xref: /openbmc/linux/drivers/pci/pci.c (revision 2a24da4cf6753ee4c1f5b9e16d526a4a115e8562)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * PCI Bus Services, see include/linux/pci.h for further explanation.
4  *
5  * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6  * David Mosberger-Tang
7  *
8  * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/msi.h>
17 #include <linux/of.h>
18 #include <linux/pci.h>
19 #include <linux/pm.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/log2.h>
25 #include <linux/logic_pio.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/pci_hotplug.h>
31 #include <linux/vmalloc.h>
32 #include <asm/dma.h>
33 #include <linux/aer.h>
34 #include <linux/bitfield.h>
35 #include "pci.h"
36 
37 DEFINE_MUTEX(pci_slot_mutex);
38 
39 const char *pci_power_names[] = {
40 	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
41 };
42 EXPORT_SYMBOL_GPL(pci_power_names);
43 
44 #ifdef CONFIG_X86_32
45 int isa_dma_bridge_buggy;
46 EXPORT_SYMBOL(isa_dma_bridge_buggy);
47 #endif
48 
49 int pci_pci_problems;
50 EXPORT_SYMBOL(pci_pci_problems);
51 
52 unsigned int pci_pm_d3hot_delay;
53 
54 static void pci_pme_list_scan(struct work_struct *work);
55 
56 static LIST_HEAD(pci_pme_list);
57 static DEFINE_MUTEX(pci_pme_list_mutex);
58 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
59 
60 struct pci_pme_device {
61 	struct list_head list;
62 	struct pci_dev *dev;
63 };
64 
65 #define PME_TIMEOUT 1000 /* How long between PME checks */
66 
67 /*
68  * Following exit from Conventional Reset, devices must be ready within 1 sec
69  * (PCIe r6.0 sec 6.6.1).  A D3cold to D0 transition implies a Conventional
70  * Reset (PCIe r6.0 sec 5.8).
71  */
72 #define PCI_RESET_WAIT 1000 /* msec */
73 
74 /*
75  * Devices may extend the 1 sec period through Request Retry Status
76  * completions (PCIe r6.0 sec 2.3.1).  The spec does not provide an upper
77  * limit, but 60 sec ought to be enough for any device to become
78  * responsive.
79  */
80 #define PCIE_RESET_READY_POLL_MS 60000 /* msec */
81 
82 static void pci_dev_d3_sleep(struct pci_dev *dev)
83 {
84 	unsigned int delay_ms = max(dev->d3hot_delay, pci_pm_d3hot_delay);
85 	unsigned int upper;
86 
87 	if (delay_ms) {
88 		/* Use a 20% upper bound, 1ms minimum */
89 		upper = max(DIV_ROUND_CLOSEST(delay_ms, 5), 1U);
90 		usleep_range(delay_ms * USEC_PER_MSEC,
91 			     (delay_ms + upper) * USEC_PER_MSEC);
92 	}
93 }
94 
95 bool pci_reset_supported(struct pci_dev *dev)
96 {
97 	return dev->reset_methods[0] != 0;
98 }
99 
100 #ifdef CONFIG_PCI_DOMAINS
101 int pci_domains_supported = 1;
102 #endif
103 
104 #define DEFAULT_CARDBUS_IO_SIZE		(256)
105 #define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
106 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
107 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
108 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
109 
110 #define DEFAULT_HOTPLUG_IO_SIZE		(256)
111 #define DEFAULT_HOTPLUG_MMIO_SIZE	(2*1024*1024)
112 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE	(2*1024*1024)
113 /* hpiosize=nn can override this */
114 unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
115 /*
116  * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
117  * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
118  * pci=hpmemsize=nnM overrides both
119  */
120 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
121 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
122 
123 #define DEFAULT_HOTPLUG_BUS_SIZE	1
124 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
125 
126 
127 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
128 #ifdef CONFIG_PCIE_BUS_TUNE_OFF
129 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
130 #elif defined CONFIG_PCIE_BUS_SAFE
131 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
132 #elif defined CONFIG_PCIE_BUS_PERFORMANCE
133 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
134 #elif defined CONFIG_PCIE_BUS_PEER2PEER
135 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
136 #else
137 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
138 #endif
139 
140 /*
141  * The default CLS is used if arch didn't set CLS explicitly and not
142  * all pci devices agree on the same value.  Arch can override either
143  * the dfl or actual value as it sees fit.  Don't forget this is
144  * measured in 32-bit words, not bytes.
145  */
146 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
147 u8 pci_cache_line_size;
148 
149 /*
150  * If we set up a device for bus mastering, we need to check the latency
151  * timer as certain BIOSes forget to set it properly.
152  */
153 unsigned int pcibios_max_latency = 255;
154 
155 /* If set, the PCIe ARI capability will not be used. */
156 static bool pcie_ari_disabled;
157 
158 /* If set, the PCIe ATS capability will not be used. */
159 static bool pcie_ats_disabled;
160 
161 /* If set, the PCI config space of each device is printed during boot. */
162 bool pci_early_dump;
163 
164 bool pci_ats_disabled(void)
165 {
166 	return pcie_ats_disabled;
167 }
168 EXPORT_SYMBOL_GPL(pci_ats_disabled);
169 
170 /* Disable bridge_d3 for all PCIe ports */
171 static bool pci_bridge_d3_disable;
172 /* Force bridge_d3 for all PCIe ports */
173 static bool pci_bridge_d3_force;
174 
175 static int __init pcie_port_pm_setup(char *str)
176 {
177 	if (!strcmp(str, "off"))
178 		pci_bridge_d3_disable = true;
179 	else if (!strcmp(str, "force"))
180 		pci_bridge_d3_force = true;
181 	return 1;
182 }
183 __setup("pcie_port_pm=", pcie_port_pm_setup);
184 
185 /**
186  * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
187  * @bus: pointer to PCI bus structure to search
188  *
189  * Given a PCI bus, returns the highest PCI bus number present in the set
190  * including the given PCI bus and its list of child PCI buses.
191  */
192 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
193 {
194 	struct pci_bus *tmp;
195 	unsigned char max, n;
196 
197 	max = bus->busn_res.end;
198 	list_for_each_entry(tmp, &bus->children, node) {
199 		n = pci_bus_max_busnr(tmp);
200 		if (n > max)
201 			max = n;
202 	}
203 	return max;
204 }
205 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
206 
207 /**
208  * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
209  * @pdev: the PCI device
210  *
211  * Returns error bits set in PCI_STATUS and clears them.
212  */
213 int pci_status_get_and_clear_errors(struct pci_dev *pdev)
214 {
215 	u16 status;
216 	int ret;
217 
218 	ret = pci_read_config_word(pdev, PCI_STATUS, &status);
219 	if (ret != PCIBIOS_SUCCESSFUL)
220 		return -EIO;
221 
222 	status &= PCI_STATUS_ERROR_BITS;
223 	if (status)
224 		pci_write_config_word(pdev, PCI_STATUS, status);
225 
226 	return status;
227 }
228 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
229 
230 #ifdef CONFIG_HAS_IOMEM
231 static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar,
232 					    bool write_combine)
233 {
234 	struct resource *res = &pdev->resource[bar];
235 	resource_size_t start = res->start;
236 	resource_size_t size = resource_size(res);
237 
238 	/*
239 	 * Make sure the BAR is actually a memory resource, not an IO resource
240 	 */
241 	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
242 		pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
243 		return NULL;
244 	}
245 
246 	if (write_combine)
247 		return ioremap_wc(start, size);
248 
249 	return ioremap(start, size);
250 }
251 
252 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
253 {
254 	return __pci_ioremap_resource(pdev, bar, false);
255 }
256 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
257 
258 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
259 {
260 	return __pci_ioremap_resource(pdev, bar, true);
261 }
262 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
263 #endif
264 
265 /**
266  * pci_dev_str_match_path - test if a path string matches a device
267  * @dev: the PCI device to test
268  * @path: string to match the device against
269  * @endptr: pointer to the string after the match
270  *
271  * Test if a string (typically from a kernel parameter) formatted as a
272  * path of device/function addresses matches a PCI device. The string must
273  * be of the form:
274  *
275  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
276  *
277  * A path for a device can be obtained using 'lspci -t'.  Using a path
278  * is more robust against bus renumbering than using only a single bus,
279  * device and function address.
280  *
281  * Returns 1 if the string matches the device, 0 if it does not and
282  * a negative error code if it fails to parse the string.
283  */
284 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
285 				  const char **endptr)
286 {
287 	int ret;
288 	unsigned int seg, bus, slot, func;
289 	char *wpath, *p;
290 	char end;
291 
292 	*endptr = strchrnul(path, ';');
293 
294 	wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC);
295 	if (!wpath)
296 		return -ENOMEM;
297 
298 	while (1) {
299 		p = strrchr(wpath, '/');
300 		if (!p)
301 			break;
302 		ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
303 		if (ret != 2) {
304 			ret = -EINVAL;
305 			goto free_and_exit;
306 		}
307 
308 		if (dev->devfn != PCI_DEVFN(slot, func)) {
309 			ret = 0;
310 			goto free_and_exit;
311 		}
312 
313 		/*
314 		 * Note: we don't need to get a reference to the upstream
315 		 * bridge because we hold a reference to the top level
316 		 * device which should hold a reference to the bridge,
317 		 * and so on.
318 		 */
319 		dev = pci_upstream_bridge(dev);
320 		if (!dev) {
321 			ret = 0;
322 			goto free_and_exit;
323 		}
324 
325 		*p = 0;
326 	}
327 
328 	ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
329 		     &func, &end);
330 	if (ret != 4) {
331 		seg = 0;
332 		ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
333 		if (ret != 3) {
334 			ret = -EINVAL;
335 			goto free_and_exit;
336 		}
337 	}
338 
339 	ret = (seg == pci_domain_nr(dev->bus) &&
340 	       bus == dev->bus->number &&
341 	       dev->devfn == PCI_DEVFN(slot, func));
342 
343 free_and_exit:
344 	kfree(wpath);
345 	return ret;
346 }
347 
348 /**
349  * pci_dev_str_match - test if a string matches a device
350  * @dev: the PCI device to test
351  * @p: string to match the device against
352  * @endptr: pointer to the string after the match
353  *
354  * Test if a string (typically from a kernel parameter) matches a specified
355  * PCI device. The string may be of one of the following formats:
356  *
357  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
358  *   pci:<vendor>:<device>[:<subvendor>:<subdevice>]
359  *
360  * The first format specifies a PCI bus/device/function address which
361  * may change if new hardware is inserted, if motherboard firmware changes,
362  * or due to changes caused in kernel parameters. If the domain is
363  * left unspecified, it is taken to be 0.  In order to be robust against
364  * bus renumbering issues, a path of PCI device/function numbers may be used
365  * to address the specific device.  The path for a device can be determined
366  * through the use of 'lspci -t'.
367  *
368  * The second format matches devices using IDs in the configuration
369  * space which may match multiple devices in the system. A value of 0
370  * for any field will match all devices. (Note: this differs from
371  * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
372  * legacy reasons and convenience so users don't have to specify
373  * FFFFFFFFs on the command line.)
374  *
375  * Returns 1 if the string matches the device, 0 if it does not and
376  * a negative error code if the string cannot be parsed.
377  */
378 static int pci_dev_str_match(struct pci_dev *dev, const char *p,
379 			     const char **endptr)
380 {
381 	int ret;
382 	int count;
383 	unsigned short vendor, device, subsystem_vendor, subsystem_device;
384 
385 	if (strncmp(p, "pci:", 4) == 0) {
386 		/* PCI vendor/device (subvendor/subdevice) IDs are specified */
387 		p += 4;
388 		ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
389 			     &subsystem_vendor, &subsystem_device, &count);
390 		if (ret != 4) {
391 			ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
392 			if (ret != 2)
393 				return -EINVAL;
394 
395 			subsystem_vendor = 0;
396 			subsystem_device = 0;
397 		}
398 
399 		p += count;
400 
401 		if ((!vendor || vendor == dev->vendor) &&
402 		    (!device || device == dev->device) &&
403 		    (!subsystem_vendor ||
404 			    subsystem_vendor == dev->subsystem_vendor) &&
405 		    (!subsystem_device ||
406 			    subsystem_device == dev->subsystem_device))
407 			goto found;
408 	} else {
409 		/*
410 		 * PCI Bus, Device, Function IDs are specified
411 		 * (optionally, may include a path of devfns following it)
412 		 */
413 		ret = pci_dev_str_match_path(dev, p, &p);
414 		if (ret < 0)
415 			return ret;
416 		else if (ret)
417 			goto found;
418 	}
419 
420 	*endptr = p;
421 	return 0;
422 
423 found:
424 	*endptr = p;
425 	return 1;
426 }
427 
428 static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
429 				  u8 pos, int cap, int *ttl)
430 {
431 	u8 id;
432 	u16 ent;
433 
434 	pci_bus_read_config_byte(bus, devfn, pos, &pos);
435 
436 	while ((*ttl)--) {
437 		if (pos < 0x40)
438 			break;
439 		pos &= ~3;
440 		pci_bus_read_config_word(bus, devfn, pos, &ent);
441 
442 		id = ent & 0xff;
443 		if (id == 0xff)
444 			break;
445 		if (id == cap)
446 			return pos;
447 		pos = (ent >> 8);
448 	}
449 	return 0;
450 }
451 
452 static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
453 			      u8 pos, int cap)
454 {
455 	int ttl = PCI_FIND_CAP_TTL;
456 
457 	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
458 }
459 
460 u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
461 {
462 	return __pci_find_next_cap(dev->bus, dev->devfn,
463 				   pos + PCI_CAP_LIST_NEXT, cap);
464 }
465 EXPORT_SYMBOL_GPL(pci_find_next_capability);
466 
467 static u8 __pci_bus_find_cap_start(struct pci_bus *bus,
468 				    unsigned int devfn, u8 hdr_type)
469 {
470 	u16 status;
471 
472 	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
473 	if (!(status & PCI_STATUS_CAP_LIST))
474 		return 0;
475 
476 	switch (hdr_type) {
477 	case PCI_HEADER_TYPE_NORMAL:
478 	case PCI_HEADER_TYPE_BRIDGE:
479 		return PCI_CAPABILITY_LIST;
480 	case PCI_HEADER_TYPE_CARDBUS:
481 		return PCI_CB_CAPABILITY_LIST;
482 	}
483 
484 	return 0;
485 }
486 
487 /**
488  * pci_find_capability - query for devices' capabilities
489  * @dev: PCI device to query
490  * @cap: capability code
491  *
492  * Tell if a device supports a given PCI capability.
493  * Returns the address of the requested capability structure within the
494  * device's PCI configuration space or 0 in case the device does not
495  * support it.  Possible values for @cap include:
496  *
497  *  %PCI_CAP_ID_PM           Power Management
498  *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
499  *  %PCI_CAP_ID_VPD          Vital Product Data
500  *  %PCI_CAP_ID_SLOTID       Slot Identification
501  *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
502  *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
503  *  %PCI_CAP_ID_PCIX         PCI-X
504  *  %PCI_CAP_ID_EXP          PCI Express
505  */
506 u8 pci_find_capability(struct pci_dev *dev, int cap)
507 {
508 	u8 pos;
509 
510 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
511 	if (pos)
512 		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
513 
514 	return pos;
515 }
516 EXPORT_SYMBOL(pci_find_capability);
517 
518 /**
519  * pci_bus_find_capability - query for devices' capabilities
520  * @bus: the PCI bus to query
521  * @devfn: PCI device to query
522  * @cap: capability code
523  *
524  * Like pci_find_capability() but works for PCI devices that do not have a
525  * pci_dev structure set up yet.
526  *
527  * Returns the address of the requested capability structure within the
528  * device's PCI configuration space or 0 in case the device does not
529  * support it.
530  */
531 u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
532 {
533 	u8 hdr_type, pos;
534 
535 	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
536 
537 	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
538 	if (pos)
539 		pos = __pci_find_next_cap(bus, devfn, pos, cap);
540 
541 	return pos;
542 }
543 EXPORT_SYMBOL(pci_bus_find_capability);
544 
545 /**
546  * pci_find_next_ext_capability - Find an extended capability
547  * @dev: PCI device to query
548  * @start: address at which to start looking (0 to start at beginning of list)
549  * @cap: capability code
550  *
551  * Returns the address of the next matching extended capability structure
552  * within the device's PCI configuration space or 0 if the device does
553  * not support it.  Some capabilities can occur several times, e.g., the
554  * vendor-specific capability, and this provides a way to find them all.
555  */
556 u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap)
557 {
558 	u32 header;
559 	int ttl;
560 	u16 pos = PCI_CFG_SPACE_SIZE;
561 
562 	/* minimum 8 bytes per capability */
563 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
564 
565 	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
566 		return 0;
567 
568 	if (start)
569 		pos = start;
570 
571 	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
572 		return 0;
573 
574 	/*
575 	 * If we have no capabilities, this is indicated by cap ID,
576 	 * cap version and next pointer all being 0.
577 	 */
578 	if (header == 0)
579 		return 0;
580 
581 	while (ttl-- > 0) {
582 		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
583 			return pos;
584 
585 		pos = PCI_EXT_CAP_NEXT(header);
586 		if (pos < PCI_CFG_SPACE_SIZE)
587 			break;
588 
589 		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
590 			break;
591 	}
592 
593 	return 0;
594 }
595 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
596 
597 /**
598  * pci_find_ext_capability - Find an extended capability
599  * @dev: PCI device to query
600  * @cap: capability code
601  *
602  * Returns the address of the requested extended capability structure
603  * within the device's PCI configuration space or 0 if the device does
604  * not support it.  Possible values for @cap include:
605  *
606  *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
607  *  %PCI_EXT_CAP_ID_VC		Virtual Channel
608  *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
609  *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
610  */
611 u16 pci_find_ext_capability(struct pci_dev *dev, int cap)
612 {
613 	return pci_find_next_ext_capability(dev, 0, cap);
614 }
615 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
616 
617 /**
618  * pci_get_dsn - Read and return the 8-byte Device Serial Number
619  * @dev: PCI device to query
620  *
621  * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
622  * Number.
623  *
624  * Returns the DSN, or zero if the capability does not exist.
625  */
626 u64 pci_get_dsn(struct pci_dev *dev)
627 {
628 	u32 dword;
629 	u64 dsn;
630 	int pos;
631 
632 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
633 	if (!pos)
634 		return 0;
635 
636 	/*
637 	 * The Device Serial Number is two dwords offset 4 bytes from the
638 	 * capability position. The specification says that the first dword is
639 	 * the lower half, and the second dword is the upper half.
640 	 */
641 	pos += 4;
642 	pci_read_config_dword(dev, pos, &dword);
643 	dsn = (u64)dword;
644 	pci_read_config_dword(dev, pos + 4, &dword);
645 	dsn |= ((u64)dword) << 32;
646 
647 	return dsn;
648 }
649 EXPORT_SYMBOL_GPL(pci_get_dsn);
650 
651 static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap)
652 {
653 	int rc, ttl = PCI_FIND_CAP_TTL;
654 	u8 cap, mask;
655 
656 	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
657 		mask = HT_3BIT_CAP_MASK;
658 	else
659 		mask = HT_5BIT_CAP_MASK;
660 
661 	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
662 				      PCI_CAP_ID_HT, &ttl);
663 	while (pos) {
664 		rc = pci_read_config_byte(dev, pos + 3, &cap);
665 		if (rc != PCIBIOS_SUCCESSFUL)
666 			return 0;
667 
668 		if ((cap & mask) == ht_cap)
669 			return pos;
670 
671 		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
672 					      pos + PCI_CAP_LIST_NEXT,
673 					      PCI_CAP_ID_HT, &ttl);
674 	}
675 
676 	return 0;
677 }
678 
679 /**
680  * pci_find_next_ht_capability - query a device's HyperTransport capabilities
681  * @dev: PCI device to query
682  * @pos: Position from which to continue searching
683  * @ht_cap: HyperTransport capability code
684  *
685  * To be used in conjunction with pci_find_ht_capability() to search for
686  * all capabilities matching @ht_cap. @pos should always be a value returned
687  * from pci_find_ht_capability().
688  *
689  * NB. To be 100% safe against broken PCI devices, the caller should take
690  * steps to avoid an infinite loop.
691  */
692 u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap)
693 {
694 	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
695 }
696 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
697 
698 /**
699  * pci_find_ht_capability - query a device's HyperTransport capabilities
700  * @dev: PCI device to query
701  * @ht_cap: HyperTransport capability code
702  *
703  * Tell if a device supports a given HyperTransport capability.
704  * Returns an address within the device's PCI configuration space
705  * or 0 in case the device does not support the request capability.
706  * The address points to the PCI capability, of type PCI_CAP_ID_HT,
707  * which has a HyperTransport capability matching @ht_cap.
708  */
709 u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
710 {
711 	u8 pos;
712 
713 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
714 	if (pos)
715 		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
716 
717 	return pos;
718 }
719 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
720 
721 /**
722  * pci_find_vsec_capability - Find a vendor-specific extended capability
723  * @dev: PCI device to query
724  * @vendor: Vendor ID for which capability is defined
725  * @cap: Vendor-specific capability ID
726  *
727  * If @dev has Vendor ID @vendor, search for a VSEC capability with
728  * VSEC ID @cap. If found, return the capability offset in
729  * config space; otherwise return 0.
730  */
731 u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap)
732 {
733 	u16 vsec = 0;
734 	u32 header;
735 	int ret;
736 
737 	if (vendor != dev->vendor)
738 		return 0;
739 
740 	while ((vsec = pci_find_next_ext_capability(dev, vsec,
741 						     PCI_EXT_CAP_ID_VNDR))) {
742 		ret = pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER, &header);
743 		if (ret != PCIBIOS_SUCCESSFUL)
744 			continue;
745 
746 		if (PCI_VNDR_HEADER_ID(header) == cap)
747 			return vsec;
748 	}
749 
750 	return 0;
751 }
752 EXPORT_SYMBOL_GPL(pci_find_vsec_capability);
753 
754 /**
755  * pci_find_dvsec_capability - Find DVSEC for vendor
756  * @dev: PCI device to query
757  * @vendor: Vendor ID to match for the DVSEC
758  * @dvsec: Designated Vendor-specific capability ID
759  *
760  * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability
761  * offset in config space; otherwise return 0.
762  */
763 u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec)
764 {
765 	int pos;
766 
767 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC);
768 	if (!pos)
769 		return 0;
770 
771 	while (pos) {
772 		u16 v, id;
773 
774 		pci_read_config_word(dev, pos + PCI_DVSEC_HEADER1, &v);
775 		pci_read_config_word(dev, pos + PCI_DVSEC_HEADER2, &id);
776 		if (vendor == v && dvsec == id)
777 			return pos;
778 
779 		pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC);
780 	}
781 
782 	return 0;
783 }
784 EXPORT_SYMBOL_GPL(pci_find_dvsec_capability);
785 
786 /**
787  * pci_find_parent_resource - return resource region of parent bus of given
788  *			      region
789  * @dev: PCI device structure contains resources to be searched
790  * @res: child resource record for which parent is sought
791  *
792  * For given resource region of given device, return the resource region of
793  * parent bus the given region is contained in.
794  */
795 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
796 					  struct resource *res)
797 {
798 	const struct pci_bus *bus = dev->bus;
799 	struct resource *r;
800 
801 	pci_bus_for_each_resource(bus, r) {
802 		if (!r)
803 			continue;
804 		if (resource_contains(r, res)) {
805 
806 			/*
807 			 * If the window is prefetchable but the BAR is
808 			 * not, the allocator made a mistake.
809 			 */
810 			if (r->flags & IORESOURCE_PREFETCH &&
811 			    !(res->flags & IORESOURCE_PREFETCH))
812 				return NULL;
813 
814 			/*
815 			 * If we're below a transparent bridge, there may
816 			 * be both a positively-decoded aperture and a
817 			 * subtractively-decoded region that contain the BAR.
818 			 * We want the positively-decoded one, so this depends
819 			 * on pci_bus_for_each_resource() giving us those
820 			 * first.
821 			 */
822 			return r;
823 		}
824 	}
825 	return NULL;
826 }
827 EXPORT_SYMBOL(pci_find_parent_resource);
828 
829 /**
830  * pci_find_resource - Return matching PCI device resource
831  * @dev: PCI device to query
832  * @res: Resource to look for
833  *
834  * Goes over standard PCI resources (BARs) and checks if the given resource
835  * is partially or fully contained in any of them. In that case the
836  * matching resource is returned, %NULL otherwise.
837  */
838 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
839 {
840 	int i;
841 
842 	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
843 		struct resource *r = &dev->resource[i];
844 
845 		if (r->start && resource_contains(r, res))
846 			return r;
847 	}
848 
849 	return NULL;
850 }
851 EXPORT_SYMBOL(pci_find_resource);
852 
853 /**
854  * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
855  * @dev: the PCI device to operate on
856  * @pos: config space offset of status word
857  * @mask: mask of bit(s) to care about in status word
858  *
859  * Return 1 when mask bit(s) in status word clear, 0 otherwise.
860  */
861 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
862 {
863 	int i;
864 
865 	/* Wait for Transaction Pending bit clean */
866 	for (i = 0; i < 4; i++) {
867 		u16 status;
868 		if (i)
869 			msleep((1 << (i - 1)) * 100);
870 
871 		pci_read_config_word(dev, pos, &status);
872 		if (!(status & mask))
873 			return 1;
874 	}
875 
876 	return 0;
877 }
878 
879 static int pci_acs_enable;
880 
881 /**
882  * pci_request_acs - ask for ACS to be enabled if supported
883  */
884 void pci_request_acs(void)
885 {
886 	pci_acs_enable = 1;
887 }
888 
889 static const char *disable_acs_redir_param;
890 
891 /**
892  * pci_disable_acs_redir - disable ACS redirect capabilities
893  * @dev: the PCI device
894  *
895  * For only devices specified in the disable_acs_redir parameter.
896  */
897 static void pci_disable_acs_redir(struct pci_dev *dev)
898 {
899 	int ret = 0;
900 	const char *p;
901 	int pos;
902 	u16 ctrl;
903 
904 	if (!disable_acs_redir_param)
905 		return;
906 
907 	p = disable_acs_redir_param;
908 	while (*p) {
909 		ret = pci_dev_str_match(dev, p, &p);
910 		if (ret < 0) {
911 			pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
912 				     disable_acs_redir_param);
913 
914 			break;
915 		} else if (ret == 1) {
916 			/* Found a match */
917 			break;
918 		}
919 
920 		if (*p != ';' && *p != ',') {
921 			/* End of param or invalid format */
922 			break;
923 		}
924 		p++;
925 	}
926 
927 	if (ret != 1)
928 		return;
929 
930 	if (!pci_dev_specific_disable_acs_redir(dev))
931 		return;
932 
933 	pos = dev->acs_cap;
934 	if (!pos) {
935 		pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
936 		return;
937 	}
938 
939 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
940 
941 	/* P2P Request & Completion Redirect */
942 	ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
943 
944 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
945 
946 	pci_info(dev, "disabled ACS redirect\n");
947 }
948 
949 /**
950  * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
951  * @dev: the PCI device
952  */
953 static void pci_std_enable_acs(struct pci_dev *dev)
954 {
955 	int pos;
956 	u16 cap;
957 	u16 ctrl;
958 
959 	pos = dev->acs_cap;
960 	if (!pos)
961 		return;
962 
963 	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
964 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
965 
966 	/* Source Validation */
967 	ctrl |= (cap & PCI_ACS_SV);
968 
969 	/* P2P Request Redirect */
970 	ctrl |= (cap & PCI_ACS_RR);
971 
972 	/* P2P Completion Redirect */
973 	ctrl |= (cap & PCI_ACS_CR);
974 
975 	/* Upstream Forwarding */
976 	ctrl |= (cap & PCI_ACS_UF);
977 
978 	/* Enable Translation Blocking for external devices and noats */
979 	if (pci_ats_disabled() || dev->external_facing || dev->untrusted)
980 		ctrl |= (cap & PCI_ACS_TB);
981 
982 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
983 }
984 
985 /**
986  * pci_enable_acs - enable ACS if hardware support it
987  * @dev: the PCI device
988  */
989 static void pci_enable_acs(struct pci_dev *dev)
990 {
991 	if (!pci_acs_enable)
992 		goto disable_acs_redir;
993 
994 	if (!pci_dev_specific_enable_acs(dev))
995 		goto disable_acs_redir;
996 
997 	pci_std_enable_acs(dev);
998 
999 disable_acs_redir:
1000 	/*
1001 	 * Note: pci_disable_acs_redir() must be called even if ACS was not
1002 	 * enabled by the kernel because it may have been enabled by
1003 	 * platform firmware.  So if we are told to disable it, we should
1004 	 * always disable it after setting the kernel's default
1005 	 * preferences.
