xref: /openbmc/linux/drivers/pci/pci.c (revision 2eb0f624b709e78ec8e2f4c3412947703db99301)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * PCI Bus Services, see include/linux/pci.h for further explanation.
4  *
5  * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6  * David Mosberger-Tang
7  *
8  * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/of.h>
17 #include <linux/of_pci.h>
18 #include <linux/pci.h>
19 #include <linux/pm.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/log2.h>
25 #include <linux/logic_pio.h>
26 #include <linux/pci-aspm.h>
27 #include <linux/pm_wakeup.h>
28 #include <linux/interrupt.h>
29 #include <linux/device.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/pci_hotplug.h>
32 #include <linux/vmalloc.h>
33 #include <linux/pci-ats.h>
34 #include <asm/setup.h>
35 #include <asm/dma.h>
36 #include <linux/aer.h>
37 #include "pci.h"
38 
39 const char *pci_power_names[] = {
40 	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
41 };
42 EXPORT_SYMBOL_GPL(pci_power_names);
43 
44 int isa_dma_bridge_buggy;
45 EXPORT_SYMBOL(isa_dma_bridge_buggy);
46 
47 int pci_pci_problems;
48 EXPORT_SYMBOL(pci_pci_problems);
49 
50 unsigned int pci_pm_d3_delay;
51 
52 static void pci_pme_list_scan(struct work_struct *work);
53 
54 static LIST_HEAD(pci_pme_list);
55 static DEFINE_MUTEX(pci_pme_list_mutex);
56 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
57 
58 struct pci_pme_device {
59 	struct list_head list;
60 	struct pci_dev *dev;
61 };
62 
63 #define PME_TIMEOUT 1000 /* How long between PME checks */
64 
65 static void pci_dev_d3_sleep(struct pci_dev *dev)
66 {
67 	unsigned int delay = dev->d3_delay;
68 
69 	if (delay < pci_pm_d3_delay)
70 		delay = pci_pm_d3_delay;
71 
72 	if (delay)
73 		msleep(delay);
74 }
75 
76 #ifdef CONFIG_PCI_DOMAINS
77 int pci_domains_supported = 1;
78 #endif
79 
80 #define DEFAULT_CARDBUS_IO_SIZE		(256)
81 #define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
82 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
83 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
84 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
85 
86 #define DEFAULT_HOTPLUG_IO_SIZE		(256)
87 #define DEFAULT_HOTPLUG_MEM_SIZE	(2*1024*1024)
88 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
89 unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
90 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
91 
92 #define DEFAULT_HOTPLUG_BUS_SIZE	1
93 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
94 
95 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
96 
97 /*
98  * The default CLS is used if arch didn't set CLS explicitly and not
99  * all pci devices agree on the same value.  Arch can override either
100  * the dfl or actual value as it sees fit.  Don't forget this is
101  * measured in 32-bit words, not bytes.
102  */
103 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
104 u8 pci_cache_line_size;
105 
106 /*
107  * If we set up a device for bus mastering, we need to check the latency
108  * timer as certain BIOSes forget to set it properly.
109  */
110 unsigned int pcibios_max_latency = 255;
111 
112 /* If set, the PCIe ARI capability will not be used. */
113 static bool pcie_ari_disabled;
114 
115 /* Disable bridge_d3 for all PCIe ports */
116 static bool pci_bridge_d3_disable;
117 /* Force bridge_d3 for all PCIe ports */
118 static bool pci_bridge_d3_force;
119 
120 static int __init pcie_port_pm_setup(char *str)
121 {
122 	if (!strcmp(str, "off"))
123 		pci_bridge_d3_disable = true;
124 	else if (!strcmp(str, "force"))
125 		pci_bridge_d3_force = true;
126 	return 1;
127 }
128 __setup("pcie_port_pm=", pcie_port_pm_setup);
129 
130 /* Time to wait after a reset for device to become responsive */
131 #define PCIE_RESET_READY_POLL_MS 60000
132 
133 /**
134  * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
135  * @bus: pointer to PCI bus structure to search
136  *
137  * Given a PCI bus, returns the highest PCI bus number present in the set
138  * including the given PCI bus and its list of child PCI buses.
139  */
140 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
141 {
142 	struct pci_bus *tmp;
143 	unsigned char max, n;
144 
145 	max = bus->busn_res.end;
146 	list_for_each_entry(tmp, &bus->children, node) {
147 		n = pci_bus_max_busnr(tmp);
148 		if (n > max)
149 			max = n;
150 	}
151 	return max;
152 }
153 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
154 
155 #ifdef CONFIG_HAS_IOMEM
156 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
157 {
158 	struct resource *res = &pdev->resource[bar];
159 
160 	/*
161 	 * Make sure the BAR is actually a memory resource, not an IO resource
162 	 */
163 	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
164 		pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
165 		return NULL;
166 	}
167 	return ioremap_nocache(res->start, resource_size(res));
168 }
169 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
170 
171 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
172 {
173 	/*
174 	 * Make sure the BAR is actually a memory resource, not an IO resource
175 	 */
176 	if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
177 		WARN_ON(1);
178 		return NULL;
179 	}
180 	return ioremap_wc(pci_resource_start(pdev, bar),
181 			  pci_resource_len(pdev, bar));
182 }
183 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
184 #endif
185 
186 
187 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
188 				   u8 pos, int cap, int *ttl)
189 {
190 	u8 id;
191 	u16 ent;
192 
193 	pci_bus_read_config_byte(bus, devfn, pos, &pos);
194 
195 	while ((*ttl)--) {
196 		if (pos < 0x40)
197 			break;
198 		pos &= ~3;
199 		pci_bus_read_config_word(bus, devfn, pos, &ent);
200 
201 		id = ent & 0xff;
202 		if (id == 0xff)
203 			break;
204 		if (id == cap)
205 			return pos;
206 		pos = (ent >> 8);
207 	}
208 	return 0;
209 }
210 
211 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
212 			       u8 pos, int cap)
213 {
214 	int ttl = PCI_FIND_CAP_TTL;
215 
216 	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
217 }
218 
219 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
220 {
221 	return __pci_find_next_cap(dev->bus, dev->devfn,
222 				   pos + PCI_CAP_LIST_NEXT, cap);
223 }
224 EXPORT_SYMBOL_GPL(pci_find_next_capability);
225 
226 static int __pci_bus_find_cap_start(struct pci_bus *bus,
227 				    unsigned int devfn, u8 hdr_type)
228 {
229 	u16 status;
230 
231 	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
232 	if (!(status & PCI_STATUS_CAP_LIST))
233 		return 0;
234 
235 	switch (hdr_type) {
236 	case PCI_HEADER_TYPE_NORMAL:
237 	case PCI_HEADER_TYPE_BRIDGE:
238 		return PCI_CAPABILITY_LIST;
239 	case PCI_HEADER_TYPE_CARDBUS:
240 		return PCI_CB_CAPABILITY_LIST;
241 	}
242 
243 	return 0;
244 }
245 
246 /**
247  * pci_find_capability - query for devices' capabilities
248  * @dev: PCI device to query
249  * @cap: capability code
250  *
251  * Tell if a device supports a given PCI capability.
252  * Returns the address of the requested capability structure within the
253  * device's PCI configuration space or 0 in case the device does not
254  * support it.  Possible values for @cap:
255  *
256  *  %PCI_CAP_ID_PM           Power Management
257  *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
258  *  %PCI_CAP_ID_VPD          Vital Product Data
259  *  %PCI_CAP_ID_SLOTID       Slot Identification
260  *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
261  *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
262  *  %PCI_CAP_ID_PCIX         PCI-X
263  *  %PCI_CAP_ID_EXP          PCI Express
264  */
265 int pci_find_capability(struct pci_dev *dev, int cap)
266 {
267 	int pos;
268 
269 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
270 	if (pos)
271 		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
272 
273 	return pos;
274 }
275 EXPORT_SYMBOL(pci_find_capability);
276 
277 /**
278  * pci_bus_find_capability - query for devices' capabilities
279  * @bus:   the PCI bus to query
280  * @devfn: PCI device to query
281  * @cap:   capability code
282  *
283  * Like pci_find_capability() but works for pci devices that do not have a
284  * pci_dev structure set up yet.
285  *
286  * Returns the address of the requested capability structure within the
287  * device's PCI configuration space or 0 in case the device does not
288  * support it.
289  */
290 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
291 {
292 	int pos;
293 	u8 hdr_type;
294 
295 	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
296 
297 	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
298 	if (pos)
299 		pos = __pci_find_next_cap(bus, devfn, pos, cap);
300 
301 	return pos;
302 }
303 EXPORT_SYMBOL(pci_bus_find_capability);
304 
305 /**
306  * pci_find_next_ext_capability - Find an extended capability
307  * @dev: PCI device to query
308  * @start: address at which to start looking (0 to start at beginning of list)
309  * @cap: capability code
310  *
311  * Returns the address of the next matching extended capability structure
312  * within the device's PCI configuration space or 0 if the device does
313  * not support it.  Some capabilities can occur several times, e.g., the
314  * vendor-specific capability, and this provides a way to find them all.
315  */
316 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
317 {
318 	u32 header;
319 	int ttl;
320 	int pos = PCI_CFG_SPACE_SIZE;
321 
322 	/* minimum 8 bytes per capability */
323 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
324 
325 	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
326 		return 0;
327 
328 	if (start)
329 		pos = start;
330 
331 	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
332 		return 0;
333 
334 	/*
335 	 * If we have no capabilities, this is indicated by cap ID,
336 	 * cap version and next pointer all being 0.
337 	 */
338 	if (header == 0)
339 		return 0;
340 
341 	while (ttl-- > 0) {
342 		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
343 			return pos;
344 
345 		pos = PCI_EXT_CAP_NEXT(header);
346 		if (pos < PCI_CFG_SPACE_SIZE)
347 			break;
348 
349 		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
350 			break;
351 	}
352 
353 	return 0;
354 }
355 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
356 
357 /**
358  * pci_find_ext_capability - Find an extended capability
359  * @dev: PCI device to query
360  * @cap: capability code
361  *
362  * Returns the address of the requested extended capability structure
363  * within the device's PCI configuration space or 0 if the device does
364  * not support it.  Possible values for @cap:
365  *
366  *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
367  *  %PCI_EXT_CAP_ID_VC		Virtual Channel
368  *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
369  *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
370  */
371 int pci_find_ext_capability(struct pci_dev *dev, int cap)
372 {
373 	return pci_find_next_ext_capability(dev, 0, cap);
374 }
375 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
376 
377 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
378 {
379 	int rc, ttl = PCI_FIND_CAP_TTL;
380 	u8 cap, mask;
381 
382 	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
383 		mask = HT_3BIT_CAP_MASK;
384 	else
385 		mask = HT_5BIT_CAP_MASK;
386 
387 	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
388 				      PCI_CAP_ID_HT, &ttl);
389 	while (pos) {
390 		rc = pci_read_config_byte(dev, pos + 3, &cap);
391 		if (rc != PCIBIOS_SUCCESSFUL)
392 			return 0;
393 
394 		if ((cap & mask) == ht_cap)
395 			return pos;
396 
397 		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
398 					      pos + PCI_CAP_LIST_NEXT,
399 					      PCI_CAP_ID_HT, &ttl);
400 	}
401 
402 	return 0;
403 }
404 /**
405  * pci_find_next_ht_capability - query a device's Hypertransport capabilities
406  * @dev: PCI device to query
407  * @pos: Position from which to continue searching
408  * @ht_cap: Hypertransport capability code
409  *
410  * To be used in conjunction with pci_find_ht_capability() to search for
411  * all capabilities matching @ht_cap. @pos should always be a value returned
412  * from pci_find_ht_capability().
413  *
414  * NB. To be 100% safe against broken PCI devices, the caller should take
415  * steps to avoid an infinite loop.
416  */
417 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
418 {
419 	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
420 }
421 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
422 
423 /**
424  * pci_find_ht_capability - query a device's Hypertransport capabilities
425  * @dev: PCI device to query
426  * @ht_cap: Hypertransport capability code
427  *
428  * Tell if a device supports a given Hypertransport capability.
429  * Returns an address within the device's PCI configuration space
430  * or 0 in case the device does not support the request capability.
431  * The address points to the PCI capability, of type PCI_CAP_ID_HT,
432  * which has a Hypertransport capability matching @ht_cap.
433  */
434 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
435 {
436 	int pos;
437 
438 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
439 	if (pos)
440 		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
441 
442 	return pos;
443 }
444 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
445 
446 /**
447  * pci_find_parent_resource - return resource region of parent bus of given region
448  * @dev: PCI device structure contains resources to be searched
449  * @res: child resource record for which parent is sought
450  *
451  *  For given resource region of given device, return the resource
452  *  region of parent bus the given region is contained in.
453  */
454 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
455 					  struct resource *res)
456 {
457 	const struct pci_bus *bus = dev->bus;
458 	struct resource *r;
459 	int i;
460 
461 	pci_bus_for_each_resource(bus, r, i) {
462 		if (!r)
463 			continue;
464 		if (resource_contains(r, res)) {
465 
466 			/*
467 			 * If the window is prefetchable but the BAR is
468 			 * not, the allocator made a mistake.
469 			 */
470 			if (r->flags & IORESOURCE_PREFETCH &&
471 			    !(res->flags & IORESOURCE_PREFETCH))
472 				return NULL;
473 
474 			/*
475 			 * If we're below a transparent bridge, there may
476 			 * be both a positively-decoded aperture and a
477 			 * subtractively-decoded region that contain the BAR.
478 			 * We want the positively-decoded one, so this depends
479 			 * on pci_bus_for_each_resource() giving us those
480 			 * first.
481 			 */
482 			return r;
483 		}
484 	}
485 	return NULL;
486 }
487 EXPORT_SYMBOL(pci_find_parent_resource);
488 
489 /**
490  * pci_find_resource - Return matching PCI device resource
491  * @dev: PCI device to query
492  * @res: Resource to look for
493  *
494  * Goes over standard PCI resources (BARs) and checks if the given resource
495  * is partially or fully contained in any of them. In that case the
496  * matching resource is returned, %NULL otherwise.
497  */
498 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
499 {
500 	int i;
501 
502 	for (i = 0; i < PCI_ROM_RESOURCE; i++) {
503 		struct resource *r = &dev->resource[i];
504 
505 		if (r->start && resource_contains(r, res))
506 			return r;
507 	}
508 
509 	return NULL;
510 }
511 EXPORT_SYMBOL(pci_find_resource);
512 
513 /**
514  * pci_find_pcie_root_port - return PCIe Root Port
515  * @dev: PCI device to query
516  *
517  * Traverse up the parent chain and return the PCIe Root Port PCI Device
518  * for a given PCI Device.
519  */
520 struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev)
521 {
522 	struct pci_dev *bridge, *highest_pcie_bridge = dev;
523 
524 	bridge = pci_upstream_bridge(dev);
525 	while (bridge && pci_is_pcie(bridge)) {
526 		highest_pcie_bridge = bridge;
527 		bridge = pci_upstream_bridge(bridge);
528 	}
529 
530 	if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT)
531 		return NULL;
532 
533 	return highest_pcie_bridge;
534 }
535 EXPORT_SYMBOL(pci_find_pcie_root_port);
536 
537 /**
538  * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
539  * @dev: the PCI device to operate on
540  * @pos: config space offset of status word
541  * @mask: mask of bit(s) to care about in status word
542  *
543  * Return 1 when mask bit(s) in status word clear, 0 otherwise.
544  */
545 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
546 {
547 	int i;
548 
549 	/* Wait for Transaction Pending bit clean */
550 	for (i = 0; i < 4; i++) {
551 		u16 status;
552 		if (i)
553 			msleep((1 << (i - 1)) * 100);
554 
555 		pci_read_config_word(dev, pos, &status);
556 		if (!(status & mask))
557 			return 1;
558 	}
559 
560 	return 0;
561 }
562 
563 /**
564  * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
565  * @dev: PCI device to have its BARs restored
566  *
567  * Restore the BAR values for a given device, so as to make it
568  * accessible by its driver.
569  */
570 static void pci_restore_bars(struct pci_dev *dev)
571 {
572 	int i;
573 
574 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
575 		pci_update_resource(dev, i);
576 }
577 
578 static const struct pci_platform_pm_ops *pci_platform_pm;
579 
580 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
581 {
582 	if (!ops->is_manageable || !ops->set_state  || !ops->get_state ||
583 	    !ops->choose_state  || !ops->set_wakeup || !ops->need_resume)
584 		return -EINVAL;
585 	pci_platform_pm = ops;
586 	return 0;
587 }
588 
589 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
590 {
591 	return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
592 }
593 
594 static inline int platform_pci_set_power_state(struct pci_dev *dev,
595 					       pci_power_t t)
596 {
597 	return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
598 }
599 
600 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
601 {
602 	return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
603 }
604 
605 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
606 {
607 	return pci_platform_pm ?
608 			pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
609 }
610 
611 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
612 {
613 	return pci_platform_pm ?
614 			pci_platform_pm->set_wakeup(dev, enable) : -ENODEV;
615 }
616 
617 static inline bool platform_pci_need_resume(struct pci_dev *dev)
618 {
619 	return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
620 }
621 
622 /**
623  * pci_raw_set_power_state - Use PCI PM registers to set the power state of
624  *                           given PCI device
625  * @dev: PCI device to handle.
626  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
627  *
628  * RETURN VALUE:
629  * -EINVAL if the requested state is invalid.
630  * -EIO if device does not support PCI PM or its PM capabilities register has a
631  * wrong version, or device doesn't support the requested state.
632  * 0 if device already is in the requested state.
633  * 0 if device's power state has been successfully changed.
634  */
635 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
636 {
637 	u16 pmcsr;
638 	bool need_restore = false;
639 
640 	/* Check if we're already there */
641 	if (dev->current_state == state)
642 		return 0;
643 
644 	if (!dev->pm_cap)
645 		return -EIO;
646 
647 	if (state < PCI_D0 || state > PCI_D3hot)
648 		return -EINVAL;
649 
650 	/* Validate current state:
651 	 * Can enter D0 from any state, but if we can only go deeper
652 	 * to sleep if we're already in a low power state
653 	 */
654 	if (state != PCI_D0 && dev->current_state <= PCI_D3cold
655 	    && dev->current_state > state) {
656 		pci_err(dev, "invalid power transition (from state %d to %d)\n",
657 			dev->current_state, state);
658 		return -EINVAL;
659 	}
660 
661 	/* check if this device supports the desired state */
662 	if ((state == PCI_D1 && !dev->d1_support)
663 	   || (state == PCI_D2 && !dev->d2_support))
664 		return -EIO;
665 
666 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
667 
668 	/* If we're (effectively) in D3, force entire word to 0.
669 	 * This doesn't affect PME_Status, disables PME_En, and
670 	 * sets PowerState to 0.
671 	 */
672 	switch (dev->current_state) {
673 	case PCI_D0:
674 	case PCI_D1:
675 	case PCI_D2:
676 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
677 		pmcsr |= state;
678 		break;
679 	case PCI_D3hot:
680 	case PCI_D3cold:
681 	case PCI_UNKNOWN: /* Boot-up */
682 		if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
683 		 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
684 			need_restore = true;
685 		/* Fall-through: force to D0 */
686 	default:
687 		pmcsr = 0;
688 		break;
689 	}
690 
691 	/* enter specified state */
692 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
693 
694 	/* Mandatory power management transition delays */
695 	/* see PCI PM 1.1 5.6.1 table 18 */
696 	if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
697 		pci_dev_d3_sleep(dev);
698 	else if (state == PCI_D2 || dev->current_state == PCI_D2)
699 		udelay(PCI_PM_D2_DELAY);
700 
701 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
702 	dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
703 	if (dev->current_state != state && printk_ratelimit())
704 		pci_info(dev, "Refused to change power state, currently in D%d\n",
705 			 dev->current_state);
706 
707 	/*
708 	 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
709 	 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
710 	 * from D3hot to D0 _may_ perform an internal reset, thereby
711 	 * going to "D0 Uninitialized" rather than "D0 Initialized".
712 	 * For example, at least some versions of the 3c905B and the
713 	 * 3c556B exhibit this behaviour.
714 	 *
715 	 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
716 	 * devices in a D3hot state at boot.  Consequently, we need to
717 	 * restore at least the BARs so that the device will be
718 	 * accessible to its driver.
719 	 */
720 	if (need_restore)
721 		pci_restore_bars(dev);
722 
723 	if (dev->bus->self)
724 		pcie_aspm_pm_state_change(dev->bus->self);
725 
726 	return 0;
727 }
728 
729 /**
730  * pci_update_current_state - Read power state of given device and cache it
731  * @dev: PCI device to handle.
732  * @state: State to cache in case the device doesn't have the PM capability
733  *
734  * The power state is read from the PMCSR register, which however is
735  * inaccessible in D3cold.  The platform firmware is therefore queried first
736  * to detect accessibility of the register.  In case the platform firmware
737  * reports an incorrect state or the device isn't power manageable by the
738  * platform at all, we try to detect D3cold by testing accessibility of the
739  * vendor ID in config space.
740  */
741 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
742 {
743 	if (platform_pci_get_power_state(dev) == PCI_D3cold ||
744 	    !pci_device_is_present(dev)) {
745 		dev->current_state = PCI_D3cold;
746 	} else if (dev->pm_cap) {
747 		u16 pmcsr;
748 
749 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
750 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
751 	} else {
752 		dev->current_state = state;
753 	}
754 }
755 
756 /**
757  * pci_power_up - Put the given device into D0 forcibly
758  * @dev: PCI device to power up
759  */
760 void pci_power_up(struct pci_dev *dev)
761 {
762 	if (platform_pci_power_manageable(dev))
763 		platform_pci_set_power_state(dev, PCI_D0);
764 
765 	pci_raw_set_power_state(dev, PCI_D0);
766 	pci_update_current_state(dev, PCI_D0);
767 }
768 
769 /**
770  * pci_platform_power_transition - Use platform to change device power state
771  * @dev: PCI device to handle.
772  * @state: State to put the device into.
773  */
774 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
775 {
776 	int error;
777 
778 	if (platform_pci_power_manageable(dev)) {
779 		error = platform_pci_set_power_state(dev, state);
780 		if (!error)
781 			pci_update_current_state(dev, state);
782 	} else
783 		error = -ENODEV;
784 
785 	if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
786 		dev->current_state = PCI_D0;
787 
788 	return error;
789 }
790 
791 /**
792  * pci_wakeup - Wake up a PCI device
793  * @pci_dev: Device to handle.
794  * @ign: ignored parameter
795  */
796 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
797 {
798 	pci_wakeup_event(pci_dev);
799 	pm_request_resume(&pci_dev->dev);
800 	return 0;
801 }
802 
803 /**
804  * pci_wakeup_bus - Walk given bus and wake up devices on it
805  * @bus: Top bus of the subtree to walk.
806  */
807 void pci_wakeup_bus(struct pci_bus *bus)
808 {
809 	if (bus)
810 		pci_walk_bus(bus, pci_wakeup, NULL);
811 }
812 
813 /**
814  * __pci_start_power_transition - Start power transition of a PCI device
815  * @dev: PCI device to handle.
