_secondary_bus_reset(dev->bus->self);
4997 }
4998 
4999 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
5000 {
5001 	int rc = -ENOTTY;
5002 
5003 	if (!hotplug || !try_module_get(hotplug->owner))
5004 		return rc;
5005 
5006 	if (hotplug->ops->reset_slot)
5007 		rc = hotplug->ops->reset_slot(hotplug, probe);
5008 
5009 	module_put(hotplug->owner);
5010 
5011 	return rc;
5012 }
5013 
5014 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
5015 {
5016 	if (dev->multifunction || dev->subordinate || !dev->slot ||
5017 	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5018 		return -ENOTTY;
5019 
5020 	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
5021 }
5022 
5023 static void pci_dev_lock(struct pci_dev *dev)
5024 {
5025 	pci_cfg_access_lock(dev);
5026 	/* block PM suspend, driver probe, etc. */
5027 	device_lock(&dev->dev);
5028 }
5029 
5030 /* Return 1 on successful lock, 0 on contention */
5031 static int pci_dev_trylock(struct pci_dev *dev)
5032 {
5033 	if (pci_cfg_access_trylock(dev)) {
5034 		if (device_trylock(&dev->dev))
5035 			return 1;
5036 		pci_cfg_access_unlock(dev);
5037 	}
5038 
5039 	return 0;
5040 }
5041 
5042 static void pci_dev_unlock(struct pci_dev *dev)
5043 {
5044 	device_unlock(&dev->dev);
5045 	pci_cfg_access_unlock(dev);
5046 }
5047 
5048 static void pci_dev_save_and_disable(struct pci_dev *dev)
5049 {
5050 	const struct pci_error_handlers *err_handler =
5051 			dev->driver ? dev->driver->err_handler : NULL;
5052 
5053 	/*
5054 	 * dev->driver->err_handler->reset_prepare() is protected against
5055 	 * races with ->remove() by the device lock, which must be held by
5056 	 * the caller.
5057 	 */
5058 	if (err_handler && err_handler->reset_prepare)
5059 		err_handler->reset_prepare(dev);
5060 
5061 	/*
5062 	 * Wake-up device prior to save.  PM registers default to D0 after
5063 	 * reset and a simple register restore doesn't reliably return
5064 	 * to a non-D0 state anyway.
5065 	 */
5066 	pci_set_power_state(dev, PCI_D0);
5067 
5068 	pci_save_state(dev);
5069 	/*
5070 	 * Disable the device by clearing the Command register, except for
5071 	 * INTx-disable which is set.  This not only disables MMIO and I/O port
5072 	 * BARs, but also prevents the device from being Bus Master, preventing
5073 	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
5074 	 * compliant devices, INTx-disable prevents legacy interrupts.
5075 	 */
5076 	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
5077 }
5078 
5079 static void pci_dev_restore(struct pci_dev *dev)
5080 {
5081 	const struct pci_error_handlers *err_handler =
5082 			dev->driver ? dev->driver->err_handler : NULL;
5083 
5084 	pci_restore_state(dev);
5085 
5086 	/*
5087 	 * dev->driver->err_handler->reset_done() is protected against
5088 	 * races with ->remove() by the device lock, which must be held by
5089 	 * the caller.
5090 	 */
5091 	if (err_handler && err_handler->reset_done)
5092 		err_handler->reset_done(dev);
5093 }
5094 
5095 /**
5096  * __pci_reset_function_locked - reset a PCI device function while holding
5097  * the @dev mutex lock.
5098  * @dev: PCI device to reset
5099  *
5100  * Some devices allow an individual function to be reset without affecting
5101  * other functions in the same device.  The PCI device must be responsive
5102  * to PCI config space in order to use this function.
5103  *
5104  * The device function is presumed to be unused and the caller is holding
5105  * the device mutex lock when this function is called.
5106  *
5107  * Resetting the device will make the contents of PCI configuration space
5108  * random, so any caller of this must be prepared to reinitialise the
5109  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5110  * etc.
5111  *
5112  * Returns 0 if the device function was successfully reset or negative if the
5113  * device doesn't support resetting a single function.
5114  */
5115 int __pci_reset_function_locked(struct pci_dev *dev)
5116 {
5117 	int rc;
5118 
5119 	might_sleep();
5120 
5121 	/*
5122 	 * A reset method returns -ENOTTY if it doesn't support this device
5123 	 * and we should try the next method.
5124 	 *
5125 	 * If it returns 0 (success), we're finished.  If it returns any
5126 	 * other error, we're also finished: this indicates that further
5127 	 * reset mechanisms might be broken on the device.
5128 	 */
5129 	rc = pci_dev_specific_reset(dev, 0);
5130 	if (rc != -ENOTTY)
5131 		return rc;
5132 	if (pcie_has_flr(dev)) {
5133 		rc = pcie_flr(dev);
5134 		if (rc != -ENOTTY)
5135 			return rc;
5136 	}
5137 	rc = pci_af_flr(dev, 0);
5138 	if (rc != -ENOTTY)
5139 		return rc;
5140 	rc = pci_pm_reset(dev, 0);
5141 	if (rc != -ENOTTY)
5142 		return rc;
5143 	rc = pci_dev_reset_slot_function(dev, 0);
5144 	if (rc != -ENOTTY)
5145 		return rc;
5146 	return pci_parent_bus_reset(dev, 0);
5147 }
5148 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5149 
5150 /**
5151  * pci_probe_reset_function - check whether the device can be safely reset
5152  * @dev: PCI device to reset
5153  *
5154  * Some devices allow an individual function to be reset without affecting
5155  * other functions in the same device.  The PCI device must be responsive
5156  * to PCI config space in order to use this function.
5157  *
5158  * Returns 0 if the device function can be reset or negative if the
5159  * device doesn't support resetting a single function.
5160  */
5161 int pci_probe_reset_function(struct pci_dev *dev)
5162 {
5163 	int rc;
5164 
5165 	might_sleep();
5166 
5167 	rc = pci_dev_specific_reset(dev, 1);
5168 	if (rc != -ENOTTY)
5169 		return rc;
5170 	if (pcie_has_flr(dev))
5171 		return 0;
5172 	rc = pci_af_flr(dev, 1);
5173 	if (rc != -ENOTTY)
5174 		return rc;
5175 	rc = pci_pm_reset(dev, 1);
5176 	if (rc != -ENOTTY)
5177 		return rc;
5178 	rc = pci_dev_reset_slot_function(dev, 1);
5179 	if (rc != -ENOTTY)
5180 		return rc;
5181 
5182 	return pci_parent_bus_reset(dev, 1);
5183 }
5184 
5185 /**
5186  * pci_reset_function - quiesce and reset a PCI device function
5187  * @dev: PCI device to reset
5188  *
5189  * Some devices allow an individual function to be reset without affecting
5190  * other functions in the same device.  The PCI device must be responsive
5191  * to PCI config space in order to use this function.
