xref: /openbmc/linux/drivers/pci/pci.c (revision 54d8c1d3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * PCI Bus Services, see include/linux/pci.h for further explanation.
4  *
5  * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6  * David Mosberger-Tang
7  *
8  * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/msi.h>
17 #include <linux/of.h>
18 #include <linux/pci.h>
19 #include <linux/pm.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/log2.h>
25 #include <linux/logic_pio.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/pci_hotplug.h>
31 #include <linux/vmalloc.h>
32 #include <asm/dma.h>
33 #include <linux/aer.h>
34 #include <linux/bitfield.h>
35 #include "pci.h"
36 
37 DEFINE_MUTEX(pci_slot_mutex);
38 
39 const char *pci_power_names[] = {
40 	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
41 };
42 EXPORT_SYMBOL_GPL(pci_power_names);
43 
44 #ifdef CONFIG_X86_32
45 int isa_dma_bridge_buggy;
46 EXPORT_SYMBOL(isa_dma_bridge_buggy);
47 #endif
48 
49 int pci_pci_problems;
50 EXPORT_SYMBOL(pci_pci_problems);
51 
52 unsigned int pci_pm_d3hot_delay;
53 
54 static void pci_pme_list_scan(struct work_struct *work);
55 
56 static LIST_HEAD(pci_pme_list);
57 static DEFINE_MUTEX(pci_pme_list_mutex);
58 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
59 
60 struct pci_pme_device {
61 	struct list_head list;
62 	struct pci_dev *dev;
63 };
64 
65 #define PME_TIMEOUT 1000 /* How long between PME checks */
66 
67 /*
68  * Following exit from Conventional Reset, devices must be ready within 1 sec
69  * (PCIe r6.0 sec 6.6.1).  A D3cold to D0 transition implies a Conventional
70  * Reset (PCIe r6.0 sec 5.8).
71  */
72 #define PCI_RESET_WAIT 1000 /* msec */
73 
74 /*
75  * Devices may extend the 1 sec period through Request Retry Status
76  * completions (PCIe r6.0 sec 2.3.1).  The spec does not provide an upper
77  * limit, but 60 sec ought to be enough for any device to become
78  * responsive.
79  */
80 #define PCIE_RESET_READY_POLL_MS 60000 /* msec */
81 
82 static void pci_dev_d3_sleep(struct pci_dev *dev)
83 {
84 	unsigned int delay_ms = max(dev->d3hot_delay, pci_pm_d3hot_delay);
85 	unsigned int upper;
86 
87 	if (delay_ms) {
88 		/* Use a 20% upper bound, 1ms minimum */
89 		upper = max(DIV_ROUND_CLOSEST(delay_ms, 5), 1U);
90 		usleep_range(delay_ms * USEC_PER_MSEC,
91 			     (delay_ms + upper) * USEC_PER_MSEC);
92 	}
93 }
94 
95 bool pci_reset_supported(struct pci_dev *dev)
96 {
97 	return dev->reset_methods[0] != 0;
98 }
99 
100 #ifdef CONFIG_PCI_DOMAINS
101 int pci_domains_supported = 1;
102 #endif
103 
104 #define DEFAULT_CARDBUS_IO_SIZE		(256)
105 #define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
106 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
107 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
108 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
109 
110 #define DEFAULT_HOTPLUG_IO_SIZE		(256)
111 #define DEFAULT_HOTPLUG_MMIO_SIZE	(2*1024*1024)
112 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE	(2*1024*1024)
113 /* hpiosize=nn can override this */
114 unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
115 /*
116  * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
117  * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
118  * pci=hpmemsize=nnM overrides both
119  */
120 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
121 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
122 
123 #define DEFAULT_HOTPLUG_BUS_SIZE	1
124 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
125 
126 
127 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
128 #ifdef CONFIG_PCIE_BUS_TUNE_OFF
129 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
130 #elif defined CONFIG_PCIE_BUS_SAFE
131 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
132 #elif defined CONFIG_PCIE_BUS_PERFORMANCE
133 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
134 #elif defined CONFIG_PCIE_BUS_PEER2PEER
135 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
136 #else
137 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
138 #endif
139 
140 /*
141  * The default CLS is used if arch didn't set CLS explicitly and not
142  * all pci devices agree on the same value.  Arch can override either
143  * the dfl or actual value as it sees fit.  Don't forget this is
144  * measured in 32-bit words, not bytes.
145  */
146 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
147 u8 pci_cache_line_size;
148 
149 /*
150  * If we set up a device for bus mastering, we need to check the latency
151  * timer as certain BIOSes forget to set it properly.
152  */
153 unsigned int pcibios_max_latency = 255;
154 
155 /* If set, the PCIe ARI capability will not be used. */
156 static bool pcie_ari_disabled;
157 
158 /* If set, the PCIe ATS capability will not be used. */
159 static bool pcie_ats_disabled;
160 
161 /* If set, the PCI config space of each device is printed during boot. */
162 bool pci_early_dump;
163 
164 bool pci_ats_disabled(void)
165 {
166 	return pcie_ats_disabled;
167 }
168 EXPORT_SYMBOL_GPL(pci_ats_disabled);
169 
170 /* Disable bridge_d3 for all PCIe ports */
171 static bool pci_bridge_d3_disable;
172 /* Force bridge_d3 for all PCIe ports */
173 static bool pci_bridge_d3_force;
174 
175 static int __init pcie_port_pm_setup(char *str)
176 {
177 	if (!strcmp(str, "off"))
178 		pci_bridge_d3_disable = true;
179 	else if (!strcmp(str, "force"))
180 		pci_bridge_d3_force = true;
181 	return 1;
182 }
183 __setup("pcie_port_pm=", pcie_port_pm_setup);
184 
185 /**
186  * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
187  * @bus: pointer to PCI bus structure to search
188  *
189  * Given a PCI bus, returns the highest PCI bus number present in the set
190  * including the given PCI bus and its list of child PCI buses.
191  */
192 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
193 {
194 	struct pci_bus *tmp;
195 	unsigned char max, n;
196 
197 	max = bus->busn_res.end;
198 	list_for_each_entry(tmp, &bus->children, node) {
199 		n = pci_bus_max_busnr(tmp);
200 		if (n > max)
201 			max = n;
202 	}
203 	return max;
204 }
205 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
206 
207 /**
208  * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
209  * @pdev: the PCI device
210  *
211  * Returns error bits set in PCI_STATUS and clears them.
212  */
213 int pci_status_get_and_clear_errors(struct pci_dev *pdev)
214 {
215 	u16 status;
216 	int ret;
217 
218 	ret = pci_read_config_word(pdev, PCI_STATUS, &status);
219 	if (ret != PCIBIOS_SUCCESSFUL)
220 		return -EIO;
221 
222 	status &= PCI_STATUS_ERROR_BITS;
223 	if (status)
224 		pci_write_config_word(pdev, PCI_STATUS, status);
225 
226 	return status;
227 }
228 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
229 
230 #ifdef CONFIG_HAS_IOMEM
231 static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar,
232 					    bool write_combine)
233 {
234 	struct resource *res = &pdev->resource[bar];
235 	resource_size_t start = res->start;
236 	resource_size_t size = resource_size(res);
237 
238 	/*
239 	 * Make sure the BAR is actually a memory resource, not an IO resource
240 	 */
241 	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
242 		pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
243 		return NULL;
244 	}
245 
246 	if (write_combine)
247 		return ioremap_wc(start, size);
248 
249 	return ioremap(start, size);
250 }
251 
252 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
253 {
254 	return __pci_ioremap_resource(pdev, bar, false);
255 }
256 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
257 
258 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
259 {
260 	return __pci_ioremap_resource(pdev, bar, true);
261 }
262 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
263 #endif
264 
265 /**
266  * pci_dev_str_match_path - test if a path string matches a device
267  * @dev: the PCI device to test
268  * @path: string to match the device against
269  * @endptr: pointer to the string after the match
270  *
271  * Test if a string (typically from a kernel parameter) formatted as a
272  * path of device/function addresses matches a PCI device. The string must
273  * be of the form:
274  *
275  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
276  *
277  * A path for a device can be obtained using 'lspci -t'.  Using a path
278  * is more robust against bus renumbering than using only a single bus,
279  * device and function address.
280  *
281  * Returns 1 if the string matches the device, 0 if it does not and
282  * a negative error code if it fails to parse the string.
283  */
284 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
285 				  const char **endptr)
286 {
287 	int ret;
288 	unsigned int seg, bus, slot, func;
289 	char *wpath, *p;
290 	char end;
291 
292 	*endptr = strchrnul(path, ';');
293 
294 	wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC);
295 	if (!wpath)
296 		return -ENOMEM;
297 
298 	while (1) {
299 		p = strrchr(wpath, '/');
300 		if (!p)
301 			break;
302 		ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
303 		if (ret != 2) {
304 			ret = -EINVAL;
305 			goto free_and_exit;
306 		}
307 
308 		if (dev->devfn != PCI_DEVFN(slot, func)) {
309 			ret = 0;
310 			goto free_and_exit;
311 		}
312 
313 		/*
314 		 * Note: we don't need to get a reference to the upstream
315 		 * bridge because we hold a reference to the top level
316 		 * device which should hold a reference to the bridge,
317 		 * and so on.
318 		 */
319 		dev = pci_upstream_bridge(dev);
320 		if (!dev) {
321 			ret = 0;
322 			goto free_and_exit;
323 		}
324 
325 		*p = 0;
326 	}
327 
328 	ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
329 		     &func, &end);
330 	if (ret != 4) {
331 		seg = 0;
332 		ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
333 		if (ret != 3) {
334 			ret = -EINVAL;
335 			goto free_and_exit;
336 		}
337 	}
338 
339 	ret = (seg == pci_domain_nr(dev->bus) &&
340 	       bus == dev->bus->number &&
341 	       dev->devfn == PCI_DEVFN(slot, func));
342 
343 free_and_exit:
344 	kfree(wpath);
345 	return ret;
346 }
347 
348 /**
349  * pci_dev_str_match - test if a string matches a device
350  * @dev: the PCI device to test
351  * @p: string to match the device against
352  * @endptr: pointer to the string after the match
353  *
354  * Test if a string (typically from a kernel parameter) matches a specified
355  * PCI device. The string may be of one of the following formats:
356  *
357  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
358  *   pci:<vendor>:<device>[:<subvendor>:<subdevice>]
359  *
360  * The first format specifies a PCI bus/device/function address which
361  * may change if new hardware is inserted, if motherboard firmware changes,
362  * or due to changes caused in kernel parameters. If the domain is
363  * left unspecified, it is taken to be 0.  In order to be robust against
364  * bus renumbering issues, a path of PCI device/function numbers may be used
365  * to address the specific device.  The path for a device can be determined
366  * through the use of 'lspci -t'.
367  *
368  * The second format matches devices using IDs in the configuration
369  * space which may match multiple devices in the system. A value of 0
370  * for any field will match all devices. (Note: this differs from
371  * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
372  * legacy reasons and convenience so users don't have to specify
373  * FFFFFFFFs on the command line.)
374  *
375  * Returns 1 if the string matches the device, 0 if it does not and
376  * a negative error code if the string cannot be parsed.
377  */
378 static int pci_dev_str_match(struct pci_dev *dev, const char *p,
379 			     const char **endptr)
380 {
381 	int ret;
382 	int count;
383 	unsigned short vendor, device, subsystem_vendor, subsystem_device;
384 
385 	if (strncmp(p, "pci:", 4) == 0) {
386 		/* PCI vendor/device (subvendor/subdevice) IDs are specified */
387 		p += 4;
388 		ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
389 			     &subsystem_vendor, &subsystem_device, &count);
390 		if (ret != 4) {
391 			ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
392 			if (ret != 2)
393 				return -EINVAL;
394 
395 			subsystem_vendor = 0;
396 			subsystem_device = 0;
397 		}
398 
399 		p += count;
400 
401 		if ((!vendor || vendor == dev->vendor) &&
402 		    (!device || device == dev->device) &&
403 		    (!subsystem_vendor ||
404 			    subsystem_vendor == dev->subsystem_vendor) &&
405 		    (!subsystem_device ||
406 			    subsystem_device == dev->subsystem_device))
407 			goto found;
408 	} else {
409 		/*
410 		 * PCI Bus, Device, Function IDs are specified
411 		 * (optionally, may include a path of devfns following it)
412 		 */
413 		ret = pci_dev_str_match_path(dev, p, &p);
414 		if (ret < 0)
415 			return ret;
416 		else if (ret)
417 			goto found;
418 	}
419 
420 	*endptr = p;
421 	return 0;
422 
423 found:
424 	*endptr = p;
425 	return 1;
426 }
427 
428 static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
429 				  u8 pos, int cap, int *ttl)
430 {
431 	u8 id;
432 	u16 ent;
433 
434 	pci_bus_read_config_byte(bus, devfn, pos, &pos);
435 
436 	while ((*ttl)--) {
437 		if (pos < 0x40)
438 			break;
439 		pos &= ~3;
440 		pci_bus_read_config_word(bus, devfn, pos, &ent);
441 
442 		id = ent & 0xff;
443 		if (id == 0xff)
444 			break;
445 		if (id == cap)
446 			return pos;
447 		pos = (ent >> 8);
448 	}
449 	return 0;
450 }
451 
452 static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
453 			      u8 pos, int cap)
454 {
455 	int ttl = PCI_FIND_CAP_TTL;
456 
457 	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
458 }
459 
460 u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
461 {
462 	return __pci_find_next_cap(dev->bus, dev->devfn,
463 				   pos + PCI_CAP_LIST_NEXT, cap);
464 }
465 EXPORT_SYMBOL_GPL(pci_find_next_capability);
466 
467 static u8 __pci_bus_find_cap_start(struct pci_bus *bus,
468 				    unsigned int devfn, u8 hdr_type)
469 {
470 	u16 status;
471 
472 	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
473 	if (!(status & PCI_STATUS_CAP_LIST))
474 		return 0;
475 
476 	switch (hdr_type) {
477 	case PCI_HEADER_TYPE_NORMAL:
478 	case PCI_HEADER_TYPE_BRIDGE:
479 		return PCI_CAPABILITY_LIST;
480 	case PCI_HEADER_TYPE_CARDBUS:
481 		return PCI_CB_CAPABILITY_LIST;
482 	}
483 
484 	return 0;
485 }
486 
487 /**
488  * pci_find_capability - query for devices' capabilities
489  * @dev: PCI device to query
490  * @cap: capability code
491  *
492  * Tell if a device supports a given PCI capability.
493  * Returns the address of the requested capability structure within the
494  * device's PCI configuration space or 0 in case the device does not
495  * support it.  Possible values for @cap include:
496  *
497  *  %PCI_CAP_ID_PM           Power Management
498  *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
499  *  %PCI_CAP_ID_VPD          Vital Product Data
500  *  %PCI_CAP_ID_SLOTID       Slot Identification
501  *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
502  *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
503  *  %PCI_CAP_ID_PCIX         PCI-X
504  *  %PCI_CAP_ID_EXP          PCI Express
505  */
506 u8 pci_find_capability(struct pci_dev *dev, int cap)
507 {
508 	u8 pos;
509 
510 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
511 	if (pos)
512 		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
513 
514 	return pos;
515 }
516 EXPORT_SYMBOL(pci_find_capability);
517 
518 /**
519  * pci_bus_find_capability - query for devices' capabilities
520  * @bus: the PCI bus to query
521  * @devfn: PCI device to query
522  * @cap: capability code
523  *
524  * Like pci_find_capability() but works for PCI devices that do not have a
525  * pci_dev structure set up yet.
526  *
527  * Returns the address of the requested capability structure within the
528  * device's PCI configuration space or 0 in case the device does not
529  * support it.
530  */
531 u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
532 {
533 	u8 hdr_type, pos;
534 
535 	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
536 
537 	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
538 	if (pos)
539 		pos = __pci_find_next_cap(bus, devfn, pos, cap);
540 
541 	return pos;
542 }
543 EXPORT_SYMBOL(pci_bus_find_capability);
544 
545 /**
546  * pci_find_next_ext_capability - Find an extended capability
547  * @dev: PCI device to query
548  * @start: address at which to start looking (0 to start at beginning of list)
549  * @cap: capability code
550  *
551  * Returns the address of the next matching extended capability structure
552  * within the device's PCI configuration space or 0 if the device does
553  * not support it.  Some capabilities can occur several times, e.g., the
554  * vendor-specific capability, and this provides a way to find them all.
555  */
556 u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap)
557 {
558 	u32 header;
559 	int ttl;
560 	u16 pos = PCI_CFG_SPACE_SIZE;
561 
562 	/* minimum 8 bytes per capability */
563 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
564 
565 	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
566 		return 0;
567 
568 	if (start)
569 		pos = start;
570 
571 	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
572 		return 0;
573 
574 	/*
575 	 * If we have no capabilities, this is indicated by cap ID,
576 	 * cap version and next pointer all being 0.
577 	 */
578 	if (header == 0)
579 		return 0;
580 
581 	while (ttl-- > 0) {
582 		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
583 			return pos;
584 
585 		pos = PCI_EXT_CAP_NEXT(header);
586 		if (pos < PCI_CFG_SPACE_SIZE)
587 			break;
588 
589 		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
590 			break;
591 	}
592 
593 	return 0;
594 }
595 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
596 
597 /**
598  * pci_find_ext_capability - Find an extended capability
599  * @dev: PCI device to query
600  * @cap: capability code
601  *
602  * Returns the address of the requested extended capability structure
603  * within the device's PCI configuration space or 0 if the device does
604  * not support it.  Possible values for @cap include:
605  *
606  *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
607  *  %PCI_EXT_CAP_ID_VC		Virtual Channel
608  *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
609  *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
610  */
611 u16 pci_find_ext_capability(struct pci_dev *dev, int cap)
612 {
613 	return pci_find_next_ext_capability(dev, 0, cap);
614 }
615 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
616 
617 /**
618  * pci_get_dsn - Read and return the 8-byte Device Serial Number
619  * @dev: PCI device to query
620  *
621  * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
622  * Number.
623  *
624  * Returns the DSN, or zero if the capability does not exist.
625  */
626 u64 pci_get_dsn(struct pci_dev *dev)
627 {
628 	u32 dword;
629 	u64 dsn;
630 	int pos;
631 
632 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
633 	if (!pos)
634 		return 0;
635 
636 	/*
637 	 * The Device Serial Number is two dwords offset 4 bytes from the
638 	 * capability position. The specification says that the first dword is
639 	 * the lower half, and the second dword is the upper half.
640 	 */
641 	pos += 4;
642 	pci_read_config_dword(dev, pos, &dword);
643 	dsn = (u64)dword;
644 	pci_read_config_dword(dev, pos + 4, &dword);
645 	dsn |= ((u64)dword) << 32;
646 
647 	return dsn;
648 }
649 EXPORT_SYMBOL_GPL(pci_get_dsn);
650 
651 static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap)
652 {
653 	int rc, ttl = PCI_FIND_CAP_TTL;
654 	u8 cap, mask;
655 
656 	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
657 		mask = HT_3BIT_CAP_MASK;
658 	else
659 		mask = HT_5BIT_CAP_MASK;
660 
661 	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
662 				      PCI_CAP_ID_HT, &ttl);
663 	while (pos) {
664 		rc = pci_read_config_byte(dev, pos + 3, &cap);
665 		if (rc != PCIBIOS_SUCCESSFUL)
666 			return 0;
667 
668 		if ((cap & mask) == ht_cap)
669 			return pos;
670 
671 		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
672 					      pos + PCI_CAP_LIST_NEXT,
673 					      PCI_CAP_ID_HT, &ttl);
674 	}
675 
676 	return 0;
677 }
678 
679 /**
680  * pci_find_next_ht_capability - query a device's HyperTransport capabilities
681  * @dev: PCI device to query
682  * @pos: Position from which to continue searching
683  * @ht_cap: HyperTransport capability code
684  *
685  * To be used in conjunction with pci_find_ht_capability() to search for
686  * all capabilities matching @ht_cap. @pos should always be a value returned
687  * from pci_find_ht_capability().
688  *
689  * NB. To be 100% safe against broken PCI devices, the caller should take
690  * steps to avoid an infinite loop.
691  */
692 u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap)
693 {
694 	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
695 }
696 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
697 
698 /**
699  * pci_find_ht_capability - query a device's HyperTransport capabilities
700  * @dev: PCI device to query
701  * @ht_cap: HyperTransport capability code
702  *
703  * Tell if a device supports a given HyperTransport capability.
704  * Returns an address within the device's PCI configuration space
705  * or 0 in case the device does not support the request capability.
706  * The address points to the PCI capability, of type PCI_CAP_ID_HT,
707  * which has a HyperTransport capability matching @ht_cap.
708  */
709 u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
710 {
711 	u8 pos;
712 
713 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
714 	if (pos)
715 		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
716 
717 	return pos;
718 }
719 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
720 
721 /**
722  * pci_find_vsec_capability - Find a vendor-specific extended capability
723  * @dev: PCI device to query
724  * @vendor: Vendor ID for which capability is defined
725  * @cap: Vendor-specific capability ID
726  *
727  * If @dev has Vendor ID @vendor, search for a VSEC capability with
728  * VSEC ID @cap. If found, return the capability offset in
729  * config space; otherwise return 0.
730  */
731 u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap)
732 {
733 	u16 vsec = 0;
734 	u32 header;
735 	int ret;
736 
737 	if (vendor != dev->vendor)
738 		return 0;
739 
740 	while ((vsec = pci_find_next_ext_capability(dev, vsec,
741 						     PCI_EXT_CAP_ID_VNDR))) {
742 		ret = pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER, &header);
743 		if (ret != PCIBIOS_SUCCESSFUL)
744 			continue;
745 
746 		if (PCI_VNDR_HEADER_ID(header) == cap)
747 			return vsec;
748 	}
749 
750 	return 0;
751 }
752 EXPORT_SYMBOL_GPL(pci_find_vsec_capability);
753 
754 /**
755  * pci_find_dvsec_capability - Find DVSEC for vendor
756  * @dev: PCI device to query
757  * @vendor: Vendor ID to match for the DVSEC
758  * @dvsec: Designated Vendor-specific capability ID
759  *
760  * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability
761  * offset in config space; otherwise return 0.
762  */
763 u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec)
764 {
765 	int pos;
766 
767 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC);
768 	if (!pos)
769 		return 0;
770 
771 	while (pos) {
772 		u16 v, id;
773 
774 		pci_read_config_word(dev, pos + PCI_DVSEC_HEADER1, &v);
775 		pci_read_config_word(dev, pos + PCI_DVSEC_HEADER2, &id);
776 		if (vendor == v && dvsec == id)
777 			return pos;
778 
779 		pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC);
780 	}
781 
782 	return 0;
783 }
784 EXPORT_SYMBOL_GPL(pci_find_dvsec_capability);
785 
786 /**
787  * pci_find_parent_resource - return resource region of parent bus of given
788  *			      region
789  * @dev: PCI device structure contains resources to be searched
790  * @res: child resource record for which parent is sought
791  *
792  * For given resource region of given device, return the resource region of
793  * parent bus the given region is contained in.
794  */
795 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
796 					  struct resource *res)
797 {
798 	const struct pci_bus *bus = dev->bus;
799 	struct resource *r;
800 
801 	pci_bus_for_each_resource(bus, r) {
802 		if (!r)
803 			continue;
804 		if (resource_contains(r, res)) {
805 
806 			/*
807 			 * If the window is prefetchable but the BAR is
808 			 * not, the allocator made a mistake.
809 			 */
810 			if (r->flags & IORESOURCE_PREFETCH &&
811 			    !(res->flags & IORESOURCE_PREFETCH))
812 				return NULL;
813 
814 			/*
815 			 * If we're below a transparent bridge, there may
816 			 * be both a positively-decoded aperture and a
817 			 * subtractively-decoded region that contain the BAR.
818 			 * We want the positively-decoded one, so this depends
819 			 * on pci_bus_for_each_resource() giving us those
820 			 * first.
821 			 */
822 			return r;
823 		}
824 	}
825 	return NULL;
826 }
827 EXPORT_SYMBOL(pci_find_parent_resource);
828 
829 /**
830  * pci_find_resource - Return matching PCI device resource
831  * @dev: PCI device to query
832  * @res: Resource to look for
833  *
834  * Goes over standard PCI resources (BARs) and checks if the given resource
835  * is partially or fully contained in any of them. In that case the
836  * matching resource is returned, %NULL otherwise.
837  */
838 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
839 {
840 	int i;
841 
842 	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
843 		struct resource *r = &dev->resource[i];
844 
845 		if (r->start && resource_contains(r, res))
846 			return r;
847 	}
848 
849 	return NULL;
850 }
851 EXPORT_SYMBOL(pci_find_resource);
852 
853 /**
854  * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
855  * @dev: the PCI device to operate on
856  * @pos: config space offset of status word
857  * @mask: mask of bit(s) to care about in status word
858  *
859  * Return 1 when mask bit(s) in status word clear, 0 otherwise.
860  */
861 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
862 {
863 	int i;
864 
865 	/* Wait for Transaction Pending bit clean */
866 	for (i = 0; i < 4; i++) {
867 		u16 status;
868 		if (i)
869 			msleep((1 << (i - 1)) * 100);
870 
871 		pci_read_config_word(dev, pos, &status);
872 		if (!(status & mask))
873 			return 1;
874 	}
875 
876 	return 0;
877 }
878 
879 static int pci_acs_enable;
880 
881 /**
882  * pci_request_acs - ask for ACS to be enabled if supported
883  */
884 void pci_request_acs(void)
885 {
886 	pci_acs_enable = 1;
887 }
888 
889 static const char *disable_acs_redir_param;
890 
891 /**
892  * pci_disable_acs_redir - disable ACS redirect capabilities
893  * @dev: the PCI device
894  *
895  * For only devices specified in the disable_acs_redir parameter.
896  */
897 static void pci_disable_acs_redir(struct pci_dev *dev)
898 {
899 	int ret = 0;
900 	const char *p;
901 	int pos;
902 	u16 ctrl;
903 
904 	if (!disable_acs_redir_param)
905 		return;
906 
907 	p = disable_acs_redir_param;
908 	while (*p) {
909 		ret = pci_dev_str_match(dev, p, &p);
910 		if (ret < 0) {
911 			pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
912 				     disable_acs_redir_param);
913 
914 			break;
915 		} else if (ret == 1) {
916 			/* Found a match */
917 			break;
918 		}
919 
920 		if (*p != ';' && *p != ',') {
921 			/* End of param or invalid format */
922 			break;
923 		}
924 		p++;
925 	}
926 
927 	if (ret != 1)
928 		return;
929 
930 	if (!pci_dev_specific_disable_acs_redir(dev))
931 		return;
932 
933 	pos = dev->acs_cap;
934 	if (!pos) {
935 		pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
936 		return;
937 	}
938 
939 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
940 
941 	/* P2P Request & Completion Redirect */
942 	ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
943 
944 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
945 
946 	pci_info(dev, "disabled ACS redirect\n");
947 }
948 
949 /**
950  * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
951  * @dev: the PCI device
952  */
953 static void pci_std_enable_acs(struct pci_dev *dev)
954 {
955 	int pos;
956 	u16 cap;
957 	u16 ctrl;
958 
959 	pos = dev->acs_cap;
960 	if (!pos)
961 		return;
962 
963 	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
964 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
965 
966 	/* Source Validation */
967 	ctrl |= (cap & PCI_ACS_SV);
968 
969 	/* P2P Request Redirect */
970 	ctrl |= (cap & PCI_ACS_RR);
971 
972 	/* P2P Completion Redirect */
973 	ctrl |= (cap & PCI_ACS_CR);
974 
975 	/* Upstream Forwarding */
976 	ctrl |= (cap & PCI_ACS_UF);
977 
978 	/* Enable Translation Blocking for external devices and noats */
979 	if (pci_ats_disabled() || dev->external_facing || dev->untrusted)
980 		ctrl |= (cap & PCI_ACS_TB);
981 
982 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
983 }
984 
985 /**
986  * pci_enable_acs - enable ACS if hardware support it
987  * @dev: the PCI device
988  */
989 static void pci_enable_acs(struct pci_dev *dev)
990 {
991 	if (!pci_acs_enable)
992 		goto disable_acs_redir;
993 
994 	if (!pci_dev_specific_enable_acs(dev))
995 		goto disable_acs_redir;
996 
997 	pci_std_enable_acs(dev);
998 
999 disable_acs_redir:
1000 	/*
1001 	 * Note: pci_disable_acs_redir() must be called even if ACS was not
1002 	 * enabled by the kernel because it may have been enabled by
1003 	 * platform firmware.  So if we are told to disable it, we should
1004 	 * always disable it after setting the kernel's default
1005 	 * preferences.