1006 	 */
1007 	pci_disable_acs_redir(dev);
1008 }
1009 
1010 /**
1011  * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
1012  * @dev: PCI device to have its BARs restored
1013  *
1014  * Restore the BAR values for a given device, so as to make it
1015  * accessible by its driver.
1016  */
1017 static void pci_restore_bars(struct pci_dev *dev)
1018 {
1019 	int i;
1020 
1021 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
1022 		pci_update_resource(dev, i);
1023 }
1024 
1025 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
1026 {
1027 	if (pci_use_mid_pm())
1028 		return true;
1029 
1030 	return acpi_pci_power_manageable(dev);
1031 }
1032 
1033 static inline int platform_pci_set_power_state(struct pci_dev *dev,
1034 					       pci_power_t t)
1035 {
1036 	if (pci_use_mid_pm())
1037 		return mid_pci_set_power_state(dev, t);
1038 
1039 	return acpi_pci_set_power_state(dev, t);
1040 }
1041 
1042 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
1043 {
1044 	if (pci_use_mid_pm())
1045 		return mid_pci_get_power_state(dev);
1046 
1047 	return acpi_pci_get_power_state(dev);
1048 }
1049 
1050 static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
1051 {
1052 	if (!pci_use_mid_pm())
1053 		acpi_pci_refresh_power_state(dev);
1054 }
1055 
1056 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
1057 {
1058 	if (pci_use_mid_pm())
1059 		return PCI_POWER_ERROR;
1060 
1061 	return acpi_pci_choose_state(dev);
1062 }
1063 
1064 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
1065 {
1066 	if (pci_use_mid_pm())
1067 		return PCI_POWER_ERROR;
1068 
1069 	return acpi_pci_wakeup(dev, enable);
1070 }
1071 
1072 static inline bool platform_pci_need_resume(struct pci_dev *dev)
1073 {
1074 	if (pci_use_mid_pm())
1075 		return false;
1076 
1077 	return acpi_pci_need_resume(dev);
1078 }
1079 
1080 static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
1081 {
1082 	if (pci_use_mid_pm())
1083 		return false;
1084 
1085 	return acpi_pci_bridge_d3(dev);
1086 }
1087 
1088 /**
1089  * pci_update_current_state - Read power state of given device and cache it
1090  * @dev: PCI device to handle.
1091  * @state: State to cache in case the device doesn't have the PM capability
1092  *
1093  * The power state is read from the PMCSR register, which however is
1094  * inaccessible in D3cold.  The platform firmware is therefore queried first
1095  * to detect accessibility of the register.  In case the platform firmware
1096  * reports an incorrect state or the device isn't power manageable by the
1097  * platform at all, we try to detect D3cold by testing accessibility of the
1098  * vendor ID in config space.
1099  */
1100 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1101 {
1102 	if (platform_pci_get_power_state(dev) == PCI_D3cold) {
1103 		dev->current_state = PCI_D3cold;
1104 	} else if (dev->pm_cap) {
1105 		u16 pmcsr;
1106 
1107 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1108 		if (PCI_POSSIBLE_ERROR(pmcsr)) {
1109 			dev->current_state = PCI_D3cold;
1110 			return;
1111 		}
1112 		dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1113 	} else {
1114 		dev->current_state = state;
1115 	}
1116 }
1117 
1118 /**
1119  * pci_refresh_power_state - Refresh the given device's power state data
1120  * @dev: Target PCI device.
1121  *
1122  * Ask the platform to refresh the devices power state information and invoke
1123  * pci_update_current_state() to update its current PCI power state.
1124  */
1125 void pci_refresh_power_state(struct pci_dev *dev)
1126 {
1127 	platform_pci_refresh_power_state(dev);
1128 	pci_update_current_state(dev, dev->current_state);
1129 }
1130 
1131 /**
1132  * pci_platform_power_transition - Use platform to change device power state
1133  * @dev: PCI device to handle.
1134  * @state: State to put the device into.
1135  */
1136 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1137 {
1138 	int error;
1139 
1140 	error = platform_pci_set_power_state(dev, state);
1141 	if (!error)
1142 		pci_update_current_state(dev, state);
1143 	else if (!dev->pm_cap) /* Fall back to PCI_D0 */
1144 		dev->current_state = PCI_D0;
1145 
1146 	return error;
1147 }
1148 EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1149 
1150 static int pci_resume_one(struct pci_dev *pci_dev, void *ign)
1151 {
1152 	pm_request_resume(&pci_dev->dev);
1153 	return 0;
1154 }
1155 
1156 /**
1157  * pci_resume_bus - Walk given bus and runtime resume devices on it
1158  * @bus: Top bus of the subtree to walk.
1159  */
1160 void pci_resume_bus(struct pci_bus *bus)
1161 {
1162 	if (bus)
1163 		pci_walk_bus(bus, pci_resume_one, NULL);
1164 }
1165 
1166 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1167 {
1168 	int delay = 1;
1169 	bool retrain = false;
1170 	struct pci_dev *bridge;
1171 
1172 	if (pci_is_pcie(dev)) {
1173 		bridge = pci_upstream_bridge(dev);
1174 		if (bridge)
1175 			retrain = true;
1176 	}
1177 
1178 	/*
1179 	 * After reset, the device should not silently discard config
1180 	 * requests, but it may still indicate that it needs more time by
1181 	 * responding to them with CRS completions.  The Root Port will
1182 	 * generally synthesize ~0 (PCI_ERROR_RESPONSE) data to complete
1183 	 * the read (except when CRS SV is enabled and the read was for the
1184 	 * Vendor ID; in that case it synthesizes 0x0001 data).
1185 	 *
1186 	 * Wait for the device to return a non-CRS completion.  Read the
1187 	 * Command register instead of Vendor ID so we don't have to
1188 	 * contend with the CRS SV value.
1189 	 */
1190 	for (;;) {
1191 		u32 id;
1192 
1193 		pci_read_config_dword(dev, PCI_COMMAND, &id);
1194 		if (!PCI_POSSIBLE_ERROR(id))
1195 			break;
1196 
1197 		if (delay > timeout) {
1198 			pci_warn(dev, "not ready %dms after %s; giving up\n",
1199 				 delay - 1, reset_type);
1200 			return -ENOTTY;
1201 		}
1202 
1203 		if (delay > PCI_RESET_WAIT) {
1204 			if (retrain) {
1205 				retrain = false;
1206 				if (pcie_failed_link_retrain(bridge)) {
1207 					delay = 1;
1208 					continue;
1209 				}
1210 			}
1211 			pci_info(dev, "not ready %dms after %s; waiting\n",
1212 				 delay - 1, reset_type);
1213 		}
1214 
1215 		msleep(delay);
1216 		delay *= 2;
1217 	}
1218 
1219 	if (delay > PCI_RESET_WAIT)
1220 		pci_info(dev, "ready %dms after %s\n", delay - 1,
1221 			 reset_type);
1222 
1223 	return 0;
1224 }
1225 
1226 /**
1227  * pci_power_up - Put the given device into D0
1228  * @dev: PCI device to power up
1229  *
1230  * On success, return 0 or 1, depending on whether or not it is necessary to
1231  * restore the device's BARs subsequently (1 is returned in that case).
1232  *
1233  * On failure, return a negative error code.  Always return failure if @dev
1234  * lacks a Power Management Capability, even if the platform was able to
1235  * put the device in D0 via non-PCI means.
1236  */
1237 int pci_power_up(struct pci_dev *dev)
1238 {
1239 	bool need_restore;
1240 	pci_power_t state;
1241 	u16 pmcsr;
1242 
1243 	platform_pci_set_power_state(dev, PCI_D0);
1244 
1245 	if (!dev->pm_cap) {
1246 		state = platform_pci_get_power_state(dev);
1247 		if (state == PCI_UNKNOWN)
1248 			dev->current_state = PCI_D0;
1249 		else
1250 			dev->current_state = state;
1251 
1252 		return -EIO;
1253 	}
1254 
1255 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1256 	if (PCI_POSSIBLE_ERROR(pmcsr)) {
1257 		pci_err(dev, "Unable to change power state from %s to D0, device inaccessible\n",
1258 			pci_power_name(dev->current_state));
1259 		dev->current_state = PCI_D3cold;
1260 		return -EIO;
1261 	}
1262 
1263 	state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1264 
1265 	need_restore = (state == PCI_D3hot || dev->current_state >= PCI_D3hot) &&
1266 			!(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET);
1267 
1268 	if (state == PCI_D0)
1269 		goto end;
1270 
1271 	/*
1272 	 * Force the entire word to 0. This doesn't affect PME_Status, disables
1273 	 * PME_En, and sets PowerState to 0.
1274 	 */
1275 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, 0);
1276 
1277 	/* Mandatory transition delays; see PCI PM 1.2. */
1278 	if (state == PCI_D3hot)
1279 		pci_dev_d3_sleep(dev);
1280 	else if (state == PCI_D2)
1281 		udelay(PCI_PM_D2_DELAY);
1282 
1283 end:
1284 	dev->current_state = PCI_D0;
1285 	if (need_restore)
1286 		return 1;
1287 
1288 	return 0;
1289 }
1290 
1291 /**
1292  * pci_set_full_power_state - Put a PCI device into D0 and update its state
1293  * @dev: PCI device to power up
1294  * @locked: whether pci_bus_sem is held
1295  *
1296  * Call pci_power_up() to put @dev into D0, read from its PCI_PM_CTRL register
1297  * to confirm the state change, restore its BARs if they might be lost and
1298  * reconfigure ASPM in accordance with the new power state.
1299  *
1300  * If pci_restore_state() is going to be called right after a power state change
1301  * to D0, it is more efficient to use pci_power_up() directly instead of this
1302  * function.
1303  */
1304 static int pci_set_full_power_state(struct pci_dev *dev, bool locked)
1305 {
1306 	u16 pmcsr;
1307 	int ret;
1308 
1309 	ret = pci_power_up(dev);
1310 	if (ret < 0) {
1311 		if (dev->current_state == PCI_D0)
1312 			return 0;
1313 
1314 		return ret;
1315 	}
1316 
1317 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1318 	dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1319 	if (dev->current_state != PCI_D0) {
1320 		pci_info_ratelimited(dev, "Refused to change power state from %s to D0\n",
1321 				     pci_power_name(dev->current_state));
1322 	} else if (ret > 0) {
1323 		/*
1324 		 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1325 		 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1326 		 * from D3hot to D0 _may_ perform an internal reset, thereby
1327 		 * going to "D0 Uninitialized" rather than "D0 Initialized".
1328 		 * For example, at least some versions of the 3c905B and the
1329 		 * 3c556B exhibit this behaviour.
1330 		 *
1331 		 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1332 		 * devices in a D3hot state at boot.  Consequently, we need to
1333 		 * restore at least the BARs so that the device will be
1334 		 * accessible to its driver.
1335 		 */
1336 		pci_restore_bars(dev);
1337 	}
1338 
1339 	if (dev->bus->self)
1340 		pcie_aspm_pm_state_change(dev->bus->self, locked);
1341 
1342 	return 0;
1343 }
1344 
1345 /**
1346  * __pci_dev_set_current_state - Set current state of a PCI device
1347  * @dev: Device to handle
1348  * @data: pointer to state to be set
1349  */
1350 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1351 {
1352 	pci_power_t state = *(pci_power_t *)data;
1353 
1354 	dev->current_state = state;
1355 	return 0;
1356 }
1357 
1358 /**
1359  * pci_bus_set_current_state - Walk given bus and set current state of devices
1360  * @bus: Top bus of the subtree to walk.
1361  * @state: state to be set
1362  */
1363 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1364 {
1365 	if (bus)
1366 		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1367 }
1368 
1369 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state, bool locked)
1370 {
1371 	if (!bus)
1372 		return;
1373 
1374 	if (locked)
1375 		pci_walk_bus_locked(bus, __pci_dev_set_current_state, &state);
1376 	else
1377 		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1378 }
1379 
1380 /**
1381  * pci_set_low_power_state - Put a PCI device into a low-power state.
1382  * @dev: PCI device to handle.
1383  * @state: PCI power state (D1, D2, D3hot) to put the device into.
1384  * @locked: whether pci_bus_sem is held
1385  *
1386  * Use the device's PCI_PM_CTRL register to put it into a low-power state.
1387  *
1388  * RETURN VALUE:
1389  * -EINVAL if the requested state is invalid.
1390  * -EIO if device does not support PCI PM or its PM capabilities register has a
1391  * wrong version, or device doesn't support the requested state.
1392  * 0 if device already is in the requested state.
1393  * 0 if device's power state has been successfully changed.
1394  */
1395 static int pci_set_low_power_state(struct pci_dev *dev, pci_power_t state, bool locked)
1396 {
1397 	u16 pmcsr;
1398 
1399 	if (!dev->pm_cap)
1400 		return -EIO;
1401 
1402 	/*
1403 	 * Validate transition: We can enter D0 from any state, but if
1404 	 * we're already in a low-power state, we can only go deeper.  E.g.,
1405 	 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1406 	 * we'd have to go from D3 to D0, then to D1.
1407 	 */
1408 	if (dev->current_state <= PCI_D3cold && dev->current_state > state) {
1409 		pci_dbg(dev, "Invalid power transition (from %s to %s)\n",
1410 			pci_power_name(dev->current_state),
1411 			pci_power_name(state));
1412 		return -EINVAL;
1413 	}
1414 
1415 	/* Check if this device supports the desired state */
1416 	if ((state == PCI_D1 && !dev->d1_support)
1417 	   || (state == PCI_D2 && !dev->d2_support))
1418 		return -EIO;
1419 
1420 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1421 	if (PCI_POSSIBLE_ERROR(pmcsr)) {
1422 		pci_err(dev, "Unable to change power state from %s to %s, device inaccessible\n",
1423 			pci_power_name(dev->current_state),
1424 			pci_power_name(state));
1425 		dev->current_state = PCI_D3cold;
1426 		return -EIO;
1427 	}
1428 
1429 	pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1430 	pmcsr |= state;
1431 
1432 	/* Enter specified state */
1433 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1434 
1435 	/* Mandatory power management transition delays; see PCI PM 1.2. */
1436 	if (state == PCI_D3hot)
1437 		pci_dev_d3_sleep(dev);
1438 	else if (state == PCI_D2)
1439 		udelay(PCI_PM_D2_DELAY);
1440 
1441 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1442 	dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1443 	if (dev->current_state != state)
1444 		pci_info_ratelimited(dev, "Refused to change power state from %s to %s\n",
1445 				     pci_power_name(dev->current_state),
1446 				     pci_power_name(state));
1447 
1448 	if (dev->bus->self)
1449 		pcie_aspm_pm_state_change(dev->bus->self, locked);
1450 
1451 	return 0;
1452 }
1453 
1454 static int __pci_set_power_state(struct pci_dev *dev, pci_power_t state, bool locked)
1455 {
1456 	int error;
1457 
1458 	/* Bound the state we're entering */
1459 	if (state > PCI_D3cold)
1460 		state = PCI_D3cold;
1461 	else if (state < PCI_D0)
1462 		state = PCI_D0;
1463 	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1464 
1465 		/*
1466 		 * If the device or the parent bridge do not support PCI
1467 		 * PM, ignore the request if we're doing anything other
1468 		 * than putting it into D0 (which would only happen on
1469 		 * boot).
1470 		 */
1471 		return 0;
1472 
1473 	/* Check if we're already there */
1474 	if (dev->current_state == state)
1475 		return 0;
1476 
1477 	if (state == PCI_D0)
1478 		return pci_set_full_power_state(dev, locked);
1479 
1480 	/*
1481 	 * This device is quirked not to be put into D3, so don't put it in
1482 	 * D3
1483 	 */
1484 	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1485 		return 0;
1486 
1487 	if (state == PCI_D3cold) {
1488 		/*
1489 		 * To put the device in D3cold, put it into D3hot in the native
1490 		 * way, then put it into D3cold using platform ops.
1491 		 */
1492 		error = pci_set_low_power_state(dev, PCI_D3hot, locked);
1493 
1494 		if (pci_platform_power_transition(dev, PCI_D3cold))
1495 			return error;
1496 
1497 		/* Powering off a bridge may power off the whole hierarchy */
1498 		if (dev->current_state == PCI_D3cold)
1499 			__pci_bus_set_current_state(dev->subordinate, PCI_D3cold, locked);
1500 	} else {
1501 		error = pci_set_low_power_state(dev, state, locked);
1502 
1503 		if (pci_platform_power_transition(dev, state))
1504 			return error;
1505 	}
1506 
1507 	return 0;
1508 }
1509 
1510 /**
1511  * pci_set_power_state - Set the power state of a PCI device
1512  * @dev: PCI device to handle.
1513  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1514  *
1515  * Transition a device to a new power state, using the platform firmware and/or
1516  * the device's PCI PM registers.
1517  *
1518  * RETURN VALUE:
1519  * -EINVAL if the requested state is invalid.
1520  * -EIO if device does not support PCI PM or its PM capabilities register has a
1521  * wrong version, or device doesn't support the requested state.
1522  * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1523  * 0 if device already is in the requested state.
1524  * 0 if the transition is to D3 but D3 is not supported.
1525  * 0 if device's power state has been successfully changed.
1526  */
1527 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1528 {
1529 	return __pci_set_power_state(dev, state, false);
1530 }
1531 EXPORT_SYMBOL(pci_set_power_state);
1532 
1533 int pci_set_power_state_locked(struct pci_dev *dev, pci_power_t state)
1534 {
1535 	lockdep_assert_held(&pci_bus_sem);
1536 
1537 	return __pci_set_power_state(dev, state, true);
1538 }
1539 EXPORT_SYMBOL(pci_set_power_state_locked);
1540 
1541 #define PCI_EXP_SAVE_REGS	7
1542 
1543 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1544 						       u16 cap, bool extended)
1545 {
1546 	struct pci_cap_saved_state *tmp;
1547 
1548 	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1549 		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1550 			return tmp;
1551 	}
1552 	return NULL;
1553 }
1554 
1555 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1556 {
1557 	return _pci_find_saved_cap(dev, cap, false);
1558 }
1559 
1560 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1561 {
1562 	return _pci_find_saved_cap(dev, cap, true);
1563 }
1564 
1565 static int pci_save_pcie_state(struct pci_dev *dev)
1566 {
1567 	int i = 0;
1568 	struct pci_cap_saved_state *save_state;
1569 	u16 *cap;
1570 
1571 	if (!pci_is_pcie(dev))
1572 		return 0;
1573 
1574 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1575 	if (!save_state) {
1576 		pci_err(dev, "buffer not found in %s\n", __func__);
1577 		return -ENOMEM;
1578 	}
1579 
1580 	cap = (u16 *)&save_state->cap.data[0];
1581 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1582 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1583 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1584 	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
1585 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1586 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1587 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1588 
1589 	return 0;
1590 }
1591 
1592 void pci_bridge_reconfigure_ltr(struct pci_dev *dev)
1593 {
1594 #ifdef CONFIG_PCIEASPM
1595 	struct pci_dev *bridge;
1596 	u32 ctl;
1597 
1598 	bridge = pci_upstream_bridge(dev);
1599 	if (bridge && bridge->ltr_path) {
1600 		pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, &ctl);
1601 		if (!(ctl & PCI_EXP_DEVCTL2_LTR_EN)) {
1602 			pci_dbg(bridge, "re-enabling LTR\n");
1603 			pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
1604 						 PCI_EXP_DEVCTL2_LTR_EN);
1605 		}
1606 	}
1607 #endif
1608 }
1609 
1610 static void pci_restore_pcie_state(struct pci_dev *dev)
1611 {
1612 	int i = 0;
1613 	struct pci_cap_saved_state *save_state;
1614 	u16 *cap;
1615 
1616 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1617 	if (!save_state)
1618 		return;
1619 
1620 	/*
1621 	 * Downstream ports reset the LTR enable bit when link goes down.
1622 	 * Check and re-configure the bit here before restoring device.
1623 	 * PCIe r5.0, sec 7.5.3.16.
1624 	 */
1625 	pci_bridge_reconfigure_ltr(dev);
1626 
1627 	cap = (u16 *)&save_state->cap.data[0];
1628 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1629 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1630 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1631 	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1632 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1633 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1634 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1635 }
1636 
1637 static int pci_save_pcix_state(struct pci_dev *dev)
1638 {
1639 	int pos;
1640 	struct pci_cap_saved_state *save_state;
1641 
1642 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1643 	if (!pos)
1644 		return 0;
1645 
1646 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1647 	if (!save_state) {
1648 		pci_err(dev, "buffer not found in %s\n", __func__);
1649 		return -ENOMEM;
1650 	}
1651 
1652 	pci_read_config_word(dev, pos + PCI_X_CMD,
1653 			     (u16 *)save_state->cap.data);
1654 
1655 	return 0;
1656 }
1657 
1658 static void pci_restore_pcix_state(struct pci_dev *dev)
1659 {
1660 	int i = 0, pos;
1661 	struct pci_cap_saved_state *save_state;
1662 	u16 *cap;
1663 
1664 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1665 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1666 	if (!save_state || !pos)
1667 		return;
1668 	cap = (u16 *)&save_state->cap.data[0];
1669 
1670 	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1671 }
1672 
1673 static void pci_save_ltr_state(struct pci_dev *dev)
1674 {
1675 	int ltr;
1676 	struct pci_cap_saved_state *save_state;
1677 	u32 *cap;
1678 
1679 	if (!pci_is_pcie(dev))
1680 		return;
1681 
1682 	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1683 	if (!ltr)
1684 		return;
1685 
1686 	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1687 	if (!save_state) {
1688 		pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1689 		return;
1690 	}
1691 
1692 	/* Some broken devices only support dword access to LTR */
1693 	cap = &save_state->cap.data[0];
1694 	pci_read_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap);
1695 }
1696 
1697 static void pci_restore_ltr_state(struct pci_dev *dev)
1698 {
1699 	struct pci_cap_saved_state *save_state;
1700 	int ltr;
1701 	u32 *cap;
1702 
1703 	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1704 	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1705 	if (!save_state || !ltr)
1706 		return;
1707 
1708 	/* Some broken devices only support dword access to LTR */
1709 	cap = &save_state->cap.data[0];
1710 	pci_write_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap);
1711 }
1712 
1713 /**
1714  * pci_save_state - save the PCI configuration space of a device before
1715  *		    suspending
1716  * @dev: PCI device that we're dealing with
1717  */
1718 int pci_save_state(struct pci_dev *dev)
1719 {
1720 	int i;
1721 	/* XXX: 100% dword access ok here? */
1722 	for (i = 0; i < 16; i++) {
1723 		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1724 		pci_dbg(dev, "save config %#04x: %#010x\n",
1725 			i * 4, dev->saved_config_space[i]);
1726 	}
1727 	dev->state_saved = true;
1728 
1729 	i = pci_save_pcie_state(dev);
1730 	if (i != 0)
1731 		return i;
1732 
1733 	i = pci_save_pcix_state(dev);
1734 	if (i != 0)
1735 		return i;
1736 
1737 	pci_save_ltr_state(dev);
1738 	pci_save_dpc_state(dev);
1739 	pci_save_aer_state(dev);
1740 	pci_save_ptm_state(dev);
1741 	return pci_save_vc_state(dev);
1742 }
1743 EXPORT_SYMBOL(pci_save_state);
1744 
1745 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1746 				     u32 saved_val, int retry, bool force)
1747 {
1748 	u32 val;
1749 
1750 	pci_read_config_dword(pdev, offset, &val);
1751 	if (!force && val == saved_val)
1752 		return;
1753 
1754 	for (;;) {
1755 		pci_dbg(pdev, "restore config %#04x: %#010x -> %#010x\n",
1756 			offset, val, saved_val);
1757 		pci_write_config_dword(pdev, offset, saved_val);
1758 		if (retry-- <= 0)
1759 			return;
1760 
1761 		pci_read_config_dword(pdev, offset, &val);
1762 		if (val == saved_val)
1763 			return;
1764 
1765 		mdelay(1);
1766 	}
1767 }
1768 
1769 static void pci_restore_config_space_range(struct pci_dev *pdev,
1770 					   int start, int end, int retry,
1771 					   bool force)
1772 {
1773 	int index;
1774 
1775 	for (index = end; index >= start; index--)
1776 		pci_restore_config_dword(pdev, 4 * index,
1777 					 pdev->saved_config_space[index],
1778 					 retry, force);
1779 }
1780 
1781 static void pci_restore_config_space(struct pci_dev *pdev)
1782 {
1783 	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1784 		pci_restore_config_space_range(pdev, 10, 15, 0, false);
1785 		/* Restore BARs before the command register. */
1786 		pci_restore_config_space_range(pdev, 4, 9, 10, false);
1787 		pci_restore_config_space_range(pdev, 0, 3, 0, false);
1788 	} else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1789 		pci_restore_config_space_range(pdev, 12, 15, 0, false);
1790 
1791 		/*
1792 		 * Force rewriting of prefetch registers to avoid S3 resume
1793 		 * issues on Intel PCI bridges that occur when these
1794 		 * registers are not explicitly written.
1795 		 */
1796 		pci_restore_config_space_range(pdev, 9, 11, 0, true);
1797 		pci_restore_config_space_range(pdev, 0, 8, 0, false);
1798 	} else {
1799 		pci_restore_config_space_range(pdev, 0, 15, 0, false);
1800 	}
1801 }
1802 
1803 static void pci_restore_rebar_state(struct pci_dev *pdev)
1804 {
1805 	unsigned int pos, nbars, i;
1806 	u32 ctrl;
1807 
1808 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1809 	if (!pos)
1810 		return;
1811 
1812 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1813 	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1814 		    PCI_REBAR_CTRL_NBAR_SHIFT;
1815 
1816 	for (i = 0; i < nbars; i++, pos += 8) {
1817 		struct resource *res;
1818 		int bar_idx, size;
1819 
1820 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1821 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1822 		res = pdev->resource + bar_idx;
1823 		size = pci_rebar_bytes_to_size(resource_size(res));
1824 		ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1825 		ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1826 		pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1827 	}
1828 }
1829 
1830 /**
1831  * pci_restore_state - Restore the saved state of a PCI device
1832  * @dev: PCI device that we're dealing with
1833  */
1834 void pci_restore_state(struct pci_dev *dev)
1835 {
1836 	if (!dev->state_saved)
1837 		return;
1838 
1839 	/*
1840 	 * Restore max latencies (in the LTR capability) before enabling
1841 	 * LTR itself (in the PCIe capability).
