1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * PCI Bus Services, see include/linux/pci.h for further explanation. 4 * 5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter, 6 * David Mosberger-Tang 7 * 8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz> 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/kernel.h> 13 #include <linux/delay.h> 14 #include <linux/dmi.h> 15 #include <linux/init.h> 16 #include <linux/msi.h> 17 #include <linux/of.h> 18 #include <linux/pci.h> 19 #include <linux/pm.h> 20 #include <linux/slab.h> 21 #include <linux/module.h> 22 #include <linux/spinlock.h> 23 #include <linux/string.h> 24 #include <linux/log2.h> 25 #include <linux/logic_pio.h> 26 #include <linux/pm_wakeup.h> 27 #include <linux/interrupt.h> 28 #include <linux/device.h> 29 #include <linux/pm_runtime.h> 30 #include <linux/pci_hotplug.h> 31 #include <linux/vmalloc.h> 32 #include <asm/dma.h> 33 #include <linux/aer.h> 34 #include <linux/bitfield.h> 35 #include "pci.h" 36 37 DEFINE_MUTEX(pci_slot_mutex); 38 39 const char *pci_power_names[] = { 40 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown", 41 }; 42 EXPORT_SYMBOL_GPL(pci_power_names); 43 44 int isa_dma_bridge_buggy; 45 EXPORT_SYMBOL(isa_dma_bridge_buggy); 46 47 int pci_pci_problems; 48 EXPORT_SYMBOL(pci_pci_problems); 49 50 unsigned int pci_pm_d3hot_delay; 51 52 static void pci_pme_list_scan(struct work_struct *work); 53 54 static LIST_HEAD(pci_pme_list); 55 static DEFINE_MUTEX(pci_pme_list_mutex); 56 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan); 57 58 struct pci_pme_device { 59 struct list_head list; 60 struct pci_dev *dev; 61 }; 62 63 #define PME_TIMEOUT 1000 /* How long between PME checks */ 64 65 static void pci_dev_d3_sleep(struct pci_dev *dev) 66 { 67 unsigned int delay = dev->d3hot_delay; 68 69 if (delay < pci_pm_d3hot_delay) 70 delay = pci_pm_d3hot_delay; 71 72 if (delay) 73 msleep(delay); 74 } 75 76 bool pci_reset_supported(struct pci_dev *dev) 77 { 78 return dev->reset_methods[0] != 0; 79 } 80 81 #ifdef CONFIG_PCI_DOMAINS 82 int pci_domains_supported = 1; 83 #endif 84 85 #define DEFAULT_CARDBUS_IO_SIZE (256) 86 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024) 87 /* pci=cbmemsize=nnM,cbiosize=nn can override this */ 88 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE; 89 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE; 90 91 #define DEFAULT_HOTPLUG_IO_SIZE (256) 92 #define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024) 93 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024) 94 /* hpiosize=nn can override this */ 95 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE; 96 /* 97 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size, 98 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size; 99 * pci=hpmemsize=nnM overrides both 100 */ 101 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE; 102 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE; 103 104 #define DEFAULT_HOTPLUG_BUS_SIZE 1 105 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 106 107 108 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */ 109 #ifdef CONFIG_PCIE_BUS_TUNE_OFF 110 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF; 111 #elif defined CONFIG_PCIE_BUS_SAFE 112 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE; 113 #elif defined CONFIG_PCIE_BUS_PERFORMANCE 114 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE; 115 #elif defined CONFIG_PCIE_BUS_PEER2PEER 116 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER; 117 #else 118 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT; 119 #endif 120 121 /* 122 * The default CLS is used if arch didn't set CLS explicitly and not 123 * all pci devices agree on the same value. Arch can override either 124 * the dfl or actual value as it sees fit. Don't forget this is 125 * measured in 32-bit words, not bytes. 126 */ 127 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2; 128 u8 pci_cache_line_size; 129 130 /* 131 * If we set up a device for bus mastering, we need to check the latency 132 * timer as certain BIOSes forget to set it properly. 133 */ 134 unsigned int pcibios_max_latency = 255; 135 136 /* If set, the PCIe ARI capability will not be used. */ 137 static bool pcie_ari_disabled; 138 139 /* If set, the PCIe ATS capability will not be used. */ 140 static bool pcie_ats_disabled; 141 142 /* If set, the PCI config space of each device is printed during boot. */ 143 bool pci_early_dump; 144 145 bool pci_ats_disabled(void) 146 { 147 return pcie_ats_disabled; 148 } 149 EXPORT_SYMBOL_GPL(pci_ats_disabled); 150 151 /* Disable bridge_d3 for all PCIe ports */ 152 static bool pci_bridge_d3_disable; 153 /* Force bridge_d3 for all PCIe ports */ 154 static bool pci_bridge_d3_force; 155 156 static int __init pcie_port_pm_setup(char *str) 157 { 158 if (!strcmp(str, "off")) 159 pci_bridge_d3_disable = true; 160 else if (!strcmp(str, "force")) 161 pci_bridge_d3_force = true; 162 return 1; 163 } 164 __setup("pcie_port_pm=", pcie_port_pm_setup); 165 166 /* Time to wait after a reset for device to become responsive */ 167 #define PCIE_RESET_READY_POLL_MS 60000 168 169 /** 170 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children 171 * @bus: pointer to PCI bus structure to search 172 * 173 * Given a PCI bus, returns the highest PCI bus number present in the set 174 * including the given PCI bus and its list of child PCI buses. 175 */ 176 unsigned char pci_bus_max_busnr(struct pci_bus *bus) 177 { 178 struct pci_bus *tmp; 179 unsigned char max, n; 180 181 max = bus->busn_res.end; 182 list_for_each_entry(tmp, &bus->children, node) { 183 n = pci_bus_max_busnr(tmp); 184 if (n > max) 185 max = n; 186 } 187 return max; 188 } 189 EXPORT_SYMBOL_GPL(pci_bus_max_busnr); 190 191 /** 192 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS 193 * @pdev: the PCI device 194 * 195 * Returns error bits set in PCI_STATUS and clears them. 196 */ 197 int pci_status_get_and_clear_errors(struct pci_dev *pdev) 198 { 199 u16 status; 200 int ret; 201 202 ret = pci_read_config_word(pdev, PCI_STATUS, &status); 203 if (ret != PCIBIOS_SUCCESSFUL) 204 return -EIO; 205 206 status &= PCI_STATUS_ERROR_BITS; 207 if (status) 208 pci_write_config_word(pdev, PCI_STATUS, status); 209 210 return status; 211 } 212 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors); 213 214 #ifdef CONFIG_HAS_IOMEM 215 static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar, 216 bool write_combine) 217 { 218 struct resource *res = &pdev->resource[bar]; 219 resource_size_t start = res->start; 220 resource_size_t size = resource_size(res); 221 222 /* 223 * Make sure the BAR is actually a memory resource, not an IO resource 224 */ 225 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) { 226 pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res); 227 return NULL; 228 } 229 230 if (write_combine) 231 return ioremap_wc(start, size); 232 233 return ioremap(start, size); 234 } 235 236 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar) 237 { 238 return __pci_ioremap_resource(pdev, bar, false); 239 } 240 EXPORT_SYMBOL_GPL(pci_ioremap_bar); 241 242 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar) 243 { 244 return __pci_ioremap_resource(pdev, bar, true); 245 } 246 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar); 247 #endif 248 249 /** 250 * pci_dev_str_match_path - test if a path string matches a device 251 * @dev: the PCI device to test 252 * @path: string to match the device against 253 * @endptr: pointer to the string after the match 254 * 255 * Test if a string (typically from a kernel parameter) formatted as a 256 * path of device/function addresses matches a PCI device. The string must 257 * be of the form: 258 * 259 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 260 * 261 * A path for a device can be obtained using 'lspci -t'. Using a path 262 * is more robust against bus renumbering than using only a single bus, 263 * device and function address. 264 * 265 * Returns 1 if the string matches the device, 0 if it does not and 266 * a negative error code if it fails to parse the string. 267 */ 268 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path, 269 const char **endptr) 270 { 271 int ret; 272 int seg, bus, slot, func; 273 char *wpath, *p; 274 char end; 275 276 *endptr = strchrnul(path, ';'); 277 278 wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC); 279 if (!wpath) 280 return -ENOMEM; 281 282 while (1) { 283 p = strrchr(wpath, '/'); 284 if (!p) 285 break; 286 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end); 287 if (ret != 2) { 288 ret = -EINVAL; 289 goto free_and_exit; 290 } 291 292 if (dev->devfn != PCI_DEVFN(slot, func)) { 293 ret = 0; 294 goto free_and_exit; 295 } 296 297 /* 298 * Note: we don't need to get a reference to the upstream 299 * bridge because we hold a reference to the top level 300 * device which should hold a reference to the bridge, 301 * and so on. 302 */ 303 dev = pci_upstream_bridge(dev); 304 if (!dev) { 305 ret = 0; 306 goto free_and_exit; 307 } 308 309 *p = 0; 310 } 311 312 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot, 313 &func, &end); 314 if (ret != 4) { 315 seg = 0; 316 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end); 317 if (ret != 3) { 318 ret = -EINVAL; 319 goto free_and_exit; 320 } 321 } 322 323 ret = (seg == pci_domain_nr(dev->bus) && 324 bus == dev->bus->number && 325 dev->devfn == PCI_DEVFN(slot, func)); 326 327 free_and_exit: 328 kfree(wpath); 329 return ret; 330 } 331 332 /** 333 * pci_dev_str_match - test if a string matches a device 334 * @dev: the PCI device to test 335 * @p: string to match the device against 336 * @endptr: pointer to the string after the match 337 * 338 * Test if a string (typically from a kernel parameter) matches a specified 339 * PCI device. The string may be of one of the following formats: 340 * 341 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 342 * pci:<vendor>:<device>[:<subvendor>:<subdevice>] 343 * 344 * The first format specifies a PCI bus/device/function address which 345 * may change if new hardware is inserted, if motherboard firmware changes, 346 * or due to changes caused in kernel parameters. If the domain is 347 * left unspecified, it is taken to be 0. In order to be robust against 348 * bus renumbering issues, a path of PCI device/function numbers may be used 349 * to address the specific device. The path for a device can be determined 350 * through the use of 'lspci -t'. 351 * 352 * The second format matches devices using IDs in the configuration 353 * space which may match multiple devices in the system. A value of 0 354 * for any field will match all devices. (Note: this differs from 355 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for 356 * legacy reasons and convenience so users don't have to specify 357 * FFFFFFFFs on the command line.) 358 * 359 * Returns 1 if the string matches the device, 0 if it does not and 360 * a negative error code if the string cannot be parsed. 361 */ 362 static int pci_dev_str_match(struct pci_dev *dev, const char *p, 363 const char **endptr) 364 { 365 int ret; 366 int count; 367 unsigned short vendor, device, subsystem_vendor, subsystem_device; 368 369 if (strncmp(p, "pci:", 4) == 0) { 370 /* PCI vendor/device (subvendor/subdevice) IDs are specified */ 371 p += 4; 372 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device, 373 &subsystem_vendor, &subsystem_device, &count); 374 if (ret != 4) { 375 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count); 376 if (ret != 2) 377 return -EINVAL; 378 379 subsystem_vendor = 0; 380 subsystem_device = 0; 381 } 382 383 p += count; 384 385 if ((!vendor || vendor == dev->vendor) && 386 (!device || device == dev->device) && 387 (!subsystem_vendor || 388 subsystem_vendor == dev->subsystem_vendor) && 389 (!subsystem_device || 390 subsystem_device == dev->subsystem_device)) 391 goto found; 392 } else { 393 /* 394 * PCI Bus, Device, Function IDs are specified 395 * (optionally, may include a path of devfns following it) 396 */ 397 ret = pci_dev_str_match_path(dev, p, &p); 398 if (ret < 0) 399 return ret; 400 else if (ret) 401 goto found; 402 } 403 404 *endptr = p; 405 return 0; 406 407 found: 408 *endptr = p; 409 return 1; 410 } 411 412 static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn, 413 u8 pos, int cap, int *ttl) 414 { 415 u8 id; 416 u16 ent; 417 418 pci_bus_read_config_byte(bus, devfn, pos, &pos); 419 420 while ((*ttl)--) { 421 if (pos < 0x40) 422 break; 423 pos &= ~3; 424 pci_bus_read_config_word(bus, devfn, pos, &ent); 425 426 id = ent & 0xff; 427 if (id == 0xff) 428 break; 429 if (id == cap) 430 return pos; 431 pos = (ent >> 8); 432 } 433 return 0; 434 } 435 436 static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn, 437 u8 pos, int cap) 438 { 439 int ttl = PCI_FIND_CAP_TTL; 440 441 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl); 442 } 443 444 u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap) 445 { 446 return __pci_find_next_cap(dev->bus, dev->devfn, 447 pos + PCI_CAP_LIST_NEXT, cap); 448 } 449 EXPORT_SYMBOL_GPL(pci_find_next_capability); 450 451 static u8 __pci_bus_find_cap_start(struct pci_bus *bus, 452 unsigned int devfn, u8 hdr_type) 453 { 454 u16 status; 455 456 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status); 457 if (!(status & PCI_STATUS_CAP_LIST)) 458 return 0; 459 460 switch (hdr_type) { 461 case PCI_HEADER_TYPE_NORMAL: 462 case PCI_HEADER_TYPE_BRIDGE: 463 return PCI_CAPABILITY_LIST; 464 case PCI_HEADER_TYPE_CARDBUS: 465 return PCI_CB_CAPABILITY_LIST; 466 } 467 468 return 0; 469 } 470 471 /** 472 * pci_find_capability - query for devices' capabilities 473 * @dev: PCI device to query 474 * @cap: capability code 475 * 476 * Tell if a device supports a given PCI capability. 477 * Returns the address of the requested capability structure within the 478 * device's PCI configuration space or 0 in case the device does not 479 * support it. Possible values for @cap include: 480 * 481 * %PCI_CAP_ID_PM Power Management 482 * %PCI_CAP_ID_AGP Accelerated Graphics Port 483 * %PCI_CAP_ID_VPD Vital Product Data 484 * %PCI_CAP_ID_SLOTID Slot Identification 485 * %PCI_CAP_ID_MSI Message Signalled Interrupts 486 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap 487 * %PCI_CAP_ID_PCIX PCI-X 488 * %PCI_CAP_ID_EXP PCI Express 489 */ 490 u8 pci_find_capability(struct pci_dev *dev, int cap) 491 { 492 u8 pos; 493 494 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 495 if (pos) 496 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap); 497 498 return pos; 499 } 500 EXPORT_SYMBOL(pci_find_capability); 501 502 /** 503 * pci_bus_find_capability - query for devices' capabilities 504 * @bus: the PCI bus to query 505 * @devfn: PCI device to query 506 * @cap: capability code 507 * 508 * Like pci_find_capability() but works for PCI devices that do not have a 509 * pci_dev structure set up yet. 510 * 511 * Returns the address of the requested capability structure within the 512 * device's PCI configuration space or 0 in case the device does not 513 * support it. 514 */ 515 u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap) 516 { 517 u8 hdr_type, pos; 518 519 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type); 520 521 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f); 522 if (pos) 523 pos = __pci_find_next_cap(bus, devfn, pos, cap); 524 525 return pos; 526 } 527 EXPORT_SYMBOL(pci_bus_find_capability); 528 529 /** 530 * pci_find_next_ext_capability - Find an extended capability 531 * @dev: PCI device to query 532 * @start: address at which to start looking (0 to start at beginning of list) 533 * @cap: capability code 534 * 535 * Returns the address of the next matching extended capability structure 536 * within the device's PCI configuration space or 0 if the device does 537 * not support it. Some capabilities can occur several times, e.g., the 538 * vendor-specific capability, and this provides a way to find them all. 539 */ 540 u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap) 541 { 542 u32 header; 543 int ttl; 544 u16 pos = PCI_CFG_SPACE_SIZE; 545 546 /* minimum 8 bytes per capability */ 547 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8; 548 549 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE) 550 return 0; 551 552 if (start) 553 pos = start; 554 555 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 556 return 0; 557 558 /* 559 * If we have no capabilities, this is indicated by cap ID, 560 * cap version and next pointer all being 0. 561 */ 562 if (header == 0) 563 return 0; 564 565 while (ttl-- > 0) { 566 if (PCI_EXT_CAP_ID(header) == cap && pos != start) 567 return pos; 568 569 pos = PCI_EXT_CAP_NEXT(header); 570 if (pos < PCI_CFG_SPACE_SIZE) 571 break; 572 573 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 574 break; 575 } 576 577 return 0; 578 } 579 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability); 580 581 /** 582 * pci_find_ext_capability - Find an extended capability 583 * @dev: PCI device to query 584 * @cap: capability code 585 * 586 * Returns the address of the requested extended capability structure 587 * within the device's PCI configuration space or 0 if the device does 588 * not support it. Possible values for @cap include: 589 * 590 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting 591 * %PCI_EXT_CAP_ID_VC Virtual Channel 592 * %PCI_EXT_CAP_ID_DSN Device Serial Number 593 * %PCI_EXT_CAP_ID_PWR Power Budgeting 594 */ 595 u16 pci_find_ext_capability(struct pci_dev *dev, int cap) 596 { 597 return pci_find_next_ext_capability(dev, 0, cap); 598 } 599 EXPORT_SYMBOL_GPL(pci_find_ext_capability); 600 601 /** 602 * pci_get_dsn - Read and return the 8-byte Device Serial Number 603 * @dev: PCI device to query 604 * 605 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial 606 * Number. 607 * 608 * Returns the DSN, or zero if the capability does not exist. 609 */ 610 u64 pci_get_dsn(struct pci_dev *dev) 611 { 612 u32 dword; 613 u64 dsn; 614 int pos; 615 616 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN); 617 if (!pos) 618 return 0; 619 620 /* 621 * The Device Serial Number is two dwords offset 4 bytes from the 622 * capability position. The specification says that the first dword is 623 * the lower half, and the second dword is the upper half. 624 */ 625 pos += 4; 626 pci_read_config_dword(dev, pos, &dword); 627 dsn = (u64)dword; 628 pci_read_config_dword(dev, pos + 4, &dword); 629 dsn |= ((u64)dword) << 32; 630 631 return dsn; 632 } 633 EXPORT_SYMBOL_GPL(pci_get_dsn); 634 635 static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap) 636 { 637 int rc, ttl = PCI_FIND_CAP_TTL; 638 u8 cap, mask; 639 640 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST) 641 mask = HT_3BIT_CAP_MASK; 642 else 643 mask = HT_5BIT_CAP_MASK; 644 645 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos, 646 PCI_CAP_ID_HT, &ttl); 647 while (pos) { 648 rc = pci_read_config_byte(dev, pos + 3, &cap); 649 if (rc != PCIBIOS_SUCCESSFUL) 650 return 0; 651 652 if ((cap & mask) == ht_cap) 653 return pos; 654 655 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, 656 pos + PCI_CAP_LIST_NEXT, 657 PCI_CAP_ID_HT, &ttl); 658 } 659 660 return 0; 661 } 662 663 /** 664 * pci_find_next_ht_capability - query a device's HyperTransport capabilities 665 * @dev: PCI device to query 666 * @pos: Position from which to continue searching 667 * @ht_cap: HyperTransport capability code 668 * 669 * To be used in conjunction with pci_find_ht_capability() to search for 670 * all capabilities matching @ht_cap. @pos should always be a value returned 671 * from pci_find_ht_capability(). 672 * 673 * NB. To be 100% safe against broken PCI devices, the caller should take 674 * steps to avoid an infinite loop. 675 */ 676 u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap) 677 { 678 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap); 679 } 680 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability); 681 682 /** 683 * pci_find_ht_capability - query a device's HyperTransport capabilities 684 * @dev: PCI device to query 685 * @ht_cap: HyperTransport capability code 686 * 687 * Tell if a device supports a given HyperTransport capability. 688 * Returns an address within the device's PCI configuration space 689 * or 0 in case the device does not support the request capability. 690 * The address points to the PCI capability, of type PCI_CAP_ID_HT, 691 * which has a HyperTransport capability matching @ht_cap. 692 */ 693 u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap) 694 { 695 u8 pos; 696 697 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 698 if (pos) 699 pos = __pci_find_next_ht_cap(dev, pos, ht_cap); 700 701 return pos; 702 } 703 EXPORT_SYMBOL_GPL(pci_find_ht_capability); 704 705 /** 706 * pci_find_vsec_capability - Find a vendor-specific extended capability 707 * @dev: PCI device to query 708 * @vendor: Vendor ID for which capability is defined 709 * @cap: Vendor-specific capability ID 710 * 711 * If @dev has Vendor ID @vendor, search for a VSEC capability with 712 * VSEC ID @cap. If found, return the capability offset in 713 * config space; otherwise return 0. 714 */ 715 u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap) 716 { 717 u16 vsec = 0; 718 u32 header; 719 720 if (vendor != dev->vendor) 721 return 0; 722 723 while ((vsec = pci_find_next_ext_capability(dev, vsec, 724 PCI_EXT_CAP_ID_VNDR))) { 725 if (pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER, 726 &header) == PCIBIOS_SUCCESSFUL && 727 PCI_VNDR_HEADER_ID(header) == cap) 728 return vsec; 729 } 730 731 return 0; 732 } 733 EXPORT_SYMBOL_GPL(pci_find_vsec_capability); 734 735 /** 736 * pci_find_parent_resource - return resource region of parent bus of given 737 * region 738 * @dev: PCI device structure contains resources to be searched 739 * @res: child resource record for which parent is sought 740 * 741 * For given resource region of given device, return the resource region of 742 * parent bus the given region is contained in. 743 */ 744 struct resource *pci_find_parent_resource(const struct pci_dev *dev, 745 struct resource *res) 746 { 747 const struct pci_bus *bus = dev->bus; 748 struct resource *r; 749 int i; 750 751 pci_bus_for_each_resource(bus, r, i) { 752 if (!r) 753 continue; 754 if (resource_contains(r, res)) { 755 756 /* 757 * If the window is prefetchable but the BAR is 758 * not, the allocator made a mistake. 759 */ 760 if (r->flags & IORESOURCE_PREFETCH && 761 !(res->flags & IORESOURCE_PREFETCH)) 762 return NULL; 763 764 /* 765 * If we're below a transparent bridge, there may 766 * be both a positively-decoded aperture and a 767 * subtractively-decoded region that contain the BAR. 768 * We want the positively-decoded one, so this depends 769 * on pci_bus_for_each_resource() giving us those 770 * first. 771 */ 772 return r; 773 } 774 } 775 return NULL; 776 } 777 EXPORT_SYMBOL(pci_find_parent_resource); 778 779 /** 780 * pci_find_resource - Return matching PCI device resource 781 * @dev: PCI device to query 782 * @res: Resource to look for 783 * 784 * Goes over standard PCI resources (BARs) and checks if the given resource 785 * is partially or fully contained in any of them. In that case the 786 * matching resource is returned, %NULL otherwise. 787 */ 788 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res) 789 { 790 int i; 791 792 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 793 struct resource *r = &dev->resource[i]; 794 795 if (r->start && resource_contains(r, res)) 796 return r; 797 } 798 799 return NULL; 800 } 801 EXPORT_SYMBOL(pci_find_resource); 802 803 /** 804 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos 805 * @dev: the PCI device to operate on 806 * @pos: config space offset of status word 807 * @mask: mask of bit(s) to care about in status word 808 * 809 * Return 1 when mask bit(s) in status word clear, 0 otherwise. 810 */ 811 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask) 812 { 813 int i; 814 815 /* Wait for Transaction Pending bit clean */ 816 for (i = 0; i < 4; i++) { 817 u16 status; 818 if (i) 819 msleep((1 << (i - 1)) * 100); 820 821 pci_read_config_word(dev, pos, &status); 822 if (!(status & mask)) 823 return 1; 824 } 825 826 return 0; 827 } 828 829 static int pci_acs_enable; 830 831 /** 832 * pci_request_acs - ask for ACS to be enabled if supported 833 */ 834 void pci_request_acs(void) 835 { 836 pci_acs_enable = 1; 837 } 838 839 static const char *disable_acs_redir_param; 840 841 /** 842 * pci_disable_acs_redir - disable ACS redirect capabilities 843 * @dev: the PCI device 844 * 845 * For only devices specified in the disable_acs_redir parameter. 