5192  *
5193  * This function does not just reset the PCI portion of a device, but
5194  * clears all the state associated with the device.  This function differs
5195  * from __pci_reset_function_locked() in that it saves and restores device state
5196  * over the reset and takes the PCI device lock.
5197  *
5198  * Returns 0 if the device function was successfully reset or negative if the
5199  * device doesn't support resetting a single function.
5200  */
5201 int pci_reset_function(struct pci_dev *dev)
5202 {
5203 	int rc;
5204 
5205 	if (!dev->reset_fn)
5206 		return -ENOTTY;
5207 
5208 	pci_dev_lock(dev);
5209 	pci_dev_save_and_disable(dev);
5210 
5211 	rc = __pci_reset_function_locked(dev);
5212 
5213 	pci_dev_restore(dev);
5214 	pci_dev_unlock(dev);
5215 
5216 	return rc;
5217 }
5218 EXPORT_SYMBOL_GPL(pci_reset_function);
5219 
5220 /**
5221  * pci_reset_function_locked - quiesce and reset a PCI device function
5222  * @dev: PCI device to reset
5223  *
5224  * Some devices allow an individual function to be reset without affecting
5225  * other functions in the same device.  The PCI device must be responsive
5226  * to PCI config space in order to use this function.
5227  *
5228  * This function does not just reset the PCI portion of a device, but
5229  * clears all the state associated with the device.  This function differs
5230  * from __pci_reset_function_locked() in that it saves and restores device state
5231  * over the reset.  It also differs from pci_reset_function() in that it
5232  * requires the PCI device lock to be held.
5233  *
5234  * Returns 0 if the device function was successfully reset or negative if the
5235  * device doesn't support resetting a single function.
5236  */
5237 int pci_reset_function_locked(struct pci_dev *dev)
5238 {
5239 	int rc;
5240 
5241 	if (!dev->reset_fn)
5242 		return -ENOTTY;
5243 
5244 	pci_dev_save_and_disable(dev);
5245 
5246 	rc = __pci_reset_function_locked(dev);
5247 
5248 	pci_dev_restore(dev);
5249 
5250 	return rc;
5251 }
5252 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5253 
5254 /**
5255  * pci_try_reset_function - quiesce and reset a PCI device function
5256  * @dev: PCI device to reset
5257  *
5258  * Same as above, except return -EAGAIN if unable to lock device.
5259  */
5260 int pci_try_reset_function(struct pci_dev *dev)
5261 {
5262 	int rc;
5263 
5264 	if (!dev->reset_fn)
5265 		return -ENOTTY;
5266 
5267 	if (!pci_dev_trylock(dev))
5268 		return -EAGAIN;
5269 
5270 	pci_dev_save_and_disable(dev);
5271 	rc = __pci_reset_function_locked(dev);
5272 	pci_dev_restore(dev);
5273 	pci_dev_unlock(dev);
5274 
5275 	return rc;
5276 }
5277 EXPORT_SYMBOL_GPL(pci_try_reset_function);
5278 
5279 /* Do any devices on or below this bus prevent a bus reset? */
5280 static bool pci_bus_resetable(struct pci_bus *bus)
5281 {
5282 	struct pci_dev *dev;
5283 
5284 
5285 	if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5286 		return false;
5287 
5288 	list_for_each_entry(dev, &bus->devices, bus_list) {
5289 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5290 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5291 			return false;
5292 	}
5293 
5294 	return true;
5295 }
5296 
5297 /* Lock devices from the top of the tree down */
5298 static void pci_bus_lock(struct pci_bus *bus)
5299 {
5300 	struct pci_dev *dev;
5301 
5302 	list_for_each_entry(dev, &bus->devices, bus_list) {
5303 		pci_dev_lock(dev);
5304 		if (dev->subordinate)
5305 			pci_bus_lock(dev->subordinate);
5306 	}
5307 }
5308 
5309 /* Unlock devices from the bottom of the tree up */
5310 static void pci_bus_unlock(struct pci_bus *bus)
5311 {
5312 	struct pci_dev *dev;
5313 
5314 	list_for_each_entry(dev, &bus->devices, bus_list) {
5315 		if (dev->subordinate)
5316 			pci_bus_unlock(dev->subordinate);
5317 		pci_dev_unlock(dev);
5318 	}
5319 }
5320 
5321 /* Return 1 on successful lock, 0 on contention */
5322 static int pci_bus_trylock(struct pci_bus *bus)
5323 {
5324 	struct pci_dev *dev;
5325 
5326 	list_for_each_entry(dev, &bus->devices, bus_list) {
5327 		if (!pci_dev_trylock(dev))
5328 			goto unlock;
5329 		if (dev->subordinate) {
5330 			if (!pci_bus_trylock(dev->subordinate)) {
5331 				pci_dev_unlock(dev);
5332 				goto unlock;
5333 			}
5334 		}
5335 	}
5336 	return 1;
5337 
5338 unlock:
5339 	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5340 		if (dev->subordinate)
5341 			pci_bus_unlock(dev->subordinate);
5342 		pci_dev_unlock(dev);
5343 	}
5344 	return 0;
5345 }
5346 
5347 /* Do any devices on or below this slot prevent a bus reset? */
5348 static bool pci_slot_resetable(struct pci_slot *slot)
5349 {
5350 	struct pci_dev *dev;
5351 
5352 	if (slot->bus->self &&
5353 	    (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5354 		return false;
5355 
5356 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5357 		if (!dev->slot || dev->slot != slot)
5358 			continue;
5359 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5360 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5361 			return false;
5362 	}
5363 
5364 	return true;
5365 }
5366 
5367 /* Lock devices from the top of the tree down */
5368 static void pci_slot_lock(struct pci_slot *slot)
5369 {
5370 	struct pci_dev *dev;
5371 
5372 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5373 		if (!dev->slot || dev->slot != slot)
5374 			continue;
5375 		pci_dev_lock(dev);
5376 		if (dev->subordinate)
5377 			pci_bus_lock(dev->subordinate);
5378 	}
5379 }
5380 
5381 /* Unlock devices from the bottom of the tree up */
5382 static void pci_slot_unlock(struct pci_slot *slot)
5383 {
5384 	struct pci_dev *dev;
5385 
5386 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5387 		if (!dev->slot || dev->slot != slot)
5388 			continue;
5389 		if (dev->subordinate)
5390 			pci_bus_unlock(dev->subordinate);
5391 		pci_dev_unlock(dev);
5392 	}
5393 }
5394 
5395 /* Return 1 on successful lock, 0 on contention */
5396 static int pci_slot_trylock(struct pci_slot *slot)
5397 {
5398 	struct pci_dev *dev;
5399 
5400 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5401 		if (!dev->slot || dev->slot != slot)
5402 			continue;
5403 		if (!pci_dev_trylock(dev))
5404 			goto unlock;
5405 		if (dev->subordinate) {
5406 			if (!pci_bus_trylock(dev->subordinate)) {
5407 				pci_dev_unlock(dev);
5408 				goto unlock;
5409 			}
5410 		}
5411 	}
5412 	return 1;
5413 
5414 unlock:
5415 	list_for_each_entry_continue_reverse(dev,
5416 					     &slot->bus->devices, bus_list) {
5417 		if (!dev->slot || dev->slot != slot)
5418 			continue;
5419 		if (dev->subordinate)
5420 			pci_bus_unlock(dev->subordinate);
5421 		pci_dev_unlock(dev);
5422 	}
5423 	return 0;
5424 }
5425 
5426 /*
5427  * Save and disable devices from the top of the tree down while holding
5428  * the @dev mutex lock for the entire tree.
