1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * PCI Bus Services, see include/linux/pci.h for further explanation. 4 * 5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter, 6 * David Mosberger-Tang 7 * 8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz> 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/kernel.h> 13 #include <linux/delay.h> 14 #include <linux/dmi.h> 15 #include <linux/init.h> 16 #include <linux/msi.h> 17 #include <linux/of.h> 18 #include <linux/pci.h> 19 #include <linux/pm.h> 20 #include <linux/slab.h> 21 #include <linux/module.h> 22 #include <linux/spinlock.h> 23 #include <linux/string.h> 24 #include <linux/log2.h> 25 #include <linux/logic_pio.h> 26 #include <linux/pm_wakeup.h> 27 #include <linux/interrupt.h> 28 #include <linux/device.h> 29 #include <linux/pm_runtime.h> 30 #include <linux/pci_hotplug.h> 31 #include <linux/vmalloc.h> 32 #include <asm/dma.h> 33 #include <linux/aer.h> 34 #include <linux/bitfield.h> 35 #include "pci.h" 36 37 DEFINE_MUTEX(pci_slot_mutex); 38 39 const char *pci_power_names[] = { 40 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown", 41 }; 42 EXPORT_SYMBOL_GPL(pci_power_names); 43 44 #ifdef CONFIG_X86_32 45 int isa_dma_bridge_buggy; 46 EXPORT_SYMBOL(isa_dma_bridge_buggy); 47 #endif 48 49 int pci_pci_problems; 50 EXPORT_SYMBOL(pci_pci_problems); 51 52 unsigned int pci_pm_d3hot_delay; 53 54 static void pci_pme_list_scan(struct work_struct *work); 55 56 static LIST_HEAD(pci_pme_list); 57 static DEFINE_MUTEX(pci_pme_list_mutex); 58 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan); 59 60 struct pci_pme_device { 61 struct list_head list; 62 struct pci_dev *dev; 63 }; 64 65 #define PME_TIMEOUT 1000 /* How long between PME checks */ 66 67 /* 68 * Following exit from Conventional Reset, devices must be ready within 1 sec 69 * (PCIe r6.0 sec 6.6.1). A D3cold to D0 transition implies a Conventional 70 * Reset (PCIe r6.0 sec 5.8). 71 */ 72 #define PCI_RESET_WAIT 1000 /* msec */ 73 74 /* 75 * Devices may extend the 1 sec period through Request Retry Status 76 * completions (PCIe r6.0 sec 2.3.1). The spec does not provide an upper 77 * limit, but 60 sec ought to be enough for any device to become 78 * responsive. 79 */ 80 #define PCIE_RESET_READY_POLL_MS 60000 /* msec */ 81 82 static void pci_dev_d3_sleep(struct pci_dev *dev) 83 { 84 unsigned int delay_ms = max(dev->d3hot_delay, pci_pm_d3hot_delay); 85 unsigned int upper; 86 87 if (delay_ms) { 88 /* Use a 20% upper bound, 1ms minimum */ 89 upper = max(DIV_ROUND_CLOSEST(delay_ms, 5), 1U); 90 usleep_range(delay_ms * USEC_PER_MSEC, 91 (delay_ms + upper) * USEC_PER_MSEC); 92 } 93 } 94 95 bool pci_reset_supported(struct pci_dev *dev) 96 { 97 return dev->reset_methods[0] != 0; 98 } 99 100 #ifdef CONFIG_PCI_DOMAINS 101 int pci_domains_supported = 1; 102 #endif 103 104 #define DEFAULT_CARDBUS_IO_SIZE (256) 105 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024) 106 /* pci=cbmemsize=nnM,cbiosize=nn can override this */ 107 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE; 108 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE; 109 110 #define DEFAULT_HOTPLUG_IO_SIZE (256) 111 #define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024) 112 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024) 113 /* hpiosize=nn can override this */ 114 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE; 115 /* 116 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size, 117 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size; 118 * pci=hpmemsize=nnM overrides both 119 */ 120 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE; 121 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE; 122 123 #define DEFAULT_HOTPLUG_BUS_SIZE 1 124 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 125 126 127 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */ 128 #ifdef CONFIG_PCIE_BUS_TUNE_OFF 129 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF; 130 #elif defined CONFIG_PCIE_BUS_SAFE 131 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE; 132 #elif defined CONFIG_PCIE_BUS_PERFORMANCE 133 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE; 134 #elif defined CONFIG_PCIE_BUS_PEER2PEER 135 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER; 136 #else 137 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT; 138 #endif 139 140 /* 141 * The default CLS is used if arch didn't set CLS explicitly and not 142 * all pci devices agree on the same value. Arch can override either 143 * the dfl or actual value as it sees fit. Don't forget this is 144 * measured in 32-bit words, not bytes. 145 */ 146 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2; 147 u8 pci_cache_line_size; 148 149 /* 150 * If we set up a device for bus mastering, we need to check the latency 151 * timer as certain BIOSes forget to set it properly. 152 */ 153 unsigned int pcibios_max_latency = 255; 154 155 /* If set, the PCIe ARI capability will not be used. */ 156 static bool pcie_ari_disabled; 157 158 /* If set, the PCIe ATS capability will not be used. */ 159 static bool pcie_ats_disabled; 160 161 /* If set, the PCI config space of each device is printed during boot. */ 162 bool pci_early_dump; 163 164 bool pci_ats_disabled(void) 165 { 166 return pcie_ats_disabled; 167 } 168 EXPORT_SYMBOL_GPL(pci_ats_disabled); 169 170 /* Disable bridge_d3 for all PCIe ports */ 171 static bool pci_bridge_d3_disable; 172 /* Force bridge_d3 for all PCIe ports */ 173 static bool pci_bridge_d3_force; 174 175 static int __init pcie_port_pm_setup(char *str) 176 { 177 if (!strcmp(str, "off")) 178 pci_bridge_d3_disable = true; 179 else if (!strcmp(str, "force")) 180 pci_bridge_d3_force = true; 181 return 1; 182 } 183 __setup("pcie_port_pm=", pcie_port_pm_setup); 184 185 /** 186 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children 187 * @bus: pointer to PCI bus structure to search 188 * 189 * Given a PCI bus, returns the highest PCI bus number present in the set 190 * including the given PCI bus and its list of child PCI buses. 191 */ 192 unsigned char pci_bus_max_busnr(struct pci_bus *bus) 193 { 194 struct pci_bus *tmp; 195 unsigned char max, n; 196 197 max = bus->busn_res.end; 198 list_for_each_entry(tmp, &bus->children, node) { 199 n = pci_bus_max_busnr(tmp); 200 if (n > max) 201 max = n; 202 } 203 return max; 204 } 205 EXPORT_SYMBOL_GPL(pci_bus_max_busnr); 206 207 /** 208 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS 209 * @pdev: the PCI device 210 * 211 * Returns error bits set in PCI_STATUS and clears them. 212 */ 213 int pci_status_get_and_clear_errors(struct pci_dev *pdev) 214 { 215 u16 status; 216 int ret; 217 218 ret = pci_read_config_word(pdev, PCI_STATUS, &status); 219 if (ret != PCIBIOS_SUCCESSFUL) 220 return -EIO; 221 222 status &= PCI_STATUS_ERROR_BITS; 223 if (status) 224 pci_write_config_word(pdev, PCI_STATUS, status); 225 226 return status; 227 } 228 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors); 229 230 #ifdef CONFIG_HAS_IOMEM 231 static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar, 232 bool write_combine) 233 { 234 struct resource *res = &pdev->resource[bar]; 235 resource_size_t start = res->start; 236 resource_size_t size = resource_size(res); 237 238 /* 239 * Make sure the BAR is actually a memory resource, not an IO resource 240 */ 241 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) { 242 pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res); 243 return NULL; 244 } 245 246 if (write_combine) 247 return ioremap_wc(start, size); 248 249 return ioremap(start, size); 250 } 251 252 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar) 253 { 254 return __pci_ioremap_resource(pdev, bar, false); 255 } 256 EXPORT_SYMBOL_GPL(pci_ioremap_bar); 257 258 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar) 259 { 260 return __pci_ioremap_resource(pdev, bar, true); 261 } 262 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar); 263 #endif 264 265 /** 266 * pci_dev_str_match_path - test if a path string matches a device 267 * @dev: the PCI device to test 268 * @path: string to match the device against 269 * @endptr: pointer to the string after the match 270 * 271 * Test if a string (typically from a kernel parameter) formatted as a 272 * path of device/function addresses matches a PCI device. The string must 273 * be of the form: 274 * 275 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 276 * 277 * A path for a device can be obtained using 'lspci -t'. Using a path 278 * is more robust against bus renumbering than using only a single bus, 279 * device and function address. 280 * 281 * Returns 1 if the string matches the device, 0 if it does not and 282 * a negative error code if it fails to parse the string. 283 */ 284 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path, 285 const char **endptr) 286 { 287 int ret; 288 unsigned int seg, bus, slot, func; 289 char *wpath, *p; 290 char end; 291 292 *endptr = strchrnul(path, ';'); 293 294 wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC); 295 if (!wpath) 296 return -ENOMEM; 297 298 while (1) { 299 p = strrchr(wpath, '/'); 300 if (!p) 301 break; 302 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end); 303 if (ret != 2) { 304 ret = -EINVAL; 305 goto free_and_exit; 306 } 307 308 if (dev->devfn != PCI_DEVFN(slot, func)) { 309 ret = 0; 310 goto free_and_exit; 311 } 312 313 /* 314 * Note: we don't need to get a reference to the upstream 315 * bridge because we hold a reference to the top level 316 * device which should hold a reference to the bridge, 317 * and so on. 318 */ 319 dev = pci_upstream_bridge(dev); 320 if (!dev) { 321 ret = 0; 322 goto free_and_exit; 323 } 324 325 *p = 0; 326 } 327 328 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot, 329 &func, &end); 330 if (ret != 4) { 331 seg = 0; 332 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end); 333 if (ret != 3) { 334 ret = -EINVAL; 335 goto free_and_exit; 336 } 337 } 338 339 ret = (seg == pci_domain_nr(dev->bus) && 340 bus == dev->bus->number && 341 dev->devfn == PCI_DEVFN(slot, func)); 342 343 free_and_exit: 344 kfree(wpath); 345 return ret; 346 } 347 348 /** 349 * pci_dev_str_match - test if a string matches a device 350 * @dev: the PCI device to test 351 * @p: string to match the device against 352 * @endptr: pointer to the string after the match 353 * 354 * Test if a string (typically from a kernel parameter) matches a specified 355 * PCI device. The string may be of one of the following formats: 356 * 357 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 358 * pci:<vendor>:<device>[:<subvendor>:<subdevice>] 359 * 360 * The first format specifies a PCI bus/device/function address which 361 * may change if new hardware is inserted, if motherboard firmware changes, 362 * or due to changes caused in kernel parameters. If the domain is 363 * left unspecified, it is taken to be 0. In order to be robust against 364 * bus renumbering issues, a path of PCI device/function numbers may be used 365 * to address the specific device. The path for a device can be determined 366 * through the use of 'lspci -t'. 367 * 368 * The second format matches devices using IDs in the configuration 369 * space which may match multiple devices in the system. A value of 0 370 * for any field will match all devices. (Note: this differs from 371 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for 372 * legacy reasons and convenience so users don't have to specify 373 * FFFFFFFFs on the command line.) 374 * 375 * Returns 1 if the string matches the device, 0 if it does not and 376 * a negative error code if the string cannot be parsed. 377 */ 378 static int pci_dev_str_match(struct pci_dev *dev, const char *p, 379 const char **endptr) 380 { 381 int ret; 382 int count; 383 unsigned short vendor, device, subsystem_vendor, subsystem_device; 384 385 if (strncmp(p, "pci:", 4) == 0) { 386 /* PCI vendor/device (subvendor/subdevice) IDs are specified */ 387 p += 4; 388 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device, 389 &subsystem_vendor, &subsystem_device, &count); 390 if (ret != 4) { 391 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count); 392 if (ret != 2) 393 return -EINVAL; 394 395 subsystem_vendor = 0; 396 subsystem_device = 0; 397 } 398 399 p += count; 400 401 if ((!vendor || vendor == dev->vendor) && 402 (!device || device == dev->device) && 403 (!subsystem_vendor || 404 subsystem_vendor == dev->subsystem_vendor) && 405 (!subsystem_device || 406 subsystem_device == dev->subsystem_device)) 407 goto found; 408 } else { 409 /* 410 * PCI Bus, Device, Function IDs are specified 411 * (optionally, may include a path of devfns following it) 412 */ 413 ret = pci_dev_str_match_path(dev, p, &p); 414 if (ret < 0) 415 return ret; 416 else if (ret) 417 goto found; 418 } 419 420 *endptr = p; 421 return 0; 422 423 found: 424 *endptr = p; 425 return 1; 426 } 427 428 static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn, 429 u8 pos, int cap, int *ttl) 430 { 431 u8 id; 432 u16 ent; 433 434 pci_bus_read_config_byte(bus, devfn, pos, &pos); 435 436 while ((*ttl)--) { 437 if (pos < 0x40) 438 break; 439 pos &= ~3; 440 pci_bus_read_config_word(bus, devfn, pos, &ent); 441 442 id = ent & 0xff; 443 if (id == 0xff) 444 break; 445 if (id == cap) 446 return pos; 447 pos = (ent >> 8); 448 } 449 return 0; 450 } 451 452 static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn, 453 u8 pos, int cap) 454 { 455 int ttl = PCI_FIND_CAP_TTL; 456 457 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl); 458 } 459 460 u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap) 461 { 462 return __pci_find_next_cap(dev->bus, dev->devfn, 463 pos + PCI_CAP_LIST_NEXT, cap); 464 } 465 EXPORT_SYMBOL_GPL(pci_find_next_capability); 466 467 static u8 __pci_bus_find_cap_start(struct pci_bus *bus, 468 unsigned int devfn, u8 hdr_type) 469 { 470 u16 status; 471 472 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status); 473 if (!(status & PCI_STATUS_CAP_LIST)) 474 return 0; 475 476 switch (hdr_type) { 477 case PCI_HEADER_TYPE_NORMAL: 478 case PCI_HEADER_TYPE_BRIDGE: 479 return PCI_CAPABILITY_LIST; 480 case PCI_HEADER_TYPE_CARDBUS: 481 return PCI_CB_CAPABILITY_LIST; 482 } 483 484 return 0; 485 } 486 487 /** 488 * pci_find_capability - query for devices' capabilities 489 * @dev: PCI device to query 490 * @cap: capability code 491 * 492 * Tell if a device supports a given PCI capability. 493 * Returns the address of the requested capability structure within the 494 * device's PCI configuration space or 0 in case the device does not 495 * support it. Possible values for @cap include: 496 * 497 * %PCI_CAP_ID_PM Power Management 498 * %PCI_CAP_ID_AGP Accelerated Graphics Port 499 * %PCI_CAP_ID_VPD Vital Product Data 500 * %PCI_CAP_ID_SLOTID Slot Identification 501 * %PCI_CAP_ID_MSI Message Signalled Interrupts 502 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap 503 * %PCI_CAP_ID_PCIX PCI-X 504 * %PCI_CAP_ID_EXP PCI Express 505 */ 506 u8 pci_find_capability(struct pci_dev *dev, int cap) 507 { 508 u8 pos; 509 510 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 511 if (pos) 512 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap); 513 514 return pos; 515 } 516 EXPORT_SYMBOL(pci_find_capability); 517 518 /** 519 * pci_bus_find_capability - query for devices' capabilities 520 * @bus: the PCI bus to query 521 * @devfn: PCI device to query 522 * @cap: capability code 523 * 524 * Like pci_find_capability() but works for PCI devices that do not have a 525 * pci_dev structure set up yet. 526 * 527 * Returns the address of the requested capability structure within the 528 * device's PCI configuration space or 0 in case the device does not 529 * support it. 530 */ 531 u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap) 532 { 533 u8 hdr_type, pos; 534 535 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type); 536 537 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f); 538 if (pos) 539 pos = __pci_find_next_cap(bus, devfn, pos, cap); 540 541 return pos; 542 } 543 EXPORT_SYMBOL(pci_bus_find_capability); 544 545 /** 546 * pci_find_next_ext_capability - Find an extended capability 547 * @dev: PCI device to query 548 * @start: address at which to start looking (0 to start at beginning of list) 549 * @cap: capability code 550 * 551 * Returns the address of the next matching extended capability structure 552 * within the device's PCI configuration space or 0 if the device does 553 * not support it. Some capabilities can occur several times, e.g., the 554 * vendor-specific capability, and this provides a way to find them all. 555 */ 556 u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap) 557 { 558 u32 header; 559 int ttl; 560 u16 pos = PCI_CFG_SPACE_SIZE; 561 562 /* minimum 8 bytes per capability */ 563 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8; 564 565 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE) 566 return 0; 567 568 if (start) 569 pos = start; 570 571 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 572 return 0; 573 574 /* 575 * If we have no capabilities, this is indicated by cap ID, 576 * cap version and next pointer all being 0. 577 */ 578 if (header == 0) 579 return 0; 580 581 while (ttl-- > 0) { 582 if (PCI_EXT_CAP_ID(header) == cap && pos != start) 583 return pos; 584 585 pos = PCI_EXT_CAP_NEXT(header); 586 if (pos < PCI_CFG_SPACE_SIZE) 587 break; 588 589 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 590 break; 591 } 592 593 return 0; 594 } 595 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability); 596 597 /** 598 * pci_find_ext_capability - Find an extended capability 599 * @dev: PCI device to query 600 * @cap: capability code 601 * 602 * Returns the address of the requested extended capability structure 603 * within the device's PCI configuration space or 0 if the device does 604 * not support it. Possible values for @cap include: 605 * 606 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting 607 * %PCI_EXT_CAP_ID_VC Virtual Channel 608 * %PCI_EXT_CAP_ID_DSN Device Serial Number 609 * %PCI_EXT_CAP_ID_PWR Power Budgeting 610 */ 611 u16 pci_find_ext_capability(struct pci_dev *dev, int cap) 612 { 613 return pci_find_next_ext_capability(dev, 0, cap); 614 } 615 EXPORT_SYMBOL_GPL(pci_find_ext_capability); 616 617 /** 618 * pci_get_dsn - Read and return the 8-byte Device Serial Number 619 * @dev: PCI device to query 620 * 621 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial 622 * Number. 623 * 624 * Returns the DSN, or zero if the capability does not exist. 625 */ 626 u64 pci_get_dsn(struct pci_dev *dev) 627 { 628 u32 dword; 629 u64 dsn; 630 int pos; 631 632 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN); 633 if (!pos) 634 return 0; 635 636 /* 637 * The Device Serial Number is two dwords offset 4 bytes from the 638 * capability position. The specification says that the first dword is 639 * the lower half, and the second dword is the upper half. 640 */ 641 pos += 4; 642 pci_read_config_dword(dev, pos, &dword); 643 dsn = (u64)dword; 644 pci_read_config_dword(dev, pos + 4, &dword); 645 dsn |= ((u64)dword) << 32; 646 647 return dsn; 648 } 649 EXPORT_SYMBOL_GPL(pci_get_dsn); 650 651 static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap) 652 { 653 int rc, ttl = PCI_FIND_CAP_TTL; 654 u8 cap, mask; 655 656 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST) 657 mask = HT_3BIT_CAP_MASK; 658 else 659 mask = HT_5BIT_CAP_MASK; 660 661 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos, 662 PCI_CAP_ID_HT, &ttl); 663 while (pos) { 664 rc = pci_read_config_byte(dev, pos + 3, &cap); 665 if (rc != PCIBIOS_SUCCESSFUL) 666 return 0; 667 668 if ((cap & mask) == ht_cap) 669 return pos; 670 671 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, 672 pos + PCI_CAP_LIST_NEXT, 673 PCI_CAP_ID_HT, &ttl); 674 } 675 676 return 0; 677 } 678 679 /** 680 * pci_find_next_ht_capability - query a device's HyperTransport capabilities 681 * @dev: PCI device to query 682 * @pos: Position from which to continue searching 683 * @ht_cap: HyperTransport capability code 684 * 685 * To be used in conjunction with pci_find_ht_capability() to search for 686 * all capabilities matching @ht_cap. @pos should always be a value returned 687 * from pci_find_ht_capability(). 688 * 689 * NB. To be 100% safe against broken PCI devices, the caller should take 690 * steps to avoid an infinite loop. 691 */ 692 u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap) 693 { 694 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap); 695 } 696 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability); 697 698 /** 699 * pci_find_ht_capability - query a device's HyperTransport capabilities 700 * @dev: PCI device to query 701 * @ht_cap: HyperTransport capability code 702 * 703 * Tell if a device supports a given HyperTransport capability. 704 * Returns an address within the device's PCI configuration space 705 * or 0 in case the device does not support the request capability. 706 * The address points to the PCI capability, of type PCI_CAP_ID_HT, 707 * which has a HyperTransport capability matching @ht_cap. 708 */ 709 u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap) 710 { 711 u8 pos; 712 713 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 714 if (pos) 715 pos = __pci_find_next_ht_cap(dev, pos, ht_cap); 716 717 return pos; 718 } 719 EXPORT_SYMBOL_GPL(pci_find_ht_capability); 720 721 /** 722 * pci_find_vsec_capability - Find a vendor-specific extended capability 723 * @dev: PCI device to query 724 * @vendor: Vendor ID for which capability is defined 725 * @cap: Vendor-specific capability ID 726 * 727 * If @dev has Vendor ID @vendor, search for a VSEC capability with 728 * VSEC ID @cap. If found, return the capability offset in 729 * config space; otherwise return 0. 730 */ 731 u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap) 732 { 733 u16 vsec = 0; 734 u32 header; 735 int ret; 736 737 if (vendor != dev->vendor) 738 return 0; 739 740 while ((vsec = pci_find_next_ext_capability(dev, vsec, 741 PCI_EXT_CAP_ID_VNDR))) { 742 ret = pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER, &header); 743 if (ret != PCIBIOS_SUCCESSFUL) 744 continue; 745 746 if (PCI_VNDR_HEADER_ID(header) == cap) 747 return vsec; 748 } 749 750 return 0; 751 } 752 EXPORT_SYMBOL_GPL(pci_find_vsec_capability); 753 754 /** 755 * pci_find_dvsec_capability - Find DVSEC for vendor 756 * @dev: PCI device to query 757 * @vendor: Vendor ID to match for the DVSEC 758 * @dvsec: Designated Vendor-specific capability ID 759 * 760 * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability 761 * offset in config space; otherwise return 0. 762 */ 763 u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec) 764 { 765 int pos; 766 767 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC); 768 if (!pos) 769 return 0; 770 771 while (pos) { 772 u16 v, id; 773 774 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER1, &v); 775 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER2, &id); 776 if (vendor == v && dvsec == id) 777 return pos; 778 779 pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC); 780 } 781 782 return 0; 783 } 784 EXPORT_SYMBOL_GPL(pci_find_dvsec_capability); 785 786 /** 787 * pci_find_parent_resource - return resource region of parent bus of given 788 * region 789 * @dev: PCI device structure contains resources to be searched 790 * @res: child resource record for which parent is sought 791 * 792 * For given resource region of given device, return the resource region of 793 * parent bus the given region is contained in. 794 */ 795 struct resource *pci_find_parent_resource(const struct pci_dev *dev, 796 struct resource *res) 797 { 798 const struct pci_bus *bus = dev->bus; 799 struct resource *r; 800 801 pci_bus_for_each_resource(bus, r) { 802 if (!r) 803 continue; 804 if (resource_contains(r, res)) { 805 806 /* 807 * If the window is prefetchable but the BAR is 808 * not, the allocator made a mistake. 809 */ 810 if (r->flags & IORESOURCE_PREFETCH && 811 !(res->flags & IORESOURCE_PREFETCH)) 812 return NULL; 813 814 /* 815 * If we're below a transparent bridge, there may 816 * be both a positively-decoded aperture and a 817 * subtractively-decoded region that contain the BAR. 818 * We want the positively-decoded one, so this depends 819 * on pci_bus_for_each_resource() giving us those 820 * first. 821 */ 822 return r; 823 } 824 } 825 return NULL; 826 } 827 EXPORT_SYMBOL(pci_find_parent_resource); 828 829 /** 830 * pci_find_resource - Return matching PCI device resource 831 * @dev: PCI device to query 832 * @res: Resource to look for 833 * 834 * Goes over standard PCI resources (BARs) and checks if the given resource 835 * is partially or fully contained in any of them. In that case the 836 * matching resource is returned, %NULL otherwise. 837 */ 838 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res) 839 { 840 int i; 841 842 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 843 struct resource *r = &dev->resource[i]; 844 845 if (r->start && resource_contains(r, res)) 846 return r; 847 } 848 849 return NULL; 850 } 851 EXPORT_SYMBOL(pci_find_resource); 852 853 /** 854 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos 855 * @dev: the PCI device to operate on 856 * @pos: config space offset of status word 857 * @mask: mask of bit(s) to care about in status word 858 * 859 * Return 1 when mask bit(s) in status word clear, 0 otherwise. 860 */ 861 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask) 862 { 863 int i; 864 865 /* Wait for Transaction Pending bit clean */ 866 for (i = 0; i < 4; i++) { 867 u16 status; 868 if (i) 869 msleep((1 << (i - 1)) * 100); 870 871 pci_read_config_word(dev, pos, &status); 872 if (!(status & mask)) 873 return 1; 874 } 875 876 return 0; 877 } 878 879 static int pci_acs_enable; 880 881 /** 882 * pci_request_acs - ask for ACS to be enabled if supported 883 */ 884 void pci_request_acs(void) 885 { 886 pci_acs_enable = 1; 887 } 888 889 static const char *disable_acs_redir_param; 890 891 /** 892 * pci_disable_acs_redir - disable ACS redirect capabilities 893 * @dev: the PCI device 894 * 895 * For only devices specified in the disable_acs_redir parameter. 