846 */ 847 static void pci_disable_acs_redir(struct pci_dev *dev) 848 { 849 int ret = 0; 850 const char *p; 851 int pos; 852 u16 ctrl; 853 854 if (!disable_acs_redir_param) 855 return; 856 857 p = disable_acs_redir_param; 858 while (*p) { 859 ret = pci_dev_str_match(dev, p, &p); 860 if (ret < 0) { 861 pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n", 862 disable_acs_redir_param); 863 864 break; 865 } else if (ret == 1) { 866 /* Found a match */ 867 break; 868 } 869 870 if (*p != ';' && *p != ',') { 871 /* End of param or invalid format */ 872 break; 873 } 874 p++; 875 } 876 877 if (ret != 1) 878 return; 879 880 if (!pci_dev_specific_disable_acs_redir(dev)) 881 return; 882 883 pos = dev->acs_cap; 884 if (!pos) { 885 pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n"); 886 return; 887 } 888 889 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 890 891 /* P2P Request & Completion Redirect */ 892 ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC); 893 894 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 895 896 pci_info(dev, "disabled ACS redirect\n"); 897 } 898 899 /** 900 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities 901 * @dev: the PCI device 902 */ 903 static void pci_std_enable_acs(struct pci_dev *dev) 904 { 905 int pos; 906 u16 cap; 907 u16 ctrl; 908 909 pos = dev->acs_cap; 910 if (!pos) 911 return; 912 913 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap); 914 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 915 916 /* Source Validation */ 917 ctrl |= (cap & PCI_ACS_SV); 918 919 /* P2P Request Redirect */ 920 ctrl |= (cap & PCI_ACS_RR); 921 922 /* P2P Completion Redirect */ 923 ctrl |= (cap & PCI_ACS_CR); 924 925 /* Upstream Forwarding */ 926 ctrl |= (cap & PCI_ACS_UF); 927 928 /* Enable Translation Blocking for external devices and noats */ 929 if (pci_ats_disabled() || dev->external_facing || dev->untrusted) 930 ctrl |= (cap & PCI_ACS_TB); 931 932 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 933 } 934 935 /** 936 * pci_enable_acs - enable ACS if hardware support it 937 * @dev: the PCI device 938 */ 939 static void pci_enable_acs(struct pci_dev *dev) 940 { 941 if (!pci_acs_enable) 942 goto disable_acs_redir; 943 944 if (!pci_dev_specific_enable_acs(dev)) 945 goto disable_acs_redir; 946 947 pci_std_enable_acs(dev); 948 949 disable_acs_redir: 950 /* 951 * Note: pci_disable_acs_redir() must be called even if ACS was not 952 * enabled by the kernel because it may have been enabled by 953 * platform firmware. So if we are told to disable it, we should 954 * always disable it after setting the kernel's default 955 * preferences. 956 */ 957 pci_disable_acs_redir(dev); 958 } 959 960 /** 961 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up) 962 * @dev: PCI device to have its BARs restored 963 * 964 * Restore the BAR values for a given device, so as to make it 965 * accessible by its driver. 966 */ 967 static void pci_restore_bars(struct pci_dev *dev) 968 { 969 int i; 970 971 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) 972 pci_update_resource(dev, i); 973 } 974 975 static const struct pci_platform_pm_ops *pci_platform_pm; 976 977 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops) 978 { 979 if (!ops->is_manageable || !ops->set_state || !ops->get_state || 980 !ops->choose_state || !ops->set_wakeup || !ops->need_resume) 981 return -EINVAL; 982 pci_platform_pm = ops; 983 return 0; 984 } 985 986 static inline bool platform_pci_power_manageable(struct pci_dev *dev) 987 { 988 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false; 989 } 990 991 static inline int platform_pci_set_power_state(struct pci_dev *dev, 992 pci_power_t t) 993 { 994 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS; 995 } 996 997 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev) 998 { 999 return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN; 1000 } 1001 1002 static inline void platform_pci_refresh_power_state(struct pci_dev *dev) 1003 { 1004 if (pci_platform_pm && pci_platform_pm->refresh_state) 1005 pci_platform_pm->refresh_state(dev); 1006 } 1007 1008 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev) 1009 { 1010 return pci_platform_pm ? 1011 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR; 1012 } 1013 1014 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable) 1015 { 1016 return pci_platform_pm ? 1017 pci_platform_pm->set_wakeup(dev, enable) : -ENODEV; 1018 } 1019 1020 static inline bool platform_pci_need_resume(struct pci_dev *dev) 1021 { 1022 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false; 1023 } 1024 1025 static inline bool platform_pci_bridge_d3(struct pci_dev *dev) 1026 { 1027 if (pci_platform_pm && pci_platform_pm->bridge_d3) 1028 return pci_platform_pm->bridge_d3(dev); 1029 return false; 1030 } 1031 1032 /** 1033 * pci_raw_set_power_state - Use PCI PM registers to set the power state of 1034 * given PCI device 1035 * @dev: PCI device to handle. 1036 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 1037 * 1038 * RETURN VALUE: 1039 * -EINVAL if the requested state is invalid. 1040 * -EIO if device does not support PCI PM or its PM capabilities register has a 1041 * wrong version, or device doesn't support the requested state. 1042 * 0 if device already is in the requested state. 1043 * 0 if device's power state has been successfully changed. 1044 */ 1045 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state) 1046 { 1047 u16 pmcsr; 1048 bool need_restore = false; 1049 1050 /* Check if we're already there */ 1051 if (dev->current_state == state) 1052 return 0; 1053 1054 if (!dev->pm_cap) 1055 return -EIO; 1056 1057 if (state < PCI_D0 || state > PCI_D3hot) 1058 return -EINVAL; 1059 1060 /* 1061 * Validate transition: We can enter D0 from any state, but if 1062 * we're already in a low-power state, we can only go deeper. E.g., 1063 * we can go from D1 to D3, but we can't go directly from D3 to D1; 1064 * we'd have to go from D3 to D0, then to D1. 1065 */ 1066 if (state != PCI_D0 && dev->current_state <= PCI_D3cold 1067 && dev->current_state > state) { 1068 pci_err(dev, "invalid power transition (from %s to %s)\n", 1069 pci_power_name(dev->current_state), 1070 pci_power_name(state)); 1071 return -EINVAL; 1072 } 1073 1074 /* Check if this device supports the desired state */ 1075 if ((state == PCI_D1 && !dev->d1_support) 1076 || (state == PCI_D2 && !dev->d2_support)) 1077 return -EIO; 1078 1079 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1080 if (pmcsr == (u16) ~0) { 1081 pci_err(dev, "can't change power state from %s to %s (config space inaccessible)\n", 1082 pci_power_name(dev->current_state), 1083 pci_power_name(state)); 1084 return -EIO; 1085 } 1086 1087 /* 1088 * If we're (effectively) in D3, force entire word to 0. 1089 * This doesn't affect PME_Status, disables PME_En, and 1090 * sets PowerState to 0. 1091 */ 1092 switch (dev->current_state) { 1093 case PCI_D0: 1094 case PCI_D1: 1095 case PCI_D2: 1096 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 1097 pmcsr |= state; 1098 break; 1099 case PCI_D3hot: 1100 case PCI_D3cold: 1101 case PCI_UNKNOWN: /* Boot-up */ 1102 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot 1103 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET)) 1104 need_restore = true; 1105 fallthrough; /* force to D0 */ 1106 default: 1107 pmcsr = 0; 1108 break; 1109 } 1110 1111 /* Enter specified state */ 1112 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 1113 1114 /* 1115 * Mandatory power management transition delays; see PCI PM 1.1 1116 * 5.6.1 table 18 1117 */ 1118 if (state == PCI_D3hot || dev->current_state == PCI_D3hot) 1119 pci_dev_d3_sleep(dev); 1120 else if (state == PCI_D2 || dev->current_state == PCI_D2) 1121 udelay(PCI_PM_D2_DELAY); 1122 1123 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1124 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 1125 if (dev->current_state != state) 1126 pci_info_ratelimited(dev, "refused to change power state from %s to %s\n", 1127 pci_power_name(dev->current_state), 1128 pci_power_name(state)); 1129 1130 /* 1131 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT 1132 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning 1133 * from D3hot to D0 _may_ perform an internal reset, thereby 1134 * going to "D0 Uninitialized" rather than "D0 Initialized". 1135 * For example, at least some versions of the 3c905B and the 1136 * 3c556B exhibit this behaviour. 1137 * 1138 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave 1139 * devices in a D3hot state at boot. Consequently, we need to 1140 * restore at least the BARs so that the device will be 1141 * accessible to its driver. 1142 */ 1143 if (need_restore) 1144 pci_restore_bars(dev); 1145 1146 if (dev->bus->self) 1147 pcie_aspm_pm_state_change(dev->bus->self); 1148 1149 return 0; 1150 } 1151 1152 /** 1153 * pci_update_current_state - Read power state of given device and cache it 1154 * @dev: PCI device to handle. 1155 * @state: State to cache in case the device doesn't have the PM capability 1156 * 1157 * The power state is read from the PMCSR register, which however is 1158 * inaccessible in D3cold. The platform firmware is therefore queried first 1159 * to detect accessibility of the register. In case the platform firmware 1160 * reports an incorrect state or the device isn't power manageable by the 1161 * platform at all, we try to detect D3cold by testing accessibility of the 1162 * vendor ID in config space. 1163 */ 1164 void pci_update_current_state(struct pci_dev *dev, pci_power_t state) 1165 { 1166 if (platform_pci_get_power_state(dev) == PCI_D3cold || 1167 !pci_device_is_present(dev)) { 1168 dev->current_state = PCI_D3cold; 1169 } else if (dev->pm_cap) { 1170 u16 pmcsr; 1171 1172 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1173 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 1174 } else { 1175 dev->current_state = state; 1176 } 1177 } 1178 1179 /** 1180 * pci_refresh_power_state - Refresh the given device's power state data 1181 * @dev: Target PCI device. 1182 * 1183 * Ask the platform to refresh the devices power state information and invoke 1184 * pci_update_current_state() to update its current PCI power state. 1185 */ 1186 void pci_refresh_power_state(struct pci_dev *dev) 1187 { 1188 if (platform_pci_power_manageable(dev)) 1189 platform_pci_refresh_power_state(dev); 1190 1191 pci_update_current_state(dev, dev->current_state); 1192 } 1193 1194 /** 1195 * pci_platform_power_transition - Use platform to change device power state 1196 * @dev: PCI device to handle. 1197 * @state: State to put the device into. 1198 */ 1199 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state) 1200 { 1201 int error; 1202 1203 if (platform_pci_power_manageable(dev)) { 1204 error = platform_pci_set_power_state(dev, state); 1205 if (!error) 1206 pci_update_current_state(dev, state); 1207 } else 1208 error = -ENODEV; 1209 1210 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */ 1211 dev->current_state = PCI_D0; 1212 1213 return error; 1214 } 1215 EXPORT_SYMBOL_GPL(pci_platform_power_transition); 1216 1217 static int pci_resume_one(struct pci_dev *pci_dev, void *ign) 1218 { 1219 pm_request_resume(&pci_dev->dev); 1220 return 0; 1221 } 1222 1223 /** 1224 * pci_resume_bus - Walk given bus and runtime resume devices on it 1225 * @bus: Top bus of the subtree to walk. 1226 */ 1227 void pci_resume_bus(struct pci_bus *bus) 1228 { 1229 if (bus) 1230 pci_walk_bus(bus, pci_resume_one, NULL); 1231 } 1232 1233 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout) 1234 { 1235 int delay = 1; 1236 u32 id; 1237 1238 /* 1239 * After reset, the device should not silently discard config 1240 * requests, but it may still indicate that it needs more time by 1241 * responding to them with CRS completions. The Root Port will 1242 * generally synthesize ~0 data to complete the read (except when 1243 * CRS SV is enabled and the read was for the Vendor ID; in that 1244 * case it synthesizes 0x0001 data). 1245 * 1246 * Wait for the device to return a non-CRS completion. Read the 1247 * Command register instead of Vendor ID so we don't have to 1248 * contend with the CRS SV value. 1249 */ 1250 pci_read_config_dword(dev, PCI_COMMAND, &id); 1251 while (id == ~0) { 1252 if (delay > timeout) { 1253 pci_warn(dev, "not ready %dms after %s; giving up\n", 1254 delay - 1, reset_type); 1255 return -ENOTTY; 1256 } 1257 1258 if (delay > 1000) 1259 pci_info(dev, "not ready %dms after %s; waiting\n", 1260 delay - 1, reset_type); 1261 1262 msleep(delay); 1263 delay *= 2; 1264 pci_read_config_dword(dev, PCI_COMMAND, &id); 1265 } 1266 1267 if (delay > 1000) 1268 pci_info(dev, "ready %dms after %s\n", delay - 1, 1269 reset_type); 1270 1271 return 0; 1272 } 1273 1274 /** 1275 * pci_power_up - Put the given device into D0 1276 * @dev: PCI device to power up 1277 */ 1278 int pci_power_up(struct pci_dev *dev) 1279 { 1280 pci_platform_power_transition(dev, PCI_D0); 1281 1282 /* 1283 * Mandatory power management transition delays are handled in 1284 * pci_pm_resume_noirq() and pci_pm_runtime_resume() of the 1285 * corresponding bridge. 1286 */ 1287 if (dev->runtime_d3cold) { 1288 /* 1289 * When powering on a bridge from D3cold, the whole hierarchy 1290 * may be powered on into D0uninitialized state, resume them to 1291 * give them a chance to suspend again 1292 */ 1293 pci_resume_bus(dev->subordinate); 1294 } 1295 1296 return pci_raw_set_power_state(dev, PCI_D0); 1297 } 1298 1299 /** 1300 * __pci_dev_set_current_state - Set current state of a PCI device 1301 * @dev: Device to handle 1302 * @data: pointer to state to be set 1303 */ 1304 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data) 1305 { 1306 pci_power_t state = *(pci_power_t *)data; 1307 1308 dev->current_state = state; 1309 return 0; 1310 } 1311 1312 /** 1313 * pci_bus_set_current_state - Walk given bus and set current state of devices 1314 * @bus: Top bus of the subtree to walk. 1315 * @state: state to be set 1316 */ 1317 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state) 1318 { 1319 if (bus) 1320 pci_walk_bus(bus, __pci_dev_set_current_state, &state); 1321 } 1322 1323 /** 1324 * pci_set_power_state - Set the power state of a PCI device 1325 * @dev: PCI device to handle. 1326 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 1327 * 1328 * Transition a device to a new power state, using the platform firmware and/or 1329 * the device's PCI PM registers. 1330 * 1331 * RETURN VALUE: 1332 * -EINVAL if the requested state is invalid. 1333 * -EIO if device does not support PCI PM or its PM capabilities register has a 1334 * wrong version, or device doesn't support the requested state. 1335 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported. 1336 * 0 if device already is in the requested state. 1337 * 0 if the transition is to D3 but D3 is not supported. 1338 * 0 if device's power state has been successfully changed. 1339 */ 1340 int pci_set_power_state(struct pci_dev *dev, pci_power_t state) 1341 { 1342 int error; 1343 1344 /* Bound the state we're entering */ 1345 if (state > PCI_D3cold) 1346 state = PCI_D3cold; 1347 else if (state < PCI_D0) 1348 state = PCI_D0; 1349 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev)) 1350 1351 /* 1352 * If the device or the parent bridge do not support PCI 1353 * PM, ignore the request if we're doing anything other 1354 * than putting it into D0 (which would only happen on 1355 * boot). 1356 */ 1357 return 0; 1358 1359 /* Check if we're already there */ 1360 if (dev->current_state == state) 1361 return 0; 1362 1363 if (state == PCI_D0) 1364 return pci_power_up(dev); 1365 1366 /* 1367 * This device is quirked not to be put into D3, so don't put it in 1368 * D3 1369 */ 1370 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3)) 1371 return 0; 1372 1373 /* 1374 * To put device in D3cold, we put device into D3hot in native 1375 * way, then put device into D3cold with platform ops 1376 */ 1377 error = pci_raw_set_power_state(dev, state > PCI_D3hot ? 1378 PCI_D3hot : state); 1379 1380 if (pci_platform_power_transition(dev, state)) 1381 return error; 1382 1383 /* Powering off a bridge may power off the whole hierarchy */ 1384 if (state == PCI_D3cold) 1385 pci_bus_set_current_state(dev->subordinate, PCI_D3cold); 1386 1387 return 0; 1388 } 1389 EXPORT_SYMBOL(pci_set_power_state); 1390 1391 /** 1392 * pci_choose_state - Choose the power state of a PCI device 1393 * @dev: PCI device to be suspended 1394 * @state: target sleep state for the whole system. This is the value 1395 * that is passed to suspend() function. 1396 * 1397 * Returns PCI power state suitable for given device and given system 1398 * message. 1399 */ 1400 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state) 1401 { 1402 pci_power_t ret; 1403 1404 if (!dev->pm_cap) 1405 return PCI_D0; 1406 1407 ret = platform_pci_choose_state(dev); 1408 if (ret != PCI_POWER_ERROR) 1409 return ret; 1410 1411 switch (state.event) { 1412 case PM_EVENT_ON: 1413 return PCI_D0; 1414 case PM_EVENT_FREEZE: 1415 case PM_EVENT_PRETHAW: 1416 /* REVISIT both freeze and pre-thaw "should" use D0 */ 1417 case PM_EVENT_SUSPEND: 1418 case PM_EVENT_HIBERNATE: 1419 return PCI_D3hot; 1420 default: 1421 pci_info(dev, "unrecognized suspend event %d\n", 1422 state.event); 1423 BUG(); 1424 } 1425 return PCI_D0; 1426 } 1427 EXPORT_SYMBOL(pci_choose_state); 1428 1429 #define PCI_EXP_SAVE_REGS 7 1430 1431 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev, 1432 u16 cap, bool extended) 1433 { 1434 struct pci_cap_saved_state *tmp; 1435 1436 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) { 1437 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap) 1438 return tmp; 1439 } 1440 return NULL; 1441 } 1442 1443 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap) 1444 { 1445 return _pci_find_saved_cap(dev, cap, false); 1446 } 1447 1448 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap) 1449 { 1450 return _pci_find_saved_cap(dev, cap, true); 1451 } 1452 1453 static int pci_save_pcie_state(struct pci_dev *dev) 1454 { 1455 int i = 0; 1456 struct pci_cap_saved_state *save_state; 1457 u16 *cap; 1458 1459 if (!pci_is_pcie(dev)) 1460 return 0; 1461 1462 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1463 if (!save_state) { 1464 pci_err(dev, "buffer not found in %s\n", __func__); 1465 return -ENOMEM; 1466 } 1467 1468 cap = (u16 *)&save_state->cap.data[0]; 1469 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]); 1470 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]); 1471 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]); 1472 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]); 1473 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]); 1474 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]); 1475 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]); 1476 1477 return 0; 1478 } 1479 1480 static void pci_restore_pcie_state(struct pci_dev *dev) 1481 { 1482 int i = 0; 1483 struct pci_cap_saved_state *save_state; 1484 u16 *cap; 1485 1486 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1487 if (!save_state) 1488 return; 1489 1490 cap = (u16 *)&save_state->cap.data[0]; 1491 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]); 1492 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]); 1493 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]); 1494 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]); 1495 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]); 1496 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]); 1497 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]); 1498 } 1499 1500 static int pci_save_pcix_state(struct pci_dev *dev) 1501 { 1502 int pos; 1503 struct pci_cap_saved_state *save_state; 1504 1505 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1506 if (!pos) 1507 return 0; 1508 1509 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1510 if (!save_state) { 1511 pci_err(dev, "buffer not found in %s\n", __func__); 1512 return -ENOMEM; 1513 } 1514 1515 pci_read_config_word(dev, pos + PCI_X_CMD, 1516 (u16 *)save_state->cap.data); 1517 1518 return 0; 1519 } 1520 1521 static void pci_restore_pcix_state(struct pci_dev *dev) 1522 { 1523 int i = 0, pos; 1524 struct pci_cap_saved_state *save_state; 1525 u16 *cap; 1526 1527 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1528 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1529 if (!save_state || !pos) 1530 return; 1531 cap = (u16 *)&save_state->cap.data[0]; 1532 1533 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]); 1534 } 1535 1536 static void pci_save_ltr_state(struct pci_dev *dev) 1537 { 1538 int ltr; 1539 struct pci_cap_saved_state *save_state; 1540 u16 *cap; 1541 1542 if (!pci_is_pcie(dev)) 1543 return; 1544 1545 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR); 1546 if (!ltr) 1547 return; 1548 1549 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR); 1550 if (!save_state) { 1551 pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n"); 1552 return; 1553 } 1554 1555 cap = (u16 *)&save_state->cap.data[0]; 1556 pci_read_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap++); 1557 pci_read_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, cap++); 1558 } 1559 1560 static void pci_restore_ltr_state(struct pci_dev *dev) 1561 { 1562 struct pci_cap_saved_state *save_state; 1563 int ltr; 1564 u16 *cap; 1565 1566 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR); 1567 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR); 1568 if (!save_state || !ltr) 1569 return; 1570 1571 cap = (u16 *)&save_state->cap.data[0]; 1572 pci_write_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap++); 1573 pci_write_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, *cap++); 1574 } 1575 1576 /** 1577 * pci_save_state - save the PCI configuration space of a device before 1578 * suspending 1579 * @dev: PCI device that we're dealing with 1580 */ 1581 int pci_save_state(struct pci_dev *dev) 1582 { 1583 int i; 1584 /* XXX: 100% dword access ok here? */ 1585 for (i = 0; i < 16; i++) { 1586 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]); 1587 pci_dbg(dev, "saving config space at offset %#x (reading %#x)\n", 1588 i * 4, dev->saved_config_space[i]); 1589 } 1590 dev->state_saved = true; 1591 1592 i = pci_save_pcie_state(dev); 1593 if (i != 0) 1594 return i; 1595 1596 i = pci_save_pcix_state(dev); 1597 if (i != 0) 1598 return i; 1599 1600 pci_save_ltr_state(dev); 1601 pci_save_dpc_state(dev); 1602 pci_save_aer_state(dev); 1603 pci_save_ptm_state(dev); 1604 return pci_save_vc_state(dev); 1605 } 1606 EXPORT_SYMBOL(pci_save_state); 1607 1608 static void pci_restore_config_dword(struct pci_dev *pdev, int offset, 1609 u32 saved_val, int retry, bool force) 1610 { 1611 u32 val; 1612 1613 pci_read_config_dword(pdev, offset, &val); 1614 if (!force && val == saved_val) 1615 return; 1616 1617 for (;;) { 1618 pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n", 1619 offset, val, saved_val); 1620 pci_write_config_dword(pdev, offset, saved_val); 1621 if (retry-- <= 0) 1622 return; 1623 1624 pci_read_config_dword(pdev, offset, &val); 1625 if (val == saved_val) 1626 return; 1627 1628 mdelay(1); 1629 } 1630 } 1631 1632 static void pci_restore_config_space_range(struct pci_dev *pdev, 1633 int start, int end, int retry, 1634 bool force) 1635 { 1636 int index; 1637 1638 for (index = end; index >= start; index--) 1639 pci_restore_config_dword(pdev, 4 * index, 1640 pdev->saved_config_space[index], 1641 retry, force); 1642 } 1643 1644 static void pci_restore_config_space(struct pci_dev *pdev) 1645 { 1646 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) { 1647 pci_restore_config_space_range(pdev, 10, 15, 0, false); 1648 /* Restore BARs before the command register. */ 1649 pci_restore_config_space_range(pdev, 4, 9, 10, false); 1650 pci_restore_config_space_range(pdev, 0, 3, 0, false); 1651 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 1652 pci_restore_config_space_range(pdev, 12, 15, 0, false); 1653 1654 /* 1655 * Force rewriting of prefetch registers to avoid S3 resume 1656 * issues on Intel PCI bridges that occur when these 1657 * registers are not explicitly written. 1658 */ 1659 pci_restore_config_space_range(pdev, 9, 11, 0, true); 1660 pci_restore_config_space_range(pdev, 0, 8, 0, false); 1661 } else { 1662 pci_restore_config_space_range(pdev, 0, 15, 0, false); 1663 } 1664 } 1665 1666 static void pci_restore_rebar_state(struct pci_dev *pdev) 1667 { 1668 unsigned int pos, nbars, i; 1669 u32 ctrl; 1670 1671 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 1672 if (!pos) 1673 return; 1674 1675 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1676 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >> 1677 PCI_REBAR_CTRL_NBAR_SHIFT; 1678 1679 for (i = 0; i < nbars; i++, pos += 8) { 1680 struct resource *res; 1681 int bar_idx, size; 1682 1683 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1684 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX; 1685 res = pdev->resource + bar_idx; 1686 size = pci_rebar_bytes_to_size(resource_size(res)); 1687 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 1688 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT; 1689 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 1690 } 1691 } 1692 1693 /** 1694 * pci_restore_state - Restore the saved state of a PCI device 1695 * @dev: PCI device that we're dealing with 1696 */ 1697 void pci_restore_state(struct pci_dev *dev) 1698 { 1699 if (!dev->state_saved) 1700 return; 1701 1702 /* 1703 * Restore max latencies (in the LTR capability) before enabling 1704 * LTR itself (in the PCIe capability). 1705 */ 1706 pci_restore_ltr_state(dev); 1707 1708 pci_restore_pcie_state(dev); 1709 pci_restore_pasid_state(dev); 1710 pci_restore_pri_state(dev); 1711 pci_restore_ats_state(dev); 1712 pci_restore_vc_state(dev); 1713 pci_restore_rebar_state(dev); 1714 pci_restore_dpc_state(dev); 1715 pci_restore_ptm_state(dev); 1716 1717 pci_aer_clear_status(dev); 1718 pci_restore_aer_state(dev); 1719 1720 pci_restore_config_space(dev); 1721 1722 pci_restore_pcix_state(dev); 1723 pci_restore_msi_state(dev); 1724 1725 /* Restore ACS and IOV configuration state */ 1726 pci_enable_acs(dev); 1727 pci_restore_iov_state(dev); 1728 1729 dev->state_saved = false; 1730 } 1731 EXPORT_SYMBOL(pci_restore_state); 1732 1733 struct pci_saved_state { 1734 u32 config_space[16]; 1735 struct pci_cap_saved_data cap[]; 1736 }; 1737 1738 /** 1739 * pci_store_saved_state - Allocate and return an opaque struct containing 1740 * the device saved state. 1741 * @dev: PCI device that we're dealing with 1742 * 1743 * Return NULL if no state or error. 