xref: /openbmc/linux/drivers/pci/pci.c (revision 55eb9a6c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * PCI Bus Services, see include/linux/pci.h for further explanation.
4  *
5  * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6  * David Mosberger-Tang
7  *
8  * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/msi.h>
17 #include <linux/of.h>
18 #include <linux/pci.h>
19 #include <linux/pm.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/log2.h>
25 #include <linux/logic_pio.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/pci_hotplug.h>
31 #include <linux/vmalloc.h>
32 #include <asm/dma.h>
33 #include <linux/aer.h>
34 #include <linux/bitfield.h>
35 #include "pci.h"
36 
37 DEFINE_MUTEX(pci_slot_mutex);
38 
39 const char *pci_power_names[] = {
40 	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
41 };
42 EXPORT_SYMBOL_GPL(pci_power_names);
43 
44 int isa_dma_bridge_buggy;
45 EXPORT_SYMBOL(isa_dma_bridge_buggy);
46 
47 int pci_pci_problems;
48 EXPORT_SYMBOL(pci_pci_problems);
49 
50 unsigned int pci_pm_d3hot_delay;
51 
52 static void pci_pme_list_scan(struct work_struct *work);
53 
54 static LIST_HEAD(pci_pme_list);
55 static DEFINE_MUTEX(pci_pme_list_mutex);
56 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
57 
58 struct pci_pme_device {
59 	struct list_head list;
60 	struct pci_dev *dev;
61 };
62 
63 #define PME_TIMEOUT 1000 /* How long between PME checks */
64 
65 static void pci_dev_d3_sleep(struct pci_dev *dev)
66 {
67 	unsigned int delay = dev->d3hot_delay;
68 
69 	if (delay < pci_pm_d3hot_delay)
70 		delay = pci_pm_d3hot_delay;
71 
72 	if (delay)
73 		msleep(delay);
74 }
75 
76 bool pci_reset_supported(struct pci_dev *dev)
77 {
78 	return dev->reset_methods[0] != 0;
79 }
80 
81 #ifdef CONFIG_PCI_DOMAINS
82 int pci_domains_supported = 1;
83 #endif
84 
85 #define DEFAULT_CARDBUS_IO_SIZE		(256)
86 #define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
87 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
88 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
89 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
90 
91 #define DEFAULT_HOTPLUG_IO_SIZE		(256)
92 #define DEFAULT_HOTPLUG_MMIO_SIZE	(2*1024*1024)
93 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE	(2*1024*1024)
94 /* hpiosize=nn can override this */
95 unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
96 /*
97  * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
98  * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
99  * pci=hpmemsize=nnM overrides both
100  */
101 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
102 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
103 
104 #define DEFAULT_HOTPLUG_BUS_SIZE	1
105 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
106 
107 
108 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
109 #ifdef CONFIG_PCIE_BUS_TUNE_OFF
110 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
111 #elif defined CONFIG_PCIE_BUS_SAFE
112 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
113 #elif defined CONFIG_PCIE_BUS_PERFORMANCE
114 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
115 #elif defined CONFIG_PCIE_BUS_PEER2PEER
116 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
117 #else
118 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
119 #endif
120 
121 /*
122  * The default CLS is used if arch didn't set CLS explicitly and not
123  * all pci devices agree on the same value.  Arch can override either
124  * the dfl or actual value as it sees fit.  Don't forget this is
125  * measured in 32-bit words, not bytes.
126  */
127 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
128 u8 pci_cache_line_size;
129 
130 /*
131  * If we set up a device for bus mastering, we need to check the latency
132  * timer as certain BIOSes forget to set it properly.
133  */
134 unsigned int pcibios_max_latency = 255;
135 
136 /* If set, the PCIe ARI capability will not be used. */
137 static bool pcie_ari_disabled;
138 
139 /* If set, the PCIe ATS capability will not be used. */
140 static bool pcie_ats_disabled;
141 
142 /* If set, the PCI config space of each device is printed during boot. */
143 bool pci_early_dump;
144 
145 bool pci_ats_disabled(void)
146 {
147 	return pcie_ats_disabled;
148 }
149 EXPORT_SYMBOL_GPL(pci_ats_disabled);
150 
151 /* Disable bridge_d3 for all PCIe ports */
152 static bool pci_bridge_d3_disable;
153 /* Force bridge_d3 for all PCIe ports */
154 static bool pci_bridge_d3_force;
155 
156 static int __init pcie_port_pm_setup(char *str)
157 {
158 	if (!strcmp(str, "off"))
159 		pci_bridge_d3_disable = true;
160 	else if (!strcmp(str, "force"))
161 		pci_bridge_d3_force = true;
162 	return 1;
163 }
164 __setup("pcie_port_pm=", pcie_port_pm_setup);
165 
166 /* Time to wait after a reset for device to become responsive */
167 #define PCIE_RESET_READY_POLL_MS 60000
168 
169 /**
170  * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
171  * @bus: pointer to PCI bus structure to search
172  *
173  * Given a PCI bus, returns the highest PCI bus number present in the set
174  * including the given PCI bus and its list of child PCI buses.
175  */
176 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
177 {
178 	struct pci_bus *tmp;
179 	unsigned char max, n;
180 
181 	max = bus->busn_res.end;
182 	list_for_each_entry(tmp, &bus->children, node) {
183 		n = pci_bus_max_busnr(tmp);
184 		if (n > max)
185 			max = n;
186 	}
187 	return max;
188 }
189 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
190 
191 /**
192  * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
193  * @pdev: the PCI device
194  *
195  * Returns error bits set in PCI_STATUS and clears them.
196  */
197 int pci_status_get_and_clear_errors(struct pci_dev *pdev)
198 {
199 	u16 status;
200 	int ret;
201 
202 	ret = pci_read_config_word(pdev, PCI_STATUS, &status);
203 	if (ret != PCIBIOS_SUCCESSFUL)
204 		return -EIO;
205 
206 	status &= PCI_STATUS_ERROR_BITS;
207 	if (status)
208 		pci_write_config_word(pdev, PCI_STATUS, status);
209 
210 	return status;
211 }
212 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
213 
214 #ifdef CONFIG_HAS_IOMEM
215 static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar,
216 					    bool write_combine)
217 {
218 	struct resource *res = &pdev->resource[bar];
219 	resource_size_t start = res->start;
220 	resource_size_t size = resource_size(res);
221 
222 	/*
223 	 * Make sure the BAR is actually a memory resource, not an IO resource
224 	 */
225 	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
226 		pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
227 		return NULL;
228 	}
229 
230 	if (write_combine)
231 		return ioremap_wc(start, size);
232 
233 	return ioremap(start, size);
234 }
235 
236 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
237 {
238 	return __pci_ioremap_resource(pdev, bar, false);
239 }
240 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
241 
242 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
243 {
244 	return __pci_ioremap_resource(pdev, bar, true);
245 }
246 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
247 #endif
248 
249 /**
250  * pci_dev_str_match_path - test if a path string matches a device
251  * @dev: the PCI device to test
252  * @path: string to match the device against
253  * @endptr: pointer to the string after the match
254  *
255  * Test if a string (typically from a kernel parameter) formatted as a
256  * path of device/function addresses matches a PCI device. The string must
257  * be of the form:
258  *
259  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
260  *
261  * A path for a device can be obtained using 'lspci -t'.  Using a path
262  * is more robust against bus renumbering than using only a single bus,
263  * device and function address.
264  *
265  * Returns 1 if the string matches the device, 0 if it does not and
266  * a negative error code if it fails to parse the string.
267  */
268 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
269 				  const char **endptr)
270 {
271 	int ret;
272 	unsigned int seg, bus, slot, func;
273 	char *wpath, *p;
274 	char end;
275 
276 	*endptr = strchrnul(path, ';');
277 
278 	wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC);
279 	if (!wpath)
280 		return -ENOMEM;
281 
282 	while (1) {
283 		p = strrchr(wpath, '/');
284 		if (!p)
285 			break;
286 		ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
287 		if (ret != 2) {
288 			ret = -EINVAL;
289 			goto free_and_exit;
290 		}
291 
292 		if (dev->devfn != PCI_DEVFN(slot, func)) {
293 			ret = 0;
294 			goto free_and_exit;
295 		}
296 
297 		/*
298 		 * Note: we don't need to get a reference to the upstream
299 		 * bridge because we hold a reference to the top level
300 		 * device which should hold a reference to the bridge,
301 		 * and so on.
302 		 */
303 		dev = pci_upstream_bridge(dev);
304 		if (!dev) {
305 			ret = 0;
306 			goto free_and_exit;
307 		}
308 
309 		*p = 0;
310 	}
311 
312 	ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
313 		     &func, &end);
314 	if (ret != 4) {
315 		seg = 0;
316 		ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
317 		if (ret != 3) {
318 			ret = -EINVAL;
319 			goto free_and_exit;
320 		}
321 	}
322 
323 	ret = (seg == pci_domain_nr(dev->bus) &&
324 	       bus == dev->bus->number &&
325 	       dev->devfn == PCI_DEVFN(slot, func));
326 
327 free_and_exit:
328 	kfree(wpath);
329 	return ret;
330 }
331 
332 /**
333  * pci_dev_str_match - test if a string matches a device
334  * @dev: the PCI device to test
335  * @p: string to match the device against
336  * @endptr: pointer to the string after the match
337  *
338  * Test if a string (typically from a kernel parameter) matches a specified
339  * PCI device. The string may be of one of the following formats:
340  *
341  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
342  *   pci:<vendor>:<device>[:<subvendor>:<subdevice>]
343  *
344  * The first format specifies a PCI bus/device/function address which
345  * may change if new hardware is inserted, if motherboard firmware changes,
346  * or due to changes caused in kernel parameters. If the domain is
347  * left unspecified, it is taken to be 0.  In order to be robust against
348  * bus renumbering issues, a path of PCI device/function numbers may be used
349  * to address the specific device.  The path for a device can be determined
350  * through the use of 'lspci -t'.
351  *
352  * The second format matches devices using IDs in the configuration
353  * space which may match multiple devices in the system. A value of 0
354  * for any field will match all devices. (Note: this differs from
355  * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
356  * legacy reasons and convenience so users don't have to specify
357  * FFFFFFFFs on the command line.)
358  *
359  * Returns 1 if the string matches the device, 0 if it does not and
360  * a negative error code if the string cannot be parsed.
361  */
362 static int pci_dev_str_match(struct pci_dev *dev, const char *p,
363 			     const char **endptr)
364 {
365 	int ret;
366 	int count;
367 	unsigned short vendor, device, subsystem_vendor, subsystem_device;
368 
369 	if (strncmp(p, "pci:", 4) == 0) {
370 		/* PCI vendor/device (subvendor/subdevice) IDs are specified */
371 		p += 4;
372 		ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
373 			     &subsystem_vendor, &subsystem_device, &count);
374 		if (ret != 4) {
375 			ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
376 			if (ret != 2)
377 				return -EINVAL;
378 
379 			subsystem_vendor = 0;
380 			subsystem_device = 0;
381 		}
382 
383 		p += count;
384 
385 		if ((!vendor || vendor == dev->vendor) &&
386 		    (!device || device == dev->device) &&
387 		    (!subsystem_vendor ||
388 			    subsystem_vendor == dev->subsystem_vendor) &&
389 		    (!subsystem_device ||
390 			    subsystem_device == dev->subsystem_device))
391 			goto found;
392 	} else {
393 		/*
394 		 * PCI Bus, Device, Function IDs are specified
395 		 * (optionally, may include a path of devfns following it)
396 		 */
397 		ret = pci_dev_str_match_path(dev, p, &p);
398 		if (ret < 0)
399 			return ret;
400 		else if (ret)
401 			goto found;
402 	}
403 
404 	*endptr = p;
405 	return 0;
406 
407 found:
408 	*endptr = p;
409 	return 1;
410 }
411 
412 static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
413 				  u8 pos, int cap, int *ttl)
414 {
415 	u8 id;
416 	u16 ent;
417 
418 	pci_bus_read_config_byte(bus, devfn, pos, &pos);
419 
420 	while ((*ttl)--) {
421 		if (pos < 0x40)
422 			break;
423 		pos &= ~3;
424 		pci_bus_read_config_word(bus, devfn, pos, &ent);
425 
426 		id = ent & 0xff;
427 		if (id == 0xff)
428 			break;
429 		if (id == cap)
430 			return pos;
431 		pos = (ent >> 8);
432 	}
433 	return 0;
434 }
435 
436 static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
437 			      u8 pos, int cap)
438 {
439 	int ttl = PCI_FIND_CAP_TTL;
440 
441 	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
442 }
443 
444 u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
445 {
446 	return __pci_find_next_cap(dev->bus, dev->devfn,
447 				   pos + PCI_CAP_LIST_NEXT, cap);
448 }
449 EXPORT_SYMBOL_GPL(pci_find_next_capability);
450 
451 static u8 __pci_bus_find_cap_start(struct pci_bus *bus,
452 				    unsigned int devfn, u8 hdr_type)
453 {
454 	u16 status;
455 
456 	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
457 	if (!(status & PCI_STATUS_CAP_LIST))
458 		return 0;
459 
460 	switch (hdr_type) {
461 	case PCI_HEADER_TYPE_NORMAL:
462 	case PCI_HEADER_TYPE_BRIDGE:
463 		return PCI_CAPABILITY_LIST;
464 	case PCI_HEADER_TYPE_CARDBUS:
465 		return PCI_CB_CAPABILITY_LIST;
466 	}
467 
468 	return 0;
469 }
470 
471 /**
472  * pci_find_capability - query for devices' capabilities
473  * @dev: PCI device to query
474  * @cap: capability code
475  *
476  * Tell if a device supports a given PCI capability.
477  * Returns the address of the requested capability structure within the
478  * device's PCI configuration space or 0 in case the device does not
479  * support it.  Possible values for @cap include:
480  *
481  *  %PCI_CAP_ID_PM           Power Management
482  *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
483  *  %PCI_CAP_ID_VPD          Vital Product Data
484  *  %PCI_CAP_ID_SLOTID       Slot Identification
485  *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
486  *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
487  *  %PCI_CAP_ID_PCIX         PCI-X
488  *  %PCI_CAP_ID_EXP          PCI Express
489  */
490 u8 pci_find_capability(struct pci_dev *dev, int cap)
491 {
492 	u8 pos;
493 
494 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
495 	if (pos)
496 		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
497 
498 	return pos;
499 }
500 EXPORT_SYMBOL(pci_find_capability);
501 
502 /**
503  * pci_bus_find_capability - query for devices' capabilities
504  * @bus: the PCI bus to query
505  * @devfn: PCI device to query
506  * @cap: capability code
507  *
508  * Like pci_find_capability() but works for PCI devices that do not have a
509  * pci_dev structure set up yet.
510  *
511  * Returns the address of the requested capability structure within the
512  * device's PCI configuration space or 0 in case the device does not
513  * support it.
514  */
515 u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
516 {
517 	u8 hdr_type, pos;
518 
519 	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
520 
521 	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
522 	if (pos)
523 		pos = __pci_find_next_cap(bus, devfn, pos, cap);
524 
525 	return pos;
526 }
527 EXPORT_SYMBOL(pci_bus_find_capability);
528 
529 /**
530  * pci_find_next_ext_capability - Find an extended capability
531  * @dev: PCI device to query
532  * @start: address at which to start looking (0 to start at beginning of list)
533  * @cap: capability code
534  *
535  * Returns the address of the next matching extended capability structure
536  * within the device's PCI configuration space or 0 if the device does
537  * not support it.  Some capabilities can occur several times, e.g., the
538  * vendor-specific capability, and this provides a way to find them all.
539  */
540 u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap)
541 {
542 	u32 header;
543 	int ttl;
544 	u16 pos = PCI_CFG_SPACE_SIZE;
545 
546 	/* minimum 8 bytes per capability */
547 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
548 
549 	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
550 		return 0;
551 
552 	if (start)
553 		pos = start;
554 
555 	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
556 		return 0;
557 
558 	/*
559 	 * If we have no capabilities, this is indicated by cap ID,
560 	 * cap version and next pointer all being 0.
561 	 */
562 	if (header == 0)
563 		return 0;
564 
565 	while (ttl-- > 0) {
566 		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
567 			return pos;
568 
569 		pos = PCI_EXT_CAP_NEXT(header);
570 		if (pos < PCI_CFG_SPACE_SIZE)
571 			break;
572 
573 		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
574 			break;
575 	}
576 
577 	return 0;
578 }
579 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
580 
581 /**
582  * pci_find_ext_capability - Find an extended capability
583  * @dev: PCI device to query
584  * @cap: capability code
585  *
586  * Returns the address of the requested extended capability structure
587  * within the device's PCI configuration space or 0 if the device does
588  * not support it.  Possible values for @cap include:
589  *
590  *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
591  *  %PCI_EXT_CAP_ID_VC		Virtual Channel
592  *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
593  *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
594  */
595 u16 pci_find_ext_capability(struct pci_dev *dev, int cap)
596 {
597 	return pci_find_next_ext_capability(dev, 0, cap);
598 }
599 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
600 
601 /**
602  * pci_get_dsn - Read and return the 8-byte Device Serial Number
603  * @dev: PCI device to query
604  *
605  * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
606  * Number.
607  *
608  * Returns the DSN, or zero if the capability does not exist.
609  */
610 u64 pci_get_dsn(struct pci_dev *dev)
611 {
612 	u32 dword;
613 	u64 dsn;
614 	int pos;
615 
616 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
617 	if (!pos)
618 		return 0;
619 
620 	/*
621 	 * The Device Serial Number is two dwords offset 4 bytes from the
622 	 * capability position. The specification says that the first dword is
623 	 * the lower half, and the second dword is the upper half.
624 	 */
625 	pos += 4;
626 	pci_read_config_dword(dev, pos, &dword);
627 	dsn = (u64)dword;
628 	pci_read_config_dword(dev, pos + 4, &dword);
629 	dsn |= ((u64)dword) << 32;
630 
631 	return dsn;
632 }
633 EXPORT_SYMBOL_GPL(pci_get_dsn);
634 
635 static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap)
636 {
637 	int rc, ttl = PCI_FIND_CAP_TTL;
638 	u8 cap, mask;
639 
640 	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
641 		mask = HT_3BIT_CAP_MASK;
642 	else
643 		mask = HT_5BIT_CAP_MASK;
644 
645 	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
646 				      PCI_CAP_ID_HT, &ttl);
647 	while (pos) {
648 		rc = pci_read_config_byte(dev, pos + 3, &cap);
649 		if (rc != PCIBIOS_SUCCESSFUL)
650 			return 0;
651 
652 		if ((cap & mask) == ht_cap)
653 			return pos;
654 
655 		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
656 					      pos + PCI_CAP_LIST_NEXT,
657 					      PCI_CAP_ID_HT, &ttl);
658 	}
659 
660 	return 0;
661 }
662 
663 /**
664  * pci_find_next_ht_capability - query a device's HyperTransport capabilities
665  * @dev: PCI device to query
666  * @pos: Position from which to continue searching
667  * @ht_cap: HyperTransport capability code
668  *
669  * To be used in conjunction with pci_find_ht_capability() to search for
670  * all capabilities matching @ht_cap. @pos should always be a value returned
671  * from pci_find_ht_capability().
672  *
673  * NB. To be 100% safe against broken PCI devices, the caller should take
674  * steps to avoid an infinite loop.
675  */
676 u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap)
677 {
678 	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
679 }
680 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
681 
682 /**
683  * pci_find_ht_capability - query a device's HyperTransport capabilities
684  * @dev: PCI device to query
685  * @ht_cap: HyperTransport capability code
686  *
687  * Tell if a device supports a given HyperTransport capability.
688  * Returns an address within the device's PCI configuration space
689  * or 0 in case the device does not support the request capability.
690  * The address points to the PCI capability, of type PCI_CAP_ID_HT,
691  * which has a HyperTransport capability matching @ht_cap.
692  */
693 u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
694 {
695 	u8 pos;
696 
697 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
698 	if (pos)
699 		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
700 
701 	return pos;
702 }
703 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
704 
705 /**
706  * pci_find_vsec_capability - Find a vendor-specific extended capability
707  * @dev: PCI device to query
708  * @vendor: Vendor ID for which capability is defined
709  * @cap: Vendor-specific capability ID
710  *
711  * If @dev has Vendor ID @vendor, search for a VSEC capability with
712  * VSEC ID @cap. If found, return the capability offset in
713  * config space; otherwise return 0.
714  */
715 u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap)
716 {
717 	u16 vsec = 0;
718 	u32 header;
719 
720 	if (vendor != dev->vendor)
721 		return 0;
722 
723 	while ((vsec = pci_find_next_ext_capability(dev, vsec,
724 						     PCI_EXT_CAP_ID_VNDR))) {
725 		if (pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER,
726 					  &header) == PCIBIOS_SUCCESSFUL &&
727 		    PCI_VNDR_HEADER_ID(header) == cap)
728 			return vsec;
729 	}
730 
731 	return 0;
732 }
733 EXPORT_SYMBOL_GPL(pci_find_vsec_capability);
734 
735 /**
736  * pci_find_dvsec_capability - Find DVSEC for vendor
737  * @dev: PCI device to query
738  * @vendor: Vendor ID to match for the DVSEC
739  * @dvsec: Designated Vendor-specific capability ID
740  *
741  * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability
742  * offset in config space; otherwise return 0.
743  */
744 u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec)
745 {
746 	int pos;
747 
748 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC);
749 	if (!pos)
750 		return 0;
751 
752 	while (pos) {
753 		u16 v, id;
754 
755 		pci_read_config_word(dev, pos + PCI_DVSEC_HEADER1, &v);
756 		pci_read_config_word(dev, pos + PCI_DVSEC_HEADER2, &id);
757 		if (vendor == v && dvsec == id)
758 			return pos;
759 
760 		pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC);
761 	}
762 
763 	return 0;
764 }
765 EXPORT_SYMBOL_GPL(pci_find_dvsec_capability);
766 
767 /**
768  * pci_find_parent_resource - return resource region of parent bus of given
769  *			      region
770  * @dev: PCI device structure contains resources to be searched
771  * @res: child resource record for which parent is sought
772  *
773  * For given resource region of given device, return the resource region of
774  * parent bus the given region is contained in.
775  */
776 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
777 					  struct resource *res)
778 {
779 	const struct pci_bus *bus = dev->bus;
780 	struct resource *r;
781 	int i;
782 
783 	pci_bus_for_each_resource(bus, r, i) {
784 		if (!r)
785 			continue;
786 		if (resource_contains(r, res)) {
787 
788 			/*
789 			 * If the window is prefetchable but the BAR is
790 			 * not, the allocator made a mistake.
791 			 */
792 			if (r->flags & IORESOURCE_PREFETCH &&
793 			    !(res->flags & IORESOURCE_PREFETCH))
794 				return NULL;
795 
796 			/*
797 			 * If we're below a transparent bridge, there may
798 			 * be both a positively-decoded aperture and a
799 			 * subtractively-decoded region that contain the BAR.
800 			 * We want the positively-decoded one, so this depends
801 			 * on pci_bus_for_each_resource() giving us those
802 			 * first.
803 			 */
804 			return r;
805 		}
806 	}
807 	return NULL;
808 }
809 EXPORT_SYMBOL(pci_find_parent_resource);
810 
811 /**
812  * pci_find_resource - Return matching PCI device resource
813  * @dev: PCI device to query
814  * @res: Resource to look for
815  *
816  * Goes over standard PCI resources (BARs) and checks if the given resource
817  * is partially or fully contained in any of them. In that case the
818  * matching resource is returned, %NULL otherwise.
819  */
820 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
821 {
822 	int i;
823 
824 	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
825 		struct resource *r = &dev->resource[i];
826 
827 		if (r->start && resource_contains(r, res))
828 			return r;
829 	}
830 
831 	return NULL;
832 }
833 EXPORT_SYMBOL(pci_find_resource);
834 
835 /**
836  * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
837  * @dev: the PCI device to operate on
838  * @pos: config space offset of status word
839  * @mask: mask of bit(s) to care about in status word
840  *
841  * Return 1 when mask bit(s) in status word clear, 0 otherwise.
842  */
843 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
844 {
845 	int i;
846 
847 	/* Wait for Transaction Pending bit clean */
848 	for (i = 0; i < 4; i++) {
849 		u16 status;
850 		if (i)
851 			msleep((1 << (i - 1)) * 100);
852 
853 		pci_read_config_word(dev, pos, &status);
854 		if (!(status & mask))
855 			return 1;
856 	}
857 
858 	return 0;
859 }
860 
861 static int pci_acs_enable;
862 
863 /**
864  * pci_request_acs - ask for ACS to be enabled if supported
865  */
866 void pci_request_acs(void)
867 {
868 	pci_acs_enable = 1;
869 }
870 
871 static const char *disable_acs_redir_param;
872 
873 /**
874  * pci_disable_acs_redir - disable ACS redirect capabilities
875  * @dev: the PCI device
876  *
877  * For only devices specified in the disable_acs_redir parameter.
878  */
879 static void pci_disable_acs_redir(struct pci_dev *dev)
880 {
881 	int ret = 0;
882 	const char *p;
883 	int pos;
884 	u16 ctrl;
885 
886 	if (!disable_acs_redir_param)
887 		return;
888 
889 	p = disable_acs_redir_param;
890 	while (*p) {
891 		ret = pci_dev_str_match(dev, p, &p);
892 		if (ret < 0) {
893 			pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
894 				     disable_acs_redir_param);
895 
896 			break;
897 		} else if (ret == 1) {
898 			/* Found a match */
899 			break;
900 		}
901 
902 		if (*p != ';' && *p != ',') {
903 			/* End of param or invalid format */
904 			break;
905 		}
906 		p++;
907 	}
908 
909 	if (ret != 1)
910 		return;
911 
912 	if (!pci_dev_specific_disable_acs_redir(dev))
913 		return;
914 
915 	pos = dev->acs_cap;
916 	if (!pos) {
917 		pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
918 		return;
919 	}
920 
921 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
922 
923 	/* P2P Request & Completion Redirect */
924 	ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
925 
926 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
927 
928 	pci_info(dev, "disabled ACS redirect\n");
929 }
930 
931 /**
932  * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
933  * @dev: the PCI device
934  */
935 static void pci_std_enable_acs(struct pci_dev *dev)
936 {
937 	int pos;
938 	u16 cap;
939 	u16 ctrl;
940 
941 	pos = dev->acs_cap;
942 	if (!pos)
943 		return;
944 
945 	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
946 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
947 
948 	/* Source Validation */
949 	ctrl |= (cap & PCI_ACS_SV);
950 
951 	/* P2P Request Redirect */
952 	ctrl |= (cap & PCI_ACS_RR);
953 
954 	/* P2P Completion Redirect */
955 	ctrl |= (cap & PCI_ACS_CR);
956 
957 	/* Upstream Forwarding */
958 	ctrl |= (cap & PCI_ACS_UF);
959 
960 	/* Enable Translation Blocking for external devices and noats */
961 	if (pci_ats_disabled() || dev->external_facing || dev->untrusted)
962 		ctrl |= (cap & PCI_ACS_TB);
963 
964 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
965 }
966 
967 /**
968  * pci_enable_acs - enable ACS if hardware support it
969  * @dev: the PCI device
970  */
971 static void pci_enable_acs(struct pci_dev *dev)
972 {
973 	if (!pci_acs_enable)
974 		goto disable_acs_redir;
975 
976 	if (!pci_dev_specific_enable_acs(dev))
977 		goto disable_acs_redir;
978 
979 	pci_std_enable_acs(dev);
980 
981 disable_acs_redir:
982 	/*
983 	 * Note: pci_disable_acs_redir() must be called even if ACS was not
984 	 * enabled by the kernel because it may have been enabled by
985 	 * platform firmware.  So if we are told to disable it, we should
986 	 * always disable it after setting the kernel's default
987 	 * preferences.
