1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * PCI Bus Services, see include/linux/pci.h for further explanation. 4 * 5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter, 6 * David Mosberger-Tang 7 * 8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz> 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/kernel.h> 13 #include <linux/delay.h> 14 #include <linux/dmi.h> 15 #include <linux/init.h> 16 #include <linux/of.h> 17 #include <linux/of_pci.h> 18 #include <linux/pci.h> 19 #include <linux/pm.h> 20 #include <linux/slab.h> 21 #include <linux/module.h> 22 #include <linux/spinlock.h> 23 #include <linux/string.h> 24 #include <linux/log2.h> 25 #include <linux/logic_pio.h> 26 #include <linux/pci-aspm.h> 27 #include <linux/pm_wakeup.h> 28 #include <linux/interrupt.h> 29 #include <linux/device.h> 30 #include <linux/pm_runtime.h> 31 #include <linux/pci_hotplug.h> 32 #include <linux/vmalloc.h> 33 #include <linux/pci-ats.h> 34 #include <asm/setup.h> 35 #include <asm/dma.h> 36 #include <linux/aer.h> 37 #include "pci.h" 38 39 const char *pci_power_names[] = { 40 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown", 41 }; 42 EXPORT_SYMBOL_GPL(pci_power_names); 43 44 int isa_dma_bridge_buggy; 45 EXPORT_SYMBOL(isa_dma_bridge_buggy); 46 47 int pci_pci_problems; 48 EXPORT_SYMBOL(pci_pci_problems); 49 50 unsigned int pci_pm_d3_delay; 51 52 static void pci_pme_list_scan(struct work_struct *work); 53 54 static LIST_HEAD(pci_pme_list); 55 static DEFINE_MUTEX(pci_pme_list_mutex); 56 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan); 57 58 struct pci_pme_device { 59 struct list_head list; 60 struct pci_dev *dev; 61 }; 62 63 #define PME_TIMEOUT 1000 /* How long between PME checks */ 64 65 static void pci_dev_d3_sleep(struct pci_dev *dev) 66 { 67 unsigned int delay = dev->d3_delay; 68 69 if (delay < pci_pm_d3_delay) 70 delay = pci_pm_d3_delay; 71 72 if (delay) 73 msleep(delay); 74 } 75 76 #ifdef CONFIG_PCI_DOMAINS 77 int pci_domains_supported = 1; 78 #endif 79 80 #define DEFAULT_CARDBUS_IO_SIZE (256) 81 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024) 82 /* pci=cbmemsize=nnM,cbiosize=nn can override this */ 83 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE; 84 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE; 85 86 #define DEFAULT_HOTPLUG_IO_SIZE (256) 87 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024) 88 /* pci=hpmemsize=nnM,hpiosize=nn can override this */ 89 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE; 90 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE; 91 92 #define DEFAULT_HOTPLUG_BUS_SIZE 1 93 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 94 95 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT; 96 97 /* 98 * The default CLS is used if arch didn't set CLS explicitly and not 99 * all pci devices agree on the same value. Arch can override either 100 * the dfl or actual value as it sees fit. Don't forget this is 101 * measured in 32-bit words, not bytes. 102 */ 103 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2; 104 u8 pci_cache_line_size; 105 106 /* 107 * If we set up a device for bus mastering, we need to check the latency 108 * timer as certain BIOSes forget to set it properly. 109 */ 110 unsigned int pcibios_max_latency = 255; 111 112 /* If set, the PCIe ARI capability will not be used. */ 113 static bool pcie_ari_disabled; 114 115 /* Disable bridge_d3 for all PCIe ports */ 116 static bool pci_bridge_d3_disable; 117 /* Force bridge_d3 for all PCIe ports */ 118 static bool pci_bridge_d3_force; 119 120 static int __init pcie_port_pm_setup(char *str) 121 { 122 if (!strcmp(str, "off")) 123 pci_bridge_d3_disable = true; 124 else if (!strcmp(str, "force")) 125 pci_bridge_d3_force = true; 126 return 1; 127 } 128 __setup("pcie_port_pm=", pcie_port_pm_setup); 129 130 /* Time to wait after a reset for device to become responsive */ 131 #define PCIE_RESET_READY_POLL_MS 60000 132 133 /** 134 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children 135 * @bus: pointer to PCI bus structure to search 136 * 137 * Given a PCI bus, returns the highest PCI bus number present in the set 138 * including the given PCI bus and its list of child PCI buses. 139 */ 140 unsigned char pci_bus_max_busnr(struct pci_bus *bus) 141 { 142 struct pci_bus *tmp; 143 unsigned char max, n; 144 145 max = bus->busn_res.end; 146 list_for_each_entry(tmp, &bus->children, node) { 147 n = pci_bus_max_busnr(tmp); 148 if (n > max) 149 max = n; 150 } 151 return max; 152 } 153 EXPORT_SYMBOL_GPL(pci_bus_max_busnr); 154 155 #ifdef CONFIG_HAS_IOMEM 156 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar) 157 { 158 struct resource *res = &pdev->resource[bar]; 159 160 /* 161 * Make sure the BAR is actually a memory resource, not an IO resource 162 */ 163 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) { 164 pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res); 165 return NULL; 166 } 167 return ioremap_nocache(res->start, resource_size(res)); 168 } 169 EXPORT_SYMBOL_GPL(pci_ioremap_bar); 170 171 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar) 172 { 173 /* 174 * Make sure the BAR is actually a memory resource, not an IO resource 175 */ 176 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) { 177 WARN_ON(1); 178 return NULL; 179 } 180 return ioremap_wc(pci_resource_start(pdev, bar), 181 pci_resource_len(pdev, bar)); 182 } 183 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar); 184 #endif 185 186 187 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn, 188 u8 pos, int cap, int *ttl) 189 { 190 u8 id; 191 u16 ent; 192 193 pci_bus_read_config_byte(bus, devfn, pos, &pos); 194 195 while ((*ttl)--) { 196 if (pos < 0x40) 197 break; 198 pos &= ~3; 199 pci_bus_read_config_word(bus, devfn, pos, &ent); 200 201 id = ent & 0xff; 202 if (id == 0xff) 203 break; 204 if (id == cap) 205 return pos; 206 pos = (ent >> 8); 207 } 208 return 0; 209 } 210 211 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn, 212 u8 pos, int cap) 213 { 214 int ttl = PCI_FIND_CAP_TTL; 215 216 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl); 217 } 218 219 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap) 220 { 221 return __pci_find_next_cap(dev->bus, dev->devfn, 222 pos + PCI_CAP_LIST_NEXT, cap); 223 } 224 EXPORT_SYMBOL_GPL(pci_find_next_capability); 225 226 static int __pci_bus_find_cap_start(struct pci_bus *bus, 227 unsigned int devfn, u8 hdr_type) 228 { 229 u16 status; 230 231 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status); 232 if (!(status & PCI_STATUS_CAP_LIST)) 233 return 0; 234 235 switch (hdr_type) { 236 case PCI_HEADER_TYPE_NORMAL: 237 case PCI_HEADER_TYPE_BRIDGE: 238 return PCI_CAPABILITY_LIST; 239 case PCI_HEADER_TYPE_CARDBUS: 240 return PCI_CB_CAPABILITY_LIST; 241 } 242 243 return 0; 244 } 245 246 /** 247 * pci_find_capability - query for devices' capabilities 248 * @dev: PCI device to query 249 * @cap: capability code 250 * 251 * Tell if a device supports a given PCI capability. 252 * Returns the address of the requested capability structure within the 253 * device's PCI configuration space or 0 in case the device does not 254 * support it. Possible values for @cap: 255 * 256 * %PCI_CAP_ID_PM Power Management 257 * %PCI_CAP_ID_AGP Accelerated Graphics Port 258 * %PCI_CAP_ID_VPD Vital Product Data 259 * %PCI_CAP_ID_SLOTID Slot Identification 260 * %PCI_CAP_ID_MSI Message Signalled Interrupts 261 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap 262 * %PCI_CAP_ID_PCIX PCI-X 263 * %PCI_CAP_ID_EXP PCI Express 264 */ 265 int pci_find_capability(struct pci_dev *dev, int cap) 266 { 267 int pos; 268 269 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 270 if (pos) 271 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap); 272 273 return pos; 274 } 275 EXPORT_SYMBOL(pci_find_capability); 276 277 /** 278 * pci_bus_find_capability - query for devices' capabilities 279 * @bus: the PCI bus to query 280 * @devfn: PCI device to query 281 * @cap: capability code 282 * 283 * Like pci_find_capability() but works for pci devices that do not have a 284 * pci_dev structure set up yet. 285 * 286 * Returns the address of the requested capability structure within the 287 * device's PCI configuration space or 0 in case the device does not 288 * support it. 289 */ 290 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap) 291 { 292 int pos; 293 u8 hdr_type; 294 295 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type); 296 297 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f); 298 if (pos) 299 pos = __pci_find_next_cap(bus, devfn, pos, cap); 300 301 return pos; 302 } 303 EXPORT_SYMBOL(pci_bus_find_capability); 304 305 /** 306 * pci_find_next_ext_capability - Find an extended capability 307 * @dev: PCI device to query 308 * @start: address at which to start looking (0 to start at beginning of list) 309 * @cap: capability code 310 * 311 * Returns the address of the next matching extended capability structure 312 * within the device's PCI configuration space or 0 if the device does 313 * not support it. Some capabilities can occur several times, e.g., the 314 * vendor-specific capability, and this provides a way to find them all. 315 */ 316 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap) 317 { 318 u32 header; 319 int ttl; 320 int pos = PCI_CFG_SPACE_SIZE; 321 322 /* minimum 8 bytes per capability */ 323 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8; 324 325 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE) 326 return 0; 327 328 if (start) 329 pos = start; 330 331 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 332 return 0; 333 334 /* 335 * If we have no capabilities, this is indicated by cap ID, 336 * cap version and next pointer all being 0. 337 */ 338 if (header == 0) 339 return 0; 340 341 while (ttl-- > 0) { 342 if (PCI_EXT_CAP_ID(header) == cap && pos != start) 343 return pos; 344 345 pos = PCI_EXT_CAP_NEXT(header); 346 if (pos < PCI_CFG_SPACE_SIZE) 347 break; 348 349 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 350 break; 351 } 352 353 return 0; 354 } 355 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability); 356 357 /** 358 * pci_find_ext_capability - Find an extended capability 359 * @dev: PCI device to query 360 * @cap: capability code 361 * 362 * Returns the address of the requested extended capability structure 363 * within the device's PCI configuration space or 0 if the device does 364 * not support it. Possible values for @cap: 365 * 366 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting 367 * %PCI_EXT_CAP_ID_VC Virtual Channel 368 * %PCI_EXT_CAP_ID_DSN Device Serial Number 369 * %PCI_EXT_CAP_ID_PWR Power Budgeting 370 */ 371 int pci_find_ext_capability(struct pci_dev *dev, int cap) 372 { 373 return pci_find_next_ext_capability(dev, 0, cap); 374 } 375 EXPORT_SYMBOL_GPL(pci_find_ext_capability); 376 377 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap) 378 { 379 int rc, ttl = PCI_FIND_CAP_TTL; 380 u8 cap, mask; 381 382 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST) 383 mask = HT_3BIT_CAP_MASK; 384 else 385 mask = HT_5BIT_CAP_MASK; 386 387 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos, 388 PCI_CAP_ID_HT, &ttl); 389 while (pos) { 390 rc = pci_read_config_byte(dev, pos + 3, &cap); 391 if (rc != PCIBIOS_SUCCESSFUL) 392 return 0; 393 394 if ((cap & mask) == ht_cap) 395 return pos; 396 397 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, 398 pos + PCI_CAP_LIST_NEXT, 399 PCI_CAP_ID_HT, &ttl); 400 } 401 402 return 0; 403 } 404 /** 405 * pci_find_next_ht_capability - query a device's Hypertransport capabilities 406 * @dev: PCI device to query 407 * @pos: Position from which to continue searching 408 * @ht_cap: Hypertransport capability code 409 * 410 * To be used in conjunction with pci_find_ht_capability() to search for 411 * all capabilities matching @ht_cap. @pos should always be a value returned 412 * from pci_find_ht_capability(). 413 * 414 * NB. To be 100% safe against broken PCI devices, the caller should take 415 * steps to avoid an infinite loop. 416 */ 417 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap) 418 { 419 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap); 420 } 421 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability); 422 423 /** 424 * pci_find_ht_capability - query a device's Hypertransport capabilities 425 * @dev: PCI device to query 426 * @ht_cap: Hypertransport capability code 427 * 428 * Tell if a device supports a given Hypertransport capability. 429 * Returns an address within the device's PCI configuration space 430 * or 0 in case the device does not support the request capability. 431 * The address points to the PCI capability, of type PCI_CAP_ID_HT, 432 * which has a Hypertransport capability matching @ht_cap. 433 */ 434 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap) 435 { 436 int pos; 437 438 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 439 if (pos) 440 pos = __pci_find_next_ht_cap(dev, pos, ht_cap); 441 442 return pos; 443 } 444 EXPORT_SYMBOL_GPL(pci_find_ht_capability); 445 446 /** 447 * pci_find_parent_resource - return resource region of parent bus of given region 448 * @dev: PCI device structure contains resources to be searched 449 * @res: child resource record for which parent is sought 450 * 451 * For given resource region of given device, return the resource 452 * region of parent bus the given region is contained in. 453 */ 454 struct resource *pci_find_parent_resource(const struct pci_dev *dev, 455 struct resource *res) 456 { 457 const struct pci_bus *bus = dev->bus; 458 struct resource *r; 459 int i; 460 461 pci_bus_for_each_resource(bus, r, i) { 462 if (!r) 463 continue; 464 if (resource_contains(r, res)) { 465 466 /* 467 * If the window is prefetchable but the BAR is 468 * not, the allocator made a mistake. 469 */ 470 if (r->flags & IORESOURCE_PREFETCH && 471 !(res->flags & IORESOURCE_PREFETCH)) 472 return NULL; 473 474 /* 475 * If we're below a transparent bridge, there may 476 * be both a positively-decoded aperture and a 477 * subtractively-decoded region that contain the BAR. 478 * We want the positively-decoded one, so this depends 479 * on pci_bus_for_each_resource() giving us those 480 * first. 481 */ 482 return r; 483 } 484 } 485 return NULL; 486 } 487 EXPORT_SYMBOL(pci_find_parent_resource); 488 489 /** 490 * pci_find_resource - Return matching PCI device resource 491 * @dev: PCI device to query 492 * @res: Resource to look for 493 * 494 * Goes over standard PCI resources (BARs) and checks if the given resource 495 * is partially or fully contained in any of them. In that case the 496 * matching resource is returned, %NULL otherwise. 497 */ 498 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res) 499 { 500 int i; 501 502 for (i = 0; i < PCI_ROM_RESOURCE; i++) { 503 struct resource *r = &dev->resource[i]; 504 505 if (r->start && resource_contains(r, res)) 506 return r; 507 } 508 509 return NULL; 510 } 511 EXPORT_SYMBOL(pci_find_resource); 512 513 /** 514 * pci_find_pcie_root_port - return PCIe Root Port 515 * @dev: PCI device to query 516 * 517 * Traverse up the parent chain and return the PCIe Root Port PCI Device 518 * for a given PCI Device. 519 */ 520 struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev) 521 { 522 struct pci_dev *bridge, *highest_pcie_bridge = dev; 523 524 bridge = pci_upstream_bridge(dev); 525 while (bridge && pci_is_pcie(bridge)) { 526 highest_pcie_bridge = bridge; 527 bridge = pci_upstream_bridge(bridge); 528 } 529 530 if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT) 531 return NULL; 532 533 return highest_pcie_bridge; 534 } 535 EXPORT_SYMBOL(pci_find_pcie_root_port); 536 537 /** 538 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos 539 * @dev: the PCI device to operate on 540 * @pos: config space offset of status word 541 * @mask: mask of bit(s) to care about in status word 542 * 543 * Return 1 when mask bit(s) in status word clear, 0 otherwise. 544 */ 545 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask) 546 { 547 int i; 548 549 /* Wait for Transaction Pending bit clean */ 550 for (i = 0; i < 4; i++) { 551 u16 status; 552 if (i) 553 msleep((1 << (i - 1)) * 100); 554 555 pci_read_config_word(dev, pos, &status); 556 if (!(status & mask)) 557 return 1; 558 } 559 560 return 0; 561 } 562 563 /** 564 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up) 565 * @dev: PCI device to have its BARs restored 566 * 567 * Restore the BAR values for a given device, so as to make it 568 * accessible by its driver. 569 */ 570 static void pci_restore_bars(struct pci_dev *dev) 571 { 572 int i; 573 574 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) 575 pci_update_resource(dev, i); 576 } 577 578 static const struct pci_platform_pm_ops *pci_platform_pm; 579 580 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops) 581 { 582 if (!ops->is_manageable || !ops->set_state || !ops->get_state || 583 !ops->choose_state || !ops->set_wakeup || !ops->need_resume) 584 return -EINVAL; 585 pci_platform_pm = ops; 586 return 0; 587 } 588 589 static inline bool platform_pci_power_manageable(struct pci_dev *dev) 590 { 591 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false; 592 } 593 594 static inline int platform_pci_set_power_state(struct pci_dev *dev, 595 pci_power_t t) 596 { 597 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS; 598 } 599 600 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev) 601 { 602 return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN; 603 } 604 605 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev) 606 { 607 return pci_platform_pm ? 608 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR; 609 } 610 611 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable) 612 { 613 return pci_platform_pm ? 614 pci_platform_pm->set_wakeup(dev, enable) : -ENODEV; 615 } 616 617 static inline bool platform_pci_need_resume(struct pci_dev *dev) 618 { 619 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false; 620 } 621 622 /** 623 * pci_raw_set_power_state - Use PCI PM registers to set the power state of 624 * given PCI device 625 * @dev: PCI device to handle. 626 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 627 * 628 * RETURN VALUE: 629 * -EINVAL if the requested state is invalid. 630 * -EIO if device does not support PCI PM or its PM capabilities register has a 631 * wrong version, or device doesn't support the requested state. 632 * 0 if device already is in the requested state. 633 * 0 if device's power state has been successfully changed. 634 */ 635 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state) 636 { 637 u16 pmcsr; 638 bool need_restore = false; 639 640 /* Check if we're already there */ 641 if (dev->current_state == state) 642 return 0; 643 644 if (!dev->pm_cap) 645 return -EIO; 646 647 if (state < PCI_D0 || state > PCI_D3hot) 648 return -EINVAL; 649 650 /* Validate current state: 651 * Can enter D0 from any state, but if we can only go deeper 652 * to sleep if we're already in a low power state 653 */ 654 if (state != PCI_D0 && dev->current_state <= PCI_D3cold 655 && dev->current_state > state) { 656 pci_err(dev, "invalid power transition (from state %d to %d)\n", 657 dev->current_state, state); 658 return -EINVAL; 659 } 660 661 /* check if this device supports the desired state */ 662 if ((state == PCI_D1 && !dev->d1_support) 663 || (state == PCI_D2 && !dev->d2_support)) 664 return -EIO; 665 666 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 667 668 /* If we're (effectively) in D3, force entire word to 0. 669 * This doesn't affect PME_Status, disables PME_En, and 670 * sets PowerState to 0. 671 */ 672 switch (dev->current_state) { 673 case PCI_D0: 674 case PCI_D1: 675 case PCI_D2: 676 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 677 pmcsr |= state; 678 break; 679 case PCI_D3hot: 680 case PCI_D3cold: 681 case PCI_UNKNOWN: /* Boot-up */ 682 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot 683 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET)) 684 need_restore = true; 685 /* Fall-through: force to D0 */ 686 default: 687 pmcsr = 0; 688 break; 689 } 690 691 /* enter specified state */ 692 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 693 694 /* Mandatory power management transition delays */ 695 /* see PCI PM 1.1 5.6.1 table 18 */ 696 if (state == PCI_D3hot || dev->current_state == PCI_D3hot) 697 pci_dev_d3_sleep(dev); 698 else if (state == PCI_D2 || dev->current_state == PCI_D2) 699 udelay(PCI_PM_D2_DELAY); 700 701 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 702 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 703 if (dev->current_state != state && printk_ratelimit()) 704 pci_info(dev, "Refused to change power state, currently in D%d\n", 705 dev->current_state); 706 707 /* 708 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT 709 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning 710 * from D3hot to D0 _may_ perform an internal reset, thereby 711 * going to "D0 Uninitialized" rather than "D0 Initialized". 712 * For example, at least some versions of the 3c905B and the 713 * 3c556B exhibit this behaviour. 714 * 715 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave 716 * devices in a D3hot state at boot. Consequently, we need to 717 * restore at least the BARs so that the device will be 718 * accessible to its driver. 719 */ 720 if (need_restore) 721 pci_restore_bars(dev); 722 723 if (dev->bus->self) 724 pcie_aspm_pm_state_change(dev->bus->self); 725 726 return 0; 727 } 728 729 /** 730 * pci_update_current_state - Read power state of given device and cache it 731 * @dev: PCI device to handle. 