1744 */ 1745 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev) 1746 { 1747 struct pci_saved_state *state; 1748 struct pci_cap_saved_state *tmp; 1749 struct pci_cap_saved_data *cap; 1750 size_t size; 1751 1752 if (!dev->state_saved) 1753 return NULL; 1754 1755 size = sizeof(*state) + sizeof(struct pci_cap_saved_data); 1756 1757 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) 1758 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1759 1760 state = kzalloc(size, GFP_KERNEL); 1761 if (!state) 1762 return NULL; 1763 1764 memcpy(state->config_space, dev->saved_config_space, 1765 sizeof(state->config_space)); 1766 1767 cap = state->cap; 1768 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) { 1769 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1770 memcpy(cap, &tmp->cap, len); 1771 cap = (struct pci_cap_saved_data *)((u8 *)cap + len); 1772 } 1773 /* Empty cap_save terminates list */ 1774 1775 return state; 1776 } 1777 EXPORT_SYMBOL_GPL(pci_store_saved_state); 1778 1779 /** 1780 * pci_load_saved_state - Reload the provided save state into struct pci_dev. 1781 * @dev: PCI device that we're dealing with 1782 * @state: Saved state returned from pci_store_saved_state() 1783 */ 1784 int pci_load_saved_state(struct pci_dev *dev, 1785 struct pci_saved_state *state) 1786 { 1787 struct pci_cap_saved_data *cap; 1788 1789 dev->state_saved = false; 1790 1791 if (!state) 1792 return 0; 1793 1794 memcpy(dev->saved_config_space, state->config_space, 1795 sizeof(state->config_space)); 1796 1797 cap = state->cap; 1798 while (cap->size) { 1799 struct pci_cap_saved_state *tmp; 1800 1801 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended); 1802 if (!tmp || tmp->cap.size != cap->size) 1803 return -EINVAL; 1804 1805 memcpy(tmp->cap.data, cap->data, tmp->cap.size); 1806 cap = (struct pci_cap_saved_data *)((u8 *)cap + 1807 sizeof(struct pci_cap_saved_data) + cap->size); 1808 } 1809 1810 dev->state_saved = true; 1811 return 0; 1812 } 1813 EXPORT_SYMBOL_GPL(pci_load_saved_state); 1814 1815 /** 1816 * pci_load_and_free_saved_state - Reload the save state pointed to by state, 1817 * and free the memory allocated for it. 1818 * @dev: PCI device that we're dealing with 1819 * @state: Pointer to saved state returned from pci_store_saved_state() 1820 */ 1821 int pci_load_and_free_saved_state(struct pci_dev *dev, 1822 struct pci_saved_state **state) 1823 { 1824 int ret = pci_load_saved_state(dev, *state); 1825 kfree(*state); 1826 *state = NULL; 1827 return ret; 1828 } 1829 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state); 1830 1831 int __weak pcibios_enable_device(struct pci_dev *dev, int bars) 1832 { 1833 return pci_enable_resources(dev, bars); 1834 } 1835 1836 static int do_pci_enable_device(struct pci_dev *dev, int bars) 1837 { 1838 int err; 1839 struct pci_dev *bridge; 1840 u16 cmd; 1841 u8 pin; 1842 1843 err = pci_set_power_state(dev, PCI_D0); 1844 if (err < 0 && err != -EIO) 1845 return err; 1846 1847 bridge = pci_upstream_bridge(dev); 1848 if (bridge) 1849 pcie_aspm_powersave_config_link(bridge); 1850 1851 err = pcibios_enable_device(dev, bars); 1852 if (err < 0) 1853 return err; 1854 pci_fixup_device(pci_fixup_enable, dev); 1855 1856 if (dev->msi_enabled || dev->msix_enabled) 1857 return 0; 1858 1859 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin); 1860 if (pin) { 1861 pci_read_config_word(dev, PCI_COMMAND, &cmd); 1862 if (cmd & PCI_COMMAND_INTX_DISABLE) 1863 pci_write_config_word(dev, PCI_COMMAND, 1864 cmd & ~PCI_COMMAND_INTX_DISABLE); 1865 } 1866 1867 return 0; 1868 } 1869 1870 /** 1871 * pci_reenable_device - Resume abandoned device 1872 * @dev: PCI device to be resumed 1873 * 1874 * NOTE: This function is a backend of pci_default_resume() and is not supposed 1875 * to be called by normal code, write proper resume handler and use it instead. 1876 */ 1877 int pci_reenable_device(struct pci_dev *dev) 1878 { 1879 if (pci_is_enabled(dev)) 1880 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1); 1881 return 0; 1882 } 1883 EXPORT_SYMBOL(pci_reenable_device); 1884 1885 static void pci_enable_bridge(struct pci_dev *dev) 1886 { 1887 struct pci_dev *bridge; 1888 int retval; 1889 1890 bridge = pci_upstream_bridge(dev); 1891 if (bridge) 1892 pci_enable_bridge(bridge); 1893 1894 if (pci_is_enabled(dev)) { 1895 if (!dev->is_busmaster) 1896 pci_set_master(dev); 1897 return; 1898 } 1899 1900 retval = pci_enable_device(dev); 1901 if (retval) 1902 pci_err(dev, "Error enabling bridge (%d), continuing\n", 1903 retval); 1904 pci_set_master(dev); 1905 } 1906 1907 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags) 1908 { 1909 struct pci_dev *bridge; 1910 int err; 1911 int i, bars = 0; 1912 1913 /* 1914 * Power state could be unknown at this point, either due to a fresh 1915 * boot or a device removal call. So get the current power state 1916 * so that things like MSI message writing will behave as expected 1917 * (e.g. if the device really is in D0 at enable time). 1918 */ 1919 pci_update_current_state(dev, dev->current_state); 1920 1921 if (atomic_inc_return(&dev->enable_cnt) > 1) 1922 return 0; /* already enabled */ 1923 1924 bridge = pci_upstream_bridge(dev); 1925 if (bridge) 1926 pci_enable_bridge(bridge); 1927 1928 /* only skip sriov related */ 1929 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 1930 if (dev->resource[i].flags & flags) 1931 bars |= (1 << i); 1932 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++) 1933 if (dev->resource[i].flags & flags) 1934 bars |= (1 << i); 1935 1936 err = do_pci_enable_device(dev, bars); 1937 if (err < 0) 1938 atomic_dec(&dev->enable_cnt); 1939 return err; 1940 } 1941 1942 /** 1943 * pci_enable_device_io - Initialize a device for use with IO space 1944 * @dev: PCI device to be initialized 1945 * 1946 * Initialize device before it's used by a driver. Ask low-level code 1947 * to enable I/O resources. Wake up the device if it was suspended. 1948 * Beware, this function can fail. 1949 */ 1950 int pci_enable_device_io(struct pci_dev *dev) 1951 { 1952 return pci_enable_device_flags(dev, IORESOURCE_IO); 1953 } 1954 EXPORT_SYMBOL(pci_enable_device_io); 1955 1956 /** 1957 * pci_enable_device_mem - Initialize a device for use with Memory space 1958 * @dev: PCI device to be initialized 1959 * 1960 * Initialize device before it's used by a driver. Ask low-level code 1961 * to enable Memory resources. Wake up the device if it was suspended. 1962 * Beware, this function can fail. 1963 */ 1964 int pci_enable_device_mem(struct pci_dev *dev) 1965 { 1966 return pci_enable_device_flags(dev, IORESOURCE_MEM); 1967 } 1968 EXPORT_SYMBOL(pci_enable_device_mem); 1969 1970 /** 1971 * pci_enable_device - Initialize device before it's used by a driver. 1972 * @dev: PCI device to be initialized 1973 * 1974 * Initialize device before it's used by a driver. Ask low-level code 1975 * to enable I/O and memory. Wake up the device if it was suspended. 1976 * Beware, this function can fail. 1977 * 1978 * Note we don't actually enable the device many times if we call 1979 * this function repeatedly (we just increment the count). 1980 */ 1981 int pci_enable_device(struct pci_dev *dev) 1982 { 1983 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO); 1984 } 1985 EXPORT_SYMBOL(pci_enable_device); 1986 1987 /* 1988 * Managed PCI resources. This manages device on/off, INTx/MSI/MSI-X 1989 * on/off and BAR regions. pci_dev itself records MSI/MSI-X status, so 1990 * there's no need to track it separately. pci_devres is initialized 1991 * when a device is enabled using managed PCI device enable interface. 1992 */ 1993 struct pci_devres { 1994 unsigned int enabled:1; 1995 unsigned int pinned:1; 1996 unsigned int orig_intx:1; 1997 unsigned int restore_intx:1; 1998 unsigned int mwi:1; 1999 u32 region_mask; 2000 }; 2001 2002 static void pcim_release(struct device *gendev, void *res) 2003 { 2004 struct pci_dev *dev = to_pci_dev(gendev); 2005 struct pci_devres *this = res; 2006 int i; 2007 2008 if (dev->msi_enabled) 2009 pci_disable_msi(dev); 2010 if (dev->msix_enabled) 2011 pci_disable_msix(dev); 2012 2013 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) 2014 if (this->region_mask & (1 << i)) 2015 pci_release_region(dev, i); 2016 2017 if (this->mwi) 2018 pci_clear_mwi(dev); 2019 2020 if (this->restore_intx) 2021 pci_intx(dev, this->orig_intx); 2022 2023 if (this->enabled && !this->pinned) 2024 pci_disable_device(dev); 2025 } 2026 2027 static struct pci_devres *get_pci_dr(struct pci_dev *pdev) 2028 { 2029 struct pci_devres *dr, *new_dr; 2030 2031 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL); 2032 if (dr) 2033 return dr; 2034 2035 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL); 2036 if (!new_dr) 2037 return NULL; 2038 return devres_get(&pdev->dev, new_dr, NULL, NULL); 2039 } 2040 2041 static struct pci_devres *find_pci_dr(struct pci_dev *pdev) 2042 { 2043 if (pci_is_managed(pdev)) 2044 return devres_find(&pdev->dev, pcim_release, NULL, NULL); 2045 return NULL; 2046 } 2047 2048 /** 2049 * pcim_enable_device - Managed pci_enable_device() 2050 * @pdev: PCI device to be initialized 2051 * 2052 * Managed pci_enable_device(). 2053 */ 2054 int pcim_enable_device(struct pci_dev *pdev) 2055 { 2056 struct pci_devres *dr; 2057 int rc; 2058 2059 dr = get_pci_dr(pdev); 2060 if (unlikely(!dr)) 2061 return -ENOMEM; 2062 if (dr->enabled) 2063 return 0; 2064 2065 rc = pci_enable_device(pdev); 2066 if (!rc) { 2067 pdev->is_managed = 1; 2068 dr->enabled = 1; 2069 } 2070 return rc; 2071 } 2072 EXPORT_SYMBOL(pcim_enable_device); 2073 2074 /** 2075 * pcim_pin_device - Pin managed PCI device 2076 * @pdev: PCI device to pin 2077 * 2078 * Pin managed PCI device @pdev. Pinned device won't be disabled on 2079 * driver detach. @pdev must have been enabled with 2080 * pcim_enable_device(). 2081 */ 2082 void pcim_pin_device(struct pci_dev *pdev) 2083 { 2084 struct pci_devres *dr; 2085 2086 dr = find_pci_dr(pdev); 2087 WARN_ON(!dr || !dr->enabled); 2088 if (dr) 2089 dr->pinned = 1; 2090 } 2091 EXPORT_SYMBOL(pcim_pin_device); 2092 2093 /* 2094 * pcibios_add_device - provide arch specific hooks when adding device dev 2095 * @dev: the PCI device being added 2096 * 2097 * Permits the platform to provide architecture specific functionality when 2098 * devices are added. This is the default implementation. Architecture 2099 * implementations can override this. 2100 */ 2101 int __weak pcibios_add_device(struct pci_dev *dev) 2102 { 2103 return 0; 2104 } 2105 2106 /** 2107 * pcibios_release_device - provide arch specific hooks when releasing 2108 * device dev 2109 * @dev: the PCI device being released 2110 * 2111 * Permits the platform to provide architecture specific functionality when 2112 * devices are released. This is the default implementation. Architecture 2113 * implementations can override this. 2114 */ 2115 void __weak pcibios_release_device(struct pci_dev *dev) {} 2116 2117 /** 2118 * pcibios_disable_device - disable arch specific PCI resources for device dev 2119 * @dev: the PCI device to disable 2120 * 2121 * Disables architecture specific PCI resources for the device. This 2122 * is the default implementation. Architecture implementations can 2123 * override this. 2124 */ 2125 void __weak pcibios_disable_device(struct pci_dev *dev) {} 2126 2127 /** 2128 * pcibios_penalize_isa_irq - penalize an ISA IRQ 2129 * @irq: ISA IRQ to penalize 2130 * @active: IRQ active or not 2131 * 2132 * Permits the platform to provide architecture-specific functionality when 2133 * penalizing ISA IRQs. This is the default implementation. Architecture 2134 * implementations can override this. 2135 */ 2136 void __weak pcibios_penalize_isa_irq(int irq, int active) {} 2137 2138 static void do_pci_disable_device(struct pci_dev *dev) 2139 { 2140 u16 pci_command; 2141 2142 pci_read_config_word(dev, PCI_COMMAND, &pci_command); 2143 if (pci_command & PCI_COMMAND_MASTER) { 2144 pci_command &= ~PCI_COMMAND_MASTER; 2145 pci_write_config_word(dev, PCI_COMMAND, pci_command); 2146 } 2147 2148 pcibios_disable_device(dev); 2149 } 2150 2151 /** 2152 * pci_disable_enabled_device - Disable device without updating enable_cnt 2153 * @dev: PCI device to disable 2154 * 2155 * NOTE: This function is a backend of PCI power management routines and is 2156 * not supposed to be called drivers. 2157 */ 2158 void pci_disable_enabled_device(struct pci_dev *dev) 2159 { 2160 if (pci_is_enabled(dev)) 2161 do_pci_disable_device(dev); 2162 } 2163 2164 /** 2165 * pci_disable_device - Disable PCI device after use 2166 * @dev: PCI device to be disabled 2167 * 2168 * Signal to the system that the PCI device is not in use by the system 2169 * anymore. This only involves disabling PCI bus-mastering, if active. 2170 * 2171 * Note we don't actually disable the device until all callers of 2172 * pci_enable_device() have called pci_disable_device(). 2173 */ 2174 void pci_disable_device(struct pci_dev *dev) 2175 { 2176 struct pci_devres *dr; 2177 2178 dr = find_pci_dr(dev); 2179 if (dr) 2180 dr->enabled = 0; 2181 2182 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0, 2183 "disabling already-disabled device"); 2184 2185 if (atomic_dec_return(&dev->enable_cnt) != 0) 2186 return; 2187 2188 do_pci_disable_device(dev); 2189 2190 dev->is_busmaster = 0; 2191 } 2192 EXPORT_SYMBOL(pci_disable_device); 2193 2194 /** 2195 * pcibios_set_pcie_reset_state - set reset state for device dev 2196 * @dev: the PCIe device reset 2197 * @state: Reset state to enter into 2198 * 2199 * Set the PCIe reset state for the device. This is the default 2200 * implementation. Architecture implementations can override this. 2201 */ 2202 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev, 2203 enum pcie_reset_state state) 2204 { 2205 return -EINVAL; 2206 } 2207 2208 /** 2209 * pci_set_pcie_reset_state - set reset state for device dev 2210 * @dev: the PCIe device reset 2211 * @state: Reset state to enter into 2212 * 2213 * Sets the PCI reset state for the device. 2214 */ 2215 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state) 2216 { 2217 return pcibios_set_pcie_reset_state(dev, state); 2218 } 2219 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state); 2220 2221 void pcie_clear_device_status(struct pci_dev *dev) 2222 { 2223 u16 sta; 2224 2225 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta); 2226 pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta); 2227 } 2228 2229 /** 2230 * pcie_clear_root_pme_status - Clear root port PME interrupt status. 2231 * @dev: PCIe root port or event collector. 2232 */ 2233 void pcie_clear_root_pme_status(struct pci_dev *dev) 2234 { 2235 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME); 2236 } 2237 2238 /** 2239 * pci_check_pme_status - Check if given device has generated PME. 2240 * @dev: Device to check. 2241 * 2242 * Check the PME status of the device and if set, clear it and clear PME enable 2243 * (if set). Return 'true' if PME status and PME enable were both set or 2244 * 'false' otherwise. 2245 */ 2246 bool pci_check_pme_status(struct pci_dev *dev) 2247 { 2248 int pmcsr_pos; 2249 u16 pmcsr; 2250 bool ret = false; 2251 2252 if (!dev->pm_cap) 2253 return false; 2254 2255 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL; 2256 pci_read_config_word(dev, pmcsr_pos, &pmcsr); 2257 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS)) 2258 return false; 2259 2260 /* Clear PME status. */ 2261 pmcsr |= PCI_PM_CTRL_PME_STATUS; 2262 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) { 2263 /* Disable PME to avoid interrupt flood. */ 2264 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2265 ret = true; 2266 } 2267 2268 pci_write_config_word(dev, pmcsr_pos, pmcsr); 2269 2270 return ret; 2271 } 2272 2273 /** 2274 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set. 2275 * @dev: Device to handle. 2276 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag. 2277 * 2278 * Check if @dev has generated PME and queue a resume request for it in that 2279 * case. 2280 */ 2281 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset) 2282 { 2283 if (pme_poll_reset && dev->pme_poll) 2284 dev->pme_poll = false; 2285 2286 if (pci_check_pme_status(dev)) { 2287 pci_wakeup_event(dev); 2288 pm_request_resume(&dev->dev); 2289 } 2290 return 0; 2291 } 2292 2293 /** 2294 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary. 2295 * @bus: Top bus of the subtree to walk. 2296 */ 2297 void pci_pme_wakeup_bus(struct pci_bus *bus) 2298 { 2299 if (bus) 2300 pci_walk_bus(bus, pci_pme_wakeup, (void *)true); 2301 } 2302 2303 2304 /** 2305 * pci_pme_capable - check the capability of PCI device to generate PME# 2306 * @dev: PCI device to handle. 2307 * @state: PCI state from which device will issue PME#. 2308 */ 2309 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state) 2310 { 2311 if (!dev->pm_cap) 2312 return false; 2313 2314 return !!(dev->pme_support & (1 << state)); 2315 } 2316 EXPORT_SYMBOL(pci_pme_capable); 2317 2318 static void pci_pme_list_scan(struct work_struct *work) 2319 { 2320 struct pci_pme_device *pme_dev, *n; 2321 2322 mutex_lock(&pci_pme_list_mutex); 2323 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) { 2324 if (pme_dev->dev->pme_poll) { 2325 struct pci_dev *bridge; 2326 2327 bridge = pme_dev->dev->bus->self; 2328 /* 2329 * If bridge is in low power state, the 2330 * configuration space of subordinate devices 2331 * may be not accessible 2332 */ 2333 if (bridge && bridge->current_state != PCI_D0) 2334 continue; 2335 /* 2336 * If the device is in D3cold it should not be 2337 * polled either. 2338 */ 2339 if (pme_dev->dev->current_state == PCI_D3cold) 2340 continue; 2341 2342 pci_pme_wakeup(pme_dev->dev, NULL); 2343 } else { 2344 list_del(&pme_dev->list); 2345 kfree(pme_dev); 2346 } 2347 } 2348 if (!list_empty(&pci_pme_list)) 2349 queue_delayed_work(system_freezable_wq, &pci_pme_work, 2350 msecs_to_jiffies(PME_TIMEOUT)); 2351 mutex_unlock(&pci_pme_list_mutex); 2352 } 2353 2354 static void __pci_pme_active(struct pci_dev *dev, bool enable) 2355 { 2356 u16 pmcsr; 2357 2358 if (!dev->pme_support) 2359 return; 2360 2361 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2362 /* Clear PME_Status by writing 1 to it and enable PME# */ 2363 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE; 2364 if (!enable) 2365 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2366 2367 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2368 } 2369 2370 /** 2371 * pci_pme_restore - Restore PME configuration after config space restore. 2372 * @dev: PCI device to update. 2373 */ 2374 void pci_pme_restore(struct pci_dev *dev) 2375 { 2376 u16 pmcsr; 2377 2378 if (!dev->pme_support) 2379 return; 2380 2381 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2382 if (dev->wakeup_prepared) { 2383 pmcsr |= PCI_PM_CTRL_PME_ENABLE; 2384 pmcsr &= ~PCI_PM_CTRL_PME_STATUS; 2385 } else { 2386 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2387 pmcsr |= PCI_PM_CTRL_PME_STATUS; 2388 } 2389 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2390 } 2391 2392 /** 2393 * pci_pme_active - enable or disable PCI device's PME# function 2394 * @dev: PCI device to handle. 2395 * @enable: 'true' to enable PME# generation; 'false' to disable it. 2396 * 2397 * The caller must verify that the device is capable of generating PME# before 2398 * calling this function with @enable equal to 'true'. 2399 */ 2400 void pci_pme_active(struct pci_dev *dev, bool enable) 2401 { 2402 __pci_pme_active(dev, enable); 2403 2404 /* 2405 * PCI (as opposed to PCIe) PME requires that the device have 2406 * its PME# line hooked up correctly. Not all hardware vendors 2407 * do this, so the PME never gets delivered and the device 2408 * remains asleep. The easiest way around this is to 2409 * periodically walk the list of suspended devices and check 2410 * whether any have their PME flag set. The assumption is that 2411 * we'll wake up often enough anyway that this won't be a huge 2412 * hit, and the power savings from the devices will still be a 2413 * win. 2414 * 2415 * Although PCIe uses in-band PME message instead of PME# line 2416 * to report PME, PME does not work for some PCIe devices in 2417 * reality. For example, there are devices that set their PME 2418 * status bits, but don't really bother to send a PME message; 2419 * there are PCI Express Root Ports that don't bother to 2420 * trigger interrupts when they receive PME messages from the 2421 * devices below. So PME poll is used for PCIe devices too. 2422 */ 2423 2424 if (dev->pme_poll) { 2425 struct pci_pme_device *pme_dev; 2426 if (enable) { 2427 pme_dev = kmalloc(sizeof(struct pci_pme_device), 2428 GFP_KERNEL); 2429 if (!pme_dev) { 2430 pci_warn(dev, "can't enable PME#\n"); 2431 return; 2432 } 2433 pme_dev->dev = dev; 2434 mutex_lock(&pci_pme_list_mutex); 2435 list_add(&pme_dev->list, &pci_pme_list); 2436 if (list_is_singular(&pci_pme_list)) 2437 queue_delayed_work(system_freezable_wq, 2438 &pci_pme_work, 2439 msecs_to_jiffies(PME_TIMEOUT)); 2440 mutex_unlock(&pci_pme_list_mutex); 2441 } else { 2442 mutex_lock(&pci_pme_list_mutex); 2443 list_for_each_entry(pme_dev, &pci_pme_list, list) { 2444 if (pme_dev->dev == dev) { 2445 list_del(&pme_dev->list); 2446 kfree(pme_dev); 2447 break; 2448 } 2449 } 2450 mutex_unlock(&pci_pme_list_mutex); 2451 } 2452 } 2453 2454 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled"); 2455 } 2456 EXPORT_SYMBOL(pci_pme_active); 2457 2458 /** 2459 * __pci_enable_wake - enable PCI device as wakeup event source 2460 * @dev: PCI device affected 2461 * @state: PCI state from which device will issue wakeup events 2462 * @enable: True to enable event generation; false to disable 2463 * 2464 * This enables the device as a wakeup event source, or disables it. 2465 * When such events involves platform-specific hooks, those hooks are 2466 * called automatically by this routine. 2467 * 2468 * Devices with legacy power management (no standard PCI PM capabilities) 2469 * always require such platform hooks. 2470 * 2471 * RETURN VALUE: 2472 * 0 is returned on success 2473 * -EINVAL is returned if device is not supposed to wake up the system 2474 * Error code depending on the platform is returned if both the platform and 2475 * the native mechanism fail to enable the generation of wake-up events 2476 */ 2477 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable) 2478 { 2479 int ret = 0; 2480 2481 /* 2482 * Bridges that are not power-manageable directly only signal 2483 * wakeup on behalf of subordinate devices which is set up 2484 * elsewhere, so skip them. However, bridges that are 2485 * power-manageable may signal wakeup for themselves (for example, 2486 * on a hotplug event) and they need to be covered here. 2487 */ 2488 if (!pci_power_manageable(dev)) 2489 return 0; 2490 2491 /* Don't do the same thing twice in a row for one device. */ 2492 if (!!enable == !!dev->wakeup_prepared) 2493 return 0; 2494 2495 /* 2496 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don 2497 * Anderson we should be doing PME# wake enable followed by ACPI wake 2498 * enable. To disable wake-up we call the platform first, for symmetry. 2499 */ 2500 2501 if (enable) { 2502 int error; 2503 2504 /* 2505 * Enable PME signaling if the device can signal PME from 2506 * D3cold regardless of whether or not it can signal PME from 2507 * the current target state, because that will allow it to 2508 * signal PME when the hierarchy above it goes into D3cold and 2509 * the device itself ends up in D3cold as a result of that. 2510 */ 2511 if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold)) 2512 pci_pme_active(dev, true); 2513 else 2514 ret = 1; 2515 error = platform_pci_set_wakeup(dev, true); 2516 if (ret) 2517 ret = error; 2518 if (!ret) 2519 dev->wakeup_prepared = true; 2520 } else { 2521 platform_pci_set_wakeup(dev, false); 2522 pci_pme_active(dev, false); 2523 dev->wakeup_prepared = false; 2524 } 2525 2526 return ret; 2527 } 2528 2529 /** 2530 * pci_enable_wake - change wakeup settings for a PCI device 2531 * @pci_dev: Target device 2532 * @state: PCI state from which device will issue wakeup events 2533 * @enable: Whether or not to enable event generation 2534 * 2535 * If @enable is set, check device_may_wakeup() for the device before calling 2536 * __pci_enable_wake() for it. 2537 */ 2538 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable) 2539 { 2540 if (enable && !device_may_wakeup(&pci_dev->dev)) 2541 return -EINVAL; 2542 2543 return __pci_enable_wake(pci_dev, state, enable); 2544 } 2545 EXPORT_SYMBOL(pci_enable_wake); 2546 2547 /** 2548 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold 2549 * @dev: PCI device to prepare 2550 * @enable: True to enable wake-up event generation; false to disable 2551 * 2552 * Many drivers want the device to wake up the system from D3_hot or D3_cold 2553 * and this function allows them to set that up cleanly - pci_enable_wake() 2554 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI 2555 * ordering constraints. 2556 * 2557 * This function only returns error code if the device is not allowed to wake 2558 * up the system from sleep or it is not capable of generating PME# from both 2559 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it. 2560 */ 2561 int pci_wake_from_d3(struct pci_dev *dev, bool enable) 2562 { 2563 return pci_pme_capable(dev, PCI_D3cold) ? 2564 pci_enable_wake(dev, PCI_D3cold, enable) : 2565 pci_enable_wake(dev, PCI_D3hot, enable); 2566 } 2567 EXPORT_SYMBOL(pci_wake_from_d3); 2568 2569 /** 2570 * pci_target_state - find an appropriate low power state for a given PCI dev 2571 * @dev: PCI device 2572 * @wakeup: Whether or not wakeup functionality will be enabled for the device. 