1 /* 2 * PCI Bus Services, see include/linux/pci.h for further explanation. 3 * 4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter, 5 * David Mosberger-Tang 6 * 7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz> 8 */ 9 10 #include <linux/acpi.h> 11 #include <linux/kernel.h> 12 #include <linux/delay.h> 13 #include <linux/dmi.h> 14 #include <linux/init.h> 15 #include <linux/of.h> 16 #include <linux/of_pci.h> 17 #include <linux/pci.h> 18 #include <linux/pm.h> 19 #include <linux/slab.h> 20 #include <linux/module.h> 21 #include <linux/spinlock.h> 22 #include <linux/string.h> 23 #include <linux/log2.h> 24 #include <linux/pci-aspm.h> 25 #include <linux/pm_wakeup.h> 26 #include <linux/interrupt.h> 27 #include <linux/device.h> 28 #include <linux/pm_runtime.h> 29 #include <linux/pci_hotplug.h> 30 #include <linux/vmalloc.h> 31 #include <asm/setup.h> 32 #include <asm/dma.h> 33 #include <linux/aer.h> 34 #include "pci.h" 35 36 const char *pci_power_names[] = { 37 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown", 38 }; 39 EXPORT_SYMBOL_GPL(pci_power_names); 40 41 int isa_dma_bridge_buggy; 42 EXPORT_SYMBOL(isa_dma_bridge_buggy); 43 44 int pci_pci_problems; 45 EXPORT_SYMBOL(pci_pci_problems); 46 47 unsigned int pci_pm_d3_delay; 48 49 static void pci_pme_list_scan(struct work_struct *work); 50 51 static LIST_HEAD(pci_pme_list); 52 static DEFINE_MUTEX(pci_pme_list_mutex); 53 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan); 54 55 struct pci_pme_device { 56 struct list_head list; 57 struct pci_dev *dev; 58 }; 59 60 #define PME_TIMEOUT 1000 /* How long between PME checks */ 61 62 static void pci_dev_d3_sleep(struct pci_dev *dev) 63 { 64 unsigned int delay = dev->d3_delay; 65 66 if (delay < pci_pm_d3_delay) 67 delay = pci_pm_d3_delay; 68 69 if (delay) 70 msleep(delay); 71 } 72 73 #ifdef CONFIG_PCI_DOMAINS 74 int pci_domains_supported = 1; 75 #endif 76 77 #define DEFAULT_CARDBUS_IO_SIZE (256) 78 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024) 79 /* pci=cbmemsize=nnM,cbiosize=nn can override this */ 80 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE; 81 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE; 82 83 #define DEFAULT_HOTPLUG_IO_SIZE (256) 84 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024) 85 /* pci=hpmemsize=nnM,hpiosize=nn can override this */ 86 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE; 87 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE; 88 89 #define DEFAULT_HOTPLUG_BUS_SIZE 1 90 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 91 92 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT; 93 94 /* 95 * The default CLS is used if arch didn't set CLS explicitly and not 96 * all pci devices agree on the same value. Arch can override either 97 * the dfl or actual value as it sees fit. Don't forget this is 98 * measured in 32-bit words, not bytes. 99 */ 100 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2; 101 u8 pci_cache_line_size; 102 103 /* 104 * If we set up a device for bus mastering, we need to check the latency 105 * timer as certain BIOSes forget to set it properly. 106 */ 107 unsigned int pcibios_max_latency = 255; 108 109 /* If set, the PCIe ARI capability will not be used. */ 110 static bool pcie_ari_disabled; 111 112 /* Disable bridge_d3 for all PCIe ports */ 113 static bool pci_bridge_d3_disable; 114 /* Force bridge_d3 for all PCIe ports */ 115 static bool pci_bridge_d3_force; 116 117 static int __init pcie_port_pm_setup(char *str) 118 { 119 if (!strcmp(str, "off")) 120 pci_bridge_d3_disable = true; 121 else if (!strcmp(str, "force")) 122 pci_bridge_d3_force = true; 123 return 1; 124 } 125 __setup("pcie_port_pm=", pcie_port_pm_setup); 126 127 /** 128 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children 129 * @bus: pointer to PCI bus structure to search 130 * 131 * Given a PCI bus, returns the highest PCI bus number present in the set 132 * including the given PCI bus and its list of child PCI buses. 133 */ 134 unsigned char pci_bus_max_busnr(struct pci_bus *bus) 135 { 136 struct pci_bus *tmp; 137 unsigned char max, n; 138 139 max = bus->busn_res.end; 140 list_for_each_entry(tmp, &bus->children, node) { 141 n = pci_bus_max_busnr(tmp); 142 if (n > max) 143 max = n; 144 } 145 return max; 146 } 147 EXPORT_SYMBOL_GPL(pci_bus_max_busnr); 148 149 #ifdef CONFIG_HAS_IOMEM 150 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar) 151 { 152 struct resource *res = &pdev->resource[bar]; 153 154 /* 155 * Make sure the BAR is actually a memory resource, not an IO resource 156 */ 157 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) { 158 dev_warn(&pdev->dev, "can't ioremap BAR %d: %pR\n", bar, res); 159 return NULL; 160 } 161 return ioremap_nocache(res->start, resource_size(res)); 162 } 163 EXPORT_SYMBOL_GPL(pci_ioremap_bar); 164 165 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar) 166 { 167 /* 168 * Make sure the BAR is actually a memory resource, not an IO resource 169 */ 170 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) { 171 WARN_ON(1); 172 return NULL; 173 } 174 return ioremap_wc(pci_resource_start(pdev, bar), 175 pci_resource_len(pdev, bar)); 176 } 177 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar); 178 #endif 179 180 181 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn, 182 u8 pos, int cap, int *ttl) 183 { 184 u8 id; 185 u16 ent; 186 187 pci_bus_read_config_byte(bus, devfn, pos, &pos); 188 189 while ((*ttl)--) { 190 if (pos < 0x40) 191 break; 192 pos &= ~3; 193 pci_bus_read_config_word(bus, devfn, pos, &ent); 194 195 id = ent & 0xff; 196 if (id == 0xff) 197 break; 198 if (id == cap) 199 return pos; 200 pos = (ent >> 8); 201 } 202 return 0; 203 } 204 205 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn, 206 u8 pos, int cap) 207 { 208 int ttl = PCI_FIND_CAP_TTL; 209 210 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl); 211 } 212 213 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap) 214 { 215 return __pci_find_next_cap(dev->bus, dev->devfn, 216 pos + PCI_CAP_LIST_NEXT, cap); 217 } 218 EXPORT_SYMBOL_GPL(pci_find_next_capability); 219 220 static int __pci_bus_find_cap_start(struct pci_bus *bus, 221 unsigned int devfn, u8 hdr_type) 222 { 223 u16 status; 224 225 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status); 226 if (!(status & PCI_STATUS_CAP_LIST)) 227 return 0; 228 229 switch (hdr_type) { 230 case PCI_HEADER_TYPE_NORMAL: 231 case PCI_HEADER_TYPE_BRIDGE: 232 return PCI_CAPABILITY_LIST; 233 case PCI_HEADER_TYPE_CARDBUS: 234 return PCI_CB_CAPABILITY_LIST; 235 } 236 237 return 0; 238 } 239 240 /** 241 * pci_find_capability - query for devices' capabilities 242 * @dev: PCI device to query 243 * @cap: capability code 244 * 245 * Tell if a device supports a given PCI capability. 246 * Returns the address of the requested capability structure within the 247 * device's PCI configuration space or 0 in case the device does not 248 * support it. Possible values for @cap: 249 * 250 * %PCI_CAP_ID_PM Power Management 251 * %PCI_CAP_ID_AGP Accelerated Graphics Port 252 * %PCI_CAP_ID_VPD Vital Product Data 253 * %PCI_CAP_ID_SLOTID Slot Identification 254 * %PCI_CAP_ID_MSI Message Signalled Interrupts 255 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap 256 * %PCI_CAP_ID_PCIX PCI-X 257 * %PCI_CAP_ID_EXP PCI Express 258 */ 259 int pci_find_capability(struct pci_dev *dev, int cap) 260 { 261 int pos; 262 263 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 264 if (pos) 265 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap); 266 267 return pos; 268 } 269 EXPORT_SYMBOL(pci_find_capability); 270 271 /** 272 * pci_bus_find_capability - query for devices' capabilities 273 * @bus: the PCI bus to query 274 * @devfn: PCI device to query 275 * @cap: capability code 276 * 277 * Like pci_find_capability() but works for pci devices that do not have a 278 * pci_dev structure set up yet. 279 * 280 * Returns the address of the requested capability structure within the 281 * device's PCI configuration space or 0 in case the device does not 282 * support it. 283 */ 284 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap) 285 { 286 int pos; 287 u8 hdr_type; 288 289 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type); 290 291 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f); 292 if (pos) 293 pos = __pci_find_next_cap(bus, devfn, pos, cap); 294 295 return pos; 296 } 297 EXPORT_SYMBOL(pci_bus_find_capability); 298 299 /** 300 * pci_find_next_ext_capability - Find an extended capability 301 * @dev: PCI device to query 302 * @start: address at which to start looking (0 to start at beginning of list) 303 * @cap: capability code 304 * 305 * Returns the address of the next matching extended capability structure 306 * within the device's PCI configuration space or 0 if the device does 307 * not support it. Some capabilities can occur several times, e.g., the 308 * vendor-specific capability, and this provides a way to find them all. 309 */ 310 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap) 311 { 312 u32 header; 313 int ttl; 314 int pos = PCI_CFG_SPACE_SIZE; 315 316 /* minimum 8 bytes per capability */ 317 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8; 318 319 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE) 320 return 0; 321 322 if (start) 323 pos = start; 324 325 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 326 return 0; 327 328 /* 329 * If we have no capabilities, this is indicated by cap ID, 330 * cap version and next pointer all being 0. 331 */ 332 if (header == 0) 333 return 0; 334 335 while (ttl-- > 0) { 336 if (PCI_EXT_CAP_ID(header) == cap && pos != start) 337 return pos; 338 339 pos = PCI_EXT_CAP_NEXT(header); 340 if (pos < PCI_CFG_SPACE_SIZE) 341 break; 342 343 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 344 break; 345 } 346 347 return 0; 348 } 349 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability); 350 351 /** 352 * pci_find_ext_capability - Find an extended capability 353 * @dev: PCI device to query 354 * @cap: capability code 355 * 356 * Returns the address of the requested extended capability structure 357 * within the device's PCI configuration space or 0 if the device does 358 * not support it. Possible values for @cap: 359 * 360 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting 361 * %PCI_EXT_CAP_ID_VC Virtual Channel 362 * %PCI_EXT_CAP_ID_DSN Device Serial Number 363 * %PCI_EXT_CAP_ID_PWR Power Budgeting 364 */ 365 int pci_find_ext_capability(struct pci_dev *dev, int cap) 366 { 367 return pci_find_next_ext_capability(dev, 0, cap); 368 } 369 EXPORT_SYMBOL_GPL(pci_find_ext_capability); 370 371 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap) 372 { 373 int rc, ttl = PCI_FIND_CAP_TTL; 374 u8 cap, mask; 375 376 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST) 377 mask = HT_3BIT_CAP_MASK; 378 else 379 mask = HT_5BIT_CAP_MASK; 380 381 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos, 382 PCI_CAP_ID_HT, &ttl); 383 while (pos) { 384 rc = pci_read_config_byte(dev, pos + 3, &cap); 385 if (rc != PCIBIOS_SUCCESSFUL) 386 return 0; 387 388 if ((cap & mask) == ht_cap) 389 return pos; 390 391 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, 392 pos + PCI_CAP_LIST_NEXT, 393 PCI_CAP_ID_HT, &ttl); 394 } 395 396 return 0; 397 } 398 /** 399 * pci_find_next_ht_capability - query a device's Hypertransport capabilities 400 * @dev: PCI device to query 401 * @pos: Position from which to continue searching 402 * @ht_cap: Hypertransport capability code 403 * 404 * To be used in conjunction with pci_find_ht_capability() to search for 405 * all capabilities matching @ht_cap. @pos should always be a value returned 406 * from pci_find_ht_capability(). 407 * 408 * NB. To be 100% safe against broken PCI devices, the caller should take 409 * steps to avoid an infinite loop. 410 */ 411 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap) 412 { 413 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap); 414 } 415 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability); 416 417 /** 418 * pci_find_ht_capability - query a device's Hypertransport capabilities 419 * @dev: PCI device to query 420 * @ht_cap: Hypertransport capability code 421 * 422 * Tell if a device supports a given Hypertransport capability. 423 * Returns an address within the device's PCI configuration space 424 * or 0 in case the device does not support the request capability. 425 * The address points to the PCI capability, of type PCI_CAP_ID_HT, 426 * which has a Hypertransport capability matching @ht_cap. 427 */ 428 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap) 429 { 430 int pos; 431 432 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 433 if (pos) 434 pos = __pci_find_next_ht_cap(dev, pos, ht_cap); 435 436 return pos; 437 } 438 EXPORT_SYMBOL_GPL(pci_find_ht_capability); 439 440 /** 441 * pci_find_parent_resource - return resource region of parent bus of given region 442 * @dev: PCI device structure contains resources to be searched 443 * @res: child resource record for which parent is sought 444 * 445 * For given resource region of given device, return the resource 446 * region of parent bus the given region is contained in. 447 */ 448 struct resource *pci_find_parent_resource(const struct pci_dev *dev, 449 struct resource *res) 450 { 451 const struct pci_bus *bus = dev->bus; 452 struct resource *r; 453 int i; 454 455 pci_bus_for_each_resource(bus, r, i) { 456 if (!r) 457 continue; 458 if (res->start && resource_contains(r, res)) { 459 460 /* 461 * If the window is prefetchable but the BAR is 462 * not, the allocator made a mistake. 463 */ 464 if (r->flags & IORESOURCE_PREFETCH && 465 !(res->flags & IORESOURCE_PREFETCH)) 466 return NULL; 467 468 /* 469 * If we're below a transparent bridge, there may 470 * be both a positively-decoded aperture and a 471 * subtractively-decoded region that contain the BAR. 472 * We want the positively-decoded one, so this depends 473 * on pci_bus_for_each_resource() giving us those 474 * first. 475 */ 476 return r; 477 } 478 } 479 return NULL; 480 } 481 EXPORT_SYMBOL(pci_find_parent_resource); 482 483 /** 484 * pci_find_resource - Return matching PCI device resource 485 * @dev: PCI device to query 486 * @res: Resource to look for 487 * 488 * Goes over standard PCI resources (BARs) and checks if the given resource 489 * is partially or fully contained in any of them. In that case the 490 * matching resource is returned, %NULL otherwise. 491 */ 492 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res) 493 { 494 int i; 495 496 for (i = 0; i < PCI_ROM_RESOURCE; i++) { 497 struct resource *r = &dev->resource[i]; 498 499 if (r->start && resource_contains(r, res)) 500 return r; 501 } 502 503 return NULL; 504 } 505 EXPORT_SYMBOL(pci_find_resource); 506 507 /** 508 * pci_find_pcie_root_port - return PCIe Root Port 509 * @dev: PCI device to query 510 * 511 * Traverse up the parent chain and return the PCIe Root Port PCI Device 512 * for a given PCI Device. 513 */ 514 struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev) 515 { 516 struct pci_dev *bridge, *highest_pcie_bridge = NULL; 517 518 bridge = pci_upstream_bridge(dev); 519 while (bridge && pci_is_pcie(bridge)) { 520 highest_pcie_bridge = bridge; 521 bridge = pci_upstream_bridge(bridge); 522 } 523 524 if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT) 525 return NULL; 526 527 return highest_pcie_bridge; 528 } 529 EXPORT_SYMBOL(pci_find_pcie_root_port); 530 531 /** 532 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos 533 * @dev: the PCI device to operate on 534 * @pos: config space offset of status word 535 * @mask: mask of bit(s) to care about in status word 536 * 537 * Return 1 when mask bit(s) in status word clear, 0 otherwise. 538 */ 539 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask) 540 { 541 int i; 542 543 /* Wait for Transaction Pending bit clean */ 544 for (i = 0; i < 4; i++) { 545 u16 status; 546 if (i) 547 msleep((1 << (i - 1)) * 100); 548 549 pci_read_config_word(dev, pos, &status); 550 if (!(status & mask)) 551 return 1; 552 } 553 554 return 0; 555 } 556 557 /** 558 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up) 559 * @dev: PCI device to have its BARs restored 560 * 561 * Restore the BAR values for a given device, so as to make it 562 * accessible by its driver. 563 */ 564 static void pci_restore_bars(struct pci_dev *dev) 565 { 566 int i; 567 568 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) 569 pci_update_resource(dev, i); 570 } 571 572 static const struct pci_platform_pm_ops *pci_platform_pm; 573 574 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops) 575 { 576 if (!ops->is_manageable || !ops->set_state || !ops->get_state || 577 !ops->choose_state || !ops->sleep_wake || !ops->run_wake || 578 !ops->need_resume) 579 return -EINVAL; 580 pci_platform_pm = ops; 581 return 0; 582 } 583 584 static inline bool platform_pci_power_manageable(struct pci_dev *dev) 585 { 586 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false; 587 } 588 589 static inline int platform_pci_set_power_state(struct pci_dev *dev, 590 pci_power_t t) 591 { 592 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS; 593 } 594 595 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev) 596 { 597 return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN; 598 } 599 600 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev) 601 { 602 return pci_platform_pm ? 603 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR; 604 } 605 606 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable) 607 { 608 return pci_platform_pm ? 609 pci_platform_pm->sleep_wake(dev, enable) : -ENODEV; 610 } 611 612 static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable) 613 { 614 return pci_platform_pm ? 615 pci_platform_pm->run_wake(dev, enable) : -ENODEV; 616 } 617 618 static inline bool platform_pci_need_resume(struct pci_dev *dev) 619 { 620 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false; 621 } 622 623 /** 624 * pci_raw_set_power_state - Use PCI PM registers to set the power state of 625 * given PCI device 626 * @dev: PCI device to handle. 627 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 628 * 629 * RETURN VALUE: 630 * -EINVAL if the requested state is invalid. 631 * -EIO if device does not support PCI PM or its PM capabilities register has a 632 * wrong version, or device doesn't support the requested state. 633 * 0 if device already is in the requested state. 634 * 0 if device's power state has been successfully changed. 635 */ 636 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state) 637 { 638 u16 pmcsr; 639 bool need_restore = false; 640 641 /* Check if we're already there */ 642 if (dev->current_state == state) 643 return 0; 644 645 if (!dev->pm_cap) 646 return -EIO; 647 648 if (state < PCI_D0 || state > PCI_D3hot) 649 return -EINVAL; 650 651 /* Validate current state: 652 * Can enter D0 from any state, but if we can only go deeper 653 * to sleep if we're already in a low power state 654 */ 655 if (state != PCI_D0 && dev->current_state <= PCI_D3cold 656 && dev->current_state > state) { 657 dev_err(&dev->dev, "invalid power transition (from state %d to %d)\n", 658 dev->current_state, state); 659 return -EINVAL; 660 } 661 662 /* check if this device supports the desired state */ 663 if ((state == PCI_D1 && !dev->d1_support) 664 || (state == PCI_D2 && !dev->d2_support)) 665 return -EIO; 666 667 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 668 669 /* If we're (effectively) in D3, force entire word to 0. 670 * This doesn't affect PME_Status, disables PME_En, and 671 * sets PowerState to 0. 672 */ 673 switch (dev->current_state) { 674 case PCI_D0: 675 case PCI_D1: 676 case PCI_D2: 677 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 678 pmcsr |= state; 679 break; 680 case PCI_D3hot: 681 case PCI_D3cold: 682 case PCI_UNKNOWN: /* Boot-up */ 683 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot 684 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET)) 685 need_restore = true; 686 /* Fall-through: force to D0 */ 687 default: 688 pmcsr = 0; 689 break; 690 } 691 692 /* enter specified state */ 693 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 694 695 /* Mandatory power management transition delays */ 696 /* see PCI PM 1.1 5.6.1 table 18 */ 697 if (state == PCI_D3hot || dev->current_state == PCI_D3hot) 698 pci_dev_d3_sleep(dev); 699 else if (state == PCI_D2 || dev->current_state == PCI_D2) 700 udelay(PCI_PM_D2_DELAY); 701 702 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 703 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 704 if (dev->current_state != state && printk_ratelimit()) 705 dev_info(&dev->dev, "Refused to change power state, currently in D%d\n", 706 dev->current_state); 707 708 /* 709 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT 710 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning 711 * from D3hot to D0 _may_ perform an internal reset, thereby 712 * going to "D0 Uninitialized" rather than "D0 Initialized". 