1842 	 */
1843 	pci_restore_ltr_state(dev);
1844 
1845 	pci_restore_pcie_state(dev);
1846 	pci_restore_pasid_state(dev);
1847 	pci_restore_pri_state(dev);
1848 	pci_restore_ats_state(dev);
1849 	pci_restore_vc_state(dev);
1850 	pci_restore_rebar_state(dev);
1851 	pci_restore_dpc_state(dev);
1852 	pci_restore_ptm_state(dev);
1853 
1854 	pci_aer_clear_status(dev);
1855 	pci_restore_aer_state(dev);
1856 
1857 	pci_restore_config_space(dev);
1858 
1859 	pci_restore_pcix_state(dev);
1860 	pci_restore_msi_state(dev);
1861 
1862 	/* Restore ACS and IOV configuration state */
1863 	pci_enable_acs(dev);
1864 	pci_restore_iov_state(dev);
1865 
1866 	dev->state_saved = false;
1867 }
1868 EXPORT_SYMBOL(pci_restore_state);
1869 
1870 struct pci_saved_state {
1871 	u32 config_space[16];
1872 	struct pci_cap_saved_data cap[];
1873 };
1874 
1875 /**
1876  * pci_store_saved_state - Allocate and return an opaque struct containing
1877  *			   the device saved state.
1878  * @dev: PCI device that we're dealing with
1879  *
1880  * Return NULL if no state or error.
1881  */
1882 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1883 {
1884 	struct pci_saved_state *state;
1885 	struct pci_cap_saved_state *tmp;
1886 	struct pci_cap_saved_data *cap;
1887 	size_t size;
1888 
1889 	if (!dev->state_saved)
1890 		return NULL;
1891 
1892 	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1893 
1894 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1895 		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1896 
1897 	state = kzalloc(size, GFP_KERNEL);
1898 	if (!state)
1899 		return NULL;
1900 
1901 	memcpy(state->config_space, dev->saved_config_space,
1902 	       sizeof(state->config_space));
1903 
1904 	cap = state->cap;
1905 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1906 		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1907 		memcpy(cap, &tmp->cap, len);
1908 		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1909 	}
1910 	/* Empty cap_save terminates list */
1911 
1912 	return state;
1913 }
1914 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1915 
1916 /**
1917  * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1918  * @dev: PCI device that we're dealing with
1919  * @state: Saved state returned from pci_store_saved_state()
1920  */
1921 int pci_load_saved_state(struct pci_dev *dev,
1922 			 struct pci_saved_state *state)
1923 {
1924 	struct pci_cap_saved_data *cap;
1925 
1926 	dev->state_saved = false;
1927 
1928 	if (!state)
1929 		return 0;
1930 
1931 	memcpy(dev->saved_config_space, state->config_space,
1932 	       sizeof(state->config_space));
1933 
1934 	cap = state->cap;
1935 	while (cap->size) {
1936 		struct pci_cap_saved_state *tmp;
1937 
1938 		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1939 		if (!tmp || tmp->cap.size != cap->size)
1940 			return -EINVAL;
1941 
1942 		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1943 		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1944 		       sizeof(struct pci_cap_saved_data) + cap->size);
1945 	}
1946 
1947 	dev->state_saved = true;
1948 	return 0;
1949 }
1950 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1951 
1952 /**
1953  * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1954  *				   and free the memory allocated for it.
1955  * @dev: PCI device that we're dealing with
1956  * @state: Pointer to saved state returned from pci_store_saved_state()
1957  */
1958 int pci_load_and_free_saved_state(struct pci_dev *dev,
1959 				  struct pci_saved_state **state)
1960 {
1961 	int ret = pci_load_saved_state(dev, *state);
1962 	kfree(*state);
1963 	*state = NULL;
1964 	return ret;
1965 }
1966 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1967 
1968 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1969 {
1970 	return pci_enable_resources(dev, bars);
1971 }
1972 
1973 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1974 {
1975 	int err;
1976 	struct pci_dev *bridge;
1977 	u16 cmd;
1978 	u8 pin;
1979 
1980 	err = pci_set_power_state(dev, PCI_D0);
1981 	if (err < 0 && err != -EIO)
1982 		return err;
1983 
1984 	bridge = pci_upstream_bridge(dev);
1985 	if (bridge)
1986 		pcie_aspm_powersave_config_link(bridge);
1987 
1988 	err = pcibios_enable_device(dev, bars);
1989 	if (err < 0)
1990 		return err;
1991 	pci_fixup_device(pci_fixup_enable, dev);
1992 
1993 	if (dev->msi_enabled || dev->msix_enabled)
1994 		return 0;
1995 
1996 	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1997 	if (pin) {
1998 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
1999 		if (cmd & PCI_COMMAND_INTX_DISABLE)
2000 			pci_write_config_word(dev, PCI_COMMAND,
2001 					      cmd & ~PCI_COMMAND_INTX_DISABLE);
2002 	}
2003 
2004 	return 0;
2005 }
2006 
2007 /**
2008  * pci_reenable_device - Resume abandoned device
2009  * @dev: PCI device to be resumed
2010  *
2011  * NOTE: This function is a backend of pci_default_resume() and is not supposed
2012  * to be called by normal code, write proper resume handler and use it instead.
2013  */
2014 int pci_reenable_device(struct pci_dev *dev)
2015 {
2016 	if (pci_is_enabled(dev))
2017 		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
2018 	return 0;
2019 }
2020 EXPORT_SYMBOL(pci_reenable_device);
2021 
2022 static void pci_enable_bridge(struct pci_dev *dev)
2023 {
2024 	struct pci_dev *bridge;
2025 	int retval;
2026 
2027 	bridge = pci_upstream_bridge(dev);
2028 	if (bridge)
2029 		pci_enable_bridge(bridge);
2030 
2031 	if (pci_is_enabled(dev)) {
2032 		if (!dev->is_busmaster)
2033 			pci_set_master(dev);
2034 		return;
2035 	}
2036 
2037 	retval = pci_enable_device(dev);
2038 	if (retval)
2039 		pci_err(dev, "Error enabling bridge (%d), continuing\n",
2040 			retval);
2041 	pci_set_master(dev);
2042 }
2043 
2044 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
2045 {
2046 	struct pci_dev *bridge;
2047 	int err;
2048 	int i, bars = 0;
2049 
2050 	/*
2051 	 * Power state could be unknown at this point, either due to a fresh
2052 	 * boot or a device removal call.  So get the current power state
2053 	 * so that things like MSI message writing will behave as expected
2054 	 * (e.g. if the device really is in D0 at enable time).
2055 	 */
2056 	pci_update_current_state(dev, dev->current_state);
2057 
2058 	if (atomic_inc_return(&dev->enable_cnt) > 1)
2059 		return 0;		/* already enabled */
2060 
2061 	bridge = pci_upstream_bridge(dev);
2062 	if (bridge)
2063 		pci_enable_bridge(bridge);
2064 
2065 	/* only skip sriov related */
2066 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
2067 		if (dev->resource[i].flags & flags)
2068 			bars |= (1 << i);
2069 	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
2070 		if (dev->resource[i].flags & flags)
2071 			bars |= (1 << i);
2072 
2073 	err = do_pci_enable_device(dev, bars);
2074 	if (err < 0)
2075 		atomic_dec(&dev->enable_cnt);
2076 	return err;
2077 }
2078 
2079 /**
2080  * pci_enable_device_io - Initialize a device for use with IO space
2081  * @dev: PCI device to be initialized
2082  *
2083  * Initialize device before it's used by a driver. Ask low-level code
2084  * to enable I/O resources. Wake up the device if it was suspended.
2085  * Beware, this function can fail.
2086  */
2087 int pci_enable_device_io(struct pci_dev *dev)
2088 {
2089 	return pci_enable_device_flags(dev, IORESOURCE_IO);
2090 }
2091 EXPORT_SYMBOL(pci_enable_device_io);
2092 
2093 /**
2094  * pci_enable_device_mem - Initialize a device for use with Memory space
2095  * @dev: PCI device to be initialized
2096  *
2097  * Initialize device before it's used by a driver. Ask low-level code
2098  * to enable Memory resources. Wake up the device if it was suspended.
2099  * Beware, this function can fail.
2100  */
2101 int pci_enable_device_mem(struct pci_dev *dev)
2102 {
2103 	return pci_enable_device_flags(dev, IORESOURCE_MEM);
2104 }
2105 EXPORT_SYMBOL(pci_enable_device_mem);
2106 
2107 /**
2108  * pci_enable_device - Initialize device before it's used by a driver.
2109  * @dev: PCI device to be initialized
2110  *
2111  * Initialize device before it's used by a driver. Ask low-level code
2112  * to enable I/O and memory. Wake up the device if it was suspended.
2113  * Beware, this function can fail.
2114  *
2115  * Note we don't actually enable the device many times if we call
2116  * this function repeatedly (we just increment the count).
2117  */
2118 int pci_enable_device(struct pci_dev *dev)
2119 {
2120 	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
2121 }
2122 EXPORT_SYMBOL(pci_enable_device);
2123 
2124 /*
2125  * Managed PCI resources.  This manages device on/off, INTx/MSI/MSI-X
2126  * on/off and BAR regions.  pci_dev itself records MSI/MSI-X status, so
2127  * there's no need to track it separately.  pci_devres is initialized
2128  * when a device is enabled using managed PCI device enable interface.
2129  */
2130 struct pci_devres {
2131 	unsigned int enabled:1;
2132 	unsigned int pinned:1;
2133 	unsigned int orig_intx:1;
2134 	unsigned int restore_intx:1;
2135 	unsigned int mwi:1;
2136 	u32 region_mask;
2137 };
2138 
2139 static void pcim_release(struct device *gendev, void *res)
2140 {
2141 	struct pci_dev *dev = to_pci_dev(gendev);
2142 	struct pci_devres *this = res;
2143 	int i;
2144 
2145 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
2146 		if (this->region_mask & (1 << i))
2147 			pci_release_region(dev, i);
2148 
2149 	if (this->mwi)
2150 		pci_clear_mwi(dev);
2151 
2152 	if (this->restore_intx)
2153 		pci_intx(dev, this->orig_intx);
2154 
2155 	if (this->enabled && !this->pinned)
2156 		pci_disable_device(dev);
2157 }
2158 
2159 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
2160 {
2161 	struct pci_devres *dr, *new_dr;
2162 
2163 	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
2164 	if (dr)
2165 		return dr;
2166 
2167 	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
2168 	if (!new_dr)
2169 		return NULL;
2170 	return devres_get(&pdev->dev, new_dr, NULL, NULL);
2171 }
2172 
2173 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
2174 {
2175 	if (pci_is_managed(pdev))
2176 		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
2177 	return NULL;
2178 }
2179 
2180 /**
2181  * pcim_enable_device - Managed pci_enable_device()
2182  * @pdev: PCI device to be initialized
2183  *
2184  * Managed pci_enable_device().
2185  */
2186 int pcim_enable_device(struct pci_dev *pdev)
2187 {
2188 	struct pci_devres *dr;
2189 	int rc;
2190 
2191 	dr = get_pci_dr(pdev);
2192 	if (unlikely(!dr))
2193 		return -ENOMEM;
2194 	if (dr->enabled)
2195 		return 0;
2196 
2197 	rc = pci_enable_device(pdev);
2198 	if (!rc) {
2199 		pdev->is_managed = 1;
2200 		dr->enabled = 1;
2201 	}
2202 	return rc;
2203 }
2204 EXPORT_SYMBOL(pcim_enable_device);
2205 
2206 /**
2207  * pcim_pin_device - Pin managed PCI device
2208  * @pdev: PCI device to pin
2209  *
2210  * Pin managed PCI device @pdev.  Pinned device won't be disabled on
2211  * driver detach.  @pdev must have been enabled with
2212  * pcim_enable_device().
2213  */
2214 void pcim_pin_device(struct pci_dev *pdev)
2215 {
2216 	struct pci_devres *dr;
2217 
2218 	dr = find_pci_dr(pdev);
2219 	WARN_ON(!dr || !dr->enabled);
2220 	if (dr)
2221 		dr->pinned = 1;
2222 }
2223 EXPORT_SYMBOL(pcim_pin_device);
2224 
2225 /*
2226  * pcibios_device_add - provide arch specific hooks when adding device dev
2227  * @dev: the PCI device being added
2228  *
2229  * Permits the platform to provide architecture specific functionality when
2230  * devices are added. This is the default implementation. Architecture
2231  * implementations can override this.
2232  */
2233 int __weak pcibios_device_add(struct pci_dev *dev)
2234 {
2235 	return 0;
2236 }
2237 
2238 /**
2239  * pcibios_release_device - provide arch specific hooks when releasing
2240  *			    device dev
2241  * @dev: the PCI device being released
2242  *
2243  * Permits the platform to provide architecture specific functionality when
2244  * devices are released. This is the default implementation. Architecture
2245  * implementations can override this.
2246  */
2247 void __weak pcibios_release_device(struct pci_dev *dev) {}
2248 
2249 /**
2250  * pcibios_disable_device - disable arch specific PCI resources for device dev
2251  * @dev: the PCI device to disable
2252  *
2253  * Disables architecture specific PCI resources for the device. This
2254  * is the default implementation. Architecture implementations can
2255  * override this.
2256  */
2257 void __weak pcibios_disable_device(struct pci_dev *dev) {}
2258 
2259 /**
2260  * pcibios_penalize_isa_irq - penalize an ISA IRQ
2261  * @irq: ISA IRQ to penalize
2262  * @active: IRQ active or not
2263  *
2264  * Permits the platform to provide architecture-specific functionality when
2265  * penalizing ISA IRQs. This is the default implementation. Architecture
2266  * implementations can override this.
2267  */
2268 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
2269 
2270 static void do_pci_disable_device(struct pci_dev *dev)
2271 {
2272 	u16 pci_command;
2273 
2274 	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2275 	if (pci_command & PCI_COMMAND_MASTER) {
2276 		pci_command &= ~PCI_COMMAND_MASTER;
2277 		pci_write_config_word(dev, PCI_COMMAND, pci_command);
2278 	}
2279 
2280 	pcibios_disable_device(dev);
2281 }
2282 
2283 /**
2284  * pci_disable_enabled_device - Disable device without updating enable_cnt
2285  * @dev: PCI device to disable
2286  *
2287  * NOTE: This function is a backend of PCI power management routines and is
2288  * not supposed to be called drivers.
2289  */
2290 void pci_disable_enabled_device(struct pci_dev *dev)
2291 {
2292 	if (pci_is_enabled(dev))
2293 		do_pci_disable_device(dev);
2294 }
2295 
2296 /**
2297  * pci_disable_device - Disable PCI device after use
2298  * @dev: PCI device to be disabled
2299  *
2300  * Signal to the system that the PCI device is not in use by the system
2301  * anymore.  This only involves disabling PCI bus-mastering, if active.
2302  *
2303  * Note we don't actually disable the device until all callers of
2304  * pci_enable_device() have called pci_disable_device().
2305  */
2306 void pci_disable_device(struct pci_dev *dev)
2307 {
2308 	struct pci_devres *dr;
2309 
2310 	dr = find_pci_dr(dev);
2311 	if (dr)
2312 		dr->enabled = 0;
2313 
2314 	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2315 		      "disabling already-disabled device");
2316 
2317 	if (atomic_dec_return(&dev->enable_cnt) != 0)
2318 		return;
2319 
2320 	do_pci_disable_device(dev);
2321 
2322 	dev->is_busmaster = 0;
2323 }
2324 EXPORT_SYMBOL(pci_disable_device);
2325 
2326 /**
2327  * pcibios_set_pcie_reset_state - set reset state for device dev
2328  * @dev: the PCIe device reset
2329  * @state: Reset state to enter into
2330  *
2331  * Set the PCIe reset state for the device. This is the default
2332  * implementation. Architecture implementations can override this.
2333  */
2334 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2335 					enum pcie_reset_state state)
2336 {
2337 	return -EINVAL;
2338 }
2339 
2340 /**
2341  * pci_set_pcie_reset_state - set reset state for device dev
2342  * @dev: the PCIe device reset
2343  * @state: Reset state to enter into
2344  *
2345  * Sets the PCI reset state for the device.
2346  */
2347 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2348 {
2349 	return pcibios_set_pcie_reset_state(dev, state);
2350 }
2351 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2352 
2353 #ifdef CONFIG_PCIEAER
2354 void pcie_clear_device_status(struct pci_dev *dev)
2355 {
2356 	u16 sta;
2357 
2358 	pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2359 	pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2360 }
2361 #endif
2362 
2363 /**
2364  * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2365  * @dev: PCIe root port or event collector.
2366  */
2367 void pcie_clear_root_pme_status(struct pci_dev *dev)
2368 {
2369 	pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2370 }
2371 
2372 /**
2373  * pci_check_pme_status - Check if given device has generated PME.
2374  * @dev: Device to check.
2375  *
2376  * Check the PME status of the device and if set, clear it and clear PME enable
2377  * (if set).  Return 'true' if PME status and PME enable were both set or
2378  * 'false' otherwise.
2379  */
2380 bool pci_check_pme_status(struct pci_dev *dev)
2381 {
2382 	int pmcsr_pos;
2383 	u16 pmcsr;
2384 	bool ret = false;
2385 
2386 	if (!dev->pm_cap)
2387 		return false;
2388 
2389 	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2390 	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2391 	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2392 		return false;
2393 
2394 	/* Clear PME status. */
2395 	pmcsr |= PCI_PM_CTRL_PME_STATUS;
2396 	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2397 		/* Disable PME to avoid interrupt flood. */
2398 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2399 		ret = true;
2400 	}
2401 
2402 	pci_write_config_word(dev, pmcsr_pos, pmcsr);
2403 
2404 	return ret;
2405 }
2406 
2407 /**
2408  * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2409  * @dev: Device to handle.
2410  * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2411  *
2412  * Check if @dev has generated PME and queue a resume request for it in that
2413  * case.
2414  */
2415 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2416 {
2417 	if (pme_poll_reset && dev->pme_poll)
2418 		dev->pme_poll = false;
2419 
2420 	if (pci_check_pme_status(dev)) {
2421 		pci_wakeup_event(dev);
2422 		pm_request_resume(&dev->dev);
2423 	}
2424 	return 0;
2425 }
2426 
2427 /**
2428  * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2429  * @bus: Top bus of the subtree to walk.
2430  */
2431 void pci_pme_wakeup_bus(struct pci_bus *bus)
2432 {
2433 	if (bus)
2434 		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2435 }
2436 
2437 
2438 /**
2439  * pci_pme_capable - check the capability of PCI device to generate PME#
2440  * @dev: PCI device to handle.
2441  * @state: PCI state from which device will issue PME#.
2442  */
2443 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2444 {
2445 	if (!dev->pm_cap)
2446 		return false;
2447 
2448 	return !!(dev->pme_support & (1 << state));
2449 }
2450 EXPORT_SYMBOL(pci_pme_capable);
2451 
2452 static void pci_pme_list_scan(struct work_struct *work)
2453 {
2454 	struct pci_pme_device *pme_dev, *n;
2455 
2456 	mutex_lock(&pci_pme_list_mutex);
2457 	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2458 		struct pci_dev *pdev = pme_dev->dev;
2459 
2460 		if (pdev->pme_poll) {
2461 			struct pci_dev *bridge = pdev->bus->self;
2462 			struct device *dev = &pdev->dev;
2463 			struct device *bdev = bridge ? &bridge->dev : NULL;
2464 			int bref = 0;
2465 
2466 			/*
2467 			 * If we have a bridge, it should be in an active/D0
2468 			 * state or the configuration space of subordinate
2469 			 * devices may not be accessible or stable over the
2470 			 * course of the call.
2471 			 */
2472 			if (bdev) {
2473 				bref = pm_runtime_get_if_active(bdev, true);
2474 				if (!bref)
2475 					continue;
2476 
2477 				if (bridge->current_state != PCI_D0)
2478 					goto put_bridge;
2479 			}
2480 
2481 			/*
2482 			 * The device itself should be suspended but config
2483 			 * space must be accessible, therefore it cannot be in
2484 			 * D3cold.
2485 			 */
2486 			if (pm_runtime_suspended(dev) &&
2487 			    pdev->current_state != PCI_D3cold)
2488 				pci_pme_wakeup(pdev, NULL);
2489 
2490 put_bridge:
2491 			if (bref > 0)
2492 				pm_runtime_put(bdev);
2493 		} else {
2494 			list_del(&pme_dev->list);
2495 			kfree(pme_dev);
2496 		}
2497 	}
2498 	if (!list_empty(&pci_pme_list))
2499 		queue_delayed_work(system_freezable_wq, &pci_pme_work,
2500 				   msecs_to_jiffies(PME_TIMEOUT));
2501 	mutex_unlock(&pci_pme_list_mutex);
2502 }
2503 
2504 static void __pci_pme_active(struct pci_dev *dev, bool enable)
2505 {
2506 	u16 pmcsr;
2507 
2508 	if (!dev->pme_support)
2509 		return;
2510 
2511 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2512 	/* Clear PME_Status by writing 1 to it and enable PME# */
2513 	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2514 	if (!enable)
2515 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2516 
2517 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2518 }
2519 
2520 /**
2521  * pci_pme_restore - Restore PME configuration after config space restore.
2522  * @dev: PCI device to update.
2523  */
2524 void pci_pme_restore(struct pci_dev *dev)
2525 {
2526 	u16 pmcsr;
2527 
2528 	if (!dev->pme_support)
2529 		return;
2530 
2531 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2532 	if (dev->wakeup_prepared) {
2533 		pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2534 		pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2535 	} else {
2536 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2537 		pmcsr |= PCI_PM_CTRL_PME_STATUS;
2538 	}
2539 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2540 }
2541 
2542 /**
2543  * pci_pme_active - enable or disable PCI device's PME# function
2544  * @dev: PCI device to handle.
2545  * @enable: 'true' to enable PME# generation; 'false' to disable it.
2546  *
2547  * The caller must verify that the device is capable of generating PME# before
2548  * calling this function with @enable equal to 'true'.
2549  */
2550 void pci_pme_active(struct pci_dev *dev, bool enable)
2551 {
2552 	__pci_pme_active(dev, enable);
2553 
2554 	/*
2555 	 * PCI (as opposed to PCIe) PME requires that the device have
2556 	 * its PME# line hooked up correctly. Not all hardware vendors
2557 	 * do this, so the PME never gets delivered and the device
2558 	 * remains asleep. The easiest way around this is to
2559 	 * periodically walk the list of suspended devices and check
2560 	 * whether any have their PME flag set. The assumption is that
2561 	 * we'll wake up often enough anyway that this won't be a huge
2562 	 * hit, and the power savings from the devices will still be a
2563 	 * win.
2564 	 *
2565 	 * Although PCIe uses in-band PME message instead of PME# line
2566 	 * to report PME, PME does not work for some PCIe devices in
2567 	 * reality.  For example, there are devices that set their PME
2568 	 * status bits, but don't really bother to send a PME message;
2569 	 * there are PCI Express Root Ports that don't bother to
2570 	 * trigger interrupts when they receive PME messages from the
2571 	 * devices below.  So PME poll is used for PCIe devices too.
2572 	 */
2573 
2574 	if (dev->pme_poll) {
2575 		struct pci_pme_device *pme_dev;
2576 		if (enable) {
2577 			pme_dev = kmalloc(sizeof(struct pci_pme_device),
2578 					  GFP_KERNEL);
2579 			if (!pme_dev) {
2580 				pci_warn(dev, "can't enable PME#\n");
2581 				return;
2582 			}
2583 			pme_dev->dev = dev;
2584 			mutex_lock(&pci_pme_list_mutex);
2585 			list_add(&pme_dev->list, &pci_pme_list);
2586 			if (list_is_singular(&pci_pme_list))
2587 				queue_delayed_work(system_freezable_wq,
2588 						   &pci_pme_work,
2589 						   msecs_to_jiffies(PME_TIMEOUT));
2590 			mutex_unlock(&pci_pme_list_mutex);
2591 		} else {
2592 			mutex_lock(&pci_pme_list_mutex);
2593 			list_for_each_entry(pme_dev, &pci_pme_list, list) {
2594 				if (pme_dev->dev == dev) {
2595 					list_del(&pme_dev->list);
2596 					kfree(pme_dev);
2597 					break;
2598 				}
2599 			}
2600 			mutex_unlock(&pci_pme_list_mutex);
2601 		}
2602 	}
2603 
2604 	pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2605 }
2606 EXPORT_SYMBOL(pci_pme_active);
2607 
2608 /**
2609  * __pci_enable_wake - enable PCI device as wakeup event source
2610  * @dev: PCI device affected
2611  * @state: PCI state from which device will issue wakeup events
2612  * @enable: True to enable event generation; false to disable
2613  *
2614  * This enables the device as a wakeup event source, or disables it.
2615  * When such events involves platform-specific hooks, those hooks are
2616  * called automatically by this routine.
2617  *
2618  * Devices with legacy power management (no standard PCI PM capabilities)
2619  * always require such platform hooks.
2620  *
2621  * RETURN VALUE:
2622  * 0 is returned on success
2623  * -EINVAL is returned if device is not supposed to wake up the system
2624  * Error code depending on the platform is returned if both the platform and
2625  * the native mechanism fail to enable the generation of wake-up events
2626  */
2627 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2628 {
2629 	int ret = 0;
2630 
2631 	/*
2632 	 * Bridges that are not power-manageable directly only signal
2633 	 * wakeup on behalf of subordinate devices which is set up
2634 	 * elsewhere, so skip them. However, bridges that are
2635 	 * power-manageable may signal wakeup for themselves (for example,
2636 	 * on a hotplug event) and they need to be covered here.
2637 	 */
2638 	if (!pci_power_manageable(dev))
2639 		return 0;
2640 
2641 	/* Don't do the same thing twice in a row for one device. */
2642 	if (!!enable == !!dev->wakeup_prepared)
2643 		return 0;
2644 
2645 	/*
2646 	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2647 	 * Anderson we should be doing PME# wake enable followed by ACPI wake
2648 	 * enable.  To disable wake-up we call the platform first, for symmetry.
2649 	 */
2650 
2651 	if (enable) {
2652 		int error;
2653 
2654 		/*
2655 		 * Enable PME signaling if the device can signal PME from
2656 		 * D3cold regardless of whether or not it can signal PME from
2657 		 * the current target state, because that will allow it to
2658 		 * signal PME when the hierarchy above it goes into D3cold and
2659 		 * the device itself ends up in D3cold as a result of that.
2660 		 */
2661 		if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold))
2662 			pci_pme_active(dev, true);
2663 		else
2664 			ret = 1;
2665 		error = platform_pci_set_wakeup(dev, true);
2666 		if (ret)
2667 			ret = error;
2668 		if (!ret)
2669 			dev->wakeup_prepared = true;
2670 	} else {
2671 		platform_pci_set_wakeup(dev, false);
2672 		pci_pme_active(dev, false);
2673 		dev->wakeup_prepared = false;
2674 	}
2675 
2676 	return ret;
2677 }
2678 
2679 /**
2680  * pci_enable_wake - change wakeup settings for a PCI device
2681  * @pci_dev: Target device
2682  * @state: PCI state from which device will issue wakeup events
2683  * @enable: Whether or not to enable event generation
2684  *
2685  * If @enable is set, check device_may_wakeup() for the device before calling
2686  * __pci_enable_wake() for it.
2687  */
2688 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2689 {
2690 	if (enable && !device_may_wakeup(&pci_dev->dev))
2691 		return -EINVAL;
2692 
2693 	return __pci_enable_wake(pci_dev, state, enable);
2694 }
2695 EXPORT_SYMBOL(pci_enable_wake);
2696 
2697 /**
2698  * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2699  * @dev: PCI device to prepare
2700  * @enable: True to enable wake-up event generation; false to disable
2701  *
2702  * Many drivers want the device to wake up the system from D3_hot or D3_cold
2703  * and this function allows them to set that up cleanly - pci_enable_wake()
2704  * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2705  * ordering constraints.
2706  *
2707  * This function only returns error code if the device is not allowed to wake
2708  * up the system from sleep or it is not capable of generating PME# from both
2709  * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2710  */
2711 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2712 {
2713 	return pci_pme_capable(dev, PCI_D3cold) ?
2714 			pci_enable_wake(dev, PCI_D3cold, enable) :
2715 			pci_enable_wake(dev, PCI_D3hot, enable);
2716 }
2717 EXPORT_SYMBOL(pci_wake_from_d3);
2718 
2719 /**
2720  * pci_target_state - find an appropriate low power state for a given PCI dev
2721  * @dev: PCI device
2722  * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2723  *
2724  * Use underlying platform code to find a supported low power state for @dev.
