1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * PCI Bus Services, see include/linux/pci.h for further explanation. 4 * 5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter, 6 * David Mosberger-Tang 7 * 8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz> 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/kernel.h> 13 #include <linux/delay.h> 14 #include <linux/dmi.h> 15 #include <linux/init.h> 16 #include <linux/msi.h> 17 #include <linux/of.h> 18 #include <linux/of_pci.h> 19 #include <linux/pci.h> 20 #include <linux/pm.h> 21 #include <linux/slab.h> 22 #include <linux/module.h> 23 #include <linux/spinlock.h> 24 #include <linux/string.h> 25 #include <linux/log2.h> 26 #include <linux/logic_pio.h> 27 #include <linux/pm_wakeup.h> 28 #include <linux/interrupt.h> 29 #include <linux/device.h> 30 #include <linux/pm_runtime.h> 31 #include <linux/pci_hotplug.h> 32 #include <linux/vmalloc.h> 33 #include <linux/pci-ats.h> 34 #include <asm/setup.h> 35 #include <asm/dma.h> 36 #include <linux/aer.h> 37 #include "pci.h" 38 39 DEFINE_MUTEX(pci_slot_mutex); 40 41 const char *pci_power_names[] = { 42 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown", 43 }; 44 EXPORT_SYMBOL_GPL(pci_power_names); 45 46 int isa_dma_bridge_buggy; 47 EXPORT_SYMBOL(isa_dma_bridge_buggy); 48 49 int pci_pci_problems; 50 EXPORT_SYMBOL(pci_pci_problems); 51 52 unsigned int pci_pm_d3_delay; 53 54 static void pci_pme_list_scan(struct work_struct *work); 55 56 static LIST_HEAD(pci_pme_list); 57 static DEFINE_MUTEX(pci_pme_list_mutex); 58 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan); 59 60 struct pci_pme_device { 61 struct list_head list; 62 struct pci_dev *dev; 63 }; 64 65 #define PME_TIMEOUT 1000 /* How long between PME checks */ 66 67 static void pci_dev_d3_sleep(struct pci_dev *dev) 68 { 69 unsigned int delay = dev->d3_delay; 70 71 if (delay < pci_pm_d3_delay) 72 delay = pci_pm_d3_delay; 73 74 if (delay) 75 msleep(delay); 76 } 77 78 #ifdef CONFIG_PCI_DOMAINS 79 int pci_domains_supported = 1; 80 #endif 81 82 #define DEFAULT_CARDBUS_IO_SIZE (256) 83 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024) 84 /* pci=cbmemsize=nnM,cbiosize=nn can override this */ 85 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE; 86 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE; 87 88 #define DEFAULT_HOTPLUG_IO_SIZE (256) 89 #define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024) 90 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024) 91 /* hpiosize=nn can override this */ 92 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE; 93 /* 94 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size, 95 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size; 96 * pci=hpmemsize=nnM overrides both 97 */ 98 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE; 99 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE; 100 101 #define DEFAULT_HOTPLUG_BUS_SIZE 1 102 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 103 104 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT; 105 106 /* 107 * The default CLS is used if arch didn't set CLS explicitly and not 108 * all pci devices agree on the same value. Arch can override either 109 * the dfl or actual value as it sees fit. Don't forget this is 110 * measured in 32-bit words, not bytes. 111 */ 112 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2; 113 u8 pci_cache_line_size; 114 115 /* 116 * If we set up a device for bus mastering, we need to check the latency 117 * timer as certain BIOSes forget to set it properly. 118 */ 119 unsigned int pcibios_max_latency = 255; 120 121 /* If set, the PCIe ARI capability will not be used. */ 122 static bool pcie_ari_disabled; 123 124 /* If set, the PCIe ATS capability will not be used. */ 125 static bool pcie_ats_disabled; 126 127 /* If set, the PCI config space of each device is printed during boot. */ 128 bool pci_early_dump; 129 130 bool pci_ats_disabled(void) 131 { 132 return pcie_ats_disabled; 133 } 134 EXPORT_SYMBOL_GPL(pci_ats_disabled); 135 136 /* Disable bridge_d3 for all PCIe ports */ 137 static bool pci_bridge_d3_disable; 138 /* Force bridge_d3 for all PCIe ports */ 139 static bool pci_bridge_d3_force; 140 141 static int __init pcie_port_pm_setup(char *str) 142 { 143 if (!strcmp(str, "off")) 144 pci_bridge_d3_disable = true; 145 else if (!strcmp(str, "force")) 146 pci_bridge_d3_force = true; 147 return 1; 148 } 149 __setup("pcie_port_pm=", pcie_port_pm_setup); 150 151 /* Time to wait after a reset for device to become responsive */ 152 #define PCIE_RESET_READY_POLL_MS 60000 153 154 /** 155 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children 156 * @bus: pointer to PCI bus structure to search 157 * 158 * Given a PCI bus, returns the highest PCI bus number present in the set 159 * including the given PCI bus and its list of child PCI buses. 160 */ 161 unsigned char pci_bus_max_busnr(struct pci_bus *bus) 162 { 163 struct pci_bus *tmp; 164 unsigned char max, n; 165 166 max = bus->busn_res.end; 167 list_for_each_entry(tmp, &bus->children, node) { 168 n = pci_bus_max_busnr(tmp); 169 if (n > max) 170 max = n; 171 } 172 return max; 173 } 174 EXPORT_SYMBOL_GPL(pci_bus_max_busnr); 175 176 /** 177 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS 178 * @pdev: the PCI device 179 * 180 * Returns error bits set in PCI_STATUS and clears them. 181 */ 182 int pci_status_get_and_clear_errors(struct pci_dev *pdev) 183 { 184 u16 status; 185 int ret; 186 187 ret = pci_read_config_word(pdev, PCI_STATUS, &status); 188 if (ret != PCIBIOS_SUCCESSFUL) 189 return -EIO; 190 191 status &= PCI_STATUS_ERROR_BITS; 192 if (status) 193 pci_write_config_word(pdev, PCI_STATUS, status); 194 195 return status; 196 } 197 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors); 198 199 #ifdef CONFIG_HAS_IOMEM 200 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar) 201 { 202 struct resource *res = &pdev->resource[bar]; 203 204 /* 205 * Make sure the BAR is actually a memory resource, not an IO resource 206 */ 207 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) { 208 pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res); 209 return NULL; 210 } 211 return ioremap(res->start, resource_size(res)); 212 } 213 EXPORT_SYMBOL_GPL(pci_ioremap_bar); 214 215 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar) 216 { 217 /* 218 * Make sure the BAR is actually a memory resource, not an IO resource 219 */ 220 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) { 221 WARN_ON(1); 222 return NULL; 223 } 224 return ioremap_wc(pci_resource_start(pdev, bar), 225 pci_resource_len(pdev, bar)); 226 } 227 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar); 228 #endif 229 230 /** 231 * pci_dev_str_match_path - test if a path string matches a device 232 * @dev: the PCI device to test 233 * @path: string to match the device against 234 * @endptr: pointer to the string after the match 235 * 236 * Test if a string (typically from a kernel parameter) formatted as a 237 * path of device/function addresses matches a PCI device. The string must 238 * be of the form: 239 * 240 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 241 * 242 * A path for a device can be obtained using 'lspci -t'. Using a path 243 * is more robust against bus renumbering than using only a single bus, 244 * device and function address. 245 * 246 * Returns 1 if the string matches the device, 0 if it does not and 247 * a negative error code if it fails to parse the string. 248 */ 249 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path, 250 const char **endptr) 251 { 252 int ret; 253 int seg, bus, slot, func; 254 char *wpath, *p; 255 char end; 256 257 *endptr = strchrnul(path, ';'); 258 259 wpath = kmemdup_nul(path, *endptr - path, GFP_KERNEL); 260 if (!wpath) 261 return -ENOMEM; 262 263 while (1) { 264 p = strrchr(wpath, '/'); 265 if (!p) 266 break; 267 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end); 268 if (ret != 2) { 269 ret = -EINVAL; 270 goto free_and_exit; 271 } 272 273 if (dev->devfn != PCI_DEVFN(slot, func)) { 274 ret = 0; 275 goto free_and_exit; 276 } 277 278 /* 279 * Note: we don't need to get a reference to the upstream 280 * bridge because we hold a reference to the top level 281 * device which should hold a reference to the bridge, 282 * and so on. 283 */ 284 dev = pci_upstream_bridge(dev); 285 if (!dev) { 286 ret = 0; 287 goto free_and_exit; 288 } 289 290 *p = 0; 291 } 292 293 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot, 294 &func, &end); 295 if (ret != 4) { 296 seg = 0; 297 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end); 298 if (ret != 3) { 299 ret = -EINVAL; 300 goto free_and_exit; 301 } 302 } 303 304 ret = (seg == pci_domain_nr(dev->bus) && 305 bus == dev->bus->number && 306 dev->devfn == PCI_DEVFN(slot, func)); 307 308 free_and_exit: 309 kfree(wpath); 310 return ret; 311 } 312 313 /** 314 * pci_dev_str_match - test if a string matches a device 315 * @dev: the PCI device to test 316 * @p: string to match the device against 317 * @endptr: pointer to the string after the match 318 * 319 * Test if a string (typically from a kernel parameter) matches a specified 320 * PCI device. The string may be of one of the following formats: 321 * 322 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 323 * pci:<vendor>:<device>[:<subvendor>:<subdevice>] 324 * 325 * The first format specifies a PCI bus/device/function address which 326 * may change if new hardware is inserted, if motherboard firmware changes, 327 * or due to changes caused in kernel parameters. If the domain is 328 * left unspecified, it is taken to be 0. In order to be robust against 329 * bus renumbering issues, a path of PCI device/function numbers may be used 330 * to address the specific device. The path for a device can be determined 331 * through the use of 'lspci -t'. 332 * 333 * The second format matches devices using IDs in the configuration 334 * space which may match multiple devices in the system. A value of 0 335 * for any field will match all devices. (Note: this differs from 336 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for 337 * legacy reasons and convenience so users don't have to specify 338 * FFFFFFFFs on the command line.) 339 * 340 * Returns 1 if the string matches the device, 0 if it does not and 341 * a negative error code if the string cannot be parsed. 342 */ 343 static int pci_dev_str_match(struct pci_dev *dev, const char *p, 344 const char **endptr) 345 { 346 int ret; 347 int count; 348 unsigned short vendor, device, subsystem_vendor, subsystem_device; 349 350 if (strncmp(p, "pci:", 4) == 0) { 351 /* PCI vendor/device (subvendor/subdevice) IDs are specified */ 352 p += 4; 353 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device, 354 &subsystem_vendor, &subsystem_device, &count); 355 if (ret != 4) { 356 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count); 357 if (ret != 2) 358 return -EINVAL; 359 360 subsystem_vendor = 0; 361 subsystem_device = 0; 362 } 363 364 p += count; 365 366 if ((!vendor || vendor == dev->vendor) && 367 (!device || device == dev->device) && 368 (!subsystem_vendor || 369 subsystem_vendor == dev->subsystem_vendor) && 370 (!subsystem_device || 371 subsystem_device == dev->subsystem_device)) 372 goto found; 373 } else { 374 /* 375 * PCI Bus, Device, Function IDs are specified 376 * (optionally, may include a path of devfns following it) 377 */ 378 ret = pci_dev_str_match_path(dev, p, &p); 379 if (ret < 0) 380 return ret; 381 else if (ret) 382 goto found; 383 } 384 385 *endptr = p; 386 return 0; 387 388 found: 389 *endptr = p; 390 return 1; 391 } 392 393 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn, 394 u8 pos, int cap, int *ttl) 395 { 396 u8 id; 397 u16 ent; 398 399 pci_bus_read_config_byte(bus, devfn, pos, &pos); 400 401 while ((*ttl)--) { 402 if (pos < 0x40) 403 break; 404 pos &= ~3; 405 pci_bus_read_config_word(bus, devfn, pos, &ent); 406 407 id = ent & 0xff; 408 if (id == 0xff) 409 break; 410 if (id == cap) 411 return pos; 412 pos = (ent >> 8); 413 } 414 return 0; 415 } 416 417 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn, 418 u8 pos, int cap) 419 { 420 int ttl = PCI_FIND_CAP_TTL; 421 422 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl); 423 } 424 425 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap) 426 { 427 return __pci_find_next_cap(dev->bus, dev->devfn, 428 pos + PCI_CAP_LIST_NEXT, cap); 429 } 430 EXPORT_SYMBOL_GPL(pci_find_next_capability); 431 432 static int __pci_bus_find_cap_start(struct pci_bus *bus, 433 unsigned int devfn, u8 hdr_type) 434 { 435 u16 status; 436 437 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status); 438 if (!(status & PCI_STATUS_CAP_LIST)) 439 return 0; 440 441 switch (hdr_type) { 442 case PCI_HEADER_TYPE_NORMAL: 443 case PCI_HEADER_TYPE_BRIDGE: 444 return PCI_CAPABILITY_LIST; 445 case PCI_HEADER_TYPE_CARDBUS: 446 return PCI_CB_CAPABILITY_LIST; 447 } 448 449 return 0; 450 } 451 452 /** 453 * pci_find_capability - query for devices' capabilities 454 * @dev: PCI device to query 455 * @cap: capability code 456 * 457 * Tell if a device supports a given PCI capability. 458 * Returns the address of the requested capability structure within the 459 * device's PCI configuration space or 0 in case the device does not 460 * support it. Possible values for @cap include: 461 * 462 * %PCI_CAP_ID_PM Power Management 463 * %PCI_CAP_ID_AGP Accelerated Graphics Port 464 * %PCI_CAP_ID_VPD Vital Product Data 465 * %PCI_CAP_ID_SLOTID Slot Identification 466 * %PCI_CAP_ID_MSI Message Signalled Interrupts 467 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap 468 * %PCI_CAP_ID_PCIX PCI-X 469 * %PCI_CAP_ID_EXP PCI Express 470 */ 471 int pci_find_capability(struct pci_dev *dev, int cap) 472 { 473 int pos; 474 475 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 476 if (pos) 477 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap); 478 479 return pos; 480 } 481 EXPORT_SYMBOL(pci_find_capability); 482 483 /** 484 * pci_bus_find_capability - query for devices' capabilities 485 * @bus: the PCI bus to query 486 * @devfn: PCI device to query 487 * @cap: capability code 488 * 489 * Like pci_find_capability() but works for PCI devices that do not have a 490 * pci_dev structure set up yet. 491 * 492 * Returns the address of the requested capability structure within the 493 * device's PCI configuration space or 0 in case the device does not 494 * support it. 495 */ 496 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap) 497 { 498 int pos; 499 u8 hdr_type; 500 501 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type); 502 503 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f); 504 if (pos) 505 pos = __pci_find_next_cap(bus, devfn, pos, cap); 506 507 return pos; 508 } 509 EXPORT_SYMBOL(pci_bus_find_capability); 510 511 /** 512 * pci_find_next_ext_capability - Find an extended capability 513 * @dev: PCI device to query 514 * @start: address at which to start looking (0 to start at beginning of list) 515 * @cap: capability code 516 * 517 * Returns the address of the next matching extended capability structure 518 * within the device's PCI configuration space or 0 if the device does 519 * not support it. Some capabilities can occur several times, e.g., the 520 * vendor-specific capability, and this provides a way to find them all. 521 */ 522 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap) 523 { 524 u32 header; 525 int ttl; 526 int pos = PCI_CFG_SPACE_SIZE; 527 528 /* minimum 8 bytes per capability */ 529 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8; 530 531 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE) 532 return 0; 533 534 if (start) 535 pos = start; 536 537 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 538 return 0; 539 540 /* 541 * If we have no capabilities, this is indicated by cap ID, 542 * cap version and next pointer all being 0. 543 */ 544 if (header == 0) 545 return 0; 546 547 while (ttl-- > 0) { 548 if (PCI_EXT_CAP_ID(header) == cap && pos != start) 549 return pos; 550 551 pos = PCI_EXT_CAP_NEXT(header); 552 if (pos < PCI_CFG_SPACE_SIZE) 553 break; 554 555 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 556 break; 557 } 558 559 return 0; 560 } 561 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability); 562 563 /** 564 * pci_find_ext_capability - Find an extended capability 565 * @dev: PCI device to query 566 * @cap: capability code 567 * 568 * Returns the address of the requested extended capability structure 569 * within the device's PCI configuration space or 0 if the device does 570 * not support it. Possible values for @cap include: 571 * 572 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting 573 * %PCI_EXT_CAP_ID_VC Virtual Channel 574 * %PCI_EXT_CAP_ID_DSN Device Serial Number 575 * %PCI_EXT_CAP_ID_PWR Power Budgeting 576 */ 577 int pci_find_ext_capability(struct pci_dev *dev, int cap) 578 { 579 return pci_find_next_ext_capability(dev, 0, cap); 580 } 581 EXPORT_SYMBOL_GPL(pci_find_ext_capability); 582 583 /** 584 * pci_get_dsn - Read and return the 8-byte Device Serial Number 585 * @dev: PCI device to query 586 * 587 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial 588 * Number. 589 * 590 * Returns the DSN, or zero if the capability does not exist. 591 */ 592 u64 pci_get_dsn(struct pci_dev *dev) 593 { 594 u32 dword; 595 u64 dsn; 596 int pos; 597 598 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN); 599 if (!pos) 600 return 0; 601 602 /* 603 * The Device Serial Number is two dwords offset 4 bytes from the 604 * capability position. The specification says that the first dword is 605 * the lower half, and the second dword is the upper half. 606 */ 607 pos += 4; 608 pci_read_config_dword(dev, pos, &dword); 609 dsn = (u64)dword; 610 pci_read_config_dword(dev, pos + 4, &dword); 611 dsn |= ((u64)dword) << 32; 612 613 return dsn; 614 } 615 EXPORT_SYMBOL_GPL(pci_get_dsn); 616 617 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap) 618 { 619 int rc, ttl = PCI_FIND_CAP_TTL; 620 u8 cap, mask; 621 622 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST) 623 mask = HT_3BIT_CAP_MASK; 624 else 625 mask = HT_5BIT_CAP_MASK; 626 627 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos, 628 PCI_CAP_ID_HT, &ttl); 629 while (pos) { 630 rc = pci_read_config_byte(dev, pos + 3, &cap); 631 if (rc != PCIBIOS_SUCCESSFUL) 632 return 0; 633 634 if ((cap & mask) == ht_cap) 635 return pos; 636 637 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, 638 pos + PCI_CAP_LIST_NEXT, 639 PCI_CAP_ID_HT, &ttl); 640 } 641 642 return 0; 643 } 644 /** 645 * pci_find_next_ht_capability - query a device's Hypertransport capabilities 646 * @dev: PCI device to query 647 * @pos: Position from which to continue searching 648 * @ht_cap: Hypertransport capability code 649 * 650 * To be used in conjunction with pci_find_ht_capability() to search for 651 * all capabilities matching @ht_cap. @pos should always be a value returned 652 * from pci_find_ht_capability(). 653 * 654 * NB. To be 100% safe against broken PCI devices, the caller should take 655 * steps to avoid an infinite loop. 656 */ 657 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap) 658 { 659 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap); 660 } 661 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability); 662 663 /** 664 * pci_find_ht_capability - query a device's Hypertransport capabilities 665 * @dev: PCI device to query 666 * @ht_cap: Hypertransport capability code 667 * 668 * Tell if a device supports a given Hypertransport capability. 669 * Returns an address within the device's PCI configuration space 670 * or 0 in case the device does not support the request capability. 671 * The address points to the PCI capability, of type PCI_CAP_ID_HT, 672 * which has a Hypertransport capability matching @ht_cap. 673 */ 674 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap) 675 { 676 int pos; 677 678 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 679 if (pos) 680 pos = __pci_find_next_ht_cap(dev, pos, ht_cap); 681 682 return pos; 683 } 684 EXPORT_SYMBOL_GPL(pci_find_ht_capability); 685 686 /** 687 * pci_find_parent_resource - return resource region of parent bus of given 688 * region 689 * @dev: PCI device structure contains resources to be searched 690 * @res: child resource record for which parent is sought 691 * 692 * For given resource region of given device, return the resource region of 693 * parent bus the given region is contained in. 694 */ 695 struct resource *pci_find_parent_resource(const struct pci_dev *dev, 696 struct resource *res) 697 { 698 const struct pci_bus *bus = dev->bus; 699 struct resource *r; 700 int i; 701 702 pci_bus_for_each_resource(bus, r, i) { 703 if (!r) 704 continue; 705 if (resource_contains(r, res)) { 706 707 /* 708 * If the window is prefetchable but the BAR is 709 * not, the allocator made a mistake. 710 */ 711 if (r->flags & IORESOURCE_PREFETCH && 712 !(res->flags & IORESOURCE_PREFETCH)) 713 return NULL; 714 715 /* 716 * If we're below a transparent bridge, there may 717 * be both a positively-decoded aperture and a 718 * subtractively-decoded region that contain the BAR. 719 * We want the positively-decoded one, so this depends 720 * on pci_bus_for_each_resource() giving us those 721 * first. 722 */ 723 return r; 724 } 725 } 726 return NULL; 727 } 728 EXPORT_SYMBOL(pci_find_parent_resource); 729 730 /** 731 * pci_find_resource - Return matching PCI device resource 732 * @dev: PCI device to query 733 * @res: Resource to look for 734 * 735 * Goes over standard PCI resources (BARs) and checks if the given resource 736 * is partially or fully contained in any of them. In that case the 737 * matching resource is returned, %NULL otherwise. 738 */ 739 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res) 740 { 741 int i; 742 743 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 744 struct resource *r = &dev->resource[i]; 745 746 if (r->start && resource_contains(r, res)) 747 return r; 748 } 749 750 return NULL; 751 } 752 EXPORT_SYMBOL(pci_find_resource); 753 754 /** 755 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos 756 * @dev: the PCI device to operate on 757 * @pos: config space offset of status word 758 * @mask: mask of bit(s) to care about in status word 759 * 760 * Return 1 when mask bit(s) in status word clear, 0 otherwise. 761 */ 762 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask) 763 { 764 int i; 765 766 /* Wait for Transaction Pending bit clean */ 767 for (i = 0; i < 4; i++) { 768 u16 status; 769 if (i) 770 msleep((1 << (i - 1)) * 100); 771 772 pci_read_config_word(dev, pos, &status); 773 if (!(status & mask)) 774 return 1; 775 } 776 777 return 0; 778 } 779 780 static int pci_acs_enable; 781 782 /** 783 * pci_request_acs - ask for ACS to be enabled if supported 784 */ 785 void pci_request_acs(void) 786 { 787 pci_acs_enable = 1; 788 } 789 790 static const char *disable_acs_redir_param; 791 792 /** 793 * pci_disable_acs_redir - disable ACS redirect capabilities 794 * @dev: the PCI device 795 * 796 * For only devices specified in the disable_acs_redir parameter. 797 */ 798 static void pci_disable_acs_redir(struct pci_dev *dev) 799 { 800 int ret = 0; 801 const char *p; 802 int pos; 803 u16 ctrl; 804 805 if (!disable_acs_redir_param) 806 return; 807 808 p = disable_acs_redir_param; 809 while (*p) { 810 ret = pci_dev_str_match(dev, p, &p); 811 if (ret < 0) { 812 pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n", 813 disable_acs_redir_param); 814 815 break; 816 } else if (ret == 1) { 817 /* Found a match */ 818 break; 819 } 820 821 if (*p != ';' && *p != ',') { 822 /* End of param or invalid format */ 823 break; 824 } 825 p++; 826 } 827 828 if (ret != 1) 829 return; 830 831 if (!pci_dev_specific_disable_acs_redir(dev)) 832 return; 833 834 pos = dev->acs_cap; 835 if (!pos) { 836 pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n"); 837 return; 838 } 839 840 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 841 842 /* P2P Request & Completion Redirect */ 843 ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC); 844 845 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 846 847 pci_info(dev, "disabled ACS redirect\n"); 848 } 849 850 /** 851 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities 852 * @dev: the PCI device 853 */ 854 static void pci_std_enable_acs(struct pci_dev *dev) 855 { 856 int pos; 857 u16 cap; 858 u16 ctrl; 859 860 pos = dev->acs_cap; 861 if (!pos) 862 return; 863 864 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap); 865 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 866 867 /* Source Validation */ 868 ctrl |= (cap & PCI_ACS_SV); 869 870 /* P2P Request Redirect */ 871 ctrl |= (cap & PCI_ACS_RR); 872 873 /* P2P Completion Redirect */ 874 ctrl |= (cap & PCI_ACS_CR); 875 876 /* Upstream Forwarding */ 877 ctrl |= (cap & PCI_ACS_UF); 878 879 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 880 } 881 882 /** 883 * pci_enable_acs - enable ACS if hardware support it 884 * @dev: the PCI device 885 */ 886 static void pci_enable_acs(struct pci_dev *dev) 887 { 888 if (!pci_acs_enable) 889 goto disable_acs_redir; 890 891 if (!pci_dev_specific_enable_acs(dev)) 892 goto disable_acs_redir; 893 894 pci_std_enable_acs(dev); 895 896 disable_acs_redir: 897 /* 898 * Note: pci_disable_acs_redir() must be called even if ACS was not 899 * enabled by the kernel because it may have been enabled by 900 * platform firmware. So if we are told to disable it, we should 901 * always disable it after setting the kernel's default 902 * preferences. 