713 * For example, at least some versions of the 3c905B and the 714 * 3c556B exhibit this behaviour. 715 * 716 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave 717 * devices in a D3hot state at boot. Consequently, we need to 718 * restore at least the BARs so that the device will be 719 * accessible to its driver. 720 */ 721 if (need_restore) 722 pci_restore_bars(dev); 723 724 if (dev->bus->self) 725 pcie_aspm_pm_state_change(dev->bus->self); 726 727 return 0; 728 } 729 730 /** 731 * pci_update_current_state - Read power state of given device and cache it 732 * @dev: PCI device to handle. 733 * @state: State to cache in case the device doesn't have the PM capability 734 * 735 * The power state is read from the PMCSR register, which however is 736 * inaccessible in D3cold. The platform firmware is therefore queried first 737 * to detect accessibility of the register. In case the platform firmware 738 * reports an incorrect state or the device isn't power manageable by the 739 * platform at all, we try to detect D3cold by testing accessibility of the 740 * vendor ID in config space. 741 */ 742 void pci_update_current_state(struct pci_dev *dev, pci_power_t state) 743 { 744 if (platform_pci_get_power_state(dev) == PCI_D3cold || 745 !pci_device_is_present(dev)) { 746 dev->current_state = PCI_D3cold; 747 } else if (dev->pm_cap) { 748 u16 pmcsr; 749 750 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 751 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 752 } else { 753 dev->current_state = state; 754 } 755 } 756 757 /** 758 * pci_power_up - Put the given device into D0 forcibly 759 * @dev: PCI device to power up 760 */ 761 void pci_power_up(struct pci_dev *dev) 762 { 763 if (platform_pci_power_manageable(dev)) 764 platform_pci_set_power_state(dev, PCI_D0); 765 766 pci_raw_set_power_state(dev, PCI_D0); 767 pci_update_current_state(dev, PCI_D0); 768 } 769 770 /** 771 * pci_platform_power_transition - Use platform to change device power state 772 * @dev: PCI device to handle. 773 * @state: State to put the device into. 774 */ 775 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state) 776 { 777 int error; 778 779 if (platform_pci_power_manageable(dev)) { 780 error = platform_pci_set_power_state(dev, state); 781 if (!error) 782 pci_update_current_state(dev, state); 783 } else 784 error = -ENODEV; 785 786 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */ 787 dev->current_state = PCI_D0; 788 789 return error; 790 } 791 792 /** 793 * pci_wakeup - Wake up a PCI device 794 * @pci_dev: Device to handle. 795 * @ign: ignored parameter 796 */ 797 static int pci_wakeup(struct pci_dev *pci_dev, void *ign) 798 { 799 pci_wakeup_event(pci_dev); 800 pm_request_resume(&pci_dev->dev); 801 return 0; 802 } 803 804 /** 805 * pci_wakeup_bus - Walk given bus and wake up devices on it 806 * @bus: Top bus of the subtree to walk. 807 */ 808 static void pci_wakeup_bus(struct pci_bus *bus) 809 { 810 if (bus) 811 pci_walk_bus(bus, pci_wakeup, NULL); 812 } 813 814 /** 815 * __pci_start_power_transition - Start power transition of a PCI device 816 * @dev: PCI device to handle. 817 * @state: State to put the device into. 818 */ 819 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state) 820 { 821 if (state == PCI_D0) { 822 pci_platform_power_transition(dev, PCI_D0); 823 /* 824 * Mandatory power management transition delays, see 825 * PCI Express Base Specification Revision 2.0 Section 826 * 6.6.1: Conventional Reset. Do not delay for 827 * devices powered on/off by corresponding bridge, 828 * because have already delayed for the bridge. 829 */ 830 if (dev->runtime_d3cold) { 831 if (dev->d3cold_delay) 832 msleep(dev->d3cold_delay); 833 /* 834 * When powering on a bridge from D3cold, the 835 * whole hierarchy may be powered on into 836 * D0uninitialized state, resume them to give 837 * them a chance to suspend again 838 */ 839 pci_wakeup_bus(dev->subordinate); 840 } 841 } 842 } 843 844 /** 845 * __pci_dev_set_current_state - Set current state of a PCI device 846 * @dev: Device to handle 847 * @data: pointer to state to be set 848 */ 849 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data) 850 { 851 pci_power_t state = *(pci_power_t *)data; 852 853 dev->current_state = state; 854 return 0; 855 } 856 857 /** 858 * __pci_bus_set_current_state - Walk given bus and set current state of devices 859 * @bus: Top bus of the subtree to walk. 860 * @state: state to be set 861 */ 862 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state) 863 { 864 if (bus) 865 pci_walk_bus(bus, __pci_dev_set_current_state, &state); 866 } 867 868 /** 869 * __pci_complete_power_transition - Complete power transition of a PCI device 870 * @dev: PCI device to handle. 871 * @state: State to put the device into. 872 * 873 * This function should not be called directly by device drivers. 874 */ 875 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state) 876 { 877 int ret; 878 879 if (state <= PCI_D0) 880 return -EINVAL; 881 ret = pci_platform_power_transition(dev, state); 882 /* Power off the bridge may power off the whole hierarchy */ 883 if (!ret && state == PCI_D3cold) 884 __pci_bus_set_current_state(dev->subordinate, PCI_D3cold); 885 return ret; 886 } 887 EXPORT_SYMBOL_GPL(__pci_complete_power_transition); 888 889 /** 890 * pci_set_power_state - Set the power state of a PCI device 891 * @dev: PCI device to handle. 892 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 893 * 894 * Transition a device to a new power state, using the platform firmware and/or 895 * the device's PCI PM registers. 896 * 897 * RETURN VALUE: 898 * -EINVAL if the requested state is invalid. 899 * -EIO if device does not support PCI PM or its PM capabilities register has a 900 * wrong version, or device doesn't support the requested state. 901 * 0 if device already is in the requested state. 902 * 0 if device's power state has been successfully changed. 903 */ 904 int pci_set_power_state(struct pci_dev *dev, pci_power_t state) 905 { 906 int error; 907 908 /* bound the state we're entering */ 909 if (state > PCI_D3cold) 910 state = PCI_D3cold; 911 else if (state < PCI_D0) 912 state = PCI_D0; 913 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev)) 914 /* 915 * If the device or the parent bridge do not support PCI PM, 916 * ignore the request if we're doing anything other than putting 917 * it into D0 (which would only happen on boot). 918 */ 919 return 0; 920 921 /* Check if we're already there */ 922 if (dev->current_state == state) 923 return 0; 924 925 __pci_start_power_transition(dev, state); 926 927 /* This device is quirked not to be put into D3, so 928 don't put it in D3 */ 929 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3)) 930 return 0; 931 932 /* 933 * To put device in D3cold, we put device into D3hot in native 934 * way, then put device into D3cold with platform ops 935 */ 936 error = pci_raw_set_power_state(dev, state > PCI_D3hot ? 937 PCI_D3hot : state); 938 939 if (!__pci_complete_power_transition(dev, state)) 940 error = 0; 941 942 return error; 943 } 944 EXPORT_SYMBOL(pci_set_power_state); 945 946 /** 947 * pci_choose_state - Choose the power state of a PCI device 948 * @dev: PCI device to be suspended 949 * @state: target sleep state for the whole system. This is the value 950 * that is passed to suspend() function. 951 * 952 * Returns PCI power state suitable for given device and given system 953 * message. 954 */ 955 956 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state) 957 { 958 pci_power_t ret; 959 960 if (!dev->pm_cap) 961 return PCI_D0; 962 963 ret = platform_pci_choose_state(dev); 964 if (ret != PCI_POWER_ERROR) 965 return ret; 966 967 switch (state.event) { 968 case PM_EVENT_ON: 969 return PCI_D0; 970 case PM_EVENT_FREEZE: 971 case PM_EVENT_PRETHAW: 972 /* REVISIT both freeze and pre-thaw "should" use D0 */ 973 case PM_EVENT_SUSPEND: 974 case PM_EVENT_HIBERNATE: 975 return PCI_D3hot; 976 default: 977 dev_info(&dev->dev, "unrecognized suspend event %d\n", 978 state.event); 979 BUG(); 980 } 981 return PCI_D0; 982 } 983 EXPORT_SYMBOL(pci_choose_state); 984 985 #define PCI_EXP_SAVE_REGS 7 986 987 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev, 988 u16 cap, bool extended) 989 { 990 struct pci_cap_saved_state *tmp; 991 992 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) { 993 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap) 994 return tmp; 995 } 996 return NULL; 997 } 998 999 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap) 1000 { 1001 return _pci_find_saved_cap(dev, cap, false); 1002 } 1003 1004 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap) 1005 { 1006 return _pci_find_saved_cap(dev, cap, true); 1007 } 1008 1009 static int pci_save_pcie_state(struct pci_dev *dev) 1010 { 1011 int i = 0; 1012 struct pci_cap_saved_state *save_state; 1013 u16 *cap; 1014 1015 if (!pci_is_pcie(dev)) 1016 return 0; 1017 1018 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1019 if (!save_state) { 1020 dev_err(&dev->dev, "buffer not found in %s\n", __func__); 1021 return -ENOMEM; 1022 } 1023 1024 cap = (u16 *)&save_state->cap.data[0]; 1025 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]); 1026 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]); 1027 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]); 1028 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]); 1029 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]); 1030 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]); 1031 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]); 1032 1033 return 0; 1034 } 1035 1036 static void pci_restore_pcie_state(struct pci_dev *dev) 1037 { 1038 int i = 0; 1039 struct pci_cap_saved_state *save_state; 1040 u16 *cap; 1041 1042 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1043 if (!save_state) 1044 return; 1045 1046 cap = (u16 *)&save_state->cap.data[0]; 1047 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]); 1048 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]); 1049 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]); 1050 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]); 1051 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]); 1052 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]); 1053 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]); 1054 } 1055 1056 1057 static int pci_save_pcix_state(struct pci_dev *dev) 1058 { 1059 int pos; 1060 struct pci_cap_saved_state *save_state; 1061 1062 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1063 if (!pos) 1064 return 0; 1065 1066 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1067 if (!save_state) { 1068 dev_err(&dev->dev, "buffer not found in %s\n", __func__); 1069 return -ENOMEM; 1070 } 1071 1072 pci_read_config_word(dev, pos + PCI_X_CMD, 1073 (u16 *)save_state->cap.data); 1074 1075 return 0; 1076 } 1077 1078 static void pci_restore_pcix_state(struct pci_dev *dev) 1079 { 1080 int i = 0, pos; 1081 struct pci_cap_saved_state *save_state; 1082 u16 *cap; 1083 1084 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1085 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1086 if (!save_state || !pos) 1087 return; 1088 cap = (u16 *)&save_state->cap.data[0]; 1089 1090 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]); 1091 } 1092 1093 1094 /** 1095 * pci_save_state - save the PCI configuration space of a device before suspending 1096 * @dev: - PCI device that we're dealing with 1097 */ 1098 int pci_save_state(struct pci_dev *dev) 1099 { 1100 int i; 1101 /* XXX: 100% dword access ok here? */ 1102 for (i = 0; i < 16; i++) 1103 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]); 1104 dev->state_saved = true; 1105 1106 i = pci_save_pcie_state(dev); 1107 if (i != 0) 1108 return i; 1109 1110 i = pci_save_pcix_state(dev); 1111 if (i != 0) 1112 return i; 1113 1114 return pci_save_vc_state(dev); 1115 } 1116 EXPORT_SYMBOL(pci_save_state); 1117 1118 static void pci_restore_config_dword(struct pci_dev *pdev, int offset, 1119 u32 saved_val, int retry) 1120 { 1121 u32 val; 1122 1123 pci_read_config_dword(pdev, offset, &val); 1124 if (val == saved_val) 1125 return; 1126 1127 for (;;) { 1128 dev_dbg(&pdev->dev, "restoring config space at offset %#x (was %#x, writing %#x)\n", 1129 offset, val, saved_val); 1130 pci_write_config_dword(pdev, offset, saved_val); 1131 if (retry-- <= 0) 1132 return; 1133 1134 pci_read_config_dword(pdev, offset, &val); 1135 if (val == saved_val) 1136 return; 1137 1138 mdelay(1); 1139 } 1140 } 1141 1142 static void pci_restore_config_space_range(struct pci_dev *pdev, 1143 int start, int end, int retry) 1144 { 1145 int index; 1146 1147 for (index = end; index >= start; index--) 1148 pci_restore_config_dword(pdev, 4 * index, 1149 pdev->saved_config_space[index], 1150 retry); 1151 } 1152 1153 static void pci_restore_config_space(struct pci_dev *pdev) 1154 { 1155 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) { 1156 pci_restore_config_space_range(pdev, 10, 15, 0); 1157 /* Restore BARs before the command register. */ 1158 pci_restore_config_space_range(pdev, 4, 9, 10); 1159 pci_restore_config_space_range(pdev, 0, 3, 0); 1160 } else { 1161 pci_restore_config_space_range(pdev, 0, 15, 0); 1162 } 1163 } 1164 1165 /** 1166 * pci_restore_state - Restore the saved state of a PCI device 1167 * @dev: - PCI device that we're dealing with 1168 */ 1169 void pci_restore_state(struct pci_dev *dev) 1170 { 1171 if (!dev->state_saved) 1172 return; 1173 1174 /* PCI Express register must be restored first */ 1175 pci_restore_pcie_state(dev); 1176 pci_restore_ats_state(dev); 1177 pci_restore_vc_state(dev); 1178 1179 pci_cleanup_aer_error_status_regs(dev); 1180 1181 pci_restore_config_space(dev); 1182 1183 pci_restore_pcix_state(dev); 1184 pci_restore_msi_state(dev); 1185 1186 /* Restore ACS and IOV configuration state */ 1187 pci_enable_acs(dev); 1188 pci_restore_iov_state(dev); 1189 1190 dev->state_saved = false; 1191 } 1192 EXPORT_SYMBOL(pci_restore_state); 1193 1194 struct pci_saved_state { 1195 u32 config_space[16]; 1196 struct pci_cap_saved_data cap[0]; 1197 }; 1198 1199 /** 1200 * pci_store_saved_state - Allocate and return an opaque struct containing 1201 * the device saved state. 1202 * @dev: PCI device that we're dealing with 1203 * 1204 * Return NULL if no state or error. 1205 */ 1206 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev) 1207 { 1208 struct pci_saved_state *state; 1209 struct pci_cap_saved_state *tmp; 1210 struct pci_cap_saved_data *cap; 1211 size_t size; 1212 1213 if (!dev->state_saved) 1214 return NULL; 1215 1216 size = sizeof(*state) + sizeof(struct pci_cap_saved_data); 1217 1218 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) 1219 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1220 1221 state = kzalloc(size, GFP_KERNEL); 1222 if (!state) 1223 return NULL; 1224 1225 memcpy(state->config_space, dev->saved_config_space, 1226 sizeof(state->config_space)); 1227 1228 cap = state->cap; 1229 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) { 1230 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1231 memcpy(cap, &tmp->cap, len); 1232 cap = (struct pci_cap_saved_data *)((u8 *)cap + len); 1233 } 1234 /* Empty cap_save terminates list */ 1235 1236 return state; 1237 } 1238 EXPORT_SYMBOL_GPL(pci_store_saved_state); 1239 1240 /** 1241 * pci_load_saved_state - Reload the provided save state into struct pci_dev. 1242 * @dev: PCI device that we're dealing with 1243 * @state: Saved state returned from pci_store_saved_state() 1244 */ 1245 int pci_load_saved_state(struct pci_dev *dev, 1246 struct pci_saved_state *state) 1247 { 1248 struct pci_cap_saved_data *cap; 1249 1250 dev->state_saved = false; 1251 1252 if (!state) 1253 return 0; 1254 1255 memcpy(dev->saved_config_space, state->config_space, 1256 sizeof(state->config_space)); 1257 1258 cap = state->cap; 1259 while (cap->size) { 1260 struct pci_cap_saved_state *tmp; 1261 1262 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended); 1263 if (!tmp || tmp->cap.size != cap->size) 1264 return -EINVAL; 1265 1266 memcpy(tmp->cap.data, cap->data, tmp->cap.size); 1267 cap = (struct pci_cap_saved_data *)((u8 *)cap + 1268 sizeof(struct pci_cap_saved_data) + cap->size); 1269 } 1270 1271 dev->state_saved = true; 1272 return 0; 1273 } 1274 EXPORT_SYMBOL_GPL(pci_load_saved_state); 1275 1276 /** 1277 * pci_load_and_free_saved_state - Reload the save state pointed to by state, 1278 * and free the memory allocated for it. 1279 * @dev: PCI device that we're dealing with 1280 * @state: Pointer to saved state returned from pci_store_saved_state() 1281 */ 1282 int pci_load_and_free_saved_state(struct pci_dev *dev, 1283 struct pci_saved_state **state) 1284 { 1285 int ret = pci_load_saved_state(dev, *state); 1286 kfree(*state); 1287 *state = NULL; 1288 return ret; 1289 } 1290 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state); 1291 1292 int __weak pcibios_enable_device(struct pci_dev *dev, int bars) 1293 { 1294 return pci_enable_resources(dev, bars); 1295 } 1296 1297 static int do_pci_enable_device(struct pci_dev *dev, int bars) 1298 { 1299 int err; 1300 struct pci_dev *bridge; 1301 u16 cmd; 1302 u8 pin; 1303 1304 err = pci_set_power_state(dev, PCI_D0); 1305 if (err < 0 && err != -EIO) 1306 return err; 1307 1308 bridge = pci_upstream_bridge(dev); 1309 if (bridge) 1310 pcie_aspm_powersave_config_link(bridge); 1311 1312 err = pcibios_enable_device(dev, bars); 1313 if (err < 0) 1314 return err; 1315 pci_fixup_device(pci_fixup_enable, dev); 1316 1317 if (dev->msi_enabled || dev->msix_enabled) 1318 return 0; 1319 1320 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin); 1321 if (pin) { 1322 pci_read_config_word(dev, PCI_COMMAND, &cmd); 1323 if (cmd & PCI_COMMAND_INTX_DISABLE) 1324 pci_write_config_word(dev, PCI_COMMAND, 1325 cmd & ~PCI_COMMAND_INTX_DISABLE); 1326 } 1327 1328 return 0; 1329 } 1330 1331 /** 1332 * pci_reenable_device - Resume abandoned device 1333 * @dev: PCI device to be resumed 1334 * 1335 * Note this function is a backend of pci_default_resume and is not supposed 1336 * to be called by normal code, write proper resume handler and use it instead. 1337 */ 1338 int pci_reenable_device(struct pci_dev *dev) 1339 { 1340 if (pci_is_enabled(dev)) 1341 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1); 1342 return 0; 1343 } 1344 EXPORT_SYMBOL(pci_reenable_device); 1345 1346 static void pci_enable_bridge(struct pci_dev *dev) 1347 { 1348 struct pci_dev *bridge; 1349 int retval; 1350 1351 bridge = pci_upstream_bridge(dev); 1352 if (bridge) 1353 pci_enable_bridge(bridge); 1354 1355 if (pci_is_enabled(dev)) { 1356 if (!dev->is_busmaster) 1357 pci_set_master(dev); 1358 return; 1359 } 1360 1361 retval = pci_enable_device(dev); 1362 if (retval) 1363 dev_err(&dev->dev, "Error enabling bridge (%d), continuing\n", 1364 retval); 1365 pci_set_master(dev); 1366 } 1367 1368 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags) 1369 { 1370 struct pci_dev *bridge; 1371 int err; 1372 int i, bars = 0; 1373 1374 /* 1375 * Power state could be unknown at this point, either due to a fresh 1376 * boot or a device removal call. So get the current power state 1377 * so that things like MSI message writing will behave as expected 1378 * (e.g. if the device really is in D0 at enable time). 