988 	 */
989 	pci_disable_acs_redir(dev);
990 }
991 
992 /**
993  * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
994  * @dev: PCI device to have its BARs restored
995  *
996  * Restore the BAR values for a given device, so as to make it
997  * accessible by its driver.
998  */
999 static void pci_restore_bars(struct pci_dev *dev)
1000 {
1001 	int i;
1002 
1003 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
1004 		pci_update_resource(dev, i);
1005 }
1006 
1007 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
1008 {
1009 	if (pci_use_mid_pm())
1010 		return true;
1011 
1012 	return acpi_pci_power_manageable(dev);
1013 }
1014 
1015 static inline int platform_pci_set_power_state(struct pci_dev *dev,
1016 					       pci_power_t t)
1017 {
1018 	if (pci_use_mid_pm())
1019 		return mid_pci_set_power_state(dev, t);
1020 
1021 	return acpi_pci_set_power_state(dev, t);
1022 }
1023 
1024 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
1025 {
1026 	if (pci_use_mid_pm())
1027 		return mid_pci_get_power_state(dev);
1028 
1029 	return acpi_pci_get_power_state(dev);
1030 }
1031 
1032 static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
1033 {
1034 	if (!pci_use_mid_pm())
1035 		acpi_pci_refresh_power_state(dev);
1036 }
1037 
1038 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
1039 {
1040 	if (pci_use_mid_pm())
1041 		return PCI_POWER_ERROR;
1042 
1043 	return acpi_pci_choose_state(dev);
1044 }
1045 
1046 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
1047 {
1048 	if (pci_use_mid_pm())
1049 		return PCI_POWER_ERROR;
1050 
1051 	return acpi_pci_wakeup(dev, enable);
1052 }
1053 
1054 static inline bool platform_pci_need_resume(struct pci_dev *dev)
1055 {
1056 	if (pci_use_mid_pm())
1057 		return false;
1058 
1059 	return acpi_pci_need_resume(dev);
1060 }
1061 
1062 static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
1063 {
1064 	if (pci_use_mid_pm())
1065 		return false;
1066 
1067 	return acpi_pci_bridge_d3(dev);
1068 }
1069 
1070 /**
1071  * pci_update_current_state - Read power state of given device and cache it
1072  * @dev: PCI device to handle.
1073  * @state: State to cache in case the device doesn't have the PM capability
1074  *
1075  * The power state is read from the PMCSR register, which however is
1076  * inaccessible in D3cold.  The platform firmware is therefore queried first
1077  * to detect accessibility of the register.  In case the platform firmware
1078  * reports an incorrect state or the device isn't power manageable by the
1079  * platform at all, we try to detect D3cold by testing accessibility of the
1080  * vendor ID in config space.
1081  */
1082 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1083 {
1084 	if (platform_pci_get_power_state(dev) == PCI_D3cold) {
1085 		dev->current_state = PCI_D3cold;
1086 	} else if (dev->pm_cap) {
1087 		u16 pmcsr;
1088 
1089 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1090 		if (PCI_POSSIBLE_ERROR(pmcsr)) {
1091 			dev->current_state = PCI_D3cold;
1092 			return;
1093 		}
1094 		dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1095 	} else {
1096 		dev->current_state = state;
1097 	}
1098 }
1099 
1100 /**
1101  * pci_refresh_power_state - Refresh the given device's power state data
1102  * @dev: Target PCI device.
1103  *
1104  * Ask the platform to refresh the devices power state information and invoke
1105  * pci_update_current_state() to update its current PCI power state.
1106  */
1107 void pci_refresh_power_state(struct pci_dev *dev)
1108 {
1109 	platform_pci_refresh_power_state(dev);
1110 	pci_update_current_state(dev, dev->current_state);
1111 }
1112 
1113 /**
1114  * pci_platform_power_transition - Use platform to change device power state
1115  * @dev: PCI device to handle.
1116  * @state: State to put the device into.
1117  */
1118 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1119 {
1120 	int error;
1121 
1122 	error = platform_pci_set_power_state(dev, state);
1123 	if (!error)
1124 		pci_update_current_state(dev, state);
1125 	else if (!dev->pm_cap) /* Fall back to PCI_D0 */
1126 		dev->current_state = PCI_D0;
1127 
1128 	return error;
1129 }
1130 EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1131 
1132 static int pci_resume_one(struct pci_dev *pci_dev, void *ign)
1133 {
1134 	pm_request_resume(&pci_dev->dev);
1135 	return 0;
1136 }
1137 
1138 /**
1139  * pci_resume_bus - Walk given bus and runtime resume devices on it
1140  * @bus: Top bus of the subtree to walk.
1141  */
1142 void pci_resume_bus(struct pci_bus *bus)
1143 {
1144 	if (bus)
1145 		pci_walk_bus(bus, pci_resume_one, NULL);
1146 }
1147 
1148 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1149 {
1150 	int delay = 1;
1151 	u32 id;
1152 
1153 	/*
1154 	 * After reset, the device should not silently discard config
1155 	 * requests, but it may still indicate that it needs more time by
1156 	 * responding to them with CRS completions.  The Root Port will
1157 	 * generally synthesize ~0 (PCI_ERROR_RESPONSE) data to complete
1158 	 * the read (except when CRS SV is enabled and the read was for the
1159 	 * Vendor ID; in that case it synthesizes 0x0001 data).
1160 	 *
1161 	 * Wait for the device to return a non-CRS completion.  Read the
1162 	 * Command register instead of Vendor ID so we don't have to
1163 	 * contend with the CRS SV value.
1164 	 */
1165 	pci_read_config_dword(dev, PCI_COMMAND, &id);
1166 	while (PCI_POSSIBLE_ERROR(id)) {
1167 		if (delay > timeout) {
1168 			pci_warn(dev, "not ready %dms after %s; giving up\n",
1169 				 delay - 1, reset_type);
1170 			return -ENOTTY;
1171 		}
1172 
1173 		if (delay > 1000)
1174 			pci_info(dev, "not ready %dms after %s; waiting\n",
1175 				 delay - 1, reset_type);
1176 
1177 		msleep(delay);
1178 		delay *= 2;
1179 		pci_read_config_dword(dev, PCI_COMMAND, &id);
1180 	}
1181 
1182 	if (delay > 1000)
1183 		pci_info(dev, "ready %dms after %s\n", delay - 1,
1184 			 reset_type);
1185 
1186 	return 0;
1187 }
1188 
1189 /**
1190  * pci_power_up - Put the given device into D0
1191  * @dev: PCI device to power up
1192  *
1193  * On success, return 0 or 1, depending on whether or not it is necessary to
1194  * restore the device's BARs subsequently (1 is returned in that case).
1195  */
1196 int pci_power_up(struct pci_dev *dev)
1197 {
1198 	bool need_restore;
1199 	pci_power_t state;
1200 	u16 pmcsr;
1201 
1202 	platform_pci_set_power_state(dev, PCI_D0);
1203 
1204 	if (!dev->pm_cap) {
1205 		state = platform_pci_get_power_state(dev);
1206 		if (state == PCI_UNKNOWN)
1207 			dev->current_state = PCI_D0;
1208 		else
1209 			dev->current_state = state;
1210 
1211 		if (state == PCI_D0)
1212 			return 0;
1213 
1214 		return -EIO;
1215 	}
1216 
1217 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1218 	if (PCI_POSSIBLE_ERROR(pmcsr)) {
1219 		pci_err(dev, "Unable to change power state from %s to D0, device inaccessible\n",
1220 			pci_power_name(dev->current_state));
1221 		dev->current_state = PCI_D3cold;
1222 		return -EIO;
1223 	}
1224 
1225 	state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1226 
1227 	need_restore = (state == PCI_D3hot || dev->current_state >= PCI_D3hot) &&
1228 			!(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET);
1229 
1230 	if (state == PCI_D0)
1231 		goto end;
1232 
1233 	/*
1234 	 * Force the entire word to 0. This doesn't affect PME_Status, disables
1235 	 * PME_En, and sets PowerState to 0.
1236 	 */
1237 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, 0);
1238 
1239 	/* Mandatory transition delays; see PCI PM 1.2. */
1240 	if (state == PCI_D3hot)
1241 		pci_dev_d3_sleep(dev);
1242 	else if (state == PCI_D2)
1243 		udelay(PCI_PM_D2_DELAY);
1244 
1245 end:
1246 	dev->current_state = PCI_D0;
1247 	if (need_restore)
1248 		return 1;
1249 
1250 	return 0;
1251 }
1252 
1253 /**
1254  * pci_set_full_power_state - Put a PCI device into D0 and update its state
1255  * @dev: PCI device to power up
1256  *
1257  * Call pci_power_up() to put @dev into D0, read from its PCI_PM_CTRL register
1258  * to confirm the state change, restore its BARs if they might be lost and
1259  * reconfigure ASPM in acordance with the new power state.
1260  *
1261  * If pci_restore_state() is going to be called right after a power state change
1262  * to D0, it is more efficient to use pci_power_up() directly instead of this
1263  * function.
1264  */
1265 static int pci_set_full_power_state(struct pci_dev *dev)
1266 {
1267 	u16 pmcsr;
1268 	int ret;
1269 
1270 	ret = pci_power_up(dev);
1271 	if (ret < 0)
1272 		return ret;
1273 
1274 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1275 	dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1276 	if (dev->current_state != PCI_D0) {
1277 		pci_info_ratelimited(dev, "Refused to change power state from %s to D0\n",
1278 				     pci_power_name(dev->current_state));
1279 	} else if (ret > 0) {
1280 		/*
1281 		 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1282 		 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1283 		 * from D3hot to D0 _may_ perform an internal reset, thereby
1284 		 * going to "D0 Uninitialized" rather than "D0 Initialized".
1285 		 * For example, at least some versions of the 3c905B and the
1286 		 * 3c556B exhibit this behaviour.
1287 		 *
1288 		 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1289 		 * devices in a D3hot state at boot.  Consequently, we need to
1290 		 * restore at least the BARs so that the device will be
1291 		 * accessible to its driver.
1292 		 */
1293 		pci_restore_bars(dev);
1294 	}
1295 
1296 	if (dev->bus->self)
1297 		pcie_aspm_pm_state_change(dev->bus->self);
1298 
1299 	return 0;
1300 }
1301 
1302 /**
1303  * __pci_dev_set_current_state - Set current state of a PCI device
1304  * @dev: Device to handle
1305  * @data: pointer to state to be set
1306  */
1307 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1308 {
1309 	pci_power_t state = *(pci_power_t *)data;
1310 
1311 	dev->current_state = state;
1312 	return 0;
1313 }
1314 
1315 /**
1316  * pci_bus_set_current_state - Walk given bus and set current state of devices
1317  * @bus: Top bus of the subtree to walk.
1318  * @state: state to be set
1319  */
1320 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1321 {
1322 	if (bus)
1323 		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1324 }
1325 
1326 /**
1327  * pci_set_low_power_state - Put a PCI device into a low-power state.
1328  * @dev: PCI device to handle.
1329  * @state: PCI power state (D1, D2, D3hot) to put the device into.
1330  *
1331  * Use the device's PCI_PM_CTRL register to put it into a low-power state.
1332  *
1333  * RETURN VALUE:
1334  * -EINVAL if the requested state is invalid.
1335  * -EIO if device does not support PCI PM or its PM capabilities register has a
1336  * wrong version, or device doesn't support the requested state.
1337  * 0 if device already is in the requested state.
1338  * 0 if device's power state has been successfully changed.
1339  */
1340 static int pci_set_low_power_state(struct pci_dev *dev, pci_power_t state)
1341 {
1342 	u16 pmcsr;
1343 
1344 	if (!dev->pm_cap)
1345 		return -EIO;
1346 
1347 	/*
1348 	 * Validate transition: We can enter D0 from any state, but if
1349 	 * we're already in a low-power state, we can only go deeper.  E.g.,
1350 	 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1351 	 * we'd have to go from D3 to D0, then to D1.
1352 	 */
1353 	if (dev->current_state <= PCI_D3cold && dev->current_state > state) {
1354 		pci_dbg(dev, "Invalid power transition (from %s to %s)\n",
1355 			pci_power_name(dev->current_state),
1356 			pci_power_name(state));
1357 		return -EINVAL;
1358 	}
1359 
1360 	/* Check if this device supports the desired state */
1361 	if ((state == PCI_D1 && !dev->d1_support)
1362 	   || (state == PCI_D2 && !dev->d2_support))
1363 		return -EIO;
1364 
1365 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1366 	if (PCI_POSSIBLE_ERROR(pmcsr)) {
1367 		pci_err(dev, "Unable to change power state from %s to %s, device inaccessible\n",
1368 			pci_power_name(dev->current_state),
1369 			pci_power_name(state));
1370 		dev->current_state = PCI_D3cold;
1371 		return -EIO;
1372 	}
1373 
1374 	pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1375 	pmcsr |= state;
1376 
1377 	/* Enter specified state */
1378 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1379 
1380 	/* Mandatory power management transition delays; see PCI PM 1.2. */
1381 	if (state == PCI_D3hot)
1382 		pci_dev_d3_sleep(dev);
1383 	else if (state == PCI_D2)
1384 		udelay(PCI_PM_D2_DELAY);
1385 
1386 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1387 	dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1388 	if (dev->current_state != state)
1389 		pci_info_ratelimited(dev, "Refused to change power state from %s to %s\n",
1390 				     pci_power_name(dev->current_state),
1391 				     pci_power_name(state));
1392 
1393 	if (dev->bus->self)
1394 		pcie_aspm_pm_state_change(dev->bus->self);
1395 
1396 	return 0;
1397 }
1398 
1399 /**
1400  * pci_set_power_state - Set the power state of a PCI device
1401  * @dev: PCI device to handle.
1402  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1403  *
1404  * Transition a device to a new power state, using the platform firmware and/or
1405  * the device's PCI PM registers.
1406  *
1407  * RETURN VALUE:
1408  * -EINVAL if the requested state is invalid.
1409  * -EIO if device does not support PCI PM or its PM capabilities register has a
1410  * wrong version, or device doesn't support the requested state.
1411  * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1412  * 0 if device already is in the requested state.
1413  * 0 if the transition is to D3 but D3 is not supported.
1414  * 0 if device's power state has been successfully changed.
1415  */
1416 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1417 {
1418 	int error;
1419 
1420 	/* Bound the state we're entering */
1421 	if (state > PCI_D3cold)
1422 		state = PCI_D3cold;
1423 	else if (state < PCI_D0)
1424 		state = PCI_D0;
1425 	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1426 
1427 		/*
1428 		 * If the device or the parent bridge do not support PCI
1429 		 * PM, ignore the request if we're doing anything other
1430 		 * than putting it into D0 (which would only happen on
1431 		 * boot).
1432 		 */
1433 		return 0;
1434 
1435 	/* Check if we're already there */
1436 	if (dev->current_state == state)
1437 		return 0;
1438 
1439 	if (state == PCI_D0)
1440 		return pci_set_full_power_state(dev);
1441 
1442 	/*
1443 	 * This device is quirked not to be put into D3, so don't put it in
1444 	 * D3
1445 	 */
1446 	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1447 		return 0;
1448 
1449 	if (state == PCI_D3cold) {
1450 		/*
1451 		 * To put the device in D3cold, put it into D3hot in the native
1452 		 * way, then put it into D3cold using platform ops.
1453 		 */
1454 		error = pci_set_low_power_state(dev, PCI_D3hot);
1455 
1456 		if (pci_platform_power_transition(dev, PCI_D3cold))
1457 			return error;
1458 
1459 		/* Powering off a bridge may power off the whole hierarchy */
1460 		if (dev->current_state == PCI_D3cold)
1461 			pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1462 	} else {
1463 		error = pci_set_low_power_state(dev, state);
1464 
1465 		if (pci_platform_power_transition(dev, state))
1466 			return error;
1467 	}
1468 
1469 	return 0;
1470 }
1471 EXPORT_SYMBOL(pci_set_power_state);
1472 
1473 #define PCI_EXP_SAVE_REGS	7
1474 
1475 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1476 						       u16 cap, bool extended)
1477 {
1478 	struct pci_cap_saved_state *tmp;
1479 
1480 	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1481 		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1482 			return tmp;
1483 	}
1484 	return NULL;
1485 }
1486 
1487 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1488 {
1489 	return _pci_find_saved_cap(dev, cap, false);
1490 }
1491 
1492 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1493 {
1494 	return _pci_find_saved_cap(dev, cap, true);
1495 }
1496 
1497 static int pci_save_pcie_state(struct pci_dev *dev)
1498 {
1499 	int i = 0;
1500 	struct pci_cap_saved_state *save_state;
1501 	u16 *cap;
1502 
1503 	if (!pci_is_pcie(dev))
1504 		return 0;
1505 
1506 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1507 	if (!save_state) {
1508 		pci_err(dev, "buffer not found in %s\n", __func__);
1509 		return -ENOMEM;
1510 	}
1511 
1512 	cap = (u16 *)&save_state->cap.data[0];
1513 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1514 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1515 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1516 	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
1517 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1518 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1519 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1520 
1521 	return 0;
1522 }
1523 
1524 void pci_bridge_reconfigure_ltr(struct pci_dev *dev)
1525 {
1526 #ifdef CONFIG_PCIEASPM
1527 	struct pci_dev *bridge;
1528 	u32 ctl;
1529 
1530 	bridge = pci_upstream_bridge(dev);
1531 	if (bridge && bridge->ltr_path) {
1532 		pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, &ctl);
1533 		if (!(ctl & PCI_EXP_DEVCTL2_LTR_EN)) {
1534 			pci_dbg(bridge, "re-enabling LTR\n");
1535 			pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
1536 						 PCI_EXP_DEVCTL2_LTR_EN);
1537 		}
1538 	}
1539 #endif
1540 }
1541 
1542 static void pci_restore_pcie_state(struct pci_dev *dev)
1543 {
1544 	int i = 0;
1545 	struct pci_cap_saved_state *save_state;
1546 	u16 *cap;
1547 
1548 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1549 	if (!save_state)
1550 		return;
1551 
1552 	/*
1553 	 * Downstream ports reset the LTR enable bit when link goes down.
1554 	 * Check and re-configure the bit here before restoring device.
1555 	 * PCIe r5.0, sec 7.5.3.16.
1556 	 */
1557 	pci_bridge_reconfigure_ltr(dev);
1558 
1559 	cap = (u16 *)&save_state->cap.data[0];
1560 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1561 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1562 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1563 	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1564 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1565 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1566 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1567 }
1568 
1569 static int pci_save_pcix_state(struct pci_dev *dev)
1570 {
1571 	int pos;
1572 	struct pci_cap_saved_state *save_state;
1573 
1574 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1575 	if (!pos)
1576 		return 0;
1577 
1578 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1579 	if (!save_state) {
1580 		pci_err(dev, "buffer not found in %s\n", __func__);
1581 		return -ENOMEM;
1582 	}
1583 
1584 	pci_read_config_word(dev, pos + PCI_X_CMD,
1585 			     (u16 *)save_state->cap.data);
1586 
1587 	return 0;
1588 }
1589 
1590 static void pci_restore_pcix_state(struct pci_dev *dev)
1591 {
1592 	int i = 0, pos;
1593 	struct pci_cap_saved_state *save_state;
1594 	u16 *cap;
1595 
1596 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1597 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1598 	if (!save_state || !pos)
1599 		return;
1600 	cap = (u16 *)&save_state->cap.data[0];
1601 
1602 	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1603 }
1604 
1605 static void pci_save_ltr_state(struct pci_dev *dev)
1606 {
1607 	int ltr;
1608 	struct pci_cap_saved_state *save_state;
1609 	u32 *cap;
1610 
1611 	if (!pci_is_pcie(dev))
1612 		return;
1613 
1614 	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1615 	if (!ltr)
1616 		return;
1617 
1618 	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1619 	if (!save_state) {
1620 		pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1621 		return;
1622 	}
1623 
1624 	/* Some broken devices only support dword access to LTR */
1625 	cap = &save_state->cap.data[0];
1626 	pci_read_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap);
1627 }
1628 
1629 static void pci_restore_ltr_state(struct pci_dev *dev)
1630 {
1631 	struct pci_cap_saved_state *save_state;
1632 	int ltr;
1633 	u32 *cap;
1634 
1635 	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1636 	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1637 	if (!save_state || !ltr)
1638 		return;
1639 
1640 	/* Some broken devices only support dword access to LTR */
1641 	cap = &save_state->cap.data[0];
1642 	pci_write_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap);
1643 }
1644 
1645 /**
1646  * pci_save_state - save the PCI configuration space of a device before
1647  *		    suspending
1648  * @dev: PCI device that we're dealing with
1649  */
1650 int pci_save_state(struct pci_dev *dev)
1651 {
1652 	int i;
1653 	/* XXX: 100% dword access ok here? */
1654 	for (i = 0; i < 16; i++) {
1655 		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1656 		pci_dbg(dev, "saving config space at offset %#x (reading %#x)\n",
1657 			i * 4, dev->saved_config_space[i]);
1658 	}
1659 	dev->state_saved = true;
1660 
1661 	i = pci_save_pcie_state(dev);
1662 	if (i != 0)
1663 		return i;
1664 
1665 	i = pci_save_pcix_state(dev);
1666 	if (i != 0)
1667 		return i;
1668 
1669 	pci_save_ltr_state(dev);
1670 	pci_save_dpc_state(dev);
1671 	pci_save_aer_state(dev);
1672 	pci_save_ptm_state(dev);
1673 	return pci_save_vc_state(dev);
1674 }
1675 EXPORT_SYMBOL(pci_save_state);
1676 
1677 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1678 				     u32 saved_val, int retry, bool force)
1679 {
1680 	u32 val;
1681 
1682 	pci_read_config_dword(pdev, offset, &val);
1683 	if (!force && val == saved_val)
1684 		return;
1685 
1686 	for (;;) {
1687 		pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1688 			offset, val, saved_val);
1689 		pci_write_config_dword(pdev, offset, saved_val);
1690 		if (retry-- <= 0)
1691 			return;
1692 
1693 		pci_read_config_dword(pdev, offset, &val);
1694 		if (val == saved_val)
1695 			return;
1696 
1697 		mdelay(1);
1698 	}
1699 }
1700 
1701 static void pci_restore_config_space_range(struct pci_dev *pdev,
1702 					   int start, int end, int retry,
1703 					   bool force)
1704 {
1705 	int index;
1706 
1707 	for (index = end; index >= start; index--)
1708 		pci_restore_config_dword(pdev, 4 * index,
1709 					 pdev->saved_config_space[index],
1710 					 retry, force);
1711 }
1712 
1713 static void pci_restore_config_space(struct pci_dev *pdev)
1714 {
1715 	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1716 		pci_restore_config_space_range(pdev, 10, 15, 0, false);
1717 		/* Restore BARs before the command register. */
1718 		pci_restore_config_space_range(pdev, 4, 9, 10, false);
1719 		pci_restore_config_space_range(pdev, 0, 3, 0, false);
1720 	} else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1721 		pci_restore_config_space_range(pdev, 12, 15, 0, false);
1722 
1723 		/*
1724 		 * Force rewriting of prefetch registers to avoid S3 resume
1725 		 * issues on Intel PCI bridges that occur when these
1726 		 * registers are not explicitly written.
1727 		 */
1728 		pci_restore_config_space_range(pdev, 9, 11, 0, true);
1729 		pci_restore_config_space_range(pdev, 0, 8, 0, false);
1730 	} else {
1731 		pci_restore_config_space_range(pdev, 0, 15, 0, false);
1732 	}
1733 }
1734 
1735 static void pci_restore_rebar_state(struct pci_dev *pdev)
1736 {
1737 	unsigned int pos, nbars, i;
1738 	u32 ctrl;
1739 
1740 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1741 	if (!pos)
1742 		return;
1743 
1744 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1745 	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1746 		    PCI_REBAR_CTRL_NBAR_SHIFT;
1747 
1748 	for (i = 0; i < nbars; i++, pos += 8) {
1749 		struct resource *res;
1750 		int bar_idx, size;
1751 
1752 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1753 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1754 		res = pdev->resource + bar_idx;
1755 		size = pci_rebar_bytes_to_size(resource_size(res));
1756 		ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1757 		ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1758 		pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1759 	}
1760 }
1761 
1762 /**
1763  * pci_restore_state - Restore the saved state of a PCI device
1764  * @dev: PCI device that we're dealing with
1765  */
1766 void pci_restore_state(struct pci_dev *dev)
1767 {
1768 	if (!dev->state_saved)
1769 		return;
1770 
1771 	/*
1772 	 * Restore max latencies (in the LTR capability) before enabling
1773 	 * LTR itself (in the PCIe capability).
1774 	 */
1775 	pci_restore_ltr_state(dev);
1776 
1777 	pci_restore_pcie_state(dev);
1778 	pci_restore_pasid_state(dev);
1779 	pci_restore_pri_state(dev);
1780 	pci_restore_ats_state(dev);
1781 	pci_restore_vc_state(dev);
1782 	pci_restore_rebar_state(dev);
1783 	pci_restore_dpc_state(dev);
1784 	pci_restore_ptm_state(dev);
1785 
1786 	pci_aer_clear_status(dev);
1787 	pci_restore_aer_state(dev);
1788 
1789 	pci_restore_config_space(dev);
1790 
1791 	pci_restore_pcix_state(dev);
1792 	pci_restore_msi_state(dev);
1793 
1794 	/* Restore ACS and IOV configuration state */
1795 	pci_enable_acs(dev);
1796 	pci_restore_iov_state(dev);
1797 
1798 	dev->state_saved = false;
1799 }
1800 EXPORT_SYMBOL(pci_restore_state);
1801 
1802 struct pci_saved_state {
1803 	u32 config_space[16];
1804 	struct pci_cap_saved_data cap[];
1805 };
1806 
1807 /**
1808  * pci_store_saved_state - Allocate and return an opaque struct containing
1809  *			   the device saved state.
1810  * @dev: PCI device that we're dealing with
1811  *
1812  * Return NULL if no state or error.
