1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * PCI Bus Services, see include/linux/pci.h for further explanation. 4 * 5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter, 6 * David Mosberger-Tang 7 * 8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz> 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/kernel.h> 13 #include <linux/delay.h> 14 #include <linux/dmi.h> 15 #include <linux/init.h> 16 #include <linux/msi.h> 17 #include <linux/of.h> 18 #include <linux/pci.h> 19 #include <linux/pm.h> 20 #include <linux/slab.h> 21 #include <linux/module.h> 22 #include <linux/spinlock.h> 23 #include <linux/string.h> 24 #include <linux/log2.h> 25 #include <linux/logic_pio.h> 26 #include <linux/pm_wakeup.h> 27 #include <linux/interrupt.h> 28 #include <linux/device.h> 29 #include <linux/pm_runtime.h> 30 #include <linux/pci_hotplug.h> 31 #include <linux/vmalloc.h> 32 #include <asm/dma.h> 33 #include <linux/aer.h> 34 #include "pci.h" 35 36 DEFINE_MUTEX(pci_slot_mutex); 37 38 const char *pci_power_names[] = { 39 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown", 40 }; 41 EXPORT_SYMBOL_GPL(pci_power_names); 42 43 int isa_dma_bridge_buggy; 44 EXPORT_SYMBOL(isa_dma_bridge_buggy); 45 46 int pci_pci_problems; 47 EXPORT_SYMBOL(pci_pci_problems); 48 49 unsigned int pci_pm_d3hot_delay; 50 51 static void pci_pme_list_scan(struct work_struct *work); 52 53 static LIST_HEAD(pci_pme_list); 54 static DEFINE_MUTEX(pci_pme_list_mutex); 55 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan); 56 57 struct pci_pme_device { 58 struct list_head list; 59 struct pci_dev *dev; 60 }; 61 62 #define PME_TIMEOUT 1000 /* How long between PME checks */ 63 64 static void pci_dev_d3_sleep(struct pci_dev *dev) 65 { 66 unsigned int delay = dev->d3hot_delay; 67 68 if (delay < pci_pm_d3hot_delay) 69 delay = pci_pm_d3hot_delay; 70 71 if (delay) 72 msleep(delay); 73 } 74 75 #ifdef CONFIG_PCI_DOMAINS 76 int pci_domains_supported = 1; 77 #endif 78 79 #define DEFAULT_CARDBUS_IO_SIZE (256) 80 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024) 81 /* pci=cbmemsize=nnM,cbiosize=nn can override this */ 82 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE; 83 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE; 84 85 #define DEFAULT_HOTPLUG_IO_SIZE (256) 86 #define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024) 87 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024) 88 /* hpiosize=nn can override this */ 89 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE; 90 /* 91 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size, 92 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size; 93 * pci=hpmemsize=nnM overrides both 94 */ 95 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE; 96 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE; 97 98 #define DEFAULT_HOTPLUG_BUS_SIZE 1 99 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 100 101 102 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */ 103 #ifdef CONFIG_PCIE_BUS_TUNE_OFF 104 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF; 105 #elif defined CONFIG_PCIE_BUS_SAFE 106 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE; 107 #elif defined CONFIG_PCIE_BUS_PERFORMANCE 108 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE; 109 #elif defined CONFIG_PCIE_BUS_PEER2PEER 110 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER; 111 #else 112 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT; 113 #endif 114 115 /* 116 * The default CLS is used if arch didn't set CLS explicitly and not 117 * all pci devices agree on the same value. Arch can override either 118 * the dfl or actual value as it sees fit. Don't forget this is 119 * measured in 32-bit words, not bytes. 120 */ 121 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2; 122 u8 pci_cache_line_size; 123 124 /* 125 * If we set up a device for bus mastering, we need to check the latency 126 * timer as certain BIOSes forget to set it properly. 127 */ 128 unsigned int pcibios_max_latency = 255; 129 130 /* If set, the PCIe ARI capability will not be used. */ 131 static bool pcie_ari_disabled; 132 133 /* If set, the PCIe ATS capability will not be used. */ 134 static bool pcie_ats_disabled; 135 136 /* If set, the PCI config space of each device is printed during boot. */ 137 bool pci_early_dump; 138 139 bool pci_ats_disabled(void) 140 { 141 return pcie_ats_disabled; 142 } 143 EXPORT_SYMBOL_GPL(pci_ats_disabled); 144 145 /* Disable bridge_d3 for all PCIe ports */ 146 static bool pci_bridge_d3_disable; 147 /* Force bridge_d3 for all PCIe ports */ 148 static bool pci_bridge_d3_force; 149 150 static int __init pcie_port_pm_setup(char *str) 151 { 152 if (!strcmp(str, "off")) 153 pci_bridge_d3_disable = true; 154 else if (!strcmp(str, "force")) 155 pci_bridge_d3_force = true; 156 return 1; 157 } 158 __setup("pcie_port_pm=", pcie_port_pm_setup); 159 160 /* Time to wait after a reset for device to become responsive */ 161 #define PCIE_RESET_READY_POLL_MS 60000 162 163 /** 164 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children 165 * @bus: pointer to PCI bus structure to search 166 * 167 * Given a PCI bus, returns the highest PCI bus number present in the set 168 * including the given PCI bus and its list of child PCI buses. 169 */ 170 unsigned char pci_bus_max_busnr(struct pci_bus *bus) 171 { 172 struct pci_bus *tmp; 173 unsigned char max, n; 174 175 max = bus->busn_res.end; 176 list_for_each_entry(tmp, &bus->children, node) { 177 n = pci_bus_max_busnr(tmp); 178 if (n > max) 179 max = n; 180 } 181 return max; 182 } 183 EXPORT_SYMBOL_GPL(pci_bus_max_busnr); 184 185 /** 186 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS 187 * @pdev: the PCI device 188 * 189 * Returns error bits set in PCI_STATUS and clears them. 190 */ 191 int pci_status_get_and_clear_errors(struct pci_dev *pdev) 192 { 193 u16 status; 194 int ret; 195 196 ret = pci_read_config_word(pdev, PCI_STATUS, &status); 197 if (ret != PCIBIOS_SUCCESSFUL) 198 return -EIO; 199 200 status &= PCI_STATUS_ERROR_BITS; 201 if (status) 202 pci_write_config_word(pdev, PCI_STATUS, status); 203 204 return status; 205 } 206 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors); 207 208 #ifdef CONFIG_HAS_IOMEM 209 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar) 210 { 211 struct resource *res = &pdev->resource[bar]; 212 213 /* 214 * Make sure the BAR is actually a memory resource, not an IO resource 215 */ 216 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) { 217 pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res); 218 return NULL; 219 } 220 return ioremap(res->start, resource_size(res)); 221 } 222 EXPORT_SYMBOL_GPL(pci_ioremap_bar); 223 224 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar) 225 { 226 /* 227 * Make sure the BAR is actually a memory resource, not an IO resource 228 */ 229 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) { 230 WARN_ON(1); 231 return NULL; 232 } 233 return ioremap_wc(pci_resource_start(pdev, bar), 234 pci_resource_len(pdev, bar)); 235 } 236 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar); 237 #endif 238 239 /** 240 * pci_dev_str_match_path - test if a path string matches a device 241 * @dev: the PCI device to test 242 * @path: string to match the device against 243 * @endptr: pointer to the string after the match 244 * 245 * Test if a string (typically from a kernel parameter) formatted as a 246 * path of device/function addresses matches a PCI device. The string must 247 * be of the form: 248 * 249 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 250 * 251 * A path for a device can be obtained using 'lspci -t'. Using a path 252 * is more robust against bus renumbering than using only a single bus, 253 * device and function address. 254 * 255 * Returns 1 if the string matches the device, 0 if it does not and 256 * a negative error code if it fails to parse the string. 257 */ 258 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path, 259 const char **endptr) 260 { 261 int ret; 262 int seg, bus, slot, func; 263 char *wpath, *p; 264 char end; 265 266 *endptr = strchrnul(path, ';'); 267 268 wpath = kmemdup_nul(path, *endptr - path, GFP_KERNEL); 269 if (!wpath) 270 return -ENOMEM; 271 272 while (1) { 273 p = strrchr(wpath, '/'); 274 if (!p) 275 break; 276 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end); 277 if (ret != 2) { 278 ret = -EINVAL; 279 goto free_and_exit; 280 } 281 282 if (dev->devfn != PCI_DEVFN(slot, func)) { 283 ret = 0; 284 goto free_and_exit; 285 } 286 287 /* 288 * Note: we don't need to get a reference to the upstream 289 * bridge because we hold a reference to the top level 290 * device which should hold a reference to the bridge, 291 * and so on. 292 */ 293 dev = pci_upstream_bridge(dev); 294 if (!dev) { 295 ret = 0; 296 goto free_and_exit; 297 } 298 299 *p = 0; 300 } 301 302 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot, 303 &func, &end); 304 if (ret != 4) { 305 seg = 0; 306 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end); 307 if (ret != 3) { 308 ret = -EINVAL; 309 goto free_and_exit; 310 } 311 } 312 313 ret = (seg == pci_domain_nr(dev->bus) && 314 bus == dev->bus->number && 315 dev->devfn == PCI_DEVFN(slot, func)); 316 317 free_and_exit: 318 kfree(wpath); 319 return ret; 320 } 321 322 /** 323 * pci_dev_str_match - test if a string matches a device 324 * @dev: the PCI device to test 325 * @p: string to match the device against 326 * @endptr: pointer to the string after the match 327 * 328 * Test if a string (typically from a kernel parameter) matches a specified 329 * PCI device. The string may be of one of the following formats: 330 * 331 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 332 * pci:<vendor>:<device>[:<subvendor>:<subdevice>] 333 * 334 * The first format specifies a PCI bus/device/function address which 335 * may change if new hardware is inserted, if motherboard firmware changes, 336 * or due to changes caused in kernel parameters. If the domain is 337 * left unspecified, it is taken to be 0. In order to be robust against 338 * bus renumbering issues, a path of PCI device/function numbers may be used 339 * to address the specific device. The path for a device can be determined 340 * through the use of 'lspci -t'. 341 * 342 * The second format matches devices using IDs in the configuration 343 * space which may match multiple devices in the system. A value of 0 344 * for any field will match all devices. (Note: this differs from 345 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for 346 * legacy reasons and convenience so users don't have to specify 347 * FFFFFFFFs on the command line.) 348 * 349 * Returns 1 if the string matches the device, 0 if it does not and 350 * a negative error code if the string cannot be parsed. 351 */ 352 static int pci_dev_str_match(struct pci_dev *dev, const char *p, 353 const char **endptr) 354 { 355 int ret; 356 int count; 357 unsigned short vendor, device, subsystem_vendor, subsystem_device; 358 359 if (strncmp(p, "pci:", 4) == 0) { 360 /* PCI vendor/device (subvendor/subdevice) IDs are specified */ 361 p += 4; 362 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device, 363 &subsystem_vendor, &subsystem_device, &count); 364 if (ret != 4) { 365 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count); 366 if (ret != 2) 367 return -EINVAL; 368 369 subsystem_vendor = 0; 370 subsystem_device = 0; 371 } 372 373 p += count; 374 375 if ((!vendor || vendor == dev->vendor) && 376 (!device || device == dev->device) && 377 (!subsystem_vendor || 378 subsystem_vendor == dev->subsystem_vendor) && 379 (!subsystem_device || 380 subsystem_device == dev->subsystem_device)) 381 goto found; 382 } else { 383 /* 384 * PCI Bus, Device, Function IDs are specified 385 * (optionally, may include a path of devfns following it) 386 */ 387 ret = pci_dev_str_match_path(dev, p, &p); 388 if (ret < 0) 389 return ret; 390 else if (ret) 391 goto found; 392 } 393 394 *endptr = p; 395 return 0; 396 397 found: 398 *endptr = p; 399 return 1; 400 } 401 402 static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn, 403 u8 pos, int cap, int *ttl) 404 { 405 u8 id; 406 u16 ent; 407 408 pci_bus_read_config_byte(bus, devfn, pos, &pos); 409 410 while ((*ttl)--) { 411 if (pos < 0x40) 412 break; 413 pos &= ~3; 414 pci_bus_read_config_word(bus, devfn, pos, &ent); 415 416 id = ent & 0xff; 417 if (id == 0xff) 418 break; 419 if (id == cap) 420 return pos; 421 pos = (ent >> 8); 422 } 423 return 0; 424 } 425 426 static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn, 427 u8 pos, int cap) 428 { 429 int ttl = PCI_FIND_CAP_TTL; 430 431 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl); 432 } 433 434 u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap) 435 { 436 return __pci_find_next_cap(dev->bus, dev->devfn, 437 pos + PCI_CAP_LIST_NEXT, cap); 438 } 439 EXPORT_SYMBOL_GPL(pci_find_next_capability); 440 441 static u8 __pci_bus_find_cap_start(struct pci_bus *bus, 442 unsigned int devfn, u8 hdr_type) 443 { 444 u16 status; 445 446 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status); 447 if (!(status & PCI_STATUS_CAP_LIST)) 448 return 0; 449 450 switch (hdr_type) { 451 case PCI_HEADER_TYPE_NORMAL: 452 case PCI_HEADER_TYPE_BRIDGE: 453 return PCI_CAPABILITY_LIST; 454 case PCI_HEADER_TYPE_CARDBUS: 455 return PCI_CB_CAPABILITY_LIST; 456 } 457 458 return 0; 459 } 460 461 /** 462 * pci_find_capability - query for devices' capabilities 463 * @dev: PCI device to query 464 * @cap: capability code 465 * 466 * Tell if a device supports a given PCI capability. 467 * Returns the address of the requested capability structure within the 468 * device's PCI configuration space or 0 in case the device does not 469 * support it. Possible values for @cap include: 470 * 471 * %PCI_CAP_ID_PM Power Management 472 * %PCI_CAP_ID_AGP Accelerated Graphics Port 473 * %PCI_CAP_ID_VPD Vital Product Data 474 * %PCI_CAP_ID_SLOTID Slot Identification 475 * %PCI_CAP_ID_MSI Message Signalled Interrupts 476 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap 477 * %PCI_CAP_ID_PCIX PCI-X 478 * %PCI_CAP_ID_EXP PCI Express 479 */ 480 u8 pci_find_capability(struct pci_dev *dev, int cap) 481 { 482 u8 pos; 483 484 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 485 if (pos) 486 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap); 487 488 return pos; 489 } 490 EXPORT_SYMBOL(pci_find_capability); 491 492 /** 493 * pci_bus_find_capability - query for devices' capabilities 494 * @bus: the PCI bus to query 495 * @devfn: PCI device to query 496 * @cap: capability code 497 * 498 * Like pci_find_capability() but works for PCI devices that do not have a 499 * pci_dev structure set up yet. 500 * 501 * Returns the address of the requested capability structure within the 502 * device's PCI configuration space or 0 in case the device does not 503 * support it. 504 */ 505 u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap) 506 { 507 u8 hdr_type, pos; 508 509 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type); 510 511 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f); 512 if (pos) 513 pos = __pci_find_next_cap(bus, devfn, pos, cap); 514 515 return pos; 516 } 517 EXPORT_SYMBOL(pci_bus_find_capability); 518 519 /** 520 * pci_find_next_ext_capability - Find an extended capability 521 * @dev: PCI device to query 522 * @start: address at which to start looking (0 to start at beginning of list) 523 * @cap: capability code 524 * 525 * Returns the address of the next matching extended capability structure 526 * within the device's PCI configuration space or 0 if the device does 527 * not support it. Some capabilities can occur several times, e.g., the 528 * vendor-specific capability, and this provides a way to find them all. 529 */ 530 u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap) 531 { 532 u32 header; 533 int ttl; 534 u16 pos = PCI_CFG_SPACE_SIZE; 535 536 /* minimum 8 bytes per capability */ 537 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8; 538 539 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE) 540 return 0; 541 542 if (start) 543 pos = start; 544 545 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 546 return 0; 547 548 /* 549 * If we have no capabilities, this is indicated by cap ID, 550 * cap version and next pointer all being 0. 551 */ 552 if (header == 0) 553 return 0; 554 555 while (ttl-- > 0) { 556 if (PCI_EXT_CAP_ID(header) == cap && pos != start) 557 return pos; 558 559 pos = PCI_EXT_CAP_NEXT(header); 560 if (pos < PCI_CFG_SPACE_SIZE) 561 break; 562 563 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 564 break; 565 } 566 567 return 0; 568 } 569 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability); 570 571 /** 572 * pci_find_ext_capability - Find an extended capability 573 * @dev: PCI device to query 574 * @cap: capability code 575 * 576 * Returns the address of the requested extended capability structure 577 * within the device's PCI configuration space or 0 if the device does 578 * not support it. Possible values for @cap include: 579 * 580 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting 581 * %PCI_EXT_CAP_ID_VC Virtual Channel 582 * %PCI_EXT_CAP_ID_DSN Device Serial Number 583 * %PCI_EXT_CAP_ID_PWR Power Budgeting 584 */ 585 u16 pci_find_ext_capability(struct pci_dev *dev, int cap) 586 { 587 return pci_find_next_ext_capability(dev, 0, cap); 588 } 589 EXPORT_SYMBOL_GPL(pci_find_ext_capability); 590 591 /** 592 * pci_get_dsn - Read and return the 8-byte Device Serial Number 593 * @dev: PCI device to query 594 * 595 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial 596 * Number. 597 * 598 * Returns the DSN, or zero if the capability does not exist. 599 */ 600 u64 pci_get_dsn(struct pci_dev *dev) 601 { 602 u32 dword; 603 u64 dsn; 604 int pos; 605 606 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN); 607 if (!pos) 608 return 0; 609 610 /* 611 * The Device Serial Number is two dwords offset 4 bytes from the 612 * capability position. The specification says that the first dword is 613 * the lower half, and the second dword is the upper half. 614 */ 615 pos += 4; 616 pci_read_config_dword(dev, pos, &dword); 617 dsn = (u64)dword; 618 pci_read_config_dword(dev, pos + 4, &dword); 619 dsn |= ((u64)dword) << 32; 620 621 return dsn; 622 } 623 EXPORT_SYMBOL_GPL(pci_get_dsn); 624 625 static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap) 626 { 627 int rc, ttl = PCI_FIND_CAP_TTL; 628 u8 cap, mask; 629 630 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST) 631 mask = HT_3BIT_CAP_MASK; 632 else 633 mask = HT_5BIT_CAP_MASK; 634 635 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos, 636 PCI_CAP_ID_HT, &ttl); 637 while (pos) { 638 rc = pci_read_config_byte(dev, pos + 3, &cap); 639 if (rc != PCIBIOS_SUCCESSFUL) 640 return 0; 641 642 if ((cap & mask) == ht_cap) 643 return pos; 644 645 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, 646 pos + PCI_CAP_LIST_NEXT, 647 PCI_CAP_ID_HT, &ttl); 648 } 649 650 return 0; 651 } 652 653 /** 654 * pci_find_next_ht_capability - query a device's HyperTransport capabilities 655 * @dev: PCI device to query 656 * @pos: Position from which to continue searching 657 * @ht_cap: HyperTransport capability code 658 * 659 * To be used in conjunction with pci_find_ht_capability() to search for 660 * all capabilities matching @ht_cap. @pos should always be a value returned 661 * from pci_find_ht_capability(). 662 * 663 * NB. To be 100% safe against broken PCI devices, the caller should take 664 * steps to avoid an infinite loop. 665 */ 666 u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap) 667 { 668 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap); 669 } 670 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability); 671 672 /** 673 * pci_find_ht_capability - query a device's HyperTransport capabilities 674 * @dev: PCI device to query 675 * @ht_cap: HyperTransport capability code 676 * 677 * Tell if a device supports a given HyperTransport capability. 678 * Returns an address within the device's PCI configuration space 679 * or 0 in case the device does not support the request capability. 680 * The address points to the PCI capability, of type PCI_CAP_ID_HT, 681 * which has a HyperTransport capability matching @ht_cap. 682 */ 683 u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap) 684 { 685 u8 pos; 686 687 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 688 if (pos) 689 pos = __pci_find_next_ht_cap(dev, pos, ht_cap); 690 691 return pos; 692 } 693 EXPORT_SYMBOL_GPL(pci_find_ht_capability); 694 695 /** 696 * pci_find_parent_resource - return resource region of parent bus of given 697 * region 698 * @dev: PCI device structure contains resources to be searched 699 * @res: child resource record for which parent is sought 700 * 701 * For given resource region of given device, return the resource region of 702 * parent bus the given region is contained in. 703 */ 704 struct resource *pci_find_parent_resource(const struct pci_dev *dev, 705 struct resource *res) 706 { 707 const struct pci_bus *bus = dev->bus; 708 struct resource *r; 709 int i; 710 711 pci_bus_for_each_resource(bus, r, i) { 712 if (!r) 713 continue; 714 if (resource_contains(r, res)) { 715 716 /* 717 * If the window is prefetchable but the BAR is 718 * not, the allocator made a mistake. 719 */ 720 if (r->flags & IORESOURCE_PREFETCH && 721 !(res->flags & IORESOURCE_PREFETCH)) 722 return NULL; 723 724 /* 725 * If we're below a transparent bridge, there may 726 * be both a positively-decoded aperture and a 727 * subtractively-decoded region that contain the BAR. 728 * We want the positively-decoded one, so this depends 729 * on pci_bus_for_each_resource() giving us those 730 * first. 731 */ 732 return r; 733 } 734 } 735 return NULL; 736 } 737 EXPORT_SYMBOL(pci_find_parent_resource); 738 739 /** 740 * pci_find_resource - Return matching PCI device resource 741 * @dev: PCI device to query 742 * @res: Resource to look for 743 * 744 * Goes over standard PCI resources (BARs) and checks if the given resource 745 * is partially or fully contained in any of them. In that case the 746 * matching resource is returned, %NULL otherwise. 747 */ 748 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res) 749 { 750 int i; 751 752 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 753 struct resource *r = &dev->resource[i]; 754 755 if (r->start && resource_contains(r, res)) 756 return r; 757 } 758 759 return NULL; 760 } 761 EXPORT_SYMBOL(pci_find_resource); 762 763 /** 764 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos 765 * @dev: the PCI device to operate on 766 * @pos: config space offset of status word 767 * @mask: mask of bit(s) to care about in status word 768 * 769 * Return 1 when mask bit(s) in status word clear, 0 otherwise. 770 */ 771 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask) 772 { 773 int i; 774 775 /* Wait for Transaction Pending bit clean */ 776 for (i = 0; i < 4; i++) { 777 u16 status; 778 if (i) 779 msleep((1 << (i - 1)) * 100); 780 781 pci_read_config_word(dev, pos, &status); 782 if (!(status & mask)) 783 return 1; 784 } 785 786 return 0; 787 } 788 789 static int pci_acs_enable; 790 791 /** 792 * pci_request_acs - ask for ACS to be enabled if supported 793 */ 794 void pci_request_acs(void) 795 { 796 pci_acs_enable = 1; 797 } 798 799 static const char *disable_acs_redir_param; 800 801 /** 802 * pci_disable_acs_redir - disable ACS redirect capabilities 803 * @dev: the PCI device 804 * 805 * For only devices specified in the disable_acs_redir parameter. 806 */ 807 static void pci_disable_acs_redir(struct pci_dev *dev) 808 { 809 int ret = 0; 810 const char *p; 811 int pos; 812 u16 ctrl; 813 814 if (!disable_acs_redir_param) 815 return; 816 817 p = disable_acs_redir_param; 818 while (*p) { 819 ret = pci_dev_str_match(dev, p, &p); 820 if (ret < 0) { 821 pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n", 822 disable_acs_redir_param); 823 824 break; 825 } else if (ret == 1) { 826 /* Found a match */ 827 break; 828 } 829 830 if (*p != ';' && *p != ',') { 831 /* End of param or invalid format */ 832 break; 833 } 834 p++; 835 } 836 837 if (ret != 1) 838 return; 839 840 if (!pci_dev_specific_disable_acs_redir(dev)) 841 return; 842 843 pos = dev->acs_cap; 844 if (!pos) { 845 pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n"); 846 return; 847 } 848 849 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 850 851 /* P2P Request & Completion Redirect */ 852 ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC); 853 854 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 855 856 pci_info(dev, "disabled ACS redirect\n"); 857 } 858 859 /** 860 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities 861 * @dev: the PCI device 862 */ 863 static void pci_std_enable_acs(struct pci_dev *dev) 864 { 865 int pos; 866 u16 cap; 867 u16 ctrl; 868 869 pos = dev->acs_cap; 870 if (!pos) 871 return; 872 873 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap); 874 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 875 876 /* Source Validation */ 877 ctrl |= (cap & PCI_ACS_SV); 878 879 /* P2P Request Redirect */ 880 ctrl |= (cap & PCI_ACS_RR); 881 882 /* P2P Completion Redirect */ 883 ctrl |= (cap & PCI_ACS_CR); 884 885 /* Upstream Forwarding */ 886 ctrl |= (cap & PCI_ACS_UF); 887 888 /* Enable Translation Blocking for external devices */ 889 if (dev->external_facing || dev->untrusted) 890 ctrl |= (cap & PCI_ACS_TB); 891 892 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 893 } 894 895 /** 896 * pci_enable_acs - enable ACS if hardware support it 897 * @dev: the PCI device 898 */ 899 static void pci_enable_acs(struct pci_dev *dev) 900 { 901 if (!pci_acs_enable) 902 goto disable_acs_redir; 903 904 if (!pci_dev_specific_enable_acs(dev)) 905 goto disable_acs_redir; 906 907 pci_std_enable_acs(dev); 908 909 disable_acs_redir: 910 /* 911 * Note: pci_disable_acs_redir() must be called even if ACS was not 912 * enabled by the kernel because it may have been enabled by 913 * platform firmware. So if we are told to disable it, we should 914 * always disable it after setting the kernel's default 915 * preferences. 