903 */ 904 pci_disable_acs_redir(dev); 905 } 906 907 /** 908 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up) 909 * @dev: PCI device to have its BARs restored 910 * 911 * Restore the BAR values for a given device, so as to make it 912 * accessible by its driver. 913 */ 914 static void pci_restore_bars(struct pci_dev *dev) 915 { 916 int i; 917 918 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) 919 pci_update_resource(dev, i); 920 } 921 922 static const struct pci_platform_pm_ops *pci_platform_pm; 923 924 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops) 925 { 926 if (!ops->is_manageable || !ops->set_state || !ops->get_state || 927 !ops->choose_state || !ops->set_wakeup || !ops->need_resume) 928 return -EINVAL; 929 pci_platform_pm = ops; 930 return 0; 931 } 932 933 static inline bool platform_pci_power_manageable(struct pci_dev *dev) 934 { 935 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false; 936 } 937 938 static inline int platform_pci_set_power_state(struct pci_dev *dev, 939 pci_power_t t) 940 { 941 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS; 942 } 943 944 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev) 945 { 946 return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN; 947 } 948 949 static inline void platform_pci_refresh_power_state(struct pci_dev *dev) 950 { 951 if (pci_platform_pm && pci_platform_pm->refresh_state) 952 pci_platform_pm->refresh_state(dev); 953 } 954 955 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev) 956 { 957 return pci_platform_pm ? 958 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR; 959 } 960 961 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable) 962 { 963 return pci_platform_pm ? 964 pci_platform_pm->set_wakeup(dev, enable) : -ENODEV; 965 } 966 967 static inline bool platform_pci_need_resume(struct pci_dev *dev) 968 { 969 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false; 970 } 971 972 static inline bool platform_pci_bridge_d3(struct pci_dev *dev) 973 { 974 if (pci_platform_pm && pci_platform_pm->bridge_d3) 975 return pci_platform_pm->bridge_d3(dev); 976 return false; 977 } 978 979 /** 980 * pci_raw_set_power_state - Use PCI PM registers to set the power state of 981 * given PCI device 982 * @dev: PCI device to handle. 983 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 984 * 985 * RETURN VALUE: 986 * -EINVAL if the requested state is invalid. 987 * -EIO if device does not support PCI PM or its PM capabilities register has a 988 * wrong version, or device doesn't support the requested state. 989 * 0 if device already is in the requested state. 990 * 0 if device's power state has been successfully changed. 991 */ 992 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state) 993 { 994 u16 pmcsr; 995 bool need_restore = false; 996 997 /* Check if we're already there */ 998 if (dev->current_state == state) 999 return 0; 1000 1001 if (!dev->pm_cap) 1002 return -EIO; 1003 1004 if (state < PCI_D0 || state > PCI_D3hot) 1005 return -EINVAL; 1006 1007 /* 1008 * Validate transition: We can enter D0 from any state, but if 1009 * we're already in a low-power state, we can only go deeper. E.g., 1010 * we can go from D1 to D3, but we can't go directly from D3 to D1; 1011 * we'd have to go from D3 to D0, then to D1. 1012 */ 1013 if (state != PCI_D0 && dev->current_state <= PCI_D3cold 1014 && dev->current_state > state) { 1015 pci_err(dev, "invalid power transition (from %s to %s)\n", 1016 pci_power_name(dev->current_state), 1017 pci_power_name(state)); 1018 return -EINVAL; 1019 } 1020 1021 /* Check if this device supports the desired state */ 1022 if ((state == PCI_D1 && !dev->d1_support) 1023 || (state == PCI_D2 && !dev->d2_support)) 1024 return -EIO; 1025 1026 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1027 if (pmcsr == (u16) ~0) { 1028 pci_err(dev, "can't change power state from %s to %s (config space inaccessible)\n", 1029 pci_power_name(dev->current_state), 1030 pci_power_name(state)); 1031 return -EIO; 1032 } 1033 1034 /* 1035 * If we're (effectively) in D3, force entire word to 0. 1036 * This doesn't affect PME_Status, disables PME_En, and 1037 * sets PowerState to 0. 1038 */ 1039 switch (dev->current_state) { 1040 case PCI_D0: 1041 case PCI_D1: 1042 case PCI_D2: 1043 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 1044 pmcsr |= state; 1045 break; 1046 case PCI_D3hot: 1047 case PCI_D3cold: 1048 case PCI_UNKNOWN: /* Boot-up */ 1049 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot 1050 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET)) 1051 need_restore = true; 1052 /* Fall-through - force to D0 */ 1053 default: 1054 pmcsr = 0; 1055 break; 1056 } 1057 1058 /* Enter specified state */ 1059 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 1060 1061 /* 1062 * Mandatory power management transition delays; see PCI PM 1.1 1063 * 5.6.1 table 18 1064 */ 1065 if (state == PCI_D3hot || dev->current_state == PCI_D3hot) 1066 pci_dev_d3_sleep(dev); 1067 else if (state == PCI_D2 || dev->current_state == PCI_D2) 1068 msleep(PCI_PM_D2_DELAY); 1069 1070 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1071 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 1072 if (dev->current_state != state) 1073 pci_info_ratelimited(dev, "refused to change power state from %s to %s\n", 1074 pci_power_name(dev->current_state), 1075 pci_power_name(state)); 1076 1077 /* 1078 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT 1079 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning 1080 * from D3hot to D0 _may_ perform an internal reset, thereby 1081 * going to "D0 Uninitialized" rather than "D0 Initialized". 1082 * For example, at least some versions of the 3c905B and the 1083 * 3c556B exhibit this behaviour. 1084 * 1085 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave 1086 * devices in a D3hot state at boot. Consequently, we need to 1087 * restore at least the BARs so that the device will be 1088 * accessible to its driver. 1089 */ 1090 if (need_restore) 1091 pci_restore_bars(dev); 1092 1093 if (dev->bus->self) 1094 pcie_aspm_pm_state_change(dev->bus->self); 1095 1096 return 0; 1097 } 1098 1099 /** 1100 * pci_update_current_state - Read power state of given device and cache it 1101 * @dev: PCI device to handle. 1102 * @state: State to cache in case the device doesn't have the PM capability 1103 * 1104 * The power state is read from the PMCSR register, which however is 1105 * inaccessible in D3cold. The platform firmware is therefore queried first 1106 * to detect accessibility of the register. In case the platform firmware 1107 * reports an incorrect state or the device isn't power manageable by the 1108 * platform at all, we try to detect D3cold by testing accessibility of the 1109 * vendor ID in config space. 1110 */ 1111 void pci_update_current_state(struct pci_dev *dev, pci_power_t state) 1112 { 1113 if (platform_pci_get_power_state(dev) == PCI_D3cold || 1114 !pci_device_is_present(dev)) { 1115 dev->current_state = PCI_D3cold; 1116 } else if (dev->pm_cap) { 1117 u16 pmcsr; 1118 1119 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1120 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 1121 } else { 1122 dev->current_state = state; 1123 } 1124 } 1125 1126 /** 1127 * pci_refresh_power_state - Refresh the given device's power state data 1128 * @dev: Target PCI device. 1129 * 1130 * Ask the platform to refresh the devices power state information and invoke 1131 * pci_update_current_state() to update its current PCI power state. 1132 */ 1133 void pci_refresh_power_state(struct pci_dev *dev) 1134 { 1135 if (platform_pci_power_manageable(dev)) 1136 platform_pci_refresh_power_state(dev); 1137 1138 pci_update_current_state(dev, dev->current_state); 1139 } 1140 1141 /** 1142 * pci_platform_power_transition - Use platform to change device power state 1143 * @dev: PCI device to handle. 1144 * @state: State to put the device into. 1145 */ 1146 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state) 1147 { 1148 int error; 1149 1150 if (platform_pci_power_manageable(dev)) { 1151 error = platform_pci_set_power_state(dev, state); 1152 if (!error) 1153 pci_update_current_state(dev, state); 1154 } else 1155 error = -ENODEV; 1156 1157 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */ 1158 dev->current_state = PCI_D0; 1159 1160 return error; 1161 } 1162 EXPORT_SYMBOL_GPL(pci_platform_power_transition); 1163 1164 /** 1165 * pci_wakeup - Wake up a PCI device 1166 * @pci_dev: Device to handle. 1167 * @ign: ignored parameter 1168 */ 1169 static int pci_wakeup(struct pci_dev *pci_dev, void *ign) 1170 { 1171 pci_wakeup_event(pci_dev); 1172 pm_request_resume(&pci_dev->dev); 1173 return 0; 1174 } 1175 1176 /** 1177 * pci_wakeup_bus - Walk given bus and wake up devices on it 1178 * @bus: Top bus of the subtree to walk. 1179 */ 1180 void pci_wakeup_bus(struct pci_bus *bus) 1181 { 1182 if (bus) 1183 pci_walk_bus(bus, pci_wakeup, NULL); 1184 } 1185 1186 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout) 1187 { 1188 int delay = 1; 1189 u32 id; 1190 1191 /* 1192 * After reset, the device should not silently discard config 1193 * requests, but it may still indicate that it needs more time by 1194 * responding to them with CRS completions. The Root Port will 1195 * generally synthesize ~0 data to complete the read (except when 1196 * CRS SV is enabled and the read was for the Vendor ID; in that 1197 * case it synthesizes 0x0001 data). 1198 * 1199 * Wait for the device to return a non-CRS completion. Read the 1200 * Command register instead of Vendor ID so we don't have to 1201 * contend with the CRS SV value. 1202 */ 1203 pci_read_config_dword(dev, PCI_COMMAND, &id); 1204 while (id == ~0) { 1205 if (delay > timeout) { 1206 pci_warn(dev, "not ready %dms after %s; giving up\n", 1207 delay - 1, reset_type); 1208 return -ENOTTY; 1209 } 1210 1211 if (delay > 1000) 1212 pci_info(dev, "not ready %dms after %s; waiting\n", 1213 delay - 1, reset_type); 1214 1215 msleep(delay); 1216 delay *= 2; 1217 pci_read_config_dword(dev, PCI_COMMAND, &id); 1218 } 1219 1220 if (delay > 1000) 1221 pci_info(dev, "ready %dms after %s\n", delay - 1, 1222 reset_type); 1223 1224 return 0; 1225 } 1226 1227 /** 1228 * pci_power_up - Put the given device into D0 1229 * @dev: PCI device to power up 1230 */ 1231 int pci_power_up(struct pci_dev *dev) 1232 { 1233 pci_platform_power_transition(dev, PCI_D0); 1234 1235 /* 1236 * Mandatory power management transition delays are handled in 1237 * pci_pm_resume_noirq() and pci_pm_runtime_resume() of the 1238 * corresponding bridge. 1239 */ 1240 if (dev->runtime_d3cold) { 1241 /* 1242 * When powering on a bridge from D3cold, the whole hierarchy 1243 * may be powered on into D0uninitialized state, resume them to 1244 * give them a chance to suspend again 1245 */ 1246 pci_wakeup_bus(dev->subordinate); 1247 } 1248 1249 return pci_raw_set_power_state(dev, PCI_D0); 1250 } 1251 1252 /** 1253 * __pci_dev_set_current_state - Set current state of a PCI device 1254 * @dev: Device to handle 1255 * @data: pointer to state to be set 1256 */ 1257 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data) 1258 { 1259 pci_power_t state = *(pci_power_t *)data; 1260 1261 dev->current_state = state; 1262 return 0; 1263 } 1264 1265 /** 1266 * pci_bus_set_current_state - Walk given bus and set current state of devices 1267 * @bus: Top bus of the subtree to walk. 1268 * @state: state to be set 1269 */ 1270 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state) 1271 { 1272 if (bus) 1273 pci_walk_bus(bus, __pci_dev_set_current_state, &state); 1274 } 1275 1276 /** 1277 * pci_set_power_state - Set the power state of a PCI device 1278 * @dev: PCI device to handle. 1279 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 1280 * 1281 * Transition a device to a new power state, using the platform firmware and/or 1282 * the device's PCI PM registers. 1283 * 1284 * RETURN VALUE: 1285 * -EINVAL if the requested state is invalid. 1286 * -EIO if device does not support PCI PM or its PM capabilities register has a 1287 * wrong version, or device doesn't support the requested state. 1288 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported. 1289 * 0 if device already is in the requested state. 1290 * 0 if the transition is to D3 but D3 is not supported. 1291 * 0 if device's power state has been successfully changed. 1292 */ 1293 int pci_set_power_state(struct pci_dev *dev, pci_power_t state) 1294 { 1295 int error; 1296 1297 /* Bound the state we're entering */ 1298 if (state > PCI_D3cold) 1299 state = PCI_D3cold; 1300 else if (state < PCI_D0) 1301 state = PCI_D0; 1302 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev)) 1303 1304 /* 1305 * If the device or the parent bridge do not support PCI 1306 * PM, ignore the request if we're doing anything other 1307 * than putting it into D0 (which would only happen on 1308 * boot). 1309 */ 1310 return 0; 1311 1312 /* Check if we're already there */ 1313 if (dev->current_state == state) 1314 return 0; 1315 1316 if (state == PCI_D0) 1317 return pci_power_up(dev); 1318 1319 /* 1320 * This device is quirked not to be put into D3, so don't put it in 1321 * D3 1322 */ 1323 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3)) 1324 return 0; 1325 1326 /* 1327 * To put device in D3cold, we put device into D3hot in native 1328 * way, then put device into D3cold with platform ops 1329 */ 1330 error = pci_raw_set_power_state(dev, state > PCI_D3hot ? 1331 PCI_D3hot : state); 1332 1333 if (pci_platform_power_transition(dev, state)) 1334 return error; 1335 1336 /* Powering off a bridge may power off the whole hierarchy */ 1337 if (state == PCI_D3cold) 1338 pci_bus_set_current_state(dev->subordinate, PCI_D3cold); 1339 1340 return 0; 1341 } 1342 EXPORT_SYMBOL(pci_set_power_state); 1343 1344 /** 1345 * pci_choose_state - Choose the power state of a PCI device 1346 * @dev: PCI device to be suspended 1347 * @state: target sleep state for the whole system. This is the value 1348 * that is passed to suspend() function. 1349 * 1350 * Returns PCI power state suitable for given device and given system 1351 * message. 1352 */ 1353 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state) 1354 { 1355 pci_power_t ret; 1356 1357 if (!dev->pm_cap) 1358 return PCI_D0; 1359 1360 ret = platform_pci_choose_state(dev); 1361 if (ret != PCI_POWER_ERROR) 1362 return ret; 1363 1364 switch (state.event) { 1365 case PM_EVENT_ON: 1366 return PCI_D0; 1367 case PM_EVENT_FREEZE: 1368 case PM_EVENT_PRETHAW: 1369 /* REVISIT both freeze and pre-thaw "should" use D0 */ 1370 case PM_EVENT_SUSPEND: 1371 case PM_EVENT_HIBERNATE: 1372 return PCI_D3hot; 1373 default: 1374 pci_info(dev, "unrecognized suspend event %d\n", 1375 state.event); 1376 BUG(); 1377 } 1378 return PCI_D0; 1379 } 1380 EXPORT_SYMBOL(pci_choose_state); 1381 1382 #define PCI_EXP_SAVE_REGS 7 1383 1384 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev, 1385 u16 cap, bool extended) 1386 { 1387 struct pci_cap_saved_state *tmp; 1388 1389 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) { 1390 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap) 1391 return tmp; 1392 } 1393 return NULL; 1394 } 1395 1396 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap) 1397 { 1398 return _pci_find_saved_cap(dev, cap, false); 1399 } 1400 1401 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap) 1402 { 1403 return _pci_find_saved_cap(dev, cap, true); 1404 } 1405 1406 static int pci_save_pcie_state(struct pci_dev *dev) 1407 { 1408 int i = 0; 1409 struct pci_cap_saved_state *save_state; 1410 u16 *cap; 1411 1412 if (!pci_is_pcie(dev)) 1413 return 0; 1414 1415 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1416 if (!save_state) { 1417 pci_err(dev, "buffer not found in %s\n", __func__); 1418 return -ENOMEM; 1419 } 1420 1421 cap = (u16 *)&save_state->cap.data[0]; 1422 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]); 1423 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]); 1424 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]); 1425 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]); 1426 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]); 1427 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]); 1428 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]); 1429 1430 return 0; 1431 } 1432 1433 static void pci_restore_pcie_state(struct pci_dev *dev) 1434 { 1435 int i = 0; 1436 struct pci_cap_saved_state *save_state; 1437 u16 *cap; 1438 1439 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1440 if (!save_state) 1441 return; 1442 1443 cap = (u16 *)&save_state->cap.data[0]; 1444 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]); 1445 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]); 1446 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]); 1447 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]); 1448 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]); 1449 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]); 1450 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]); 1451 } 1452 1453 static int pci_save_pcix_state(struct pci_dev *dev) 1454 { 1455 int pos; 1456 struct pci_cap_saved_state *save_state; 1457 1458 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1459 if (!pos) 1460 return 0; 1461 1462 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1463 if (!save_state) { 1464 pci_err(dev, "buffer not found in %s\n", __func__); 1465 return -ENOMEM; 1466 } 1467 1468 pci_read_config_word(dev, pos + PCI_X_CMD, 1469 (u16 *)save_state->cap.data); 1470 1471 return 0; 1472 } 1473 1474 static void pci_restore_pcix_state(struct pci_dev *dev) 1475 { 1476 int i = 0, pos; 1477 struct pci_cap_saved_state *save_state; 1478 u16 *cap; 1479 1480 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1481 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1482 if (!save_state || !pos) 1483 return; 1484 cap = (u16 *)&save_state->cap.data[0]; 1485 1486 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]); 1487 } 1488 1489 static void pci_save_ltr_state(struct pci_dev *dev) 1490 { 1491 int ltr; 1492 struct pci_cap_saved_state *save_state; 1493 u16 *cap; 1494 1495 if (!pci_is_pcie(dev)) 1496 return; 1497 1498 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR); 1499 if (!ltr) 1500 return; 1501 1502 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR); 1503 if (!save_state) { 1504 pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n"); 1505 return; 1506 } 1507 1508 cap = (u16 *)&save_state->cap.data[0]; 1509 pci_read_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap++); 1510 pci_read_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, cap++); 1511 } 1512 1513 static void pci_restore_ltr_state(struct pci_dev *dev) 1514 { 1515 struct pci_cap_saved_state *save_state; 1516 int ltr; 1517 u16 *cap; 1518 1519 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR); 1520 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR); 1521 if (!save_state || !ltr) 1522 return; 1523 1524 cap = (u16 *)&save_state->cap.data[0]; 1525 pci_write_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap++); 1526 pci_write_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, *cap++); 1527 } 1528 1529 /** 1530 * pci_save_state - save the PCI configuration space of a device before 1531 * suspending 1532 * @dev: PCI device that we're dealing with 1533 */ 1534 int pci_save_state(struct pci_dev *dev) 1535 { 1536 int i; 1537 /* XXX: 100% dword access ok here? */ 1538 for (i = 0; i < 16; i++) { 1539 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]); 1540 pci_dbg(dev, "saving config space at offset %#x (reading %#x)\n", 1541 i * 4, dev->saved_config_space[i]); 1542 } 1543 dev->state_saved = true; 1544 1545 i = pci_save_pcie_state(dev); 1546 if (i != 0) 1547 return i; 1548 1549 i = pci_save_pcix_state(dev); 1550 if (i != 0) 1551 return i; 1552 1553 pci_save_ltr_state(dev); 1554 pci_save_dpc_state(dev); 1555 pci_save_aer_state(dev); 1556 return pci_save_vc_state(dev); 1557 } 1558 EXPORT_SYMBOL(pci_save_state); 1559 1560 static void pci_restore_config_dword(struct pci_dev *pdev, int offset, 1561 u32 saved_val, int retry, bool force) 1562 { 1563 u32 val; 1564 1565 pci_read_config_dword(pdev, offset, &val); 1566 if (!force && val == saved_val) 1567 return; 1568 1569 for (;;) { 1570 pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n", 1571 offset, val, saved_val); 1572 pci_write_config_dword(pdev, offset, saved_val); 1573 if (retry-- <= 0) 1574 return; 1575 1576 pci_read_config_dword(pdev, offset, &val); 1577 if (val == saved_val) 1578 return; 1579 1580 mdelay(1); 1581 } 1582 } 1583 1584 static void pci_restore_config_space_range(struct pci_dev *pdev, 1585 int start, int end, int retry, 1586 bool force) 1587 { 1588 int index; 1589 1590 for (index = end; index >= start; index--) 1591 pci_restore_config_dword(pdev, 4 * index, 1592 pdev->saved_config_space[index], 1593 retry, force); 1594 } 1595 1596 static void pci_restore_config_space(struct pci_dev *pdev) 1597 { 1598 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) { 1599 pci_restore_config_space_range(pdev, 10, 15, 0, false); 1600 /* Restore BARs before the command register. */ 1601 pci_restore_config_space_range(pdev, 4, 9, 10, false); 1602 pci_restore_config_space_range(pdev, 0, 3, 0, false); 1603 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 1604 pci_restore_config_space_range(pdev, 12, 15, 0, false); 1605 1606 /* 1607 * Force rewriting of prefetch registers to avoid S3 resume 1608 * issues on Intel PCI bridges that occur when these 1609 * registers are not explicitly written. 1610 */ 1611 pci_restore_config_space_range(pdev, 9, 11, 0, true); 1612 pci_restore_config_space_range(pdev, 0, 8, 0, false); 1613 } else { 1614 pci_restore_config_space_range(pdev, 0, 15, 0, false); 1615 } 1616 } 1617 1618 static void pci_restore_rebar_state(struct pci_dev *pdev) 1619 { 1620 unsigned int pos, nbars, i; 1621 u32 ctrl; 1622 1623 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 1624 if (!pos) 1625 return; 1626 1627 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1628 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >> 1629 PCI_REBAR_CTRL_NBAR_SHIFT; 1630 1631 for (i = 0; i < nbars; i++, pos += 8) { 1632 struct resource *res; 1633 int bar_idx, size; 1634 1635 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1636 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX; 1637 res = pdev->resource + bar_idx; 1638 size = ilog2(resource_size(res)) - 20; 1639 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 1640 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT; 1641 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 1642 } 1643 } 1644 1645 /** 1646 * pci_restore_state - Restore the saved state of a PCI device 1647 * @dev: PCI device that we're dealing with 1648 */ 1649 void pci_restore_state(struct pci_dev *dev) 1650 { 1651 if (!dev->state_saved) 1652 return; 1653 1654 /* 1655 * Restore max latencies (in the LTR capability) before enabling 1656 * LTR itself (in the PCIe capability). 1657 */ 1658 pci_restore_ltr_state(dev); 1659 1660 pci_restore_pcie_state(dev); 1661 pci_restore_pasid_state(dev); 1662 pci_restore_pri_state(dev); 1663 pci_restore_ats_state(dev); 1664 pci_restore_vc_state(dev); 1665 pci_restore_rebar_state(dev); 1666 pci_restore_dpc_state(dev); 1667 1668 pci_aer_clear_status(dev); 1669 pci_restore_aer_state(dev); 1670 1671 pci_restore_config_space(dev); 1672 1673 pci_restore_pcix_state(dev); 1674 pci_restore_msi_state(dev); 1675 1676 /* Restore ACS and IOV configuration state */ 1677 pci_enable_acs(dev); 1678 pci_restore_iov_state(dev); 1679 1680 dev->state_saved = false; 1681 } 1682 EXPORT_SYMBOL(pci_restore_state); 1683 1684 struct pci_saved_state { 1685 u32 config_space[16]; 1686 struct pci_cap_saved_data cap[]; 1687 }; 1688 1689 /** 1690 * pci_store_saved_state - Allocate and return an opaque struct containing 1691 * the device saved state. 