1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * PCI Bus Services, see include/linux/pci.h for further explanation. 4 * 5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter, 6 * David Mosberger-Tang 7 * 8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz> 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/kernel.h> 13 #include <linux/delay.h> 14 #include <linux/dmi.h> 15 #include <linux/init.h> 16 #include <linux/msi.h> 17 #include <linux/of.h> 18 #include <linux/pci.h> 19 #include <linux/pm.h> 20 #include <linux/slab.h> 21 #include <linux/module.h> 22 #include <linux/spinlock.h> 23 #include <linux/string.h> 24 #include <linux/log2.h> 25 #include <linux/logic_pio.h> 26 #include <linux/pm_wakeup.h> 27 #include <linux/interrupt.h> 28 #include <linux/device.h> 29 #include <linux/pm_runtime.h> 30 #include <linux/pci_hotplug.h> 31 #include <linux/vmalloc.h> 32 #include <asm/dma.h> 33 #include <linux/aer.h> 34 #include "pci.h" 35 36 DEFINE_MUTEX(pci_slot_mutex); 37 38 const char *pci_power_names[] = { 39 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown", 40 }; 41 EXPORT_SYMBOL_GPL(pci_power_names); 42 43 int isa_dma_bridge_buggy; 44 EXPORT_SYMBOL(isa_dma_bridge_buggy); 45 46 int pci_pci_problems; 47 EXPORT_SYMBOL(pci_pci_problems); 48 49 unsigned int pci_pm_d3hot_delay; 50 51 static void pci_pme_list_scan(struct work_struct *work); 52 53 static LIST_HEAD(pci_pme_list); 54 static DEFINE_MUTEX(pci_pme_list_mutex); 55 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan); 56 57 struct pci_pme_device { 58 struct list_head list; 59 struct pci_dev *dev; 60 }; 61 62 #define PME_TIMEOUT 1000 /* How long between PME checks */ 63 64 static void pci_dev_d3_sleep(struct pci_dev *dev) 65 { 66 unsigned int delay = dev->d3hot_delay; 67 68 if (delay < pci_pm_d3hot_delay) 69 delay = pci_pm_d3hot_delay; 70 71 if (delay) 72 msleep(delay); 73 } 74 75 #ifdef CONFIG_PCI_DOMAINS 76 int pci_domains_supported = 1; 77 #endif 78 79 #define DEFAULT_CARDBUS_IO_SIZE (256) 80 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024) 81 /* pci=cbmemsize=nnM,cbiosize=nn can override this */ 82 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE; 83 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE; 84 85 #define DEFAULT_HOTPLUG_IO_SIZE (256) 86 #define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024) 87 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024) 88 /* hpiosize=nn can override this */ 89 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE; 90 /* 91 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size, 92 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size; 93 * pci=hpmemsize=nnM overrides both 94 */ 95 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE; 96 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE; 97 98 #define DEFAULT_HOTPLUG_BUS_SIZE 1 99 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 100 101 102 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */ 103 #ifdef CONFIG_PCIE_BUS_TUNE_OFF 104 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF; 105 #elif defined CONFIG_PCIE_BUS_SAFE 106 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE; 107 #elif defined CONFIG_PCIE_BUS_PERFORMANCE 108 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE; 109 #elif defined CONFIG_PCIE_BUS_PEER2PEER 110 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER; 111 #else 112 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT; 113 #endif 114 115 /* 116 * The default CLS is used if arch didn't set CLS explicitly and not 117 * all pci devices agree on the same value. Arch can override either 118 * the dfl or actual value as it sees fit. Don't forget this is 119 * measured in 32-bit words, not bytes. 120 */ 121 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2; 122 u8 pci_cache_line_size; 123 124 /* 125 * If we set up a device for bus mastering, we need to check the latency 126 * timer as certain BIOSes forget to set it properly. 127 */ 128 unsigned int pcibios_max_latency = 255; 129 130 /* If set, the PCIe ARI capability will not be used. */ 131 static bool pcie_ari_disabled; 132 133 /* If set, the PCIe ATS capability will not be used. */ 134 static bool pcie_ats_disabled; 135 136 /* If set, the PCI config space of each device is printed during boot. */ 137 bool pci_early_dump; 138 139 bool pci_ats_disabled(void) 140 { 141 return pcie_ats_disabled; 142 } 143 EXPORT_SYMBOL_GPL(pci_ats_disabled); 144 145 /* Disable bridge_d3 for all PCIe ports */ 146 static bool pci_bridge_d3_disable; 147 /* Force bridge_d3 for all PCIe ports */ 148 static bool pci_bridge_d3_force; 149 150 static int __init pcie_port_pm_setup(char *str) 151 { 152 if (!strcmp(str, "off")) 153 pci_bridge_d3_disable = true; 154 else if (!strcmp(str, "force")) 155 pci_bridge_d3_force = true; 156 return 1; 157 } 158 __setup("pcie_port_pm=", pcie_port_pm_setup); 159 160 /* Time to wait after a reset for device to become responsive */ 161 #define PCIE_RESET_READY_POLL_MS 60000 162 163 /** 164 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children 165 * @bus: pointer to PCI bus structure to search 166 * 167 * Given a PCI bus, returns the highest PCI bus number present in the set 168 * including the given PCI bus and its list of child PCI buses. 169 */ 170 unsigned char pci_bus_max_busnr(struct pci_bus *bus) 171 { 172 struct pci_bus *tmp; 173 unsigned char max, n; 174 175 max = bus->busn_res.end; 176 list_for_each_entry(tmp, &bus->children, node) { 177 n = pci_bus_max_busnr(tmp); 178 if (n > max) 179 max = n; 180 } 181 return max; 182 } 183 EXPORT_SYMBOL_GPL(pci_bus_max_busnr); 184 185 /** 186 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS 187 * @pdev: the PCI device 188 * 189 * Returns error bits set in PCI_STATUS and clears them. 190 */ 191 int pci_status_get_and_clear_errors(struct pci_dev *pdev) 192 { 193 u16 status; 194 int ret; 195 196 ret = pci_read_config_word(pdev, PCI_STATUS, &status); 197 if (ret != PCIBIOS_SUCCESSFUL) 198 return -EIO; 199 200 status &= PCI_STATUS_ERROR_BITS; 201 if (status) 202 pci_write_config_word(pdev, PCI_STATUS, status); 203 204 return status; 205 } 206 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors); 207 208 #ifdef CONFIG_HAS_IOMEM 209 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar) 210 { 211 struct resource *res = &pdev->resource[bar]; 212 213 /* 214 * Make sure the BAR is actually a memory resource, not an IO resource 215 */ 216 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) { 217 pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res); 218 return NULL; 219 } 220 return ioremap(res->start, resource_size(res)); 221 } 222 EXPORT_SYMBOL_GPL(pci_ioremap_bar); 223 224 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar) 225 { 226 /* 227 * Make sure the BAR is actually a memory resource, not an IO resource 228 */ 229 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) { 230 WARN_ON(1); 231 return NULL; 232 } 233 return ioremap_wc(pci_resource_start(pdev, bar), 234 pci_resource_len(pdev, bar)); 235 } 236 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar); 237 #endif 238 239 /** 240 * pci_dev_str_match_path - test if a path string matches a device 241 * @dev: the PCI device to test 242 * @path: string to match the device against 243 * @endptr: pointer to the string after the match 244 * 245 * Test if a string (typically from a kernel parameter) formatted as a 246 * path of device/function addresses matches a PCI device. The string must 247 * be of the form: 248 * 249 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 250 * 251 * A path for a device can be obtained using 'lspci -t'. Using a path 252 * is more robust against bus renumbering than using only a single bus, 253 * device and function address. 254 * 255 * Returns 1 if the string matches the device, 0 if it does not and 256 * a negative error code if it fails to parse the string. 257 */ 258 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path, 259 const char **endptr) 260 { 261 int ret; 262 int seg, bus, slot, func; 263 char *wpath, *p; 264 char end; 265 266 *endptr = strchrnul(path, ';'); 267 268 wpath = kmemdup_nul(path, *endptr - path, GFP_KERNEL); 269 if (!wpath) 270 return -ENOMEM; 271 272 while (1) { 273 p = strrchr(wpath, '/'); 274 if (!p) 275 break; 276 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end); 277 if (ret != 2) { 278 ret = -EINVAL; 279 goto free_and_exit; 280 } 281 282 if (dev->devfn != PCI_DEVFN(slot, func)) { 283 ret = 0; 284 goto free_and_exit; 285 } 286 287 /* 288 * Note: we don't need to get a reference to the upstream 289 * bridge because we hold a reference to the top level 290 * device which should hold a reference to the bridge, 291 * and so on. 292 */ 293 dev = pci_upstream_bridge(dev); 294 if (!dev) { 295 ret = 0; 296 goto free_and_exit; 297 } 298 299 *p = 0; 300 } 301 302 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot, 303 &func, &end); 304 if (ret != 4) { 305 seg = 0; 306 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end); 307 if (ret != 3) { 308 ret = -EINVAL; 309 goto free_and_exit; 310 } 311 } 312 313 ret = (seg == pci_domain_nr(dev->bus) && 314 bus == dev->bus->number && 315 dev->devfn == PCI_DEVFN(slot, func)); 316 317 free_and_exit: 318 kfree(wpath); 319 return ret; 320 } 321 322 /** 323 * pci_dev_str_match - test if a string matches a device 324 * @dev: the PCI device to test 325 * @p: string to match the device against 326 * @endptr: pointer to the string after the match 327 * 328 * Test if a string (typically from a kernel parameter) matches a specified 329 * PCI device. The string may be of one of the following formats: 330 * 331 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 332 * pci:<vendor>:<device>[:<subvendor>:<subdevice>] 333 * 334 * The first format specifies a PCI bus/device/function address which 335 * may change if new hardware is inserted, if motherboard firmware changes, 336 * or due to changes caused in kernel parameters. If the domain is 337 * left unspecified, it is taken to be 0. In order to be robust against 338 * bus renumbering issues, a path of PCI device/function numbers may be used 339 * to address the specific device. The path for a device can be determined 340 * through the use of 'lspci -t'. 341 * 342 * The second format matches devices using IDs in the configuration 343 * space which may match multiple devices in the system. A value of 0 344 * for any field will match all devices. (Note: this differs from 345 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for 346 * legacy reasons and convenience so users don't have to specify 347 * FFFFFFFFs on the command line.) 348 * 349 * Returns 1 if the string matches the device, 0 if it does not and 350 * a negative error code if the string cannot be parsed. 351 */ 352 static int pci_dev_str_match(struct pci_dev *dev, const char *p, 353 const char **endptr) 354 { 355 int ret; 356 int count; 357 unsigned short vendor, device, subsystem_vendor, subsystem_device; 358 359 if (strncmp(p, "pci:", 4) == 0) { 360 /* PCI vendor/device (subvendor/subdevice) IDs are specified */ 361 p += 4; 362 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device, 363 &subsystem_vendor, &subsystem_device, &count); 364 if (ret != 4) { 365 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count); 366 if (ret != 2) 367 return -EINVAL; 368 369 subsystem_vendor = 0; 370 subsystem_device = 0; 371 } 372 373 p += count; 374 375 if ((!vendor || vendor == dev->vendor) && 376 (!device || device == dev->device) && 377 (!subsystem_vendor || 378 subsystem_vendor == dev->subsystem_vendor) && 379 (!subsystem_device || 380 subsystem_device == dev->subsystem_device)) 381 goto found; 382 } else { 383 /* 384 * PCI Bus, Device, Function IDs are specified 385 * (optionally, may include a path of devfns following it) 386 */ 387 ret = pci_dev_str_match_path(dev, p, &p); 388 if (ret < 0) 389 return ret; 390 else if (ret) 391 goto found; 392 } 393 394 *endptr = p; 395 return 0; 396 397 found: 398 *endptr = p; 399 return 1; 400 } 401 402 static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn, 403 u8 pos, int cap, int *ttl) 404 { 405 u8 id; 406 u16 ent; 407 408 pci_bus_read_config_byte(bus, devfn, pos, &pos); 409 410 while ((*ttl)--) { 411 if (pos < 0x40) 412 break; 413 pos &= ~3; 414 pci_bus_read_config_word(bus, devfn, pos, &ent); 415 416 id = ent & 0xff; 417 if (id == 0xff) 418 break; 419 if (id == cap) 420 return pos; 421 pos = (ent >> 8); 422 } 423 return 0; 424 } 425 426 static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn, 427 u8 pos, int cap) 428 { 429 int ttl = PCI_FIND_CAP_TTL; 430 431 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl); 432 } 433 434 u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap) 435 { 436 return __pci_find_next_cap(dev->bus, dev->devfn, 437 pos + PCI_CAP_LIST_NEXT, cap); 438 } 439 EXPORT_SYMBOL_GPL(pci_find_next_capability); 440 441 static u8 __pci_bus_find_cap_start(struct pci_bus *bus, 442 unsigned int devfn, u8 hdr_type) 443 { 444 u16 status; 445 446 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status); 447 if (!(status & PCI_STATUS_CAP_LIST)) 448 return 0; 449 450 switch (hdr_type) { 451 case PCI_HEADER_TYPE_NORMAL: 452 case PCI_HEADER_TYPE_BRIDGE: 453 return PCI_CAPABILITY_LIST; 454 case PCI_HEADER_TYPE_CARDBUS: 455 return PCI_CB_CAPABILITY_LIST; 456 } 457 458 return 0; 459 } 460 461 /** 462 * pci_find_capability - query for devices' capabilities 463 * @dev: PCI device to query 464 * @cap: capability code 465 * 466 * Tell if a device supports a given PCI capability. 467 * Returns the address of the requested capability structure within the 468 * device's PCI configuration space or 0 in case the device does not 469 * support it. Possible values for @cap include: 470 * 471 * %PCI_CAP_ID_PM Power Management 472 * %PCI_CAP_ID_AGP Accelerated Graphics Port 473 * %PCI_CAP_ID_VPD Vital Product Data 474 * %PCI_CAP_ID_SLOTID Slot Identification 475 * %PCI_CAP_ID_MSI Message Signalled Interrupts 476 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap 477 * %PCI_CAP_ID_PCIX PCI-X 478 * %PCI_CAP_ID_EXP PCI Express 479 */ 480 u8 pci_find_capability(struct pci_dev *dev, int cap) 481 { 482 u8 pos; 483 484 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 485 if (pos) 486 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap); 487 488 return pos; 489 } 490 EXPORT_SYMBOL(pci_find_capability); 491 492 /** 493 * pci_bus_find_capability - query for devices' capabilities 494 * @bus: the PCI bus to query 495 * @devfn: PCI device to query 496 * @cap: capability code 497 * 498 * Like pci_find_capability() but works for PCI devices that do not have a 499 * pci_dev structure set up yet. 500 * 501 * Returns the address of the requested capability structure within the 502 * device's PCI configuration space or 0 in case the device does not 503 * support it. 504 */ 505 u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap) 506 { 507 u8 hdr_type, pos; 508 509 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type); 510 511 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f); 512 if (pos) 513 pos = __pci_find_next_cap(bus, devfn, pos, cap); 514 515 return pos; 516 } 517 EXPORT_SYMBOL(pci_bus_find_capability); 518 519 /** 520 * pci_find_next_ext_capability - Find an extended capability 521 * @dev: PCI device to query 522 * @start: address at which to start looking (0 to start at beginning of list) 523 * @cap: capability code 524 * 525 * Returns the address of the next matching extended capability structure 526 * within the device's PCI configuration space or 0 if the device does 527 * not support it. Some capabilities can occur several times, e.g., the 528 * vendor-specific capability, and this provides a way to find them all. 529 */ 530 u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap) 531 { 532 u32 header; 533 int ttl; 534 u16 pos = PCI_CFG_SPACE_SIZE; 535 536 /* minimum 8 bytes per capability */ 537 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8; 538 539 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE) 540 return 0; 541 542 if (start) 543 pos = start; 544 545 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 546 return 0; 547 548 /* 549 * If we have no capabilities, this is indicated by cap ID, 550 * cap version and next pointer all being 0. 551 */ 552 if (header == 0) 553 return 0; 554 555 while (ttl-- > 0) { 556 if (PCI_EXT_CAP_ID(header) == cap && pos != start) 557 return pos; 558 559 pos = PCI_EXT_CAP_NEXT(header); 560 if (pos < PCI_CFG_SPACE_SIZE) 561 break; 562 563 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 564 break; 565 } 566 567 return 0; 568 } 569 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability); 570 571 /** 572 * pci_find_ext_capability - Find an extended capability 573 * @dev: PCI device to query 574 * @cap: capability code 575 * 576 * Returns the address of the requested extended capability structure 577 * within the device's PCI configuration space or 0 if the device does 578 * not support it. Possible values for @cap include: 579 * 580 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting 581 * %PCI_EXT_CAP_ID_VC Virtual Channel 582 * %PCI_EXT_CAP_ID_DSN Device Serial Number 583 * %PCI_EXT_CAP_ID_PWR Power Budgeting 584 */ 585 u16 pci_find_ext_capability(struct pci_dev *dev, int cap) 586 { 587 return pci_find_next_ext_capability(dev, 0, cap); 588 } 589 EXPORT_SYMBOL_GPL(pci_find_ext_capability); 590 591 /** 592 * pci_get_dsn - Read and return the 8-byte Device Serial Number 593 * @dev: PCI device to query 594 * 595 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial 596 * Number. 597 * 598 * Returns the DSN, or zero if the capability does not exist. 599 */ 600 u64 pci_get_dsn(struct pci_dev *dev) 601 { 602 u32 dword; 603 u64 dsn; 604 int pos; 605 606 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN); 607 if (!pos) 608 return 0; 609 610 /* 611 * The Device Serial Number is two dwords offset 4 bytes from the 612 * capability position. The specification says that the first dword is 613 * the lower half, and the second dword is the upper half. 614 */ 615 pos += 4; 616 pci_read_config_dword(dev, pos, &dword); 617 dsn = (u64)dword; 618 pci_read_config_dword(dev, pos + 4, &dword); 619 dsn |= ((u64)dword) << 32; 620 621 return dsn; 622 } 623 EXPORT_SYMBOL_GPL(pci_get_dsn); 624 625 static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap) 626 { 627 int rc, ttl = PCI_FIND_CAP_TTL; 628 u8 cap, mask; 629 630 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST) 631 mask = HT_3BIT_CAP_MASK; 632 else 633 mask = HT_5BIT_CAP_MASK; 634 635 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos, 636 PCI_CAP_ID_HT, &ttl); 637 while (pos) { 638 rc = pci_read_config_byte(dev, pos + 3, &cap); 639 if (rc != PCIBIOS_SUCCESSFUL) 640 return 0; 641 642 if ((cap & mask) == ht_cap) 643 return pos; 644 645 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, 646 pos + PCI_CAP_LIST_NEXT, 647 PCI_CAP_ID_HT, &ttl); 648 } 649 650 return 0; 651 } 652 653 /** 654 * pci_find_next_ht_capability - query a device's HyperTransport capabilities 655 * @dev: PCI device to query 656 * @pos: Position from which to continue searching 657 * @ht_cap: HyperTransport capability code 658 * 659 * To be used in conjunction with pci_find_ht_capability() to search for 660 * all capabilities matching @ht_cap. @pos should always be a value returned 661 * from pci_find_ht_capability(). 662 * 663 * NB. To be 100% safe against broken PCI devices, the caller should take 664 * steps to avoid an infinite loop. 665 */ 666 u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap) 667 { 668 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap); 669 } 670 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability); 671 672 /** 673 * pci_find_ht_capability - query a device's HyperTransport capabilities 674 * @dev: PCI device to query 675 * @ht_cap: HyperTransport capability code 676 * 677 * Tell if a device supports a given HyperTransport capability. 678 * Returns an address within the device's PCI configuration space 679 * or 0 in case the device does not support the request capability. 680 * The address points to the PCI capability, of type PCI_CAP_ID_HT, 681 * which has a HyperTransport capability matching @ht_cap. 682 */ 683 u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap) 684 { 685 u8 pos; 686 687 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 688 if (pos) 689 pos = __pci_find_next_ht_cap(dev, pos, ht_cap); 690 691 return pos; 692 } 693 EXPORT_SYMBOL_GPL(pci_find_ht_capability); 694 695 /** 696 * pci_find_vsec_capability - Find a vendor-specific extended capability 697 * @dev: PCI device to query 698 * @vendor: Vendor ID for which capability is defined 699 * @cap: Vendor-specific capability ID 700 * 701 * If @dev has Vendor ID @vendor, search for a VSEC capability with 702 * VSEC ID @cap. If found, return the capability offset in 703 * config space; otherwise return 0. 704 */ 705 u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap) 706 { 707 u16 vsec = 0; 708 u32 header; 709 710 if (vendor != dev->vendor) 711 return 0; 712 713 while ((vsec = pci_find_next_ext_capability(dev, vsec, 714 PCI_EXT_CAP_ID_VNDR))) { 715 if (pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER, 716 &header) == PCIBIOS_SUCCESSFUL && 717 PCI_VNDR_HEADER_ID(header) == cap) 718 return vsec; 719 } 720 721 return 0; 722 } 723 EXPORT_SYMBOL_GPL(pci_find_vsec_capability); 724 725 /** 726 * pci_find_parent_resource - return resource region of parent bus of given 727 * region 728 * @dev: PCI device structure contains resources to be searched 729 * @res: child resource record for which parent is sought 730 * 731 * For given resource region of given device, return the resource region of 732 * parent bus the given region is contained in. 733 */ 734 struct resource *pci_find_parent_resource(const struct pci_dev *dev, 735 struct resource *res) 736 { 737 const struct pci_bus *bus = dev->bus; 738 struct resource *r; 739 int i; 740 741 pci_bus_for_each_resource(bus, r, i) { 742 if (!r) 743 continue; 744 if (resource_contains(r, res)) { 745 746 /* 747 * If the window is prefetchable but the BAR is 748 * not, the allocator made a mistake. 749 */ 750 if (r->flags & IORESOURCE_PREFETCH && 751 !(res->flags & IORESOURCE_PREFETCH)) 752 return NULL; 753 754 /* 755 * If we're below a transparent bridge, there may 756 * be both a positively-decoded aperture and a 757 * subtractively-decoded region that contain the BAR. 758 * We want the positively-decoded one, so this depends 759 * on pci_bus_for_each_resource() giving us those 760 * first. 761 */ 762 return r; 763 } 764 } 765 return NULL; 766 } 767 EXPORT_SYMBOL(pci_find_parent_resource); 768 769 /** 770 * pci_find_resource - Return matching PCI device resource 771 * @dev: PCI device to query 772 * @res: Resource to look for 773 * 774 * Goes over standard PCI resources (BARs) and checks if the given resource 775 * is partially or fully contained in any of them. In that case the 776 * matching resource is returned, %NULL otherwise. 777 */ 778 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res) 779 { 780 int i; 781 782 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 783 struct resource *r = &dev->resource[i]; 784 785 if (r->start && resource_contains(r, res)) 786 return r; 787 } 788 789 return NULL; 790 } 791 EXPORT_SYMBOL(pci_find_resource); 792 793 /** 794 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos 795 * @dev: the PCI device to operate on 796 * @pos: config space offset of status word 797 * @mask: mask of bit(s) to care about in status word 798 * 799 * Return 1 when mask bit(s) in status word clear, 0 otherwise. 800 */ 801 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask) 802 { 803 int i; 804 805 /* Wait for Transaction Pending bit clean */ 806 for (i = 0; i < 4; i++) { 807 u16 status; 808 if (i) 809 msleep((1 << (i - 1)) * 100); 810 811 pci_read_config_word(dev, pos, &status); 812 if (!(status & mask)) 813 return 1; 814 } 815 816 return 0; 817 } 818 819 static int pci_acs_enable; 820 821 /** 822 * pci_request_acs - ask for ACS to be enabled if supported 823 */ 824 void pci_request_acs(void) 825 { 826 pci_acs_enable = 1; 827 } 828 829 static const char *disable_acs_redir_param; 830 831 /** 832 * pci_disable_acs_redir - disable ACS redirect capabilities 833 * @dev: the PCI device 834 * 835 * For only devices specified in the disable_acs_redir parameter. 