732 * @state: State to cache in case the device doesn't have the PM capability 733 * 734 * The power state is read from the PMCSR register, which however is 735 * inaccessible in D3cold. The platform firmware is therefore queried first 736 * to detect accessibility of the register. In case the platform firmware 737 * reports an incorrect state or the device isn't power manageable by the 738 * platform at all, we try to detect D3cold by testing accessibility of the 739 * vendor ID in config space. 740 */ 741 void pci_update_current_state(struct pci_dev *dev, pci_power_t state) 742 { 743 if (platform_pci_get_power_state(dev) == PCI_D3cold || 744 !pci_device_is_present(dev)) { 745 dev->current_state = PCI_D3cold; 746 } else if (dev->pm_cap) { 747 u16 pmcsr; 748 749 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 750 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 751 } else { 752 dev->current_state = state; 753 } 754 } 755 756 /** 757 * pci_power_up - Put the given device into D0 forcibly 758 * @dev: PCI device to power up 759 */ 760 void pci_power_up(struct pci_dev *dev) 761 { 762 if (platform_pci_power_manageable(dev)) 763 platform_pci_set_power_state(dev, PCI_D0); 764 765 pci_raw_set_power_state(dev, PCI_D0); 766 pci_update_current_state(dev, PCI_D0); 767 } 768 769 /** 770 * pci_platform_power_transition - Use platform to change device power state 771 * @dev: PCI device to handle. 772 * @state: State to put the device into. 773 */ 774 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state) 775 { 776 int error; 777 778 if (platform_pci_power_manageable(dev)) { 779 error = platform_pci_set_power_state(dev, state); 780 if (!error) 781 pci_update_current_state(dev, state); 782 } else 783 error = -ENODEV; 784 785 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */ 786 dev->current_state = PCI_D0; 787 788 return error; 789 } 790 791 /** 792 * pci_wakeup - Wake up a PCI device 793 * @pci_dev: Device to handle. 794 * @ign: ignored parameter 795 */ 796 static int pci_wakeup(struct pci_dev *pci_dev, void *ign) 797 { 798 pci_wakeup_event(pci_dev); 799 pm_request_resume(&pci_dev->dev); 800 return 0; 801 } 802 803 /** 804 * pci_wakeup_bus - Walk given bus and wake up devices on it 805 * @bus: Top bus of the subtree to walk. 806 */ 807 void pci_wakeup_bus(struct pci_bus *bus) 808 { 809 if (bus) 810 pci_walk_bus(bus, pci_wakeup, NULL); 811 } 812 813 /** 814 * __pci_start_power_transition - Start power transition of a PCI device 815 * @dev: PCI device to handle. 816 * @state: State to put the device into. 817 */ 818 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state) 819 { 820 if (state == PCI_D0) { 821 pci_platform_power_transition(dev, PCI_D0); 822 /* 823 * Mandatory power management transition delays, see 824 * PCI Express Base Specification Revision 2.0 Section 825 * 6.6.1: Conventional Reset. Do not delay for 826 * devices powered on/off by corresponding bridge, 827 * because have already delayed for the bridge. 828 */ 829 if (dev->runtime_d3cold) { 830 if (dev->d3cold_delay) 831 msleep(dev->d3cold_delay); 832 /* 833 * When powering on a bridge from D3cold, the 834 * whole hierarchy may be powered on into 835 * D0uninitialized state, resume them to give 836 * them a chance to suspend again 837 */ 838 pci_wakeup_bus(dev->subordinate); 839 } 840 } 841 } 842 843 /** 844 * __pci_dev_set_current_state - Set current state of a PCI device 845 * @dev: Device to handle 846 * @data: pointer to state to be set 847 */ 848 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data) 849 { 850 pci_power_t state = *(pci_power_t *)data; 851 852 dev->current_state = state; 853 return 0; 854 } 855 856 /** 857 * pci_bus_set_current_state - Walk given bus and set current state of devices 858 * @bus: Top bus of the subtree to walk. 859 * @state: state to be set 860 */ 861 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state) 862 { 863 if (bus) 864 pci_walk_bus(bus, __pci_dev_set_current_state, &state); 865 } 866 867 /** 868 * __pci_complete_power_transition - Complete power transition of a PCI device 869 * @dev: PCI device to handle. 870 * @state: State to put the device into. 871 * 872 * This function should not be called directly by device drivers. 873 */ 874 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state) 875 { 876 int ret; 877 878 if (state <= PCI_D0) 879 return -EINVAL; 880 ret = pci_platform_power_transition(dev, state); 881 /* Power off the bridge may power off the whole hierarchy */ 882 if (!ret && state == PCI_D3cold) 883 pci_bus_set_current_state(dev->subordinate, PCI_D3cold); 884 return ret; 885 } 886 EXPORT_SYMBOL_GPL(__pci_complete_power_transition); 887 888 /** 889 * pci_set_power_state - Set the power state of a PCI device 890 * @dev: PCI device to handle. 891 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 892 * 893 * Transition a device to a new power state, using the platform firmware and/or 894 * the device's PCI PM registers. 895 * 896 * RETURN VALUE: 897 * -EINVAL if the requested state is invalid. 898 * -EIO if device does not support PCI PM or its PM capabilities register has a 899 * wrong version, or device doesn't support the requested state. 900 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported. 901 * 0 if device already is in the requested state. 902 * 0 if the transition is to D3 but D3 is not supported. 903 * 0 if device's power state has been successfully changed. 904 */ 905 int pci_set_power_state(struct pci_dev *dev, pci_power_t state) 906 { 907 int error; 908 909 /* bound the state we're entering */ 910 if (state > PCI_D3cold) 911 state = PCI_D3cold; 912 else if (state < PCI_D0) 913 state = PCI_D0; 914 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev)) 915 /* 916 * If the device or the parent bridge do not support PCI PM, 917 * ignore the request if we're doing anything other than putting 918 * it into D0 (which would only happen on boot). 919 */ 920 return 0; 921 922 /* Check if we're already there */ 923 if (dev->current_state == state) 924 return 0; 925 926 __pci_start_power_transition(dev, state); 927 928 /* This device is quirked not to be put into D3, so 929 don't put it in D3 */ 930 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3)) 931 return 0; 932 933 /* 934 * To put device in D3cold, we put device into D3hot in native 935 * way, then put device into D3cold with platform ops 936 */ 937 error = pci_raw_set_power_state(dev, state > PCI_D3hot ? 938 PCI_D3hot : state); 939 940 if (!__pci_complete_power_transition(dev, state)) 941 error = 0; 942 943 return error; 944 } 945 EXPORT_SYMBOL(pci_set_power_state); 946 947 /** 948 * pci_choose_state - Choose the power state of a PCI device 949 * @dev: PCI device to be suspended 950 * @state: target sleep state for the whole system. This is the value 951 * that is passed to suspend() function. 952 * 953 * Returns PCI power state suitable for given device and given system 954 * message. 955 */ 956 957 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state) 958 { 959 pci_power_t ret; 960 961 if (!dev->pm_cap) 962 return PCI_D0; 963 964 ret = platform_pci_choose_state(dev); 965 if (ret != PCI_POWER_ERROR) 966 return ret; 967 968 switch (state.event) { 969 case PM_EVENT_ON: 970 return PCI_D0; 971 case PM_EVENT_FREEZE: 972 case PM_EVENT_PRETHAW: 973 /* REVISIT both freeze and pre-thaw "should" use D0 */ 974 case PM_EVENT_SUSPEND: 975 case PM_EVENT_HIBERNATE: 976 return PCI_D3hot; 977 default: 978 pci_info(dev, "unrecognized suspend event %d\n", 979 state.event); 980 BUG(); 981 } 982 return PCI_D0; 983 } 984 EXPORT_SYMBOL(pci_choose_state); 985 986 #define PCI_EXP_SAVE_REGS 7 987 988 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev, 989 u16 cap, bool extended) 990 { 991 struct pci_cap_saved_state *tmp; 992 993 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) { 994 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap) 995 return tmp; 996 } 997 return NULL; 998 } 999 1000 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap) 1001 { 1002 return _pci_find_saved_cap(dev, cap, false); 1003 } 1004 1005 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap) 1006 { 1007 return _pci_find_saved_cap(dev, cap, true); 1008 } 1009 1010 static int pci_save_pcie_state(struct pci_dev *dev) 1011 { 1012 int i = 0; 1013 struct pci_cap_saved_state *save_state; 1014 u16 *cap; 1015 1016 if (!pci_is_pcie(dev)) 1017 return 0; 1018 1019 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1020 if (!save_state) { 1021 pci_err(dev, "buffer not found in %s\n", __func__); 1022 return -ENOMEM; 1023 } 1024 1025 cap = (u16 *)&save_state->cap.data[0]; 1026 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]); 1027 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]); 1028 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]); 1029 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]); 1030 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]); 1031 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]); 1032 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]); 1033 1034 return 0; 1035 } 1036 1037 static void pci_restore_pcie_state(struct pci_dev *dev) 1038 { 1039 int i = 0; 1040 struct pci_cap_saved_state *save_state; 1041 u16 *cap; 1042 1043 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1044 if (!save_state) 1045 return; 1046 1047 cap = (u16 *)&save_state->cap.data[0]; 1048 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]); 1049 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]); 1050 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]); 1051 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]); 1052 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]); 1053 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]); 1054 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]); 1055 } 1056 1057 1058 static int pci_save_pcix_state(struct pci_dev *dev) 1059 { 1060 int pos; 1061 struct pci_cap_saved_state *save_state; 1062 1063 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1064 if (!pos) 1065 return 0; 1066 1067 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1068 if (!save_state) { 1069 pci_err(dev, "buffer not found in %s\n", __func__); 1070 return -ENOMEM; 1071 } 1072 1073 pci_read_config_word(dev, pos + PCI_X_CMD, 1074 (u16 *)save_state->cap.data); 1075 1076 return 0; 1077 } 1078 1079 static void pci_restore_pcix_state(struct pci_dev *dev) 1080 { 1081 int i = 0, pos; 1082 struct pci_cap_saved_state *save_state; 1083 u16 *cap; 1084 1085 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1086 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1087 if (!save_state || !pos) 1088 return; 1089 cap = (u16 *)&save_state->cap.data[0]; 1090 1091 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]); 1092 } 1093 1094 1095 /** 1096 * pci_save_state - save the PCI configuration space of a device before suspending 1097 * @dev: - PCI device that we're dealing with 1098 */ 1099 int pci_save_state(struct pci_dev *dev) 1100 { 1101 int i; 1102 /* XXX: 100% dword access ok here? */ 1103 for (i = 0; i < 16; i++) 1104 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]); 1105 dev->state_saved = true; 1106 1107 i = pci_save_pcie_state(dev); 1108 if (i != 0) 1109 return i; 1110 1111 i = pci_save_pcix_state(dev); 1112 if (i != 0) 1113 return i; 1114 1115 return pci_save_vc_state(dev); 1116 } 1117 EXPORT_SYMBOL(pci_save_state); 1118 1119 static void pci_restore_config_dword(struct pci_dev *pdev, int offset, 1120 u32 saved_val, int retry) 1121 { 1122 u32 val; 1123 1124 pci_read_config_dword(pdev, offset, &val); 1125 if (val == saved_val) 1126 return; 1127 1128 for (;;) { 1129 pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n", 1130 offset, val, saved_val); 1131 pci_write_config_dword(pdev, offset, saved_val); 1132 if (retry-- <= 0) 1133 return; 1134 1135 pci_read_config_dword(pdev, offset, &val); 1136 if (val == saved_val) 1137 return; 1138 1139 mdelay(1); 1140 } 1141 } 1142 1143 static void pci_restore_config_space_range(struct pci_dev *pdev, 1144 int start, int end, int retry) 1145 { 1146 int index; 1147 1148 for (index = end; index >= start; index--) 1149 pci_restore_config_dword(pdev, 4 * index, 1150 pdev->saved_config_space[index], 1151 retry); 1152 } 1153 1154 static void pci_restore_config_space(struct pci_dev *pdev) 1155 { 1156 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) { 1157 pci_restore_config_space_range(pdev, 10, 15, 0); 1158 /* Restore BARs before the command register. */ 1159 pci_restore_config_space_range(pdev, 4, 9, 10); 1160 pci_restore_config_space_range(pdev, 0, 3, 0); 1161 } else { 1162 pci_restore_config_space_range(pdev, 0, 15, 0); 1163 } 1164 } 1165 1166 /** 1167 * pci_restore_state - Restore the saved state of a PCI device 1168 * @dev: - PCI device that we're dealing with 1169 */ 1170 void pci_restore_state(struct pci_dev *dev) 1171 { 1172 if (!dev->state_saved) 1173 return; 1174 1175 /* PCI Express register must be restored first */ 1176 pci_restore_pcie_state(dev); 1177 pci_restore_pasid_state(dev); 1178 pci_restore_pri_state(dev); 1179 pci_restore_ats_state(dev); 1180 pci_restore_vc_state(dev); 1181 1182 pci_cleanup_aer_error_status_regs(dev); 1183 1184 pci_restore_config_space(dev); 1185 1186 pci_restore_pcix_state(dev); 1187 pci_restore_msi_state(dev); 1188 1189 /* Restore ACS and IOV configuration state */ 1190 pci_enable_acs(dev); 1191 pci_restore_iov_state(dev); 1192 1193 dev->state_saved = false; 1194 } 1195 EXPORT_SYMBOL(pci_restore_state); 1196 1197 struct pci_saved_state { 1198 u32 config_space[16]; 1199 struct pci_cap_saved_data cap[0]; 1200 }; 1201 1202 /** 1203 * pci_store_saved_state - Allocate and return an opaque struct containing 1204 * the device saved state. 1205 * @dev: PCI device that we're dealing with 1206 * 1207 * Return NULL if no state or error. 1208 */ 1209 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev) 1210 { 1211 struct pci_saved_state *state; 1212 struct pci_cap_saved_state *tmp; 1213 struct pci_cap_saved_data *cap; 1214 size_t size; 1215 1216 if (!dev->state_saved) 1217 return NULL; 1218 1219 size = sizeof(*state) + sizeof(struct pci_cap_saved_data); 1220 1221 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) 1222 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1223 1224 state = kzalloc(size, GFP_KERNEL); 1225 if (!state) 1226 return NULL; 1227 1228 memcpy(state->config_space, dev->saved_config_space, 1229 sizeof(state->config_space)); 1230 1231 cap = state->cap; 1232 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) { 1233 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1234 memcpy(cap, &tmp->cap, len); 1235 cap = (struct pci_cap_saved_data *)((u8 *)cap + len); 1236 } 1237 /* Empty cap_save terminates list */ 1238 1239 return state; 1240 } 1241 EXPORT_SYMBOL_GPL(pci_store_saved_state); 1242 1243 /** 1244 * pci_load_saved_state - Reload the provided save state into struct pci_dev. 1245 * @dev: PCI device that we're dealing with 1246 * @state: Saved state returned from pci_store_saved_state() 1247 */ 1248 int pci_load_saved_state(struct pci_dev *dev, 1249 struct pci_saved_state *state) 1250 { 1251 struct pci_cap_saved_data *cap; 1252 1253 dev->state_saved = false; 1254 1255 if (!state) 1256 return 0; 1257 1258 memcpy(dev->saved_config_space, state->config_space, 1259 sizeof(state->config_space)); 1260 1261 cap = state->cap; 1262 while (cap->size) { 1263 struct pci_cap_saved_state *tmp; 1264 1265 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended); 1266 if (!tmp || tmp->cap.size != cap->size) 1267 return -EINVAL; 1268 1269 memcpy(tmp->cap.data, cap->data, tmp->cap.size); 1270 cap = (struct pci_cap_saved_data *)((u8 *)cap + 1271 sizeof(struct pci_cap_saved_data) + cap->size); 1272 } 1273 1274 dev->state_saved = true; 1275 return 0; 1276 } 1277 EXPORT_SYMBOL_GPL(pci_load_saved_state); 1278 1279 /** 1280 * pci_load_and_free_saved_state - Reload the save state pointed to by state, 1281 * and free the memory allocated for it. 1282 * @dev: PCI device that we're dealing with 1283 * @state: Pointer to saved state returned from pci_store_saved_state() 1284 */ 1285 int pci_load_and_free_saved_state(struct pci_dev *dev, 1286 struct pci_saved_state **state) 1287 { 1288 int ret = pci_load_saved_state(dev, *state); 1289 kfree(*state); 1290 *state = NULL; 1291 return ret; 1292 } 1293 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state); 1294 1295 int __weak pcibios_enable_device(struct pci_dev *dev, int bars) 1296 { 1297 return pci_enable_resources(dev, bars); 1298 } 1299 1300 static int do_pci_enable_device(struct pci_dev *dev, int bars) 1301 { 1302 int err; 1303 struct pci_dev *bridge; 1304 u16 cmd; 1305 u8 pin; 1306 1307 err = pci_set_power_state(dev, PCI_D0); 1308 if (err < 0 && err != -EIO) 1309 return err; 1310 1311 bridge = pci_upstream_bridge(dev); 1312 if (bridge) 1313 pcie_aspm_powersave_config_link(bridge); 1314 1315 err = pcibios_enable_device(dev, bars); 1316 if (err < 0) 1317 return err; 1318 pci_fixup_device(pci_fixup_enable, dev); 1319 1320 if (dev->msi_enabled || dev->msix_enabled) 1321 return 0; 1322 1323 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin); 1324 if (pin) { 1325 pci_read_config_word(dev, PCI_COMMAND, &cmd); 1326 if (cmd & PCI_COMMAND_INTX_DISABLE) 1327 pci_write_config_word(dev, PCI_COMMAND, 1328 cmd & ~PCI_COMMAND_INTX_DISABLE); 1329 } 1330 1331 return 0; 1332 } 1333 1334 /** 1335 * pci_reenable_device - Resume abandoned device 1336 * @dev: PCI device to be resumed 1337 * 1338 * Note this function is a backend of pci_default_resume and is not supposed 1339 * to be called by normal code, write proper resume handler and use it instead. 1340 */ 1341 int pci_reenable_device(struct pci_dev *dev) 1342 { 1343 if (pci_is_enabled(dev)) 1344 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1); 1345 return 0; 1346 } 1347 EXPORT_SYMBOL(pci_reenable_device); 1348 1349 static void pci_enable_bridge(struct pci_dev *dev) 1350 { 1351 struct pci_dev *bridge; 1352 int retval; 1353 1354 bridge = pci_upstream_bridge(dev); 1355 if (bridge) 1356 pci_enable_bridge(bridge); 1357 1358 if (pci_is_enabled(dev)) { 1359 if (!dev->is_busmaster) 1360 pci_set_master(dev); 1361 return; 1362 } 1363 1364 retval = pci_enable_device(dev); 1365 if (retval) 1366 pci_err(dev, "Error enabling bridge (%d), continuing\n", 1367 retval); 1368 pci_set_master(dev); 1369 } 1370 1371 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags) 1372 { 1373 struct pci_dev *bridge; 1374 int err; 1375 int i, bars = 0; 1376 1377 /* 1378 * Power state could be unknown at this point, either due to a fresh 1379 * boot or a device removal call. So get the current power state 1380 * so that things like MSI message writing will behave as expected 1381 * (e.g. if the device really is in D0 at enable time). 1382 */ 1383 if (dev->pm_cap) { 1384 u16 pmcsr; 1385 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1386 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 1387 } 1388 1389 if (atomic_inc_return(&dev->enable_cnt) > 1) 1390 return 0; /* already enabled */ 1391 1392 bridge = pci_upstream_bridge(dev); 1393 if (bridge) 1394 pci_enable_bridge(bridge); 1395 1396 /* only skip sriov related */ 1397 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 1398 if (dev->resource[i].flags & flags) 1399 bars |= (1 << i); 1400 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++) 1401 if (dev->resource[i].flags & flags) 1402 bars |= (1 << i); 1403 1404 err = do_pci_enable_device(dev, bars); 1405 if (err < 0) 1406 atomic_dec(&dev->enable_cnt); 1407 return err; 1408 } 1409 1410 /** 1411 * pci_enable_device_io - Initialize a device for use with IO space 1412 * @dev: PCI device to be initialized 1413 * 1414 * Initialize device before it's used by a driver. Ask low-level code 1415 * to enable I/O resources. Wake up the device if it was suspended. 1416 * Beware, this function can fail. 1417 */ 1418 int pci_enable_device_io(struct pci_dev *dev) 1419 { 1420 return pci_enable_device_flags(dev, IORESOURCE_IO); 1421 } 1422 EXPORT_SYMBOL(pci_enable_device_io); 1423 1424 /** 1425 * pci_enable_device_mem - Initialize a device for use with Memory space 1426 * @dev: PCI device to be initialized 1427 * 1428 * Initialize device before it's used by a driver. Ask low-level code 1429 * to enable Memory resources. Wake up the device if it was suspended. 1430 * Beware, this function can fail. 1431 */ 1432 int pci_enable_device_mem(struct pci_dev *dev) 1433 { 1434 return pci_enable_device_flags(dev, IORESOURCE_MEM); 1435 } 1436 EXPORT_SYMBOL(pci_enable_device_mem); 1437 1438 /** 1439 * pci_enable_device - Initialize device before it's used by a driver. 1440 * @dev: PCI device to be initialized 1441 * 1442 * Initialize device before it's used by a driver. Ask low-level code 1443 * to enable I/O and memory. Wake up the device if it was suspended. 1444 * Beware, this function can fail. 1445 * 1446 * Note we don't actually enable the device many times if we call 1447 * this function repeatedly (we just increment the count). 1448 */ 1449 int pci_enable_device(struct pci_dev *dev) 1450 { 1451 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO); 1452 } 1453 EXPORT_SYMBOL(pci_enable_device); 1454 1455 /* 1456 * Managed PCI resources. This manages device on/off, intx/msi/msix 1457 * on/off and BAR regions. pci_dev itself records msi/msix status, so 1458 * there's no need to track it separately. pci_devres is initialized 1459 * when a device is enabled using managed PCI device enable interface. 