1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * PCI Bus Services, see include/linux/pci.h for further explanation. 4 * 5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter, 6 * David Mosberger-Tang 7 * 8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz> 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/kernel.h> 13 #include <linux/delay.h> 14 #include <linux/dmi.h> 15 #include <linux/init.h> 16 #include <linux/msi.h> 17 #include <linux/of.h> 18 #include <linux/pci.h> 19 #include <linux/pm.h> 20 #include <linux/slab.h> 21 #include <linux/module.h> 22 #include <linux/spinlock.h> 23 #include <linux/string.h> 24 #include <linux/log2.h> 25 #include <linux/logic_pio.h> 26 #include <linux/pm_wakeup.h> 27 #include <linux/interrupt.h> 28 #include <linux/device.h> 29 #include <linux/pm_runtime.h> 30 #include <linux/pci_hotplug.h> 31 #include <linux/vmalloc.h> 32 #include <asm/dma.h> 33 #include <linux/aer.h> 34 #include <linux/bitfield.h> 35 #include "pci.h" 36 37 DEFINE_MUTEX(pci_slot_mutex); 38 39 const char *pci_power_names[] = { 40 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown", 41 }; 42 EXPORT_SYMBOL_GPL(pci_power_names); 43 44 #ifdef CONFIG_X86_32 45 int isa_dma_bridge_buggy; 46 EXPORT_SYMBOL(isa_dma_bridge_buggy); 47 #endif 48 49 int pci_pci_problems; 50 EXPORT_SYMBOL(pci_pci_problems); 51 52 unsigned int pci_pm_d3hot_delay; 53 54 static void pci_pme_list_scan(struct work_struct *work); 55 56 static LIST_HEAD(pci_pme_list); 57 static DEFINE_MUTEX(pci_pme_list_mutex); 58 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan); 59 60 struct pci_pme_device { 61 struct list_head list; 62 struct pci_dev *dev; 63 }; 64 65 #define PME_TIMEOUT 1000 /* How long between PME checks */ 66 67 /* 68 * Following exit from Conventional Reset, devices must be ready within 1 sec 69 * (PCIe r6.0 sec 6.6.1). A D3cold to D0 transition implies a Conventional 70 * Reset (PCIe r6.0 sec 5.8). 71 */ 72 #define PCI_RESET_WAIT 1000 /* msec */ 73 74 /* 75 * Devices may extend the 1 sec period through Request Retry Status 76 * completions (PCIe r6.0 sec 2.3.1). The spec does not provide an upper 77 * limit, but 60 sec ought to be enough for any device to become 78 * responsive. 79 */ 80 #define PCIE_RESET_READY_POLL_MS 60000 /* msec */ 81 82 static void pci_dev_d3_sleep(struct pci_dev *dev) 83 { 84 unsigned int delay_ms = max(dev->d3hot_delay, pci_pm_d3hot_delay); 85 unsigned int upper; 86 87 if (delay_ms) { 88 /* Use a 20% upper bound, 1ms minimum */ 89 upper = max(DIV_ROUND_CLOSEST(delay_ms, 5), 1U); 90 usleep_range(delay_ms * USEC_PER_MSEC, 91 (delay_ms + upper) * USEC_PER_MSEC); 92 } 93 } 94 95 bool pci_reset_supported(struct pci_dev *dev) 96 { 97 return dev->reset_methods[0] != 0; 98 } 99 100 #ifdef CONFIG_PCI_DOMAINS 101 int pci_domains_supported = 1; 102 #endif 103 104 #define DEFAULT_CARDBUS_IO_SIZE (256) 105 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024) 106 /* pci=cbmemsize=nnM,cbiosize=nn can override this */ 107 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE; 108 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE; 109 110 #define DEFAULT_HOTPLUG_IO_SIZE (256) 111 #define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024) 112 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024) 113 /* hpiosize=nn can override this */ 114 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE; 115 /* 116 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size, 117 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size; 118 * pci=hpmemsize=nnM overrides both 119 */ 120 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE; 121 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE; 122 123 #define DEFAULT_HOTPLUG_BUS_SIZE 1 124 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 125 126 127 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */ 128 #ifdef CONFIG_PCIE_BUS_TUNE_OFF 129 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF; 130 #elif defined CONFIG_PCIE_BUS_SAFE 131 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE; 132 #elif defined CONFIG_PCIE_BUS_PERFORMANCE 133 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE; 134 #elif defined CONFIG_PCIE_BUS_PEER2PEER 135 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER; 136 #else 137 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT; 138 #endif 139 140 /* 141 * The default CLS is used if arch didn't set CLS explicitly and not 142 * all pci devices agree on the same value. Arch can override either 143 * the dfl or actual value as it sees fit. Don't forget this is 144 * measured in 32-bit words, not bytes. 145 */ 146 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2; 147 u8 pci_cache_line_size; 148 149 /* 150 * If we set up a device for bus mastering, we need to check the latency 151 * timer as certain BIOSes forget to set it properly. 152 */ 153 unsigned int pcibios_max_latency = 255; 154 155 /* If set, the PCIe ARI capability will not be used. */ 156 static bool pcie_ari_disabled; 157 158 /* If set, the PCIe ATS capability will not be used. */ 159 static bool pcie_ats_disabled; 160 161 /* If set, the PCI config space of each device is printed during boot. */ 162 bool pci_early_dump; 163 164 bool pci_ats_disabled(void) 165 { 166 return pcie_ats_disabled; 167 } 168 EXPORT_SYMBOL_GPL(pci_ats_disabled); 169 170 /* Disable bridge_d3 for all PCIe ports */ 171 static bool pci_bridge_d3_disable; 172 /* Force bridge_d3 for all PCIe ports */ 173 static bool pci_bridge_d3_force; 174 175 static int __init pcie_port_pm_setup(char *str) 176 { 177 if (!strcmp(str, "off")) 178 pci_bridge_d3_disable = true; 179 else if (!strcmp(str, "force")) 180 pci_bridge_d3_force = true; 181 return 1; 182 } 183 __setup("pcie_port_pm=", pcie_port_pm_setup); 184 185 /** 186 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children 187 * @bus: pointer to PCI bus structure to search 188 * 189 * Given a PCI bus, returns the highest PCI bus number present in the set 190 * including the given PCI bus and its list of child PCI buses. 191 */ 192 unsigned char pci_bus_max_busnr(struct pci_bus *bus) 193 { 194 struct pci_bus *tmp; 195 unsigned char max, n; 196 197 max = bus->busn_res.end; 198 list_for_each_entry(tmp, &bus->children, node) { 199 n = pci_bus_max_busnr(tmp); 200 if (n > max) 201 max = n; 202 } 203 return max; 204 } 205 EXPORT_SYMBOL_GPL(pci_bus_max_busnr); 206 207 /** 208 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS 209 * @pdev: the PCI device 210 * 211 * Returns error bits set in PCI_STATUS and clears them. 212 */ 213 int pci_status_get_and_clear_errors(struct pci_dev *pdev) 214 { 215 u16 status; 216 int ret; 217 218 ret = pci_read_config_word(pdev, PCI_STATUS, &status); 219 if (ret != PCIBIOS_SUCCESSFUL) 220 return -EIO; 221 222 status &= PCI_STATUS_ERROR_BITS; 223 if (status) 224 pci_write_config_word(pdev, PCI_STATUS, status); 225 226 return status; 227 } 228 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors); 229 230 #ifdef CONFIG_HAS_IOMEM 231 static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar, 232 bool write_combine) 233 { 234 struct resource *res = &pdev->resource[bar]; 235 resource_size_t start = res->start; 236 resource_size_t size = resource_size(res); 237 238 /* 239 * Make sure the BAR is actually a memory resource, not an IO resource 240 */ 241 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) { 242 pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res); 243 return NULL; 244 } 245 246 if (write_combine) 247 return ioremap_wc(start, size); 248 249 return ioremap(start, size); 250 } 251 252 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar) 253 { 254 return __pci_ioremap_resource(pdev, bar, false); 255 } 256 EXPORT_SYMBOL_GPL(pci_ioremap_bar); 257 258 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar) 259 { 260 return __pci_ioremap_resource(pdev, bar, true); 261 } 262 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar); 263 #endif 264 265 /** 266 * pci_dev_str_match_path - test if a path string matches a device 267 * @dev: the PCI device to test 268 * @path: string to match the device against 269 * @endptr: pointer to the string after the match 270 * 271 * Test if a string (typically from a kernel parameter) formatted as a 272 * path of device/function addresses matches a PCI device. The string must 273 * be of the form: 274 * 275 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 276 * 277 * A path for a device can be obtained using 'lspci -t'. Using a path 278 * is more robust against bus renumbering than using only a single bus, 279 * device and function address. 280 * 281 * Returns 1 if the string matches the device, 0 if it does not and 282 * a negative error code if it fails to parse the string. 283 */ 284 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path, 285 const char **endptr) 286 { 287 int ret; 288 unsigned int seg, bus, slot, func; 289 char *wpath, *p; 290 char end; 291 292 *endptr = strchrnul(path, ';'); 293 294 wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC); 295 if (!wpath) 296 return -ENOMEM; 297 298 while (1) { 299 p = strrchr(wpath, '/'); 300 if (!p) 301 break; 302 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end); 303 if (ret != 2) { 304 ret = -EINVAL; 305 goto free_and_exit; 306 } 307 308 if (dev->devfn != PCI_DEVFN(slot, func)) { 309 ret = 0; 310 goto free_and_exit; 311 } 312 313 /* 314 * Note: we don't need to get a reference to the upstream 315 * bridge because we hold a reference to the top level 316 * device which should hold a reference to the bridge, 317 * and so on. 318 */ 319 dev = pci_upstream_bridge(dev); 320 if (!dev) { 321 ret = 0; 322 goto free_and_exit; 323 } 324 325 *p = 0; 326 } 327 328 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot, 329 &func, &end); 330 if (ret != 4) { 331 seg = 0; 332 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end); 333 if (ret != 3) { 334 ret = -EINVAL; 335 goto free_and_exit; 336 } 337 } 338 339 ret = (seg == pci_domain_nr(dev->bus) && 340 bus == dev->bus->number && 341 dev->devfn == PCI_DEVFN(slot, func)); 342 343 free_and_exit: 344 kfree(wpath); 345 return ret; 346 } 347 348 /** 349 * pci_dev_str_match - test if a string matches a device 350 * @dev: the PCI device to test 351 * @p: string to match the device against 352 * @endptr: pointer to the string after the match 353 * 354 * Test if a string (typically from a kernel parameter) matches a specified 355 * PCI device. The string may be of one of the following formats: 356 * 357 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 358 * pci:<vendor>:<device>[:<subvendor>:<subdevice>] 359 * 360 * The first format specifies a PCI bus/device/function address which 361 * may change if new hardware is inserted, if motherboard firmware changes, 362 * or due to changes caused in kernel parameters. If the domain is 363 * left unspecified, it is taken to be 0. In order to be robust against 364 * bus renumbering issues, a path of PCI device/function numbers may be used 365 * to address the specific device. The path for a device can be determined 366 * through the use of 'lspci -t'. 367 * 368 * The second format matches devices using IDs in the configuration 369 * space which may match multiple devices in the system. A value of 0 370 * for any field will match all devices. (Note: this differs from 371 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for 372 * legacy reasons and convenience so users don't have to specify 373 * FFFFFFFFs on the command line.) 374 * 375 * Returns 1 if the string matches the device, 0 if it does not and 376 * a negative error code if the string cannot be parsed. 377 */ 378 static int pci_dev_str_match(struct pci_dev *dev, const char *p, 379 const char **endptr) 380 { 381 int ret; 382 int count; 383 unsigned short vendor, device, subsystem_vendor, subsystem_device; 384 385 if (strncmp(p, "pci:", 4) == 0) { 386 /* PCI vendor/device (subvendor/subdevice) IDs are specified */ 387 p += 4; 388 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device, 389 &subsystem_vendor, &subsystem_device, &count); 390 if (ret != 4) { 391 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count); 392 if (ret != 2) 393 return -EINVAL; 394 395 subsystem_vendor = 0; 396 subsystem_device = 0; 397 } 398 399 p += count; 400 401 if ((!vendor || vendor == dev->vendor) && 402 (!device || device == dev->device) && 403 (!subsystem_vendor || 404 subsystem_vendor == dev->subsystem_vendor) && 405 (!subsystem_device || 406 subsystem_device == dev->subsystem_device)) 407 goto found; 408 } else { 409 /* 410 * PCI Bus, Device, Function IDs are specified 411 * (optionally, may include a path of devfns following it) 412 */ 413 ret = pci_dev_str_match_path(dev, p, &p); 414 if (ret < 0) 415 return ret; 416 else if (ret) 417 goto found; 418 } 419 420 *endptr = p; 421 return 0; 422 423 found: 424 *endptr = p; 425 return 1; 426 } 427 428 static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn, 429 u8 pos, int cap, int *ttl) 430 { 431 u8 id; 432 u16 ent; 433 434 pci_bus_read_config_byte(bus, devfn, pos, &pos); 435 436 while ((*ttl)--) { 437 if (pos < 0x40) 438 break; 439 pos &= ~3; 440 pci_bus_read_config_word(bus, devfn, pos, &ent); 441 442 id = ent & 0xff; 443 if (id == 0xff) 444 break; 445 if (id == cap) 446 return pos; 447 pos = (ent >> 8); 448 } 449 return 0; 450 } 451 452 static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn, 453 u8 pos, int cap) 454 { 455 int ttl = PCI_FIND_CAP_TTL; 456 457 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl); 458 } 459 460 u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap) 461 { 462 return __pci_find_next_cap(dev->bus, dev->devfn, 463 pos + PCI_CAP_LIST_NEXT, cap); 464 } 465 EXPORT_SYMBOL_GPL(pci_find_next_capability); 466 467 static u8 __pci_bus_find_cap_start(struct pci_bus *bus, 468 unsigned int devfn, u8 hdr_type) 469 { 470 u16 status; 471 472 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status); 473 if (!(status & PCI_STATUS_CAP_LIST)) 474 return 0; 475 476 switch (hdr_type) { 477 case PCI_HEADER_TYPE_NORMAL: 478 case PCI_HEADER_TYPE_BRIDGE: 479 return PCI_CAPABILITY_LIST; 480 case PCI_HEADER_TYPE_CARDBUS: 481 return PCI_CB_CAPABILITY_LIST; 482 } 483 484 return 0; 485 } 486 487 /** 488 * pci_find_capability - query for devices' capabilities 489 * @dev: PCI device to query 490 * @cap: capability code 491 * 492 * Tell if a device supports a given PCI capability. 493 * Returns the address of the requested capability structure within the 494 * device's PCI configuration space or 0 in case the device does not 495 * support it. Possible values for @cap include: 496 * 497 * %PCI_CAP_ID_PM Power Management 498 * %PCI_CAP_ID_AGP Accelerated Graphics Port 499 * %PCI_CAP_ID_VPD Vital Product Data 500 * %PCI_CAP_ID_SLOTID Slot Identification 501 * %PCI_CAP_ID_MSI Message Signalled Interrupts 502 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap 503 * %PCI_CAP_ID_PCIX PCI-X 504 * %PCI_CAP_ID_EXP PCI Express 505 */ 506 u8 pci_find_capability(struct pci_dev *dev, int cap) 507 { 508 u8 pos; 509 510 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 511 if (pos) 512 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap); 513 514 return pos; 515 } 516 EXPORT_SYMBOL(pci_find_capability); 517 518 /** 519 * pci_bus_find_capability - query for devices' capabilities 520 * @bus: the PCI bus to query 521 * @devfn: PCI device to query 522 * @cap: capability code 523 * 524 * Like pci_find_capability() but works for PCI devices that do not have a 525 * pci_dev structure set up yet. 526 * 527 * Returns the address of the requested capability structure within the 528 * device's PCI configuration space or 0 in case the device does not 529 * support it. 530 */ 531 u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap) 532 { 533 u8 hdr_type, pos; 534 535 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type); 536 537 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f); 538 if (pos) 539 pos = __pci_find_next_cap(bus, devfn, pos, cap); 540 541 return pos; 542 } 543 EXPORT_SYMBOL(pci_bus_find_capability); 544 545 /** 546 * pci_find_next_ext_capability - Find an extended capability 547 * @dev: PCI device to query 548 * @start: address at which to start looking (0 to start at beginning of list) 549 * @cap: capability code 550 * 551 * Returns the address of the next matching extended capability structure 552 * within the device's PCI configuration space or 0 if the device does 553 * not support it. Some capabilities can occur several times, e.g., the 554 * vendor-specific capability, and this provides a way to find them all. 555 */ 556 u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap) 557 { 558 u32 header; 559 int ttl; 560 u16 pos = PCI_CFG_SPACE_SIZE; 561 562 /* minimum 8 bytes per capability */ 563 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8; 564 565 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE) 566 return 0; 567 568 if (start) 569 pos = start; 570 571 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 572 return 0; 573 574 /* 575 * If we have no capabilities, this is indicated by cap ID, 576 * cap version and next pointer all being 0. 577 */ 578 if (header == 0) 579 return 0; 580 581 while (ttl-- > 0) { 582 if (PCI_EXT_CAP_ID(header) == cap && pos != start) 583 return pos; 584 585 pos = PCI_EXT_CAP_NEXT(header); 586 if (pos < PCI_CFG_SPACE_SIZE) 587 break; 588 589 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 590 break; 591 } 592 593 return 0; 594 } 595 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability); 596 597 /** 598 * pci_find_ext_capability - Find an extended capability 599 * @dev: PCI device to query 600 * @cap: capability code 601 * 602 * Returns the address of the requested extended capability structure 603 * within the device's PCI configuration space or 0 if the device does 604 * not support it. Possible values for @cap include: 605 * 606 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting 607 * %PCI_EXT_CAP_ID_VC Virtual Channel 608 * %PCI_EXT_CAP_ID_DSN Device Serial Number 609 * %PCI_EXT_CAP_ID_PWR Power Budgeting 610 */ 611 u16 pci_find_ext_capability(struct pci_dev *dev, int cap) 612 { 613 return pci_find_next_ext_capability(dev, 0, cap); 614 } 615 EXPORT_SYMBOL_GPL(pci_find_ext_capability); 616 617 /** 618 * pci_get_dsn - Read and return the 8-byte Device Serial Number 619 * @dev: PCI device to query 620 * 621 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial 622 * Number. 623 * 624 * Returns the DSN, or zero if the capability does not exist. 625 */ 626 u64 pci_get_dsn(struct pci_dev *dev) 627 { 628 u32 dword; 629 u64 dsn; 630 int pos; 631 632 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN); 633 if (!pos) 634 return 0; 635 636 /* 637 * The Device Serial Number is two dwords offset 4 bytes from the 638 * capability position. The specification says that the first dword is 639 * the lower half, and the second dword is the upper half. 640 */ 641 pos += 4; 642 pci_read_config_dword(dev, pos, &dword); 643 dsn = (u64)dword; 644 pci_read_config_dword(dev, pos + 4, &dword); 645 dsn |= ((u64)dword) << 32; 646 647 return dsn; 648 } 649 EXPORT_SYMBOL_GPL(pci_get_dsn); 650 651 static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap) 652 { 653 int rc, ttl = PCI_FIND_CAP_TTL; 654 u8 cap, mask; 655 656 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST) 657 mask = HT_3BIT_CAP_MASK; 658 else 659 mask = HT_5BIT_CAP_MASK; 660 661 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos, 662 PCI_CAP_ID_HT, &ttl); 663 while (pos) { 664 rc = pci_read_config_byte(dev, pos + 3, &cap); 665 if (rc != PCIBIOS_SUCCESSFUL) 666 return 0; 667 668 if ((cap & mask) == ht_cap) 669 return pos; 670 671 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, 672 pos + PCI_CAP_LIST_NEXT, 673 PCI_CAP_ID_HT, &ttl); 674 } 675 676 return 0; 677 } 678 679 /** 680 * pci_find_next_ht_capability - query a device's HyperTransport capabilities 681 * @dev: PCI device to query 682 * @pos: Position from which to continue searching 683 * @ht_cap: HyperTransport capability code 684 * 685 * To be used in conjunction with pci_find_ht_capability() to search for 686 * all capabilities matching @ht_cap. @pos should always be a value returned 687 * from pci_find_ht_capability(). 688 * 689 * NB. To be 100% safe against broken PCI devices, the caller should take 690 * steps to avoid an infinite loop. 691 */ 692 u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap) 693 { 694 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap); 695 } 696 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability); 697 698 /** 699 * pci_find_ht_capability - query a device's HyperTransport capabilities 700 * @dev: PCI device to query 701 * @ht_cap: HyperTransport capability code 702 * 703 * Tell if a device supports a given HyperTransport capability. 704 * Returns an address within the device's PCI configuration space 705 * or 0 in case the device does not support the request capability. 706 * The address points to the PCI capability, of type PCI_CAP_ID_HT, 707 * which has a HyperTransport capability matching @ht_cap. 708 */ 709 u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap) 710 { 711 u8 pos; 712 713 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 714 if (pos) 715 pos = __pci_find_next_ht_cap(dev, pos, ht_cap); 716 717 return pos; 718 } 719 EXPORT_SYMBOL_GPL(pci_find_ht_capability); 720 721 /** 722 * pci_find_vsec_capability - Find a vendor-specific extended capability 723 * @dev: PCI device to query 724 * @vendor: Vendor ID for which capability is defined 725 * @cap: Vendor-specific capability ID 726 * 727 * If @dev has Vendor ID @vendor, search for a VSEC capability with 728 * VSEC ID @cap. If found, return the capability offset in 729 * config space; otherwise return 0. 730 */ 731 u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap) 732 { 733 u16 vsec = 0; 734 u32 header; 735 int ret; 736 737 if (vendor != dev->vendor) 738 return 0; 739 740 while ((vsec = pci_find_next_ext_capability(dev, vsec, 741 PCI_EXT_CAP_ID_VNDR))) { 742 ret = pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER, &header); 743 if (ret != PCIBIOS_SUCCESSFUL) 744 continue; 745 746 if (PCI_VNDR_HEADER_ID(header) == cap) 747 return vsec; 748 } 749 750 return 0; 751 } 752 EXPORT_SYMBOL_GPL(pci_find_vsec_capability); 753 754 /** 755 * pci_find_dvsec_capability - Find DVSEC for vendor 756 * @dev: PCI device to query 757 * @vendor: Vendor ID to match for the DVSEC 758 * @dvsec: Designated Vendor-specific capability ID 759 * 760 * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability 761 * offset in config space; otherwise return 0. 762 */ 763 u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec) 764 { 765 int pos; 766 767 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC); 768 if (!pos) 769 return 0; 770 771 while (pos) { 772 u16 v, id; 773 774 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER1, &v); 775 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER2, &id); 776 if (vendor == v && dvsec == id) 777 return pos; 778 779 pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC); 780 } 781 782 return 0; 783 } 784 EXPORT_SYMBOL_GPL(pci_find_dvsec_capability); 785 786 /** 787 * pci_find_parent_resource - return resource region of parent bus of given 788 * region 789 * @dev: PCI device structure contains resources to be searched 790 * @res: child resource record for which parent is sought 791 * 792 * For given resource region of given device, return the resource region of 793 * parent bus the given region is contained in. 794 */ 795 struct resource *pci_find_parent_resource(const struct pci_dev *dev, 796 struct resource *res) 797 { 798 const struct pci_bus *bus = dev->bus; 799 struct resource *r; 800 801 pci_bus_for_each_resource(bus, r) { 802 if (!r) 803 continue; 804 if (resource_contains(r, res)) { 805 806 /* 807 * If the window is prefetchable but the BAR is 808 * not, the allocator made a mistake. 809 */ 810 if (r->flags & IORESOURCE_PREFETCH && 811 !(res->flags & IORESOURCE_PREFETCH)) 812 return NULL; 813 814 /* 815 * If we're below a transparent bridge, there may 816 * be both a positively-decoded aperture and a 817 * subtractively-decoded region that contain the BAR. 818 * We want the positively-decoded one, so this depends 819 * on pci_bus_for_each_resource() giving us those 820 * first. 821 */ 822 return r; 823 } 824 } 825 return NULL; 826 } 827 EXPORT_SYMBOL(pci_find_parent_resource); 828 829 /** 830 * pci_find_resource - Return matching PCI device resource 831 * @dev: PCI device to query 832 * @res: Resource to look for 833 * 834 * Goes over standard PCI resources (BARs) and checks if the given resource 835 * is partially or fully contained in any of them. In that case the 836 * matching resource is returned, %NULL otherwise. 837 */ 838 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res) 839 { 840 int i; 841 842 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 843 struct resource *r = &dev->resource[i]; 844 845 if (r->start && resource_contains(r, res)) 846 return r; 847 } 848 849 return NULL; 850 } 851 EXPORT_SYMBOL(pci_find_resource); 852 853 /** 854 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos 855 * @dev: the PCI device to operate on 856 * @pos: config space offset of status word 857 * @mask: mask of bit(s) to care about in status word 858 * 859 * Return 1 when mask bit(s) in status word clear, 0 otherwise. 860 */ 861 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask) 862 { 863 int i; 864 865 /* Wait for Transaction Pending bit clean */ 866 for (i = 0; i < 4; i++) { 867 u16 status; 868 if (i) 869 msleep((1 << (i - 1)) * 100); 870 871 pci_read_config_word(dev, pos, &status); 872 if (!(status & mask)) 873 return 1; 874 } 875 876 return 0; 877 } 878 879 static int pci_acs_enable; 880 881 /** 882 * pci_request_acs - ask for ACS to be enabled if supported 883 */ 884 void pci_request_acs(void) 885 { 886 pci_acs_enable = 1; 887 } 888 889 static const char *disable_acs_redir_param; 890 891 /** 892 * pci_disable_acs_redir - disable ACS redirect capabilities 893 * @dev: the PCI device 894 * 895 * For only devices specified in the disable_acs_redir parameter. 