896 */ 897 static void pci_disable_acs_redir(struct pci_dev *dev) 898 { 899 int ret = 0; 900 const char *p; 901 int pos; 902 u16 ctrl; 903 904 if (!disable_acs_redir_param) 905 return; 906 907 p = disable_acs_redir_param; 908 while (*p) { 909 ret = pci_dev_str_match(dev, p, &p); 910 if (ret < 0) { 911 pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n", 912 disable_acs_redir_param); 913 914 break; 915 } else if (ret == 1) { 916 /* Found a match */ 917 break; 918 } 919 920 if (*p != ';' && *p != ',') { 921 /* End of param or invalid format */ 922 break; 923 } 924 p++; 925 } 926 927 if (ret != 1) 928 return; 929 930 if (!pci_dev_specific_disable_acs_redir(dev)) 931 return; 932 933 pos = dev->acs_cap; 934 if (!pos) { 935 pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n"); 936 return; 937 } 938 939 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 940 941 /* P2P Request & Completion Redirect */ 942 ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC); 943 944 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 945 946 pci_info(dev, "disabled ACS redirect\n"); 947 } 948 949 /** 950 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities 951 * @dev: the PCI device 952 */ 953 static void pci_std_enable_acs(struct pci_dev *dev) 954 { 955 int pos; 956 u16 cap; 957 u16 ctrl; 958 959 pos = dev->acs_cap; 960 if (!pos) 961 return; 962 963 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap); 964 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 965 966 /* Source Validation */ 967 ctrl |= (cap & PCI_ACS_SV); 968 969 /* P2P Request Redirect */ 970 ctrl |= (cap & PCI_ACS_RR); 971 972 /* P2P Completion Redirect */ 973 ctrl |= (cap & PCI_ACS_CR); 974 975 /* Upstream Forwarding */ 976 ctrl |= (cap & PCI_ACS_UF); 977 978 /* Enable Translation Blocking for external devices and noats */ 979 if (pci_ats_disabled() || dev->external_facing || dev->untrusted) 980 ctrl |= (cap & PCI_ACS_TB); 981 982 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 983 } 984 985 /** 986 * pci_enable_acs - enable ACS if hardware support it 987 * @dev: the PCI device 988 */ 989 static void pci_enable_acs(struct pci_dev *dev) 990 { 991 if (!pci_acs_enable) 992 goto disable_acs_redir; 993 994 if (!pci_dev_specific_enable_acs(dev)) 995 goto disable_acs_redir; 996 997 pci_std_enable_acs(dev); 998 999 disable_acs_redir: 1000 /* 1001 * Note: pci_disable_acs_redir() must be called even if ACS was not 1002 * enabled by the kernel because it may have been enabled by 1003 * platform firmware. So if we are told to disable it, we should 1004 * always disable it after setting the kernel's default 1005 * preferences. 1006 */ 1007 pci_disable_acs_redir(dev); 1008 } 1009 1010 /** 1011 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up) 1012 * @dev: PCI device to have its BARs restored 1013 * 1014 * Restore the BAR values for a given device, so as to make it 1015 * accessible by its driver. 1016 */ 1017 static void pci_restore_bars(struct pci_dev *dev) 1018 { 1019 int i; 1020 1021 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) 1022 pci_update_resource(dev, i); 1023 } 1024 1025 static inline bool platform_pci_power_manageable(struct pci_dev *dev) 1026 { 1027 if (pci_use_mid_pm()) 1028 return true; 1029 1030 return acpi_pci_power_manageable(dev); 1031 } 1032 1033 static inline int platform_pci_set_power_state(struct pci_dev *dev, 1034 pci_power_t t) 1035 { 1036 if (pci_use_mid_pm()) 1037 return mid_pci_set_power_state(dev, t); 1038 1039 return acpi_pci_set_power_state(dev, t); 1040 } 1041 1042 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev) 1043 { 1044 if (pci_use_mid_pm()) 1045 return mid_pci_get_power_state(dev); 1046 1047 return acpi_pci_get_power_state(dev); 1048 } 1049 1050 static inline void platform_pci_refresh_power_state(struct pci_dev *dev) 1051 { 1052 if (!pci_use_mid_pm()) 1053 acpi_pci_refresh_power_state(dev); 1054 } 1055 1056 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev) 1057 { 1058 if (pci_use_mid_pm()) 1059 return PCI_POWER_ERROR; 1060 1061 return acpi_pci_choose_state(dev); 1062 } 1063 1064 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable) 1065 { 1066 if (pci_use_mid_pm()) 1067 return PCI_POWER_ERROR; 1068 1069 return acpi_pci_wakeup(dev, enable); 1070 } 1071 1072 static inline bool platform_pci_need_resume(struct pci_dev *dev) 1073 { 1074 if (pci_use_mid_pm()) 1075 return false; 1076 1077 return acpi_pci_need_resume(dev); 1078 } 1079 1080 static inline bool platform_pci_bridge_d3(struct pci_dev *dev) 1081 { 1082 if (pci_use_mid_pm()) 1083 return false; 1084 1085 return acpi_pci_bridge_d3(dev); 1086 } 1087 1088 /** 1089 * pci_update_current_state - Read power state of given device and cache it 1090 * @dev: PCI device to handle. 1091 * @state: State to cache in case the device doesn't have the PM capability 1092 * 1093 * The power state is read from the PMCSR register, which however is 1094 * inaccessible in D3cold. The platform firmware is therefore queried first 1095 * to detect accessibility of the register. In case the platform firmware 1096 * reports an incorrect state or the device isn't power manageable by the 1097 * platform at all, we try to detect D3cold by testing accessibility of the 1098 * vendor ID in config space. 1099 */ 1100 void pci_update_current_state(struct pci_dev *dev, pci_power_t state) 1101 { 1102 if (platform_pci_get_power_state(dev) == PCI_D3cold) { 1103 dev->current_state = PCI_D3cold; 1104 } else if (dev->pm_cap) { 1105 u16 pmcsr; 1106 1107 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1108 if (PCI_POSSIBLE_ERROR(pmcsr)) { 1109 dev->current_state = PCI_D3cold; 1110 return; 1111 } 1112 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1113 } else { 1114 dev->current_state = state; 1115 } 1116 } 1117 1118 /** 1119 * pci_refresh_power_state - Refresh the given device's power state data 1120 * @dev: Target PCI device. 1121 * 1122 * Ask the platform to refresh the devices power state information and invoke 1123 * pci_update_current_state() to update its current PCI power state. 1124 */ 1125 void pci_refresh_power_state(struct pci_dev *dev) 1126 { 1127 platform_pci_refresh_power_state(dev); 1128 pci_update_current_state(dev, dev->current_state); 1129 } 1130 1131 /** 1132 * pci_platform_power_transition - Use platform to change device power state 1133 * @dev: PCI device to handle. 1134 * @state: State to put the device into. 1135 */ 1136 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state) 1137 { 1138 int error; 1139 1140 error = platform_pci_set_power_state(dev, state); 1141 if (!error) 1142 pci_update_current_state(dev, state); 1143 else if (!dev->pm_cap) /* Fall back to PCI_D0 */ 1144 dev->current_state = PCI_D0; 1145 1146 return error; 1147 } 1148 EXPORT_SYMBOL_GPL(pci_platform_power_transition); 1149 1150 static int pci_resume_one(struct pci_dev *pci_dev, void *ign) 1151 { 1152 pm_request_resume(&pci_dev->dev); 1153 return 0; 1154 } 1155 1156 /** 1157 * pci_resume_bus - Walk given bus and runtime resume devices on it 1158 * @bus: Top bus of the subtree to walk. 1159 */ 1160 void pci_resume_bus(struct pci_bus *bus) 1161 { 1162 if (bus) 1163 pci_walk_bus(bus, pci_resume_one, NULL); 1164 } 1165 1166 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout) 1167 { 1168 int delay = 1; 1169 bool retrain = false; 1170 struct pci_dev *bridge; 1171 1172 if (pci_is_pcie(dev)) { 1173 bridge = pci_upstream_bridge(dev); 1174 if (bridge) 1175 retrain = true; 1176 } 1177 1178 /* 1179 * After reset, the device should not silently discard config 1180 * requests, but it may still indicate that it needs more time by 1181 * responding to them with CRS completions. The Root Port will 1182 * generally synthesize ~0 (PCI_ERROR_RESPONSE) data to complete 1183 * the read (except when CRS SV is enabled and the read was for the 1184 * Vendor ID; in that case it synthesizes 0x0001 data). 1185 * 1186 * Wait for the device to return a non-CRS completion. Read the 1187 * Command register instead of Vendor ID so we don't have to 1188 * contend with the CRS SV value. 1189 */ 1190 for (;;) { 1191 u32 id; 1192 1193 pci_read_config_dword(dev, PCI_COMMAND, &id); 1194 if (!PCI_POSSIBLE_ERROR(id)) 1195 break; 1196 1197 if (delay > timeout) { 1198 pci_warn(dev, "not ready %dms after %s; giving up\n", 1199 delay - 1, reset_type); 1200 return -ENOTTY; 1201 } 1202 1203 if (delay > PCI_RESET_WAIT) { 1204 if (retrain) { 1205 retrain = false; 1206 if (pcie_failed_link_retrain(bridge)) { 1207 delay = 1; 1208 continue; 1209 } 1210 } 1211 pci_info(dev, "not ready %dms after %s; waiting\n", 1212 delay - 1, reset_type); 1213 } 1214 1215 msleep(delay); 1216 delay *= 2; 1217 } 1218 1219 if (delay > PCI_RESET_WAIT) 1220 pci_info(dev, "ready %dms after %s\n", delay - 1, 1221 reset_type); 1222 1223 return 0; 1224 } 1225 1226 /** 1227 * pci_power_up - Put the given device into D0 1228 * @dev: PCI device to power up 1229 * 1230 * On success, return 0 or 1, depending on whether or not it is necessary to 1231 * restore the device's BARs subsequently (1 is returned in that case). 1232 * 1233 * On failure, return a negative error code. Always return failure if @dev 1234 * lacks a Power Management Capability, even if the platform was able to 1235 * put the device in D0 via non-PCI means. 1236 */ 1237 int pci_power_up(struct pci_dev *dev) 1238 { 1239 bool need_restore; 1240 pci_power_t state; 1241 u16 pmcsr; 1242 1243 platform_pci_set_power_state(dev, PCI_D0); 1244 1245 if (!dev->pm_cap) { 1246 state = platform_pci_get_power_state(dev); 1247 if (state == PCI_UNKNOWN) 1248 dev->current_state = PCI_D0; 1249 else 1250 dev->current_state = state; 1251 1252 return -EIO; 1253 } 1254 1255 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1256 if (PCI_POSSIBLE_ERROR(pmcsr)) { 1257 pci_err(dev, "Unable to change power state from %s to D0, device inaccessible\n", 1258 pci_power_name(dev->current_state)); 1259 dev->current_state = PCI_D3cold; 1260 return -EIO; 1261 } 1262 1263 state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1264 1265 need_restore = (state == PCI_D3hot || dev->current_state >= PCI_D3hot) && 1266 !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET); 1267 1268 if (state == PCI_D0) 1269 goto end; 1270 1271 /* 1272 * Force the entire word to 0. This doesn't affect PME_Status, disables 1273 * PME_En, and sets PowerState to 0. 1274 */ 1275 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, 0); 1276 1277 /* Mandatory transition delays; see PCI PM 1.2. */ 1278 if (state == PCI_D3hot) 1279 pci_dev_d3_sleep(dev); 1280 else if (state == PCI_D2) 1281 udelay(PCI_PM_D2_DELAY); 1282 1283 end: 1284 dev->current_state = PCI_D0; 1285 if (need_restore) 1286 return 1; 1287 1288 return 0; 1289 } 1290 1291 /** 1292 * pci_set_full_power_state - Put a PCI device into D0 and update its state 1293 * @dev: PCI device to power up 1294 * 1295 * Call pci_power_up() to put @dev into D0, read from its PCI_PM_CTRL register 1296 * to confirm the state change, restore its BARs if they might be lost and 1297 * reconfigure ASPM in accordance with the new power state. 1298 * 1299 * If pci_restore_state() is going to be called right after a power state change 1300 * to D0, it is more efficient to use pci_power_up() directly instead of this 1301 * function. 1302 */ 1303 static int pci_set_full_power_state(struct pci_dev *dev) 1304 { 1305 u16 pmcsr; 1306 int ret; 1307 1308 ret = pci_power_up(dev); 1309 if (ret < 0) { 1310 if (dev->current_state == PCI_D0) 1311 return 0; 1312 1313 return ret; 1314 } 1315 1316 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1317 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1318 if (dev->current_state != PCI_D0) { 1319 pci_info_ratelimited(dev, "Refused to change power state from %s to D0\n", 1320 pci_power_name(dev->current_state)); 1321 } else if (ret > 0) { 1322 /* 1323 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT 1324 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning 1325 * from D3hot to D0 _may_ perform an internal reset, thereby 1326 * going to "D0 Uninitialized" rather than "D0 Initialized". 1327 * For example, at least some versions of the 3c905B and the 1328 * 3c556B exhibit this behaviour. 1329 * 1330 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave 1331 * devices in a D3hot state at boot. Consequently, we need to 1332 * restore at least the BARs so that the device will be 1333 * accessible to its driver. 1334 */ 1335 pci_restore_bars(dev); 1336 } 1337 1338 return 0; 1339 } 1340 1341 /** 1342 * __pci_dev_set_current_state - Set current state of a PCI device 1343 * @dev: Device to handle 1344 * @data: pointer to state to be set 1345 */ 1346 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data) 1347 { 1348 pci_power_t state = *(pci_power_t *)data; 1349 1350 dev->current_state = state; 1351 return 0; 1352 } 1353 1354 /** 1355 * pci_bus_set_current_state - Walk given bus and set current state of devices 1356 * @bus: Top bus of the subtree to walk. 1357 * @state: state to be set 1358 */ 1359 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state) 1360 { 1361 if (bus) 1362 pci_walk_bus(bus, __pci_dev_set_current_state, &state); 1363 } 1364 1365 /** 1366 * pci_set_low_power_state - Put a PCI device into a low-power state. 1367 * @dev: PCI device to handle. 1368 * @state: PCI power state (D1, D2, D3hot) to put the device into. 1369 * 1370 * Use the device's PCI_PM_CTRL register to put it into a low-power state. 1371 * 1372 * RETURN VALUE: 1373 * -EINVAL if the requested state is invalid. 1374 * -EIO if device does not support PCI PM or its PM capabilities register has a 1375 * wrong version, or device doesn't support the requested state. 1376 * 0 if device already is in the requested state. 1377 * 0 if device's power state has been successfully changed. 1378 */ 1379 static int pci_set_low_power_state(struct pci_dev *dev, pci_power_t state) 1380 { 1381 u16 pmcsr; 1382 1383 if (!dev->pm_cap) 1384 return -EIO; 1385 1386 /* 1387 * Validate transition: We can enter D0 from any state, but if 1388 * we're already in a low-power state, we can only go deeper. E.g., 1389 * we can go from D1 to D3, but we can't go directly from D3 to D1; 1390 * we'd have to go from D3 to D0, then to D1. 1391 */ 1392 if (dev->current_state <= PCI_D3cold && dev->current_state > state) { 1393 pci_dbg(dev, "Invalid power transition (from %s to %s)\n", 1394 pci_power_name(dev->current_state), 1395 pci_power_name(state)); 1396 return -EINVAL; 1397 } 1398 1399 /* Check if this device supports the desired state */ 1400 if ((state == PCI_D1 && !dev->d1_support) 1401 || (state == PCI_D2 && !dev->d2_support)) 1402 return -EIO; 1403 1404 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1405 if (PCI_POSSIBLE_ERROR(pmcsr)) { 1406 pci_err(dev, "Unable to change power state from %s to %s, device inaccessible\n", 1407 pci_power_name(dev->current_state), 1408 pci_power_name(state)); 1409 dev->current_state = PCI_D3cold; 1410 return -EIO; 1411 } 1412 1413 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 1414 pmcsr |= state; 1415 1416 /* Enter specified state */ 1417 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 1418 1419 /* Mandatory power management transition delays; see PCI PM 1.2. */ 1420 if (state == PCI_D3hot) 1421 pci_dev_d3_sleep(dev); 1422 else if (state == PCI_D2) 1423 udelay(PCI_PM_D2_DELAY); 1424 1425 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1426 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1427 if (dev->current_state != state) 1428 pci_info_ratelimited(dev, "Refused to change power state from %s to %s\n", 1429 pci_power_name(dev->current_state), 1430 pci_power_name(state)); 1431 1432 return 0; 1433 } 1434 1435 /** 1436 * pci_set_power_state - Set the power state of a PCI device 1437 * @dev: PCI device to handle. 1438 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 1439 * 1440 * Transition a device to a new power state, using the platform firmware and/or 1441 * the device's PCI PM registers. 1442 * 1443 * RETURN VALUE: 1444 * -EINVAL if the requested state is invalid. 1445 * -EIO if device does not support PCI PM or its PM capabilities register has a 1446 * wrong version, or device doesn't support the requested state. 1447 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported. 1448 * 0 if device already is in the requested state. 1449 * 0 if the transition is to D3 but D3 is not supported. 1450 * 0 if device's power state has been successfully changed. 1451 */ 1452 int pci_set_power_state(struct pci_dev *dev, pci_power_t state) 1453 { 1454 int error; 1455 1456 /* Bound the state we're entering */ 1457 if (state > PCI_D3cold) 1458 state = PCI_D3cold; 1459 else if (state < PCI_D0) 1460 state = PCI_D0; 1461 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev)) 1462 1463 /* 1464 * If the device or the parent bridge do not support PCI 1465 * PM, ignore the request if we're doing anything other 1466 * than putting it into D0 (which would only happen on 1467 * boot). 1468 */ 1469 return 0; 1470 1471 /* Check if we're already there */ 1472 if (dev->current_state == state) 1473 return 0; 1474 1475 if (state == PCI_D0) 1476 return pci_set_full_power_state(dev); 1477 1478 /* 1479 * This device is quirked not to be put into D3, so don't put it in 1480 * D3 1481 */ 1482 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3)) 1483 return 0; 1484 1485 if (state == PCI_D3cold) { 1486 /* 1487 * To put the device in D3cold, put it into D3hot in the native 1488 * way, then put it into D3cold using platform ops. 1489 */ 1490 error = pci_set_low_power_state(dev, PCI_D3hot); 1491 1492 if (pci_platform_power_transition(dev, PCI_D3cold)) 1493 return error; 1494 1495 /* Powering off a bridge may power off the whole hierarchy */ 1496 if (dev->current_state == PCI_D3cold) 1497 pci_bus_set_current_state(dev->subordinate, PCI_D3cold); 1498 } else { 1499 error = pci_set_low_power_state(dev, state); 1500 1501 if (pci_platform_power_transition(dev, state)) 1502 return error; 1503 } 1504 1505 return 0; 1506 } 1507 EXPORT_SYMBOL(pci_set_power_state); 1508 1509 #define PCI_EXP_SAVE_REGS 7 1510 1511 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev, 1512 u16 cap, bool extended) 1513 { 1514 struct pci_cap_saved_state *tmp; 1515 1516 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) { 1517 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap) 1518 return tmp; 1519 } 1520 return NULL; 1521 } 1522 1523 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap) 1524 { 1525 return _pci_find_saved_cap(dev, cap, false); 1526 } 1527 1528 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap) 1529 { 1530 return _pci_find_saved_cap(dev, cap, true); 1531 } 1532 1533 static int pci_save_pcie_state(struct pci_dev *dev) 1534 { 1535 int i = 0; 1536 struct pci_cap_saved_state *save_state; 1537 u16 *cap; 1538 1539 if (!pci_is_pcie(dev)) 1540 return 0; 1541 1542 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1543 if (!save_state) { 1544 pci_err(dev, "buffer not found in %s\n", __func__); 1545 return -ENOMEM; 1546 } 1547 1548 cap = (u16 *)&save_state->cap.data[0]; 1549 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]); 1550 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]); 1551 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]); 1552 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]); 1553 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]); 1554 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]); 1555 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]); 1556 1557 return 0; 1558 } 1559 1560 void pci_bridge_reconfigure_ltr(struct pci_dev *dev) 1561 { 1562 #ifdef CONFIG_PCIEASPM 1563 struct pci_dev *bridge; 1564 u32 ctl; 1565 1566 bridge = pci_upstream_bridge(dev); 1567 if (bridge && bridge->ltr_path) { 1568 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, &ctl); 1569 if (!(ctl & PCI_EXP_DEVCTL2_LTR_EN)) { 1570 pci_dbg(bridge, "re-enabling LTR\n"); 1571 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, 1572 PCI_EXP_DEVCTL2_LTR_EN); 1573 } 1574 } 1575 #endif 1576 } 1577 1578 static void pci_restore_pcie_state(struct pci_dev *dev) 1579 { 1580 int i = 0; 1581 struct pci_cap_saved_state *save_state; 1582 u16 *cap; 1583 1584 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1585 if (!save_state) 1586 return; 1587 1588 /* 1589 * Downstream ports reset the LTR enable bit when link goes down. 1590 * Check and re-configure the bit here before restoring device. 1591 * PCIe r5.0, sec 7.5.3.16. 1592 */ 1593 pci_bridge_reconfigure_ltr(dev); 1594 1595 cap = (u16 *)&save_state->cap.data[0]; 1596 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]); 1597 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]); 1598 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]); 1599 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]); 1600 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]); 1601 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]); 1602 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]); 1603 } 1604 1605 static int pci_save_pcix_state(struct pci_dev *dev) 1606 { 1607 int pos; 1608 struct pci_cap_saved_state *save_state; 1609 1610 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1611 if (!pos) 1612 return 0; 1613 1614 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1615 if (!save_state) { 1616 pci_err(dev, "buffer not found in %s\n", __func__); 1617 return -ENOMEM; 1618 } 1619 1620 pci_read_config_word(dev, pos + PCI_X_CMD, 1621 (u16 *)save_state->cap.data); 1622 1623 return 0; 1624 } 1625 1626 static void pci_restore_pcix_state(struct pci_dev *dev) 1627 { 1628 int i = 0, pos; 1629 struct pci_cap_saved_state *save_state; 1630 u16 *cap; 1631 1632 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1633 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1634 if (!save_state || !pos) 1635 return; 1636 cap = (u16 *)&save_state->cap.data[0]; 1637 1638 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]); 1639 } 1640 1641 static void pci_save_ltr_state(struct pci_dev *dev) 1642 { 1643 int ltr; 1644 struct pci_cap_saved_state *save_state; 1645 u32 *cap; 1646 1647 if (!pci_is_pcie(dev)) 1648 return; 1649 1650 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR); 1651 if (!ltr) 1652 return; 1653 1654 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR); 1655 if (!save_state) { 1656 pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n"); 1657 return; 1658 } 1659 1660 /* Some broken devices only support dword access to LTR */ 1661 cap = &save_state->cap.data[0]; 1662 pci_read_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap); 1663 } 1664 1665 static void pci_restore_ltr_state(struct pci_dev *dev) 1666 { 1667 struct pci_cap_saved_state *save_state; 1668 int ltr; 1669 u32 *cap; 1670 1671 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR); 1672 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR); 1673 if (!save_state || !ltr) 1674 return; 1675 1676 /* Some broken devices only support dword access to LTR */ 1677 cap = &save_state->cap.data[0]; 1678 pci_write_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap); 1679 } 1680 1681 /** 1682 * pci_save_state - save the PCI configuration space of a device before 1683 * suspending 1684 * @dev: PCI device that we're dealing with 1685 */ 1686 int pci_save_state(struct pci_dev *dev) 1687 { 1688 int i; 1689 /* XXX: 100% dword access ok here? */ 1690 for (i = 0; i < 16; i++) { 1691 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]); 1692 pci_dbg(dev, "save config %#04x: %#010x\n", 1693 i * 4, dev->saved_config_space[i]); 1694 } 1695 dev->state_saved = true; 1696 1697 i = pci_save_pcie_state(dev); 1698 if (i != 0) 1699 return i; 1700 1701 i = pci_save_pcix_state(dev); 1702 if (i != 0) 1703 return i; 1704 1705 pci_save_ltr_state(dev); 1706 pci_save_dpc_state(dev); 1707 pci_save_aer_state(dev); 1708 pci_save_ptm_state(dev); 1709 return pci_save_vc_state(dev); 1710 } 1711 EXPORT_SYMBOL(pci_save_state); 1712 1713 static void pci_restore_config_dword(struct pci_dev *pdev, int offset, 1714 u32 saved_val, int retry, bool force) 1715 { 1716 u32 val; 1717 1718 pci_read_config_dword(pdev, offset, &val); 1719 if (!force && val == saved_val) 1720 return; 1721 1722 for (;;) { 1723 pci_dbg(pdev, "restore config %#04x: %#010x -> %#010x\n", 1724 offset, val, saved_val); 1725 pci_write_config_dword(pdev, offset, saved_val); 1726 if (retry-- <= 0) 1727 return; 1728 1729 pci_read_config_dword(pdev, offset, &val); 1730 if (val == saved_val) 1731 return; 1732 1733 mdelay(1); 1734 } 1735 } 1736 1737 static void pci_restore_config_space_range(struct pci_dev *pdev, 1738 int start, int end, int retry, 1739 bool force) 1740 { 1741 int index; 1742 1743 for (index = end; index >= start; index--) 1744 pci_restore_config_dword(pdev, 4 * index, 1745 pdev->saved_config_space[index], 1746 retry, force); 1747 } 1748 1749 static void pci_restore_config_space(struct pci_dev *pdev) 1750 { 1751 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) { 1752 pci_restore_config_space_range(pdev, 10, 15, 0, false); 1753 /* Restore BARs before the command register. */ 1754 pci_restore_config_space_range(pdev, 4, 9, 10, false); 1755 pci_restore_config_space_range(pdev, 0, 3, 0, false); 1756 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 1757 pci_restore_config_space_range(pdev, 12, 15, 0, false); 1758 1759 /* 1760 * Force rewriting of prefetch registers to avoid S3 resume 1761 * issues on Intel PCI bridges that occur when these 1762 * registers are not explicitly written. 1763 */ 1764 pci_restore_config_space_range(pdev, 9, 11, 0, true); 1765 pci_restore_config_space_range(pdev, 0, 8, 0, false); 1766 } else { 1767 pci_restore_config_space_range(pdev, 0, 15, 0, false); 1768 } 1769 } 1770 1771 static void pci_restore_rebar_state(struct pci_dev *pdev) 1772 { 1773 unsigned int pos, nbars, i; 1774 u32 ctrl; 1775 1776 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 1777 if (!pos) 1778 return; 1779 1780 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1781 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >> 1782 PCI_REBAR_CTRL_NBAR_SHIFT; 1783 1784 for (i = 0; i < nbars; i++, pos += 8) { 1785 struct resource *res; 1786 int bar_idx, size; 1787 1788 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1789 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX; 1790 res = pdev->resource + bar_idx; 1791 size = pci_rebar_bytes_to_size(resource_size(res)); 1792 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 1793 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT; 1794 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 1795 } 1796 } 1797 1798 /** 1799 * pci_restore_state - Restore the saved state of a PCI device 1800 * @dev: PCI device that we're dealing with 1801 */ 1802 void pci_restore_state(struct pci_dev *dev) 1803 { 1804 if (!dev->state_saved) 1805 return; 1806 1807 /* 1808 * Restore max latencies (in the LTR capability) before enabling 1809 * LTR itself (in the PCIe capability). 