1460 */ 1461 struct pci_devres { 1462 unsigned int enabled:1; 1463 unsigned int pinned:1; 1464 unsigned int orig_intx:1; 1465 unsigned int restore_intx:1; 1466 unsigned int mwi:1; 1467 u32 region_mask; 1468 }; 1469 1470 static void pcim_release(struct device *gendev, void *res) 1471 { 1472 struct pci_dev *dev = to_pci_dev(gendev); 1473 struct pci_devres *this = res; 1474 int i; 1475 1476 if (dev->msi_enabled) 1477 pci_disable_msi(dev); 1478 if (dev->msix_enabled) 1479 pci_disable_msix(dev); 1480 1481 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) 1482 if (this->region_mask & (1 << i)) 1483 pci_release_region(dev, i); 1484 1485 if (this->mwi) 1486 pci_clear_mwi(dev); 1487 1488 if (this->restore_intx) 1489 pci_intx(dev, this->orig_intx); 1490 1491 if (this->enabled && !this->pinned) 1492 pci_disable_device(dev); 1493 } 1494 1495 static struct pci_devres *get_pci_dr(struct pci_dev *pdev) 1496 { 1497 struct pci_devres *dr, *new_dr; 1498 1499 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL); 1500 if (dr) 1501 return dr; 1502 1503 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL); 1504 if (!new_dr) 1505 return NULL; 1506 return devres_get(&pdev->dev, new_dr, NULL, NULL); 1507 } 1508 1509 static struct pci_devres *find_pci_dr(struct pci_dev *pdev) 1510 { 1511 if (pci_is_managed(pdev)) 1512 return devres_find(&pdev->dev, pcim_release, NULL, NULL); 1513 return NULL; 1514 } 1515 1516 /** 1517 * pcim_enable_device - Managed pci_enable_device() 1518 * @pdev: PCI device to be initialized 1519 * 1520 * Managed pci_enable_device(). 1521 */ 1522 int pcim_enable_device(struct pci_dev *pdev) 1523 { 1524 struct pci_devres *dr; 1525 int rc; 1526 1527 dr = get_pci_dr(pdev); 1528 if (unlikely(!dr)) 1529 return -ENOMEM; 1530 if (dr->enabled) 1531 return 0; 1532 1533 rc = pci_enable_device(pdev); 1534 if (!rc) { 1535 pdev->is_managed = 1; 1536 dr->enabled = 1; 1537 } 1538 return rc; 1539 } 1540 EXPORT_SYMBOL(pcim_enable_device); 1541 1542 /** 1543 * pcim_pin_device - Pin managed PCI device 1544 * @pdev: PCI device to pin 1545 * 1546 * Pin managed PCI device @pdev. Pinned device won't be disabled on 1547 * driver detach. @pdev must have been enabled with 1548 * pcim_enable_device(). 1549 */ 1550 void pcim_pin_device(struct pci_dev *pdev) 1551 { 1552 struct pci_devres *dr; 1553 1554 dr = find_pci_dr(pdev); 1555 WARN_ON(!dr || !dr->enabled); 1556 if (dr) 1557 dr->pinned = 1; 1558 } 1559 EXPORT_SYMBOL(pcim_pin_device); 1560 1561 /* 1562 * pcibios_add_device - provide arch specific hooks when adding device dev 1563 * @dev: the PCI device being added 1564 * 1565 * Permits the platform to provide architecture specific functionality when 1566 * devices are added. This is the default implementation. Architecture 1567 * implementations can override this. 1568 */ 1569 int __weak pcibios_add_device(struct pci_dev *dev) 1570 { 1571 return 0; 1572 } 1573 1574 /** 1575 * pcibios_release_device - provide arch specific hooks when releasing device dev 1576 * @dev: the PCI device being released 1577 * 1578 * Permits the platform to provide architecture specific functionality when 1579 * devices are released. This is the default implementation. Architecture 1580 * implementations can override this. 1581 */ 1582 void __weak pcibios_release_device(struct pci_dev *dev) {} 1583 1584 /** 1585 * pcibios_disable_device - disable arch specific PCI resources for device dev 1586 * @dev: the PCI device to disable 1587 * 1588 * Disables architecture specific PCI resources for the device. This 1589 * is the default implementation. Architecture implementations can 1590 * override this. 1591 */ 1592 void __weak pcibios_disable_device(struct pci_dev *dev) {} 1593 1594 /** 1595 * pcibios_penalize_isa_irq - penalize an ISA IRQ 1596 * @irq: ISA IRQ to penalize 1597 * @active: IRQ active or not 1598 * 1599 * Permits the platform to provide architecture-specific functionality when 1600 * penalizing ISA IRQs. This is the default implementation. Architecture 1601 * implementations can override this. 1602 */ 1603 void __weak pcibios_penalize_isa_irq(int irq, int active) {} 1604 1605 static void do_pci_disable_device(struct pci_dev *dev) 1606 { 1607 u16 pci_command; 1608 1609 pci_read_config_word(dev, PCI_COMMAND, &pci_command); 1610 if (pci_command & PCI_COMMAND_MASTER) { 1611 pci_command &= ~PCI_COMMAND_MASTER; 1612 pci_write_config_word(dev, PCI_COMMAND, pci_command); 1613 } 1614 1615 pcibios_disable_device(dev); 1616 } 1617 1618 /** 1619 * pci_disable_enabled_device - Disable device without updating enable_cnt 1620 * @dev: PCI device to disable 1621 * 1622 * NOTE: This function is a backend of PCI power management routines and is 1623 * not supposed to be called drivers. 1624 */ 1625 void pci_disable_enabled_device(struct pci_dev *dev) 1626 { 1627 if (pci_is_enabled(dev)) 1628 do_pci_disable_device(dev); 1629 } 1630 1631 /** 1632 * pci_disable_device - Disable PCI device after use 1633 * @dev: PCI device to be disabled 1634 * 1635 * Signal to the system that the PCI device is not in use by the system 1636 * anymore. This only involves disabling PCI bus-mastering, if active. 1637 * 1638 * Note we don't actually disable the device until all callers of 1639 * pci_enable_device() have called pci_disable_device(). 1640 */ 1641 void pci_disable_device(struct pci_dev *dev) 1642 { 1643 struct pci_devres *dr; 1644 1645 dr = find_pci_dr(dev); 1646 if (dr) 1647 dr->enabled = 0; 1648 1649 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0, 1650 "disabling already-disabled device"); 1651 1652 if (atomic_dec_return(&dev->enable_cnt) != 0) 1653 return; 1654 1655 do_pci_disable_device(dev); 1656 1657 dev->is_busmaster = 0; 1658 } 1659 EXPORT_SYMBOL(pci_disable_device); 1660 1661 /** 1662 * pcibios_set_pcie_reset_state - set reset state for device dev 1663 * @dev: the PCIe device reset 1664 * @state: Reset state to enter into 1665 * 1666 * 1667 * Sets the PCIe reset state for the device. This is the default 1668 * implementation. Architecture implementations can override this. 1669 */ 1670 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev, 1671 enum pcie_reset_state state) 1672 { 1673 return -EINVAL; 1674 } 1675 1676 /** 1677 * pci_set_pcie_reset_state - set reset state for device dev 1678 * @dev: the PCIe device reset 1679 * @state: Reset state to enter into 1680 * 1681 * 1682 * Sets the PCI reset state for the device. 1683 */ 1684 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state) 1685 { 1686 return pcibios_set_pcie_reset_state(dev, state); 1687 } 1688 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state); 1689 1690 /** 1691 * pcie_clear_root_pme_status - Clear root port PME interrupt status. 1692 * @dev: PCIe root port or event collector. 1693 */ 1694 void pcie_clear_root_pme_status(struct pci_dev *dev) 1695 { 1696 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME); 1697 } 1698 1699 /** 1700 * pci_check_pme_status - Check if given device has generated PME. 1701 * @dev: Device to check. 1702 * 1703 * Check the PME status of the device and if set, clear it and clear PME enable 1704 * (if set). Return 'true' if PME status and PME enable were both set or 1705 * 'false' otherwise. 1706 */ 1707 bool pci_check_pme_status(struct pci_dev *dev) 1708 { 1709 int pmcsr_pos; 1710 u16 pmcsr; 1711 bool ret = false; 1712 1713 if (!dev->pm_cap) 1714 return false; 1715 1716 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL; 1717 pci_read_config_word(dev, pmcsr_pos, &pmcsr); 1718 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS)) 1719 return false; 1720 1721 /* Clear PME status. */ 1722 pmcsr |= PCI_PM_CTRL_PME_STATUS; 1723 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) { 1724 /* Disable PME to avoid interrupt flood. */ 1725 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 1726 ret = true; 1727 } 1728 1729 pci_write_config_word(dev, pmcsr_pos, pmcsr); 1730 1731 return ret; 1732 } 1733 1734 /** 1735 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set. 1736 * @dev: Device to handle. 1737 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag. 1738 * 1739 * Check if @dev has generated PME and queue a resume request for it in that 1740 * case. 1741 */ 1742 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset) 1743 { 1744 if (pme_poll_reset && dev->pme_poll) 1745 dev->pme_poll = false; 1746 1747 if (pci_check_pme_status(dev)) { 1748 pci_wakeup_event(dev); 1749 pm_request_resume(&dev->dev); 1750 } 1751 return 0; 1752 } 1753 1754 /** 1755 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary. 1756 * @bus: Top bus of the subtree to walk. 1757 */ 1758 void pci_pme_wakeup_bus(struct pci_bus *bus) 1759 { 1760 if (bus) 1761 pci_walk_bus(bus, pci_pme_wakeup, (void *)true); 1762 } 1763 1764 1765 /** 1766 * pci_pme_capable - check the capability of PCI device to generate PME# 1767 * @dev: PCI device to handle. 1768 * @state: PCI state from which device will issue PME#. 1769 */ 1770 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state) 1771 { 1772 if (!dev->pm_cap) 1773 return false; 1774 1775 return !!(dev->pme_support & (1 << state)); 1776 } 1777 EXPORT_SYMBOL(pci_pme_capable); 1778 1779 static void pci_pme_list_scan(struct work_struct *work) 1780 { 1781 struct pci_pme_device *pme_dev, *n; 1782 1783 mutex_lock(&pci_pme_list_mutex); 1784 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) { 1785 if (pme_dev->dev->pme_poll) { 1786 struct pci_dev *bridge; 1787 1788 bridge = pme_dev->dev->bus->self; 1789 /* 1790 * If bridge is in low power state, the 1791 * configuration space of subordinate devices 1792 * may be not accessible 1793 */ 1794 if (bridge && bridge->current_state != PCI_D0) 1795 continue; 1796 pci_pme_wakeup(pme_dev->dev, NULL); 1797 } else { 1798 list_del(&pme_dev->list); 1799 kfree(pme_dev); 1800 } 1801 } 1802 if (!list_empty(&pci_pme_list)) 1803 queue_delayed_work(system_freezable_wq, &pci_pme_work, 1804 msecs_to_jiffies(PME_TIMEOUT)); 1805 mutex_unlock(&pci_pme_list_mutex); 1806 } 1807 1808 static void __pci_pme_active(struct pci_dev *dev, bool enable) 1809 { 1810 u16 pmcsr; 1811 1812 if (!dev->pme_support) 1813 return; 1814 1815 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1816 /* Clear PME_Status by writing 1 to it and enable PME# */ 1817 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE; 1818 if (!enable) 1819 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 1820 1821 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 1822 } 1823 1824 /** 1825 * pci_pme_restore - Restore PME configuration after config space restore. 1826 * @dev: PCI device to update. 1827 */ 1828 void pci_pme_restore(struct pci_dev *dev) 1829 { 1830 u16 pmcsr; 1831 1832 if (!dev->pme_support) 1833 return; 1834 1835 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1836 if (dev->wakeup_prepared) { 1837 pmcsr |= PCI_PM_CTRL_PME_ENABLE; 1838 pmcsr &= ~PCI_PM_CTRL_PME_STATUS; 1839 } else { 1840 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 1841 pmcsr |= PCI_PM_CTRL_PME_STATUS; 1842 } 1843 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 1844 } 1845 1846 /** 1847 * pci_pme_active - enable or disable PCI device's PME# function 1848 * @dev: PCI device to handle. 1849 * @enable: 'true' to enable PME# generation; 'false' to disable it. 1850 * 1851 * The caller must verify that the device is capable of generating PME# before 1852 * calling this function with @enable equal to 'true'. 1853 */ 1854 void pci_pme_active(struct pci_dev *dev, bool enable) 1855 { 1856 __pci_pme_active(dev, enable); 1857 1858 /* 1859 * PCI (as opposed to PCIe) PME requires that the device have 1860 * its PME# line hooked up correctly. Not all hardware vendors 1861 * do this, so the PME never gets delivered and the device 1862 * remains asleep. The easiest way around this is to 1863 * periodically walk the list of suspended devices and check 1864 * whether any have their PME flag set. The assumption is that 1865 * we'll wake up often enough anyway that this won't be a huge 1866 * hit, and the power savings from the devices will still be a 1867 * win. 1868 * 1869 * Although PCIe uses in-band PME message instead of PME# line 1870 * to report PME, PME does not work for some PCIe devices in 1871 * reality. For example, there are devices that set their PME 1872 * status bits, but don't really bother to send a PME message; 1873 * there are PCI Express Root Ports that don't bother to 1874 * trigger interrupts when they receive PME messages from the 1875 * devices below. So PME poll is used for PCIe devices too. 1876 */ 1877 1878 if (dev->pme_poll) { 1879 struct pci_pme_device *pme_dev; 1880 if (enable) { 1881 pme_dev = kmalloc(sizeof(struct pci_pme_device), 1882 GFP_KERNEL); 1883 if (!pme_dev) { 1884 pci_warn(dev, "can't enable PME#\n"); 1885 return; 1886 } 1887 pme_dev->dev = dev; 1888 mutex_lock(&pci_pme_list_mutex); 1889 list_add(&pme_dev->list, &pci_pme_list); 1890 if (list_is_singular(&pci_pme_list)) 1891 queue_delayed_work(system_freezable_wq, 1892 &pci_pme_work, 1893 msecs_to_jiffies(PME_TIMEOUT)); 1894 mutex_unlock(&pci_pme_list_mutex); 1895 } else { 1896 mutex_lock(&pci_pme_list_mutex); 1897 list_for_each_entry(pme_dev, &pci_pme_list, list) { 1898 if (pme_dev->dev == dev) { 1899 list_del(&pme_dev->list); 1900 kfree(pme_dev); 1901 break; 1902 } 1903 } 1904 mutex_unlock(&pci_pme_list_mutex); 1905 } 1906 } 1907 1908 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled"); 1909 } 1910 EXPORT_SYMBOL(pci_pme_active); 1911 1912 /** 1913 * pci_enable_wake - enable PCI device as wakeup event source 1914 * @dev: PCI device affected 1915 * @state: PCI state from which device will issue wakeup events 1916 * @enable: True to enable event generation; false to disable 1917 * 1918 * This enables the device as a wakeup event source, or disables it. 1919 * When such events involves platform-specific hooks, those hooks are 1920 * called automatically by this routine. 1921 * 1922 * Devices with legacy power management (no standard PCI PM capabilities) 1923 * always require such platform hooks. 1924 * 1925 * RETURN VALUE: 1926 * 0 is returned on success 1927 * -EINVAL is returned if device is not supposed to wake up the system 1928 * Error code depending on the platform is returned if both the platform and 1929 * the native mechanism fail to enable the generation of wake-up events 1930 */ 1931 int pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable) 1932 { 1933 int ret = 0; 1934 1935 /* 1936 * Bridges can only signal wakeup on behalf of subordinate devices, 1937 * but that is set up elsewhere, so skip them. 1938 */ 1939 if (pci_has_subordinate(dev)) 1940 return 0; 1941 1942 /* Don't do the same thing twice in a row for one device. */ 1943 if (!!enable == !!dev->wakeup_prepared) 1944 return 0; 1945 1946 /* 1947 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don 1948 * Anderson we should be doing PME# wake enable followed by ACPI wake 1949 * enable. To disable wake-up we call the platform first, for symmetry. 1950 */ 1951 1952 if (enable) { 1953 int error; 1954 1955 if (pci_pme_capable(dev, state)) 1956 pci_pme_active(dev, true); 1957 else 1958 ret = 1; 1959 error = platform_pci_set_wakeup(dev, true); 1960 if (ret) 1961 ret = error; 1962 if (!ret) 1963 dev->wakeup_prepared = true; 1964 } else { 1965 platform_pci_set_wakeup(dev, false); 1966 pci_pme_active(dev, false); 1967 dev->wakeup_prepared = false; 1968 } 1969 1970 return ret; 1971 } 1972 EXPORT_SYMBOL(pci_enable_wake); 1973 1974 /** 1975 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold 1976 * @dev: PCI device to prepare 1977 * @enable: True to enable wake-up event generation; false to disable 1978 * 1979 * Many drivers want the device to wake up the system from D3_hot or D3_cold 1980 * and this function allows them to set that up cleanly - pci_enable_wake() 1981 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI 1982 * ordering constraints. 1983 * 1984 * This function only returns error code if the device is not capable of 1985 * generating PME# from both D3_hot and D3_cold, and the platform is unable to 1986 * enable wake-up power for it. 1987 */ 1988 int pci_wake_from_d3(struct pci_dev *dev, bool enable) 1989 { 1990 return pci_pme_capable(dev, PCI_D3cold) ? 1991 pci_enable_wake(dev, PCI_D3cold, enable) : 1992 pci_enable_wake(dev, PCI_D3hot, enable); 1993 } 1994 EXPORT_SYMBOL(pci_wake_from_d3); 1995 1996 /** 1997 * pci_target_state - find an appropriate low power state for a given PCI dev 1998 * @dev: PCI device 1999 * @wakeup: Whether or not wakeup functionality will be enabled for the device. 2000 * 2001 * Use underlying platform code to find a supported low power state for @dev. 2002 * If the platform can't manage @dev, return the deepest state from which it 2003 * can generate wake events, based on any available PME info. 2004 */ 2005 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup) 2006 { 2007 pci_power_t target_state = PCI_D3hot; 2008 2009 if (platform_pci_power_manageable(dev)) { 2010 /* 2011 * Call the platform to choose the target state of the device 2012 * and enable wake-up from this state if supported. 2013 */ 2014 pci_power_t state = platform_pci_choose_state(dev); 2015 2016 switch (state) { 2017 case PCI_POWER_ERROR: 2018 case PCI_UNKNOWN: 2019 break; 2020 case PCI_D1: 2021 case PCI_D2: 2022 if (pci_no_d1d2(dev)) 2023 break; 2024 default: 2025 target_state = state; 2026 } 2027 2028 return target_state; 2029 } 2030 2031 if (!dev->pm_cap) 2032 target_state = PCI_D0; 2033 2034 /* 2035 * If the device is in D3cold even though it's not power-manageable by 2036 * the platform, it may have been powered down by non-standard means. 2037 * Best to let it slumber. 2038 */ 2039 if (dev->current_state == PCI_D3cold) 2040 target_state = PCI_D3cold; 2041 2042 if (wakeup) { 2043 /* 2044 * Find the deepest state from which the device can generate 2045 * wake-up events, make it the target state and enable device 2046 * to generate PME#. 2047 */ 2048 if (dev->pme_support) { 2049 while (target_state 2050 && !(dev->pme_support & (1 << target_state))) 2051 target_state--; 2052 } 2053 } 2054 2055 return target_state; 2056 } 2057 2058 /** 2059 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state 2060 * @dev: Device to handle. 2061 * 2062 * Choose the power state appropriate for the device depending on whether 2063 * it can wake up the system and/or is power manageable by the platform 2064 * (PCI_D3hot is the default) and put the device into that state. 2065 */ 2066 int pci_prepare_to_sleep(struct pci_dev *dev) 2067 { 2068 bool wakeup = device_may_wakeup(&dev->dev); 2069 pci_power_t target_state = pci_target_state(dev, wakeup); 2070 int error; 2071 2072 if (target_state == PCI_POWER_ERROR) 2073 return -EIO; 2074 2075 pci_enable_wake(dev, target_state, wakeup); 2076 2077 error = pci_set_power_state(dev, target_state); 2078 2079 if (error) 2080 pci_enable_wake(dev, target_state, false); 2081 2082 return error; 2083 } 2084 EXPORT_SYMBOL(pci_prepare_to_sleep); 2085 2086 /** 2087 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state 2088 * @dev: Device to handle. 2089 * 2090 * Disable device's system wake-up capability and put it into D0. 2091 */ 2092 int pci_back_from_sleep(struct pci_dev *dev) 2093 { 2094 pci_enable_wake(dev, PCI_D0, false); 2095 return pci_set_power_state(dev, PCI_D0); 2096 } 2097 EXPORT_SYMBOL(pci_back_from_sleep); 2098 2099 /** 2100 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend. 2101 * @dev: PCI device being suspended. 2102 * 2103 * Prepare @dev to generate wake-up events at run time and put it into a low 2104 * power state. 2105 */ 2106 int pci_finish_runtime_suspend(struct pci_dev *dev) 2107 { 2108 pci_power_t target_state; 2109 int error; 2110 2111 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev)); 2112 if (target_state == PCI_POWER_ERROR) 2113 return -EIO; 2114 2115 dev->runtime_d3cold = target_state == PCI_D3cold; 2116 2117 pci_enable_wake(dev, target_state, pci_dev_run_wake(dev)); 2118 2119 error = pci_set_power_state(dev, target_state); 2120 2121 if (error) { 2122 pci_enable_wake(dev, target_state, false); 2123 dev->runtime_d3cold = false; 2124 } 2125 2126 return error; 2127 } 2128 2129 /** 2130 * pci_dev_run_wake - Check if device can generate run-time wake-up events. 2131 * @dev: Device to check. 2132 * 2133 * Return true if the device itself is capable of generating wake-up events 2134 * (through the platform or using the native PCIe PME) or if the device supports 2135 * PME and one of its upstream bridges can generate wake-up events. 2136 */ 2137 bool pci_dev_run_wake(struct pci_dev *dev) 2138 { 2139 struct pci_bus *bus = dev->bus; 2140 2141 if (device_can_wakeup(&dev->dev)) 2142 return true; 2143 2144 if (!dev->pme_support) 2145 return false; 2146 2147 /* PME-capable in principle, but not from the target power state */ 2148 if (!pci_pme_capable(dev, pci_target_state(dev, false))) 2149 return false; 2150 2151 while (bus->parent) { 2152 struct pci_dev *bridge = bus->self; 2153 2154 if (device_can_wakeup(&bridge->dev)) 2155 return true; 2156 2157 bus = bus->parent; 2158 } 2159 2160 /* We have reached the root bus. */ 2161 if (bus->bridge) 2162 return device_can_wakeup(bus->bridge); 2163 2164 return false; 2165 } 2166 EXPORT_SYMBOL_GPL(pci_dev_run_wake); 2167 2168 /** 2169 * pci_dev_keep_suspended - Check if the device can stay in the suspended state. 2170 * @pci_dev: Device to check. 2171 * 2172 * Return 'true' if the device is runtime-suspended, it doesn't have to be 2173 * reconfigured due to wakeup settings difference between system and runtime 2174 * suspend and the current power state of it is suitable for the upcoming 2175 * (system) transition. 2176 * 2177 * If the device is not configured for system wakeup, disable PME for it before 2178 * returning 'true' to prevent it from waking up the system unnecessarily. 2179 */ 2180 bool pci_dev_keep_suspended(struct pci_dev *pci_dev) 2181 { 2182 struct device *dev = &pci_dev->dev; 2183 bool wakeup = device_may_wakeup(dev); 2184 2185 if (!pm_runtime_suspended(dev) 2186 || pci_target_state(pci_dev, wakeup) != pci_dev->current_state 2187 || platform_pci_need_resume(pci_dev)) 2188 return false; 2189 2190 /* 2191 * At this point the device is good to go unless it's been configured 2192 * to generate PME at the runtime suspend time, but it is not supposed 2193 * to wake up the system. In that case, simply disable PME for it 2194 * (it will have to be re-enabled on exit from system resume). 