xref: /openbmc/linux/drivers/pci/pci.c (revision 2f190ac2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * PCI Bus Services, see include/linux/pci.h for further explanation.
4  *
5  * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6  * David Mosberger-Tang
7  *
8  * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/msi.h>
17 #include <linux/of.h>
18 #include <linux/pci.h>
19 #include <linux/pm.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/log2.h>
25 #include <linux/logic_pio.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/pci_hotplug.h>
31 #include <linux/vmalloc.h>
32 #include <asm/dma.h>
33 #include <linux/aer.h>
34 #include <linux/bitfield.h>
35 #include "pci.h"
36 
37 DEFINE_MUTEX(pci_slot_mutex);
38 
39 const char *pci_power_names[] = {
40 	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
41 };
42 EXPORT_SYMBOL_GPL(pci_power_names);
43 
44 #ifdef CONFIG_X86_32
45 int isa_dma_bridge_buggy;
46 EXPORT_SYMBOL(isa_dma_bridge_buggy);
47 #endif
48 
49 int pci_pci_problems;
50 EXPORT_SYMBOL(pci_pci_problems);
51 
52 unsigned int pci_pm_d3hot_delay;
53 
54 static void pci_pme_list_scan(struct work_struct *work);
55 
56 static LIST_HEAD(pci_pme_list);
57 static DEFINE_MUTEX(pci_pme_list_mutex);
58 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
59 
60 struct pci_pme_device {
61 	struct list_head list;
62 	struct pci_dev *dev;
63 };
64 
65 #define PME_TIMEOUT 1000 /* How long between PME checks */
66 
67 static void pci_dev_d3_sleep(struct pci_dev *dev)
68 {
69 	unsigned int delay = dev->d3hot_delay;
70 
71 	if (delay < pci_pm_d3hot_delay)
72 		delay = pci_pm_d3hot_delay;
73 
74 	if (delay)
75 		msleep(delay);
76 }
77 
78 bool pci_reset_supported(struct pci_dev *dev)
79 {
80 	return dev->reset_methods[0] != 0;
81 }
82 
83 #ifdef CONFIG_PCI_DOMAINS
84 int pci_domains_supported = 1;
85 #endif
86 
87 #define DEFAULT_CARDBUS_IO_SIZE		(256)
88 #define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
89 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
90 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
91 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
92 
93 #define DEFAULT_HOTPLUG_IO_SIZE		(256)
94 #define DEFAULT_HOTPLUG_MMIO_SIZE	(2*1024*1024)
95 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE	(2*1024*1024)
96 /* hpiosize=nn can override this */
97 unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
98 /*
99  * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
100  * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
101  * pci=hpmemsize=nnM overrides both
102  */
103 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
104 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
105 
106 #define DEFAULT_HOTPLUG_BUS_SIZE	1
107 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
108 
109 
110 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
111 #ifdef CONFIG_PCIE_BUS_TUNE_OFF
112 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
113 #elif defined CONFIG_PCIE_BUS_SAFE
114 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
115 #elif defined CONFIG_PCIE_BUS_PERFORMANCE
116 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
117 #elif defined CONFIG_PCIE_BUS_PEER2PEER
118 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
119 #else
120 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
121 #endif
122 
123 /*
124  * The default CLS is used if arch didn't set CLS explicitly and not
125  * all pci devices agree on the same value.  Arch can override either
126  * the dfl or actual value as it sees fit.  Don't forget this is
127  * measured in 32-bit words, not bytes.
128  */
129 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
130 u8 pci_cache_line_size;
131 
132 /*
133  * If we set up a device for bus mastering, we need to check the latency
134  * timer as certain BIOSes forget to set it properly.
135  */
136 unsigned int pcibios_max_latency = 255;
137 
138 /* If set, the PCIe ARI capability will not be used. */
139 static bool pcie_ari_disabled;
140 
141 /* If set, the PCIe ATS capability will not be used. */
142 static bool pcie_ats_disabled;
143 
144 /* If set, the PCI config space of each device is printed during boot. */
145 bool pci_early_dump;
146 
147 bool pci_ats_disabled(void)
148 {
149 	return pcie_ats_disabled;
150 }
151 EXPORT_SYMBOL_GPL(pci_ats_disabled);
152 
153 /* Disable bridge_d3 for all PCIe ports */
154 static bool pci_bridge_d3_disable;
155 /* Force bridge_d3 for all PCIe ports */
156 static bool pci_bridge_d3_force;
157 
158 static int __init pcie_port_pm_setup(char *str)
159 {
160 	if (!strcmp(str, "off"))
161 		pci_bridge_d3_disable = true;
162 	else if (!strcmp(str, "force"))
163 		pci_bridge_d3_force = true;
164 	return 1;
165 }
166 __setup("pcie_port_pm=", pcie_port_pm_setup);
167 
168 /* Time to wait after a reset for device to become responsive */
169 #define PCIE_RESET_READY_POLL_MS 60000
170 
171 /**
172  * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
173  * @bus: pointer to PCI bus structure to search
174  *
175  * Given a PCI bus, returns the highest PCI bus number present in the set
176  * including the given PCI bus and its list of child PCI buses.
177  */
178 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
179 {
180 	struct pci_bus *tmp;
181 	unsigned char max, n;
182 
183 	max = bus->busn_res.end;
184 	list_for_each_entry(tmp, &bus->children, node) {
185 		n = pci_bus_max_busnr(tmp);
186 		if (n > max)
187 			max = n;
188 	}
189 	return max;
190 }
191 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
192 
193 /**
194  * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
195  * @pdev: the PCI device
196  *
197  * Returns error bits set in PCI_STATUS and clears them.
198  */
199 int pci_status_get_and_clear_errors(struct pci_dev *pdev)
200 {
201 	u16 status;
202 	int ret;
203 
204 	ret = pci_read_config_word(pdev, PCI_STATUS, &status);
205 	if (ret != PCIBIOS_SUCCESSFUL)
206 		return -EIO;
207 
208 	status &= PCI_STATUS_ERROR_BITS;
209 	if (status)
210 		pci_write_config_word(pdev, PCI_STATUS, status);
211 
212 	return status;
213 }
214 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
215 
216 #ifdef CONFIG_HAS_IOMEM
217 static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar,
218 					    bool write_combine)
219 {
220 	struct resource *res = &pdev->resource[bar];
221 	resource_size_t start = res->start;
222 	resource_size_t size = resource_size(res);
223 
224 	/*
225 	 * Make sure the BAR is actually a memory resource, not an IO resource
226 	 */
227 	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
228 		pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
229 		return NULL;
230 	}
231 
232 	if (write_combine)
233 		return ioremap_wc(start, size);
234 
235 	return ioremap(start, size);
236 }
237 
238 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
239 {
240 	return __pci_ioremap_resource(pdev, bar, false);
241 }
242 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
243 
244 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
245 {
246 	return __pci_ioremap_resource(pdev, bar, true);
247 }
248 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
249 #endif
250 
251 /**
252  * pci_dev_str_match_path - test if a path string matches a device
253  * @dev: the PCI device to test
254  * @path: string to match the device against
255  * @endptr: pointer to the string after the match
256  *
257  * Test if a string (typically from a kernel parameter) formatted as a
258  * path of device/function addresses matches a PCI device. The string must
259  * be of the form:
260  *
261  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
262  *
263  * A path for a device can be obtained using 'lspci -t'.  Using a path
264  * is more robust against bus renumbering than using only a single bus,
265  * device and function address.
266  *
267  * Returns 1 if the string matches the device, 0 if it does not and
268  * a negative error code if it fails to parse the string.
269  */
270 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
271 				  const char **endptr)
272 {
273 	int ret;
274 	unsigned int seg, bus, slot, func;
275 	char *wpath, *p;
276 	char end;
277 
278 	*endptr = strchrnul(path, ';');
279 
280 	wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC);
281 	if (!wpath)
282 		return -ENOMEM;
283 
284 	while (1) {
285 		p = strrchr(wpath, '/');
286 		if (!p)
287 			break;
288 		ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
289 		if (ret != 2) {
290 			ret = -EINVAL;
291 			goto free_and_exit;
292 		}
293 
294 		if (dev->devfn != PCI_DEVFN(slot, func)) {
295 			ret = 0;
296 			goto free_and_exit;
297 		}
298 
299 		/*
300 		 * Note: we don't need to get a reference to the upstream
301 		 * bridge because we hold a reference to the top level
302 		 * device which should hold a reference to the bridge,
303 		 * and so on.
304 		 */
305 		dev = pci_upstream_bridge(dev);
306 		if (!dev) {
307 			ret = 0;
308 			goto free_and_exit;
309 		}
310 
311 		*p = 0;
312 	}
313 
314 	ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
315 		     &func, &end);
316 	if (ret != 4) {
317 		seg = 0;
318 		ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
319 		if (ret != 3) {
320 			ret = -EINVAL;
321 			goto free_and_exit;
322 		}
323 	}
324 
325 	ret = (seg == pci_domain_nr(dev->bus) &&
326 	       bus == dev->bus->number &&
327 	       dev->devfn == PCI_DEVFN(slot, func));
328 
329 free_and_exit:
330 	kfree(wpath);
331 	return ret;
332 }
333 
334 /**
335  * pci_dev_str_match - test if a string matches a device
336  * @dev: the PCI device to test
337  * @p: string to match the device against
338  * @endptr: pointer to the string after the match
339  *
340  * Test if a string (typically from a kernel parameter) matches a specified
341  * PCI device. The string may be of one of the following formats:
342  *
343  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
344  *   pci:<vendor>:<device>[:<subvendor>:<subdevice>]
345  *
346  * The first format specifies a PCI bus/device/function address which
347  * may change if new hardware is inserted, if motherboard firmware changes,
348  * or due to changes caused in kernel parameters. If the domain is
349  * left unspecified, it is taken to be 0.  In order to be robust against
350  * bus renumbering issues, a path of PCI device/function numbers may be used
351  * to address the specific device.  The path for a device can be determined
352  * through the use of 'lspci -t'.
353  *
354  * The second format matches devices using IDs in the configuration
355  * space which may match multiple devices in the system. A value of 0
356  * for any field will match all devices. (Note: this differs from
357  * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
358  * legacy reasons and convenience so users don't have to specify
359  * FFFFFFFFs on the command line.)
360  *
361  * Returns 1 if the string matches the device, 0 if it does not and
362  * a negative error code if the string cannot be parsed.
363  */
364 static int pci_dev_str_match(struct pci_dev *dev, const char *p,
365 			     const char **endptr)
366 {
367 	int ret;
368 	int count;
369 	unsigned short vendor, device, subsystem_vendor, subsystem_device;
370 
371 	if (strncmp(p, "pci:", 4) == 0) {
372 		/* PCI vendor/device (subvendor/subdevice) IDs are specified */
373 		p += 4;
374 		ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
375 			     &subsystem_vendor, &subsystem_device, &count);
376 		if (ret != 4) {
377 			ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
378 			if (ret != 2)
379 				return -EINVAL;
380 
381 			subsystem_vendor = 0;
382 			subsystem_device = 0;
383 		}
384 
385 		p += count;
386 
387 		if ((!vendor || vendor == dev->vendor) &&
388 		    (!device || device == dev->device) &&
389 		    (!subsystem_vendor ||
390 			    subsystem_vendor == dev->subsystem_vendor) &&
391 		    (!subsystem_device ||
392 			    subsystem_device == dev->subsystem_device))
393 			goto found;
394 	} else {
395 		/*
396 		 * PCI Bus, Device, Function IDs are specified
397 		 * (optionally, may include a path of devfns following it)
398 		 */
399 		ret = pci_dev_str_match_path(dev, p, &p);
400 		if (ret < 0)
401 			return ret;
402 		else if (ret)
403 			goto found;
404 	}
405 
406 	*endptr = p;
407 	return 0;
408 
409 found:
410 	*endptr = p;
411 	return 1;
412 }
413 
414 static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
415 				  u8 pos, int cap, int *ttl)
416 {
417 	u8 id;
418 	u16 ent;
419 
420 	pci_bus_read_config_byte(bus, devfn, pos, &pos);
421 
422 	while ((*ttl)--) {
423 		if (pos < 0x40)
424 			break;
425 		pos &= ~3;
426 		pci_bus_read_config_word(bus, devfn, pos, &ent);
427 
428 		id = ent & 0xff;
429 		if (id == 0xff)
430 			break;
431 		if (id == cap)
432 			return pos;
433 		pos = (ent >> 8);
434 	}
435 	return 0;
436 }
437 
438 static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
439 			      u8 pos, int cap)
440 {
441 	int ttl = PCI_FIND_CAP_TTL;
442 
443 	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
444 }
445 
446 u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
447 {
448 	return __pci_find_next_cap(dev->bus, dev->devfn,
449 				   pos + PCI_CAP_LIST_NEXT, cap);
450 }
451 EXPORT_SYMBOL_GPL(pci_find_next_capability);
452 
453 static u8 __pci_bus_find_cap_start(struct pci_bus *bus,
454 				    unsigned int devfn, u8 hdr_type)
455 {
456 	u16 status;
457 
458 	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
459 	if (!(status & PCI_STATUS_CAP_LIST))
460 		return 0;
461 
462 	switch (hdr_type) {
463 	case PCI_HEADER_TYPE_NORMAL:
464 	case PCI_HEADER_TYPE_BRIDGE:
465 		return PCI_CAPABILITY_LIST;
466 	case PCI_HEADER_TYPE_CARDBUS:
467 		return PCI_CB_CAPABILITY_LIST;
468 	}
469 
470 	return 0;
471 }
472 
473 /**
474  * pci_find_capability - query for devices' capabilities
475  * @dev: PCI device to query
476  * @cap: capability code
477  *
478  * Tell if a device supports a given PCI capability.
479  * Returns the address of the requested capability structure within the
480  * device's PCI configuration space or 0 in case the device does not
481  * support it.  Possible values for @cap include:
482  *
483  *  %PCI_CAP_ID_PM           Power Management
484  *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
485  *  %PCI_CAP_ID_VPD          Vital Product Data
486  *  %PCI_CAP_ID_SLOTID       Slot Identification
487  *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
488  *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
489  *  %PCI_CAP_ID_PCIX         PCI-X
490  *  %PCI_CAP_ID_EXP          PCI Express
491  */
492 u8 pci_find_capability(struct pci_dev *dev, int cap)
493 {
494 	u8 pos;
495 
496 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
497 	if (pos)
498 		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
499 
500 	return pos;
501 }
502 EXPORT_SYMBOL(pci_find_capability);
503 
504 /**
505  * pci_bus_find_capability - query for devices' capabilities
506  * @bus: the PCI bus to query
507  * @devfn: PCI device to query
508  * @cap: capability code
509  *
510  * Like pci_find_capability() but works for PCI devices that do not have a
511  * pci_dev structure set up yet.
512  *
513  * Returns the address of the requested capability structure within the
514  * device's PCI configuration space or 0 in case the device does not
515  * support it.
516  */
517 u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
518 {
519 	u8 hdr_type, pos;
520 
521 	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
522 
523 	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
524 	if (pos)
525 		pos = __pci_find_next_cap(bus, devfn, pos, cap);
526 
527 	return pos;
528 }
529 EXPORT_SYMBOL(pci_bus_find_capability);
530 
531 /**
532  * pci_find_next_ext_capability - Find an extended capability
533  * @dev: PCI device to query
534  * @start: address at which to start looking (0 to start at beginning of list)
535  * @cap: capability code
536  *
537  * Returns the address of the next matching extended capability structure
538  * within the device's PCI configuration space or 0 if the device does
539  * not support it.  Some capabilities can occur several times, e.g., the
540  * vendor-specific capability, and this provides a way to find them all.
541  */
542 u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap)
543 {
544 	u32 header;
545 	int ttl;
546 	u16 pos = PCI_CFG_SPACE_SIZE;
547 
548 	/* minimum 8 bytes per capability */
549 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
550 
551 	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
552 		return 0;
553 
554 	if (start)
555 		pos = start;
556 
557 	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
558 		return 0;
559 
560 	/*
561 	 * If we have no capabilities, this is indicated by cap ID,
562 	 * cap version and next pointer all being 0.
563 	 */
564 	if (header == 0)
565 		return 0;
566 
567 	while (ttl-- > 0) {
568 		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
569 			return pos;
570 
571 		pos = PCI_EXT_CAP_NEXT(header);
572 		if (pos < PCI_CFG_SPACE_SIZE)
573 			break;
574 
575 		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
576 			break;
577 	}
578 
579 	return 0;
580 }
581 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
582 
583 /**
584  * pci_find_ext_capability - Find an extended capability
585  * @dev: PCI device to query
586  * @cap: capability code
587  *
588  * Returns the address of the requested extended capability structure
589  * within the device's PCI configuration space or 0 if the device does
590  * not support it.  Possible values for @cap include:
591  *
592  *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
593  *  %PCI_EXT_CAP_ID_VC		Virtual Channel
594  *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
595  *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
596  */
597 u16 pci_find_ext_capability(struct pci_dev *dev, int cap)
598 {
599 	return pci_find_next_ext_capability(dev, 0, cap);
600 }
601 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
602 
603 /**
604  * pci_get_dsn - Read and return the 8-byte Device Serial Number
605  * @dev: PCI device to query
606  *
607  * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
608  * Number.
609  *
610  * Returns the DSN, or zero if the capability does not exist.
611  */
612 u64 pci_get_dsn(struct pci_dev *dev)
613 {
614 	u32 dword;
615 	u64 dsn;
616 	int pos;
617 
618 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
619 	if (!pos)
620 		return 0;
621 
622 	/*
623 	 * The Device Serial Number is two dwords offset 4 bytes from the
624 	 * capability position. The specification says that the first dword is
625 	 * the lower half, and the second dword is the upper half.
626 	 */
627 	pos += 4;
628 	pci_read_config_dword(dev, pos, &dword);
629 	dsn = (u64)dword;
630 	pci_read_config_dword(dev, pos + 4, &dword);
631 	dsn |= ((u64)dword) << 32;
632 
633 	return dsn;
634 }
635 EXPORT_SYMBOL_GPL(pci_get_dsn);
636 
637 static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap)
638 {
639 	int rc, ttl = PCI_FIND_CAP_TTL;
640 	u8 cap, mask;
641 
642 	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
643 		mask = HT_3BIT_CAP_MASK;
644 	else
645 		mask = HT_5BIT_CAP_MASK;
646 
647 	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
648 				      PCI_CAP_ID_HT, &ttl);
649 	while (pos) {
650 		rc = pci_read_config_byte(dev, pos + 3, &cap);
651 		if (rc != PCIBIOS_SUCCESSFUL)
652 			return 0;
653 
654 		if ((cap & mask) == ht_cap)
655 			return pos;
656 
657 		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
658 					      pos + PCI_CAP_LIST_NEXT,
659 					      PCI_CAP_ID_HT, &ttl);
660 	}
661 
662 	return 0;
663 }
664 
665 /**
666  * pci_find_next_ht_capability - query a device's HyperTransport capabilities
667  * @dev: PCI device to query
668  * @pos: Position from which to continue searching
669  * @ht_cap: HyperTransport capability code
670  *
671  * To be used in conjunction with pci_find_ht_capability() to search for
672  * all capabilities matching @ht_cap. @pos should always be a value returned
673  * from pci_find_ht_capability().
674  *
675  * NB. To be 100% safe against broken PCI devices, the caller should take
676  * steps to avoid an infinite loop.
677  */
678 u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap)
679 {
680 	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
681 }
682 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
683 
684 /**
685  * pci_find_ht_capability - query a device's HyperTransport capabilities
686  * @dev: PCI device to query
687  * @ht_cap: HyperTransport capability code
688  *
689  * Tell if a device supports a given HyperTransport capability.
690  * Returns an address within the device's PCI configuration space
691  * or 0 in case the device does not support the request capability.
692  * The address points to the PCI capability, of type PCI_CAP_ID_HT,
693  * which has a HyperTransport capability matching @ht_cap.
694  */
695 u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
696 {
697 	u8 pos;
698 
699 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
700 	if (pos)
701 		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
702 
703 	return pos;
704 }
705 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
706 
707 /**
708  * pci_find_vsec_capability - Find a vendor-specific extended capability
709  * @dev: PCI device to query
710  * @vendor: Vendor ID for which capability is defined
711  * @cap: Vendor-specific capability ID
712  *
713  * If @dev has Vendor ID @vendor, search for a VSEC capability with
714  * VSEC ID @cap. If found, return the capability offset in
715  * config space; otherwise return 0.
716  */
717 u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap)
718 {
719 	u16 vsec = 0;
720 	u32 header;
721 
722 	if (vendor != dev->vendor)
723 		return 0;
724 
725 	while ((vsec = pci_find_next_ext_capability(dev, vsec,
726 						     PCI_EXT_CAP_ID_VNDR))) {
727 		if (pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER,
728 					  &header) == PCIBIOS_SUCCESSFUL &&
729 		    PCI_VNDR_HEADER_ID(header) == cap)
730 			return vsec;
731 	}
732 
733 	return 0;
734 }
735 EXPORT_SYMBOL_GPL(pci_find_vsec_capability);
736 
737 /**
738  * pci_find_dvsec_capability - Find DVSEC for vendor
739  * @dev: PCI device to query
740  * @vendor: Vendor ID to match for the DVSEC
741  * @dvsec: Designated Vendor-specific capability ID
742  *
743  * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability
744  * offset in config space; otherwise return 0.
745  */
746 u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec)
747 {
748 	int pos;
749 
750 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC);
751 	if (!pos)
752 		return 0;
753 
754 	while (pos) {
755 		u16 v, id;
756 
757 		pci_read_config_word(dev, pos + PCI_DVSEC_HEADER1, &v);
758 		pci_read_config_word(dev, pos + PCI_DVSEC_HEADER2, &id);
759 		if (vendor == v && dvsec == id)
760 			return pos;
761 
762 		pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC);
763 	}
764 
765 	return 0;
766 }
767 EXPORT_SYMBOL_GPL(pci_find_dvsec_capability);
768 
769 /**
770  * pci_find_parent_resource - return resource region of parent bus of given
771  *			      region
772  * @dev: PCI device structure contains resources to be searched
773  * @res: child resource record for which parent is sought
774  *
775  * For given resource region of given device, return the resource region of
776  * parent bus the given region is contained in.
777  */
778 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
779 					  struct resource *res)
780 {
781 	const struct pci_bus *bus = dev->bus;
782 	struct resource *r;
783 	int i;
784 
785 	pci_bus_for_each_resource(bus, r, i) {
786 		if (!r)
787 			continue;
788 		if (resource_contains(r, res)) {
789 
790 			/*
791 			 * If the window is prefetchable but the BAR is
792 			 * not, the allocator made a mistake.
793 			 */
794 			if (r->flags & IORESOURCE_PREFETCH &&
795 			    !(res->flags & IORESOURCE_PREFETCH))
796 				return NULL;
797 
798 			/*
799 			 * If we're below a transparent bridge, there may
800 			 * be both a positively-decoded aperture and a
801 			 * subtractively-decoded region that contain the BAR.
802 			 * We want the positively-decoded one, so this depends
803 			 * on pci_bus_for_each_resource() giving us those
804 			 * first.
805 			 */
806 			return r;
807 		}
808 	}
809 	return NULL;
810 }
811 EXPORT_SYMBOL(pci_find_parent_resource);
812 
813 /**
814  * pci_find_resource - Return matching PCI device resource
815  * @dev: PCI device to query
816  * @res: Resource to look for
817  *
818  * Goes over standard PCI resources (BARs) and checks if the given resource
819  * is partially or fully contained in any of them. In that case the
820  * matching resource is returned, %NULL otherwise.
821  */
822 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
823 {
824 	int i;
825 
826 	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
827 		struct resource *r = &dev->resource[i];
828 
829 		if (r->start && resource_contains(r, res))
830 			return r;
831 	}
832 
833 	return NULL;
834 }
835 EXPORT_SYMBOL(pci_find_resource);
836 
837 /**
838  * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
839  * @dev: the PCI device to operate on
840  * @pos: config space offset of status word
841  * @mask: mask of bit(s) to care about in status word
842  *
843  * Return 1 when mask bit(s) in status word clear, 0 otherwise.
844  */
845 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
846 {
847 	int i;
848 
849 	/* Wait for Transaction Pending bit clean */
850 	for (i = 0; i < 4; i++) {
851 		u16 status;
852 		if (i)
853 			msleep((1 << (i - 1)) * 100);
854 
855 		pci_read_config_word(dev, pos, &status);
856 		if (!(status & mask))
857 			return 1;
858 	}
859 
860 	return 0;
861 }
862 
863 static int pci_acs_enable;
864 
865 /**
866  * pci_request_acs - ask for ACS to be enabled if supported
867  */
868 void pci_request_acs(void)
869 {
870 	pci_acs_enable = 1;
871 }
872 
873 static const char *disable_acs_redir_param;
874 
875 /**
876  * pci_disable_acs_redir - disable ACS redirect capabilities
877  * @dev: the PCI device
878  *
879  * For only devices specified in the disable_acs_redir parameter.
880  */
881 static void pci_disable_acs_redir(struct pci_dev *dev)
882 {
883 	int ret = 0;
884 	const char *p;
885 	int pos;
886 	u16 ctrl;
887 
888 	if (!disable_acs_redir_param)
889 		return;
890 
891 	p = disable_acs_redir_param;
892 	while (*p) {
893 		ret = pci_dev_str_match(dev, p, &p);
894 		if (ret < 0) {
895 			pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
896 				     disable_acs_redir_param);
897 
898 			break;
899 		} else if (ret == 1) {
900 			/* Found a match */
901 			break;
902 		}
903 
904 		if (*p != ';' && *p != ',') {
905 			/* End of param or invalid format */
906 			break;
907 		}
908 		p++;
909 	}
910 
911 	if (ret != 1)
912 		return;
913 
914 	if (!pci_dev_specific_disable_acs_redir(dev))
915 		return;
916 
917 	pos = dev->acs_cap;
918 	if (!pos) {
919 		pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
920 		return;
921 	}
922 
923 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
924 
925 	/* P2P Request & Completion Redirect */
926 	ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
927 
928 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
929 
930 	pci_info(dev, "disabled ACS redirect\n");
931 }
932 
933 /**
934  * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
935  * @dev: the PCI device
936  */
937 static void pci_std_enable_acs(struct pci_dev *dev)
938 {
939 	int pos;
940 	u16 cap;
941 	u16 ctrl;
942 
943 	pos = dev->acs_cap;
944 	if (!pos)
945 		return;
946 
947 	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
948 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
949 
950 	/* Source Validation */
951 	ctrl |= (cap & PCI_ACS_SV);
952 
953 	/* P2P Request Redirect */
954 	ctrl |= (cap & PCI_ACS_RR);
955 
956 	/* P2P Completion Redirect */
957 	ctrl |= (cap & PCI_ACS_CR);
958 
959 	/* Upstream Forwarding */
960 	ctrl |= (cap & PCI_ACS_UF);
961 
962 	/* Enable Translation Blocking for external devices and noats */
963 	if (pci_ats_disabled() || dev->external_facing || dev->untrusted)
964 		ctrl |= (cap & PCI_ACS_TB);
965 
966 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
967 }
968 
969 /**
970  * pci_enable_acs - enable ACS if hardware support it
971  * @dev: the PCI device
972  */
973 static void pci_enable_acs(struct pci_dev *dev)
974 {
975 	if (!pci_acs_enable)
976 		goto disable_acs_redir;
977 
978 	if (!pci_dev_specific_enable_acs(dev))
979 		goto disable_acs_redir;
980 
981 	pci_std_enable_acs(dev);
982 
983 disable_acs_redir:
984 	/*
985 	 * Note: pci_disable_acs_redir() must be called even if ACS was not
986 	 * enabled by the kernel because it may have been enabled by
987 	 * platform firmware.  So if we are told to disable it, we should
988 	 * always disable it after setting the kernel's default
989 	 * preferences.
