xref: /openbmc/linux/drivers/pci/pci.c (revision 384740dc)
1 /*
2  *	PCI Bus Services, see include/linux/pci.h for further explanation.
3  *
4  *	Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5  *	David Mosberger-Tang
6  *
7  *	Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/pci.h>
14 #include <linux/pm.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/string.h>
18 #include <linux/log2.h>
19 #include <linux/pci-aspm.h>
20 #include <linux/pm_wakeup.h>
21 #include <asm/dma.h>	/* isa_dma_bridge_buggy */
22 #include "pci.h"
23 
24 unsigned int pci_pm_d3_delay = 10;
25 
26 #ifdef CONFIG_PCI_DOMAINS
27 int pci_domains_supported = 1;
28 #endif
29 
30 #define DEFAULT_CARDBUS_IO_SIZE		(256)
31 #define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
32 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
33 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
34 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
35 
36 /**
37  * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
38  * @bus: pointer to PCI bus structure to search
39  *
40  * Given a PCI bus, returns the highest PCI bus number present in the set
41  * including the given PCI bus and its list of child PCI buses.
42  */
43 unsigned char pci_bus_max_busnr(struct pci_bus* bus)
44 {
45 	struct list_head *tmp;
46 	unsigned char max, n;
47 
48 	max = bus->subordinate;
49 	list_for_each(tmp, &bus->children) {
50 		n = pci_bus_max_busnr(pci_bus_b(tmp));
51 		if(n > max)
52 			max = n;
53 	}
54 	return max;
55 }
56 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
57 
58 #if 0
59 /**
60  * pci_max_busnr - returns maximum PCI bus number
61  *
62  * Returns the highest PCI bus number present in the system global list of
63  * PCI buses.
64  */
65 unsigned char __devinit
66 pci_max_busnr(void)
67 {
68 	struct pci_bus *bus = NULL;
69 	unsigned char max, n;
70 
71 	max = 0;
72 	while ((bus = pci_find_next_bus(bus)) != NULL) {
73 		n = pci_bus_max_busnr(bus);
74 		if(n > max)
75 			max = n;
76 	}
77 	return max;
78 }
79 
80 #endif  /*  0  */
81 
82 #define PCI_FIND_CAP_TTL	48
83 
84 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
85 				   u8 pos, int cap, int *ttl)
86 {
87 	u8 id;
88 
89 	while ((*ttl)--) {
90 		pci_bus_read_config_byte(bus, devfn, pos, &pos);
91 		if (pos < 0x40)
92 			break;
93 		pos &= ~3;
94 		pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID,
95 					 &id);
96 		if (id == 0xff)
97 			break;
98 		if (id == cap)
99 			return pos;
100 		pos += PCI_CAP_LIST_NEXT;
101 	}
102 	return 0;
103 }
104 
105 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
106 			       u8 pos, int cap)
107 {
108 	int ttl = PCI_FIND_CAP_TTL;
109 
110 	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
111 }
112 
113 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
114 {
115 	return __pci_find_next_cap(dev->bus, dev->devfn,
116 				   pos + PCI_CAP_LIST_NEXT, cap);
117 }
118 EXPORT_SYMBOL_GPL(pci_find_next_capability);
119 
120 static int __pci_bus_find_cap_start(struct pci_bus *bus,
121 				    unsigned int devfn, u8 hdr_type)
122 {
123 	u16 status;
124 
125 	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
126 	if (!(status & PCI_STATUS_CAP_LIST))
127 		return 0;
128 
129 	switch (hdr_type) {
130 	case PCI_HEADER_TYPE_NORMAL:
131 	case PCI_HEADER_TYPE_BRIDGE:
132 		return PCI_CAPABILITY_LIST;
133 	case PCI_HEADER_TYPE_CARDBUS:
134 		return PCI_CB_CAPABILITY_LIST;
135 	default:
136 		return 0;
137 	}
138 
139 	return 0;
140 }
141 
142 /**
143  * pci_find_capability - query for devices' capabilities
144  * @dev: PCI device to query
145  * @cap: capability code
146  *
147  * Tell if a device supports a given PCI capability.
148  * Returns the address of the requested capability structure within the
149  * device's PCI configuration space or 0 in case the device does not
150  * support it.  Possible values for @cap:
151  *
152  *  %PCI_CAP_ID_PM           Power Management
153  *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
154  *  %PCI_CAP_ID_VPD          Vital Product Data
155  *  %PCI_CAP_ID_SLOTID       Slot Identification
156  *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
157  *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
158  *  %PCI_CAP_ID_PCIX         PCI-X
159  *  %PCI_CAP_ID_EXP          PCI Express
160  */
161 int pci_find_capability(struct pci_dev *dev, int cap)
162 {
163 	int pos;
164 
165 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
166 	if (pos)
167 		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
168 
169 	return pos;
170 }
171 
172 /**
173  * pci_bus_find_capability - query for devices' capabilities
174  * @bus:   the PCI bus to query
175  * @devfn: PCI device to query
176  * @cap:   capability code
177  *
178  * Like pci_find_capability() but works for pci devices that do not have a
179  * pci_dev structure set up yet.
180  *
181  * Returns the address of the requested capability structure within the
182  * device's PCI configuration space or 0 in case the device does not
183  * support it.
184  */
185 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
186 {
187 	int pos;
188 	u8 hdr_type;
189 
190 	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
191 
192 	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
193 	if (pos)
194 		pos = __pci_find_next_cap(bus, devfn, pos, cap);
195 
196 	return pos;
197 }
198 
199 /**
200  * pci_find_ext_capability - Find an extended capability
201  * @dev: PCI device to query
202  * @cap: capability code
203  *
204  * Returns the address of the requested extended capability structure
205  * within the device's PCI configuration space or 0 if the device does
206  * not support it.  Possible values for @cap:
207  *
208  *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
209  *  %PCI_EXT_CAP_ID_VC		Virtual Channel
210  *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
211  *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
212  */
213 int pci_find_ext_capability(struct pci_dev *dev, int cap)
214 {
215 	u32 header;
216 	int ttl = 480; /* 3840 bytes, minimum 8 bytes per capability */
217 	int pos = 0x100;
218 
219 	if (dev->cfg_size <= 256)
220 		return 0;
221 
222 	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
223 		return 0;
224 
225 	/*
226 	 * If we have no capabilities, this is indicated by cap ID,
227 	 * cap version and next pointer all being 0.
228 	 */
229 	if (header == 0)
230 		return 0;
231 
232 	while (ttl-- > 0) {
233 		if (PCI_EXT_CAP_ID(header) == cap)
234 			return pos;
235 
236 		pos = PCI_EXT_CAP_NEXT(header);
237 		if (pos < 0x100)
238 			break;
239 
240 		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
241 			break;
242 	}
243 
244 	return 0;
245 }
246 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
247 
248 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
249 {
250 	int rc, ttl = PCI_FIND_CAP_TTL;
251 	u8 cap, mask;
252 
253 	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
254 		mask = HT_3BIT_CAP_MASK;
255 	else
256 		mask = HT_5BIT_CAP_MASK;
257 
258 	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
259 				      PCI_CAP_ID_HT, &ttl);
260 	while (pos) {
261 		rc = pci_read_config_byte(dev, pos + 3, &cap);
262 		if (rc != PCIBIOS_SUCCESSFUL)
263 			return 0;
264 
265 		if ((cap & mask) == ht_cap)
266 			return pos;
267 
268 		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
269 					      pos + PCI_CAP_LIST_NEXT,
270 					      PCI_CAP_ID_HT, &ttl);
271 	}
272 
273 	return 0;
274 }
275 /**
276  * pci_find_next_ht_capability - query a device's Hypertransport capabilities
277  * @dev: PCI device to query
278  * @pos: Position from which to continue searching
279  * @ht_cap: Hypertransport capability code
280  *
281  * To be used in conjunction with pci_find_ht_capability() to search for
282  * all capabilities matching @ht_cap. @pos should always be a value returned
283  * from pci_find_ht_capability().