916 */ 917 pci_disable_acs_redir(dev); 918 } 919 920 /** 921 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up) 922 * @dev: PCI device to have its BARs restored 923 * 924 * Restore the BAR values for a given device, so as to make it 925 * accessible by its driver. 926 */ 927 static void pci_restore_bars(struct pci_dev *dev) 928 { 929 int i; 930 931 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) 932 pci_update_resource(dev, i); 933 } 934 935 static const struct pci_platform_pm_ops *pci_platform_pm; 936 937 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops) 938 { 939 if (!ops->is_manageable || !ops->set_state || !ops->get_state || 940 !ops->choose_state || !ops->set_wakeup || !ops->need_resume) 941 return -EINVAL; 942 pci_platform_pm = ops; 943 return 0; 944 } 945 946 static inline bool platform_pci_power_manageable(struct pci_dev *dev) 947 { 948 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false; 949 } 950 951 static inline int platform_pci_set_power_state(struct pci_dev *dev, 952 pci_power_t t) 953 { 954 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS; 955 } 956 957 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev) 958 { 959 return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN; 960 } 961 962 static inline void platform_pci_refresh_power_state(struct pci_dev *dev) 963 { 964 if (pci_platform_pm && pci_platform_pm->refresh_state) 965 pci_platform_pm->refresh_state(dev); 966 } 967 968 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev) 969 { 970 return pci_platform_pm ? 971 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR; 972 } 973 974 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable) 975 { 976 return pci_platform_pm ? 977 pci_platform_pm->set_wakeup(dev, enable) : -ENODEV; 978 } 979 980 static inline bool platform_pci_need_resume(struct pci_dev *dev) 981 { 982 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false; 983 } 984 985 static inline bool platform_pci_bridge_d3(struct pci_dev *dev) 986 { 987 if (pci_platform_pm && pci_platform_pm->bridge_d3) 988 return pci_platform_pm->bridge_d3(dev); 989 return false; 990 } 991 992 /** 993 * pci_raw_set_power_state - Use PCI PM registers to set the power state of 994 * given PCI device 995 * @dev: PCI device to handle. 996 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 997 * 998 * RETURN VALUE: 999 * -EINVAL if the requested state is invalid. 1000 * -EIO if device does not support PCI PM or its PM capabilities register has a 1001 * wrong version, or device doesn't support the requested state. 1002 * 0 if device already is in the requested state. 1003 * 0 if device's power state has been successfully changed. 1004 */ 1005 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state) 1006 { 1007 u16 pmcsr; 1008 bool need_restore = false; 1009 1010 /* Check if we're already there */ 1011 if (dev->current_state == state) 1012 return 0; 1013 1014 if (!dev->pm_cap) 1015 return -EIO; 1016 1017 if (state < PCI_D0 || state > PCI_D3hot) 1018 return -EINVAL; 1019 1020 /* 1021 * Validate transition: We can enter D0 from any state, but if 1022 * we're already in a low-power state, we can only go deeper. E.g., 1023 * we can go from D1 to D3, but we can't go directly from D3 to D1; 1024 * we'd have to go from D3 to D0, then to D1. 1025 */ 1026 if (state != PCI_D0 && dev->current_state <= PCI_D3cold 1027 && dev->current_state > state) { 1028 pci_err(dev, "invalid power transition (from %s to %s)\n", 1029 pci_power_name(dev->current_state), 1030 pci_power_name(state)); 1031 return -EINVAL; 1032 } 1033 1034 /* Check if this device supports the desired state */ 1035 if ((state == PCI_D1 && !dev->d1_support) 1036 || (state == PCI_D2 && !dev->d2_support)) 1037 return -EIO; 1038 1039 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1040 if (pmcsr == (u16) ~0) { 1041 pci_err(dev, "can't change power state from %s to %s (config space inaccessible)\n", 1042 pci_power_name(dev->current_state), 1043 pci_power_name(state)); 1044 return -EIO; 1045 } 1046 1047 /* 1048 * If we're (effectively) in D3, force entire word to 0. 1049 * This doesn't affect PME_Status, disables PME_En, and 1050 * sets PowerState to 0. 1051 */ 1052 switch (dev->current_state) { 1053 case PCI_D0: 1054 case PCI_D1: 1055 case PCI_D2: 1056 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 1057 pmcsr |= state; 1058 break; 1059 case PCI_D3hot: 1060 case PCI_D3cold: 1061 case PCI_UNKNOWN: /* Boot-up */ 1062 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot 1063 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET)) 1064 need_restore = true; 1065 fallthrough; /* force to D0 */ 1066 default: 1067 pmcsr = 0; 1068 break; 1069 } 1070 1071 /* Enter specified state */ 1072 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 1073 1074 /* 1075 * Mandatory power management transition delays; see PCI PM 1.1 1076 * 5.6.1 table 18 1077 */ 1078 if (state == PCI_D3hot || dev->current_state == PCI_D3hot) 1079 pci_dev_d3_sleep(dev); 1080 else if (state == PCI_D2 || dev->current_state == PCI_D2) 1081 udelay(PCI_PM_D2_DELAY); 1082 1083 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1084 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 1085 if (dev->current_state != state) 1086 pci_info_ratelimited(dev, "refused to change power state from %s to %s\n", 1087 pci_power_name(dev->current_state), 1088 pci_power_name(state)); 1089 1090 /* 1091 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT 1092 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning 1093 * from D3hot to D0 _may_ perform an internal reset, thereby 1094 * going to "D0 Uninitialized" rather than "D0 Initialized". 1095 * For example, at least some versions of the 3c905B and the 1096 * 3c556B exhibit this behaviour. 1097 * 1098 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave 1099 * devices in a D3hot state at boot. Consequently, we need to 1100 * restore at least the BARs so that the device will be 1101 * accessible to its driver. 1102 */ 1103 if (need_restore) 1104 pci_restore_bars(dev); 1105 1106 if (dev->bus->self) 1107 pcie_aspm_pm_state_change(dev->bus->self); 1108 1109 return 0; 1110 } 1111 1112 /** 1113 * pci_update_current_state - Read power state of given device and cache it 1114 * @dev: PCI device to handle. 1115 * @state: State to cache in case the device doesn't have the PM capability 1116 * 1117 * The power state is read from the PMCSR register, which however is 1118 * inaccessible in D3cold. The platform firmware is therefore queried first 1119 * to detect accessibility of the register. In case the platform firmware 1120 * reports an incorrect state or the device isn't power manageable by the 1121 * platform at all, we try to detect D3cold by testing accessibility of the 1122 * vendor ID in config space. 1123 */ 1124 void pci_update_current_state(struct pci_dev *dev, pci_power_t state) 1125 { 1126 if (platform_pci_get_power_state(dev) == PCI_D3cold || 1127 !pci_device_is_present(dev)) { 1128 dev->current_state = PCI_D3cold; 1129 } else if (dev->pm_cap) { 1130 u16 pmcsr; 1131 1132 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1133 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 1134 } else { 1135 dev->current_state = state; 1136 } 1137 } 1138 1139 /** 1140 * pci_refresh_power_state - Refresh the given device's power state data 1141 * @dev: Target PCI device. 1142 * 1143 * Ask the platform to refresh the devices power state information and invoke 1144 * pci_update_current_state() to update its current PCI power state. 1145 */ 1146 void pci_refresh_power_state(struct pci_dev *dev) 1147 { 1148 if (platform_pci_power_manageable(dev)) 1149 platform_pci_refresh_power_state(dev); 1150 1151 pci_update_current_state(dev, dev->current_state); 1152 } 1153 1154 /** 1155 * pci_platform_power_transition - Use platform to change device power state 1156 * @dev: PCI device to handle. 1157 * @state: State to put the device into. 1158 */ 1159 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state) 1160 { 1161 int error; 1162 1163 if (platform_pci_power_manageable(dev)) { 1164 error = platform_pci_set_power_state(dev, state); 1165 if (!error) 1166 pci_update_current_state(dev, state); 1167 } else 1168 error = -ENODEV; 1169 1170 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */ 1171 dev->current_state = PCI_D0; 1172 1173 return error; 1174 } 1175 EXPORT_SYMBOL_GPL(pci_platform_power_transition); 1176 1177 static int pci_resume_one(struct pci_dev *pci_dev, void *ign) 1178 { 1179 pm_request_resume(&pci_dev->dev); 1180 return 0; 1181 } 1182 1183 /** 1184 * pci_resume_bus - Walk given bus and runtime resume devices on it 1185 * @bus: Top bus of the subtree to walk. 1186 */ 1187 void pci_resume_bus(struct pci_bus *bus) 1188 { 1189 if (bus) 1190 pci_walk_bus(bus, pci_resume_one, NULL); 1191 } 1192 1193 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout) 1194 { 1195 int delay = 1; 1196 u32 id; 1197 1198 /* 1199 * After reset, the device should not silently discard config 1200 * requests, but it may still indicate that it needs more time by 1201 * responding to them with CRS completions. The Root Port will 1202 * generally synthesize ~0 data to complete the read (except when 1203 * CRS SV is enabled and the read was for the Vendor ID; in that 1204 * case it synthesizes 0x0001 data). 1205 * 1206 * Wait for the device to return a non-CRS completion. Read the 1207 * Command register instead of Vendor ID so we don't have to 1208 * contend with the CRS SV value. 1209 */ 1210 pci_read_config_dword(dev, PCI_COMMAND, &id); 1211 while (id == ~0) { 1212 if (delay > timeout) { 1213 pci_warn(dev, "not ready %dms after %s; giving up\n", 1214 delay - 1, reset_type); 1215 return -ENOTTY; 1216 } 1217 1218 if (delay > 1000) 1219 pci_info(dev, "not ready %dms after %s; waiting\n", 1220 delay - 1, reset_type); 1221 1222 msleep(delay); 1223 delay *= 2; 1224 pci_read_config_dword(dev, PCI_COMMAND, &id); 1225 } 1226 1227 if (delay > 1000) 1228 pci_info(dev, "ready %dms after %s\n", delay - 1, 1229 reset_type); 1230 1231 return 0; 1232 } 1233 1234 /** 1235 * pci_power_up - Put the given device into D0 1236 * @dev: PCI device to power up 1237 */ 1238 int pci_power_up(struct pci_dev *dev) 1239 { 1240 pci_platform_power_transition(dev, PCI_D0); 1241 1242 /* 1243 * Mandatory power management transition delays are handled in 1244 * pci_pm_resume_noirq() and pci_pm_runtime_resume() of the 1245 * corresponding bridge. 1246 */ 1247 if (dev->runtime_d3cold) { 1248 /* 1249 * When powering on a bridge from D3cold, the whole hierarchy 1250 * may be powered on into D0uninitialized state, resume them to 1251 * give them a chance to suspend again 1252 */ 1253 pci_resume_bus(dev->subordinate); 1254 } 1255 1256 return pci_raw_set_power_state(dev, PCI_D0); 1257 } 1258 1259 /** 1260 * __pci_dev_set_current_state - Set current state of a PCI device 1261 * @dev: Device to handle 1262 * @data: pointer to state to be set 1263 */ 1264 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data) 1265 { 1266 pci_power_t state = *(pci_power_t *)data; 1267 1268 dev->current_state = state; 1269 return 0; 1270 } 1271 1272 /** 1273 * pci_bus_set_current_state - Walk given bus and set current state of devices 1274 * @bus: Top bus of the subtree to walk. 1275 * @state: state to be set 1276 */ 1277 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state) 1278 { 1279 if (bus) 1280 pci_walk_bus(bus, __pci_dev_set_current_state, &state); 1281 } 1282 1283 /** 1284 * pci_set_power_state - Set the power state of a PCI device 1285 * @dev: PCI device to handle. 1286 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 1287 * 1288 * Transition a device to a new power state, using the platform firmware and/or 1289 * the device's PCI PM registers. 1290 * 1291 * RETURN VALUE: 1292 * -EINVAL if the requested state is invalid. 1293 * -EIO if device does not support PCI PM or its PM capabilities register has a 1294 * wrong version, or device doesn't support the requested state. 1295 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported. 1296 * 0 if device already is in the requested state. 1297 * 0 if the transition is to D3 but D3 is not supported. 1298 * 0 if device's power state has been successfully changed. 1299 */ 1300 int pci_set_power_state(struct pci_dev *dev, pci_power_t state) 1301 { 1302 int error; 1303 1304 /* Bound the state we're entering */ 1305 if (state > PCI_D3cold) 1306 state = PCI_D3cold; 1307 else if (state < PCI_D0) 1308 state = PCI_D0; 1309 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev)) 1310 1311 /* 1312 * If the device or the parent bridge do not support PCI 1313 * PM, ignore the request if we're doing anything other 1314 * than putting it into D0 (which would only happen on 1315 * boot). 1316 */ 1317 return 0; 1318 1319 /* Check if we're already there */ 1320 if (dev->current_state == state) 1321 return 0; 1322 1323 if (state == PCI_D0) 1324 return pci_power_up(dev); 1325 1326 /* 1327 * This device is quirked not to be put into D3, so don't put it in 1328 * D3 1329 */ 1330 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3)) 1331 return 0; 1332 1333 /* 1334 * To put device in D3cold, we put device into D3hot in native 1335 * way, then put device into D3cold with platform ops 1336 */ 1337 error = pci_raw_set_power_state(dev, state > PCI_D3hot ? 1338 PCI_D3hot : state); 1339 1340 if (pci_platform_power_transition(dev, state)) 1341 return error; 1342 1343 /* Powering off a bridge may power off the whole hierarchy */ 1344 if (state == PCI_D3cold) 1345 pci_bus_set_current_state(dev->subordinate, PCI_D3cold); 1346 1347 return 0; 1348 } 1349 EXPORT_SYMBOL(pci_set_power_state); 1350 1351 /** 1352 * pci_choose_state - Choose the power state of a PCI device 1353 * @dev: PCI device to be suspended 1354 * @state: target sleep state for the whole system. This is the value 1355 * that is passed to suspend() function. 1356 * 1357 * Returns PCI power state suitable for given device and given system 1358 * message. 1359 */ 1360 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state) 1361 { 1362 pci_power_t ret; 1363 1364 if (!dev->pm_cap) 1365 return PCI_D0; 1366 1367 ret = platform_pci_choose_state(dev); 1368 if (ret != PCI_POWER_ERROR) 1369 return ret; 1370 1371 switch (state.event) { 1372 case PM_EVENT_ON: 1373 return PCI_D0; 1374 case PM_EVENT_FREEZE: 1375 case PM_EVENT_PRETHAW: 1376 /* REVISIT both freeze and pre-thaw "should" use D0 */ 1377 case PM_EVENT_SUSPEND: 1378 case PM_EVENT_HIBERNATE: 1379 return PCI_D3hot; 1380 default: 1381 pci_info(dev, "unrecognized suspend event %d\n", 1382 state.event); 1383 BUG(); 1384 } 1385 return PCI_D0; 1386 } 1387 EXPORT_SYMBOL(pci_choose_state); 1388 1389 #define PCI_EXP_SAVE_REGS 7 1390 1391 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev, 1392 u16 cap, bool extended) 1393 { 1394 struct pci_cap_saved_state *tmp; 1395 1396 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) { 1397 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap) 1398 return tmp; 1399 } 1400 return NULL; 1401 } 1402 1403 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap) 1404 { 1405 return _pci_find_saved_cap(dev, cap, false); 1406 } 1407 1408 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap) 1409 { 1410 return _pci_find_saved_cap(dev, cap, true); 1411 } 1412 1413 static int pci_save_pcie_state(struct pci_dev *dev) 1414 { 1415 int i = 0; 1416 struct pci_cap_saved_state *save_state; 1417 u16 *cap; 1418 1419 if (!pci_is_pcie(dev)) 1420 return 0; 1421 1422 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1423 if (!save_state) { 1424 pci_err(dev, "buffer not found in %s\n", __func__); 1425 return -ENOMEM; 1426 } 1427 1428 cap = (u16 *)&save_state->cap.data[0]; 1429 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]); 1430 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]); 1431 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]); 1432 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]); 1433 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]); 1434 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]); 1435 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]); 1436 1437 return 0; 1438 } 1439 1440 static void pci_restore_pcie_state(struct pci_dev *dev) 1441 { 1442 int i = 0; 1443 struct pci_cap_saved_state *save_state; 1444 u16 *cap; 1445 1446 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1447 if (!save_state) 1448 return; 1449 1450 cap = (u16 *)&save_state->cap.data[0]; 1451 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]); 1452 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]); 1453 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]); 1454 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]); 1455 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]); 1456 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]); 1457 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]); 1458 } 1459 1460 static int pci_save_pcix_state(struct pci_dev *dev) 1461 { 1462 int pos; 1463 struct pci_cap_saved_state *save_state; 1464 1465 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1466 if (!pos) 1467 return 0; 1468 1469 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1470 if (!save_state) { 1471 pci_err(dev, "buffer not found in %s\n", __func__); 1472 return -ENOMEM; 1473 } 1474 1475 pci_read_config_word(dev, pos + PCI_X_CMD, 1476 (u16 *)save_state->cap.data); 1477 1478 return 0; 1479 } 1480 1481 static void pci_restore_pcix_state(struct pci_dev *dev) 1482 { 1483 int i = 0, pos; 1484 struct pci_cap_saved_state *save_state; 1485 u16 *cap; 1486 1487 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1488 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1489 if (!save_state || !pos) 1490 return; 1491 cap = (u16 *)&save_state->cap.data[0]; 1492 1493 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]); 1494 } 1495 1496 static void pci_save_ltr_state(struct pci_dev *dev) 1497 { 1498 int ltr; 1499 struct pci_cap_saved_state *save_state; 1500 u16 *cap; 1501 1502 if (!pci_is_pcie(dev)) 1503 return; 1504 1505 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR); 1506 if (!ltr) 1507 return; 1508 1509 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR); 1510 if (!save_state) { 1511 pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n"); 1512 return; 1513 } 1514 1515 cap = (u16 *)&save_state->cap.data[0]; 1516 pci_read_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap++); 1517 pci_read_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, cap++); 1518 } 1519 1520 static void pci_restore_ltr_state(struct pci_dev *dev) 1521 { 1522 struct pci_cap_saved_state *save_state; 1523 int ltr; 1524 u16 *cap; 1525 1526 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR); 1527 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR); 1528 if (!save_state || !ltr) 1529 return; 1530 1531 cap = (u16 *)&save_state->cap.data[0]; 1532 pci_write_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap++); 1533 pci_write_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, *cap++); 1534 } 1535 1536 /** 1537 * pci_save_state - save the PCI configuration space of a device before 1538 * suspending 1539 * @dev: PCI device that we're dealing with 1540 */ 1541 int pci_save_state(struct pci_dev *dev) 1542 { 1543 int i; 1544 /* XXX: 100% dword access ok here? */ 1545 for (i = 0; i < 16; i++) { 1546 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]); 1547 pci_dbg(dev, "saving config space at offset %#x (reading %#x)\n", 1548 i * 4, dev->saved_config_space[i]); 1549 } 1550 dev->state_saved = true; 1551 1552 i = pci_save_pcie_state(dev); 1553 if (i != 0) 1554 return i; 1555 1556 i = pci_save_pcix_state(dev); 1557 if (i != 0) 1558 return i; 1559 1560 pci_save_ltr_state(dev); 1561 pci_save_aspm_l1ss_state(dev); 1562 pci_save_dpc_state(dev); 1563 pci_save_aer_state(dev); 1564 pci_save_ptm_state(dev); 1565 return pci_save_vc_state(dev); 1566 } 1567 EXPORT_SYMBOL(pci_save_state); 1568 1569 static void pci_restore_config_dword(struct pci_dev *pdev, int offset, 1570 u32 saved_val, int retry, bool force) 1571 { 1572 u32 val; 1573 1574 pci_read_config_dword(pdev, offset, &val); 1575 if (!force && val == saved_val) 1576 return; 1577 1578 for (;;) { 1579 pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n", 1580 offset, val, saved_val); 1581 pci_write_config_dword(pdev, offset, saved_val); 1582 if (retry-- <= 0) 1583 return; 1584 1585 pci_read_config_dword(pdev, offset, &val); 1586 if (val == saved_val) 1587 return; 1588 1589 mdelay(1); 1590 } 1591 } 1592 1593 static void pci_restore_config_space_range(struct pci_dev *pdev, 1594 int start, int end, int retry, 1595 bool force) 1596 { 1597 int index; 1598 1599 for (index = end; index >= start; index--) 1600 pci_restore_config_dword(pdev, 4 * index, 1601 pdev->saved_config_space[index], 1602 retry, force); 1603 } 1604 1605 static void pci_restore_config_space(struct pci_dev *pdev) 1606 { 1607 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) { 1608 pci_restore_config_space_range(pdev, 10, 15, 0, false); 1609 /* Restore BARs before the command register. */ 1610 pci_restore_config_space_range(pdev, 4, 9, 10, false); 1611 pci_restore_config_space_range(pdev, 0, 3, 0, false); 1612 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 1613 pci_restore_config_space_range(pdev, 12, 15, 0, false); 1614 1615 /* 1616 * Force rewriting of prefetch registers to avoid S3 resume 1617 * issues on Intel PCI bridges that occur when these 1618 * registers are not explicitly written. 1619 */ 1620 pci_restore_config_space_range(pdev, 9, 11, 0, true); 1621 pci_restore_config_space_range(pdev, 0, 8, 0, false); 1622 } else { 1623 pci_restore_config_space_range(pdev, 0, 15, 0, false); 1624 } 1625 } 1626 1627 static void pci_restore_rebar_state(struct pci_dev *pdev) 1628 { 1629 unsigned int pos, nbars, i; 1630 u32 ctrl; 1631 1632 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 1633 if (!pos) 1634 return; 1635 1636 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1637 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >> 1638 PCI_REBAR_CTRL_NBAR_SHIFT; 1639 1640 for (i = 0; i < nbars; i++, pos += 8) { 1641 struct resource *res; 1642 int bar_idx, size; 1643 1644 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1645 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX; 1646 res = pdev->resource + bar_idx; 1647 size = ilog2(resource_size(res)) - 20; 1648 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 1649 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT; 1650 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 1651 } 1652 } 1653 1654 /** 1655 * pci_restore_state - Restore the saved state of a PCI device 1656 * @dev: PCI device that we're dealing with 1657 */ 1658 void pci_restore_state(struct pci_dev *dev) 1659 { 1660 if (!dev->state_saved) 1661 return; 1662 1663 /* 1664 * Restore max latencies (in the LTR capability) before enabling 1665 * LTR itself (in the PCIe capability). 1666 */ 1667 pci_restore_ltr_state(dev); 1668 pci_restore_aspm_l1ss_state(dev); 1669 1670 pci_restore_pcie_state(dev); 1671 pci_restore_pasid_state(dev); 1672 pci_restore_pri_state(dev); 1673 pci_restore_ats_state(dev); 1674 pci_restore_vc_state(dev); 1675 pci_restore_rebar_state(dev); 1676 pci_restore_dpc_state(dev); 1677 pci_restore_ptm_state(dev); 1678 1679 pci_aer_clear_status(dev); 1680 pci_restore_aer_state(dev); 1681 1682 pci_restore_config_space(dev); 1683 1684 pci_restore_pcix_state(dev); 1685 pci_restore_msi_state(dev); 1686 1687 /* Restore ACS and IOV configuration state */ 1688 pci_enable_acs(dev); 1689 pci_restore_iov_state(dev); 1690 1691 dev->state_saved = false; 1692 } 1693 EXPORT_SYMBOL(pci_restore_state); 1694 1695 struct pci_saved_state { 1696 u32 config_space[16]; 1697 struct pci_cap_saved_data cap[]; 1698 }; 1699 1700 /** 1701 * pci_store_saved_state - Allocate and return an opaque struct containing 1702 * the device saved state. 