990 	 */
991 	pci_disable_acs_redir(dev);
992 }
993 
994 /**
995  * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
996  * @dev: PCI device to have its BARs restored
997  *
998  * Restore the BAR values for a given device, so as to make it
999  * accessible by its driver.
1000  */
1001 static void pci_restore_bars(struct pci_dev *dev)
1002 {
1003 	int i;
1004 
1005 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
1006 		pci_update_resource(dev, i);
1007 }
1008 
1009 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
1010 {
1011 	if (pci_use_mid_pm())
1012 		return true;
1013 
1014 	return acpi_pci_power_manageable(dev);
1015 }
1016 
1017 static inline int platform_pci_set_power_state(struct pci_dev *dev,
1018 					       pci_power_t t)
1019 {
1020 	if (pci_use_mid_pm())
1021 		return mid_pci_set_power_state(dev, t);
1022 
1023 	return acpi_pci_set_power_state(dev, t);
1024 }
1025 
1026 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
1027 {
1028 	if (pci_use_mid_pm())
1029 		return mid_pci_get_power_state(dev);
1030 
1031 	return acpi_pci_get_power_state(dev);
1032 }
1033 
1034 static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
1035 {
1036 	if (!pci_use_mid_pm())
1037 		acpi_pci_refresh_power_state(dev);
1038 }
1039 
1040 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
1041 {
1042 	if (pci_use_mid_pm())
1043 		return PCI_POWER_ERROR;
1044 
1045 	return acpi_pci_choose_state(dev);
1046 }
1047 
1048 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
1049 {
1050 	if (pci_use_mid_pm())
1051 		return PCI_POWER_ERROR;
1052 
1053 	return acpi_pci_wakeup(dev, enable);
1054 }
1055 
1056 static inline bool platform_pci_need_resume(struct pci_dev *dev)
1057 {
1058 	if (pci_use_mid_pm())
1059 		return false;
1060 
1061 	return acpi_pci_need_resume(dev);
1062 }
1063 
1064 static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
1065 {
1066 	if (pci_use_mid_pm())
1067 		return false;
1068 
1069 	return acpi_pci_bridge_d3(dev);
1070 }
1071 
1072 /**
1073  * pci_update_current_state - Read power state of given device and cache it
1074  * @dev: PCI device to handle.
1075  * @state: State to cache in case the device doesn't have the PM capability
1076  *
1077  * The power state is read from the PMCSR register, which however is
1078  * inaccessible in D3cold.  The platform firmware is therefore queried first
1079  * to detect accessibility of the register.  In case the platform firmware
1080  * reports an incorrect state or the device isn't power manageable by the
1081  * platform at all, we try to detect D3cold by testing accessibility of the
1082  * vendor ID in config space.
1083  */
1084 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1085 {
1086 	if (platform_pci_get_power_state(dev) == PCI_D3cold) {
1087 		dev->current_state = PCI_D3cold;
1088 	} else if (dev->pm_cap) {
1089 		u16 pmcsr;
1090 
1091 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1092 		if (PCI_POSSIBLE_ERROR(pmcsr)) {
1093 			dev->current_state = PCI_D3cold;
1094 			return;
1095 		}
1096 		dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1097 	} else {
1098 		dev->current_state = state;
1099 	}
1100 }
1101 
1102 /**
1103  * pci_refresh_power_state - Refresh the given device's power state data
1104  * @dev: Target PCI device.
1105  *
1106  * Ask the platform to refresh the devices power state information and invoke
1107  * pci_update_current_state() to update its current PCI power state.
1108  */
1109 void pci_refresh_power_state(struct pci_dev *dev)
1110 {
1111 	platform_pci_refresh_power_state(dev);
1112 	pci_update_current_state(dev, dev->current_state);
1113 }
1114 
1115 /**
1116  * pci_platform_power_transition - Use platform to change device power state
1117  * @dev: PCI device to handle.
1118  * @state: State to put the device into.
1119  */
1120 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1121 {
1122 	int error;
1123 
1124 	error = platform_pci_set_power_state(dev, state);
1125 	if (!error)
1126 		pci_update_current_state(dev, state);
1127 	else if (!dev->pm_cap) /* Fall back to PCI_D0 */
1128 		dev->current_state = PCI_D0;
1129 
1130 	return error;
1131 }
1132 EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1133 
1134 static int pci_resume_one(struct pci_dev *pci_dev, void *ign)
1135 {
1136 	pm_request_resume(&pci_dev->dev);
1137 	return 0;
1138 }
1139 
1140 /**
1141  * pci_resume_bus - Walk given bus and runtime resume devices on it
1142  * @bus: Top bus of the subtree to walk.
1143  */
1144 void pci_resume_bus(struct pci_bus *bus)
1145 {
1146 	if (bus)
1147 		pci_walk_bus(bus, pci_resume_one, NULL);
1148 }
1149 
1150 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1151 {
1152 	int delay = 1;
1153 	u32 id;
1154 
1155 	/*
1156 	 * After reset, the device should not silently discard config
1157 	 * requests, but it may still indicate that it needs more time by
1158 	 * responding to them with CRS completions.  The Root Port will
1159 	 * generally synthesize ~0 (PCI_ERROR_RESPONSE) data to complete
1160 	 * the read (except when CRS SV is enabled and the read was for the
1161 	 * Vendor ID; in that case it synthesizes 0x0001 data).
1162 	 *
1163 	 * Wait for the device to return a non-CRS completion.  Read the
1164 	 * Command register instead of Vendor ID so we don't have to
1165 	 * contend with the CRS SV value.
1166 	 */
1167 	pci_read_config_dword(dev, PCI_COMMAND, &id);
1168 	while (PCI_POSSIBLE_ERROR(id)) {
1169 		if (delay > timeout) {
1170 			pci_warn(dev, "not ready %dms after %s; giving up\n",
1171 				 delay - 1, reset_type);
1172 			return -ENOTTY;
1173 		}
1174 
1175 		if (delay > 1000)
1176 			pci_info(dev, "not ready %dms after %s; waiting\n",
1177 				 delay - 1, reset_type);
1178 
1179 		msleep(delay);
1180 		delay *= 2;
1181 		pci_read_config_dword(dev, PCI_COMMAND, &id);
1182 	}
1183 
1184 	if (delay > 1000)
1185 		pci_info(dev, "ready %dms after %s\n", delay - 1,
1186 			 reset_type);
1187 
1188 	return 0;
1189 }
1190 
1191 /**
1192  * pci_power_up - Put the given device into D0
1193  * @dev: PCI device to power up
1194  *
1195  * On success, return 0 or 1, depending on whether or not it is necessary to
1196  * restore the device's BARs subsequently (1 is returned in that case).
1197  */
1198 int pci_power_up(struct pci_dev *dev)
1199 {
1200 	bool need_restore;
1201 	pci_power_t state;
1202 	u16 pmcsr;
1203 
1204 	platform_pci_set_power_state(dev, PCI_D0);
1205 
1206 	if (!dev->pm_cap) {
1207 		state = platform_pci_get_power_state(dev);
1208 		if (state == PCI_UNKNOWN)
1209 			dev->current_state = PCI_D0;
1210 		else
1211 			dev->current_state = state;
1212 
1213 		if (state == PCI_D0)
1214 			return 0;
1215 
1216 		return -EIO;
1217 	}
1218 
1219 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1220 	if (PCI_POSSIBLE_ERROR(pmcsr)) {
1221 		pci_err(dev, "Unable to change power state from %s to D0, device inaccessible\n",
1222 			pci_power_name(dev->current_state));
1223 		dev->current_state = PCI_D3cold;
1224 		return -EIO;
1225 	}
1226 
1227 	state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1228 
1229 	need_restore = (state == PCI_D3hot || dev->current_state >= PCI_D3hot) &&
1230 			!(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET);
1231 
1232 	if (state == PCI_D0)
1233 		goto end;
1234 
1235 	/*
1236 	 * Force the entire word to 0. This doesn't affect PME_Status, disables
1237 	 * PME_En, and sets PowerState to 0.
1238 	 */
1239 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, 0);
1240 
1241 	/* Mandatory transition delays; see PCI PM 1.2. */
1242 	if (state == PCI_D3hot)
1243 		pci_dev_d3_sleep(dev);
1244 	else if (state == PCI_D2)
1245 		udelay(PCI_PM_D2_DELAY);
1246 
1247 end:
1248 	dev->current_state = PCI_D0;
1249 	if (need_restore)
1250 		return 1;
1251 
1252 	return 0;
1253 }
1254 
1255 /**
1256  * pci_set_full_power_state - Put a PCI device into D0 and update its state
1257  * @dev: PCI device to power up
1258  *
1259  * Call pci_power_up() to put @dev into D0, read from its PCI_PM_CTRL register
1260  * to confirm the state change, restore its BARs if they might be lost and
1261  * reconfigure ASPM in acordance with the new power state.
1262  *
1263  * If pci_restore_state() is going to be called right after a power state change
1264  * to D0, it is more efficient to use pci_power_up() directly instead of this
1265  * function.
1266  */
1267 static int pci_set_full_power_state(struct pci_dev *dev)
1268 {
1269 	u16 pmcsr;
1270 	int ret;
1271 
1272 	ret = pci_power_up(dev);
1273 	if (ret < 0)
1274 		return ret;
1275 
1276 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1277 	dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1278 	if (dev->current_state != PCI_D0) {
1279 		pci_info_ratelimited(dev, "Refused to change power state from %s to D0\n",
1280 				     pci_power_name(dev->current_state));
1281 	} else if (ret > 0) {
1282 		/*
1283 		 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1284 		 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1285 		 * from D3hot to D0 _may_ perform an internal reset, thereby
1286 		 * going to "D0 Uninitialized" rather than "D0 Initialized".
1287 		 * For example, at least some versions of the 3c905B and the
1288 		 * 3c556B exhibit this behaviour.
1289 		 *
1290 		 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1291 		 * devices in a D3hot state at boot.  Consequently, we need to
1292 		 * restore at least the BARs so that the device will be
1293 		 * accessible to its driver.
1294 		 */
1295 		pci_restore_bars(dev);
1296 	}
1297 
1298 	return 0;
1299 }
1300 
1301 /**
1302  * __pci_dev_set_current_state - Set current state of a PCI device
1303  * @dev: Device to handle
1304  * @data: pointer to state to be set
1305  */
1306 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1307 {
1308 	pci_power_t state = *(pci_power_t *)data;
1309 
1310 	dev->current_state = state;
1311 	return 0;
1312 }
1313 
1314 /**
1315  * pci_bus_set_current_state - Walk given bus and set current state of devices
1316  * @bus: Top bus of the subtree to walk.
1317  * @state: state to be set
1318  */
1319 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1320 {
1321 	if (bus)
1322 		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1323 }
1324 
1325 /**
1326  * pci_set_low_power_state - Put a PCI device into a low-power state.
1327  * @dev: PCI device to handle.
1328  * @state: PCI power state (D1, D2, D3hot) to put the device into.
1329  *
1330  * Use the device's PCI_PM_CTRL register to put it into a low-power state.
1331  *
1332  * RETURN VALUE:
1333  * -EINVAL if the requested state is invalid.
1334  * -EIO if device does not support PCI PM or its PM capabilities register has a
1335  * wrong version, or device doesn't support the requested state.
1336  * 0 if device already is in the requested state.
1337  * 0 if device's power state has been successfully changed.
1338  */
1339 static int pci_set_low_power_state(struct pci_dev *dev, pci_power_t state)
1340 {
1341 	u16 pmcsr;
1342 
1343 	if (!dev->pm_cap)
1344 		return -EIO;
1345 
1346 	/*
1347 	 * Validate transition: We can enter D0 from any state, but if
1348 	 * we're already in a low-power state, we can only go deeper.  E.g.,
1349 	 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1350 	 * we'd have to go from D3 to D0, then to D1.
1351 	 */
1352 	if (dev->current_state <= PCI_D3cold && dev->current_state > state) {
1353 		pci_dbg(dev, "Invalid power transition (from %s to %s)\n",
1354 			pci_power_name(dev->current_state),
1355 			pci_power_name(state));
1356 		return -EINVAL;
1357 	}
1358 
1359 	/* Check if this device supports the desired state */
1360 	if ((state == PCI_D1 && !dev->d1_support)
1361 	   || (state == PCI_D2 && !dev->d2_support))
1362 		return -EIO;
1363 
1364 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1365 	if (PCI_POSSIBLE_ERROR(pmcsr)) {
1366 		pci_err(dev, "Unable to change power state from %s to %s, device inaccessible\n",
1367 			pci_power_name(dev->current_state),
1368 			pci_power_name(state));
1369 		dev->current_state = PCI_D3cold;
1370 		return -EIO;
1371 	}
1372 
1373 	pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1374 	pmcsr |= state;
1375 
1376 	/* Enter specified state */
1377 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1378 
1379 	/* Mandatory power management transition delays; see PCI PM 1.2. */
1380 	if (state == PCI_D3hot)
1381 		pci_dev_d3_sleep(dev);
1382 	else if (state == PCI_D2)
1383 		udelay(PCI_PM_D2_DELAY);
1384 
1385 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1386 	dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1387 	if (dev->current_state != state)
1388 		pci_info_ratelimited(dev, "Refused to change power state from %s to %s\n",
1389 				     pci_power_name(dev->current_state),
1390 				     pci_power_name(state));
1391 
1392 	return 0;
1393 }
1394 
1395 /**
1396  * pci_set_power_state - Set the power state of a PCI device
1397  * @dev: PCI device to handle.
1398  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1399  *
1400  * Transition a device to a new power state, using the platform firmware and/or
1401  * the device's PCI PM registers.
1402  *
1403  * RETURN VALUE:
1404  * -EINVAL if the requested state is invalid.
1405  * -EIO if device does not support PCI PM or its PM capabilities register has a
1406  * wrong version, or device doesn't support the requested state.
1407  * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1408  * 0 if device already is in the requested state.
1409  * 0 if the transition is to D3 but D3 is not supported.
1410  * 0 if device's power state has been successfully changed.
1411  */
1412 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1413 {
1414 	int error;
1415 
1416 	/* Bound the state we're entering */
1417 	if (state > PCI_D3cold)
1418 		state = PCI_D3cold;
1419 	else if (state < PCI_D0)
1420 		state = PCI_D0;
1421 	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1422 
1423 		/*
1424 		 * If the device or the parent bridge do not support PCI
1425 		 * PM, ignore the request if we're doing anything other
1426 		 * than putting it into D0 (which would only happen on
1427 		 * boot).
1428 		 */
1429 		return 0;
1430 
1431 	/* Check if we're already there */
1432 	if (dev->current_state == state)
1433 		return 0;
1434 
1435 	if (state == PCI_D0)
1436 		return pci_set_full_power_state(dev);
1437 
1438 	/*
1439 	 * This device is quirked not to be put into D3, so don't put it in
1440 	 * D3
1441 	 */
1442 	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1443 		return 0;
1444 
1445 	if (state == PCI_D3cold) {
1446 		/*
1447 		 * To put the device in D3cold, put it into D3hot in the native
1448 		 * way, then put it into D3cold using platform ops.
1449 		 */
1450 		error = pci_set_low_power_state(dev, PCI_D3hot);
1451 
1452 		if (pci_platform_power_transition(dev, PCI_D3cold))
1453 			return error;
1454 
1455 		/* Powering off a bridge may power off the whole hierarchy */
1456 		if (dev->current_state == PCI_D3cold)
1457 			pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1458 	} else {
1459 		error = pci_set_low_power_state(dev, state);
1460 
1461 		if (pci_platform_power_transition(dev, state))
1462 			return error;
1463 	}
1464 
1465 	return 0;
1466 }
1467 EXPORT_SYMBOL(pci_set_power_state);
1468 
1469 #define PCI_EXP_SAVE_REGS	7
1470 
1471 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1472 						       u16 cap, bool extended)
1473 {
1474 	struct pci_cap_saved_state *tmp;
1475 
1476 	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1477 		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1478 			return tmp;
1479 	}
1480 	return NULL;
1481 }
1482 
1483 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1484 {
1485 	return _pci_find_saved_cap(dev, cap, false);
1486 }
1487 
1488 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1489 {
1490 	return _pci_find_saved_cap(dev, cap, true);
1491 }
1492 
1493 static int pci_save_pcie_state(struct pci_dev *dev)
1494 {
1495 	int i = 0;
1496 	struct pci_cap_saved_state *save_state;
1497 	u16 *cap;
1498 
1499 	if (!pci_is_pcie(dev))
1500 		return 0;
1501 
1502 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1503 	if (!save_state) {
1504 		pci_err(dev, "buffer not found in %s\n", __func__);
1505 		return -ENOMEM;
1506 	}
1507 
1508 	cap = (u16 *)&save_state->cap.data[0];
1509 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1510 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1511 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1512 	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
1513 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1514 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1515 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1516 
1517 	return 0;
1518 }
1519 
1520 void pci_bridge_reconfigure_ltr(struct pci_dev *dev)
1521 {
1522 #ifdef CONFIG_PCIEASPM
1523 	struct pci_dev *bridge;
1524 	u32 ctl;
1525 
1526 	bridge = pci_upstream_bridge(dev);
1527 	if (bridge && bridge->ltr_path) {
1528 		pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, &ctl);
1529 		if (!(ctl & PCI_EXP_DEVCTL2_LTR_EN)) {
1530 			pci_dbg(bridge, "re-enabling LTR\n");
1531 			pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
1532 						 PCI_EXP_DEVCTL2_LTR_EN);
1533 		}
1534 	}
1535 #endif
1536 }
1537 
1538 static void pci_restore_pcie_state(struct pci_dev *dev)
1539 {
1540 	int i = 0;
1541 	struct pci_cap_saved_state *save_state;
1542 	u16 *cap;
1543 
1544 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1545 	if (!save_state)
1546 		return;
1547 
1548 	/*
1549 	 * Downstream ports reset the LTR enable bit when link goes down.
1550 	 * Check and re-configure the bit here before restoring device.
1551 	 * PCIe r5.0, sec 7.5.3.16.
1552 	 */
1553 	pci_bridge_reconfigure_ltr(dev);
1554 
1555 	cap = (u16 *)&save_state->cap.data[0];
1556 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1557 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1558 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1559 	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1560 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1561 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1562 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1563 }
1564 
1565 static int pci_save_pcix_state(struct pci_dev *dev)
1566 {
1567 	int pos;
1568 	struct pci_cap_saved_state *save_state;
1569 
1570 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1571 	if (!pos)
1572 		return 0;
1573 
1574 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1575 	if (!save_state) {
1576 		pci_err(dev, "buffer not found in %s\n", __func__);
1577 		return -ENOMEM;
1578 	}
1579 
1580 	pci_read_config_word(dev, pos + PCI_X_CMD,
1581 			     (u16 *)save_state->cap.data);
1582 
1583 	return 0;
1584 }
1585 
1586 static void pci_restore_pcix_state(struct pci_dev *dev)
1587 {
1588 	int i = 0, pos;
1589 	struct pci_cap_saved_state *save_state;
1590 	u16 *cap;
1591 
1592 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1593 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1594 	if (!save_state || !pos)
1595 		return;
1596 	cap = (u16 *)&save_state->cap.data[0];
1597 
1598 	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1599 }
1600 
1601 static void pci_save_ltr_state(struct pci_dev *dev)
1602 {
1603 	int ltr;
1604 	struct pci_cap_saved_state *save_state;
1605 	u32 *cap;
1606 
1607 	if (!pci_is_pcie(dev))
1608 		return;
1609 
1610 	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1611 	if (!ltr)
1612 		return;
1613 
1614 	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1615 	if (!save_state) {
1616 		pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1617 		return;
1618 	}
1619 
1620 	/* Some broken devices only support dword access to LTR */
1621 	cap = &save_state->cap.data[0];
1622 	pci_read_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap);
1623 }
1624 
1625 static void pci_restore_ltr_state(struct pci_dev *dev)
1626 {
1627 	struct pci_cap_saved_state *save_state;
1628 	int ltr;
1629 	u32 *cap;
1630 
1631 	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1632 	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1633 	if (!save_state || !ltr)
1634 		return;
1635 
1636 	/* Some broken devices only support dword access to LTR */
1637 	cap = &save_state->cap.data[0];
1638 	pci_write_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap);
1639 }
1640 
1641 /**
1642  * pci_save_state - save the PCI configuration space of a device before
1643  *		    suspending
1644  * @dev: PCI device that we're dealing with
1645  */
1646 int pci_save_state(struct pci_dev *dev)
1647 {
1648 	int i;
1649 	/* XXX: 100% dword access ok here? */
1650 	for (i = 0; i < 16; i++) {
1651 		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1652 		pci_dbg(dev, "saving config space at offset %#x (reading %#x)\n",
1653 			i * 4, dev->saved_config_space[i]);
1654 	}
1655 	dev->state_saved = true;
1656 
1657 	i = pci_save_pcie_state(dev);
1658 	if (i != 0)
1659 		return i;
1660 
1661 	i = pci_save_pcix_state(dev);
1662 	if (i != 0)
1663 		return i;
1664 
1665 	pci_save_ltr_state(dev);
1666 	pci_save_dpc_state(dev);
1667 	pci_save_aer_state(dev);
1668 	pci_save_ptm_state(dev);
1669 	return pci_save_vc_state(dev);
1670 }
1671 EXPORT_SYMBOL(pci_save_state);
1672 
1673 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1674 				     u32 saved_val, int retry, bool force)
1675 {
1676 	u32 val;
1677 
1678 	pci_read_config_dword(pdev, offset, &val);
1679 	if (!force && val == saved_val)
1680 		return;
1681 
1682 	for (;;) {
1683 		pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1684 			offset, val, saved_val);
1685 		pci_write_config_dword(pdev, offset, saved_val);
1686 		if (retry-- <= 0)
1687 			return;
1688 
1689 		pci_read_config_dword(pdev, offset, &val);
1690 		if (val == saved_val)
1691 			return;
1692 
1693 		mdelay(1);
1694 	}
1695 }
1696 
1697 static void pci_restore_config_space_range(struct pci_dev *pdev,
1698 					   int start, int end, int retry,
1699 					   bool force)
1700 {
1701 	int index;
1702 
1703 	for (index = end; index >= start; index--)
1704 		pci_restore_config_dword(pdev, 4 * index,
1705 					 pdev->saved_config_space[index],
1706 					 retry, force);
1707 }
1708 
1709 static void pci_restore_config_space(struct pci_dev *pdev)
1710 {
1711 	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1712 		pci_restore_config_space_range(pdev, 10, 15, 0, false);
1713 		/* Restore BARs before the command register. */
1714 		pci_restore_config_space_range(pdev, 4, 9, 10, false);
1715 		pci_restore_config_space_range(pdev, 0, 3, 0, false);
1716 	} else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1717 		pci_restore_config_space_range(pdev, 12, 15, 0, false);
1718 
1719 		/*
1720 		 * Force rewriting of prefetch registers to avoid S3 resume
1721 		 * issues on Intel PCI bridges that occur when these
1722 		 * registers are not explicitly written.
1723 		 */
1724 		pci_restore_config_space_range(pdev, 9, 11, 0, true);
1725 		pci_restore_config_space_range(pdev, 0, 8, 0, false);
1726 	} else {
1727 		pci_restore_config_space_range(pdev, 0, 15, 0, false);
1728 	}
1729 }
1730 
1731 static void pci_restore_rebar_state(struct pci_dev *pdev)
1732 {
1733 	unsigned int pos, nbars, i;
1734 	u32 ctrl;
1735 
1736 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1737 	if (!pos)
1738 		return;
1739 
1740 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1741 	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1742 		    PCI_REBAR_CTRL_NBAR_SHIFT;
1743 
1744 	for (i = 0; i < nbars; i++, pos += 8) {
1745 		struct resource *res;
1746 		int bar_idx, size;
1747 
1748 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1749 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1750 		res = pdev->resource + bar_idx;
1751 		size = pci_rebar_bytes_to_size(resource_size(res));
1752 		ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1753 		ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1754 		pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1755 	}
1756 }
1757 
1758 /**
1759  * pci_restore_state - Restore the saved state of a PCI device
1760  * @dev: PCI device that we're dealing with
1761  */
1762 void pci_restore_state(struct pci_dev *dev)
1763 {
1764 	if (!dev->state_saved)
1765 		return;
1766 
1767 	/*
1768 	 * Restore max latencies (in the LTR capability) before enabling
1769 	 * LTR itself (in the PCIe capability).
1770 	 */
1771 	pci_restore_ltr_state(dev);
1772 
1773 	pci_restore_pcie_state(dev);
1774 	pci_restore_pasid_state(dev);
1775 	pci_restore_pri_state(dev);
1776 	pci_restore_ats_state(dev);
1777 	pci_restore_vc_state(dev);
1778 	pci_restore_rebar_state(dev);
1779 	pci_restore_dpc_state(dev);
1780 	pci_restore_ptm_state(dev);
1781 
1782 	pci_aer_clear_status(dev);
1783 	pci_restore_aer_state(dev);
1784 
1785 	pci_restore_config_space(dev);
1786 
1787 	pci_restore_pcix_state(dev);
1788 	pci_restore_msi_state(dev);
1789 
1790 	/* Restore ACS and IOV configuration state */
1791 	pci_enable_acs(dev);
1792 	pci_restore_iov_state(dev);
1793 
1794 	dev->state_saved = false;
1795 }
1796 EXPORT_SYMBOL(pci_restore_state);
1797 
1798 struct pci_saved_state {
1799 	u32 config_space[16];
1800 	struct pci_cap_saved_data cap[];
1801 };
1802 
1803 /**
1804  * pci_store_saved_state - Allocate and return an opaque struct containing
1805  *			   the device saved state.
1806  * @dev: PCI device that we're dealing with
1807  *
1808  * Return NULL if no state or error.