1379 */ 1380 if (dev->pm_cap) { 1381 u16 pmcsr; 1382 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1383 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 1384 } 1385 1386 if (atomic_inc_return(&dev->enable_cnt) > 1) 1387 return 0; /* already enabled */ 1388 1389 bridge = pci_upstream_bridge(dev); 1390 if (bridge) 1391 pci_enable_bridge(bridge); 1392 1393 /* only skip sriov related */ 1394 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 1395 if (dev->resource[i].flags & flags) 1396 bars |= (1 << i); 1397 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++) 1398 if (dev->resource[i].flags & flags) 1399 bars |= (1 << i); 1400 1401 err = do_pci_enable_device(dev, bars); 1402 if (err < 0) 1403 atomic_dec(&dev->enable_cnt); 1404 return err; 1405 } 1406 1407 /** 1408 * pci_enable_device_io - Initialize a device for use with IO space 1409 * @dev: PCI device to be initialized 1410 * 1411 * Initialize device before it's used by a driver. Ask low-level code 1412 * to enable I/O resources. Wake up the device if it was suspended. 1413 * Beware, this function can fail. 1414 */ 1415 int pci_enable_device_io(struct pci_dev *dev) 1416 { 1417 return pci_enable_device_flags(dev, IORESOURCE_IO); 1418 } 1419 EXPORT_SYMBOL(pci_enable_device_io); 1420 1421 /** 1422 * pci_enable_device_mem - Initialize a device for use with Memory space 1423 * @dev: PCI device to be initialized 1424 * 1425 * Initialize device before it's used by a driver. Ask low-level code 1426 * to enable Memory resources. Wake up the device if it was suspended. 1427 * Beware, this function can fail. 1428 */ 1429 int pci_enable_device_mem(struct pci_dev *dev) 1430 { 1431 return pci_enable_device_flags(dev, IORESOURCE_MEM); 1432 } 1433 EXPORT_SYMBOL(pci_enable_device_mem); 1434 1435 /** 1436 * pci_enable_device - Initialize device before it's used by a driver. 1437 * @dev: PCI device to be initialized 1438 * 1439 * Initialize device before it's used by a driver. Ask low-level code 1440 * to enable I/O and memory. Wake up the device if it was suspended. 1441 * Beware, this function can fail. 1442 * 1443 * Note we don't actually enable the device many times if we call 1444 * this function repeatedly (we just increment the count). 1445 */ 1446 int pci_enable_device(struct pci_dev *dev) 1447 { 1448 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO); 1449 } 1450 EXPORT_SYMBOL(pci_enable_device); 1451 1452 /* 1453 * Managed PCI resources. This manages device on/off, intx/msi/msix 1454 * on/off and BAR regions. pci_dev itself records msi/msix status, so 1455 * there's no need to track it separately. pci_devres is initialized 1456 * when a device is enabled using managed PCI device enable interface. 1457 */ 1458 struct pci_devres { 1459 unsigned int enabled:1; 1460 unsigned int pinned:1; 1461 unsigned int orig_intx:1; 1462 unsigned int restore_intx:1; 1463 u32 region_mask; 1464 }; 1465 1466 static void pcim_release(struct device *gendev, void *res) 1467 { 1468 struct pci_dev *dev = to_pci_dev(gendev); 1469 struct pci_devres *this = res; 1470 int i; 1471 1472 if (dev->msi_enabled) 1473 pci_disable_msi(dev); 1474 if (dev->msix_enabled) 1475 pci_disable_msix(dev); 1476 1477 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) 1478 if (this->region_mask & (1 << i)) 1479 pci_release_region(dev, i); 1480 1481 if (this->restore_intx) 1482 pci_intx(dev, this->orig_intx); 1483 1484 if (this->enabled && !this->pinned) 1485 pci_disable_device(dev); 1486 } 1487 1488 static struct pci_devres *get_pci_dr(struct pci_dev *pdev) 1489 { 1490 struct pci_devres *dr, *new_dr; 1491 1492 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL); 1493 if (dr) 1494 return dr; 1495 1496 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL); 1497 if (!new_dr) 1498 return NULL; 1499 return devres_get(&pdev->dev, new_dr, NULL, NULL); 1500 } 1501 1502 static struct pci_devres *find_pci_dr(struct pci_dev *pdev) 1503 { 1504 if (pci_is_managed(pdev)) 1505 return devres_find(&pdev->dev, pcim_release, NULL, NULL); 1506 return NULL; 1507 } 1508 1509 /** 1510 * pcim_enable_device - Managed pci_enable_device() 1511 * @pdev: PCI device to be initialized 1512 * 1513 * Managed pci_enable_device(). 1514 */ 1515 int pcim_enable_device(struct pci_dev *pdev) 1516 { 1517 struct pci_devres *dr; 1518 int rc; 1519 1520 dr = get_pci_dr(pdev); 1521 if (unlikely(!dr)) 1522 return -ENOMEM; 1523 if (dr->enabled) 1524 return 0; 1525 1526 rc = pci_enable_device(pdev); 1527 if (!rc) { 1528 pdev->is_managed = 1; 1529 dr->enabled = 1; 1530 } 1531 return rc; 1532 } 1533 EXPORT_SYMBOL(pcim_enable_device); 1534 1535 /** 1536 * pcim_pin_device - Pin managed PCI device 1537 * @pdev: PCI device to pin 1538 * 1539 * Pin managed PCI device @pdev. Pinned device won't be disabled on 1540 * driver detach. @pdev must have been enabled with 1541 * pcim_enable_device(). 1542 */ 1543 void pcim_pin_device(struct pci_dev *pdev) 1544 { 1545 struct pci_devres *dr; 1546 1547 dr = find_pci_dr(pdev); 1548 WARN_ON(!dr || !dr->enabled); 1549 if (dr) 1550 dr->pinned = 1; 1551 } 1552 EXPORT_SYMBOL(pcim_pin_device); 1553 1554 /* 1555 * pcibios_add_device - provide arch specific hooks when adding device dev 1556 * @dev: the PCI device being added 1557 * 1558 * Permits the platform to provide architecture specific functionality when 1559 * devices are added. This is the default implementation. Architecture 1560 * implementations can override this. 1561 */ 1562 int __weak pcibios_add_device(struct pci_dev *dev) 1563 { 1564 return 0; 1565 } 1566 1567 /** 1568 * pcibios_release_device - provide arch specific hooks when releasing device dev 1569 * @dev: the PCI device being released 1570 * 1571 * Permits the platform to provide architecture specific functionality when 1572 * devices are released. This is the default implementation. Architecture 1573 * implementations can override this. 1574 */ 1575 void __weak pcibios_release_device(struct pci_dev *dev) {} 1576 1577 /** 1578 * pcibios_disable_device - disable arch specific PCI resources for device dev 1579 * @dev: the PCI device to disable 1580 * 1581 * Disables architecture specific PCI resources for the device. This 1582 * is the default implementation. Architecture implementations can 1583 * override this. 1584 */ 1585 void __weak pcibios_disable_device(struct pci_dev *dev) {} 1586 1587 /** 1588 * pcibios_penalize_isa_irq - penalize an ISA IRQ 1589 * @irq: ISA IRQ to penalize 1590 * @active: IRQ active or not 1591 * 1592 * Permits the platform to provide architecture-specific functionality when 1593 * penalizing ISA IRQs. This is the default implementation. Architecture 1594 * implementations can override this. 1595 */ 1596 void __weak pcibios_penalize_isa_irq(int irq, int active) {} 1597 1598 static void do_pci_disable_device(struct pci_dev *dev) 1599 { 1600 u16 pci_command; 1601 1602 pci_read_config_word(dev, PCI_COMMAND, &pci_command); 1603 if (pci_command & PCI_COMMAND_MASTER) { 1604 pci_command &= ~PCI_COMMAND_MASTER; 1605 pci_write_config_word(dev, PCI_COMMAND, pci_command); 1606 } 1607 1608 pcibios_disable_device(dev); 1609 } 1610 1611 /** 1612 * pci_disable_enabled_device - Disable device without updating enable_cnt 1613 * @dev: PCI device to disable 1614 * 1615 * NOTE: This function is a backend of PCI power management routines and is 1616 * not supposed to be called drivers. 1617 */ 1618 void pci_disable_enabled_device(struct pci_dev *dev) 1619 { 1620 if (pci_is_enabled(dev)) 1621 do_pci_disable_device(dev); 1622 } 1623 1624 /** 1625 * pci_disable_device - Disable PCI device after use 1626 * @dev: PCI device to be disabled 1627 * 1628 * Signal to the system that the PCI device is not in use by the system 1629 * anymore. This only involves disabling PCI bus-mastering, if active. 1630 * 1631 * Note we don't actually disable the device until all callers of 1632 * pci_enable_device() have called pci_disable_device(). 1633 */ 1634 void pci_disable_device(struct pci_dev *dev) 1635 { 1636 struct pci_devres *dr; 1637 1638 dr = find_pci_dr(dev); 1639 if (dr) 1640 dr->enabled = 0; 1641 1642 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0, 1643 "disabling already-disabled device"); 1644 1645 if (atomic_dec_return(&dev->enable_cnt) != 0) 1646 return; 1647 1648 do_pci_disable_device(dev); 1649 1650 dev->is_busmaster = 0; 1651 } 1652 EXPORT_SYMBOL(pci_disable_device); 1653 1654 /** 1655 * pcibios_set_pcie_reset_state - set reset state for device dev 1656 * @dev: the PCIe device reset 1657 * @state: Reset state to enter into 1658 * 1659 * 1660 * Sets the PCIe reset state for the device. This is the default 1661 * implementation. Architecture implementations can override this. 1662 */ 1663 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev, 1664 enum pcie_reset_state state) 1665 { 1666 return -EINVAL; 1667 } 1668 1669 /** 1670 * pci_set_pcie_reset_state - set reset state for device dev 1671 * @dev: the PCIe device reset 1672 * @state: Reset state to enter into 1673 * 1674 * 1675 * Sets the PCI reset state for the device. 1676 */ 1677 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state) 1678 { 1679 return pcibios_set_pcie_reset_state(dev, state); 1680 } 1681 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state); 1682 1683 /** 1684 * pci_check_pme_status - Check if given device has generated PME. 1685 * @dev: Device to check. 1686 * 1687 * Check the PME status of the device and if set, clear it and clear PME enable 1688 * (if set). Return 'true' if PME status and PME enable were both set or 1689 * 'false' otherwise. 1690 */ 1691 bool pci_check_pme_status(struct pci_dev *dev) 1692 { 1693 int pmcsr_pos; 1694 u16 pmcsr; 1695 bool ret = false; 1696 1697 if (!dev->pm_cap) 1698 return false; 1699 1700 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL; 1701 pci_read_config_word(dev, pmcsr_pos, &pmcsr); 1702 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS)) 1703 return false; 1704 1705 /* Clear PME status. */ 1706 pmcsr |= PCI_PM_CTRL_PME_STATUS; 1707 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) { 1708 /* Disable PME to avoid interrupt flood. */ 1709 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 1710 ret = true; 1711 } 1712 1713 pci_write_config_word(dev, pmcsr_pos, pmcsr); 1714 1715 return ret; 1716 } 1717 1718 /** 1719 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set. 1720 * @dev: Device to handle. 1721 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag. 1722 * 1723 * Check if @dev has generated PME and queue a resume request for it in that 1724 * case. 1725 */ 1726 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset) 1727 { 1728 if (pme_poll_reset && dev->pme_poll) 1729 dev->pme_poll = false; 1730 1731 if (pci_check_pme_status(dev)) { 1732 pci_wakeup_event(dev); 1733 pm_request_resume(&dev->dev); 1734 } 1735 return 0; 1736 } 1737 1738 /** 1739 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary. 1740 * @bus: Top bus of the subtree to walk. 1741 */ 1742 void pci_pme_wakeup_bus(struct pci_bus *bus) 1743 { 1744 if (bus) 1745 pci_walk_bus(bus, pci_pme_wakeup, (void *)true); 1746 } 1747 1748 1749 /** 1750 * pci_pme_capable - check the capability of PCI device to generate PME# 1751 * @dev: PCI device to handle. 1752 * @state: PCI state from which device will issue PME#. 1753 */ 1754 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state) 1755 { 1756 if (!dev->pm_cap) 1757 return false; 1758 1759 return !!(dev->pme_support & (1 << state)); 1760 } 1761 EXPORT_SYMBOL(pci_pme_capable); 1762 1763 static void pci_pme_list_scan(struct work_struct *work) 1764 { 1765 struct pci_pme_device *pme_dev, *n; 1766 1767 mutex_lock(&pci_pme_list_mutex); 1768 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) { 1769 if (pme_dev->dev->pme_poll) { 1770 struct pci_dev *bridge; 1771 1772 bridge = pme_dev->dev->bus->self; 1773 /* 1774 * If bridge is in low power state, the 1775 * configuration space of subordinate devices 1776 * may be not accessible 1777 */ 1778 if (bridge && bridge->current_state != PCI_D0) 1779 continue; 1780 pci_pme_wakeup(pme_dev->dev, NULL); 1781 } else { 1782 list_del(&pme_dev->list); 1783 kfree(pme_dev); 1784 } 1785 } 1786 if (!list_empty(&pci_pme_list)) 1787 queue_delayed_work(system_freezable_wq, &pci_pme_work, 1788 msecs_to_jiffies(PME_TIMEOUT)); 1789 mutex_unlock(&pci_pme_list_mutex); 1790 } 1791 1792 static void __pci_pme_active(struct pci_dev *dev, bool enable) 1793 { 1794 u16 pmcsr; 1795 1796 if (!dev->pme_support) 1797 return; 1798 1799 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1800 /* Clear PME_Status by writing 1 to it and enable PME# */ 1801 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE; 1802 if (!enable) 1803 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 1804 1805 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 1806 } 1807 1808 /** 1809 * pci_pme_active - enable or disable PCI device's PME# function 1810 * @dev: PCI device to handle. 1811 * @enable: 'true' to enable PME# generation; 'false' to disable it. 1812 * 1813 * The caller must verify that the device is capable of generating PME# before 1814 * calling this function with @enable equal to 'true'. 1815 */ 1816 void pci_pme_active(struct pci_dev *dev, bool enable) 1817 { 1818 __pci_pme_active(dev, enable); 1819 1820 /* 1821 * PCI (as opposed to PCIe) PME requires that the device have 1822 * its PME# line hooked up correctly. Not all hardware vendors 1823 * do this, so the PME never gets delivered and the device 1824 * remains asleep. The easiest way around this is to 1825 * periodically walk the list of suspended devices and check 1826 * whether any have their PME flag set. The assumption is that 1827 * we'll wake up often enough anyway that this won't be a huge 1828 * hit, and the power savings from the devices will still be a 1829 * win. 1830 * 1831 * Although PCIe uses in-band PME message instead of PME# line 1832 * to report PME, PME does not work for some PCIe devices in 1833 * reality. For example, there are devices that set their PME 1834 * status bits, but don't really bother to send a PME message; 1835 * there are PCI Express Root Ports that don't bother to 1836 * trigger interrupts when they receive PME messages from the 1837 * devices below. So PME poll is used for PCIe devices too. 1838 */ 1839 1840 if (dev->pme_poll) { 1841 struct pci_pme_device *pme_dev; 1842 if (enable) { 1843 pme_dev = kmalloc(sizeof(struct pci_pme_device), 1844 GFP_KERNEL); 1845 if (!pme_dev) { 1846 dev_warn(&dev->dev, "can't enable PME#\n"); 1847 return; 1848 } 1849 pme_dev->dev = dev; 1850 mutex_lock(&pci_pme_list_mutex); 1851 list_add(&pme_dev->list, &pci_pme_list); 1852 if (list_is_singular(&pci_pme_list)) 1853 queue_delayed_work(system_freezable_wq, 1854 &pci_pme_work, 1855 msecs_to_jiffies(PME_TIMEOUT)); 1856 mutex_unlock(&pci_pme_list_mutex); 1857 } else { 1858 mutex_lock(&pci_pme_list_mutex); 1859 list_for_each_entry(pme_dev, &pci_pme_list, list) { 1860 if (pme_dev->dev == dev) { 1861 list_del(&pme_dev->list); 1862 kfree(pme_dev); 1863 break; 1864 } 1865 } 1866 mutex_unlock(&pci_pme_list_mutex); 1867 } 1868 } 1869 1870 dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled"); 1871 } 1872 EXPORT_SYMBOL(pci_pme_active); 1873 1874 /** 1875 * __pci_enable_wake - enable PCI device as wakeup event source 1876 * @dev: PCI device affected 1877 * @state: PCI state from which device will issue wakeup events 1878 * @runtime: True if the events are to be generated at run time 1879 * @enable: True to enable event generation; false to disable 1880 * 1881 * This enables the device as a wakeup event source, or disables it. 1882 * When such events involves platform-specific hooks, those hooks are 1883 * called automatically by this routine. 1884 * 1885 * Devices with legacy power management (no standard PCI PM capabilities) 1886 * always require such platform hooks. 1887 * 1888 * RETURN VALUE: 1889 * 0 is returned on success 1890 * -EINVAL is returned if device is not supposed to wake up the system 1891 * Error code depending on the platform is returned if both the platform and 1892 * the native mechanism fail to enable the generation of wake-up events 1893 */ 1894 int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, 1895 bool runtime, bool enable) 1896 { 1897 int ret = 0; 1898 1899 if (enable && !runtime && !device_may_wakeup(&dev->dev)) 1900 return -EINVAL; 1901 1902 /* Don't do the same thing twice in a row for one device. */ 1903 if (!!enable == !!dev->wakeup_prepared) 1904 return 0; 1905 1906 /* 1907 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don 1908 * Anderson we should be doing PME# wake enable followed by ACPI wake 1909 * enable. To disable wake-up we call the platform first, for symmetry. 1910 */ 1911 1912 if (enable) { 1913 int error; 1914 1915 if (pci_pme_capable(dev, state)) 1916 pci_pme_active(dev, true); 1917 else 1918 ret = 1; 1919 error = runtime ? platform_pci_run_wake(dev, true) : 1920 platform_pci_sleep_wake(dev, true); 1921 if (ret) 1922 ret = error; 1923 if (!ret) 1924 dev->wakeup_prepared = true; 1925 } else { 1926 if (runtime) 1927 platform_pci_run_wake(dev, false); 1928 else 1929 platform_pci_sleep_wake(dev, false); 1930 pci_pme_active(dev, false); 1931 dev->wakeup_prepared = false; 1932 } 1933 1934 return ret; 1935 } 1936 EXPORT_SYMBOL(__pci_enable_wake); 1937 1938 /** 1939 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold 1940 * @dev: PCI device to prepare 1941 * @enable: True to enable wake-up event generation; false to disable 1942 * 1943 * Many drivers want the device to wake up the system from D3_hot or D3_cold 1944 * and this function allows them to set that up cleanly - pci_enable_wake() 1945 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI 1946 * ordering constraints. 1947 * 1948 * This function only returns error code if the device is not capable of 1949 * generating PME# from both D3_hot and D3_cold, and the platform is unable to 1950 * enable wake-up power for it. 1951 */ 1952 int pci_wake_from_d3(struct pci_dev *dev, bool enable) 1953 { 1954 return pci_pme_capable(dev, PCI_D3cold) ? 1955 pci_enable_wake(dev, PCI_D3cold, enable) : 1956 pci_enable_wake(dev, PCI_D3hot, enable); 1957 } 1958 EXPORT_SYMBOL(pci_wake_from_d3); 1959 1960 /** 1961 * pci_target_state - find an appropriate low power state for a given PCI dev 1962 * @dev: PCI device 1963 * 1964 * Use underlying platform code to find a supported low power state for @dev. 1965 * If the platform can't manage @dev, return the deepest state from which it 1966 * can generate wake events, based on any available PME info. 1967 */ 1968 static pci_power_t pci_target_state(struct pci_dev *dev) 1969 { 1970 pci_power_t target_state = PCI_D3hot; 1971 1972 if (platform_pci_power_manageable(dev)) { 1973 /* 1974 * Call the platform to choose the target state of the device 1975 * and enable wake-up from this state if supported. 1976 */ 1977 pci_power_t state = platform_pci_choose_state(dev); 1978 1979 switch (state) { 1980 case PCI_POWER_ERROR: 1981 case PCI_UNKNOWN: 1982 break; 1983 case PCI_D1: 1984 case PCI_D2: 1985 if (pci_no_d1d2(dev)) 1986 break; 1987 default: 1988 target_state = state; 1989 } 1990 1991 return target_state; 1992 } 1993 1994 if (!dev->pm_cap) 1995 target_state = PCI_D0; 1996 1997 /* 1998 * If the device is in D3cold even though it's not power-manageable by 1999 * the platform, it may have been powered down by non-standard means. 2000 * Best to let it slumber. 2001 */ 2002 if (dev->current_state == PCI_D3cold) 2003 target_state = PCI_D3cold; 2004 2005 if (device_may_wakeup(&dev->dev)) { 2006 /* 2007 * Find the deepest state from which the device can generate 2008 * wake-up events, make it the target state and enable device 2009 * to generate PME#. 2010 */ 2011 if (dev->pme_support) { 2012 while (target_state 2013 && !(dev->pme_support & (1 << target_state))) 2014 target_state--; 2015 } 2016 } 2017 2018 return target_state; 2019 } 2020 2021 /** 2022 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state 2023 * @dev: Device to handle. 2024 * 2025 * Choose the power state appropriate for the device depending on whether 2026 * it can wake up the system and/or is power manageable by the platform 2027 * (PCI_D3hot is the default) and put the device into that state. 2028 */ 2029 int pci_prepare_to_sleep(struct pci_dev *dev) 2030 { 2031 pci_power_t target_state = pci_target_state(dev); 2032 int error; 2033 2034 if (target_state == PCI_POWER_ERROR) 2035 return -EIO; 2036 2037 pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev)); 2038 2039 error = pci_set_power_state(dev, target_state); 2040 2041 if (error) 2042 pci_enable_wake(dev, target_state, false); 2043 2044 return error; 2045 } 2046 EXPORT_SYMBOL(pci_prepare_to_sleep); 2047 2048 /** 2049 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state 2050 * @dev: Device to handle. 