896 */ 897 static void pci_disable_acs_redir(struct pci_dev *dev) 898 { 899 int ret = 0; 900 const char *p; 901 int pos; 902 u16 ctrl; 903 904 if (!disable_acs_redir_param) 905 return; 906 907 p = disable_acs_redir_param; 908 while (*p) { 909 ret = pci_dev_str_match(dev, p, &p); 910 if (ret < 0) { 911 pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n", 912 disable_acs_redir_param); 913 914 break; 915 } else if (ret == 1) { 916 /* Found a match */ 917 break; 918 } 919 920 if (*p != ';' && *p != ',') { 921 /* End of param or invalid format */ 922 break; 923 } 924 p++; 925 } 926 927 if (ret != 1) 928 return; 929 930 if (!pci_dev_specific_disable_acs_redir(dev)) 931 return; 932 933 pos = dev->acs_cap; 934 if (!pos) { 935 pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n"); 936 return; 937 } 938 939 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 940 941 /* P2P Request & Completion Redirect */ 942 ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC); 943 944 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 945 946 pci_info(dev, "disabled ACS redirect\n"); 947 } 948 949 /** 950 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities 951 * @dev: the PCI device 952 */ 953 static void pci_std_enable_acs(struct pci_dev *dev) 954 { 955 int pos; 956 u16 cap; 957 u16 ctrl; 958 959 pos = dev->acs_cap; 960 if (!pos) 961 return; 962 963 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap); 964 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 965 966 /* Source Validation */ 967 ctrl |= (cap & PCI_ACS_SV); 968 969 /* P2P Request Redirect */ 970 ctrl |= (cap & PCI_ACS_RR); 971 972 /* P2P Completion Redirect */ 973 ctrl |= (cap & PCI_ACS_CR); 974 975 /* Upstream Forwarding */ 976 ctrl |= (cap & PCI_ACS_UF); 977 978 /* Enable Translation Blocking for external devices and noats */ 979 if (pci_ats_disabled() || dev->external_facing || dev->untrusted) 980 ctrl |= (cap & PCI_ACS_TB); 981 982 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 983 } 984 985 /** 986 * pci_enable_acs - enable ACS if hardware support it 987 * @dev: the PCI device 988 */ 989 static void pci_enable_acs(struct pci_dev *dev) 990 { 991 if (!pci_acs_enable) 992 goto disable_acs_redir; 993 994 if (!pci_dev_specific_enable_acs(dev)) 995 goto disable_acs_redir; 996 997 pci_std_enable_acs(dev); 998 999 disable_acs_redir: 1000 /* 1001 * Note: pci_disable_acs_redir() must be called even if ACS was not 1002 * enabled by the kernel because it may have been enabled by 1003 * platform firmware. So if we are told to disable it, we should 1004 * always disable it after setting the kernel's default 1005 * preferences. 1006 */ 1007 pci_disable_acs_redir(dev); 1008 } 1009 1010 /** 1011 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up) 1012 * @dev: PCI device to have its BARs restored 1013 * 1014 * Restore the BAR values for a given device, so as to make it 1015 * accessible by its driver. 1016 */ 1017 static void pci_restore_bars(struct pci_dev *dev) 1018 { 1019 int i; 1020 1021 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) 1022 pci_update_resource(dev, i); 1023 } 1024 1025 static inline bool platform_pci_power_manageable(struct pci_dev *dev) 1026 { 1027 if (pci_use_mid_pm()) 1028 return true; 1029 1030 return acpi_pci_power_manageable(dev); 1031 } 1032 1033 static inline int platform_pci_set_power_state(struct pci_dev *dev, 1034 pci_power_t t) 1035 { 1036 if (pci_use_mid_pm()) 1037 return mid_pci_set_power_state(dev, t); 1038 1039 return acpi_pci_set_power_state(dev, t); 1040 } 1041 1042 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev) 1043 { 1044 if (pci_use_mid_pm()) 1045 return mid_pci_get_power_state(dev); 1046 1047 return acpi_pci_get_power_state(dev); 1048 } 1049 1050 static inline void platform_pci_refresh_power_state(struct pci_dev *dev) 1051 { 1052 if (!pci_use_mid_pm()) 1053 acpi_pci_refresh_power_state(dev); 1054 } 1055 1056 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev) 1057 { 1058 if (pci_use_mid_pm()) 1059 return PCI_POWER_ERROR; 1060 1061 return acpi_pci_choose_state(dev); 1062 } 1063 1064 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable) 1065 { 1066 if (pci_use_mid_pm()) 1067 return PCI_POWER_ERROR; 1068 1069 return acpi_pci_wakeup(dev, enable); 1070 } 1071 1072 static inline bool platform_pci_need_resume(struct pci_dev *dev) 1073 { 1074 if (pci_use_mid_pm()) 1075 return false; 1076 1077 return acpi_pci_need_resume(dev); 1078 } 1079 1080 static inline bool platform_pci_bridge_d3(struct pci_dev *dev) 1081 { 1082 if (pci_use_mid_pm()) 1083 return false; 1084 1085 return acpi_pci_bridge_d3(dev); 1086 } 1087 1088 /** 1089 * pci_update_current_state - Read power state of given device and cache it 1090 * @dev: PCI device to handle. 1091 * @state: State to cache in case the device doesn't have the PM capability 1092 * 1093 * The power state is read from the PMCSR register, which however is 1094 * inaccessible in D3cold. The platform firmware is therefore queried first 1095 * to detect accessibility of the register. In case the platform firmware 1096 * reports an incorrect state or the device isn't power manageable by the 1097 * platform at all, we try to detect D3cold by testing accessibility of the 1098 * vendor ID in config space. 1099 */ 1100 void pci_update_current_state(struct pci_dev *dev, pci_power_t state) 1101 { 1102 if (platform_pci_get_power_state(dev) == PCI_D3cold) { 1103 dev->current_state = PCI_D3cold; 1104 } else if (dev->pm_cap) { 1105 u16 pmcsr; 1106 1107 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1108 if (PCI_POSSIBLE_ERROR(pmcsr)) { 1109 dev->current_state = PCI_D3cold; 1110 return; 1111 } 1112 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1113 } else { 1114 dev->current_state = state; 1115 } 1116 } 1117 1118 /** 1119 * pci_refresh_power_state - Refresh the given device's power state data 1120 * @dev: Target PCI device. 1121 * 1122 * Ask the platform to refresh the devices power state information and invoke 1123 * pci_update_current_state() to update its current PCI power state. 1124 */ 1125 void pci_refresh_power_state(struct pci_dev *dev) 1126 { 1127 platform_pci_refresh_power_state(dev); 1128 pci_update_current_state(dev, dev->current_state); 1129 } 1130 1131 /** 1132 * pci_platform_power_transition - Use platform to change device power state 1133 * @dev: PCI device to handle. 1134 * @state: State to put the device into. 1135 */ 1136 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state) 1137 { 1138 int error; 1139 1140 error = platform_pci_set_power_state(dev, state); 1141 if (!error) 1142 pci_update_current_state(dev, state); 1143 else if (!dev->pm_cap) /* Fall back to PCI_D0 */ 1144 dev->current_state = PCI_D0; 1145 1146 return error; 1147 } 1148 EXPORT_SYMBOL_GPL(pci_platform_power_transition); 1149 1150 static int pci_resume_one(struct pci_dev *pci_dev, void *ign) 1151 { 1152 pm_request_resume(&pci_dev->dev); 1153 return 0; 1154 } 1155 1156 /** 1157 * pci_resume_bus - Walk given bus and runtime resume devices on it 1158 * @bus: Top bus of the subtree to walk. 1159 */ 1160 void pci_resume_bus(struct pci_bus *bus) 1161 { 1162 if (bus) 1163 pci_walk_bus(bus, pci_resume_one, NULL); 1164 } 1165 1166 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout) 1167 { 1168 int delay = 1; 1169 bool retrain = false; 1170 struct pci_dev *bridge; 1171 1172 if (pci_is_pcie(dev)) { 1173 bridge = pci_upstream_bridge(dev); 1174 if (bridge) 1175 retrain = true; 1176 } 1177 1178 /* 1179 * After reset, the device should not silently discard config 1180 * requests, but it may still indicate that it needs more time by 1181 * responding to them with CRS completions. The Root Port will 1182 * generally synthesize ~0 (PCI_ERROR_RESPONSE) data to complete 1183 * the read (except when CRS SV is enabled and the read was for the 1184 * Vendor ID; in that case it synthesizes 0x0001 data). 1185 * 1186 * Wait for the device to return a non-CRS completion. Read the 1187 * Command register instead of Vendor ID so we don't have to 1188 * contend with the CRS SV value. 1189 */ 1190 for (;;) { 1191 u32 id; 1192 1193 pci_read_config_dword(dev, PCI_COMMAND, &id); 1194 if (!PCI_POSSIBLE_ERROR(id)) 1195 break; 1196 1197 if (delay > timeout) { 1198 pci_warn(dev, "not ready %dms after %s; giving up\n", 1199 delay - 1, reset_type); 1200 return -ENOTTY; 1201 } 1202 1203 if (delay > PCI_RESET_WAIT) { 1204 if (retrain) { 1205 retrain = false; 1206 if (pcie_failed_link_retrain(bridge)) { 1207 delay = 1; 1208 continue; 1209 } 1210 } 1211 pci_info(dev, "not ready %dms after %s; waiting\n", 1212 delay - 1, reset_type); 1213 } 1214 1215 msleep(delay); 1216 delay *= 2; 1217 } 1218 1219 if (delay > PCI_RESET_WAIT) 1220 pci_info(dev, "ready %dms after %s\n", delay - 1, 1221 reset_type); 1222 1223 return 0; 1224 } 1225 1226 /** 1227 * pci_power_up - Put the given device into D0 1228 * @dev: PCI device to power up 1229 * 1230 * On success, return 0 or 1, depending on whether or not it is necessary to 1231 * restore the device's BARs subsequently (1 is returned in that case). 1232 * 1233 * On failure, return a negative error code. Always return failure if @dev 1234 * lacks a Power Management Capability, even if the platform was able to 1235 * put the device in D0 via non-PCI means. 1236 */ 1237 int pci_power_up(struct pci_dev *dev) 1238 { 1239 bool need_restore; 1240 pci_power_t state; 1241 u16 pmcsr; 1242 1243 platform_pci_set_power_state(dev, PCI_D0); 1244 1245 if (!dev->pm_cap) { 1246 state = platform_pci_get_power_state(dev); 1247 if (state == PCI_UNKNOWN) 1248 dev->current_state = PCI_D0; 1249 else 1250 dev->current_state = state; 1251 1252 return -EIO; 1253 } 1254 1255 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1256 if (PCI_POSSIBLE_ERROR(pmcsr)) { 1257 pci_err(dev, "Unable to change power state from %s to D0, device inaccessible\n", 1258 pci_power_name(dev->current_state)); 1259 dev->current_state = PCI_D3cold; 1260 return -EIO; 1261 } 1262 1263 state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1264 1265 need_restore = (state == PCI_D3hot || dev->current_state >= PCI_D3hot) && 1266 !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET); 1267 1268 if (state == PCI_D0) 1269 goto end; 1270 1271 /* 1272 * Force the entire word to 0. This doesn't affect PME_Status, disables 1273 * PME_En, and sets PowerState to 0. 1274 */ 1275 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, 0); 1276 1277 /* Mandatory transition delays; see PCI PM 1.2. */ 1278 if (state == PCI_D3hot) 1279 pci_dev_d3_sleep(dev); 1280 else if (state == PCI_D2) 1281 udelay(PCI_PM_D2_DELAY); 1282 1283 end: 1284 dev->current_state = PCI_D0; 1285 if (need_restore) 1286 return 1; 1287 1288 return 0; 1289 } 1290 1291 /** 1292 * pci_set_full_power_state - Put a PCI device into D0 and update its state 1293 * @dev: PCI device to power up 1294 * 1295 * Call pci_power_up() to put @dev into D0, read from its PCI_PM_CTRL register 1296 * to confirm the state change, restore its BARs if they might be lost and 1297 * reconfigure ASPM in accordance with the new power state. 1298 * 1299 * If pci_restore_state() is going to be called right after a power state change 1300 * to D0, it is more efficient to use pci_power_up() directly instead of this 1301 * function. 1302 */ 1303 static int pci_set_full_power_state(struct pci_dev *dev) 1304 { 1305 u16 pmcsr; 1306 int ret; 1307 1308 ret = pci_power_up(dev); 1309 if (ret < 0) { 1310 if (dev->current_state == PCI_D0) 1311 return 0; 1312 1313 return ret; 1314 } 1315 1316 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1317 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1318 if (dev->current_state != PCI_D0) { 1319 pci_info_ratelimited(dev, "Refused to change power state from %s to D0\n", 1320 pci_power_name(dev->current_state)); 1321 } else if (ret > 0) { 1322 /* 1323 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT 1324 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning 1325 * from D3hot to D0 _may_ perform an internal reset, thereby 1326 * going to "D0 Uninitialized" rather than "D0 Initialized". 1327 * For example, at least some versions of the 3c905B and the 1328 * 3c556B exhibit this behaviour. 1329 * 1330 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave 1331 * devices in a D3hot state at boot. Consequently, we need to 1332 * restore at least the BARs so that the device will be 1333 * accessible to its driver. 1334 */ 1335 pci_restore_bars(dev); 1336 } 1337 1338 if (dev->bus->self) 1339 pcie_aspm_pm_state_change(dev->bus->self); 1340 1341 return 0; 1342 } 1343 1344 /** 1345 * __pci_dev_set_current_state - Set current state of a PCI device 1346 * @dev: Device to handle 1347 * @data: pointer to state to be set 1348 */ 1349 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data) 1350 { 1351 pci_power_t state = *(pci_power_t *)data; 1352 1353 dev->current_state = state; 1354 return 0; 1355 } 1356 1357 /** 1358 * pci_bus_set_current_state - Walk given bus and set current state of devices 1359 * @bus: Top bus of the subtree to walk. 1360 * @state: state to be set 1361 */ 1362 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state) 1363 { 1364 if (bus) 1365 pci_walk_bus(bus, __pci_dev_set_current_state, &state); 1366 } 1367 1368 /** 1369 * pci_set_low_power_state - Put a PCI device into a low-power state. 1370 * @dev: PCI device to handle. 1371 * @state: PCI power state (D1, D2, D3hot) to put the device into. 1372 * 1373 * Use the device's PCI_PM_CTRL register to put it into a low-power state. 1374 * 1375 * RETURN VALUE: 1376 * -EINVAL if the requested state is invalid. 1377 * -EIO if device does not support PCI PM or its PM capabilities register has a 1378 * wrong version, or device doesn't support the requested state. 1379 * 0 if device already is in the requested state. 1380 * 0 if device's power state has been successfully changed. 1381 */ 1382 static int pci_set_low_power_state(struct pci_dev *dev, pci_power_t state) 1383 { 1384 u16 pmcsr; 1385 1386 if (!dev->pm_cap) 1387 return -EIO; 1388 1389 /* 1390 * Validate transition: We can enter D0 from any state, but if 1391 * we're already in a low-power state, we can only go deeper. E.g., 1392 * we can go from D1 to D3, but we can't go directly from D3 to D1; 1393 * we'd have to go from D3 to D0, then to D1. 1394 */ 1395 if (dev->current_state <= PCI_D3cold && dev->current_state > state) { 1396 pci_dbg(dev, "Invalid power transition (from %s to %s)\n", 1397 pci_power_name(dev->current_state), 1398 pci_power_name(state)); 1399 return -EINVAL; 1400 } 1401 1402 /* Check if this device supports the desired state */ 1403 if ((state == PCI_D1 && !dev->d1_support) 1404 || (state == PCI_D2 && !dev->d2_support)) 1405 return -EIO; 1406 1407 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1408 if (PCI_POSSIBLE_ERROR(pmcsr)) { 1409 pci_err(dev, "Unable to change power state from %s to %s, device inaccessible\n", 1410 pci_power_name(dev->current_state), 1411 pci_power_name(state)); 1412 dev->current_state = PCI_D3cold; 1413 return -EIO; 1414 } 1415 1416 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 1417 pmcsr |= state; 1418 1419 /* Enter specified state */ 1420 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 1421 1422 /* Mandatory power management transition delays; see PCI PM 1.2. */ 1423 if (state == PCI_D3hot) 1424 pci_dev_d3_sleep(dev); 1425 else if (state == PCI_D2) 1426 udelay(PCI_PM_D2_DELAY); 1427 1428 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1429 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1430 if (dev->current_state != state) 1431 pci_info_ratelimited(dev, "Refused to change power state from %s to %s\n", 1432 pci_power_name(dev->current_state), 1433 pci_power_name(state)); 1434 1435 if (dev->bus->self) 1436 pcie_aspm_pm_state_change(dev->bus->self); 1437 1438 return 0; 1439 } 1440 1441 /** 1442 * pci_set_power_state - Set the power state of a PCI device 1443 * @dev: PCI device to handle. 1444 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 1445 * 1446 * Transition a device to a new power state, using the platform firmware and/or 1447 * the device's PCI PM registers. 1448 * 1449 * RETURN VALUE: 1450 * -EINVAL if the requested state is invalid. 1451 * -EIO if device does not support PCI PM or its PM capabilities register has a 1452 * wrong version, or device doesn't support the requested state. 1453 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported. 1454 * 0 if device already is in the requested state. 1455 * 0 if the transition is to D3 but D3 is not supported. 1456 * 0 if device's power state has been successfully changed. 1457 */ 1458 int pci_set_power_state(struct pci_dev *dev, pci_power_t state) 1459 { 1460 int error; 1461 1462 /* Bound the state we're entering */ 1463 if (state > PCI_D3cold) 1464 state = PCI_D3cold; 1465 else if (state < PCI_D0) 1466 state = PCI_D0; 1467 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev)) 1468 1469 /* 1470 * If the device or the parent bridge do not support PCI 1471 * PM, ignore the request if we're doing anything other 1472 * than putting it into D0 (which would only happen on 1473 * boot). 1474 */ 1475 return 0; 1476 1477 /* Check if we're already there */ 1478 if (dev->current_state == state) 1479 return 0; 1480 1481 if (state == PCI_D0) 1482 return pci_set_full_power_state(dev); 1483 1484 /* 1485 * This device is quirked not to be put into D3, so don't put it in 1486 * D3 1487 */ 1488 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3)) 1489 return 0; 1490 1491 if (state == PCI_D3cold) { 1492 /* 1493 * To put the device in D3cold, put it into D3hot in the native 1494 * way, then put it into D3cold using platform ops. 1495 */ 1496 error = pci_set_low_power_state(dev, PCI_D3hot); 1497 1498 if (pci_platform_power_transition(dev, PCI_D3cold)) 1499 return error; 1500 1501 /* Powering off a bridge may power off the whole hierarchy */ 1502 if (dev->current_state == PCI_D3cold) 1503 pci_bus_set_current_state(dev->subordinate, PCI_D3cold); 1504 } else { 1505 error = pci_set_low_power_state(dev, state); 1506 1507 if (pci_platform_power_transition(dev, state)) 1508 return error; 1509 } 1510 1511 return 0; 1512 } 1513 EXPORT_SYMBOL(pci_set_power_state); 1514 1515 #define PCI_EXP_SAVE_REGS 7 1516 1517 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev, 1518 u16 cap, bool extended) 1519 { 1520 struct pci_cap_saved_state *tmp; 1521 1522 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) { 1523 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap) 1524 return tmp; 1525 } 1526 return NULL; 1527 } 1528 1529 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap) 1530 { 1531 return _pci_find_saved_cap(dev, cap, false); 1532 } 1533 1534 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap) 1535 { 1536 return _pci_find_saved_cap(dev, cap, true); 1537 } 1538 1539 static int pci_save_pcie_state(struct pci_dev *dev) 1540 { 1541 int i = 0; 1542 struct pci_cap_saved_state *save_state; 1543 u16 *cap; 1544 1545 if (!pci_is_pcie(dev)) 1546 return 0; 1547 1548 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1549 if (!save_state) { 1550 pci_err(dev, "buffer not found in %s\n", __func__); 1551 return -ENOMEM; 1552 } 1553 1554 cap = (u16 *)&save_state->cap.data[0]; 1555 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]); 1556 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]); 1557 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]); 1558 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]); 1559 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]); 1560 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]); 1561 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]); 1562 1563 return 0; 1564 } 1565 1566 void pci_bridge_reconfigure_ltr(struct pci_dev *dev) 1567 { 1568 #ifdef CONFIG_PCIEASPM 1569 struct pci_dev *bridge; 1570 u32 ctl; 1571 1572 bridge = pci_upstream_bridge(dev); 1573 if (bridge && bridge->ltr_path) { 1574 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, &ctl); 1575 if (!(ctl & PCI_EXP_DEVCTL2_LTR_EN)) { 1576 pci_dbg(bridge, "re-enabling LTR\n"); 1577 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, 1578 PCI_EXP_DEVCTL2_LTR_EN); 1579 } 1580 } 1581 #endif 1582 } 1583 1584 static void pci_restore_pcie_state(struct pci_dev *dev) 1585 { 1586 int i = 0; 1587 struct pci_cap_saved_state *save_state; 1588 u16 *cap; 1589 1590 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1591 if (!save_state) 1592 return; 1593 1594 /* 1595 * Downstream ports reset the LTR enable bit when link goes down. 1596 * Check and re-configure the bit here before restoring device. 1597 * PCIe r5.0, sec 7.5.3.16. 1598 */ 1599 pci_bridge_reconfigure_ltr(dev); 1600 1601 cap = (u16 *)&save_state->cap.data[0]; 1602 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]); 1603 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]); 1604 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]); 1605 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]); 1606 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]); 1607 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]); 1608 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]); 1609 } 1610 1611 static int pci_save_pcix_state(struct pci_dev *dev) 1612 { 1613 int pos; 1614 struct pci_cap_saved_state *save_state; 1615 1616 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1617 if (!pos) 1618 return 0; 1619 1620 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1621 if (!save_state) { 1622 pci_err(dev, "buffer not found in %s\n", __func__); 1623 return -ENOMEM; 1624 } 1625 1626 pci_read_config_word(dev, pos + PCI_X_CMD, 1627 (u16 *)save_state->cap.data); 1628 1629 return 0; 1630 } 1631 1632 static void pci_restore_pcix_state(struct pci_dev *dev) 1633 { 1634 int i = 0, pos; 1635 struct pci_cap_saved_state *save_state; 1636 u16 *cap; 1637 1638 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1639 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1640 if (!save_state || !pos) 1641 return; 1642 cap = (u16 *)&save_state->cap.data[0]; 1643 1644 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]); 1645 } 1646 1647 static void pci_save_ltr_state(struct pci_dev *dev) 1648 { 1649 int ltr; 1650 struct pci_cap_saved_state *save_state; 1651 u32 *cap; 1652 1653 if (!pci_is_pcie(dev)) 1654 return; 1655 1656 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR); 1657 if (!ltr) 1658 return; 1659 1660 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR); 1661 if (!save_state) { 1662 pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n"); 1663 return; 1664 } 1665 1666 /* Some broken devices only support dword access to LTR */ 1667 cap = &save_state->cap.data[0]; 1668 pci_read_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap); 1669 } 1670 1671 static void pci_restore_ltr_state(struct pci_dev *dev) 1672 { 1673 struct pci_cap_saved_state *save_state; 1674 int ltr; 1675 u32 *cap; 1676 1677 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR); 1678 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR); 1679 if (!save_state || !ltr) 1680 return; 1681 1682 /* Some broken devices only support dword access to LTR */ 1683 cap = &save_state->cap.data[0]; 1684 pci_write_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap); 1685 } 1686 1687 /** 1688 * pci_save_state - save the PCI configuration space of a device before 1689 * suspending 1690 * @dev: PCI device that we're dealing with 1691 */ 1692 int pci_save_state(struct pci_dev *dev) 1693 { 1694 int i; 1695 /* XXX: 100% dword access ok here? */ 1696 for (i = 0; i < 16; i++) { 1697 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]); 1698 pci_dbg(dev, "save config %#04x: %#010x\n", 1699 i * 4, dev->saved_config_space[i]); 1700 } 1701 dev->state_saved = true; 1702 1703 i = pci_save_pcie_state(dev); 1704 if (i != 0) 1705 return i; 1706 1707 i = pci_save_pcix_state(dev); 1708 if (i != 0) 1709 return i; 1710 1711 pci_save_ltr_state(dev); 1712 pci_save_dpc_state(dev); 1713 pci_save_aer_state(dev); 1714 pci_save_ptm_state(dev); 1715 return pci_save_vc_state(dev); 1716 } 1717 EXPORT_SYMBOL(pci_save_state); 1718 1719 static void pci_restore_config_dword(struct pci_dev *pdev, int offset, 1720 u32 saved_val, int retry, bool force) 1721 { 1722 u32 val; 1723 1724 pci_read_config_dword(pdev, offset, &val); 1725 if (!force && val == saved_val) 1726 return; 1727 1728 for (;;) { 1729 pci_dbg(pdev, "restore config %#04x: %#010x -> %#010x\n", 1730 offset, val, saved_val); 1731 pci_write_config_dword(pdev, offset, saved_val); 1732 if (retry-- <= 0) 1733 return; 1734 1735 pci_read_config_dword(pdev, offset, &val); 1736 if (val == saved_val) 1737 return; 1738 1739 mdelay(1); 1740 } 1741 } 1742 1743 static void pci_restore_config_space_range(struct pci_dev *pdev, 1744 int start, int end, int retry, 1745 bool force) 1746 { 1747 int index; 1748 1749 for (index = end; index >= start; index--) 1750 pci_restore_config_dword(pdev, 4 * index, 1751 pdev->saved_config_space[index], 1752 retry, force); 1753 } 1754 1755 static void pci_restore_config_space(struct pci_dev *pdev) 1756 { 1757 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) { 1758 pci_restore_config_space_range(pdev, 10, 15, 0, false); 1759 /* Restore BARs before the command register. */ 1760 pci_restore_config_space_range(pdev, 4, 9, 10, false); 1761 pci_restore_config_space_range(pdev, 0, 3, 0, false); 1762 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 1763 pci_restore_config_space_range(pdev, 12, 15, 0, false); 1764 1765 /* 1766 * Force rewriting of prefetch registers to avoid S3 resume 1767 * issues on Intel PCI bridges that occur when these 1768 * registers are not explicitly written. 1769 */ 1770 pci_restore_config_space_range(pdev, 9, 11, 0, true); 1771 pci_restore_config_space_range(pdev, 0, 8, 0, false); 1772 } else { 1773 pci_restore_config_space_range(pdev, 0, 15, 0, false); 1774 } 1775 } 1776 1777 static void pci_restore_rebar_state(struct pci_dev *pdev) 1778 { 1779 unsigned int pos, nbars, i; 1780 u32 ctrl; 1781 1782 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 1783 if (!pos) 1784 return; 1785 1786 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1787 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >> 1788 PCI_REBAR_CTRL_NBAR_SHIFT; 1789 1790 for (i = 0; i < nbars; i++, pos += 8) { 1791 struct resource *res; 1792 int bar_idx, size; 1793 1794 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1795 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX; 1796 res = pdev->resource + bar_idx; 1797 size = pci_rebar_bytes_to_size(resource_size(res)); 1798 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 1799 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT; 1800 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 1801 } 1802 } 1803 1804 /** 1805 * pci_restore_state - Restore the saved state of a PCI device 1806 * @dev: PCI device that we're dealing with 1807 */ 1808 void pci_restore_state(struct pci_dev *dev) 1809 { 1810 if (!dev->state_saved) 1811 return; 1812 1813 /* 1814 * Restore max latencies (in the LTR capability) before enabling 1815 * LTR itself (in the PCIe capability). 