1813  */
1814 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1815 {
1816 	struct pci_saved_state *state;
1817 	struct pci_cap_saved_state *tmp;
1818 	struct pci_cap_saved_data *cap;
1819 	size_t size;
1820 
1821 	if (!dev->state_saved)
1822 		return NULL;
1823 
1824 	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1825 
1826 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1827 		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1828 
1829 	state = kzalloc(size, GFP_KERNEL);
1830 	if (!state)
1831 		return NULL;
1832 
1833 	memcpy(state->config_space, dev->saved_config_space,
1834 	       sizeof(state->config_space));
1835 
1836 	cap = state->cap;
1837 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1838 		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1839 		memcpy(cap, &tmp->cap, len);
1840 		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1841 	}
1842 	/* Empty cap_save terminates list */
1843 
1844 	return state;
1845 }
1846 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1847 
1848 /**
1849  * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1850  * @dev: PCI device that we're dealing with
1851  * @state: Saved state returned from pci_store_saved_state()
1852  */
1853 int pci_load_saved_state(struct pci_dev *dev,
1854 			 struct pci_saved_state *state)
1855 {
1856 	struct pci_cap_saved_data *cap;
1857 
1858 	dev->state_saved = false;
1859 
1860 	if (!state)
1861 		return 0;
1862 
1863 	memcpy(dev->saved_config_space, state->config_space,
1864 	       sizeof(state->config_space));
1865 
1866 	cap = state->cap;
1867 	while (cap->size) {
1868 		struct pci_cap_saved_state *tmp;
1869 
1870 		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1871 		if (!tmp || tmp->cap.size != cap->size)
1872 			return -EINVAL;
1873 
1874 		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1875 		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1876 		       sizeof(struct pci_cap_saved_data) + cap->size);
1877 	}
1878 
1879 	dev->state_saved = true;
1880 	return 0;
1881 }
1882 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1883 
1884 /**
1885  * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1886  *				   and free the memory allocated for it.
1887  * @dev: PCI device that we're dealing with
1888  * @state: Pointer to saved state returned from pci_store_saved_state()
1889  */
1890 int pci_load_and_free_saved_state(struct pci_dev *dev,
1891 				  struct pci_saved_state **state)
1892 {
1893 	int ret = pci_load_saved_state(dev, *state);
1894 	kfree(*state);
1895 	*state = NULL;
1896 	return ret;
1897 }
1898 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1899 
1900 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1901 {
1902 	return pci_enable_resources(dev, bars);
1903 }
1904 
1905 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1906 {
1907 	int err;
1908 	struct pci_dev *bridge;
1909 	u16 cmd;
1910 	u8 pin;
1911 
1912 	err = pci_set_power_state(dev, PCI_D0);
1913 	if (err < 0 && err != -EIO)
1914 		return err;
1915 
1916 	bridge = pci_upstream_bridge(dev);
1917 	if (bridge)
1918 		pcie_aspm_powersave_config_link(bridge);
1919 
1920 	err = pcibios_enable_device(dev, bars);
1921 	if (err < 0)
1922 		return err;
1923 	pci_fixup_device(pci_fixup_enable, dev);
1924 
1925 	if (dev->msi_enabled || dev->msix_enabled)
1926 		return 0;
1927 
1928 	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1929 	if (pin) {
1930 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
1931 		if (cmd & PCI_COMMAND_INTX_DISABLE)
1932 			pci_write_config_word(dev, PCI_COMMAND,
1933 					      cmd & ~PCI_COMMAND_INTX_DISABLE);
1934 	}
1935 
1936 	return 0;
1937 }
1938 
1939 /**
1940  * pci_reenable_device - Resume abandoned device
1941  * @dev: PCI device to be resumed
1942  *
1943  * NOTE: This function is a backend of pci_default_resume() and is not supposed
1944  * to be called by normal code, write proper resume handler and use it instead.
1945  */
1946 int pci_reenable_device(struct pci_dev *dev)
1947 {
1948 	if (pci_is_enabled(dev))
1949 		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1950 	return 0;
1951 }
1952 EXPORT_SYMBOL(pci_reenable_device);
1953 
1954 static void pci_enable_bridge(struct pci_dev *dev)
1955 {
1956 	struct pci_dev *bridge;
1957 	int retval;
1958 
1959 	bridge = pci_upstream_bridge(dev);
1960 	if (bridge)
1961 		pci_enable_bridge(bridge);
1962 
1963 	if (pci_is_enabled(dev)) {
1964 		if (!dev->is_busmaster)
1965 			pci_set_master(dev);
1966 		return;
1967 	}
1968 
1969 	retval = pci_enable_device(dev);
1970 	if (retval)
1971 		pci_err(dev, "Error enabling bridge (%d), continuing\n",
1972 			retval);
1973 	pci_set_master(dev);
1974 }
1975 
1976 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1977 {
1978 	struct pci_dev *bridge;
1979 	int err;
1980 	int i, bars = 0;
1981 
1982 	/*
1983 	 * Power state could be unknown at this point, either due to a fresh
1984 	 * boot or a device removal call.  So get the current power state
1985 	 * so that things like MSI message writing will behave as expected
1986 	 * (e.g. if the device really is in D0 at enable time).
1987 	 */
1988 	pci_update_current_state(dev, dev->current_state);
1989 
1990 	if (atomic_inc_return(&dev->enable_cnt) > 1)
1991 		return 0;		/* already enabled */
1992 
1993 	bridge = pci_upstream_bridge(dev);
1994 	if (bridge)
1995 		pci_enable_bridge(bridge);
1996 
1997 	/* only skip sriov related */
1998 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1999 		if (dev->resource[i].flags & flags)
2000 			bars |= (1 << i);
2001 	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
2002 		if (dev->resource[i].flags & flags)
2003 			bars |= (1 << i);
2004 
2005 	err = do_pci_enable_device(dev, bars);
2006 	if (err < 0)
2007 		atomic_dec(&dev->enable_cnt);
2008 	return err;
2009 }
2010 
2011 /**
2012  * pci_enable_device_io - Initialize a device for use with IO space
2013  * @dev: PCI device to be initialized
2014  *
2015  * Initialize device before it's used by a driver. Ask low-level code
2016  * to enable I/O resources. Wake up the device if it was suspended.
2017  * Beware, this function can fail.
2018  */
2019 int pci_enable_device_io(struct pci_dev *dev)
2020 {
2021 	return pci_enable_device_flags(dev, IORESOURCE_IO);
2022 }
2023 EXPORT_SYMBOL(pci_enable_device_io);
2024 
2025 /**
2026  * pci_enable_device_mem - Initialize a device for use with Memory space
2027  * @dev: PCI device to be initialized
2028  *
2029  * Initialize device before it's used by a driver. Ask low-level code
2030  * to enable Memory resources. Wake up the device if it was suspended.
2031  * Beware, this function can fail.
2032  */
2033 int pci_enable_device_mem(struct pci_dev *dev)
2034 {
2035 	return pci_enable_device_flags(dev, IORESOURCE_MEM);
2036 }
2037 EXPORT_SYMBOL(pci_enable_device_mem);
2038 
2039 /**
2040  * pci_enable_device - Initialize device before it's used by a driver.
2041  * @dev: PCI device to be initialized
2042  *
2043  * Initialize device before it's used by a driver. Ask low-level code
2044  * to enable I/O and memory. Wake up the device if it was suspended.
2045  * Beware, this function can fail.
2046  *
2047  * Note we don't actually enable the device many times if we call
2048  * this function repeatedly (we just increment the count).
2049  */
2050 int pci_enable_device(struct pci_dev *dev)
2051 {
2052 	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
2053 }
2054 EXPORT_SYMBOL(pci_enable_device);
2055 
2056 /*
2057  * Managed PCI resources.  This manages device on/off, INTx/MSI/MSI-X
2058  * on/off and BAR regions.  pci_dev itself records MSI/MSI-X status, so
2059  * there's no need to track it separately.  pci_devres is initialized
2060  * when a device is enabled using managed PCI device enable interface.
2061  */
2062 struct pci_devres {
2063 	unsigned int enabled:1;
2064 	unsigned int pinned:1;
2065 	unsigned int orig_intx:1;
2066 	unsigned int restore_intx:1;
2067 	unsigned int mwi:1;
2068 	u32 region_mask;
2069 };
2070 
2071 static void pcim_release(struct device *gendev, void *res)
2072 {
2073 	struct pci_dev *dev = to_pci_dev(gendev);
2074 	struct pci_devres *this = res;
2075 	int i;
2076 
2077 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
2078 		if (this->region_mask & (1 << i))
2079 			pci_release_region(dev, i);
2080 
2081 	if (this->mwi)
2082 		pci_clear_mwi(dev);
2083 
2084 	if (this->restore_intx)
2085 		pci_intx(dev, this->orig_intx);
2086 
2087 	if (this->enabled && !this->pinned)
2088 		pci_disable_device(dev);
2089 }
2090 
2091 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
2092 {
2093 	struct pci_devres *dr, *new_dr;
2094 
2095 	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
2096 	if (dr)
2097 		return dr;
2098 
2099 	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
2100 	if (!new_dr)
2101 		return NULL;
2102 	return devres_get(&pdev->dev, new_dr, NULL, NULL);
2103 }
2104 
2105 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
2106 {
2107 	if (pci_is_managed(pdev))
2108 		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
2109 	return NULL;
2110 }
2111 
2112 /**
2113  * pcim_enable_device - Managed pci_enable_device()
2114  * @pdev: PCI device to be initialized
2115  *
2116  * Managed pci_enable_device().
2117  */
2118 int pcim_enable_device(struct pci_dev *pdev)
2119 {
2120 	struct pci_devres *dr;
2121 	int rc;
2122 
2123 	dr = get_pci_dr(pdev);
2124 	if (unlikely(!dr))
2125 		return -ENOMEM;
2126 	if (dr->enabled)
2127 		return 0;
2128 
2129 	rc = pci_enable_device(pdev);
2130 	if (!rc) {
2131 		pdev->is_managed = 1;
2132 		dr->enabled = 1;
2133 	}
2134 	return rc;
2135 }
2136 EXPORT_SYMBOL(pcim_enable_device);
2137 
2138 /**
2139  * pcim_pin_device - Pin managed PCI device
2140  * @pdev: PCI device to pin
2141  *
2142  * Pin managed PCI device @pdev.  Pinned device won't be disabled on
2143  * driver detach.  @pdev must have been enabled with
2144  * pcim_enable_device().
2145  */
2146 void pcim_pin_device(struct pci_dev *pdev)
2147 {
2148 	struct pci_devres *dr;
2149 
2150 	dr = find_pci_dr(pdev);
2151 	WARN_ON(!dr || !dr->enabled);
2152 	if (dr)
2153 		dr->pinned = 1;
2154 }
2155 EXPORT_SYMBOL(pcim_pin_device);
2156 
2157 /*
2158  * pcibios_device_add - provide arch specific hooks when adding device dev
2159  * @dev: the PCI device being added
2160  *
2161  * Permits the platform to provide architecture specific functionality when
2162  * devices are added. This is the default implementation. Architecture
2163  * implementations can override this.
2164  */
2165 int __weak pcibios_device_add(struct pci_dev *dev)
2166 {
2167 	return 0;
2168 }
2169 
2170 /**
2171  * pcibios_release_device - provide arch specific hooks when releasing
2172  *			    device dev
2173  * @dev: the PCI device being released
2174  *
2175  * Permits the platform to provide architecture specific functionality when
2176  * devices are released. This is the default implementation. Architecture
2177  * implementations can override this.
2178  */
2179 void __weak pcibios_release_device(struct pci_dev *dev) {}
2180 
2181 /**
2182  * pcibios_disable_device - disable arch specific PCI resources for device dev
2183  * @dev: the PCI device to disable
2184  *
2185  * Disables architecture specific PCI resources for the device. This
2186  * is the default implementation. Architecture implementations can
2187  * override this.
2188  */
2189 void __weak pcibios_disable_device(struct pci_dev *dev) {}
2190 
2191 /**
2192  * pcibios_penalize_isa_irq - penalize an ISA IRQ
2193  * @irq: ISA IRQ to penalize
2194  * @active: IRQ active or not
2195  *
2196  * Permits the platform to provide architecture-specific functionality when
2197  * penalizing ISA IRQs. This is the default implementation. Architecture
2198  * implementations can override this.
2199  */
2200 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
2201 
2202 static void do_pci_disable_device(struct pci_dev *dev)
2203 {
2204 	u16 pci_command;
2205 
2206 	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2207 	if (pci_command & PCI_COMMAND_MASTER) {
2208 		pci_command &= ~PCI_COMMAND_MASTER;
2209 		pci_write_config_word(dev, PCI_COMMAND, pci_command);
2210 	}
2211 
2212 	pcibios_disable_device(dev);
2213 }
2214 
2215 /**
2216  * pci_disable_enabled_device - Disable device without updating enable_cnt
2217  * @dev: PCI device to disable
2218  *
2219  * NOTE: This function is a backend of PCI power management routines and is
2220  * not supposed to be called drivers.
2221  */
2222 void pci_disable_enabled_device(struct pci_dev *dev)
2223 {
2224 	if (pci_is_enabled(dev))
2225 		do_pci_disable_device(dev);
2226 }
2227 
2228 /**
2229  * pci_disable_device - Disable PCI device after use
2230  * @dev: PCI device to be disabled
2231  *
2232  * Signal to the system that the PCI device is not in use by the system
2233  * anymore.  This only involves disabling PCI bus-mastering, if active.
2234  *
2235  * Note we don't actually disable the device until all callers of
2236  * pci_enable_device() have called pci_disable_device().
2237  */
2238 void pci_disable_device(struct pci_dev *dev)
2239 {
2240 	struct pci_devres *dr;
2241 
2242 	dr = find_pci_dr(dev);
2243 	if (dr)
2244 		dr->enabled = 0;
2245 
2246 	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2247 		      "disabling already-disabled device");
2248 
2249 	if (atomic_dec_return(&dev->enable_cnt) != 0)
2250 		return;
2251 
2252 	do_pci_disable_device(dev);
2253 
2254 	dev->is_busmaster = 0;
2255 }
2256 EXPORT_SYMBOL(pci_disable_device);
2257 
2258 /**
2259  * pcibios_set_pcie_reset_state - set reset state for device dev
2260  * @dev: the PCIe device reset
2261  * @state: Reset state to enter into
2262  *
2263  * Set the PCIe reset state for the device. This is the default
2264  * implementation. Architecture implementations can override this.
2265  */
2266 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2267 					enum pcie_reset_state state)
2268 {
2269 	return -EINVAL;
2270 }
2271 
2272 /**
2273  * pci_set_pcie_reset_state - set reset state for device dev
2274  * @dev: the PCIe device reset
2275  * @state: Reset state to enter into
2276  *
2277  * Sets the PCI reset state for the device.
2278  */
2279 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2280 {
2281 	return pcibios_set_pcie_reset_state(dev, state);
2282 }
2283 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2284 
2285 #ifdef CONFIG_PCIEAER
2286 void pcie_clear_device_status(struct pci_dev *dev)
2287 {
2288 	u16 sta;
2289 
2290 	pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2291 	pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2292 }
2293 #endif
2294 
2295 /**
2296  * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2297  * @dev: PCIe root port or event collector.
2298  */
2299 void pcie_clear_root_pme_status(struct pci_dev *dev)
2300 {
2301 	pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2302 }
2303 
2304 /**
2305  * pci_check_pme_status - Check if given device has generated PME.
2306  * @dev: Device to check.
2307  *
2308  * Check the PME status of the device and if set, clear it and clear PME enable
2309  * (if set).  Return 'true' if PME status and PME enable were both set or
2310  * 'false' otherwise.
2311  */
2312 bool pci_check_pme_status(struct pci_dev *dev)
2313 {
2314 	int pmcsr_pos;
2315 	u16 pmcsr;
2316 	bool ret = false;
2317 
2318 	if (!dev->pm_cap)
2319 		return false;
2320 
2321 	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2322 	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2323 	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2324 		return false;
2325 
2326 	/* Clear PME status. */
2327 	pmcsr |= PCI_PM_CTRL_PME_STATUS;
2328 	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2329 		/* Disable PME to avoid interrupt flood. */
2330 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2331 		ret = true;
2332 	}
2333 
2334 	pci_write_config_word(dev, pmcsr_pos, pmcsr);
2335 
2336 	return ret;
2337 }
2338 
2339 /**
2340  * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2341  * @dev: Device to handle.
2342  * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2343  *
2344  * Check if @dev has generated PME and queue a resume request for it in that
2345  * case.
2346  */
2347 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2348 {
2349 	if (pme_poll_reset && dev->pme_poll)
2350 		dev->pme_poll = false;
2351 
2352 	if (pci_check_pme_status(dev)) {
2353 		pci_wakeup_event(dev);
2354 		pm_request_resume(&dev->dev);
2355 	}
2356 	return 0;
2357 }
2358 
2359 /**
2360  * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2361  * @bus: Top bus of the subtree to walk.
2362  */
2363 void pci_pme_wakeup_bus(struct pci_bus *bus)
2364 {
2365 	if (bus)
2366 		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2367 }
2368 
2369 
2370 /**
2371  * pci_pme_capable - check the capability of PCI device to generate PME#
2372  * @dev: PCI device to handle.
2373  * @state: PCI state from which device will issue PME#.
2374  */
2375 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2376 {
2377 	if (!dev->pm_cap)
2378 		return false;
2379 
2380 	return !!(dev->pme_support & (1 << state));
2381 }
2382 EXPORT_SYMBOL(pci_pme_capable);
2383 
2384 static void pci_pme_list_scan(struct work_struct *work)
2385 {
2386 	struct pci_pme_device *pme_dev, *n;
2387 
2388 	mutex_lock(&pci_pme_list_mutex);
2389 	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2390 		if (pme_dev->dev->pme_poll) {
2391 			struct pci_dev *bridge;
2392 
2393 			bridge = pme_dev->dev->bus->self;
2394 			/*
2395 			 * If bridge is in low power state, the
2396 			 * configuration space of subordinate devices
2397 			 * may be not accessible
2398 			 */
2399 			if (bridge && bridge->current_state != PCI_D0)
2400 				continue;
2401 			/*
2402 			 * If the device is in D3cold it should not be
2403 			 * polled either.
2404 			 */
2405 			if (pme_dev->dev->current_state == PCI_D3cold)
2406 				continue;
2407 
2408 			pci_pme_wakeup(pme_dev->dev, NULL);
2409 		} else {
2410 			list_del(&pme_dev->list);
2411 			kfree(pme_dev);
2412 		}
2413 	}
2414 	if (!list_empty(&pci_pme_list))
2415 		queue_delayed_work(system_freezable_wq, &pci_pme_work,
2416 				   msecs_to_jiffies(PME_TIMEOUT));
2417 	mutex_unlock(&pci_pme_list_mutex);
2418 }
2419 
2420 static void __pci_pme_active(struct pci_dev *dev, bool enable)
2421 {
2422 	u16 pmcsr;
2423 
2424 	if (!dev->pme_support)
2425 		return;
2426 
2427 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2428 	/* Clear PME_Status by writing 1 to it and enable PME# */
2429 	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2430 	if (!enable)
2431 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2432 
2433 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2434 }
2435 
2436 /**
2437  * pci_pme_restore - Restore PME configuration after config space restore.
2438  * @dev: PCI device to update.
2439  */
2440 void pci_pme_restore(struct pci_dev *dev)
2441 {
2442 	u16 pmcsr;
2443 
2444 	if (!dev->pme_support)
2445 		return;
2446 
2447 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2448 	if (dev->wakeup_prepared) {
2449 		pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2450 		pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2451 	} else {
2452 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2453 		pmcsr |= PCI_PM_CTRL_PME_STATUS;
2454 	}
2455 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2456 }
2457 
2458 /**
2459  * pci_pme_active - enable or disable PCI device's PME# function
2460  * @dev: PCI device to handle.
2461  * @enable: 'true' to enable PME# generation; 'false' to disable it.
2462  *
2463  * The caller must verify that the device is capable of generating PME# before
2464  * calling this function with @enable equal to 'true'.
2465  */
2466 void pci_pme_active(struct pci_dev *dev, bool enable)
2467 {
2468 	__pci_pme_active(dev, enable);
2469 
2470 	/*
2471 	 * PCI (as opposed to PCIe) PME requires that the device have
2472 	 * its PME# line hooked up correctly. Not all hardware vendors
2473 	 * do this, so the PME never gets delivered and the device
2474 	 * remains asleep. The easiest way around this is to
2475 	 * periodically walk the list of suspended devices and check
2476 	 * whether any have their PME flag set. The assumption is that
2477 	 * we'll wake up often enough anyway that this won't be a huge
2478 	 * hit, and the power savings from the devices will still be a
2479 	 * win.
2480 	 *
2481 	 * Although PCIe uses in-band PME message instead of PME# line
2482 	 * to report PME, PME does not work for some PCIe devices in
2483 	 * reality.  For example, there are devices that set their PME
2484 	 * status bits, but don't really bother to send a PME message;
2485 	 * there are PCI Express Root Ports that don't bother to
2486 	 * trigger interrupts when they receive PME messages from the
2487 	 * devices below.  So PME poll is used for PCIe devices too.
2488 	 */
2489 
2490 	if (dev->pme_poll) {
2491 		struct pci_pme_device *pme_dev;
2492 		if (enable) {
2493 			pme_dev = kmalloc(sizeof(struct pci_pme_device),
2494 					  GFP_KERNEL);
2495 			if (!pme_dev) {
2496 				pci_warn(dev, "can't enable PME#\n");
2497 				return;
2498 			}
2499 			pme_dev->dev = dev;
2500 			mutex_lock(&pci_pme_list_mutex);
2501 			list_add(&pme_dev->list, &pci_pme_list);
2502 			if (list_is_singular(&pci_pme_list))
2503 				queue_delayed_work(system_freezable_wq,
2504 						   &pci_pme_work,
2505 						   msecs_to_jiffies(PME_TIMEOUT));
2506 			mutex_unlock(&pci_pme_list_mutex);
2507 		} else {
2508 			mutex_lock(&pci_pme_list_mutex);
2509 			list_for_each_entry(pme_dev, &pci_pme_list, list) {
2510 				if (pme_dev->dev == dev) {
2511 					list_del(&pme_dev->list);
2512 					kfree(pme_dev);
2513 					break;
2514 				}
2515 			}
2516 			mutex_unlock(&pci_pme_list_mutex);
2517 		}
2518 	}
2519 
2520 	pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2521 }
2522 EXPORT_SYMBOL(pci_pme_active);
2523 
2524 /**
2525  * __pci_enable_wake - enable PCI device as wakeup event source
2526  * @dev: PCI device affected
2527  * @state: PCI state from which device will issue wakeup events
2528  * @enable: True to enable event generation; false to disable
2529  *
2530  * This enables the device as a wakeup event source, or disables it.
2531  * When such events involves platform-specific hooks, those hooks are
2532  * called automatically by this routine.
2533  *
2534  * Devices with legacy power management (no standard PCI PM capabilities)
2535  * always require such platform hooks.
2536  *
2537  * RETURN VALUE:
2538  * 0 is returned on success
2539  * -EINVAL is returned if device is not supposed to wake up the system
2540  * Error code depending on the platform is returned if both the platform and
2541  * the native mechanism fail to enable the generation of wake-up events
2542  */
2543 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2544 {
2545 	int ret = 0;
2546 
2547 	/*
2548 	 * Bridges that are not power-manageable directly only signal
2549 	 * wakeup on behalf of subordinate devices which is set up
2550 	 * elsewhere, so skip them. However, bridges that are
2551 	 * power-manageable may signal wakeup for themselves (for example,
2552 	 * on a hotplug event) and they need to be covered here.
2553 	 */
2554 	if (!pci_power_manageable(dev))
2555 		return 0;
2556 
2557 	/* Don't do the same thing twice in a row for one device. */
2558 	if (!!enable == !!dev->wakeup_prepared)
2559 		return 0;
2560 
2561 	/*
2562 	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2563 	 * Anderson we should be doing PME# wake enable followed by ACPI wake
2564 	 * enable.  To disable wake-up we call the platform first, for symmetry.
2565 	 */
2566 
2567 	if (enable) {
2568 		int error;
2569 
2570 		/*
2571 		 * Enable PME signaling if the device can signal PME from
2572 		 * D3cold regardless of whether or not it can signal PME from
2573 		 * the current target state, because that will allow it to
2574 		 * signal PME when the hierarchy above it goes into D3cold and
2575 		 * the device itself ends up in D3cold as a result of that.
2576 		 */
2577 		if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold))
2578 			pci_pme_active(dev, true);
2579 		else
2580 			ret = 1;
2581 		error = platform_pci_set_wakeup(dev, true);
2582 		if (ret)
2583 			ret = error;
2584 		if (!ret)
2585 			dev->wakeup_prepared = true;
2586 	} else {
2587 		platform_pci_set_wakeup(dev, false);
2588 		pci_pme_active(dev, false);
2589 		dev->wakeup_prepared = false;
2590 	}
2591 
2592 	return ret;
2593 }
2594 
2595 /**
2596  * pci_enable_wake - change wakeup settings for a PCI device
2597  * @pci_dev: Target device
2598  * @state: PCI state from which device will issue wakeup events
2599  * @enable: Whether or not to enable event generation
2600  *
2601  * If @enable is set, check device_may_wakeup() for the device before calling
2602  * __pci_enable_wake() for it.
2603  */
2604 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2605 {
2606 	if (enable && !device_may_wakeup(&pci_dev->dev))
2607 		return -EINVAL;
2608 
2609 	return __pci_enable_wake(pci_dev, state, enable);
2610 }
2611 EXPORT_SYMBOL(pci_enable_wake);
2612 
2613 /**
2614  * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2615  * @dev: PCI device to prepare
2616  * @enable: True to enable wake-up event generation; false to disable
2617  *
2618  * Many drivers want the device to wake up the system from D3_hot or D3_cold
2619  * and this function allows them to set that up cleanly - pci_enable_wake()
2620  * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2621  * ordering constraints.
2622  *
2623  * This function only returns error code if the device is not allowed to wake
2624  * up the system from sleep or it is not capable of generating PME# from both
2625  * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2626  */
2627 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2628 {
2629 	return pci_pme_capable(dev, PCI_D3cold) ?
2630 			pci_enable_wake(dev, PCI_D3cold, enable) :
2631 			pci_enable_wake(dev, PCI_D3hot, enable);
2632 }
2633 EXPORT_SYMBOL(pci_wake_from_d3);
2634 
2635 /**
2636  * pci_target_state - find an appropriate low power state for a given PCI dev
2637  * @dev: PCI device
2638  * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2639  *
2640  * Use underlying platform code to find a supported low power state for @dev.
2641  * If the platform can't manage @dev, return the deepest state from which it
2642  * can generate wake events, based on any available PME info.
2643  */
2644 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2645 {
2646 	if (platform_pci_power_manageable(dev)) {
2647 		/*
2648 		 * Call the platform to find the target state for the device.
2649 		 */
2650 		pci_power_t state = platform_pci_choose_state(dev);
2651 
2652 		switch (state) {
2653 		case PCI_POWER_ERROR:
2654 		case PCI_UNKNOWN:
2655 			return PCI_D3hot;
2656 
2657 		case PCI_D1:
2658 		case PCI_D2:
2659 			if (pci_no_d1d2(dev))
2660 				return PCI_D3hot;
2661 		}
2662 
2663 		return state;
2664 	}
2665 
2666 	/*
2667 	 * If the device is in D3cold even though it's not power-manageable by
2668 	 * the platform, it may have been powered down by non-standard means.