284  *
285  * NB. To be 100% safe against broken PCI devices, the caller should take
286  * steps to avoid an infinite loop.
287  */
288 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
289 {
290 	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
291 }
292 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
293 
294 /**
295  * pci_find_ht_capability - query a device's Hypertransport capabilities
296  * @dev: PCI device to query
297  * @ht_cap: Hypertransport capability code
298  *
299  * Tell if a device supports a given Hypertransport capability.
300  * Returns an address within the device's PCI configuration space
301  * or 0 in case the device does not support the request capability.
302  * The address points to the PCI capability, of type PCI_CAP_ID_HT,
303  * which has a Hypertransport capability matching @ht_cap.
304  */
305 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
306 {
307 	int pos;
308 
309 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
310 	if (pos)
311 		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
312 
313 	return pos;
314 }
315 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
316 
317 /**
318  * pci_find_parent_resource - return resource region of parent bus of given region
319  * @dev: PCI device structure contains resources to be searched
320  * @res: child resource record for which parent is sought
321  *
322  *  For given resource region of given device, return the resource
323  *  region of parent bus the given region is contained in or where
324  *  it should be allocated from.
325  */
326 struct resource *
327 pci_find_parent_resource(const struct pci_dev *dev, struct resource *res)
328 {
329 	const struct pci_bus *bus = dev->bus;
330 	int i;
331 	struct resource *best = NULL;
332 
333 	for(i = 0; i < PCI_BUS_NUM_RESOURCES; i++) {
334 		struct resource *r = bus->resource[i];
335 		if (!r)
336 			continue;
337 		if (res->start && !(res->start >= r->start && res->end <= r->end))
338 			continue;	/* Not contained */
339 		if ((res->flags ^ r->flags) & (IORESOURCE_IO | IORESOURCE_MEM))
340 			continue;	/* Wrong type */
341 		if (!((res->flags ^ r->flags) & IORESOURCE_PREFETCH))
342 			return r;	/* Exact match */
343 		if ((res->flags & IORESOURCE_PREFETCH) && !(r->flags & IORESOURCE_PREFETCH))
344 			best = r;	/* Approximating prefetchable by non-prefetchable */
345 	}
346 	return best;
347 }
348 
349 /**
350  * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
351  * @dev: PCI device to have its BARs restored
352  *
353  * Restore the BAR values for a given device, so as to make it
354  * accessible by its driver.
355  */
356 static void
357 pci_restore_bars(struct pci_dev *dev)
358 {
359 	int i, numres;
360 
361 	switch (dev->hdr_type) {
362 	case PCI_HEADER_TYPE_NORMAL:
363 		numres = 6;
364 		break;
365 	case PCI_HEADER_TYPE_BRIDGE:
366 		numres = 2;
367 		break;
368 	case PCI_HEADER_TYPE_CARDBUS:
369 		numres = 1;
370 		break;
371 	default:
372 		/* Should never get here, but just in case... */
373 		return;
374 	}
375 
376 	for (i = 0; i < numres; i ++)
377 		pci_update_resource(dev, &dev->resource[i], i);
378 }
379 
380 static struct pci_platform_pm_ops *pci_platform_pm;
381 
382 int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
383 {
384 	if (!ops->is_manageable || !ops->set_state || !ops->choose_state
385 	    || !ops->sleep_wake || !ops->can_wakeup)
386 		return -EINVAL;
387 	pci_platform_pm = ops;
388 	return 0;
389 }
390 
391 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
392 {
393 	return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
394 }
395 
396 static inline int platform_pci_set_power_state(struct pci_dev *dev,
397                                                 pci_power_t t)
398 {
399 	return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
400 }
401 
402 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
403 {
404 	return pci_platform_pm ?
405 			pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
406 }
407 
408 static inline bool platform_pci_can_wakeup(struct pci_dev *dev)
409 {
410 	return pci_platform_pm ? pci_platform_pm->can_wakeup(dev) : false;
411 }
412 
413 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
414 {
415 	return pci_platform_pm ?
416 			pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
417 }
418 
419 /**
420  * pci_raw_set_power_state - Use PCI PM registers to set the power state of
421  *                           given PCI device
422  * @dev: PCI device to handle.
423  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
424  *
425  * RETURN VALUE:
426  * -EINVAL if the requested state is invalid.
427  * -EIO if device does not support PCI PM or its PM capabilities register has a
428  * wrong version, or device doesn't support the requested state.
429  * 0 if device already is in the requested state.
430  * 0 if device's power state has been successfully changed.
431  */
432 static int
433 pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
434 {
435 	u16 pmcsr;
436 	bool need_restore = false;
437 
438 	if (!dev->pm_cap)
439 		return -EIO;
440 
441 	if (state < PCI_D0 || state > PCI_D3hot)
442 		return -EINVAL;
443 
444 	/* Validate current state:
445 	 * Can enter D0 from any state, but if we can only go deeper
446 	 * to sleep if we're already in a low power state
447 	 */
448 	if (dev->current_state == state) {
449 		/* we're already there */
450 		return 0;
451 	} else if (state != PCI_D0 && dev->current_state <= PCI_D3cold
452 	    && dev->current_state > state) {
453 		dev_err(&dev->dev, "invalid power transition "
454 			"(from state %d to %d)\n", dev->current_state, state);
455 		return -EINVAL;
456 	}
457 
458 	/* check if this device supports the desired state */
459 	if ((state == PCI_D1 && !dev->d1_support)
460 	   || (state == PCI_D2 && !dev->d2_support))
461 		return -EIO;
462 
463 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
464 
465 	/* If we're (effectively) in D3, force entire word to 0.
466 	 * This doesn't affect PME_Status, disables PME_En, and
467 	 * sets PowerState to 0.
468 	 */
469 	switch (dev->current_state) {
470 	case PCI_D0:
471 	case PCI_D1:
472 	case PCI_D2:
473 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
474 		pmcsr |= state;
475 		break;
476 	case PCI_UNKNOWN: /* Boot-up */
477 		if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
478 		 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
479 			need_restore = true;
480 		/* Fall-through: force to D0 */
481 	default:
482 		pmcsr = 0;
483 		break;
484 	}
485 
486 	/* enter specified state */
487 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
488 
489 	/* Mandatory power management transition delays */
490 	/* see PCI PM 1.1 5.6.1 table 18 */
491 	if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
492 		msleep(pci_pm_d3_delay);
493 	else if (state == PCI_D2 || dev->current_state == PCI_D2)
494 		udelay(200);
495 
496 	dev->current_state = state;
497 
498 	/* According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
499 	 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
500 	 * from D3hot to D0 _may_ perform an internal reset, thereby
501 	 * going to "D0 Uninitialized" rather than "D0 Initialized".
502 	 * For example, at least some versions of the 3c905B and the
503 	 * 3c556B exhibit this behaviour.
504 	 *
505 	 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
506 	 * devices in a D3hot state at boot.  Consequently, we need to
507 	 * restore at least the BARs so that the device will be
508 	 * accessible to its driver.
509 	 */
510 	if (need_restore)
511 		pci_restore_bars(dev);
512 
513 	if (dev->bus->self)
514 		pcie_aspm_pm_state_change(dev->bus->self);
515 
516 	return 0;
517 }
518 
519 /**
520  * pci_update_current_state - Read PCI power state of given device from its
521  *                            PCI PM registers and cache it
522  * @dev: PCI device to handle.
523  */
524 static void pci_update_current_state(struct pci_dev *dev)
525 {
526 	if (dev->pm_cap) {
527 		u16 pmcsr;
528 
529 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
530 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
531 	}
532 }
533 
534 /**
535  * pci_set_power_state - Set the power state of a PCI device
536  * @dev: PCI device to handle.