1809  */
1810 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1811 {
1812 	struct pci_saved_state *state;
1813 	struct pci_cap_saved_state *tmp;
1814 	struct pci_cap_saved_data *cap;
1815 	size_t size;
1816 
1817 	if (!dev->state_saved)
1818 		return NULL;
1819 
1820 	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1821 
1822 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1823 		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1824 
1825 	state = kzalloc(size, GFP_KERNEL);
1826 	if (!state)
1827 		return NULL;
1828 
1829 	memcpy(state->config_space, dev->saved_config_space,
1830 	       sizeof(state->config_space));
1831 
1832 	cap = state->cap;
1833 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1834 		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1835 		memcpy(cap, &tmp->cap, len);
1836 		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1837 	}
1838 	/* Empty cap_save terminates list */
1839 
1840 	return state;
1841 }
1842 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1843 
1844 /**
1845  * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1846  * @dev: PCI device that we're dealing with
1847  * @state: Saved state returned from pci_store_saved_state()
1848  */
1849 int pci_load_saved_state(struct pci_dev *dev,
1850 			 struct pci_saved_state *state)
1851 {
1852 	struct pci_cap_saved_data *cap;
1853 
1854 	dev->state_saved = false;
1855 
1856 	if (!state)
1857 		return 0;
1858 
1859 	memcpy(dev->saved_config_space, state->config_space,
1860 	       sizeof(state->config_space));
1861 
1862 	cap = state->cap;
1863 	while (cap->size) {
1864 		struct pci_cap_saved_state *tmp;
1865 
1866 		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1867 		if (!tmp || tmp->cap.size != cap->size)
1868 			return -EINVAL;
1869 
1870 		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1871 		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1872 		       sizeof(struct pci_cap_saved_data) + cap->size);
1873 	}
1874 
1875 	dev->state_saved = true;
1876 	return 0;
1877 }
1878 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1879 
1880 /**
1881  * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1882  *				   and free the memory allocated for it.
1883  * @dev: PCI device that we're dealing with
1884  * @state: Pointer to saved state returned from pci_store_saved_state()
1885  */
1886 int pci_load_and_free_saved_state(struct pci_dev *dev,
1887 				  struct pci_saved_state **state)
1888 {
1889 	int ret = pci_load_saved_state(dev, *state);
1890 	kfree(*state);
1891 	*state = NULL;
1892 	return ret;
1893 }
1894 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1895 
1896 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1897 {
1898 	return pci_enable_resources(dev, bars);
1899 }
1900 
1901 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1902 {
1903 	int err;
1904 	struct pci_dev *bridge;
1905 	u16 cmd;
1906 	u8 pin;
1907 
1908 	err = pci_set_power_state(dev, PCI_D0);
1909 	if (err < 0 && err != -EIO)
1910 		return err;
1911 
1912 	bridge = pci_upstream_bridge(dev);
1913 	if (bridge)
1914 		pcie_aspm_powersave_config_link(bridge);
1915 
1916 	err = pcibios_enable_device(dev, bars);
1917 	if (err < 0)
1918 		return err;
1919 	pci_fixup_device(pci_fixup_enable, dev);
1920 
1921 	if (dev->msi_enabled || dev->msix_enabled)
1922 		return 0;
1923 
1924 	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1925 	if (pin) {
1926 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
1927 		if (cmd & PCI_COMMAND_INTX_DISABLE)
1928 			pci_write_config_word(dev, PCI_COMMAND,
1929 					      cmd & ~PCI_COMMAND_INTX_DISABLE);
1930 	}
1931 
1932 	return 0;
1933 }
1934 
1935 /**
1936  * pci_reenable_device - Resume abandoned device
1937  * @dev: PCI device to be resumed
1938  *
1939  * NOTE: This function is a backend of pci_default_resume() and is not supposed
1940  * to be called by normal code, write proper resume handler and use it instead.
1941  */
1942 int pci_reenable_device(struct pci_dev *dev)
1943 {
1944 	if (pci_is_enabled(dev))
1945 		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1946 	return 0;
1947 }
1948 EXPORT_SYMBOL(pci_reenable_device);
1949 
1950 static void pci_enable_bridge(struct pci_dev *dev)
1951 {
1952 	struct pci_dev *bridge;
1953 	int retval;
1954 
1955 	bridge = pci_upstream_bridge(dev);
1956 	if (bridge)
1957 		pci_enable_bridge(bridge);
1958 
1959 	if (pci_is_enabled(dev)) {
1960 		if (!dev->is_busmaster)
1961 			pci_set_master(dev);
1962 		return;
1963 	}
1964 
1965 	retval = pci_enable_device(dev);
1966 	if (retval)
1967 		pci_err(dev, "Error enabling bridge (%d), continuing\n",
1968 			retval);
1969 	pci_set_master(dev);
1970 }
1971 
1972 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1973 {
1974 	struct pci_dev *bridge;
1975 	int err;
1976 	int i, bars = 0;
1977 
1978 	/*
1979 	 * Power state could be unknown at this point, either due to a fresh
1980 	 * boot or a device removal call.  So get the current power state
1981 	 * so that things like MSI message writing will behave as expected
1982 	 * (e.g. if the device really is in D0 at enable time).
1983 	 */
1984 	pci_update_current_state(dev, dev->current_state);
1985 
1986 	if (atomic_inc_return(&dev->enable_cnt) > 1)
1987 		return 0;		/* already enabled */
1988 
1989 	bridge = pci_upstream_bridge(dev);
1990 	if (bridge)
1991 		pci_enable_bridge(bridge);
1992 
1993 	/* only skip sriov related */
1994 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1995 		if (dev->resource[i].flags & flags)
1996 			bars |= (1 << i);
1997 	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1998 		if (dev->resource[i].flags & flags)
1999 			bars |= (1 << i);
2000 
2001 	err = do_pci_enable_device(dev, bars);
2002 	if (err < 0)
2003 		atomic_dec(&dev->enable_cnt);
2004 	return err;
2005 }
2006 
2007 /**
2008  * pci_enable_device_io - Initialize a device for use with IO space
2009  * @dev: PCI device to be initialized
2010  *
2011  * Initialize device before it's used by a driver. Ask low-level code
2012  * to enable I/O resources. Wake up the device if it was suspended.
2013  * Beware, this function can fail.
2014  */
2015 int pci_enable_device_io(struct pci_dev *dev)
2016 {
2017 	return pci_enable_device_flags(dev, IORESOURCE_IO);
2018 }
2019 EXPORT_SYMBOL(pci_enable_device_io);
2020 
2021 /**
2022  * pci_enable_device_mem - Initialize a device for use with Memory space
2023  * @dev: PCI device to be initialized
2024  *
2025  * Initialize device before it's used by a driver. Ask low-level code
2026  * to enable Memory resources. Wake up the device if it was suspended.
2027  * Beware, this function can fail.
2028  */
2029 int pci_enable_device_mem(struct pci_dev *dev)
2030 {
2031 	return pci_enable_device_flags(dev, IORESOURCE_MEM);
2032 }
2033 EXPORT_SYMBOL(pci_enable_device_mem);
2034 
2035 /**
2036  * pci_enable_device - Initialize device before it's used by a driver.
2037  * @dev: PCI device to be initialized
2038  *
2039  * Initialize device before it's used by a driver. Ask low-level code
2040  * to enable I/O and memory. Wake up the device if it was suspended.
2041  * Beware, this function can fail.
2042  *
2043  * Note we don't actually enable the device many times if we call
2044  * this function repeatedly (we just increment the count).
2045  */
2046 int pci_enable_device(struct pci_dev *dev)
2047 {
2048 	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
2049 }
2050 EXPORT_SYMBOL(pci_enable_device);
2051 
2052 /*
2053  * Managed PCI resources.  This manages device on/off, INTx/MSI/MSI-X
2054  * on/off and BAR regions.  pci_dev itself records MSI/MSI-X status, so
2055  * there's no need to track it separately.  pci_devres is initialized
2056  * when a device is enabled using managed PCI device enable interface.
2057  */
2058 struct pci_devres {
2059 	unsigned int enabled:1;
2060 	unsigned int pinned:1;
2061 	unsigned int orig_intx:1;
2062 	unsigned int restore_intx:1;
2063 	unsigned int mwi:1;
2064 	u32 region_mask;
2065 };
2066 
2067 static void pcim_release(struct device *gendev, void *res)
2068 {
2069 	struct pci_dev *dev = to_pci_dev(gendev);
2070 	struct pci_devres *this = res;
2071 	int i;
2072 
2073 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
2074 		if (this->region_mask & (1 << i))
2075 			pci_release_region(dev, i);
2076 
2077 	if (this->mwi)
2078 		pci_clear_mwi(dev);
2079 
2080 	if (this->restore_intx)
2081 		pci_intx(dev, this->orig_intx);
2082 
2083 	if (this->enabled && !this->pinned)
2084 		pci_disable_device(dev);
2085 }
2086 
2087 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
2088 {
2089 	struct pci_devres *dr, *new_dr;
2090 
2091 	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
2092 	if (dr)
2093 		return dr;
2094 
2095 	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
2096 	if (!new_dr)
2097 		return NULL;
2098 	return devres_get(&pdev->dev, new_dr, NULL, NULL);
2099 }
2100 
2101 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
2102 {
2103 	if (pci_is_managed(pdev))
2104 		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
2105 	return NULL;
2106 }
2107 
2108 /**
2109  * pcim_enable_device - Managed pci_enable_device()
2110  * @pdev: PCI device to be initialized
2111  *
2112  * Managed pci_enable_device().
2113  */
2114 int pcim_enable_device(struct pci_dev *pdev)
2115 {
2116 	struct pci_devres *dr;
2117 	int rc;
2118 
2119 	dr = get_pci_dr(pdev);
2120 	if (unlikely(!dr))
2121 		return -ENOMEM;
2122 	if (dr->enabled)
2123 		return 0;
2124 
2125 	rc = pci_enable_device(pdev);
2126 	if (!rc) {
2127 		pdev->is_managed = 1;
2128 		dr->enabled = 1;
2129 	}
2130 	return rc;
2131 }
2132 EXPORT_SYMBOL(pcim_enable_device);
2133 
2134 /**
2135  * pcim_pin_device - Pin managed PCI device
2136  * @pdev: PCI device to pin
2137  *
2138  * Pin managed PCI device @pdev.  Pinned device won't be disabled on
2139  * driver detach.  @pdev must have been enabled with
2140  * pcim_enable_device().
2141  */
2142 void pcim_pin_device(struct pci_dev *pdev)
2143 {
2144 	struct pci_devres *dr;
2145 
2146 	dr = find_pci_dr(pdev);
2147 	WARN_ON(!dr || !dr->enabled);
2148 	if (dr)
2149 		dr->pinned = 1;
2150 }
2151 EXPORT_SYMBOL(pcim_pin_device);
2152 
2153 /*
2154  * pcibios_device_add - provide arch specific hooks when adding device dev
2155  * @dev: the PCI device being added
2156  *
2157  * Permits the platform to provide architecture specific functionality when
2158  * devices are added. This is the default implementation. Architecture
2159  * implementations can override this.
2160  */
2161 int __weak pcibios_device_add(struct pci_dev *dev)
2162 {
2163 	return 0;
2164 }
2165 
2166 /**
2167  * pcibios_release_device - provide arch specific hooks when releasing
2168  *			    device dev
2169  * @dev: the PCI device being released
2170  *
2171  * Permits the platform to provide architecture specific functionality when
2172  * devices are released. This is the default implementation. Architecture
2173  * implementations can override this.
2174  */
2175 void __weak pcibios_release_device(struct pci_dev *dev) {}
2176 
2177 /**
2178  * pcibios_disable_device - disable arch specific PCI resources for device dev
2179  * @dev: the PCI device to disable
2180  *
2181  * Disables architecture specific PCI resources for the device. This
2182  * is the default implementation. Architecture implementations can
2183  * override this.
2184  */
2185 void __weak pcibios_disable_device(struct pci_dev *dev) {}
2186 
2187 /**
2188  * pcibios_penalize_isa_irq - penalize an ISA IRQ
2189  * @irq: ISA IRQ to penalize
2190  * @active: IRQ active or not
2191  *
2192  * Permits the platform to provide architecture-specific functionality when
2193  * penalizing ISA IRQs. This is the default implementation. Architecture
2194  * implementations can override this.
2195  */
2196 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
2197 
2198 static void do_pci_disable_device(struct pci_dev *dev)
2199 {
2200 	u16 pci_command;
2201 
2202 	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2203 	if (pci_command & PCI_COMMAND_MASTER) {
2204 		pci_command &= ~PCI_COMMAND_MASTER;
2205 		pci_write_config_word(dev, PCI_COMMAND, pci_command);
2206 	}
2207 
2208 	pcibios_disable_device(dev);
2209 }
2210 
2211 /**
2212  * pci_disable_enabled_device - Disable device without updating enable_cnt
2213  * @dev: PCI device to disable
2214  *
2215  * NOTE: This function is a backend of PCI power management routines and is
2216  * not supposed to be called drivers.
2217  */
2218 void pci_disable_enabled_device(struct pci_dev *dev)
2219 {
2220 	if (pci_is_enabled(dev))
2221 		do_pci_disable_device(dev);
2222 }
2223 
2224 /**
2225  * pci_disable_device - Disable PCI device after use
2226  * @dev: PCI device to be disabled
2227  *
2228  * Signal to the system that the PCI device is not in use by the system
2229  * anymore.  This only involves disabling PCI bus-mastering, if active.
2230  *
2231  * Note we don't actually disable the device until all callers of
2232  * pci_enable_device() have called pci_disable_device().
2233  */
2234 void pci_disable_device(struct pci_dev *dev)
2235 {
2236 	struct pci_devres *dr;
2237 
2238 	dr = find_pci_dr(dev);
2239 	if (dr)
2240 		dr->enabled = 0;
2241 
2242 	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2243 		      "disabling already-disabled device");
2244 
2245 	if (atomic_dec_return(&dev->enable_cnt) != 0)
2246 		return;
2247 
2248 	do_pci_disable_device(dev);
2249 
2250 	dev->is_busmaster = 0;
2251 }
2252 EXPORT_SYMBOL(pci_disable_device);
2253 
2254 /**
2255  * pcibios_set_pcie_reset_state - set reset state for device dev
2256  * @dev: the PCIe device reset
2257  * @state: Reset state to enter into
2258  *
2259  * Set the PCIe reset state for the device. This is the default
2260  * implementation. Architecture implementations can override this.
2261  */
2262 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2263 					enum pcie_reset_state state)
2264 {
2265 	return -EINVAL;
2266 }
2267 
2268 /**
2269  * pci_set_pcie_reset_state - set reset state for device dev
2270  * @dev: the PCIe device reset
2271  * @state: Reset state to enter into
2272  *
2273  * Sets the PCI reset state for the device.
2274  */
2275 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2276 {
2277 	return pcibios_set_pcie_reset_state(dev, state);
2278 }
2279 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2280 
2281 #ifdef CONFIG_PCIEAER
2282 void pcie_clear_device_status(struct pci_dev *dev)
2283 {
2284 	u16 sta;
2285 
2286 	pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2287 	pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2288 }
2289 #endif
2290 
2291 /**
2292  * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2293  * @dev: PCIe root port or event collector.
2294  */
2295 void pcie_clear_root_pme_status(struct pci_dev *dev)
2296 {
2297 	pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2298 }
2299 
2300 /**
2301  * pci_check_pme_status - Check if given device has generated PME.
2302  * @dev: Device to check.
2303  *
2304  * Check the PME status of the device and if set, clear it and clear PME enable
2305  * (if set).  Return 'true' if PME status and PME enable were both set or
2306  * 'false' otherwise.
2307  */
2308 bool pci_check_pme_status(struct pci_dev *dev)
2309 {
2310 	int pmcsr_pos;
2311 	u16 pmcsr;
2312 	bool ret = false;
2313 
2314 	if (!dev->pm_cap)
2315 		return false;
2316 
2317 	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2318 	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2319 	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2320 		return false;
2321 
2322 	/* Clear PME status. */
2323 	pmcsr |= PCI_PM_CTRL_PME_STATUS;
2324 	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2325 		/* Disable PME to avoid interrupt flood. */
2326 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2327 		ret = true;
2328 	}
2329 
2330 	pci_write_config_word(dev, pmcsr_pos, pmcsr);
2331 
2332 	return ret;
2333 }
2334 
2335 /**
2336  * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2337  * @dev: Device to handle.
2338  * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2339  *
2340  * Check if @dev has generated PME and queue a resume request for it in that
2341  * case.
2342  */
2343 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2344 {
2345 	if (pme_poll_reset && dev->pme_poll)
2346 		dev->pme_poll = false;
2347 
2348 	if (pci_check_pme_status(dev)) {
2349 		pci_wakeup_event(dev);
2350 		pm_request_resume(&dev->dev);
2351 	}
2352 	return 0;
2353 }
2354 
2355 /**
2356  * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2357  * @bus: Top bus of the subtree to walk.
2358  */
2359 void pci_pme_wakeup_bus(struct pci_bus *bus)
2360 {
2361 	if (bus)
2362 		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2363 }
2364 
2365 
2366 /**
2367  * pci_pme_capable - check the capability of PCI device to generate PME#
2368  * @dev: PCI device to handle.
2369  * @state: PCI state from which device will issue PME#.
2370  */
2371 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2372 {
2373 	if (!dev->pm_cap)
2374 		return false;
2375 
2376 	return !!(dev->pme_support & (1 << state));
2377 }
2378 EXPORT_SYMBOL(pci_pme_capable);
2379 
2380 static void pci_pme_list_scan(struct work_struct *work)
2381 {
2382 	struct pci_pme_device *pme_dev, *n;
2383 
2384 	mutex_lock(&pci_pme_list_mutex);
2385 	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2386 		if (pme_dev->dev->pme_poll) {
2387 			struct pci_dev *bridge;
2388 
2389 			bridge = pme_dev->dev->bus->self;
2390 			/*
2391 			 * If bridge is in low power state, the
2392 			 * configuration space of subordinate devices
2393 			 * may be not accessible
2394 			 */
2395 			if (bridge && bridge->current_state != PCI_D0)
2396 				continue;
2397 			/*
2398 			 * If the device is in D3cold it should not be
2399 			 * polled either.
2400 			 */
2401 			if (pme_dev->dev->current_state == PCI_D3cold)
2402 				continue;
2403 
2404 			pci_pme_wakeup(pme_dev->dev, NULL);
2405 		} else {
2406 			list_del(&pme_dev->list);
2407 			kfree(pme_dev);
2408 		}
2409 	}
2410 	if (!list_empty(&pci_pme_list))
2411 		queue_delayed_work(system_freezable_wq, &pci_pme_work,
2412 				   msecs_to_jiffies(PME_TIMEOUT));
2413 	mutex_unlock(&pci_pme_list_mutex);
2414 }
2415 
2416 static void __pci_pme_active(struct pci_dev *dev, bool enable)
2417 {
2418 	u16 pmcsr;
2419 
2420 	if (!dev->pme_support)
2421 		return;
2422 
2423 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2424 	/* Clear PME_Status by writing 1 to it and enable PME# */
2425 	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2426 	if (!enable)
2427 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2428 
2429 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2430 }
2431 
2432 /**
2433  * pci_pme_restore - Restore PME configuration after config space restore.
2434  * @dev: PCI device to update.
2435  */
2436 void pci_pme_restore(struct pci_dev *dev)
2437 {
2438 	u16 pmcsr;
2439 
2440 	if (!dev->pme_support)
2441 		return;
2442 
2443 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2444 	if (dev->wakeup_prepared) {
2445 		pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2446 		pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2447 	} else {
2448 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2449 		pmcsr |= PCI_PM_CTRL_PME_STATUS;
2450 	}
2451 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2452 }
2453 
2454 /**
2455  * pci_pme_active - enable or disable PCI device's PME# function
2456  * @dev: PCI device to handle.
2457  * @enable: 'true' to enable PME# generation; 'false' to disable it.
2458  *
2459  * The caller must verify that the device is capable of generating PME# before
2460  * calling this function with @enable equal to 'true'.
2461  */
2462 void pci_pme_active(struct pci_dev *dev, bool enable)
2463 {
2464 	__pci_pme_active(dev, enable);
2465 
2466 	/*
2467 	 * PCI (as opposed to PCIe) PME requires that the device have
2468 	 * its PME# line hooked up correctly. Not all hardware vendors
2469 	 * do this, so the PME never gets delivered and the device
2470 	 * remains asleep. The easiest way around this is to
2471 	 * periodically walk the list of suspended devices and check
2472 	 * whether any have their PME flag set. The assumption is that
2473 	 * we'll wake up often enough anyway that this won't be a huge
2474 	 * hit, and the power savings from the devices will still be a
2475 	 * win.
2476 	 *
2477 	 * Although PCIe uses in-band PME message instead of PME# line
2478 	 * to report PME, PME does not work for some PCIe devices in
2479 	 * reality.  For example, there are devices that set their PME
2480 	 * status bits, but don't really bother to send a PME message;
2481 	 * there are PCI Express Root Ports that don't bother to
2482 	 * trigger interrupts when they receive PME messages from the
2483 	 * devices below.  So PME poll is used for PCIe devices too.
2484 	 */
2485 
2486 	if (dev->pme_poll) {
2487 		struct pci_pme_device *pme_dev;
2488 		if (enable) {
2489 			pme_dev = kmalloc(sizeof(struct pci_pme_device),
2490 					  GFP_KERNEL);
2491 			if (!pme_dev) {
2492 				pci_warn(dev, "can't enable PME#\n");
2493 				return;
2494 			}
2495 			pme_dev->dev = dev;
2496 			mutex_lock(&pci_pme_list_mutex);
2497 			list_add(&pme_dev->list, &pci_pme_list);
2498 			if (list_is_singular(&pci_pme_list))
2499 				queue_delayed_work(system_freezable_wq,
2500 						   &pci_pme_work,
2501 						   msecs_to_jiffies(PME_TIMEOUT));
2502 			mutex_unlock(&pci_pme_list_mutex);
2503 		} else {
2504 			mutex_lock(&pci_pme_list_mutex);
2505 			list_for_each_entry(pme_dev, &pci_pme_list, list) {
2506 				if (pme_dev->dev == dev) {
2507 					list_del(&pme_dev->list);
2508 					kfree(pme_dev);
2509 					break;
2510 				}
2511 			}
2512 			mutex_unlock(&pci_pme_list_mutex);
2513 		}
2514 	}
2515 
2516 	pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2517 }
2518 EXPORT_SYMBOL(pci_pme_active);
2519 
2520 /**
2521  * __pci_enable_wake - enable PCI device as wakeup event source
2522  * @dev: PCI device affected
2523  * @state: PCI state from which device will issue wakeup events
2524  * @enable: True to enable event generation; false to disable
2525  *
2526  * This enables the device as a wakeup event source, or disables it.
2527  * When such events involves platform-specific hooks, those hooks are
2528  * called automatically by this routine.
2529  *
2530  * Devices with legacy power management (no standard PCI PM capabilities)
2531  * always require such platform hooks.
2532  *
2533  * RETURN VALUE:
2534  * 0 is returned on success
2535  * -EINVAL is returned if device is not supposed to wake up the system
2536  * Error code depending on the platform is returned if both the platform and
2537  * the native mechanism fail to enable the generation of wake-up events
2538  */
2539 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2540 {
2541 	int ret = 0;
2542 
2543 	/*
2544 	 * Bridges that are not power-manageable directly only signal
2545 	 * wakeup on behalf of subordinate devices which is set up
2546 	 * elsewhere, so skip them. However, bridges that are
2547 	 * power-manageable may signal wakeup for themselves (for example,
2548 	 * on a hotplug event) and they need to be covered here.
2549 	 */
2550 	if (!pci_power_manageable(dev))
2551 		return 0;
2552 
2553 	/* Don't do the same thing twice in a row for one device. */
2554 	if (!!enable == !!dev->wakeup_prepared)
2555 		return 0;
2556 
2557 	/*
2558 	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2559 	 * Anderson we should be doing PME# wake enable followed by ACPI wake
2560 	 * enable.  To disable wake-up we call the platform first, for symmetry.
2561 	 */
2562 
2563 	if (enable) {
2564 		int error;
2565 
2566 		/*
2567 		 * Enable PME signaling if the device can signal PME from
2568 		 * D3cold regardless of whether or not it can signal PME from
2569 		 * the current target state, because that will allow it to
2570 		 * signal PME when the hierarchy above it goes into D3cold and
2571 		 * the device itself ends up in D3cold as a result of that.
2572 		 */
2573 		if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold))
2574 			pci_pme_active(dev, true);
2575 		else
2576 			ret = 1;
2577 		error = platform_pci_set_wakeup(dev, true);
2578 		if (ret)
2579 			ret = error;
2580 		if (!ret)
2581 			dev->wakeup_prepared = true;
2582 	} else {
2583 		platform_pci_set_wakeup(dev, false);
2584 		pci_pme_active(dev, false);
2585 		dev->wakeup_prepared = false;
2586 	}
2587 
2588 	return ret;
2589 }
2590 
2591 /**
2592  * pci_enable_wake - change wakeup settings for a PCI device
2593  * @pci_dev: Target device
2594  * @state: PCI state from which device will issue wakeup events
2595  * @enable: Whether or not to enable event generation
2596  *
2597  * If @enable is set, check device_may_wakeup() for the device before calling
2598  * __pci_enable_wake() for it.
2599  */
2600 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2601 {
2602 	if (enable && !device_may_wakeup(&pci_dev->dev))
2603 		return -EINVAL;
2604 
2605 	return __pci_enable_wake(pci_dev, state, enable);
2606 }
2607 EXPORT_SYMBOL(pci_enable_wake);
2608 
2609 /**
2610  * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2611  * @dev: PCI device to prepare
2612  * @enable: True to enable wake-up event generation; false to disable
2613  *
2614  * Many drivers want the device to wake up the system from D3_hot or D3_cold
2615  * and this function allows them to set that up cleanly - pci_enable_wake()
2616  * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2617  * ordering constraints.
2618  *
2619  * This function only returns error code if the device is not allowed to wake
2620  * up the system from sleep or it is not capable of generating PME# from both
2621  * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2622  */
2623 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2624 {
2625 	return pci_pme_capable(dev, PCI_D3cold) ?
2626 			pci_enable_wake(dev, PCI_D3cold, enable) :
2627 			pci_enable_wake(dev, PCI_D3hot, enable);
2628 }
2629 EXPORT_SYMBOL(pci_wake_from_d3);
2630 
2631 /**
2632  * pci_target_state - find an appropriate low power state for a given PCI dev
2633  * @dev: PCI device
2634  * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2635  *
2636  * Use underlying platform code to find a supported low power state for @dev.
2637  * If the platform can't manage @dev, return the deepest state from which it
2638  * can generate wake events, based on any available PME info.
2639  */
2640 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2641 {
2642 	if (platform_pci_power_manageable(dev)) {
2643 		/*
2644 		 * Call the platform to find the target state for the device.
2645 		 */
2646 		pci_power_t state = platform_pci_choose_state(dev);
2647 
2648 		switch (state) {
2649 		case PCI_POWER_ERROR:
2650 		case PCI_UNKNOWN:
2651 			return PCI_D3hot;
2652 
2653 		case PCI_D1:
2654 		case PCI_D2:
2655 			if (pci_no_d1d2(dev))
2656 				return PCI_D3hot;
2657 		}
2658 
2659 		return state;
2660 	}
2661 
2662 	/*
2663 	 * If the device is in D3cold even though it's not power-manageable by
2664 	 * the platform, it may have been powered down by non-standard means.