5429  */
5430 static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5431 {
5432 	struct pci_dev *dev;
5433 
5434 	list_for_each_entry(dev, &bus->devices, bus_list) {
5435 		pci_dev_save_and_disable(dev);
5436 		if (dev->subordinate)
5437 			pci_bus_save_and_disable_locked(dev->subordinate);
5438 	}
5439 }
5440 
5441 /*
5442  * Restore devices from top of the tree down while holding @dev mutex lock
5443  * for the entire tree.  Parent bridges need to be restored before we can
5444  * get to subordinate devices.
5445  */
5446 static void pci_bus_restore_locked(struct pci_bus *bus)
5447 {
5448 	struct pci_dev *dev;
5449 
5450 	list_for_each_entry(dev, &bus->devices, bus_list) {
5451 		pci_dev_restore(dev);
5452 		if (dev->subordinate)
5453 			pci_bus_restore_locked(dev->subordinate);
5454 	}
5455 }
5456 
5457 /*
5458  * Save and disable devices from the top of the tree down while holding
5459  * the @dev mutex lock for the entire tree.
5460  */
5461 static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5462 {
5463 	struct pci_dev *dev;
5464 
5465 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5466 		if (!dev->slot || dev->slot != slot)
5467 			continue;
5468 		pci_dev_save_and_disable(dev);
5469 		if (dev->subordinate)
5470 			pci_bus_save_and_disable_locked(dev->subordinate);
5471 	}
5472 }
5473 
5474 /*
5475  * Restore devices from top of the tree down while holding @dev mutex lock
5476  * for the entire tree.  Parent bridges need to be restored before we can
5477  * get to subordinate devices.
5478  */
5479 static void pci_slot_restore_locked(struct pci_slot *slot)
5480 {
5481 	struct pci_dev *dev;
5482 
5483 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5484 		if (!dev->slot || dev->slot != slot)
5485 			continue;
5486 		pci_dev_restore(dev);
5487 		if (dev->subordinate)
5488 			pci_bus_restore_locked(dev->subordinate);
5489 	}
5490 }
5491 
5492 static int pci_slot_reset(struct pci_slot *slot, int probe)
5493 {
5494 	int rc;
5495 
5496 	if (!slot || !pci_slot_resetable(slot))
5497 		return -ENOTTY;
5498 
5499 	if (!probe)
5500 		pci_slot_lock(slot);
5501 
5502 	might_sleep();
5503 
5504 	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5505 
5506 	if (!probe)
5507 		pci_slot_unlock(slot);
5508 
5509 	return rc;
5510 }
5511 
5512 /**
5513  * pci_probe_reset_slot - probe whether a PCI slot can be reset
5514  * @slot: PCI slot to probe
5515  *
5516  * Return 0 if slot can be reset, negative if a slot reset is not supported.
5517  */
5518 int pci_probe_reset_slot(struct pci_slot *slot)
5519 {
5520 	return pci_slot_reset(slot, 1);
5521 }
5522 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5523 
5524 /**
5525  * __pci_reset_slot - Try to reset a PCI slot
5526  * @slot: PCI slot to reset
5527  *
5528  * A PCI bus may host multiple slots, each slot may support a reset mechanism
5529  * independent of other slots.  For instance, some slots may support slot power
5530  * control.  In the case of a 1:1 bus to slot architecture, this function may
5531  * wrap the bus reset to avoid spurious slot related events such as hotplug.
5532  * Generally a slot reset should be attempted before a bus reset.  All of the
5533  * function of the slot and any subordinate buses behind the slot are reset
5534  * through this function.  PCI config space of all devices in the slot and
5535  * behind the slot is saved before and restored after reset.
5536  *
5537  * Same as above except return -EAGAIN if the slot cannot be locked
5538  */
5539 static int __pci_reset_slot(struct pci_slot *slot)
5540 {
5541 	int rc;
5542 
5543 	rc = pci_slot_reset(slot, 1);
5544 	if (rc)
5545 		return rc;
5546 
5547 	if (pci_slot_trylock(slot)) {
5548 		pci_slot_save_and_disable_locked(slot);
5549 		might_sleep();
5550 		rc = pci_reset_hotplug_slot(slot->hotplug, 0);
5551 		pci_slot_restore_locked(slot);
5552 		pci_slot_unlock(slot);
5553 	} else
5554 		rc = -EAGAIN;
5555 
5556 	return rc;
5557 }
5558 
5559 static int pci_bus_reset(struct pci_bus *bus, int probe)
5560 {
5561 	int ret;
5562 
5563 	if (!bus->self || !pci_bus_resetable(bus))
5564 		return -ENOTTY;
5565 
5566 	if (probe)
5567 		return 0;
5568 
5569 	pci_bus_lock(bus);
5570 
5571 	might_sleep();
5572 
5573 	ret = pci_bridge_secondary_bus_reset(bus->self);
5574 
5575 	pci_bus_unlock(bus);
5576 
5577 	return ret;
5578 }
5579 
5580 /**
5581  * pci_bus_error_reset - reset the bridge's subordinate bus
5582  * @bridge: The parent device that connects to the bus to reset
5583  *
5584  * This function will first try to reset the slots on this bus if the method is
5585  * available. If slot reset fails or is not available, this will fall back to a
5586  * secondary bus reset.
5587  */
5588 int pci_bus_error_reset(struct pci_dev *bridge)
5589 {
5590 	struct pci_bus *bus = bridge->subordinate;
5591 	struct pci_slot *slot;
5592 
5593 	if (!bus)
5594 		return -ENOTTY;
5595 
5596 	mutex_lock(&pci_slot_mutex);
5597 	if (list_empty(&bus->slots))
5598 		goto bus_reset;
5599 
5600 	list_for_each_entry(slot, &bus->slots, list)
5601 		if (pci_probe_reset_slot(slot))
5602 			goto bus_reset;
5603 
5604 	list_for_each_entry(slot, &bus->slots, list)
5605 		if (pci_slot_reset(slot, 0))
5606 			goto bus_reset;
5607 
5608 	mutex_unlock(&pci_slot_mutex);
5609 	return 0;
5610 bus_reset:
5611 	mutex_unlock(&pci_slot_mutex);
5612 	return pci_bus_reset(bridge->subordinate, 0);
5613 }
5614 
5615 /**
5616  * pci_probe_reset_bus - probe whether a PCI bus can be reset
5617  * @bus: PCI bus to probe
5618  *
5619  * Return 0 if bus can be reset, negative if a bus reset is not supported.