2669 	 * Best to let it slumber.
2670 	 */
2671 	if (dev->current_state == PCI_D3cold)
2672 		return PCI_D3cold;
2673 	else if (!dev->pm_cap)
2674 		return PCI_D0;
2675 
2676 	if (wakeup && dev->pme_support) {
2677 		pci_power_t state = PCI_D3hot;
2678 
2679 		/*
2680 		 * Find the deepest state from which the device can generate
2681 		 * PME#.
2682 		 */
2683 		while (state && !(dev->pme_support & (1 << state)))
2684 			state--;
2685 
2686 		if (state)
2687 			return state;
2688 		else if (dev->pme_support & 1)
2689 			return PCI_D0;
2690 	}
2691 
2692 	return PCI_D3hot;
2693 }
2694 
2695 /**
2696  * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2697  *			  into a sleep state
2698  * @dev: Device to handle.
2699  *
2700  * Choose the power state appropriate for the device depending on whether
2701  * it can wake up the system and/or is power manageable by the platform
2702  * (PCI_D3hot is the default) and put the device into that state.
2703  */
2704 int pci_prepare_to_sleep(struct pci_dev *dev)
2705 {
2706 	bool wakeup = device_may_wakeup(&dev->dev);
2707 	pci_power_t target_state = pci_target_state(dev, wakeup);
2708 	int error;
2709 
2710 	if (target_state == PCI_POWER_ERROR)
2711 		return -EIO;
2712 
2713 	/*
2714 	 * There are systems (for example, Intel mobile chips since Coffee
2715 	 * Lake) where the power drawn while suspended can be significantly
2716 	 * reduced by disabling PTM on PCIe root ports as this allows the
2717 	 * port to enter a lower-power PM state and the SoC to reach a
2718 	 * lower-power idle state as a whole.
2719 	 */
2720 	if (pci_pcie_type(dev) == PCI_EXP_TYPE_ROOT_PORT)
2721 		pci_disable_ptm(dev);
2722 
2723 	pci_enable_wake(dev, target_state, wakeup);
2724 
2725 	error = pci_set_power_state(dev, target_state);
2726 
2727 	if (error) {
2728 		pci_enable_wake(dev, target_state, false);
2729 		pci_restore_ptm_state(dev);
2730 	}
2731 
2732 	return error;
2733 }
2734 EXPORT_SYMBOL(pci_prepare_to_sleep);
2735 
2736 /**
2737  * pci_back_from_sleep - turn PCI device on during system-wide transition
2738  *			 into working state
2739  * @dev: Device to handle.
2740  *
2741  * Disable device's system wake-up capability and put it into D0.
2742  */
2743 int pci_back_from_sleep(struct pci_dev *dev)
2744 {
2745 	int ret = pci_set_power_state(dev, PCI_D0);
2746 
2747 	if (ret)
2748 		return ret;
2749 
2750 	pci_enable_wake(dev, PCI_D0, false);
2751 	return 0;
2752 }
2753 EXPORT_SYMBOL(pci_back_from_sleep);
2754 
2755 /**
2756  * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2757  * @dev: PCI device being suspended.
2758  *
2759  * Prepare @dev to generate wake-up events at run time and put it into a low
2760  * power state.
2761  */
2762 int pci_finish_runtime_suspend(struct pci_dev *dev)
2763 {
2764 	pci_power_t target_state;
2765 	int error;
2766 
2767 	target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2768 	if (target_state == PCI_POWER_ERROR)
2769 		return -EIO;
2770 
2771 	/*
2772 	 * There are systems (for example, Intel mobile chips since Coffee
2773 	 * Lake) where the power drawn while suspended can be significantly
2774 	 * reduced by disabling PTM on PCIe root ports as this allows the
2775 	 * port to enter a lower-power PM state and the SoC to reach a
2776 	 * lower-power idle state as a whole.
2777 	 */
2778 	if (pci_pcie_type(dev) == PCI_EXP_TYPE_ROOT_PORT)
2779 		pci_disable_ptm(dev);
2780 
2781 	__pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2782 
2783 	error = pci_set_power_state(dev, target_state);
2784 
2785 	if (error) {
2786 		pci_enable_wake(dev, target_state, false);
2787 		pci_restore_ptm_state(dev);
2788 	}
2789 
2790 	return error;
2791 }
2792 
2793 /**
2794  * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2795  * @dev: Device to check.
2796  *
2797  * Return true if the device itself is capable of generating wake-up events
2798  * (through the platform or using the native PCIe PME) or if the device supports
2799  * PME and one of its upstream bridges can generate wake-up events.
2800  */
2801 bool pci_dev_run_wake(struct pci_dev *dev)
2802 {
2803 	struct pci_bus *bus = dev->bus;
2804 
2805 	if (!dev->pme_support)
2806 		return false;
2807 
2808 	/* PME-capable in principle, but not from the target power state */
2809 	if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2810 		return false;
2811 
2812 	if (device_can_wakeup(&dev->dev))
2813 		return true;
2814 
2815 	while (bus->parent) {
2816 		struct pci_dev *bridge = bus->self;
2817 
2818 		if (device_can_wakeup(&bridge->dev))
2819 			return true;
2820 
2821 		bus = bus->parent;
2822 	}
2823 
2824 	/* We have reached the root bus. */
2825 	if (bus->bridge)
2826 		return device_can_wakeup(bus->bridge);
2827 
2828 	return false;
2829 }
2830 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2831 
2832 /**
2833  * pci_dev_need_resume - Check if it is necessary to resume the device.
2834  * @pci_dev: Device to check.
2835  *
2836  * Return 'true' if the device is not runtime-suspended or it has to be
2837  * reconfigured due to wakeup settings difference between system and runtime
2838  * suspend, or the current power state of it is not suitable for the upcoming
2839  * (system-wide) transition.
2840  */
2841 bool pci_dev_need_resume(struct pci_dev *pci_dev)
2842 {
2843 	struct device *dev = &pci_dev->dev;
2844 	pci_power_t target_state;
2845 
2846 	if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2847 		return true;
2848 
2849 	target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2850 
2851 	/*
2852 	 * If the earlier platform check has not triggered, D3cold is just power
2853 	 * removal on top of D3hot, so no need to resume the device in that
2854 	 * case.
2855 	 */
2856 	return target_state != pci_dev->current_state &&
2857 		target_state != PCI_D3cold &&
2858 		pci_dev->current_state != PCI_D3hot;
2859 }
2860 
2861 /**
2862  * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2863  * @pci_dev: Device to check.
2864  *
2865  * If the device is suspended and it is not configured for system wakeup,
2866  * disable PME for it to prevent it from waking up the system unnecessarily.
2867  *
2868  * Note that if the device's power state is D3cold and the platform check in
2869  * pci_dev_need_resume() has not triggered, the device's configuration need not
2870  * be changed.
2871  */
2872 void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2873 {
2874 	struct device *dev = &pci_dev->dev;
2875 
2876 	spin_lock_irq(&dev->power.lock);
2877 
2878 	if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2879 	    pci_dev->current_state < PCI_D3cold)
2880 		__pci_pme_active(pci_dev, false);
2881 
2882 	spin_unlock_irq(&dev->power.lock);
2883 }
2884 
2885 /**
2886  * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2887  * @pci_dev: Device to handle.
2888  *
2889  * If the device is runtime suspended and wakeup-capable, enable PME for it as
2890  * it might have been disabled during the prepare phase of system suspend if
2891  * the device was not configured for system wakeup.
2892  */
2893 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2894 {
2895 	struct device *dev = &pci_dev->dev;
2896 
2897 	if (!pci_dev_run_wake(pci_dev))
2898 		return;
2899 
2900 	spin_lock_irq(&dev->power.lock);
2901 
2902 	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2903 		__pci_pme_active(pci_dev, true);
2904 
2905 	spin_unlock_irq(&dev->power.lock);
2906 }
2907 
2908 /**
2909  * pci_choose_state - Choose the power state of a PCI device.
2910  * @dev: Target PCI device.
2911  * @state: Target state for the whole system.
2912  *
2913  * Returns PCI power state suitable for @dev and @state.
2914  */
2915 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
2916 {
2917 	if (state.event == PM_EVENT_ON)
2918 		return PCI_D0;
2919 
2920 	return pci_target_state(dev, false);
2921 }
2922 EXPORT_SYMBOL(pci_choose_state);
2923 
2924 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2925 {
2926 	struct device *dev = &pdev->dev;
2927 	struct device *parent = dev->parent;
2928 
2929 	if (parent)
2930 		pm_runtime_get_sync(parent);
2931 	pm_runtime_get_noresume(dev);
2932 	/*
2933 	 * pdev->current_state is set to PCI_D3cold during suspending,
2934 	 * so wait until suspending completes
2935 	 */
2936 	pm_runtime_barrier(dev);
2937 	/*
2938 	 * Only need to resume devices in D3cold, because config
2939 	 * registers are still accessible for devices suspended but
2940 	 * not in D3cold.
2941 	 */
2942 	if (pdev->current_state == PCI_D3cold)
2943 		pm_runtime_resume(dev);
2944 }
2945 
2946 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2947 {
2948 	struct device *dev = &pdev->dev;
2949 	struct device *parent = dev->parent;
2950 
2951 	pm_runtime_put(dev);
2952 	if (parent)
2953 		pm_runtime_put_sync(parent);
2954 }
2955 
2956 static const struct dmi_system_id bridge_d3_blacklist[] = {
2957 #ifdef CONFIG_X86
2958 	{
2959 		/*
2960 		 * Gigabyte X299 root port is not marked as hotplug capable
2961 		 * which allows Linux to power manage it.  However, this
2962 		 * confuses the BIOS SMI handler so don't power manage root
2963 		 * ports on that system.
2964 		 */
2965 		.ident = "X299 DESIGNARE EX-CF",
2966 		.matches = {
2967 			DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2968 			DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2969 		},
2970 		/*
2971 		 * Downstream device is not accessible after putting a root port
2972 		 * into D3cold and back into D0 on Elo i2.
2973 		 */
2974 		.ident = "Elo i2",
2975 		.matches = {
2976 			DMI_MATCH(DMI_SYS_VENDOR, "Elo Touch Solutions"),
2977 			DMI_MATCH(DMI_PRODUCT_NAME, "Elo i2"),
2978 			DMI_MATCH(DMI_PRODUCT_VERSION, "RevB"),
2979 		},
2980 	},
2981 #endif
2982 	{ }
2983 };
2984 
2985 /**
2986  * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2987  * @bridge: Bridge to check
2988  *
2989  * This function checks if it is possible to move the bridge to D3.
2990  * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2991  */
2992 bool pci_bridge_d3_possible(struct pci_dev *bridge)
2993 {
2994 	if (!pci_is_pcie(bridge))
2995 		return false;
2996 
2997 	switch (pci_pcie_type(bridge)) {
2998 	case PCI_EXP_TYPE_ROOT_PORT:
2999 	case PCI_EXP_TYPE_UPSTREAM:
3000 	case PCI_EXP_TYPE_DOWNSTREAM:
3001 		if (pci_bridge_d3_disable)
3002 			return false;
3003 
3004 		/*
3005 		 * Hotplug ports handled by firmware in System Management Mode
3006 		 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
3007 		 */
3008 		if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
3009 			return false;
3010 
3011 		if (pci_bridge_d3_force)
3012 			return true;
3013 
3014 		/* Even the oldest 2010 Thunderbolt controller supports D3. */
3015 		if (bridge->is_thunderbolt)
3016 			return true;
3017 
3018 		/* Platform might know better if the bridge supports D3 */
3019 		if (platform_pci_bridge_d3(bridge))
3020 			return true;
3021 
3022 		/*
3023 		 * Hotplug ports handled natively by the OS were not validated
3024 		 * by vendors for runtime D3 at least until 2018 because there
3025 		 * was no OS support.
3026 		 */
3027 		if (bridge->is_hotplug_bridge)
3028 			return false;
3029 
3030 		if (dmi_check_system(bridge_d3_blacklist))
3031 			return false;
3032 
3033 		/*
3034 		 * It should be safe to put PCIe ports from 2015 or newer
3035 		 * to D3.
3036 		 */
3037 		if (dmi_get_bios_year() >= 2015)
3038 			return true;
3039 		break;
3040 	}
3041 
3042 	return false;
3043 }
3044 
3045 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
3046 {
3047 	bool *d3cold_ok = data;
3048 
3049 	if (/* The device needs to be allowed to go D3cold ... */
3050 	    dev->no_d3cold || !dev->d3cold_allowed ||
3051 
3052 	    /* ... and if it is wakeup capable to do so from D3cold. */
3053 	    (device_may_wakeup(&dev->dev) &&
3054 	     !pci_pme_capable(dev, PCI_D3cold)) ||
3055 
3056 	    /* If it is a bridge it must be allowed to go to D3. */
3057 	    !pci_power_manageable(dev))
3058 
3059 		*d3cold_ok = false;
3060 
3061 	return !*d3cold_ok;
3062 }
3063 
3064 /*
3065  * pci_bridge_d3_update - Update bridge D3 capabilities
3066  * @dev: PCI device which is changed
3067  *
3068  * Update upstream bridge PM capabilities accordingly depending on if the
3069  * device PM configuration was changed or the device is being removed.  The
3070  * change is also propagated upstream.
3071  */
3072 void pci_bridge_d3_update(struct pci_dev *dev)
3073 {
3074 	bool remove = !device_is_registered(&dev->dev);
3075 	struct pci_dev *bridge;
3076 	bool d3cold_ok = true;
3077 
3078 	bridge = pci_upstream_bridge(dev);
3079 	if (!bridge || !pci_bridge_d3_possible(bridge))
3080 		return;
3081 
3082 	/*
3083 	 * If D3 is currently allowed for the bridge, removing one of its
3084 	 * children won't change that.
3085 	 */
3086 	if (remove && bridge->bridge_d3)
3087 		return;
3088 
3089 	/*
3090 	 * If D3 is currently allowed for the bridge and a child is added or
3091 	 * changed, disallowance of D3 can only be caused by that child, so
3092 	 * we only need to check that single device, not any of its siblings.
3093 	 *
3094 	 * If D3 is currently not allowed for the bridge, checking the device
3095 	 * first may allow us to skip checking its siblings.
3096 	 */
3097 	if (!remove)
3098 		pci_dev_check_d3cold(dev, &d3cold_ok);
3099 
3100 	/*
3101 	 * If D3 is currently not allowed for the bridge, this may be caused
3102 	 * either by the device being changed/removed or any of its siblings,
3103 	 * so we need to go through all children to find out if one of them
3104 	 * continues to block D3.
3105 	 */
3106 	if (d3cold_ok && !bridge->bridge_d3)
3107 		pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
3108 			     &d3cold_ok);
3109 
3110 	if (bridge->bridge_d3 != d3cold_ok) {
3111 		bridge->bridge_d3 = d3cold_ok;
3112 		/* Propagate change to upstream bridges */
3113 		pci_bridge_d3_update(bridge);
3114 	}
3115 }
3116 
3117 /**
3118  * pci_d3cold_enable - Enable D3cold for device
3119  * @dev: PCI device to handle
3120  *
3121  * This function can be used in drivers to enable D3cold from the device
3122  * they handle.  It also updates upstream PCI bridge PM capabilities
3123  * accordingly.
3124  */
3125 void pci_d3cold_enable(struct pci_dev *dev)
3126 {
3127 	if (dev->no_d3cold) {
3128 		dev->no_d3cold = false;
3129 		pci_bridge_d3_update(dev);
3130 	}
3131 }
3132 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
3133 
3134 /**
3135  * pci_d3cold_disable - Disable D3cold for device
3136  * @dev: PCI device to handle
3137  *
3138  * This function can be used in drivers to disable D3cold from the device
3139  * they handle.  It also updates upstream PCI bridge PM capabilities
3140  * accordingly.
3141  */
3142 void pci_d3cold_disable(struct pci_dev *dev)
3143 {
3144 	if (!dev->no_d3cold) {
3145 		dev->no_d3cold = true;
3146 		pci_bridge_d3_update(dev);
3147 	}
3148 }
3149 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3150 
3151 /**
3152  * pci_pm_init - Initialize PM functions of given PCI device
3153  * @dev: PCI device to handle.
3154  */
3155 void pci_pm_init(struct pci_dev *dev)
3156 {
3157 	int pm;
3158 	u16 status;
3159 	u16 pmc;
3160 
3161 	pm_runtime_forbid(&dev->dev);
3162 	pm_runtime_set_active(&dev->dev);
3163 	pm_runtime_enable(&dev->dev);
3164 	device_enable_async_suspend(&dev->dev);
3165 	dev->wakeup_prepared = false;
3166 
3167 	dev->pm_cap = 0;
3168 	dev->pme_support = 0;
3169 
3170 	/* find PCI PM capability in list */
3171 	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3172 	if (!pm)
3173 		return;
3174 	/* Check device's ability to generate PME# */
3175 	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3176 
3177 	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3178 		pci_err(dev, "unsupported PM cap regs version (%u)\n",
3179 			pmc & PCI_PM_CAP_VER_MASK);
3180 		return;
3181 	}
3182 
3183 	dev->pm_cap = pm;
3184 	dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3185 	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3186 	dev->bridge_d3 = pci_bridge_d3_possible(dev);
3187 	dev->d3cold_allowed = true;
3188 
3189 	dev->d1_support = false;
3190 	dev->d2_support = false;
3191 	if (!pci_no_d1d2(dev)) {
3192 		if (pmc & PCI_PM_CAP_D1)
3193 			dev->d1_support = true;
3194 		if (pmc & PCI_PM_CAP_D2)
3195 			dev->d2_support = true;
3196 
3197 		if (dev->d1_support || dev->d2_support)
3198 			pci_info(dev, "supports%s%s\n",
3199 				   dev->d1_support ? " D1" : "",
3200 				   dev->d2_support ? " D2" : "");
3201 	}
3202 
3203 	pmc &= PCI_PM_CAP_PME_MASK;
3204 	if (pmc) {
3205 		pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3206 			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3207 			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3208 			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3209 			 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3210 			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3211 		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
3212 		dev->pme_poll = true;
3213 		/*
3214 		 * Make device's PM flags reflect the wake-up capability, but
3215 		 * let the user space enable it to wake up the system as needed.
3216 		 */
3217 		device_set_wakeup_capable(&dev->dev, true);
3218 		/* Disable the PME# generation functionality */
3219 		pci_pme_active(dev, false);
3220 	}
3221 
3222 	pci_read_config_word(dev, PCI_STATUS, &status);
3223 	if (status & PCI_STATUS_IMM_READY)
3224 		dev->imm_ready = 1;
3225 }
3226 
3227 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3228 {
3229 	unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3230 
3231 	switch (prop) {
3232 	case PCI_EA_P_MEM:
3233 	case PCI_EA_P_VF_MEM:
3234 		flags |= IORESOURCE_MEM;
3235 		break;
3236 	case PCI_EA_P_MEM_PREFETCH:
3237 	case PCI_EA_P_VF_MEM_PREFETCH:
3238 		flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3239 		break;
3240 	case PCI_EA_P_IO:
3241 		flags |= IORESOURCE_IO;
3242 		break;
3243 	default:
3244 		return 0;
3245 	}
3246 
3247 	return flags;
3248 }
3249 
3250 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3251 					    u8 prop)
3252 {
3253 	if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3254 		return &dev->resource[bei];
3255 #ifdef CONFIG_PCI_IOV
3256 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3257 		 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3258 		return &dev->resource[PCI_IOV_RESOURCES +
3259 				      bei - PCI_EA_BEI_VF_BAR0];
3260 #endif
3261 	else if (bei == PCI_EA_BEI_ROM)
3262 		return &dev->resource[PCI_ROM_RESOURCE];
3263 	else
3264 		return NULL;
3265 }
3266 
3267 /* Read an Enhanced Allocation (EA) entry */
3268 static int pci_ea_read(struct pci_dev *dev, int offset)
3269 {
3270 	struct resource *res;
3271 	int ent_size, ent_offset = offset;
3272 	resource_size_t start, end;
3273 	unsigned long flags;
3274 	u32 dw0, bei, base, max_offset;
3275 	u8 prop;
3276 	bool support_64 = (sizeof(resource_size_t) >= 8);
3277 
3278 	pci_read_config_dword(dev, ent_offset, &dw0);
3279 	ent_offset += 4;
3280 
3281 	/* Entry size field indicates DWORDs after 1st */
3282 	ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
3283 
3284 	if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3285 		goto out;
3286 
3287 	bei = (dw0 & PCI_EA_BEI) >> 4;
3288 	prop = (dw0 & PCI_EA_PP) >> 8;
3289 
3290 	/*
3291 	 * If the Property is in the reserved range, try the Secondary
3292 	 * Property instead.
3293 	 */
3294 	if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3295 		prop = (dw0 & PCI_EA_SP) >> 16;
3296 	if (prop > PCI_EA_P_BRIDGE_IO)
3297 		goto out;
3298 
3299 	res = pci_ea_get_resource(dev, bei, prop);
3300 	if (!res) {
3301 		pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3302 		goto out;
3303 	}
3304 
3305 	flags = pci_ea_flags(dev, prop);
3306 	if (!flags) {
3307 		pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3308 		goto out;
3309 	}
3310 
3311 	/* Read Base */
3312 	pci_read_config_dword(dev, ent_offset, &base);
3313 	start = (base & PCI_EA_FIELD_MASK);
3314 	ent_offset += 4;
3315 
3316 	/* Read MaxOffset */
3317 	pci_read_config_dword(dev, ent_offset, &max_offset);
3318 	ent_offset += 4;
3319 
3320 	/* Read Base MSBs (if 64-bit entry) */
3321 	if (base & PCI_EA_IS_64) {
3322 		u32 base_upper;
3323 
3324 		pci_read_config_dword(dev, ent_offset, &base_upper);
3325 		ent_offset += 4;
3326 
3327 		flags |= IORESOURCE_MEM_64;
3328 
3329 		/* entry starts above 32-bit boundary, can't use */
3330 		if (!support_64 && base_upper)
3331 			goto out;
3332 
3333 		if (support_64)
3334 			start |= ((u64)base_upper << 32);
3335 	}
3336 
3337 	end = start + (max_offset | 0x03);
3338 
3339 	/* Read MaxOffset MSBs (if 64-bit entry) */
3340 	if (max_offset & PCI_EA_IS_64) {
3341 		u32 max_offset_upper;
3342 
3343 		pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3344 		ent_offset += 4;
3345 
3346 		flags |= IORESOURCE_MEM_64;
3347 
3348 		/* entry too big, can't use */
3349 		if (!support_64 && max_offset_upper)
3350 			goto out;
3351 
3352 		if (support_64)
3353 			end += ((u64)max_offset_upper << 32);
3354 	}
3355 
3356 	if (end < start) {
3357 		pci_err(dev, "EA Entry crosses address boundary\n");
3358 		goto out;
3359 	}
3360 
3361 	if (ent_size != ent_offset - offset) {
3362 		pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3363 			ent_size, ent_offset - offset);
3364 		goto out;
3365 	}
3366 
3367 	res->name = pci_name(dev);
3368 	res->start = start;
3369 	res->end = end;
3370 	res->flags = flags;
3371 
3372 	if (bei <= PCI_EA_BEI_BAR5)
3373 		pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3374 			   bei, res, prop);
3375 	else if (bei == PCI_EA_BEI_ROM)
3376 		pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3377 			   res, prop);
3378 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3379 		pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3380 			   bei - PCI_EA_BEI_VF_BAR0, res, prop);
3381 	else
3382 		pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3383 			   bei, res, prop);
3384 
3385 out:
3386 	return offset + ent_size;
3387 }
3388 
3389 /* Enhanced Allocation Initialization */
3390 void pci_ea_init(struct pci_dev *dev)
3391 {
3392 	int ea;
3393 	u8 num_ent;
3394 	int offset;
3395 	int i;
3396 
3397 	/* find PCI EA capability in list */
3398 	ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3399 	if (!ea)
3400 		return;
3401 
3402 	/* determine the number of entries */
3403 	pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3404 					&num_ent);
3405 	num_ent &= PCI_EA_NUM_ENT_MASK;
3406 
3407 	offset = ea + PCI_EA_FIRST_ENT;
3408 
3409 	/* Skip DWORD 2 for type 1 functions */
3410 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3411 		offset += 4;
3412 
3413 	/* parse each EA entry */
3414 	for (i = 0; i < num_ent; ++i)
3415 		offset = pci_ea_read(dev, offset);
3416 }
3417 
3418 static void pci_add_saved_cap(struct pci_dev *pci_dev,
3419 	struct pci_cap_saved_state *new_cap)
3420 {
3421 	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3422 }
3423 
3424 /**
3425  * _pci_add_cap_save_buffer - allocate buffer for saving given
3426  *			      capability registers
3427  * @dev: the PCI device
3428  * @cap: the capability to allocate the buffer for
3429  * @extended: Standard or Extended capability ID
3430  * @size: requested size of the buffer
3431  */
3432 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3433 				    bool extended, unsigned int size)
3434 {
3435 	int pos;
3436 	struct pci_cap_saved_state *save_state;
3437 
3438 	if (extended)
3439 		pos = pci_find_ext_capability(dev, cap);
3440 	else
3441 		pos = pci_find_capability(dev, cap);
3442 
3443 	if (!pos)
3444 		return 0;
3445 
3446 	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3447 	if (!save_state)
3448 		return -ENOMEM;
3449 
3450 	save_state->cap.cap_nr = cap;
3451 	save_state->cap.cap_extended = extended;
3452 	save_state->cap.size = size;
3453 	pci_add_saved_cap(dev, save_state);
3454 
3455 	return 0;
3456 }
3457 
3458 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3459 {
3460 	return _pci_add_cap_save_buffer(dev, cap, false, size);
3461 }
3462 
3463 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3464 {
3465 	return _pci_add_cap_save_buffer(dev, cap, true, size);
3466 }
3467 
3468 /**
3469  * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3470  * @dev: the PCI device
3471  */
3472 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3473 {
3474 	int error;
3475 
3476 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3477 					PCI_EXP_SAVE_REGS * sizeof(u16));
3478 	if (error)
3479 		pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3480 
3481 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3482 	if (error)
3483 		pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3484 
3485 	error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3486 					    2 * sizeof(u16));
3487 	if (error)
3488 		pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3489 
3490 	pci_allocate_vc_save_buffers(dev);
3491 }
3492 
3493 void pci_free_cap_save_buffers(struct pci_dev *dev)
3494 {
3495 	struct pci_cap_saved_state *tmp;
3496 	struct hlist_node *n;
3497 
3498 	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3499 		kfree(tmp);
3500 }
3501 
3502 /**
3503  * pci_configure_ari - enable or disable ARI forwarding
3504  * @dev: the PCI device
3505  *
3506  * If @dev and its upstream bridge both support ARI, enable ARI in the
3507  * bridge.  Otherwise, disable ARI in the bridge.