836 */ 837 static void pci_disable_acs_redir(struct pci_dev *dev) 838 { 839 int ret = 0; 840 const char *p; 841 int pos; 842 u16 ctrl; 843 844 if (!disable_acs_redir_param) 845 return; 846 847 p = disable_acs_redir_param; 848 while (*p) { 849 ret = pci_dev_str_match(dev, p, &p); 850 if (ret < 0) { 851 pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n", 852 disable_acs_redir_param); 853 854 break; 855 } else if (ret == 1) { 856 /* Found a match */ 857 break; 858 } 859 860 if (*p != ';' && *p != ',') { 861 /* End of param or invalid format */ 862 break; 863 } 864 p++; 865 } 866 867 if (ret != 1) 868 return; 869 870 if (!pci_dev_specific_disable_acs_redir(dev)) 871 return; 872 873 pos = dev->acs_cap; 874 if (!pos) { 875 pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n"); 876 return; 877 } 878 879 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 880 881 /* P2P Request & Completion Redirect */ 882 ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC); 883 884 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 885 886 pci_info(dev, "disabled ACS redirect\n"); 887 } 888 889 /** 890 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities 891 * @dev: the PCI device 892 */ 893 static void pci_std_enable_acs(struct pci_dev *dev) 894 { 895 int pos; 896 u16 cap; 897 u16 ctrl; 898 899 pos = dev->acs_cap; 900 if (!pos) 901 return; 902 903 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap); 904 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 905 906 /* Source Validation */ 907 ctrl |= (cap & PCI_ACS_SV); 908 909 /* P2P Request Redirect */ 910 ctrl |= (cap & PCI_ACS_RR); 911 912 /* P2P Completion Redirect */ 913 ctrl |= (cap & PCI_ACS_CR); 914 915 /* Upstream Forwarding */ 916 ctrl |= (cap & PCI_ACS_UF); 917 918 /* Enable Translation Blocking for external devices */ 919 if (dev->external_facing || dev->untrusted) 920 ctrl |= (cap & PCI_ACS_TB); 921 922 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 923 } 924 925 /** 926 * pci_enable_acs - enable ACS if hardware support it 927 * @dev: the PCI device 928 */ 929 static void pci_enable_acs(struct pci_dev *dev) 930 { 931 if (!pci_acs_enable) 932 goto disable_acs_redir; 933 934 if (!pci_dev_specific_enable_acs(dev)) 935 goto disable_acs_redir; 936 937 pci_std_enable_acs(dev); 938 939 disable_acs_redir: 940 /* 941 * Note: pci_disable_acs_redir() must be called even if ACS was not 942 * enabled by the kernel because it may have been enabled by 943 * platform firmware. So if we are told to disable it, we should 944 * always disable it after setting the kernel's default 945 * preferences. 946 */ 947 pci_disable_acs_redir(dev); 948 } 949 950 /** 951 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up) 952 * @dev: PCI device to have its BARs restored 953 * 954 * Restore the BAR values for a given device, so as to make it 955 * accessible by its driver. 956 */ 957 static void pci_restore_bars(struct pci_dev *dev) 958 { 959 int i; 960 961 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) 962 pci_update_resource(dev, i); 963 } 964 965 static const struct pci_platform_pm_ops *pci_platform_pm; 966 967 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops) 968 { 969 if (!ops->is_manageable || !ops->set_state || !ops->get_state || 970 !ops->choose_state || !ops->set_wakeup || !ops->need_resume) 971 return -EINVAL; 972 pci_platform_pm = ops; 973 return 0; 974 } 975 976 static inline bool platform_pci_power_manageable(struct pci_dev *dev) 977 { 978 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false; 979 } 980 981 static inline int platform_pci_set_power_state(struct pci_dev *dev, 982 pci_power_t t) 983 { 984 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS; 985 } 986 987 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev) 988 { 989 return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN; 990 } 991 992 static inline void platform_pci_refresh_power_state(struct pci_dev *dev) 993 { 994 if (pci_platform_pm && pci_platform_pm->refresh_state) 995 pci_platform_pm->refresh_state(dev); 996 } 997 998 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev) 999 { 1000 return pci_platform_pm ? 1001 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR; 1002 } 1003 1004 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable) 1005 { 1006 return pci_platform_pm ? 1007 pci_platform_pm->set_wakeup(dev, enable) : -ENODEV; 1008 } 1009 1010 static inline bool platform_pci_need_resume(struct pci_dev *dev) 1011 { 1012 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false; 1013 } 1014 1015 static inline bool platform_pci_bridge_d3(struct pci_dev *dev) 1016 { 1017 if (pci_platform_pm && pci_platform_pm->bridge_d3) 1018 return pci_platform_pm->bridge_d3(dev); 1019 return false; 1020 } 1021 1022 /** 1023 * pci_raw_set_power_state - Use PCI PM registers to set the power state of 1024 * given PCI device 1025 * @dev: PCI device to handle. 1026 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 1027 * 1028 * RETURN VALUE: 1029 * -EINVAL if the requested state is invalid. 1030 * -EIO if device does not support PCI PM or its PM capabilities register has a 1031 * wrong version, or device doesn't support the requested state. 1032 * 0 if device already is in the requested state. 1033 * 0 if device's power state has been successfully changed. 1034 */ 1035 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state) 1036 { 1037 u16 pmcsr; 1038 bool need_restore = false; 1039 1040 /* Check if we're already there */ 1041 if (dev->current_state == state) 1042 return 0; 1043 1044 if (!dev->pm_cap) 1045 return -EIO; 1046 1047 if (state < PCI_D0 || state > PCI_D3hot) 1048 return -EINVAL; 1049 1050 /* 1051 * Validate transition: We can enter D0 from any state, but if 1052 * we're already in a low-power state, we can only go deeper. E.g., 1053 * we can go from D1 to D3, but we can't go directly from D3 to D1; 1054 * we'd have to go from D3 to D0, then to D1. 1055 */ 1056 if (state != PCI_D0 && dev->current_state <= PCI_D3cold 1057 && dev->current_state > state) { 1058 pci_err(dev, "invalid power transition (from %s to %s)\n", 1059 pci_power_name(dev->current_state), 1060 pci_power_name(state)); 1061 return -EINVAL; 1062 } 1063 1064 /* Check if this device supports the desired state */ 1065 if ((state == PCI_D1 && !dev->d1_support) 1066 || (state == PCI_D2 && !dev->d2_support)) 1067 return -EIO; 1068 1069 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1070 if (pmcsr == (u16) ~0) { 1071 pci_err(dev, "can't change power state from %s to %s (config space inaccessible)\n", 1072 pci_power_name(dev->current_state), 1073 pci_power_name(state)); 1074 return -EIO; 1075 } 1076 1077 /* 1078 * If we're (effectively) in D3, force entire word to 0. 1079 * This doesn't affect PME_Status, disables PME_En, and 1080 * sets PowerState to 0. 1081 */ 1082 switch (dev->current_state) { 1083 case PCI_D0: 1084 case PCI_D1: 1085 case PCI_D2: 1086 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 1087 pmcsr |= state; 1088 break; 1089 case PCI_D3hot: 1090 case PCI_D3cold: 1091 case PCI_UNKNOWN: /* Boot-up */ 1092 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot 1093 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET)) 1094 need_restore = true; 1095 fallthrough; /* force to D0 */ 1096 default: 1097 pmcsr = 0; 1098 break; 1099 } 1100 1101 /* Enter specified state */ 1102 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 1103 1104 /* 1105 * Mandatory power management transition delays; see PCI PM 1.1 1106 * 5.6.1 table 18 1107 */ 1108 if (state == PCI_D3hot || dev->current_state == PCI_D3hot) 1109 pci_dev_d3_sleep(dev); 1110 else if (state == PCI_D2 || dev->current_state == PCI_D2) 1111 udelay(PCI_PM_D2_DELAY); 1112 1113 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1114 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 1115 if (dev->current_state != state) 1116 pci_info_ratelimited(dev, "refused to change power state from %s to %s\n", 1117 pci_power_name(dev->current_state), 1118 pci_power_name(state)); 1119 1120 /* 1121 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT 1122 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning 1123 * from D3hot to D0 _may_ perform an internal reset, thereby 1124 * going to "D0 Uninitialized" rather than "D0 Initialized". 1125 * For example, at least some versions of the 3c905B and the 1126 * 3c556B exhibit this behaviour. 1127 * 1128 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave 1129 * devices in a D3hot state at boot. Consequently, we need to 1130 * restore at least the BARs so that the device will be 1131 * accessible to its driver. 1132 */ 1133 if (need_restore) 1134 pci_restore_bars(dev); 1135 1136 if (dev->bus->self) 1137 pcie_aspm_pm_state_change(dev->bus->self); 1138 1139 return 0; 1140 } 1141 1142 /** 1143 * pci_update_current_state - Read power state of given device and cache it 1144 * @dev: PCI device to handle. 1145 * @state: State to cache in case the device doesn't have the PM capability 1146 * 1147 * The power state is read from the PMCSR register, which however is 1148 * inaccessible in D3cold. The platform firmware is therefore queried first 1149 * to detect accessibility of the register. In case the platform firmware 1150 * reports an incorrect state or the device isn't power manageable by the 1151 * platform at all, we try to detect D3cold by testing accessibility of the 1152 * vendor ID in config space. 1153 */ 1154 void pci_update_current_state(struct pci_dev *dev, pci_power_t state) 1155 { 1156 if (platform_pci_get_power_state(dev) == PCI_D3cold || 1157 !pci_device_is_present(dev)) { 1158 dev->current_state = PCI_D3cold; 1159 } else if (dev->pm_cap) { 1160 u16 pmcsr; 1161 1162 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1163 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 1164 } else { 1165 dev->current_state = state; 1166 } 1167 } 1168 1169 /** 1170 * pci_refresh_power_state - Refresh the given device's power state data 1171 * @dev: Target PCI device. 1172 * 1173 * Ask the platform to refresh the devices power state information and invoke 1174 * pci_update_current_state() to update its current PCI power state. 1175 */ 1176 void pci_refresh_power_state(struct pci_dev *dev) 1177 { 1178 if (platform_pci_power_manageable(dev)) 1179 platform_pci_refresh_power_state(dev); 1180 1181 pci_update_current_state(dev, dev->current_state); 1182 } 1183 1184 /** 1185 * pci_platform_power_transition - Use platform to change device power state 1186 * @dev: PCI device to handle. 1187 * @state: State to put the device into. 1188 */ 1189 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state) 1190 { 1191 int error; 1192 1193 if (platform_pci_power_manageable(dev)) { 1194 error = platform_pci_set_power_state(dev, state); 1195 if (!error) 1196 pci_update_current_state(dev, state); 1197 } else 1198 error = -ENODEV; 1199 1200 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */ 1201 dev->current_state = PCI_D0; 1202 1203 return error; 1204 } 1205 EXPORT_SYMBOL_GPL(pci_platform_power_transition); 1206 1207 static int pci_resume_one(struct pci_dev *pci_dev, void *ign) 1208 { 1209 pm_request_resume(&pci_dev->dev); 1210 return 0; 1211 } 1212 1213 /** 1214 * pci_resume_bus - Walk given bus and runtime resume devices on it 1215 * @bus: Top bus of the subtree to walk. 1216 */ 1217 void pci_resume_bus(struct pci_bus *bus) 1218 { 1219 if (bus) 1220 pci_walk_bus(bus, pci_resume_one, NULL); 1221 } 1222 1223 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout) 1224 { 1225 int delay = 1; 1226 u32 id; 1227 1228 /* 1229 * After reset, the device should not silently discard config 1230 * requests, but it may still indicate that it needs more time by 1231 * responding to them with CRS completions. The Root Port will 1232 * generally synthesize ~0 data to complete the read (except when 1233 * CRS SV is enabled and the read was for the Vendor ID; in that 1234 * case it synthesizes 0x0001 data). 1235 * 1236 * Wait for the device to return a non-CRS completion. Read the 1237 * Command register instead of Vendor ID so we don't have to 1238 * contend with the CRS SV value. 1239 */ 1240 pci_read_config_dword(dev, PCI_COMMAND, &id); 1241 while (id == ~0) { 1242 if (delay > timeout) { 1243 pci_warn(dev, "not ready %dms after %s; giving up\n", 1244 delay - 1, reset_type); 1245 return -ENOTTY; 1246 } 1247 1248 if (delay > 1000) 1249 pci_info(dev, "not ready %dms after %s; waiting\n", 1250 delay - 1, reset_type); 1251 1252 msleep(delay); 1253 delay *= 2; 1254 pci_read_config_dword(dev, PCI_COMMAND, &id); 1255 } 1256 1257 if (delay > 1000) 1258 pci_info(dev, "ready %dms after %s\n", delay - 1, 1259 reset_type); 1260 1261 return 0; 1262 } 1263 1264 /** 1265 * pci_power_up - Put the given device into D0 1266 * @dev: PCI device to power up 1267 */ 1268 int pci_power_up(struct pci_dev *dev) 1269 { 1270 pci_platform_power_transition(dev, PCI_D0); 1271 1272 /* 1273 * Mandatory power management transition delays are handled in 1274 * pci_pm_resume_noirq() and pci_pm_runtime_resume() of the 1275 * corresponding bridge. 1276 */ 1277 if (dev->runtime_d3cold) { 1278 /* 1279 * When powering on a bridge from D3cold, the whole hierarchy 1280 * may be powered on into D0uninitialized state, resume them to 1281 * give them a chance to suspend again 1282 */ 1283 pci_resume_bus(dev->subordinate); 1284 } 1285 1286 return pci_raw_set_power_state(dev, PCI_D0); 1287 } 1288 1289 /** 1290 * __pci_dev_set_current_state - Set current state of a PCI device 1291 * @dev: Device to handle 1292 * @data: pointer to state to be set 1293 */ 1294 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data) 1295 { 1296 pci_power_t state = *(pci_power_t *)data; 1297 1298 dev->current_state = state; 1299 return 0; 1300 } 1301 1302 /** 1303 * pci_bus_set_current_state - Walk given bus and set current state of devices 1304 * @bus: Top bus of the subtree to walk. 1305 * @state: state to be set 1306 */ 1307 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state) 1308 { 1309 if (bus) 1310 pci_walk_bus(bus, __pci_dev_set_current_state, &state); 1311 } 1312 1313 /** 1314 * pci_set_power_state - Set the power state of a PCI device 1315 * @dev: PCI device to handle. 1316 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 1317 * 1318 * Transition a device to a new power state, using the platform firmware and/or 1319 * the device's PCI PM registers. 1320 * 1321 * RETURN VALUE: 1322 * -EINVAL if the requested state is invalid. 1323 * -EIO if device does not support PCI PM or its PM capabilities register has a 1324 * wrong version, or device doesn't support the requested state. 1325 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported. 1326 * 0 if device already is in the requested state. 1327 * 0 if the transition is to D3 but D3 is not supported. 1328 * 0 if device's power state has been successfully changed. 1329 */ 1330 int pci_set_power_state(struct pci_dev *dev, pci_power_t state) 1331 { 1332 int error; 1333 1334 /* Bound the state we're entering */ 1335 if (state > PCI_D3cold) 1336 state = PCI_D3cold; 1337 else if (state < PCI_D0) 1338 state = PCI_D0; 1339 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev)) 1340 1341 /* 1342 * If the device or the parent bridge do not support PCI 1343 * PM, ignore the request if we're doing anything other 1344 * than putting it into D0 (which would only happen on 1345 * boot). 1346 */ 1347 return 0; 1348 1349 /* Check if we're already there */ 1350 if (dev->current_state == state) 1351 return 0; 1352 1353 if (state == PCI_D0) 1354 return pci_power_up(dev); 1355 1356 /* 1357 * This device is quirked not to be put into D3, so don't put it in 1358 * D3 1359 */ 1360 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3)) 1361 return 0; 1362 1363 /* 1364 * To put device in D3cold, we put device into D3hot in native 1365 * way, then put device into D3cold with platform ops 1366 */ 1367 error = pci_raw_set_power_state(dev, state > PCI_D3hot ? 1368 PCI_D3hot : state); 1369 1370 if (pci_platform_power_transition(dev, state)) 1371 return error; 1372 1373 /* Powering off a bridge may power off the whole hierarchy */ 1374 if (state == PCI_D3cold) 1375 pci_bus_set_current_state(dev->subordinate, PCI_D3cold); 1376 1377 return 0; 1378 } 1379 EXPORT_SYMBOL(pci_set_power_state); 1380 1381 /** 1382 * pci_choose_state - Choose the power state of a PCI device 1383 * @dev: PCI device to be suspended 1384 * @state: target sleep state for the whole system. This is the value 1385 * that is passed to suspend() function. 1386 * 1387 * Returns PCI power state suitable for given device and given system 1388 * message. 1389 */ 1390 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state) 1391 { 1392 pci_power_t ret; 1393 1394 if (!dev->pm_cap) 1395 return PCI_D0; 1396 1397 ret = platform_pci_choose_state(dev); 1398 if (ret != PCI_POWER_ERROR) 1399 return ret; 1400 1401 switch (state.event) { 1402 case PM_EVENT_ON: 1403 return PCI_D0; 1404 case PM_EVENT_FREEZE: 1405 case PM_EVENT_PRETHAW: 1406 /* REVISIT both freeze and pre-thaw "should" use D0 */ 1407 case PM_EVENT_SUSPEND: 1408 case PM_EVENT_HIBERNATE: 1409 return PCI_D3hot; 1410 default: 1411 pci_info(dev, "unrecognized suspend event %d\n", 1412 state.event); 1413 BUG(); 1414 } 1415 return PCI_D0; 1416 } 1417 EXPORT_SYMBOL(pci_choose_state); 1418 1419 #define PCI_EXP_SAVE_REGS 7 1420 1421 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev, 1422 u16 cap, bool extended) 1423 { 1424 struct pci_cap_saved_state *tmp; 1425 1426 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) { 1427 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap) 1428 return tmp; 1429 } 1430 return NULL; 1431 } 1432 1433 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap) 1434 { 1435 return _pci_find_saved_cap(dev, cap, false); 1436 } 1437 1438 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap) 1439 { 1440 return _pci_find_saved_cap(dev, cap, true); 1441 } 1442 1443 static int pci_save_pcie_state(struct pci_dev *dev) 1444 { 1445 int i = 0; 1446 struct pci_cap_saved_state *save_state; 1447 u16 *cap; 1448 1449 if (!pci_is_pcie(dev)) 1450 return 0; 1451 1452 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1453 if (!save_state) { 1454 pci_err(dev, "buffer not found in %s\n", __func__); 1455 return -ENOMEM; 1456 } 1457 1458 cap = (u16 *)&save_state->cap.data[0]; 1459 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]); 1460 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]); 1461 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]); 1462 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]); 1463 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]); 1464 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]); 1465 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]); 1466 1467 return 0; 1468 } 1469 1470 static void pci_restore_pcie_state(struct pci_dev *dev) 1471 { 1472 int i = 0; 1473 struct pci_cap_saved_state *save_state; 1474 u16 *cap; 1475 1476 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1477 if (!save_state) 1478 return; 1479 1480 cap = (u16 *)&save_state->cap.data[0]; 1481 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]); 1482 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]); 1483 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]); 1484 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]); 1485 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]); 1486 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]); 1487 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]); 1488 } 1489 1490 static int pci_save_pcix_state(struct pci_dev *dev) 1491 { 1492 int pos; 1493 struct pci_cap_saved_state *save_state; 1494 1495 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1496 if (!pos) 1497 return 0; 1498 1499 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1500 if (!save_state) { 1501 pci_err(dev, "buffer not found in %s\n", __func__); 1502 return -ENOMEM; 1503 } 1504 1505 pci_read_config_word(dev, pos + PCI_X_CMD, 1506 (u16 *)save_state->cap.data); 1507 1508 return 0; 1509 } 1510 1511 static void pci_restore_pcix_state(struct pci_dev *dev) 1512 { 1513 int i = 0, pos; 1514 struct pci_cap_saved_state *save_state; 1515 u16 *cap; 1516 1517 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1518 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1519 if (!save_state || !pos) 1520 return; 1521 cap = (u16 *)&save_state->cap.data[0]; 1522 1523 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]); 1524 } 1525 1526 static void pci_save_ltr_state(struct pci_dev *dev) 1527 { 1528 int ltr; 1529 struct pci_cap_saved_state *save_state; 1530 u16 *cap; 1531 1532 if (!pci_is_pcie(dev)) 1533 return; 1534 1535 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR); 1536 if (!ltr) 1537 return; 1538 1539 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR); 1540 if (!save_state) { 1541 pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n"); 1542 return; 1543 } 1544 1545 cap = (u16 *)&save_state->cap.data[0]; 1546 pci_read_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap++); 1547 pci_read_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, cap++); 1548 } 1549 1550 static void pci_restore_ltr_state(struct pci_dev *dev) 1551 { 1552 struct pci_cap_saved_state *save_state; 1553 int ltr; 1554 u16 *cap; 1555 1556 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR); 1557 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR); 1558 if (!save_state || !ltr) 1559 return; 1560 1561 cap = (u16 *)&save_state->cap.data[0]; 1562 pci_write_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap++); 1563 pci_write_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, *cap++); 1564 } 1565 1566 /** 1567 * pci_save_state - save the PCI configuration space of a device before 1568 * suspending 1569 * @dev: PCI device that we're dealing with 1570 */ 1571 int pci_save_state(struct pci_dev *dev) 1572 { 1573 int i; 1574 /* XXX: 100% dword access ok here? */ 1575 for (i = 0; i < 16; i++) { 1576 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]); 1577 pci_dbg(dev, "saving config space at offset %#x (reading %#x)\n", 1578 i * 4, dev->saved_config_space[i]); 1579 } 1580 dev->state_saved = true; 1581 1582 i = pci_save_pcie_state(dev); 1583 if (i != 0) 1584 return i; 1585 1586 i = pci_save_pcix_state(dev); 1587 if (i != 0) 1588 return i; 1589 1590 pci_save_ltr_state(dev); 1591 pci_save_dpc_state(dev); 1592 pci_save_aer_state(dev); 1593 pci_save_ptm_state(dev); 1594 return pci_save_vc_state(dev); 1595 } 1596 EXPORT_SYMBOL(pci_save_state); 1597 1598 static void pci_restore_config_dword(struct pci_dev *pdev, int offset, 1599 u32 saved_val, int retry, bool force) 1600 { 1601 u32 val; 1602 1603 pci_read_config_dword(pdev, offset, &val); 1604 if (!force && val == saved_val) 1605 return; 1606 1607 for (;;) { 1608 pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n", 1609 offset, val, saved_val); 1610 pci_write_config_dword(pdev, offset, saved_val); 1611 if (retry-- <= 0) 1612 return; 1613 1614 pci_read_config_dword(pdev, offset, &val); 1615 if (val == saved_val) 1616 return; 1617 1618 mdelay(1); 1619 } 1620 } 1621 1622 static void pci_restore_config_space_range(struct pci_dev *pdev, 1623 int start, int end, int retry, 1624 bool force) 1625 { 1626 int index; 1627 1628 for (index = end; index >= start; index--) 1629 pci_restore_config_dword(pdev, 4 * index, 1630 pdev->saved_config_space[index], 1631 retry, force); 1632 } 1633 1634 static void pci_restore_config_space(struct pci_dev *pdev) 1635 { 1636 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) { 1637 pci_restore_config_space_range(pdev, 10, 15, 0, false); 1638 /* Restore BARs before the command register. */ 1639 pci_restore_config_space_range(pdev, 4, 9, 10, false); 1640 pci_restore_config_space_range(pdev, 0, 3, 0, false); 1641 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 1642 pci_restore_config_space_range(pdev, 12, 15, 0, false); 1643 1644 /* 1645 * Force rewriting of prefetch registers to avoid S3 resume 1646 * issues on Intel PCI bridges that occur when these 1647 * registers are not explicitly written. 1648 */ 1649 pci_restore_config_space_range(pdev, 9, 11, 0, true); 1650 pci_restore_config_space_range(pdev, 0, 8, 0, false); 1651 } else { 1652 pci_restore_config_space_range(pdev, 0, 15, 0, false); 1653 } 1654 } 1655 1656 static void pci_restore_rebar_state(struct pci_dev *pdev) 1657 { 1658 unsigned int pos, nbars, i; 1659 u32 ctrl; 1660 1661 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 1662 if (!pos) 1663 return; 1664 1665 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1666 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >> 1667 PCI_REBAR_CTRL_NBAR_SHIFT; 1668 1669 for (i = 0; i < nbars; i++, pos += 8) { 1670 struct resource *res; 1671 int bar_idx, size; 1672 1673 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1674 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX; 1675 res = pdev->resource + bar_idx; 1676 size = pci_rebar_bytes_to_size(resource_size(res)); 1677 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 1678 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT; 1679 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 1680 } 1681 } 1682 1683 /** 1684 * pci_restore_state - Restore the saved state of a PCI device 1685 * @dev: PCI device that we're dealing with 1686 */ 1687 void pci_restore_state(struct pci_dev *dev) 1688 { 1689 if (!dev->state_saved) 1690 return; 1691 1692 /* 1693 * Restore max latencies (in the LTR capability) before enabling 1694 * LTR itself (in the PCIe capability). 