2195 * 2196 * If the device's power state is D3cold and the platform check above 2197 * hasn't triggered, the device's configuration is suitable and we don't 2198 * need to manipulate it at all. 2199 */ 2200 spin_lock_irq(&dev->power.lock); 2201 2202 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold && 2203 !wakeup) 2204 __pci_pme_active(pci_dev, false); 2205 2206 spin_unlock_irq(&dev->power.lock); 2207 return true; 2208 } 2209 2210 /** 2211 * pci_dev_complete_resume - Finalize resume from system sleep for a device. 2212 * @pci_dev: Device to handle. 2213 * 2214 * If the device is runtime suspended and wakeup-capable, enable PME for it as 2215 * it might have been disabled during the prepare phase of system suspend if 2216 * the device was not configured for system wakeup. 2217 */ 2218 void pci_dev_complete_resume(struct pci_dev *pci_dev) 2219 { 2220 struct device *dev = &pci_dev->dev; 2221 2222 if (!pci_dev_run_wake(pci_dev)) 2223 return; 2224 2225 spin_lock_irq(&dev->power.lock); 2226 2227 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold) 2228 __pci_pme_active(pci_dev, true); 2229 2230 spin_unlock_irq(&dev->power.lock); 2231 } 2232 2233 void pci_config_pm_runtime_get(struct pci_dev *pdev) 2234 { 2235 struct device *dev = &pdev->dev; 2236 struct device *parent = dev->parent; 2237 2238 if (parent) 2239 pm_runtime_get_sync(parent); 2240 pm_runtime_get_noresume(dev); 2241 /* 2242 * pdev->current_state is set to PCI_D3cold during suspending, 2243 * so wait until suspending completes 2244 */ 2245 pm_runtime_barrier(dev); 2246 /* 2247 * Only need to resume devices in D3cold, because config 2248 * registers are still accessible for devices suspended but 2249 * not in D3cold. 2250 */ 2251 if (pdev->current_state == PCI_D3cold) 2252 pm_runtime_resume(dev); 2253 } 2254 2255 void pci_config_pm_runtime_put(struct pci_dev *pdev) 2256 { 2257 struct device *dev = &pdev->dev; 2258 struct device *parent = dev->parent; 2259 2260 pm_runtime_put(dev); 2261 if (parent) 2262 pm_runtime_put_sync(parent); 2263 } 2264 2265 /** 2266 * pci_bridge_d3_possible - Is it possible to put the bridge into D3 2267 * @bridge: Bridge to check 2268 * 2269 * This function checks if it is possible to move the bridge to D3. 2270 * Currently we only allow D3 for recent enough PCIe ports. 2271 */ 2272 bool pci_bridge_d3_possible(struct pci_dev *bridge) 2273 { 2274 if (!pci_is_pcie(bridge)) 2275 return false; 2276 2277 switch (pci_pcie_type(bridge)) { 2278 case PCI_EXP_TYPE_ROOT_PORT: 2279 case PCI_EXP_TYPE_UPSTREAM: 2280 case PCI_EXP_TYPE_DOWNSTREAM: 2281 if (pci_bridge_d3_disable) 2282 return false; 2283 2284 /* 2285 * Hotplug interrupts cannot be delivered if the link is down, 2286 * so parents of a hotplug port must stay awake. In addition, 2287 * hotplug ports handled by firmware in System Management Mode 2288 * may not be put into D3 by the OS (Thunderbolt on non-Macs). 2289 * For simplicity, disallow in general for now. 2290 */ 2291 if (bridge->is_hotplug_bridge) 2292 return false; 2293 2294 if (pci_bridge_d3_force) 2295 return true; 2296 2297 /* 2298 * It should be safe to put PCIe ports from 2015 or newer 2299 * to D3. 2300 */ 2301 if (dmi_get_bios_year() >= 2015) 2302 return true; 2303 break; 2304 } 2305 2306 return false; 2307 } 2308 2309 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data) 2310 { 2311 bool *d3cold_ok = data; 2312 2313 if (/* The device needs to be allowed to go D3cold ... */ 2314 dev->no_d3cold || !dev->d3cold_allowed || 2315 2316 /* ... and if it is wakeup capable to do so from D3cold. */ 2317 (device_may_wakeup(&dev->dev) && 2318 !pci_pme_capable(dev, PCI_D3cold)) || 2319 2320 /* If it is a bridge it must be allowed to go to D3. */ 2321 !pci_power_manageable(dev)) 2322 2323 *d3cold_ok = false; 2324 2325 return !*d3cold_ok; 2326 } 2327 2328 /* 2329 * pci_bridge_d3_update - Update bridge D3 capabilities 2330 * @dev: PCI device which is changed 2331 * 2332 * Update upstream bridge PM capabilities accordingly depending on if the 2333 * device PM configuration was changed or the device is being removed. The 2334 * change is also propagated upstream. 2335 */ 2336 void pci_bridge_d3_update(struct pci_dev *dev) 2337 { 2338 bool remove = !device_is_registered(&dev->dev); 2339 struct pci_dev *bridge; 2340 bool d3cold_ok = true; 2341 2342 bridge = pci_upstream_bridge(dev); 2343 if (!bridge || !pci_bridge_d3_possible(bridge)) 2344 return; 2345 2346 /* 2347 * If D3 is currently allowed for the bridge, removing one of its 2348 * children won't change that. 2349 */ 2350 if (remove && bridge->bridge_d3) 2351 return; 2352 2353 /* 2354 * If D3 is currently allowed for the bridge and a child is added or 2355 * changed, disallowance of D3 can only be caused by that child, so 2356 * we only need to check that single device, not any of its siblings. 2357 * 2358 * If D3 is currently not allowed for the bridge, checking the device 2359 * first may allow us to skip checking its siblings. 2360 */ 2361 if (!remove) 2362 pci_dev_check_d3cold(dev, &d3cold_ok); 2363 2364 /* 2365 * If D3 is currently not allowed for the bridge, this may be caused 2366 * either by the device being changed/removed or any of its siblings, 2367 * so we need to go through all children to find out if one of them 2368 * continues to block D3. 2369 */ 2370 if (d3cold_ok && !bridge->bridge_d3) 2371 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold, 2372 &d3cold_ok); 2373 2374 if (bridge->bridge_d3 != d3cold_ok) { 2375 bridge->bridge_d3 = d3cold_ok; 2376 /* Propagate change to upstream bridges */ 2377 pci_bridge_d3_update(bridge); 2378 } 2379 } 2380 2381 /** 2382 * pci_d3cold_enable - Enable D3cold for device 2383 * @dev: PCI device to handle 2384 * 2385 * This function can be used in drivers to enable D3cold from the device 2386 * they handle. It also updates upstream PCI bridge PM capabilities 2387 * accordingly. 2388 */ 2389 void pci_d3cold_enable(struct pci_dev *dev) 2390 { 2391 if (dev->no_d3cold) { 2392 dev->no_d3cold = false; 2393 pci_bridge_d3_update(dev); 2394 } 2395 } 2396 EXPORT_SYMBOL_GPL(pci_d3cold_enable); 2397 2398 /** 2399 * pci_d3cold_disable - Disable D3cold for device 2400 * @dev: PCI device to handle 2401 * 2402 * This function can be used in drivers to disable D3cold from the device 2403 * they handle. It also updates upstream PCI bridge PM capabilities 2404 * accordingly. 2405 */ 2406 void pci_d3cold_disable(struct pci_dev *dev) 2407 { 2408 if (!dev->no_d3cold) { 2409 dev->no_d3cold = true; 2410 pci_bridge_d3_update(dev); 2411 } 2412 } 2413 EXPORT_SYMBOL_GPL(pci_d3cold_disable); 2414 2415 /** 2416 * pci_pm_init - Initialize PM functions of given PCI device 2417 * @dev: PCI device to handle. 2418 */ 2419 void pci_pm_init(struct pci_dev *dev) 2420 { 2421 int pm; 2422 u16 pmc; 2423 2424 pm_runtime_forbid(&dev->dev); 2425 pm_runtime_set_active(&dev->dev); 2426 pm_runtime_enable(&dev->dev); 2427 device_enable_async_suspend(&dev->dev); 2428 dev->wakeup_prepared = false; 2429 2430 dev->pm_cap = 0; 2431 dev->pme_support = 0; 2432 2433 /* find PCI PM capability in list */ 2434 pm = pci_find_capability(dev, PCI_CAP_ID_PM); 2435 if (!pm) 2436 return; 2437 /* Check device's ability to generate PME# */ 2438 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc); 2439 2440 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) { 2441 pci_err(dev, "unsupported PM cap regs version (%u)\n", 2442 pmc & PCI_PM_CAP_VER_MASK); 2443 return; 2444 } 2445 2446 dev->pm_cap = pm; 2447 dev->d3_delay = PCI_PM_D3_WAIT; 2448 dev->d3cold_delay = PCI_PM_D3COLD_WAIT; 2449 dev->bridge_d3 = pci_bridge_d3_possible(dev); 2450 dev->d3cold_allowed = true; 2451 2452 dev->d1_support = false; 2453 dev->d2_support = false; 2454 if (!pci_no_d1d2(dev)) { 2455 if (pmc & PCI_PM_CAP_D1) 2456 dev->d1_support = true; 2457 if (pmc & PCI_PM_CAP_D2) 2458 dev->d2_support = true; 2459 2460 if (dev->d1_support || dev->d2_support) 2461 pci_printk(KERN_DEBUG, dev, "supports%s%s\n", 2462 dev->d1_support ? " D1" : "", 2463 dev->d2_support ? " D2" : ""); 2464 } 2465 2466 pmc &= PCI_PM_CAP_PME_MASK; 2467 if (pmc) { 2468 pci_printk(KERN_DEBUG, dev, "PME# supported from%s%s%s%s%s\n", 2469 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "", 2470 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "", 2471 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "", 2472 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "", 2473 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : ""); 2474 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT; 2475 dev->pme_poll = true; 2476 /* 2477 * Make device's PM flags reflect the wake-up capability, but 2478 * let the user space enable it to wake up the system as needed. 2479 */ 2480 device_set_wakeup_capable(&dev->dev, true); 2481 /* Disable the PME# generation functionality */ 2482 pci_pme_active(dev, false); 2483 } 2484 } 2485 2486 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop) 2487 { 2488 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI; 2489 2490 switch (prop) { 2491 case PCI_EA_P_MEM: 2492 case PCI_EA_P_VF_MEM: 2493 flags |= IORESOURCE_MEM; 2494 break; 2495 case PCI_EA_P_MEM_PREFETCH: 2496 case PCI_EA_P_VF_MEM_PREFETCH: 2497 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH; 2498 break; 2499 case PCI_EA_P_IO: 2500 flags |= IORESOURCE_IO; 2501 break; 2502 default: 2503 return 0; 2504 } 2505 2506 return flags; 2507 } 2508 2509 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei, 2510 u8 prop) 2511 { 2512 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO) 2513 return &dev->resource[bei]; 2514 #ifdef CONFIG_PCI_IOV 2515 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 && 2516 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH)) 2517 return &dev->resource[PCI_IOV_RESOURCES + 2518 bei - PCI_EA_BEI_VF_BAR0]; 2519 #endif 2520 else if (bei == PCI_EA_BEI_ROM) 2521 return &dev->resource[PCI_ROM_RESOURCE]; 2522 else 2523 return NULL; 2524 } 2525 2526 /* Read an Enhanced Allocation (EA) entry */ 2527 static int pci_ea_read(struct pci_dev *dev, int offset) 2528 { 2529 struct resource *res; 2530 int ent_size, ent_offset = offset; 2531 resource_size_t start, end; 2532 unsigned long flags; 2533 u32 dw0, bei, base, max_offset; 2534 u8 prop; 2535 bool support_64 = (sizeof(resource_size_t) >= 8); 2536 2537 pci_read_config_dword(dev, ent_offset, &dw0); 2538 ent_offset += 4; 2539 2540 /* Entry size field indicates DWORDs after 1st */ 2541 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2; 2542 2543 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */ 2544 goto out; 2545 2546 bei = (dw0 & PCI_EA_BEI) >> 4; 2547 prop = (dw0 & PCI_EA_PP) >> 8; 2548 2549 /* 2550 * If the Property is in the reserved range, try the Secondary 2551 * Property instead. 2552 */ 2553 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED) 2554 prop = (dw0 & PCI_EA_SP) >> 16; 2555 if (prop > PCI_EA_P_BRIDGE_IO) 2556 goto out; 2557 2558 res = pci_ea_get_resource(dev, bei, prop); 2559 if (!res) { 2560 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei); 2561 goto out; 2562 } 2563 2564 flags = pci_ea_flags(dev, prop); 2565 if (!flags) { 2566 pci_err(dev, "Unsupported EA properties: %#x\n", prop); 2567 goto out; 2568 } 2569 2570 /* Read Base */ 2571 pci_read_config_dword(dev, ent_offset, &base); 2572 start = (base & PCI_EA_FIELD_MASK); 2573 ent_offset += 4; 2574 2575 /* Read MaxOffset */ 2576 pci_read_config_dword(dev, ent_offset, &max_offset); 2577 ent_offset += 4; 2578 2579 /* Read Base MSBs (if 64-bit entry) */ 2580 if (base & PCI_EA_IS_64) { 2581 u32 base_upper; 2582 2583 pci_read_config_dword(dev, ent_offset, &base_upper); 2584 ent_offset += 4; 2585 2586 flags |= IORESOURCE_MEM_64; 2587 2588 /* entry starts above 32-bit boundary, can't use */ 2589 if (!support_64 && base_upper) 2590 goto out; 2591 2592 if (support_64) 2593 start |= ((u64)base_upper << 32); 2594 } 2595 2596 end = start + (max_offset | 0x03); 2597 2598 /* Read MaxOffset MSBs (if 64-bit entry) */ 2599 if (max_offset & PCI_EA_IS_64) { 2600 u32 max_offset_upper; 2601 2602 pci_read_config_dword(dev, ent_offset, &max_offset_upper); 2603 ent_offset += 4; 2604 2605 flags |= IORESOURCE_MEM_64; 2606 2607 /* entry too big, can't use */ 2608 if (!support_64 && max_offset_upper) 2609 goto out; 2610 2611 if (support_64) 2612 end += ((u64)max_offset_upper << 32); 2613 } 2614 2615 if (end < start) { 2616 pci_err(dev, "EA Entry crosses address boundary\n"); 2617 goto out; 2618 } 2619 2620 if (ent_size != ent_offset - offset) { 2621 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n", 2622 ent_size, ent_offset - offset); 2623 goto out; 2624 } 2625 2626 res->name = pci_name(dev); 2627 res->start = start; 2628 res->end = end; 2629 res->flags = flags; 2630 2631 if (bei <= PCI_EA_BEI_BAR5) 2632 pci_printk(KERN_DEBUG, dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 2633 bei, res, prop); 2634 else if (bei == PCI_EA_BEI_ROM) 2635 pci_printk(KERN_DEBUG, dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n", 2636 res, prop); 2637 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5) 2638 pci_printk(KERN_DEBUG, dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 2639 bei - PCI_EA_BEI_VF_BAR0, res, prop); 2640 else 2641 pci_printk(KERN_DEBUG, dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n", 2642 bei, res, prop); 2643 2644 out: 2645 return offset + ent_size; 2646 } 2647 2648 /* Enhanced Allocation Initialization */ 2649 void pci_ea_init(struct pci_dev *dev) 2650 { 2651 int ea; 2652 u8 num_ent; 2653 int offset; 2654 int i; 2655 2656 /* find PCI EA capability in list */ 2657 ea = pci_find_capability(dev, PCI_CAP_ID_EA); 2658 if (!ea) 2659 return; 2660 2661 /* determine the number of entries */ 2662 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT, 2663 &num_ent); 2664 num_ent &= PCI_EA_NUM_ENT_MASK; 2665 2666 offset = ea + PCI_EA_FIRST_ENT; 2667 2668 /* Skip DWORD 2 for type 1 functions */ 2669 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) 2670 offset += 4; 2671 2672 /* parse each EA entry */ 2673 for (i = 0; i < num_ent; ++i) 2674 offset = pci_ea_read(dev, offset); 2675 } 2676 2677 static void pci_add_saved_cap(struct pci_dev *pci_dev, 2678 struct pci_cap_saved_state *new_cap) 2679 { 2680 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space); 2681 } 2682 2683 /** 2684 * _pci_add_cap_save_buffer - allocate buffer for saving given 2685 * capability registers 2686 * @dev: the PCI device 2687 * @cap: the capability to allocate the buffer for 2688 * @extended: Standard or Extended capability ID 2689 * @size: requested size of the buffer 2690 */ 2691 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap, 2692 bool extended, unsigned int size) 2693 { 2694 int pos; 2695 struct pci_cap_saved_state *save_state; 2696 2697 if (extended) 2698 pos = pci_find_ext_capability(dev, cap); 2699 else 2700 pos = pci_find_capability(dev, cap); 2701 2702 if (!pos) 2703 return 0; 2704 2705 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL); 2706 if (!save_state) 2707 return -ENOMEM; 2708 2709 save_state->cap.cap_nr = cap; 2710 save_state->cap.cap_extended = extended; 2711 save_state->cap.size = size; 2712 pci_add_saved_cap(dev, save_state); 2713 2714 return 0; 2715 } 2716 2717 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size) 2718 { 2719 return _pci_add_cap_save_buffer(dev, cap, false, size); 2720 } 2721 2722 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size) 2723 { 2724 return _pci_add_cap_save_buffer(dev, cap, true, size); 2725 } 2726 2727 /** 2728 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities 2729 * @dev: the PCI device 2730 */ 2731 void pci_allocate_cap_save_buffers(struct pci_dev *dev) 2732 { 2733 int error; 2734 2735 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP, 2736 PCI_EXP_SAVE_REGS * sizeof(u16)); 2737 if (error) 2738 pci_err(dev, "unable to preallocate PCI Express save buffer\n"); 2739 2740 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16)); 2741 if (error) 2742 pci_err(dev, "unable to preallocate PCI-X save buffer\n"); 2743 2744 pci_allocate_vc_save_buffers(dev); 2745 } 2746 2747 void pci_free_cap_save_buffers(struct pci_dev *dev) 2748 { 2749 struct pci_cap_saved_state *tmp; 2750 struct hlist_node *n; 2751 2752 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next) 2753 kfree(tmp); 2754 } 2755 2756 /** 2757 * pci_configure_ari - enable or disable ARI forwarding 2758 * @dev: the PCI device 2759 * 2760 * If @dev and its upstream bridge both support ARI, enable ARI in the 2761 * bridge. Otherwise, disable ARI in the bridge. 2762 */ 2763 void pci_configure_ari(struct pci_dev *dev) 2764 { 2765 u32 cap; 2766 struct pci_dev *bridge; 2767 2768 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn) 2769 return; 2770 2771 bridge = dev->bus->self; 2772 if (!bridge) 2773 return; 2774 2775 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 2776 if (!(cap & PCI_EXP_DEVCAP2_ARI)) 2777 return; 2778 2779 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) { 2780 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, 2781 PCI_EXP_DEVCTL2_ARI); 2782 bridge->ari_enabled = 1; 2783 } else { 2784 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2, 2785 PCI_EXP_DEVCTL2_ARI); 2786 bridge->ari_enabled = 0; 2787 } 2788 } 2789 2790 static int pci_acs_enable; 2791 2792 /** 2793 * pci_request_acs - ask for ACS to be enabled if supported 2794 */ 2795 void pci_request_acs(void) 2796 { 2797 pci_acs_enable = 1; 2798 } 2799 2800 /** 2801 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites 2802 * @dev: the PCI device 2803 */ 2804 static void pci_std_enable_acs(struct pci_dev *dev) 2805 { 2806 int pos; 2807 u16 cap; 2808 u16 ctrl; 2809 2810 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS); 2811 if (!pos) 2812 return; 2813 2814 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap); 2815 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 2816 2817 /* Source Validation */ 2818 ctrl |= (cap & PCI_ACS_SV); 2819 2820 /* P2P Request Redirect */ 2821 ctrl |= (cap & PCI_ACS_RR); 2822 2823 /* P2P Completion Redirect */ 2824 ctrl |= (cap & PCI_ACS_CR); 2825 2826 /* Upstream Forwarding */ 2827 ctrl |= (cap & PCI_ACS_UF); 2828 2829 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 2830 } 2831 2832 /** 2833 * pci_enable_acs - enable ACS if hardware support it 2834 * @dev: the PCI device 2835 */ 2836 void pci_enable_acs(struct pci_dev *dev) 2837 { 2838 if (!pci_acs_enable) 2839 return; 2840 2841 if (!pci_dev_specific_enable_acs(dev)) 2842 return; 2843 2844 pci_std_enable_acs(dev); 2845 } 2846 2847 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags) 2848 { 2849 int pos; 2850 u16 cap, ctrl; 2851 2852 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS); 2853 if (!pos) 2854 return false; 2855 2856 /* 2857 * Except for egress control, capabilities are either required 2858 * or only required if controllable. Features missing from the 2859 * capability field can therefore be assumed as hard-wired enabled. 2860 */ 2861 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap); 2862 acs_flags &= (cap | PCI_ACS_EC); 2863 2864 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl); 2865 return (ctrl & acs_flags) == acs_flags; 2866 } 2867 2868 /** 2869 * pci_acs_enabled - test ACS against required flags for a given device 2870 * @pdev: device to test 2871 * @acs_flags: required PCI ACS flags 2872 * 2873 * Return true if the device supports the provided flags. Automatically 2874 * filters out flags that are not implemented on multifunction devices. 2875 * 2876 * Note that this interface checks the effective ACS capabilities of the 2877 * device rather than the actual capabilities. For instance, most single 2878 * function endpoints are not required to support ACS because they have no 2879 * opportunity for peer-to-peer access. We therefore return 'true' 2880 * regardless of whether the device exposes an ACS capability. This makes 2881 * it much easier for callers of this function to ignore the actual type 2882 * or topology of the device when testing ACS support. 2883 */ 2884 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags) 2885 { 2886 int ret; 2887 2888 ret = pci_dev_specific_acs_enabled(pdev, acs_flags); 2889 if (ret >= 0) 2890 return ret > 0; 2891 2892 /* 2893 * Conventional PCI and PCI-X devices never support ACS, either 2894 * effectively or actually. The shared bus topology implies that 2895 * any device on the bus can receive or snoop DMA. 2896 */ 2897 if (!pci_is_pcie(pdev)) 2898 return false; 2899 2900 switch (pci_pcie_type(pdev)) { 2901 /* 2902 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec, 2903 * but since their primary interface is PCI/X, we conservatively 2904 * handle them as we would a non-PCIe device. 2905 */ 2906 case PCI_EXP_TYPE_PCIE_BRIDGE: 2907 /* 2908 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never 2909 * applicable... must never implement an ACS Extended Capability...". 2910 * This seems arbitrary, but we take a conservative interpretation 2911 * of this statement. 2912 */ 2913 case PCI_EXP_TYPE_PCI_BRIDGE: 2914 case PCI_EXP_TYPE_RC_EC: 2915 return false; 2916 /* 2917 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should 2918 * implement ACS in order to indicate their peer-to-peer capabilities, 2919 * regardless of whether they are single- or multi-function devices. 2920 */ 2921 case PCI_EXP_TYPE_DOWNSTREAM: 2922 case PCI_EXP_TYPE_ROOT_PORT: 2923 return pci_acs_flags_enabled(pdev, acs_flags); 2924 /* 2925 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be 2926 * implemented by the remaining PCIe types to indicate peer-to-peer 2927 * capabilities, but only when they are part of a multifunction 2928 * device. The footnote for section 6.12 indicates the specific 2929 * PCIe types included here. 2930 */ 2931 case PCI_EXP_TYPE_ENDPOINT: 2932 case PCI_EXP_TYPE_UPSTREAM: 2933 case PCI_EXP_TYPE_LEG_END: 2934 case PCI_EXP_TYPE_RC_END: 2935 if (!pdev->multifunction) 2936 break; 2937 2938 return pci_acs_flags_enabled(pdev, acs_flags); 2939 } 2940 2941 /* 2942 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable 2943 * to single function devices with the exception of downstream ports. 