2051 * 2052 * Disable device's system wake-up capability and put it into D0. 2053 */ 2054 int pci_back_from_sleep(struct pci_dev *dev) 2055 { 2056 pci_enable_wake(dev, PCI_D0, false); 2057 return pci_set_power_state(dev, PCI_D0); 2058 } 2059 EXPORT_SYMBOL(pci_back_from_sleep); 2060 2061 /** 2062 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend. 2063 * @dev: PCI device being suspended. 2064 * 2065 * Prepare @dev to generate wake-up events at run time and put it into a low 2066 * power state. 2067 */ 2068 int pci_finish_runtime_suspend(struct pci_dev *dev) 2069 { 2070 pci_power_t target_state = pci_target_state(dev); 2071 int error; 2072 2073 if (target_state == PCI_POWER_ERROR) 2074 return -EIO; 2075 2076 dev->runtime_d3cold = target_state == PCI_D3cold; 2077 2078 __pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev)); 2079 2080 error = pci_set_power_state(dev, target_state); 2081 2082 if (error) { 2083 __pci_enable_wake(dev, target_state, true, false); 2084 dev->runtime_d3cold = false; 2085 } 2086 2087 return error; 2088 } 2089 2090 /** 2091 * pci_dev_run_wake - Check if device can generate run-time wake-up events. 2092 * @dev: Device to check. 2093 * 2094 * Return true if the device itself is capable of generating wake-up events 2095 * (through the platform or using the native PCIe PME) or if the device supports 2096 * PME and one of its upstream bridges can generate wake-up events. 2097 */ 2098 bool pci_dev_run_wake(struct pci_dev *dev) 2099 { 2100 struct pci_bus *bus = dev->bus; 2101 2102 if (device_run_wake(&dev->dev)) 2103 return true; 2104 2105 if (!dev->pme_support) 2106 return false; 2107 2108 /* PME-capable in principle, but not from the intended sleep state */ 2109 if (!pci_pme_capable(dev, pci_target_state(dev))) 2110 return false; 2111 2112 while (bus->parent) { 2113 struct pci_dev *bridge = bus->self; 2114 2115 if (device_run_wake(&bridge->dev)) 2116 return true; 2117 2118 bus = bus->parent; 2119 } 2120 2121 /* We have reached the root bus. */ 2122 if (bus->bridge) 2123 return device_run_wake(bus->bridge); 2124 2125 return false; 2126 } 2127 EXPORT_SYMBOL_GPL(pci_dev_run_wake); 2128 2129 /** 2130 * pci_dev_keep_suspended - Check if the device can stay in the suspended state. 2131 * @pci_dev: Device to check. 2132 * 2133 * Return 'true' if the device is runtime-suspended, it doesn't have to be 2134 * reconfigured due to wakeup settings difference between system and runtime 2135 * suspend and the current power state of it is suitable for the upcoming 2136 * (system) transition. 2137 * 2138 * If the device is not configured for system wakeup, disable PME for it before 2139 * returning 'true' to prevent it from waking up the system unnecessarily. 2140 */ 2141 bool pci_dev_keep_suspended(struct pci_dev *pci_dev) 2142 { 2143 struct device *dev = &pci_dev->dev; 2144 2145 if (!pm_runtime_suspended(dev) 2146 || pci_target_state(pci_dev) != pci_dev->current_state 2147 || platform_pci_need_resume(pci_dev)) 2148 return false; 2149 2150 /* 2151 * At this point the device is good to go unless it's been configured 2152 * to generate PME at the runtime suspend time, but it is not supposed 2153 * to wake up the system. In that case, simply disable PME for it 2154 * (it will have to be re-enabled on exit from system resume). 2155 * 2156 * If the device's power state is D3cold and the platform check above 2157 * hasn't triggered, the device's configuration is suitable and we don't 2158 * need to manipulate it at all. 2159 */ 2160 spin_lock_irq(&dev->power.lock); 2161 2162 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold && 2163 !device_may_wakeup(dev)) 2164 __pci_pme_active(pci_dev, false); 2165 2166 spin_unlock_irq(&dev->power.lock); 2167 return true; 2168 } 2169 2170 /** 2171 * pci_dev_complete_resume - Finalize resume from system sleep for a device. 2172 * @pci_dev: Device to handle. 2173 * 2174 * If the device is runtime suspended and wakeup-capable, enable PME for it as 2175 * it might have been disabled during the prepare phase of system suspend if 2176 * the device was not configured for system wakeup. 2177 */ 2178 void pci_dev_complete_resume(struct pci_dev *pci_dev) 2179 { 2180 struct device *dev = &pci_dev->dev; 2181 2182 if (!pci_dev_run_wake(pci_dev)) 2183 return; 2184 2185 spin_lock_irq(&dev->power.lock); 2186 2187 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold) 2188 __pci_pme_active(pci_dev, true); 2189 2190 spin_unlock_irq(&dev->power.lock); 2191 } 2192 2193 void pci_config_pm_runtime_get(struct pci_dev *pdev) 2194 { 2195 struct device *dev = &pdev->dev; 2196 struct device *parent = dev->parent; 2197 2198 if (parent) 2199 pm_runtime_get_sync(parent); 2200 pm_runtime_get_noresume(dev); 2201 /* 2202 * pdev->current_state is set to PCI_D3cold during suspending, 2203 * so wait until suspending completes 2204 */ 2205 pm_runtime_barrier(dev); 2206 /* 2207 * Only need to resume devices in D3cold, because config 2208 * registers are still accessible for devices suspended but 2209 * not in D3cold. 2210 */ 2211 if (pdev->current_state == PCI_D3cold) 2212 pm_runtime_resume(dev); 2213 } 2214 2215 void pci_config_pm_runtime_put(struct pci_dev *pdev) 2216 { 2217 struct device *dev = &pdev->dev; 2218 struct device *parent = dev->parent; 2219 2220 pm_runtime_put(dev); 2221 if (parent) 2222 pm_runtime_put_sync(parent); 2223 } 2224 2225 /** 2226 * pci_bridge_d3_possible - Is it possible to put the bridge into D3 2227 * @bridge: Bridge to check 2228 * 2229 * This function checks if it is possible to move the bridge to D3. 2230 * Currently we only allow D3 for recent enough PCIe ports. 2231 */ 2232 bool pci_bridge_d3_possible(struct pci_dev *bridge) 2233 { 2234 unsigned int year; 2235 2236 if (!pci_is_pcie(bridge)) 2237 return false; 2238 2239 switch (pci_pcie_type(bridge)) { 2240 case PCI_EXP_TYPE_ROOT_PORT: 2241 case PCI_EXP_TYPE_UPSTREAM: 2242 case PCI_EXP_TYPE_DOWNSTREAM: 2243 if (pci_bridge_d3_disable) 2244 return false; 2245 2246 /* 2247 * Hotplug interrupts cannot be delivered if the link is down, 2248 * so parents of a hotplug port must stay awake. In addition, 2249 * hotplug ports handled by firmware in System Management Mode 2250 * may not be put into D3 by the OS (Thunderbolt on non-Macs). 2251 * For simplicity, disallow in general for now. 2252 */ 2253 if (bridge->is_hotplug_bridge) 2254 return false; 2255 2256 if (pci_bridge_d3_force) 2257 return true; 2258 2259 /* 2260 * It should be safe to put PCIe ports from 2015 or newer 2261 * to D3. 2262 */ 2263 if (dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL) && 2264 year >= 2015) { 2265 return true; 2266 } 2267 break; 2268 } 2269 2270 return false; 2271 } 2272 2273 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data) 2274 { 2275 bool *d3cold_ok = data; 2276 2277 if (/* The device needs to be allowed to go D3cold ... */ 2278 dev->no_d3cold || !dev->d3cold_allowed || 2279 2280 /* ... and if it is wakeup capable to do so from D3cold. */ 2281 (device_may_wakeup(&dev->dev) && 2282 !pci_pme_capable(dev, PCI_D3cold)) || 2283 2284 /* If it is a bridge it must be allowed to go to D3. */ 2285 !pci_power_manageable(dev)) 2286 2287 *d3cold_ok = false; 2288 2289 return !*d3cold_ok; 2290 } 2291 2292 /* 2293 * pci_bridge_d3_update - Update bridge D3 capabilities 2294 * @dev: PCI device which is changed 2295 * 2296 * Update upstream bridge PM capabilities accordingly depending on if the 2297 * device PM configuration was changed or the device is being removed. The 2298 * change is also propagated upstream. 2299 */ 2300 void pci_bridge_d3_update(struct pci_dev *dev) 2301 { 2302 bool remove = !device_is_registered(&dev->dev); 2303 struct pci_dev *bridge; 2304 bool d3cold_ok = true; 2305 2306 bridge = pci_upstream_bridge(dev); 2307 if (!bridge || !pci_bridge_d3_possible(bridge)) 2308 return; 2309 2310 /* 2311 * If D3 is currently allowed for the bridge, removing one of its 2312 * children won't change that. 2313 */ 2314 if (remove && bridge->bridge_d3) 2315 return; 2316 2317 /* 2318 * If D3 is currently allowed for the bridge and a child is added or 2319 * changed, disallowance of D3 can only be caused by that child, so 2320 * we only need to check that single device, not any of its siblings. 2321 * 2322 * If D3 is currently not allowed for the bridge, checking the device 2323 * first may allow us to skip checking its siblings. 2324 */ 2325 if (!remove) 2326 pci_dev_check_d3cold(dev, &d3cold_ok); 2327 2328 /* 2329 * If D3 is currently not allowed for the bridge, this may be caused 2330 * either by the device being changed/removed or any of its siblings, 2331 * so we need to go through all children to find out if one of them 2332 * continues to block D3. 2333 */ 2334 if (d3cold_ok && !bridge->bridge_d3) 2335 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold, 2336 &d3cold_ok); 2337 2338 if (bridge->bridge_d3 != d3cold_ok) { 2339 bridge->bridge_d3 = d3cold_ok; 2340 /* Propagate change to upstream bridges */ 2341 pci_bridge_d3_update(bridge); 2342 } 2343 } 2344 2345 /** 2346 * pci_d3cold_enable - Enable D3cold for device 2347 * @dev: PCI device to handle 2348 * 2349 * This function can be used in drivers to enable D3cold from the device 2350 * they handle. It also updates upstream PCI bridge PM capabilities 2351 * accordingly. 2352 */ 2353 void pci_d3cold_enable(struct pci_dev *dev) 2354 { 2355 if (dev->no_d3cold) { 2356 dev->no_d3cold = false; 2357 pci_bridge_d3_update(dev); 2358 } 2359 } 2360 EXPORT_SYMBOL_GPL(pci_d3cold_enable); 2361 2362 /** 2363 * pci_d3cold_disable - Disable D3cold for device 2364 * @dev: PCI device to handle 2365 * 2366 * This function can be used in drivers to disable D3cold from the device 2367 * they handle. It also updates upstream PCI bridge PM capabilities 2368 * accordingly. 2369 */ 2370 void pci_d3cold_disable(struct pci_dev *dev) 2371 { 2372 if (!dev->no_d3cold) { 2373 dev->no_d3cold = true; 2374 pci_bridge_d3_update(dev); 2375 } 2376 } 2377 EXPORT_SYMBOL_GPL(pci_d3cold_disable); 2378 2379 /** 2380 * pci_pm_init - Initialize PM functions of given PCI device 2381 * @dev: PCI device to handle. 2382 */ 2383 void pci_pm_init(struct pci_dev *dev) 2384 { 2385 int pm; 2386 u16 pmc; 2387 2388 pm_runtime_forbid(&dev->dev); 2389 pm_runtime_set_active(&dev->dev); 2390 pm_runtime_enable(&dev->dev); 2391 device_enable_async_suspend(&dev->dev); 2392 dev->wakeup_prepared = false; 2393 2394 dev->pm_cap = 0; 2395 dev->pme_support = 0; 2396 2397 /* find PCI PM capability in list */ 2398 pm = pci_find_capability(dev, PCI_CAP_ID_PM); 2399 if (!pm) 2400 return; 2401 /* Check device's ability to generate PME# */ 2402 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc); 2403 2404 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) { 2405 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n", 2406 pmc & PCI_PM_CAP_VER_MASK); 2407 return; 2408 } 2409 2410 dev->pm_cap = pm; 2411 dev->d3_delay = PCI_PM_D3_WAIT; 2412 dev->d3cold_delay = PCI_PM_D3COLD_WAIT; 2413 dev->bridge_d3 = pci_bridge_d3_possible(dev); 2414 dev->d3cold_allowed = true; 2415 2416 dev->d1_support = false; 2417 dev->d2_support = false; 2418 if (!pci_no_d1d2(dev)) { 2419 if (pmc & PCI_PM_CAP_D1) 2420 dev->d1_support = true; 2421 if (pmc & PCI_PM_CAP_D2) 2422 dev->d2_support = true; 2423 2424 if (dev->d1_support || dev->d2_support) 2425 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n", 2426 dev->d1_support ? " D1" : "", 2427 dev->d2_support ? " D2" : ""); 2428 } 2429 2430 pmc &= PCI_PM_CAP_PME_MASK; 2431 if (pmc) { 2432 dev_printk(KERN_DEBUG, &dev->dev, 2433 "PME# supported from%s%s%s%s%s\n", 2434 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "", 2435 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "", 2436 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "", 2437 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "", 2438 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : ""); 2439 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT; 2440 dev->pme_poll = true; 2441 /* 2442 * Make device's PM flags reflect the wake-up capability, but 2443 * let the user space enable it to wake up the system as needed. 2444 */ 2445 device_set_wakeup_capable(&dev->dev, true); 2446 /* Disable the PME# generation functionality */ 2447 pci_pme_active(dev, false); 2448 } 2449 } 2450 2451 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop) 2452 { 2453 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI; 2454 2455 switch (prop) { 2456 case PCI_EA_P_MEM: 2457 case PCI_EA_P_VF_MEM: 2458 flags |= IORESOURCE_MEM; 2459 break; 2460 case PCI_EA_P_MEM_PREFETCH: 2461 case PCI_EA_P_VF_MEM_PREFETCH: 2462 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH; 2463 break; 2464 case PCI_EA_P_IO: 2465 flags |= IORESOURCE_IO; 2466 break; 2467 default: 2468 return 0; 2469 } 2470 2471 return flags; 2472 } 2473 2474 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei, 2475 u8 prop) 2476 { 2477 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO) 2478 return &dev->resource[bei]; 2479 #ifdef CONFIG_PCI_IOV 2480 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 && 2481 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH)) 2482 return &dev->resource[PCI_IOV_RESOURCES + 2483 bei - PCI_EA_BEI_VF_BAR0]; 2484 #endif 2485 else if (bei == PCI_EA_BEI_ROM) 2486 return &dev->resource[PCI_ROM_RESOURCE]; 2487 else 2488 return NULL; 2489 } 2490 2491 /* Read an Enhanced Allocation (EA) entry */ 2492 static int pci_ea_read(struct pci_dev *dev, int offset) 2493 { 2494 struct resource *res; 2495 int ent_size, ent_offset = offset; 2496 resource_size_t start, end; 2497 unsigned long flags; 2498 u32 dw0, bei, base, max_offset; 2499 u8 prop; 2500 bool support_64 = (sizeof(resource_size_t) >= 8); 2501 2502 pci_read_config_dword(dev, ent_offset, &dw0); 2503 ent_offset += 4; 2504 2505 /* Entry size field indicates DWORDs after 1st */ 2506 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2; 2507 2508 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */ 2509 goto out; 2510 2511 bei = (dw0 & PCI_EA_BEI) >> 4; 2512 prop = (dw0 & PCI_EA_PP) >> 8; 2513 2514 /* 2515 * If the Property is in the reserved range, try the Secondary 2516 * Property instead. 2517 */ 2518 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED) 2519 prop = (dw0 & PCI_EA_SP) >> 16; 2520 if (prop > PCI_EA_P_BRIDGE_IO) 2521 goto out; 2522 2523 res = pci_ea_get_resource(dev, bei, prop); 2524 if (!res) { 2525 dev_err(&dev->dev, "Unsupported EA entry BEI: %u\n", bei); 2526 goto out; 2527 } 2528 2529 flags = pci_ea_flags(dev, prop); 2530 if (!flags) { 2531 dev_err(&dev->dev, "Unsupported EA properties: %#x\n", prop); 2532 goto out; 2533 } 2534 2535 /* Read Base */ 2536 pci_read_config_dword(dev, ent_offset, &base); 2537 start = (base & PCI_EA_FIELD_MASK); 2538 ent_offset += 4; 2539 2540 /* Read MaxOffset */ 2541 pci_read_config_dword(dev, ent_offset, &max_offset); 2542 ent_offset += 4; 2543 2544 /* Read Base MSBs (if 64-bit entry) */ 2545 if (base & PCI_EA_IS_64) { 2546 u32 base_upper; 2547 2548 pci_read_config_dword(dev, ent_offset, &base_upper); 2549 ent_offset += 4; 2550 2551 flags |= IORESOURCE_MEM_64; 2552 2553 /* entry starts above 32-bit boundary, can't use */ 2554 if (!support_64 && base_upper) 2555 goto out; 2556 2557 if (support_64) 2558 start |= ((u64)base_upper << 32); 2559 } 2560 2561 end = start + (max_offset | 0x03); 2562 2563 /* Read MaxOffset MSBs (if 64-bit entry) */ 2564 if (max_offset & PCI_EA_IS_64) { 2565 u32 max_offset_upper; 2566 2567 pci_read_config_dword(dev, ent_offset, &max_offset_upper); 2568 ent_offset += 4; 2569 2570 flags |= IORESOURCE_MEM_64; 2571 2572 /* entry too big, can't use */ 2573 if (!support_64 && max_offset_upper) 2574 goto out; 2575 2576 if (support_64) 2577 end += ((u64)max_offset_upper << 32); 2578 } 2579 2580 if (end < start) { 2581 dev_err(&dev->dev, "EA Entry crosses address boundary\n"); 2582 goto out; 2583 } 2584 2585 if (ent_size != ent_offset - offset) { 2586 dev_err(&dev->dev, 2587 "EA Entry Size (%d) does not match length read (%d)\n", 2588 ent_size, ent_offset - offset); 2589 goto out; 2590 } 2591 2592 res->name = pci_name(dev); 2593 res->start = start; 2594 res->end = end; 2595 res->flags = flags; 2596 2597 if (bei <= PCI_EA_BEI_BAR5) 2598 dev_printk(KERN_DEBUG, &dev->dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 2599 bei, res, prop); 2600 else if (bei == PCI_EA_BEI_ROM) 2601 dev_printk(KERN_DEBUG, &dev->dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n", 2602 res, prop); 2603 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5) 2604 dev_printk(KERN_DEBUG, &dev->dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 2605 bei - PCI_EA_BEI_VF_BAR0, res, prop); 2606 else 2607 dev_printk(KERN_DEBUG, &dev->dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n", 2608 bei, res, prop); 2609 2610 out: 2611 return offset + ent_size; 2612 } 2613 2614 /* Enhanced Allocation Initialization */ 2615 void pci_ea_init(struct pci_dev *dev) 2616 { 2617 int ea; 2618 u8 num_ent; 2619 int offset; 2620 int i; 2621 2622 /* find PCI EA capability in list */ 2623 ea = pci_find_capability(dev, PCI_CAP_ID_EA); 2624 if (!ea) 2625 return; 2626 2627 /* determine the number of entries */ 2628 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT, 2629 &num_ent); 2630 num_ent &= PCI_EA_NUM_ENT_MASK; 2631 2632 offset = ea + PCI_EA_FIRST_ENT; 2633 2634 /* Skip DWORD 2 for type 1 functions */ 2635 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) 2636 offset += 4; 2637 2638 /* parse each EA entry */ 2639 for (i = 0; i < num_ent; ++i) 2640 offset = pci_ea_read(dev, offset); 2641 } 2642 2643 static void pci_add_saved_cap(struct pci_dev *pci_dev, 2644 struct pci_cap_saved_state *new_cap) 2645 { 2646 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space); 2647 } 2648 2649 /** 2650 * _pci_add_cap_save_buffer - allocate buffer for saving given 2651 * capability registers 2652 * @dev: the PCI device 2653 * @cap: the capability to allocate the buffer for 2654 * @extended: Standard or Extended capability ID 2655 * @size: requested size of the buffer 2656 */ 2657 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap, 2658 bool extended, unsigned int size) 2659 { 2660 int pos; 2661 struct pci_cap_saved_state *save_state; 2662 2663 if (extended) 2664 pos = pci_find_ext_capability(dev, cap); 2665 else 2666 pos = pci_find_capability(dev, cap); 2667 2668 if (!pos) 2669 return 0; 2670 2671 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL); 2672 if (!save_state) 2673 return -ENOMEM; 2674 2675 save_state->cap.cap_nr = cap; 2676 save_state->cap.cap_extended = extended; 2677 save_state->cap.size = size; 2678 pci_add_saved_cap(dev, save_state); 2679 2680 return 0; 2681 } 2682 2683 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size) 2684 { 2685 return _pci_add_cap_save_buffer(dev, cap, false, size); 2686 } 2687 2688 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size) 2689 { 2690 return _pci_add_cap_save_buffer(dev, cap, true, size); 2691 } 2692 2693 /** 2694 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities 2695 * @dev: the PCI device 2696 */ 2697 void pci_allocate_cap_save_buffers(struct pci_dev *dev) 2698 { 2699 int error; 2700 2701 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP, 2702 PCI_EXP_SAVE_REGS * sizeof(u16)); 2703 if (error) 2704 dev_err(&dev->dev, 2705 "unable to preallocate PCI Express save buffer\n"); 2706 2707 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16)); 2708 if (error) 2709 dev_err(&dev->dev, 2710 "unable to preallocate PCI-X save buffer\n"); 2711 2712 pci_allocate_vc_save_buffers(dev); 2713 } 2714 2715 void pci_free_cap_save_buffers(struct pci_dev *dev) 2716 { 2717 struct pci_cap_saved_state *tmp; 2718 struct hlist_node *n; 2719 2720 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next) 2721 kfree(tmp); 2722 } 2723 2724 /** 2725 * pci_configure_ari - enable or disable ARI forwarding 2726 * @dev: the PCI device 2727 * 2728 * If @dev and its upstream bridge both support ARI, enable ARI in the 2729 * bridge. Otherwise, disable ARI in the bridge. 2730 */ 2731 void pci_configure_ari(struct pci_dev *dev) 2732 { 2733 u32 cap; 2734 struct pci_dev *bridge; 2735 2736 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn) 2737 return; 2738 2739 bridge = dev->bus->self; 2740 if (!bridge) 2741 return; 2742 2743 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 2744 if (!