1810 */ 1811 pci_restore_ltr_state(dev); 1812 1813 pci_restore_pcie_state(dev); 1814 pci_restore_pasid_state(dev); 1815 pci_restore_pri_state(dev); 1816 pci_restore_ats_state(dev); 1817 pci_restore_vc_state(dev); 1818 pci_restore_rebar_state(dev); 1819 pci_restore_dpc_state(dev); 1820 pci_restore_ptm_state(dev); 1821 1822 pci_aer_clear_status(dev); 1823 pci_restore_aer_state(dev); 1824 1825 pci_restore_config_space(dev); 1826 1827 pci_restore_pcix_state(dev); 1828 pci_restore_msi_state(dev); 1829 1830 /* Restore ACS and IOV configuration state */ 1831 pci_enable_acs(dev); 1832 pci_restore_iov_state(dev); 1833 1834 dev->state_saved = false; 1835 } 1836 EXPORT_SYMBOL(pci_restore_state); 1837 1838 struct pci_saved_state { 1839 u32 config_space[16]; 1840 struct pci_cap_saved_data cap[]; 1841 }; 1842 1843 /** 1844 * pci_store_saved_state - Allocate and return an opaque struct containing 1845 * the device saved state. 1846 * @dev: PCI device that we're dealing with 1847 * 1848 * Return NULL if no state or error. 1849 */ 1850 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev) 1851 { 1852 struct pci_saved_state *state; 1853 struct pci_cap_saved_state *tmp; 1854 struct pci_cap_saved_data *cap; 1855 size_t size; 1856 1857 if (!dev->state_saved) 1858 return NULL; 1859 1860 size = sizeof(*state) + sizeof(struct pci_cap_saved_data); 1861 1862 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) 1863 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1864 1865 state = kzalloc(size, GFP_KERNEL); 1866 if (!state) 1867 return NULL; 1868 1869 memcpy(state->config_space, dev->saved_config_space, 1870 sizeof(state->config_space)); 1871 1872 cap = state->cap; 1873 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) { 1874 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1875 memcpy(cap, &tmp->cap, len); 1876 cap = (struct pci_cap_saved_data *)((u8 *)cap + len); 1877 } 1878 /* Empty cap_save terminates list */ 1879 1880 return state; 1881 } 1882 EXPORT_SYMBOL_GPL(pci_store_saved_state); 1883 1884 /** 1885 * pci_load_saved_state - Reload the provided save state into struct pci_dev. 1886 * @dev: PCI device that we're dealing with 1887 * @state: Saved state returned from pci_store_saved_state() 1888 */ 1889 int pci_load_saved_state(struct pci_dev *dev, 1890 struct pci_saved_state *state) 1891 { 1892 struct pci_cap_saved_data *cap; 1893 1894 dev->state_saved = false; 1895 1896 if (!state) 1897 return 0; 1898 1899 memcpy(dev->saved_config_space, state->config_space, 1900 sizeof(state->config_space)); 1901 1902 cap = state->cap; 1903 while (cap->size) { 1904 struct pci_cap_saved_state *tmp; 1905 1906 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended); 1907 if (!tmp || tmp->cap.size != cap->size) 1908 return -EINVAL; 1909 1910 memcpy(tmp->cap.data, cap->data, tmp->cap.size); 1911 cap = (struct pci_cap_saved_data *)((u8 *)cap + 1912 sizeof(struct pci_cap_saved_data) + cap->size); 1913 } 1914 1915 dev->state_saved = true; 1916 return 0; 1917 } 1918 EXPORT_SYMBOL_GPL(pci_load_saved_state); 1919 1920 /** 1921 * pci_load_and_free_saved_state - Reload the save state pointed to by state, 1922 * and free the memory allocated for it. 1923 * @dev: PCI device that we're dealing with 1924 * @state: Pointer to saved state returned from pci_store_saved_state() 1925 */ 1926 int pci_load_and_free_saved_state(struct pci_dev *dev, 1927 struct pci_saved_state **state) 1928 { 1929 int ret = pci_load_saved_state(dev, *state); 1930 kfree(*state); 1931 *state = NULL; 1932 return ret; 1933 } 1934 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state); 1935 1936 int __weak pcibios_enable_device(struct pci_dev *dev, int bars) 1937 { 1938 return pci_enable_resources(dev, bars); 1939 } 1940 1941 static int do_pci_enable_device(struct pci_dev *dev, int bars) 1942 { 1943 int err; 1944 struct pci_dev *bridge; 1945 u16 cmd; 1946 u8 pin; 1947 1948 err = pci_set_power_state(dev, PCI_D0); 1949 if (err < 0 && err != -EIO) 1950 return err; 1951 1952 bridge = pci_upstream_bridge(dev); 1953 if (bridge) 1954 pcie_aspm_powersave_config_link(bridge); 1955 1956 err = pcibios_enable_device(dev, bars); 1957 if (err < 0) 1958 return err; 1959 pci_fixup_device(pci_fixup_enable, dev); 1960 1961 if (dev->msi_enabled || dev->msix_enabled) 1962 return 0; 1963 1964 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin); 1965 if (pin) { 1966 pci_read_config_word(dev, PCI_COMMAND, &cmd); 1967 if (cmd & PCI_COMMAND_INTX_DISABLE) 1968 pci_write_config_word(dev, PCI_COMMAND, 1969 cmd & ~PCI_COMMAND_INTX_DISABLE); 1970 } 1971 1972 return 0; 1973 } 1974 1975 /** 1976 * pci_reenable_device - Resume abandoned device 1977 * @dev: PCI device to be resumed 1978 * 1979 * NOTE: This function is a backend of pci_default_resume() and is not supposed 1980 * to be called by normal code, write proper resume handler and use it instead. 1981 */ 1982 int pci_reenable_device(struct pci_dev *dev) 1983 { 1984 if (pci_is_enabled(dev)) 1985 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1); 1986 return 0; 1987 } 1988 EXPORT_SYMBOL(pci_reenable_device); 1989 1990 static void pci_enable_bridge(struct pci_dev *dev) 1991 { 1992 struct pci_dev *bridge; 1993 int retval; 1994 1995 bridge = pci_upstream_bridge(dev); 1996 if (bridge) 1997 pci_enable_bridge(bridge); 1998 1999 if (pci_is_enabled(dev)) { 2000 if (!dev->is_busmaster) 2001 pci_set_master(dev); 2002 return; 2003 } 2004 2005 retval = pci_enable_device(dev); 2006 if (retval) 2007 pci_err(dev, "Error enabling bridge (%d), continuing\n", 2008 retval); 2009 pci_set_master(dev); 2010 } 2011 2012 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags) 2013 { 2014 struct pci_dev *bridge; 2015 int err; 2016 int i, bars = 0; 2017 2018 /* 2019 * Power state could be unknown at this point, either due to a fresh 2020 * boot or a device removal call. So get the current power state 2021 * so that things like MSI message writing will behave as expected 2022 * (e.g. if the device really is in D0 at enable time). 2023 */ 2024 pci_update_current_state(dev, dev->current_state); 2025 2026 if (atomic_inc_return(&dev->enable_cnt) > 1) 2027 return 0; /* already enabled */ 2028 2029 bridge = pci_upstream_bridge(dev); 2030 if (bridge) 2031 pci_enable_bridge(bridge); 2032 2033 /* only skip sriov related */ 2034 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 2035 if (dev->resource[i].flags & flags) 2036 bars |= (1 << i); 2037 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++) 2038 if (dev->resource[i].flags & flags) 2039 bars |= (1 << i); 2040 2041 err = do_pci_enable_device(dev, bars); 2042 if (err < 0) 2043 atomic_dec(&dev->enable_cnt); 2044 return err; 2045 } 2046 2047 /** 2048 * pci_enable_device_io - Initialize a device for use with IO space 2049 * @dev: PCI device to be initialized 2050 * 2051 * Initialize device before it's used by a driver. Ask low-level code 2052 * to enable I/O resources. Wake up the device if it was suspended. 2053 * Beware, this function can fail. 2054 */ 2055 int pci_enable_device_io(struct pci_dev *dev) 2056 { 2057 return pci_enable_device_flags(dev, IORESOURCE_IO); 2058 } 2059 EXPORT_SYMBOL(pci_enable_device_io); 2060 2061 /** 2062 * pci_enable_device_mem - Initialize a device for use with Memory space 2063 * @dev: PCI device to be initialized 2064 * 2065 * Initialize device before it's used by a driver. Ask low-level code 2066 * to enable Memory resources. Wake up the device if it was suspended. 2067 * Beware, this function can fail. 2068 */ 2069 int pci_enable_device_mem(struct pci_dev *dev) 2070 { 2071 return pci_enable_device_flags(dev, IORESOURCE_MEM); 2072 } 2073 EXPORT_SYMBOL(pci_enable_device_mem); 2074 2075 /** 2076 * pci_enable_device - Initialize device before it's used by a driver. 2077 * @dev: PCI device to be initialized 2078 * 2079 * Initialize device before it's used by a driver. Ask low-level code 2080 * to enable I/O and memory. Wake up the device if it was suspended. 2081 * Beware, this function can fail. 2082 * 2083 * Note we don't actually enable the device many times if we call 2084 * this function repeatedly (we just increment the count). 2085 */ 2086 int pci_enable_device(struct pci_dev *dev) 2087 { 2088 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO); 2089 } 2090 EXPORT_SYMBOL(pci_enable_device); 2091 2092 /* 2093 * Managed PCI resources. This manages device on/off, INTx/MSI/MSI-X 2094 * on/off and BAR regions. pci_dev itself records MSI/MSI-X status, so 2095 * there's no need to track it separately. pci_devres is initialized 2096 * when a device is enabled using managed PCI device enable interface. 2097 */ 2098 struct pci_devres { 2099 unsigned int enabled:1; 2100 unsigned int pinned:1; 2101 unsigned int orig_intx:1; 2102 unsigned int restore_intx:1; 2103 unsigned int mwi:1; 2104 u32 region_mask; 2105 }; 2106 2107 static void pcim_release(struct device *gendev, void *res) 2108 { 2109 struct pci_dev *dev = to_pci_dev(gendev); 2110 struct pci_devres *this = res; 2111 int i; 2112 2113 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) 2114 if (this->region_mask & (1 << i)) 2115 pci_release_region(dev, i); 2116 2117 if (this->mwi) 2118 pci_clear_mwi(dev); 2119 2120 if (this->restore_intx) 2121 pci_intx(dev, this->orig_intx); 2122 2123 if (this->enabled && !this->pinned) 2124 pci_disable_device(dev); 2125 } 2126 2127 static struct pci_devres *get_pci_dr(struct pci_dev *pdev) 2128 { 2129 struct pci_devres *dr, *new_dr; 2130 2131 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL); 2132 if (dr) 2133 return dr; 2134 2135 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL); 2136 if (!new_dr) 2137 return NULL; 2138 return devres_get(&pdev->dev, new_dr, NULL, NULL); 2139 } 2140 2141 static struct pci_devres *find_pci_dr(struct pci_dev *pdev) 2142 { 2143 if (pci_is_managed(pdev)) 2144 return devres_find(&pdev->dev, pcim_release, NULL, NULL); 2145 return NULL; 2146 } 2147 2148 /** 2149 * pcim_enable_device - Managed pci_enable_device() 2150 * @pdev: PCI device to be initialized 2151 * 2152 * Managed pci_enable_device(). 2153 */ 2154 int pcim_enable_device(struct pci_dev *pdev) 2155 { 2156 struct pci_devres *dr; 2157 int rc; 2158 2159 dr = get_pci_dr(pdev); 2160 if (unlikely(!dr)) 2161 return -ENOMEM; 2162 if (dr->enabled) 2163 return 0; 2164 2165 rc = pci_enable_device(pdev); 2166 if (!rc) { 2167 pdev->is_managed = 1; 2168 dr->enabled = 1; 2169 } 2170 return rc; 2171 } 2172 EXPORT_SYMBOL(pcim_enable_device); 2173 2174 /** 2175 * pcim_pin_device - Pin managed PCI device 2176 * @pdev: PCI device to pin 2177 * 2178 * Pin managed PCI device @pdev. Pinned device won't be disabled on 2179 * driver detach. @pdev must have been enabled with 2180 * pcim_enable_device(). 2181 */ 2182 void pcim_pin_device(struct pci_dev *pdev) 2183 { 2184 struct pci_devres *dr; 2185 2186 dr = find_pci_dr(pdev); 2187 WARN_ON(!dr || !dr->enabled); 2188 if (dr) 2189 dr->pinned = 1; 2190 } 2191 EXPORT_SYMBOL(pcim_pin_device); 2192 2193 /* 2194 * pcibios_device_add - provide arch specific hooks when adding device dev 2195 * @dev: the PCI device being added 2196 * 2197 * Permits the platform to provide architecture specific functionality when 2198 * devices are added. This is the default implementation. Architecture 2199 * implementations can override this. 2200 */ 2201 int __weak pcibios_device_add(struct pci_dev *dev) 2202 { 2203 return 0; 2204 } 2205 2206 /** 2207 * pcibios_release_device - provide arch specific hooks when releasing 2208 * device dev 2209 * @dev: the PCI device being released 2210 * 2211 * Permits the platform to provide architecture specific functionality when 2212 * devices are released. This is the default implementation. Architecture 2213 * implementations can override this. 2214 */ 2215 void __weak pcibios_release_device(struct pci_dev *dev) {} 2216 2217 /** 2218 * pcibios_disable_device - disable arch specific PCI resources for device dev 2219 * @dev: the PCI device to disable 2220 * 2221 * Disables architecture specific PCI resources for the device. This 2222 * is the default implementation. Architecture implementations can 2223 * override this. 2224 */ 2225 void __weak pcibios_disable_device(struct pci_dev *dev) {} 2226 2227 /** 2228 * pcibios_penalize_isa_irq - penalize an ISA IRQ 2229 * @irq: ISA IRQ to penalize 2230 * @active: IRQ active or not 2231 * 2232 * Permits the platform to provide architecture-specific functionality when 2233 * penalizing ISA IRQs. This is the default implementation. Architecture 2234 * implementations can override this. 2235 */ 2236 void __weak pcibios_penalize_isa_irq(int irq, int active) {} 2237 2238 static void do_pci_disable_device(struct pci_dev *dev) 2239 { 2240 u16 pci_command; 2241 2242 pci_read_config_word(dev, PCI_COMMAND, &pci_command); 2243 if (pci_command & PCI_COMMAND_MASTER) { 2244 pci_command &= ~PCI_COMMAND_MASTER; 2245 pci_write_config_word(dev, PCI_COMMAND, pci_command); 2246 } 2247 2248 pcibios_disable_device(dev); 2249 } 2250 2251 /** 2252 * pci_disable_enabled_device - Disable device without updating enable_cnt 2253 * @dev: PCI device to disable 2254 * 2255 * NOTE: This function is a backend of PCI power management routines and is 2256 * not supposed to be called drivers. 2257 */ 2258 void pci_disable_enabled_device(struct pci_dev *dev) 2259 { 2260 if (pci_is_enabled(dev)) 2261 do_pci_disable_device(dev); 2262 } 2263 2264 /** 2265 * pci_disable_device - Disable PCI device after use 2266 * @dev: PCI device to be disabled 2267 * 2268 * Signal to the system that the PCI device is not in use by the system 2269 * anymore. This only involves disabling PCI bus-mastering, if active. 2270 * 2271 * Note we don't actually disable the device until all callers of 2272 * pci_enable_device() have called pci_disable_device(). 2273 */ 2274 void pci_disable_device(struct pci_dev *dev) 2275 { 2276 struct pci_devres *dr; 2277 2278 dr = find_pci_dr(dev); 2279 if (dr) 2280 dr->enabled = 0; 2281 2282 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0, 2283 "disabling already-disabled device"); 2284 2285 if (atomic_dec_return(&dev->enable_cnt) != 0) 2286 return; 2287 2288 do_pci_disable_device(dev); 2289 2290 dev->is_busmaster = 0; 2291 } 2292 EXPORT_SYMBOL(pci_disable_device); 2293 2294 /** 2295 * pcibios_set_pcie_reset_state - set reset state for device dev 2296 * @dev: the PCIe device reset 2297 * @state: Reset state to enter into 2298 * 2299 * Set the PCIe reset state for the device. This is the default 2300 * implementation. Architecture implementations can override this. 2301 */ 2302 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev, 2303 enum pcie_reset_state state) 2304 { 2305 return -EINVAL; 2306 } 2307 2308 /** 2309 * pci_set_pcie_reset_state - set reset state for device dev 2310 * @dev: the PCIe device reset 2311 * @state: Reset state to enter into 2312 * 2313 * Sets the PCI reset state for the device. 2314 */ 2315 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state) 2316 { 2317 return pcibios_set_pcie_reset_state(dev, state); 2318 } 2319 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state); 2320 2321 #ifdef CONFIG_PCIEAER 2322 void pcie_clear_device_status(struct pci_dev *dev) 2323 { 2324 u16 sta; 2325 2326 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta); 2327 pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta); 2328 } 2329 #endif 2330 2331 /** 2332 * pcie_clear_root_pme_status - Clear root port PME interrupt status. 2333 * @dev: PCIe root port or event collector. 2334 */ 2335 void pcie_clear_root_pme_status(struct pci_dev *dev) 2336 { 2337 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME); 2338 } 2339 2340 /** 2341 * pci_check_pme_status - Check if given device has generated PME. 2342 * @dev: Device to check. 2343 * 2344 * Check the PME status of the device and if set, clear it and clear PME enable 2345 * (if set). Return 'true' if PME status and PME enable were both set or 2346 * 'false' otherwise. 2347 */ 2348 bool pci_check_pme_status(struct pci_dev *dev) 2349 { 2350 int pmcsr_pos; 2351 u16 pmcsr; 2352 bool ret = false; 2353 2354 if (!dev->pm_cap) 2355 return false; 2356 2357 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL; 2358 pci_read_config_word(dev, pmcsr_pos, &pmcsr); 2359 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS)) 2360 return false; 2361 2362 /* Clear PME status. */ 2363 pmcsr |= PCI_PM_CTRL_PME_STATUS; 2364 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) { 2365 /* Disable PME to avoid interrupt flood. */ 2366 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2367 ret = true; 2368 } 2369 2370 pci_write_config_word(dev, pmcsr_pos, pmcsr); 2371 2372 return ret; 2373 } 2374 2375 /** 2376 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set. 2377 * @dev: Device to handle. 2378 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag. 2379 * 2380 * Check if @dev has generated PME and queue a resume request for it in that 2381 * case. 2382 */ 2383 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset) 2384 { 2385 if (pme_poll_reset && dev->pme_poll) 2386 dev->pme_poll = false; 2387 2388 if (pci_check_pme_status(dev)) { 2389 pci_wakeup_event(dev); 2390 pm_request_resume(&dev->dev); 2391 } 2392 return 0; 2393 } 2394 2395 /** 2396 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary. 2397 * @bus: Top bus of the subtree to walk. 2398 */ 2399 void pci_pme_wakeup_bus(struct pci_bus *bus) 2400 { 2401 if (bus) 2402 pci_walk_bus(bus, pci_pme_wakeup, (void *)true); 2403 } 2404 2405 2406 /** 2407 * pci_pme_capable - check the capability of PCI device to generate PME# 2408 * @dev: PCI device to handle. 2409 * @state: PCI state from which device will issue PME#. 2410 */ 2411 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state) 2412 { 2413 if (!dev->pm_cap) 2414 return false; 2415 2416 return !!(dev->pme_support & (1 << state)); 2417 } 2418 EXPORT_SYMBOL(pci_pme_capable); 2419 2420 static void pci_pme_list_scan(struct work_struct *work) 2421 { 2422 struct pci_pme_device *pme_dev, *n; 2423 2424 mutex_lock(&pci_pme_list_mutex); 2425 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) { 2426 struct pci_dev *pdev = pme_dev->dev; 2427 2428 if (pdev->pme_poll) { 2429 struct pci_dev *bridge = pdev->bus->self; 2430 struct device *dev = &pdev->dev; 2431 int pm_status; 2432 2433 /* 2434 * If bridge is in low power state, the 2435 * configuration space of subordinate devices 2436 * may be not accessible 2437 */ 2438 if (bridge && bridge->current_state != PCI_D0) 2439 continue; 2440 2441 /* 2442 * If the device is in a low power state it 2443 * should not be polled either. 2444 */ 2445 pm_status = pm_runtime_get_if_active(dev, true); 2446 if (!pm_status) 2447 continue; 2448 2449 if (pdev->current_state != PCI_D3cold) 2450 pci_pme_wakeup(pdev, NULL); 2451 2452 if (pm_status > 0) 2453 pm_runtime_put(dev); 2454 } else { 2455 list_del(&pme_dev->list); 2456 kfree(pme_dev); 2457 } 2458 } 2459 if (!list_empty(&pci_pme_list)) 2460 queue_delayed_work(system_freezable_wq, &pci_pme_work, 2461 msecs_to_jiffies(PME_TIMEOUT)); 2462 mutex_unlock(&pci_pme_list_mutex); 2463 } 2464 2465 static void __pci_pme_active(struct pci_dev *dev, bool enable) 2466 { 2467 u16 pmcsr; 2468 2469 if (!dev->pme_support) 2470 return; 2471 2472 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2473 /* Clear PME_Status by writing 1 to it and enable PME# */ 2474 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE; 2475 if (!enable) 2476 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2477 2478 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2479 } 2480 2481 /** 2482 * pci_pme_restore - Restore PME configuration after config space restore. 2483 * @dev: PCI device to update. 2484 */ 2485 void pci_pme_restore(struct pci_dev *dev) 2486 { 2487 u16 pmcsr; 2488 2489 if (!dev->pme_support) 2490 return; 2491 2492 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2493 if (dev->wakeup_prepared) { 2494 pmcsr |= PCI_PM_CTRL_PME_ENABLE; 2495 pmcsr &= ~PCI_PM_CTRL_PME_STATUS; 2496 } else { 2497 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2498 pmcsr |= PCI_PM_CTRL_PME_STATUS; 2499 } 2500 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2501 } 2502 2503 /** 2504 * pci_pme_active - enable or disable PCI device's PME# function 2505 * @dev: PCI device to handle. 2506 * @enable: 'true' to enable PME# generation; 'false' to disable it. 2507 * 2508 * The caller must verify that the device is capable of generating PME# before 2509 * calling this function with @enable equal to 'true'. 2510 */ 2511 void pci_pme_active(struct pci_dev *dev, bool enable) 2512 { 2513 __pci_pme_active(dev, enable); 2514 2515 /* 2516 * PCI (as opposed to PCIe) PME requires that the device have 2517 * its PME# line hooked up correctly. Not all hardware vendors 2518 * do this, so the PME never gets delivered and the device 2519 * remains asleep. The easiest way around this is to 2520 * periodically walk the list of suspended devices and check 2521 * whether any have their PME flag set. The assumption is that 2522 * we'll wake up often enough anyway that this won't be a huge 2523 * hit, and the power savings from the devices will still be a 2524 * win. 2525 * 2526 * Although PCIe uses in-band PME message instead of PME# line 2527 * to report PME, PME does not work for some PCIe devices in 2528 * reality. For example, there are devices that set their PME 2529 * status bits, but don't really bother to send a PME message; 2530 * there are PCI Express Root Ports that don't bother to 2531 * trigger interrupts when they receive PME messages from the 2532 * devices below. So PME poll is used for PCIe devices too. 2533 */ 2534 2535 if (dev->pme_poll) { 2536 struct pci_pme_device *pme_dev; 2537 if (enable) { 2538 pme_dev = kmalloc(sizeof(struct pci_pme_device), 2539 GFP_KERNEL); 2540 if (!pme_dev) { 2541 pci_warn(dev, "can't enable PME#\n"); 2542 return; 2543 } 2544 pme_dev->dev = dev; 2545 mutex_lock(&pci_pme_list_mutex); 2546 list_add(&pme_dev->list, &pci_pme_list); 2547 if (list_is_singular(&pci_pme_list)) 2548 queue_delayed_work(system_freezable_wq, 2549 &pci_pme_work, 2550 msecs_to_jiffies(PME_TIMEOUT)); 2551 mutex_unlock(&pci_pme_list_mutex); 2552 } else { 2553 mutex_lock(&pci_pme_list_mutex); 2554 list_for_each_entry(pme_dev, &pci_pme_list, list) { 2555 if (pme_dev->dev == dev) { 2556 list_del(&pme_dev->list); 2557 kfree(pme_dev); 2558 break; 2559 } 2560 } 2561 mutex_unlock(&pci_pme_list_mutex); 2562 } 2563 } 2564 2565 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled"); 2566 } 2567 EXPORT_SYMBOL(pci_pme_active); 2568 2569 /** 2570 * __pci_enable_wake - enable PCI device as wakeup event source 2571 * @dev: PCI device affected 2572 * @state: PCI state from which device will issue wakeup events 2573 * @enable: True to enable event generation; false to disable 2574 * 2575 * This enables the device as a wakeup event source, or disables it. 2576 * When such events involves platform-specific hooks, those hooks are 2577 * called automatically by this routine. 2578 * 2579 * Devices with legacy power management (no standard PCI PM capabilities) 2580 * always require such platform hooks. 2581 * 2582 * RETURN VALUE: 2583 * 0 is returned on success 2584 * -EINVAL is returned if device is not supposed to wake up the system 2585 * Error code depending on the platform is returned if both the platform and 2586 * the native mechanism fail to enable the generation of wake-up events 2587 */ 2588 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable) 2589 { 2590 int ret = 0; 2591 2592 /* 2593 * Bridges that are not power-manageable directly only signal 2594 * wakeup on behalf of subordinate devices which is set up 2595 * elsewhere, so skip them. However, bridges that are 2596 * power-manageable may signal wakeup for themselves (for example, 2597 * on a hotplug event) and they need to be covered here. 2598 */ 2599 if (!pci_power_manageable(dev)) 2600 return 0; 2601 2602 /* Don't do the same thing twice in a row for one device. */ 2603 if (!!enable == !!dev->wakeup_prepared) 2604 return 0; 2605 2606 /* 2607 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don 2608 * Anderson we should be doing PME# wake enable followed by ACPI wake 2609 * enable. To disable wake-up we call the platform first, for symmetry. 2610 */ 2611 2612 if (enable) { 2613 int error; 2614 2615 /* 2616 * Enable PME signaling if the device can signal PME from 2617 * D3cold regardless of whether or not it can signal PME from 2618 * the current target state, because that will allow it to 2619 * signal PME when the hierarchy above it goes into D3cold and 2620 * the device itself ends up in D3cold as a result of that. 2621 */ 2622 if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold)) 2623 pci_pme_active(dev, true); 2624 else 2625 ret = 1; 2626 error = platform_pci_set_wakeup(dev, true); 2627 if (ret) 2628 ret = error; 2629 if (!ret) 2630 dev->wakeup_prepared = true; 2631 } else { 2632 platform_pci_set_wakeup(dev, false); 2633 pci_pme_active(dev, false); 2634 dev->wakeup_prepared = false; 2635 } 2636 2637 return ret; 2638 } 2639 2640 /** 2641 * pci_enable_wake - change wakeup settings for a PCI device 2642 * @pci_dev: Target device 2643 * @state: PCI state from which device will issue wakeup events 2644 * @enable: Whether or not to enable event generation 2645 * 2646 * If @enable is set, check device_may_wakeup() for the device before calling 2647 * __pci_enable_wake() for it. 2648 */ 2649 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable) 2650 { 2651 if (enable && !device_may_wakeup(&pci_dev->dev)) 2652 return -EINVAL; 2653 2654 return __pci_enable_wake(pci_dev, state, enable); 2655 } 2656 EXPORT_SYMBOL(pci_enable_wake); 2657 2658 /** 2659 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold 2660 * @dev: PCI device to prepare 2661 * @enable: True to enable wake-up event generation; false to disable 2662 * 2663 * Many drivers want the device to wake up the system from D3_hot or D3_cold 2664 * and this function allows them to set that up cleanly - pci_enable_wake() 2665 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI 2666 * ordering constraints. 