2573 * 2574 * Use underlying platform code to find a supported low power state for @dev. 2575 * If the platform can't manage @dev, return the deepest state from which it 2576 * can generate wake events, based on any available PME info. 2577 */ 2578 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup) 2579 { 2580 pci_power_t target_state = PCI_D3hot; 2581 2582 if (platform_pci_power_manageable(dev)) { 2583 /* 2584 * Call the platform to find the target state for the device. 2585 */ 2586 pci_power_t state = platform_pci_choose_state(dev); 2587 2588 switch (state) { 2589 case PCI_POWER_ERROR: 2590 case PCI_UNKNOWN: 2591 break; 2592 case PCI_D1: 2593 case PCI_D2: 2594 if (pci_no_d1d2(dev)) 2595 break; 2596 fallthrough; 2597 default: 2598 target_state = state; 2599 } 2600 2601 return target_state; 2602 } 2603 2604 if (!dev->pm_cap) 2605 target_state = PCI_D0; 2606 2607 /* 2608 * If the device is in D3cold even though it's not power-manageable by 2609 * the platform, it may have been powered down by non-standard means. 2610 * Best to let it slumber. 2611 */ 2612 if (dev->current_state == PCI_D3cold) 2613 target_state = PCI_D3cold; 2614 2615 if (wakeup && dev->pme_support) { 2616 pci_power_t state = target_state; 2617 2618 /* 2619 * Find the deepest state from which the device can generate 2620 * PME#. 2621 */ 2622 while (state && !(dev->pme_support & (1 << state))) 2623 state--; 2624 2625 if (state) 2626 return state; 2627 else if (dev->pme_support & 1) 2628 return PCI_D0; 2629 } 2630 2631 return target_state; 2632 } 2633 2634 /** 2635 * pci_prepare_to_sleep - prepare PCI device for system-wide transition 2636 * into a sleep state 2637 * @dev: Device to handle. 2638 * 2639 * Choose the power state appropriate for the device depending on whether 2640 * it can wake up the system and/or is power manageable by the platform 2641 * (PCI_D3hot is the default) and put the device into that state. 2642 */ 2643 int pci_prepare_to_sleep(struct pci_dev *dev) 2644 { 2645 bool wakeup = device_may_wakeup(&dev->dev); 2646 pci_power_t target_state = pci_target_state(dev, wakeup); 2647 int error; 2648 2649 if (target_state == PCI_POWER_ERROR) 2650 return -EIO; 2651 2652 /* 2653 * There are systems (for example, Intel mobile chips since Coffee 2654 * Lake) where the power drawn while suspended can be significantly 2655 * reduced by disabling PTM on PCIe root ports as this allows the 2656 * port to enter a lower-power PM state and the SoC to reach a 2657 * lower-power idle state as a whole. 2658 */ 2659 if (pci_pcie_type(dev) == PCI_EXP_TYPE_ROOT_PORT) 2660 pci_disable_ptm(dev); 2661 2662 pci_enable_wake(dev, target_state, wakeup); 2663 2664 error = pci_set_power_state(dev, target_state); 2665 2666 if (error) { 2667 pci_enable_wake(dev, target_state, false); 2668 pci_restore_ptm_state(dev); 2669 } 2670 2671 return error; 2672 } 2673 EXPORT_SYMBOL(pci_prepare_to_sleep); 2674 2675 /** 2676 * pci_back_from_sleep - turn PCI device on during system-wide transition 2677 * into working state 2678 * @dev: Device to handle. 2679 * 2680 * Disable device's system wake-up capability and put it into D0. 2681 */ 2682 int pci_back_from_sleep(struct pci_dev *dev) 2683 { 2684 pci_enable_wake(dev, PCI_D0, false); 2685 return pci_set_power_state(dev, PCI_D0); 2686 } 2687 EXPORT_SYMBOL(pci_back_from_sleep); 2688 2689 /** 2690 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend. 2691 * @dev: PCI device being suspended. 2692 * 2693 * Prepare @dev to generate wake-up events at run time and put it into a low 2694 * power state. 2695 */ 2696 int pci_finish_runtime_suspend(struct pci_dev *dev) 2697 { 2698 pci_power_t target_state; 2699 int error; 2700 2701 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev)); 2702 if (target_state == PCI_POWER_ERROR) 2703 return -EIO; 2704 2705 dev->runtime_d3cold = target_state == PCI_D3cold; 2706 2707 /* 2708 * There are systems (for example, Intel mobile chips since Coffee 2709 * Lake) where the power drawn while suspended can be significantly 2710 * reduced by disabling PTM on PCIe root ports as this allows the 2711 * port to enter a lower-power PM state and the SoC to reach a 2712 * lower-power idle state as a whole. 2713 */ 2714 if (pci_pcie_type(dev) == PCI_EXP_TYPE_ROOT_PORT) 2715 pci_disable_ptm(dev); 2716 2717 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev)); 2718 2719 error = pci_set_power_state(dev, target_state); 2720 2721 if (error) { 2722 pci_enable_wake(dev, target_state, false); 2723 pci_restore_ptm_state(dev); 2724 dev->runtime_d3cold = false; 2725 } 2726 2727 return error; 2728 } 2729 2730 /** 2731 * pci_dev_run_wake - Check if device can generate run-time wake-up events. 2732 * @dev: Device to check. 2733 * 2734 * Return true if the device itself is capable of generating wake-up events 2735 * (through the platform or using the native PCIe PME) or if the device supports 2736 * PME and one of its upstream bridges can generate wake-up events. 2737 */ 2738 bool pci_dev_run_wake(struct pci_dev *dev) 2739 { 2740 struct pci_bus *bus = dev->bus; 2741 2742 if (!dev->pme_support) 2743 return false; 2744 2745 /* PME-capable in principle, but not from the target power state */ 2746 if (!pci_pme_capable(dev, pci_target_state(dev, true))) 2747 return false; 2748 2749 if (device_can_wakeup(&dev->dev)) 2750 return true; 2751 2752 while (bus->parent) { 2753 struct pci_dev *bridge = bus->self; 2754 2755 if (device_can_wakeup(&bridge->dev)) 2756 return true; 2757 2758 bus = bus->parent; 2759 } 2760 2761 /* We have reached the root bus. */ 2762 if (bus->bridge) 2763 return device_can_wakeup(bus->bridge); 2764 2765 return false; 2766 } 2767 EXPORT_SYMBOL_GPL(pci_dev_run_wake); 2768 2769 /** 2770 * pci_dev_need_resume - Check if it is necessary to resume the device. 2771 * @pci_dev: Device to check. 2772 * 2773 * Return 'true' if the device is not runtime-suspended or it has to be 2774 * reconfigured due to wakeup settings difference between system and runtime 2775 * suspend, or the current power state of it is not suitable for the upcoming 2776 * (system-wide) transition. 2777 */ 2778 bool pci_dev_need_resume(struct pci_dev *pci_dev) 2779 { 2780 struct device *dev = &pci_dev->dev; 2781 pci_power_t target_state; 2782 2783 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev)) 2784 return true; 2785 2786 target_state = pci_target_state(pci_dev, device_may_wakeup(dev)); 2787 2788 /* 2789 * If the earlier platform check has not triggered, D3cold is just power 2790 * removal on top of D3hot, so no need to resume the device in that 2791 * case. 2792 */ 2793 return target_state != pci_dev->current_state && 2794 target_state != PCI_D3cold && 2795 pci_dev->current_state != PCI_D3hot; 2796 } 2797 2798 /** 2799 * pci_dev_adjust_pme - Adjust PME setting for a suspended device. 2800 * @pci_dev: Device to check. 2801 * 2802 * If the device is suspended and it is not configured for system wakeup, 2803 * disable PME for it to prevent it from waking up the system unnecessarily. 2804 * 2805 * Note that if the device's power state is D3cold and the platform check in 2806 * pci_dev_need_resume() has not triggered, the device's configuration need not 2807 * be changed. 2808 */ 2809 void pci_dev_adjust_pme(struct pci_dev *pci_dev) 2810 { 2811 struct device *dev = &pci_dev->dev; 2812 2813 spin_lock_irq(&dev->power.lock); 2814 2815 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) && 2816 pci_dev->current_state < PCI_D3cold) 2817 __pci_pme_active(pci_dev, false); 2818 2819 spin_unlock_irq(&dev->power.lock); 2820 } 2821 2822 /** 2823 * pci_dev_complete_resume - Finalize resume from system sleep for a device. 2824 * @pci_dev: Device to handle. 2825 * 2826 * If the device is runtime suspended and wakeup-capable, enable PME for it as 2827 * it might have been disabled during the prepare phase of system suspend if 2828 * the device was not configured for system wakeup. 2829 */ 2830 void pci_dev_complete_resume(struct pci_dev *pci_dev) 2831 { 2832 struct device *dev = &pci_dev->dev; 2833 2834 if (!pci_dev_run_wake(pci_dev)) 2835 return; 2836 2837 spin_lock_irq(&dev->power.lock); 2838 2839 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold) 2840 __pci_pme_active(pci_dev, true); 2841 2842 spin_unlock_irq(&dev->power.lock); 2843 } 2844 2845 void pci_config_pm_runtime_get(struct pci_dev *pdev) 2846 { 2847 struct device *dev = &pdev->dev; 2848 struct device *parent = dev->parent; 2849 2850 if (parent) 2851 pm_runtime_get_sync(parent); 2852 pm_runtime_get_noresume(dev); 2853 /* 2854 * pdev->current_state is set to PCI_D3cold during suspending, 2855 * so wait until suspending completes 2856 */ 2857 pm_runtime_barrier(dev); 2858 /* 2859 * Only need to resume devices in D3cold, because config 2860 * registers are still accessible for devices suspended but 2861 * not in D3cold. 2862 */ 2863 if (pdev->current_state == PCI_D3cold) 2864 pm_runtime_resume(dev); 2865 } 2866 2867 void pci_config_pm_runtime_put(struct pci_dev *pdev) 2868 { 2869 struct device *dev = &pdev->dev; 2870 struct device *parent = dev->parent; 2871 2872 pm_runtime_put(dev); 2873 if (parent) 2874 pm_runtime_put_sync(parent); 2875 } 2876 2877 static const struct dmi_system_id bridge_d3_blacklist[] = { 2878 #ifdef CONFIG_X86 2879 { 2880 /* 2881 * Gigabyte X299 root port is not marked as hotplug capable 2882 * which allows Linux to power manage it. However, this 2883 * confuses the BIOS SMI handler so don't power manage root 2884 * ports on that system. 2885 */ 2886 .ident = "X299 DESIGNARE EX-CF", 2887 .matches = { 2888 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."), 2889 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"), 2890 }, 2891 }, 2892 #endif 2893 { } 2894 }; 2895 2896 /** 2897 * pci_bridge_d3_possible - Is it possible to put the bridge into D3 2898 * @bridge: Bridge to check 2899 * 2900 * This function checks if it is possible to move the bridge to D3. 2901 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt. 2902 */ 2903 bool pci_bridge_d3_possible(struct pci_dev *bridge) 2904 { 2905 if (!pci_is_pcie(bridge)) 2906 return false; 2907 2908 switch (pci_pcie_type(bridge)) { 2909 case PCI_EXP_TYPE_ROOT_PORT: 2910 case PCI_EXP_TYPE_UPSTREAM: 2911 case PCI_EXP_TYPE_DOWNSTREAM: 2912 if (pci_bridge_d3_disable) 2913 return false; 2914 2915 /* 2916 * Hotplug ports handled by firmware in System Management Mode 2917 * may not be put into D3 by the OS (Thunderbolt on non-Macs). 2918 */ 2919 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge)) 2920 return false; 2921 2922 if (pci_bridge_d3_force) 2923 return true; 2924 2925 /* Even the oldest 2010 Thunderbolt controller supports D3. */ 2926 if (bridge->is_thunderbolt) 2927 return true; 2928 2929 /* Platform might know better if the bridge supports D3 */ 2930 if (platform_pci_bridge_d3(bridge)) 2931 return true; 2932 2933 /* 2934 * Hotplug ports handled natively by the OS were not validated 2935 * by vendors for runtime D3 at least until 2018 because there 2936 * was no OS support. 2937 */ 2938 if (bridge->is_hotplug_bridge) 2939 return false; 2940 2941 if (dmi_check_system(bridge_d3_blacklist)) 2942 return false; 2943 2944 /* 2945 * It should be safe to put PCIe ports from 2015 or newer 2946 * to D3. 2947 */ 2948 if (dmi_get_bios_year() >= 2015) 2949 return true; 2950 break; 2951 } 2952 2953 return false; 2954 } 2955 2956 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data) 2957 { 2958 bool *d3cold_ok = data; 2959 2960 if (/* The device needs to be allowed to go D3cold ... */ 2961 dev->no_d3cold || !dev->d3cold_allowed || 2962 2963 /* ... and if it is wakeup capable to do so from D3cold. */ 2964 (device_may_wakeup(&dev->dev) && 2965 !pci_pme_capable(dev, PCI_D3cold)) || 2966 2967 /* If it is a bridge it must be allowed to go to D3. */ 2968 !pci_power_manageable(dev)) 2969 2970 *d3cold_ok = false; 2971 2972 return !*d3cold_ok; 2973 } 2974 2975 /* 2976 * pci_bridge_d3_update - Update bridge D3 capabilities 2977 * @dev: PCI device which is changed 2978 * 2979 * Update upstream bridge PM capabilities accordingly depending on if the 2980 * device PM configuration was changed or the device is being removed. The 2981 * change is also propagated upstream. 2982 */ 2983 void pci_bridge_d3_update(struct pci_dev *dev) 2984 { 2985 bool remove = !device_is_registered(&dev->dev); 2986 struct pci_dev *bridge; 2987 bool d3cold_ok = true; 2988 2989 bridge = pci_upstream_bridge(dev); 2990 if (!bridge || !pci_bridge_d3_possible(bridge)) 2991 return; 2992 2993 /* 2994 * If D3 is currently allowed for the bridge, removing one of its 2995 * children won't change that. 2996 */ 2997 if (remove && bridge->bridge_d3) 2998 return; 2999 3000 /* 3001 * If D3 is currently allowed for the bridge and a child is added or 3002 * changed, disallowance of D3 can only be caused by that child, so 3003 * we only need to check that single device, not any of its siblings. 3004 * 3005 * If D3 is currently not allowed for the bridge, checking the device 3006 * first may allow us to skip checking its siblings. 3007 */ 3008 if (!remove) 3009 pci_dev_check_d3cold(dev, &d3cold_ok); 3010 3011 /* 3012 * If D3 is currently not allowed for the bridge, this may be caused 3013 * either by the device being changed/removed or any of its siblings, 3014 * so we need to go through all children to find out if one of them 3015 * continues to block D3. 3016 */ 3017 if (d3cold_ok && !bridge->bridge_d3) 3018 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold, 3019 &d3cold_ok); 3020 3021 if (bridge->bridge_d3 != d3cold_ok) { 3022 bridge->bridge_d3 = d3cold_ok; 3023 /* Propagate change to upstream bridges */ 3024 pci_bridge_d3_update(bridge); 3025 } 3026 } 3027 3028 /** 3029 * pci_d3cold_enable - Enable D3cold for device 3030 * @dev: PCI device to handle 3031 * 3032 * This function can be used in drivers to enable D3cold from the device 3033 * they handle. It also updates upstream PCI bridge PM capabilities 3034 * accordingly. 3035 */ 3036 void pci_d3cold_enable(struct pci_dev *dev) 3037 { 3038 if (dev->no_d3cold) { 3039 dev->no_d3cold = false; 3040 pci_bridge_d3_update(dev); 3041 } 3042 } 3043 EXPORT_SYMBOL_GPL(pci_d3cold_enable); 3044 3045 /** 3046 * pci_d3cold_disable - Disable D3cold for device 3047 * @dev: PCI device to handle 3048 * 3049 * This function can be used in drivers to disable D3cold from the device 3050 * they handle. It also updates upstream PCI bridge PM capabilities 3051 * accordingly. 3052 */ 3053 void pci_d3cold_disable(struct pci_dev *dev) 3054 { 3055 if (!dev->no_d3cold) { 3056 dev->no_d3cold = true; 3057 pci_bridge_d3_update(dev); 3058 } 3059 } 3060 EXPORT_SYMBOL_GPL(pci_d3cold_disable); 3061 3062 /** 3063 * pci_pm_init - Initialize PM functions of given PCI device 3064 * @dev: PCI device to handle. 3065 */ 3066 void pci_pm_init(struct pci_dev *dev) 3067 { 3068 int pm; 3069 u16 status; 3070 u16 pmc; 3071 3072 pm_runtime_forbid(&dev->dev); 3073 pm_runtime_set_active(&dev->dev); 3074 pm_runtime_enable(&dev->dev); 3075 device_enable_async_suspend(&dev->dev); 3076 dev->wakeup_prepared = false; 3077 3078 dev->pm_cap = 0; 3079 dev->pme_support = 0; 3080 3081 /* find PCI PM capability in list */ 3082 pm = pci_find_capability(dev, PCI_CAP_ID_PM); 3083 if (!pm) 3084 return; 3085 /* Check device's ability to generate PME# */ 3086 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc); 3087 3088 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) { 3089 pci_err(dev, "unsupported PM cap regs version (%u)\n", 3090 pmc & PCI_PM_CAP_VER_MASK); 3091 return; 3092 } 3093 3094 dev->pm_cap = pm; 3095 dev->d3hot_delay = PCI_PM_D3HOT_WAIT; 3096 dev->d3cold_delay = PCI_PM_D3COLD_WAIT; 3097 dev->bridge_d3 = pci_bridge_d3_possible(dev); 3098 dev->d3cold_allowed = true; 3099 3100 dev->d1_support = false; 3101 dev->d2_support = false; 3102 if (!pci_no_d1d2(dev)) { 3103 if (pmc & PCI_PM_CAP_D1) 3104 dev->d1_support = true; 3105 if (pmc & PCI_PM_CAP_D2) 3106 dev->d2_support = true; 3107 3108 if (dev->d1_support || dev->d2_support) 3109 pci_info(dev, "supports%s%s\n", 3110 dev->d1_support ? " D1" : "", 3111 dev->d2_support ? " D2" : ""); 3112 } 3113 3114 pmc &= PCI_PM_CAP_PME_MASK; 3115 if (pmc) { 3116 pci_info(dev, "PME# supported from%s%s%s%s%s\n", 3117 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "", 3118 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "", 3119 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "", 3120 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "", 3121 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : ""); 3122 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT; 3123 dev->pme_poll = true; 3124 /* 3125 * Make device's PM flags reflect the wake-up capability, but 3126 * let the user space enable it to wake up the system as needed. 3127 */ 3128 device_set_wakeup_capable(&dev->dev, true); 3129 /* Disable the PME# generation functionality */ 3130 pci_pme_active(dev, false); 3131 } 3132 3133 pci_read_config_word(dev, PCI_STATUS, &status); 3134 if (status & PCI_STATUS_IMM_READY) 3135 dev->imm_ready = 1; 3136 } 3137 3138 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop) 3139 { 3140 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI; 3141 3142 switch (prop) { 3143 case PCI_EA_P_MEM: 3144 case PCI_EA_P_VF_MEM: 3145 flags |= IORESOURCE_MEM; 3146 break; 3147 case PCI_EA_P_MEM_PREFETCH: 3148 case PCI_EA_P_VF_MEM_PREFETCH: 3149 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH; 3150 break; 3151 case PCI_EA_P_IO: 3152 flags |= IORESOURCE_IO; 3153 break; 3154 default: 3155 return 0; 3156 } 3157 3158 return flags; 3159 } 3160 3161 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei, 3162 u8 prop) 3163 { 3164 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO) 3165 return &dev->resource[bei]; 3166 #ifdef CONFIG_PCI_IOV 3167 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 && 3168 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH)) 3169 return &dev->resource[PCI_IOV_RESOURCES + 3170 bei - PCI_EA_BEI_VF_BAR0]; 3171 #endif 3172 else if (bei == PCI_EA_BEI_ROM) 3173 return &dev->resource[PCI_ROM_RESOURCE]; 3174 else 3175 return NULL; 3176 } 3177 3178 /* Read an Enhanced Allocation (EA) entry */ 3179 static int pci_ea_read(struct pci_dev *dev, int offset) 3180 { 3181 struct resource *res; 3182 int ent_size, ent_offset = offset; 3183 resource_size_t start, end; 3184 unsigned long flags; 3185 u32 dw0, bei, base, max_offset; 3186 u8 prop; 3187 bool support_64 = (sizeof(resource_size_t) >= 8); 3188 3189 pci_read_config_dword(dev, ent_offset, &dw0); 3190 ent_offset += 4; 3191 3192 /* Entry size field indicates DWORDs after 1st */ 3193 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2; 3194 3195 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */ 3196 goto out; 3197 3198 bei = (dw0 & PCI_EA_BEI) >> 4; 3199 prop = (dw0 & PCI_EA_PP) >> 8; 3200 3201 /* 3202 * If the Property is in the reserved range, try the Secondary 3203 * Property instead. 3204 */ 3205 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED) 3206 prop = (dw0 & PCI_EA_SP) >> 16; 3207 if (prop > PCI_EA_P_BRIDGE_IO) 3208 goto out; 3209 3210 res = pci_ea_get_resource(dev, bei, prop); 3211 if (!res) { 3212 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei); 3213 goto out; 3214 } 3215 3216 flags = pci_ea_flags(dev, prop); 3217 if (!flags) { 3218 pci_err(dev, "Unsupported EA properties: %#x\n", prop); 3219 goto out; 3220 } 3221 3222 /* Read Base */ 3223 pci_read_config_dword(dev, ent_offset, &base); 3224 start = (base & PCI_EA_FIELD_MASK); 3225 ent_offset += 4; 3226 3227 /* Read MaxOffset */ 3228 pci_read_config_dword(dev, ent_offset, &max_offset); 3229 ent_offset += 4; 3230 3231 /* Read Base MSBs (if 64-bit entry) */ 3232 if (base & PCI_EA_IS_64) { 3233 u32 base_upper; 3234 3235 pci_read_config_dword(dev, ent_offset, &base_upper); 3236 ent_offset += 4; 3237 3238 flags |= IORESOURCE_MEM_64; 3239 3240 /* entry starts above 32-bit boundary, can't use */ 3241 if (!support_64 && base_upper) 3242 goto out; 3243 3244 if (support_64) 3245 start |= ((u64)base_upper << 32); 3246 } 3247 3248 end = start + (max_offset | 0x03); 3249 3250 /* Read MaxOffset MSBs (if 64-bit entry) */ 3251 if (max_offset & PCI_EA_IS_64) { 3252 u32 max_offset_upper; 3253 3254 pci_read_config_dword(dev, ent_offset, &max_offset_upper); 3255 ent_offset += 4; 3256 3257 flags |= IORESOURCE_MEM_64; 3258 3259 /* entry too big, can't use */ 3260 if (!support_64 && max_offset_upper) 3261 goto out; 3262 3263 if (support_64) 3264 end += ((u64)max_offset_upper << 32); 3265 } 3266 3267 if (end < start) { 3268 pci_err(dev, "EA Entry crosses address boundary\n"); 3269 goto out; 3270 } 3271 3272 if (ent_size != ent_offset - offset) { 3273 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n", 3274 ent_size, ent_offset - offset); 3275 goto out; 3276 } 3277 3278 res->name = pci_name(dev); 3279 res->start = start; 3280 res->end = end; 3281 res->flags = flags; 3282 3283 if (bei <= PCI_EA_BEI_BAR5) 3284 pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 3285 bei, res, prop); 3286 else if (bei == PCI_EA_BEI_ROM) 3287 pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n", 3288 res, prop); 3289 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5) 3290 pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 3291 bei - PCI_EA_BEI_VF_BAR0, res, prop); 3292 else 3293 pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n", 3294 bei, res, prop); 3295 3296 out: 3297 return offset + ent_size; 3298 } 3299 3300 /* Enhanced Allocation Initialization */ 3301 void pci_ea_init(struct pci_dev *dev) 3302 { 3303 int ea; 3304 u8 num_ent; 3305 int offset; 3306 int i; 3307 3308 /* find PCI EA capability in list */ 3309 ea = pci_find_capability(dev, PCI_CAP_ID_EA); 3310 if (!ea) 3311 return; 3312 3313 /* determine the number of entries */ 3314 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT, 3315 &num_ent); 3316 num_ent &= PCI_EA_NUM_ENT_MASK; 3317 3318 offset = ea + PCI_EA_FIRST_ENT; 3319 3320 /* Skip DWORD 2 for type 1 functions */ 3321 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) 3322 offset += 4; 3323 3324 /* parse each EA entry */ 3325 for (i = 0; i < num_ent; ++i) 3326 offset = pci_ea_read(dev, offset); 3327 } 3328 3329 static void pci_add_saved_cap(struct pci_dev *pci_dev, 3330 struct pci_cap_saved_state *new_cap) 3331 { 3332 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space); 3333 } 3334 3335 /** 3336 * _pci_add_cap_save_buffer - allocate buffer for saving given 3337 * capability registers 3338 * @dev: the PCI device 3339 * @cap: the capability to allocate the buffer for 3340 * @extended: Standard or Extended capability ID 3341 * @size: requested size of the buffer 3342 */ 3343 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap, 3344 bool extended, unsigned int size) 3345 { 3346 int pos; 3347 struct pci_cap_saved_state *save_state; 3348 3349 if (extended) 3350 pos = pci_find_ext_capability(dev, cap); 3351 else 3352 pos = pci_find_capability(dev, cap); 3353 3354 if (!pos) 3355 return 0; 3356 3357 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL); 3358 if (!save_state) 3359 return -ENOMEM; 3360 3361 save_state->cap.cap_nr = cap; 3362 save_state->cap.cap_extended = extended; 3363 save_state->cap.size = size; 3364 pci_add_saved_cap(dev, save_state); 3365 3366 return 0; 3367 } 3368 3369 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size) 3370 { 3371 return _pci_add_cap_save_buffer(dev, cap, false, size); 3372 } 3373 3374 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size) 3375 { 3376 return _pci_add_cap_save_buffer(dev, cap, true, size); 3377 } 3378 3379 /** 3380 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities 3381 * @dev: the PCI device 3382 */ 3383 void pci_allocate_cap_save_buffers(struct pci_dev *dev) 3384 { 3385 int error; 3386 3387 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP, 3388 PCI_EXP_SAVE_REGS * sizeof(u16)); 3389 if (error) 3390 pci_err(dev, "unable to preallocate PCI Express save buffer\n"); 3391 3392 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16)); 3393 if (error) 3394 pci_err(dev, "unable to preallocate PCI-X save buffer\n"); 3395 3396 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR, 3397 2 * sizeof(u16)); 3398 if (error) 3399 pci_err(dev, "unable to allocate suspend buffer for LTR\n"); 3400 3401 pci_allocate_vc_save_buffers(dev); 3402 } 3403 3404 void pci_free_cap_save_buffers(struct pci_dev *dev) 3405 { 3406 struct pci_cap_saved_state *tmp; 3407 struct hlist_node *n; 3408 3409 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next) 3410 kfree(tmp); 3411 } 3412 3413 /** 3414 * pci_configure_ari - enable or disable ARI forwarding 3415 * @dev: the PCI device 3416 * 3417 * If @dev and its upstream bridge both support ARI, enable ARI in the 3418 * bridge. Otherwise, disable ARI in the bridge. 3419 */ 3420 void pci_configure_ari(struct pci_dev *dev) 3421 { 3422 u32 cap; 3423 struct pci_dev *bridge; 3424 3425 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn) 3426 return; 3427 3428 bridge = dev->bus->self; 3429 if (!bridge) 3430 return; 3431 3432 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3433 if (!(cap & PCI_EXP_DEVCAP2_ARI)) 3434 return; 3435 3436 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) { 3437 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, 3438 PCI_EXP_DEVCTL2_ARI); 3439 bridge->ari_enabled = 1; 3440 } else { 3441 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2, 3442 PCI_EXP_DEVCTL2_ARI); 3443 bridge->ari_enabled = 0; 3444 } 3445 } 3446 3447 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags) 3448 { 3449 int pos; 3450 u16 cap, ctrl; 3451 3452 pos = pdev->acs_cap; 3453 if (!pos) 3454 return false; 3455 3456 /* 3457 * Except for egress control, capabilities are either required 3458 * or only required if controllable. Features missing from the 3459 * capability field can therefore be assumed as hard-wired enabled. 