816  * @state: State to put the device into.
817  */
818 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
819 {
820 	if (state == PCI_D0) {
821 		pci_platform_power_transition(dev, PCI_D0);
822 		/*
823 		 * Mandatory power management transition delays, see
824 		 * PCI Express Base Specification Revision 2.0 Section
825 		 * 6.6.1: Conventional Reset.  Do not delay for
826 		 * devices powered on/off by corresponding bridge,
827 		 * because have already delayed for the bridge.
828 		 */
829 		if (dev->runtime_d3cold) {
830 			if (dev->d3cold_delay)
831 				msleep(dev->d3cold_delay);
832 			/*
833 			 * When powering on a bridge from D3cold, the
834 			 * whole hierarchy may be powered on into
835 			 * D0uninitialized state, resume them to give
836 			 * them a chance to suspend again
837 			 */
838 			pci_wakeup_bus(dev->subordinate);
839 		}
840 	}
841 }
842 
843 /**
844  * __pci_dev_set_current_state - Set current state of a PCI device
845  * @dev: Device to handle
846  * @data: pointer to state to be set
847  */
848 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
849 {
850 	pci_power_t state = *(pci_power_t *)data;
851 
852 	dev->current_state = state;
853 	return 0;
854 }
855 
856 /**
857  * pci_bus_set_current_state - Walk given bus and set current state of devices
858  * @bus: Top bus of the subtree to walk.
859  * @state: state to be set
860  */
861 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
862 {
863 	if (bus)
864 		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
865 }
866 
867 /**
868  * __pci_complete_power_transition - Complete power transition of a PCI device
869  * @dev: PCI device to handle.
870  * @state: State to put the device into.
871  *
872  * This function should not be called directly by device drivers.
873  */
874 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
875 {
876 	int ret;
877 
878 	if (state <= PCI_D0)
879 		return -EINVAL;
880 	ret = pci_platform_power_transition(dev, state);
881 	/* Power off the bridge may power off the whole hierarchy */
882 	if (!ret && state == PCI_D3cold)
883 		pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
884 	return ret;
885 }
886 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
887 
888 /**
889  * pci_set_power_state - Set the power state of a PCI device
890  * @dev: PCI device to handle.
891  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
892  *
893  * Transition a device to a new power state, using the platform firmware and/or
894  * the device's PCI PM registers.
895  *
896  * RETURN VALUE:
897  * -EINVAL if the requested state is invalid.
898  * -EIO if device does not support PCI PM or its PM capabilities register has a
899  * wrong version, or device doesn't support the requested state.
900  * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
901  * 0 if device already is in the requested state.
902  * 0 if the transition is to D3 but D3 is not supported.
903  * 0 if device's power state has been successfully changed.
904  */
905 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
906 {
907 	int error;
908 
909 	/* bound the state we're entering */
910 	if (state > PCI_D3cold)
911 		state = PCI_D3cold;
912 	else if (state < PCI_D0)
913 		state = PCI_D0;
914 	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
915 		/*
916 		 * If the device or the parent bridge do not support PCI PM,
917 		 * ignore the request if we're doing anything other than putting
918 		 * it into D0 (which would only happen on boot).
919 		 */
920 		return 0;
921 
922 	/* Check if we're already there */
923 	if (dev->current_state == state)
924 		return 0;
925 
926 	__pci_start_power_transition(dev, state);
927 
928 	/* This device is quirked not to be put into D3, so
929 	   don't put it in D3 */
930 	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
931 		return 0;
932 
933 	/*
934 	 * To put device in D3cold, we put device into D3hot in native
935 	 * way, then put device into D3cold with platform ops
936 	 */
937 	error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
938 					PCI_D3hot : state);
939 
940 	if (!__pci_complete_power_transition(dev, state))
941 		error = 0;
942 
943 	return error;
944 }
945 EXPORT_SYMBOL(pci_set_power_state);
946 
947 /**
948  * pci_choose_state - Choose the power state of a PCI device
949  * @dev: PCI device to be suspended
950  * @state: target sleep state for the whole system. This is the value
951  *	that is passed to suspend() function.
952  *
953  * Returns PCI power state suitable for given device and given system
954  * message.
955  */
956 
957 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
958 {
959 	pci_power_t ret;
960 
961 	if (!dev->pm_cap)
962 		return PCI_D0;
963 
964 	ret = platform_pci_choose_state(dev);
965 	if (ret != PCI_POWER_ERROR)
966 		return ret;
967 
968 	switch (state.event) {
969 	case PM_EVENT_ON:
970 		return PCI_D0;
971 	case PM_EVENT_FREEZE:
972 	case PM_EVENT_PRETHAW:
973 		/* REVISIT both freeze and pre-thaw "should" use D0 */
974 	case PM_EVENT_SUSPEND:
975 	case PM_EVENT_HIBERNATE:
976 		return PCI_D3hot;
977 	default:
978 		pci_info(dev, "unrecognized suspend event %d\n",
979 			 state.event);
980 		BUG();
981 	}
982 	return PCI_D0;
983 }
984 EXPORT_SYMBOL(pci_choose_state);
985 
986 #define PCI_EXP_SAVE_REGS	7
987 
988 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
989 						       u16 cap, bool extended)
990 {
991 	struct pci_cap_saved_state *tmp;
992 
993 	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
994 		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
995 			return tmp;
996 	}
997 	return NULL;
998 }
999 
1000 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1001 {
1002 	return _pci_find_saved_cap(dev, cap, false);
1003 }
1004 
1005 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1006 {
1007 	return _pci_find_saved_cap(dev, cap, true);
1008 }
1009 
1010 static int pci_save_pcie_state(struct pci_dev *dev)
1011 {
1012 	int i = 0;
1013 	struct pci_cap_saved_state *save_state;
1014 	u16 *cap;
1015 
1016 	if (!pci_is_pcie(dev))
1017 		return 0;
1018 
1019 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1020 	if (!save_state) {
1021 		pci_err(dev, "buffer not found in %s\n", __func__);
1022 		return -ENOMEM;
1023 	}
1024 
1025 	cap = (u16 *)&save_state->cap.data[0];
1026 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1027 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1028 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1029 	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
1030 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1031 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1032 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1033 
1034 	return 0;
1035 }
1036 
1037 static void pci_restore_pcie_state(struct pci_dev *dev)
1038 {
1039 	int i = 0;
1040 	struct pci_cap_saved_state *save_state;
1041 	u16 *cap;
1042 
1043 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1044 	if (!save_state)
1045 		return;
1046 
1047 	cap = (u16 *)&save_state->cap.data[0];
1048 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1049 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1050 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1051 	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1052 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1053 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1054 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1055 }
1056 
1057 
1058 static int pci_save_pcix_state(struct pci_dev *dev)
1059 {
1060 	int pos;
1061 	struct pci_cap_saved_state *save_state;
1062 
1063 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1064 	if (!pos)
1065 		return 0;
1066 
1067 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1068 	if (!save_state) {
1069 		pci_err(dev, "buffer not found in %s\n", __func__);
1070 		return -ENOMEM;
1071 	}
1072 
1073 	pci_read_config_word(dev, pos + PCI_X_CMD,
1074 			     (u16 *)save_state->cap.data);
1075 
1076 	return 0;
1077 }
1078 
1079 static void pci_restore_pcix_state(struct pci_dev *dev)
1080 {
1081 	int i = 0, pos;
1082 	struct pci_cap_saved_state *save_state;
1083 	u16 *cap;
1084 
1085 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1086 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1087 	if (!save_state || !pos)
1088 		return;
1089 	cap = (u16 *)&save_state->cap.data[0];
1090 
1091 	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1092 }
1093 
1094 
1095 /**
1096  * pci_save_state - save the PCI configuration space of a device before suspending
1097  * @dev: - PCI device that we're dealing with
1098  */
1099 int pci_save_state(struct pci_dev *dev)
1100 {
1101 	int i;
1102 	/* XXX: 100% dword access ok here? */
1103 	for (i = 0; i < 16; i++)
1104 		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1105 	dev->state_saved = true;
1106 
1107 	i = pci_save_pcie_state(dev);
1108 	if (i != 0)
1109 		return i;
1110 
1111 	i = pci_save_pcix_state(dev);
1112 	if (i != 0)
1113 		return i;
1114 
1115 	return pci_save_vc_state(dev);
1116 }
1117 EXPORT_SYMBOL(pci_save_state);
1118 
1119 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1120 				     u32 saved_val, int retry)
1121 {
1122 	u32 val;
1123 
1124 	pci_read_config_dword(pdev, offset, &val);
1125 	if (val == saved_val)
1126 		return;
1127 
1128 	for (;;) {
1129 		pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1130 			offset, val, saved_val);
1131 		pci_write_config_dword(pdev, offset, saved_val);
1132 		if (retry-- <= 0)
1133 			return;
1134 
1135 		pci_read_config_dword(pdev, offset, &val);
1136 		if (val == saved_val)
1137 			return;
1138 
1139 		mdelay(1);
1140 	}
1141 }
1142 
1143 static void pci_restore_config_space_range(struct pci_dev *pdev,
1144 					   int start, int end, int retry)
1145 {
1146 	int index;
1147 
1148 	for (index = end; index >= start; index--)
1149 		pci_restore_config_dword(pdev, 4 * index,
1150 					 pdev->saved_config_space[index],
1151 					 retry);
1152 }
1153 
1154 static void pci_restore_config_space(struct pci_dev *pdev)
1155 {
1156 	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1157 		pci_restore_config_space_range(pdev, 10, 15, 0);
1158 		/* Restore BARs before the command register. */
1159 		pci_restore_config_space_range(pdev, 4, 9, 10);
1160 		pci_restore_config_space_range(pdev, 0, 3, 0);
1161 	} else {
1162 		pci_restore_config_space_range(pdev, 0, 15, 0);
1163 	}
1164 }
1165 
1166 /**
1167  * pci_restore_state - Restore the saved state of a PCI device
1168  * @dev: - PCI device that we're dealing with
1169  */
1170 void pci_restore_state(struct pci_dev *dev)
1171 {
1172 	if (!dev->state_saved)
1173 		return;
1174 
1175 	/* PCI Express register must be restored first */
1176 	pci_restore_pcie_state(dev);
1177 	pci_restore_pasid_state(dev);
1178 	pci_restore_pri_state(dev);
1179 	pci_restore_ats_state(dev);
1180 	pci_restore_vc_state(dev);
1181 
1182 	pci_cleanup_aer_error_status_regs(dev);
1183 
1184 	pci_restore_config_space(dev);
1185 
1186 	pci_restore_pcix_state(dev);
1187 	pci_restore_msi_state(dev);
1188 
1189 	/* Restore ACS and IOV configuration state */
1190 	pci_enable_acs(dev);
1191 	pci_restore_iov_state(dev);
1192 
1193 	dev->state_saved = false;
1194 }
1195 EXPORT_SYMBOL(pci_restore_state);
1196 
1197 struct pci_saved_state {
1198 	u32 config_space[16];
1199 	struct pci_cap_saved_data cap[0];
1200 };
1201 
1202 /**
1203  * pci_store_saved_state - Allocate and return an opaque struct containing
1204  *			   the device saved state.
1205  * @dev: PCI device that we're dealing with
1206  *
1207  * Return NULL if no state or error.
1208  */
1209 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1210 {
1211 	struct pci_saved_state *state;
1212 	struct pci_cap_saved_state *tmp;
1213 	struct pci_cap_saved_data *cap;
1214 	size_t size;
1215 
1216 	if (!dev->state_saved)
1217 		return NULL;
1218 
1219 	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1220 
1221 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1222 		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1223 
1224 	state = kzalloc(size, GFP_KERNEL);
1225 	if (!state)
1226 		return NULL;
1227 
1228 	memcpy(state->config_space, dev->saved_config_space,
1229 	       sizeof(state->config_space));
1230 
1231 	cap = state->cap;
1232 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1233 		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1234 		memcpy(cap, &tmp->cap, len);
1235 		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1236 	}
1237 	/* Empty cap_save terminates list */
1238 
1239 	return state;
1240 }
1241 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1242 
1243 /**
1244  * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1245  * @dev: PCI device that we're dealing with
1246  * @state: Saved state returned from pci_store_saved_state()
1247  */
1248 int pci_load_saved_state(struct pci_dev *dev,
1249 			 struct pci_saved_state *state)
1250 {
1251 	struct pci_cap_saved_data *cap;
1252 
1253 	dev->state_saved = false;
1254 
1255 	if (!state)
1256 		return 0;
1257 
1258 	memcpy(dev->saved_config_space, state->config_space,
1259 	       sizeof(state->config_space));
1260 
1261 	cap = state->cap;
1262 	while (cap->size) {
1263 		struct pci_cap_saved_state *tmp;
1264 
1265 		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1266 		if (!tmp || tmp->cap.size != cap->size)
1267 			return -EINVAL;
1268 
1269 		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1270 		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1271 		       sizeof(struct pci_cap_saved_data) + cap->size);
1272 	}
1273 
1274 	dev->state_saved = true;
1275 	return 0;
1276 }
1277 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1278 
1279 /**
1280  * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1281  *				   and free the memory allocated for it.
1282  * @dev: PCI device that we're dealing with
1283  * @state: Pointer to saved state returned from pci_store_saved_state()
1284  */
1285 int pci_load_and_free_saved_state(struct pci_dev *dev,
1286 				  struct pci_saved_state **state)
1287 {
1288 	int ret = pci_load_saved_state(dev, *state);
1289 	kfree(*state);
1290 	*state = NULL;
1291 	return ret;
1292 }
1293 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1294 
1295 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1296 {
1297 	return pci_enable_resources(dev, bars);
1298 }
1299 
1300 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1301 {
1302 	int err;
1303 	struct pci_dev *bridge;
1304 	u16 cmd;
1305 	u8 pin;
1306 
1307 	err = pci_set_power_state(dev, PCI_D0);
1308 	if (err < 0 && err != -EIO)
1309 		return err;
1310 
1311 	bridge = pci_upstream_bridge(dev);
1312 	if (bridge)
1313 		pcie_aspm_powersave_config_link(bridge);
1314 
1315 	err = pcibios_enable_device(dev, bars);
1316 	if (err < 0)
1317 		return err;
1318 	pci_fixup_device(pci_fixup_enable, dev);
1319 
1320 	if (dev->msi_enabled || dev->msix_enabled)
1321 		return 0;
1322 
1323 	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1324 	if (pin) {
1325 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
1326 		if (cmd & PCI_COMMAND_INTX_DISABLE)
1327 			pci_write_config_word(dev, PCI_COMMAND,
1328 					      cmd & ~PCI_COMMAND_INTX_DISABLE);
1329 	}
1330 
1331 	return 0;
1332 }
1333 
1334 /**
1335  * pci_reenable_device - Resume abandoned device
1336  * @dev: PCI device to be resumed
1337  *
1338  *  Note this function is a backend of pci_default_resume and is not supposed
1339  *  to be called by normal code, write proper resume handler and use it instead.
1340  */
1341 int pci_reenable_device(struct pci_dev *dev)
1342 {
1343 	if (pci_is_enabled(dev))
1344 		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1345 	return 0;
1346 }
1347 EXPORT_SYMBOL(pci_reenable_device);
1348 
1349 static void pci_enable_bridge(struct pci_dev *dev)
1350 {
1351 	struct pci_dev *bridge;
1352 	int retval;
1353 
1354 	bridge = pci_upstream_bridge(dev);
1355 	if (bridge)
1356 		pci_enable_bridge(bridge);
1357 
1358 	if (pci_is_enabled(dev)) {
1359 		if (!dev->is_busmaster)
1360 			pci_set_master(dev);
1361 		return;
1362 	}
1363 
1364 	retval = pci_enable_device(dev);
1365 	if (retval)
1366 		pci_err(dev, "Error enabling bridge (%d), continuing\n",
1367 			retval);
1368 	pci_set_master(dev);
1369 }
1370 
1371 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1372 {
1373 	struct pci_dev *bridge;
1374 	int err;
1375 	int i, bars = 0;
1376 
1377 	/*
1378 	 * Power state could be unknown at this point, either due to a fresh
1379 	 * boot or a device removal call.  So get the current power state
1380 	 * so that things like MSI message writing will behave as expected
1381 	 * (e.g. if the device really is in D0 at enable time).
1382 	 */
1383 	if (dev->pm_cap) {
1384 		u16 pmcsr;
1385 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1386 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1387 	}
1388 
1389 	if (atomic_inc_return(&dev->enable_cnt) > 1)
1390 		return 0;		/* already enabled */
1391 
1392 	bridge = pci_upstream_bridge(dev);
1393 	if (bridge)
1394 		pci_enable_bridge(bridge);
1395 
1396 	/* only skip sriov related */
1397 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1398 		if (dev->resource[i].flags & flags)
1399 			bars |= (1 << i);
1400 	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1401 		if (dev->resource[i].flags & flags)
1402 			bars |= (1 << i);
1403 
1404 	err = do_pci_enable_device(dev, bars);
1405 	if (err < 0)
1406 		atomic_dec(&dev->enable_cnt);
1407 	return err;
1408 }
1409 
1410 /**
1411  * pci_enable_device_io - Initialize a device for use with IO space
1412  * @dev: PCI device to be initialized
1413  *
1414  *  Initialize device before it's used by a driver. Ask low-level code
1415  *  to enable I/O resources. Wake up the device if it was suspended.
1416  *  Beware, this function can fail.
1417  */
1418 int pci_enable_device_io(struct pci_dev *dev)
1419 {
1420 	return pci_enable_device_flags(dev, IORESOURCE_IO);
1421 }
1422 EXPORT_SYMBOL(pci_enable_device_io);
1423 
1424 /**
1425  * pci_enable_device_mem - Initialize a device for use with Memory space
1426  * @dev: PCI device to be initialized
1427  *
1428  *  Initialize device before it's used by a driver. Ask low-level code
1429  *  to enable Memory resources. Wake up the device if it was suspended.
1430  *  Beware, this function can fail.
1431  */
1432 int pci_enable_device_mem(struct pci_dev *dev)
1433 {
1434 	return pci_enable_device_flags(dev, IORESOURCE_MEM);
1435 }
1436 EXPORT_SYMBOL(pci_enable_device_mem);
1437 
1438 /**
1439  * pci_enable_device - Initialize device before it's used by a driver.
1440  * @dev: PCI device to be initialized
1441  *
1442  *  Initialize device before it's used by a driver. Ask low-level code
1443  *  to enable I/O and memory. Wake up the device if it was suspended.
1444  *  Beware, this function can fail.
1445  *
1446  *  Note we don't actually enable the device many times if we call
1447  *  this function repeatedly (we just increment the count).
1448  */
1449 int pci_enable_device(struct pci_dev *dev)
1450 {
1451 	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1452 }
1453 EXPORT_SYMBOL(pci_enable_device);
1454 
1455 /*
1456  * Managed PCI resources.  This manages device on/off, intx/msi/msix
1457  * on/off and BAR regions.  pci_dev itself records msi/msix status, so
1458  * there's no need to track it separately.  pci_devres is initialized
1459  * when a device is enabled using managed PCI device enable interface.
1460  */
1461 struct pci_devres {
1462 	unsigned int enabled:1;
1463 	unsigned int pinned:1;
1464 	unsigned int orig_intx:1;
1465 	unsigned int restore_intx:1;
1466 	unsigned int mwi:1;
1467 	u32 region_mask;
1468 };
1469 
1470 static void pcim_release(struct device *gendev, void *res)
1471 {
1472 	struct pci_dev *dev = to_pci_dev(gendev);
1473 	struct pci_devres *this = res;
1474 	int i;
1475 
1476 	if (dev->msi_enabled)
1477 		pci_disable_msi(dev);
1478 	if (dev->msix_enabled)
1479 		pci_disable_msix(dev);
1480 
1481 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1482 		if (this->region_mask & (1 << i))
1483 			pci_release_region(dev, i);
1484 
1485 	if (this->mwi)
1486 		pci_clear_mwi(dev);
1487 
1488 	if (this->restore_intx)
1489 		pci_intx(dev, this->orig_intx);
1490 
1491 	if (this->enabled && !this->pinned)
1492 		pci_disable_device(dev);
1493 }
1494 
1495 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1496 {
1497 	struct pci_devres *dr, *new_dr;
1498 
1499 	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1500 	if (dr)
1501 		return dr;
1502 
1503 	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1504 	if (!new_dr)
1505 		return NULL;
1506 	return devres_get(&pdev->dev, new_dr, NULL, NULL);
1507 }
1508 
1509 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1510 {
1511 	if (pci_is_managed(pdev))
1512 		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1513 	return NULL;
1514 }
1515 
1516 /**
1517  * pcim_enable_device - Managed pci_enable_device()
1518  * @pdev: PCI device to be initialized
1519  *
1520  * Managed pci_enable_device().
1521  */
1522 int pcim_enable_device(struct pci_dev *pdev)
1523 {
1524 	struct pci_devres *dr;
1525 	int rc;
1526 
1527 	dr = get_pci_dr(pdev);
1528 	if (unlikely(!dr))
1529 		return -ENOMEM;
1530 	if (dr->enabled)
1531 		return 0;
1532 
1533 	rc = pci_enable_device(pdev);
1534 	if (!rc) {
1535 		pdev->is_managed = 1;
1536 		dr->enabled = 1;
1537 	}
1538 	return rc;
1539 }
1540 EXPORT_SYMBOL(pcim_enable_device);
1541 
1542 /**
1543  * pcim_pin_device - Pin managed PCI device
1544  * @pdev: PCI device to pin
1545  *
1546  * Pin managed PCI device @pdev.  Pinned device won't be disabled on
1547  * driver detach.  @pdev must have been enabled with
1548  * pcim_enable_device().
1549  */
1550 void pcim_pin_device(struct pci_dev *pdev)
1551 {
1552 	struct pci_devres *dr;
1553 
1554 	dr = find_pci_dr(pdev);
1555 	WARN_ON(!dr || !dr->enabled);
1556 	if (dr)
1557 		dr->pinned = 1;
1558 }
1559 EXPORT_SYMBOL(pcim_pin_device);
1560 
1561 /*
1562  * pcibios_add_device - provide arch specific hooks when adding device dev
1563  * @dev: the PCI device being added
1564  *
1565  * Permits the platform to provide architecture specific functionality when
1566  * devices are added. This is the default implementation. Architecture
1567  * implementations can override this.
1568  */
1569 int __weak pcibios_add_device(struct pci_dev *dev)
1570 {
1571 	return 0;
1572 }
1573 
1574 /**
1575  * pcibios_release_device - provide arch specific hooks when releasing device dev
1576  * @dev: the PCI device being released
1577  *
1578  * Permits the platform to provide architecture specific functionality when
1579  * devices are released. This is the default implementation. Architecture
1580  * implementations can override this.
1581  */
1582 void __weak pcibios_release_device(struct pci_dev *dev) {}
1583 
1584 /**
1585  * pcibios_disable_device - disable arch specific PCI resources for device dev
1586  * @dev: the PCI device to disable
1587  *
1588  * Disables architecture specific PCI resources for the device. This
1589  * is the default implementation. Architecture implementations can
1590  * override this.