3508  */
3509 void pci_configure_ari(struct pci_dev *dev)
3510 {
3511 	u32 cap;
3512 	struct pci_dev *bridge;
3513 
3514 	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3515 		return;
3516 
3517 	bridge = dev->bus->self;
3518 	if (!bridge)
3519 		return;
3520 
3521 	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3522 	if (!(cap & PCI_EXP_DEVCAP2_ARI))
3523 		return;
3524 
3525 	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3526 		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3527 					 PCI_EXP_DEVCTL2_ARI);
3528 		bridge->ari_enabled = 1;
3529 	} else {
3530 		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3531 					   PCI_EXP_DEVCTL2_ARI);
3532 		bridge->ari_enabled = 0;
3533 	}
3534 }
3535 
3536 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3537 {
3538 	int pos;
3539 	u16 cap, ctrl;
3540 
3541 	pos = pdev->acs_cap;
3542 	if (!pos)
3543 		return false;
3544 
3545 	/*
3546 	 * Except for egress control, capabilities are either required
3547 	 * or only required if controllable.  Features missing from the
3548 	 * capability field can therefore be assumed as hard-wired enabled.
3549 	 */
3550 	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3551 	acs_flags &= (cap | PCI_ACS_EC);
3552 
3553 	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3554 	return (ctrl & acs_flags) == acs_flags;
3555 }
3556 
3557 /**
3558  * pci_acs_enabled - test ACS against required flags for a given device
3559  * @pdev: device to test
3560  * @acs_flags: required PCI ACS flags
3561  *
3562  * Return true if the device supports the provided flags.  Automatically
3563  * filters out flags that are not implemented on multifunction devices.
3564  *
3565  * Note that this interface checks the effective ACS capabilities of the
3566  * device rather than the actual capabilities.  For instance, most single
3567  * function endpoints are not required to support ACS because they have no
3568  * opportunity for peer-to-peer access.  We therefore return 'true'
3569  * regardless of whether the device exposes an ACS capability.  This makes
3570  * it much easier for callers of this function to ignore the actual type
3571  * or topology of the device when testing ACS support.
3572  */
3573 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3574 {
3575 	int ret;
3576 
3577 	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3578 	if (ret >= 0)
3579 		return ret > 0;
3580 
3581 	/*
3582 	 * Conventional PCI and PCI-X devices never support ACS, either
3583 	 * effectively or actually.  The shared bus topology implies that
3584 	 * any device on the bus can receive or snoop DMA.
3585 	 */
3586 	if (!pci_is_pcie(pdev))
3587 		return false;
3588 
3589 	switch (pci_pcie_type(pdev)) {
3590 	/*
3591 	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3592 	 * but since their primary interface is PCI/X, we conservatively
3593 	 * handle them as we would a non-PCIe device.
3594 	 */
3595 	case PCI_EXP_TYPE_PCIE_BRIDGE:
3596 	/*
3597 	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
3598 	 * applicable... must never implement an ACS Extended Capability...".
3599 	 * This seems arbitrary, but we take a conservative interpretation
3600 	 * of this statement.
3601 	 */
3602 	case PCI_EXP_TYPE_PCI_BRIDGE:
3603 	case PCI_EXP_TYPE_RC_EC:
3604 		return false;
3605 	/*
3606 	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3607 	 * implement ACS in order to indicate their peer-to-peer capabilities,
3608 	 * regardless of whether they are single- or multi-function devices.
3609 	 */
3610 	case PCI_EXP_TYPE_DOWNSTREAM:
3611 	case PCI_EXP_TYPE_ROOT_PORT:
3612 		return pci_acs_flags_enabled(pdev, acs_flags);
3613 	/*
3614 	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3615 	 * implemented by the remaining PCIe types to indicate peer-to-peer
3616 	 * capabilities, but only when they are part of a multifunction
3617 	 * device.  The footnote for section 6.12 indicates the specific
3618 	 * PCIe types included here.
3619 	 */
3620 	case PCI_EXP_TYPE_ENDPOINT:
3621 	case PCI_EXP_TYPE_UPSTREAM:
3622 	case PCI_EXP_TYPE_LEG_END:
3623 	case PCI_EXP_TYPE_RC_END:
3624 		if (!pdev->multifunction)
3625 			break;
3626 
3627 		return pci_acs_flags_enabled(pdev, acs_flags);
3628 	}
3629 
3630 	/*
3631 	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3632 	 * to single function devices with the exception of downstream ports.
3633 	 */
3634 	return true;
3635 }
3636 
3637 /**
3638  * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
3639  * @start: starting downstream device
3640  * @end: ending upstream device or NULL to search to the root bus
3641  * @acs_flags: required flags
3642  *
3643  * Walk up a device tree from start to end testing PCI ACS support.  If
3644  * any step along the way does not support the required flags, return false.
3645  */
3646 bool pci_acs_path_enabled(struct pci_dev *start,
3647 			  struct pci_dev *end, u16 acs_flags)
3648 {
3649 	struct pci_dev *pdev, *parent = start;
3650 
3651 	do {
3652 		pdev = parent;
3653 
3654 		if (!pci_acs_enabled(pdev, acs_flags))
3655 			return false;
3656 
3657 		if (pci_is_root_bus(pdev->bus))
3658 			return (end == NULL);
3659 
3660 		parent = pdev->bus->self;
3661 	} while (pdev != end);
3662 
3663 	return true;
3664 }
3665 
3666 /**
3667  * pci_acs_init - Initialize ACS if hardware supports it
3668  * @dev: the PCI device
3669  */
3670 void pci_acs_init(struct pci_dev *dev)
3671 {
3672 	dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3673 
3674 	/*
3675 	 * Attempt to enable ACS regardless of capability because some Root
3676 	 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3677 	 * the standard ACS capability but still support ACS via those
3678 	 * quirks.
3679 	 */
3680 	pci_enable_acs(dev);
3681 }
3682 
3683 /**
3684  * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3685  * @pdev: PCI device
3686  * @bar: BAR to find
3687  *
3688  * Helper to find the position of the ctrl register for a BAR.
3689  * Returns -ENOTSUPP if resizable BARs are not supported at all.
3690  * Returns -ENOENT if no ctrl register for the BAR could be found.
3691  */
3692 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3693 {
3694 	unsigned int pos, nbars, i;
3695 	u32 ctrl;
3696 
3697 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3698 	if (!pos)
3699 		return -ENOTSUPP;
3700 
3701 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3702 	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3703 		    PCI_REBAR_CTRL_NBAR_SHIFT;
3704 
3705 	for (i = 0; i < nbars; i++, pos += 8) {
3706 		int bar_idx;
3707 
3708 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3709 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3710 		if (bar_idx == bar)
3711 			return pos;
3712 	}
3713 
3714 	return -ENOENT;
3715 }
3716 
3717 /**
3718  * pci_rebar_get_possible_sizes - get possible sizes for BAR
3719  * @pdev: PCI device
3720  * @bar: BAR to query
3721  *
3722  * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3723  * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3724  */
3725 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3726 {
3727 	int pos;
3728 	u32 cap;
3729 
3730 	pos = pci_rebar_find_pos(pdev, bar);
3731 	if (pos < 0)
3732 		return 0;
3733 
3734 	pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3735 	cap &= PCI_REBAR_CAP_SIZES;
3736 
3737 	/* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
3738 	if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
3739 	    bar == 0 && cap == 0x7000)
3740 		cap = 0x3f000;
3741 
3742 	return cap >> 4;
3743 }
3744 EXPORT_SYMBOL(pci_rebar_get_possible_sizes);
3745 
3746 /**
3747  * pci_rebar_get_current_size - get the current size of a BAR
3748  * @pdev: PCI device
3749  * @bar: BAR to set size to
3750  *
3751  * Read the size of a BAR from the resizable BAR config.
3752  * Returns size if found or negative error code.
3753  */
3754 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3755 {
3756 	int pos;
3757 	u32 ctrl;
3758 
3759 	pos = pci_rebar_find_pos(pdev, bar);
3760 	if (pos < 0)
3761 		return pos;
3762 
3763 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3764 	return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3765 }
3766 
3767 /**
3768  * pci_rebar_set_size - set a new size for a BAR
3769  * @pdev: PCI device
3770  * @bar: BAR to set size to
3771  * @size: new size as defined in the spec (0=1MB, 19=512GB)
3772  *
3773  * Set the new size of a BAR as defined in the spec.
3774  * Returns zero if resizing was successful, error code otherwise.
3775  */
3776 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3777 {
3778 	int pos;
3779 	u32 ctrl;
3780 
3781 	pos = pci_rebar_find_pos(pdev, bar);
3782 	if (pos < 0)
3783 		return pos;
3784 
3785 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3786 	ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3787 	ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3788 	pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3789 	return 0;
3790 }
3791 
3792 /**
3793  * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3794  * @dev: the PCI device
3795  * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3796  *	PCI_EXP_DEVCAP2_ATOMIC_COMP32
3797  *	PCI_EXP_DEVCAP2_ATOMIC_COMP64
3798  *	PCI_EXP_DEVCAP2_ATOMIC_COMP128
3799  *
3800  * Return 0 if all upstream bridges support AtomicOp routing, egress
3801  * blocking is disabled on all upstream ports, and the root port supports
3802  * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3803  * AtomicOp completion), or negative otherwise.
3804  */
3805 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3806 {
3807 	struct pci_bus *bus = dev->bus;
3808 	struct pci_dev *bridge;
3809 	u32 cap, ctl2;
3810 
3811 	/*
3812 	 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit
3813 	 * in Device Control 2 is reserved in VFs and the PF value applies
3814 	 * to all associated VFs.
3815 	 */
3816 	if (dev->is_virtfn)
3817 		return -EINVAL;
3818 
3819 	if (!pci_is_pcie(dev))
3820 		return -EINVAL;
3821 
3822 	/*
3823 	 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3824 	 * AtomicOp requesters.  For now, we only support endpoints as
3825 	 * requesters and root ports as completers.  No endpoints as
3826 	 * completers, and no peer-to-peer.
3827 	 */
3828 
3829 	switch (pci_pcie_type(dev)) {
3830 	case PCI_EXP_TYPE_ENDPOINT:
3831 	case PCI_EXP_TYPE_LEG_END:
3832 	case PCI_EXP_TYPE_RC_END:
3833 		break;
3834 	default:
3835 		return -EINVAL;
3836 	}
3837 
3838 	while (bus->parent) {
3839 		bridge = bus->self;
3840 
3841 		pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3842 
3843 		switch (pci_pcie_type(bridge)) {
3844 		/* Ensure switch ports support AtomicOp routing */
3845 		case PCI_EXP_TYPE_UPSTREAM:
3846 		case PCI_EXP_TYPE_DOWNSTREAM:
3847 			if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3848 				return -EINVAL;
3849 			break;
3850 
3851 		/* Ensure root port supports all the sizes we care about */
3852 		case PCI_EXP_TYPE_ROOT_PORT:
3853 			if ((cap & cap_mask) != cap_mask)
3854 				return -EINVAL;
3855 			break;
3856 		}
3857 
3858 		/* Ensure upstream ports don't block AtomicOps on egress */
3859 		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3860 			pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3861 						   &ctl2);
3862 			if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3863 				return -EINVAL;
3864 		}
3865 
3866 		bus = bus->parent;
3867 	}
3868 
3869 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3870 				 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3871 	return 0;
3872 }
3873 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3874 
3875 /**
3876  * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3877  * @dev: the PCI device
3878  * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3879  *
3880  * Perform INTx swizzling for a device behind one level of bridge.  This is
3881  * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3882  * behind bridges on add-in cards.  For devices with ARI enabled, the slot
3883  * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3884  * the PCI Express Base Specification, Revision 2.1)
3885  */
3886 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3887 {
3888 	int slot;
3889 
3890 	if (pci_ari_enabled(dev->bus))
3891 		slot = 0;
3892 	else
3893 		slot = PCI_SLOT(dev->devfn);
3894 
3895 	return (((pin - 1) + slot) % 4) + 1;
3896 }
3897 
3898 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3899 {
3900 	u8 pin;
3901 
3902 	pin = dev->pin;
3903 	if (!pin)
3904 		return -1;
3905 
3906 	while (!pci_is_root_bus(dev->bus)) {
3907 		pin = pci_swizzle_interrupt_pin(dev, pin);
3908 		dev = dev->bus->self;
3909 	}
3910 	*bridge = dev;
3911 	return pin;
3912 }
3913 
3914 /**
3915  * pci_common_swizzle - swizzle INTx all the way to root bridge
3916  * @dev: the PCI device
3917  * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3918  *
3919  * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
3920  * bridges all the way up to a PCI root bus.
3921  */
3922 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3923 {
3924 	u8 pin = *pinp;
3925 
3926 	while (!pci_is_root_bus(dev->bus)) {
3927 		pin = pci_swizzle_interrupt_pin(dev, pin);
3928 		dev = dev->bus->self;
3929 	}
3930 	*pinp = pin;
3931 	return PCI_SLOT(dev->devfn);
3932 }
3933 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3934 
3935 /**
3936  * pci_release_region - Release a PCI bar
3937  * @pdev: PCI device whose resources were previously reserved by
3938  *	  pci_request_region()
3939  * @bar: BAR to release
3940  *
3941  * Releases the PCI I/O and memory resources previously reserved by a
3942  * successful call to pci_request_region().  Call this function only
3943  * after all use of the PCI regions has ceased.
3944  */
3945 void pci_release_region(struct pci_dev *pdev, int bar)
3946 {
3947 	struct pci_devres *dr;
3948 
3949 	if (pci_resource_len(pdev, bar) == 0)
3950 		return;
3951 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3952 		release_region(pci_resource_start(pdev, bar),
3953 				pci_resource_len(pdev, bar));
3954 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3955 		release_mem_region(pci_resource_start(pdev, bar),
3956 				pci_resource_len(pdev, bar));
3957 
3958 	dr = find_pci_dr(pdev);
3959 	if (dr)
3960 		dr->region_mask &= ~(1 << bar);
3961 }
3962 EXPORT_SYMBOL(pci_release_region);
3963 
3964 /**
3965  * __pci_request_region - Reserved PCI I/O and memory resource
3966  * @pdev: PCI device whose resources are to be reserved
3967  * @bar: BAR to be reserved
3968  * @res_name: Name to be associated with resource.
3969  * @exclusive: whether the region access is exclusive or not
3970  *
3971  * Mark the PCI region associated with PCI device @pdev BAR @bar as
3972  * being reserved by owner @res_name.  Do not access any
3973  * address inside the PCI regions unless this call returns
3974  * successfully.
3975  *
3976  * If @exclusive is set, then the region is marked so that userspace
3977  * is explicitly not allowed to map the resource via /dev/mem or
3978  * sysfs MMIO access.
3979  *
3980  * Returns 0 on success, or %EBUSY on error.  A warning
3981  * message is also printed on failure.
3982  */
3983 static int __pci_request_region(struct pci_dev *pdev, int bar,
3984 				const char *res_name, int exclusive)
3985 {
3986 	struct pci_devres *dr;
3987 
3988 	if (pci_resource_len(pdev, bar) == 0)
3989 		return 0;
3990 
3991 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3992 		if (!request_region(pci_resource_start(pdev, bar),
3993 			    pci_resource_len(pdev, bar), res_name))
3994 			goto err_out;
3995 	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3996 		if (!__request_mem_region(pci_resource_start(pdev, bar),
3997 					pci_resource_len(pdev, bar), res_name,
3998 					exclusive))
3999 			goto err_out;
4000 	}
4001 
4002 	dr = find_pci_dr(pdev);
4003 	if (dr)
4004 		dr->region_mask |= 1 << bar;
4005 
4006 	return 0;
4007 
4008 err_out:
4009 	pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
4010 		 &pdev->resource[bar]);
4011 	return -EBUSY;
4012 }
4013 
4014 /**
4015  * pci_request_region - Reserve PCI I/O and memory resource
4016  * @pdev: PCI device whose resources are to be reserved
4017  * @bar: BAR to be reserved
4018  * @res_name: Name to be associated with resource
4019  *
4020  * Mark the PCI region associated with PCI device @pdev BAR @bar as
4021  * being reserved by owner @res_name.  Do not access any
4022  * address inside the PCI regions unless this call returns
4023  * successfully.
4024  *
4025  * Returns 0 on success, or %EBUSY on error.  A warning
4026  * message is also printed on failure.
4027  */
4028 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
4029 {
4030 	return __pci_request_region(pdev, bar, res_name, 0);
4031 }
4032 EXPORT_SYMBOL(pci_request_region);
4033 
4034 /**
4035  * pci_release_selected_regions - Release selected PCI I/O and memory resources
4036  * @pdev: PCI device whose resources were previously reserved
4037  * @bars: Bitmask of BARs to be released
4038  *
4039  * Release selected PCI I/O and memory resources previously reserved.
4040  * Call this function only after all use of the PCI regions has ceased.
4041  */
4042 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
4043 {
4044 	int i;
4045 
4046 	for (i = 0; i < PCI_STD_NUM_BARS; i++)
4047 		if (bars & (1 << i))
4048 			pci_release_region(pdev, i);
4049 }
4050 EXPORT_SYMBOL(pci_release_selected_regions);
4051 
4052 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
4053 					  const char *res_name, int excl)
4054 {
4055 	int i;
4056 
4057 	for (i = 0; i < PCI_STD_NUM_BARS; i++)
4058 		if (bars & (1 << i))
4059 			if (__pci_request_region(pdev, i, res_name, excl))
4060 				goto err_out;
4061 	return 0;
4062 
4063 err_out:
4064 	while (--i >= 0)
4065 		if (bars & (1 << i))
4066 			pci_release_region(pdev, i);
4067 
4068 	return -EBUSY;
4069 }
4070 
4071 
4072 /**
4073  * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
4074  * @pdev: PCI device whose resources are to be reserved
4075  * @bars: Bitmask of BARs to be requested
4076  * @res_name: Name to be associated with resource
4077  */
4078 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
4079 				 const char *res_name)
4080 {
4081 	return __pci_request_selected_regions(pdev, bars, res_name, 0);
4082 }
4083 EXPORT_SYMBOL(pci_request_selected_regions);
4084 
4085 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
4086 					   const char *res_name)
4087 {
4088 	return __pci_request_selected_regions(pdev, bars, res_name,
4089 			IORESOURCE_EXCLUSIVE);
4090 }
4091 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
4092 
4093 /**
4094  * pci_release_regions - Release reserved PCI I/O and memory resources
4095  * @pdev: PCI device whose resources were previously reserved by
4096  *	  pci_request_regions()
4097  *
4098  * Releases all PCI I/O and memory resources previously reserved by a
4099  * successful call to pci_request_regions().  Call this function only
4100  * after all use of the PCI regions has ceased.
4101  */
4102 
4103 void pci_release_regions(struct pci_dev *pdev)
4104 {
4105 	pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
4106 }
4107 EXPORT_SYMBOL(pci_release_regions);
4108 
4109 /**
4110  * pci_request_regions - Reserve PCI I/O and memory resources
4111  * @pdev: PCI device whose resources are to be reserved
4112  * @res_name: Name to be associated with resource.
4113  *
4114  * Mark all PCI regions associated with PCI device @pdev as
4115  * being reserved by owner @res_name.  Do not access any
4116  * address inside the PCI regions unless this call returns
4117  * successfully.
4118  *
4119  * Returns 0 on success, or %EBUSY on error.  A warning
4120  * message is also printed on failure.
4121  */
4122 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
4123 {
4124 	return pci_request_selected_regions(pdev,
4125 			((1 << PCI_STD_NUM_BARS) - 1), res_name);
4126 }
4127 EXPORT_SYMBOL(pci_request_regions);
4128 
4129 /**
4130  * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
4131  * @pdev: PCI device whose resources are to be reserved
4132  * @res_name: Name to be associated with resource.
4133  *
4134  * Mark all PCI regions associated with PCI device @pdev as being reserved
4135  * by owner @res_name.  Do not access any address inside the PCI regions
4136  * unless this call returns successfully.
4137  *
4138  * pci_request_regions_exclusive() will mark the region so that /dev/mem
4139  * and the sysfs MMIO access will not be allowed.
4140  *
4141  * Returns 0 on success, or %EBUSY on error.  A warning message is also
4142  * printed on failure.
4143  */
4144 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
4145 {
4146 	return pci_request_selected_regions_exclusive(pdev,
4147 				((1 << PCI_STD_NUM_BARS) - 1), res_name);
4148 }
4149 EXPORT_SYMBOL(pci_request_regions_exclusive);
4150 
4151 /*
4152  * Record the PCI IO range (expressed as CPU physical address + size).
4153  * Return a negative value if an error has occurred, zero otherwise
4154  */
4155 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
4156 			resource_size_t	size)
4157 {
4158 	int ret = 0;
4159 #ifdef PCI_IOBASE
4160 	struct logic_pio_hwaddr *range;
4161 
4162 	if (!size || addr + size < addr)
4163 		return -EINVAL;
4164 
4165 	range = kzalloc(sizeof(*range), GFP_ATOMIC);
4166 	if (!range)
4167 		return -ENOMEM;
4168 
4169 	range->fwnode = fwnode;
4170 	range->size = size;
4171 	range->hw_start = addr;
4172 	range->flags = LOGIC_PIO_CPU_MMIO;
4173 
4174 	ret = logic_pio_register_range(range);
4175 	if (ret)
4176 		kfree(range);
4177 
4178 	/* Ignore duplicates due to deferred probing */
4179 	if (ret == -EEXIST)
4180 		ret = 0;
4181 #endif
4182 
4183 	return ret;
4184 }
4185 
4186 phys_addr_t pci_pio_to_address(unsigned long pio)
4187 {
4188 	phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
4189 
4190 #ifdef PCI_IOBASE
4191 	if (pio >= MMIO_UPPER_LIMIT)
4192 		return address;
4193 
4194 	address = logic_pio_to_hwaddr(pio);
4195 #endif
4196 
4197 	return address;
4198 }
4199 EXPORT_SYMBOL_GPL(pci_pio_to_address);
4200 
4201 unsigned long __weak pci_address_to_pio(phys_addr_t address)
4202 {
4203 #ifdef PCI_IOBASE
4204 	return logic_pio_trans_cpuaddr(address);
4205 #else
4206 	if (address > IO_SPACE_LIMIT)
4207 		return (unsigned long)-1;
4208 
4209 	return (unsigned long) address;
4210 #endif
4211 }
4212 
4213 /**
4214  * pci_remap_iospace - Remap the memory mapped I/O space
4215  * @res: Resource describing the I/O space
4216  * @phys_addr: physical address of range to be mapped
4217  *
4218  * Remap the memory mapped I/O space described by the @res and the CPU
4219  * physical address @phys_addr into virtual address space.  Only
4220  * architectures that have memory mapped IO functions defined (and the
4221  * PCI_IOBASE value defined) should call this function.
4222  */
4223 #ifndef pci_remap_iospace
4224 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4225 {
4226 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4227 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4228 
4229 	if (!(res->flags & IORESOURCE_IO))
4230 		return -EINVAL;
4231 
4232 	if (res->end > IO_SPACE_LIMIT)
4233 		return -EINVAL;
4234 
4235 	return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4236 				  pgprot_device(PAGE_KERNEL));
4237 #else
4238 	/*
4239 	 * This architecture does not have memory mapped I/O space,
4240 	 * so this function should never be called
4241 	 */
4242 	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4243 	return -ENODEV;
4244 #endif
4245 }
4246 EXPORT_SYMBOL(pci_remap_iospace);
4247 #endif
4248 
4249 /**
4250  * pci_unmap_iospace - Unmap the memory mapped I/O space
4251  * @res: resource to be unmapped
4252  *
4253  * Unmap the CPU virtual address @res from virtual address space.  Only
4254  * architectures that have memory mapped IO functions defined (and the
4255  * PCI_IOBASE value defined) should call this function.
4256  */
4257 void pci_unmap_iospace(struct resource *res)
4258 {
4259 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4260 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4261 
4262 	vunmap_range(vaddr, vaddr + resource_size(res));
4263 #endif
4264 }
4265 EXPORT_SYMBOL(pci_unmap_iospace);
4266 
4267 static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
4268 {
4269 	struct resource **res = ptr;
4270 
4271 	pci_unmap_iospace(*res);
4272 }
4273 
4274 /**
4275  * devm_pci_remap_iospace - Managed pci_remap_iospace()
4276  * @dev: Generic device to remap IO address for
4277  * @res: Resource describing the I/O space
4278  * @phys_addr: physical address of range to be mapped
4279  *
4280  * Managed pci_remap_iospace().  Map is automatically unmapped on driver
4281  * detach.
4282  */
4283 int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4284 			   phys_addr_t phys_addr)
4285 {
4286 	const struct resource **ptr;
4287 	int error;
4288 
4289 	ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4290 	if (!ptr)
4291 		return -ENOMEM;
4292 
4293 	error = pci_remap_iospace(res, phys_addr);
4294 	if (error) {
4295 		devres_free(ptr);
4296 	} else	{
4297 		*ptr = res;
4298 		devres_add(dev, ptr);
4299 	}
4300 
4301 	return error;
4302 }
4303 EXPORT_SYMBOL(devm_pci_remap_iospace);
4304 
4305 /**
4306  * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4307  * @dev: Generic device to remap IO address for
4308  * @offset: Resource address to map
4309  * @size: Size of map
4310  *
4311  * Managed pci_remap_cfgspace().  Map is automatically unmapped on driver
4312  * detach.
4313  */
4314 void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4315 				      resource_size_t offset,
4316 				      resource_size_t size)
4317 {
4318 	void __iomem **ptr, *addr;
4319 
4320 	ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4321 	if (!ptr)
4322 		return NULL;
4323 
4324 	addr = pci_remap_cfgspace(offset, size);
4325 	if (addr) {
4326 		*ptr = addr;
4327 		devres_add(dev, ptr);
4328 	} else
4329 		devres_free(ptr);
4330 
4331 	return addr;
4332 }
4333 EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4334 
4335 /**
4336  * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4337  * @dev: generic device to handle the resource for
4338  * @res: configuration space resource to be handled
4339  *
4340  * Checks that a resource is a valid memory region, requests the memory
4341  * region and ioremaps with pci_remap_cfgspace() API that ensures the
4342  * proper PCI configuration space memory attributes are guaranteed.
4343  *
4344  * All operations are managed and will be undone on driver detach.