5620  */
5621 int pci_probe_reset_bus(struct pci_bus *bus)
5622 {
5623 	return pci_bus_reset(bus, 1);
5624 }
5625 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5626 
5627 /**
5628  * __pci_reset_bus - Try to reset a PCI bus
5629  * @bus: top level PCI bus to reset
5630  *
5631  * Same as above except return -EAGAIN if the bus cannot be locked
5632  */
5633 static int __pci_reset_bus(struct pci_bus *bus)
5634 {
5635 	int rc;
5636 
5637 	rc = pci_bus_reset(bus, 1);
5638 	if (rc)
5639 		return rc;
5640 
5641 	if (pci_bus_trylock(bus)) {
5642 		pci_bus_save_and_disable_locked(bus);
5643 		might_sleep();
5644 		rc = pci_bridge_secondary_bus_reset(bus->self);
5645 		pci_bus_restore_locked(bus);
5646 		pci_bus_unlock(bus);
5647 	} else
5648 		rc = -EAGAIN;
5649 
5650 	return rc;
5651 }
5652 
5653 /**
5654  * pci_reset_bus - Try to reset a PCI bus
5655  * @pdev: top level PCI device to reset via slot/bus
5656  *
5657  * Same as above except return -EAGAIN if the bus cannot be locked
5658  */
5659 int pci_reset_bus(struct pci_dev *pdev)
5660 {
5661 	return (!pci_probe_reset_slot(pdev->slot)) ?
5662 	    __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5663 }
5664 EXPORT_SYMBOL_GPL(pci_reset_bus);
5665 
5666 /**
5667  * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5668  * @dev: PCI device to query
5669  *
5670  * Returns mmrbc: maximum designed memory read count in bytes or
5671  * appropriate error value.
5672  */
5673 int pcix_get_max_mmrbc(struct pci_dev *dev)
5674 {
5675 	int cap;
5676 	u32 stat;
5677 
5678 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5679 	if (!cap)
5680 		return -EINVAL;
5681 
5682 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5683 		return -EINVAL;
5684 
5685 	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
5686 }
5687 EXPORT_SYMBOL(pcix_get_max_mmrbc);
5688 
5689 /**
5690  * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5691  * @dev: PCI device to query
5692  *
5693  * Returns mmrbc: maximum memory read count in bytes or appropriate error
5694  * value.
5695  */
5696 int pcix_get_mmrbc(struct pci_dev *dev)
5697 {
5698 	int cap;
5699 	u16 cmd;
5700 
5701 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5702 	if (!cap)
5703 		return -EINVAL;
5704 
5705 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5706 		return -EINVAL;
5707 
5708 	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
5709 }
5710 EXPORT_SYMBOL(pcix_get_mmrbc);
5711 
5712 /**
5713  * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5714  * @dev: PCI device to query
5715  * @mmrbc: maximum memory read count in bytes
5716  *    valid values are 512, 1024, 2048, 4096
5717  *
5718  * If possible sets maximum memory read byte count, some bridges have errata
5719  * that prevent this.
5720  */
5721 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5722 {
5723 	int cap;
5724 	u32 stat, v, o;
5725 	u16 cmd;
5726 
5727 	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5728 		return -EINVAL;
5729 
5730 	v = ffs(mmrbc) - 10;
5731 
5732 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5733 	if (!cap)
5734 		return -EINVAL;
5735 
5736 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5737 		return -EINVAL;
5738 
5739 	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
5740 		return -E2BIG;
5741 
5742 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5743 		return -EINVAL;
5744 
5745 	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
5746 	if (o != v) {
5747 		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5748 			return -EIO;
5749 
5750 		cmd &= ~PCI_X_CMD_MAX_READ;
5751 		cmd |= v << 2;
5752 		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5753 			return -EIO;
5754 	}
5755 	return 0;
5756 }
5757 EXPORT_SYMBOL(pcix_set_mmrbc);
5758 
5759 /**
5760  * pcie_get_readrq - get PCI Express read request size
5761  * @dev: PCI device to query
5762  *
5763  * Returns maximum memory read request in bytes or appropriate error value.
5764  */
5765 int pcie_get_readrq(struct pci_dev *dev)
5766 {
5767 	u16 ctl;
5768 
5769 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5770 
5771 	return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5772 }
5773 EXPORT_SYMBOL(pcie_get_readrq);
5774 
5775 /**
5776  * pcie_set_readrq - set PCI Express maximum memory read request
5777  * @dev: PCI device to query
5778  * @rq: maximum memory read count in bytes
5779  *    valid values are 128, 256, 512, 1024, 2048, 4096
5780  *
5781  * If possible sets maximum memory read request in bytes
5782  */
5783 int pcie_set_readrq(struct pci_dev *dev, int rq)
5784 {
5785 	u16 v;
5786 	int ret;
5787 
5788 	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
5789 		return -EINVAL;
5790 
5791 	/*
5792 	 * If using the "performance" PCIe config, we clamp the read rq
5793 	 * size to the max packet size to keep the host bridge from
5794 	 * generating requests larger than we can cope with.
5795 	 */
5796 	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
5797 		int mps = pcie_get_mps(dev);
5798 
5799 		if (mps < rq)
5800 			rq = mps;
5801 	}
5802 
5803 	v = (ffs(rq) - 8) << 12;
5804 
5805 	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5806 						  PCI_EXP_DEVCTL_READRQ, v);
5807 
5808 	return pcibios_err_to_errno(ret);
5809 }
5810 EXPORT_SYMBOL(pcie_set_readrq);
5811 
5812 /**
5813  * pcie_get_mps - get PCI Express maximum payload size
5814  * @dev: PCI device to query
5815  *
5816  * Returns maximum payload size in bytes
5817  */
5818 int pcie_get_mps(struct pci_dev *dev)
5819 {
5820 	u16 ctl;
5821 
5822 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5823 
5824 	return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
5825 }
5826 EXPORT_SYMBOL(pcie_get_mps);
5827 
5828 /**
5829  * pcie_set_mps - set PCI Express maximum payload size
5830  * @dev: PCI device to query
5831  * @mps: maximum payload size in bytes
5832  *    valid values are 128, 256, 512, 1024, 2048, 4096
5833  *
5834  * If possible sets maximum payload size
5835  */
5836 int pcie_set_mps(struct pci_dev *dev, int mps)
5837 {
5838 	u16 v;
5839 	int ret;
5840 
5841 	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
5842 		return -EINVAL;
5843 
5844 	v = ffs(mps) - 8;
5845 	if (v > dev->pcie_mpss)
5846 		return -EINVAL;
5847 	v <<= 5;
5848 
5849 	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5850 						  PCI_EXP_DEVCTL_PAYLOAD, v);
5851 
5852 	return pcibios_err_to_errno(ret);
5853 }
5854 EXPORT_SYMBOL(pcie_set_mps);
5855 
5856 /**
5857  * pcie_bandwidth_available - determine minimum link settings of a PCIe
5858  *			      device and its bandwidth limitation
5859  * @dev: PCI device to query
5860  * @limiting_dev: storage for device causing the bandwidth limitation
5861  * @speed: storage for speed of limiting device
5862  * @width: storage for width of limiting device
5863  *
5864  * Walk up the PCI device chain and find the point where the minimum
5865  * bandwidth is available.  Return the bandwidth available there and (if
5866  * limiting_dev, speed, and width pointers are supplied) information about
5867  * that point.  The bandwidth returned is in Mb/s, i.e., megabits/second of
5868  * raw bandwidth.