1006 	 */
1007 	pci_disable_acs_redir(dev);
1008 }
1009 
1010 /**
1011  * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
1012  * @dev: PCI device to have its BARs restored
1013  *
1014  * Restore the BAR values for a given device, so as to make it
1015  * accessible by its driver.
1016  */
1017 static void pci_restore_bars(struct pci_dev *dev)
1018 {
1019 	int i;
1020 
1021 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
1022 		pci_update_resource(dev, i);
1023 }
1024 
1025 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
1026 {
1027 	if (pci_use_mid_pm())
1028 		return true;
1029 
1030 	return acpi_pci_power_manageable(dev);
1031 }
1032 
1033 static inline int platform_pci_set_power_state(struct pci_dev *dev,
1034 					       pci_power_t t)
1035 {
1036 	if (pci_use_mid_pm())
1037 		return mid_pci_set_power_state(dev, t);
1038 
1039 	return acpi_pci_set_power_state(dev, t);
1040 }
1041 
1042 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
1043 {
1044 	if (pci_use_mid_pm())
1045 		return mid_pci_get_power_state(dev);
1046 
1047 	return acpi_pci_get_power_state(dev);
1048 }
1049 
1050 static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
1051 {
1052 	if (!pci_use_mid_pm())
1053 		acpi_pci_refresh_power_state(dev);
1054 }
1055 
1056 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
1057 {
1058 	if (pci_use_mid_pm())
1059 		return PCI_POWER_ERROR;
1060 
1061 	return acpi_pci_choose_state(dev);
1062 }
1063 
1064 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
1065 {
1066 	if (pci_use_mid_pm())
1067 		return PCI_POWER_ERROR;
1068 
1069 	return acpi_pci_wakeup(dev, enable);
1070 }
1071 
1072 static inline bool platform_pci_need_resume(struct pci_dev *dev)
1073 {
1074 	if (pci_use_mid_pm())
1075 		return false;
1076 
1077 	return acpi_pci_need_resume(dev);
1078 }
1079 
1080 static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
1081 {
1082 	if (pci_use_mid_pm())
1083 		return false;
1084 
1085 	return acpi_pci_bridge_d3(dev);
1086 }
1087 
1088 /**
1089  * pci_update_current_state - Read power state of given device and cache it
1090  * @dev: PCI device to handle.
1091  * @state: State to cache in case the device doesn't have the PM capability
1092  *
1093  * The power state is read from the PMCSR register, which however is
1094  * inaccessible in D3cold.  The platform firmware is therefore queried first
1095  * to detect accessibility of the register.  In case the platform firmware
1096  * reports an incorrect state or the device isn't power manageable by the
1097  * platform at all, we try to detect D3cold by testing accessibility of the
1098  * vendor ID in config space.
1099  */
1100 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1101 {
1102 	if (platform_pci_get_power_state(dev) == PCI_D3cold) {
1103 		dev->current_state = PCI_D3cold;
1104 	} else if (dev->pm_cap) {
1105 		u16 pmcsr;
1106 
1107 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1108 		if (PCI_POSSIBLE_ERROR(pmcsr)) {
1109 			dev->current_state = PCI_D3cold;
1110 			return;
1111 		}
1112 		dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1113 	} else {
1114 		dev->current_state = state;
1115 	}
1116 }
1117 
1118 /**
1119  * pci_refresh_power_state - Refresh the given device's power state data
1120  * @dev: Target PCI device.
1121  *
1122  * Ask the platform to refresh the devices power state information and invoke
1123  * pci_update_current_state() to update its current PCI power state.
1124  */
1125 void pci_refresh_power_state(struct pci_dev *dev)
1126 {
1127 	platform_pci_refresh_power_state(dev);
1128 	pci_update_current_state(dev, dev->current_state);
1129 }
1130 
1131 /**
1132  * pci_platform_power_transition - Use platform to change device power state
1133  * @dev: PCI device to handle.
1134  * @state: State to put the device into.
1135  */
1136 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1137 {
1138 	int error;
1139 
1140 	error = platform_pci_set_power_state(dev, state);
1141 	if (!error)
1142 		pci_update_current_state(dev, state);
1143 	else if (!dev->pm_cap) /* Fall back to PCI_D0 */
1144 		dev->current_state = PCI_D0;
1145 
1146 	return error;
1147 }
1148 EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1149 
1150 static int pci_resume_one(struct pci_dev *pci_dev, void *ign)
1151 {
1152 	pm_request_resume(&pci_dev->dev);
1153 	return 0;
1154 }
1155 
1156 /**
1157  * pci_resume_bus - Walk given bus and runtime resume devices on it
1158  * @bus: Top bus of the subtree to walk.
1159  */
1160 void pci_resume_bus(struct pci_bus *bus)
1161 {
1162 	if (bus)
1163 		pci_walk_bus(bus, pci_resume_one, NULL);
1164 }
1165 
1166 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1167 {
1168 	int delay = 1;
1169 	bool retrain = false;
1170 	struct pci_dev *bridge;
1171 
1172 	if (pci_is_pcie(dev)) {
1173 		bridge = pci_upstream_bridge(dev);
1174 		if (bridge)
1175 			retrain = true;
1176 	}
1177 
1178 	/*
1179 	 * After reset, the device should not silently discard config
1180 	 * requests, but it may still indicate that it needs more time by
1181 	 * responding to them with CRS completions.  The Root Port will
1182 	 * generally synthesize ~0 (PCI_ERROR_RESPONSE) data to complete
1183 	 * the read (except when CRS SV is enabled and the read was for the
1184 	 * Vendor ID; in that case it synthesizes 0x0001 data).
1185 	 *
1186 	 * Wait for the device to return a non-CRS completion.  Read the
1187 	 * Command register instead of Vendor ID so we don't have to
1188 	 * contend with the CRS SV value.
1189 	 */
1190 	for (;;) {
1191 		u32 id;
1192 
1193 		pci_read_config_dword(dev, PCI_COMMAND, &id);
1194 		if (!PCI_POSSIBLE_ERROR(id))
1195 			break;
1196 
1197 		if (delay > timeout) {
1198 			pci_warn(dev, "not ready %dms after %s; giving up\n",
1199 				 delay - 1, reset_type);
1200 			return -ENOTTY;
1201 		}
1202 
1203 		if (delay > PCI_RESET_WAIT) {
1204 			if (retrain) {
1205 				retrain = false;
1206 				if (pcie_failed_link_retrain(bridge)) {
1207 					delay = 1;
1208 					continue;
1209 				}
1210 			}
1211 			pci_info(dev, "not ready %dms after %s; waiting\n",
1212 				 delay - 1, reset_type);
1213 		}
1214 
1215 		msleep(delay);
1216 		delay *= 2;
1217 	}
1218 
1219 	if (delay > PCI_RESET_WAIT)
1220 		pci_info(dev, "ready %dms after %s\n", delay - 1,
1221 			 reset_type);
1222 
1223 	return 0;
1224 }
1225 
1226 /**
1227  * pci_power_up - Put the given device into D0
1228  * @dev: PCI device to power up
1229  *
1230  * On success, return 0 or 1, depending on whether or not it is necessary to
1231  * restore the device's BARs subsequently (1 is returned in that case).
1232  *
1233  * On failure, return a negative error code.  Always return failure if @dev
1234  * lacks a Power Management Capability, even if the platform was able to
1235  * put the device in D0 via non-PCI means.
1236  */
1237 int pci_power_up(struct pci_dev *dev)
1238 {
1239 	bool need_restore;
1240 	pci_power_t state;
1241 	u16 pmcsr;
1242 
1243 	platform_pci_set_power_state(dev, PCI_D0);
1244 
1245 	if (!dev->pm_cap) {
1246 		state = platform_pci_get_power_state(dev);
1247 		if (state == PCI_UNKNOWN)
1248 			dev->current_state = PCI_D0;
1249 		else
1250 			dev->current_state = state;
1251 
1252 		return -EIO;
1253 	}
1254 
1255 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1256 	if (PCI_POSSIBLE_ERROR(pmcsr)) {
1257 		pci_err(dev, "Unable to change power state from %s to D0, device inaccessible\n",
1258 			pci_power_name(dev->current_state));
1259 		dev->current_state = PCI_D3cold;
1260 		return -EIO;
1261 	}
1262 
1263 	state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1264 
1265 	need_restore = (state == PCI_D3hot || dev->current_state >= PCI_D3hot) &&
1266 			!(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET);
1267 
1268 	if (state == PCI_D0)
1269 		goto end;
1270 
1271 	/*
1272 	 * Force the entire word to 0. This doesn't affect PME_Status, disables
1273 	 * PME_En, and sets PowerState to 0.
1274 	 */
1275 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, 0);
1276 
1277 	/* Mandatory transition delays; see PCI PM 1.2. */
1278 	if (state == PCI_D3hot)
1279 		pci_dev_d3_sleep(dev);
1280 	else if (state == PCI_D2)
1281 		udelay(PCI_PM_D2_DELAY);
1282 
1283 end:
1284 	dev->current_state = PCI_D0;
1285 	if (need_restore)
1286 		return 1;
1287 
1288 	return 0;
1289 }
1290 
1291 /**
1292  * pci_set_full_power_state - Put a PCI device into D0 and update its state
1293  * @dev: PCI device to power up
1294  *
1295  * Call pci_power_up() to put @dev into D0, read from its PCI_PM_CTRL register
1296  * to confirm the state change, restore its BARs if they might be lost and
1297  * reconfigure ASPM in accordance with the new power state.
1298  *
1299  * If pci_restore_state() is going to be called right after a power state change
1300  * to D0, it is more efficient to use pci_power_up() directly instead of this
1301  * function.
1302  */
1303 static int pci_set_full_power_state(struct pci_dev *dev)
1304 {
1305 	u16 pmcsr;
1306 	int ret;
1307 
1308 	ret = pci_power_up(dev);
1309 	if (ret < 0) {
1310 		if (dev->current_state == PCI_D0)
1311 			return 0;
1312 
1313 		return ret;
1314 	}
1315 
1316 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1317 	dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1318 	if (dev->current_state != PCI_D0) {
1319 		pci_info_ratelimited(dev, "Refused to change power state from %s to D0\n",
1320 				     pci_power_name(dev->current_state));
1321 	} else if (ret > 0) {
1322 		/*
1323 		 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1324 		 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1325 		 * from D3hot to D0 _may_ perform an internal reset, thereby
1326 		 * going to "D0 Uninitialized" rather than "D0 Initialized".
1327 		 * For example, at least some versions of the 3c905B and the
1328 		 * 3c556B exhibit this behaviour.
1329 		 *
1330 		 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1331 		 * devices in a D3hot state at boot.  Consequently, we need to
1332 		 * restore at least the BARs so that the device will be
1333 		 * accessible to its driver.
1334 		 */
1335 		pci_restore_bars(dev);
1336 	}
1337 
1338 	return 0;
1339 }
1340 
1341 /**
1342  * __pci_dev_set_current_state - Set current state of a PCI device
1343  * @dev: Device to handle
1344  * @data: pointer to state to be set
1345  */
1346 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1347 {
1348 	pci_power_t state = *(pci_power_t *)data;
1349 
1350 	dev->current_state = state;
1351 	return 0;
1352 }
1353 
1354 /**
1355  * pci_bus_set_current_state - Walk given bus and set current state of devices
1356  * @bus: Top bus of the subtree to walk.
1357  * @state: state to be set
1358  */
1359 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1360 {
1361 	if (bus)
1362 		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1363 }
1364 
1365 /**
1366  * pci_set_low_power_state - Put a PCI device into a low-power state.
1367  * @dev: PCI device to handle.
1368  * @state: PCI power state (D1, D2, D3hot) to put the device into.
1369  *
1370  * Use the device's PCI_PM_CTRL register to put it into a low-power state.
1371  *
1372  * RETURN VALUE:
1373  * -EINVAL if the requested state is invalid.
1374  * -EIO if device does not support PCI PM or its PM capabilities register has a
1375  * wrong version, or device doesn't support the requested state.
1376  * 0 if device already is in the requested state.
1377  * 0 if device's power state has been successfully changed.
1378  */
1379 static int pci_set_low_power_state(struct pci_dev *dev, pci_power_t state)
1380 {
1381 	u16 pmcsr;
1382 
1383 	if (!dev->pm_cap)
1384 		return -EIO;
1385 
1386 	/*
1387 	 * Validate transition: We can enter D0 from any state, but if
1388 	 * we're already in a low-power state, we can only go deeper.  E.g.,
1389 	 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1390 	 * we'd have to go from D3 to D0, then to D1.
1391 	 */
1392 	if (dev->current_state <= PCI_D3cold && dev->current_state > state) {
1393 		pci_dbg(dev, "Invalid power transition (from %s to %s)\n",
1394 			pci_power_name(dev->current_state),
1395 			pci_power_name(state));
1396 		return -EINVAL;
1397 	}
1398 
1399 	/* Check if this device supports the desired state */
1400 	if ((state == PCI_D1 && !dev->d1_support)
1401 	   || (state == PCI_D2 && !dev->d2_support))
1402 		return -EIO;
1403 
1404 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1405 	if (PCI_POSSIBLE_ERROR(pmcsr)) {
1406 		pci_err(dev, "Unable to change power state from %s to %s, device inaccessible\n",
1407 			pci_power_name(dev->current_state),
1408 			pci_power_name(state));
1409 		dev->current_state = PCI_D3cold;
1410 		return -EIO;
1411 	}
1412 
1413 	pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1414 	pmcsr |= state;
1415 
1416 	/* Enter specified state */
1417 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1418 
1419 	/* Mandatory power management transition delays; see PCI PM 1.2. */
1420 	if (state == PCI_D3hot)
1421 		pci_dev_d3_sleep(dev);
1422 	else if (state == PCI_D2)
1423 		udelay(PCI_PM_D2_DELAY);
1424 
1425 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1426 	dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1427 	if (dev->current_state != state)
1428 		pci_info_ratelimited(dev, "Refused to change power state from %s to %s\n",
1429 				     pci_power_name(dev->current_state),
1430 				     pci_power_name(state));
1431 
1432 	return 0;
1433 }
1434 
1435 /**
1436  * pci_set_power_state - Set the power state of a PCI device
1437  * @dev: PCI device to handle.
1438  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1439  *
1440  * Transition a device to a new power state, using the platform firmware and/or
1441  * the device's PCI PM registers.
1442  *
1443  * RETURN VALUE:
1444  * -EINVAL if the requested state is invalid.
1445  * -EIO if device does not support PCI PM or its PM capabilities register has a
1446  * wrong version, or device doesn't support the requested state.
1447  * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1448  * 0 if device already is in the requested state.
1449  * 0 if the transition is to D3 but D3 is not supported.
1450  * 0 if device's power state has been successfully changed.
1451  */
1452 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1453 {
1454 	int error;
1455 
1456 	/* Bound the state we're entering */
1457 	if (state > PCI_D3cold)
1458 		state = PCI_D3cold;
1459 	else if (state < PCI_D0)
1460 		state = PCI_D0;
1461 	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1462 
1463 		/*
1464 		 * If the device or the parent bridge do not support PCI
1465 		 * PM, ignore the request if we're doing anything other
1466 		 * than putting it into D0 (which would only happen on
1467 		 * boot).
1468 		 */
1469 		return 0;
1470 
1471 	/* Check if we're already there */
1472 	if (dev->current_state == state)
1473 		return 0;
1474 
1475 	if (state == PCI_D0)
1476 		return pci_set_full_power_state(dev);
1477 
1478 	/*
1479 	 * This device is quirked not to be put into D3, so don't put it in
1480 	 * D3
1481 	 */
1482 	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1483 		return 0;
1484 
1485 	if (state == PCI_D3cold) {
1486 		/*
1487 		 * To put the device in D3cold, put it into D3hot in the native
1488 		 * way, then put it into D3cold using platform ops.
1489 		 */
1490 		error = pci_set_low_power_state(dev, PCI_D3hot);
1491 
1492 		if (pci_platform_power_transition(dev, PCI_D3cold))
1493 			return error;
1494 
1495 		/* Powering off a bridge may power off the whole hierarchy */
1496 		if (dev->current_state == PCI_D3cold)
1497 			pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1498 	} else {
1499 		error = pci_set_low_power_state(dev, state);
1500 
1501 		if (pci_platform_power_transition(dev, state))
1502 			return error;
1503 	}
1504 
1505 	return 0;
1506 }
1507 EXPORT_SYMBOL(pci_set_power_state);
1508 
1509 #define PCI_EXP_SAVE_REGS	7
1510 
1511 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1512 						       u16 cap, bool extended)
1513 {
1514 	struct pci_cap_saved_state *tmp;
1515 
1516 	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1517 		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1518 			return tmp;
1519 	}
1520 	return NULL;
1521 }
1522 
1523 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1524 {
1525 	return _pci_find_saved_cap(dev, cap, false);
1526 }
1527 
1528 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1529 {
1530 	return _pci_find_saved_cap(dev, cap, true);
1531 }
1532 
1533 static int pci_save_pcie_state(struct pci_dev *dev)
1534 {
1535 	int i = 0;
1536 	struct pci_cap_saved_state *save_state;
1537 	u16 *cap;
1538 
1539 	if (!pci_is_pcie(dev))
1540 		return 0;
1541 
1542 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1543 	if (!save_state) {
1544 		pci_err(dev, "buffer not found in %s\n", __func__);
1545 		return -ENOMEM;
1546 	}
1547 
1548 	cap = (u16 *)&save_state->cap.data[0];
1549 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1550 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1551 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1552 	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
1553 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1554 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1555 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1556 
1557 	return 0;
1558 }
1559 
1560 void pci_bridge_reconfigure_ltr(struct pci_dev *dev)
1561 {
1562 #ifdef CONFIG_PCIEASPM
1563 	struct pci_dev *bridge;
1564 	u32 ctl;
1565 
1566 	bridge = pci_upstream_bridge(dev);
1567 	if (bridge && bridge->ltr_path) {
1568 		pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, &ctl);
1569 		if (!(ctl & PCI_EXP_DEVCTL2_LTR_EN)) {
1570 			pci_dbg(bridge, "re-enabling LTR\n");
1571 			pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
1572 						 PCI_EXP_DEVCTL2_LTR_EN);
1573 		}
1574 	}
1575 #endif
1576 }
1577 
1578 static void pci_restore_pcie_state(struct pci_dev *dev)
1579 {
1580 	int i = 0;
1581 	struct pci_cap_saved_state *save_state;
1582 	u16 *cap;
1583 
1584 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1585 	if (!save_state)
1586 		return;
1587 
1588 	/*
1589 	 * Downstream ports reset the LTR enable bit when link goes down.
1590 	 * Check and re-configure the bit here before restoring device.
1591 	 * PCIe r5.0, sec 7.5.3.16.
1592 	 */
1593 	pci_bridge_reconfigure_ltr(dev);
1594 
1595 	cap = (u16 *)&save_state->cap.data[0];
1596 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1597 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1598 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1599 	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1600 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1601 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1602 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1603 }
1604 
1605 static int pci_save_pcix_state(struct pci_dev *dev)
1606 {
1607 	int pos;
1608 	struct pci_cap_saved_state *save_state;
1609 
1610 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1611 	if (!pos)
1612 		return 0;
1613 
1614 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1615 	if (!save_state) {
1616 		pci_err(dev, "buffer not found in %s\n", __func__);
1617 		return -ENOMEM;
1618 	}
1619 
1620 	pci_read_config_word(dev, pos + PCI_X_CMD,
1621 			     (u16 *)save_state->cap.data);
1622 
1623 	return 0;
1624 }
1625 
1626 static void pci_restore_pcix_state(struct pci_dev *dev)
1627 {
1628 	int i = 0, pos;
1629 	struct pci_cap_saved_state *save_state;
1630 	u16 *cap;
1631 
1632 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1633 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1634 	if (!save_state || !pos)
1635 		return;
1636 	cap = (u16 *)&save_state->cap.data[0];
1637 
1638 	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1639 }
1640 
1641 static void pci_save_ltr_state(struct pci_dev *dev)
1642 {
1643 	int ltr;
1644 	struct pci_cap_saved_state *save_state;
1645 	u32 *cap;
1646 
1647 	if (!pci_is_pcie(dev))
1648 		return;
1649 
1650 	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1651 	if (!ltr)
1652 		return;
1653 
1654 	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1655 	if (!save_state) {
1656 		pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1657 		return;
1658 	}
1659 
1660 	/* Some broken devices only support dword access to LTR */
1661 	cap = &save_state->cap.data[0];
1662 	pci_read_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap);
1663 }
1664 
1665 static void pci_restore_ltr_state(struct pci_dev *dev)
1666 {
1667 	struct pci_cap_saved_state *save_state;
1668 	int ltr;
1669 	u32 *cap;
1670 
1671 	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1672 	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1673 	if (!save_state || !ltr)
1674 		return;
1675 
1676 	/* Some broken devices only support dword access to LTR */
1677 	cap = &save_state->cap.data[0];
1678 	pci_write_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap);
1679 }
1680 
1681 /**
1682  * pci_save_state - save the PCI configuration space of a device before
1683  *		    suspending
1684  * @dev: PCI device that we're dealing with
1685  */
1686 int pci_save_state(struct pci_dev *dev)
1687 {
1688 	int i;
1689 	/* XXX: 100% dword access ok here? */
1690 	for (i = 0; i < 16; i++) {
1691 		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1692 		pci_dbg(dev, "save config %#04x: %#010x\n",
1693 			i * 4, dev->saved_config_space[i]);
1694 	}
1695 	dev->state_saved = true;
1696 
1697 	i = pci_save_pcie_state(dev);
1698 	if (i != 0)
1699 		return i;
1700 
1701 	i = pci_save_pcix_state(dev);
1702 	if (i != 0)
1703 		return i;
1704 
1705 	pci_save_ltr_state(dev);
1706 	pci_save_dpc_state(dev);
1707 	pci_save_aer_state(dev);
1708 	pci_save_ptm_state(dev);
1709 	return pci_save_vc_state(dev);
1710 }
1711 EXPORT_SYMBOL(pci_save_state);
1712 
1713 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1714 				     u32 saved_val, int retry, bool force)
1715 {
1716 	u32 val;
1717 
1718 	pci_read_config_dword(pdev, offset, &val);
1719 	if (!force && val == saved_val)
1720 		return;
1721 
1722 	for (;;) {
1723 		pci_dbg(pdev, "restore config %#04x: %#010x -> %#010x\n",
1724 			offset, val, saved_val);
1725 		pci_write_config_dword(pdev, offset, saved_val);
1726 		if (retry-- <= 0)
1727 			return;
1728 
1729 		pci_read_config_dword(pdev, offset, &val);
1730 		if (val == saved_val)
1731 			return;
1732 
1733 		mdelay(1);
1734 	}
1735 }
1736 
1737 static void pci_restore_config_space_range(struct pci_dev *pdev,
1738 					   int start, int end, int retry,
1739 					   bool force)
1740 {
1741 	int index;
1742 
1743 	for (index = end; index >= start; index--)
1744 		pci_restore_config_dword(pdev, 4 * index,
1745 					 pdev->saved_config_space[index],
1746 					 retry, force);
1747 }
1748 
1749 static void pci_restore_config_space(struct pci_dev *pdev)
1750 {
1751 	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1752 		pci_restore_config_space_range(pdev, 10, 15, 0, false);
1753 		/* Restore BARs before the command register. */
1754 		pci_restore_config_space_range(pdev, 4, 9, 10, false);
1755 		pci_restore_config_space_range(pdev, 0, 3, 0, false);
1756 	} else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1757 		pci_restore_config_space_range(pdev, 12, 15, 0, false);
1758 
1759 		/*
1760 		 * Force rewriting of prefetch registers to avoid S3 resume
1761 		 * issues on Intel PCI bridges that occur when these
1762 		 * registers are not explicitly written.
1763 		 */
1764 		pci_restore_config_space_range(pdev, 9, 11, 0, true);
1765 		pci_restore_config_space_range(pdev, 0, 8, 0, false);
1766 	} else {
1767 		pci_restore_config_space_range(pdev, 0, 15, 0, false);
1768 	}
1769 }
1770 
1771 static void pci_restore_rebar_state(struct pci_dev *pdev)
1772 {
1773 	unsigned int pos, nbars, i;
1774 	u32 ctrl;
1775 
1776 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1777 	if (!pos)
1778 		return;
1779 
1780 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1781 	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1782 		    PCI_REBAR_CTRL_NBAR_SHIFT;
1783 
1784 	for (i = 0; i < nbars; i++, pos += 8) {
1785 		struct resource *res;
1786 		int bar_idx, size;
1787 
1788 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1789 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1790 		res = pdev->resource + bar_idx;
1791 		size = pci_rebar_bytes_to_size(resource_size(res));
1792 		ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1793 		ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1794 		pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1795 	}
1796 }
1797 
1798 /**
1799  * pci_restore_state - Restore the saved state of a PCI device
1800  * @dev: PCI device that we're dealing with
1801  */
1802 void pci_restore_state(struct pci_dev *dev)
1803 {
1804 	if (!dev->state_saved)
1805 		return;
1806 
1807 	/*
1808 	 * Restore max latencies (in the LTR capability) before enabling
1809 	 * LTR itself (in the PCIe capability).
1810 	 */
1811 	pci_restore_ltr_state(dev);
1812 
1813 	pci_restore_pcie_state(dev);
1814 	pci_restore_pasid_state(dev);
1815 	pci_restore_pri_state(dev);
1816 	pci_restore_ats_state(dev);
1817 	pci_restore_vc_state(dev);
1818 	pci_restore_rebar_state(dev);
1819 	pci_restore_dpc_state(dev);
1820 	pci_restore_ptm_state(dev);
1821 
1822 	pci_aer_clear_status(dev);
1823 	pci_restore_aer_state(dev);
1824 
1825 	pci_restore_config_space(dev);
1826 
1827 	pci_restore_pcix_state(dev);
1828 	pci_restore_msi_state(dev);
1829 
1830 	/* Restore ACS and IOV configuration state */
1831 	pci_enable_acs(dev);
1832 	pci_restore_iov_state(dev);
1833 
1834 	dev->state_saved = false;
1835 }
1836 EXPORT_SYMBOL(pci_restore_state);
1837 
1838 struct pci_saved_state {
1839 	u32 config_space[16];
1840 	struct pci_cap_saved_data cap[];
1841 };
1842 
1843 /**
1844  * pci_store_saved_state - Allocate and return an opaque struct containing
1845  *			   the device saved state.
1846  * @dev: PCI device that we're dealing with
1847  *
1848  * Return NULL if no state or error.