2667 * 2668 * This function only returns error code if the device is not allowed to wake 2669 * up the system from sleep or it is not capable of generating PME# from both 2670 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it. 2671 */ 2672 int pci_wake_from_d3(struct pci_dev *dev, bool enable) 2673 { 2674 return pci_pme_capable(dev, PCI_D3cold) ? 2675 pci_enable_wake(dev, PCI_D3cold, enable) : 2676 pci_enable_wake(dev, PCI_D3hot, enable); 2677 } 2678 EXPORT_SYMBOL(pci_wake_from_d3); 2679 2680 /** 2681 * pci_target_state - find an appropriate low power state for a given PCI dev 2682 * @dev: PCI device 2683 * @wakeup: Whether or not wakeup functionality will be enabled for the device. 2684 * 2685 * Use underlying platform code to find a supported low power state for @dev. 2686 * If the platform can't manage @dev, return the deepest state from which it 2687 * can generate wake events, based on any available PME info. 2688 */ 2689 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup) 2690 { 2691 if (platform_pci_power_manageable(dev)) { 2692 /* 2693 * Call the platform to find the target state for the device. 2694 */ 2695 pci_power_t state = platform_pci_choose_state(dev); 2696 2697 switch (state) { 2698 case PCI_POWER_ERROR: 2699 case PCI_UNKNOWN: 2700 return PCI_D3hot; 2701 2702 case PCI_D1: 2703 case PCI_D2: 2704 if (pci_no_d1d2(dev)) 2705 return PCI_D3hot; 2706 } 2707 2708 return state; 2709 } 2710 2711 /* 2712 * If the device is in D3cold even though it's not power-manageable by 2713 * the platform, it may have been powered down by non-standard means. 2714 * Best to let it slumber. 2715 */ 2716 if (dev->current_state == PCI_D3cold) 2717 return PCI_D3cold; 2718 else if (!dev->pm_cap) 2719 return PCI_D0; 2720 2721 if (wakeup && dev->pme_support) { 2722 pci_power_t state = PCI_D3hot; 2723 2724 /* 2725 * Find the deepest state from which the device can generate 2726 * PME#. 2727 */ 2728 while (state && !(dev->pme_support & (1 << state))) 2729 state--; 2730 2731 if (state) 2732 return state; 2733 else if (dev->pme_support & 1) 2734 return PCI_D0; 2735 } 2736 2737 return PCI_D3hot; 2738 } 2739 2740 /** 2741 * pci_prepare_to_sleep - prepare PCI device for system-wide transition 2742 * into a sleep state 2743 * @dev: Device to handle. 2744 * 2745 * Choose the power state appropriate for the device depending on whether 2746 * it can wake up the system and/or is power manageable by the platform 2747 * (PCI_D3hot is the default) and put the device into that state. 2748 */ 2749 int pci_prepare_to_sleep(struct pci_dev *dev) 2750 { 2751 bool wakeup = device_may_wakeup(&dev->dev); 2752 pci_power_t target_state = pci_target_state(dev, wakeup); 2753 int error; 2754 2755 if (target_state == PCI_POWER_ERROR) 2756 return -EIO; 2757 2758 pci_enable_wake(dev, target_state, wakeup); 2759 2760 error = pci_set_power_state(dev, target_state); 2761 2762 if (error) 2763 pci_enable_wake(dev, target_state, false); 2764 2765 return error; 2766 } 2767 EXPORT_SYMBOL(pci_prepare_to_sleep); 2768 2769 /** 2770 * pci_back_from_sleep - turn PCI device on during system-wide transition 2771 * into working state 2772 * @dev: Device to handle. 2773 * 2774 * Disable device's system wake-up capability and put it into D0. 2775 */ 2776 int pci_back_from_sleep(struct pci_dev *dev) 2777 { 2778 int ret = pci_set_power_state(dev, PCI_D0); 2779 2780 if (ret) 2781 return ret; 2782 2783 pci_enable_wake(dev, PCI_D0, false); 2784 return 0; 2785 } 2786 EXPORT_SYMBOL(pci_back_from_sleep); 2787 2788 /** 2789 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend. 2790 * @dev: PCI device being suspended. 2791 * 2792 * Prepare @dev to generate wake-up events at run time and put it into a low 2793 * power state. 2794 */ 2795 int pci_finish_runtime_suspend(struct pci_dev *dev) 2796 { 2797 pci_power_t target_state; 2798 int error; 2799 2800 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev)); 2801 if (target_state == PCI_POWER_ERROR) 2802 return -EIO; 2803 2804 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev)); 2805 2806 error = pci_set_power_state(dev, target_state); 2807 2808 if (error) 2809 pci_enable_wake(dev, target_state, false); 2810 2811 return error; 2812 } 2813 2814 /** 2815 * pci_dev_run_wake - Check if device can generate run-time wake-up events. 2816 * @dev: Device to check. 2817 * 2818 * Return true if the device itself is capable of generating wake-up events 2819 * (through the platform or using the native PCIe PME) or if the device supports 2820 * PME and one of its upstream bridges can generate wake-up events. 2821 */ 2822 bool pci_dev_run_wake(struct pci_dev *dev) 2823 { 2824 struct pci_bus *bus = dev->bus; 2825 2826 if (!dev->pme_support) 2827 return false; 2828 2829 /* PME-capable in principle, but not from the target power state */ 2830 if (!pci_pme_capable(dev, pci_target_state(dev, true))) 2831 return false; 2832 2833 if (device_can_wakeup(&dev->dev)) 2834 return true; 2835 2836 while (bus->parent) { 2837 struct pci_dev *bridge = bus->self; 2838 2839 if (device_can_wakeup(&bridge->dev)) 2840 return true; 2841 2842 bus = bus->parent; 2843 } 2844 2845 /* We have reached the root bus. */ 2846 if (bus->bridge) 2847 return device_can_wakeup(bus->bridge); 2848 2849 return false; 2850 } 2851 EXPORT_SYMBOL_GPL(pci_dev_run_wake); 2852 2853 /** 2854 * pci_dev_need_resume - Check if it is necessary to resume the device. 2855 * @pci_dev: Device to check. 2856 * 2857 * Return 'true' if the device is not runtime-suspended or it has to be 2858 * reconfigured due to wakeup settings difference between system and runtime 2859 * suspend, or the current power state of it is not suitable for the upcoming 2860 * (system-wide) transition. 2861 */ 2862 bool pci_dev_need_resume(struct pci_dev *pci_dev) 2863 { 2864 struct device *dev = &pci_dev->dev; 2865 pci_power_t target_state; 2866 2867 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev)) 2868 return true; 2869 2870 target_state = pci_target_state(pci_dev, device_may_wakeup(dev)); 2871 2872 /* 2873 * If the earlier platform check has not triggered, D3cold is just power 2874 * removal on top of D3hot, so no need to resume the device in that 2875 * case. 2876 */ 2877 return target_state != pci_dev->current_state && 2878 target_state != PCI_D3cold && 2879 pci_dev->current_state != PCI_D3hot; 2880 } 2881 2882 /** 2883 * pci_dev_adjust_pme - Adjust PME setting for a suspended device. 2884 * @pci_dev: Device to check. 2885 * 2886 * If the device is suspended and it is not configured for system wakeup, 2887 * disable PME for it to prevent it from waking up the system unnecessarily. 2888 * 2889 * Note that if the device's power state is D3cold and the platform check in 2890 * pci_dev_need_resume() has not triggered, the device's configuration need not 2891 * be changed. 2892 */ 2893 void pci_dev_adjust_pme(struct pci_dev *pci_dev) 2894 { 2895 struct device *dev = &pci_dev->dev; 2896 2897 spin_lock_irq(&dev->power.lock); 2898 2899 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) && 2900 pci_dev->current_state < PCI_D3cold) 2901 __pci_pme_active(pci_dev, false); 2902 2903 spin_unlock_irq(&dev->power.lock); 2904 } 2905 2906 /** 2907 * pci_dev_complete_resume - Finalize resume from system sleep for a device. 2908 * @pci_dev: Device to handle. 2909 * 2910 * If the device is runtime suspended and wakeup-capable, enable PME for it as 2911 * it might have been disabled during the prepare phase of system suspend if 2912 * the device was not configured for system wakeup. 2913 */ 2914 void pci_dev_complete_resume(struct pci_dev *pci_dev) 2915 { 2916 struct device *dev = &pci_dev->dev; 2917 2918 if (!pci_dev_run_wake(pci_dev)) 2919 return; 2920 2921 spin_lock_irq(&dev->power.lock); 2922 2923 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold) 2924 __pci_pme_active(pci_dev, true); 2925 2926 spin_unlock_irq(&dev->power.lock); 2927 } 2928 2929 /** 2930 * pci_choose_state - Choose the power state of a PCI device. 2931 * @dev: Target PCI device. 2932 * @state: Target state for the whole system. 2933 * 2934 * Returns PCI power state suitable for @dev and @state. 2935 */ 2936 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state) 2937 { 2938 if (state.event == PM_EVENT_ON) 2939 return PCI_D0; 2940 2941 return pci_target_state(dev, false); 2942 } 2943 EXPORT_SYMBOL(pci_choose_state); 2944 2945 void pci_config_pm_runtime_get(struct pci_dev *pdev) 2946 { 2947 struct device *dev = &pdev->dev; 2948 struct device *parent = dev->parent; 2949 2950 if (parent) 2951 pm_runtime_get_sync(parent); 2952 pm_runtime_get_noresume(dev); 2953 /* 2954 * pdev->current_state is set to PCI_D3cold during suspending, 2955 * so wait until suspending completes 2956 */ 2957 pm_runtime_barrier(dev); 2958 /* 2959 * Only need to resume devices in D3cold, because config 2960 * registers are still accessible for devices suspended but 2961 * not in D3cold. 2962 */ 2963 if (pdev->current_state == PCI_D3cold) 2964 pm_runtime_resume(dev); 2965 } 2966 2967 void pci_config_pm_runtime_put(struct pci_dev *pdev) 2968 { 2969 struct device *dev = &pdev->dev; 2970 struct device *parent = dev->parent; 2971 2972 pm_runtime_put(dev); 2973 if (parent) 2974 pm_runtime_put_sync(parent); 2975 } 2976 2977 static const struct dmi_system_id bridge_d3_blacklist[] = { 2978 #ifdef CONFIG_X86 2979 { 2980 /* 2981 * Gigabyte X299 root port is not marked as hotplug capable 2982 * which allows Linux to power manage it. However, this 2983 * confuses the BIOS SMI handler so don't power manage root 2984 * ports on that system. 2985 */ 2986 .ident = "X299 DESIGNARE EX-CF", 2987 .matches = { 2988 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."), 2989 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"), 2990 }, 2991 }, 2992 { 2993 /* 2994 * Downstream device is not accessible after putting a root port 2995 * into D3cold and back into D0 on Elo Continental Z2 board 2996 */ 2997 .ident = "Elo Continental Z2", 2998 .matches = { 2999 DMI_MATCH(DMI_BOARD_VENDOR, "Elo Touch Solutions"), 3000 DMI_MATCH(DMI_BOARD_NAME, "Geminilake"), 3001 DMI_MATCH(DMI_BOARD_VERSION, "Continental Z2"), 3002 }, 3003 }, 3004 #endif 3005 { } 3006 }; 3007 3008 /** 3009 * pci_bridge_d3_possible - Is it possible to put the bridge into D3 3010 * @bridge: Bridge to check 3011 * 3012 * This function checks if it is possible to move the bridge to D3. 3013 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt. 3014 */ 3015 bool pci_bridge_d3_possible(struct pci_dev *bridge) 3016 { 3017 if (!pci_is_pcie(bridge)) 3018 return false; 3019 3020 switch (pci_pcie_type(bridge)) { 3021 case PCI_EXP_TYPE_ROOT_PORT: 3022 case PCI_EXP_TYPE_UPSTREAM: 3023 case PCI_EXP_TYPE_DOWNSTREAM: 3024 if (pci_bridge_d3_disable) 3025 return false; 3026 3027 /* 3028 * Hotplug ports handled by firmware in System Management Mode 3029 * may not be put into D3 by the OS (Thunderbolt on non-Macs). 3030 */ 3031 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge)) 3032 return false; 3033 3034 if (pci_bridge_d3_force) 3035 return true; 3036 3037 /* Even the oldest 2010 Thunderbolt controller supports D3. */ 3038 if (bridge->is_thunderbolt) 3039 return true; 3040 3041 /* Platform might know better if the bridge supports D3 */ 3042 if (platform_pci_bridge_d3(bridge)) 3043 return true; 3044 3045 /* 3046 * Hotplug ports handled natively by the OS were not validated 3047 * by vendors for runtime D3 at least until 2018 because there 3048 * was no OS support. 3049 */ 3050 if (bridge->is_hotplug_bridge) 3051 return false; 3052 3053 if (dmi_check_system(bridge_d3_blacklist)) 3054 return false; 3055 3056 /* 3057 * It should be safe to put PCIe ports from 2015 or newer 3058 * to D3. 3059 */ 3060 if (dmi_get_bios_year() >= 2015) 3061 return true; 3062 break; 3063 } 3064 3065 return false; 3066 } 3067 3068 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data) 3069 { 3070 bool *d3cold_ok = data; 3071 3072 if (/* The device needs to be allowed to go D3cold ... */ 3073 dev->no_d3cold || !dev->d3cold_allowed || 3074 3075 /* ... and if it is wakeup capable to do so from D3cold. */ 3076 (device_may_wakeup(&dev->dev) && 3077 !pci_pme_capable(dev, PCI_D3cold)) || 3078 3079 /* If it is a bridge it must be allowed to go to D3. */ 3080 !pci_power_manageable(dev)) 3081 3082 *d3cold_ok = false; 3083 3084 return !*d3cold_ok; 3085 } 3086 3087 /* 3088 * pci_bridge_d3_update - Update bridge D3 capabilities 3089 * @dev: PCI device which is changed 3090 * 3091 * Update upstream bridge PM capabilities accordingly depending on if the 3092 * device PM configuration was changed or the device is being removed. The 3093 * change is also propagated upstream. 3094 */ 3095 void pci_bridge_d3_update(struct pci_dev *dev) 3096 { 3097 bool remove = !device_is_registered(&dev->dev); 3098 struct pci_dev *bridge; 3099 bool d3cold_ok = true; 3100 3101 bridge = pci_upstream_bridge(dev); 3102 if (!bridge || !pci_bridge_d3_possible(bridge)) 3103 return; 3104 3105 /* 3106 * If D3 is currently allowed for the bridge, removing one of its 3107 * children won't change that. 3108 */ 3109 if (remove && bridge->bridge_d3) 3110 return; 3111 3112 /* 3113 * If D3 is currently allowed for the bridge and a child is added or 3114 * changed, disallowance of D3 can only be caused by that child, so 3115 * we only need to check that single device, not any of its siblings. 3116 * 3117 * If D3 is currently not allowed for the bridge, checking the device 3118 * first may allow us to skip checking its siblings. 3119 */ 3120 if (!remove) 3121 pci_dev_check_d3cold(dev, &d3cold_ok); 3122 3123 /* 3124 * If D3 is currently not allowed for the bridge, this may be caused 3125 * either by the device being changed/removed or any of its siblings, 3126 * so we need to go through all children to find out if one of them 3127 * continues to block D3. 3128 */ 3129 if (d3cold_ok && !bridge->bridge_d3) 3130 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold, 3131 &d3cold_ok); 3132 3133 if (bridge->bridge_d3 != d3cold_ok) { 3134 bridge->bridge_d3 = d3cold_ok; 3135 /* Propagate change to upstream bridges */ 3136 pci_bridge_d3_update(bridge); 3137 } 3138 } 3139 3140 /** 3141 * pci_d3cold_enable - Enable D3cold for device 3142 * @dev: PCI device to handle 3143 * 3144 * This function can be used in drivers to enable D3cold from the device 3145 * they handle. It also updates upstream PCI bridge PM capabilities 3146 * accordingly. 3147 */ 3148 void pci_d3cold_enable(struct pci_dev *dev) 3149 { 3150 if (dev->no_d3cold) { 3151 dev->no_d3cold = false; 3152 pci_bridge_d3_update(dev); 3153 } 3154 } 3155 EXPORT_SYMBOL_GPL(pci_d3cold_enable); 3156 3157 /** 3158 * pci_d3cold_disable - Disable D3cold for device 3159 * @dev: PCI device to handle 3160 * 3161 * This function can be used in drivers to disable D3cold from the device 3162 * they handle. It also updates upstream PCI bridge PM capabilities 3163 * accordingly. 3164 */ 3165 void pci_d3cold_disable(struct pci_dev *dev) 3166 { 3167 if (!dev->no_d3cold) { 3168 dev->no_d3cold = true; 3169 pci_bridge_d3_update(dev); 3170 } 3171 } 3172 EXPORT_SYMBOL_GPL(pci_d3cold_disable); 3173 3174 /** 3175 * pci_pm_init - Initialize PM functions of given PCI device 3176 * @dev: PCI device to handle. 3177 */ 3178 void pci_pm_init(struct pci_dev *dev) 3179 { 3180 int pm; 3181 u16 status; 3182 u16 pmc; 3183 3184 pm_runtime_forbid(&dev->dev); 3185 pm_runtime_set_active(&dev->dev); 3186 pm_runtime_enable(&dev->dev); 3187 device_enable_async_suspend(&dev->dev); 3188 dev->wakeup_prepared = false; 3189 3190 dev->pm_cap = 0; 3191 dev->pme_support = 0; 3192 3193 /* find PCI PM capability in list */ 3194 pm = pci_find_capability(dev, PCI_CAP_ID_PM); 3195 if (!pm) 3196 return; 3197 /* Check device's ability to generate PME# */ 3198 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc); 3199 3200 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) { 3201 pci_err(dev, "unsupported PM cap regs version (%u)\n", 3202 pmc & PCI_PM_CAP_VER_MASK); 3203 return; 3204 } 3205 3206 dev->pm_cap = pm; 3207 dev->d3hot_delay = PCI_PM_D3HOT_WAIT; 3208 dev->d3cold_delay = PCI_PM_D3COLD_WAIT; 3209 dev->bridge_d3 = pci_bridge_d3_possible(dev); 3210 dev->d3cold_allowed = true; 3211 3212 dev->d1_support = false; 3213 dev->d2_support = false; 3214 if (!pci_no_d1d2(dev)) { 3215 if (pmc & PCI_PM_CAP_D1) 3216 dev->d1_support = true; 3217 if (pmc & PCI_PM_CAP_D2) 3218 dev->d2_support = true; 3219 3220 if (dev->d1_support || dev->d2_support) 3221 pci_info(dev, "supports%s%s\n", 3222 dev->d1_support ? " D1" : "", 3223 dev->d2_support ? " D2" : ""); 3224 } 3225 3226 pmc &= PCI_PM_CAP_PME_MASK; 3227 if (pmc) { 3228 pci_info(dev, "PME# supported from%s%s%s%s%s\n", 3229 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "", 3230 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "", 3231 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "", 3232 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "", 3233 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : ""); 3234 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT; 3235 dev->pme_poll = true; 3236 /* 3237 * Make device's PM flags reflect the wake-up capability, but 3238 * let the user space enable it to wake up the system as needed. 3239 */ 3240 device_set_wakeup_capable(&dev->dev, true); 3241 /* Disable the PME# generation functionality */ 3242 pci_pme_active(dev, false); 3243 } 3244 3245 pci_read_config_word(dev, PCI_STATUS, &status); 3246 if (status & PCI_STATUS_IMM_READY) 3247 dev->imm_ready = 1; 3248 } 3249 3250 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop) 3251 { 3252 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI; 3253 3254 switch (prop) { 3255 case PCI_EA_P_MEM: 3256 case PCI_EA_P_VF_MEM: 3257 flags |= IORESOURCE_MEM; 3258 break; 3259 case PCI_EA_P_MEM_PREFETCH: 3260 case PCI_EA_P_VF_MEM_PREFETCH: 3261 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH; 3262 break; 3263 case PCI_EA_P_IO: 3264 flags |= IORESOURCE_IO; 3265 break; 3266 default: 3267 return 0; 3268 } 3269 3270 return flags; 3271 } 3272 3273 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei, 3274 u8 prop) 3275 { 3276 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO) 3277 return &dev->resource[bei]; 3278 #ifdef CONFIG_PCI_IOV 3279 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 && 3280 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH)) 3281 return &dev->resource[PCI_IOV_RESOURCES + 3282 bei - PCI_EA_BEI_VF_BAR0]; 3283 #endif 3284 else if (bei == PCI_EA_BEI_ROM) 3285 return &dev->resource[PCI_ROM_RESOURCE]; 3286 else 3287 return NULL; 3288 } 3289 3290 /* Read an Enhanced Allocation (EA) entry */ 3291 static int pci_ea_read(struct pci_dev *dev, int offset) 3292 { 3293 struct resource *res; 3294 int ent_size, ent_offset = offset; 3295 resource_size_t start, end; 3296 unsigned long flags; 3297 u32 dw0, bei, base, max_offset; 3298 u8 prop; 3299 bool support_64 = (sizeof(resource_size_t) >= 8); 3300 3301 pci_read_config_dword(dev, ent_offset, &dw0); 3302 ent_offset += 4; 3303 3304 /* Entry size field indicates DWORDs after 1st */ 3305 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2; 3306 3307 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */ 3308 goto out; 3309 3310 bei = (dw0 & PCI_EA_BEI) >> 4; 3311 prop = (dw0 & PCI_EA_PP) >> 8; 3312 3313 /* 3314 * If the Property is in the reserved range, try the Secondary 3315 * Property instead. 3316 */ 3317 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED) 3318 prop = (dw0 & PCI_EA_SP) >> 16; 3319 if (prop > PCI_EA_P_BRIDGE_IO) 3320 goto out; 3321 3322 res = pci_ea_get_resource(dev, bei, prop); 3323 if (!res) { 3324 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei); 3325 goto out; 3326 } 3327 3328 flags = pci_ea_flags(dev, prop); 3329 if (!flags) { 3330 pci_err(dev, "Unsupported EA properties: %#x\n", prop); 3331 goto out; 3332 } 3333 3334 /* Read Base */ 3335 pci_read_config_dword(dev, ent_offset, &base); 3336 start = (base & PCI_EA_FIELD_MASK); 3337 ent_offset += 4; 3338 3339 /* Read MaxOffset */ 3340 pci_read_config_dword(dev, ent_offset, &max_offset); 3341 ent_offset += 4; 3342 3343 /* Read Base MSBs (if 64-bit entry) */ 3344 if (base & PCI_EA_IS_64) { 3345 u32 base_upper; 3346 3347 pci_read_config_dword(dev, ent_offset, &base_upper); 3348 ent_offset += 4; 3349 3350 flags |= IORESOURCE_MEM_64; 3351 3352 /* entry starts above 32-bit boundary, can't use */ 3353 if (!support_64 && base_upper) 3354 goto out; 3355 3356 if (support_64) 3357 start |= ((u64)base_upper << 32); 3358 } 3359 3360 end = start + (max_offset | 0x03); 3361 3362 /* Read MaxOffset MSBs (if 64-bit entry) */ 3363 if (max_offset & PCI_EA_IS_64) { 3364 u32 max_offset_upper; 3365 3366 pci_read_config_dword(dev, ent_offset, &max_offset_upper); 3367 ent_offset += 4; 3368 3369 flags |= IORESOURCE_MEM_64; 3370 3371 /* entry too big, can't use */ 3372 if (!support_64 && max_offset_upper) 3373 goto out; 3374 3375 if (support_64) 3376 end += ((u64)max_offset_upper << 32); 3377 } 3378 3379 if (end < start) { 3380 pci_err(dev, "EA Entry crosses address boundary\n"); 3381 goto out; 3382 } 3383 3384 if (ent_size != ent_offset - offset) { 3385 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n", 3386 ent_size, ent_offset - offset); 3387 goto out; 3388 } 3389 3390 res->name = pci_name(dev); 3391 res->start = start; 3392 res->end = end; 3393 res->flags = flags; 3394 3395 if (bei <= PCI_EA_BEI_BAR5) 3396 pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 3397 bei, res, prop); 3398 else if (bei == PCI_EA_BEI_ROM) 3399 pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n", 3400 res, prop); 3401 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5) 3402 pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 3403 bei - PCI_EA_BEI_VF_BAR0, res, prop); 3404 else 3405 pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n", 3406 bei, res, prop); 3407 3408 out: 3409 return offset + ent_size; 3410 } 3411 3412 /* Enhanced Allocation Initialization */ 3413 void pci_ea_init(struct pci_dev *dev) 3414 { 3415 int ea; 3416 u8 num_ent; 3417 int offset; 3418 int i; 3419 3420 /* find PCI EA capability in list */ 3421 ea = pci_find_capability(dev, PCI_CAP_ID_EA); 3422 if (!ea) 3423 return; 3424 3425 /* determine the number of entries */ 3426 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT, 3427 &num_ent); 3428 num_ent &= PCI_EA_NUM_ENT_MASK; 3429 3430 offset = ea + PCI_EA_FIRST_ENT; 3431 3432 /* Skip DWORD 2 for type 1 functions */ 3433 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) 3434 offset += 4; 3435 3436 /* parse each EA entry */ 3437 for (i = 0; i < num_ent; ++i) 3438 offset = pci_ea_read(dev, offset); 3439 } 3440 3441 static void pci_add_saved_cap(struct pci_dev *pci_dev, 3442 struct pci_cap_saved_state *new_cap) 3443 { 3444 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space); 3445 } 3446 3447 /** 3448 * _pci_add_cap_save_buffer - allocate buffer for saving given 3449 * capability registers 3450 * @dev: the PCI device 3451 * @cap: the capability to allocate the buffer for 3452 * @extended: Standard or Extended capability ID 3453 * @size: requested size of the buffer 3454 */ 3455 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap, 3456 bool extended, unsigned int size) 3457 { 3458 int pos; 3459 struct pci_cap_saved_state *save_state; 3460 3461 if (extended) 3462 pos = pci_find_ext_capability(dev, cap); 3463 else 3464 pos = pci_find_capability(dev, cap); 3465 3466 if (!pos) 3467 return 0; 3468 3469 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL); 3470 if (!save_state) 3471 return -ENOMEM; 3472 3473 save_state->cap.cap_nr = cap; 3474 save_state->cap.cap_extended = extended; 3475 save_state->cap.size = size; 3476 pci_add_saved_cap(dev, save_state); 3477 3478 return 0; 3479 } 3480 3481 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size) 3482 { 3483 return _pci_add_cap_save_buffer(dev, cap, false, size); 3484 } 3485 3486 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size) 3487 { 3488 return _pci_add_cap_save_buffer(dev, cap, true, size); 3489 } 3490 3491 /** 3492 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities 3493 * @dev: the PCI device 3494 */ 3495 void pci_allocate_cap_save_buffers(struct pci_dev *dev) 3496 { 3497 int error; 3498 3499 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP, 3500 PCI_EXP_SAVE_REGS * sizeof(u16)); 3501 if (error) 3502 pci_err(dev, "unable to preallocate PCI Express save buffer\n"); 3503 3504 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16)); 3505 if (error) 3506 pci_err(dev, "unable to preallocate PCI-X save buffer\n"); 3507 3508 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR, 3509 2 * sizeof(u16)); 3510 if (error) 3511 pci_err(dev, "unable to allocate suspend buffer for LTR\n"); 3512 3513 pci_allocate_vc_save_buffers(dev); 3514 } 3515 3516 void pci_free_cap_save_buffers(struct pci_dev *dev) 3517 { 3518 struct pci_cap_saved_state *tmp; 3519 struct hlist_node *n; 3520 3521 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next) 3522 kfree(tmp); 3523 } 3524 3525 /** 3526 * pci_configure_ari - enable or disable ARI forwarding 3527 * @dev: the PCI device 3528 * 3529 * If @dev and its upstream bridge both support ARI, enable ARI in the 3530 * bridge. Otherwise, disable ARI in the bridge. 3531 */ 3532 void pci_configure_ari(struct pci_dev *dev) 3533 { 3534 u32 cap; 3535 struct pci_dev *bridge; 3536 3537 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn) 3538 return; 3539 3540 bridge = dev->bus->self; 3541 if (!bridge) 3542 return; 3543 3544 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3545 if (!(cap & PCI_EXP_DEVCAP2_ARI)) 3546 return; 3547 3548 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) { 3549 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, 3550 PCI_EXP_DEVCTL2_ARI); 3551 bridge->ari_enabled = 1; 3552 } else { 3553 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2, 3554 PCI_EXP_DEVCTL2_ARI); 3555 bridge->ari_enabled = 0; 3556 } 3557 } 3558 3559 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags) 3560 { 3561 int pos; 3562 u16 cap, ctrl; 3563 3564 pos = pdev->acs_cap; 3565 if (!pos) 3566 return false; 3567 3568 /* 3569 * Except for egress control, capabilities are either required 3570 * or only required if controllable. Features missing from the 3571 * capability field can therefore be assumed as hard-wired enabled. 