2944 */ 2945 return true; 2946 } 2947 2948 /** 2949 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy 2950 * @start: starting downstream device 2951 * @end: ending upstream device or NULL to search to the root bus 2952 * @acs_flags: required flags 2953 * 2954 * Walk up a device tree from start to end testing PCI ACS support. If 2955 * any step along the way does not support the required flags, return false. 2956 */ 2957 bool pci_acs_path_enabled(struct pci_dev *start, 2958 struct pci_dev *end, u16 acs_flags) 2959 { 2960 struct pci_dev *pdev, *parent = start; 2961 2962 do { 2963 pdev = parent; 2964 2965 if (!pci_acs_enabled(pdev, acs_flags)) 2966 return false; 2967 2968 if (pci_is_root_bus(pdev->bus)) 2969 return (end == NULL); 2970 2971 parent = pdev->bus->self; 2972 } while (pdev != end); 2973 2974 return true; 2975 } 2976 2977 /** 2978 * pci_rebar_find_pos - find position of resize ctrl reg for BAR 2979 * @pdev: PCI device 2980 * @bar: BAR to find 2981 * 2982 * Helper to find the position of the ctrl register for a BAR. 2983 * Returns -ENOTSUPP if resizable BARs are not supported at all. 2984 * Returns -ENOENT if no ctrl register for the BAR could be found. 2985 */ 2986 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar) 2987 { 2988 unsigned int pos, nbars, i; 2989 u32 ctrl; 2990 2991 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 2992 if (!pos) 2993 return -ENOTSUPP; 2994 2995 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 2996 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >> 2997 PCI_REBAR_CTRL_NBAR_SHIFT; 2998 2999 for (i = 0; i < nbars; i++, pos += 8) { 3000 int bar_idx; 3001 3002 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3003 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX; 3004 if (bar_idx == bar) 3005 return pos; 3006 } 3007 3008 return -ENOENT; 3009 } 3010 3011 /** 3012 * pci_rebar_get_possible_sizes - get possible sizes for BAR 3013 * @pdev: PCI device 3014 * @bar: BAR to query 3015 * 3016 * Get the possible sizes of a resizable BAR as bitmask defined in the spec 3017 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable. 3018 */ 3019 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar) 3020 { 3021 int pos; 3022 u32 cap; 3023 3024 pos = pci_rebar_find_pos(pdev, bar); 3025 if (pos < 0) 3026 return 0; 3027 3028 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap); 3029 return (cap & PCI_REBAR_CAP_SIZES) >> 4; 3030 } 3031 3032 /** 3033 * pci_rebar_get_current_size - get the current size of a BAR 3034 * @pdev: PCI device 3035 * @bar: BAR to set size to 3036 * 3037 * Read the size of a BAR from the resizable BAR config. 3038 * Returns size if found or negative error code. 3039 */ 3040 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar) 3041 { 3042 int pos; 3043 u32 ctrl; 3044 3045 pos = pci_rebar_find_pos(pdev, bar); 3046 if (pos < 0) 3047 return pos; 3048 3049 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3050 return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> 8; 3051 } 3052 3053 /** 3054 * pci_rebar_set_size - set a new size for a BAR 3055 * @pdev: PCI device 3056 * @bar: BAR to set size to 3057 * @size: new size as defined in the spec (0=1MB, 19=512GB) 3058 * 3059 * Set the new size of a BAR as defined in the spec. 3060 * Returns zero if resizing was successful, error code otherwise. 3061 */ 3062 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size) 3063 { 3064 int pos; 3065 u32 ctrl; 3066 3067 pos = pci_rebar_find_pos(pdev, bar); 3068 if (pos < 0) 3069 return pos; 3070 3071 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3072 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 3073 ctrl |= size << 8; 3074 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 3075 return 0; 3076 } 3077 3078 /** 3079 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port 3080 * @dev: the PCI device 3081 * @cap_mask: mask of desired AtomicOp sizes, including one or more of: 3082 * PCI_EXP_DEVCAP2_ATOMIC_COMP32 3083 * PCI_EXP_DEVCAP2_ATOMIC_COMP64 3084 * PCI_EXP_DEVCAP2_ATOMIC_COMP128 3085 * 3086 * Return 0 if all upstream bridges support AtomicOp routing, egress 3087 * blocking is disabled on all upstream ports, and the root port supports 3088 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit 3089 * AtomicOp completion), or negative otherwise. 3090 */ 3091 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask) 3092 { 3093 struct pci_bus *bus = dev->bus; 3094 struct pci_dev *bridge; 3095 u32 cap, ctl2; 3096 3097 if (!pci_is_pcie(dev)) 3098 return -EINVAL; 3099 3100 /* 3101 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be 3102 * AtomicOp requesters. For now, we only support endpoints as 3103 * requesters and root ports as completers. No endpoints as 3104 * completers, and no peer-to-peer. 3105 */ 3106 3107 switch (pci_pcie_type(dev)) { 3108 case PCI_EXP_TYPE_ENDPOINT: 3109 case PCI_EXP_TYPE_LEG_END: 3110 case PCI_EXP_TYPE_RC_END: 3111 break; 3112 default: 3113 return -EINVAL; 3114 } 3115 3116 while (bus->parent) { 3117 bridge = bus->self; 3118 3119 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3120 3121 switch (pci_pcie_type(bridge)) { 3122 /* Ensure switch ports support AtomicOp routing */ 3123 case PCI_EXP_TYPE_UPSTREAM: 3124 case PCI_EXP_TYPE_DOWNSTREAM: 3125 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE)) 3126 return -EINVAL; 3127 break; 3128 3129 /* Ensure root port supports all the sizes we care about */ 3130 case PCI_EXP_TYPE_ROOT_PORT: 3131 if ((cap & cap_mask) != cap_mask) 3132 return -EINVAL; 3133 break; 3134 } 3135 3136 /* Ensure upstream ports don't block AtomicOps on egress */ 3137 if (!bridge->has_secondary_link) { 3138 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, 3139 &ctl2); 3140 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK) 3141 return -EINVAL; 3142 } 3143 3144 bus = bus->parent; 3145 } 3146 3147 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2, 3148 PCI_EXP_DEVCTL2_ATOMIC_REQ); 3149 return 0; 3150 } 3151 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root); 3152 3153 /** 3154 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge 3155 * @dev: the PCI device 3156 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD) 3157 * 3158 * Perform INTx swizzling for a device behind one level of bridge. This is 3159 * required by section 9.1 of the PCI-to-PCI bridge specification for devices 3160 * behind bridges on add-in cards. For devices with ARI enabled, the slot 3161 * number is always 0 (see the Implementation Note in section 2.2.8.1 of 3162 * the PCI Express Base Specification, Revision 2.1) 3163 */ 3164 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin) 3165 { 3166 int slot; 3167 3168 if (pci_ari_enabled(dev->bus)) 3169 slot = 0; 3170 else 3171 slot = PCI_SLOT(dev->devfn); 3172 3173 return (((pin - 1) + slot) % 4) + 1; 3174 } 3175 3176 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge) 3177 { 3178 u8 pin; 3179 3180 pin = dev->pin; 3181 if (!pin) 3182 return -1; 3183 3184 while (!pci_is_root_bus(dev->bus)) { 3185 pin = pci_swizzle_interrupt_pin(dev, pin); 3186 dev = dev->bus->self; 3187 } 3188 *bridge = dev; 3189 return pin; 3190 } 3191 3192 /** 3193 * pci_common_swizzle - swizzle INTx all the way to root bridge 3194 * @dev: the PCI device 3195 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD) 3196 * 3197 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI 3198 * bridges all the way up to a PCI root bus. 3199 */ 3200 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp) 3201 { 3202 u8 pin = *pinp; 3203 3204 while (!pci_is_root_bus(dev->bus)) { 3205 pin = pci_swizzle_interrupt_pin(dev, pin); 3206 dev = dev->bus->self; 3207 } 3208 *pinp = pin; 3209 return PCI_SLOT(dev->devfn); 3210 } 3211 EXPORT_SYMBOL_GPL(pci_common_swizzle); 3212 3213 /** 3214 * pci_release_region - Release a PCI bar 3215 * @pdev: PCI device whose resources were previously reserved by pci_request_region 3216 * @bar: BAR to release 3217 * 3218 * Releases the PCI I/O and memory resources previously reserved by a 3219 * successful call to pci_request_region. Call this function only 3220 * after all use of the PCI regions has ceased. 3221 */ 3222 void pci_release_region(struct pci_dev *pdev, int bar) 3223 { 3224 struct pci_devres *dr; 3225 3226 if (pci_resource_len(pdev, bar) == 0) 3227 return; 3228 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) 3229 release_region(pci_resource_start(pdev, bar), 3230 pci_resource_len(pdev, bar)); 3231 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) 3232 release_mem_region(pci_resource_start(pdev, bar), 3233 pci_resource_len(pdev, bar)); 3234 3235 dr = find_pci_dr(pdev); 3236 if (dr) 3237 dr->region_mask &= ~(1 << bar); 3238 } 3239 EXPORT_SYMBOL(pci_release_region); 3240 3241 /** 3242 * __pci_request_region - Reserved PCI I/O and memory resource 3243 * @pdev: PCI device whose resources are to be reserved 3244 * @bar: BAR to be reserved 3245 * @res_name: Name to be associated with resource. 3246 * @exclusive: whether the region access is exclusive or not 3247 * 3248 * Mark the PCI region associated with PCI device @pdev BR @bar as 3249 * being reserved by owner @res_name. Do not access any 3250 * address inside the PCI regions unless this call returns 3251 * successfully. 3252 * 3253 * If @exclusive is set, then the region is marked so that userspace 3254 * is explicitly not allowed to map the resource via /dev/mem or 3255 * sysfs MMIO access. 3256 * 3257 * Returns 0 on success, or %EBUSY on error. A warning 3258 * message is also printed on failure. 3259 */ 3260 static int __pci_request_region(struct pci_dev *pdev, int bar, 3261 const char *res_name, int exclusive) 3262 { 3263 struct pci_devres *dr; 3264 3265 if (pci_resource_len(pdev, bar) == 0) 3266 return 0; 3267 3268 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) { 3269 if (!request_region(pci_resource_start(pdev, bar), 3270 pci_resource_len(pdev, bar), res_name)) 3271 goto err_out; 3272 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) { 3273 if (!__request_mem_region(pci_resource_start(pdev, bar), 3274 pci_resource_len(pdev, bar), res_name, 3275 exclusive)) 3276 goto err_out; 3277 } 3278 3279 dr = find_pci_dr(pdev); 3280 if (dr) 3281 dr->region_mask |= 1 << bar; 3282 3283 return 0; 3284 3285 err_out: 3286 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar, 3287 &pdev->resource[bar]); 3288 return -EBUSY; 3289 } 3290 3291 /** 3292 * pci_request_region - Reserve PCI I/O and memory resource 3293 * @pdev: PCI device whose resources are to be reserved 3294 * @bar: BAR to be reserved 3295 * @res_name: Name to be associated with resource 3296 * 3297 * Mark the PCI region associated with PCI device @pdev BAR @bar as 3298 * being reserved by owner @res_name. Do not access any 3299 * address inside the PCI regions unless this call returns 3300 * successfully. 3301 * 3302 * Returns 0 on success, or %EBUSY on error. A warning 3303 * message is also printed on failure. 3304 */ 3305 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name) 3306 { 3307 return __pci_request_region(pdev, bar, res_name, 0); 3308 } 3309 EXPORT_SYMBOL(pci_request_region); 3310 3311 /** 3312 * pci_request_region_exclusive - Reserved PCI I/O and memory resource 3313 * @pdev: PCI device whose resources are to be reserved 3314 * @bar: BAR to be reserved 3315 * @res_name: Name to be associated with resource. 3316 * 3317 * Mark the PCI region associated with PCI device @pdev BR @bar as 3318 * being reserved by owner @res_name. Do not access any 3319 * address inside the PCI regions unless this call returns 3320 * successfully. 3321 * 3322 * Returns 0 on success, or %EBUSY on error. A warning 3323 * message is also printed on failure. 3324 * 3325 * The key difference that _exclusive makes it that userspace is 3326 * explicitly not allowed to map the resource via /dev/mem or 3327 * sysfs. 3328 */ 3329 int pci_request_region_exclusive(struct pci_dev *pdev, int bar, 3330 const char *res_name) 3331 { 3332 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE); 3333 } 3334 EXPORT_SYMBOL(pci_request_region_exclusive); 3335 3336 /** 3337 * pci_release_selected_regions - Release selected PCI I/O and memory resources 3338 * @pdev: PCI device whose resources were previously reserved 3339 * @bars: Bitmask of BARs to be released 3340 * 3341 * Release selected PCI I/O and memory resources previously reserved. 3342 * Call this function only after all use of the PCI regions has ceased. 3343 */ 3344 void pci_release_selected_regions(struct pci_dev *pdev, int bars) 3345 { 3346 int i; 3347 3348 for (i = 0; i < 6; i++) 3349 if (bars & (1 << i)) 3350 pci_release_region(pdev, i); 3351 } 3352 EXPORT_SYMBOL(pci_release_selected_regions); 3353 3354 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars, 3355 const char *res_name, int excl) 3356 { 3357 int i; 3358 3359 for (i = 0; i < 6; i++) 3360 if (bars & (1 << i)) 3361 if (__pci_request_region(pdev, i, res_name, excl)) 3362 goto err_out; 3363 return 0; 3364 3365 err_out: 3366 while (--i >= 0) 3367 if (bars & (1 << i)) 3368 pci_release_region(pdev, i); 3369 3370 return -EBUSY; 3371 } 3372 3373 3374 /** 3375 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources 3376 * @pdev: PCI device whose resources are to be reserved 3377 * @bars: Bitmask of BARs to be requested 3378 * @res_name: Name to be associated with resource 3379 */ 3380 int pci_request_selected_regions(struct pci_dev *pdev, int bars, 3381 const char *res_name) 3382 { 3383 return __pci_request_selected_regions(pdev, bars, res_name, 0); 3384 } 3385 EXPORT_SYMBOL(pci_request_selected_regions); 3386 3387 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars, 3388 const char *res_name) 3389 { 3390 return __pci_request_selected_regions(pdev, bars, res_name, 3391 IORESOURCE_EXCLUSIVE); 3392 } 3393 EXPORT_SYMBOL(pci_request_selected_regions_exclusive); 3394 3395 /** 3396 * pci_release_regions - Release reserved PCI I/O and memory resources 3397 * @pdev: PCI device whose resources were previously reserved by pci_request_regions 3398 * 3399 * Releases all PCI I/O and memory resources previously reserved by a 3400 * successful call to pci_request_regions. Call this function only 3401 * after all use of the PCI regions has ceased. 3402 */ 3403 3404 void pci_release_regions(struct pci_dev *pdev) 3405 { 3406 pci_release_selected_regions(pdev, (1 << 6) - 1); 3407 } 3408 EXPORT_SYMBOL(pci_release_regions); 3409 3410 /** 3411 * pci_request_regions - Reserved PCI I/O and memory resources 3412 * @pdev: PCI device whose resources are to be reserved 3413 * @res_name: Name to be associated with resource. 3414 * 3415 * Mark all PCI regions associated with PCI device @pdev as 3416 * being reserved by owner @res_name. Do not access any 3417 * address inside the PCI regions unless this call returns 3418 * successfully. 3419 * 3420 * Returns 0 on success, or %EBUSY on error. A warning 3421 * message is also printed on failure. 3422 */ 3423 int pci_request_regions(struct pci_dev *pdev, const char *res_name) 3424 { 3425 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name); 3426 } 3427 EXPORT_SYMBOL(pci_request_regions); 3428 3429 /** 3430 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources 3431 * @pdev: PCI device whose resources are to be reserved 3432 * @res_name: Name to be associated with resource. 3433 * 3434 * Mark all PCI regions associated with PCI device @pdev as 3435 * being reserved by owner @res_name. Do not access any 3436 * address inside the PCI regions unless this call returns 3437 * successfully. 3438 * 3439 * pci_request_regions_exclusive() will mark the region so that 3440 * /dev/mem and the sysfs MMIO access will not be allowed. 3441 * 3442 * Returns 0 on success, or %EBUSY on error. A warning 3443 * message is also printed on failure. 3444 */ 3445 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name) 3446 { 3447 return pci_request_selected_regions_exclusive(pdev, 3448 ((1 << 6) - 1), res_name); 3449 } 3450 EXPORT_SYMBOL(pci_request_regions_exclusive); 3451 3452 /* 3453 * Record the PCI IO range (expressed as CPU physical address + size). 3454 * Return a negative value if an error has occured, zero otherwise 3455 */ 3456 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr, 3457 resource_size_t size) 3458 { 3459 int ret = 0; 3460 #ifdef PCI_IOBASE 3461 struct logic_pio_hwaddr *range; 3462 3463 if (!size || addr + size < addr) 3464 return -EINVAL; 3465 3466 range = kzalloc(sizeof(*range), GFP_ATOMIC); 3467 if (!range) 3468 return -ENOMEM; 3469 3470 range->fwnode = fwnode; 3471 range->size = size; 3472 range->hw_start = addr; 3473 range->flags = LOGIC_PIO_CPU_MMIO; 3474 3475 ret = logic_pio_register_range(range); 3476 if (ret) 3477 kfree(range); 3478 #endif 3479 3480 return ret; 3481 } 3482 3483 phys_addr_t pci_pio_to_address(unsigned long pio) 3484 { 3485 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR; 3486 3487 #ifdef PCI_IOBASE 3488 if (pio >= MMIO_UPPER_LIMIT) 3489 return address; 3490 3491 address = logic_pio_to_hwaddr(pio); 3492 #endif 3493 3494 return address; 3495 } 3496 3497 unsigned long __weak pci_address_to_pio(phys_addr_t address) 3498 { 3499 #ifdef PCI_IOBASE 3500 return logic_pio_trans_cpuaddr(address); 3501 #else 3502 if (address > IO_SPACE_LIMIT) 3503 return (unsigned long)-1; 3504 3505 return (unsigned long) address; 3506 #endif 3507 } 3508 3509 /** 3510 * pci_remap_iospace - Remap the memory mapped I/O space 3511 * @res: Resource describing the I/O space 3512 * @phys_addr: physical address of range to be mapped 3513 * 3514 * Remap the memory mapped I/O space described by the @res 3515 * and the CPU physical address @phys_addr into virtual address space. 3516 * Only architectures that have memory mapped IO functions defined 3517 * (and the PCI_IOBASE value defined) should call this function. 3518 */ 3519 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr) 3520 { 3521 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 3522 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 3523 3524 if (!(res->flags & IORESOURCE_IO)) 3525 return -EINVAL; 3526 3527 if (res->end > IO_SPACE_LIMIT) 3528 return -EINVAL; 3529 3530 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr, 3531 pgprot_device(PAGE_KERNEL)); 3532 #else 3533 /* this architecture does not have memory mapped I/O space, 3534 so this function should never be called */ 3535 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n"); 3536 return -ENODEV; 3537 #endif 3538 } 3539 EXPORT_SYMBOL(pci_remap_iospace); 3540 3541 /** 3542 * pci_unmap_iospace - Unmap the memory mapped I/O space 3543 * @res: resource to be unmapped 3544 * 3545 * Unmap the CPU virtual address @res from virtual address space. 3546 * Only architectures that have memory mapped IO functions defined 3547 * (and the PCI_IOBASE value defined) should call this function. 3548 */ 3549 void pci_unmap_iospace(struct resource *res) 3550 { 3551 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 3552 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 3553 3554 unmap_kernel_range(vaddr, resource_size(res)); 3555 #endif 3556 } 3557 EXPORT_SYMBOL(pci_unmap_iospace); 3558 3559 /** 3560 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace() 3561 * @dev: Generic device to remap IO address for 3562 * @offset: Resource address to map 3563 * @size: Size of map 3564 * 3565 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver 3566 * detach. 3567 */ 3568 void __iomem *devm_pci_remap_cfgspace(struct device *dev, 3569 resource_size_t offset, 3570 resource_size_t size) 3571 { 3572 void __iomem **ptr, *addr; 3573 3574 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL); 3575 if (!ptr) 3576 return NULL; 3577 3578 addr = pci_remap_cfgspace(offset, size); 3579 if (addr) { 3580 *ptr = addr; 3581 devres_add(dev, ptr); 3582 } else 3583 devres_free(ptr); 3584 3585 return addr; 3586 } 3587 EXPORT_SYMBOL(devm_pci_remap_cfgspace); 3588 3589 /** 3590 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource 3591 * @dev: generic device to handle the resource for 3592 * @res: configuration space resource to be handled 3593 * 3594 * Checks that a resource is a valid memory region, requests the memory 3595 * region and ioremaps with pci_remap_cfgspace() API that ensures the 3596 * proper PCI configuration space memory attributes are guaranteed. 3597 * 3598 * All operations are managed and will be undone on driver detach. 3599 * 3600 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code 3601 * on failure. Usage example:: 3602 * 3603 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 3604 * base = devm_pci_remap_cfg_resource(&pdev->dev, res); 3605 * if (IS_ERR(base)) 3606 * return PTR_ERR(base); 3607 */ 3608 void __iomem *devm_pci_remap_cfg_resource(struct device *dev, 3609 struct resource *res) 3610 { 3611 resource_size_t size; 3612 const char *name; 3613 void __iomem *dest_ptr; 3614 3615 BUG_ON(!dev); 3616 3617 if (!res || resource_type(res) != IORESOURCE_MEM) { 3618 dev_err(dev, "invalid resource\n"); 3619 return IOMEM_ERR_PTR(-EINVAL); 3620 } 3621 3622 size = resource_size(res); 3623 name = res->name ?: dev_name(dev); 3624 3625 if (!devm_request_mem_region(dev, res->start, size, name)) { 3626 dev_err(dev, "can't request region for resource %pR\n", res); 3627 return IOMEM_ERR_PTR(-EBUSY); 3628 } 3629 3630 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size); 3631 if (!dest_ptr) { 3632 dev_err(dev, "ioremap failed for resource %pR\n", res); 3633 devm_release_mem_region(dev, res->start, size); 3634 dest_ptr = IOMEM_ERR_PTR(-ENOMEM); 3635 } 3636 3637 return dest_ptr; 3638 } 3639 EXPORT_SYMBOL(devm_pci_remap_cfg_resource); 3640 3641 static void __pci_set_master(struct pci_dev *dev, bool enable) 3642 { 3643 u16 old_cmd, cmd; 3644 3645 pci_read_config_word(dev, PCI_COMMAND, &old_cmd); 3646 if (enable) 3647 cmd = old_cmd | PCI_COMMAND_MASTER; 3648 else 3649 cmd = old_cmd & ~PCI_COMMAND_MASTER; 3650 if (cmd != old_cmd) { 3651 pci_dbg(dev, "%s bus mastering\n", 3652 enable ? "enabling" : "disabling"); 3653 pci_write_config_word(dev, PCI_COMMAND, cmd); 3654 } 3655 dev->is_busmaster = enable; 3656 } 3657 3658 /** 3659 * pcibios_setup - process "pci=" kernel boot arguments 3660 * @str: string used to pass in "pci=" kernel boot arguments 3661 * 3662 * Process kernel boot arguments. This is the default implementation. 