2725  * If the platform can't manage @dev, return the deepest state from which it
2726  * can generate wake events, based on any available PME info.
2727  */
2728 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2729 {
2730 	if (platform_pci_power_manageable(dev)) {
2731 		/*
2732 		 * Call the platform to find the target state for the device.
2733 		 */
2734 		pci_power_t state = platform_pci_choose_state(dev);
2735 
2736 		switch (state) {
2737 		case PCI_POWER_ERROR:
2738 		case PCI_UNKNOWN:
2739 			return PCI_D3hot;
2740 
2741 		case PCI_D1:
2742 		case PCI_D2:
2743 			if (pci_no_d1d2(dev))
2744 				return PCI_D3hot;
2745 		}
2746 
2747 		return state;
2748 	}
2749 
2750 	/*
2751 	 * If the device is in D3cold even though it's not power-manageable by
2752 	 * the platform, it may have been powered down by non-standard means.
2753 	 * Best to let it slumber.
2754 	 */
2755 	if (dev->current_state == PCI_D3cold)
2756 		return PCI_D3cold;
2757 	else if (!dev->pm_cap)
2758 		return PCI_D0;
2759 
2760 	if (wakeup && dev->pme_support) {
2761 		pci_power_t state = PCI_D3hot;
2762 
2763 		/*
2764 		 * Find the deepest state from which the device can generate
2765 		 * PME#.
2766 		 */
2767 		while (state && !(dev->pme_support & (1 << state)))
2768 			state--;
2769 
2770 		if (state)
2771 			return state;
2772 		else if (dev->pme_support & 1)
2773 			return PCI_D0;
2774 	}
2775 
2776 	return PCI_D3hot;
2777 }
2778 
2779 /**
2780  * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2781  *			  into a sleep state
2782  * @dev: Device to handle.
2783  *
2784  * Choose the power state appropriate for the device depending on whether
2785  * it can wake up the system and/or is power manageable by the platform
2786  * (PCI_D3hot is the default) and put the device into that state.
2787  */
2788 int pci_prepare_to_sleep(struct pci_dev *dev)
2789 {
2790 	bool wakeup = device_may_wakeup(&dev->dev);
2791 	pci_power_t target_state = pci_target_state(dev, wakeup);
2792 	int error;
2793 
2794 	if (target_state == PCI_POWER_ERROR)
2795 		return -EIO;
2796 
2797 	pci_enable_wake(dev, target_state, wakeup);
2798 
2799 	error = pci_set_power_state(dev, target_state);
2800 
2801 	if (error)
2802 		pci_enable_wake(dev, target_state, false);
2803 
2804 	return error;
2805 }
2806 EXPORT_SYMBOL(pci_prepare_to_sleep);
2807 
2808 /**
2809  * pci_back_from_sleep - turn PCI device on during system-wide transition
2810  *			 into working state
2811  * @dev: Device to handle.
2812  *
2813  * Disable device's system wake-up capability and put it into D0.
2814  */
2815 int pci_back_from_sleep(struct pci_dev *dev)
2816 {
2817 	int ret = pci_set_power_state(dev, PCI_D0);
2818 
2819 	if (ret)
2820 		return ret;
2821 
2822 	pci_enable_wake(dev, PCI_D0, false);
2823 	return 0;
2824 }
2825 EXPORT_SYMBOL(pci_back_from_sleep);
2826 
2827 /**
2828  * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2829  * @dev: PCI device being suspended.
2830  *
2831  * Prepare @dev to generate wake-up events at run time and put it into a low
2832  * power state.
2833  */
2834 int pci_finish_runtime_suspend(struct pci_dev *dev)
2835 {
2836 	pci_power_t target_state;
2837 	int error;
2838 
2839 	target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2840 	if (target_state == PCI_POWER_ERROR)
2841 		return -EIO;
2842 
2843 	__pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2844 
2845 	error = pci_set_power_state(dev, target_state);
2846 
2847 	if (error)
2848 		pci_enable_wake(dev, target_state, false);
2849 
2850 	return error;
2851 }
2852 
2853 /**
2854  * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2855  * @dev: Device to check.
2856  *
2857  * Return true if the device itself is capable of generating wake-up events
2858  * (through the platform or using the native PCIe PME) or if the device supports
2859  * PME and one of its upstream bridges can generate wake-up events.
2860  */
2861 bool pci_dev_run_wake(struct pci_dev *dev)
2862 {
2863 	struct pci_bus *bus = dev->bus;
2864 
2865 	if (!dev->pme_support)
2866 		return false;
2867 
2868 	/* PME-capable in principle, but not from the target power state */
2869 	if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2870 		return false;
2871 
2872 	if (device_can_wakeup(&dev->dev))
2873 		return true;
2874 
2875 	while (bus->parent) {
2876 		struct pci_dev *bridge = bus->self;
2877 
2878 		if (device_can_wakeup(&bridge->dev))
2879 			return true;
2880 
2881 		bus = bus->parent;
2882 	}
2883 
2884 	/* We have reached the root bus. */
2885 	if (bus->bridge)
2886 		return device_can_wakeup(bus->bridge);
2887 
2888 	return false;
2889 }
2890 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2891 
2892 /**
2893  * pci_dev_need_resume - Check if it is necessary to resume the device.
2894  * @pci_dev: Device to check.
2895  *
2896  * Return 'true' if the device is not runtime-suspended or it has to be
2897  * reconfigured due to wakeup settings difference between system and runtime
2898  * suspend, or the current power state of it is not suitable for the upcoming
2899  * (system-wide) transition.
2900  */
2901 bool pci_dev_need_resume(struct pci_dev *pci_dev)
2902 {
2903 	struct device *dev = &pci_dev->dev;
2904 	pci_power_t target_state;
2905 
2906 	if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2907 		return true;
2908 
2909 	target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2910 
2911 	/*
2912 	 * If the earlier platform check has not triggered, D3cold is just power
2913 	 * removal on top of D3hot, so no need to resume the device in that
2914 	 * case.
2915 	 */
2916 	return target_state != pci_dev->current_state &&
2917 		target_state != PCI_D3cold &&
2918 		pci_dev->current_state != PCI_D3hot;
2919 }
2920 
2921 /**
2922  * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2923  * @pci_dev: Device to check.
2924  *
2925  * If the device is suspended and it is not configured for system wakeup,
2926  * disable PME for it to prevent it from waking up the system unnecessarily.
2927  *
2928  * Note that if the device's power state is D3cold and the platform check in
2929  * pci_dev_need_resume() has not triggered, the device's configuration need not
2930  * be changed.
2931  */
2932 void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2933 {
2934 	struct device *dev = &pci_dev->dev;
2935 
2936 	spin_lock_irq(&dev->power.lock);
2937 
2938 	if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2939 	    pci_dev->current_state < PCI_D3cold)
2940 		__pci_pme_active(pci_dev, false);
2941 
2942 	spin_unlock_irq(&dev->power.lock);
2943 }
2944 
2945 /**
2946  * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2947  * @pci_dev: Device to handle.
2948  *
2949  * If the device is runtime suspended and wakeup-capable, enable PME for it as
2950  * it might have been disabled during the prepare phase of system suspend if
2951  * the device was not configured for system wakeup.
2952  */
2953 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2954 {
2955 	struct device *dev = &pci_dev->dev;
2956 
2957 	if (!pci_dev_run_wake(pci_dev))
2958 		return;
2959 
2960 	spin_lock_irq(&dev->power.lock);
2961 
2962 	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2963 		__pci_pme_active(pci_dev, true);
2964 
2965 	spin_unlock_irq(&dev->power.lock);
2966 }
2967 
2968 /**
2969  * pci_choose_state - Choose the power state of a PCI device.
2970  * @dev: Target PCI device.
2971  * @state: Target state for the whole system.
2972  *
2973  * Returns PCI power state suitable for @dev and @state.
2974  */
2975 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
2976 {
2977 	if (state.event == PM_EVENT_ON)
2978 		return PCI_D0;
2979 
2980 	return pci_target_state(dev, false);
2981 }
2982 EXPORT_SYMBOL(pci_choose_state);
2983 
2984 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2985 {
2986 	struct device *dev = &pdev->dev;
2987 	struct device *parent = dev->parent;
2988 
2989 	if (parent)
2990 		pm_runtime_get_sync(parent);
2991 	pm_runtime_get_noresume(dev);
2992 	/*
2993 	 * pdev->current_state is set to PCI_D3cold during suspending,
2994 	 * so wait until suspending completes
2995 	 */
2996 	pm_runtime_barrier(dev);
2997 	/*
2998 	 * Only need to resume devices in D3cold, because config
2999 	 * registers are still accessible for devices suspended but
3000 	 * not in D3cold.
3001 	 */
3002 	if (pdev->current_state == PCI_D3cold)
3003 		pm_runtime_resume(dev);
3004 }
3005 
3006 void pci_config_pm_runtime_put(struct pci_dev *pdev)
3007 {
3008 	struct device *dev = &pdev->dev;
3009 	struct device *parent = dev->parent;
3010 
3011 	pm_runtime_put(dev);
3012 	if (parent)
3013 		pm_runtime_put_sync(parent);
3014 }
3015 
3016 static const struct dmi_system_id bridge_d3_blacklist[] = {
3017 #ifdef CONFIG_X86
3018 	{
3019 		/*
3020 		 * Gigabyte X299 root port is not marked as hotplug capable
3021 		 * which allows Linux to power manage it.  However, this
3022 		 * confuses the BIOS SMI handler so don't power manage root
3023 		 * ports on that system.
3024 		 */
3025 		.ident = "X299 DESIGNARE EX-CF",
3026 		.matches = {
3027 			DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
3028 			DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
3029 		},
3030 	},
3031 	{
3032 		/*
3033 		 * Downstream device is not accessible after putting a root port
3034 		 * into D3cold and back into D0 on Elo Continental Z2 board
3035 		 */
3036 		.ident = "Elo Continental Z2",
3037 		.matches = {
3038 			DMI_MATCH(DMI_BOARD_VENDOR, "Elo Touch Solutions"),
3039 			DMI_MATCH(DMI_BOARD_NAME, "Geminilake"),
3040 			DMI_MATCH(DMI_BOARD_VERSION, "Continental Z2"),
3041 		},
3042 	},
3043 #endif
3044 	{ }
3045 };
3046 
3047 /**
3048  * pci_bridge_d3_possible - Is it possible to put the bridge into D3
3049  * @bridge: Bridge to check
3050  *
3051  * This function checks if it is possible to move the bridge to D3.
3052  * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
3053  */
3054 bool pci_bridge_d3_possible(struct pci_dev *bridge)
3055 {
3056 	if (!pci_is_pcie(bridge))
3057 		return false;
3058 
3059 	switch (pci_pcie_type(bridge)) {
3060 	case PCI_EXP_TYPE_ROOT_PORT:
3061 	case PCI_EXP_TYPE_UPSTREAM:
3062 	case PCI_EXP_TYPE_DOWNSTREAM:
3063 		if (pci_bridge_d3_disable)
3064 			return false;
3065 
3066 		/*
3067 		 * Hotplug ports handled by firmware in System Management Mode
3068 		 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
3069 		 */
3070 		if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
3071 			return false;
3072 
3073 		if (pci_bridge_d3_force)
3074 			return true;
3075 
3076 		/* Even the oldest 2010 Thunderbolt controller supports D3. */
3077 		if (bridge->is_thunderbolt)
3078 			return true;
3079 
3080 		/* Platform might know better if the bridge supports D3 */
3081 		if (platform_pci_bridge_d3(bridge))
3082 			return true;
3083 
3084 		/*
3085 		 * Hotplug ports handled natively by the OS were not validated
3086 		 * by vendors for runtime D3 at least until 2018 because there
3087 		 * was no OS support.
3088 		 */
3089 		if (bridge->is_hotplug_bridge)
3090 			return false;
3091 
3092 		if (dmi_check_system(bridge_d3_blacklist))
3093 			return false;
3094 
3095 		/*
3096 		 * It should be safe to put PCIe ports from 2015 or newer
3097 		 * to D3.
3098 		 */
3099 		if (dmi_get_bios_year() >= 2015)
3100 			return true;
3101 		break;
3102 	}
3103 
3104 	return false;
3105 }
3106 
3107 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
3108 {
3109 	bool *d3cold_ok = data;
3110 
3111 	if (/* The device needs to be allowed to go D3cold ... */
3112 	    dev->no_d3cold || !dev->d3cold_allowed ||
3113 
3114 	    /* ... and if it is wakeup capable to do so from D3cold. */
3115 	    (device_may_wakeup(&dev->dev) &&
3116 	     !pci_pme_capable(dev, PCI_D3cold)) ||
3117 
3118 	    /* If it is a bridge it must be allowed to go to D3. */
3119 	    !pci_power_manageable(dev))
3120 
3121 		*d3cold_ok = false;
3122 
3123 	return !*d3cold_ok;
3124 }
3125 
3126 /*
3127  * pci_bridge_d3_update - Update bridge D3 capabilities
3128  * @dev: PCI device which is changed
3129  *
3130  * Update upstream bridge PM capabilities accordingly depending on if the
3131  * device PM configuration was changed or the device is being removed.  The
3132  * change is also propagated upstream.
3133  */
3134 void pci_bridge_d3_update(struct pci_dev *dev)
3135 {
3136 	bool remove = !device_is_registered(&dev->dev);
3137 	struct pci_dev *bridge;
3138 	bool d3cold_ok = true;
3139 
3140 	bridge = pci_upstream_bridge(dev);
3141 	if (!bridge || !pci_bridge_d3_possible(bridge))
3142 		return;
3143 
3144 	/*
3145 	 * If D3 is currently allowed for the bridge, removing one of its
3146 	 * children won't change that.
3147 	 */
3148 	if (remove && bridge->bridge_d3)
3149 		return;
3150 
3151 	/*
3152 	 * If D3 is currently allowed for the bridge and a child is added or
3153 	 * changed, disallowance of D3 can only be caused by that child, so
3154 	 * we only need to check that single device, not any of its siblings.
3155 	 *
3156 	 * If D3 is currently not allowed for the bridge, checking the device
3157 	 * first may allow us to skip checking its siblings.
3158 	 */
3159 	if (!remove)
3160 		pci_dev_check_d3cold(dev, &d3cold_ok);
3161 
3162 	/*
3163 	 * If D3 is currently not allowed for the bridge, this may be caused
3164 	 * either by the device being changed/removed or any of its siblings,
3165 	 * so we need to go through all children to find out if one of them
3166 	 * continues to block D3.
3167 	 */
3168 	if (d3cold_ok && !bridge->bridge_d3)
3169 		pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
3170 			     &d3cold_ok);
3171 
3172 	if (bridge->bridge_d3 != d3cold_ok) {
3173 		bridge->bridge_d3 = d3cold_ok;
3174 		/* Propagate change to upstream bridges */
3175 		pci_bridge_d3_update(bridge);
3176 	}
3177 }
3178 
3179 /**
3180  * pci_d3cold_enable - Enable D3cold for device
3181  * @dev: PCI device to handle
3182  *
3183  * This function can be used in drivers to enable D3cold from the device
3184  * they handle.  It also updates upstream PCI bridge PM capabilities
3185  * accordingly.
3186  */
3187 void pci_d3cold_enable(struct pci_dev *dev)
3188 {
3189 	if (dev->no_d3cold) {
3190 		dev->no_d3cold = false;
3191 		pci_bridge_d3_update(dev);
3192 	}
3193 }
3194 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
3195 
3196 /**
3197  * pci_d3cold_disable - Disable D3cold for device
3198  * @dev: PCI device to handle
3199  *
3200  * This function can be used in drivers to disable D3cold from the device
3201  * they handle.  It also updates upstream PCI bridge PM capabilities
3202  * accordingly.
3203  */
3204 void pci_d3cold_disable(struct pci_dev *dev)
3205 {
3206 	if (!dev->no_d3cold) {
3207 		dev->no_d3cold = true;
3208 		pci_bridge_d3_update(dev);
3209 	}
3210 }
3211 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3212 
3213 /**
3214  * pci_pm_init - Initialize PM functions of given PCI device
3215  * @dev: PCI device to handle.
3216  */
3217 void pci_pm_init(struct pci_dev *dev)
3218 {
3219 	int pm;
3220 	u16 status;
3221 	u16 pmc;
3222 
3223 	pm_runtime_forbid(&dev->dev);
3224 	pm_runtime_set_active(&dev->dev);
3225 	pm_runtime_enable(&dev->dev);
3226 	device_enable_async_suspend(&dev->dev);
3227 	dev->wakeup_prepared = false;
3228 
3229 	dev->pm_cap = 0;
3230 	dev->pme_support = 0;
3231 
3232 	/* find PCI PM capability in list */
3233 	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3234 	if (!pm)
3235 		return;
3236 	/* Check device's ability to generate PME# */
3237 	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3238 
3239 	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3240 		pci_err(dev, "unsupported PM cap regs version (%u)\n",
3241 			pmc & PCI_PM_CAP_VER_MASK);
3242 		return;
3243 	}
3244 
3245 	dev->pm_cap = pm;
3246 	dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3247 	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3248 	dev->bridge_d3 = pci_bridge_d3_possible(dev);
3249 	dev->d3cold_allowed = true;
3250 
3251 	dev->d1_support = false;
3252 	dev->d2_support = false;
3253 	if (!pci_no_d1d2(dev)) {
3254 		if (pmc & PCI_PM_CAP_D1)
3255 			dev->d1_support = true;
3256 		if (pmc & PCI_PM_CAP_D2)
3257 			dev->d2_support = true;
3258 
3259 		if (dev->d1_support || dev->d2_support)
3260 			pci_info(dev, "supports%s%s\n",
3261 				   dev->d1_support ? " D1" : "",
3262 				   dev->d2_support ? " D2" : "");
3263 	}
3264 
3265 	pmc &= PCI_PM_CAP_PME_MASK;
3266 	if (pmc) {
3267 		pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3268 			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3269 			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3270 			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3271 			 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3272 			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3273 		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
3274 		dev->pme_poll = true;
3275 		/*
3276 		 * Make device's PM flags reflect the wake-up capability, but
3277 		 * let the user space enable it to wake up the system as needed.
3278 		 */
3279 		device_set_wakeup_capable(&dev->dev, true);
3280 		/* Disable the PME# generation functionality */
3281 		pci_pme_active(dev, false);
3282 	}
3283 
3284 	pci_read_config_word(dev, PCI_STATUS, &status);
3285 	if (status & PCI_STATUS_IMM_READY)
3286 		dev->imm_ready = 1;
3287 }
3288 
3289 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3290 {
3291 	unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3292 
3293 	switch (prop) {
3294 	case PCI_EA_P_MEM:
3295 	case PCI_EA_P_VF_MEM:
3296 		flags |= IORESOURCE_MEM;
3297 		break;
3298 	case PCI_EA_P_MEM_PREFETCH:
3299 	case PCI_EA_P_VF_MEM_PREFETCH:
3300 		flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3301 		break;
3302 	case PCI_EA_P_IO:
3303 		flags |= IORESOURCE_IO;
3304 		break;
3305 	default:
3306 		return 0;
3307 	}
3308 
3309 	return flags;
3310 }
3311 
3312 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3313 					    u8 prop)
3314 {
3315 	if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3316 		return &dev->resource[bei];
3317 #ifdef CONFIG_PCI_IOV
3318 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3319 		 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3320 		return &dev->resource[PCI_IOV_RESOURCES +
3321 				      bei - PCI_EA_BEI_VF_BAR0];
3322 #endif
3323 	else if (bei == PCI_EA_BEI_ROM)
3324 		return &dev->resource[PCI_ROM_RESOURCE];
3325 	else
3326 		return NULL;
3327 }
3328 
3329 /* Read an Enhanced Allocation (EA) entry */
3330 static int pci_ea_read(struct pci_dev *dev, int offset)
3331 {
3332 	struct resource *res;
3333 	int ent_size, ent_offset = offset;
3334 	resource_size_t start, end;
3335 	unsigned long flags;
3336 	u32 dw0, bei, base, max_offset;
3337 	u8 prop;
3338 	bool support_64 = (sizeof(resource_size_t) >= 8);
3339 
3340 	pci_read_config_dword(dev, ent_offset, &dw0);
3341 	ent_offset += 4;
3342 
3343 	/* Entry size field indicates DWORDs after 1st */
3344 	ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
3345 
3346 	if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3347 		goto out;
3348 
3349 	bei = (dw0 & PCI_EA_BEI) >> 4;
3350 	prop = (dw0 & PCI_EA_PP) >> 8;
3351 
3352 	/*
3353 	 * If the Property is in the reserved range, try the Secondary
3354 	 * Property instead.
3355 	 */
3356 	if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3357 		prop = (dw0 & PCI_EA_SP) >> 16;
3358 	if (prop > PCI_EA_P_BRIDGE_IO)
3359 		goto out;
3360 
3361 	res = pci_ea_get_resource(dev, bei, prop);
3362 	if (!res) {
3363 		pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3364 		goto out;
3365 	}
3366 
3367 	flags = pci_ea_flags(dev, prop);
3368 	if (!flags) {
3369 		pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3370 		goto out;
3371 	}
3372 
3373 	/* Read Base */
3374 	pci_read_config_dword(dev, ent_offset, &base);
3375 	start = (base & PCI_EA_FIELD_MASK);
3376 	ent_offset += 4;
3377 
3378 	/* Read MaxOffset */
3379 	pci_read_config_dword(dev, ent_offset, &max_offset);
3380 	ent_offset += 4;
3381 
3382 	/* Read Base MSBs (if 64-bit entry) */
3383 	if (base & PCI_EA_IS_64) {
3384 		u32 base_upper;
3385 
3386 		pci_read_config_dword(dev, ent_offset, &base_upper);
3387 		ent_offset += 4;
3388 
3389 		flags |= IORESOURCE_MEM_64;
3390 
3391 		/* entry starts above 32-bit boundary, can't use */
3392 		if (!support_64 && base_upper)
3393 			goto out;
3394 
3395 		if (support_64)
3396 			start |= ((u64)base_upper << 32);
3397 	}
3398 
3399 	end = start + (max_offset | 0x03);
3400 
3401 	/* Read MaxOffset MSBs (if 64-bit entry) */
3402 	if (max_offset & PCI_EA_IS_64) {
3403 		u32 max_offset_upper;
3404 
3405 		pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3406 		ent_offset += 4;
3407 
3408 		flags |= IORESOURCE_MEM_64;
3409 
3410 		/* entry too big, can't use */
3411 		if (!support_64 && max_offset_upper)
3412 			goto out;
3413 
3414 		if (support_64)
3415 			end += ((u64)max_offset_upper << 32);
3416 	}
3417 
3418 	if (end < start) {
3419 		pci_err(dev, "EA Entry crosses address boundary\n");
3420 		goto out;
3421 	}
3422 
3423 	if (ent_size != ent_offset - offset) {
3424 		pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3425 			ent_size, ent_offset - offset);
3426 		goto out;
3427 	}
3428 
3429 	res->name = pci_name(dev);
3430 	res->start = start;
3431 	res->end = end;
3432 	res->flags = flags;
3433 
3434 	if (bei <= PCI_EA_BEI_BAR5)
3435 		pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3436 			   bei, res, prop);
3437 	else if (bei == PCI_EA_BEI_ROM)
3438 		pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3439 			   res, prop);
3440 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3441 		pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3442 			   bei - PCI_EA_BEI_VF_BAR0, res, prop);
3443 	else
3444 		pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3445 			   bei, res, prop);
3446 
3447 out:
3448 	return offset + ent_size;
3449 }
3450 
3451 /* Enhanced Allocation Initialization */
3452 void pci_ea_init(struct pci_dev *dev)
3453 {
3454 	int ea;
3455 	u8 num_ent;
3456 	int offset;
3457 	int i;
3458 
3459 	/* find PCI EA capability in list */
3460 	ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3461 	if (!ea)
3462 		return;
3463 
3464 	/* determine the number of entries */
3465 	pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3466 					&num_ent);
3467 	num_ent &= PCI_EA_NUM_ENT_MASK;
3468 
3469 	offset = ea + PCI_EA_FIRST_ENT;
3470 
3471 	/* Skip DWORD 2 for type 1 functions */
3472 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3473 		offset += 4;
3474 
3475 	/* parse each EA entry */
3476 	for (i = 0; i < num_ent; ++i)
3477 		offset = pci_ea_read(dev, offset);
3478 }
3479 
3480 static void pci_add_saved_cap(struct pci_dev *pci_dev,
3481 	struct pci_cap_saved_state *new_cap)
3482 {
3483 	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3484 }
3485 
3486 /**
3487  * _pci_add_cap_save_buffer - allocate buffer for saving given
3488  *			      capability registers
3489  * @dev: the PCI device
3490  * @cap: the capability to allocate the buffer for
3491  * @extended: Standard or Extended capability ID
3492  * @size: requested size of the buffer
3493  */
3494 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3495 				    bool extended, unsigned int size)
3496 {
3497 	int pos;
3498 	struct pci_cap_saved_state *save_state;
3499 
3500 	if (extended)
3501 		pos = pci_find_ext_capability(dev, cap);
3502 	else
3503 		pos = pci_find_capability(dev, cap);
3504 
3505 	if (!pos)
3506 		return 0;
3507 
3508 	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3509 	if (!save_state)
3510 		return -ENOMEM;
3511 
3512 	save_state->cap.cap_nr = cap;
3513 	save_state->cap.cap_extended = extended;
3514 	save_state->cap.size = size;
3515 	pci_add_saved_cap(dev, save_state);
3516 
3517 	return 0;
3518 }
3519 
3520 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3521 {
3522 	return _pci_add_cap_save_buffer(dev, cap, false, size);
3523 }
3524 
3525 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3526 {
3527 	return _pci_add_cap_save_buffer(dev, cap, true, size);
3528 }
3529 
3530 /**
3531  * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3532  * @dev: the PCI device
3533  */
3534 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3535 {
3536 	int error;
3537 
3538 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3539 					PCI_EXP_SAVE_REGS * sizeof(u16));
3540 	if (error)
3541 		pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3542 
3543 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3544 	if (error)
3545 		pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3546 
3547 	error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3548 					    2 * sizeof(u16));
3549 	if (error)
3550 		pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3551 
3552 	pci_allocate_vc_save_buffers(dev);
3553 }
3554 
3555 void pci_free_cap_save_buffers(struct pci_dev *dev)
3556 {
3557 	struct pci_cap_saved_state *tmp;
3558 	struct hlist_node *n;
3559 
3560 	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3561 		kfree(tmp);
3562 }
3563 
3564 /**
3565  * pci_configure_ari - enable or disable ARI forwarding
3566  * @dev: the PCI device
3567  *
3568  * If @dev and its upstream bridge both support ARI, enable ARI in the
3569  * bridge.  Otherwise, disable ARI in the bridge.
3570  */
3571 void pci_configure_ari(struct pci_dev *dev)
3572 {
3573 	u32 cap;
3574 	struct pci_dev *bridge;
3575 
3576 	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3577 		return;
3578 
3579 	bridge = dev->bus->self;
3580 	if (!bridge)
3581 		return;
3582 
3583 	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3584 	if (!(cap & PCI_EXP_DEVCAP2_ARI))
3585 		return;
3586 
3587 	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3588 		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3589 					 PCI_EXP_DEVCTL2_ARI);
3590 		bridge->ari_enabled = 1;
3591 	} else {
3592 		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3593 					   PCI_EXP_DEVCTL2_ARI);
3594 		bridge->ari_enabled = 0;
3595 	}
3596 }
3597 
3598 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3599 {
3600 	int pos;
3601 	u16 cap, ctrl;
3602 
3603 	pos = pdev->acs_cap;
3604 	if (!pos)
3605 		return false;
3606 
3607 	/*
3608 	 * Except for egress control, capabilities are either required
3609 	 * or only required if controllable.  Features missing from the
3610 	 * capability field can therefore be assumed as hard-wired enabled.