(cap & PCI_EXP_DEVCAP2_ARI)) 2745 return; 2746 2747 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) { 2748 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, 2749 PCI_EXP_DEVCTL2_ARI); 2750 bridge->ari_enabled = 1; 2751 } else { 2752 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2, 2753 PCI_EXP_DEVCTL2_ARI); 2754 bridge->ari_enabled = 0; 2755 } 2756 } 2757 2758 static int pci_acs_enable; 2759 2760 /** 2761 * pci_request_acs - ask for ACS to be enabled if supported 2762 */ 2763 void pci_request_acs(void) 2764 { 2765 pci_acs_enable = 1; 2766 } 2767 2768 /** 2769 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites 2770 * @dev: the PCI device 2771 */ 2772 static void pci_std_enable_acs(struct pci_dev *dev) 2773 { 2774 int pos; 2775 u16 cap; 2776 u16 ctrl; 2777 2778 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS); 2779 if (!pos) 2780 return; 2781 2782 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap); 2783 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 2784 2785 /* Source Validation */ 2786 ctrl |= (cap & PCI_ACS_SV); 2787 2788 /* P2P Request Redirect */ 2789 ctrl |= (cap & PCI_ACS_RR); 2790 2791 /* P2P Completion Redirect */ 2792 ctrl |= (cap & PCI_ACS_CR); 2793 2794 /* Upstream Forwarding */ 2795 ctrl |= (cap & PCI_ACS_UF); 2796 2797 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 2798 } 2799 2800 /** 2801 * pci_enable_acs - enable ACS if hardware support it 2802 * @dev: the PCI device 2803 */ 2804 void pci_enable_acs(struct pci_dev *dev) 2805 { 2806 if (!pci_acs_enable) 2807 return; 2808 2809 if (!pci_dev_specific_enable_acs(dev)) 2810 return; 2811 2812 pci_std_enable_acs(dev); 2813 } 2814 2815 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags) 2816 { 2817 int pos; 2818 u16 cap, ctrl; 2819 2820 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS); 2821 if (!pos) 2822 return false; 2823 2824 /* 2825 * Except for egress control, capabilities are either required 2826 * or only required if controllable. Features missing from the 2827 * capability field can therefore be assumed as hard-wired enabled. 2828 */ 2829 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap); 2830 acs_flags &= (cap | PCI_ACS_EC); 2831 2832 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl); 2833 return (ctrl & acs_flags) == acs_flags; 2834 } 2835 2836 /** 2837 * pci_acs_enabled - test ACS against required flags for a given device 2838 * @pdev: device to test 2839 * @acs_flags: required PCI ACS flags 2840 * 2841 * Return true if the device supports the provided flags. Automatically 2842 * filters out flags that are not implemented on multifunction devices. 2843 * 2844 * Note that this interface checks the effective ACS capabilities of the 2845 * device rather than the actual capabilities. For instance, most single 2846 * function endpoints are not required to support ACS because they have no 2847 * opportunity for peer-to-peer access. We therefore return 'true' 2848 * regardless of whether the device exposes an ACS capability. This makes 2849 * it much easier for callers of this function to ignore the actual type 2850 * or topology of the device when testing ACS support. 2851 */ 2852 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags) 2853 { 2854 int ret; 2855 2856 ret = pci_dev_specific_acs_enabled(pdev, acs_flags); 2857 if (ret >= 0) 2858 return ret > 0; 2859 2860 /* 2861 * Conventional PCI and PCI-X devices never support ACS, either 2862 * effectively or actually. The shared bus topology implies that 2863 * any device on the bus can receive or snoop DMA. 2864 */ 2865 if (!pci_is_pcie(pdev)) 2866 return false; 2867 2868 switch (pci_pcie_type(pdev)) { 2869 /* 2870 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec, 2871 * but since their primary interface is PCI/X, we conservatively 2872 * handle them as we would a non-PCIe device. 2873 */ 2874 case PCI_EXP_TYPE_PCIE_BRIDGE: 2875 /* 2876 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never 2877 * applicable... must never implement an ACS Extended Capability...". 2878 * This seems arbitrary, but we take a conservative interpretation 2879 * of this statement. 2880 */ 2881 case PCI_EXP_TYPE_PCI_BRIDGE: 2882 case PCI_EXP_TYPE_RC_EC: 2883 return false; 2884 /* 2885 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should 2886 * implement ACS in order to indicate their peer-to-peer capabilities, 2887 * regardless of whether they are single- or multi-function devices. 2888 */ 2889 case PCI_EXP_TYPE_DOWNSTREAM: 2890 case PCI_EXP_TYPE_ROOT_PORT: 2891 return pci_acs_flags_enabled(pdev, acs_flags); 2892 /* 2893 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be 2894 * implemented by the remaining PCIe types to indicate peer-to-peer 2895 * capabilities, but only when they are part of a multifunction 2896 * device. The footnote for section 6.12 indicates the specific 2897 * PCIe types included here. 2898 */ 2899 case PCI_EXP_TYPE_ENDPOINT: 2900 case PCI_EXP_TYPE_UPSTREAM: 2901 case PCI_EXP_TYPE_LEG_END: 2902 case PCI_EXP_TYPE_RC_END: 2903 if (!pdev->multifunction) 2904 break; 2905 2906 return pci_acs_flags_enabled(pdev, acs_flags); 2907 } 2908 2909 /* 2910 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable 2911 * to single function devices with the exception of downstream ports. 2912 */ 2913 return true; 2914 } 2915 2916 /** 2917 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy 2918 * @start: starting downstream device 2919 * @end: ending upstream device or NULL to search to the root bus 2920 * @acs_flags: required flags 2921 * 2922 * Walk up a device tree from start to end testing PCI ACS support. If 2923 * any step along the way does not support the required flags, return false. 2924 */ 2925 bool pci_acs_path_enabled(struct pci_dev *start, 2926 struct pci_dev *end, u16 acs_flags) 2927 { 2928 struct pci_dev *pdev, *parent = start; 2929 2930 do { 2931 pdev = parent; 2932 2933 if (!pci_acs_enabled(pdev, acs_flags)) 2934 return false; 2935 2936 if (pci_is_root_bus(pdev->bus)) 2937 return (end == NULL); 2938 2939 parent = pdev->bus->self; 2940 } while (pdev != end); 2941 2942 return true; 2943 } 2944 2945 /** 2946 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge 2947 * @dev: the PCI device 2948 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD) 2949 * 2950 * Perform INTx swizzling for a device behind one level of bridge. This is 2951 * required by section 9.1 of the PCI-to-PCI bridge specification for devices 2952 * behind bridges on add-in cards. For devices with ARI enabled, the slot 2953 * number is always 0 (see the Implementation Note in section 2.2.8.1 of 2954 * the PCI Express Base Specification, Revision 2.1) 2955 */ 2956 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin) 2957 { 2958 int slot; 2959 2960 if (pci_ari_enabled(dev->bus)) 2961 slot = 0; 2962 else 2963 slot = PCI_SLOT(dev->devfn); 2964 2965 return (((pin - 1) + slot) % 4) + 1; 2966 } 2967 2968 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge) 2969 { 2970 u8 pin; 2971 2972 pin = dev->pin; 2973 if (!pin) 2974 return -1; 2975 2976 while (!pci_is_root_bus(dev->bus)) { 2977 pin = pci_swizzle_interrupt_pin(dev, pin); 2978 dev = dev->bus->self; 2979 } 2980 *bridge = dev; 2981 return pin; 2982 } 2983 2984 /** 2985 * pci_common_swizzle - swizzle INTx all the way to root bridge 2986 * @dev: the PCI device 2987 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD) 2988 * 2989 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI 2990 * bridges all the way up to a PCI root bus. 2991 */ 2992 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp) 2993 { 2994 u8 pin = *pinp; 2995 2996 while (!pci_is_root_bus(dev->bus)) { 2997 pin = pci_swizzle_interrupt_pin(dev, pin); 2998 dev = dev->bus->self; 2999 } 3000 *pinp = pin; 3001 return PCI_SLOT(dev->devfn); 3002 } 3003 EXPORT_SYMBOL_GPL(pci_common_swizzle); 3004 3005 /** 3006 * pci_release_region - Release a PCI bar 3007 * @pdev: PCI device whose resources were previously reserved by pci_request_region 3008 * @bar: BAR to release 3009 * 3010 * Releases the PCI I/O and memory resources previously reserved by a 3011 * successful call to pci_request_region. Call this function only 3012 * after all use of the PCI regions has ceased. 3013 */ 3014 void pci_release_region(struct pci_dev *pdev, int bar) 3015 { 3016 struct pci_devres *dr; 3017 3018 if (pci_resource_len(pdev, bar) == 0) 3019 return; 3020 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) 3021 release_region(pci_resource_start(pdev, bar), 3022 pci_resource_len(pdev, bar)); 3023 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) 3024 release_mem_region(pci_resource_start(pdev, bar), 3025 pci_resource_len(pdev, bar)); 3026 3027 dr = find_pci_dr(pdev); 3028 if (dr) 3029 dr->region_mask &= ~(1 << bar); 3030 } 3031 EXPORT_SYMBOL(pci_release_region); 3032 3033 /** 3034 * __pci_request_region - Reserved PCI I/O and memory resource 3035 * @pdev: PCI device whose resources are to be reserved 3036 * @bar: BAR to be reserved 3037 * @res_name: Name to be associated with resource. 3038 * @exclusive: whether the region access is exclusive or not 3039 * 3040 * Mark the PCI region associated with PCI device @pdev BR @bar as 3041 * being reserved by owner @res_name. Do not access any 3042 * address inside the PCI regions unless this call returns 3043 * successfully. 3044 * 3045 * If @exclusive is set, then the region is marked so that userspace 3046 * is explicitly not allowed to map the resource via /dev/mem or 3047 * sysfs MMIO access. 3048 * 3049 * Returns 0 on success, or %EBUSY on error. A warning 3050 * message is also printed on failure. 3051 */ 3052 static int __pci_request_region(struct pci_dev *pdev, int bar, 3053 const char *res_name, int exclusive) 3054 { 3055 struct pci_devres *dr; 3056 3057 if (pci_resource_len(pdev, bar) == 0) 3058 return 0; 3059 3060 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) { 3061 if (!request_region(pci_resource_start(pdev, bar), 3062 pci_resource_len(pdev, bar), res_name)) 3063 goto err_out; 3064 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) { 3065 if (!__request_mem_region(pci_resource_start(pdev, bar), 3066 pci_resource_len(pdev, bar), res_name, 3067 exclusive)) 3068 goto err_out; 3069 } 3070 3071 dr = find_pci_dr(pdev); 3072 if (dr) 3073 dr->region_mask |= 1 << bar; 3074 3075 return 0; 3076 3077 err_out: 3078 dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar, 3079 &pdev->resource[bar]); 3080 return -EBUSY; 3081 } 3082 3083 /** 3084 * pci_request_region - Reserve PCI I/O and memory resource 3085 * @pdev: PCI device whose resources are to be reserved 3086 * @bar: BAR to be reserved 3087 * @res_name: Name to be associated with resource 3088 * 3089 * Mark the PCI region associated with PCI device @pdev BAR @bar as 3090 * being reserved by owner @res_name. Do not access any 3091 * address inside the PCI regions unless this call returns 3092 * successfully. 3093 * 3094 * Returns 0 on success, or %EBUSY on error. A warning 3095 * message is also printed on failure. 3096 */ 3097 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name) 3098 { 3099 return __pci_request_region(pdev, bar, res_name, 0); 3100 } 3101 EXPORT_SYMBOL(pci_request_region); 3102 3103 /** 3104 * pci_request_region_exclusive - Reserved PCI I/O and memory resource 3105 * @pdev: PCI device whose resources are to be reserved 3106 * @bar: BAR to be reserved 3107 * @res_name: Name to be associated with resource. 3108 * 3109 * Mark the PCI region associated with PCI device @pdev BR @bar as 3110 * being reserved by owner @res_name. Do not access any 3111 * address inside the PCI regions unless this call returns 3112 * successfully. 3113 * 3114 * Returns 0 on success, or %EBUSY on error. A warning 3115 * message is also printed on failure. 3116 * 3117 * The key difference that _exclusive makes it that userspace is 3118 * explicitly not allowed to map the resource via /dev/mem or 3119 * sysfs. 3120 */ 3121 int pci_request_region_exclusive(struct pci_dev *pdev, int bar, 3122 const char *res_name) 3123 { 3124 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE); 3125 } 3126 EXPORT_SYMBOL(pci_request_region_exclusive); 3127 3128 /** 3129 * pci_release_selected_regions - Release selected PCI I/O and memory resources 3130 * @pdev: PCI device whose resources were previously reserved 3131 * @bars: Bitmask of BARs to be released 3132 * 3133 * Release selected PCI I/O and memory resources previously reserved. 3134 * Call this function only after all use of the PCI regions has ceased. 3135 */ 3136 void pci_release_selected_regions(struct pci_dev *pdev, int bars) 3137 { 3138 int i; 3139 3140 for (i = 0; i < 6; i++) 3141 if (bars & (1 << i)) 3142 pci_release_region(pdev, i); 3143 } 3144 EXPORT_SYMBOL(pci_release_selected_regions); 3145 3146 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars, 3147 const char *res_name, int excl) 3148 { 3149 int i; 3150 3151 for (i = 0; i < 6; i++) 3152 if (bars & (1 << i)) 3153 if (__pci_request_region(pdev, i, res_name, excl)) 3154 goto err_out; 3155 return 0; 3156 3157 err_out: 3158 while (--i >= 0) 3159 if (bars & (1 << i)) 3160 pci_release_region(pdev, i); 3161 3162 return -EBUSY; 3163 } 3164 3165 3166 /** 3167 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources 3168 * @pdev: PCI device whose resources are to be reserved 3169 * @bars: Bitmask of BARs to be requested 3170 * @res_name: Name to be associated with resource 3171 */ 3172 int pci_request_selected_regions(struct pci_dev *pdev, int bars, 3173 const char *res_name) 3174 { 3175 return __pci_request_selected_regions(pdev, bars, res_name, 0); 3176 } 3177 EXPORT_SYMBOL(pci_request_selected_regions); 3178 3179 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars, 3180 const char *res_name) 3181 { 3182 return __pci_request_selected_regions(pdev, bars, res_name, 3183 IORESOURCE_EXCLUSIVE); 3184 } 3185 EXPORT_SYMBOL(pci_request_selected_regions_exclusive); 3186 3187 /** 3188 * pci_release_regions - Release reserved PCI I/O and memory resources 3189 * @pdev: PCI device whose resources were previously reserved by pci_request_regions 3190 * 3191 * Releases all PCI I/O and memory resources previously reserved by a 3192 * successful call to pci_request_regions. Call this function only 3193 * after all use of the PCI regions has ceased. 3194 */ 3195 3196 void pci_release_regions(struct pci_dev *pdev) 3197 { 3198 pci_release_selected_regions(pdev, (1 << 6) - 1); 3199 } 3200 EXPORT_SYMBOL(pci_release_regions); 3201 3202 /** 3203 * pci_request_regions - Reserved PCI I/O and memory resources 3204 * @pdev: PCI device whose resources are to be reserved 3205 * @res_name: Name to be associated with resource. 3206 * 3207 * Mark all PCI regions associated with PCI device @pdev as 3208 * being reserved by owner @res_name. Do not access any 3209 * address inside the PCI regions unless this call returns 3210 * successfully. 3211 * 3212 * Returns 0 on success, or %EBUSY on error. A warning 3213 * message is also printed on failure. 3214 */ 3215 int pci_request_regions(struct pci_dev *pdev, const char *res_name) 3216 { 3217 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name); 3218 } 3219 EXPORT_SYMBOL(pci_request_regions); 3220 3221 /** 3222 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources 3223 * @pdev: PCI device whose resources are to be reserved 3224 * @res_name: Name to be associated with resource. 3225 * 3226 * Mark all PCI regions associated with PCI device @pdev as 3227 * being reserved by owner @res_name. Do not access any 3228 * address inside the PCI regions unless this call returns 3229 * successfully. 3230 * 3231 * pci_request_regions_exclusive() will mark the region so that 3232 * /dev/mem and the sysfs MMIO access will not be allowed. 3233 * 3234 * Returns 0 on success, or %EBUSY on error. A warning 3235 * message is also printed on failure. 3236 */ 3237 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name) 3238 { 3239 return pci_request_selected_regions_exclusive(pdev, 3240 ((1 << 6) - 1), res_name); 3241 } 3242 EXPORT_SYMBOL(pci_request_regions_exclusive); 3243 3244 #ifdef PCI_IOBASE 3245 struct io_range { 3246 struct list_head list; 3247 phys_addr_t start; 3248 resource_size_t size; 3249 }; 3250 3251 static LIST_HEAD(io_range_list); 3252 static DEFINE_SPINLOCK(io_range_lock); 3253 #endif 3254 3255 /* 3256 * Record the PCI IO range (expressed as CPU physical address + size). 3257 * Return a negative value if an error has occured, zero otherwise 3258 */ 3259 int __weak pci_register_io_range(phys_addr_t addr, resource_size_t size) 3260 { 3261 int err = 0; 3262 3263 #ifdef PCI_IOBASE 3264 struct io_range *range; 3265 resource_size_t allocated_size = 0; 3266 3267 /* check if the range hasn't been previously recorded */ 3268 spin_lock(&io_range_lock); 3269 list_for_each_entry(range, &io_range_list, list) { 3270 if (addr >= range->start && addr + size <= range->start + size) { 3271 /* range already registered, bail out */ 3272 goto end_register; 3273 } 3274 allocated_size += range->size; 3275 } 3276 3277 /* range not registed yet, check for available space */ 3278 if (allocated_size + size - 1 > IO_SPACE_LIMIT) { 3279 /* if it's too big check if 64K space can be reserved */ 3280 if (allocated_size + SZ_64K - 1 > IO_SPACE_LIMIT) { 3281 err = -E2BIG; 3282 goto end_register; 3283 } 3284 3285 size = SZ_64K; 3286 pr_warn("Requested IO range too big, new size set to 64K\n"); 3287 } 3288 3289 /* add the range to the list */ 3290 range = kzalloc(sizeof(*range), GFP_ATOMIC); 3291 if (!range) { 3292 err = -ENOMEM; 3293 goto end_register; 3294 } 3295 3296 range->start = addr; 3297 range->size = size; 3298 3299 list_add_tail(&range->list, &io_range_list); 3300 3301 end_register: 3302 spin_unlock(&io_range_lock); 3303 #endif 3304 3305 return err; 3306 } 3307 3308 phys_addr_t pci_pio_to_address(unsigned long pio) 3309 { 3310 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR; 3311 3312 #ifdef PCI_IOBASE 3313 struct io_range *range; 3314 resource_size_t allocated_size = 0; 3315 3316 if (pio > IO_SPACE_LIMIT) 3317 return address; 3318 3319 spin_lock(&io_range_lock); 3320 list_for_each_entry(range, &io_range_list, list) { 3321 if (pio >= allocated_size && pio < allocated_size + range->size) { 3322 address = range->start + pio - allocated_size; 3323 break; 3324 } 3325 allocated_size += range->size; 3326 } 3327 spin_unlock(&io_range_lock); 3328 #endif 3329 3330 return address; 3331 } 3332 3333 unsigned long __weak pci_address_to_pio(phys_addr_t address) 3334 { 3335 #ifdef PCI_IOBASE 3336 struct io_range *res; 3337 resource_size_t offset = 0; 3338 unsigned long addr = -1; 3339 3340 spin_lock(&io_range_lock); 3341 list_for_each_entry(res, &io_range_list, list) { 3342 if (address >= res->start && address < res->start + res->size) { 3343 addr = address - res->start + offset; 3344 break; 3345 } 3346 offset += res->size; 3347 } 3348 spin_unlock(&io_range_lock); 3349 3350 return addr; 3351 #else 3352 if (address > IO_SPACE_LIMIT) 3353 return (unsigned long)-1; 3354 3355 return (unsigned long) address; 3356 #endif 3357 } 3358 3359 /** 3360 * pci_remap_iospace - Remap the memory mapped I/O space 3361 * @res: Resource describing the I/O space 3362 * @phys_addr: physical address of range to be mapped 3363 * 3364 * Remap the memory mapped I/O space described by the @res 3365 * and the CPU physical address @phys_addr into virtual address space. 3366 * Only architectures that have memory mapped IO functions defined 3367 * (and the PCI_IOBASE value defined) should call this function. 3368 */ 3369 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr) 3370 { 3371 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 3372 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 3373 3374 if (!(res->flags & IORESOURCE_IO)) 3375 return -EINVAL; 3376 3377 if (res->end > IO_SPACE_LIMIT) 3378 return -EINVAL; 3379 3380 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr, 3381 pgprot_device(PAGE_KERNEL)); 3382 #else 3383 /* this architecture does not have memory mapped I/O space, 3384 so this function should never be called */ 3385 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n"); 3386 return -ENODEV; 3387 #endif 3388 } 3389 EXPORT_SYMBOL(pci_remap_iospace); 3390 3391 /** 3392 * pci_unmap_iospace - Unmap the memory mapped I/O space 3393 * @res: resource to be unmapped 3394 * 3395 * Unmap the CPU virtual address @res from virtual address space. 