3572 */ 3573 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap); 3574 acs_flags &= (cap | PCI_ACS_EC); 3575 3576 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl); 3577 return (ctrl & acs_flags) == acs_flags; 3578 } 3579 3580 /** 3581 * pci_acs_enabled - test ACS against required flags for a given device 3582 * @pdev: device to test 3583 * @acs_flags: required PCI ACS flags 3584 * 3585 * Return true if the device supports the provided flags. Automatically 3586 * filters out flags that are not implemented on multifunction devices. 3587 * 3588 * Note that this interface checks the effective ACS capabilities of the 3589 * device rather than the actual capabilities. For instance, most single 3590 * function endpoints are not required to support ACS because they have no 3591 * opportunity for peer-to-peer access. We therefore return 'true' 3592 * regardless of whether the device exposes an ACS capability. This makes 3593 * it much easier for callers of this function to ignore the actual type 3594 * or topology of the device when testing ACS support. 3595 */ 3596 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags) 3597 { 3598 int ret; 3599 3600 ret = pci_dev_specific_acs_enabled(pdev, acs_flags); 3601 if (ret >= 0) 3602 return ret > 0; 3603 3604 /* 3605 * Conventional PCI and PCI-X devices never support ACS, either 3606 * effectively or actually. The shared bus topology implies that 3607 * any device on the bus can receive or snoop DMA. 3608 */ 3609 if (!pci_is_pcie(pdev)) 3610 return false; 3611 3612 switch (pci_pcie_type(pdev)) { 3613 /* 3614 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec, 3615 * but since their primary interface is PCI/X, we conservatively 3616 * handle them as we would a non-PCIe device. 3617 */ 3618 case PCI_EXP_TYPE_PCIE_BRIDGE: 3619 /* 3620 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never 3621 * applicable... must never implement an ACS Extended Capability...". 3622 * This seems arbitrary, but we take a conservative interpretation 3623 * of this statement. 3624 */ 3625 case PCI_EXP_TYPE_PCI_BRIDGE: 3626 case PCI_EXP_TYPE_RC_EC: 3627 return false; 3628 /* 3629 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should 3630 * implement ACS in order to indicate their peer-to-peer capabilities, 3631 * regardless of whether they are single- or multi-function devices. 3632 */ 3633 case PCI_EXP_TYPE_DOWNSTREAM: 3634 case PCI_EXP_TYPE_ROOT_PORT: 3635 return pci_acs_flags_enabled(pdev, acs_flags); 3636 /* 3637 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be 3638 * implemented by the remaining PCIe types to indicate peer-to-peer 3639 * capabilities, but only when they are part of a multifunction 3640 * device. The footnote for section 6.12 indicates the specific 3641 * PCIe types included here. 3642 */ 3643 case PCI_EXP_TYPE_ENDPOINT: 3644 case PCI_EXP_TYPE_UPSTREAM: 3645 case PCI_EXP_TYPE_LEG_END: 3646 case PCI_EXP_TYPE_RC_END: 3647 if (!pdev->multifunction) 3648 break; 3649 3650 return pci_acs_flags_enabled(pdev, acs_flags); 3651 } 3652 3653 /* 3654 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable 3655 * to single function devices with the exception of downstream ports. 3656 */ 3657 return true; 3658 } 3659 3660 /** 3661 * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy 3662 * @start: starting downstream device 3663 * @end: ending upstream device or NULL to search to the root bus 3664 * @acs_flags: required flags 3665 * 3666 * Walk up a device tree from start to end testing PCI ACS support. If 3667 * any step along the way does not support the required flags, return false. 3668 */ 3669 bool pci_acs_path_enabled(struct pci_dev *start, 3670 struct pci_dev *end, u16 acs_flags) 3671 { 3672 struct pci_dev *pdev, *parent = start; 3673 3674 do { 3675 pdev = parent; 3676 3677 if (!pci_acs_enabled(pdev, acs_flags)) 3678 return false; 3679 3680 if (pci_is_root_bus(pdev->bus)) 3681 return (end == NULL); 3682 3683 parent = pdev->bus->self; 3684 } while (pdev != end); 3685 3686 return true; 3687 } 3688 3689 /** 3690 * pci_acs_init - Initialize ACS if hardware supports it 3691 * @dev: the PCI device 3692 */ 3693 void pci_acs_init(struct pci_dev *dev) 3694 { 3695 dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS); 3696 3697 /* 3698 * Attempt to enable ACS regardless of capability because some Root 3699 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have 3700 * the standard ACS capability but still support ACS via those 3701 * quirks. 3702 */ 3703 pci_enable_acs(dev); 3704 } 3705 3706 /** 3707 * pci_rebar_find_pos - find position of resize ctrl reg for BAR 3708 * @pdev: PCI device 3709 * @bar: BAR to find 3710 * 3711 * Helper to find the position of the ctrl register for a BAR. 3712 * Returns -ENOTSUPP if resizable BARs are not supported at all. 3713 * Returns -ENOENT if no ctrl register for the BAR could be found. 3714 */ 3715 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar) 3716 { 3717 unsigned int pos, nbars, i; 3718 u32 ctrl; 3719 3720 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 3721 if (!pos) 3722 return -ENOTSUPP; 3723 3724 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3725 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >> 3726 PCI_REBAR_CTRL_NBAR_SHIFT; 3727 3728 for (i = 0; i < nbars; i++, pos += 8) { 3729 int bar_idx; 3730 3731 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3732 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX; 3733 if (bar_idx == bar) 3734 return pos; 3735 } 3736 3737 return -ENOENT; 3738 } 3739 3740 /** 3741 * pci_rebar_get_possible_sizes - get possible sizes for BAR 3742 * @pdev: PCI device 3743 * @bar: BAR to query 3744 * 3745 * Get the possible sizes of a resizable BAR as bitmask defined in the spec 3746 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable. 3747 */ 3748 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar) 3749 { 3750 int pos; 3751 u32 cap; 3752 3753 pos = pci_rebar_find_pos(pdev, bar); 3754 if (pos < 0) 3755 return 0; 3756 3757 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap); 3758 cap = FIELD_GET(PCI_REBAR_CAP_SIZES, cap); 3759 3760 /* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */ 3761 if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f && 3762 bar == 0 && cap == 0x700) 3763 return 0x3f00; 3764 3765 return cap; 3766 } 3767 EXPORT_SYMBOL(pci_rebar_get_possible_sizes); 3768 3769 /** 3770 * pci_rebar_get_current_size - get the current size of a BAR 3771 * @pdev: PCI device 3772 * @bar: BAR to set size to 3773 * 3774 * Read the size of a BAR from the resizable BAR config. 3775 * Returns size if found or negative error code. 3776 */ 3777 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar) 3778 { 3779 int pos; 3780 u32 ctrl; 3781 3782 pos = pci_rebar_find_pos(pdev, bar); 3783 if (pos < 0) 3784 return pos; 3785 3786 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3787 return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT; 3788 } 3789 3790 /** 3791 * pci_rebar_set_size - set a new size for a BAR 3792 * @pdev: PCI device 3793 * @bar: BAR to set size to 3794 * @size: new size as defined in the spec (0=1MB, 19=512GB) 3795 * 3796 * Set the new size of a BAR as defined in the spec. 3797 * Returns zero if resizing was successful, error code otherwise. 3798 */ 3799 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size) 3800 { 3801 int pos; 3802 u32 ctrl; 3803 3804 pos = pci_rebar_find_pos(pdev, bar); 3805 if (pos < 0) 3806 return pos; 3807 3808 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3809 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 3810 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT; 3811 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 3812 return 0; 3813 } 3814 3815 /** 3816 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port 3817 * @dev: the PCI device 3818 * @cap_mask: mask of desired AtomicOp sizes, including one or more of: 3819 * PCI_EXP_DEVCAP2_ATOMIC_COMP32 3820 * PCI_EXP_DEVCAP2_ATOMIC_COMP64 3821 * PCI_EXP_DEVCAP2_ATOMIC_COMP128 3822 * 3823 * Return 0 if all upstream bridges support AtomicOp routing, egress 3824 * blocking is disabled on all upstream ports, and the root port supports 3825 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit 3826 * AtomicOp completion), or negative otherwise. 3827 */ 3828 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask) 3829 { 3830 struct pci_bus *bus = dev->bus; 3831 struct pci_dev *bridge; 3832 u32 cap, ctl2; 3833 3834 /* 3835 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit 3836 * in Device Control 2 is reserved in VFs and the PF value applies 3837 * to all associated VFs. 3838 */ 3839 if (dev->is_virtfn) 3840 return -EINVAL; 3841 3842 if (!pci_is_pcie(dev)) 3843 return -EINVAL; 3844 3845 /* 3846 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be 3847 * AtomicOp requesters. For now, we only support endpoints as 3848 * requesters and root ports as completers. No endpoints as 3849 * completers, and no peer-to-peer. 3850 */ 3851 3852 switch (pci_pcie_type(dev)) { 3853 case PCI_EXP_TYPE_ENDPOINT: 3854 case PCI_EXP_TYPE_LEG_END: 3855 case PCI_EXP_TYPE_RC_END: 3856 break; 3857 default: 3858 return -EINVAL; 3859 } 3860 3861 while (bus->parent) { 3862 bridge = bus->self; 3863 3864 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3865 3866 switch (pci_pcie_type(bridge)) { 3867 /* Ensure switch ports support AtomicOp routing */ 3868 case PCI_EXP_TYPE_UPSTREAM: 3869 case PCI_EXP_TYPE_DOWNSTREAM: 3870 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE)) 3871 return -EINVAL; 3872 break; 3873 3874 /* Ensure root port supports all the sizes we care about */ 3875 case PCI_EXP_TYPE_ROOT_PORT: 3876 if ((cap & cap_mask) != cap_mask) 3877 return -EINVAL; 3878 break; 3879 } 3880 3881 /* Ensure upstream ports don't block AtomicOps on egress */ 3882 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) { 3883 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, 3884 &ctl2); 3885 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK) 3886 return -EINVAL; 3887 } 3888 3889 bus = bus->parent; 3890 } 3891 3892 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2, 3893 PCI_EXP_DEVCTL2_ATOMIC_REQ); 3894 return 0; 3895 } 3896 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root); 3897 3898 /** 3899 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge 3900 * @dev: the PCI device 3901 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD) 3902 * 3903 * Perform INTx swizzling for a device behind one level of bridge. This is 3904 * required by section 9.1 of the PCI-to-PCI bridge specification for devices 3905 * behind bridges on add-in cards. For devices with ARI enabled, the slot 3906 * number is always 0 (see the Implementation Note in section 2.2.8.1 of 3907 * the PCI Express Base Specification, Revision 2.1) 3908 */ 3909 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin) 3910 { 3911 int slot; 3912 3913 if (pci_ari_enabled(dev->bus)) 3914 slot = 0; 3915 else 3916 slot = PCI_SLOT(dev->devfn); 3917 3918 return (((pin - 1) + slot) % 4) + 1; 3919 } 3920 3921 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge) 3922 { 3923 u8 pin; 3924 3925 pin = dev->pin; 3926 if (!pin) 3927 return -1; 3928 3929 while (!pci_is_root_bus(dev->bus)) { 3930 pin = pci_swizzle_interrupt_pin(dev, pin); 3931 dev = dev->bus->self; 3932 } 3933 *bridge = dev; 3934 return pin; 3935 } 3936 3937 /** 3938 * pci_common_swizzle - swizzle INTx all the way to root bridge 3939 * @dev: the PCI device 3940 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD) 3941 * 3942 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI 3943 * bridges all the way up to a PCI root bus. 3944 */ 3945 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp) 3946 { 3947 u8 pin = *pinp; 3948 3949 while (!pci_is_root_bus(dev->bus)) { 3950 pin = pci_swizzle_interrupt_pin(dev, pin); 3951 dev = dev->bus->self; 3952 } 3953 *pinp = pin; 3954 return PCI_SLOT(dev->devfn); 3955 } 3956 EXPORT_SYMBOL_GPL(pci_common_swizzle); 3957 3958 /** 3959 * pci_release_region - Release a PCI bar 3960 * @pdev: PCI device whose resources were previously reserved by 3961 * pci_request_region() 3962 * @bar: BAR to release 3963 * 3964 * Releases the PCI I/O and memory resources previously reserved by a 3965 * successful call to pci_request_region(). Call this function only 3966 * after all use of the PCI regions has ceased. 3967 */ 3968 void pci_release_region(struct pci_dev *pdev, int bar) 3969 { 3970 struct pci_devres *dr; 3971 3972 if (pci_resource_len(pdev, bar) == 0) 3973 return; 3974 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) 3975 release_region(pci_resource_start(pdev, bar), 3976 pci_resource_len(pdev, bar)); 3977 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) 3978 release_mem_region(pci_resource_start(pdev, bar), 3979 pci_resource_len(pdev, bar)); 3980 3981 dr = find_pci_dr(pdev); 3982 if (dr) 3983 dr->region_mask &= ~(1 << bar); 3984 } 3985 EXPORT_SYMBOL(pci_release_region); 3986 3987 /** 3988 * __pci_request_region - Reserved PCI I/O and memory resource 3989 * @pdev: PCI device whose resources are to be reserved 3990 * @bar: BAR to be reserved 3991 * @res_name: Name to be associated with resource. 3992 * @exclusive: whether the region access is exclusive or not 3993 * 3994 * Mark the PCI region associated with PCI device @pdev BAR @bar as 3995 * being reserved by owner @res_name. Do not access any 3996 * address inside the PCI regions unless this call returns 3997 * successfully. 3998 * 3999 * If @exclusive is set, then the region is marked so that userspace 4000 * is explicitly not allowed to map the resource via /dev/mem or 4001 * sysfs MMIO access. 4002 * 4003 * Returns 0 on success, or %EBUSY on error. A warning 4004 * message is also printed on failure. 4005 */ 4006 static int __pci_request_region(struct pci_dev *pdev, int bar, 4007 const char *res_name, int exclusive) 4008 { 4009 struct pci_devres *dr; 4010 4011 if (pci_resource_len(pdev, bar) == 0) 4012 return 0; 4013 4014 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) { 4015 if (!request_region(pci_resource_start(pdev, bar), 4016 pci_resource_len(pdev, bar), res_name)) 4017 goto err_out; 4018 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) { 4019 if (!__request_mem_region(pci_resource_start(pdev, bar), 4020 pci_resource_len(pdev, bar), res_name, 4021 exclusive)) 4022 goto err_out; 4023 } 4024 4025 dr = find_pci_dr(pdev); 4026 if (dr) 4027 dr->region_mask |= 1 << bar; 4028 4029 return 0; 4030 4031 err_out: 4032 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar, 4033 &pdev->resource[bar]); 4034 return -EBUSY; 4035 } 4036 4037 /** 4038 * pci_request_region - Reserve PCI I/O and memory resource 4039 * @pdev: PCI device whose resources are to be reserved 4040 * @bar: BAR to be reserved 4041 * @res_name: Name to be associated with resource 4042 * 4043 * Mark the PCI region associated with PCI device @pdev BAR @bar as 4044 * being reserved by owner @res_name. Do not access any 4045 * address inside the PCI regions unless this call returns 4046 * successfully. 4047 * 4048 * Returns 0 on success, or %EBUSY on error. A warning 4049 * message is also printed on failure. 4050 */ 4051 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name) 4052 { 4053 return __pci_request_region(pdev, bar, res_name, 0); 4054 } 4055 EXPORT_SYMBOL(pci_request_region); 4056 4057 /** 4058 * pci_release_selected_regions - Release selected PCI I/O and memory resources 4059 * @pdev: PCI device whose resources were previously reserved 4060 * @bars: Bitmask of BARs to be released 4061 * 4062 * Release selected PCI I/O and memory resources previously reserved. 4063 * Call this function only after all use of the PCI regions has ceased. 4064 */ 4065 void pci_release_selected_regions(struct pci_dev *pdev, int bars) 4066 { 4067 int i; 4068 4069 for (i = 0; i < PCI_STD_NUM_BARS; i++) 4070 if (bars & (1 << i)) 4071 pci_release_region(pdev, i); 4072 } 4073 EXPORT_SYMBOL(pci_release_selected_regions); 4074 4075 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars, 4076 const char *res_name, int excl) 4077 { 4078 int i; 4079 4080 for (i = 0; i < PCI_STD_NUM_BARS; i++) 4081 if (bars & (1 << i)) 4082 if (__pci_request_region(pdev, i, res_name, excl)) 4083 goto err_out; 4084 return 0; 4085 4086 err_out: 4087 while (--i >= 0) 4088 if (bars & (1 << i)) 4089 pci_release_region(pdev, i); 4090 4091 return -EBUSY; 4092 } 4093 4094 4095 /** 4096 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources 4097 * @pdev: PCI device whose resources are to be reserved 4098 * @bars: Bitmask of BARs to be requested 4099 * @res_name: Name to be associated with resource 4100 */ 4101 int pci_request_selected_regions(struct pci_dev *pdev, int bars, 4102 const char *res_name) 4103 { 4104 return __pci_request_selected_regions(pdev, bars, res_name, 0); 4105 } 4106 EXPORT_SYMBOL(pci_request_selected_regions); 4107 4108 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars, 4109 const char *res_name) 4110 { 4111 return __pci_request_selected_regions(pdev, bars, res_name, 4112 IORESOURCE_EXCLUSIVE); 4113 } 4114 EXPORT_SYMBOL(pci_request_selected_regions_exclusive); 4115 4116 /** 4117 * pci_release_regions - Release reserved PCI I/O and memory resources 4118 * @pdev: PCI device whose resources were previously reserved by 4119 * pci_request_regions() 4120 * 4121 * Releases all PCI I/O and memory resources previously reserved by a 4122 * successful call to pci_request_regions(). Call this function only 4123 * after all use of the PCI regions has ceased. 4124 */ 4125 4126 void pci_release_regions(struct pci_dev *pdev) 4127 { 4128 pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1); 4129 } 4130 EXPORT_SYMBOL(pci_release_regions); 4131 4132 /** 4133 * pci_request_regions - Reserve PCI I/O and memory resources 4134 * @pdev: PCI device whose resources are to be reserved 4135 * @res_name: Name to be associated with resource. 4136 * 4137 * Mark all PCI regions associated with PCI device @pdev as 4138 * being reserved by owner @res_name. Do not access any 4139 * address inside the PCI regions unless this call returns 4140 * successfully. 4141 * 4142 * Returns 0 on success, or %EBUSY on error. A warning 4143 * message is also printed on failure. 4144 */ 4145 int pci_request_regions(struct pci_dev *pdev, const char *res_name) 4146 { 4147 return pci_request_selected_regions(pdev, 4148 ((1 << PCI_STD_NUM_BARS) - 1), res_name); 4149 } 4150 EXPORT_SYMBOL(pci_request_regions); 4151 4152 /** 4153 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources 4154 * @pdev: PCI device whose resources are to be reserved 4155 * @res_name: Name to be associated with resource. 4156 * 4157 * Mark all PCI regions associated with PCI device @pdev as being reserved 4158 * by owner @res_name. Do not access any address inside the PCI regions 4159 * unless this call returns successfully. 4160 * 4161 * pci_request_regions_exclusive() will mark the region so that /dev/mem 4162 * and the sysfs MMIO access will not be allowed. 4163 * 4164 * Returns 0 on success, or %EBUSY on error. A warning message is also 4165 * printed on failure. 4166 */ 4167 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name) 4168 { 4169 return pci_request_selected_regions_exclusive(pdev, 4170 ((1 << PCI_STD_NUM_BARS) - 1), res_name); 4171 } 4172 EXPORT_SYMBOL(pci_request_regions_exclusive); 4173 4174 /* 4175 * Record the PCI IO range (expressed as CPU physical address + size). 4176 * Return a negative value if an error has occurred, zero otherwise 4177 */ 4178 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr, 4179 resource_size_t size) 4180 { 4181 int ret = 0; 4182 #ifdef PCI_IOBASE 4183 struct logic_pio_hwaddr *range; 4184 4185 if (!size || addr + size < addr) 4186 return -EINVAL; 4187 4188 range = kzalloc(sizeof(*range), GFP_ATOMIC); 4189 if (!range) 4190 return -ENOMEM; 4191 4192 range->fwnode = fwnode; 4193 range->size = size; 4194 range->hw_start = addr; 4195 range->flags = LOGIC_PIO_CPU_MMIO; 4196 4197 ret = logic_pio_register_range(range); 4198 if (ret) 4199 kfree(range); 4200 4201 /* Ignore duplicates due to deferred probing */ 4202 if (ret == -EEXIST) 4203 ret = 0; 4204 #endif 4205 4206 return ret; 4207 } 4208 4209 phys_addr_t pci_pio_to_address(unsigned long pio) 4210 { 4211 #ifdef PCI_IOBASE 4212 if (pio < MMIO_UPPER_LIMIT) 4213 return logic_pio_to_hwaddr(pio); 4214 #endif 4215 4216 return (phys_addr_t) OF_BAD_ADDR; 4217 } 4218 EXPORT_SYMBOL_GPL(pci_pio_to_address); 4219 4220 unsigned long __weak pci_address_to_pio(phys_addr_t address) 4221 { 4222 #ifdef PCI_IOBASE 4223 return logic_pio_trans_cpuaddr(address); 4224 #else 4225 if (address > IO_SPACE_LIMIT) 4226 return (unsigned long)-1; 4227 4228 return (unsigned long) address; 4229 #endif 4230 } 4231 4232 /** 4233 * pci_remap_iospace - Remap the memory mapped I/O space 4234 * @res: Resource describing the I/O space 4235 * @phys_addr: physical address of range to be mapped 4236 * 4237 * Remap the memory mapped I/O space described by the @res and the CPU 4238 * physical address @phys_addr into virtual address space. Only 4239 * architectures that have memory mapped IO functions defined (and the 4240 * PCI_IOBASE value defined) should call this function. 4241 */ 4242 #ifndef pci_remap_iospace 4243 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr) 4244 { 4245 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 4246 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 4247 4248 if (!(res->flags & IORESOURCE_IO)) 4249 return -EINVAL; 4250 4251 if (res->end > IO_SPACE_LIMIT) 4252 return -EINVAL; 4253 4254 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr, 4255 pgprot_device(PAGE_KERNEL)); 4256 #else 4257 /* 4258 * This architecture does not have memory mapped I/O space, 4259 * so this function should never be called 4260 */ 4261 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n"); 4262 return -ENODEV; 4263 #endif 4264 } 4265 EXPORT_SYMBOL(pci_remap_iospace); 4266 #endif 4267 4268 /** 4269 * pci_unmap_iospace - Unmap the memory mapped I/O space 4270 * @res: resource to be unmapped 4271 * 4272 * Unmap the CPU virtual address @res from virtual address space. Only 4273 * architectures that have memory mapped IO functions defined (and the 4274 * PCI_IOBASE value defined) should call this function. 4275 */ 4276 void pci_unmap_iospace(struct resource *res) 4277 { 4278 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 4279 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 4280 4281 vunmap_range(vaddr, vaddr + resource_size(res)); 4282 #endif 4283 } 4284 EXPORT_SYMBOL(pci_unmap_iospace); 4285 4286 static void devm_pci_unmap_iospace(struct device *dev, void *ptr) 4287 { 4288 struct resource **res = ptr; 4289 4290 pci_unmap_iospace(*res); 4291 } 4292 4293 /** 4294 * devm_pci_remap_iospace - Managed pci_remap_iospace() 4295 * @dev: Generic device to remap IO address for 4296 * @res: Resource describing the I/O space 4297 * @phys_addr: physical address of range to be mapped 4298 * 4299 * Managed pci_remap_iospace(). Map is automatically unmapped on driver 4300 * detach. 4301 */ 4302 int devm_pci_remap_iospace(struct device *dev, const struct resource *res, 4303 phys_addr_t phys_addr) 4304 { 4305 const struct resource **ptr; 4306 int error; 4307 4308 ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL); 4309 if (!ptr) 4310 return -ENOMEM; 4311 4312 error = pci_remap_iospace(res, phys_addr); 4313 if (error) { 4314 devres_free(ptr); 4315 } else { 4316 *ptr = res; 4317 devres_add(dev, ptr); 4318 } 4319 4320 return error; 4321 } 4322 EXPORT_SYMBOL(devm_pci_remap_iospace); 4323 4324 /** 4325 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace() 4326 * @dev: Generic device to remap IO address for 4327 * @offset: Resource address to map 4328 * @size: Size of map 4329 * 4330 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver 4331 * detach. 4332 */ 4333 void __iomem *devm_pci_remap_cfgspace(struct device *dev, 4334 resource_size_t offset, 4335 resource_size_t size) 4336 { 4337 void __iomem **ptr, *addr; 4338 4339 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL); 4340 if (!ptr) 4341 return NULL; 4342 4343 addr = pci_remap_cfgspace(offset, size); 4344 if (addr) { 4345 *ptr = addr; 4346 devres_add(dev, ptr); 4347 } else 4348 devres_free(ptr); 4349 4350 return addr; 4351 } 4352 EXPORT_SYMBOL(devm_pci_remap_cfgspace); 4353 4354 /** 4355 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource 4356 * @dev: generic device to handle the resource for 4357 * @res: configuration space resource to be handled 4358 * 4359 * Checks that a resource is a valid memory region, requests the memory 4360 * region and ioremaps with pci_remap_cfgspace() API that ensures the 4361 * proper PCI configuration space memory attributes are guaranteed. 4362 * 4363 * All operations are managed and will be undone on driver detach. 4364 * 4365 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code 4366 * on failure. Usage example:: 4367 * 4368 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 4369 * base = devm_pci_remap_cfg_resource(&pdev->dev, res); 4370 * if (IS_ERR(base)) 4371 * return PTR_ERR(base); 4372 */ 4373 void __iomem *devm_pci_remap_cfg_resource(struct device *dev, 4374 struct resource *res) 4375 { 4376 resource_size_t size; 4377 const char *name; 4378 void __iomem *dest_ptr; 4379 4380 BUG_ON(!dev); 4381 4382 if (!res || resource_type(res) != IORESOURCE_MEM) { 4383 dev_err(dev, "invalid resource\n"); 4384 return IOMEM_ERR_PTR(-EINVAL); 4385 } 4386 4387 size = resource_size(res); 4388 4389 if (res->name) 4390 name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev), 4391 res->name); 4392 else 4393 name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL); 4394 if (!name) 4395 return IOMEM_ERR_PTR(-ENOMEM); 4396 4397 if (!devm_request_mem_region(dev, res->start, size, name)) { 4398 dev_err(dev, "can't request region for resource %pR\n", res); 4399 return IOMEM_ERR_PTR(-EBUSY); 4400 } 4401 4402 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size); 4403 if (!dest_ptr) { 4404 dev_err(dev, "ioremap failed for resource %pR\n", res); 4405 devm_release_mem_region(dev, res->start, size); 4406 dest_ptr = IOMEM_ERR_PTR(-ENOMEM); 4407 } 4408 4409 return dest_ptr; 4410 } 4411 EXPORT_SYMBOL(devm_pci_remap_cfg_resource); 4412 4413 static void __pci_set_master(struct pci_dev *dev, bool enable) 4414 { 4415 u16 old_cmd, cmd; 4416 4417 pci_read_config_word(dev, PCI_COMMAND, &old_cmd); 4418 if (enable) 4419 cmd = old_cmd | PCI_COMMAND_MASTER; 4420 else 4421 cmd = old_cmd & ~PCI_COMMAND_MASTER; 4422 if (cmd != old_cmd) { 4423 pci_dbg(dev, "%s bus mastering\n", 4424 enable ? "enabling" : "disabling"); 4425 pci_write_config_word(dev, PCI_COMMAND, cmd); 4426 } 4427 dev->is_busmaster = enable; 4428 } 4429 4430 /** 4431 * pcibios_setup - process "pci=" kernel boot arguments 4432 * @str: string used to pass in "pci=" kernel boot arguments 4433 * 4434 * Process kernel boot arguments. This is the default implementation. 