1703 * @dev: PCI device that we're dealing with 1704 * 1705 * Return NULL if no state or error. 1706 */ 1707 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev) 1708 { 1709 struct pci_saved_state *state; 1710 struct pci_cap_saved_state *tmp; 1711 struct pci_cap_saved_data *cap; 1712 size_t size; 1713 1714 if (!dev->state_saved) 1715 return NULL; 1716 1717 size = sizeof(*state) + sizeof(struct pci_cap_saved_data); 1718 1719 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) 1720 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1721 1722 state = kzalloc(size, GFP_KERNEL); 1723 if (!state) 1724 return NULL; 1725 1726 memcpy(state->config_space, dev->saved_config_space, 1727 sizeof(state->config_space)); 1728 1729 cap = state->cap; 1730 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) { 1731 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1732 memcpy(cap, &tmp->cap, len); 1733 cap = (struct pci_cap_saved_data *)((u8 *)cap + len); 1734 } 1735 /* Empty cap_save terminates list */ 1736 1737 return state; 1738 } 1739 EXPORT_SYMBOL_GPL(pci_store_saved_state); 1740 1741 /** 1742 * pci_load_saved_state - Reload the provided save state into struct pci_dev. 1743 * @dev: PCI device that we're dealing with 1744 * @state: Saved state returned from pci_store_saved_state() 1745 */ 1746 int pci_load_saved_state(struct pci_dev *dev, 1747 struct pci_saved_state *state) 1748 { 1749 struct pci_cap_saved_data *cap; 1750 1751 dev->state_saved = false; 1752 1753 if (!state) 1754 return 0; 1755 1756 memcpy(dev->saved_config_space, state->config_space, 1757 sizeof(state->config_space)); 1758 1759 cap = state->cap; 1760 while (cap->size) { 1761 struct pci_cap_saved_state *tmp; 1762 1763 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended); 1764 if (!tmp || tmp->cap.size != cap->size) 1765 return -EINVAL; 1766 1767 memcpy(tmp->cap.data, cap->data, tmp->cap.size); 1768 cap = (struct pci_cap_saved_data *)((u8 *)cap + 1769 sizeof(struct pci_cap_saved_data) + cap->size); 1770 } 1771 1772 dev->state_saved = true; 1773 return 0; 1774 } 1775 EXPORT_SYMBOL_GPL(pci_load_saved_state); 1776 1777 /** 1778 * pci_load_and_free_saved_state - Reload the save state pointed to by state, 1779 * and free the memory allocated for it. 1780 * @dev: PCI device that we're dealing with 1781 * @state: Pointer to saved state returned from pci_store_saved_state() 1782 */ 1783 int pci_load_and_free_saved_state(struct pci_dev *dev, 1784 struct pci_saved_state **state) 1785 { 1786 int ret = pci_load_saved_state(dev, *state); 1787 kfree(*state); 1788 *state = NULL; 1789 return ret; 1790 } 1791 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state); 1792 1793 int __weak pcibios_enable_device(struct pci_dev *dev, int bars) 1794 { 1795 return pci_enable_resources(dev, bars); 1796 } 1797 1798 static int do_pci_enable_device(struct pci_dev *dev, int bars) 1799 { 1800 int err; 1801 struct pci_dev *bridge; 1802 u16 cmd; 1803 u8 pin; 1804 1805 err = pci_set_power_state(dev, PCI_D0); 1806 if (err < 0 && err != -EIO) 1807 return err; 1808 1809 bridge = pci_upstream_bridge(dev); 1810 if (bridge) 1811 pcie_aspm_powersave_config_link(bridge); 1812 1813 err = pcibios_enable_device(dev, bars); 1814 if (err < 0) 1815 return err; 1816 pci_fixup_device(pci_fixup_enable, dev); 1817 1818 if (dev->msi_enabled || dev->msix_enabled) 1819 return 0; 1820 1821 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin); 1822 if (pin) { 1823 pci_read_config_word(dev, PCI_COMMAND, &cmd); 1824 if (cmd & PCI_COMMAND_INTX_DISABLE) 1825 pci_write_config_word(dev, PCI_COMMAND, 1826 cmd & ~PCI_COMMAND_INTX_DISABLE); 1827 } 1828 1829 return 0; 1830 } 1831 1832 /** 1833 * pci_reenable_device - Resume abandoned device 1834 * @dev: PCI device to be resumed 1835 * 1836 * NOTE: This function is a backend of pci_default_resume() and is not supposed 1837 * to be called by normal code, write proper resume handler and use it instead. 1838 */ 1839 int pci_reenable_device(struct pci_dev *dev) 1840 { 1841 if (pci_is_enabled(dev)) 1842 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1); 1843 return 0; 1844 } 1845 EXPORT_SYMBOL(pci_reenable_device); 1846 1847 static void pci_enable_bridge(struct pci_dev *dev) 1848 { 1849 struct pci_dev *bridge; 1850 int retval; 1851 1852 bridge = pci_upstream_bridge(dev); 1853 if (bridge) 1854 pci_enable_bridge(bridge); 1855 1856 if (pci_is_enabled(dev)) { 1857 if (!dev->is_busmaster) 1858 pci_set_master(dev); 1859 return; 1860 } 1861 1862 retval = pci_enable_device(dev); 1863 if (retval) 1864 pci_err(dev, "Error enabling bridge (%d), continuing\n", 1865 retval); 1866 pci_set_master(dev); 1867 } 1868 1869 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags) 1870 { 1871 struct pci_dev *bridge; 1872 int err; 1873 int i, bars = 0; 1874 1875 /* 1876 * Power state could be unknown at this point, either due to a fresh 1877 * boot or a device removal call. So get the current power state 1878 * so that things like MSI message writing will behave as expected 1879 * (e.g. if the device really is in D0 at enable time). 1880 */ 1881 if (dev->pm_cap) { 1882 u16 pmcsr; 1883 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1884 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 1885 } 1886 1887 if (atomic_inc_return(&dev->enable_cnt) > 1) 1888 return 0; /* already enabled */ 1889 1890 bridge = pci_upstream_bridge(dev); 1891 if (bridge) 1892 pci_enable_bridge(bridge); 1893 1894 /* only skip sriov related */ 1895 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 1896 if (dev->resource[i].flags & flags) 1897 bars |= (1 << i); 1898 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++) 1899 if (dev->resource[i].flags & flags) 1900 bars |= (1 << i); 1901 1902 err = do_pci_enable_device(dev, bars); 1903 if (err < 0) 1904 atomic_dec(&dev->enable_cnt); 1905 return err; 1906 } 1907 1908 /** 1909 * pci_enable_device_io - Initialize a device for use with IO space 1910 * @dev: PCI device to be initialized 1911 * 1912 * Initialize device before it's used by a driver. Ask low-level code 1913 * to enable I/O resources. Wake up the device if it was suspended. 1914 * Beware, this function can fail. 1915 */ 1916 int pci_enable_device_io(struct pci_dev *dev) 1917 { 1918 return pci_enable_device_flags(dev, IORESOURCE_IO); 1919 } 1920 EXPORT_SYMBOL(pci_enable_device_io); 1921 1922 /** 1923 * pci_enable_device_mem - Initialize a device for use with Memory space 1924 * @dev: PCI device to be initialized 1925 * 1926 * Initialize device before it's used by a driver. Ask low-level code 1927 * to enable Memory resources. Wake up the device if it was suspended. 1928 * Beware, this function can fail. 1929 */ 1930 int pci_enable_device_mem(struct pci_dev *dev) 1931 { 1932 return pci_enable_device_flags(dev, IORESOURCE_MEM); 1933 } 1934 EXPORT_SYMBOL(pci_enable_device_mem); 1935 1936 /** 1937 * pci_enable_device - Initialize device before it's used by a driver. 1938 * @dev: PCI device to be initialized 1939 * 1940 * Initialize device before it's used by a driver. Ask low-level code 1941 * to enable I/O and memory. Wake up the device if it was suspended. 1942 * Beware, this function can fail. 1943 * 1944 * Note we don't actually enable the device many times if we call 1945 * this function repeatedly (we just increment the count). 1946 */ 1947 int pci_enable_device(struct pci_dev *dev) 1948 { 1949 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO); 1950 } 1951 EXPORT_SYMBOL(pci_enable_device); 1952 1953 /* 1954 * Managed PCI resources. This manages device on/off, INTx/MSI/MSI-X 1955 * on/off and BAR regions. pci_dev itself records MSI/MSI-X status, so 1956 * there's no need to track it separately. pci_devres is initialized 1957 * when a device is enabled using managed PCI device enable interface. 1958 */ 1959 struct pci_devres { 1960 unsigned int enabled:1; 1961 unsigned int pinned:1; 1962 unsigned int orig_intx:1; 1963 unsigned int restore_intx:1; 1964 unsigned int mwi:1; 1965 u32 region_mask; 1966 }; 1967 1968 static void pcim_release(struct device *gendev, void *res) 1969 { 1970 struct pci_dev *dev = to_pci_dev(gendev); 1971 struct pci_devres *this = res; 1972 int i; 1973 1974 if (dev->msi_enabled) 1975 pci_disable_msi(dev); 1976 if (dev->msix_enabled) 1977 pci_disable_msix(dev); 1978 1979 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) 1980 if (this->region_mask & (1 << i)) 1981 pci_release_region(dev, i); 1982 1983 if (this->mwi) 1984 pci_clear_mwi(dev); 1985 1986 if (this->restore_intx) 1987 pci_intx(dev, this->orig_intx); 1988 1989 if (this->enabled && !this->pinned) 1990 pci_disable_device(dev); 1991 } 1992 1993 static struct pci_devres *get_pci_dr(struct pci_dev *pdev) 1994 { 1995 struct pci_devres *dr, *new_dr; 1996 1997 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL); 1998 if (dr) 1999 return dr; 2000 2001 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL); 2002 if (!new_dr) 2003 return NULL; 2004 return devres_get(&pdev->dev, new_dr, NULL, NULL); 2005 } 2006 2007 static struct pci_devres *find_pci_dr(struct pci_dev *pdev) 2008 { 2009 if (pci_is_managed(pdev)) 2010 return devres_find(&pdev->dev, pcim_release, NULL, NULL); 2011 return NULL; 2012 } 2013 2014 /** 2015 * pcim_enable_device - Managed pci_enable_device() 2016 * @pdev: PCI device to be initialized 2017 * 2018 * Managed pci_enable_device(). 2019 */ 2020 int pcim_enable_device(struct pci_dev *pdev) 2021 { 2022 struct pci_devres *dr; 2023 int rc; 2024 2025 dr = get_pci_dr(pdev); 2026 if (unlikely(!dr)) 2027 return -ENOMEM; 2028 if (dr->enabled) 2029 return 0; 2030 2031 rc = pci_enable_device(pdev); 2032 if (!rc) { 2033 pdev->is_managed = 1; 2034 dr->enabled = 1; 2035 } 2036 return rc; 2037 } 2038 EXPORT_SYMBOL(pcim_enable_device); 2039 2040 /** 2041 * pcim_pin_device - Pin managed PCI device 2042 * @pdev: PCI device to pin 2043 * 2044 * Pin managed PCI device @pdev. Pinned device won't be disabled on 2045 * driver detach. @pdev must have been enabled with 2046 * pcim_enable_device(). 2047 */ 2048 void pcim_pin_device(struct pci_dev *pdev) 2049 { 2050 struct pci_devres *dr; 2051 2052 dr = find_pci_dr(pdev); 2053 WARN_ON(!dr || !dr->enabled); 2054 if (dr) 2055 dr->pinned = 1; 2056 } 2057 EXPORT_SYMBOL(pcim_pin_device); 2058 2059 /* 2060 * pcibios_add_device - provide arch specific hooks when adding device dev 2061 * @dev: the PCI device being added 2062 * 2063 * Permits the platform to provide architecture specific functionality when 2064 * devices are added. This is the default implementation. Architecture 2065 * implementations can override this. 2066 */ 2067 int __weak pcibios_add_device(struct pci_dev *dev) 2068 { 2069 return 0; 2070 } 2071 2072 /** 2073 * pcibios_release_device - provide arch specific hooks when releasing 2074 * device dev 2075 * @dev: the PCI device being released 2076 * 2077 * Permits the platform to provide architecture specific functionality when 2078 * devices are released. This is the default implementation. Architecture 2079 * implementations can override this. 2080 */ 2081 void __weak pcibios_release_device(struct pci_dev *dev) {} 2082 2083 /** 2084 * pcibios_disable_device - disable arch specific PCI resources for device dev 2085 * @dev: the PCI device to disable 2086 * 2087 * Disables architecture specific PCI resources for the device. This 2088 * is the default implementation. Architecture implementations can 2089 * override this. 2090 */ 2091 void __weak pcibios_disable_device(struct pci_dev *dev) {} 2092 2093 /** 2094 * pcibios_penalize_isa_irq - penalize an ISA IRQ 2095 * @irq: ISA IRQ to penalize 2096 * @active: IRQ active or not 2097 * 2098 * Permits the platform to provide architecture-specific functionality when 2099 * penalizing ISA IRQs. This is the default implementation. Architecture 2100 * implementations can override this. 2101 */ 2102 void __weak pcibios_penalize_isa_irq(int irq, int active) {} 2103 2104 static void do_pci_disable_device(struct pci_dev *dev) 2105 { 2106 u16 pci_command; 2107 2108 pci_read_config_word(dev, PCI_COMMAND, &pci_command); 2109 if (pci_command & PCI_COMMAND_MASTER) { 2110 pci_command &= ~PCI_COMMAND_MASTER; 2111 pci_write_config_word(dev, PCI_COMMAND, pci_command); 2112 } 2113 2114 pcibios_disable_device(dev); 2115 } 2116 2117 /** 2118 * pci_disable_enabled_device - Disable device without updating enable_cnt 2119 * @dev: PCI device to disable 2120 * 2121 * NOTE: This function is a backend of PCI power management routines and is 2122 * not supposed to be called drivers. 2123 */ 2124 void pci_disable_enabled_device(struct pci_dev *dev) 2125 { 2126 if (pci_is_enabled(dev)) 2127 do_pci_disable_device(dev); 2128 } 2129 2130 /** 2131 * pci_disable_device - Disable PCI device after use 2132 * @dev: PCI device to be disabled 2133 * 2134 * Signal to the system that the PCI device is not in use by the system 2135 * anymore. This only involves disabling PCI bus-mastering, if active. 2136 * 2137 * Note we don't actually disable the device until all callers of 2138 * pci_enable_device() have called pci_disable_device(). 2139 */ 2140 void pci_disable_device(struct pci_dev *dev) 2141 { 2142 struct pci_devres *dr; 2143 2144 dr = find_pci_dr(dev); 2145 if (dr) 2146 dr->enabled = 0; 2147 2148 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0, 2149 "disabling already-disabled device"); 2150 2151 if (atomic_dec_return(&dev->enable_cnt) != 0) 2152 return; 2153 2154 do_pci_disable_device(dev); 2155 2156 dev->is_busmaster = 0; 2157 } 2158 EXPORT_SYMBOL(pci_disable_device); 2159 2160 /** 2161 * pcibios_set_pcie_reset_state - set reset state for device dev 2162 * @dev: the PCIe device reset 2163 * @state: Reset state to enter into 2164 * 2165 * Set the PCIe reset state for the device. This is the default 2166 * implementation. Architecture implementations can override this. 2167 */ 2168 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev, 2169 enum pcie_reset_state state) 2170 { 2171 return -EINVAL; 2172 } 2173 2174 /** 2175 * pci_set_pcie_reset_state - set reset state for device dev 2176 * @dev: the PCIe device reset 2177 * @state: Reset state to enter into 2178 * 2179 * Sets the PCI reset state for the device. 2180 */ 2181 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state) 2182 { 2183 return pcibios_set_pcie_reset_state(dev, state); 2184 } 2185 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state); 2186 2187 void pcie_clear_device_status(struct pci_dev *dev) 2188 { 2189 u16 sta; 2190 2191 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta); 2192 pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta); 2193 } 2194 2195 /** 2196 * pcie_clear_root_pme_status - Clear root port PME interrupt status. 2197 * @dev: PCIe root port or event collector. 2198 */ 2199 void pcie_clear_root_pme_status(struct pci_dev *dev) 2200 { 2201 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME); 2202 } 2203 2204 /** 2205 * pci_check_pme_status - Check if given device has generated PME. 2206 * @dev: Device to check. 2207 * 2208 * Check the PME status of the device and if set, clear it and clear PME enable 2209 * (if set). Return 'true' if PME status and PME enable were both set or 2210 * 'false' otherwise. 2211 */ 2212 bool pci_check_pme_status(struct pci_dev *dev) 2213 { 2214 int pmcsr_pos; 2215 u16 pmcsr; 2216 bool ret = false; 2217 2218 if (!dev->pm_cap) 2219 return false; 2220 2221 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL; 2222 pci_read_config_word(dev, pmcsr_pos, &pmcsr); 2223 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS)) 2224 return false; 2225 2226 /* Clear PME status. */ 2227 pmcsr |= PCI_PM_CTRL_PME_STATUS; 2228 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) { 2229 /* Disable PME to avoid interrupt flood. */ 2230 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2231 ret = true; 2232 } 2233 2234 pci_write_config_word(dev, pmcsr_pos, pmcsr); 2235 2236 return ret; 2237 } 2238 2239 /** 2240 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set. 2241 * @dev: Device to handle. 2242 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag. 2243 * 2244 * Check if @dev has generated PME and queue a resume request for it in that 2245 * case. 2246 */ 2247 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset) 2248 { 2249 if (pme_poll_reset && dev->pme_poll) 2250 dev->pme_poll = false; 2251 2252 if (pci_check_pme_status(dev)) { 2253 pci_wakeup_event(dev); 2254 pm_request_resume(&dev->dev); 2255 } 2256 return 0; 2257 } 2258 2259 /** 2260 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary. 2261 * @bus: Top bus of the subtree to walk. 2262 */ 2263 void pci_pme_wakeup_bus(struct pci_bus *bus) 2264 { 2265 if (bus) 2266 pci_walk_bus(bus, pci_pme_wakeup, (void *)true); 2267 } 2268 2269 2270 /** 2271 * pci_pme_capable - check the capability of PCI device to generate PME# 2272 * @dev: PCI device to handle. 2273 * @state: PCI state from which device will issue PME#. 2274 */ 2275 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state) 2276 { 2277 if (!dev->pm_cap) 2278 return false; 2279 2280 return !!(dev->pme_support & (1 << state)); 2281 } 2282 EXPORT_SYMBOL(pci_pme_capable); 2283 2284 static void pci_pme_list_scan(struct work_struct *work) 2285 { 2286 struct pci_pme_device *pme_dev, *n; 2287 2288 mutex_lock(&pci_pme_list_mutex); 2289 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) { 2290 if (pme_dev->dev->pme_poll) { 2291 struct pci_dev *bridge; 2292 2293 bridge = pme_dev->dev->bus->self; 2294 /* 2295 * If bridge is in low power state, the 2296 * configuration space of subordinate devices 2297 * may be not accessible 2298 */ 2299 if (bridge && bridge->current_state != PCI_D0) 2300 continue; 2301 /* 2302 * If the device is in D3cold it should not be 2303 * polled either. 2304 */ 2305 if (pme_dev->dev->current_state == PCI_D3cold) 2306 continue; 2307 2308 pci_pme_wakeup(pme_dev->dev, NULL); 2309 } else { 2310 list_del(&pme_dev->list); 2311 kfree(pme_dev); 2312 } 2313 } 2314 if (!list_empty(&pci_pme_list)) 2315 queue_delayed_work(system_freezable_wq, &pci_pme_work, 2316 msecs_to_jiffies(PME_TIMEOUT)); 2317 mutex_unlock(&pci_pme_list_mutex); 2318 } 2319 2320 static void __pci_pme_active(struct pci_dev *dev, bool enable) 2321 { 2322 u16 pmcsr; 2323 2324 if (!dev->pme_support) 2325 return; 2326 2327 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2328 /* Clear PME_Status by writing 1 to it and enable PME# */ 2329 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE; 2330 if (!enable) 2331 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2332 2333 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2334 } 2335 2336 /** 2337 * pci_pme_restore - Restore PME configuration after config space restore. 2338 * @dev: PCI device to update. 2339 */ 2340 void pci_pme_restore(struct pci_dev *dev) 2341 { 2342 u16 pmcsr; 2343 2344 if (!dev->pme_support) 2345 return; 2346 2347 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2348 if (dev->wakeup_prepared) { 2349 pmcsr |= PCI_PM_CTRL_PME_ENABLE; 2350 pmcsr &= ~PCI_PM_CTRL_PME_STATUS; 2351 } else { 2352 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2353 pmcsr |= PCI_PM_CTRL_PME_STATUS; 2354 } 2355 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2356 } 2357 2358 /** 2359 * pci_pme_active - enable or disable PCI device's PME# function 2360 * @dev: PCI device to handle. 2361 * @enable: 'true' to enable PME# generation; 'false' to disable it. 2362 * 2363 * The caller must verify that the device is capable of generating PME# before 2364 * calling this function with @enable equal to 'true'. 2365 */ 2366 void pci_pme_active(struct pci_dev *dev, bool enable) 2367 { 2368 __pci_pme_active(dev, enable); 2369 2370 /* 2371 * PCI (as opposed to PCIe) PME requires that the device have 2372 * its PME# line hooked up correctly. Not all hardware vendors 2373 * do this, so the PME never gets delivered and the device 2374 * remains asleep. The easiest way around this is to 2375 * periodically walk the list of suspended devices and check 2376 * whether any have their PME flag set. The assumption is that 2377 * we'll wake up often enough anyway that this won't be a huge 2378 * hit, and the power savings from the devices will still be a 2379 * win. 2380 * 2381 * Although PCIe uses in-band PME message instead of PME# line 2382 * to report PME, PME does not work for some PCIe devices in 2383 * reality. For example, there are devices that set their PME 2384 * status bits, but don't really bother to send a PME message; 2385 * there are PCI Express Root Ports that don't bother to 2386 * trigger interrupts when they receive PME messages from the 2387 * devices below. So PME poll is used for PCIe devices too. 2388 */ 2389 2390 if (dev->pme_poll) { 2391 struct pci_pme_device *pme_dev; 2392 if (enable) { 2393 pme_dev = kmalloc(sizeof(struct pci_pme_device), 2394 GFP_KERNEL); 2395 if (!pme_dev) { 2396 pci_warn(dev, "can't enable PME#\n"); 2397 return; 2398 } 2399 pme_dev->dev = dev; 2400 mutex_lock(&pci_pme_list_mutex); 2401 list_add(&pme_dev->list, &pci_pme_list); 2402 if (list_is_singular(&pci_pme_list)) 2403 queue_delayed_work(system_freezable_wq, 2404 &pci_pme_work, 2405 msecs_to_jiffies(PME_TIMEOUT)); 2406 mutex_unlock(&pci_pme_list_mutex); 2407 } else { 2408 mutex_lock(&pci_pme_list_mutex); 2409 list_for_each_entry(pme_dev, &pci_pme_list, list) { 2410 if (pme_dev->dev == dev) { 2411 list_del(&pme_dev->list); 2412 kfree(pme_dev); 2413 break; 2414 } 2415 } 2416 mutex_unlock(&pci_pme_list_mutex); 2417 } 2418 } 2419 2420 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled"); 2421 } 2422 EXPORT_SYMBOL(pci_pme_active); 2423 2424 /** 2425 * __pci_enable_wake - enable PCI device as wakeup event source 2426 * @dev: PCI device affected 2427 * @state: PCI state from which device will issue wakeup events 2428 * @enable: True to enable event generation; false to disable 2429 * 2430 * This enables the device as a wakeup event source, or disables it. 2431 * When such events involves platform-specific hooks, those hooks are 2432 * called automatically by this routine. 2433 * 2434 * Devices with legacy power management (no standard PCI PM capabilities) 2435 * always require such platform hooks. 2436 * 2437 * RETURN VALUE: 2438 * 0 is returned on success 2439 * -EINVAL is returned if device is not supposed to wake up the system 2440 * Error code depending on the platform is returned if both the platform and 2441 * the native mechanism fail to enable the generation of wake-up events 2442 */ 2443 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable) 2444 { 2445 int ret = 0; 2446 2447 /* 2448 * Bridges that are not power-manageable directly only signal 2449 * wakeup on behalf of subordinate devices which is set up 2450 * elsewhere, so skip them. However, bridges that are 2451 * power-manageable may signal wakeup for themselves (for example, 2452 * on a hotplug event) and they need to be covered here. 2453 */ 2454 if (!pci_power_manageable(dev)) 2455 return 0; 2456 2457 /* Don't do the same thing twice in a row for one device. */ 2458 if (!!enable == !!dev->wakeup_prepared) 2459 return 0; 2460 2461 /* 2462 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don 2463 * Anderson we should be doing PME# wake enable followed by ACPI wake 2464 * enable. To disable wake-up we call the platform first, for symmetry. 2465 */ 2466 2467 if (enable) { 2468 int error; 2469 2470 if (pci_pme_capable(dev, state)) 2471 pci_pme_active(dev, true); 2472 else 2473 ret = 1; 2474 error = platform_pci_set_wakeup(dev, true); 2475 if (ret) 2476 ret = error; 2477 if (!ret) 2478 dev->wakeup_prepared = true; 2479 } else { 2480 platform_pci_set_wakeup(dev, false); 2481 pci_pme_active(dev, false); 2482 dev->wakeup_prepared = false; 2483 } 2484 2485 return ret; 2486 } 2487 2488 /** 2489 * pci_enable_wake - change wakeup settings for a PCI device 2490 * @pci_dev: Target device 2491 * @state: PCI state from which device will issue wakeup events 2492 * @enable: Whether or not to enable event generation 2493 * 2494 * If @enable is set, check device_may_wakeup() for the device before calling 2495 * __pci_enable_wake() for it. 2496 */ 2497 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable) 2498 { 2499 if (enable && !device_may_wakeup(&pci_dev->dev)) 2500 return -EINVAL; 2501 2502 return __pci_enable_wake(pci_dev, state, enable); 2503 } 2504 EXPORT_SYMBOL(pci_enable_wake); 2505 2506 /** 2507 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold 2508 * @dev: PCI device to prepare 2509 * @enable: True to enable wake-up event generation; false to disable 2510 * 2511 * Many drivers want the device to wake up the system from D3_hot or D3_cold 2512 * and this function allows them to set that up cleanly - pci_enable_wake() 2513 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI 2514 * ordering constraints. 