2665 	 * Best to let it slumber.
2666 	 */
2667 	if (dev->current_state == PCI_D3cold)
2668 		return PCI_D3cold;
2669 	else if (!dev->pm_cap)
2670 		return PCI_D0;
2671 
2672 	if (wakeup && dev->pme_support) {
2673 		pci_power_t state = PCI_D3hot;
2674 
2675 		/*
2676 		 * Find the deepest state from which the device can generate
2677 		 * PME#.
2678 		 */
2679 		while (state && !(dev->pme_support & (1 << state)))
2680 			state--;
2681 
2682 		if (state)
2683 			return state;
2684 		else if (dev->pme_support & 1)
2685 			return PCI_D0;
2686 	}
2687 
2688 	return PCI_D3hot;
2689 }
2690 
2691 /**
2692  * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2693  *			  into a sleep state
2694  * @dev: Device to handle.
2695  *
2696  * Choose the power state appropriate for the device depending on whether
2697  * it can wake up the system and/or is power manageable by the platform
2698  * (PCI_D3hot is the default) and put the device into that state.
2699  */
2700 int pci_prepare_to_sleep(struct pci_dev *dev)
2701 {
2702 	bool wakeup = device_may_wakeup(&dev->dev);
2703 	pci_power_t target_state = pci_target_state(dev, wakeup);
2704 	int error;
2705 
2706 	if (target_state == PCI_POWER_ERROR)
2707 		return -EIO;
2708 
2709 	/*
2710 	 * There are systems (for example, Intel mobile chips since Coffee
2711 	 * Lake) where the power drawn while suspended can be significantly
2712 	 * reduced by disabling PTM on PCIe root ports as this allows the
2713 	 * port to enter a lower-power PM state and the SoC to reach a
2714 	 * lower-power idle state as a whole.
2715 	 */
2716 	if (pci_pcie_type(dev) == PCI_EXP_TYPE_ROOT_PORT)
2717 		pci_disable_ptm(dev);
2718 
2719 	pci_enable_wake(dev, target_state, wakeup);
2720 
2721 	error = pci_set_power_state(dev, target_state);
2722 
2723 	if (error) {
2724 		pci_enable_wake(dev, target_state, false);
2725 		pci_restore_ptm_state(dev);
2726 	}
2727 
2728 	return error;
2729 }
2730 EXPORT_SYMBOL(pci_prepare_to_sleep);
2731 
2732 /**
2733  * pci_back_from_sleep - turn PCI device on during system-wide transition
2734  *			 into working state
2735  * @dev: Device to handle.
2736  *
2737  * Disable device's system wake-up capability and put it into D0.
2738  */
2739 int pci_back_from_sleep(struct pci_dev *dev)
2740 {
2741 	int ret = pci_set_power_state(dev, PCI_D0);
2742 
2743 	if (ret)
2744 		return ret;
2745 
2746 	pci_enable_wake(dev, PCI_D0, false);
2747 	return 0;
2748 }
2749 EXPORT_SYMBOL(pci_back_from_sleep);
2750 
2751 /**
2752  * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2753  * @dev: PCI device being suspended.
2754  *
2755  * Prepare @dev to generate wake-up events at run time and put it into a low
2756  * power state.
2757  */
2758 int pci_finish_runtime_suspend(struct pci_dev *dev)
2759 {
2760 	pci_power_t target_state;
2761 	int error;
2762 
2763 	target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2764 	if (target_state == PCI_POWER_ERROR)
2765 		return -EIO;
2766 
2767 	/*
2768 	 * There are systems (for example, Intel mobile chips since Coffee
2769 	 * Lake) where the power drawn while suspended can be significantly
2770 	 * reduced by disabling PTM on PCIe root ports as this allows the
2771 	 * port to enter a lower-power PM state and the SoC to reach a
2772 	 * lower-power idle state as a whole.
2773 	 */
2774 	if (pci_pcie_type(dev) == PCI_EXP_TYPE_ROOT_PORT)
2775 		pci_disable_ptm(dev);
2776 
2777 	__pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2778 
2779 	error = pci_set_power_state(dev, target_state);
2780 
2781 	if (error) {
2782 		pci_enable_wake(dev, target_state, false);
2783 		pci_restore_ptm_state(dev);
2784 	}
2785 
2786 	return error;
2787 }
2788 
2789 /**
2790  * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2791  * @dev: Device to check.
2792  *
2793  * Return true if the device itself is capable of generating wake-up events
2794  * (through the platform or using the native PCIe PME) or if the device supports
2795  * PME and one of its upstream bridges can generate wake-up events.
2796  */
2797 bool pci_dev_run_wake(struct pci_dev *dev)
2798 {
2799 	struct pci_bus *bus = dev->bus;
2800 
2801 	if (!dev->pme_support)
2802 		return false;
2803 
2804 	/* PME-capable in principle, but not from the target power state */
2805 	if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2806 		return false;
2807 
2808 	if (device_can_wakeup(&dev->dev))
2809 		return true;
2810 
2811 	while (bus->parent) {
2812 		struct pci_dev *bridge = bus->self;
2813 
2814 		if (device_can_wakeup(&bridge->dev))
2815 			return true;
2816 
2817 		bus = bus->parent;
2818 	}
2819 
2820 	/* We have reached the root bus. */
2821 	if (bus->bridge)
2822 		return device_can_wakeup(bus->bridge);
2823 
2824 	return false;
2825 }
2826 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2827 
2828 /**
2829  * pci_dev_need_resume - Check if it is necessary to resume the device.
2830  * @pci_dev: Device to check.
2831  *
2832  * Return 'true' if the device is not runtime-suspended or it has to be
2833  * reconfigured due to wakeup settings difference between system and runtime
2834  * suspend, or the current power state of it is not suitable for the upcoming
2835  * (system-wide) transition.
2836  */
2837 bool pci_dev_need_resume(struct pci_dev *pci_dev)
2838 {
2839 	struct device *dev = &pci_dev->dev;
2840 	pci_power_t target_state;
2841 
2842 	if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2843 		return true;
2844 
2845 	target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2846 
2847 	/*
2848 	 * If the earlier platform check has not triggered, D3cold is just power
2849 	 * removal on top of D3hot, so no need to resume the device in that
2850 	 * case.
2851 	 */
2852 	return target_state != pci_dev->current_state &&
2853 		target_state != PCI_D3cold &&
2854 		pci_dev->current_state != PCI_D3hot;
2855 }
2856 
2857 /**
2858  * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2859  * @pci_dev: Device to check.
2860  *
2861  * If the device is suspended and it is not configured for system wakeup,
2862  * disable PME for it to prevent it from waking up the system unnecessarily.
2863  *
2864  * Note that if the device's power state is D3cold and the platform check in
2865  * pci_dev_need_resume() has not triggered, the device's configuration need not
2866  * be changed.
2867  */
2868 void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2869 {
2870 	struct device *dev = &pci_dev->dev;
2871 
2872 	spin_lock_irq(&dev->power.lock);
2873 
2874 	if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2875 	    pci_dev->current_state < PCI_D3cold)
2876 		__pci_pme_active(pci_dev, false);
2877 
2878 	spin_unlock_irq(&dev->power.lock);
2879 }
2880 
2881 /**
2882  * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2883  * @pci_dev: Device to handle.
2884  *
2885  * If the device is runtime suspended and wakeup-capable, enable PME for it as
2886  * it might have been disabled during the prepare phase of system suspend if
2887  * the device was not configured for system wakeup.
2888  */
2889 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2890 {
2891 	struct device *dev = &pci_dev->dev;
2892 
2893 	if (!pci_dev_run_wake(pci_dev))
2894 		return;
2895 
2896 	spin_lock_irq(&dev->power.lock);
2897 
2898 	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2899 		__pci_pme_active(pci_dev, true);
2900 
2901 	spin_unlock_irq(&dev->power.lock);
2902 }
2903 
2904 /**
2905  * pci_choose_state - Choose the power state of a PCI device.
2906  * @dev: Target PCI device.
2907  * @state: Target state for the whole system.
2908  *
2909  * Returns PCI power state suitable for @dev and @state.
2910  */
2911 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
2912 {
2913 	if (state.event == PM_EVENT_ON)
2914 		return PCI_D0;
2915 
2916 	return pci_target_state(dev, false);
2917 }
2918 EXPORT_SYMBOL(pci_choose_state);
2919 
2920 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2921 {
2922 	struct device *dev = &pdev->dev;
2923 	struct device *parent = dev->parent;
2924 
2925 	if (parent)
2926 		pm_runtime_get_sync(parent);
2927 	pm_runtime_get_noresume(dev);
2928 	/*
2929 	 * pdev->current_state is set to PCI_D3cold during suspending,
2930 	 * so wait until suspending completes
2931 	 */
2932 	pm_runtime_barrier(dev);
2933 	/*
2934 	 * Only need to resume devices in D3cold, because config
2935 	 * registers are still accessible for devices suspended but
2936 	 * not in D3cold.
2937 	 */
2938 	if (pdev->current_state == PCI_D3cold)
2939 		pm_runtime_resume(dev);
2940 }
2941 
2942 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2943 {
2944 	struct device *dev = &pdev->dev;
2945 	struct device *parent = dev->parent;
2946 
2947 	pm_runtime_put(dev);
2948 	if (parent)
2949 		pm_runtime_put_sync(parent);
2950 }
2951 
2952 static const struct dmi_system_id bridge_d3_blacklist[] = {
2953 #ifdef CONFIG_X86
2954 	{
2955 		/*
2956 		 * Gigabyte X299 root port is not marked as hotplug capable
2957 		 * which allows Linux to power manage it.  However, this
2958 		 * confuses the BIOS SMI handler so don't power manage root
2959 		 * ports on that system.
2960 		 */
2961 		.ident = "X299 DESIGNARE EX-CF",
2962 		.matches = {
2963 			DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2964 			DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2965 		},
2966 	},
2967 	{
2968 		/*
2969 		 * Downstream device is not accessible after putting a root port
2970 		 * into D3cold and back into D0 on Elo i2.
2971 		 */
2972 		.ident = "Elo i2",
2973 		.matches = {
2974 			DMI_MATCH(DMI_SYS_VENDOR, "Elo Touch Solutions"),
2975 			DMI_MATCH(DMI_PRODUCT_NAME, "Elo i2"),
2976 			DMI_MATCH(DMI_PRODUCT_VERSION, "RevB"),
2977 		},
2978 	},
2979 #endif
2980 	{ }
2981 };
2982 
2983 /**
2984  * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2985  * @bridge: Bridge to check
2986  *
2987  * This function checks if it is possible to move the bridge to D3.
2988  * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2989  */
2990 bool pci_bridge_d3_possible(struct pci_dev *bridge)
2991 {
2992 	if (!pci_is_pcie(bridge))
2993 		return false;
2994 
2995 	switch (pci_pcie_type(bridge)) {
2996 	case PCI_EXP_TYPE_ROOT_PORT:
2997 	case PCI_EXP_TYPE_UPSTREAM:
2998 	case PCI_EXP_TYPE_DOWNSTREAM:
2999 		if (pci_bridge_d3_disable)
3000 			return false;
3001 
3002 		/*
3003 		 * Hotplug ports handled by firmware in System Management Mode
3004 		 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
3005 		 */
3006 		if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
3007 			return false;
3008 
3009 		if (pci_bridge_d3_force)
3010 			return true;
3011 
3012 		/* Even the oldest 2010 Thunderbolt controller supports D3. */
3013 		if (bridge->is_thunderbolt)
3014 			return true;
3015 
3016 		/* Platform might know better if the bridge supports D3 */
3017 		if (platform_pci_bridge_d3(bridge))
3018 			return true;
3019 
3020 		/*
3021 		 * Hotplug ports handled natively by the OS were not validated
3022 		 * by vendors for runtime D3 at least until 2018 because there
3023 		 * was no OS support.
3024 		 */
3025 		if (bridge->is_hotplug_bridge)
3026 			return false;
3027 
3028 		if (dmi_check_system(bridge_d3_blacklist))
3029 			return false;
3030 
3031 		/*
3032 		 * It should be safe to put PCIe ports from 2015 or newer
3033 		 * to D3.
3034 		 */
3035 		if (dmi_get_bios_year() >= 2015)
3036 			return true;
3037 		break;
3038 	}
3039 
3040 	return false;
3041 }
3042 
3043 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
3044 {
3045 	bool *d3cold_ok = data;
3046 
3047 	if (/* The device needs to be allowed to go D3cold ... */
3048 	    dev->no_d3cold || !dev->d3cold_allowed ||
3049 
3050 	    /* ... and if it is wakeup capable to do so from D3cold. */
3051 	    (device_may_wakeup(&dev->dev) &&
3052 	     !pci_pme_capable(dev, PCI_D3cold)) ||
3053 
3054 	    /* If it is a bridge it must be allowed to go to D3. */
3055 	    !pci_power_manageable(dev))
3056 
3057 		*d3cold_ok = false;
3058 
3059 	return !*d3cold_ok;
3060 }
3061 
3062 /*
3063  * pci_bridge_d3_update - Update bridge D3 capabilities
3064  * @dev: PCI device which is changed
3065  *
3066  * Update upstream bridge PM capabilities accordingly depending on if the
3067  * device PM configuration was changed or the device is being removed.  The
3068  * change is also propagated upstream.
3069  */
3070 void pci_bridge_d3_update(struct pci_dev *dev)
3071 {
3072 	bool remove = !device_is_registered(&dev->dev);
3073 	struct pci_dev *bridge;
3074 	bool d3cold_ok = true;
3075 
3076 	bridge = pci_upstream_bridge(dev);
3077 	if (!bridge || !pci_bridge_d3_possible(bridge))
3078 		return;
3079 
3080 	/*
3081 	 * If D3 is currently allowed for the bridge, removing one of its
3082 	 * children won't change that.
3083 	 */
3084 	if (remove && bridge->bridge_d3)
3085 		return;
3086 
3087 	/*
3088 	 * If D3 is currently allowed for the bridge and a child is added or
3089 	 * changed, disallowance of D3 can only be caused by that child, so
3090 	 * we only need to check that single device, not any of its siblings.
3091 	 *
3092 	 * If D3 is currently not allowed for the bridge, checking the device
3093 	 * first may allow us to skip checking its siblings.
3094 	 */
3095 	if (!remove)
3096 		pci_dev_check_d3cold(dev, &d3cold_ok);
3097 
3098 	/*
3099 	 * If D3 is currently not allowed for the bridge, this may be caused
3100 	 * either by the device being changed/removed or any of its siblings,
3101 	 * so we need to go through all children to find out if one of them
3102 	 * continues to block D3.
3103 	 */
3104 	if (d3cold_ok && !bridge->bridge_d3)
3105 		pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
3106 			     &d3cold_ok);
3107 
3108 	if (bridge->bridge_d3 != d3cold_ok) {
3109 		bridge->bridge_d3 = d3cold_ok;
3110 		/* Propagate change to upstream bridges */
3111 		pci_bridge_d3_update(bridge);
3112 	}
3113 }
3114 
3115 /**
3116  * pci_d3cold_enable - Enable D3cold for device
3117  * @dev: PCI device to handle
3118  *
3119  * This function can be used in drivers to enable D3cold from the device
3120  * they handle.  It also updates upstream PCI bridge PM capabilities
3121  * accordingly.
3122  */
3123 void pci_d3cold_enable(struct pci_dev *dev)
3124 {
3125 	if (dev->no_d3cold) {
3126 		dev->no_d3cold = false;
3127 		pci_bridge_d3_update(dev);
3128 	}
3129 }
3130 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
3131 
3132 /**
3133  * pci_d3cold_disable - Disable D3cold for device
3134  * @dev: PCI device to handle
3135  *
3136  * This function can be used in drivers to disable D3cold from the device
3137  * they handle.  It also updates upstream PCI bridge PM capabilities
3138  * accordingly.
3139  */
3140 void pci_d3cold_disable(struct pci_dev *dev)
3141 {
3142 	if (!dev->no_d3cold) {
3143 		dev->no_d3cold = true;
3144 		pci_bridge_d3_update(dev);
3145 	}
3146 }
3147 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3148 
3149 /**
3150  * pci_pm_init - Initialize PM functions of given PCI device
3151  * @dev: PCI device to handle.
3152  */
3153 void pci_pm_init(struct pci_dev *dev)
3154 {
3155 	int pm;
3156 	u16 status;
3157 	u16 pmc;
3158 
3159 	pm_runtime_forbid(&dev->dev);
3160 	pm_runtime_set_active(&dev->dev);
3161 	pm_runtime_enable(&dev->dev);
3162 	device_enable_async_suspend(&dev->dev);
3163 	dev->wakeup_prepared = false;
3164 
3165 	dev->pm_cap = 0;
3166 	dev->pme_support = 0;
3167 
3168 	/* find PCI PM capability in list */
3169 	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3170 	if (!pm)
3171 		return;
3172 	/* Check device's ability to generate PME# */
3173 	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3174 
3175 	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3176 		pci_err(dev, "unsupported PM cap regs version (%u)\n",
3177 			pmc & PCI_PM_CAP_VER_MASK);
3178 		return;
3179 	}
3180 
3181 	dev->pm_cap = pm;
3182 	dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3183 	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3184 	dev->bridge_d3 = pci_bridge_d3_possible(dev);
3185 	dev->d3cold_allowed = true;
3186 
3187 	dev->d1_support = false;
3188 	dev->d2_support = false;
3189 	if (!pci_no_d1d2(dev)) {
3190 		if (pmc & PCI_PM_CAP_D1)
3191 			dev->d1_support = true;
3192 		if (pmc & PCI_PM_CAP_D2)
3193 			dev->d2_support = true;
3194 
3195 		if (dev->d1_support || dev->d2_support)
3196 			pci_info(dev, "supports%s%s\n",
3197 				   dev->d1_support ? " D1" : "",
3198 				   dev->d2_support ? " D2" : "");
3199 	}
3200 
3201 	pmc &= PCI_PM_CAP_PME_MASK;
3202 	if (pmc) {
3203 		pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3204 			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3205 			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3206 			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3207 			 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3208 			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3209 		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
3210 		dev->pme_poll = true;
3211 		/*
3212 		 * Make device's PM flags reflect the wake-up capability, but
3213 		 * let the user space enable it to wake up the system as needed.
3214 		 */
3215 		device_set_wakeup_capable(&dev->dev, true);
3216 		/* Disable the PME# generation functionality */
3217 		pci_pme_active(dev, false);
3218 	}
3219 
3220 	pci_read_config_word(dev, PCI_STATUS, &status);
3221 	if (status & PCI_STATUS_IMM_READY)
3222 		dev->imm_ready = 1;
3223 }
3224 
3225 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3226 {
3227 	unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3228 
3229 	switch (prop) {
3230 	case PCI_EA_P_MEM:
3231 	case PCI_EA_P_VF_MEM:
3232 		flags |= IORESOURCE_MEM;
3233 		break;
3234 	case PCI_EA_P_MEM_PREFETCH:
3235 	case PCI_EA_P_VF_MEM_PREFETCH:
3236 		flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3237 		break;
3238 	case PCI_EA_P_IO:
3239 		flags |= IORESOURCE_IO;
3240 		break;
3241 	default:
3242 		return 0;
3243 	}
3244 
3245 	return flags;
3246 }
3247 
3248 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3249 					    u8 prop)
3250 {
3251 	if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3252 		return &dev->resource[bei];
3253 #ifdef CONFIG_PCI_IOV
3254 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3255 		 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3256 		return &dev->resource[PCI_IOV_RESOURCES +
3257 				      bei - PCI_EA_BEI_VF_BAR0];
3258 #endif
3259 	else if (bei == PCI_EA_BEI_ROM)
3260 		return &dev->resource[PCI_ROM_RESOURCE];
3261 	else
3262 		return NULL;
3263 }
3264 
3265 /* Read an Enhanced Allocation (EA) entry */
3266 static int pci_ea_read(struct pci_dev *dev, int offset)
3267 {
3268 	struct resource *res;
3269 	int ent_size, ent_offset = offset;
3270 	resource_size_t start, end;
3271 	unsigned long flags;
3272 	u32 dw0, bei, base, max_offset;
3273 	u8 prop;
3274 	bool support_64 = (sizeof(resource_size_t) >= 8);
3275 
3276 	pci_read_config_dword(dev, ent_offset, &dw0);
3277 	ent_offset += 4;
3278 
3279 	/* Entry size field indicates DWORDs after 1st */
3280 	ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
3281 
3282 	if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3283 		goto out;
3284 
3285 	bei = (dw0 & PCI_EA_BEI) >> 4;
3286 	prop = (dw0 & PCI_EA_PP) >> 8;
3287 
3288 	/*
3289 	 * If the Property is in the reserved range, try the Secondary
3290 	 * Property instead.
3291 	 */
3292 	if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3293 		prop = (dw0 & PCI_EA_SP) >> 16;
3294 	if (prop > PCI_EA_P_BRIDGE_IO)
3295 		goto out;
3296 
3297 	res = pci_ea_get_resource(dev, bei, prop);
3298 	if (!res) {
3299 		pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3300 		goto out;
3301 	}
3302 
3303 	flags = pci_ea_flags(dev, prop);
3304 	if (!flags) {
3305 		pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3306 		goto out;
3307 	}
3308 
3309 	/* Read Base */
3310 	pci_read_config_dword(dev, ent_offset, &base);
3311 	start = (base & PCI_EA_FIELD_MASK);
3312 	ent_offset += 4;
3313 
3314 	/* Read MaxOffset */
3315 	pci_read_config_dword(dev, ent_offset, &max_offset);
3316 	ent_offset += 4;
3317 
3318 	/* Read Base MSBs (if 64-bit entry) */
3319 	if (base & PCI_EA_IS_64) {
3320 		u32 base_upper;
3321 
3322 		pci_read_config_dword(dev, ent_offset, &base_upper);
3323 		ent_offset += 4;
3324 
3325 		flags |= IORESOURCE_MEM_64;
3326 
3327 		/* entry starts above 32-bit boundary, can't use */
3328 		if (!support_64 && base_upper)
3329 			goto out;
3330 
3331 		if (support_64)
3332 			start |= ((u64)base_upper << 32);
3333 	}
3334 
3335 	end = start + (max_offset | 0x03);
3336 
3337 	/* Read MaxOffset MSBs (if 64-bit entry) */
3338 	if (max_offset & PCI_EA_IS_64) {
3339 		u32 max_offset_upper;
3340 
3341 		pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3342 		ent_offset += 4;
3343 
3344 		flags |= IORESOURCE_MEM_64;
3345 
3346 		/* entry too big, can't use */
3347 		if (!support_64 && max_offset_upper)
3348 			goto out;
3349 
3350 		if (support_64)
3351 			end += ((u64)max_offset_upper << 32);
3352 	}
3353 
3354 	if (end < start) {
3355 		pci_err(dev, "EA Entry crosses address boundary\n");
3356 		goto out;
3357 	}
3358 
3359 	if (ent_size != ent_offset - offset) {
3360 		pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3361 			ent_size, ent_offset - offset);
3362 		goto out;
3363 	}
3364 
3365 	res->name = pci_name(dev);
3366 	res->start = start;
3367 	res->end = end;
3368 	res->flags = flags;
3369 
3370 	if (bei <= PCI_EA_BEI_BAR5)
3371 		pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3372 			   bei, res, prop);
3373 	else if (bei == PCI_EA_BEI_ROM)
3374 		pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3375 			   res, prop);
3376 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3377 		pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3378 			   bei - PCI_EA_BEI_VF_BAR0, res, prop);
3379 	else
3380 		pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3381 			   bei, res, prop);
3382 
3383 out:
3384 	return offset + ent_size;
3385 }
3386 
3387 /* Enhanced Allocation Initialization */
3388 void pci_ea_init(struct pci_dev *dev)
3389 {
3390 	int ea;
3391 	u8 num_ent;
3392 	int offset;
3393 	int i;
3394 
3395 	/* find PCI EA capability in list */
3396 	ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3397 	if (!ea)
3398 		return;
3399 
3400 	/* determine the number of entries */
3401 	pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3402 					&num_ent);
3403 	num_ent &= PCI_EA_NUM_ENT_MASK;
3404 
3405 	offset = ea + PCI_EA_FIRST_ENT;
3406 
3407 	/* Skip DWORD 2 for type 1 functions */
3408 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3409 		offset += 4;
3410 
3411 	/* parse each EA entry */
3412 	for (i = 0; i < num_ent; ++i)
3413 		offset = pci_ea_read(dev, offset);
3414 }
3415 
3416 static void pci_add_saved_cap(struct pci_dev *pci_dev,
3417 	struct pci_cap_saved_state *new_cap)
3418 {
3419 	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3420 }
3421 
3422 /**
3423  * _pci_add_cap_save_buffer - allocate buffer for saving given
3424  *			      capability registers
3425  * @dev: the PCI device
3426  * @cap: the capability to allocate the buffer for
3427  * @extended: Standard or Extended capability ID
3428  * @size: requested size of the buffer
3429  */
3430 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3431 				    bool extended, unsigned int size)
3432 {
3433 	int pos;
3434 	struct pci_cap_saved_state *save_state;
3435 
3436 	if (extended)
3437 		pos = pci_find_ext_capability(dev, cap);
3438 	else
3439 		pos = pci_find_capability(dev, cap);
3440 
3441 	if (!pos)
3442 		return 0;
3443 
3444 	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3445 	if (!save_state)
3446 		return -ENOMEM;
3447 
3448 	save_state->cap.cap_nr = cap;
3449 	save_state->cap.cap_extended = extended;
3450 	save_state->cap.size = size;
3451 	pci_add_saved_cap(dev, save_state);
3452 
3453 	return 0;
3454 }
3455 
3456 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3457 {
3458 	return _pci_add_cap_save_buffer(dev, cap, false, size);
3459 }
3460 
3461 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3462 {
3463 	return _pci_add_cap_save_buffer(dev, cap, true, size);
3464 }
3465 
3466 /**
3467  * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3468  * @dev: the PCI device
3469  */
3470 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3471 {
3472 	int error;
3473 
3474 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3475 					PCI_EXP_SAVE_REGS * sizeof(u16));
3476 	if (error)
3477 		pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3478 
3479 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3480 	if (error)
3481 		pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3482 
3483 	error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3484 					    2 * sizeof(u16));
3485 	if (error)
3486 		pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3487 
3488 	pci_allocate_vc_save_buffers(dev);
3489 }
3490 
3491 void pci_free_cap_save_buffers(struct pci_dev *dev)
3492 {
3493 	struct pci_cap_saved_state *tmp;
3494 	struct hlist_node *n;
3495 
3496 	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3497 		kfree(tmp);
3498 }
3499 
3500 /**
3501  * pci_configure_ari - enable or disable ARI forwarding
3502  * @dev: the PCI device
3503  *
3504  * If @dev and its upstream bridge both support ARI, enable ARI in the
3505  * bridge.  Otherwise, disable ARI in the bridge.