537  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
538  *
539  * Transition a device to a new power state, using the platform formware and/or
540  * the device's PCI PM registers.
541  *
542  * RETURN VALUE:
543  * -EINVAL if the requested state is invalid.
544  * -EIO if device does not support PCI PM or its PM capabilities register has a
545  * wrong version, or device doesn't support the requested state.
546  * 0 if device already is in the requested state.
547  * 0 if device's power state has been successfully changed.
548  */
549 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
550 {
551 	int error;
552 
553 	/* bound the state we're entering */
554 	if (state > PCI_D3hot)
555 		state = PCI_D3hot;
556 	else if (state < PCI_D0)
557 		state = PCI_D0;
558 	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
559 		/*
560 		 * If the device or the parent bridge do not support PCI PM,
561 		 * ignore the request if we're doing anything other than putting
562 		 * it into D0 (which would only happen on boot).
563 		 */
564 		return 0;
565 
566 	if (state == PCI_D0 && platform_pci_power_manageable(dev)) {
567 		/*
568 		 * Allow the platform to change the state, for example via ACPI
569 		 * _PR0, _PS0 and some such, but do not trust it.
570 		 */
571 		int ret = platform_pci_set_power_state(dev, PCI_D0);
572 		if (!ret)
573 			pci_update_current_state(dev);
574 	}
575 	/* This device is quirked not to be put into D3, so
576 	   don't put it in D3 */
577 	if (state == PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
578 		return 0;
579 
580 	error = pci_raw_set_power_state(dev, state);
581 
582 	if (state > PCI_D0 && platform_pci_power_manageable(dev)) {
583 		/* Allow the platform to finalize the transition */
584 		int ret = platform_pci_set_power_state(dev, state);
585 		if (!ret) {
586 			pci_update_current_state(dev);
587 			error = 0;
588 		}
589 	}
590 
591 	return error;
592 }
593 
594 /**
595  * pci_choose_state - Choose the power state of a PCI device
596  * @dev: PCI device to be suspended
597  * @state: target sleep state for the whole system. This is the value
598  *	that is passed to suspend() function.
599  *
600  * Returns PCI power state suitable for given device and given system
601  * message.
602  */
603 
604 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
605 {
606 	pci_power_t ret;
607 
608 	if (!pci_find_capability(dev, PCI_CAP_ID_PM))
609 		return PCI_D0;
610 
611 	ret = platform_pci_choose_state(dev);
612 	if (ret != PCI_POWER_ERROR)
613 		return ret;
614 
615 	switch (state.event) {
616 	case PM_EVENT_ON:
617 		return PCI_D0;
618 	case PM_EVENT_FREEZE:
619 	case PM_EVENT_PRETHAW:
620 		/* REVISIT both freeze and pre-thaw "should" use D0 */
621 	case PM_EVENT_SUSPEND:
622 	case PM_EVENT_HIBERNATE:
623 		return PCI_D3hot;
624 	default:
625 		dev_info(&dev->dev, "unrecognized suspend event %d\n",
626 			 state.event);
627 		BUG();
628 	}
629 	return PCI_D0;
630 }
631 
632 EXPORT_SYMBOL(pci_choose_state);
633 
634 static int pci_save_pcie_state(struct pci_dev *dev)
635 {
636 	int pos, i = 0;
637 	struct pci_cap_saved_state *save_state;
638 	u16 *cap;
639 	int found = 0;
640 
641 	pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
642 	if (pos <= 0)
643 		return 0;
644 
645 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
646 	if (!save_state)
647 		save_state = kzalloc(sizeof(*save_state) + sizeof(u16) * 4, GFP_KERNEL);
648 	else
649 		found = 1;
650 	if (!save_state) {
651 		dev_err(&dev->dev, "out of memory in pci_save_pcie_state\n");
652 		return -ENOMEM;
653 	}
654 	cap = (u16 *)&save_state->data[0];
655 
656 	pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &cap[i++]);
657 	pci_read_config_word(dev, pos + PCI_EXP_LNKCTL, &cap[i++]);
658 	pci_read_config_word(dev, pos + PCI_EXP_SLTCTL, &cap[i++]);
659 	pci_read_config_word(dev, pos + PCI_EXP_RTCTL, &cap[i++]);
660 	save_state->cap_nr = PCI_CAP_ID_EXP;
661 	if (!found)
662 		pci_add_saved_cap(dev, save_state);
663 	return 0;
664 }
665 
666 static void pci_restore_pcie_state(struct pci_dev *dev)
667 {
668 	int i = 0, pos;
669 	struct pci_cap_saved_state *save_state;
670 	u16 *cap;
671 
672 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
673 	pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
674 	if (!save_state || pos <= 0)
675 		return;
676 	cap = (u16 *)&save_state->data[0];
677 
678 	pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, cap[i++]);
679 	pci_write_config_word(dev, pos + PCI_EXP_LNKCTL, cap[i++]);
680 	pci_write_config_word(dev, pos + PCI_EXP_SLTCTL, cap[i++]);
681 	pci_write_config_word(dev, pos + PCI_EXP_RTCTL, cap[i++]);
682 }
683 
684 
685 static int pci_save_pcix_state(struct pci_dev *dev)
686 {
687 	int pos, i = 0;
688 	struct pci_cap_saved_state *save_state;
689 	u16 *cap;
690 	int found = 0;
691 
692 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
693 	if (pos <= 0)
694 		return 0;
695 
696 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
697 	if (!save_state)
698 		save_state = kzalloc(sizeof(*save_state) + sizeof(u16), GFP_KERNEL);
699 	else
700 		found = 1;
701 	if (!save_state) {
702 		dev_err(&dev->dev, "out of memory in pci_save_pcie_state\n");
703 		return -ENOMEM;
704 	}
705 	cap = (u16 *)&save_state->data[0];
706 
707 	pci_read_config_word(dev, pos + PCI_X_CMD, &cap[i++]);
708 	save_state->cap_nr = PCI_CAP_ID_PCIX;
709 	if (!found)
710 		pci_add_saved_cap(dev, save_state);
711 	return 0;
712 }
713 
714 static void pci_restore_pcix_state(struct pci_dev *dev)
715 {
716 	int i = 0, pos;
717 	struct pci_cap_saved_state *save_state;
718 	u16 *cap;
719 
720 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
721 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
722 	if (!save_state || pos <= 0)
723 		return;
724 	cap = (u16 *)&save_state->data[0];
725 
726 	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
727 }
728 
729 
730 /**
731  * pci_save_state - save the PCI configuration space of a device before suspending
732  * @dev: - PCI device that we're dealing with
733  */
734 int
735 pci_save_state(struct pci_dev *dev)
736 {
737 	int i;
738 	/* XXX: 100% dword access ok here? */
739 	for (i = 0; i < 16; i++)
740 		pci_read_config_dword(dev, i * 4,&dev->saved_config_space[i]);
741 	if ((i = pci_save_pcie_state(dev)) != 0)
742 		return i;
743 	if ((i = pci_save_pcix_state(dev)) != 0)
744 		return i;
745 	return 0;
746 }
747 
748 /**
749  * pci_restore_state - Restore the saved state of a PCI device
750  * @dev: - PCI device that we're dealing with
751  */
752 int
753 pci_restore_state(struct pci_dev *dev)
754 {
755 	int i;
756 	u32 val;
757 
758 	/* PCI Express register must be restored first */
759 	pci_restore_pcie_state(dev);
760 
761 	/*
762 	 * The Base Address register should be programmed before the command
763 	 * register(s)
764 	 */
765 	for (i = 15; i >= 0; i--) {
766 		pci_read_config_dword(dev, i * 4, &val);
767 		if (val != dev->saved_config_space[i]) {
768 			dev_printk(KERN_DEBUG, &dev->dev, "restoring config "
769 				"space at offset %#x (was %#x, writing %#x)\n",
770 				i, val, (int)dev->saved_config_space[i]);
771 			pci_write_config_dword(dev,i * 4,
772 				dev->saved_config_space[i]);
773 		}
774 	}
775 	pci_restore_pcix_state(dev);
776 	pci_restore_msi_state(dev);
777 
778 	return 0;
779 }
780 
781 static int do_pci_enable_device(struct pci_dev *dev, int bars)
782 {
783 	int err;
784 
785 	err = pci_set_power_state(dev, PCI_D0);
786 	if (err < 0 && err != -EIO)
787 		return err;
788 	err = pcibios_enable_device(dev, bars);
789 	if (err < 0)
790 		return err;
791 	pci_fixup_device(pci_fixup_enable, dev);
792 
793 	return 0;
794 }
795 
796 /**
797  * pci_reenable_device - Resume abandoned device
798  * @dev: PCI device to be resumed
799  *
800  *  Note this function is a backend of pci_default_resume and is not supposed
801  *  to be called by normal code, write proper resume handler and use it instead.