1692 * @dev: PCI device that we're dealing with 1693 * 1694 * Return NULL if no state or error. 1695 */ 1696 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev) 1697 { 1698 struct pci_saved_state *state; 1699 struct pci_cap_saved_state *tmp; 1700 struct pci_cap_saved_data *cap; 1701 size_t size; 1702 1703 if (!dev->state_saved) 1704 return NULL; 1705 1706 size = sizeof(*state) + sizeof(struct pci_cap_saved_data); 1707 1708 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) 1709 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1710 1711 state = kzalloc(size, GFP_KERNEL); 1712 if (!state) 1713 return NULL; 1714 1715 memcpy(state->config_space, dev->saved_config_space, 1716 sizeof(state->config_space)); 1717 1718 cap = state->cap; 1719 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) { 1720 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1721 memcpy(cap, &tmp->cap, len); 1722 cap = (struct pci_cap_saved_data *)((u8 *)cap + len); 1723 } 1724 /* Empty cap_save terminates list */ 1725 1726 return state; 1727 } 1728 EXPORT_SYMBOL_GPL(pci_store_saved_state); 1729 1730 /** 1731 * pci_load_saved_state - Reload the provided save state into struct pci_dev. 1732 * @dev: PCI device that we're dealing with 1733 * @state: Saved state returned from pci_store_saved_state() 1734 */ 1735 int pci_load_saved_state(struct pci_dev *dev, 1736 struct pci_saved_state *state) 1737 { 1738 struct pci_cap_saved_data *cap; 1739 1740 dev->state_saved = false; 1741 1742 if (!state) 1743 return 0; 1744 1745 memcpy(dev->saved_config_space, state->config_space, 1746 sizeof(state->config_space)); 1747 1748 cap = state->cap; 1749 while (cap->size) { 1750 struct pci_cap_saved_state *tmp; 1751 1752 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended); 1753 if (!tmp || tmp->cap.size != cap->size) 1754 return -EINVAL; 1755 1756 memcpy(tmp->cap.data, cap->data, tmp->cap.size); 1757 cap = (struct pci_cap_saved_data *)((u8 *)cap + 1758 sizeof(struct pci_cap_saved_data) + cap->size); 1759 } 1760 1761 dev->state_saved = true; 1762 return 0; 1763 } 1764 EXPORT_SYMBOL_GPL(pci_load_saved_state); 1765 1766 /** 1767 * pci_load_and_free_saved_state - Reload the save state pointed to by state, 1768 * and free the memory allocated for it. 1769 * @dev: PCI device that we're dealing with 1770 * @state: Pointer to saved state returned from pci_store_saved_state() 1771 */ 1772 int pci_load_and_free_saved_state(struct pci_dev *dev, 1773 struct pci_saved_state **state) 1774 { 1775 int ret = pci_load_saved_state(dev, *state); 1776 kfree(*state); 1777 *state = NULL; 1778 return ret; 1779 } 1780 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state); 1781 1782 int __weak pcibios_enable_device(struct pci_dev *dev, int bars) 1783 { 1784 return pci_enable_resources(dev, bars); 1785 } 1786 1787 static int do_pci_enable_device(struct pci_dev *dev, int bars) 1788 { 1789 int err; 1790 struct pci_dev *bridge; 1791 u16 cmd; 1792 u8 pin; 1793 1794 err = pci_set_power_state(dev, PCI_D0); 1795 if (err < 0 && err != -EIO) 1796 return err; 1797 1798 bridge = pci_upstream_bridge(dev); 1799 if (bridge) 1800 pcie_aspm_powersave_config_link(bridge); 1801 1802 err = pcibios_enable_device(dev, bars); 1803 if (err < 0) 1804 return err; 1805 pci_fixup_device(pci_fixup_enable, dev); 1806 1807 if (dev->msi_enabled || dev->msix_enabled) 1808 return 0; 1809 1810 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin); 1811 if (pin) { 1812 pci_read_config_word(dev, PCI_COMMAND, &cmd); 1813 if (cmd & PCI_COMMAND_INTX_DISABLE) 1814 pci_write_config_word(dev, PCI_COMMAND, 1815 cmd & ~PCI_COMMAND_INTX_DISABLE); 1816 } 1817 1818 return 0; 1819 } 1820 1821 /** 1822 * pci_reenable_device - Resume abandoned device 1823 * @dev: PCI device to be resumed 1824 * 1825 * NOTE: This function is a backend of pci_default_resume() and is not supposed 1826 * to be called by normal code, write proper resume handler and use it instead. 1827 */ 1828 int pci_reenable_device(struct pci_dev *dev) 1829 { 1830 if (pci_is_enabled(dev)) 1831 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1); 1832 return 0; 1833 } 1834 EXPORT_SYMBOL(pci_reenable_device); 1835 1836 static void pci_enable_bridge(struct pci_dev *dev) 1837 { 1838 struct pci_dev *bridge; 1839 int retval; 1840 1841 bridge = pci_upstream_bridge(dev); 1842 if (bridge) 1843 pci_enable_bridge(bridge); 1844 1845 if (pci_is_enabled(dev)) { 1846 if (!dev->is_busmaster) 1847 pci_set_master(dev); 1848 return; 1849 } 1850 1851 retval = pci_enable_device(dev); 1852 if (retval) 1853 pci_err(dev, "Error enabling bridge (%d), continuing\n", 1854 retval); 1855 pci_set_master(dev); 1856 } 1857 1858 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags) 1859 { 1860 struct pci_dev *bridge; 1861 int err; 1862 int i, bars = 0; 1863 1864 /* 1865 * Power state could be unknown at this point, either due to a fresh 1866 * boot or a device removal call. So get the current power state 1867 * so that things like MSI message writing will behave as expected 1868 * (e.g. if the device really is in D0 at enable time). 1869 */ 1870 if (dev->pm_cap) { 1871 u16 pmcsr; 1872 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1873 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 1874 } 1875 1876 if (atomic_inc_return(&dev->enable_cnt) > 1) 1877 return 0; /* already enabled */ 1878 1879 bridge = pci_upstream_bridge(dev); 1880 if (bridge) 1881 pci_enable_bridge(bridge); 1882 1883 /* only skip sriov related */ 1884 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 1885 if (dev->resource[i].flags & flags) 1886 bars |= (1 << i); 1887 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++) 1888 if (dev->resource[i].flags & flags) 1889 bars |= (1 << i); 1890 1891 err = do_pci_enable_device(dev, bars); 1892 if (err < 0) 1893 atomic_dec(&dev->enable_cnt); 1894 return err; 1895 } 1896 1897 /** 1898 * pci_enable_device_io - Initialize a device for use with IO space 1899 * @dev: PCI device to be initialized 1900 * 1901 * Initialize device before it's used by a driver. Ask low-level code 1902 * to enable I/O resources. Wake up the device if it was suspended. 1903 * Beware, this function can fail. 1904 */ 1905 int pci_enable_device_io(struct pci_dev *dev) 1906 { 1907 return pci_enable_device_flags(dev, IORESOURCE_IO); 1908 } 1909 EXPORT_SYMBOL(pci_enable_device_io); 1910 1911 /** 1912 * pci_enable_device_mem - Initialize a device for use with Memory space 1913 * @dev: PCI device to be initialized 1914 * 1915 * Initialize device before it's used by a driver. Ask low-level code 1916 * to enable Memory resources. Wake up the device if it was suspended. 1917 * Beware, this function can fail. 1918 */ 1919 int pci_enable_device_mem(struct pci_dev *dev) 1920 { 1921 return pci_enable_device_flags(dev, IORESOURCE_MEM); 1922 } 1923 EXPORT_SYMBOL(pci_enable_device_mem); 1924 1925 /** 1926 * pci_enable_device - Initialize device before it's used by a driver. 1927 * @dev: PCI device to be initialized 1928 * 1929 * Initialize device before it's used by a driver. Ask low-level code 1930 * to enable I/O and memory. Wake up the device if it was suspended. 1931 * Beware, this function can fail. 1932 * 1933 * Note we don't actually enable the device many times if we call 1934 * this function repeatedly (we just increment the count). 1935 */ 1936 int pci_enable_device(struct pci_dev *dev) 1937 { 1938 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO); 1939 } 1940 EXPORT_SYMBOL(pci_enable_device); 1941 1942 /* 1943 * Managed PCI resources. This manages device on/off, INTx/MSI/MSI-X 1944 * on/off and BAR regions. pci_dev itself records MSI/MSI-X status, so 1945 * there's no need to track it separately. pci_devres is initialized 1946 * when a device is enabled using managed PCI device enable interface. 1947 */ 1948 struct pci_devres { 1949 unsigned int enabled:1; 1950 unsigned int pinned:1; 1951 unsigned int orig_intx:1; 1952 unsigned int restore_intx:1; 1953 unsigned int mwi:1; 1954 u32 region_mask; 1955 }; 1956 1957 static void pcim_release(struct device *gendev, void *res) 1958 { 1959 struct pci_dev *dev = to_pci_dev(gendev); 1960 struct pci_devres *this = res; 1961 int i; 1962 1963 if (dev->msi_enabled) 1964 pci_disable_msi(dev); 1965 if (dev->msix_enabled) 1966 pci_disable_msix(dev); 1967 1968 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) 1969 if (this->region_mask & (1 << i)) 1970 pci_release_region(dev, i); 1971 1972 if (this->mwi) 1973 pci_clear_mwi(dev); 1974 1975 if (this->restore_intx) 1976 pci_intx(dev, this->orig_intx); 1977 1978 if (this->enabled && !this->pinned) 1979 pci_disable_device(dev); 1980 } 1981 1982 static struct pci_devres *get_pci_dr(struct pci_dev *pdev) 1983 { 1984 struct pci_devres *dr, *new_dr; 1985 1986 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL); 1987 if (dr) 1988 return dr; 1989 1990 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL); 1991 if (!new_dr) 1992 return NULL; 1993 return devres_get(&pdev->dev, new_dr, NULL, NULL); 1994 } 1995 1996 static struct pci_devres *find_pci_dr(struct pci_dev *pdev) 1997 { 1998 if (pci_is_managed(pdev)) 1999 return devres_find(&pdev->dev, pcim_release, NULL, NULL); 2000 return NULL; 2001 } 2002 2003 /** 2004 * pcim_enable_device - Managed pci_enable_device() 2005 * @pdev: PCI device to be initialized 2006 * 2007 * Managed pci_enable_device(). 2008 */ 2009 int pcim_enable_device(struct pci_dev *pdev) 2010 { 2011 struct pci_devres *dr; 2012 int rc; 2013 2014 dr = get_pci_dr(pdev); 2015 if (unlikely(!dr)) 2016 return -ENOMEM; 2017 if (dr->enabled) 2018 return 0; 2019 2020 rc = pci_enable_device(pdev); 2021 if (!rc) { 2022 pdev->is_managed = 1; 2023 dr->enabled = 1; 2024 } 2025 return rc; 2026 } 2027 EXPORT_SYMBOL(pcim_enable_device); 2028 2029 /** 2030 * pcim_pin_device - Pin managed PCI device 2031 * @pdev: PCI device to pin 2032 * 2033 * Pin managed PCI device @pdev. Pinned device won't be disabled on 2034 * driver detach. @pdev must have been enabled with 2035 * pcim_enable_device(). 2036 */ 2037 void pcim_pin_device(struct pci_dev *pdev) 2038 { 2039 struct pci_devres *dr; 2040 2041 dr = find_pci_dr(pdev); 2042 WARN_ON(!dr || !dr->enabled); 2043 if (dr) 2044 dr->pinned = 1; 2045 } 2046 EXPORT_SYMBOL(pcim_pin_device); 2047 2048 /* 2049 * pcibios_add_device - provide arch specific hooks when adding device dev 2050 * @dev: the PCI device being added 2051 * 2052 * Permits the platform to provide architecture specific functionality when 2053 * devices are added. This is the default implementation. Architecture 2054 * implementations can override this. 2055 */ 2056 int __weak pcibios_add_device(struct pci_dev *dev) 2057 { 2058 return 0; 2059 } 2060 2061 /** 2062 * pcibios_release_device - provide arch specific hooks when releasing 2063 * device dev 2064 * @dev: the PCI device being released 2065 * 2066 * Permits the platform to provide architecture specific functionality when 2067 * devices are released. This is the default implementation. Architecture 2068 * implementations can override this. 2069 */ 2070 void __weak pcibios_release_device(struct pci_dev *dev) {} 2071 2072 /** 2073 * pcibios_disable_device - disable arch specific PCI resources for device dev 2074 * @dev: the PCI device to disable 2075 * 2076 * Disables architecture specific PCI resources for the device. This 2077 * is the default implementation. Architecture implementations can 2078 * override this. 2079 */ 2080 void __weak pcibios_disable_device(struct pci_dev *dev) {} 2081 2082 /** 2083 * pcibios_penalize_isa_irq - penalize an ISA IRQ 2084 * @irq: ISA IRQ to penalize 2085 * @active: IRQ active or not 2086 * 2087 * Permits the platform to provide architecture-specific functionality when 2088 * penalizing ISA IRQs. This is the default implementation. Architecture 2089 * implementations can override this. 2090 */ 2091 void __weak pcibios_penalize_isa_irq(int irq, int active) {} 2092 2093 static void do_pci_disable_device(struct pci_dev *dev) 2094 { 2095 u16 pci_command; 2096 2097 pci_read_config_word(dev, PCI_COMMAND, &pci_command); 2098 if (pci_command & PCI_COMMAND_MASTER) { 2099 pci_command &= ~PCI_COMMAND_MASTER; 2100 pci_write_config_word(dev, PCI_COMMAND, pci_command); 2101 } 2102 2103 pcibios_disable_device(dev); 2104 } 2105 2106 /** 2107 * pci_disable_enabled_device - Disable device without updating enable_cnt 2108 * @dev: PCI device to disable 2109 * 2110 * NOTE: This function is a backend of PCI power management routines and is 2111 * not supposed to be called drivers. 2112 */ 2113 void pci_disable_enabled_device(struct pci_dev *dev) 2114 { 2115 if (pci_is_enabled(dev)) 2116 do_pci_disable_device(dev); 2117 } 2118 2119 /** 2120 * pci_disable_device - Disable PCI device after use 2121 * @dev: PCI device to be disabled 2122 * 2123 * Signal to the system that the PCI device is not in use by the system 2124 * anymore. This only involves disabling PCI bus-mastering, if active. 2125 * 2126 * Note we don't actually disable the device until all callers of 2127 * pci_enable_device() have called pci_disable_device(). 2128 */ 2129 void pci_disable_device(struct pci_dev *dev) 2130 { 2131 struct pci_devres *dr; 2132 2133 dr = find_pci_dr(dev); 2134 if (dr) 2135 dr->enabled = 0; 2136 2137 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0, 2138 "disabling already-disabled device"); 2139 2140 if (atomic_dec_return(&dev->enable_cnt) != 0) 2141 return; 2142 2143 do_pci_disable_device(dev); 2144 2145 dev->is_busmaster = 0; 2146 } 2147 EXPORT_SYMBOL(pci_disable_device); 2148 2149 /** 2150 * pcibios_set_pcie_reset_state - set reset state for device dev 2151 * @dev: the PCIe device reset 2152 * @state: Reset state to enter into 2153 * 2154 * Set the PCIe reset state for the device. This is the default 2155 * implementation. Architecture implementations can override this. 2156 */ 2157 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev, 2158 enum pcie_reset_state state) 2159 { 2160 return -EINVAL; 2161 } 2162 2163 /** 2164 * pci_set_pcie_reset_state - set reset state for device dev 2165 * @dev: the PCIe device reset 2166 * @state: Reset state to enter into 2167 * 2168 * Sets the PCI reset state for the device. 2169 */ 2170 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state) 2171 { 2172 return pcibios_set_pcie_reset_state(dev, state); 2173 } 2174 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state); 2175 2176 void pcie_clear_device_status(struct pci_dev *dev) 2177 { 2178 u16 sta; 2179 2180 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta); 2181 pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta); 2182 } 2183 2184 /** 2185 * pcie_clear_root_pme_status - Clear root port PME interrupt status. 2186 * @dev: PCIe root port or event collector. 2187 */ 2188 void pcie_clear_root_pme_status(struct pci_dev *dev) 2189 { 2190 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME); 2191 } 2192 2193 /** 2194 * pci_check_pme_status - Check if given device has generated PME. 2195 * @dev: Device to check. 2196 * 2197 * Check the PME status of the device and if set, clear it and clear PME enable 2198 * (if set). Return 'true' if PME status and PME enable were both set or 2199 * 'false' otherwise. 2200 */ 2201 bool pci_check_pme_status(struct pci_dev *dev) 2202 { 2203 int pmcsr_pos; 2204 u16 pmcsr; 2205 bool ret = false; 2206 2207 if (!dev->pm_cap) 2208 return false; 2209 2210 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL; 2211 pci_read_config_word(dev, pmcsr_pos, &pmcsr); 2212 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS)) 2213 return false; 2214 2215 /* Clear PME status. */ 2216 pmcsr |= PCI_PM_CTRL_PME_STATUS; 2217 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) { 2218 /* Disable PME to avoid interrupt flood. */ 2219 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2220 ret = true; 2221 } 2222 2223 pci_write_config_word(dev, pmcsr_pos, pmcsr); 2224 2225 return ret; 2226 } 2227 2228 /** 2229 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set. 2230 * @dev: Device to handle. 2231 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag. 2232 * 2233 * Check if @dev has generated PME and queue a resume request for it in that 2234 * case. 2235 */ 2236 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset) 2237 { 2238 if (pme_poll_reset && dev->pme_poll) 2239 dev->pme_poll = false; 2240 2241 if (pci_check_pme_status(dev)) { 2242 pci_wakeup_event(dev); 2243 pm_request_resume(&dev->dev); 2244 } 2245 return 0; 2246 } 2247 2248 /** 2249 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary. 2250 * @bus: Top bus of the subtree to walk. 2251 */ 2252 void pci_pme_wakeup_bus(struct pci_bus *bus) 2253 { 2254 if (bus) 2255 pci_walk_bus(bus, pci_pme_wakeup, (void *)true); 2256 } 2257 2258 2259 /** 2260 * pci_pme_capable - check the capability of PCI device to generate PME# 2261 * @dev: PCI device to handle. 2262 * @state: PCI state from which device will issue PME#. 2263 */ 2264 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state) 2265 { 2266 if (!dev->pm_cap) 2267 return false; 2268 2269 return !!(dev->pme_support & (1 << state)); 2270 } 2271 EXPORT_SYMBOL(pci_pme_capable); 2272 2273 static void pci_pme_list_scan(struct work_struct *work) 2274 { 2275 struct pci_pme_device *pme_dev, *n; 2276 2277 mutex_lock(&pci_pme_list_mutex); 2278 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) { 2279 if (pme_dev->dev->pme_poll) { 2280 struct pci_dev *bridge; 2281 2282 bridge = pme_dev->dev->bus->self; 2283 /* 2284 * If bridge is in low power state, the 2285 * configuration space of subordinate devices 2286 * may be not accessible 2287 */ 2288 if (bridge && bridge->current_state != PCI_D0) 2289 continue; 2290 /* 2291 * If the device is in D3cold it should not be 2292 * polled either. 2293 */ 2294 if (pme_dev->dev->current_state == PCI_D3cold) 2295 continue; 2296 2297 pci_pme_wakeup(pme_dev->dev, NULL); 2298 } else { 2299 list_del(&pme_dev->list); 2300 kfree(pme_dev); 2301 } 2302 } 2303 if (!list_empty(&pci_pme_list)) 2304 queue_delayed_work(system_freezable_wq, &pci_pme_work, 2305 msecs_to_jiffies(PME_TIMEOUT)); 2306 mutex_unlock(&pci_pme_list_mutex); 2307 } 2308 2309 static void __pci_pme_active(struct pci_dev *dev, bool enable) 2310 { 2311 u16 pmcsr; 2312 2313 if (!dev->pme_support) 2314 return; 2315 2316 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2317 /* Clear PME_Status by writing 1 to it and enable PME# */ 2318 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE; 2319 if (!enable) 2320 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2321 2322 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2323 } 2324 2325 /** 2326 * pci_pme_restore - Restore PME configuration after config space restore. 2327 * @dev: PCI device to update. 2328 */ 2329 void pci_pme_restore(struct pci_dev *dev) 2330 { 2331 u16 pmcsr; 2332 2333 if (!dev->pme_support) 2334 return; 2335 2336 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2337 if (dev->wakeup_prepared) { 2338 pmcsr |= PCI_PM_CTRL_PME_ENABLE; 2339 pmcsr &= ~PCI_PM_CTRL_PME_STATUS; 2340 } else { 2341 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2342 pmcsr |= PCI_PM_CTRL_PME_STATUS; 2343 } 2344 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2345 } 2346 2347 /** 2348 * pci_pme_active - enable or disable PCI device's PME# function 2349 * @dev: PCI device to handle. 2350 * @enable: 'true' to enable PME# generation; 'false' to disable it. 2351 * 2352 * The caller must verify that the device is capable of generating PME# before 2353 * calling this function with @enable equal to 'true'. 2354 */ 2355 void pci_pme_active(struct pci_dev *dev, bool enable) 2356 { 2357 __pci_pme_active(dev, enable); 2358 2359 /* 2360 * PCI (as opposed to PCIe) PME requires that the device have 2361 * its PME# line hooked up correctly. Not all hardware vendors 2362 * do this, so the PME never gets delivered and the device 2363 * remains asleep. The easiest way around this is to 2364 * periodically walk the list of suspended devices and check 2365 * whether any have their PME flag set. The assumption is that 2366 * we'll wake up often enough anyway that this won't be a huge 2367 * hit, and the power savings from the devices will still be a 2368 * win. 2369 * 2370 * Although PCIe uses in-band PME message instead of PME# line 2371 * to report PME, PME does not work for some PCIe devices in 2372 * reality. For example, there are devices that set their PME 2373 * status bits, but don't really bother to send a PME message; 2374 * there are PCI Express Root Ports that don't bother to 2375 * trigger interrupts when they receive PME messages from the 2376 * devices below. So PME poll is used for PCIe devices too. 2377 */ 2378 2379 if (dev->pme_poll) { 2380 struct pci_pme_device *pme_dev; 2381 if (enable) { 2382 pme_dev = kmalloc(sizeof(struct pci_pme_device), 2383 GFP_KERNEL); 2384 if (!pme_dev) { 2385 pci_warn(dev, "can't enable PME#\n"); 2386 return; 2387 } 2388 pme_dev->dev = dev; 2389 mutex_lock(&pci_pme_list_mutex); 2390 list_add(&pme_dev->list, &pci_pme_list); 2391 if (list_is_singular(&pci_pme_list)) 2392 queue_delayed_work(system_freezable_wq, 2393 &pci_pme_work, 2394 msecs_to_jiffies(PME_TIMEOUT)); 2395 mutex_unlock(&pci_pme_list_mutex); 2396 } else { 2397 mutex_lock(&pci_pme_list_mutex); 2398 list_for_each_entry(pme_dev, &pci_pme_list, list) { 2399 if (pme_dev->dev == dev) { 2400 list_del(&pme_dev->list); 2401 kfree(pme_dev); 2402 break; 2403 } 2404 } 2405 mutex_unlock(&pci_pme_list_mutex); 2406 } 2407 } 2408 2409 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled"); 2410 } 2411 EXPORT_SYMBOL(pci_pme_active); 2412 2413 /** 2414 * __pci_enable_wake - enable PCI device as wakeup event source 2415 * @dev: PCI device affected 2416 * @state: PCI state from which device will issue wakeup events 2417 * @enable: True to enable event generation; false to disable 2418 * 2419 * This enables the device as a wakeup event source, or disables it. 2420 * When such events involves platform-specific hooks, those hooks are 2421 * called automatically by this routine. 2422 * 2423 * Devices with legacy power management (no standard PCI PM capabilities) 2424 * always require such platform hooks. 2425 * 2426 * RETURN VALUE: 2427 * 0 is returned on success 2428 * -EINVAL is returned if device is not supposed to wake up the system 2429 * Error code depending on the platform is returned if both the platform and 2430 * the native mechanism fail to enable the generation of wake-up events 2431 */ 2432 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable) 2433 { 2434 int ret = 0; 2435 2436 /* 2437 * Bridges that are not power-manageable directly only signal 2438 * wakeup on behalf of subordinate devices which is set up 2439 * elsewhere, so skip them. However, bridges that are 2440 * power-manageable may signal wakeup for themselves (for example, 2441 * on a hotplug event) and they need to be covered here. 2442 */ 2443 if (!pci_power_manageable(dev)) 2444 return 0; 2445 2446 /* Don't do the same thing twice in a row for one device. */ 2447 if (!!enable == !!dev->wakeup_prepared) 2448 return 0; 2449 2450 /* 2451 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don 2452 * Anderson we should be doing PME# wake enable followed by ACPI wake 2453 * enable. To disable wake-up we call the platform first, for symmetry. 2454 */ 2455 2456 if (enable) { 2457 int error; 2458 2459 if (pci_pme_capable(dev, state)) 2460 pci_pme_active(dev, true); 2461 else 2462 ret = 1; 2463 error = platform_pci_set_wakeup(dev, true); 2464 if (ret) 2465 ret = error; 2466 if (!ret) 2467 dev->wakeup_prepared = true; 2468 } else { 2469 platform_pci_set_wakeup(dev, false); 2470 pci_pme_active(dev, false); 2471 dev->wakeup_prepared = false; 2472 } 2473 2474 return ret; 2475 } 2476 2477 /** 2478 * pci_enable_wake - change wakeup settings for a PCI device 2479 * @pci_dev: Target device 2480 * @state: PCI state from which device will issue wakeup events 2481 * @enable: Whether or not to enable event generation 2482 * 2483 * If @enable is set, check device_may_wakeup() for the device before calling 2484 * __pci_enable_wake() for it. 2485 */ 2486 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable) 2487 { 2488 if (enable && !device_may_wakeup(&pci_dev->dev)) 2489 return -EINVAL; 2490 2491 return __pci_enable_wake(pci_dev, state, enable); 2492 } 2493 EXPORT_SYMBOL(pci_enable_wake); 2494 2495 /** 2496 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold 2497 * @dev: PCI device to prepare 2498 * @enable: True to enable wake-up event generation; false to disable 2499 * 2500 * Many drivers want the device to wake up the system from D3_hot or D3_cold 2501 * and this function allows them to set that up cleanly - pci_enable_wake() 2502 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI 2503 * ordering constraints. 