4435 * Architecture specific implementations can override this as necessary. 4436 */ 4437 char * __weak __init pcibios_setup(char *str) 4438 { 4439 return str; 4440 } 4441 4442 /** 4443 * pcibios_set_master - enable PCI bus-mastering for device dev 4444 * @dev: the PCI device to enable 4445 * 4446 * Enables PCI bus-mastering for the device. This is the default 4447 * implementation. Architecture specific implementations can override 4448 * this if necessary. 4449 */ 4450 void __weak pcibios_set_master(struct pci_dev *dev) 4451 { 4452 u8 lat; 4453 4454 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */ 4455 if (pci_is_pcie(dev)) 4456 return; 4457 4458 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat); 4459 if (lat < 16) 4460 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency; 4461 else if (lat > pcibios_max_latency) 4462 lat = pcibios_max_latency; 4463 else 4464 return; 4465 4466 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat); 4467 } 4468 4469 /** 4470 * pci_set_master - enables bus-mastering for device dev 4471 * @dev: the PCI device to enable 4472 * 4473 * Enables bus-mastering on the device and calls pcibios_set_master() 4474 * to do the needed arch specific settings. 4475 */ 4476 void pci_set_master(struct pci_dev *dev) 4477 { 4478 __pci_set_master(dev, true); 4479 pcibios_set_master(dev); 4480 } 4481 EXPORT_SYMBOL(pci_set_master); 4482 4483 /** 4484 * pci_clear_master - disables bus-mastering for device dev 4485 * @dev: the PCI device to disable 4486 */ 4487 void pci_clear_master(struct pci_dev *dev) 4488 { 4489 __pci_set_master(dev, false); 4490 } 4491 EXPORT_SYMBOL(pci_clear_master); 4492 4493 /** 4494 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed 4495 * @dev: the PCI device for which MWI is to be enabled 4496 * 4497 * Helper function for pci_set_mwi. 4498 * Originally copied from drivers/net/acenic.c. 4499 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. 4500 * 4501 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4502 */ 4503 int pci_set_cacheline_size(struct pci_dev *dev) 4504 { 4505 u8 cacheline_size; 4506 4507 if (!pci_cache_line_size) 4508 return -EINVAL; 4509 4510 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be 4511 equal to or multiple of the right value. */ 4512 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4513 if (cacheline_size >= pci_cache_line_size && 4514 (cacheline_size % pci_cache_line_size) == 0) 4515 return 0; 4516 4517 /* Write the correct value. */ 4518 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size); 4519 /* Read it back. */ 4520 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4521 if (cacheline_size == pci_cache_line_size) 4522 return 0; 4523 4524 pci_dbg(dev, "cache line size of %d is not supported\n", 4525 pci_cache_line_size << 2); 4526 4527 return -EINVAL; 4528 } 4529 EXPORT_SYMBOL_GPL(pci_set_cacheline_size); 4530 4531 /** 4532 * pci_set_mwi - enables memory-write-invalidate PCI transaction 4533 * @dev: the PCI device for which MWI is enabled 4534 * 4535 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4536 * 4537 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4538 */ 4539 int pci_set_mwi(struct pci_dev *dev) 4540 { 4541 #ifdef PCI_DISABLE_MWI 4542 return 0; 4543 #else 4544 int rc; 4545 u16 cmd; 4546 4547 rc = pci_set_cacheline_size(dev); 4548 if (rc) 4549 return rc; 4550 4551 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4552 if (!(cmd & PCI_COMMAND_INVALIDATE)) { 4553 pci_dbg(dev, "enabling Mem-Wr-Inval\n"); 4554 cmd |= PCI_COMMAND_INVALIDATE; 4555 pci_write_config_word(dev, PCI_COMMAND, cmd); 4556 } 4557 return 0; 4558 #endif 4559 } 4560 EXPORT_SYMBOL(pci_set_mwi); 4561 4562 /** 4563 * pcim_set_mwi - a device-managed pci_set_mwi() 4564 * @dev: the PCI device for which MWI is enabled 4565 * 4566 * Managed pci_set_mwi(). 4567 * 4568 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4569 */ 4570 int pcim_set_mwi(struct pci_dev *dev) 4571 { 4572 struct pci_devres *dr; 4573 4574 dr = find_pci_dr(dev); 4575 if (!dr) 4576 return -ENOMEM; 4577 4578 dr->mwi = 1; 4579 return pci_set_mwi(dev); 4580 } 4581 EXPORT_SYMBOL(pcim_set_mwi); 4582 4583 /** 4584 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction 4585 * @dev: the PCI device for which MWI is enabled 4586 * 4587 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4588 * Callers are not required to check the return value. 4589 * 4590 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4591 */ 4592 int pci_try_set_mwi(struct pci_dev *dev) 4593 { 4594 #ifdef PCI_DISABLE_MWI 4595 return 0; 4596 #else 4597 return pci_set_mwi(dev); 4598 #endif 4599 } 4600 EXPORT_SYMBOL(pci_try_set_mwi); 4601 4602 /** 4603 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev 4604 * @dev: the PCI device to disable 4605 * 4606 * Disables PCI Memory-Write-Invalidate transaction on the device 4607 */ 4608 void pci_clear_mwi(struct pci_dev *dev) 4609 { 4610 #ifndef PCI_DISABLE_MWI 4611 u16 cmd; 4612 4613 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4614 if (cmd & PCI_COMMAND_INVALIDATE) { 4615 cmd &= ~PCI_COMMAND_INVALIDATE; 4616 pci_write_config_word(dev, PCI_COMMAND, cmd); 4617 } 4618 #endif 4619 } 4620 EXPORT_SYMBOL(pci_clear_mwi); 4621 4622 /** 4623 * pci_disable_parity - disable parity checking for device 4624 * @dev: the PCI device to operate on 4625 * 4626 * Disable parity checking for device @dev 4627 */ 4628 void pci_disable_parity(struct pci_dev *dev) 4629 { 4630 u16 cmd; 4631 4632 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4633 if (cmd & PCI_COMMAND_PARITY) { 4634 cmd &= ~PCI_COMMAND_PARITY; 4635 pci_write_config_word(dev, PCI_COMMAND, cmd); 4636 } 4637 } 4638 4639 /** 4640 * pci_intx - enables/disables PCI INTx for device dev 4641 * @pdev: the PCI device to operate on 4642 * @enable: boolean: whether to enable or disable PCI INTx 4643 * 4644 * Enables/disables PCI INTx for device @pdev 4645 */ 4646 void pci_intx(struct pci_dev *pdev, int enable) 4647 { 4648 u16 pci_command, new; 4649 4650 pci_read_config_word(pdev, PCI_COMMAND, &pci_command); 4651 4652 if (enable) 4653 new = pci_command & ~PCI_COMMAND_INTX_DISABLE; 4654 else 4655 new = pci_command | PCI_COMMAND_INTX_DISABLE; 4656 4657 if (new != pci_command) { 4658 struct pci_devres *dr; 4659 4660 pci_write_config_word(pdev, PCI_COMMAND, new); 4661 4662 dr = find_pci_dr(pdev); 4663 if (dr && !dr->restore_intx) { 4664 dr->restore_intx = 1; 4665 dr->orig_intx = !enable; 4666 } 4667 } 4668 } 4669 EXPORT_SYMBOL_GPL(pci_intx); 4670 4671 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask) 4672 { 4673 struct pci_bus *bus = dev->bus; 4674 bool mask_updated = true; 4675 u32 cmd_status_dword; 4676 u16 origcmd, newcmd; 4677 unsigned long flags; 4678 bool irq_pending; 4679 4680 /* 4681 * We do a single dword read to retrieve both command and status. 4682 * Document assumptions that make this possible. 4683 */ 4684 BUILD_BUG_ON(PCI_COMMAND % 4); 4685 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS); 4686 4687 raw_spin_lock_irqsave(&pci_lock, flags); 4688 4689 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword); 4690 4691 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT; 4692 4693 /* 4694 * Check interrupt status register to see whether our device 4695 * triggered the interrupt (when masking) or the next IRQ is 4696 * already pending (when unmasking). 4697 */ 4698 if (mask != irq_pending) { 4699 mask_updated = false; 4700 goto done; 4701 } 4702 4703 origcmd = cmd_status_dword; 4704 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE; 4705 if (mask) 4706 newcmd |= PCI_COMMAND_INTX_DISABLE; 4707 if (newcmd != origcmd) 4708 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd); 4709 4710 done: 4711 raw_spin_unlock_irqrestore(&pci_lock, flags); 4712 4713 return mask_updated; 4714 } 4715 4716 /** 4717 * pci_check_and_mask_intx - mask INTx on pending interrupt 4718 * @dev: the PCI device to operate on 4719 * 4720 * Check if the device dev has its INTx line asserted, mask it and return 4721 * true in that case. False is returned if no interrupt was pending. 4722 */ 4723 bool pci_check_and_mask_intx(struct pci_dev *dev) 4724 { 4725 return pci_check_and_set_intx_mask(dev, true); 4726 } 4727 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx); 4728 4729 /** 4730 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending 4731 * @dev: the PCI device to operate on 4732 * 4733 * Check if the device dev has its INTx line asserted, unmask it if not and 4734 * return true. False is returned and the mask remains active if there was 4735 * still an interrupt pending. 4736 */ 4737 bool pci_check_and_unmask_intx(struct pci_dev *dev) 4738 { 4739 return pci_check_and_set_intx_mask(dev, false); 4740 } 4741 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx); 4742 4743 /** 4744 * pci_wait_for_pending_transaction - wait for pending transaction 4745 * @dev: the PCI device to operate on 4746 * 4747 * Return 0 if transaction is pending 1 otherwise. 4748 */ 4749 int pci_wait_for_pending_transaction(struct pci_dev *dev) 4750 { 4751 if (!pci_is_pcie(dev)) 4752 return 1; 4753 4754 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA, 4755 PCI_EXP_DEVSTA_TRPND); 4756 } 4757 EXPORT_SYMBOL(pci_wait_for_pending_transaction); 4758 4759 /** 4760 * pcie_flr - initiate a PCIe function level reset 4761 * @dev: device to reset 4762 * 4763 * Initiate a function level reset unconditionally on @dev without 4764 * checking any flags and DEVCAP 4765 */ 4766 int pcie_flr(struct pci_dev *dev) 4767 { 4768 if (!pci_wait_for_pending_transaction(dev)) 4769 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n"); 4770 4771 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR); 4772 4773 if (dev->imm_ready) 4774 return 0; 4775 4776 /* 4777 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within 4778 * 100ms, but may silently discard requests while the FLR is in 4779 * progress. Wait 100ms before trying to access the device. 4780 */ 4781 msleep(100); 4782 4783 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS); 4784 } 4785 EXPORT_SYMBOL_GPL(pcie_flr); 4786 4787 /** 4788 * pcie_reset_flr - initiate a PCIe function level reset 4789 * @dev: device to reset 4790 * @probe: if true, return 0 if device can be reset this way 4791 * 4792 * Initiate a function level reset on @dev. 4793 */ 4794 int pcie_reset_flr(struct pci_dev *dev, bool probe) 4795 { 4796 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4797 return -ENOTTY; 4798 4799 if (!(dev->devcap & PCI_EXP_DEVCAP_FLR)) 4800 return -ENOTTY; 4801 4802 if (probe) 4803 return 0; 4804 4805 return pcie_flr(dev); 4806 } 4807 EXPORT_SYMBOL_GPL(pcie_reset_flr); 4808 4809 static int pci_af_flr(struct pci_dev *dev, bool probe) 4810 { 4811 int pos; 4812 u8 cap; 4813 4814 pos = pci_find_capability(dev, PCI_CAP_ID_AF); 4815 if (!pos) 4816 return -ENOTTY; 4817 4818 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4819 return -ENOTTY; 4820 4821 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap); 4822 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR)) 4823 return -ENOTTY; 4824 4825 if (probe) 4826 return 0; 4827 4828 /* 4829 * Wait for Transaction Pending bit to clear. A word-aligned test 4830 * is used, so we use the control offset rather than status and shift 4831 * the test bit to match. 4832 */ 4833 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL, 4834 PCI_AF_STATUS_TP << 8)) 4835 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n"); 4836 4837 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR); 4838 4839 if (dev->imm_ready) 4840 return 0; 4841 4842 /* 4843 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006, 4844 * updated 27 July 2006; a device must complete an FLR within 4845 * 100ms, but may silently discard requests while the FLR is in 4846 * progress. Wait 100ms before trying to access the device. 4847 */ 4848 msleep(100); 4849 4850 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS); 4851 } 4852 4853 /** 4854 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0. 4855 * @dev: Device to reset. 4856 * @probe: if true, return 0 if the device can be reset this way. 4857 * 4858 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is 4859 * unset, it will be reinitialized internally when going from PCI_D3hot to 4860 * PCI_D0. If that's the case and the device is not in a low-power state 4861 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset. 4862 * 4863 * NOTE: This causes the caller to sleep for twice the device power transition 4864 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms 4865 * by default (i.e. unless the @dev's d3hot_delay field has a different value). 4866 * Moreover, only devices in D0 can be reset by this function. 4867 */ 4868 static int pci_pm_reset(struct pci_dev *dev, bool probe) 4869 { 4870 u16 csr; 4871 4872 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET) 4873 return -ENOTTY; 4874 4875 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr); 4876 if (csr & PCI_PM_CTRL_NO_SOFT_RESET) 4877 return -ENOTTY; 4878 4879 if (probe) 4880 return 0; 4881 4882 if (dev->current_state != PCI_D0) 4883 return -EINVAL; 4884 4885 csr &= ~PCI_PM_CTRL_STATE_MASK; 4886 csr |= PCI_D3hot; 4887 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4888 pci_dev_d3_sleep(dev); 4889 4890 csr &= ~PCI_PM_CTRL_STATE_MASK; 4891 csr |= PCI_D0; 4892 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4893 pci_dev_d3_sleep(dev); 4894 4895 return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS); 4896 } 4897 4898 /** 4899 * pcie_wait_for_link_status - Wait for link status change 4900 * @pdev: Device whose link to wait for. 4901 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE. 4902 * @active: Waiting for active or inactive? 4903 * 4904 * Return 0 if successful, or -ETIMEDOUT if status has not changed within 4905 * PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds. 4906 */ 4907 static int pcie_wait_for_link_status(struct pci_dev *pdev, 4908 bool use_lt, bool active) 4909 { 4910 u16 lnksta_mask, lnksta_match; 4911 unsigned long end_jiffies; 4912 u16 lnksta; 4913 4914 lnksta_mask = use_lt ? PCI_EXP_LNKSTA_LT : PCI_EXP_LNKSTA_DLLLA; 4915 lnksta_match = active ? lnksta_mask : 0; 4916 4917 end_jiffies = jiffies + msecs_to_jiffies(PCIE_LINK_RETRAIN_TIMEOUT_MS); 4918 do { 4919 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta); 4920 if ((lnksta & lnksta_mask) == lnksta_match) 4921 return 0; 4922 msleep(1); 4923 } while (time_before(jiffies, end_jiffies)); 4924 4925 return -ETIMEDOUT; 4926 } 4927 4928 /** 4929 * pcie_retrain_link - Request a link retrain and wait for it to complete 4930 * @pdev: Device whose link to retrain. 4931 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE, for status. 4932 * 4933 * Retrain completion status is retrieved from the Link Status Register 4934 * according to @use_lt. It is not verified whether the use of the DLLLA 4935 * bit is valid. 4936 * 4937 * Return 0 if successful, or -ETIMEDOUT if training has not completed 4938 * within PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds. 4939 */ 4940 int pcie_retrain_link(struct pci_dev *pdev, bool use_lt) 4941 { 4942 int rc; 4943 4944 /* 4945 * Ensure the updated LNKCTL parameters are used during link 4946 * training by checking that there is no ongoing link training to 4947 * avoid LTSSM race as recommended in Implementation Note at the 4948 * end of PCIe r6.0.1 sec 7.5.3.7. 4949 */ 4950 rc = pcie_wait_for_link_status(pdev, use_lt, !use_lt); 4951 if (rc) 4952 return rc; 4953 4954 pcie_capability_set_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL); 4955 if (pdev->clear_retrain_link) { 4956 /* 4957 * Due to an erratum in some devices the Retrain Link bit 4958 * needs to be cleared again manually to allow the link 4959 * training to succeed. 4960 */ 4961 pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL); 4962 } 4963 4964 return pcie_wait_for_link_status(pdev, use_lt, !use_lt); 4965 } 4966 4967 /** 4968 * pcie_wait_for_link_delay - Wait until link is active or inactive 4969 * @pdev: Bridge device 4970 * @active: waiting for active or inactive? 4971 * @delay: Delay to wait after link has become active (in ms) 4972 * 4973 * Use this to wait till link becomes active or inactive. 4974 */ 4975 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active, 4976 int delay) 4977 { 4978 int rc; 4979 4980 /* 4981 * Some controllers might not implement link active reporting. In this 4982 * case, we wait for 1000 ms + any delay requested by the caller. 4983 */ 4984 if (!pdev->link_active_reporting) { 4985 msleep(PCIE_LINK_RETRAIN_TIMEOUT_MS + delay); 4986 return true; 4987 } 4988 4989 /* 4990 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms, 4991 * after which we should expect an link active if the reset was 4992 * successful. If so, software must wait a minimum 100ms before sending 4993 * configuration requests to devices downstream this port. 4994 * 4995 * If the link fails to activate, either the device was physically 4996 * removed or the link is permanently failed. 4997 */ 4998 if (active) 4999 msleep(20); 5000 rc = pcie_wait_for_link_status(pdev, false, active); 5001 if (active) { 5002 if (rc) 5003 rc = pcie_failed_link_retrain(pdev); 5004 if (rc) 5005 return false; 5006 5007 msleep(delay); 5008 return true; 5009 } 5010 5011 if (rc) 5012 return false; 5013 5014 return true; 5015 } 5016 5017 /** 5018 * pcie_wait_for_link - Wait until link is active or inactive 5019 * @pdev: Bridge device 5020 * @active: waiting for active or inactive? 5021 * 5022 * Use this to wait till link becomes active or inactive. 5023 */ 5024 bool pcie_wait_for_link(struct pci_dev *pdev, bool active) 5025 { 5026 return pcie_wait_for_link_delay(pdev, active, 100); 5027 } 5028 5029 /* 5030 * Find maximum D3cold delay required by all the devices on the bus. The 5031 * spec says 100 ms, but firmware can lower it and we allow drivers to 5032 * increase it as well. 5033 * 5034 * Called with @pci_bus_sem locked for reading. 5035 */ 5036 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus) 5037 { 5038 const struct pci_dev *pdev; 5039 int min_delay = 100; 5040 int max_delay = 0; 5041 5042 list_for_each_entry(pdev, &bus->devices, bus_list) { 5043 if (pdev->d3cold_delay < min_delay) 5044 min_delay = pdev->d3cold_delay; 5045 if (pdev->d3cold_delay > max_delay) 5046 max_delay = pdev->d3cold_delay; 5047 } 5048 5049 return max(min_delay, max_delay); 5050 } 5051 5052 /** 5053 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible 5054 * @dev: PCI bridge 5055 * @reset_type: reset type in human-readable form 5056 * 5057 * Handle necessary delays before access to the devices on the secondary 5058 * side of the bridge are permitted after D3cold to D0 transition 5059 * or Conventional Reset. 5060 * 5061 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For 5062 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section 5063 * 4.3.2. 5064 * 5065 * Return 0 on success or -ENOTTY if the first device on the secondary bus 5066 * failed to become accessible. 5067 */ 5068 int pci_bridge_wait_for_secondary_bus(struct pci_dev *dev, char *reset_type) 5069 { 5070 struct pci_dev *child; 5071 int delay; 5072 5073 if (pci_dev_is_disconnected(dev)) 5074 return 0; 5075 5076 if (!pci_is_bridge(dev)) 5077 return 0; 5078 5079 down_read(&pci_bus_sem); 5080 5081 /* 5082 * We only deal with devices that are present currently on the bus. 5083 * For any hot-added devices the access delay is handled in pciehp 5084 * board_added(). In case of ACPI hotplug the firmware is expected 5085 * to configure the devices before OS is notified. 5086 */ 5087 if (!dev->subordinate || list_empty(&dev->subordinate->devices)) { 5088 up_read(&pci_bus_sem); 5089 return 0; 5090 } 5091 5092 /* Take d3cold_delay requirements into account */ 5093 delay = pci_bus_max_d3cold_delay(dev->subordinate); 5094 if (!delay) { 5095 up_read(&pci_bus_sem); 5096 return 0; 5097 } 5098 5099 child = list_first_entry(&dev->subordinate->devices, struct pci_dev, 5100 bus_list); 5101 up_read(&pci_bus_sem); 5102 5103 /* 5104 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before 5105 * accessing the device after reset (that is 1000 ms + 100 ms). 5106 */ 5107 if (!pci_is_pcie(dev)) { 5108 pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay); 5109 msleep(1000 + delay); 5110 return 0; 5111 } 5112 5113 /* 5114 * For PCIe downstream and root ports that do not support speeds 5115 * greater than 5 GT/s need to wait minimum 100 ms. For higher 5116 * speeds (gen3) we need to wait first for the data link layer to 5117 * become active. 5118 * 5119 * However, 100 ms is the minimum and the PCIe spec says the 5120 * software must allow at least 1s before it can determine that the 5121 * device that did not respond is a broken device. Also device can 5122 * take longer than that to respond if it indicates so through Request 5123 * Retry Status completions. 5124 * 5125 * Therefore we wait for 100 ms and check for the device presence 5126 * until the timeout expires. 5127 */ 5128 if (!pcie_downstream_port(dev)) 5129 return 0; 5130 5131 if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) { 5132 u16 status; 5133 5134 pci_dbg(dev, "waiting %d ms for downstream link\n", delay); 5135 msleep(delay); 5136 5137 if (!pci_dev_wait(child, reset_type, PCI_RESET_WAIT - delay)) 5138 return 0; 5139 5140 /* 5141 * If the port supports active link reporting we now check 5142 * whether the link is active and if not bail out early with 5143 * the assumption that the device is not present anymore. 5144 */ 5145 if (!dev->link_active_reporting) 5146 return -ENOTTY; 5147 5148 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &status); 5149 if (!(status & PCI_EXP_LNKSTA_DLLLA)) 5150 return -ENOTTY; 5151 5152 return pci_dev_wait(child, reset_type, 5153 PCIE_RESET_READY_POLL_MS - PCI_RESET_WAIT); 5154 } 5155 5156 pci_dbg(dev, "waiting %d ms for downstream link, after activation\n", 5157 delay); 5158 if (!pcie_wait_for_link_delay(dev, true, delay)) { 5159 /* Did not train, no need to wait any further */ 5160 pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n"); 5161 return -ENOTTY; 5162 } 5163 5164 return pci_dev_wait(child, reset_type, 5165 PCIE_RESET_READY_POLL_MS - delay); 5166 } 5167 5168 void pci_reset_secondary_bus(struct pci_dev *dev) 5169 { 5170 u16 ctrl; 5171 5172 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl); 5173 ctrl |= PCI_BRIDGE_CTL_BUS_RESET; 5174 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 5175 5176 /* 5177 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double 5178 * this to 2ms to ensure that we meet the minimum requirement. 5179 */ 5180 msleep(2); 5181 5182 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET; 5183 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 5184 } 5185 5186 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev) 5187 { 5188 pci_reset_secondary_bus(dev); 5189 } 5190 5191 /** 5192 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge. 5193 * @dev: Bridge device 5194 * 5195 * Use the bridge control register to assert reset on the secondary bus. 5196 * Devices on the secondary bus are left in power-on state. 5197 */ 5198 int pci_bridge_secondary_bus_reset(struct pci_dev *dev) 5199 { 5200 pcibios_reset_secondary_bus(dev); 5201 5202 return pci_bridge_wait_for_secondary_bus(dev, "bus reset"); 5203 } 5204 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset); 5205 5206 static int pci_parent_bus_reset(struct pci_dev *dev, bool probe) 5207 { 5208 struct pci_dev *pdev; 5209 5210 if (pci_is_root_bus(dev->bus) || dev->subordinate || 5211 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 5212 return -ENOTTY; 5213 5214 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 5215 if (pdev != dev) 5216 return -ENOTTY; 5217 5218 if (probe) 5219 return 0; 5220 5221 return pci_bridge_secondary_bus_reset(dev->bus->self); 5222 } 5223 5224 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe) 5225 { 5226 int rc = -ENOTTY; 5227 5228 if (!hotplug || !try_module_get(hotplug->owner)) 5229 return rc; 5230 5231 if (hotplug->ops->reset_slot) 5232 rc = hotplug->ops->reset_slot(hotplug, probe); 5233 5234 module_put(hotplug->owner); 5235 5236 return rc; 5237 } 5238 5239 static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe) 5240 { 5241 if (dev->multifunction || dev->subordinate || !dev->slot || 5242 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 5243 return -ENOTTY; 5244 5245 return pci_reset_hotplug_slot(dev->slot->hotplug, probe); 5246 } 5247 5248 static int pci_reset_bus_function(struct pci_dev *dev, bool probe) 5249 { 5250 int rc; 5251 5252 rc = pci_dev_reset_slot_function(dev, probe); 5253 if (rc != -ENOTTY) 5254 return rc; 5255 return pci_parent_bus_reset(dev, probe); 5256 } 5257 5258 void pci_dev_lock(struct pci_dev *dev) 5259 { 5260 /* block PM suspend, driver probe, etc. */ 5261 device_lock(&dev->dev); 5262 pci_cfg_access_lock(dev); 5263 } 5264 EXPORT_SYMBOL_GPL(pci_dev_lock); 5265 5266 /* Return 1 on successful lock, 0 on contention */ 5267 int pci_dev_trylock(struct pci_dev *dev) 5268 { 5269 if (device_trylock(&dev->dev)) { 5270 if (pci_cfg_access_trylock(dev)) 5271 return 1; 5272 device_unlock(&dev->dev); 5273 } 5274 5275 return 0; 5276 } 5277 EXPORT_SYMBOL_GPL(pci_dev_trylock); 5278 5279 void pci_dev_unlock(struct pci_dev *dev) 5280 { 5281 pci_cfg_access_unlock(dev); 5282 device_unlock(&dev->dev); 5283 } 5284 EXPORT_SYMBOL_GPL(pci_dev_unlock); 5285 5286 static void pci_dev_save_and_disable(struct pci_dev *dev) 5287 { 5288 const struct pci_error_handlers *err_handler = 5289 dev->driver ? dev->driver->err_handler : NULL; 5290 5291 /* 5292 * dev->driver->err_handler->reset_prepare() is protected against 5293 * races with ->remove() by the device lock, which must be held by 5294 * the caller. 5295 */ 5296 if (err_handler && err_handler->reset_prepare) 5297 err_handler->reset_prepare(dev); 5298 5299 /* 5300 * Wake-up device prior to save. PM registers default to D0 after 5301 * reset and a simple register restore doesn't reliably return 5302 * to a non-D0 state anyway. 