5869  */
5870 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
5871 			     enum pci_bus_speed *speed,
5872 			     enum pcie_link_width *width)
5873 {
5874 	u16 lnksta;
5875 	enum pci_bus_speed next_speed;
5876 	enum pcie_link_width next_width;
5877 	u32 bw, next_bw;
5878 
5879 	if (speed)
5880 		*speed = PCI_SPEED_UNKNOWN;
5881 	if (width)
5882 		*width = PCIE_LNK_WIDTH_UNKNOWN;
5883 
5884 	bw = 0;
5885 
5886 	while (dev) {
5887 		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
5888 
5889 		next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
5890 		next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
5891 			PCI_EXP_LNKSTA_NLW_SHIFT;
5892 
5893 		next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
5894 
5895 		/* Check if current device limits the total bandwidth */
5896 		if (!bw || next_bw <= bw) {
5897 			bw = next_bw;
5898 
5899 			if (limiting_dev)
5900 				*limiting_dev = dev;
5901 			if (speed)
5902 				*speed = next_speed;
5903 			if (width)
5904 				*width = next_width;
5905 		}
5906 
5907 		dev = pci_upstream_bridge(dev);
5908 	}
5909 
5910 	return bw;
5911 }
5912 EXPORT_SYMBOL(pcie_bandwidth_available);
5913 
5914 /**
5915  * pcie_get_speed_cap - query for the PCI device's link speed capability
5916  * @dev: PCI device to query
5917  *
5918  * Query the PCI device speed capability.  Return the maximum link speed
5919  * supported by the device.
5920  */
5921 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
5922 {
5923 	u32 lnkcap2, lnkcap;
5924 
5925 	/*
5926 	 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18.  The
5927 	 * implementation note there recommends using the Supported Link
5928 	 * Speeds Vector in Link Capabilities 2 when supported.
5929 	 *
5930 	 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
5931 	 * should use the Supported Link Speeds field in Link Capabilities,
5932 	 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
5933 	 */
5934 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
5935 
5936 	/* PCIe r3.0-compliant */
5937 	if (lnkcap2)
5938 		return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
5939 
5940 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5941 	if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
5942 		return PCIE_SPEED_5_0GT;
5943 	else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
5944 		return PCIE_SPEED_2_5GT;
5945 
5946 	return PCI_SPEED_UNKNOWN;
5947 }
5948 EXPORT_SYMBOL(pcie_get_speed_cap);
5949 
5950 /**
5951  * pcie_get_width_cap - query for the PCI device's link width capability
5952  * @dev: PCI device to query
5953  *
5954  * Query the PCI device width capability.  Return the maximum link width
5955  * supported by the device.
5956  */
5957 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
5958 {
5959 	u32 lnkcap;
5960 
5961 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5962 	if (lnkcap)
5963 		return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
5964 
5965 	return PCIE_LNK_WIDTH_UNKNOWN;
5966 }
5967 EXPORT_SYMBOL(pcie_get_width_cap);
5968 
5969 /**
5970  * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
5971  * @dev: PCI device
5972  * @speed: storage for link speed
5973  * @width: storage for link width
5974  *
5975  * Calculate a PCI device's link bandwidth by querying for its link speed
5976  * and width, multiplying them, and applying encoding overhead.  The result
5977  * is in Mb/s, i.e., megabits/second of raw bandwidth.
5978  */
5979 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
5980 			   enum pcie_link_width *width)
5981 {
5982 	*speed = pcie_get_speed_cap(dev);
5983 	*width = pcie_get_width_cap(dev);
5984 
5985 	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
5986 		return 0;
5987 
5988 	return *width * PCIE_SPEED2MBS_ENC(*speed);
5989 }
5990 
5991 /**
5992  * __pcie_print_link_status - Report the PCI device's link speed and width
5993  * @dev: PCI device to query
5994  * @verbose: Print info even when enough bandwidth is available
5995  *
5996  * If the available bandwidth at the device is less than the device is
5997  * capable of, report the device's maximum possible bandwidth and the
5998  * upstream link that limits its performance.  If @verbose, always print
5999  * the available bandwidth, even if the device isn't constrained.
6000  */
6001 void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
6002 {
6003 	enum pcie_link_width width, width_cap;
6004 	enum pci_bus_speed speed, speed_cap;
6005 	struct pci_dev *limiting_dev = NULL;
6006 	u32 bw_avail, bw_cap;
6007 
6008 	bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
6009 	bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
6010 
6011 	if (bw_avail >= bw_cap && verbose)
6012 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
6013 			 bw_cap / 1000, bw_cap % 1000,
6014 			 pci_speed_string(speed_cap), width_cap);
6015 	else if (bw_avail < bw_cap)
6016 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
6017 			 bw_avail / 1000, bw_avail % 1000,
6018 			 pci_speed_string(speed), width,
6019 			 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
6020 			 bw_cap / 1000, bw_cap % 1000,
6021 			 pci_speed_string(speed_cap), width_cap);
6022 }
6023 
6024 /**
6025  * pcie_print_link_status - Report the PCI device's link speed and width
6026  * @dev: PCI device to query
6027  *
6028  * Report the available bandwidth at the device.
6029  */
6030 void pcie_print_link_status(struct pci_dev *dev)
6031 {
6032 	__pcie_print_link_status(dev, true);
6033 }
6034 EXPORT_SYMBOL(pcie_print_link_status);
6035 
6036 /**
6037  * pci_select_bars - Make BAR mask from the type of resource
6038  * @dev: the PCI device for which BAR mask is made
6039  * @flags: resource type mask to be selected
6040  *
6041  * This helper routine makes bar mask from the type of resource.