2504 * 2505 * This function only returns error code if the device is not allowed to wake 2506 * up the system from sleep or it is not capable of generating PME# from both 2507 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it. 2508 */ 2509 int pci_wake_from_d3(struct pci_dev *dev, bool enable) 2510 { 2511 return pci_pme_capable(dev, PCI_D3cold) ? 2512 pci_enable_wake(dev, PCI_D3cold, enable) : 2513 pci_enable_wake(dev, PCI_D3hot, enable); 2514 } 2515 EXPORT_SYMBOL(pci_wake_from_d3); 2516 2517 /** 2518 * pci_target_state - find an appropriate low power state for a given PCI dev 2519 * @dev: PCI device 2520 * @wakeup: Whether or not wakeup functionality will be enabled for the device. 2521 * 2522 * Use underlying platform code to find a supported low power state for @dev. 2523 * If the platform can't manage @dev, return the deepest state from which it 2524 * can generate wake events, based on any available PME info. 2525 */ 2526 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup) 2527 { 2528 pci_power_t target_state = PCI_D3hot; 2529 2530 if (platform_pci_power_manageable(dev)) { 2531 /* 2532 * Call the platform to find the target state for the device. 2533 */ 2534 pci_power_t state = platform_pci_choose_state(dev); 2535 2536 switch (state) { 2537 case PCI_POWER_ERROR: 2538 case PCI_UNKNOWN: 2539 break; 2540 case PCI_D1: 2541 case PCI_D2: 2542 if (pci_no_d1d2(dev)) 2543 break; 2544 /* else, fall through */ 2545 default: 2546 target_state = state; 2547 } 2548 2549 return target_state; 2550 } 2551 2552 if (!dev->pm_cap) 2553 target_state = PCI_D0; 2554 2555 /* 2556 * If the device is in D3cold even though it's not power-manageable by 2557 * the platform, it may have been powered down by non-standard means. 2558 * Best to let it slumber. 2559 */ 2560 if (dev->current_state == PCI_D3cold) 2561 target_state = PCI_D3cold; 2562 2563 if (wakeup) { 2564 /* 2565 * Find the deepest state from which the device can generate 2566 * PME#. 2567 */ 2568 if (dev->pme_support) { 2569 while (target_state 2570 && !(dev->pme_support & (1 << target_state))) 2571 target_state--; 2572 } 2573 } 2574 2575 return target_state; 2576 } 2577 2578 /** 2579 * pci_prepare_to_sleep - prepare PCI device for system-wide transition 2580 * into a sleep state 2581 * @dev: Device to handle. 2582 * 2583 * Choose the power state appropriate for the device depending on whether 2584 * it can wake up the system and/or is power manageable by the platform 2585 * (PCI_D3hot is the default) and put the device into that state. 2586 */ 2587 int pci_prepare_to_sleep(struct pci_dev *dev) 2588 { 2589 bool wakeup = device_may_wakeup(&dev->dev); 2590 pci_power_t target_state = pci_target_state(dev, wakeup); 2591 int error; 2592 2593 if (target_state == PCI_POWER_ERROR) 2594 return -EIO; 2595 2596 pci_enable_wake(dev, target_state, wakeup); 2597 2598 error = pci_set_power_state(dev, target_state); 2599 2600 if (error) 2601 pci_enable_wake(dev, target_state, false); 2602 2603 return error; 2604 } 2605 EXPORT_SYMBOL(pci_prepare_to_sleep); 2606 2607 /** 2608 * pci_back_from_sleep - turn PCI device on during system-wide transition 2609 * into working state 2610 * @dev: Device to handle. 2611 * 2612 * Disable device's system wake-up capability and put it into D0. 2613 */ 2614 int pci_back_from_sleep(struct pci_dev *dev) 2615 { 2616 pci_enable_wake(dev, PCI_D0, false); 2617 return pci_set_power_state(dev, PCI_D0); 2618 } 2619 EXPORT_SYMBOL(pci_back_from_sleep); 2620 2621 /** 2622 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend. 2623 * @dev: PCI device being suspended. 2624 * 2625 * Prepare @dev to generate wake-up events at run time and put it into a low 2626 * power state. 2627 */ 2628 int pci_finish_runtime_suspend(struct pci_dev *dev) 2629 { 2630 pci_power_t target_state; 2631 int error; 2632 2633 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev)); 2634 if (target_state == PCI_POWER_ERROR) 2635 return -EIO; 2636 2637 dev->runtime_d3cold = target_state == PCI_D3cold; 2638 2639 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev)); 2640 2641 error = pci_set_power_state(dev, target_state); 2642 2643 if (error) { 2644 pci_enable_wake(dev, target_state, false); 2645 dev->runtime_d3cold = false; 2646 } 2647 2648 return error; 2649 } 2650 2651 /** 2652 * pci_dev_run_wake - Check if device can generate run-time wake-up events. 2653 * @dev: Device to check. 2654 * 2655 * Return true if the device itself is capable of generating wake-up events 2656 * (through the platform or using the native PCIe PME) or if the device supports 2657 * PME and one of its upstream bridges can generate wake-up events. 2658 */ 2659 bool pci_dev_run_wake(struct pci_dev *dev) 2660 { 2661 struct pci_bus *bus = dev->bus; 2662 2663 if (!dev->pme_support) 2664 return false; 2665 2666 /* PME-capable in principle, but not from the target power state */ 2667 if (!pci_pme_capable(dev, pci_target_state(dev, true))) 2668 return false; 2669 2670 if (device_can_wakeup(&dev->dev)) 2671 return true; 2672 2673 while (bus->parent) { 2674 struct pci_dev *bridge = bus->self; 2675 2676 if (device_can_wakeup(&bridge->dev)) 2677 return true; 2678 2679 bus = bus->parent; 2680 } 2681 2682 /* We have reached the root bus. */ 2683 if (bus->bridge) 2684 return device_can_wakeup(bus->bridge); 2685 2686 return false; 2687 } 2688 EXPORT_SYMBOL_GPL(pci_dev_run_wake); 2689 2690 /** 2691 * pci_dev_need_resume - Check if it is necessary to resume the device. 2692 * @pci_dev: Device to check. 2693 * 2694 * Return 'true' if the device is not runtime-suspended or it has to be 2695 * reconfigured due to wakeup settings difference between system and runtime 2696 * suspend, or the current power state of it is not suitable for the upcoming 2697 * (system-wide) transition. 2698 */ 2699 bool pci_dev_need_resume(struct pci_dev *pci_dev) 2700 { 2701 struct device *dev = &pci_dev->dev; 2702 pci_power_t target_state; 2703 2704 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev)) 2705 return true; 2706 2707 target_state = pci_target_state(pci_dev, device_may_wakeup(dev)); 2708 2709 /* 2710 * If the earlier platform check has not triggered, D3cold is just power 2711 * removal on top of D3hot, so no need to resume the device in that 2712 * case. 2713 */ 2714 return target_state != pci_dev->current_state && 2715 target_state != PCI_D3cold && 2716 pci_dev->current_state != PCI_D3hot; 2717 } 2718 2719 /** 2720 * pci_dev_adjust_pme - Adjust PME setting for a suspended device. 2721 * @pci_dev: Device to check. 2722 * 2723 * If the device is suspended and it is not configured for system wakeup, 2724 * disable PME for it to prevent it from waking up the system unnecessarily. 2725 * 2726 * Note that if the device's power state is D3cold and the platform check in 2727 * pci_dev_need_resume() has not triggered, the device's configuration need not 2728 * be changed. 2729 */ 2730 void pci_dev_adjust_pme(struct pci_dev *pci_dev) 2731 { 2732 struct device *dev = &pci_dev->dev; 2733 2734 spin_lock_irq(&dev->power.lock); 2735 2736 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) && 2737 pci_dev->current_state < PCI_D3cold) 2738 __pci_pme_active(pci_dev, false); 2739 2740 spin_unlock_irq(&dev->power.lock); 2741 } 2742 2743 /** 2744 * pci_dev_complete_resume - Finalize resume from system sleep for a device. 2745 * @pci_dev: Device to handle. 2746 * 2747 * If the device is runtime suspended and wakeup-capable, enable PME for it as 2748 * it might have been disabled during the prepare phase of system suspend if 2749 * the device was not configured for system wakeup. 2750 */ 2751 void pci_dev_complete_resume(struct pci_dev *pci_dev) 2752 { 2753 struct device *dev = &pci_dev->dev; 2754 2755 if (!pci_dev_run_wake(pci_dev)) 2756 return; 2757 2758 spin_lock_irq(&dev->power.lock); 2759 2760 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold) 2761 __pci_pme_active(pci_dev, true); 2762 2763 spin_unlock_irq(&dev->power.lock); 2764 } 2765 2766 void pci_config_pm_runtime_get(struct pci_dev *pdev) 2767 { 2768 struct device *dev = &pdev->dev; 2769 struct device *parent = dev->parent; 2770 2771 if (parent) 2772 pm_runtime_get_sync(parent); 2773 pm_runtime_get_noresume(dev); 2774 /* 2775 * pdev->current_state is set to PCI_D3cold during suspending, 2776 * so wait until suspending completes 2777 */ 2778 pm_runtime_barrier(dev); 2779 /* 2780 * Only need to resume devices in D3cold, because config 2781 * registers are still accessible for devices suspended but 2782 * not in D3cold. 2783 */ 2784 if (pdev->current_state == PCI_D3cold) 2785 pm_runtime_resume(dev); 2786 } 2787 2788 void pci_config_pm_runtime_put(struct pci_dev *pdev) 2789 { 2790 struct device *dev = &pdev->dev; 2791 struct device *parent = dev->parent; 2792 2793 pm_runtime_put(dev); 2794 if (parent) 2795 pm_runtime_put_sync(parent); 2796 } 2797 2798 static const struct dmi_system_id bridge_d3_blacklist[] = { 2799 #ifdef CONFIG_X86 2800 { 2801 /* 2802 * Gigabyte X299 root port is not marked as hotplug capable 2803 * which allows Linux to power manage it. However, this 2804 * confuses the BIOS SMI handler so don't power manage root 2805 * ports on that system. 2806 */ 2807 .ident = "X299 DESIGNARE EX-CF", 2808 .matches = { 2809 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."), 2810 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"), 2811 }, 2812 }, 2813 #endif 2814 { } 2815 }; 2816 2817 /** 2818 * pci_bridge_d3_possible - Is it possible to put the bridge into D3 2819 * @bridge: Bridge to check 2820 * 2821 * This function checks if it is possible to move the bridge to D3. 2822 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt. 2823 */ 2824 bool pci_bridge_d3_possible(struct pci_dev *bridge) 2825 { 2826 if (!pci_is_pcie(bridge)) 2827 return false; 2828 2829 switch (pci_pcie_type(bridge)) { 2830 case PCI_EXP_TYPE_ROOT_PORT: 2831 case PCI_EXP_TYPE_UPSTREAM: 2832 case PCI_EXP_TYPE_DOWNSTREAM: 2833 if (pci_bridge_d3_disable) 2834 return false; 2835 2836 /* 2837 * Hotplug ports handled by firmware in System Management Mode 2838 * may not be put into D3 by the OS (Thunderbolt on non-Macs). 2839 */ 2840 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge)) 2841 return false; 2842 2843 if (pci_bridge_d3_force) 2844 return true; 2845 2846 /* Even the oldest 2010 Thunderbolt controller supports D3. */ 2847 if (bridge->is_thunderbolt) 2848 return true; 2849 2850 /* Platform might know better if the bridge supports D3 */ 2851 if (platform_pci_bridge_d3(bridge)) 2852 return true; 2853 2854 /* 2855 * Hotplug ports handled natively by the OS were not validated 2856 * by vendors for runtime D3 at least until 2018 because there 2857 * was no OS support. 2858 */ 2859 if (bridge->is_hotplug_bridge) 2860 return false; 2861 2862 if (dmi_check_system(bridge_d3_blacklist)) 2863 return false; 2864 2865 /* 2866 * It should be safe to put PCIe ports from 2015 or newer 2867 * to D3. 2868 */ 2869 if (dmi_get_bios_year() >= 2015) 2870 return true; 2871 break; 2872 } 2873 2874 return false; 2875 } 2876 2877 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data) 2878 { 2879 bool *d3cold_ok = data; 2880 2881 if (/* The device needs to be allowed to go D3cold ... */ 2882 dev->no_d3cold || !dev->d3cold_allowed || 2883 2884 /* ... and if it is wakeup capable to do so from D3cold. */ 2885 (device_may_wakeup(&dev->dev) && 2886 !pci_pme_capable(dev, PCI_D3cold)) || 2887 2888 /* If it is a bridge it must be allowed to go to D3. */ 2889 !pci_power_manageable(dev)) 2890 2891 *d3cold_ok = false; 2892 2893 return !*d3cold_ok; 2894 } 2895 2896 /* 2897 * pci_bridge_d3_update - Update bridge D3 capabilities 2898 * @dev: PCI device which is changed 2899 * 2900 * Update upstream bridge PM capabilities accordingly depending on if the 2901 * device PM configuration was changed or the device is being removed. The 2902 * change is also propagated upstream. 2903 */ 2904 void pci_bridge_d3_update(struct pci_dev *dev) 2905 { 2906 bool remove = !device_is_registered(&dev->dev); 2907 struct pci_dev *bridge; 2908 bool d3cold_ok = true; 2909 2910 bridge = pci_upstream_bridge(dev); 2911 if (!bridge || !pci_bridge_d3_possible(bridge)) 2912 return; 2913 2914 /* 2915 * If D3 is currently allowed for the bridge, removing one of its 2916 * children won't change that. 2917 */ 2918 if (remove && bridge->bridge_d3) 2919 return; 2920 2921 /* 2922 * If D3 is currently allowed for the bridge and a child is added or 2923 * changed, disallowance of D3 can only be caused by that child, so 2924 * we only need to check that single device, not any of its siblings. 2925 * 2926 * If D3 is currently not allowed for the bridge, checking the device 2927 * first may allow us to skip checking its siblings. 2928 */ 2929 if (!remove) 2930 pci_dev_check_d3cold(dev, &d3cold_ok); 2931 2932 /* 2933 * If D3 is currently not allowed for the bridge, this may be caused 2934 * either by the device being changed/removed or any of its siblings, 2935 * so we need to go through all children to find out if one of them 2936 * continues to block D3. 2937 */ 2938 if (d3cold_ok && !bridge->bridge_d3) 2939 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold, 2940 &d3cold_ok); 2941 2942 if (bridge->bridge_d3 != d3cold_ok) { 2943 bridge->bridge_d3 = d3cold_ok; 2944 /* Propagate change to upstream bridges */ 2945 pci_bridge_d3_update(bridge); 2946 } 2947 } 2948 2949 /** 2950 * pci_d3cold_enable - Enable D3cold for device 2951 * @dev: PCI device to handle 2952 * 2953 * This function can be used in drivers to enable D3cold from the device 2954 * they handle. It also updates upstream PCI bridge PM capabilities 2955 * accordingly. 2956 */ 2957 void pci_d3cold_enable(struct pci_dev *dev) 2958 { 2959 if (dev->no_d3cold) { 2960 dev->no_d3cold = false; 2961 pci_bridge_d3_update(dev); 2962 } 2963 } 2964 EXPORT_SYMBOL_GPL(pci_d3cold_enable); 2965 2966 /** 2967 * pci_d3cold_disable - Disable D3cold for device 2968 * @dev: PCI device to handle 2969 * 2970 * This function can be used in drivers to disable D3cold from the device 2971 * they handle. It also updates upstream PCI bridge PM capabilities 2972 * accordingly. 2973 */ 2974 void pci_d3cold_disable(struct pci_dev *dev) 2975 { 2976 if (!dev->no_d3cold) { 2977 dev->no_d3cold = true; 2978 pci_bridge_d3_update(dev); 2979 } 2980 } 2981 EXPORT_SYMBOL_GPL(pci_d3cold_disable); 2982 2983 /** 2984 * pci_pm_init - Initialize PM functions of given PCI device 2985 * @dev: PCI device to handle. 2986 */ 2987 void pci_pm_init(struct pci_dev *dev) 2988 { 2989 int pm; 2990 u16 status; 2991 u16 pmc; 2992 2993 pm_runtime_forbid(&dev->dev); 2994 pm_runtime_set_active(&dev->dev); 2995 pm_runtime_enable(&dev->dev); 2996 device_enable_async_suspend(&dev->dev); 2997 dev->wakeup_prepared = false; 2998 2999 dev->pm_cap = 0; 3000 dev->pme_support = 0; 3001 3002 /* find PCI PM capability in list */ 3003 pm = pci_find_capability(dev, PCI_CAP_ID_PM); 3004 if (!pm) 3005 return; 3006 /* Check device's ability to generate PME# */ 3007 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc); 3008 3009 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) { 3010 pci_err(dev, "unsupported PM cap regs version (%u)\n", 3011 pmc & PCI_PM_CAP_VER_MASK); 3012 return; 3013 } 3014 3015 dev->pm_cap = pm; 3016 dev->d3_delay = PCI_PM_D3_WAIT; 3017 dev->d3cold_delay = PCI_PM_D3COLD_WAIT; 3018 dev->bridge_d3 = pci_bridge_d3_possible(dev); 3019 dev->d3cold_allowed = true; 3020 3021 dev->d1_support = false; 3022 dev->d2_support = false; 3023 if (!pci_no_d1d2(dev)) { 3024 if (pmc & PCI_PM_CAP_D1) 3025 dev->d1_support = true; 3026 if (pmc & PCI_PM_CAP_D2) 3027 dev->d2_support = true; 3028 3029 if (dev->d1_support || dev->d2_support) 3030 pci_info(dev, "supports%s%s\n", 3031 dev->d1_support ? " D1" : "", 3032 dev->d2_support ? " D2" : ""); 3033 } 3034 3035 pmc &= PCI_PM_CAP_PME_MASK; 3036 if (pmc) { 3037 pci_info(dev, "PME# supported from%s%s%s%s%s\n", 3038 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "", 3039 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "", 3040 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "", 3041 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "", 3042 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : ""); 3043 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT; 3044 dev->pme_poll = true; 3045 /* 3046 * Make device's PM flags reflect the wake-up capability, but 3047 * let the user space enable it to wake up the system as needed. 3048 */ 3049 device_set_wakeup_capable(&dev->dev, true); 3050 /* Disable the PME# generation functionality */ 3051 pci_pme_active(dev, false); 3052 } 3053 3054 pci_read_config_word(dev, PCI_STATUS, &status); 3055 if (status & PCI_STATUS_IMM_READY) 3056 dev->imm_ready = 1; 3057 } 3058 3059 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop) 3060 { 3061 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI; 3062 3063 switch (prop) { 3064 case PCI_EA_P_MEM: 3065 case PCI_EA_P_VF_MEM: 3066 flags |= IORESOURCE_MEM; 3067 break; 3068 case PCI_EA_P_MEM_PREFETCH: 3069 case PCI_EA_P_VF_MEM_PREFETCH: 3070 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH; 3071 break; 3072 case PCI_EA_P_IO: 3073 flags |= IORESOURCE_IO; 3074 break; 3075 default: 3076 return 0; 3077 } 3078 3079 return flags; 3080 } 3081 3082 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei, 3083 u8 prop) 3084 { 3085 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO) 3086 return &dev->resource[bei]; 3087 #ifdef CONFIG_PCI_IOV 3088 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 && 3089 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH)) 3090 return &dev->resource[PCI_IOV_RESOURCES + 3091 bei - PCI_EA_BEI_VF_BAR0]; 3092 #endif 3093 else if (bei == PCI_EA_BEI_ROM) 3094 return &dev->resource[PCI_ROM_RESOURCE]; 3095 else 3096 return NULL; 3097 } 3098 3099 /* Read an Enhanced Allocation (EA) entry */ 3100 static int pci_ea_read(struct pci_dev *dev, int offset) 3101 { 3102 struct resource *res; 3103 int ent_size, ent_offset = offset; 3104 resource_size_t start, end; 3105 unsigned long flags; 3106 u32 dw0, bei, base, max_offset; 3107 u8 prop; 3108 bool support_64 = (sizeof(resource_size_t) >= 8); 3109 3110 pci_read_config_dword(dev, ent_offset, &dw0); 3111 ent_offset += 4; 3112 3113 /* Entry size field indicates DWORDs after 1st */ 3114 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2; 3115 3116 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */ 3117 goto out; 3118 3119 bei = (dw0 & PCI_EA_BEI) >> 4; 3120 prop = (dw0 & PCI_EA_PP) >> 8; 3121 3122 /* 3123 * If the Property is in the reserved range, try the Secondary 3124 * Property instead. 3125 */ 3126 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED) 3127 prop = (dw0 & PCI_EA_SP) >> 16; 3128 if (prop > PCI_EA_P_BRIDGE_IO) 3129 goto out; 3130 3131 res = pci_ea_get_resource(dev, bei, prop); 3132 if (!res) { 3133 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei); 3134 goto out; 3135 } 3136 3137 flags = pci_ea_flags(dev, prop); 3138 if (!flags) { 3139 pci_err(dev, "Unsupported EA properties: %#x\n", prop); 3140 goto out; 3141 } 3142 3143 /* Read Base */ 3144 pci_read_config_dword(dev, ent_offset, &base); 3145 start = (base & PCI_EA_FIELD_MASK); 3146 ent_offset += 4; 3147 3148 /* Read MaxOffset */ 3149 pci_read_config_dword(dev, ent_offset, &max_offset); 3150 ent_offset += 4; 3151 3152 /* Read Base MSBs (if 64-bit entry) */ 3153 if (base & PCI_EA_IS_64) { 3154 u32 base_upper; 3155 3156 pci_read_config_dword(dev, ent_offset, &base_upper); 3157 ent_offset += 4; 3158 3159 flags |= IORESOURCE_MEM_64; 3160 3161 /* entry starts above 32-bit boundary, can't use */ 3162 if (!support_64 && base_upper) 3163 goto out; 3164 3165 if (support_64) 3166 start |= ((u64)base_upper << 32); 3167 } 3168 3169 end = start + (max_offset | 0x03); 3170 3171 /* Read MaxOffset MSBs (if 64-bit entry) */ 3172 if (max_offset & PCI_EA_IS_64) { 3173 u32 max_offset_upper; 3174 3175 pci_read_config_dword(dev, ent_offset, &max_offset_upper); 3176 ent_offset += 4; 3177 3178 flags |= IORESOURCE_MEM_64; 3179 3180 /* entry too big, can't use */ 3181 if (!support_64 && max_offset_upper) 3182 goto out; 3183 3184 if (support_64) 3185 end += ((u64)max_offset_upper << 32); 3186 } 3187 3188 if (end < start) { 3189 pci_err(dev, "EA Entry crosses address boundary\n"); 3190 goto out; 3191 } 3192 3193 if (ent_size != ent_offset - offset) { 3194 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n", 3195 ent_size, ent_offset - offset); 3196 goto out; 3197 } 3198 3199 res->name = pci_name(dev); 3200 res->start = start; 3201 res->end = end; 3202 res->flags = flags; 3203 3204 if (bei <= PCI_EA_BEI_BAR5) 3205 pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 3206 bei, res, prop); 3207 else if (bei == PCI_EA_BEI_ROM) 3208 pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n", 3209 res, prop); 3210 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5) 3211 pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 3212 bei - PCI_EA_BEI_VF_BAR0, res, prop); 3213 else 3214 pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n", 3215 bei, res, prop); 3216 3217 out: 3218 return offset + ent_size; 3219 } 3220 3221 /* Enhanced Allocation Initialization */ 3222 void pci_ea_init(struct pci_dev *dev) 3223 { 3224 int ea; 3225 u8 num_ent; 3226 int offset; 3227 int i; 3228 3229 /* find PCI EA capability in list */ 3230 ea = pci_find_capability(dev, PCI_CAP_ID_EA); 3231 if (!ea) 3232 return; 3233 3234 /* determine the number of entries */ 3235 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT, 3236 &num_ent); 3237 num_ent &= PCI_EA_NUM_ENT_MASK; 3238 3239 offset = ea + PCI_EA_FIRST_ENT; 3240 3241 /* Skip DWORD 2 for type 1 functions */ 3242 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) 3243 offset += 4; 3244 3245 /* parse each EA entry */ 3246 for (i = 0; i < num_ent; ++i) 3247 offset = pci_ea_read(dev, offset); 3248 } 3249 3250 static void pci_add_saved_cap(struct pci_dev *pci_dev, 3251 struct pci_cap_saved_state *new_cap) 3252 { 3253 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space); 3254 } 3255 3256 /** 3257 * _pci_add_cap_save_buffer - allocate buffer for saving given 3258 * capability registers 3259 * @dev: the PCI device 3260 * @cap: the capability to allocate the buffer for 3261 * @extended: Standard or Extended capability ID 3262 * @size: requested size of the buffer 3263 */ 3264 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap, 3265 bool extended, unsigned int size) 3266 { 3267 int pos; 3268 struct pci_cap_saved_state *save_state; 3269 3270 if (extended) 3271 pos = pci_find_ext_capability(dev, cap); 3272 else 3273 pos = pci_find_capability(dev, cap); 3274 3275 if (!pos) 3276 return 0; 3277 3278 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL); 3279 if (!save_state) 3280 return -ENOMEM; 3281 3282 save_state->cap.cap_nr = cap; 3283 save_state->cap.cap_extended = extended; 3284 save_state->cap.size = size; 3285 pci_add_saved_cap(dev, save_state); 3286 3287 return 0; 3288 } 3289 3290 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size) 3291 { 3292 return _pci_add_cap_save_buffer(dev, cap, false, size); 3293 } 3294 3295 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size) 3296 { 3297 return _pci_add_cap_save_buffer(dev, cap, true, size); 3298 } 3299 3300 /** 3301 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities 3302 * @dev: the PCI device 3303 */ 3304 void pci_allocate_cap_save_buffers(struct pci_dev *dev) 3305 { 3306 int error; 3307 3308 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP, 3309 PCI_EXP_SAVE_REGS * sizeof(u16)); 3310 if (error) 3311 pci_err(dev, "unable to preallocate PCI Express save buffer\n"); 3312 3313 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16)); 3314 if (error) 3315 pci_err(dev, "unable to preallocate PCI-X save buffer\n"); 3316 3317 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR, 3318 2 * sizeof(u16)); 3319 if (error) 3320 pci_err(dev, "unable to allocate suspend buffer for LTR\n"); 3321 3322 pci_allocate_vc_save_buffers(dev); 3323 } 3324 3325 void pci_free_cap_save_buffers(struct pci_dev *dev) 3326 { 3327 struct pci_cap_saved_state *tmp; 3328 struct hlist_node *n; 3329 3330 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next) 3331 kfree(tmp); 3332 } 3333 3334 /** 3335 * pci_configure_ari - enable or disable ARI forwarding 3336 * @dev: the PCI device 3337 * 3338 * If @dev and its upstream bridge both support ARI, enable ARI in the 3339 * bridge. Otherwise, disable ARI in the bridge. 