3396 * Only architectures that have memory mapped IO functions defined 3397 * (and the PCI_IOBASE value defined) should call this function. 3398 */ 3399 void pci_unmap_iospace(struct resource *res) 3400 { 3401 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 3402 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 3403 3404 unmap_kernel_range(vaddr, resource_size(res)); 3405 #endif 3406 } 3407 EXPORT_SYMBOL(pci_unmap_iospace); 3408 3409 /** 3410 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace() 3411 * @dev: Generic device to remap IO address for 3412 * @offset: Resource address to map 3413 * @size: Size of map 3414 * 3415 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver 3416 * detach. 3417 */ 3418 void __iomem *devm_pci_remap_cfgspace(struct device *dev, 3419 resource_size_t offset, 3420 resource_size_t size) 3421 { 3422 void __iomem **ptr, *addr; 3423 3424 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL); 3425 if (!ptr) 3426 return NULL; 3427 3428 addr = pci_remap_cfgspace(offset, size); 3429 if (addr) { 3430 *ptr = addr; 3431 devres_add(dev, ptr); 3432 } else 3433 devres_free(ptr); 3434 3435 return addr; 3436 } 3437 EXPORT_SYMBOL(devm_pci_remap_cfgspace); 3438 3439 /** 3440 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource 3441 * @dev: generic device to handle the resource for 3442 * @res: configuration space resource to be handled 3443 * 3444 * Checks that a resource is a valid memory region, requests the memory 3445 * region and ioremaps with pci_remap_cfgspace() API that ensures the 3446 * proper PCI configuration space memory attributes are guaranteed. 3447 * 3448 * All operations are managed and will be undone on driver detach. 3449 * 3450 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code 3451 * on failure. Usage example: 3452 * 3453 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 3454 * base = devm_pci_remap_cfg_resource(&pdev->dev, res); 3455 * if (IS_ERR(base)) 3456 * return PTR_ERR(base); 3457 */ 3458 void __iomem *devm_pci_remap_cfg_resource(struct device *dev, 3459 struct resource *res) 3460 { 3461 resource_size_t size; 3462 const char *name; 3463 void __iomem *dest_ptr; 3464 3465 BUG_ON(!dev); 3466 3467 if (!res || resource_type(res) != IORESOURCE_MEM) { 3468 dev_err(dev, "invalid resource\n"); 3469 return IOMEM_ERR_PTR(-EINVAL); 3470 } 3471 3472 size = resource_size(res); 3473 name = res->name ?: dev_name(dev); 3474 3475 if (!devm_request_mem_region(dev, res->start, size, name)) { 3476 dev_err(dev, "can't request region for resource %pR\n", res); 3477 return IOMEM_ERR_PTR(-EBUSY); 3478 } 3479 3480 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size); 3481 if (!dest_ptr) { 3482 dev_err(dev, "ioremap failed for resource %pR\n", res); 3483 devm_release_mem_region(dev, res->start, size); 3484 dest_ptr = IOMEM_ERR_PTR(-ENOMEM); 3485 } 3486 3487 return dest_ptr; 3488 } 3489 EXPORT_SYMBOL(devm_pci_remap_cfg_resource); 3490 3491 static void __pci_set_master(struct pci_dev *dev, bool enable) 3492 { 3493 u16 old_cmd, cmd; 3494 3495 pci_read_config_word(dev, PCI_COMMAND, &old_cmd); 3496 if (enable) 3497 cmd = old_cmd | PCI_COMMAND_MASTER; 3498 else 3499 cmd = old_cmd & ~PCI_COMMAND_MASTER; 3500 if (cmd != old_cmd) { 3501 dev_dbg(&dev->dev, "%s bus mastering\n", 3502 enable ? "enabling" : "disabling"); 3503 pci_write_config_word(dev, PCI_COMMAND, cmd); 3504 } 3505 dev->is_busmaster = enable; 3506 } 3507 3508 /** 3509 * pcibios_setup - process "pci=" kernel boot arguments 3510 * @str: string used to pass in "pci=" kernel boot arguments 3511 * 3512 * Process kernel boot arguments. This is the default implementation. 3513 * Architecture specific implementations can override this as necessary. 3514 */ 3515 char * __weak __init pcibios_setup(char *str) 3516 { 3517 return str; 3518 } 3519 3520 /** 3521 * pcibios_set_master - enable PCI bus-mastering for device dev 3522 * @dev: the PCI device to enable 3523 * 3524 * Enables PCI bus-mastering for the device. This is the default 3525 * implementation. Architecture specific implementations can override 3526 * this if necessary. 3527 */ 3528 void __weak pcibios_set_master(struct pci_dev *dev) 3529 { 3530 u8 lat; 3531 3532 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */ 3533 if (pci_is_pcie(dev)) 3534 return; 3535 3536 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat); 3537 if (lat < 16) 3538 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency; 3539 else if (lat > pcibios_max_latency) 3540 lat = pcibios_max_latency; 3541 else 3542 return; 3543 3544 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat); 3545 } 3546 3547 /** 3548 * pci_set_master - enables bus-mastering for device dev 3549 * @dev: the PCI device to enable 3550 * 3551 * Enables bus-mastering on the device and calls pcibios_set_master() 3552 * to do the needed arch specific settings. 3553 */ 3554 void pci_set_master(struct pci_dev *dev) 3555 { 3556 __pci_set_master(dev, true); 3557 pcibios_set_master(dev); 3558 } 3559 EXPORT_SYMBOL(pci_set_master); 3560 3561 /** 3562 * pci_clear_master - disables bus-mastering for device dev 3563 * @dev: the PCI device to disable 3564 */ 3565 void pci_clear_master(struct pci_dev *dev) 3566 { 3567 __pci_set_master(dev, false); 3568 } 3569 EXPORT_SYMBOL(pci_clear_master); 3570 3571 /** 3572 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed 3573 * @dev: the PCI device for which MWI is to be enabled 3574 * 3575 * Helper function for pci_set_mwi. 3576 * Originally copied from drivers/net/acenic.c. 3577 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. 3578 * 3579 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 3580 */ 3581 int pci_set_cacheline_size(struct pci_dev *dev) 3582 { 3583 u8 cacheline_size; 3584 3585 if (!pci_cache_line_size) 3586 return -EINVAL; 3587 3588 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be 3589 equal to or multiple of the right value. */ 3590 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 3591 if (cacheline_size >= pci_cache_line_size && 3592 (cacheline_size % pci_cache_line_size) == 0) 3593 return 0; 3594 3595 /* Write the correct value. */ 3596 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size); 3597 /* Read it back. */ 3598 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 3599 if (cacheline_size == pci_cache_line_size) 3600 return 0; 3601 3602 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not supported\n", 3603 pci_cache_line_size << 2); 3604 3605 return -EINVAL; 3606 } 3607 EXPORT_SYMBOL_GPL(pci_set_cacheline_size); 3608 3609 /** 3610 * pci_set_mwi - enables memory-write-invalidate PCI transaction 3611 * @dev: the PCI device for which MWI is enabled 3612 * 3613 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 3614 * 3615 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 3616 */ 3617 int pci_set_mwi(struct pci_dev *dev) 3618 { 3619 #ifdef PCI_DISABLE_MWI 3620 return 0; 3621 #else 3622 int rc; 3623 u16 cmd; 3624 3625 rc = pci_set_cacheline_size(dev); 3626 if (rc) 3627 return rc; 3628 3629 pci_read_config_word(dev, PCI_COMMAND, &cmd); 3630 if (!(cmd & PCI_COMMAND_INVALIDATE)) { 3631 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n"); 3632 cmd |= PCI_COMMAND_INVALIDATE; 3633 pci_write_config_word(dev, PCI_COMMAND, cmd); 3634 } 3635 return 0; 3636 #endif 3637 } 3638 EXPORT_SYMBOL(pci_set_mwi); 3639 3640 /** 3641 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction 3642 * @dev: the PCI device for which MWI is enabled 3643 * 3644 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 3645 * Callers are not required to check the return value. 3646 * 3647 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 3648 */ 3649 int pci_try_set_mwi(struct pci_dev *dev) 3650 { 3651 #ifdef PCI_DISABLE_MWI 3652 return 0; 3653 #else 3654 return pci_set_mwi(dev); 3655 #endif 3656 } 3657 EXPORT_SYMBOL(pci_try_set_mwi); 3658 3659 /** 3660 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev 3661 * @dev: the PCI device to disable 3662 * 3663 * Disables PCI Memory-Write-Invalidate transaction on the device 3664 */ 3665 void pci_clear_mwi(struct pci_dev *dev) 3666 { 3667 #ifndef PCI_DISABLE_MWI 3668 u16 cmd; 3669 3670 pci_read_config_word(dev, PCI_COMMAND, &cmd); 3671 if (cmd & PCI_COMMAND_INVALIDATE) { 3672 cmd &= ~PCI_COMMAND_INVALIDATE; 3673 pci_write_config_word(dev, PCI_COMMAND, cmd); 3674 } 3675 #endif 3676 } 3677 EXPORT_SYMBOL(pci_clear_mwi); 3678 3679 /** 3680 * pci_intx - enables/disables PCI INTx for device dev 3681 * @pdev: the PCI device to operate on 3682 * @enable: boolean: whether to enable or disable PCI INTx 3683 * 3684 * Enables/disables PCI INTx for device dev 3685 */ 3686 void pci_intx(struct pci_dev *pdev, int enable) 3687 { 3688 u16 pci_command, new; 3689 3690 pci_read_config_word(pdev, PCI_COMMAND, &pci_command); 3691 3692 if (enable) 3693 new = pci_command & ~PCI_COMMAND_INTX_DISABLE; 3694 else 3695 new = pci_command | PCI_COMMAND_INTX_DISABLE; 3696 3697 if (new != pci_command) { 3698 struct pci_devres *dr; 3699 3700 pci_write_config_word(pdev, PCI_COMMAND, new); 3701 3702 dr = find_pci_dr(pdev); 3703 if (dr && !dr->restore_intx) { 3704 dr->restore_intx = 1; 3705 dr->orig_intx = !enable; 3706 } 3707 } 3708 } 3709 EXPORT_SYMBOL_GPL(pci_intx); 3710 3711 /** 3712 * pci_intx_mask_supported - probe for INTx masking support 3713 * @dev: the PCI device to operate on 3714 * 3715 * Check if the device dev support INTx masking via the config space 3716 * command word. 3717 */ 3718 bool pci_intx_mask_supported(struct pci_dev *dev) 3719 { 3720 bool mask_supported = false; 3721 u16 orig, new; 3722 3723 if (dev->broken_intx_masking) 3724 return false; 3725 3726 pci_cfg_access_lock(dev); 3727 3728 pci_read_config_word(dev, PCI_COMMAND, &orig); 3729 pci_write_config_word(dev, PCI_COMMAND, 3730 orig ^ PCI_COMMAND_INTX_DISABLE); 3731 pci_read_config_word(dev, PCI_COMMAND, &new); 3732 3733 /* 3734 * There's no way to protect against hardware bugs or detect them 3735 * reliably, but as long as we know what the value should be, let's 3736 * go ahead and check it. 3737 */ 3738 if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) { 3739 dev_err(&dev->dev, "Command register changed from 0x%x to 0x%x: driver or hardware bug?\n", 3740 orig, new); 3741 } else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) { 3742 mask_supported = true; 3743 pci_write_config_word(dev, PCI_COMMAND, orig); 3744 } 3745 3746 pci_cfg_access_unlock(dev); 3747 return mask_supported; 3748 } 3749 EXPORT_SYMBOL_GPL(pci_intx_mask_supported); 3750 3751 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask) 3752 { 3753 struct pci_bus *bus = dev->bus; 3754 bool mask_updated = true; 3755 u32 cmd_status_dword; 3756 u16 origcmd, newcmd; 3757 unsigned long flags; 3758 bool irq_pending; 3759 3760 /* 3761 * We do a single dword read to retrieve both command and status. 3762 * Document assumptions that make this possible. 3763 */ 3764 BUILD_BUG_ON(PCI_COMMAND % 4); 3765 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS); 3766 3767 raw_spin_lock_irqsave(&pci_lock, flags); 3768 3769 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword); 3770 3771 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT; 3772 3773 /* 3774 * Check interrupt status register to see whether our device 3775 * triggered the interrupt (when masking) or the next IRQ is 3776 * already pending (when unmasking). 3777 */ 3778 if (mask != irq_pending) { 3779 mask_updated = false; 3780 goto done; 3781 } 3782 3783 origcmd = cmd_status_dword; 3784 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE; 3785 if (mask) 3786 newcmd |= PCI_COMMAND_INTX_DISABLE; 3787 if (newcmd != origcmd) 3788 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd); 3789 3790 done: 3791 raw_spin_unlock_irqrestore(&pci_lock, flags); 3792 3793 return mask_updated; 3794 } 3795 3796 /** 3797 * pci_check_and_mask_intx - mask INTx on pending interrupt 3798 * @dev: the PCI device to operate on 3799 * 3800 * Check if the device dev has its INTx line asserted, mask it and 3801 * return true in that case. False is returned if not interrupt was 3802 * pending. 3803 */ 3804 bool pci_check_and_mask_intx(struct pci_dev *dev) 3805 { 3806 return pci_check_and_set_intx_mask(dev, true); 3807 } 3808 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx); 3809 3810 /** 3811 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending 3812 * @dev: the PCI device to operate on 3813 * 3814 * Check if the device dev has its INTx line asserted, unmask it if not 3815 * and return true. False is returned and the mask remains active if 3816 * there was still an interrupt pending. 3817 */ 3818 bool pci_check_and_unmask_intx(struct pci_dev *dev) 3819 { 3820 return pci_check_and_set_intx_mask(dev, false); 3821 } 3822 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx); 3823 3824 /** 3825 * pci_wait_for_pending_transaction - waits for pending transaction 3826 * @dev: the PCI device to operate on 3827 * 3828 * Return 0 if transaction is pending 1 otherwise. 3829 */ 3830 int pci_wait_for_pending_transaction(struct pci_dev *dev) 3831 { 3832 if (!pci_is_pcie(dev)) 3833 return 1; 3834 3835 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA, 3836 PCI_EXP_DEVSTA_TRPND); 3837 } 3838 EXPORT_SYMBOL(pci_wait_for_pending_transaction); 3839 3840 /* 3841 * We should only need to wait 100ms after FLR, but some devices take longer. 3842 * Wait for up to 1000ms for config space to return something other than -1. 3843 * Intel IGD requires this when an LCD panel is attached. We read the 2nd 3844 * dword because VFs don't implement the 1st dword. 3845 */ 3846 static void pci_flr_wait(struct pci_dev *dev) 3847 { 3848 int i = 0; 3849 u32 id; 3850 3851 do { 3852 msleep(100); 3853 pci_read_config_dword(dev, PCI_COMMAND, &id); 3854 } while (i++ < 10 && id == ~0); 3855 3856 if (id == ~0) 3857 dev_warn(&dev->dev, "Failed to return from FLR\n"); 3858 else if (i > 1) 3859 dev_info(&dev->dev, "Required additional %dms to return from FLR\n", 3860 (i - 1) * 100); 3861 } 3862 3863 /** 3864 * pcie_has_flr - check if a device supports function level resets 3865 * @dev: device to check 3866 * 3867 * Returns true if the device advertises support for PCIe function level 3868 * resets. 3869 */ 3870 static bool pcie_has_flr(struct pci_dev *dev) 3871 { 3872 u32 cap; 3873 3874 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 3875 return false; 3876 3877 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap); 3878 return cap & PCI_EXP_DEVCAP_FLR; 3879 } 3880 3881 /** 3882 * pcie_flr - initiate a PCIe function level reset 3883 * @dev: device to reset 3884 * 3885 * Initiate a function level reset on @dev. The caller should ensure the 3886 * device supports FLR before calling this function, e.g. by using the 3887 * pcie_has_flr() helper. 3888 */ 3889 void pcie_flr(struct pci_dev *dev) 3890 { 3891 if (!pci_wait_for_pending_transaction(dev)) 3892 dev_err(&dev->dev, "timed out waiting for pending transaction; performing function level reset anyway\n"); 3893 3894 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR); 3895 pci_flr_wait(dev); 3896 } 3897 EXPORT_SYMBOL_GPL(pcie_flr); 3898 3899 static int pci_af_flr(struct pci_dev *dev, int probe) 3900 { 3901 int pos; 3902 u8 cap; 3903 3904 pos = pci_find_capability(dev, PCI_CAP_ID_AF); 3905 if (!pos) 3906 return -ENOTTY; 3907 3908 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 3909 return -ENOTTY; 3910 3911 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap); 3912 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR)) 3913 return -ENOTTY; 3914 3915 if (probe) 3916 return 0; 3917 3918 /* 3919 * Wait for Transaction Pending bit to clear. A word-aligned test 3920 * is used, so we use the conrol offset rather than status and shift 3921 * the test bit to match. 3922 */ 3923 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL, 3924 PCI_AF_STATUS_TP << 8)) 3925 dev_err(&dev->dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n"); 3926 3927 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR); 3928 pci_flr_wait(dev); 3929 return 0; 3930 } 3931 3932 /** 3933 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0. 3934 * @dev: Device to reset. 3935 * @probe: If set, only check if the device can be reset this way. 3936 * 3937 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is 3938 * unset, it will be reinitialized internally when going from PCI_D3hot to 3939 * PCI_D0. If that's the case and the device is not in a low-power state 3940 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset. 3941 * 3942 * NOTE: This causes the caller to sleep for twice the device power transition 3943 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms 3944 * by default (i.e. unless the @dev's d3_delay field has a different value). 3945 * Moreover, only devices in D0 can be reset by this function. 3946 */ 3947 static int pci_pm_reset(struct pci_dev *dev, int probe) 3948 { 3949 u16 csr; 3950 3951 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET) 3952 return -ENOTTY; 3953 3954 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr); 3955 if (csr & PCI_PM_CTRL_NO_SOFT_RESET) 3956 return -ENOTTY; 3957 3958 if (probe) 3959 return 0; 3960 3961 if (dev->current_state != PCI_D0) 3962 return -EINVAL; 3963 3964 csr &= ~PCI_PM_CTRL_STATE_MASK; 3965 csr |= PCI_D3hot; 3966 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 3967 pci_dev_d3_sleep(dev); 3968 3969 csr &= ~PCI_PM_CTRL_STATE_MASK; 3970 csr |= PCI_D0; 3971 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 3972 pci_dev_d3_sleep(dev); 3973 3974 return 0; 3975 } 3976 3977 void pci_reset_secondary_bus(struct pci_dev *dev) 3978 { 3979 u16 ctrl; 3980 3981 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl); 3982 ctrl |= PCI_BRIDGE_CTL_BUS_RESET; 3983 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 3984 /* 3985 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double 3986 * this to 2ms to ensure that we meet the minimum requirement. 3987 */ 3988 msleep(2); 3989 3990 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET; 3991 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 3992 3993 /* 3994 * Trhfa for conventional PCI is 2^25 clock cycles. 3995 * Assuming a minimum 33MHz clock this results in a 1s 3996 * delay before we can consider subordinate devices to 3997 * be re-initialized. PCIe has some ways to shorten this, 3998 * but we don't make use of them yet. 3999 */ 4000 ssleep(1); 4001 } 4002 4003 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev) 4004 { 4005 pci_reset_secondary_bus(dev); 4006 } 4007 4008 /** 4009 * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge. 4010 * @dev: Bridge device 4011 * 4012 * Use the bridge control register to assert reset on the secondary bus. 4013 * Devices on the secondary bus are left in power-on state. 4014 */ 4015 void pci_reset_bridge_secondary_bus(struct pci_dev *dev) 4016 { 4017 pcibios_reset_secondary_bus(dev); 4018 } 4019 EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus); 4020 4021 static int pci_parent_bus_reset(struct pci_dev *dev, int probe) 4022 { 4023 struct pci_dev *pdev; 4024 4025 if (pci_is_root_bus(dev->bus) || dev->subordinate || 4026 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 4027 return -ENOTTY; 4028 4029 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 4030 if (pdev != dev) 4031 return -ENOTTY; 4032 4033 if (probe) 4034 return 0; 4035 4036 pci_reset_bridge_secondary_bus(dev->bus->self); 4037 4038 return 0; 4039 } 4040 4041 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe) 4042 { 4043 int rc = -ENOTTY; 4044 4045 if (!hotplug || !try_module_get(hotplug->ops->owner)) 4046 return rc; 4047 4048 if (hotplug->ops->reset_slot) 4049 rc = hotplug->ops->reset_slot(hotplug, probe); 4050 4051 module_put(hotplug->ops->owner); 4052 4053 return rc; 4054 } 4055 4056 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe) 4057 { 4058 struct pci_dev *pdev; 4059 4060 if (dev->subordinate || !dev->slot || 4061 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 4062 return -ENOTTY; 4063 4064 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 4065 if (pdev != dev && pdev->slot == dev->slot) 4066 return -ENOTTY; 4067 4068 return pci_reset_hotplug_slot(dev->slot->hotplug, probe); 4069 } 4070 4071 static int __pci_dev_reset(struct pci_dev *dev, int probe) 4072 { 4073 int rc; 4074 4075 might_sleep(); 4076 4077 rc = pci_dev_specific_reset(dev, probe); 4078 if (rc != -ENOTTY) 4079 goto done; 4080 4081 if (pcie_has_flr(dev)) { 4082 if (!probe) 4083 pcie_flr(dev); 4084 rc = 0; 4085 goto done; 4086 } 4087 4088 rc = pci_af_flr(dev, probe); 4089 if (rc != -ENOTTY) 4090 goto done; 4091 4092 rc = pci_pm_reset(dev, probe); 4093 if (rc != -ENOTTY) 4094 goto done; 4095 4096 rc = pci_dev_reset_slot_function(dev, probe); 4097 if (rc != -ENOTTY) 4098 goto done; 4099 4100 rc = pci_parent_bus_reset(dev, probe); 4101 done: 4102 return rc; 4103 } 4104 4105 static void pci_dev_lock(struct pci_dev *dev) 4106 { 4107 pci_cfg_access_lock(dev); 4108 /* block PM suspend, driver probe, etc. */ 4109 device_lock(&dev->dev); 4110 } 4111 4112 /* Return 1 on successful lock, 0 on contention */ 4113 static int pci_dev_trylock(struct pci_dev *dev) 4114 { 4115 if (pci_cfg_access_trylock(dev)) { 4116 if (device_trylock(&dev->dev)) 4117 return 1; 4118 pci_cfg_access_unlock(dev); 4119 } 4120 4121 return 0; 4122 } 4123 4124 static void pci_dev_unlock(struct pci_dev *dev) 4125 { 4126 device_unlock(&dev->dev); 4127 pci_cfg_access_unlock(dev); 4128 } 4129 4130 /** 4131 * pci_reset_notify - notify device driver of reset 4132 * @dev: device to be notified of reset 4133 * @prepare: 'true' if device is about to be reset; 'false' if reset attempt 4134 * completed 4135 * 4136 * Must be called prior to device access being disabled and after device 4137 * access is restored. 