3506  */
3507 void pci_configure_ari(struct pci_dev *dev)
3508 {
3509 	u32 cap;
3510 	struct pci_dev *bridge;
3511 
3512 	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3513 		return;
3514 
3515 	bridge = dev->bus->self;
3516 	if (!bridge)
3517 		return;
3518 
3519 	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3520 	if (!(cap & PCI_EXP_DEVCAP2_ARI))
3521 		return;
3522 
3523 	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3524 		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3525 					 PCI_EXP_DEVCTL2_ARI);
3526 		bridge->ari_enabled = 1;
3527 	} else {
3528 		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3529 					   PCI_EXP_DEVCTL2_ARI);
3530 		bridge->ari_enabled = 0;
3531 	}
3532 }
3533 
3534 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3535 {
3536 	int pos;
3537 	u16 cap, ctrl;
3538 
3539 	pos = pdev->acs_cap;
3540 	if (!pos)
3541 		return false;
3542 
3543 	/*
3544 	 * Except for egress control, capabilities are either required
3545 	 * or only required if controllable.  Features missing from the
3546 	 * capability field can therefore be assumed as hard-wired enabled.
3547 	 */
3548 	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3549 	acs_flags &= (cap | PCI_ACS_EC);
3550 
3551 	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3552 	return (ctrl & acs_flags) == acs_flags;
3553 }
3554 
3555 /**
3556  * pci_acs_enabled - test ACS against required flags for a given device
3557  * @pdev: device to test
3558  * @acs_flags: required PCI ACS flags
3559  *
3560  * Return true if the device supports the provided flags.  Automatically
3561  * filters out flags that are not implemented on multifunction devices.
3562  *
3563  * Note that this interface checks the effective ACS capabilities of the
3564  * device rather than the actual capabilities.  For instance, most single
3565  * function endpoints are not required to support ACS because they have no
3566  * opportunity for peer-to-peer access.  We therefore return 'true'
3567  * regardless of whether the device exposes an ACS capability.  This makes
3568  * it much easier for callers of this function to ignore the actual type
3569  * or topology of the device when testing ACS support.
3570  */
3571 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3572 {
3573 	int ret;
3574 
3575 	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3576 	if (ret >= 0)
3577 		return ret > 0;
3578 
3579 	/*
3580 	 * Conventional PCI and PCI-X devices never support ACS, either
3581 	 * effectively or actually.  The shared bus topology implies that
3582 	 * any device on the bus can receive or snoop DMA.
3583 	 */
3584 	if (!pci_is_pcie(pdev))
3585 		return false;
3586 
3587 	switch (pci_pcie_type(pdev)) {
3588 	/*
3589 	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3590 	 * but since their primary interface is PCI/X, we conservatively
3591 	 * handle them as we would a non-PCIe device.
3592 	 */
3593 	case PCI_EXP_TYPE_PCIE_BRIDGE:
3594 	/*
3595 	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
3596 	 * applicable... must never implement an ACS Extended Capability...".
3597 	 * This seems arbitrary, but we take a conservative interpretation
3598 	 * of this statement.
3599 	 */
3600 	case PCI_EXP_TYPE_PCI_BRIDGE:
3601 	case PCI_EXP_TYPE_RC_EC:
3602 		return false;
3603 	/*
3604 	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3605 	 * implement ACS in order to indicate their peer-to-peer capabilities,
3606 	 * regardless of whether they are single- or multi-function devices.
3607 	 */
3608 	case PCI_EXP_TYPE_DOWNSTREAM:
3609 	case PCI_EXP_TYPE_ROOT_PORT:
3610 		return pci_acs_flags_enabled(pdev, acs_flags);
3611 	/*
3612 	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3613 	 * implemented by the remaining PCIe types to indicate peer-to-peer
3614 	 * capabilities, but only when they are part of a multifunction
3615 	 * device.  The footnote for section 6.12 indicates the specific
3616 	 * PCIe types included here.
3617 	 */
3618 	case PCI_EXP_TYPE_ENDPOINT:
3619 	case PCI_EXP_TYPE_UPSTREAM:
3620 	case PCI_EXP_TYPE_LEG_END:
3621 	case PCI_EXP_TYPE_RC_END:
3622 		if (!pdev->multifunction)
3623 			break;
3624 
3625 		return pci_acs_flags_enabled(pdev, acs_flags);
3626 	}
3627 
3628 	/*
3629 	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3630 	 * to single function devices with the exception of downstream ports.
3631 	 */
3632 	return true;
3633 }
3634 
3635 /**
3636  * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
3637  * @start: starting downstream device
3638  * @end: ending upstream device or NULL to search to the root bus
3639  * @acs_flags: required flags
3640  *
3641  * Walk up a device tree from start to end testing PCI ACS support.  If
3642  * any step along the way does not support the required flags, return false.
3643  */
3644 bool pci_acs_path_enabled(struct pci_dev *start,
3645 			  struct pci_dev *end, u16 acs_flags)
3646 {
3647 	struct pci_dev *pdev, *parent = start;
3648 
3649 	do {
3650 		pdev = parent;
3651 
3652 		if (!pci_acs_enabled(pdev, acs_flags))
3653 			return false;
3654 
3655 		if (pci_is_root_bus(pdev->bus))
3656 			return (end == NULL);
3657 
3658 		parent = pdev->bus->self;
3659 	} while (pdev != end);
3660 
3661 	return true;
3662 }
3663 
3664 /**
3665  * pci_acs_init - Initialize ACS if hardware supports it
3666  * @dev: the PCI device
3667  */
3668 void pci_acs_init(struct pci_dev *dev)
3669 {
3670 	dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3671 
3672 	/*
3673 	 * Attempt to enable ACS regardless of capability because some Root
3674 	 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3675 	 * the standard ACS capability but still support ACS via those
3676 	 * quirks.
3677 	 */
3678 	pci_enable_acs(dev);
3679 }
3680 
3681 /**
3682  * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3683  * @pdev: PCI device
3684  * @bar: BAR to find
3685  *
3686  * Helper to find the position of the ctrl register for a BAR.
3687  * Returns -ENOTSUPP if resizable BARs are not supported at all.
3688  * Returns -ENOENT if no ctrl register for the BAR could be found.
3689  */
3690 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3691 {
3692 	unsigned int pos, nbars, i;
3693 	u32 ctrl;
3694 
3695 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3696 	if (!pos)
3697 		return -ENOTSUPP;
3698 
3699 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3700 	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3701 		    PCI_REBAR_CTRL_NBAR_SHIFT;
3702 
3703 	for (i = 0; i < nbars; i++, pos += 8) {
3704 		int bar_idx;
3705 
3706 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3707 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3708 		if (bar_idx == bar)
3709 			return pos;
3710 	}
3711 
3712 	return -ENOENT;
3713 }
3714 
3715 /**
3716  * pci_rebar_get_possible_sizes - get possible sizes for BAR
3717  * @pdev: PCI device
3718  * @bar: BAR to query
3719  *
3720  * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3721  * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3722  */
3723 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3724 {
3725 	int pos;
3726 	u32 cap;
3727 
3728 	pos = pci_rebar_find_pos(pdev, bar);
3729 	if (pos < 0)
3730 		return 0;
3731 
3732 	pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3733 	cap &= PCI_REBAR_CAP_SIZES;
3734 
3735 	/* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
3736 	if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
3737 	    bar == 0 && cap == 0x7000)
3738 		cap = 0x3f000;
3739 
3740 	return cap >> 4;
3741 }
3742 EXPORT_SYMBOL(pci_rebar_get_possible_sizes);
3743 
3744 /**
3745  * pci_rebar_get_current_size - get the current size of a BAR
3746  * @pdev: PCI device
3747  * @bar: BAR to set size to
3748  *
3749  * Read the size of a BAR from the resizable BAR config.
3750  * Returns size if found or negative error code.
3751  */
3752 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3753 {
3754 	int pos;
3755 	u32 ctrl;
3756 
3757 	pos = pci_rebar_find_pos(pdev, bar);
3758 	if (pos < 0)
3759 		return pos;
3760 
3761 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3762 	return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3763 }
3764 
3765 /**
3766  * pci_rebar_set_size - set a new size for a BAR
3767  * @pdev: PCI device
3768  * @bar: BAR to set size to
3769  * @size: new size as defined in the spec (0=1MB, 19=512GB)
3770  *
3771  * Set the new size of a BAR as defined in the spec.
3772  * Returns zero if resizing was successful, error code otherwise.
3773  */
3774 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3775 {
3776 	int pos;
3777 	u32 ctrl;
3778 
3779 	pos = pci_rebar_find_pos(pdev, bar);
3780 	if (pos < 0)
3781 		return pos;
3782 
3783 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3784 	ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3785 	ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3786 	pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3787 	return 0;
3788 }
3789 
3790 /**
3791  * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3792  * @dev: the PCI device
3793  * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3794  *	PCI_EXP_DEVCAP2_ATOMIC_COMP32
3795  *	PCI_EXP_DEVCAP2_ATOMIC_COMP64
3796  *	PCI_EXP_DEVCAP2_ATOMIC_COMP128
3797  *
3798  * Return 0 if all upstream bridges support AtomicOp routing, egress
3799  * blocking is disabled on all upstream ports, and the root port supports
3800  * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3801  * AtomicOp completion), or negative otherwise.
3802  */
3803 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3804 {
3805 	struct pci_bus *bus = dev->bus;
3806 	struct pci_dev *bridge;
3807 	u32 cap, ctl2;
3808 
3809 	/*
3810 	 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit
3811 	 * in Device Control 2 is reserved in VFs and the PF value applies
3812 	 * to all associated VFs.
3813 	 */
3814 	if (dev->is_virtfn)
3815 		return -EINVAL;
3816 
3817 	if (!pci_is_pcie(dev))
3818 		return -EINVAL;
3819 
3820 	/*
3821 	 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3822 	 * AtomicOp requesters.  For now, we only support endpoints as
3823 	 * requesters and root ports as completers.  No endpoints as
3824 	 * completers, and no peer-to-peer.
3825 	 */
3826 
3827 	switch (pci_pcie_type(dev)) {
3828 	case PCI_EXP_TYPE_ENDPOINT:
3829 	case PCI_EXP_TYPE_LEG_END:
3830 	case PCI_EXP_TYPE_RC_END:
3831 		break;
3832 	default:
3833 		return -EINVAL;
3834 	}
3835 
3836 	while (bus->parent) {
3837 		bridge = bus->self;
3838 
3839 		pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3840 
3841 		switch (pci_pcie_type(bridge)) {
3842 		/* Ensure switch ports support AtomicOp routing */
3843 		case PCI_EXP_TYPE_UPSTREAM:
3844 		case PCI_EXP_TYPE_DOWNSTREAM:
3845 			if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3846 				return -EINVAL;
3847 			break;
3848 
3849 		/* Ensure root port supports all the sizes we care about */
3850 		case PCI_EXP_TYPE_ROOT_PORT:
3851 			if ((cap & cap_mask) != cap_mask)
3852 				return -EINVAL;
3853 			break;
3854 		}
3855 
3856 		/* Ensure upstream ports don't block AtomicOps on egress */
3857 		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3858 			pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3859 						   &ctl2);
3860 			if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3861 				return -EINVAL;
3862 		}
3863 
3864 		bus = bus->parent;
3865 	}
3866 
3867 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3868 				 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3869 	return 0;
3870 }
3871 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3872 
3873 /**
3874  * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3875  * @dev: the PCI device
3876  * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3877  *
3878  * Perform INTx swizzling for a device behind one level of bridge.  This is
3879  * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3880  * behind bridges on add-in cards.  For devices with ARI enabled, the slot
3881  * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3882  * the PCI Express Base Specification, Revision 2.1)
3883  */
3884 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3885 {
3886 	int slot;
3887 
3888 	if (pci_ari_enabled(dev->bus))
3889 		slot = 0;
3890 	else
3891 		slot = PCI_SLOT(dev->devfn);
3892 
3893 	return (((pin - 1) + slot) % 4) + 1;
3894 }
3895 
3896 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3897 {
3898 	u8 pin;
3899 
3900 	pin = dev->pin;
3901 	if (!pin)
3902 		return -1;
3903 
3904 	while (!pci_is_root_bus(dev->bus)) {
3905 		pin = pci_swizzle_interrupt_pin(dev, pin);
3906 		dev = dev->bus->self;
3907 	}
3908 	*bridge = dev;
3909 	return pin;
3910 }
3911 
3912 /**
3913  * pci_common_swizzle - swizzle INTx all the way to root bridge
3914  * @dev: the PCI device
3915  * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3916  *
3917  * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
3918  * bridges all the way up to a PCI root bus.
3919  */
3920 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3921 {
3922 	u8 pin = *pinp;
3923 
3924 	while (!pci_is_root_bus(dev->bus)) {
3925 		pin = pci_swizzle_interrupt_pin(dev, pin);
3926 		dev = dev->bus->self;
3927 	}
3928 	*pinp = pin;
3929 	return PCI_SLOT(dev->devfn);
3930 }
3931 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3932 
3933 /**
3934  * pci_release_region - Release a PCI bar
3935  * @pdev: PCI device whose resources were previously reserved by
3936  *	  pci_request_region()
3937  * @bar: BAR to release
3938  *
3939  * Releases the PCI I/O and memory resources previously reserved by a
3940  * successful call to pci_request_region().  Call this function only
3941  * after all use of the PCI regions has ceased.
3942  */
3943 void pci_release_region(struct pci_dev *pdev, int bar)
3944 {
3945 	struct pci_devres *dr;
3946 
3947 	if (pci_resource_len(pdev, bar) == 0)
3948 		return;
3949 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3950 		release_region(pci_resource_start(pdev, bar),
3951 				pci_resource_len(pdev, bar));
3952 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3953 		release_mem_region(pci_resource_start(pdev, bar),
3954 				pci_resource_len(pdev, bar));
3955 
3956 	dr = find_pci_dr(pdev);
3957 	if (dr)
3958 		dr->region_mask &= ~(1 << bar);
3959 }
3960 EXPORT_SYMBOL(pci_release_region);
3961 
3962 /**
3963  * __pci_request_region - Reserved PCI I/O and memory resource
3964  * @pdev: PCI device whose resources are to be reserved
3965  * @bar: BAR to be reserved
3966  * @res_name: Name to be associated with resource.
3967  * @exclusive: whether the region access is exclusive or not
3968  *
3969  * Mark the PCI region associated with PCI device @pdev BAR @bar as
3970  * being reserved by owner @res_name.  Do not access any
3971  * address inside the PCI regions unless this call returns
3972  * successfully.
3973  *
3974  * If @exclusive is set, then the region is marked so that userspace
3975  * is explicitly not allowed to map the resource via /dev/mem or
3976  * sysfs MMIO access.
3977  *
3978  * Returns 0 on success, or %EBUSY on error.  A warning
3979  * message is also printed on failure.
3980  */
3981 static int __pci_request_region(struct pci_dev *pdev, int bar,
3982 				const char *res_name, int exclusive)
3983 {
3984 	struct pci_devres *dr;
3985 
3986 	if (pci_resource_len(pdev, bar) == 0)
3987 		return 0;
3988 
3989 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3990 		if (!request_region(pci_resource_start(pdev, bar),
3991 			    pci_resource_len(pdev, bar), res_name))
3992 			goto err_out;
3993 	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3994 		if (!__request_mem_region(pci_resource_start(pdev, bar),
3995 					pci_resource_len(pdev, bar), res_name,
3996 					exclusive))
3997 			goto err_out;
3998 	}
3999 
4000 	dr = find_pci_dr(pdev);
4001 	if (dr)
4002 		dr->region_mask |= 1 << bar;
4003 
4004 	return 0;
4005 
4006 err_out:
4007 	pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
4008 		 &pdev->resource[bar]);
4009 	return -EBUSY;
4010 }
4011 
4012 /**
4013  * pci_request_region - Reserve PCI I/O and memory resource
4014  * @pdev: PCI device whose resources are to be reserved
4015  * @bar: BAR to be reserved
4016  * @res_name: Name to be associated with resource
4017  *
4018  * Mark the PCI region associated with PCI device @pdev BAR @bar as
4019  * being reserved by owner @res_name.  Do not access any
4020  * address inside the PCI regions unless this call returns
4021  * successfully.
4022  *
4023  * Returns 0 on success, or %EBUSY on error.  A warning
4024  * message is also printed on failure.
4025  */
4026 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
4027 {
4028 	return __pci_request_region(pdev, bar, res_name, 0);
4029 }
4030 EXPORT_SYMBOL(pci_request_region);
4031 
4032 /**
4033  * pci_release_selected_regions - Release selected PCI I/O and memory resources
4034  * @pdev: PCI device whose resources were previously reserved
4035  * @bars: Bitmask of BARs to be released
4036  *
4037  * Release selected PCI I/O and memory resources previously reserved.
4038  * Call this function only after all use of the PCI regions has ceased.
4039  */
4040 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
4041 {
4042 	int i;
4043 
4044 	for (i = 0; i < PCI_STD_NUM_BARS; i++)
4045 		if (bars & (1 << i))
4046 			pci_release_region(pdev, i);
4047 }
4048 EXPORT_SYMBOL(pci_release_selected_regions);
4049 
4050 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
4051 					  const char *res_name, int excl)
4052 {
4053 	int i;
4054 
4055 	for (i = 0; i < PCI_STD_NUM_BARS; i++)
4056 		if (bars & (1 << i))
4057 			if (__pci_request_region(pdev, i, res_name, excl))
4058 				goto err_out;
4059 	return 0;
4060 
4061 err_out:
4062 	while (--i >= 0)
4063 		if (bars & (1 << i))
4064 			pci_release_region(pdev, i);
4065 
4066 	return -EBUSY;
4067 }
4068 
4069 
4070 /**
4071  * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
4072  * @pdev: PCI device whose resources are to be reserved
4073  * @bars: Bitmask of BARs to be requested
4074  * @res_name: Name to be associated with resource
4075  */
4076 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
4077 				 const char *res_name)
4078 {
4079 	return __pci_request_selected_regions(pdev, bars, res_name, 0);
4080 }
4081 EXPORT_SYMBOL(pci_request_selected_regions);
4082 
4083 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
4084 					   const char *res_name)
4085 {
4086 	return __pci_request_selected_regions(pdev, bars, res_name,
4087 			IORESOURCE_EXCLUSIVE);
4088 }
4089 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
4090 
4091 /**
4092  * pci_release_regions - Release reserved PCI I/O and memory resources
4093  * @pdev: PCI device whose resources were previously reserved by
4094  *	  pci_request_regions()
4095  *
4096  * Releases all PCI I/O and memory resources previously reserved by a
4097  * successful call to pci_request_regions().  Call this function only
4098  * after all use of the PCI regions has ceased.
4099  */
4100 
4101 void pci_release_regions(struct pci_dev *pdev)
4102 {
4103 	pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
4104 }
4105 EXPORT_SYMBOL(pci_release_regions);
4106 
4107 /**
4108  * pci_request_regions - Reserve PCI I/O and memory resources
4109  * @pdev: PCI device whose resources are to be reserved
4110  * @res_name: Name to be associated with resource.
4111  *
4112  * Mark all PCI regions associated with PCI device @pdev as
4113  * being reserved by owner @res_name.  Do not access any
4114  * address inside the PCI regions unless this call returns
4115  * successfully.
4116  *
4117  * Returns 0 on success, or %EBUSY on error.  A warning
4118  * message is also printed on failure.
4119  */
4120 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
4121 {
4122 	return pci_request_selected_regions(pdev,
4123 			((1 << PCI_STD_NUM_BARS) - 1), res_name);
4124 }
4125 EXPORT_SYMBOL(pci_request_regions);
4126 
4127 /**
4128  * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
4129  * @pdev: PCI device whose resources are to be reserved
4130  * @res_name: Name to be associated with resource.
4131  *
4132  * Mark all PCI regions associated with PCI device @pdev as being reserved
4133  * by owner @res_name.  Do not access any address inside the PCI regions
4134  * unless this call returns successfully.
4135  *
4136  * pci_request_regions_exclusive() will mark the region so that /dev/mem
4137  * and the sysfs MMIO access will not be allowed.
4138  *
4139  * Returns 0 on success, or %EBUSY on error.  A warning message is also
4140  * printed on failure.
4141  */
4142 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
4143 {
4144 	return pci_request_selected_regions_exclusive(pdev,
4145 				((1 << PCI_STD_NUM_BARS) - 1), res_name);
4146 }
4147 EXPORT_SYMBOL(pci_request_regions_exclusive);
4148 
4149 /*
4150  * Record the PCI IO range (expressed as CPU physical address + size).
4151  * Return a negative value if an error has occurred, zero otherwise
4152  */
4153 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
4154 			resource_size_t	size)
4155 {
4156 	int ret = 0;
4157 #ifdef PCI_IOBASE
4158 	struct logic_pio_hwaddr *range;
4159 
4160 	if (!size || addr + size < addr)
4161 		return -EINVAL;
4162 
4163 	range = kzalloc(sizeof(*range), GFP_ATOMIC);
4164 	if (!range)
4165 		return -ENOMEM;
4166 
4167 	range->fwnode = fwnode;
4168 	range->size = size;
4169 	range->hw_start = addr;
4170 	range->flags = LOGIC_PIO_CPU_MMIO;
4171 
4172 	ret = logic_pio_register_range(range);
4173 	if (ret)
4174 		kfree(range);
4175 
4176 	/* Ignore duplicates due to deferred probing */
4177 	if (ret == -EEXIST)
4178 		ret = 0;
4179 #endif
4180 
4181 	return ret;
4182 }
4183 
4184 phys_addr_t pci_pio_to_address(unsigned long pio)
4185 {
4186 	phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
4187 
4188 #ifdef PCI_IOBASE
4189 	if (pio >= MMIO_UPPER_LIMIT)
4190 		return address;
4191 
4192 	address = logic_pio_to_hwaddr(pio);
4193 #endif
4194 
4195 	return address;
4196 }
4197 EXPORT_SYMBOL_GPL(pci_pio_to_address);
4198 
4199 unsigned long __weak pci_address_to_pio(phys_addr_t address)
4200 {
4201 #ifdef PCI_IOBASE
4202 	return logic_pio_trans_cpuaddr(address);
4203 #else
4204 	if (address > IO_SPACE_LIMIT)
4205 		return (unsigned long)-1;
4206 
4207 	return (unsigned long) address;
4208 #endif
4209 }
4210 
4211 /**
4212  * pci_remap_iospace - Remap the memory mapped I/O space
4213  * @res: Resource describing the I/O space
4214  * @phys_addr: physical address of range to be mapped
4215  *
4216  * Remap the memory mapped I/O space described by the @res and the CPU
4217  * physical address @phys_addr into virtual address space.  Only
4218  * architectures that have memory mapped IO functions defined (and the
4219  * PCI_IOBASE value defined) should call this function.
4220  */
4221 #ifndef pci_remap_iospace
4222 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4223 {
4224 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4225 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4226 
4227 	if (!(res->flags & IORESOURCE_IO))
4228 		return -EINVAL;
4229 
4230 	if (res->end > IO_SPACE_LIMIT)
4231 		return -EINVAL;
4232 
4233 	return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4234 				  pgprot_device(PAGE_KERNEL));
4235 #else
4236 	/*
4237 	 * This architecture does not have memory mapped I/O space,
4238 	 * so this function should never be called
4239 	 */
4240 	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4241 	return -ENODEV;
4242 #endif
4243 }
4244 EXPORT_SYMBOL(pci_remap_iospace);
4245 #endif
4246 
4247 /**
4248  * pci_unmap_iospace - Unmap the memory mapped I/O space
4249  * @res: resource to be unmapped
4250  *
4251  * Unmap the CPU virtual address @res from virtual address space.  Only
4252  * architectures that have memory mapped IO functions defined (and the
4253  * PCI_IOBASE value defined) should call this function.
4254  */
4255 void pci_unmap_iospace(struct resource *res)
4256 {
4257 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4258 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4259 
4260 	vunmap_range(vaddr, vaddr + resource_size(res));
4261 #endif
4262 }
4263 EXPORT_SYMBOL(pci_unmap_iospace);
4264 
4265 static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
4266 {
4267 	struct resource **res = ptr;
4268 
4269 	pci_unmap_iospace(*res);
4270 }
4271 
4272 /**
4273  * devm_pci_remap_iospace - Managed pci_remap_iospace()
4274  * @dev: Generic device to remap IO address for
4275  * @res: Resource describing the I/O space
4276  * @phys_addr: physical address of range to be mapped
4277  *
4278  * Managed pci_remap_iospace().  Map is automatically unmapped on driver
4279  * detach.
4280  */
4281 int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4282 			   phys_addr_t phys_addr)
4283 {
4284 	const struct resource **ptr;
4285 	int error;
4286 
4287 	ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4288 	if (!ptr)
4289 		return -ENOMEM;
4290 
4291 	error = pci_remap_iospace(res, phys_addr);
4292 	if (error) {
4293 		devres_free(ptr);
4294 	} else	{
4295 		*ptr = res;
4296 		devres_add(dev, ptr);
4297 	}
4298 
4299 	return error;
4300 }
4301 EXPORT_SYMBOL(devm_pci_remap_iospace);
4302 
4303 /**
4304  * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4305  * @dev: Generic device to remap IO address for
4306  * @offset: Resource address to map
4307  * @size: Size of map
4308  *
4309  * Managed pci_remap_cfgspace().  Map is automatically unmapped on driver
4310  * detach.
4311  */
4312 void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4313 				      resource_size_t offset,
4314 				      resource_size_t size)
4315 {
4316 	void __iomem **ptr, *addr;
4317 
4318 	ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4319 	if (!ptr)
4320 		return NULL;
4321 
4322 	addr = pci_remap_cfgspace(offset, size);
4323 	if (addr) {
4324 		*ptr = addr;
4325 		devres_add(dev, ptr);
4326 	} else
4327 		devres_free(ptr);
4328 
4329 	return addr;
4330 }
4331 EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4332 
4333 /**
4334  * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4335  * @dev: generic device to handle the resource for
4336  * @res: configuration space resource to be handled
4337  *
4338  * Checks that a resource is a valid memory region, requests the memory
4339  * region and ioremaps with pci_remap_cfgspace() API that ensures the
4340  * proper PCI configuration space memory attributes are guaranteed.
4341  *
4342  * All operations are managed and will be undone on driver detach.