6042  */
6043 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
6044 {
6045 	int i, bars = 0;
6046 	for (i = 0; i < PCI_NUM_RESOURCES; i++)
6047 		if (pci_resource_flags(dev, i) & flags)
6048 			bars |= (1 << i);
6049 	return bars;
6050 }
6051 EXPORT_SYMBOL(pci_select_bars);
6052 
6053 /* Some architectures require additional programming to enable VGA */
6054 static arch_set_vga_state_t arch_set_vga_state;
6055 
6056 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6057 {
6058 	arch_set_vga_state = func;	/* NULL disables */
6059 }
6060 
6061 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
6062 				  unsigned int command_bits, u32 flags)
6063 {
6064 	if (arch_set_vga_state)
6065 		return arch_set_vga_state(dev, decode, command_bits,
6066 						flags);
6067 	return 0;
6068 }
6069 
6070 /**
6071  * pci_set_vga_state - set VGA decode state on device and parents if requested
6072  * @dev: the PCI device
6073  * @decode: true = enable decoding, false = disable decoding
6074  * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6075  * @flags: traverse ancestors and change bridges
6076  * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6077  */
6078 int pci_set_vga_state(struct pci_dev *dev, bool decode,
6079 		      unsigned int command_bits, u32 flags)
6080 {
6081 	struct pci_bus *bus;
6082 	struct pci_dev *bridge;
6083 	u16 cmd;
6084 	int rc;
6085 
6086 	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6087 
6088 	/* ARCH specific VGA enables */
6089 	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6090 	if (rc)
6091 		return rc;
6092 
6093 	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6094 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
6095 		if (decode)
6096 			cmd |= command_bits;
6097 		else
6098 			cmd &= ~command_bits;
6099 		pci_write_config_word(dev, PCI_COMMAND, cmd);
6100 	}
6101 
6102 	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6103 		return 0;
6104 
6105 	bus = dev->bus;
6106 	while (bus) {
6107 		bridge = bus->self;
6108 		if (bridge) {
6109 			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6110 					     &cmd);
6111 			if (decode)
6112 				cmd |= PCI_BRIDGE_CTL_VGA;
6113 			else
6114 				cmd &= ~PCI_BRIDGE_CTL_VGA;
6115 			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6116 					      cmd);
6117 		}
6118 		bus = bus->parent;
6119 	}
6120 	return 0;
6121 }
6122 
6123 #ifdef CONFIG_ACPI
6124 bool pci_pr3_present(struct pci_dev *pdev)
6125 {
6126 	struct acpi_device *adev;
6127 
6128 	if (acpi_disabled)
6129 		return false;
6130 
6131 	adev = ACPI_COMPANION(&pdev->dev);
6132 	if (!adev)
6133 		return false;
6134 
6135 	return adev->power.flags.power_resources &&
6136 		acpi_has_method(adev->handle, "_PR3");
6137 }
6138 EXPORT_SYMBOL_GPL(pci_pr3_present);
6139 #endif
6140 
6141 /**
6142  * pci_add_dma_alias - Add a DMA devfn alias for a device
6143  * @dev: the PCI device for which alias is added
6144  * @devfn_from: alias slot and function
6145  * @nr_devfns: number of subsequent devfns to alias
6146  *
6147  * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6148  * which is used to program permissible bus-devfn source addresses for DMA
6149  * requests in an IOMMU.  These aliases factor into IOMMU group creation
6150  * and are useful for devices generating DMA requests beyond or different
6151  * from their logical bus-devfn.  Examples include device quirks where the
6152  * device simply uses the wrong devfn, as well as non-transparent bridges
6153  * where the alias may be a proxy for devices in another domain.
6154  *
6155  * IOMMU group creation is performed during device discovery or addition,
6156  * prior to any potential DMA mapping and therefore prior to driver probing
6157  * (especially for userspace assigned devices where IOMMU group definition
6158  * cannot be left as a userspace activity).  DMA aliases should therefore
6159  * be configured via quirks, such as the PCI fixup header quirk.
6160  */
6161 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from, unsigned nr_devfns)
6162 {
6163 	int devfn_to;
6164 
6165 	nr_devfns = min(nr_devfns, (unsigned) MAX_NR_DEVFNS - devfn_from);
6166 	devfn_to = devfn_from + nr_devfns - 1;
6167 
6168 	if (!dev->dma_alias_mask)
6169 		dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6170 	if (!dev->dma_alias_mask) {
6171 		pci_warn(dev, "Unable to allocate DMA alias mask\n");
6172 		return;
6173 	}
6174 
6175 	bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6176 
6177 	if (nr_devfns == 1)
6178 		pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6179 				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6180 	else if (nr_devfns > 1)
6181 		pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6182 				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6183 				PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6184 }
6185 
6186 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6187 {
6188 	return (dev1->dma_alias_mask &&
6189 		test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6190 	       (dev2->dma_alias_mask &&
6191 		test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6192 	       pci_real_dma_dev(dev1) == dev2 ||
6193 	       pci_real_dma_dev(dev2) == dev1;
6194 }
6195 
6196 bool pci_device_is_present(struct pci_dev *pdev)
6197 {
6198 	u32 v;
6199 
6200 	if (pci_dev_is_disconnected(pdev))
6201 		return false;
6202 	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6203 }
6204 EXPORT_SYMBOL_GPL(pci_device_is_present);
6205 
6206 void pci_ignore_hotplug(struct pci_dev *dev)
6207 {
6208 	struct pci_dev *bridge = dev->bus->self;
6209 
6210 	dev->ignore_hotplug = 1;
6211 	/* Propagate the "ignore hotplug" setting to the parent bridge. */
6212 	if (bridge)
6213 		bridge->ignore_hotplug = 1;
6214 }
6215 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6216 
6217 /**
6218  * pci_real_dma_dev - Get PCI DMA device for PCI device
6219  * @dev: the PCI device that may have a PCI DMA alias
6220  *
6221  * Permits the platform to provide architecture-specific functionality to
6222  * devices needing to alias DMA to another PCI device on another PCI bus. If
6223  * the PCI device is on the same bus, it is recommended to use
6224  * pci_add_dma_alias(). This is the default implementation. Architecture
6225  * implementations can override this.
6226  */
6227 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6228 {
6229 	return dev;
6230 }
6231 
6232 resource_size_t __weak pcibios_default_alignment(void)
6233 {
6234 	return 0;
6235 }
6236 
6237 /*
6238  * Arches that don't want to expose struct resource to userland as-is in
6239  * sysfs and /proc can implement their own pci_resource_to_user().
6240  */
6241 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6242 				 const struct resource *rsrc,
6243 				 resource_size_t *start, resource_size_t *end)
6244 {
6245 	*start = rsrc->start;
6246 	*end = rsrc->end;
6247 }
6248 
6249 static char *resource_alignment_param;
6250 static DEFINE_SPINLOCK(resource_alignment_lock);
6251 
6252 /**
6253  * pci_specified_resource_alignment - get resource alignment specified by user.
6254  * @dev: the PCI device to get
6255  * @resize: whether or not to change resources' size when reassigning alignment
6256  *
6257  * RETURNS: Resource alignment if it is specified.
6258  *          Zero if it is not specified.