1591  */
1592 void __weak pcibios_disable_device(struct pci_dev *dev) {}
1593 
1594 /**
1595  * pcibios_penalize_isa_irq - penalize an ISA IRQ
1596  * @irq: ISA IRQ to penalize
1597  * @active: IRQ active or not
1598  *
1599  * Permits the platform to provide architecture-specific functionality when
1600  * penalizing ISA IRQs. This is the default implementation. Architecture
1601  * implementations can override this.
1602  */
1603 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1604 
1605 static void do_pci_disable_device(struct pci_dev *dev)
1606 {
1607 	u16 pci_command;
1608 
1609 	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1610 	if (pci_command & PCI_COMMAND_MASTER) {
1611 		pci_command &= ~PCI_COMMAND_MASTER;
1612 		pci_write_config_word(dev, PCI_COMMAND, pci_command);
1613 	}
1614 
1615 	pcibios_disable_device(dev);
1616 }
1617 
1618 /**
1619  * pci_disable_enabled_device - Disable device without updating enable_cnt
1620  * @dev: PCI device to disable
1621  *
1622  * NOTE: This function is a backend of PCI power management routines and is
1623  * not supposed to be called drivers.
1624  */
1625 void pci_disable_enabled_device(struct pci_dev *dev)
1626 {
1627 	if (pci_is_enabled(dev))
1628 		do_pci_disable_device(dev);
1629 }
1630 
1631 /**
1632  * pci_disable_device - Disable PCI device after use
1633  * @dev: PCI device to be disabled
1634  *
1635  * Signal to the system that the PCI device is not in use by the system
1636  * anymore.  This only involves disabling PCI bus-mastering, if active.
1637  *
1638  * Note we don't actually disable the device until all callers of
1639  * pci_enable_device() have called pci_disable_device().
1640  */
1641 void pci_disable_device(struct pci_dev *dev)
1642 {
1643 	struct pci_devres *dr;
1644 
1645 	dr = find_pci_dr(dev);
1646 	if (dr)
1647 		dr->enabled = 0;
1648 
1649 	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1650 		      "disabling already-disabled device");
1651 
1652 	if (atomic_dec_return(&dev->enable_cnt) != 0)
1653 		return;
1654 
1655 	do_pci_disable_device(dev);
1656 
1657 	dev->is_busmaster = 0;
1658 }
1659 EXPORT_SYMBOL(pci_disable_device);
1660 
1661 /**
1662  * pcibios_set_pcie_reset_state - set reset state for device dev
1663  * @dev: the PCIe device reset
1664  * @state: Reset state to enter into
1665  *
1666  *
1667  * Sets the PCIe reset state for the device. This is the default
1668  * implementation. Architecture implementations can override this.
1669  */
1670 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1671 					enum pcie_reset_state state)
1672 {
1673 	return -EINVAL;
1674 }
1675 
1676 /**
1677  * pci_set_pcie_reset_state - set reset state for device dev
1678  * @dev: the PCIe device reset
1679  * @state: Reset state to enter into
1680  *
1681  *
1682  * Sets the PCI reset state for the device.
1683  */
1684 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1685 {
1686 	return pcibios_set_pcie_reset_state(dev, state);
1687 }
1688 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
1689 
1690 /**
1691  * pcie_clear_root_pme_status - Clear root port PME interrupt status.
1692  * @dev: PCIe root port or event collector.
1693  */
1694 void pcie_clear_root_pme_status(struct pci_dev *dev)
1695 {
1696 	pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
1697 }
1698 
1699 /**
1700  * pci_check_pme_status - Check if given device has generated PME.
1701  * @dev: Device to check.
1702  *
1703  * Check the PME status of the device and if set, clear it and clear PME enable
1704  * (if set).  Return 'true' if PME status and PME enable were both set or
1705  * 'false' otherwise.
1706  */
1707 bool pci_check_pme_status(struct pci_dev *dev)
1708 {
1709 	int pmcsr_pos;
1710 	u16 pmcsr;
1711 	bool ret = false;
1712 
1713 	if (!dev->pm_cap)
1714 		return false;
1715 
1716 	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1717 	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1718 	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1719 		return false;
1720 
1721 	/* Clear PME status. */
1722 	pmcsr |= PCI_PM_CTRL_PME_STATUS;
1723 	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1724 		/* Disable PME to avoid interrupt flood. */
1725 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1726 		ret = true;
1727 	}
1728 
1729 	pci_write_config_word(dev, pmcsr_pos, pmcsr);
1730 
1731 	return ret;
1732 }
1733 
1734 /**
1735  * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1736  * @dev: Device to handle.
1737  * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1738  *
1739  * Check if @dev has generated PME and queue a resume request for it in that
1740  * case.
1741  */
1742 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1743 {
1744 	if (pme_poll_reset && dev->pme_poll)
1745 		dev->pme_poll = false;
1746 
1747 	if (pci_check_pme_status(dev)) {
1748 		pci_wakeup_event(dev);
1749 		pm_request_resume(&dev->dev);
1750 	}
1751 	return 0;
1752 }
1753 
1754 /**
1755  * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1756  * @bus: Top bus of the subtree to walk.
1757  */
1758 void pci_pme_wakeup_bus(struct pci_bus *bus)
1759 {
1760 	if (bus)
1761 		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1762 }
1763 
1764 
1765 /**
1766  * pci_pme_capable - check the capability of PCI device to generate PME#
1767  * @dev: PCI device to handle.
1768  * @state: PCI state from which device will issue PME#.
1769  */
1770 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1771 {
1772 	if (!dev->pm_cap)
1773 		return false;
1774 
1775 	return !!(dev->pme_support & (1 << state));
1776 }
1777 EXPORT_SYMBOL(pci_pme_capable);
1778 
1779 static void pci_pme_list_scan(struct work_struct *work)
1780 {
1781 	struct pci_pme_device *pme_dev, *n;
1782 
1783 	mutex_lock(&pci_pme_list_mutex);
1784 	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1785 		if (pme_dev->dev->pme_poll) {
1786 			struct pci_dev *bridge;
1787 
1788 			bridge = pme_dev->dev->bus->self;
1789 			/*
1790 			 * If bridge is in low power state, the
1791 			 * configuration space of subordinate devices
1792 			 * may be not accessible
1793 			 */
1794 			if (bridge && bridge->current_state != PCI_D0)
1795 				continue;
1796 			pci_pme_wakeup(pme_dev->dev, NULL);
1797 		} else {
1798 			list_del(&pme_dev->list);
1799 			kfree(pme_dev);
1800 		}
1801 	}
1802 	if (!list_empty(&pci_pme_list))
1803 		queue_delayed_work(system_freezable_wq, &pci_pme_work,
1804 				   msecs_to_jiffies(PME_TIMEOUT));
1805 	mutex_unlock(&pci_pme_list_mutex);
1806 }
1807 
1808 static void __pci_pme_active(struct pci_dev *dev, bool enable)
1809 {
1810 	u16 pmcsr;
1811 
1812 	if (!dev->pme_support)
1813 		return;
1814 
1815 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1816 	/* Clear PME_Status by writing 1 to it and enable PME# */
1817 	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1818 	if (!enable)
1819 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1820 
1821 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1822 }
1823 
1824 /**
1825  * pci_pme_restore - Restore PME configuration after config space restore.
1826  * @dev: PCI device to update.
1827  */
1828 void pci_pme_restore(struct pci_dev *dev)
1829 {
1830 	u16 pmcsr;
1831 
1832 	if (!dev->pme_support)
1833 		return;
1834 
1835 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1836 	if (dev->wakeup_prepared) {
1837 		pmcsr |= PCI_PM_CTRL_PME_ENABLE;
1838 		pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
1839 	} else {
1840 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1841 		pmcsr |= PCI_PM_CTRL_PME_STATUS;
1842 	}
1843 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1844 }
1845 
1846 /**
1847  * pci_pme_active - enable or disable PCI device's PME# function
1848  * @dev: PCI device to handle.
1849  * @enable: 'true' to enable PME# generation; 'false' to disable it.
1850  *
1851  * The caller must verify that the device is capable of generating PME# before
1852  * calling this function with @enable equal to 'true'.
1853  */
1854 void pci_pme_active(struct pci_dev *dev, bool enable)
1855 {
1856 	__pci_pme_active(dev, enable);
1857 
1858 	/*
1859 	 * PCI (as opposed to PCIe) PME requires that the device have
1860 	 * its PME# line hooked up correctly. Not all hardware vendors
1861 	 * do this, so the PME never gets delivered and the device
1862 	 * remains asleep. The easiest way around this is to
1863 	 * periodically walk the list of suspended devices and check
1864 	 * whether any have their PME flag set. The assumption is that
1865 	 * we'll wake up often enough anyway that this won't be a huge
1866 	 * hit, and the power savings from the devices will still be a
1867 	 * win.
1868 	 *
1869 	 * Although PCIe uses in-band PME message instead of PME# line
1870 	 * to report PME, PME does not work for some PCIe devices in
1871 	 * reality.  For example, there are devices that set their PME
1872 	 * status bits, but don't really bother to send a PME message;
1873 	 * there are PCI Express Root Ports that don't bother to
1874 	 * trigger interrupts when they receive PME messages from the
1875 	 * devices below.  So PME poll is used for PCIe devices too.
1876 	 */
1877 
1878 	if (dev->pme_poll) {
1879 		struct pci_pme_device *pme_dev;
1880 		if (enable) {
1881 			pme_dev = kmalloc(sizeof(struct pci_pme_device),
1882 					  GFP_KERNEL);
1883 			if (!pme_dev) {
1884 				pci_warn(dev, "can't enable PME#\n");
1885 				return;
1886 			}
1887 			pme_dev->dev = dev;
1888 			mutex_lock(&pci_pme_list_mutex);
1889 			list_add(&pme_dev->list, &pci_pme_list);
1890 			if (list_is_singular(&pci_pme_list))
1891 				queue_delayed_work(system_freezable_wq,
1892 						   &pci_pme_work,
1893 						   msecs_to_jiffies(PME_TIMEOUT));
1894 			mutex_unlock(&pci_pme_list_mutex);
1895 		} else {
1896 			mutex_lock(&pci_pme_list_mutex);
1897 			list_for_each_entry(pme_dev, &pci_pme_list, list) {
1898 				if (pme_dev->dev == dev) {
1899 					list_del(&pme_dev->list);
1900 					kfree(pme_dev);
1901 					break;
1902 				}
1903 			}
1904 			mutex_unlock(&pci_pme_list_mutex);
1905 		}
1906 	}
1907 
1908 	pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
1909 }
1910 EXPORT_SYMBOL(pci_pme_active);
1911 
1912 /**
1913  * pci_enable_wake - enable PCI device as wakeup event source
1914  * @dev: PCI device affected
1915  * @state: PCI state from which device will issue wakeup events
1916  * @enable: True to enable event generation; false to disable
1917  *
1918  * This enables the device as a wakeup event source, or disables it.
1919  * When such events involves platform-specific hooks, those hooks are
1920  * called automatically by this routine.
1921  *
1922  * Devices with legacy power management (no standard PCI PM capabilities)
1923  * always require such platform hooks.
1924  *
1925  * RETURN VALUE:
1926  * 0 is returned on success
1927  * -EINVAL is returned if device is not supposed to wake up the system
1928  * Error code depending on the platform is returned if both the platform and
1929  * the native mechanism fail to enable the generation of wake-up events
1930  */
1931 int pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
1932 {
1933 	int ret = 0;
1934 
1935 	/*
1936 	 * Bridges can only signal wakeup on behalf of subordinate devices,
1937 	 * but that is set up elsewhere, so skip them.
1938 	 */
1939 	if (pci_has_subordinate(dev))
1940 		return 0;
1941 
1942 	/* Don't do the same thing twice in a row for one device. */
1943 	if (!!enable == !!dev->wakeup_prepared)
1944 		return 0;
1945 
1946 	/*
1947 	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1948 	 * Anderson we should be doing PME# wake enable followed by ACPI wake
1949 	 * enable.  To disable wake-up we call the platform first, for symmetry.
1950 	 */
1951 
1952 	if (enable) {
1953 		int error;
1954 
1955 		if (pci_pme_capable(dev, state))
1956 			pci_pme_active(dev, true);
1957 		else
1958 			ret = 1;
1959 		error = platform_pci_set_wakeup(dev, true);
1960 		if (ret)
1961 			ret = error;
1962 		if (!ret)
1963 			dev->wakeup_prepared = true;
1964 	} else {
1965 		platform_pci_set_wakeup(dev, false);
1966 		pci_pme_active(dev, false);
1967 		dev->wakeup_prepared = false;
1968 	}
1969 
1970 	return ret;
1971 }
1972 EXPORT_SYMBOL(pci_enable_wake);
1973 
1974 /**
1975  * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1976  * @dev: PCI device to prepare
1977  * @enable: True to enable wake-up event generation; false to disable
1978  *
1979  * Many drivers want the device to wake up the system from D3_hot or D3_cold
1980  * and this function allows them to set that up cleanly - pci_enable_wake()
1981  * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1982  * ordering constraints.
1983  *
1984  * This function only returns error code if the device is not capable of
1985  * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1986  * enable wake-up power for it.
1987  */
1988 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1989 {
1990 	return pci_pme_capable(dev, PCI_D3cold) ?
1991 			pci_enable_wake(dev, PCI_D3cold, enable) :
1992 			pci_enable_wake(dev, PCI_D3hot, enable);
1993 }
1994 EXPORT_SYMBOL(pci_wake_from_d3);
1995 
1996 /**
1997  * pci_target_state - find an appropriate low power state for a given PCI dev
1998  * @dev: PCI device
1999  * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2000  *
2001  * Use underlying platform code to find a supported low power state for @dev.
2002  * If the platform can't manage @dev, return the deepest state from which it
2003  * can generate wake events, based on any available PME info.
2004  */
2005 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2006 {
2007 	pci_power_t target_state = PCI_D3hot;
2008 
2009 	if (platform_pci_power_manageable(dev)) {
2010 		/*
2011 		 * Call the platform to choose the target state of the device
2012 		 * and enable wake-up from this state if supported.
2013 		 */
2014 		pci_power_t state = platform_pci_choose_state(dev);
2015 
2016 		switch (state) {
2017 		case PCI_POWER_ERROR:
2018 		case PCI_UNKNOWN:
2019 			break;
2020 		case PCI_D1:
2021 		case PCI_D2:
2022 			if (pci_no_d1d2(dev))
2023 				break;
2024 		default:
2025 			target_state = state;
2026 		}
2027 
2028 		return target_state;
2029 	}
2030 
2031 	if (!dev->pm_cap)
2032 		target_state = PCI_D0;
2033 
2034 	/*
2035 	 * If the device is in D3cold even though it's not power-manageable by
2036 	 * the platform, it may have been powered down by non-standard means.
2037 	 * Best to let it slumber.
2038 	 */
2039 	if (dev->current_state == PCI_D3cold)
2040 		target_state = PCI_D3cold;
2041 
2042 	if (wakeup) {
2043 		/*
2044 		 * Find the deepest state from which the device can generate
2045 		 * wake-up events, make it the target state and enable device
2046 		 * to generate PME#.
2047 		 */
2048 		if (dev->pme_support) {
2049 			while (target_state
2050 			      && !(dev->pme_support & (1 << target_state)))
2051 				target_state--;
2052 		}
2053 	}
2054 
2055 	return target_state;
2056 }
2057 
2058 /**
2059  * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
2060  * @dev: Device to handle.
2061  *
2062  * Choose the power state appropriate for the device depending on whether
2063  * it can wake up the system and/or is power manageable by the platform
2064  * (PCI_D3hot is the default) and put the device into that state.
2065  */
2066 int pci_prepare_to_sleep(struct pci_dev *dev)
2067 {
2068 	bool wakeup = device_may_wakeup(&dev->dev);
2069 	pci_power_t target_state = pci_target_state(dev, wakeup);
2070 	int error;
2071 
2072 	if (target_state == PCI_POWER_ERROR)
2073 		return -EIO;
2074 
2075 	pci_enable_wake(dev, target_state, wakeup);
2076 
2077 	error = pci_set_power_state(dev, target_state);
2078 
2079 	if (error)
2080 		pci_enable_wake(dev, target_state, false);
2081 
2082 	return error;
2083 }
2084 EXPORT_SYMBOL(pci_prepare_to_sleep);
2085 
2086 /**
2087  * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
2088  * @dev: Device to handle.
2089  *
2090  * Disable device's system wake-up capability and put it into D0.
2091  */
2092 int pci_back_from_sleep(struct pci_dev *dev)
2093 {
2094 	pci_enable_wake(dev, PCI_D0, false);
2095 	return pci_set_power_state(dev, PCI_D0);
2096 }
2097 EXPORT_SYMBOL(pci_back_from_sleep);
2098 
2099 /**
2100  * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2101  * @dev: PCI device being suspended.
2102  *
2103  * Prepare @dev to generate wake-up events at run time and put it into a low
2104  * power state.
2105  */
2106 int pci_finish_runtime_suspend(struct pci_dev *dev)
2107 {
2108 	pci_power_t target_state;
2109 	int error;
2110 
2111 	target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2112 	if (target_state == PCI_POWER_ERROR)
2113 		return -EIO;
2114 
2115 	dev->runtime_d3cold = target_state == PCI_D3cold;
2116 
2117 	pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2118 
2119 	error = pci_set_power_state(dev, target_state);
2120 
2121 	if (error) {
2122 		pci_enable_wake(dev, target_state, false);
2123 		dev->runtime_d3cold = false;
2124 	}
2125 
2126 	return error;
2127 }
2128 
2129 /**
2130  * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2131  * @dev: Device to check.
2132  *
2133  * Return true if the device itself is capable of generating wake-up events
2134  * (through the platform or using the native PCIe PME) or if the device supports
2135  * PME and one of its upstream bridges can generate wake-up events.
2136  */
2137 bool pci_dev_run_wake(struct pci_dev *dev)
2138 {
2139 	struct pci_bus *bus = dev->bus;
2140 
2141 	if (device_can_wakeup(&dev->dev))
2142 		return true;
2143 
2144 	if (!dev->pme_support)
2145 		return false;
2146 
2147 	/* PME-capable in principle, but not from the target power state */
2148 	if (!pci_pme_capable(dev, pci_target_state(dev, false)))
2149 		return false;
2150 
2151 	while (bus->parent) {
2152 		struct pci_dev *bridge = bus->self;
2153 
2154 		if (device_can_wakeup(&bridge->dev))
2155 			return true;
2156 
2157 		bus = bus->parent;
2158 	}
2159 
2160 	/* We have reached the root bus. */
2161 	if (bus->bridge)
2162 		return device_can_wakeup(bus->bridge);
2163 
2164 	return false;
2165 }
2166 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2167 
2168 /**
2169  * pci_dev_keep_suspended - Check if the device can stay in the suspended state.
2170  * @pci_dev: Device to check.
2171  *
2172  * Return 'true' if the device is runtime-suspended, it doesn't have to be
2173  * reconfigured due to wakeup settings difference between system and runtime
2174  * suspend and the current power state of it is suitable for the upcoming
2175  * (system) transition.
2176  *
2177  * If the device is not configured for system wakeup, disable PME for it before
2178  * returning 'true' to prevent it from waking up the system unnecessarily.
2179  */
2180 bool pci_dev_keep_suspended(struct pci_dev *pci_dev)
2181 {
2182 	struct device *dev = &pci_dev->dev;
2183 	bool wakeup = device_may_wakeup(dev);
2184 
2185 	if (!pm_runtime_suspended(dev)
2186 	    || pci_target_state(pci_dev, wakeup) != pci_dev->current_state
2187 	    || platform_pci_need_resume(pci_dev))
2188 		return false;
2189 
2190 	/*
2191 	 * At this point the device is good to go unless it's been configured
2192 	 * to generate PME at the runtime suspend time, but it is not supposed
2193 	 * to wake up the system.  In that case, simply disable PME for it
2194 	 * (it will have to be re-enabled on exit from system resume).
2195 	 *
2196 	 * If the device's power state is D3cold and the platform check above
2197 	 * hasn't triggered, the device's configuration is suitable and we don't
2198 	 * need to manipulate it at all.
2199 	 */
2200 	spin_lock_irq(&dev->power.lock);
2201 
2202 	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold &&
2203 	    !wakeup)
2204 		__pci_pme_active(pci_dev, false);
2205 
2206 	spin_unlock_irq(&dev->power.lock);
2207 	return true;
2208 }
2209 
2210 /**
2211  * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2212  * @pci_dev: Device to handle.
2213  *
2214  * If the device is runtime suspended and wakeup-capable, enable PME for it as
2215  * it might have been disabled during the prepare phase of system suspend if
2216  * the device was not configured for system wakeup.
2217  */
2218 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2219 {
2220 	struct device *dev = &pci_dev->dev;
2221 
2222 	if (!pci_dev_run_wake(pci_dev))
2223 		return;
2224 
2225 	spin_lock_irq(&dev->power.lock);
2226 
2227 	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2228 		__pci_pme_active(pci_dev, true);
2229 
2230 	spin_unlock_irq(&dev->power.lock);
2231 }
2232 
2233 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2234 {
2235 	struct device *dev = &pdev->dev;
2236 	struct device *parent = dev->parent;
2237 
2238 	if (parent)
2239 		pm_runtime_get_sync(parent);
2240 	pm_runtime_get_noresume(dev);
2241 	/*
2242 	 * pdev->current_state is set to PCI_D3cold during suspending,
2243 	 * so wait until suspending completes
2244 	 */
2245 	pm_runtime_barrier(dev);
2246 	/*
2247 	 * Only need to resume devices in D3cold, because config
2248 	 * registers are still accessible for devices suspended but
2249 	 * not in D3cold.
2250 	 */
2251 	if (pdev->current_state == PCI_D3cold)
2252 		pm_runtime_resume(dev);
2253 }
2254 
2255 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2256 {
2257 	struct device *dev = &pdev->dev;
2258 	struct device *parent = dev->parent;
2259 
2260 	pm_runtime_put(dev);
2261 	if (parent)
2262 		pm_runtime_put_sync(parent);
2263 }
2264 
2265 /**
2266  * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2267  * @bridge: Bridge to check
2268  *
2269  * This function checks if it is possible to move the bridge to D3.
2270  * Currently we only allow D3 for recent enough PCIe ports.
2271  */
2272 bool pci_bridge_d3_possible(struct pci_dev *bridge)
2273 {
2274 	if (!pci_is_pcie(bridge))
2275 		return false;
2276 
2277 	switch (pci_pcie_type(bridge)) {
2278 	case PCI_EXP_TYPE_ROOT_PORT:
2279 	case PCI_EXP_TYPE_UPSTREAM:
2280 	case PCI_EXP_TYPE_DOWNSTREAM:
2281 		if (pci_bridge_d3_disable)
2282 			return false;
2283 
2284 		/*
2285 		 * Hotplug interrupts cannot be delivered if the link is down,
2286 		 * so parents of a hotplug port must stay awake. In addition,
2287 		 * hotplug ports handled by firmware in System Management Mode
2288 		 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2289 		 * For simplicity, disallow in general for now.