3663 * Architecture specific implementations can override this as necessary. 3664 */ 3665 char * __weak __init pcibios_setup(char *str) 3666 { 3667 return str; 3668 } 3669 3670 /** 3671 * pcibios_set_master - enable PCI bus-mastering for device dev 3672 * @dev: the PCI device to enable 3673 * 3674 * Enables PCI bus-mastering for the device. This is the default 3675 * implementation. Architecture specific implementations can override 3676 * this if necessary. 3677 */ 3678 void __weak pcibios_set_master(struct pci_dev *dev) 3679 { 3680 u8 lat; 3681 3682 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */ 3683 if (pci_is_pcie(dev)) 3684 return; 3685 3686 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat); 3687 if (lat < 16) 3688 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency; 3689 else if (lat > pcibios_max_latency) 3690 lat = pcibios_max_latency; 3691 else 3692 return; 3693 3694 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat); 3695 } 3696 3697 /** 3698 * pci_set_master - enables bus-mastering for device dev 3699 * @dev: the PCI device to enable 3700 * 3701 * Enables bus-mastering on the device and calls pcibios_set_master() 3702 * to do the needed arch specific settings. 3703 */ 3704 void pci_set_master(struct pci_dev *dev) 3705 { 3706 __pci_set_master(dev, true); 3707 pcibios_set_master(dev); 3708 } 3709 EXPORT_SYMBOL(pci_set_master); 3710 3711 /** 3712 * pci_clear_master - disables bus-mastering for device dev 3713 * @dev: the PCI device to disable 3714 */ 3715 void pci_clear_master(struct pci_dev *dev) 3716 { 3717 __pci_set_master(dev, false); 3718 } 3719 EXPORT_SYMBOL(pci_clear_master); 3720 3721 /** 3722 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed 3723 * @dev: the PCI device for which MWI is to be enabled 3724 * 3725 * Helper function for pci_set_mwi. 3726 * Originally copied from drivers/net/acenic.c. 3727 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. 3728 * 3729 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 3730 */ 3731 int pci_set_cacheline_size(struct pci_dev *dev) 3732 { 3733 u8 cacheline_size; 3734 3735 if (!pci_cache_line_size) 3736 return -EINVAL; 3737 3738 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be 3739 equal to or multiple of the right value. */ 3740 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 3741 if (cacheline_size >= pci_cache_line_size && 3742 (cacheline_size % pci_cache_line_size) == 0) 3743 return 0; 3744 3745 /* Write the correct value. */ 3746 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size); 3747 /* Read it back. */ 3748 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 3749 if (cacheline_size == pci_cache_line_size) 3750 return 0; 3751 3752 pci_printk(KERN_DEBUG, dev, "cache line size of %d is not supported\n", 3753 pci_cache_line_size << 2); 3754 3755 return -EINVAL; 3756 } 3757 EXPORT_SYMBOL_GPL(pci_set_cacheline_size); 3758 3759 /** 3760 * pci_set_mwi - enables memory-write-invalidate PCI transaction 3761 * @dev: the PCI device for which MWI is enabled 3762 * 3763 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 3764 * 3765 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 3766 */ 3767 int pci_set_mwi(struct pci_dev *dev) 3768 { 3769 #ifdef PCI_DISABLE_MWI 3770 return 0; 3771 #else 3772 int rc; 3773 u16 cmd; 3774 3775 rc = pci_set_cacheline_size(dev); 3776 if (rc) 3777 return rc; 3778 3779 pci_read_config_word(dev, PCI_COMMAND, &cmd); 3780 if (!(cmd & PCI_COMMAND_INVALIDATE)) { 3781 pci_dbg(dev, "enabling Mem-Wr-Inval\n"); 3782 cmd |= PCI_COMMAND_INVALIDATE; 3783 pci_write_config_word(dev, PCI_COMMAND, cmd); 3784 } 3785 return 0; 3786 #endif 3787 } 3788 EXPORT_SYMBOL(pci_set_mwi); 3789 3790 /** 3791 * pcim_set_mwi - a device-managed pci_set_mwi() 3792 * @dev: the PCI device for which MWI is enabled 3793 * 3794 * Managed pci_set_mwi(). 3795 * 3796 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 3797 */ 3798 int pcim_set_mwi(struct pci_dev *dev) 3799 { 3800 struct pci_devres *dr; 3801 3802 dr = find_pci_dr(dev); 3803 if (!dr) 3804 return -ENOMEM; 3805 3806 dr->mwi = 1; 3807 return pci_set_mwi(dev); 3808 } 3809 EXPORT_SYMBOL(pcim_set_mwi); 3810 3811 /** 3812 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction 3813 * @dev: the PCI device for which MWI is enabled 3814 * 3815 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 3816 * Callers are not required to check the return value. 3817 * 3818 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 3819 */ 3820 int pci_try_set_mwi(struct pci_dev *dev) 3821 { 3822 #ifdef PCI_DISABLE_MWI 3823 return 0; 3824 #else 3825 return pci_set_mwi(dev); 3826 #endif 3827 } 3828 EXPORT_SYMBOL(pci_try_set_mwi); 3829 3830 /** 3831 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev 3832 * @dev: the PCI device to disable 3833 * 3834 * Disables PCI Memory-Write-Invalidate transaction on the device 3835 */ 3836 void pci_clear_mwi(struct pci_dev *dev) 3837 { 3838 #ifndef PCI_DISABLE_MWI 3839 u16 cmd; 3840 3841 pci_read_config_word(dev, PCI_COMMAND, &cmd); 3842 if (cmd & PCI_COMMAND_INVALIDATE) { 3843 cmd &= ~PCI_COMMAND_INVALIDATE; 3844 pci_write_config_word(dev, PCI_COMMAND, cmd); 3845 } 3846 #endif 3847 } 3848 EXPORT_SYMBOL(pci_clear_mwi); 3849 3850 /** 3851 * pci_intx - enables/disables PCI INTx for device dev 3852 * @pdev: the PCI device to operate on 3853 * @enable: boolean: whether to enable or disable PCI INTx 3854 * 3855 * Enables/disables PCI INTx for device dev 3856 */ 3857 void pci_intx(struct pci_dev *pdev, int enable) 3858 { 3859 u16 pci_command, new; 3860 3861 pci_read_config_word(pdev, PCI_COMMAND, &pci_command); 3862 3863 if (enable) 3864 new = pci_command & ~PCI_COMMAND_INTX_DISABLE; 3865 else 3866 new = pci_command | PCI_COMMAND_INTX_DISABLE; 3867 3868 if (new != pci_command) { 3869 struct pci_devres *dr; 3870 3871 pci_write_config_word(pdev, PCI_COMMAND, new); 3872 3873 dr = find_pci_dr(pdev); 3874 if (dr && !dr->restore_intx) { 3875 dr->restore_intx = 1; 3876 dr->orig_intx = !enable; 3877 } 3878 } 3879 } 3880 EXPORT_SYMBOL_GPL(pci_intx); 3881 3882 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask) 3883 { 3884 struct pci_bus *bus = dev->bus; 3885 bool mask_updated = true; 3886 u32 cmd_status_dword; 3887 u16 origcmd, newcmd; 3888 unsigned long flags; 3889 bool irq_pending; 3890 3891 /* 3892 * We do a single dword read to retrieve both command and status. 3893 * Document assumptions that make this possible. 3894 */ 3895 BUILD_BUG_ON(PCI_COMMAND % 4); 3896 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS); 3897 3898 raw_spin_lock_irqsave(&pci_lock, flags); 3899 3900 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword); 3901 3902 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT; 3903 3904 /* 3905 * Check interrupt status register to see whether our device 3906 * triggered the interrupt (when masking) or the next IRQ is 3907 * already pending (when unmasking). 3908 */ 3909 if (mask != irq_pending) { 3910 mask_updated = false; 3911 goto done; 3912 } 3913 3914 origcmd = cmd_status_dword; 3915 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE; 3916 if (mask) 3917 newcmd |= PCI_COMMAND_INTX_DISABLE; 3918 if (newcmd != origcmd) 3919 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd); 3920 3921 done: 3922 raw_spin_unlock_irqrestore(&pci_lock, flags); 3923 3924 return mask_updated; 3925 } 3926 3927 /** 3928 * pci_check_and_mask_intx - mask INTx on pending interrupt 3929 * @dev: the PCI device to operate on 3930 * 3931 * Check if the device dev has its INTx line asserted, mask it and 3932 * return true in that case. False is returned if no interrupt was 3933 * pending. 3934 */ 3935 bool pci_check_and_mask_intx(struct pci_dev *dev) 3936 { 3937 return pci_check_and_set_intx_mask(dev, true); 3938 } 3939 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx); 3940 3941 /** 3942 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending 3943 * @dev: the PCI device to operate on 3944 * 3945 * Check if the device dev has its INTx line asserted, unmask it if not 3946 * and return true. False is returned and the mask remains active if 3947 * there was still an interrupt pending. 3948 */ 3949 bool pci_check_and_unmask_intx(struct pci_dev *dev) 3950 { 3951 return pci_check_and_set_intx_mask(dev, false); 3952 } 3953 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx); 3954 3955 /** 3956 * pci_wait_for_pending_transaction - waits for pending transaction 3957 * @dev: the PCI device to operate on 3958 * 3959 * Return 0 if transaction is pending 1 otherwise. 3960 */ 3961 int pci_wait_for_pending_transaction(struct pci_dev *dev) 3962 { 3963 if (!pci_is_pcie(dev)) 3964 return 1; 3965 3966 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA, 3967 PCI_EXP_DEVSTA_TRPND); 3968 } 3969 EXPORT_SYMBOL(pci_wait_for_pending_transaction); 3970 3971 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout) 3972 { 3973 int delay = 1; 3974 u32 id; 3975 3976 /* 3977 * After reset, the device should not silently discard config 3978 * requests, but it may still indicate that it needs more time by 3979 * responding to them with CRS completions. The Root Port will 3980 * generally synthesize ~0 data to complete the read (except when 3981 * CRS SV is enabled and the read was for the Vendor ID; in that 3982 * case it synthesizes 0x0001 data). 3983 * 3984 * Wait for the device to return a non-CRS completion. Read the 3985 * Command register instead of Vendor ID so we don't have to 3986 * contend with the CRS SV value. 3987 */ 3988 pci_read_config_dword(dev, PCI_COMMAND, &id); 3989 while (id == ~0) { 3990 if (delay > timeout) { 3991 pci_warn(dev, "not ready %dms after %s; giving up\n", 3992 delay - 1, reset_type); 3993 return -ENOTTY; 3994 } 3995 3996 if (delay > 1000) 3997 pci_info(dev, "not ready %dms after %s; waiting\n", 3998 delay - 1, reset_type); 3999 4000 msleep(delay); 4001 delay *= 2; 4002 pci_read_config_dword(dev, PCI_COMMAND, &id); 4003 } 4004 4005 if (delay > 1000) 4006 pci_info(dev, "ready %dms after %s\n", delay - 1, 4007 reset_type); 4008 4009 return 0; 4010 } 4011 4012 /** 4013 * pcie_has_flr - check if a device supports function level resets 4014 * @dev: device to check 4015 * 4016 * Returns true if the device advertises support for PCIe function level 4017 * resets. 4018 */ 4019 static bool pcie_has_flr(struct pci_dev *dev) 4020 { 4021 u32 cap; 4022 4023 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4024 return false; 4025 4026 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap); 4027 return cap & PCI_EXP_DEVCAP_FLR; 4028 } 4029 4030 /** 4031 * pcie_flr - initiate a PCIe function level reset 4032 * @dev: device to reset 4033 * 4034 * Initiate a function level reset on @dev. The caller should ensure the 4035 * device supports FLR before calling this function, e.g. by using the 4036 * pcie_has_flr() helper. 4037 */ 4038 int pcie_flr(struct pci_dev *dev) 4039 { 4040 if (!pci_wait_for_pending_transaction(dev)) 4041 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n"); 4042 4043 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR); 4044 4045 /* 4046 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within 4047 * 100ms, but may silently discard requests while the FLR is in 4048 * progress. Wait 100ms before trying to access the device. 4049 */ 4050 msleep(100); 4051 4052 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS); 4053 } 4054 EXPORT_SYMBOL_GPL(pcie_flr); 4055 4056 static int pci_af_flr(struct pci_dev *dev, int probe) 4057 { 4058 int pos; 4059 u8 cap; 4060 4061 pos = pci_find_capability(dev, PCI_CAP_ID_AF); 4062 if (!pos) 4063 return -ENOTTY; 4064 4065 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4066 return -ENOTTY; 4067 4068 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap); 4069 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR)) 4070 return -ENOTTY; 4071 4072 if (probe) 4073 return 0; 4074 4075 /* 4076 * Wait for Transaction Pending bit to clear. A word-aligned test 4077 * is used, so we use the conrol offset rather than status and shift 4078 * the test bit to match. 4079 */ 4080 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL, 4081 PCI_AF_STATUS_TP << 8)) 4082 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n"); 4083 4084 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR); 4085 4086 /* 4087 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006, 4088 * updated 27 July 2006; a device must complete an FLR within 4089 * 100ms, but may silently discard requests while the FLR is in 4090 * progress. Wait 100ms before trying to access the device. 4091 */ 4092 msleep(100); 4093 4094 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS); 4095 } 4096 4097 /** 4098 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0. 4099 * @dev: Device to reset. 4100 * @probe: If set, only check if the device can be reset this way. 4101 * 4102 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is 4103 * unset, it will be reinitialized internally when going from PCI_D3hot to 4104 * PCI_D0. If that's the case and the device is not in a low-power state 4105 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset. 4106 * 4107 * NOTE: This causes the caller to sleep for twice the device power transition 4108 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms 4109 * by default (i.e. unless the @dev's d3_delay field has a different value). 4110 * Moreover, only devices in D0 can be reset by this function. 4111 */ 4112 static int pci_pm_reset(struct pci_dev *dev, int probe) 4113 { 4114 u16 csr; 4115 4116 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET) 4117 return -ENOTTY; 4118 4119 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr); 4120 if (csr & PCI_PM_CTRL_NO_SOFT_RESET) 4121 return -ENOTTY; 4122 4123 if (probe) 4124 return 0; 4125 4126 if (dev->current_state != PCI_D0) 4127 return -EINVAL; 4128 4129 csr &= ~PCI_PM_CTRL_STATE_MASK; 4130 csr |= PCI_D3hot; 4131 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4132 pci_dev_d3_sleep(dev); 4133 4134 csr &= ~PCI_PM_CTRL_STATE_MASK; 4135 csr |= PCI_D0; 4136 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4137 pci_dev_d3_sleep(dev); 4138 4139 return pci_dev_wait(dev, "PM D3->D0", PCIE_RESET_READY_POLL_MS); 4140 } 4141 4142 void pci_reset_secondary_bus(struct pci_dev *dev) 4143 { 4144 u16 ctrl; 4145 4146 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl); 4147 ctrl |= PCI_BRIDGE_CTL_BUS_RESET; 4148 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 4149 4150 /* 4151 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double 4152 * this to 2ms to ensure that we meet the minimum requirement. 4153 */ 4154 msleep(2); 4155 4156 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET; 4157 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 4158 4159 /* 4160 * Trhfa for conventional PCI is 2^25 clock cycles. 4161 * Assuming a minimum 33MHz clock this results in a 1s 4162 * delay before we can consider subordinate devices to 4163 * be re-initialized. PCIe has some ways to shorten this, 4164 * but we don't make use of them yet. 4165 */ 4166 ssleep(1); 4167 } 4168 4169 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev) 4170 { 4171 pci_reset_secondary_bus(dev); 4172 } 4173 4174 /** 4175 * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge. 4176 * @dev: Bridge device 4177 * 4178 * Use the bridge control register to assert reset on the secondary bus. 4179 * Devices on the secondary bus are left in power-on state. 4180 */ 4181 int pci_reset_bridge_secondary_bus(struct pci_dev *dev) 4182 { 4183 pcibios_reset_secondary_bus(dev); 4184 4185 return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS); 4186 } 4187 EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus); 4188 4189 static int pci_parent_bus_reset(struct pci_dev *dev, int probe) 4190 { 4191 struct pci_dev *pdev; 4192 4193 if (pci_is_root_bus(dev->bus) || dev->subordinate || 4194 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 4195 return -ENOTTY; 4196 4197 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 4198 if (pdev != dev) 4199 return -ENOTTY; 4200 4201 if (probe) 4202 return 0; 4203 4204 pci_reset_bridge_secondary_bus(dev->bus->self); 4205 4206 return 0; 4207 } 4208 4209 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe) 4210 { 4211 int rc = -ENOTTY; 4212 4213 if (!hotplug || !try_module_get(hotplug->ops->owner)) 4214 return rc; 4215 4216 if (hotplug->ops->reset_slot) 4217 rc = hotplug->ops->reset_slot(hotplug, probe); 4218 4219 module_put(hotplug->ops->owner); 4220 4221 return rc; 4222 } 4223 4224 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe) 4225 { 4226 struct pci_dev *pdev; 4227 4228 if (dev->subordinate || !dev->slot || 4229 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 4230 return -ENOTTY; 4231 4232 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 4233 if (pdev != dev && pdev->slot == dev->slot) 4234 return -ENOTTY; 4235 4236 return pci_reset_hotplug_slot(dev->slot->hotplug, probe); 4237 } 4238 4239 static void pci_dev_lock(struct pci_dev *dev) 4240 { 4241 pci_cfg_access_lock(dev); 4242 /* block PM suspend, driver probe, etc. */ 4243 device_lock(&dev->dev); 4244 } 4245 4246 /* Return 1 on successful lock, 0 on contention */ 4247 static int pci_dev_trylock(struct pci_dev *dev) 4248 { 4249 if (pci_cfg_access_trylock(dev)) { 4250 if (device_trylock(&dev->dev)) 4251 return 1; 4252 pci_cfg_access_unlock(dev); 4253 } 4254 4255 return 0; 4256 } 4257 4258 static void pci_dev_unlock(struct pci_dev *dev) 4259 { 4260 device_unlock(&dev->dev); 4261 pci_cfg_access_unlock(dev); 4262 } 4263 4264 static void pci_dev_save_and_disable(struct pci_dev *dev) 4265 { 4266 const struct pci_error_handlers *err_handler = 4267 dev->driver ? dev->driver->err_handler : NULL; 4268 4269 /* 4270 * dev->driver->err_handler->reset_prepare() is protected against 4271 * races with ->remove() by the device lock, which must be held by 4272 * the caller. 4273 */ 4274 if (err_handler && err_handler->reset_prepare) 4275 err_handler->reset_prepare(dev); 4276 4277 /* 4278 * Wake-up device prior to save. PM registers default to D0 after 4279 * reset and a simple register restore doesn't reliably return 4280 * to a non-D0 state anyway. 4281 */ 4282 pci_set_power_state(dev, PCI_D0); 4283 4284 pci_save_state(dev); 4285 /* 4286 * Disable the device by clearing the Command register, except for 4287 * INTx-disable which is set. This not only disables MMIO and I/O port 4288 * BARs, but also prevents the device from being Bus Master, preventing 4289 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3 4290 * compliant devices, INTx-disable prevents legacy interrupts. 4291 */ 4292 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE); 4293 } 4294 4295 static void pci_dev_restore(struct pci_dev *dev) 4296 { 4297 const struct pci_error_handlers *err_handler = 4298 dev->driver ? dev->driver->err_handler : NULL; 4299 4300 pci_restore_state(dev); 4301 4302 /* 4303 * dev->driver->err_handler->reset_done() is protected against 4304 * races with ->remove() by the device lock, which must be held by 4305 * the caller. 4306 */ 4307 if (err_handler && err_handler->reset_done) 4308 err_handler->reset_done(dev); 4309 } 4310 4311 /** 4312 * __pci_reset_function_locked - reset a PCI device function while holding 4313 * the @dev mutex lock. 4314 * @dev: PCI device to reset 4315 * 4316 * Some devices allow an individual function to be reset without affecting 4317 * other functions in the same device. The PCI device must be responsive 4318 * to PCI config space in order to use this function. 4319 * 4320 * The device function is presumed to be unused and the caller is holding 4321 * the device mutex lock when this function is called. 4322 * Resetting the device will make the contents of PCI configuration space 4323 * random, so any caller of this must be prepared to reinitialise the 4324 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 4325 * etc. 4326 * 4327 * Returns 0 if the device function was successfully reset or negative if the 4328 * device doesn't support resetting a single function. 4329 */ 4330 int __pci_reset_function_locked(struct pci_dev *dev) 4331 { 4332 int rc; 4333 4334 might_sleep(); 4335 4336 /* 4337 * A reset method returns -ENOTTY if it doesn't support this device 4338 * and we should try the next method. 4339 * 4340 * If it returns 0 (success), we're finished. If it returns any 4341 * other error, we're also finished: this indicates that further 4342 * reset mechanisms might be broken on the device. 4343 */ 4344 rc = pci_dev_specific_reset(dev, 0); 4345 if (rc != -ENOTTY) 4346 return rc; 4347 if (pcie_has_flr(dev)) { 4348 rc = pcie_flr(dev); 4349 if (rc != -ENOTTY) 4350 return rc; 4351 } 4352 rc = pci_af_flr(dev, 0); 4353 if (rc != -ENOTTY) 4354 return rc; 4355 rc = pci_pm_reset(dev, 0); 4356 if (rc != -ENOTTY) 4357 return rc; 4358 rc = pci_dev_reset_slot_function(dev, 0); 4359 if (rc != -ENOTTY) 4360 return rc; 4361 return pci_parent_bus_reset(dev, 0); 4362 } 4363 EXPORT_SYMBOL_GPL(__pci_reset_function_locked); 4364 4365 /** 4366 * pci_probe_reset_function - check whether the device can be safely reset 4367 * @dev: PCI device to reset 4368 * 4369 * Some devices allow an individual function to be reset without affecting 4370 * other functions in the same device. The PCI device must be responsive 4371 * to PCI config space in order to use this function. 