3460 */ 3461 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap); 3462 acs_flags &= (cap | PCI_ACS_EC); 3463 3464 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl); 3465 return (ctrl & acs_flags) == acs_flags; 3466 } 3467 3468 /** 3469 * pci_acs_enabled - test ACS against required flags for a given device 3470 * @pdev: device to test 3471 * @acs_flags: required PCI ACS flags 3472 * 3473 * Return true if the device supports the provided flags. Automatically 3474 * filters out flags that are not implemented on multifunction devices. 3475 * 3476 * Note that this interface checks the effective ACS capabilities of the 3477 * device rather than the actual capabilities. For instance, most single 3478 * function endpoints are not required to support ACS because they have no 3479 * opportunity for peer-to-peer access. We therefore return 'true' 3480 * regardless of whether the device exposes an ACS capability. This makes 3481 * it much easier for callers of this function to ignore the actual type 3482 * or topology of the device when testing ACS support. 3483 */ 3484 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags) 3485 { 3486 int ret; 3487 3488 ret = pci_dev_specific_acs_enabled(pdev, acs_flags); 3489 if (ret >= 0) 3490 return ret > 0; 3491 3492 /* 3493 * Conventional PCI and PCI-X devices never support ACS, either 3494 * effectively or actually. The shared bus topology implies that 3495 * any device on the bus can receive or snoop DMA. 3496 */ 3497 if (!pci_is_pcie(pdev)) 3498 return false; 3499 3500 switch (pci_pcie_type(pdev)) { 3501 /* 3502 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec, 3503 * but since their primary interface is PCI/X, we conservatively 3504 * handle them as we would a non-PCIe device. 3505 */ 3506 case PCI_EXP_TYPE_PCIE_BRIDGE: 3507 /* 3508 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never 3509 * applicable... must never implement an ACS Extended Capability...". 3510 * This seems arbitrary, but we take a conservative interpretation 3511 * of this statement. 3512 */ 3513 case PCI_EXP_TYPE_PCI_BRIDGE: 3514 case PCI_EXP_TYPE_RC_EC: 3515 return false; 3516 /* 3517 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should 3518 * implement ACS in order to indicate their peer-to-peer capabilities, 3519 * regardless of whether they are single- or multi-function devices. 3520 */ 3521 case PCI_EXP_TYPE_DOWNSTREAM: 3522 case PCI_EXP_TYPE_ROOT_PORT: 3523 return pci_acs_flags_enabled(pdev, acs_flags); 3524 /* 3525 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be 3526 * implemented by the remaining PCIe types to indicate peer-to-peer 3527 * capabilities, but only when they are part of a multifunction 3528 * device. The footnote for section 6.12 indicates the specific 3529 * PCIe types included here. 3530 */ 3531 case PCI_EXP_TYPE_ENDPOINT: 3532 case PCI_EXP_TYPE_UPSTREAM: 3533 case PCI_EXP_TYPE_LEG_END: 3534 case PCI_EXP_TYPE_RC_END: 3535 if (!pdev->multifunction) 3536 break; 3537 3538 return pci_acs_flags_enabled(pdev, acs_flags); 3539 } 3540 3541 /* 3542 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable 3543 * to single function devices with the exception of downstream ports. 3544 */ 3545 return true; 3546 } 3547 3548 /** 3549 * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy 3550 * @start: starting downstream device 3551 * @end: ending upstream device or NULL to search to the root bus 3552 * @acs_flags: required flags 3553 * 3554 * Walk up a device tree from start to end testing PCI ACS support. If 3555 * any step along the way does not support the required flags, return false. 3556 */ 3557 bool pci_acs_path_enabled(struct pci_dev *start, 3558 struct pci_dev *end, u16 acs_flags) 3559 { 3560 struct pci_dev *pdev, *parent = start; 3561 3562 do { 3563 pdev = parent; 3564 3565 if (!pci_acs_enabled(pdev, acs_flags)) 3566 return false; 3567 3568 if (pci_is_root_bus(pdev->bus)) 3569 return (end == NULL); 3570 3571 parent = pdev->bus->self; 3572 } while (pdev != end); 3573 3574 return true; 3575 } 3576 3577 /** 3578 * pci_acs_init - Initialize ACS if hardware supports it 3579 * @dev: the PCI device 3580 */ 3581 void pci_acs_init(struct pci_dev *dev) 3582 { 3583 dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS); 3584 3585 /* 3586 * Attempt to enable ACS regardless of capability because some Root 3587 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have 3588 * the standard ACS capability but still support ACS via those 3589 * quirks. 3590 */ 3591 pci_enable_acs(dev); 3592 } 3593 3594 /** 3595 * pci_rebar_find_pos - find position of resize ctrl reg for BAR 3596 * @pdev: PCI device 3597 * @bar: BAR to find 3598 * 3599 * Helper to find the position of the ctrl register for a BAR. 3600 * Returns -ENOTSUPP if resizable BARs are not supported at all. 3601 * Returns -ENOENT if no ctrl register for the BAR could be found. 3602 */ 3603 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar) 3604 { 3605 unsigned int pos, nbars, i; 3606 u32 ctrl; 3607 3608 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 3609 if (!pos) 3610 return -ENOTSUPP; 3611 3612 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3613 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >> 3614 PCI_REBAR_CTRL_NBAR_SHIFT; 3615 3616 for (i = 0; i < nbars; i++, pos += 8) { 3617 int bar_idx; 3618 3619 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3620 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX; 3621 if (bar_idx == bar) 3622 return pos; 3623 } 3624 3625 return -ENOENT; 3626 } 3627 3628 /** 3629 * pci_rebar_get_possible_sizes - get possible sizes for BAR 3630 * @pdev: PCI device 3631 * @bar: BAR to query 3632 * 3633 * Get the possible sizes of a resizable BAR as bitmask defined in the spec 3634 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable. 3635 */ 3636 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar) 3637 { 3638 int pos; 3639 u32 cap; 3640 3641 pos = pci_rebar_find_pos(pdev, bar); 3642 if (pos < 0) 3643 return 0; 3644 3645 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap); 3646 cap &= PCI_REBAR_CAP_SIZES; 3647 3648 /* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */ 3649 if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f && 3650 bar == 0 && cap == 0x7000) 3651 cap = 0x3f000; 3652 3653 return cap >> 4; 3654 } 3655 EXPORT_SYMBOL(pci_rebar_get_possible_sizes); 3656 3657 /** 3658 * pci_rebar_get_current_size - get the current size of a BAR 3659 * @pdev: PCI device 3660 * @bar: BAR to set size to 3661 * 3662 * Read the size of a BAR from the resizable BAR config. 3663 * Returns size if found or negative error code. 3664 */ 3665 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar) 3666 { 3667 int pos; 3668 u32 ctrl; 3669 3670 pos = pci_rebar_find_pos(pdev, bar); 3671 if (pos < 0) 3672 return pos; 3673 3674 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3675 return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT; 3676 } 3677 3678 /** 3679 * pci_rebar_set_size - set a new size for a BAR 3680 * @pdev: PCI device 3681 * @bar: BAR to set size to 3682 * @size: new size as defined in the spec (0=1MB, 19=512GB) 3683 * 3684 * Set the new size of a BAR as defined in the spec. 3685 * Returns zero if resizing was successful, error code otherwise. 3686 */ 3687 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size) 3688 { 3689 int pos; 3690 u32 ctrl; 3691 3692 pos = pci_rebar_find_pos(pdev, bar); 3693 if (pos < 0) 3694 return pos; 3695 3696 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3697 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 3698 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT; 3699 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 3700 return 0; 3701 } 3702 3703 /** 3704 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port 3705 * @dev: the PCI device 3706 * @cap_mask: mask of desired AtomicOp sizes, including one or more of: 3707 * PCI_EXP_DEVCAP2_ATOMIC_COMP32 3708 * PCI_EXP_DEVCAP2_ATOMIC_COMP64 3709 * PCI_EXP_DEVCAP2_ATOMIC_COMP128 3710 * 3711 * Return 0 if all upstream bridges support AtomicOp routing, egress 3712 * blocking is disabled on all upstream ports, and the root port supports 3713 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit 3714 * AtomicOp completion), or negative otherwise. 3715 */ 3716 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask) 3717 { 3718 struct pci_bus *bus = dev->bus; 3719 struct pci_dev *bridge; 3720 u32 cap, ctl2; 3721 3722 if (!pci_is_pcie(dev)) 3723 return -EINVAL; 3724 3725 /* 3726 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be 3727 * AtomicOp requesters. For now, we only support endpoints as 3728 * requesters and root ports as completers. No endpoints as 3729 * completers, and no peer-to-peer. 3730 */ 3731 3732 switch (pci_pcie_type(dev)) { 3733 case PCI_EXP_TYPE_ENDPOINT: 3734 case PCI_EXP_TYPE_LEG_END: 3735 case PCI_EXP_TYPE_RC_END: 3736 break; 3737 default: 3738 return -EINVAL; 3739 } 3740 3741 while (bus->parent) { 3742 bridge = bus->self; 3743 3744 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3745 3746 switch (pci_pcie_type(bridge)) { 3747 /* Ensure switch ports support AtomicOp routing */ 3748 case PCI_EXP_TYPE_UPSTREAM: 3749 case PCI_EXP_TYPE_DOWNSTREAM: 3750 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE)) 3751 return -EINVAL; 3752 break; 3753 3754 /* Ensure root port supports all the sizes we care about */ 3755 case PCI_EXP_TYPE_ROOT_PORT: 3756 if ((cap & cap_mask) != cap_mask) 3757 return -EINVAL; 3758 break; 3759 } 3760 3761 /* Ensure upstream ports don't block AtomicOps on egress */ 3762 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) { 3763 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, 3764 &ctl2); 3765 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK) 3766 return -EINVAL; 3767 } 3768 3769 bus = bus->parent; 3770 } 3771 3772 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2, 3773 PCI_EXP_DEVCTL2_ATOMIC_REQ); 3774 return 0; 3775 } 3776 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root); 3777 3778 /** 3779 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge 3780 * @dev: the PCI device 3781 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD) 3782 * 3783 * Perform INTx swizzling for a device behind one level of bridge. This is 3784 * required by section 9.1 of the PCI-to-PCI bridge specification for devices 3785 * behind bridges on add-in cards. For devices with ARI enabled, the slot 3786 * number is always 0 (see the Implementation Note in section 2.2.8.1 of 3787 * the PCI Express Base Specification, Revision 2.1) 3788 */ 3789 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin) 3790 { 3791 int slot; 3792 3793 if (pci_ari_enabled(dev->bus)) 3794 slot = 0; 3795 else 3796 slot = PCI_SLOT(dev->devfn); 3797 3798 return (((pin - 1) + slot) % 4) + 1; 3799 } 3800 3801 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge) 3802 { 3803 u8 pin; 3804 3805 pin = dev->pin; 3806 if (!pin) 3807 return -1; 3808 3809 while (!pci_is_root_bus(dev->bus)) { 3810 pin = pci_swizzle_interrupt_pin(dev, pin); 3811 dev = dev->bus->self; 3812 } 3813 *bridge = dev; 3814 return pin; 3815 } 3816 3817 /** 3818 * pci_common_swizzle - swizzle INTx all the way to root bridge 3819 * @dev: the PCI device 3820 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD) 3821 * 3822 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI 3823 * bridges all the way up to a PCI root bus. 3824 */ 3825 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp) 3826 { 3827 u8 pin = *pinp; 3828 3829 while (!pci_is_root_bus(dev->bus)) { 3830 pin = pci_swizzle_interrupt_pin(dev, pin); 3831 dev = dev->bus->self; 3832 } 3833 *pinp = pin; 3834 return PCI_SLOT(dev->devfn); 3835 } 3836 EXPORT_SYMBOL_GPL(pci_common_swizzle); 3837 3838 /** 3839 * pci_release_region - Release a PCI bar 3840 * @pdev: PCI device whose resources were previously reserved by 3841 * pci_request_region() 3842 * @bar: BAR to release 3843 * 3844 * Releases the PCI I/O and memory resources previously reserved by a 3845 * successful call to pci_request_region(). Call this function only 3846 * after all use of the PCI regions has ceased. 3847 */ 3848 void pci_release_region(struct pci_dev *pdev, int bar) 3849 { 3850 struct pci_devres *dr; 3851 3852 if (pci_resource_len(pdev, bar) == 0) 3853 return; 3854 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) 3855 release_region(pci_resource_start(pdev, bar), 3856 pci_resource_len(pdev, bar)); 3857 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) 3858 release_mem_region(pci_resource_start(pdev, bar), 3859 pci_resource_len(pdev, bar)); 3860 3861 dr = find_pci_dr(pdev); 3862 if (dr) 3863 dr->region_mask &= ~(1 << bar); 3864 } 3865 EXPORT_SYMBOL(pci_release_region); 3866 3867 /** 3868 * __pci_request_region - Reserved PCI I/O and memory resource 3869 * @pdev: PCI device whose resources are to be reserved 3870 * @bar: BAR to be reserved 3871 * @res_name: Name to be associated with resource. 3872 * @exclusive: whether the region access is exclusive or not 3873 * 3874 * Mark the PCI region associated with PCI device @pdev BAR @bar as 3875 * being reserved by owner @res_name. Do not access any 3876 * address inside the PCI regions unless this call returns 3877 * successfully. 3878 * 3879 * If @exclusive is set, then the region is marked so that userspace 3880 * is explicitly not allowed to map the resource via /dev/mem or 3881 * sysfs MMIO access. 3882 * 3883 * Returns 0 on success, or %EBUSY on error. A warning 3884 * message is also printed on failure. 3885 */ 3886 static int __pci_request_region(struct pci_dev *pdev, int bar, 3887 const char *res_name, int exclusive) 3888 { 3889 struct pci_devres *dr; 3890 3891 if (pci_resource_len(pdev, bar) == 0) 3892 return 0; 3893 3894 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) { 3895 if (!request_region(pci_resource_start(pdev, bar), 3896 pci_resource_len(pdev, bar), res_name)) 3897 goto err_out; 3898 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) { 3899 if (!__request_mem_region(pci_resource_start(pdev, bar), 3900 pci_resource_len(pdev, bar), res_name, 3901 exclusive)) 3902 goto err_out; 3903 } 3904 3905 dr = find_pci_dr(pdev); 3906 if (dr) 3907 dr->region_mask |= 1 << bar; 3908 3909 return 0; 3910 3911 err_out: 3912 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar, 3913 &pdev->resource[bar]); 3914 return -EBUSY; 3915 } 3916 3917 /** 3918 * pci_request_region - Reserve PCI I/O and memory resource 3919 * @pdev: PCI device whose resources are to be reserved 3920 * @bar: BAR to be reserved 3921 * @res_name: Name to be associated with resource 3922 * 3923 * Mark the PCI region associated with PCI device @pdev BAR @bar as 3924 * being reserved by owner @res_name. Do not access any 3925 * address inside the PCI regions unless this call returns 3926 * successfully. 3927 * 3928 * Returns 0 on success, or %EBUSY on error. A warning 3929 * message is also printed on failure. 3930 */ 3931 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name) 3932 { 3933 return __pci_request_region(pdev, bar, res_name, 0); 3934 } 3935 EXPORT_SYMBOL(pci_request_region); 3936 3937 /** 3938 * pci_release_selected_regions - Release selected PCI I/O and memory resources 3939 * @pdev: PCI device whose resources were previously reserved 3940 * @bars: Bitmask of BARs to be released 3941 * 3942 * Release selected PCI I/O and memory resources previously reserved. 3943 * Call this function only after all use of the PCI regions has ceased. 3944 */ 3945 void pci_release_selected_regions(struct pci_dev *pdev, int bars) 3946 { 3947 int i; 3948 3949 for (i = 0; i < PCI_STD_NUM_BARS; i++) 3950 if (bars & (1 << i)) 3951 pci_release_region(pdev, i); 3952 } 3953 EXPORT_SYMBOL(pci_release_selected_regions); 3954 3955 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars, 3956 const char *res_name, int excl) 3957 { 3958 int i; 3959 3960 for (i = 0; i < PCI_STD_NUM_BARS; i++) 3961 if (bars & (1 << i)) 3962 if (__pci_request_region(pdev, i, res_name, excl)) 3963 goto err_out; 3964 return 0; 3965 3966 err_out: 3967 while (--i >= 0) 3968 if (bars & (1 << i)) 3969 pci_release_region(pdev, i); 3970 3971 return -EBUSY; 3972 } 3973 3974 3975 /** 3976 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources 3977 * @pdev: PCI device whose resources are to be reserved 3978 * @bars: Bitmask of BARs to be requested 3979 * @res_name: Name to be associated with resource 3980 */ 3981 int pci_request_selected_regions(struct pci_dev *pdev, int bars, 3982 const char *res_name) 3983 { 3984 return __pci_request_selected_regions(pdev, bars, res_name, 0); 3985 } 3986 EXPORT_SYMBOL(pci_request_selected_regions); 3987 3988 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars, 3989 const char *res_name) 3990 { 3991 return __pci_request_selected_regions(pdev, bars, res_name, 3992 IORESOURCE_EXCLUSIVE); 3993 } 3994 EXPORT_SYMBOL(pci_request_selected_regions_exclusive); 3995 3996 /** 3997 * pci_release_regions - Release reserved PCI I/O and memory resources 3998 * @pdev: PCI device whose resources were previously reserved by 3999 * pci_request_regions() 4000 * 4001 * Releases all PCI I/O and memory resources previously reserved by a 4002 * successful call to pci_request_regions(). Call this function only 4003 * after all use of the PCI regions has ceased. 4004 */ 4005 4006 void pci_release_regions(struct pci_dev *pdev) 4007 { 4008 pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1); 4009 } 4010 EXPORT_SYMBOL(pci_release_regions); 4011 4012 /** 4013 * pci_request_regions - Reserve PCI I/O and memory resources 4014 * @pdev: PCI device whose resources are to be reserved 4015 * @res_name: Name to be associated with resource. 4016 * 4017 * Mark all PCI regions associated with PCI device @pdev as 4018 * being reserved by owner @res_name. Do not access any 4019 * address inside the PCI regions unless this call returns 4020 * successfully. 4021 * 4022 * Returns 0 on success, or %EBUSY on error. A warning 4023 * message is also printed on failure. 4024 */ 4025 int pci_request_regions(struct pci_dev *pdev, const char *res_name) 4026 { 4027 return pci_request_selected_regions(pdev, 4028 ((1 << PCI_STD_NUM_BARS) - 1), res_name); 4029 } 4030 EXPORT_SYMBOL(pci_request_regions); 4031 4032 /** 4033 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources 4034 * @pdev: PCI device whose resources are to be reserved 4035 * @res_name: Name to be associated with resource. 4036 * 4037 * Mark all PCI regions associated with PCI device @pdev as being reserved 4038 * by owner @res_name. Do not access any address inside the PCI regions 4039 * unless this call returns successfully. 4040 * 4041 * pci_request_regions_exclusive() will mark the region so that /dev/mem 4042 * and the sysfs MMIO access will not be allowed. 4043 * 4044 * Returns 0 on success, or %EBUSY on error. A warning message is also 4045 * printed on failure. 4046 */ 4047 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name) 4048 { 4049 return pci_request_selected_regions_exclusive(pdev, 4050 ((1 << PCI_STD_NUM_BARS) - 1), res_name); 4051 } 4052 EXPORT_SYMBOL(pci_request_regions_exclusive); 4053 4054 /* 4055 * Record the PCI IO range (expressed as CPU physical address + size). 4056 * Return a negative value if an error has occurred, zero otherwise 4057 */ 4058 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr, 4059 resource_size_t size) 4060 { 4061 int ret = 0; 4062 #ifdef PCI_IOBASE 4063 struct logic_pio_hwaddr *range; 4064 4065 if (!size || addr + size < addr) 4066 return -EINVAL; 4067 4068 range = kzalloc(sizeof(*range), GFP_ATOMIC); 4069 if (!range) 4070 return -ENOMEM; 4071 4072 range->fwnode = fwnode; 4073 range->size = size; 4074 range->hw_start = addr; 4075 range->flags = LOGIC_PIO_CPU_MMIO; 4076 4077 ret = logic_pio_register_range(range); 4078 if (ret) 4079 kfree(range); 4080 4081 /* Ignore duplicates due to deferred probing */ 4082 if (ret == -EEXIST) 4083 ret = 0; 4084 #endif 4085 4086 return ret; 4087 } 4088 4089 phys_addr_t pci_pio_to_address(unsigned long pio) 4090 { 4091 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR; 4092 4093 #ifdef PCI_IOBASE 4094 if (pio >= MMIO_UPPER_LIMIT) 4095 return address; 4096 4097 address = logic_pio_to_hwaddr(pio); 4098 #endif 4099 4100 return address; 4101 } 4102 EXPORT_SYMBOL_GPL(pci_pio_to_address); 4103 4104 unsigned long __weak pci_address_to_pio(phys_addr_t address) 4105 { 4106 #ifdef PCI_IOBASE 4107 return logic_pio_trans_cpuaddr(address); 4108 #else 4109 if (address > IO_SPACE_LIMIT) 4110 return (unsigned long)-1; 4111 4112 return (unsigned long) address; 4113 #endif 4114 } 4115 4116 /** 4117 * pci_remap_iospace - Remap the memory mapped I/O space 4118 * @res: Resource describing the I/O space 4119 * @phys_addr: physical address of range to be mapped 4120 * 4121 * Remap the memory mapped I/O space described by the @res and the CPU 4122 * physical address @phys_addr into virtual address space. Only 4123 * architectures that have memory mapped IO functions defined (and the 4124 * PCI_IOBASE value defined) should call this function. 4125 */ 4126 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr) 4127 { 4128 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 4129 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 4130 4131 if (!(res->flags & IORESOURCE_IO)) 4132 return -EINVAL; 4133 4134 if (res->end > IO_SPACE_LIMIT) 4135 return -EINVAL; 4136 4137 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr, 4138 pgprot_device(PAGE_KERNEL)); 4139 #else 4140 /* 4141 * This architecture does not have memory mapped I/O space, 4142 * so this function should never be called 4143 */ 4144 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n"); 4145 return -ENODEV; 4146 #endif 4147 } 4148 EXPORT_SYMBOL(pci_remap_iospace); 4149 4150 /** 4151 * pci_unmap_iospace - Unmap the memory mapped I/O space 4152 * @res: resource to be unmapped 4153 * 4154 * Unmap the CPU virtual address @res from virtual address space. Only 4155 * architectures that have memory mapped IO functions defined (and the 4156 * PCI_IOBASE value defined) should call this function. 4157 */ 4158 void pci_unmap_iospace(struct resource *res) 4159 { 4160 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 4161 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 4162 4163 vunmap_range(vaddr, vaddr + resource_size(res)); 4164 #endif 4165 } 4166 EXPORT_SYMBOL(pci_unmap_iospace); 4167 4168 static void devm_pci_unmap_iospace(struct device *dev, void *ptr) 4169 { 4170 struct resource **res = ptr; 4171 4172 pci_unmap_iospace(*res); 4173 } 4174 4175 /** 4176 * devm_pci_remap_iospace - Managed pci_remap_iospace() 4177 * @dev: Generic device to remap IO address for 4178 * @res: Resource describing the I/O space 4179 * @phys_addr: physical address of range to be mapped 4180 * 4181 * Managed pci_remap_iospace(). Map is automatically unmapped on driver 4182 * detach. 4183 */ 4184 int devm_pci_remap_iospace(struct device *dev, const struct resource *res, 4185 phys_addr_t phys_addr) 4186 { 4187 const struct resource **ptr; 4188 int error; 4189 4190 ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL); 4191 if (!ptr) 4192 return -ENOMEM; 4193 4194 error = pci_remap_iospace(res, phys_addr); 4195 if (error) { 4196 devres_free(ptr); 4197 } else { 4198 *ptr = res; 4199 devres_add(dev, ptr); 4200 } 4201 4202 return error; 4203 } 4204 EXPORT_SYMBOL(devm_pci_remap_iospace); 4205 4206 /** 4207 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace() 4208 * @dev: Generic device to remap IO address for 4209 * @offset: Resource address to map 4210 * @size: Size of map 4211 * 4212 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver 4213 * detach. 4214 */ 4215 void __iomem *devm_pci_remap_cfgspace(struct device *dev, 4216 resource_size_t offset, 4217 resource_size_t size) 4218 { 4219 void __iomem **ptr, *addr; 4220 4221 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL); 4222 if (!ptr) 4223 return NULL; 4224 4225 addr = pci_remap_cfgspace(offset, size); 4226 if (addr) { 4227 *ptr = addr; 4228 devres_add(dev, ptr); 4229 } else 4230 devres_free(ptr); 4231 4232 return addr; 4233 } 4234 EXPORT_SYMBOL(devm_pci_remap_cfgspace); 4235 4236 /** 4237 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource 4238 * @dev: generic device to handle the resource for 4239 * @res: configuration space resource to be handled 4240 * 4241 * Checks that a resource is a valid memory region, requests the memory 4242 * region and ioremaps with pci_remap_cfgspace() API that ensures the 4243 * proper PCI configuration space memory attributes are guaranteed. 4244 * 4245 * All operations are managed and will be undone on driver detach. 