2515 * 2516 * This function only returns error code if the device is not allowed to wake 2517 * up the system from sleep or it is not capable of generating PME# from both 2518 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it. 2519 */ 2520 int pci_wake_from_d3(struct pci_dev *dev, bool enable) 2521 { 2522 return pci_pme_capable(dev, PCI_D3cold) ? 2523 pci_enable_wake(dev, PCI_D3cold, enable) : 2524 pci_enable_wake(dev, PCI_D3hot, enable); 2525 } 2526 EXPORT_SYMBOL(pci_wake_from_d3); 2527 2528 /** 2529 * pci_target_state - find an appropriate low power state for a given PCI dev 2530 * @dev: PCI device 2531 * @wakeup: Whether or not wakeup functionality will be enabled for the device. 2532 * 2533 * Use underlying platform code to find a supported low power state for @dev. 2534 * If the platform can't manage @dev, return the deepest state from which it 2535 * can generate wake events, based on any available PME info. 2536 */ 2537 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup) 2538 { 2539 pci_power_t target_state = PCI_D3hot; 2540 2541 if (platform_pci_power_manageable(dev)) { 2542 /* 2543 * Call the platform to find the target state for the device. 2544 */ 2545 pci_power_t state = platform_pci_choose_state(dev); 2546 2547 switch (state) { 2548 case PCI_POWER_ERROR: 2549 case PCI_UNKNOWN: 2550 break; 2551 case PCI_D1: 2552 case PCI_D2: 2553 if (pci_no_d1d2(dev)) 2554 break; 2555 fallthrough; 2556 default: 2557 target_state = state; 2558 } 2559 2560 return target_state; 2561 } 2562 2563 if (!dev->pm_cap) 2564 target_state = PCI_D0; 2565 2566 /* 2567 * If the device is in D3cold even though it's not power-manageable by 2568 * the platform, it may have been powered down by non-standard means. 2569 * Best to let it slumber. 2570 */ 2571 if (dev->current_state == PCI_D3cold) 2572 target_state = PCI_D3cold; 2573 2574 if (wakeup) { 2575 /* 2576 * Find the deepest state from which the device can generate 2577 * PME#. 2578 */ 2579 if (dev->pme_support) { 2580 while (target_state 2581 && !(dev->pme_support & (1 << target_state))) 2582 target_state--; 2583 } 2584 } 2585 2586 return target_state; 2587 } 2588 2589 /** 2590 * pci_prepare_to_sleep - prepare PCI device for system-wide transition 2591 * into a sleep state 2592 * @dev: Device to handle. 2593 * 2594 * Choose the power state appropriate for the device depending on whether 2595 * it can wake up the system and/or is power manageable by the platform 2596 * (PCI_D3hot is the default) and put the device into that state. 2597 */ 2598 int pci_prepare_to_sleep(struct pci_dev *dev) 2599 { 2600 bool wakeup = device_may_wakeup(&dev->dev); 2601 pci_power_t target_state = pci_target_state(dev, wakeup); 2602 int error; 2603 2604 if (target_state == PCI_POWER_ERROR) 2605 return -EIO; 2606 2607 /* 2608 * There are systems (for example, Intel mobile chips since Coffee 2609 * Lake) where the power drawn while suspended can be significantly 2610 * reduced by disabling PTM on PCIe root ports as this allows the 2611 * port to enter a lower-power PM state and the SoC to reach a 2612 * lower-power idle state as a whole. 2613 */ 2614 if (pci_pcie_type(dev) == PCI_EXP_TYPE_ROOT_PORT) 2615 pci_disable_ptm(dev); 2616 2617 pci_enable_wake(dev, target_state, wakeup); 2618 2619 error = pci_set_power_state(dev, target_state); 2620 2621 if (error) { 2622 pci_enable_wake(dev, target_state, false); 2623 pci_restore_ptm_state(dev); 2624 } 2625 2626 return error; 2627 } 2628 EXPORT_SYMBOL(pci_prepare_to_sleep); 2629 2630 /** 2631 * pci_back_from_sleep - turn PCI device on during system-wide transition 2632 * into working state 2633 * @dev: Device to handle. 2634 * 2635 * Disable device's system wake-up capability and put it into D0. 2636 */ 2637 int pci_back_from_sleep(struct pci_dev *dev) 2638 { 2639 pci_enable_wake(dev, PCI_D0, false); 2640 return pci_set_power_state(dev, PCI_D0); 2641 } 2642 EXPORT_SYMBOL(pci_back_from_sleep); 2643 2644 /** 2645 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend. 2646 * @dev: PCI device being suspended. 2647 * 2648 * Prepare @dev to generate wake-up events at run time and put it into a low 2649 * power state. 2650 */ 2651 int pci_finish_runtime_suspend(struct pci_dev *dev) 2652 { 2653 pci_power_t target_state; 2654 int error; 2655 2656 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev)); 2657 if (target_state == PCI_POWER_ERROR) 2658 return -EIO; 2659 2660 dev->runtime_d3cold = target_state == PCI_D3cold; 2661 2662 /* 2663 * There are systems (for example, Intel mobile chips since Coffee 2664 * Lake) where the power drawn while suspended can be significantly 2665 * reduced by disabling PTM on PCIe root ports as this allows the 2666 * port to enter a lower-power PM state and the SoC to reach a 2667 * lower-power idle state as a whole. 2668 */ 2669 if (pci_pcie_type(dev) == PCI_EXP_TYPE_ROOT_PORT) 2670 pci_disable_ptm(dev); 2671 2672 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev)); 2673 2674 error = pci_set_power_state(dev, target_state); 2675 2676 if (error) { 2677 pci_enable_wake(dev, target_state, false); 2678 pci_restore_ptm_state(dev); 2679 dev->runtime_d3cold = false; 2680 } 2681 2682 return error; 2683 } 2684 2685 /** 2686 * pci_dev_run_wake - Check if device can generate run-time wake-up events. 2687 * @dev: Device to check. 2688 * 2689 * Return true if the device itself is capable of generating wake-up events 2690 * (through the platform or using the native PCIe PME) or if the device supports 2691 * PME and one of its upstream bridges can generate wake-up events. 2692 */ 2693 bool pci_dev_run_wake(struct pci_dev *dev) 2694 { 2695 struct pci_bus *bus = dev->bus; 2696 2697 if (!dev->pme_support) 2698 return false; 2699 2700 /* PME-capable in principle, but not from the target power state */ 2701 if (!pci_pme_capable(dev, pci_target_state(dev, true))) 2702 return false; 2703 2704 if (device_can_wakeup(&dev->dev)) 2705 return true; 2706 2707 while (bus->parent) { 2708 struct pci_dev *bridge = bus->self; 2709 2710 if (device_can_wakeup(&bridge->dev)) 2711 return true; 2712 2713 bus = bus->parent; 2714 } 2715 2716 /* We have reached the root bus. */ 2717 if (bus->bridge) 2718 return device_can_wakeup(bus->bridge); 2719 2720 return false; 2721 } 2722 EXPORT_SYMBOL_GPL(pci_dev_run_wake); 2723 2724 /** 2725 * pci_dev_need_resume - Check if it is necessary to resume the device. 2726 * @pci_dev: Device to check. 2727 * 2728 * Return 'true' if the device is not runtime-suspended or it has to be 2729 * reconfigured due to wakeup settings difference between system and runtime 2730 * suspend, or the current power state of it is not suitable for the upcoming 2731 * (system-wide) transition. 2732 */ 2733 bool pci_dev_need_resume(struct pci_dev *pci_dev) 2734 { 2735 struct device *dev = &pci_dev->dev; 2736 pci_power_t target_state; 2737 2738 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev)) 2739 return true; 2740 2741 target_state = pci_target_state(pci_dev, device_may_wakeup(dev)); 2742 2743 /* 2744 * If the earlier platform check has not triggered, D3cold is just power 2745 * removal on top of D3hot, so no need to resume the device in that 2746 * case. 2747 */ 2748 return target_state != pci_dev->current_state && 2749 target_state != PCI_D3cold && 2750 pci_dev->current_state != PCI_D3hot; 2751 } 2752 2753 /** 2754 * pci_dev_adjust_pme - Adjust PME setting for a suspended device. 2755 * @pci_dev: Device to check. 2756 * 2757 * If the device is suspended and it is not configured for system wakeup, 2758 * disable PME for it to prevent it from waking up the system unnecessarily. 2759 * 2760 * Note that if the device's power state is D3cold and the platform check in 2761 * pci_dev_need_resume() has not triggered, the device's configuration need not 2762 * be changed. 2763 */ 2764 void pci_dev_adjust_pme(struct pci_dev *pci_dev) 2765 { 2766 struct device *dev = &pci_dev->dev; 2767 2768 spin_lock_irq(&dev->power.lock); 2769 2770 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) && 2771 pci_dev->current_state < PCI_D3cold) 2772 __pci_pme_active(pci_dev, false); 2773 2774 spin_unlock_irq(&dev->power.lock); 2775 } 2776 2777 /** 2778 * pci_dev_complete_resume - Finalize resume from system sleep for a device. 2779 * @pci_dev: Device to handle. 2780 * 2781 * If the device is runtime suspended and wakeup-capable, enable PME for it as 2782 * it might have been disabled during the prepare phase of system suspend if 2783 * the device was not configured for system wakeup. 2784 */ 2785 void pci_dev_complete_resume(struct pci_dev *pci_dev) 2786 { 2787 struct device *dev = &pci_dev->dev; 2788 2789 if (!pci_dev_run_wake(pci_dev)) 2790 return; 2791 2792 spin_lock_irq(&dev->power.lock); 2793 2794 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold) 2795 __pci_pme_active(pci_dev, true); 2796 2797 spin_unlock_irq(&dev->power.lock); 2798 } 2799 2800 void pci_config_pm_runtime_get(struct pci_dev *pdev) 2801 { 2802 struct device *dev = &pdev->dev; 2803 struct device *parent = dev->parent; 2804 2805 if (parent) 2806 pm_runtime_get_sync(parent); 2807 pm_runtime_get_noresume(dev); 2808 /* 2809 * pdev->current_state is set to PCI_D3cold during suspending, 2810 * so wait until suspending completes 2811 */ 2812 pm_runtime_barrier(dev); 2813 /* 2814 * Only need to resume devices in D3cold, because config 2815 * registers are still accessible for devices suspended but 2816 * not in D3cold. 2817 */ 2818 if (pdev->current_state == PCI_D3cold) 2819 pm_runtime_resume(dev); 2820 } 2821 2822 void pci_config_pm_runtime_put(struct pci_dev *pdev) 2823 { 2824 struct device *dev = &pdev->dev; 2825 struct device *parent = dev->parent; 2826 2827 pm_runtime_put(dev); 2828 if (parent) 2829 pm_runtime_put_sync(parent); 2830 } 2831 2832 static const struct dmi_system_id bridge_d3_blacklist[] = { 2833 #ifdef CONFIG_X86 2834 { 2835 /* 2836 * Gigabyte X299 root port is not marked as hotplug capable 2837 * which allows Linux to power manage it. However, this 2838 * confuses the BIOS SMI handler so don't power manage root 2839 * ports on that system. 2840 */ 2841 .ident = "X299 DESIGNARE EX-CF", 2842 .matches = { 2843 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."), 2844 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"), 2845 }, 2846 }, 2847 #endif 2848 { } 2849 }; 2850 2851 /** 2852 * pci_bridge_d3_possible - Is it possible to put the bridge into D3 2853 * @bridge: Bridge to check 2854 * 2855 * This function checks if it is possible to move the bridge to D3. 2856 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt. 2857 */ 2858 bool pci_bridge_d3_possible(struct pci_dev *bridge) 2859 { 2860 if (!pci_is_pcie(bridge)) 2861 return false; 2862 2863 switch (pci_pcie_type(bridge)) { 2864 case PCI_EXP_TYPE_ROOT_PORT: 2865 case PCI_EXP_TYPE_UPSTREAM: 2866 case PCI_EXP_TYPE_DOWNSTREAM: 2867 if (pci_bridge_d3_disable) 2868 return false; 2869 2870 /* 2871 * Hotplug ports handled by firmware in System Management Mode 2872 * may not be put into D3 by the OS (Thunderbolt on non-Macs). 2873 */ 2874 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge)) 2875 return false; 2876 2877 if (pci_bridge_d3_force) 2878 return true; 2879 2880 /* Even the oldest 2010 Thunderbolt controller supports D3. */ 2881 if (bridge->is_thunderbolt) 2882 return true; 2883 2884 /* Platform might know better if the bridge supports D3 */ 2885 if (platform_pci_bridge_d3(bridge)) 2886 return true; 2887 2888 /* 2889 * Hotplug ports handled natively by the OS were not validated 2890 * by vendors for runtime D3 at least until 2018 because there 2891 * was no OS support. 2892 */ 2893 if (bridge->is_hotplug_bridge) 2894 return false; 2895 2896 if (dmi_check_system(bridge_d3_blacklist)) 2897 return false; 2898 2899 /* 2900 * It should be safe to put PCIe ports from 2015 or newer 2901 * to D3. 2902 */ 2903 if (dmi_get_bios_year() >= 2015) 2904 return true; 2905 break; 2906 } 2907 2908 return false; 2909 } 2910 2911 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data) 2912 { 2913 bool *d3cold_ok = data; 2914 2915 if (/* The device needs to be allowed to go D3cold ... */ 2916 dev->no_d3cold || !dev->d3cold_allowed || 2917 2918 /* ... and if it is wakeup capable to do so from D3cold. */ 2919 (device_may_wakeup(&dev->dev) && 2920 !pci_pme_capable(dev, PCI_D3cold)) || 2921 2922 /* If it is a bridge it must be allowed to go to D3. */ 2923 !pci_power_manageable(dev)) 2924 2925 *d3cold_ok = false; 2926 2927 return !*d3cold_ok; 2928 } 2929 2930 /* 2931 * pci_bridge_d3_update - Update bridge D3 capabilities 2932 * @dev: PCI device which is changed 2933 * 2934 * Update upstream bridge PM capabilities accordingly depending on if the 2935 * device PM configuration was changed or the device is being removed. The 2936 * change is also propagated upstream. 2937 */ 2938 void pci_bridge_d3_update(struct pci_dev *dev) 2939 { 2940 bool remove = !device_is_registered(&dev->dev); 2941 struct pci_dev *bridge; 2942 bool d3cold_ok = true; 2943 2944 bridge = pci_upstream_bridge(dev); 2945 if (!bridge || !pci_bridge_d3_possible(bridge)) 2946 return; 2947 2948 /* 2949 * If D3 is currently allowed for the bridge, removing one of its 2950 * children won't change that. 2951 */ 2952 if (remove && bridge->bridge_d3) 2953 return; 2954 2955 /* 2956 * If D3 is currently allowed for the bridge and a child is added or 2957 * changed, disallowance of D3 can only be caused by that child, so 2958 * we only need to check that single device, not any of its siblings. 2959 * 2960 * If D3 is currently not allowed for the bridge, checking the device 2961 * first may allow us to skip checking its siblings. 2962 */ 2963 if (!remove) 2964 pci_dev_check_d3cold(dev, &d3cold_ok); 2965 2966 /* 2967 * If D3 is currently not allowed for the bridge, this may be caused 2968 * either by the device being changed/removed or any of its siblings, 2969 * so we need to go through all children to find out if one of them 2970 * continues to block D3. 2971 */ 2972 if (d3cold_ok && !bridge->bridge_d3) 2973 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold, 2974 &d3cold_ok); 2975 2976 if (bridge->bridge_d3 != d3cold_ok) { 2977 bridge->bridge_d3 = d3cold_ok; 2978 /* Propagate change to upstream bridges */ 2979 pci_bridge_d3_update(bridge); 2980 } 2981 } 2982 2983 /** 2984 * pci_d3cold_enable - Enable D3cold for device 2985 * @dev: PCI device to handle 2986 * 2987 * This function can be used in drivers to enable D3cold from the device 2988 * they handle. It also updates upstream PCI bridge PM capabilities 2989 * accordingly. 2990 */ 2991 void pci_d3cold_enable(struct pci_dev *dev) 2992 { 2993 if (dev->no_d3cold) { 2994 dev->no_d3cold = false; 2995 pci_bridge_d3_update(dev); 2996 } 2997 } 2998 EXPORT_SYMBOL_GPL(pci_d3cold_enable); 2999 3000 /** 3001 * pci_d3cold_disable - Disable D3cold for device 3002 * @dev: PCI device to handle 3003 * 3004 * This function can be used in drivers to disable D3cold from the device 3005 * they handle. It also updates upstream PCI bridge PM capabilities 3006 * accordingly. 3007 */ 3008 void pci_d3cold_disable(struct pci_dev *dev) 3009 { 3010 if (!dev->no_d3cold) { 3011 dev->no_d3cold = true; 3012 pci_bridge_d3_update(dev); 3013 } 3014 } 3015 EXPORT_SYMBOL_GPL(pci_d3cold_disable); 3016 3017 /** 3018 * pci_pm_init - Initialize PM functions of given PCI device 3019 * @dev: PCI device to handle. 3020 */ 3021 void pci_pm_init(struct pci_dev *dev) 3022 { 3023 int pm; 3024 u16 status; 3025 u16 pmc; 3026 3027 pm_runtime_forbid(&dev->dev); 3028 pm_runtime_set_active(&dev->dev); 3029 pm_runtime_enable(&dev->dev); 3030 device_enable_async_suspend(&dev->dev); 3031 dev->wakeup_prepared = false; 3032 3033 dev->pm_cap = 0; 3034 dev->pme_support = 0; 3035 3036 /* find PCI PM capability in list */ 3037 pm = pci_find_capability(dev, PCI_CAP_ID_PM); 3038 if (!pm) 3039 return; 3040 /* Check device's ability to generate PME# */ 3041 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc); 3042 3043 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) { 3044 pci_err(dev, "unsupported PM cap regs version (%u)\n", 3045 pmc & PCI_PM_CAP_VER_MASK); 3046 return; 3047 } 3048 3049 dev->pm_cap = pm; 3050 dev->d3hot_delay = PCI_PM_D3HOT_WAIT; 3051 dev->d3cold_delay = PCI_PM_D3COLD_WAIT; 3052 dev->bridge_d3 = pci_bridge_d3_possible(dev); 3053 dev->d3cold_allowed = true; 3054 3055 dev->d1_support = false; 3056 dev->d2_support = false; 3057 if (!pci_no_d1d2(dev)) { 3058 if (pmc & PCI_PM_CAP_D1) 3059 dev->d1_support = true; 3060 if (pmc & PCI_PM_CAP_D2) 3061 dev->d2_support = true; 3062 3063 if (dev->d1_support || dev->d2_support) 3064 pci_info(dev, "supports%s%s\n", 3065 dev->d1_support ? " D1" : "", 3066 dev->d2_support ? " D2" : ""); 3067 } 3068 3069 pmc &= PCI_PM_CAP_PME_MASK; 3070 if (pmc) { 3071 pci_info(dev, "PME# supported from%s%s%s%s%s\n", 3072 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "", 3073 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "", 3074 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "", 3075 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "", 3076 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : ""); 3077 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT; 3078 dev->pme_poll = true; 3079 /* 3080 * Make device's PM flags reflect the wake-up capability, but 3081 * let the user space enable it to wake up the system as needed. 3082 */ 3083 device_set_wakeup_capable(&dev->dev, true); 3084 /* Disable the PME# generation functionality */ 3085 pci_pme_active(dev, false); 3086 } 3087 3088 pci_read_config_word(dev, PCI_STATUS, &status); 3089 if (status & PCI_STATUS_IMM_READY) 3090 dev->imm_ready = 1; 3091 } 3092 3093 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop) 3094 { 3095 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI; 3096 3097 switch (prop) { 3098 case PCI_EA_P_MEM: 3099 case PCI_EA_P_VF_MEM: 3100 flags |= IORESOURCE_MEM; 3101 break; 3102 case PCI_EA_P_MEM_PREFETCH: 3103 case PCI_EA_P_VF_MEM_PREFETCH: 3104 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH; 3105 break; 3106 case PCI_EA_P_IO: 3107 flags |= IORESOURCE_IO; 3108 break; 3109 default: 3110 return 0; 3111 } 3112 3113 return flags; 3114 } 3115 3116 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei, 3117 u8 prop) 3118 { 3119 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO) 3120 return &dev->resource[bei]; 3121 #ifdef CONFIG_PCI_IOV 3122 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 && 3123 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH)) 3124 return &dev->resource[PCI_IOV_RESOURCES + 3125 bei - PCI_EA_BEI_VF_BAR0]; 3126 #endif 3127 else if (bei == PCI_EA_BEI_ROM) 3128 return &dev->resource[PCI_ROM_RESOURCE]; 3129 else 3130 return NULL; 3131 } 3132 3133 /* Read an Enhanced Allocation (EA) entry */ 3134 static int pci_ea_read(struct pci_dev *dev, int offset) 3135 { 3136 struct resource *res; 3137 int ent_size, ent_offset = offset; 3138 resource_size_t start, end; 3139 unsigned long flags; 3140 u32 dw0, bei, base, max_offset; 3141 u8 prop; 3142 bool support_64 = (sizeof(resource_size_t) >= 8); 3143 3144 pci_read_config_dword(dev, ent_offset, &dw0); 3145 ent_offset += 4; 3146 3147 /* Entry size field indicates DWORDs after 1st */ 3148 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2; 3149 3150 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */ 3151 goto out; 3152 3153 bei = (dw0 & PCI_EA_BEI) >> 4; 3154 prop = (dw0 & PCI_EA_PP) >> 8; 3155 3156 /* 3157 * If the Property is in the reserved range, try the Secondary 3158 * Property instead. 3159 */ 3160 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED) 3161 prop = (dw0 & PCI_EA_SP) >> 16; 3162 if (prop > PCI_EA_P_BRIDGE_IO) 3163 goto out; 3164 3165 res = pci_ea_get_resource(dev, bei, prop); 3166 if (!res) { 3167 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei); 3168 goto out; 3169 } 3170 3171 flags = pci_ea_flags(dev, prop); 3172 if (!flags) { 3173 pci_err(dev, "Unsupported EA properties: %#x\n", prop); 3174 goto out; 3175 } 3176 3177 /* Read Base */ 3178 pci_read_config_dword(dev, ent_offset, &base); 3179 start = (base & PCI_EA_FIELD_MASK); 3180 ent_offset += 4; 3181 3182 /* Read MaxOffset */ 3183 pci_read_config_dword(dev, ent_offset, &max_offset); 3184 ent_offset += 4; 3185 3186 /* Read Base MSBs (if 64-bit entry) */ 3187 if (base & PCI_EA_IS_64) { 3188 u32 base_upper; 3189 3190 pci_read_config_dword(dev, ent_offset, &base_upper); 3191 ent_offset += 4; 3192 3193 flags |= IORESOURCE_MEM_64; 3194 3195 /* entry starts above 32-bit boundary, can't use */ 3196 if (!support_64 && base_upper) 3197 goto out; 3198 3199 if (support_64) 3200 start |= ((u64)base_upper << 32); 3201 } 3202 3203 end = start + (max_offset | 0x03); 3204 3205 /* Read MaxOffset MSBs (if 64-bit entry) */ 3206 if (max_offset & PCI_EA_IS_64) { 3207 u32 max_offset_upper; 3208 3209 pci_read_config_dword(dev, ent_offset, &max_offset_upper); 3210 ent_offset += 4; 3211 3212 flags |= IORESOURCE_MEM_64; 3213 3214 /* entry too big, can't use */ 3215 if (!support_64 && max_offset_upper) 3216 goto out; 3217 3218 if (support_64) 3219 end += ((u64)max_offset_upper << 32); 3220 } 3221 3222 if (end < start) { 3223 pci_err(dev, "EA Entry crosses address boundary\n"); 3224 goto out; 3225 } 3226 3227 if (ent_size != ent_offset - offset) { 3228 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n", 3229 ent_size, ent_offset - offset); 3230 goto out; 3231 } 3232 3233 res->name = pci_name(dev); 3234 res->start = start; 3235 res->end = end; 3236 res->flags = flags; 3237 3238 if (bei <= PCI_EA_BEI_BAR5) 3239 pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 3240 bei, res, prop); 3241 else if (bei == PCI_EA_BEI_ROM) 3242 pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n", 3243 res, prop); 3244 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5) 3245 pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 3246 bei - PCI_EA_BEI_VF_BAR0, res, prop); 3247 else 3248 pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n", 3249 bei, res, prop); 3250 3251 out: 3252 return offset + ent_size; 3253 } 3254 3255 /* Enhanced Allocation Initialization */ 3256 void pci_ea_init(struct pci_dev *dev) 3257 { 3258 int ea; 3259 u8 num_ent; 3260 int offset; 3261 int i; 3262 3263 /* find PCI EA capability in list */ 3264 ea = pci_find_capability(dev, PCI_CAP_ID_EA); 3265 if (!ea) 3266 return; 3267 3268 /* determine the number of entries */ 3269 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT, 3270 &num_ent); 3271 num_ent &= PCI_EA_NUM_ENT_MASK; 3272 3273 offset = ea + PCI_EA_FIRST_ENT; 3274 3275 /* Skip DWORD 2 for type 1 functions */ 3276 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) 3277 offset += 4; 3278 3279 /* parse each EA entry */ 3280 for (i = 0; i < num_ent; ++i) 3281 offset = pci_ea_read(dev, offset); 3282 } 3283 3284 static void pci_add_saved_cap(struct pci_dev *pci_dev, 3285 struct pci_cap_saved_state *new_cap) 3286 { 3287 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space); 3288 } 3289 3290 /** 3291 * _pci_add_cap_save_buffer - allocate buffer for saving given 3292 * capability registers 3293 * @dev: the PCI device 3294 * @cap: the capability to allocate the buffer for 3295 * @extended: Standard or Extended capability ID 3296 * @size: requested size of the buffer 3297 */ 3298 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap, 3299 bool extended, unsigned int size) 3300 { 3301 int pos; 3302 struct pci_cap_saved_state *save_state; 3303 3304 if (extended) 3305 pos = pci_find_ext_capability(dev, cap); 3306 else 3307 pos = pci_find_capability(dev, cap); 3308 3309 if (!pos) 3310 return 0; 3311 3312 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL); 3313 if (!save_state) 3314 return -ENOMEM; 3315 3316 save_state->cap.cap_nr = cap; 3317 save_state->cap.cap_extended = extended; 3318 save_state->cap.size = size; 3319 pci_add_saved_cap(dev, save_state); 3320 3321 return 0; 3322 } 3323 3324 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size) 3325 { 3326 return _pci_add_cap_save_buffer(dev, cap, false, size); 3327 } 3328 3329 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size) 3330 { 3331 return _pci_add_cap_save_buffer(dev, cap, true, size); 3332 } 3333 3334 /** 3335 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities 3336 * @dev: the PCI device 3337 */ 3338 void pci_allocate_cap_save_buffers(struct pci_dev *dev) 3339 { 3340 int error; 3341 3342 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP, 3343 PCI_EXP_SAVE_REGS * sizeof(u16)); 3344 if (error) 3345 pci_err(dev, "unable to preallocate PCI Express save buffer\n"); 3346 3347 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16)); 3348 if (error) 3349 pci_err(dev, "unable to preallocate PCI-X save buffer\n"); 3350 3351 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR, 3352 2 * sizeof(u16)); 3353 if (error) 3354 pci_err(dev, "unable to allocate suspend buffer for LTR\n"); 3355 3356 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_L1SS, 3357 2 * sizeof(u32)); 3358 if (error) 3359 pci_err(dev, "unable to allocate suspend buffer for ASPM-L1SS\n"); 3360 3361 pci_allocate_vc_save_buffers(dev); 3362 } 3363 3364 void pci_free_cap_save_buffers(struct pci_dev *dev) 3365 { 3366 struct pci_cap_saved_state *tmp; 3367 struct hlist_node *n; 3368 3369 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next) 3370 kfree(tmp); 3371 } 3372 3373 /** 3374 * pci_configure_ari - enable or disable ARI forwarding 3375 * @dev: the PCI device 3376 * 3377 * If @dev and its upstream bridge both support ARI, enable ARI in the 3378 * bridge. Otherwise, disable ARI in the bridge. 