1849  */
1850 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1851 {
1852 	struct pci_saved_state *state;
1853 	struct pci_cap_saved_state *tmp;
1854 	struct pci_cap_saved_data *cap;
1855 	size_t size;
1856 
1857 	if (!dev->state_saved)
1858 		return NULL;
1859 
1860 	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1861 
1862 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1863 		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1864 
1865 	state = kzalloc(size, GFP_KERNEL);
1866 	if (!state)
1867 		return NULL;
1868 
1869 	memcpy(state->config_space, dev->saved_config_space,
1870 	       sizeof(state->config_space));
1871 
1872 	cap = state->cap;
1873 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1874 		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1875 		memcpy(cap, &tmp->cap, len);
1876 		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1877 	}
1878 	/* Empty cap_save terminates list */
1879 
1880 	return state;
1881 }
1882 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1883 
1884 /**
1885  * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1886  * @dev: PCI device that we're dealing with
1887  * @state: Saved state returned from pci_store_saved_state()
1888  */
1889 int pci_load_saved_state(struct pci_dev *dev,
1890 			 struct pci_saved_state *state)
1891 {
1892 	struct pci_cap_saved_data *cap;
1893 
1894 	dev->state_saved = false;
1895 
1896 	if (!state)
1897 		return 0;
1898 
1899 	memcpy(dev->saved_config_space, state->config_space,
1900 	       sizeof(state->config_space));
1901 
1902 	cap = state->cap;
1903 	while (cap->size) {
1904 		struct pci_cap_saved_state *tmp;
1905 
1906 		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1907 		if (!tmp || tmp->cap.size != cap->size)
1908 			return -EINVAL;
1909 
1910 		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1911 		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1912 		       sizeof(struct pci_cap_saved_data) + cap->size);
1913 	}
1914 
1915 	dev->state_saved = true;
1916 	return 0;
1917 }
1918 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1919 
1920 /**
1921  * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1922  *				   and free the memory allocated for it.
1923  * @dev: PCI device that we're dealing with
1924  * @state: Pointer to saved state returned from pci_store_saved_state()
1925  */
1926 int pci_load_and_free_saved_state(struct pci_dev *dev,
1927 				  struct pci_saved_state **state)
1928 {
1929 	int ret = pci_load_saved_state(dev, *state);
1930 	kfree(*state);
1931 	*state = NULL;
1932 	return ret;
1933 }
1934 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1935 
1936 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1937 {
1938 	return pci_enable_resources(dev, bars);
1939 }
1940 
1941 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1942 {
1943 	int err;
1944 	struct pci_dev *bridge;
1945 	u16 cmd;
1946 	u8 pin;
1947 
1948 	err = pci_set_power_state(dev, PCI_D0);
1949 	if (err < 0 && err != -EIO)
1950 		return err;
1951 
1952 	bridge = pci_upstream_bridge(dev);
1953 	if (bridge)
1954 		pcie_aspm_powersave_config_link(bridge);
1955 
1956 	err = pcibios_enable_device(dev, bars);
1957 	if (err < 0)
1958 		return err;
1959 	pci_fixup_device(pci_fixup_enable, dev);
1960 
1961 	if (dev->msi_enabled || dev->msix_enabled)
1962 		return 0;
1963 
1964 	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1965 	if (pin) {
1966 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
1967 		if (cmd & PCI_COMMAND_INTX_DISABLE)
1968 			pci_write_config_word(dev, PCI_COMMAND,
1969 					      cmd & ~PCI_COMMAND_INTX_DISABLE);
1970 	}
1971 
1972 	return 0;
1973 }
1974 
1975 /**
1976  * pci_reenable_device - Resume abandoned device
1977  * @dev: PCI device to be resumed
1978  *
1979  * NOTE: This function is a backend of pci_default_resume() and is not supposed
1980  * to be called by normal code, write proper resume handler and use it instead.
1981  */
1982 int pci_reenable_device(struct pci_dev *dev)
1983 {
1984 	if (pci_is_enabled(dev))
1985 		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1986 	return 0;
1987 }
1988 EXPORT_SYMBOL(pci_reenable_device);
1989 
1990 static void pci_enable_bridge(struct pci_dev *dev)
1991 {
1992 	struct pci_dev *bridge;
1993 	int retval;
1994 
1995 	bridge = pci_upstream_bridge(dev);
1996 	if (bridge)
1997 		pci_enable_bridge(bridge);
1998 
1999 	if (pci_is_enabled(dev)) {
2000 		if (!dev->is_busmaster)
2001 			pci_set_master(dev);
2002 		return;
2003 	}
2004 
2005 	retval = pci_enable_device(dev);
2006 	if (retval)
2007 		pci_err(dev, "Error enabling bridge (%d), continuing\n",
2008 			retval);
2009 	pci_set_master(dev);
2010 }
2011 
2012 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
2013 {
2014 	struct pci_dev *bridge;
2015 	int err;
2016 	int i, bars = 0;
2017 
2018 	/*
2019 	 * Power state could be unknown at this point, either due to a fresh
2020 	 * boot or a device removal call.  So get the current power state
2021 	 * so that things like MSI message writing will behave as expected
2022 	 * (e.g. if the device really is in D0 at enable time).
2023 	 */
2024 	pci_update_current_state(dev, dev->current_state);
2025 
2026 	if (atomic_inc_return(&dev->enable_cnt) > 1)
2027 		return 0;		/* already enabled */
2028 
2029 	bridge = pci_upstream_bridge(dev);
2030 	if (bridge)
2031 		pci_enable_bridge(bridge);
2032 
2033 	/* only skip sriov related */
2034 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
2035 		if (dev->resource[i].flags & flags)
2036 			bars |= (1 << i);
2037 	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
2038 		if (dev->resource[i].flags & flags)
2039 			bars |= (1 << i);
2040 
2041 	err = do_pci_enable_device(dev, bars);
2042 	if (err < 0)
2043 		atomic_dec(&dev->enable_cnt);
2044 	return err;
2045 }
2046 
2047 /**
2048  * pci_enable_device_io - Initialize a device for use with IO space
2049  * @dev: PCI device to be initialized
2050  *
2051  * Initialize device before it's used by a driver. Ask low-level code
2052  * to enable I/O resources. Wake up the device if it was suspended.
2053  * Beware, this function can fail.
2054  */
2055 int pci_enable_device_io(struct pci_dev *dev)
2056 {
2057 	return pci_enable_device_flags(dev, IORESOURCE_IO);
2058 }
2059 EXPORT_SYMBOL(pci_enable_device_io);
2060 
2061 /**
2062  * pci_enable_device_mem - Initialize a device for use with Memory space
2063  * @dev: PCI device to be initialized
2064  *
2065  * Initialize device before it's used by a driver. Ask low-level code
2066  * to enable Memory resources. Wake up the device if it was suspended.
2067  * Beware, this function can fail.
2068  */
2069 int pci_enable_device_mem(struct pci_dev *dev)
2070 {
2071 	return pci_enable_device_flags(dev, IORESOURCE_MEM);
2072 }
2073 EXPORT_SYMBOL(pci_enable_device_mem);
2074 
2075 /**
2076  * pci_enable_device - Initialize device before it's used by a driver.
2077  * @dev: PCI device to be initialized
2078  *
2079  * Initialize device before it's used by a driver. Ask low-level code
2080  * to enable I/O and memory. Wake up the device if it was suspended.
2081  * Beware, this function can fail.
2082  *
2083  * Note we don't actually enable the device many times if we call
2084  * this function repeatedly (we just increment the count).
2085  */
2086 int pci_enable_device(struct pci_dev *dev)
2087 {
2088 	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
2089 }
2090 EXPORT_SYMBOL(pci_enable_device);
2091 
2092 /*
2093  * Managed PCI resources.  This manages device on/off, INTx/MSI/MSI-X
2094  * on/off and BAR regions.  pci_dev itself records MSI/MSI-X status, so
2095  * there's no need to track it separately.  pci_devres is initialized
2096  * when a device is enabled using managed PCI device enable interface.
2097  */
2098 struct pci_devres {
2099 	unsigned int enabled:1;
2100 	unsigned int pinned:1;
2101 	unsigned int orig_intx:1;
2102 	unsigned int restore_intx:1;
2103 	unsigned int mwi:1;
2104 	u32 region_mask;
2105 };
2106 
2107 static void pcim_release(struct device *gendev, void *res)
2108 {
2109 	struct pci_dev *dev = to_pci_dev(gendev);
2110 	struct pci_devres *this = res;
2111 	int i;
2112 
2113 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
2114 		if (this->region_mask & (1 << i))
2115 			pci_release_region(dev, i);
2116 
2117 	if (this->mwi)
2118 		pci_clear_mwi(dev);
2119 
2120 	if (this->restore_intx)
2121 		pci_intx(dev, this->orig_intx);
2122 
2123 	if (this->enabled && !this->pinned)
2124 		pci_disable_device(dev);
2125 }
2126 
2127 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
2128 {
2129 	struct pci_devres *dr, *new_dr;
2130 
2131 	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
2132 	if (dr)
2133 		return dr;
2134 
2135 	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
2136 	if (!new_dr)
2137 		return NULL;
2138 	return devres_get(&pdev->dev, new_dr, NULL, NULL);
2139 }
2140 
2141 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
2142 {
2143 	if (pci_is_managed(pdev))
2144 		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
2145 	return NULL;
2146 }
2147 
2148 /**
2149  * pcim_enable_device - Managed pci_enable_device()
2150  * @pdev: PCI device to be initialized
2151  *
2152  * Managed pci_enable_device().
2153  */
2154 int pcim_enable_device(struct pci_dev *pdev)
2155 {
2156 	struct pci_devres *dr;
2157 	int rc;
2158 
2159 	dr = get_pci_dr(pdev);
2160 	if (unlikely(!dr))
2161 		return -ENOMEM;
2162 	if (dr->enabled)
2163 		return 0;
2164 
2165 	rc = pci_enable_device(pdev);
2166 	if (!rc) {
2167 		pdev->is_managed = 1;
2168 		dr->enabled = 1;
2169 	}
2170 	return rc;
2171 }
2172 EXPORT_SYMBOL(pcim_enable_device);
2173 
2174 /**
2175  * pcim_pin_device - Pin managed PCI device
2176  * @pdev: PCI device to pin
2177  *
2178  * Pin managed PCI device @pdev.  Pinned device won't be disabled on
2179  * driver detach.  @pdev must have been enabled with
2180  * pcim_enable_device().
2181  */
2182 void pcim_pin_device(struct pci_dev *pdev)
2183 {
2184 	struct pci_devres *dr;
2185 
2186 	dr = find_pci_dr(pdev);
2187 	WARN_ON(!dr || !dr->enabled);
2188 	if (dr)
2189 		dr->pinned = 1;
2190 }
2191 EXPORT_SYMBOL(pcim_pin_device);
2192 
2193 /*
2194  * pcibios_device_add - provide arch specific hooks when adding device dev
2195  * @dev: the PCI device being added
2196  *
2197  * Permits the platform to provide architecture specific functionality when
2198  * devices are added. This is the default implementation. Architecture
2199  * implementations can override this.
2200  */
2201 int __weak pcibios_device_add(struct pci_dev *dev)
2202 {
2203 	return 0;
2204 }
2205 
2206 /**
2207  * pcibios_release_device - provide arch specific hooks when releasing
2208  *			    device dev
2209  * @dev: the PCI device being released
2210  *
2211  * Permits the platform to provide architecture specific functionality when
2212  * devices are released. This is the default implementation. Architecture
2213  * implementations can override this.
2214  */
2215 void __weak pcibios_release_device(struct pci_dev *dev) {}
2216 
2217 /**
2218  * pcibios_disable_device - disable arch specific PCI resources for device dev
2219  * @dev: the PCI device to disable
2220  *
2221  * Disables architecture specific PCI resources for the device. This
2222  * is the default implementation. Architecture implementations can
2223  * override this.
2224  */
2225 void __weak pcibios_disable_device(struct pci_dev *dev) {}
2226 
2227 /**
2228  * pcibios_penalize_isa_irq - penalize an ISA IRQ
2229  * @irq: ISA IRQ to penalize
2230  * @active: IRQ active or not
2231  *
2232  * Permits the platform to provide architecture-specific functionality when
2233  * penalizing ISA IRQs. This is the default implementation. Architecture
2234  * implementations can override this.
2235  */
2236 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
2237 
2238 static void do_pci_disable_device(struct pci_dev *dev)
2239 {
2240 	u16 pci_command;
2241 
2242 	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2243 	if (pci_command & PCI_COMMAND_MASTER) {
2244 		pci_command &= ~PCI_COMMAND_MASTER;
2245 		pci_write_config_word(dev, PCI_COMMAND, pci_command);
2246 	}
2247 
2248 	pcibios_disable_device(dev);
2249 }
2250 
2251 /**
2252  * pci_disable_enabled_device - Disable device without updating enable_cnt
2253  * @dev: PCI device to disable
2254  *
2255  * NOTE: This function is a backend of PCI power management routines and is
2256  * not supposed to be called drivers.
2257  */
2258 void pci_disable_enabled_device(struct pci_dev *dev)
2259 {
2260 	if (pci_is_enabled(dev))
2261 		do_pci_disable_device(dev);
2262 }
2263 
2264 /**
2265  * pci_disable_device - Disable PCI device after use
2266  * @dev: PCI device to be disabled
2267  *
2268  * Signal to the system that the PCI device is not in use by the system
2269  * anymore.  This only involves disabling PCI bus-mastering, if active.
2270  *
2271  * Note we don't actually disable the device until all callers of
2272  * pci_enable_device() have called pci_disable_device().
2273  */
2274 void pci_disable_device(struct pci_dev *dev)
2275 {
2276 	struct pci_devres *dr;
2277 
2278 	dr = find_pci_dr(dev);
2279 	if (dr)
2280 		dr->enabled = 0;
2281 
2282 	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2283 		      "disabling already-disabled device");
2284 
2285 	if (atomic_dec_return(&dev->enable_cnt) != 0)
2286 		return;
2287 
2288 	do_pci_disable_device(dev);
2289 
2290 	dev->is_busmaster = 0;
2291 }
2292 EXPORT_SYMBOL(pci_disable_device);
2293 
2294 /**
2295  * pcibios_set_pcie_reset_state - set reset state for device dev
2296  * @dev: the PCIe device reset
2297  * @state: Reset state to enter into
2298  *
2299  * Set the PCIe reset state for the device. This is the default
2300  * implementation. Architecture implementations can override this.
2301  */
2302 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2303 					enum pcie_reset_state state)
2304 {
2305 	return -EINVAL;
2306 }
2307 
2308 /**
2309  * pci_set_pcie_reset_state - set reset state for device dev
2310  * @dev: the PCIe device reset
2311  * @state: Reset state to enter into
2312  *
2313  * Sets the PCI reset state for the device.
2314  */
2315 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2316 {
2317 	return pcibios_set_pcie_reset_state(dev, state);
2318 }
2319 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2320 
2321 #ifdef CONFIG_PCIEAER
2322 void pcie_clear_device_status(struct pci_dev *dev)
2323 {
2324 	u16 sta;
2325 
2326 	pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2327 	pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2328 }
2329 #endif
2330 
2331 /**
2332  * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2333  * @dev: PCIe root port or event collector.
2334  */
2335 void pcie_clear_root_pme_status(struct pci_dev *dev)
2336 {
2337 	pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2338 }
2339 
2340 /**
2341  * pci_check_pme_status - Check if given device has generated PME.
2342  * @dev: Device to check.
2343  *
2344  * Check the PME status of the device and if set, clear it and clear PME enable
2345  * (if set).  Return 'true' if PME status and PME enable were both set or
2346  * 'false' otherwise.
2347  */
2348 bool pci_check_pme_status(struct pci_dev *dev)
2349 {
2350 	int pmcsr_pos;
2351 	u16 pmcsr;
2352 	bool ret = false;
2353 
2354 	if (!dev->pm_cap)
2355 		return false;
2356 
2357 	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2358 	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2359 	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2360 		return false;
2361 
2362 	/* Clear PME status. */
2363 	pmcsr |= PCI_PM_CTRL_PME_STATUS;
2364 	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2365 		/* Disable PME to avoid interrupt flood. */
2366 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2367 		ret = true;
2368 	}
2369 
2370 	pci_write_config_word(dev, pmcsr_pos, pmcsr);
2371 
2372 	return ret;
2373 }
2374 
2375 /**
2376  * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2377  * @dev: Device to handle.
2378  * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2379  *
2380  * Check if @dev has generated PME and queue a resume request for it in that
2381  * case.
2382  */
2383 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2384 {
2385 	if (pme_poll_reset && dev->pme_poll)
2386 		dev->pme_poll = false;
2387 
2388 	if (pci_check_pme_status(dev)) {
2389 		pci_wakeup_event(dev);
2390 		pm_request_resume(&dev->dev);
2391 	}
2392 	return 0;
2393 }
2394 
2395 /**
2396  * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2397  * @bus: Top bus of the subtree to walk.
2398  */
2399 void pci_pme_wakeup_bus(struct pci_bus *bus)
2400 {
2401 	if (bus)
2402 		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2403 }
2404 
2405 
2406 /**
2407  * pci_pme_capable - check the capability of PCI device to generate PME#
2408  * @dev: PCI device to handle.
2409  * @state: PCI state from which device will issue PME#.
2410  */
2411 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2412 {
2413 	if (!dev->pm_cap)
2414 		return false;
2415 
2416 	return !!(dev->pme_support & (1 << state));
2417 }
2418 EXPORT_SYMBOL(pci_pme_capable);
2419 
2420 static void pci_pme_list_scan(struct work_struct *work)
2421 {
2422 	struct pci_pme_device *pme_dev, *n;
2423 
2424 	mutex_lock(&pci_pme_list_mutex);
2425 	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2426 		struct pci_dev *pdev = pme_dev->dev;
2427 
2428 		if (pdev->pme_poll) {
2429 			struct pci_dev *bridge = pdev->bus->self;
2430 			struct device *dev = &pdev->dev;
2431 			int pm_status;
2432 
2433 			/*
2434 			 * If bridge is in low power state, the
2435 			 * configuration space of subordinate devices
2436 			 * may be not accessible
2437 			 */
2438 			if (bridge && bridge->current_state != PCI_D0)
2439 				continue;
2440 
2441 			/*
2442 			 * If the device is in a low power state it
2443 			 * should not be polled either.
2444 			 */
2445 			pm_status = pm_runtime_get_if_active(dev, true);
2446 			if (!pm_status)
2447 				continue;
2448 
2449 			if (pdev->current_state != PCI_D3cold)
2450 				pci_pme_wakeup(pdev, NULL);
2451 
2452 			if (pm_status > 0)
2453 				pm_runtime_put(dev);
2454 		} else {
2455 			list_del(&pme_dev->list);
2456 			kfree(pme_dev);
2457 		}
2458 	}
2459 	if (!list_empty(&pci_pme_list))
2460 		queue_delayed_work(system_freezable_wq, &pci_pme_work,
2461 				   msecs_to_jiffies(PME_TIMEOUT));
2462 	mutex_unlock(&pci_pme_list_mutex);
2463 }
2464 
2465 static void __pci_pme_active(struct pci_dev *dev, bool enable)
2466 {
2467 	u16 pmcsr;
2468 
2469 	if (!dev->pme_support)
2470 		return;
2471 
2472 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2473 	/* Clear PME_Status by writing 1 to it and enable PME# */
2474 	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2475 	if (!enable)
2476 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2477 
2478 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2479 }
2480 
2481 /**
2482  * pci_pme_restore - Restore PME configuration after config space restore.
2483  * @dev: PCI device to update.
2484  */
2485 void pci_pme_restore(struct pci_dev *dev)
2486 {
2487 	u16 pmcsr;
2488 
2489 	if (!dev->pme_support)
2490 		return;
2491 
2492 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2493 	if (dev->wakeup_prepared) {
2494 		pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2495 		pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2496 	} else {
2497 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2498 		pmcsr |= PCI_PM_CTRL_PME_STATUS;
2499 	}
2500 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2501 }
2502 
2503 /**
2504  * pci_pme_active - enable or disable PCI device's PME# function
2505  * @dev: PCI device to handle.
2506  * @enable: 'true' to enable PME# generation; 'false' to disable it.
2507  *
2508  * The caller must verify that the device is capable of generating PME# before
2509  * calling this function with @enable equal to 'true'.
2510  */
2511 void pci_pme_active(struct pci_dev *dev, bool enable)
2512 {
2513 	__pci_pme_active(dev, enable);
2514 
2515 	/*
2516 	 * PCI (as opposed to PCIe) PME requires that the device have
2517 	 * its PME# line hooked up correctly. Not all hardware vendors
2518 	 * do this, so the PME never gets delivered and the device
2519 	 * remains asleep. The easiest way around this is to
2520 	 * periodically walk the list of suspended devices and check
2521 	 * whether any have their PME flag set. The assumption is that
2522 	 * we'll wake up often enough anyway that this won't be a huge
2523 	 * hit, and the power savings from the devices will still be a
2524 	 * win.
2525 	 *
2526 	 * Although PCIe uses in-band PME message instead of PME# line
2527 	 * to report PME, PME does not work for some PCIe devices in
2528 	 * reality.  For example, there are devices that set their PME
2529 	 * status bits, but don't really bother to send a PME message;
2530 	 * there are PCI Express Root Ports that don't bother to
2531 	 * trigger interrupts when they receive PME messages from the
2532 	 * devices below.  So PME poll is used for PCIe devices too.
2533 	 */
2534 
2535 	if (dev->pme_poll) {
2536 		struct pci_pme_device *pme_dev;
2537 		if (enable) {
2538 			pme_dev = kmalloc(sizeof(struct pci_pme_device),
2539 					  GFP_KERNEL);
2540 			if (!pme_dev) {
2541 				pci_warn(dev, "can't enable PME#\n");
2542 				return;
2543 			}
2544 			pme_dev->dev = dev;
2545 			mutex_lock(&pci_pme_list_mutex);
2546 			list_add(&pme_dev->list, &pci_pme_list);
2547 			if (list_is_singular(&pci_pme_list))
2548 				queue_delayed_work(system_freezable_wq,
2549 						   &pci_pme_work,
2550 						   msecs_to_jiffies(PME_TIMEOUT));
2551 			mutex_unlock(&pci_pme_list_mutex);
2552 		} else {
2553 			mutex_lock(&pci_pme_list_mutex);
2554 			list_for_each_entry(pme_dev, &pci_pme_list, list) {
2555 				if (pme_dev->dev == dev) {
2556 					list_del(&pme_dev->list);
2557 					kfree(pme_dev);
2558 					break;
2559 				}
2560 			}
2561 			mutex_unlock(&pci_pme_list_mutex);
2562 		}
2563 	}
2564 
2565 	pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2566 }
2567 EXPORT_SYMBOL(pci_pme_active);
2568 
2569 /**
2570  * __pci_enable_wake - enable PCI device as wakeup event source
2571  * @dev: PCI device affected
2572  * @state: PCI state from which device will issue wakeup events
2573  * @enable: True to enable event generation; false to disable
2574  *
2575  * This enables the device as a wakeup event source, or disables it.
2576  * When such events involves platform-specific hooks, those hooks are
2577  * called automatically by this routine.
2578  *
2579  * Devices with legacy power management (no standard PCI PM capabilities)
2580  * always require such platform hooks.
2581  *
2582  * RETURN VALUE:
2583  * 0 is returned on success
2584  * -EINVAL is returned if device is not supposed to wake up the system
2585  * Error code depending on the platform is returned if both the platform and
2586  * the native mechanism fail to enable the generation of wake-up events
2587  */
2588 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2589 {
2590 	int ret = 0;
2591 
2592 	/*
2593 	 * Bridges that are not power-manageable directly only signal
2594 	 * wakeup on behalf of subordinate devices which is set up
2595 	 * elsewhere, so skip them. However, bridges that are
2596 	 * power-manageable may signal wakeup for themselves (for example,
2597 	 * on a hotplug event) and they need to be covered here.
2598 	 */
2599 	if (!pci_power_manageable(dev))
2600 		return 0;
2601 
2602 	/* Don't do the same thing twice in a row for one device. */
2603 	if (!!enable == !!dev->wakeup_prepared)
2604 		return 0;
2605 
2606 	/*
2607 	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2608 	 * Anderson we should be doing PME# wake enable followed by ACPI wake
2609 	 * enable.  To disable wake-up we call the platform first, for symmetry.
2610 	 */
2611 
2612 	if (enable) {
2613 		int error;
2614 
2615 		/*
2616 		 * Enable PME signaling if the device can signal PME from
2617 		 * D3cold regardless of whether or not it can signal PME from
2618 		 * the current target state, because that will allow it to
2619 		 * signal PME when the hierarchy above it goes into D3cold and
2620 		 * the device itself ends up in D3cold as a result of that.
2621 		 */
2622 		if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold))
2623 			pci_pme_active(dev, true);
2624 		else
2625 			ret = 1;
2626 		error = platform_pci_set_wakeup(dev, true);
2627 		if (ret)
2628 			ret = error;
2629 		if (!ret)
2630 			dev->wakeup_prepared = true;
2631 	} else {
2632 		platform_pci_set_wakeup(dev, false);
2633 		pci_pme_active(dev, false);
2634 		dev->wakeup_prepared = false;
2635 	}
2636 
2637 	return ret;
2638 }
2639 
2640 /**
2641  * pci_enable_wake - change wakeup settings for a PCI device
2642  * @pci_dev: Target device
2643  * @state: PCI state from which device will issue wakeup events
2644  * @enable: Whether or not to enable event generation
2645  *
2646  * If @enable is set, check device_may_wakeup() for the device before calling
2647  * __pci_enable_wake() for it.
2648  */
2649 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2650 {
2651 	if (enable && !device_may_wakeup(&pci_dev->dev))
2652 		return -EINVAL;
2653 
2654 	return __pci_enable_wake(pci_dev, state, enable);
2655 }
2656 EXPORT_SYMBOL(pci_enable_wake);
2657 
2658 /**
2659  * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2660  * @dev: PCI device to prepare
2661  * @enable: True to enable wake-up event generation; false to disable
2662  *
2663  * Many drivers want the device to wake up the system from D3_hot or D3_cold
2664  * and this function allows them to set that up cleanly - pci_enable_wake()
2665  * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2666  * ordering constraints.
2667  *
2668  * This function only returns error code if the device is not allowed to wake
2669  * up the system from sleep or it is not capable of generating PME# from both
2670  * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2671  */
2672 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2673 {
2674 	return pci_pme_capable(dev, PCI_D3cold) ?
2675 			pci_enable_wake(dev, PCI_D3cold, enable) :
2676 			pci_enable_wake(dev, PCI_D3hot, enable);
2677 }
2678 EXPORT_SYMBOL(pci_wake_from_d3);
2679 
2680 /**
2681  * pci_target_state - find an appropriate low power state for a given PCI dev
2682  * @dev: PCI device
2683  * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2684  *
2685  * Use underlying platform code to find a supported low power state for @dev.
2686  * If the platform can't manage @dev, return the deepest state from which it
2687  * can generate wake events, based on any available PME info.
2688  */
2689 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2690 {
2691 	if (platform_pci_power_manageable(dev)) {
2692 		/*
2693 		 * Call the platform to find the target state for the device.
2694 		 */
2695 		pci_power_t state = platform_pci_choose_state(dev);
2696 
2697 		switch (state) {
2698 		case PCI_POWER_ERROR:
2699 		case PCI_UNKNOWN:
2700 			return PCI_D3hot;
2701 
2702 		case PCI_D1:
2703 		case PCI_D2:
2704 			if (pci_no_d1d2(dev))
2705 				return PCI_D3hot;
2706 		}
2707 
2708 		return state;
2709 	}
2710 
2711 	/*
2712 	 * If the device is in D3cold even though it's not power-manageable by
2713 	 * the platform, it may have been powered down by non-standard means.