3340 */ 3341 void pci_configure_ari(struct pci_dev *dev) 3342 { 3343 u32 cap; 3344 struct pci_dev *bridge; 3345 3346 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn) 3347 return; 3348 3349 bridge = dev->bus->self; 3350 if (!bridge) 3351 return; 3352 3353 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3354 if (!(cap & PCI_EXP_DEVCAP2_ARI)) 3355 return; 3356 3357 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) { 3358 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, 3359 PCI_EXP_DEVCTL2_ARI); 3360 bridge->ari_enabled = 1; 3361 } else { 3362 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2, 3363 PCI_EXP_DEVCTL2_ARI); 3364 bridge->ari_enabled = 0; 3365 } 3366 } 3367 3368 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags) 3369 { 3370 int pos; 3371 u16 cap, ctrl; 3372 3373 pos = pdev->acs_cap; 3374 if (!pos) 3375 return false; 3376 3377 /* 3378 * Except for egress control, capabilities are either required 3379 * or only required if controllable. Features missing from the 3380 * capability field can therefore be assumed as hard-wired enabled. 3381 */ 3382 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap); 3383 acs_flags &= (cap | PCI_ACS_EC); 3384 3385 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl); 3386 return (ctrl & acs_flags) == acs_flags; 3387 } 3388 3389 /** 3390 * pci_acs_enabled - test ACS against required flags for a given device 3391 * @pdev: device to test 3392 * @acs_flags: required PCI ACS flags 3393 * 3394 * Return true if the device supports the provided flags. Automatically 3395 * filters out flags that are not implemented on multifunction devices. 3396 * 3397 * Note that this interface checks the effective ACS capabilities of the 3398 * device rather than the actual capabilities. For instance, most single 3399 * function endpoints are not required to support ACS because they have no 3400 * opportunity for peer-to-peer access. We therefore return 'true' 3401 * regardless of whether the device exposes an ACS capability. This makes 3402 * it much easier for callers of this function to ignore the actual type 3403 * or topology of the device when testing ACS support. 3404 */ 3405 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags) 3406 { 3407 int ret; 3408 3409 ret = pci_dev_specific_acs_enabled(pdev, acs_flags); 3410 if (ret >= 0) 3411 return ret > 0; 3412 3413 /* 3414 * Conventional PCI and PCI-X devices never support ACS, either 3415 * effectively or actually. The shared bus topology implies that 3416 * any device on the bus can receive or snoop DMA. 3417 */ 3418 if (!pci_is_pcie(pdev)) 3419 return false; 3420 3421 switch (pci_pcie_type(pdev)) { 3422 /* 3423 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec, 3424 * but since their primary interface is PCI/X, we conservatively 3425 * handle them as we would a non-PCIe device. 3426 */ 3427 case PCI_EXP_TYPE_PCIE_BRIDGE: 3428 /* 3429 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never 3430 * applicable... must never implement an ACS Extended Capability...". 3431 * This seems arbitrary, but we take a conservative interpretation 3432 * of this statement. 3433 */ 3434 case PCI_EXP_TYPE_PCI_BRIDGE: 3435 case PCI_EXP_TYPE_RC_EC: 3436 return false; 3437 /* 3438 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should 3439 * implement ACS in order to indicate their peer-to-peer capabilities, 3440 * regardless of whether they are single- or multi-function devices. 3441 */ 3442 case PCI_EXP_TYPE_DOWNSTREAM: 3443 case PCI_EXP_TYPE_ROOT_PORT: 3444 return pci_acs_flags_enabled(pdev, acs_flags); 3445 /* 3446 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be 3447 * implemented by the remaining PCIe types to indicate peer-to-peer 3448 * capabilities, but only when they are part of a multifunction 3449 * device. The footnote for section 6.12 indicates the specific 3450 * PCIe types included here. 3451 */ 3452 case PCI_EXP_TYPE_ENDPOINT: 3453 case PCI_EXP_TYPE_UPSTREAM: 3454 case PCI_EXP_TYPE_LEG_END: 3455 case PCI_EXP_TYPE_RC_END: 3456 if (!pdev->multifunction) 3457 break; 3458 3459 return pci_acs_flags_enabled(pdev, acs_flags); 3460 } 3461 3462 /* 3463 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable 3464 * to single function devices with the exception of downstream ports. 3465 */ 3466 return true; 3467 } 3468 3469 /** 3470 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy 3471 * @start: starting downstream device 3472 * @end: ending upstream device or NULL to search to the root bus 3473 * @acs_flags: required flags 3474 * 3475 * Walk up a device tree from start to end testing PCI ACS support. If 3476 * any step along the way does not support the required flags, return false. 3477 */ 3478 bool pci_acs_path_enabled(struct pci_dev *start, 3479 struct pci_dev *end, u16 acs_flags) 3480 { 3481 struct pci_dev *pdev, *parent = start; 3482 3483 do { 3484 pdev = parent; 3485 3486 if (!pci_acs_enabled(pdev, acs_flags)) 3487 return false; 3488 3489 if (pci_is_root_bus(pdev->bus)) 3490 return (end == NULL); 3491 3492 parent = pdev->bus->self; 3493 } while (pdev != end); 3494 3495 return true; 3496 } 3497 3498 /** 3499 * pci_acs_init - Initialize ACS if hardware supports it 3500 * @dev: the PCI device 3501 */ 3502 void pci_acs_init(struct pci_dev *dev) 3503 { 3504 dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS); 3505 3506 if (dev->acs_cap) 3507 pci_enable_acs(dev); 3508 } 3509 3510 /** 3511 * pci_rebar_find_pos - find position of resize ctrl reg for BAR 3512 * @pdev: PCI device 3513 * @bar: BAR to find 3514 * 3515 * Helper to find the position of the ctrl register for a BAR. 3516 * Returns -ENOTSUPP if resizable BARs are not supported at all. 3517 * Returns -ENOENT if no ctrl register for the BAR could be found. 3518 */ 3519 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar) 3520 { 3521 unsigned int pos, nbars, i; 3522 u32 ctrl; 3523 3524 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 3525 if (!pos) 3526 return -ENOTSUPP; 3527 3528 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3529 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >> 3530 PCI_REBAR_CTRL_NBAR_SHIFT; 3531 3532 for (i = 0; i < nbars; i++, pos += 8) { 3533 int bar_idx; 3534 3535 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3536 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX; 3537 if (bar_idx == bar) 3538 return pos; 3539 } 3540 3541 return -ENOENT; 3542 } 3543 3544 /** 3545 * pci_rebar_get_possible_sizes - get possible sizes for BAR 3546 * @pdev: PCI device 3547 * @bar: BAR to query 3548 * 3549 * Get the possible sizes of a resizable BAR as bitmask defined in the spec 3550 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable. 3551 */ 3552 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar) 3553 { 3554 int pos; 3555 u32 cap; 3556 3557 pos = pci_rebar_find_pos(pdev, bar); 3558 if (pos < 0) 3559 return 0; 3560 3561 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap); 3562 return (cap & PCI_REBAR_CAP_SIZES) >> 4; 3563 } 3564 3565 /** 3566 * pci_rebar_get_current_size - get the current size of a BAR 3567 * @pdev: PCI device 3568 * @bar: BAR to set size to 3569 * 3570 * Read the size of a BAR from the resizable BAR config. 3571 * Returns size if found or negative error code. 3572 */ 3573 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar) 3574 { 3575 int pos; 3576 u32 ctrl; 3577 3578 pos = pci_rebar_find_pos(pdev, bar); 3579 if (pos < 0) 3580 return pos; 3581 3582 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3583 return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT; 3584 } 3585 3586 /** 3587 * pci_rebar_set_size - set a new size for a BAR 3588 * @pdev: PCI device 3589 * @bar: BAR to set size to 3590 * @size: new size as defined in the spec (0=1MB, 19=512GB) 3591 * 3592 * Set the new size of a BAR as defined in the spec. 3593 * Returns zero if resizing was successful, error code otherwise. 3594 */ 3595 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size) 3596 { 3597 int pos; 3598 u32 ctrl; 3599 3600 pos = pci_rebar_find_pos(pdev, bar); 3601 if (pos < 0) 3602 return pos; 3603 3604 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3605 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 3606 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT; 3607 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 3608 return 0; 3609 } 3610 3611 /** 3612 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port 3613 * @dev: the PCI device 3614 * @cap_mask: mask of desired AtomicOp sizes, including one or more of: 3615 * PCI_EXP_DEVCAP2_ATOMIC_COMP32 3616 * PCI_EXP_DEVCAP2_ATOMIC_COMP64 3617 * PCI_EXP_DEVCAP2_ATOMIC_COMP128 3618 * 3619 * Return 0 if all upstream bridges support AtomicOp routing, egress 3620 * blocking is disabled on all upstream ports, and the root port supports 3621 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit 3622 * AtomicOp completion), or negative otherwise. 3623 */ 3624 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask) 3625 { 3626 struct pci_bus *bus = dev->bus; 3627 struct pci_dev *bridge; 3628 u32 cap, ctl2; 3629 3630 if (!pci_is_pcie(dev)) 3631 return -EINVAL; 3632 3633 /* 3634 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be 3635 * AtomicOp requesters. For now, we only support endpoints as 3636 * requesters and root ports as completers. No endpoints as 3637 * completers, and no peer-to-peer. 3638 */ 3639 3640 switch (pci_pcie_type(dev)) { 3641 case PCI_EXP_TYPE_ENDPOINT: 3642 case PCI_EXP_TYPE_LEG_END: 3643 case PCI_EXP_TYPE_RC_END: 3644 break; 3645 default: 3646 return -EINVAL; 3647 } 3648 3649 while (bus->parent) { 3650 bridge = bus->self; 3651 3652 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3653 3654 switch (pci_pcie_type(bridge)) { 3655 /* Ensure switch ports support AtomicOp routing */ 3656 case PCI_EXP_TYPE_UPSTREAM: 3657 case PCI_EXP_TYPE_DOWNSTREAM: 3658 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE)) 3659 return -EINVAL; 3660 break; 3661 3662 /* Ensure root port supports all the sizes we care about */ 3663 case PCI_EXP_TYPE_ROOT_PORT: 3664 if ((cap & cap_mask) != cap_mask) 3665 return -EINVAL; 3666 break; 3667 } 3668 3669 /* Ensure upstream ports don't block AtomicOps on egress */ 3670 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) { 3671 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, 3672 &ctl2); 3673 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK) 3674 return -EINVAL; 3675 } 3676 3677 bus = bus->parent; 3678 } 3679 3680 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2, 3681 PCI_EXP_DEVCTL2_ATOMIC_REQ); 3682 return 0; 3683 } 3684 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root); 3685 3686 /** 3687 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge 3688 * @dev: the PCI device 3689 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD) 3690 * 3691 * Perform INTx swizzling for a device behind one level of bridge. This is 3692 * required by section 9.1 of the PCI-to-PCI bridge specification for devices 3693 * behind bridges on add-in cards. For devices with ARI enabled, the slot 3694 * number is always 0 (see the Implementation Note in section 2.2.8.1 of 3695 * the PCI Express Base Specification, Revision 2.1) 3696 */ 3697 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin) 3698 { 3699 int slot; 3700 3701 if (pci_ari_enabled(dev->bus)) 3702 slot = 0; 3703 else 3704 slot = PCI_SLOT(dev->devfn); 3705 3706 return (((pin - 1) + slot) % 4) + 1; 3707 } 3708 3709 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge) 3710 { 3711 u8 pin; 3712 3713 pin = dev->pin; 3714 if (!pin) 3715 return -1; 3716 3717 while (!pci_is_root_bus(dev->bus)) { 3718 pin = pci_swizzle_interrupt_pin(dev, pin); 3719 dev = dev->bus->self; 3720 } 3721 *bridge = dev; 3722 return pin; 3723 } 3724 3725 /** 3726 * pci_common_swizzle - swizzle INTx all the way to root bridge 3727 * @dev: the PCI device 3728 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD) 3729 * 3730 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI 3731 * bridges all the way up to a PCI root bus. 3732 */ 3733 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp) 3734 { 3735 u8 pin = *pinp; 3736 3737 while (!pci_is_root_bus(dev->bus)) { 3738 pin = pci_swizzle_interrupt_pin(dev, pin); 3739 dev = dev->bus->self; 3740 } 3741 *pinp = pin; 3742 return PCI_SLOT(dev->devfn); 3743 } 3744 EXPORT_SYMBOL_GPL(pci_common_swizzle); 3745 3746 /** 3747 * pci_release_region - Release a PCI bar 3748 * @pdev: PCI device whose resources were previously reserved by 3749 * pci_request_region() 3750 * @bar: BAR to release 3751 * 3752 * Releases the PCI I/O and memory resources previously reserved by a 3753 * successful call to pci_request_region(). Call this function only 3754 * after all use of the PCI regions has ceased. 3755 */ 3756 void pci_release_region(struct pci_dev *pdev, int bar) 3757 { 3758 struct pci_devres *dr; 3759 3760 if (pci_resource_len(pdev, bar) == 0) 3761 return; 3762 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) 3763 release_region(pci_resource_start(pdev, bar), 3764 pci_resource_len(pdev, bar)); 3765 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) 3766 release_mem_region(pci_resource_start(pdev, bar), 3767 pci_resource_len(pdev, bar)); 3768 3769 dr = find_pci_dr(pdev); 3770 if (dr) 3771 dr->region_mask &= ~(1 << bar); 3772 } 3773 EXPORT_SYMBOL(pci_release_region); 3774 3775 /** 3776 * __pci_request_region - Reserved PCI I/O and memory resource 3777 * @pdev: PCI device whose resources are to be reserved 3778 * @bar: BAR to be reserved 3779 * @res_name: Name to be associated with resource. 3780 * @exclusive: whether the region access is exclusive or not 3781 * 3782 * Mark the PCI region associated with PCI device @pdev BAR @bar as 3783 * being reserved by owner @res_name. Do not access any 3784 * address inside the PCI regions unless this call returns 3785 * successfully. 3786 * 3787 * If @exclusive is set, then the region is marked so that userspace 3788 * is explicitly not allowed to map the resource via /dev/mem or 3789 * sysfs MMIO access. 3790 * 3791 * Returns 0 on success, or %EBUSY on error. A warning 3792 * message is also printed on failure. 3793 */ 3794 static int __pci_request_region(struct pci_dev *pdev, int bar, 3795 const char *res_name, int exclusive) 3796 { 3797 struct pci_devres *dr; 3798 3799 if (pci_resource_len(pdev, bar) == 0) 3800 return 0; 3801 3802 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) { 3803 if (!request_region(pci_resource_start(pdev, bar), 3804 pci_resource_len(pdev, bar), res_name)) 3805 goto err_out; 3806 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) { 3807 if (!__request_mem_region(pci_resource_start(pdev, bar), 3808 pci_resource_len(pdev, bar), res_name, 3809 exclusive)) 3810 goto err_out; 3811 } 3812 3813 dr = find_pci_dr(pdev); 3814 if (dr) 3815 dr->region_mask |= 1 << bar; 3816 3817 return 0; 3818 3819 err_out: 3820 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar, 3821 &pdev->resource[bar]); 3822 return -EBUSY; 3823 } 3824 3825 /** 3826 * pci_request_region - Reserve PCI I/O and memory resource 3827 * @pdev: PCI device whose resources are to be reserved 3828 * @bar: BAR to be reserved 3829 * @res_name: Name to be associated with resource 3830 * 3831 * Mark the PCI region associated with PCI device @pdev BAR @bar as 3832 * being reserved by owner @res_name. Do not access any 3833 * address inside the PCI regions unless this call returns 3834 * successfully. 3835 * 3836 * Returns 0 on success, or %EBUSY on error. A warning 3837 * message is also printed on failure. 3838 */ 3839 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name) 3840 { 3841 return __pci_request_region(pdev, bar, res_name, 0); 3842 } 3843 EXPORT_SYMBOL(pci_request_region); 3844 3845 /** 3846 * pci_release_selected_regions - Release selected PCI I/O and memory resources 3847 * @pdev: PCI device whose resources were previously reserved 3848 * @bars: Bitmask of BARs to be released 3849 * 3850 * Release selected PCI I/O and memory resources previously reserved. 3851 * Call this function only after all use of the PCI regions has ceased. 3852 */ 3853 void pci_release_selected_regions(struct pci_dev *pdev, int bars) 3854 { 3855 int i; 3856 3857 for (i = 0; i < PCI_STD_NUM_BARS; i++) 3858 if (bars & (1 << i)) 3859 pci_release_region(pdev, i); 3860 } 3861 EXPORT_SYMBOL(pci_release_selected_regions); 3862 3863 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars, 3864 const char *res_name, int excl) 3865 { 3866 int i; 3867 3868 for (i = 0; i < PCI_STD_NUM_BARS; i++) 3869 if (bars & (1 << i)) 3870 if (__pci_request_region(pdev, i, res_name, excl)) 3871 goto err_out; 3872 return 0; 3873 3874 err_out: 3875 while (--i >= 0) 3876 if (bars & (1 << i)) 3877 pci_release_region(pdev, i); 3878 3879 return -EBUSY; 3880 } 3881 3882 3883 /** 3884 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources 3885 * @pdev: PCI device whose resources are to be reserved 3886 * @bars: Bitmask of BARs to be requested 3887 * @res_name: Name to be associated with resource 3888 */ 3889 int pci_request_selected_regions(struct pci_dev *pdev, int bars, 3890 const char *res_name) 3891 { 3892 return __pci_request_selected_regions(pdev, bars, res_name, 0); 3893 } 3894 EXPORT_SYMBOL(pci_request_selected_regions); 3895 3896 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars, 3897 const char *res_name) 3898 { 3899 return __pci_request_selected_regions(pdev, bars, res_name, 3900 IORESOURCE_EXCLUSIVE); 3901 } 3902 EXPORT_SYMBOL(pci_request_selected_regions_exclusive); 3903 3904 /** 3905 * pci_release_regions - Release reserved PCI I/O and memory resources 3906 * @pdev: PCI device whose resources were previously reserved by 3907 * pci_request_regions() 3908 * 3909 * Releases all PCI I/O and memory resources previously reserved by a 3910 * successful call to pci_request_regions(). Call this function only 3911 * after all use of the PCI regions has ceased. 3912 */ 3913 3914 void pci_release_regions(struct pci_dev *pdev) 3915 { 3916 pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1); 3917 } 3918 EXPORT_SYMBOL(pci_release_regions); 3919 3920 /** 3921 * pci_request_regions - Reserve PCI I/O and memory resources 3922 * @pdev: PCI device whose resources are to be reserved 3923 * @res_name: Name to be associated with resource. 3924 * 3925 * Mark all PCI regions associated with PCI device @pdev as 3926 * being reserved by owner @res_name. Do not access any 3927 * address inside the PCI regions unless this call returns 3928 * successfully. 3929 * 3930 * Returns 0 on success, or %EBUSY on error. A warning 3931 * message is also printed on failure. 3932 */ 3933 int pci_request_regions(struct pci_dev *pdev, const char *res_name) 3934 { 3935 return pci_request_selected_regions(pdev, 3936 ((1 << PCI_STD_NUM_BARS) - 1), res_name); 3937 } 3938 EXPORT_SYMBOL(pci_request_regions); 3939 3940 /** 3941 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources 3942 * @pdev: PCI device whose resources are to be reserved 3943 * @res_name: Name to be associated with resource. 3944 * 3945 * Mark all PCI regions associated with PCI device @pdev as being reserved 3946 * by owner @res_name. Do not access any address inside the PCI regions 3947 * unless this call returns successfully. 3948 * 3949 * pci_request_regions_exclusive() will mark the region so that /dev/mem 3950 * and the sysfs MMIO access will not be allowed. 3951 * 3952 * Returns 0 on success, or %EBUSY on error. A warning message is also 3953 * printed on failure. 3954 */ 3955 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name) 3956 { 3957 return pci_request_selected_regions_exclusive(pdev, 3958 ((1 << PCI_STD_NUM_BARS) - 1), res_name); 3959 } 3960 EXPORT_SYMBOL(pci_request_regions_exclusive); 3961 3962 /* 3963 * Record the PCI IO range (expressed as CPU physical address + size). 3964 * Return a negative value if an error has occurred, zero otherwise 3965 */ 3966 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr, 3967 resource_size_t size) 3968 { 3969 int ret = 0; 3970 #ifdef PCI_IOBASE 3971 struct logic_pio_hwaddr *range; 3972 3973 if (!size || addr + size < addr) 3974 return -EINVAL; 3975 3976 range = kzalloc(sizeof(*range), GFP_ATOMIC); 3977 if (!range) 3978 return -ENOMEM; 3979 3980 range->fwnode = fwnode; 3981 range->size = size; 3982 range->hw_start = addr; 3983 range->flags = LOGIC_PIO_CPU_MMIO; 3984 3985 ret = logic_pio_register_range(range); 3986 if (ret) 3987 kfree(range); 3988 #endif 3989 3990 return ret; 3991 } 3992 3993 phys_addr_t pci_pio_to_address(unsigned long pio) 3994 { 3995 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR; 3996 3997 #ifdef PCI_IOBASE 3998 if (pio >= MMIO_UPPER_LIMIT) 3999 return address; 4000 4001 address = logic_pio_to_hwaddr(pio); 4002 #endif 4003 4004 return address; 4005 } 4006 4007 unsigned long __weak pci_address_to_pio(phys_addr_t address) 4008 { 4009 #ifdef PCI_IOBASE 4010 return logic_pio_trans_cpuaddr(address); 4011 #else 4012 if (address > IO_SPACE_LIMIT) 4013 return (unsigned long)-1; 4014 4015 return (unsigned long) address; 4016 #endif 4017 } 4018 4019 /** 4020 * pci_remap_iospace - Remap the memory mapped I/O space 4021 * @res: Resource describing the I/O space 4022 * @phys_addr: physical address of range to be mapped 4023 * 4024 * Remap the memory mapped I/O space described by the @res and the CPU 4025 * physical address @phys_addr into virtual address space. Only 4026 * architectures that have memory mapped IO functions defined (and the 4027 * PCI_IOBASE value defined) should call this function. 4028 */ 4029 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr) 4030 { 4031 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 4032 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 4033 4034 if (!(res->flags & IORESOURCE_IO)) 4035 return -EINVAL; 4036 4037 if (res->end > IO_SPACE_LIMIT) 4038 return -EINVAL; 4039 4040 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr, 4041 pgprot_device(PAGE_KERNEL)); 4042 #else 4043 /* 4044 * This architecture does not have memory mapped I/O space, 4045 * so this function should never be called 4046 */ 4047 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n"); 4048 return -ENODEV; 4049 #endif 4050 } 4051 EXPORT_SYMBOL(pci_remap_iospace); 4052 4053 /** 4054 * pci_unmap_iospace - Unmap the memory mapped I/O space 4055 * @res: resource to be unmapped 4056 * 4057 * Unmap the CPU virtual address @res from virtual address space. Only 4058 * architectures that have memory mapped IO functions defined (and the 4059 * PCI_IOBASE value defined) should call this function. 4060 */ 4061 void pci_unmap_iospace(struct resource *res) 4062 { 4063 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 4064 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 4065 4066 unmap_kernel_range(vaddr, resource_size(res)); 4067 #endif 4068 } 4069 EXPORT_SYMBOL(pci_unmap_iospace); 4070 4071 static void devm_pci_unmap_iospace(struct device *dev, void *ptr) 4072 { 4073 struct resource **res = ptr; 4074 4075 pci_unmap_iospace(*res); 4076 } 4077 4078 /** 4079 * devm_pci_remap_iospace - Managed pci_remap_iospace() 4080 * @dev: Generic device to remap IO address for 4081 * @res: Resource describing the I/O space 4082 * @phys_addr: physical address of range to be mapped 4083 * 4084 * Managed pci_remap_iospace(). Map is automatically unmapped on driver 4085 * detach. 4086 */ 4087 int devm_pci_remap_iospace(struct device *dev, const struct resource *res, 4088 phys_addr_t phys_addr) 4089 { 4090 const struct resource **ptr; 4091 int error; 4092 4093 ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL); 4094 if (!ptr) 4095 return -ENOMEM; 4096 4097 error = pci_remap_iospace(res, phys_addr); 4098 if (error) { 4099 devres_free(ptr); 4100 } else { 4101 *ptr = res; 4102 devres_add(dev, ptr); 4103 } 4104 4105 return error; 4106 } 4107 EXPORT_SYMBOL(devm_pci_remap_iospace); 4108 4109 /** 4110 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace() 4111 * @dev: Generic device to remap IO address for 4112 * @offset: Resource address to map 4113 * @size: Size of map 4114 * 4115 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver 4116 * detach. 