3379 */ 3380 void pci_configure_ari(struct pci_dev *dev) 3381 { 3382 u32 cap; 3383 struct pci_dev *bridge; 3384 3385 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn) 3386 return; 3387 3388 bridge = dev->bus->self; 3389 if (!bridge) 3390 return; 3391 3392 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3393 if (!(cap & PCI_EXP_DEVCAP2_ARI)) 3394 return; 3395 3396 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) { 3397 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, 3398 PCI_EXP_DEVCTL2_ARI); 3399 bridge->ari_enabled = 1; 3400 } else { 3401 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2, 3402 PCI_EXP_DEVCTL2_ARI); 3403 bridge->ari_enabled = 0; 3404 } 3405 } 3406 3407 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags) 3408 { 3409 int pos; 3410 u16 cap, ctrl; 3411 3412 pos = pdev->acs_cap; 3413 if (!pos) 3414 return false; 3415 3416 /* 3417 * Except for egress control, capabilities are either required 3418 * or only required if controllable. Features missing from the 3419 * capability field can therefore be assumed as hard-wired enabled. 3420 */ 3421 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap); 3422 acs_flags &= (cap | PCI_ACS_EC); 3423 3424 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl); 3425 return (ctrl & acs_flags) == acs_flags; 3426 } 3427 3428 /** 3429 * pci_acs_enabled - test ACS against required flags for a given device 3430 * @pdev: device to test 3431 * @acs_flags: required PCI ACS flags 3432 * 3433 * Return true if the device supports the provided flags. Automatically 3434 * filters out flags that are not implemented on multifunction devices. 3435 * 3436 * Note that this interface checks the effective ACS capabilities of the 3437 * device rather than the actual capabilities. For instance, most single 3438 * function endpoints are not required to support ACS because they have no 3439 * opportunity for peer-to-peer access. We therefore return 'true' 3440 * regardless of whether the device exposes an ACS capability. This makes 3441 * it much easier for callers of this function to ignore the actual type 3442 * or topology of the device when testing ACS support. 3443 */ 3444 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags) 3445 { 3446 int ret; 3447 3448 ret = pci_dev_specific_acs_enabled(pdev, acs_flags); 3449 if (ret >= 0) 3450 return ret > 0; 3451 3452 /* 3453 * Conventional PCI and PCI-X devices never support ACS, either 3454 * effectively or actually. The shared bus topology implies that 3455 * any device on the bus can receive or snoop DMA. 3456 */ 3457 if (!pci_is_pcie(pdev)) 3458 return false; 3459 3460 switch (pci_pcie_type(pdev)) { 3461 /* 3462 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec, 3463 * but since their primary interface is PCI/X, we conservatively 3464 * handle them as we would a non-PCIe device. 3465 */ 3466 case PCI_EXP_TYPE_PCIE_BRIDGE: 3467 /* 3468 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never 3469 * applicable... must never implement an ACS Extended Capability...". 3470 * This seems arbitrary, but we take a conservative interpretation 3471 * of this statement. 3472 */ 3473 case PCI_EXP_TYPE_PCI_BRIDGE: 3474 case PCI_EXP_TYPE_RC_EC: 3475 return false; 3476 /* 3477 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should 3478 * implement ACS in order to indicate their peer-to-peer capabilities, 3479 * regardless of whether they are single- or multi-function devices. 3480 */ 3481 case PCI_EXP_TYPE_DOWNSTREAM: 3482 case PCI_EXP_TYPE_ROOT_PORT: 3483 return pci_acs_flags_enabled(pdev, acs_flags); 3484 /* 3485 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be 3486 * implemented by the remaining PCIe types to indicate peer-to-peer 3487 * capabilities, but only when they are part of a multifunction 3488 * device. The footnote for section 6.12 indicates the specific 3489 * PCIe types included here. 3490 */ 3491 case PCI_EXP_TYPE_ENDPOINT: 3492 case PCI_EXP_TYPE_UPSTREAM: 3493 case PCI_EXP_TYPE_LEG_END: 3494 case PCI_EXP_TYPE_RC_END: 3495 if (!pdev->multifunction) 3496 break; 3497 3498 return pci_acs_flags_enabled(pdev, acs_flags); 3499 } 3500 3501 /* 3502 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable 3503 * to single function devices with the exception of downstream ports. 3504 */ 3505 return true; 3506 } 3507 3508 /** 3509 * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy 3510 * @start: starting downstream device 3511 * @end: ending upstream device or NULL to search to the root bus 3512 * @acs_flags: required flags 3513 * 3514 * Walk up a device tree from start to end testing PCI ACS support. If 3515 * any step along the way does not support the required flags, return false. 3516 */ 3517 bool pci_acs_path_enabled(struct pci_dev *start, 3518 struct pci_dev *end, u16 acs_flags) 3519 { 3520 struct pci_dev *pdev, *parent = start; 3521 3522 do { 3523 pdev = parent; 3524 3525 if (!pci_acs_enabled(pdev, acs_flags)) 3526 return false; 3527 3528 if (pci_is_root_bus(pdev->bus)) 3529 return (end == NULL); 3530 3531 parent = pdev->bus->self; 3532 } while (pdev != end); 3533 3534 return true; 3535 } 3536 3537 /** 3538 * pci_acs_init - Initialize ACS if hardware supports it 3539 * @dev: the PCI device 3540 */ 3541 void pci_acs_init(struct pci_dev *dev) 3542 { 3543 dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS); 3544 3545 /* 3546 * Attempt to enable ACS regardless of capability because some Root 3547 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have 3548 * the standard ACS capability but still support ACS via those 3549 * quirks. 3550 */ 3551 pci_enable_acs(dev); 3552 } 3553 3554 /** 3555 * pci_rebar_find_pos - find position of resize ctrl reg for BAR 3556 * @pdev: PCI device 3557 * @bar: BAR to find 3558 * 3559 * Helper to find the position of the ctrl register for a BAR. 3560 * Returns -ENOTSUPP if resizable BARs are not supported at all. 3561 * Returns -ENOENT if no ctrl register for the BAR could be found. 3562 */ 3563 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar) 3564 { 3565 unsigned int pos, nbars, i; 3566 u32 ctrl; 3567 3568 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 3569 if (!pos) 3570 return -ENOTSUPP; 3571 3572 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3573 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >> 3574 PCI_REBAR_CTRL_NBAR_SHIFT; 3575 3576 for (i = 0; i < nbars; i++, pos += 8) { 3577 int bar_idx; 3578 3579 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3580 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX; 3581 if (bar_idx == bar) 3582 return pos; 3583 } 3584 3585 return -ENOENT; 3586 } 3587 3588 /** 3589 * pci_rebar_get_possible_sizes - get possible sizes for BAR 3590 * @pdev: PCI device 3591 * @bar: BAR to query 3592 * 3593 * Get the possible sizes of a resizable BAR as bitmask defined in the spec 3594 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable. 3595 */ 3596 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar) 3597 { 3598 int pos; 3599 u32 cap; 3600 3601 pos = pci_rebar_find_pos(pdev, bar); 3602 if (pos < 0) 3603 return 0; 3604 3605 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap); 3606 return (cap & PCI_REBAR_CAP_SIZES) >> 4; 3607 } 3608 3609 /** 3610 * pci_rebar_get_current_size - get the current size of a BAR 3611 * @pdev: PCI device 3612 * @bar: BAR to set size to 3613 * 3614 * Read the size of a BAR from the resizable BAR config. 3615 * Returns size if found or negative error code. 3616 */ 3617 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar) 3618 { 3619 int pos; 3620 u32 ctrl; 3621 3622 pos = pci_rebar_find_pos(pdev, bar); 3623 if (pos < 0) 3624 return pos; 3625 3626 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3627 return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT; 3628 } 3629 3630 /** 3631 * pci_rebar_set_size - set a new size for a BAR 3632 * @pdev: PCI device 3633 * @bar: BAR to set size to 3634 * @size: new size as defined in the spec (0=1MB, 19=512GB) 3635 * 3636 * Set the new size of a BAR as defined in the spec. 3637 * Returns zero if resizing was successful, error code otherwise. 3638 */ 3639 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size) 3640 { 3641 int pos; 3642 u32 ctrl; 3643 3644 pos = pci_rebar_find_pos(pdev, bar); 3645 if (pos < 0) 3646 return pos; 3647 3648 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3649 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 3650 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT; 3651 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 3652 return 0; 3653 } 3654 3655 /** 3656 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port 3657 * @dev: the PCI device 3658 * @cap_mask: mask of desired AtomicOp sizes, including one or more of: 3659 * PCI_EXP_DEVCAP2_ATOMIC_COMP32 3660 * PCI_EXP_DEVCAP2_ATOMIC_COMP64 3661 * PCI_EXP_DEVCAP2_ATOMIC_COMP128 3662 * 3663 * Return 0 if all upstream bridges support AtomicOp routing, egress 3664 * blocking is disabled on all upstream ports, and the root port supports 3665 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit 3666 * AtomicOp completion), or negative otherwise. 3667 */ 3668 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask) 3669 { 3670 struct pci_bus *bus = dev->bus; 3671 struct pci_dev *bridge; 3672 u32 cap, ctl2; 3673 3674 if (!pci_is_pcie(dev)) 3675 return -EINVAL; 3676 3677 /* 3678 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be 3679 * AtomicOp requesters. For now, we only support endpoints as 3680 * requesters and root ports as completers. No endpoints as 3681 * completers, and no peer-to-peer. 3682 */ 3683 3684 switch (pci_pcie_type(dev)) { 3685 case PCI_EXP_TYPE_ENDPOINT: 3686 case PCI_EXP_TYPE_LEG_END: 3687 case PCI_EXP_TYPE_RC_END: 3688 break; 3689 default: 3690 return -EINVAL; 3691 } 3692 3693 while (bus->parent) { 3694 bridge = bus->self; 3695 3696 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3697 3698 switch (pci_pcie_type(bridge)) { 3699 /* Ensure switch ports support AtomicOp routing */ 3700 case PCI_EXP_TYPE_UPSTREAM: 3701 case PCI_EXP_TYPE_DOWNSTREAM: 3702 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE)) 3703 return -EINVAL; 3704 break; 3705 3706 /* Ensure root port supports all the sizes we care about */ 3707 case PCI_EXP_TYPE_ROOT_PORT: 3708 if ((cap & cap_mask) != cap_mask) 3709 return -EINVAL; 3710 break; 3711 } 3712 3713 /* Ensure upstream ports don't block AtomicOps on egress */ 3714 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) { 3715 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, 3716 &ctl2); 3717 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK) 3718 return -EINVAL; 3719 } 3720 3721 bus = bus->parent; 3722 } 3723 3724 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2, 3725 PCI_EXP_DEVCTL2_ATOMIC_REQ); 3726 return 0; 3727 } 3728 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root); 3729 3730 /** 3731 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge 3732 * @dev: the PCI device 3733 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD) 3734 * 3735 * Perform INTx swizzling for a device behind one level of bridge. This is 3736 * required by section 9.1 of the PCI-to-PCI bridge specification for devices 3737 * behind bridges on add-in cards. For devices with ARI enabled, the slot 3738 * number is always 0 (see the Implementation Note in section 2.2.8.1 of 3739 * the PCI Express Base Specification, Revision 2.1) 3740 */ 3741 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin) 3742 { 3743 int slot; 3744 3745 if (pci_ari_enabled(dev->bus)) 3746 slot = 0; 3747 else 3748 slot = PCI_SLOT(dev->devfn); 3749 3750 return (((pin - 1) + slot) % 4) + 1; 3751 } 3752 3753 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge) 3754 { 3755 u8 pin; 3756 3757 pin = dev->pin; 3758 if (!pin) 3759 return -1; 3760 3761 while (!pci_is_root_bus(dev->bus)) { 3762 pin = pci_swizzle_interrupt_pin(dev, pin); 3763 dev = dev->bus->self; 3764 } 3765 *bridge = dev; 3766 return pin; 3767 } 3768 3769 /** 3770 * pci_common_swizzle - swizzle INTx all the way to root bridge 3771 * @dev: the PCI device 3772 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD) 3773 * 3774 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI 3775 * bridges all the way up to a PCI root bus. 3776 */ 3777 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp) 3778 { 3779 u8 pin = *pinp; 3780 3781 while (!pci_is_root_bus(dev->bus)) { 3782 pin = pci_swizzle_interrupt_pin(dev, pin); 3783 dev = dev->bus->self; 3784 } 3785 *pinp = pin; 3786 return PCI_SLOT(dev->devfn); 3787 } 3788 EXPORT_SYMBOL_GPL(pci_common_swizzle); 3789 3790 /** 3791 * pci_release_region - Release a PCI bar 3792 * @pdev: PCI device whose resources were previously reserved by 3793 * pci_request_region() 3794 * @bar: BAR to release 3795 * 3796 * Releases the PCI I/O and memory resources previously reserved by a 3797 * successful call to pci_request_region(). Call this function only 3798 * after all use of the PCI regions has ceased. 3799 */ 3800 void pci_release_region(struct pci_dev *pdev, int bar) 3801 { 3802 struct pci_devres *dr; 3803 3804 if (pci_resource_len(pdev, bar) == 0) 3805 return; 3806 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) 3807 release_region(pci_resource_start(pdev, bar), 3808 pci_resource_len(pdev, bar)); 3809 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) 3810 release_mem_region(pci_resource_start(pdev, bar), 3811 pci_resource_len(pdev, bar)); 3812 3813 dr = find_pci_dr(pdev); 3814 if (dr) 3815 dr->region_mask &= ~(1 << bar); 3816 } 3817 EXPORT_SYMBOL(pci_release_region); 3818 3819 /** 3820 * __pci_request_region - Reserved PCI I/O and memory resource 3821 * @pdev: PCI device whose resources are to be reserved 3822 * @bar: BAR to be reserved 3823 * @res_name: Name to be associated with resource. 3824 * @exclusive: whether the region access is exclusive or not 3825 * 3826 * Mark the PCI region associated with PCI device @pdev BAR @bar as 3827 * being reserved by owner @res_name. Do not access any 3828 * address inside the PCI regions unless this call returns 3829 * successfully. 3830 * 3831 * If @exclusive is set, then the region is marked so that userspace 3832 * is explicitly not allowed to map the resource via /dev/mem or 3833 * sysfs MMIO access. 3834 * 3835 * Returns 0 on success, or %EBUSY on error. A warning 3836 * message is also printed on failure. 3837 */ 3838 static int __pci_request_region(struct pci_dev *pdev, int bar, 3839 const char *res_name, int exclusive) 3840 { 3841 struct pci_devres *dr; 3842 3843 if (pci_resource_len(pdev, bar) == 0) 3844 return 0; 3845 3846 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) { 3847 if (!request_region(pci_resource_start(pdev, bar), 3848 pci_resource_len(pdev, bar), res_name)) 3849 goto err_out; 3850 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) { 3851 if (!__request_mem_region(pci_resource_start(pdev, bar), 3852 pci_resource_len(pdev, bar), res_name, 3853 exclusive)) 3854 goto err_out; 3855 } 3856 3857 dr = find_pci_dr(pdev); 3858 if (dr) 3859 dr->region_mask |= 1 << bar; 3860 3861 return 0; 3862 3863 err_out: 3864 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar, 3865 &pdev->resource[bar]); 3866 return -EBUSY; 3867 } 3868 3869 /** 3870 * pci_request_region - Reserve PCI I/O and memory resource 3871 * @pdev: PCI device whose resources are to be reserved 3872 * @bar: BAR to be reserved 3873 * @res_name: Name to be associated with resource 3874 * 3875 * Mark the PCI region associated with PCI device @pdev BAR @bar as 3876 * being reserved by owner @res_name. Do not access any 3877 * address inside the PCI regions unless this call returns 3878 * successfully. 3879 * 3880 * Returns 0 on success, or %EBUSY on error. A warning 3881 * message is also printed on failure. 3882 */ 3883 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name) 3884 { 3885 return __pci_request_region(pdev, bar, res_name, 0); 3886 } 3887 EXPORT_SYMBOL(pci_request_region); 3888 3889 /** 3890 * pci_release_selected_regions - Release selected PCI I/O and memory resources 3891 * @pdev: PCI device whose resources were previously reserved 3892 * @bars: Bitmask of BARs to be released 3893 * 3894 * Release selected PCI I/O and memory resources previously reserved. 3895 * Call this function only after all use of the PCI regions has ceased. 3896 */ 3897 void pci_release_selected_regions(struct pci_dev *pdev, int bars) 3898 { 3899 int i; 3900 3901 for (i = 0; i < PCI_STD_NUM_BARS; i++) 3902 if (bars & (1 << i)) 3903 pci_release_region(pdev, i); 3904 } 3905 EXPORT_SYMBOL(pci_release_selected_regions); 3906 3907 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars, 3908 const char *res_name, int excl) 3909 { 3910 int i; 3911 3912 for (i = 0; i < PCI_STD_NUM_BARS; i++) 3913 if (bars & (1 << i)) 3914 if (__pci_request_region(pdev, i, res_name, excl)) 3915 goto err_out; 3916 return 0; 3917 3918 err_out: 3919 while (--i >= 0) 3920 if (bars & (1 << i)) 3921 pci_release_region(pdev, i); 3922 3923 return -EBUSY; 3924 } 3925 3926 3927 /** 3928 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources 3929 * @pdev: PCI device whose resources are to be reserved 3930 * @bars: Bitmask of BARs to be requested 3931 * @res_name: Name to be associated with resource 3932 */ 3933 int pci_request_selected_regions(struct pci_dev *pdev, int bars, 3934 const char *res_name) 3935 { 3936 return __pci_request_selected_regions(pdev, bars, res_name, 0); 3937 } 3938 EXPORT_SYMBOL(pci_request_selected_regions); 3939 3940 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars, 3941 const char *res_name) 3942 { 3943 return __pci_request_selected_regions(pdev, bars, res_name, 3944 IORESOURCE_EXCLUSIVE); 3945 } 3946 EXPORT_SYMBOL(pci_request_selected_regions_exclusive); 3947 3948 /** 3949 * pci_release_regions - Release reserved PCI I/O and memory resources 3950 * @pdev: PCI device whose resources were previously reserved by 3951 * pci_request_regions() 3952 * 3953 * Releases all PCI I/O and memory resources previously reserved by a 3954 * successful call to pci_request_regions(). Call this function only 3955 * after all use of the PCI regions has ceased. 3956 */ 3957 3958 void pci_release_regions(struct pci_dev *pdev) 3959 { 3960 pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1); 3961 } 3962 EXPORT_SYMBOL(pci_release_regions); 3963 3964 /** 3965 * pci_request_regions - Reserve PCI I/O and memory resources 3966 * @pdev: PCI device whose resources are to be reserved 3967 * @res_name: Name to be associated with resource. 3968 * 3969 * Mark all PCI regions associated with PCI device @pdev as 3970 * being reserved by owner @res_name. Do not access any 3971 * address inside the PCI regions unless this call returns 3972 * successfully. 3973 * 3974 * Returns 0 on success, or %EBUSY on error. A warning 3975 * message is also printed on failure. 3976 */ 3977 int pci_request_regions(struct pci_dev *pdev, const char *res_name) 3978 { 3979 return pci_request_selected_regions(pdev, 3980 ((1 << PCI_STD_NUM_BARS) - 1), res_name); 3981 } 3982 EXPORT_SYMBOL(pci_request_regions); 3983 3984 /** 3985 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources 3986 * @pdev: PCI device whose resources are to be reserved 3987 * @res_name: Name to be associated with resource. 3988 * 3989 * Mark all PCI regions associated with PCI device @pdev as being reserved 3990 * by owner @res_name. Do not access any address inside the PCI regions 3991 * unless this call returns successfully. 3992 * 3993 * pci_request_regions_exclusive() will mark the region so that /dev/mem 3994 * and the sysfs MMIO access will not be allowed. 3995 * 3996 * Returns 0 on success, or %EBUSY on error. A warning message is also 3997 * printed on failure. 3998 */ 3999 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name) 4000 { 4001 return pci_request_selected_regions_exclusive(pdev, 4002 ((1 << PCI_STD_NUM_BARS) - 1), res_name); 4003 } 4004 EXPORT_SYMBOL(pci_request_regions_exclusive); 4005 4006 /* 4007 * Record the PCI IO range (expressed as CPU physical address + size). 4008 * Return a negative value if an error has occurred, zero otherwise 4009 */ 4010 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr, 4011 resource_size_t size) 4012 { 4013 int ret = 0; 4014 #ifdef PCI_IOBASE 4015 struct logic_pio_hwaddr *range; 4016 4017 if (!size || addr + size < addr) 4018 return -EINVAL; 4019 4020 range = kzalloc(sizeof(*range), GFP_ATOMIC); 4021 if (!range) 4022 return -ENOMEM; 4023 4024 range->fwnode = fwnode; 4025 range->size = size; 4026 range->hw_start = addr; 4027 range->flags = LOGIC_PIO_CPU_MMIO; 4028 4029 ret = logic_pio_register_range(range); 4030 if (ret) 4031 kfree(range); 4032 #endif 4033 4034 return ret; 4035 } 4036 4037 phys_addr_t pci_pio_to_address(unsigned long pio) 4038 { 4039 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR; 4040 4041 #ifdef PCI_IOBASE 4042 if (pio >= MMIO_UPPER_LIMIT) 4043 return address; 4044 4045 address = logic_pio_to_hwaddr(pio); 4046 #endif 4047 4048 return address; 4049 } 4050 4051 unsigned long __weak pci_address_to_pio(phys_addr_t address) 4052 { 4053 #ifdef PCI_IOBASE 4054 return logic_pio_trans_cpuaddr(address); 4055 #else 4056 if (address > IO_SPACE_LIMIT) 4057 return (unsigned long)-1; 4058 4059 return (unsigned long) address; 4060 #endif 4061 } 4062 4063 /** 4064 * pci_remap_iospace - Remap the memory mapped I/O space 4065 * @res: Resource describing the I/O space 4066 * @phys_addr: physical address of range to be mapped 4067 * 4068 * Remap the memory mapped I/O space described by the @res and the CPU 4069 * physical address @phys_addr into virtual address space. Only 4070 * architectures that have memory mapped IO functions defined (and the 4071 * PCI_IOBASE value defined) should call this function. 4072 */ 4073 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr) 4074 { 4075 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 4076 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 4077 4078 if (!(res->flags & IORESOURCE_IO)) 4079 return -EINVAL; 4080 4081 if (res->end > IO_SPACE_LIMIT) 4082 return -EINVAL; 4083 4084 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr, 4085 pgprot_device(PAGE_KERNEL)); 4086 #else 4087 /* 4088 * This architecture does not have memory mapped I/O space, 4089 * so this function should never be called 4090 */ 4091 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n"); 4092 return -ENODEV; 4093 #endif 4094 } 4095 EXPORT_SYMBOL(pci_remap_iospace); 4096 4097 /** 4098 * pci_unmap_iospace - Unmap the memory mapped I/O space 4099 * @res: resource to be unmapped 4100 * 4101 * Unmap the CPU virtual address @res from virtual address space. Only 4102 * architectures that have memory mapped IO functions defined (and the 4103 * PCI_IOBASE value defined) should call this function. 4104 */ 4105 void pci_unmap_iospace(struct resource *res) 4106 { 4107 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 4108 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 4109 4110 unmap_kernel_range(vaddr, resource_size(res)); 4111 #endif 4112 } 4113 EXPORT_SYMBOL(pci_unmap_iospace); 4114 4115 static void devm_pci_unmap_iospace(struct device *dev, void *ptr) 4116 { 4117 struct resource **res = ptr; 4118 4119 pci_unmap_iospace(*res); 4120 } 4121 4122 /** 4123 * devm_pci_remap_iospace - Managed pci_remap_iospace() 4124 * @dev: Generic device to remap IO address for 4125 * @res: Resource describing the I/O space 4126 * @phys_addr: physical address of range to be mapped 4127 * 4128 * Managed pci_remap_iospace(). Map is automatically unmapped on driver 4129 * detach. 4130 */ 4131 int devm_pci_remap_iospace(struct device *dev, const struct resource *res, 4132 phys_addr_t phys_addr) 4133 { 4134 const struct resource **ptr; 4135 int error; 4136 4137 ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL); 4138 if (!ptr) 4139 return -ENOMEM; 4140 4141 error = pci_remap_iospace(res, phys_addr); 4142 if (error) { 4143 devres_free(ptr); 4144 } else { 4145 *ptr = res; 4146 devres_add(dev, ptr); 4147 } 4148 4149 return error; 4150 } 4151 EXPORT_SYMBOL(devm_pci_remap_iospace); 4152 4153 /** 4154 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace() 4155 * @dev: Generic device to remap IO address for 4156 * @offset: Resource address to map 4157 * @size: Size of map 4158 * 4159 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver 4160 * detach. 