2714 	 * Best to let it slumber.
2715 	 */
2716 	if (dev->current_state == PCI_D3cold)
2717 		return PCI_D3cold;
2718 	else if (!dev->pm_cap)
2719 		return PCI_D0;
2720 
2721 	if (wakeup && dev->pme_support) {
2722 		pci_power_t state = PCI_D3hot;
2723 
2724 		/*
2725 		 * Find the deepest state from which the device can generate
2726 		 * PME#.
2727 		 */
2728 		while (state && !(dev->pme_support & (1 << state)))
2729 			state--;
2730 
2731 		if (state)
2732 			return state;
2733 		else if (dev->pme_support & 1)
2734 			return PCI_D0;
2735 	}
2736 
2737 	return PCI_D3hot;
2738 }
2739 
2740 /**
2741  * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2742  *			  into a sleep state
2743  * @dev: Device to handle.
2744  *
2745  * Choose the power state appropriate for the device depending on whether
2746  * it can wake up the system and/or is power manageable by the platform
2747  * (PCI_D3hot is the default) and put the device into that state.
2748  */
2749 int pci_prepare_to_sleep(struct pci_dev *dev)
2750 {
2751 	bool wakeup = device_may_wakeup(&dev->dev);
2752 	pci_power_t target_state = pci_target_state(dev, wakeup);
2753 	int error;
2754 
2755 	if (target_state == PCI_POWER_ERROR)
2756 		return -EIO;
2757 
2758 	pci_enable_wake(dev, target_state, wakeup);
2759 
2760 	error = pci_set_power_state(dev, target_state);
2761 
2762 	if (error)
2763 		pci_enable_wake(dev, target_state, false);
2764 
2765 	return error;
2766 }
2767 EXPORT_SYMBOL(pci_prepare_to_sleep);
2768 
2769 /**
2770  * pci_back_from_sleep - turn PCI device on during system-wide transition
2771  *			 into working state
2772  * @dev: Device to handle.
2773  *
2774  * Disable device's system wake-up capability and put it into D0.
2775  */
2776 int pci_back_from_sleep(struct pci_dev *dev)
2777 {
2778 	int ret = pci_set_power_state(dev, PCI_D0);
2779 
2780 	if (ret)
2781 		return ret;
2782 
2783 	pci_enable_wake(dev, PCI_D0, false);
2784 	return 0;
2785 }
2786 EXPORT_SYMBOL(pci_back_from_sleep);
2787 
2788 /**
2789  * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2790  * @dev: PCI device being suspended.
2791  *
2792  * Prepare @dev to generate wake-up events at run time and put it into a low
2793  * power state.
2794  */
2795 int pci_finish_runtime_suspend(struct pci_dev *dev)
2796 {
2797 	pci_power_t target_state;
2798 	int error;
2799 
2800 	target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2801 	if (target_state == PCI_POWER_ERROR)
2802 		return -EIO;
2803 
2804 	__pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2805 
2806 	error = pci_set_power_state(dev, target_state);
2807 
2808 	if (error)
2809 		pci_enable_wake(dev, target_state, false);
2810 
2811 	return error;
2812 }
2813 
2814 /**
2815  * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2816  * @dev: Device to check.
2817  *
2818  * Return true if the device itself is capable of generating wake-up events
2819  * (through the platform or using the native PCIe PME) or if the device supports
2820  * PME and one of its upstream bridges can generate wake-up events.
2821  */
2822 bool pci_dev_run_wake(struct pci_dev *dev)
2823 {
2824 	struct pci_bus *bus = dev->bus;
2825 
2826 	if (!dev->pme_support)
2827 		return false;
2828 
2829 	/* PME-capable in principle, but not from the target power state */
2830 	if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2831 		return false;
2832 
2833 	if (device_can_wakeup(&dev->dev))
2834 		return true;
2835 
2836 	while (bus->parent) {
2837 		struct pci_dev *bridge = bus->self;
2838 
2839 		if (device_can_wakeup(&bridge->dev))
2840 			return true;
2841 
2842 		bus = bus->parent;
2843 	}
2844 
2845 	/* We have reached the root bus. */
2846 	if (bus->bridge)
2847 		return device_can_wakeup(bus->bridge);
2848 
2849 	return false;
2850 }
2851 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2852 
2853 /**
2854  * pci_dev_need_resume - Check if it is necessary to resume the device.
2855  * @pci_dev: Device to check.
2856  *
2857  * Return 'true' if the device is not runtime-suspended or it has to be
2858  * reconfigured due to wakeup settings difference between system and runtime
2859  * suspend, or the current power state of it is not suitable for the upcoming
2860  * (system-wide) transition.
2861  */
2862 bool pci_dev_need_resume(struct pci_dev *pci_dev)
2863 {
2864 	struct device *dev = &pci_dev->dev;
2865 	pci_power_t target_state;
2866 
2867 	if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2868 		return true;
2869 
2870 	target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2871 
2872 	/*
2873 	 * If the earlier platform check has not triggered, D3cold is just power
2874 	 * removal on top of D3hot, so no need to resume the device in that
2875 	 * case.
2876 	 */
2877 	return target_state != pci_dev->current_state &&
2878 		target_state != PCI_D3cold &&
2879 		pci_dev->current_state != PCI_D3hot;
2880 }
2881 
2882 /**
2883  * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2884  * @pci_dev: Device to check.
2885  *
2886  * If the device is suspended and it is not configured for system wakeup,
2887  * disable PME for it to prevent it from waking up the system unnecessarily.
2888  *
2889  * Note that if the device's power state is D3cold and the platform check in
2890  * pci_dev_need_resume() has not triggered, the device's configuration need not
2891  * be changed.
2892  */
2893 void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2894 {
2895 	struct device *dev = &pci_dev->dev;
2896 
2897 	spin_lock_irq(&dev->power.lock);
2898 
2899 	if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2900 	    pci_dev->current_state < PCI_D3cold)
2901 		__pci_pme_active(pci_dev, false);
2902 
2903 	spin_unlock_irq(&dev->power.lock);
2904 }
2905 
2906 /**
2907  * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2908  * @pci_dev: Device to handle.
2909  *
2910  * If the device is runtime suspended and wakeup-capable, enable PME for it as
2911  * it might have been disabled during the prepare phase of system suspend if
2912  * the device was not configured for system wakeup.
2913  */
2914 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2915 {
2916 	struct device *dev = &pci_dev->dev;
2917 
2918 	if (!pci_dev_run_wake(pci_dev))
2919 		return;
2920 
2921 	spin_lock_irq(&dev->power.lock);
2922 
2923 	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2924 		__pci_pme_active(pci_dev, true);
2925 
2926 	spin_unlock_irq(&dev->power.lock);
2927 }
2928 
2929 /**
2930  * pci_choose_state - Choose the power state of a PCI device.
2931  * @dev: Target PCI device.
2932  * @state: Target state for the whole system.
2933  *
2934  * Returns PCI power state suitable for @dev and @state.
2935  */
2936 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
2937 {
2938 	if (state.event == PM_EVENT_ON)
2939 		return PCI_D0;
2940 
2941 	return pci_target_state(dev, false);
2942 }
2943 EXPORT_SYMBOL(pci_choose_state);
2944 
2945 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2946 {
2947 	struct device *dev = &pdev->dev;
2948 	struct device *parent = dev->parent;
2949 
2950 	if (parent)
2951 		pm_runtime_get_sync(parent);
2952 	pm_runtime_get_noresume(dev);
2953 	/*
2954 	 * pdev->current_state is set to PCI_D3cold during suspending,
2955 	 * so wait until suspending completes
2956 	 */
2957 	pm_runtime_barrier(dev);
2958 	/*
2959 	 * Only need to resume devices in D3cold, because config
2960 	 * registers are still accessible for devices suspended but
2961 	 * not in D3cold.
2962 	 */
2963 	if (pdev->current_state == PCI_D3cold)
2964 		pm_runtime_resume(dev);
2965 }
2966 
2967 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2968 {
2969 	struct device *dev = &pdev->dev;
2970 	struct device *parent = dev->parent;
2971 
2972 	pm_runtime_put(dev);
2973 	if (parent)
2974 		pm_runtime_put_sync(parent);
2975 }
2976 
2977 static const struct dmi_system_id bridge_d3_blacklist[] = {
2978 #ifdef CONFIG_X86
2979 	{
2980 		/*
2981 		 * Gigabyte X299 root port is not marked as hotplug capable
2982 		 * which allows Linux to power manage it.  However, this
2983 		 * confuses the BIOS SMI handler so don't power manage root
2984 		 * ports on that system.
2985 		 */
2986 		.ident = "X299 DESIGNARE EX-CF",
2987 		.matches = {
2988 			DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2989 			DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2990 		},
2991 	},
2992 	{
2993 		/*
2994 		 * Downstream device is not accessible after putting a root port
2995 		 * into D3cold and back into D0 on Elo Continental Z2 board
2996 		 */
2997 		.ident = "Elo Continental Z2",
2998 		.matches = {
2999 			DMI_MATCH(DMI_BOARD_VENDOR, "Elo Touch Solutions"),
3000 			DMI_MATCH(DMI_BOARD_NAME, "Geminilake"),
3001 			DMI_MATCH(DMI_BOARD_VERSION, "Continental Z2"),
3002 		},
3003 	},
3004 #endif
3005 	{ }
3006 };
3007 
3008 /**
3009  * pci_bridge_d3_possible - Is it possible to put the bridge into D3
3010  * @bridge: Bridge to check
3011  *
3012  * This function checks if it is possible to move the bridge to D3.
3013  * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
3014  */
3015 bool pci_bridge_d3_possible(struct pci_dev *bridge)
3016 {
3017 	if (!pci_is_pcie(bridge))
3018 		return false;
3019 
3020 	switch (pci_pcie_type(bridge)) {
3021 	case PCI_EXP_TYPE_ROOT_PORT:
3022 	case PCI_EXP_TYPE_UPSTREAM:
3023 	case PCI_EXP_TYPE_DOWNSTREAM:
3024 		if (pci_bridge_d3_disable)
3025 			return false;
3026 
3027 		/*
3028 		 * Hotplug ports handled by firmware in System Management Mode
3029 		 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
3030 		 */
3031 		if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
3032 			return false;
3033 
3034 		if (pci_bridge_d3_force)
3035 			return true;
3036 
3037 		/* Even the oldest 2010 Thunderbolt controller supports D3. */
3038 		if (bridge->is_thunderbolt)
3039 			return true;
3040 
3041 		/* Platform might know better if the bridge supports D3 */
3042 		if (platform_pci_bridge_d3(bridge))
3043 			return true;
3044 
3045 		/*
3046 		 * Hotplug ports handled natively by the OS were not validated
3047 		 * by vendors for runtime D3 at least until 2018 because there
3048 		 * was no OS support.
3049 		 */
3050 		if (bridge->is_hotplug_bridge)
3051 			return false;
3052 
3053 		if (dmi_check_system(bridge_d3_blacklist))
3054 			return false;
3055 
3056 		/*
3057 		 * It should be safe to put PCIe ports from 2015 or newer
3058 		 * to D3.
3059 		 */
3060 		if (dmi_get_bios_year() >= 2015)
3061 			return true;
3062 		break;
3063 	}
3064 
3065 	return false;
3066 }
3067 
3068 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
3069 {
3070 	bool *d3cold_ok = data;
3071 
3072 	if (/* The device needs to be allowed to go D3cold ... */
3073 	    dev->no_d3cold || !dev->d3cold_allowed ||
3074 
3075 	    /* ... and if it is wakeup capable to do so from D3cold. */
3076 	    (device_may_wakeup(&dev->dev) &&
3077 	     !pci_pme_capable(dev, PCI_D3cold)) ||
3078 
3079 	    /* If it is a bridge it must be allowed to go to D3. */
3080 	    !pci_power_manageable(dev))
3081 
3082 		*d3cold_ok = false;
3083 
3084 	return !*d3cold_ok;
3085 }
3086 
3087 /*
3088  * pci_bridge_d3_update - Update bridge D3 capabilities
3089  * @dev: PCI device which is changed
3090  *
3091  * Update upstream bridge PM capabilities accordingly depending on if the
3092  * device PM configuration was changed or the device is being removed.  The
3093  * change is also propagated upstream.
3094  */
3095 void pci_bridge_d3_update(struct pci_dev *dev)
3096 {
3097 	bool remove = !device_is_registered(&dev->dev);
3098 	struct pci_dev *bridge;
3099 	bool d3cold_ok = true;
3100 
3101 	bridge = pci_upstream_bridge(dev);
3102 	if (!bridge || !pci_bridge_d3_possible(bridge))
3103 		return;
3104 
3105 	/*
3106 	 * If D3 is currently allowed for the bridge, removing one of its
3107 	 * children won't change that.
3108 	 */
3109 	if (remove && bridge->bridge_d3)
3110 		return;
3111 
3112 	/*
3113 	 * If D3 is currently allowed for the bridge and a child is added or
3114 	 * changed, disallowance of D3 can only be caused by that child, so
3115 	 * we only need to check that single device, not any of its siblings.
3116 	 *
3117 	 * If D3 is currently not allowed for the bridge, checking the device
3118 	 * first may allow us to skip checking its siblings.
3119 	 */
3120 	if (!remove)
3121 		pci_dev_check_d3cold(dev, &d3cold_ok);
3122 
3123 	/*
3124 	 * If D3 is currently not allowed for the bridge, this may be caused
3125 	 * either by the device being changed/removed or any of its siblings,
3126 	 * so we need to go through all children to find out if one of them
3127 	 * continues to block D3.
3128 	 */
3129 	if (d3cold_ok && !bridge->bridge_d3)
3130 		pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
3131 			     &d3cold_ok);
3132 
3133 	if (bridge->bridge_d3 != d3cold_ok) {
3134 		bridge->bridge_d3 = d3cold_ok;
3135 		/* Propagate change to upstream bridges */
3136 		pci_bridge_d3_update(bridge);
3137 	}
3138 }
3139 
3140 /**
3141  * pci_d3cold_enable - Enable D3cold for device
3142  * @dev: PCI device to handle
3143  *
3144  * This function can be used in drivers to enable D3cold from the device
3145  * they handle.  It also updates upstream PCI bridge PM capabilities
3146  * accordingly.
3147  */
3148 void pci_d3cold_enable(struct pci_dev *dev)
3149 {
3150 	if (dev->no_d3cold) {
3151 		dev->no_d3cold = false;
3152 		pci_bridge_d3_update(dev);
3153 	}
3154 }
3155 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
3156 
3157 /**
3158  * pci_d3cold_disable - Disable D3cold for device
3159  * @dev: PCI device to handle
3160  *
3161  * This function can be used in drivers to disable D3cold from the device
3162  * they handle.  It also updates upstream PCI bridge PM capabilities
3163  * accordingly.
3164  */
3165 void pci_d3cold_disable(struct pci_dev *dev)
3166 {
3167 	if (!dev->no_d3cold) {
3168 		dev->no_d3cold = true;
3169 		pci_bridge_d3_update(dev);
3170 	}
3171 }
3172 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3173 
3174 /**
3175  * pci_pm_init - Initialize PM functions of given PCI device
3176  * @dev: PCI device to handle.
3177  */
3178 void pci_pm_init(struct pci_dev *dev)
3179 {
3180 	int pm;
3181 	u16 status;
3182 	u16 pmc;
3183 
3184 	pm_runtime_forbid(&dev->dev);
3185 	pm_runtime_set_active(&dev->dev);
3186 	pm_runtime_enable(&dev->dev);
3187 	device_enable_async_suspend(&dev->dev);
3188 	dev->wakeup_prepared = false;
3189 
3190 	dev->pm_cap = 0;
3191 	dev->pme_support = 0;
3192 
3193 	/* find PCI PM capability in list */
3194 	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3195 	if (!pm)
3196 		return;
3197 	/* Check device's ability to generate PME# */
3198 	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3199 
3200 	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3201 		pci_err(dev, "unsupported PM cap regs version (%u)\n",
3202 			pmc & PCI_PM_CAP_VER_MASK);
3203 		return;
3204 	}
3205 
3206 	dev->pm_cap = pm;
3207 	dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3208 	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3209 	dev->bridge_d3 = pci_bridge_d3_possible(dev);
3210 	dev->d3cold_allowed = true;
3211 
3212 	dev->d1_support = false;
3213 	dev->d2_support = false;
3214 	if (!pci_no_d1d2(dev)) {
3215 		if (pmc & PCI_PM_CAP_D1)
3216 			dev->d1_support = true;
3217 		if (pmc & PCI_PM_CAP_D2)
3218 			dev->d2_support = true;
3219 
3220 		if (dev->d1_support || dev->d2_support)
3221 			pci_info(dev, "supports%s%s\n",
3222 				   dev->d1_support ? " D1" : "",
3223 				   dev->d2_support ? " D2" : "");
3224 	}
3225 
3226 	pmc &= PCI_PM_CAP_PME_MASK;
3227 	if (pmc) {
3228 		pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3229 			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3230 			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3231 			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3232 			 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3233 			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3234 		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
3235 		dev->pme_poll = true;
3236 		/*
3237 		 * Make device's PM flags reflect the wake-up capability, but
3238 		 * let the user space enable it to wake up the system as needed.
3239 		 */
3240 		device_set_wakeup_capable(&dev->dev, true);
3241 		/* Disable the PME# generation functionality */
3242 		pci_pme_active(dev, false);
3243 	}
3244 
3245 	pci_read_config_word(dev, PCI_STATUS, &status);
3246 	if (status & PCI_STATUS_IMM_READY)
3247 		dev->imm_ready = 1;
3248 }
3249 
3250 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3251 {
3252 	unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3253 
3254 	switch (prop) {
3255 	case PCI_EA_P_MEM:
3256 	case PCI_EA_P_VF_MEM:
3257 		flags |= IORESOURCE_MEM;
3258 		break;
3259 	case PCI_EA_P_MEM_PREFETCH:
3260 	case PCI_EA_P_VF_MEM_PREFETCH:
3261 		flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3262 		break;
3263 	case PCI_EA_P_IO:
3264 		flags |= IORESOURCE_IO;
3265 		break;
3266 	default:
3267 		return 0;
3268 	}
3269 
3270 	return flags;
3271 }
3272 
3273 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3274 					    u8 prop)
3275 {
3276 	if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3277 		return &dev->resource[bei];
3278 #ifdef CONFIG_PCI_IOV
3279 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3280 		 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3281 		return &dev->resource[PCI_IOV_RESOURCES +
3282 				      bei - PCI_EA_BEI_VF_BAR0];
3283 #endif
3284 	else if (bei == PCI_EA_BEI_ROM)
3285 		return &dev->resource[PCI_ROM_RESOURCE];
3286 	else
3287 		return NULL;
3288 }
3289 
3290 /* Read an Enhanced Allocation (EA) entry */
3291 static int pci_ea_read(struct pci_dev *dev, int offset)
3292 {
3293 	struct resource *res;
3294 	int ent_size, ent_offset = offset;
3295 	resource_size_t start, end;
3296 	unsigned long flags;
3297 	u32 dw0, bei, base, max_offset;
3298 	u8 prop;
3299 	bool support_64 = (sizeof(resource_size_t) >= 8);
3300 
3301 	pci_read_config_dword(dev, ent_offset, &dw0);
3302 	ent_offset += 4;
3303 
3304 	/* Entry size field indicates DWORDs after 1st */
3305 	ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
3306 
3307 	if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3308 		goto out;
3309 
3310 	bei = (dw0 & PCI_EA_BEI) >> 4;
3311 	prop = (dw0 & PCI_EA_PP) >> 8;
3312 
3313 	/*
3314 	 * If the Property is in the reserved range, try the Secondary
3315 	 * Property instead.
3316 	 */
3317 	if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3318 		prop = (dw0 & PCI_EA_SP) >> 16;
3319 	if (prop > PCI_EA_P_BRIDGE_IO)
3320 		goto out;
3321 
3322 	res = pci_ea_get_resource(dev, bei, prop);
3323 	if (!res) {
3324 		pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3325 		goto out;
3326 	}
3327 
3328 	flags = pci_ea_flags(dev, prop);
3329 	if (!flags) {
3330 		pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3331 		goto out;
3332 	}
3333 
3334 	/* Read Base */
3335 	pci_read_config_dword(dev, ent_offset, &base);
3336 	start = (base & PCI_EA_FIELD_MASK);
3337 	ent_offset += 4;
3338 
3339 	/* Read MaxOffset */
3340 	pci_read_config_dword(dev, ent_offset, &max_offset);
3341 	ent_offset += 4;
3342 
3343 	/* Read Base MSBs (if 64-bit entry) */
3344 	if (base & PCI_EA_IS_64) {
3345 		u32 base_upper;
3346 
3347 		pci_read_config_dword(dev, ent_offset, &base_upper);
3348 		ent_offset += 4;
3349 
3350 		flags |= IORESOURCE_MEM_64;
3351 
3352 		/* entry starts above 32-bit boundary, can't use */
3353 		if (!support_64 && base_upper)
3354 			goto out;
3355 
3356 		if (support_64)
3357 			start |= ((u64)base_upper << 32);
3358 	}
3359 
3360 	end = start + (max_offset | 0x03);
3361 
3362 	/* Read MaxOffset MSBs (if 64-bit entry) */
3363 	if (max_offset & PCI_EA_IS_64) {
3364 		u32 max_offset_upper;
3365 
3366 		pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3367 		ent_offset += 4;
3368 
3369 		flags |= IORESOURCE_MEM_64;
3370 
3371 		/* entry too big, can't use */
3372 		if (!support_64 && max_offset_upper)
3373 			goto out;
3374 
3375 		if (support_64)
3376 			end += ((u64)max_offset_upper << 32);
3377 	}
3378 
3379 	if (end < start) {
3380 		pci_err(dev, "EA Entry crosses address boundary\n");
3381 		goto out;
3382 	}
3383 
3384 	if (ent_size != ent_offset - offset) {
3385 		pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3386 			ent_size, ent_offset - offset);
3387 		goto out;
3388 	}
3389 
3390 	res->name = pci_name(dev);
3391 	res->start = start;
3392 	res->end = end;
3393 	res->flags = flags;
3394 
3395 	if (bei <= PCI_EA_BEI_BAR5)
3396 		pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3397 			   bei, res, prop);
3398 	else if (bei == PCI_EA_BEI_ROM)
3399 		pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3400 			   res, prop);
3401 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3402 		pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3403 			   bei - PCI_EA_BEI_VF_BAR0, res, prop);
3404 	else
3405 		pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3406 			   bei, res, prop);
3407 
3408 out:
3409 	return offset + ent_size;
3410 }
3411 
3412 /* Enhanced Allocation Initialization */
3413 void pci_ea_init(struct pci_dev *dev)
3414 {
3415 	int ea;
3416 	u8 num_ent;
3417 	int offset;
3418 	int i;
3419 
3420 	/* find PCI EA capability in list */
3421 	ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3422 	if (!ea)
3423 		return;
3424 
3425 	/* determine the number of entries */
3426 	pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3427 					&num_ent);
3428 	num_ent &= PCI_EA_NUM_ENT_MASK;
3429 
3430 	offset = ea + PCI_EA_FIRST_ENT;
3431 
3432 	/* Skip DWORD 2 for type 1 functions */
3433 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3434 		offset += 4;
3435 
3436 	/* parse each EA entry */
3437 	for (i = 0; i < num_ent; ++i)
3438 		offset = pci_ea_read(dev, offset);
3439 }
3440 
3441 static void pci_add_saved_cap(struct pci_dev *pci_dev,
3442 	struct pci_cap_saved_state *new_cap)
3443 {
3444 	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3445 }
3446 
3447 /**
3448  * _pci_add_cap_save_buffer - allocate buffer for saving given
3449  *			      capability registers
3450  * @dev: the PCI device
3451  * @cap: the capability to allocate the buffer for
3452  * @extended: Standard or Extended capability ID
3453  * @size: requested size of the buffer
3454  */
3455 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3456 				    bool extended, unsigned int size)
3457 {
3458 	int pos;
3459 	struct pci_cap_saved_state *save_state;
3460 
3461 	if (extended)
3462 		pos = pci_find_ext_capability(dev, cap);
3463 	else
3464 		pos = pci_find_capability(dev, cap);
3465 
3466 	if (!pos)
3467 		return 0;
3468 
3469 	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3470 	if (!save_state)
3471 		return -ENOMEM;
3472 
3473 	save_state->cap.cap_nr = cap;
3474 	save_state->cap.cap_extended = extended;
3475 	save_state->cap.size = size;
3476 	pci_add_saved_cap(dev, save_state);
3477 
3478 	return 0;
3479 }
3480 
3481 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3482 {
3483 	return _pci_add_cap_save_buffer(dev, cap, false, size);
3484 }
3485 
3486 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3487 {
3488 	return _pci_add_cap_save_buffer(dev, cap, true, size);
3489 }
3490 
3491 /**
3492  * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3493  * @dev: the PCI device
3494  */
3495 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3496 {
3497 	int error;
3498 
3499 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3500 					PCI_EXP_SAVE_REGS * sizeof(u16));
3501 	if (error)
3502 		pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3503 
3504 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3505 	if (error)
3506 		pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3507 
3508 	error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3509 					    2 * sizeof(u16));
3510 	if (error)
3511 		pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3512 
3513 	pci_allocate_vc_save_buffers(dev);
3514 }
3515 
3516 void pci_free_cap_save_buffers(struct pci_dev *dev)
3517 {
3518 	struct pci_cap_saved_state *tmp;
3519 	struct hlist_node *n;
3520 
3521 	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3522 		kfree(tmp);
3523 }
3524 
3525 /**
3526  * pci_configure_ari - enable or disable ARI forwarding
3527  * @dev: the PCI device
3528  *
3529  * If @dev and its upstream bridge both support ARI, enable ARI in the
3530  * bridge.  Otherwise, disable ARI in the bridge.
3531  */
3532 void pci_configure_ari(struct pci_dev *dev)
3533 {
3534 	u32 cap;
3535 	struct pci_dev *bridge;
3536 
3537 	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3538 		return;
3539 
3540 	bridge = dev->bus->self;
3541 	if (!bridge)
3542 		return;
3543 
3544 	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3545 	if (!(cap & PCI_EXP_DEVCAP2_ARI))
3546 		return;
3547 
3548 	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3549 		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3550 					 PCI_EXP_DEVCTL2_ARI);
3551 		bridge->ari_enabled = 1;
3552 	} else {
3553 		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3554 					   PCI_EXP_DEVCTL2_ARI);
3555 		bridge->ari_enabled = 0;
3556 	}
3557 }
3558 
3559 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3560 {
3561 	int pos;
3562 	u16 cap, ctrl;
3563 
3564 	pos = pdev->acs_cap;
3565 	if (!pos)
3566 		return false;
3567 
3568 	/*
3569 	 * Except for egress control, capabilities are either required
3570 	 * or only required if controllable.  Features missing from the
3571 	 * capability field can therefore be assumed as hard-wired enabled.
3572 	 */
3573 	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3574 	acs_flags &= (cap | PCI_ACS_EC);
3575 
3576 	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3577 	return (ctrl & acs_flags) == acs_flags;
3578 }
3579 
3580 /**
3581  * pci_acs_enabled - test ACS against required flags for a given device
3582  * @pdev: device to test
3583  * @acs_flags: required PCI ACS flags
3584  *
3585  * Return true if the device supports the provided flags.  Automatically
3586  * filters out flags that are not implemented on multifunction devices.