802  */
803 int pci_reenable_device(struct pci_dev *dev)
804 {
805 	if (atomic_read(&dev->enable_cnt))
806 		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
807 	return 0;
808 }
809 
810 static int __pci_enable_device_flags(struct pci_dev *dev,
811 				     resource_size_t flags)
812 {
813 	int err;
814 	int i, bars = 0;
815 
816 	if (atomic_add_return(1, &dev->enable_cnt) > 1)
817 		return 0;		/* already enabled */
818 
819 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
820 		if (dev->resource[i].flags & flags)
821 			bars |= (1 << i);
822 
823 	err = do_pci_enable_device(dev, bars);
824 	if (err < 0)
825 		atomic_dec(&dev->enable_cnt);
826 	return err;
827 }
828 
829 /**
830  * pci_enable_device_io - Initialize a device for use with IO space
831  * @dev: PCI device to be initialized
832  *
833  *  Initialize device before it's used by a driver. Ask low-level code
834  *  to enable I/O resources. Wake up the device if it was suspended.
835  *  Beware, this function can fail.
836  */
837 int pci_enable_device_io(struct pci_dev *dev)
838 {
839 	return __pci_enable_device_flags(dev, IORESOURCE_IO);
840 }
841 
842 /**
843  * pci_enable_device_mem - Initialize a device for use with Memory space
844  * @dev: PCI device to be initialized
845  *
846  *  Initialize device before it's used by a driver. Ask low-level code
847  *  to enable Memory resources. Wake up the device if it was suspended.
848  *  Beware, this function can fail.
849  */
850 int pci_enable_device_mem(struct pci_dev *dev)
851 {
852 	return __pci_enable_device_flags(dev, IORESOURCE_MEM);
853 }
854 
855 /**
856  * pci_enable_device - Initialize device before it's used by a driver.
857  * @dev: PCI device to be initialized
858  *
859  *  Initialize device before it's used by a driver. Ask low-level code
860  *  to enable I/O and memory. Wake up the device if it was suspended.
861  *  Beware, this function can fail.
862  *
863  *  Note we don't actually enable the device many times if we call
864  *  this function repeatedly (we just increment the count).
865  */
866 int pci_enable_device(struct pci_dev *dev)
867 {
868 	return __pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
869 }
870 
871 /*
872  * Managed PCI resources.  This manages device on/off, intx/msi/msix
873  * on/off and BAR regions.  pci_dev itself records msi/msix status, so
874  * there's no need to track it separately.  pci_devres is initialized
875  * when a device is enabled using managed PCI device enable interface.
876  */
877 struct pci_devres {
878 	unsigned int enabled:1;
879 	unsigned int pinned:1;
880 	unsigned int orig_intx:1;
881 	unsigned int restore_intx:1;
882 	u32 region_mask;
883 };
884 
885 static void pcim_release(struct device *gendev, void *res)
886 {
887 	struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
888 	struct pci_devres *this = res;
889 	int i;
890 
891 	if (dev->msi_enabled)
892 		pci_disable_msi(dev);
893 	if (dev->msix_enabled)
894 		pci_disable_msix(dev);
895 
896 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
897 		if (this->region_mask & (1 << i))
898 			pci_release_region(dev, i);
899 
900 	if (this->restore_intx)
901 		pci_intx(dev, this->orig_intx);
902 
903 	if (this->enabled && !this->pinned)
904 		pci_disable_device(dev);
905 }
906 
907 static struct pci_devres * get_pci_dr(struct pci_dev *pdev)
908 {
909 	struct pci_devres *dr, *new_dr;
910 
911 	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
912 	if (dr)
913 		return dr;
914 
915 	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
916 	if (!new_dr)
917 		return NULL;
918 	return devres_get(&pdev->dev, new_dr, NULL, NULL);
919 }
920 
921 static struct pci_devres * find_pci_dr(struct pci_dev *pdev)
922 {
923 	if (pci_is_managed(pdev))
924 		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
925 	return NULL;
926 }
927 
928 /**
929  * pcim_enable_device - Managed pci_enable_device()
930  * @pdev: PCI device to be initialized
931  *
932  * Managed pci_enable_device().
933  */
934 int pcim_enable_device(struct pci_dev *pdev)
935 {
936 	struct pci_devres *dr;
937 	int rc;
938 
939 	dr = get_pci_dr(pdev);
940 	if (unlikely(!dr))
941 		return -ENOMEM;
942 	if (dr->enabled)
943 		return 0;
944 
945 	rc = pci_enable_device(pdev);
946 	if (!rc) {
947 		pdev->is_managed = 1;
948 		dr->enabled = 1;
949 	}
950 	return rc;
951 }
952 
953 /**
954  * pcim_pin_device - Pin managed PCI device
955  * @pdev: PCI device to pin
956  *
957  * Pin managed PCI device @pdev.  Pinned device won't be disabled on
958  * driver detach.  @pdev must have been enabled with
959  * pcim_enable_device().
960  */
961 void pcim_pin_device(struct pci_dev *pdev)
962 {
963 	struct pci_devres *dr;
964 
965 	dr = find_pci_dr(pdev);
966 	WARN_ON(!dr || !dr->enabled);
967 	if (dr)
968 		dr->pinned = 1;
969 }
970 
971 /**
972  * pcibios_disable_device - disable arch specific PCI resources for device dev
973  * @dev: the PCI device to disable
974  *
975  * Disables architecture specific PCI resources for the device. This
976  * is the default implementation. Architecture implementations can
977  * override this.
978  */
979 void __attribute__ ((weak)) pcibios_disable_device (struct pci_dev *dev) {}
980 
981 /**
982  * pci_disable_device - Disable PCI device after use
983  * @dev: PCI device to be disabled
984  *
985  * Signal to the system that the PCI device is not in use by the system
986  * anymore.  This only involves disabling PCI bus-mastering, if active.
987  *
988  * Note we don't actually disable the device until all callers of
989  * pci_device_enable() have called pci_device_disable().
990  */
991 void
992 pci_disable_device(struct pci_dev *dev)
993 {
994 	struct pci_devres *dr;
995 	u16 pci_command;
996 
997 	dr = find_pci_dr(dev);
998 	if (dr)
999 		dr->enabled = 0;
1000 
1001 	if (atomic_sub_return(1, &dev->enable_cnt) != 0)
1002 		return;
1003 
1004 	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1005 	if (pci_command & PCI_COMMAND_MASTER) {
1006 		pci_command &= ~PCI_COMMAND_MASTER;
1007 		pci_write_config_word(dev, PCI_COMMAND, pci_command);
1008 	}
1009 	dev->is_busmaster = 0;
1010 
1011 	pcibios_disable_device(dev);
1012 }
1013 
1014 /**
1015  * pcibios_set_pcie_reset_state - set reset state for device dev
1016  * @dev: the PCI-E device reset
1017  * @state: Reset state to enter into
1018  *
1019  *
1020  * Sets the PCI-E reset state for the device. This is the default
1021  * implementation. Architecture implementations can override this.