5303 */ 5304 pci_set_power_state(dev, PCI_D0); 5305 5306 pci_save_state(dev); 5307 /* 5308 * Disable the device by clearing the Command register, except for 5309 * INTx-disable which is set. This not only disables MMIO and I/O port 5310 * BARs, but also prevents the device from being Bus Master, preventing 5311 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3 5312 * compliant devices, INTx-disable prevents legacy interrupts. 5313 */ 5314 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE); 5315 } 5316 5317 static void pci_dev_restore(struct pci_dev *dev) 5318 { 5319 const struct pci_error_handlers *err_handler = 5320 dev->driver ? dev->driver->err_handler : NULL; 5321 5322 pci_restore_state(dev); 5323 5324 /* 5325 * dev->driver->err_handler->reset_done() is protected against 5326 * races with ->remove() by the device lock, which must be held by 5327 * the caller. 5328 */ 5329 if (err_handler && err_handler->reset_done) 5330 err_handler->reset_done(dev); 5331 } 5332 5333 /* dev->reset_methods[] is a 0-terminated list of indices into this array */ 5334 static const struct pci_reset_fn_method pci_reset_fn_methods[] = { 5335 { }, 5336 { pci_dev_specific_reset, .name = "device_specific" }, 5337 { pci_dev_acpi_reset, .name = "acpi" }, 5338 { pcie_reset_flr, .name = "flr" }, 5339 { pci_af_flr, .name = "af_flr" }, 5340 { pci_pm_reset, .name = "pm" }, 5341 { pci_reset_bus_function, .name = "bus" }, 5342 }; 5343 5344 static ssize_t reset_method_show(struct device *dev, 5345 struct device_attribute *attr, char *buf) 5346 { 5347 struct pci_dev *pdev = to_pci_dev(dev); 5348 ssize_t len = 0; 5349 int i, m; 5350 5351 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) { 5352 m = pdev->reset_methods[i]; 5353 if (!m) 5354 break; 5355 5356 len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "", 5357 pci_reset_fn_methods[m].name); 5358 } 5359 5360 if (len) 5361 len += sysfs_emit_at(buf, len, "\n"); 5362 5363 return len; 5364 } 5365 5366 static int reset_method_lookup(const char *name) 5367 { 5368 int m; 5369 5370 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) { 5371 if (sysfs_streq(name, pci_reset_fn_methods[m].name)) 5372 return m; 5373 } 5374 5375 return 0; /* not found */ 5376 } 5377 5378 static ssize_t reset_method_store(struct device *dev, 5379 struct device_attribute *attr, 5380 const char *buf, size_t count) 5381 { 5382 struct pci_dev *pdev = to_pci_dev(dev); 5383 char *options, *name; 5384 int m, n; 5385 u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 }; 5386 5387 if (sysfs_streq(buf, "")) { 5388 pdev->reset_methods[0] = 0; 5389 pci_warn(pdev, "All device reset methods disabled by user"); 5390 return count; 5391 } 5392 5393 if (sysfs_streq(buf, "default")) { 5394 pci_init_reset_methods(pdev); 5395 return count; 5396 } 5397 5398 options = kstrndup(buf, count, GFP_KERNEL); 5399 if (!options) 5400 return -ENOMEM; 5401 5402 n = 0; 5403 while ((name = strsep(&options, " ")) != NULL) { 5404 if (sysfs_streq(name, "")) 5405 continue; 5406 5407 name = strim(name); 5408 5409 m = reset_method_lookup(name); 5410 if (!m) { 5411 pci_err(pdev, "Invalid reset method '%s'", name); 5412 goto error; 5413 } 5414 5415 if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) { 5416 pci_err(pdev, "Unsupported reset method '%s'", name); 5417 goto error; 5418 } 5419 5420 if (n == PCI_NUM_RESET_METHODS - 1) { 5421 pci_err(pdev, "Too many reset methods\n"); 5422 goto error; 5423 } 5424 5425 reset_methods[n++] = m; 5426 } 5427 5428 reset_methods[n] = 0; 5429 5430 /* Warn if dev-specific supported but not highest priority */ 5431 if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 && 5432 reset_methods[0] != 1) 5433 pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user"); 5434 memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods)); 5435 kfree(options); 5436 return count; 5437 5438 error: 5439 /* Leave previous methods unchanged */ 5440 kfree(options); 5441 return -EINVAL; 5442 } 5443 static DEVICE_ATTR_RW(reset_method); 5444 5445 static struct attribute *pci_dev_reset_method_attrs[] = { 5446 &dev_attr_reset_method.attr, 5447 NULL, 5448 }; 5449 5450 static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj, 5451 struct attribute *a, int n) 5452 { 5453 struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj)); 5454 5455 if (!pci_reset_supported(pdev)) 5456 return 0; 5457 5458 return a->mode; 5459 } 5460 5461 const struct attribute_group pci_dev_reset_method_attr_group = { 5462 .attrs = pci_dev_reset_method_attrs, 5463 .is_visible = pci_dev_reset_method_attr_is_visible, 5464 }; 5465 5466 /** 5467 * __pci_reset_function_locked - reset a PCI device function while holding 5468 * the @dev mutex lock. 5469 * @dev: PCI device to reset 5470 * 5471 * Some devices allow an individual function to be reset without affecting 5472 * other functions in the same device. The PCI device must be responsive 5473 * to PCI config space in order to use this function. 5474 * 5475 * The device function is presumed to be unused and the caller is holding 5476 * the device mutex lock when this function is called. 5477 * 5478 * Resetting the device will make the contents of PCI configuration space 5479 * random, so any caller of this must be prepared to reinitialise the 5480 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 5481 * etc. 5482 * 5483 * Returns 0 if the device function was successfully reset or negative if the 5484 * device doesn't support resetting a single function. 5485 */ 5486 int __pci_reset_function_locked(struct pci_dev *dev) 5487 { 5488 int i, m, rc; 5489 5490 might_sleep(); 5491 5492 /* 5493 * A reset method returns -ENOTTY if it doesn't support this device and 5494 * we should try the next method. 5495 * 5496 * If it returns 0 (success), we're finished. If it returns any other 5497 * error, we're also finished: this indicates that further reset 5498 * mechanisms might be broken on the device. 5499 */ 5500 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) { 5501 m = dev->reset_methods[i]; 5502 if (!m) 5503 return -ENOTTY; 5504 5505 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET); 5506 if (!rc) 5507 return 0; 5508 if (rc != -ENOTTY) 5509 return rc; 5510 } 5511 5512 return -ENOTTY; 5513 } 5514 EXPORT_SYMBOL_GPL(__pci_reset_function_locked); 5515 5516 /** 5517 * pci_init_reset_methods - check whether device can be safely reset 5518 * and store supported reset mechanisms. 5519 * @dev: PCI device to check for reset mechanisms 5520 * 5521 * Some devices allow an individual function to be reset without affecting 5522 * other functions in the same device. The PCI device must be in D0-D3hot 5523 * state. 5524 * 5525 * Stores reset mechanisms supported by device in reset_methods byte array 5526 * which is a member of struct pci_dev. 5527 */ 5528 void pci_init_reset_methods(struct pci_dev *dev) 5529 { 5530 int m, i, rc; 5531 5532 BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS); 5533 5534 might_sleep(); 5535 5536 i = 0; 5537 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) { 5538 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE); 5539 if (!rc) 5540 dev->reset_methods[i++] = m; 5541 else if (rc != -ENOTTY) 5542 break; 5543 } 5544 5545 dev->reset_methods[i] = 0; 5546 } 5547 5548 /** 5549 * pci_reset_function - quiesce and reset a PCI device function 5550 * @dev: PCI device to reset 5551 * 5552 * Some devices allow an individual function to be reset without affecting 5553 * other functions in the same device. The PCI device must be responsive 5554 * to PCI config space in order to use this function. 5555 * 5556 * This function does not just reset the PCI portion of a device, but 5557 * clears all the state associated with the device. This function differs 5558 * from __pci_reset_function_locked() in that it saves and restores device state 5559 * over the reset and takes the PCI device lock. 5560 * 5561 * Returns 0 if the device function was successfully reset or negative if the 5562 * device doesn't support resetting a single function. 5563 */ 5564 int pci_reset_function(struct pci_dev *dev) 5565 { 5566 int rc; 5567 5568 if (!pci_reset_supported(dev)) 5569 return -ENOTTY; 5570 5571 pci_dev_lock(dev); 5572 pci_dev_save_and_disable(dev); 5573 5574 rc = __pci_reset_function_locked(dev); 5575 5576 pci_dev_restore(dev); 5577 pci_dev_unlock(dev); 5578 5579 return rc; 5580 } 5581 EXPORT_SYMBOL_GPL(pci_reset_function); 5582 5583 /** 5584 * pci_reset_function_locked - quiesce and reset a PCI device function 5585 * @dev: PCI device to reset 5586 * 5587 * Some devices allow an individual function to be reset without affecting 5588 * other functions in the same device. The PCI device must be responsive 5589 * to PCI config space in order to use this function. 5590 * 5591 * This function does not just reset the PCI portion of a device, but 5592 * clears all the state associated with the device. This function differs 5593 * from __pci_reset_function_locked() in that it saves and restores device state 5594 * over the reset. It also differs from pci_reset_function() in that it 5595 * requires the PCI device lock to be held. 5596 * 5597 * Returns 0 if the device function was successfully reset or negative if the 5598 * device doesn't support resetting a single function. 5599 */ 5600 int pci_reset_function_locked(struct pci_dev *dev) 5601 { 5602 int rc; 5603 5604 if (!pci_reset_supported(dev)) 5605 return -ENOTTY; 5606 5607 pci_dev_save_and_disable(dev); 5608 5609 rc = __pci_reset_function_locked(dev); 5610 5611 pci_dev_restore(dev); 5612 5613 return rc; 5614 } 5615 EXPORT_SYMBOL_GPL(pci_reset_function_locked); 5616 5617 /** 5618 * pci_try_reset_function - quiesce and reset a PCI device function 5619 * @dev: PCI device to reset 5620 * 5621 * Same as above, except return -EAGAIN if unable to lock device. 5622 */ 5623 int pci_try_reset_function(struct pci_dev *dev) 5624 { 5625 int rc; 5626 5627 if (!pci_reset_supported(dev)) 5628 return -ENOTTY; 5629 5630 if (!pci_dev_trylock(dev)) 5631 return -EAGAIN; 5632 5633 pci_dev_save_and_disable(dev); 5634 rc = __pci_reset_function_locked(dev); 5635 pci_dev_restore(dev); 5636 pci_dev_unlock(dev); 5637 5638 return rc; 5639 } 5640 EXPORT_SYMBOL_GPL(pci_try_reset_function); 5641 5642 /* Do any devices on or below this bus prevent a bus reset? */ 5643 static bool pci_bus_resettable(struct pci_bus *bus) 5644 { 5645 struct pci_dev *dev; 5646 5647 5648 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 5649 return false; 5650 5651 list_for_each_entry(dev, &bus->devices, bus_list) { 5652 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 5653 (dev->subordinate && !pci_bus_resettable(dev->subordinate))) 5654 return false; 5655 } 5656 5657 return true; 5658 } 5659 5660 /* Lock devices from the top of the tree down */ 5661 static void pci_bus_lock(struct pci_bus *bus) 5662 { 5663 struct pci_dev *dev; 5664 5665 list_for_each_entry(dev, &bus->devices, bus_list) { 5666 pci_dev_lock(dev); 5667 if (dev->subordinate) 5668 pci_bus_lock(dev->subordinate); 5669 } 5670 } 5671 5672 /* Unlock devices from the bottom of the tree up */ 5673 static void pci_bus_unlock(struct pci_bus *bus) 5674 { 5675 struct pci_dev *dev; 5676 5677 list_for_each_entry(dev, &bus->devices, bus_list) { 5678 if (dev->subordinate) 5679 pci_bus_unlock(dev->subordinate); 5680 pci_dev_unlock(dev); 5681 } 5682 } 5683 5684 /* Return 1 on successful lock, 0 on contention */ 5685 static int pci_bus_trylock(struct pci_bus *bus) 5686 { 5687 struct pci_dev *dev; 5688 5689 list_for_each_entry(dev, &bus->devices, bus_list) { 5690 if (!pci_dev_trylock(dev)) 5691 goto unlock; 5692 if (dev->subordinate) { 5693 if (!pci_bus_trylock(dev->subordinate)) { 5694 pci_dev_unlock(dev); 5695 goto unlock; 5696 } 5697 } 5698 } 5699 return 1; 5700 5701 unlock: 5702 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) { 5703 if (dev->subordinate) 5704 pci_bus_unlock(dev->subordinate); 5705 pci_dev_unlock(dev); 5706 } 5707 return 0; 5708 } 5709 5710 /* Do any devices on or below this slot prevent a bus reset? */ 5711 static bool pci_slot_resettable(struct pci_slot *slot) 5712 { 5713 struct pci_dev *dev; 5714 5715 if (slot->bus->self && 5716 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 5717 return false; 5718 5719 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5720 if (!dev->slot || dev->slot != slot) 5721 continue; 5722 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 5723 (dev->subordinate && !pci_bus_resettable(dev->subordinate))) 5724 return false; 5725 } 5726 5727 return true; 5728 } 5729 5730 /* Lock devices from the top of the tree down */ 5731 static void pci_slot_lock(struct pci_slot *slot) 5732 { 5733 struct pci_dev *dev; 5734 5735 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5736 if (!dev->slot || dev->slot != slot) 5737 continue; 5738 pci_dev_lock(dev); 5739 if (dev->subordinate) 5740 pci_bus_lock(dev->subordinate); 5741 } 5742 } 5743 5744 /* Unlock devices from the bottom of the tree up */ 5745 static void pci_slot_unlock(struct pci_slot *slot) 5746 { 5747 struct pci_dev *dev; 5748 5749 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5750 if (!dev->slot || dev->slot != slot) 5751 continue; 5752 if (dev->subordinate) 5753 pci_bus_unlock(dev->subordinate); 5754 pci_dev_unlock(dev); 5755 } 5756 } 5757 5758 /* Return 1 on successful lock, 0 on contention */ 5759 static int pci_slot_trylock(struct pci_slot *slot) 5760 { 5761 struct pci_dev *dev; 5762 5763 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5764 if (!dev->slot || dev->slot != slot) 5765 continue; 5766 if (!pci_dev_trylock(dev)) 5767 goto unlock; 5768 if (dev->subordinate) { 5769 if (!pci_bus_trylock(dev->subordinate)) { 5770 pci_dev_unlock(dev); 5771 goto unlock; 5772 } 5773 } 5774 } 5775 return 1; 5776 5777 unlock: 5778 list_for_each_entry_continue_reverse(dev, 5779 &slot->bus->devices, bus_list) { 5780 if (!dev->slot || dev->slot != slot) 5781 continue; 5782 if (dev->subordinate) 5783 pci_bus_unlock(dev->subordinate); 5784 pci_dev_unlock(dev); 5785 } 5786 return 0; 5787 } 5788 5789 /* 5790 * Save and disable devices from the top of the tree down while holding 5791 * the @dev mutex lock for the entire tree. 5792 */ 5793 static void pci_bus_save_and_disable_locked(struct pci_bus *bus) 5794 { 5795 struct pci_dev *dev; 5796 5797 list_for_each_entry(dev, &bus->devices, bus_list) { 5798 pci_dev_save_and_disable(dev); 5799 if (dev->subordinate) 5800 pci_bus_save_and_disable_locked(dev->subordinate); 5801 } 5802 } 5803 5804 /* 5805 * Restore devices from top of the tree down while holding @dev mutex lock 5806 * for the entire tree. Parent bridges need to be restored before we can 5807 * get to subordinate devices. 5808 */ 5809 static void pci_bus_restore_locked(struct pci_bus *bus) 5810 { 5811 struct pci_dev *dev; 5812 5813 list_for_each_entry(dev, &bus->devices, bus_list) { 5814 pci_dev_restore(dev); 5815 if (dev->subordinate) 5816 pci_bus_restore_locked(dev->subordinate); 5817 } 5818 } 5819 5820 /* 5821 * Save and disable devices from the top of the tree down while holding 5822 * the @dev mutex lock for the entire tree. 5823 */ 5824 static void pci_slot_save_and_disable_locked(struct pci_slot *slot) 5825 { 5826 struct pci_dev *dev; 5827 5828 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5829 if (!dev->slot || dev->slot != slot) 5830 continue; 5831 pci_dev_save_and_disable(dev); 5832 if (dev->subordinate) 5833 pci_bus_save_and_disable_locked(dev->subordinate); 5834 } 5835 } 5836 5837 /* 5838 * Restore devices from top of the tree down while holding @dev mutex lock 5839 * for the entire tree. Parent bridges need to be restored before we can 5840 * get to subordinate devices. 5841 */ 5842 static void pci_slot_restore_locked(struct pci_slot *slot) 5843 { 5844 struct pci_dev *dev; 5845 5846 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5847 if (!dev->slot || dev->slot != slot) 5848 continue; 5849 pci_dev_restore(dev); 5850 if (dev->subordinate) 5851 pci_bus_restore_locked(dev->subordinate); 5852 } 5853 } 5854 5855 static int pci_slot_reset(struct pci_slot *slot, bool probe) 5856 { 5857 int rc; 5858 5859 if (!slot || !pci_slot_resettable(slot)) 5860 return -ENOTTY; 5861 5862 if (!probe) 5863 pci_slot_lock(slot); 5864 5865 might_sleep(); 5866 5867 rc = pci_reset_hotplug_slot(slot->hotplug, probe); 5868 5869 if (!probe) 5870 pci_slot_unlock(slot); 5871 5872 return rc; 5873 } 5874 5875 /** 5876 * pci_probe_reset_slot - probe whether a PCI slot can be reset 5877 * @slot: PCI slot to probe 5878 * 5879 * Return 0 if slot can be reset, negative if a slot reset is not supported. 5880 */ 5881 int pci_probe_reset_slot(struct pci_slot *slot) 5882 { 5883 return pci_slot_reset(slot, PCI_RESET_PROBE); 5884 } 5885 EXPORT_SYMBOL_GPL(pci_probe_reset_slot); 5886 5887 /** 5888 * __pci_reset_slot - Try to reset a PCI slot 5889 * @slot: PCI slot to reset 5890 * 5891 * A PCI bus may host multiple slots, each slot may support a reset mechanism 5892 * independent of other slots. For instance, some slots may support slot power 5893 * control. In the case of a 1:1 bus to slot architecture, this function may 5894 * wrap the bus reset to avoid spurious slot related events such as hotplug. 5895 * Generally a slot reset should be attempted before a bus reset. All of the 5896 * function of the slot and any subordinate buses behind the slot are reset 5897 * through this function. PCI config space of all devices in the slot and 5898 * behind the slot is saved before and restored after reset. 5899 * 5900 * Same as above except return -EAGAIN if the slot cannot be locked 5901 */ 5902 static int __pci_reset_slot(struct pci_slot *slot) 5903 { 5904 int rc; 5905 5906 rc = pci_slot_reset(slot, PCI_RESET_PROBE); 5907 if (rc) 5908 return rc; 5909 5910 if (pci_slot_trylock(slot)) { 5911 pci_slot_save_and_disable_locked(slot); 5912 might_sleep(); 5913 rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET); 5914 pci_slot_restore_locked(slot); 5915 pci_slot_unlock(slot); 5916 } else 5917 rc = -EAGAIN; 5918 5919 return rc; 5920 } 5921 5922 static int pci_bus_reset(struct pci_bus *bus, bool probe) 5923 { 5924 int ret; 5925 5926 if (!bus->self || !pci_bus_resettable(bus)) 5927 return -ENOTTY; 5928 5929 if (probe) 5930 return 0; 5931 5932 pci_bus_lock(bus); 5933 5934 might_sleep(); 5935 5936 ret = pci_bridge_secondary_bus_reset(bus->self); 5937 5938 pci_bus_unlock(bus); 5939 5940 return ret; 5941 } 5942 5943 /** 5944 * pci_bus_error_reset - reset the bridge's subordinate bus 5945 * @bridge: The parent device that connects to the bus to reset 5946 * 5947 * This function will first try to reset the slots on this bus if the method is 5948 * available. If slot reset fails or is not available, this will fall back to a 5949 * secondary bus reset. 5950 */ 5951 int pci_bus_error_reset(struct pci_dev *bridge) 5952 { 5953 struct pci_bus *bus = bridge->subordinate; 5954 struct pci_slot *slot; 5955 5956 if (!bus) 5957 return -ENOTTY; 5958 5959 mutex_lock(&pci_slot_mutex); 5960 if (list_empty(&bus->slots)) 5961 goto bus_reset; 5962 5963 list_for_each_entry(slot, &bus->slots, list) 5964 if (pci_probe_reset_slot(slot)) 5965 goto bus_reset; 5966 5967 list_for_each_entry(slot, &bus->slots, list) 5968 if (pci_slot_reset(slot, PCI_RESET_DO_RESET)) 5969 goto bus_reset; 5970 5971 mutex_unlock(&pci_slot_mutex); 5972 return 0; 5973 bus_reset: 5974 mutex_unlock(&pci_slot_mutex); 5975 return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET); 5976 } 5977 5978 /** 5979 * pci_probe_reset_bus - probe whether a PCI bus can be reset 5980 * @bus: PCI bus to probe 5981 * 5982 * Return 0 if bus can be reset, negative if a bus reset is not supported. 5983 */ 5984 int pci_probe_reset_bus(struct pci_bus *bus) 5985 { 5986 return pci_bus_reset(bus, PCI_RESET_PROBE); 5987 } 5988 EXPORT_SYMBOL_GPL(pci_probe_reset_bus); 5989 5990 /** 5991 * __pci_reset_bus - Try to reset a PCI bus 5992 * @bus: top level PCI bus to reset 5993 * 5994 * Same as above except return -EAGAIN if the bus cannot be locked 5995 */ 5996 static int __pci_reset_bus(struct pci_bus *bus) 5997 { 5998 int rc; 5999 6000 rc = pci_bus_reset(bus, PCI_RESET_PROBE); 6001 if (rc) 6002 return rc; 6003 6004 if (pci_bus_trylock(bus)) { 6005 pci_bus_save_and_disable_locked(bus); 6006 might_sleep(); 6007 rc = pci_bridge_secondary_bus_reset(bus->self); 6008 pci_bus_restore_locked(bus); 6009 pci_bus_unlock(bus); 6010 } else 6011 rc = -EAGAIN; 6012 6013 return rc; 6014 } 6015 6016 /** 6017 * pci_reset_bus - Try to reset a PCI bus 6018 * @pdev: top level PCI device to reset via slot/bus 6019 * 6020 * Same as above except return -EAGAIN if the bus cannot be locked 6021 */ 6022 int pci_reset_bus(struct pci_dev *pdev) 6023 { 6024 return (!pci_probe_reset_slot(pdev->slot)) ? 6025 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus); 6026 } 6027 EXPORT_SYMBOL_GPL(pci_reset_bus); 6028 6029 /** 6030 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count 6031 * @dev: PCI device to query 6032 * 6033 * Returns mmrbc: maximum designed memory read count in bytes or 6034 * appropriate error value. 6035 */ 6036 int pcix_get_max_mmrbc(struct pci_dev *dev) 6037 { 6038 int cap; 6039 u32 stat; 6040 6041 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 6042 if (!cap) 6043 return -EINVAL; 6044 6045 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 6046 return -EINVAL; 6047 6048 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21); 6049 } 6050 EXPORT_SYMBOL(pcix_get_max_mmrbc); 6051 6052 /** 6053 * pcix_get_mmrbc - get PCI-X maximum memory read byte count 6054 * @dev: PCI device to query 6055 * 6056 * Returns mmrbc: maximum memory read count in bytes or appropriate error 6057 * value. 6058 */ 6059 int pcix_get_mmrbc(struct pci_dev *dev) 6060 { 6061 int cap; 6062 u16 cmd; 6063 6064 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 6065 if (!cap) 6066 return -EINVAL; 6067 6068 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 6069 return -EINVAL; 6070 6071 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2); 6072 } 6073 EXPORT_SYMBOL(pcix_get_mmrbc); 6074 6075 /** 6076 * pcix_set_mmrbc - set PCI-X maximum memory read byte count 6077 * @dev: PCI device to query 6078 * @mmrbc: maximum memory read count in bytes 6079 * valid values are 512, 1024, 2048, 4096 6080 * 6081 * If possible sets maximum memory read byte count, some bridges have errata 6082 * that prevent this. 6083 */ 6084 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc) 6085 { 6086 int cap; 6087 u32 stat, v, o; 6088 u16 cmd; 6089 6090 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc)) 6091 return -EINVAL; 6092 6093 v = ffs(mmrbc) - 10; 6094 6095 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 6096 if (!cap) 6097 return -EINVAL; 6098 6099 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 6100 return -EINVAL; 6101 6102 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21) 6103 return -E2BIG; 6104 6105 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 6106 return -EINVAL; 6107 6108 o = (cmd & PCI_X_CMD_MAX_READ) >> 2; 6109 if (o != v) { 6110 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC)) 6111 return -EIO; 6112 6113 cmd &= ~PCI_X_CMD_MAX_READ; 6114 cmd |= v << 2; 6115 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd)) 6116 return -EIO; 6117 } 6118 return 0; 6119 } 6120 EXPORT_SYMBOL(pcix_set_mmrbc); 6121 6122 /** 6123 * pcie_get_readrq - get PCI Express read request size 6124 * @dev: PCI device to query 6125 * 6126 * Returns maximum memory read request in bytes or appropriate error value. 6127 */ 6128 int pcie_get_readrq(struct pci_dev *dev) 6129 { 6130 u16 ctl; 6131 6132 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 6133 6134 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12); 6135 } 6136 EXPORT_SYMBOL(pcie_get_readrq); 6137 6138 /** 6139 * pcie_set_readrq - set PCI Express maximum memory read request 6140 * @dev: PCI device to query 6141 * @rq: maximum memory read count in bytes 6142 * valid values are 128, 256, 512, 1024, 2048, 4096 6143 * 6144 * If possible sets maximum memory read request in bytes 6145 */ 6146 int pcie_set_readrq(struct pci_dev *dev, int rq) 6147 { 6148 u16 v; 6149 int ret; 6150 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus); 6151 6152 if (rq < 128 || rq > 4096 || !is_power_of_2(rq)) 6153 return -EINVAL; 6154 6155 /* 6156 * If using the "performance" PCIe config, we clamp the read rq 6157 * size to the max packet size to keep the host bridge from 6158 * generating requests larger than we can cope with. 6159 */ 6160 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) { 6161 int mps = pcie_get_mps(dev); 6162 6163 if (mps < rq) 6164 rq = mps; 6165 } 6166 6167 v = (ffs(rq) - 8) << 12; 6168 6169 if (bridge->no_inc_mrrs) { 6170 int max_mrrs = pcie_get_readrq(dev); 6171 6172 if (rq > max_mrrs) { 6173 pci_info(dev, "can't set Max_Read_Request_Size to %d; max is %d\n", rq, max_mrrs); 6174 return -EINVAL; 6175 } 6176 } 6177 6178 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 6179 PCI_EXP_DEVCTL_READRQ, v); 6180 6181 return pcibios_err_to_errno(ret); 6182 } 6183 EXPORT_SYMBOL(pcie_set_readrq); 6184 6185 /** 6186 * pcie_get_mps - get PCI Express maximum payload size 6187 * @dev: PCI device to query 6188 * 6189 * Returns maximum payload size in bytes 6190 */ 6191 int pcie_get_mps(struct pci_dev *dev) 6192 { 6193 u16 ctl; 6194 6195 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 6196 6197 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5); 6198 } 6199 EXPORT_SYMBOL(pcie_get_mps); 6200 6201 /** 6202 * pcie_set_mps - set PCI Express maximum payload size 6203 * @dev: PCI device to query 6204 * @mps: maximum payload size in bytes 6205 * valid values are 128, 256, 512, 1024, 2048, 4096 6206 * 6207 * If possible sets maximum payload size 6208 */ 6209 int pcie_set_mps(struct pci_dev *dev, int mps) 6210 { 6211 u16 v; 6212 int ret; 6213 6214 if (mps < 128 || mps > 4096 || !is_power_of_2(mps)) 6215 return -EINVAL; 6216 6217 v = ffs(mps) - 8; 6218 if (v > dev->pcie_mpss) 6219 return -EINVAL; 6220 v <<= 5; 6221 6222 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 6223 PCI_EXP_DEVCTL_PAYLOAD, v); 6224 6225 return pcibios_err_to_errno(ret); 6226 } 6227 EXPORT_SYMBOL(pcie_set_mps); 6228 6229 /** 6230 * pcie_bandwidth_available - determine minimum link settings of a PCIe 6231 * device and its bandwidth limitation 6232 * @dev: PCI device to query 6233 * @limiting_dev: storage for device causing the bandwidth limitation 6234 * @speed: storage for speed of limiting device 6235 * @width: storage for width of limiting device 6236 * 6237 * Walk up the PCI device chain and find the point where the minimum 6238 * bandwidth is available. Return the bandwidth available there and (if 6239 * limiting_dev, speed, and width pointers are supplied) information about 6240 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of 6241 * raw bandwidth. 