2290 		 */
2291 		if (bridge->is_hotplug_bridge)
2292 			return false;
2293 
2294 		if (pci_bridge_d3_force)
2295 			return true;
2296 
2297 		/*
2298 		 * It should be safe to put PCIe ports from 2015 or newer
2299 		 * to D3.
2300 		 */
2301 		if (dmi_get_bios_year() >= 2015)
2302 			return true;
2303 		break;
2304 	}
2305 
2306 	return false;
2307 }
2308 
2309 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2310 {
2311 	bool *d3cold_ok = data;
2312 
2313 	if (/* The device needs to be allowed to go D3cold ... */
2314 	    dev->no_d3cold || !dev->d3cold_allowed ||
2315 
2316 	    /* ... and if it is wakeup capable to do so from D3cold. */
2317 	    (device_may_wakeup(&dev->dev) &&
2318 	     !pci_pme_capable(dev, PCI_D3cold)) ||
2319 
2320 	    /* If it is a bridge it must be allowed to go to D3. */
2321 	    !pci_power_manageable(dev))
2322 
2323 		*d3cold_ok = false;
2324 
2325 	return !*d3cold_ok;
2326 }
2327 
2328 /*
2329  * pci_bridge_d3_update - Update bridge D3 capabilities
2330  * @dev: PCI device which is changed
2331  *
2332  * Update upstream bridge PM capabilities accordingly depending on if the
2333  * device PM configuration was changed or the device is being removed.  The
2334  * change is also propagated upstream.
2335  */
2336 void pci_bridge_d3_update(struct pci_dev *dev)
2337 {
2338 	bool remove = !device_is_registered(&dev->dev);
2339 	struct pci_dev *bridge;
2340 	bool d3cold_ok = true;
2341 
2342 	bridge = pci_upstream_bridge(dev);
2343 	if (!bridge || !pci_bridge_d3_possible(bridge))
2344 		return;
2345 
2346 	/*
2347 	 * If D3 is currently allowed for the bridge, removing one of its
2348 	 * children won't change that.
2349 	 */
2350 	if (remove && bridge->bridge_d3)
2351 		return;
2352 
2353 	/*
2354 	 * If D3 is currently allowed for the bridge and a child is added or
2355 	 * changed, disallowance of D3 can only be caused by that child, so
2356 	 * we only need to check that single device, not any of its siblings.
2357 	 *
2358 	 * If D3 is currently not allowed for the bridge, checking the device
2359 	 * first may allow us to skip checking its siblings.
2360 	 */
2361 	if (!remove)
2362 		pci_dev_check_d3cold(dev, &d3cold_ok);
2363 
2364 	/*
2365 	 * If D3 is currently not allowed for the bridge, this may be caused
2366 	 * either by the device being changed/removed or any of its siblings,
2367 	 * so we need to go through all children to find out if one of them
2368 	 * continues to block D3.
2369 	 */
2370 	if (d3cold_ok && !bridge->bridge_d3)
2371 		pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
2372 			     &d3cold_ok);
2373 
2374 	if (bridge->bridge_d3 != d3cold_ok) {
2375 		bridge->bridge_d3 = d3cold_ok;
2376 		/* Propagate change to upstream bridges */
2377 		pci_bridge_d3_update(bridge);
2378 	}
2379 }
2380 
2381 /**
2382  * pci_d3cold_enable - Enable D3cold for device
2383  * @dev: PCI device to handle
2384  *
2385  * This function can be used in drivers to enable D3cold from the device
2386  * they handle.  It also updates upstream PCI bridge PM capabilities
2387  * accordingly.
2388  */
2389 void pci_d3cold_enable(struct pci_dev *dev)
2390 {
2391 	if (dev->no_d3cold) {
2392 		dev->no_d3cold = false;
2393 		pci_bridge_d3_update(dev);
2394 	}
2395 }
2396 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
2397 
2398 /**
2399  * pci_d3cold_disable - Disable D3cold for device
2400  * @dev: PCI device to handle
2401  *
2402  * This function can be used in drivers to disable D3cold from the device
2403  * they handle.  It also updates upstream PCI bridge PM capabilities
2404  * accordingly.
2405  */
2406 void pci_d3cold_disable(struct pci_dev *dev)
2407 {
2408 	if (!dev->no_d3cold) {
2409 		dev->no_d3cold = true;
2410 		pci_bridge_d3_update(dev);
2411 	}
2412 }
2413 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
2414 
2415 /**
2416  * pci_pm_init - Initialize PM functions of given PCI device
2417  * @dev: PCI device to handle.
2418  */
2419 void pci_pm_init(struct pci_dev *dev)
2420 {
2421 	int pm;
2422 	u16 pmc;
2423 
2424 	pm_runtime_forbid(&dev->dev);
2425 	pm_runtime_set_active(&dev->dev);
2426 	pm_runtime_enable(&dev->dev);
2427 	device_enable_async_suspend(&dev->dev);
2428 	dev->wakeup_prepared = false;
2429 
2430 	dev->pm_cap = 0;
2431 	dev->pme_support = 0;
2432 
2433 	/* find PCI PM capability in list */
2434 	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2435 	if (!pm)
2436 		return;
2437 	/* Check device's ability to generate PME# */
2438 	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2439 
2440 	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2441 		pci_err(dev, "unsupported PM cap regs version (%u)\n",
2442 			pmc & PCI_PM_CAP_VER_MASK);
2443 		return;
2444 	}
2445 
2446 	dev->pm_cap = pm;
2447 	dev->d3_delay = PCI_PM_D3_WAIT;
2448 	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2449 	dev->bridge_d3 = pci_bridge_d3_possible(dev);
2450 	dev->d3cold_allowed = true;
2451 
2452 	dev->d1_support = false;
2453 	dev->d2_support = false;
2454 	if (!pci_no_d1d2(dev)) {
2455 		if (pmc & PCI_PM_CAP_D1)
2456 			dev->d1_support = true;
2457 		if (pmc & PCI_PM_CAP_D2)
2458 			dev->d2_support = true;
2459 
2460 		if (dev->d1_support || dev->d2_support)
2461 			pci_printk(KERN_DEBUG, dev, "supports%s%s\n",
2462 				   dev->d1_support ? " D1" : "",
2463 				   dev->d2_support ? " D2" : "");
2464 	}
2465 
2466 	pmc &= PCI_PM_CAP_PME_MASK;
2467 	if (pmc) {
2468 		pci_printk(KERN_DEBUG, dev, "PME# supported from%s%s%s%s%s\n",
2469 			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2470 			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2471 			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2472 			 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2473 			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2474 		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2475 		dev->pme_poll = true;
2476 		/*
2477 		 * Make device's PM flags reflect the wake-up capability, but
2478 		 * let the user space enable it to wake up the system as needed.
2479 		 */
2480 		device_set_wakeup_capable(&dev->dev, true);
2481 		/* Disable the PME# generation functionality */
2482 		pci_pme_active(dev, false);
2483 	}
2484 }
2485 
2486 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
2487 {
2488 	unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
2489 
2490 	switch (prop) {
2491 	case PCI_EA_P_MEM:
2492 	case PCI_EA_P_VF_MEM:
2493 		flags |= IORESOURCE_MEM;
2494 		break;
2495 	case PCI_EA_P_MEM_PREFETCH:
2496 	case PCI_EA_P_VF_MEM_PREFETCH:
2497 		flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
2498 		break;
2499 	case PCI_EA_P_IO:
2500 		flags |= IORESOURCE_IO;
2501 		break;
2502 	default:
2503 		return 0;
2504 	}
2505 
2506 	return flags;
2507 }
2508 
2509 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
2510 					    u8 prop)
2511 {
2512 	if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
2513 		return &dev->resource[bei];
2514 #ifdef CONFIG_PCI_IOV
2515 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
2516 		 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
2517 		return &dev->resource[PCI_IOV_RESOURCES +
2518 				      bei - PCI_EA_BEI_VF_BAR0];
2519 #endif
2520 	else if (bei == PCI_EA_BEI_ROM)
2521 		return &dev->resource[PCI_ROM_RESOURCE];
2522 	else
2523 		return NULL;
2524 }
2525 
2526 /* Read an Enhanced Allocation (EA) entry */
2527 static int pci_ea_read(struct pci_dev *dev, int offset)
2528 {
2529 	struct resource *res;
2530 	int ent_size, ent_offset = offset;
2531 	resource_size_t start, end;
2532 	unsigned long flags;
2533 	u32 dw0, bei, base, max_offset;
2534 	u8 prop;
2535 	bool support_64 = (sizeof(resource_size_t) >= 8);
2536 
2537 	pci_read_config_dword(dev, ent_offset, &dw0);
2538 	ent_offset += 4;
2539 
2540 	/* Entry size field indicates DWORDs after 1st */
2541 	ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
2542 
2543 	if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
2544 		goto out;
2545 
2546 	bei = (dw0 & PCI_EA_BEI) >> 4;
2547 	prop = (dw0 & PCI_EA_PP) >> 8;
2548 
2549 	/*
2550 	 * If the Property is in the reserved range, try the Secondary
2551 	 * Property instead.
2552 	 */
2553 	if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
2554 		prop = (dw0 & PCI_EA_SP) >> 16;
2555 	if (prop > PCI_EA_P_BRIDGE_IO)
2556 		goto out;
2557 
2558 	res = pci_ea_get_resource(dev, bei, prop);
2559 	if (!res) {
2560 		pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
2561 		goto out;
2562 	}
2563 
2564 	flags = pci_ea_flags(dev, prop);
2565 	if (!flags) {
2566 		pci_err(dev, "Unsupported EA properties: %#x\n", prop);
2567 		goto out;
2568 	}
2569 
2570 	/* Read Base */
2571 	pci_read_config_dword(dev, ent_offset, &base);
2572 	start = (base & PCI_EA_FIELD_MASK);
2573 	ent_offset += 4;
2574 
2575 	/* Read MaxOffset */
2576 	pci_read_config_dword(dev, ent_offset, &max_offset);
2577 	ent_offset += 4;
2578 
2579 	/* Read Base MSBs (if 64-bit entry) */
2580 	if (base & PCI_EA_IS_64) {
2581 		u32 base_upper;
2582 
2583 		pci_read_config_dword(dev, ent_offset, &base_upper);
2584 		ent_offset += 4;
2585 
2586 		flags |= IORESOURCE_MEM_64;
2587 
2588 		/* entry starts above 32-bit boundary, can't use */
2589 		if (!support_64 && base_upper)
2590 			goto out;
2591 
2592 		if (support_64)
2593 			start |= ((u64)base_upper << 32);
2594 	}
2595 
2596 	end = start + (max_offset | 0x03);
2597 
2598 	/* Read MaxOffset MSBs (if 64-bit entry) */
2599 	if (max_offset & PCI_EA_IS_64) {
2600 		u32 max_offset_upper;
2601 
2602 		pci_read_config_dword(dev, ent_offset, &max_offset_upper);
2603 		ent_offset += 4;
2604 
2605 		flags |= IORESOURCE_MEM_64;
2606 
2607 		/* entry too big, can't use */
2608 		if (!support_64 && max_offset_upper)
2609 			goto out;
2610 
2611 		if (support_64)
2612 			end += ((u64)max_offset_upper << 32);
2613 	}
2614 
2615 	if (end < start) {
2616 		pci_err(dev, "EA Entry crosses address boundary\n");
2617 		goto out;
2618 	}
2619 
2620 	if (ent_size != ent_offset - offset) {
2621 		pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
2622 			ent_size, ent_offset - offset);
2623 		goto out;
2624 	}
2625 
2626 	res->name = pci_name(dev);
2627 	res->start = start;
2628 	res->end = end;
2629 	res->flags = flags;
2630 
2631 	if (bei <= PCI_EA_BEI_BAR5)
2632 		pci_printk(KERN_DEBUG, dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2633 			   bei, res, prop);
2634 	else if (bei == PCI_EA_BEI_ROM)
2635 		pci_printk(KERN_DEBUG, dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
2636 			   res, prop);
2637 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
2638 		pci_printk(KERN_DEBUG, dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2639 			   bei - PCI_EA_BEI_VF_BAR0, res, prop);
2640 	else
2641 		pci_printk(KERN_DEBUG, dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
2642 			   bei, res, prop);
2643 
2644 out:
2645 	return offset + ent_size;
2646 }
2647 
2648 /* Enhanced Allocation Initialization */
2649 void pci_ea_init(struct pci_dev *dev)
2650 {
2651 	int ea;
2652 	u8 num_ent;
2653 	int offset;
2654 	int i;
2655 
2656 	/* find PCI EA capability in list */
2657 	ea = pci_find_capability(dev, PCI_CAP_ID_EA);
2658 	if (!ea)
2659 		return;
2660 
2661 	/* determine the number of entries */
2662 	pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
2663 					&num_ent);
2664 	num_ent &= PCI_EA_NUM_ENT_MASK;
2665 
2666 	offset = ea + PCI_EA_FIRST_ENT;
2667 
2668 	/* Skip DWORD 2 for type 1 functions */
2669 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
2670 		offset += 4;
2671 
2672 	/* parse each EA entry */
2673 	for (i = 0; i < num_ent; ++i)
2674 		offset = pci_ea_read(dev, offset);
2675 }
2676 
2677 static void pci_add_saved_cap(struct pci_dev *pci_dev,
2678 	struct pci_cap_saved_state *new_cap)
2679 {
2680 	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
2681 }
2682 
2683 /**
2684  * _pci_add_cap_save_buffer - allocate buffer for saving given
2685  *                            capability registers
2686  * @dev: the PCI device
2687  * @cap: the capability to allocate the buffer for
2688  * @extended: Standard or Extended capability ID
2689  * @size: requested size of the buffer
2690  */
2691 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
2692 				    bool extended, unsigned int size)
2693 {
2694 	int pos;
2695 	struct pci_cap_saved_state *save_state;
2696 
2697 	if (extended)
2698 		pos = pci_find_ext_capability(dev, cap);
2699 	else
2700 		pos = pci_find_capability(dev, cap);
2701 
2702 	if (!pos)
2703 		return 0;
2704 
2705 	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2706 	if (!save_state)
2707 		return -ENOMEM;
2708 
2709 	save_state->cap.cap_nr = cap;
2710 	save_state->cap.cap_extended = extended;
2711 	save_state->cap.size = size;
2712 	pci_add_saved_cap(dev, save_state);
2713 
2714 	return 0;
2715 }
2716 
2717 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
2718 {
2719 	return _pci_add_cap_save_buffer(dev, cap, false, size);
2720 }
2721 
2722 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
2723 {
2724 	return _pci_add_cap_save_buffer(dev, cap, true, size);
2725 }
2726 
2727 /**
2728  * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2729  * @dev: the PCI device
2730  */
2731 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2732 {
2733 	int error;
2734 
2735 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2736 					PCI_EXP_SAVE_REGS * sizeof(u16));
2737 	if (error)
2738 		pci_err(dev, "unable to preallocate PCI Express save buffer\n");
2739 
2740 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2741 	if (error)
2742 		pci_err(dev, "unable to preallocate PCI-X save buffer\n");
2743 
2744 	pci_allocate_vc_save_buffers(dev);
2745 }
2746 
2747 void pci_free_cap_save_buffers(struct pci_dev *dev)
2748 {
2749 	struct pci_cap_saved_state *tmp;
2750 	struct hlist_node *n;
2751 
2752 	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
2753 		kfree(tmp);
2754 }
2755 
2756 /**
2757  * pci_configure_ari - enable or disable ARI forwarding
2758  * @dev: the PCI device
2759  *
2760  * If @dev and its upstream bridge both support ARI, enable ARI in the
2761  * bridge.  Otherwise, disable ARI in the bridge.
2762  */
2763 void pci_configure_ari(struct pci_dev *dev)
2764 {
2765 	u32 cap;
2766 	struct pci_dev *bridge;
2767 
2768 	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
2769 		return;
2770 
2771 	bridge = dev->bus->self;
2772 	if (!bridge)
2773 		return;
2774 
2775 	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
2776 	if (!(cap & PCI_EXP_DEVCAP2_ARI))
2777 		return;
2778 
2779 	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
2780 		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
2781 					 PCI_EXP_DEVCTL2_ARI);
2782 		bridge->ari_enabled = 1;
2783 	} else {
2784 		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
2785 					   PCI_EXP_DEVCTL2_ARI);
2786 		bridge->ari_enabled = 0;
2787 	}
2788 }
2789 
2790 static int pci_acs_enable;
2791 
2792 /**
2793  * pci_request_acs - ask for ACS to be enabled if supported
2794  */
2795 void pci_request_acs(void)
2796 {
2797 	pci_acs_enable = 1;
2798 }
2799 
2800 /**
2801  * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites
2802  * @dev: the PCI device
2803  */
2804 static void pci_std_enable_acs(struct pci_dev *dev)
2805 {
2806 	int pos;
2807 	u16 cap;
2808 	u16 ctrl;
2809 
2810 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2811 	if (!pos)
2812 		return;
2813 
2814 	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2815 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2816 
2817 	/* Source Validation */
2818 	ctrl |= (cap & PCI_ACS_SV);
2819 
2820 	/* P2P Request Redirect */
2821 	ctrl |= (cap & PCI_ACS_RR);
2822 
2823 	/* P2P Completion Redirect */
2824 	ctrl |= (cap & PCI_ACS_CR);
2825 
2826 	/* Upstream Forwarding */
2827 	ctrl |= (cap & PCI_ACS_UF);
2828 
2829 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2830 }
2831 
2832 /**
2833  * pci_enable_acs - enable ACS if hardware support it
2834  * @dev: the PCI device
2835  */
2836 void pci_enable_acs(struct pci_dev *dev)
2837 {
2838 	if (!pci_acs_enable)
2839 		return;
2840 
2841 	if (!pci_dev_specific_enable_acs(dev))
2842 		return;
2843 
2844 	pci_std_enable_acs(dev);
2845 }
2846 
2847 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
2848 {
2849 	int pos;
2850 	u16 cap, ctrl;
2851 
2852 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2853 	if (!pos)
2854 		return false;
2855 
2856 	/*
2857 	 * Except for egress control, capabilities are either required
2858 	 * or only required if controllable.  Features missing from the
2859 	 * capability field can therefore be assumed as hard-wired enabled.
2860 	 */
2861 	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
2862 	acs_flags &= (cap | PCI_ACS_EC);
2863 
2864 	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2865 	return (ctrl & acs_flags) == acs_flags;
2866 }
2867 
2868 /**
2869  * pci_acs_enabled - test ACS against required flags for a given device
2870  * @pdev: device to test
2871  * @acs_flags: required PCI ACS flags
2872  *
2873  * Return true if the device supports the provided flags.  Automatically
2874  * filters out flags that are not implemented on multifunction devices.
2875  *
2876  * Note that this interface checks the effective ACS capabilities of the
2877  * device rather than the actual capabilities.  For instance, most single
2878  * function endpoints are not required to support ACS because they have no
2879  * opportunity for peer-to-peer access.  We therefore return 'true'
2880  * regardless of whether the device exposes an ACS capability.  This makes
2881  * it much easier for callers of this function to ignore the actual type
2882  * or topology of the device when testing ACS support.
2883  */
2884 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2885 {
2886 	int ret;
2887 
2888 	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2889 	if (ret >= 0)
2890 		return ret > 0;
2891 
2892 	/*
2893 	 * Conventional PCI and PCI-X devices never support ACS, either
2894 	 * effectively or actually.  The shared bus topology implies that
2895 	 * any device on the bus can receive or snoop DMA.
2896 	 */
2897 	if (!pci_is_pcie(pdev))
2898 		return false;
2899 
2900 	switch (pci_pcie_type(pdev)) {
2901 	/*
2902 	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
2903 	 * but since their primary interface is PCI/X, we conservatively
2904 	 * handle them as we would a non-PCIe device.
2905 	 */
2906 	case PCI_EXP_TYPE_PCIE_BRIDGE:
2907 	/*
2908 	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
2909 	 * applicable... must never implement an ACS Extended Capability...".
2910 	 * This seems arbitrary, but we take a conservative interpretation
2911 	 * of this statement.
2912 	 */
2913 	case PCI_EXP_TYPE_PCI_BRIDGE:
2914 	case PCI_EXP_TYPE_RC_EC:
2915 		return false;
2916 	/*
2917 	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
2918 	 * implement ACS in order to indicate their peer-to-peer capabilities,
2919 	 * regardless of whether they are single- or multi-function devices.
2920 	 */
2921 	case PCI_EXP_TYPE_DOWNSTREAM:
2922 	case PCI_EXP_TYPE_ROOT_PORT:
2923 		return pci_acs_flags_enabled(pdev, acs_flags);
2924 	/*
2925 	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
2926 	 * implemented by the remaining PCIe types to indicate peer-to-peer
2927 	 * capabilities, but only when they are part of a multifunction
2928 	 * device.  The footnote for section 6.12 indicates the specific
2929 	 * PCIe types included here.
2930 	 */
2931 	case PCI_EXP_TYPE_ENDPOINT:
2932 	case PCI_EXP_TYPE_UPSTREAM:
2933 	case PCI_EXP_TYPE_LEG_END:
2934 	case PCI_EXP_TYPE_RC_END:
2935 		if (!pdev->multifunction)
2936 			break;
2937 
2938 		return pci_acs_flags_enabled(pdev, acs_flags);
2939 	}
2940 
2941 	/*
2942 	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
2943 	 * to single function devices with the exception of downstream ports.
2944 	 */
2945 	return true;
2946 }
2947 
2948 /**
2949  * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2950  * @start: starting downstream device
2951  * @end: ending upstream device or NULL to search to the root bus
2952  * @acs_flags: required flags
2953  *
2954  * Walk up a device tree from start to end testing PCI ACS support.  If
2955  * any step along the way does not support the required flags, return false.
2956  */
2957 bool pci_acs_path_enabled(struct pci_dev *start,
2958 			  struct pci_dev *end, u16 acs_flags)
2959 {
2960 	struct pci_dev *pdev, *parent = start;
2961 
2962 	do {
2963 		pdev = parent;
2964 
2965 		if (!pci_acs_enabled(pdev, acs_flags))
2966 			return false;
2967 
2968 		if (pci_is_root_bus(pdev->bus))
2969 			return (end == NULL);
2970 
2971 		parent = pdev->bus->self;
2972 	} while (pdev != end);
2973 
2974 	return true;
2975 }
2976 
2977 /**
2978  * pci_rebar_find_pos - find position of resize ctrl reg for BAR
2979  * @pdev: PCI device
2980  * @bar: BAR to find
2981  *
2982  * Helper to find the position of the ctrl register for a BAR.
2983  * Returns -ENOTSUPP if resizable BARs are not supported at all.
2984  * Returns -ENOENT if no ctrl register for the BAR could be found.