4345  *
4346  * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4347  * on failure. Usage example::
4348  *
4349  *	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4350  *	base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4351  *	if (IS_ERR(base))
4352  *		return PTR_ERR(base);
4353  */
4354 void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4355 					  struct resource *res)
4356 {
4357 	resource_size_t size;
4358 	const char *name;
4359 	void __iomem *dest_ptr;
4360 
4361 	BUG_ON(!dev);
4362 
4363 	if (!res || resource_type(res) != IORESOURCE_MEM) {
4364 		dev_err(dev, "invalid resource\n");
4365 		return IOMEM_ERR_PTR(-EINVAL);
4366 	}
4367 
4368 	size = resource_size(res);
4369 
4370 	if (res->name)
4371 		name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev),
4372 				      res->name);
4373 	else
4374 		name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL);
4375 	if (!name)
4376 		return IOMEM_ERR_PTR(-ENOMEM);
4377 
4378 	if (!devm_request_mem_region(dev, res->start, size, name)) {
4379 		dev_err(dev, "can't request region for resource %pR\n", res);
4380 		return IOMEM_ERR_PTR(-EBUSY);
4381 	}
4382 
4383 	dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4384 	if (!dest_ptr) {
4385 		dev_err(dev, "ioremap failed for resource %pR\n", res);
4386 		devm_release_mem_region(dev, res->start, size);
4387 		dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4388 	}
4389 
4390 	return dest_ptr;
4391 }
4392 EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4393 
4394 static void __pci_set_master(struct pci_dev *dev, bool enable)
4395 {
4396 	u16 old_cmd, cmd;
4397 
4398 	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4399 	if (enable)
4400 		cmd = old_cmd | PCI_COMMAND_MASTER;
4401 	else
4402 		cmd = old_cmd & ~PCI_COMMAND_MASTER;
4403 	if (cmd != old_cmd) {
4404 		pci_dbg(dev, "%s bus mastering\n",
4405 			enable ? "enabling" : "disabling");
4406 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4407 	}
4408 	dev->is_busmaster = enable;
4409 }
4410 
4411 /**
4412  * pcibios_setup - process "pci=" kernel boot arguments
4413  * @str: string used to pass in "pci=" kernel boot arguments
4414  *
4415  * Process kernel boot arguments.  This is the default implementation.
4416  * Architecture specific implementations can override this as necessary.
4417  */
4418 char * __weak __init pcibios_setup(char *str)
4419 {
4420 	return str;
4421 }
4422 
4423 /**
4424  * pcibios_set_master - enable PCI bus-mastering for device dev
4425  * @dev: the PCI device to enable
4426  *
4427  * Enables PCI bus-mastering for the device.  This is the default
4428  * implementation.  Architecture specific implementations can override
4429  * this if necessary.
4430  */
4431 void __weak pcibios_set_master(struct pci_dev *dev)
4432 {
4433 	u8 lat;
4434 
4435 	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4436 	if (pci_is_pcie(dev))
4437 		return;
4438 
4439 	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4440 	if (lat < 16)
4441 		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4442 	else if (lat > pcibios_max_latency)
4443 		lat = pcibios_max_latency;
4444 	else
4445 		return;
4446 
4447 	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4448 }
4449 
4450 /**
4451  * pci_set_master - enables bus-mastering for device dev
4452  * @dev: the PCI device to enable
4453  *
4454  * Enables bus-mastering on the device and calls pcibios_set_master()
4455  * to do the needed arch specific settings.
4456  */
4457 void pci_set_master(struct pci_dev *dev)
4458 {
4459 	__pci_set_master(dev, true);
4460 	pcibios_set_master(dev);
4461 }
4462 EXPORT_SYMBOL(pci_set_master);
4463 
4464 /**
4465  * pci_clear_master - disables bus-mastering for device dev
4466  * @dev: the PCI device to disable
4467  */
4468 void pci_clear_master(struct pci_dev *dev)
4469 {
4470 	__pci_set_master(dev, false);
4471 }
4472 EXPORT_SYMBOL(pci_clear_master);
4473 
4474 /**
4475  * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4476  * @dev: the PCI device for which MWI is to be enabled
4477  *
4478  * Helper function for pci_set_mwi.
4479  * Originally copied from drivers/net/acenic.c.
4480  * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4481  *
4482  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4483  */
4484 int pci_set_cacheline_size(struct pci_dev *dev)
4485 {
4486 	u8 cacheline_size;
4487 
4488 	if (!pci_cache_line_size)
4489 		return -EINVAL;
4490 
4491 	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4492 	   equal to or multiple of the right value. */
4493 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4494 	if (cacheline_size >= pci_cache_line_size &&
4495 	    (cacheline_size % pci_cache_line_size) == 0)
4496 		return 0;
4497 
4498 	/* Write the correct value. */
4499 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4500 	/* Read it back. */
4501 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4502 	if (cacheline_size == pci_cache_line_size)
4503 		return 0;
4504 
4505 	pci_dbg(dev, "cache line size of %d is not supported\n",
4506 		   pci_cache_line_size << 2);
4507 
4508 	return -EINVAL;
4509 }
4510 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4511 
4512 /**
4513  * pci_set_mwi - enables memory-write-invalidate PCI transaction
4514  * @dev: the PCI device for which MWI is enabled
4515  *
4516  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4517  *
4518  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4519  */
4520 int pci_set_mwi(struct pci_dev *dev)
4521 {
4522 #ifdef PCI_DISABLE_MWI
4523 	return 0;
4524 #else
4525 	int rc;
4526 	u16 cmd;
4527 
4528 	rc = pci_set_cacheline_size(dev);
4529 	if (rc)
4530 		return rc;
4531 
4532 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4533 	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4534 		pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4535 		cmd |= PCI_COMMAND_INVALIDATE;
4536 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4537 	}
4538 	return 0;
4539 #endif
4540 }
4541 EXPORT_SYMBOL(pci_set_mwi);
4542 
4543 /**
4544  * pcim_set_mwi - a device-managed pci_set_mwi()
4545  * @dev: the PCI device for which MWI is enabled
4546  *
4547  * Managed pci_set_mwi().
4548  *
4549  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4550  */
4551 int pcim_set_mwi(struct pci_dev *dev)
4552 {
4553 	struct pci_devres *dr;
4554 
4555 	dr = find_pci_dr(dev);
4556 	if (!dr)
4557 		return -ENOMEM;
4558 
4559 	dr->mwi = 1;
4560 	return pci_set_mwi(dev);
4561 }
4562 EXPORT_SYMBOL(pcim_set_mwi);
4563 
4564 /**
4565  * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4566  * @dev: the PCI device for which MWI is enabled
4567  *
4568  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4569  * Callers are not required to check the return value.
4570  *
4571  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4572  */
4573 int pci_try_set_mwi(struct pci_dev *dev)
4574 {
4575 #ifdef PCI_DISABLE_MWI
4576 	return 0;
4577 #else
4578 	return pci_set_mwi(dev);
4579 #endif
4580 }
4581 EXPORT_SYMBOL(pci_try_set_mwi);
4582 
4583 /**
4584  * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4585  * @dev: the PCI device to disable
4586  *
4587  * Disables PCI Memory-Write-Invalidate transaction on the device
4588  */
4589 void pci_clear_mwi(struct pci_dev *dev)
4590 {
4591 #ifndef PCI_DISABLE_MWI
4592 	u16 cmd;
4593 
4594 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4595 	if (cmd & PCI_COMMAND_INVALIDATE) {
4596 		cmd &= ~PCI_COMMAND_INVALIDATE;
4597 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4598 	}
4599 #endif
4600 }
4601 EXPORT_SYMBOL(pci_clear_mwi);
4602 
4603 /**
4604  * pci_disable_parity - disable parity checking for device
4605  * @dev: the PCI device to operate on
4606  *
4607  * Disable parity checking for device @dev
4608  */
4609 void pci_disable_parity(struct pci_dev *dev)
4610 {
4611 	u16 cmd;
4612 
4613 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4614 	if (cmd & PCI_COMMAND_PARITY) {
4615 		cmd &= ~PCI_COMMAND_PARITY;
4616 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4617 	}
4618 }
4619 
4620 /**
4621  * pci_intx - enables/disables PCI INTx for device dev
4622  * @pdev: the PCI device to operate on
4623  * @enable: boolean: whether to enable or disable PCI INTx
4624  *
4625  * Enables/disables PCI INTx for device @pdev
4626  */
4627 void pci_intx(struct pci_dev *pdev, int enable)
4628 {
4629 	u16 pci_command, new;
4630 
4631 	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4632 
4633 	if (enable)
4634 		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4635 	else
4636 		new = pci_command | PCI_COMMAND_INTX_DISABLE;
4637 
4638 	if (new != pci_command) {
4639 		struct pci_devres *dr;
4640 
4641 		pci_write_config_word(pdev, PCI_COMMAND, new);
4642 
4643 		dr = find_pci_dr(pdev);
4644 		if (dr && !dr->restore_intx) {
4645 			dr->restore_intx = 1;
4646 			dr->orig_intx = !enable;
4647 		}
4648 	}
4649 }
4650 EXPORT_SYMBOL_GPL(pci_intx);
4651 
4652 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4653 {
4654 	struct pci_bus *bus = dev->bus;
4655 	bool mask_updated = true;
4656 	u32 cmd_status_dword;
4657 	u16 origcmd, newcmd;
4658 	unsigned long flags;
4659 	bool irq_pending;
4660 
4661 	/*
4662 	 * We do a single dword read to retrieve both command and status.
4663 	 * Document assumptions that make this possible.
4664 	 */
4665 	BUILD_BUG_ON(PCI_COMMAND % 4);
4666 	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4667 
4668 	raw_spin_lock_irqsave(&pci_lock, flags);
4669 
4670 	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4671 
4672 	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4673 
4674 	/*
4675 	 * Check interrupt status register to see whether our device
4676 	 * triggered the interrupt (when masking) or the next IRQ is
4677 	 * already pending (when unmasking).
4678 	 */
4679 	if (mask != irq_pending) {
4680 		mask_updated = false;
4681 		goto done;
4682 	}
4683 
4684 	origcmd = cmd_status_dword;
4685 	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4686 	if (mask)
4687 		newcmd |= PCI_COMMAND_INTX_DISABLE;
4688 	if (newcmd != origcmd)
4689 		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4690 
4691 done:
4692 	raw_spin_unlock_irqrestore(&pci_lock, flags);
4693 
4694 	return mask_updated;
4695 }
4696 
4697 /**
4698  * pci_check_and_mask_intx - mask INTx on pending interrupt
4699  * @dev: the PCI device to operate on
4700  *
4701  * Check if the device dev has its INTx line asserted, mask it and return
4702  * true in that case. False is returned if no interrupt was pending.
4703  */
4704 bool pci_check_and_mask_intx(struct pci_dev *dev)
4705 {
4706 	return pci_check_and_set_intx_mask(dev, true);
4707 }
4708 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4709 
4710 /**
4711  * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4712  * @dev: the PCI device to operate on
4713  *
4714  * Check if the device dev has its INTx line asserted, unmask it if not and
4715  * return true. False is returned and the mask remains active if there was
4716  * still an interrupt pending.
4717  */
4718 bool pci_check_and_unmask_intx(struct pci_dev *dev)
4719 {
4720 	return pci_check_and_set_intx_mask(dev, false);
4721 }
4722 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4723 
4724 /**
4725  * pci_wait_for_pending_transaction - wait for pending transaction
4726  * @dev: the PCI device to operate on
4727  *
4728  * Return 0 if transaction is pending 1 otherwise.
4729  */
4730 int pci_wait_for_pending_transaction(struct pci_dev *dev)
4731 {
4732 	if (!pci_is_pcie(dev))
4733 		return 1;
4734 
4735 	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4736 				    PCI_EXP_DEVSTA_TRPND);
4737 }
4738 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4739 
4740 /**
4741  * pcie_flr - initiate a PCIe function level reset
4742  * @dev: device to reset
4743  *
4744  * Initiate a function level reset unconditionally on @dev without
4745  * checking any flags and DEVCAP
4746  */
4747 int pcie_flr(struct pci_dev *dev)
4748 {
4749 	if (!pci_wait_for_pending_transaction(dev))
4750 		pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4751 
4752 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4753 
4754 	if (dev->imm_ready)
4755 		return 0;
4756 
4757 	/*
4758 	 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4759 	 * 100ms, but may silently discard requests while the FLR is in
4760 	 * progress.  Wait 100ms before trying to access the device.
4761 	 */
4762 	msleep(100);
4763 
4764 	return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4765 }
4766 EXPORT_SYMBOL_GPL(pcie_flr);
4767 
4768 /**
4769  * pcie_reset_flr - initiate a PCIe function level reset
4770  * @dev: device to reset
4771  * @probe: if true, return 0 if device can be reset this way
4772  *
4773  * Initiate a function level reset on @dev.
4774  */
4775 int pcie_reset_flr(struct pci_dev *dev, bool probe)
4776 {
4777 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4778 		return -ENOTTY;
4779 
4780 	if (!(dev->devcap & PCI_EXP_DEVCAP_FLR))
4781 		return -ENOTTY;
4782 
4783 	if (probe)
4784 		return 0;
4785 
4786 	return pcie_flr(dev);
4787 }
4788 EXPORT_SYMBOL_GPL(pcie_reset_flr);
4789 
4790 static int pci_af_flr(struct pci_dev *dev, bool probe)
4791 {
4792 	int pos;
4793 	u8 cap;
4794 
4795 	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4796 	if (!pos)
4797 		return -ENOTTY;
4798 
4799 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4800 		return -ENOTTY;
4801 
4802 	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4803 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4804 		return -ENOTTY;
4805 
4806 	if (probe)
4807 		return 0;
4808 
4809 	/*
4810 	 * Wait for Transaction Pending bit to clear.  A word-aligned test
4811 	 * is used, so we use the control offset rather than status and shift
4812 	 * the test bit to match.
4813 	 */
4814 	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4815 				 PCI_AF_STATUS_TP << 8))
4816 		pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4817 
4818 	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4819 
4820 	if (dev->imm_ready)
4821 		return 0;
4822 
4823 	/*
4824 	 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4825 	 * updated 27 July 2006; a device must complete an FLR within
4826 	 * 100ms, but may silently discard requests while the FLR is in
4827 	 * progress.  Wait 100ms before trying to access the device.
4828 	 */
4829 	msleep(100);
4830 
4831 	return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4832 }
4833 
4834 /**
4835  * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4836  * @dev: Device to reset.
4837  * @probe: if true, return 0 if the device can be reset this way.
4838  *
4839  * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4840  * unset, it will be reinitialized internally when going from PCI_D3hot to
4841  * PCI_D0.  If that's the case and the device is not in a low-power state
4842  * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4843  *
4844  * NOTE: This causes the caller to sleep for twice the device power transition
4845  * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4846  * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4847  * Moreover, only devices in D0 can be reset by this function.
4848  */
4849 static int pci_pm_reset(struct pci_dev *dev, bool probe)
4850 {
4851 	u16 csr;
4852 
4853 	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4854 		return -ENOTTY;
4855 
4856 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4857 	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4858 		return -ENOTTY;
4859 
4860 	if (probe)
4861 		return 0;
4862 
4863 	if (dev->current_state != PCI_D0)
4864 		return -EINVAL;
4865 
4866 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4867 	csr |= PCI_D3hot;
4868 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4869 	pci_dev_d3_sleep(dev);
4870 
4871 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4872 	csr |= PCI_D0;
4873 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4874 	pci_dev_d3_sleep(dev);
4875 
4876 	return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4877 }
4878 
4879 /**
4880  * pcie_wait_for_link_delay - Wait until link is active or inactive
4881  * @pdev: Bridge device
4882  * @active: waiting for active or inactive?
4883  * @delay: Delay to wait after link has become active (in ms)
4884  *
4885  * Use this to wait till link becomes active or inactive.
4886  */
4887 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4888 				     int delay)
4889 {
4890 	int timeout = 1000;
4891 	bool ret;
4892 	u16 lnk_status;
4893 
4894 	/*
4895 	 * Some controllers might not implement link active reporting. In this
4896 	 * case, we wait for 1000 ms + any delay requested by the caller.
4897 	 */
4898 	if (!pdev->link_active_reporting) {
4899 		msleep(timeout + delay);
4900 		return true;
4901 	}
4902 
4903 	/*
4904 	 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4905 	 * after which we should expect an link active if the reset was
4906 	 * successful. If so, software must wait a minimum 100ms before sending
4907 	 * configuration requests to devices downstream this port.
4908 	 *
4909 	 * If the link fails to activate, either the device was physically
4910 	 * removed or the link is permanently failed.
4911 	 */
4912 	if (active)
4913 		msleep(20);
4914 	for (;;) {
4915 		pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
4916 		ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA);
4917 		if (ret == active)
4918 			break;
4919 		if (timeout <= 0)
4920 			break;
4921 		msleep(10);
4922 		timeout -= 10;
4923 	}
4924 	if (active && ret)
4925 		msleep(delay);
4926 
4927 	return ret == active;
4928 }
4929 
4930 /**
4931  * pcie_wait_for_link - Wait until link is active or inactive
4932  * @pdev: Bridge device
4933  * @active: waiting for active or inactive?
4934  *
4935  * Use this to wait till link becomes active or inactive.
4936  */
4937 bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4938 {
4939 	return pcie_wait_for_link_delay(pdev, active, 100);
4940 }
4941 
4942 /*
4943  * Find maximum D3cold delay required by all the devices on the bus.  The
4944  * spec says 100 ms, but firmware can lower it and we allow drivers to
4945  * increase it as well.
4946  *
4947  * Called with @pci_bus_sem locked for reading.
4948  */
4949 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
4950 {
4951 	const struct pci_dev *pdev;
4952 	int min_delay = 100;
4953 	int max_delay = 0;
4954 
4955 	list_for_each_entry(pdev, &bus->devices, bus_list) {
4956 		if (pdev->d3cold_delay < min_delay)
4957 			min_delay = pdev->d3cold_delay;
4958 		if (pdev->d3cold_delay > max_delay)
4959 			max_delay = pdev->d3cold_delay;
4960 	}
4961 
4962 	return max(min_delay, max_delay);
4963 }
4964 
4965 /**
4966  * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4967  * @dev: PCI bridge
4968  *
4969  * Handle necessary delays before access to the devices on the secondary
4970  * side of the bridge are permitted after D3cold to D0 transition.
4971  *
4972  * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4973  * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4974  * 4.3.2.
4975  */
4976 void pci_bridge_wait_for_secondary_bus(struct pci_dev *dev)
4977 {
4978 	struct pci_dev *child;
4979 	int delay;
4980 
4981 	if (pci_dev_is_disconnected(dev))
4982 		return;
4983 
4984 	if (!pci_is_bridge(dev) || !dev->bridge_d3)
4985 		return;
4986 
4987 	down_read(&pci_bus_sem);
4988 
4989 	/*
4990 	 * We only deal with devices that are present currently on the bus.
4991 	 * For any hot-added devices the access delay is handled in pciehp
4992 	 * board_added(). In case of ACPI hotplug the firmware is expected
4993 	 * to configure the devices before OS is notified.
4994 	 */
4995 	if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
4996 		up_read(&pci_bus_sem);
4997 		return;
4998 	}
4999 
5000 	/* Take d3cold_delay requirements into account */
5001 	delay = pci_bus_max_d3cold_delay(dev->subordinate);
5002 	if (!delay) {
5003 		up_read(&pci_bus_sem);
5004 		return;
5005 	}
5006 
5007 	child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
5008 				 bus_list);
5009 	up_read(&pci_bus_sem);
5010 
5011 	/*
5012 	 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
5013 	 * accessing the device after reset (that is 1000 ms + 100 ms). In
5014 	 * practice this should not be needed because we don't do power
5015 	 * management for them (see pci_bridge_d3_possible()).
5016 	 */
5017 	if (!pci_is_pcie(dev)) {
5018 		pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
5019 		msleep(1000 + delay);
5020 		return;
5021 	}
5022 
5023 	/*
5024 	 * For PCIe downstream and root ports that do not support speeds
5025 	 * greater than 5 GT/s need to wait minimum 100 ms. For higher
5026 	 * speeds (gen3) we need to wait first for the data link layer to
5027 	 * become active.
5028 	 *
5029 	 * However, 100 ms is the minimum and the PCIe spec says the
5030 	 * software must allow at least 1s before it can determine that the
5031 	 * device that did not respond is a broken device. There is
5032 	 * evidence that 100 ms is not always enough, for example certain
5033 	 * Titan Ridge xHCI controller does not always respond to
5034 	 * configuration requests if we only wait for 100 ms (see
5035 	 * https://bugzilla.kernel.org/show_bug.cgi?id=203885).
5036 	 *
5037 	 * Therefore we wait for 100 ms and check for the device presence.
5038 	 * If it is still not present give it an additional 100 ms.
5039 	 */
5040 	if (!pcie_downstream_port(dev))
5041 		return;
5042 
5043 	if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
5044 		pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
5045 		msleep(delay);
5046 	} else {
5047 		pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
5048 			delay);
5049 		if (!pcie_wait_for_link_delay(dev, true, delay)) {
5050 			/* Did not train, no need to wait any further */
5051 			pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
5052 			return;
5053 		}
5054 	}
5055 
5056 	if (!pci_device_is_present(child)) {
5057 		pci_dbg(child, "waiting additional %d ms to become accessible\n", delay);
5058 		msleep(delay);
5059 	}
5060 }
5061 
5062 void pci_reset_secondary_bus(struct pci_dev *dev)
5063 {
5064 	u16 ctrl;
5065 
5066 	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
5067 	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
5068 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
5069 
5070 	/*
5071 	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
5072 	 * this to 2ms to ensure that we meet the minimum requirement.
5073 	 */
5074 	msleep(2);
5075 
5076 	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
5077 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
5078 
5079 	/*
5080 	 * Trhfa for conventional PCI is 2^25 clock cycles.
5081 	 * Assuming a minimum 33MHz clock this results in a 1s
5082 	 * delay before we can consider subordinate devices to
5083 	 * be re-initialized.  PCIe has some ways to shorten this,
5084 	 * but we don't make use of them yet.
5085 	 */
5086 	ssleep(1);
5087 }
5088 
5089 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
5090 {
5091 	pci_reset_secondary_bus(dev);
5092 }
5093 
5094 /**
5095  * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
5096  * @dev: Bridge device
5097  *
5098  * Use the bridge control register to assert reset on the secondary bus.
5099  * Devices on the secondary bus are left in power-on state.
5100  */
5101 int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
5102 {
5103 	pcibios_reset_secondary_bus(dev);
5104 
5105 	return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS);
5106 }
5107 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
5108 
5109 static int pci_parent_bus_reset(struct pci_dev *dev, bool probe)
5110 {
5111 	struct pci_dev *pdev;
5112 
5113 	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
5114 	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5115 		return -ENOTTY;
5116 
5117 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
5118 		if (pdev != dev)
5119 			return -ENOTTY;
5120 
5121 	if (probe)
5122 		return 0;
5123 
5124 	return pci_bridge_secondary_bus_reset(dev->bus->self);
5125 }
5126 
5127 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe)
5128 {
5129 	int rc = -ENOTTY;
5130 
5131 	if (!hotplug || !try_module_get(hotplug->owner))
5132 		return rc;
5133 
5134 	if (hotplug->ops->reset_slot)
5135 		rc = hotplug->ops->reset_slot(hotplug, probe);
5136 
5137 	module_put(hotplug->owner);
5138 
5139 	return rc;
5140 }
5141 
5142 static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe)
5143 {
5144 	if (dev->multifunction || dev->subordinate || !dev->slot ||
5145 	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5146 		return -ENOTTY;
5147 
5148 	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
5149 }
5150 
5151 static int pci_reset_bus_function(struct pci_dev *dev, bool probe)
5152 {
5153 	int rc;
5154 
5155 	rc = pci_dev_reset_slot_function(dev, probe);
5156 	if (rc != -ENOTTY)
5157 		return rc;
5158 	return pci_parent_bus_reset(dev, probe);
5159 }
5160 
5161 void pci_dev_lock(struct pci_dev *dev)
5162 {
5163 	/* block PM suspend, driver probe, etc. */
5164 	device_lock(&dev->dev);
5165 	pci_cfg_access_lock(dev);
5166 }
5167 EXPORT_SYMBOL_GPL(pci_dev_lock);
5168 
5169 /* Return 1 on successful lock, 0 on contention */
5170 int pci_dev_trylock(struct pci_dev *dev)
5171 {
5172 	if (device_trylock(&dev->dev)) {
5173 		if (pci_cfg_access_trylock(dev))
5174 			return 1;
5175 		device_unlock(&dev->dev);
5176 	}
5177 
5178 	return 0;
5179 }
5180 EXPORT_SYMBOL_GPL(pci_dev_trylock);
5181 
5182 void pci_dev_unlock(struct pci_dev *dev)
5183 {
5184 	pci_cfg_access_unlock(dev);
5185 	device_unlock(&dev->dev);
5186 }
5187 EXPORT_SYMBOL_GPL(pci_dev_unlock);
5188 
5189 static void pci_dev_save_and_disable(struct pci_dev *dev)
5190 {
5191 	const struct pci_error_handlers *err_handler =
5192 			dev->driver ? dev->driver->err_handler : NULL;
5193 
5194 	/*
5195 	 * dev->driver->err_handler->reset_prepare() is protected against
5196 	 * races with ->remove() by the device lock, which must be held by
5197 	 * the caller.
5198 	 */
5199 	if (err_handler && err_handler->reset_prepare)
5200 		err_handler->reset_prepare(dev);
5201 
5202 	/*
5203 	 * Wake-up device prior to save.  PM registers default to D0 after
5204 	 * reset and a simple register restore doesn't reliably return
5205 	 * to a non-D0 state anyway.
5206 	 */
5207 	pci_set_power_state(dev, PCI_D0);
5208 
5209 	pci_save_state(dev);
5210 	/*
5211 	 * Disable the device by clearing the Command register, except for
5212 	 * INTx-disable which is set.  This not only disables MMIO and I/O port
5213 	 * BARs, but also prevents the device from being Bus Master, preventing
5214 	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
5215 	 * compliant devices, INTx-disable prevents legacy interrupts.
5216 	 */
5217 	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
5218 }
5219 
5220 static void pci_dev_restore(struct pci_dev *dev)
5221 {
5222 	const struct pci_error_handlers *err_handler =
5223 			dev->driver ? dev->driver->err_handler : NULL;
5224 
5225 	pci_restore_state(dev);
5226 
5227 	/*
5228 	 * dev->driver->err_handler->reset_done() is protected against
5229 	 * races with ->remove() by the device lock, which must be held by
5230 	 * the caller.