4138 */ 4139 static void pci_reset_notify(struct pci_dev *dev, bool prepare) 4140 { 4141 const struct pci_error_handlers *err_handler = 4142 dev->driver ? dev->driver->err_handler : NULL; 4143 if (err_handler && err_handler->reset_notify) 4144 err_handler->reset_notify(dev, prepare); 4145 } 4146 4147 static void pci_dev_save_and_disable(struct pci_dev *dev) 4148 { 4149 pci_reset_notify(dev, true); 4150 4151 /* 4152 * Wake-up device prior to save. PM registers default to D0 after 4153 * reset and a simple register restore doesn't reliably return 4154 * to a non-D0 state anyway. 4155 */ 4156 pci_set_power_state(dev, PCI_D0); 4157 4158 pci_save_state(dev); 4159 /* 4160 * Disable the device by clearing the Command register, except for 4161 * INTx-disable which is set. This not only disables MMIO and I/O port 4162 * BARs, but also prevents the device from being Bus Master, preventing 4163 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3 4164 * compliant devices, INTx-disable prevents legacy interrupts. 4165 */ 4166 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE); 4167 } 4168 4169 static void pci_dev_restore(struct pci_dev *dev) 4170 { 4171 pci_restore_state(dev); 4172 pci_reset_notify(dev, false); 4173 } 4174 4175 static int pci_dev_reset(struct pci_dev *dev, int probe) 4176 { 4177 int rc; 4178 4179 if (!probe) 4180 pci_dev_lock(dev); 4181 4182 rc = __pci_dev_reset(dev, probe); 4183 4184 if (!probe) 4185 pci_dev_unlock(dev); 4186 4187 return rc; 4188 } 4189 4190 /** 4191 * __pci_reset_function - reset a PCI device function 4192 * @dev: PCI device to reset 4193 * 4194 * Some devices allow an individual function to be reset without affecting 4195 * other functions in the same device. The PCI device must be responsive 4196 * to PCI config space in order to use this function. 4197 * 4198 * The device function is presumed to be unused when this function is called. 4199 * Resetting the device will make the contents of PCI configuration space 4200 * random, so any caller of this must be prepared to reinitialise the 4201 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 4202 * etc. 4203 * 4204 * Returns 0 if the device function was successfully reset or negative if the 4205 * device doesn't support resetting a single function. 4206 */ 4207 int __pci_reset_function(struct pci_dev *dev) 4208 { 4209 return pci_dev_reset(dev, 0); 4210 } 4211 EXPORT_SYMBOL_GPL(__pci_reset_function); 4212 4213 /** 4214 * __pci_reset_function_locked - reset a PCI device function while holding 4215 * the @dev mutex lock. 4216 * @dev: PCI device to reset 4217 * 4218 * Some devices allow an individual function to be reset without affecting 4219 * other functions in the same device. The PCI device must be responsive 4220 * to PCI config space in order to use this function. 4221 * 4222 * The device function is presumed to be unused and the caller is holding 4223 * the device mutex lock when this function is called. 4224 * Resetting the device will make the contents of PCI configuration space 4225 * random, so any caller of this must be prepared to reinitialise the 4226 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 4227 * etc. 4228 * 4229 * Returns 0 if the device function was successfully reset or negative if the 4230 * device doesn't support resetting a single function. 4231 */ 4232 int __pci_reset_function_locked(struct pci_dev *dev) 4233 { 4234 return __pci_dev_reset(dev, 0); 4235 } 4236 EXPORT_SYMBOL_GPL(__pci_reset_function_locked); 4237 4238 /** 4239 * pci_probe_reset_function - check whether the device can be safely reset 4240 * @dev: PCI device to reset 4241 * 4242 * Some devices allow an individual function to be reset without affecting 4243 * other functions in the same device. The PCI device must be responsive 4244 * to PCI config space in order to use this function. 4245 * 4246 * Returns 0 if the device function can be reset or negative if the 4247 * device doesn't support resetting a single function. 4248 */ 4249 int pci_probe_reset_function(struct pci_dev *dev) 4250 { 4251 return pci_dev_reset(dev, 1); 4252 } 4253 4254 /** 4255 * pci_reset_function - quiesce and reset a PCI device function 4256 * @dev: PCI device to reset 4257 * 4258 * Some devices allow an individual function to be reset without affecting 4259 * other functions in the same device. The PCI device must be responsive 4260 * to PCI config space in order to use this function. 4261 * 4262 * This function does not just reset the PCI portion of a device, but 4263 * clears all the state associated with the device. This function differs 4264 * from __pci_reset_function in that it saves and restores device state 4265 * over the reset. 4266 * 4267 * Returns 0 if the device function was successfully reset or negative if the 4268 * device doesn't support resetting a single function. 4269 */ 4270 int pci_reset_function(struct pci_dev *dev) 4271 { 4272 int rc; 4273 4274 rc = pci_dev_reset(dev, 1); 4275 if (rc) 4276 return rc; 4277 4278 pci_dev_save_and_disable(dev); 4279 4280 rc = pci_dev_reset(dev, 0); 4281 4282 pci_dev_restore(dev); 4283 4284 return rc; 4285 } 4286 EXPORT_SYMBOL_GPL(pci_reset_function); 4287 4288 /** 4289 * pci_try_reset_function - quiesce and reset a PCI device function 4290 * @dev: PCI device to reset 4291 * 4292 * Same as above, except return -EAGAIN if unable to lock device. 4293 */ 4294 int pci_try_reset_function(struct pci_dev *dev) 4295 { 4296 int rc; 4297 4298 rc = pci_dev_reset(dev, 1); 4299 if (rc) 4300 return rc; 4301 4302 pci_dev_save_and_disable(dev); 4303 4304 if (pci_dev_trylock(dev)) { 4305 rc = __pci_dev_reset(dev, 0); 4306 pci_dev_unlock(dev); 4307 } else 4308 rc = -EAGAIN; 4309 4310 pci_dev_restore(dev); 4311 4312 return rc; 4313 } 4314 EXPORT_SYMBOL_GPL(pci_try_reset_function); 4315 4316 /* Do any devices on or below this bus prevent a bus reset? */ 4317 static bool pci_bus_resetable(struct pci_bus *bus) 4318 { 4319 struct pci_dev *dev; 4320 4321 list_for_each_entry(dev, &bus->devices, bus_list) { 4322 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 4323 (dev->subordinate && !pci_bus_resetable(dev->subordinate))) 4324 return false; 4325 } 4326 4327 return true; 4328 } 4329 4330 /* Lock devices from the top of the tree down */ 4331 static void pci_bus_lock(struct pci_bus *bus) 4332 { 4333 struct pci_dev *dev; 4334 4335 list_for_each_entry(dev, &bus->devices, bus_list) { 4336 pci_dev_lock(dev); 4337 if (dev->subordinate) 4338 pci_bus_lock(dev->subordinate); 4339 } 4340 } 4341 4342 /* Unlock devices from the bottom of the tree up */ 4343 static void pci_bus_unlock(struct pci_bus *bus) 4344 { 4345 struct pci_dev *dev; 4346 4347 list_for_each_entry(dev, &bus->devices, bus_list) { 4348 if (dev->subordinate) 4349 pci_bus_unlock(dev->subordinate); 4350 pci_dev_unlock(dev); 4351 } 4352 } 4353 4354 /* Return 1 on successful lock, 0 on contention */ 4355 static int pci_bus_trylock(struct pci_bus *bus) 4356 { 4357 struct pci_dev *dev; 4358 4359 list_for_each_entry(dev, &bus->devices, bus_list) { 4360 if (!pci_dev_trylock(dev)) 4361 goto unlock; 4362 if (dev->subordinate) { 4363 if (!pci_bus_trylock(dev->subordinate)) { 4364 pci_dev_unlock(dev); 4365 goto unlock; 4366 } 4367 } 4368 } 4369 return 1; 4370 4371 unlock: 4372 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) { 4373 if (dev->subordinate) 4374 pci_bus_unlock(dev->subordinate); 4375 pci_dev_unlock(dev); 4376 } 4377 return 0; 4378 } 4379 4380 /* Do any devices on or below this slot prevent a bus reset? */ 4381 static bool pci_slot_resetable(struct pci_slot *slot) 4382 { 4383 struct pci_dev *dev; 4384 4385 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 4386 if (!dev->slot || dev->slot != slot) 4387 continue; 4388 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 4389 (dev->subordinate && !pci_bus_resetable(dev->subordinate))) 4390 return false; 4391 } 4392 4393 return true; 4394 } 4395 4396 /* Lock devices from the top of the tree down */ 4397 static void pci_slot_lock(struct pci_slot *slot) 4398 { 4399 struct pci_dev *dev; 4400 4401 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 4402 if (!dev->slot || dev->slot != slot) 4403 continue; 4404 pci_dev_lock(dev); 4405 if (dev->subordinate) 4406 pci_bus_lock(dev->subordinate); 4407 } 4408 } 4409 4410 /* Unlock devices from the bottom of the tree up */ 4411 static void pci_slot_unlock(struct pci_slot *slot) 4412 { 4413 struct pci_dev *dev; 4414 4415 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 4416 if (!dev->slot || dev->slot != slot) 4417 continue; 4418 if (dev->subordinate) 4419 pci_bus_unlock(dev->subordinate); 4420 pci_dev_unlock(dev); 4421 } 4422 } 4423 4424 /* Return 1 on successful lock, 0 on contention */ 4425 static int pci_slot_trylock(struct pci_slot *slot) 4426 { 4427 struct pci_dev *dev; 4428 4429 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 4430 if (!dev->slot || dev->slot != slot) 4431 continue; 4432 if (!pci_dev_trylock(dev)) 4433 goto unlock; 4434 if (dev->subordinate) { 4435 if (!pci_bus_trylock(dev->subordinate)) { 4436 pci_dev_unlock(dev); 4437 goto unlock; 4438 } 4439 } 4440 } 4441 return 1; 4442 4443 unlock: 4444 list_for_each_entry_continue_reverse(dev, 4445 &slot->bus->devices, bus_list) { 4446 if (!dev->slot || dev->slot != slot) 4447 continue; 4448 if (dev->subordinate) 4449 pci_bus_unlock(dev->subordinate); 4450 pci_dev_unlock(dev); 4451 } 4452 return 0; 4453 } 4454 4455 /* Save and disable devices from the top of the tree down */ 4456 static void pci_bus_save_and_disable(struct pci_bus *bus) 4457 { 4458 struct pci_dev *dev; 4459 4460 list_for_each_entry(dev, &bus->devices, bus_list) { 4461 pci_dev_save_and_disable(dev); 4462 if (dev->subordinate) 4463 pci_bus_save_and_disable(dev->subordinate); 4464 } 4465 } 4466 4467 /* 4468 * Restore devices from top of the tree down - parent bridges need to be 4469 * restored before we can get to subordinate devices. 4470 */ 4471 static void pci_bus_restore(struct pci_bus *bus) 4472 { 4473 struct pci_dev *dev; 4474 4475 list_for_each_entry(dev, &bus->devices, bus_list) { 4476 pci_dev_restore(dev); 4477 if (dev->subordinate) 4478 pci_bus_restore(dev->subordinate); 4479 } 4480 } 4481 4482 /* Save and disable devices from the top of the tree down */ 4483 static void pci_slot_save_and_disable(struct pci_slot *slot) 4484 { 4485 struct pci_dev *dev; 4486 4487 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 4488 if (!dev->slot || dev->slot != slot) 4489 continue; 4490 pci_dev_save_and_disable(dev); 4491 if (dev->subordinate) 4492 pci_bus_save_and_disable(dev->subordinate); 4493 } 4494 } 4495 4496 /* 4497 * Restore devices from top of the tree down - parent bridges need to be 4498 * restored before we can get to subordinate devices. 4499 */ 4500 static void pci_slot_restore(struct pci_slot *slot) 4501 { 4502 struct pci_dev *dev; 4503 4504 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 4505 if (!dev->slot || dev->slot != slot) 4506 continue; 4507 pci_dev_restore(dev); 4508 if (dev->subordinate) 4509 pci_bus_restore(dev->subordinate); 4510 } 4511 } 4512 4513 static int pci_slot_reset(struct pci_slot *slot, int probe) 4514 { 4515 int rc; 4516 4517 if (!slot || !pci_slot_resetable(slot)) 4518 return -ENOTTY; 4519 4520 if (!probe) 4521 pci_slot_lock(slot); 4522 4523 might_sleep(); 4524 4525 rc = pci_reset_hotplug_slot(slot->hotplug, probe); 4526 4527 if (!probe) 4528 pci_slot_unlock(slot); 4529 4530 return rc; 4531 } 4532 4533 /** 4534 * pci_probe_reset_slot - probe whether a PCI slot can be reset 4535 * @slot: PCI slot to probe 4536 * 4537 * Return 0 if slot can be reset, negative if a slot reset is not supported. 4538 */ 4539 int pci_probe_reset_slot(struct pci_slot *slot) 4540 { 4541 return pci_slot_reset(slot, 1); 4542 } 4543 EXPORT_SYMBOL_GPL(pci_probe_reset_slot); 4544 4545 /** 4546 * pci_reset_slot - reset a PCI slot 4547 * @slot: PCI slot to reset 4548 * 4549 * A PCI bus may host multiple slots, each slot may support a reset mechanism 4550 * independent of other slots. For instance, some slots may support slot power 4551 * control. In the case of a 1:1 bus to slot architecture, this function may 4552 * wrap the bus reset to avoid spurious slot related events such as hotplug. 4553 * Generally a slot reset should be attempted before a bus reset. All of the 4554 * function of the slot and any subordinate buses behind the slot are reset 4555 * through this function. PCI config space of all devices in the slot and 4556 * behind the slot is saved before and restored after reset. 4557 * 4558 * Return 0 on success, non-zero on error. 4559 */ 4560 int pci_reset_slot(struct pci_slot *slot) 4561 { 4562 int rc; 4563 4564 rc = pci_slot_reset(slot, 1); 4565 if (rc) 4566 return rc; 4567 4568 pci_slot_save_and_disable(slot); 4569 4570 rc = pci_slot_reset(slot, 0); 4571 4572 pci_slot_restore(slot); 4573 4574 return rc; 4575 } 4576 EXPORT_SYMBOL_GPL(pci_reset_slot); 4577 4578 /** 4579 * pci_try_reset_slot - Try to reset a PCI slot 4580 * @slot: PCI slot to reset 4581 * 4582 * Same as above except return -EAGAIN if the slot cannot be locked 4583 */ 4584 int pci_try_reset_slot(struct pci_slot *slot) 4585 { 4586 int rc; 4587 4588 rc = pci_slot_reset(slot, 1); 4589 if (rc) 4590 return rc; 4591 4592 pci_slot_save_and_disable(slot); 4593 4594 if (pci_slot_trylock(slot)) { 4595 might_sleep(); 4596 rc = pci_reset_hotplug_slot(slot->hotplug, 0); 4597 pci_slot_unlock(slot); 4598 } else 4599 rc = -EAGAIN; 4600 4601 pci_slot_restore(slot); 4602 4603 return rc; 4604 } 4605 EXPORT_SYMBOL_GPL(pci_try_reset_slot); 4606 4607 static int pci_bus_reset(struct pci_bus *bus, int probe) 4608 { 4609 if (!bus->self || !pci_bus_resetable(bus)) 4610 return -ENOTTY; 4611 4612 if (probe) 4613 return 0; 4614 4615 pci_bus_lock(bus); 4616 4617 might_sleep(); 4618 4619 pci_reset_bridge_secondary_bus(bus->self); 4620 4621 pci_bus_unlock(bus); 4622 4623 return 0; 4624 } 4625 4626 /** 4627 * pci_probe_reset_bus - probe whether a PCI bus can be reset 4628 * @bus: PCI bus to probe 4629 * 4630 * Return 0 if bus can be reset, negative if a bus reset is not supported. 4631 */ 4632 int pci_probe_reset_bus(struct pci_bus *bus) 4633 { 4634 return pci_bus_reset(bus, 1); 4635 } 4636 EXPORT_SYMBOL_GPL(pci_probe_reset_bus); 4637 4638 /** 4639 * pci_reset_bus - reset a PCI bus 4640 * @bus: top level PCI bus to reset 4641 * 4642 * Do a bus reset on the given bus and any subordinate buses, saving 4643 * and restoring state of all devices. 4644 * 4645 * Return 0 on success, non-zero on error. 4646 */ 4647 int pci_reset_bus(struct pci_bus *bus) 4648 { 4649 int rc; 4650 4651 rc = pci_bus_reset(bus, 1); 4652 if (rc) 4653 return rc; 4654 4655 pci_bus_save_and_disable(bus); 4656 4657 rc = pci_bus_reset(bus, 0); 4658 4659 pci_bus_restore(bus); 4660 4661 return rc; 4662 } 4663 EXPORT_SYMBOL_GPL(pci_reset_bus); 4664 4665 /** 4666 * pci_try_reset_bus - Try to reset a PCI bus 4667 * @bus: top level PCI bus to reset 4668 * 4669 * Same as above except return -EAGAIN if the bus cannot be locked 4670 */ 4671 int pci_try_reset_bus(struct pci_bus *bus) 4672 { 4673 int rc; 4674 4675 rc = pci_bus_reset(bus, 1); 4676 if (rc) 4677 return rc; 4678 4679 pci_bus_save_and_disable(bus); 4680 4681 if (pci_bus_trylock(bus)) { 4682 might_sleep(); 4683 pci_reset_bridge_secondary_bus(bus->self); 4684 pci_bus_unlock(bus); 4685 } else 4686 rc = -EAGAIN; 4687 4688 pci_bus_restore(bus); 4689 4690 return rc; 4691 } 4692 EXPORT_SYMBOL_GPL(pci_try_reset_bus); 4693 4694 /** 4695 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count 4696 * @dev: PCI device to query 4697 * 4698 * Returns mmrbc: maximum designed memory read count in bytes 4699 * or appropriate error value. 4700 */ 4701 int pcix_get_max_mmrbc(struct pci_dev *dev) 4702 { 4703 int cap; 4704 u32 stat; 4705 4706 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 4707 if (!cap) 4708 return -EINVAL; 4709 4710 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 4711 return -EINVAL; 4712 4713 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21); 4714 } 4715 EXPORT_SYMBOL(pcix_get_max_mmrbc); 4716 4717 /** 4718 * pcix_get_mmrbc - get PCI-X maximum memory read byte count 4719 * @dev: PCI device to query 4720 * 4721 * Returns mmrbc: maximum memory read count in bytes 4722 * or appropriate error value. 4723 */ 4724 int pcix_get_mmrbc(struct pci_dev *dev) 4725 { 4726 int cap; 4727 u16 cmd; 4728 4729 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 4730 if (!cap) 4731 return -EINVAL; 4732 4733 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 4734 return -EINVAL; 4735 4736 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2); 4737 } 4738 EXPORT_SYMBOL(pcix_get_mmrbc); 4739 4740 /** 4741 * pcix_set_mmrbc - set PCI-X maximum memory read byte count 4742 * @dev: PCI device to query 4743 * @mmrbc: maximum memory read count in bytes 4744 * valid values are 512, 1024, 2048, 4096 4745 * 4746 * If possible sets maximum memory read byte count, some bridges have erratas 4747 * that prevent this. 4748 */ 4749 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc) 4750 { 4751 int cap; 4752 u32 stat, v, o; 4753 u16 cmd; 4754 4755 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc)) 4756 return -EINVAL; 4757 4758 v = ffs(mmrbc) - 10; 4759 4760 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 4761 if (!cap) 4762 return -EINVAL; 4763 4764 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 4765 return -EINVAL; 4766 4767 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21) 4768 return -E2BIG; 4769 4770 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 4771 return -EINVAL; 4772 4773 o = (cmd & PCI_X_CMD_MAX_READ) >> 2; 4774 if (o != v) { 4775 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC)) 4776 return -EIO; 4777 4778 cmd &= ~PCI_X_CMD_MAX_READ; 4779 cmd |= v << 2; 4780 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd)) 4781 return -EIO; 4782 } 4783 return 0; 4784 } 4785 EXPORT_SYMBOL(pcix_set_mmrbc); 4786 4787 /** 4788 * pcie_get_readrq - get PCI Express read request size 4789 * @dev: PCI device to query 4790 * 4791 * Returns maximum memory read request in bytes 4792 * or appropriate error value. 