1695 */ 1696 pci_restore_ltr_state(dev); 1697 1698 pci_restore_pcie_state(dev); 1699 pci_restore_pasid_state(dev); 1700 pci_restore_pri_state(dev); 1701 pci_restore_ats_state(dev); 1702 pci_restore_vc_state(dev); 1703 pci_restore_rebar_state(dev); 1704 pci_restore_dpc_state(dev); 1705 pci_restore_ptm_state(dev); 1706 1707 pci_aer_clear_status(dev); 1708 pci_restore_aer_state(dev); 1709 1710 pci_restore_config_space(dev); 1711 1712 pci_restore_pcix_state(dev); 1713 pci_restore_msi_state(dev); 1714 1715 /* Restore ACS and IOV configuration state */ 1716 pci_enable_acs(dev); 1717 pci_restore_iov_state(dev); 1718 1719 dev->state_saved = false; 1720 } 1721 EXPORT_SYMBOL(pci_restore_state); 1722 1723 struct pci_saved_state { 1724 u32 config_space[16]; 1725 struct pci_cap_saved_data cap[]; 1726 }; 1727 1728 /** 1729 * pci_store_saved_state - Allocate and return an opaque struct containing 1730 * the device saved state. 1731 * @dev: PCI device that we're dealing with 1732 * 1733 * Return NULL if no state or error. 1734 */ 1735 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev) 1736 { 1737 struct pci_saved_state *state; 1738 struct pci_cap_saved_state *tmp; 1739 struct pci_cap_saved_data *cap; 1740 size_t size; 1741 1742 if (!dev->state_saved) 1743 return NULL; 1744 1745 size = sizeof(*state) + sizeof(struct pci_cap_saved_data); 1746 1747 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) 1748 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1749 1750 state = kzalloc(size, GFP_KERNEL); 1751 if (!state) 1752 return NULL; 1753 1754 memcpy(state->config_space, dev->saved_config_space, 1755 sizeof(state->config_space)); 1756 1757 cap = state->cap; 1758 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) { 1759 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1760 memcpy(cap, &tmp->cap, len); 1761 cap = (struct pci_cap_saved_data *)((u8 *)cap + len); 1762 } 1763 /* Empty cap_save terminates list */ 1764 1765 return state; 1766 } 1767 EXPORT_SYMBOL_GPL(pci_store_saved_state); 1768 1769 /** 1770 * pci_load_saved_state - Reload the provided save state into struct pci_dev. 1771 * @dev: PCI device that we're dealing with 1772 * @state: Saved state returned from pci_store_saved_state() 1773 */ 1774 int pci_load_saved_state(struct pci_dev *dev, 1775 struct pci_saved_state *state) 1776 { 1777 struct pci_cap_saved_data *cap; 1778 1779 dev->state_saved = false; 1780 1781 if (!state) 1782 return 0; 1783 1784 memcpy(dev->saved_config_space, state->config_space, 1785 sizeof(state->config_space)); 1786 1787 cap = state->cap; 1788 while (cap->size) { 1789 struct pci_cap_saved_state *tmp; 1790 1791 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended); 1792 if (!tmp || tmp->cap.size != cap->size) 1793 return -EINVAL; 1794 1795 memcpy(tmp->cap.data, cap->data, tmp->cap.size); 1796 cap = (struct pci_cap_saved_data *)((u8 *)cap + 1797 sizeof(struct pci_cap_saved_data) + cap->size); 1798 } 1799 1800 dev->state_saved = true; 1801 return 0; 1802 } 1803 EXPORT_SYMBOL_GPL(pci_load_saved_state); 1804 1805 /** 1806 * pci_load_and_free_saved_state - Reload the save state pointed to by state, 1807 * and free the memory allocated for it. 1808 * @dev: PCI device that we're dealing with 1809 * @state: Pointer to saved state returned from pci_store_saved_state() 1810 */ 1811 int pci_load_and_free_saved_state(struct pci_dev *dev, 1812 struct pci_saved_state **state) 1813 { 1814 int ret = pci_load_saved_state(dev, *state); 1815 kfree(*state); 1816 *state = NULL; 1817 return ret; 1818 } 1819 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state); 1820 1821 int __weak pcibios_enable_device(struct pci_dev *dev, int bars) 1822 { 1823 return pci_enable_resources(dev, bars); 1824 } 1825 1826 static int do_pci_enable_device(struct pci_dev *dev, int bars) 1827 { 1828 int err; 1829 struct pci_dev *bridge; 1830 u16 cmd; 1831 u8 pin; 1832 1833 err = pci_set_power_state(dev, PCI_D0); 1834 if (err < 0 && err != -EIO) 1835 return err; 1836 1837 bridge = pci_upstream_bridge(dev); 1838 if (bridge) 1839 pcie_aspm_powersave_config_link(bridge); 1840 1841 err = pcibios_enable_device(dev, bars); 1842 if (err < 0) 1843 return err; 1844 pci_fixup_device(pci_fixup_enable, dev); 1845 1846 if (dev->msi_enabled || dev->msix_enabled) 1847 return 0; 1848 1849 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin); 1850 if (pin) { 1851 pci_read_config_word(dev, PCI_COMMAND, &cmd); 1852 if (cmd & PCI_COMMAND_INTX_DISABLE) 1853 pci_write_config_word(dev, PCI_COMMAND, 1854 cmd & ~PCI_COMMAND_INTX_DISABLE); 1855 } 1856 1857 return 0; 1858 } 1859 1860 /** 1861 * pci_reenable_device - Resume abandoned device 1862 * @dev: PCI device to be resumed 1863 * 1864 * NOTE: This function is a backend of pci_default_resume() and is not supposed 1865 * to be called by normal code, write proper resume handler and use it instead. 1866 */ 1867 int pci_reenable_device(struct pci_dev *dev) 1868 { 1869 if (pci_is_enabled(dev)) 1870 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1); 1871 return 0; 1872 } 1873 EXPORT_SYMBOL(pci_reenable_device); 1874 1875 static void pci_enable_bridge(struct pci_dev *dev) 1876 { 1877 struct pci_dev *bridge; 1878 int retval; 1879 1880 bridge = pci_upstream_bridge(dev); 1881 if (bridge) 1882 pci_enable_bridge(bridge); 1883 1884 if (pci_is_enabled(dev)) { 1885 if (!dev->is_busmaster) 1886 pci_set_master(dev); 1887 return; 1888 } 1889 1890 retval = pci_enable_device(dev); 1891 if (retval) 1892 pci_err(dev, "Error enabling bridge (%d), continuing\n", 1893 retval); 1894 pci_set_master(dev); 1895 } 1896 1897 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags) 1898 { 1899 struct pci_dev *bridge; 1900 int err; 1901 int i, bars = 0; 1902 1903 /* 1904 * Power state could be unknown at this point, either due to a fresh 1905 * boot or a device removal call. So get the current power state 1906 * so that things like MSI message writing will behave as expected 1907 * (e.g. if the device really is in D0 at enable time). 1908 */ 1909 if (dev->pm_cap) { 1910 u16 pmcsr; 1911 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1912 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 1913 } 1914 1915 if (atomic_inc_return(&dev->enable_cnt) > 1) 1916 return 0; /* already enabled */ 1917 1918 bridge = pci_upstream_bridge(dev); 1919 if (bridge) 1920 pci_enable_bridge(bridge); 1921 1922 /* only skip sriov related */ 1923 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 1924 if (dev->resource[i].flags & flags) 1925 bars |= (1 << i); 1926 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++) 1927 if (dev->resource[i].flags & flags) 1928 bars |= (1 << i); 1929 1930 err = do_pci_enable_device(dev, bars); 1931 if (err < 0) 1932 atomic_dec(&dev->enable_cnt); 1933 return err; 1934 } 1935 1936 /** 1937 * pci_enable_device_io - Initialize a device for use with IO space 1938 * @dev: PCI device to be initialized 1939 * 1940 * Initialize device before it's used by a driver. Ask low-level code 1941 * to enable I/O resources. Wake up the device if it was suspended. 1942 * Beware, this function can fail. 1943 */ 1944 int pci_enable_device_io(struct pci_dev *dev) 1945 { 1946 return pci_enable_device_flags(dev, IORESOURCE_IO); 1947 } 1948 EXPORT_SYMBOL(pci_enable_device_io); 1949 1950 /** 1951 * pci_enable_device_mem - Initialize a device for use with Memory space 1952 * @dev: PCI device to be initialized 1953 * 1954 * Initialize device before it's used by a driver. Ask low-level code 1955 * to enable Memory resources. Wake up the device if it was suspended. 1956 * Beware, this function can fail. 1957 */ 1958 int pci_enable_device_mem(struct pci_dev *dev) 1959 { 1960 return pci_enable_device_flags(dev, IORESOURCE_MEM); 1961 } 1962 EXPORT_SYMBOL(pci_enable_device_mem); 1963 1964 /** 1965 * pci_enable_device - Initialize device before it's used by a driver. 1966 * @dev: PCI device to be initialized 1967 * 1968 * Initialize device before it's used by a driver. Ask low-level code 1969 * to enable I/O and memory. Wake up the device if it was suspended. 1970 * Beware, this function can fail. 1971 * 1972 * Note we don't actually enable the device many times if we call 1973 * this function repeatedly (we just increment the count). 1974 */ 1975 int pci_enable_device(struct pci_dev *dev) 1976 { 1977 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO); 1978 } 1979 EXPORT_SYMBOL(pci_enable_device); 1980 1981 /* 1982 * Managed PCI resources. This manages device on/off, INTx/MSI/MSI-X 1983 * on/off and BAR regions. pci_dev itself records MSI/MSI-X status, so 1984 * there's no need to track it separately. pci_devres is initialized 1985 * when a device is enabled using managed PCI device enable interface. 1986 */ 1987 struct pci_devres { 1988 unsigned int enabled:1; 1989 unsigned int pinned:1; 1990 unsigned int orig_intx:1; 1991 unsigned int restore_intx:1; 1992 unsigned int mwi:1; 1993 u32 region_mask; 1994 }; 1995 1996 static void pcim_release(struct device *gendev, void *res) 1997 { 1998 struct pci_dev *dev = to_pci_dev(gendev); 1999 struct pci_devres *this = res; 2000 int i; 2001 2002 if (dev->msi_enabled) 2003 pci_disable_msi(dev); 2004 if (dev->msix_enabled) 2005 pci_disable_msix(dev); 2006 2007 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) 2008 if (this->region_mask & (1 << i)) 2009 pci_release_region(dev, i); 2010 2011 if (this->mwi) 2012 pci_clear_mwi(dev); 2013 2014 if (this->restore_intx) 2015 pci_intx(dev, this->orig_intx); 2016 2017 if (this->enabled && !this->pinned) 2018 pci_disable_device(dev); 2019 } 2020 2021 static struct pci_devres *get_pci_dr(struct pci_dev *pdev) 2022 { 2023 struct pci_devres *dr, *new_dr; 2024 2025 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL); 2026 if (dr) 2027 return dr; 2028 2029 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL); 2030 if (!new_dr) 2031 return NULL; 2032 return devres_get(&pdev->dev, new_dr, NULL, NULL); 2033 } 2034 2035 static struct pci_devres *find_pci_dr(struct pci_dev *pdev) 2036 { 2037 if (pci_is_managed(pdev)) 2038 return devres_find(&pdev->dev, pcim_release, NULL, NULL); 2039 return NULL; 2040 } 2041 2042 /** 2043 * pcim_enable_device - Managed pci_enable_device() 2044 * @pdev: PCI device to be initialized 2045 * 2046 * Managed pci_enable_device(). 2047 */ 2048 int pcim_enable_device(struct pci_dev *pdev) 2049 { 2050 struct pci_devres *dr; 2051 int rc; 2052 2053 dr = get_pci_dr(pdev); 2054 if (unlikely(!dr)) 2055 return -ENOMEM; 2056 if (dr->enabled) 2057 return 0; 2058 2059 rc = pci_enable_device(pdev); 2060 if (!rc) { 2061 pdev->is_managed = 1; 2062 dr->enabled = 1; 2063 } 2064 return rc; 2065 } 2066 EXPORT_SYMBOL(pcim_enable_device); 2067 2068 /** 2069 * pcim_pin_device - Pin managed PCI device 2070 * @pdev: PCI device to pin 2071 * 2072 * Pin managed PCI device @pdev. Pinned device won't be disabled on 2073 * driver detach. @pdev must have been enabled with 2074 * pcim_enable_device(). 2075 */ 2076 void pcim_pin_device(struct pci_dev *pdev) 2077 { 2078 struct pci_devres *dr; 2079 2080 dr = find_pci_dr(pdev); 2081 WARN_ON(!dr || !dr->enabled); 2082 if (dr) 2083 dr->pinned = 1; 2084 } 2085 EXPORT_SYMBOL(pcim_pin_device); 2086 2087 /* 2088 * pcibios_add_device - provide arch specific hooks when adding device dev 2089 * @dev: the PCI device being added 2090 * 2091 * Permits the platform to provide architecture specific functionality when 2092 * devices are added. This is the default implementation. Architecture 2093 * implementations can override this. 2094 */ 2095 int __weak pcibios_add_device(struct pci_dev *dev) 2096 { 2097 return 0; 2098 } 2099 2100 /** 2101 * pcibios_release_device - provide arch specific hooks when releasing 2102 * device dev 2103 * @dev: the PCI device being released 2104 * 2105 * Permits the platform to provide architecture specific functionality when 2106 * devices are released. This is the default implementation. Architecture 2107 * implementations can override this. 2108 */ 2109 void __weak pcibios_release_device(struct pci_dev *dev) {} 2110 2111 /** 2112 * pcibios_disable_device - disable arch specific PCI resources for device dev 2113 * @dev: the PCI device to disable 2114 * 2115 * Disables architecture specific PCI resources for the device. This 2116 * is the default implementation. Architecture implementations can 2117 * override this. 2118 */ 2119 void __weak pcibios_disable_device(struct pci_dev *dev) {} 2120 2121 /** 2122 * pcibios_penalize_isa_irq - penalize an ISA IRQ 2123 * @irq: ISA IRQ to penalize 2124 * @active: IRQ active or not 2125 * 2126 * Permits the platform to provide architecture-specific functionality when 2127 * penalizing ISA IRQs. This is the default implementation. Architecture 2128 * implementations can override this. 2129 */ 2130 void __weak pcibios_penalize_isa_irq(int irq, int active) {} 2131 2132 static void do_pci_disable_device(struct pci_dev *dev) 2133 { 2134 u16 pci_command; 2135 2136 pci_read_config_word(dev, PCI_COMMAND, &pci_command); 2137 if (pci_command & PCI_COMMAND_MASTER) { 2138 pci_command &= ~PCI_COMMAND_MASTER; 2139 pci_write_config_word(dev, PCI_COMMAND, pci_command); 2140 } 2141 2142 pcibios_disable_device(dev); 2143 } 2144 2145 /** 2146 * pci_disable_enabled_device - Disable device without updating enable_cnt 2147 * @dev: PCI device to disable 2148 * 2149 * NOTE: This function is a backend of PCI power management routines and is 2150 * not supposed to be called drivers. 2151 */ 2152 void pci_disable_enabled_device(struct pci_dev *dev) 2153 { 2154 if (pci_is_enabled(dev)) 2155 do_pci_disable_device(dev); 2156 } 2157 2158 /** 2159 * pci_disable_device - Disable PCI device after use 2160 * @dev: PCI device to be disabled 2161 * 2162 * Signal to the system that the PCI device is not in use by the system 2163 * anymore. This only involves disabling PCI bus-mastering, if active. 2164 * 2165 * Note we don't actually disable the device until all callers of 2166 * pci_enable_device() have called pci_disable_device(). 2167 */ 2168 void pci_disable_device(struct pci_dev *dev) 2169 { 2170 struct pci_devres *dr; 2171 2172 dr = find_pci_dr(dev); 2173 if (dr) 2174 dr->enabled = 0; 2175 2176 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0, 2177 "disabling already-disabled device"); 2178 2179 if (atomic_dec_return(&dev->enable_cnt) != 0) 2180 return; 2181 2182 do_pci_disable_device(dev); 2183 2184 dev->is_busmaster = 0; 2185 } 2186 EXPORT_SYMBOL(pci_disable_device); 2187 2188 /** 2189 * pcibios_set_pcie_reset_state - set reset state for device dev 2190 * @dev: the PCIe device reset 2191 * @state: Reset state to enter into 2192 * 2193 * Set the PCIe reset state for the device. This is the default 2194 * implementation. Architecture implementations can override this. 2195 */ 2196 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev, 2197 enum pcie_reset_state state) 2198 { 2199 return -EINVAL; 2200 } 2201 2202 /** 2203 * pci_set_pcie_reset_state - set reset state for device dev 2204 * @dev: the PCIe device reset 2205 * @state: Reset state to enter into 2206 * 2207 * Sets the PCI reset state for the device. 2208 */ 2209 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state) 2210 { 2211 return pcibios_set_pcie_reset_state(dev, state); 2212 } 2213 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state); 2214 2215 void pcie_clear_device_status(struct pci_dev *dev) 2216 { 2217 u16 sta; 2218 2219 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta); 2220 pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta); 2221 } 2222 2223 /** 2224 * pcie_clear_root_pme_status - Clear root port PME interrupt status. 2225 * @dev: PCIe root port or event collector. 2226 */ 2227 void pcie_clear_root_pme_status(struct pci_dev *dev) 2228 { 2229 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME); 2230 } 2231 2232 /** 2233 * pci_check_pme_status - Check if given device has generated PME. 2234 * @dev: Device to check. 2235 * 2236 * Check the PME status of the device and if set, clear it and clear PME enable 2237 * (if set). Return 'true' if PME status and PME enable were both set or 2238 * 'false' otherwise. 2239 */ 2240 bool pci_check_pme_status(struct pci_dev *dev) 2241 { 2242 int pmcsr_pos; 2243 u16 pmcsr; 2244 bool ret = false; 2245 2246 if (!dev->pm_cap) 2247 return false; 2248 2249 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL; 2250 pci_read_config_word(dev, pmcsr_pos, &pmcsr); 2251 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS)) 2252 return false; 2253 2254 /* Clear PME status. */ 2255 pmcsr |= PCI_PM_CTRL_PME_STATUS; 2256 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) { 2257 /* Disable PME to avoid interrupt flood. */ 2258 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2259 ret = true; 2260 } 2261 2262 pci_write_config_word(dev, pmcsr_pos, pmcsr); 2263 2264 return ret; 2265 } 2266 2267 /** 2268 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set. 2269 * @dev: Device to handle. 2270 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag. 2271 * 2272 * Check if @dev has generated PME and queue a resume request for it in that 2273 * case. 2274 */ 2275 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset) 2276 { 2277 if (pme_poll_reset && dev->pme_poll) 2278 dev->pme_poll = false; 2279 2280 if (pci_check_pme_status(dev)) { 2281 pci_wakeup_event(dev); 2282 pm_request_resume(&dev->dev); 2283 } 2284 return 0; 2285 } 2286 2287 /** 2288 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary. 2289 * @bus: Top bus of the subtree to walk. 2290 */ 2291 void pci_pme_wakeup_bus(struct pci_bus *bus) 2292 { 2293 if (bus) 2294 pci_walk_bus(bus, pci_pme_wakeup, (void *)true); 2295 } 2296 2297 2298 /** 2299 * pci_pme_capable - check the capability of PCI device to generate PME# 2300 * @dev: PCI device to handle. 2301 * @state: PCI state from which device will issue PME#. 2302 */ 2303 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state) 2304 { 2305 if (!dev->pm_cap) 2306 return false; 2307 2308 return !!(dev->pme_support & (1 << state)); 2309 } 2310 EXPORT_SYMBOL(pci_pme_capable); 2311 2312 static void pci_pme_list_scan(struct work_struct *work) 2313 { 2314 struct pci_pme_device *pme_dev, *n; 2315 2316 mutex_lock(&pci_pme_list_mutex); 2317 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) { 2318 if (pme_dev->dev->pme_poll) { 2319 struct pci_dev *bridge; 2320 2321 bridge = pme_dev->dev->bus->self; 2322 /* 2323 * If bridge is in low power state, the 2324 * configuration space of subordinate devices 2325 * may be not accessible 2326 */ 2327 if (bridge && bridge->current_state != PCI_D0) 2328 continue; 2329 /* 2330 * If the device is in D3cold it should not be 2331 * polled either. 2332 */ 2333 if (pme_dev->dev->current_state == PCI_D3cold) 2334 continue; 2335 2336 pci_pme_wakeup(pme_dev->dev, NULL); 2337 } else { 2338 list_del(&pme_dev->list); 2339 kfree(pme_dev); 2340 } 2341 } 2342 if (!list_empty(&pci_pme_list)) 2343 queue_delayed_work(system_freezable_wq, &pci_pme_work, 2344 msecs_to_jiffies(PME_TIMEOUT)); 2345 mutex_unlock(&pci_pme_list_mutex); 2346 } 2347 2348 static void __pci_pme_active(struct pci_dev *dev, bool enable) 2349 { 2350 u16 pmcsr; 2351 2352 if (!dev->pme_support) 2353 return; 2354 2355 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2356 /* Clear PME_Status by writing 1 to it and enable PME# */ 2357 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE; 2358 if (!enable) 2359 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2360 2361 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2362 } 2363 2364 /** 2365 * pci_pme_restore - Restore PME configuration after config space restore. 2366 * @dev: PCI device to update. 2367 */ 2368 void pci_pme_restore(struct pci_dev *dev) 2369 { 2370 u16 pmcsr; 2371 2372 if (!dev->pme_support) 2373 return; 2374 2375 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2376 if (dev->wakeup_prepared) { 2377 pmcsr |= PCI_PM_CTRL_PME_ENABLE; 2378 pmcsr &= ~PCI_PM_CTRL_PME_STATUS; 2379 } else { 2380 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2381 pmcsr |= PCI_PM_CTRL_PME_STATUS; 2382 } 2383 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2384 } 2385 2386 /** 2387 * pci_pme_active - enable or disable PCI device's PME# function 2388 * @dev: PCI device to handle. 2389 * @enable: 'true' to enable PME# generation; 'false' to disable it. 2390 * 2391 * The caller must verify that the device is capable of generating PME# before 2392 * calling this function with @enable equal to 'true'. 2393 */ 2394 void pci_pme_active(struct pci_dev *dev, bool enable) 2395 { 2396 __pci_pme_active(dev, enable); 2397 2398 /* 2399 * PCI (as opposed to PCIe) PME requires that the device have 2400 * its PME# line hooked up correctly. Not all hardware vendors 2401 * do this, so the PME never gets delivered and the device 2402 * remains asleep. The easiest way around this is to 2403 * periodically walk the list of suspended devices and check 2404 * whether any have their PME flag set. The assumption is that 2405 * we'll wake up often enough anyway that this won't be a huge 2406 * hit, and the power savings from the devices will still be a 2407 * win. 2408 * 2409 * Although PCIe uses in-band PME message instead of PME# line 2410 * to report PME, PME does not work for some PCIe devices in 2411 * reality. For example, there are devices that set their PME 2412 * status bits, but don't really bother to send a PME message; 2413 * there are PCI Express Root Ports that don't bother to 2414 * trigger interrupts when they receive PME messages from the 2415 * devices below. So PME poll is used for PCIe devices too. 2416 */ 2417 2418 if (dev->pme_poll) { 2419 struct pci_pme_device *pme_dev; 2420 if (enable) { 2421 pme_dev = kmalloc(sizeof(struct pci_pme_device), 2422 GFP_KERNEL); 2423 if (!pme_dev) { 2424 pci_warn(dev, "can't enable PME#\n"); 2425 return; 2426 } 2427 pme_dev->dev = dev; 2428 mutex_lock(&pci_pme_list_mutex); 2429 list_add(&pme_dev->list, &pci_pme_list); 2430 if (list_is_singular(&pci_pme_list)) 2431 queue_delayed_work(system_freezable_wq, 2432 &pci_pme_work, 2433 msecs_to_jiffies(PME_TIMEOUT)); 2434 mutex_unlock(&pci_pme_list_mutex); 2435 } else { 2436 mutex_lock(&pci_pme_list_mutex); 2437 list_for_each_entry(pme_dev, &pci_pme_list, list) { 2438 if (pme_dev->dev == dev) { 2439 list_del(&pme_dev->list); 2440 kfree(pme_dev); 2441 break; 2442 } 2443 } 2444 mutex_unlock(&pci_pme_list_mutex); 2445 } 2446 } 2447 2448 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled"); 2449 } 2450 EXPORT_SYMBOL(pci_pme_active); 2451 2452 /** 2453 * __pci_enable_wake - enable PCI device as wakeup event source 2454 * @dev: PCI device affected 2455 * @state: PCI state from which device will issue wakeup events 2456 * @enable: True to enable event generation; false to disable 2457 * 2458 * This enables the device as a wakeup event source, or disables it. 2459 * When such events involves platform-specific hooks, those hooks are 2460 * called automatically by this routine. 2461 * 2462 * Devices with legacy power management (no standard PCI PM capabilities) 2463 * always require such platform hooks. 2464 * 2465 * RETURN VALUE: 2466 * 0 is returned on success 2467 * -EINVAL is returned if device is not supposed to wake up the system 2468 * Error code depending on the platform is returned if both the platform and 2469 * the native mechanism fail to enable the generation of wake-up events 2470 */ 2471 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable) 2472 { 2473 int ret = 0; 2474 2475 /* 2476 * Bridges that are not power-manageable directly only signal 2477 * wakeup on behalf of subordinate devices which is set up 2478 * elsewhere, so skip them. However, bridges that are 2479 * power-manageable may signal wakeup for themselves (for example, 2480 * on a hotplug event) and they need to be covered here. 2481 */ 2482 if (!pci_power_manageable(dev)) 2483 return 0; 2484 2485 /* Don't do the same thing twice in a row for one device. */ 2486 if (!!enable == !!dev->wakeup_prepared) 2487 return 0; 2488 2489 /* 2490 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don 2491 * Anderson we should be doing PME# wake enable followed by ACPI wake 2492 * enable. To disable wake-up we call the platform first, for symmetry. 2493 */ 2494 2495 if (enable) { 2496 int error; 2497 2498 if (pci_pme_capable(dev, state)) 2499 pci_pme_active(dev, true); 2500 else 2501 ret = 1; 2502 error = platform_pci_set_wakeup(dev, true); 2503 if (ret) 2504 ret = error; 2505 if (!ret) 2506 dev->wakeup_prepared = true; 2507 } else { 2508 platform_pci_set_wakeup(dev, false); 2509 pci_pme_active(dev, false); 2510 dev->wakeup_prepared = false; 2511 } 2512 2513 return ret; 2514 } 2515 2516 /** 2517 * pci_enable_wake - change wakeup settings for a PCI device 2518 * @pci_dev: Target device 2519 * @state: PCI state from which device will issue wakeup events 2520 * @enable: Whether or not to enable event generation 2521 * 2522 * If @enable is set, check device_may_wakeup() for the device before calling 2523 * __pci_enable_wake() for it. 2524 */ 2525 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable) 2526 { 2527 if (enable && !device_may_wakeup(&pci_dev->dev)) 2528 return -EINVAL; 2529 2530 return __pci_enable_wake(pci_dev, state, enable); 2531 } 2532 EXPORT_SYMBOL(pci_enable_wake); 2533 2534 /** 2535 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold 2536 * @dev: PCI device to prepare 2537 * @enable: True to enable wake-up event generation; false to disable 2538 * 2539 * Many drivers want the device to wake up the system from D3_hot or D3_cold 2540 * and this function allows them to set that up cleanly - pci_enable_wake() 2541 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI 2542 * ordering constraints. 