5231 	 */
5232 	if (err_handler && err_handler->reset_done)
5233 		err_handler->reset_done(dev);
5234 }
5235 
5236 /* dev->reset_methods[] is a 0-terminated list of indices into this array */
5237 static const struct pci_reset_fn_method pci_reset_fn_methods[] = {
5238 	{ },
5239 	{ pci_dev_specific_reset, .name = "device_specific" },
5240 	{ pci_dev_acpi_reset, .name = "acpi" },
5241 	{ pcie_reset_flr, .name = "flr" },
5242 	{ pci_af_flr, .name = "af_flr" },
5243 	{ pci_pm_reset, .name = "pm" },
5244 	{ pci_reset_bus_function, .name = "bus" },
5245 };
5246 
5247 static ssize_t reset_method_show(struct device *dev,
5248 				 struct device_attribute *attr, char *buf)
5249 {
5250 	struct pci_dev *pdev = to_pci_dev(dev);
5251 	ssize_t len = 0;
5252 	int i, m;
5253 
5254 	for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5255 		m = pdev->reset_methods[i];
5256 		if (!m)
5257 			break;
5258 
5259 		len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "",
5260 				     pci_reset_fn_methods[m].name);
5261 	}
5262 
5263 	if (len)
5264 		len += sysfs_emit_at(buf, len, "\n");
5265 
5266 	return len;
5267 }
5268 
5269 static int reset_method_lookup(const char *name)
5270 {
5271 	int m;
5272 
5273 	for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5274 		if (sysfs_streq(name, pci_reset_fn_methods[m].name))
5275 			return m;
5276 	}
5277 
5278 	return 0;	/* not found */
5279 }
5280 
5281 static ssize_t reset_method_store(struct device *dev,
5282 				  struct device_attribute *attr,
5283 				  const char *buf, size_t count)
5284 {
5285 	struct pci_dev *pdev = to_pci_dev(dev);
5286 	char *options, *name;
5287 	int m, n;
5288 	u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 };
5289 
5290 	if (sysfs_streq(buf, "")) {
5291 		pdev->reset_methods[0] = 0;
5292 		pci_warn(pdev, "All device reset methods disabled by user");
5293 		return count;
5294 	}
5295 
5296 	if (sysfs_streq(buf, "default")) {
5297 		pci_init_reset_methods(pdev);
5298 		return count;
5299 	}
5300 
5301 	options = kstrndup(buf, count, GFP_KERNEL);
5302 	if (!options)
5303 		return -ENOMEM;
5304 
5305 	n = 0;
5306 	while ((name = strsep(&options, " ")) != NULL) {
5307 		if (sysfs_streq(name, ""))
5308 			continue;
5309 
5310 		name = strim(name);
5311 
5312 		m = reset_method_lookup(name);
5313 		if (!m) {
5314 			pci_err(pdev, "Invalid reset method '%s'", name);
5315 			goto error;
5316 		}
5317 
5318 		if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) {
5319 			pci_err(pdev, "Unsupported reset method '%s'", name);
5320 			goto error;
5321 		}
5322 
5323 		if (n == PCI_NUM_RESET_METHODS - 1) {
5324 			pci_err(pdev, "Too many reset methods\n");
5325 			goto error;
5326 		}
5327 
5328 		reset_methods[n++] = m;
5329 	}
5330 
5331 	reset_methods[n] = 0;
5332 
5333 	/* Warn if dev-specific supported but not highest priority */
5334 	if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 &&
5335 	    reset_methods[0] != 1)
5336 		pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user");
5337 	memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods));
5338 	kfree(options);
5339 	return count;
5340 
5341 error:
5342 	/* Leave previous methods unchanged */
5343 	kfree(options);
5344 	return -EINVAL;
5345 }
5346 static DEVICE_ATTR_RW(reset_method);
5347 
5348 static struct attribute *pci_dev_reset_method_attrs[] = {
5349 	&dev_attr_reset_method.attr,
5350 	NULL,
5351 };
5352 
5353 static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj,
5354 						    struct attribute *a, int n)
5355 {
5356 	struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj));
5357 
5358 	if (!pci_reset_supported(pdev))
5359 		return 0;
5360 
5361 	return a->mode;
5362 }
5363 
5364 const struct attribute_group pci_dev_reset_method_attr_group = {
5365 	.attrs = pci_dev_reset_method_attrs,
5366 	.is_visible = pci_dev_reset_method_attr_is_visible,
5367 };
5368 
5369 /**
5370  * __pci_reset_function_locked - reset a PCI device function while holding
5371  * the @dev mutex lock.
5372  * @dev: PCI device to reset
5373  *
5374  * Some devices allow an individual function to be reset without affecting
5375  * other functions in the same device.  The PCI device must be responsive
5376  * to PCI config space in order to use this function.
5377  *
5378  * The device function is presumed to be unused and the caller is holding
5379  * the device mutex lock when this function is called.
5380  *
5381  * Resetting the device will make the contents of PCI configuration space
5382  * random, so any caller of this must be prepared to reinitialise the
5383  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5384  * etc.
5385  *
5386  * Returns 0 if the device function was successfully reset or negative if the
5387  * device doesn't support resetting a single function.
5388  */
5389 int __pci_reset_function_locked(struct pci_dev *dev)
5390 {
5391 	int i, m, rc;
5392 
5393 	might_sleep();
5394 
5395 	/*
5396 	 * A reset method returns -ENOTTY if it doesn't support this device and
5397 	 * we should try the next method.
5398 	 *
5399 	 * If it returns 0 (success), we're finished.  If it returns any other
5400 	 * error, we're also finished: this indicates that further reset
5401 	 * mechanisms might be broken on the device.
5402 	 */
5403 	for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5404 		m = dev->reset_methods[i];
5405 		if (!m)
5406 			return -ENOTTY;
5407 
5408 		rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET);
5409 		if (!rc)
5410 			return 0;
5411 		if (rc != -ENOTTY)
5412 			return rc;
5413 	}
5414 
5415 	return -ENOTTY;
5416 }
5417 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5418 
5419 /**
5420  * pci_init_reset_methods - check whether device can be safely reset
5421  * and store supported reset mechanisms.
5422  * @dev: PCI device to check for reset mechanisms
5423  *
5424  * Some devices allow an individual function to be reset without affecting
5425  * other functions in the same device.  The PCI device must be in D0-D3hot
5426  * state.
5427  *
5428  * Stores reset mechanisms supported by device in reset_methods byte array
5429  * which is a member of struct pci_dev.
5430  */
5431 void pci_init_reset_methods(struct pci_dev *dev)
5432 {
5433 	int m, i, rc;
5434 
5435 	BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS);
5436 
5437 	might_sleep();
5438 
5439 	i = 0;
5440 	for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5441 		rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE);
5442 		if (!rc)
5443 			dev->reset_methods[i++] = m;
5444 		else if (rc != -ENOTTY)
5445 			break;
5446 	}
5447 
5448 	dev->reset_methods[i] = 0;
5449 }
5450 
5451 /**
5452  * pci_reset_function - quiesce and reset a PCI device function
5453  * @dev: PCI device to reset
5454  *
5455  * Some devices allow an individual function to be reset without affecting
5456  * other functions in the same device.  The PCI device must be responsive
5457  * to PCI config space in order to use this function.
5458  *
5459  * This function does not just reset the PCI portion of a device, but
5460  * clears all the state associated with the device.  This function differs
5461  * from __pci_reset_function_locked() in that it saves and restores device state
5462  * over the reset and takes the PCI device lock.
5463  *
5464  * Returns 0 if the device function was successfully reset or negative if the
5465  * device doesn't support resetting a single function.
5466  */
5467 int pci_reset_function(struct pci_dev *dev)
5468 {
5469 	int rc;
5470 
5471 	if (!pci_reset_supported(dev))
5472 		return -ENOTTY;
5473 
5474 	pci_dev_lock(dev);
5475 	pci_dev_save_and_disable(dev);
5476 
5477 	rc = __pci_reset_function_locked(dev);
5478 
5479 	pci_dev_restore(dev);
5480 	pci_dev_unlock(dev);
5481 
5482 	return rc;
5483 }
5484 EXPORT_SYMBOL_GPL(pci_reset_function);
5485 
5486 /**
5487  * pci_reset_function_locked - quiesce and reset a PCI device function
5488  * @dev: PCI device to reset
5489  *
5490  * Some devices allow an individual function to be reset without affecting
5491  * other functions in the same device.  The PCI device must be responsive
5492  * to PCI config space in order to use this function.
5493  *
5494  * This function does not just reset the PCI portion of a device, but
5495  * clears all the state associated with the device.  This function differs
5496  * from __pci_reset_function_locked() in that it saves and restores device state
5497  * over the reset.  It also differs from pci_reset_function() in that it
5498  * requires the PCI device lock to be held.
5499  *
5500  * Returns 0 if the device function was successfully reset or negative if the
5501  * device doesn't support resetting a single function.
5502  */
5503 int pci_reset_function_locked(struct pci_dev *dev)
5504 {
5505 	int rc;
5506 
5507 	if (!pci_reset_supported(dev))
5508 		return -ENOTTY;
5509 
5510 	pci_dev_save_and_disable(dev);
5511 
5512 	rc = __pci_reset_function_locked(dev);
5513 
5514 	pci_dev_restore(dev);
5515 
5516 	return rc;
5517 }
5518 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5519 
5520 /**
5521  * pci_try_reset_function - quiesce and reset a PCI device function
5522  * @dev: PCI device to reset
5523  *
5524  * Same as above, except return -EAGAIN if unable to lock device.
5525  */
5526 int pci_try_reset_function(struct pci_dev *dev)
5527 {
5528 	int rc;
5529 
5530 	if (!pci_reset_supported(dev))
5531 		return -ENOTTY;
5532 
5533 	if (!pci_dev_trylock(dev))
5534 		return -EAGAIN;
5535 
5536 	pci_dev_save_and_disable(dev);
5537 	rc = __pci_reset_function_locked(dev);
5538 	pci_dev_restore(dev);
5539 	pci_dev_unlock(dev);
5540 
5541 	return rc;
5542 }
5543 EXPORT_SYMBOL_GPL(pci_try_reset_function);
5544 
5545 /* Do any devices on or below this bus prevent a bus reset? */
5546 static bool pci_bus_resetable(struct pci_bus *bus)
5547 {
5548 	struct pci_dev *dev;
5549 
5550 
5551 	if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5552 		return false;
5553 
5554 	list_for_each_entry(dev, &bus->devices, bus_list) {
5555 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5556 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5557 			return false;
5558 	}
5559 
5560 	return true;
5561 }
5562 
5563 /* Lock devices from the top of the tree down */
5564 static void pci_bus_lock(struct pci_bus *bus)
5565 {
5566 	struct pci_dev *dev;
5567 
5568 	list_for_each_entry(dev, &bus->devices, bus_list) {
5569 		pci_dev_lock(dev);
5570 		if (dev->subordinate)
5571 			pci_bus_lock(dev->subordinate);
5572 	}
5573 }
5574 
5575 /* Unlock devices from the bottom of the tree up */
5576 static void pci_bus_unlock(struct pci_bus *bus)
5577 {
5578 	struct pci_dev *dev;
5579 
5580 	list_for_each_entry(dev, &bus->devices, bus_list) {
5581 		if (dev->subordinate)
5582 			pci_bus_unlock(dev->subordinate);
5583 		pci_dev_unlock(dev);
5584 	}
5585 }
5586 
5587 /* Return 1 on successful lock, 0 on contention */
5588 static int pci_bus_trylock(struct pci_bus *bus)
5589 {
5590 	struct pci_dev *dev;
5591 
5592 	list_for_each_entry(dev, &bus->devices, bus_list) {
5593 		if (!pci_dev_trylock(dev))
5594 			goto unlock;
5595 		if (dev->subordinate) {
5596 			if (!pci_bus_trylock(dev->subordinate)) {
5597 				pci_dev_unlock(dev);
5598 				goto unlock;
5599 			}
5600 		}
5601 	}
5602 	return 1;
5603 
5604 unlock:
5605 	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5606 		if (dev->subordinate)
5607 			pci_bus_unlock(dev->subordinate);
5608 		pci_dev_unlock(dev);
5609 	}
5610 	return 0;
5611 }
5612 
5613 /* Do any devices on or below this slot prevent a bus reset? */
5614 static bool pci_slot_resetable(struct pci_slot *slot)
5615 {
5616 	struct pci_dev *dev;
5617 
5618 	if (slot->bus->self &&
5619 	    (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5620 		return false;
5621 
5622 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5623 		if (!dev->slot || dev->slot != slot)
5624 			continue;
5625 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5626 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5627 			return false;
5628 	}
5629 
5630 	return true;
5631 }
5632 
5633 /* Lock devices from the top of the tree down */
5634 static void pci_slot_lock(struct pci_slot *slot)
5635 {
5636 	struct pci_dev *dev;
5637 
5638 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5639 		if (!dev->slot || dev->slot != slot)
5640 			continue;
5641 		pci_dev_lock(dev);
5642 		if (dev->subordinate)
5643 			pci_bus_lock(dev->subordinate);
5644 	}
5645 }
5646 
5647 /* Unlock devices from the bottom of the tree up */
5648 static void pci_slot_unlock(struct pci_slot *slot)
5649 {
5650 	struct pci_dev *dev;
5651 
5652 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5653 		if (!dev->slot || dev->slot != slot)
5654 			continue;
5655 		if (dev->subordinate)
5656 			pci_bus_unlock(dev->subordinate);
5657 		pci_dev_unlock(dev);
5658 	}
5659 }
5660 
5661 /* Return 1 on successful lock, 0 on contention */
5662 static int pci_slot_trylock(struct pci_slot *slot)
5663 {
5664 	struct pci_dev *dev;
5665 
5666 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5667 		if (!dev->slot || dev->slot != slot)
5668 			continue;
5669 		if (!pci_dev_trylock(dev))
5670 			goto unlock;
5671 		if (dev->subordinate) {
5672 			if (!pci_bus_trylock(dev->subordinate)) {
5673 				pci_dev_unlock(dev);
5674 				goto unlock;
5675 			}
5676 		}
5677 	}
5678 	return 1;
5679 
5680 unlock:
5681 	list_for_each_entry_continue_reverse(dev,
5682 					     &slot->bus->devices, bus_list) {
5683 		if (!dev->slot || dev->slot != slot)
5684 			continue;
5685 		if (dev->subordinate)
5686 			pci_bus_unlock(dev->subordinate);
5687 		pci_dev_unlock(dev);
5688 	}
5689 	return 0;
5690 }
5691 
5692 /*
5693  * Save and disable devices from the top of the tree down while holding
5694  * the @dev mutex lock for the entire tree.
5695  */
5696 static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5697 {
5698 	struct pci_dev *dev;
5699 
5700 	list_for_each_entry(dev, &bus->devices, bus_list) {
5701 		pci_dev_save_and_disable(dev);
5702 		if (dev->subordinate)
5703 			pci_bus_save_and_disable_locked(dev->subordinate);
5704 	}
5705 }
5706 
5707 /*
5708  * Restore devices from top of the tree down while holding @dev mutex lock
5709  * for the entire tree.  Parent bridges need to be restored before we can
5710  * get to subordinate devices.
5711  */
5712 static void pci_bus_restore_locked(struct pci_bus *bus)
5713 {
5714 	struct pci_dev *dev;
5715 
5716 	list_for_each_entry(dev, &bus->devices, bus_list) {
5717 		pci_dev_restore(dev);
5718 		if (dev->subordinate)
5719 			pci_bus_restore_locked(dev->subordinate);
5720 	}
5721 }
5722 
5723 /*
5724  * Save and disable devices from the top of the tree down while holding
5725  * the @dev mutex lock for the entire tree.
5726  */
5727 static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5728 {
5729 	struct pci_dev *dev;
5730 
5731 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5732 		if (!dev->slot || dev->slot != slot)
5733 			continue;
5734 		pci_dev_save_and_disable(dev);
5735 		if (dev->subordinate)
5736 			pci_bus_save_and_disable_locked(dev->subordinate);
5737 	}
5738 }
5739 
5740 /*
5741  * Restore devices from top of the tree down while holding @dev mutex lock
5742  * for the entire tree.  Parent bridges need to be restored before we can
5743  * get to subordinate devices.
5744  */
5745 static void pci_slot_restore_locked(struct pci_slot *slot)
5746 {
5747 	struct pci_dev *dev;
5748 
5749 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5750 		if (!dev->slot || dev->slot != slot)
5751 			continue;
5752 		pci_dev_restore(dev);
5753 		if (dev->subordinate)
5754 			pci_bus_restore_locked(dev->subordinate);
5755 	}
5756 }
5757 
5758 static int pci_slot_reset(struct pci_slot *slot, bool probe)
5759 {
5760 	int rc;
5761 
5762 	if (!slot || !pci_slot_resetable(slot))
5763 		return -ENOTTY;
5764 
5765 	if (!probe)
5766 		pci_slot_lock(slot);
5767 
5768 	might_sleep();
5769 
5770 	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5771 
5772 	if (!probe)
5773 		pci_slot_unlock(slot);
5774 
5775 	return rc;
5776 }
5777 
5778 /**
5779  * pci_probe_reset_slot - probe whether a PCI slot can be reset
5780  * @slot: PCI slot to probe
5781  *
5782  * Return 0 if slot can be reset, negative if a slot reset is not supported.
5783  */
5784 int pci_probe_reset_slot(struct pci_slot *slot)
5785 {
5786 	return pci_slot_reset(slot, PCI_RESET_PROBE);
5787 }
5788 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5789 
5790 /**
5791  * __pci_reset_slot - Try to reset a PCI slot
5792  * @slot: PCI slot to reset
5793  *
5794  * A PCI bus may host multiple slots, each slot may support a reset mechanism
5795  * independent of other slots.  For instance, some slots may support slot power
5796  * control.  In the case of a 1:1 bus to slot architecture, this function may
5797  * wrap the bus reset to avoid spurious slot related events such as hotplug.
5798  * Generally a slot reset should be attempted before a bus reset.  All of the
5799  * function of the slot and any subordinate buses behind the slot are reset
5800  * through this function.  PCI config space of all devices in the slot and
5801  * behind the slot is saved before and restored after reset.
5802  *
5803  * Same as above except return -EAGAIN if the slot cannot be locked
5804  */
5805 static int __pci_reset_slot(struct pci_slot *slot)
5806 {
5807 	int rc;
5808 
5809 	rc = pci_slot_reset(slot, PCI_RESET_PROBE);
5810 	if (rc)
5811 		return rc;
5812 
5813 	if (pci_slot_trylock(slot)) {
5814 		pci_slot_save_and_disable_locked(slot);
5815 		might_sleep();
5816 		rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET);
5817 		pci_slot_restore_locked(slot);
5818 		pci_slot_unlock(slot);
5819 	} else
5820 		rc = -EAGAIN;
5821 
5822 	return rc;
5823 }
5824 
5825 static int pci_bus_reset(struct pci_bus *bus, bool probe)
5826 {
5827 	int ret;
5828 
5829 	if (!bus->self || !pci_bus_resetable(bus))
5830 		return -ENOTTY;
5831 
5832 	if (probe)
5833 		return 0;
5834 
5835 	pci_bus_lock(bus);
5836 
5837 	might_sleep();
5838 
5839 	ret = pci_bridge_secondary_bus_reset(bus->self);
5840 
5841 	pci_bus_unlock(bus);
5842 
5843 	return ret;
5844 }
5845 
5846 /**
5847  * pci_bus_error_reset - reset the bridge's subordinate bus
5848  * @bridge: The parent device that connects to the bus to reset
5849  *
5850  * This function will first try to reset the slots on this bus if the method is
5851  * available. If slot reset fails or is not available, this will fall back to a
5852  * secondary bus reset.
5853  */
5854 int pci_bus_error_reset(struct pci_dev *bridge)
5855 {
5856 	struct pci_bus *bus = bridge->subordinate;
5857 	struct pci_slot *slot;
5858 
5859 	if (!bus)
5860 		return -ENOTTY;
5861 
5862 	mutex_lock(&pci_slot_mutex);
5863 	if (list_empty(&bus->slots))
5864 		goto bus_reset;
5865 
5866 	list_for_each_entry(slot, &bus->slots, list)
5867 		if (pci_probe_reset_slot(slot))
5868 			goto bus_reset;
5869 
5870 	list_for_each_entry(slot, &bus->slots, list)
5871 		if (pci_slot_reset(slot, PCI_RESET_DO_RESET))
5872 			goto bus_reset;
5873 
5874 	mutex_unlock(&pci_slot_mutex);
5875 	return 0;
5876 bus_reset:
5877 	mutex_unlock(&pci_slot_mutex);
5878 	return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET);
5879 }
5880 
5881 /**
5882  * pci_probe_reset_bus - probe whether a PCI bus can be reset
5883  * @bus: PCI bus to probe
5884  *
5885  * Return 0 if bus can be reset, negative if a bus reset is not supported.
5886  */
5887 int pci_probe_reset_bus(struct pci_bus *bus)
5888 {
5889 	return pci_bus_reset(bus, PCI_RESET_PROBE);
5890 }
5891 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5892 
5893 /**
5894  * __pci_reset_bus - Try to reset a PCI bus
5895  * @bus: top level PCI bus to reset
5896  *
5897  * Same as above except return -EAGAIN if the bus cannot be locked
5898  */
5899 static int __pci_reset_bus(struct pci_bus *bus)
5900 {
5901 	int rc;
5902 
5903 	rc = pci_bus_reset(bus, PCI_RESET_PROBE);
5904 	if (rc)
5905 		return rc;
5906 
5907 	if (pci_bus_trylock(bus)) {
5908 		pci_bus_save_and_disable_locked(bus);
5909 		might_sleep();
5910 		rc = pci_bridge_secondary_bus_reset(bus->self);
5911 		pci_bus_restore_locked(bus);
5912 		pci_bus_unlock(bus);
5913 	} else
5914 		rc = -EAGAIN;
5915 
5916 	return rc;
5917 }
5918 
5919 /**
5920  * pci_reset_bus - Try to reset a PCI bus
5921  * @pdev: top level PCI device to reset via slot/bus
5922  *
5923  * Same as above except return -EAGAIN if the bus cannot be locked
5924  */
5925 int pci_reset_bus(struct pci_dev *pdev)
5926 {
5927 	return (!pci_probe_reset_slot(pdev->slot)) ?
5928 	    __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5929 }
5930 EXPORT_SYMBOL_GPL(pci_reset_bus);
5931 
5932 /**
5933  * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5934  * @dev: PCI device to query
5935  *
5936  * Returns mmrbc: maximum designed memory read count in bytes or
5937  * appropriate error value.
5938  */
5939 int pcix_get_max_mmrbc(struct pci_dev *dev)
5940 {
5941 	int cap;
5942 	u32 stat;
5943 
5944 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5945 	if (!cap)
5946 		return -EINVAL;
5947 
5948 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5949 		return -EINVAL;
5950 
5951 	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
5952 }
5953 EXPORT_SYMBOL(pcix_get_max_mmrbc);
5954 
5955 /**
5956  * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5957  * @dev: PCI device to query
5958  *
5959  * Returns mmrbc: maximum memory read count in bytes or appropriate error
5960  * value.
5961  */
5962 int pcix_get_mmrbc(struct pci_dev *dev)
5963 {
5964 	int cap;
5965 	u16 cmd;
5966 
5967 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5968 	if (!cap)
5969 		return -EINVAL;
5970 
5971 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5972 		return -EINVAL;
5973 
5974 	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
5975 }
5976 EXPORT_SYMBOL(pcix_get_mmrbc);
5977 
5978 /**
5979  * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5980  * @dev: PCI device to query
5981  * @mmrbc: maximum memory read count in bytes
5982  *    valid values are 512, 1024, 2048, 4096
5983  *
5984  * If possible sets maximum memory read byte count, some bridges have errata
5985  * that prevent this.
5986  */
5987 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5988 {
5989 	int cap;
5990 	u32 stat, v, o;
5991 	u16 cmd;
5992 
5993 	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5994 		return -EINVAL;
5995 
5996 	v = ffs(mmrbc) - 10;
5997 
5998 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5999 	if (!cap)
6000 		return -EINVAL;
6001 
6002 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
6003 		return -EINVAL;
6004 
6005 	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
6006 		return -E2BIG;
6007 
6008 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
6009 		return -EINVAL;
6010 
6011 	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
6012 	if (o != v) {
6013 		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
6014 			return -EIO;
6015 
6016 		cmd &= ~PCI_X_CMD_MAX_READ;
6017 		cmd |= v << 2;
6018 		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
6019 			return -EIO;
6020 	}
6021 	return 0;
6022 }
6023 EXPORT_SYMBOL(pcix_set_mmrbc);
6024 
6025 /**
6026  * pcie_get_readrq - get PCI Express read request size
6027  * @dev: PCI device to query
6028  *
6029  * Returns maximum memory read request in bytes or appropriate error value.
6030  */
6031 int pcie_get_readrq(struct pci_dev *dev)
6032 {
6033 	u16 ctl;
6034 
6035 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6036 
6037 	return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6038 }
6039 EXPORT_SYMBOL(pcie_get_readrq);
6040 
6041 /**
6042  * pcie_set_readrq - set PCI Express maximum memory read request
6043  * @dev: PCI device to query
6044  * @rq: maximum memory read count in bytes
6045  *    valid values are 128, 256, 512, 1024, 2048, 4096
6046  *
6047  * If possible sets maximum memory read request in bytes
6048  */
6049 int pcie_set_readrq(struct pci_dev *dev, int rq)
6050 {
6051 	u16 v;
6052 	int ret;
6053 
6054 	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
6055 		return -EINVAL;
6056 
6057 	/*
6058 	 * If using the "performance" PCIe config, we clamp the read rq
6059 	 * size to the max packet size to keep the host bridge from
6060 	 * generating requests larger than we can cope with.
6061 	 */
6062 	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
6063 		int mps = pcie_get_mps(dev);
6064 
6065 		if (mps < rq)
6066 			rq = mps;
6067 	}
6068 
6069 	v = (ffs(rq) - 8) << 12;
6070 
6071 	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6072 						  PCI_EXP_DEVCTL_READRQ, v);
6073 
6074 	return pcibios_err_to_errno(ret);
6075 }
6076 EXPORT_SYMBOL(pcie_set_readrq);
6077 
6078 /**
6079  * pcie_get_mps - get PCI Express maximum payload size
6080  * @dev: PCI device to query
6081  *
6082  * Returns maximum payload size in bytes
6083  */
6084 int pcie_get_mps(struct pci_dev *dev)
6085 {
6086 	u16 ctl;
6087 
6088 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6089 
6090 	return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6091 }
6092 EXPORT_SYMBOL(pcie_get_mps);
6093 
6094 /**
6095  * pcie_set_mps - set PCI Express maximum payload size
6096  * @dev: PCI device to query
6097  * @mps: maximum payload size in bytes
6098  *    valid values are 128, 256, 512, 1024, 2048, 4096
6099  *
6100  * If possible sets maximum payload size
6101  */
6102 int pcie_set_mps(struct pci_dev *dev, int mps)
6103 {
6104 	u16 v;
6105 	int ret;
6106 
6107 	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
6108 		return -EINVAL;
6109 
6110 	v = ffs(mps) - 8;
6111 	if (v > dev->pcie_mpss)
6112 		return -EINVAL;
6113 	v <<= 5;
6114 
6115 	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6116 						  PCI_EXP_DEVCTL_PAYLOAD, v);
6117 
6118 	return pcibios_err_to_errno(ret);
6119 }
6120 EXPORT_SYMBOL(pcie_set_mps);
6121 
6122 /**
6123  * pcie_bandwidth_available - determine minimum link settings of a PCIe
6124  *			      device and its bandwidth limitation
6125  * @dev: PCI device to query
6126  * @limiting_dev: storage for device causing the bandwidth limitation
6127  * @speed: storage for speed of limiting device
6128  * @width: storage for width of limiting device
6129  *
6130  * Walk up the PCI device chain and find the point where the minimum
6131  * bandwidth is available.  Return the bandwidth available there and (if
6132  * limiting_dev, speed, and width pointers are supplied) information about
6133  * that point.  The bandwidth returned is in Mb/s, i.e., megabits/second of
6134  * raw bandwidth.