1816 */ 1817 pci_restore_ltr_state(dev); 1818 1819 pci_restore_pcie_state(dev); 1820 pci_restore_pasid_state(dev); 1821 pci_restore_pri_state(dev); 1822 pci_restore_ats_state(dev); 1823 pci_restore_vc_state(dev); 1824 pci_restore_rebar_state(dev); 1825 pci_restore_dpc_state(dev); 1826 pci_restore_ptm_state(dev); 1827 1828 pci_aer_clear_status(dev); 1829 pci_restore_aer_state(dev); 1830 1831 pci_restore_config_space(dev); 1832 1833 pci_restore_pcix_state(dev); 1834 pci_restore_msi_state(dev); 1835 1836 /* Restore ACS and IOV configuration state */ 1837 pci_enable_acs(dev); 1838 pci_restore_iov_state(dev); 1839 1840 dev->state_saved = false; 1841 } 1842 EXPORT_SYMBOL(pci_restore_state); 1843 1844 struct pci_saved_state { 1845 u32 config_space[16]; 1846 struct pci_cap_saved_data cap[]; 1847 }; 1848 1849 /** 1850 * pci_store_saved_state - Allocate and return an opaque struct containing 1851 * the device saved state. 1852 * @dev: PCI device that we're dealing with 1853 * 1854 * Return NULL if no state or error. 1855 */ 1856 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev) 1857 { 1858 struct pci_saved_state *state; 1859 struct pci_cap_saved_state *tmp; 1860 struct pci_cap_saved_data *cap; 1861 size_t size; 1862 1863 if (!dev->state_saved) 1864 return NULL; 1865 1866 size = sizeof(*state) + sizeof(struct pci_cap_saved_data); 1867 1868 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) 1869 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1870 1871 state = kzalloc(size, GFP_KERNEL); 1872 if (!state) 1873 return NULL; 1874 1875 memcpy(state->config_space, dev->saved_config_space, 1876 sizeof(state->config_space)); 1877 1878 cap = state->cap; 1879 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) { 1880 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1881 memcpy(cap, &tmp->cap, len); 1882 cap = (struct pci_cap_saved_data *)((u8 *)cap + len); 1883 } 1884 /* Empty cap_save terminates list */ 1885 1886 return state; 1887 } 1888 EXPORT_SYMBOL_GPL(pci_store_saved_state); 1889 1890 /** 1891 * pci_load_saved_state - Reload the provided save state into struct pci_dev. 1892 * @dev: PCI device that we're dealing with 1893 * @state: Saved state returned from pci_store_saved_state() 1894 */ 1895 int pci_load_saved_state(struct pci_dev *dev, 1896 struct pci_saved_state *state) 1897 { 1898 struct pci_cap_saved_data *cap; 1899 1900 dev->state_saved = false; 1901 1902 if (!state) 1903 return 0; 1904 1905 memcpy(dev->saved_config_space, state->config_space, 1906 sizeof(state->config_space)); 1907 1908 cap = state->cap; 1909 while (cap->size) { 1910 struct pci_cap_saved_state *tmp; 1911 1912 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended); 1913 if (!tmp || tmp->cap.size != cap->size) 1914 return -EINVAL; 1915 1916 memcpy(tmp->cap.data, cap->data, tmp->cap.size); 1917 cap = (struct pci_cap_saved_data *)((u8 *)cap + 1918 sizeof(struct pci_cap_saved_data) + cap->size); 1919 } 1920 1921 dev->state_saved = true; 1922 return 0; 1923 } 1924 EXPORT_SYMBOL_GPL(pci_load_saved_state); 1925 1926 /** 1927 * pci_load_and_free_saved_state - Reload the save state pointed to by state, 1928 * and free the memory allocated for it. 1929 * @dev: PCI device that we're dealing with 1930 * @state: Pointer to saved state returned from pci_store_saved_state() 1931 */ 1932 int pci_load_and_free_saved_state(struct pci_dev *dev, 1933 struct pci_saved_state **state) 1934 { 1935 int ret = pci_load_saved_state(dev, *state); 1936 kfree(*state); 1937 *state = NULL; 1938 return ret; 1939 } 1940 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state); 1941 1942 int __weak pcibios_enable_device(struct pci_dev *dev, int bars) 1943 { 1944 return pci_enable_resources(dev, bars); 1945 } 1946 1947 static int do_pci_enable_device(struct pci_dev *dev, int bars) 1948 { 1949 int err; 1950 struct pci_dev *bridge; 1951 u16 cmd; 1952 u8 pin; 1953 1954 err = pci_set_power_state(dev, PCI_D0); 1955 if (err < 0 && err != -EIO) 1956 return err; 1957 1958 bridge = pci_upstream_bridge(dev); 1959 if (bridge) 1960 pcie_aspm_powersave_config_link(bridge); 1961 1962 err = pcibios_enable_device(dev, bars); 1963 if (err < 0) 1964 return err; 1965 pci_fixup_device(pci_fixup_enable, dev); 1966 1967 if (dev->msi_enabled || dev->msix_enabled) 1968 return 0; 1969 1970 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin); 1971 if (pin) { 1972 pci_read_config_word(dev, PCI_COMMAND, &cmd); 1973 if (cmd & PCI_COMMAND_INTX_DISABLE) 1974 pci_write_config_word(dev, PCI_COMMAND, 1975 cmd & ~PCI_COMMAND_INTX_DISABLE); 1976 } 1977 1978 return 0; 1979 } 1980 1981 /** 1982 * pci_reenable_device - Resume abandoned device 1983 * @dev: PCI device to be resumed 1984 * 1985 * NOTE: This function is a backend of pci_default_resume() and is not supposed 1986 * to be called by normal code, write proper resume handler and use it instead. 1987 */ 1988 int pci_reenable_device(struct pci_dev *dev) 1989 { 1990 if (pci_is_enabled(dev)) 1991 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1); 1992 return 0; 1993 } 1994 EXPORT_SYMBOL(pci_reenable_device); 1995 1996 static void pci_enable_bridge(struct pci_dev *dev) 1997 { 1998 struct pci_dev *bridge; 1999 int retval; 2000 2001 bridge = pci_upstream_bridge(dev); 2002 if (bridge) 2003 pci_enable_bridge(bridge); 2004 2005 if (pci_is_enabled(dev)) { 2006 if (!dev->is_busmaster) 2007 pci_set_master(dev); 2008 return; 2009 } 2010 2011 retval = pci_enable_device(dev); 2012 if (retval) 2013 pci_err(dev, "Error enabling bridge (%d), continuing\n", 2014 retval); 2015 pci_set_master(dev); 2016 } 2017 2018 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags) 2019 { 2020 struct pci_dev *bridge; 2021 int err; 2022 int i, bars = 0; 2023 2024 /* 2025 * Power state could be unknown at this point, either due to a fresh 2026 * boot or a device removal call. So get the current power state 2027 * so that things like MSI message writing will behave as expected 2028 * (e.g. if the device really is in D0 at enable time). 2029 */ 2030 pci_update_current_state(dev, dev->current_state); 2031 2032 if (atomic_inc_return(&dev->enable_cnt) > 1) 2033 return 0; /* already enabled */ 2034 2035 bridge = pci_upstream_bridge(dev); 2036 if (bridge) 2037 pci_enable_bridge(bridge); 2038 2039 /* only skip sriov related */ 2040 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 2041 if (dev->resource[i].flags & flags) 2042 bars |= (1 << i); 2043 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++) 2044 if (dev->resource[i].flags & flags) 2045 bars |= (1 << i); 2046 2047 err = do_pci_enable_device(dev, bars); 2048 if (err < 0) 2049 atomic_dec(&dev->enable_cnt); 2050 return err; 2051 } 2052 2053 /** 2054 * pci_enable_device_io - Initialize a device for use with IO space 2055 * @dev: PCI device to be initialized 2056 * 2057 * Initialize device before it's used by a driver. Ask low-level code 2058 * to enable I/O resources. Wake up the device if it was suspended. 2059 * Beware, this function can fail. 2060 */ 2061 int pci_enable_device_io(struct pci_dev *dev) 2062 { 2063 return pci_enable_device_flags(dev, IORESOURCE_IO); 2064 } 2065 EXPORT_SYMBOL(pci_enable_device_io); 2066 2067 /** 2068 * pci_enable_device_mem - Initialize a device for use with Memory space 2069 * @dev: PCI device to be initialized 2070 * 2071 * Initialize device before it's used by a driver. Ask low-level code 2072 * to enable Memory resources. Wake up the device if it was suspended. 2073 * Beware, this function can fail. 2074 */ 2075 int pci_enable_device_mem(struct pci_dev *dev) 2076 { 2077 return pci_enable_device_flags(dev, IORESOURCE_MEM); 2078 } 2079 EXPORT_SYMBOL(pci_enable_device_mem); 2080 2081 /** 2082 * pci_enable_device - Initialize device before it's used by a driver. 2083 * @dev: PCI device to be initialized 2084 * 2085 * Initialize device before it's used by a driver. Ask low-level code 2086 * to enable I/O and memory. Wake up the device if it was suspended. 2087 * Beware, this function can fail. 2088 * 2089 * Note we don't actually enable the device many times if we call 2090 * this function repeatedly (we just increment the count). 2091 */ 2092 int pci_enable_device(struct pci_dev *dev) 2093 { 2094 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO); 2095 } 2096 EXPORT_SYMBOL(pci_enable_device); 2097 2098 /* 2099 * Managed PCI resources. This manages device on/off, INTx/MSI/MSI-X 2100 * on/off and BAR regions. pci_dev itself records MSI/MSI-X status, so 2101 * there's no need to track it separately. pci_devres is initialized 2102 * when a device is enabled using managed PCI device enable interface. 2103 */ 2104 struct pci_devres { 2105 unsigned int enabled:1; 2106 unsigned int pinned:1; 2107 unsigned int orig_intx:1; 2108 unsigned int restore_intx:1; 2109 unsigned int mwi:1; 2110 u32 region_mask; 2111 }; 2112 2113 static void pcim_release(struct device *gendev, void *res) 2114 { 2115 struct pci_dev *dev = to_pci_dev(gendev); 2116 struct pci_devres *this = res; 2117 int i; 2118 2119 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) 2120 if (this->region_mask & (1 << i)) 2121 pci_release_region(dev, i); 2122 2123 if (this->mwi) 2124 pci_clear_mwi(dev); 2125 2126 if (this->restore_intx) 2127 pci_intx(dev, this->orig_intx); 2128 2129 if (this->enabled && !this->pinned) 2130 pci_disable_device(dev); 2131 } 2132 2133 static struct pci_devres *get_pci_dr(struct pci_dev *pdev) 2134 { 2135 struct pci_devres *dr, *new_dr; 2136 2137 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL); 2138 if (dr) 2139 return dr; 2140 2141 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL); 2142 if (!new_dr) 2143 return NULL; 2144 return devres_get(&pdev->dev, new_dr, NULL, NULL); 2145 } 2146 2147 static struct pci_devres *find_pci_dr(struct pci_dev *pdev) 2148 { 2149 if (pci_is_managed(pdev)) 2150 return devres_find(&pdev->dev, pcim_release, NULL, NULL); 2151 return NULL; 2152 } 2153 2154 /** 2155 * pcim_enable_device - Managed pci_enable_device() 2156 * @pdev: PCI device to be initialized 2157 * 2158 * Managed pci_enable_device(). 2159 */ 2160 int pcim_enable_device(struct pci_dev *pdev) 2161 { 2162 struct pci_devres *dr; 2163 int rc; 2164 2165 dr = get_pci_dr(pdev); 2166 if (unlikely(!dr)) 2167 return -ENOMEM; 2168 if (dr->enabled) 2169 return 0; 2170 2171 rc = pci_enable_device(pdev); 2172 if (!rc) { 2173 pdev->is_managed = 1; 2174 dr->enabled = 1; 2175 } 2176 return rc; 2177 } 2178 EXPORT_SYMBOL(pcim_enable_device); 2179 2180 /** 2181 * pcim_pin_device - Pin managed PCI device 2182 * @pdev: PCI device to pin 2183 * 2184 * Pin managed PCI device @pdev. Pinned device won't be disabled on 2185 * driver detach. @pdev must have been enabled with 2186 * pcim_enable_device(). 2187 */ 2188 void pcim_pin_device(struct pci_dev *pdev) 2189 { 2190 struct pci_devres *dr; 2191 2192 dr = find_pci_dr(pdev); 2193 WARN_ON(!dr || !dr->enabled); 2194 if (dr) 2195 dr->pinned = 1; 2196 } 2197 EXPORT_SYMBOL(pcim_pin_device); 2198 2199 /* 2200 * pcibios_device_add - provide arch specific hooks when adding device dev 2201 * @dev: the PCI device being added 2202 * 2203 * Permits the platform to provide architecture specific functionality when 2204 * devices are added. This is the default implementation. Architecture 2205 * implementations can override this. 2206 */ 2207 int __weak pcibios_device_add(struct pci_dev *dev) 2208 { 2209 return 0; 2210 } 2211 2212 /** 2213 * pcibios_release_device - provide arch specific hooks when releasing 2214 * device dev 2215 * @dev: the PCI device being released 2216 * 2217 * Permits the platform to provide architecture specific functionality when 2218 * devices are released. This is the default implementation. Architecture 2219 * implementations can override this. 2220 */ 2221 void __weak pcibios_release_device(struct pci_dev *dev) {} 2222 2223 /** 2224 * pcibios_disable_device - disable arch specific PCI resources for device dev 2225 * @dev: the PCI device to disable 2226 * 2227 * Disables architecture specific PCI resources for the device. This 2228 * is the default implementation. Architecture implementations can 2229 * override this. 2230 */ 2231 void __weak pcibios_disable_device(struct pci_dev *dev) {} 2232 2233 /** 2234 * pcibios_penalize_isa_irq - penalize an ISA IRQ 2235 * @irq: ISA IRQ to penalize 2236 * @active: IRQ active or not 2237 * 2238 * Permits the platform to provide architecture-specific functionality when 2239 * penalizing ISA IRQs. This is the default implementation. Architecture 2240 * implementations can override this. 2241 */ 2242 void __weak pcibios_penalize_isa_irq(int irq, int active) {} 2243 2244 static void do_pci_disable_device(struct pci_dev *dev) 2245 { 2246 u16 pci_command; 2247 2248 pci_read_config_word(dev, PCI_COMMAND, &pci_command); 2249 if (pci_command & PCI_COMMAND_MASTER) { 2250 pci_command &= ~PCI_COMMAND_MASTER; 2251 pci_write_config_word(dev, PCI_COMMAND, pci_command); 2252 } 2253 2254 pcibios_disable_device(dev); 2255 } 2256 2257 /** 2258 * pci_disable_enabled_device - Disable device without updating enable_cnt 2259 * @dev: PCI device to disable 2260 * 2261 * NOTE: This function is a backend of PCI power management routines and is 2262 * not supposed to be called drivers. 2263 */ 2264 void pci_disable_enabled_device(struct pci_dev *dev) 2265 { 2266 if (pci_is_enabled(dev)) 2267 do_pci_disable_device(dev); 2268 } 2269 2270 /** 2271 * pci_disable_device - Disable PCI device after use 2272 * @dev: PCI device to be disabled 2273 * 2274 * Signal to the system that the PCI device is not in use by the system 2275 * anymore. This only involves disabling PCI bus-mastering, if active. 2276 * 2277 * Note we don't actually disable the device until all callers of 2278 * pci_enable_device() have called pci_disable_device(). 2279 */ 2280 void pci_disable_device(struct pci_dev *dev) 2281 { 2282 struct pci_devres *dr; 2283 2284 dr = find_pci_dr(dev); 2285 if (dr) 2286 dr->enabled = 0; 2287 2288 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0, 2289 "disabling already-disabled device"); 2290 2291 if (atomic_dec_return(&dev->enable_cnt) != 0) 2292 return; 2293 2294 do_pci_disable_device(dev); 2295 2296 dev->is_busmaster = 0; 2297 } 2298 EXPORT_SYMBOL(pci_disable_device); 2299 2300 /** 2301 * pcibios_set_pcie_reset_state - set reset state for device dev 2302 * @dev: the PCIe device reset 2303 * @state: Reset state to enter into 2304 * 2305 * Set the PCIe reset state for the device. This is the default 2306 * implementation. Architecture implementations can override this. 2307 */ 2308 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev, 2309 enum pcie_reset_state state) 2310 { 2311 return -EINVAL; 2312 } 2313 2314 /** 2315 * pci_set_pcie_reset_state - set reset state for device dev 2316 * @dev: the PCIe device reset 2317 * @state: Reset state to enter into 2318 * 2319 * Sets the PCI reset state for the device. 2320 */ 2321 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state) 2322 { 2323 return pcibios_set_pcie_reset_state(dev, state); 2324 } 2325 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state); 2326 2327 #ifdef CONFIG_PCIEAER 2328 void pcie_clear_device_status(struct pci_dev *dev) 2329 { 2330 u16 sta; 2331 2332 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta); 2333 pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta); 2334 } 2335 #endif 2336 2337 /** 2338 * pcie_clear_root_pme_status - Clear root port PME interrupt status. 2339 * @dev: PCIe root port or event collector. 2340 */ 2341 void pcie_clear_root_pme_status(struct pci_dev *dev) 2342 { 2343 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME); 2344 } 2345 2346 /** 2347 * pci_check_pme_status - Check if given device has generated PME. 2348 * @dev: Device to check. 2349 * 2350 * Check the PME status of the device and if set, clear it and clear PME enable 2351 * (if set). Return 'true' if PME status and PME enable were both set or 2352 * 'false' otherwise. 2353 */ 2354 bool pci_check_pme_status(struct pci_dev *dev) 2355 { 2356 int pmcsr_pos; 2357 u16 pmcsr; 2358 bool ret = false; 2359 2360 if (!dev->pm_cap) 2361 return false; 2362 2363 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL; 2364 pci_read_config_word(dev, pmcsr_pos, &pmcsr); 2365 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS)) 2366 return false; 2367 2368 /* Clear PME status. */ 2369 pmcsr |= PCI_PM_CTRL_PME_STATUS; 2370 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) { 2371 /* Disable PME to avoid interrupt flood. */ 2372 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2373 ret = true; 2374 } 2375 2376 pci_write_config_word(dev, pmcsr_pos, pmcsr); 2377 2378 return ret; 2379 } 2380 2381 /** 2382 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set. 2383 * @dev: Device to handle. 2384 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag. 2385 * 2386 * Check if @dev has generated PME and queue a resume request for it in that 2387 * case. 2388 */ 2389 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset) 2390 { 2391 if (pme_poll_reset && dev->pme_poll) 2392 dev->pme_poll = false; 2393 2394 if (pci_check_pme_status(dev)) { 2395 pci_wakeup_event(dev); 2396 pm_request_resume(&dev->dev); 2397 } 2398 return 0; 2399 } 2400 2401 /** 2402 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary. 2403 * @bus: Top bus of the subtree to walk. 2404 */ 2405 void pci_pme_wakeup_bus(struct pci_bus *bus) 2406 { 2407 if (bus) 2408 pci_walk_bus(bus, pci_pme_wakeup, (void *)true); 2409 } 2410 2411 2412 /** 2413 * pci_pme_capable - check the capability of PCI device to generate PME# 2414 * @dev: PCI device to handle. 2415 * @state: PCI state from which device will issue PME#. 2416 */ 2417 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state) 2418 { 2419 if (!dev->pm_cap) 2420 return false; 2421 2422 return !!(dev->pme_support & (1 << state)); 2423 } 2424 EXPORT_SYMBOL(pci_pme_capable); 2425 2426 static void pci_pme_list_scan(struct work_struct *work) 2427 { 2428 struct pci_pme_device *pme_dev, *n; 2429 2430 mutex_lock(&pci_pme_list_mutex); 2431 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) { 2432 struct pci_dev *pdev = pme_dev->dev; 2433 2434 if (pdev->pme_poll) { 2435 struct pci_dev *bridge = pdev->bus->self; 2436 struct device *dev = &pdev->dev; 2437 int pm_status; 2438 2439 /* 2440 * If bridge is in low power state, the 2441 * configuration space of subordinate devices 2442 * may be not accessible 2443 */ 2444 if (bridge && bridge->current_state != PCI_D0) 2445 continue; 2446 2447 /* 2448 * If the device is in a low power state it 2449 * should not be polled either. 2450 */ 2451 pm_status = pm_runtime_get_if_active(dev, true); 2452 if (!pm_status) 2453 continue; 2454 2455 if (pdev->current_state != PCI_D3cold) 2456 pci_pme_wakeup(pdev, NULL); 2457 2458 if (pm_status > 0) 2459 pm_runtime_put(dev); 2460 } else { 2461 list_del(&pme_dev->list); 2462 kfree(pme_dev); 2463 } 2464 } 2465 if (!list_empty(&pci_pme_list)) 2466 queue_delayed_work(system_freezable_wq, &pci_pme_work, 2467 msecs_to_jiffies(PME_TIMEOUT)); 2468 mutex_unlock(&pci_pme_list_mutex); 2469 } 2470 2471 static void __pci_pme_active(struct pci_dev *dev, bool enable) 2472 { 2473 u16 pmcsr; 2474 2475 if (!dev->pme_support) 2476 return; 2477 2478 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2479 /* Clear PME_Status by writing 1 to it and enable PME# */ 2480 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE; 2481 if (!enable) 2482 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2483 2484 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2485 } 2486 2487 /** 2488 * pci_pme_restore - Restore PME configuration after config space restore. 2489 * @dev: PCI device to update. 2490 */ 2491 void pci_pme_restore(struct pci_dev *dev) 2492 { 2493 u16 pmcsr; 2494 2495 if (!dev->pme_support) 2496 return; 2497 2498 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2499 if (dev->wakeup_prepared) { 2500 pmcsr |= PCI_PM_CTRL_PME_ENABLE; 2501 pmcsr &= ~PCI_PM_CTRL_PME_STATUS; 2502 } else { 2503 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2504 pmcsr |= PCI_PM_CTRL_PME_STATUS; 2505 } 2506 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2507 } 2508 2509 /** 2510 * pci_pme_active - enable or disable PCI device's PME# function 2511 * @dev: PCI device to handle. 2512 * @enable: 'true' to enable PME# generation; 'false' to disable it. 2513 * 2514 * The caller must verify that the device is capable of generating PME# before 2515 * calling this function with @enable equal to 'true'. 2516 */ 2517 void pci_pme_active(struct pci_dev *dev, bool enable) 2518 { 2519 __pci_pme_active(dev, enable); 2520 2521 /* 2522 * PCI (as opposed to PCIe) PME requires that the device have 2523 * its PME# line hooked up correctly. Not all hardware vendors 2524 * do this, so the PME never gets delivered and the device 2525 * remains asleep. The easiest way around this is to 2526 * periodically walk the list of suspended devices and check 2527 * whether any have their PME flag set. The assumption is that 2528 * we'll wake up often enough anyway that this won't be a huge 2529 * hit, and the power savings from the devices will still be a 2530 * win. 2531 * 2532 * Although PCIe uses in-band PME message instead of PME# line 2533 * to report PME, PME does not work for some PCIe devices in 2534 * reality. For example, there are devices that set their PME 2535 * status bits, but don't really bother to send a PME message; 2536 * there are PCI Express Root Ports that don't bother to 2537 * trigger interrupts when they receive PME messages from the 2538 * devices below. So PME poll is used for PCIe devices too. 2539 */ 2540 2541 if (dev->pme_poll) { 2542 struct pci_pme_device *pme_dev; 2543 if (enable) { 2544 pme_dev = kmalloc(sizeof(struct pci_pme_device), 2545 GFP_KERNEL); 2546 if (!pme_dev) { 2547 pci_warn(dev, "can't enable PME#\n"); 2548 return; 2549 } 2550 pme_dev->dev = dev; 2551 mutex_lock(&pci_pme_list_mutex); 2552 list_add(&pme_dev->list, &pci_pme_list); 2553 if (list_is_singular(&pci_pme_list)) 2554 queue_delayed_work(system_freezable_wq, 2555 &pci_pme_work, 2556 msecs_to_jiffies(PME_TIMEOUT)); 2557 mutex_unlock(&pci_pme_list_mutex); 2558 } else { 2559 mutex_lock(&pci_pme_list_mutex); 2560 list_for_each_entry(pme_dev, &pci_pme_list, list) { 2561 if (pme_dev->dev == dev) { 2562 list_del(&pme_dev->list); 2563 kfree(pme_dev); 2564 break; 2565 } 2566 } 2567 mutex_unlock(&pci_pme_list_mutex); 2568 } 2569 } 2570 2571 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled"); 2572 } 2573 EXPORT_SYMBOL(pci_pme_active); 2574 2575 /** 2576 * __pci_enable_wake - enable PCI device as wakeup event source 2577 * @dev: PCI device affected 2578 * @state: PCI state from which device will issue wakeup events 2579 * @enable: True to enable event generation; false to disable 2580 * 2581 * This enables the device as a wakeup event source, or disables it. 2582 * When such events involves platform-specific hooks, those hooks are 2583 * called automatically by this routine. 2584 * 2585 * Devices with legacy power management (no standard PCI PM capabilities) 2586 * always require such platform hooks. 2587 * 2588 * RETURN VALUE: 2589 * 0 is returned on success 2590 * -EINVAL is returned if device is not supposed to wake up the system 2591 * Error code depending on the platform is returned if both the platform and 2592 * the native mechanism fail to enable the generation of wake-up events 2593 */ 2594 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable) 2595 { 2596 int ret = 0; 2597 2598 /* 2599 * Bridges that are not power-manageable directly only signal 2600 * wakeup on behalf of subordinate devices which is set up 2601 * elsewhere, so skip them. However, bridges that are 2602 * power-manageable may signal wakeup for themselves (for example, 2603 * on a hotplug event) and they need to be covered here. 2604 */ 2605 if (!pci_power_manageable(dev)) 2606 return 0; 2607 2608 /* Don't do the same thing twice in a row for one device. */ 2609 if (!!enable == !!dev->wakeup_prepared) 2610 return 0; 2611 2612 /* 2613 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don 2614 * Anderson we should be doing PME# wake enable followed by ACPI wake 2615 * enable. To disable wake-up we call the platform first, for symmetry. 2616 */ 2617 2618 if (enable) { 2619 int error; 2620 2621 /* 2622 * Enable PME signaling if the device can signal PME from 2623 * D3cold regardless of whether or not it can signal PME from 2624 * the current target state, because that will allow it to 2625 * signal PME when the hierarchy above it goes into D3cold and 2626 * the device itself ends up in D3cold as a result of that. 2627 */ 2628 if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold)) 2629 pci_pme_active(dev, true); 2630 else 2631 ret = 1; 2632 error = platform_pci_set_wakeup(dev, true); 2633 if (ret) 2634 ret = error; 2635 if (!ret) 2636 dev->wakeup_prepared = true; 2637 } else { 2638 platform_pci_set_wakeup(dev, false); 2639 pci_pme_active(dev, false); 2640 dev->wakeup_prepared = false; 2641 } 2642 2643 return ret; 2644 } 2645 2646 /** 2647 * pci_enable_wake - change wakeup settings for a PCI device 2648 * @pci_dev: Target device 2649 * @state: PCI state from which device will issue wakeup events 2650 * @enable: Whether or not to enable event generation 2651 * 2652 * If @enable is set, check device_may_wakeup() for the device before calling 2653 * __pci_enable_wake() for it. 2654 */ 2655 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable) 2656 { 2657 if (enable && !device_may_wakeup(&pci_dev->dev)) 2658 return -EINVAL; 2659 2660 return __pci_enable_wake(pci_dev, state, enable); 2661 } 2662 EXPORT_SYMBOL(pci_enable_wake); 2663 2664 /** 2665 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold 2666 * @dev: PCI device to prepare 2667 * @enable: True to enable wake-up event generation; false to disable 2668 * 2669 * Many drivers want the device to wake up the system from D3_hot or D3_cold 2670 * and this function allows them to set that up cleanly - pci_enable_wake() 2671 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI 2672 * ordering constraints. 