3611 	 */
3612 	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3613 	acs_flags &= (cap | PCI_ACS_EC);
3614 
3615 	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3616 	return (ctrl & acs_flags) == acs_flags;
3617 }
3618 
3619 /**
3620  * pci_acs_enabled - test ACS against required flags for a given device
3621  * @pdev: device to test
3622  * @acs_flags: required PCI ACS flags
3623  *
3624  * Return true if the device supports the provided flags.  Automatically
3625  * filters out flags that are not implemented on multifunction devices.
3626  *
3627  * Note that this interface checks the effective ACS capabilities of the
3628  * device rather than the actual capabilities.  For instance, most single
3629  * function endpoints are not required to support ACS because they have no
3630  * opportunity for peer-to-peer access.  We therefore return 'true'
3631  * regardless of whether the device exposes an ACS capability.  This makes
3632  * it much easier for callers of this function to ignore the actual type
3633  * or topology of the device when testing ACS support.
3634  */
3635 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3636 {
3637 	int ret;
3638 
3639 	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3640 	if (ret >= 0)
3641 		return ret > 0;
3642 
3643 	/*
3644 	 * Conventional PCI and PCI-X devices never support ACS, either
3645 	 * effectively or actually.  The shared bus topology implies that
3646 	 * any device on the bus can receive or snoop DMA.
3647 	 */
3648 	if (!pci_is_pcie(pdev))
3649 		return false;
3650 
3651 	switch (pci_pcie_type(pdev)) {
3652 	/*
3653 	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3654 	 * but since their primary interface is PCI/X, we conservatively
3655 	 * handle them as we would a non-PCIe device.
3656 	 */
3657 	case PCI_EXP_TYPE_PCIE_BRIDGE:
3658 	/*
3659 	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
3660 	 * applicable... must never implement an ACS Extended Capability...".
3661 	 * This seems arbitrary, but we take a conservative interpretation
3662 	 * of this statement.
3663 	 */
3664 	case PCI_EXP_TYPE_PCI_BRIDGE:
3665 	case PCI_EXP_TYPE_RC_EC:
3666 		return false;
3667 	/*
3668 	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3669 	 * implement ACS in order to indicate their peer-to-peer capabilities,
3670 	 * regardless of whether they are single- or multi-function devices.
3671 	 */
3672 	case PCI_EXP_TYPE_DOWNSTREAM:
3673 	case PCI_EXP_TYPE_ROOT_PORT:
3674 		return pci_acs_flags_enabled(pdev, acs_flags);
3675 	/*
3676 	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3677 	 * implemented by the remaining PCIe types to indicate peer-to-peer
3678 	 * capabilities, but only when they are part of a multifunction
3679 	 * device.  The footnote for section 6.12 indicates the specific
3680 	 * PCIe types included here.
3681 	 */
3682 	case PCI_EXP_TYPE_ENDPOINT:
3683 	case PCI_EXP_TYPE_UPSTREAM:
3684 	case PCI_EXP_TYPE_LEG_END:
3685 	case PCI_EXP_TYPE_RC_END:
3686 		if (!pdev->multifunction)
3687 			break;
3688 
3689 		return pci_acs_flags_enabled(pdev, acs_flags);
3690 	}
3691 
3692 	/*
3693 	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3694 	 * to single function devices with the exception of downstream ports.
3695 	 */
3696 	return true;
3697 }
3698 
3699 /**
3700  * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
3701  * @start: starting downstream device
3702  * @end: ending upstream device or NULL to search to the root bus
3703  * @acs_flags: required flags
3704  *
3705  * Walk up a device tree from start to end testing PCI ACS support.  If
3706  * any step along the way does not support the required flags, return false.
3707  */
3708 bool pci_acs_path_enabled(struct pci_dev *start,
3709 			  struct pci_dev *end, u16 acs_flags)
3710 {
3711 	struct pci_dev *pdev, *parent = start;
3712 
3713 	do {
3714 		pdev = parent;
3715 
3716 		if (!pci_acs_enabled(pdev, acs_flags))
3717 			return false;
3718 
3719 		if (pci_is_root_bus(pdev->bus))
3720 			return (end == NULL);
3721 
3722 		parent = pdev->bus->self;
3723 	} while (pdev != end);
3724 
3725 	return true;
3726 }
3727 
3728 /**
3729  * pci_acs_init - Initialize ACS if hardware supports it
3730  * @dev: the PCI device
3731  */
3732 void pci_acs_init(struct pci_dev *dev)
3733 {
3734 	dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3735 
3736 	/*
3737 	 * Attempt to enable ACS regardless of capability because some Root
3738 	 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3739 	 * the standard ACS capability but still support ACS via those
3740 	 * quirks.
3741 	 */
3742 	pci_enable_acs(dev);
3743 }
3744 
3745 /**
3746  * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3747  * @pdev: PCI device
3748  * @bar: BAR to find
3749  *
3750  * Helper to find the position of the ctrl register for a BAR.
3751  * Returns -ENOTSUPP if resizable BARs are not supported at all.
3752  * Returns -ENOENT if no ctrl register for the BAR could be found.
3753  */
3754 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3755 {
3756 	unsigned int pos, nbars, i;
3757 	u32 ctrl;
3758 
3759 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3760 	if (!pos)
3761 		return -ENOTSUPP;
3762 
3763 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3764 	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3765 		    PCI_REBAR_CTRL_NBAR_SHIFT;
3766 
3767 	for (i = 0; i < nbars; i++, pos += 8) {
3768 		int bar_idx;
3769 
3770 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3771 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3772 		if (bar_idx == bar)
3773 			return pos;
3774 	}
3775 
3776 	return -ENOENT;
3777 }
3778 
3779 /**
3780  * pci_rebar_get_possible_sizes - get possible sizes for BAR
3781  * @pdev: PCI device
3782  * @bar: BAR to query
3783  *
3784  * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3785  * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3786  */
3787 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3788 {
3789 	int pos;
3790 	u32 cap;
3791 
3792 	pos = pci_rebar_find_pos(pdev, bar);
3793 	if (pos < 0)
3794 		return 0;
3795 
3796 	pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3797 	cap = FIELD_GET(PCI_REBAR_CAP_SIZES, cap);
3798 
3799 	/* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
3800 	if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
3801 	    bar == 0 && cap == 0x700)
3802 		return 0x3f00;
3803 
3804 	return cap;
3805 }
3806 EXPORT_SYMBOL(pci_rebar_get_possible_sizes);
3807 
3808 /**
3809  * pci_rebar_get_current_size - get the current size of a BAR
3810  * @pdev: PCI device
3811  * @bar: BAR to set size to
3812  *
3813  * Read the size of a BAR from the resizable BAR config.
3814  * Returns size if found or negative error code.
3815  */
3816 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3817 {
3818 	int pos;
3819 	u32 ctrl;
3820 
3821 	pos = pci_rebar_find_pos(pdev, bar);
3822 	if (pos < 0)
3823 		return pos;
3824 
3825 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3826 	return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3827 }
3828 
3829 /**
3830  * pci_rebar_set_size - set a new size for a BAR
3831  * @pdev: PCI device
3832  * @bar: BAR to set size to
3833  * @size: new size as defined in the spec (0=1MB, 19=512GB)
3834  *
3835  * Set the new size of a BAR as defined in the spec.
3836  * Returns zero if resizing was successful, error code otherwise.
3837  */
3838 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3839 {
3840 	int pos;
3841 	u32 ctrl;
3842 
3843 	pos = pci_rebar_find_pos(pdev, bar);
3844 	if (pos < 0)
3845 		return pos;
3846 
3847 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3848 	ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3849 	ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3850 	pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3851 	return 0;
3852 }
3853 
3854 /**
3855  * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3856  * @dev: the PCI device
3857  * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3858  *	PCI_EXP_DEVCAP2_ATOMIC_COMP32
3859  *	PCI_EXP_DEVCAP2_ATOMIC_COMP64
3860  *	PCI_EXP_DEVCAP2_ATOMIC_COMP128
3861  *
3862  * Return 0 if all upstream bridges support AtomicOp routing, egress
3863  * blocking is disabled on all upstream ports, and the root port supports
3864  * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3865  * AtomicOp completion), or negative otherwise.
3866  */
3867 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3868 {
3869 	struct pci_bus *bus = dev->bus;
3870 	struct pci_dev *bridge;
3871 	u32 cap, ctl2;
3872 
3873 	/*
3874 	 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit
3875 	 * in Device Control 2 is reserved in VFs and the PF value applies
3876 	 * to all associated VFs.
3877 	 */
3878 	if (dev->is_virtfn)
3879 		return -EINVAL;
3880 
3881 	if (!pci_is_pcie(dev))
3882 		return -EINVAL;
3883 
3884 	/*
3885 	 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3886 	 * AtomicOp requesters.  For now, we only support endpoints as
3887 	 * requesters and root ports as completers.  No endpoints as
3888 	 * completers, and no peer-to-peer.
3889 	 */
3890 
3891 	switch (pci_pcie_type(dev)) {
3892 	case PCI_EXP_TYPE_ENDPOINT:
3893 	case PCI_EXP_TYPE_LEG_END:
3894 	case PCI_EXP_TYPE_RC_END:
3895 		break;
3896 	default:
3897 		return -EINVAL;
3898 	}
3899 
3900 	while (bus->parent) {
3901 		bridge = bus->self;
3902 
3903 		pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3904 
3905 		switch (pci_pcie_type(bridge)) {
3906 		/* Ensure switch ports support AtomicOp routing */
3907 		case PCI_EXP_TYPE_UPSTREAM:
3908 		case PCI_EXP_TYPE_DOWNSTREAM:
3909 			if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3910 				return -EINVAL;
3911 			break;
3912 
3913 		/* Ensure root port supports all the sizes we care about */
3914 		case PCI_EXP_TYPE_ROOT_PORT:
3915 			if ((cap & cap_mask) != cap_mask)
3916 				return -EINVAL;
3917 			break;
3918 		}
3919 
3920 		/* Ensure upstream ports don't block AtomicOps on egress */
3921 		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3922 			pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3923 						   &ctl2);
3924 			if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3925 				return -EINVAL;
3926 		}
3927 
3928 		bus = bus->parent;
3929 	}
3930 
3931 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3932 				 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3933 	return 0;
3934 }
3935 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3936 
3937 /**
3938  * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3939  * @dev: the PCI device
3940  * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3941  *
3942  * Perform INTx swizzling for a device behind one level of bridge.  This is
3943  * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3944  * behind bridges on add-in cards.  For devices with ARI enabled, the slot
3945  * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3946  * the PCI Express Base Specification, Revision 2.1)
3947  */
3948 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3949 {
3950 	int slot;
3951 
3952 	if (pci_ari_enabled(dev->bus))
3953 		slot = 0;
3954 	else
3955 		slot = PCI_SLOT(dev->devfn);
3956 
3957 	return (((pin - 1) + slot) % 4) + 1;
3958 }
3959 
3960 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3961 {
3962 	u8 pin;
3963 
3964 	pin = dev->pin;
3965 	if (!pin)
3966 		return -1;
3967 
3968 	while (!pci_is_root_bus(dev->bus)) {
3969 		pin = pci_swizzle_interrupt_pin(dev, pin);
3970 		dev = dev->bus->self;
3971 	}
3972 	*bridge = dev;
3973 	return pin;
3974 }
3975 
3976 /**
3977  * pci_common_swizzle - swizzle INTx all the way to root bridge
3978  * @dev: the PCI device
3979  * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3980  *
3981  * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
3982  * bridges all the way up to a PCI root bus.
3983  */
3984 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3985 {
3986 	u8 pin = *pinp;
3987 
3988 	while (!pci_is_root_bus(dev->bus)) {
3989 		pin = pci_swizzle_interrupt_pin(dev, pin);
3990 		dev = dev->bus->self;
3991 	}
3992 	*pinp = pin;
3993 	return PCI_SLOT(dev->devfn);
3994 }
3995 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3996 
3997 /**
3998  * pci_release_region - Release a PCI bar
3999  * @pdev: PCI device whose resources were previously reserved by
4000  *	  pci_request_region()
4001  * @bar: BAR to release
4002  *
4003  * Releases the PCI I/O and memory resources previously reserved by a
4004  * successful call to pci_request_region().  Call this function only
4005  * after all use of the PCI regions has ceased.
4006  */
4007 void pci_release_region(struct pci_dev *pdev, int bar)
4008 {
4009 	struct pci_devres *dr;
4010 
4011 	if (pci_resource_len(pdev, bar) == 0)
4012 		return;
4013 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
4014 		release_region(pci_resource_start(pdev, bar),
4015 				pci_resource_len(pdev, bar));
4016 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
4017 		release_mem_region(pci_resource_start(pdev, bar),
4018 				pci_resource_len(pdev, bar));
4019 
4020 	dr = find_pci_dr(pdev);
4021 	if (dr)
4022 		dr->region_mask &= ~(1 << bar);
4023 }
4024 EXPORT_SYMBOL(pci_release_region);
4025 
4026 /**
4027  * __pci_request_region - Reserved PCI I/O and memory resource
4028  * @pdev: PCI device whose resources are to be reserved
4029  * @bar: BAR to be reserved
4030  * @res_name: Name to be associated with resource.
4031  * @exclusive: whether the region access is exclusive or not
4032  *
4033  * Mark the PCI region associated with PCI device @pdev BAR @bar as
4034  * being reserved by owner @res_name.  Do not access any
4035  * address inside the PCI regions unless this call returns
4036  * successfully.
4037  *
4038  * If @exclusive is set, then the region is marked so that userspace
4039  * is explicitly not allowed to map the resource via /dev/mem or
4040  * sysfs MMIO access.
4041  *
4042  * Returns 0 on success, or %EBUSY on error.  A warning
4043  * message is also printed on failure.
4044  */
4045 static int __pci_request_region(struct pci_dev *pdev, int bar,
4046 				const char *res_name, int exclusive)
4047 {
4048 	struct pci_devres *dr;
4049 
4050 	if (pci_resource_len(pdev, bar) == 0)
4051 		return 0;
4052 
4053 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
4054 		if (!request_region(pci_resource_start(pdev, bar),
4055 			    pci_resource_len(pdev, bar), res_name))
4056 			goto err_out;
4057 	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
4058 		if (!__request_mem_region(pci_resource_start(pdev, bar),
4059 					pci_resource_len(pdev, bar), res_name,
4060 					exclusive))
4061 			goto err_out;
4062 	}
4063 
4064 	dr = find_pci_dr(pdev);
4065 	if (dr)
4066 		dr->region_mask |= 1 << bar;
4067 
4068 	return 0;
4069 
4070 err_out:
4071 	pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
4072 		 &pdev->resource[bar]);
4073 	return -EBUSY;
4074 }
4075 
4076 /**
4077  * pci_request_region - Reserve PCI I/O and memory resource
4078  * @pdev: PCI device whose resources are to be reserved
4079  * @bar: BAR to be reserved
4080  * @res_name: Name to be associated with resource
4081  *
4082  * Mark the PCI region associated with PCI device @pdev BAR @bar as
4083  * being reserved by owner @res_name.  Do not access any
4084  * address inside the PCI regions unless this call returns
4085  * successfully.
4086  *
4087  * Returns 0 on success, or %EBUSY on error.  A warning
4088  * message is also printed on failure.
4089  */
4090 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
4091 {
4092 	return __pci_request_region(pdev, bar, res_name, 0);
4093 }
4094 EXPORT_SYMBOL(pci_request_region);
4095 
4096 /**
4097  * pci_release_selected_regions - Release selected PCI I/O and memory resources
4098  * @pdev: PCI device whose resources were previously reserved
4099  * @bars: Bitmask of BARs to be released
4100  *
4101  * Release selected PCI I/O and memory resources previously reserved.
4102  * Call this function only after all use of the PCI regions has ceased.
4103  */
4104 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
4105 {
4106 	int i;
4107 
4108 	for (i = 0; i < PCI_STD_NUM_BARS; i++)
4109 		if (bars & (1 << i))
4110 			pci_release_region(pdev, i);
4111 }
4112 EXPORT_SYMBOL(pci_release_selected_regions);
4113 
4114 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
4115 					  const char *res_name, int excl)
4116 {
4117 	int i;
4118 
4119 	for (i = 0; i < PCI_STD_NUM_BARS; i++)
4120 		if (bars & (1 << i))
4121 			if (__pci_request_region(pdev, i, res_name, excl))
4122 				goto err_out;
4123 	return 0;
4124 
4125 err_out:
4126 	while (--i >= 0)
4127 		if (bars & (1 << i))
4128 			pci_release_region(pdev, i);
4129 
4130 	return -EBUSY;
4131 }
4132 
4133 
4134 /**
4135  * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
4136  * @pdev: PCI device whose resources are to be reserved
4137  * @bars: Bitmask of BARs to be requested
4138  * @res_name: Name to be associated with resource
4139  */
4140 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
4141 				 const char *res_name)
4142 {
4143 	return __pci_request_selected_regions(pdev, bars, res_name, 0);
4144 }
4145 EXPORT_SYMBOL(pci_request_selected_regions);
4146 
4147 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
4148 					   const char *res_name)
4149 {
4150 	return __pci_request_selected_regions(pdev, bars, res_name,
4151 			IORESOURCE_EXCLUSIVE);
4152 }
4153 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
4154 
4155 /**
4156  * pci_release_regions - Release reserved PCI I/O and memory resources
4157  * @pdev: PCI device whose resources were previously reserved by
4158  *	  pci_request_regions()
4159  *
4160  * Releases all PCI I/O and memory resources previously reserved by a
4161  * successful call to pci_request_regions().  Call this function only
4162  * after all use of the PCI regions has ceased.
4163  */
4164 
4165 void pci_release_regions(struct pci_dev *pdev)
4166 {
4167 	pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
4168 }
4169 EXPORT_SYMBOL(pci_release_regions);
4170 
4171 /**
4172  * pci_request_regions - Reserve PCI I/O and memory resources
4173  * @pdev: PCI device whose resources are to be reserved
4174  * @res_name: Name to be associated with resource.
4175  *
4176  * Mark all PCI regions associated with PCI device @pdev as
4177  * being reserved by owner @res_name.  Do not access any
4178  * address inside the PCI regions unless this call returns
4179  * successfully.
4180  *
4181  * Returns 0 on success, or %EBUSY on error.  A warning
4182  * message is also printed on failure.
4183  */
4184 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
4185 {
4186 	return pci_request_selected_regions(pdev,
4187 			((1 << PCI_STD_NUM_BARS) - 1), res_name);
4188 }
4189 EXPORT_SYMBOL(pci_request_regions);
4190 
4191 /**
4192  * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
4193  * @pdev: PCI device whose resources are to be reserved
4194  * @res_name: Name to be associated with resource.
4195  *
4196  * Mark all PCI regions associated with PCI device @pdev as being reserved
4197  * by owner @res_name.  Do not access any address inside the PCI regions
4198  * unless this call returns successfully.
4199  *
4200  * pci_request_regions_exclusive() will mark the region so that /dev/mem
4201  * and the sysfs MMIO access will not be allowed.
4202  *
4203  * Returns 0 on success, or %EBUSY on error.  A warning message is also
4204  * printed on failure.
4205  */
4206 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
4207 {
4208 	return pci_request_selected_regions_exclusive(pdev,
4209 				((1 << PCI_STD_NUM_BARS) - 1), res_name);
4210 }
4211 EXPORT_SYMBOL(pci_request_regions_exclusive);
4212 
4213 /*
4214  * Record the PCI IO range (expressed as CPU physical address + size).
4215  * Return a negative value if an error has occurred, zero otherwise
4216  */
4217 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
4218 			resource_size_t	size)
4219 {
4220 	int ret = 0;
4221 #ifdef PCI_IOBASE
4222 	struct logic_pio_hwaddr *range;
4223 
4224 	if (!size || addr + size < addr)
4225 		return -EINVAL;
4226 
4227 	range = kzalloc(sizeof(*range), GFP_ATOMIC);
4228 	if (!range)
4229 		return -ENOMEM;
4230 
4231 	range->fwnode = fwnode;
4232 	range->size = size;
4233 	range->hw_start = addr;
4234 	range->flags = LOGIC_PIO_CPU_MMIO;
4235 
4236 	ret = logic_pio_register_range(range);
4237 	if (ret)
4238 		kfree(range);
4239 
4240 	/* Ignore duplicates due to deferred probing */
4241 	if (ret == -EEXIST)
4242 		ret = 0;
4243 #endif
4244 
4245 	return ret;
4246 }
4247 
4248 phys_addr_t pci_pio_to_address(unsigned long pio)
4249 {
4250 #ifdef PCI_IOBASE
4251 	if (pio < MMIO_UPPER_LIMIT)
4252 		return logic_pio_to_hwaddr(pio);
4253 #endif
4254 
4255 	return (phys_addr_t) OF_BAD_ADDR;
4256 }
4257 EXPORT_SYMBOL_GPL(pci_pio_to_address);
4258 
4259 unsigned long __weak pci_address_to_pio(phys_addr_t address)
4260 {
4261 #ifdef PCI_IOBASE
4262 	return logic_pio_trans_cpuaddr(address);
4263 #else
4264 	if (address > IO_SPACE_LIMIT)
4265 		return (unsigned long)-1;
4266 
4267 	return (unsigned long) address;
4268 #endif
4269 }
4270 
4271 /**
4272  * pci_remap_iospace - Remap the memory mapped I/O space
4273  * @res: Resource describing the I/O space
4274  * @phys_addr: physical address of range to be mapped
4275  *
4276  * Remap the memory mapped I/O space described by the @res and the CPU
4277  * physical address @phys_addr into virtual address space.  Only
4278  * architectures that have memory mapped IO functions defined (and the
4279  * PCI_IOBASE value defined) should call this function.
4280  */
4281 #ifndef pci_remap_iospace
4282 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4283 {
4284 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4285 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4286 
4287 	if (!(res->flags & IORESOURCE_IO))
4288 		return -EINVAL;
4289 
4290 	if (res->end > IO_SPACE_LIMIT)
4291 		return -EINVAL;
4292 
4293 	return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4294 				  pgprot_device(PAGE_KERNEL));
4295 #else
4296 	/*
4297 	 * This architecture does not have memory mapped I/O space,
4298 	 * so this function should never be called
4299 	 */
4300 	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4301 	return -ENODEV;
4302 #endif
4303 }
4304 EXPORT_SYMBOL(pci_remap_iospace);
4305 #endif
4306 
4307 /**
4308  * pci_unmap_iospace - Unmap the memory mapped I/O space
4309  * @res: resource to be unmapped
4310  *
4311  * Unmap the CPU virtual address @res from virtual address space.  Only
4312  * architectures that have memory mapped IO functions defined (and the
4313  * PCI_IOBASE value defined) should call this function.
4314  */
4315 void pci_unmap_iospace(struct resource *res)
4316 {
4317 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4318 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4319 
4320 	vunmap_range(vaddr, vaddr + resource_size(res));
4321 #endif
4322 }
4323 EXPORT_SYMBOL(pci_unmap_iospace);
4324 
4325 static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
4326 {
4327 	struct resource **res = ptr;
4328 
4329 	pci_unmap_iospace(*res);
4330 }
4331 
4332 /**
4333  * devm_pci_remap_iospace - Managed pci_remap_iospace()
4334  * @dev: Generic device to remap IO address for
4335  * @res: Resource describing the I/O space
4336  * @phys_addr: physical address of range to be mapped
4337  *
4338  * Managed pci_remap_iospace().  Map is automatically unmapped on driver
4339  * detach.
4340  */
4341 int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4342 			   phys_addr_t phys_addr)
4343 {
4344 	const struct resource **ptr;
4345 	int error;
4346 
4347 	ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4348 	if (!ptr)
4349 		return -ENOMEM;
4350 
4351 	error = pci_remap_iospace(res, phys_addr);
4352 	if (error) {
4353 		devres_free(ptr);
4354 	} else	{
4355 		*ptr = res;
4356 		devres_add(dev, ptr);
4357 	}
4358 
4359 	return error;
4360 }
4361 EXPORT_SYMBOL(devm_pci_remap_iospace);
4362 
4363 /**
4364  * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4365  * @dev: Generic device to remap IO address for
4366  * @offset: Resource address to map
4367  * @size: Size of map
4368  *
4369  * Managed pci_remap_cfgspace().  Map is automatically unmapped on driver
4370  * detach.
4371  */
4372 void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4373 				      resource_size_t offset,
4374 				      resource_size_t size)
4375 {
4376 	void __iomem **ptr, *addr;
4377 
4378 	ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4379 	if (!ptr)
4380 		return NULL;
4381 
4382 	addr = pci_remap_cfgspace(offset, size);
4383 	if (addr) {
4384 		*ptr = addr;
4385 		devres_add(dev, ptr);
4386 	} else
4387 		devres_free(ptr);
4388 
4389 	return addr;
4390 }
4391 EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4392 
4393 /**
4394  * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4395  * @dev: generic device to handle the resource for
4396  * @res: configuration space resource to be handled
4397  *
4398  * Checks that a resource is a valid memory region, requests the memory
4399  * region and ioremaps with pci_remap_cfgspace() API that ensures the
4400  * proper PCI configuration space memory attributes are guaranteed.
4401  *
4402  * All operations are managed and will be undone on driver detach.
4403  *
4404  * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4405  * on failure. Usage example::
4406  *
4407  *	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4408  *	base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4409  *	if (IS_ERR(base))
4410  *		return PTR_ERR(base);
4411  */
4412 void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4413 					  struct resource *res)
4414 {
4415 	resource_size_t size;
4416 	const char *name;
4417 	void __iomem *dest_ptr;
4418 
4419 	BUG_ON(!dev);
4420 
4421 	if (!res || resource_type(res) != IORESOURCE_MEM) {
4422 		dev_err(dev, "invalid resource\n");
4423 		return IOMEM_ERR_PTR(-EINVAL);
4424 	}
4425 
4426 	size = resource_size(res);
4427 
4428 	if (res->name)
4429 		name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev),
4430 				      res->name);
4431 	else
4432 		name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL);
4433 	if (!name)
4434 		return IOMEM_ERR_PTR(-ENOMEM);
4435 
4436 	if (!devm_request_mem_region(dev, res->start, size, name)) {
4437 		dev_err(dev, "can't request region for resource %pR\n", res);
4438 		return IOMEM_ERR_PTR(-EBUSY);
4439 	}
4440 
4441 	dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4442 	if (!dest_ptr) {
4443 		dev_err(dev, "ioremap failed for resource %pR\n", res);
4444 		devm_release_mem_region(dev, res->start, size);
4445 		dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4446 	}
4447 
4448 	return dest_ptr;
4449 }
4450 EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4451 
4452 static void __pci_set_master(struct pci_dev *dev, bool enable)
4453 {
4454 	u16 old_cmd, cmd;
4455 
4456 	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4457 	if (enable)
4458 		cmd = old_cmd | PCI_COMMAND_MASTER;
4459 	else
4460 		cmd = old_cmd & ~PCI_COMMAND_MASTER;
4461 	if (cmd != old_cmd) {
4462 		pci_dbg(dev, "%s bus mastering\n",
4463 			enable ? "enabling" : "disabling");
4464 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4465 	}
4466 	dev->is_busmaster = enable;
4467 }
4468 
4469 /**
4470  * pcibios_setup - process "pci=" kernel boot arguments
4471  * @str: string used to pass in "pci=" kernel boot arguments
4472  *
4473  * Process kernel boot arguments.  This is the default implementation.
4474  * Architecture specific implementations can override this as necessary.
4475  */
4476 char * __weak __init pcibios_setup(char *str)
4477 {
4478 	return str;
4479 }
4480 
4481 /**
4482  * pcibios_set_master - enable PCI bus-mastering for device dev
4483  * @dev: the PCI device to enable
4484  *
4485  * Enables PCI bus-mastering for the device.  This is the default
4486  * implementation.  Architecture specific implementations can override
4487  * this if necessary.
