xref: /openbmc/linux/drivers/pci/pci.c (revision 1f9f6a78)
1 /*
2  *	PCI Bus Services, see include/linux/pci.h for further explanation.
3  *
4  *	Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5  *	David Mosberger-Tang
6  *
7  *	Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/pci.h>
14 #include <linux/pm.h>
15 #include <linux/slab.h>
16 #include <linux/module.h>
17 #include <linux/spinlock.h>
18 #include <linux/string.h>
19 #include <linux/log2.h>
20 #include <linux/pci-aspm.h>
21 #include <linux/pm_wakeup.h>
22 #include <linux/interrupt.h>
23 #include <linux/device.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/pci_hotplug.h>
26 #include <asm-generic/pci-bridge.h>
27 #include <asm/setup.h>
28 #include "pci.h"
29 
30 const char *pci_power_names[] = {
31 	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
32 };
33 EXPORT_SYMBOL_GPL(pci_power_names);
34 
35 int isa_dma_bridge_buggy;
36 EXPORT_SYMBOL(isa_dma_bridge_buggy);
37 
38 int pci_pci_problems;
39 EXPORT_SYMBOL(pci_pci_problems);
40 
41 unsigned int pci_pm_d3_delay;
42 
43 static void pci_pme_list_scan(struct work_struct *work);
44 
45 static LIST_HEAD(pci_pme_list);
46 static DEFINE_MUTEX(pci_pme_list_mutex);
47 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
48 
49 struct pci_pme_device {
50 	struct list_head list;
51 	struct pci_dev *dev;
52 };
53 
54 #define PME_TIMEOUT 1000 /* How long between PME checks */
55 
56 static void pci_dev_d3_sleep(struct pci_dev *dev)
57 {
58 	unsigned int delay = dev->d3_delay;
59 
60 	if (delay < pci_pm_d3_delay)
61 		delay = pci_pm_d3_delay;
62 
63 	msleep(delay);
64 }
65 
66 #ifdef CONFIG_PCI_DOMAINS
67 int pci_domains_supported = 1;
68 #endif
69 
70 #define DEFAULT_CARDBUS_IO_SIZE		(256)
71 #define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
72 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
73 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
74 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
75 
76 #define DEFAULT_HOTPLUG_IO_SIZE		(256)
77 #define DEFAULT_HOTPLUG_MEM_SIZE	(2*1024*1024)
78 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
79 unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
80 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
81 
82 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
83 
84 /*
85  * The default CLS is used if arch didn't set CLS explicitly and not
86  * all pci devices agree on the same value.  Arch can override either
87  * the dfl or actual value as it sees fit.  Don't forget this is
88  * measured in 32-bit words, not bytes.
89  */
90 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
91 u8 pci_cache_line_size;
92 
93 /*
94  * If we set up a device for bus mastering, we need to check the latency
95  * timer as certain BIOSes forget to set it properly.
96  */
97 unsigned int pcibios_max_latency = 255;
98 
99 /* If set, the PCIe ARI capability will not be used. */
100 static bool pcie_ari_disabled;
101 
102 /**
103  * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
104  * @bus: pointer to PCI bus structure to search
105  *
106  * Given a PCI bus, returns the highest PCI bus number present in the set
107  * including the given PCI bus and its list of child PCI buses.
108  */
109 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
110 {
111 	struct pci_bus *tmp;
112 	unsigned char max, n;
113 
114 	max = bus->busn_res.end;
115 	list_for_each_entry(tmp, &bus->children, node) {
116 		n = pci_bus_max_busnr(tmp);
117 		if (n > max)
118 			max = n;
119 	}
120 	return max;
121 }
122 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
123 
124 #ifdef CONFIG_HAS_IOMEM
125 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
126 {
127 	/*
128 	 * Make sure the BAR is actually a memory resource, not an IO resource
129 	 */
130 	if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
131 		WARN_ON(1);
132 		return NULL;
133 	}
134 	return ioremap_nocache(pci_resource_start(pdev, bar),
135 				     pci_resource_len(pdev, bar));
136 }
137 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
138 #endif
139 
140 #define PCI_FIND_CAP_TTL	48
141 
142 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
143 				   u8 pos, int cap, int *ttl)
144 {
145 	u8 id;
146 
147 	while ((*ttl)--) {
148 		pci_bus_read_config_byte(bus, devfn, pos, &pos);
149 		if (pos < 0x40)
150 			break;
151 		pos &= ~3;
152 		pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID,
153 					 &id);
154 		if (id == 0xff)
155 			break;
156 		if (id == cap)
157 			return pos;
158 		pos += PCI_CAP_LIST_NEXT;
159 	}
160 	return 0;
161 }
162 
163 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
164 			       u8 pos, int cap)
165 {
166 	int ttl = PCI_FIND_CAP_TTL;
167 
168 	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
169 }
170 
171 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
172 {
173 	return __pci_find_next_cap(dev->bus, dev->devfn,
174 				   pos + PCI_CAP_LIST_NEXT, cap);
175 }
176 EXPORT_SYMBOL_GPL(pci_find_next_capability);
177 
178 static int __pci_bus_find_cap_start(struct pci_bus *bus,
179 				    unsigned int devfn, u8 hdr_type)
180 {
181 	u16 status;
182 
183 	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
184 	if (!(status & PCI_STATUS_CAP_LIST))
185 		return 0;
186 
187 	switch (hdr_type) {
188 	case PCI_HEADER_TYPE_NORMAL:
189 	case PCI_HEADER_TYPE_BRIDGE:
190 		return PCI_CAPABILITY_LIST;
191 	case PCI_HEADER_TYPE_CARDBUS:
192 		return PCI_CB_CAPABILITY_LIST;
193 	default:
194 		return 0;
195 	}
196 
197 	return 0;
198 }
199 
200 /**
201  * pci_find_capability - query for devices' capabilities
202  * @dev: PCI device to query
203  * @cap: capability code
204  *
205  * Tell if a device supports a given PCI capability.
206  * Returns the address of the requested capability structure within the
207  * device's PCI configuration space or 0 in case the device does not
208  * support it.  Possible values for @cap:
209  *
210  *  %PCI_CAP_ID_PM           Power Management
211  *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
212  *  %PCI_CAP_ID_VPD          Vital Product Data
213  *  %PCI_CAP_ID_SLOTID       Slot Identification
214  *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
215  *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
216  *  %PCI_CAP_ID_PCIX         PCI-X
217  *  %PCI_CAP_ID_EXP          PCI Express
218  */
219 int pci_find_capability(struct pci_dev *dev, int cap)
220 {
221 	int pos;
222 
223 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
224 	if (pos)
225 		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
226 
227 	return pos;
228 }
229 EXPORT_SYMBOL(pci_find_capability);
230 
231 /**
232  * pci_bus_find_capability - query for devices' capabilities
233  * @bus:   the PCI bus to query
234  * @devfn: PCI device to query
235  * @cap:   capability code
236  *
237  * Like pci_find_capability() but works for pci devices that do not have a
238  * pci_dev structure set up yet.
239  *
240  * Returns the address of the requested capability structure within the
241  * device's PCI configuration space or 0 in case the device does not
242  * support it.