2985  */
2986 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
2987 {
2988 	unsigned int pos, nbars, i;
2989 	u32 ctrl;
2990 
2991 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
2992 	if (!pos)
2993 		return -ENOTSUPP;
2994 
2995 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
2996 	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
2997 		    PCI_REBAR_CTRL_NBAR_SHIFT;
2998 
2999 	for (i = 0; i < nbars; i++, pos += 8) {
3000 		int bar_idx;
3001 
3002 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3003 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3004 		if (bar_idx == bar)
3005 			return pos;
3006 	}
3007 
3008 	return -ENOENT;
3009 }
3010 
3011 /**
3012  * pci_rebar_get_possible_sizes - get possible sizes for BAR
3013  * @pdev: PCI device
3014  * @bar: BAR to query
3015  *
3016  * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3017  * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3018  */
3019 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3020 {
3021 	int pos;
3022 	u32 cap;
3023 
3024 	pos = pci_rebar_find_pos(pdev, bar);
3025 	if (pos < 0)
3026 		return 0;
3027 
3028 	pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3029 	return (cap & PCI_REBAR_CAP_SIZES) >> 4;
3030 }
3031 
3032 /**
3033  * pci_rebar_get_current_size - get the current size of a BAR
3034  * @pdev: PCI device
3035  * @bar: BAR to set size to
3036  *
3037  * Read the size of a BAR from the resizable BAR config.
3038  * Returns size if found or negative error code.
3039  */
3040 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3041 {
3042 	int pos;
3043 	u32 ctrl;
3044 
3045 	pos = pci_rebar_find_pos(pdev, bar);
3046 	if (pos < 0)
3047 		return pos;
3048 
3049 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3050 	return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> 8;
3051 }
3052 
3053 /**
3054  * pci_rebar_set_size - set a new size for a BAR
3055  * @pdev: PCI device
3056  * @bar: BAR to set size to
3057  * @size: new size as defined in the spec (0=1MB, 19=512GB)
3058  *
3059  * Set the new size of a BAR as defined in the spec.
3060  * Returns zero if resizing was successful, error code otherwise.
3061  */
3062 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3063 {
3064 	int pos;
3065 	u32 ctrl;
3066 
3067 	pos = pci_rebar_find_pos(pdev, bar);
3068 	if (pos < 0)
3069 		return pos;
3070 
3071 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3072 	ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3073 	ctrl |= size << 8;
3074 	pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3075 	return 0;
3076 }
3077 
3078 /**
3079  * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3080  * @dev: the PCI device
3081  * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3082  *	PCI_EXP_DEVCAP2_ATOMIC_COMP32
3083  *	PCI_EXP_DEVCAP2_ATOMIC_COMP64
3084  *	PCI_EXP_DEVCAP2_ATOMIC_COMP128
3085  *
3086  * Return 0 if all upstream bridges support AtomicOp routing, egress
3087  * blocking is disabled on all upstream ports, and the root port supports
3088  * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3089  * AtomicOp completion), or negative otherwise.
3090  */
3091 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3092 {
3093 	struct pci_bus *bus = dev->bus;
3094 	struct pci_dev *bridge;
3095 	u32 cap, ctl2;
3096 
3097 	if (!pci_is_pcie(dev))
3098 		return -EINVAL;
3099 
3100 	/*
3101 	 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3102 	 * AtomicOp requesters.  For now, we only support endpoints as
3103 	 * requesters and root ports as completers.  No endpoints as
3104 	 * completers, and no peer-to-peer.
3105 	 */
3106 
3107 	switch (pci_pcie_type(dev)) {
3108 	case PCI_EXP_TYPE_ENDPOINT:
3109 	case PCI_EXP_TYPE_LEG_END:
3110 	case PCI_EXP_TYPE_RC_END:
3111 		break;
3112 	default:
3113 		return -EINVAL;
3114 	}
3115 
3116 	while (bus->parent) {
3117 		bridge = bus->self;
3118 
3119 		pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3120 
3121 		switch (pci_pcie_type(bridge)) {
3122 		/* Ensure switch ports support AtomicOp routing */
3123 		case PCI_EXP_TYPE_UPSTREAM:
3124 		case PCI_EXP_TYPE_DOWNSTREAM:
3125 			if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3126 				return -EINVAL;
3127 			break;
3128 
3129 		/* Ensure root port supports all the sizes we care about */
3130 		case PCI_EXP_TYPE_ROOT_PORT:
3131 			if ((cap & cap_mask) != cap_mask)
3132 				return -EINVAL;
3133 			break;
3134 		}
3135 
3136 		/* Ensure upstream ports don't block AtomicOps on egress */
3137 		if (!bridge->has_secondary_link) {
3138 			pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3139 						   &ctl2);
3140 			if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3141 				return -EINVAL;
3142 		}
3143 
3144 		bus = bus->parent;
3145 	}
3146 
3147 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3148 				 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3149 	return 0;
3150 }
3151 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3152 
3153 /**
3154  * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3155  * @dev: the PCI device
3156  * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3157  *
3158  * Perform INTx swizzling for a device behind one level of bridge.  This is
3159  * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3160  * behind bridges on add-in cards.  For devices with ARI enabled, the slot
3161  * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3162  * the PCI Express Base Specification, Revision 2.1)
3163  */
3164 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3165 {
3166 	int slot;
3167 
3168 	if (pci_ari_enabled(dev->bus))
3169 		slot = 0;
3170 	else
3171 		slot = PCI_SLOT(dev->devfn);
3172 
3173 	return (((pin - 1) + slot) % 4) + 1;
3174 }
3175 
3176 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3177 {
3178 	u8 pin;
3179 
3180 	pin = dev->pin;
3181 	if (!pin)
3182 		return -1;
3183 
3184 	while (!pci_is_root_bus(dev->bus)) {
3185 		pin = pci_swizzle_interrupt_pin(dev, pin);
3186 		dev = dev->bus->self;
3187 	}
3188 	*bridge = dev;
3189 	return pin;
3190 }
3191 
3192 /**
3193  * pci_common_swizzle - swizzle INTx all the way to root bridge
3194  * @dev: the PCI device
3195  * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3196  *
3197  * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
3198  * bridges all the way up to a PCI root bus.
3199  */
3200 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3201 {
3202 	u8 pin = *pinp;
3203 
3204 	while (!pci_is_root_bus(dev->bus)) {
3205 		pin = pci_swizzle_interrupt_pin(dev, pin);
3206 		dev = dev->bus->self;
3207 	}
3208 	*pinp = pin;
3209 	return PCI_SLOT(dev->devfn);
3210 }
3211 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3212 
3213 /**
3214  *	pci_release_region - Release a PCI bar
3215  *	@pdev: PCI device whose resources were previously reserved by pci_request_region
3216  *	@bar: BAR to release
3217  *
3218  *	Releases the PCI I/O and memory resources previously reserved by a
3219  *	successful call to pci_request_region.  Call this function only
3220  *	after all use of the PCI regions has ceased.
3221  */
3222 void pci_release_region(struct pci_dev *pdev, int bar)
3223 {
3224 	struct pci_devres *dr;
3225 
3226 	if (pci_resource_len(pdev, bar) == 0)
3227 		return;
3228 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3229 		release_region(pci_resource_start(pdev, bar),
3230 				pci_resource_len(pdev, bar));
3231 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3232 		release_mem_region(pci_resource_start(pdev, bar),
3233 				pci_resource_len(pdev, bar));
3234 
3235 	dr = find_pci_dr(pdev);
3236 	if (dr)
3237 		dr->region_mask &= ~(1 << bar);
3238 }
3239 EXPORT_SYMBOL(pci_release_region);
3240 
3241 /**
3242  *	__pci_request_region - Reserved PCI I/O and memory resource
3243  *	@pdev: PCI device whose resources are to be reserved
3244  *	@bar: BAR to be reserved
3245  *	@res_name: Name to be associated with resource.
3246  *	@exclusive: whether the region access is exclusive or not
3247  *
3248  *	Mark the PCI region associated with PCI device @pdev BR @bar as
3249  *	being reserved by owner @res_name.  Do not access any
3250  *	address inside the PCI regions unless this call returns
3251  *	successfully.
3252  *
3253  *	If @exclusive is set, then the region is marked so that userspace
3254  *	is explicitly not allowed to map the resource via /dev/mem or
3255  *	sysfs MMIO access.
3256  *
3257  *	Returns 0 on success, or %EBUSY on error.  A warning
3258  *	message is also printed on failure.
3259  */
3260 static int __pci_request_region(struct pci_dev *pdev, int bar,
3261 				const char *res_name, int exclusive)
3262 {
3263 	struct pci_devres *dr;
3264 
3265 	if (pci_resource_len(pdev, bar) == 0)
3266 		return 0;
3267 
3268 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3269 		if (!request_region(pci_resource_start(pdev, bar),
3270 			    pci_resource_len(pdev, bar), res_name))
3271 			goto err_out;
3272 	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3273 		if (!__request_mem_region(pci_resource_start(pdev, bar),
3274 					pci_resource_len(pdev, bar), res_name,
3275 					exclusive))
3276 			goto err_out;
3277 	}
3278 
3279 	dr = find_pci_dr(pdev);
3280 	if (dr)
3281 		dr->region_mask |= 1 << bar;
3282 
3283 	return 0;
3284 
3285 err_out:
3286 	pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3287 		 &pdev->resource[bar]);
3288 	return -EBUSY;
3289 }
3290 
3291 /**
3292  *	pci_request_region - Reserve PCI I/O and memory resource
3293  *	@pdev: PCI device whose resources are to be reserved
3294  *	@bar: BAR to be reserved
3295  *	@res_name: Name to be associated with resource
3296  *
3297  *	Mark the PCI region associated with PCI device @pdev BAR @bar as
3298  *	being reserved by owner @res_name.  Do not access any
3299  *	address inside the PCI regions unless this call returns
3300  *	successfully.
3301  *
3302  *	Returns 0 on success, or %EBUSY on error.  A warning
3303  *	message is also printed on failure.
3304  */
3305 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3306 {
3307 	return __pci_request_region(pdev, bar, res_name, 0);
3308 }
3309 EXPORT_SYMBOL(pci_request_region);
3310 
3311 /**
3312  *	pci_request_region_exclusive - Reserved PCI I/O and memory resource
3313  *	@pdev: PCI device whose resources are to be reserved
3314  *	@bar: BAR to be reserved
3315  *	@res_name: Name to be associated with resource.
3316  *
3317  *	Mark the PCI region associated with PCI device @pdev BR @bar as
3318  *	being reserved by owner @res_name.  Do not access any
3319  *	address inside the PCI regions unless this call returns
3320  *	successfully.
3321  *
3322  *	Returns 0 on success, or %EBUSY on error.  A warning
3323  *	message is also printed on failure.
3324  *
3325  *	The key difference that _exclusive makes it that userspace is
3326  *	explicitly not allowed to map the resource via /dev/mem or
3327  *	sysfs.
3328  */
3329 int pci_request_region_exclusive(struct pci_dev *pdev, int bar,
3330 				 const char *res_name)
3331 {
3332 	return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
3333 }
3334 EXPORT_SYMBOL(pci_request_region_exclusive);
3335 
3336 /**
3337  * pci_release_selected_regions - Release selected PCI I/O and memory resources
3338  * @pdev: PCI device whose resources were previously reserved
3339  * @bars: Bitmask of BARs to be released
3340  *
3341  * Release selected PCI I/O and memory resources previously reserved.
3342  * Call this function only after all use of the PCI regions has ceased.
3343  */
3344 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3345 {
3346 	int i;
3347 
3348 	for (i = 0; i < 6; i++)
3349 		if (bars & (1 << i))
3350 			pci_release_region(pdev, i);
3351 }
3352 EXPORT_SYMBOL(pci_release_selected_regions);
3353 
3354 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3355 					  const char *res_name, int excl)
3356 {
3357 	int i;
3358 
3359 	for (i = 0; i < 6; i++)
3360 		if (bars & (1 << i))
3361 			if (__pci_request_region(pdev, i, res_name, excl))
3362 				goto err_out;
3363 	return 0;
3364 
3365 err_out:
3366 	while (--i >= 0)
3367 		if (bars & (1 << i))
3368 			pci_release_region(pdev, i);
3369 
3370 	return -EBUSY;
3371 }
3372 
3373 
3374 /**
3375  * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3376  * @pdev: PCI device whose resources are to be reserved
3377  * @bars: Bitmask of BARs to be requested
3378  * @res_name: Name to be associated with resource
3379  */
3380 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3381 				 const char *res_name)
3382 {
3383 	return __pci_request_selected_regions(pdev, bars, res_name, 0);
3384 }
3385 EXPORT_SYMBOL(pci_request_selected_regions);
3386 
3387 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3388 					   const char *res_name)
3389 {
3390 	return __pci_request_selected_regions(pdev, bars, res_name,
3391 			IORESOURCE_EXCLUSIVE);
3392 }
3393 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3394 
3395 /**
3396  *	pci_release_regions - Release reserved PCI I/O and memory resources
3397  *	@pdev: PCI device whose resources were previously reserved by pci_request_regions
3398  *
3399  *	Releases all PCI I/O and memory resources previously reserved by a
3400  *	successful call to pci_request_regions.  Call this function only
3401  *	after all use of the PCI regions has ceased.
3402  */
3403 
3404 void pci_release_regions(struct pci_dev *pdev)
3405 {
3406 	pci_release_selected_regions(pdev, (1 << 6) - 1);
3407 }
3408 EXPORT_SYMBOL(pci_release_regions);
3409 
3410 /**
3411  *	pci_request_regions - Reserved PCI I/O and memory resources
3412  *	@pdev: PCI device whose resources are to be reserved
3413  *	@res_name: Name to be associated with resource.
3414  *
3415  *	Mark all PCI regions associated with PCI device @pdev as
3416  *	being reserved by owner @res_name.  Do not access any
3417  *	address inside the PCI regions unless this call returns
3418  *	successfully.
3419  *
3420  *	Returns 0 on success, or %EBUSY on error.  A warning
3421  *	message is also printed on failure.
3422  */
3423 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
3424 {
3425 	return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
3426 }
3427 EXPORT_SYMBOL(pci_request_regions);
3428 
3429 /**
3430  *	pci_request_regions_exclusive - Reserved PCI I/O and memory resources
3431  *	@pdev: PCI device whose resources are to be reserved
3432  *	@res_name: Name to be associated with resource.
3433  *
3434  *	Mark all PCI regions associated with PCI device @pdev as
3435  *	being reserved by owner @res_name.  Do not access any
3436  *	address inside the PCI regions unless this call returns
3437  *	successfully.
3438  *
3439  *	pci_request_regions_exclusive() will mark the region so that
3440  *	/dev/mem and the sysfs MMIO access will not be allowed.
3441  *
3442  *	Returns 0 on success, or %EBUSY on error.  A warning
3443  *	message is also printed on failure.
3444  */
3445 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3446 {
3447 	return pci_request_selected_regions_exclusive(pdev,
3448 					((1 << 6) - 1), res_name);
3449 }
3450 EXPORT_SYMBOL(pci_request_regions_exclusive);
3451 
3452 /*
3453  * Record the PCI IO range (expressed as CPU physical address + size).
3454  * Return a negative value if an error has occured, zero otherwise
3455  */
3456 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
3457 			resource_size_t	size)
3458 {
3459 	int ret = 0;
3460 #ifdef PCI_IOBASE
3461 	struct logic_pio_hwaddr *range;
3462 
3463 	if (!size || addr + size < addr)
3464 		return -EINVAL;
3465 
3466 	range = kzalloc(sizeof(*range), GFP_ATOMIC);
3467 	if (!range)
3468 		return -ENOMEM;
3469 
3470 	range->fwnode = fwnode;
3471 	range->size = size;
3472 	range->hw_start = addr;
3473 	range->flags = LOGIC_PIO_CPU_MMIO;
3474 
3475 	ret = logic_pio_register_range(range);
3476 	if (ret)
3477 		kfree(range);
3478 #endif
3479 
3480 	return ret;
3481 }
3482 
3483 phys_addr_t pci_pio_to_address(unsigned long pio)
3484 {
3485 	phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
3486 
3487 #ifdef PCI_IOBASE
3488 	if (pio >= MMIO_UPPER_LIMIT)
3489 		return address;
3490 
3491 	address = logic_pio_to_hwaddr(pio);
3492 #endif
3493 
3494 	return address;
3495 }
3496 
3497 unsigned long __weak pci_address_to_pio(phys_addr_t address)
3498 {
3499 #ifdef PCI_IOBASE
3500 	return logic_pio_trans_cpuaddr(address);
3501 #else
3502 	if (address > IO_SPACE_LIMIT)
3503 		return (unsigned long)-1;
3504 
3505 	return (unsigned long) address;
3506 #endif
3507 }
3508 
3509 /**
3510  *	pci_remap_iospace - Remap the memory mapped I/O space
3511  *	@res: Resource describing the I/O space
3512  *	@phys_addr: physical address of range to be mapped
3513  *
3514  *	Remap the memory mapped I/O space described by the @res
3515  *	and the CPU physical address @phys_addr into virtual address space.
3516  *	Only architectures that have memory mapped IO functions defined
3517  *	(and the PCI_IOBASE value defined) should call this function.
3518  */
3519 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
3520 {
3521 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3522 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3523 
3524 	if (!(res->flags & IORESOURCE_IO))
3525 		return -EINVAL;
3526 
3527 	if (res->end > IO_SPACE_LIMIT)
3528 		return -EINVAL;
3529 
3530 	return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
3531 				  pgprot_device(PAGE_KERNEL));
3532 #else
3533 	/* this architecture does not have memory mapped I/O space,
3534 	   so this function should never be called */
3535 	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
3536 	return -ENODEV;
3537 #endif
3538 }
3539 EXPORT_SYMBOL(pci_remap_iospace);
3540 
3541 /**
3542  *	pci_unmap_iospace - Unmap the memory mapped I/O space
3543  *	@res: resource to be unmapped
3544  *
3545  *	Unmap the CPU virtual address @res from virtual address space.
3546  *	Only architectures that have memory mapped IO functions defined
3547  *	(and the PCI_IOBASE value defined) should call this function.
3548  */
3549 void pci_unmap_iospace(struct resource *res)
3550 {
3551 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3552 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3553 
3554 	unmap_kernel_range(vaddr, resource_size(res));
3555 #endif
3556 }
3557 EXPORT_SYMBOL(pci_unmap_iospace);
3558 
3559 /**
3560  * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
3561  * @dev: Generic device to remap IO address for
3562  * @offset: Resource address to map
3563  * @size: Size of map
3564  *
3565  * Managed pci_remap_cfgspace().  Map is automatically unmapped on driver
3566  * detach.
3567  */
3568 void __iomem *devm_pci_remap_cfgspace(struct device *dev,
3569 				      resource_size_t offset,
3570 				      resource_size_t size)
3571 {
3572 	void __iomem **ptr, *addr;
3573 
3574 	ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
3575 	if (!ptr)
3576 		return NULL;
3577 
3578 	addr = pci_remap_cfgspace(offset, size);
3579 	if (addr) {
3580 		*ptr = addr;
3581 		devres_add(dev, ptr);
3582 	} else
3583 		devres_free(ptr);
3584 
3585 	return addr;
3586 }
3587 EXPORT_SYMBOL(devm_pci_remap_cfgspace);
3588 
3589 /**
3590  * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
3591  * @dev: generic device to handle the resource for
3592  * @res: configuration space resource to be handled
3593  *
3594  * Checks that a resource is a valid memory region, requests the memory
3595  * region and ioremaps with pci_remap_cfgspace() API that ensures the
3596  * proper PCI configuration space memory attributes are guaranteed.
3597  *
3598  * All operations are managed and will be undone on driver detach.
3599  *
3600  * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
3601  * on failure. Usage example::
3602  *
3603  *	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3604  *	base = devm_pci_remap_cfg_resource(&pdev->dev, res);
3605  *	if (IS_ERR(base))
3606  *		return PTR_ERR(base);
3607  */
3608 void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
3609 					  struct resource *res)
3610 {
3611 	resource_size_t size;
3612 	const char *name;
3613 	void __iomem *dest_ptr;
3614 
3615 	BUG_ON(!dev);
3616 
3617 	if (!res || resource_type(res) != IORESOURCE_MEM) {
3618 		dev_err(dev, "invalid resource\n");
3619 		return IOMEM_ERR_PTR(-EINVAL);
3620 	}
3621 
3622 	size = resource_size(res);
3623 	name = res->name ?: dev_name(dev);
3624 
3625 	if (!devm_request_mem_region(dev, res->start, size, name)) {
3626 		dev_err(dev, "can't request region for resource %pR\n", res);
3627 		return IOMEM_ERR_PTR(-EBUSY);
3628 	}
3629 
3630 	dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
3631 	if (!dest_ptr) {
3632 		dev_err(dev, "ioremap failed for resource %pR\n", res);
3633 		devm_release_mem_region(dev, res->start, size);
3634 		dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
3635 	}
3636 
3637 	return dest_ptr;
3638 }
3639 EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
3640 
3641 static void __pci_set_master(struct pci_dev *dev, bool enable)
3642 {
3643 	u16 old_cmd, cmd;
3644 
3645 	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
3646 	if (enable)
3647 		cmd = old_cmd | PCI_COMMAND_MASTER;
3648 	else
3649 		cmd = old_cmd & ~PCI_COMMAND_MASTER;
3650 	if (cmd != old_cmd) {
3651 		pci_dbg(dev, "%s bus mastering\n",
3652 			enable ? "enabling" : "disabling");
3653 		pci_write_config_word(dev, PCI_COMMAND, cmd);
3654 	}
3655 	dev->is_busmaster = enable;
3656 }
3657 
3658 /**
3659  * pcibios_setup - process "pci=" kernel boot arguments
3660  * @str: string used to pass in "pci=" kernel boot arguments
3661  *
3662  * Process kernel boot arguments.  This is the default implementation.
3663  * Architecture specific implementations can override this as necessary.
3664  */
3665 char * __weak __init pcibios_setup(char *str)
3666 {
3667 	return str;
3668 }
3669 
3670 /**
3671  * pcibios_set_master - enable PCI bus-mastering for device dev
3672  * @dev: the PCI device to enable
3673  *
3674  * Enables PCI bus-mastering for the device.  This is the default
3675  * implementation.  Architecture specific implementations can override
3676  * this if necessary.
3677  */
3678 void __weak pcibios_set_master(struct pci_dev *dev)
3679 {
3680 	u8 lat;
3681 
3682 	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
3683 	if (pci_is_pcie(dev))
3684 		return;
3685 
3686 	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
3687 	if (lat < 16)
3688 		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
3689 	else if (lat > pcibios_max_latency)
3690 		lat = pcibios_max_latency;
3691 	else
3692 		return;
3693 
3694 	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
3695 }
3696 
3697 /**
3698  * pci_set_master - enables bus-mastering for device dev
3699  * @dev: the PCI device to enable
3700  *
3701  * Enables bus-mastering on the device and calls pcibios_set_master()
3702  * to do the needed arch specific settings.