1022  */
1023 int __attribute__ ((weak)) pcibios_set_pcie_reset_state(struct pci_dev *dev,
1024 							enum pcie_reset_state state)
1025 {
1026 	return -EINVAL;
1027 }
1028 
1029 /**
1030  * pci_set_pcie_reset_state - set reset state for device dev
1031  * @dev: the PCI-E device reset
1032  * @state: Reset state to enter into
1033  *
1034  *
1035  * Sets the PCI reset state for the device.
1036  */
1037 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1038 {
1039 	return pcibios_set_pcie_reset_state(dev, state);
1040 }
1041 
1042 /**
1043  * pci_pme_capable - check the capability of PCI device to generate PME#
1044  * @dev: PCI device to handle.
1045  * @state: PCI state from which device will issue PME#.
1046  */
1047 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1048 {
1049 	if (!dev->pm_cap)
1050 		return false;
1051 
1052 	return !!(dev->pme_support & (1 << state));
1053 }
1054 
1055 /**
1056  * pci_pme_active - enable or disable PCI device's PME# function
1057  * @dev: PCI device to handle.
1058  * @enable: 'true' to enable PME# generation; 'false' to disable it.
1059  *
1060  * The caller must verify that the device is capable of generating PME# before
1061  * calling this function with @enable equal to 'true'.
1062  */
1063 void pci_pme_active(struct pci_dev *dev, bool enable)
1064 {
1065 	u16 pmcsr;
1066 
1067 	if (!dev->pm_cap)
1068 		return;
1069 
1070 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1071 	/* Clear PME_Status by writing 1 to it and enable PME# */
1072 	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1073 	if (!enable)
1074 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1075 
1076 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1077 
1078 	dev_printk(KERN_INFO, &dev->dev, "PME# %s\n",
1079 			enable ? "enabled" : "disabled");
1080 }
1081 
1082 /**
1083  * pci_enable_wake - enable PCI device as wakeup event source
1084  * @dev: PCI device affected
1085  * @state: PCI state from which device will issue wakeup events
1086  * @enable: True to enable event generation; false to disable
1087  *
1088  * This enables the device as a wakeup event source, or disables it.
1089  * When such events involves platform-specific hooks, those hooks are
1090  * called automatically by this routine.
1091  *
1092  * Devices with legacy power management (no standard PCI PM capabilities)
1093  * always require such platform hooks.
1094  *
1095  * RETURN VALUE:
1096  * 0 is returned on success
1097  * -EINVAL is returned if device is not supposed to wake up the system
1098  * Error code depending on the platform is returned if both the platform and
1099  * the native mechanism fail to enable the generation of wake-up events
1100  */
1101 int pci_enable_wake(struct pci_dev *dev, pci_power_t state, int enable)
1102 {
1103 	int error = 0;
1104 	bool pme_done = false;
1105 
1106 	if (!device_may_wakeup(&dev->dev))
1107 		return -EINVAL;
1108 
1109 	/*
1110 	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1111 	 * Anderson we should be doing PME# wake enable followed by ACPI wake
1112 	 * enable.  To disable wake-up we call the platform first, for symmetry.
1113 	 */
1114 
1115 	if (!enable && platform_pci_can_wakeup(dev))
1116 		error = platform_pci_sleep_wake(dev, false);
1117 
1118 	if (!enable || pci_pme_capable(dev, state)) {
1119 		pci_pme_active(dev, enable);
1120 		pme_done = true;
1121 	}
1122 
1123 	if (enable && platform_pci_can_wakeup(dev))
1124 		error = platform_pci_sleep_wake(dev, true);
1125 
1126 	return pme_done ? 0 : error;
1127 }
1128 
1129 /**
1130  * pci_target_state - find an appropriate low power state for a given PCI dev
1131  * @dev: PCI device
1132  *
1133  * Use underlying platform code to find a supported low power state for @dev.
1134  * If the platform can't manage @dev, return the deepest state from which it
1135  * can generate wake events, based on any available PME info.
1136  */
1137 pci_power_t pci_target_state(struct pci_dev *dev)
1138 {
1139 	pci_power_t target_state = PCI_D3hot;
1140 
1141 	if (platform_pci_power_manageable(dev)) {
1142 		/*
1143 		 * Call the platform to choose the target state of the device
1144 		 * and enable wake-up from this state if supported.
1145 		 */
1146 		pci_power_t state = platform_pci_choose_state(dev);
1147 
1148 		switch (state) {
1149 		case PCI_POWER_ERROR:
1150 		case PCI_UNKNOWN:
1151 			break;
1152 		case PCI_D1:
1153 		case PCI_D2:
1154 			if (pci_no_d1d2(dev))
1155 				break;
1156 		default:
1157 			target_state = state;
1158 		}
1159 	} else if (device_may_wakeup(&dev->dev)) {
1160 		/*
1161 		 * Find the deepest state from which the device can generate
1162 		 * wake-up events, make it the target state and enable device
1163 		 * to generate PME#.
1164 		 */
1165 		if (!dev->pm_cap)
1166 			return PCI_POWER_ERROR;
1167 
1168 		if (dev->pme_support) {
1169 			while (target_state
1170 			      && !(dev->pme_support & (1 << target_state)))
1171 				target_state--;
1172 		}
1173 	}
1174 
1175 	return target_state;
1176 }
1177 
1178 /**
1179  * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1180  * @dev: Device to handle.
1181  *
1182  * Choose the power state appropriate for the device depending on whether
1183  * it can wake up the system and/or is power manageable by the platform
1184  * (PCI_D3hot is the default) and put the device into that state.
1185  */
1186 int pci_prepare_to_sleep(struct pci_dev *dev)
1187 {
1188 	pci_power_t target_state = pci_target_state(dev);
1189 	int error;
1190 
1191 	if (target_state == PCI_POWER_ERROR)
1192 		return -EIO;
1193 
1194 	pci_enable_wake(dev, target_state, true);
1195 
1196 	error = pci_set_power_state(dev, target_state);
1197 
1198 	if (error)
1199 		pci_enable_wake(dev, target_state, false);
1200 
1201 	return error;
1202 }
1203 
1204 /**
1205  * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1206  * @dev: Device to handle.
1207  *
1208  * Disable device's sytem wake-up capability and put it into D0.
1209  */
1210 int pci_back_from_sleep(struct pci_dev *dev)
1211 {
1212 	pci_enable_wake(dev, PCI_D0, false);
1213 	return pci_set_power_state(dev, PCI_D0);
1214 }
1215 
1216 /**
1217  * pci_pm_init - Initialize PM functions of given PCI device
1218  * @dev: PCI device to handle.
1219  */
1220 void pci_pm_init(struct pci_dev *dev)
1221 {
1222 	int pm;
1223 	u16 pmc;
1224 
1225 	dev->pm_cap = 0;
1226 
1227 	/* find PCI PM capability in list */
1228 	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
1229 	if (!pm)
1230 		return;
1231 	/* Check device's ability to generate PME# */
1232 	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
1233 
1234 	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
1235 		dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
1236 			pmc & PCI_PM_CAP_VER_MASK);
1237 		return;
1238 	}
1239 
1240 	dev->pm_cap = pm;
1241 
1242 	dev->d1_support = false;
1243 	dev->d2_support = false;
1244 	if (!pci_no_d1d2(dev)) {
1245 		if (pmc & PCI_PM_CAP_D1) {
1246 			dev_printk(KERN_DEBUG, &dev->dev, "supports D1\n");
1247 			dev->d1_support = true;
1248 		}
1249 		if (pmc & PCI_PM_CAP_D2) {
1250 			dev_printk(KERN_DEBUG, &dev->dev, "supports D2\n");
1251 			dev->d2_support = true;
1252 		}
1253 	}
1254 
1255 	pmc &= PCI_PM_CAP_PME_MASK;
1256 	if (pmc) {
1257 		dev_printk(KERN_INFO, &dev->dev,
1258 			"PME# supported from%s%s%s%s%s\n",
1259 			(pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
1260 			(pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
1261 			(pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
1262 			(pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
1263 			(pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
1264 		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
1265 		/*
1266 		 * Make device's PM flags reflect the wake-up capability, but
1267 		 * let the user space enable it to wake up the system as needed.