4343  *
4344  * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4345  * on failure. Usage example::
4346  *
4347  *	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4348  *	base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4349  *	if (IS_ERR(base))
4350  *		return PTR_ERR(base);
4351  */
4352 void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4353 					  struct resource *res)
4354 {
4355 	resource_size_t size;
4356 	const char *name;
4357 	void __iomem *dest_ptr;
4358 
4359 	BUG_ON(!dev);
4360 
4361 	if (!res || resource_type(res) != IORESOURCE_MEM) {
4362 		dev_err(dev, "invalid resource\n");
4363 		return IOMEM_ERR_PTR(-EINVAL);
4364 	}
4365 
4366 	size = resource_size(res);
4367 
4368 	if (res->name)
4369 		name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev),
4370 				      res->name);
4371 	else
4372 		name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL);
4373 	if (!name)
4374 		return IOMEM_ERR_PTR(-ENOMEM);
4375 
4376 	if (!devm_request_mem_region(dev, res->start, size, name)) {
4377 		dev_err(dev, "can't request region for resource %pR\n", res);
4378 		return IOMEM_ERR_PTR(-EBUSY);
4379 	}
4380 
4381 	dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4382 	if (!dest_ptr) {
4383 		dev_err(dev, "ioremap failed for resource %pR\n", res);
4384 		devm_release_mem_region(dev, res->start, size);
4385 		dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4386 	}
4387 
4388 	return dest_ptr;
4389 }
4390 EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4391 
4392 static void __pci_set_master(struct pci_dev *dev, bool enable)
4393 {
4394 	u16 old_cmd, cmd;
4395 
4396 	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4397 	if (enable)
4398 		cmd = old_cmd | PCI_COMMAND_MASTER;
4399 	else
4400 		cmd = old_cmd & ~PCI_COMMAND_MASTER;
4401 	if (cmd != old_cmd) {
4402 		pci_dbg(dev, "%s bus mastering\n",
4403 			enable ? "enabling" : "disabling");
4404 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4405 	}
4406 	dev->is_busmaster = enable;
4407 }
4408 
4409 /**
4410  * pcibios_setup - process "pci=" kernel boot arguments
4411  * @str: string used to pass in "pci=" kernel boot arguments
4412  *
4413  * Process kernel boot arguments.  This is the default implementation.
4414  * Architecture specific implementations can override this as necessary.
4415  */
4416 char * __weak __init pcibios_setup(char *str)
4417 {
4418 	return str;
4419 }
4420 
4421 /**
4422  * pcibios_set_master - enable PCI bus-mastering for device dev
4423  * @dev: the PCI device to enable
4424  *
4425  * Enables PCI bus-mastering for the device.  This is the default
4426  * implementation.  Architecture specific implementations can override
4427  * this if necessary.
4428  */
4429 void __weak pcibios_set_master(struct pci_dev *dev)
4430 {
4431 	u8 lat;
4432 
4433 	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4434 	if (pci_is_pcie(dev))
4435 		return;
4436 
4437 	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4438 	if (lat < 16)
4439 		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4440 	else if (lat > pcibios_max_latency)
4441 		lat = pcibios_max_latency;
4442 	else
4443 		return;
4444 
4445 	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4446 }
4447 
4448 /**
4449  * pci_set_master - enables bus-mastering for device dev
4450  * @dev: the PCI device to enable
4451  *
4452  * Enables bus-mastering on the device and calls pcibios_set_master()
4453  * to do the needed arch specific settings.
4454  */
4455 void pci_set_master(struct pci_dev *dev)
4456 {
4457 	__pci_set_master(dev, true);
4458 	pcibios_set_master(dev);
4459 }
4460 EXPORT_SYMBOL(pci_set_master);
4461 
4462 /**
4463  * pci_clear_master - disables bus-mastering for device dev
4464  * @dev: the PCI device to disable
4465  */
4466 void pci_clear_master(struct pci_dev *dev)
4467 {
4468 	__pci_set_master(dev, false);
4469 }
4470 EXPORT_SYMBOL(pci_clear_master);
4471 
4472 /**
4473  * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4474  * @dev: the PCI device for which MWI is to be enabled
4475  *
4476  * Helper function for pci_set_mwi.
4477  * Originally copied from drivers/net/acenic.c.
4478  * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4479  *
4480  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4481  */
4482 int pci_set_cacheline_size(struct pci_dev *dev)
4483 {
4484 	u8 cacheline_size;
4485 
4486 	if (!pci_cache_line_size)
4487 		return -EINVAL;
4488 
4489 	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4490 	   equal to or multiple of the right value. */
4491 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4492 	if (cacheline_size >= pci_cache_line_size &&
4493 	    (cacheline_size % pci_cache_line_size) == 0)
4494 		return 0;
4495 
4496 	/* Write the correct value. */
4497 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4498 	/* Read it back. */
4499 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4500 	if (cacheline_size == pci_cache_line_size)
4501 		return 0;
4502 
4503 	pci_dbg(dev, "cache line size of %d is not supported\n",
4504 		   pci_cache_line_size << 2);
4505 
4506 	return -EINVAL;
4507 }
4508 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4509 
4510 /**
4511  * pci_set_mwi - enables memory-write-invalidate PCI transaction
4512  * @dev: the PCI device for which MWI is enabled
4513  *
4514  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4515  *
4516  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4517  */
4518 int pci_set_mwi(struct pci_dev *dev)
4519 {
4520 #ifdef PCI_DISABLE_MWI
4521 	return 0;
4522 #else
4523 	int rc;
4524 	u16 cmd;
4525 
4526 	rc = pci_set_cacheline_size(dev);
4527 	if (rc)
4528 		return rc;
4529 
4530 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4531 	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4532 		pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4533 		cmd |= PCI_COMMAND_INVALIDATE;
4534 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4535 	}
4536 	return 0;
4537 #endif
4538 }
4539 EXPORT_SYMBOL(pci_set_mwi);
4540 
4541 /**
4542  * pcim_set_mwi - a device-managed pci_set_mwi()
4543  * @dev: the PCI device for which MWI is enabled
4544  *
4545  * Managed pci_set_mwi().
4546  *
4547  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4548  */
4549 int pcim_set_mwi(struct pci_dev *dev)
4550 {
4551 	struct pci_devres *dr;
4552 
4553 	dr = find_pci_dr(dev);
4554 	if (!dr)
4555 		return -ENOMEM;
4556 
4557 	dr->mwi = 1;
4558 	return pci_set_mwi(dev);
4559 }
4560 EXPORT_SYMBOL(pcim_set_mwi);
4561 
4562 /**
4563  * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4564  * @dev: the PCI device for which MWI is enabled
4565  *
4566  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4567  * Callers are not required to check the return value.
4568  *
4569  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4570  */
4571 int pci_try_set_mwi(struct pci_dev *dev)
4572 {
4573 #ifdef PCI_DISABLE_MWI
4574 	return 0;
4575 #else
4576 	return pci_set_mwi(dev);
4577 #endif
4578 }
4579 EXPORT_SYMBOL(pci_try_set_mwi);
4580 
4581 /**
4582  * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4583  * @dev: the PCI device to disable
4584  *
4585  * Disables PCI Memory-Write-Invalidate transaction on the device
4586  */
4587 void pci_clear_mwi(struct pci_dev *dev)
4588 {
4589 #ifndef PCI_DISABLE_MWI
4590 	u16 cmd;
4591 
4592 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4593 	if (cmd & PCI_COMMAND_INVALIDATE) {
4594 		cmd &= ~PCI_COMMAND_INVALIDATE;
4595 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4596 	}
4597 #endif
4598 }
4599 EXPORT_SYMBOL(pci_clear_mwi);
4600 
4601 /**
4602  * pci_disable_parity - disable parity checking for device
4603  * @dev: the PCI device to operate on
4604  *
4605  * Disable parity checking for device @dev
4606  */
4607 void pci_disable_parity(struct pci_dev *dev)
4608 {
4609 	u16 cmd;
4610 
4611 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4612 	if (cmd & PCI_COMMAND_PARITY) {
4613 		cmd &= ~PCI_COMMAND_PARITY;
4614 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4615 	}
4616 }
4617 
4618 /**
4619  * pci_intx - enables/disables PCI INTx for device dev
4620  * @pdev: the PCI device to operate on
4621  * @enable: boolean: whether to enable or disable PCI INTx
4622  *
4623  * Enables/disables PCI INTx for device @pdev
4624  */
4625 void pci_intx(struct pci_dev *pdev, int enable)
4626 {
4627 	u16 pci_command, new;
4628 
4629 	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4630 
4631 	if (enable)
4632 		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4633 	else
4634 		new = pci_command | PCI_COMMAND_INTX_DISABLE;
4635 
4636 	if (new != pci_command) {
4637 		struct pci_devres *dr;
4638 
4639 		pci_write_config_word(pdev, PCI_COMMAND, new);
4640 
4641 		dr = find_pci_dr(pdev);
4642 		if (dr && !dr->restore_intx) {
4643 			dr->restore_intx = 1;
4644 			dr->orig_intx = !enable;
4645 		}
4646 	}
4647 }
4648 EXPORT_SYMBOL_GPL(pci_intx);
4649 
4650 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4651 {
4652 	struct pci_bus *bus = dev->bus;
4653 	bool mask_updated = true;
4654 	u32 cmd_status_dword;
4655 	u16 origcmd, newcmd;
4656 	unsigned long flags;
4657 	bool irq_pending;
4658 
4659 	/*
4660 	 * We do a single dword read to retrieve both command and status.
4661 	 * Document assumptions that make this possible.
4662 	 */
4663 	BUILD_BUG_ON(PCI_COMMAND % 4);
4664 	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4665 
4666 	raw_spin_lock_irqsave(&pci_lock, flags);
4667 
4668 	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4669 
4670 	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4671 
4672 	/*
4673 	 * Check interrupt status register to see whether our device
4674 	 * triggered the interrupt (when masking) or the next IRQ is
4675 	 * already pending (when unmasking).
4676 	 */
4677 	if (mask != irq_pending) {
4678 		mask_updated = false;
4679 		goto done;
4680 	}
4681 
4682 	origcmd = cmd_status_dword;
4683 	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4684 	if (mask)
4685 		newcmd |= PCI_COMMAND_INTX_DISABLE;
4686 	if (newcmd != origcmd)
4687 		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4688 
4689 done:
4690 	raw_spin_unlock_irqrestore(&pci_lock, flags);
4691 
4692 	return mask_updated;
4693 }
4694 
4695 /**
4696  * pci_check_and_mask_intx - mask INTx on pending interrupt
4697  * @dev: the PCI device to operate on
4698  *
4699  * Check if the device dev has its INTx line asserted, mask it and return
4700  * true in that case. False is returned if no interrupt was pending.
4701  */
4702 bool pci_check_and_mask_intx(struct pci_dev *dev)
4703 {
4704 	return pci_check_and_set_intx_mask(dev, true);
4705 }
4706 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4707 
4708 /**
4709  * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4710  * @dev: the PCI device to operate on
4711  *
4712  * Check if the device dev has its INTx line asserted, unmask it if not and
4713  * return true. False is returned and the mask remains active if there was
4714  * still an interrupt pending.
4715  */
4716 bool pci_check_and_unmask_intx(struct pci_dev *dev)
4717 {
4718 	return pci_check_and_set_intx_mask(dev, false);
4719 }
4720 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4721 
4722 /**
4723  * pci_wait_for_pending_transaction - wait for pending transaction
4724  * @dev: the PCI device to operate on
4725  *
4726  * Return 0 if transaction is pending 1 otherwise.
4727  */
4728 int pci_wait_for_pending_transaction(struct pci_dev *dev)
4729 {
4730 	if (!pci_is_pcie(dev))
4731 		return 1;
4732 
4733 	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4734 				    PCI_EXP_DEVSTA_TRPND);
4735 }
4736 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4737 
4738 /**
4739  * pcie_flr - initiate a PCIe function level reset
4740  * @dev: device to reset
4741  *
4742  * Initiate a function level reset unconditionally on @dev without
4743  * checking any flags and DEVCAP
4744  */
4745 int pcie_flr(struct pci_dev *dev)
4746 {
4747 	if (!pci_wait_for_pending_transaction(dev))
4748 		pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4749 
4750 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4751 
4752 	if (dev->imm_ready)
4753 		return 0;
4754 
4755 	/*
4756 	 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4757 	 * 100ms, but may silently discard requests while the FLR is in
4758 	 * progress.  Wait 100ms before trying to access the device.
4759 	 */
4760 	msleep(100);
4761 
4762 	return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4763 }
4764 EXPORT_SYMBOL_GPL(pcie_flr);
4765 
4766 /**
4767  * pcie_reset_flr - initiate a PCIe function level reset
4768  * @dev: device to reset
4769  * @probe: if true, return 0 if device can be reset this way
4770  *
4771  * Initiate a function level reset on @dev.
4772  */
4773 int pcie_reset_flr(struct pci_dev *dev, bool probe)
4774 {
4775 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4776 		return -ENOTTY;
4777 
4778 	if (!(dev->devcap & PCI_EXP_DEVCAP_FLR))
4779 		return -ENOTTY;
4780 
4781 	if (probe)
4782 		return 0;
4783 
4784 	return pcie_flr(dev);
4785 }
4786 EXPORT_SYMBOL_GPL(pcie_reset_flr);
4787 
4788 static int pci_af_flr(struct pci_dev *dev, bool probe)
4789 {
4790 	int pos;
4791 	u8 cap;
4792 
4793 	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4794 	if (!pos)
4795 		return -ENOTTY;
4796 
4797 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4798 		return -ENOTTY;
4799 
4800 	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4801 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4802 		return -ENOTTY;
4803 
4804 	if (probe)
4805 		return 0;
4806 
4807 	/*
4808 	 * Wait for Transaction Pending bit to clear.  A word-aligned test
4809 	 * is used, so we use the control offset rather than status and shift
4810 	 * the test bit to match.
4811 	 */
4812 	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4813 				 PCI_AF_STATUS_TP << 8))
4814 		pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4815 
4816 	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4817 
4818 	if (dev->imm_ready)
4819 		return 0;
4820 
4821 	/*
4822 	 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4823 	 * updated 27 July 2006; a device must complete an FLR within
4824 	 * 100ms, but may silently discard requests while the FLR is in
4825 	 * progress.  Wait 100ms before trying to access the device.
4826 	 */
4827 	msleep(100);
4828 
4829 	return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4830 }
4831 
4832 /**
4833  * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4834  * @dev: Device to reset.
4835  * @probe: if true, return 0 if the device can be reset this way.
4836  *
4837  * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4838  * unset, it will be reinitialized internally when going from PCI_D3hot to
4839  * PCI_D0.  If that's the case and the device is not in a low-power state
4840  * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4841  *
4842  * NOTE: This causes the caller to sleep for twice the device power transition
4843  * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4844  * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4845  * Moreover, only devices in D0 can be reset by this function.
4846  */
4847 static int pci_pm_reset(struct pci_dev *dev, bool probe)
4848 {
4849 	u16 csr;
4850 
4851 	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4852 		return -ENOTTY;
4853 
4854 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4855 	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4856 		return -ENOTTY;
4857 
4858 	if (probe)
4859 		return 0;
4860 
4861 	if (dev->current_state != PCI_D0)
4862 		return -EINVAL;
4863 
4864 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4865 	csr |= PCI_D3hot;
4866 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4867 	pci_dev_d3_sleep(dev);
4868 
4869 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4870 	csr |= PCI_D0;
4871 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4872 	pci_dev_d3_sleep(dev);
4873 
4874 	return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4875 }
4876 
4877 /**
4878  * pcie_wait_for_link_delay - Wait until link is active or inactive
4879  * @pdev: Bridge device
4880  * @active: waiting for active or inactive?
4881  * @delay: Delay to wait after link has become active (in ms)
4882  *
4883  * Use this to wait till link becomes active or inactive.
4884  */
4885 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4886 				     int delay)
4887 {
4888 	int timeout = 1000;
4889 	bool ret;
4890 	u16 lnk_status;
4891 
4892 	/*
4893 	 * Some controllers might not implement link active reporting. In this
4894 	 * case, we wait for 1000 ms + any delay requested by the caller.
4895 	 */
4896 	if (!pdev->link_active_reporting) {
4897 		msleep(timeout + delay);
4898 		return true;
4899 	}
4900 
4901 	/*
4902 	 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4903 	 * after which we should expect an link active if the reset was
4904 	 * successful. If so, software must wait a minimum 100ms before sending
4905 	 * configuration requests to devices downstream this port.
4906 	 *
4907 	 * If the link fails to activate, either the device was physically
4908 	 * removed or the link is permanently failed.
4909 	 */
4910 	if (active)
4911 		msleep(20);
4912 	for (;;) {
4913 		pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
4914 		ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA);
4915 		if (ret == active)
4916 			break;
4917 		if (timeout <= 0)
4918 			break;
4919 		msleep(10);
4920 		timeout -= 10;
4921 	}
4922 	if (active && ret)
4923 		msleep(delay);
4924 
4925 	return ret == active;
4926 }
4927 
4928 /**
4929  * pcie_wait_for_link - Wait until link is active or inactive
4930  * @pdev: Bridge device
4931  * @active: waiting for active or inactive?
4932  *
4933  * Use this to wait till link becomes active or inactive.
4934  */
4935 bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4936 {
4937 	return pcie_wait_for_link_delay(pdev, active, 100);
4938 }
4939 
4940 /*
4941  * Find maximum D3cold delay required by all the devices on the bus.  The
4942  * spec says 100 ms, but firmware can lower it and we allow drivers to
4943  * increase it as well.
4944  *
4945  * Called with @pci_bus_sem locked for reading.
4946  */
4947 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
4948 {
4949 	const struct pci_dev *pdev;
4950 	int min_delay = 100;
4951 	int max_delay = 0;
4952 
4953 	list_for_each_entry(pdev, &bus->devices, bus_list) {
4954 		if (pdev->d3cold_delay < min_delay)
4955 			min_delay = pdev->d3cold_delay;
4956 		if (pdev->d3cold_delay > max_delay)
4957 			max_delay = pdev->d3cold_delay;
4958 	}
4959 
4960 	return max(min_delay, max_delay);
4961 }
4962 
4963 /**
4964  * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4965  * @dev: PCI bridge
4966  *
4967  * Handle necessary delays before access to the devices on the secondary
4968  * side of the bridge are permitted after D3cold to D0 transition.
4969  *
4970  * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4971  * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4972  * 4.3.2.
4973  */
4974 void pci_bridge_wait_for_secondary_bus(struct pci_dev *dev)
4975 {
4976 	struct pci_dev *child;
4977 	int delay;
4978 
4979 	if (pci_dev_is_disconnected(dev))
4980 		return;
4981 
4982 	if (!pci_is_bridge(dev) || !dev->bridge_d3)
4983 		return;
4984 
4985 	down_read(&pci_bus_sem);
4986 
4987 	/*
4988 	 * We only deal with devices that are present currently on the bus.
4989 	 * For any hot-added devices the access delay is handled in pciehp
4990 	 * board_added(). In case of ACPI hotplug the firmware is expected
4991 	 * to configure the devices before OS is notified.
4992 	 */
4993 	if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
4994 		up_read(&pci_bus_sem);
4995 		return;
4996 	}
4997 
4998 	/* Take d3cold_delay requirements into account */
4999 	delay = pci_bus_max_d3cold_delay(dev->subordinate);
5000 	if (!delay) {
5001 		up_read(&pci_bus_sem);
5002 		return;
5003 	}
5004 
5005 	child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
5006 				 bus_list);
5007 	up_read(&pci_bus_sem);
5008 
5009 	/*
5010 	 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
5011 	 * accessing the device after reset (that is 1000 ms + 100 ms). In
5012 	 * practice this should not be needed because we don't do power
5013 	 * management for them (see pci_bridge_d3_possible()).
5014 	 */
5015 	if (!pci_is_pcie(dev)) {
5016 		pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
5017 		msleep(1000 + delay);
5018 		return;
5019 	}
5020 
5021 	/*
5022 	 * For PCIe downstream and root ports that do not support speeds
5023 	 * greater than 5 GT/s need to wait minimum 100 ms. For higher
5024 	 * speeds (gen3) we need to wait first for the data link layer to
5025 	 * become active.
5026 	 *
5027 	 * However, 100 ms is the minimum and the PCIe spec says the
5028 	 * software must allow at least 1s before it can determine that the
5029 	 * device that did not respond is a broken device. There is
5030 	 * evidence that 100 ms is not always enough, for example certain
5031 	 * Titan Ridge xHCI controller does not always respond to
5032 	 * configuration requests if we only wait for 100 ms (see
5033 	 * https://bugzilla.kernel.org/show_bug.cgi?id=203885).
5034 	 *
5035 	 * Therefore we wait for 100 ms and check for the device presence.
5036 	 * If it is still not present give it an additional 100 ms.
5037 	 */
5038 	if (!pcie_downstream_port(dev))
5039 		return;
5040 
5041 	if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
5042 		pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
5043 		msleep(delay);
5044 	} else {
5045 		pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
5046 			delay);
5047 		if (!pcie_wait_for_link_delay(dev, true, delay)) {
5048 			/* Did not train, no need to wait any further */
5049 			pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
5050 			return;
5051 		}
5052 	}
5053 
5054 	if (!pci_device_is_present(child)) {
5055 		pci_dbg(child, "waiting additional %d ms to become accessible\n", delay);
5056 		msleep(delay);
5057 	}
5058 }
5059 
5060 void pci_reset_secondary_bus(struct pci_dev *dev)
5061 {
5062 	u16 ctrl;
5063 
5064 	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
5065 	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
5066 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
5067 
5068 	/*
5069 	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
5070 	 * this to 2ms to ensure that we meet the minimum requirement.
5071 	 */
5072 	msleep(2);
5073 
5074 	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
5075 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
5076 
5077 	/*
5078 	 * Trhfa for conventional PCI is 2^25 clock cycles.
5079 	 * Assuming a minimum 33MHz clock this results in a 1s
5080 	 * delay before we can consider subordinate devices to
5081 	 * be re-initialized.  PCIe has some ways to shorten this,
5082 	 * but we don't make use of them yet.
5083 	 */
5084 	ssleep(1);
5085 }
5086 
5087 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
5088 {
5089 	pci_reset_secondary_bus(dev);
5090 }
5091 
5092 /**
5093  * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
5094  * @dev: Bridge device
5095  *
5096  * Use the bridge control register to assert reset on the secondary bus.
5097  * Devices on the secondary bus are left in power-on state.
5098  */
5099 int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
5100 {
5101 	pcibios_reset_secondary_bus(dev);
5102 
5103 	return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS);
5104 }
5105 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
5106 
5107 static int pci_parent_bus_reset(struct pci_dev *dev, bool probe)
5108 {
5109 	struct pci_dev *pdev;
5110 
5111 	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
5112 	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5113 		return -ENOTTY;
5114 
5115 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
5116 		if (pdev != dev)
5117 			return -ENOTTY;
5118 
5119 	if (probe)
5120 		return 0;
5121 
5122 	return pci_bridge_secondary_bus_reset(dev->bus->self);
5123 }
5124 
5125 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe)
5126 {
5127 	int rc = -ENOTTY;
5128 
5129 	if (!hotplug || !try_module_get(hotplug->owner))
5130 		return rc;
5131 
5132 	if (hotplug->ops->reset_slot)
5133 		rc = hotplug->ops->reset_slot(hotplug, probe);
5134 
5135 	module_put(hotplug->owner);
5136 
5137 	return rc;
5138 }
5139 
5140 static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe)
5141 {
5142 	if (dev->multifunction || dev->subordinate || !dev->slot ||
5143 	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5144 		return -ENOTTY;
5145 
5146 	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
5147 }
5148 
5149 static int pci_reset_bus_function(struct pci_dev *dev, bool probe)
5150 {
5151 	int rc;
5152 
5153 	rc = pci_dev_reset_slot_function(dev, probe);
5154 	if (rc != -ENOTTY)
5155 		return rc;
5156 	return pci_parent_bus_reset(dev, probe);
5157 }
5158 
5159 void pci_dev_lock(struct pci_dev *dev)
5160 {
5161 	/* block PM suspend, driver probe, etc. */
5162 	device_lock(&dev->dev);
5163 	pci_cfg_access_lock(dev);
5164 }
5165 EXPORT_SYMBOL_GPL(pci_dev_lock);
5166 
5167 /* Return 1 on successful lock, 0 on contention */
5168 int pci_dev_trylock(struct pci_dev *dev)
5169 {
5170 	if (device_trylock(&dev->dev)) {
5171 		if (pci_cfg_access_trylock(dev))
5172 			return 1;
5173 		device_unlock(&dev->dev);
5174 	}
5175 
5176 	return 0;
5177 }
5178 EXPORT_SYMBOL_GPL(pci_dev_trylock);
5179 
5180 void pci_dev_unlock(struct pci_dev *dev)
5181 {
5182 	pci_cfg_access_unlock(dev);
5183 	device_unlock(&dev->dev);
5184 }
5185 EXPORT_SYMBOL_GPL(pci_dev_unlock);
5186 
5187 static void pci_dev_save_and_disable(struct pci_dev *dev)
5188 {
5189 	const struct pci_error_handlers *err_handler =
5190 			dev->driver ? dev->driver->err_handler : NULL;
5191 
5192 	/*
5193 	 * dev->driver->err_handler->reset_prepare() is protected against
5194 	 * races with ->remove() by the device lock, which must be held by
5195 	 * the caller.
5196 	 */
5197 	if (err_handler && err_handler->reset_prepare)
5198 		err_handler->reset_prepare(dev);
5199 
5200 	/*
5201 	 * Wake-up device prior to save.  PM registers default to D0 after
5202 	 * reset and a simple register restore doesn't reliably return
5203 	 * to a non-D0 state anyway.
5204 	 */
5205 	pci_set_power_state(dev, PCI_D0);
5206 
5207 	pci_save_state(dev);
5208 	/*
5209 	 * Disable the device by clearing the Command register, except for
5210 	 * INTx-disable which is set.  This not only disables MMIO and I/O port
5211 	 * BARs, but also prevents the device from being Bus Master, preventing
5212 	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
5213 	 * compliant devices, INTx-disable prevents legacy interrupts.
5214 	 */
5215 	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
5216 }
5217 
5218 static void pci_dev_restore(struct pci_dev *dev)
5219 {
5220 	const struct pci_error_handlers *err_handler =
5221 			dev->driver ? dev->driver->err_handler : NULL;
5222 
5223 	pci_restore_state(dev);
5224 
5225 	/*
5226 	 * dev->driver->err_handler->reset_done() is protected against
5227 	 * races with ->remove() by the device lock, which must be held by
5228 	 * the caller.