2543 * 2544 * This function only returns error code if the device is not allowed to wake 2545 * up the system from sleep or it is not capable of generating PME# from both 2546 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it. 2547 */ 2548 int pci_wake_from_d3(struct pci_dev *dev, bool enable) 2549 { 2550 return pci_pme_capable(dev, PCI_D3cold) ? 2551 pci_enable_wake(dev, PCI_D3cold, enable) : 2552 pci_enable_wake(dev, PCI_D3hot, enable); 2553 } 2554 EXPORT_SYMBOL(pci_wake_from_d3); 2555 2556 /** 2557 * pci_target_state - find an appropriate low power state for a given PCI dev 2558 * @dev: PCI device 2559 * @wakeup: Whether or not wakeup functionality will be enabled for the device. 2560 * 2561 * Use underlying platform code to find a supported low power state for @dev. 2562 * If the platform can't manage @dev, return the deepest state from which it 2563 * can generate wake events, based on any available PME info. 2564 */ 2565 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup) 2566 { 2567 pci_power_t target_state = PCI_D3hot; 2568 2569 if (platform_pci_power_manageable(dev)) { 2570 /* 2571 * Call the platform to find the target state for the device. 2572 */ 2573 pci_power_t state = platform_pci_choose_state(dev); 2574 2575 switch (state) { 2576 case PCI_POWER_ERROR: 2577 case PCI_UNKNOWN: 2578 break; 2579 case PCI_D1: 2580 case PCI_D2: 2581 if (pci_no_d1d2(dev)) 2582 break; 2583 fallthrough; 2584 default: 2585 target_state = state; 2586 } 2587 2588 return target_state; 2589 } 2590 2591 if (!dev->pm_cap) 2592 target_state = PCI_D0; 2593 2594 /* 2595 * If the device is in D3cold even though it's not power-manageable by 2596 * the platform, it may have been powered down by non-standard means. 2597 * Best to let it slumber. 2598 */ 2599 if (dev->current_state == PCI_D3cold) 2600 target_state = PCI_D3cold; 2601 2602 if (wakeup) { 2603 /* 2604 * Find the deepest state from which the device can generate 2605 * PME#. 2606 */ 2607 if (dev->pme_support) { 2608 while (target_state 2609 && !(dev->pme_support & (1 << target_state))) 2610 target_state--; 2611 } 2612 } 2613 2614 return target_state; 2615 } 2616 2617 /** 2618 * pci_prepare_to_sleep - prepare PCI device for system-wide transition 2619 * into a sleep state 2620 * @dev: Device to handle. 2621 * 2622 * Choose the power state appropriate for the device depending on whether 2623 * it can wake up the system and/or is power manageable by the platform 2624 * (PCI_D3hot is the default) and put the device into that state. 2625 */ 2626 int pci_prepare_to_sleep(struct pci_dev *dev) 2627 { 2628 bool wakeup = device_may_wakeup(&dev->dev); 2629 pci_power_t target_state = pci_target_state(dev, wakeup); 2630 int error; 2631 2632 if (target_state == PCI_POWER_ERROR) 2633 return -EIO; 2634 2635 /* 2636 * There are systems (for example, Intel mobile chips since Coffee 2637 * Lake) where the power drawn while suspended can be significantly 2638 * reduced by disabling PTM on PCIe root ports as this allows the 2639 * port to enter a lower-power PM state and the SoC to reach a 2640 * lower-power idle state as a whole. 2641 */ 2642 if (pci_pcie_type(dev) == PCI_EXP_TYPE_ROOT_PORT) 2643 pci_disable_ptm(dev); 2644 2645 pci_enable_wake(dev, target_state, wakeup); 2646 2647 error = pci_set_power_state(dev, target_state); 2648 2649 if (error) { 2650 pci_enable_wake(dev, target_state, false); 2651 pci_restore_ptm_state(dev); 2652 } 2653 2654 return error; 2655 } 2656 EXPORT_SYMBOL(pci_prepare_to_sleep); 2657 2658 /** 2659 * pci_back_from_sleep - turn PCI device on during system-wide transition 2660 * into working state 2661 * @dev: Device to handle. 2662 * 2663 * Disable device's system wake-up capability and put it into D0. 2664 */ 2665 int pci_back_from_sleep(struct pci_dev *dev) 2666 { 2667 pci_enable_wake(dev, PCI_D0, false); 2668 return pci_set_power_state(dev, PCI_D0); 2669 } 2670 EXPORT_SYMBOL(pci_back_from_sleep); 2671 2672 /** 2673 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend. 2674 * @dev: PCI device being suspended. 2675 * 2676 * Prepare @dev to generate wake-up events at run time and put it into a low 2677 * power state. 2678 */ 2679 int pci_finish_runtime_suspend(struct pci_dev *dev) 2680 { 2681 pci_power_t target_state; 2682 int error; 2683 2684 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev)); 2685 if (target_state == PCI_POWER_ERROR) 2686 return -EIO; 2687 2688 dev->runtime_d3cold = target_state == PCI_D3cold; 2689 2690 /* 2691 * There are systems (for example, Intel mobile chips since Coffee 2692 * Lake) where the power drawn while suspended can be significantly 2693 * reduced by disabling PTM on PCIe root ports as this allows the 2694 * port to enter a lower-power PM state and the SoC to reach a 2695 * lower-power idle state as a whole. 2696 */ 2697 if (pci_pcie_type(dev) == PCI_EXP_TYPE_ROOT_PORT) 2698 pci_disable_ptm(dev); 2699 2700 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev)); 2701 2702 error = pci_set_power_state(dev, target_state); 2703 2704 if (error) { 2705 pci_enable_wake(dev, target_state, false); 2706 pci_restore_ptm_state(dev); 2707 dev->runtime_d3cold = false; 2708 } 2709 2710 return error; 2711 } 2712 2713 /** 2714 * pci_dev_run_wake - Check if device can generate run-time wake-up events. 2715 * @dev: Device to check. 2716 * 2717 * Return true if the device itself is capable of generating wake-up events 2718 * (through the platform or using the native PCIe PME) or if the device supports 2719 * PME and one of its upstream bridges can generate wake-up events. 2720 */ 2721 bool pci_dev_run_wake(struct pci_dev *dev) 2722 { 2723 struct pci_bus *bus = dev->bus; 2724 2725 if (!dev->pme_support) 2726 return false; 2727 2728 /* PME-capable in principle, but not from the target power state */ 2729 if (!pci_pme_capable(dev, pci_target_state(dev, true))) 2730 return false; 2731 2732 if (device_can_wakeup(&dev->dev)) 2733 return true; 2734 2735 while (bus->parent) { 2736 struct pci_dev *bridge = bus->self; 2737 2738 if (device_can_wakeup(&bridge->dev)) 2739 return true; 2740 2741 bus = bus->parent; 2742 } 2743 2744 /* We have reached the root bus. */ 2745 if (bus->bridge) 2746 return device_can_wakeup(bus->bridge); 2747 2748 return false; 2749 } 2750 EXPORT_SYMBOL_GPL(pci_dev_run_wake); 2751 2752 /** 2753 * pci_dev_need_resume - Check if it is necessary to resume the device. 2754 * @pci_dev: Device to check. 2755 * 2756 * Return 'true' if the device is not runtime-suspended or it has to be 2757 * reconfigured due to wakeup settings difference between system and runtime 2758 * suspend, or the current power state of it is not suitable for the upcoming 2759 * (system-wide) transition. 2760 */ 2761 bool pci_dev_need_resume(struct pci_dev *pci_dev) 2762 { 2763 struct device *dev = &pci_dev->dev; 2764 pci_power_t target_state; 2765 2766 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev)) 2767 return true; 2768 2769 target_state = pci_target_state(pci_dev, device_may_wakeup(dev)); 2770 2771 /* 2772 * If the earlier platform check has not triggered, D3cold is just power 2773 * removal on top of D3hot, so no need to resume the device in that 2774 * case. 2775 */ 2776 return target_state != pci_dev->current_state && 2777 target_state != PCI_D3cold && 2778 pci_dev->current_state != PCI_D3hot; 2779 } 2780 2781 /** 2782 * pci_dev_adjust_pme - Adjust PME setting for a suspended device. 2783 * @pci_dev: Device to check. 2784 * 2785 * If the device is suspended and it is not configured for system wakeup, 2786 * disable PME for it to prevent it from waking up the system unnecessarily. 2787 * 2788 * Note that if the device's power state is D3cold and the platform check in 2789 * pci_dev_need_resume() has not triggered, the device's configuration need not 2790 * be changed. 2791 */ 2792 void pci_dev_adjust_pme(struct pci_dev *pci_dev) 2793 { 2794 struct device *dev = &pci_dev->dev; 2795 2796 spin_lock_irq(&dev->power.lock); 2797 2798 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) && 2799 pci_dev->current_state < PCI_D3cold) 2800 __pci_pme_active(pci_dev, false); 2801 2802 spin_unlock_irq(&dev->power.lock); 2803 } 2804 2805 /** 2806 * pci_dev_complete_resume - Finalize resume from system sleep for a device. 2807 * @pci_dev: Device to handle. 2808 * 2809 * If the device is runtime suspended and wakeup-capable, enable PME for it as 2810 * it might have been disabled during the prepare phase of system suspend if 2811 * the device was not configured for system wakeup. 2812 */ 2813 void pci_dev_complete_resume(struct pci_dev *pci_dev) 2814 { 2815 struct device *dev = &pci_dev->dev; 2816 2817 if (!pci_dev_run_wake(pci_dev)) 2818 return; 2819 2820 spin_lock_irq(&dev->power.lock); 2821 2822 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold) 2823 __pci_pme_active(pci_dev, true); 2824 2825 spin_unlock_irq(&dev->power.lock); 2826 } 2827 2828 void pci_config_pm_runtime_get(struct pci_dev *pdev) 2829 { 2830 struct device *dev = &pdev->dev; 2831 struct device *parent = dev->parent; 2832 2833 if (parent) 2834 pm_runtime_get_sync(parent); 2835 pm_runtime_get_noresume(dev); 2836 /* 2837 * pdev->current_state is set to PCI_D3cold during suspending, 2838 * so wait until suspending completes 2839 */ 2840 pm_runtime_barrier(dev); 2841 /* 2842 * Only need to resume devices in D3cold, because config 2843 * registers are still accessible for devices suspended but 2844 * not in D3cold. 2845 */ 2846 if (pdev->current_state == PCI_D3cold) 2847 pm_runtime_resume(dev); 2848 } 2849 2850 void pci_config_pm_runtime_put(struct pci_dev *pdev) 2851 { 2852 struct device *dev = &pdev->dev; 2853 struct device *parent = dev->parent; 2854 2855 pm_runtime_put(dev); 2856 if (parent) 2857 pm_runtime_put_sync(parent); 2858 } 2859 2860 static const struct dmi_system_id bridge_d3_blacklist[] = { 2861 #ifdef CONFIG_X86 2862 { 2863 /* 2864 * Gigabyte X299 root port is not marked as hotplug capable 2865 * which allows Linux to power manage it. However, this 2866 * confuses the BIOS SMI handler so don't power manage root 2867 * ports on that system. 2868 */ 2869 .ident = "X299 DESIGNARE EX-CF", 2870 .matches = { 2871 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."), 2872 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"), 2873 }, 2874 }, 2875 #endif 2876 { } 2877 }; 2878 2879 /** 2880 * pci_bridge_d3_possible - Is it possible to put the bridge into D3 2881 * @bridge: Bridge to check 2882 * 2883 * This function checks if it is possible to move the bridge to D3. 2884 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt. 2885 */ 2886 bool pci_bridge_d3_possible(struct pci_dev *bridge) 2887 { 2888 if (!pci_is_pcie(bridge)) 2889 return false; 2890 2891 switch (pci_pcie_type(bridge)) { 2892 case PCI_EXP_TYPE_ROOT_PORT: 2893 case PCI_EXP_TYPE_UPSTREAM: 2894 case PCI_EXP_TYPE_DOWNSTREAM: 2895 if (pci_bridge_d3_disable) 2896 return false; 2897 2898 /* 2899 * Hotplug ports handled by firmware in System Management Mode 2900 * may not be put into D3 by the OS (Thunderbolt on non-Macs). 2901 */ 2902 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge)) 2903 return false; 2904 2905 if (pci_bridge_d3_force) 2906 return true; 2907 2908 /* Even the oldest 2010 Thunderbolt controller supports D3. */ 2909 if (bridge->is_thunderbolt) 2910 return true; 2911 2912 /* Platform might know better if the bridge supports D3 */ 2913 if (platform_pci_bridge_d3(bridge)) 2914 return true; 2915 2916 /* 2917 * Hotplug ports handled natively by the OS were not validated 2918 * by vendors for runtime D3 at least until 2018 because there 2919 * was no OS support. 2920 */ 2921 if (bridge->is_hotplug_bridge) 2922 return false; 2923 2924 if (dmi_check_system(bridge_d3_blacklist)) 2925 return false; 2926 2927 /* 2928 * It should be safe to put PCIe ports from 2015 or newer 2929 * to D3. 2930 */ 2931 if (dmi_get_bios_year() >= 2015) 2932 return true; 2933 break; 2934 } 2935 2936 return false; 2937 } 2938 2939 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data) 2940 { 2941 bool *d3cold_ok = data; 2942 2943 if (/* The device needs to be allowed to go D3cold ... */ 2944 dev->no_d3cold || !dev->d3cold_allowed || 2945 2946 /* ... and if it is wakeup capable to do so from D3cold. */ 2947 (device_may_wakeup(&dev->dev) && 2948 !pci_pme_capable(dev, PCI_D3cold)) || 2949 2950 /* If it is a bridge it must be allowed to go to D3. */ 2951 !pci_power_manageable(dev)) 2952 2953 *d3cold_ok = false; 2954 2955 return !*d3cold_ok; 2956 } 2957 2958 /* 2959 * pci_bridge_d3_update - Update bridge D3 capabilities 2960 * @dev: PCI device which is changed 2961 * 2962 * Update upstream bridge PM capabilities accordingly depending on if the 2963 * device PM configuration was changed or the device is being removed. The 2964 * change is also propagated upstream. 2965 */ 2966 void pci_bridge_d3_update(struct pci_dev *dev) 2967 { 2968 bool remove = !device_is_registered(&dev->dev); 2969 struct pci_dev *bridge; 2970 bool d3cold_ok = true; 2971 2972 bridge = pci_upstream_bridge(dev); 2973 if (!bridge || !pci_bridge_d3_possible(bridge)) 2974 return; 2975 2976 /* 2977 * If D3 is currently allowed for the bridge, removing one of its 2978 * children won't change that. 2979 */ 2980 if (remove && bridge->bridge_d3) 2981 return; 2982 2983 /* 2984 * If D3 is currently allowed for the bridge and a child is added or 2985 * changed, disallowance of D3 can only be caused by that child, so 2986 * we only need to check that single device, not any of its siblings. 2987 * 2988 * If D3 is currently not allowed for the bridge, checking the device 2989 * first may allow us to skip checking its siblings. 2990 */ 2991 if (!remove) 2992 pci_dev_check_d3cold(dev, &d3cold_ok); 2993 2994 /* 2995 * If D3 is currently not allowed for the bridge, this may be caused 2996 * either by the device being changed/removed or any of its siblings, 2997 * so we need to go through all children to find out if one of them 2998 * continues to block D3. 2999 */ 3000 if (d3cold_ok && !bridge->bridge_d3) 3001 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold, 3002 &d3cold_ok); 3003 3004 if (bridge->bridge_d3 != d3cold_ok) { 3005 bridge->bridge_d3 = d3cold_ok; 3006 /* Propagate change to upstream bridges */ 3007 pci_bridge_d3_update(bridge); 3008 } 3009 } 3010 3011 /** 3012 * pci_d3cold_enable - Enable D3cold for device 3013 * @dev: PCI device to handle 3014 * 3015 * This function can be used in drivers to enable D3cold from the device 3016 * they handle. It also updates upstream PCI bridge PM capabilities 3017 * accordingly. 3018 */ 3019 void pci_d3cold_enable(struct pci_dev *dev) 3020 { 3021 if (dev->no_d3cold) { 3022 dev->no_d3cold = false; 3023 pci_bridge_d3_update(dev); 3024 } 3025 } 3026 EXPORT_SYMBOL_GPL(pci_d3cold_enable); 3027 3028 /** 3029 * pci_d3cold_disable - Disable D3cold for device 3030 * @dev: PCI device to handle 3031 * 3032 * This function can be used in drivers to disable D3cold from the device 3033 * they handle. It also updates upstream PCI bridge PM capabilities 3034 * accordingly. 3035 */ 3036 void pci_d3cold_disable(struct pci_dev *dev) 3037 { 3038 if (!dev->no_d3cold) { 3039 dev->no_d3cold = true; 3040 pci_bridge_d3_update(dev); 3041 } 3042 } 3043 EXPORT_SYMBOL_GPL(pci_d3cold_disable); 3044 3045 /** 3046 * pci_pm_init - Initialize PM functions of given PCI device 3047 * @dev: PCI device to handle. 3048 */ 3049 void pci_pm_init(struct pci_dev *dev) 3050 { 3051 int pm; 3052 u16 status; 3053 u16 pmc; 3054 3055 pm_runtime_forbid(&dev->dev); 3056 pm_runtime_set_active(&dev->dev); 3057 pm_runtime_enable(&dev->dev); 3058 device_enable_async_suspend(&dev->dev); 3059 dev->wakeup_prepared = false; 3060 3061 dev->pm_cap = 0; 3062 dev->pme_support = 0; 3063 3064 /* find PCI PM capability in list */ 3065 pm = pci_find_capability(dev, PCI_CAP_ID_PM); 3066 if (!pm) 3067 return; 3068 /* Check device's ability to generate PME# */ 3069 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc); 3070 3071 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) { 3072 pci_err(dev, "unsupported PM cap regs version (%u)\n", 3073 pmc & PCI_PM_CAP_VER_MASK); 3074 return; 3075 } 3076 3077 dev->pm_cap = pm; 3078 dev->d3hot_delay = PCI_PM_D3HOT_WAIT; 3079 dev->d3cold_delay = PCI_PM_D3COLD_WAIT; 3080 dev->bridge_d3 = pci_bridge_d3_possible(dev); 3081 dev->d3cold_allowed = true; 3082 3083 dev->d1_support = false; 3084 dev->d2_support = false; 3085 if (!pci_no_d1d2(dev)) { 3086 if (pmc & PCI_PM_CAP_D1) 3087 dev->d1_support = true; 3088 if (pmc & PCI_PM_CAP_D2) 3089 dev->d2_support = true; 3090 3091 if (dev->d1_support || dev->d2_support) 3092 pci_info(dev, "supports%s%s\n", 3093 dev->d1_support ? " D1" : "", 3094 dev->d2_support ? " D2" : ""); 3095 } 3096 3097 pmc &= PCI_PM_CAP_PME_MASK; 3098 if (pmc) { 3099 pci_info(dev, "PME# supported from%s%s%s%s%s\n", 3100 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "", 3101 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "", 3102 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "", 3103 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "", 3104 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : ""); 3105 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT; 3106 dev->pme_poll = true; 3107 /* 3108 * Make device's PM flags reflect the wake-up capability, but 3109 * let the user space enable it to wake up the system as needed. 3110 */ 3111 device_set_wakeup_capable(&dev->dev, true); 3112 /* Disable the PME# generation functionality */ 3113 pci_pme_active(dev, false); 3114 } 3115 3116 pci_read_config_word(dev, PCI_STATUS, &status); 3117 if (status & PCI_STATUS_IMM_READY) 3118 dev->imm_ready = 1; 3119 } 3120 3121 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop) 3122 { 3123 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI; 3124 3125 switch (prop) { 3126 case PCI_EA_P_MEM: 3127 case PCI_EA_P_VF_MEM: 3128 flags |= IORESOURCE_MEM; 3129 break; 3130 case PCI_EA_P_MEM_PREFETCH: 3131 case PCI_EA_P_VF_MEM_PREFETCH: 3132 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH; 3133 break; 3134 case PCI_EA_P_IO: 3135 flags |= IORESOURCE_IO; 3136 break; 3137 default: 3138 return 0; 3139 } 3140 3141 return flags; 3142 } 3143 3144 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei, 3145 u8 prop) 3146 { 3147 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO) 3148 return &dev->resource[bei]; 3149 #ifdef CONFIG_PCI_IOV 3150 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 && 3151 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH)) 3152 return &dev->resource[PCI_IOV_RESOURCES + 3153 bei - PCI_EA_BEI_VF_BAR0]; 3154 #endif 3155 else if (bei == PCI_EA_BEI_ROM) 3156 return &dev->resource[PCI_ROM_RESOURCE]; 3157 else 3158 return NULL; 3159 } 3160 3161 /* Read an Enhanced Allocation (EA) entry */ 3162 static int pci_ea_read(struct pci_dev *dev, int offset) 3163 { 3164 struct resource *res; 3165 int ent_size, ent_offset = offset; 3166 resource_size_t start, end; 3167 unsigned long flags; 3168 u32 dw0, bei, base, max_offset; 3169 u8 prop; 3170 bool support_64 = (sizeof(resource_size_t) >= 8); 3171 3172 pci_read_config_dword(dev, ent_offset, &dw0); 3173 ent_offset += 4; 3174 3175 /* Entry size field indicates DWORDs after 1st */ 3176 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2; 3177 3178 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */ 3179 goto out; 3180 3181 bei = (dw0 & PCI_EA_BEI) >> 4; 3182 prop = (dw0 & PCI_EA_PP) >> 8; 3183 3184 /* 3185 * If the Property is in the reserved range, try the Secondary 3186 * Property instead. 3187 */ 3188 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED) 3189 prop = (dw0 & PCI_EA_SP) >> 16; 3190 if (prop > PCI_EA_P_BRIDGE_IO) 3191 goto out; 3192 3193 res = pci_ea_get_resource(dev, bei, prop); 3194 if (!res) { 3195 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei); 3196 goto out; 3197 } 3198 3199 flags = pci_ea_flags(dev, prop); 3200 if (!flags) { 3201 pci_err(dev, "Unsupported EA properties: %#x\n", prop); 3202 goto out; 3203 } 3204 3205 /* Read Base */ 3206 pci_read_config_dword(dev, ent_offset, &base); 3207 start = (base & PCI_EA_FIELD_MASK); 3208 ent_offset += 4; 3209 3210 /* Read MaxOffset */ 3211 pci_read_config_dword(dev, ent_offset, &max_offset); 3212 ent_offset += 4; 3213 3214 /* Read Base MSBs (if 64-bit entry) */ 3215 if (base & PCI_EA_IS_64) { 3216 u32 base_upper; 3217 3218 pci_read_config_dword(dev, ent_offset, &base_upper); 3219 ent_offset += 4; 3220 3221 flags |= IORESOURCE_MEM_64; 3222 3223 /* entry starts above 32-bit boundary, can't use */ 3224 if (!support_64 && base_upper) 3225 goto out; 3226 3227 if (support_64) 3228 start |= ((u64)base_upper << 32); 3229 } 3230 3231 end = start + (max_offset | 0x03); 3232 3233 /* Read MaxOffset MSBs (if 64-bit entry) */ 3234 if (max_offset & PCI_EA_IS_64) { 3235 u32 max_offset_upper; 3236 3237 pci_read_config_dword(dev, ent_offset, &max_offset_upper); 3238 ent_offset += 4; 3239 3240 flags |= IORESOURCE_MEM_64; 3241 3242 /* entry too big, can't use */ 3243 if (!support_64 && max_offset_upper) 3244 goto out; 3245 3246 if (support_64) 3247 end += ((u64)max_offset_upper << 32); 3248 } 3249 3250 if (end < start) { 3251 pci_err(dev, "EA Entry crosses address boundary\n"); 3252 goto out; 3253 } 3254 3255 if (ent_size != ent_offset - offset) { 3256 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n", 3257 ent_size, ent_offset - offset); 3258 goto out; 3259 } 3260 3261 res->name = pci_name(dev); 3262 res->start = start; 3263 res->end = end; 3264 res->flags = flags; 3265 3266 if (bei <= PCI_EA_BEI_BAR5) 3267 pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 3268 bei, res, prop); 3269 else if (bei == PCI_EA_BEI_ROM) 3270 pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n", 3271 res, prop); 3272 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5) 3273 pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 3274 bei - PCI_EA_BEI_VF_BAR0, res, prop); 3275 else 3276 pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n", 3277 bei, res, prop); 3278 3279 out: 3280 return offset + ent_size; 3281 } 3282 3283 /* Enhanced Allocation Initialization */ 3284 void pci_ea_init(struct pci_dev *dev) 3285 { 3286 int ea; 3287 u8 num_ent; 3288 int offset; 3289 int i; 3290 3291 /* find PCI EA capability in list */ 3292 ea = pci_find_capability(dev, PCI_CAP_ID_EA); 3293 if (!ea) 3294 return; 3295 3296 /* determine the number of entries */ 3297 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT, 3298 &num_ent); 3299 num_ent &= PCI_EA_NUM_ENT_MASK; 3300 3301 offset = ea + PCI_EA_FIRST_ENT; 3302 3303 /* Skip DWORD 2 for type 1 functions */ 3304 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) 3305 offset += 4; 3306 3307 /* parse each EA entry */ 3308 for (i = 0; i < num_ent; ++i) 3309 offset = pci_ea_read(dev, offset); 3310 } 3311 3312 static void pci_add_saved_cap(struct pci_dev *pci_dev, 3313 struct pci_cap_saved_state *new_cap) 3314 { 3315 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space); 3316 } 3317 3318 /** 3319 * _pci_add_cap_save_buffer - allocate buffer for saving given 3320 * capability registers 3321 * @dev: the PCI device 3322 * @cap: the capability to allocate the buffer for 3323 * @extended: Standard or Extended capability ID 3324 * @size: requested size of the buffer 3325 */ 3326 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap, 3327 bool extended, unsigned int size) 3328 { 3329 int pos; 3330 struct pci_cap_saved_state *save_state; 3331 3332 if (extended) 3333 pos = pci_find_ext_capability(dev, cap); 3334 else 3335 pos = pci_find_capability(dev, cap); 3336 3337 if (!pos) 3338 return 0; 3339 3340 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL); 3341 if (!save_state) 3342 return -ENOMEM; 3343 3344 save_state->cap.cap_nr = cap; 3345 save_state->cap.cap_extended = extended; 3346 save_state->cap.size = size; 3347 pci_add_saved_cap(dev, save_state); 3348 3349 return 0; 3350 } 3351 3352 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size) 3353 { 3354 return _pci_add_cap_save_buffer(dev, cap, false, size); 3355 } 3356 3357 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size) 3358 { 3359 return _pci_add_cap_save_buffer(dev, cap, true, size); 3360 } 3361 3362 /** 3363 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities 3364 * @dev: the PCI device 3365 */ 3366 void pci_allocate_cap_save_buffers(struct pci_dev *dev) 3367 { 3368 int error; 3369 3370 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP, 3371 PCI_EXP_SAVE_REGS * sizeof(u16)); 3372 if (error) 3373 pci_err(dev, "unable to preallocate PCI Express save buffer\n"); 3374 3375 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16)); 3376 if (error) 3377 pci_err(dev, "unable to preallocate PCI-X save buffer\n"); 3378 3379 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR, 3380 2 * sizeof(u16)); 3381 if (error) 3382 pci_err(dev, "unable to allocate suspend buffer for LTR\n"); 3383 3384 pci_allocate_vc_save_buffers(dev); 3385 } 3386 3387 void pci_free_cap_save_buffers(struct pci_dev *dev) 3388 { 3389 struct pci_cap_saved_state *tmp; 3390 struct hlist_node *n; 3391 3392 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next) 3393 kfree(tmp); 3394 } 3395 3396 /** 3397 * pci_configure_ari - enable or disable ARI forwarding 3398 * @dev: the PCI device 3399 * 3400 * If @dev and its upstream bridge both support ARI, enable ARI in the 3401 * bridge. Otherwise, disable ARI in the bridge. 