3587  *
3588  * Note that this interface checks the effective ACS capabilities of the
3589  * device rather than the actual capabilities.  For instance, most single
3590  * function endpoints are not required to support ACS because they have no
3591  * opportunity for peer-to-peer access.  We therefore return 'true'
3592  * regardless of whether the device exposes an ACS capability.  This makes
3593  * it much easier for callers of this function to ignore the actual type
3594  * or topology of the device when testing ACS support.
3595  */
3596 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3597 {
3598 	int ret;
3599 
3600 	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3601 	if (ret >= 0)
3602 		return ret > 0;
3603 
3604 	/*
3605 	 * Conventional PCI and PCI-X devices never support ACS, either
3606 	 * effectively or actually.  The shared bus topology implies that
3607 	 * any device on the bus can receive or snoop DMA.
3608 	 */
3609 	if (!pci_is_pcie(pdev))
3610 		return false;
3611 
3612 	switch (pci_pcie_type(pdev)) {
3613 	/*
3614 	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3615 	 * but since their primary interface is PCI/X, we conservatively
3616 	 * handle them as we would a non-PCIe device.
3617 	 */
3618 	case PCI_EXP_TYPE_PCIE_BRIDGE:
3619 	/*
3620 	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
3621 	 * applicable... must never implement an ACS Extended Capability...".
3622 	 * This seems arbitrary, but we take a conservative interpretation
3623 	 * of this statement.
3624 	 */
3625 	case PCI_EXP_TYPE_PCI_BRIDGE:
3626 	case PCI_EXP_TYPE_RC_EC:
3627 		return false;
3628 	/*
3629 	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3630 	 * implement ACS in order to indicate their peer-to-peer capabilities,
3631 	 * regardless of whether they are single- or multi-function devices.
3632 	 */
3633 	case PCI_EXP_TYPE_DOWNSTREAM:
3634 	case PCI_EXP_TYPE_ROOT_PORT:
3635 		return pci_acs_flags_enabled(pdev, acs_flags);
3636 	/*
3637 	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3638 	 * implemented by the remaining PCIe types to indicate peer-to-peer
3639 	 * capabilities, but only when they are part of a multifunction
3640 	 * device.  The footnote for section 6.12 indicates the specific
3641 	 * PCIe types included here.
3642 	 */
3643 	case PCI_EXP_TYPE_ENDPOINT:
3644 	case PCI_EXP_TYPE_UPSTREAM:
3645 	case PCI_EXP_TYPE_LEG_END:
3646 	case PCI_EXP_TYPE_RC_END:
3647 		if (!pdev->multifunction)
3648 			break;
3649 
3650 		return pci_acs_flags_enabled(pdev, acs_flags);
3651 	}
3652 
3653 	/*
3654 	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3655 	 * to single function devices with the exception of downstream ports.
3656 	 */
3657 	return true;
3658 }
3659 
3660 /**
3661  * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
3662  * @start: starting downstream device
3663  * @end: ending upstream device or NULL to search to the root bus
3664  * @acs_flags: required flags
3665  *
3666  * Walk up a device tree from start to end testing PCI ACS support.  If
3667  * any step along the way does not support the required flags, return false.
3668  */
3669 bool pci_acs_path_enabled(struct pci_dev *start,
3670 			  struct pci_dev *end, u16 acs_flags)
3671 {
3672 	struct pci_dev *pdev, *parent = start;
3673 
3674 	do {
3675 		pdev = parent;
3676 
3677 		if (!pci_acs_enabled(pdev, acs_flags))
3678 			return false;
3679 
3680 		if (pci_is_root_bus(pdev->bus))
3681 			return (end == NULL);
3682 
3683 		parent = pdev->bus->self;
3684 	} while (pdev != end);
3685 
3686 	return true;
3687 }
3688 
3689 /**
3690  * pci_acs_init - Initialize ACS if hardware supports it
3691  * @dev: the PCI device
3692  */
3693 void pci_acs_init(struct pci_dev *dev)
3694 {
3695 	dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3696 
3697 	/*
3698 	 * Attempt to enable ACS regardless of capability because some Root
3699 	 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3700 	 * the standard ACS capability but still support ACS via those
3701 	 * quirks.
3702 	 */
3703 	pci_enable_acs(dev);
3704 }
3705 
3706 /**
3707  * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3708  * @pdev: PCI device
3709  * @bar: BAR to find
3710  *
3711  * Helper to find the position of the ctrl register for a BAR.
3712  * Returns -ENOTSUPP if resizable BARs are not supported at all.
3713  * Returns -ENOENT if no ctrl register for the BAR could be found.
3714  */
3715 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3716 {
3717 	unsigned int pos, nbars, i;
3718 	u32 ctrl;
3719 
3720 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3721 	if (!pos)
3722 		return -ENOTSUPP;
3723 
3724 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3725 	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3726 		    PCI_REBAR_CTRL_NBAR_SHIFT;
3727 
3728 	for (i = 0; i < nbars; i++, pos += 8) {
3729 		int bar_idx;
3730 
3731 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3732 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3733 		if (bar_idx == bar)
3734 			return pos;
3735 	}
3736 
3737 	return -ENOENT;
3738 }
3739 
3740 /**
3741  * pci_rebar_get_possible_sizes - get possible sizes for BAR
3742  * @pdev: PCI device
3743  * @bar: BAR to query
3744  *
3745  * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3746  * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3747  */
3748 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3749 {
3750 	int pos;
3751 	u32 cap;
3752 
3753 	pos = pci_rebar_find_pos(pdev, bar);
3754 	if (pos < 0)
3755 		return 0;
3756 
3757 	pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3758 	cap = FIELD_GET(PCI_REBAR_CAP_SIZES, cap);
3759 
3760 	/* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
3761 	if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
3762 	    bar == 0 && cap == 0x700)
3763 		return 0x3f00;
3764 
3765 	return cap;
3766 }
3767 EXPORT_SYMBOL(pci_rebar_get_possible_sizes);
3768 
3769 /**
3770  * pci_rebar_get_current_size - get the current size of a BAR
3771  * @pdev: PCI device
3772  * @bar: BAR to set size to
3773  *
3774  * Read the size of a BAR from the resizable BAR config.
3775  * Returns size if found or negative error code.
3776  */
3777 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3778 {
3779 	int pos;
3780 	u32 ctrl;
3781 
3782 	pos = pci_rebar_find_pos(pdev, bar);
3783 	if (pos < 0)
3784 		return pos;
3785 
3786 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3787 	return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3788 }
3789 
3790 /**
3791  * pci_rebar_set_size - set a new size for a BAR
3792  * @pdev: PCI device
3793  * @bar: BAR to set size to
3794  * @size: new size as defined in the spec (0=1MB, 19=512GB)
3795  *
3796  * Set the new size of a BAR as defined in the spec.
3797  * Returns zero if resizing was successful, error code otherwise.
3798  */
3799 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3800 {
3801 	int pos;
3802 	u32 ctrl;
3803 
3804 	pos = pci_rebar_find_pos(pdev, bar);
3805 	if (pos < 0)
3806 		return pos;
3807 
3808 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3809 	ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3810 	ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3811 	pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3812 	return 0;
3813 }
3814 
3815 /**
3816  * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3817  * @dev: the PCI device
3818  * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3819  *	PCI_EXP_DEVCAP2_ATOMIC_COMP32
3820  *	PCI_EXP_DEVCAP2_ATOMIC_COMP64
3821  *	PCI_EXP_DEVCAP2_ATOMIC_COMP128
3822  *
3823  * Return 0 if all upstream bridges support AtomicOp routing, egress
3824  * blocking is disabled on all upstream ports, and the root port supports
3825  * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3826  * AtomicOp completion), or negative otherwise.
3827  */
3828 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3829 {
3830 	struct pci_bus *bus = dev->bus;
3831 	struct pci_dev *bridge;
3832 	u32 cap, ctl2;
3833 
3834 	/*
3835 	 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit
3836 	 * in Device Control 2 is reserved in VFs and the PF value applies
3837 	 * to all associated VFs.
3838 	 */
3839 	if (dev->is_virtfn)
3840 		return -EINVAL;
3841 
3842 	if (!pci_is_pcie(dev))
3843 		return -EINVAL;
3844 
3845 	/*
3846 	 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3847 	 * AtomicOp requesters.  For now, we only support endpoints as
3848 	 * requesters and root ports as completers.  No endpoints as
3849 	 * completers, and no peer-to-peer.
3850 	 */
3851 
3852 	switch (pci_pcie_type(dev)) {
3853 	case PCI_EXP_TYPE_ENDPOINT:
3854 	case PCI_EXP_TYPE_LEG_END:
3855 	case PCI_EXP_TYPE_RC_END:
3856 		break;
3857 	default:
3858 		return -EINVAL;
3859 	}
3860 
3861 	while (bus->parent) {
3862 		bridge = bus->self;
3863 
3864 		pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3865 
3866 		switch (pci_pcie_type(bridge)) {
3867 		/* Ensure switch ports support AtomicOp routing */
3868 		case PCI_EXP_TYPE_UPSTREAM:
3869 		case PCI_EXP_TYPE_DOWNSTREAM:
3870 			if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3871 				return -EINVAL;
3872 			break;
3873 
3874 		/* Ensure root port supports all the sizes we care about */
3875 		case PCI_EXP_TYPE_ROOT_PORT:
3876 			if ((cap & cap_mask) != cap_mask)
3877 				return -EINVAL;
3878 			break;
3879 		}
3880 
3881 		/* Ensure upstream ports don't block AtomicOps on egress */
3882 		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3883 			pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3884 						   &ctl2);
3885 			if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3886 				return -EINVAL;
3887 		}
3888 
3889 		bus = bus->parent;
3890 	}
3891 
3892 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3893 				 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3894 	return 0;
3895 }
3896 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3897 
3898 /**
3899  * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3900  * @dev: the PCI device
3901  * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3902  *
3903  * Perform INTx swizzling for a device behind one level of bridge.  This is
3904  * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3905  * behind bridges on add-in cards.  For devices with ARI enabled, the slot
3906  * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3907  * the PCI Express Base Specification, Revision 2.1)
3908  */
3909 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3910 {
3911 	int slot;
3912 
3913 	if (pci_ari_enabled(dev->bus))
3914 		slot = 0;
3915 	else
3916 		slot = PCI_SLOT(dev->devfn);
3917 
3918 	return (((pin - 1) + slot) % 4) + 1;
3919 }
3920 
3921 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3922 {
3923 	u8 pin;
3924 
3925 	pin = dev->pin;
3926 	if (!pin)
3927 		return -1;
3928 
3929 	while (!pci_is_root_bus(dev->bus)) {
3930 		pin = pci_swizzle_interrupt_pin(dev, pin);
3931 		dev = dev->bus->self;
3932 	}
3933 	*bridge = dev;
3934 	return pin;
3935 }
3936 
3937 /**
3938  * pci_common_swizzle - swizzle INTx all the way to root bridge
3939  * @dev: the PCI device
3940  * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3941  *
3942  * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
3943  * bridges all the way up to a PCI root bus.
3944  */
3945 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3946 {
3947 	u8 pin = *pinp;
3948 
3949 	while (!pci_is_root_bus(dev->bus)) {
3950 		pin = pci_swizzle_interrupt_pin(dev, pin);
3951 		dev = dev->bus->self;
3952 	}
3953 	*pinp = pin;
3954 	return PCI_SLOT(dev->devfn);
3955 }
3956 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3957 
3958 /**
3959  * pci_release_region - Release a PCI bar
3960  * @pdev: PCI device whose resources were previously reserved by
3961  *	  pci_request_region()
3962  * @bar: BAR to release
3963  *
3964  * Releases the PCI I/O and memory resources previously reserved by a
3965  * successful call to pci_request_region().  Call this function only
3966  * after all use of the PCI regions has ceased.
3967  */
3968 void pci_release_region(struct pci_dev *pdev, int bar)
3969 {
3970 	struct pci_devres *dr;
3971 
3972 	if (pci_resource_len(pdev, bar) == 0)
3973 		return;
3974 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3975 		release_region(pci_resource_start(pdev, bar),
3976 				pci_resource_len(pdev, bar));
3977 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3978 		release_mem_region(pci_resource_start(pdev, bar),
3979 				pci_resource_len(pdev, bar));
3980 
3981 	dr = find_pci_dr(pdev);
3982 	if (dr)
3983 		dr->region_mask &= ~(1 << bar);
3984 }
3985 EXPORT_SYMBOL(pci_release_region);
3986 
3987 /**
3988  * __pci_request_region - Reserved PCI I/O and memory resource
3989  * @pdev: PCI device whose resources are to be reserved
3990  * @bar: BAR to be reserved
3991  * @res_name: Name to be associated with resource.
3992  * @exclusive: whether the region access is exclusive or not
3993  *
3994  * Mark the PCI region associated with PCI device @pdev BAR @bar as
3995  * being reserved by owner @res_name.  Do not access any
3996  * address inside the PCI regions unless this call returns
3997  * successfully.
3998  *
3999  * If @exclusive is set, then the region is marked so that userspace
4000  * is explicitly not allowed to map the resource via /dev/mem or
4001  * sysfs MMIO access.
4002  *
4003  * Returns 0 on success, or %EBUSY on error.  A warning
4004  * message is also printed on failure.
4005  */
4006 static int __pci_request_region(struct pci_dev *pdev, int bar,
4007 				const char *res_name, int exclusive)
4008 {
4009 	struct pci_devres *dr;
4010 
4011 	if (pci_resource_len(pdev, bar) == 0)
4012 		return 0;
4013 
4014 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
4015 		if (!request_region(pci_resource_start(pdev, bar),
4016 			    pci_resource_len(pdev, bar), res_name))
4017 			goto err_out;
4018 	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
4019 		if (!__request_mem_region(pci_resource_start(pdev, bar),
4020 					pci_resource_len(pdev, bar), res_name,
4021 					exclusive))
4022 			goto err_out;
4023 	}
4024 
4025 	dr = find_pci_dr(pdev);
4026 	if (dr)
4027 		dr->region_mask |= 1 << bar;
4028 
4029 	return 0;
4030 
4031 err_out:
4032 	pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
4033 		 &pdev->resource[bar]);
4034 	return -EBUSY;
4035 }
4036 
4037 /**
4038  * pci_request_region - Reserve PCI I/O and memory resource
4039  * @pdev: PCI device whose resources are to be reserved
4040  * @bar: BAR to be reserved
4041  * @res_name: Name to be associated with resource
4042  *
4043  * Mark the PCI region associated with PCI device @pdev BAR @bar as
4044  * being reserved by owner @res_name.  Do not access any
4045  * address inside the PCI regions unless this call returns
4046  * successfully.
4047  *
4048  * Returns 0 on success, or %EBUSY on error.  A warning
4049  * message is also printed on failure.
4050  */
4051 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
4052 {
4053 	return __pci_request_region(pdev, bar, res_name, 0);
4054 }
4055 EXPORT_SYMBOL(pci_request_region);
4056 
4057 /**
4058  * pci_release_selected_regions - Release selected PCI I/O and memory resources
4059  * @pdev: PCI device whose resources were previously reserved
4060  * @bars: Bitmask of BARs to be released
4061  *
4062  * Release selected PCI I/O and memory resources previously reserved.
4063  * Call this function only after all use of the PCI regions has ceased.
4064  */
4065 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
4066 {
4067 	int i;
4068 
4069 	for (i = 0; i < PCI_STD_NUM_BARS; i++)
4070 		if (bars & (1 << i))
4071 			pci_release_region(pdev, i);
4072 }
4073 EXPORT_SYMBOL(pci_release_selected_regions);
4074 
4075 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
4076 					  const char *res_name, int excl)
4077 {
4078 	int i;
4079 
4080 	for (i = 0; i < PCI_STD_NUM_BARS; i++)
4081 		if (bars & (1 << i))
4082 			if (__pci_request_region(pdev, i, res_name, excl))
4083 				goto err_out;
4084 	return 0;
4085 
4086 err_out:
4087 	while (--i >= 0)
4088 		if (bars & (1 << i))
4089 			pci_release_region(pdev, i);
4090 
4091 	return -EBUSY;
4092 }
4093 
4094 
4095 /**
4096  * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
4097  * @pdev: PCI device whose resources are to be reserved
4098  * @bars: Bitmask of BARs to be requested
4099  * @res_name: Name to be associated with resource
4100  */
4101 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
4102 				 const char *res_name)
4103 {
4104 	return __pci_request_selected_regions(pdev, bars, res_name, 0);
4105 }
4106 EXPORT_SYMBOL(pci_request_selected_regions);
4107 
4108 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
4109 					   const char *res_name)
4110 {
4111 	return __pci_request_selected_regions(pdev, bars, res_name,
4112 			IORESOURCE_EXCLUSIVE);
4113 }
4114 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
4115 
4116 /**
4117  * pci_release_regions - Release reserved PCI I/O and memory resources
4118  * @pdev: PCI device whose resources were previously reserved by
4119  *	  pci_request_regions()
4120  *
4121  * Releases all PCI I/O and memory resources previously reserved by a
4122  * successful call to pci_request_regions().  Call this function only
4123  * after all use of the PCI regions has ceased.
4124  */
4125 
4126 void pci_release_regions(struct pci_dev *pdev)
4127 {
4128 	pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
4129 }
4130 EXPORT_SYMBOL(pci_release_regions);
4131 
4132 /**
4133  * pci_request_regions - Reserve PCI I/O and memory resources
4134  * @pdev: PCI device whose resources are to be reserved
4135  * @res_name: Name to be associated with resource.
4136  *
4137  * Mark all PCI regions associated with PCI device @pdev as
4138  * being reserved by owner @res_name.  Do not access any
4139  * address inside the PCI regions unless this call returns
4140  * successfully.
4141  *
4142  * Returns 0 on success, or %EBUSY on error.  A warning
4143  * message is also printed on failure.
4144  */
4145 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
4146 {
4147 	return pci_request_selected_regions(pdev,
4148 			((1 << PCI_STD_NUM_BARS) - 1), res_name);
4149 }
4150 EXPORT_SYMBOL(pci_request_regions);
4151 
4152 /**
4153  * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
4154  * @pdev: PCI device whose resources are to be reserved
4155  * @res_name: Name to be associated with resource.
4156  *
4157  * Mark all PCI regions associated with PCI device @pdev as being reserved
4158  * by owner @res_name.  Do not access any address inside the PCI regions
4159  * unless this call returns successfully.
4160  *
4161  * pci_request_regions_exclusive() will mark the region so that /dev/mem
4162  * and the sysfs MMIO access will not be allowed.
4163  *
4164  * Returns 0 on success, or %EBUSY on error.  A warning message is also
4165  * printed on failure.
4166  */
4167 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
4168 {
4169 	return pci_request_selected_regions_exclusive(pdev,
4170 				((1 << PCI_STD_NUM_BARS) - 1), res_name);
4171 }
4172 EXPORT_SYMBOL(pci_request_regions_exclusive);
4173 
4174 /*
4175  * Record the PCI IO range (expressed as CPU physical address + size).
4176  * Return a negative value if an error has occurred, zero otherwise
4177  */
4178 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
4179 			resource_size_t	size)
4180 {
4181 	int ret = 0;
4182 #ifdef PCI_IOBASE
4183 	struct logic_pio_hwaddr *range;
4184 
4185 	if (!size || addr + size < addr)
4186 		return -EINVAL;
4187 
4188 	range = kzalloc(sizeof(*range), GFP_ATOMIC);
4189 	if (!range)
4190 		return -ENOMEM;
4191 
4192 	range->fwnode = fwnode;
4193 	range->size = size;
4194 	range->hw_start = addr;
4195 	range->flags = LOGIC_PIO_CPU_MMIO;
4196 
4197 	ret = logic_pio_register_range(range);
4198 	if (ret)
4199 		kfree(range);
4200 
4201 	/* Ignore duplicates due to deferred probing */
4202 	if (ret == -EEXIST)
4203 		ret = 0;
4204 #endif
4205 
4206 	return ret;
4207 }
4208 
4209 phys_addr_t pci_pio_to_address(unsigned long pio)
4210 {
4211 #ifdef PCI_IOBASE
4212 	if (pio < MMIO_UPPER_LIMIT)
4213 		return logic_pio_to_hwaddr(pio);
4214 #endif
4215 
4216 	return (phys_addr_t) OF_BAD_ADDR;
4217 }
4218 EXPORT_SYMBOL_GPL(pci_pio_to_address);
4219 
4220 unsigned long __weak pci_address_to_pio(phys_addr_t address)
4221 {
4222 #ifdef PCI_IOBASE
4223 	return logic_pio_trans_cpuaddr(address);
4224 #else
4225 	if (address > IO_SPACE_LIMIT)
4226 		return (unsigned long)-1;
4227 
4228 	return (unsigned long) address;
4229 #endif
4230 }
4231 
4232 /**
4233  * pci_remap_iospace - Remap the memory mapped I/O space
4234  * @res: Resource describing the I/O space
4235  * @phys_addr: physical address of range to be mapped
4236  *
4237  * Remap the memory mapped I/O space described by the @res and the CPU
4238  * physical address @phys_addr into virtual address space.  Only
4239  * architectures that have memory mapped IO functions defined (and the
4240  * PCI_IOBASE value defined) should call this function.
4241  */
4242 #ifndef pci_remap_iospace
4243 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4244 {
4245 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4246 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4247 
4248 	if (!(res->flags & IORESOURCE_IO))
4249 		return -EINVAL;
4250 
4251 	if (res->end > IO_SPACE_LIMIT)
4252 		return -EINVAL;
4253 
4254 	return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4255 				  pgprot_device(PAGE_KERNEL));
4256 #else
4257 	/*
4258 	 * This architecture does not have memory mapped I/O space,
4259 	 * so this function should never be called
4260 	 */
4261 	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4262 	return -ENODEV;
4263 #endif
4264 }
4265 EXPORT_SYMBOL(pci_remap_iospace);
4266 #endif
4267 
4268 /**
4269  * pci_unmap_iospace - Unmap the memory mapped I/O space
4270  * @res: resource to be unmapped
4271  *
4272  * Unmap the CPU virtual address @res from virtual address space.  Only
4273  * architectures that have memory mapped IO functions defined (and the
4274  * PCI_IOBASE value defined) should call this function.
4275  */
4276 void pci_unmap_iospace(struct resource *res)
4277 {
4278 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4279 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4280 
4281 	vunmap_range(vaddr, vaddr + resource_size(res));
4282 #endif
4283 }
4284 EXPORT_SYMBOL(pci_unmap_iospace);
4285 
4286 static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
4287 {
4288 	struct resource **res = ptr;
4289 
4290 	pci_unmap_iospace(*res);
4291 }
4292 
4293 /**
4294  * devm_pci_remap_iospace - Managed pci_remap_iospace()
4295  * @dev: Generic device to remap IO address for
4296  * @res: Resource describing the I/O space
4297  * @phys_addr: physical address of range to be mapped
4298  *
4299  * Managed pci_remap_iospace().  Map is automatically unmapped on driver
4300  * detach.
4301  */
4302 int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4303 			   phys_addr_t phys_addr)
4304 {
4305 	const struct resource **ptr;
4306 	int error;
4307 
4308 	ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4309 	if (!ptr)
4310 		return -ENOMEM;
4311 
4312 	error = pci_remap_iospace(res, phys_addr);
4313 	if (error) {
4314 		devres_free(ptr);
4315 	} else	{
4316 		*ptr = res;
4317 		devres_add(dev, ptr);
4318 	}
4319 
4320 	return error;
4321 }
4322 EXPORT_SYMBOL(devm_pci_remap_iospace);
4323 
4324 /**
4325  * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4326  * @dev: Generic device to remap IO address for
4327  * @offset: Resource address to map
4328  * @size: Size of map
4329  *
4330  * Managed pci_remap_cfgspace().  Map is automatically unmapped on driver
4331  * detach.
4332  */
4333 void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4334 				      resource_size_t offset,
4335 				      resource_size_t size)
4336 {
4337 	void __iomem **ptr, *addr;
4338 
4339 	ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4340 	if (!ptr)
4341 		return NULL;
4342 
4343 	addr = pci_remap_cfgspace(offset, size);
4344 	if (addr) {
4345 		*ptr = addr;
4346 		devres_add(dev, ptr);
4347 	} else
4348 		devres_free(ptr);
4349 
4350 	return addr;
4351 }
4352 EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4353 
4354 /**
4355  * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4356  * @dev: generic device to handle the resource for
4357  * @res: configuration space resource to be handled
4358  *
4359  * Checks that a resource is a valid memory region, requests the memory
4360  * region and ioremaps with pci_remap_cfgspace() API that ensures the
4361  * proper PCI configuration space memory attributes are guaranteed.
4362  *
4363  * All operations are managed and will be undone on driver detach.
4364  *
4365  * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4366  * on failure. Usage example::
4367  *
4368  *	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4369  *	base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4370  *	if (IS_ERR(base))
4371  *		return PTR_ERR(base);
4372  */
4373 void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4374 					  struct resource *res)
4375 {
4376 	resource_size_t size;
4377 	const char *name;
4378 	void __iomem *dest_ptr;
4379 
4380 	BUG_ON(!dev);
4381 
4382 	if (!res || resource_type(res) != IORESOURCE_MEM) {
4383 		dev_err(dev, "invalid resource\n");
4384 		return IOMEM_ERR_PTR(-EINVAL);
4385 	}
4386 
4387 	size = resource_size(res);
4388 
4389 	if (res->name)
4390 		name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev),
4391 				      res->name);
4392 	else
4393 		name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL);
4394 	if (!name)
4395 		return IOMEM_ERR_PTR(-ENOMEM);
4396 
4397 	if (!devm_request_mem_region(dev, res->start, size, name)) {
4398 		dev_err(dev, "can't request region for resource %pR\n", res);
4399 		return IOMEM_ERR_PTR(-EBUSY);
4400 	}
4401 
4402 	dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4403 	if (!dest_ptr) {
4404 		dev_err(dev, "ioremap failed for resource %pR\n", res);
4405 		devm_release_mem_region(dev, res->start, size);
4406 		dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4407 	}
4408 
4409 	return dest_ptr;
4410 }
4411 EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4412 
4413 static void __pci_set_master(struct pci_dev *dev, bool enable)
4414 {
4415 	u16 old_cmd, cmd;
4416 
4417 	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4418 	if (enable)
4419 		cmd = old_cmd | PCI_COMMAND_MASTER;
4420 	else
4421 		cmd = old_cmd & ~PCI_COMMAND_MASTER;
4422 	if (cmd != old_cmd) {
4423 		pci_dbg(dev, "%s bus mastering\n",
4424 			enable ? "enabling" : "disabling");
4425 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4426 	}
4427 	dev->is_busmaster = enable;
4428 }
4429 
4430 /**
4431  * pcibios_setup - process "pci=" kernel boot arguments
4432  * @str: string used to pass in "pci=" kernel boot arguments
4433  *
4434  * Process kernel boot arguments.  This is the default implementation.
4435  * Architecture specific implementations can override this as necessary.
4436  */
4437 char * __weak __init pcibios_setup(char *str)
4438 {
4439 	return str;
4440 }
4441 
4442 /**
4443  * pcibios_set_master - enable PCI bus-mastering for device dev
4444  * @dev: the PCI device to enable
4445  *
4446  * Enables PCI bus-mastering for the device.  This is the default
4447  * implementation.  Architecture specific implementations can override
4448  * this if necessary.
4449  */
4450 void __weak pcibios_set_master(struct pci_dev *dev)
4451 {
4452 	u8 lat;
4453 
4454 	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4455 	if (pci_is_pcie(dev))
4456 		return;
4457 
4458 	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4459 	if (lat < 16)
4460 		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4461 	else if (lat > pcibios_max_latency)
4462 		lat = pcibios_max_latency;
4463 	else
4464 		return;
4465 
4466 	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4467 }
4468 
4469 /**
4470  * pci_set_master - enables bus-mastering for device dev
4471  * @dev: the PCI device to enable
4472  *
4473  * Enables bus-mastering on the device and calls pcibios_set_master()
4474  * to do the needed arch specific settings.