4372 * 4373 * Returns 0 if the device function can be reset or negative if the 4374 * device doesn't support resetting a single function. 4375 */ 4376 int pci_probe_reset_function(struct pci_dev *dev) 4377 { 4378 int rc; 4379 4380 might_sleep(); 4381 4382 rc = pci_dev_specific_reset(dev, 1); 4383 if (rc != -ENOTTY) 4384 return rc; 4385 if (pcie_has_flr(dev)) 4386 return 0; 4387 rc = pci_af_flr(dev, 1); 4388 if (rc != -ENOTTY) 4389 return rc; 4390 rc = pci_pm_reset(dev, 1); 4391 if (rc != -ENOTTY) 4392 return rc; 4393 rc = pci_dev_reset_slot_function(dev, 1); 4394 if (rc != -ENOTTY) 4395 return rc; 4396 4397 return pci_parent_bus_reset(dev, 1); 4398 } 4399 4400 /** 4401 * pci_reset_function - quiesce and reset a PCI device function 4402 * @dev: PCI device to reset 4403 * 4404 * Some devices allow an individual function to be reset without affecting 4405 * other functions in the same device. The PCI device must be responsive 4406 * to PCI config space in order to use this function. 4407 * 4408 * This function does not just reset the PCI portion of a device, but 4409 * clears all the state associated with the device. This function differs 4410 * from __pci_reset_function_locked() in that it saves and restores device state 4411 * over the reset and takes the PCI device lock. 4412 * 4413 * Returns 0 if the device function was successfully reset or negative if the 4414 * device doesn't support resetting a single function. 4415 */ 4416 int pci_reset_function(struct pci_dev *dev) 4417 { 4418 int rc; 4419 4420 if (!dev->reset_fn) 4421 return -ENOTTY; 4422 4423 pci_dev_lock(dev); 4424 pci_dev_save_and_disable(dev); 4425 4426 rc = __pci_reset_function_locked(dev); 4427 4428 pci_dev_restore(dev); 4429 pci_dev_unlock(dev); 4430 4431 return rc; 4432 } 4433 EXPORT_SYMBOL_GPL(pci_reset_function); 4434 4435 /** 4436 * pci_reset_function_locked - quiesce and reset a PCI device function 4437 * @dev: PCI device to reset 4438 * 4439 * Some devices allow an individual function to be reset without affecting 4440 * other functions in the same device. The PCI device must be responsive 4441 * to PCI config space in order to use this function. 4442 * 4443 * This function does not just reset the PCI portion of a device, but 4444 * clears all the state associated with the device. This function differs 4445 * from __pci_reset_function_locked() in that it saves and restores device state 4446 * over the reset. It also differs from pci_reset_function() in that it 4447 * requires the PCI device lock to be held. 4448 * 4449 * Returns 0 if the device function was successfully reset or negative if the 4450 * device doesn't support resetting a single function. 4451 */ 4452 int pci_reset_function_locked(struct pci_dev *dev) 4453 { 4454 int rc; 4455 4456 if (!dev->reset_fn) 4457 return -ENOTTY; 4458 4459 pci_dev_save_and_disable(dev); 4460 4461 rc = __pci_reset_function_locked(dev); 4462 4463 pci_dev_restore(dev); 4464 4465 return rc; 4466 } 4467 EXPORT_SYMBOL_GPL(pci_reset_function_locked); 4468 4469 /** 4470 * pci_try_reset_function - quiesce and reset a PCI device function 4471 * @dev: PCI device to reset 4472 * 4473 * Same as above, except return -EAGAIN if unable to lock device. 4474 */ 4475 int pci_try_reset_function(struct pci_dev *dev) 4476 { 4477 int rc; 4478 4479 if (!dev->reset_fn) 4480 return -ENOTTY; 4481 4482 if (!pci_dev_trylock(dev)) 4483 return -EAGAIN; 4484 4485 pci_dev_save_and_disable(dev); 4486 rc = __pci_reset_function_locked(dev); 4487 pci_dev_restore(dev); 4488 pci_dev_unlock(dev); 4489 4490 return rc; 4491 } 4492 EXPORT_SYMBOL_GPL(pci_try_reset_function); 4493 4494 /* Do any devices on or below this bus prevent a bus reset? */ 4495 static bool pci_bus_resetable(struct pci_bus *bus) 4496 { 4497 struct pci_dev *dev; 4498 4499 4500 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 4501 return false; 4502 4503 list_for_each_entry(dev, &bus->devices, bus_list) { 4504 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 4505 (dev->subordinate && !pci_bus_resetable(dev->subordinate))) 4506 return false; 4507 } 4508 4509 return true; 4510 } 4511 4512 /* Lock devices from the top of the tree down */ 4513 static void pci_bus_lock(struct pci_bus *bus) 4514 { 4515 struct pci_dev *dev; 4516 4517 list_for_each_entry(dev, &bus->devices, bus_list) { 4518 pci_dev_lock(dev); 4519 if (dev->subordinate) 4520 pci_bus_lock(dev->subordinate); 4521 } 4522 } 4523 4524 /* Unlock devices from the bottom of the tree up */ 4525 static void pci_bus_unlock(struct pci_bus *bus) 4526 { 4527 struct pci_dev *dev; 4528 4529 list_for_each_entry(dev, &bus->devices, bus_list) { 4530 if (dev->subordinate) 4531 pci_bus_unlock(dev->subordinate); 4532 pci_dev_unlock(dev); 4533 } 4534 } 4535 4536 /* Return 1 on successful lock, 0 on contention */ 4537 static int pci_bus_trylock(struct pci_bus *bus) 4538 { 4539 struct pci_dev *dev; 4540 4541 list_for_each_entry(dev, &bus->devices, bus_list) { 4542 if (!pci_dev_trylock(dev)) 4543 goto unlock; 4544 if (dev->subordinate) { 4545 if (!pci_bus_trylock(dev->subordinate)) { 4546 pci_dev_unlock(dev); 4547 goto unlock; 4548 } 4549 } 4550 } 4551 return 1; 4552 4553 unlock: 4554 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) { 4555 if (dev->subordinate) 4556 pci_bus_unlock(dev->subordinate); 4557 pci_dev_unlock(dev); 4558 } 4559 return 0; 4560 } 4561 4562 /* Do any devices on or below this slot prevent a bus reset? */ 4563 static bool pci_slot_resetable(struct pci_slot *slot) 4564 { 4565 struct pci_dev *dev; 4566 4567 if (slot->bus->self && 4568 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 4569 return false; 4570 4571 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 4572 if (!dev->slot || dev->slot != slot) 4573 continue; 4574 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 4575 (dev->subordinate && !pci_bus_resetable(dev->subordinate))) 4576 return false; 4577 } 4578 4579 return true; 4580 } 4581 4582 /* Lock devices from the top of the tree down */ 4583 static void pci_slot_lock(struct pci_slot *slot) 4584 { 4585 struct pci_dev *dev; 4586 4587 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 4588 if (!dev->slot || dev->slot != slot) 4589 continue; 4590 pci_dev_lock(dev); 4591 if (dev->subordinate) 4592 pci_bus_lock(dev->subordinate); 4593 } 4594 } 4595 4596 /* Unlock devices from the bottom of the tree up */ 4597 static void pci_slot_unlock(struct pci_slot *slot) 4598 { 4599 struct pci_dev *dev; 4600 4601 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 4602 if (!dev->slot || dev->slot != slot) 4603 continue; 4604 if (dev->subordinate) 4605 pci_bus_unlock(dev->subordinate); 4606 pci_dev_unlock(dev); 4607 } 4608 } 4609 4610 /* Return 1 on successful lock, 0 on contention */ 4611 static int pci_slot_trylock(struct pci_slot *slot) 4612 { 4613 struct pci_dev *dev; 4614 4615 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 4616 if (!dev->slot || dev->slot != slot) 4617 continue; 4618 if (!pci_dev_trylock(dev)) 4619 goto unlock; 4620 if (dev->subordinate) { 4621 if (!pci_bus_trylock(dev->subordinate)) { 4622 pci_dev_unlock(dev); 4623 goto unlock; 4624 } 4625 } 4626 } 4627 return 1; 4628 4629 unlock: 4630 list_for_each_entry_continue_reverse(dev, 4631 &slot->bus->devices, bus_list) { 4632 if (!dev->slot || dev->slot != slot) 4633 continue; 4634 if (dev->subordinate) 4635 pci_bus_unlock(dev->subordinate); 4636 pci_dev_unlock(dev); 4637 } 4638 return 0; 4639 } 4640 4641 /* Save and disable devices from the top of the tree down */ 4642 static void pci_bus_save_and_disable(struct pci_bus *bus) 4643 { 4644 struct pci_dev *dev; 4645 4646 list_for_each_entry(dev, &bus->devices, bus_list) { 4647 pci_dev_lock(dev); 4648 pci_dev_save_and_disable(dev); 4649 pci_dev_unlock(dev); 4650 if (dev->subordinate) 4651 pci_bus_save_and_disable(dev->subordinate); 4652 } 4653 } 4654 4655 /* 4656 * Restore devices from top of the tree down - parent bridges need to be 4657 * restored before we can get to subordinate devices. 4658 */ 4659 static void pci_bus_restore(struct pci_bus *bus) 4660 { 4661 struct pci_dev *dev; 4662 4663 list_for_each_entry(dev, &bus->devices, bus_list) { 4664 pci_dev_lock(dev); 4665 pci_dev_restore(dev); 4666 pci_dev_unlock(dev); 4667 if (dev->subordinate) 4668 pci_bus_restore(dev->subordinate); 4669 } 4670 } 4671 4672 /* Save and disable devices from the top of the tree down */ 4673 static void pci_slot_save_and_disable(struct pci_slot *slot) 4674 { 4675 struct pci_dev *dev; 4676 4677 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 4678 if (!dev->slot || dev->slot != slot) 4679 continue; 4680 pci_dev_save_and_disable(dev); 4681 if (dev->subordinate) 4682 pci_bus_save_and_disable(dev->subordinate); 4683 } 4684 } 4685 4686 /* 4687 * Restore devices from top of the tree down - parent bridges need to be 4688 * restored before we can get to subordinate devices. 4689 */ 4690 static void pci_slot_restore(struct pci_slot *slot) 4691 { 4692 struct pci_dev *dev; 4693 4694 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 4695 if (!dev->slot || dev->slot != slot) 4696 continue; 4697 pci_dev_lock(dev); 4698 pci_dev_restore(dev); 4699 pci_dev_unlock(dev); 4700 if (dev->subordinate) 4701 pci_bus_restore(dev->subordinate); 4702 } 4703 } 4704 4705 static int pci_slot_reset(struct pci_slot *slot, int probe) 4706 { 4707 int rc; 4708 4709 if (!slot || !pci_slot_resetable(slot)) 4710 return -ENOTTY; 4711 4712 if (!probe) 4713 pci_slot_lock(slot); 4714 4715 might_sleep(); 4716 4717 rc = pci_reset_hotplug_slot(slot->hotplug, probe); 4718 4719 if (!probe) 4720 pci_slot_unlock(slot); 4721 4722 return rc; 4723 } 4724 4725 /** 4726 * pci_probe_reset_slot - probe whether a PCI slot can be reset 4727 * @slot: PCI slot to probe 4728 * 4729 * Return 0 if slot can be reset, negative if a slot reset is not supported. 4730 */ 4731 int pci_probe_reset_slot(struct pci_slot *slot) 4732 { 4733 return pci_slot_reset(slot, 1); 4734 } 4735 EXPORT_SYMBOL_GPL(pci_probe_reset_slot); 4736 4737 /** 4738 * pci_reset_slot - reset a PCI slot 4739 * @slot: PCI slot to reset 4740 * 4741 * A PCI bus may host multiple slots, each slot may support a reset mechanism 4742 * independent of other slots. For instance, some slots may support slot power 4743 * control. In the case of a 1:1 bus to slot architecture, this function may 4744 * wrap the bus reset to avoid spurious slot related events such as hotplug. 4745 * Generally a slot reset should be attempted before a bus reset. All of the 4746 * function of the slot and any subordinate buses behind the slot are reset 4747 * through this function. PCI config space of all devices in the slot and 4748 * behind the slot is saved before and restored after reset. 4749 * 4750 * Return 0 on success, non-zero on error. 4751 */ 4752 int pci_reset_slot(struct pci_slot *slot) 4753 { 4754 int rc; 4755 4756 rc = pci_slot_reset(slot, 1); 4757 if (rc) 4758 return rc; 4759 4760 pci_slot_save_and_disable(slot); 4761 4762 rc = pci_slot_reset(slot, 0); 4763 4764 pci_slot_restore(slot); 4765 4766 return rc; 4767 } 4768 EXPORT_SYMBOL_GPL(pci_reset_slot); 4769 4770 /** 4771 * pci_try_reset_slot - Try to reset a PCI slot 4772 * @slot: PCI slot to reset 4773 * 4774 * Same as above except return -EAGAIN if the slot cannot be locked 4775 */ 4776 int pci_try_reset_slot(struct pci_slot *slot) 4777 { 4778 int rc; 4779 4780 rc = pci_slot_reset(slot, 1); 4781 if (rc) 4782 return rc; 4783 4784 pci_slot_save_and_disable(slot); 4785 4786 if (pci_slot_trylock(slot)) { 4787 might_sleep(); 4788 rc = pci_reset_hotplug_slot(slot->hotplug, 0); 4789 pci_slot_unlock(slot); 4790 } else 4791 rc = -EAGAIN; 4792 4793 pci_slot_restore(slot); 4794 4795 return rc; 4796 } 4797 EXPORT_SYMBOL_GPL(pci_try_reset_slot); 4798 4799 static int pci_bus_reset(struct pci_bus *bus, int probe) 4800 { 4801 if (!bus->self || !pci_bus_resetable(bus)) 4802 return -ENOTTY; 4803 4804 if (probe) 4805 return 0; 4806 4807 pci_bus_lock(bus); 4808 4809 might_sleep(); 4810 4811 pci_reset_bridge_secondary_bus(bus->self); 4812 4813 pci_bus_unlock(bus); 4814 4815 return 0; 4816 } 4817 4818 /** 4819 * pci_probe_reset_bus - probe whether a PCI bus can be reset 4820 * @bus: PCI bus to probe 4821 * 4822 * Return 0 if bus can be reset, negative if a bus reset is not supported. 4823 */ 4824 int pci_probe_reset_bus(struct pci_bus *bus) 4825 { 4826 return pci_bus_reset(bus, 1); 4827 } 4828 EXPORT_SYMBOL_GPL(pci_probe_reset_bus); 4829 4830 /** 4831 * pci_reset_bus - reset a PCI bus 4832 * @bus: top level PCI bus to reset 4833 * 4834 * Do a bus reset on the given bus and any subordinate buses, saving 4835 * and restoring state of all devices. 4836 * 4837 * Return 0 on success, non-zero on error. 4838 */ 4839 int pci_reset_bus(struct pci_bus *bus) 4840 { 4841 int rc; 4842 4843 rc = pci_bus_reset(bus, 1); 4844 if (rc) 4845 return rc; 4846 4847 pci_bus_save_and_disable(bus); 4848 4849 rc = pci_bus_reset(bus, 0); 4850 4851 pci_bus_restore(bus); 4852 4853 return rc; 4854 } 4855 EXPORT_SYMBOL_GPL(pci_reset_bus); 4856 4857 /** 4858 * pci_try_reset_bus - Try to reset a PCI bus 4859 * @bus: top level PCI bus to reset 4860 * 4861 * Same as above except return -EAGAIN if the bus cannot be locked 4862 */ 4863 int pci_try_reset_bus(struct pci_bus *bus) 4864 { 4865 int rc; 4866 4867 rc = pci_bus_reset(bus, 1); 4868 if (rc) 4869 return rc; 4870 4871 pci_bus_save_and_disable(bus); 4872 4873 if (pci_bus_trylock(bus)) { 4874 might_sleep(); 4875 pci_reset_bridge_secondary_bus(bus->self); 4876 pci_bus_unlock(bus); 4877 } else 4878 rc = -EAGAIN; 4879 4880 pci_bus_restore(bus); 4881 4882 return rc; 4883 } 4884 EXPORT_SYMBOL_GPL(pci_try_reset_bus); 4885 4886 /** 4887 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count 4888 * @dev: PCI device to query 4889 * 4890 * Returns mmrbc: maximum designed memory read count in bytes 4891 * or appropriate error value. 4892 */ 4893 int pcix_get_max_mmrbc(struct pci_dev *dev) 4894 { 4895 int cap; 4896 u32 stat; 4897 4898 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 4899 if (!cap) 4900 return -EINVAL; 4901 4902 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 4903 return -EINVAL; 4904 4905 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21); 4906 } 4907 EXPORT_SYMBOL(pcix_get_max_mmrbc); 4908 4909 /** 4910 * pcix_get_mmrbc - get PCI-X maximum memory read byte count 4911 * @dev: PCI device to query 4912 * 4913 * Returns mmrbc: maximum memory read count in bytes 4914 * or appropriate error value. 4915 */ 4916 int pcix_get_mmrbc(struct pci_dev *dev) 4917 { 4918 int cap; 4919 u16 cmd; 4920 4921 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 4922 if (!cap) 4923 return -EINVAL; 4924 4925 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 4926 return -EINVAL; 4927 4928 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2); 4929 } 4930 EXPORT_SYMBOL(pcix_get_mmrbc); 4931 4932 /** 4933 * pcix_set_mmrbc - set PCI-X maximum memory read byte count 4934 * @dev: PCI device to query 4935 * @mmrbc: maximum memory read count in bytes 4936 * valid values are 512, 1024, 2048, 4096 4937 * 4938 * If possible sets maximum memory read byte count, some bridges have erratas 4939 * that prevent this. 4940 */ 4941 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc) 4942 { 4943 int cap; 4944 u32 stat, v, o; 4945 u16 cmd; 4946 4947 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc)) 4948 return -EINVAL; 4949 4950 v = ffs(mmrbc) - 10; 4951 4952 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 4953 if (!cap) 4954 return -EINVAL; 4955 4956 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 4957 return -EINVAL; 4958 4959 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21) 4960 return -E2BIG; 4961 4962 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 4963 return -EINVAL; 4964 4965 o = (cmd & PCI_X_CMD_MAX_READ) >> 2; 4966 if (o != v) { 4967 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC)) 4968 return -EIO; 4969 4970 cmd &= ~PCI_X_CMD_MAX_READ; 4971 cmd |= v << 2; 4972 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd)) 4973 return -EIO; 4974 } 4975 return 0; 4976 } 4977 EXPORT_SYMBOL(pcix_set_mmrbc); 4978 4979 /** 4980 * pcie_get_readrq - get PCI Express read request size 4981 * @dev: PCI device to query 4982 * 4983 * Returns maximum memory read request in bytes 4984 * or appropriate error value. 4985 */ 4986 int pcie_get_readrq(struct pci_dev *dev) 4987 { 4988 u16 ctl; 4989 4990 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 4991 4992 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12); 4993 } 4994 EXPORT_SYMBOL(pcie_get_readrq); 4995 4996 /** 4997 * pcie_set_readrq - set PCI Express maximum memory read request 4998 * @dev: PCI device to query 4999 * @rq: maximum memory read count in bytes 5000 * valid values are 128, 256, 512, 1024, 2048, 4096 5001 * 5002 * If possible sets maximum memory read request in bytes 5003 */ 5004 int pcie_set_readrq(struct pci_dev *dev, int rq) 5005 { 5006 u16 v; 5007 5008 if (rq < 128 || rq > 4096 || !is_power_of_2(rq)) 5009 return -EINVAL; 5010 5011 /* 5012 * If using the "performance" PCIe config, we clamp the 5013 * read rq size to the max packet size to prevent the 5014 * host bridge generating requests larger than we can 5015 * cope with 5016 */ 5017 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) { 5018 int mps = pcie_get_mps(dev); 5019 5020 if (mps < rq) 5021 rq = mps; 5022 } 5023 5024 v = (ffs(rq) - 8) << 12; 5025 5026 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 5027 PCI_EXP_DEVCTL_READRQ, v); 5028 } 5029 EXPORT_SYMBOL(pcie_set_readrq); 5030 5031 /** 5032 * pcie_get_mps - get PCI Express maximum payload size 5033 * @dev: PCI device to query 5034 * 5035 * Returns maximum payload size in bytes 5036 */ 5037 int pcie_get_mps(struct pci_dev *dev) 5038 { 5039 u16 ctl; 5040 5041 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 5042 5043 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5); 5044 } 5045 EXPORT_SYMBOL(pcie_get_mps); 5046 5047 /** 5048 * pcie_set_mps - set PCI Express maximum payload size 5049 * @dev: PCI device to query 5050 * @mps: maximum payload size in bytes 5051 * valid values are 128, 256, 512, 1024, 2048, 4096 5052 * 5053 * If possible sets maximum payload size 5054 */ 5055 int pcie_set_mps(struct pci_dev *dev, int mps) 5056 { 5057 u16 v; 5058 5059 if (mps < 128 || mps > 4096 || !is_power_of_2(mps)) 5060 return -EINVAL; 5061 5062 v = ffs(mps) - 8; 5063 if (v > dev->pcie_mpss) 5064 return -EINVAL; 5065 v <<= 5; 5066 5067 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 5068 PCI_EXP_DEVCTL_PAYLOAD, v); 5069 } 5070 EXPORT_SYMBOL(pcie_set_mps); 5071 5072 /** 5073 * pcie_get_minimum_link - determine minimum link settings of a PCI device 5074 * @dev: PCI device to query 5075 * @speed: storage for minimum speed 5076 * @width: storage for minimum width 5077 * 5078 * This function will walk up the PCI device chain and determine the minimum 5079 * link width and speed of the device. 5080 */ 5081 int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed, 5082 enum pcie_link_width *width) 5083 { 5084 int ret; 5085 5086 *speed = PCI_SPEED_UNKNOWN; 5087 *width = PCIE_LNK_WIDTH_UNKNOWN; 5088 5089 while (dev) { 5090 u16 lnksta; 5091 enum pci_bus_speed next_speed; 5092 enum pcie_link_width next_width; 5093 5094 ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta); 5095 if (ret) 5096 return ret; 5097 5098 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS]; 5099 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >> 5100 PCI_EXP_LNKSTA_NLW_SHIFT; 5101 5102 if (next_speed < *speed) 5103 *speed = next_speed; 5104 5105 if (next_width < *width) 5106 *width = next_width; 5107 5108 dev = dev->bus->self; 5109 } 5110 5111 return 0; 5112 } 5113 EXPORT_SYMBOL(pcie_get_minimum_link); 5114 5115 /** 5116 * pcie_bandwidth_available - determine minimum link settings of a PCIe 5117 * device and its bandwidth limitation 5118 * @dev: PCI device to query 5119 * @limiting_dev: storage for device causing the bandwidth limitation 5120 * @speed: storage for speed of limiting device 5121 * @width: storage for width of limiting device 5122 * 5123 * Walk up the PCI device chain and find the point where the minimum 5124 * bandwidth is available. Return the bandwidth available there and (if 5125 * limiting_dev, speed, and width pointers are supplied) information about 5126 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of 5127 * raw bandwidth. 5128 */ 5129 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev, 5130 enum pci_bus_speed *speed, 5131 enum pcie_link_width *width) 5132 { 5133 u16 lnksta; 5134 enum pci_bus_speed next_speed; 5135 enum pcie_link_width next_width; 5136 u32 bw, next_bw; 5137 5138 if (speed) 5139 *speed = PCI_SPEED_UNKNOWN; 5140 if (width) 5141 *width = PCIE_LNK_WIDTH_UNKNOWN; 5142 5143 bw = 0; 5144 5145 while (dev) { 5146 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta); 5147 5148 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS]; 5149 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >> 5150 PCI_EXP_LNKSTA_NLW_SHIFT; 5151 5152 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed); 5153 5154 /* Check if current device limits the total bandwidth */ 5155 if (!bw || next_bw <= bw) { 5156 bw = next_bw; 5157 5158 if (limiting_dev) 5159 *limiting_dev = dev; 5160 if (speed) 5161 *speed = next_speed; 5162 if (width) 5163 *width = next_width; 5164 } 5165 5166 dev = pci_upstream_bridge(dev); 5167 } 5168 5169 return bw; 5170 } 5171 EXPORT_SYMBOL(pcie_bandwidth_available); 5172 5173 /** 5174 * pcie_get_speed_cap - query for the PCI device's link speed capability 5175 * @dev: PCI device to query 5176 * 5177 * Query the PCI device speed capability. Return the maximum link speed 5178 * supported by the device. 