243  */
244 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
245 {
246 	int pos;
247 	u8 hdr_type;
248 
249 	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
250 
251 	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
252 	if (pos)
253 		pos = __pci_find_next_cap(bus, devfn, pos, cap);
254 
255 	return pos;
256 }
257 EXPORT_SYMBOL(pci_bus_find_capability);
258 
259 /**
260  * pci_find_next_ext_capability - Find an extended capability
261  * @dev: PCI device to query
262  * @start: address at which to start looking (0 to start at beginning of list)
263  * @cap: capability code
264  *
265  * Returns the address of the next matching extended capability structure
266  * within the device's PCI configuration space or 0 if the device does
267  * not support it.  Some capabilities can occur several times, e.g., the
268  * vendor-specific capability, and this provides a way to find them all.
269  */
270 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
271 {
272 	u32 header;
273 	int ttl;
274 	int pos = PCI_CFG_SPACE_SIZE;
275 
276 	/* minimum 8 bytes per capability */
277 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
278 
279 	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
280 		return 0;
281 
282 	if (start)
283 		pos = start;
284 
285 	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
286 		return 0;
287 
288 	/*
289 	 * If we have no capabilities, this is indicated by cap ID,
290 	 * cap version and next pointer all being 0.
291 	 */
292 	if (header == 0)
293 		return 0;
294 
295 	while (ttl-- > 0) {
296 		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
297 			return pos;
298 
299 		pos = PCI_EXT_CAP_NEXT(header);
300 		if (pos < PCI_CFG_SPACE_SIZE)
301 			break;
302 
303 		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
304 			break;
305 	}
306 
307 	return 0;
308 }
309 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
310 
311 /**
312  * pci_find_ext_capability - Find an extended capability
313  * @dev: PCI device to query
314  * @cap: capability code
315  *
316  * Returns the address of the requested extended capability structure
317  * within the device's PCI configuration space or 0 if the device does
318  * not support it.  Possible values for @cap:
319  *
320  *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
321  *  %PCI_EXT_CAP_ID_VC		Virtual Channel
322  *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
323  *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
324  */
325 int pci_find_ext_capability(struct pci_dev *dev, int cap)
326 {
327 	return pci_find_next_ext_capability(dev, 0, cap);
328 }
329 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
330 
331 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
332 {
333 	int rc, ttl = PCI_FIND_CAP_TTL;
334 	u8 cap, mask;
335 
336 	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
337 		mask = HT_3BIT_CAP_MASK;
338 	else
339 		mask = HT_5BIT_CAP_MASK;
340 
341 	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
342 				      PCI_CAP_ID_HT, &ttl);
343 	while (pos) {
344 		rc = pci_read_config_byte(dev, pos + 3, &cap);
345 		if (rc != PCIBIOS_SUCCESSFUL)
346 			return 0;
347 
348 		if ((cap & mask) == ht_cap)
349 			return pos;
350 
351 		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
352 					      pos + PCI_CAP_LIST_NEXT,
353 					      PCI_CAP_ID_HT, &ttl);
354 	}
355 
356 	return 0;
357 }
358 /**
359  * pci_find_next_ht_capability - query a device's Hypertransport capabilities
360  * @dev: PCI device to query
361  * @pos: Position from which to continue searching
362  * @ht_cap: Hypertransport capability code
363  *
364  * To be used in conjunction with pci_find_ht_capability() to search for
365  * all capabilities matching @ht_cap. @pos should always be a value returned
366  * from pci_find_ht_capability().
367  *
368  * NB. To be 100% safe against broken PCI devices, the caller should take
369  * steps to avoid an infinite loop.
370  */
371 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
372 {
373 	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
374 }
375 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
376 
377 /**
378  * pci_find_ht_capability - query a device's Hypertransport capabilities
379  * @dev: PCI device to query
380  * @ht_cap: Hypertransport capability code
381  *
382  * Tell if a device supports a given Hypertransport capability.
383  * Returns an address within the device's PCI configuration space
384  * or 0 in case the device does not support the request capability.
385  * The address points to the PCI capability, of type PCI_CAP_ID_HT,
386  * which has a Hypertransport capability matching @ht_cap.
387  */
388 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
389 {
390 	int pos;
391 
392 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
393 	if (pos)
394 		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
395 
396 	return pos;
397 }
398 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
399 
400 /**
401  * pci_find_parent_resource - return resource region of parent bus of given region
402  * @dev: PCI device structure contains resources to be searched
403  * @res: child resource record for which parent is sought
404  *
405  *  For given resource region of given device, return the resource
406  *  region of parent bus the given region is contained in.
407  */
408 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
409 					  struct resource *res)
410 {
411 	const struct pci_bus *bus = dev->bus;
412 	struct resource *r;
413 	int i;
414 
415 	pci_bus_for_each_resource(bus, r, i) {
416 		if (!r)
417 			continue;
418 		if (res->start && resource_contains(r, res)) {
419 
420 			/*
421 			 * If the window is prefetchable but the BAR is
422 			 * not, the allocator made a mistake.
423 			 */
424 			if (r->flags & IORESOURCE_PREFETCH &&
425 			    !(res->flags & IORESOURCE_PREFETCH))
426 				return NULL;
427 
428 			/*
429 			 * If we're below a transparent bridge, there may
430 			 * be both a positively-decoded aperture and a
431 			 * subtractively-decoded region that contain the BAR.
432 			 * We want the positively-decoded one, so this depends
433 			 * on pci_bus_for_each_resource() giving us those
434 			 * first.
435 			 */
436 			return r;
437 		}
438 	}
439 	return NULL;
440 }
441 EXPORT_SYMBOL(pci_find_parent_resource);
442 
443 /**
444  * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
445  * @dev: the PCI device to operate on
446  * @pos: config space offset of status word
447  * @mask: mask of bit(s) to care about in status word
448  *
449  * Return 1 when mask bit(s) in status word clear, 0 otherwise.
450  */
451 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
452 {
453 	int i;
454 
455 	/* Wait for Transaction Pending bit clean */
456 	for (i = 0; i < 4; i++) {
457 		u16 status;
458 		if (i)
459 			msleep((1 << (i - 1)) * 100);
460 
461 		pci_read_config_word(dev, pos, &status);
462 		if (!(status & mask))
463 			return 1;
464 	}
465 
466 	return 0;
467 }
468 
469 /**
470  * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
471  * @dev: PCI device to have its BARs restored
472  *
473  * Restore the BAR values for a given device, so as to make it
474  * accessible by its driver.
475  */
476 static void pci_restore_bars(struct pci_dev *dev)
477 {
478 	int i;
479 
480 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
481 		pci_update_resource(dev, i);
482 }
483 
484 static struct pci_platform_pm_ops *pci_platform_pm;
485 
486 int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
487 {
488 	if (!ops->is_manageable || !ops->set_state || !ops->choose_state
489 	    || !ops->sleep_wake)
490 		return -EINVAL;
491 	pci_platform_pm = ops;
492 	return 0;
493 }
494 
495 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
496 {
497 	return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
498 }
499 
500 static inline int platform_pci_set_power_state(struct pci_dev *dev,
501 					       pci_power_t t)
502 {
503 	return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
504 }
505 
506 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
507 {
508 	return pci_platform_pm ?
509 			pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
510 }
511 
512 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
513 {
514 	return pci_platform_pm ?
515 			pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
516 }
517 
518 static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable)
519 {
520 	return pci_platform_pm ?
521 			pci_platform_pm->run_wake(dev, enable) : -ENODEV;
522 }
523 
524 /**
525  * pci_raw_set_power_state - Use PCI PM registers to set the power state of
526  *                           given PCI device
527  * @dev: PCI device to handle.