4475  */
4476 void pci_set_master(struct pci_dev *dev)
4477 {
4478 	__pci_set_master(dev, true);
4479 	pcibios_set_master(dev);
4480 }
4481 EXPORT_SYMBOL(pci_set_master);
4482 
4483 /**
4484  * pci_clear_master - disables bus-mastering for device dev
4485  * @dev: the PCI device to disable
4486  */
4487 void pci_clear_master(struct pci_dev *dev)
4488 {
4489 	__pci_set_master(dev, false);
4490 }
4491 EXPORT_SYMBOL(pci_clear_master);
4492 
4493 /**
4494  * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4495  * @dev: the PCI device for which MWI is to be enabled
4496  *
4497  * Helper function for pci_set_mwi.
4498  * Originally copied from drivers/net/acenic.c.
4499  * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4500  *
4501  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4502  */
4503 int pci_set_cacheline_size(struct pci_dev *dev)
4504 {
4505 	u8 cacheline_size;
4506 
4507 	if (!pci_cache_line_size)
4508 		return -EINVAL;
4509 
4510 	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4511 	   equal to or multiple of the right value. */
4512 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4513 	if (cacheline_size >= pci_cache_line_size &&
4514 	    (cacheline_size % pci_cache_line_size) == 0)
4515 		return 0;
4516 
4517 	/* Write the correct value. */
4518 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4519 	/* Read it back. */
4520 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4521 	if (cacheline_size == pci_cache_line_size)
4522 		return 0;
4523 
4524 	pci_dbg(dev, "cache line size of %d is not supported\n",
4525 		   pci_cache_line_size << 2);
4526 
4527 	return -EINVAL;
4528 }
4529 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4530 
4531 /**
4532  * pci_set_mwi - enables memory-write-invalidate PCI transaction
4533  * @dev: the PCI device for which MWI is enabled
4534  *
4535  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4536  *
4537  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4538  */
4539 int pci_set_mwi(struct pci_dev *dev)
4540 {
4541 #ifdef PCI_DISABLE_MWI
4542 	return 0;
4543 #else
4544 	int rc;
4545 	u16 cmd;
4546 
4547 	rc = pci_set_cacheline_size(dev);
4548 	if (rc)
4549 		return rc;
4550 
4551 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4552 	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4553 		pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4554 		cmd |= PCI_COMMAND_INVALIDATE;
4555 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4556 	}
4557 	return 0;
4558 #endif
4559 }
4560 EXPORT_SYMBOL(pci_set_mwi);
4561 
4562 /**
4563  * pcim_set_mwi - a device-managed pci_set_mwi()
4564  * @dev: the PCI device for which MWI is enabled
4565  *
4566  * Managed pci_set_mwi().
4567  *
4568  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4569  */
4570 int pcim_set_mwi(struct pci_dev *dev)
4571 {
4572 	struct pci_devres *dr;
4573 
4574 	dr = find_pci_dr(dev);
4575 	if (!dr)
4576 		return -ENOMEM;
4577 
4578 	dr->mwi = 1;
4579 	return pci_set_mwi(dev);
4580 }
4581 EXPORT_SYMBOL(pcim_set_mwi);
4582 
4583 /**
4584  * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4585  * @dev: the PCI device for which MWI is enabled
4586  *
4587  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4588  * Callers are not required to check the return value.
4589  *
4590  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4591  */
4592 int pci_try_set_mwi(struct pci_dev *dev)
4593 {
4594 #ifdef PCI_DISABLE_MWI
4595 	return 0;
4596 #else
4597 	return pci_set_mwi(dev);
4598 #endif
4599 }
4600 EXPORT_SYMBOL(pci_try_set_mwi);
4601 
4602 /**
4603  * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4604  * @dev: the PCI device to disable
4605  *
4606  * Disables PCI Memory-Write-Invalidate transaction on the device
4607  */
4608 void pci_clear_mwi(struct pci_dev *dev)
4609 {
4610 #ifndef PCI_DISABLE_MWI
4611 	u16 cmd;
4612 
4613 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4614 	if (cmd & PCI_COMMAND_INVALIDATE) {
4615 		cmd &= ~PCI_COMMAND_INVALIDATE;
4616 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4617 	}
4618 #endif
4619 }
4620 EXPORT_SYMBOL(pci_clear_mwi);
4621 
4622 /**
4623  * pci_disable_parity - disable parity checking for device
4624  * @dev: the PCI device to operate on
4625  *
4626  * Disable parity checking for device @dev
4627  */
4628 void pci_disable_parity(struct pci_dev *dev)
4629 {
4630 	u16 cmd;
4631 
4632 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4633 	if (cmd & PCI_COMMAND_PARITY) {
4634 		cmd &= ~PCI_COMMAND_PARITY;
4635 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4636 	}
4637 }
4638 
4639 /**
4640  * pci_intx - enables/disables PCI INTx for device dev
4641  * @pdev: the PCI device to operate on
4642  * @enable: boolean: whether to enable or disable PCI INTx
4643  *
4644  * Enables/disables PCI INTx for device @pdev
4645  */
4646 void pci_intx(struct pci_dev *pdev, int enable)
4647 {
4648 	u16 pci_command, new;
4649 
4650 	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4651 
4652 	if (enable)
4653 		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4654 	else
4655 		new = pci_command | PCI_COMMAND_INTX_DISABLE;
4656 
4657 	if (new != pci_command) {
4658 		struct pci_devres *dr;
4659 
4660 		pci_write_config_word(pdev, PCI_COMMAND, new);
4661 
4662 		dr = find_pci_dr(pdev);
4663 		if (dr && !dr->restore_intx) {
4664 			dr->restore_intx = 1;
4665 			dr->orig_intx = !enable;
4666 		}
4667 	}
4668 }
4669 EXPORT_SYMBOL_GPL(pci_intx);
4670 
4671 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4672 {
4673 	struct pci_bus *bus = dev->bus;
4674 	bool mask_updated = true;
4675 	u32 cmd_status_dword;
4676 	u16 origcmd, newcmd;
4677 	unsigned long flags;
4678 	bool irq_pending;
4679 
4680 	/*
4681 	 * We do a single dword read to retrieve both command and status.
4682 	 * Document assumptions that make this possible.
4683 	 */
4684 	BUILD_BUG_ON(PCI_COMMAND % 4);
4685 	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4686 
4687 	raw_spin_lock_irqsave(&pci_lock, flags);
4688 
4689 	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4690 
4691 	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4692 
4693 	/*
4694 	 * Check interrupt status register to see whether our device
4695 	 * triggered the interrupt (when masking) or the next IRQ is
4696 	 * already pending (when unmasking).
4697 	 */
4698 	if (mask != irq_pending) {
4699 		mask_updated = false;
4700 		goto done;
4701 	}
4702 
4703 	origcmd = cmd_status_dword;
4704 	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4705 	if (mask)
4706 		newcmd |= PCI_COMMAND_INTX_DISABLE;
4707 	if (newcmd != origcmd)
4708 		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4709 
4710 done:
4711 	raw_spin_unlock_irqrestore(&pci_lock, flags);
4712 
4713 	return mask_updated;
4714 }
4715 
4716 /**
4717  * pci_check_and_mask_intx - mask INTx on pending interrupt
4718  * @dev: the PCI device to operate on
4719  *
4720  * Check if the device dev has its INTx line asserted, mask it and return
4721  * true in that case. False is returned if no interrupt was pending.
4722  */
4723 bool pci_check_and_mask_intx(struct pci_dev *dev)
4724 {
4725 	return pci_check_and_set_intx_mask(dev, true);
4726 }
4727 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4728 
4729 /**
4730  * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4731  * @dev: the PCI device to operate on
4732  *
4733  * Check if the device dev has its INTx line asserted, unmask it if not and
4734  * return true. False is returned and the mask remains active if there was
4735  * still an interrupt pending.
4736  */
4737 bool pci_check_and_unmask_intx(struct pci_dev *dev)
4738 {
4739 	return pci_check_and_set_intx_mask(dev, false);
4740 }
4741 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4742 
4743 /**
4744  * pci_wait_for_pending_transaction - wait for pending transaction
4745  * @dev: the PCI device to operate on
4746  *
4747  * Return 0 if transaction is pending 1 otherwise.
4748  */
4749 int pci_wait_for_pending_transaction(struct pci_dev *dev)
4750 {
4751 	if (!pci_is_pcie(dev))
4752 		return 1;
4753 
4754 	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4755 				    PCI_EXP_DEVSTA_TRPND);
4756 }
4757 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4758 
4759 /**
4760  * pcie_flr - initiate a PCIe function level reset
4761  * @dev: device to reset
4762  *
4763  * Initiate a function level reset unconditionally on @dev without
4764  * checking any flags and DEVCAP
4765  */
4766 int pcie_flr(struct pci_dev *dev)
4767 {
4768 	if (!pci_wait_for_pending_transaction(dev))
4769 		pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4770 
4771 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4772 
4773 	if (dev->imm_ready)
4774 		return 0;
4775 
4776 	/*
4777 	 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4778 	 * 100ms, but may silently discard requests while the FLR is in
4779 	 * progress.  Wait 100ms before trying to access the device.
4780 	 */
4781 	msleep(100);
4782 
4783 	return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4784 }
4785 EXPORT_SYMBOL_GPL(pcie_flr);
4786 
4787 /**
4788  * pcie_reset_flr - initiate a PCIe function level reset
4789  * @dev: device to reset
4790  * @probe: if true, return 0 if device can be reset this way
4791  *
4792  * Initiate a function level reset on @dev.
4793  */
4794 int pcie_reset_flr(struct pci_dev *dev, bool probe)
4795 {
4796 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4797 		return -ENOTTY;
4798 
4799 	if (!(dev->devcap & PCI_EXP_DEVCAP_FLR))
4800 		return -ENOTTY;
4801 
4802 	if (probe)
4803 		return 0;
4804 
4805 	return pcie_flr(dev);
4806 }
4807 EXPORT_SYMBOL_GPL(pcie_reset_flr);
4808 
4809 static int pci_af_flr(struct pci_dev *dev, bool probe)
4810 {
4811 	int pos;
4812 	u8 cap;
4813 
4814 	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4815 	if (!pos)
4816 		return -ENOTTY;
4817 
4818 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4819 		return -ENOTTY;
4820 
4821 	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4822 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4823 		return -ENOTTY;
4824 
4825 	if (probe)
4826 		return 0;
4827 
4828 	/*
4829 	 * Wait for Transaction Pending bit to clear.  A word-aligned test
4830 	 * is used, so we use the control offset rather than status and shift
4831 	 * the test bit to match.
4832 	 */
4833 	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4834 				 PCI_AF_STATUS_TP << 8))
4835 		pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4836 
4837 	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4838 
4839 	if (dev->imm_ready)
4840 		return 0;
4841 
4842 	/*
4843 	 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4844 	 * updated 27 July 2006; a device must complete an FLR within
4845 	 * 100ms, but may silently discard requests while the FLR is in
4846 	 * progress.  Wait 100ms before trying to access the device.
4847 	 */
4848 	msleep(100);
4849 
4850 	return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4851 }
4852 
4853 /**
4854  * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4855  * @dev: Device to reset.
4856  * @probe: if true, return 0 if the device can be reset this way.
4857  *
4858  * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4859  * unset, it will be reinitialized internally when going from PCI_D3hot to
4860  * PCI_D0.  If that's the case and the device is not in a low-power state
4861  * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4862  *
4863  * NOTE: This causes the caller to sleep for twice the device power transition
4864  * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4865  * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4866  * Moreover, only devices in D0 can be reset by this function.
4867  */
4868 static int pci_pm_reset(struct pci_dev *dev, bool probe)
4869 {
4870 	u16 csr;
4871 
4872 	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4873 		return -ENOTTY;
4874 
4875 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4876 	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4877 		return -ENOTTY;
4878 
4879 	if (probe)
4880 		return 0;
4881 
4882 	if (dev->current_state != PCI_D0)
4883 		return -EINVAL;
4884 
4885 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4886 	csr |= PCI_D3hot;
4887 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4888 	pci_dev_d3_sleep(dev);
4889 
4890 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4891 	csr |= PCI_D0;
4892 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4893 	pci_dev_d3_sleep(dev);
4894 
4895 	return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4896 }
4897 
4898 /**
4899  * pcie_wait_for_link_status - Wait for link status change
4900  * @pdev: Device whose link to wait for.
4901  * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE.
4902  * @active: Waiting for active or inactive?
4903  *
4904  * Return 0 if successful, or -ETIMEDOUT if status has not changed within
4905  * PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
4906  */
4907 static int pcie_wait_for_link_status(struct pci_dev *pdev,
4908 				     bool use_lt, bool active)
4909 {
4910 	u16 lnksta_mask, lnksta_match;
4911 	unsigned long end_jiffies;
4912 	u16 lnksta;
4913 
4914 	lnksta_mask = use_lt ? PCI_EXP_LNKSTA_LT : PCI_EXP_LNKSTA_DLLLA;
4915 	lnksta_match = active ? lnksta_mask : 0;
4916 
4917 	end_jiffies = jiffies + msecs_to_jiffies(PCIE_LINK_RETRAIN_TIMEOUT_MS);
4918 	do {
4919 		pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta);
4920 		if ((lnksta & lnksta_mask) == lnksta_match)
4921 			return 0;
4922 		msleep(1);
4923 	} while (time_before(jiffies, end_jiffies));
4924 
4925 	return -ETIMEDOUT;
4926 }
4927 
4928 /**
4929  * pcie_retrain_link - Request a link retrain and wait for it to complete
4930  * @pdev: Device whose link to retrain.
4931  * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE, for status.
4932  *
4933  * Retrain completion status is retrieved from the Link Status Register
4934  * according to @use_lt.  It is not verified whether the use of the DLLLA
4935  * bit is valid.
4936  *
4937  * Return 0 if successful, or -ETIMEDOUT if training has not completed
4938  * within PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
4939  */
4940 int pcie_retrain_link(struct pci_dev *pdev, bool use_lt)
4941 {
4942 	int rc;
4943 
4944 	/*
4945 	 * Ensure the updated LNKCTL parameters are used during link
4946 	 * training by checking that there is no ongoing link training to
4947 	 * avoid LTSSM race as recommended in Implementation Note at the
4948 	 * end of PCIe r6.0.1 sec 7.5.3.7.
4949 	 */
4950 	rc = pcie_wait_for_link_status(pdev, use_lt, !use_lt);
4951 	if (rc)
4952 		return rc;
4953 
4954 	pcie_capability_set_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL);
4955 	if (pdev->clear_retrain_link) {
4956 		/*
4957 		 * Due to an erratum in some devices the Retrain Link bit
4958 		 * needs to be cleared again manually to allow the link
4959 		 * training to succeed.
4960 		 */
4961 		pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL);
4962 	}
4963 
4964 	return pcie_wait_for_link_status(pdev, use_lt, !use_lt);
4965 }
4966 
4967 /**
4968  * pcie_wait_for_link_delay - Wait until link is active or inactive
4969  * @pdev: Bridge device
4970  * @active: waiting for active or inactive?
4971  * @delay: Delay to wait after link has become active (in ms)
4972  *
4973  * Use this to wait till link becomes active or inactive.
4974  */
4975 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4976 				     int delay)
4977 {
4978 	int rc;
4979 
4980 	/*
4981 	 * Some controllers might not implement link active reporting. In this
4982 	 * case, we wait for 1000 ms + any delay requested by the caller.
4983 	 */
4984 	if (!pdev->link_active_reporting) {
4985 		msleep(PCIE_LINK_RETRAIN_TIMEOUT_MS + delay);
4986 		return true;
4987 	}
4988 
4989 	/*
4990 	 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4991 	 * after which we should expect an link active if the reset was
4992 	 * successful. If so, software must wait a minimum 100ms before sending
4993 	 * configuration requests to devices downstream this port.
4994 	 *
4995 	 * If the link fails to activate, either the device was physically
4996 	 * removed or the link is permanently failed.
4997 	 */
4998 	if (active)
4999 		msleep(20);
5000 	rc = pcie_wait_for_link_status(pdev, false, active);
5001 	if (active) {
5002 		if (rc)
5003 			rc = pcie_failed_link_retrain(pdev);
5004 		if (rc)
5005 			return false;
5006 
5007 		msleep(delay);
5008 		return true;
5009 	}
5010 
5011 	if (rc)
5012 		return false;
5013 
5014 	return true;
5015 }
5016 
5017 /**
5018  * pcie_wait_for_link - Wait until link is active or inactive
5019  * @pdev: Bridge device
5020  * @active: waiting for active or inactive?
5021  *
5022  * Use this to wait till link becomes active or inactive.
5023  */
5024 bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
5025 {
5026 	return pcie_wait_for_link_delay(pdev, active, 100);
5027 }
5028 
5029 /*
5030  * Find maximum D3cold delay required by all the devices on the bus.  The
5031  * spec says 100 ms, but firmware can lower it and we allow drivers to
5032  * increase it as well.
5033  *
5034  * Called with @pci_bus_sem locked for reading.
5035  */
5036 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
5037 {
5038 	const struct pci_dev *pdev;
5039 	int min_delay = 100;
5040 	int max_delay = 0;
5041 
5042 	list_for_each_entry(pdev, &bus->devices, bus_list) {
5043 		if (pdev->d3cold_delay < min_delay)
5044 			min_delay = pdev->d3cold_delay;
5045 		if (pdev->d3cold_delay > max_delay)
5046 			max_delay = pdev->d3cold_delay;
5047 	}
5048 
5049 	return max(min_delay, max_delay);
5050 }
5051 
5052 /**
5053  * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
5054  * @dev: PCI bridge
5055  * @reset_type: reset type in human-readable form
5056  *
5057  * Handle necessary delays before access to the devices on the secondary
5058  * side of the bridge are permitted after D3cold to D0 transition
5059  * or Conventional Reset.
5060  *
5061  * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
5062  * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
5063  * 4.3.2.
5064  *
5065  * Return 0 on success or -ENOTTY if the first device on the secondary bus
5066  * failed to become accessible.
5067  */
5068 int pci_bridge_wait_for_secondary_bus(struct pci_dev *dev, char *reset_type)
5069 {
5070 	struct pci_dev *child;
5071 	int delay;
5072 
5073 	if (pci_dev_is_disconnected(dev))
5074 		return 0;
5075 
5076 	if (!pci_is_bridge(dev))
5077 		return 0;
5078 
5079 	down_read(&pci_bus_sem);
5080 
5081 	/*
5082 	 * We only deal with devices that are present currently on the bus.
5083 	 * For any hot-added devices the access delay is handled in pciehp
5084 	 * board_added(). In case of ACPI hotplug the firmware is expected
5085 	 * to configure the devices before OS is notified.
5086 	 */
5087 	if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
5088 		up_read(&pci_bus_sem);
5089 		return 0;
5090 	}
5091 
5092 	/* Take d3cold_delay requirements into account */
5093 	delay = pci_bus_max_d3cold_delay(dev->subordinate);
5094 	if (!delay) {
5095 		up_read(&pci_bus_sem);
5096 		return 0;
5097 	}
5098 
5099 	child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
5100 				 bus_list);
5101 	up_read(&pci_bus_sem);
5102 
5103 	/*
5104 	 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
5105 	 * accessing the device after reset (that is 1000 ms + 100 ms).
5106 	 */
5107 	if (!pci_is_pcie(dev)) {
5108 		pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
5109 		msleep(1000 + delay);
5110 		return 0;
5111 	}
5112 
5113 	/*
5114 	 * For PCIe downstream and root ports that do not support speeds
5115 	 * greater than 5 GT/s need to wait minimum 100 ms. For higher
5116 	 * speeds (gen3) we need to wait first for the data link layer to
5117 	 * become active.
5118 	 *
5119 	 * However, 100 ms is the minimum and the PCIe spec says the
5120 	 * software must allow at least 1s before it can determine that the
5121 	 * device that did not respond is a broken device. Also device can
5122 	 * take longer than that to respond if it indicates so through Request
5123 	 * Retry Status completions.
5124 	 *
5125 	 * Therefore we wait for 100 ms and check for the device presence
5126 	 * until the timeout expires.
5127 	 */
5128 	if (!pcie_downstream_port(dev))
5129 		return 0;
5130 
5131 	if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
5132 		u16 status;
5133 
5134 		pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
5135 		msleep(delay);
5136 
5137 		if (!pci_dev_wait(child, reset_type, PCI_RESET_WAIT - delay))
5138 			return 0;
5139 
5140 		/*
5141 		 * If the port supports active link reporting we now check
5142 		 * whether the link is active and if not bail out early with
5143 		 * the assumption that the device is not present anymore.
5144 		 */
5145 		if (!dev->link_active_reporting)
5146 			return -ENOTTY;
5147 
5148 		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &status);
5149 		if (!(status & PCI_EXP_LNKSTA_DLLLA))
5150 			return -ENOTTY;
5151 
5152 		return pci_dev_wait(child, reset_type,
5153 				    PCIE_RESET_READY_POLL_MS - PCI_RESET_WAIT);
5154 	}
5155 
5156 	pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
5157 		delay);
5158 	if (!pcie_wait_for_link_delay(dev, true, delay)) {
5159 		/* Did not train, no need to wait any further */
5160 		pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
5161 		return -ENOTTY;
5162 	}
5163 
5164 	return pci_dev_wait(child, reset_type,
5165 			    PCIE_RESET_READY_POLL_MS - delay);
5166 }
5167 
5168 void pci_reset_secondary_bus(struct pci_dev *dev)
5169 {
5170 	u16 ctrl;
5171 
5172 	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
5173 	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
5174 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
5175 
5176 	/*
5177 	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
5178 	 * this to 2ms to ensure that we meet the minimum requirement.
5179 	 */
5180 	msleep(2);
5181 
5182 	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
5183 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
5184 }
5185 
5186 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
5187 {
5188 	pci_reset_secondary_bus(dev);
5189 }
5190 
5191 /**
5192  * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
5193  * @dev: Bridge device
5194  *
5195  * Use the bridge control register to assert reset on the secondary bus.
5196  * Devices on the secondary bus are left in power-on state.
5197  */
5198 int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
5199 {
5200 	pcibios_reset_secondary_bus(dev);
5201 
5202 	return pci_bridge_wait_for_secondary_bus(dev, "bus reset");
5203 }
5204 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
5205 
5206 static int pci_parent_bus_reset(struct pci_dev *dev, bool probe)
5207 {
5208 	struct pci_dev *pdev;
5209 
5210 	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
5211 	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5212 		return -ENOTTY;
5213 
5214 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
5215 		if (pdev != dev)
5216 			return -ENOTTY;
5217 
5218 	if (probe)
5219 		return 0;
5220 
5221 	return pci_bridge_secondary_bus_reset(dev->bus->self);
5222 }
5223 
5224 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe)
5225 {
5226 	int rc = -ENOTTY;
5227 
5228 	if (!hotplug || !try_module_get(hotplug->owner))
5229 		return rc;
5230 
5231 	if (hotplug->ops->reset_slot)
5232 		rc = hotplug->ops->reset_slot(hotplug, probe);
5233 
5234 	module_put(hotplug->owner);
5235 
5236 	return rc;
5237 }
5238 
5239 static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe)
5240 {
5241 	if (dev->multifunction || dev->subordinate || !dev->slot ||
5242 	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5243 		return -ENOTTY;
5244 
5245 	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
5246 }
5247 
5248 static int pci_reset_bus_function(struct pci_dev *dev, bool probe)
5249 {
5250 	int rc;
5251 
5252 	rc = pci_dev_reset_slot_function(dev, probe);
5253 	if (rc != -ENOTTY)
5254 		return rc;
5255 	return pci_parent_bus_reset(dev, probe);
5256 }
5257 
5258 void pci_dev_lock(struct pci_dev *dev)
5259 {
5260 	/* block PM suspend, driver probe, etc. */
5261 	device_lock(&dev->dev);
5262 	pci_cfg_access_lock(dev);
5263 }
5264 EXPORT_SYMBOL_GPL(pci_dev_lock);
5265 
5266 /* Return 1 on successful lock, 0 on contention */
5267 int pci_dev_trylock(struct pci_dev *dev)
5268 {
5269 	if (device_trylock(&dev->dev)) {
5270 		if (pci_cfg_access_trylock(dev))
5271 			return 1;
5272 		device_unlock(&dev->dev);
5273 	}
5274 
5275 	return 0;
5276 }
5277 EXPORT_SYMBOL_GPL(pci_dev_trylock);
5278 
5279 void pci_dev_unlock(struct pci_dev *dev)
5280 {
5281 	pci_cfg_access_unlock(dev);
5282 	device_unlock(&dev->dev);
5283 }
5284 EXPORT_SYMBOL_GPL(pci_dev_unlock);
5285 
5286 static void pci_dev_save_and_disable(struct pci_dev *dev)
5287 {
5288 	const struct pci_error_handlers *err_handler =
5289 			dev->driver ? dev->driver->err_handler : NULL;
5290 
5291 	/*
5292 	 * dev->driver->err_handler->reset_prepare() is protected against
5293 	 * races with ->remove() by the device lock, which must be held by
5294 	 * the caller.
5295 	 */
5296 	if (err_handler && err_handler->reset_prepare)
5297 		err_handler->reset_prepare(dev);
5298 
5299 	/*
5300 	 * Wake-up device prior to save.  PM registers default to D0 after
5301 	 * reset and a simple register restore doesn't reliably return
5302 	 * to a non-D0 state anyway.
5303 	 */
5304 	pci_set_power_state(dev, PCI_D0);
5305 
5306 	pci_save_state(dev);
5307 	/*
5308 	 * Disable the device by clearing the Command register, except for
5309 	 * INTx-disable which is set.  This not only disables MMIO and I/O port
5310 	 * BARs, but also prevents the device from being Bus Master, preventing
5311 	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
5312 	 * compliant devices, INTx-disable prevents legacy interrupts.
5313 	 */
5314 	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
5315 }
5316 
5317 static void pci_dev_restore(struct pci_dev *dev)
5318 {
5319 	const struct pci_error_handlers *err_handler =
5320 			dev->driver ? dev->driver->err_handler : NULL;
5321 
5322 	pci_restore_state(dev);
5323 
5324 	/*
5325 	 * dev->driver->err_handler->reset_done() is protected against
5326 	 * races with ->remove() by the device lock, which must be held by
5327 	 * the caller.