5179 */ 5180 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev) 5181 { 5182 u32 lnkcap2, lnkcap; 5183 5184 /* 5185 * PCIe r4.0 sec 7.5.3.18 recommends using the Supported Link 5186 * Speeds Vector in Link Capabilities 2 when supported, falling 5187 * back to Max Link Speed in Link Capabilities otherwise. 5188 */ 5189 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2); 5190 if (lnkcap2) { /* PCIe r3.0-compliant */ 5191 if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_16_0GB) 5192 return PCIE_SPEED_16_0GT; 5193 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB) 5194 return PCIE_SPEED_8_0GT; 5195 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB) 5196 return PCIE_SPEED_5_0GT; 5197 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB) 5198 return PCIE_SPEED_2_5GT; 5199 return PCI_SPEED_UNKNOWN; 5200 } 5201 5202 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 5203 if (lnkcap) { 5204 if (lnkcap & PCI_EXP_LNKCAP_SLS_16_0GB) 5205 return PCIE_SPEED_16_0GT; 5206 else if (lnkcap & PCI_EXP_LNKCAP_SLS_8_0GB) 5207 return PCIE_SPEED_8_0GT; 5208 else if (lnkcap & PCI_EXP_LNKCAP_SLS_5_0GB) 5209 return PCIE_SPEED_5_0GT; 5210 else if (lnkcap & PCI_EXP_LNKCAP_SLS_2_5GB) 5211 return PCIE_SPEED_2_5GT; 5212 } 5213 5214 return PCI_SPEED_UNKNOWN; 5215 } 5216 5217 /** 5218 * pcie_get_width_cap - query for the PCI device's link width capability 5219 * @dev: PCI device to query 5220 * 5221 * Query the PCI device width capability. Return the maximum link width 5222 * supported by the device. 5223 */ 5224 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev) 5225 { 5226 u32 lnkcap; 5227 5228 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 5229 if (lnkcap) 5230 return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4; 5231 5232 return PCIE_LNK_WIDTH_UNKNOWN; 5233 } 5234 5235 /** 5236 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability 5237 * @dev: PCI device 5238 * @speed: storage for link speed 5239 * @width: storage for link width 5240 * 5241 * Calculate a PCI device's link bandwidth by querying for its link speed 5242 * and width, multiplying them, and applying encoding overhead. The result 5243 * is in Mb/s, i.e., megabits/second of raw bandwidth. 5244 */ 5245 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed, 5246 enum pcie_link_width *width) 5247 { 5248 *speed = pcie_get_speed_cap(dev); 5249 *width = pcie_get_width_cap(dev); 5250 5251 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN) 5252 return 0; 5253 5254 return *width * PCIE_SPEED2MBS_ENC(*speed); 5255 } 5256 5257 /** 5258 * pcie_print_link_status - Report the PCI device's link speed and width 5259 * @dev: PCI device to query 5260 * 5261 * Report the available bandwidth at the device. If this is less than the 5262 * device is capable of, report the device's maximum possible bandwidth and 5263 * the upstream link that limits its performance to less than that. 5264 */ 5265 void pcie_print_link_status(struct pci_dev *dev) 5266 { 5267 enum pcie_link_width width, width_cap; 5268 enum pci_bus_speed speed, speed_cap; 5269 struct pci_dev *limiting_dev = NULL; 5270 u32 bw_avail, bw_cap; 5271 5272 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap); 5273 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width); 5274 5275 if (bw_avail >= bw_cap) 5276 pci_info(dev, "%u.%03u Gb/s available bandwidth (%s x%d link)\n", 5277 bw_cap / 1000, bw_cap % 1000, 5278 PCIE_SPEED2STR(speed_cap), width_cap); 5279 else 5280 pci_info(dev, "%u.%03u Gb/s available bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n", 5281 bw_avail / 1000, bw_avail % 1000, 5282 PCIE_SPEED2STR(speed), width, 5283 limiting_dev ? pci_name(limiting_dev) : "<unknown>", 5284 bw_cap / 1000, bw_cap % 1000, 5285 PCIE_SPEED2STR(speed_cap), width_cap); 5286 } 5287 EXPORT_SYMBOL(pcie_print_link_status); 5288 5289 /** 5290 * pci_select_bars - Make BAR mask from the type of resource 5291 * @dev: the PCI device for which BAR mask is made 5292 * @flags: resource type mask to be selected 5293 * 5294 * This helper routine makes bar mask from the type of resource. 5295 */ 5296 int pci_select_bars(struct pci_dev *dev, unsigned long flags) 5297 { 5298 int i, bars = 0; 5299 for (i = 0; i < PCI_NUM_RESOURCES; i++) 5300 if (pci_resource_flags(dev, i) & flags) 5301 bars |= (1 << i); 5302 return bars; 5303 } 5304 EXPORT_SYMBOL(pci_select_bars); 5305 5306 /* Some architectures require additional programming to enable VGA */ 5307 static arch_set_vga_state_t arch_set_vga_state; 5308 5309 void __init pci_register_set_vga_state(arch_set_vga_state_t func) 5310 { 5311 arch_set_vga_state = func; /* NULL disables */ 5312 } 5313 5314 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode, 5315 unsigned int command_bits, u32 flags) 5316 { 5317 if (arch_set_vga_state) 5318 return arch_set_vga_state(dev, decode, command_bits, 5319 flags); 5320 return 0; 5321 } 5322 5323 /** 5324 * pci_set_vga_state - set VGA decode state on device and parents if requested 5325 * @dev: the PCI device 5326 * @decode: true = enable decoding, false = disable decoding 5327 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY 5328 * @flags: traverse ancestors and change bridges 5329 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE 5330 */ 5331 int pci_set_vga_state(struct pci_dev *dev, bool decode, 5332 unsigned int command_bits, u32 flags) 5333 { 5334 struct pci_bus *bus; 5335 struct pci_dev *bridge; 5336 u16 cmd; 5337 int rc; 5338 5339 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY))); 5340 5341 /* ARCH specific VGA enables */ 5342 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags); 5343 if (rc) 5344 return rc; 5345 5346 if (flags & PCI_VGA_STATE_CHANGE_DECODES) { 5347 pci_read_config_word(dev, PCI_COMMAND, &cmd); 5348 if (decode == true) 5349 cmd |= command_bits; 5350 else 5351 cmd &= ~command_bits; 5352 pci_write_config_word(dev, PCI_COMMAND, cmd); 5353 } 5354 5355 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE)) 5356 return 0; 5357 5358 bus = dev->bus; 5359 while (bus) { 5360 bridge = bus->self; 5361 if (bridge) { 5362 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL, 5363 &cmd); 5364 if (decode == true) 5365 cmd |= PCI_BRIDGE_CTL_VGA; 5366 else 5367 cmd &= ~PCI_BRIDGE_CTL_VGA; 5368 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL, 5369 cmd); 5370 } 5371 bus = bus->parent; 5372 } 5373 return 0; 5374 } 5375 5376 /** 5377 * pci_add_dma_alias - Add a DMA devfn alias for a device 5378 * @dev: the PCI device for which alias is added 5379 * @devfn: alias slot and function 5380 * 5381 * This helper encodes 8-bit devfn as bit number in dma_alias_mask. 5382 * It should be called early, preferably as PCI fixup header quirk. 5383 */ 5384 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn) 5385 { 5386 if (!dev->dma_alias_mask) 5387 dev->dma_alias_mask = kcalloc(BITS_TO_LONGS(U8_MAX), 5388 sizeof(long), GFP_KERNEL); 5389 if (!dev->dma_alias_mask) { 5390 pci_warn(dev, "Unable to allocate DMA alias mask\n"); 5391 return; 5392 } 5393 5394 set_bit(devfn, dev->dma_alias_mask); 5395 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n", 5396 PCI_SLOT(devfn), PCI_FUNC(devfn)); 5397 } 5398 5399 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2) 5400 { 5401 return (dev1->dma_alias_mask && 5402 test_bit(dev2->devfn, dev1->dma_alias_mask)) || 5403 (dev2->dma_alias_mask && 5404 test_bit(dev1->devfn, dev2->dma_alias_mask)); 5405 } 5406 5407 bool pci_device_is_present(struct pci_dev *pdev) 5408 { 5409 u32 v; 5410 5411 if (pci_dev_is_disconnected(pdev)) 5412 return false; 5413 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0); 5414 } 5415 EXPORT_SYMBOL_GPL(pci_device_is_present); 5416 5417 void pci_ignore_hotplug(struct pci_dev *dev) 5418 { 5419 struct pci_dev *bridge = dev->bus->self; 5420 5421 dev->ignore_hotplug = 1; 5422 /* Propagate the "ignore hotplug" setting to the parent bridge. */ 5423 if (bridge) 5424 bridge->ignore_hotplug = 1; 5425 } 5426 EXPORT_SYMBOL_GPL(pci_ignore_hotplug); 5427 5428 resource_size_t __weak pcibios_default_alignment(void) 5429 { 5430 return 0; 5431 } 5432 5433 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE 5434 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0}; 5435 static DEFINE_SPINLOCK(resource_alignment_lock); 5436 5437 /** 5438 * pci_specified_resource_alignment - get resource alignment specified by user. 5439 * @dev: the PCI device to get 5440 * @resize: whether or not to change resources' size when reassigning alignment 5441 * 5442 * RETURNS: Resource alignment if it is specified. 5443 * Zero if it is not specified. 5444 */ 5445 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev, 5446 bool *resize) 5447 { 5448 int seg, bus, slot, func, align_order, count; 5449 unsigned short vendor, device, subsystem_vendor, subsystem_device; 5450 resource_size_t align = pcibios_default_alignment(); 5451 char *p; 5452 5453 spin_lock(&resource_alignment_lock); 5454 p = resource_alignment_param; 5455 if (!*p && !align) 5456 goto out; 5457 if (pci_has_flag(PCI_PROBE_ONLY)) { 5458 align = 0; 5459 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n"); 5460 goto out; 5461 } 5462 5463 while (*p) { 5464 count = 0; 5465 if (sscanf(p, "%d%n", &align_order, &count) == 1 && 5466 p[count] == '@') { 5467 p += count + 1; 5468 } else { 5469 align_order = -1; 5470 } 5471 if (strncmp(p, "pci:", 4) == 0) { 5472 /* PCI vendor/device (subvendor/subdevice) ids are specified */ 5473 p += 4; 5474 if (sscanf(p, "%hx:%hx:%hx:%hx%n", 5475 &vendor, &device, &subsystem_vendor, &subsystem_device, &count) != 4) { 5476 if (sscanf(p, "%hx:%hx%n", &vendor, &device, &count) != 2) { 5477 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: pci:%s\n", 5478 p); 5479 break; 5480 } 5481 subsystem_vendor = subsystem_device = 0; 5482 } 5483 p += count; 5484 if ((!vendor || (vendor == dev->vendor)) && 5485 (!device || (device == dev->device)) && 5486 (!subsystem_vendor || (subsystem_vendor == dev->subsystem_vendor)) && 5487 (!subsystem_device || (subsystem_device == dev->subsystem_device))) { 5488 *resize = true; 5489 if (align_order == -1) 5490 align = PAGE_SIZE; 5491 else 5492 align = 1 << align_order; 5493 /* Found */ 5494 break; 5495 } 5496 } 5497 else { 5498 if (sscanf(p, "%x:%x:%x.%x%n", 5499 &seg, &bus, &slot, &func, &count) != 4) { 5500 seg = 0; 5501 if (sscanf(p, "%x:%x.%x%n", 5502 &bus, &slot, &func, &count) != 3) { 5503 /* Invalid format */ 5504 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n", 5505 p); 5506 break; 5507 } 5508 } 5509 p += count; 5510 if (seg == pci_domain_nr(dev->bus) && 5511 bus == dev->bus->number && 5512 slot == PCI_SLOT(dev->devfn) && 5513 func == PCI_FUNC(dev->devfn)) { 5514 *resize = true; 5515 if (align_order == -1) 5516 align = PAGE_SIZE; 5517 else 5518 align = 1 << align_order; 5519 /* Found */ 5520 break; 5521 } 5522 } 5523 if (*p != ';' && *p != ',') { 5524 /* End of param or invalid format */ 5525 break; 5526 } 5527 p++; 5528 } 5529 out: 5530 spin_unlock(&resource_alignment_lock); 5531 return align; 5532 } 5533 5534 static void pci_request_resource_alignment(struct pci_dev *dev, int bar, 5535 resource_size_t align, bool resize) 5536 { 5537 struct resource *r = &dev->resource[bar]; 5538 resource_size_t size; 5539 5540 if (!(r->flags & IORESOURCE_MEM)) 5541 return; 5542 5543 if (r->flags & IORESOURCE_PCI_FIXED) { 5544 pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n", 5545 bar, r, (unsigned long long)align); 5546 return; 5547 } 5548 5549 size = resource_size(r); 5550 if (size >= align) 5551 return; 5552 5553 /* 5554 * Increase the alignment of the resource. There are two ways we 5555 * can do this: 5556 * 5557 * 1) Increase the size of the resource. BARs are aligned on their 5558 * size, so when we reallocate space for this resource, we'll 5559 * allocate it with the larger alignment. This also prevents 5560 * assignment of any other BARs inside the alignment region, so 5561 * if we're requesting page alignment, this means no other BARs 5562 * will share the page. 5563 * 5564 * The disadvantage is that this makes the resource larger than 5565 * the hardware BAR, which may break drivers that compute things 5566 * based on the resource size, e.g., to find registers at a 5567 * fixed offset before the end of the BAR. 5568 * 5569 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and 5570 * set r->start to the desired alignment. By itself this 5571 * doesn't prevent other BARs being put inside the alignment 5572 * region, but if we realign *every* resource of every device in 5573 * the system, none of them will share an alignment region. 5574 * 5575 * When the user has requested alignment for only some devices via 5576 * the "pci=resource_alignment" argument, "resize" is true and we 5577 * use the first method. Otherwise we assume we're aligning all 5578 * devices and we use the second. 5579 */ 5580 5581 pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n", 5582 bar, r, (unsigned long long)align); 5583 5584 if (resize) { 5585 r->start = 0; 5586 r->end = align - 1; 5587 } else { 5588 r->flags &= ~IORESOURCE_SIZEALIGN; 5589 r->flags |= IORESOURCE_STARTALIGN; 5590 r->start = align; 5591 r->end = r->start + size - 1; 5592 } 5593 r->flags |= IORESOURCE_UNSET; 5594 } 5595 5596 /* 5597 * This function disables memory decoding and releases memory resources 5598 * of the device specified by kernel's boot parameter 'pci=resource_alignment='. 5599 * It also rounds up size to specified alignment. 5600 * Later on, the kernel will assign page-aligned memory resource back 5601 * to the device. 5602 */ 5603 void pci_reassigndev_resource_alignment(struct pci_dev *dev) 5604 { 5605 int i; 5606 struct resource *r; 5607 resource_size_t align; 5608 u16 command; 5609 bool resize = false; 5610 5611 /* 5612 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec 5613 * 3.4.1.11. Their resources are allocated from the space 5614 * described by the VF BARx register in the PF's SR-IOV capability. 5615 * We can't influence their alignment here. 5616 */ 5617 if (dev->is_virtfn) 5618 return; 5619 5620 /* check if specified PCI is target device to reassign */ 5621 align = pci_specified_resource_alignment(dev, &resize); 5622 if (!align) 5623 return; 5624 5625 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL && 5626 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) { 5627 pci_warn(dev, "Can't reassign resources to host bridge\n"); 5628 return; 5629 } 5630 5631 pci_info(dev, "Disabling memory decoding and releasing memory resources\n"); 5632 pci_read_config_word(dev, PCI_COMMAND, &command); 5633 command &= ~PCI_COMMAND_MEMORY; 5634 pci_write_config_word(dev, PCI_COMMAND, command); 5635 5636 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 5637 pci_request_resource_alignment(dev, i, align, resize); 5638 5639 /* 5640 * Need to disable bridge's resource window, 5641 * to enable the kernel to reassign new resource 5642 * window later on. 5643 */ 5644 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE && 5645 (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) { 5646 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) { 5647 r = &dev->resource[i]; 5648 if (!(r->flags & IORESOURCE_MEM)) 5649 continue; 5650 r->flags |= IORESOURCE_UNSET; 5651 r->end = resource_size(r) - 1; 5652 r->start = 0; 5653 } 5654 pci_disable_bridge_window(dev); 5655 } 5656 } 5657 5658 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count) 5659 { 5660 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1) 5661 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1; 5662 spin_lock(&resource_alignment_lock); 5663 strncpy(resource_alignment_param, buf, count); 5664 resource_alignment_param[count] = '\0'; 5665 spin_unlock(&resource_alignment_lock); 5666 return count; 5667 } 5668 5669 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size) 5670 { 5671 size_t count; 5672 spin_lock(&resource_alignment_lock); 5673 count = snprintf(buf, size, "%s", resource_alignment_param); 5674 spin_unlock(&resource_alignment_lock); 5675 return count; 5676 } 5677 5678 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf) 5679 { 5680 return pci_get_resource_alignment_param(buf, PAGE_SIZE); 5681 } 5682 5683 static ssize_t pci_resource_alignment_store(struct bus_type *bus, 5684 const char *buf, size_t count) 5685 { 5686 return pci_set_resource_alignment_param(buf, count); 5687 } 5688 5689 static BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show, 5690 pci_resource_alignment_store); 5691 5692 static int __init pci_resource_alignment_sysfs_init(void) 5693 { 5694 return bus_create_file(&pci_bus_type, 5695 &bus_attr_resource_alignment); 5696 } 5697 late_initcall(pci_resource_alignment_sysfs_init); 5698 5699 static void pci_no_domains(void) 5700 { 5701 #ifdef CONFIG_PCI_DOMAINS 5702 pci_domains_supported = 0; 5703 #endif 5704 } 5705 5706 #ifdef CONFIG_PCI_DOMAINS 5707 static atomic_t __domain_nr = ATOMIC_INIT(-1); 5708 5709 int pci_get_new_domain_nr(void) 5710 { 5711 return atomic_inc_return(&__domain_nr); 5712 } 5713 5714 #ifdef CONFIG_PCI_DOMAINS_GENERIC 5715 static int of_pci_bus_find_domain_nr(struct device *parent) 5716 { 5717 static int use_dt_domains = -1; 5718 int domain = -1; 5719 5720 if (parent) 5721 domain = of_get_pci_domain_nr(parent->of_node); 5722 /* 5723 * Check DT domain and use_dt_domains values. 5724 * 5725 * If DT domain property is valid (domain >= 0) and 5726 * use_dt_domains != 0, the DT assignment is valid since this means 5727 * we have not previously allocated a domain number by using 5728 * pci_get_new_domain_nr(); we should also update use_dt_domains to 5729 * 1, to indicate that we have just assigned a domain number from 5730 * DT. 5731 * 5732 * If DT domain property value is not valid (ie domain < 0), and we 5733 * have not previously assigned a domain number from DT 5734 * (use_dt_domains != 1) we should assign a domain number by 5735 * using the: 5736 * 5737 * pci_get_new_domain_nr() 5738 * 5739 * API and update the use_dt_domains value to keep track of method we 5740 * are using to assign domain numbers (use_dt_domains = 0). 5741 * 5742 * All other combinations imply we have a platform that is trying 5743 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(), 5744 * which is a recipe for domain mishandling and it is prevented by 5745 * invalidating the domain value (domain = -1) and printing a 5746 * corresponding error. 5747 */ 5748 if (domain >= 0 && use_dt_domains) { 5749 use_dt_domains = 1; 5750 } else if (domain < 0 && use_dt_domains != 1) { 5751 use_dt_domains = 0; 5752 domain = pci_get_new_domain_nr(); 5753 } else { 5754 if (parent) 5755 pr_err("Node %pOF has ", parent->of_node); 5756 pr_err("Inconsistent \"linux,pci-domain\" property in DT\n"); 5757 domain = -1; 5758 } 5759 5760 return domain; 5761 } 5762 5763 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent) 5764 { 5765 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) : 5766 acpi_pci_bus_find_domain_nr(bus); 5767 } 5768 #endif 5769 #endif 5770 5771 /** 5772 * pci_ext_cfg_avail - can we access extended PCI config space? 5773 * 5774 * Returns 1 if we can access PCI extended config space (offsets 5775 * greater than 0xff). This is the default implementation. Architecture 5776 * implementations can override this. 5777 */ 5778 int __weak pci_ext_cfg_avail(void) 5779 { 5780 return 1; 5781 } 5782 5783 void __weak pci_fixup_cardbus(struct pci_bus *bus) 5784 { 5785 } 5786 EXPORT_SYMBOL(pci_fixup_cardbus); 5787 5788 static int __init pci_setup(char *str) 5789 { 5790 while (str) { 5791 char *k = strchr(str, ','); 5792 if (k) 5793 *k++ = 0; 5794 if (*str && (str = pcibios_setup(str)) && *str) { 5795 if (!strcmp(str, "nomsi")) { 5796 pci_no_msi(); 5797 } else if (!strcmp(str, "noaer")) { 5798 pci_no_aer(); 5799 } else if (!strncmp(str, "realloc=", 8)) { 5800 pci_realloc_get_opt(str + 8); 5801 } else if (!strncmp(str, "realloc", 7)) { 5802 pci_realloc_get_opt("on"); 5803 } else if (!strcmp(str, "nodomains")) { 5804 pci_no_domains(); 5805 } else if (!strncmp(str, "noari", 5)) { 5806 pcie_ari_disabled = true; 5807 } else if (!strncmp(str, "cbiosize=", 9)) { 5808 pci_cardbus_io_size = memparse(str + 9, &str); 5809 } else if (!strncmp(str, "cbmemsize=", 10)) { 5810 pci_cardbus_mem_size = memparse(str + 10, &str); 5811 } else if (!strncmp(str, "resource_alignment=", 19)) { 5812 pci_set_resource_alignment_param(str + 19, 5813 strlen(str + 19)); 5814 } else if (!strncmp(str, "ecrc=", 5)) { 5815 pcie_ecrc_get_policy(str + 5); 5816 } else if (!strncmp(str, "hpiosize=", 9)) { 5817 pci_hotplug_io_size = memparse(str + 9, &str); 5818 } else if (!strncmp(str, "hpmemsize=", 10)) { 5819 pci_hotplug_mem_size = memparse(str + 10, &str); 5820 } else if (!strncmp(str, "hpbussize=", 10)) { 5821 pci_hotplug_bus_size = 5822 simple_strtoul(str + 10, &str, 0); 5823 if (pci_hotplug_bus_size > 0xff) 5824 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 5825 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) { 5826 pcie_bus_config = PCIE_BUS_TUNE_OFF; 5827 } else if (!strncmp(str, "pcie_bus_safe", 13)) { 5828 pcie_bus_config = PCIE_BUS_SAFE; 5829 } else if (!strncmp(str, "pcie_bus_perf", 13)) { 5830 pcie_bus_config = PCIE_BUS_PERFORMANCE; 5831 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) { 5832 pcie_bus_config = PCIE_BUS_PEER2PEER; 5833 } else if (!strncmp(str, "pcie_scan_all", 13)) { 5834 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS); 5835 } else { 5836 printk(KERN_ERR "PCI: Unknown option `%s'\n", 5837 str); 5838 } 5839 } 5840 str = k; 5841 } 5842 return 0; 5843 } 5844 early_param("pci", pci_setup); 5845