528  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
529  *
530  * RETURN VALUE:
531  * -EINVAL if the requested state is invalid.
532  * -EIO if device does not support PCI PM or its PM capabilities register has a
533  * wrong version, or device doesn't support the requested state.
534  * 0 if device already is in the requested state.
535  * 0 if device's power state has been successfully changed.
536  */
537 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
538 {
539 	u16 pmcsr;
540 	bool need_restore = false;
541 
542 	/* Check if we're already there */
543 	if (dev->current_state == state)
544 		return 0;
545 
546 	if (!dev->pm_cap)
547 		return -EIO;
548 
549 	if (state < PCI_D0 || state > PCI_D3hot)
550 		return -EINVAL;
551 
552 	/* Validate current state:
553 	 * Can enter D0 from any state, but if we can only go deeper
554 	 * to sleep if we're already in a low power state
555 	 */
556 	if (state != PCI_D0 && dev->current_state <= PCI_D3cold
557 	    && dev->current_state > state) {
558 		dev_err(&dev->dev, "invalid power transition (from state %d to %d)\n",
559 			dev->current_state, state);
560 		return -EINVAL;
561 	}
562 
563 	/* check if this device supports the desired state */
564 	if ((state == PCI_D1 && !dev->d1_support)
565 	   || (state == PCI_D2 && !dev->d2_support))
566 		return -EIO;
567 
568 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
569 
570 	/* If we're (effectively) in D3, force entire word to 0.
571 	 * This doesn't affect PME_Status, disables PME_En, and
572 	 * sets PowerState to 0.
573 	 */
574 	switch (dev->current_state) {
575 	case PCI_D0:
576 	case PCI_D1:
577 	case PCI_D2:
578 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
579 		pmcsr |= state;
580 		break;
581 	case PCI_D3hot:
582 	case PCI_D3cold:
583 	case PCI_UNKNOWN: /* Boot-up */
584 		if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
585 		 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
586 			need_restore = true;
587 		/* Fall-through: force to D0 */
588 	default:
589 		pmcsr = 0;
590 		break;
591 	}
592 
593 	/* enter specified state */
594 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
595 
596 	/* Mandatory power management transition delays */
597 	/* see PCI PM 1.1 5.6.1 table 18 */
598 	if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
599 		pci_dev_d3_sleep(dev);
600 	else if (state == PCI_D2 || dev->current_state == PCI_D2)
601 		udelay(PCI_PM_D2_DELAY);
602 
603 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
604 	dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
605 	if (dev->current_state != state && printk_ratelimit())
606 		dev_info(&dev->dev, "Refused to change power state, currently in D%d\n",
607 			 dev->current_state);
608 
609 	/*
610 	 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
611 	 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
612 	 * from D3hot to D0 _may_ perform an internal reset, thereby
613 	 * going to "D0 Uninitialized" rather than "D0 Initialized".
614 	 * For example, at least some versions of the 3c905B and the
615 	 * 3c556B exhibit this behaviour.
616 	 *
617 	 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
618 	 * devices in a D3hot state at boot.  Consequently, we need to
619 	 * restore at least the BARs so that the device will be
620 	 * accessible to its driver.
621 	 */
622 	if (need_restore)
623 		pci_restore_bars(dev);
624 
625 	if (dev->bus->self)
626 		pcie_aspm_pm_state_change(dev->bus->self);
627 
628 	return 0;
629 }
630 
631 /**
632  * pci_update_current_state - Read PCI power state of given device from its
633  *                            PCI PM registers and cache it
634  * @dev: PCI device to handle.
635  * @state: State to cache in case the device doesn't have the PM capability
636  */
637 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
638 {
639 	if (dev->pm_cap) {
640 		u16 pmcsr;
641 
642 		/*
643 		 * Configuration space is not accessible for device in
644 		 * D3cold, so just keep or set D3cold for safety
645 		 */
646 		if (dev->current_state == PCI_D3cold)
647 			return;
648 		if (state == PCI_D3cold) {
649 			dev->current_state = PCI_D3cold;
650 			return;
651 		}
652 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
653 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
654 	} else {
655 		dev->current_state = state;
656 	}
657 }
658 
659 /**
660  * pci_power_up - Put the given device into D0 forcibly
661  * @dev: PCI device to power up
662  */
663 void pci_power_up(struct pci_dev *dev)
664 {
665 	if (platform_pci_power_manageable(dev))
666 		platform_pci_set_power_state(dev, PCI_D0);
667 
668 	pci_raw_set_power_state(dev, PCI_D0);
669 	pci_update_current_state(dev, PCI_D0);
670 }
671 
672 /**
673  * pci_platform_power_transition - Use platform to change device power state
674  * @dev: PCI device to handle.
675  * @state: State to put the device into.
676  */
677 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
678 {
679 	int error;
680 
681 	if (platform_pci_power_manageable(dev)) {
682 		error = platform_pci_set_power_state(dev, state);
683 		if (!error)
684 			pci_update_current_state(dev, state);
685 	} else
686 		error = -ENODEV;
687 
688 	if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
689 		dev->current_state = PCI_D0;
690 
691 	return error;
692 }
693 
694 /**
695  * pci_wakeup - Wake up a PCI device
696  * @pci_dev: Device to handle.
697  * @ign: ignored parameter
698  */
699 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
700 {
701 	pci_wakeup_event(pci_dev);
702 	pm_request_resume(&pci_dev->dev);
703 	return 0;
704 }
705 
706 /**
707  * pci_wakeup_bus - Walk given bus and wake up devices on it
708  * @bus: Top bus of the subtree to walk.
709  */
710 static void pci_wakeup_bus(struct pci_bus *bus)
711 {
712 	if (bus)
713 		pci_walk_bus(bus, pci_wakeup, NULL);
714 }
715 
716 /**
717  * __pci_start_power_transition - Start power transition of a PCI device
718  * @dev: PCI device to handle.
719  * @state: State to put the device into.
720  */
721 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
722 {
723 	if (state == PCI_D0) {
724 		pci_platform_power_transition(dev, PCI_D0);
725 		/*
726 		 * Mandatory power management transition delays, see
727 		 * PCI Express Base Specification Revision 2.0 Section
728 		 * 6.6.1: Conventional Reset.  Do not delay for
729 		 * devices powered on/off by corresponding bridge,
730 		 * because have already delayed for the bridge.
731 		 */
732 		if (dev->runtime_d3cold) {
733 			msleep(dev->d3cold_delay);
734 			/*
735 			 * When powering on a bridge from D3cold, the
736 			 * whole hierarchy may be powered on into
737 			 * D0uninitialized state, resume them to give
738 			 * them a chance to suspend again
739 			 */
740 			pci_wakeup_bus(dev->subordinate);
741 		}
742 	}
743 }
744 
745 /**
746  * __pci_dev_set_current_state - Set current state of a PCI device
747  * @dev: Device to handle
748  * @data: pointer to state to be set
749  */
750 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
751 {
752 	pci_power_t state = *(pci_power_t *)data;
753 
754 	dev->current_state = state;
755 	return 0;
756 }
757 
758 /**
759  * __pci_bus_set_current_state - Walk given bus and set current state of devices
760  * @bus: Top bus of the subtree to walk.
761  * @state: state to be set
762  */
763 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
764 {
765 	if (bus)
766 		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
767 }
768 
769 /**
770  * __pci_complete_power_transition - Complete power transition of a PCI device
771  * @dev: PCI device to handle.