4246 * 4247 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code 4248 * on failure. Usage example:: 4249 * 4250 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 4251 * base = devm_pci_remap_cfg_resource(&pdev->dev, res); 4252 * if (IS_ERR(base)) 4253 * return PTR_ERR(base); 4254 */ 4255 void __iomem *devm_pci_remap_cfg_resource(struct device *dev, 4256 struct resource *res) 4257 { 4258 resource_size_t size; 4259 const char *name; 4260 void __iomem *dest_ptr; 4261 4262 BUG_ON(!dev); 4263 4264 if (!res || resource_type(res) != IORESOURCE_MEM) { 4265 dev_err(dev, "invalid resource\n"); 4266 return IOMEM_ERR_PTR(-EINVAL); 4267 } 4268 4269 size = resource_size(res); 4270 4271 if (res->name) 4272 name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev), 4273 res->name); 4274 else 4275 name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL); 4276 if (!name) 4277 return IOMEM_ERR_PTR(-ENOMEM); 4278 4279 if (!devm_request_mem_region(dev, res->start, size, name)) { 4280 dev_err(dev, "can't request region for resource %pR\n", res); 4281 return IOMEM_ERR_PTR(-EBUSY); 4282 } 4283 4284 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size); 4285 if (!dest_ptr) { 4286 dev_err(dev, "ioremap failed for resource %pR\n", res); 4287 devm_release_mem_region(dev, res->start, size); 4288 dest_ptr = IOMEM_ERR_PTR(-ENOMEM); 4289 } 4290 4291 return dest_ptr; 4292 } 4293 EXPORT_SYMBOL(devm_pci_remap_cfg_resource); 4294 4295 static void __pci_set_master(struct pci_dev *dev, bool enable) 4296 { 4297 u16 old_cmd, cmd; 4298 4299 pci_read_config_word(dev, PCI_COMMAND, &old_cmd); 4300 if (enable) 4301 cmd = old_cmd | PCI_COMMAND_MASTER; 4302 else 4303 cmd = old_cmd & ~PCI_COMMAND_MASTER; 4304 if (cmd != old_cmd) { 4305 pci_dbg(dev, "%s bus mastering\n", 4306 enable ? "enabling" : "disabling"); 4307 pci_write_config_word(dev, PCI_COMMAND, cmd); 4308 } 4309 dev->is_busmaster = enable; 4310 } 4311 4312 /** 4313 * pcibios_setup - process "pci=" kernel boot arguments 4314 * @str: string used to pass in "pci=" kernel boot arguments 4315 * 4316 * Process kernel boot arguments. This is the default implementation. 4317 * Architecture specific implementations can override this as necessary. 4318 */ 4319 char * __weak __init pcibios_setup(char *str) 4320 { 4321 return str; 4322 } 4323 4324 /** 4325 * pcibios_set_master - enable PCI bus-mastering for device dev 4326 * @dev: the PCI device to enable 4327 * 4328 * Enables PCI bus-mastering for the device. This is the default 4329 * implementation. Architecture specific implementations can override 4330 * this if necessary. 4331 */ 4332 void __weak pcibios_set_master(struct pci_dev *dev) 4333 { 4334 u8 lat; 4335 4336 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */ 4337 if (pci_is_pcie(dev)) 4338 return; 4339 4340 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat); 4341 if (lat < 16) 4342 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency; 4343 else if (lat > pcibios_max_latency) 4344 lat = pcibios_max_latency; 4345 else 4346 return; 4347 4348 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat); 4349 } 4350 4351 /** 4352 * pci_set_master - enables bus-mastering for device dev 4353 * @dev: the PCI device to enable 4354 * 4355 * Enables bus-mastering on the device and calls pcibios_set_master() 4356 * to do the needed arch specific settings. 4357 */ 4358 void pci_set_master(struct pci_dev *dev) 4359 { 4360 __pci_set_master(dev, true); 4361 pcibios_set_master(dev); 4362 } 4363 EXPORT_SYMBOL(pci_set_master); 4364 4365 /** 4366 * pci_clear_master - disables bus-mastering for device dev 4367 * @dev: the PCI device to disable 4368 */ 4369 void pci_clear_master(struct pci_dev *dev) 4370 { 4371 __pci_set_master(dev, false); 4372 } 4373 EXPORT_SYMBOL(pci_clear_master); 4374 4375 /** 4376 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed 4377 * @dev: the PCI device for which MWI is to be enabled 4378 * 4379 * Helper function for pci_set_mwi. 4380 * Originally copied from drivers/net/acenic.c. 4381 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. 4382 * 4383 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4384 */ 4385 int pci_set_cacheline_size(struct pci_dev *dev) 4386 { 4387 u8 cacheline_size; 4388 4389 if (!pci_cache_line_size) 4390 return -EINVAL; 4391 4392 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be 4393 equal to or multiple of the right value. */ 4394 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4395 if (cacheline_size >= pci_cache_line_size && 4396 (cacheline_size % pci_cache_line_size) == 0) 4397 return 0; 4398 4399 /* Write the correct value. */ 4400 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size); 4401 /* Read it back. */ 4402 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4403 if (cacheline_size == pci_cache_line_size) 4404 return 0; 4405 4406 pci_dbg(dev, "cache line size of %d is not supported\n", 4407 pci_cache_line_size << 2); 4408 4409 return -EINVAL; 4410 } 4411 EXPORT_SYMBOL_GPL(pci_set_cacheline_size); 4412 4413 /** 4414 * pci_set_mwi - enables memory-write-invalidate PCI transaction 4415 * @dev: the PCI device for which MWI is enabled 4416 * 4417 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4418 * 4419 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4420 */ 4421 int pci_set_mwi(struct pci_dev *dev) 4422 { 4423 #ifdef PCI_DISABLE_MWI 4424 return 0; 4425 #else 4426 int rc; 4427 u16 cmd; 4428 4429 rc = pci_set_cacheline_size(dev); 4430 if (rc) 4431 return rc; 4432 4433 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4434 if (!(cmd & PCI_COMMAND_INVALIDATE)) { 4435 pci_dbg(dev, "enabling Mem-Wr-Inval\n"); 4436 cmd |= PCI_COMMAND_INVALIDATE; 4437 pci_write_config_word(dev, PCI_COMMAND, cmd); 4438 } 4439 return 0; 4440 #endif 4441 } 4442 EXPORT_SYMBOL(pci_set_mwi); 4443 4444 /** 4445 * pcim_set_mwi - a device-managed pci_set_mwi() 4446 * @dev: the PCI device for which MWI is enabled 4447 * 4448 * Managed pci_set_mwi(). 4449 * 4450 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4451 */ 4452 int pcim_set_mwi(struct pci_dev *dev) 4453 { 4454 struct pci_devres *dr; 4455 4456 dr = find_pci_dr(dev); 4457 if (!dr) 4458 return -ENOMEM; 4459 4460 dr->mwi = 1; 4461 return pci_set_mwi(dev); 4462 } 4463 EXPORT_SYMBOL(pcim_set_mwi); 4464 4465 /** 4466 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction 4467 * @dev: the PCI device for which MWI is enabled 4468 * 4469 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4470 * Callers are not required to check the return value. 4471 * 4472 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4473 */ 4474 int pci_try_set_mwi(struct pci_dev *dev) 4475 { 4476 #ifdef PCI_DISABLE_MWI 4477 return 0; 4478 #else 4479 return pci_set_mwi(dev); 4480 #endif 4481 } 4482 EXPORT_SYMBOL(pci_try_set_mwi); 4483 4484 /** 4485 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev 4486 * @dev: the PCI device to disable 4487 * 4488 * Disables PCI Memory-Write-Invalidate transaction on the device 4489 */ 4490 void pci_clear_mwi(struct pci_dev *dev) 4491 { 4492 #ifndef PCI_DISABLE_MWI 4493 u16 cmd; 4494 4495 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4496 if (cmd & PCI_COMMAND_INVALIDATE) { 4497 cmd &= ~PCI_COMMAND_INVALIDATE; 4498 pci_write_config_word(dev, PCI_COMMAND, cmd); 4499 } 4500 #endif 4501 } 4502 EXPORT_SYMBOL(pci_clear_mwi); 4503 4504 /** 4505 * pci_disable_parity - disable parity checking for device 4506 * @dev: the PCI device to operate on 4507 * 4508 * Disable parity checking for device @dev 4509 */ 4510 void pci_disable_parity(struct pci_dev *dev) 4511 { 4512 u16 cmd; 4513 4514 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4515 if (cmd & PCI_COMMAND_PARITY) { 4516 cmd &= ~PCI_COMMAND_PARITY; 4517 pci_write_config_word(dev, PCI_COMMAND, cmd); 4518 } 4519 } 4520 4521 /** 4522 * pci_intx - enables/disables PCI INTx for device dev 4523 * @pdev: the PCI device to operate on 4524 * @enable: boolean: whether to enable or disable PCI INTx 4525 * 4526 * Enables/disables PCI INTx for device @pdev 4527 */ 4528 void pci_intx(struct pci_dev *pdev, int enable) 4529 { 4530 u16 pci_command, new; 4531 4532 pci_read_config_word(pdev, PCI_COMMAND, &pci_command); 4533 4534 if (enable) 4535 new = pci_command & ~PCI_COMMAND_INTX_DISABLE; 4536 else 4537 new = pci_command | PCI_COMMAND_INTX_DISABLE; 4538 4539 if (new != pci_command) { 4540 struct pci_devres *dr; 4541 4542 pci_write_config_word(pdev, PCI_COMMAND, new); 4543 4544 dr = find_pci_dr(pdev); 4545 if (dr && !dr->restore_intx) { 4546 dr->restore_intx = 1; 4547 dr->orig_intx = !enable; 4548 } 4549 } 4550 } 4551 EXPORT_SYMBOL_GPL(pci_intx); 4552 4553 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask) 4554 { 4555 struct pci_bus *bus = dev->bus; 4556 bool mask_updated = true; 4557 u32 cmd_status_dword; 4558 u16 origcmd, newcmd; 4559 unsigned long flags; 4560 bool irq_pending; 4561 4562 /* 4563 * We do a single dword read to retrieve both command and status. 4564 * Document assumptions that make this possible. 4565 */ 4566 BUILD_BUG_ON(PCI_COMMAND % 4); 4567 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS); 4568 4569 raw_spin_lock_irqsave(&pci_lock, flags); 4570 4571 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword); 4572 4573 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT; 4574 4575 /* 4576 * Check interrupt status register to see whether our device 4577 * triggered the interrupt (when masking) or the next IRQ is 4578 * already pending (when unmasking). 4579 */ 4580 if (mask != irq_pending) { 4581 mask_updated = false; 4582 goto done; 4583 } 4584 4585 origcmd = cmd_status_dword; 4586 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE; 4587 if (mask) 4588 newcmd |= PCI_COMMAND_INTX_DISABLE; 4589 if (newcmd != origcmd) 4590 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd); 4591 4592 done: 4593 raw_spin_unlock_irqrestore(&pci_lock, flags); 4594 4595 return mask_updated; 4596 } 4597 4598 /** 4599 * pci_check_and_mask_intx - mask INTx on pending interrupt 4600 * @dev: the PCI device to operate on 4601 * 4602 * Check if the device dev has its INTx line asserted, mask it and return 4603 * true in that case. False is returned if no interrupt was pending. 4604 */ 4605 bool pci_check_and_mask_intx(struct pci_dev *dev) 4606 { 4607 return pci_check_and_set_intx_mask(dev, true); 4608 } 4609 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx); 4610 4611 /** 4612 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending 4613 * @dev: the PCI device to operate on 4614 * 4615 * Check if the device dev has its INTx line asserted, unmask it if not and 4616 * return true. False is returned and the mask remains active if there was 4617 * still an interrupt pending. 4618 */ 4619 bool pci_check_and_unmask_intx(struct pci_dev *dev) 4620 { 4621 return pci_check_and_set_intx_mask(dev, false); 4622 } 4623 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx); 4624 4625 /** 4626 * pci_wait_for_pending_transaction - wait for pending transaction 4627 * @dev: the PCI device to operate on 4628 * 4629 * Return 0 if transaction is pending 1 otherwise. 4630 */ 4631 int pci_wait_for_pending_transaction(struct pci_dev *dev) 4632 { 4633 if (!pci_is_pcie(dev)) 4634 return 1; 4635 4636 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA, 4637 PCI_EXP_DEVSTA_TRPND); 4638 } 4639 EXPORT_SYMBOL(pci_wait_for_pending_transaction); 4640 4641 /** 4642 * pcie_flr - initiate a PCIe function level reset 4643 * @dev: device to reset 4644 * 4645 * Initiate a function level reset unconditionally on @dev without 4646 * checking any flags and DEVCAP 4647 */ 4648 int pcie_flr(struct pci_dev *dev) 4649 { 4650 if (!pci_wait_for_pending_transaction(dev)) 4651 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n"); 4652 4653 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR); 4654 4655 if (dev->imm_ready) 4656 return 0; 4657 4658 /* 4659 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within 4660 * 100ms, but may silently discard requests while the FLR is in 4661 * progress. Wait 100ms before trying to access the device. 4662 */ 4663 msleep(100); 4664 4665 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS); 4666 } 4667 EXPORT_SYMBOL_GPL(pcie_flr); 4668 4669 /** 4670 * pcie_reset_flr - initiate a PCIe function level reset 4671 * @dev: device to reset 4672 * @probe: if true, return 0 if device can be reset this way 4673 * 4674 * Initiate a function level reset on @dev. 4675 */ 4676 int pcie_reset_flr(struct pci_dev *dev, bool probe) 4677 { 4678 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4679 return -ENOTTY; 4680 4681 if (!(dev->devcap & PCI_EXP_DEVCAP_FLR)) 4682 return -ENOTTY; 4683 4684 if (probe) 4685 return 0; 4686 4687 return pcie_flr(dev); 4688 } 4689 EXPORT_SYMBOL_GPL(pcie_reset_flr); 4690 4691 static int pci_af_flr(struct pci_dev *dev, bool probe) 4692 { 4693 int pos; 4694 u8 cap; 4695 4696 pos = pci_find_capability(dev, PCI_CAP_ID_AF); 4697 if (!pos) 4698 return -ENOTTY; 4699 4700 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4701 return -ENOTTY; 4702 4703 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap); 4704 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR)) 4705 return -ENOTTY; 4706 4707 if (probe) 4708 return 0; 4709 4710 /* 4711 * Wait for Transaction Pending bit to clear. A word-aligned test 4712 * is used, so we use the control offset rather than status and shift 4713 * the test bit to match. 4714 */ 4715 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL, 4716 PCI_AF_STATUS_TP << 8)) 4717 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n"); 4718 4719 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR); 4720 4721 if (dev->imm_ready) 4722 return 0; 4723 4724 /* 4725 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006, 4726 * updated 27 July 2006; a device must complete an FLR within 4727 * 100ms, but may silently discard requests while the FLR is in 4728 * progress. Wait 100ms before trying to access the device. 4729 */ 4730 msleep(100); 4731 4732 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS); 4733 } 4734 4735 /** 4736 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0. 4737 * @dev: Device to reset. 4738 * @probe: if true, return 0 if the device can be reset this way. 4739 * 4740 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is 4741 * unset, it will be reinitialized internally when going from PCI_D3hot to 4742 * PCI_D0. If that's the case and the device is not in a low-power state 4743 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset. 4744 * 4745 * NOTE: This causes the caller to sleep for twice the device power transition 4746 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms 4747 * by default (i.e. unless the @dev's d3hot_delay field has a different value). 4748 * Moreover, only devices in D0 can be reset by this function. 4749 */ 4750 static int pci_pm_reset(struct pci_dev *dev, bool probe) 4751 { 4752 u16 csr; 4753 4754 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET) 4755 return -ENOTTY; 4756 4757 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr); 4758 if (csr & PCI_PM_CTRL_NO_SOFT_RESET) 4759 return -ENOTTY; 4760 4761 if (probe) 4762 return 0; 4763 4764 if (dev->current_state != PCI_D0) 4765 return -EINVAL; 4766 4767 csr &= ~PCI_PM_CTRL_STATE_MASK; 4768 csr |= PCI_D3hot; 4769 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4770 pci_dev_d3_sleep(dev); 4771 4772 csr &= ~PCI_PM_CTRL_STATE_MASK; 4773 csr |= PCI_D0; 4774 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4775 pci_dev_d3_sleep(dev); 4776 4777 return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS); 4778 } 4779 4780 /** 4781 * pcie_wait_for_link_delay - Wait until link is active or inactive 4782 * @pdev: Bridge device 4783 * @active: waiting for active or inactive? 4784 * @delay: Delay to wait after link has become active (in ms) 4785 * 4786 * Use this to wait till link becomes active or inactive. 4787 */ 4788 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active, 4789 int delay) 4790 { 4791 int timeout = 1000; 4792 bool ret; 4793 u16 lnk_status; 4794 4795 /* 4796 * Some controllers might not implement link active reporting. In this 4797 * case, we wait for 1000 ms + any delay requested by the caller. 4798 */ 4799 if (!pdev->link_active_reporting) { 4800 msleep(timeout + delay); 4801 return true; 4802 } 4803 4804 /* 4805 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms, 4806 * after which we should expect an link active if the reset was 4807 * successful. If so, software must wait a minimum 100ms before sending 4808 * configuration requests to devices downstream this port. 4809 * 4810 * If the link fails to activate, either the device was physically 4811 * removed or the link is permanently failed. 4812 */ 4813 if (active) 4814 msleep(20); 4815 for (;;) { 4816 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status); 4817 ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA); 4818 if (ret == active) 4819 break; 4820 if (timeout <= 0) 4821 break; 4822 msleep(10); 4823 timeout -= 10; 4824 } 4825 if (active && ret) 4826 msleep(delay); 4827 4828 return ret == active; 4829 } 4830 4831 /** 4832 * pcie_wait_for_link - Wait until link is active or inactive 4833 * @pdev: Bridge device 4834 * @active: waiting for active or inactive? 4835 * 4836 * Use this to wait till link becomes active or inactive. 4837 */ 4838 bool pcie_wait_for_link(struct pci_dev *pdev, bool active) 4839 { 4840 return pcie_wait_for_link_delay(pdev, active, 100); 4841 } 4842 4843 /* 4844 * Find maximum D3cold delay required by all the devices on the bus. The 4845 * spec says 100 ms, but firmware can lower it and we allow drivers to 4846 * increase it as well. 4847 * 4848 * Called with @pci_bus_sem locked for reading. 4849 */ 4850 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus) 4851 { 4852 const struct pci_dev *pdev; 4853 int min_delay = 100; 4854 int max_delay = 0; 4855 4856 list_for_each_entry(pdev, &bus->devices, bus_list) { 4857 if (pdev->d3cold_delay < min_delay) 4858 min_delay = pdev->d3cold_delay; 4859 if (pdev->d3cold_delay > max_delay) 4860 max_delay = pdev->d3cold_delay; 4861 } 4862 4863 return max(min_delay, max_delay); 4864 } 4865 4866 /** 4867 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible 4868 * @dev: PCI bridge 4869 * 4870 * Handle necessary delays before access to the devices on the secondary 4871 * side of the bridge are permitted after D3cold to D0 transition. 4872 * 4873 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For 4874 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section 4875 * 4.3.2. 4876 */ 4877 void pci_bridge_wait_for_secondary_bus(struct pci_dev *dev) 4878 { 4879 struct pci_dev *child; 4880 int delay; 4881 4882 if (pci_dev_is_disconnected(dev)) 4883 return; 4884 4885 if (!pci_is_bridge(dev) || !dev->bridge_d3) 4886 return; 4887 4888 down_read(&pci_bus_sem); 4889 4890 /* 4891 * We only deal with devices that are present currently on the bus. 4892 * For any hot-added devices the access delay is handled in pciehp 4893 * board_added(). In case of ACPI hotplug the firmware is expected 4894 * to configure the devices before OS is notified. 4895 */ 4896 if (!dev->subordinate || list_empty(&dev->subordinate->devices)) { 4897 up_read(&pci_bus_sem); 4898 return; 4899 } 4900 4901 /* Take d3cold_delay requirements into account */ 4902 delay = pci_bus_max_d3cold_delay(dev->subordinate); 4903 if (!delay) { 4904 up_read(&pci_bus_sem); 4905 return; 4906 } 4907 4908 child = list_first_entry(&dev->subordinate->devices, struct pci_dev, 4909 bus_list); 4910 up_read(&pci_bus_sem); 4911 4912 /* 4913 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before 4914 * accessing the device after reset (that is 1000 ms + 100 ms). In 4915 * practice this should not be needed because we don't do power 4916 * management for them (see pci_bridge_d3_possible()). 4917 */ 4918 if (!pci_is_pcie(dev)) { 4919 pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay); 4920 msleep(1000 + delay); 4921 return; 4922 } 4923 4924 /* 4925 * For PCIe downstream and root ports that do not support speeds 4926 * greater than 5 GT/s need to wait minimum 100 ms. For higher 4927 * speeds (gen3) we need to wait first for the data link layer to 4928 * become active. 4929 * 4930 * However, 100 ms is the minimum and the PCIe spec says the 4931 * software must allow at least 1s before it can determine that the 4932 * device that did not respond is a broken device. There is 4933 * evidence that 100 ms is not always enough, for example certain 4934 * Titan Ridge xHCI controller does not always respond to 4935 * configuration requests if we only wait for 100 ms (see 4936 * https://bugzilla.kernel.org/show_bug.cgi?id=203885). 4937 * 4938 * Therefore we wait for 100 ms and check for the device presence. 4939 * If it is still not present give it an additional 100 ms. 4940 */ 4941 if (!pcie_downstream_port(dev)) 4942 return; 4943 4944 if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) { 4945 pci_dbg(dev, "waiting %d ms for downstream link\n", delay); 4946 msleep(delay); 4947 } else { 4948 pci_dbg(dev, "waiting %d ms for downstream link, after activation\n", 4949 delay); 4950 if (!pcie_wait_for_link_delay(dev, true, delay)) { 4951 /* Did not train, no need to wait any further */ 4952 pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n"); 4953 return; 4954 } 4955 } 4956 4957 if (!pci_device_is_present(child)) { 4958 pci_dbg(child, "waiting additional %d ms to become accessible\n", delay); 4959 msleep(delay); 4960 } 4961 } 4962 4963 void pci_reset_secondary_bus(struct pci_dev *dev) 4964 { 4965 u16 ctrl; 4966 4967 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl); 4968 ctrl |= PCI_BRIDGE_CTL_BUS_RESET; 4969 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 4970 4971 /* 4972 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double 4973 * this to 2ms to ensure that we meet the minimum requirement. 4974 */ 4975 msleep(2); 4976 4977 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET; 4978 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 4979 4980 /* 4981 * Trhfa for conventional PCI is 2^25 clock cycles. 4982 * Assuming a minimum 33MHz clock this results in a 1s 4983 * delay before we can consider subordinate devices to 4984 * be re-initialized. PCIe has some ways to shorten this, 4985 * but we don't make use of them yet. 4986 */ 4987 ssleep(1); 4988 } 4989 4990 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev) 4991 { 4992 pci_reset_secondary_bus(dev); 4993 } 4994 4995 /** 4996 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge. 4997 * @dev: Bridge device 4998 * 4999 * Use the bridge control register to assert reset on the secondary bus. 5000 * Devices on the secondary bus are left in power-on state. 5001 */ 5002 int pci_bridge_secondary_bus_reset(struct pci_dev *dev) 5003 { 5004 pcibios_reset_secondary_bus(dev); 5005 5006 return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS); 5007 } 5008 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset); 5009 5010 static int pci_parent_bus_reset(struct pci_dev *dev, bool probe) 5011 { 5012 struct pci_dev *pdev; 5013 5014 if (pci_is_root_bus(dev->bus) || dev->subordinate || 5015 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 5016 return -ENOTTY; 5017 5018 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 5019 if (pdev != dev) 5020 return -ENOTTY; 5021 5022 if (probe) 5023 return 0; 5024 5025 return pci_bridge_secondary_bus_reset(dev->bus->self); 5026 } 5027 5028 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe) 5029 { 5030 int rc = -ENOTTY; 5031 5032 if (!hotplug || !try_module_get(hotplug->owner)) 5033 return rc; 5034 5035 if (hotplug->ops->reset_slot) 5036 rc = hotplug->ops->reset_slot(hotplug, probe); 5037 5038 module_put(hotplug->owner); 5039 5040 return rc; 5041 } 5042 5043 static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe) 5044 { 5045 if (dev->multifunction || dev->subordinate || !dev->slot || 5046 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 5047 return -ENOTTY; 5048 5049 return pci_reset_hotplug_slot(dev->slot->hotplug, probe); 5050 } 5051 5052 static int pci_reset_bus_function(struct pci_dev *dev, bool probe) 5053 { 5054 int rc; 5055 5056 rc = pci_dev_reset_slot_function(dev, probe); 5057 if (rc != -ENOTTY) 5058 return rc; 5059 return pci_parent_bus_reset(dev, probe); 5060 } 5061 5062 static void pci_dev_lock(struct pci_dev *dev) 5063 { 5064 pci_cfg_access_lock(dev); 5065 /* block PM suspend, driver probe, etc. */ 5066 device_lock(&dev->dev); 5067 } 5068 5069 /* Return 1 on successful lock, 0 on contention */ 5070 int pci_dev_trylock(struct pci_dev *dev) 5071 { 5072 if (pci_cfg_access_trylock(dev)) { 5073 if (device_trylock(&dev->dev)) 5074 return 1; 5075 pci_cfg_access_unlock(dev); 5076 } 5077 5078 return 0; 5079 } 5080 EXPORT_SYMBOL_GPL(pci_dev_trylock); 5081 5082 void pci_dev_unlock(struct pci_dev *dev) 5083 { 5084 device_unlock(&dev->dev); 5085 pci_cfg_access_unlock(dev); 5086 } 5087 EXPORT_SYMBOL_GPL(pci_dev_unlock); 5088 5089 static void pci_dev_save_and_disable(struct pci_dev *dev) 5090 { 5091 const struct pci_error_handlers *err_handler = 5092 dev->driver ? dev->driver->err_handler : NULL; 5093 5094 /* 5095 * dev->driver->err_handler->reset_prepare() is protected against 5096 * races with ->remove() by the device lock, which must be held by 5097 * the caller. 5098 */ 5099 if (err_handler && err_handler->reset_prepare) 5100 err_handler->reset_prepare(dev); 5101 5102 /* 5103 * Wake-up device prior to save. PM registers default to D0 after 5104 * reset and a simple register restore doesn't reliably return 5105 * to a non-D0 state anyway. 5106 */ 5107 pci_set_power_state(dev, PCI_D0); 5108 5109 pci_save_state(dev); 5110 /* 5111 * Disable the device by clearing the Command register, except for 5112 * INTx-disable which is set. This not only disables MMIO and I/O port 5113 * BARs, but also prevents the device from being Bus Master, preventing 5114 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3 5115 * compliant devices, INTx-disable prevents legacy interrupts. 5116 */ 5117 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE); 5118 } 5119 5120 static void pci_dev_restore(struct pci_dev *dev) 5121 { 5122 const struct pci_error_handlers *err_handler = 5123 dev->driver ? dev->driver->err_handler : NULL; 5124 5125 pci_restore_state(dev); 5126 5127 /* 5128 * dev->driver->err_handler->reset_done() is protected against 5129 * races with ->remove() by the device lock, which must be held by 5130 * the caller. 