5229 	 */
5230 	if (err_handler && err_handler->reset_done)
5231 		err_handler->reset_done(dev);
5232 }
5233 
5234 /* dev->reset_methods[] is a 0-terminated list of indices into this array */
5235 static const struct pci_reset_fn_method pci_reset_fn_methods[] = {
5236 	{ },
5237 	{ pci_dev_specific_reset, .name = "device_specific" },
5238 	{ pci_dev_acpi_reset, .name = "acpi" },
5239 	{ pcie_reset_flr, .name = "flr" },
5240 	{ pci_af_flr, .name = "af_flr" },
5241 	{ pci_pm_reset, .name = "pm" },
5242 	{ pci_reset_bus_function, .name = "bus" },
5243 };
5244 
5245 static ssize_t reset_method_show(struct device *dev,
5246 				 struct device_attribute *attr, char *buf)
5247 {
5248 	struct pci_dev *pdev = to_pci_dev(dev);
5249 	ssize_t len = 0;
5250 	int i, m;
5251 
5252 	for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5253 		m = pdev->reset_methods[i];
5254 		if (!m)
5255 			break;
5256 
5257 		len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "",
5258 				     pci_reset_fn_methods[m].name);
5259 	}
5260 
5261 	if (len)
5262 		len += sysfs_emit_at(buf, len, "\n");
5263 
5264 	return len;
5265 }
5266 
5267 static int reset_method_lookup(const char *name)
5268 {
5269 	int m;
5270 
5271 	for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5272 		if (sysfs_streq(name, pci_reset_fn_methods[m].name))
5273 			return m;
5274 	}
5275 
5276 	return 0;	/* not found */
5277 }
5278 
5279 static ssize_t reset_method_store(struct device *dev,
5280 				  struct device_attribute *attr,
5281 				  const char *buf, size_t count)
5282 {
5283 	struct pci_dev *pdev = to_pci_dev(dev);
5284 	char *options, *name;
5285 	int m, n;
5286 	u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 };
5287 
5288 	if (sysfs_streq(buf, "")) {
5289 		pdev->reset_methods[0] = 0;
5290 		pci_warn(pdev, "All device reset methods disabled by user");
5291 		return count;
5292 	}
5293 
5294 	if (sysfs_streq(buf, "default")) {
5295 		pci_init_reset_methods(pdev);
5296 		return count;
5297 	}
5298 
5299 	options = kstrndup(buf, count, GFP_KERNEL);
5300 	if (!options)
5301 		return -ENOMEM;
5302 
5303 	n = 0;
5304 	while ((name = strsep(&options, " ")) != NULL) {
5305 		if (sysfs_streq(name, ""))
5306 			continue;
5307 
5308 		name = strim(name);
5309 
5310 		m = reset_method_lookup(name);
5311 		if (!m) {
5312 			pci_err(pdev, "Invalid reset method '%s'", name);
5313 			goto error;
5314 		}
5315 
5316 		if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) {
5317 			pci_err(pdev, "Unsupported reset method '%s'", name);
5318 			goto error;
5319 		}
5320 
5321 		if (n == PCI_NUM_RESET_METHODS - 1) {
5322 			pci_err(pdev, "Too many reset methods\n");
5323 			goto error;
5324 		}
5325 
5326 		reset_methods[n++] = m;
5327 	}
5328 
5329 	reset_methods[n] = 0;
5330 
5331 	/* Warn if dev-specific supported but not highest priority */
5332 	if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 &&
5333 	    reset_methods[0] != 1)
5334 		pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user");
5335 	memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods));
5336 	kfree(options);
5337 	return count;
5338 
5339 error:
5340 	/* Leave previous methods unchanged */
5341 	kfree(options);
5342 	return -EINVAL;
5343 }
5344 static DEVICE_ATTR_RW(reset_method);
5345 
5346 static struct attribute *pci_dev_reset_method_attrs[] = {
5347 	&dev_attr_reset_method.attr,
5348 	NULL,
5349 };
5350 
5351 static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj,
5352 						    struct attribute *a, int n)
5353 {
5354 	struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj));
5355 
5356 	if (!pci_reset_supported(pdev))
5357 		return 0;
5358 
5359 	return a->mode;
5360 }
5361 
5362 const struct attribute_group pci_dev_reset_method_attr_group = {
5363 	.attrs = pci_dev_reset_method_attrs,
5364 	.is_visible = pci_dev_reset_method_attr_is_visible,
5365 };
5366 
5367 /**
5368  * __pci_reset_function_locked - reset a PCI device function while holding
5369  * the @dev mutex lock.
5370  * @dev: PCI device to reset
5371  *
5372  * Some devices allow an individual function to be reset without affecting
5373  * other functions in the same device.  The PCI device must be responsive
5374  * to PCI config space in order to use this function.
5375  *
5376  * The device function is presumed to be unused and the caller is holding
5377  * the device mutex lock when this function is called.
5378  *
5379  * Resetting the device will make the contents of PCI configuration space
5380  * random, so any caller of this must be prepared to reinitialise the
5381  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5382  * etc.
5383  *
5384  * Returns 0 if the device function was successfully reset or negative if the
5385  * device doesn't support resetting a single function.
5386  */
5387 int __pci_reset_function_locked(struct pci_dev *dev)
5388 {
5389 	int i, m, rc;
5390 
5391 	might_sleep();
5392 
5393 	/*
5394 	 * A reset method returns -ENOTTY if it doesn't support this device and
5395 	 * we should try the next method.
5396 	 *
5397 	 * If it returns 0 (success), we're finished.  If it returns any other
5398 	 * error, we're also finished: this indicates that further reset
5399 	 * mechanisms might be broken on the device.
5400 	 */
5401 	for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5402 		m = dev->reset_methods[i];
5403 		if (!m)
5404 			return -ENOTTY;
5405 
5406 		rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET);
5407 		if (!rc)
5408 			return 0;
5409 		if (rc != -ENOTTY)
5410 			return rc;
5411 	}
5412 
5413 	return -ENOTTY;
5414 }
5415 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5416 
5417 /**
5418  * pci_init_reset_methods - check whether device can be safely reset
5419  * and store supported reset mechanisms.
5420  * @dev: PCI device to check for reset mechanisms
5421  *
5422  * Some devices allow an individual function to be reset without affecting
5423  * other functions in the same device.  The PCI device must be in D0-D3hot
5424  * state.
5425  *
5426  * Stores reset mechanisms supported by device in reset_methods byte array
5427  * which is a member of struct pci_dev.
5428  */
5429 void pci_init_reset_methods(struct pci_dev *dev)
5430 {
5431 	int m, i, rc;
5432 
5433 	BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS);
5434 
5435 	might_sleep();
5436 
5437 	i = 0;
5438 	for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5439 		rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE);
5440 		if (!rc)
5441 			dev->reset_methods[i++] = m;
5442 		else if (rc != -ENOTTY)
5443 			break;
5444 	}
5445 
5446 	dev->reset_methods[i] = 0;
5447 }
5448 
5449 /**
5450  * pci_reset_function - quiesce and reset a PCI device function
5451  * @dev: PCI device to reset
5452  *
5453  * Some devices allow an individual function to be reset without affecting
5454  * other functions in the same device.  The PCI device must be responsive
5455  * to PCI config space in order to use this function.
5456  *
5457  * This function does not just reset the PCI portion of a device, but
5458  * clears all the state associated with the device.  This function differs
5459  * from __pci_reset_function_locked() in that it saves and restores device state
5460  * over the reset and takes the PCI device lock.
5461  *
5462  * Returns 0 if the device function was successfully reset or negative if the
5463  * device doesn't support resetting a single function.
5464  */
5465 int pci_reset_function(struct pci_dev *dev)
5466 {
5467 	int rc;
5468 
5469 	if (!pci_reset_supported(dev))
5470 		return -ENOTTY;
5471 
5472 	pci_dev_lock(dev);
5473 	pci_dev_save_and_disable(dev);
5474 
5475 	rc = __pci_reset_function_locked(dev);
5476 
5477 	pci_dev_restore(dev);
5478 	pci_dev_unlock(dev);
5479 
5480 	return rc;
5481 }
5482 EXPORT_SYMBOL_GPL(pci_reset_function);
5483 
5484 /**
5485  * pci_reset_function_locked - quiesce and reset a PCI device function
5486  * @dev: PCI device to reset
5487  *
5488  * Some devices allow an individual function to be reset without affecting
5489  * other functions in the same device.  The PCI device must be responsive
5490  * to PCI config space in order to use this function.
5491  *
5492  * This function does not just reset the PCI portion of a device, but
5493  * clears all the state associated with the device.  This function differs
5494  * from __pci_reset_function_locked() in that it saves and restores device state
5495  * over the reset.  It also differs from pci_reset_function() in that it
5496  * requires the PCI device lock to be held.
5497  *
5498  * Returns 0 if the device function was successfully reset or negative if the
5499  * device doesn't support resetting a single function.
5500  */
5501 int pci_reset_function_locked(struct pci_dev *dev)
5502 {
5503 	int rc;
5504 
5505 	if (!pci_reset_supported(dev))
5506 		return -ENOTTY;
5507 
5508 	pci_dev_save_and_disable(dev);
5509 
5510 	rc = __pci_reset_function_locked(dev);
5511 
5512 	pci_dev_restore(dev);
5513 
5514 	return rc;
5515 }
5516 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5517 
5518 /**
5519  * pci_try_reset_function - quiesce and reset a PCI device function
5520  * @dev: PCI device to reset
5521  *
5522  * Same as above, except return -EAGAIN if unable to lock device.
5523  */
5524 int pci_try_reset_function(struct pci_dev *dev)
5525 {
5526 	int rc;
5527 
5528 	if (!pci_reset_supported(dev))
5529 		return -ENOTTY;
5530 
5531 	if (!pci_dev_trylock(dev))
5532 		return -EAGAIN;
5533 
5534 	pci_dev_save_and_disable(dev);
5535 	rc = __pci_reset_function_locked(dev);
5536 	pci_dev_restore(dev);
5537 	pci_dev_unlock(dev);
5538 
5539 	return rc;
5540 }
5541 EXPORT_SYMBOL_GPL(pci_try_reset_function);
5542 
5543 /* Do any devices on or below this bus prevent a bus reset? */
5544 static bool pci_bus_resetable(struct pci_bus *bus)
5545 {
5546 	struct pci_dev *dev;
5547 
5548 
5549 	if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5550 		return false;
5551 
5552 	list_for_each_entry(dev, &bus->devices, bus_list) {
5553 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5554 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5555 			return false;
5556 	}
5557 
5558 	return true;
5559 }
5560 
5561 /* Lock devices from the top of the tree down */
5562 static void pci_bus_lock(struct pci_bus *bus)
5563 {
5564 	struct pci_dev *dev;
5565 
5566 	list_for_each_entry(dev, &bus->devices, bus_list) {
5567 		pci_dev_lock(dev);
5568 		if (dev->subordinate)
5569 			pci_bus_lock(dev->subordinate);
5570 	}
5571 }
5572 
5573 /* Unlock devices from the bottom of the tree up */
5574 static void pci_bus_unlock(struct pci_bus *bus)
5575 {
5576 	struct pci_dev *dev;
5577 
5578 	list_for_each_entry(dev, &bus->devices, bus_list) {
5579 		if (dev->subordinate)
5580 			pci_bus_unlock(dev->subordinate);
5581 		pci_dev_unlock(dev);
5582 	}
5583 }
5584 
5585 /* Return 1 on successful lock, 0 on contention */
5586 static int pci_bus_trylock(struct pci_bus *bus)
5587 {
5588 	struct pci_dev *dev;
5589 
5590 	list_for_each_entry(dev, &bus->devices, bus_list) {
5591 		if (!pci_dev_trylock(dev))
5592 			goto unlock;
5593 		if (dev->subordinate) {
5594 			if (!pci_bus_trylock(dev->subordinate)) {
5595 				pci_dev_unlock(dev);
5596 				goto unlock;
5597 			}
5598 		}
5599 	}
5600 	return 1;
5601 
5602 unlock:
5603 	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5604 		if (dev->subordinate)
5605 			pci_bus_unlock(dev->subordinate);
5606 		pci_dev_unlock(dev);
5607 	}
5608 	return 0;
5609 }
5610 
5611 /* Do any devices on or below this slot prevent a bus reset? */
5612 static bool pci_slot_resetable(struct pci_slot *slot)
5613 {
5614 	struct pci_dev *dev;
5615 
5616 	if (slot->bus->self &&
5617 	    (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5618 		return false;
5619 
5620 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5621 		if (!dev->slot || dev->slot != slot)
5622 			continue;
5623 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5624 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5625 			return false;
5626 	}
5627 
5628 	return true;
5629 }
5630 
5631 /* Lock devices from the top of the tree down */
5632 static void pci_slot_lock(struct pci_slot *slot)
5633 {
5634 	struct pci_dev *dev;
5635 
5636 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5637 		if (!dev->slot || dev->slot != slot)
5638 			continue;
5639 		pci_dev_lock(dev);
5640 		if (dev->subordinate)
5641 			pci_bus_lock(dev->subordinate);
5642 	}
5643 }
5644 
5645 /* Unlock devices from the bottom of the tree up */
5646 static void pci_slot_unlock(struct pci_slot *slot)
5647 {
5648 	struct pci_dev *dev;
5649 
5650 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5651 		if (!dev->slot || dev->slot != slot)
5652 			continue;
5653 		if (dev->subordinate)
5654 			pci_bus_unlock(dev->subordinate);
5655 		pci_dev_unlock(dev);
5656 	}
5657 }
5658 
5659 /* Return 1 on successful lock, 0 on contention */
5660 static int pci_slot_trylock(struct pci_slot *slot)
5661 {
5662 	struct pci_dev *dev;
5663 
5664 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5665 		if (!dev->slot || dev->slot != slot)
5666 			continue;
5667 		if (!pci_dev_trylock(dev))
5668 			goto unlock;
5669 		if (dev->subordinate) {
5670 			if (!pci_bus_trylock(dev->subordinate)) {
5671 				pci_dev_unlock(dev);
5672 				goto unlock;
5673 			}
5674 		}
5675 	}
5676 	return 1;
5677 
5678 unlock:
5679 	list_for_each_entry_continue_reverse(dev,
5680 					     &slot->bus->devices, bus_list) {
5681 		if (!dev->slot || dev->slot != slot)
5682 			continue;
5683 		if (dev->subordinate)
5684 			pci_bus_unlock(dev->subordinate);
5685 		pci_dev_unlock(dev);
5686 	}
5687 	return 0;
5688 }
5689 
5690 /*
5691  * Save and disable devices from the top of the tree down while holding
5692  * the @dev mutex lock for the entire tree.
5693  */
5694 static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5695 {
5696 	struct pci_dev *dev;
5697 
5698 	list_for_each_entry(dev, &bus->devices, bus_list) {
5699 		pci_dev_save_and_disable(dev);
5700 		if (dev->subordinate)
5701 			pci_bus_save_and_disable_locked(dev->subordinate);
5702 	}
5703 }
5704 
5705 /*
5706  * Restore devices from top of the tree down while holding @dev mutex lock
5707  * for the entire tree.  Parent bridges need to be restored before we can
5708  * get to subordinate devices.
5709  */
5710 static void pci_bus_restore_locked(struct pci_bus *bus)
5711 {
5712 	struct pci_dev *dev;
5713 
5714 	list_for_each_entry(dev, &bus->devices, bus_list) {
5715 		pci_dev_restore(dev);
5716 		if (dev->subordinate)
5717 			pci_bus_restore_locked(dev->subordinate);
5718 	}
5719 }
5720 
5721 /*
5722  * Save and disable devices from the top of the tree down while holding
5723  * the @dev mutex lock for the entire tree.
5724  */
5725 static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5726 {
5727 	struct pci_dev *dev;
5728 
5729 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5730 		if (!dev->slot || dev->slot != slot)
5731 			continue;
5732 		pci_dev_save_and_disable(dev);
5733 		if (dev->subordinate)
5734 			pci_bus_save_and_disable_locked(dev->subordinate);
5735 	}
5736 }
5737 
5738 /*
5739  * Restore devices from top of the tree down while holding @dev mutex lock
5740  * for the entire tree.  Parent bridges need to be restored before we can
5741  * get to subordinate devices.
5742  */
5743 static void pci_slot_restore_locked(struct pci_slot *slot)
5744 {
5745 	struct pci_dev *dev;
5746 
5747 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5748 		if (!dev->slot || dev->slot != slot)
5749 			continue;
5750 		pci_dev_restore(dev);
5751 		if (dev->subordinate)
5752 			pci_bus_restore_locked(dev->subordinate);
5753 	}
5754 }
5755 
5756 static int pci_slot_reset(struct pci_slot *slot, bool probe)
5757 {
5758 	int rc;
5759 
5760 	if (!slot || !pci_slot_resetable(slot))
5761 		return -ENOTTY;
5762 
5763 	if (!probe)
5764 		pci_slot_lock(slot);
5765 
5766 	might_sleep();
5767 
5768 	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5769 
5770 	if (!probe)
5771 		pci_slot_unlock(slot);
5772 
5773 	return rc;
5774 }
5775 
5776 /**
5777  * pci_probe_reset_slot - probe whether a PCI slot can be reset
5778  * @slot: PCI slot to probe
5779  *
5780  * Return 0 if slot can be reset, negative if a slot reset is not supported.
5781  */
5782 int pci_probe_reset_slot(struct pci_slot *slot)
5783 {
5784 	return pci_slot_reset(slot, PCI_RESET_PROBE);
5785 }
5786 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5787 
5788 /**
5789  * __pci_reset_slot - Try to reset a PCI slot
5790  * @slot: PCI slot to reset
5791  *
5792  * A PCI bus may host multiple slots, each slot may support a reset mechanism
5793  * independent of other slots.  For instance, some slots may support slot power
5794  * control.  In the case of a 1:1 bus to slot architecture, this function may
5795  * wrap the bus reset to avoid spurious slot related events such as hotplug.
5796  * Generally a slot reset should be attempted before a bus reset.  All of the
5797  * function of the slot and any subordinate buses behind the slot are reset
5798  * through this function.  PCI config space of all devices in the slot and
5799  * behind the slot is saved before and restored after reset.
5800  *
5801  * Same as above except return -EAGAIN if the slot cannot be locked
5802  */
5803 static int __pci_reset_slot(struct pci_slot *slot)
5804 {
5805 	int rc;
5806 
5807 	rc = pci_slot_reset(slot, PCI_RESET_PROBE);
5808 	if (rc)
5809 		return rc;
5810 
5811 	if (pci_slot_trylock(slot)) {
5812 		pci_slot_save_and_disable_locked(slot);
5813 		might_sleep();
5814 		rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET);
5815 		pci_slot_restore_locked(slot);
5816 		pci_slot_unlock(slot);
5817 	} else
5818 		rc = -EAGAIN;
5819 
5820 	return rc;
5821 }
5822 
5823 static int pci_bus_reset(struct pci_bus *bus, bool probe)
5824 {
5825 	int ret;
5826 
5827 	if (!bus->self || !pci_bus_resetable(bus))
5828 		return -ENOTTY;
5829 
5830 	if (probe)
5831 		return 0;
5832 
5833 	pci_bus_lock(bus);
5834 
5835 	might_sleep();
5836 
5837 	ret = pci_bridge_secondary_bus_reset(bus->self);
5838 
5839 	pci_bus_unlock(bus);
5840 
5841 	return ret;
5842 }
5843 
5844 /**
5845  * pci_bus_error_reset - reset the bridge's subordinate bus
5846  * @bridge: The parent device that connects to the bus to reset
5847  *
5848  * This function will first try to reset the slots on this bus if the method is
5849  * available. If slot reset fails or is not available, this will fall back to a
5850  * secondary bus reset.
5851  */
5852 int pci_bus_error_reset(struct pci_dev *bridge)
5853 {
5854 	struct pci_bus *bus = bridge->subordinate;
5855 	struct pci_slot *slot;
5856 
5857 	if (!bus)
5858 		return -ENOTTY;
5859 
5860 	mutex_lock(&pci_slot_mutex);
5861 	if (list_empty(&bus->slots))
5862 		goto bus_reset;
5863 
5864 	list_for_each_entry(slot, &bus->slots, list)
5865 		if (pci_probe_reset_slot(slot))
5866 			goto bus_reset;
5867 
5868 	list_for_each_entry(slot, &bus->slots, list)
5869 		if (pci_slot_reset(slot, PCI_RESET_DO_RESET))
5870 			goto bus_reset;
5871 
5872 	mutex_unlock(&pci_slot_mutex);
5873 	return 0;
5874 bus_reset:
5875 	mutex_unlock(&pci_slot_mutex);
5876 	return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET);
5877 }
5878 
5879 /**
5880  * pci_probe_reset_bus - probe whether a PCI bus can be reset
5881  * @bus: PCI bus to probe
5882  *
5883  * Return 0 if bus can be reset, negative if a bus reset is not supported.
5884  */
5885 int pci_probe_reset_bus(struct pci_bus *bus)
5886 {
5887 	return pci_bus_reset(bus, PCI_RESET_PROBE);
5888 }
5889 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5890 
5891 /**
5892  * __pci_reset_bus - Try to reset a PCI bus
5893  * @bus: top level PCI bus to reset
5894  *
5895  * Same as above except return -EAGAIN if the bus cannot be locked
5896  */
5897 static int __pci_reset_bus(struct pci_bus *bus)
5898 {
5899 	int rc;
5900 
5901 	rc = pci_bus_reset(bus, PCI_RESET_PROBE);
5902 	if (rc)
5903 		return rc;
5904 
5905 	if (pci_bus_trylock(bus)) {
5906 		pci_bus_save_and_disable_locked(bus);
5907 		might_sleep();
5908 		rc = pci_bridge_secondary_bus_reset(bus->self);
5909 		pci_bus_restore_locked(bus);
5910 		pci_bus_unlock(bus);
5911 	} else
5912 		rc = -EAGAIN;
5913 
5914 	return rc;
5915 }
5916 
5917 /**
5918  * pci_reset_bus - Try to reset a PCI bus
5919  * @pdev: top level PCI device to reset via slot/bus
5920  *
5921  * Same as above except return -EAGAIN if the bus cannot be locked
5922  */
5923 int pci_reset_bus(struct pci_dev *pdev)
5924 {
5925 	return (!pci_probe_reset_slot(pdev->slot)) ?
5926 	    __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5927 }
5928 EXPORT_SYMBOL_GPL(pci_reset_bus);
5929 
5930 /**
5931  * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5932  * @dev: PCI device to query
5933  *
5934  * Returns mmrbc: maximum designed memory read count in bytes or
5935  * appropriate error value.
5936  */
5937 int pcix_get_max_mmrbc(struct pci_dev *dev)
5938 {
5939 	int cap;
5940 	u32 stat;
5941 
5942 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5943 	if (!cap)
5944 		return -EINVAL;
5945 
5946 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5947 		return -EINVAL;
5948 
5949 	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
5950 }
5951 EXPORT_SYMBOL(pcix_get_max_mmrbc);
5952 
5953 /**
5954  * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5955  * @dev: PCI device to query
5956  *
5957  * Returns mmrbc: maximum memory read count in bytes or appropriate error
5958  * value.
5959  */
5960 int pcix_get_mmrbc(struct pci_dev *dev)
5961 {
5962 	int cap;
5963 	u16 cmd;
5964 
5965 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5966 	if (!cap)
5967 		return -EINVAL;
5968 
5969 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5970 		return -EINVAL;
5971 
5972 	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
5973 }
5974 EXPORT_SYMBOL(pcix_get_mmrbc);
5975 
5976 /**
5977  * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5978  * @dev: PCI device to query
5979  * @mmrbc: maximum memory read count in bytes
5980  *    valid values are 512, 1024, 2048, 4096
5981  *
5982  * If possible sets maximum memory read byte count, some bridges have errata
5983  * that prevent this.
5984  */
5985 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5986 {
5987 	int cap;
5988 	u32 stat, v, o;
5989 	u16 cmd;
5990 
5991 	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5992 		return -EINVAL;
5993 
5994 	v = ffs(mmrbc) - 10;
5995 
5996 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5997 	if (!cap)
5998 		return -EINVAL;
5999 
6000 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
6001 		return -EINVAL;
6002 
6003 	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
6004 		return -E2BIG;
6005 
6006 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
6007 		return -EINVAL;
6008 
6009 	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
6010 	if (o != v) {
6011 		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
6012 			return -EIO;
6013 
6014 		cmd &= ~PCI_X_CMD_MAX_READ;
6015 		cmd |= v << 2;
6016 		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
6017 			return -EIO;
6018 	}
6019 	return 0;
6020 }
6021 EXPORT_SYMBOL(pcix_set_mmrbc);
6022 
6023 /**
6024  * pcie_get_readrq - get PCI Express read request size
6025  * @dev: PCI device to query
6026  *
6027  * Returns maximum memory read request in bytes or appropriate error value.
6028  */
6029 int pcie_get_readrq(struct pci_dev *dev)
6030 {
6031 	u16 ctl;
6032 
6033 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6034 
6035 	return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6036 }
6037 EXPORT_SYMBOL(pcie_get_readrq);
6038 
6039 /**
6040  * pcie_set_readrq - set PCI Express maximum memory read request
6041  * @dev: PCI device to query
6042  * @rq: maximum memory read count in bytes
6043  *    valid values are 128, 256, 512, 1024, 2048, 4096
6044  *
6045  * If possible sets maximum memory read request in bytes
6046  */
6047 int pcie_set_readrq(struct pci_dev *dev, int rq)
6048 {
6049 	u16 v;
6050 	int ret;
6051 
6052 	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
6053 		return -EINVAL;
6054 
6055 	/*
6056 	 * If using the "performance" PCIe config, we clamp the read rq
6057 	 * size to the max packet size to keep the host bridge from
6058 	 * generating requests larger than we can cope with.
6059 	 */
6060 	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
6061 		int mps = pcie_get_mps(dev);
6062 
6063 		if (mps < rq)
6064 			rq = mps;
6065 	}
6066 
6067 	v = (ffs(rq) - 8) << 12;
6068 
6069 	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6070 						  PCI_EXP_DEVCTL_READRQ, v);
6071 
6072 	return pcibios_err_to_errno(ret);
6073 }
6074 EXPORT_SYMBOL(pcie_set_readrq);
6075 
6076 /**
6077  * pcie_get_mps - get PCI Express maximum payload size
6078  * @dev: PCI device to query
6079  *
6080  * Returns maximum payload size in bytes
6081  */
6082 int pcie_get_mps(struct pci_dev *dev)
6083 {
6084 	u16 ctl;
6085 
6086 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6087 
6088 	return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6089 }
6090 EXPORT_SYMBOL(pcie_get_mps);
6091 
6092 /**
6093  * pcie_set_mps - set PCI Express maximum payload size
6094  * @dev: PCI device to query
6095  * @mps: maximum payload size in bytes
6096  *    valid values are 128, 256, 512, 1024, 2048, 4096
6097  *
6098  * If possible sets maximum payload size
6099  */
6100 int pcie_set_mps(struct pci_dev *dev, int mps)
6101 {
6102 	u16 v;
6103 	int ret;
6104 
6105 	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
6106 		return -EINVAL;
6107 
6108 	v = ffs(mps) - 8;
6109 	if (v > dev->pcie_mpss)
6110 		return -EINVAL;
6111 	v <<= 5;
6112 
6113 	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6114 						  PCI_EXP_DEVCTL_PAYLOAD, v);
6115 
6116 	return pcibios_err_to_errno(ret);
6117 }
6118 EXPORT_SYMBOL(pcie_set_mps);
6119 
6120 /**
6121  * pcie_bandwidth_available - determine minimum link settings of a PCIe
6122  *			      device and its bandwidth limitation
6123  * @dev: PCI device to query
6124  * @limiting_dev: storage for device causing the bandwidth limitation
6125  * @speed: storage for speed of limiting device
6126  * @width: storage for width of limiting device
6127  *
6128  * Walk up the PCI device chain and find the point where the minimum
6129  * bandwidth is available.  Return the bandwidth available there and (if
6130  * limiting_dev, speed, and width pointers are supplied) information about
6131  * that point.  The bandwidth returned is in Mb/s, i.e., megabits/second of
6132  * raw bandwidth.