772  * @state: State to put the device into.
773  *
774  * This function should not be called directly by device drivers.
775  */
776 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
777 {
778 	int ret;
779 
780 	if (state <= PCI_D0)
781 		return -EINVAL;
782 	ret = pci_platform_power_transition(dev, state);
783 	/* Power off the bridge may power off the whole hierarchy */
784 	if (!ret && state == PCI_D3cold)
785 		__pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
786 	return ret;
787 }
788 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
789 
790 /**
791  * pci_set_power_state - Set the power state of a PCI device
792  * @dev: PCI device to handle.
793  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
794  *
795  * Transition a device to a new power state, using the platform firmware and/or
796  * the device's PCI PM registers.
797  *
798  * RETURN VALUE:
799  * -EINVAL if the requested state is invalid.
800  * -EIO if device does not support PCI PM or its PM capabilities register has a
801  * wrong version, or device doesn't support the requested state.
802  * 0 if device already is in the requested state.
803  * 0 if device's power state has been successfully changed.
804  */
805 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
806 {
807 	int error;
808 
809 	/* bound the state we're entering */
810 	if (state > PCI_D3cold)
811 		state = PCI_D3cold;
812 	else if (state < PCI_D0)
813 		state = PCI_D0;
814 	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
815 		/*
816 		 * If the device or the parent bridge do not support PCI PM,
817 		 * ignore the request if we're doing anything other than putting
818 		 * it into D0 (which would only happen on boot).
819 		 */
820 		return 0;
821 
822 	/* Check if we're already there */
823 	if (dev->current_state == state)
824 		return 0;
825 
826 	__pci_start_power_transition(dev, state);
827 
828 	/* This device is quirked not to be put into D3, so
829 	   don't put it in D3 */
830 	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
831 		return 0;
832 
833 	/*
834 	 * To put device in D3cold, we put device into D3hot in native
835 	 * way, then put device into D3cold with platform ops
836 	 */
837 	error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
838 					PCI_D3hot : state);
839 
840 	if (!__pci_complete_power_transition(dev, state))
841 		error = 0;
842 
843 	return error;
844 }
845 EXPORT_SYMBOL(pci_set_power_state);
846 
847 /**
848  * pci_choose_state - Choose the power state of a PCI device
849  * @dev: PCI device to be suspended
850  * @state: target sleep state for the whole system. This is the value
851  *	that is passed to suspend() function.
852  *
853  * Returns PCI power state suitable for given device and given system
854  * message.
855  */
856 
857 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
858 {
859 	pci_power_t ret;
860 
861 	if (!dev->pm_cap)
862 		return PCI_D0;
863 
864 	ret = platform_pci_choose_state(dev);
865 	if (ret != PCI_POWER_ERROR)
866 		return ret;
867 
868 	switch (state.event) {
869 	case PM_EVENT_ON:
870 		return PCI_D0;
871 	case PM_EVENT_FREEZE:
872 	case PM_EVENT_PRETHAW:
873 		/* REVISIT both freeze and pre-thaw "should" use D0 */
874 	case PM_EVENT_SUSPEND:
875 	case PM_EVENT_HIBERNATE:
876 		return PCI_D3hot;
877 	default:
878 		dev_info(&dev->dev, "unrecognized suspend event %d\n",
879 			 state.event);
880 		BUG();
881 	}
882 	return PCI_D0;
883 }
884 EXPORT_SYMBOL(pci_choose_state);
885 
886 #define PCI_EXP_SAVE_REGS	7
887 
888 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
889 						       u16 cap, bool extended)
890 {
891 	struct pci_cap_saved_state *tmp;
892 
893 	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
894 		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
895 			return tmp;
896 	}
897 	return NULL;
898 }
899 
900 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
901 {
902 	return _pci_find_saved_cap(dev, cap, false);
903 }
904 
905 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
906 {
907 	return _pci_find_saved_cap(dev, cap, true);
908 }
909 
910 static int pci_save_pcie_state(struct pci_dev *dev)
911 {
912 	int i = 0;
913 	struct pci_cap_saved_state *save_state;
914 	u16 *cap;
915 
916 	if (!pci_is_pcie(dev))
917 		return 0;
918 
919 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
920 	if (!save_state) {
921 		dev_err(&dev->dev, "buffer not found in %s\n", __func__);
922 		return -ENOMEM;
923 	}
924 
925 	cap = (u16 *)&save_state->cap.data[0];
926 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
927 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
928 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
929 	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
930 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
931 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
932 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
933 
934 	return 0;
935 }
936 
937 static void pci_restore_pcie_state(struct pci_dev *dev)
938 {
939 	int i = 0;
940 	struct pci_cap_saved_state *save_state;
941 	u16 *cap;
942 
943 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
944 	if (!save_state)
945 		return;
946 
947 	cap = (u16 *)&save_state->cap.data[0];
948 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
949 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
950 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
951 	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
952 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
953 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
954 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
955 }
956 
957 
958 static int pci_save_pcix_state(struct pci_dev *dev)
959 {
960 	int pos;
961 	struct pci_cap_saved_state *save_state;
962 
963 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
964 	if (pos <= 0)
965 		return 0;
966 
967 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
968 	if (!save_state) {
969 		dev_err(&dev->dev, "buffer not found in %s\n", __func__);
970 		return -ENOMEM;
971 	}
972 
973 	pci_read_config_word(dev, pos + PCI_X_CMD,
974 			     (u16 *)save_state->cap.data);
975 
976 	return 0;
977 }
978 
979 static void pci_restore_pcix_state(struct pci_dev *dev)
980 {
981 	int i = 0, pos;
982 	struct pci_cap_saved_state *save_state;
983 	u16 *cap;
984 
985 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
986 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
987 	if (!save_state || pos <= 0)
988 		return;
989 	cap = (u16 *)&save_state->cap.data[0];
990 
991 	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
992 }
993 
994 
995 /**
996  * pci_save_state - save the PCI configuration space of a device before suspending
997  * @dev: - PCI device that we're dealing with
998  */
999 int pci_save_state(struct pci_dev *dev)
1000 {
1001 	int i;
1002 	/* XXX: 100% dword access ok here? */
1003 	for (i = 0; i < 16; i++)
1004 		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1005 	dev->state_saved = true;
1006 
1007 	i = pci_save_pcie_state(dev);
1008 	if (i != 0)
1009 		return i;
1010 
1011 	i = pci_save_pcix_state(dev);
1012 	if (i != 0)
1013 		return i;
1014 
1015 	return pci_save_vc_state(dev);
1016 }
1017 EXPORT_SYMBOL(pci_save_state);
1018 
1019 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1020 				     u32 saved_val, int retry)
1021 {
1022 	u32 val;
1023 
1024 	pci_read_config_dword(pdev, offset, &val);
1025 	if (val == saved_val)
1026 		return;
1027 
1028 	for (;;) {
1029 		dev_dbg(&pdev->dev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1030 			offset, val, saved_val);
1031 		pci_write_config_dword(pdev, offset, saved_val);
1032 		if (retry-- <= 0)
1033 			return;
1034 
1035 		pci_read_config_dword(pdev, offset, &val);
1036 		if (val == saved_val)
1037 			return;
1038 
1039 		mdelay(1);
1040 	}
1041 }
1042 
1043 static void pci_restore_config_space_range(struct pci_dev *pdev,
1044 					   int start, int end, int retry)
1045 {
1046 	int index;
1047 
1048 	for (index = end; index >= start; index--)
1049 		pci_restore_config_dword(pdev, 4 * index,
1050 					 pdev->saved_config_space[index],
1051 					 retry);
1052 }
1053 
1054 static void pci_restore_config_space(struct pci_dev *pdev)
1055 {
1056 	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1057 		pci_restore_config_space_range(pdev, 10, 15, 0);
1058 		/* Restore BARs before the command register. */
1059 		pci_restore_config_space_range(pdev, 4, 9, 10);
1060 		pci_restore_config_space_range(pdev, 0, 3, 0);
1061 	} else {
1062 		pci_restore_config_space_range(pdev, 0, 15, 0);
1063 	}
1064 }
1065 
1066 /**
1067  * pci_restore_state - Restore the saved state of a PCI device
1068  * @dev: - PCI device that we're dealing with
1069  */
1070 void pci_restore_state(struct pci_dev *dev)
1071 {
1072 	if (!dev->state_saved)
1073 		return;
1074 
1075 	/* PCI Express register must be restored first */
1076 	pci_restore_pcie_state(dev);
1077 	pci_restore_ats_state(dev);
1078 	pci_restore_vc_state(dev);
1079 
1080 	pci_restore_config_space(dev);
1081 
1082 	pci_restore_pcix_state(dev);
1083 	pci_restore_msi_state(dev);
1084 	pci_restore_iov_state(dev);
1085 
1086 	dev->state_saved = false;
1087 }
1088 EXPORT_SYMBOL(pci_restore_state);
1089 
1090 struct pci_saved_state {
1091 	u32 config_space[16];
1092 	struct pci_cap_saved_data cap[0];
1093 };
1094 
1095 /**
1096  * pci_store_saved_state - Allocate and return an opaque struct containing
1097  *			   the device saved state.