3402 */ 3403 void pci_configure_ari(struct pci_dev *dev) 3404 { 3405 u32 cap; 3406 struct pci_dev *bridge; 3407 3408 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn) 3409 return; 3410 3411 bridge = dev->bus->self; 3412 if (!bridge) 3413 return; 3414 3415 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3416 if (!(cap & PCI_EXP_DEVCAP2_ARI)) 3417 return; 3418 3419 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) { 3420 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, 3421 PCI_EXP_DEVCTL2_ARI); 3422 bridge->ari_enabled = 1; 3423 } else { 3424 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2, 3425 PCI_EXP_DEVCTL2_ARI); 3426 bridge->ari_enabled = 0; 3427 } 3428 } 3429 3430 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags) 3431 { 3432 int pos; 3433 u16 cap, ctrl; 3434 3435 pos = pdev->acs_cap; 3436 if (!pos) 3437 return false; 3438 3439 /* 3440 * Except for egress control, capabilities are either required 3441 * or only required if controllable. Features missing from the 3442 * capability field can therefore be assumed as hard-wired enabled. 3443 */ 3444 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap); 3445 acs_flags &= (cap | PCI_ACS_EC); 3446 3447 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl); 3448 return (ctrl & acs_flags) == acs_flags; 3449 } 3450 3451 /** 3452 * pci_acs_enabled - test ACS against required flags for a given device 3453 * @pdev: device to test 3454 * @acs_flags: required PCI ACS flags 3455 * 3456 * Return true if the device supports the provided flags. Automatically 3457 * filters out flags that are not implemented on multifunction devices. 3458 * 3459 * Note that this interface checks the effective ACS capabilities of the 3460 * device rather than the actual capabilities. For instance, most single 3461 * function endpoints are not required to support ACS because they have no 3462 * opportunity for peer-to-peer access. We therefore return 'true' 3463 * regardless of whether the device exposes an ACS capability. This makes 3464 * it much easier for callers of this function to ignore the actual type 3465 * or topology of the device when testing ACS support. 3466 */ 3467 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags) 3468 { 3469 int ret; 3470 3471 ret = pci_dev_specific_acs_enabled(pdev, acs_flags); 3472 if (ret >= 0) 3473 return ret > 0; 3474 3475 /* 3476 * Conventional PCI and PCI-X devices never support ACS, either 3477 * effectively or actually. The shared bus topology implies that 3478 * any device on the bus can receive or snoop DMA. 3479 */ 3480 if (!pci_is_pcie(pdev)) 3481 return false; 3482 3483 switch (pci_pcie_type(pdev)) { 3484 /* 3485 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec, 3486 * but since their primary interface is PCI/X, we conservatively 3487 * handle them as we would a non-PCIe device. 3488 */ 3489 case PCI_EXP_TYPE_PCIE_BRIDGE: 3490 /* 3491 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never 3492 * applicable... must never implement an ACS Extended Capability...". 3493 * This seems arbitrary, but we take a conservative interpretation 3494 * of this statement. 3495 */ 3496 case PCI_EXP_TYPE_PCI_BRIDGE: 3497 case PCI_EXP_TYPE_RC_EC: 3498 return false; 3499 /* 3500 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should 3501 * implement ACS in order to indicate their peer-to-peer capabilities, 3502 * regardless of whether they are single- or multi-function devices. 3503 */ 3504 case PCI_EXP_TYPE_DOWNSTREAM: 3505 case PCI_EXP_TYPE_ROOT_PORT: 3506 return pci_acs_flags_enabled(pdev, acs_flags); 3507 /* 3508 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be 3509 * implemented by the remaining PCIe types to indicate peer-to-peer 3510 * capabilities, but only when they are part of a multifunction 3511 * device. The footnote for section 6.12 indicates the specific 3512 * PCIe types included here. 3513 */ 3514 case PCI_EXP_TYPE_ENDPOINT: 3515 case PCI_EXP_TYPE_UPSTREAM: 3516 case PCI_EXP_TYPE_LEG_END: 3517 case PCI_EXP_TYPE_RC_END: 3518 if (!pdev->multifunction) 3519 break; 3520 3521 return pci_acs_flags_enabled(pdev, acs_flags); 3522 } 3523 3524 /* 3525 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable 3526 * to single function devices with the exception of downstream ports. 3527 */ 3528 return true; 3529 } 3530 3531 /** 3532 * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy 3533 * @start: starting downstream device 3534 * @end: ending upstream device or NULL to search to the root bus 3535 * @acs_flags: required flags 3536 * 3537 * Walk up a device tree from start to end testing PCI ACS support. If 3538 * any step along the way does not support the required flags, return false. 3539 */ 3540 bool pci_acs_path_enabled(struct pci_dev *start, 3541 struct pci_dev *end, u16 acs_flags) 3542 { 3543 struct pci_dev *pdev, *parent = start; 3544 3545 do { 3546 pdev = parent; 3547 3548 if (!pci_acs_enabled(pdev, acs_flags)) 3549 return false; 3550 3551 if (pci_is_root_bus(pdev->bus)) 3552 return (end == NULL); 3553 3554 parent = pdev->bus->self; 3555 } while (pdev != end); 3556 3557 return true; 3558 } 3559 3560 /** 3561 * pci_acs_init - Initialize ACS if hardware supports it 3562 * @dev: the PCI device 3563 */ 3564 void pci_acs_init(struct pci_dev *dev) 3565 { 3566 dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS); 3567 3568 /* 3569 * Attempt to enable ACS regardless of capability because some Root 3570 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have 3571 * the standard ACS capability but still support ACS via those 3572 * quirks. 3573 */ 3574 pci_enable_acs(dev); 3575 } 3576 3577 /** 3578 * pci_rebar_find_pos - find position of resize ctrl reg for BAR 3579 * @pdev: PCI device 3580 * @bar: BAR to find 3581 * 3582 * Helper to find the position of the ctrl register for a BAR. 3583 * Returns -ENOTSUPP if resizable BARs are not supported at all. 3584 * Returns -ENOENT if no ctrl register for the BAR could be found. 3585 */ 3586 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar) 3587 { 3588 unsigned int pos, nbars, i; 3589 u32 ctrl; 3590 3591 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 3592 if (!pos) 3593 return -ENOTSUPP; 3594 3595 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3596 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >> 3597 PCI_REBAR_CTRL_NBAR_SHIFT; 3598 3599 for (i = 0; i < nbars; i++, pos += 8) { 3600 int bar_idx; 3601 3602 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3603 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX; 3604 if (bar_idx == bar) 3605 return pos; 3606 } 3607 3608 return -ENOENT; 3609 } 3610 3611 /** 3612 * pci_rebar_get_possible_sizes - get possible sizes for BAR 3613 * @pdev: PCI device 3614 * @bar: BAR to query 3615 * 3616 * Get the possible sizes of a resizable BAR as bitmask defined in the spec 3617 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable. 3618 */ 3619 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar) 3620 { 3621 int pos; 3622 u32 cap; 3623 3624 pos = pci_rebar_find_pos(pdev, bar); 3625 if (pos < 0) 3626 return 0; 3627 3628 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap); 3629 cap &= PCI_REBAR_CAP_SIZES; 3630 3631 /* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */ 3632 if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f && 3633 bar == 0 && cap == 0x7000) 3634 cap = 0x3f000; 3635 3636 return cap >> 4; 3637 } 3638 EXPORT_SYMBOL(pci_rebar_get_possible_sizes); 3639 3640 /** 3641 * pci_rebar_get_current_size - get the current size of a BAR 3642 * @pdev: PCI device 3643 * @bar: BAR to set size to 3644 * 3645 * Read the size of a BAR from the resizable BAR config. 3646 * Returns size if found or negative error code. 3647 */ 3648 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar) 3649 { 3650 int pos; 3651 u32 ctrl; 3652 3653 pos = pci_rebar_find_pos(pdev, bar); 3654 if (pos < 0) 3655 return pos; 3656 3657 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3658 return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT; 3659 } 3660 3661 /** 3662 * pci_rebar_set_size - set a new size for a BAR 3663 * @pdev: PCI device 3664 * @bar: BAR to set size to 3665 * @size: new size as defined in the spec (0=1MB, 19=512GB) 3666 * 3667 * Set the new size of a BAR as defined in the spec. 3668 * Returns zero if resizing was successful, error code otherwise. 3669 */ 3670 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size) 3671 { 3672 int pos; 3673 u32 ctrl; 3674 3675 pos = pci_rebar_find_pos(pdev, bar); 3676 if (pos < 0) 3677 return pos; 3678 3679 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3680 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 3681 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT; 3682 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 3683 return 0; 3684 } 3685 3686 /** 3687 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port 3688 * @dev: the PCI device 3689 * @cap_mask: mask of desired AtomicOp sizes, including one or more of: 3690 * PCI_EXP_DEVCAP2_ATOMIC_COMP32 3691 * PCI_EXP_DEVCAP2_ATOMIC_COMP64 3692 * PCI_EXP_DEVCAP2_ATOMIC_COMP128 3693 * 3694 * Return 0 if all upstream bridges support AtomicOp routing, egress 3695 * blocking is disabled on all upstream ports, and the root port supports 3696 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit 3697 * AtomicOp completion), or negative otherwise. 3698 */ 3699 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask) 3700 { 3701 struct pci_bus *bus = dev->bus; 3702 struct pci_dev *bridge; 3703 u32 cap, ctl2; 3704 3705 if (!pci_is_pcie(dev)) 3706 return -EINVAL; 3707 3708 /* 3709 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be 3710 * AtomicOp requesters. For now, we only support endpoints as 3711 * requesters and root ports as completers. No endpoints as 3712 * completers, and no peer-to-peer. 3713 */ 3714 3715 switch (pci_pcie_type(dev)) { 3716 case PCI_EXP_TYPE_ENDPOINT: 3717 case PCI_EXP_TYPE_LEG_END: 3718 case PCI_EXP_TYPE_RC_END: 3719 break; 3720 default: 3721 return -EINVAL; 3722 } 3723 3724 while (bus->parent) { 3725 bridge = bus->self; 3726 3727 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3728 3729 switch (pci_pcie_type(bridge)) { 3730 /* Ensure switch ports support AtomicOp routing */ 3731 case PCI_EXP_TYPE_UPSTREAM: 3732 case PCI_EXP_TYPE_DOWNSTREAM: 3733 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE)) 3734 return -EINVAL; 3735 break; 3736 3737 /* Ensure root port supports all the sizes we care about */ 3738 case PCI_EXP_TYPE_ROOT_PORT: 3739 if ((cap & cap_mask) != cap_mask) 3740 return -EINVAL; 3741 break; 3742 } 3743 3744 /* Ensure upstream ports don't block AtomicOps on egress */ 3745 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) { 3746 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, 3747 &ctl2); 3748 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK) 3749 return -EINVAL; 3750 } 3751 3752 bus = bus->parent; 3753 } 3754 3755 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2, 3756 PCI_EXP_DEVCTL2_ATOMIC_REQ); 3757 return 0; 3758 } 3759 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root); 3760 3761 /** 3762 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge 3763 * @dev: the PCI device 3764 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD) 3765 * 3766 * Perform INTx swizzling for a device behind one level of bridge. This is 3767 * required by section 9.1 of the PCI-to-PCI bridge specification for devices 3768 * behind bridges on add-in cards. For devices with ARI enabled, the slot 3769 * number is always 0 (see the Implementation Note in section 2.2.8.1 of 3770 * the PCI Express Base Specification, Revision 2.1) 3771 */ 3772 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin) 3773 { 3774 int slot; 3775 3776 if (pci_ari_enabled(dev->bus)) 3777 slot = 0; 3778 else 3779 slot = PCI_SLOT(dev->devfn); 3780 3781 return (((pin - 1) + slot) % 4) + 1; 3782 } 3783 3784 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge) 3785 { 3786 u8 pin; 3787 3788 pin = dev->pin; 3789 if (!pin) 3790 return -1; 3791 3792 while (!pci_is_root_bus(dev->bus)) { 3793 pin = pci_swizzle_interrupt_pin(dev, pin); 3794 dev = dev->bus->self; 3795 } 3796 *bridge = dev; 3797 return pin; 3798 } 3799 3800 /** 3801 * pci_common_swizzle - swizzle INTx all the way to root bridge 3802 * @dev: the PCI device 3803 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD) 3804 * 3805 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI 3806 * bridges all the way up to a PCI root bus. 3807 */ 3808 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp) 3809 { 3810 u8 pin = *pinp; 3811 3812 while (!pci_is_root_bus(dev->bus)) { 3813 pin = pci_swizzle_interrupt_pin(dev, pin); 3814 dev = dev->bus->self; 3815 } 3816 *pinp = pin; 3817 return PCI_SLOT(dev->devfn); 3818 } 3819 EXPORT_SYMBOL_GPL(pci_common_swizzle); 3820 3821 /** 3822 * pci_release_region - Release a PCI bar 3823 * @pdev: PCI device whose resources were previously reserved by 3824 * pci_request_region() 3825 * @bar: BAR to release 3826 * 3827 * Releases the PCI I/O and memory resources previously reserved by a 3828 * successful call to pci_request_region(). Call this function only 3829 * after all use of the PCI regions has ceased. 3830 */ 3831 void pci_release_region(struct pci_dev *pdev, int bar) 3832 { 3833 struct pci_devres *dr; 3834 3835 if (pci_resource_len(pdev, bar) == 0) 3836 return; 3837 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) 3838 release_region(pci_resource_start(pdev, bar), 3839 pci_resource_len(pdev, bar)); 3840 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) 3841 release_mem_region(pci_resource_start(pdev, bar), 3842 pci_resource_len(pdev, bar)); 3843 3844 dr = find_pci_dr(pdev); 3845 if (dr) 3846 dr->region_mask &= ~(1 << bar); 3847 } 3848 EXPORT_SYMBOL(pci_release_region); 3849 3850 /** 3851 * __pci_request_region - Reserved PCI I/O and memory resource 3852 * @pdev: PCI device whose resources are to be reserved 3853 * @bar: BAR to be reserved 3854 * @res_name: Name to be associated with resource. 3855 * @exclusive: whether the region access is exclusive or not 3856 * 3857 * Mark the PCI region associated with PCI device @pdev BAR @bar as 3858 * being reserved by owner @res_name. Do not access any 3859 * address inside the PCI regions unless this call returns 3860 * successfully. 3861 * 3862 * If @exclusive is set, then the region is marked so that userspace 3863 * is explicitly not allowed to map the resource via /dev/mem or 3864 * sysfs MMIO access. 3865 * 3866 * Returns 0 on success, or %EBUSY on error. A warning 3867 * message is also printed on failure. 3868 */ 3869 static int __pci_request_region(struct pci_dev *pdev, int bar, 3870 const char *res_name, int exclusive) 3871 { 3872 struct pci_devres *dr; 3873 3874 if (pci_resource_len(pdev, bar) == 0) 3875 return 0; 3876 3877 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) { 3878 if (!request_region(pci_resource_start(pdev, bar), 3879 pci_resource_len(pdev, bar), res_name)) 3880 goto err_out; 3881 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) { 3882 if (!__request_mem_region(pci_resource_start(pdev, bar), 3883 pci_resource_len(pdev, bar), res_name, 3884 exclusive)) 3885 goto err_out; 3886 } 3887 3888 dr = find_pci_dr(pdev); 3889 if (dr) 3890 dr->region_mask |= 1 << bar; 3891 3892 return 0; 3893 3894 err_out: 3895 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar, 3896 &pdev->resource[bar]); 3897 return -EBUSY; 3898 } 3899 3900 /** 3901 * pci_request_region - Reserve PCI I/O and memory resource 3902 * @pdev: PCI device whose resources are to be reserved 3903 * @bar: BAR to be reserved 3904 * @res_name: Name to be associated with resource 3905 * 3906 * Mark the PCI region associated with PCI device @pdev BAR @bar as 3907 * being reserved by owner @res_name. Do not access any 3908 * address inside the PCI regions unless this call returns 3909 * successfully. 3910 * 3911 * Returns 0 on success, or %EBUSY on error. A warning 3912 * message is also printed on failure. 3913 */ 3914 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name) 3915 { 3916 return __pci_request_region(pdev, bar, res_name, 0); 3917 } 3918 EXPORT_SYMBOL(pci_request_region); 3919 3920 /** 3921 * pci_release_selected_regions - Release selected PCI I/O and memory resources 3922 * @pdev: PCI device whose resources were previously reserved 3923 * @bars: Bitmask of BARs to be released 3924 * 3925 * Release selected PCI I/O and memory resources previously reserved. 3926 * Call this function only after all use of the PCI regions has ceased. 3927 */ 3928 void pci_release_selected_regions(struct pci_dev *pdev, int bars) 3929 { 3930 int i; 3931 3932 for (i = 0; i < PCI_STD_NUM_BARS; i++) 3933 if (bars & (1 << i)) 3934 pci_release_region(pdev, i); 3935 } 3936 EXPORT_SYMBOL(pci_release_selected_regions); 3937 3938 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars, 3939 const char *res_name, int excl) 3940 { 3941 int i; 3942 3943 for (i = 0; i < PCI_STD_NUM_BARS; i++) 3944 if (bars & (1 << i)) 3945 if (__pci_request_region(pdev, i, res_name, excl)) 3946 goto err_out; 3947 return 0; 3948 3949 err_out: 3950 while (--i >= 0) 3951 if (bars & (1 << i)) 3952 pci_release_region(pdev, i); 3953 3954 return -EBUSY; 3955 } 3956 3957 3958 /** 3959 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources 3960 * @pdev: PCI device whose resources are to be reserved 3961 * @bars: Bitmask of BARs to be requested 3962 * @res_name: Name to be associated with resource 3963 */ 3964 int pci_request_selected_regions(struct pci_dev *pdev, int bars, 3965 const char *res_name) 3966 { 3967 return __pci_request_selected_regions(pdev, bars, res_name, 0); 3968 } 3969 EXPORT_SYMBOL(pci_request_selected_regions); 3970 3971 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars, 3972 const char *res_name) 3973 { 3974 return __pci_request_selected_regions(pdev, bars, res_name, 3975 IORESOURCE_EXCLUSIVE); 3976 } 3977 EXPORT_SYMBOL(pci_request_selected_regions_exclusive); 3978 3979 /** 3980 * pci_release_regions - Release reserved PCI I/O and memory resources 3981 * @pdev: PCI device whose resources were previously reserved by 3982 * pci_request_regions() 3983 * 3984 * Releases all PCI I/O and memory resources previously reserved by a 3985 * successful call to pci_request_regions(). Call this function only 3986 * after all use of the PCI regions has ceased. 3987 */ 3988 3989 void pci_release_regions(struct pci_dev *pdev) 3990 { 3991 pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1); 3992 } 3993 EXPORT_SYMBOL(pci_release_regions); 3994 3995 /** 3996 * pci_request_regions - Reserve PCI I/O and memory resources 3997 * @pdev: PCI device whose resources are to be reserved 3998 * @res_name: Name to be associated with resource. 3999 * 4000 * Mark all PCI regions associated with PCI device @pdev as 4001 * being reserved by owner @res_name. Do not access any 4002 * address inside the PCI regions unless this call returns 4003 * successfully. 4004 * 4005 * Returns 0 on success, or %EBUSY on error. A warning 4006 * message is also printed on failure. 4007 */ 4008 int pci_request_regions(struct pci_dev *pdev, const char *res_name) 4009 { 4010 return pci_request_selected_regions(pdev, 4011 ((1 << PCI_STD_NUM_BARS) - 1), res_name); 4012 } 4013 EXPORT_SYMBOL(pci_request_regions); 4014 4015 /** 4016 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources 4017 * @pdev: PCI device whose resources are to be reserved 4018 * @res_name: Name to be associated with resource. 4019 * 4020 * Mark all PCI regions associated with PCI device @pdev as being reserved 4021 * by owner @res_name. Do not access any address inside the PCI regions 4022 * unless this call returns successfully. 4023 * 4024 * pci_request_regions_exclusive() will mark the region so that /dev/mem 4025 * and the sysfs MMIO access will not be allowed. 4026 * 4027 * Returns 0 on success, or %EBUSY on error. A warning message is also 4028 * printed on failure. 4029 */ 4030 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name) 4031 { 4032 return pci_request_selected_regions_exclusive(pdev, 4033 ((1 << PCI_STD_NUM_BARS) - 1), res_name); 4034 } 4035 EXPORT_SYMBOL(pci_request_regions_exclusive); 4036 4037 /* 4038 * Record the PCI IO range (expressed as CPU physical address + size). 4039 * Return a negative value if an error has occurred, zero otherwise 4040 */ 4041 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr, 4042 resource_size_t size) 4043 { 4044 int ret = 0; 4045 #ifdef PCI_IOBASE 4046 struct logic_pio_hwaddr *range; 4047 4048 if (!size || addr + size < addr) 4049 return -EINVAL; 4050 4051 range = kzalloc(sizeof(*range), GFP_ATOMIC); 4052 if (!range) 4053 return -ENOMEM; 4054 4055 range->fwnode = fwnode; 4056 range->size = size; 4057 range->hw_start = addr; 4058 range->flags = LOGIC_PIO_CPU_MMIO; 4059 4060 ret = logic_pio_register_range(range); 4061 if (ret) 4062 kfree(range); 4063 4064 /* Ignore duplicates due to deferred probing */ 4065 if (ret == -EEXIST) 4066 ret = 0; 4067 #endif 4068 4069 return ret; 4070 } 4071 4072 phys_addr_t pci_pio_to_address(unsigned long pio) 4073 { 4074 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR; 4075 4076 #ifdef PCI_IOBASE 4077 if (pio >= MMIO_UPPER_LIMIT) 4078 return address; 4079 4080 address = logic_pio_to_hwaddr(pio); 4081 #endif 4082 4083 return address; 4084 } 4085 EXPORT_SYMBOL_GPL(pci_pio_to_address); 4086 4087 unsigned long __weak pci_address_to_pio(phys_addr_t address) 4088 { 4089 #ifdef PCI_IOBASE 4090 return logic_pio_trans_cpuaddr(address); 4091 #else 4092 if (address > IO_SPACE_LIMIT) 4093 return (unsigned long)-1; 4094 4095 return (unsigned long) address; 4096 #endif 4097 } 4098 4099 /** 4100 * pci_remap_iospace - Remap the memory mapped I/O space 4101 * @res: Resource describing the I/O space 4102 * @phys_addr: physical address of range to be mapped 4103 * 4104 * Remap the memory mapped I/O space described by the @res and the CPU 4105 * physical address @phys_addr into virtual address space. Only 4106 * architectures that have memory mapped IO functions defined (and the 4107 * PCI_IOBASE value defined) should call this function. 4108 */ 4109 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr) 4110 { 4111 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 4112 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 4113 4114 if (!(res->flags & IORESOURCE_IO)) 4115 return -EINVAL; 4116 4117 if (res->end > IO_SPACE_LIMIT) 4118 return -EINVAL; 4119 4120 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr, 4121 pgprot_device(PAGE_KERNEL)); 4122 #else 4123 /* 4124 * This architecture does not have memory mapped I/O space, 4125 * so this function should never be called 4126 */ 4127 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n"); 4128 return -ENODEV; 4129 #endif 4130 } 4131 EXPORT_SYMBOL(pci_remap_iospace); 4132 4133 /** 4134 * pci_unmap_iospace - Unmap the memory mapped I/O space 4135 * @res: resource to be unmapped 4136 * 4137 * Unmap the CPU virtual address @res from virtual address space. Only 4138 * architectures that have memory mapped IO functions defined (and the 4139 * PCI_IOBASE value defined) should call this function. 4140 */ 4141 void pci_unmap_iospace(struct resource *res) 4142 { 4143 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 4144 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 4145 4146 vunmap_range(vaddr, vaddr + resource_size(res)); 4147 #endif 4148 } 4149 EXPORT_SYMBOL(pci_unmap_iospace); 4150 4151 static void devm_pci_unmap_iospace(struct device *dev, void *ptr) 4152 { 4153 struct resource **res = ptr; 4154 4155 pci_unmap_iospace(*res); 4156 } 4157 4158 /** 4159 * devm_pci_remap_iospace - Managed pci_remap_iospace() 4160 * @dev: Generic device to remap IO address for 4161 * @res: Resource describing the I/O space 4162 * @phys_addr: physical address of range to be mapped 4163 * 4164 * Managed pci_remap_iospace(). Map is automatically unmapped on driver 4165 * detach. 4166 */ 4167 int devm_pci_remap_iospace(struct device *dev, const struct resource *res, 4168 phys_addr_t phys_addr) 4169 { 4170 const struct resource **ptr; 4171 int error; 4172 4173 ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL); 4174 if (!ptr) 4175 return -ENOMEM; 4176 4177 error = pci_remap_iospace(res, phys_addr); 4178 if (error) { 4179 devres_free(ptr); 4180 } else { 4181 *ptr = res; 4182 devres_add(dev, ptr); 4183 } 4184 4185 return error; 4186 } 4187 EXPORT_SYMBOL(devm_pci_remap_iospace); 4188 4189 /** 4190 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace() 4191 * @dev: Generic device to remap IO address for 4192 * @offset: Resource address to map 4193 * @size: Size of map 4194 * 4195 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver 4196 * detach. 