3703  */
3704 void pci_set_master(struct pci_dev *dev)
3705 {
3706 	__pci_set_master(dev, true);
3707 	pcibios_set_master(dev);
3708 }
3709 EXPORT_SYMBOL(pci_set_master);
3710 
3711 /**
3712  * pci_clear_master - disables bus-mastering for device dev
3713  * @dev: the PCI device to disable
3714  */
3715 void pci_clear_master(struct pci_dev *dev)
3716 {
3717 	__pci_set_master(dev, false);
3718 }
3719 EXPORT_SYMBOL(pci_clear_master);
3720 
3721 /**
3722  * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
3723  * @dev: the PCI device for which MWI is to be enabled
3724  *
3725  * Helper function for pci_set_mwi.
3726  * Originally copied from drivers/net/acenic.c.
3727  * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
3728  *
3729  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3730  */
3731 int pci_set_cacheline_size(struct pci_dev *dev)
3732 {
3733 	u8 cacheline_size;
3734 
3735 	if (!pci_cache_line_size)
3736 		return -EINVAL;
3737 
3738 	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
3739 	   equal to or multiple of the right value. */
3740 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3741 	if (cacheline_size >= pci_cache_line_size &&
3742 	    (cacheline_size % pci_cache_line_size) == 0)
3743 		return 0;
3744 
3745 	/* Write the correct value. */
3746 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
3747 	/* Read it back. */
3748 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3749 	if (cacheline_size == pci_cache_line_size)
3750 		return 0;
3751 
3752 	pci_printk(KERN_DEBUG, dev, "cache line size of %d is not supported\n",
3753 		   pci_cache_line_size << 2);
3754 
3755 	return -EINVAL;
3756 }
3757 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
3758 
3759 /**
3760  * pci_set_mwi - enables memory-write-invalidate PCI transaction
3761  * @dev: the PCI device for which MWI is enabled
3762  *
3763  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3764  *
3765  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3766  */
3767 int pci_set_mwi(struct pci_dev *dev)
3768 {
3769 #ifdef PCI_DISABLE_MWI
3770 	return 0;
3771 #else
3772 	int rc;
3773 	u16 cmd;
3774 
3775 	rc = pci_set_cacheline_size(dev);
3776 	if (rc)
3777 		return rc;
3778 
3779 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
3780 	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
3781 		pci_dbg(dev, "enabling Mem-Wr-Inval\n");
3782 		cmd |= PCI_COMMAND_INVALIDATE;
3783 		pci_write_config_word(dev, PCI_COMMAND, cmd);
3784 	}
3785 	return 0;
3786 #endif
3787 }
3788 EXPORT_SYMBOL(pci_set_mwi);
3789 
3790 /**
3791  * pcim_set_mwi - a device-managed pci_set_mwi()
3792  * @dev: the PCI device for which MWI is enabled
3793  *
3794  * Managed pci_set_mwi().
3795  *
3796  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3797  */
3798 int pcim_set_mwi(struct pci_dev *dev)
3799 {
3800 	struct pci_devres *dr;
3801 
3802 	dr = find_pci_dr(dev);
3803 	if (!dr)
3804 		return -ENOMEM;
3805 
3806 	dr->mwi = 1;
3807 	return pci_set_mwi(dev);
3808 }
3809 EXPORT_SYMBOL(pcim_set_mwi);
3810 
3811 /**
3812  * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
3813  * @dev: the PCI device for which MWI is enabled
3814  *
3815  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3816  * Callers are not required to check the return value.
3817  *
3818  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3819  */
3820 int pci_try_set_mwi(struct pci_dev *dev)
3821 {
3822 #ifdef PCI_DISABLE_MWI
3823 	return 0;
3824 #else
3825 	return pci_set_mwi(dev);
3826 #endif
3827 }
3828 EXPORT_SYMBOL(pci_try_set_mwi);
3829 
3830 /**
3831  * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
3832  * @dev: the PCI device to disable
3833  *
3834  * Disables PCI Memory-Write-Invalidate transaction on the device
3835  */
3836 void pci_clear_mwi(struct pci_dev *dev)
3837 {
3838 #ifndef PCI_DISABLE_MWI
3839 	u16 cmd;
3840 
3841 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
3842 	if (cmd & PCI_COMMAND_INVALIDATE) {
3843 		cmd &= ~PCI_COMMAND_INVALIDATE;
3844 		pci_write_config_word(dev, PCI_COMMAND, cmd);
3845 	}
3846 #endif
3847 }
3848 EXPORT_SYMBOL(pci_clear_mwi);
3849 
3850 /**
3851  * pci_intx - enables/disables PCI INTx for device dev
3852  * @pdev: the PCI device to operate on
3853  * @enable: boolean: whether to enable or disable PCI INTx
3854  *
3855  * Enables/disables PCI INTx for device dev
3856  */
3857 void pci_intx(struct pci_dev *pdev, int enable)
3858 {
3859 	u16 pci_command, new;
3860 
3861 	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
3862 
3863 	if (enable)
3864 		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
3865 	else
3866 		new = pci_command | PCI_COMMAND_INTX_DISABLE;
3867 
3868 	if (new != pci_command) {
3869 		struct pci_devres *dr;
3870 
3871 		pci_write_config_word(pdev, PCI_COMMAND, new);
3872 
3873 		dr = find_pci_dr(pdev);
3874 		if (dr && !dr->restore_intx) {
3875 			dr->restore_intx = 1;
3876 			dr->orig_intx = !enable;
3877 		}
3878 	}
3879 }
3880 EXPORT_SYMBOL_GPL(pci_intx);
3881 
3882 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
3883 {
3884 	struct pci_bus *bus = dev->bus;
3885 	bool mask_updated = true;
3886 	u32 cmd_status_dword;
3887 	u16 origcmd, newcmd;
3888 	unsigned long flags;
3889 	bool irq_pending;
3890 
3891 	/*
3892 	 * We do a single dword read to retrieve both command and status.
3893 	 * Document assumptions that make this possible.
3894 	 */
3895 	BUILD_BUG_ON(PCI_COMMAND % 4);
3896 	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
3897 
3898 	raw_spin_lock_irqsave(&pci_lock, flags);
3899 
3900 	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
3901 
3902 	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
3903 
3904 	/*
3905 	 * Check interrupt status register to see whether our device
3906 	 * triggered the interrupt (when masking) or the next IRQ is
3907 	 * already pending (when unmasking).
3908 	 */
3909 	if (mask != irq_pending) {
3910 		mask_updated = false;
3911 		goto done;
3912 	}
3913 
3914 	origcmd = cmd_status_dword;
3915 	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
3916 	if (mask)
3917 		newcmd |= PCI_COMMAND_INTX_DISABLE;
3918 	if (newcmd != origcmd)
3919 		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
3920 
3921 done:
3922 	raw_spin_unlock_irqrestore(&pci_lock, flags);
3923 
3924 	return mask_updated;
3925 }
3926 
3927 /**
3928  * pci_check_and_mask_intx - mask INTx on pending interrupt
3929  * @dev: the PCI device to operate on
3930  *
3931  * Check if the device dev has its INTx line asserted, mask it and
3932  * return true in that case. False is returned if no interrupt was
3933  * pending.
3934  */
3935 bool pci_check_and_mask_intx(struct pci_dev *dev)
3936 {
3937 	return pci_check_and_set_intx_mask(dev, true);
3938 }
3939 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
3940 
3941 /**
3942  * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
3943  * @dev: the PCI device to operate on
3944  *
3945  * Check if the device dev has its INTx line asserted, unmask it if not
3946  * and return true. False is returned and the mask remains active if
3947  * there was still an interrupt pending.
3948  */
3949 bool pci_check_and_unmask_intx(struct pci_dev *dev)
3950 {
3951 	return pci_check_and_set_intx_mask(dev, false);
3952 }
3953 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
3954 
3955 /**
3956  * pci_wait_for_pending_transaction - waits for pending transaction
3957  * @dev: the PCI device to operate on
3958  *
3959  * Return 0 if transaction is pending 1 otherwise.
3960  */
3961 int pci_wait_for_pending_transaction(struct pci_dev *dev)
3962 {
3963 	if (!pci_is_pcie(dev))
3964 		return 1;
3965 
3966 	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
3967 				    PCI_EXP_DEVSTA_TRPND);
3968 }
3969 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
3970 
3971 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
3972 {
3973 	int delay = 1;
3974 	u32 id;
3975 
3976 	/*
3977 	 * After reset, the device should not silently discard config
3978 	 * requests, but it may still indicate that it needs more time by
3979 	 * responding to them with CRS completions.  The Root Port will
3980 	 * generally synthesize ~0 data to complete the read (except when
3981 	 * CRS SV is enabled and the read was for the Vendor ID; in that
3982 	 * case it synthesizes 0x0001 data).
3983 	 *
3984 	 * Wait for the device to return a non-CRS completion.  Read the
3985 	 * Command register instead of Vendor ID so we don't have to
3986 	 * contend with the CRS SV value.
3987 	 */
3988 	pci_read_config_dword(dev, PCI_COMMAND, &id);
3989 	while (id == ~0) {
3990 		if (delay > timeout) {
3991 			pci_warn(dev, "not ready %dms after %s; giving up\n",
3992 				 delay - 1, reset_type);
3993 			return -ENOTTY;
3994 		}
3995 
3996 		if (delay > 1000)
3997 			pci_info(dev, "not ready %dms after %s; waiting\n",
3998 				 delay - 1, reset_type);
3999 
4000 		msleep(delay);
4001 		delay *= 2;
4002 		pci_read_config_dword(dev, PCI_COMMAND, &id);
4003 	}
4004 
4005 	if (delay > 1000)
4006 		pci_info(dev, "ready %dms after %s\n", delay - 1,
4007 			 reset_type);
4008 
4009 	return 0;
4010 }
4011 
4012 /**
4013  * pcie_has_flr - check if a device supports function level resets
4014  * @dev:	device to check
4015  *
4016  * Returns true if the device advertises support for PCIe function level
4017  * resets.
4018  */
4019 static bool pcie_has_flr(struct pci_dev *dev)
4020 {
4021 	u32 cap;
4022 
4023 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4024 		return false;
4025 
4026 	pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
4027 	return cap & PCI_EXP_DEVCAP_FLR;
4028 }
4029 
4030 /**
4031  * pcie_flr - initiate a PCIe function level reset
4032  * @dev:	device to reset
4033  *
4034  * Initiate a function level reset on @dev.  The caller should ensure the
4035  * device supports FLR before calling this function, e.g. by using the
4036  * pcie_has_flr() helper.
4037  */
4038 int pcie_flr(struct pci_dev *dev)
4039 {
4040 	if (!pci_wait_for_pending_transaction(dev))
4041 		pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4042 
4043 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4044 
4045 	/*
4046 	 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4047 	 * 100ms, but may silently discard requests while the FLR is in
4048 	 * progress.  Wait 100ms before trying to access the device.
4049 	 */
4050 	msleep(100);
4051 
4052 	return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4053 }
4054 EXPORT_SYMBOL_GPL(pcie_flr);
4055 
4056 static int pci_af_flr(struct pci_dev *dev, int probe)
4057 {
4058 	int pos;
4059 	u8 cap;
4060 
4061 	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4062 	if (!pos)
4063 		return -ENOTTY;
4064 
4065 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4066 		return -ENOTTY;
4067 
4068 	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4069 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4070 		return -ENOTTY;
4071 
4072 	if (probe)
4073 		return 0;
4074 
4075 	/*
4076 	 * Wait for Transaction Pending bit to clear.  A word-aligned test
4077 	 * is used, so we use the conrol offset rather than status and shift
4078 	 * the test bit to match.
4079 	 */
4080 	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4081 				 PCI_AF_STATUS_TP << 8))
4082 		pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4083 
4084 	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4085 
4086 	/*
4087 	 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4088 	 * updated 27 July 2006; a device must complete an FLR within
4089 	 * 100ms, but may silently discard requests while the FLR is in
4090 	 * progress.  Wait 100ms before trying to access the device.
4091 	 */
4092 	msleep(100);
4093 
4094 	return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4095 }
4096 
4097 /**
4098  * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4099  * @dev: Device to reset.
4100  * @probe: If set, only check if the device can be reset this way.
4101  *
4102  * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4103  * unset, it will be reinitialized internally when going from PCI_D3hot to
4104  * PCI_D0.  If that's the case and the device is not in a low-power state
4105  * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4106  *
4107  * NOTE: This causes the caller to sleep for twice the device power transition
4108  * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4109  * by default (i.e. unless the @dev's d3_delay field has a different value).
4110  * Moreover, only devices in D0 can be reset by this function.
4111  */
4112 static int pci_pm_reset(struct pci_dev *dev, int probe)
4113 {
4114 	u16 csr;
4115 
4116 	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4117 		return -ENOTTY;
4118 
4119 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4120 	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4121 		return -ENOTTY;
4122 
4123 	if (probe)
4124 		return 0;
4125 
4126 	if (dev->current_state != PCI_D0)
4127 		return -EINVAL;
4128 
4129 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4130 	csr |= PCI_D3hot;
4131 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4132 	pci_dev_d3_sleep(dev);
4133 
4134 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4135 	csr |= PCI_D0;
4136 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4137 	pci_dev_d3_sleep(dev);
4138 
4139 	return pci_dev_wait(dev, "PM D3->D0", PCIE_RESET_READY_POLL_MS);
4140 }
4141 
4142 void pci_reset_secondary_bus(struct pci_dev *dev)
4143 {
4144 	u16 ctrl;
4145 
4146 	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4147 	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4148 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4149 
4150 	/*
4151 	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
4152 	 * this to 2ms to ensure that we meet the minimum requirement.
4153 	 */
4154 	msleep(2);
4155 
4156 	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4157 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4158 
4159 	/*
4160 	 * Trhfa for conventional PCI is 2^25 clock cycles.
4161 	 * Assuming a minimum 33MHz clock this results in a 1s
4162 	 * delay before we can consider subordinate devices to
4163 	 * be re-initialized.  PCIe has some ways to shorten this,
4164 	 * but we don't make use of them yet.
4165 	 */
4166 	ssleep(1);
4167 }
4168 
4169 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4170 {
4171 	pci_reset_secondary_bus(dev);
4172 }
4173 
4174 /**
4175  * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge.
4176  * @dev: Bridge device
4177  *
4178  * Use the bridge control register to assert reset on the secondary bus.
4179  * Devices on the secondary bus are left in power-on state.
4180  */
4181 int pci_reset_bridge_secondary_bus(struct pci_dev *dev)
4182 {
4183 	pcibios_reset_secondary_bus(dev);
4184 
4185 	return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS);
4186 }
4187 EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus);
4188 
4189 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
4190 {
4191 	struct pci_dev *pdev;
4192 
4193 	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4194 	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4195 		return -ENOTTY;
4196 
4197 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4198 		if (pdev != dev)
4199 			return -ENOTTY;
4200 
4201 	if (probe)
4202 		return 0;
4203 
4204 	pci_reset_bridge_secondary_bus(dev->bus->self);
4205 
4206 	return 0;
4207 }
4208 
4209 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
4210 {
4211 	int rc = -ENOTTY;
4212 
4213 	if (!hotplug || !try_module_get(hotplug->ops->owner))
4214 		return rc;
4215 
4216 	if (hotplug->ops->reset_slot)
4217 		rc = hotplug->ops->reset_slot(hotplug, probe);
4218 
4219 	module_put(hotplug->ops->owner);
4220 
4221 	return rc;
4222 }
4223 
4224 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
4225 {
4226 	struct pci_dev *pdev;
4227 
4228 	if (dev->subordinate || !dev->slot ||
4229 	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4230 		return -ENOTTY;
4231 
4232 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4233 		if (pdev != dev && pdev->slot == dev->slot)
4234 			return -ENOTTY;
4235 
4236 	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
4237 }
4238 
4239 static void pci_dev_lock(struct pci_dev *dev)
4240 {
4241 	pci_cfg_access_lock(dev);
4242 	/* block PM suspend, driver probe, etc. */
4243 	device_lock(&dev->dev);
4244 }
4245 
4246 /* Return 1 on successful lock, 0 on contention */
4247 static int pci_dev_trylock(struct pci_dev *dev)
4248 {
4249 	if (pci_cfg_access_trylock(dev)) {
4250 		if (device_trylock(&dev->dev))
4251 			return 1;
4252 		pci_cfg_access_unlock(dev);
4253 	}
4254 
4255 	return 0;
4256 }
4257 
4258 static void pci_dev_unlock(struct pci_dev *dev)
4259 {
4260 	device_unlock(&dev->dev);
4261 	pci_cfg_access_unlock(dev);
4262 }
4263 
4264 static void pci_dev_save_and_disable(struct pci_dev *dev)
4265 {
4266 	const struct pci_error_handlers *err_handler =
4267 			dev->driver ? dev->driver->err_handler : NULL;
4268 
4269 	/*
4270 	 * dev->driver->err_handler->reset_prepare() is protected against
4271 	 * races with ->remove() by the device lock, which must be held by
4272 	 * the caller.
4273 	 */
4274 	if (err_handler && err_handler->reset_prepare)
4275 		err_handler->reset_prepare(dev);
4276 
4277 	/*
4278 	 * Wake-up device prior to save.  PM registers default to D0 after
4279 	 * reset and a simple register restore doesn't reliably return
4280 	 * to a non-D0 state anyway.
4281 	 */
4282 	pci_set_power_state(dev, PCI_D0);
4283 
4284 	pci_save_state(dev);
4285 	/*
4286 	 * Disable the device by clearing the Command register, except for
4287 	 * INTx-disable which is set.  This not only disables MMIO and I/O port
4288 	 * BARs, but also prevents the device from being Bus Master, preventing
4289 	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
4290 	 * compliant devices, INTx-disable prevents legacy interrupts.
4291 	 */
4292 	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
4293 }
4294 
4295 static void pci_dev_restore(struct pci_dev *dev)
4296 {
4297 	const struct pci_error_handlers *err_handler =
4298 			dev->driver ? dev->driver->err_handler : NULL;
4299 
4300 	pci_restore_state(dev);
4301 
4302 	/*
4303 	 * dev->driver->err_handler->reset_done() is protected against
4304 	 * races with ->remove() by the device lock, which must be held by
4305 	 * the caller.
4306 	 */
4307 	if (err_handler && err_handler->reset_done)
4308 		err_handler->reset_done(dev);
4309 }
4310 
4311 /**
4312  * __pci_reset_function_locked - reset a PCI device function while holding
4313  * the @dev mutex lock.
4314  * @dev: PCI device to reset
4315  *
4316  * Some devices allow an individual function to be reset without affecting
4317  * other functions in the same device.  The PCI device must be responsive
4318  * to PCI config space in order to use this function.
4319  *
4320  * The device function is presumed to be unused and the caller is holding
4321  * the device mutex lock when this function is called.
4322  * Resetting the device will make the contents of PCI configuration space
4323  * random, so any caller of this must be prepared to reinitialise the
4324  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4325  * etc.
4326  *
4327  * Returns 0 if the device function was successfully reset or negative if the
4328  * device doesn't support resetting a single function.
4329  */
4330 int __pci_reset_function_locked(struct pci_dev *dev)
4331 {
4332 	int rc;
4333 
4334 	might_sleep();
4335 
4336 	/*
4337 	 * A reset method returns -ENOTTY if it doesn't support this device
4338 	 * and we should try the next method.
4339 	 *
4340 	 * If it returns 0 (success), we're finished.  If it returns any
4341 	 * other error, we're also finished: this indicates that further
4342 	 * reset mechanisms might be broken on the device.
4343 	 */
4344 	rc = pci_dev_specific_reset(dev, 0);
4345 	if (rc != -ENOTTY)
4346 		return rc;
4347 	if (pcie_has_flr(dev)) {
4348 		rc = pcie_flr(dev);
4349 		if (rc != -ENOTTY)
4350 			return rc;
4351 	}
4352 	rc = pci_af_flr(dev, 0);
4353 	if (rc != -ENOTTY)
4354 		return rc;
4355 	rc = pci_pm_reset(dev, 0);
4356 	if (rc != -ENOTTY)
4357 		return rc;
4358 	rc = pci_dev_reset_slot_function(dev, 0);
4359 	if (rc != -ENOTTY)
4360 		return rc;
4361 	return pci_parent_bus_reset(dev, 0);
4362 }
4363 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
4364 
4365 /**
4366  * pci_probe_reset_function - check whether the device can be safely reset
4367  * @dev: PCI device to reset
4368  *
4369  * Some devices allow an individual function to be reset without affecting
4370  * other functions in the same device.  The PCI device must be responsive
4371  * to PCI config space in order to use this function.
4372  *
4373  * Returns 0 if the device function can be reset or negative if the
4374  * device doesn't support resetting a single function.
4375  */
4376 int pci_probe_reset_function(struct pci_dev *dev)
4377 {
4378 	int rc;
4379 
4380 	might_sleep();
4381 
4382 	rc = pci_dev_specific_reset(dev, 1);
4383 	if (rc != -ENOTTY)
4384 		return rc;
4385 	if (pcie_has_flr(dev))
4386 		return 0;
4387 	rc = pci_af_flr(dev, 1);
4388 	if (rc != -ENOTTY)
4389 		return rc;
4390 	rc = pci_pm_reset(dev, 1);
4391 	if (rc != -ENOTTY)
4392 		return rc;
4393 	rc = pci_dev_reset_slot_function(dev, 1);
4394 	if (rc != -ENOTTY)
4395 		return rc;
4396 
4397 	return pci_parent_bus_reset(dev, 1);
4398 }
4399 
4400 /**
4401  * pci_reset_function - quiesce and reset a PCI device function
4402  * @dev: PCI device to reset
4403  *
4404  * Some devices allow an individual function to be reset without affecting
4405  * other functions in the same device.  The PCI device must be responsive
4406  * to PCI config space in order to use this function.
4407  *
4408  * This function does not just reset the PCI portion of a device, but
4409  * clears all the state associated with the device.  This function differs
4410  * from __pci_reset_function_locked() in that it saves and restores device state
4411  * over the reset and takes the PCI device lock.
4412  *
4413  * Returns 0 if the device function was successfully reset or negative if the
4414  * device doesn't support resetting a single function.
4415  */
4416 int pci_reset_function(struct pci_dev *dev)
4417 {
4418 	int rc;
4419 
4420 	if (!dev->reset_fn)
4421 		return -ENOTTY;
4422 
4423 	pci_dev_lock(dev);
4424 	pci_dev_save_and_disable(dev);
4425 
4426 	rc = __pci_reset_function_locked(dev);
4427 
4428 	pci_dev_restore(dev);
4429 	pci_dev_unlock(dev);
4430 
4431 	return rc;
4432 }
4433 EXPORT_SYMBOL_GPL(pci_reset_function);
4434 
4435 /**
4436  * pci_reset_function_locked - quiesce and reset a PCI device function
4437  * @dev: PCI device to reset
4438  *
4439  * Some devices allow an individual function to be reset without affecting
4440  * other functions in the same device.  The PCI device must be responsive
4441  * to PCI config space in order to use this function.