2673 * 2674 * This function only returns error code if the device is not allowed to wake 2675 * up the system from sleep or it is not capable of generating PME# from both 2676 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it. 2677 */ 2678 int pci_wake_from_d3(struct pci_dev *dev, bool enable) 2679 { 2680 return pci_pme_capable(dev, PCI_D3cold) ? 2681 pci_enable_wake(dev, PCI_D3cold, enable) : 2682 pci_enable_wake(dev, PCI_D3hot, enable); 2683 } 2684 EXPORT_SYMBOL(pci_wake_from_d3); 2685 2686 /** 2687 * pci_target_state - find an appropriate low power state for a given PCI dev 2688 * @dev: PCI device 2689 * @wakeup: Whether or not wakeup functionality will be enabled for the device. 2690 * 2691 * Use underlying platform code to find a supported low power state for @dev. 2692 * If the platform can't manage @dev, return the deepest state from which it 2693 * can generate wake events, based on any available PME info. 2694 */ 2695 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup) 2696 { 2697 if (platform_pci_power_manageable(dev)) { 2698 /* 2699 * Call the platform to find the target state for the device. 2700 */ 2701 pci_power_t state = platform_pci_choose_state(dev); 2702 2703 switch (state) { 2704 case PCI_POWER_ERROR: 2705 case PCI_UNKNOWN: 2706 return PCI_D3hot; 2707 2708 case PCI_D1: 2709 case PCI_D2: 2710 if (pci_no_d1d2(dev)) 2711 return PCI_D3hot; 2712 } 2713 2714 return state; 2715 } 2716 2717 /* 2718 * If the device is in D3cold even though it's not power-manageable by 2719 * the platform, it may have been powered down by non-standard means. 2720 * Best to let it slumber. 2721 */ 2722 if (dev->current_state == PCI_D3cold) 2723 return PCI_D3cold; 2724 else if (!dev->pm_cap) 2725 return PCI_D0; 2726 2727 if (wakeup && dev->pme_support) { 2728 pci_power_t state = PCI_D3hot; 2729 2730 /* 2731 * Find the deepest state from which the device can generate 2732 * PME#. 2733 */ 2734 while (state && !(dev->pme_support & (1 << state))) 2735 state--; 2736 2737 if (state) 2738 return state; 2739 else if (dev->pme_support & 1) 2740 return PCI_D0; 2741 } 2742 2743 return PCI_D3hot; 2744 } 2745 2746 /** 2747 * pci_prepare_to_sleep - prepare PCI device for system-wide transition 2748 * into a sleep state 2749 * @dev: Device to handle. 2750 * 2751 * Choose the power state appropriate for the device depending on whether 2752 * it can wake up the system and/or is power manageable by the platform 2753 * (PCI_D3hot is the default) and put the device into that state. 2754 */ 2755 int pci_prepare_to_sleep(struct pci_dev *dev) 2756 { 2757 bool wakeup = device_may_wakeup(&dev->dev); 2758 pci_power_t target_state = pci_target_state(dev, wakeup); 2759 int error; 2760 2761 if (target_state == PCI_POWER_ERROR) 2762 return -EIO; 2763 2764 pci_enable_wake(dev, target_state, wakeup); 2765 2766 error = pci_set_power_state(dev, target_state); 2767 2768 if (error) 2769 pci_enable_wake(dev, target_state, false); 2770 2771 return error; 2772 } 2773 EXPORT_SYMBOL(pci_prepare_to_sleep); 2774 2775 /** 2776 * pci_back_from_sleep - turn PCI device on during system-wide transition 2777 * into working state 2778 * @dev: Device to handle. 2779 * 2780 * Disable device's system wake-up capability and put it into D0. 2781 */ 2782 int pci_back_from_sleep(struct pci_dev *dev) 2783 { 2784 int ret = pci_set_power_state(dev, PCI_D0); 2785 2786 if (ret) 2787 return ret; 2788 2789 pci_enable_wake(dev, PCI_D0, false); 2790 return 0; 2791 } 2792 EXPORT_SYMBOL(pci_back_from_sleep); 2793 2794 /** 2795 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend. 2796 * @dev: PCI device being suspended. 2797 * 2798 * Prepare @dev to generate wake-up events at run time and put it into a low 2799 * power state. 2800 */ 2801 int pci_finish_runtime_suspend(struct pci_dev *dev) 2802 { 2803 pci_power_t target_state; 2804 int error; 2805 2806 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev)); 2807 if (target_state == PCI_POWER_ERROR) 2808 return -EIO; 2809 2810 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev)); 2811 2812 error = pci_set_power_state(dev, target_state); 2813 2814 if (error) 2815 pci_enable_wake(dev, target_state, false); 2816 2817 return error; 2818 } 2819 2820 /** 2821 * pci_dev_run_wake - Check if device can generate run-time wake-up events. 2822 * @dev: Device to check. 2823 * 2824 * Return true if the device itself is capable of generating wake-up events 2825 * (through the platform or using the native PCIe PME) or if the device supports 2826 * PME and one of its upstream bridges can generate wake-up events. 2827 */ 2828 bool pci_dev_run_wake(struct pci_dev *dev) 2829 { 2830 struct pci_bus *bus = dev->bus; 2831 2832 if (!dev->pme_support) 2833 return false; 2834 2835 /* PME-capable in principle, but not from the target power state */ 2836 if (!pci_pme_capable(dev, pci_target_state(dev, true))) 2837 return false; 2838 2839 if (device_can_wakeup(&dev->dev)) 2840 return true; 2841 2842 while (bus->parent) { 2843 struct pci_dev *bridge = bus->self; 2844 2845 if (device_can_wakeup(&bridge->dev)) 2846 return true; 2847 2848 bus = bus->parent; 2849 } 2850 2851 /* We have reached the root bus. */ 2852 if (bus->bridge) 2853 return device_can_wakeup(bus->bridge); 2854 2855 return false; 2856 } 2857 EXPORT_SYMBOL_GPL(pci_dev_run_wake); 2858 2859 /** 2860 * pci_dev_need_resume - Check if it is necessary to resume the device. 2861 * @pci_dev: Device to check. 2862 * 2863 * Return 'true' if the device is not runtime-suspended or it has to be 2864 * reconfigured due to wakeup settings difference between system and runtime 2865 * suspend, or the current power state of it is not suitable for the upcoming 2866 * (system-wide) transition. 2867 */ 2868 bool pci_dev_need_resume(struct pci_dev *pci_dev) 2869 { 2870 struct device *dev = &pci_dev->dev; 2871 pci_power_t target_state; 2872 2873 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev)) 2874 return true; 2875 2876 target_state = pci_target_state(pci_dev, device_may_wakeup(dev)); 2877 2878 /* 2879 * If the earlier platform check has not triggered, D3cold is just power 2880 * removal on top of D3hot, so no need to resume the device in that 2881 * case. 2882 */ 2883 return target_state != pci_dev->current_state && 2884 target_state != PCI_D3cold && 2885 pci_dev->current_state != PCI_D3hot; 2886 } 2887 2888 /** 2889 * pci_dev_adjust_pme - Adjust PME setting for a suspended device. 2890 * @pci_dev: Device to check. 2891 * 2892 * If the device is suspended and it is not configured for system wakeup, 2893 * disable PME for it to prevent it from waking up the system unnecessarily. 2894 * 2895 * Note that if the device's power state is D3cold and the platform check in 2896 * pci_dev_need_resume() has not triggered, the device's configuration need not 2897 * be changed. 2898 */ 2899 void pci_dev_adjust_pme(struct pci_dev *pci_dev) 2900 { 2901 struct device *dev = &pci_dev->dev; 2902 2903 spin_lock_irq(&dev->power.lock); 2904 2905 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) && 2906 pci_dev->current_state < PCI_D3cold) 2907 __pci_pme_active(pci_dev, false); 2908 2909 spin_unlock_irq(&dev->power.lock); 2910 } 2911 2912 /** 2913 * pci_dev_complete_resume - Finalize resume from system sleep for a device. 2914 * @pci_dev: Device to handle. 2915 * 2916 * If the device is runtime suspended and wakeup-capable, enable PME for it as 2917 * it might have been disabled during the prepare phase of system suspend if 2918 * the device was not configured for system wakeup. 2919 */ 2920 void pci_dev_complete_resume(struct pci_dev *pci_dev) 2921 { 2922 struct device *dev = &pci_dev->dev; 2923 2924 if (!pci_dev_run_wake(pci_dev)) 2925 return; 2926 2927 spin_lock_irq(&dev->power.lock); 2928 2929 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold) 2930 __pci_pme_active(pci_dev, true); 2931 2932 spin_unlock_irq(&dev->power.lock); 2933 } 2934 2935 /** 2936 * pci_choose_state - Choose the power state of a PCI device. 2937 * @dev: Target PCI device. 2938 * @state: Target state for the whole system. 2939 * 2940 * Returns PCI power state suitable for @dev and @state. 2941 */ 2942 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state) 2943 { 2944 if (state.event == PM_EVENT_ON) 2945 return PCI_D0; 2946 2947 return pci_target_state(dev, false); 2948 } 2949 EXPORT_SYMBOL(pci_choose_state); 2950 2951 void pci_config_pm_runtime_get(struct pci_dev *pdev) 2952 { 2953 struct device *dev = &pdev->dev; 2954 struct device *parent = dev->parent; 2955 2956 if (parent) 2957 pm_runtime_get_sync(parent); 2958 pm_runtime_get_noresume(dev); 2959 /* 2960 * pdev->current_state is set to PCI_D3cold during suspending, 2961 * so wait until suspending completes 2962 */ 2963 pm_runtime_barrier(dev); 2964 /* 2965 * Only need to resume devices in D3cold, because config 2966 * registers are still accessible for devices suspended but 2967 * not in D3cold. 2968 */ 2969 if (pdev->current_state == PCI_D3cold) 2970 pm_runtime_resume(dev); 2971 } 2972 2973 void pci_config_pm_runtime_put(struct pci_dev *pdev) 2974 { 2975 struct device *dev = &pdev->dev; 2976 struct device *parent = dev->parent; 2977 2978 pm_runtime_put(dev); 2979 if (parent) 2980 pm_runtime_put_sync(parent); 2981 } 2982 2983 static const struct dmi_system_id bridge_d3_blacklist[] = { 2984 #ifdef CONFIG_X86 2985 { 2986 /* 2987 * Gigabyte X299 root port is not marked as hotplug capable 2988 * which allows Linux to power manage it. However, this 2989 * confuses the BIOS SMI handler so don't power manage root 2990 * ports on that system. 2991 */ 2992 .ident = "X299 DESIGNARE EX-CF", 2993 .matches = { 2994 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."), 2995 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"), 2996 }, 2997 }, 2998 { 2999 /* 3000 * Downstream device is not accessible after putting a root port 3001 * into D3cold and back into D0 on Elo Continental Z2 board 3002 */ 3003 .ident = "Elo Continental Z2", 3004 .matches = { 3005 DMI_MATCH(DMI_BOARD_VENDOR, "Elo Touch Solutions"), 3006 DMI_MATCH(DMI_BOARD_NAME, "Geminilake"), 3007 DMI_MATCH(DMI_BOARD_VERSION, "Continental Z2"), 3008 }, 3009 }, 3010 #endif 3011 { } 3012 }; 3013 3014 /** 3015 * pci_bridge_d3_possible - Is it possible to put the bridge into D3 3016 * @bridge: Bridge to check 3017 * 3018 * This function checks if it is possible to move the bridge to D3. 3019 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt. 3020 */ 3021 bool pci_bridge_d3_possible(struct pci_dev *bridge) 3022 { 3023 if (!pci_is_pcie(bridge)) 3024 return false; 3025 3026 switch (pci_pcie_type(bridge)) { 3027 case PCI_EXP_TYPE_ROOT_PORT: 3028 case PCI_EXP_TYPE_UPSTREAM: 3029 case PCI_EXP_TYPE_DOWNSTREAM: 3030 if (pci_bridge_d3_disable) 3031 return false; 3032 3033 /* 3034 * Hotplug ports handled by firmware in System Management Mode 3035 * may not be put into D3 by the OS (Thunderbolt on non-Macs). 3036 */ 3037 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge)) 3038 return false; 3039 3040 if (pci_bridge_d3_force) 3041 return true; 3042 3043 /* Even the oldest 2010 Thunderbolt controller supports D3. */ 3044 if (bridge->is_thunderbolt) 3045 return true; 3046 3047 /* Platform might know better if the bridge supports D3 */ 3048 if (platform_pci_bridge_d3(bridge)) 3049 return true; 3050 3051 /* 3052 * Hotplug ports handled natively by the OS were not validated 3053 * by vendors for runtime D3 at least until 2018 because there 3054 * was no OS support. 3055 */ 3056 if (bridge->is_hotplug_bridge) 3057 return false; 3058 3059 if (dmi_check_system(bridge_d3_blacklist)) 3060 return false; 3061 3062 /* 3063 * It should be safe to put PCIe ports from 2015 or newer 3064 * to D3. 3065 */ 3066 if (dmi_get_bios_year() >= 2015) 3067 return true; 3068 break; 3069 } 3070 3071 return false; 3072 } 3073 3074 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data) 3075 { 3076 bool *d3cold_ok = data; 3077 3078 if (/* The device needs to be allowed to go D3cold ... */ 3079 dev->no_d3cold || !dev->d3cold_allowed || 3080 3081 /* ... and if it is wakeup capable to do so from D3cold. */ 3082 (device_may_wakeup(&dev->dev) && 3083 !pci_pme_capable(dev, PCI_D3cold)) || 3084 3085 /* If it is a bridge it must be allowed to go to D3. */ 3086 !pci_power_manageable(dev)) 3087 3088 *d3cold_ok = false; 3089 3090 return !*d3cold_ok; 3091 } 3092 3093 /* 3094 * pci_bridge_d3_update - Update bridge D3 capabilities 3095 * @dev: PCI device which is changed 3096 * 3097 * Update upstream bridge PM capabilities accordingly depending on if the 3098 * device PM configuration was changed or the device is being removed. The 3099 * change is also propagated upstream. 3100 */ 3101 void pci_bridge_d3_update(struct pci_dev *dev) 3102 { 3103 bool remove = !device_is_registered(&dev->dev); 3104 struct pci_dev *bridge; 3105 bool d3cold_ok = true; 3106 3107 bridge = pci_upstream_bridge(dev); 3108 if (!bridge || !pci_bridge_d3_possible(bridge)) 3109 return; 3110 3111 /* 3112 * If D3 is currently allowed for the bridge, removing one of its 3113 * children won't change that. 3114 */ 3115 if (remove && bridge->bridge_d3) 3116 return; 3117 3118 /* 3119 * If D3 is currently allowed for the bridge and a child is added or 3120 * changed, disallowance of D3 can only be caused by that child, so 3121 * we only need to check that single device, not any of its siblings. 3122 * 3123 * If D3 is currently not allowed for the bridge, checking the device 3124 * first may allow us to skip checking its siblings. 3125 */ 3126 if (!remove) 3127 pci_dev_check_d3cold(dev, &d3cold_ok); 3128 3129 /* 3130 * If D3 is currently not allowed for the bridge, this may be caused 3131 * either by the device being changed/removed or any of its siblings, 3132 * so we need to go through all children to find out if one of them 3133 * continues to block D3. 3134 */ 3135 if (d3cold_ok && !bridge->bridge_d3) 3136 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold, 3137 &d3cold_ok); 3138 3139 if (bridge->bridge_d3 != d3cold_ok) { 3140 bridge->bridge_d3 = d3cold_ok; 3141 /* Propagate change to upstream bridges */ 3142 pci_bridge_d3_update(bridge); 3143 } 3144 } 3145 3146 /** 3147 * pci_d3cold_enable - Enable D3cold for device 3148 * @dev: PCI device to handle 3149 * 3150 * This function can be used in drivers to enable D3cold from the device 3151 * they handle. It also updates upstream PCI bridge PM capabilities 3152 * accordingly. 3153 */ 3154 void pci_d3cold_enable(struct pci_dev *dev) 3155 { 3156 if (dev->no_d3cold) { 3157 dev->no_d3cold = false; 3158 pci_bridge_d3_update(dev); 3159 } 3160 } 3161 EXPORT_SYMBOL_GPL(pci_d3cold_enable); 3162 3163 /** 3164 * pci_d3cold_disable - Disable D3cold for device 3165 * @dev: PCI device to handle 3166 * 3167 * This function can be used in drivers to disable D3cold from the device 3168 * they handle. It also updates upstream PCI bridge PM capabilities 3169 * accordingly. 3170 */ 3171 void pci_d3cold_disable(struct pci_dev *dev) 3172 { 3173 if (!dev->no_d3cold) { 3174 dev->no_d3cold = true; 3175 pci_bridge_d3_update(dev); 3176 } 3177 } 3178 EXPORT_SYMBOL_GPL(pci_d3cold_disable); 3179 3180 /** 3181 * pci_pm_init - Initialize PM functions of given PCI device 3182 * @dev: PCI device to handle. 3183 */ 3184 void pci_pm_init(struct pci_dev *dev) 3185 { 3186 int pm; 3187 u16 status; 3188 u16 pmc; 3189 3190 pm_runtime_forbid(&dev->dev); 3191 pm_runtime_set_active(&dev->dev); 3192 pm_runtime_enable(&dev->dev); 3193 device_enable_async_suspend(&dev->dev); 3194 dev->wakeup_prepared = false; 3195 3196 dev->pm_cap = 0; 3197 dev->pme_support = 0; 3198 3199 /* find PCI PM capability in list */ 3200 pm = pci_find_capability(dev, PCI_CAP_ID_PM); 3201 if (!pm) 3202 return; 3203 /* Check device's ability to generate PME# */ 3204 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc); 3205 3206 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) { 3207 pci_err(dev, "unsupported PM cap regs version (%u)\n", 3208 pmc & PCI_PM_CAP_VER_MASK); 3209 return; 3210 } 3211 3212 dev->pm_cap = pm; 3213 dev->d3hot_delay = PCI_PM_D3HOT_WAIT; 3214 dev->d3cold_delay = PCI_PM_D3COLD_WAIT; 3215 dev->bridge_d3 = pci_bridge_d3_possible(dev); 3216 dev->d3cold_allowed = true; 3217 3218 dev->d1_support = false; 3219 dev->d2_support = false; 3220 if (!pci_no_d1d2(dev)) { 3221 if (pmc & PCI_PM_CAP_D1) 3222 dev->d1_support = true; 3223 if (pmc & PCI_PM_CAP_D2) 3224 dev->d2_support = true; 3225 3226 if (dev->d1_support || dev->d2_support) 3227 pci_info(dev, "supports%s%s\n", 3228 dev->d1_support ? " D1" : "", 3229 dev->d2_support ? " D2" : ""); 3230 } 3231 3232 pmc &= PCI_PM_CAP_PME_MASK; 3233 if (pmc) { 3234 pci_info(dev, "PME# supported from%s%s%s%s%s\n", 3235 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "", 3236 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "", 3237 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "", 3238 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "", 3239 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : ""); 3240 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT; 3241 dev->pme_poll = true; 3242 /* 3243 * Make device's PM flags reflect the wake-up capability, but 3244 * let the user space enable it to wake up the system as needed. 3245 */ 3246 device_set_wakeup_capable(&dev->dev, true); 3247 /* Disable the PME# generation functionality */ 3248 pci_pme_active(dev, false); 3249 } 3250 3251 pci_read_config_word(dev, PCI_STATUS, &status); 3252 if (status & PCI_STATUS_IMM_READY) 3253 dev->imm_ready = 1; 3254 } 3255 3256 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop) 3257 { 3258 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI; 3259 3260 switch (prop) { 3261 case PCI_EA_P_MEM: 3262 case PCI_EA_P_VF_MEM: 3263 flags |= IORESOURCE_MEM; 3264 break; 3265 case PCI_EA_P_MEM_PREFETCH: 3266 case PCI_EA_P_VF_MEM_PREFETCH: 3267 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH; 3268 break; 3269 case PCI_EA_P_IO: 3270 flags |= IORESOURCE_IO; 3271 break; 3272 default: 3273 return 0; 3274 } 3275 3276 return flags; 3277 } 3278 3279 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei, 3280 u8 prop) 3281 { 3282 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO) 3283 return &dev->resource[bei]; 3284 #ifdef CONFIG_PCI_IOV 3285 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 && 3286 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH)) 3287 return &dev->resource[PCI_IOV_RESOURCES + 3288 bei - PCI_EA_BEI_VF_BAR0]; 3289 #endif 3290 else if (bei == PCI_EA_BEI_ROM) 3291 return &dev->resource[PCI_ROM_RESOURCE]; 3292 else 3293 return NULL; 3294 } 3295 3296 /* Read an Enhanced Allocation (EA) entry */ 3297 static int pci_ea_read(struct pci_dev *dev, int offset) 3298 { 3299 struct resource *res; 3300 int ent_size, ent_offset = offset; 3301 resource_size_t start, end; 3302 unsigned long flags; 3303 u32 dw0, bei, base, max_offset; 3304 u8 prop; 3305 bool support_64 = (sizeof(resource_size_t) >= 8); 3306 3307 pci_read_config_dword(dev, ent_offset, &dw0); 3308 ent_offset += 4; 3309 3310 /* Entry size field indicates DWORDs after 1st */ 3311 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2; 3312 3313 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */ 3314 goto out; 3315 3316 bei = (dw0 & PCI_EA_BEI) >> 4; 3317 prop = (dw0 & PCI_EA_PP) >> 8; 3318 3319 /* 3320 * If the Property is in the reserved range, try the Secondary 3321 * Property instead. 3322 */ 3323 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED) 3324 prop = (dw0 & PCI_EA_SP) >> 16; 3325 if (prop > PCI_EA_P_BRIDGE_IO) 3326 goto out; 3327 3328 res = pci_ea_get_resource(dev, bei, prop); 3329 if (!res) { 3330 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei); 3331 goto out; 3332 } 3333 3334 flags = pci_ea_flags(dev, prop); 3335 if (!flags) { 3336 pci_err(dev, "Unsupported EA properties: %#x\n", prop); 3337 goto out; 3338 } 3339 3340 /* Read Base */ 3341 pci_read_config_dword(dev, ent_offset, &base); 3342 start = (base & PCI_EA_FIELD_MASK); 3343 ent_offset += 4; 3344 3345 /* Read MaxOffset */ 3346 pci_read_config_dword(dev, ent_offset, &max_offset); 3347 ent_offset += 4; 3348 3349 /* Read Base MSBs (if 64-bit entry) */ 3350 if (base & PCI_EA_IS_64) { 3351 u32 base_upper; 3352 3353 pci_read_config_dword(dev, ent_offset, &base_upper); 3354 ent_offset += 4; 3355 3356 flags |= IORESOURCE_MEM_64; 3357 3358 /* entry starts above 32-bit boundary, can't use */ 3359 if (!support_64 && base_upper) 3360 goto out; 3361 3362 if (support_64) 3363 start |= ((u64)base_upper << 32); 3364 } 3365 3366 end = start + (max_offset | 0x03); 3367 3368 /* Read MaxOffset MSBs (if 64-bit entry) */ 3369 if (max_offset & PCI_EA_IS_64) { 3370 u32 max_offset_upper; 3371 3372 pci_read_config_dword(dev, ent_offset, &max_offset_upper); 3373 ent_offset += 4; 3374 3375 flags |= IORESOURCE_MEM_64; 3376 3377 /* entry too big, can't use */ 3378 if (!support_64 && max_offset_upper) 3379 goto out; 3380 3381 if (support_64) 3382 end += ((u64)max_offset_upper << 32); 3383 } 3384 3385 if (end < start) { 3386 pci_err(dev, "EA Entry crosses address boundary\n"); 3387 goto out; 3388 } 3389 3390 if (ent_size != ent_offset - offset) { 3391 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n", 3392 ent_size, ent_offset - offset); 3393 goto out; 3394 } 3395 3396 res->name = pci_name(dev); 3397 res->start = start; 3398 res->end = end; 3399 res->flags = flags; 3400 3401 if (bei <= PCI_EA_BEI_BAR5) 3402 pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 3403 bei, res, prop); 3404 else if (bei == PCI_EA_BEI_ROM) 3405 pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n", 3406 res, prop); 3407 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5) 3408 pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 3409 bei - PCI_EA_BEI_VF_BAR0, res, prop); 3410 else 3411 pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n", 3412 bei, res, prop); 3413 3414 out: 3415 return offset + ent_size; 3416 } 3417 3418 /* Enhanced Allocation Initialization */ 3419 void pci_ea_init(struct pci_dev *dev) 3420 { 3421 int ea; 3422 u8 num_ent; 3423 int offset; 3424 int i; 3425 3426 /* find PCI EA capability in list */ 3427 ea = pci_find_capability(dev, PCI_CAP_ID_EA); 3428 if (!ea) 3429 return; 3430 3431 /* determine the number of entries */ 3432 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT, 3433 &num_ent); 3434 num_ent &= PCI_EA_NUM_ENT_MASK; 3435 3436 offset = ea + PCI_EA_FIRST_ENT; 3437 3438 /* Skip DWORD 2 for type 1 functions */ 3439 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) 3440 offset += 4; 3441 3442 /* parse each EA entry */ 3443 for (i = 0; i < num_ent; ++i) 3444 offset = pci_ea_read(dev, offset); 3445 } 3446 3447 static void pci_add_saved_cap(struct pci_dev *pci_dev, 3448 struct pci_cap_saved_state *new_cap) 3449 { 3450 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space); 3451 } 3452 3453 /** 3454 * _pci_add_cap_save_buffer - allocate buffer for saving given 3455 * capability registers 3456 * @dev: the PCI device 3457 * @cap: the capability to allocate the buffer for 3458 * @extended: Standard or Extended capability ID 3459 * @size: requested size of the buffer 3460 */ 3461 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap, 3462 bool extended, unsigned int size) 3463 { 3464 int pos; 3465 struct pci_cap_saved_state *save_state; 3466 3467 if (extended) 3468 pos = pci_find_ext_capability(dev, cap); 3469 else 3470 pos = pci_find_capability(dev, cap); 3471 3472 if (!pos) 3473 return 0; 3474 3475 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL); 3476 if (!save_state) 3477 return -ENOMEM; 3478 3479 save_state->cap.cap_nr = cap; 3480 save_state->cap.cap_extended = extended; 3481 save_state->cap.size = size; 3482 pci_add_saved_cap(dev, save_state); 3483 3484 return 0; 3485 } 3486 3487 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size) 3488 { 3489 return _pci_add_cap_save_buffer(dev, cap, false, size); 3490 } 3491 3492 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size) 3493 { 3494 return _pci_add_cap_save_buffer(dev, cap, true, size); 3495 } 3496 3497 /** 3498 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities 3499 * @dev: the PCI device 3500 */ 3501 void pci_allocate_cap_save_buffers(struct pci_dev *dev) 3502 { 3503 int error; 3504 3505 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP, 3506 PCI_EXP_SAVE_REGS * sizeof(u16)); 3507 if (error) 3508 pci_err(dev, "unable to preallocate PCI Express save buffer\n"); 3509 3510 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16)); 3511 if (error) 3512 pci_err(dev, "unable to preallocate PCI-X save buffer\n"); 3513 3514 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR, 3515 2 * sizeof(u16)); 3516 if (error) 3517 pci_err(dev, "unable to allocate suspend buffer for LTR\n"); 3518 3519 pci_allocate_vc_save_buffers(dev); 3520 } 3521 3522 void pci_free_cap_save_buffers(struct pci_dev *dev) 3523 { 3524 struct pci_cap_saved_state *tmp; 3525 struct hlist_node *n; 3526 3527 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next) 3528 kfree(tmp); 3529 } 3530 3531 /** 3532 * pci_configure_ari - enable or disable ARI forwarding 3533 * @dev: the PCI device 3534 * 3535 * If @dev and its upstream bridge both support ARI, enable ARI in the 3536 * bridge. Otherwise, disable ARI in the bridge. 3537 */ 3538 void pci_configure_ari(struct pci_dev *dev) 3539 { 3540 u32 cap; 3541 struct pci_dev *bridge; 3542 3543 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn) 3544 return; 3545 3546 bridge = dev->bus->self; 3547 if (!bridge) 3548 return; 3549 3550 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3551 if (!(cap & PCI_EXP_DEVCAP2_ARI)) 3552 return; 3553 3554 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) { 3555 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, 3556 PCI_EXP_DEVCTL2_ARI); 3557 bridge->ari_enabled = 1; 3558 } else { 3559 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2, 3560 PCI_EXP_DEVCTL2_ARI); 3561 bridge->ari_enabled = 0; 3562 } 3563 } 3564 3565 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags) 3566 { 3567 int pos; 3568 u16 cap, ctrl; 3569 3570 pos = pdev->acs_cap; 3571 if (!pos) 3572 return false; 3573 3574 /* 3575 * Except for egress control, capabilities are either required 3576 * or only required if controllable. Features missing from the 3577 * capability field can therefore be assumed as hard-wired enabled. 