5328 	 */
5329 	if (err_handler && err_handler->reset_done)
5330 		err_handler->reset_done(dev);
5331 }
5332 
5333 /* dev->reset_methods[] is a 0-terminated list of indices into this array */
5334 static const struct pci_reset_fn_method pci_reset_fn_methods[] = {
5335 	{ },
5336 	{ pci_dev_specific_reset, .name = "device_specific" },
5337 	{ pci_dev_acpi_reset, .name = "acpi" },
5338 	{ pcie_reset_flr, .name = "flr" },
5339 	{ pci_af_flr, .name = "af_flr" },
5340 	{ pci_pm_reset, .name = "pm" },
5341 	{ pci_reset_bus_function, .name = "bus" },
5342 };
5343 
5344 static ssize_t reset_method_show(struct device *dev,
5345 				 struct device_attribute *attr, char *buf)
5346 {
5347 	struct pci_dev *pdev = to_pci_dev(dev);
5348 	ssize_t len = 0;
5349 	int i, m;
5350 
5351 	for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5352 		m = pdev->reset_methods[i];
5353 		if (!m)
5354 			break;
5355 
5356 		len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "",
5357 				     pci_reset_fn_methods[m].name);
5358 	}
5359 
5360 	if (len)
5361 		len += sysfs_emit_at(buf, len, "\n");
5362 
5363 	return len;
5364 }
5365 
5366 static int reset_method_lookup(const char *name)
5367 {
5368 	int m;
5369 
5370 	for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5371 		if (sysfs_streq(name, pci_reset_fn_methods[m].name))
5372 			return m;
5373 	}
5374 
5375 	return 0;	/* not found */
5376 }
5377 
5378 static ssize_t reset_method_store(struct device *dev,
5379 				  struct device_attribute *attr,
5380 				  const char *buf, size_t count)
5381 {
5382 	struct pci_dev *pdev = to_pci_dev(dev);
5383 	char *options, *name;
5384 	int m, n;
5385 	u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 };
5386 
5387 	if (sysfs_streq(buf, "")) {
5388 		pdev->reset_methods[0] = 0;
5389 		pci_warn(pdev, "All device reset methods disabled by user");
5390 		return count;
5391 	}
5392 
5393 	if (sysfs_streq(buf, "default")) {
5394 		pci_init_reset_methods(pdev);
5395 		return count;
5396 	}
5397 
5398 	options = kstrndup(buf, count, GFP_KERNEL);
5399 	if (!options)
5400 		return -ENOMEM;
5401 
5402 	n = 0;
5403 	while ((name = strsep(&options, " ")) != NULL) {
5404 		if (sysfs_streq(name, ""))
5405 			continue;
5406 
5407 		name = strim(name);
5408 
5409 		m = reset_method_lookup(name);
5410 		if (!m) {
5411 			pci_err(pdev, "Invalid reset method '%s'", name);
5412 			goto error;
5413 		}
5414 
5415 		if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) {
5416 			pci_err(pdev, "Unsupported reset method '%s'", name);
5417 			goto error;
5418 		}
5419 
5420 		if (n == PCI_NUM_RESET_METHODS - 1) {
5421 			pci_err(pdev, "Too many reset methods\n");
5422 			goto error;
5423 		}
5424 
5425 		reset_methods[n++] = m;
5426 	}
5427 
5428 	reset_methods[n] = 0;
5429 
5430 	/* Warn if dev-specific supported but not highest priority */
5431 	if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 &&
5432 	    reset_methods[0] != 1)
5433 		pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user");
5434 	memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods));
5435 	kfree(options);
5436 	return count;
5437 
5438 error:
5439 	/* Leave previous methods unchanged */
5440 	kfree(options);
5441 	return -EINVAL;
5442 }
5443 static DEVICE_ATTR_RW(reset_method);
5444 
5445 static struct attribute *pci_dev_reset_method_attrs[] = {
5446 	&dev_attr_reset_method.attr,
5447 	NULL,
5448 };
5449 
5450 static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj,
5451 						    struct attribute *a, int n)
5452 {
5453 	struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj));
5454 
5455 	if (!pci_reset_supported(pdev))
5456 		return 0;
5457 
5458 	return a->mode;
5459 }
5460 
5461 const struct attribute_group pci_dev_reset_method_attr_group = {
5462 	.attrs = pci_dev_reset_method_attrs,
5463 	.is_visible = pci_dev_reset_method_attr_is_visible,
5464 };
5465 
5466 /**
5467  * __pci_reset_function_locked - reset a PCI device function while holding
5468  * the @dev mutex lock.
5469  * @dev: PCI device to reset
5470  *
5471  * Some devices allow an individual function to be reset without affecting
5472  * other functions in the same device.  The PCI device must be responsive
5473  * to PCI config space in order to use this function.
5474  *
5475  * The device function is presumed to be unused and the caller is holding
5476  * the device mutex lock when this function is called.
5477  *
5478  * Resetting the device will make the contents of PCI configuration space
5479  * random, so any caller of this must be prepared to reinitialise the
5480  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5481  * etc.
5482  *
5483  * Returns 0 if the device function was successfully reset or negative if the
5484  * device doesn't support resetting a single function.
5485  */
5486 int __pci_reset_function_locked(struct pci_dev *dev)
5487 {
5488 	int i, m, rc;
5489 
5490 	might_sleep();
5491 
5492 	/*
5493 	 * A reset method returns -ENOTTY if it doesn't support this device and
5494 	 * we should try the next method.
5495 	 *
5496 	 * If it returns 0 (success), we're finished.  If it returns any other
5497 	 * error, we're also finished: this indicates that further reset
5498 	 * mechanisms might be broken on the device.
5499 	 */
5500 	for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5501 		m = dev->reset_methods[i];
5502 		if (!m)
5503 			return -ENOTTY;
5504 
5505 		rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET);
5506 		if (!rc)
5507 			return 0;
5508 		if (rc != -ENOTTY)
5509 			return rc;
5510 	}
5511 
5512 	return -ENOTTY;
5513 }
5514 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5515 
5516 /**
5517  * pci_init_reset_methods - check whether device can be safely reset
5518  * and store supported reset mechanisms.
5519  * @dev: PCI device to check for reset mechanisms
5520  *
5521  * Some devices allow an individual function to be reset without affecting
5522  * other functions in the same device.  The PCI device must be in D0-D3hot
5523  * state.
5524  *
5525  * Stores reset mechanisms supported by device in reset_methods byte array
5526  * which is a member of struct pci_dev.
5527  */
5528 void pci_init_reset_methods(struct pci_dev *dev)
5529 {
5530 	int m, i, rc;
5531 
5532 	BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS);
5533 
5534 	might_sleep();
5535 
5536 	i = 0;
5537 	for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5538 		rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE);
5539 		if (!rc)
5540 			dev->reset_methods[i++] = m;
5541 		else if (rc != -ENOTTY)
5542 			break;
5543 	}
5544 
5545 	dev->reset_methods[i] = 0;
5546 }
5547 
5548 /**
5549  * pci_reset_function - quiesce and reset a PCI device function
5550  * @dev: PCI device to reset
5551  *
5552  * Some devices allow an individual function to be reset without affecting
5553  * other functions in the same device.  The PCI device must be responsive
5554  * to PCI config space in order to use this function.
5555  *
5556  * This function does not just reset the PCI portion of a device, but
5557  * clears all the state associated with the device.  This function differs
5558  * from __pci_reset_function_locked() in that it saves and restores device state
5559  * over the reset and takes the PCI device lock.
5560  *
5561  * Returns 0 if the device function was successfully reset or negative if the
5562  * device doesn't support resetting a single function.
5563  */
5564 int pci_reset_function(struct pci_dev *dev)
5565 {
5566 	int rc;
5567 
5568 	if (!pci_reset_supported(dev))
5569 		return -ENOTTY;
5570 
5571 	pci_dev_lock(dev);
5572 	pci_dev_save_and_disable(dev);
5573 
5574 	rc = __pci_reset_function_locked(dev);
5575 
5576 	pci_dev_restore(dev);
5577 	pci_dev_unlock(dev);
5578 
5579 	return rc;
5580 }
5581 EXPORT_SYMBOL_GPL(pci_reset_function);
5582 
5583 /**
5584  * pci_reset_function_locked - quiesce and reset a PCI device function
5585  * @dev: PCI device to reset
5586  *
5587  * Some devices allow an individual function to be reset without affecting
5588  * other functions in the same device.  The PCI device must be responsive
5589  * to PCI config space in order to use this function.
5590  *
5591  * This function does not just reset the PCI portion of a device, but
5592  * clears all the state associated with the device.  This function differs
5593  * from __pci_reset_function_locked() in that it saves and restores device state
5594  * over the reset.  It also differs from pci_reset_function() in that it
5595  * requires the PCI device lock to be held.
5596  *
5597  * Returns 0 if the device function was successfully reset or negative if the
5598  * device doesn't support resetting a single function.
5599  */
5600 int pci_reset_function_locked(struct pci_dev *dev)
5601 {
5602 	int rc;
5603 
5604 	if (!pci_reset_supported(dev))
5605 		return -ENOTTY;
5606 
5607 	pci_dev_save_and_disable(dev);
5608 
5609 	rc = __pci_reset_function_locked(dev);
5610 
5611 	pci_dev_restore(dev);
5612 
5613 	return rc;
5614 }
5615 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5616 
5617 /**
5618  * pci_try_reset_function - quiesce and reset a PCI device function
5619  * @dev: PCI device to reset
5620  *
5621  * Same as above, except return -EAGAIN if unable to lock device.
5622  */
5623 int pci_try_reset_function(struct pci_dev *dev)
5624 {
5625 	int rc;
5626 
5627 	if (!pci_reset_supported(dev))
5628 		return -ENOTTY;
5629 
5630 	if (!pci_dev_trylock(dev))
5631 		return -EAGAIN;
5632 
5633 	pci_dev_save_and_disable(dev);
5634 	rc = __pci_reset_function_locked(dev);
5635 	pci_dev_restore(dev);
5636 	pci_dev_unlock(dev);
5637 
5638 	return rc;
5639 }
5640 EXPORT_SYMBOL_GPL(pci_try_reset_function);
5641 
5642 /* Do any devices on or below this bus prevent a bus reset? */
5643 static bool pci_bus_resettable(struct pci_bus *bus)
5644 {
5645 	struct pci_dev *dev;
5646 
5647 
5648 	if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5649 		return false;
5650 
5651 	list_for_each_entry(dev, &bus->devices, bus_list) {
5652 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5653 		    (dev->subordinate && !pci_bus_resettable(dev->subordinate)))
5654 			return false;
5655 	}
5656 
5657 	return true;
5658 }
5659 
5660 /* Lock devices from the top of the tree down */
5661 static void pci_bus_lock(struct pci_bus *bus)
5662 {
5663 	struct pci_dev *dev;
5664 
5665 	list_for_each_entry(dev, &bus->devices, bus_list) {
5666 		pci_dev_lock(dev);
5667 		if (dev->subordinate)
5668 			pci_bus_lock(dev->subordinate);
5669 	}
5670 }
5671 
5672 /* Unlock devices from the bottom of the tree up */
5673 static void pci_bus_unlock(struct pci_bus *bus)
5674 {
5675 	struct pci_dev *dev;
5676 
5677 	list_for_each_entry(dev, &bus->devices, bus_list) {
5678 		if (dev->subordinate)
5679 			pci_bus_unlock(dev->subordinate);
5680 		pci_dev_unlock(dev);
5681 	}
5682 }
5683 
5684 /* Return 1 on successful lock, 0 on contention */
5685 static int pci_bus_trylock(struct pci_bus *bus)
5686 {
5687 	struct pci_dev *dev;
5688 
5689 	list_for_each_entry(dev, &bus->devices, bus_list) {
5690 		if (!pci_dev_trylock(dev))
5691 			goto unlock;
5692 		if (dev->subordinate) {
5693 			if (!pci_bus_trylock(dev->subordinate)) {
5694 				pci_dev_unlock(dev);
5695 				goto unlock;
5696 			}
5697 		}
5698 	}
5699 	return 1;
5700 
5701 unlock:
5702 	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5703 		if (dev->subordinate)
5704 			pci_bus_unlock(dev->subordinate);
5705 		pci_dev_unlock(dev);
5706 	}
5707 	return 0;
5708 }
5709 
5710 /* Do any devices on or below this slot prevent a bus reset? */
5711 static bool pci_slot_resettable(struct pci_slot *slot)
5712 {
5713 	struct pci_dev *dev;
5714 
5715 	if (slot->bus->self &&
5716 	    (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5717 		return false;
5718 
5719 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5720 		if (!dev->slot || dev->slot != slot)
5721 			continue;
5722 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5723 		    (dev->subordinate && !pci_bus_resettable(dev->subordinate)))
5724 			return false;
5725 	}
5726 
5727 	return true;
5728 }
5729 
5730 /* Lock devices from the top of the tree down */
5731 static void pci_slot_lock(struct pci_slot *slot)
5732 {
5733 	struct pci_dev *dev;
5734 
5735 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5736 		if (!dev->slot || dev->slot != slot)
5737 			continue;
5738 		pci_dev_lock(dev);
5739 		if (dev->subordinate)
5740 			pci_bus_lock(dev->subordinate);
5741 	}
5742 }
5743 
5744 /* Unlock devices from the bottom of the tree up */
5745 static void pci_slot_unlock(struct pci_slot *slot)
5746 {
5747 	struct pci_dev *dev;
5748 
5749 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5750 		if (!dev->slot || dev->slot != slot)
5751 			continue;
5752 		if (dev->subordinate)
5753 			pci_bus_unlock(dev->subordinate);
5754 		pci_dev_unlock(dev);
5755 	}
5756 }
5757 
5758 /* Return 1 on successful lock, 0 on contention */
5759 static int pci_slot_trylock(struct pci_slot *slot)
5760 {
5761 	struct pci_dev *dev;
5762 
5763 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5764 		if (!dev->slot || dev->slot != slot)
5765 			continue;
5766 		if (!pci_dev_trylock(dev))
5767 			goto unlock;
5768 		if (dev->subordinate) {
5769 			if (!pci_bus_trylock(dev->subordinate)) {
5770 				pci_dev_unlock(dev);
5771 				goto unlock;
5772 			}
5773 		}
5774 	}
5775 	return 1;
5776 
5777 unlock:
5778 	list_for_each_entry_continue_reverse(dev,
5779 					     &slot->bus->devices, bus_list) {
5780 		if (!dev->slot || dev->slot != slot)
5781 			continue;
5782 		if (dev->subordinate)
5783 			pci_bus_unlock(dev->subordinate);
5784 		pci_dev_unlock(dev);
5785 	}
5786 	return 0;
5787 }
5788 
5789 /*
5790  * Save and disable devices from the top of the tree down while holding
5791  * the @dev mutex lock for the entire tree.
5792  */
5793 static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5794 {
5795 	struct pci_dev *dev;
5796 
5797 	list_for_each_entry(dev, &bus->devices, bus_list) {
5798 		pci_dev_save_and_disable(dev);
5799 		if (dev->subordinate)
5800 			pci_bus_save_and_disable_locked(dev->subordinate);
5801 	}
5802 }
5803 
5804 /*
5805  * Restore devices from top of the tree down while holding @dev mutex lock
5806  * for the entire tree.  Parent bridges need to be restored before we can
5807  * get to subordinate devices.
5808  */
5809 static void pci_bus_restore_locked(struct pci_bus *bus)
5810 {
5811 	struct pci_dev *dev;
5812 
5813 	list_for_each_entry(dev, &bus->devices, bus_list) {
5814 		pci_dev_restore(dev);
5815 		if (dev->subordinate)
5816 			pci_bus_restore_locked(dev->subordinate);
5817 	}
5818 }
5819 
5820 /*
5821  * Save and disable devices from the top of the tree down while holding
5822  * the @dev mutex lock for the entire tree.
5823  */
5824 static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5825 {
5826 	struct pci_dev *dev;
5827 
5828 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5829 		if (!dev->slot || dev->slot != slot)
5830 			continue;
5831 		pci_dev_save_and_disable(dev);
5832 		if (dev->subordinate)
5833 			pci_bus_save_and_disable_locked(dev->subordinate);
5834 	}
5835 }
5836 
5837 /*
5838  * Restore devices from top of the tree down while holding @dev mutex lock
5839  * for the entire tree.  Parent bridges need to be restored before we can
5840  * get to subordinate devices.
5841  */
5842 static void pci_slot_restore_locked(struct pci_slot *slot)
5843 {
5844 	struct pci_dev *dev;
5845 
5846 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5847 		if (!dev->slot || dev->slot != slot)
5848 			continue;
5849 		pci_dev_restore(dev);
5850 		if (dev->subordinate)
5851 			pci_bus_restore_locked(dev->subordinate);
5852 	}
5853 }
5854 
5855 static int pci_slot_reset(struct pci_slot *slot, bool probe)
5856 {
5857 	int rc;
5858 
5859 	if (!slot || !pci_slot_resettable(slot))
5860 		return -ENOTTY;
5861 
5862 	if (!probe)
5863 		pci_slot_lock(slot);
5864 
5865 	might_sleep();
5866 
5867 	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5868 
5869 	if (!probe)
5870 		pci_slot_unlock(slot);
5871 
5872 	return rc;
5873 }
5874 
5875 /**
5876  * pci_probe_reset_slot - probe whether a PCI slot can be reset
5877  * @slot: PCI slot to probe
5878  *
5879  * Return 0 if slot can be reset, negative if a slot reset is not supported.
5880  */
5881 int pci_probe_reset_slot(struct pci_slot *slot)
5882 {
5883 	return pci_slot_reset(slot, PCI_RESET_PROBE);
5884 }
5885 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5886 
5887 /**
5888  * __pci_reset_slot - Try to reset a PCI slot
5889  * @slot: PCI slot to reset
5890  *
5891  * A PCI bus may host multiple slots, each slot may support a reset mechanism
5892  * independent of other slots.  For instance, some slots may support slot power
5893  * control.  In the case of a 1:1 bus to slot architecture, this function may
5894  * wrap the bus reset to avoid spurious slot related events such as hotplug.
5895  * Generally a slot reset should be attempted before a bus reset.  All of the
5896  * function of the slot and any subordinate buses behind the slot are reset
5897  * through this function.  PCI config space of all devices in the slot and
5898  * behind the slot is saved before and restored after reset.
5899  *
5900  * Same as above except return -EAGAIN if the slot cannot be locked
5901  */
5902 static int __pci_reset_slot(struct pci_slot *slot)
5903 {
5904 	int rc;
5905 
5906 	rc = pci_slot_reset(slot, PCI_RESET_PROBE);
5907 	if (rc)
5908 		return rc;
5909 
5910 	if (pci_slot_trylock(slot)) {
5911 		pci_slot_save_and_disable_locked(slot);
5912 		might_sleep();
5913 		rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET);
5914 		pci_slot_restore_locked(slot);
5915 		pci_slot_unlock(slot);
5916 	} else
5917 		rc = -EAGAIN;
5918 
5919 	return rc;
5920 }
5921 
5922 static int pci_bus_reset(struct pci_bus *bus, bool probe)
5923 {
5924 	int ret;
5925 
5926 	if (!bus->self || !pci_bus_resettable(bus))
5927 		return -ENOTTY;
5928 
5929 	if (probe)
5930 		return 0;
5931 
5932 	pci_bus_lock(bus);
5933 
5934 	might_sleep();
5935 
5936 	ret = pci_bridge_secondary_bus_reset(bus->self);
5937 
5938 	pci_bus_unlock(bus);
5939 
5940 	return ret;
5941 }
5942 
5943 /**
5944  * pci_bus_error_reset - reset the bridge's subordinate bus
5945  * @bridge: The parent device that connects to the bus to reset
5946  *
5947  * This function will first try to reset the slots on this bus if the method is
5948  * available. If slot reset fails or is not available, this will fall back to a
5949  * secondary bus reset.
5950  */
5951 int pci_bus_error_reset(struct pci_dev *bridge)
5952 {
5953 	struct pci_bus *bus = bridge->subordinate;
5954 	struct pci_slot *slot;
5955 
5956 	if (!bus)
5957 		return -ENOTTY;
5958 
5959 	mutex_lock(&pci_slot_mutex);
5960 	if (list_empty(&bus->slots))
5961 		goto bus_reset;
5962 
5963 	list_for_each_entry(slot, &bus->slots, list)
5964 		if (pci_probe_reset_slot(slot))
5965 			goto bus_reset;
5966 
5967 	list_for_each_entry(slot, &bus->slots, list)
5968 		if (pci_slot_reset(slot, PCI_RESET_DO_RESET))
5969 			goto bus_reset;
5970 
5971 	mutex_unlock(&pci_slot_mutex);
5972 	return 0;
5973 bus_reset:
5974 	mutex_unlock(&pci_slot_mutex);
5975 	return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET);
5976 }
5977 
5978 /**
5979  * pci_probe_reset_bus - probe whether a PCI bus can be reset
5980  * @bus: PCI bus to probe
5981  *
5982  * Return 0 if bus can be reset, negative if a bus reset is not supported.
5983  */
5984 int pci_probe_reset_bus(struct pci_bus *bus)
5985 {
5986 	return pci_bus_reset(bus, PCI_RESET_PROBE);
5987 }
5988 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5989 
5990 /**
5991  * __pci_reset_bus - Try to reset a PCI bus
5992  * @bus: top level PCI bus to reset
5993  *
5994  * Same as above except return -EAGAIN if the bus cannot be locked
5995  */
5996 static int __pci_reset_bus(struct pci_bus *bus)
5997 {
5998 	int rc;
5999 
6000 	rc = pci_bus_reset(bus, PCI_RESET_PROBE);
6001 	if (rc)
6002 		return rc;
6003 
6004 	if (pci_bus_trylock(bus)) {
6005 		pci_bus_save_and_disable_locked(bus);
6006 		might_sleep();
6007 		rc = pci_bridge_secondary_bus_reset(bus->self);
6008 		pci_bus_restore_locked(bus);
6009 		pci_bus_unlock(bus);
6010 	} else
6011 		rc = -EAGAIN;
6012 
6013 	return rc;
6014 }
6015 
6016 /**
6017  * pci_reset_bus - Try to reset a PCI bus
6018  * @pdev: top level PCI device to reset via slot/bus
6019  *
6020  * Same as above except return -EAGAIN if the bus cannot be locked
6021  */
6022 int pci_reset_bus(struct pci_dev *pdev)
6023 {
6024 	return (!pci_probe_reset_slot(pdev->slot)) ?
6025 	    __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
6026 }
6027 EXPORT_SYMBOL_GPL(pci_reset_bus);
6028 
6029 /**
6030  * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
6031  * @dev: PCI device to query
6032  *
6033  * Returns mmrbc: maximum designed memory read count in bytes or
6034  * appropriate error value.
6035  */
6036 int pcix_get_max_mmrbc(struct pci_dev *dev)
6037 {
6038 	int cap;
6039 	u32 stat;
6040 
6041 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
6042 	if (!cap)
6043 		return -EINVAL;
6044 
6045 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
6046 		return -EINVAL;
6047 
6048 	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
6049 }
6050 EXPORT_SYMBOL(pcix_get_max_mmrbc);
6051 
6052 /**
6053  * pcix_get_mmrbc - get PCI-X maximum memory read byte count
6054  * @dev: PCI device to query
6055  *
6056  * Returns mmrbc: maximum memory read count in bytes or appropriate error
6057  * value.
6058  */
6059 int pcix_get_mmrbc(struct pci_dev *dev)
6060 {
6061 	int cap;
6062 	u16 cmd;
6063 
6064 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
6065 	if (!cap)
6066 		return -EINVAL;
6067 
6068 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
6069 		return -EINVAL;
6070 
6071 	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
6072 }
6073 EXPORT_SYMBOL(pcix_get_mmrbc);
6074 
6075 /**
6076  * pcix_set_mmrbc - set PCI-X maximum memory read byte count
6077  * @dev: PCI device to query
6078  * @mmrbc: maximum memory read count in bytes
6079  *    valid values are 512, 1024, 2048, 4096
6080  *
6081  * If possible sets maximum memory read byte count, some bridges have errata
6082  * that prevent this.
6083  */
6084 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
6085 {
6086 	int cap;
6087 	u32 stat, v, o;
6088 	u16 cmd;
6089 
6090 	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
6091 		return -EINVAL;
6092 
6093 	v = ffs(mmrbc) - 10;
6094 
6095 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
6096 	if (!cap)
6097 		return -EINVAL;
6098 
6099 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
6100 		return -EINVAL;
6101 
6102 	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
6103 		return -E2BIG;
6104 
6105 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
6106 		return -EINVAL;
6107 
6108 	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
6109 	if (o != v) {
6110 		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
6111 			return -EIO;
6112 
6113 		cmd &= ~PCI_X_CMD_MAX_READ;
6114 		cmd |= v << 2;
6115 		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
6116 			return -EIO;
6117 	}
6118 	return 0;
6119 }
6120 EXPORT_SYMBOL(pcix_set_mmrbc);
6121 
6122 /**
6123  * pcie_get_readrq - get PCI Express read request size
6124  * @dev: PCI device to query
6125  *
6126  * Returns maximum memory read request in bytes or appropriate error value.
6127  */
6128 int pcie_get_readrq(struct pci_dev *dev)
6129 {
6130 	u16 ctl;
6131 
6132 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6133 
6134 	return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6135 }
6136 EXPORT_SYMBOL(pcie_get_readrq);
6137 
6138 /**
6139  * pcie_set_readrq - set PCI Express maximum memory read request
6140  * @dev: PCI device to query
6141  * @rq: maximum memory read count in bytes
6142  *    valid values are 128, 256, 512, 1024, 2048, 4096
6143  *
6144  * If possible sets maximum memory read request in bytes
6145  */
6146 int pcie_set_readrq(struct pci_dev *dev, int rq)
6147 {
6148 	u16 v;
6149 	int ret;
6150 	struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
6151 
6152 	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
6153 		return -EINVAL;
6154 
6155 	/*
6156 	 * If using the "performance" PCIe config, we clamp the read rq
6157 	 * size to the max packet size to keep the host bridge from
6158 	 * generating requests larger than we can cope with.
6159 	 */
6160 	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
6161 		int mps = pcie_get_mps(dev);
6162 
6163 		if (mps < rq)
6164 			rq = mps;
6165 	}
6166 
6167 	v = (ffs(rq) - 8) << 12;
6168 
6169 	if (bridge->no_inc_mrrs) {
6170 		int max_mrrs = pcie_get_readrq(dev);
6171 
6172 		if (rq > max_mrrs) {
6173 			pci_info(dev, "can't set Max_Read_Request_Size to %d; max is %d\n", rq, max_mrrs);
6174 			return -EINVAL;
6175 		}
6176 	}
6177 
6178 	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6179 						  PCI_EXP_DEVCTL_READRQ, v);
6180 
6181 	return pcibios_err_to_errno(ret);
6182 }
6183 EXPORT_SYMBOL(pcie_set_readrq);
6184 
6185 /**
6186  * pcie_get_mps - get PCI Express maximum payload size
6187  * @dev: PCI device to query
6188  *
6189  * Returns maximum payload size in bytes
6190  */
6191 int pcie_get_mps(struct pci_dev *dev)
6192 {
6193 	u16 ctl;
6194 
6195 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6196 
6197 	return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6198 }
6199 EXPORT_SYMBOL(pcie_get_mps);
6200 
6201 /**
6202  * pcie_set_mps - set PCI Express maximum payload size
6203  * @dev: PCI device to query
6204  * @mps: maximum payload size in bytes
6205  *    valid values are 128, 256, 512, 1024, 2048, 4096
6206  *
6207  * If possible sets maximum payload size
6208  */
6209 int pcie_set_mps(struct pci_dev *dev, int mps)
6210 {
6211 	u16 v;
6212 	int ret;
6213 
6214 	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
6215 		return -EINVAL;
6216 
6217 	v = ffs(mps) - 8;
6218 	if (v > dev->pcie_mpss)
6219 		return -EINVAL;
6220 	v <<= 5;
6221 
6222 	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6223 						  PCI_EXP_DEVCTL_PAYLOAD, v);
6224 
6225 	return pcibios_err_to_errno(ret);
6226 }
6227 EXPORT_SYMBOL(pcie_set_mps);
6228 
6229 /**
6230  * pcie_bandwidth_available - determine minimum link settings of a PCIe
6231  *			      device and its bandwidth limitation
6232  * @dev: PCI device to query
6233  * @limiting_dev: storage for device causing the bandwidth limitation
6234  * @speed: storage for speed of limiting device
6235  * @width: storage for width of limiting device
6236  *
6237  * Walk up the PCI device chain and find the point where the minimum
6238  * bandwidth is available.  Return the bandwidth available there and (if
6239  * limiting_dev, speed, and width pointers are supplied) information about
6240  * that point.  The bandwidth returned is in Mb/s, i.e., megabits/second of
6241  * raw bandwidth.