6259  */
6260 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6261 							bool *resize)
6262 {
6263 	int align_order, count;
6264 	resource_size_t align = pcibios_default_alignment();
6265 	const char *p;
6266 	int ret;
6267 
6268 	spin_lock(&resource_alignment_lock);
6269 	p = resource_alignment_param;
6270 	if (!p || !*p)
6271 		goto out;
6272 	if (pci_has_flag(PCI_PROBE_ONLY)) {
6273 		align = 0;
6274 		pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6275 		goto out;
6276 	}
6277 
6278 	while (*p) {
6279 		count = 0;
6280 		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6281 		    p[count] == '@') {
6282 			p += count + 1;
6283 			if (align_order > 63) {
6284 				pr_err("PCI: Invalid requested alignment (order %d)\n",
6285 				       align_order);
6286 				align_order = PAGE_SHIFT;
6287 			}
6288 		} else {
6289 			align_order = PAGE_SHIFT;
6290 		}
6291 
6292 		ret = pci_dev_str_match(dev, p, &p);
6293 		if (ret == 1) {
6294 			*resize = true;
6295 			align = 1ULL << align_order;
6296 			break;
6297 		} else if (ret < 0) {
6298 			pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6299 			       p);
6300 			break;
6301 		}
6302 
6303 		if (*p != ';' && *p != ',') {
6304 			/* End of param or invalid format */
6305 			break;
6306 		}
6307 		p++;
6308 	}
6309 out:
6310 	spin_unlock(&resource_alignment_lock);
6311 	return align;
6312 }
6313 
6314 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6315 					   resource_size_t align, bool resize)
6316 {
6317 	struct resource *r = &dev->resource[bar];
6318 	resource_size_t size;
6319 
6320 	if (!(r->flags & IORESOURCE_MEM))
6321 		return;
6322 
6323 	if (r->flags & IORESOURCE_PCI_FIXED) {
6324 		pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6325 			 bar, r, (unsigned long long)align);
6326 		return;
6327 	}
6328 
6329 	size = resource_size(r);
6330 	if (size >= align)
6331 		return;
6332 
6333 	/*
6334 	 * Increase the alignment of the resource.  There are two ways we
6335 	 * can do this:
6336 	 *
6337 	 * 1) Increase the size of the resource.  BARs are aligned on their
6338 	 *    size, so when we reallocate space for this resource, we'll
6339 	 *    allocate it with the larger alignment.  This also prevents
6340 	 *    assignment of any other BARs inside the alignment region, so
6341 	 *    if we're requesting page alignment, this means no other BARs
6342 	 *    will share the page.
6343 	 *
6344 	 *    The disadvantage is that this makes the resource larger than
6345 	 *    the hardware BAR, which may break drivers that compute things
6346 	 *    based on the resource size, e.g., to find registers at a
6347 	 *    fixed offset before the end of the BAR.
6348 	 *
6349 	 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6350 	 *    set r->start to the desired alignment.  By itself this
6351 	 *    doesn't prevent other BARs being put inside the alignment
6352 	 *    region, but if we realign *every* resource of every device in
6353 	 *    the system, none of them will share an alignment region.
6354 	 *
6355 	 * When the user has requested alignment for only some devices via
6356 	 * the "pci=resource_alignment" argument, "resize" is true and we
6357 	 * use the first method.  Otherwise we assume we're aligning all
6358 	 * devices and we use the second.
6359 	 */
6360 
6361 	pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6362 		 bar, r, (unsigned long long)align);
6363 
6364 	if (resize) {
6365 		r->start = 0;
6366 		r->end = align - 1;
6367 	} else {
6368 		r->flags &= ~IORESOURCE_SIZEALIGN;
6369 		r->flags |= IORESOURCE_STARTALIGN;
6370 		r->start = align;
6371 		r->end = r->start + size - 1;
6372 	}
6373 	r->flags |= IORESOURCE_UNSET;
6374 }
6375 
6376 /*
6377  * This function disables memory decoding and releases memory resources
6378  * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6379  * It also rounds up size to specified alignment.
6380  * Later on, the kernel will assign page-aligned memory resource back
6381  * to the device.
6382  */
6383 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6384 {
6385 	int i;
6386 	struct resource *r;
6387 	resource_size_t align;
6388 	u16 command;
6389 	bool resize = false;
6390 
6391 	/*
6392 	 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6393 	 * 3.4.1.11.  Their resources are allocated from the space
6394 	 * described by the VF BARx register in the PF's SR-IOV capability.
6395 	 * We can't influence their alignment here.
6396 	 */
6397 	if (dev->is_virtfn)
6398 		return;
6399 
6400 	/* check if specified PCI is target device to reassign */
6401 	align = pci_specified_resource_alignment(dev, &resize);
6402 	if (!align)
6403 		return;
6404 
6405 	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6406 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6407 		pci_warn(dev, "Can't reassign resources to host bridge\n");
6408 		return;
6409 	}
6410 
6411 	pci_read_config_word(dev, PCI_COMMAND, &command);
6412 	command &= ~PCI_COMMAND_MEMORY;
6413 	pci_write_config_word(dev, PCI_COMMAND, command);
6414 
6415 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6416 		pci_request_resource_alignment(dev, i, align, resize);
6417 
6418 	/*
6419 	 * Need to disable bridge's resource window,
6420 	 * to enable the kernel to reassign new resource
6421 	 * window later on.
6422 	 */
6423 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6424 		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6425 			r = &dev->resource[i];
6426 			if (!(r->flags & IORESOURCE_MEM))
6427 				continue;
6428 			r->flags |= IORESOURCE_UNSET;
6429 			r->end = resource_size(r) - 1;
6430 			r->start = 0;
6431 		}
6432 		pci_disable_bridge_window(dev);
6433 	}
6434 }
6435 
6436 static ssize_t resource_alignment_show(struct bus_type *bus, char *buf)
6437 {
6438 	size_t count = 0;
6439 
6440 	spin_lock(&resource_alignment_lock);
6441 	if (resource_alignment_param)
6442 		count = scnprintf(buf, PAGE_SIZE, "%s", resource_alignment_param);
6443 	spin_unlock(&resource_alignment_lock);
6444 
6445 	/*
6446 	 * When set by the command line, resource_alignment_param will not
6447 	 * have a trailing line feed, which is ugly. So conditionally add
6448 	 * it here.
6449 	 */
6450 	if (count >= 2 && buf[count - 2] != '\n' && count < PAGE_SIZE - 1) {
6451 		buf[count - 1] = '\n';
6452 		buf[count++] = 0;
6453 	}
6454 
6455 	return count;
6456 }
6457 
6458 static ssize_t resource_alignment_store(struct bus_type *bus,
6459 					const char *buf, size_t count)
6460 {
6461 	char *param = kstrndup(buf, count, GFP_KERNEL);
6462 
6463 	if (!param)
6464 		return -ENOMEM;
6465 
6466 	spin_lock(&resource_alignment_lock);
6467 	kfree(resource_alignment_param);
6468 	resource_alignment_param = param;
6469 	spin_unlock(&resource_alignment_lock);
6470 	return count;
6471 }
6472 
6473 static BUS_ATTR_RW(resource_alignment);
6474 
6475 static int __init pci_resource_alignment_sysfs_init(void)
6476 {
6477 	return bus_create_file(&pci_bus_type,
6478 					&bus_attr_resource_alignment);
6479 }
6480 late_initcall(pci_resource_alignment_sysfs_init);
6481 
6482 static void pci_no_domains(void)
6483 {
6484 #ifdef CONFIG_PCI_DOMAINS
6485 	pci_domains_supported = 0;
6486 #endif
6487 }
6488 
6489 #ifdef CONFIG_PCI_DOMAINS_GENERIC
6490 static atomic_t __domain_nr = ATOMIC_INIT(-1);
6491 
6492 static int pci_get_new_domain_nr(void)
6493 {
6494 	return atomic_inc_return(&__domain_nr);
6495 }
6496 
6497 static int of_pci_bus_find_domain_nr(struct device *parent)
6498 {
6499 	static int use_dt_domains = -1;
6500 	int domain = -1;
6501 
6502 	if (parent)
6503 		domain = of_get_pci_domain_nr(parent->of_node);
6504 
6505 	/*
6506 	 * Check DT domain and use_dt_domains values.