4161 */ 4162 void __iomem *devm_pci_remap_cfgspace(struct device *dev, 4163 resource_size_t offset, 4164 resource_size_t size) 4165 { 4166 void __iomem **ptr, *addr; 4167 4168 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL); 4169 if (!ptr) 4170 return NULL; 4171 4172 addr = pci_remap_cfgspace(offset, size); 4173 if (addr) { 4174 *ptr = addr; 4175 devres_add(dev, ptr); 4176 } else 4177 devres_free(ptr); 4178 4179 return addr; 4180 } 4181 EXPORT_SYMBOL(devm_pci_remap_cfgspace); 4182 4183 /** 4184 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource 4185 * @dev: generic device to handle the resource for 4186 * @res: configuration space resource to be handled 4187 * 4188 * Checks that a resource is a valid memory region, requests the memory 4189 * region and ioremaps with pci_remap_cfgspace() API that ensures the 4190 * proper PCI configuration space memory attributes are guaranteed. 4191 * 4192 * All operations are managed and will be undone on driver detach. 4193 * 4194 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code 4195 * on failure. Usage example:: 4196 * 4197 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 4198 * base = devm_pci_remap_cfg_resource(&pdev->dev, res); 4199 * if (IS_ERR(base)) 4200 * return PTR_ERR(base); 4201 */ 4202 void __iomem *devm_pci_remap_cfg_resource(struct device *dev, 4203 struct resource *res) 4204 { 4205 resource_size_t size; 4206 const char *name; 4207 void __iomem *dest_ptr; 4208 4209 BUG_ON(!dev); 4210 4211 if (!res || resource_type(res) != IORESOURCE_MEM) { 4212 dev_err(dev, "invalid resource\n"); 4213 return IOMEM_ERR_PTR(-EINVAL); 4214 } 4215 4216 size = resource_size(res); 4217 4218 if (res->name) 4219 name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev), 4220 res->name); 4221 else 4222 name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL); 4223 if (!name) 4224 return IOMEM_ERR_PTR(-ENOMEM); 4225 4226 if (!devm_request_mem_region(dev, res->start, size, name)) { 4227 dev_err(dev, "can't request region for resource %pR\n", res); 4228 return IOMEM_ERR_PTR(-EBUSY); 4229 } 4230 4231 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size); 4232 if (!dest_ptr) { 4233 dev_err(dev, "ioremap failed for resource %pR\n", res); 4234 devm_release_mem_region(dev, res->start, size); 4235 dest_ptr = IOMEM_ERR_PTR(-ENOMEM); 4236 } 4237 4238 return dest_ptr; 4239 } 4240 EXPORT_SYMBOL(devm_pci_remap_cfg_resource); 4241 4242 static void __pci_set_master(struct pci_dev *dev, bool enable) 4243 { 4244 u16 old_cmd, cmd; 4245 4246 pci_read_config_word(dev, PCI_COMMAND, &old_cmd); 4247 if (enable) 4248 cmd = old_cmd | PCI_COMMAND_MASTER; 4249 else 4250 cmd = old_cmd & ~PCI_COMMAND_MASTER; 4251 if (cmd != old_cmd) { 4252 pci_dbg(dev, "%s bus mastering\n", 4253 enable ? "enabling" : "disabling"); 4254 pci_write_config_word(dev, PCI_COMMAND, cmd); 4255 } 4256 dev->is_busmaster = enable; 4257 } 4258 4259 /** 4260 * pcibios_setup - process "pci=" kernel boot arguments 4261 * @str: string used to pass in "pci=" kernel boot arguments 4262 * 4263 * Process kernel boot arguments. This is the default implementation. 4264 * Architecture specific implementations can override this as necessary. 4265 */ 4266 char * __weak __init pcibios_setup(char *str) 4267 { 4268 return str; 4269 } 4270 4271 /** 4272 * pcibios_set_master - enable PCI bus-mastering for device dev 4273 * @dev: the PCI device to enable 4274 * 4275 * Enables PCI bus-mastering for the device. This is the default 4276 * implementation. Architecture specific implementations can override 4277 * this if necessary. 4278 */ 4279 void __weak pcibios_set_master(struct pci_dev *dev) 4280 { 4281 u8 lat; 4282 4283 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */ 4284 if (pci_is_pcie(dev)) 4285 return; 4286 4287 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat); 4288 if (lat < 16) 4289 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency; 4290 else if (lat > pcibios_max_latency) 4291 lat = pcibios_max_latency; 4292 else 4293 return; 4294 4295 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat); 4296 } 4297 4298 /** 4299 * pci_set_master - enables bus-mastering for device dev 4300 * @dev: the PCI device to enable 4301 * 4302 * Enables bus-mastering on the device and calls pcibios_set_master() 4303 * to do the needed arch specific settings. 4304 */ 4305 void pci_set_master(struct pci_dev *dev) 4306 { 4307 __pci_set_master(dev, true); 4308 pcibios_set_master(dev); 4309 } 4310 EXPORT_SYMBOL(pci_set_master); 4311 4312 /** 4313 * pci_clear_master - disables bus-mastering for device dev 4314 * @dev: the PCI device to disable 4315 */ 4316 void pci_clear_master(struct pci_dev *dev) 4317 { 4318 __pci_set_master(dev, false); 4319 } 4320 EXPORT_SYMBOL(pci_clear_master); 4321 4322 /** 4323 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed 4324 * @dev: the PCI device for which MWI is to be enabled 4325 * 4326 * Helper function for pci_set_mwi. 4327 * Originally copied from drivers/net/acenic.c. 4328 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. 4329 * 4330 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4331 */ 4332 int pci_set_cacheline_size(struct pci_dev *dev) 4333 { 4334 u8 cacheline_size; 4335 4336 if (!pci_cache_line_size) 4337 return -EINVAL; 4338 4339 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be 4340 equal to or multiple of the right value. */ 4341 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4342 if (cacheline_size >= pci_cache_line_size && 4343 (cacheline_size % pci_cache_line_size) == 0) 4344 return 0; 4345 4346 /* Write the correct value. */ 4347 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size); 4348 /* Read it back. */ 4349 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4350 if (cacheline_size == pci_cache_line_size) 4351 return 0; 4352 4353 pci_dbg(dev, "cache line size of %d is not supported\n", 4354 pci_cache_line_size << 2); 4355 4356 return -EINVAL; 4357 } 4358 EXPORT_SYMBOL_GPL(pci_set_cacheline_size); 4359 4360 /** 4361 * pci_set_mwi - enables memory-write-invalidate PCI transaction 4362 * @dev: the PCI device for which MWI is enabled 4363 * 4364 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4365 * 4366 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4367 */ 4368 int pci_set_mwi(struct pci_dev *dev) 4369 { 4370 #ifdef PCI_DISABLE_MWI 4371 return 0; 4372 #else 4373 int rc; 4374 u16 cmd; 4375 4376 rc = pci_set_cacheline_size(dev); 4377 if (rc) 4378 return rc; 4379 4380 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4381 if (!(cmd & PCI_COMMAND_INVALIDATE)) { 4382 pci_dbg(dev, "enabling Mem-Wr-Inval\n"); 4383 cmd |= PCI_COMMAND_INVALIDATE; 4384 pci_write_config_word(dev, PCI_COMMAND, cmd); 4385 } 4386 return 0; 4387 #endif 4388 } 4389 EXPORT_SYMBOL(pci_set_mwi); 4390 4391 /** 4392 * pcim_set_mwi - a device-managed pci_set_mwi() 4393 * @dev: the PCI device for which MWI is enabled 4394 * 4395 * Managed pci_set_mwi(). 4396 * 4397 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4398 */ 4399 int pcim_set_mwi(struct pci_dev *dev) 4400 { 4401 struct pci_devres *dr; 4402 4403 dr = find_pci_dr(dev); 4404 if (!dr) 4405 return -ENOMEM; 4406 4407 dr->mwi = 1; 4408 return pci_set_mwi(dev); 4409 } 4410 EXPORT_SYMBOL(pcim_set_mwi); 4411 4412 /** 4413 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction 4414 * @dev: the PCI device for which MWI is enabled 4415 * 4416 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4417 * Callers are not required to check the return value. 4418 * 4419 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4420 */ 4421 int pci_try_set_mwi(struct pci_dev *dev) 4422 { 4423 #ifdef PCI_DISABLE_MWI 4424 return 0; 4425 #else 4426 return pci_set_mwi(dev); 4427 #endif 4428 } 4429 EXPORT_SYMBOL(pci_try_set_mwi); 4430 4431 /** 4432 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev 4433 * @dev: the PCI device to disable 4434 * 4435 * Disables PCI Memory-Write-Invalidate transaction on the device 4436 */ 4437 void pci_clear_mwi(struct pci_dev *dev) 4438 { 4439 #ifndef PCI_DISABLE_MWI 4440 u16 cmd; 4441 4442 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4443 if (cmd & PCI_COMMAND_INVALIDATE) { 4444 cmd &= ~PCI_COMMAND_INVALIDATE; 4445 pci_write_config_word(dev, PCI_COMMAND, cmd); 4446 } 4447 #endif 4448 } 4449 EXPORT_SYMBOL(pci_clear_mwi); 4450 4451 /** 4452 * pci_intx - enables/disables PCI INTx for device dev 4453 * @pdev: the PCI device to operate on 4454 * @enable: boolean: whether to enable or disable PCI INTx 4455 * 4456 * Enables/disables PCI INTx for device @pdev 4457 */ 4458 void pci_intx(struct pci_dev *pdev, int enable) 4459 { 4460 u16 pci_command, new; 4461 4462 pci_read_config_word(pdev, PCI_COMMAND, &pci_command); 4463 4464 if (enable) 4465 new = pci_command & ~PCI_COMMAND_INTX_DISABLE; 4466 else 4467 new = pci_command | PCI_COMMAND_INTX_DISABLE; 4468 4469 if (new != pci_command) { 4470 struct pci_devres *dr; 4471 4472 pci_write_config_word(pdev, PCI_COMMAND, new); 4473 4474 dr = find_pci_dr(pdev); 4475 if (dr && !dr->restore_intx) { 4476 dr->restore_intx = 1; 4477 dr->orig_intx = !enable; 4478 } 4479 } 4480 } 4481 EXPORT_SYMBOL_GPL(pci_intx); 4482 4483 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask) 4484 { 4485 struct pci_bus *bus = dev->bus; 4486 bool mask_updated = true; 4487 u32 cmd_status_dword; 4488 u16 origcmd, newcmd; 4489 unsigned long flags; 4490 bool irq_pending; 4491 4492 /* 4493 * We do a single dword read to retrieve both command and status. 4494 * Document assumptions that make this possible. 4495 */ 4496 BUILD_BUG_ON(PCI_COMMAND % 4); 4497 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS); 4498 4499 raw_spin_lock_irqsave(&pci_lock, flags); 4500 4501 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword); 4502 4503 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT; 4504 4505 /* 4506 * Check interrupt status register to see whether our device 4507 * triggered the interrupt (when masking) or the next IRQ is 4508 * already pending (when unmasking). 4509 */ 4510 if (mask != irq_pending) { 4511 mask_updated = false; 4512 goto done; 4513 } 4514 4515 origcmd = cmd_status_dword; 4516 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE; 4517 if (mask) 4518 newcmd |= PCI_COMMAND_INTX_DISABLE; 4519 if (newcmd != origcmd) 4520 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd); 4521 4522 done: 4523 raw_spin_unlock_irqrestore(&pci_lock, flags); 4524 4525 return mask_updated; 4526 } 4527 4528 /** 4529 * pci_check_and_mask_intx - mask INTx on pending interrupt 4530 * @dev: the PCI device to operate on 4531 * 4532 * Check if the device dev has its INTx line asserted, mask it and return 4533 * true in that case. False is returned if no interrupt was pending. 4534 */ 4535 bool pci_check_and_mask_intx(struct pci_dev *dev) 4536 { 4537 return pci_check_and_set_intx_mask(dev, true); 4538 } 4539 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx); 4540 4541 /** 4542 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending 4543 * @dev: the PCI device to operate on 4544 * 4545 * Check if the device dev has its INTx line asserted, unmask it if not and 4546 * return true. False is returned and the mask remains active if there was 4547 * still an interrupt pending. 4548 */ 4549 bool pci_check_and_unmask_intx(struct pci_dev *dev) 4550 { 4551 return pci_check_and_set_intx_mask(dev, false); 4552 } 4553 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx); 4554 4555 /** 4556 * pci_wait_for_pending_transaction - wait for pending transaction 4557 * @dev: the PCI device to operate on 4558 * 4559 * Return 0 if transaction is pending 1 otherwise. 4560 */ 4561 int pci_wait_for_pending_transaction(struct pci_dev *dev) 4562 { 4563 if (!pci_is_pcie(dev)) 4564 return 1; 4565 4566 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA, 4567 PCI_EXP_DEVSTA_TRPND); 4568 } 4569 EXPORT_SYMBOL(pci_wait_for_pending_transaction); 4570 4571 /** 4572 * pcie_has_flr - check if a device supports function level resets 4573 * @dev: device to check 4574 * 4575 * Returns true if the device advertises support for PCIe function level 4576 * resets. 4577 */ 4578 bool pcie_has_flr(struct pci_dev *dev) 4579 { 4580 u32 cap; 4581 4582 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4583 return false; 4584 4585 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap); 4586 return cap & PCI_EXP_DEVCAP_FLR; 4587 } 4588 EXPORT_SYMBOL_GPL(pcie_has_flr); 4589 4590 /** 4591 * pcie_flr - initiate a PCIe function level reset 4592 * @dev: device to reset 4593 * 4594 * Initiate a function level reset on @dev. The caller should ensure the 4595 * device supports FLR before calling this function, e.g. by using the 4596 * pcie_has_flr() helper. 4597 */ 4598 int pcie_flr(struct pci_dev *dev) 4599 { 4600 if (!pci_wait_for_pending_transaction(dev)) 4601 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n"); 4602 4603 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR); 4604 4605 if (dev->imm_ready) 4606 return 0; 4607 4608 /* 4609 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within 4610 * 100ms, but may silently discard requests while the FLR is in 4611 * progress. Wait 100ms before trying to access the device. 4612 */ 4613 msleep(100); 4614 4615 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS); 4616 } 4617 EXPORT_SYMBOL_GPL(pcie_flr); 4618 4619 static int pci_af_flr(struct pci_dev *dev, int probe) 4620 { 4621 int pos; 4622 u8 cap; 4623 4624 pos = pci_find_capability(dev, PCI_CAP_ID_AF); 4625 if (!pos) 4626 return -ENOTTY; 4627 4628 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4629 return -ENOTTY; 4630 4631 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap); 4632 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR)) 4633 return -ENOTTY; 4634 4635 if (probe) 4636 return 0; 4637 4638 /* 4639 * Wait for Transaction Pending bit to clear. A word-aligned test 4640 * is used, so we use the control offset rather than status and shift 4641 * the test bit to match. 4642 */ 4643 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL, 4644 PCI_AF_STATUS_TP << 8)) 4645 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n"); 4646 4647 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR); 4648 4649 if (dev->imm_ready) 4650 return 0; 4651 4652 /* 4653 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006, 4654 * updated 27 July 2006; a device must complete an FLR within 4655 * 100ms, but may silently discard requests while the FLR is in 4656 * progress. Wait 100ms before trying to access the device. 4657 */ 4658 msleep(100); 4659 4660 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS); 4661 } 4662 4663 /** 4664 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0. 4665 * @dev: Device to reset. 4666 * @probe: If set, only check if the device can be reset this way. 4667 * 4668 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is 4669 * unset, it will be reinitialized internally when going from PCI_D3hot to 4670 * PCI_D0. If that's the case and the device is not in a low-power state 4671 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset. 4672 * 4673 * NOTE: This causes the caller to sleep for twice the device power transition 4674 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms 4675 * by default (i.e. unless the @dev's d3hot_delay field has a different value). 4676 * Moreover, only devices in D0 can be reset by this function. 4677 */ 4678 static int pci_pm_reset(struct pci_dev *dev, int probe) 4679 { 4680 u16 csr; 4681 4682 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET) 4683 return -ENOTTY; 4684 4685 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr); 4686 if (csr & PCI_PM_CTRL_NO_SOFT_RESET) 4687 return -ENOTTY; 4688 4689 if (probe) 4690 return 0; 4691 4692 if (dev->current_state != PCI_D0) 4693 return -EINVAL; 4694 4695 csr &= ~PCI_PM_CTRL_STATE_MASK; 4696 csr |= PCI_D3hot; 4697 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4698 pci_dev_d3_sleep(dev); 4699 4700 csr &= ~PCI_PM_CTRL_STATE_MASK; 4701 csr |= PCI_D0; 4702 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4703 pci_dev_d3_sleep(dev); 4704 4705 return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS); 4706 } 4707 4708 /** 4709 * pcie_wait_for_link_delay - Wait until link is active or inactive 4710 * @pdev: Bridge device 4711 * @active: waiting for active or inactive? 4712 * @delay: Delay to wait after link has become active (in ms) 4713 * 4714 * Use this to wait till link becomes active or inactive. 4715 */ 4716 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active, 4717 int delay) 4718 { 4719 int timeout = 1000; 4720 bool ret; 4721 u16 lnk_status; 4722 4723 /* 4724 * Some controllers might not implement link active reporting. In this 4725 * case, we wait for 1000 ms + any delay requested by the caller. 4726 */ 4727 if (!pdev->link_active_reporting) { 4728 msleep(timeout + delay); 4729 return true; 4730 } 4731 4732 /* 4733 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms, 4734 * after which we should expect an link active if the reset was 4735 * successful. If so, software must wait a minimum 100ms before sending 4736 * configuration requests to devices downstream this port. 4737 * 4738 * If the link fails to activate, either the device was physically 4739 * removed or the link is permanently failed. 4740 */ 4741 if (active) 4742 msleep(20); 4743 for (;;) { 4744 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status); 4745 ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA); 4746 if (ret == active) 4747 break; 4748 if (timeout <= 0) 4749 break; 4750 msleep(10); 4751 timeout -= 10; 4752 } 4753 if (active && ret) 4754 msleep(delay); 4755 4756 return ret == active; 4757 } 4758 4759 /** 4760 * pcie_wait_for_link - Wait until link is active or inactive 4761 * @pdev: Bridge device 4762 * @active: waiting for active or inactive? 4763 * 4764 * Use this to wait till link becomes active or inactive. 4765 */ 4766 bool pcie_wait_for_link(struct pci_dev *pdev, bool active) 4767 { 4768 return pcie_wait_for_link_delay(pdev, active, 100); 4769 } 4770 4771 /* 4772 * Find maximum D3cold delay required by all the devices on the bus. The 4773 * spec says 100 ms, but firmware can lower it and we allow drivers to 4774 * increase it as well. 4775 * 4776 * Called with @pci_bus_sem locked for reading. 4777 */ 4778 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus) 4779 { 4780 const struct pci_dev *pdev; 4781 int min_delay = 100; 4782 int max_delay = 0; 4783 4784 list_for_each_entry(pdev, &bus->devices, bus_list) { 4785 if (pdev->d3cold_delay < min_delay) 4786 min_delay = pdev->d3cold_delay; 4787 if (pdev->d3cold_delay > max_delay) 4788 max_delay = pdev->d3cold_delay; 4789 } 4790 4791 return max(min_delay, max_delay); 4792 } 4793 4794 /** 4795 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible 4796 * @dev: PCI bridge 4797 * 4798 * Handle necessary delays before access to the devices on the secondary 4799 * side of the bridge are permitted after D3cold to D0 transition. 4800 * 4801 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For 4802 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section 4803 * 4.3.2. 4804 */ 4805 void pci_bridge_wait_for_secondary_bus(struct pci_dev *dev) 4806 { 4807 struct pci_dev *child; 4808 int delay; 4809 4810 if (pci_dev_is_disconnected(dev)) 4811 return; 4812 4813 if (!pci_is_bridge(dev) || !dev->bridge_d3) 4814 return; 4815 4816 down_read(&pci_bus_sem); 4817 4818 /* 4819 * We only deal with devices that are present currently on the bus. 4820 * For any hot-added devices the access delay is handled in pciehp 4821 * board_added(). In case of ACPI hotplug the firmware is expected 4822 * to configure the devices before OS is notified. 4823 */ 4824 if (!dev->subordinate || list_empty(&dev->subordinate->devices)) { 4825 up_read(&pci_bus_sem); 4826 return; 4827 } 4828 4829 /* Take d3cold_delay requirements into account */ 4830 delay = pci_bus_max_d3cold_delay(dev->subordinate); 4831 if (!delay) { 4832 up_read(&pci_bus_sem); 4833 return; 4834 } 4835 4836 child = list_first_entry(&dev->subordinate->devices, struct pci_dev, 4837 bus_list); 4838 up_read(&pci_bus_sem); 4839 4840 /* 4841 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before 4842 * accessing the device after reset (that is 1000 ms + 100 ms). In 4843 * practice this should not be needed because we don't do power 4844 * management for them (see pci_bridge_d3_possible()). 4845 */ 4846 if (!pci_is_pcie(dev)) { 4847 pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay); 4848 msleep(1000 + delay); 4849 return; 4850 } 4851 4852 /* 4853 * For PCIe downstream and root ports that do not support speeds 4854 * greater than 5 GT/s need to wait minimum 100 ms. For higher 4855 * speeds (gen3) we need to wait first for the data link layer to 4856 * become active. 4857 * 4858 * However, 100 ms is the minimum and the PCIe spec says the 4859 * software must allow at least 1s before it can determine that the 4860 * device that did not respond is a broken device. There is 4861 * evidence that 100 ms is not always enough, for example certain 4862 * Titan Ridge xHCI controller does not always respond to 4863 * configuration requests if we only wait for 100 ms (see 4864 * https://bugzilla.kernel.org/show_bug.cgi?id=203885). 4865 * 4866 * Therefore we wait for 100 ms and check for the device presence. 4867 * If it is still not present give it an additional 100 ms. 4868 */ 4869 if (!pcie_downstream_port(dev)) 4870 return; 4871 4872 if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) { 4873 pci_dbg(dev, "waiting %d ms for downstream link\n", delay); 4874 msleep(delay); 4875 } else { 4876 pci_dbg(dev, "waiting %d ms for downstream link, after activation\n", 4877 delay); 4878 if (!pcie_wait_for_link_delay(dev, true, delay)) { 4879 /* Did not train, no need to wait any further */ 4880 pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n"); 4881 return; 4882 } 4883 } 4884 4885 if (!pci_device_is_present(child)) { 4886 pci_dbg(child, "waiting additional %d ms to become accessible\n", delay); 4887 msleep(delay); 4888 } 4889 } 4890 4891 void pci_reset_secondary_bus(struct pci_dev *dev) 4892 { 4893 u16 ctrl; 4894 4895 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl); 4896 ctrl |= PCI_BRIDGE_CTL_BUS_RESET; 4897 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 4898 4899 /* 4900 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double 4901 * this to 2ms to ensure that we meet the minimum requirement. 4902 */ 4903 msleep(2); 4904 4905 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET; 4906 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 4907 4908 /* 4909 * Trhfa for conventional PCI is 2^25 clock cycles. 4910 * Assuming a minimum 33MHz clock this results in a 1s 4911 * delay before we can consider subordinate devices to 4912 * be re-initialized. PCIe has some ways to shorten this, 4913 * but we don't make use of them yet. 4914 */ 4915 ssleep(1); 4916 } 4917 4918 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev) 4919 { 4920 pci_reset_secondary_bus(dev); 4921 } 4922 4923 /** 4924 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge. 4925 * @dev: Bridge device 4926 * 4927 * Use the bridge control register to assert reset on the secondary bus. 4928 * Devices on the secondary bus are left in power-on state. 4929 */ 4930 int pci_bridge_secondary_bus_reset(struct pci_dev *dev) 4931 { 4932 pcibios_reset_secondary_bus(dev); 4933 4934 return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS); 4935 } 4936 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset); 4937 4938 static int pci_parent_bus_reset(struct pci_dev *dev, int probe) 4939 { 4940 struct pci_dev *pdev; 4941 4942 if (pci_is_root_bus(dev->bus) || dev->subordinate || 4943 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 4944 return -ENOTTY; 4945 4946 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 4947 if (pdev != dev) 4948 return -ENOTTY; 4949 4950 if (probe) 4951 return 0; 4952 4953 return pci_bridge_secondary_bus_reset(dev->bus->self); 4954 } 4955 4956 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe) 4957 { 4958 int rc = -ENOTTY; 4959 4960 if (!hotplug || !try_module_get(hotplug->owner)) 4961 return rc; 4962 4963 if (hotplug->ops->reset_slot) 4964 rc = hotplug->ops->reset_slot(hotplug, probe); 4965 4966 module_put(hotplug->owner); 4967 4968 return rc; 4969 } 4970 4971 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe) 4972 { 4973 if (dev->multifunction || dev->subordinate || !dev->slot || 4974 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 4975 return -ENOTTY; 4976 4977 return pci_reset_hotplug_slot(dev->slot->hotplug, probe); 4978 } 4979 4980 static void pci_dev_lock(struct pci_dev *dev) 4981 { 4982 pci_cfg_access_lock(dev); 4983 /* block PM suspend, driver probe, etc. */ 4984 device_lock(&dev->dev); 4985 } 4986 4987 /* Return 1 on successful lock, 0 on contention */ 4988 static int pci_dev_trylock(struct pci_dev *dev) 4989 { 4990 if (pci_cfg_access_trylock(dev)) { 4991 if (device_trylock(&dev->dev)) 4992 return 1; 4993 pci_cfg_access_unlock(dev); 4994 } 4995 4996 return 0; 4997 } 4998 4999 static void pci_dev_unlock(struct pci_dev *dev) 5000 { 5001 device_unlock(&dev->dev); 5002 pci_cfg_access_unlock(dev); 5003 } 5004 5005 static void pci_dev_save_and_disable(struct pci_dev *dev) 5006 { 5007 const struct pci_error_handlers *err_handler = 5008 dev->driver ? dev->driver->err_handler : NULL; 5009 5010 /* 5011 * dev->driver->err_handler->reset_prepare() is protected against 5012 * races with ->remove() by the device lock, which must be held by 5013 * the caller. 