3578 */ 3579 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap); 3580 acs_flags &= (cap | PCI_ACS_EC); 3581 3582 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl); 3583 return (ctrl & acs_flags) == acs_flags; 3584 } 3585 3586 /** 3587 * pci_acs_enabled - test ACS against required flags for a given device 3588 * @pdev: device to test 3589 * @acs_flags: required PCI ACS flags 3590 * 3591 * Return true if the device supports the provided flags. Automatically 3592 * filters out flags that are not implemented on multifunction devices. 3593 * 3594 * Note that this interface checks the effective ACS capabilities of the 3595 * device rather than the actual capabilities. For instance, most single 3596 * function endpoints are not required to support ACS because they have no 3597 * opportunity for peer-to-peer access. We therefore return 'true' 3598 * regardless of whether the device exposes an ACS capability. This makes 3599 * it much easier for callers of this function to ignore the actual type 3600 * or topology of the device when testing ACS support. 3601 */ 3602 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags) 3603 { 3604 int ret; 3605 3606 ret = pci_dev_specific_acs_enabled(pdev, acs_flags); 3607 if (ret >= 0) 3608 return ret > 0; 3609 3610 /* 3611 * Conventional PCI and PCI-X devices never support ACS, either 3612 * effectively or actually. The shared bus topology implies that 3613 * any device on the bus can receive or snoop DMA. 3614 */ 3615 if (!pci_is_pcie(pdev)) 3616 return false; 3617 3618 switch (pci_pcie_type(pdev)) { 3619 /* 3620 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec, 3621 * but since their primary interface is PCI/X, we conservatively 3622 * handle them as we would a non-PCIe device. 3623 */ 3624 case PCI_EXP_TYPE_PCIE_BRIDGE: 3625 /* 3626 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never 3627 * applicable... must never implement an ACS Extended Capability...". 3628 * This seems arbitrary, but we take a conservative interpretation 3629 * of this statement. 3630 */ 3631 case PCI_EXP_TYPE_PCI_BRIDGE: 3632 case PCI_EXP_TYPE_RC_EC: 3633 return false; 3634 /* 3635 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should 3636 * implement ACS in order to indicate their peer-to-peer capabilities, 3637 * regardless of whether they are single- or multi-function devices. 3638 */ 3639 case PCI_EXP_TYPE_DOWNSTREAM: 3640 case PCI_EXP_TYPE_ROOT_PORT: 3641 return pci_acs_flags_enabled(pdev, acs_flags); 3642 /* 3643 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be 3644 * implemented by the remaining PCIe types to indicate peer-to-peer 3645 * capabilities, but only when they are part of a multifunction 3646 * device. The footnote for section 6.12 indicates the specific 3647 * PCIe types included here. 3648 */ 3649 case PCI_EXP_TYPE_ENDPOINT: 3650 case PCI_EXP_TYPE_UPSTREAM: 3651 case PCI_EXP_TYPE_LEG_END: 3652 case PCI_EXP_TYPE_RC_END: 3653 if (!pdev->multifunction) 3654 break; 3655 3656 return pci_acs_flags_enabled(pdev, acs_flags); 3657 } 3658 3659 /* 3660 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable 3661 * to single function devices with the exception of downstream ports. 3662 */ 3663 return true; 3664 } 3665 3666 /** 3667 * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy 3668 * @start: starting downstream device 3669 * @end: ending upstream device or NULL to search to the root bus 3670 * @acs_flags: required flags 3671 * 3672 * Walk up a device tree from start to end testing PCI ACS support. If 3673 * any step along the way does not support the required flags, return false. 3674 */ 3675 bool pci_acs_path_enabled(struct pci_dev *start, 3676 struct pci_dev *end, u16 acs_flags) 3677 { 3678 struct pci_dev *pdev, *parent = start; 3679 3680 do { 3681 pdev = parent; 3682 3683 if (!pci_acs_enabled(pdev, acs_flags)) 3684 return false; 3685 3686 if (pci_is_root_bus(pdev->bus)) 3687 return (end == NULL); 3688 3689 parent = pdev->bus->self; 3690 } while (pdev != end); 3691 3692 return true; 3693 } 3694 3695 /** 3696 * pci_acs_init - Initialize ACS if hardware supports it 3697 * @dev: the PCI device 3698 */ 3699 void pci_acs_init(struct pci_dev *dev) 3700 { 3701 dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS); 3702 3703 /* 3704 * Attempt to enable ACS regardless of capability because some Root 3705 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have 3706 * the standard ACS capability but still support ACS via those 3707 * quirks. 3708 */ 3709 pci_enable_acs(dev); 3710 } 3711 3712 /** 3713 * pci_rebar_find_pos - find position of resize ctrl reg for BAR 3714 * @pdev: PCI device 3715 * @bar: BAR to find 3716 * 3717 * Helper to find the position of the ctrl register for a BAR. 3718 * Returns -ENOTSUPP if resizable BARs are not supported at all. 3719 * Returns -ENOENT if no ctrl register for the BAR could be found. 3720 */ 3721 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar) 3722 { 3723 unsigned int pos, nbars, i; 3724 u32 ctrl; 3725 3726 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 3727 if (!pos) 3728 return -ENOTSUPP; 3729 3730 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3731 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >> 3732 PCI_REBAR_CTRL_NBAR_SHIFT; 3733 3734 for (i = 0; i < nbars; i++, pos += 8) { 3735 int bar_idx; 3736 3737 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3738 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX; 3739 if (bar_idx == bar) 3740 return pos; 3741 } 3742 3743 return -ENOENT; 3744 } 3745 3746 /** 3747 * pci_rebar_get_possible_sizes - get possible sizes for BAR 3748 * @pdev: PCI device 3749 * @bar: BAR to query 3750 * 3751 * Get the possible sizes of a resizable BAR as bitmask defined in the spec 3752 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable. 3753 */ 3754 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar) 3755 { 3756 int pos; 3757 u32 cap; 3758 3759 pos = pci_rebar_find_pos(pdev, bar); 3760 if (pos < 0) 3761 return 0; 3762 3763 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap); 3764 cap = FIELD_GET(PCI_REBAR_CAP_SIZES, cap); 3765 3766 /* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */ 3767 if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f && 3768 bar == 0 && cap == 0x700) 3769 return 0x3f00; 3770 3771 return cap; 3772 } 3773 EXPORT_SYMBOL(pci_rebar_get_possible_sizes); 3774 3775 /** 3776 * pci_rebar_get_current_size - get the current size of a BAR 3777 * @pdev: PCI device 3778 * @bar: BAR to set size to 3779 * 3780 * Read the size of a BAR from the resizable BAR config. 3781 * Returns size if found or negative error code. 3782 */ 3783 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar) 3784 { 3785 int pos; 3786 u32 ctrl; 3787 3788 pos = pci_rebar_find_pos(pdev, bar); 3789 if (pos < 0) 3790 return pos; 3791 3792 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3793 return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT; 3794 } 3795 3796 /** 3797 * pci_rebar_set_size - set a new size for a BAR 3798 * @pdev: PCI device 3799 * @bar: BAR to set size to 3800 * @size: new size as defined in the spec (0=1MB, 19=512GB) 3801 * 3802 * Set the new size of a BAR as defined in the spec. 3803 * Returns zero if resizing was successful, error code otherwise. 3804 */ 3805 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size) 3806 { 3807 int pos; 3808 u32 ctrl; 3809 3810 pos = pci_rebar_find_pos(pdev, bar); 3811 if (pos < 0) 3812 return pos; 3813 3814 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3815 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 3816 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT; 3817 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 3818 return 0; 3819 } 3820 3821 /** 3822 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port 3823 * @dev: the PCI device 3824 * @cap_mask: mask of desired AtomicOp sizes, including one or more of: 3825 * PCI_EXP_DEVCAP2_ATOMIC_COMP32 3826 * PCI_EXP_DEVCAP2_ATOMIC_COMP64 3827 * PCI_EXP_DEVCAP2_ATOMIC_COMP128 3828 * 3829 * Return 0 if all upstream bridges support AtomicOp routing, egress 3830 * blocking is disabled on all upstream ports, and the root port supports 3831 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit 3832 * AtomicOp completion), or negative otherwise. 3833 */ 3834 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask) 3835 { 3836 struct pci_bus *bus = dev->bus; 3837 struct pci_dev *bridge; 3838 u32 cap, ctl2; 3839 3840 /* 3841 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit 3842 * in Device Control 2 is reserved in VFs and the PF value applies 3843 * to all associated VFs. 3844 */ 3845 if (dev->is_virtfn) 3846 return -EINVAL; 3847 3848 if (!pci_is_pcie(dev)) 3849 return -EINVAL; 3850 3851 /* 3852 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be 3853 * AtomicOp requesters. For now, we only support endpoints as 3854 * requesters and root ports as completers. No endpoints as 3855 * completers, and no peer-to-peer. 3856 */ 3857 3858 switch (pci_pcie_type(dev)) { 3859 case PCI_EXP_TYPE_ENDPOINT: 3860 case PCI_EXP_TYPE_LEG_END: 3861 case PCI_EXP_TYPE_RC_END: 3862 break; 3863 default: 3864 return -EINVAL; 3865 } 3866 3867 while (bus->parent) { 3868 bridge = bus->self; 3869 3870 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3871 3872 switch (pci_pcie_type(bridge)) { 3873 /* Ensure switch ports support AtomicOp routing */ 3874 case PCI_EXP_TYPE_UPSTREAM: 3875 case PCI_EXP_TYPE_DOWNSTREAM: 3876 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE)) 3877 return -EINVAL; 3878 break; 3879 3880 /* Ensure root port supports all the sizes we care about */ 3881 case PCI_EXP_TYPE_ROOT_PORT: 3882 if ((cap & cap_mask) != cap_mask) 3883 return -EINVAL; 3884 break; 3885 } 3886 3887 /* Ensure upstream ports don't block AtomicOps on egress */ 3888 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) { 3889 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, 3890 &ctl2); 3891 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK) 3892 return -EINVAL; 3893 } 3894 3895 bus = bus->parent; 3896 } 3897 3898 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2, 3899 PCI_EXP_DEVCTL2_ATOMIC_REQ); 3900 return 0; 3901 } 3902 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root); 3903 3904 /** 3905 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge 3906 * @dev: the PCI device 3907 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD) 3908 * 3909 * Perform INTx swizzling for a device behind one level of bridge. This is 3910 * required by section 9.1 of the PCI-to-PCI bridge specification for devices 3911 * behind bridges on add-in cards. For devices with ARI enabled, the slot 3912 * number is always 0 (see the Implementation Note in section 2.2.8.1 of 3913 * the PCI Express Base Specification, Revision 2.1) 3914 */ 3915 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin) 3916 { 3917 int slot; 3918 3919 if (pci_ari_enabled(dev->bus)) 3920 slot = 0; 3921 else 3922 slot = PCI_SLOT(dev->devfn); 3923 3924 return (((pin - 1) + slot) % 4) + 1; 3925 } 3926 3927 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge) 3928 { 3929 u8 pin; 3930 3931 pin = dev->pin; 3932 if (!pin) 3933 return -1; 3934 3935 while (!pci_is_root_bus(dev->bus)) { 3936 pin = pci_swizzle_interrupt_pin(dev, pin); 3937 dev = dev->bus->self; 3938 } 3939 *bridge = dev; 3940 return pin; 3941 } 3942 3943 /** 3944 * pci_common_swizzle - swizzle INTx all the way to root bridge 3945 * @dev: the PCI device 3946 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD) 3947 * 3948 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI 3949 * bridges all the way up to a PCI root bus. 3950 */ 3951 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp) 3952 { 3953 u8 pin = *pinp; 3954 3955 while (!pci_is_root_bus(dev->bus)) { 3956 pin = pci_swizzle_interrupt_pin(dev, pin); 3957 dev = dev->bus->self; 3958 } 3959 *pinp = pin; 3960 return PCI_SLOT(dev->devfn); 3961 } 3962 EXPORT_SYMBOL_GPL(pci_common_swizzle); 3963 3964 /** 3965 * pci_release_region - Release a PCI bar 3966 * @pdev: PCI device whose resources were previously reserved by 3967 * pci_request_region() 3968 * @bar: BAR to release 3969 * 3970 * Releases the PCI I/O and memory resources previously reserved by a 3971 * successful call to pci_request_region(). Call this function only 3972 * after all use of the PCI regions has ceased. 3973 */ 3974 void pci_release_region(struct pci_dev *pdev, int bar) 3975 { 3976 struct pci_devres *dr; 3977 3978 if (pci_resource_len(pdev, bar) == 0) 3979 return; 3980 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) 3981 release_region(pci_resource_start(pdev, bar), 3982 pci_resource_len(pdev, bar)); 3983 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) 3984 release_mem_region(pci_resource_start(pdev, bar), 3985 pci_resource_len(pdev, bar)); 3986 3987 dr = find_pci_dr(pdev); 3988 if (dr) 3989 dr->region_mask &= ~(1 << bar); 3990 } 3991 EXPORT_SYMBOL(pci_release_region); 3992 3993 /** 3994 * __pci_request_region - Reserved PCI I/O and memory resource 3995 * @pdev: PCI device whose resources are to be reserved 3996 * @bar: BAR to be reserved 3997 * @res_name: Name to be associated with resource. 3998 * @exclusive: whether the region access is exclusive or not 3999 * 4000 * Mark the PCI region associated with PCI device @pdev BAR @bar as 4001 * being reserved by owner @res_name. Do not access any 4002 * address inside the PCI regions unless this call returns 4003 * successfully. 4004 * 4005 * If @exclusive is set, then the region is marked so that userspace 4006 * is explicitly not allowed to map the resource via /dev/mem or 4007 * sysfs MMIO access. 4008 * 4009 * Returns 0 on success, or %EBUSY on error. A warning 4010 * message is also printed on failure. 4011 */ 4012 static int __pci_request_region(struct pci_dev *pdev, int bar, 4013 const char *res_name, int exclusive) 4014 { 4015 struct pci_devres *dr; 4016 4017 if (pci_resource_len(pdev, bar) == 0) 4018 return 0; 4019 4020 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) { 4021 if (!request_region(pci_resource_start(pdev, bar), 4022 pci_resource_len(pdev, bar), res_name)) 4023 goto err_out; 4024 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) { 4025 if (!__request_mem_region(pci_resource_start(pdev, bar), 4026 pci_resource_len(pdev, bar), res_name, 4027 exclusive)) 4028 goto err_out; 4029 } 4030 4031 dr = find_pci_dr(pdev); 4032 if (dr) 4033 dr->region_mask |= 1 << bar; 4034 4035 return 0; 4036 4037 err_out: 4038 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar, 4039 &pdev->resource[bar]); 4040 return -EBUSY; 4041 } 4042 4043 /** 4044 * pci_request_region - Reserve PCI I/O and memory resource 4045 * @pdev: PCI device whose resources are to be reserved 4046 * @bar: BAR to be reserved 4047 * @res_name: Name to be associated with resource 4048 * 4049 * Mark the PCI region associated with PCI device @pdev BAR @bar as 4050 * being reserved by owner @res_name. Do not access any 4051 * address inside the PCI regions unless this call returns 4052 * successfully. 4053 * 4054 * Returns 0 on success, or %EBUSY on error. A warning 4055 * message is also printed on failure. 4056 */ 4057 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name) 4058 { 4059 return __pci_request_region(pdev, bar, res_name, 0); 4060 } 4061 EXPORT_SYMBOL(pci_request_region); 4062 4063 /** 4064 * pci_release_selected_regions - Release selected PCI I/O and memory resources 4065 * @pdev: PCI device whose resources were previously reserved 4066 * @bars: Bitmask of BARs to be released 4067 * 4068 * Release selected PCI I/O and memory resources previously reserved. 4069 * Call this function only after all use of the PCI regions has ceased. 4070 */ 4071 void pci_release_selected_regions(struct pci_dev *pdev, int bars) 4072 { 4073 int i; 4074 4075 for (i = 0; i < PCI_STD_NUM_BARS; i++) 4076 if (bars & (1 << i)) 4077 pci_release_region(pdev, i); 4078 } 4079 EXPORT_SYMBOL(pci_release_selected_regions); 4080 4081 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars, 4082 const char *res_name, int excl) 4083 { 4084 int i; 4085 4086 for (i = 0; i < PCI_STD_NUM_BARS; i++) 4087 if (bars & (1 << i)) 4088 if (__pci_request_region(pdev, i, res_name, excl)) 4089 goto err_out; 4090 return 0; 4091 4092 err_out: 4093 while (--i >= 0) 4094 if (bars & (1 << i)) 4095 pci_release_region(pdev, i); 4096 4097 return -EBUSY; 4098 } 4099 4100 4101 /** 4102 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources 4103 * @pdev: PCI device whose resources are to be reserved 4104 * @bars: Bitmask of BARs to be requested 4105 * @res_name: Name to be associated with resource 4106 */ 4107 int pci_request_selected_regions(struct pci_dev *pdev, int bars, 4108 const char *res_name) 4109 { 4110 return __pci_request_selected_regions(pdev, bars, res_name, 0); 4111 } 4112 EXPORT_SYMBOL(pci_request_selected_regions); 4113 4114 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars, 4115 const char *res_name) 4116 { 4117 return __pci_request_selected_regions(pdev, bars, res_name, 4118 IORESOURCE_EXCLUSIVE); 4119 } 4120 EXPORT_SYMBOL(pci_request_selected_regions_exclusive); 4121 4122 /** 4123 * pci_release_regions - Release reserved PCI I/O and memory resources 4124 * @pdev: PCI device whose resources were previously reserved by 4125 * pci_request_regions() 4126 * 4127 * Releases all PCI I/O and memory resources previously reserved by a 4128 * successful call to pci_request_regions(). Call this function only 4129 * after all use of the PCI regions has ceased. 4130 */ 4131 4132 void pci_release_regions(struct pci_dev *pdev) 4133 { 4134 pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1); 4135 } 4136 EXPORT_SYMBOL(pci_release_regions); 4137 4138 /** 4139 * pci_request_regions - Reserve PCI I/O and memory resources 4140 * @pdev: PCI device whose resources are to be reserved 4141 * @res_name: Name to be associated with resource. 4142 * 4143 * Mark all PCI regions associated with PCI device @pdev as 4144 * being reserved by owner @res_name. Do not access any 4145 * address inside the PCI regions unless this call returns 4146 * successfully. 4147 * 4148 * Returns 0 on success, or %EBUSY on error. A warning 4149 * message is also printed on failure. 4150 */ 4151 int pci_request_regions(struct pci_dev *pdev, const char *res_name) 4152 { 4153 return pci_request_selected_regions(pdev, 4154 ((1 << PCI_STD_NUM_BARS) - 1), res_name); 4155 } 4156 EXPORT_SYMBOL(pci_request_regions); 4157 4158 /** 4159 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources 4160 * @pdev: PCI device whose resources are to be reserved 4161 * @res_name: Name to be associated with resource. 4162 * 4163 * Mark all PCI regions associated with PCI device @pdev as being reserved 4164 * by owner @res_name. Do not access any address inside the PCI regions 4165 * unless this call returns successfully. 4166 * 4167 * pci_request_regions_exclusive() will mark the region so that /dev/mem 4168 * and the sysfs MMIO access will not be allowed. 4169 * 4170 * Returns 0 on success, or %EBUSY on error. A warning message is also 4171 * printed on failure. 4172 */ 4173 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name) 4174 { 4175 return pci_request_selected_regions_exclusive(pdev, 4176 ((1 << PCI_STD_NUM_BARS) - 1), res_name); 4177 } 4178 EXPORT_SYMBOL(pci_request_regions_exclusive); 4179 4180 /* 4181 * Record the PCI IO range (expressed as CPU physical address + size). 4182 * Return a negative value if an error has occurred, zero otherwise 4183 */ 4184 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr, 4185 resource_size_t size) 4186 { 4187 int ret = 0; 4188 #ifdef PCI_IOBASE 4189 struct logic_pio_hwaddr *range; 4190 4191 if (!size || addr + size < addr) 4192 return -EINVAL; 4193 4194 range = kzalloc(sizeof(*range), GFP_ATOMIC); 4195 if (!range) 4196 return -ENOMEM; 4197 4198 range->fwnode = fwnode; 4199 range->size = size; 4200 range->hw_start = addr; 4201 range->flags = LOGIC_PIO_CPU_MMIO; 4202 4203 ret = logic_pio_register_range(range); 4204 if (ret) 4205 kfree(range); 4206 4207 /* Ignore duplicates due to deferred probing */ 4208 if (ret == -EEXIST) 4209 ret = 0; 4210 #endif 4211 4212 return ret; 4213 } 4214 4215 phys_addr_t pci_pio_to_address(unsigned long pio) 4216 { 4217 #ifdef PCI_IOBASE 4218 if (pio < MMIO_UPPER_LIMIT) 4219 return logic_pio_to_hwaddr(pio); 4220 #endif 4221 4222 return (phys_addr_t) OF_BAD_ADDR; 4223 } 4224 EXPORT_SYMBOL_GPL(pci_pio_to_address); 4225 4226 unsigned long __weak pci_address_to_pio(phys_addr_t address) 4227 { 4228 #ifdef PCI_IOBASE 4229 return logic_pio_trans_cpuaddr(address); 4230 #else 4231 if (address > IO_SPACE_LIMIT) 4232 return (unsigned long)-1; 4233 4234 return (unsigned long) address; 4235 #endif 4236 } 4237 4238 /** 4239 * pci_remap_iospace - Remap the memory mapped I/O space 4240 * @res: Resource describing the I/O space 4241 * @phys_addr: physical address of range to be mapped 4242 * 4243 * Remap the memory mapped I/O space described by the @res and the CPU 4244 * physical address @phys_addr into virtual address space. Only 4245 * architectures that have memory mapped IO functions defined (and the 4246 * PCI_IOBASE value defined) should call this function. 4247 */ 4248 #ifndef pci_remap_iospace 4249 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr) 4250 { 4251 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 4252 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 4253 4254 if (!(res->flags & IORESOURCE_IO)) 4255 return -EINVAL; 4256 4257 if (res->end > IO_SPACE_LIMIT) 4258 return -EINVAL; 4259 4260 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr, 4261 pgprot_device(PAGE_KERNEL)); 4262 #else 4263 /* 4264 * This architecture does not have memory mapped I/O space, 4265 * so this function should never be called 4266 */ 4267 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n"); 4268 return -ENODEV; 4269 #endif 4270 } 4271 EXPORT_SYMBOL(pci_remap_iospace); 4272 #endif 4273 4274 /** 4275 * pci_unmap_iospace - Unmap the memory mapped I/O space 4276 * @res: resource to be unmapped 4277 * 4278 * Unmap the CPU virtual address @res from virtual address space. Only 4279 * architectures that have memory mapped IO functions defined (and the 4280 * PCI_IOBASE value defined) should call this function. 4281 */ 4282 void pci_unmap_iospace(struct resource *res) 4283 { 4284 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 4285 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 4286 4287 vunmap_range(vaddr, vaddr + resource_size(res)); 4288 #endif 4289 } 4290 EXPORT_SYMBOL(pci_unmap_iospace); 4291 4292 static void devm_pci_unmap_iospace(struct device *dev, void *ptr) 4293 { 4294 struct resource **res = ptr; 4295 4296 pci_unmap_iospace(*res); 4297 } 4298 4299 /** 4300 * devm_pci_remap_iospace - Managed pci_remap_iospace() 4301 * @dev: Generic device to remap IO address for 4302 * @res: Resource describing the I/O space 4303 * @phys_addr: physical address of range to be mapped 4304 * 4305 * Managed pci_remap_iospace(). Map is automatically unmapped on driver 4306 * detach. 4307 */ 4308 int devm_pci_remap_iospace(struct device *dev, const struct resource *res, 4309 phys_addr_t phys_addr) 4310 { 4311 const struct resource **ptr; 4312 int error; 4313 4314 ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL); 4315 if (!ptr) 4316 return -ENOMEM; 4317 4318 error = pci_remap_iospace(res, phys_addr); 4319 if (error) { 4320 devres_free(ptr); 4321 } else { 4322 *ptr = res; 4323 devres_add(dev, ptr); 4324 } 4325 4326 return error; 4327 } 4328 EXPORT_SYMBOL(devm_pci_remap_iospace); 4329 4330 /** 4331 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace() 4332 * @dev: Generic device to remap IO address for 4333 * @offset: Resource address to map 4334 * @size: Size of map 4335 * 4336 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver 4337 * detach. 4338 */ 4339 void __iomem *devm_pci_remap_cfgspace(struct device *dev, 4340 resource_size_t offset, 4341 resource_size_t size) 4342 { 4343 void __iomem **ptr, *addr; 4344 4345 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL); 4346 if (!ptr) 4347 return NULL; 4348 4349 addr = pci_remap_cfgspace(offset, size); 4350 if (addr) { 4351 *ptr = addr; 4352 devres_add(dev, ptr); 4353 } else 4354 devres_free(ptr); 4355 4356 return addr; 4357 } 4358 EXPORT_SYMBOL(devm_pci_remap_cfgspace); 4359 4360 /** 4361 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource 4362 * @dev: generic device to handle the resource for 4363 * @res: configuration space resource to be handled 4364 * 4365 * Checks that a resource is a valid memory region, requests the memory 4366 * region and ioremaps with pci_remap_cfgspace() API that ensures the 4367 * proper PCI configuration space memory attributes are guaranteed. 4368 * 4369 * All operations are managed and will be undone on driver detach. 4370 * 4371 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code 4372 * on failure. Usage example:: 4373 * 4374 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 4375 * base = devm_pci_remap_cfg_resource(&pdev->dev, res); 4376 * if (IS_ERR(base)) 4377 * return PTR_ERR(base); 4378 */ 4379 void __iomem *devm_pci_remap_cfg_resource(struct device *dev, 4380 struct resource *res) 4381 { 4382 resource_size_t size; 4383 const char *name; 4384 void __iomem *dest_ptr; 4385 4386 BUG_ON(!dev); 4387 4388 if (!res || resource_type(res) != IORESOURCE_MEM) { 4389 dev_err(dev, "invalid resource\n"); 4390 return IOMEM_ERR_PTR(-EINVAL); 4391 } 4392 4393 size = resource_size(res); 4394 4395 if (res->name) 4396 name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev), 4397 res->name); 4398 else 4399 name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL); 4400 if (!name) 4401 return IOMEM_ERR_PTR(-ENOMEM); 4402 4403 if (!devm_request_mem_region(dev, res->start, size, name)) { 4404 dev_err(dev, "can't request region for resource %pR\n", res); 4405 return IOMEM_ERR_PTR(-EBUSY); 4406 } 4407 4408 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size); 4409 if (!dest_ptr) { 4410 dev_err(dev, "ioremap failed for resource %pR\n", res); 4411 devm_release_mem_region(dev, res->start, size); 4412 dest_ptr = IOMEM_ERR_PTR(-ENOMEM); 4413 } 4414 4415 return dest_ptr; 4416 } 4417 EXPORT_SYMBOL(devm_pci_remap_cfg_resource); 4418 4419 static void __pci_set_master(struct pci_dev *dev, bool enable) 4420 { 4421 u16 old_cmd, cmd; 4422 4423 pci_read_config_word(dev, PCI_COMMAND, &old_cmd); 4424 if (enable) 4425 cmd = old_cmd | PCI_COMMAND_MASTER; 4426 else 4427 cmd = old_cmd & ~PCI_COMMAND_MASTER; 4428 if (cmd != old_cmd) { 4429 pci_dbg(dev, "%s bus mastering\n", 4430 enable ? "enabling" : "disabling"); 4431 pci_write_config_word(dev, PCI_COMMAND, cmd); 4432 } 4433 dev->is_busmaster = enable; 4434 } 4435 4436 /** 4437 * pcibios_setup - process "pci=" kernel boot arguments 4438 * @str: string used to pass in "pci=" kernel boot arguments 4439 * 4440 * Process kernel boot arguments. This is the default implementation. 