1098  * @dev: PCI device that we're dealing with
1099  *
1100  * Return NULL if no state or error.
1101  */
1102 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1103 {
1104 	struct pci_saved_state *state;
1105 	struct pci_cap_saved_state *tmp;
1106 	struct pci_cap_saved_data *cap;
1107 	size_t size;
1108 
1109 	if (!dev->state_saved)
1110 		return NULL;
1111 
1112 	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1113 
1114 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1115 		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1116 
1117 	state = kzalloc(size, GFP_KERNEL);
1118 	if (!state)
1119 		return NULL;
1120 
1121 	memcpy(state->config_space, dev->saved_config_space,
1122 	       sizeof(state->config_space));
1123 
1124 	cap = state->cap;
1125 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1126 		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1127 		memcpy(cap, &tmp->cap, len);
1128 		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1129 	}
1130 	/* Empty cap_save terminates list */
1131 
1132 	return state;
1133 }
1134 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1135 
1136 /**
1137  * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1138  * @dev: PCI device that we're dealing with
1139  * @state: Saved state returned from pci_store_saved_state()
1140  */
1141 int pci_load_saved_state(struct pci_dev *dev,
1142 			 struct pci_saved_state *state)
1143 {
1144 	struct pci_cap_saved_data *cap;
1145 
1146 	dev->state_saved = false;
1147 
1148 	if (!state)
1149 		return 0;
1150 
1151 	memcpy(dev->saved_config_space, state->config_space,
1152 	       sizeof(state->config_space));
1153 
1154 	cap = state->cap;
1155 	while (cap->size) {
1156 		struct pci_cap_saved_state *tmp;
1157 
1158 		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1159 		if (!tmp || tmp->cap.size != cap->size)
1160 			return -EINVAL;
1161 
1162 		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1163 		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1164 		       sizeof(struct pci_cap_saved_data) + cap->size);
1165 	}
1166 
1167 	dev->state_saved = true;
1168 	return 0;
1169 }
1170 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1171 
1172 /**
1173  * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1174  *				   and free the memory allocated for it.
1175  * @dev: PCI device that we're dealing with
1176  * @state: Pointer to saved state returned from pci_store_saved_state()
1177  */
1178 int pci_load_and_free_saved_state(struct pci_dev *dev,
1179 				  struct pci_saved_state **state)
1180 {
1181 	int ret = pci_load_saved_state(dev, *state);
1182 	kfree(*state);
1183 	*state = NULL;
1184 	return ret;
1185 }
1186 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1187 
1188 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1189 {
1190 	return pci_enable_resources(dev, bars);
1191 }
1192 
1193 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1194 {
1195 	int err;
1196 	struct pci_dev *bridge;
1197 	u16 cmd;
1198 	u8 pin;
1199 
1200 	err = pci_set_power_state(dev, PCI_D0);
1201 	if (err < 0 && err != -EIO)
1202 		return err;
1203 
1204 	bridge = pci_upstream_bridge(dev);
1205 	if (bridge)
1206 		pcie_aspm_powersave_config_link(bridge);
1207 
1208 	err = pcibios_enable_device(dev, bars);
1209 	if (err < 0)
1210 		return err;
1211 	pci_fixup_device(pci_fixup_enable, dev);
1212 
1213 	if (dev->msi_enabled || dev->msix_enabled)
1214 		return 0;
1215 
1216 	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1217 	if (pin) {
1218 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
1219 		if (cmd & PCI_COMMAND_INTX_DISABLE)
1220 			pci_write_config_word(dev, PCI_COMMAND,
1221 					      cmd & ~PCI_COMMAND_INTX_DISABLE);
1222 	}
1223 
1224 	return 0;
1225 }
1226 
1227 /**
1228  * pci_reenable_device - Resume abandoned device
1229  * @dev: PCI device to be resumed
1230  *
1231  *  Note this function is a backend of pci_default_resume and is not supposed
1232  *  to be called by normal code, write proper resume handler and use it instead.
1233  */
1234 int pci_reenable_device(struct pci_dev *dev)
1235 {
1236 	if (pci_is_enabled(dev))
1237 		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1238 	return 0;
1239 }
1240 EXPORT_SYMBOL(pci_reenable_device);
1241 
1242 static void pci_enable_bridge(struct pci_dev *dev)
1243 {
1244 	struct pci_dev *bridge;
1245 	int retval;
1246 
1247 	bridge = pci_upstream_bridge(dev);
1248 	if (bridge)
1249 		pci_enable_bridge(bridge);
1250 
1251 	if (pci_is_enabled(dev)) {
1252 		if (!dev->is_busmaster)
1253 			pci_set_master(dev);
1254 		return;
1255 	}
1256 
1257 	retval = pci_enable_device(dev);
1258 	if (retval)
1259 		dev_err(&dev->dev, "Error enabling bridge (%d), continuing\n",
1260 			retval);
1261 	pci_set_master(dev);
1262 }
1263 
1264 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1265 {
1266 	struct pci_dev *bridge;
1267 	int err;
1268 	int i, bars = 0;
1269 
1270 	/*
1271 	 * Power state could be unknown at this point, either due to a fresh
1272 	 * boot or a device removal call.  So get the current power state
1273 	 * so that things like MSI message writing will behave as expected
1274 	 * (e.g. if the device really is in D0 at enable time).