4442  *
4443  * This function does not just reset the PCI portion of a device, but
4444  * clears all the state associated with the device.  This function differs
4445  * from __pci_reset_function_locked() in that it saves and restores device state
4446  * over the reset.  It also differs from pci_reset_function() in that it
4447  * requires the PCI device lock to be held.
4448  *
4449  * Returns 0 if the device function was successfully reset or negative if the
4450  * device doesn't support resetting a single function.
4451  */
4452 int pci_reset_function_locked(struct pci_dev *dev)
4453 {
4454 	int rc;
4455 
4456 	if (!dev->reset_fn)
4457 		return -ENOTTY;
4458 
4459 	pci_dev_save_and_disable(dev);
4460 
4461 	rc = __pci_reset_function_locked(dev);
4462 
4463 	pci_dev_restore(dev);
4464 
4465 	return rc;
4466 }
4467 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
4468 
4469 /**
4470  * pci_try_reset_function - quiesce and reset a PCI device function
4471  * @dev: PCI device to reset
4472  *
4473  * Same as above, except return -EAGAIN if unable to lock device.
4474  */
4475 int pci_try_reset_function(struct pci_dev *dev)
4476 {
4477 	int rc;
4478 
4479 	if (!dev->reset_fn)
4480 		return -ENOTTY;
4481 
4482 	if (!pci_dev_trylock(dev))
4483 		return -EAGAIN;
4484 
4485 	pci_dev_save_and_disable(dev);
4486 	rc = __pci_reset_function_locked(dev);
4487 	pci_dev_restore(dev);
4488 	pci_dev_unlock(dev);
4489 
4490 	return rc;
4491 }
4492 EXPORT_SYMBOL_GPL(pci_try_reset_function);
4493 
4494 /* Do any devices on or below this bus prevent a bus reset? */
4495 static bool pci_bus_resetable(struct pci_bus *bus)
4496 {
4497 	struct pci_dev *dev;
4498 
4499 
4500 	if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
4501 		return false;
4502 
4503 	list_for_each_entry(dev, &bus->devices, bus_list) {
4504 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
4505 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
4506 			return false;
4507 	}
4508 
4509 	return true;
4510 }
4511 
4512 /* Lock devices from the top of the tree down */
4513 static void pci_bus_lock(struct pci_bus *bus)
4514 {
4515 	struct pci_dev *dev;
4516 
4517 	list_for_each_entry(dev, &bus->devices, bus_list) {
4518 		pci_dev_lock(dev);
4519 		if (dev->subordinate)
4520 			pci_bus_lock(dev->subordinate);
4521 	}
4522 }
4523 
4524 /* Unlock devices from the bottom of the tree up */
4525 static void pci_bus_unlock(struct pci_bus *bus)
4526 {
4527 	struct pci_dev *dev;
4528 
4529 	list_for_each_entry(dev, &bus->devices, bus_list) {
4530 		if (dev->subordinate)
4531 			pci_bus_unlock(dev->subordinate);
4532 		pci_dev_unlock(dev);
4533 	}
4534 }
4535 
4536 /* Return 1 on successful lock, 0 on contention */
4537 static int pci_bus_trylock(struct pci_bus *bus)
4538 {
4539 	struct pci_dev *dev;
4540 
4541 	list_for_each_entry(dev, &bus->devices, bus_list) {
4542 		if (!pci_dev_trylock(dev))
4543 			goto unlock;
4544 		if (dev->subordinate) {
4545 			if (!pci_bus_trylock(dev->subordinate)) {
4546 				pci_dev_unlock(dev);
4547 				goto unlock;
4548 			}
4549 		}
4550 	}
4551 	return 1;
4552 
4553 unlock:
4554 	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
4555 		if (dev->subordinate)
4556 			pci_bus_unlock(dev->subordinate);
4557 		pci_dev_unlock(dev);
4558 	}
4559 	return 0;
4560 }
4561 
4562 /* Do any devices on or below this slot prevent a bus reset? */
4563 static bool pci_slot_resetable(struct pci_slot *slot)
4564 {
4565 	struct pci_dev *dev;
4566 
4567 	if (slot->bus->self &&
4568 	    (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
4569 		return false;
4570 
4571 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4572 		if (!dev->slot || dev->slot != slot)
4573 			continue;
4574 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
4575 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
4576 			return false;
4577 	}
4578 
4579 	return true;
4580 }
4581 
4582 /* Lock devices from the top of the tree down */
4583 static void pci_slot_lock(struct pci_slot *slot)
4584 {
4585 	struct pci_dev *dev;
4586 
4587 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4588 		if (!dev->slot || dev->slot != slot)
4589 			continue;
4590 		pci_dev_lock(dev);
4591 		if (dev->subordinate)
4592 			pci_bus_lock(dev->subordinate);
4593 	}
4594 }
4595 
4596 /* Unlock devices from the bottom of the tree up */
4597 static void pci_slot_unlock(struct pci_slot *slot)
4598 {
4599 	struct pci_dev *dev;
4600 
4601 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4602 		if (!dev->slot || dev->slot != slot)
4603 			continue;
4604 		if (dev->subordinate)
4605 			pci_bus_unlock(dev->subordinate);
4606 		pci_dev_unlock(dev);
4607 	}
4608 }
4609 
4610 /* Return 1 on successful lock, 0 on contention */
4611 static int pci_slot_trylock(struct pci_slot *slot)
4612 {
4613 	struct pci_dev *dev;
4614 
4615 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4616 		if (!dev->slot || dev->slot != slot)
4617 			continue;
4618 		if (!pci_dev_trylock(dev))
4619 			goto unlock;
4620 		if (dev->subordinate) {
4621 			if (!pci_bus_trylock(dev->subordinate)) {
4622 				pci_dev_unlock(dev);
4623 				goto unlock;
4624 			}
4625 		}
4626 	}
4627 	return 1;
4628 
4629 unlock:
4630 	list_for_each_entry_continue_reverse(dev,
4631 					     &slot->bus->devices, bus_list) {
4632 		if (!dev->slot || dev->slot != slot)
4633 			continue;
4634 		if (dev->subordinate)
4635 			pci_bus_unlock(dev->subordinate);
4636 		pci_dev_unlock(dev);
4637 	}
4638 	return 0;
4639 }
4640 
4641 /* Save and disable devices from the top of the tree down */
4642 static void pci_bus_save_and_disable(struct pci_bus *bus)
4643 {
4644 	struct pci_dev *dev;
4645 
4646 	list_for_each_entry(dev, &bus->devices, bus_list) {
4647 		pci_dev_lock(dev);
4648 		pci_dev_save_and_disable(dev);
4649 		pci_dev_unlock(dev);
4650 		if (dev->subordinate)
4651 			pci_bus_save_and_disable(dev->subordinate);
4652 	}
4653 }
4654 
4655 /*
4656  * Restore devices from top of the tree down - parent bridges need to be
4657  * restored before we can get to subordinate devices.
4658  */
4659 static void pci_bus_restore(struct pci_bus *bus)
4660 {
4661 	struct pci_dev *dev;
4662 
4663 	list_for_each_entry(dev, &bus->devices, bus_list) {
4664 		pci_dev_lock(dev);
4665 		pci_dev_restore(dev);
4666 		pci_dev_unlock(dev);
4667 		if (dev->subordinate)
4668 			pci_bus_restore(dev->subordinate);
4669 	}
4670 }
4671 
4672 /* Save and disable devices from the top of the tree down */
4673 static void pci_slot_save_and_disable(struct pci_slot *slot)
4674 {
4675 	struct pci_dev *dev;
4676 
4677 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4678 		if (!dev->slot || dev->slot != slot)
4679 			continue;
4680 		pci_dev_save_and_disable(dev);
4681 		if (dev->subordinate)
4682 			pci_bus_save_and_disable(dev->subordinate);
4683 	}
4684 }
4685 
4686 /*
4687  * Restore devices from top of the tree down - parent bridges need to be
4688  * restored before we can get to subordinate devices.
4689  */
4690 static void pci_slot_restore(struct pci_slot *slot)
4691 {
4692 	struct pci_dev *dev;
4693 
4694 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4695 		if (!dev->slot || dev->slot != slot)
4696 			continue;
4697 		pci_dev_lock(dev);
4698 		pci_dev_restore(dev);
4699 		pci_dev_unlock(dev);
4700 		if (dev->subordinate)
4701 			pci_bus_restore(dev->subordinate);
4702 	}
4703 }
4704 
4705 static int pci_slot_reset(struct pci_slot *slot, int probe)
4706 {
4707 	int rc;
4708 
4709 	if (!slot || !pci_slot_resetable(slot))
4710 		return -ENOTTY;
4711 
4712 	if (!probe)
4713 		pci_slot_lock(slot);
4714 
4715 	might_sleep();
4716 
4717 	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
4718 
4719 	if (!probe)
4720 		pci_slot_unlock(slot);
4721 
4722 	return rc;
4723 }
4724 
4725 /**
4726  * pci_probe_reset_slot - probe whether a PCI slot can be reset
4727  * @slot: PCI slot to probe
4728  *
4729  * Return 0 if slot can be reset, negative if a slot reset is not supported.
4730  */
4731 int pci_probe_reset_slot(struct pci_slot *slot)
4732 {
4733 	return pci_slot_reset(slot, 1);
4734 }
4735 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
4736 
4737 /**
4738  * pci_reset_slot - reset a PCI slot
4739  * @slot: PCI slot to reset
4740  *
4741  * A PCI bus may host multiple slots, each slot may support a reset mechanism
4742  * independent of other slots.  For instance, some slots may support slot power
4743  * control.  In the case of a 1:1 bus to slot architecture, this function may
4744  * wrap the bus reset to avoid spurious slot related events such as hotplug.
4745  * Generally a slot reset should be attempted before a bus reset.  All of the
4746  * function of the slot and any subordinate buses behind the slot are reset
4747  * through this function.  PCI config space of all devices in the slot and
4748  * behind the slot is saved before and restored after reset.
4749  *
4750  * Return 0 on success, non-zero on error.
4751  */
4752 int pci_reset_slot(struct pci_slot *slot)
4753 {
4754 	int rc;
4755 
4756 	rc = pci_slot_reset(slot, 1);
4757 	if (rc)
4758 		return rc;
4759 
4760 	pci_slot_save_and_disable(slot);
4761 
4762 	rc = pci_slot_reset(slot, 0);
4763 
4764 	pci_slot_restore(slot);
4765 
4766 	return rc;
4767 }
4768 EXPORT_SYMBOL_GPL(pci_reset_slot);
4769 
4770 /**
4771  * pci_try_reset_slot - Try to reset a PCI slot
4772  * @slot: PCI slot to reset
4773  *
4774  * Same as above except return -EAGAIN if the slot cannot be locked
4775  */
4776 int pci_try_reset_slot(struct pci_slot *slot)
4777 {
4778 	int rc;
4779 
4780 	rc = pci_slot_reset(slot, 1);
4781 	if (rc)
4782 		return rc;
4783 
4784 	pci_slot_save_and_disable(slot);
4785 
4786 	if (pci_slot_trylock(slot)) {
4787 		might_sleep();
4788 		rc = pci_reset_hotplug_slot(slot->hotplug, 0);
4789 		pci_slot_unlock(slot);
4790 	} else
4791 		rc = -EAGAIN;
4792 
4793 	pci_slot_restore(slot);
4794 
4795 	return rc;
4796 }
4797 EXPORT_SYMBOL_GPL(pci_try_reset_slot);
4798 
4799 static int pci_bus_reset(struct pci_bus *bus, int probe)
4800 {
4801 	if (!bus->self || !pci_bus_resetable(bus))
4802 		return -ENOTTY;
4803 
4804 	if (probe)
4805 		return 0;
4806 
4807 	pci_bus_lock(bus);
4808 
4809 	might_sleep();
4810 
4811 	pci_reset_bridge_secondary_bus(bus->self);
4812 
4813 	pci_bus_unlock(bus);
4814 
4815 	return 0;
4816 }
4817 
4818 /**
4819  * pci_probe_reset_bus - probe whether a PCI bus can be reset
4820  * @bus: PCI bus to probe
4821  *
4822  * Return 0 if bus can be reset, negative if a bus reset is not supported.
4823  */
4824 int pci_probe_reset_bus(struct pci_bus *bus)
4825 {
4826 	return pci_bus_reset(bus, 1);
4827 }
4828 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
4829 
4830 /**
4831  * pci_reset_bus - reset a PCI bus
4832  * @bus: top level PCI bus to reset
4833  *
4834  * Do a bus reset on the given bus and any subordinate buses, saving
4835  * and restoring state of all devices.
4836  *
4837  * Return 0 on success, non-zero on error.
4838  */
4839 int pci_reset_bus(struct pci_bus *bus)
4840 {
4841 	int rc;
4842 
4843 	rc = pci_bus_reset(bus, 1);
4844 	if (rc)
4845 		return rc;
4846 
4847 	pci_bus_save_and_disable(bus);
4848 
4849 	rc = pci_bus_reset(bus, 0);
4850 
4851 	pci_bus_restore(bus);
4852 
4853 	return rc;
4854 }
4855 EXPORT_SYMBOL_GPL(pci_reset_bus);
4856 
4857 /**
4858  * pci_try_reset_bus - Try to reset a PCI bus
4859  * @bus: top level PCI bus to reset
4860  *
4861  * Same as above except return -EAGAIN if the bus cannot be locked
4862  */
4863 int pci_try_reset_bus(struct pci_bus *bus)
4864 {
4865 	int rc;
4866 
4867 	rc = pci_bus_reset(bus, 1);
4868 	if (rc)
4869 		return rc;
4870 
4871 	pci_bus_save_and_disable(bus);
4872 
4873 	if (pci_bus_trylock(bus)) {
4874 		might_sleep();
4875 		pci_reset_bridge_secondary_bus(bus->self);
4876 		pci_bus_unlock(bus);
4877 	} else
4878 		rc = -EAGAIN;
4879 
4880 	pci_bus_restore(bus);
4881 
4882 	return rc;
4883 }
4884 EXPORT_SYMBOL_GPL(pci_try_reset_bus);
4885 
4886 /**
4887  * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
4888  * @dev: PCI device to query
4889  *
4890  * Returns mmrbc: maximum designed memory read count in bytes
4891  *    or appropriate error value.
4892  */
4893 int pcix_get_max_mmrbc(struct pci_dev *dev)
4894 {
4895 	int cap;
4896 	u32 stat;
4897 
4898 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4899 	if (!cap)
4900 		return -EINVAL;
4901 
4902 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4903 		return -EINVAL;
4904 
4905 	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
4906 }
4907 EXPORT_SYMBOL(pcix_get_max_mmrbc);
4908 
4909 /**
4910  * pcix_get_mmrbc - get PCI-X maximum memory read byte count
4911  * @dev: PCI device to query
4912  *
4913  * Returns mmrbc: maximum memory read count in bytes
4914  *    or appropriate error value.
4915  */
4916 int pcix_get_mmrbc(struct pci_dev *dev)
4917 {
4918 	int cap;
4919 	u16 cmd;
4920 
4921 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4922 	if (!cap)
4923 		return -EINVAL;
4924 
4925 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4926 		return -EINVAL;
4927 
4928 	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
4929 }
4930 EXPORT_SYMBOL(pcix_get_mmrbc);
4931 
4932 /**
4933  * pcix_set_mmrbc - set PCI-X maximum memory read byte count
4934  * @dev: PCI device to query
4935  * @mmrbc: maximum memory read count in bytes
4936  *    valid values are 512, 1024, 2048, 4096
4937  *
4938  * If possible sets maximum memory read byte count, some bridges have erratas
4939  * that prevent this.
4940  */
4941 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
4942 {
4943 	int cap;
4944 	u32 stat, v, o;
4945 	u16 cmd;
4946 
4947 	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
4948 		return -EINVAL;
4949 
4950 	v = ffs(mmrbc) - 10;
4951 
4952 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4953 	if (!cap)
4954 		return -EINVAL;
4955 
4956 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4957 		return -EINVAL;
4958 
4959 	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
4960 		return -E2BIG;
4961 
4962 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4963 		return -EINVAL;
4964 
4965 	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
4966 	if (o != v) {
4967 		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
4968 			return -EIO;
4969 
4970 		cmd &= ~PCI_X_CMD_MAX_READ;
4971 		cmd |= v << 2;
4972 		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
4973 			return -EIO;
4974 	}
4975 	return 0;
4976 }
4977 EXPORT_SYMBOL(pcix_set_mmrbc);
4978 
4979 /**
4980  * pcie_get_readrq - get PCI Express read request size
4981  * @dev: PCI device to query
4982  *
4983  * Returns maximum memory read request in bytes
4984  *    or appropriate error value.
4985  */
4986 int pcie_get_readrq(struct pci_dev *dev)
4987 {
4988 	u16 ctl;
4989 
4990 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4991 
4992 	return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
4993 }
4994 EXPORT_SYMBOL(pcie_get_readrq);
4995 
4996 /**
4997  * pcie_set_readrq - set PCI Express maximum memory read request
4998  * @dev: PCI device to query
4999  * @rq: maximum memory read count in bytes
5000  *    valid values are 128, 256, 512, 1024, 2048, 4096
5001  *
5002  * If possible sets maximum memory read request in bytes
5003  */
5004 int pcie_set_readrq(struct pci_dev *dev, int rq)
5005 {
5006 	u16 v;
5007 
5008 	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
5009 		return -EINVAL;
5010 
5011 	/*
5012 	 * If using the "performance" PCIe config, we clamp the
5013 	 * read rq size to the max packet size to prevent the
5014 	 * host bridge generating requests larger than we can
5015 	 * cope with
5016 	 */
5017 	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
5018 		int mps = pcie_get_mps(dev);
5019 
5020 		if (mps < rq)
5021 			rq = mps;
5022 	}
5023 
5024 	v = (ffs(rq) - 8) << 12;
5025 
5026 	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5027 						  PCI_EXP_DEVCTL_READRQ, v);
5028 }
5029 EXPORT_SYMBOL(pcie_set_readrq);
5030 
5031 /**
5032  * pcie_get_mps - get PCI Express maximum payload size
5033  * @dev: PCI device to query
5034  *
5035  * Returns maximum payload size in bytes
5036  */
5037 int pcie_get_mps(struct pci_dev *dev)
5038 {
5039 	u16 ctl;
5040 
5041 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5042 
5043 	return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
5044 }
5045 EXPORT_SYMBOL(pcie_get_mps);
5046 
5047 /**
5048  * pcie_set_mps - set PCI Express maximum payload size
5049  * @dev: PCI device to query
5050  * @mps: maximum payload size in bytes
5051  *    valid values are 128, 256, 512, 1024, 2048, 4096
5052  *
5053  * If possible sets maximum payload size
5054  */
5055 int pcie_set_mps(struct pci_dev *dev, int mps)
5056 {
5057 	u16 v;
5058 
5059 	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
5060 		return -EINVAL;
5061 
5062 	v = ffs(mps) - 8;
5063 	if (v > dev->pcie_mpss)
5064 		return -EINVAL;
5065 	v <<= 5;
5066 
5067 	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5068 						  PCI_EXP_DEVCTL_PAYLOAD, v);
5069 }
5070 EXPORT_SYMBOL(pcie_set_mps);
5071 
5072 /**
5073  * pcie_get_minimum_link - determine minimum link settings of a PCI device
5074  * @dev: PCI device to query
5075  * @speed: storage for minimum speed
5076  * @width: storage for minimum width
5077  *
5078  * This function will walk up the PCI device chain and determine the minimum
5079  * link width and speed of the device.
5080  */
5081 int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed,
5082 			  enum pcie_link_width *width)
5083 {
5084 	int ret;
5085 
5086 	*speed = PCI_SPEED_UNKNOWN;
5087 	*width = PCIE_LNK_WIDTH_UNKNOWN;
5088 
5089 	while (dev) {
5090 		u16 lnksta;
5091 		enum pci_bus_speed next_speed;
5092 		enum pcie_link_width next_width;
5093 
5094 		ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
5095 		if (ret)
5096 			return ret;
5097 
5098 		next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
5099 		next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
5100 			PCI_EXP_LNKSTA_NLW_SHIFT;
5101 
5102 		if (next_speed < *speed)
5103 			*speed = next_speed;
5104 
5105 		if (next_width < *width)
5106 			*width = next_width;
5107 
5108 		dev = dev->bus->self;
5109 	}
5110 
5111 	return 0;
5112 }
5113 EXPORT_SYMBOL(pcie_get_minimum_link);
5114 
5115 /**
5116  * pcie_bandwidth_available - determine minimum link settings of a PCIe
5117  *			      device and its bandwidth limitation
5118  * @dev: PCI device to query
5119  * @limiting_dev: storage for device causing the bandwidth limitation
5120  * @speed: storage for speed of limiting device
5121  * @width: storage for width of limiting device
5122  *
5123  * Walk up the PCI device chain and find the point where the minimum
5124  * bandwidth is available.  Return the bandwidth available there and (if
5125  * limiting_dev, speed, and width pointers are supplied) information about
5126  * that point.  The bandwidth returned is in Mb/s, i.e., megabits/second of
5127  * raw bandwidth.
5128  */
5129 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
5130 			     enum pci_bus_speed *speed,
5131 			     enum pcie_link_width *width)
5132 {
5133 	u16 lnksta;
5134 	enum pci_bus_speed next_speed;
5135 	enum pcie_link_width next_width;
5136 	u32 bw, next_bw;
5137 
5138 	if (speed)
5139 		*speed = PCI_SPEED_UNKNOWN;
5140 	if (width)
5141 		*width = PCIE_LNK_WIDTH_UNKNOWN;
5142 
5143 	bw = 0;
5144 
5145 	while (dev) {
5146 		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
5147 
5148 		next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
5149 		next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
5150 			PCI_EXP_LNKSTA_NLW_SHIFT;
5151 
5152 		next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
5153 
5154 		/* Check if current device limits the total bandwidth */
5155 		if (!bw || next_bw <= bw) {
5156 			bw = next_bw;
5157 
5158 			if (limiting_dev)
5159 				*limiting_dev = dev;
5160 			if (speed)
5161 				*speed = next_speed;
5162 			if (width)
5163 				*width = next_width;
5164 		}
5165 
5166 		dev = pci_upstream_bridge(dev);
5167 	}
5168 
5169 	return bw;
5170 }
5171 EXPORT_SYMBOL(pcie_bandwidth_available);
5172 
5173 /**
5174  * pcie_get_speed_cap - query for the PCI device's link speed capability
5175  * @dev: PCI device to query
5176  *
5177  * Query the PCI device speed capability.  Return the maximum link speed
5178  * supported by the device.
5179  */
5180 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
5181 {
5182 	u32 lnkcap2, lnkcap;
5183 
5184 	/*
5185 	 * PCIe r4.0 sec 7.5.3.18 recommends using the Supported Link
5186 	 * Speeds Vector in Link Capabilities 2 when supported, falling
5187 	 * back to Max Link Speed in Link Capabilities otherwise.