5014 */ 5015 if (err_handler && err_handler->reset_prepare) 5016 err_handler->reset_prepare(dev); 5017 5018 /* 5019 * Wake-up device prior to save. PM registers default to D0 after 5020 * reset and a simple register restore doesn't reliably return 5021 * to a non-D0 state anyway. 5022 */ 5023 pci_set_power_state(dev, PCI_D0); 5024 5025 pci_save_state(dev); 5026 /* 5027 * Disable the device by clearing the Command register, except for 5028 * INTx-disable which is set. This not only disables MMIO and I/O port 5029 * BARs, but also prevents the device from being Bus Master, preventing 5030 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3 5031 * compliant devices, INTx-disable prevents legacy interrupts. 5032 */ 5033 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE); 5034 } 5035 5036 static void pci_dev_restore(struct pci_dev *dev) 5037 { 5038 const struct pci_error_handlers *err_handler = 5039 dev->driver ? dev->driver->err_handler : NULL; 5040 5041 pci_restore_state(dev); 5042 5043 /* 5044 * dev->driver->err_handler->reset_done() is protected against 5045 * races with ->remove() by the device lock, which must be held by 5046 * the caller. 5047 */ 5048 if (err_handler && err_handler->reset_done) 5049 err_handler->reset_done(dev); 5050 } 5051 5052 /** 5053 * __pci_reset_function_locked - reset a PCI device function while holding 5054 * the @dev mutex lock. 5055 * @dev: PCI device to reset 5056 * 5057 * Some devices allow an individual function to be reset without affecting 5058 * other functions in the same device. The PCI device must be responsive 5059 * to PCI config space in order to use this function. 5060 * 5061 * The device function is presumed to be unused and the caller is holding 5062 * the device mutex lock when this function is called. 5063 * 5064 * Resetting the device will make the contents of PCI configuration space 5065 * random, so any caller of this must be prepared to reinitialise the 5066 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 5067 * etc. 5068 * 5069 * Returns 0 if the device function was successfully reset or negative if the 5070 * device doesn't support resetting a single function. 5071 */ 5072 int __pci_reset_function_locked(struct pci_dev *dev) 5073 { 5074 int rc; 5075 5076 might_sleep(); 5077 5078 /* 5079 * A reset method returns -ENOTTY if it doesn't support this device 5080 * and we should try the next method. 5081 * 5082 * If it returns 0 (success), we're finished. If it returns any 5083 * other error, we're also finished: this indicates that further 5084 * reset mechanisms might be broken on the device. 5085 */ 5086 rc = pci_dev_specific_reset(dev, 0); 5087 if (rc != -ENOTTY) 5088 return rc; 5089 if (pcie_has_flr(dev)) { 5090 rc = pcie_flr(dev); 5091 if (rc != -ENOTTY) 5092 return rc; 5093 } 5094 rc = pci_af_flr(dev, 0); 5095 if (rc != -ENOTTY) 5096 return rc; 5097 rc = pci_pm_reset(dev, 0); 5098 if (rc != -ENOTTY) 5099 return rc; 5100 rc = pci_dev_reset_slot_function(dev, 0); 5101 if (rc != -ENOTTY) 5102 return rc; 5103 return pci_parent_bus_reset(dev, 0); 5104 } 5105 EXPORT_SYMBOL_GPL(__pci_reset_function_locked); 5106 5107 /** 5108 * pci_probe_reset_function - check whether the device can be safely reset 5109 * @dev: PCI device to reset 5110 * 5111 * Some devices allow an individual function to be reset without affecting 5112 * other functions in the same device. The PCI device must be responsive 5113 * to PCI config space in order to use this function. 5114 * 5115 * Returns 0 if the device function can be reset or negative if the 5116 * device doesn't support resetting a single function. 5117 */ 5118 int pci_probe_reset_function(struct pci_dev *dev) 5119 { 5120 int rc; 5121 5122 might_sleep(); 5123 5124 rc = pci_dev_specific_reset(dev, 1); 5125 if (rc != -ENOTTY) 5126 return rc; 5127 if (pcie_has_flr(dev)) 5128 return 0; 5129 rc = pci_af_flr(dev, 1); 5130 if (rc != -ENOTTY) 5131 return rc; 5132 rc = pci_pm_reset(dev, 1); 5133 if (rc != -ENOTTY) 5134 return rc; 5135 rc = pci_dev_reset_slot_function(dev, 1); 5136 if (rc != -ENOTTY) 5137 return rc; 5138 5139 return pci_parent_bus_reset(dev, 1); 5140 } 5141 5142 /** 5143 * pci_reset_function - quiesce and reset a PCI device function 5144 * @dev: PCI device to reset 5145 * 5146 * Some devices allow an individual function to be reset without affecting 5147 * other functions in the same device. The PCI device must be responsive 5148 * to PCI config space in order to use this function. 5149 * 5150 * This function does not just reset the PCI portion of a device, but 5151 * clears all the state associated with the device. This function differs 5152 * from __pci_reset_function_locked() in that it saves and restores device state 5153 * over the reset and takes the PCI device lock. 5154 * 5155 * Returns 0 if the device function was successfully reset or negative if the 5156 * device doesn't support resetting a single function. 5157 */ 5158 int pci_reset_function(struct pci_dev *dev) 5159 { 5160 int rc; 5161 5162 if (!dev->reset_fn) 5163 return -ENOTTY; 5164 5165 pci_dev_lock(dev); 5166 pci_dev_save_and_disable(dev); 5167 5168 rc = __pci_reset_function_locked(dev); 5169 5170 pci_dev_restore(dev); 5171 pci_dev_unlock(dev); 5172 5173 return rc; 5174 } 5175 EXPORT_SYMBOL_GPL(pci_reset_function); 5176 5177 /** 5178 * pci_reset_function_locked - quiesce and reset a PCI device function 5179 * @dev: PCI device to reset 5180 * 5181 * Some devices allow an individual function to be reset without affecting 5182 * other functions in the same device. The PCI device must be responsive 5183 * to PCI config space in order to use this function. 5184 * 5185 * This function does not just reset the PCI portion of a device, but 5186 * clears all the state associated with the device. This function differs 5187 * from __pci_reset_function_locked() in that it saves and restores device state 5188 * over the reset. It also differs from pci_reset_function() in that it 5189 * requires the PCI device lock to be held. 5190 * 5191 * Returns 0 if the device function was successfully reset or negative if the 5192 * device doesn't support resetting a single function. 5193 */ 5194 int pci_reset_function_locked(struct pci_dev *dev) 5195 { 5196 int rc; 5197 5198 if (!dev->reset_fn) 5199 return -ENOTTY; 5200 5201 pci_dev_save_and_disable(dev); 5202 5203 rc = __pci_reset_function_locked(dev); 5204 5205 pci_dev_restore(dev); 5206 5207 return rc; 5208 } 5209 EXPORT_SYMBOL_GPL(pci_reset_function_locked); 5210 5211 /** 5212 * pci_try_reset_function - quiesce and reset a PCI device function 5213 * @dev: PCI device to reset 5214 * 5215 * Same as above, except return -EAGAIN if unable to lock device. 5216 */ 5217 int pci_try_reset_function(struct pci_dev *dev) 5218 { 5219 int rc; 5220 5221 if (!dev->reset_fn) 5222 return -ENOTTY; 5223 5224 if (!pci_dev_trylock(dev)) 5225 return -EAGAIN; 5226 5227 pci_dev_save_and_disable(dev); 5228 rc = __pci_reset_function_locked(dev); 5229 pci_dev_restore(dev); 5230 pci_dev_unlock(dev); 5231 5232 return rc; 5233 } 5234 EXPORT_SYMBOL_GPL(pci_try_reset_function); 5235 5236 /* Do any devices on or below this bus prevent a bus reset? */ 5237 static bool pci_bus_resetable(struct pci_bus *bus) 5238 { 5239 struct pci_dev *dev; 5240 5241 5242 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 5243 return false; 5244 5245 list_for_each_entry(dev, &bus->devices, bus_list) { 5246 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 5247 (dev->subordinate && !pci_bus_resetable(dev->subordinate))) 5248 return false; 5249 } 5250 5251 return true; 5252 } 5253 5254 /* Lock devices from the top of the tree down */ 5255 static void pci_bus_lock(struct pci_bus *bus) 5256 { 5257 struct pci_dev *dev; 5258 5259 list_for_each_entry(dev, &bus->devices, bus_list) { 5260 pci_dev_lock(dev); 5261 if (dev->subordinate) 5262 pci_bus_lock(dev->subordinate); 5263 } 5264 } 5265 5266 /* Unlock devices from the bottom of the tree up */ 5267 static void pci_bus_unlock(struct pci_bus *bus) 5268 { 5269 struct pci_dev *dev; 5270 5271 list_for_each_entry(dev, &bus->devices, bus_list) { 5272 if (dev->subordinate) 5273 pci_bus_unlock(dev->subordinate); 5274 pci_dev_unlock(dev); 5275 } 5276 } 5277 5278 /* Return 1 on successful lock, 0 on contention */ 5279 static int pci_bus_trylock(struct pci_bus *bus) 5280 { 5281 struct pci_dev *dev; 5282 5283 list_for_each_entry(dev, &bus->devices, bus_list) { 5284 if (!pci_dev_trylock(dev)) 5285 goto unlock; 5286 if (dev->subordinate) { 5287 if (!pci_bus_trylock(dev->subordinate)) { 5288 pci_dev_unlock(dev); 5289 goto unlock; 5290 } 5291 } 5292 } 5293 return 1; 5294 5295 unlock: 5296 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) { 5297 if (dev->subordinate) 5298 pci_bus_unlock(dev->subordinate); 5299 pci_dev_unlock(dev); 5300 } 5301 return 0; 5302 } 5303 5304 /* Do any devices on or below this slot prevent a bus reset? */ 5305 static bool pci_slot_resetable(struct pci_slot *slot) 5306 { 5307 struct pci_dev *dev; 5308 5309 if (slot->bus->self && 5310 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 5311 return false; 5312 5313 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5314 if (!dev->slot || dev->slot != slot) 5315 continue; 5316 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 5317 (dev->subordinate && !pci_bus_resetable(dev->subordinate))) 5318 return false; 5319 } 5320 5321 return true; 5322 } 5323 5324 /* Lock devices from the top of the tree down */ 5325 static void pci_slot_lock(struct pci_slot *slot) 5326 { 5327 struct pci_dev *dev; 5328 5329 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5330 if (!dev->slot || dev->slot != slot) 5331 continue; 5332 pci_dev_lock(dev); 5333 if (dev->subordinate) 5334 pci_bus_lock(dev->subordinate); 5335 } 5336 } 5337 5338 /* Unlock devices from the bottom of the tree up */ 5339 static void pci_slot_unlock(struct pci_slot *slot) 5340 { 5341 struct pci_dev *dev; 5342 5343 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5344 if (!dev->slot || dev->slot != slot) 5345 continue; 5346 if (dev->subordinate) 5347 pci_bus_unlock(dev->subordinate); 5348 pci_dev_unlock(dev); 5349 } 5350 } 5351 5352 /* Return 1 on successful lock, 0 on contention */ 5353 static int pci_slot_trylock(struct pci_slot *slot) 5354 { 5355 struct pci_dev *dev; 5356 5357 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5358 if (!dev->slot || dev->slot != slot) 5359 continue; 5360 if (!pci_dev_trylock(dev)) 5361 goto unlock; 5362 if (dev->subordinate) { 5363 if (!pci_bus_trylock(dev->subordinate)) { 5364 pci_dev_unlock(dev); 5365 goto unlock; 5366 } 5367 } 5368 } 5369 return 1; 5370 5371 unlock: 5372 list_for_each_entry_continue_reverse(dev, 5373 &slot->bus->devices, bus_list) { 5374 if (!dev->slot || dev->slot != slot) 5375 continue; 5376 if (dev->subordinate) 5377 pci_bus_unlock(dev->subordinate); 5378 pci_dev_unlock(dev); 5379 } 5380 return 0; 5381 } 5382 5383 /* 5384 * Save and disable devices from the top of the tree down while holding 5385 * the @dev mutex lock for the entire tree. 5386 */ 5387 static void pci_bus_save_and_disable_locked(struct pci_bus *bus) 5388 { 5389 struct pci_dev *dev; 5390 5391 list_for_each_entry(dev, &bus->devices, bus_list) { 5392 pci_dev_save_and_disable(dev); 5393 if (dev->subordinate) 5394 pci_bus_save_and_disable_locked(dev->subordinate); 5395 } 5396 } 5397 5398 /* 5399 * Restore devices from top of the tree down while holding @dev mutex lock 5400 * for the entire tree. Parent bridges need to be restored before we can 5401 * get to subordinate devices. 5402 */ 5403 static void pci_bus_restore_locked(struct pci_bus *bus) 5404 { 5405 struct pci_dev *dev; 5406 5407 list_for_each_entry(dev, &bus->devices, bus_list) { 5408 pci_dev_restore(dev); 5409 if (dev->subordinate) 5410 pci_bus_restore_locked(dev->subordinate); 5411 } 5412 } 5413 5414 /* 5415 * Save and disable devices from the top of the tree down while holding 5416 * the @dev mutex lock for the entire tree. 5417 */ 5418 static void pci_slot_save_and_disable_locked(struct pci_slot *slot) 5419 { 5420 struct pci_dev *dev; 5421 5422 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5423 if (!dev->slot || dev->slot != slot) 5424 continue; 5425 pci_dev_save_and_disable(dev); 5426 if (dev->subordinate) 5427 pci_bus_save_and_disable_locked(dev->subordinate); 5428 } 5429 } 5430 5431 /* 5432 * Restore devices from top of the tree down while holding @dev mutex lock 5433 * for the entire tree. Parent bridges need to be restored before we can 5434 * get to subordinate devices. 5435 */ 5436 static void pci_slot_restore_locked(struct pci_slot *slot) 5437 { 5438 struct pci_dev *dev; 5439 5440 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5441 if (!dev->slot || dev->slot != slot) 5442 continue; 5443 pci_dev_restore(dev); 5444 if (dev->subordinate) 5445 pci_bus_restore_locked(dev->subordinate); 5446 } 5447 } 5448 5449 static int pci_slot_reset(struct pci_slot *slot, int probe) 5450 { 5451 int rc; 5452 5453 if (!slot || !pci_slot_resetable(slot)) 5454 return -ENOTTY; 5455 5456 if (!probe) 5457 pci_slot_lock(slot); 5458 5459 might_sleep(); 5460 5461 rc = pci_reset_hotplug_slot(slot->hotplug, probe); 5462 5463 if (!probe) 5464 pci_slot_unlock(slot); 5465 5466 return rc; 5467 } 5468 5469 /** 5470 * pci_probe_reset_slot - probe whether a PCI slot can be reset 5471 * @slot: PCI slot to probe 5472 * 5473 * Return 0 if slot can be reset, negative if a slot reset is not supported. 5474 */ 5475 int pci_probe_reset_slot(struct pci_slot *slot) 5476 { 5477 return pci_slot_reset(slot, 1); 5478 } 5479 EXPORT_SYMBOL_GPL(pci_probe_reset_slot); 5480 5481 /** 5482 * __pci_reset_slot - Try to reset a PCI slot 5483 * @slot: PCI slot to reset 5484 * 5485 * A PCI bus may host multiple slots, each slot may support a reset mechanism 5486 * independent of other slots. For instance, some slots may support slot power 5487 * control. In the case of a 1:1 bus to slot architecture, this function may 5488 * wrap the bus reset to avoid spurious slot related events such as hotplug. 5489 * Generally a slot reset should be attempted before a bus reset. All of the 5490 * function of the slot and any subordinate buses behind the slot are reset 5491 * through this function. PCI config space of all devices in the slot and 5492 * behind the slot is saved before and restored after reset. 5493 * 5494 * Same as above except return -EAGAIN if the slot cannot be locked 5495 */ 5496 static int __pci_reset_slot(struct pci_slot *slot) 5497 { 5498 int rc; 5499 5500 rc = pci_slot_reset(slot, 1); 5501 if (rc) 5502 return rc; 5503 5504 if (pci_slot_trylock(slot)) { 5505 pci_slot_save_and_disable_locked(slot); 5506 might_sleep(); 5507 rc = pci_reset_hotplug_slot(slot->hotplug, 0); 5508 pci_slot_restore_locked(slot); 5509 pci_slot_unlock(slot); 5510 } else 5511 rc = -EAGAIN; 5512 5513 return rc; 5514 } 5515 5516 static int pci_bus_reset(struct pci_bus *bus, int probe) 5517 { 5518 int ret; 5519 5520 if (!bus->self || !pci_bus_resetable(bus)) 5521 return -ENOTTY; 5522 5523 if (probe) 5524 return 0; 5525 5526 pci_bus_lock(bus); 5527 5528 might_sleep(); 5529 5530 ret = pci_bridge_secondary_bus_reset(bus->self); 5531 5532 pci_bus_unlock(bus); 5533 5534 return ret; 5535 } 5536 5537 /** 5538 * pci_bus_error_reset - reset the bridge's subordinate bus 5539 * @bridge: The parent device that connects to the bus to reset 5540 * 5541 * This function will first try to reset the slots on this bus if the method is 5542 * available. If slot reset fails or is not available, this will fall back to a 5543 * secondary bus reset. 5544 */ 5545 int pci_bus_error_reset(struct pci_dev *bridge) 5546 { 5547 struct pci_bus *bus = bridge->subordinate; 5548 struct pci_slot *slot; 5549 5550 if (!bus) 5551 return -ENOTTY; 5552 5553 mutex_lock(&pci_slot_mutex); 5554 if (list_empty(&bus->slots)) 5555 goto bus_reset; 5556 5557 list_for_each_entry(slot, &bus->slots, list) 5558 if (pci_probe_reset_slot(slot)) 5559 goto bus_reset; 5560 5561 list_for_each_entry(slot, &bus->slots, list) 5562 if (pci_slot_reset(slot, 0)) 5563 goto bus_reset; 5564 5565 mutex_unlock(&pci_slot_mutex); 5566 return 0; 5567 bus_reset: 5568 mutex_unlock(&pci_slot_mutex); 5569 return pci_bus_reset(bridge->subordinate, 0); 5570 } 5571 5572 /** 5573 * pci_probe_reset_bus - probe whether a PCI bus can be reset 5574 * @bus: PCI bus to probe 5575 * 5576 * Return 0 if bus can be reset, negative if a bus reset is not supported. 5577 */ 5578 int pci_probe_reset_bus(struct pci_bus *bus) 5579 { 5580 return pci_bus_reset(bus, 1); 5581 } 5582 EXPORT_SYMBOL_GPL(pci_probe_reset_bus); 5583 5584 /** 5585 * __pci_reset_bus - Try to reset a PCI bus 5586 * @bus: top level PCI bus to reset 5587 * 5588 * Same as above except return -EAGAIN if the bus cannot be locked 5589 */ 5590 static int __pci_reset_bus(struct pci_bus *bus) 5591 { 5592 int rc; 5593 5594 rc = pci_bus_reset(bus, 1); 5595 if (rc) 5596 return rc; 5597 5598 if (pci_bus_trylock(bus)) { 5599 pci_bus_save_and_disable_locked(bus); 5600 might_sleep(); 5601 rc = pci_bridge_secondary_bus_reset(bus->self); 5602 pci_bus_restore_locked(bus); 5603 pci_bus_unlock(bus); 5604 } else 5605 rc = -EAGAIN; 5606 5607 return rc; 5608 } 5609 5610 /** 5611 * pci_reset_bus - Try to reset a PCI bus 5612 * @pdev: top level PCI device to reset via slot/bus 5613 * 5614 * Same as above except return -EAGAIN if the bus cannot be locked 5615 */ 5616 int pci_reset_bus(struct pci_dev *pdev) 5617 { 5618 return (!pci_probe_reset_slot(pdev->slot)) ? 5619 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus); 5620 } 5621 EXPORT_SYMBOL_GPL(pci_reset_bus); 5622 5623 /** 5624 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count 5625 * @dev: PCI device to query 5626 * 5627 * Returns mmrbc: maximum designed memory read count in bytes or 5628 * appropriate error value. 5629 */ 5630 int pcix_get_max_mmrbc(struct pci_dev *dev) 5631 { 5632 int cap; 5633 u32 stat; 5634 5635 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5636 if (!cap) 5637 return -EINVAL; 5638 5639 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 5640 return -EINVAL; 5641 5642 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21); 5643 } 5644 EXPORT_SYMBOL(pcix_get_max_mmrbc); 5645 5646 /** 5647 * pcix_get_mmrbc - get PCI-X maximum memory read byte count 5648 * @dev: PCI device to query 5649 * 5650 * Returns mmrbc: maximum memory read count in bytes or appropriate error 5651 * value. 5652 */ 5653 int pcix_get_mmrbc(struct pci_dev *dev) 5654 { 5655 int cap; 5656 u16 cmd; 5657 5658 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5659 if (!cap) 5660 return -EINVAL; 5661 5662 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 5663 return -EINVAL; 5664 5665 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2); 5666 } 5667 EXPORT_SYMBOL(pcix_get_mmrbc); 5668 5669 /** 5670 * pcix_set_mmrbc - set PCI-X maximum memory read byte count 5671 * @dev: PCI device to query 5672 * @mmrbc: maximum memory read count in bytes 5673 * valid values are 512, 1024, 2048, 4096 5674 * 5675 * If possible sets maximum memory read byte count, some bridges have errata 5676 * that prevent this. 5677 */ 5678 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc) 5679 { 5680 int cap; 5681 u32 stat, v, o; 5682 u16 cmd; 5683 5684 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc)) 5685 return -EINVAL; 5686 5687 v = ffs(mmrbc) - 10; 5688 5689 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5690 if (!cap) 5691 return -EINVAL; 5692 5693 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 5694 return -EINVAL; 5695 5696 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21) 5697 return -E2BIG; 5698 5699 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 5700 return -EINVAL; 5701 5702 o = (cmd & PCI_X_CMD_MAX_READ) >> 2; 5703 if (o != v) { 5704 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC)) 5705 return -EIO; 5706 5707 cmd &= ~PCI_X_CMD_MAX_READ; 5708 cmd |= v << 2; 5709 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd)) 5710 return -EIO; 5711 } 5712 return 0; 5713 } 5714 EXPORT_SYMBOL(pcix_set_mmrbc); 5715 5716 /** 5717 * pcie_get_readrq - get PCI Express read request size 5718 * @dev: PCI device to query 5719 * 5720 * Returns maximum memory read request in bytes or appropriate error value. 5721 */ 5722 int pcie_get_readrq(struct pci_dev *dev) 5723 { 5724 u16 ctl; 5725 5726 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 5727 5728 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12); 5729 } 5730 EXPORT_SYMBOL(pcie_get_readrq); 5731 5732 /** 5733 * pcie_set_readrq - set PCI Express maximum memory read request 5734 * @dev: PCI device to query 5735 * @rq: maximum memory read count in bytes 5736 * valid values are 128, 256, 512, 1024, 2048, 4096 5737 * 5738 * If possible sets maximum memory read request in bytes 5739 */ 5740 int pcie_set_readrq(struct pci_dev *dev, int rq) 5741 { 5742 u16 v; 5743 int ret; 5744 5745 if (rq < 128 || rq > 4096 || !is_power_of_2(rq)) 5746 return -EINVAL; 5747 5748 /* 5749 * If using the "performance" PCIe config, we clamp the read rq 5750 * size to the max packet size to keep the host bridge from 5751 * generating requests larger than we can cope with. 5752 */ 5753 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) { 5754 int mps = pcie_get_mps(dev); 5755 5756 if (mps < rq) 5757 rq = mps; 5758 } 5759 5760 v = (ffs(rq) - 8) << 12; 5761 5762 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 5763 PCI_EXP_DEVCTL_READRQ, v); 5764 5765 return pcibios_err_to_errno(ret); 5766 } 5767 EXPORT_SYMBOL(pcie_set_readrq); 5768 5769 /** 5770 * pcie_get_mps - get PCI Express maximum payload size 5771 * @dev: PCI device to query 5772 * 5773 * Returns maximum payload size in bytes 5774 */ 5775 int pcie_get_mps(struct pci_dev *dev) 5776 { 5777 u16 ctl; 5778 5779 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 5780 5781 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5); 5782 } 5783 EXPORT_SYMBOL(pcie_get_mps); 5784 5785 /** 5786 * pcie_set_mps - set PCI Express maximum payload size 5787 * @dev: PCI device to query 5788 * @mps: maximum payload size in bytes 5789 * valid values are 128, 256, 512, 1024, 2048, 4096 5790 * 5791 * If possible sets maximum payload size 5792 */ 5793 int pcie_set_mps(struct pci_dev *dev, int mps) 5794 { 5795 u16 v; 5796 int ret; 5797 5798 if (mps < 128 || mps > 4096 || !is_power_of_2(mps)) 5799 return -EINVAL; 5800 5801 v = ffs(mps) - 8; 5802 if (v > dev->pcie_mpss) 5803 return -EINVAL; 5804 v <<= 5; 5805 5806 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 5807 PCI_EXP_DEVCTL_PAYLOAD, v); 5808 5809 return pcibios_err_to_errno(ret); 5810 } 5811 EXPORT_SYMBOL(pcie_set_mps); 5812 5813 /** 5814 * pcie_bandwidth_available - determine minimum link settings of a PCIe 5815 * device and its bandwidth limitation 5816 * @dev: PCI device to query 5817 * @limiting_dev: storage for device causing the bandwidth limitation 5818 * @speed: storage for speed of limiting device 5819 * @width: storage for width of limiting device 5820 * 5821 * Walk up the PCI device chain and find the point where the minimum 5822 * bandwidth is available. Return the bandwidth available there and (if 5823 * limiting_dev, speed, and width pointers are supplied) information about 5824 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of 5825 * raw bandwidth. 5826 */ 5827 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev, 5828 enum pci_bus_speed *speed, 5829 enum pcie_link_width *width) 5830 { 5831 u16 lnksta; 5832 enum pci_bus_speed next_speed; 5833 enum pcie_link_width next_width; 5834 u32 bw, next_bw; 5835 5836 if (speed) 5837 *speed = PCI_SPEED_UNKNOWN; 5838 if (width) 5839 *width = PCIE_LNK_WIDTH_UNKNOWN; 5840 5841 bw = 0; 5842 5843 while (dev) { 5844 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta); 5845 5846 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS]; 5847 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >> 5848 PCI_EXP_LNKSTA_NLW_SHIFT; 5849 5850 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed); 5851 5852 /* Check if current device limits the total bandwidth */ 5853 if (!bw || next_bw <= bw) { 5854 bw = next_bw; 5855 5856 if (limiting_dev) 5857 *limiting_dev = dev; 5858 if (speed) 5859 *speed = next_speed; 5860 if (width) 5861 *width = next_width; 5862 } 5863 5864 dev = pci_upstream_bridge(dev); 5865 } 5866 5867 return bw; 5868 } 5869 EXPORT_SYMBOL(pcie_bandwidth_available); 5870 5871 /** 5872 * pcie_get_speed_cap - query for the PCI device's link speed capability 5873 * @dev: PCI device to query 5874 * 5875 * Query the PCI device speed capability. Return the maximum link speed 5876 * supported by the device. 