1268 		 */
1269 		device_set_wakeup_capable(&dev->dev, true);
1270 		device_set_wakeup_enable(&dev->dev, false);
1271 		/* Disable the PME# generation functionality */
1272 		pci_pme_active(dev, false);
1273 	} else {
1274 		dev->pme_support = 0;
1275 	}
1276 }
1277 
1278 int
1279 pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
1280 {
1281 	u8 pin;
1282 
1283 	pin = dev->pin;
1284 	if (!pin)
1285 		return -1;
1286 	pin--;
1287 	while (dev->bus->self) {
1288 		pin = (pin + PCI_SLOT(dev->devfn)) % 4;
1289 		dev = dev->bus->self;
1290 	}
1291 	*bridge = dev;
1292 	return pin;
1293 }
1294 
1295 /**
1296  *	pci_release_region - Release a PCI bar
1297  *	@pdev: PCI device whose resources were previously reserved by pci_request_region
1298  *	@bar: BAR to release
1299  *
1300  *	Releases the PCI I/O and memory resources previously reserved by a
1301  *	successful call to pci_request_region.  Call this function only
1302  *	after all use of the PCI regions has ceased.
1303  */
1304 void pci_release_region(struct pci_dev *pdev, int bar)
1305 {
1306 	struct pci_devres *dr;
1307 
1308 	if (pci_resource_len(pdev, bar) == 0)
1309 		return;
1310 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
1311 		release_region(pci_resource_start(pdev, bar),
1312 				pci_resource_len(pdev, bar));
1313 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
1314 		release_mem_region(pci_resource_start(pdev, bar),
1315 				pci_resource_len(pdev, bar));
1316 
1317 	dr = find_pci_dr(pdev);
1318 	if (dr)
1319 		dr->region_mask &= ~(1 << bar);
1320 }
1321 
1322 /**
1323  *	pci_request_region - Reserved PCI I/O and memory resource
1324  *	@pdev: PCI device whose resources are to be reserved
1325  *	@bar: BAR to be reserved
1326  *	@res_name: Name to be associated with resource.
1327  *
1328  *	Mark the PCI region associated with PCI device @pdev BR @bar as
1329  *	being reserved by owner @res_name.  Do not access any
1330  *	address inside the PCI regions unless this call returns
1331  *	successfully.
1332  *
1333  *	Returns 0 on success, or %EBUSY on error.  A warning
1334  *	message is also printed on failure.
1335  */
1336 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
1337 {
1338 	struct pci_devres *dr;
1339 
1340 	if (pci_resource_len(pdev, bar) == 0)
1341 		return 0;
1342 
1343 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
1344 		if (!request_region(pci_resource_start(pdev, bar),
1345 			    pci_resource_len(pdev, bar), res_name))
1346 			goto err_out;
1347 	}
1348 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
1349 		if (!request_mem_region(pci_resource_start(pdev, bar),
1350 				        pci_resource_len(pdev, bar), res_name))
1351 			goto err_out;
1352 	}
1353 
1354 	dr = find_pci_dr(pdev);
1355 	if (dr)
1356 		dr->region_mask |= 1 << bar;
1357 
1358 	return 0;
1359 
1360 err_out:
1361 	dev_warn(&pdev->dev, "BAR %d: can't reserve %s region [%#llx-%#llx]\n",
1362 		 bar,
1363 		 pci_resource_flags(pdev, bar) & IORESOURCE_IO ? "I/O" : "mem",
1364 		 (unsigned long long)pci_resource_start(pdev, bar),
1365 		 (unsigned long long)pci_resource_end(pdev, bar));
1366 	return -EBUSY;
1367 }
1368 
1369 /**
1370  * pci_release_selected_regions - Release selected PCI I/O and memory resources
1371  * @pdev: PCI device whose resources were previously reserved
1372  * @bars: Bitmask of BARs to be released
1373  *
1374  * Release selected PCI I/O and memory resources previously reserved.
1375  * Call this function only after all use of the PCI regions has ceased.
1376  */
1377 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
1378 {
1379 	int i;
1380 
1381 	for (i = 0; i < 6; i++)
1382 		if (bars & (1 << i))
1383 			pci_release_region(pdev, i);
1384 }
1385 
1386 /**
1387  * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
1388  * @pdev: PCI device whose resources are to be reserved
1389  * @bars: Bitmask of BARs to be requested
1390  * @res_name: Name to be associated with resource
1391  */
1392 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
1393 				 const char *res_name)
1394 {
1395 	int i;
1396 
1397 	for (i = 0; i < 6; i++)
1398 		if (bars & (1 << i))
1399 			if(pci_request_region(pdev, i, res_name))
1400 				goto err_out;
1401 	return 0;
1402 
1403 err_out:
1404 	while(--i >= 0)
1405 		if (bars & (1 << i))
1406 			pci_release_region(pdev, i);
1407 
1408 	return -EBUSY;
1409 }
1410 
1411 /**
1412  *	pci_release_regions - Release reserved PCI I/O and memory resources
1413  *	@pdev: PCI device whose resources were previously reserved by pci_request_regions
1414  *
1415  *	Releases all PCI I/O and memory resources previously reserved by a
1416  *	successful call to pci_request_regions.  Call this function only
1417  *	after all use of the PCI regions has ceased.
1418  */
1419 
1420 void pci_release_regions(struct pci_dev *pdev)
1421 {
1422 	pci_release_selected_regions(pdev, (1 << 6) - 1);
1423 }
1424 
1425 /**
1426  *	pci_request_regions - Reserved PCI I/O and memory resources
1427  *	@pdev: PCI device whose resources are to be reserved
1428  *	@res_name: Name to be associated with resource.
1429  *
1430  *	Mark all PCI regions associated with PCI device @pdev as
1431  *	being reserved by owner @res_name.  Do not access any
1432  *	address inside the PCI regions unless this call returns
1433  *	successfully.
1434  *
1435  *	Returns 0 on success, or %EBUSY on error.  A warning
1436  *	message is also printed on failure.
1437  */
1438 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
1439 {
1440 	return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
1441 }
1442 
1443 /**
1444  * pci_set_master - enables bus-mastering for device dev
1445  * @dev: the PCI device to enable
1446  *
1447  * Enables bus-mastering on the device and calls pcibios_set_master()
1448  * to do the needed arch specific settings.
1449  */
1450 void
1451 pci_set_master(struct pci_dev *dev)
1452 {
1453 	u16 cmd;
1454 
1455 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
1456 	if (! (cmd & PCI_COMMAND_MASTER)) {
1457 		dev_dbg(&dev->dev, "enabling bus mastering\n");
1458 		cmd |= PCI_COMMAND_MASTER;
1459 		pci_write_config_word(dev, PCI_COMMAND, cmd);
1460 	}
1461 	dev->is_busmaster = 1;
1462 	pcibios_set_master(dev);
1463 }
1464 
1465 #ifdef PCI_DISABLE_MWI
1466 int pci_set_mwi(struct pci_dev *dev)
1467 {
1468 	return 0;
1469 }
1470 
1471 int pci_try_set_mwi(struct pci_dev *dev)
1472 {
1473 	return 0;
1474 }
1475 
1476 void pci_clear_mwi(struct pci_dev *dev)
1477 {
1478 }
1479 
1480 #else
1481 
1482 #ifndef PCI_CACHE_LINE_BYTES
1483 #define PCI_CACHE_LINE_BYTES L1_CACHE_BYTES
1484 #endif
1485 
1486 /* This can be overridden by arch code. */
1487 /* Don't forget this is measured in 32-bit words, not bytes */
1488 u8 pci_cache_line_size = PCI_CACHE_LINE_BYTES / 4;
1489 
1490 /**
1491  * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
1492  * @dev: the PCI device for which MWI is to be enabled
1493  *
1494  * Helper function for pci_set_mwi.