5188 	 */
5189 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
5190 	if (lnkcap2) { /* PCIe r3.0-compliant */
5191 		if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_16_0GB)
5192 			return PCIE_SPEED_16_0GT;
5193 		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB)
5194 			return PCIE_SPEED_8_0GT;
5195 		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB)
5196 			return PCIE_SPEED_5_0GT;
5197 		else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB)
5198 			return PCIE_SPEED_2_5GT;
5199 		return PCI_SPEED_UNKNOWN;
5200 	}
5201 
5202 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5203 	if (lnkcap) {
5204 		if (lnkcap & PCI_EXP_LNKCAP_SLS_16_0GB)
5205 			return PCIE_SPEED_16_0GT;
5206 		else if (lnkcap & PCI_EXP_LNKCAP_SLS_8_0GB)
5207 			return PCIE_SPEED_8_0GT;
5208 		else if (lnkcap & PCI_EXP_LNKCAP_SLS_5_0GB)
5209 			return PCIE_SPEED_5_0GT;
5210 		else if (lnkcap & PCI_EXP_LNKCAP_SLS_2_5GB)
5211 			return PCIE_SPEED_2_5GT;
5212 	}
5213 
5214 	return PCI_SPEED_UNKNOWN;
5215 }
5216 
5217 /**
5218  * pcie_get_width_cap - query for the PCI device's link width capability
5219  * @dev: PCI device to query
5220  *
5221  * Query the PCI device width capability.  Return the maximum link width
5222  * supported by the device.
5223  */
5224 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
5225 {
5226 	u32 lnkcap;
5227 
5228 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5229 	if (lnkcap)
5230 		return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
5231 
5232 	return PCIE_LNK_WIDTH_UNKNOWN;
5233 }
5234 
5235 /**
5236  * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
5237  * @dev: PCI device
5238  * @speed: storage for link speed
5239  * @width: storage for link width
5240  *
5241  * Calculate a PCI device's link bandwidth by querying for its link speed
5242  * and width, multiplying them, and applying encoding overhead.  The result
5243  * is in Mb/s, i.e., megabits/second of raw bandwidth.
5244  */
5245 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
5246 			   enum pcie_link_width *width)
5247 {
5248 	*speed = pcie_get_speed_cap(dev);
5249 	*width = pcie_get_width_cap(dev);
5250 
5251 	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
5252 		return 0;
5253 
5254 	return *width * PCIE_SPEED2MBS_ENC(*speed);
5255 }
5256 
5257 /**
5258  * pcie_print_link_status - Report the PCI device's link speed and width
5259  * @dev: PCI device to query
5260  *
5261  * Report the available bandwidth at the device.  If this is less than the
5262  * device is capable of, report the device's maximum possible bandwidth and
5263  * the upstream link that limits its performance to less than that.
5264  */
5265 void pcie_print_link_status(struct pci_dev *dev)
5266 {
5267 	enum pcie_link_width width, width_cap;
5268 	enum pci_bus_speed speed, speed_cap;
5269 	struct pci_dev *limiting_dev = NULL;
5270 	u32 bw_avail, bw_cap;
5271 
5272 	bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
5273 	bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
5274 
5275 	if (bw_avail >= bw_cap)
5276 		pci_info(dev, "%u.%03u Gb/s available bandwidth (%s x%d link)\n",
5277 			 bw_cap / 1000, bw_cap % 1000,
5278 			 PCIE_SPEED2STR(speed_cap), width_cap);
5279 	else
5280 		pci_info(dev, "%u.%03u Gb/s available bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
5281 			 bw_avail / 1000, bw_avail % 1000,
5282 			 PCIE_SPEED2STR(speed), width,
5283 			 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
5284 			 bw_cap / 1000, bw_cap % 1000,
5285 			 PCIE_SPEED2STR(speed_cap), width_cap);
5286 }
5287 EXPORT_SYMBOL(pcie_print_link_status);
5288 
5289 /**
5290  * pci_select_bars - Make BAR mask from the type of resource
5291  * @dev: the PCI device for which BAR mask is made
5292  * @flags: resource type mask to be selected
5293  *
5294  * This helper routine makes bar mask from the type of resource.
5295  */
5296 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
5297 {
5298 	int i, bars = 0;
5299 	for (i = 0; i < PCI_NUM_RESOURCES; i++)
5300 		if (pci_resource_flags(dev, i) & flags)
5301 			bars |= (1 << i);
5302 	return bars;
5303 }
5304 EXPORT_SYMBOL(pci_select_bars);
5305 
5306 /* Some architectures require additional programming to enable VGA */
5307 static arch_set_vga_state_t arch_set_vga_state;
5308 
5309 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
5310 {
5311 	arch_set_vga_state = func;	/* NULL disables */
5312 }
5313 
5314 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
5315 				  unsigned int command_bits, u32 flags)
5316 {
5317 	if (arch_set_vga_state)
5318 		return arch_set_vga_state(dev, decode, command_bits,
5319 						flags);
5320 	return 0;
5321 }
5322 
5323 /**
5324  * pci_set_vga_state - set VGA decode state on device and parents if requested
5325  * @dev: the PCI device
5326  * @decode: true = enable decoding, false = disable decoding
5327  * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
5328  * @flags: traverse ancestors and change bridges
5329  * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
5330  */
5331 int pci_set_vga_state(struct pci_dev *dev, bool decode,
5332 		      unsigned int command_bits, u32 flags)
5333 {
5334 	struct pci_bus *bus;
5335 	struct pci_dev *bridge;
5336 	u16 cmd;
5337 	int rc;
5338 
5339 	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
5340 
5341 	/* ARCH specific VGA enables */
5342 	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
5343 	if (rc)
5344 		return rc;
5345 
5346 	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
5347 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
5348 		if (decode == true)
5349 			cmd |= command_bits;
5350 		else
5351 			cmd &= ~command_bits;
5352 		pci_write_config_word(dev, PCI_COMMAND, cmd);
5353 	}
5354 
5355 	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
5356 		return 0;
5357 
5358 	bus = dev->bus;
5359 	while (bus) {
5360 		bridge = bus->self;
5361 		if (bridge) {
5362 			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
5363 					     &cmd);
5364 			if (decode == true)
5365 				cmd |= PCI_BRIDGE_CTL_VGA;
5366 			else
5367 				cmd &= ~PCI_BRIDGE_CTL_VGA;
5368 			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
5369 					      cmd);
5370 		}
5371 		bus = bus->parent;
5372 	}
5373 	return 0;
5374 }
5375 
5376 /**
5377  * pci_add_dma_alias - Add a DMA devfn alias for a device
5378  * @dev: the PCI device for which alias is added
5379  * @devfn: alias slot and function
5380  *
5381  * This helper encodes 8-bit devfn as bit number in dma_alias_mask.
5382  * It should be called early, preferably as PCI fixup header quirk.
5383  */
5384 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn)
5385 {
5386 	if (!dev->dma_alias_mask)
5387 		dev->dma_alias_mask = kcalloc(BITS_TO_LONGS(U8_MAX),
5388 					      sizeof(long), GFP_KERNEL);
5389 	if (!dev->dma_alias_mask) {
5390 		pci_warn(dev, "Unable to allocate DMA alias mask\n");
5391 		return;
5392 	}
5393 
5394 	set_bit(devfn, dev->dma_alias_mask);
5395 	pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
5396 		 PCI_SLOT(devfn), PCI_FUNC(devfn));
5397 }
5398 
5399 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
5400 {
5401 	return (dev1->dma_alias_mask &&
5402 		test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
5403 	       (dev2->dma_alias_mask &&
5404 		test_bit(dev1->devfn, dev2->dma_alias_mask));
5405 }
5406 
5407 bool pci_device_is_present(struct pci_dev *pdev)
5408 {
5409 	u32 v;
5410 
5411 	if (pci_dev_is_disconnected(pdev))
5412 		return false;
5413 	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
5414 }
5415 EXPORT_SYMBOL_GPL(pci_device_is_present);
5416 
5417 void pci_ignore_hotplug(struct pci_dev *dev)
5418 {
5419 	struct pci_dev *bridge = dev->bus->self;
5420 
5421 	dev->ignore_hotplug = 1;
5422 	/* Propagate the "ignore hotplug" setting to the parent bridge. */
5423 	if (bridge)
5424 		bridge->ignore_hotplug = 1;
5425 }
5426 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
5427 
5428 resource_size_t __weak pcibios_default_alignment(void)
5429 {
5430 	return 0;
5431 }
5432 
5433 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
5434 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
5435 static DEFINE_SPINLOCK(resource_alignment_lock);
5436 
5437 /**
5438  * pci_specified_resource_alignment - get resource alignment specified by user.
5439  * @dev: the PCI device to get
5440  * @resize: whether or not to change resources' size when reassigning alignment
5441  *
5442  * RETURNS: Resource alignment if it is specified.
5443  *          Zero if it is not specified.
5444  */
5445 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
5446 							bool *resize)
5447 {
5448 	int seg, bus, slot, func, align_order, count;
5449 	unsigned short vendor, device, subsystem_vendor, subsystem_device;
5450 	resource_size_t align = pcibios_default_alignment();
5451 	char *p;
5452 
5453 	spin_lock(&resource_alignment_lock);
5454 	p = resource_alignment_param;
5455 	if (!*p && !align)
5456 		goto out;
5457 	if (pci_has_flag(PCI_PROBE_ONLY)) {
5458 		align = 0;
5459 		pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
5460 		goto out;
5461 	}
5462 
5463 	while (*p) {
5464 		count = 0;
5465 		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
5466 							p[count] == '@') {
5467 			p += count + 1;
5468 		} else {
5469 			align_order = -1;
5470 		}
5471 		if (strncmp(p, "pci:", 4) == 0) {
5472 			/* PCI vendor/device (subvendor/subdevice) ids are specified */
5473 			p += 4;
5474 			if (sscanf(p, "%hx:%hx:%hx:%hx%n",
5475 				&vendor, &device, &subsystem_vendor, &subsystem_device, &count) != 4) {
5476 				if (sscanf(p, "%hx:%hx%n", &vendor, &device, &count) != 2) {
5477 					printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: pci:%s\n",
5478 						p);
5479 					break;
5480 				}
5481 				subsystem_vendor = subsystem_device = 0;
5482 			}
5483 			p += count;
5484 			if ((!vendor || (vendor == dev->vendor)) &&
5485 				(!device || (device == dev->device)) &&
5486 				(!subsystem_vendor || (subsystem_vendor == dev->subsystem_vendor)) &&
5487 				(!subsystem_device || (subsystem_device == dev->subsystem_device))) {
5488 				*resize = true;
5489 				if (align_order == -1)
5490 					align = PAGE_SIZE;
5491 				else
5492 					align = 1 << align_order;
5493 				/* Found */
5494 				break;
5495 			}
5496 		}
5497 		else {
5498 			if (sscanf(p, "%x:%x:%x.%x%n",
5499 				&seg, &bus, &slot, &func, &count) != 4) {
5500 				seg = 0;
5501 				if (sscanf(p, "%x:%x.%x%n",
5502 						&bus, &slot, &func, &count) != 3) {
5503 					/* Invalid format */
5504 					printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
5505 						p);
5506 					break;
5507 				}
5508 			}
5509 			p += count;
5510 			if (seg == pci_domain_nr(dev->bus) &&
5511 				bus == dev->bus->number &&
5512 				slot == PCI_SLOT(dev->devfn) &&
5513 				func == PCI_FUNC(dev->devfn)) {
5514 				*resize = true;
5515 				if (align_order == -1)
5516 					align = PAGE_SIZE;
5517 				else
5518 					align = 1 << align_order;
5519 				/* Found */
5520 				break;
5521 			}
5522 		}
5523 		if (*p != ';' && *p != ',') {
5524 			/* End of param or invalid format */
5525 			break;
5526 		}
5527 		p++;
5528 	}
5529 out:
5530 	spin_unlock(&resource_alignment_lock);
5531 	return align;
5532 }
5533 
5534 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
5535 					   resource_size_t align, bool resize)
5536 {
5537 	struct resource *r = &dev->resource[bar];
5538 	resource_size_t size;
5539 
5540 	if (!(r->flags & IORESOURCE_MEM))
5541 		return;
5542 
5543 	if (r->flags & IORESOURCE_PCI_FIXED) {
5544 		pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
5545 			 bar, r, (unsigned long long)align);
5546 		return;
5547 	}
5548 
5549 	size = resource_size(r);
5550 	if (size >= align)
5551 		return;
5552 
5553 	/*
5554 	 * Increase the alignment of the resource.  There are two ways we
5555 	 * can do this:
5556 	 *
5557 	 * 1) Increase the size of the resource.  BARs are aligned on their
5558 	 *    size, so when we reallocate space for this resource, we'll
5559 	 *    allocate it with the larger alignment.  This also prevents
5560 	 *    assignment of any other BARs inside the alignment region, so
5561 	 *    if we're requesting page alignment, this means no other BARs
5562 	 *    will share the page.
5563 	 *
5564 	 *    The disadvantage is that this makes the resource larger than
5565 	 *    the hardware BAR, which may break drivers that compute things
5566 	 *    based on the resource size, e.g., to find registers at a
5567 	 *    fixed offset before the end of the BAR.
5568 	 *
5569 	 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
5570 	 *    set r->start to the desired alignment.  By itself this
5571 	 *    doesn't prevent other BARs being put inside the alignment
5572 	 *    region, but if we realign *every* resource of every device in
5573 	 *    the system, none of them will share an alignment region.
5574 	 *
5575 	 * When the user has requested alignment for only some devices via
5576 	 * the "pci=resource_alignment" argument, "resize" is true and we
5577 	 * use the first method.  Otherwise we assume we're aligning all
5578 	 * devices and we use the second.
5579 	 */
5580 
5581 	pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
5582 		 bar, r, (unsigned long long)align);
5583 
5584 	if (resize) {
5585 		r->start = 0;
5586 		r->end = align - 1;
5587 	} else {
5588 		r->flags &= ~IORESOURCE_SIZEALIGN;
5589 		r->flags |= IORESOURCE_STARTALIGN;
5590 		r->start = align;
5591 		r->end = r->start + size - 1;
5592 	}
5593 	r->flags |= IORESOURCE_UNSET;
5594 }
5595 
5596 /*
5597  * This function disables memory decoding and releases memory resources
5598  * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
5599  * It also rounds up size to specified alignment.
5600  * Later on, the kernel will assign page-aligned memory resource back
5601  * to the device.
5602  */
5603 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
5604 {
5605 	int i;
5606 	struct resource *r;
5607 	resource_size_t align;
5608 	u16 command;
5609 	bool resize = false;
5610 
5611 	/*
5612 	 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
5613 	 * 3.4.1.11.  Their resources are allocated from the space
5614 	 * described by the VF BARx register in the PF's SR-IOV capability.
5615 	 * We can't influence their alignment here.
5616 	 */
5617 	if (dev->is_virtfn)
5618 		return;
5619 
5620 	/* check if specified PCI is target device to reassign */
5621 	align = pci_specified_resource_alignment(dev, &resize);
5622 	if (!align)
5623 		return;
5624 
5625 	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
5626 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
5627 		pci_warn(dev, "Can't reassign resources to host bridge\n");
5628 		return;
5629 	}
5630 
5631 	pci_info(dev, "Disabling memory decoding and releasing memory resources\n");
5632 	pci_read_config_word(dev, PCI_COMMAND, &command);
5633 	command &= ~PCI_COMMAND_MEMORY;
5634 	pci_write_config_word(dev, PCI_COMMAND, command);
5635 
5636 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
5637 		pci_request_resource_alignment(dev, i, align, resize);
5638 
5639 	/*
5640 	 * Need to disable bridge's resource window,
5641 	 * to enable the kernel to reassign new resource
5642 	 * window later on.
5643 	 */
5644 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
5645 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
5646 		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
5647 			r = &dev->resource[i];
5648 			if (!(r->flags & IORESOURCE_MEM))
5649 				continue;
5650 			r->flags |= IORESOURCE_UNSET;
5651 			r->end = resource_size(r) - 1;
5652 			r->start = 0;
5653 		}
5654 		pci_disable_bridge_window(dev);
5655 	}
5656 }
5657 
5658 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
5659 {
5660 	if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
5661 		count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
5662 	spin_lock(&resource_alignment_lock);
5663 	strncpy(resource_alignment_param, buf, count);
5664 	resource_alignment_param[count] = '\0';
5665 	spin_unlock(&resource_alignment_lock);
5666 	return count;
5667 }
5668 
5669 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
5670 {
5671 	size_t count;
5672 	spin_lock(&resource_alignment_lock);
5673 	count = snprintf(buf, size, "%s", resource_alignment_param);
5674 	spin_unlock(&resource_alignment_lock);
5675 	return count;
5676 }
5677 
5678 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
5679 {
5680 	return pci_get_resource_alignment_param(buf, PAGE_SIZE);
5681 }
5682 
5683 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
5684 					const char *buf, size_t count)
5685 {
5686 	return pci_set_resource_alignment_param(buf, count);
5687 }
5688 
5689 static BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
5690 					pci_resource_alignment_store);
5691 
5692 static int __init pci_resource_alignment_sysfs_init(void)
5693 {
5694 	return bus_create_file(&pci_bus_type,
5695 					&bus_attr_resource_alignment);
5696 }
5697 late_initcall(pci_resource_alignment_sysfs_init);
5698 
5699 static void pci_no_domains(void)
5700 {
5701 #ifdef CONFIG_PCI_DOMAINS
5702 	pci_domains_supported = 0;
5703 #endif
5704 }
5705 
5706 #ifdef CONFIG_PCI_DOMAINS
5707 static atomic_t __domain_nr = ATOMIC_INIT(-1);
5708 
5709 int pci_get_new_domain_nr(void)
5710 {
5711 	return atomic_inc_return(&__domain_nr);
5712 }
5713 
5714 #ifdef CONFIG_PCI_DOMAINS_GENERIC
5715 static int of_pci_bus_find_domain_nr(struct device *parent)
5716 {
5717 	static int use_dt_domains = -1;
5718 	int domain = -1;
5719 
5720 	if (parent)
5721 		domain = of_get_pci_domain_nr(parent->of_node);
5722 	/*
5723 	 * Check DT domain and use_dt_domains values.
5724 	 *
5725 	 * If DT domain property is valid (domain >= 0) and
5726 	 * use_dt_domains != 0, the DT assignment is valid since this means
5727 	 * we have not previously allocated a domain number by using
5728 	 * pci_get_new_domain_nr(); we should also update use_dt_domains to
5729 	 * 1, to indicate that we have just assigned a domain number from
5730 	 * DT.
5731 	 *
5732 	 * If DT domain property value is not valid (ie domain < 0), and we
5733 	 * have not previously assigned a domain number from DT
5734 	 * (use_dt_domains != 1) we should assign a domain number by
5735 	 * using the:
5736 	 *
5737 	 * pci_get_new_domain_nr()
5738 	 *
5739 	 * API and update the use_dt_domains value to keep track of method we
5740 	 * are using to assign domain numbers (use_dt_domains = 0).
5741 	 *
5742 	 * All other combinations imply we have a platform that is trying
5743 	 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
5744 	 * which is a recipe for domain mishandling and it is prevented by
5745 	 * invalidating the domain value (domain = -1) and printing a
5746 	 * corresponding error.
5747 	 */
5748 	if (domain >= 0 && use_dt_domains) {
5749 		use_dt_domains = 1;
5750 	} else if (domain < 0 && use_dt_domains != 1) {
5751 		use_dt_domains = 0;
5752 		domain = pci_get_new_domain_nr();
5753 	} else {
5754 		if (parent)
5755 			pr_err("Node %pOF has ", parent->of_node);
5756 		pr_err("Inconsistent \"linux,pci-domain\" property in DT\n");
5757 		domain = -1;
5758 	}
5759 
5760 	return domain;
5761 }
5762 
5763 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
5764 {
5765 	return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
5766 			       acpi_pci_bus_find_domain_nr(bus);
5767 }
5768 #endif
5769 #endif
5770 
5771 /**
5772  * pci_ext_cfg_avail - can we access extended PCI config space?
5773  *
5774  * Returns 1 if we can access PCI extended config space (offsets
5775  * greater than 0xff). This is the default implementation. Architecture
5776  * implementations can override this.
5777  */
5778 int __weak pci_ext_cfg_avail(void)
5779 {
5780 	return 1;
5781 }
5782 
5783 void __weak pci_fixup_cardbus(struct pci_bus *bus)
5784 {
5785 }
5786 EXPORT_SYMBOL(pci_fixup_cardbus);
5787 
5788 static int __init pci_setup(char *str)
5789 {
5790 	while (str) {
5791 		char *k = strchr(str, ',');
5792 		if (k)
5793 			*k++ = 0;
5794 		if (*str && (str = pcibios_setup(str)) && *str) {
5795 			if (!strcmp(str, "nomsi")) {
5796 				pci_no_msi();
5797 			} else if (!strcmp(str, "noaer")) {
5798 				pci_no_aer();
5799 			} else if (!strncmp(str, "realloc=", 8)) {
5800 				pci_realloc_get_opt(str + 8);
5801 			} else if (!strncmp(str, "realloc", 7)) {
5802 				pci_realloc_get_opt("on");
5803 			} else if (!strcmp(str, "nodomains")) {
5804 				pci_no_domains();
5805 			} else if (!strncmp(str, "noari", 5)) {
5806 				pcie_ari_disabled = true;
5807 			} else if (!strncmp(str, "cbiosize=", 9)) {
5808 				pci_cardbus_io_size = memparse(str + 9, &str);
5809 			} else if (!strncmp(str, "cbmemsize=", 10)) {
5810 				pci_cardbus_mem_size = memparse(str + 10, &str);
5811 			} else if (!strncmp(str, "resource_alignment=", 19)) {
5812 				pci_set_resource_alignment_param(str + 19,
5813 							strlen(str + 19));
5814 			} else if (!strncmp(str, "ecrc=", 5)) {
5815 				pcie_ecrc_get_policy(str + 5);
5816 			} else if (!strncmp(str, "hpiosize=", 9)) {
5817 				pci_hotplug_io_size = memparse(str + 9, &str);
5818 			} else if (!strncmp(str, "hpmemsize=", 10)) {
5819 				pci_hotplug_mem_size = memparse(str + 10, &str);
5820 			} else if (!strncmp(str, "hpbussize=", 10)) {
5821 				pci_hotplug_bus_size =
5822 					simple_strtoul(str + 10, &str, 0);
5823 				if (pci_hotplug_bus_size > 0xff)
5824 					pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
5825 			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
5826 				pcie_bus_config = PCIE_BUS_TUNE_OFF;
5827 			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
5828 				pcie_bus_config = PCIE_BUS_SAFE;
5829 			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
5830 				pcie_bus_config = PCIE_BUS_PERFORMANCE;
5831 			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
5832 				pcie_bus_config = PCIE_BUS_PEER2PEER;
5833 			} else if (!strncmp(str, "pcie_scan_all", 13)) {
5834 				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
5835 			} else {
5836 				printk(KERN_ERR "PCI: Unknown option `%s'\n",
5837 						str);
5838 			}
5839 		}
5840 		str = k;
5841 	}
5842 	return 0;
5843 }
5844 early_param("pci", pci_setup);
5845