4117 */ 4118 void __iomem *devm_pci_remap_cfgspace(struct device *dev, 4119 resource_size_t offset, 4120 resource_size_t size) 4121 { 4122 void __iomem **ptr, *addr; 4123 4124 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL); 4125 if (!ptr) 4126 return NULL; 4127 4128 addr = pci_remap_cfgspace(offset, size); 4129 if (addr) { 4130 *ptr = addr; 4131 devres_add(dev, ptr); 4132 } else 4133 devres_free(ptr); 4134 4135 return addr; 4136 } 4137 EXPORT_SYMBOL(devm_pci_remap_cfgspace); 4138 4139 /** 4140 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource 4141 * @dev: generic device to handle the resource for 4142 * @res: configuration space resource to be handled 4143 * 4144 * Checks that a resource is a valid memory region, requests the memory 4145 * region and ioremaps with pci_remap_cfgspace() API that ensures the 4146 * proper PCI configuration space memory attributes are guaranteed. 4147 * 4148 * All operations are managed and will be undone on driver detach. 4149 * 4150 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code 4151 * on failure. Usage example:: 4152 * 4153 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 4154 * base = devm_pci_remap_cfg_resource(&pdev->dev, res); 4155 * if (IS_ERR(base)) 4156 * return PTR_ERR(base); 4157 */ 4158 void __iomem *devm_pci_remap_cfg_resource(struct device *dev, 4159 struct resource *res) 4160 { 4161 resource_size_t size; 4162 const char *name; 4163 void __iomem *dest_ptr; 4164 4165 BUG_ON(!dev); 4166 4167 if (!res || resource_type(res) != IORESOURCE_MEM) { 4168 dev_err(dev, "invalid resource\n"); 4169 return IOMEM_ERR_PTR(-EINVAL); 4170 } 4171 4172 size = resource_size(res); 4173 name = res->name ?: dev_name(dev); 4174 4175 if (!devm_request_mem_region(dev, res->start, size, name)) { 4176 dev_err(dev, "can't request region for resource %pR\n", res); 4177 return IOMEM_ERR_PTR(-EBUSY); 4178 } 4179 4180 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size); 4181 if (!dest_ptr) { 4182 dev_err(dev, "ioremap failed for resource %pR\n", res); 4183 devm_release_mem_region(dev, res->start, size); 4184 dest_ptr = IOMEM_ERR_PTR(-ENOMEM); 4185 } 4186 4187 return dest_ptr; 4188 } 4189 EXPORT_SYMBOL(devm_pci_remap_cfg_resource); 4190 4191 static void __pci_set_master(struct pci_dev *dev, bool enable) 4192 { 4193 u16 old_cmd, cmd; 4194 4195 pci_read_config_word(dev, PCI_COMMAND, &old_cmd); 4196 if (enable) 4197 cmd = old_cmd | PCI_COMMAND_MASTER; 4198 else 4199 cmd = old_cmd & ~PCI_COMMAND_MASTER; 4200 if (cmd != old_cmd) { 4201 pci_dbg(dev, "%s bus mastering\n", 4202 enable ? "enabling" : "disabling"); 4203 pci_write_config_word(dev, PCI_COMMAND, cmd); 4204 } 4205 dev->is_busmaster = enable; 4206 } 4207 4208 /** 4209 * pcibios_setup - process "pci=" kernel boot arguments 4210 * @str: string used to pass in "pci=" kernel boot arguments 4211 * 4212 * Process kernel boot arguments. This is the default implementation. 4213 * Architecture specific implementations can override this as necessary. 4214 */ 4215 char * __weak __init pcibios_setup(char *str) 4216 { 4217 return str; 4218 } 4219 4220 /** 4221 * pcibios_set_master - enable PCI bus-mastering for device dev 4222 * @dev: the PCI device to enable 4223 * 4224 * Enables PCI bus-mastering for the device. This is the default 4225 * implementation. Architecture specific implementations can override 4226 * this if necessary. 4227 */ 4228 void __weak pcibios_set_master(struct pci_dev *dev) 4229 { 4230 u8 lat; 4231 4232 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */ 4233 if (pci_is_pcie(dev)) 4234 return; 4235 4236 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat); 4237 if (lat < 16) 4238 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency; 4239 else if (lat > pcibios_max_latency) 4240 lat = pcibios_max_latency; 4241 else 4242 return; 4243 4244 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat); 4245 } 4246 4247 /** 4248 * pci_set_master - enables bus-mastering for device dev 4249 * @dev: the PCI device to enable 4250 * 4251 * Enables bus-mastering on the device and calls pcibios_set_master() 4252 * to do the needed arch specific settings. 4253 */ 4254 void pci_set_master(struct pci_dev *dev) 4255 { 4256 __pci_set_master(dev, true); 4257 pcibios_set_master(dev); 4258 } 4259 EXPORT_SYMBOL(pci_set_master); 4260 4261 /** 4262 * pci_clear_master - disables bus-mastering for device dev 4263 * @dev: the PCI device to disable 4264 */ 4265 void pci_clear_master(struct pci_dev *dev) 4266 { 4267 __pci_set_master(dev, false); 4268 } 4269 EXPORT_SYMBOL(pci_clear_master); 4270 4271 /** 4272 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed 4273 * @dev: the PCI device for which MWI is to be enabled 4274 * 4275 * Helper function for pci_set_mwi. 4276 * Originally copied from drivers/net/acenic.c. 4277 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. 4278 * 4279 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4280 */ 4281 int pci_set_cacheline_size(struct pci_dev *dev) 4282 { 4283 u8 cacheline_size; 4284 4285 if (!pci_cache_line_size) 4286 return -EINVAL; 4287 4288 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be 4289 equal to or multiple of the right value. */ 4290 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4291 if (cacheline_size >= pci_cache_line_size && 4292 (cacheline_size % pci_cache_line_size) == 0) 4293 return 0; 4294 4295 /* Write the correct value. */ 4296 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size); 4297 /* Read it back. */ 4298 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4299 if (cacheline_size == pci_cache_line_size) 4300 return 0; 4301 4302 pci_info(dev, "cache line size of %d is not supported\n", 4303 pci_cache_line_size << 2); 4304 4305 return -EINVAL; 4306 } 4307 EXPORT_SYMBOL_GPL(pci_set_cacheline_size); 4308 4309 /** 4310 * pci_set_mwi - enables memory-write-invalidate PCI transaction 4311 * @dev: the PCI device for which MWI is enabled 4312 * 4313 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4314 * 4315 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4316 */ 4317 int pci_set_mwi(struct pci_dev *dev) 4318 { 4319 #ifdef PCI_DISABLE_MWI 4320 return 0; 4321 #else 4322 int rc; 4323 u16 cmd; 4324 4325 rc = pci_set_cacheline_size(dev); 4326 if (rc) 4327 return rc; 4328 4329 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4330 if (!(cmd & PCI_COMMAND_INVALIDATE)) { 4331 pci_dbg(dev, "enabling Mem-Wr-Inval\n"); 4332 cmd |= PCI_COMMAND_INVALIDATE; 4333 pci_write_config_word(dev, PCI_COMMAND, cmd); 4334 } 4335 return 0; 4336 #endif 4337 } 4338 EXPORT_SYMBOL(pci_set_mwi); 4339 4340 /** 4341 * pcim_set_mwi - a device-managed pci_set_mwi() 4342 * @dev: the PCI device for which MWI is enabled 4343 * 4344 * Managed pci_set_mwi(). 4345 * 4346 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4347 */ 4348 int pcim_set_mwi(struct pci_dev *dev) 4349 { 4350 struct pci_devres *dr; 4351 4352 dr = find_pci_dr(dev); 4353 if (!dr) 4354 return -ENOMEM; 4355 4356 dr->mwi = 1; 4357 return pci_set_mwi(dev); 4358 } 4359 EXPORT_SYMBOL(pcim_set_mwi); 4360 4361 /** 4362 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction 4363 * @dev: the PCI device for which MWI is enabled 4364 * 4365 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4366 * Callers are not required to check the return value. 4367 * 4368 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4369 */ 4370 int pci_try_set_mwi(struct pci_dev *dev) 4371 { 4372 #ifdef PCI_DISABLE_MWI 4373 return 0; 4374 #else 4375 return pci_set_mwi(dev); 4376 #endif 4377 } 4378 EXPORT_SYMBOL(pci_try_set_mwi); 4379 4380 /** 4381 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev 4382 * @dev: the PCI device to disable 4383 * 4384 * Disables PCI Memory-Write-Invalidate transaction on the device 4385 */ 4386 void pci_clear_mwi(struct pci_dev *dev) 4387 { 4388 #ifndef PCI_DISABLE_MWI 4389 u16 cmd; 4390 4391 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4392 if (cmd & PCI_COMMAND_INVALIDATE) { 4393 cmd &= ~PCI_COMMAND_INVALIDATE; 4394 pci_write_config_word(dev, PCI_COMMAND, cmd); 4395 } 4396 #endif 4397 } 4398 EXPORT_SYMBOL(pci_clear_mwi); 4399 4400 /** 4401 * pci_intx - enables/disables PCI INTx for device dev 4402 * @pdev: the PCI device to operate on 4403 * @enable: boolean: whether to enable or disable PCI INTx 4404 * 4405 * Enables/disables PCI INTx for device @pdev 4406 */ 4407 void pci_intx(struct pci_dev *pdev, int enable) 4408 { 4409 u16 pci_command, new; 4410 4411 pci_read_config_word(pdev, PCI_COMMAND, &pci_command); 4412 4413 if (enable) 4414 new = pci_command & ~PCI_COMMAND_INTX_DISABLE; 4415 else 4416 new = pci_command | PCI_COMMAND_INTX_DISABLE; 4417 4418 if (new != pci_command) { 4419 struct pci_devres *dr; 4420 4421 pci_write_config_word(pdev, PCI_COMMAND, new); 4422 4423 dr = find_pci_dr(pdev); 4424 if (dr && !dr->restore_intx) { 4425 dr->restore_intx = 1; 4426 dr->orig_intx = !enable; 4427 } 4428 } 4429 } 4430 EXPORT_SYMBOL_GPL(pci_intx); 4431 4432 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask) 4433 { 4434 struct pci_bus *bus = dev->bus; 4435 bool mask_updated = true; 4436 u32 cmd_status_dword; 4437 u16 origcmd, newcmd; 4438 unsigned long flags; 4439 bool irq_pending; 4440 4441 /* 4442 * We do a single dword read to retrieve both command and status. 4443 * Document assumptions that make this possible. 4444 */ 4445 BUILD_BUG_ON(PCI_COMMAND % 4); 4446 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS); 4447 4448 raw_spin_lock_irqsave(&pci_lock, flags); 4449 4450 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword); 4451 4452 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT; 4453 4454 /* 4455 * Check interrupt status register to see whether our device 4456 * triggered the interrupt (when masking) or the next IRQ is 4457 * already pending (when unmasking). 4458 */ 4459 if (mask != irq_pending) { 4460 mask_updated = false; 4461 goto done; 4462 } 4463 4464 origcmd = cmd_status_dword; 4465 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE; 4466 if (mask) 4467 newcmd |= PCI_COMMAND_INTX_DISABLE; 4468 if (newcmd != origcmd) 4469 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd); 4470 4471 done: 4472 raw_spin_unlock_irqrestore(&pci_lock, flags); 4473 4474 return mask_updated; 4475 } 4476 4477 /** 4478 * pci_check_and_mask_intx - mask INTx on pending interrupt 4479 * @dev: the PCI device to operate on 4480 * 4481 * Check if the device dev has its INTx line asserted, mask it and return 4482 * true in that case. False is returned if no interrupt was pending. 4483 */ 4484 bool pci_check_and_mask_intx(struct pci_dev *dev) 4485 { 4486 return pci_check_and_set_intx_mask(dev, true); 4487 } 4488 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx); 4489 4490 /** 4491 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending 4492 * @dev: the PCI device to operate on 4493 * 4494 * Check if the device dev has its INTx line asserted, unmask it if not and 4495 * return true. False is returned and the mask remains active if there was 4496 * still an interrupt pending. 4497 */ 4498 bool pci_check_and_unmask_intx(struct pci_dev *dev) 4499 { 4500 return pci_check_and_set_intx_mask(dev, false); 4501 } 4502 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx); 4503 4504 /** 4505 * pci_wait_for_pending_transaction - wait for pending transaction 4506 * @dev: the PCI device to operate on 4507 * 4508 * Return 0 if transaction is pending 1 otherwise. 4509 */ 4510 int pci_wait_for_pending_transaction(struct pci_dev *dev) 4511 { 4512 if (!pci_is_pcie(dev)) 4513 return 1; 4514 4515 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA, 4516 PCI_EXP_DEVSTA_TRPND); 4517 } 4518 EXPORT_SYMBOL(pci_wait_for_pending_transaction); 4519 4520 /** 4521 * pcie_has_flr - check if a device supports function level resets 4522 * @dev: device to check 4523 * 4524 * Returns true if the device advertises support for PCIe function level 4525 * resets. 4526 */ 4527 bool pcie_has_flr(struct pci_dev *dev) 4528 { 4529 u32 cap; 4530 4531 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4532 return false; 4533 4534 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap); 4535 return cap & PCI_EXP_DEVCAP_FLR; 4536 } 4537 EXPORT_SYMBOL_GPL(pcie_has_flr); 4538 4539 /** 4540 * pcie_flr - initiate a PCIe function level reset 4541 * @dev: device to reset 4542 * 4543 * Initiate a function level reset on @dev. The caller should ensure the 4544 * device supports FLR before calling this function, e.g. by using the 4545 * pcie_has_flr() helper. 4546 */ 4547 int pcie_flr(struct pci_dev *dev) 4548 { 4549 if (!pci_wait_for_pending_transaction(dev)) 4550 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n"); 4551 4552 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR); 4553 4554 if (dev->imm_ready) 4555 return 0; 4556 4557 /* 4558 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within 4559 * 100ms, but may silently discard requests while the FLR is in 4560 * progress. Wait 100ms before trying to access the device. 4561 */ 4562 msleep(100); 4563 4564 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS); 4565 } 4566 EXPORT_SYMBOL_GPL(pcie_flr); 4567 4568 static int pci_af_flr(struct pci_dev *dev, int probe) 4569 { 4570 int pos; 4571 u8 cap; 4572 4573 pos = pci_find_capability(dev, PCI_CAP_ID_AF); 4574 if (!pos) 4575 return -ENOTTY; 4576 4577 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4578 return -ENOTTY; 4579 4580 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap); 4581 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR)) 4582 return -ENOTTY; 4583 4584 if (probe) 4585 return 0; 4586 4587 /* 4588 * Wait for Transaction Pending bit to clear. A word-aligned test 4589 * is used, so we use the control offset rather than status and shift 4590 * the test bit to match. 4591 */ 4592 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL, 4593 PCI_AF_STATUS_TP << 8)) 4594 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n"); 4595 4596 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR); 4597 4598 if (dev->imm_ready) 4599 return 0; 4600 4601 /* 4602 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006, 4603 * updated 27 July 2006; a device must complete an FLR within 4604 * 100ms, but may silently discard requests while the FLR is in 4605 * progress. Wait 100ms before trying to access the device. 4606 */ 4607 msleep(100); 4608 4609 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS); 4610 } 4611 4612 /** 4613 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0. 4614 * @dev: Device to reset. 4615 * @probe: If set, only check if the device can be reset this way. 4616 * 4617 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is 4618 * unset, it will be reinitialized internally when going from PCI_D3hot to 4619 * PCI_D0. If that's the case and the device is not in a low-power state 4620 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset. 4621 * 4622 * NOTE: This causes the caller to sleep for twice the device power transition 4623 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms 4624 * by default (i.e. unless the @dev's d3_delay field has a different value). 4625 * Moreover, only devices in D0 can be reset by this function. 4626 */ 4627 static int pci_pm_reset(struct pci_dev *dev, int probe) 4628 { 4629 u16 csr; 4630 4631 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET) 4632 return -ENOTTY; 4633 4634 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr); 4635 if (csr & PCI_PM_CTRL_NO_SOFT_RESET) 4636 return -ENOTTY; 4637 4638 if (probe) 4639 return 0; 4640 4641 if (dev->current_state != PCI_D0) 4642 return -EINVAL; 4643 4644 csr &= ~PCI_PM_CTRL_STATE_MASK; 4645 csr |= PCI_D3hot; 4646 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4647 pci_dev_d3_sleep(dev); 4648 4649 csr &= ~PCI_PM_CTRL_STATE_MASK; 4650 csr |= PCI_D0; 4651 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4652 pci_dev_d3_sleep(dev); 4653 4654 return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS); 4655 } 4656 4657 /** 4658 * pcie_wait_for_link_delay - Wait until link is active or inactive 4659 * @pdev: Bridge device 4660 * @active: waiting for active or inactive? 4661 * @delay: Delay to wait after link has become active (in ms) 4662 * 4663 * Use this to wait till link becomes active or inactive. 4664 */ 4665 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active, 4666 int delay) 4667 { 4668 int timeout = 1000; 4669 bool ret; 4670 u16 lnk_status; 4671 4672 /* 4673 * Some controllers might not implement link active reporting. In this 4674 * case, we wait for 1000 ms + any delay requested by the caller. 4675 */ 4676 if (!pdev->link_active_reporting) { 4677 msleep(timeout + delay); 4678 return true; 4679 } 4680 4681 /* 4682 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms, 4683 * after which we should expect an link active if the reset was 4684 * successful. If so, software must wait a minimum 100ms before sending 4685 * configuration requests to devices downstream this port. 4686 * 4687 * If the link fails to activate, either the device was physically 4688 * removed or the link is permanently failed. 4689 */ 4690 if (active) 4691 msleep(20); 4692 for (;;) { 4693 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status); 4694 ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA); 4695 if (ret == active) 4696 break; 4697 if (timeout <= 0) 4698 break; 4699 msleep(10); 4700 timeout -= 10; 4701 } 4702 if (active && ret) 4703 msleep(delay); 4704 else if (ret != active) 4705 pci_info(pdev, "Data Link Layer Link Active not %s in 1000 msec\n", 4706 active ? "set" : "cleared"); 4707 return ret == active; 4708 } 4709 4710 /** 4711 * pcie_wait_for_link - Wait until link is active or inactive 4712 * @pdev: Bridge device 4713 * @active: waiting for active or inactive? 4714 * 4715 * Use this to wait till link becomes active or inactive. 4716 */ 4717 bool pcie_wait_for_link(struct pci_dev *pdev, bool active) 4718 { 4719 return pcie_wait_for_link_delay(pdev, active, 100); 4720 } 4721 4722 /* 4723 * Find maximum D3cold delay required by all the devices on the bus. The 4724 * spec says 100 ms, but firmware can lower it and we allow drivers to 4725 * increase it as well. 4726 * 4727 * Called with @pci_bus_sem locked for reading. 4728 */ 4729 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus) 4730 { 4731 const struct pci_dev *pdev; 4732 int min_delay = 100; 4733 int max_delay = 0; 4734 4735 list_for_each_entry(pdev, &bus->devices, bus_list) { 4736 if (pdev->d3cold_delay < min_delay) 4737 min_delay = pdev->d3cold_delay; 4738 if (pdev->d3cold_delay > max_delay) 4739 max_delay = pdev->d3cold_delay; 4740 } 4741 4742 return max(min_delay, max_delay); 4743 } 4744 4745 /** 4746 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible 4747 * @dev: PCI bridge 4748 * 4749 * Handle necessary delays before access to the devices on the secondary 4750 * side of the bridge are permitted after D3cold to D0 transition. 4751 * 4752 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For 4753 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section 4754 * 4.3.2. 4755 */ 4756 void pci_bridge_wait_for_secondary_bus(struct pci_dev *dev) 4757 { 4758 struct pci_dev *child; 4759 int delay; 4760 4761 if (pci_dev_is_disconnected(dev)) 4762 return; 4763 4764 if (!pci_is_bridge(dev) || !dev->bridge_d3) 4765 return; 4766 4767 down_read(&pci_bus_sem); 4768 4769 /* 4770 * We only deal with devices that are present currently on the bus. 4771 * For any hot-added devices the access delay is handled in pciehp 4772 * board_added(). In case of ACPI hotplug the firmware is expected 4773 * to configure the devices before OS is notified. 4774 */ 4775 if (!dev->subordinate || list_empty(&dev->subordinate->devices)) { 4776 up_read(&pci_bus_sem); 4777 return; 4778 } 4779 4780 /* Take d3cold_delay requirements into account */ 4781 delay = pci_bus_max_d3cold_delay(dev->subordinate); 4782 if (!delay) { 4783 up_read(&pci_bus_sem); 4784 return; 4785 } 4786 4787 child = list_first_entry(&dev->subordinate->devices, struct pci_dev, 4788 bus_list); 4789 up_read(&pci_bus_sem); 4790 4791 /* 4792 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before 4793 * accessing the device after reset (that is 1000 ms + 100 ms). In 4794 * practice this should not be needed because we don't do power 4795 * management for them (see pci_bridge_d3_possible()). 4796 */ 4797 if (!pci_is_pcie(dev)) { 4798 pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay); 4799 msleep(1000 + delay); 4800 return; 4801 } 4802 4803 /* 4804 * For PCIe downstream and root ports that do not support speeds 4805 * greater than 5 GT/s need to wait minimum 100 ms. For higher 4806 * speeds (gen3) we need to wait first for the data link layer to 4807 * become active. 4808 * 4809 * However, 100 ms is the minimum and the PCIe spec says the 4810 * software must allow at least 1s before it can determine that the 4811 * device that did not respond is a broken device. There is 4812 * evidence that 100 ms is not always enough, for example certain 4813 * Titan Ridge xHCI controller does not always respond to 4814 * configuration requests if we only wait for 100 ms (see 4815 * https://bugzilla.kernel.org/show_bug.cgi?id=203885). 4816 * 4817 * Therefore we wait for 100 ms and check for the device presence. 4818 * If it is still not present give it an additional 100 ms. 4819 */ 4820 if (!pcie_downstream_port(dev)) 4821 return; 4822 4823 if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) { 4824 pci_dbg(dev, "waiting %d ms for downstream link\n", delay); 4825 msleep(delay); 4826 } else { 4827 pci_dbg(dev, "waiting %d ms for downstream link, after activation\n", 4828 delay); 4829 if (!pcie_wait_for_link_delay(dev, true, delay)) { 4830 /* Did not train, no need to wait any further */ 4831 return; 4832 } 4833 } 4834 4835 if (!pci_device_is_present(child)) { 4836 pci_dbg(child, "waiting additional %d ms to become accessible\n", delay); 4837 msleep(delay); 4838 } 4839 } 4840 4841 void pci_reset_secondary_bus(struct pci_dev *dev) 4842 { 4843 u16 ctrl; 4844 4845 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl); 4846 ctrl |= PCI_BRIDGE_CTL_BUS_RESET; 4847 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 4848 4849 /* 4850 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double 4851 * this to 2ms to ensure that we meet the minimum requirement. 4852 */ 4853 msleep(2); 4854 4855 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET; 4856 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 4857 4858 /* 4859 * Trhfa for conventional PCI is 2^25 clock cycles. 4860 * Assuming a minimum 33MHz clock this results in a 1s 4861 * delay before we can consider subordinate devices to 4862 * be re-initialized. PCIe has some ways to shorten this, 4863 * but we don't make use of them yet. 4864 */ 4865 ssleep(1); 4866 } 4867 4868 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev) 4869 { 4870 pci_reset_secondary_bus(dev); 4871 } 4872 4873 /** 4874 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge. 4875 * @dev: Bridge device 4876 * 4877 * Use the bridge control register to assert reset on the secondary bus. 4878 * Devices on the secondary bus are left in power-on state. 4879 */ 4880 int pci_bridge_secondary_bus_reset(struct pci_dev *dev) 4881 { 4882 pcibios_reset_secondary_bus(dev); 4883 4884 return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS); 4885 } 4886 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset); 4887 4888 static int pci_parent_bus_reset(struct pci_dev *dev, int probe) 4889 { 4890 struct pci_dev *pdev; 4891 4892 if (pci_is_root_bus(dev->bus) || dev->subordinate || 4893 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 4894 return -ENOTTY; 4895 4896 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 4897 if (pdev != dev) 4898 return -ENOTTY; 4899 4900 if (probe) 4901 return 0; 4902 4903 return pci_bridge_secondary_bus_reset(dev->bus->self); 4904 } 4905 4906 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe) 4907 { 4908 int rc = -ENOTTY; 4909 4910 if (!hotplug || !try_module_get(hotplug->owner)) 4911 return rc; 4912 4913 if (hotplug->ops->reset_slot) 4914 rc = hotplug->ops->reset_slot(hotplug, probe); 4915 4916 module_put(hotplug->owner); 4917 4918 return rc; 4919 } 4920 4921 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe) 4922 { 4923 struct pci_dev *pdev; 4924 4925 if (dev->subordinate || !dev->slot || 4926 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 4927 return -ENOTTY; 4928 4929 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 4930 if (pdev != dev && pdev->slot == dev->slot) 4931 return -ENOTTY; 4932 4933 return pci_reset_hotplug_slot(dev->slot->hotplug, probe); 4934 } 4935 4936 static void pci_dev_lock(struct pci_dev *dev) 4937 { 4938 pci_cfg_access_lock(dev); 4939 /* block PM suspend, driver probe, etc. */ 4940 device_lock(&dev->dev); 4941 } 4942 4943 /* Return 1 on successful lock, 0 on contention */ 4944 static int pci_dev_trylock(struct pci_dev *dev) 4945 { 4946 if (pci_cfg_access_trylock(dev)) { 4947 if (device_trylock(&dev->dev)) 4948 return 1; 4949 pci_cfg_access_unlock(dev); 4950 } 4951 4952 return 0; 4953 } 4954 4955 static void pci_dev_unlock(struct pci_dev *dev) 4956 { 4957 device_unlock(&dev->dev); 4958 pci_cfg_access_unlock(dev); 4959 } 4960 4961 static void pci_dev_save_and_disable(struct pci_dev *dev) 4962 { 4963 const struct pci_error_handlers *err_handler = 4964 dev->driver ? dev->driver->err_handler : NULL; 4965 4966 /* 4967 * dev->driver->err_handler->reset_prepare() is protected against 4968 * races with ->remove() by the device lock, which must be held by 4969 * the caller. 