4488  */
4489 void __weak pcibios_set_master(struct pci_dev *dev)
4490 {
4491 	u8 lat;
4492 
4493 	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4494 	if (pci_is_pcie(dev))
4495 		return;
4496 
4497 	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4498 	if (lat < 16)
4499 		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4500 	else if (lat > pcibios_max_latency)
4501 		lat = pcibios_max_latency;
4502 	else
4503 		return;
4504 
4505 	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4506 }
4507 
4508 /**
4509  * pci_set_master - enables bus-mastering for device dev
4510  * @dev: the PCI device to enable
4511  *
4512  * Enables bus-mastering on the device and calls pcibios_set_master()
4513  * to do the needed arch specific settings.
4514  */
4515 void pci_set_master(struct pci_dev *dev)
4516 {
4517 	__pci_set_master(dev, true);
4518 	pcibios_set_master(dev);
4519 }
4520 EXPORT_SYMBOL(pci_set_master);
4521 
4522 /**
4523  * pci_clear_master - disables bus-mastering for device dev
4524  * @dev: the PCI device to disable
4525  */
4526 void pci_clear_master(struct pci_dev *dev)
4527 {
4528 	__pci_set_master(dev, false);
4529 }
4530 EXPORT_SYMBOL(pci_clear_master);
4531 
4532 /**
4533  * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4534  * @dev: the PCI device for which MWI is to be enabled
4535  *
4536  * Helper function for pci_set_mwi.
4537  * Originally copied from drivers/net/acenic.c.
4538  * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4539  *
4540  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4541  */
4542 int pci_set_cacheline_size(struct pci_dev *dev)
4543 {
4544 	u8 cacheline_size;
4545 
4546 	if (!pci_cache_line_size)
4547 		return -EINVAL;
4548 
4549 	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4550 	   equal to or multiple of the right value. */
4551 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4552 	if (cacheline_size >= pci_cache_line_size &&
4553 	    (cacheline_size % pci_cache_line_size) == 0)
4554 		return 0;
4555 
4556 	/* Write the correct value. */
4557 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4558 	/* Read it back. */
4559 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4560 	if (cacheline_size == pci_cache_line_size)
4561 		return 0;
4562 
4563 	pci_dbg(dev, "cache line size of %d is not supported\n",
4564 		   pci_cache_line_size << 2);
4565 
4566 	return -EINVAL;
4567 }
4568 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4569 
4570 /**
4571  * pci_set_mwi - enables memory-write-invalidate PCI transaction
4572  * @dev: the PCI device for which MWI is enabled
4573  *
4574  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4575  *
4576  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4577  */
4578 int pci_set_mwi(struct pci_dev *dev)
4579 {
4580 #ifdef PCI_DISABLE_MWI
4581 	return 0;
4582 #else
4583 	int rc;
4584 	u16 cmd;
4585 
4586 	rc = pci_set_cacheline_size(dev);
4587 	if (rc)
4588 		return rc;
4589 
4590 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4591 	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4592 		pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4593 		cmd |= PCI_COMMAND_INVALIDATE;
4594 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4595 	}
4596 	return 0;
4597 #endif
4598 }
4599 EXPORT_SYMBOL(pci_set_mwi);
4600 
4601 /**
4602  * pcim_set_mwi - a device-managed pci_set_mwi()
4603  * @dev: the PCI device for which MWI is enabled
4604  *
4605  * Managed pci_set_mwi().
4606  *
4607  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4608  */
4609 int pcim_set_mwi(struct pci_dev *dev)
4610 {
4611 	struct pci_devres *dr;
4612 
4613 	dr = find_pci_dr(dev);
4614 	if (!dr)
4615 		return -ENOMEM;
4616 
4617 	dr->mwi = 1;
4618 	return pci_set_mwi(dev);
4619 }
4620 EXPORT_SYMBOL(pcim_set_mwi);
4621 
4622 /**
4623  * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4624  * @dev: the PCI device for which MWI is enabled
4625  *
4626  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4627  * Callers are not required to check the return value.
4628  *
4629  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4630  */
4631 int pci_try_set_mwi(struct pci_dev *dev)
4632 {
4633 #ifdef PCI_DISABLE_MWI
4634 	return 0;
4635 #else
4636 	return pci_set_mwi(dev);
4637 #endif
4638 }
4639 EXPORT_SYMBOL(pci_try_set_mwi);
4640 
4641 /**
4642  * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4643  * @dev: the PCI device to disable
4644  *
4645  * Disables PCI Memory-Write-Invalidate transaction on the device
4646  */
4647 void pci_clear_mwi(struct pci_dev *dev)
4648 {
4649 #ifndef PCI_DISABLE_MWI
4650 	u16 cmd;
4651 
4652 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4653 	if (cmd & PCI_COMMAND_INVALIDATE) {
4654 		cmd &= ~PCI_COMMAND_INVALIDATE;
4655 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4656 	}
4657 #endif
4658 }
4659 EXPORT_SYMBOL(pci_clear_mwi);
4660 
4661 /**
4662  * pci_disable_parity - disable parity checking for device
4663  * @dev: the PCI device to operate on
4664  *
4665  * Disable parity checking for device @dev
4666  */
4667 void pci_disable_parity(struct pci_dev *dev)
4668 {
4669 	u16 cmd;
4670 
4671 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4672 	if (cmd & PCI_COMMAND_PARITY) {
4673 		cmd &= ~PCI_COMMAND_PARITY;
4674 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4675 	}
4676 }
4677 
4678 /**
4679  * pci_intx - enables/disables PCI INTx for device dev
4680  * @pdev: the PCI device to operate on
4681  * @enable: boolean: whether to enable or disable PCI INTx
4682  *
4683  * Enables/disables PCI INTx for device @pdev
4684  */
4685 void pci_intx(struct pci_dev *pdev, int enable)
4686 {
4687 	u16 pci_command, new;
4688 
4689 	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4690 
4691 	if (enable)
4692 		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4693 	else
4694 		new = pci_command | PCI_COMMAND_INTX_DISABLE;
4695 
4696 	if (new != pci_command) {
4697 		struct pci_devres *dr;
4698 
4699 		pci_write_config_word(pdev, PCI_COMMAND, new);
4700 
4701 		dr = find_pci_dr(pdev);
4702 		if (dr && !dr->restore_intx) {
4703 			dr->restore_intx = 1;
4704 			dr->orig_intx = !enable;
4705 		}
4706 	}
4707 }
4708 EXPORT_SYMBOL_GPL(pci_intx);
4709 
4710 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4711 {
4712 	struct pci_bus *bus = dev->bus;
4713 	bool mask_updated = true;
4714 	u32 cmd_status_dword;
4715 	u16 origcmd, newcmd;
4716 	unsigned long flags;
4717 	bool irq_pending;
4718 
4719 	/*
4720 	 * We do a single dword read to retrieve both command and status.
4721 	 * Document assumptions that make this possible.
4722 	 */
4723 	BUILD_BUG_ON(PCI_COMMAND % 4);
4724 	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4725 
4726 	raw_spin_lock_irqsave(&pci_lock, flags);
4727 
4728 	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4729 
4730 	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4731 
4732 	/*
4733 	 * Check interrupt status register to see whether our device
4734 	 * triggered the interrupt (when masking) or the next IRQ is
4735 	 * already pending (when unmasking).
4736 	 */
4737 	if (mask != irq_pending) {
4738 		mask_updated = false;
4739 		goto done;
4740 	}
4741 
4742 	origcmd = cmd_status_dword;
4743 	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4744 	if (mask)
4745 		newcmd |= PCI_COMMAND_INTX_DISABLE;
4746 	if (newcmd != origcmd)
4747 		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4748 
4749 done:
4750 	raw_spin_unlock_irqrestore(&pci_lock, flags);
4751 
4752 	return mask_updated;
4753 }
4754 
4755 /**
4756  * pci_check_and_mask_intx - mask INTx on pending interrupt
4757  * @dev: the PCI device to operate on
4758  *
4759  * Check if the device dev has its INTx line asserted, mask it and return
4760  * true in that case. False is returned if no interrupt was pending.
4761  */
4762 bool pci_check_and_mask_intx(struct pci_dev *dev)
4763 {
4764 	return pci_check_and_set_intx_mask(dev, true);
4765 }
4766 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4767 
4768 /**
4769  * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4770  * @dev: the PCI device to operate on
4771  *
4772  * Check if the device dev has its INTx line asserted, unmask it if not and
4773  * return true. False is returned and the mask remains active if there was
4774  * still an interrupt pending.
4775  */
4776 bool pci_check_and_unmask_intx(struct pci_dev *dev)
4777 {
4778 	return pci_check_and_set_intx_mask(dev, false);
4779 }
4780 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4781 
4782 /**
4783  * pci_wait_for_pending_transaction - wait for pending transaction
4784  * @dev: the PCI device to operate on
4785  *
4786  * Return 0 if transaction is pending 1 otherwise.
4787  */
4788 int pci_wait_for_pending_transaction(struct pci_dev *dev)
4789 {
4790 	if (!pci_is_pcie(dev))
4791 		return 1;
4792 
4793 	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4794 				    PCI_EXP_DEVSTA_TRPND);
4795 }
4796 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4797 
4798 /**
4799  * pcie_flr - initiate a PCIe function level reset
4800  * @dev: device to reset
4801  *
4802  * Initiate a function level reset unconditionally on @dev without
4803  * checking any flags and DEVCAP
4804  */
4805 int pcie_flr(struct pci_dev *dev)
4806 {
4807 	if (!pci_wait_for_pending_transaction(dev))
4808 		pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4809 
4810 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4811 
4812 	if (dev->imm_ready)
4813 		return 0;
4814 
4815 	/*
4816 	 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4817 	 * 100ms, but may silently discard requests while the FLR is in
4818 	 * progress.  Wait 100ms before trying to access the device.
4819 	 */
4820 	msleep(100);
4821 
4822 	return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4823 }
4824 EXPORT_SYMBOL_GPL(pcie_flr);
4825 
4826 /**
4827  * pcie_reset_flr - initiate a PCIe function level reset
4828  * @dev: device to reset
4829  * @probe: if true, return 0 if device can be reset this way
4830  *
4831  * Initiate a function level reset on @dev.
4832  */
4833 int pcie_reset_flr(struct pci_dev *dev, bool probe)
4834 {
4835 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4836 		return -ENOTTY;
4837 
4838 	if (!(dev->devcap & PCI_EXP_DEVCAP_FLR))
4839 		return -ENOTTY;
4840 
4841 	if (probe)
4842 		return 0;
4843 
4844 	return pcie_flr(dev);
4845 }
4846 EXPORT_SYMBOL_GPL(pcie_reset_flr);
4847 
4848 static int pci_af_flr(struct pci_dev *dev, bool probe)
4849 {
4850 	int pos;
4851 	u8 cap;
4852 
4853 	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4854 	if (!pos)
4855 		return -ENOTTY;
4856 
4857 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4858 		return -ENOTTY;
4859 
4860 	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4861 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4862 		return -ENOTTY;
4863 
4864 	if (probe)
4865 		return 0;
4866 
4867 	/*
4868 	 * Wait for Transaction Pending bit to clear.  A word-aligned test
4869 	 * is used, so we use the control offset rather than status and shift
4870 	 * the test bit to match.
4871 	 */
4872 	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4873 				 PCI_AF_STATUS_TP << 8))
4874 		pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4875 
4876 	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4877 
4878 	if (dev->imm_ready)
4879 		return 0;
4880 
4881 	/*
4882 	 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4883 	 * updated 27 July 2006; a device must complete an FLR within
4884 	 * 100ms, but may silently discard requests while the FLR is in
4885 	 * progress.  Wait 100ms before trying to access the device.
4886 	 */
4887 	msleep(100);
4888 
4889 	return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4890 }
4891 
4892 /**
4893  * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4894  * @dev: Device to reset.
4895  * @probe: if true, return 0 if the device can be reset this way.
4896  *
4897  * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4898  * unset, it will be reinitialized internally when going from PCI_D3hot to
4899  * PCI_D0.  If that's the case and the device is not in a low-power state
4900  * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4901  *
4902  * NOTE: This causes the caller to sleep for twice the device power transition
4903  * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4904  * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4905  * Moreover, only devices in D0 can be reset by this function.
4906  */
4907 static int pci_pm_reset(struct pci_dev *dev, bool probe)
4908 {
4909 	u16 csr;
4910 
4911 	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4912 		return -ENOTTY;
4913 
4914 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4915 	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4916 		return -ENOTTY;
4917 
4918 	if (probe)
4919 		return 0;
4920 
4921 	if (dev->current_state != PCI_D0)
4922 		return -EINVAL;
4923 
4924 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4925 	csr |= PCI_D3hot;
4926 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4927 	pci_dev_d3_sleep(dev);
4928 
4929 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4930 	csr |= PCI_D0;
4931 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4932 	pci_dev_d3_sleep(dev);
4933 
4934 	return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4935 }
4936 
4937 /**
4938  * pcie_wait_for_link_status - Wait for link status change
4939  * @pdev: Device whose link to wait for.
4940  * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE.
4941  * @active: Waiting for active or inactive?
4942  *
4943  * Return 0 if successful, or -ETIMEDOUT if status has not changed within
4944  * PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
4945  */
4946 static int pcie_wait_for_link_status(struct pci_dev *pdev,
4947 				     bool use_lt, bool active)
4948 {
4949 	u16 lnksta_mask, lnksta_match;
4950 	unsigned long end_jiffies;
4951 	u16 lnksta;
4952 
4953 	lnksta_mask = use_lt ? PCI_EXP_LNKSTA_LT : PCI_EXP_LNKSTA_DLLLA;
4954 	lnksta_match = active ? lnksta_mask : 0;
4955 
4956 	end_jiffies = jiffies + msecs_to_jiffies(PCIE_LINK_RETRAIN_TIMEOUT_MS);
4957 	do {
4958 		pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta);
4959 		if ((lnksta & lnksta_mask) == lnksta_match)
4960 			return 0;
4961 		msleep(1);
4962 	} while (time_before(jiffies, end_jiffies));
4963 
4964 	return -ETIMEDOUT;
4965 }
4966 
4967 /**
4968  * pcie_retrain_link - Request a link retrain and wait for it to complete
4969  * @pdev: Device whose link to retrain.
4970  * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE, for status.
4971  *
4972  * Retrain completion status is retrieved from the Link Status Register
4973  * according to @use_lt.  It is not verified whether the use of the DLLLA
4974  * bit is valid.
4975  *
4976  * Return 0 if successful, or -ETIMEDOUT if training has not completed
4977  * within PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
4978  */
4979 int pcie_retrain_link(struct pci_dev *pdev, bool use_lt)
4980 {
4981 	int rc;
4982 
4983 	/*
4984 	 * Ensure the updated LNKCTL parameters are used during link
4985 	 * training by checking that there is no ongoing link training to
4986 	 * avoid LTSSM race as recommended in Implementation Note at the
4987 	 * end of PCIe r6.0.1 sec 7.5.3.7.
4988 	 */
4989 	rc = pcie_wait_for_link_status(pdev, true, false);
4990 	if (rc)
4991 		return rc;
4992 
4993 	pcie_capability_set_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL);
4994 	if (pdev->clear_retrain_link) {
4995 		/*
4996 		 * Due to an erratum in some devices the Retrain Link bit
4997 		 * needs to be cleared again manually to allow the link
4998 		 * training to succeed.
4999 		 */
5000 		pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL);
5001 	}
5002 
5003 	return pcie_wait_for_link_status(pdev, use_lt, !use_lt);
5004 }
5005 
5006 /**
5007  * pcie_wait_for_link_delay - Wait until link is active or inactive
5008  * @pdev: Bridge device
5009  * @active: waiting for active or inactive?
5010  * @delay: Delay to wait after link has become active (in ms)
5011  *
5012  * Use this to wait till link becomes active or inactive.
5013  */
5014 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
5015 				     int delay)
5016 {
5017 	int rc;
5018 
5019 	/*
5020 	 * Some controllers might not implement link active reporting. In this
5021 	 * case, we wait for 1000 ms + any delay requested by the caller.
5022 	 */
5023 	if (!pdev->link_active_reporting) {
5024 		msleep(PCIE_LINK_RETRAIN_TIMEOUT_MS + delay);
5025 		return true;
5026 	}
5027 
5028 	/*
5029 	 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
5030 	 * after which we should expect an link active if the reset was
5031 	 * successful. If so, software must wait a minimum 100ms before sending
5032 	 * configuration requests to devices downstream this port.
5033 	 *
5034 	 * If the link fails to activate, either the device was physically
5035 	 * removed or the link is permanently failed.
5036 	 */
5037 	if (active)
5038 		msleep(20);
5039 	rc = pcie_wait_for_link_status(pdev, false, active);
5040 	if (active) {
5041 		if (rc)
5042 			rc = pcie_failed_link_retrain(pdev);
5043 		if (rc)
5044 			return false;
5045 
5046 		msleep(delay);
5047 		return true;
5048 	}
5049 
5050 	if (rc)
5051 		return false;
5052 
5053 	return true;
5054 }
5055 
5056 /**
5057  * pcie_wait_for_link - Wait until link is active or inactive
5058  * @pdev: Bridge device
5059  * @active: waiting for active or inactive?
5060  *
5061  * Use this to wait till link becomes active or inactive.
5062  */
5063 bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
5064 {
5065 	return pcie_wait_for_link_delay(pdev, active, 100);
5066 }
5067 
5068 /*
5069  * Find maximum D3cold delay required by all the devices on the bus.  The
5070  * spec says 100 ms, but firmware can lower it and we allow drivers to
5071  * increase it as well.
5072  *
5073  * Called with @pci_bus_sem locked for reading.
5074  */
5075 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
5076 {
5077 	const struct pci_dev *pdev;
5078 	int min_delay = 100;
5079 	int max_delay = 0;
5080 
5081 	list_for_each_entry(pdev, &bus->devices, bus_list) {
5082 		if (pdev->d3cold_delay < min_delay)
5083 			min_delay = pdev->d3cold_delay;
5084 		if (pdev->d3cold_delay > max_delay)
5085 			max_delay = pdev->d3cold_delay;
5086 	}
5087 
5088 	return max(min_delay, max_delay);
5089 }
5090 
5091 /**
5092  * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
5093  * @dev: PCI bridge
5094  * @reset_type: reset type in human-readable form
5095  *
5096  * Handle necessary delays before access to the devices on the secondary
5097  * side of the bridge are permitted after D3cold to D0 transition
5098  * or Conventional Reset.
5099  *
5100  * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
5101  * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
5102  * 4.3.2.
5103  *
5104  * Return 0 on success or -ENOTTY if the first device on the secondary bus
5105  * failed to become accessible.
5106  */
5107 int pci_bridge_wait_for_secondary_bus(struct pci_dev *dev, char *reset_type)
5108 {
5109 	struct pci_dev *child;
5110 	int delay;
5111 
5112 	if (pci_dev_is_disconnected(dev))
5113 		return 0;
5114 
5115 	if (!pci_is_bridge(dev))
5116 		return 0;
5117 
5118 	down_read(&pci_bus_sem);
5119 
5120 	/*
5121 	 * We only deal with devices that are present currently on the bus.
5122 	 * For any hot-added devices the access delay is handled in pciehp
5123 	 * board_added(). In case of ACPI hotplug the firmware is expected
5124 	 * to configure the devices before OS is notified.
5125 	 */
5126 	if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
5127 		up_read(&pci_bus_sem);
5128 		return 0;
5129 	}
5130 
5131 	/* Take d3cold_delay requirements into account */
5132 	delay = pci_bus_max_d3cold_delay(dev->subordinate);
5133 	if (!delay) {
5134 		up_read(&pci_bus_sem);
5135 		return 0;
5136 	}
5137 
5138 	child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
5139 				 bus_list);
5140 	up_read(&pci_bus_sem);
5141 
5142 	/*
5143 	 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
5144 	 * accessing the device after reset (that is 1000 ms + 100 ms).
5145 	 */
5146 	if (!pci_is_pcie(dev)) {
5147 		pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
5148 		msleep(1000 + delay);
5149 		return 0;
5150 	}
5151 
5152 	/*
5153 	 * For PCIe downstream and root ports that do not support speeds
5154 	 * greater than 5 GT/s need to wait minimum 100 ms. For higher
5155 	 * speeds (gen3) we need to wait first for the data link layer to
5156 	 * become active.
5157 	 *
5158 	 * However, 100 ms is the minimum and the PCIe spec says the
5159 	 * software must allow at least 1s before it can determine that the
5160 	 * device that did not respond is a broken device. Also device can
5161 	 * take longer than that to respond if it indicates so through Request
5162 	 * Retry Status completions.
5163 	 *
5164 	 * Therefore we wait for 100 ms and check for the device presence
5165 	 * until the timeout expires.
5166 	 */
5167 	if (!pcie_downstream_port(dev))
5168 		return 0;
5169 
5170 	if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
5171 		u16 status;
5172 
5173 		pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
5174 		msleep(delay);
5175 
5176 		if (!pci_dev_wait(child, reset_type, PCI_RESET_WAIT - delay))
5177 			return 0;
5178 
5179 		/*
5180 		 * If the port supports active link reporting we now check
5181 		 * whether the link is active and if not bail out early with
5182 		 * the assumption that the device is not present anymore.
5183 		 */
5184 		if (!dev->link_active_reporting)
5185 			return -ENOTTY;
5186 
5187 		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &status);
5188 		if (!(status & PCI_EXP_LNKSTA_DLLLA))
5189 			return -ENOTTY;
5190 
5191 		return pci_dev_wait(child, reset_type,
5192 				    PCIE_RESET_READY_POLL_MS - PCI_RESET_WAIT);
5193 	}
5194 
5195 	pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
5196 		delay);
5197 	if (!pcie_wait_for_link_delay(dev, true, delay)) {
5198 		/* Did not train, no need to wait any further */
5199 		pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
5200 		return -ENOTTY;
5201 	}
5202 
5203 	return pci_dev_wait(child, reset_type,
5204 			    PCIE_RESET_READY_POLL_MS - delay);
5205 }
5206 
5207 void pci_reset_secondary_bus(struct pci_dev *dev)
5208 {
5209 	u16 ctrl;
5210 
5211 	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
5212 	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
5213 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
5214 
5215 	/*
5216 	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
5217 	 * this to 2ms to ensure that we meet the minimum requirement.
5218 	 */
5219 	msleep(2);
5220 
5221 	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
5222 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
5223 }
5224 
5225 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
5226 {
5227 	pci_reset_secondary_bus(dev);
5228 }
5229 
5230 /**
5231  * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
5232  * @dev: Bridge device
5233  *
5234  * Use the bridge control register to assert reset on the secondary bus.
5235  * Devices on the secondary bus are left in power-on state.
5236  */
5237 int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
5238 {
5239 	pcibios_reset_secondary_bus(dev);
5240 
5241 	return pci_bridge_wait_for_secondary_bus(dev, "bus reset");
5242 }
5243 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
5244 
5245 static int pci_parent_bus_reset(struct pci_dev *dev, bool probe)
5246 {
5247 	struct pci_dev *pdev;
5248 
5249 	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
5250 	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5251 		return -ENOTTY;
5252 
5253 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
5254 		if (pdev != dev)
5255 			return -ENOTTY;
5256 
5257 	if (probe)
5258 		return 0;
5259 
5260 	return pci_bridge_secondary_bus_reset(dev->bus->self);
5261 }
5262 
5263 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe)
5264 {
5265 	int rc = -ENOTTY;
5266 
5267 	if (!hotplug || !try_module_get(hotplug->owner))
5268 		return rc;
5269 
5270 	if (hotplug->ops->reset_slot)
5271 		rc = hotplug->ops->reset_slot(hotplug, probe);
5272 
5273 	module_put(hotplug->owner);
5274 
5275 	return rc;
5276 }
5277 
5278 static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe)
5279 {
5280 	if (dev->multifunction || dev->subordinate || !dev->slot ||
5281 	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5282 		return -ENOTTY;
5283 
5284 	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
5285 }
5286 
5287 static int pci_reset_bus_function(struct pci_dev *dev, bool probe)
5288 {
5289 	int rc;
5290 
5291 	rc = pci_dev_reset_slot_function(dev, probe);
5292 	if (rc != -ENOTTY)
5293 		return rc;
5294 	return pci_parent_bus_reset(dev, probe);
5295 }
5296 
5297 void pci_dev_lock(struct pci_dev *dev)
5298 {
5299 	/* block PM suspend, driver probe, etc. */
5300 	device_lock(&dev->dev);
5301 	pci_cfg_access_lock(dev);
5302 }
5303 EXPORT_SYMBOL_GPL(pci_dev_lock);
5304 
5305 /* Return 1 on successful lock, 0 on contention */
5306 int pci_dev_trylock(struct pci_dev *dev)
5307 {
5308 	if (device_trylock(&dev->dev)) {
5309 		if (pci_cfg_access_trylock(dev))
5310 			return 1;
5311 		device_unlock(&dev->dev);
5312 	}
5313 
5314 	return 0;
5315 }
5316 EXPORT_SYMBOL_GPL(pci_dev_trylock);
5317 
5318 void pci_dev_unlock(struct pci_dev *dev)
5319 {
5320 	pci_cfg_access_unlock(dev);
5321 	device_unlock(&dev->dev);
5322 }
5323 EXPORT_SYMBOL_GPL(pci_dev_unlock);
5324 
5325 static void pci_dev_save_and_disable(struct pci_dev *dev)
5326 {
5327 	const struct pci_error_handlers *err_handler =
5328 			dev->driver ? dev->driver->err_handler : NULL;
5329 
5330 	/*
5331 	 * dev->driver->err_handler->reset_prepare() is protected against
5332 	 * races with ->remove() by the device lock, which must be held by
5333 	 * the caller.
5334 	 */
5335 	if (err_handler && err_handler->reset_prepare)
5336 		err_handler->reset_prepare(dev);
5337 
5338 	/*
5339 	 * Wake-up device prior to save.  PM registers default to D0 after
5340 	 * reset and a simple register restore doesn't reliably return
5341 	 * to a non-D0 state anyway.
5342 	 */
5343 	pci_set_power_state(dev, PCI_D0);
5344 
5345 	pci_save_state(dev);
5346 	/*
5347 	 * Disable the device by clearing the Command register, except for
5348 	 * INTx-disable which is set.  This not only disables MMIO and I/O port
5349 	 * BARs, but also prevents the device from being Bus Master, preventing
5350 	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
5351 	 * compliant devices, INTx-disable prevents legacy interrupts.
5352 	 */
5353 	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
5354 }
5355 
5356 static void pci_dev_restore(struct pci_dev *dev)
5357 {
5358 	const struct pci_error_handlers *err_handler =
5359 			dev->driver ? dev->driver->err_handler : NULL;
5360 
5361 	pci_restore_state(dev);
5362 
5363 	/*
5364 	 * dev->driver->err_handler->reset_done() is protected against
5365 	 * races with ->remove() by the device lock, which must be held by
5366 	 * the caller.