4441 * Architecture specific implementations can override this as necessary. 4442 */ 4443 char * __weak __init pcibios_setup(char *str) 4444 { 4445 return str; 4446 } 4447 4448 /** 4449 * pcibios_set_master - enable PCI bus-mastering for device dev 4450 * @dev: the PCI device to enable 4451 * 4452 * Enables PCI bus-mastering for the device. This is the default 4453 * implementation. Architecture specific implementations can override 4454 * this if necessary. 4455 */ 4456 void __weak pcibios_set_master(struct pci_dev *dev) 4457 { 4458 u8 lat; 4459 4460 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */ 4461 if (pci_is_pcie(dev)) 4462 return; 4463 4464 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat); 4465 if (lat < 16) 4466 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency; 4467 else if (lat > pcibios_max_latency) 4468 lat = pcibios_max_latency; 4469 else 4470 return; 4471 4472 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat); 4473 } 4474 4475 /** 4476 * pci_set_master - enables bus-mastering for device dev 4477 * @dev: the PCI device to enable 4478 * 4479 * Enables bus-mastering on the device and calls pcibios_set_master() 4480 * to do the needed arch specific settings. 4481 */ 4482 void pci_set_master(struct pci_dev *dev) 4483 { 4484 __pci_set_master(dev, true); 4485 pcibios_set_master(dev); 4486 } 4487 EXPORT_SYMBOL(pci_set_master); 4488 4489 /** 4490 * pci_clear_master - disables bus-mastering for device dev 4491 * @dev: the PCI device to disable 4492 */ 4493 void pci_clear_master(struct pci_dev *dev) 4494 { 4495 __pci_set_master(dev, false); 4496 } 4497 EXPORT_SYMBOL(pci_clear_master); 4498 4499 /** 4500 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed 4501 * @dev: the PCI device for which MWI is to be enabled 4502 * 4503 * Helper function for pci_set_mwi. 4504 * Originally copied from drivers/net/acenic.c. 4505 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. 4506 * 4507 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4508 */ 4509 int pci_set_cacheline_size(struct pci_dev *dev) 4510 { 4511 u8 cacheline_size; 4512 4513 if (!pci_cache_line_size) 4514 return -EINVAL; 4515 4516 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be 4517 equal to or multiple of the right value. */ 4518 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4519 if (cacheline_size >= pci_cache_line_size && 4520 (cacheline_size % pci_cache_line_size) == 0) 4521 return 0; 4522 4523 /* Write the correct value. */ 4524 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size); 4525 /* Read it back. */ 4526 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4527 if (cacheline_size == pci_cache_line_size) 4528 return 0; 4529 4530 pci_dbg(dev, "cache line size of %d is not supported\n", 4531 pci_cache_line_size << 2); 4532 4533 return -EINVAL; 4534 } 4535 EXPORT_SYMBOL_GPL(pci_set_cacheline_size); 4536 4537 /** 4538 * pci_set_mwi - enables memory-write-invalidate PCI transaction 4539 * @dev: the PCI device for which MWI is enabled 4540 * 4541 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4542 * 4543 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4544 */ 4545 int pci_set_mwi(struct pci_dev *dev) 4546 { 4547 #ifdef PCI_DISABLE_MWI 4548 return 0; 4549 #else 4550 int rc; 4551 u16 cmd; 4552 4553 rc = pci_set_cacheline_size(dev); 4554 if (rc) 4555 return rc; 4556 4557 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4558 if (!(cmd & PCI_COMMAND_INVALIDATE)) { 4559 pci_dbg(dev, "enabling Mem-Wr-Inval\n"); 4560 cmd |= PCI_COMMAND_INVALIDATE; 4561 pci_write_config_word(dev, PCI_COMMAND, cmd); 4562 } 4563 return 0; 4564 #endif 4565 } 4566 EXPORT_SYMBOL(pci_set_mwi); 4567 4568 /** 4569 * pcim_set_mwi - a device-managed pci_set_mwi() 4570 * @dev: the PCI device for which MWI is enabled 4571 * 4572 * Managed pci_set_mwi(). 4573 * 4574 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4575 */ 4576 int pcim_set_mwi(struct pci_dev *dev) 4577 { 4578 struct pci_devres *dr; 4579 4580 dr = find_pci_dr(dev); 4581 if (!dr) 4582 return -ENOMEM; 4583 4584 dr->mwi = 1; 4585 return pci_set_mwi(dev); 4586 } 4587 EXPORT_SYMBOL(pcim_set_mwi); 4588 4589 /** 4590 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction 4591 * @dev: the PCI device for which MWI is enabled 4592 * 4593 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4594 * Callers are not required to check the return value. 4595 * 4596 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4597 */ 4598 int pci_try_set_mwi(struct pci_dev *dev) 4599 { 4600 #ifdef PCI_DISABLE_MWI 4601 return 0; 4602 #else 4603 return pci_set_mwi(dev); 4604 #endif 4605 } 4606 EXPORT_SYMBOL(pci_try_set_mwi); 4607 4608 /** 4609 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev 4610 * @dev: the PCI device to disable 4611 * 4612 * Disables PCI Memory-Write-Invalidate transaction on the device 4613 */ 4614 void pci_clear_mwi(struct pci_dev *dev) 4615 { 4616 #ifndef PCI_DISABLE_MWI 4617 u16 cmd; 4618 4619 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4620 if (cmd & PCI_COMMAND_INVALIDATE) { 4621 cmd &= ~PCI_COMMAND_INVALIDATE; 4622 pci_write_config_word(dev, PCI_COMMAND, cmd); 4623 } 4624 #endif 4625 } 4626 EXPORT_SYMBOL(pci_clear_mwi); 4627 4628 /** 4629 * pci_disable_parity - disable parity checking for device 4630 * @dev: the PCI device to operate on 4631 * 4632 * Disable parity checking for device @dev 4633 */ 4634 void pci_disable_parity(struct pci_dev *dev) 4635 { 4636 u16 cmd; 4637 4638 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4639 if (cmd & PCI_COMMAND_PARITY) { 4640 cmd &= ~PCI_COMMAND_PARITY; 4641 pci_write_config_word(dev, PCI_COMMAND, cmd); 4642 } 4643 } 4644 4645 /** 4646 * pci_intx - enables/disables PCI INTx for device dev 4647 * @pdev: the PCI device to operate on 4648 * @enable: boolean: whether to enable or disable PCI INTx 4649 * 4650 * Enables/disables PCI INTx for device @pdev 4651 */ 4652 void pci_intx(struct pci_dev *pdev, int enable) 4653 { 4654 u16 pci_command, new; 4655 4656 pci_read_config_word(pdev, PCI_COMMAND, &pci_command); 4657 4658 if (enable) 4659 new = pci_command & ~PCI_COMMAND_INTX_DISABLE; 4660 else 4661 new = pci_command | PCI_COMMAND_INTX_DISABLE; 4662 4663 if (new != pci_command) { 4664 struct pci_devres *dr; 4665 4666 pci_write_config_word(pdev, PCI_COMMAND, new); 4667 4668 dr = find_pci_dr(pdev); 4669 if (dr && !dr->restore_intx) { 4670 dr->restore_intx = 1; 4671 dr->orig_intx = !enable; 4672 } 4673 } 4674 } 4675 EXPORT_SYMBOL_GPL(pci_intx); 4676 4677 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask) 4678 { 4679 struct pci_bus *bus = dev->bus; 4680 bool mask_updated = true; 4681 u32 cmd_status_dword; 4682 u16 origcmd, newcmd; 4683 unsigned long flags; 4684 bool irq_pending; 4685 4686 /* 4687 * We do a single dword read to retrieve both command and status. 4688 * Document assumptions that make this possible. 4689 */ 4690 BUILD_BUG_ON(PCI_COMMAND % 4); 4691 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS); 4692 4693 raw_spin_lock_irqsave(&pci_lock, flags); 4694 4695 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword); 4696 4697 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT; 4698 4699 /* 4700 * Check interrupt status register to see whether our device 4701 * triggered the interrupt (when masking) or the next IRQ is 4702 * already pending (when unmasking). 4703 */ 4704 if (mask != irq_pending) { 4705 mask_updated = false; 4706 goto done; 4707 } 4708 4709 origcmd = cmd_status_dword; 4710 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE; 4711 if (mask) 4712 newcmd |= PCI_COMMAND_INTX_DISABLE; 4713 if (newcmd != origcmd) 4714 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd); 4715 4716 done: 4717 raw_spin_unlock_irqrestore(&pci_lock, flags); 4718 4719 return mask_updated; 4720 } 4721 4722 /** 4723 * pci_check_and_mask_intx - mask INTx on pending interrupt 4724 * @dev: the PCI device to operate on 4725 * 4726 * Check if the device dev has its INTx line asserted, mask it and return 4727 * true in that case. False is returned if no interrupt was pending. 4728 */ 4729 bool pci_check_and_mask_intx(struct pci_dev *dev) 4730 { 4731 return pci_check_and_set_intx_mask(dev, true); 4732 } 4733 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx); 4734 4735 /** 4736 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending 4737 * @dev: the PCI device to operate on 4738 * 4739 * Check if the device dev has its INTx line asserted, unmask it if not and 4740 * return true. False is returned and the mask remains active if there was 4741 * still an interrupt pending. 4742 */ 4743 bool pci_check_and_unmask_intx(struct pci_dev *dev) 4744 { 4745 return pci_check_and_set_intx_mask(dev, false); 4746 } 4747 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx); 4748 4749 /** 4750 * pci_wait_for_pending_transaction - wait for pending transaction 4751 * @dev: the PCI device to operate on 4752 * 4753 * Return 0 if transaction is pending 1 otherwise. 4754 */ 4755 int pci_wait_for_pending_transaction(struct pci_dev *dev) 4756 { 4757 if (!pci_is_pcie(dev)) 4758 return 1; 4759 4760 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA, 4761 PCI_EXP_DEVSTA_TRPND); 4762 } 4763 EXPORT_SYMBOL(pci_wait_for_pending_transaction); 4764 4765 /** 4766 * pcie_flr - initiate a PCIe function level reset 4767 * @dev: device to reset 4768 * 4769 * Initiate a function level reset unconditionally on @dev without 4770 * checking any flags and DEVCAP 4771 */ 4772 int pcie_flr(struct pci_dev *dev) 4773 { 4774 if (!pci_wait_for_pending_transaction(dev)) 4775 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n"); 4776 4777 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR); 4778 4779 if (dev->imm_ready) 4780 return 0; 4781 4782 /* 4783 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within 4784 * 100ms, but may silently discard requests while the FLR is in 4785 * progress. Wait 100ms before trying to access the device. 4786 */ 4787 msleep(100); 4788 4789 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS); 4790 } 4791 EXPORT_SYMBOL_GPL(pcie_flr); 4792 4793 /** 4794 * pcie_reset_flr - initiate a PCIe function level reset 4795 * @dev: device to reset 4796 * @probe: if true, return 0 if device can be reset this way 4797 * 4798 * Initiate a function level reset on @dev. 4799 */ 4800 int pcie_reset_flr(struct pci_dev *dev, bool probe) 4801 { 4802 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4803 return -ENOTTY; 4804 4805 if (!(dev->devcap & PCI_EXP_DEVCAP_FLR)) 4806 return -ENOTTY; 4807 4808 if (probe) 4809 return 0; 4810 4811 return pcie_flr(dev); 4812 } 4813 EXPORT_SYMBOL_GPL(pcie_reset_flr); 4814 4815 static int pci_af_flr(struct pci_dev *dev, bool probe) 4816 { 4817 int pos; 4818 u8 cap; 4819 4820 pos = pci_find_capability(dev, PCI_CAP_ID_AF); 4821 if (!pos) 4822 return -ENOTTY; 4823 4824 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4825 return -ENOTTY; 4826 4827 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap); 4828 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR)) 4829 return -ENOTTY; 4830 4831 if (probe) 4832 return 0; 4833 4834 /* 4835 * Wait for Transaction Pending bit to clear. A word-aligned test 4836 * is used, so we use the control offset rather than status and shift 4837 * the test bit to match. 4838 */ 4839 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL, 4840 PCI_AF_STATUS_TP << 8)) 4841 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n"); 4842 4843 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR); 4844 4845 if (dev->imm_ready) 4846 return 0; 4847 4848 /* 4849 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006, 4850 * updated 27 July 2006; a device must complete an FLR within 4851 * 100ms, but may silently discard requests while the FLR is in 4852 * progress. Wait 100ms before trying to access the device. 4853 */ 4854 msleep(100); 4855 4856 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS); 4857 } 4858 4859 /** 4860 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0. 4861 * @dev: Device to reset. 4862 * @probe: if true, return 0 if the device can be reset this way. 4863 * 4864 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is 4865 * unset, it will be reinitialized internally when going from PCI_D3hot to 4866 * PCI_D0. If that's the case and the device is not in a low-power state 4867 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset. 4868 * 4869 * NOTE: This causes the caller to sleep for twice the device power transition 4870 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms 4871 * by default (i.e. unless the @dev's d3hot_delay field has a different value). 4872 * Moreover, only devices in D0 can be reset by this function. 4873 */ 4874 static int pci_pm_reset(struct pci_dev *dev, bool probe) 4875 { 4876 u16 csr; 4877 4878 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET) 4879 return -ENOTTY; 4880 4881 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr); 4882 if (csr & PCI_PM_CTRL_NO_SOFT_RESET) 4883 return -ENOTTY; 4884 4885 if (probe) 4886 return 0; 4887 4888 if (dev->current_state != PCI_D0) 4889 return -EINVAL; 4890 4891 csr &= ~PCI_PM_CTRL_STATE_MASK; 4892 csr |= PCI_D3hot; 4893 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4894 pci_dev_d3_sleep(dev); 4895 4896 csr &= ~PCI_PM_CTRL_STATE_MASK; 4897 csr |= PCI_D0; 4898 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4899 pci_dev_d3_sleep(dev); 4900 4901 return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS); 4902 } 4903 4904 /** 4905 * pcie_wait_for_link_status - Wait for link status change 4906 * @pdev: Device whose link to wait for. 4907 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE. 4908 * @active: Waiting for active or inactive? 4909 * 4910 * Return 0 if successful, or -ETIMEDOUT if status has not changed within 4911 * PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds. 4912 */ 4913 static int pcie_wait_for_link_status(struct pci_dev *pdev, 4914 bool use_lt, bool active) 4915 { 4916 u16 lnksta_mask, lnksta_match; 4917 unsigned long end_jiffies; 4918 u16 lnksta; 4919 4920 lnksta_mask = use_lt ? PCI_EXP_LNKSTA_LT : PCI_EXP_LNKSTA_DLLLA; 4921 lnksta_match = active ? lnksta_mask : 0; 4922 4923 end_jiffies = jiffies + msecs_to_jiffies(PCIE_LINK_RETRAIN_TIMEOUT_MS); 4924 do { 4925 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta); 4926 if ((lnksta & lnksta_mask) == lnksta_match) 4927 return 0; 4928 msleep(1); 4929 } while (time_before(jiffies, end_jiffies)); 4930 4931 return -ETIMEDOUT; 4932 } 4933 4934 /** 4935 * pcie_retrain_link - Request a link retrain and wait for it to complete 4936 * @pdev: Device whose link to retrain. 4937 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE, for status. 4938 * 4939 * Retrain completion status is retrieved from the Link Status Register 4940 * according to @use_lt. It is not verified whether the use of the DLLLA 4941 * bit is valid. 4942 * 4943 * Return 0 if successful, or -ETIMEDOUT if training has not completed 4944 * within PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds. 4945 */ 4946 int pcie_retrain_link(struct pci_dev *pdev, bool use_lt) 4947 { 4948 int rc; 4949 4950 /* 4951 * Ensure the updated LNKCTL parameters are used during link 4952 * training by checking that there is no ongoing link training to 4953 * avoid LTSSM race as recommended in Implementation Note at the 4954 * end of PCIe r6.0.1 sec 7.5.3.7. 4955 */ 4956 rc = pcie_wait_for_link_status(pdev, use_lt, !use_lt); 4957 if (rc) 4958 return rc; 4959 4960 pcie_capability_set_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL); 4961 if (pdev->clear_retrain_link) { 4962 /* 4963 * Due to an erratum in some devices the Retrain Link bit 4964 * needs to be cleared again manually to allow the link 4965 * training to succeed. 4966 */ 4967 pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL); 4968 } 4969 4970 return pcie_wait_for_link_status(pdev, use_lt, !use_lt); 4971 } 4972 4973 /** 4974 * pcie_wait_for_link_delay - Wait until link is active or inactive 4975 * @pdev: Bridge device 4976 * @active: waiting for active or inactive? 4977 * @delay: Delay to wait after link has become active (in ms) 4978 * 4979 * Use this to wait till link becomes active or inactive. 4980 */ 4981 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active, 4982 int delay) 4983 { 4984 int rc; 4985 4986 /* 4987 * Some controllers might not implement link active reporting. In this 4988 * case, we wait for 1000 ms + any delay requested by the caller. 4989 */ 4990 if (!pdev->link_active_reporting) { 4991 msleep(PCIE_LINK_RETRAIN_TIMEOUT_MS + delay); 4992 return true; 4993 } 4994 4995 /* 4996 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms, 4997 * after which we should expect an link active if the reset was 4998 * successful. If so, software must wait a minimum 100ms before sending 4999 * configuration requests to devices downstream this port. 5000 * 5001 * If the link fails to activate, either the device was physically 5002 * removed or the link is permanently failed. 5003 */ 5004 if (active) 5005 msleep(20); 5006 rc = pcie_wait_for_link_status(pdev, false, active); 5007 if (active) { 5008 if (rc) 5009 rc = pcie_failed_link_retrain(pdev); 5010 if (rc) 5011 return false; 5012 5013 msleep(delay); 5014 return true; 5015 } 5016 5017 if (rc) 5018 return false; 5019 5020 return true; 5021 } 5022 5023 /** 5024 * pcie_wait_for_link - Wait until link is active or inactive 5025 * @pdev: Bridge device 5026 * @active: waiting for active or inactive? 5027 * 5028 * Use this to wait till link becomes active or inactive. 5029 */ 5030 bool pcie_wait_for_link(struct pci_dev *pdev, bool active) 5031 { 5032 return pcie_wait_for_link_delay(pdev, active, 100); 5033 } 5034 5035 /* 5036 * Find maximum D3cold delay required by all the devices on the bus. The 5037 * spec says 100 ms, but firmware can lower it and we allow drivers to 5038 * increase it as well. 5039 * 5040 * Called with @pci_bus_sem locked for reading. 5041 */ 5042 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus) 5043 { 5044 const struct pci_dev *pdev; 5045 int min_delay = 100; 5046 int max_delay = 0; 5047 5048 list_for_each_entry(pdev, &bus->devices, bus_list) { 5049 if (pdev->d3cold_delay < min_delay) 5050 min_delay = pdev->d3cold_delay; 5051 if (pdev->d3cold_delay > max_delay) 5052 max_delay = pdev->d3cold_delay; 5053 } 5054 5055 return max(min_delay, max_delay); 5056 } 5057 5058 /** 5059 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible 5060 * @dev: PCI bridge 5061 * @reset_type: reset type in human-readable form 5062 * 5063 * Handle necessary delays before access to the devices on the secondary 5064 * side of the bridge are permitted after D3cold to D0 transition 5065 * or Conventional Reset. 5066 * 5067 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For 5068 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section 5069 * 4.3.2. 5070 * 5071 * Return 0 on success or -ENOTTY if the first device on the secondary bus 5072 * failed to become accessible. 5073 */ 5074 int pci_bridge_wait_for_secondary_bus(struct pci_dev *dev, char *reset_type) 5075 { 5076 struct pci_dev *child; 5077 int delay; 5078 5079 if (pci_dev_is_disconnected(dev)) 5080 return 0; 5081 5082 if (!pci_is_bridge(dev)) 5083 return 0; 5084 5085 down_read(&pci_bus_sem); 5086 5087 /* 5088 * We only deal with devices that are present currently on the bus. 5089 * For any hot-added devices the access delay is handled in pciehp 5090 * board_added(). In case of ACPI hotplug the firmware is expected 5091 * to configure the devices before OS is notified. 5092 */ 5093 if (!dev->subordinate || list_empty(&dev->subordinate->devices)) { 5094 up_read(&pci_bus_sem); 5095 return 0; 5096 } 5097 5098 /* Take d3cold_delay requirements into account */ 5099 delay = pci_bus_max_d3cold_delay(dev->subordinate); 5100 if (!delay) { 5101 up_read(&pci_bus_sem); 5102 return 0; 5103 } 5104 5105 child = list_first_entry(&dev->subordinate->devices, struct pci_dev, 5106 bus_list); 5107 up_read(&pci_bus_sem); 5108 5109 /* 5110 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before 5111 * accessing the device after reset (that is 1000 ms + 100 ms). 5112 */ 5113 if (!pci_is_pcie(dev)) { 5114 pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay); 5115 msleep(1000 + delay); 5116 return 0; 5117 } 5118 5119 /* 5120 * For PCIe downstream and root ports that do not support speeds 5121 * greater than 5 GT/s need to wait minimum 100 ms. For higher 5122 * speeds (gen3) we need to wait first for the data link layer to 5123 * become active. 5124 * 5125 * However, 100 ms is the minimum and the PCIe spec says the 5126 * software must allow at least 1s before it can determine that the 5127 * device that did not respond is a broken device. Also device can 5128 * take longer than that to respond if it indicates so through Request 5129 * Retry Status completions. 5130 * 5131 * Therefore we wait for 100 ms and check for the device presence 5132 * until the timeout expires. 5133 */ 5134 if (!pcie_downstream_port(dev)) 5135 return 0; 5136 5137 if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) { 5138 u16 status; 5139 5140 pci_dbg(dev, "waiting %d ms for downstream link\n", delay); 5141 msleep(delay); 5142 5143 if (!pci_dev_wait(child, reset_type, PCI_RESET_WAIT - delay)) 5144 return 0; 5145 5146 /* 5147 * If the port supports active link reporting we now check 5148 * whether the link is active and if not bail out early with 5149 * the assumption that the device is not present anymore. 5150 */ 5151 if (!dev->link_active_reporting) 5152 return -ENOTTY; 5153 5154 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &status); 5155 if (!(status & PCI_EXP_LNKSTA_DLLLA)) 5156 return -ENOTTY; 5157 5158 return pci_dev_wait(child, reset_type, 5159 PCIE_RESET_READY_POLL_MS - PCI_RESET_WAIT); 5160 } 5161 5162 pci_dbg(dev, "waiting %d ms for downstream link, after activation\n", 5163 delay); 5164 if (!pcie_wait_for_link_delay(dev, true, delay)) { 5165 /* Did not train, no need to wait any further */ 5166 pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n"); 5167 return -ENOTTY; 5168 } 5169 5170 return pci_dev_wait(child, reset_type, 5171 PCIE_RESET_READY_POLL_MS - delay); 5172 } 5173 5174 void pci_reset_secondary_bus(struct pci_dev *dev) 5175 { 5176 u16 ctrl; 5177 5178 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl); 5179 ctrl |= PCI_BRIDGE_CTL_BUS_RESET; 5180 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 5181 5182 /* 5183 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double 5184 * this to 2ms to ensure that we meet the minimum requirement. 5185 */ 5186 msleep(2); 5187 5188 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET; 5189 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 5190 } 5191 5192 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev) 5193 { 5194 pci_reset_secondary_bus(dev); 5195 } 5196 5197 /** 5198 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge. 5199 * @dev: Bridge device 5200 * 5201 * Use the bridge control register to assert reset on the secondary bus. 5202 * Devices on the secondary bus are left in power-on state. 5203 */ 5204 int pci_bridge_secondary_bus_reset(struct pci_dev *dev) 5205 { 5206 pcibios_reset_secondary_bus(dev); 5207 5208 return pci_bridge_wait_for_secondary_bus(dev, "bus reset"); 5209 } 5210 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset); 5211 5212 static int pci_parent_bus_reset(struct pci_dev *dev, bool probe) 5213 { 5214 struct pci_dev *pdev; 5215 5216 if (pci_is_root_bus(dev->bus) || dev->subordinate || 5217 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 5218 return -ENOTTY; 5219 5220 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 5221 if (pdev != dev) 5222 return -ENOTTY; 5223 5224 if (probe) 5225 return 0; 5226 5227 return pci_bridge_secondary_bus_reset(dev->bus->self); 5228 } 5229 5230 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe) 5231 { 5232 int rc = -ENOTTY; 5233 5234 if (!hotplug || !try_module_get(hotplug->owner)) 5235 return rc; 5236 5237 if (hotplug->ops->reset_slot) 5238 rc = hotplug->ops->reset_slot(hotplug, probe); 5239 5240 module_put(hotplug->owner); 5241 5242 return rc; 5243 } 5244 5245 static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe) 5246 { 5247 if (dev->multifunction || dev->subordinate || !dev->slot || 5248 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 5249 return -ENOTTY; 5250 5251 return pci_reset_hotplug_slot(dev->slot->hotplug, probe); 5252 } 5253 5254 static int pci_reset_bus_function(struct pci_dev *dev, bool probe) 5255 { 5256 int rc; 5257 5258 rc = pci_dev_reset_slot_function(dev, probe); 5259 if (rc != -ENOTTY) 5260 return rc; 5261 return pci_parent_bus_reset(dev, probe); 5262 } 5263 5264 void pci_dev_lock(struct pci_dev *dev) 5265 { 5266 /* block PM suspend, driver probe, etc. */ 5267 device_lock(&dev->dev); 5268 pci_cfg_access_lock(dev); 5269 } 5270 EXPORT_SYMBOL_GPL(pci_dev_lock); 5271 5272 /* Return 1 on successful lock, 0 on contention */ 5273 int pci_dev_trylock(struct pci_dev *dev) 5274 { 5275 if (device_trylock(&dev->dev)) { 5276 if (pci_cfg_access_trylock(dev)) 5277 return 1; 5278 device_unlock(&dev->dev); 5279 } 5280 5281 return 0; 5282 } 5283 EXPORT_SYMBOL_GPL(pci_dev_trylock); 5284 5285 void pci_dev_unlock(struct pci_dev *dev) 5286 { 5287 pci_cfg_access_unlock(dev); 5288 device_unlock(&dev->dev); 5289 } 5290 EXPORT_SYMBOL_GPL(pci_dev_unlock); 5291 5292 static void pci_dev_save_and_disable(struct pci_dev *dev) 5293 { 5294 const struct pci_error_handlers *err_handler = 5295 dev->driver ? dev->driver->err_handler : NULL; 5296 5297 /* 5298 * dev->driver->err_handler->reset_prepare() is protected against 5299 * races with ->remove() by the device lock, which must be held by 5300 * the caller. 5301 */ 5302 if (err_handler && err_handler->reset_prepare) 5303 err_handler->reset_prepare(dev); 5304 5305 /* 5306 * Wake-up device prior to save. PM registers default to D0 after 5307 * reset and a simple register restore doesn't reliably return 5308 * to a non-D0 state anyway. 