1495  * Originally copied from drivers/net/acenic.c.
1496  * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
1497  *
1498  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1499  */
1500 static int
1501 pci_set_cacheline_size(struct pci_dev *dev)
1502 {
1503 	u8 cacheline_size;
1504 
1505 	if (!pci_cache_line_size)
1506 		return -EINVAL;		/* The system doesn't support MWI. */
1507 
1508 	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
1509 	   equal to or multiple of the right value. */
1510 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
1511 	if (cacheline_size >= pci_cache_line_size &&
1512 	    (cacheline_size % pci_cache_line_size) == 0)
1513 		return 0;
1514 
1515 	/* Write the correct value. */
1516 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
1517 	/* Read it back. */
1518 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
1519 	if (cacheline_size == pci_cache_line_size)
1520 		return 0;
1521 
1522 	dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not "
1523 		   "supported\n", pci_cache_line_size << 2);
1524 
1525 	return -EINVAL;
1526 }
1527 
1528 /**
1529  * pci_set_mwi - enables memory-write-invalidate PCI transaction
1530  * @dev: the PCI device for which MWI is enabled
1531  *
1532  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
1533  *
1534  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1535  */
1536 int
1537 pci_set_mwi(struct pci_dev *dev)
1538 {
1539 	int rc;
1540 	u16 cmd;
1541 
1542 	rc = pci_set_cacheline_size(dev);
1543 	if (rc)
1544 		return rc;
1545 
1546 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
1547 	if (! (cmd & PCI_COMMAND_INVALIDATE)) {
1548 		dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
1549 		cmd |= PCI_COMMAND_INVALIDATE;
1550 		pci_write_config_word(dev, PCI_COMMAND, cmd);
1551 	}
1552 
1553 	return 0;
1554 }
1555 
1556 /**
1557  * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
1558  * @dev: the PCI device for which MWI is enabled
1559  *
1560  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
1561  * Callers are not required to check the return value.
1562  *
1563  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
1564  */
1565 int pci_try_set_mwi(struct pci_dev *dev)
1566 {
1567 	int rc = pci_set_mwi(dev);
1568 	return rc;
1569 }
1570 
1571 /**
1572  * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
1573  * @dev: the PCI device to disable
1574  *
1575  * Disables PCI Memory-Write-Invalidate transaction on the device
1576  */
1577 void
1578 pci_clear_mwi(struct pci_dev *dev)
1579 {
1580 	u16 cmd;
1581 
1582 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
1583 	if (cmd & PCI_COMMAND_INVALIDATE) {
1584 		cmd &= ~PCI_COMMAND_INVALIDATE;
1585 		pci_write_config_word(dev, PCI_COMMAND, cmd);
1586 	}
1587 }
1588 #endif /* ! PCI_DISABLE_MWI */
1589 
1590 /**
1591  * pci_intx - enables/disables PCI INTx for device dev
1592  * @pdev: the PCI device to operate on
1593  * @enable: boolean: whether to enable or disable PCI INTx
1594  *
1595  * Enables/disables PCI INTx for device dev
1596  */
1597 void
1598 pci_intx(struct pci_dev *pdev, int enable)
1599 {
1600 	u16 pci_command, new;
1601 
1602 	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
1603 
1604 	if (enable) {
1605 		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
1606 	} else {
1607 		new = pci_command | PCI_COMMAND_INTX_DISABLE;
1608 	}
1609 
1610 	if (new != pci_command) {
1611 		struct pci_devres *dr;
1612 
1613 		pci_write_config_word(pdev, PCI_COMMAND, new);
1614 
1615 		dr = find_pci_dr(pdev);
1616 		if (dr && !dr->restore_intx) {
1617 			dr->restore_intx = 1;
1618 			dr->orig_intx = !enable;
1619 		}
1620 	}
1621 }
1622 
1623 /**
1624  * pci_msi_off - disables any msi or msix capabilities
1625  * @dev: the PCI device to operate on
1626  *
1627  * If you want to use msi see pci_enable_msi and friends.
1628  * This is a lower level primitive that allows us to disable
1629  * msi operation at the device level.
1630  */
1631 void pci_msi_off(struct pci_dev *dev)
1632 {
1633 	int pos;
1634 	u16 control;
1635 
1636 	pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
1637 	if (pos) {
1638 		pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
1639 		control &= ~PCI_MSI_FLAGS_ENABLE;
1640 		pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
1641 	}
1642 	pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
1643 	if (pos) {
1644 		pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
1645 		control &= ~PCI_MSIX_FLAGS_ENABLE;
1646 		pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
1647 	}
1648 }
1649 
1650 #ifndef HAVE_ARCH_PCI_SET_DMA_MASK
1651 /*
1652  * These can be overridden by arch-specific implementations
1653  */
1654 int
1655 pci_set_dma_mask(struct pci_dev *dev, u64 mask)
1656 {
1657 	if (!pci_dma_supported(dev, mask))
1658 		return -EIO;
1659 
1660 	dev->dma_mask = mask;
1661 
1662 	return 0;
1663 }
1664 
1665 int
1666 pci_set_consistent_dma_mask(struct pci_dev *dev, u64 mask)
1667 {
1668 	if (!pci_dma_supported(dev, mask))
1669 		return -EIO;
1670 
1671 	dev->dev.coherent_dma_mask = mask;
1672 
1673 	return 0;
1674 }
1675 #endif
1676 
1677 #ifndef HAVE_ARCH_PCI_SET_DMA_MAX_SEGMENT_SIZE
1678 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
1679 {
1680 	return dma_set_max_seg_size(&dev->dev, size);
1681 }
1682 EXPORT_SYMBOL(pci_set_dma_max_seg_size);
1683 #endif
1684 
1685 #ifndef HAVE_ARCH_PCI_SET_DMA_SEGMENT_BOUNDARY
1686 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
1687 {
1688 	return dma_set_seg_boundary(&dev->dev, mask);
1689 }
1690 EXPORT_SYMBOL(pci_set_dma_seg_boundary);
1691 #endif
1692 
1693 /**
1694  * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
1695  * @dev: PCI device to query
1696  *
1697  * Returns mmrbc: maximum designed memory read count in bytes
1698  *    or appropriate error value.
1699  */
1700 int pcix_get_max_mmrbc(struct pci_dev *dev)
1701 {
1702 	int err, cap;
1703 	u32 stat;
1704 
1705 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1706 	if (!cap)
1707 		return -EINVAL;
1708 
1709 	err = pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat);
1710 	if (err)
1711 		return -EINVAL;
1712 
1713 	return (stat & PCI_X_STATUS_MAX_READ) >> 12;
1714 }
1715 EXPORT_SYMBOL(pcix_get_max_mmrbc);
1716 
1717 /**
1718  * pcix_get_mmrbc - get PCI-X maximum memory read byte count
1719  * @dev: PCI device to query
1720  *
1721  * Returns mmrbc: maximum memory read count in bytes
1722  *    or appropriate error value.
1723  */
1724 int pcix_get_mmrbc(struct pci_dev *dev)
1725 {
1726 	int ret, cap;
1727 	u32 cmd;
1728 
1729 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1730 	if (!cap)
1731 		return -EINVAL;
1732 
1733 	ret = pci_read_config_dword(dev, cap + PCI_X_CMD, &cmd);
1734 	if (!ret)
1735 		ret = 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
1736 
1737 	return ret;
1738 }
1739 EXPORT_SYMBOL(pcix_get_mmrbc);
1740 
1741 /**
1742  * pcix_set_mmrbc - set PCI-X maximum memory read byte count
1743  * @dev: PCI device to query
1744  * @mmrbc: maximum memory read count in bytes
1745  *    valid values are 512, 1024, 2048, 4096
1746  *
1747  * If possible sets maximum memory read byte count, some bridges have erratas
1748  * that prevent this.