5367 	 */
5368 	if (err_handler && err_handler->reset_done)
5369 		err_handler->reset_done(dev);
5370 }
5371 
5372 /* dev->reset_methods[] is a 0-terminated list of indices into this array */
5373 static const struct pci_reset_fn_method pci_reset_fn_methods[] = {
5374 	{ },
5375 	{ pci_dev_specific_reset, .name = "device_specific" },
5376 	{ pci_dev_acpi_reset, .name = "acpi" },
5377 	{ pcie_reset_flr, .name = "flr" },
5378 	{ pci_af_flr, .name = "af_flr" },
5379 	{ pci_pm_reset, .name = "pm" },
5380 	{ pci_reset_bus_function, .name = "bus" },
5381 };
5382 
5383 static ssize_t reset_method_show(struct device *dev,
5384 				 struct device_attribute *attr, char *buf)
5385 {
5386 	struct pci_dev *pdev = to_pci_dev(dev);
5387 	ssize_t len = 0;
5388 	int i, m;
5389 
5390 	for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5391 		m = pdev->reset_methods[i];
5392 		if (!m)
5393 			break;
5394 
5395 		len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "",
5396 				     pci_reset_fn_methods[m].name);
5397 	}
5398 
5399 	if (len)
5400 		len += sysfs_emit_at(buf, len, "\n");
5401 
5402 	return len;
5403 }
5404 
5405 static int reset_method_lookup(const char *name)
5406 {
5407 	int m;
5408 
5409 	for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5410 		if (sysfs_streq(name, pci_reset_fn_methods[m].name))
5411 			return m;
5412 	}
5413 
5414 	return 0;	/* not found */
5415 }
5416 
5417 static ssize_t reset_method_store(struct device *dev,
5418 				  struct device_attribute *attr,
5419 				  const char *buf, size_t count)
5420 {
5421 	struct pci_dev *pdev = to_pci_dev(dev);
5422 	char *options, *name;
5423 	int m, n;
5424 	u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 };
5425 
5426 	if (sysfs_streq(buf, "")) {
5427 		pdev->reset_methods[0] = 0;
5428 		pci_warn(pdev, "All device reset methods disabled by user");
5429 		return count;
5430 	}
5431 
5432 	if (sysfs_streq(buf, "default")) {
5433 		pci_init_reset_methods(pdev);
5434 		return count;
5435 	}
5436 
5437 	options = kstrndup(buf, count, GFP_KERNEL);
5438 	if (!options)
5439 		return -ENOMEM;
5440 
5441 	n = 0;
5442 	while ((name = strsep(&options, " ")) != NULL) {
5443 		if (sysfs_streq(name, ""))
5444 			continue;
5445 
5446 		name = strim(name);
5447 
5448 		m = reset_method_lookup(name);
5449 		if (!m) {
5450 			pci_err(pdev, "Invalid reset method '%s'", name);
5451 			goto error;
5452 		}
5453 
5454 		if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) {
5455 			pci_err(pdev, "Unsupported reset method '%s'", name);
5456 			goto error;
5457 		}
5458 
5459 		if (n == PCI_NUM_RESET_METHODS - 1) {
5460 			pci_err(pdev, "Too many reset methods\n");
5461 			goto error;
5462 		}
5463 
5464 		reset_methods[n++] = m;
5465 	}
5466 
5467 	reset_methods[n] = 0;
5468 
5469 	/* Warn if dev-specific supported but not highest priority */
5470 	if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 &&
5471 	    reset_methods[0] != 1)
5472 		pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user");
5473 	memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods));
5474 	kfree(options);
5475 	return count;
5476 
5477 error:
5478 	/* Leave previous methods unchanged */
5479 	kfree(options);
5480 	return -EINVAL;
5481 }
5482 static DEVICE_ATTR_RW(reset_method);
5483 
5484 static struct attribute *pci_dev_reset_method_attrs[] = {
5485 	&dev_attr_reset_method.attr,
5486 	NULL,
5487 };
5488 
5489 static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj,
5490 						    struct attribute *a, int n)
5491 {
5492 	struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj));
5493 
5494 	if (!pci_reset_supported(pdev))
5495 		return 0;
5496 
5497 	return a->mode;
5498 }
5499 
5500 const struct attribute_group pci_dev_reset_method_attr_group = {
5501 	.attrs = pci_dev_reset_method_attrs,
5502 	.is_visible = pci_dev_reset_method_attr_is_visible,
5503 };
5504 
5505 /**
5506  * __pci_reset_function_locked - reset a PCI device function while holding
5507  * the @dev mutex lock.
5508  * @dev: PCI device to reset
5509  *
5510  * Some devices allow an individual function to be reset without affecting
5511  * other functions in the same device.  The PCI device must be responsive
5512  * to PCI config space in order to use this function.
5513  *
5514  * The device function is presumed to be unused and the caller is holding
5515  * the device mutex lock when this function is called.
5516  *
5517  * Resetting the device will make the contents of PCI configuration space
5518  * random, so any caller of this must be prepared to reinitialise the
5519  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5520  * etc.
5521  *
5522  * Returns 0 if the device function was successfully reset or negative if the
5523  * device doesn't support resetting a single function.
5524  */
5525 int __pci_reset_function_locked(struct pci_dev *dev)
5526 {
5527 	int i, m, rc;
5528 
5529 	might_sleep();
5530 
5531 	/*
5532 	 * A reset method returns -ENOTTY if it doesn't support this device and
5533 	 * we should try the next method.
5534 	 *
5535 	 * If it returns 0 (success), we're finished.  If it returns any other
5536 	 * error, we're also finished: this indicates that further reset
5537 	 * mechanisms might be broken on the device.
5538 	 */
5539 	for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5540 		m = dev->reset_methods[i];
5541 		if (!m)
5542 			return -ENOTTY;
5543 
5544 		rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET);
5545 		if (!rc)
5546 			return 0;
5547 		if (rc != -ENOTTY)
5548 			return rc;
5549 	}
5550 
5551 	return -ENOTTY;
5552 }
5553 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5554 
5555 /**
5556  * pci_init_reset_methods - check whether device can be safely reset
5557  * and store supported reset mechanisms.
5558  * @dev: PCI device to check for reset mechanisms
5559  *
5560  * Some devices allow an individual function to be reset without affecting
5561  * other functions in the same device.  The PCI device must be in D0-D3hot
5562  * state.
5563  *
5564  * Stores reset mechanisms supported by device in reset_methods byte array
5565  * which is a member of struct pci_dev.
5566  */
5567 void pci_init_reset_methods(struct pci_dev *dev)
5568 {
5569 	int m, i, rc;
5570 
5571 	BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS);
5572 
5573 	might_sleep();
5574 
5575 	i = 0;
5576 	for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5577 		rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE);
5578 		if (!rc)
5579 			dev->reset_methods[i++] = m;
5580 		else if (rc != -ENOTTY)
5581 			break;
5582 	}
5583 
5584 	dev->reset_methods[i] = 0;
5585 }
5586 
5587 /**
5588  * pci_reset_function - quiesce and reset a PCI device function
5589  * @dev: PCI device to reset
5590  *
5591  * Some devices allow an individual function to be reset without affecting
5592  * other functions in the same device.  The PCI device must be responsive
5593  * to PCI config space in order to use this function.
5594  *
5595  * This function does not just reset the PCI portion of a device, but
5596  * clears all the state associated with the device.  This function differs
5597  * from __pci_reset_function_locked() in that it saves and restores device state
5598  * over the reset and takes the PCI device lock.
5599  *
5600  * Returns 0 if the device function was successfully reset or negative if the
5601  * device doesn't support resetting a single function.
5602  */
5603 int pci_reset_function(struct pci_dev *dev)
5604 {
5605 	int rc;
5606 
5607 	if (!pci_reset_supported(dev))
5608 		return -ENOTTY;
5609 
5610 	pci_dev_lock(dev);
5611 	pci_dev_save_and_disable(dev);
5612 
5613 	rc = __pci_reset_function_locked(dev);
5614 
5615 	pci_dev_restore(dev);
5616 	pci_dev_unlock(dev);
5617 
5618 	return rc;
5619 }
5620 EXPORT_SYMBOL_GPL(pci_reset_function);
5621 
5622 /**
5623  * pci_reset_function_locked - quiesce and reset a PCI device function
5624  * @dev: PCI device to reset
5625  *
5626  * Some devices allow an individual function to be reset without affecting
5627  * other functions in the same device.  The PCI device must be responsive
5628  * to PCI config space in order to use this function.
5629  *
5630  * This function does not just reset the PCI portion of a device, but
5631  * clears all the state associated with the device.  This function differs
5632  * from __pci_reset_function_locked() in that it saves and restores device state
5633  * over the reset.  It also differs from pci_reset_function() in that it
5634  * requires the PCI device lock to be held.
5635  *
5636  * Returns 0 if the device function was successfully reset or negative if the
5637  * device doesn't support resetting a single function.
5638  */
5639 int pci_reset_function_locked(struct pci_dev *dev)
5640 {
5641 	int rc;
5642 
5643 	if (!pci_reset_supported(dev))
5644 		return -ENOTTY;
5645 
5646 	pci_dev_save_and_disable(dev);
5647 
5648 	rc = __pci_reset_function_locked(dev);
5649 
5650 	pci_dev_restore(dev);
5651 
5652 	return rc;
5653 }
5654 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5655 
5656 /**
5657  * pci_try_reset_function - quiesce and reset a PCI device function
5658  * @dev: PCI device to reset
5659  *
5660  * Same as above, except return -EAGAIN if unable to lock device.
5661  */
5662 int pci_try_reset_function(struct pci_dev *dev)
5663 {
5664 	int rc;
5665 
5666 	if (!pci_reset_supported(dev))
5667 		return -ENOTTY;
5668 
5669 	if (!pci_dev_trylock(dev))
5670 		return -EAGAIN;
5671 
5672 	pci_dev_save_and_disable(dev);
5673 	rc = __pci_reset_function_locked(dev);
5674 	pci_dev_restore(dev);
5675 	pci_dev_unlock(dev);
5676 
5677 	return rc;
5678 }
5679 EXPORT_SYMBOL_GPL(pci_try_reset_function);
5680 
5681 /* Do any devices on or below this bus prevent a bus reset? */
5682 static bool pci_bus_resettable(struct pci_bus *bus)
5683 {
5684 	struct pci_dev *dev;
5685 
5686 
5687 	if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5688 		return false;
5689 
5690 	list_for_each_entry(dev, &bus->devices, bus_list) {
5691 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5692 		    (dev->subordinate && !pci_bus_resettable(dev->subordinate)))
5693 			return false;
5694 	}
5695 
5696 	return true;
5697 }
5698 
5699 /* Lock devices from the top of the tree down */
5700 static void pci_bus_lock(struct pci_bus *bus)
5701 {
5702 	struct pci_dev *dev;
5703 
5704 	list_for_each_entry(dev, &bus->devices, bus_list) {
5705 		pci_dev_lock(dev);
5706 		if (dev->subordinate)
5707 			pci_bus_lock(dev->subordinate);
5708 	}
5709 }
5710 
5711 /* Unlock devices from the bottom of the tree up */
5712 static void pci_bus_unlock(struct pci_bus *bus)
5713 {
5714 	struct pci_dev *dev;
5715 
5716 	list_for_each_entry(dev, &bus->devices, bus_list) {
5717 		if (dev->subordinate)
5718 			pci_bus_unlock(dev->subordinate);
5719 		pci_dev_unlock(dev);
5720 	}
5721 }
5722 
5723 /* Return 1 on successful lock, 0 on contention */
5724 static int pci_bus_trylock(struct pci_bus *bus)
5725 {
5726 	struct pci_dev *dev;
5727 
5728 	list_for_each_entry(dev, &bus->devices, bus_list) {
5729 		if (!pci_dev_trylock(dev))
5730 			goto unlock;
5731 		if (dev->subordinate) {
5732 			if (!pci_bus_trylock(dev->subordinate)) {
5733 				pci_dev_unlock(dev);
5734 				goto unlock;
5735 			}
5736 		}
5737 	}
5738 	return 1;
5739 
5740 unlock:
5741 	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5742 		if (dev->subordinate)
5743 			pci_bus_unlock(dev->subordinate);
5744 		pci_dev_unlock(dev);
5745 	}
5746 	return 0;
5747 }
5748 
5749 /* Do any devices on or below this slot prevent a bus reset? */
5750 static bool pci_slot_resettable(struct pci_slot *slot)
5751 {
5752 	struct pci_dev *dev;
5753 
5754 	if (slot->bus->self &&
5755 	    (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5756 		return false;
5757 
5758 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5759 		if (!dev->slot || dev->slot != slot)
5760 			continue;
5761 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5762 		    (dev->subordinate && !pci_bus_resettable(dev->subordinate)))
5763 			return false;
5764 	}
5765 
5766 	return true;
5767 }
5768 
5769 /* Lock devices from the top of the tree down */
5770 static void pci_slot_lock(struct pci_slot *slot)
5771 {
5772 	struct pci_dev *dev;
5773 
5774 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5775 		if (!dev->slot || dev->slot != slot)
5776 			continue;
5777 		pci_dev_lock(dev);
5778 		if (dev->subordinate)
5779 			pci_bus_lock(dev->subordinate);
5780 	}
5781 }
5782 
5783 /* Unlock devices from the bottom of the tree up */
5784 static void pci_slot_unlock(struct pci_slot *slot)
5785 {
5786 	struct pci_dev *dev;
5787 
5788 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5789 		if (!dev->slot || dev->slot != slot)
5790 			continue;
5791 		if (dev->subordinate)
5792 			pci_bus_unlock(dev->subordinate);
5793 		pci_dev_unlock(dev);
5794 	}
5795 }
5796 
5797 /* Return 1 on successful lock, 0 on contention */
5798 static int pci_slot_trylock(struct pci_slot *slot)
5799 {
5800 	struct pci_dev *dev;
5801 
5802 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5803 		if (!dev->slot || dev->slot != slot)
5804 			continue;
5805 		if (!pci_dev_trylock(dev))
5806 			goto unlock;
5807 		if (dev->subordinate) {
5808 			if (!pci_bus_trylock(dev->subordinate)) {
5809 				pci_dev_unlock(dev);
5810 				goto unlock;
5811 			}
5812 		}
5813 	}
5814 	return 1;
5815 
5816 unlock:
5817 	list_for_each_entry_continue_reverse(dev,
5818 					     &slot->bus->devices, bus_list) {
5819 		if (!dev->slot || dev->slot != slot)
5820 			continue;
5821 		if (dev->subordinate)
5822 			pci_bus_unlock(dev->subordinate);
5823 		pci_dev_unlock(dev);
5824 	}
5825 	return 0;
5826 }
5827 
5828 /*
5829  * Save and disable devices from the top of the tree down while holding
5830  * the @dev mutex lock for the entire tree.
5831  */
5832 static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5833 {
5834 	struct pci_dev *dev;
5835 
5836 	list_for_each_entry(dev, &bus->devices, bus_list) {
5837 		pci_dev_save_and_disable(dev);
5838 		if (dev->subordinate)
5839 			pci_bus_save_and_disable_locked(dev->subordinate);
5840 	}
5841 }
5842 
5843 /*
5844  * Restore devices from top of the tree down while holding @dev mutex lock
5845  * for the entire tree.  Parent bridges need to be restored before we can
5846  * get to subordinate devices.
5847  */
5848 static void pci_bus_restore_locked(struct pci_bus *bus)
5849 {
5850 	struct pci_dev *dev;
5851 
5852 	list_for_each_entry(dev, &bus->devices, bus_list) {
5853 		pci_dev_restore(dev);
5854 		if (dev->subordinate)
5855 			pci_bus_restore_locked(dev->subordinate);
5856 	}
5857 }
5858 
5859 /*
5860  * Save and disable devices from the top of the tree down while holding
5861  * the @dev mutex lock for the entire tree.
5862  */
5863 static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5864 {
5865 	struct pci_dev *dev;
5866 
5867 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5868 		if (!dev->slot || dev->slot != slot)
5869 			continue;
5870 		pci_dev_save_and_disable(dev);
5871 		if (dev->subordinate)
5872 			pci_bus_save_and_disable_locked(dev->subordinate);
5873 	}
5874 }
5875 
5876 /*
5877  * Restore devices from top of the tree down while holding @dev mutex lock
5878  * for the entire tree.  Parent bridges need to be restored before we can
5879  * get to subordinate devices.
5880  */
5881 static void pci_slot_restore_locked(struct pci_slot *slot)
5882 {
5883 	struct pci_dev *dev;
5884 
5885 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5886 		if (!dev->slot || dev->slot != slot)
5887 			continue;
5888 		pci_dev_restore(dev);
5889 		if (dev->subordinate)
5890 			pci_bus_restore_locked(dev->subordinate);
5891 	}
5892 }
5893 
5894 static int pci_slot_reset(struct pci_slot *slot, bool probe)
5895 {
5896 	int rc;
5897 
5898 	if (!slot || !pci_slot_resettable(slot))
5899 		return -ENOTTY;
5900 
5901 	if (!probe)
5902 		pci_slot_lock(slot);
5903 
5904 	might_sleep();
5905 
5906 	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5907 
5908 	if (!probe)
5909 		pci_slot_unlock(slot);
5910 
5911 	return rc;
5912 }
5913 
5914 /**
5915  * pci_probe_reset_slot - probe whether a PCI slot can be reset
5916  * @slot: PCI slot to probe
5917  *
5918  * Return 0 if slot can be reset, negative if a slot reset is not supported.
5919  */
5920 int pci_probe_reset_slot(struct pci_slot *slot)
5921 {
5922 	return pci_slot_reset(slot, PCI_RESET_PROBE);
5923 }
5924 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5925 
5926 /**
5927  * __pci_reset_slot - Try to reset a PCI slot
5928  * @slot: PCI slot to reset
5929  *
5930  * A PCI bus may host multiple slots, each slot may support a reset mechanism
5931  * independent of other slots.  For instance, some slots may support slot power
5932  * control.  In the case of a 1:1 bus to slot architecture, this function may
5933  * wrap the bus reset to avoid spurious slot related events such as hotplug.
5934  * Generally a slot reset should be attempted before a bus reset.  All of the
5935  * function of the slot and any subordinate buses behind the slot are reset
5936  * through this function.  PCI config space of all devices in the slot and
5937  * behind the slot is saved before and restored after reset.
5938  *
5939  * Same as above except return -EAGAIN if the slot cannot be locked
5940  */
5941 static int __pci_reset_slot(struct pci_slot *slot)
5942 {
5943 	int rc;
5944 
5945 	rc = pci_slot_reset(slot, PCI_RESET_PROBE);
5946 	if (rc)
5947 		return rc;
5948 
5949 	if (pci_slot_trylock(slot)) {
5950 		pci_slot_save_and_disable_locked(slot);
5951 		might_sleep();
5952 		rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET);
5953 		pci_slot_restore_locked(slot);
5954 		pci_slot_unlock(slot);
5955 	} else
5956 		rc = -EAGAIN;
5957 
5958 	return rc;
5959 }
5960 
5961 static int pci_bus_reset(struct pci_bus *bus, bool probe)
5962 {
5963 	int ret;
5964 
5965 	if (!bus->self || !pci_bus_resettable(bus))
5966 		return -ENOTTY;
5967 
5968 	if (probe)
5969 		return 0;
5970 
5971 	pci_bus_lock(bus);
5972 
5973 	might_sleep();
5974 
5975 	ret = pci_bridge_secondary_bus_reset(bus->self);
5976 
5977 	pci_bus_unlock(bus);
5978 
5979 	return ret;
5980 }
5981 
5982 /**
5983  * pci_bus_error_reset - reset the bridge's subordinate bus
5984  * @bridge: The parent device that connects to the bus to reset
5985  *
5986  * This function will first try to reset the slots on this bus if the method is
5987  * available. If slot reset fails or is not available, this will fall back to a
5988  * secondary bus reset.
5989  */
5990 int pci_bus_error_reset(struct pci_dev *bridge)
5991 {
5992 	struct pci_bus *bus = bridge->subordinate;
5993 	struct pci_slot *slot;
5994 
5995 	if (!bus)
5996 		return -ENOTTY;
5997 
5998 	mutex_lock(&pci_slot_mutex);
5999 	if (list_empty(&bus->slots))
6000 		goto bus_reset;
6001 
6002 	list_for_each_entry(slot, &bus->slots, list)
6003 		if (pci_probe_reset_slot(slot))
6004 			goto bus_reset;
6005 
6006 	list_for_each_entry(slot, &bus->slots, list)
6007 		if (pci_slot_reset(slot, PCI_RESET_DO_RESET))
6008 			goto bus_reset;
6009 
6010 	mutex_unlock(&pci_slot_mutex);
6011 	return 0;
6012 bus_reset:
6013 	mutex_unlock(&pci_slot_mutex);
6014 	return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET);
6015 }
6016 
6017 /**
6018  * pci_probe_reset_bus - probe whether a PCI bus can be reset
6019  * @bus: PCI bus to probe
6020  *
6021  * Return 0 if bus can be reset, negative if a bus reset is not supported.
6022  */
6023 int pci_probe_reset_bus(struct pci_bus *bus)
6024 {
6025 	return pci_bus_reset(bus, PCI_RESET_PROBE);
6026 }
6027 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
6028 
6029 /**
6030  * __pci_reset_bus - Try to reset a PCI bus
6031  * @bus: top level PCI bus to reset
6032  *
6033  * Same as above except return -EAGAIN if the bus cannot be locked
6034  */
6035 static int __pci_reset_bus(struct pci_bus *bus)
6036 {
6037 	int rc;
6038 
6039 	rc = pci_bus_reset(bus, PCI_RESET_PROBE);
6040 	if (rc)
6041 		return rc;
6042 
6043 	if (pci_bus_trylock(bus)) {
6044 		pci_bus_save_and_disable_locked(bus);
6045 		might_sleep();
6046 		rc = pci_bridge_secondary_bus_reset(bus->self);
6047 		pci_bus_restore_locked(bus);
6048 		pci_bus_unlock(bus);
6049 	} else
6050 		rc = -EAGAIN;
6051 
6052 	return rc;
6053 }
6054 
6055 /**
6056  * pci_reset_bus - Try to reset a PCI bus
6057  * @pdev: top level PCI device to reset via slot/bus
6058  *
6059  * Same as above except return -EAGAIN if the bus cannot be locked
6060  */
6061 int pci_reset_bus(struct pci_dev *pdev)
6062 {
6063 	return (!pci_probe_reset_slot(pdev->slot)) ?
6064 	    __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
6065 }
6066 EXPORT_SYMBOL_GPL(pci_reset_bus);
6067 
6068 /**
6069  * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
6070  * @dev: PCI device to query
6071  *
6072  * Returns mmrbc: maximum designed memory read count in bytes or
6073  * appropriate error value.
6074  */
6075 int pcix_get_max_mmrbc(struct pci_dev *dev)
6076 {
6077 	int cap;
6078 	u32 stat;
6079 
6080 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
6081 	if (!cap)
6082 		return -EINVAL;
6083 
6084 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
6085 		return -EINVAL;
6086 
6087 	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
6088 }
6089 EXPORT_SYMBOL(pcix_get_max_mmrbc);
6090 
6091 /**
6092  * pcix_get_mmrbc - get PCI-X maximum memory read byte count
6093  * @dev: PCI device to query
6094  *
6095  * Returns mmrbc: maximum memory read count in bytes or appropriate error
6096  * value.
6097  */
6098 int pcix_get_mmrbc(struct pci_dev *dev)
6099 {
6100 	int cap;
6101 	u16 cmd;
6102 
6103 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
6104 	if (!cap)
6105 		return -EINVAL;
6106 
6107 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
6108 		return -EINVAL;
6109 
6110 	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
6111 }
6112 EXPORT_SYMBOL(pcix_get_mmrbc);
6113 
6114 /**
6115  * pcix_set_mmrbc - set PCI-X maximum memory read byte count
6116  * @dev: PCI device to query
6117  * @mmrbc: maximum memory read count in bytes
6118  *    valid values are 512, 1024, 2048, 4096
6119  *
6120  * If possible sets maximum memory read byte count, some bridges have errata
6121  * that prevent this.
6122  */
6123 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
6124 {
6125 	int cap;
6126 	u32 stat, v, o;
6127 	u16 cmd;
6128 
6129 	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
6130 		return -EINVAL;
6131 
6132 	v = ffs(mmrbc) - 10;
6133 
6134 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
6135 	if (!cap)
6136 		return -EINVAL;
6137 
6138 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
6139 		return -EINVAL;
6140 
6141 	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
6142 		return -E2BIG;
6143 
6144 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
6145 		return -EINVAL;
6146 
6147 	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
6148 	if (o != v) {
6149 		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
6150 			return -EIO;
6151 
6152 		cmd &= ~PCI_X_CMD_MAX_READ;
6153 		cmd |= v << 2;
6154 		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
6155 			return -EIO;
6156 	}
6157 	return 0;
6158 }
6159 EXPORT_SYMBOL(pcix_set_mmrbc);
6160 
6161 /**
6162  * pcie_get_readrq - get PCI Express read request size
6163  * @dev: PCI device to query
6164  *
6165  * Returns maximum memory read request in bytes or appropriate error value.
6166  */
6167 int pcie_get_readrq(struct pci_dev *dev)
6168 {
6169 	u16 ctl;
6170 
6171 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6172 
6173 	return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6174 }
6175 EXPORT_SYMBOL(pcie_get_readrq);
6176 
6177 /**
6178  * pcie_set_readrq - set PCI Express maximum memory read request
6179  * @dev: PCI device to query
6180  * @rq: maximum memory read count in bytes
6181  *    valid values are 128, 256, 512, 1024, 2048, 4096
6182  *
6183  * If possible sets maximum memory read request in bytes
6184  */
6185 int pcie_set_readrq(struct pci_dev *dev, int rq)
6186 {
6187 	u16 v;
6188 	int ret;
6189 	struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
6190 
6191 	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
6192 		return -EINVAL;
6193 
6194 	/*
6195 	 * If using the "performance" PCIe config, we clamp the read rq
6196 	 * size to the max packet size to keep the host bridge from
6197 	 * generating requests larger than we can cope with.
6198 	 */
6199 	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
6200 		int mps = pcie_get_mps(dev);
6201 
6202 		if (mps < rq)
6203 			rq = mps;
6204 	}
6205 
6206 	v = (ffs(rq) - 8) << 12;
6207 
6208 	if (bridge->no_inc_mrrs) {
6209 		int max_mrrs = pcie_get_readrq(dev);
6210 
6211 		if (rq > max_mrrs) {
6212 			pci_info(dev, "can't set Max_Read_Request_Size to %d; max is %d\n", rq, max_mrrs);
6213 			return -EINVAL;
6214 		}
6215 	}
6216 
6217 	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6218 						  PCI_EXP_DEVCTL_READRQ, v);
6219 
6220 	return pcibios_err_to_errno(ret);
6221 }
6222 EXPORT_SYMBOL(pcie_set_readrq);
6223 
6224 /**
6225  * pcie_get_mps - get PCI Express maximum payload size
6226  * @dev: PCI device to query
6227  *
6228  * Returns maximum payload size in bytes
6229  */
6230 int pcie_get_mps(struct pci_dev *dev)
6231 {
6232 	u16 ctl;
6233 
6234 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6235 
6236 	return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6237 }
6238 EXPORT_SYMBOL(pcie_get_mps);
6239 
6240 /**
6241  * pcie_set_mps - set PCI Express maximum payload size
6242  * @dev: PCI device to query
6243  * @mps: maximum payload size in bytes
6244  *    valid values are 128, 256, 512, 1024, 2048, 4096
6245  *
6246  * If possible sets maximum payload size
6247  */
6248 int pcie_set_mps(struct pci_dev *dev, int mps)
6249 {
6250 	u16 v;
6251 	int ret;
6252 
6253 	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
6254 		return -EINVAL;
6255 
6256 	v = ffs(mps) - 8;
6257 	if (v > dev->pcie_mpss)
6258 		return -EINVAL;
6259 	v <<= 5;
6260 
6261 	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6262 						  PCI_EXP_DEVCTL_PAYLOAD, v);
6263 
6264 	return pcibios_err_to_errno(ret);
6265 }
6266 EXPORT_SYMBOL(pcie_set_mps);
6267 
6268 /**
6269  * pcie_bandwidth_available - determine minimum link settings of a PCIe
6270  *			      device and its bandwidth limitation
6271  * @dev: PCI device to query
6272  * @limiting_dev: storage for device causing the bandwidth limitation
6273  * @speed: storage for speed of limiting device
6274  * @width: storage for width of limiting device
6275  *
6276  * Walk up the PCI device chain and find the point where the minimum
6277  * bandwidth is available.  Return the bandwidth available there and (if
6278  * limiting_dev, speed, and width pointers are supplied) information about
6279  * that point.  The bandwidth returned is in Mb/s, i.e., megabits/second of
6280  * raw bandwidth.