5309 */ 5310 pci_set_power_state(dev, PCI_D0); 5311 5312 pci_save_state(dev); 5313 /* 5314 * Disable the device by clearing the Command register, except for 5315 * INTx-disable which is set. This not only disables MMIO and I/O port 5316 * BARs, but also prevents the device from being Bus Master, preventing 5317 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3 5318 * compliant devices, INTx-disable prevents legacy interrupts. 5319 */ 5320 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE); 5321 } 5322 5323 static void pci_dev_restore(struct pci_dev *dev) 5324 { 5325 const struct pci_error_handlers *err_handler = 5326 dev->driver ? dev->driver->err_handler : NULL; 5327 5328 pci_restore_state(dev); 5329 5330 /* 5331 * dev->driver->err_handler->reset_done() is protected against 5332 * races with ->remove() by the device lock, which must be held by 5333 * the caller. 5334 */ 5335 if (err_handler && err_handler->reset_done) 5336 err_handler->reset_done(dev); 5337 } 5338 5339 /* dev->reset_methods[] is a 0-terminated list of indices into this array */ 5340 static const struct pci_reset_fn_method pci_reset_fn_methods[] = { 5341 { }, 5342 { pci_dev_specific_reset, .name = "device_specific" }, 5343 { pci_dev_acpi_reset, .name = "acpi" }, 5344 { pcie_reset_flr, .name = "flr" }, 5345 { pci_af_flr, .name = "af_flr" }, 5346 { pci_pm_reset, .name = "pm" }, 5347 { pci_reset_bus_function, .name = "bus" }, 5348 }; 5349 5350 static ssize_t reset_method_show(struct device *dev, 5351 struct device_attribute *attr, char *buf) 5352 { 5353 struct pci_dev *pdev = to_pci_dev(dev); 5354 ssize_t len = 0; 5355 int i, m; 5356 5357 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) { 5358 m = pdev->reset_methods[i]; 5359 if (!m) 5360 break; 5361 5362 len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "", 5363 pci_reset_fn_methods[m].name); 5364 } 5365 5366 if (len) 5367 len += sysfs_emit_at(buf, len, "\n"); 5368 5369 return len; 5370 } 5371 5372 static int reset_method_lookup(const char *name) 5373 { 5374 int m; 5375 5376 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) { 5377 if (sysfs_streq(name, pci_reset_fn_methods[m].name)) 5378 return m; 5379 } 5380 5381 return 0; /* not found */ 5382 } 5383 5384 static ssize_t reset_method_store(struct device *dev, 5385 struct device_attribute *attr, 5386 const char *buf, size_t count) 5387 { 5388 struct pci_dev *pdev = to_pci_dev(dev); 5389 char *options, *name; 5390 int m, n; 5391 u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 }; 5392 5393 if (sysfs_streq(buf, "")) { 5394 pdev->reset_methods[0] = 0; 5395 pci_warn(pdev, "All device reset methods disabled by user"); 5396 return count; 5397 } 5398 5399 if (sysfs_streq(buf, "default")) { 5400 pci_init_reset_methods(pdev); 5401 return count; 5402 } 5403 5404 options = kstrndup(buf, count, GFP_KERNEL); 5405 if (!options) 5406 return -ENOMEM; 5407 5408 n = 0; 5409 while ((name = strsep(&options, " ")) != NULL) { 5410 if (sysfs_streq(name, "")) 5411 continue; 5412 5413 name = strim(name); 5414 5415 m = reset_method_lookup(name); 5416 if (!m) { 5417 pci_err(pdev, "Invalid reset method '%s'", name); 5418 goto error; 5419 } 5420 5421 if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) { 5422 pci_err(pdev, "Unsupported reset method '%s'", name); 5423 goto error; 5424 } 5425 5426 if (n == PCI_NUM_RESET_METHODS - 1) { 5427 pci_err(pdev, "Too many reset methods\n"); 5428 goto error; 5429 } 5430 5431 reset_methods[n++] = m; 5432 } 5433 5434 reset_methods[n] = 0; 5435 5436 /* Warn if dev-specific supported but not highest priority */ 5437 if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 && 5438 reset_methods[0] != 1) 5439 pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user"); 5440 memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods)); 5441 kfree(options); 5442 return count; 5443 5444 error: 5445 /* Leave previous methods unchanged */ 5446 kfree(options); 5447 return -EINVAL; 5448 } 5449 static DEVICE_ATTR_RW(reset_method); 5450 5451 static struct attribute *pci_dev_reset_method_attrs[] = { 5452 &dev_attr_reset_method.attr, 5453 NULL, 5454 }; 5455 5456 static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj, 5457 struct attribute *a, int n) 5458 { 5459 struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj)); 5460 5461 if (!pci_reset_supported(pdev)) 5462 return 0; 5463 5464 return a->mode; 5465 } 5466 5467 const struct attribute_group pci_dev_reset_method_attr_group = { 5468 .attrs = pci_dev_reset_method_attrs, 5469 .is_visible = pci_dev_reset_method_attr_is_visible, 5470 }; 5471 5472 /** 5473 * __pci_reset_function_locked - reset a PCI device function while holding 5474 * the @dev mutex lock. 5475 * @dev: PCI device to reset 5476 * 5477 * Some devices allow an individual function to be reset without affecting 5478 * other functions in the same device. The PCI device must be responsive 5479 * to PCI config space in order to use this function. 5480 * 5481 * The device function is presumed to be unused and the caller is holding 5482 * the device mutex lock when this function is called. 5483 * 5484 * Resetting the device will make the contents of PCI configuration space 5485 * random, so any caller of this must be prepared to reinitialise the 5486 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 5487 * etc. 5488 * 5489 * Returns 0 if the device function was successfully reset or negative if the 5490 * device doesn't support resetting a single function. 5491 */ 5492 int __pci_reset_function_locked(struct pci_dev *dev) 5493 { 5494 int i, m, rc; 5495 5496 might_sleep(); 5497 5498 /* 5499 * A reset method returns -ENOTTY if it doesn't support this device and 5500 * we should try the next method. 5501 * 5502 * If it returns 0 (success), we're finished. If it returns any other 5503 * error, we're also finished: this indicates that further reset 5504 * mechanisms might be broken on the device. 5505 */ 5506 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) { 5507 m = dev->reset_methods[i]; 5508 if (!m) 5509 return -ENOTTY; 5510 5511 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET); 5512 if (!rc) 5513 return 0; 5514 if (rc != -ENOTTY) 5515 return rc; 5516 } 5517 5518 return -ENOTTY; 5519 } 5520 EXPORT_SYMBOL_GPL(__pci_reset_function_locked); 5521 5522 /** 5523 * pci_init_reset_methods - check whether device can be safely reset 5524 * and store supported reset mechanisms. 5525 * @dev: PCI device to check for reset mechanisms 5526 * 5527 * Some devices allow an individual function to be reset without affecting 5528 * other functions in the same device. The PCI device must be in D0-D3hot 5529 * state. 5530 * 5531 * Stores reset mechanisms supported by device in reset_methods byte array 5532 * which is a member of struct pci_dev. 5533 */ 5534 void pci_init_reset_methods(struct pci_dev *dev) 5535 { 5536 int m, i, rc; 5537 5538 BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS); 5539 5540 might_sleep(); 5541 5542 i = 0; 5543 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) { 5544 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE); 5545 if (!rc) 5546 dev->reset_methods[i++] = m; 5547 else if (rc != -ENOTTY) 5548 break; 5549 } 5550 5551 dev->reset_methods[i] = 0; 5552 } 5553 5554 /** 5555 * pci_reset_function - quiesce and reset a PCI device function 5556 * @dev: PCI device to reset 5557 * 5558 * Some devices allow an individual function to be reset without affecting 5559 * other functions in the same device. The PCI device must be responsive 5560 * to PCI config space in order to use this function. 5561 * 5562 * This function does not just reset the PCI portion of a device, but 5563 * clears all the state associated with the device. This function differs 5564 * from __pci_reset_function_locked() in that it saves and restores device state 5565 * over the reset and takes the PCI device lock. 5566 * 5567 * Returns 0 if the device function was successfully reset or negative if the 5568 * device doesn't support resetting a single function. 5569 */ 5570 int pci_reset_function(struct pci_dev *dev) 5571 { 5572 int rc; 5573 5574 if (!pci_reset_supported(dev)) 5575 return -ENOTTY; 5576 5577 pci_dev_lock(dev); 5578 pci_dev_save_and_disable(dev); 5579 5580 rc = __pci_reset_function_locked(dev); 5581 5582 pci_dev_restore(dev); 5583 pci_dev_unlock(dev); 5584 5585 return rc; 5586 } 5587 EXPORT_SYMBOL_GPL(pci_reset_function); 5588 5589 /** 5590 * pci_reset_function_locked - quiesce and reset a PCI device function 5591 * @dev: PCI device to reset 5592 * 5593 * Some devices allow an individual function to be reset without affecting 5594 * other functions in the same device. The PCI device must be responsive 5595 * to PCI config space in order to use this function. 5596 * 5597 * This function does not just reset the PCI portion of a device, but 5598 * clears all the state associated with the device. This function differs 5599 * from __pci_reset_function_locked() in that it saves and restores device state 5600 * over the reset. It also differs from pci_reset_function() in that it 5601 * requires the PCI device lock to be held. 5602 * 5603 * Returns 0 if the device function was successfully reset or negative if the 5604 * device doesn't support resetting a single function. 5605 */ 5606 int pci_reset_function_locked(struct pci_dev *dev) 5607 { 5608 int rc; 5609 5610 if (!pci_reset_supported(dev)) 5611 return -ENOTTY; 5612 5613 pci_dev_save_and_disable(dev); 5614 5615 rc = __pci_reset_function_locked(dev); 5616 5617 pci_dev_restore(dev); 5618 5619 return rc; 5620 } 5621 EXPORT_SYMBOL_GPL(pci_reset_function_locked); 5622 5623 /** 5624 * pci_try_reset_function - quiesce and reset a PCI device function 5625 * @dev: PCI device to reset 5626 * 5627 * Same as above, except return -EAGAIN if unable to lock device. 5628 */ 5629 int pci_try_reset_function(struct pci_dev *dev) 5630 { 5631 int rc; 5632 5633 if (!pci_reset_supported(dev)) 5634 return -ENOTTY; 5635 5636 if (!pci_dev_trylock(dev)) 5637 return -EAGAIN; 5638 5639 pci_dev_save_and_disable(dev); 5640 rc = __pci_reset_function_locked(dev); 5641 pci_dev_restore(dev); 5642 pci_dev_unlock(dev); 5643 5644 return rc; 5645 } 5646 EXPORT_SYMBOL_GPL(pci_try_reset_function); 5647 5648 /* Do any devices on or below this bus prevent a bus reset? */ 5649 static bool pci_bus_resettable(struct pci_bus *bus) 5650 { 5651 struct pci_dev *dev; 5652 5653 5654 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 5655 return false; 5656 5657 list_for_each_entry(dev, &bus->devices, bus_list) { 5658 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 5659 (dev->subordinate && !pci_bus_resettable(dev->subordinate))) 5660 return false; 5661 } 5662 5663 return true; 5664 } 5665 5666 /* Lock devices from the top of the tree down */ 5667 static void pci_bus_lock(struct pci_bus *bus) 5668 { 5669 struct pci_dev *dev; 5670 5671 list_for_each_entry(dev, &bus->devices, bus_list) { 5672 pci_dev_lock(dev); 5673 if (dev->subordinate) 5674 pci_bus_lock(dev->subordinate); 5675 } 5676 } 5677 5678 /* Unlock devices from the bottom of the tree up */ 5679 static void pci_bus_unlock(struct pci_bus *bus) 5680 { 5681 struct pci_dev *dev; 5682 5683 list_for_each_entry(dev, &bus->devices, bus_list) { 5684 if (dev->subordinate) 5685 pci_bus_unlock(dev->subordinate); 5686 pci_dev_unlock(dev); 5687 } 5688 } 5689 5690 /* Return 1 on successful lock, 0 on contention */ 5691 static int pci_bus_trylock(struct pci_bus *bus) 5692 { 5693 struct pci_dev *dev; 5694 5695 list_for_each_entry(dev, &bus->devices, bus_list) { 5696 if (!pci_dev_trylock(dev)) 5697 goto unlock; 5698 if (dev->subordinate) { 5699 if (!pci_bus_trylock(dev->subordinate)) { 5700 pci_dev_unlock(dev); 5701 goto unlock; 5702 } 5703 } 5704 } 5705 return 1; 5706 5707 unlock: 5708 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) { 5709 if (dev->subordinate) 5710 pci_bus_unlock(dev->subordinate); 5711 pci_dev_unlock(dev); 5712 } 5713 return 0; 5714 } 5715 5716 /* Do any devices on or below this slot prevent a bus reset? */ 5717 static bool pci_slot_resettable(struct pci_slot *slot) 5718 { 5719 struct pci_dev *dev; 5720 5721 if (slot->bus->self && 5722 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 5723 return false; 5724 5725 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5726 if (!dev->slot || dev->slot != slot) 5727 continue; 5728 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 5729 (dev->subordinate && !pci_bus_resettable(dev->subordinate))) 5730 return false; 5731 } 5732 5733 return true; 5734 } 5735 5736 /* Lock devices from the top of the tree down */ 5737 static void pci_slot_lock(struct pci_slot *slot) 5738 { 5739 struct pci_dev *dev; 5740 5741 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5742 if (!dev->slot || dev->slot != slot) 5743 continue; 5744 pci_dev_lock(dev); 5745 if (dev->subordinate) 5746 pci_bus_lock(dev->subordinate); 5747 } 5748 } 5749 5750 /* Unlock devices from the bottom of the tree up */ 5751 static void pci_slot_unlock(struct pci_slot *slot) 5752 { 5753 struct pci_dev *dev; 5754 5755 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5756 if (!dev->slot || dev->slot != slot) 5757 continue; 5758 if (dev->subordinate) 5759 pci_bus_unlock(dev->subordinate); 5760 pci_dev_unlock(dev); 5761 } 5762 } 5763 5764 /* Return 1 on successful lock, 0 on contention */ 5765 static int pci_slot_trylock(struct pci_slot *slot) 5766 { 5767 struct pci_dev *dev; 5768 5769 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5770 if (!dev->slot || dev->slot != slot) 5771 continue; 5772 if (!pci_dev_trylock(dev)) 5773 goto unlock; 5774 if (dev->subordinate) { 5775 if (!pci_bus_trylock(dev->subordinate)) { 5776 pci_dev_unlock(dev); 5777 goto unlock; 5778 } 5779 } 5780 } 5781 return 1; 5782 5783 unlock: 5784 list_for_each_entry_continue_reverse(dev, 5785 &slot->bus->devices, bus_list) { 5786 if (!dev->slot || dev->slot != slot) 5787 continue; 5788 if (dev->subordinate) 5789 pci_bus_unlock(dev->subordinate); 5790 pci_dev_unlock(dev); 5791 } 5792 return 0; 5793 } 5794 5795 /* 5796 * Save and disable devices from the top of the tree down while holding 5797 * the @dev mutex lock for the entire tree. 5798 */ 5799 static void pci_bus_save_and_disable_locked(struct pci_bus *bus) 5800 { 5801 struct pci_dev *dev; 5802 5803 list_for_each_entry(dev, &bus->devices, bus_list) { 5804 pci_dev_save_and_disable(dev); 5805 if (dev->subordinate) 5806 pci_bus_save_and_disable_locked(dev->subordinate); 5807 } 5808 } 5809 5810 /* 5811 * Restore devices from top of the tree down while holding @dev mutex lock 5812 * for the entire tree. Parent bridges need to be restored before we can 5813 * get to subordinate devices. 5814 */ 5815 static void pci_bus_restore_locked(struct pci_bus *bus) 5816 { 5817 struct pci_dev *dev; 5818 5819 list_for_each_entry(dev, &bus->devices, bus_list) { 5820 pci_dev_restore(dev); 5821 if (dev->subordinate) 5822 pci_bus_restore_locked(dev->subordinate); 5823 } 5824 } 5825 5826 /* 5827 * Save and disable devices from the top of the tree down while holding 5828 * the @dev mutex lock for the entire tree. 5829 */ 5830 static void pci_slot_save_and_disable_locked(struct pci_slot *slot) 5831 { 5832 struct pci_dev *dev; 5833 5834 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5835 if (!dev->slot || dev->slot != slot) 5836 continue; 5837 pci_dev_save_and_disable(dev); 5838 if (dev->subordinate) 5839 pci_bus_save_and_disable_locked(dev->subordinate); 5840 } 5841 } 5842 5843 /* 5844 * Restore devices from top of the tree down while holding @dev mutex lock 5845 * for the entire tree. Parent bridges need to be restored before we can 5846 * get to subordinate devices. 5847 */ 5848 static void pci_slot_restore_locked(struct pci_slot *slot) 5849 { 5850 struct pci_dev *dev; 5851 5852 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5853 if (!dev->slot || dev->slot != slot) 5854 continue; 5855 pci_dev_restore(dev); 5856 if (dev->subordinate) 5857 pci_bus_restore_locked(dev->subordinate); 5858 } 5859 } 5860 5861 static int pci_slot_reset(struct pci_slot *slot, bool probe) 5862 { 5863 int rc; 5864 5865 if (!slot || !pci_slot_resettable(slot)) 5866 return -ENOTTY; 5867 5868 if (!probe) 5869 pci_slot_lock(slot); 5870 5871 might_sleep(); 5872 5873 rc = pci_reset_hotplug_slot(slot->hotplug, probe); 5874 5875 if (!probe) 5876 pci_slot_unlock(slot); 5877 5878 return rc; 5879 } 5880 5881 /** 5882 * pci_probe_reset_slot - probe whether a PCI slot can be reset 5883 * @slot: PCI slot to probe 5884 * 5885 * Return 0 if slot can be reset, negative if a slot reset is not supported. 5886 */ 5887 int pci_probe_reset_slot(struct pci_slot *slot) 5888 { 5889 return pci_slot_reset(slot, PCI_RESET_PROBE); 5890 } 5891 EXPORT_SYMBOL_GPL(pci_probe_reset_slot); 5892 5893 /** 5894 * __pci_reset_slot - Try to reset a PCI slot 5895 * @slot: PCI slot to reset 5896 * 5897 * A PCI bus may host multiple slots, each slot may support a reset mechanism 5898 * independent of other slots. For instance, some slots may support slot power 5899 * control. In the case of a 1:1 bus to slot architecture, this function may 5900 * wrap the bus reset to avoid spurious slot related events such as hotplug. 5901 * Generally a slot reset should be attempted before a bus reset. All of the 5902 * function of the slot and any subordinate buses behind the slot are reset 5903 * through this function. PCI config space of all devices in the slot and 5904 * behind the slot is saved before and restored after reset. 5905 * 5906 * Same as above except return -EAGAIN if the slot cannot be locked 5907 */ 5908 static int __pci_reset_slot(struct pci_slot *slot) 5909 { 5910 int rc; 5911 5912 rc = pci_slot_reset(slot, PCI_RESET_PROBE); 5913 if (rc) 5914 return rc; 5915 5916 if (pci_slot_trylock(slot)) { 5917 pci_slot_save_and_disable_locked(slot); 5918 might_sleep(); 5919 rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET); 5920 pci_slot_restore_locked(slot); 5921 pci_slot_unlock(slot); 5922 } else 5923 rc = -EAGAIN; 5924 5925 return rc; 5926 } 5927 5928 static int pci_bus_reset(struct pci_bus *bus, bool probe) 5929 { 5930 int ret; 5931 5932 if (!bus->self || !pci_bus_resettable(bus)) 5933 return -ENOTTY; 5934 5935 if (probe) 5936 return 0; 5937 5938 pci_bus_lock(bus); 5939 5940 might_sleep(); 5941 5942 ret = pci_bridge_secondary_bus_reset(bus->self); 5943 5944 pci_bus_unlock(bus); 5945 5946 return ret; 5947 } 5948 5949 /** 5950 * pci_bus_error_reset - reset the bridge's subordinate bus 5951 * @bridge: The parent device that connects to the bus to reset 5952 * 5953 * This function will first try to reset the slots on this bus if the method is 5954 * available. If slot reset fails or is not available, this will fall back to a 5955 * secondary bus reset. 5956 */ 5957 int pci_bus_error_reset(struct pci_dev *bridge) 5958 { 5959 struct pci_bus *bus = bridge->subordinate; 5960 struct pci_slot *slot; 5961 5962 if (!bus) 5963 return -ENOTTY; 5964 5965 mutex_lock(&pci_slot_mutex); 5966 if (list_empty(&bus->slots)) 5967 goto bus_reset; 5968 5969 list_for_each_entry(slot, &bus->slots, list) 5970 if (pci_probe_reset_slot(slot)) 5971 goto bus_reset; 5972 5973 list_for_each_entry(slot, &bus->slots, list) 5974 if (pci_slot_reset(slot, PCI_RESET_DO_RESET)) 5975 goto bus_reset; 5976 5977 mutex_unlock(&pci_slot_mutex); 5978 return 0; 5979 bus_reset: 5980 mutex_unlock(&pci_slot_mutex); 5981 return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET); 5982 } 5983 5984 /** 5985 * pci_probe_reset_bus - probe whether a PCI bus can be reset 5986 * @bus: PCI bus to probe 5987 * 5988 * Return 0 if bus can be reset, negative if a bus reset is not supported. 5989 */ 5990 int pci_probe_reset_bus(struct pci_bus *bus) 5991 { 5992 return pci_bus_reset(bus, PCI_RESET_PROBE); 5993 } 5994 EXPORT_SYMBOL_GPL(pci_probe_reset_bus); 5995 5996 /** 5997 * __pci_reset_bus - Try to reset a PCI bus 5998 * @bus: top level PCI bus to reset 5999 * 6000 * Same as above except return -EAGAIN if the bus cannot be locked 6001 */ 6002 static int __pci_reset_bus(struct pci_bus *bus) 6003 { 6004 int rc; 6005 6006 rc = pci_bus_reset(bus, PCI_RESET_PROBE); 6007 if (rc) 6008 return rc; 6009 6010 if (pci_bus_trylock(bus)) { 6011 pci_bus_save_and_disable_locked(bus); 6012 might_sleep(); 6013 rc = pci_bridge_secondary_bus_reset(bus->self); 6014 pci_bus_restore_locked(bus); 6015 pci_bus_unlock(bus); 6016 } else 6017 rc = -EAGAIN; 6018 6019 return rc; 6020 } 6021 6022 /** 6023 * pci_reset_bus - Try to reset a PCI bus 6024 * @pdev: top level PCI device to reset via slot/bus 6025 * 6026 * Same as above except return -EAGAIN if the bus cannot be locked 6027 */ 6028 int pci_reset_bus(struct pci_dev *pdev) 6029 { 6030 return (!pci_probe_reset_slot(pdev->slot)) ? 6031 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus); 6032 } 6033 EXPORT_SYMBOL_GPL(pci_reset_bus); 6034 6035 /** 6036 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count 6037 * @dev: PCI device to query 6038 * 6039 * Returns mmrbc: maximum designed memory read count in bytes or 6040 * appropriate error value. 6041 */ 6042 int pcix_get_max_mmrbc(struct pci_dev *dev) 6043 { 6044 int cap; 6045 u32 stat; 6046 6047 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 6048 if (!cap) 6049 return -EINVAL; 6050 6051 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 6052 return -EINVAL; 6053 6054 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21); 6055 } 6056 EXPORT_SYMBOL(pcix_get_max_mmrbc); 6057 6058 /** 6059 * pcix_get_mmrbc - get PCI-X maximum memory read byte count 6060 * @dev: PCI device to query 6061 * 6062 * Returns mmrbc: maximum memory read count in bytes or appropriate error 6063 * value. 6064 */ 6065 int pcix_get_mmrbc(struct pci_dev *dev) 6066 { 6067 int cap; 6068 u16 cmd; 6069 6070 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 6071 if (!cap) 6072 return -EINVAL; 6073 6074 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 6075 return -EINVAL; 6076 6077 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2); 6078 } 6079 EXPORT_SYMBOL(pcix_get_mmrbc); 6080 6081 /** 6082 * pcix_set_mmrbc - set PCI-X maximum memory read byte count 6083 * @dev: PCI device to query 6084 * @mmrbc: maximum memory read count in bytes 6085 * valid values are 512, 1024, 2048, 4096 6086 * 6087 * If possible sets maximum memory read byte count, some bridges have errata 6088 * that prevent this. 6089 */ 6090 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc) 6091 { 6092 int cap; 6093 u32 stat, v, o; 6094 u16 cmd; 6095 6096 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc)) 6097 return -EINVAL; 6098 6099 v = ffs(mmrbc) - 10; 6100 6101 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 6102 if (!cap) 6103 return -EINVAL; 6104 6105 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 6106 return -EINVAL; 6107 6108 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21) 6109 return -E2BIG; 6110 6111 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 6112 return -EINVAL; 6113 6114 o = (cmd & PCI_X_CMD_MAX_READ) >> 2; 6115 if (o != v) { 6116 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC)) 6117 return -EIO; 6118 6119 cmd &= ~PCI_X_CMD_MAX_READ; 6120 cmd |= v << 2; 6121 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd)) 6122 return -EIO; 6123 } 6124 return 0; 6125 } 6126 EXPORT_SYMBOL(pcix_set_mmrbc); 6127 6128 /** 6129 * pcie_get_readrq - get PCI Express read request size 6130 * @dev: PCI device to query 6131 * 6132 * Returns maximum memory read request in bytes or appropriate error value. 6133 */ 6134 int pcie_get_readrq(struct pci_dev *dev) 6135 { 6136 u16 ctl; 6137 6138 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 6139 6140 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12); 6141 } 6142 EXPORT_SYMBOL(pcie_get_readrq); 6143 6144 /** 6145 * pcie_set_readrq - set PCI Express maximum memory read request 6146 * @dev: PCI device to query 6147 * @rq: maximum memory read count in bytes 6148 * valid values are 128, 256, 512, 1024, 2048, 4096 6149 * 6150 * If possible sets maximum memory read request in bytes 6151 */ 6152 int pcie_set_readrq(struct pci_dev *dev, int rq) 6153 { 6154 u16 v; 6155 int ret; 6156 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus); 6157 6158 if (rq < 128 || rq > 4096 || !is_power_of_2(rq)) 6159 return -EINVAL; 6160 6161 /* 6162 * If using the "performance" PCIe config, we clamp the read rq 6163 * size to the max packet size to keep the host bridge from 6164 * generating requests larger than we can cope with. 6165 */ 6166 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) { 6167 int mps = pcie_get_mps(dev); 6168 6169 if (mps < rq) 6170 rq = mps; 6171 } 6172 6173 v = (ffs(rq) - 8) << 12; 6174 6175 if (bridge->no_inc_mrrs) { 6176 int max_mrrs = pcie_get_readrq(dev); 6177 6178 if (rq > max_mrrs) { 6179 pci_info(dev, "can't set Max_Read_Request_Size to %d; max is %d\n", rq, max_mrrs); 6180 return -EINVAL; 6181 } 6182 } 6183 6184 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 6185 PCI_EXP_DEVCTL_READRQ, v); 6186 6187 return pcibios_err_to_errno(ret); 6188 } 6189 EXPORT_SYMBOL(pcie_set_readrq); 6190 6191 /** 6192 * pcie_get_mps - get PCI Express maximum payload size 6193 * @dev: PCI device to query 6194 * 6195 * Returns maximum payload size in bytes 6196 */ 6197 int pcie_get_mps(struct pci_dev *dev) 6198 { 6199 u16 ctl; 6200 6201 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 6202 6203 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5); 6204 } 6205 EXPORT_SYMBOL(pcie_get_mps); 6206 6207 /** 6208 * pcie_set_mps - set PCI Express maximum payload size 6209 * @dev: PCI device to query 6210 * @mps: maximum payload size in bytes 6211 * valid values are 128, 256, 512, 1024, 2048, 4096 6212 * 6213 * If possible sets maximum payload size 6214 */ 6215 int pcie_set_mps(struct pci_dev *dev, int mps) 6216 { 6217 u16 v; 6218 int ret; 6219 6220 if (mps < 128 || mps > 4096 || !is_power_of_2(mps)) 6221 return -EINVAL; 6222 6223 v = ffs(mps) - 8; 6224 if (v > dev->pcie_mpss) 6225 return -EINVAL; 6226 v <<= 5; 6227 6228 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 6229 PCI_EXP_DEVCTL_PAYLOAD, v); 6230 6231 return pcibios_err_to_errno(ret); 6232 } 6233 EXPORT_SYMBOL(pcie_set_mps); 6234 6235 /** 6236 * pcie_bandwidth_available - determine minimum link settings of a PCIe 6237 * device and its bandwidth limitation 6238 * @dev: PCI device to query 6239 * @limiting_dev: storage for device causing the bandwidth limitation 6240 * @speed: storage for speed of limiting device 6241 * @width: storage for width of limiting device 6242 * 6243 * Walk up the PCI device chain and find the point where the minimum 6244 * bandwidth is available. Return the bandwidth available there and (if 6245 * limiting_dev, speed, and width pointers are supplied) information about 6246 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of 6247 * raw bandwidth. 