4197 */ 4198 void __iomem *devm_pci_remap_cfgspace(struct device *dev, 4199 resource_size_t offset, 4200 resource_size_t size) 4201 { 4202 void __iomem **ptr, *addr; 4203 4204 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL); 4205 if (!ptr) 4206 return NULL; 4207 4208 addr = pci_remap_cfgspace(offset, size); 4209 if (addr) { 4210 *ptr = addr; 4211 devres_add(dev, ptr); 4212 } else 4213 devres_free(ptr); 4214 4215 return addr; 4216 } 4217 EXPORT_SYMBOL(devm_pci_remap_cfgspace); 4218 4219 /** 4220 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource 4221 * @dev: generic device to handle the resource for 4222 * @res: configuration space resource to be handled 4223 * 4224 * Checks that a resource is a valid memory region, requests the memory 4225 * region and ioremaps with pci_remap_cfgspace() API that ensures the 4226 * proper PCI configuration space memory attributes are guaranteed. 4227 * 4228 * All operations are managed and will be undone on driver detach. 4229 * 4230 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code 4231 * on failure. Usage example:: 4232 * 4233 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 4234 * base = devm_pci_remap_cfg_resource(&pdev->dev, res); 4235 * if (IS_ERR(base)) 4236 * return PTR_ERR(base); 4237 */ 4238 void __iomem *devm_pci_remap_cfg_resource(struct device *dev, 4239 struct resource *res) 4240 { 4241 resource_size_t size; 4242 const char *name; 4243 void __iomem *dest_ptr; 4244 4245 BUG_ON(!dev); 4246 4247 if (!res || resource_type(res) != IORESOURCE_MEM) { 4248 dev_err(dev, "invalid resource\n"); 4249 return IOMEM_ERR_PTR(-EINVAL); 4250 } 4251 4252 size = resource_size(res); 4253 4254 if (res->name) 4255 name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev), 4256 res->name); 4257 else 4258 name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL); 4259 if (!name) 4260 return IOMEM_ERR_PTR(-ENOMEM); 4261 4262 if (!devm_request_mem_region(dev, res->start, size, name)) { 4263 dev_err(dev, "can't request region for resource %pR\n", res); 4264 return IOMEM_ERR_PTR(-EBUSY); 4265 } 4266 4267 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size); 4268 if (!dest_ptr) { 4269 dev_err(dev, "ioremap failed for resource %pR\n", res); 4270 devm_release_mem_region(dev, res->start, size); 4271 dest_ptr = IOMEM_ERR_PTR(-ENOMEM); 4272 } 4273 4274 return dest_ptr; 4275 } 4276 EXPORT_SYMBOL(devm_pci_remap_cfg_resource); 4277 4278 static void __pci_set_master(struct pci_dev *dev, bool enable) 4279 { 4280 u16 old_cmd, cmd; 4281 4282 pci_read_config_word(dev, PCI_COMMAND, &old_cmd); 4283 if (enable) 4284 cmd = old_cmd | PCI_COMMAND_MASTER; 4285 else 4286 cmd = old_cmd & ~PCI_COMMAND_MASTER; 4287 if (cmd != old_cmd) { 4288 pci_dbg(dev, "%s bus mastering\n", 4289 enable ? "enabling" : "disabling"); 4290 pci_write_config_word(dev, PCI_COMMAND, cmd); 4291 } 4292 dev->is_busmaster = enable; 4293 } 4294 4295 /** 4296 * pcibios_setup - process "pci=" kernel boot arguments 4297 * @str: string used to pass in "pci=" kernel boot arguments 4298 * 4299 * Process kernel boot arguments. This is the default implementation. 4300 * Architecture specific implementations can override this as necessary. 4301 */ 4302 char * __weak __init pcibios_setup(char *str) 4303 { 4304 return str; 4305 } 4306 4307 /** 4308 * pcibios_set_master - enable PCI bus-mastering for device dev 4309 * @dev: the PCI device to enable 4310 * 4311 * Enables PCI bus-mastering for the device. This is the default 4312 * implementation. Architecture specific implementations can override 4313 * this if necessary. 4314 */ 4315 void __weak pcibios_set_master(struct pci_dev *dev) 4316 { 4317 u8 lat; 4318 4319 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */ 4320 if (pci_is_pcie(dev)) 4321 return; 4322 4323 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat); 4324 if (lat < 16) 4325 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency; 4326 else if (lat > pcibios_max_latency) 4327 lat = pcibios_max_latency; 4328 else 4329 return; 4330 4331 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat); 4332 } 4333 4334 /** 4335 * pci_set_master - enables bus-mastering for device dev 4336 * @dev: the PCI device to enable 4337 * 4338 * Enables bus-mastering on the device and calls pcibios_set_master() 4339 * to do the needed arch specific settings. 4340 */ 4341 void pci_set_master(struct pci_dev *dev) 4342 { 4343 __pci_set_master(dev, true); 4344 pcibios_set_master(dev); 4345 } 4346 EXPORT_SYMBOL(pci_set_master); 4347 4348 /** 4349 * pci_clear_master - disables bus-mastering for device dev 4350 * @dev: the PCI device to disable 4351 */ 4352 void pci_clear_master(struct pci_dev *dev) 4353 { 4354 __pci_set_master(dev, false); 4355 } 4356 EXPORT_SYMBOL(pci_clear_master); 4357 4358 /** 4359 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed 4360 * @dev: the PCI device for which MWI is to be enabled 4361 * 4362 * Helper function for pci_set_mwi. 4363 * Originally copied from drivers/net/acenic.c. 4364 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. 4365 * 4366 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4367 */ 4368 int pci_set_cacheline_size(struct pci_dev *dev) 4369 { 4370 u8 cacheline_size; 4371 4372 if (!pci_cache_line_size) 4373 return -EINVAL; 4374 4375 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be 4376 equal to or multiple of the right value. */ 4377 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4378 if (cacheline_size >= pci_cache_line_size && 4379 (cacheline_size % pci_cache_line_size) == 0) 4380 return 0; 4381 4382 /* Write the correct value. */ 4383 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size); 4384 /* Read it back. */ 4385 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4386 if (cacheline_size == pci_cache_line_size) 4387 return 0; 4388 4389 pci_dbg(dev, "cache line size of %d is not supported\n", 4390 pci_cache_line_size << 2); 4391 4392 return -EINVAL; 4393 } 4394 EXPORT_SYMBOL_GPL(pci_set_cacheline_size); 4395 4396 /** 4397 * pci_set_mwi - enables memory-write-invalidate PCI transaction 4398 * @dev: the PCI device for which MWI is enabled 4399 * 4400 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4401 * 4402 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4403 */ 4404 int pci_set_mwi(struct pci_dev *dev) 4405 { 4406 #ifdef PCI_DISABLE_MWI 4407 return 0; 4408 #else 4409 int rc; 4410 u16 cmd; 4411 4412 rc = pci_set_cacheline_size(dev); 4413 if (rc) 4414 return rc; 4415 4416 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4417 if (!(cmd & PCI_COMMAND_INVALIDATE)) { 4418 pci_dbg(dev, "enabling Mem-Wr-Inval\n"); 4419 cmd |= PCI_COMMAND_INVALIDATE; 4420 pci_write_config_word(dev, PCI_COMMAND, cmd); 4421 } 4422 return 0; 4423 #endif 4424 } 4425 EXPORT_SYMBOL(pci_set_mwi); 4426 4427 /** 4428 * pcim_set_mwi - a device-managed pci_set_mwi() 4429 * @dev: the PCI device for which MWI is enabled 4430 * 4431 * Managed pci_set_mwi(). 4432 * 4433 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4434 */ 4435 int pcim_set_mwi(struct pci_dev *dev) 4436 { 4437 struct pci_devres *dr; 4438 4439 dr = find_pci_dr(dev); 4440 if (!dr) 4441 return -ENOMEM; 4442 4443 dr->mwi = 1; 4444 return pci_set_mwi(dev); 4445 } 4446 EXPORT_SYMBOL(pcim_set_mwi); 4447 4448 /** 4449 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction 4450 * @dev: the PCI device for which MWI is enabled 4451 * 4452 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4453 * Callers are not required to check the return value. 4454 * 4455 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4456 */ 4457 int pci_try_set_mwi(struct pci_dev *dev) 4458 { 4459 #ifdef PCI_DISABLE_MWI 4460 return 0; 4461 #else 4462 return pci_set_mwi(dev); 4463 #endif 4464 } 4465 EXPORT_SYMBOL(pci_try_set_mwi); 4466 4467 /** 4468 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev 4469 * @dev: the PCI device to disable 4470 * 4471 * Disables PCI Memory-Write-Invalidate transaction on the device 4472 */ 4473 void pci_clear_mwi(struct pci_dev *dev) 4474 { 4475 #ifndef PCI_DISABLE_MWI 4476 u16 cmd; 4477 4478 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4479 if (cmd & PCI_COMMAND_INVALIDATE) { 4480 cmd &= ~PCI_COMMAND_INVALIDATE; 4481 pci_write_config_word(dev, PCI_COMMAND, cmd); 4482 } 4483 #endif 4484 } 4485 EXPORT_SYMBOL(pci_clear_mwi); 4486 4487 /** 4488 * pci_disable_parity - disable parity checking for device 4489 * @dev: the PCI device to operate on 4490 * 4491 * Disable parity checking for device @dev 4492 */ 4493 void pci_disable_parity(struct pci_dev *dev) 4494 { 4495 u16 cmd; 4496 4497 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4498 if (cmd & PCI_COMMAND_PARITY) { 4499 cmd &= ~PCI_COMMAND_PARITY; 4500 pci_write_config_word(dev, PCI_COMMAND, cmd); 4501 } 4502 } 4503 4504 /** 4505 * pci_intx - enables/disables PCI INTx for device dev 4506 * @pdev: the PCI device to operate on 4507 * @enable: boolean: whether to enable or disable PCI INTx 4508 * 4509 * Enables/disables PCI INTx for device @pdev 4510 */ 4511 void pci_intx(struct pci_dev *pdev, int enable) 4512 { 4513 u16 pci_command, new; 4514 4515 pci_read_config_word(pdev, PCI_COMMAND, &pci_command); 4516 4517 if (enable) 4518 new = pci_command & ~PCI_COMMAND_INTX_DISABLE; 4519 else 4520 new = pci_command | PCI_COMMAND_INTX_DISABLE; 4521 4522 if (new != pci_command) { 4523 struct pci_devres *dr; 4524 4525 pci_write_config_word(pdev, PCI_COMMAND, new); 4526 4527 dr = find_pci_dr(pdev); 4528 if (dr && !dr->restore_intx) { 4529 dr->restore_intx = 1; 4530 dr->orig_intx = !enable; 4531 } 4532 } 4533 } 4534 EXPORT_SYMBOL_GPL(pci_intx); 4535 4536 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask) 4537 { 4538 struct pci_bus *bus = dev->bus; 4539 bool mask_updated = true; 4540 u32 cmd_status_dword; 4541 u16 origcmd, newcmd; 4542 unsigned long flags; 4543 bool irq_pending; 4544 4545 /* 4546 * We do a single dword read to retrieve both command and status. 4547 * Document assumptions that make this possible. 4548 */ 4549 BUILD_BUG_ON(PCI_COMMAND % 4); 4550 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS); 4551 4552 raw_spin_lock_irqsave(&pci_lock, flags); 4553 4554 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword); 4555 4556 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT; 4557 4558 /* 4559 * Check interrupt status register to see whether our device 4560 * triggered the interrupt (when masking) or the next IRQ is 4561 * already pending (when unmasking). 4562 */ 4563 if (mask != irq_pending) { 4564 mask_updated = false; 4565 goto done; 4566 } 4567 4568 origcmd = cmd_status_dword; 4569 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE; 4570 if (mask) 4571 newcmd |= PCI_COMMAND_INTX_DISABLE; 4572 if (newcmd != origcmd) 4573 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd); 4574 4575 done: 4576 raw_spin_unlock_irqrestore(&pci_lock, flags); 4577 4578 return mask_updated; 4579 } 4580 4581 /** 4582 * pci_check_and_mask_intx - mask INTx on pending interrupt 4583 * @dev: the PCI device to operate on 4584 * 4585 * Check if the device dev has its INTx line asserted, mask it and return 4586 * true in that case. False is returned if no interrupt was pending. 4587 */ 4588 bool pci_check_and_mask_intx(struct pci_dev *dev) 4589 { 4590 return pci_check_and_set_intx_mask(dev, true); 4591 } 4592 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx); 4593 4594 /** 4595 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending 4596 * @dev: the PCI device to operate on 4597 * 4598 * Check if the device dev has its INTx line asserted, unmask it if not and 4599 * return true. False is returned and the mask remains active if there was 4600 * still an interrupt pending. 4601 */ 4602 bool pci_check_and_unmask_intx(struct pci_dev *dev) 4603 { 4604 return pci_check_and_set_intx_mask(dev, false); 4605 } 4606 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx); 4607 4608 /** 4609 * pci_wait_for_pending_transaction - wait for pending transaction 4610 * @dev: the PCI device to operate on 4611 * 4612 * Return 0 if transaction is pending 1 otherwise. 4613 */ 4614 int pci_wait_for_pending_transaction(struct pci_dev *dev) 4615 { 4616 if (!pci_is_pcie(dev)) 4617 return 1; 4618 4619 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA, 4620 PCI_EXP_DEVSTA_TRPND); 4621 } 4622 EXPORT_SYMBOL(pci_wait_for_pending_transaction); 4623 4624 /** 4625 * pcie_has_flr - check if a device supports function level resets 4626 * @dev: device to check 4627 * 4628 * Returns true if the device advertises support for PCIe function level 4629 * resets. 4630 */ 4631 bool pcie_has_flr(struct pci_dev *dev) 4632 { 4633 u32 cap; 4634 4635 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4636 return false; 4637 4638 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap); 4639 return cap & PCI_EXP_DEVCAP_FLR; 4640 } 4641 EXPORT_SYMBOL_GPL(pcie_has_flr); 4642 4643 /** 4644 * pcie_flr - initiate a PCIe function level reset 4645 * @dev: device to reset 4646 * 4647 * Initiate a function level reset on @dev. The caller should ensure the 4648 * device supports FLR before calling this function, e.g. by using the 4649 * pcie_has_flr() helper. 4650 */ 4651 int pcie_flr(struct pci_dev *dev) 4652 { 4653 if (!pci_wait_for_pending_transaction(dev)) 4654 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n"); 4655 4656 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR); 4657 4658 if (dev->imm_ready) 4659 return 0; 4660 4661 /* 4662 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within 4663 * 100ms, but may silently discard requests while the FLR is in 4664 * progress. Wait 100ms before trying to access the device. 4665 */ 4666 msleep(100); 4667 4668 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS); 4669 } 4670 EXPORT_SYMBOL_GPL(pcie_flr); 4671 4672 static int pci_af_flr(struct pci_dev *dev, int probe) 4673 { 4674 int pos; 4675 u8 cap; 4676 4677 pos = pci_find_capability(dev, PCI_CAP_ID_AF); 4678 if (!pos) 4679 return -ENOTTY; 4680 4681 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4682 return -ENOTTY; 4683 4684 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap); 4685 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR)) 4686 return -ENOTTY; 4687 4688 if (probe) 4689 return 0; 4690 4691 /* 4692 * Wait for Transaction Pending bit to clear. A word-aligned test 4693 * is used, so we use the control offset rather than status and shift 4694 * the test bit to match. 4695 */ 4696 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL, 4697 PCI_AF_STATUS_TP << 8)) 4698 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n"); 4699 4700 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR); 4701 4702 if (dev->imm_ready) 4703 return 0; 4704 4705 /* 4706 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006, 4707 * updated 27 July 2006; a device must complete an FLR within 4708 * 100ms, but may silently discard requests while the FLR is in 4709 * progress. Wait 100ms before trying to access the device. 4710 */ 4711 msleep(100); 4712 4713 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS); 4714 } 4715 4716 /** 4717 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0. 4718 * @dev: Device to reset. 4719 * @probe: If set, only check if the device can be reset this way. 4720 * 4721 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is 4722 * unset, it will be reinitialized internally when going from PCI_D3hot to 4723 * PCI_D0. If that's the case and the device is not in a low-power state 4724 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset. 4725 * 4726 * NOTE: This causes the caller to sleep for twice the device power transition 4727 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms 4728 * by default (i.e. unless the @dev's d3hot_delay field has a different value). 4729 * Moreover, only devices in D0 can be reset by this function. 4730 */ 4731 static int pci_pm_reset(struct pci_dev *dev, int probe) 4732 { 4733 u16 csr; 4734 4735 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET) 4736 return -ENOTTY; 4737 4738 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr); 4739 if (csr & PCI_PM_CTRL_NO_SOFT_RESET) 4740 return -ENOTTY; 4741 4742 if (probe) 4743 return 0; 4744 4745 if (dev->current_state != PCI_D0) 4746 return -EINVAL; 4747 4748 csr &= ~PCI_PM_CTRL_STATE_MASK; 4749 csr |= PCI_D3hot; 4750 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4751 pci_dev_d3_sleep(dev); 4752 4753 csr &= ~PCI_PM_CTRL_STATE_MASK; 4754 csr |= PCI_D0; 4755 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4756 pci_dev_d3_sleep(dev); 4757 4758 return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS); 4759 } 4760 4761 /** 4762 * pcie_wait_for_link_delay - Wait until link is active or inactive 4763 * @pdev: Bridge device 4764 * @active: waiting for active or inactive? 4765 * @delay: Delay to wait after link has become active (in ms) 4766 * 4767 * Use this to wait till link becomes active or inactive. 4768 */ 4769 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active, 4770 int delay) 4771 { 4772 int timeout = 1000; 4773 bool ret; 4774 u16 lnk_status; 4775 4776 /* 4777 * Some controllers might not implement link active reporting. In this 4778 * case, we wait for 1000 ms + any delay requested by the caller. 4779 */ 4780 if (!pdev->link_active_reporting) { 4781 msleep(timeout + delay); 4782 return true; 4783 } 4784 4785 /* 4786 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms, 4787 * after which we should expect an link active if the reset was 4788 * successful. If so, software must wait a minimum 100ms before sending 4789 * configuration requests to devices downstream this port. 4790 * 4791 * If the link fails to activate, either the device was physically 4792 * removed or the link is permanently failed. 4793 */ 4794 if (active) 4795 msleep(20); 4796 for (;;) { 4797 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status); 4798 ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA); 4799 if (ret == active) 4800 break; 4801 if (timeout <= 0) 4802 break; 4803 msleep(10); 4804 timeout -= 10; 4805 } 4806 if (active && ret) 4807 msleep(delay); 4808 4809 return ret == active; 4810 } 4811 4812 /** 4813 * pcie_wait_for_link - Wait until link is active or inactive 4814 * @pdev: Bridge device 4815 * @active: waiting for active or inactive? 4816 * 4817 * Use this to wait till link becomes active or inactive. 4818 */ 4819 bool pcie_wait_for_link(struct pci_dev *pdev, bool active) 4820 { 4821 return pcie_wait_for_link_delay(pdev, active, 100); 4822 } 4823 4824 /* 4825 * Find maximum D3cold delay required by all the devices on the bus. The 4826 * spec says 100 ms, but firmware can lower it and we allow drivers to 4827 * increase it as well. 4828 * 4829 * Called with @pci_bus_sem locked for reading. 4830 */ 4831 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus) 4832 { 4833 const struct pci_dev *pdev; 4834 int min_delay = 100; 4835 int max_delay = 0; 4836 4837 list_for_each_entry(pdev, &bus->devices, bus_list) { 4838 if (pdev->d3cold_delay < min_delay) 4839 min_delay = pdev->d3cold_delay; 4840 if (pdev->d3cold_delay > max_delay) 4841 max_delay = pdev->d3cold_delay; 4842 } 4843 4844 return max(min_delay, max_delay); 4845 } 4846 4847 /** 4848 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible 4849 * @dev: PCI bridge 4850 * 4851 * Handle necessary delays before access to the devices on the secondary 4852 * side of the bridge are permitted after D3cold to D0 transition. 4853 * 4854 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For 4855 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section 4856 * 4.3.2. 4857 */ 4858 void pci_bridge_wait_for_secondary_bus(struct pci_dev *dev) 4859 { 4860 struct pci_dev *child; 4861 int delay; 4862 4863 if (pci_dev_is_disconnected(dev)) 4864 return; 4865 4866 if (!pci_is_bridge(dev) || !dev->bridge_d3) 4867 return; 4868 4869 down_read(&pci_bus_sem); 4870 4871 /* 4872 * We only deal with devices that are present currently on the bus. 4873 * For any hot-added devices the access delay is handled in pciehp 4874 * board_added(). In case of ACPI hotplug the firmware is expected 4875 * to configure the devices before OS is notified. 4876 */ 4877 if (!dev->subordinate || list_empty(&dev->subordinate->devices)) { 4878 up_read(&pci_bus_sem); 4879 return; 4880 } 4881 4882 /* Take d3cold_delay requirements into account */ 4883 delay = pci_bus_max_d3cold_delay(dev->subordinate); 4884 if (!delay) { 4885 up_read(&pci_bus_sem); 4886 return; 4887 } 4888 4889 child = list_first_entry(&dev->subordinate->devices, struct pci_dev, 4890 bus_list); 4891 up_read(&pci_bus_sem); 4892 4893 /* 4894 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before 4895 * accessing the device after reset (that is 1000 ms + 100 ms). In 4896 * practice this should not be needed because we don't do power 4897 * management for them (see pci_bridge_d3_possible()). 4898 */ 4899 if (!pci_is_pcie(dev)) { 4900 pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay); 4901 msleep(1000 + delay); 4902 return; 4903 } 4904 4905 /* 4906 * For PCIe downstream and root ports that do not support speeds 4907 * greater than 5 GT/s need to wait minimum 100 ms. For higher 4908 * speeds (gen3) we need to wait first for the data link layer to 4909 * become active. 4910 * 4911 * However, 100 ms is the minimum and the PCIe spec says the 4912 * software must allow at least 1s before it can determine that the 4913 * device that did not respond is a broken device. There is 4914 * evidence that 100 ms is not always enough, for example certain 4915 * Titan Ridge xHCI controller does not always respond to 4916 * configuration requests if we only wait for 100 ms (see 4917 * https://bugzilla.kernel.org/show_bug.cgi?id=203885). 4918 * 4919 * Therefore we wait for 100 ms and check for the device presence. 4920 * If it is still not present give it an additional 100 ms. 4921 */ 4922 if (!pcie_downstream_port(dev)) 4923 return; 4924 4925 if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) { 4926 pci_dbg(dev, "waiting %d ms for downstream link\n", delay); 4927 msleep(delay); 4928 } else { 4929 pci_dbg(dev, "waiting %d ms for downstream link, after activation\n", 4930 delay); 4931 if (!pcie_wait_for_link_delay(dev, true, delay)) { 4932 /* Did not train, no need to wait any further */ 4933 pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n"); 4934 return; 4935 } 4936 } 4937 4938 if (!pci_device_is_present(child)) { 4939 pci_dbg(child, "waiting additional %d ms to become accessible\n", delay); 4940 msleep(delay); 4941 } 4942 } 4943 4944 void pci_reset_secondary_bus(struct pci_dev *dev) 4945 { 4946 u16 ctrl; 4947 4948 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl); 4949 ctrl |= PCI_BRIDGE_CTL_BUS_RESET; 4950 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 4951 4952 /* 4953 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double 4954 * this to 2ms to ensure that we meet the minimum requirement. 4955 */ 4956 msleep(2); 4957 4958 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET; 4959 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 4960 4961 /* 4962 * Trhfa for conventional PCI is 2^25 clock cycles. 4963 * Assuming a minimum 33MHz clock this results in a 1s 4964 * delay before we can consider subordinate devices to 4965 * be re-initialized. PCIe has some ways to shorten this, 4966 * but we don't make use of them yet. 4967 */ 4968 ssleep(1); 4969 } 4970 4971 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev) 4972 { 4973 pci_reset_secondary_bus(dev); 4974 } 4975 4976 /** 4977 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge. 4978 * @dev: Bridge device 4979 * 4980 * Use the bridge control register to assert reset on the secondary bus. 4981 * Devices on the secondary bus are left in power-on state. 