1749  */
1750 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
1751 {
1752 	int cap, err = -EINVAL;
1753 	u32 stat, cmd, v, o;
1754 
1755 	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
1756 		goto out;
1757 
1758 	v = ffs(mmrbc) - 10;
1759 
1760 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1761 	if (!cap)
1762 		goto out;
1763 
1764 	err = pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat);
1765 	if (err)
1766 		goto out;
1767 
1768 	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
1769 		return -E2BIG;
1770 
1771 	err = pci_read_config_dword(dev, cap + PCI_X_CMD, &cmd);
1772 	if (err)
1773 		goto out;
1774 
1775 	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
1776 	if (o != v) {
1777 		if (v > o && dev->bus &&
1778 		   (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
1779 			return -EIO;
1780 
1781 		cmd &= ~PCI_X_CMD_MAX_READ;
1782 		cmd |= v << 2;
1783 		err = pci_write_config_dword(dev, cap + PCI_X_CMD, cmd);
1784 	}
1785 out:
1786 	return err;
1787 }
1788 EXPORT_SYMBOL(pcix_set_mmrbc);
1789 
1790 /**
1791  * pcie_get_readrq - get PCI Express read request size
1792  * @dev: PCI device to query
1793  *
1794  * Returns maximum memory read request in bytes
1795  *    or appropriate error value.
1796  */
1797 int pcie_get_readrq(struct pci_dev *dev)
1798 {
1799 	int ret, cap;
1800 	u16 ctl;
1801 
1802 	cap = pci_find_capability(dev, PCI_CAP_ID_EXP);
1803 	if (!cap)
1804 		return -EINVAL;
1805 
1806 	ret = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
1807 	if (!ret)
1808 	ret = 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
1809 
1810 	return ret;
1811 }
1812 EXPORT_SYMBOL(pcie_get_readrq);
1813 
1814 /**
1815  * pcie_set_readrq - set PCI Express maximum memory read request
1816  * @dev: PCI device to query
1817  * @rq: maximum memory read count in bytes
1818  *    valid values are 128, 256, 512, 1024, 2048, 4096
1819  *
1820  * If possible sets maximum read byte count
1821  */
1822 int pcie_set_readrq(struct pci_dev *dev, int rq)
1823 {
1824 	int cap, err = -EINVAL;
1825 	u16 ctl, v;
1826 
1827 	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
1828 		goto out;
1829 
1830 	v = (ffs(rq) - 8) << 12;
1831 
1832 	cap = pci_find_capability(dev, PCI_CAP_ID_EXP);
1833 	if (!cap)
1834 		goto out;
1835 
1836 	err = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
1837 	if (err)
1838 		goto out;
1839 
1840 	if ((ctl & PCI_EXP_DEVCTL_READRQ) != v) {
1841 		ctl &= ~PCI_EXP_DEVCTL_READRQ;
1842 		ctl |= v;
1843 		err = pci_write_config_dword(dev, cap + PCI_EXP_DEVCTL, ctl);
1844 	}
1845 
1846 out:
1847 	return err;
1848 }
1849 EXPORT_SYMBOL(pcie_set_readrq);
1850 
1851 /**
1852  * pci_select_bars - Make BAR mask from the type of resource
1853  * @dev: the PCI device for which BAR mask is made
1854  * @flags: resource type mask to be selected
1855  *
1856  * This helper routine makes bar mask from the type of resource.
1857  */
1858 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
1859 {
1860 	int i, bars = 0;
1861 	for (i = 0; i < PCI_NUM_RESOURCES; i++)
1862 		if (pci_resource_flags(dev, i) & flags)
1863 			bars |= (1 << i);
1864 	return bars;
1865 }
1866 
1867 static void __devinit pci_no_domains(void)
1868 {
1869 #ifdef CONFIG_PCI_DOMAINS
1870 	pci_domains_supported = 0;
1871 #endif
1872 }
1873 
1874 static int __devinit pci_init(void)
1875 {
1876 	struct pci_dev *dev = NULL;
1877 
1878 	while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
1879 		pci_fixup_device(pci_fixup_final, dev);
1880 	}
1881 	return 0;
1882 }
1883 
1884 static int __devinit pci_setup(char *str)
1885 {
1886 	while (str) {
1887 		char *k = strchr(str, ',');
1888 		if (k)
1889 			*k++ = 0;
1890 		if (*str && (str = pcibios_setup(str)) && *str) {
1891 			if (!strcmp(str, "nomsi")) {
1892 				pci_no_msi();
1893 			} else if (!strcmp(str, "noaer")) {
1894 				pci_no_aer();
1895 			} else if (!strcmp(str, "nodomains")) {
1896 				pci_no_domains();
1897 			} else if (!strncmp(str, "cbiosize=", 9)) {
1898 				pci_cardbus_io_size = memparse(str + 9, &str);
1899 			} else if (!strncmp(str, "cbmemsize=", 10)) {
1900 				pci_cardbus_mem_size = memparse(str + 10, &str);
1901 			} else {
1902 				printk(KERN_ERR "PCI: Unknown option `%s'\n",
1903 						str);
1904 			}
1905 		}
1906 		str = k;
1907 	}
1908 	return 0;
1909 }
1910 early_param("pci", pci_setup);
1911 
1912 device_initcall(pci_init);
1913 
1914 EXPORT_SYMBOL(pci_reenable_device);
1915 EXPORT_SYMBOL(pci_enable_device_io);
1916 EXPORT_SYMBOL(pci_enable_device_mem);
1917 EXPORT_SYMBOL(pci_enable_device);
1918 EXPORT_SYMBOL(pcim_enable_device);
1919 EXPORT_SYMBOL(pcim_pin_device);
1920 EXPORT_SYMBOL(pci_disable_device);
1921 EXPORT_SYMBOL(pci_find_capability);
1922 EXPORT_SYMBOL(pci_bus_find_capability);
1923 EXPORT_SYMBOL(pci_release_regions);
1924 EXPORT_SYMBOL(pci_request_regions);
1925 EXPORT_SYMBOL(pci_release_region);
1926 EXPORT_SYMBOL(pci_request_region);
1927 EXPORT_SYMBOL(pci_release_selected_regions);
1928 EXPORT_SYMBOL(pci_request_selected_regions);
1929 EXPORT_SYMBOL(pci_set_master);
1930 EXPORT_SYMBOL(pci_set_mwi);
1931 EXPORT_SYMBOL(pci_try_set_mwi);
1932 EXPORT_SYMBOL(pci_clear_mwi);
1933 EXPORT_SYMBOL_GPL(pci_intx);
1934 EXPORT_SYMBOL(pci_set_dma_mask);
1935 EXPORT_SYMBOL(pci_set_consistent_dma_mask);
1936 EXPORT_SYMBOL(pci_assign_resource);
1937 EXPORT_SYMBOL(pci_find_parent_resource);
1938 EXPORT_SYMBOL(pci_select_bars);
1939 
1940 EXPORT_SYMBOL(pci_set_power_state);
1941 EXPORT_SYMBOL(pci_save_state);
1942 EXPORT_SYMBOL(pci_restore_state);
1943 EXPORT_SYMBOL(pci_pme_capable);
1944 EXPORT_SYMBOL(pci_pme_active);
1945 EXPORT_SYMBOL(pci_enable_wake);
1946 EXPORT_SYMBOL(pci_target_state);
1947 EXPORT_SYMBOL(pci_prepare_to_sleep);
1948 EXPORT_SYMBOL(pci_back_from_sleep);
1949 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
1950 
1951