1275 	 */
1276 	if (dev->pm_cap) {
1277 		u16 pmcsr;
1278 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1279 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1280 	}
1281 
1282 	if (atomic_inc_return(&dev->enable_cnt) > 1)
1283 		return 0;		/* already enabled */
1284 
1285 	bridge = pci_upstream_bridge(dev);
1286 	if (bridge)
1287 		pci_enable_bridge(bridge);
1288 
1289 	/* only skip sriov related */
1290 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1291 		if (dev->resource[i].flags & flags)
1292 			bars |= (1 << i);
1293 	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1294 		if (dev->resource[i].flags & flags)
1295 			bars |= (1 << i);
1296 
1297 	err = do_pci_enable_device(dev, bars);
1298 	if (err < 0)
1299 		atomic_dec(&dev->enable_cnt);
1300 	return err;
1301 }
1302 
1303 /**
1304  * pci_enable_device_io - Initialize a device for use with IO space
1305  * @dev: PCI device to be initialized
1306  *
1307  *  Initialize device before it's used by a driver. Ask low-level code
1308  *  to enable I/O resources. Wake up the device if it was suspended.
1309  *  Beware, this function can fail.
1310  */
1311 int pci_enable_device_io(struct pci_dev *dev)
1312 {
1313 	return pci_enable_device_flags(dev, IORESOURCE_IO);
1314 }
1315 EXPORT_SYMBOL(pci_enable_device_io);
1316 
1317 /**
1318  * pci_enable_device_mem - Initialize a device for use with Memory space
1319  * @dev: PCI device to be initialized
1320  *
1321  *  Initialize device before it's used by a driver. Ask low-level code
1322  *  to enable Memory resources. Wake up the device if it was suspended.
1323  *  Beware, this function can fail.
1324  */
1325 int pci_enable_device_mem(struct pci_dev *dev)
1326 {
1327 	return pci_enable_device_flags(dev, IORESOURCE_MEM);
1328 }
1329 EXPORT_SYMBOL(pci_enable_device_mem);
1330 
1331 /**
1332  * pci_enable_device - Initialize device before it's used by a driver.
1333  * @dev: PCI device to be initialized
1334  *
1335  *  Initialize device before it's used by a driver. Ask low-level code
1336  *  to enable I/O and memory. Wake up the device if it was suspended.
1337  *  Beware, this function can fail.
1338  *
1339  *  Note we don't actually enable the device many times if we call
1340  *  this function repeatedly (we just increment the count).
1341  */
1342 int pci_enable_device(struct pci_dev *dev)
1343 {
1344 	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1345 }
1346 EXPORT_SYMBOL(pci_enable_device);
1347 
1348 /*
1349  * Managed PCI resources.  This manages device on/off, intx/msi/msix
1350  * on/off and BAR regions.  pci_dev itself records msi/msix status, so
1351  * there's no need to track it separately.  pci_devres is initialized
1352  * when a device is enabled using managed PCI device enable interface.
1353  */
1354 struct pci_devres {
1355 	unsigned int enabled:1;
1356 	unsigned int pinned:1;
1357 	unsigned int orig_intx:1;
1358 	unsigned int restore_intx:1;
1359 	u32 region_mask;
1360 };
1361 
1362 static void pcim_release(struct device *gendev, void *res)
1363 {
1364 	struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
1365 	struct pci_devres *this = res;
1366 	int i;
1367 
1368 	if (dev->msi_enabled)
1369 		pci_disable_msi(dev);
1370 	if (dev->msix_enabled)
1371 		pci_disable_msix(dev);
1372 
1373 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1374 		if (this->region_mask & (1 << i))
1375 			pci_release_region(dev, i);
1376 
1377 	if (this->restore_intx)
1378 		pci_intx(dev, this->orig_intx);
1379 
1380 	if (this->enabled && !this->pinned)
1381 		pci_disable_device(dev);
1382 }
1383 
1384 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1385 {
1386 	struct pci_devres *dr, *new_dr;
1387 
1388 	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1389 	if (dr)
1390 		return dr;
1391 
1392 	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1393 	if (!new_dr)
1394 		return NULL;
1395 	return devres_get(&pdev->dev, new_dr, NULL, NULL);
1396 }
1397 
1398 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1399 {
1400 	if (pci_is_managed(pdev))
1401 		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1402 	return NULL;
1403 }
1404 
1405 /**
1406  * pcim_enable_device - Managed pci_enable_device()
1407  * @pdev: PCI device to be initialized
1408  *
1409  * Managed pci_enable_device().
1410  */
1411 int pcim_enable_device(struct pci_dev *pdev)
1412 {
1413 	struct pci_devres *dr;
1414 	int rc;
1415 
1416 	dr = get_pci_dr(pdev);
1417 	if (unlikely(!dr))
1418 		return -ENOMEM;
1419 	if (dr->enabled)
1420 		return 0;
1421 
1422 	rc = pci_enable_device(pdev);
1423 	if (!rc) {
1424 		pdev->is_managed = 1;
1425 		dr->enabled = 1;
1426 	}
1427 	return rc;
1428 }
1429 EXPORT_SYMBOL(pcim_enable_device);
1430 
1431 /**
1432  * pcim_pin_device - Pin managed PCI device
1433  * @pdev: PCI device to pin
1434  *
1435  * Pin managed PCI device @pdev.  Pinned device won't be disabled on
1436  * driver detach.  @pdev must have been enabled with
1437  * pcim_enable_device().
1438  */
1439 void pcim_pin_device(struct pci_dev *pdev)
1440 {
1441 	struct pci_devres *dr;
1442 
1443 	dr = find_pci_dr(pdev);
1444 	WARN_ON(!dr || !dr->enabled);
1445 	if (dr)
1446 		dr->pinned = 1;
1447 }
1448 EXPORT_SYMBOL(pcim_pin_device);
1449 
1450 /*
1451  * pcibios_add_device - provide arch specific hooks when adding device dev
1452  * @dev: the PCI device being added
1453  *
1454  * Permits the platform to provide architecture specific functionality when
1455  * devices are added. This is the default implementation. Architecture
1456  * implementations can override this.
1457  */
1458 int __weak pcibios_add_device(struct pci_dev *dev)
1459 {
1460 	return 0;
1461 }
1462 
1463 /**
1464  * pcibios_release_device - provide arch specific hooks when releasing device dev
1465  * @dev: the PCI device being released
1466  *
1467  * Permits the platform to provide architecture specific functionality when
1468  * devices are released. This is the default implementation. Architecture
1469  * implementations can override this.
1470  */
1471 void __weak pcibios_release_device(struct pci_dev *dev) {}
1472 
1473 /**
1474  * pcibios_disable_device - disable arch specific PCI resources for device dev
1475  * @dev: the PCI device to disable
1476  *
1477  * Disables architecture specific PCI resources for the device. This
1478  * is the default implementation. Architecture implementations can
1479  * override this.
1480  */
1481 void __weak pcibios_disable_device (struct pci_dev *dev) {}
1482 
1483 /**
1484  * pcibios_penalize_isa_irq - penalize an ISA IRQ
1485  * @irq: ISA IRQ to penalize
1486  * @active: IRQ active or not
1487  *
1488  * Permits the platform to provide architecture-specific functionality when
1489  * penalizing ISA IRQs. This is the default implementation. Architecture
1490  * implementations can override this.
1491  */
1492 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1493 
1494 static void do_pci_disable_device(struct pci_dev *dev)
1495 {
1496 	u16 pci_command;
1497 
1498 	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1499 	if (pci_command & PCI_COMMAND_MASTER) {
1500 		pci_command &= ~PCI_COMMAND_MASTER;
1501 		pci_write_config_word(dev, PCI_COMMAND, pci_command);
1502 	}
1503 
1504 	pcibios_disable_device(dev);
1505 }
1506 
1507 /**
1508  * pci_disable_enabled_device - Disable device without updating enable_cnt
1509  * @dev: PCI device to disable
1510  *
1511  * NOTE: This function is a backend of PCI power management routines and is
1512  * not supposed to be called drivers.