6281  */
6282 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
6283 			     enum pci_bus_speed *speed,
6284 			     enum pcie_link_width *width)
6285 {
6286 	u16 lnksta;
6287 	enum pci_bus_speed next_speed;
6288 	enum pcie_link_width next_width;
6289 	u32 bw, next_bw;
6290 
6291 	if (speed)
6292 		*speed = PCI_SPEED_UNKNOWN;
6293 	if (width)
6294 		*width = PCIE_LNK_WIDTH_UNKNOWN;
6295 
6296 	bw = 0;
6297 
6298 	while (dev) {
6299 		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
6300 
6301 		next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
6302 		next_width = FIELD_GET(PCI_EXP_LNKSTA_NLW, lnksta);
6303 
6304 		next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
6305 
6306 		/* Check if current device limits the total bandwidth */
6307 		if (!bw || next_bw <= bw) {
6308 			bw = next_bw;
6309 
6310 			if (limiting_dev)
6311 				*limiting_dev = dev;
6312 			if (speed)
6313 				*speed = next_speed;
6314 			if (width)
6315 				*width = next_width;
6316 		}
6317 
6318 		dev = pci_upstream_bridge(dev);
6319 	}
6320 
6321 	return bw;
6322 }
6323 EXPORT_SYMBOL(pcie_bandwidth_available);
6324 
6325 /**
6326  * pcie_get_speed_cap - query for the PCI device's link speed capability
6327  * @dev: PCI device to query
6328  *
6329  * Query the PCI device speed capability.  Return the maximum link speed
6330  * supported by the device.
6331  */
6332 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
6333 {
6334 	u32 lnkcap2, lnkcap;
6335 
6336 	/*
6337 	 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18.  The
6338 	 * implementation note there recommends using the Supported Link
6339 	 * Speeds Vector in Link Capabilities 2 when supported.
6340 	 *
6341 	 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
6342 	 * should use the Supported Link Speeds field in Link Capabilities,
6343 	 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
6344 	 */
6345 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
6346 
6347 	/* PCIe r3.0-compliant */
6348 	if (lnkcap2)
6349 		return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
6350 
6351 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6352 	if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
6353 		return PCIE_SPEED_5_0GT;
6354 	else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
6355 		return PCIE_SPEED_2_5GT;
6356 
6357 	return PCI_SPEED_UNKNOWN;
6358 }
6359 EXPORT_SYMBOL(pcie_get_speed_cap);
6360 
6361 /**
6362  * pcie_get_width_cap - query for the PCI device's link width capability
6363  * @dev: PCI device to query
6364  *
6365  * Query the PCI device width capability.  Return the maximum link width
6366  * supported by the device.
6367  */
6368 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
6369 {
6370 	u32 lnkcap;
6371 
6372 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6373 	if (lnkcap)
6374 		return FIELD_GET(PCI_EXP_LNKCAP_MLW, lnkcap);
6375 
6376 	return PCIE_LNK_WIDTH_UNKNOWN;
6377 }
6378 EXPORT_SYMBOL(pcie_get_width_cap);
6379 
6380 /**
6381  * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
6382  * @dev: PCI device
6383  * @speed: storage for link speed
6384  * @width: storage for link width
6385  *
6386  * Calculate a PCI device's link bandwidth by querying for its link speed
6387  * and width, multiplying them, and applying encoding overhead.  The result
6388  * is in Mb/s, i.e., megabits/second of raw bandwidth.
6389  */
6390 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
6391 			   enum pcie_link_width *width)
6392 {
6393 	*speed = pcie_get_speed_cap(dev);
6394 	*width = pcie_get_width_cap(dev);
6395 
6396 	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
6397 		return 0;
6398 
6399 	return *width * PCIE_SPEED2MBS_ENC(*speed);
6400 }
6401 
6402 /**
6403  * __pcie_print_link_status - Report the PCI device's link speed and width
6404  * @dev: PCI device to query
6405  * @verbose: Print info even when enough bandwidth is available
6406  *
6407  * If the available bandwidth at the device is less than the device is
6408  * capable of, report the device's maximum possible bandwidth and the
6409  * upstream link that limits its performance.  If @verbose, always print
6410  * the available bandwidth, even if the device isn't constrained.
6411  */
6412 void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
6413 {
6414 	enum pcie_link_width width, width_cap;
6415 	enum pci_bus_speed speed, speed_cap;
6416 	struct pci_dev *limiting_dev = NULL;
6417 	u32 bw_avail, bw_cap;
6418 
6419 	bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
6420 	bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
6421 
6422 	if (bw_avail >= bw_cap && verbose)
6423 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
6424 			 bw_cap / 1000, bw_cap % 1000,
6425 			 pci_speed_string(speed_cap), width_cap);
6426 	else if (bw_avail < bw_cap)
6427 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
6428 			 bw_avail / 1000, bw_avail % 1000,
6429 			 pci_speed_string(speed), width,
6430 			 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
6431 			 bw_cap / 1000, bw_cap % 1000,
6432 			 pci_speed_string(speed_cap), width_cap);
6433 }
6434 
6435 /**
6436  * pcie_print_link_status - Report the PCI device's link speed and width
6437  * @dev: PCI device to query
6438  *
6439  * Report the available bandwidth at the device.
6440  */
6441 void pcie_print_link_status(struct pci_dev *dev)
6442 {
6443 	__pcie_print_link_status(dev, true);
6444 }
6445 EXPORT_SYMBOL(pcie_print_link_status);
6446 
6447 /**
6448  * pci_select_bars - Make BAR mask from the type of resource
6449  * @dev: the PCI device for which BAR mask is made
6450  * @flags: resource type mask to be selected
6451  *
6452  * This helper routine makes bar mask from the type of resource.
6453  */
6454 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
6455 {
6456 	int i, bars = 0;
6457 	for (i = 0; i < PCI_NUM_RESOURCES; i++)
6458 		if (pci_resource_flags(dev, i) & flags)
6459 			bars |= (1 << i);
6460 	return bars;
6461 }
6462 EXPORT_SYMBOL(pci_select_bars);
6463 
6464 /* Some architectures require additional programming to enable VGA */
6465 static arch_set_vga_state_t arch_set_vga_state;
6466 
6467 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6468 {
6469 	arch_set_vga_state = func;	/* NULL disables */
6470 }
6471 
6472 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
6473 				  unsigned int command_bits, u32 flags)
6474 {
6475 	if (arch_set_vga_state)
6476 		return arch_set_vga_state(dev, decode, command_bits,
6477 						flags);
6478 	return 0;
6479 }
6480 
6481 /**
6482  * pci_set_vga_state - set VGA decode state on device and parents if requested
6483  * @dev: the PCI device
6484  * @decode: true = enable decoding, false = disable decoding
6485  * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6486  * @flags: traverse ancestors and change bridges
6487  * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6488  */
6489 int pci_set_vga_state(struct pci_dev *dev, bool decode,
6490 		      unsigned int command_bits, u32 flags)
6491 {
6492 	struct pci_bus *bus;
6493 	struct pci_dev *bridge;
6494 	u16 cmd;
6495 	int rc;
6496 
6497 	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6498 
6499 	/* ARCH specific VGA enables */
6500 	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6501 	if (rc)
6502 		return rc;
6503 
6504 	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6505 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
6506 		if (decode)
6507 			cmd |= command_bits;
6508 		else
6509 			cmd &= ~command_bits;
6510 		pci_write_config_word(dev, PCI_COMMAND, cmd);
6511 	}
6512 
6513 	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6514 		return 0;
6515 
6516 	bus = dev->bus;
6517 	while (bus) {
6518 		bridge = bus->self;
6519 		if (bridge) {
6520 			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6521 					     &cmd);
6522 			if (decode)
6523 				cmd |= PCI_BRIDGE_CTL_VGA;
6524 			else
6525 				cmd &= ~PCI_BRIDGE_CTL_VGA;
6526 			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6527 					      cmd);
6528 		}
6529 		bus = bus->parent;
6530 	}
6531 	return 0;
6532 }
6533 
6534 #ifdef CONFIG_ACPI
6535 bool pci_pr3_present(struct pci_dev *pdev)
6536 {
6537 	struct acpi_device *adev;
6538 
6539 	if (acpi_disabled)
6540 		return false;
6541 
6542 	adev = ACPI_COMPANION(&pdev->dev);
6543 	if (!adev)
6544 		return false;
6545 
6546 	return adev->power.flags.power_resources &&
6547 		acpi_has_method(adev->handle, "_PR3");
6548 }
6549 EXPORT_SYMBOL_GPL(pci_pr3_present);
6550 #endif
6551 
6552 /**
6553  * pci_add_dma_alias - Add a DMA devfn alias for a device
6554  * @dev: the PCI device for which alias is added
6555  * @devfn_from: alias slot and function
6556  * @nr_devfns: number of subsequent devfns to alias
6557  *
6558  * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6559  * which is used to program permissible bus-devfn source addresses for DMA
6560  * requests in an IOMMU.  These aliases factor into IOMMU group creation
6561  * and are useful for devices generating DMA requests beyond or different
6562  * from their logical bus-devfn.  Examples include device quirks where the
6563  * device simply uses the wrong devfn, as well as non-transparent bridges
6564  * where the alias may be a proxy for devices in another domain.
6565  *
6566  * IOMMU group creation is performed during device discovery or addition,
6567  * prior to any potential DMA mapping and therefore prior to driver probing
6568  * (especially for userspace assigned devices where IOMMU group definition
6569  * cannot be left as a userspace activity).  DMA aliases should therefore
6570  * be configured via quirks, such as the PCI fixup header quirk.
6571  */
6572 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from,
6573 		       unsigned int nr_devfns)
6574 {
6575 	int devfn_to;
6576 
6577 	nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from);
6578 	devfn_to = devfn_from + nr_devfns - 1;
6579 
6580 	if (!dev->dma_alias_mask)
6581 		dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6582 	if (!dev->dma_alias_mask) {
6583 		pci_warn(dev, "Unable to allocate DMA alias mask\n");
6584 		return;
6585 	}
6586 
6587 	bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6588 
6589 	if (nr_devfns == 1)
6590 		pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6591 				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6592 	else if (nr_devfns > 1)
6593 		pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6594 				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6595 				PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6596 }
6597 
6598 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6599 {
6600 	return (dev1->dma_alias_mask &&
6601 		test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6602 	       (dev2->dma_alias_mask &&
6603 		test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6604 	       pci_real_dma_dev(dev1) == dev2 ||
6605 	       pci_real_dma_dev(dev2) == dev1;
6606 }
6607 
6608 bool pci_device_is_present(struct pci_dev *pdev)
6609 {
6610 	u32 v;
6611 
6612 	/* Check PF if pdev is a VF, since VF Vendor/Device IDs are 0xffff */
6613 	pdev = pci_physfn(pdev);
6614 	if (pci_dev_is_disconnected(pdev))
6615 		return false;
6616 	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6617 }
6618 EXPORT_SYMBOL_GPL(pci_device_is_present);
6619 
6620 void pci_ignore_hotplug(struct pci_dev *dev)
6621 {
6622 	struct pci_dev *bridge = dev->bus->self;
6623 
6624 	dev->ignore_hotplug = 1;
6625 	/* Propagate the "ignore hotplug" setting to the parent bridge. */
6626 	if (bridge)
6627 		bridge->ignore_hotplug = 1;
6628 }
6629 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6630 
6631 /**
6632  * pci_real_dma_dev - Get PCI DMA device for PCI device
6633  * @dev: the PCI device that may have a PCI DMA alias
6634  *
6635  * Permits the platform to provide architecture-specific functionality to
6636  * devices needing to alias DMA to another PCI device on another PCI bus. If
6637  * the PCI device is on the same bus, it is recommended to use
6638  * pci_add_dma_alias(). This is the default implementation. Architecture
6639  * implementations can override this.
6640  */
6641 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6642 {
6643 	return dev;
6644 }
6645 
6646 resource_size_t __weak pcibios_default_alignment(void)
6647 {
6648 	return 0;
6649 }
6650 
6651 /*
6652  * Arches that don't want to expose struct resource to userland as-is in
6653  * sysfs and /proc can implement their own pci_resource_to_user().
6654  */
6655 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6656 				 const struct resource *rsrc,
6657 				 resource_size_t *start, resource_size_t *end)
6658 {
6659 	*start = rsrc->start;
6660 	*end = rsrc->end;
6661 }
6662 
6663 static char *resource_alignment_param;
6664 static DEFINE_SPINLOCK(resource_alignment_lock);
6665 
6666 /**
6667  * pci_specified_resource_alignment - get resource alignment specified by user.
6668  * @dev: the PCI device to get
6669  * @resize: whether or not to change resources' size when reassigning alignment
6670  *
6671  * RETURNS: Resource alignment if it is specified.
6672  *          Zero if it is not specified.
6673  */
6674 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6675 							bool *resize)
6676 {
6677 	int align_order, count;
6678 	resource_size_t align = pcibios_default_alignment();
6679 	const char *p;
6680 	int ret;
6681 
6682 	spin_lock(&resource_alignment_lock);
6683 	p = resource_alignment_param;
6684 	if (!p || !*p)
6685 		goto out;
6686 	if (pci_has_flag(PCI_PROBE_ONLY)) {
6687 		align = 0;
6688 		pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6689 		goto out;
6690 	}
6691 
6692 	while (*p) {
6693 		count = 0;
6694 		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6695 		    p[count] == '@') {
6696 			p += count + 1;
6697 			if (align_order > 63) {
6698 				pr_err("PCI: Invalid requested alignment (order %d)\n",
6699 				       align_order);
6700 				align_order = PAGE_SHIFT;
6701 			}
6702 		} else {
6703 			align_order = PAGE_SHIFT;
6704 		}
6705 
6706 		ret = pci_dev_str_match(dev, p, &p);
6707 		if (ret == 1) {
6708 			*resize = true;
6709 			align = 1ULL << align_order;
6710 			break;
6711 		} else if (ret < 0) {
6712 			pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6713 			       p);
6714 			break;
6715 		}
6716 
6717 		if (*p != ';' && *p != ',') {
6718 			/* End of param or invalid format */
6719 			break;
6720 		}
6721 		p++;
6722 	}
6723 out:
6724 	spin_unlock(&resource_alignment_lock);
6725 	return align;
6726 }
6727 
6728 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6729 					   resource_size_t align, bool resize)
6730 {
6731 	struct resource *r = &dev->resource[bar];
6732 	resource_size_t size;
6733 
6734 	if (!(r->flags & IORESOURCE_MEM))
6735 		return;
6736 
6737 	if (r->flags & IORESOURCE_PCI_FIXED) {
6738 		pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6739 			 bar, r, (unsigned long long)align);
6740 		return;
6741 	}
6742 
6743 	size = resource_size(r);
6744 	if (size >= align)
6745 		return;
6746 
6747 	/*
6748 	 * Increase the alignment of the resource.  There are two ways we
6749 	 * can do this:
6750 	 *
6751 	 * 1) Increase the size of the resource.  BARs are aligned on their
6752 	 *    size, so when we reallocate space for this resource, we'll
6753 	 *    allocate it with the larger alignment.  This also prevents
6754 	 *    assignment of any other BARs inside the alignment region, so
6755 	 *    if we're requesting page alignment, this means no other BARs
6756 	 *    will share the page.
6757 	 *
6758 	 *    The disadvantage is that this makes the resource larger than
6759 	 *    the hardware BAR, which may break drivers that compute things
6760 	 *    based on the resource size, e.g., to find registers at a
6761 	 *    fixed offset before the end of the BAR.
6762 	 *
6763 	 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6764 	 *    set r->start to the desired alignment.  By itself this
6765 	 *    doesn't prevent other BARs being put inside the alignment
6766 	 *    region, but if we realign *every* resource of every device in
6767 	 *    the system, none of them will share an alignment region.
6768 	 *
6769 	 * When the user has requested alignment for only some devices via
6770 	 * the "pci=resource_alignment" argument, "resize" is true and we
6771 	 * use the first method.  Otherwise we assume we're aligning all
6772 	 * devices and we use the second.
6773 	 */
6774 
6775 	pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6776 		 bar, r, (unsigned long long)align);
6777 
6778 	if (resize) {
6779 		r->start = 0;
6780 		r->end = align - 1;
6781 	} else {
6782 		r->flags &= ~IORESOURCE_SIZEALIGN;
6783 		r->flags |= IORESOURCE_STARTALIGN;
6784 		r->start = align;
6785 		r->end = r->start + size - 1;
6786 	}
6787 	r->flags |= IORESOURCE_UNSET;
6788 }
6789 
6790 /*
6791  * This function disables memory decoding and releases memory resources
6792  * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6793  * It also rounds up size to specified alignment.
6794  * Later on, the kernel will assign page-aligned memory resource back
6795  * to the device.
6796  */
6797 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6798 {
6799 	int i;
6800 	struct resource *r;
6801 	resource_size_t align;
6802 	u16 command;
6803 	bool resize = false;
6804 
6805 	/*
6806 	 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6807 	 * 3.4.1.11.  Their resources are allocated from the space
6808 	 * described by the VF BARx register in the PF's SR-IOV capability.
6809 	 * We can't influence their alignment here.
6810 	 */
6811 	if (dev->is_virtfn)
6812 		return;
6813 
6814 	/* check if specified PCI is target device to reassign */
6815 	align = pci_specified_resource_alignment(dev, &resize);
6816 	if (!align)
6817 		return;
6818 
6819 	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6820 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6821 		pci_warn(dev, "Can't reassign resources to host bridge\n");
6822 		return;
6823 	}
6824 
6825 	pci_read_config_word(dev, PCI_COMMAND, &command);
6826 	command &= ~PCI_COMMAND_MEMORY;
6827 	pci_write_config_word(dev, PCI_COMMAND, command);
6828 
6829 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6830 		pci_request_resource_alignment(dev, i, align, resize);
6831 
6832 	/*
6833 	 * Need to disable bridge's resource window,
6834 	 * to enable the kernel to reassign new resource
6835 	 * window later on.
6836 	 */
6837 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6838 		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6839 			r = &dev->resource[i];
6840 			if (!(r->flags & IORESOURCE_MEM))
6841 				continue;
6842 			r->flags |= IORESOURCE_UNSET;
6843 			r->end = resource_size(r) - 1;
6844 			r->start = 0;
6845 		}
6846 		pci_disable_bridge_window(dev);
6847 	}
6848 }
6849 
6850 static ssize_t resource_alignment_show(const struct bus_type *bus, char *buf)
6851 {
6852 	size_t count = 0;
6853 
6854 	spin_lock(&resource_alignment_lock);
6855 	if (resource_alignment_param)
6856 		count = sysfs_emit(buf, "%s\n", resource_alignment_param);
6857 	spin_unlock(&resource_alignment_lock);
6858 
6859 	return count;
6860 }
6861 
6862 static ssize_t resource_alignment_store(const struct bus_type *bus,
6863 					const char *buf, size_t count)
6864 {
6865 	char *param, *old, *end;
6866 
6867 	if (count >= (PAGE_SIZE - 1))
6868 		return -EINVAL;
6869 
6870 	param = kstrndup(buf, count, GFP_KERNEL);
6871 	if (!param)
6872 		return -ENOMEM;
6873 
6874 	end = strchr(param, '\n');
6875 	if (end)
6876 		*end = '\0';
6877 
6878 	spin_lock(&resource_alignment_lock);
6879 	old = resource_alignment_param;
6880 	if (strlen(param)) {
6881 		resource_alignment_param = param;
6882 	} else {
6883 		kfree(param);
6884 		resource_alignment_param = NULL;
6885 	}
6886 	spin_unlock(&resource_alignment_lock);
6887 
6888 	kfree(old);
6889 
6890 	return count;
6891 }
6892 
6893 static BUS_ATTR_RW(resource_alignment);
6894 
6895 static int __init pci_resource_alignment_sysfs_init(void)
6896 {
6897 	return bus_create_file(&pci_bus_type,
6898 					&bus_attr_resource_alignment);
6899 }
6900 late_initcall(pci_resource_alignment_sysfs_init);
6901 
6902 static void pci_no_domains(void)
6903 {
6904 #ifdef CONFIG_PCI_DOMAINS
6905 	pci_domains_supported = 0;
6906 #endif
6907 }
6908 
6909 #ifdef CONFIG_PCI_DOMAINS_GENERIC
6910 static DEFINE_IDA(pci_domain_nr_static_ida);
6911 static DEFINE_IDA(pci_domain_nr_dynamic_ida);
6912 
6913 static void of_pci_reserve_static_domain_nr(void)
6914 {
6915 	struct device_node *np;
6916 	int domain_nr;
6917 
6918 	for_each_node_by_type(np, "pci") {
6919 		domain_nr = of_get_pci_domain_nr(np);
6920 		if (domain_nr < 0)
6921 			continue;
6922 		/*
6923 		 * Permanently allocate domain_nr in dynamic_ida
6924 		 * to prevent it from dynamic allocation.
6925 		 */
6926 		ida_alloc_range(&pci_domain_nr_dynamic_ida,
6927 				domain_nr, domain_nr, GFP_KERNEL);
6928 	}
6929 }
6930 
6931 static int of_pci_bus_find_domain_nr(struct device *parent)
6932 {
6933 	static bool static_domains_reserved = false;
6934 	int domain_nr;
6935 
6936 	/* On the first call scan device tree for static allocations. */
6937 	if (!static_domains_reserved) {
6938 		of_pci_reserve_static_domain_nr();
6939 		static_domains_reserved = true;
6940 	}
6941 
6942 	if (parent) {
6943 		/*
6944 		 * If domain is in DT, allocate it in static IDA.  This
6945 		 * prevents duplicate static allocations in case of errors
6946 		 * in DT.
6947 		 */
6948 		domain_nr = of_get_pci_domain_nr(parent->of_node);
6949 		if (domain_nr >= 0)
6950 			return ida_alloc_range(&pci_domain_nr_static_ida,
6951 					       domain_nr, domain_nr,
6952 					       GFP_KERNEL);
6953 	}
6954 
6955 	/*
6956 	 * If domain was not specified in DT, choose a free ID from dynamic
6957 	 * allocations. All domain numbers from DT are permanently in
6958 	 * dynamic allocations to prevent assigning them to other DT nodes
6959 	 * without static domain.
6960 	 */
6961 	return ida_alloc(&pci_domain_nr_dynamic_ida, GFP_KERNEL);
6962 }
6963 
6964 static void of_pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent)
6965 {
6966 	if (bus->domain_nr < 0)
6967 		return;
6968 
6969 	/* Release domain from IDA where it was allocated. */
6970 	if (of_get_pci_domain_nr(parent->of_node) == bus->domain_nr)
6971 		ida_free(&pci_domain_nr_static_ida, bus->domain_nr);
6972 	else
6973 		ida_free(&pci_domain_nr_dynamic_ida, bus->domain_nr);
6974 }
6975 
6976 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6977 {
6978 	return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6979 			       acpi_pci_bus_find_domain_nr(bus);
6980 }
6981 
6982 void pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent)
6983 {
6984 	if (!acpi_disabled)
6985 		return;
6986 	of_pci_bus_release_domain_nr(bus, parent);
6987 }
6988 #endif
6989 
6990 /**
6991  * pci_ext_cfg_avail - can we access extended PCI config space?
6992  *
6993  * Returns 1 if we can access PCI extended config space (offsets
6994  * greater than 0xff). This is the default implementation. Architecture
6995  * implementations can override this.
6996  */
6997 int __weak pci_ext_cfg_avail(void)
6998 {
6999 	return 1;
7000 }
7001 
7002 void __weak pci_fixup_cardbus(struct pci_bus *bus)
7003 {
7004 }
7005 EXPORT_SYMBOL(pci_fixup_cardbus);
7006 
7007 static int __init pci_setup(char *str)
7008 {
7009 	while (str) {
7010 		char *k = strchr(str, ',');
7011 		if (k)
7012 			*k++ = 0;
7013 		if (*str && (str = pcibios_setup(str)) && *str) {
7014 			if (!strcmp(str, "nomsi")) {
7015 				pci_no_msi();
7016 			} else if (!strncmp(str, "noats", 5)) {
7017 				pr_info("PCIe: ATS is disabled\n");
7018 				pcie_ats_disabled = true;
7019 			} else if (!strcmp(str, "noaer")) {
7020 				pci_no_aer();
7021 			} else if (!strcmp(str, "earlydump")) {
7022 				pci_early_dump = true;
7023 			} else if (!strncmp(str, "realloc=", 8)) {
7024 				pci_realloc_get_opt(str + 8);
7025 			} else if (!strncmp(str, "realloc", 7)) {
7026 				pci_realloc_get_opt("on");
7027 			} else if (!strcmp(str, "nodomains")) {
7028 				pci_no_domains();
7029 			} else if (!strncmp(str, "noari", 5)) {
7030 				pcie_ari_disabled = true;
7031 			} else if (!strncmp(str, "cbiosize=", 9)) {
7032 				pci_cardbus_io_size = memparse(str + 9, &str);
7033 			} else if (!strncmp(str, "cbmemsize=", 10)) {
7034 				pci_cardbus_mem_size = memparse(str + 10, &str);
7035 			} else if (!strncmp(str, "resource_alignment=", 19)) {
7036 				resource_alignment_param = str + 19;
7037 			} else if (!strncmp(str, "ecrc=", 5)) {
7038 				pcie_ecrc_get_policy(str + 5);
7039 			} else if (!strncmp(str, "hpiosize=", 9)) {
7040 				pci_hotplug_io_size = memparse(str + 9, &str);
7041 			} else if (!strncmp(str, "hpmmiosize=", 11)) {
7042 				pci_hotplug_mmio_size = memparse(str + 11, &str);
7043 			} else if (!strncmp(str, "hpmmioprefsize=", 15)) {
7044 				pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
7045 			} else if (!strncmp(str, "hpmemsize=", 10)) {
7046 				pci_hotplug_mmio_size = memparse(str + 10, &str);
7047 				pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
7048 			} else if (!strncmp(str, "hpbussize=", 10)) {
7049 				pci_hotplug_bus_size =
7050 					simple_strtoul(str + 10, &str, 0);
7051 				if (pci_hotplug_bus_size > 0xff)
7052 					pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
7053 			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
7054 				pcie_bus_config = PCIE_BUS_TUNE_OFF;
7055 			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
7056 				pcie_bus_config = PCIE_BUS_SAFE;
7057 			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
7058 				pcie_bus_config = PCIE_BUS_PERFORMANCE;
7059 			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
7060 				pcie_bus_config = PCIE_BUS_PEER2PEER;
7061 			} else if (!strncmp(str, "pcie_scan_all", 13)) {
7062 				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
7063 			} else if (!strncmp(str, "disable_acs_redir=", 18)) {
7064 				disable_acs_redir_param = str + 18;
7065 			} else {
7066 				pr_err("PCI: Unknown option `%s'\n", str);
7067 			}
7068 		}
7069 		str = k;
7070 	}
7071 	return 0;
7072 }
7073 early_param("pci", pci_setup);
7074 
7075 /*
7076  * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
7077  * in pci_setup(), above, to point to data in the __initdata section which
7078  * will be freed after the init sequence is complete. We can't allocate memory
7079  * in pci_setup() because some architectures do not have any memory allocation
7080  * service available during an early_param() call. So we allocate memory and
7081  * copy the variable here before the init section is freed.
7082  *
7083  */
7084 static int __init pci_realloc_setup_params(void)
7085 {
7086 	resource_alignment_param = kstrdup(resource_alignment_param,
7087 					   GFP_KERNEL);
7088 	disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
7089 
7090 	return 0;
7091 }
7092 pure_initcall(pci_realloc_setup_params);
7093