6507 	 *
6508 	 * If DT domain property is valid (domain >= 0) and
6509 	 * use_dt_domains != 0, the DT assignment is valid since this means
6510 	 * we have not previously allocated a domain number by using
6511 	 * pci_get_new_domain_nr(); we should also update use_dt_domains to
6512 	 * 1, to indicate that we have just assigned a domain number from
6513 	 * DT.
6514 	 *
6515 	 * If DT domain property value is not valid (ie domain < 0), and we
6516 	 * have not previously assigned a domain number from DT
6517 	 * (use_dt_domains != 1) we should assign a domain number by
6518 	 * using the:
6519 	 *
6520 	 * pci_get_new_domain_nr()
6521 	 *
6522 	 * API and update the use_dt_domains value to keep track of method we
6523 	 * are using to assign domain numbers (use_dt_domains = 0).
6524 	 *
6525 	 * All other combinations imply we have a platform that is trying
6526 	 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
6527 	 * which is a recipe for domain mishandling and it is prevented by
6528 	 * invalidating the domain value (domain = -1) and printing a
6529 	 * corresponding error.
6530 	 */
6531 	if (domain >= 0 && use_dt_domains) {
6532 		use_dt_domains = 1;
6533 	} else if (domain < 0 && use_dt_domains != 1) {
6534 		use_dt_domains = 0;
6535 		domain = pci_get_new_domain_nr();
6536 	} else {
6537 		if (parent)
6538 			pr_err("Node %pOF has ", parent->of_node);
6539 		pr_err("Inconsistent \"linux,pci-domain\" property in DT\n");
6540 		domain = -1;
6541 	}
6542 
6543 	return domain;
6544 }
6545 
6546 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6547 {
6548 	return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6549 			       acpi_pci_bus_find_domain_nr(bus);
6550 }
6551 #endif
6552 
6553 /**
6554  * pci_ext_cfg_avail - can we access extended PCI config space?
6555  *
6556  * Returns 1 if we can access PCI extended config space (offsets
6557  * greater than 0xff). This is the default implementation. Architecture
6558  * implementations can override this.
6559  */
6560 int __weak pci_ext_cfg_avail(void)
6561 {
6562 	return 1;
6563 }
6564 
6565 void __weak pci_fixup_cardbus(struct pci_bus *bus)
6566 {
6567 }
6568 EXPORT_SYMBOL(pci_fixup_cardbus);
6569 
6570 static int __init pci_setup(char *str)
6571 {
6572 	while (str) {
6573 		char *k = strchr(str, ',');
6574 		if (k)
6575 			*k++ = 0;
6576 		if (*str && (str = pcibios_setup(str)) && *str) {
6577 			if (!strcmp(str, "nomsi")) {
6578 				pci_no_msi();
6579 			} else if (!strncmp(str, "noats", 5)) {
6580 				pr_info("PCIe: ATS is disabled\n");
6581 				pcie_ats_disabled = true;
6582 			} else if (!strcmp(str, "noaer")) {
6583 				pci_no_aer();
6584 			} else if (!strcmp(str, "earlydump")) {
6585 				pci_early_dump = true;
6586 			} else if (!strncmp(str, "realloc=", 8)) {
6587 				pci_realloc_get_opt(str + 8);
6588 			} else if (!strncmp(str, "realloc", 7)) {
6589 				pci_realloc_get_opt("on");
6590 			} else if (!strcmp(str, "nodomains")) {
6591 				pci_no_domains();
6592 			} else if (!strncmp(str, "noari", 5)) {
6593 				pcie_ari_disabled = true;
6594 			} else if (!strncmp(str, "cbiosize=", 9)) {
6595 				pci_cardbus_io_size = memparse(str + 9, &str);
6596 			} else if (!strncmp(str, "cbmemsize=", 10)) {
6597 				pci_cardbus_mem_size = memparse(str + 10, &str);
6598 			} else if (!strncmp(str, "resource_alignment=", 19)) {
6599 				resource_alignment_param = str + 19;
6600 			} else if (!strncmp(str, "ecrc=", 5)) {
6601 				pcie_ecrc_get_policy(str + 5);
6602 			} else if (!strncmp(str, "hpiosize=", 9)) {
6603 				pci_hotplug_io_size = memparse(str + 9, &str);
6604 			} else if (!strncmp(str, "hpmmiosize=", 11)) {
6605 				pci_hotplug_mmio_size = memparse(str + 11, &str);
6606 			} else if (!strncmp(str, "hpmmioprefsize=", 15)) {
6607 				pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
6608 			} else if (!strncmp(str, "hpmemsize=", 10)) {
6609 				pci_hotplug_mmio_size = memparse(str + 10, &str);
6610 				pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
6611 			} else if (!strncmp(str, "hpbussize=", 10)) {
6612 				pci_hotplug_bus_size =
6613 					simple_strtoul(str + 10, &str, 0);
6614 				if (pci_hotplug_bus_size > 0xff)
6615 					pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6616 			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6617 				pcie_bus_config = PCIE_BUS_TUNE_OFF;
6618 			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
6619 				pcie_bus_config = PCIE_BUS_SAFE;
6620 			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
6621 				pcie_bus_config = PCIE_BUS_PERFORMANCE;
6622 			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6623 				pcie_bus_config = PCIE_BUS_PEER2PEER;
6624 			} else if (!strncmp(str, "pcie_scan_all", 13)) {
6625 				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6626 			} else if (!strncmp(str, "disable_acs_redir=", 18)) {
6627 				disable_acs_redir_param = str + 18;
6628 			} else {
6629 				pr_err("PCI: Unknown option `%s'\n", str);
6630 			}
6631 		}
6632 		str = k;
6633 	}
6634 	return 0;
6635 }
6636 early_param("pci", pci_setup);
6637 
6638 /*
6639  * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6640  * in pci_setup(), above, to point to data in the __initdata section which
6641  * will be freed after the init sequence is complete. We can't allocate memory
6642  * in pci_setup() because some architectures do not have any memory allocation
6643  * service available during an early_param() call. So we allocate memory and
6644  * copy the variable here before the init section is freed.
6645  *
6646  */
6647 static int __init pci_realloc_setup_params(void)
6648 {
6649 	resource_alignment_param = kstrdup(resource_alignment_param,
6650 					   GFP_KERNEL);
6651 	disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6652 
6653 	return 0;
6654 }
6655 pure_initcall(pci_realloc_setup_params);
6656