6135  */
6136 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
6137 			     enum pci_bus_speed *speed,
6138 			     enum pcie_link_width *width)
6139 {
6140 	u16 lnksta;
6141 	enum pci_bus_speed next_speed;
6142 	enum pcie_link_width next_width;
6143 	u32 bw, next_bw;
6144 
6145 	if (speed)
6146 		*speed = PCI_SPEED_UNKNOWN;
6147 	if (width)
6148 		*width = PCIE_LNK_WIDTH_UNKNOWN;
6149 
6150 	bw = 0;
6151 
6152 	while (dev) {
6153 		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
6154 
6155 		next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
6156 		next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
6157 			PCI_EXP_LNKSTA_NLW_SHIFT;
6158 
6159 		next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
6160 
6161 		/* Check if current device limits the total bandwidth */
6162 		if (!bw || next_bw <= bw) {
6163 			bw = next_bw;
6164 
6165 			if (limiting_dev)
6166 				*limiting_dev = dev;
6167 			if (speed)
6168 				*speed = next_speed;
6169 			if (width)
6170 				*width = next_width;
6171 		}
6172 
6173 		dev = pci_upstream_bridge(dev);
6174 	}
6175 
6176 	return bw;
6177 }
6178 EXPORT_SYMBOL(pcie_bandwidth_available);
6179 
6180 /**
6181  * pcie_get_speed_cap - query for the PCI device's link speed capability
6182  * @dev: PCI device to query
6183  *
6184  * Query the PCI device speed capability.  Return the maximum link speed
6185  * supported by the device.
6186  */
6187 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
6188 {
6189 	u32 lnkcap2, lnkcap;
6190 
6191 	/*
6192 	 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18.  The
6193 	 * implementation note there recommends using the Supported Link
6194 	 * Speeds Vector in Link Capabilities 2 when supported.
6195 	 *
6196 	 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
6197 	 * should use the Supported Link Speeds field in Link Capabilities,
6198 	 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
6199 	 */
6200 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
6201 
6202 	/* PCIe r3.0-compliant */
6203 	if (lnkcap2)
6204 		return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
6205 
6206 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6207 	if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
6208 		return PCIE_SPEED_5_0GT;
6209 	else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
6210 		return PCIE_SPEED_2_5GT;
6211 
6212 	return PCI_SPEED_UNKNOWN;
6213 }
6214 EXPORT_SYMBOL(pcie_get_speed_cap);
6215 
6216 /**
6217  * pcie_get_width_cap - query for the PCI device's link width capability
6218  * @dev: PCI device to query
6219  *
6220  * Query the PCI device width capability.  Return the maximum link width
6221  * supported by the device.
6222  */
6223 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
6224 {
6225 	u32 lnkcap;
6226 
6227 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6228 	if (lnkcap)
6229 		return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
6230 
6231 	return PCIE_LNK_WIDTH_UNKNOWN;
6232 }
6233 EXPORT_SYMBOL(pcie_get_width_cap);
6234 
6235 /**
6236  * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
6237  * @dev: PCI device
6238  * @speed: storage for link speed
6239  * @width: storage for link width
6240  *
6241  * Calculate a PCI device's link bandwidth by querying for its link speed
6242  * and width, multiplying them, and applying encoding overhead.  The result
6243  * is in Mb/s, i.e., megabits/second of raw bandwidth.
6244  */
6245 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
6246 			   enum pcie_link_width *width)
6247 {
6248 	*speed = pcie_get_speed_cap(dev);
6249 	*width = pcie_get_width_cap(dev);
6250 
6251 	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
6252 		return 0;
6253 
6254 	return *width * PCIE_SPEED2MBS_ENC(*speed);
6255 }
6256 
6257 /**
6258  * __pcie_print_link_status - Report the PCI device's link speed and width
6259  * @dev: PCI device to query
6260  * @verbose: Print info even when enough bandwidth is available
6261  *
6262  * If the available bandwidth at the device is less than the device is
6263  * capable of, report the device's maximum possible bandwidth and the
6264  * upstream link that limits its performance.  If @verbose, always print
6265  * the available bandwidth, even if the device isn't constrained.
6266  */
6267 void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
6268 {
6269 	enum pcie_link_width width, width_cap;
6270 	enum pci_bus_speed speed, speed_cap;
6271 	struct pci_dev *limiting_dev = NULL;
6272 	u32 bw_avail, bw_cap;
6273 
6274 	bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
6275 	bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
6276 
6277 	if (bw_avail >= bw_cap && verbose)
6278 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
6279 			 bw_cap / 1000, bw_cap % 1000,
6280 			 pci_speed_string(speed_cap), width_cap);
6281 	else if (bw_avail < bw_cap)
6282 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
6283 			 bw_avail / 1000, bw_avail % 1000,
6284 			 pci_speed_string(speed), width,
6285 			 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
6286 			 bw_cap / 1000, bw_cap % 1000,
6287 			 pci_speed_string(speed_cap), width_cap);
6288 }
6289 
6290 /**
6291  * pcie_print_link_status - Report the PCI device's link speed and width
6292  * @dev: PCI device to query
6293  *
6294  * Report the available bandwidth at the device.
6295  */
6296 void pcie_print_link_status(struct pci_dev *dev)
6297 {
6298 	__pcie_print_link_status(dev, true);
6299 }
6300 EXPORT_SYMBOL(pcie_print_link_status);
6301 
6302 /**
6303  * pci_select_bars - Make BAR mask from the type of resource
6304  * @dev: the PCI device for which BAR mask is made
6305  * @flags: resource type mask to be selected
6306  *
6307  * This helper routine makes bar mask from the type of resource.
6308  */
6309 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
6310 {
6311 	int i, bars = 0;
6312 	for (i = 0; i < PCI_NUM_RESOURCES; i++)
6313 		if (pci_resource_flags(dev, i) & flags)
6314 			bars |= (1 << i);
6315 	return bars;
6316 }
6317 EXPORT_SYMBOL(pci_select_bars);
6318 
6319 /* Some architectures require additional programming to enable VGA */
6320 static arch_set_vga_state_t arch_set_vga_state;
6321 
6322 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6323 {
6324 	arch_set_vga_state = func;	/* NULL disables */
6325 }
6326 
6327 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
6328 				  unsigned int command_bits, u32 flags)
6329 {
6330 	if (arch_set_vga_state)
6331 		return arch_set_vga_state(dev, decode, command_bits,
6332 						flags);
6333 	return 0;
6334 }
6335 
6336 /**
6337  * pci_set_vga_state - set VGA decode state on device and parents if requested
6338  * @dev: the PCI device
6339  * @decode: true = enable decoding, false = disable decoding
6340  * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6341  * @flags: traverse ancestors and change bridges
6342  * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6343  */
6344 int pci_set_vga_state(struct pci_dev *dev, bool decode,
6345 		      unsigned int command_bits, u32 flags)
6346 {
6347 	struct pci_bus *bus;
6348 	struct pci_dev *bridge;
6349 	u16 cmd;
6350 	int rc;
6351 
6352 	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6353 
6354 	/* ARCH specific VGA enables */
6355 	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6356 	if (rc)
6357 		return rc;
6358 
6359 	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6360 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
6361 		if (decode)
6362 			cmd |= command_bits;
6363 		else
6364 			cmd &= ~command_bits;
6365 		pci_write_config_word(dev, PCI_COMMAND, cmd);
6366 	}
6367 
6368 	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6369 		return 0;
6370 
6371 	bus = dev->bus;
6372 	while (bus) {
6373 		bridge = bus->self;
6374 		if (bridge) {
6375 			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6376 					     &cmd);
6377 			if (decode)
6378 				cmd |= PCI_BRIDGE_CTL_VGA;
6379 			else
6380 				cmd &= ~PCI_BRIDGE_CTL_VGA;
6381 			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6382 					      cmd);
6383 		}
6384 		bus = bus->parent;
6385 	}
6386 	return 0;
6387 }
6388 
6389 #ifdef CONFIG_ACPI
6390 bool pci_pr3_present(struct pci_dev *pdev)
6391 {
6392 	struct acpi_device *adev;
6393 
6394 	if (acpi_disabled)
6395 		return false;
6396 
6397 	adev = ACPI_COMPANION(&pdev->dev);
6398 	if (!adev)
6399 		return false;
6400 
6401 	return adev->power.flags.power_resources &&
6402 		acpi_has_method(adev->handle, "_PR3");
6403 }
6404 EXPORT_SYMBOL_GPL(pci_pr3_present);
6405 #endif
6406 
6407 /**
6408  * pci_add_dma_alias - Add a DMA devfn alias for a device
6409  * @dev: the PCI device for which alias is added
6410  * @devfn_from: alias slot and function
6411  * @nr_devfns: number of subsequent devfns to alias
6412  *
6413  * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6414  * which is used to program permissible bus-devfn source addresses for DMA
6415  * requests in an IOMMU.  These aliases factor into IOMMU group creation
6416  * and are useful for devices generating DMA requests beyond or different
6417  * from their logical bus-devfn.  Examples include device quirks where the
6418  * device simply uses the wrong devfn, as well as non-transparent bridges
6419  * where the alias may be a proxy for devices in another domain.
6420  *
6421  * IOMMU group creation is performed during device discovery or addition,
6422  * prior to any potential DMA mapping and therefore prior to driver probing
6423  * (especially for userspace assigned devices where IOMMU group definition
6424  * cannot be left as a userspace activity).  DMA aliases should therefore
6425  * be configured via quirks, such as the PCI fixup header quirk.
6426  */
6427 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from,
6428 		       unsigned int nr_devfns)
6429 {
6430 	int devfn_to;
6431 
6432 	nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from);
6433 	devfn_to = devfn_from + nr_devfns - 1;
6434 
6435 	if (!dev->dma_alias_mask)
6436 		dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6437 	if (!dev->dma_alias_mask) {
6438 		pci_warn(dev, "Unable to allocate DMA alias mask\n");
6439 		return;
6440 	}
6441 
6442 	bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6443 
6444 	if (nr_devfns == 1)
6445 		pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6446 				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6447 	else if (nr_devfns > 1)
6448 		pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6449 				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6450 				PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6451 }
6452 
6453 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6454 {
6455 	return (dev1->dma_alias_mask &&
6456 		test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6457 	       (dev2->dma_alias_mask &&
6458 		test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6459 	       pci_real_dma_dev(dev1) == dev2 ||
6460 	       pci_real_dma_dev(dev2) == dev1;
6461 }
6462 
6463 bool pci_device_is_present(struct pci_dev *pdev)
6464 {
6465 	u32 v;
6466 
6467 	if (pci_dev_is_disconnected(pdev))
6468 		return false;
6469 	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6470 }
6471 EXPORT_SYMBOL_GPL(pci_device_is_present);
6472 
6473 void pci_ignore_hotplug(struct pci_dev *dev)
6474 {
6475 	struct pci_dev *bridge = dev->bus->self;
6476 
6477 	dev->ignore_hotplug = 1;
6478 	/* Propagate the "ignore hotplug" setting to the parent bridge. */
6479 	if (bridge)
6480 		bridge->ignore_hotplug = 1;
6481 }
6482 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6483 
6484 /**
6485  * pci_real_dma_dev - Get PCI DMA device for PCI device
6486  * @dev: the PCI device that may have a PCI DMA alias
6487  *
6488  * Permits the platform to provide architecture-specific functionality to
6489  * devices needing to alias DMA to another PCI device on another PCI bus. If
6490  * the PCI device is on the same bus, it is recommended to use
6491  * pci_add_dma_alias(). This is the default implementation. Architecture
6492  * implementations can override this.
6493  */
6494 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6495 {
6496 	return dev;
6497 }
6498 
6499 resource_size_t __weak pcibios_default_alignment(void)
6500 {
6501 	return 0;
6502 }
6503 
6504 /*
6505  * Arches that don't want to expose struct resource to userland as-is in
6506  * sysfs and /proc can implement their own pci_resource_to_user().
6507  */
6508 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6509 				 const struct resource *rsrc,
6510 				 resource_size_t *start, resource_size_t *end)
6511 {
6512 	*start = rsrc->start;
6513 	*end = rsrc->end;
6514 }
6515 
6516 static char *resource_alignment_param;
6517 static DEFINE_SPINLOCK(resource_alignment_lock);
6518 
6519 /**
6520  * pci_specified_resource_alignment - get resource alignment specified by user.
6521  * @dev: the PCI device to get
6522  * @resize: whether or not to change resources' size when reassigning alignment
6523  *
6524  * RETURNS: Resource alignment if it is specified.
6525  *          Zero if it is not specified.
6526  */
6527 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6528 							bool *resize)
6529 {
6530 	int align_order, count;
6531 	resource_size_t align = pcibios_default_alignment();
6532 	const char *p;
6533 	int ret;
6534 
6535 	spin_lock(&resource_alignment_lock);
6536 	p = resource_alignment_param;
6537 	if (!p || !*p)
6538 		goto out;
6539 	if (pci_has_flag(PCI_PROBE_ONLY)) {
6540 		align = 0;
6541 		pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6542 		goto out;
6543 	}
6544 
6545 	while (*p) {
6546 		count = 0;
6547 		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6548 		    p[count] == '@') {
6549 			p += count + 1;
6550 			if (align_order > 63) {
6551 				pr_err("PCI: Invalid requested alignment (order %d)\n",
6552 				       align_order);
6553 				align_order = PAGE_SHIFT;
6554 			}
6555 		} else {
6556 			align_order = PAGE_SHIFT;
6557 		}
6558 
6559 		ret = pci_dev_str_match(dev, p, &p);
6560 		if (ret == 1) {
6561 			*resize = true;
6562 			align = 1ULL << align_order;
6563 			break;
6564 		} else if (ret < 0) {
6565 			pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6566 			       p);
6567 			break;
6568 		}
6569 
6570 		if (*p != ';' && *p != ',') {
6571 			/* End of param or invalid format */
6572 			break;
6573 		}
6574 		p++;
6575 	}
6576 out:
6577 	spin_unlock(&resource_alignment_lock);
6578 	return align;
6579 }
6580 
6581 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6582 					   resource_size_t align, bool resize)
6583 {
6584 	struct resource *r = &dev->resource[bar];
6585 	resource_size_t size;
6586 
6587 	if (!(r->flags & IORESOURCE_MEM))
6588 		return;
6589 
6590 	if (r->flags & IORESOURCE_PCI_FIXED) {
6591 		pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6592 			 bar, r, (unsigned long long)align);
6593 		return;
6594 	}
6595 
6596 	size = resource_size(r);
6597 	if (size >= align)
6598 		return;
6599 
6600 	/*
6601 	 * Increase the alignment of the resource.  There are two ways we
6602 	 * can do this:
6603 	 *
6604 	 * 1) Increase the size of the resource.  BARs are aligned on their
6605 	 *    size, so when we reallocate space for this resource, we'll
6606 	 *    allocate it with the larger alignment.  This also prevents
6607 	 *    assignment of any other BARs inside the alignment region, so
6608 	 *    if we're requesting page alignment, this means no other BARs
6609 	 *    will share the page.
6610 	 *
6611 	 *    The disadvantage is that this makes the resource larger than
6612 	 *    the hardware BAR, which may break drivers that compute things
6613 	 *    based on the resource size, e.g., to find registers at a
6614 	 *    fixed offset before the end of the BAR.
6615 	 *
6616 	 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6617 	 *    set r->start to the desired alignment.  By itself this
6618 	 *    doesn't prevent other BARs being put inside the alignment
6619 	 *    region, but if we realign *every* resource of every device in
6620 	 *    the system, none of them will share an alignment region.
6621 	 *
6622 	 * When the user has requested alignment for only some devices via
6623 	 * the "pci=resource_alignment" argument, "resize" is true and we
6624 	 * use the first method.  Otherwise we assume we're aligning all
6625 	 * devices and we use the second.
6626 	 */
6627 
6628 	pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6629 		 bar, r, (unsigned long long)align);
6630 
6631 	if (resize) {
6632 		r->start = 0;
6633 		r->end = align - 1;
6634 	} else {
6635 		r->flags &= ~IORESOURCE_SIZEALIGN;
6636 		r->flags |= IORESOURCE_STARTALIGN;
6637 		r->start = align;
6638 		r->end = r->start + size - 1;
6639 	}
6640 	r->flags |= IORESOURCE_UNSET;
6641 }
6642 
6643 /*
6644  * This function disables memory decoding and releases memory resources
6645  * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6646  * It also rounds up size to specified alignment.
6647  * Later on, the kernel will assign page-aligned memory resource back
6648  * to the device.
6649  */
6650 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6651 {
6652 	int i;
6653 	struct resource *r;
6654 	resource_size_t align;
6655 	u16 command;
6656 	bool resize = false;
6657 
6658 	/*
6659 	 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6660 	 * 3.4.1.11.  Their resources are allocated from the space
6661 	 * described by the VF BARx register in the PF's SR-IOV capability.
6662 	 * We can't influence their alignment here.
6663 	 */
6664 	if (dev->is_virtfn)
6665 		return;
6666 
6667 	/* check if specified PCI is target device to reassign */
6668 	align = pci_specified_resource_alignment(dev, &resize);
6669 	if (!align)
6670 		return;
6671 
6672 	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6673 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6674 		pci_warn(dev, "Can't reassign resources to host bridge\n");
6675 		return;
6676 	}
6677 
6678 	pci_read_config_word(dev, PCI_COMMAND, &command);
6679 	command &= ~PCI_COMMAND_MEMORY;
6680 	pci_write_config_word(dev, PCI_COMMAND, command);
6681 
6682 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6683 		pci_request_resource_alignment(dev, i, align, resize);
6684 
6685 	/*
6686 	 * Need to disable bridge's resource window,
6687 	 * to enable the kernel to reassign new resource
6688 	 * window later on.
6689 	 */
6690 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6691 		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6692 			r = &dev->resource[i];
6693 			if (!(r->flags & IORESOURCE_MEM))
6694 				continue;
6695 			r->flags |= IORESOURCE_UNSET;
6696 			r->end = resource_size(r) - 1;
6697 			r->start = 0;
6698 		}
6699 		pci_disable_bridge_window(dev);
6700 	}
6701 }
6702 
6703 static ssize_t resource_alignment_show(struct bus_type *bus, char *buf)
6704 {
6705 	size_t count = 0;
6706 
6707 	spin_lock(&resource_alignment_lock);
6708 	if (resource_alignment_param)
6709 		count = sysfs_emit(buf, "%s\n", resource_alignment_param);
6710 	spin_unlock(&resource_alignment_lock);
6711 
6712 	return count;
6713 }
6714 
6715 static ssize_t resource_alignment_store(struct bus_type *bus,
6716 					const char *buf, size_t count)
6717 {
6718 	char *param, *old, *end;
6719 
6720 	if (count >= (PAGE_SIZE - 1))
6721 		return -EINVAL;
6722 
6723 	param = kstrndup(buf, count, GFP_KERNEL);
6724 	if (!param)
6725 		return -ENOMEM;
6726 
6727 	end = strchr(param, '\n');
6728 	if (end)
6729 		*end = '\0';
6730 
6731 	spin_lock(&resource_alignment_lock);
6732 	old = resource_alignment_param;
6733 	if (strlen(param)) {
6734 		resource_alignment_param = param;
6735 	} else {
6736 		kfree(param);
6737 		resource_alignment_param = NULL;
6738 	}
6739 	spin_unlock(&resource_alignment_lock);
6740 
6741 	kfree(old);
6742 
6743 	return count;
6744 }
6745 
6746 static BUS_ATTR_RW(resource_alignment);
6747 
6748 static int __init pci_resource_alignment_sysfs_init(void)
6749 {
6750 	return bus_create_file(&pci_bus_type,
6751 					&bus_attr_resource_alignment);
6752 }
6753 late_initcall(pci_resource_alignment_sysfs_init);
6754 
6755 static void pci_no_domains(void)
6756 {
6757 #ifdef CONFIG_PCI_DOMAINS
6758 	pci_domains_supported = 0;
6759 #endif
6760 }
6761 
6762 #ifdef CONFIG_PCI_DOMAINS_GENERIC
6763 static atomic_t __domain_nr = ATOMIC_INIT(-1);
6764 
6765 static int pci_get_new_domain_nr(void)
6766 {
6767 	return atomic_inc_return(&__domain_nr);
6768 }
6769 
6770 static int of_pci_bus_find_domain_nr(struct device *parent)
6771 {
6772 	static int use_dt_domains = -1;
6773 	int domain = -1;
6774 
6775 	if (parent)
6776 		domain = of_get_pci_domain_nr(parent->of_node);
6777 
6778 	/*
6779 	 * Check DT domain and use_dt_domains values.
6780 	 *
6781 	 * If DT domain property is valid (domain >= 0) and
6782 	 * use_dt_domains != 0, the DT assignment is valid since this means
6783 	 * we have not previously allocated a domain number by using
6784 	 * pci_get_new_domain_nr(); we should also update use_dt_domains to
6785 	 * 1, to indicate that we have just assigned a domain number from
6786 	 * DT.
6787 	 *
6788 	 * If DT domain property value is not valid (ie domain < 0), and we
6789 	 * have not previously assigned a domain number from DT
6790 	 * (use_dt_domains != 1) we should assign a domain number by
6791 	 * using the:
6792 	 *
6793 	 * pci_get_new_domain_nr()
6794 	 *
6795 	 * API and update the use_dt_domains value to keep track of method we
6796 	 * are using to assign domain numbers (use_dt_domains = 0).
6797 	 *
6798 	 * All other combinations imply we have a platform that is trying
6799 	 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
6800 	 * which is a recipe for domain mishandling and it is prevented by
6801 	 * invalidating the domain value (domain = -1) and printing a
6802 	 * corresponding error.
6803 	 */
6804 	if (domain >= 0 && use_dt_domains) {
6805 		use_dt_domains = 1;
6806 	} else if (domain < 0 && use_dt_domains != 1) {
6807 		use_dt_domains = 0;
6808 		domain = pci_get_new_domain_nr();
6809 	} else {
6810 		if (parent)
6811 			pr_err("Node %pOF has ", parent->of_node);
6812 		pr_err("Inconsistent \"linux,pci-domain\" property in DT\n");
6813 		domain = -1;
6814 	}
6815 
6816 	return domain;
6817 }
6818 
6819 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6820 {
6821 	return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6822 			       acpi_pci_bus_find_domain_nr(bus);
6823 }
6824 #endif
6825 
6826 /**
6827  * pci_ext_cfg_avail - can we access extended PCI config space?
6828  *
6829  * Returns 1 if we can access PCI extended config space (offsets
6830  * greater than 0xff). This is the default implementation. Architecture
6831  * implementations can override this.
6832  */
6833 int __weak pci_ext_cfg_avail(void)
6834 {
6835 	return 1;
6836 }
6837 
6838 void __weak pci_fixup_cardbus(struct pci_bus *bus)
6839 {
6840 }
6841 EXPORT_SYMBOL(pci_fixup_cardbus);
6842 
6843 static int __init pci_setup(char *str)
6844 {
6845 	while (str) {
6846 		char *k = strchr(str, ',');
6847 		if (k)
6848 			*k++ = 0;
6849 		if (*str && (str = pcibios_setup(str)) && *str) {
6850 			if (!strcmp(str, "nomsi")) {
6851 				pci_no_msi();
6852 			} else if (!strncmp(str, "noats", 5)) {
6853 				pr_info("PCIe: ATS is disabled\n");
6854 				pcie_ats_disabled = true;
6855 			} else if (!strcmp(str, "noaer")) {
6856 				pci_no_aer();
6857 			} else if (!strcmp(str, "earlydump")) {
6858 				pci_early_dump = true;
6859 			} else if (!strncmp(str, "realloc=", 8)) {
6860 				pci_realloc_get_opt(str + 8);
6861 			} else if (!strncmp(str, "realloc", 7)) {
6862 				pci_realloc_get_opt("on");
6863 			} else if (!strcmp(str, "nodomains")) {
6864 				pci_no_domains();
6865 			} else if (!strncmp(str, "noari", 5)) {
6866 				pcie_ari_disabled = true;
6867 			} else if (!strncmp(str, "cbiosize=", 9)) {
6868 				pci_cardbus_io_size = memparse(str + 9, &str);
6869 			} else if (!strncmp(str, "cbmemsize=", 10)) {
6870 				pci_cardbus_mem_size = memparse(str + 10, &str);
6871 			} else if (!strncmp(str, "resource_alignment=", 19)) {
6872 				resource_alignment_param = str + 19;
6873 			} else if (!strncmp(str, "ecrc=", 5)) {
6874 				pcie_ecrc_get_policy(str + 5);
6875 			} else if (!strncmp(str, "hpiosize=", 9)) {
6876 				pci_hotplug_io_size = memparse(str + 9, &str);
6877 			} else if (!strncmp(str, "hpmmiosize=", 11)) {
6878 				pci_hotplug_mmio_size = memparse(str + 11, &str);
6879 			} else if (!strncmp(str, "hpmmioprefsize=", 15)) {
6880 				pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
6881 			} else if (!strncmp(str, "hpmemsize=", 10)) {
6882 				pci_hotplug_mmio_size = memparse(str + 10, &str);
6883 				pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
6884 			} else if (!strncmp(str, "hpbussize=", 10)) {
6885 				pci_hotplug_bus_size =
6886 					simple_strtoul(str + 10, &str, 0);
6887 				if (pci_hotplug_bus_size > 0xff)
6888 					pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6889 			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6890 				pcie_bus_config = PCIE_BUS_TUNE_OFF;
6891 			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
6892 				pcie_bus_config = PCIE_BUS_SAFE;
6893 			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
6894 				pcie_bus_config = PCIE_BUS_PERFORMANCE;
6895 			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6896 				pcie_bus_config = PCIE_BUS_PEER2PEER;
6897 			} else if (!strncmp(str, "pcie_scan_all", 13)) {
6898 				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6899 			} else if (!strncmp(str, "disable_acs_redir=", 18)) {
6900 				disable_acs_redir_param = str + 18;
6901 			} else {
6902 				pr_err("PCI: Unknown option `%s'\n", str);
6903 			}
6904 		}
6905 		str = k;
6906 	}
6907 	return 0;
6908 }
6909 early_param("pci", pci_setup);
6910 
6911 /*
6912  * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6913  * in pci_setup(), above, to point to data in the __initdata section which
6914  * will be freed after the init sequence is complete. We can't allocate memory
6915  * in pci_setup() because some architectures do not have any memory allocation
6916  * service available during an early_param() call. So we allocate memory and
6917  * copy the variable here before the init section is freed.
6918  *
6919  */
6920 static int __init pci_realloc_setup_params(void)
6921 {
6922 	resource_alignment_param = kstrdup(resource_alignment_param,
6923 					   GFP_KERNEL);
6924 	disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6925 
6926 	return 0;
6927 }
6928 pure_initcall(pci_realloc_setup_params);
6929