4982 */ 4983 int pci_bridge_secondary_bus_reset(struct pci_dev *dev) 4984 { 4985 pcibios_reset_secondary_bus(dev); 4986 4987 return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS); 4988 } 4989 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset); 4990 4991 static int pci_parent_bus_reset(struct pci_dev *dev, int probe) 4992 { 4993 struct pci_dev *pdev; 4994 4995 if (pci_is_root_bus(dev->bus) || dev->subordinate || 4996 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 4997 return -ENOTTY; 4998 4999 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 5000 if (pdev != dev) 5001 return -ENOTTY; 5002 5003 if (probe) 5004 return 0; 5005 5006 return pci_bridge_secondary_bus_reset(dev->bus->self); 5007 } 5008 5009 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe) 5010 { 5011 int rc = -ENOTTY; 5012 5013 if (!hotplug || !try_module_get(hotplug->owner)) 5014 return rc; 5015 5016 if (hotplug->ops->reset_slot) 5017 rc = hotplug->ops->reset_slot(hotplug, probe); 5018 5019 module_put(hotplug->owner); 5020 5021 return rc; 5022 } 5023 5024 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe) 5025 { 5026 if (dev->multifunction || dev->subordinate || !dev->slot || 5027 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 5028 return -ENOTTY; 5029 5030 return pci_reset_hotplug_slot(dev->slot->hotplug, probe); 5031 } 5032 5033 static int pci_reset_bus_function(struct pci_dev *dev, int probe) 5034 { 5035 int rc; 5036 5037 rc = pci_dev_reset_slot_function(dev, probe); 5038 if (rc != -ENOTTY) 5039 return rc; 5040 return pci_parent_bus_reset(dev, probe); 5041 } 5042 5043 static void pci_dev_lock(struct pci_dev *dev) 5044 { 5045 pci_cfg_access_lock(dev); 5046 /* block PM suspend, driver probe, etc. */ 5047 device_lock(&dev->dev); 5048 } 5049 5050 /* Return 1 on successful lock, 0 on contention */ 5051 int pci_dev_trylock(struct pci_dev *dev) 5052 { 5053 if (pci_cfg_access_trylock(dev)) { 5054 if (device_trylock(&dev->dev)) 5055 return 1; 5056 pci_cfg_access_unlock(dev); 5057 } 5058 5059 return 0; 5060 } 5061 EXPORT_SYMBOL_GPL(pci_dev_trylock); 5062 5063 void pci_dev_unlock(struct pci_dev *dev) 5064 { 5065 device_unlock(&dev->dev); 5066 pci_cfg_access_unlock(dev); 5067 } 5068 EXPORT_SYMBOL_GPL(pci_dev_unlock); 5069 5070 static void pci_dev_save_and_disable(struct pci_dev *dev) 5071 { 5072 const struct pci_error_handlers *err_handler = 5073 dev->driver ? dev->driver->err_handler : NULL; 5074 5075 /* 5076 * dev->driver->err_handler->reset_prepare() is protected against 5077 * races with ->remove() by the device lock, which must be held by 5078 * the caller. 5079 */ 5080 if (err_handler && err_handler->reset_prepare) 5081 err_handler->reset_prepare(dev); 5082 5083 /* 5084 * Wake-up device prior to save. PM registers default to D0 after 5085 * reset and a simple register restore doesn't reliably return 5086 * to a non-D0 state anyway. 5087 */ 5088 pci_set_power_state(dev, PCI_D0); 5089 5090 pci_save_state(dev); 5091 /* 5092 * Disable the device by clearing the Command register, except for 5093 * INTx-disable which is set. This not only disables MMIO and I/O port 5094 * BARs, but also prevents the device from being Bus Master, preventing 5095 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3 5096 * compliant devices, INTx-disable prevents legacy interrupts. 5097 */ 5098 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE); 5099 } 5100 5101 static void pci_dev_restore(struct pci_dev *dev) 5102 { 5103 const struct pci_error_handlers *err_handler = 5104 dev->driver ? dev->driver->err_handler : NULL; 5105 5106 pci_restore_state(dev); 5107 5108 /* 5109 * dev->driver->err_handler->reset_done() is protected against 5110 * races with ->remove() by the device lock, which must be held by 5111 * the caller. 5112 */ 5113 if (err_handler && err_handler->reset_done) 5114 err_handler->reset_done(dev); 5115 } 5116 5117 /** 5118 * __pci_reset_function_locked - reset a PCI device function while holding 5119 * the @dev mutex lock. 5120 * @dev: PCI device to reset 5121 * 5122 * Some devices allow an individual function to be reset without affecting 5123 * other functions in the same device. The PCI device must be responsive 5124 * to PCI config space in order to use this function. 5125 * 5126 * The device function is presumed to be unused and the caller is holding 5127 * the device mutex lock when this function is called. 5128 * 5129 * Resetting the device will make the contents of PCI configuration space 5130 * random, so any caller of this must be prepared to reinitialise the 5131 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 5132 * etc. 5133 * 5134 * Returns 0 if the device function was successfully reset or negative if the 5135 * device doesn't support resetting a single function. 5136 */ 5137 int __pci_reset_function_locked(struct pci_dev *dev) 5138 { 5139 int rc; 5140 5141 might_sleep(); 5142 5143 /* 5144 * A reset method returns -ENOTTY if it doesn't support this device 5145 * and we should try the next method. 5146 * 5147 * If it returns 0 (success), we're finished. If it returns any 5148 * other error, we're also finished: this indicates that further 5149 * reset mechanisms might be broken on the device. 5150 */ 5151 rc = pci_dev_specific_reset(dev, 0); 5152 if (rc != -ENOTTY) 5153 return rc; 5154 if (pcie_has_flr(dev)) { 5155 rc = pcie_flr(dev); 5156 if (rc != -ENOTTY) 5157 return rc; 5158 } 5159 rc = pci_af_flr(dev, 0); 5160 if (rc != -ENOTTY) 5161 return rc; 5162 rc = pci_pm_reset(dev, 0); 5163 if (rc != -ENOTTY) 5164 return rc; 5165 return pci_reset_bus_function(dev, 0); 5166 } 5167 EXPORT_SYMBOL_GPL(__pci_reset_function_locked); 5168 5169 /** 5170 * pci_probe_reset_function - check whether the device can be safely reset 5171 * @dev: PCI device to reset 5172 * 5173 * Some devices allow an individual function to be reset without affecting 5174 * other functions in the same device. The PCI device must be responsive 5175 * to PCI config space in order to use this function. 5176 * 5177 * Returns 0 if the device function can be reset or negative if the 5178 * device doesn't support resetting a single function. 5179 */ 5180 int pci_probe_reset_function(struct pci_dev *dev) 5181 { 5182 int rc; 5183 5184 might_sleep(); 5185 5186 rc = pci_dev_specific_reset(dev, 1); 5187 if (rc != -ENOTTY) 5188 return rc; 5189 if (pcie_has_flr(dev)) 5190 return 0; 5191 rc = pci_af_flr(dev, 1); 5192 if (rc != -ENOTTY) 5193 return rc; 5194 rc = pci_pm_reset(dev, 1); 5195 if (rc != -ENOTTY) 5196 return rc; 5197 5198 return pci_reset_bus_function(dev, 1); 5199 } 5200 5201 /** 5202 * pci_reset_function - quiesce and reset a PCI device function 5203 * @dev: PCI device to reset 5204 * 5205 * Some devices allow an individual function to be reset without affecting 5206 * other functions in the same device. The PCI device must be responsive 5207 * to PCI config space in order to use this function. 5208 * 5209 * This function does not just reset the PCI portion of a device, but 5210 * clears all the state associated with the device. This function differs 5211 * from __pci_reset_function_locked() in that it saves and restores device state 5212 * over the reset and takes the PCI device lock. 5213 * 5214 * Returns 0 if the device function was successfully reset or negative if the 5215 * device doesn't support resetting a single function. 5216 */ 5217 int pci_reset_function(struct pci_dev *dev) 5218 { 5219 int rc; 5220 5221 if (!dev->reset_fn) 5222 return -ENOTTY; 5223 5224 pci_dev_lock(dev); 5225 pci_dev_save_and_disable(dev); 5226 5227 rc = __pci_reset_function_locked(dev); 5228 5229 pci_dev_restore(dev); 5230 pci_dev_unlock(dev); 5231 5232 return rc; 5233 } 5234 EXPORT_SYMBOL_GPL(pci_reset_function); 5235 5236 /** 5237 * pci_reset_function_locked - quiesce and reset a PCI device function 5238 * @dev: PCI device to reset 5239 * 5240 * Some devices allow an individual function to be reset without affecting 5241 * other functions in the same device. The PCI device must be responsive 5242 * to PCI config space in order to use this function. 5243 * 5244 * This function does not just reset the PCI portion of a device, but 5245 * clears all the state associated with the device. This function differs 5246 * from __pci_reset_function_locked() in that it saves and restores device state 5247 * over the reset. It also differs from pci_reset_function() in that it 5248 * requires the PCI device lock to be held. 5249 * 5250 * Returns 0 if the device function was successfully reset or negative if the 5251 * device doesn't support resetting a single function. 5252 */ 5253 int pci_reset_function_locked(struct pci_dev *dev) 5254 { 5255 int rc; 5256 5257 if (!dev->reset_fn) 5258 return -ENOTTY; 5259 5260 pci_dev_save_and_disable(dev); 5261 5262 rc = __pci_reset_function_locked(dev); 5263 5264 pci_dev_restore(dev); 5265 5266 return rc; 5267 } 5268 EXPORT_SYMBOL_GPL(pci_reset_function_locked); 5269 5270 /** 5271 * pci_try_reset_function - quiesce and reset a PCI device function 5272 * @dev: PCI device to reset 5273 * 5274 * Same as above, except return -EAGAIN if unable to lock device. 5275 */ 5276 int pci_try_reset_function(struct pci_dev *dev) 5277 { 5278 int rc; 5279 5280 if (!dev->reset_fn) 5281 return -ENOTTY; 5282 5283 if (!pci_dev_trylock(dev)) 5284 return -EAGAIN; 5285 5286 pci_dev_save_and_disable(dev); 5287 rc = __pci_reset_function_locked(dev); 5288 pci_dev_restore(dev); 5289 pci_dev_unlock(dev); 5290 5291 return rc; 5292 } 5293 EXPORT_SYMBOL_GPL(pci_try_reset_function); 5294 5295 /* Do any devices on or below this bus prevent a bus reset? */ 5296 static bool pci_bus_resetable(struct pci_bus *bus) 5297 { 5298 struct pci_dev *dev; 5299 5300 5301 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 5302 return false; 5303 5304 list_for_each_entry(dev, &bus->devices, bus_list) { 5305 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 5306 (dev->subordinate && !pci_bus_resetable(dev->subordinate))) 5307 return false; 5308 } 5309 5310 return true; 5311 } 5312 5313 /* Lock devices from the top of the tree down */ 5314 static void pci_bus_lock(struct pci_bus *bus) 5315 { 5316 struct pci_dev *dev; 5317 5318 list_for_each_entry(dev, &bus->devices, bus_list) { 5319 pci_dev_lock(dev); 5320 if (dev->subordinate) 5321 pci_bus_lock(dev->subordinate); 5322 } 5323 } 5324 5325 /* Unlock devices from the bottom of the tree up */ 5326 static void pci_bus_unlock(struct pci_bus *bus) 5327 { 5328 struct pci_dev *dev; 5329 5330 list_for_each_entry(dev, &bus->devices, bus_list) { 5331 if (dev->subordinate) 5332 pci_bus_unlock(dev->subordinate); 5333 pci_dev_unlock(dev); 5334 } 5335 } 5336 5337 /* Return 1 on successful lock, 0 on contention */ 5338 static int pci_bus_trylock(struct pci_bus *bus) 5339 { 5340 struct pci_dev *dev; 5341 5342 list_for_each_entry(dev, &bus->devices, bus_list) { 5343 if (!pci_dev_trylock(dev)) 5344 goto unlock; 5345 if (dev->subordinate) { 5346 if (!pci_bus_trylock(dev->subordinate)) { 5347 pci_dev_unlock(dev); 5348 goto unlock; 5349 } 5350 } 5351 } 5352 return 1; 5353 5354 unlock: 5355 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) { 5356 if (dev->subordinate) 5357 pci_bus_unlock(dev->subordinate); 5358 pci_dev_unlock(dev); 5359 } 5360 return 0; 5361 } 5362 5363 /* Do any devices on or below this slot prevent a bus reset? */ 5364 static bool pci_slot_resetable(struct pci_slot *slot) 5365 { 5366 struct pci_dev *dev; 5367 5368 if (slot->bus->self && 5369 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 5370 return false; 5371 5372 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5373 if (!dev->slot || dev->slot != slot) 5374 continue; 5375 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 5376 (dev->subordinate && !pci_bus_resetable(dev->subordinate))) 5377 return false; 5378 } 5379 5380 return true; 5381 } 5382 5383 /* Lock devices from the top of the tree down */ 5384 static void pci_slot_lock(struct pci_slot *slot) 5385 { 5386 struct pci_dev *dev; 5387 5388 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5389 if (!dev->slot || dev->slot != slot) 5390 continue; 5391 pci_dev_lock(dev); 5392 if (dev->subordinate) 5393 pci_bus_lock(dev->subordinate); 5394 } 5395 } 5396 5397 /* Unlock devices from the bottom of the tree up */ 5398 static void pci_slot_unlock(struct pci_slot *slot) 5399 { 5400 struct pci_dev *dev; 5401 5402 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5403 if (!dev->slot || dev->slot != slot) 5404 continue; 5405 if (dev->subordinate) 5406 pci_bus_unlock(dev->subordinate); 5407 pci_dev_unlock(dev); 5408 } 5409 } 5410 5411 /* Return 1 on successful lock, 0 on contention */ 5412 static int pci_slot_trylock(struct pci_slot *slot) 5413 { 5414 struct pci_dev *dev; 5415 5416 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5417 if (!dev->slot || dev->slot != slot) 5418 continue; 5419 if (!pci_dev_trylock(dev)) 5420 goto unlock; 5421 if (dev->subordinate) { 5422 if (!pci_bus_trylock(dev->subordinate)) { 5423 pci_dev_unlock(dev); 5424 goto unlock; 5425 } 5426 } 5427 } 5428 return 1; 5429 5430 unlock: 5431 list_for_each_entry_continue_reverse(dev, 5432 &slot->bus->devices, bus_list) { 5433 if (!dev->slot || dev->slot != slot) 5434 continue; 5435 if (dev->subordinate) 5436 pci_bus_unlock(dev->subordinate); 5437 pci_dev_unlock(dev); 5438 } 5439 return 0; 5440 } 5441 5442 /* 5443 * Save and disable devices from the top of the tree down while holding 5444 * the @dev mutex lock for the entire tree. 5445 */ 5446 static void pci_bus_save_and_disable_locked(struct pci_bus *bus) 5447 { 5448 struct pci_dev *dev; 5449 5450 list_for_each_entry(dev, &bus->devices, bus_list) { 5451 pci_dev_save_and_disable(dev); 5452 if (dev->subordinate) 5453 pci_bus_save_and_disable_locked(dev->subordinate); 5454 } 5455 } 5456 5457 /* 5458 * Restore devices from top of the tree down while holding @dev mutex lock 5459 * for the entire tree. Parent bridges need to be restored before we can 5460 * get to subordinate devices. 5461 */ 5462 static void pci_bus_restore_locked(struct pci_bus *bus) 5463 { 5464 struct pci_dev *dev; 5465 5466 list_for_each_entry(dev, &bus->devices, bus_list) { 5467 pci_dev_restore(dev); 5468 if (dev->subordinate) 5469 pci_bus_restore_locked(dev->subordinate); 5470 } 5471 } 5472 5473 /* 5474 * Save and disable devices from the top of the tree down while holding 5475 * the @dev mutex lock for the entire tree. 5476 */ 5477 static void pci_slot_save_and_disable_locked(struct pci_slot *slot) 5478 { 5479 struct pci_dev *dev; 5480 5481 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5482 if (!dev->slot || dev->slot != slot) 5483 continue; 5484 pci_dev_save_and_disable(dev); 5485 if (dev->subordinate) 5486 pci_bus_save_and_disable_locked(dev->subordinate); 5487 } 5488 } 5489 5490 /* 5491 * Restore devices from top of the tree down while holding @dev mutex lock 5492 * for the entire tree. Parent bridges need to be restored before we can 5493 * get to subordinate devices. 5494 */ 5495 static void pci_slot_restore_locked(struct pci_slot *slot) 5496 { 5497 struct pci_dev *dev; 5498 5499 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5500 if (!dev->slot || dev->slot != slot) 5501 continue; 5502 pci_dev_restore(dev); 5503 if (dev->subordinate) 5504 pci_bus_restore_locked(dev->subordinate); 5505 } 5506 } 5507 5508 static int pci_slot_reset(struct pci_slot *slot, int probe) 5509 { 5510 int rc; 5511 5512 if (!slot || !pci_slot_resetable(slot)) 5513 return -ENOTTY; 5514 5515 if (!probe) 5516 pci_slot_lock(slot); 5517 5518 might_sleep(); 5519 5520 rc = pci_reset_hotplug_slot(slot->hotplug, probe); 5521 5522 if (!probe) 5523 pci_slot_unlock(slot); 5524 5525 return rc; 5526 } 5527 5528 /** 5529 * pci_probe_reset_slot - probe whether a PCI slot can be reset 5530 * @slot: PCI slot to probe 5531 * 5532 * Return 0 if slot can be reset, negative if a slot reset is not supported. 5533 */ 5534 int pci_probe_reset_slot(struct pci_slot *slot) 5535 { 5536 return pci_slot_reset(slot, 1); 5537 } 5538 EXPORT_SYMBOL_GPL(pci_probe_reset_slot); 5539 5540 /** 5541 * __pci_reset_slot - Try to reset a PCI slot 5542 * @slot: PCI slot to reset 5543 * 5544 * A PCI bus may host multiple slots, each slot may support a reset mechanism 5545 * independent of other slots. For instance, some slots may support slot power 5546 * control. In the case of a 1:1 bus to slot architecture, this function may 5547 * wrap the bus reset to avoid spurious slot related events such as hotplug. 5548 * Generally a slot reset should be attempted before a bus reset. All of the 5549 * function of the slot and any subordinate buses behind the slot are reset 5550 * through this function. PCI config space of all devices in the slot and 5551 * behind the slot is saved before and restored after reset. 5552 * 5553 * Same as above except return -EAGAIN if the slot cannot be locked 5554 */ 5555 static int __pci_reset_slot(struct pci_slot *slot) 5556 { 5557 int rc; 5558 5559 rc = pci_slot_reset(slot, 1); 5560 if (rc) 5561 return rc; 5562 5563 if (pci_slot_trylock(slot)) { 5564 pci_slot_save_and_disable_locked(slot); 5565 might_sleep(); 5566 rc = pci_reset_hotplug_slot(slot->hotplug, 0); 5567 pci_slot_restore_locked(slot); 5568 pci_slot_unlock(slot); 5569 } else 5570 rc = -EAGAIN; 5571 5572 return rc; 5573 } 5574 5575 static int pci_bus_reset(struct pci_bus *bus, int probe) 5576 { 5577 int ret; 5578 5579 if (!bus->self || !pci_bus_resetable(bus)) 5580 return -ENOTTY; 5581 5582 if (probe) 5583 return 0; 5584 5585 pci_bus_lock(bus); 5586 5587 might_sleep(); 5588 5589 ret = pci_bridge_secondary_bus_reset(bus->self); 5590 5591 pci_bus_unlock(bus); 5592 5593 return ret; 5594 } 5595 5596 /** 5597 * pci_bus_error_reset - reset the bridge's subordinate bus 5598 * @bridge: The parent device that connects to the bus to reset 5599 * 5600 * This function will first try to reset the slots on this bus if the method is 5601 * available. If slot reset fails or is not available, this will fall back to a 5602 * secondary bus reset. 5603 */ 5604 int pci_bus_error_reset(struct pci_dev *bridge) 5605 { 5606 struct pci_bus *bus = bridge->subordinate; 5607 struct pci_slot *slot; 5608 5609 if (!bus) 5610 return -ENOTTY; 5611 5612 mutex_lock(&pci_slot_mutex); 5613 if (list_empty(&bus->slots)) 5614 goto bus_reset; 5615 5616 list_for_each_entry(slot, &bus->slots, list) 5617 if (pci_probe_reset_slot(slot)) 5618 goto bus_reset; 5619 5620 list_for_each_entry(slot, &bus->slots, list) 5621 if (pci_slot_reset(slot, 0)) 5622 goto bus_reset; 5623 5624 mutex_unlock(&pci_slot_mutex); 5625 return 0; 5626 bus_reset: 5627 mutex_unlock(&pci_slot_mutex); 5628 return pci_bus_reset(bridge->subordinate, 0); 5629 } 5630 5631 /** 5632 * pci_probe_reset_bus - probe whether a PCI bus can be reset 5633 * @bus: PCI bus to probe 5634 * 5635 * Return 0 if bus can be reset, negative if a bus reset is not supported. 5636 */ 5637 int pci_probe_reset_bus(struct pci_bus *bus) 5638 { 5639 return pci_bus_reset(bus, 1); 5640 } 5641 EXPORT_SYMBOL_GPL(pci_probe_reset_bus); 5642 5643 /** 5644 * __pci_reset_bus - Try to reset a PCI bus 5645 * @bus: top level PCI bus to reset 5646 * 5647 * Same as above except return -EAGAIN if the bus cannot be locked 5648 */ 5649 static int __pci_reset_bus(struct pci_bus *bus) 5650 { 5651 int rc; 5652 5653 rc = pci_bus_reset(bus, 1); 5654 if (rc) 5655 return rc; 5656 5657 if (pci_bus_trylock(bus)) { 5658 pci_bus_save_and_disable_locked(bus); 5659 might_sleep(); 5660 rc = pci_bridge_secondary_bus_reset(bus->self); 5661 pci_bus_restore_locked(bus); 5662 pci_bus_unlock(bus); 5663 } else 5664 rc = -EAGAIN; 5665 5666 return rc; 5667 } 5668 5669 /** 5670 * pci_reset_bus - Try to reset a PCI bus 5671 * @pdev: top level PCI device to reset via slot/bus 5672 * 5673 * Same as above except return -EAGAIN if the bus cannot be locked 5674 */ 5675 int pci_reset_bus(struct pci_dev *pdev) 5676 { 5677 return (!pci_probe_reset_slot(pdev->slot)) ? 5678 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus); 5679 } 5680 EXPORT_SYMBOL_GPL(pci_reset_bus); 5681 5682 /** 5683 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count 5684 * @dev: PCI device to query 5685 * 5686 * Returns mmrbc: maximum designed memory read count in bytes or 5687 * appropriate error value. 5688 */ 5689 int pcix_get_max_mmrbc(struct pci_dev *dev) 5690 { 5691 int cap; 5692 u32 stat; 5693 5694 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5695 if (!cap) 5696 return -EINVAL; 5697 5698 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 5699 return -EINVAL; 5700 5701 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21); 5702 } 5703 EXPORT_SYMBOL(pcix_get_max_mmrbc); 5704 5705 /** 5706 * pcix_get_mmrbc - get PCI-X maximum memory read byte count 5707 * @dev: PCI device to query 5708 * 5709 * Returns mmrbc: maximum memory read count in bytes or appropriate error 5710 * value. 5711 */ 5712 int pcix_get_mmrbc(struct pci_dev *dev) 5713 { 5714 int cap; 5715 u16 cmd; 5716 5717 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5718 if (!cap) 5719 return -EINVAL; 5720 5721 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 5722 return -EINVAL; 5723 5724 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2); 5725 } 5726 EXPORT_SYMBOL(pcix_get_mmrbc); 5727 5728 /** 5729 * pcix_set_mmrbc - set PCI-X maximum memory read byte count 5730 * @dev: PCI device to query 5731 * @mmrbc: maximum memory read count in bytes 5732 * valid values are 512, 1024, 2048, 4096 5733 * 5734 * If possible sets maximum memory read byte count, some bridges have errata 5735 * that prevent this. 5736 */ 5737 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc) 5738 { 5739 int cap; 5740 u32 stat, v, o; 5741 u16 cmd; 5742 5743 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc)) 5744 return -EINVAL; 5745 5746 v = ffs(mmrbc) - 10; 5747 5748 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5749 if (!cap) 5750 return -EINVAL; 5751 5752 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 5753 return -EINVAL; 5754 5755 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21) 5756 return -E2BIG; 5757 5758 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 5759 return -EINVAL; 5760 5761 o = (cmd & PCI_X_CMD_MAX_READ) >> 2; 5762 if (o != v) { 5763 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC)) 5764 return -EIO; 5765 5766 cmd &= ~PCI_X_CMD_MAX_READ; 5767 cmd |= v << 2; 5768 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd)) 5769 return -EIO; 5770 } 5771 return 0; 5772 } 5773 EXPORT_SYMBOL(pcix_set_mmrbc); 5774 5775 /** 5776 * pcie_get_readrq - get PCI Express read request size 5777 * @dev: PCI device to query 5778 * 5779 * Returns maximum memory read request in bytes or appropriate error value. 5780 */ 5781 int pcie_get_readrq(struct pci_dev *dev) 5782 { 5783 u16 ctl; 5784 5785 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 5786 5787 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12); 5788 } 5789 EXPORT_SYMBOL(pcie_get_readrq); 5790 5791 /** 5792 * pcie_set_readrq - set PCI Express maximum memory read request 5793 * @dev: PCI device to query 5794 * @rq: maximum memory read count in bytes 5795 * valid values are 128, 256, 512, 1024, 2048, 4096 5796 * 5797 * If possible sets maximum memory read request in bytes 5798 */ 5799 int pcie_set_readrq(struct pci_dev *dev, int rq) 5800 { 5801 u16 v; 5802 int ret; 5803 5804 if (rq < 128 || rq > 4096 || !is_power_of_2(rq)) 5805 return -EINVAL; 5806 5807 /* 5808 * If using the "performance" PCIe config, we clamp the read rq 5809 * size to the max packet size to keep the host bridge from 5810 * generating requests larger than we can cope with. 5811 */ 5812 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) { 5813 int mps = pcie_get_mps(dev); 5814 5815 if (mps < rq) 5816 rq = mps; 5817 } 5818 5819 v = (ffs(rq) - 8) << 12; 5820 5821 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 5822 PCI_EXP_DEVCTL_READRQ, v); 5823 5824 return pcibios_err_to_errno(ret); 5825 } 5826 EXPORT_SYMBOL(pcie_set_readrq); 5827 5828 /** 5829 * pcie_get_mps - get PCI Express maximum payload size 5830 * @dev: PCI device to query 5831 * 5832 * Returns maximum payload size in bytes 5833 */ 5834 int pcie_get_mps(struct pci_dev *dev) 5835 { 5836 u16 ctl; 5837 5838 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 5839 5840 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5); 5841 } 5842 EXPORT_SYMBOL(pcie_get_mps); 5843 5844 /** 5845 * pcie_set_mps - set PCI Express maximum payload size 5846 * @dev: PCI device to query 5847 * @mps: maximum payload size in bytes 5848 * valid values are 128, 256, 512, 1024, 2048, 4096 5849 * 5850 * If possible sets maximum payload size 5851 */ 5852 int pcie_set_mps(struct pci_dev *dev, int mps) 5853 { 5854 u16 v; 5855 int ret; 5856 5857 if (mps < 128 || mps > 4096 || !is_power_of_2(mps)) 5858 return -EINVAL; 5859 5860 v = ffs(mps) - 8; 5861 if (v > dev->pcie_mpss) 5862 return -EINVAL; 5863 v <<= 5; 5864 5865 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 5866 PCI_EXP_DEVCTL_PAYLOAD, v); 5867 5868 return pcibios_err_to_errno(ret); 5869 } 5870 EXPORT_SYMBOL(pcie_set_mps); 5871 5872 /** 5873 * pcie_bandwidth_available - determine minimum link settings of a PCIe 5874 * device and its bandwidth limitation 5875 * @dev: PCI device to query 5876 * @limiting_dev: storage for device causing the bandwidth limitation 5877 * @speed: storage for speed of limiting device 5878 * @width: storage for width of limiting device 5879 * 5880 * Walk up the PCI device chain and find the point where the minimum 5881 * bandwidth is available. Return the bandwidth available there and (if 5882 * limiting_dev, speed, and width pointers are supplied) information about 5883 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of 5884 * raw bandwidth. 