5877 */ 5878 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev) 5879 { 5880 u32 lnkcap2, lnkcap; 5881 5882 /* 5883 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The 5884 * implementation note there recommends using the Supported Link 5885 * Speeds Vector in Link Capabilities 2 when supported. 5886 * 5887 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software 5888 * should use the Supported Link Speeds field in Link Capabilities, 5889 * where only 2.5 GT/s and 5.0 GT/s speeds were defined. 5890 */ 5891 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2); 5892 5893 /* PCIe r3.0-compliant */ 5894 if (lnkcap2) 5895 return PCIE_LNKCAP2_SLS2SPEED(lnkcap2); 5896 5897 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 5898 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB) 5899 return PCIE_SPEED_5_0GT; 5900 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB) 5901 return PCIE_SPEED_2_5GT; 5902 5903 return PCI_SPEED_UNKNOWN; 5904 } 5905 EXPORT_SYMBOL(pcie_get_speed_cap); 5906 5907 /** 5908 * pcie_get_width_cap - query for the PCI device's link width capability 5909 * @dev: PCI device to query 5910 * 5911 * Query the PCI device width capability. Return the maximum link width 5912 * supported by the device. 5913 */ 5914 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev) 5915 { 5916 u32 lnkcap; 5917 5918 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 5919 if (lnkcap) 5920 return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4; 5921 5922 return PCIE_LNK_WIDTH_UNKNOWN; 5923 } 5924 EXPORT_SYMBOL(pcie_get_width_cap); 5925 5926 /** 5927 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability 5928 * @dev: PCI device 5929 * @speed: storage for link speed 5930 * @width: storage for link width 5931 * 5932 * Calculate a PCI device's link bandwidth by querying for its link speed 5933 * and width, multiplying them, and applying encoding overhead. The result 5934 * is in Mb/s, i.e., megabits/second of raw bandwidth. 5935 */ 5936 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed, 5937 enum pcie_link_width *width) 5938 { 5939 *speed = pcie_get_speed_cap(dev); 5940 *width = pcie_get_width_cap(dev); 5941 5942 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN) 5943 return 0; 5944 5945 return *width * PCIE_SPEED2MBS_ENC(*speed); 5946 } 5947 5948 /** 5949 * __pcie_print_link_status - Report the PCI device's link speed and width 5950 * @dev: PCI device to query 5951 * @verbose: Print info even when enough bandwidth is available 5952 * 5953 * If the available bandwidth at the device is less than the device is 5954 * capable of, report the device's maximum possible bandwidth and the 5955 * upstream link that limits its performance. If @verbose, always print 5956 * the available bandwidth, even if the device isn't constrained. 5957 */ 5958 void __pcie_print_link_status(struct pci_dev *dev, bool verbose) 5959 { 5960 enum pcie_link_width width, width_cap; 5961 enum pci_bus_speed speed, speed_cap; 5962 struct pci_dev *limiting_dev = NULL; 5963 u32 bw_avail, bw_cap; 5964 5965 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap); 5966 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width); 5967 5968 if (bw_avail >= bw_cap && verbose) 5969 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n", 5970 bw_cap / 1000, bw_cap % 1000, 5971 pci_speed_string(speed_cap), width_cap); 5972 else if (bw_avail < bw_cap) 5973 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n", 5974 bw_avail / 1000, bw_avail % 1000, 5975 pci_speed_string(speed), width, 5976 limiting_dev ? pci_name(limiting_dev) : "<unknown>", 5977 bw_cap / 1000, bw_cap % 1000, 5978 pci_speed_string(speed_cap), width_cap); 5979 } 5980 5981 /** 5982 * pcie_print_link_status - Report the PCI device's link speed and width 5983 * @dev: PCI device to query 5984 * 5985 * Report the available bandwidth at the device. 5986 */ 5987 void pcie_print_link_status(struct pci_dev *dev) 5988 { 5989 __pcie_print_link_status(dev, true); 5990 } 5991 EXPORT_SYMBOL(pcie_print_link_status); 5992 5993 /** 5994 * pci_select_bars - Make BAR mask from the type of resource 5995 * @dev: the PCI device for which BAR mask is made 5996 * @flags: resource type mask to be selected 5997 * 5998 * This helper routine makes bar mask from the type of resource. 5999 */ 6000 int pci_select_bars(struct pci_dev *dev, unsigned long flags) 6001 { 6002 int i, bars = 0; 6003 for (i = 0; i < PCI_NUM_RESOURCES; i++) 6004 if (pci_resource_flags(dev, i) & flags) 6005 bars |= (1 << i); 6006 return bars; 6007 } 6008 EXPORT_SYMBOL(pci_select_bars); 6009 6010 /* Some architectures require additional programming to enable VGA */ 6011 static arch_set_vga_state_t arch_set_vga_state; 6012 6013 void __init pci_register_set_vga_state(arch_set_vga_state_t func) 6014 { 6015 arch_set_vga_state = func; /* NULL disables */ 6016 } 6017 6018 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode, 6019 unsigned int command_bits, u32 flags) 6020 { 6021 if (arch_set_vga_state) 6022 return arch_set_vga_state(dev, decode, command_bits, 6023 flags); 6024 return 0; 6025 } 6026 6027 /** 6028 * pci_set_vga_state - set VGA decode state on device and parents if requested 6029 * @dev: the PCI device 6030 * @decode: true = enable decoding, false = disable decoding 6031 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY 6032 * @flags: traverse ancestors and change bridges 6033 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE 6034 */ 6035 int pci_set_vga_state(struct pci_dev *dev, bool decode, 6036 unsigned int command_bits, u32 flags) 6037 { 6038 struct pci_bus *bus; 6039 struct pci_dev *bridge; 6040 u16 cmd; 6041 int rc; 6042 6043 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY))); 6044 6045 /* ARCH specific VGA enables */ 6046 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags); 6047 if (rc) 6048 return rc; 6049 6050 if (flags & PCI_VGA_STATE_CHANGE_DECODES) { 6051 pci_read_config_word(dev, PCI_COMMAND, &cmd); 6052 if (decode) 6053 cmd |= command_bits; 6054 else 6055 cmd &= ~command_bits; 6056 pci_write_config_word(dev, PCI_COMMAND, cmd); 6057 } 6058 6059 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE)) 6060 return 0; 6061 6062 bus = dev->bus; 6063 while (bus) { 6064 bridge = bus->self; 6065 if (bridge) { 6066 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL, 6067 &cmd); 6068 if (decode) 6069 cmd |= PCI_BRIDGE_CTL_VGA; 6070 else 6071 cmd &= ~PCI_BRIDGE_CTL_VGA; 6072 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL, 6073 cmd); 6074 } 6075 bus = bus->parent; 6076 } 6077 return 0; 6078 } 6079 6080 #ifdef CONFIG_ACPI 6081 bool pci_pr3_present(struct pci_dev *pdev) 6082 { 6083 struct acpi_device *adev; 6084 6085 if (acpi_disabled) 6086 return false; 6087 6088 adev = ACPI_COMPANION(&pdev->dev); 6089 if (!adev) 6090 return false; 6091 6092 return adev->power.flags.power_resources && 6093 acpi_has_method(adev->handle, "_PR3"); 6094 } 6095 EXPORT_SYMBOL_GPL(pci_pr3_present); 6096 #endif 6097 6098 /** 6099 * pci_add_dma_alias - Add a DMA devfn alias for a device 6100 * @dev: the PCI device for which alias is added 6101 * @devfn_from: alias slot and function 6102 * @nr_devfns: number of subsequent devfns to alias 6103 * 6104 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask 6105 * which is used to program permissible bus-devfn source addresses for DMA 6106 * requests in an IOMMU. These aliases factor into IOMMU group creation 6107 * and are useful for devices generating DMA requests beyond or different 6108 * from their logical bus-devfn. Examples include device quirks where the 6109 * device simply uses the wrong devfn, as well as non-transparent bridges 6110 * where the alias may be a proxy for devices in another domain. 6111 * 6112 * IOMMU group creation is performed during device discovery or addition, 6113 * prior to any potential DMA mapping and therefore prior to driver probing 6114 * (especially for userspace assigned devices where IOMMU group definition 6115 * cannot be left as a userspace activity). DMA aliases should therefore 6116 * be configured via quirks, such as the PCI fixup header quirk. 6117 */ 6118 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from, unsigned nr_devfns) 6119 { 6120 int devfn_to; 6121 6122 nr_devfns = min(nr_devfns, (unsigned) MAX_NR_DEVFNS - devfn_from); 6123 devfn_to = devfn_from + nr_devfns - 1; 6124 6125 if (!dev->dma_alias_mask) 6126 dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL); 6127 if (!dev->dma_alias_mask) { 6128 pci_warn(dev, "Unable to allocate DMA alias mask\n"); 6129 return; 6130 } 6131 6132 bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns); 6133 6134 if (nr_devfns == 1) 6135 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n", 6136 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from)); 6137 else if (nr_devfns > 1) 6138 pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n", 6139 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from), 6140 PCI_SLOT(devfn_to), PCI_FUNC(devfn_to)); 6141 } 6142 6143 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2) 6144 { 6145 return (dev1->dma_alias_mask && 6146 test_bit(dev2->devfn, dev1->dma_alias_mask)) || 6147 (dev2->dma_alias_mask && 6148 test_bit(dev1->devfn, dev2->dma_alias_mask)) || 6149 pci_real_dma_dev(dev1) == dev2 || 6150 pci_real_dma_dev(dev2) == dev1; 6151 } 6152 6153 bool pci_device_is_present(struct pci_dev *pdev) 6154 { 6155 u32 v; 6156 6157 if (pci_dev_is_disconnected(pdev)) 6158 return false; 6159 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0); 6160 } 6161 EXPORT_SYMBOL_GPL(pci_device_is_present); 6162 6163 void pci_ignore_hotplug(struct pci_dev *dev) 6164 { 6165 struct pci_dev *bridge = dev->bus->self; 6166 6167 dev->ignore_hotplug = 1; 6168 /* Propagate the "ignore hotplug" setting to the parent bridge. */ 6169 if (bridge) 6170 bridge->ignore_hotplug = 1; 6171 } 6172 EXPORT_SYMBOL_GPL(pci_ignore_hotplug); 6173 6174 /** 6175 * pci_real_dma_dev - Get PCI DMA device for PCI device 6176 * @dev: the PCI device that may have a PCI DMA alias 6177 * 6178 * Permits the platform to provide architecture-specific functionality to 6179 * devices needing to alias DMA to another PCI device on another PCI bus. If 6180 * the PCI device is on the same bus, it is recommended to use 6181 * pci_add_dma_alias(). This is the default implementation. Architecture 6182 * implementations can override this. 6183 */ 6184 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev) 6185 { 6186 return dev; 6187 } 6188 6189 resource_size_t __weak pcibios_default_alignment(void) 6190 { 6191 return 0; 6192 } 6193 6194 /* 6195 * Arches that don't want to expose struct resource to userland as-is in 6196 * sysfs and /proc can implement their own pci_resource_to_user(). 6197 */ 6198 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar, 6199 const struct resource *rsrc, 6200 resource_size_t *start, resource_size_t *end) 6201 { 6202 *start = rsrc->start; 6203 *end = rsrc->end; 6204 } 6205 6206 static char *resource_alignment_param; 6207 static DEFINE_SPINLOCK(resource_alignment_lock); 6208 6209 /** 6210 * pci_specified_resource_alignment - get resource alignment specified by user. 6211 * @dev: the PCI device to get 6212 * @resize: whether or not to change resources' size when reassigning alignment 6213 * 6214 * RETURNS: Resource alignment if it is specified. 6215 * Zero if it is not specified. 6216 */ 6217 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev, 6218 bool *resize) 6219 { 6220 int align_order, count; 6221 resource_size_t align = pcibios_default_alignment(); 6222 const char *p; 6223 int ret; 6224 6225 spin_lock(&resource_alignment_lock); 6226 p = resource_alignment_param; 6227 if (!p || !*p) 6228 goto out; 6229 if (pci_has_flag(PCI_PROBE_ONLY)) { 6230 align = 0; 6231 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n"); 6232 goto out; 6233 } 6234 6235 while (*p) { 6236 count = 0; 6237 if (sscanf(p, "%d%n", &align_order, &count) == 1 && 6238 p[count] == '@') { 6239 p += count + 1; 6240 if (align_order > 63) { 6241 pr_err("PCI: Invalid requested alignment (order %d)\n", 6242 align_order); 6243 align_order = PAGE_SHIFT; 6244 } 6245 } else { 6246 align_order = PAGE_SHIFT; 6247 } 6248 6249 ret = pci_dev_str_match(dev, p, &p); 6250 if (ret == 1) { 6251 *resize = true; 6252 align = 1ULL << align_order; 6253 break; 6254 } else if (ret < 0) { 6255 pr_err("PCI: Can't parse resource_alignment parameter: %s\n", 6256 p); 6257 break; 6258 } 6259 6260 if (*p != ';' && *p != ',') { 6261 /* End of param or invalid format */ 6262 break; 6263 } 6264 p++; 6265 } 6266 out: 6267 spin_unlock(&resource_alignment_lock); 6268 return align; 6269 } 6270 6271 static void pci_request_resource_alignment(struct pci_dev *dev, int bar, 6272 resource_size_t align, bool resize) 6273 { 6274 struct resource *r = &dev->resource[bar]; 6275 resource_size_t size; 6276 6277 if (!(r->flags & IORESOURCE_MEM)) 6278 return; 6279 6280 if (r->flags & IORESOURCE_PCI_FIXED) { 6281 pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n", 6282 bar, r, (unsigned long long)align); 6283 return; 6284 } 6285 6286 size = resource_size(r); 6287 if (size >= align) 6288 return; 6289 6290 /* 6291 * Increase the alignment of the resource. There are two ways we 6292 * can do this: 6293 * 6294 * 1) Increase the size of the resource. BARs are aligned on their 6295 * size, so when we reallocate space for this resource, we'll 6296 * allocate it with the larger alignment. This also prevents 6297 * assignment of any other BARs inside the alignment region, so 6298 * if we're requesting page alignment, this means no other BARs 6299 * will share the page. 6300 * 6301 * The disadvantage is that this makes the resource larger than 6302 * the hardware BAR, which may break drivers that compute things 6303 * based on the resource size, e.g., to find registers at a 6304 * fixed offset before the end of the BAR. 6305 * 6306 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and 6307 * set r->start to the desired alignment. By itself this 6308 * doesn't prevent other BARs being put inside the alignment 6309 * region, but if we realign *every* resource of every device in 6310 * the system, none of them will share an alignment region. 6311 * 6312 * When the user has requested alignment for only some devices via 6313 * the "pci=resource_alignment" argument, "resize" is true and we 6314 * use the first method. Otherwise we assume we're aligning all 6315 * devices and we use the second. 6316 */ 6317 6318 pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n", 6319 bar, r, (unsigned long long)align); 6320 6321 if (resize) { 6322 r->start = 0; 6323 r->end = align - 1; 6324 } else { 6325 r->flags &= ~IORESOURCE_SIZEALIGN; 6326 r->flags |= IORESOURCE_STARTALIGN; 6327 r->start = align; 6328 r->end = r->start + size - 1; 6329 } 6330 r->flags |= IORESOURCE_UNSET; 6331 } 6332 6333 /* 6334 * This function disables memory decoding and releases memory resources 6335 * of the device specified by kernel's boot parameter 'pci=resource_alignment='. 6336 * It also rounds up size to specified alignment. 6337 * Later on, the kernel will assign page-aligned memory resource back 6338 * to the device. 6339 */ 6340 void pci_reassigndev_resource_alignment(struct pci_dev *dev) 6341 { 6342 int i; 6343 struct resource *r; 6344 resource_size_t align; 6345 u16 command; 6346 bool resize = false; 6347 6348 /* 6349 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec 6350 * 3.4.1.11. Their resources are allocated from the space 6351 * described by the VF BARx register in the PF's SR-IOV capability. 6352 * We can't influence their alignment here. 6353 */ 6354 if (dev->is_virtfn) 6355 return; 6356 6357 /* check if specified PCI is target device to reassign */ 6358 align = pci_specified_resource_alignment(dev, &resize); 6359 if (!align) 6360 return; 6361 6362 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL && 6363 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) { 6364 pci_warn(dev, "Can't reassign resources to host bridge\n"); 6365 return; 6366 } 6367 6368 pci_read_config_word(dev, PCI_COMMAND, &command); 6369 command &= ~PCI_COMMAND_MEMORY; 6370 pci_write_config_word(dev, PCI_COMMAND, command); 6371 6372 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 6373 pci_request_resource_alignment(dev, i, align, resize); 6374 6375 /* 6376 * Need to disable bridge's resource window, 6377 * to enable the kernel to reassign new resource 6378 * window later on. 6379 */ 6380 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 6381 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) { 6382 r = &dev->resource[i]; 6383 if (!(r->flags & IORESOURCE_MEM)) 6384 continue; 6385 r->flags |= IORESOURCE_UNSET; 6386 r->end = resource_size(r) - 1; 6387 r->start = 0; 6388 } 6389 pci_disable_bridge_window(dev); 6390 } 6391 } 6392 6393 static ssize_t resource_alignment_show(struct bus_type *bus, char *buf) 6394 { 6395 size_t count = 0; 6396 6397 spin_lock(&resource_alignment_lock); 6398 if (resource_alignment_param) 6399 count = scnprintf(buf, PAGE_SIZE, "%s", resource_alignment_param); 6400 spin_unlock(&resource_alignment_lock); 6401 6402 /* 6403 * When set by the command line, resource_alignment_param will not 6404 * have a trailing line feed, which is ugly. So conditionally add 6405 * it here. 6406 */ 6407 if (count >= 2 && buf[count - 2] != '\n' && count < PAGE_SIZE - 1) { 6408 buf[count - 1] = '\n'; 6409 buf[count++] = 0; 6410 } 6411 6412 return count; 6413 } 6414 6415 static ssize_t resource_alignment_store(struct bus_type *bus, 6416 const char *buf, size_t count) 6417 { 6418 char *param = kstrndup(buf, count, GFP_KERNEL); 6419 6420 if (!param) 6421 return -ENOMEM; 6422 6423 spin_lock(&resource_alignment_lock); 6424 kfree(resource_alignment_param); 6425 resource_alignment_param = param; 6426 spin_unlock(&resource_alignment_lock); 6427 return count; 6428 } 6429 6430 static BUS_ATTR_RW(resource_alignment); 6431 6432 static int __init pci_resource_alignment_sysfs_init(void) 6433 { 6434 return bus_create_file(&pci_bus_type, 6435 &bus_attr_resource_alignment); 6436 } 6437 late_initcall(pci_resource_alignment_sysfs_init); 6438 6439 static void pci_no_domains(void) 6440 { 6441 #ifdef CONFIG_PCI_DOMAINS 6442 pci_domains_supported = 0; 6443 #endif 6444 } 6445 6446 #ifdef CONFIG_PCI_DOMAINS_GENERIC 6447 static atomic_t __domain_nr = ATOMIC_INIT(-1); 6448 6449 static int pci_get_new_domain_nr(void) 6450 { 6451 return atomic_inc_return(&__domain_nr); 6452 } 6453 6454 static int of_pci_bus_find_domain_nr(struct device *parent) 6455 { 6456 static int use_dt_domains = -1; 6457 int domain = -1; 6458 6459 if (parent) 6460 domain = of_get_pci_domain_nr(parent->of_node); 6461 6462 /* 6463 * Check DT domain and use_dt_domains values. 6464 * 6465 * If DT domain property is valid (domain >= 0) and 6466 * use_dt_domains != 0, the DT assignment is valid since this means 6467 * we have not previously allocated a domain number by using 6468 * pci_get_new_domain_nr(); we should also update use_dt_domains to 6469 * 1, to indicate that we have just assigned a domain number from 6470 * DT. 6471 * 6472 * If DT domain property value is not valid (ie domain < 0), and we 6473 * have not previously assigned a domain number from DT 6474 * (use_dt_domains != 1) we should assign a domain number by 6475 * using the: 6476 * 6477 * pci_get_new_domain_nr() 6478 * 6479 * API and update the use_dt_domains value to keep track of method we 6480 * are using to assign domain numbers (use_dt_domains = 0). 6481 * 6482 * All other combinations imply we have a platform that is trying 6483 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(), 6484 * which is a recipe for domain mishandling and it is prevented by 6485 * invalidating the domain value (domain = -1) and printing a 6486 * corresponding error. 6487 */ 6488 if (domain >= 0 && use_dt_domains) { 6489 use_dt_domains = 1; 6490 } else if (domain < 0 && use_dt_domains != 1) { 6491 use_dt_domains = 0; 6492 domain = pci_get_new_domain_nr(); 6493 } else { 6494 if (parent) 6495 pr_err("Node %pOF has ", parent->of_node); 6496 pr_err("Inconsistent \"linux,pci-domain\" property in DT\n"); 6497 domain = -1; 6498 } 6499 6500 return domain; 6501 } 6502 6503 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent) 6504 { 6505 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) : 6506 acpi_pci_bus_find_domain_nr(bus); 6507 } 6508 #endif 6509 6510 /** 6511 * pci_ext_cfg_avail - can we access extended PCI config space? 6512 * 6513 * Returns 1 if we can access PCI extended config space (offsets 6514 * greater than 0xff). This is the default implementation. Architecture 6515 * implementations can override this. 6516 */ 6517 int __weak pci_ext_cfg_avail(void) 6518 { 6519 return 1; 6520 } 6521 6522 void __weak pci_fixup_cardbus(struct pci_bus *bus) 6523 { 6524 } 6525 EXPORT_SYMBOL(pci_fixup_cardbus); 6526 6527 static int __init pci_setup(char *str) 6528 { 6529 while (str) { 6530 char *k = strchr(str, ','); 6531 if (k) 6532 *k++ = 0; 6533 if (*str && (str = pcibios_setup(str)) && *str) { 6534 if (!strcmp(str, "nomsi")) { 6535 pci_no_msi(); 6536 } else if (!strncmp(str, "noats", 5)) { 6537 pr_info("PCIe: ATS is disabled\n"); 6538 pcie_ats_disabled = true; 6539 } else if (!strcmp(str, "noaer")) { 6540 pci_no_aer(); 6541 } else if (!strcmp(str, "earlydump")) { 6542 pci_early_dump = true; 6543 } else if (!strncmp(str, "realloc=", 8)) { 6544 pci_realloc_get_opt(str + 8); 6545 } else if (!strncmp(str, "realloc", 7)) { 6546 pci_realloc_get_opt("on"); 6547 } else if (!strcmp(str, "nodomains")) { 6548 pci_no_domains(); 6549 } else if (!strncmp(str, "noari", 5)) { 6550 pcie_ari_disabled = true; 6551 } else if (!strncmp(str, "cbiosize=", 9)) { 6552 pci_cardbus_io_size = memparse(str + 9, &str); 6553 } else if (!strncmp(str, "cbmemsize=", 10)) { 6554 pci_cardbus_mem_size = memparse(str + 10, &str); 6555 } else if (!strncmp(str, "resource_alignment=", 19)) { 6556 resource_alignment_param = str + 19; 6557 } else if (!strncmp(str, "ecrc=", 5)) { 6558 pcie_ecrc_get_policy(str + 5); 6559 } else if (!strncmp(str, "hpiosize=", 9)) { 6560 pci_hotplug_io_size = memparse(str + 9, &str); 6561 } else if (!strncmp(str, "hpmmiosize=", 11)) { 6562 pci_hotplug_mmio_size = memparse(str + 11, &str); 6563 } else if (!strncmp(str, "hpmmioprefsize=", 15)) { 6564 pci_hotplug_mmio_pref_size = memparse(str + 15, &str); 6565 } else if (!strncmp(str, "hpmemsize=", 10)) { 6566 pci_hotplug_mmio_size = memparse(str + 10, &str); 6567 pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size; 6568 } else if (!strncmp(str, "hpbussize=", 10)) { 6569 pci_hotplug_bus_size = 6570 simple_strtoul(str + 10, &str, 0); 6571 if (pci_hotplug_bus_size > 0xff) 6572 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 6573 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) { 6574 pcie_bus_config = PCIE_BUS_TUNE_OFF; 6575 } else if (!strncmp(str, "pcie_bus_safe", 13)) { 6576 pcie_bus_config = PCIE_BUS_SAFE; 6577 } else if (!strncmp(str, "pcie_bus_perf", 13)) { 6578 pcie_bus_config = PCIE_BUS_PERFORMANCE; 6579 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) { 6580 pcie_bus_config = PCIE_BUS_PEER2PEER; 6581 } else if (!strncmp(str, "pcie_scan_all", 13)) { 6582 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS); 6583 } else if (!strncmp(str, "disable_acs_redir=", 18)) { 6584 disable_acs_redir_param = str + 18; 6585 } else { 6586 pr_err("PCI: Unknown option `%s'\n", str); 6587 } 6588 } 6589 str = k; 6590 } 6591 return 0; 6592 } 6593 early_param("pci", pci_setup); 6594 6595 /* 6596 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized 6597 * in pci_setup(), above, to point to data in the __initdata section which 6598 * will be freed after the init sequence is complete. We can't allocate memory 6599 * in pci_setup() because some architectures do not have any memory allocation 6600 * service available during an early_param() call. So we allocate memory and 6601 * copy the variable here before the init section is freed. 6602 * 6603 */ 6604 static int __init pci_realloc_setup_params(void) 6605 { 6606 resource_alignment_param = kstrdup(resource_alignment_param, 6607 GFP_KERNEL); 6608 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL); 6609 6610 return 0; 6611 } 6612 pure_initcall(pci_realloc_setup_params); 6613