6133  */
6134 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
6135 			     enum pci_bus_speed *speed,
6136 			     enum pcie_link_width *width)
6137 {
6138 	u16 lnksta;
6139 	enum pci_bus_speed next_speed;
6140 	enum pcie_link_width next_width;
6141 	u32 bw, next_bw;
6142 
6143 	if (speed)
6144 		*speed = PCI_SPEED_UNKNOWN;
6145 	if (width)
6146 		*width = PCIE_LNK_WIDTH_UNKNOWN;
6147 
6148 	bw = 0;
6149 
6150 	while (dev) {
6151 		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
6152 
6153 		next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
6154 		next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
6155 			PCI_EXP_LNKSTA_NLW_SHIFT;
6156 
6157 		next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
6158 
6159 		/* Check if current device limits the total bandwidth */
6160 		if (!bw || next_bw <= bw) {
6161 			bw = next_bw;
6162 
6163 			if (limiting_dev)
6164 				*limiting_dev = dev;
6165 			if (speed)
6166 				*speed = next_speed;
6167 			if (width)
6168 				*width = next_width;
6169 		}
6170 
6171 		dev = pci_upstream_bridge(dev);
6172 	}
6173 
6174 	return bw;
6175 }
6176 EXPORT_SYMBOL(pcie_bandwidth_available);
6177 
6178 /**
6179  * pcie_get_speed_cap - query for the PCI device's link speed capability
6180  * @dev: PCI device to query
6181  *
6182  * Query the PCI device speed capability.  Return the maximum link speed
6183  * supported by the device.
6184  */
6185 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
6186 {
6187 	u32 lnkcap2, lnkcap;
6188 
6189 	/*
6190 	 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18.  The
6191 	 * implementation note there recommends using the Supported Link
6192 	 * Speeds Vector in Link Capabilities 2 when supported.
6193 	 *
6194 	 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
6195 	 * should use the Supported Link Speeds field in Link Capabilities,
6196 	 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
6197 	 */
6198 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
6199 
6200 	/* PCIe r3.0-compliant */
6201 	if (lnkcap2)
6202 		return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
6203 
6204 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6205 	if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
6206 		return PCIE_SPEED_5_0GT;
6207 	else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
6208 		return PCIE_SPEED_2_5GT;
6209 
6210 	return PCI_SPEED_UNKNOWN;
6211 }
6212 EXPORT_SYMBOL(pcie_get_speed_cap);
6213 
6214 /**
6215  * pcie_get_width_cap - query for the PCI device's link width capability
6216  * @dev: PCI device to query
6217  *
6218  * Query the PCI device width capability.  Return the maximum link width
6219  * supported by the device.
6220  */
6221 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
6222 {
6223 	u32 lnkcap;
6224 
6225 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6226 	if (lnkcap)
6227 		return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
6228 
6229 	return PCIE_LNK_WIDTH_UNKNOWN;
6230 }
6231 EXPORT_SYMBOL(pcie_get_width_cap);
6232 
6233 /**
6234  * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
6235  * @dev: PCI device
6236  * @speed: storage for link speed
6237  * @width: storage for link width
6238  *
6239  * Calculate a PCI device's link bandwidth by querying for its link speed
6240  * and width, multiplying them, and applying encoding overhead.  The result
6241  * is in Mb/s, i.e., megabits/second of raw bandwidth.
6242  */
6243 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
6244 			   enum pcie_link_width *width)
6245 {
6246 	*speed = pcie_get_speed_cap(dev);
6247 	*width = pcie_get_width_cap(dev);
6248 
6249 	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
6250 		return 0;
6251 
6252 	return *width * PCIE_SPEED2MBS_ENC(*speed);
6253 }
6254 
6255 /**
6256  * __pcie_print_link_status - Report the PCI device's link speed and width
6257  * @dev: PCI device to query
6258  * @verbose: Print info even when enough bandwidth is available
6259  *
6260  * If the available bandwidth at the device is less than the device is
6261  * capable of, report the device's maximum possible bandwidth and the
6262  * upstream link that limits its performance.  If @verbose, always print
6263  * the available bandwidth, even if the device isn't constrained.
6264  */
6265 void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
6266 {
6267 	enum pcie_link_width width, width_cap;
6268 	enum pci_bus_speed speed, speed_cap;
6269 	struct pci_dev *limiting_dev = NULL;
6270 	u32 bw_avail, bw_cap;
6271 
6272 	bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
6273 	bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
6274 
6275 	if (bw_avail >= bw_cap && verbose)
6276 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
6277 			 bw_cap / 1000, bw_cap % 1000,
6278 			 pci_speed_string(speed_cap), width_cap);
6279 	else if (bw_avail < bw_cap)
6280 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
6281 			 bw_avail / 1000, bw_avail % 1000,
6282 			 pci_speed_string(speed), width,
6283 			 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
6284 			 bw_cap / 1000, bw_cap % 1000,
6285 			 pci_speed_string(speed_cap), width_cap);
6286 }
6287 
6288 /**
6289  * pcie_print_link_status - Report the PCI device's link speed and width
6290  * @dev: PCI device to query
6291  *
6292  * Report the available bandwidth at the device.
6293  */
6294 void pcie_print_link_status(struct pci_dev *dev)
6295 {
6296 	__pcie_print_link_status(dev, true);
6297 }
6298 EXPORT_SYMBOL(pcie_print_link_status);
6299 
6300 /**
6301  * pci_select_bars - Make BAR mask from the type of resource
6302  * @dev: the PCI device for which BAR mask is made
6303  * @flags: resource type mask to be selected
6304  *
6305  * This helper routine makes bar mask from the type of resource.
6306  */
6307 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
6308 {
6309 	int i, bars = 0;
6310 	for (i = 0; i < PCI_NUM_RESOURCES; i++)
6311 		if (pci_resource_flags(dev, i) & flags)
6312 			bars |= (1 << i);
6313 	return bars;
6314 }
6315 EXPORT_SYMBOL(pci_select_bars);
6316 
6317 /* Some architectures require additional programming to enable VGA */
6318 static arch_set_vga_state_t arch_set_vga_state;
6319 
6320 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6321 {
6322 	arch_set_vga_state = func;	/* NULL disables */
6323 }
6324 
6325 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
6326 				  unsigned int command_bits, u32 flags)
6327 {
6328 	if (arch_set_vga_state)
6329 		return arch_set_vga_state(dev, decode, command_bits,
6330 						flags);
6331 	return 0;
6332 }
6333 
6334 /**
6335  * pci_set_vga_state - set VGA decode state on device and parents if requested
6336  * @dev: the PCI device
6337  * @decode: true = enable decoding, false = disable decoding
6338  * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6339  * @flags: traverse ancestors and change bridges
6340  * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6341  */
6342 int pci_set_vga_state(struct pci_dev *dev, bool decode,
6343 		      unsigned int command_bits, u32 flags)
6344 {
6345 	struct pci_bus *bus;
6346 	struct pci_dev *bridge;
6347 	u16 cmd;
6348 	int rc;
6349 
6350 	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6351 
6352 	/* ARCH specific VGA enables */
6353 	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6354 	if (rc)
6355 		return rc;
6356 
6357 	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6358 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
6359 		if (decode)
6360 			cmd |= command_bits;
6361 		else
6362 			cmd &= ~command_bits;
6363 		pci_write_config_word(dev, PCI_COMMAND, cmd);
6364 	}
6365 
6366 	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6367 		return 0;
6368 
6369 	bus = dev->bus;
6370 	while (bus) {
6371 		bridge = bus->self;
6372 		if (bridge) {
6373 			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6374 					     &cmd);
6375 			if (decode)
6376 				cmd |= PCI_BRIDGE_CTL_VGA;
6377 			else
6378 				cmd &= ~PCI_BRIDGE_CTL_VGA;
6379 			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6380 					      cmd);
6381 		}
6382 		bus = bus->parent;
6383 	}
6384 	return 0;
6385 }
6386 
6387 #ifdef CONFIG_ACPI
6388 bool pci_pr3_present(struct pci_dev *pdev)
6389 {
6390 	struct acpi_device *adev;
6391 
6392 	if (acpi_disabled)
6393 		return false;
6394 
6395 	adev = ACPI_COMPANION(&pdev->dev);
6396 	if (!adev)
6397 		return false;
6398 
6399 	return adev->power.flags.power_resources &&
6400 		acpi_has_method(adev->handle, "_PR3");
6401 }
6402 EXPORT_SYMBOL_GPL(pci_pr3_present);
6403 #endif
6404 
6405 /**
6406  * pci_add_dma_alias - Add a DMA devfn alias for a device
6407  * @dev: the PCI device for which alias is added
6408  * @devfn_from: alias slot and function
6409  * @nr_devfns: number of subsequent devfns to alias
6410  *
6411  * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6412  * which is used to program permissible bus-devfn source addresses for DMA
6413  * requests in an IOMMU.  These aliases factor into IOMMU group creation
6414  * and are useful for devices generating DMA requests beyond or different
6415  * from their logical bus-devfn.  Examples include device quirks where the
6416  * device simply uses the wrong devfn, as well as non-transparent bridges
6417  * where the alias may be a proxy for devices in another domain.
6418  *
6419  * IOMMU group creation is performed during device discovery or addition,
6420  * prior to any potential DMA mapping and therefore prior to driver probing
6421  * (especially for userspace assigned devices where IOMMU group definition
6422  * cannot be left as a userspace activity).  DMA aliases should therefore
6423  * be configured via quirks, such as the PCI fixup header quirk.
6424  */
6425 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from,
6426 		       unsigned int nr_devfns)
6427 {
6428 	int devfn_to;
6429 
6430 	nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from);
6431 	devfn_to = devfn_from + nr_devfns - 1;
6432 
6433 	if (!dev->dma_alias_mask)
6434 		dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6435 	if (!dev->dma_alias_mask) {
6436 		pci_warn(dev, "Unable to allocate DMA alias mask\n");
6437 		return;
6438 	}
6439 
6440 	bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6441 
6442 	if (nr_devfns == 1)
6443 		pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6444 				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6445 	else if (nr_devfns > 1)
6446 		pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6447 				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6448 				PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6449 }
6450 
6451 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6452 {
6453 	return (dev1->dma_alias_mask &&
6454 		test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6455 	       (dev2->dma_alias_mask &&
6456 		test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6457 	       pci_real_dma_dev(dev1) == dev2 ||
6458 	       pci_real_dma_dev(dev2) == dev1;
6459 }
6460 
6461 bool pci_device_is_present(struct pci_dev *pdev)
6462 {
6463 	u32 v;
6464 
6465 	if (pci_dev_is_disconnected(pdev))
6466 		return false;
6467 	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6468 }
6469 EXPORT_SYMBOL_GPL(pci_device_is_present);
6470 
6471 void pci_ignore_hotplug(struct pci_dev *dev)
6472 {
6473 	struct pci_dev *bridge = dev->bus->self;
6474 
6475 	dev->ignore_hotplug = 1;
6476 	/* Propagate the "ignore hotplug" setting to the parent bridge. */
6477 	if (bridge)
6478 		bridge->ignore_hotplug = 1;
6479 }
6480 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6481 
6482 /**
6483  * pci_real_dma_dev - Get PCI DMA device for PCI device
6484  * @dev: the PCI device that may have a PCI DMA alias
6485  *
6486  * Permits the platform to provide architecture-specific functionality to
6487  * devices needing to alias DMA to another PCI device on another PCI bus. If
6488  * the PCI device is on the same bus, it is recommended to use
6489  * pci_add_dma_alias(). This is the default implementation. Architecture
6490  * implementations can override this.
6491  */
6492 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6493 {
6494 	return dev;
6495 }
6496 
6497 resource_size_t __weak pcibios_default_alignment(void)
6498 {
6499 	return 0;
6500 }
6501 
6502 /*
6503  * Arches that don't want to expose struct resource to userland as-is in
6504  * sysfs and /proc can implement their own pci_resource_to_user().
6505  */
6506 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6507 				 const struct resource *rsrc,
6508 				 resource_size_t *start, resource_size_t *end)
6509 {
6510 	*start = rsrc->start;
6511 	*end = rsrc->end;
6512 }
6513 
6514 static char *resource_alignment_param;
6515 static DEFINE_SPINLOCK(resource_alignment_lock);
6516 
6517 /**
6518  * pci_specified_resource_alignment - get resource alignment specified by user.
6519  * @dev: the PCI device to get
6520  * @resize: whether or not to change resources' size when reassigning alignment
6521  *
6522  * RETURNS: Resource alignment if it is specified.
6523  *          Zero if it is not specified.
6524  */
6525 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6526 							bool *resize)
6527 {
6528 	int align_order, count;
6529 	resource_size_t align = pcibios_default_alignment();
6530 	const char *p;
6531 	int ret;
6532 
6533 	spin_lock(&resource_alignment_lock);
6534 	p = resource_alignment_param;
6535 	if (!p || !*p)
6536 		goto out;
6537 	if (pci_has_flag(PCI_PROBE_ONLY)) {
6538 		align = 0;
6539 		pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6540 		goto out;
6541 	}
6542 
6543 	while (*p) {
6544 		count = 0;
6545 		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6546 		    p[count] == '@') {
6547 			p += count + 1;
6548 			if (align_order > 63) {
6549 				pr_err("PCI: Invalid requested alignment (order %d)\n",
6550 				       align_order);
6551 				align_order = PAGE_SHIFT;
6552 			}
6553 		} else {
6554 			align_order = PAGE_SHIFT;
6555 		}
6556 
6557 		ret = pci_dev_str_match(dev, p, &p);
6558 		if (ret == 1) {
6559 			*resize = true;
6560 			align = 1ULL << align_order;
6561 			break;
6562 		} else if (ret < 0) {
6563 			pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6564 			       p);
6565 			break;
6566 		}
6567 
6568 		if (*p != ';' && *p != ',') {
6569 			/* End of param or invalid format */
6570 			break;
6571 		}
6572 		p++;
6573 	}
6574 out:
6575 	spin_unlock(&resource_alignment_lock);
6576 	return align;
6577 }
6578 
6579 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6580 					   resource_size_t align, bool resize)
6581 {
6582 	struct resource *r = &dev->resource[bar];
6583 	resource_size_t size;
6584 
6585 	if (!(r->flags & IORESOURCE_MEM))
6586 		return;
6587 
6588 	if (r->flags & IORESOURCE_PCI_FIXED) {
6589 		pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6590 			 bar, r, (unsigned long long)align);
6591 		return;
6592 	}
6593 
6594 	size = resource_size(r);
6595 	if (size >= align)
6596 		return;
6597 
6598 	/*
6599 	 * Increase the alignment of the resource.  There are two ways we
6600 	 * can do this:
6601 	 *
6602 	 * 1) Increase the size of the resource.  BARs are aligned on their
6603 	 *    size, so when we reallocate space for this resource, we'll
6604 	 *    allocate it with the larger alignment.  This also prevents
6605 	 *    assignment of any other BARs inside the alignment region, so
6606 	 *    if we're requesting page alignment, this means no other BARs
6607 	 *    will share the page.
6608 	 *
6609 	 *    The disadvantage is that this makes the resource larger than
6610 	 *    the hardware BAR, which may break drivers that compute things
6611 	 *    based on the resource size, e.g., to find registers at a
6612 	 *    fixed offset before the end of the BAR.
6613 	 *
6614 	 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6615 	 *    set r->start to the desired alignment.  By itself this
6616 	 *    doesn't prevent other BARs being put inside the alignment
6617 	 *    region, but if we realign *every* resource of every device in
6618 	 *    the system, none of them will share an alignment region.
6619 	 *
6620 	 * When the user has requested alignment for only some devices via
6621 	 * the "pci=resource_alignment" argument, "resize" is true and we
6622 	 * use the first method.  Otherwise we assume we're aligning all
6623 	 * devices and we use the second.
6624 	 */
6625 
6626 	pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6627 		 bar, r, (unsigned long long)align);
6628 
6629 	if (resize) {
6630 		r->start = 0;
6631 		r->end = align - 1;
6632 	} else {
6633 		r->flags &= ~IORESOURCE_SIZEALIGN;
6634 		r->flags |= IORESOURCE_STARTALIGN;
6635 		r->start = align;
6636 		r->end = r->start + size - 1;
6637 	}
6638 	r->flags |= IORESOURCE_UNSET;
6639 }
6640 
6641 /*
6642  * This function disables memory decoding and releases memory resources
6643  * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6644  * It also rounds up size to specified alignment.
6645  * Later on, the kernel will assign page-aligned memory resource back
6646  * to the device.
6647  */
6648 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6649 {
6650 	int i;
6651 	struct resource *r;
6652 	resource_size_t align;
6653 	u16 command;
6654 	bool resize = false;
6655 
6656 	/*
6657 	 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6658 	 * 3.4.1.11.  Their resources are allocated from the space
6659 	 * described by the VF BARx register in the PF's SR-IOV capability.
6660 	 * We can't influence their alignment here.
6661 	 */
6662 	if (dev->is_virtfn)
6663 		return;
6664 
6665 	/* check if specified PCI is target device to reassign */
6666 	align = pci_specified_resource_alignment(dev, &resize);
6667 	if (!align)
6668 		return;
6669 
6670 	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6671 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6672 		pci_warn(dev, "Can't reassign resources to host bridge\n");
6673 		return;
6674 	}
6675 
6676 	pci_read_config_word(dev, PCI_COMMAND, &command);
6677 	command &= ~PCI_COMMAND_MEMORY;
6678 	pci_write_config_word(dev, PCI_COMMAND, command);
6679 
6680 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6681 		pci_request_resource_alignment(dev, i, align, resize);
6682 
6683 	/*
6684 	 * Need to disable bridge's resource window,
6685 	 * to enable the kernel to reassign new resource
6686 	 * window later on.
6687 	 */
6688 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6689 		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6690 			r = &dev->resource[i];
6691 			if (!(r->flags & IORESOURCE_MEM))
6692 				continue;
6693 			r->flags |= IORESOURCE_UNSET;
6694 			r->end = resource_size(r) - 1;
6695 			r->start = 0;
6696 		}
6697 		pci_disable_bridge_window(dev);
6698 	}
6699 }
6700 
6701 static ssize_t resource_alignment_show(struct bus_type *bus, char *buf)
6702 {
6703 	size_t count = 0;
6704 
6705 	spin_lock(&resource_alignment_lock);
6706 	if (resource_alignment_param)
6707 		count = sysfs_emit(buf, "%s\n", resource_alignment_param);
6708 	spin_unlock(&resource_alignment_lock);
6709 
6710 	return count;
6711 }
6712 
6713 static ssize_t resource_alignment_store(struct bus_type *bus,
6714 					const char *buf, size_t count)
6715 {
6716 	char *param, *old, *end;
6717 
6718 	if (count >= (PAGE_SIZE - 1))
6719 		return -EINVAL;
6720 
6721 	param = kstrndup(buf, count, GFP_KERNEL);
6722 	if (!param)
6723 		return -ENOMEM;
6724 
6725 	end = strchr(param, '\n');
6726 	if (end)
6727 		*end = '\0';
6728 
6729 	spin_lock(&resource_alignment_lock);
6730 	old = resource_alignment_param;
6731 	if (strlen(param)) {
6732 		resource_alignment_param = param;
6733 	} else {
6734 		kfree(param);
6735 		resource_alignment_param = NULL;
6736 	}
6737 	spin_unlock(&resource_alignment_lock);
6738 
6739 	kfree(old);
6740 
6741 	return count;
6742 }
6743 
6744 static BUS_ATTR_RW(resource_alignment);
6745 
6746 static int __init pci_resource_alignment_sysfs_init(void)
6747 {
6748 	return bus_create_file(&pci_bus_type,
6749 					&bus_attr_resource_alignment);
6750 }
6751 late_initcall(pci_resource_alignment_sysfs_init);
6752 
6753 static void pci_no_domains(void)
6754 {
6755 #ifdef CONFIG_PCI_DOMAINS
6756 	pci_domains_supported = 0;
6757 #endif
6758 }
6759 
6760 #ifdef CONFIG_PCI_DOMAINS_GENERIC
6761 static atomic_t __domain_nr = ATOMIC_INIT(-1);
6762 
6763 static int pci_get_new_domain_nr(void)
6764 {
6765 	return atomic_inc_return(&__domain_nr);
6766 }
6767 
6768 static int of_pci_bus_find_domain_nr(struct device *parent)
6769 {
6770 	static int use_dt_domains = -1;
6771 	int domain = -1;
6772 
6773 	if (parent)
6774 		domain = of_get_pci_domain_nr(parent->of_node);
6775 
6776 	/*
6777 	 * Check DT domain and use_dt_domains values.
6778 	 *
6779 	 * If DT domain property is valid (domain >= 0) and
6780 	 * use_dt_domains != 0, the DT assignment is valid since this means
6781 	 * we have not previously allocated a domain number by using
6782 	 * pci_get_new_domain_nr(); we should also update use_dt_domains to
6783 	 * 1, to indicate that we have just assigned a domain number from
6784 	 * DT.
6785 	 *
6786 	 * If DT domain property value is not valid (ie domain < 0), and we
6787 	 * have not previously assigned a domain number from DT
6788 	 * (use_dt_domains != 1) we should assign a domain number by
6789 	 * using the:
6790 	 *
6791 	 * pci_get_new_domain_nr()
6792 	 *
6793 	 * API and update the use_dt_domains value to keep track of method we
6794 	 * are using to assign domain numbers (use_dt_domains = 0).
6795 	 *
6796 	 * All other combinations imply we have a platform that is trying
6797 	 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
6798 	 * which is a recipe for domain mishandling and it is prevented by
6799 	 * invalidating the domain value (domain = -1) and printing a
6800 	 * corresponding error.
6801 	 */
6802 	if (domain >= 0 && use_dt_domains) {
6803 		use_dt_domains = 1;
6804 	} else if (domain < 0 && use_dt_domains != 1) {
6805 		use_dt_domains = 0;
6806 		domain = pci_get_new_domain_nr();
6807 	} else {
6808 		if (parent)
6809 			pr_err("Node %pOF has ", parent->of_node);
6810 		pr_err("Inconsistent \"linux,pci-domain\" property in DT\n");
6811 		domain = -1;
6812 	}
6813 
6814 	return domain;
6815 }
6816 
6817 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6818 {
6819 	return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6820 			       acpi_pci_bus_find_domain_nr(bus);
6821 }
6822 #endif
6823 
6824 /**
6825  * pci_ext_cfg_avail - can we access extended PCI config space?
6826  *
6827  * Returns 1 if we can access PCI extended config space (offsets
6828  * greater than 0xff). This is the default implementation. Architecture
6829  * implementations can override this.
6830  */
6831 int __weak pci_ext_cfg_avail(void)
6832 {
6833 	return 1;
6834 }
6835 
6836 void __weak pci_fixup_cardbus(struct pci_bus *bus)
6837 {
6838 }
6839 EXPORT_SYMBOL(pci_fixup_cardbus);
6840 
6841 static int __init pci_setup(char *str)
6842 {
6843 	while (str) {
6844 		char *k = strchr(str, ',');
6845 		if (k)
6846 			*k++ = 0;
6847 		if (*str && (str = pcibios_setup(str)) && *str) {
6848 			if (!strcmp(str, "nomsi")) {
6849 				pci_no_msi();
6850 			} else if (!strncmp(str, "noats", 5)) {
6851 				pr_info("PCIe: ATS is disabled\n");
6852 				pcie_ats_disabled = true;
6853 			} else if (!strcmp(str, "noaer")) {
6854 				pci_no_aer();
6855 			} else if (!strcmp(str, "earlydump")) {
6856 				pci_early_dump = true;
6857 			} else if (!strncmp(str, "realloc=", 8)) {
6858 				pci_realloc_get_opt(str + 8);
6859 			} else if (!strncmp(str, "realloc", 7)) {
6860 				pci_realloc_get_opt("on");
6861 			} else if (!strcmp(str, "nodomains")) {
6862 				pci_no_domains();
6863 			} else if (!strncmp(str, "noari", 5)) {
6864 				pcie_ari_disabled = true;
6865 			} else if (!strncmp(str, "cbiosize=", 9)) {
6866 				pci_cardbus_io_size = memparse(str + 9, &str);
6867 			} else if (!strncmp(str, "cbmemsize=", 10)) {
6868 				pci_cardbus_mem_size = memparse(str + 10, &str);
6869 			} else if (!strncmp(str, "resource_alignment=", 19)) {
6870 				resource_alignment_param = str + 19;
6871 			} else if (!strncmp(str, "ecrc=", 5)) {
6872 				pcie_ecrc_get_policy(str + 5);
6873 			} else if (!strncmp(str, "hpiosize=", 9)) {
6874 				pci_hotplug_io_size = memparse(str + 9, &str);
6875 			} else if (!strncmp(str, "hpmmiosize=", 11)) {
6876 				pci_hotplug_mmio_size = memparse(str + 11, &str);
6877 			} else if (!strncmp(str, "hpmmioprefsize=", 15)) {
6878 				pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
6879 			} else if (!strncmp(str, "hpmemsize=", 10)) {
6880 				pci_hotplug_mmio_size = memparse(str + 10, &str);
6881 				pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
6882 			} else if (!strncmp(str, "hpbussize=", 10)) {
6883 				pci_hotplug_bus_size =
6884 					simple_strtoul(str + 10, &str, 0);
6885 				if (pci_hotplug_bus_size > 0xff)
6886 					pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6887 			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6888 				pcie_bus_config = PCIE_BUS_TUNE_OFF;
6889 			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
6890 				pcie_bus_config = PCIE_BUS_SAFE;
6891 			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
6892 				pcie_bus_config = PCIE_BUS_PERFORMANCE;
6893 			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6894 				pcie_bus_config = PCIE_BUS_PEER2PEER;
6895 			} else if (!strncmp(str, "pcie_scan_all", 13)) {
6896 				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6897 			} else if (!strncmp(str, "disable_acs_redir=", 18)) {
6898 				disable_acs_redir_param = str + 18;
6899 			} else {
6900 				pr_err("PCI: Unknown option `%s'\n", str);
6901 			}
6902 		}
6903 		str = k;
6904 	}
6905 	return 0;
6906 }
6907 early_param("pci", pci_setup);
6908 
6909 /*
6910  * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6911  * in pci_setup(), above, to point to data in the __initdata section which
6912  * will be freed after the init sequence is complete. We can't allocate memory
6913  * in pci_setup() because some architectures do not have any memory allocation
6914  * service available during an early_param() call. So we allocate memory and
6915  * copy the variable here before the init section is freed.
6916  *
6917  */
6918 static int __init pci_realloc_setup_params(void)
6919 {
6920 	resource_alignment_param = kstrdup(resource_alignment_param,
6921 					   GFP_KERNEL);
6922 	disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6923 
6924 	return 0;
6925 }
6926 pure_initcall(pci_realloc_setup_params);
6927