6248 */ 6249 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev, 6250 enum pci_bus_speed *speed, 6251 enum pcie_link_width *width) 6252 { 6253 u16 lnksta; 6254 enum pci_bus_speed next_speed; 6255 enum pcie_link_width next_width; 6256 u32 bw, next_bw; 6257 6258 if (speed) 6259 *speed = PCI_SPEED_UNKNOWN; 6260 if (width) 6261 *width = PCIE_LNK_WIDTH_UNKNOWN; 6262 6263 bw = 0; 6264 6265 while (dev) { 6266 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta); 6267 6268 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS]; 6269 next_width = FIELD_GET(PCI_EXP_LNKSTA_NLW, lnksta); 6270 6271 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed); 6272 6273 /* Check if current device limits the total bandwidth */ 6274 if (!bw || next_bw <= bw) { 6275 bw = next_bw; 6276 6277 if (limiting_dev) 6278 *limiting_dev = dev; 6279 if (speed) 6280 *speed = next_speed; 6281 if (width) 6282 *width = next_width; 6283 } 6284 6285 dev = pci_upstream_bridge(dev); 6286 } 6287 6288 return bw; 6289 } 6290 EXPORT_SYMBOL(pcie_bandwidth_available); 6291 6292 /** 6293 * pcie_get_speed_cap - query for the PCI device's link speed capability 6294 * @dev: PCI device to query 6295 * 6296 * Query the PCI device speed capability. Return the maximum link speed 6297 * supported by the device. 6298 */ 6299 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev) 6300 { 6301 u32 lnkcap2, lnkcap; 6302 6303 /* 6304 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The 6305 * implementation note there recommends using the Supported Link 6306 * Speeds Vector in Link Capabilities 2 when supported. 6307 * 6308 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software 6309 * should use the Supported Link Speeds field in Link Capabilities, 6310 * where only 2.5 GT/s and 5.0 GT/s speeds were defined. 6311 */ 6312 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2); 6313 6314 /* PCIe r3.0-compliant */ 6315 if (lnkcap2) 6316 return PCIE_LNKCAP2_SLS2SPEED(lnkcap2); 6317 6318 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 6319 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB) 6320 return PCIE_SPEED_5_0GT; 6321 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB) 6322 return PCIE_SPEED_2_5GT; 6323 6324 return PCI_SPEED_UNKNOWN; 6325 } 6326 EXPORT_SYMBOL(pcie_get_speed_cap); 6327 6328 /** 6329 * pcie_get_width_cap - query for the PCI device's link width capability 6330 * @dev: PCI device to query 6331 * 6332 * Query the PCI device width capability. Return the maximum link width 6333 * supported by the device. 6334 */ 6335 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev) 6336 { 6337 u32 lnkcap; 6338 6339 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 6340 if (lnkcap) 6341 return FIELD_GET(PCI_EXP_LNKCAP_MLW, lnkcap); 6342 6343 return PCIE_LNK_WIDTH_UNKNOWN; 6344 } 6345 EXPORT_SYMBOL(pcie_get_width_cap); 6346 6347 /** 6348 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability 6349 * @dev: PCI device 6350 * @speed: storage for link speed 6351 * @width: storage for link width 6352 * 6353 * Calculate a PCI device's link bandwidth by querying for its link speed 6354 * and width, multiplying them, and applying encoding overhead. The result 6355 * is in Mb/s, i.e., megabits/second of raw bandwidth. 6356 */ 6357 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed, 6358 enum pcie_link_width *width) 6359 { 6360 *speed = pcie_get_speed_cap(dev); 6361 *width = pcie_get_width_cap(dev); 6362 6363 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN) 6364 return 0; 6365 6366 return *width * PCIE_SPEED2MBS_ENC(*speed); 6367 } 6368 6369 /** 6370 * __pcie_print_link_status - Report the PCI device's link speed and width 6371 * @dev: PCI device to query 6372 * @verbose: Print info even when enough bandwidth is available 6373 * 6374 * If the available bandwidth at the device is less than the device is 6375 * capable of, report the device's maximum possible bandwidth and the 6376 * upstream link that limits its performance. If @verbose, always print 6377 * the available bandwidth, even if the device isn't constrained. 6378 */ 6379 void __pcie_print_link_status(struct pci_dev *dev, bool verbose) 6380 { 6381 enum pcie_link_width width, width_cap; 6382 enum pci_bus_speed speed, speed_cap; 6383 struct pci_dev *limiting_dev = NULL; 6384 u32 bw_avail, bw_cap; 6385 6386 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap); 6387 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width); 6388 6389 if (bw_avail >= bw_cap && verbose) 6390 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n", 6391 bw_cap / 1000, bw_cap % 1000, 6392 pci_speed_string(speed_cap), width_cap); 6393 else if (bw_avail < bw_cap) 6394 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n", 6395 bw_avail / 1000, bw_avail % 1000, 6396 pci_speed_string(speed), width, 6397 limiting_dev ? pci_name(limiting_dev) : "<unknown>", 6398 bw_cap / 1000, bw_cap % 1000, 6399 pci_speed_string(speed_cap), width_cap); 6400 } 6401 6402 /** 6403 * pcie_print_link_status - Report the PCI device's link speed and width 6404 * @dev: PCI device to query 6405 * 6406 * Report the available bandwidth at the device. 6407 */ 6408 void pcie_print_link_status(struct pci_dev *dev) 6409 { 6410 __pcie_print_link_status(dev, true); 6411 } 6412 EXPORT_SYMBOL(pcie_print_link_status); 6413 6414 /** 6415 * pci_select_bars - Make BAR mask from the type of resource 6416 * @dev: the PCI device for which BAR mask is made 6417 * @flags: resource type mask to be selected 6418 * 6419 * This helper routine makes bar mask from the type of resource. 6420 */ 6421 int pci_select_bars(struct pci_dev *dev, unsigned long flags) 6422 { 6423 int i, bars = 0; 6424 for (i = 0; i < PCI_NUM_RESOURCES; i++) 6425 if (pci_resource_flags(dev, i) & flags) 6426 bars |= (1 << i); 6427 return bars; 6428 } 6429 EXPORT_SYMBOL(pci_select_bars); 6430 6431 /* Some architectures require additional programming to enable VGA */ 6432 static arch_set_vga_state_t arch_set_vga_state; 6433 6434 void __init pci_register_set_vga_state(arch_set_vga_state_t func) 6435 { 6436 arch_set_vga_state = func; /* NULL disables */ 6437 } 6438 6439 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode, 6440 unsigned int command_bits, u32 flags) 6441 { 6442 if (arch_set_vga_state) 6443 return arch_set_vga_state(dev, decode, command_bits, 6444 flags); 6445 return 0; 6446 } 6447 6448 /** 6449 * pci_set_vga_state - set VGA decode state on device and parents if requested 6450 * @dev: the PCI device 6451 * @decode: true = enable decoding, false = disable decoding 6452 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY 6453 * @flags: traverse ancestors and change bridges 6454 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE 6455 */ 6456 int pci_set_vga_state(struct pci_dev *dev, bool decode, 6457 unsigned int command_bits, u32 flags) 6458 { 6459 struct pci_bus *bus; 6460 struct pci_dev *bridge; 6461 u16 cmd; 6462 int rc; 6463 6464 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY))); 6465 6466 /* ARCH specific VGA enables */ 6467 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags); 6468 if (rc) 6469 return rc; 6470 6471 if (flags & PCI_VGA_STATE_CHANGE_DECODES) { 6472 pci_read_config_word(dev, PCI_COMMAND, &cmd); 6473 if (decode) 6474 cmd |= command_bits; 6475 else 6476 cmd &= ~command_bits; 6477 pci_write_config_word(dev, PCI_COMMAND, cmd); 6478 } 6479 6480 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE)) 6481 return 0; 6482 6483 bus = dev->bus; 6484 while (bus) { 6485 bridge = bus->self; 6486 if (bridge) { 6487 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL, 6488 &cmd); 6489 if (decode) 6490 cmd |= PCI_BRIDGE_CTL_VGA; 6491 else 6492 cmd &= ~PCI_BRIDGE_CTL_VGA; 6493 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL, 6494 cmd); 6495 } 6496 bus = bus->parent; 6497 } 6498 return 0; 6499 } 6500 6501 #ifdef CONFIG_ACPI 6502 bool pci_pr3_present(struct pci_dev *pdev) 6503 { 6504 struct acpi_device *adev; 6505 6506 if (acpi_disabled) 6507 return false; 6508 6509 adev = ACPI_COMPANION(&pdev->dev); 6510 if (!adev) 6511 return false; 6512 6513 return adev->power.flags.power_resources && 6514 acpi_has_method(adev->handle, "_PR3"); 6515 } 6516 EXPORT_SYMBOL_GPL(pci_pr3_present); 6517 #endif 6518 6519 /** 6520 * pci_add_dma_alias - Add a DMA devfn alias for a device 6521 * @dev: the PCI device for which alias is added 6522 * @devfn_from: alias slot and function 6523 * @nr_devfns: number of subsequent devfns to alias 6524 * 6525 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask 6526 * which is used to program permissible bus-devfn source addresses for DMA 6527 * requests in an IOMMU. These aliases factor into IOMMU group creation 6528 * and are useful for devices generating DMA requests beyond or different 6529 * from their logical bus-devfn. Examples include device quirks where the 6530 * device simply uses the wrong devfn, as well as non-transparent bridges 6531 * where the alias may be a proxy for devices in another domain. 6532 * 6533 * IOMMU group creation is performed during device discovery or addition, 6534 * prior to any potential DMA mapping and therefore prior to driver probing 6535 * (especially for userspace assigned devices where IOMMU group definition 6536 * cannot be left as a userspace activity). DMA aliases should therefore 6537 * be configured via quirks, such as the PCI fixup header quirk. 6538 */ 6539 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from, 6540 unsigned int nr_devfns) 6541 { 6542 int devfn_to; 6543 6544 nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from); 6545 devfn_to = devfn_from + nr_devfns - 1; 6546 6547 if (!dev->dma_alias_mask) 6548 dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL); 6549 if (!dev->dma_alias_mask) { 6550 pci_warn(dev, "Unable to allocate DMA alias mask\n"); 6551 return; 6552 } 6553 6554 bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns); 6555 6556 if (nr_devfns == 1) 6557 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n", 6558 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from)); 6559 else if (nr_devfns > 1) 6560 pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n", 6561 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from), 6562 PCI_SLOT(devfn_to), PCI_FUNC(devfn_to)); 6563 } 6564 6565 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2) 6566 { 6567 return (dev1->dma_alias_mask && 6568 test_bit(dev2->devfn, dev1->dma_alias_mask)) || 6569 (dev2->dma_alias_mask && 6570 test_bit(dev1->devfn, dev2->dma_alias_mask)) || 6571 pci_real_dma_dev(dev1) == dev2 || 6572 pci_real_dma_dev(dev2) == dev1; 6573 } 6574 6575 bool pci_device_is_present(struct pci_dev *pdev) 6576 { 6577 u32 v; 6578 6579 /* Check PF if pdev is a VF, since VF Vendor/Device IDs are 0xffff */ 6580 pdev = pci_physfn(pdev); 6581 if (pci_dev_is_disconnected(pdev)) 6582 return false; 6583 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0); 6584 } 6585 EXPORT_SYMBOL_GPL(pci_device_is_present); 6586 6587 void pci_ignore_hotplug(struct pci_dev *dev) 6588 { 6589 struct pci_dev *bridge = dev->bus->self; 6590 6591 dev->ignore_hotplug = 1; 6592 /* Propagate the "ignore hotplug" setting to the parent bridge. */ 6593 if (bridge) 6594 bridge->ignore_hotplug = 1; 6595 } 6596 EXPORT_SYMBOL_GPL(pci_ignore_hotplug); 6597 6598 /** 6599 * pci_real_dma_dev - Get PCI DMA device for PCI device 6600 * @dev: the PCI device that may have a PCI DMA alias 6601 * 6602 * Permits the platform to provide architecture-specific functionality to 6603 * devices needing to alias DMA to another PCI device on another PCI bus. If 6604 * the PCI device is on the same bus, it is recommended to use 6605 * pci_add_dma_alias(). This is the default implementation. Architecture 6606 * implementations can override this. 6607 */ 6608 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev) 6609 { 6610 return dev; 6611 } 6612 6613 resource_size_t __weak pcibios_default_alignment(void) 6614 { 6615 return 0; 6616 } 6617 6618 /* 6619 * Arches that don't want to expose struct resource to userland as-is in 6620 * sysfs and /proc can implement their own pci_resource_to_user(). 6621 */ 6622 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar, 6623 const struct resource *rsrc, 6624 resource_size_t *start, resource_size_t *end) 6625 { 6626 *start = rsrc->start; 6627 *end = rsrc->end; 6628 } 6629 6630 static char *resource_alignment_param; 6631 static DEFINE_SPINLOCK(resource_alignment_lock); 6632 6633 /** 6634 * pci_specified_resource_alignment - get resource alignment specified by user. 6635 * @dev: the PCI device to get 6636 * @resize: whether or not to change resources' size when reassigning alignment 6637 * 6638 * RETURNS: Resource alignment if it is specified. 6639 * Zero if it is not specified. 6640 */ 6641 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev, 6642 bool *resize) 6643 { 6644 int align_order, count; 6645 resource_size_t align = pcibios_default_alignment(); 6646 const char *p; 6647 int ret; 6648 6649 spin_lock(&resource_alignment_lock); 6650 p = resource_alignment_param; 6651 if (!p || !*p) 6652 goto out; 6653 if (pci_has_flag(PCI_PROBE_ONLY)) { 6654 align = 0; 6655 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n"); 6656 goto out; 6657 } 6658 6659 while (*p) { 6660 count = 0; 6661 if (sscanf(p, "%d%n", &align_order, &count) == 1 && 6662 p[count] == '@') { 6663 p += count + 1; 6664 if (align_order > 63) { 6665 pr_err("PCI: Invalid requested alignment (order %d)\n", 6666 align_order); 6667 align_order = PAGE_SHIFT; 6668 } 6669 } else { 6670 align_order = PAGE_SHIFT; 6671 } 6672 6673 ret = pci_dev_str_match(dev, p, &p); 6674 if (ret == 1) { 6675 *resize = true; 6676 align = 1ULL << align_order; 6677 break; 6678 } else if (ret < 0) { 6679 pr_err("PCI: Can't parse resource_alignment parameter: %s\n", 6680 p); 6681 break; 6682 } 6683 6684 if (*p != ';' && *p != ',') { 6685 /* End of param or invalid format */ 6686 break; 6687 } 6688 p++; 6689 } 6690 out: 6691 spin_unlock(&resource_alignment_lock); 6692 return align; 6693 } 6694 6695 static void pci_request_resource_alignment(struct pci_dev *dev, int bar, 6696 resource_size_t align, bool resize) 6697 { 6698 struct resource *r = &dev->resource[bar]; 6699 resource_size_t size; 6700 6701 if (!(r->flags & IORESOURCE_MEM)) 6702 return; 6703 6704 if (r->flags & IORESOURCE_PCI_FIXED) { 6705 pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n", 6706 bar, r, (unsigned long long)align); 6707 return; 6708 } 6709 6710 size = resource_size(r); 6711 if (size >= align) 6712 return; 6713 6714 /* 6715 * Increase the alignment of the resource. There are two ways we 6716 * can do this: 6717 * 6718 * 1) Increase the size of the resource. BARs are aligned on their 6719 * size, so when we reallocate space for this resource, we'll 6720 * allocate it with the larger alignment. This also prevents 6721 * assignment of any other BARs inside the alignment region, so 6722 * if we're requesting page alignment, this means no other BARs 6723 * will share the page. 6724 * 6725 * The disadvantage is that this makes the resource larger than 6726 * the hardware BAR, which may break drivers that compute things 6727 * based on the resource size, e.g., to find registers at a 6728 * fixed offset before the end of the BAR. 6729 * 6730 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and 6731 * set r->start to the desired alignment. By itself this 6732 * doesn't prevent other BARs being put inside the alignment 6733 * region, but if we realign *every* resource of every device in 6734 * the system, none of them will share an alignment region. 6735 * 6736 * When the user has requested alignment for only some devices via 6737 * the "pci=resource_alignment" argument, "resize" is true and we 6738 * use the first method. Otherwise we assume we're aligning all 6739 * devices and we use the second. 6740 */ 6741 6742 pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n", 6743 bar, r, (unsigned long long)align); 6744 6745 if (resize) { 6746 r->start = 0; 6747 r->end = align - 1; 6748 } else { 6749 r->flags &= ~IORESOURCE_SIZEALIGN; 6750 r->flags |= IORESOURCE_STARTALIGN; 6751 r->start = align; 6752 r->end = r->start + size - 1; 6753 } 6754 r->flags |= IORESOURCE_UNSET; 6755 } 6756 6757 /* 6758 * This function disables memory decoding and releases memory resources 6759 * of the device specified by kernel's boot parameter 'pci=resource_alignment='. 6760 * It also rounds up size to specified alignment. 6761 * Later on, the kernel will assign page-aligned memory resource back 6762 * to the device. 6763 */ 6764 void pci_reassigndev_resource_alignment(struct pci_dev *dev) 6765 { 6766 int i; 6767 struct resource *r; 6768 resource_size_t align; 6769 u16 command; 6770 bool resize = false; 6771 6772 /* 6773 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec 6774 * 3.4.1.11. Their resources are allocated from the space 6775 * described by the VF BARx register in the PF's SR-IOV capability. 6776 * We can't influence their alignment here. 6777 */ 6778 if (dev->is_virtfn) 6779 return; 6780 6781 /* check if specified PCI is target device to reassign */ 6782 align = pci_specified_resource_alignment(dev, &resize); 6783 if (!align) 6784 return; 6785 6786 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL && 6787 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) { 6788 pci_warn(dev, "Can't reassign resources to host bridge\n"); 6789 return; 6790 } 6791 6792 pci_read_config_word(dev, PCI_COMMAND, &command); 6793 command &= ~PCI_COMMAND_MEMORY; 6794 pci_write_config_word(dev, PCI_COMMAND, command); 6795 6796 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 6797 pci_request_resource_alignment(dev, i, align, resize); 6798 6799 /* 6800 * Need to disable bridge's resource window, 6801 * to enable the kernel to reassign new resource 6802 * window later on. 6803 */ 6804 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 6805 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) { 6806 r = &dev->resource[i]; 6807 if (!(r->flags & IORESOURCE_MEM)) 6808 continue; 6809 r->flags |= IORESOURCE_UNSET; 6810 r->end = resource_size(r) - 1; 6811 r->start = 0; 6812 } 6813 pci_disable_bridge_window(dev); 6814 } 6815 } 6816 6817 static ssize_t resource_alignment_show(const struct bus_type *bus, char *buf) 6818 { 6819 size_t count = 0; 6820 6821 spin_lock(&resource_alignment_lock); 6822 if (resource_alignment_param) 6823 count = sysfs_emit(buf, "%s\n", resource_alignment_param); 6824 spin_unlock(&resource_alignment_lock); 6825 6826 return count; 6827 } 6828 6829 static ssize_t resource_alignment_store(const struct bus_type *bus, 6830 const char *buf, size_t count) 6831 { 6832 char *param, *old, *end; 6833 6834 if (count >= (PAGE_SIZE - 1)) 6835 return -EINVAL; 6836 6837 param = kstrndup(buf, count, GFP_KERNEL); 6838 if (!param) 6839 return -ENOMEM; 6840 6841 end = strchr(param, '\n'); 6842 if (end) 6843 *end = '\0'; 6844 6845 spin_lock(&resource_alignment_lock); 6846 old = resource_alignment_param; 6847 if (strlen(param)) { 6848 resource_alignment_param = param; 6849 } else { 6850 kfree(param); 6851 resource_alignment_param = NULL; 6852 } 6853 spin_unlock(&resource_alignment_lock); 6854 6855 kfree(old); 6856 6857 return count; 6858 } 6859 6860 static BUS_ATTR_RW(resource_alignment); 6861 6862 static int __init pci_resource_alignment_sysfs_init(void) 6863 { 6864 return bus_create_file(&pci_bus_type, 6865 &bus_attr_resource_alignment); 6866 } 6867 late_initcall(pci_resource_alignment_sysfs_init); 6868 6869 static void pci_no_domains(void) 6870 { 6871 #ifdef CONFIG_PCI_DOMAINS 6872 pci_domains_supported = 0; 6873 #endif 6874 } 6875 6876 #ifdef CONFIG_PCI_DOMAINS_GENERIC 6877 static DEFINE_IDA(pci_domain_nr_static_ida); 6878 static DEFINE_IDA(pci_domain_nr_dynamic_ida); 6879 6880 static void of_pci_reserve_static_domain_nr(void) 6881 { 6882 struct device_node *np; 6883 int domain_nr; 6884 6885 for_each_node_by_type(np, "pci") { 6886 domain_nr = of_get_pci_domain_nr(np); 6887 if (domain_nr < 0) 6888 continue; 6889 /* 6890 * Permanently allocate domain_nr in dynamic_ida 6891 * to prevent it from dynamic allocation. 6892 */ 6893 ida_alloc_range(&pci_domain_nr_dynamic_ida, 6894 domain_nr, domain_nr, GFP_KERNEL); 6895 } 6896 } 6897 6898 static int of_pci_bus_find_domain_nr(struct device *parent) 6899 { 6900 static bool static_domains_reserved = false; 6901 int domain_nr; 6902 6903 /* On the first call scan device tree for static allocations. */ 6904 if (!static_domains_reserved) { 6905 of_pci_reserve_static_domain_nr(); 6906 static_domains_reserved = true; 6907 } 6908 6909 if (parent) { 6910 /* 6911 * If domain is in DT, allocate it in static IDA. This 6912 * prevents duplicate static allocations in case of errors 6913 * in DT. 6914 */ 6915 domain_nr = of_get_pci_domain_nr(parent->of_node); 6916 if (domain_nr >= 0) 6917 return ida_alloc_range(&pci_domain_nr_static_ida, 6918 domain_nr, domain_nr, 6919 GFP_KERNEL); 6920 } 6921 6922 /* 6923 * If domain was not specified in DT, choose a free ID from dynamic 6924 * allocations. All domain numbers from DT are permanently in 6925 * dynamic allocations to prevent assigning them to other DT nodes 6926 * without static domain. 6927 */ 6928 return ida_alloc(&pci_domain_nr_dynamic_ida, GFP_KERNEL); 6929 } 6930 6931 static void of_pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent) 6932 { 6933 if (bus->domain_nr < 0) 6934 return; 6935 6936 /* Release domain from IDA where it was allocated. */ 6937 if (of_get_pci_domain_nr(parent->of_node) == bus->domain_nr) 6938 ida_free(&pci_domain_nr_static_ida, bus->domain_nr); 6939 else 6940 ida_free(&pci_domain_nr_dynamic_ida, bus->domain_nr); 6941 } 6942 6943 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent) 6944 { 6945 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) : 6946 acpi_pci_bus_find_domain_nr(bus); 6947 } 6948 6949 void pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent) 6950 { 6951 if (!acpi_disabled) 6952 return; 6953 of_pci_bus_release_domain_nr(bus, parent); 6954 } 6955 #endif 6956 6957 /** 6958 * pci_ext_cfg_avail - can we access extended PCI config space? 6959 * 6960 * Returns 1 if we can access PCI extended config space (offsets 6961 * greater than 0xff). This is the default implementation. Architecture 6962 * implementations can override this. 6963 */ 6964 int __weak pci_ext_cfg_avail(void) 6965 { 6966 return 1; 6967 } 6968 6969 void __weak pci_fixup_cardbus(struct pci_bus *bus) 6970 { 6971 } 6972 EXPORT_SYMBOL(pci_fixup_cardbus); 6973 6974 static int __init pci_setup(char *str) 6975 { 6976 while (str) { 6977 char *k = strchr(str, ','); 6978 if (k) 6979 *k++ = 0; 6980 if (*str && (str = pcibios_setup(str)) && *str) { 6981 if (!strcmp(str, "nomsi")) { 6982 pci_no_msi(); 6983 } else if (!strncmp(str, "noats", 5)) { 6984 pr_info("PCIe: ATS is disabled\n"); 6985 pcie_ats_disabled = true; 6986 } else if (!strcmp(str, "noaer")) { 6987 pci_no_aer(); 6988 } else if (!strcmp(str, "earlydump")) { 6989 pci_early_dump = true; 6990 } else if (!strncmp(str, "realloc=", 8)) { 6991 pci_realloc_get_opt(str + 8); 6992 } else if (!strncmp(str, "realloc", 7)) { 6993 pci_realloc_get_opt("on"); 6994 } else if (!strcmp(str, "nodomains")) { 6995 pci_no_domains(); 6996 } else if (!strncmp(str, "noari", 5)) { 6997 pcie_ari_disabled = true; 6998 } else if (!strncmp(str, "cbiosize=", 9)) { 6999 pci_cardbus_io_size = memparse(str + 9, &str); 7000 } else if (!strncmp(str, "cbmemsize=", 10)) { 7001 pci_cardbus_mem_size = memparse(str + 10, &str); 7002 } else if (!strncmp(str, "resource_alignment=", 19)) { 7003 resource_alignment_param = str + 19; 7004 } else if (!strncmp(str, "ecrc=", 5)) { 7005 pcie_ecrc_get_policy(str + 5); 7006 } else if (!strncmp(str, "hpiosize=", 9)) { 7007 pci_hotplug_io_size = memparse(str + 9, &str); 7008 } else if (!strncmp(str, "hpmmiosize=", 11)) { 7009 pci_hotplug_mmio_size = memparse(str + 11, &str); 7010 } else if (!strncmp(str, "hpmmioprefsize=", 15)) { 7011 pci_hotplug_mmio_pref_size = memparse(str + 15, &str); 7012 } else if (!strncmp(str, "hpmemsize=", 10)) { 7013 pci_hotplug_mmio_size = memparse(str + 10, &str); 7014 pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size; 7015 } else if (!strncmp(str, "hpbussize=", 10)) { 7016 pci_hotplug_bus_size = 7017 simple_strtoul(str + 10, &str, 0); 7018 if (pci_hotplug_bus_size > 0xff) 7019 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 7020 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) { 7021 pcie_bus_config = PCIE_BUS_TUNE_OFF; 7022 } else if (!strncmp(str, "pcie_bus_safe", 13)) { 7023 pcie_bus_config = PCIE_BUS_SAFE; 7024 } else if (!strncmp(str, "pcie_bus_perf", 13)) { 7025 pcie_bus_config = PCIE_BUS_PERFORMANCE; 7026 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) { 7027 pcie_bus_config = PCIE_BUS_PEER2PEER; 7028 } else if (!strncmp(str, "pcie_scan_all", 13)) { 7029 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS); 7030 } else if (!strncmp(str, "disable_acs_redir=", 18)) { 7031 disable_acs_redir_param = str + 18; 7032 } else { 7033 pr_err("PCI: Unknown option `%s'\n", str); 7034 } 7035 } 7036 str = k; 7037 } 7038 return 0; 7039 } 7040 early_param("pci", pci_setup); 7041 7042 /* 7043 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized 7044 * in pci_setup(), above, to point to data in the __initdata section which 7045 * will be freed after the init sequence is complete. We can't allocate memory 7046 * in pci_setup() because some architectures do not have any memory allocation 7047 * service available during an early_param() call. So we allocate memory and 7048 * copy the variable here before the init section is freed. 7049 * 7050 */ 7051 static int __init pci_realloc_setup_params(void) 7052 { 7053 resource_alignment_param = kstrdup(resource_alignment_param, 7054 GFP_KERNEL); 7055 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL); 7056 7057 return 0; 7058 } 7059 pure_initcall(pci_realloc_setup_params); 7060