6242  */
6243 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
6244 			     enum pci_bus_speed *speed,
6245 			     enum pcie_link_width *width)
6246 {
6247 	u16 lnksta;
6248 	enum pci_bus_speed next_speed;
6249 	enum pcie_link_width next_width;
6250 	u32 bw, next_bw;
6251 
6252 	if (speed)
6253 		*speed = PCI_SPEED_UNKNOWN;
6254 	if (width)
6255 		*width = PCIE_LNK_WIDTH_UNKNOWN;
6256 
6257 	bw = 0;
6258 
6259 	while (dev) {
6260 		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
6261 
6262 		next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
6263 		next_width = FIELD_GET(PCI_EXP_LNKSTA_NLW, lnksta);
6264 
6265 		next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
6266 
6267 		/* Check if current device limits the total bandwidth */
6268 		if (!bw || next_bw <= bw) {
6269 			bw = next_bw;
6270 
6271 			if (limiting_dev)
6272 				*limiting_dev = dev;
6273 			if (speed)
6274 				*speed = next_speed;
6275 			if (width)
6276 				*width = next_width;
6277 		}
6278 
6279 		dev = pci_upstream_bridge(dev);
6280 	}
6281 
6282 	return bw;
6283 }
6284 EXPORT_SYMBOL(pcie_bandwidth_available);
6285 
6286 /**
6287  * pcie_get_speed_cap - query for the PCI device's link speed capability
6288  * @dev: PCI device to query
6289  *
6290  * Query the PCI device speed capability.  Return the maximum link speed
6291  * supported by the device.
6292  */
6293 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
6294 {
6295 	u32 lnkcap2, lnkcap;
6296 
6297 	/*
6298 	 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18.  The
6299 	 * implementation note there recommends using the Supported Link
6300 	 * Speeds Vector in Link Capabilities 2 when supported.
6301 	 *
6302 	 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
6303 	 * should use the Supported Link Speeds field in Link Capabilities,
6304 	 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
6305 	 */
6306 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
6307 
6308 	/* PCIe r3.0-compliant */
6309 	if (lnkcap2)
6310 		return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
6311 
6312 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6313 	if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
6314 		return PCIE_SPEED_5_0GT;
6315 	else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
6316 		return PCIE_SPEED_2_5GT;
6317 
6318 	return PCI_SPEED_UNKNOWN;
6319 }
6320 EXPORT_SYMBOL(pcie_get_speed_cap);
6321 
6322 /**
6323  * pcie_get_width_cap - query for the PCI device's link width capability
6324  * @dev: PCI device to query
6325  *
6326  * Query the PCI device width capability.  Return the maximum link width
6327  * supported by the device.
6328  */
6329 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
6330 {
6331 	u32 lnkcap;
6332 
6333 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6334 	if (lnkcap)
6335 		return FIELD_GET(PCI_EXP_LNKCAP_MLW, lnkcap);
6336 
6337 	return PCIE_LNK_WIDTH_UNKNOWN;
6338 }
6339 EXPORT_SYMBOL(pcie_get_width_cap);
6340 
6341 /**
6342  * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
6343  * @dev: PCI device
6344  * @speed: storage for link speed
6345  * @width: storage for link width
6346  *
6347  * Calculate a PCI device's link bandwidth by querying for its link speed
6348  * and width, multiplying them, and applying encoding overhead.  The result
6349  * is in Mb/s, i.e., megabits/second of raw bandwidth.
6350  */
6351 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
6352 			   enum pcie_link_width *width)
6353 {
6354 	*speed = pcie_get_speed_cap(dev);
6355 	*width = pcie_get_width_cap(dev);
6356 
6357 	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
6358 		return 0;
6359 
6360 	return *width * PCIE_SPEED2MBS_ENC(*speed);
6361 }
6362 
6363 /**
6364  * __pcie_print_link_status - Report the PCI device's link speed and width
6365  * @dev: PCI device to query
6366  * @verbose: Print info even when enough bandwidth is available
6367  *
6368  * If the available bandwidth at the device is less than the device is
6369  * capable of, report the device's maximum possible bandwidth and the
6370  * upstream link that limits its performance.  If @verbose, always print
6371  * the available bandwidth, even if the device isn't constrained.
6372  */
6373 void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
6374 {
6375 	enum pcie_link_width width, width_cap;
6376 	enum pci_bus_speed speed, speed_cap;
6377 	struct pci_dev *limiting_dev = NULL;
6378 	u32 bw_avail, bw_cap;
6379 
6380 	bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
6381 	bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
6382 
6383 	if (bw_avail >= bw_cap && verbose)
6384 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
6385 			 bw_cap / 1000, bw_cap % 1000,
6386 			 pci_speed_string(speed_cap), width_cap);
6387 	else if (bw_avail < bw_cap)
6388 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
6389 			 bw_avail / 1000, bw_avail % 1000,
6390 			 pci_speed_string(speed), width,
6391 			 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
6392 			 bw_cap / 1000, bw_cap % 1000,
6393 			 pci_speed_string(speed_cap), width_cap);
6394 }
6395 
6396 /**
6397  * pcie_print_link_status - Report the PCI device's link speed and width
6398  * @dev: PCI device to query
6399  *
6400  * Report the available bandwidth at the device.
6401  */
6402 void pcie_print_link_status(struct pci_dev *dev)
6403 {
6404 	__pcie_print_link_status(dev, true);
6405 }
6406 EXPORT_SYMBOL(pcie_print_link_status);
6407 
6408 /**
6409  * pci_select_bars - Make BAR mask from the type of resource
6410  * @dev: the PCI device for which BAR mask is made
6411  * @flags: resource type mask to be selected
6412  *
6413  * This helper routine makes bar mask from the type of resource.
6414  */
6415 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
6416 {
6417 	int i, bars = 0;
6418 	for (i = 0; i < PCI_NUM_RESOURCES; i++)
6419 		if (pci_resource_flags(dev, i) & flags)
6420 			bars |= (1 << i);
6421 	return bars;
6422 }
6423 EXPORT_SYMBOL(pci_select_bars);
6424 
6425 /* Some architectures require additional programming to enable VGA */
6426 static arch_set_vga_state_t arch_set_vga_state;
6427 
6428 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6429 {
6430 	arch_set_vga_state = func;	/* NULL disables */
6431 }
6432 
6433 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
6434 				  unsigned int command_bits, u32 flags)
6435 {
6436 	if (arch_set_vga_state)
6437 		return arch_set_vga_state(dev, decode, command_bits,
6438 						flags);
6439 	return 0;
6440 }
6441 
6442 /**
6443  * pci_set_vga_state - set VGA decode state on device and parents if requested
6444  * @dev: the PCI device
6445  * @decode: true = enable decoding, false = disable decoding
6446  * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6447  * @flags: traverse ancestors and change bridges
6448  * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6449  */
6450 int pci_set_vga_state(struct pci_dev *dev, bool decode,
6451 		      unsigned int command_bits, u32 flags)
6452 {
6453 	struct pci_bus *bus;
6454 	struct pci_dev *bridge;
6455 	u16 cmd;
6456 	int rc;
6457 
6458 	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6459 
6460 	/* ARCH specific VGA enables */
6461 	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6462 	if (rc)
6463 		return rc;
6464 
6465 	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6466 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
6467 		if (decode)
6468 			cmd |= command_bits;
6469 		else
6470 			cmd &= ~command_bits;
6471 		pci_write_config_word(dev, PCI_COMMAND, cmd);
6472 	}
6473 
6474 	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6475 		return 0;
6476 
6477 	bus = dev->bus;
6478 	while (bus) {
6479 		bridge = bus->self;
6480 		if (bridge) {
6481 			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6482 					     &cmd);
6483 			if (decode)
6484 				cmd |= PCI_BRIDGE_CTL_VGA;
6485 			else
6486 				cmd &= ~PCI_BRIDGE_CTL_VGA;
6487 			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6488 					      cmd);
6489 		}
6490 		bus = bus->parent;
6491 	}
6492 	return 0;
6493 }
6494 
6495 #ifdef CONFIG_ACPI
6496 bool pci_pr3_present(struct pci_dev *pdev)
6497 {
6498 	struct acpi_device *adev;
6499 
6500 	if (acpi_disabled)
6501 		return false;
6502 
6503 	adev = ACPI_COMPANION(&pdev->dev);
6504 	if (!adev)
6505 		return false;
6506 
6507 	return adev->power.flags.power_resources &&
6508 		acpi_has_method(adev->handle, "_PR3");
6509 }
6510 EXPORT_SYMBOL_GPL(pci_pr3_present);
6511 #endif
6512 
6513 /**
6514  * pci_add_dma_alias - Add a DMA devfn alias for a device
6515  * @dev: the PCI device for which alias is added
6516  * @devfn_from: alias slot and function
6517  * @nr_devfns: number of subsequent devfns to alias
6518  *
6519  * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6520  * which is used to program permissible bus-devfn source addresses for DMA
6521  * requests in an IOMMU.  These aliases factor into IOMMU group creation
6522  * and are useful for devices generating DMA requests beyond or different
6523  * from their logical bus-devfn.  Examples include device quirks where the
6524  * device simply uses the wrong devfn, as well as non-transparent bridges
6525  * where the alias may be a proxy for devices in another domain.
6526  *
6527  * IOMMU group creation is performed during device discovery or addition,
6528  * prior to any potential DMA mapping and therefore prior to driver probing
6529  * (especially for userspace assigned devices where IOMMU group definition
6530  * cannot be left as a userspace activity).  DMA aliases should therefore
6531  * be configured via quirks, such as the PCI fixup header quirk.
6532  */
6533 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from,
6534 		       unsigned int nr_devfns)
6535 {
6536 	int devfn_to;
6537 
6538 	nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from);
6539 	devfn_to = devfn_from + nr_devfns - 1;
6540 
6541 	if (!dev->dma_alias_mask)
6542 		dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6543 	if (!dev->dma_alias_mask) {
6544 		pci_warn(dev, "Unable to allocate DMA alias mask\n");
6545 		return;
6546 	}
6547 
6548 	bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6549 
6550 	if (nr_devfns == 1)
6551 		pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6552 				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6553 	else if (nr_devfns > 1)
6554 		pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6555 				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6556 				PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6557 }
6558 
6559 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6560 {
6561 	return (dev1->dma_alias_mask &&
6562 		test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6563 	       (dev2->dma_alias_mask &&
6564 		test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6565 	       pci_real_dma_dev(dev1) == dev2 ||
6566 	       pci_real_dma_dev(dev2) == dev1;
6567 }
6568 
6569 bool pci_device_is_present(struct pci_dev *pdev)
6570 {
6571 	u32 v;
6572 
6573 	/* Check PF if pdev is a VF, since VF Vendor/Device IDs are 0xffff */
6574 	pdev = pci_physfn(pdev);
6575 	if (pci_dev_is_disconnected(pdev))
6576 		return false;
6577 	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6578 }
6579 EXPORT_SYMBOL_GPL(pci_device_is_present);
6580 
6581 void pci_ignore_hotplug(struct pci_dev *dev)
6582 {
6583 	struct pci_dev *bridge = dev->bus->self;
6584 
6585 	dev->ignore_hotplug = 1;
6586 	/* Propagate the "ignore hotplug" setting to the parent bridge. */
6587 	if (bridge)
6588 		bridge->ignore_hotplug = 1;
6589 }
6590 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6591 
6592 /**
6593  * pci_real_dma_dev - Get PCI DMA device for PCI device
6594  * @dev: the PCI device that may have a PCI DMA alias
6595  *
6596  * Permits the platform to provide architecture-specific functionality to
6597  * devices needing to alias DMA to another PCI device on another PCI bus. If
6598  * the PCI device is on the same bus, it is recommended to use
6599  * pci_add_dma_alias(). This is the default implementation. Architecture
6600  * implementations can override this.
6601  */
6602 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6603 {
6604 	return dev;
6605 }
6606 
6607 resource_size_t __weak pcibios_default_alignment(void)
6608 {
6609 	return 0;
6610 }
6611 
6612 /*
6613  * Arches that don't want to expose struct resource to userland as-is in
6614  * sysfs and /proc can implement their own pci_resource_to_user().
6615  */
6616 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6617 				 const struct resource *rsrc,
6618 				 resource_size_t *start, resource_size_t *end)
6619 {
6620 	*start = rsrc->start;
6621 	*end = rsrc->end;
6622 }
6623 
6624 static char *resource_alignment_param;
6625 static DEFINE_SPINLOCK(resource_alignment_lock);
6626 
6627 /**
6628  * pci_specified_resource_alignment - get resource alignment specified by user.
6629  * @dev: the PCI device to get
6630  * @resize: whether or not to change resources' size when reassigning alignment
6631  *
6632  * RETURNS: Resource alignment if it is specified.
6633  *          Zero if it is not specified.
6634  */
6635 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6636 							bool *resize)
6637 {
6638 	int align_order, count;
6639 	resource_size_t align = pcibios_default_alignment();
6640 	const char *p;
6641 	int ret;
6642 
6643 	spin_lock(&resource_alignment_lock);
6644 	p = resource_alignment_param;
6645 	if (!p || !*p)
6646 		goto out;
6647 	if (pci_has_flag(PCI_PROBE_ONLY)) {
6648 		align = 0;
6649 		pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6650 		goto out;
6651 	}
6652 
6653 	while (*p) {
6654 		count = 0;
6655 		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6656 		    p[count] == '@') {
6657 			p += count + 1;
6658 			if (align_order > 63) {
6659 				pr_err("PCI: Invalid requested alignment (order %d)\n",
6660 				       align_order);
6661 				align_order = PAGE_SHIFT;
6662 			}
6663 		} else {
6664 			align_order = PAGE_SHIFT;
6665 		}
6666 
6667 		ret = pci_dev_str_match(dev, p, &p);
6668 		if (ret == 1) {
6669 			*resize = true;
6670 			align = 1ULL << align_order;
6671 			break;
6672 		} else if (ret < 0) {
6673 			pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6674 			       p);
6675 			break;
6676 		}
6677 
6678 		if (*p != ';' && *p != ',') {
6679 			/* End of param or invalid format */
6680 			break;
6681 		}
6682 		p++;
6683 	}
6684 out:
6685 	spin_unlock(&resource_alignment_lock);
6686 	return align;
6687 }
6688 
6689 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6690 					   resource_size_t align, bool resize)
6691 {
6692 	struct resource *r = &dev->resource[bar];
6693 	resource_size_t size;
6694 
6695 	if (!(r->flags & IORESOURCE_MEM))
6696 		return;
6697 
6698 	if (r->flags & IORESOURCE_PCI_FIXED) {
6699 		pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6700 			 bar, r, (unsigned long long)align);
6701 		return;
6702 	}
6703 
6704 	size = resource_size(r);
6705 	if (size >= align)
6706 		return;
6707 
6708 	/*
6709 	 * Increase the alignment of the resource.  There are two ways we
6710 	 * can do this:
6711 	 *
6712 	 * 1) Increase the size of the resource.  BARs are aligned on their
6713 	 *    size, so when we reallocate space for this resource, we'll
6714 	 *    allocate it with the larger alignment.  This also prevents
6715 	 *    assignment of any other BARs inside the alignment region, so
6716 	 *    if we're requesting page alignment, this means no other BARs
6717 	 *    will share the page.
6718 	 *
6719 	 *    The disadvantage is that this makes the resource larger than
6720 	 *    the hardware BAR, which may break drivers that compute things
6721 	 *    based on the resource size, e.g., to find registers at a
6722 	 *    fixed offset before the end of the BAR.
6723 	 *
6724 	 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6725 	 *    set r->start to the desired alignment.  By itself this
6726 	 *    doesn't prevent other BARs being put inside the alignment
6727 	 *    region, but if we realign *every* resource of every device in
6728 	 *    the system, none of them will share an alignment region.
6729 	 *
6730 	 * When the user has requested alignment for only some devices via
6731 	 * the "pci=resource_alignment" argument, "resize" is true and we
6732 	 * use the first method.  Otherwise we assume we're aligning all
6733 	 * devices and we use the second.
6734 	 */
6735 
6736 	pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6737 		 bar, r, (unsigned long long)align);
6738 
6739 	if (resize) {
6740 		r->start = 0;
6741 		r->end = align - 1;
6742 	} else {
6743 		r->flags &= ~IORESOURCE_SIZEALIGN;
6744 		r->flags |= IORESOURCE_STARTALIGN;
6745 		r->start = align;
6746 		r->end = r->start + size - 1;
6747 	}
6748 	r->flags |= IORESOURCE_UNSET;
6749 }
6750 
6751 /*
6752  * This function disables memory decoding and releases memory resources
6753  * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6754  * It also rounds up size to specified alignment.
6755  * Later on, the kernel will assign page-aligned memory resource back
6756  * to the device.
6757  */
6758 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6759 {
6760 	int i;
6761 	struct resource *r;
6762 	resource_size_t align;
6763 	u16 command;
6764 	bool resize = false;
6765 
6766 	/*
6767 	 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6768 	 * 3.4.1.11.  Their resources are allocated from the space
6769 	 * described by the VF BARx register in the PF's SR-IOV capability.
6770 	 * We can't influence their alignment here.
6771 	 */
6772 	if (dev->is_virtfn)
6773 		return;
6774 
6775 	/* check if specified PCI is target device to reassign */
6776 	align = pci_specified_resource_alignment(dev, &resize);
6777 	if (!align)
6778 		return;
6779 
6780 	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6781 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6782 		pci_warn(dev, "Can't reassign resources to host bridge\n");
6783 		return;
6784 	}
6785 
6786 	pci_read_config_word(dev, PCI_COMMAND, &command);
6787 	command &= ~PCI_COMMAND_MEMORY;
6788 	pci_write_config_word(dev, PCI_COMMAND, command);
6789 
6790 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6791 		pci_request_resource_alignment(dev, i, align, resize);
6792 
6793 	/*
6794 	 * Need to disable bridge's resource window,
6795 	 * to enable the kernel to reassign new resource
6796 	 * window later on.
6797 	 */
6798 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6799 		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6800 			r = &dev->resource[i];
6801 			if (!(r->flags & IORESOURCE_MEM))
6802 				continue;
6803 			r->flags |= IORESOURCE_UNSET;
6804 			r->end = resource_size(r) - 1;
6805 			r->start = 0;
6806 		}
6807 		pci_disable_bridge_window(dev);
6808 	}
6809 }
6810 
6811 static ssize_t resource_alignment_show(const struct bus_type *bus, char *buf)
6812 {
6813 	size_t count = 0;
6814 
6815 	spin_lock(&resource_alignment_lock);
6816 	if (resource_alignment_param)
6817 		count = sysfs_emit(buf, "%s\n", resource_alignment_param);
6818 	spin_unlock(&resource_alignment_lock);
6819 
6820 	return count;
6821 }
6822 
6823 static ssize_t resource_alignment_store(const struct bus_type *bus,
6824 					const char *buf, size_t count)
6825 {
6826 	char *param, *old, *end;
6827 
6828 	if (count >= (PAGE_SIZE - 1))
6829 		return -EINVAL;
6830 
6831 	param = kstrndup(buf, count, GFP_KERNEL);
6832 	if (!param)
6833 		return -ENOMEM;
6834 
6835 	end = strchr(param, '\n');
6836 	if (end)
6837 		*end = '\0';
6838 
6839 	spin_lock(&resource_alignment_lock);
6840 	old = resource_alignment_param;
6841 	if (strlen(param)) {
6842 		resource_alignment_param = param;
6843 	} else {
6844 		kfree(param);
6845 		resource_alignment_param = NULL;
6846 	}
6847 	spin_unlock(&resource_alignment_lock);
6848 
6849 	kfree(old);
6850 
6851 	return count;
6852 }
6853 
6854 static BUS_ATTR_RW(resource_alignment);
6855 
6856 static int __init pci_resource_alignment_sysfs_init(void)
6857 {
6858 	return bus_create_file(&pci_bus_type,
6859 					&bus_attr_resource_alignment);
6860 }
6861 late_initcall(pci_resource_alignment_sysfs_init);
6862 
6863 static void pci_no_domains(void)
6864 {
6865 #ifdef CONFIG_PCI_DOMAINS
6866 	pci_domains_supported = 0;
6867 #endif
6868 }
6869 
6870 #ifdef CONFIG_PCI_DOMAINS_GENERIC
6871 static DEFINE_IDA(pci_domain_nr_static_ida);
6872 static DEFINE_IDA(pci_domain_nr_dynamic_ida);
6873 
6874 static void of_pci_reserve_static_domain_nr(void)
6875 {
6876 	struct device_node *np;
6877 	int domain_nr;
6878 
6879 	for_each_node_by_type(np, "pci") {
6880 		domain_nr = of_get_pci_domain_nr(np);
6881 		if (domain_nr < 0)
6882 			continue;
6883 		/*
6884 		 * Permanently allocate domain_nr in dynamic_ida
6885 		 * to prevent it from dynamic allocation.
6886 		 */
6887 		ida_alloc_range(&pci_domain_nr_dynamic_ida,
6888 				domain_nr, domain_nr, GFP_KERNEL);
6889 	}
6890 }
6891 
6892 static int of_pci_bus_find_domain_nr(struct device *parent)
6893 {
6894 	static bool static_domains_reserved = false;
6895 	int domain_nr;
6896 
6897 	/* On the first call scan device tree for static allocations. */
6898 	if (!static_domains_reserved) {
6899 		of_pci_reserve_static_domain_nr();
6900 		static_domains_reserved = true;
6901 	}
6902 
6903 	if (parent) {
6904 		/*
6905 		 * If domain is in DT, allocate it in static IDA.  This
6906 		 * prevents duplicate static allocations in case of errors
6907 		 * in DT.
6908 		 */
6909 		domain_nr = of_get_pci_domain_nr(parent->of_node);
6910 		if (domain_nr >= 0)
6911 			return ida_alloc_range(&pci_domain_nr_static_ida,
6912 					       domain_nr, domain_nr,
6913 					       GFP_KERNEL);
6914 	}
6915 
6916 	/*
6917 	 * If domain was not specified in DT, choose a free ID from dynamic
6918 	 * allocations. All domain numbers from DT are permanently in
6919 	 * dynamic allocations to prevent assigning them to other DT nodes
6920 	 * without static domain.
6921 	 */
6922 	return ida_alloc(&pci_domain_nr_dynamic_ida, GFP_KERNEL);
6923 }
6924 
6925 static void of_pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent)
6926 {
6927 	if (bus->domain_nr < 0)
6928 		return;
6929 
6930 	/* Release domain from IDA where it was allocated. */
6931 	if (of_get_pci_domain_nr(parent->of_node) == bus->domain_nr)
6932 		ida_free(&pci_domain_nr_static_ida, bus->domain_nr);
6933 	else
6934 		ida_free(&pci_domain_nr_dynamic_ida, bus->domain_nr);
6935 }
6936 
6937 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6938 {
6939 	return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6940 			       acpi_pci_bus_find_domain_nr(bus);
6941 }
6942 
6943 void pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent)
6944 {
6945 	if (!acpi_disabled)
6946 		return;
6947 	of_pci_bus_release_domain_nr(bus, parent);
6948 }
6949 #endif
6950 
6951 /**
6952  * pci_ext_cfg_avail - can we access extended PCI config space?
6953  *
6954  * Returns 1 if we can access PCI extended config space (offsets
6955  * greater than 0xff). This is the default implementation. Architecture
6956  * implementations can override this.
6957  */
6958 int __weak pci_ext_cfg_avail(void)
6959 {
6960 	return 1;
6961 }
6962 
6963 void __weak pci_fixup_cardbus(struct pci_bus *bus)
6964 {
6965 }
6966 EXPORT_SYMBOL(pci_fixup_cardbus);
6967 
6968 static int __init pci_setup(char *str)
6969 {
6970 	while (str) {
6971 		char *k = strchr(str, ',');
6972 		if (k)
6973 			*k++ = 0;
6974 		if (*str && (str = pcibios_setup(str)) && *str) {
6975 			if (!strcmp(str, "nomsi")) {
6976 				pci_no_msi();
6977 			} else if (!strncmp(str, "noats", 5)) {
6978 				pr_info("PCIe: ATS is disabled\n");
6979 				pcie_ats_disabled = true;
6980 			} else if (!strcmp(str, "noaer")) {
6981 				pci_no_aer();
6982 			} else if (!strcmp(str, "earlydump")) {
6983 				pci_early_dump = true;
6984 			} else if (!strncmp(str, "realloc=", 8)) {
6985 				pci_realloc_get_opt(str + 8);
6986 			} else if (!strncmp(str, "realloc", 7)) {
6987 				pci_realloc_get_opt("on");
6988 			} else if (!strcmp(str, "nodomains")) {
6989 				pci_no_domains();
6990 			} else if (!strncmp(str, "noari", 5)) {
6991 				pcie_ari_disabled = true;
6992 			} else if (!strncmp(str, "cbiosize=", 9)) {
6993 				pci_cardbus_io_size = memparse(str + 9, &str);
6994 			} else if (!strncmp(str, "cbmemsize=", 10)) {
6995 				pci_cardbus_mem_size = memparse(str + 10, &str);
6996 			} else if (!strncmp(str, "resource_alignment=", 19)) {
6997 				resource_alignment_param = str + 19;
6998 			} else if (!strncmp(str, "ecrc=", 5)) {
6999 				pcie_ecrc_get_policy(str + 5);
7000 			} else if (!strncmp(str, "hpiosize=", 9)) {
7001 				pci_hotplug_io_size = memparse(str + 9, &str);
7002 			} else if (!strncmp(str, "hpmmiosize=", 11)) {
7003 				pci_hotplug_mmio_size = memparse(str + 11, &str);
7004 			} else if (!strncmp(str, "hpmmioprefsize=", 15)) {
7005 				pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
7006 			} else if (!strncmp(str, "hpmemsize=", 10)) {
7007 				pci_hotplug_mmio_size = memparse(str + 10, &str);
7008 				pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
7009 			} else if (!strncmp(str, "hpbussize=", 10)) {
7010 				pci_hotplug_bus_size =
7011 					simple_strtoul(str + 10, &str, 0);
7012 				if (pci_hotplug_bus_size > 0xff)
7013 					pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
7014 			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
7015 				pcie_bus_config = PCIE_BUS_TUNE_OFF;
7016 			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
7017 				pcie_bus_config = PCIE_BUS_SAFE;
7018 			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
7019 				pcie_bus_config = PCIE_BUS_PERFORMANCE;
7020 			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
7021 				pcie_bus_config = PCIE_BUS_PEER2PEER;
7022 			} else if (!strncmp(str, "pcie_scan_all", 13)) {
7023 				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
7024 			} else if (!strncmp(str, "disable_acs_redir=", 18)) {
7025 				disable_acs_redir_param = str + 18;
7026 			} else {
7027 				pr_err("PCI: Unknown option `%s'\n", str);
7028 			}
7029 		}
7030 		str = k;
7031 	}
7032 	return 0;
7033 }
7034 early_param("pci", pci_setup);
7035 
7036 /*
7037  * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
7038  * in pci_setup(), above, to point to data in the __initdata section which
7039  * will be freed after the init sequence is complete. We can't allocate memory
7040  * in pci_setup() because some architectures do not have any memory allocation
7041  * service available during an early_param() call. So we allocate memory and
7042  * copy the variable here before the init section is freed.
7043  *
7044  */
7045 static int __init pci_realloc_setup_params(void)
7046 {
7047 	resource_alignment_param = kstrdup(resource_alignment_param,
7048 					   GFP_KERNEL);
7049 	disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
7050 
7051 	return 0;
7052 }
7053 pure_initcall(pci_realloc_setup_params);
7054