5131 */ 5132 if (err_handler && err_handler->reset_done) 5133 err_handler->reset_done(dev); 5134 } 5135 5136 /* dev->reset_methods[] is a 0-terminated list of indices into this array */ 5137 static const struct pci_reset_fn_method pci_reset_fn_methods[] = { 5138 { }, 5139 { pci_dev_specific_reset, .name = "device_specific" }, 5140 { pci_dev_acpi_reset, .name = "acpi" }, 5141 { pcie_reset_flr, .name = "flr" }, 5142 { pci_af_flr, .name = "af_flr" }, 5143 { pci_pm_reset, .name = "pm" }, 5144 { pci_reset_bus_function, .name = "bus" }, 5145 }; 5146 5147 static ssize_t reset_method_show(struct device *dev, 5148 struct device_attribute *attr, char *buf) 5149 { 5150 struct pci_dev *pdev = to_pci_dev(dev); 5151 ssize_t len = 0; 5152 int i, m; 5153 5154 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) { 5155 m = pdev->reset_methods[i]; 5156 if (!m) 5157 break; 5158 5159 len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "", 5160 pci_reset_fn_methods[m].name); 5161 } 5162 5163 if (len) 5164 len += sysfs_emit_at(buf, len, "\n"); 5165 5166 return len; 5167 } 5168 5169 static int reset_method_lookup(const char *name) 5170 { 5171 int m; 5172 5173 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) { 5174 if (sysfs_streq(name, pci_reset_fn_methods[m].name)) 5175 return m; 5176 } 5177 5178 return 0; /* not found */ 5179 } 5180 5181 static ssize_t reset_method_store(struct device *dev, 5182 struct device_attribute *attr, 5183 const char *buf, size_t count) 5184 { 5185 struct pci_dev *pdev = to_pci_dev(dev); 5186 char *options, *name; 5187 int m, n; 5188 u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 }; 5189 5190 if (sysfs_streq(buf, "")) { 5191 pdev->reset_methods[0] = 0; 5192 pci_warn(pdev, "All device reset methods disabled by user"); 5193 return count; 5194 } 5195 5196 if (sysfs_streq(buf, "default")) { 5197 pci_init_reset_methods(pdev); 5198 return count; 5199 } 5200 5201 options = kstrndup(buf, count, GFP_KERNEL); 5202 if (!options) 5203 return -ENOMEM; 5204 5205 n = 0; 5206 while ((name = strsep(&options, " ")) != NULL) { 5207 if (sysfs_streq(name, "")) 5208 continue; 5209 5210 name = strim(name); 5211 5212 m = reset_method_lookup(name); 5213 if (!m) { 5214 pci_err(pdev, "Invalid reset method '%s'", name); 5215 goto error; 5216 } 5217 5218 if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) { 5219 pci_err(pdev, "Unsupported reset method '%s'", name); 5220 goto error; 5221 } 5222 5223 if (n == PCI_NUM_RESET_METHODS - 1) { 5224 pci_err(pdev, "Too many reset methods\n"); 5225 goto error; 5226 } 5227 5228 reset_methods[n++] = m; 5229 } 5230 5231 reset_methods[n] = 0; 5232 5233 /* Warn if dev-specific supported but not highest priority */ 5234 if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 && 5235 reset_methods[0] != 1) 5236 pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user"); 5237 memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods)); 5238 kfree(options); 5239 return count; 5240 5241 error: 5242 /* Leave previous methods unchanged */ 5243 kfree(options); 5244 return -EINVAL; 5245 } 5246 static DEVICE_ATTR_RW(reset_method); 5247 5248 static struct attribute *pci_dev_reset_method_attrs[] = { 5249 &dev_attr_reset_method.attr, 5250 NULL, 5251 }; 5252 5253 static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj, 5254 struct attribute *a, int n) 5255 { 5256 struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj)); 5257 5258 if (!pci_reset_supported(pdev)) 5259 return 0; 5260 5261 return a->mode; 5262 } 5263 5264 const struct attribute_group pci_dev_reset_method_attr_group = { 5265 .attrs = pci_dev_reset_method_attrs, 5266 .is_visible = pci_dev_reset_method_attr_is_visible, 5267 }; 5268 5269 /** 5270 * __pci_reset_function_locked - reset a PCI device function while holding 5271 * the @dev mutex lock. 5272 * @dev: PCI device to reset 5273 * 5274 * Some devices allow an individual function to be reset without affecting 5275 * other functions in the same device. The PCI device must be responsive 5276 * to PCI config space in order to use this function. 5277 * 5278 * The device function is presumed to be unused and the caller is holding 5279 * the device mutex lock when this function is called. 5280 * 5281 * Resetting the device will make the contents of PCI configuration space 5282 * random, so any caller of this must be prepared to reinitialise the 5283 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 5284 * etc. 5285 * 5286 * Returns 0 if the device function was successfully reset or negative if the 5287 * device doesn't support resetting a single function. 5288 */ 5289 int __pci_reset_function_locked(struct pci_dev *dev) 5290 { 5291 int i, m, rc = -ENOTTY; 5292 5293 might_sleep(); 5294 5295 /* 5296 * A reset method returns -ENOTTY if it doesn't support this device and 5297 * we should try the next method. 5298 * 5299 * If it returns 0 (success), we're finished. If it returns any other 5300 * error, we're also finished: this indicates that further reset 5301 * mechanisms might be broken on the device. 5302 */ 5303 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) { 5304 m = dev->reset_methods[i]; 5305 if (!m) 5306 return -ENOTTY; 5307 5308 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET); 5309 if (!rc) 5310 return 0; 5311 if (rc != -ENOTTY) 5312 return rc; 5313 } 5314 5315 return -ENOTTY; 5316 } 5317 EXPORT_SYMBOL_GPL(__pci_reset_function_locked); 5318 5319 /** 5320 * pci_init_reset_methods - check whether device can be safely reset 5321 * and store supported reset mechanisms. 5322 * @dev: PCI device to check for reset mechanisms 5323 * 5324 * Some devices allow an individual function to be reset without affecting 5325 * other functions in the same device. The PCI device must be in D0-D3hot 5326 * state. 5327 * 5328 * Stores reset mechanisms supported by device in reset_methods byte array 5329 * which is a member of struct pci_dev. 5330 */ 5331 void pci_init_reset_methods(struct pci_dev *dev) 5332 { 5333 int m, i, rc; 5334 5335 BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS); 5336 5337 might_sleep(); 5338 5339 i = 0; 5340 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) { 5341 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE); 5342 if (!rc) 5343 dev->reset_methods[i++] = m; 5344 else if (rc != -ENOTTY) 5345 break; 5346 } 5347 5348 dev->reset_methods[i] = 0; 5349 } 5350 5351 /** 5352 * pci_reset_function - quiesce and reset a PCI device function 5353 * @dev: PCI device to reset 5354 * 5355 * Some devices allow an individual function to be reset without affecting 5356 * other functions in the same device. The PCI device must be responsive 5357 * to PCI config space in order to use this function. 5358 * 5359 * This function does not just reset the PCI portion of a device, but 5360 * clears all the state associated with the device. This function differs 5361 * from __pci_reset_function_locked() in that it saves and restores device state 5362 * over the reset and takes the PCI device lock. 5363 * 5364 * Returns 0 if the device function was successfully reset or negative if the 5365 * device doesn't support resetting a single function. 5366 */ 5367 int pci_reset_function(struct pci_dev *dev) 5368 { 5369 int rc; 5370 5371 if (!pci_reset_supported(dev)) 5372 return -ENOTTY; 5373 5374 pci_dev_lock(dev); 5375 pci_dev_save_and_disable(dev); 5376 5377 rc = __pci_reset_function_locked(dev); 5378 5379 pci_dev_restore(dev); 5380 pci_dev_unlock(dev); 5381 5382 return rc; 5383 } 5384 EXPORT_SYMBOL_GPL(pci_reset_function); 5385 5386 /** 5387 * pci_reset_function_locked - quiesce and reset a PCI device function 5388 * @dev: PCI device to reset 5389 * 5390 * Some devices allow an individual function to be reset without affecting 5391 * other functions in the same device. The PCI device must be responsive 5392 * to PCI config space in order to use this function. 5393 * 5394 * This function does not just reset the PCI portion of a device, but 5395 * clears all the state associated with the device. This function differs 5396 * from __pci_reset_function_locked() in that it saves and restores device state 5397 * over the reset. It also differs from pci_reset_function() in that it 5398 * requires the PCI device lock to be held. 5399 * 5400 * Returns 0 if the device function was successfully reset or negative if the 5401 * device doesn't support resetting a single function. 5402 */ 5403 int pci_reset_function_locked(struct pci_dev *dev) 5404 { 5405 int rc; 5406 5407 if (!pci_reset_supported(dev)) 5408 return -ENOTTY; 5409 5410 pci_dev_save_and_disable(dev); 5411 5412 rc = __pci_reset_function_locked(dev); 5413 5414 pci_dev_restore(dev); 5415 5416 return rc; 5417 } 5418 EXPORT_SYMBOL_GPL(pci_reset_function_locked); 5419 5420 /** 5421 * pci_try_reset_function - quiesce and reset a PCI device function 5422 * @dev: PCI device to reset 5423 * 5424 * Same as above, except return -EAGAIN if unable to lock device. 5425 */ 5426 int pci_try_reset_function(struct pci_dev *dev) 5427 { 5428 int rc; 5429 5430 if (!pci_reset_supported(dev)) 5431 return -ENOTTY; 5432 5433 if (!pci_dev_trylock(dev)) 5434 return -EAGAIN; 5435 5436 pci_dev_save_and_disable(dev); 5437 rc = __pci_reset_function_locked(dev); 5438 pci_dev_restore(dev); 5439 pci_dev_unlock(dev); 5440 5441 return rc; 5442 } 5443 EXPORT_SYMBOL_GPL(pci_try_reset_function); 5444 5445 /* Do any devices on or below this bus prevent a bus reset? */ 5446 static bool pci_bus_resetable(struct pci_bus *bus) 5447 { 5448 struct pci_dev *dev; 5449 5450 5451 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 5452 return false; 5453 5454 list_for_each_entry(dev, &bus->devices, bus_list) { 5455 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 5456 (dev->subordinate && !pci_bus_resetable(dev->subordinate))) 5457 return false; 5458 } 5459 5460 return true; 5461 } 5462 5463 /* Lock devices from the top of the tree down */ 5464 static void pci_bus_lock(struct pci_bus *bus) 5465 { 5466 struct pci_dev *dev; 5467 5468 list_for_each_entry(dev, &bus->devices, bus_list) { 5469 pci_dev_lock(dev); 5470 if (dev->subordinate) 5471 pci_bus_lock(dev->subordinate); 5472 } 5473 } 5474 5475 /* Unlock devices from the bottom of the tree up */ 5476 static void pci_bus_unlock(struct pci_bus *bus) 5477 { 5478 struct pci_dev *dev; 5479 5480 list_for_each_entry(dev, &bus->devices, bus_list) { 5481 if (dev->subordinate) 5482 pci_bus_unlock(dev->subordinate); 5483 pci_dev_unlock(dev); 5484 } 5485 } 5486 5487 /* Return 1 on successful lock, 0 on contention */ 5488 static int pci_bus_trylock(struct pci_bus *bus) 5489 { 5490 struct pci_dev *dev; 5491 5492 list_for_each_entry(dev, &bus->devices, bus_list) { 5493 if (!pci_dev_trylock(dev)) 5494 goto unlock; 5495 if (dev->subordinate) { 5496 if (!pci_bus_trylock(dev->subordinate)) { 5497 pci_dev_unlock(dev); 5498 goto unlock; 5499 } 5500 } 5501 } 5502 return 1; 5503 5504 unlock: 5505 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) { 5506 if (dev->subordinate) 5507 pci_bus_unlock(dev->subordinate); 5508 pci_dev_unlock(dev); 5509 } 5510 return 0; 5511 } 5512 5513 /* Do any devices on or below this slot prevent a bus reset? */ 5514 static bool pci_slot_resetable(struct pci_slot *slot) 5515 { 5516 struct pci_dev *dev; 5517 5518 if (slot->bus->self && 5519 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 5520 return false; 5521 5522 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5523 if (!dev->slot || dev->slot != slot) 5524 continue; 5525 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 5526 (dev->subordinate && !pci_bus_resetable(dev->subordinate))) 5527 return false; 5528 } 5529 5530 return true; 5531 } 5532 5533 /* Lock devices from the top of the tree down */ 5534 static void pci_slot_lock(struct pci_slot *slot) 5535 { 5536 struct pci_dev *dev; 5537 5538 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5539 if (!dev->slot || dev->slot != slot) 5540 continue; 5541 pci_dev_lock(dev); 5542 if (dev->subordinate) 5543 pci_bus_lock(dev->subordinate); 5544 } 5545 } 5546 5547 /* Unlock devices from the bottom of the tree up */ 5548 static void pci_slot_unlock(struct pci_slot *slot) 5549 { 5550 struct pci_dev *dev; 5551 5552 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5553 if (!dev->slot || dev->slot != slot) 5554 continue; 5555 if (dev->subordinate) 5556 pci_bus_unlock(dev->subordinate); 5557 pci_dev_unlock(dev); 5558 } 5559 } 5560 5561 /* Return 1 on successful lock, 0 on contention */ 5562 static int pci_slot_trylock(struct pci_slot *slot) 5563 { 5564 struct pci_dev *dev; 5565 5566 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5567 if (!dev->slot || dev->slot != slot) 5568 continue; 5569 if (!pci_dev_trylock(dev)) 5570 goto unlock; 5571 if (dev->subordinate) { 5572 if (!pci_bus_trylock(dev->subordinate)) { 5573 pci_dev_unlock(dev); 5574 goto unlock; 5575 } 5576 } 5577 } 5578 return 1; 5579 5580 unlock: 5581 list_for_each_entry_continue_reverse(dev, 5582 &slot->bus->devices, bus_list) { 5583 if (!dev->slot || dev->slot != slot) 5584 continue; 5585 if (dev->subordinate) 5586 pci_bus_unlock(dev->subordinate); 5587 pci_dev_unlock(dev); 5588 } 5589 return 0; 5590 } 5591 5592 /* 5593 * Save and disable devices from the top of the tree down while holding 5594 * the @dev mutex lock for the entire tree. 5595 */ 5596 static void pci_bus_save_and_disable_locked(struct pci_bus *bus) 5597 { 5598 struct pci_dev *dev; 5599 5600 list_for_each_entry(dev, &bus->devices, bus_list) { 5601 pci_dev_save_and_disable(dev); 5602 if (dev->subordinate) 5603 pci_bus_save_and_disable_locked(dev->subordinate); 5604 } 5605 } 5606 5607 /* 5608 * Restore devices from top of the tree down while holding @dev mutex lock 5609 * for the entire tree. Parent bridges need to be restored before we can 5610 * get to subordinate devices. 5611 */ 5612 static void pci_bus_restore_locked(struct pci_bus *bus) 5613 { 5614 struct pci_dev *dev; 5615 5616 list_for_each_entry(dev, &bus->devices, bus_list) { 5617 pci_dev_restore(dev); 5618 if (dev->subordinate) 5619 pci_bus_restore_locked(dev->subordinate); 5620 } 5621 } 5622 5623 /* 5624 * Save and disable devices from the top of the tree down while holding 5625 * the @dev mutex lock for the entire tree. 5626 */ 5627 static void pci_slot_save_and_disable_locked(struct pci_slot *slot) 5628 { 5629 struct pci_dev *dev; 5630 5631 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5632 if (!dev->slot || dev->slot != slot) 5633 continue; 5634 pci_dev_save_and_disable(dev); 5635 if (dev->subordinate) 5636 pci_bus_save_and_disable_locked(dev->subordinate); 5637 } 5638 } 5639 5640 /* 5641 * Restore devices from top of the tree down while holding @dev mutex lock 5642 * for the entire tree. Parent bridges need to be restored before we can 5643 * get to subordinate devices. 5644 */ 5645 static void pci_slot_restore_locked(struct pci_slot *slot) 5646 { 5647 struct pci_dev *dev; 5648 5649 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5650 if (!dev->slot || dev->slot != slot) 5651 continue; 5652 pci_dev_restore(dev); 5653 if (dev->subordinate) 5654 pci_bus_restore_locked(dev->subordinate); 5655 } 5656 } 5657 5658 static int pci_slot_reset(struct pci_slot *slot, bool probe) 5659 { 5660 int rc; 5661 5662 if (!slot || !pci_slot_resetable(slot)) 5663 return -ENOTTY; 5664 5665 if (!probe) 5666 pci_slot_lock(slot); 5667 5668 might_sleep(); 5669 5670 rc = pci_reset_hotplug_slot(slot->hotplug, probe); 5671 5672 if (!probe) 5673 pci_slot_unlock(slot); 5674 5675 return rc; 5676 } 5677 5678 /** 5679 * pci_probe_reset_slot - probe whether a PCI slot can be reset 5680 * @slot: PCI slot to probe 5681 * 5682 * Return 0 if slot can be reset, negative if a slot reset is not supported. 5683 */ 5684 int pci_probe_reset_slot(struct pci_slot *slot) 5685 { 5686 return pci_slot_reset(slot, PCI_RESET_PROBE); 5687 } 5688 EXPORT_SYMBOL_GPL(pci_probe_reset_slot); 5689 5690 /** 5691 * __pci_reset_slot - Try to reset a PCI slot 5692 * @slot: PCI slot to reset 5693 * 5694 * A PCI bus may host multiple slots, each slot may support a reset mechanism 5695 * independent of other slots. For instance, some slots may support slot power 5696 * control. In the case of a 1:1 bus to slot architecture, this function may 5697 * wrap the bus reset to avoid spurious slot related events such as hotplug. 5698 * Generally a slot reset should be attempted before a bus reset. All of the 5699 * function of the slot and any subordinate buses behind the slot are reset 5700 * through this function. PCI config space of all devices in the slot and 5701 * behind the slot is saved before and restored after reset. 5702 * 5703 * Same as above except return -EAGAIN if the slot cannot be locked 5704 */ 5705 static int __pci_reset_slot(struct pci_slot *slot) 5706 { 5707 int rc; 5708 5709 rc = pci_slot_reset(slot, PCI_RESET_PROBE); 5710 if (rc) 5711 return rc; 5712 5713 if (pci_slot_trylock(slot)) { 5714 pci_slot_save_and_disable_locked(slot); 5715 might_sleep(); 5716 rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET); 5717 pci_slot_restore_locked(slot); 5718 pci_slot_unlock(slot); 5719 } else 5720 rc = -EAGAIN; 5721 5722 return rc; 5723 } 5724 5725 static int pci_bus_reset(struct pci_bus *bus, bool probe) 5726 { 5727 int ret; 5728 5729 if (!bus->self || !pci_bus_resetable(bus)) 5730 return -ENOTTY; 5731 5732 if (probe) 5733 return 0; 5734 5735 pci_bus_lock(bus); 5736 5737 might_sleep(); 5738 5739 ret = pci_bridge_secondary_bus_reset(bus->self); 5740 5741 pci_bus_unlock(bus); 5742 5743 return ret; 5744 } 5745 5746 /** 5747 * pci_bus_error_reset - reset the bridge's subordinate bus 5748 * @bridge: The parent device that connects to the bus to reset 5749 * 5750 * This function will first try to reset the slots on this bus if the method is 5751 * available. If slot reset fails or is not available, this will fall back to a 5752 * secondary bus reset. 5753 */ 5754 int pci_bus_error_reset(struct pci_dev *bridge) 5755 { 5756 struct pci_bus *bus = bridge->subordinate; 5757 struct pci_slot *slot; 5758 5759 if (!bus) 5760 return -ENOTTY; 5761 5762 mutex_lock(&pci_slot_mutex); 5763 if (list_empty(&bus->slots)) 5764 goto bus_reset; 5765 5766 list_for_each_entry(slot, &bus->slots, list) 5767 if (pci_probe_reset_slot(slot)) 5768 goto bus_reset; 5769 5770 list_for_each_entry(slot, &bus->slots, list) 5771 if (pci_slot_reset(slot, PCI_RESET_DO_RESET)) 5772 goto bus_reset; 5773 5774 mutex_unlock(&pci_slot_mutex); 5775 return 0; 5776 bus_reset: 5777 mutex_unlock(&pci_slot_mutex); 5778 return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET); 5779 } 5780 5781 /** 5782 * pci_probe_reset_bus - probe whether a PCI bus can be reset 5783 * @bus: PCI bus to probe 5784 * 5785 * Return 0 if bus can be reset, negative if a bus reset is not supported. 5786 */ 5787 int pci_probe_reset_bus(struct pci_bus *bus) 5788 { 5789 return pci_bus_reset(bus, PCI_RESET_PROBE); 5790 } 5791 EXPORT_SYMBOL_GPL(pci_probe_reset_bus); 5792 5793 /** 5794 * __pci_reset_bus - Try to reset a PCI bus 5795 * @bus: top level PCI bus to reset 5796 * 5797 * Same as above except return -EAGAIN if the bus cannot be locked 5798 */ 5799 static int __pci_reset_bus(struct pci_bus *bus) 5800 { 5801 int rc; 5802 5803 rc = pci_bus_reset(bus, PCI_RESET_PROBE); 5804 if (rc) 5805 return rc; 5806 5807 if (pci_bus_trylock(bus)) { 5808 pci_bus_save_and_disable_locked(bus); 5809 might_sleep(); 5810 rc = pci_bridge_secondary_bus_reset(bus->self); 5811 pci_bus_restore_locked(bus); 5812 pci_bus_unlock(bus); 5813 } else 5814 rc = -EAGAIN; 5815 5816 return rc; 5817 } 5818 5819 /** 5820 * pci_reset_bus - Try to reset a PCI bus 5821 * @pdev: top level PCI device to reset via slot/bus 5822 * 5823 * Same as above except return -EAGAIN if the bus cannot be locked 5824 */ 5825 int pci_reset_bus(struct pci_dev *pdev) 5826 { 5827 return (!pci_probe_reset_slot(pdev->slot)) ? 5828 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus); 5829 } 5830 EXPORT_SYMBOL_GPL(pci_reset_bus); 5831 5832 /** 5833 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count 5834 * @dev: PCI device to query 5835 * 5836 * Returns mmrbc: maximum designed memory read count in bytes or 5837 * appropriate error value. 5838 */ 5839 int pcix_get_max_mmrbc(struct pci_dev *dev) 5840 { 5841 int cap; 5842 u32 stat; 5843 5844 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5845 if (!cap) 5846 return -EINVAL; 5847 5848 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 5849 return -EINVAL; 5850 5851 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21); 5852 } 5853 EXPORT_SYMBOL(pcix_get_max_mmrbc); 5854 5855 /** 5856 * pcix_get_mmrbc - get PCI-X maximum memory read byte count 5857 * @dev: PCI device to query 5858 * 5859 * Returns mmrbc: maximum memory read count in bytes or appropriate error 5860 * value. 5861 */ 5862 int pcix_get_mmrbc(struct pci_dev *dev) 5863 { 5864 int cap; 5865 u16 cmd; 5866 5867 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5868 if (!cap) 5869 return -EINVAL; 5870 5871 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 5872 return -EINVAL; 5873 5874 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2); 5875 } 5876 EXPORT_SYMBOL(pcix_get_mmrbc); 5877 5878 /** 5879 * pcix_set_mmrbc - set PCI-X maximum memory read byte count 5880 * @dev: PCI device to query 5881 * @mmrbc: maximum memory read count in bytes 5882 * valid values are 512, 1024, 2048, 4096 5883 * 5884 * If possible sets maximum memory read byte count, some bridges have errata 5885 * that prevent this. 5886 */ 5887 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc) 5888 { 5889 int cap; 5890 u32 stat, v, o; 5891 u16 cmd; 5892 5893 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc)) 5894 return -EINVAL; 5895 5896 v = ffs(mmrbc) - 10; 5897 5898 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5899 if (!cap) 5900 return -EINVAL; 5901 5902 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 5903 return -EINVAL; 5904 5905 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21) 5906 return -E2BIG; 5907 5908 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 5909 return -EINVAL; 5910 5911 o = (cmd & PCI_X_CMD_MAX_READ) >> 2; 5912 if (o != v) { 5913 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC)) 5914 return -EIO; 5915 5916 cmd &= ~PCI_X_CMD_MAX_READ; 5917 cmd |= v << 2; 5918 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd)) 5919 return -EIO; 5920 } 5921 return 0; 5922 } 5923 EXPORT_SYMBOL(pcix_set_mmrbc); 5924 5925 /** 5926 * pcie_get_readrq - get PCI Express read request size 5927 * @dev: PCI device to query 5928 * 5929 * Returns maximum memory read request in bytes or appropriate error value. 5930 */ 5931 int pcie_get_readrq(struct pci_dev *dev) 5932 { 5933 u16 ctl; 5934 5935 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 5936 5937 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12); 5938 } 5939 EXPORT_SYMBOL(pcie_get_readrq); 5940 5941 /** 5942 * pcie_set_readrq - set PCI Express maximum memory read request 5943 * @dev: PCI device to query 5944 * @rq: maximum memory read count in bytes 5945 * valid values are 128, 256, 512, 1024, 2048, 4096 5946 * 5947 * If possible sets maximum memory read request in bytes 5948 */ 5949 int pcie_set_readrq(struct pci_dev *dev, int rq) 5950 { 5951 u16 v; 5952 int ret; 5953 5954 if (rq < 128 || rq > 4096 || !is_power_of_2(rq)) 5955 return -EINVAL; 5956 5957 /* 5958 * If using the "performance" PCIe config, we clamp the read rq 5959 * size to the max packet size to keep the host bridge from 5960 * generating requests larger than we can cope with. 5961 */ 5962 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) { 5963 int mps = pcie_get_mps(dev); 5964 5965 if (mps < rq) 5966 rq = mps; 5967 } 5968 5969 v = (ffs(rq) - 8) << 12; 5970 5971 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 5972 PCI_EXP_DEVCTL_READRQ, v); 5973 5974 return pcibios_err_to_errno(ret); 5975 } 5976 EXPORT_SYMBOL(pcie_set_readrq); 5977 5978 /** 5979 * pcie_get_mps - get PCI Express maximum payload size 5980 * @dev: PCI device to query 5981 * 5982 * Returns maximum payload size in bytes 5983 */ 5984 int pcie_get_mps(struct pci_dev *dev) 5985 { 5986 u16 ctl; 5987 5988 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 5989 5990 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5); 5991 } 5992 EXPORT_SYMBOL(pcie_get_mps); 5993 5994 /** 5995 * pcie_set_mps - set PCI Express maximum payload size 5996 * @dev: PCI device to query 5997 * @mps: maximum payload size in bytes 5998 * valid values are 128, 256, 512, 1024, 2048, 4096 5999 * 6000 * If possible sets maximum payload size 6001 */ 6002 int pcie_set_mps(struct pci_dev *dev, int mps) 6003 { 6004 u16 v; 6005 int ret; 6006 6007 if (mps < 128 || mps > 4096 || !is_power_of_2(mps)) 6008 return -EINVAL; 6009 6010 v = ffs(mps) - 8; 6011 if (v > dev->pcie_mpss) 6012 return -EINVAL; 6013 v <<= 5; 6014 6015 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 6016 PCI_EXP_DEVCTL_PAYLOAD, v); 6017 6018 return pcibios_err_to_errno(ret); 6019 } 6020 EXPORT_SYMBOL(pcie_set_mps); 6021 6022 /** 6023 * pcie_bandwidth_available - determine minimum link settings of a PCIe 6024 * device and its bandwidth limitation 6025 * @dev: PCI device to query 6026 * @limiting_dev: storage for device causing the bandwidth limitation 6027 * @speed: storage for speed of limiting device 6028 * @width: storage for width of limiting device 6029 * 6030 * Walk up the PCI device chain and find the point where the minimum 6031 * bandwidth is available. Return the bandwidth available there and (if 6032 * limiting_dev, speed, and width pointers are supplied) information about 6033 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of 6034 * raw bandwidth. 