4970 */ 4971 if (err_handler && err_handler->reset_prepare) 4972 err_handler->reset_prepare(dev); 4973 4974 /* 4975 * Wake-up device prior to save. PM registers default to D0 after 4976 * reset and a simple register restore doesn't reliably return 4977 * to a non-D0 state anyway. 4978 */ 4979 pci_set_power_state(dev, PCI_D0); 4980 4981 pci_save_state(dev); 4982 /* 4983 * Disable the device by clearing the Command register, except for 4984 * INTx-disable which is set. This not only disables MMIO and I/O port 4985 * BARs, but also prevents the device from being Bus Master, preventing 4986 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3 4987 * compliant devices, INTx-disable prevents legacy interrupts. 4988 */ 4989 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE); 4990 } 4991 4992 static void pci_dev_restore(struct pci_dev *dev) 4993 { 4994 const struct pci_error_handlers *err_handler = 4995 dev->driver ? dev->driver->err_handler : NULL; 4996 4997 pci_restore_state(dev); 4998 4999 /* 5000 * dev->driver->err_handler->reset_done() is protected against 5001 * races with ->remove() by the device lock, which must be held by 5002 * the caller. 5003 */ 5004 if (err_handler && err_handler->reset_done) 5005 err_handler->reset_done(dev); 5006 } 5007 5008 /** 5009 * __pci_reset_function_locked - reset a PCI device function while holding 5010 * the @dev mutex lock. 5011 * @dev: PCI device to reset 5012 * 5013 * Some devices allow an individual function to be reset without affecting 5014 * other functions in the same device. The PCI device must be responsive 5015 * to PCI config space in order to use this function. 5016 * 5017 * The device function is presumed to be unused and the caller is holding 5018 * the device mutex lock when this function is called. 5019 * 5020 * Resetting the device will make the contents of PCI configuration space 5021 * random, so any caller of this must be prepared to reinitialise the 5022 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 5023 * etc. 5024 * 5025 * Returns 0 if the device function was successfully reset or negative if the 5026 * device doesn't support resetting a single function. 5027 */ 5028 int __pci_reset_function_locked(struct pci_dev *dev) 5029 { 5030 int rc; 5031 5032 might_sleep(); 5033 5034 /* 5035 * A reset method returns -ENOTTY if it doesn't support this device 5036 * and we should try the next method. 5037 * 5038 * If it returns 0 (success), we're finished. If it returns any 5039 * other error, we're also finished: this indicates that further 5040 * reset mechanisms might be broken on the device. 5041 */ 5042 rc = pci_dev_specific_reset(dev, 0); 5043 if (rc != -ENOTTY) 5044 return rc; 5045 if (pcie_has_flr(dev)) { 5046 rc = pcie_flr(dev); 5047 if (rc != -ENOTTY) 5048 return rc; 5049 } 5050 rc = pci_af_flr(dev, 0); 5051 if (rc != -ENOTTY) 5052 return rc; 5053 rc = pci_pm_reset(dev, 0); 5054 if (rc != -ENOTTY) 5055 return rc; 5056 rc = pci_dev_reset_slot_function(dev, 0); 5057 if (rc != -ENOTTY) 5058 return rc; 5059 return pci_parent_bus_reset(dev, 0); 5060 } 5061 EXPORT_SYMBOL_GPL(__pci_reset_function_locked); 5062 5063 /** 5064 * pci_probe_reset_function - check whether the device can be safely reset 5065 * @dev: PCI device to reset 5066 * 5067 * Some devices allow an individual function to be reset without affecting 5068 * other functions in the same device. The PCI device must be responsive 5069 * to PCI config space in order to use this function. 5070 * 5071 * Returns 0 if the device function can be reset or negative if the 5072 * device doesn't support resetting a single function. 5073 */ 5074 int pci_probe_reset_function(struct pci_dev *dev) 5075 { 5076 int rc; 5077 5078 might_sleep(); 5079 5080 rc = pci_dev_specific_reset(dev, 1); 5081 if (rc != -ENOTTY) 5082 return rc; 5083 if (pcie_has_flr(dev)) 5084 return 0; 5085 rc = pci_af_flr(dev, 1); 5086 if (rc != -ENOTTY) 5087 return rc; 5088 rc = pci_pm_reset(dev, 1); 5089 if (rc != -ENOTTY) 5090 return rc; 5091 rc = pci_dev_reset_slot_function(dev, 1); 5092 if (rc != -ENOTTY) 5093 return rc; 5094 5095 return pci_parent_bus_reset(dev, 1); 5096 } 5097 5098 /** 5099 * pci_reset_function - quiesce and reset a PCI device function 5100 * @dev: PCI device to reset 5101 * 5102 * Some devices allow an individual function to be reset without affecting 5103 * other functions in the same device. The PCI device must be responsive 5104 * to PCI config space in order to use this function. 5105 * 5106 * This function does not just reset the PCI portion of a device, but 5107 * clears all the state associated with the device. This function differs 5108 * from __pci_reset_function_locked() in that it saves and restores device state 5109 * over the reset and takes the PCI device lock. 5110 * 5111 * Returns 0 if the device function was successfully reset or negative if the 5112 * device doesn't support resetting a single function. 5113 */ 5114 int pci_reset_function(struct pci_dev *dev) 5115 { 5116 int rc; 5117 5118 if (!dev->reset_fn) 5119 return -ENOTTY; 5120 5121 pci_dev_lock(dev); 5122 pci_dev_save_and_disable(dev); 5123 5124 rc = __pci_reset_function_locked(dev); 5125 5126 pci_dev_restore(dev); 5127 pci_dev_unlock(dev); 5128 5129 return rc; 5130 } 5131 EXPORT_SYMBOL_GPL(pci_reset_function); 5132 5133 /** 5134 * pci_reset_function_locked - quiesce and reset a PCI device function 5135 * @dev: PCI device to reset 5136 * 5137 * Some devices allow an individual function to be reset without affecting 5138 * other functions in the same device. The PCI device must be responsive 5139 * to PCI config space in order to use this function. 5140 * 5141 * This function does not just reset the PCI portion of a device, but 5142 * clears all the state associated with the device. This function differs 5143 * from __pci_reset_function_locked() in that it saves and restores device state 5144 * over the reset. It also differs from pci_reset_function() in that it 5145 * requires the PCI device lock to be held. 5146 * 5147 * Returns 0 if the device function was successfully reset or negative if the 5148 * device doesn't support resetting a single function. 5149 */ 5150 int pci_reset_function_locked(struct pci_dev *dev) 5151 { 5152 int rc; 5153 5154 if (!dev->reset_fn) 5155 return -ENOTTY; 5156 5157 pci_dev_save_and_disable(dev); 5158 5159 rc = __pci_reset_function_locked(dev); 5160 5161 pci_dev_restore(dev); 5162 5163 return rc; 5164 } 5165 EXPORT_SYMBOL_GPL(pci_reset_function_locked); 5166 5167 /** 5168 * pci_try_reset_function - quiesce and reset a PCI device function 5169 * @dev: PCI device to reset 5170 * 5171 * Same as above, except return -EAGAIN if unable to lock device. 5172 */ 5173 int pci_try_reset_function(struct pci_dev *dev) 5174 { 5175 int rc; 5176 5177 if (!dev->reset_fn) 5178 return -ENOTTY; 5179 5180 if (!pci_dev_trylock(dev)) 5181 return -EAGAIN; 5182 5183 pci_dev_save_and_disable(dev); 5184 rc = __pci_reset_function_locked(dev); 5185 pci_dev_restore(dev); 5186 pci_dev_unlock(dev); 5187 5188 return rc; 5189 } 5190 EXPORT_SYMBOL_GPL(pci_try_reset_function); 5191 5192 /* Do any devices on or below this bus prevent a bus reset? */ 5193 static bool pci_bus_resetable(struct pci_bus *bus) 5194 { 5195 struct pci_dev *dev; 5196 5197 5198 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 5199 return false; 5200 5201 list_for_each_entry(dev, &bus->devices, bus_list) { 5202 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 5203 (dev->subordinate && !pci_bus_resetable(dev->subordinate))) 5204 return false; 5205 } 5206 5207 return true; 5208 } 5209 5210 /* Lock devices from the top of the tree down */ 5211 static void pci_bus_lock(struct pci_bus *bus) 5212 { 5213 struct pci_dev *dev; 5214 5215 list_for_each_entry(dev, &bus->devices, bus_list) { 5216 pci_dev_lock(dev); 5217 if (dev->subordinate) 5218 pci_bus_lock(dev->subordinate); 5219 } 5220 } 5221 5222 /* Unlock devices from the bottom of the tree up */ 5223 static void pci_bus_unlock(struct pci_bus *bus) 5224 { 5225 struct pci_dev *dev; 5226 5227 list_for_each_entry(dev, &bus->devices, bus_list) { 5228 if (dev->subordinate) 5229 pci_bus_unlock(dev->subordinate); 5230 pci_dev_unlock(dev); 5231 } 5232 } 5233 5234 /* Return 1 on successful lock, 0 on contention */ 5235 static int pci_bus_trylock(struct pci_bus *bus) 5236 { 5237 struct pci_dev *dev; 5238 5239 list_for_each_entry(dev, &bus->devices, bus_list) { 5240 if (!pci_dev_trylock(dev)) 5241 goto unlock; 5242 if (dev->subordinate) { 5243 if (!pci_bus_trylock(dev->subordinate)) { 5244 pci_dev_unlock(dev); 5245 goto unlock; 5246 } 5247 } 5248 } 5249 return 1; 5250 5251 unlock: 5252 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) { 5253 if (dev->subordinate) 5254 pci_bus_unlock(dev->subordinate); 5255 pci_dev_unlock(dev); 5256 } 5257 return 0; 5258 } 5259 5260 /* Do any devices on or below this slot prevent a bus reset? */ 5261 static bool pci_slot_resetable(struct pci_slot *slot) 5262 { 5263 struct pci_dev *dev; 5264 5265 if (slot->bus->self && 5266 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 5267 return false; 5268 5269 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5270 if (!dev->slot || dev->slot != slot) 5271 continue; 5272 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 5273 (dev->subordinate && !pci_bus_resetable(dev->subordinate))) 5274 return false; 5275 } 5276 5277 return true; 5278 } 5279 5280 /* Lock devices from the top of the tree down */ 5281 static void pci_slot_lock(struct pci_slot *slot) 5282 { 5283 struct pci_dev *dev; 5284 5285 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5286 if (!dev->slot || dev->slot != slot) 5287 continue; 5288 pci_dev_lock(dev); 5289 if (dev->subordinate) 5290 pci_bus_lock(dev->subordinate); 5291 } 5292 } 5293 5294 /* Unlock devices from the bottom of the tree up */ 5295 static void pci_slot_unlock(struct pci_slot *slot) 5296 { 5297 struct pci_dev *dev; 5298 5299 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5300 if (!dev->slot || dev->slot != slot) 5301 continue; 5302 if (dev->subordinate) 5303 pci_bus_unlock(dev->subordinate); 5304 pci_dev_unlock(dev); 5305 } 5306 } 5307 5308 /* Return 1 on successful lock, 0 on contention */ 5309 static int pci_slot_trylock(struct pci_slot *slot) 5310 { 5311 struct pci_dev *dev; 5312 5313 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5314 if (!dev->slot || dev->slot != slot) 5315 continue; 5316 if (!pci_dev_trylock(dev)) 5317 goto unlock; 5318 if (dev->subordinate) { 5319 if (!pci_bus_trylock(dev->subordinate)) { 5320 pci_dev_unlock(dev); 5321 goto unlock; 5322 } 5323 } 5324 } 5325 return 1; 5326 5327 unlock: 5328 list_for_each_entry_continue_reverse(dev, 5329 &slot->bus->devices, bus_list) { 5330 if (!dev->slot || dev->slot != slot) 5331 continue; 5332 if (dev->subordinate) 5333 pci_bus_unlock(dev->subordinate); 5334 pci_dev_unlock(dev); 5335 } 5336 return 0; 5337 } 5338 5339 /* 5340 * Save and disable devices from the top of the tree down while holding 5341 * the @dev mutex lock for the entire tree. 5342 */ 5343 static void pci_bus_save_and_disable_locked(struct pci_bus *bus) 5344 { 5345 struct pci_dev *dev; 5346 5347 list_for_each_entry(dev, &bus->devices, bus_list) { 5348 pci_dev_save_and_disable(dev); 5349 if (dev->subordinate) 5350 pci_bus_save_and_disable_locked(dev->subordinate); 5351 } 5352 } 5353 5354 /* 5355 * Restore devices from top of the tree down while holding @dev mutex lock 5356 * for the entire tree. Parent bridges need to be restored before we can 5357 * get to subordinate devices. 5358 */ 5359 static void pci_bus_restore_locked(struct pci_bus *bus) 5360 { 5361 struct pci_dev *dev; 5362 5363 list_for_each_entry(dev, &bus->devices, bus_list) { 5364 pci_dev_restore(dev); 5365 if (dev->subordinate) 5366 pci_bus_restore_locked(dev->subordinate); 5367 } 5368 } 5369 5370 /* 5371 * Save and disable devices from the top of the tree down while holding 5372 * the @dev mutex lock for the entire tree. 5373 */ 5374 static void pci_slot_save_and_disable_locked(struct pci_slot *slot) 5375 { 5376 struct pci_dev *dev; 5377 5378 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5379 if (!dev->slot || dev->slot != slot) 5380 continue; 5381 pci_dev_save_and_disable(dev); 5382 if (dev->subordinate) 5383 pci_bus_save_and_disable_locked(dev->subordinate); 5384 } 5385 } 5386 5387 /* 5388 * Restore devices from top of the tree down while holding @dev mutex lock 5389 * for the entire tree. Parent bridges need to be restored before we can 5390 * get to subordinate devices. 5391 */ 5392 static void pci_slot_restore_locked(struct pci_slot *slot) 5393 { 5394 struct pci_dev *dev; 5395 5396 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5397 if (!dev->slot || dev->slot != slot) 5398 continue; 5399 pci_dev_restore(dev); 5400 if (dev->subordinate) 5401 pci_bus_restore_locked(dev->subordinate); 5402 } 5403 } 5404 5405 static int pci_slot_reset(struct pci_slot *slot, int probe) 5406 { 5407 int rc; 5408 5409 if (!slot || !pci_slot_resetable(slot)) 5410 return -ENOTTY; 5411 5412 if (!probe) 5413 pci_slot_lock(slot); 5414 5415 might_sleep(); 5416 5417 rc = pci_reset_hotplug_slot(slot->hotplug, probe); 5418 5419 if (!probe) 5420 pci_slot_unlock(slot); 5421 5422 return rc; 5423 } 5424 5425 /** 5426 * pci_probe_reset_slot - probe whether a PCI slot can be reset 5427 * @slot: PCI slot to probe 5428 * 5429 * Return 0 if slot can be reset, negative if a slot reset is not supported. 5430 */ 5431 int pci_probe_reset_slot(struct pci_slot *slot) 5432 { 5433 return pci_slot_reset(slot, 1); 5434 } 5435 EXPORT_SYMBOL_GPL(pci_probe_reset_slot); 5436 5437 /** 5438 * __pci_reset_slot - Try to reset a PCI slot 5439 * @slot: PCI slot to reset 5440 * 5441 * A PCI bus may host multiple slots, each slot may support a reset mechanism 5442 * independent of other slots. For instance, some slots may support slot power 5443 * control. In the case of a 1:1 bus to slot architecture, this function may 5444 * wrap the bus reset to avoid spurious slot related events such as hotplug. 5445 * Generally a slot reset should be attempted before a bus reset. All of the 5446 * function of the slot and any subordinate buses behind the slot are reset 5447 * through this function. PCI config space of all devices in the slot and 5448 * behind the slot is saved before and restored after reset. 5449 * 5450 * Same as above except return -EAGAIN if the slot cannot be locked 5451 */ 5452 static int __pci_reset_slot(struct pci_slot *slot) 5453 { 5454 int rc; 5455 5456 rc = pci_slot_reset(slot, 1); 5457 if (rc) 5458 return rc; 5459 5460 if (pci_slot_trylock(slot)) { 5461 pci_slot_save_and_disable_locked(slot); 5462 might_sleep(); 5463 rc = pci_reset_hotplug_slot(slot->hotplug, 0); 5464 pci_slot_restore_locked(slot); 5465 pci_slot_unlock(slot); 5466 } else 5467 rc = -EAGAIN; 5468 5469 return rc; 5470 } 5471 5472 static int pci_bus_reset(struct pci_bus *bus, int probe) 5473 { 5474 int ret; 5475 5476 if (!bus->self || !pci_bus_resetable(bus)) 5477 return -ENOTTY; 5478 5479 if (probe) 5480 return 0; 5481 5482 pci_bus_lock(bus); 5483 5484 might_sleep(); 5485 5486 ret = pci_bridge_secondary_bus_reset(bus->self); 5487 5488 pci_bus_unlock(bus); 5489 5490 return ret; 5491 } 5492 5493 /** 5494 * pci_bus_error_reset - reset the bridge's subordinate bus 5495 * @bridge: The parent device that connects to the bus to reset 5496 * 5497 * This function will first try to reset the slots on this bus if the method is 5498 * available. If slot reset fails or is not available, this will fall back to a 5499 * secondary bus reset. 5500 */ 5501 int pci_bus_error_reset(struct pci_dev *bridge) 5502 { 5503 struct pci_bus *bus = bridge->subordinate; 5504 struct pci_slot *slot; 5505 5506 if (!bus) 5507 return -ENOTTY; 5508 5509 mutex_lock(&pci_slot_mutex); 5510 if (list_empty(&bus->slots)) 5511 goto bus_reset; 5512 5513 list_for_each_entry(slot, &bus->slots, list) 5514 if (pci_probe_reset_slot(slot)) 5515 goto bus_reset; 5516 5517 list_for_each_entry(slot, &bus->slots, list) 5518 if (pci_slot_reset(slot, 0)) 5519 goto bus_reset; 5520 5521 mutex_unlock(&pci_slot_mutex); 5522 return 0; 5523 bus_reset: 5524 mutex_unlock(&pci_slot_mutex); 5525 return pci_bus_reset(bridge->subordinate, 0); 5526 } 5527 5528 /** 5529 * pci_probe_reset_bus - probe whether a PCI bus can be reset 5530 * @bus: PCI bus to probe 5531 * 5532 * Return 0 if bus can be reset, negative if a bus reset is not supported. 5533 */ 5534 int pci_probe_reset_bus(struct pci_bus *bus) 5535 { 5536 return pci_bus_reset(bus, 1); 5537 } 5538 EXPORT_SYMBOL_GPL(pci_probe_reset_bus); 5539 5540 /** 5541 * __pci_reset_bus - Try to reset a PCI bus 5542 * @bus: top level PCI bus to reset 5543 * 5544 * Same as above except return -EAGAIN if the bus cannot be locked 5545 */ 5546 static int __pci_reset_bus(struct pci_bus *bus) 5547 { 5548 int rc; 5549 5550 rc = pci_bus_reset(bus, 1); 5551 if (rc) 5552 return rc; 5553 5554 if (pci_bus_trylock(bus)) { 5555 pci_bus_save_and_disable_locked(bus); 5556 might_sleep(); 5557 rc = pci_bridge_secondary_bus_reset(bus->self); 5558 pci_bus_restore_locked(bus); 5559 pci_bus_unlock(bus); 5560 } else 5561 rc = -EAGAIN; 5562 5563 return rc; 5564 } 5565 5566 /** 5567 * pci_reset_bus - Try to reset a PCI bus 5568 * @pdev: top level PCI device to reset via slot/bus 5569 * 5570 * Same as above except return -EAGAIN if the bus cannot be locked 5571 */ 5572 int pci_reset_bus(struct pci_dev *pdev) 5573 { 5574 return (!pci_probe_reset_slot(pdev->slot)) ? 5575 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus); 5576 } 5577 EXPORT_SYMBOL_GPL(pci_reset_bus); 5578 5579 /** 5580 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count 5581 * @dev: PCI device to query 5582 * 5583 * Returns mmrbc: maximum designed memory read count in bytes or 5584 * appropriate error value. 5585 */ 5586 int pcix_get_max_mmrbc(struct pci_dev *dev) 5587 { 5588 int cap; 5589 u32 stat; 5590 5591 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5592 if (!cap) 5593 return -EINVAL; 5594 5595 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 5596 return -EINVAL; 5597 5598 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21); 5599 } 5600 EXPORT_SYMBOL(pcix_get_max_mmrbc); 5601 5602 /** 5603 * pcix_get_mmrbc - get PCI-X maximum memory read byte count 5604 * @dev: PCI device to query 5605 * 5606 * Returns mmrbc: maximum memory read count in bytes or appropriate error 5607 * value. 5608 */ 5609 int pcix_get_mmrbc(struct pci_dev *dev) 5610 { 5611 int cap; 5612 u16 cmd; 5613 5614 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5615 if (!cap) 5616 return -EINVAL; 5617 5618 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 5619 return -EINVAL; 5620 5621 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2); 5622 } 5623 EXPORT_SYMBOL(pcix_get_mmrbc); 5624 5625 /** 5626 * pcix_set_mmrbc - set PCI-X maximum memory read byte count 5627 * @dev: PCI device to query 5628 * @mmrbc: maximum memory read count in bytes 5629 * valid values are 512, 1024, 2048, 4096 5630 * 5631 * If possible sets maximum memory read byte count, some bridges have errata 5632 * that prevent this. 5633 */ 5634 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc) 5635 { 5636 int cap; 5637 u32 stat, v, o; 5638 u16 cmd; 5639 5640 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc)) 5641 return -EINVAL; 5642 5643 v = ffs(mmrbc) - 10; 5644 5645 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5646 if (!cap) 5647 return -EINVAL; 5648 5649 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 5650 return -EINVAL; 5651 5652 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21) 5653 return -E2BIG; 5654 5655 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 5656 return -EINVAL; 5657 5658 o = (cmd & PCI_X_CMD_MAX_READ) >> 2; 5659 if (o != v) { 5660 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC)) 5661 return -EIO; 5662 5663 cmd &= ~PCI_X_CMD_MAX_READ; 5664 cmd |= v << 2; 5665 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd)) 5666 return -EIO; 5667 } 5668 return 0; 5669 } 5670 EXPORT_SYMBOL(pcix_set_mmrbc); 5671 5672 /** 5673 * pcie_get_readrq - get PCI Express read request size 5674 * @dev: PCI device to query 5675 * 5676 * Returns maximum memory read request in bytes or appropriate error value. 5677 */ 5678 int pcie_get_readrq(struct pci_dev *dev) 5679 { 5680 u16 ctl; 5681 5682 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 5683 5684 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12); 5685 } 5686 EXPORT_SYMBOL(pcie_get_readrq); 5687 5688 /** 5689 * pcie_set_readrq - set PCI Express maximum memory read request 5690 * @dev: PCI device to query 5691 * @rq: maximum memory read count in bytes 5692 * valid values are 128, 256, 512, 1024, 2048, 4096 5693 * 5694 * If possible sets maximum memory read request in bytes 5695 */ 5696 int pcie_set_readrq(struct pci_dev *dev, int rq) 5697 { 5698 u16 v; 5699 int ret; 5700 5701 if (rq < 128 || rq > 4096 || !is_power_of_2(rq)) 5702 return -EINVAL; 5703 5704 /* 5705 * If using the "performance" PCIe config, we clamp the read rq 5706 * size to the max packet size to keep the host bridge from 5707 * generating requests larger than we can cope with. 5708 */ 5709 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) { 5710 int mps = pcie_get_mps(dev); 5711 5712 if (mps < rq) 5713 rq = mps; 5714 } 5715 5716 v = (ffs(rq) - 8) << 12; 5717 5718 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 5719 PCI_EXP_DEVCTL_READRQ, v); 5720 5721 return pcibios_err_to_errno(ret); 5722 } 5723 EXPORT_SYMBOL(pcie_set_readrq); 5724 5725 /** 5726 * pcie_get_mps - get PCI Express maximum payload size 5727 * @dev: PCI device to query 5728 * 5729 * Returns maximum payload size in bytes 5730 */ 5731 int pcie_get_mps(struct pci_dev *dev) 5732 { 5733 u16 ctl; 5734 5735 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 5736 5737 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5); 5738 } 5739 EXPORT_SYMBOL(pcie_get_mps); 5740 5741 /** 5742 * pcie_set_mps - set PCI Express maximum payload size 5743 * @dev: PCI device to query 5744 * @mps: maximum payload size in bytes 5745 * valid values are 128, 256, 512, 1024, 2048, 4096 5746 * 5747 * If possible sets maximum payload size 5748 */ 5749 int pcie_set_mps(struct pci_dev *dev, int mps) 5750 { 5751 u16 v; 5752 int ret; 5753 5754 if (mps < 128 || mps > 4096 || !is_power_of_2(mps)) 5755 return -EINVAL; 5756 5757 v = ffs(mps) - 8; 5758 if (v > dev->pcie_mpss) 5759 return -EINVAL; 5760 v <<= 5; 5761 5762 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 5763 PCI_EXP_DEVCTL_PAYLOAD, v); 5764 5765 return pcibios_err_to_errno(ret); 5766 } 5767 EXPORT_SYMBOL(pcie_set_mps); 5768 5769 /** 5770 * pcie_bandwidth_available - determine minimum link settings of a PCIe 5771 * device and its bandwidth limitation 5772 * @dev: PCI device to query 5773 * @limiting_dev: storage for device causing the bandwidth limitation 5774 * @speed: storage for speed of limiting device 5775 * @width: storage for width of limiting device 5776 * 5777 * Walk up the PCI device chain and find the point where the minimum 5778 * bandwidth is available. Return the bandwidth available there and (if 5779 * limiting_dev, speed, and width pointers are supplied) information about 5780 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of 5781 * raw bandwidth. 5782 */ 5783 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev, 5784 enum pci_bus_speed *speed, 5785 enum pcie_link_width *width) 5786 { 5787 u16 lnksta; 5788 enum pci_bus_speed next_speed; 5789 enum pcie_link_width next_width; 5790 u32 bw, next_bw; 5791 5792 if (speed) 5793 *speed = PCI_SPEED_UNKNOWN; 5794 if (width) 5795 *width = PCIE_LNK_WIDTH_UNKNOWN; 5796 5797 bw = 0; 5798 5799 while (dev) { 5800 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta); 5801 5802 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS]; 5803 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >> 5804 PCI_EXP_LNKSTA_NLW_SHIFT; 5805 5806 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed); 5807 5808 /* Check if current device limits the total bandwidth */ 5809 if (!bw || next_bw <= bw) { 5810 bw = next_bw; 5811 5812 if (limiting_dev) 5813 *limiting_dev = dev; 5814 if (speed) 5815 *speed = next_speed; 5816 if (width) 5817 *width = next_width; 5818 } 5819 5820 dev = pci_upstream_bridge(dev); 5821 } 5822 5823 return bw; 5824 } 5825 EXPORT_SYMBOL(pcie_bandwidth_available); 5826 5827 /** 5828 * pcie_get_speed_cap - query for the PCI device's link speed capability 5829 * @dev: PCI device to query 5830 * 5831 * Query the PCI device speed capability. Return the maximum link speed 5832 * supported by the device. 