1513  */
1514 void pci_disable_enabled_device(struct pci_dev *dev)
1515 {
1516 	if (pci_is_enabled(dev))
1517 		do_pci_disable_device(dev);
1518 }
1519 
1520 /**
1521  * pci_disable_device - Disable PCI device after use
1522  * @dev: PCI device to be disabled
1523  *
1524  * Signal to the system that the PCI device is not in use by the system
1525  * anymore.  This only involves disabling PCI bus-mastering, if active.
1526  *
1527  * Note we don't actually disable the device until all callers of
1528  * pci_enable_device() have called pci_disable_device().
1529  */
1530 void pci_disable_device(struct pci_dev *dev)
1531 {
1532 	struct pci_devres *dr;
1533 
1534 	dr = find_pci_dr(dev);
1535 	if (dr)
1536 		dr->enabled = 0;
1537 
1538 	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1539 		      "disabling already-disabled device");
1540 
1541 	if (atomic_dec_return(&dev->enable_cnt) != 0)
1542 		return;
1543 
1544 	do_pci_disable_device(dev);
1545 
1546 	dev->is_busmaster = 0;
1547 }
1548 EXPORT_SYMBOL(pci_disable_device);
1549 
1550 /**
1551  * pcibios_set_pcie_reset_state - set reset state for device dev
1552  * @dev: the PCIe device reset
1553  * @state: Reset state to enter into
1554  *
1555  *
1556  * Sets the PCIe reset state for the device. This is the default
1557  * implementation. Architecture implementations can override this.
1558  */
1559 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1560 					enum pcie_reset_state state)
1561 {
1562 	return -EINVAL;
1563 }
1564 
1565 /**
1566  * pci_set_pcie_reset_state - set reset state for device dev
1567  * @dev: the PCIe device reset
1568  * @state: Reset state to enter into
1569  *
1570  *
1571  * Sets the PCI reset state for the device.
1572  */
1573 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1574 {
1575 	return pcibios_set_pcie_reset_state(dev, state);
1576 }
1577 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
1578 
1579 /**
1580  * pci_check_pme_status - Check if given device has generated PME.
1581  * @dev: Device to check.
1582  *
1583  * Check the PME status of the device and if set, clear it and clear PME enable
1584  * (if set).  Return 'true' if PME status and PME enable were both set or
1585  * 'false' otherwise.
1586  */
1587 bool pci_check_pme_status(struct pci_dev *dev)
1588 {
1589 	int pmcsr_pos;
1590 	u16 pmcsr;
1591 	bool ret = false;
1592 
1593 	if (!dev->pm_cap)
1594 		return false;
1595 
1596 	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1597 	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1598 	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1599 		return false;
1600 
1601 	/* Clear PME status. */
1602 	pmcsr |= PCI_PM_CTRL_PME_STATUS;
1603 	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1604 		/* Disable PME to avoid interrupt flood. */
1605 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1606 		ret = true;
1607 	}
1608 
1609 	pci_write_config_word(dev, pmcsr_pos, pmcsr);
1610 
1611 	return ret;
1612 }
1613 
1614 /**
1615  * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1616  * @dev: Device to handle.
1617  * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1618  *
1619  * Check if @dev has generated PME and queue a resume request for it in that
1620  * case.
1621  */
1622 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1623 {
1624 	if (pme_poll_reset && dev->pme_poll)
1625 		dev->pme_poll = false;
1626 
1627 	if (pci_check_pme_status(dev)) {
1628 		pci_wakeup_event(dev);
1629 		pm_request_resume(&dev->dev);
1630 	}
1631 	return 0;
1632 }
1633 
1634 /**
1635  * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1636  * @bus: Top bus of the subtree to walk.
1637  */
1638 void pci_pme_wakeup_bus(struct pci_bus *bus)
1639 {
1640 	if (bus)
1641 		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1642 }
1643 
1644 
1645 /**
1646  * pci_pme_capable - check the capability of PCI device to generate PME#
1647  * @dev: PCI device to handle.
1648  * @state: PCI state from which device will issue PME#.
1649  */
1650 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1651 {
1652 	if (!dev->pm_cap)
1653 		return false;
1654 
1655 	return !!(dev->pme_support & (1 << state));
1656 }
1657 EXPORT_SYMBOL(pci_pme_capable);
1658 
1659 static void pci_pme_list_scan(struct work_struct *work)
1660 {
1661 	struct pci_pme_device *pme_dev, *n;
1662 
1663 	mutex_lock(&pci_pme_list_mutex);
1664 	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1665 		if (pme_dev->dev->pme_poll) {
1666 			struct pci_dev *bridge;
1667 
1668 			bridge = pme_dev->dev->bus->self;
1669 			/*
1670 			 * If bridge is in low power state, the
1671 			 * configuration space of subordinate devices
1672 			 * may be not accessible
1673 			 */
1674 			if (bridge && bridge->current_state != PCI_D0)
1675 				continue;
1676 			pci_pme_wakeup(pme_dev->dev, NULL);
1677 		} else {
1678 			list_del(&pme_dev->list);
1679 			kfree(pme_dev);
1680 		}
1681 	}
1682 	if (!list_empty(&pci_pme_list))
1683 		schedule_delayed_work(&pci_pme_work,
1684 				      msecs_to_jiffies(PME_TIMEOUT));
1685 	mutex_unlock(&pci_pme_list_mutex);
1686 }
1687 
1688 /**
1689  * pci_pme_active - enable or disable PCI device's PME# function
1690  * @dev: PCI device to handle.
1691  * @enable: 'true' to enable PME# generation; 'false' to disable it.
1692  *
1693  * The caller must verify that the device is capable of generating PME# before
1694  * calling this function with @enable equal to 'true'.
1695  */
1696 void pci_pme_active(struct pci_dev *dev, bool enable)
1697 {
1698 	u16 pmcsr;
1699 
1700 	if (!dev->pme_support)
1701 		return;
1702 
1703 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1704 	/* Clear PME_Status by writing 1 to it and enable PME# */
1705 	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1706 	if (!enable)
1707 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1708 
1709 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1710 
1711 	/*
1712 	 * PCI (as opposed to PCIe) PME requires that the device have
1713 	 * its PME# line hooked up correctly. Not all hardware vendors
1714 	 * do this, so the PME never gets delivered and the device
1715 	 * remains asleep. The easiest way around this is to
1716 	 * periodically walk the list of suspended devices and check
1717 	 * whether any have their PME flag set. The assumption is that
1718 	 * we'll wake up often enough anyway that this won't be a huge
1719 	 * hit, and the power savings from the devices will still be a
1720 	 * win.
1721 	 *
1722 	 * Although PCIe uses in-band PME message instead of PME# line
1723 	 * to report PME, PME does not work for some PCIe devices in
1724 	 * reality.  For example, there are devices that set their PME
1725 	 * status bits, but don't really bother to send a PME message;
1726 	 * there are PCI Express Root Ports that don't bother to
1727 	 * trigger interrupts when they receive PME messages from the
1728 	 * devices below.  So PME poll is used for PCIe devices too.