4793 */ 4794 int pcie_get_readrq(struct pci_dev *dev) 4795 { 4796 u16 ctl; 4797 4798 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 4799 4800 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12); 4801 } 4802 EXPORT_SYMBOL(pcie_get_readrq); 4803 4804 /** 4805 * pcie_set_readrq - set PCI Express maximum memory read request 4806 * @dev: PCI device to query 4807 * @rq: maximum memory read count in bytes 4808 * valid values are 128, 256, 512, 1024, 2048, 4096 4809 * 4810 * If possible sets maximum memory read request in bytes 4811 */ 4812 int pcie_set_readrq(struct pci_dev *dev, int rq) 4813 { 4814 u16 v; 4815 4816 if (rq < 128 || rq > 4096 || !is_power_of_2(rq)) 4817 return -EINVAL; 4818 4819 /* 4820 * If using the "performance" PCIe config, we clamp the 4821 * read rq size to the max packet size to prevent the 4822 * host bridge generating requests larger than we can 4823 * cope with 4824 */ 4825 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) { 4826 int mps = pcie_get_mps(dev); 4827 4828 if (mps < rq) 4829 rq = mps; 4830 } 4831 4832 v = (ffs(rq) - 8) << 12; 4833 4834 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 4835 PCI_EXP_DEVCTL_READRQ, v); 4836 } 4837 EXPORT_SYMBOL(pcie_set_readrq); 4838 4839 /** 4840 * pcie_get_mps - get PCI Express maximum payload size 4841 * @dev: PCI device to query 4842 * 4843 * Returns maximum payload size in bytes 4844 */ 4845 int pcie_get_mps(struct pci_dev *dev) 4846 { 4847 u16 ctl; 4848 4849 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 4850 4851 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5); 4852 } 4853 EXPORT_SYMBOL(pcie_get_mps); 4854 4855 /** 4856 * pcie_set_mps - set PCI Express maximum payload size 4857 * @dev: PCI device to query 4858 * @mps: maximum payload size in bytes 4859 * valid values are 128, 256, 512, 1024, 2048, 4096 4860 * 4861 * If possible sets maximum payload size 4862 */ 4863 int pcie_set_mps(struct pci_dev *dev, int mps) 4864 { 4865 u16 v; 4866 4867 if (mps < 128 || mps > 4096 || !is_power_of_2(mps)) 4868 return -EINVAL; 4869 4870 v = ffs(mps) - 8; 4871 if (v > dev->pcie_mpss) 4872 return -EINVAL; 4873 v <<= 5; 4874 4875 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 4876 PCI_EXP_DEVCTL_PAYLOAD, v); 4877 } 4878 EXPORT_SYMBOL(pcie_set_mps); 4879 4880 /** 4881 * pcie_get_minimum_link - determine minimum link settings of a PCI device 4882 * @dev: PCI device to query 4883 * @speed: storage for minimum speed 4884 * @width: storage for minimum width 4885 * 4886 * This function will walk up the PCI device chain and determine the minimum 4887 * link width and speed of the device. 4888 */ 4889 int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed, 4890 enum pcie_link_width *width) 4891 { 4892 int ret; 4893 4894 *speed = PCI_SPEED_UNKNOWN; 4895 *width = PCIE_LNK_WIDTH_UNKNOWN; 4896 4897 while (dev) { 4898 u16 lnksta; 4899 enum pci_bus_speed next_speed; 4900 enum pcie_link_width next_width; 4901 4902 ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta); 4903 if (ret) 4904 return ret; 4905 4906 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS]; 4907 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >> 4908 PCI_EXP_LNKSTA_NLW_SHIFT; 4909 4910 if (next_speed < *speed) 4911 *speed = next_speed; 4912 4913 if (next_width < *width) 4914 *width = next_width; 4915 4916 dev = dev->bus->self; 4917 } 4918 4919 return 0; 4920 } 4921 EXPORT_SYMBOL(pcie_get_minimum_link); 4922 4923 /** 4924 * pci_select_bars - Make BAR mask from the type of resource 4925 * @dev: the PCI device for which BAR mask is made 4926 * @flags: resource type mask to be selected 4927 * 4928 * This helper routine makes bar mask from the type of resource. 4929 */ 4930 int pci_select_bars(struct pci_dev *dev, unsigned long flags) 4931 { 4932 int i, bars = 0; 4933 for (i = 0; i < PCI_NUM_RESOURCES; i++) 4934 if (pci_resource_flags(dev, i) & flags) 4935 bars |= (1 << i); 4936 return bars; 4937 } 4938 EXPORT_SYMBOL(pci_select_bars); 4939 4940 /* Some architectures require additional programming to enable VGA */ 4941 static arch_set_vga_state_t arch_set_vga_state; 4942 4943 void __init pci_register_set_vga_state(arch_set_vga_state_t func) 4944 { 4945 arch_set_vga_state = func; /* NULL disables */ 4946 } 4947 4948 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode, 4949 unsigned int command_bits, u32 flags) 4950 { 4951 if (arch_set_vga_state) 4952 return arch_set_vga_state(dev, decode, command_bits, 4953 flags); 4954 return 0; 4955 } 4956 4957 /** 4958 * pci_set_vga_state - set VGA decode state on device and parents if requested 4959 * @dev: the PCI device 4960 * @decode: true = enable decoding, false = disable decoding 4961 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY 4962 * @flags: traverse ancestors and change bridges 4963 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE 4964 */ 4965 int pci_set_vga_state(struct pci_dev *dev, bool decode, 4966 unsigned int command_bits, u32 flags) 4967 { 4968 struct pci_bus *bus; 4969 struct pci_dev *bridge; 4970 u16 cmd; 4971 int rc; 4972 4973 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY))); 4974 4975 /* ARCH specific VGA enables */ 4976 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags); 4977 if (rc) 4978 return rc; 4979 4980 if (flags & PCI_VGA_STATE_CHANGE_DECODES) { 4981 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4982 if (decode == true) 4983 cmd |= command_bits; 4984 else 4985 cmd &= ~command_bits; 4986 pci_write_config_word(dev, PCI_COMMAND, cmd); 4987 } 4988 4989 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE)) 4990 return 0; 4991 4992 bus = dev->bus; 4993 while (bus) { 4994 bridge = bus->self; 4995 if (bridge) { 4996 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL, 4997 &cmd); 4998 if (decode == true) 4999 cmd |= PCI_BRIDGE_CTL_VGA; 5000 else 5001 cmd &= ~PCI_BRIDGE_CTL_VGA; 5002 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL, 5003 cmd); 5004 } 5005 bus = bus->parent; 5006 } 5007 return 0; 5008 } 5009 5010 /** 5011 * pci_add_dma_alias - Add a DMA devfn alias for a device 5012 * @dev: the PCI device for which alias is added 5013 * @devfn: alias slot and function 5014 * 5015 * This helper encodes 8-bit devfn as bit number in dma_alias_mask. 5016 * It should be called early, preferably as PCI fixup header quirk. 5017 */ 5018 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn) 5019 { 5020 if (!dev->dma_alias_mask) 5021 dev->dma_alias_mask = kcalloc(BITS_TO_LONGS(U8_MAX), 5022 sizeof(long), GFP_KERNEL); 5023 if (!dev->dma_alias_mask) { 5024 dev_warn(&dev->dev, "Unable to allocate DMA alias mask\n"); 5025 return; 5026 } 5027 5028 set_bit(devfn, dev->dma_alias_mask); 5029 dev_info(&dev->dev, "Enabling fixed DMA alias to %02x.%d\n", 5030 PCI_SLOT(devfn), PCI_FUNC(devfn)); 5031 } 5032 5033 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2) 5034 { 5035 return (dev1->dma_alias_mask && 5036 test_bit(dev2->devfn, dev1->dma_alias_mask)) || 5037 (dev2->dma_alias_mask && 5038 test_bit(dev1->devfn, dev2->dma_alias_mask)); 5039 } 5040 5041 bool pci_device_is_present(struct pci_dev *pdev) 5042 { 5043 u32 v; 5044 5045 if (pci_dev_is_disconnected(pdev)) 5046 return false; 5047 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0); 5048 } 5049 EXPORT_SYMBOL_GPL(pci_device_is_present); 5050 5051 void pci_ignore_hotplug(struct pci_dev *dev) 5052 { 5053 struct pci_dev *bridge = dev->bus->self; 5054 5055 dev->ignore_hotplug = 1; 5056 /* Propagate the "ignore hotplug" setting to the parent bridge. */ 5057 if (bridge) 5058 bridge->ignore_hotplug = 1; 5059 } 5060 EXPORT_SYMBOL_GPL(pci_ignore_hotplug); 5061 5062 resource_size_t __weak pcibios_default_alignment(void) 5063 { 5064 return 0; 5065 } 5066 5067 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE 5068 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0}; 5069 static DEFINE_SPINLOCK(resource_alignment_lock); 5070 5071 /** 5072 * pci_specified_resource_alignment - get resource alignment specified by user. 5073 * @dev: the PCI device to get 5074 * @resize: whether or not to change resources' size when reassigning alignment 5075 * 5076 * RETURNS: Resource alignment if it is specified. 5077 * Zero if it is not specified. 5078 */ 5079 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev, 5080 bool *resize) 5081 { 5082 int seg, bus, slot, func, align_order, count; 5083 unsigned short vendor, device, subsystem_vendor, subsystem_device; 5084 resource_size_t align = pcibios_default_alignment(); 5085 char *p; 5086 5087 spin_lock(&resource_alignment_lock); 5088 p = resource_alignment_param; 5089 if (!*p && !align) 5090 goto out; 5091 if (pci_has_flag(PCI_PROBE_ONLY)) { 5092 align = 0; 5093 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n"); 5094 goto out; 5095 } 5096 5097 while (*p) { 5098 count = 0; 5099 if (sscanf(p, "%d%n", &align_order, &count) == 1 && 5100 p[count] == '@') { 5101 p += count + 1; 5102 } else { 5103 align_order = -1; 5104 } 5105 if (strncmp(p, "pci:", 4) == 0) { 5106 /* PCI vendor/device (subvendor/subdevice) ids are specified */ 5107 p += 4; 5108 if (sscanf(p, "%hx:%hx:%hx:%hx%n", 5109 &vendor, &device, &subsystem_vendor, &subsystem_device, &count) != 4) { 5110 if (sscanf(p, "%hx:%hx%n", &vendor, &device, &count) != 2) { 5111 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: pci:%s\n", 5112 p); 5113 break; 5114 } 5115 subsystem_vendor = subsystem_device = 0; 5116 } 5117 p += count; 5118 if ((!vendor || (vendor == dev->vendor)) && 5119 (!device || (device == dev->device)) && 5120 (!subsystem_vendor || (subsystem_vendor == dev->subsystem_vendor)) && 5121 (!subsystem_device || (subsystem_device == dev->subsystem_device))) { 5122 *resize = true; 5123 if (align_order == -1) 5124 align = PAGE_SIZE; 5125 else 5126 align = 1 << align_order; 5127 /* Found */ 5128 break; 5129 } 5130 } 5131 else { 5132 if (sscanf(p, "%x:%x:%x.%x%n", 5133 &seg, &bus, &slot, &func, &count) != 4) { 5134 seg = 0; 5135 if (sscanf(p, "%x:%x.%x%n", 5136 &bus, &slot, &func, &count) != 3) { 5137 /* Invalid format */ 5138 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n", 5139 p); 5140 break; 5141 } 5142 } 5143 p += count; 5144 if (seg == pci_domain_nr(dev->bus) && 5145 bus == dev->bus->number && 5146 slot == PCI_SLOT(dev->devfn) && 5147 func == PCI_FUNC(dev->devfn)) { 5148 *resize = true; 5149 if (align_order == -1) 5150 align = PAGE_SIZE; 5151 else 5152 align = 1 << align_order; 5153 /* Found */ 5154 break; 5155 } 5156 } 5157 if (*p != ';' && *p != ',') { 5158 /* End of param or invalid format */ 5159 break; 5160 } 5161 p++; 5162 } 5163 out: 5164 spin_unlock(&resource_alignment_lock); 5165 return align; 5166 } 5167 5168 static void pci_request_resource_alignment(struct pci_dev *dev, int bar, 5169 resource_size_t align, bool resize) 5170 { 5171 struct resource *r = &dev->resource[bar]; 5172 resource_size_t size; 5173 5174 if (!(r->flags & IORESOURCE_MEM)) 5175 return; 5176 5177 if (r->flags & IORESOURCE_PCI_FIXED) { 5178 dev_info(&dev->dev, "BAR%d %pR: ignoring requested alignment %#llx\n", 5179 bar, r, (unsigned long long)align); 5180 return; 5181 } 5182 5183 size = resource_size(r); 5184 if (size >= align) 5185 return; 5186 5187 /* 5188 * Increase the alignment of the resource. There are two ways we 5189 * can do this: 5190 * 5191 * 1) Increase the size of the resource. BARs are aligned on their 5192 * size, so when we reallocate space for this resource, we'll 5193 * allocate it with the larger alignment. This also prevents 5194 * assignment of any other BARs inside the alignment region, so 5195 * if we're requesting page alignment, this means no other BARs 5196 * will share the page. 5197 * 5198 * The disadvantage is that this makes the resource larger than 5199 * the hardware BAR, which may break drivers that compute things 5200 * based on the resource size, e.g., to find registers at a 5201 * fixed offset before the end of the BAR. 5202 * 5203 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and 5204 * set r->start to the desired alignment. By itself this 5205 * doesn't prevent other BARs being put inside the alignment 5206 * region, but if we realign *every* resource of every device in 5207 * the system, none of them will share an alignment region. 5208 * 5209 * When the user has requested alignment for only some devices via 5210 * the "pci=resource_alignment" argument, "resize" is true and we 5211 * use the first method. Otherwise we assume we're aligning all 5212 * devices and we use the second. 5213 */ 5214 5215 dev_info(&dev->dev, "BAR%d %pR: requesting alignment to %#llx\n", 5216 bar, r, (unsigned long long)align); 5217 5218 if (resize) { 5219 r->start = 0; 5220 r->end = align - 1; 5221 } else { 5222 r->flags &= ~IORESOURCE_SIZEALIGN; 5223 r->flags |= IORESOURCE_STARTALIGN; 5224 r->start = align; 5225 r->end = r->start + size - 1; 5226 } 5227 r->flags |= IORESOURCE_UNSET; 5228 } 5229 5230 /* 5231 * This function disables memory decoding and releases memory resources 5232 * of the device specified by kernel's boot parameter 'pci=resource_alignment='. 5233 * It also rounds up size to specified alignment. 5234 * Later on, the kernel will assign page-aligned memory resource back 5235 * to the device. 5236 */ 5237 void pci_reassigndev_resource_alignment(struct pci_dev *dev) 5238 { 5239 int i; 5240 struct resource *r; 5241 resource_size_t align; 5242 u16 command; 5243 bool resize = false; 5244 5245 /* 5246 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec 5247 * 3.4.1.11. Their resources are allocated from the space 5248 * described by the VF BARx register in the PF's SR-IOV capability. 5249 * We can't influence their alignment here. 5250 */ 5251 if (dev->is_virtfn) 5252 return; 5253 5254 /* check if specified PCI is target device to reassign */ 5255 align = pci_specified_resource_alignment(dev, &resize); 5256 if (!align) 5257 return; 5258 5259 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL && 5260 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) { 5261 dev_warn(&dev->dev, 5262 "Can't reassign resources to host bridge.\n"); 5263 return; 5264 } 5265 5266 dev_info(&dev->dev, 5267 "Disabling memory decoding and releasing memory resources.\n"); 5268 pci_read_config_word(dev, PCI_COMMAND, &command); 5269 command &= ~PCI_COMMAND_MEMORY; 5270 pci_write_config_word(dev, PCI_COMMAND, command); 5271 5272 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 5273 pci_request_resource_alignment(dev, i, align, resize); 5274 5275 /* 5276 * Need to disable bridge's resource window, 5277 * to enable the kernel to reassign new resource 5278 * window later on. 5279 */ 5280 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE && 5281 (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) { 5282 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) { 5283 r = &dev->resource[i]; 5284 if (!(r->flags & IORESOURCE_MEM)) 5285 continue; 5286 r->flags |= IORESOURCE_UNSET; 5287 r->end = resource_size(r) - 1; 5288 r->start = 0; 5289 } 5290 pci_disable_bridge_window(dev); 5291 } 5292 } 5293 5294 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count) 5295 { 5296 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1) 5297 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1; 5298 spin_lock(&resource_alignment_lock); 5299 strncpy(resource_alignment_param, buf, count); 5300 resource_alignment_param[count] = '\0'; 5301 spin_unlock(&resource_alignment_lock); 5302 return count; 5303 } 5304 5305 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size) 5306 { 5307 size_t count; 5308 spin_lock(&resource_alignment_lock); 5309 count = snprintf(buf, size, "%s", resource_alignment_param); 5310 spin_unlock(&resource_alignment_lock); 5311 return count; 5312 } 5313 5314 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf) 5315 { 5316 return pci_get_resource_alignment_param(buf, PAGE_SIZE); 5317 } 5318 5319 static ssize_t pci_resource_alignment_store(struct bus_type *bus, 5320 const char *buf, size_t count) 5321 { 5322 return pci_set_resource_alignment_param(buf, count); 5323 } 5324 5325 static BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show, 5326 pci_resource_alignment_store); 5327 5328 static int __init pci_resource_alignment_sysfs_init(void) 5329 { 5330 return bus_create_file(&pci_bus_type, 5331 &bus_attr_resource_alignment); 5332 } 5333 late_initcall(pci_resource_alignment_sysfs_init); 5334 5335 static void pci_no_domains(void) 5336 { 5337 #ifdef CONFIG_PCI_DOMAINS 5338 pci_domains_supported = 0; 5339 #endif 5340 } 5341 5342 #ifdef CONFIG_PCI_DOMAINS 5343 static atomic_t __domain_nr = ATOMIC_INIT(-1); 5344 5345 int pci_get_new_domain_nr(void) 5346 { 5347 return atomic_inc_return(&__domain_nr); 5348 } 5349 5350 #ifdef CONFIG_PCI_DOMAINS_GENERIC 5351 static int of_pci_bus_find_domain_nr(struct device *parent) 5352 { 5353 static int use_dt_domains = -1; 5354 int domain = -1; 5355 5356 if (parent) 5357 domain = of_get_pci_domain_nr(parent->of_node); 5358 /* 5359 * Check DT domain and use_dt_domains values. 5360 * 5361 * If DT domain property is valid (domain >= 0) and 5362 * use_dt_domains != 0, the DT assignment is valid since this means 5363 * we have not previously allocated a domain number by using 5364 * pci_get_new_domain_nr(); we should also update use_dt_domains to 5365 * 1, to indicate that we have just assigned a domain number from 5366 * DT. 5367 * 5368 * If DT domain property value is not valid (ie domain < 0), and we 5369 * have not previously assigned a domain number from DT 5370 * (use_dt_domains != 1) we should assign a domain number by 5371 * using the: 5372 * 5373 * pci_get_new_domain_nr() 5374 * 5375 * API and update the use_dt_domains value to keep track of method we 5376 * are using to assign domain numbers (use_dt_domains = 0). 5377 * 5378 * All other combinations imply we have a platform that is trying 5379 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(), 5380 * which is a recipe for domain mishandling and it is prevented by 5381 * invalidating the domain value (domain = -1) and printing a 5382 * corresponding error. 5383 */ 5384 if (domain >= 0 && use_dt_domains) { 5385 use_dt_domains = 1; 5386 } else if (domain < 0 && use_dt_domains != 1) { 5387 use_dt_domains = 0; 5388 domain = pci_get_new_domain_nr(); 5389 } else { 5390 dev_err(parent, "Node %s has inconsistent \"linux,pci-domain\" property in DT\n", 5391 parent->of_node->full_name); 5392 domain = -1; 5393 } 5394 5395 return domain; 5396 } 5397 5398 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent) 5399 { 5400 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) : 5401 acpi_pci_bus_find_domain_nr(bus); 5402 } 5403 #endif 5404 #endif 5405 5406 /** 5407 * pci_ext_cfg_avail - can we access extended PCI config space? 5408 * 5409 * Returns 1 if we can access PCI extended config space (offsets 5410 * greater than 0xff). This is the default implementation. Architecture 5411 * implementations can override this. 5412 */ 5413 int __weak pci_ext_cfg_avail(void) 5414 { 5415 return 1; 5416 } 5417 5418 void __weak pci_fixup_cardbus(struct pci_bus *bus) 5419 { 5420 } 5421 EXPORT_SYMBOL(pci_fixup_cardbus); 5422 5423 static int __init pci_setup(char *str) 5424 { 5425 while (str) { 5426 char *k = strchr(str, ','); 5427 if (k) 5428 *k++ = 0; 5429 if (*str && (str = pcibios_setup(str)) && *str) { 5430 if (!strcmp(str, "nomsi")) { 5431 pci_no_msi(); 5432 } else if (!strcmp(str, "noaer")) { 5433 pci_no_aer(); 5434 } else if (!strncmp(str, "realloc=", 8)) { 5435 pci_realloc_get_opt(str + 8); 5436 } else if (!strncmp(str, "realloc", 7)) { 5437 pci_realloc_get_opt("on"); 5438 } else if (!strcmp(str, "nodomains")) { 5439 pci_no_domains(); 5440 } else if (!strncmp(str, "noari", 5)) { 5441 pcie_ari_disabled = true; 5442 } else if (!strncmp(str, "cbiosize=", 9)) { 5443 pci_cardbus_io_size = memparse(str + 9, &str); 5444 } else if (!strncmp(str, "cbmemsize=", 10)) { 5445 pci_cardbus_mem_size = memparse(str + 10, &str); 5446 } else if (!strncmp(str, "resource_alignment=", 19)) { 5447 pci_set_resource_alignment_param(str + 19, 5448 strlen(str + 19)); 5449 } else if (!strncmp(str, "ecrc=", 5)) { 5450 pcie_ecrc_get_policy(str + 5); 5451 } else if (!strncmp(str, "hpiosize=", 9)) { 5452 pci_hotplug_io_size = memparse(str + 9, &str); 5453 } else if (!strncmp(str, "hpmemsize=", 10)) { 5454 pci_hotplug_mem_size = memparse(str + 10, &str); 5455 } else if (!strncmp(str, "hpbussize=", 10)) { 5456 pci_hotplug_bus_size = 5457 simple_strtoul(str + 10, &str, 0); 5458 if (pci_hotplug_bus_size > 0xff) 5459 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 5460 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) { 5461 pcie_bus_config = PCIE_BUS_TUNE_OFF; 5462 } else if (!strncmp(str, "pcie_bus_safe", 13)) { 5463 pcie_bus_config = PCIE_BUS_SAFE; 5464 } else if (!strncmp(str, "pcie_bus_perf", 13)) { 5465 pcie_bus_config = PCIE_BUS_PERFORMANCE; 5466 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) { 5467 pcie_bus_config = PCIE_BUS_PEER2PEER; 5468 } else if (!strncmp(str, "pcie_scan_all", 13)) { 5469 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS); 5470 } else { 5471 printk(KERN_ERR "PCI: Unknown option `%s'\n", 5472 str); 5473 } 5474 } 5475 str = k; 5476 } 5477 return 0; 5478 } 5479 early_param("pci", pci_setup); 5480