6242 */ 6243 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev, 6244 enum pci_bus_speed *speed, 6245 enum pcie_link_width *width) 6246 { 6247 u16 lnksta; 6248 enum pci_bus_speed next_speed; 6249 enum pcie_link_width next_width; 6250 u32 bw, next_bw; 6251 6252 if (speed) 6253 *speed = PCI_SPEED_UNKNOWN; 6254 if (width) 6255 *width = PCIE_LNK_WIDTH_UNKNOWN; 6256 6257 bw = 0; 6258 6259 while (dev) { 6260 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta); 6261 6262 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS]; 6263 next_width = FIELD_GET(PCI_EXP_LNKSTA_NLW, lnksta); 6264 6265 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed); 6266 6267 /* Check if current device limits the total bandwidth */ 6268 if (!bw || next_bw <= bw) { 6269 bw = next_bw; 6270 6271 if (limiting_dev) 6272 *limiting_dev = dev; 6273 if (speed) 6274 *speed = next_speed; 6275 if (width) 6276 *width = next_width; 6277 } 6278 6279 dev = pci_upstream_bridge(dev); 6280 } 6281 6282 return bw; 6283 } 6284 EXPORT_SYMBOL(pcie_bandwidth_available); 6285 6286 /** 6287 * pcie_get_speed_cap - query for the PCI device's link speed capability 6288 * @dev: PCI device to query 6289 * 6290 * Query the PCI device speed capability. Return the maximum link speed 6291 * supported by the device. 6292 */ 6293 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev) 6294 { 6295 u32 lnkcap2, lnkcap; 6296 6297 /* 6298 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The 6299 * implementation note there recommends using the Supported Link 6300 * Speeds Vector in Link Capabilities 2 when supported. 6301 * 6302 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software 6303 * should use the Supported Link Speeds field in Link Capabilities, 6304 * where only 2.5 GT/s and 5.0 GT/s speeds were defined. 6305 */ 6306 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2); 6307 6308 /* PCIe r3.0-compliant */ 6309 if (lnkcap2) 6310 return PCIE_LNKCAP2_SLS2SPEED(lnkcap2); 6311 6312 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 6313 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB) 6314 return PCIE_SPEED_5_0GT; 6315 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB) 6316 return PCIE_SPEED_2_5GT; 6317 6318 return PCI_SPEED_UNKNOWN; 6319 } 6320 EXPORT_SYMBOL(pcie_get_speed_cap); 6321 6322 /** 6323 * pcie_get_width_cap - query for the PCI device's link width capability 6324 * @dev: PCI device to query 6325 * 6326 * Query the PCI device width capability. Return the maximum link width 6327 * supported by the device. 6328 */ 6329 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev) 6330 { 6331 u32 lnkcap; 6332 6333 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 6334 if (lnkcap) 6335 return FIELD_GET(PCI_EXP_LNKCAP_MLW, lnkcap); 6336 6337 return PCIE_LNK_WIDTH_UNKNOWN; 6338 } 6339 EXPORT_SYMBOL(pcie_get_width_cap); 6340 6341 /** 6342 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability 6343 * @dev: PCI device 6344 * @speed: storage for link speed 6345 * @width: storage for link width 6346 * 6347 * Calculate a PCI device's link bandwidth by querying for its link speed 6348 * and width, multiplying them, and applying encoding overhead. The result 6349 * is in Mb/s, i.e., megabits/second of raw bandwidth. 6350 */ 6351 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed, 6352 enum pcie_link_width *width) 6353 { 6354 *speed = pcie_get_speed_cap(dev); 6355 *width = pcie_get_width_cap(dev); 6356 6357 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN) 6358 return 0; 6359 6360 return *width * PCIE_SPEED2MBS_ENC(*speed); 6361 } 6362 6363 /** 6364 * __pcie_print_link_status - Report the PCI device's link speed and width 6365 * @dev: PCI device to query 6366 * @verbose: Print info even when enough bandwidth is available 6367 * 6368 * If the available bandwidth at the device is less than the device is 6369 * capable of, report the device's maximum possible bandwidth and the 6370 * upstream link that limits its performance. If @verbose, always print 6371 * the available bandwidth, even if the device isn't constrained. 6372 */ 6373 void __pcie_print_link_status(struct pci_dev *dev, bool verbose) 6374 { 6375 enum pcie_link_width width, width_cap; 6376 enum pci_bus_speed speed, speed_cap; 6377 struct pci_dev *limiting_dev = NULL; 6378 u32 bw_avail, bw_cap; 6379 6380 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap); 6381 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width); 6382 6383 if (bw_avail >= bw_cap && verbose) 6384 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n", 6385 bw_cap / 1000, bw_cap % 1000, 6386 pci_speed_string(speed_cap), width_cap); 6387 else if (bw_avail < bw_cap) 6388 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n", 6389 bw_avail / 1000, bw_avail % 1000, 6390 pci_speed_string(speed), width, 6391 limiting_dev ? pci_name(limiting_dev) : "<unknown>", 6392 bw_cap / 1000, bw_cap % 1000, 6393 pci_speed_string(speed_cap), width_cap); 6394 } 6395 6396 /** 6397 * pcie_print_link_status - Report the PCI device's link speed and width 6398 * @dev: PCI device to query 6399 * 6400 * Report the available bandwidth at the device. 6401 */ 6402 void pcie_print_link_status(struct pci_dev *dev) 6403 { 6404 __pcie_print_link_status(dev, true); 6405 } 6406 EXPORT_SYMBOL(pcie_print_link_status); 6407 6408 /** 6409 * pci_select_bars - Make BAR mask from the type of resource 6410 * @dev: the PCI device for which BAR mask is made 6411 * @flags: resource type mask to be selected 6412 * 6413 * This helper routine makes bar mask from the type of resource. 6414 */ 6415 int pci_select_bars(struct pci_dev *dev, unsigned long flags) 6416 { 6417 int i, bars = 0; 6418 for (i = 0; i < PCI_NUM_RESOURCES; i++) 6419 if (pci_resource_flags(dev, i) & flags) 6420 bars |= (1 << i); 6421 return bars; 6422 } 6423 EXPORT_SYMBOL(pci_select_bars); 6424 6425 /* Some architectures require additional programming to enable VGA */ 6426 static arch_set_vga_state_t arch_set_vga_state; 6427 6428 void __init pci_register_set_vga_state(arch_set_vga_state_t func) 6429 { 6430 arch_set_vga_state = func; /* NULL disables */ 6431 } 6432 6433 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode, 6434 unsigned int command_bits, u32 flags) 6435 { 6436 if (arch_set_vga_state) 6437 return arch_set_vga_state(dev, decode, command_bits, 6438 flags); 6439 return 0; 6440 } 6441 6442 /** 6443 * pci_set_vga_state - set VGA decode state on device and parents if requested 6444 * @dev: the PCI device 6445 * @decode: true = enable decoding, false = disable decoding 6446 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY 6447 * @flags: traverse ancestors and change bridges 6448 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE 6449 */ 6450 int pci_set_vga_state(struct pci_dev *dev, bool decode, 6451 unsigned int command_bits, u32 flags) 6452 { 6453 struct pci_bus *bus; 6454 struct pci_dev *bridge; 6455 u16 cmd; 6456 int rc; 6457 6458 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY))); 6459 6460 /* ARCH specific VGA enables */ 6461 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags); 6462 if (rc) 6463 return rc; 6464 6465 if (flags & PCI_VGA_STATE_CHANGE_DECODES) { 6466 pci_read_config_word(dev, PCI_COMMAND, &cmd); 6467 if (decode) 6468 cmd |= command_bits; 6469 else 6470 cmd &= ~command_bits; 6471 pci_write_config_word(dev, PCI_COMMAND, cmd); 6472 } 6473 6474 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE)) 6475 return 0; 6476 6477 bus = dev->bus; 6478 while (bus) { 6479 bridge = bus->self; 6480 if (bridge) { 6481 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL, 6482 &cmd); 6483 if (decode) 6484 cmd |= PCI_BRIDGE_CTL_VGA; 6485 else 6486 cmd &= ~PCI_BRIDGE_CTL_VGA; 6487 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL, 6488 cmd); 6489 } 6490 bus = bus->parent; 6491 } 6492 return 0; 6493 } 6494 6495 #ifdef CONFIG_ACPI 6496 bool pci_pr3_present(struct pci_dev *pdev) 6497 { 6498 struct acpi_device *adev; 6499 6500 if (acpi_disabled) 6501 return false; 6502 6503 adev = ACPI_COMPANION(&pdev->dev); 6504 if (!adev) 6505 return false; 6506 6507 return adev->power.flags.power_resources && 6508 acpi_has_method(adev->handle, "_PR3"); 6509 } 6510 EXPORT_SYMBOL_GPL(pci_pr3_present); 6511 #endif 6512 6513 /** 6514 * pci_add_dma_alias - Add a DMA devfn alias for a device 6515 * @dev: the PCI device for which alias is added 6516 * @devfn_from: alias slot and function 6517 * @nr_devfns: number of subsequent devfns to alias 6518 * 6519 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask 6520 * which is used to program permissible bus-devfn source addresses for DMA 6521 * requests in an IOMMU. These aliases factor into IOMMU group creation 6522 * and are useful for devices generating DMA requests beyond or different 6523 * from their logical bus-devfn. Examples include device quirks where the 6524 * device simply uses the wrong devfn, as well as non-transparent bridges 6525 * where the alias may be a proxy for devices in another domain. 6526 * 6527 * IOMMU group creation is performed during device discovery or addition, 6528 * prior to any potential DMA mapping and therefore prior to driver probing 6529 * (especially for userspace assigned devices where IOMMU group definition 6530 * cannot be left as a userspace activity). DMA aliases should therefore 6531 * be configured via quirks, such as the PCI fixup header quirk. 6532 */ 6533 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from, 6534 unsigned int nr_devfns) 6535 { 6536 int devfn_to; 6537 6538 nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from); 6539 devfn_to = devfn_from + nr_devfns - 1; 6540 6541 if (!dev->dma_alias_mask) 6542 dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL); 6543 if (!dev->dma_alias_mask) { 6544 pci_warn(dev, "Unable to allocate DMA alias mask\n"); 6545 return; 6546 } 6547 6548 bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns); 6549 6550 if (nr_devfns == 1) 6551 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n", 6552 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from)); 6553 else if (nr_devfns > 1) 6554 pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n", 6555 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from), 6556 PCI_SLOT(devfn_to), PCI_FUNC(devfn_to)); 6557 } 6558 6559 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2) 6560 { 6561 return (dev1->dma_alias_mask && 6562 test_bit(dev2->devfn, dev1->dma_alias_mask)) || 6563 (dev2->dma_alias_mask && 6564 test_bit(dev1->devfn, dev2->dma_alias_mask)) || 6565 pci_real_dma_dev(dev1) == dev2 || 6566 pci_real_dma_dev(dev2) == dev1; 6567 } 6568 6569 bool pci_device_is_present(struct pci_dev *pdev) 6570 { 6571 u32 v; 6572 6573 /* Check PF if pdev is a VF, since VF Vendor/Device IDs are 0xffff */ 6574 pdev = pci_physfn(pdev); 6575 if (pci_dev_is_disconnected(pdev)) 6576 return false; 6577 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0); 6578 } 6579 EXPORT_SYMBOL_GPL(pci_device_is_present); 6580 6581 void pci_ignore_hotplug(struct pci_dev *dev) 6582 { 6583 struct pci_dev *bridge = dev->bus->self; 6584 6585 dev->ignore_hotplug = 1; 6586 /* Propagate the "ignore hotplug" setting to the parent bridge. */ 6587 if (bridge) 6588 bridge->ignore_hotplug = 1; 6589 } 6590 EXPORT_SYMBOL_GPL(pci_ignore_hotplug); 6591 6592 /** 6593 * pci_real_dma_dev - Get PCI DMA device for PCI device 6594 * @dev: the PCI device that may have a PCI DMA alias 6595 * 6596 * Permits the platform to provide architecture-specific functionality to 6597 * devices needing to alias DMA to another PCI device on another PCI bus. If 6598 * the PCI device is on the same bus, it is recommended to use 6599 * pci_add_dma_alias(). This is the default implementation. Architecture 6600 * implementations can override this. 6601 */ 6602 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev) 6603 { 6604 return dev; 6605 } 6606 6607 resource_size_t __weak pcibios_default_alignment(void) 6608 { 6609 return 0; 6610 } 6611 6612 /* 6613 * Arches that don't want to expose struct resource to userland as-is in 6614 * sysfs and /proc can implement their own pci_resource_to_user(). 6615 */ 6616 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar, 6617 const struct resource *rsrc, 6618 resource_size_t *start, resource_size_t *end) 6619 { 6620 *start = rsrc->start; 6621 *end = rsrc->end; 6622 } 6623 6624 static char *resource_alignment_param; 6625 static DEFINE_SPINLOCK(resource_alignment_lock); 6626 6627 /** 6628 * pci_specified_resource_alignment - get resource alignment specified by user. 6629 * @dev: the PCI device to get 6630 * @resize: whether or not to change resources' size when reassigning alignment 6631 * 6632 * RETURNS: Resource alignment if it is specified. 6633 * Zero if it is not specified. 6634 */ 6635 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev, 6636 bool *resize) 6637 { 6638 int align_order, count; 6639 resource_size_t align = pcibios_default_alignment(); 6640 const char *p; 6641 int ret; 6642 6643 spin_lock(&resource_alignment_lock); 6644 p = resource_alignment_param; 6645 if (!p || !*p) 6646 goto out; 6647 if (pci_has_flag(PCI_PROBE_ONLY)) { 6648 align = 0; 6649 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n"); 6650 goto out; 6651 } 6652 6653 while (*p) { 6654 count = 0; 6655 if (sscanf(p, "%d%n", &align_order, &count) == 1 && 6656 p[count] == '@') { 6657 p += count + 1; 6658 if (align_order > 63) { 6659 pr_err("PCI: Invalid requested alignment (order %d)\n", 6660 align_order); 6661 align_order = PAGE_SHIFT; 6662 } 6663 } else { 6664 align_order = PAGE_SHIFT; 6665 } 6666 6667 ret = pci_dev_str_match(dev, p, &p); 6668 if (ret == 1) { 6669 *resize = true; 6670 align = 1ULL << align_order; 6671 break; 6672 } else if (ret < 0) { 6673 pr_err("PCI: Can't parse resource_alignment parameter: %s\n", 6674 p); 6675 break; 6676 } 6677 6678 if (*p != ';' && *p != ',') { 6679 /* End of param or invalid format */ 6680 break; 6681 } 6682 p++; 6683 } 6684 out: 6685 spin_unlock(&resource_alignment_lock); 6686 return align; 6687 } 6688 6689 static void pci_request_resource_alignment(struct pci_dev *dev, int bar, 6690 resource_size_t align, bool resize) 6691 { 6692 struct resource *r = &dev->resource[bar]; 6693 resource_size_t size; 6694 6695 if (!(r->flags & IORESOURCE_MEM)) 6696 return; 6697 6698 if (r->flags & IORESOURCE_PCI_FIXED) { 6699 pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n", 6700 bar, r, (unsigned long long)align); 6701 return; 6702 } 6703 6704 size = resource_size(r); 6705 if (size >= align) 6706 return; 6707 6708 /* 6709 * Increase the alignment of the resource. There are two ways we 6710 * can do this: 6711 * 6712 * 1) Increase the size of the resource. BARs are aligned on their 6713 * size, so when we reallocate space for this resource, we'll 6714 * allocate it with the larger alignment. This also prevents 6715 * assignment of any other BARs inside the alignment region, so 6716 * if we're requesting page alignment, this means no other BARs 6717 * will share the page. 6718 * 6719 * The disadvantage is that this makes the resource larger than 6720 * the hardware BAR, which may break drivers that compute things 6721 * based on the resource size, e.g., to find registers at a 6722 * fixed offset before the end of the BAR. 6723 * 6724 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and 6725 * set r->start to the desired alignment. By itself this 6726 * doesn't prevent other BARs being put inside the alignment 6727 * region, but if we realign *every* resource of every device in 6728 * the system, none of them will share an alignment region. 6729 * 6730 * When the user has requested alignment for only some devices via 6731 * the "pci=resource_alignment" argument, "resize" is true and we 6732 * use the first method. Otherwise we assume we're aligning all 6733 * devices and we use the second. 6734 */ 6735 6736 pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n", 6737 bar, r, (unsigned long long)align); 6738 6739 if (resize) { 6740 r->start = 0; 6741 r->end = align - 1; 6742 } else { 6743 r->flags &= ~IORESOURCE_SIZEALIGN; 6744 r->flags |= IORESOURCE_STARTALIGN; 6745 r->start = align; 6746 r->end = r->start + size - 1; 6747 } 6748 r->flags |= IORESOURCE_UNSET; 6749 } 6750 6751 /* 6752 * This function disables memory decoding and releases memory resources 6753 * of the device specified by kernel's boot parameter 'pci=resource_alignment='. 6754 * It also rounds up size to specified alignment. 6755 * Later on, the kernel will assign page-aligned memory resource back 6756 * to the device. 6757 */ 6758 void pci_reassigndev_resource_alignment(struct pci_dev *dev) 6759 { 6760 int i; 6761 struct resource *r; 6762 resource_size_t align; 6763 u16 command; 6764 bool resize = false; 6765 6766 /* 6767 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec 6768 * 3.4.1.11. Their resources are allocated from the space 6769 * described by the VF BARx register in the PF's SR-IOV capability. 6770 * We can't influence their alignment here. 6771 */ 6772 if (dev->is_virtfn) 6773 return; 6774 6775 /* check if specified PCI is target device to reassign */ 6776 align = pci_specified_resource_alignment(dev, &resize); 6777 if (!align) 6778 return; 6779 6780 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL && 6781 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) { 6782 pci_warn(dev, "Can't reassign resources to host bridge\n"); 6783 return; 6784 } 6785 6786 pci_read_config_word(dev, PCI_COMMAND, &command); 6787 command &= ~PCI_COMMAND_MEMORY; 6788 pci_write_config_word(dev, PCI_COMMAND, command); 6789 6790 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 6791 pci_request_resource_alignment(dev, i, align, resize); 6792 6793 /* 6794 * Need to disable bridge's resource window, 6795 * to enable the kernel to reassign new resource 6796 * window later on. 6797 */ 6798 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 6799 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) { 6800 r = &dev->resource[i]; 6801 if (!(r->flags & IORESOURCE_MEM)) 6802 continue; 6803 r->flags |= IORESOURCE_UNSET; 6804 r->end = resource_size(r) - 1; 6805 r->start = 0; 6806 } 6807 pci_disable_bridge_window(dev); 6808 } 6809 } 6810 6811 static ssize_t resource_alignment_show(const struct bus_type *bus, char *buf) 6812 { 6813 size_t count = 0; 6814 6815 spin_lock(&resource_alignment_lock); 6816 if (resource_alignment_param) 6817 count = sysfs_emit(buf, "%s\n", resource_alignment_param); 6818 spin_unlock(&resource_alignment_lock); 6819 6820 return count; 6821 } 6822 6823 static ssize_t resource_alignment_store(const struct bus_type *bus, 6824 const char *buf, size_t count) 6825 { 6826 char *param, *old, *end; 6827 6828 if (count >= (PAGE_SIZE - 1)) 6829 return -EINVAL; 6830 6831 param = kstrndup(buf, count, GFP_KERNEL); 6832 if (!param) 6833 return -ENOMEM; 6834 6835 end = strchr(param, '\n'); 6836 if (end) 6837 *end = '\0'; 6838 6839 spin_lock(&resource_alignment_lock); 6840 old = resource_alignment_param; 6841 if (strlen(param)) { 6842 resource_alignment_param = param; 6843 } else { 6844 kfree(param); 6845 resource_alignment_param = NULL; 6846 } 6847 spin_unlock(&resource_alignment_lock); 6848 6849 kfree(old); 6850 6851 return count; 6852 } 6853 6854 static BUS_ATTR_RW(resource_alignment); 6855 6856 static int __init pci_resource_alignment_sysfs_init(void) 6857 { 6858 return bus_create_file(&pci_bus_type, 6859 &bus_attr_resource_alignment); 6860 } 6861 late_initcall(pci_resource_alignment_sysfs_init); 6862 6863 static void pci_no_domains(void) 6864 { 6865 #ifdef CONFIG_PCI_DOMAINS 6866 pci_domains_supported = 0; 6867 #endif 6868 } 6869 6870 #ifdef CONFIG_PCI_DOMAINS_GENERIC 6871 static DEFINE_IDA(pci_domain_nr_static_ida); 6872 static DEFINE_IDA(pci_domain_nr_dynamic_ida); 6873 6874 static void of_pci_reserve_static_domain_nr(void) 6875 { 6876 struct device_node *np; 6877 int domain_nr; 6878 6879 for_each_node_by_type(np, "pci") { 6880 domain_nr = of_get_pci_domain_nr(np); 6881 if (domain_nr < 0) 6882 continue; 6883 /* 6884 * Permanently allocate domain_nr in dynamic_ida 6885 * to prevent it from dynamic allocation. 6886 */ 6887 ida_alloc_range(&pci_domain_nr_dynamic_ida, 6888 domain_nr, domain_nr, GFP_KERNEL); 6889 } 6890 } 6891 6892 static int of_pci_bus_find_domain_nr(struct device *parent) 6893 { 6894 static bool static_domains_reserved = false; 6895 int domain_nr; 6896 6897 /* On the first call scan device tree for static allocations. */ 6898 if (!static_domains_reserved) { 6899 of_pci_reserve_static_domain_nr(); 6900 static_domains_reserved = true; 6901 } 6902 6903 if (parent) { 6904 /* 6905 * If domain is in DT, allocate it in static IDA. This 6906 * prevents duplicate static allocations in case of errors 6907 * in DT. 6908 */ 6909 domain_nr = of_get_pci_domain_nr(parent->of_node); 6910 if (domain_nr >= 0) 6911 return ida_alloc_range(&pci_domain_nr_static_ida, 6912 domain_nr, domain_nr, 6913 GFP_KERNEL); 6914 } 6915 6916 /* 6917 * If domain was not specified in DT, choose a free ID from dynamic 6918 * allocations. All domain numbers from DT are permanently in 6919 * dynamic allocations to prevent assigning them to other DT nodes 6920 * without static domain. 6921 */ 6922 return ida_alloc(&pci_domain_nr_dynamic_ida, GFP_KERNEL); 6923 } 6924 6925 static void of_pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent) 6926 { 6927 if (bus->domain_nr < 0) 6928 return; 6929 6930 /* Release domain from IDA where it was allocated. */ 6931 if (of_get_pci_domain_nr(parent->of_node) == bus->domain_nr) 6932 ida_free(&pci_domain_nr_static_ida, bus->domain_nr); 6933 else 6934 ida_free(&pci_domain_nr_dynamic_ida, bus->domain_nr); 6935 } 6936 6937 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent) 6938 { 6939 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) : 6940 acpi_pci_bus_find_domain_nr(bus); 6941 } 6942 6943 void pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent) 6944 { 6945 if (!acpi_disabled) 6946 return; 6947 of_pci_bus_release_domain_nr(bus, parent); 6948 } 6949 #endif 6950 6951 /** 6952 * pci_ext_cfg_avail - can we access extended PCI config space? 6953 * 6954 * Returns 1 if we can access PCI extended config space (offsets 6955 * greater than 0xff). This is the default implementation. Architecture 6956 * implementations can override this. 6957 */ 6958 int __weak pci_ext_cfg_avail(void) 6959 { 6960 return 1; 6961 } 6962 6963 void __weak pci_fixup_cardbus(struct pci_bus *bus) 6964 { 6965 } 6966 EXPORT_SYMBOL(pci_fixup_cardbus); 6967 6968 static int __init pci_setup(char *str) 6969 { 6970 while (str) { 6971 char *k = strchr(str, ','); 6972 if (k) 6973 *k++ = 0; 6974 if (*str && (str = pcibios_setup(str)) && *str) { 6975 if (!strcmp(str, "nomsi")) { 6976 pci_no_msi(); 6977 } else if (!strncmp(str, "noats", 5)) { 6978 pr_info("PCIe: ATS is disabled\n"); 6979 pcie_ats_disabled = true; 6980 } else if (!strcmp(str, "noaer")) { 6981 pci_no_aer(); 6982 } else if (!strcmp(str, "earlydump")) { 6983 pci_early_dump = true; 6984 } else if (!strncmp(str, "realloc=", 8)) { 6985 pci_realloc_get_opt(str + 8); 6986 } else if (!strncmp(str, "realloc", 7)) { 6987 pci_realloc_get_opt("on"); 6988 } else if (!strcmp(str, "nodomains")) { 6989 pci_no_domains(); 6990 } else if (!strncmp(str, "noari", 5)) { 6991 pcie_ari_disabled = true; 6992 } else if (!strncmp(str, "cbiosize=", 9)) { 6993 pci_cardbus_io_size = memparse(str + 9, &str); 6994 } else if (!strncmp(str, "cbmemsize=", 10)) { 6995 pci_cardbus_mem_size = memparse(str + 10, &str); 6996 } else if (!strncmp(str, "resource_alignment=", 19)) { 6997 resource_alignment_param = str + 19; 6998 } else if (!strncmp(str, "ecrc=", 5)) { 6999 pcie_ecrc_get_policy(str + 5); 7000 } else if (!strncmp(str, "hpiosize=", 9)) { 7001 pci_hotplug_io_size = memparse(str + 9, &str); 7002 } else if (!strncmp(str, "hpmmiosize=", 11)) { 7003 pci_hotplug_mmio_size = memparse(str + 11, &str); 7004 } else if (!strncmp(str, "hpmmioprefsize=", 15)) { 7005 pci_hotplug_mmio_pref_size = memparse(str + 15, &str); 7006 } else if (!strncmp(str, "hpmemsize=", 10)) { 7007 pci_hotplug_mmio_size = memparse(str + 10, &str); 7008 pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size; 7009 } else if (!strncmp(str, "hpbussize=", 10)) { 7010 pci_hotplug_bus_size = 7011 simple_strtoul(str + 10, &str, 0); 7012 if (pci_hotplug_bus_size > 0xff) 7013 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 7014 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) { 7015 pcie_bus_config = PCIE_BUS_TUNE_OFF; 7016 } else if (!strncmp(str, "pcie_bus_safe", 13)) { 7017 pcie_bus_config = PCIE_BUS_SAFE; 7018 } else if (!strncmp(str, "pcie_bus_perf", 13)) { 7019 pcie_bus_config = PCIE_BUS_PERFORMANCE; 7020 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) { 7021 pcie_bus_config = PCIE_BUS_PEER2PEER; 7022 } else if (!strncmp(str, "pcie_scan_all", 13)) { 7023 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS); 7024 } else if (!strncmp(str, "disable_acs_redir=", 18)) { 7025 disable_acs_redir_param = str + 18; 7026 } else { 7027 pr_err("PCI: Unknown option `%s'\n", str); 7028 } 7029 } 7030 str = k; 7031 } 7032 return 0; 7033 } 7034 early_param("pci", pci_setup); 7035 7036 /* 7037 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized 7038 * in pci_setup(), above, to point to data in the __initdata section which 7039 * will be freed after the init sequence is complete. We can't allocate memory 7040 * in pci_setup() because some architectures do not have any memory allocation 7041 * service available during an early_param() call. So we allocate memory and 7042 * copy the variable here before the init section is freed. 7043 * 7044 */ 7045 static int __init pci_realloc_setup_params(void) 7046 { 7047 resource_alignment_param = kstrdup(resource_alignment_param, 7048 GFP_KERNEL); 7049 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL); 7050 7051 return 0; 7052 } 7053 pure_initcall(pci_realloc_setup_params); 7054