5833 */ 5834 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev) 5835 { 5836 u32 lnkcap2, lnkcap; 5837 5838 /* 5839 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The 5840 * implementation note there recommends using the Supported Link 5841 * Speeds Vector in Link Capabilities 2 when supported. 5842 * 5843 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software 5844 * should use the Supported Link Speeds field in Link Capabilities, 5845 * where only 2.5 GT/s and 5.0 GT/s speeds were defined. 5846 */ 5847 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2); 5848 5849 /* PCIe r3.0-compliant */ 5850 if (lnkcap2) 5851 return PCIE_LNKCAP2_SLS2SPEED(lnkcap2); 5852 5853 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 5854 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB) 5855 return PCIE_SPEED_5_0GT; 5856 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB) 5857 return PCIE_SPEED_2_5GT; 5858 5859 return PCI_SPEED_UNKNOWN; 5860 } 5861 EXPORT_SYMBOL(pcie_get_speed_cap); 5862 5863 /** 5864 * pcie_get_width_cap - query for the PCI device's link width capability 5865 * @dev: PCI device to query 5866 * 5867 * Query the PCI device width capability. Return the maximum link width 5868 * supported by the device. 5869 */ 5870 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev) 5871 { 5872 u32 lnkcap; 5873 5874 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 5875 if (lnkcap) 5876 return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4; 5877 5878 return PCIE_LNK_WIDTH_UNKNOWN; 5879 } 5880 EXPORT_SYMBOL(pcie_get_width_cap); 5881 5882 /** 5883 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability 5884 * @dev: PCI device 5885 * @speed: storage for link speed 5886 * @width: storage for link width 5887 * 5888 * Calculate a PCI device's link bandwidth by querying for its link speed 5889 * and width, multiplying them, and applying encoding overhead. The result 5890 * is in Mb/s, i.e., megabits/second of raw bandwidth. 5891 */ 5892 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed, 5893 enum pcie_link_width *width) 5894 { 5895 *speed = pcie_get_speed_cap(dev); 5896 *width = pcie_get_width_cap(dev); 5897 5898 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN) 5899 return 0; 5900 5901 return *width * PCIE_SPEED2MBS_ENC(*speed); 5902 } 5903 5904 /** 5905 * __pcie_print_link_status - Report the PCI device's link speed and width 5906 * @dev: PCI device to query 5907 * @verbose: Print info even when enough bandwidth is available 5908 * 5909 * If the available bandwidth at the device is less than the device is 5910 * capable of, report the device's maximum possible bandwidth and the 5911 * upstream link that limits its performance. If @verbose, always print 5912 * the available bandwidth, even if the device isn't constrained. 5913 */ 5914 void __pcie_print_link_status(struct pci_dev *dev, bool verbose) 5915 { 5916 enum pcie_link_width width, width_cap; 5917 enum pci_bus_speed speed, speed_cap; 5918 struct pci_dev *limiting_dev = NULL; 5919 u32 bw_avail, bw_cap; 5920 5921 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap); 5922 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width); 5923 5924 if (bw_avail >= bw_cap && verbose) 5925 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n", 5926 bw_cap / 1000, bw_cap % 1000, 5927 pci_speed_string(speed_cap), width_cap); 5928 else if (bw_avail < bw_cap) 5929 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n", 5930 bw_avail / 1000, bw_avail % 1000, 5931 pci_speed_string(speed), width, 5932 limiting_dev ? pci_name(limiting_dev) : "<unknown>", 5933 bw_cap / 1000, bw_cap % 1000, 5934 pci_speed_string(speed_cap), width_cap); 5935 } 5936 5937 /** 5938 * pcie_print_link_status - Report the PCI device's link speed and width 5939 * @dev: PCI device to query 5940 * 5941 * Report the available bandwidth at the device. 5942 */ 5943 void pcie_print_link_status(struct pci_dev *dev) 5944 { 5945 __pcie_print_link_status(dev, true); 5946 } 5947 EXPORT_SYMBOL(pcie_print_link_status); 5948 5949 /** 5950 * pci_select_bars - Make BAR mask from the type of resource 5951 * @dev: the PCI device for which BAR mask is made 5952 * @flags: resource type mask to be selected 5953 * 5954 * This helper routine makes bar mask from the type of resource. 5955 */ 5956 int pci_select_bars(struct pci_dev *dev, unsigned long flags) 5957 { 5958 int i, bars = 0; 5959 for (i = 0; i < PCI_NUM_RESOURCES; i++) 5960 if (pci_resource_flags(dev, i) & flags) 5961 bars |= (1 << i); 5962 return bars; 5963 } 5964 EXPORT_SYMBOL(pci_select_bars); 5965 5966 /* Some architectures require additional programming to enable VGA */ 5967 static arch_set_vga_state_t arch_set_vga_state; 5968 5969 void __init pci_register_set_vga_state(arch_set_vga_state_t func) 5970 { 5971 arch_set_vga_state = func; /* NULL disables */ 5972 } 5973 5974 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode, 5975 unsigned int command_bits, u32 flags) 5976 { 5977 if (arch_set_vga_state) 5978 return arch_set_vga_state(dev, decode, command_bits, 5979 flags); 5980 return 0; 5981 } 5982 5983 /** 5984 * pci_set_vga_state - set VGA decode state on device and parents if requested 5985 * @dev: the PCI device 5986 * @decode: true = enable decoding, false = disable decoding 5987 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY 5988 * @flags: traverse ancestors and change bridges 5989 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE 5990 */ 5991 int pci_set_vga_state(struct pci_dev *dev, bool decode, 5992 unsigned int command_bits, u32 flags) 5993 { 5994 struct pci_bus *bus; 5995 struct pci_dev *bridge; 5996 u16 cmd; 5997 int rc; 5998 5999 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY))); 6000 6001 /* ARCH specific VGA enables */ 6002 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags); 6003 if (rc) 6004 return rc; 6005 6006 if (flags & PCI_VGA_STATE_CHANGE_DECODES) { 6007 pci_read_config_word(dev, PCI_COMMAND, &cmd); 6008 if (decode == true) 6009 cmd |= command_bits; 6010 else 6011 cmd &= ~command_bits; 6012 pci_write_config_word(dev, PCI_COMMAND, cmd); 6013 } 6014 6015 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE)) 6016 return 0; 6017 6018 bus = dev->bus; 6019 while (bus) { 6020 bridge = bus->self; 6021 if (bridge) { 6022 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL, 6023 &cmd); 6024 if (decode == true) 6025 cmd |= PCI_BRIDGE_CTL_VGA; 6026 else 6027 cmd &= ~PCI_BRIDGE_CTL_VGA; 6028 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL, 6029 cmd); 6030 } 6031 bus = bus->parent; 6032 } 6033 return 0; 6034 } 6035 6036 #ifdef CONFIG_ACPI 6037 bool pci_pr3_present(struct pci_dev *pdev) 6038 { 6039 struct acpi_device *adev; 6040 6041 if (acpi_disabled) 6042 return false; 6043 6044 adev = ACPI_COMPANION(&pdev->dev); 6045 if (!adev) 6046 return false; 6047 6048 return adev->power.flags.power_resources && 6049 acpi_has_method(adev->handle, "_PR3"); 6050 } 6051 EXPORT_SYMBOL_GPL(pci_pr3_present); 6052 #endif 6053 6054 /** 6055 * pci_add_dma_alias - Add a DMA devfn alias for a device 6056 * @dev: the PCI device for which alias is added 6057 * @devfn_from: alias slot and function 6058 * @nr_devfns: number of subsequent devfns to alias 6059 * 6060 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask 6061 * which is used to program permissible bus-devfn source addresses for DMA 6062 * requests in an IOMMU. These aliases factor into IOMMU group creation 6063 * and are useful for devices generating DMA requests beyond or different 6064 * from their logical bus-devfn. Examples include device quirks where the 6065 * device simply uses the wrong devfn, as well as non-transparent bridges 6066 * where the alias may be a proxy for devices in another domain. 6067 * 6068 * IOMMU group creation is performed during device discovery or addition, 6069 * prior to any potential DMA mapping and therefore prior to driver probing 6070 * (especially for userspace assigned devices where IOMMU group definition 6071 * cannot be left as a userspace activity). DMA aliases should therefore 6072 * be configured via quirks, such as the PCI fixup header quirk. 6073 */ 6074 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from, unsigned nr_devfns) 6075 { 6076 int devfn_to; 6077 6078 nr_devfns = min(nr_devfns, (unsigned) MAX_NR_DEVFNS - devfn_from); 6079 devfn_to = devfn_from + nr_devfns - 1; 6080 6081 if (!dev->dma_alias_mask) 6082 dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL); 6083 if (!dev->dma_alias_mask) { 6084 pci_warn(dev, "Unable to allocate DMA alias mask\n"); 6085 return; 6086 } 6087 6088 bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns); 6089 6090 if (nr_devfns == 1) 6091 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n", 6092 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from)); 6093 else if (nr_devfns > 1) 6094 pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n", 6095 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from), 6096 PCI_SLOT(devfn_to), PCI_FUNC(devfn_to)); 6097 } 6098 6099 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2) 6100 { 6101 return (dev1->dma_alias_mask && 6102 test_bit(dev2->devfn, dev1->dma_alias_mask)) || 6103 (dev2->dma_alias_mask && 6104 test_bit(dev1->devfn, dev2->dma_alias_mask)) || 6105 pci_real_dma_dev(dev1) == dev2 || 6106 pci_real_dma_dev(dev2) == dev1; 6107 } 6108 6109 bool pci_device_is_present(struct pci_dev *pdev) 6110 { 6111 u32 v; 6112 6113 if (pci_dev_is_disconnected(pdev)) 6114 return false; 6115 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0); 6116 } 6117 EXPORT_SYMBOL_GPL(pci_device_is_present); 6118 6119 void pci_ignore_hotplug(struct pci_dev *dev) 6120 { 6121 struct pci_dev *bridge = dev->bus->self; 6122 6123 dev->ignore_hotplug = 1; 6124 /* Propagate the "ignore hotplug" setting to the parent bridge. */ 6125 if (bridge) 6126 bridge->ignore_hotplug = 1; 6127 } 6128 EXPORT_SYMBOL_GPL(pci_ignore_hotplug); 6129 6130 /** 6131 * pci_real_dma_dev - Get PCI DMA device for PCI device 6132 * @dev: the PCI device that may have a PCI DMA alias 6133 * 6134 * Permits the platform to provide architecture-specific functionality to 6135 * devices needing to alias DMA to another PCI device on another PCI bus. If 6136 * the PCI device is on the same bus, it is recommended to use 6137 * pci_add_dma_alias(). This is the default implementation. Architecture 6138 * implementations can override this. 6139 */ 6140 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev) 6141 { 6142 return dev; 6143 } 6144 6145 resource_size_t __weak pcibios_default_alignment(void) 6146 { 6147 return 0; 6148 } 6149 6150 /* 6151 * Arches that don't want to expose struct resource to userland as-is in 6152 * sysfs and /proc can implement their own pci_resource_to_user(). 6153 */ 6154 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar, 6155 const struct resource *rsrc, 6156 resource_size_t *start, resource_size_t *end) 6157 { 6158 *start = rsrc->start; 6159 *end = rsrc->end; 6160 } 6161 6162 static char *resource_alignment_param; 6163 static DEFINE_SPINLOCK(resource_alignment_lock); 6164 6165 /** 6166 * pci_specified_resource_alignment - get resource alignment specified by user. 6167 * @dev: the PCI device to get 6168 * @resize: whether or not to change resources' size when reassigning alignment 6169 * 6170 * RETURNS: Resource alignment if it is specified. 6171 * Zero if it is not specified. 6172 */ 6173 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev, 6174 bool *resize) 6175 { 6176 int align_order, count; 6177 resource_size_t align = pcibios_default_alignment(); 6178 const char *p; 6179 int ret; 6180 6181 spin_lock(&resource_alignment_lock); 6182 p = resource_alignment_param; 6183 if (!p || !*p) 6184 goto out; 6185 if (pci_has_flag(PCI_PROBE_ONLY)) { 6186 align = 0; 6187 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n"); 6188 goto out; 6189 } 6190 6191 while (*p) { 6192 count = 0; 6193 if (sscanf(p, "%d%n", &align_order, &count) == 1 && 6194 p[count] == '@') { 6195 p += count + 1; 6196 } else { 6197 align_order = -1; 6198 } 6199 6200 ret = pci_dev_str_match(dev, p, &p); 6201 if (ret == 1) { 6202 *resize = true; 6203 if (align_order == -1) 6204 align = PAGE_SIZE; 6205 else 6206 align = 1 << align_order; 6207 break; 6208 } else if (ret < 0) { 6209 pr_err("PCI: Can't parse resource_alignment parameter: %s\n", 6210 p); 6211 break; 6212 } 6213 6214 if (*p != ';' && *p != ',') { 6215 /* End of param or invalid format */ 6216 break; 6217 } 6218 p++; 6219 } 6220 out: 6221 spin_unlock(&resource_alignment_lock); 6222 return align; 6223 } 6224 6225 static void pci_request_resource_alignment(struct pci_dev *dev, int bar, 6226 resource_size_t align, bool resize) 6227 { 6228 struct resource *r = &dev->resource[bar]; 6229 resource_size_t size; 6230 6231 if (!(r->flags & IORESOURCE_MEM)) 6232 return; 6233 6234 if (r->flags & IORESOURCE_PCI_FIXED) { 6235 pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n", 6236 bar, r, (unsigned long long)align); 6237 return; 6238 } 6239 6240 size = resource_size(r); 6241 if (size >= align) 6242 return; 6243 6244 /* 6245 * Increase the alignment of the resource. There are two ways we 6246 * can do this: 6247 * 6248 * 1) Increase the size of the resource. BARs are aligned on their 6249 * size, so when we reallocate space for this resource, we'll 6250 * allocate it with the larger alignment. This also prevents 6251 * assignment of any other BARs inside the alignment region, so 6252 * if we're requesting page alignment, this means no other BARs 6253 * will share the page. 6254 * 6255 * The disadvantage is that this makes the resource larger than 6256 * the hardware BAR, which may break drivers that compute things 6257 * based on the resource size, e.g., to find registers at a 6258 * fixed offset before the end of the BAR. 6259 * 6260 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and 6261 * set r->start to the desired alignment. By itself this 6262 * doesn't prevent other BARs being put inside the alignment 6263 * region, but if we realign *every* resource of every device in 6264 * the system, none of them will share an alignment region. 6265 * 6266 * When the user has requested alignment for only some devices via 6267 * the "pci=resource_alignment" argument, "resize" is true and we 6268 * use the first method. Otherwise we assume we're aligning all 6269 * devices and we use the second. 6270 */ 6271 6272 pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n", 6273 bar, r, (unsigned long long)align); 6274 6275 if (resize) { 6276 r->start = 0; 6277 r->end = align - 1; 6278 } else { 6279 r->flags &= ~IORESOURCE_SIZEALIGN; 6280 r->flags |= IORESOURCE_STARTALIGN; 6281 r->start = align; 6282 r->end = r->start + size - 1; 6283 } 6284 r->flags |= IORESOURCE_UNSET; 6285 } 6286 6287 /* 6288 * This function disables memory decoding and releases memory resources 6289 * of the device specified by kernel's boot parameter 'pci=resource_alignment='. 6290 * It also rounds up size to specified alignment. 6291 * Later on, the kernel will assign page-aligned memory resource back 6292 * to the device. 6293 */ 6294 void pci_reassigndev_resource_alignment(struct pci_dev *dev) 6295 { 6296 int i; 6297 struct resource *r; 6298 resource_size_t align; 6299 u16 command; 6300 bool resize = false; 6301 6302 /* 6303 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec 6304 * 3.4.1.11. Their resources are allocated from the space 6305 * described by the VF BARx register in the PF's SR-IOV capability. 6306 * We can't influence their alignment here. 6307 */ 6308 if (dev->is_virtfn) 6309 return; 6310 6311 /* check if specified PCI is target device to reassign */ 6312 align = pci_specified_resource_alignment(dev, &resize); 6313 if (!align) 6314 return; 6315 6316 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL && 6317 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) { 6318 pci_warn(dev, "Can't reassign resources to host bridge\n"); 6319 return; 6320 } 6321 6322 pci_read_config_word(dev, PCI_COMMAND, &command); 6323 command &= ~PCI_COMMAND_MEMORY; 6324 pci_write_config_word(dev, PCI_COMMAND, command); 6325 6326 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 6327 pci_request_resource_alignment(dev, i, align, resize); 6328 6329 /* 6330 * Need to disable bridge's resource window, 6331 * to enable the kernel to reassign new resource 6332 * window later on. 6333 */ 6334 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 6335 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) { 6336 r = &dev->resource[i]; 6337 if (!(r->flags & IORESOURCE_MEM)) 6338 continue; 6339 r->flags |= IORESOURCE_UNSET; 6340 r->end = resource_size(r) - 1; 6341 r->start = 0; 6342 } 6343 pci_disable_bridge_window(dev); 6344 } 6345 } 6346 6347 static ssize_t resource_alignment_show(struct bus_type *bus, char *buf) 6348 { 6349 size_t count = 0; 6350 6351 spin_lock(&resource_alignment_lock); 6352 if (resource_alignment_param) 6353 count = snprintf(buf, PAGE_SIZE, "%s", resource_alignment_param); 6354 spin_unlock(&resource_alignment_lock); 6355 6356 /* 6357 * When set by the command line, resource_alignment_param will not 6358 * have a trailing line feed, which is ugly. So conditionally add 6359 * it here. 6360 */ 6361 if (count >= 2 && buf[count - 2] != '\n' && count < PAGE_SIZE - 1) { 6362 buf[count - 1] = '\n'; 6363 buf[count++] = 0; 6364 } 6365 6366 return count; 6367 } 6368 6369 static ssize_t resource_alignment_store(struct bus_type *bus, 6370 const char *buf, size_t count) 6371 { 6372 char *param = kstrndup(buf, count, GFP_KERNEL); 6373 6374 if (!param) 6375 return -ENOMEM; 6376 6377 spin_lock(&resource_alignment_lock); 6378 kfree(resource_alignment_param); 6379 resource_alignment_param = param; 6380 spin_unlock(&resource_alignment_lock); 6381 return count; 6382 } 6383 6384 static BUS_ATTR_RW(resource_alignment); 6385 6386 static int __init pci_resource_alignment_sysfs_init(void) 6387 { 6388 return bus_create_file(&pci_bus_type, 6389 &bus_attr_resource_alignment); 6390 } 6391 late_initcall(pci_resource_alignment_sysfs_init); 6392 6393 static void pci_no_domains(void) 6394 { 6395 #ifdef CONFIG_PCI_DOMAINS 6396 pci_domains_supported = 0; 6397 #endif 6398 } 6399 6400 #ifdef CONFIG_PCI_DOMAINS_GENERIC 6401 static atomic_t __domain_nr = ATOMIC_INIT(-1); 6402 6403 static int pci_get_new_domain_nr(void) 6404 { 6405 return atomic_inc_return(&__domain_nr); 6406 } 6407 6408 static int of_pci_bus_find_domain_nr(struct device *parent) 6409 { 6410 static int use_dt_domains = -1; 6411 int domain = -1; 6412 6413 if (parent) 6414 domain = of_get_pci_domain_nr(parent->of_node); 6415 6416 /* 6417 * Check DT domain and use_dt_domains values. 6418 * 6419 * If DT domain property is valid (domain >= 0) and 6420 * use_dt_domains != 0, the DT assignment is valid since this means 6421 * we have not previously allocated a domain number by using 6422 * pci_get_new_domain_nr(); we should also update use_dt_domains to 6423 * 1, to indicate that we have just assigned a domain number from 6424 * DT. 6425 * 6426 * If DT domain property value is not valid (ie domain < 0), and we 6427 * have not previously assigned a domain number from DT 6428 * (use_dt_domains != 1) we should assign a domain number by 6429 * using the: 6430 * 6431 * pci_get_new_domain_nr() 6432 * 6433 * API and update the use_dt_domains value to keep track of method we 6434 * are using to assign domain numbers (use_dt_domains = 0). 6435 * 6436 * All other combinations imply we have a platform that is trying 6437 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(), 6438 * which is a recipe for domain mishandling and it is prevented by 6439 * invalidating the domain value (domain = -1) and printing a 6440 * corresponding error. 6441 */ 6442 if (domain >= 0 && use_dt_domains) { 6443 use_dt_domains = 1; 6444 } else if (domain < 0 && use_dt_domains != 1) { 6445 use_dt_domains = 0; 6446 domain = pci_get_new_domain_nr(); 6447 } else { 6448 if (parent) 6449 pr_err("Node %pOF has ", parent->of_node); 6450 pr_err("Inconsistent \"linux,pci-domain\" property in DT\n"); 6451 domain = -1; 6452 } 6453 6454 return domain; 6455 } 6456 6457 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent) 6458 { 6459 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) : 6460 acpi_pci_bus_find_domain_nr(bus); 6461 } 6462 #endif 6463 6464 /** 6465 * pci_ext_cfg_avail - can we access extended PCI config space? 6466 * 6467 * Returns 1 if we can access PCI extended config space (offsets 6468 * greater than 0xff). This is the default implementation. Architecture 6469 * implementations can override this. 6470 */ 6471 int __weak pci_ext_cfg_avail(void) 6472 { 6473 return 1; 6474 } 6475 6476 void __weak pci_fixup_cardbus(struct pci_bus *bus) 6477 { 6478 } 6479 EXPORT_SYMBOL(pci_fixup_cardbus); 6480 6481 static int __init pci_setup(char *str) 6482 { 6483 while (str) { 6484 char *k = strchr(str, ','); 6485 if (k) 6486 *k++ = 0; 6487 if (*str && (str = pcibios_setup(str)) && *str) { 6488 if (!strcmp(str, "nomsi")) { 6489 pci_no_msi(); 6490 } else if (!strncmp(str, "noats", 5)) { 6491 pr_info("PCIe: ATS is disabled\n"); 6492 pcie_ats_disabled = true; 6493 } else if (!strcmp(str, "noaer")) { 6494 pci_no_aer(); 6495 } else if (!strcmp(str, "earlydump")) { 6496 pci_early_dump = true; 6497 } else if (!strncmp(str, "realloc=", 8)) { 6498 pci_realloc_get_opt(str + 8); 6499 } else if (!strncmp(str, "realloc", 7)) { 6500 pci_realloc_get_opt("on"); 6501 } else if (!strcmp(str, "nodomains")) { 6502 pci_no_domains(); 6503 } else if (!strncmp(str, "noari", 5)) { 6504 pcie_ari_disabled = true; 6505 } else if (!strncmp(str, "cbiosize=", 9)) { 6506 pci_cardbus_io_size = memparse(str + 9, &str); 6507 } else if (!strncmp(str, "cbmemsize=", 10)) { 6508 pci_cardbus_mem_size = memparse(str + 10, &str); 6509 } else if (!strncmp(str, "resource_alignment=", 19)) { 6510 resource_alignment_param = str + 19; 6511 } else if (!strncmp(str, "ecrc=", 5)) { 6512 pcie_ecrc_get_policy(str + 5); 6513 } else if (!strncmp(str, "hpiosize=", 9)) { 6514 pci_hotplug_io_size = memparse(str + 9, &str); 6515 } else if (!strncmp(str, "hpmmiosize=", 11)) { 6516 pci_hotplug_mmio_size = memparse(str + 11, &str); 6517 } else if (!strncmp(str, "hpmmioprefsize=", 15)) { 6518 pci_hotplug_mmio_pref_size = memparse(str + 15, &str); 6519 } else if (!strncmp(str, "hpmemsize=", 10)) { 6520 pci_hotplug_mmio_size = memparse(str + 10, &str); 6521 pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size; 6522 } else if (!strncmp(str, "hpbussize=", 10)) { 6523 pci_hotplug_bus_size = 6524 simple_strtoul(str + 10, &str, 0); 6525 if (pci_hotplug_bus_size > 0xff) 6526 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 6527 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) { 6528 pcie_bus_config = PCIE_BUS_TUNE_OFF; 6529 } else if (!strncmp(str, "pcie_bus_safe", 13)) { 6530 pcie_bus_config = PCIE_BUS_SAFE; 6531 } else if (!strncmp(str, "pcie_bus_perf", 13)) { 6532 pcie_bus_config = PCIE_BUS_PERFORMANCE; 6533 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) { 6534 pcie_bus_config = PCIE_BUS_PEER2PEER; 6535 } else if (!strncmp(str, "pcie_scan_all", 13)) { 6536 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS); 6537 } else if (!strncmp(str, "disable_acs_redir=", 18)) { 6538 disable_acs_redir_param = str + 18; 6539 } else { 6540 pr_err("PCI: Unknown option `%s'\n", str); 6541 } 6542 } 6543 str = k; 6544 } 6545 return 0; 6546 } 6547 early_param("pci", pci_setup); 6548 6549 /* 6550 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized 6551 * in pci_setup(), above, to point to data in the __initdata section which 6552 * will be freed after the init sequence is complete. We can't allocate memory 6553 * in pci_setup() because some architectures do not have any memory allocation 6554 * service available during an early_param() call. So we allocate memory and 6555 * copy the variable here before the init section is freed. 6556 * 6557 */ 6558 static int __init pci_realloc_setup_params(void) 6559 { 6560 resource_alignment_param = kstrdup(resource_alignment_param, 6561 GFP_KERNEL); 6562 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL); 6563 6564 return 0; 6565 } 6566 pure_initcall(pci_realloc_setup_params); 6567