5885 */ 5886 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev, 5887 enum pci_bus_speed *speed, 5888 enum pcie_link_width *width) 5889 { 5890 u16 lnksta; 5891 enum pci_bus_speed next_speed; 5892 enum pcie_link_width next_width; 5893 u32 bw, next_bw; 5894 5895 if (speed) 5896 *speed = PCI_SPEED_UNKNOWN; 5897 if (width) 5898 *width = PCIE_LNK_WIDTH_UNKNOWN; 5899 5900 bw = 0; 5901 5902 while (dev) { 5903 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta); 5904 5905 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS]; 5906 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >> 5907 PCI_EXP_LNKSTA_NLW_SHIFT; 5908 5909 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed); 5910 5911 /* Check if current device limits the total bandwidth */ 5912 if (!bw || next_bw <= bw) { 5913 bw = next_bw; 5914 5915 if (limiting_dev) 5916 *limiting_dev = dev; 5917 if (speed) 5918 *speed = next_speed; 5919 if (width) 5920 *width = next_width; 5921 } 5922 5923 dev = pci_upstream_bridge(dev); 5924 } 5925 5926 return bw; 5927 } 5928 EXPORT_SYMBOL(pcie_bandwidth_available); 5929 5930 /** 5931 * pcie_get_speed_cap - query for the PCI device's link speed capability 5932 * @dev: PCI device to query 5933 * 5934 * Query the PCI device speed capability. Return the maximum link speed 5935 * supported by the device. 5936 */ 5937 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev) 5938 { 5939 u32 lnkcap2, lnkcap; 5940 5941 /* 5942 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The 5943 * implementation note there recommends using the Supported Link 5944 * Speeds Vector in Link Capabilities 2 when supported. 5945 * 5946 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software 5947 * should use the Supported Link Speeds field in Link Capabilities, 5948 * where only 2.5 GT/s and 5.0 GT/s speeds were defined. 5949 */ 5950 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2); 5951 5952 /* PCIe r3.0-compliant */ 5953 if (lnkcap2) 5954 return PCIE_LNKCAP2_SLS2SPEED(lnkcap2); 5955 5956 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 5957 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB) 5958 return PCIE_SPEED_5_0GT; 5959 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB) 5960 return PCIE_SPEED_2_5GT; 5961 5962 return PCI_SPEED_UNKNOWN; 5963 } 5964 EXPORT_SYMBOL(pcie_get_speed_cap); 5965 5966 /** 5967 * pcie_get_width_cap - query for the PCI device's link width capability 5968 * @dev: PCI device to query 5969 * 5970 * Query the PCI device width capability. Return the maximum link width 5971 * supported by the device. 5972 */ 5973 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev) 5974 { 5975 u32 lnkcap; 5976 5977 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 5978 if (lnkcap) 5979 return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4; 5980 5981 return PCIE_LNK_WIDTH_UNKNOWN; 5982 } 5983 EXPORT_SYMBOL(pcie_get_width_cap); 5984 5985 /** 5986 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability 5987 * @dev: PCI device 5988 * @speed: storage for link speed 5989 * @width: storage for link width 5990 * 5991 * Calculate a PCI device's link bandwidth by querying for its link speed 5992 * and width, multiplying them, and applying encoding overhead. The result 5993 * is in Mb/s, i.e., megabits/second of raw bandwidth. 5994 */ 5995 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed, 5996 enum pcie_link_width *width) 5997 { 5998 *speed = pcie_get_speed_cap(dev); 5999 *width = pcie_get_width_cap(dev); 6000 6001 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN) 6002 return 0; 6003 6004 return *width * PCIE_SPEED2MBS_ENC(*speed); 6005 } 6006 6007 /** 6008 * __pcie_print_link_status - Report the PCI device's link speed and width 6009 * @dev: PCI device to query 6010 * @verbose: Print info even when enough bandwidth is available 6011 * 6012 * If the available bandwidth at the device is less than the device is 6013 * capable of, report the device's maximum possible bandwidth and the 6014 * upstream link that limits its performance. If @verbose, always print 6015 * the available bandwidth, even if the device isn't constrained. 6016 */ 6017 void __pcie_print_link_status(struct pci_dev *dev, bool verbose) 6018 { 6019 enum pcie_link_width width, width_cap; 6020 enum pci_bus_speed speed, speed_cap; 6021 struct pci_dev *limiting_dev = NULL; 6022 u32 bw_avail, bw_cap; 6023 6024 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap); 6025 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width); 6026 6027 if (bw_avail >= bw_cap && verbose) 6028 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n", 6029 bw_cap / 1000, bw_cap % 1000, 6030 pci_speed_string(speed_cap), width_cap); 6031 else if (bw_avail < bw_cap) 6032 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n", 6033 bw_avail / 1000, bw_avail % 1000, 6034 pci_speed_string(speed), width, 6035 limiting_dev ? pci_name(limiting_dev) : "<unknown>", 6036 bw_cap / 1000, bw_cap % 1000, 6037 pci_speed_string(speed_cap), width_cap); 6038 } 6039 6040 /** 6041 * pcie_print_link_status - Report the PCI device's link speed and width 6042 * @dev: PCI device to query 6043 * 6044 * Report the available bandwidth at the device. 6045 */ 6046 void pcie_print_link_status(struct pci_dev *dev) 6047 { 6048 __pcie_print_link_status(dev, true); 6049 } 6050 EXPORT_SYMBOL(pcie_print_link_status); 6051 6052 /** 6053 * pci_select_bars - Make BAR mask from the type of resource 6054 * @dev: the PCI device for which BAR mask is made 6055 * @flags: resource type mask to be selected 6056 * 6057 * This helper routine makes bar mask from the type of resource. 6058 */ 6059 int pci_select_bars(struct pci_dev *dev, unsigned long flags) 6060 { 6061 int i, bars = 0; 6062 for (i = 0; i < PCI_NUM_RESOURCES; i++) 6063 if (pci_resource_flags(dev, i) & flags) 6064 bars |= (1 << i); 6065 return bars; 6066 } 6067 EXPORT_SYMBOL(pci_select_bars); 6068 6069 /* Some architectures require additional programming to enable VGA */ 6070 static arch_set_vga_state_t arch_set_vga_state; 6071 6072 void __init pci_register_set_vga_state(arch_set_vga_state_t func) 6073 { 6074 arch_set_vga_state = func; /* NULL disables */ 6075 } 6076 6077 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode, 6078 unsigned int command_bits, u32 flags) 6079 { 6080 if (arch_set_vga_state) 6081 return arch_set_vga_state(dev, decode, command_bits, 6082 flags); 6083 return 0; 6084 } 6085 6086 /** 6087 * pci_set_vga_state - set VGA decode state on device and parents if requested 6088 * @dev: the PCI device 6089 * @decode: true = enable decoding, false = disable decoding 6090 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY 6091 * @flags: traverse ancestors and change bridges 6092 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE 6093 */ 6094 int pci_set_vga_state(struct pci_dev *dev, bool decode, 6095 unsigned int command_bits, u32 flags) 6096 { 6097 struct pci_bus *bus; 6098 struct pci_dev *bridge; 6099 u16 cmd; 6100 int rc; 6101 6102 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY))); 6103 6104 /* ARCH specific VGA enables */ 6105 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags); 6106 if (rc) 6107 return rc; 6108 6109 if (flags & PCI_VGA_STATE_CHANGE_DECODES) { 6110 pci_read_config_word(dev, PCI_COMMAND, &cmd); 6111 if (decode) 6112 cmd |= command_bits; 6113 else 6114 cmd &= ~command_bits; 6115 pci_write_config_word(dev, PCI_COMMAND, cmd); 6116 } 6117 6118 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE)) 6119 return 0; 6120 6121 bus = dev->bus; 6122 while (bus) { 6123 bridge = bus->self; 6124 if (bridge) { 6125 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL, 6126 &cmd); 6127 if (decode) 6128 cmd |= PCI_BRIDGE_CTL_VGA; 6129 else 6130 cmd &= ~PCI_BRIDGE_CTL_VGA; 6131 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL, 6132 cmd); 6133 } 6134 bus = bus->parent; 6135 } 6136 return 0; 6137 } 6138 6139 #ifdef CONFIG_ACPI 6140 bool pci_pr3_present(struct pci_dev *pdev) 6141 { 6142 struct acpi_device *adev; 6143 6144 if (acpi_disabled) 6145 return false; 6146 6147 adev = ACPI_COMPANION(&pdev->dev); 6148 if (!adev) 6149 return false; 6150 6151 return adev->power.flags.power_resources && 6152 acpi_has_method(adev->handle, "_PR3"); 6153 } 6154 EXPORT_SYMBOL_GPL(pci_pr3_present); 6155 #endif 6156 6157 /** 6158 * pci_add_dma_alias - Add a DMA devfn alias for a device 6159 * @dev: the PCI device for which alias is added 6160 * @devfn_from: alias slot and function 6161 * @nr_devfns: number of subsequent devfns to alias 6162 * 6163 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask 6164 * which is used to program permissible bus-devfn source addresses for DMA 6165 * requests in an IOMMU. These aliases factor into IOMMU group creation 6166 * and are useful for devices generating DMA requests beyond or different 6167 * from their logical bus-devfn. Examples include device quirks where the 6168 * device simply uses the wrong devfn, as well as non-transparent bridges 6169 * where the alias may be a proxy for devices in another domain. 6170 * 6171 * IOMMU group creation is performed during device discovery or addition, 6172 * prior to any potential DMA mapping and therefore prior to driver probing 6173 * (especially for userspace assigned devices where IOMMU group definition 6174 * cannot be left as a userspace activity). DMA aliases should therefore 6175 * be configured via quirks, such as the PCI fixup header quirk. 6176 */ 6177 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from, unsigned nr_devfns) 6178 { 6179 int devfn_to; 6180 6181 nr_devfns = min(nr_devfns, (unsigned) MAX_NR_DEVFNS - devfn_from); 6182 devfn_to = devfn_from + nr_devfns - 1; 6183 6184 if (!dev->dma_alias_mask) 6185 dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL); 6186 if (!dev->dma_alias_mask) { 6187 pci_warn(dev, "Unable to allocate DMA alias mask\n"); 6188 return; 6189 } 6190 6191 bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns); 6192 6193 if (nr_devfns == 1) 6194 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n", 6195 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from)); 6196 else if (nr_devfns > 1) 6197 pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n", 6198 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from), 6199 PCI_SLOT(devfn_to), PCI_FUNC(devfn_to)); 6200 } 6201 6202 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2) 6203 { 6204 return (dev1->dma_alias_mask && 6205 test_bit(dev2->devfn, dev1->dma_alias_mask)) || 6206 (dev2->dma_alias_mask && 6207 test_bit(dev1->devfn, dev2->dma_alias_mask)) || 6208 pci_real_dma_dev(dev1) == dev2 || 6209 pci_real_dma_dev(dev2) == dev1; 6210 } 6211 6212 bool pci_device_is_present(struct pci_dev *pdev) 6213 { 6214 u32 v; 6215 6216 if (pci_dev_is_disconnected(pdev)) 6217 return false; 6218 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0); 6219 } 6220 EXPORT_SYMBOL_GPL(pci_device_is_present); 6221 6222 void pci_ignore_hotplug(struct pci_dev *dev) 6223 { 6224 struct pci_dev *bridge = dev->bus->self; 6225 6226 dev->ignore_hotplug = 1; 6227 /* Propagate the "ignore hotplug" setting to the parent bridge. */ 6228 if (bridge) 6229 bridge->ignore_hotplug = 1; 6230 } 6231 EXPORT_SYMBOL_GPL(pci_ignore_hotplug); 6232 6233 /** 6234 * pci_real_dma_dev - Get PCI DMA device for PCI device 6235 * @dev: the PCI device that may have a PCI DMA alias 6236 * 6237 * Permits the platform to provide architecture-specific functionality to 6238 * devices needing to alias DMA to another PCI device on another PCI bus. If 6239 * the PCI device is on the same bus, it is recommended to use 6240 * pci_add_dma_alias(). This is the default implementation. Architecture 6241 * implementations can override this. 6242 */ 6243 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev) 6244 { 6245 return dev; 6246 } 6247 6248 resource_size_t __weak pcibios_default_alignment(void) 6249 { 6250 return 0; 6251 } 6252 6253 /* 6254 * Arches that don't want to expose struct resource to userland as-is in 6255 * sysfs and /proc can implement their own pci_resource_to_user(). 6256 */ 6257 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar, 6258 const struct resource *rsrc, 6259 resource_size_t *start, resource_size_t *end) 6260 { 6261 *start = rsrc->start; 6262 *end = rsrc->end; 6263 } 6264 6265 static char *resource_alignment_param; 6266 static DEFINE_SPINLOCK(resource_alignment_lock); 6267 6268 /** 6269 * pci_specified_resource_alignment - get resource alignment specified by user. 6270 * @dev: the PCI device to get 6271 * @resize: whether or not to change resources' size when reassigning alignment 6272 * 6273 * RETURNS: Resource alignment if it is specified. 6274 * Zero if it is not specified. 6275 */ 6276 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev, 6277 bool *resize) 6278 { 6279 int align_order, count; 6280 resource_size_t align = pcibios_default_alignment(); 6281 const char *p; 6282 int ret; 6283 6284 spin_lock(&resource_alignment_lock); 6285 p = resource_alignment_param; 6286 if (!p || !*p) 6287 goto out; 6288 if (pci_has_flag(PCI_PROBE_ONLY)) { 6289 align = 0; 6290 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n"); 6291 goto out; 6292 } 6293 6294 while (*p) { 6295 count = 0; 6296 if (sscanf(p, "%d%n", &align_order, &count) == 1 && 6297 p[count] == '@') { 6298 p += count + 1; 6299 if (align_order > 63) { 6300 pr_err("PCI: Invalid requested alignment (order %d)\n", 6301 align_order); 6302 align_order = PAGE_SHIFT; 6303 } 6304 } else { 6305 align_order = PAGE_SHIFT; 6306 } 6307 6308 ret = pci_dev_str_match(dev, p, &p); 6309 if (ret == 1) { 6310 *resize = true; 6311 align = 1ULL << align_order; 6312 break; 6313 } else if (ret < 0) { 6314 pr_err("PCI: Can't parse resource_alignment parameter: %s\n", 6315 p); 6316 break; 6317 } 6318 6319 if (*p != ';' && *p != ',') { 6320 /* End of param or invalid format */ 6321 break; 6322 } 6323 p++; 6324 } 6325 out: 6326 spin_unlock(&resource_alignment_lock); 6327 return align; 6328 } 6329 6330 static void pci_request_resource_alignment(struct pci_dev *dev, int bar, 6331 resource_size_t align, bool resize) 6332 { 6333 struct resource *r = &dev->resource[bar]; 6334 resource_size_t size; 6335 6336 if (!(r->flags & IORESOURCE_MEM)) 6337 return; 6338 6339 if (r->flags & IORESOURCE_PCI_FIXED) { 6340 pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n", 6341 bar, r, (unsigned long long)align); 6342 return; 6343 } 6344 6345 size = resource_size(r); 6346 if (size >= align) 6347 return; 6348 6349 /* 6350 * Increase the alignment of the resource. There are two ways we 6351 * can do this: 6352 * 6353 * 1) Increase the size of the resource. BARs are aligned on their 6354 * size, so when we reallocate space for this resource, we'll 6355 * allocate it with the larger alignment. This also prevents 6356 * assignment of any other BARs inside the alignment region, so 6357 * if we're requesting page alignment, this means no other BARs 6358 * will share the page. 6359 * 6360 * The disadvantage is that this makes the resource larger than 6361 * the hardware BAR, which may break drivers that compute things 6362 * based on the resource size, e.g., to find registers at a 6363 * fixed offset before the end of the BAR. 6364 * 6365 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and 6366 * set r->start to the desired alignment. By itself this 6367 * doesn't prevent other BARs being put inside the alignment 6368 * region, but if we realign *every* resource of every device in 6369 * the system, none of them will share an alignment region. 6370 * 6371 * When the user has requested alignment for only some devices via 6372 * the "pci=resource_alignment" argument, "resize" is true and we 6373 * use the first method. Otherwise we assume we're aligning all 6374 * devices and we use the second. 6375 */ 6376 6377 pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n", 6378 bar, r, (unsigned long long)align); 6379 6380 if (resize) { 6381 r->start = 0; 6382 r->end = align - 1; 6383 } else { 6384 r->flags &= ~IORESOURCE_SIZEALIGN; 6385 r->flags |= IORESOURCE_STARTALIGN; 6386 r->start = align; 6387 r->end = r->start + size - 1; 6388 } 6389 r->flags |= IORESOURCE_UNSET; 6390 } 6391 6392 /* 6393 * This function disables memory decoding and releases memory resources 6394 * of the device specified by kernel's boot parameter 'pci=resource_alignment='. 6395 * It also rounds up size to specified alignment. 6396 * Later on, the kernel will assign page-aligned memory resource back 6397 * to the device. 6398 */ 6399 void pci_reassigndev_resource_alignment(struct pci_dev *dev) 6400 { 6401 int i; 6402 struct resource *r; 6403 resource_size_t align; 6404 u16 command; 6405 bool resize = false; 6406 6407 /* 6408 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec 6409 * 3.4.1.11. Their resources are allocated from the space 6410 * described by the VF BARx register in the PF's SR-IOV capability. 6411 * We can't influence their alignment here. 6412 */ 6413 if (dev->is_virtfn) 6414 return; 6415 6416 /* check if specified PCI is target device to reassign */ 6417 align = pci_specified_resource_alignment(dev, &resize); 6418 if (!align) 6419 return; 6420 6421 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL && 6422 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) { 6423 pci_warn(dev, "Can't reassign resources to host bridge\n"); 6424 return; 6425 } 6426 6427 pci_read_config_word(dev, PCI_COMMAND, &command); 6428 command &= ~PCI_COMMAND_MEMORY; 6429 pci_write_config_word(dev, PCI_COMMAND, command); 6430 6431 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 6432 pci_request_resource_alignment(dev, i, align, resize); 6433 6434 /* 6435 * Need to disable bridge's resource window, 6436 * to enable the kernel to reassign new resource 6437 * window later on. 6438 */ 6439 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 6440 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) { 6441 r = &dev->resource[i]; 6442 if (!(r->flags & IORESOURCE_MEM)) 6443 continue; 6444 r->flags |= IORESOURCE_UNSET; 6445 r->end = resource_size(r) - 1; 6446 r->start = 0; 6447 } 6448 pci_disable_bridge_window(dev); 6449 } 6450 } 6451 6452 static ssize_t resource_alignment_show(struct bus_type *bus, char *buf) 6453 { 6454 size_t count = 0; 6455 6456 spin_lock(&resource_alignment_lock); 6457 if (resource_alignment_param) 6458 count = sysfs_emit(buf, "%s\n", resource_alignment_param); 6459 spin_unlock(&resource_alignment_lock); 6460 6461 return count; 6462 } 6463 6464 static ssize_t resource_alignment_store(struct bus_type *bus, 6465 const char *buf, size_t count) 6466 { 6467 char *param, *old, *end; 6468 6469 if (count >= (PAGE_SIZE - 1)) 6470 return -EINVAL; 6471 6472 param = kstrndup(buf, count, GFP_KERNEL); 6473 if (!param) 6474 return -ENOMEM; 6475 6476 end = strchr(param, '\n'); 6477 if (end) 6478 *end = '\0'; 6479 6480 spin_lock(&resource_alignment_lock); 6481 old = resource_alignment_param; 6482 if (strlen(param)) { 6483 resource_alignment_param = param; 6484 } else { 6485 kfree(param); 6486 resource_alignment_param = NULL; 6487 } 6488 spin_unlock(&resource_alignment_lock); 6489 6490 kfree(old); 6491 6492 return count; 6493 } 6494 6495 static BUS_ATTR_RW(resource_alignment); 6496 6497 static int __init pci_resource_alignment_sysfs_init(void) 6498 { 6499 return bus_create_file(&pci_bus_type, 6500 &bus_attr_resource_alignment); 6501 } 6502 late_initcall(pci_resource_alignment_sysfs_init); 6503 6504 static void pci_no_domains(void) 6505 { 6506 #ifdef CONFIG_PCI_DOMAINS 6507 pci_domains_supported = 0; 6508 #endif 6509 } 6510 6511 #ifdef CONFIG_PCI_DOMAINS_GENERIC 6512 static atomic_t __domain_nr = ATOMIC_INIT(-1); 6513 6514 static int pci_get_new_domain_nr(void) 6515 { 6516 return atomic_inc_return(&__domain_nr); 6517 } 6518 6519 static int of_pci_bus_find_domain_nr(struct device *parent) 6520 { 6521 static int use_dt_domains = -1; 6522 int domain = -1; 6523 6524 if (parent) 6525 domain = of_get_pci_domain_nr(parent->of_node); 6526 6527 /* 6528 * Check DT domain and use_dt_domains values. 6529 * 6530 * If DT domain property is valid (domain >= 0) and 6531 * use_dt_domains != 0, the DT assignment is valid since this means 6532 * we have not previously allocated a domain number by using 6533 * pci_get_new_domain_nr(); we should also update use_dt_domains to 6534 * 1, to indicate that we have just assigned a domain number from 6535 * DT. 6536 * 6537 * If DT domain property value is not valid (ie domain < 0), and we 6538 * have not previously assigned a domain number from DT 6539 * (use_dt_domains != 1) we should assign a domain number by 6540 * using the: 6541 * 6542 * pci_get_new_domain_nr() 6543 * 6544 * API and update the use_dt_domains value to keep track of method we 6545 * are using to assign domain numbers (use_dt_domains = 0). 6546 * 6547 * All other combinations imply we have a platform that is trying 6548 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(), 6549 * which is a recipe for domain mishandling and it is prevented by 6550 * invalidating the domain value (domain = -1) and printing a 6551 * corresponding error. 6552 */ 6553 if (domain >= 0 && use_dt_domains) { 6554 use_dt_domains = 1; 6555 } else if (domain < 0 && use_dt_domains != 1) { 6556 use_dt_domains = 0; 6557 domain = pci_get_new_domain_nr(); 6558 } else { 6559 if (parent) 6560 pr_err("Node %pOF has ", parent->of_node); 6561 pr_err("Inconsistent \"linux,pci-domain\" property in DT\n"); 6562 domain = -1; 6563 } 6564 6565 return domain; 6566 } 6567 6568 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent) 6569 { 6570 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) : 6571 acpi_pci_bus_find_domain_nr(bus); 6572 } 6573 #endif 6574 6575 /** 6576 * pci_ext_cfg_avail - can we access extended PCI config space? 6577 * 6578 * Returns 1 if we can access PCI extended config space (offsets 6579 * greater than 0xff). This is the default implementation. Architecture 6580 * implementations can override this. 6581 */ 6582 int __weak pci_ext_cfg_avail(void) 6583 { 6584 return 1; 6585 } 6586 6587 void __weak pci_fixup_cardbus(struct pci_bus *bus) 6588 { 6589 } 6590 EXPORT_SYMBOL(pci_fixup_cardbus); 6591 6592 static int __init pci_setup(char *str) 6593 { 6594 while (str) { 6595 char *k = strchr(str, ','); 6596 if (k) 6597 *k++ = 0; 6598 if (*str && (str = pcibios_setup(str)) && *str) { 6599 if (!strcmp(str, "nomsi")) { 6600 pci_no_msi(); 6601 } else if (!strncmp(str, "noats", 5)) { 6602 pr_info("PCIe: ATS is disabled\n"); 6603 pcie_ats_disabled = true; 6604 } else if (!strcmp(str, "noaer")) { 6605 pci_no_aer(); 6606 } else if (!strcmp(str, "earlydump")) { 6607 pci_early_dump = true; 6608 } else if (!strncmp(str, "realloc=", 8)) { 6609 pci_realloc_get_opt(str + 8); 6610 } else if (!strncmp(str, "realloc", 7)) { 6611 pci_realloc_get_opt("on"); 6612 } else if (!strcmp(str, "nodomains")) { 6613 pci_no_domains(); 6614 } else if (!strncmp(str, "noari", 5)) { 6615 pcie_ari_disabled = true; 6616 } else if (!strncmp(str, "cbiosize=", 9)) { 6617 pci_cardbus_io_size = memparse(str + 9, &str); 6618 } else if (!strncmp(str, "cbmemsize=", 10)) { 6619 pci_cardbus_mem_size = memparse(str + 10, &str); 6620 } else if (!strncmp(str, "resource_alignment=", 19)) { 6621 resource_alignment_param = str + 19; 6622 } else if (!strncmp(str, "ecrc=", 5)) { 6623 pcie_ecrc_get_policy(str + 5); 6624 } else if (!strncmp(str, "hpiosize=", 9)) { 6625 pci_hotplug_io_size = memparse(str + 9, &str); 6626 } else if (!strncmp(str, "hpmmiosize=", 11)) { 6627 pci_hotplug_mmio_size = memparse(str + 11, &str); 6628 } else if (!strncmp(str, "hpmmioprefsize=", 15)) { 6629 pci_hotplug_mmio_pref_size = memparse(str + 15, &str); 6630 } else if (!strncmp(str, "hpmemsize=", 10)) { 6631 pci_hotplug_mmio_size = memparse(str + 10, &str); 6632 pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size; 6633 } else if (!strncmp(str, "hpbussize=", 10)) { 6634 pci_hotplug_bus_size = 6635 simple_strtoul(str + 10, &str, 0); 6636 if (pci_hotplug_bus_size > 0xff) 6637 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 6638 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) { 6639 pcie_bus_config = PCIE_BUS_TUNE_OFF; 6640 } else if (!strncmp(str, "pcie_bus_safe", 13)) { 6641 pcie_bus_config = PCIE_BUS_SAFE; 6642 } else if (!strncmp(str, "pcie_bus_perf", 13)) { 6643 pcie_bus_config = PCIE_BUS_PERFORMANCE; 6644 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) { 6645 pcie_bus_config = PCIE_BUS_PEER2PEER; 6646 } else if (!strncmp(str, "pcie_scan_all", 13)) { 6647 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS); 6648 } else if (!strncmp(str, "disable_acs_redir=", 18)) { 6649 disable_acs_redir_param = str + 18; 6650 } else { 6651 pr_err("PCI: Unknown option `%s'\n", str); 6652 } 6653 } 6654 str = k; 6655 } 6656 return 0; 6657 } 6658 early_param("pci", pci_setup); 6659 6660 /* 6661 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized 6662 * in pci_setup(), above, to point to data in the __initdata section which 6663 * will be freed after the init sequence is complete. We can't allocate memory 6664 * in pci_setup() because some architectures do not have any memory allocation 6665 * service available during an early_param() call. So we allocate memory and 6666 * copy the variable here before the init section is freed. 6667 * 6668 */ 6669 static int __init pci_realloc_setup_params(void) 6670 { 6671 resource_alignment_param = kstrdup(resource_alignment_param, 6672 GFP_KERNEL); 6673 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL); 6674 6675 return 0; 6676 } 6677 pure_initcall(pci_realloc_setup_params); 6678