6035 */ 6036 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev, 6037 enum pci_bus_speed *speed, 6038 enum pcie_link_width *width) 6039 { 6040 u16 lnksta; 6041 enum pci_bus_speed next_speed; 6042 enum pcie_link_width next_width; 6043 u32 bw, next_bw; 6044 6045 if (speed) 6046 *speed = PCI_SPEED_UNKNOWN; 6047 if (width) 6048 *width = PCIE_LNK_WIDTH_UNKNOWN; 6049 6050 bw = 0; 6051 6052 while (dev) { 6053 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta); 6054 6055 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS]; 6056 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >> 6057 PCI_EXP_LNKSTA_NLW_SHIFT; 6058 6059 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed); 6060 6061 /* Check if current device limits the total bandwidth */ 6062 if (!bw || next_bw <= bw) { 6063 bw = next_bw; 6064 6065 if (limiting_dev) 6066 *limiting_dev = dev; 6067 if (speed) 6068 *speed = next_speed; 6069 if (width) 6070 *width = next_width; 6071 } 6072 6073 dev = pci_upstream_bridge(dev); 6074 } 6075 6076 return bw; 6077 } 6078 EXPORT_SYMBOL(pcie_bandwidth_available); 6079 6080 /** 6081 * pcie_get_speed_cap - query for the PCI device's link speed capability 6082 * @dev: PCI device to query 6083 * 6084 * Query the PCI device speed capability. Return the maximum link speed 6085 * supported by the device. 6086 */ 6087 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev) 6088 { 6089 u32 lnkcap2, lnkcap; 6090 6091 /* 6092 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The 6093 * implementation note there recommends using the Supported Link 6094 * Speeds Vector in Link Capabilities 2 when supported. 6095 * 6096 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software 6097 * should use the Supported Link Speeds field in Link Capabilities, 6098 * where only 2.5 GT/s and 5.0 GT/s speeds were defined. 6099 */ 6100 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2); 6101 6102 /* PCIe r3.0-compliant */ 6103 if (lnkcap2) 6104 return PCIE_LNKCAP2_SLS2SPEED(lnkcap2); 6105 6106 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 6107 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB) 6108 return PCIE_SPEED_5_0GT; 6109 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB) 6110 return PCIE_SPEED_2_5GT; 6111 6112 return PCI_SPEED_UNKNOWN; 6113 } 6114 EXPORT_SYMBOL(pcie_get_speed_cap); 6115 6116 /** 6117 * pcie_get_width_cap - query for the PCI device's link width capability 6118 * @dev: PCI device to query 6119 * 6120 * Query the PCI device width capability. Return the maximum link width 6121 * supported by the device. 6122 */ 6123 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev) 6124 { 6125 u32 lnkcap; 6126 6127 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 6128 if (lnkcap) 6129 return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4; 6130 6131 return PCIE_LNK_WIDTH_UNKNOWN; 6132 } 6133 EXPORT_SYMBOL(pcie_get_width_cap); 6134 6135 /** 6136 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability 6137 * @dev: PCI device 6138 * @speed: storage for link speed 6139 * @width: storage for link width 6140 * 6141 * Calculate a PCI device's link bandwidth by querying for its link speed 6142 * and width, multiplying them, and applying encoding overhead. The result 6143 * is in Mb/s, i.e., megabits/second of raw bandwidth. 6144 */ 6145 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed, 6146 enum pcie_link_width *width) 6147 { 6148 *speed = pcie_get_speed_cap(dev); 6149 *width = pcie_get_width_cap(dev); 6150 6151 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN) 6152 return 0; 6153 6154 return *width * PCIE_SPEED2MBS_ENC(*speed); 6155 } 6156 6157 /** 6158 * __pcie_print_link_status - Report the PCI device's link speed and width 6159 * @dev: PCI device to query 6160 * @verbose: Print info even when enough bandwidth is available 6161 * 6162 * If the available bandwidth at the device is less than the device is 6163 * capable of, report the device's maximum possible bandwidth and the 6164 * upstream link that limits its performance. If @verbose, always print 6165 * the available bandwidth, even if the device isn't constrained. 6166 */ 6167 void __pcie_print_link_status(struct pci_dev *dev, bool verbose) 6168 { 6169 enum pcie_link_width width, width_cap; 6170 enum pci_bus_speed speed, speed_cap; 6171 struct pci_dev *limiting_dev = NULL; 6172 u32 bw_avail, bw_cap; 6173 6174 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap); 6175 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width); 6176 6177 if (bw_avail >= bw_cap && verbose) 6178 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n", 6179 bw_cap / 1000, bw_cap % 1000, 6180 pci_speed_string(speed_cap), width_cap); 6181 else if (bw_avail < bw_cap) 6182 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n", 6183 bw_avail / 1000, bw_avail % 1000, 6184 pci_speed_string(speed), width, 6185 limiting_dev ? pci_name(limiting_dev) : "<unknown>", 6186 bw_cap / 1000, bw_cap % 1000, 6187 pci_speed_string(speed_cap), width_cap); 6188 } 6189 6190 /** 6191 * pcie_print_link_status - Report the PCI device's link speed and width 6192 * @dev: PCI device to query 6193 * 6194 * Report the available bandwidth at the device. 6195 */ 6196 void pcie_print_link_status(struct pci_dev *dev) 6197 { 6198 __pcie_print_link_status(dev, true); 6199 } 6200 EXPORT_SYMBOL(pcie_print_link_status); 6201 6202 /** 6203 * pci_select_bars - Make BAR mask from the type of resource 6204 * @dev: the PCI device for which BAR mask is made 6205 * @flags: resource type mask to be selected 6206 * 6207 * This helper routine makes bar mask from the type of resource. 6208 */ 6209 int pci_select_bars(struct pci_dev *dev, unsigned long flags) 6210 { 6211 int i, bars = 0; 6212 for (i = 0; i < PCI_NUM_RESOURCES; i++) 6213 if (pci_resource_flags(dev, i) & flags) 6214 bars |= (1 << i); 6215 return bars; 6216 } 6217 EXPORT_SYMBOL(pci_select_bars); 6218 6219 /* Some architectures require additional programming to enable VGA */ 6220 static arch_set_vga_state_t arch_set_vga_state; 6221 6222 void __init pci_register_set_vga_state(arch_set_vga_state_t func) 6223 { 6224 arch_set_vga_state = func; /* NULL disables */ 6225 } 6226 6227 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode, 6228 unsigned int command_bits, u32 flags) 6229 { 6230 if (arch_set_vga_state) 6231 return arch_set_vga_state(dev, decode, command_bits, 6232 flags); 6233 return 0; 6234 } 6235 6236 /** 6237 * pci_set_vga_state - set VGA decode state on device and parents if requested 6238 * @dev: the PCI device 6239 * @decode: true = enable decoding, false = disable decoding 6240 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY 6241 * @flags: traverse ancestors and change bridges 6242 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE 6243 */ 6244 int pci_set_vga_state(struct pci_dev *dev, bool decode, 6245 unsigned int command_bits, u32 flags) 6246 { 6247 struct pci_bus *bus; 6248 struct pci_dev *bridge; 6249 u16 cmd; 6250 int rc; 6251 6252 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY))); 6253 6254 /* ARCH specific VGA enables */ 6255 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags); 6256 if (rc) 6257 return rc; 6258 6259 if (flags & PCI_VGA_STATE_CHANGE_DECODES) { 6260 pci_read_config_word(dev, PCI_COMMAND, &cmd); 6261 if (decode) 6262 cmd |= command_bits; 6263 else 6264 cmd &= ~command_bits; 6265 pci_write_config_word(dev, PCI_COMMAND, cmd); 6266 } 6267 6268 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE)) 6269 return 0; 6270 6271 bus = dev->bus; 6272 while (bus) { 6273 bridge = bus->self; 6274 if (bridge) { 6275 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL, 6276 &cmd); 6277 if (decode) 6278 cmd |= PCI_BRIDGE_CTL_VGA; 6279 else 6280 cmd &= ~PCI_BRIDGE_CTL_VGA; 6281 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL, 6282 cmd); 6283 } 6284 bus = bus->parent; 6285 } 6286 return 0; 6287 } 6288 6289 #ifdef CONFIG_ACPI 6290 bool pci_pr3_present(struct pci_dev *pdev) 6291 { 6292 struct acpi_device *adev; 6293 6294 if (acpi_disabled) 6295 return false; 6296 6297 adev = ACPI_COMPANION(&pdev->dev); 6298 if (!adev) 6299 return false; 6300 6301 return adev->power.flags.power_resources && 6302 acpi_has_method(adev->handle, "_PR3"); 6303 } 6304 EXPORT_SYMBOL_GPL(pci_pr3_present); 6305 #endif 6306 6307 /** 6308 * pci_add_dma_alias - Add a DMA devfn alias for a device 6309 * @dev: the PCI device for which alias is added 6310 * @devfn_from: alias slot and function 6311 * @nr_devfns: number of subsequent devfns to alias 6312 * 6313 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask 6314 * which is used to program permissible bus-devfn source addresses for DMA 6315 * requests in an IOMMU. These aliases factor into IOMMU group creation 6316 * and are useful for devices generating DMA requests beyond or different 6317 * from their logical bus-devfn. Examples include device quirks where the 6318 * device simply uses the wrong devfn, as well as non-transparent bridges 6319 * where the alias may be a proxy for devices in another domain. 6320 * 6321 * IOMMU group creation is performed during device discovery or addition, 6322 * prior to any potential DMA mapping and therefore prior to driver probing 6323 * (especially for userspace assigned devices where IOMMU group definition 6324 * cannot be left as a userspace activity). DMA aliases should therefore 6325 * be configured via quirks, such as the PCI fixup header quirk. 6326 */ 6327 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from, unsigned nr_devfns) 6328 { 6329 int devfn_to; 6330 6331 nr_devfns = min(nr_devfns, (unsigned) MAX_NR_DEVFNS - devfn_from); 6332 devfn_to = devfn_from + nr_devfns - 1; 6333 6334 if (!dev->dma_alias_mask) 6335 dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL); 6336 if (!dev->dma_alias_mask) { 6337 pci_warn(dev, "Unable to allocate DMA alias mask\n"); 6338 return; 6339 } 6340 6341 bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns); 6342 6343 if (nr_devfns == 1) 6344 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n", 6345 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from)); 6346 else if (nr_devfns > 1) 6347 pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n", 6348 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from), 6349 PCI_SLOT(devfn_to), PCI_FUNC(devfn_to)); 6350 } 6351 6352 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2) 6353 { 6354 return (dev1->dma_alias_mask && 6355 test_bit(dev2->devfn, dev1->dma_alias_mask)) || 6356 (dev2->dma_alias_mask && 6357 test_bit(dev1->devfn, dev2->dma_alias_mask)) || 6358 pci_real_dma_dev(dev1) == dev2 || 6359 pci_real_dma_dev(dev2) == dev1; 6360 } 6361 6362 bool pci_device_is_present(struct pci_dev *pdev) 6363 { 6364 u32 v; 6365 6366 if (pci_dev_is_disconnected(pdev)) 6367 return false; 6368 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0); 6369 } 6370 EXPORT_SYMBOL_GPL(pci_device_is_present); 6371 6372 void pci_ignore_hotplug(struct pci_dev *dev) 6373 { 6374 struct pci_dev *bridge = dev->bus->self; 6375 6376 dev->ignore_hotplug = 1; 6377 /* Propagate the "ignore hotplug" setting to the parent bridge. */ 6378 if (bridge) 6379 bridge->ignore_hotplug = 1; 6380 } 6381 EXPORT_SYMBOL_GPL(pci_ignore_hotplug); 6382 6383 /** 6384 * pci_real_dma_dev - Get PCI DMA device for PCI device 6385 * @dev: the PCI device that may have a PCI DMA alias 6386 * 6387 * Permits the platform to provide architecture-specific functionality to 6388 * devices needing to alias DMA to another PCI device on another PCI bus. If 6389 * the PCI device is on the same bus, it is recommended to use 6390 * pci_add_dma_alias(). This is the default implementation. Architecture 6391 * implementations can override this. 6392 */ 6393 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev) 6394 { 6395 return dev; 6396 } 6397 6398 resource_size_t __weak pcibios_default_alignment(void) 6399 { 6400 return 0; 6401 } 6402 6403 /* 6404 * Arches that don't want to expose struct resource to userland as-is in 6405 * sysfs and /proc can implement their own pci_resource_to_user(). 6406 */ 6407 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar, 6408 const struct resource *rsrc, 6409 resource_size_t *start, resource_size_t *end) 6410 { 6411 *start = rsrc->start; 6412 *end = rsrc->end; 6413 } 6414 6415 static char *resource_alignment_param; 6416 static DEFINE_SPINLOCK(resource_alignment_lock); 6417 6418 /** 6419 * pci_specified_resource_alignment - get resource alignment specified by user. 6420 * @dev: the PCI device to get 6421 * @resize: whether or not to change resources' size when reassigning alignment 6422 * 6423 * RETURNS: Resource alignment if it is specified. 6424 * Zero if it is not specified. 6425 */ 6426 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev, 6427 bool *resize) 6428 { 6429 int align_order, count; 6430 resource_size_t align = pcibios_default_alignment(); 6431 const char *p; 6432 int ret; 6433 6434 spin_lock(&resource_alignment_lock); 6435 p = resource_alignment_param; 6436 if (!p || !*p) 6437 goto out; 6438 if (pci_has_flag(PCI_PROBE_ONLY)) { 6439 align = 0; 6440 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n"); 6441 goto out; 6442 } 6443 6444 while (*p) { 6445 count = 0; 6446 if (sscanf(p, "%d%n", &align_order, &count) == 1 && 6447 p[count] == '@') { 6448 p += count + 1; 6449 if (align_order > 63) { 6450 pr_err("PCI: Invalid requested alignment (order %d)\n", 6451 align_order); 6452 align_order = PAGE_SHIFT; 6453 } 6454 } else { 6455 align_order = PAGE_SHIFT; 6456 } 6457 6458 ret = pci_dev_str_match(dev, p, &p); 6459 if (ret == 1) { 6460 *resize = true; 6461 align = 1ULL << align_order; 6462 break; 6463 } else if (ret < 0) { 6464 pr_err("PCI: Can't parse resource_alignment parameter: %s\n", 6465 p); 6466 break; 6467 } 6468 6469 if (*p != ';' && *p != ',') { 6470 /* End of param or invalid format */ 6471 break; 6472 } 6473 p++; 6474 } 6475 out: 6476 spin_unlock(&resource_alignment_lock); 6477 return align; 6478 } 6479 6480 static void pci_request_resource_alignment(struct pci_dev *dev, int bar, 6481 resource_size_t align, bool resize) 6482 { 6483 struct resource *r = &dev->resource[bar]; 6484 resource_size_t size; 6485 6486 if (!(r->flags & IORESOURCE_MEM)) 6487 return; 6488 6489 if (r->flags & IORESOURCE_PCI_FIXED) { 6490 pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n", 6491 bar, r, (unsigned long long)align); 6492 return; 6493 } 6494 6495 size = resource_size(r); 6496 if (size >= align) 6497 return; 6498 6499 /* 6500 * Increase the alignment of the resource. There are two ways we 6501 * can do this: 6502 * 6503 * 1) Increase the size of the resource. BARs are aligned on their 6504 * size, so when we reallocate space for this resource, we'll 6505 * allocate it with the larger alignment. This also prevents 6506 * assignment of any other BARs inside the alignment region, so 6507 * if we're requesting page alignment, this means no other BARs 6508 * will share the page. 6509 * 6510 * The disadvantage is that this makes the resource larger than 6511 * the hardware BAR, which may break drivers that compute things 6512 * based on the resource size, e.g., to find registers at a 6513 * fixed offset before the end of the BAR. 6514 * 6515 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and 6516 * set r->start to the desired alignment. By itself this 6517 * doesn't prevent other BARs being put inside the alignment 6518 * region, but if we realign *every* resource of every device in 6519 * the system, none of them will share an alignment region. 6520 * 6521 * When the user has requested alignment for only some devices via 6522 * the "pci=resource_alignment" argument, "resize" is true and we 6523 * use the first method. Otherwise we assume we're aligning all 6524 * devices and we use the second. 6525 */ 6526 6527 pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n", 6528 bar, r, (unsigned long long)align); 6529 6530 if (resize) { 6531 r->start = 0; 6532 r->end = align - 1; 6533 } else { 6534 r->flags &= ~IORESOURCE_SIZEALIGN; 6535 r->flags |= IORESOURCE_STARTALIGN; 6536 r->start = align; 6537 r->end = r->start + size - 1; 6538 } 6539 r->flags |= IORESOURCE_UNSET; 6540 } 6541 6542 /* 6543 * This function disables memory decoding and releases memory resources 6544 * of the device specified by kernel's boot parameter 'pci=resource_alignment='. 6545 * It also rounds up size to specified alignment. 6546 * Later on, the kernel will assign page-aligned memory resource back 6547 * to the device. 6548 */ 6549 void pci_reassigndev_resource_alignment(struct pci_dev *dev) 6550 { 6551 int i; 6552 struct resource *r; 6553 resource_size_t align; 6554 u16 command; 6555 bool resize = false; 6556 6557 /* 6558 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec 6559 * 3.4.1.11. Their resources are allocated from the space 6560 * described by the VF BARx register in the PF's SR-IOV capability. 6561 * We can't influence their alignment here. 6562 */ 6563 if (dev->is_virtfn) 6564 return; 6565 6566 /* check if specified PCI is target device to reassign */ 6567 align = pci_specified_resource_alignment(dev, &resize); 6568 if (!align) 6569 return; 6570 6571 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL && 6572 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) { 6573 pci_warn(dev, "Can't reassign resources to host bridge\n"); 6574 return; 6575 } 6576 6577 pci_read_config_word(dev, PCI_COMMAND, &command); 6578 command &= ~PCI_COMMAND_MEMORY; 6579 pci_write_config_word(dev, PCI_COMMAND, command); 6580 6581 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 6582 pci_request_resource_alignment(dev, i, align, resize); 6583 6584 /* 6585 * Need to disable bridge's resource window, 6586 * to enable the kernel to reassign new resource 6587 * window later on. 6588 */ 6589 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 6590 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) { 6591 r = &dev->resource[i]; 6592 if (!(r->flags & IORESOURCE_MEM)) 6593 continue; 6594 r->flags |= IORESOURCE_UNSET; 6595 r->end = resource_size(r) - 1; 6596 r->start = 0; 6597 } 6598 pci_disable_bridge_window(dev); 6599 } 6600 } 6601 6602 static ssize_t resource_alignment_show(struct bus_type *bus, char *buf) 6603 { 6604 size_t count = 0; 6605 6606 spin_lock(&resource_alignment_lock); 6607 if (resource_alignment_param) 6608 count = sysfs_emit(buf, "%s\n", resource_alignment_param); 6609 spin_unlock(&resource_alignment_lock); 6610 6611 return count; 6612 } 6613 6614 static ssize_t resource_alignment_store(struct bus_type *bus, 6615 const char *buf, size_t count) 6616 { 6617 char *param, *old, *end; 6618 6619 if (count >= (PAGE_SIZE - 1)) 6620 return -EINVAL; 6621 6622 param = kstrndup(buf, count, GFP_KERNEL); 6623 if (!param) 6624 return -ENOMEM; 6625 6626 end = strchr(param, '\n'); 6627 if (end) 6628 *end = '\0'; 6629 6630 spin_lock(&resource_alignment_lock); 6631 old = resource_alignment_param; 6632 if (strlen(param)) { 6633 resource_alignment_param = param; 6634 } else { 6635 kfree(param); 6636 resource_alignment_param = NULL; 6637 } 6638 spin_unlock(&resource_alignment_lock); 6639 6640 kfree(old); 6641 6642 return count; 6643 } 6644 6645 static BUS_ATTR_RW(resource_alignment); 6646 6647 static int __init pci_resource_alignment_sysfs_init(void) 6648 { 6649 return bus_create_file(&pci_bus_type, 6650 &bus_attr_resource_alignment); 6651 } 6652 late_initcall(pci_resource_alignment_sysfs_init); 6653 6654 static void pci_no_domains(void) 6655 { 6656 #ifdef CONFIG_PCI_DOMAINS 6657 pci_domains_supported = 0; 6658 #endif 6659 } 6660 6661 #ifdef CONFIG_PCI_DOMAINS_GENERIC 6662 static atomic_t __domain_nr = ATOMIC_INIT(-1); 6663 6664 static int pci_get_new_domain_nr(void) 6665 { 6666 return atomic_inc_return(&__domain_nr); 6667 } 6668 6669 static int of_pci_bus_find_domain_nr(struct device *parent) 6670 { 6671 static int use_dt_domains = -1; 6672 int domain = -1; 6673 6674 if (parent) 6675 domain = of_get_pci_domain_nr(parent->of_node); 6676 6677 /* 6678 * Check DT domain and use_dt_domains values. 6679 * 6680 * If DT domain property is valid (domain >= 0) and 6681 * use_dt_domains != 0, the DT assignment is valid since this means 6682 * we have not previously allocated a domain number by using 6683 * pci_get_new_domain_nr(); we should also update use_dt_domains to 6684 * 1, to indicate that we have just assigned a domain number from 6685 * DT. 6686 * 6687 * If DT domain property value is not valid (ie domain < 0), and we 6688 * have not previously assigned a domain number from DT 6689 * (use_dt_domains != 1) we should assign a domain number by 6690 * using the: 6691 * 6692 * pci_get_new_domain_nr() 6693 * 6694 * API and update the use_dt_domains value to keep track of method we 6695 * are using to assign domain numbers (use_dt_domains = 0). 6696 * 6697 * All other combinations imply we have a platform that is trying 6698 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(), 6699 * which is a recipe for domain mishandling and it is prevented by 6700 * invalidating the domain value (domain = -1) and printing a 6701 * corresponding error. 6702 */ 6703 if (domain >= 0 && use_dt_domains) { 6704 use_dt_domains = 1; 6705 } else if (domain < 0 && use_dt_domains != 1) { 6706 use_dt_domains = 0; 6707 domain = pci_get_new_domain_nr(); 6708 } else { 6709 if (parent) 6710 pr_err("Node %pOF has ", parent->of_node); 6711 pr_err("Inconsistent \"linux,pci-domain\" property in DT\n"); 6712 domain = -1; 6713 } 6714 6715 return domain; 6716 } 6717 6718 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent) 6719 { 6720 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) : 6721 acpi_pci_bus_find_domain_nr(bus); 6722 } 6723 #endif 6724 6725 /** 6726 * pci_ext_cfg_avail - can we access extended PCI config space? 6727 * 6728 * Returns 1 if we can access PCI extended config space (offsets 6729 * greater than 0xff). This is the default implementation. Architecture 6730 * implementations can override this. 6731 */ 6732 int __weak pci_ext_cfg_avail(void) 6733 { 6734 return 1; 6735 } 6736 6737 void __weak pci_fixup_cardbus(struct pci_bus *bus) 6738 { 6739 } 6740 EXPORT_SYMBOL(pci_fixup_cardbus); 6741 6742 static int __init pci_setup(char *str) 6743 { 6744 while (str) { 6745 char *k = strchr(str, ','); 6746 if (k) 6747 *k++ = 0; 6748 if (*str && (str = pcibios_setup(str)) && *str) { 6749 if (!strcmp(str, "nomsi")) { 6750 pci_no_msi(); 6751 } else if (!strncmp(str, "noats", 5)) { 6752 pr_info("PCIe: ATS is disabled\n"); 6753 pcie_ats_disabled = true; 6754 } else if (!strcmp(str, "noaer")) { 6755 pci_no_aer(); 6756 } else if (!strcmp(str, "earlydump")) { 6757 pci_early_dump = true; 6758 } else if (!strncmp(str, "realloc=", 8)) { 6759 pci_realloc_get_opt(str + 8); 6760 } else if (!strncmp(str, "realloc", 7)) { 6761 pci_realloc_get_opt("on"); 6762 } else if (!strcmp(str, "nodomains")) { 6763 pci_no_domains(); 6764 } else if (!strncmp(str, "noari", 5)) { 6765 pcie_ari_disabled = true; 6766 } else if (!strncmp(str, "cbiosize=", 9)) { 6767 pci_cardbus_io_size = memparse(str + 9, &str); 6768 } else if (!strncmp(str, "cbmemsize=", 10)) { 6769 pci_cardbus_mem_size = memparse(str + 10, &str); 6770 } else if (!strncmp(str, "resource_alignment=", 19)) { 6771 resource_alignment_param = str + 19; 6772 } else if (!strncmp(str, "ecrc=", 5)) { 6773 pcie_ecrc_get_policy(str + 5); 6774 } else if (!strncmp(str, "hpiosize=", 9)) { 6775 pci_hotplug_io_size = memparse(str + 9, &str); 6776 } else if (!strncmp(str, "hpmmiosize=", 11)) { 6777 pci_hotplug_mmio_size = memparse(str + 11, &str); 6778 } else if (!strncmp(str, "hpmmioprefsize=", 15)) { 6779 pci_hotplug_mmio_pref_size = memparse(str + 15, &str); 6780 } else if (!strncmp(str, "hpmemsize=", 10)) { 6781 pci_hotplug_mmio_size = memparse(str + 10, &str); 6782 pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size; 6783 } else if (!strncmp(str, "hpbussize=", 10)) { 6784 pci_hotplug_bus_size = 6785 simple_strtoul(str + 10, &str, 0); 6786 if (pci_hotplug_bus_size > 0xff) 6787 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 6788 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) { 6789 pcie_bus_config = PCIE_BUS_TUNE_OFF; 6790 } else if (!strncmp(str, "pcie_bus_safe", 13)) { 6791 pcie_bus_config = PCIE_BUS_SAFE; 6792 } else if (!strncmp(str, "pcie_bus_perf", 13)) { 6793 pcie_bus_config = PCIE_BUS_PERFORMANCE; 6794 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) { 6795 pcie_bus_config = PCIE_BUS_PEER2PEER; 6796 } else if (!strncmp(str, "pcie_scan_all", 13)) { 6797 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS); 6798 } else if (!strncmp(str, "disable_acs_redir=", 18)) { 6799 disable_acs_redir_param = str + 18; 6800 } else { 6801 pr_err("PCI: Unknown option `%s'\n", str); 6802 } 6803 } 6804 str = k; 6805 } 6806 return 0; 6807 } 6808 early_param("pci", pci_setup); 6809 6810 /* 6811 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized 6812 * in pci_setup(), above, to point to data in the __initdata section which 6813 * will be freed after the init sequence is complete. We can't allocate memory 6814 * in pci_setup() because some architectures do not have any memory allocation 6815 * service available during an early_param() call. So we allocate memory and 6816 * copy the variable here before the init section is freed. 6817 * 6818 */ 6819 static int __init pci_realloc_setup_params(void) 6820 { 6821 resource_alignment_param = kstrdup(resource_alignment_param, 6822 GFP_KERNEL); 6823 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL); 6824 6825 return 0; 6826 } 6827 pure_initcall(pci_realloc_setup_params); 6828