1729 	 */
1730 
1731 	if (dev->pme_poll) {
1732 		struct pci_pme_device *pme_dev;
1733 		if (enable) {
1734 			pme_dev = kmalloc(sizeof(struct pci_pme_device),
1735 					  GFP_KERNEL);
1736 			if (!pme_dev) {
1737 				dev_warn(&dev->dev, "can't enable PME#\n");
1738 				return;
1739 			}
1740 			pme_dev->dev = dev;
1741 			mutex_lock(&pci_pme_list_mutex);
1742 			list_add(&pme_dev->list, &pci_pme_list);
1743 			if (list_is_singular(&pci_pme_list))
1744 				schedule_delayed_work(&pci_pme_work,
1745 						      msecs_to_jiffies(PME_TIMEOUT));
1746 			mutex_unlock(&pci_pme_list_mutex);
1747 		} else {
1748 			mutex_lock(&pci_pme_list_mutex);
1749 			list_for_each_entry(pme_dev, &pci_pme_list, list) {
1750 				if (pme_dev->dev == dev) {
1751 					list_del(&pme_dev->list);
1752 					kfree(pme_dev);
1753 					break;
1754 				}
1755 			}
1756 			mutex_unlock(&pci_pme_list_mutex);
1757 		}
1758 	}
1759 
1760 	dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled");
1761 }
1762 EXPORT_SYMBOL(pci_pme_active);
1763 
1764 /**
1765  * __pci_enable_wake - enable PCI device as wakeup event source
1766  * @dev: PCI device affected
1767  * @state: PCI state from which device will issue wakeup events
1768  * @runtime: True if the events are to be generated at run time
1769  * @enable: True to enable event generation; false to disable
1770  *
1771  * This enables the device as a wakeup event source, or disables it.
1772  * When such events involves platform-specific hooks, those hooks are
1773  * called automatically by this routine.
1774  *
1775  * Devices with legacy power management (no standard PCI PM capabilities)
1776  * always require such platform hooks.
1777  *
1778  * RETURN VALUE:
1779  * 0 is returned on success
1780  * -EINVAL is returned if device is not supposed to wake up the system
1781  * Error code depending on the platform is returned if both the platform and
1782  * the native mechanism fail to enable the generation of wake-up events
1783  */
1784 int __pci_enable_wake(struct pci_dev *dev, pci_power_t state,
1785 		      bool runtime, bool enable)
1786 {
1787 	int ret = 0;
1788 
1789 	if (enable && !runtime && !device_may_wakeup(&dev->dev))
1790 		return -EINVAL;
1791 
1792 	/* Don't do the same thing twice in a row for one device. */
1793 	if (!!enable == !!dev->wakeup_prepared)
1794 		return 0;
1795 
1796 	/*
1797 	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1798 	 * Anderson we should be doing PME# wake enable followed by ACPI wake
1799 	 * enable.  To disable wake-up we call the platform first, for symmetry.
1800 	 */
1801 
1802 	if (enable) {
1803 		int error;
1804 
1805 		if (pci_pme_capable(dev, state))
1806 			pci_pme_active(dev, true);
1807 		else
1808 			ret = 1;
1809 		error = runtime ? platform_pci_run_wake(dev, true) :
1810 					platform_pci_sleep_wake(dev, true);
1811 		if (ret)
1812 			ret = error;
1813 		if (!ret)
1814 			dev->wakeup_prepared = true;
1815 	} else {
1816 		if (runtime)
1817 			platform_pci_run_wake(dev, false);
1818 		else
1819 			platform_pci_sleep_wake(dev, false);
1820 		pci_pme_active(dev, false);
1821 		dev->wakeup_prepared = false;
1822 	}
1823 
1824 	return ret;
1825 }
1826 EXPORT_SYMBOL(__pci_enable_wake);
1827 
1828 /**
1829  * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1830  * @dev: PCI device to prepare
1831  * @enable: True to enable wake-up event generation; false to disable
1832  *
1833  * Many drivers want the device to wake up the system from D3_hot or D3_cold
1834  * and this function allows them to set that up cleanly - pci_enable_wake()
1835  * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1836  * ordering constraints.
1837  *
1838  * This function only returns error code if the device is not capable of
1839  * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1840  * enable wake-up power for it.
1841  */
1842 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1843 {
1844 	return pci_pme_capable(dev, PCI_D3cold) ?
1845 			pci_enable_wake(dev, PCI_D3cold, enable) :
1846 			pci_enable_wake(dev, PCI_D3hot, enable);
1847 }
1848 EXPORT_SYMBOL(pci_wake_from_d3);
1849 
1850 /**
1851  * pci_target_state - find an appropriate low power state for a given PCI dev
1852  * @dev: PCI device
1853  *
1854  * Use underlying platform code to find a supported low power state for @dev.
1855  * If the platform can't manage @dev, return the deepest state from which it
1856  * can generate wake events, based on any available PME info.
1857  */
1858 static pci_power_t pci_target_state(struct pci_dev *dev)
1859 {
1860 	pci_power_t target_state = PCI_D3hot;
1861 
1862 	if (platform_pci_power_manageable(dev)) {
1863 		/*
1864 		 * Call the platform to choose the target state of the device
1865 		 * and enable wake-up from this state if supported.
1866 		 */
1867 		pci_power_t state = platform_pci_choose_state(dev);
1868 
1869 		switch (state) {
1870 		case PCI_POWER_ERROR:
1871 		case PCI_UNKNOWN:
1872 			break;
1873 		case PCI_D1:
1874 		case PCI_D2:
1875 			if (pci_no_d1d2(dev))
1876 				break;
1877 		default:
1878 			target_state = state;
1879 		}
1880 	} else if (!dev->pm_cap) {
1881 		target_state = PCI_D0;
1882 	} else if (device_may_wakeup(&dev->dev)) {
1883 		/*
1884 		 * Find the deepest state from which the device can generate
1885 		 * wake-up events, make it the target state and enable device
1886 		 * to generate PME#.
1887 		 */
1888 		if (dev->pme_support) {
1889 			while (target_state
1890 			      && !(dev->pme_support & (1 << target_state)))
1891 				target_state--;
1892 		}
1893 	}
1894 
1895 	return target_state;
1896 }
1897 
1898 /**
1899  * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1900  * @dev: Device to handle.
1901  *
1902  * Choose the power state appropriate for the device depending on whether
1903  * it can wake up the system and/or is power manageable by the platform
1904  * (PCI_D3hot is the default) and put the device into that state.
1905  */
1906 int pci_prepare_to_sleep(struct pci_dev *dev)
1907 {
1908 	pci_power_t target_state = pci_target_state(dev);
1909 	int error;
1910 
1911 	if (target_state == PCI_POWER_ERROR)
1912 		return -EIO;
1913 
1914 	pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
1915 
1916 	error = pci_set_power_state(dev, target_state);
1917 
1918 	if (error)
1919 		pci_enable_wake(dev, target_state, false);
1920 
1921 	return error;
1922 }
1923 EXPORT_SYMBOL(pci_prepare_to_sleep);
1924 
1925 /**
1926  * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1927  * @dev: Device to handle.
1928  *
1929  * Disable device's system wake-up capability and put it into D0.
1930  */
1931 int pci_back_from_sleep(struct pci_dev *dev)
1932 {
1933 	pci_enable_wake(dev, PCI_D0, false);
1934 	return pci_set_power_state(dev, PCI_D0);
1935 }
1936 EXPORT_SYMBOL(pci_back_from_sleep);
1937 
1938 /**
1939  * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
1940  * @dev: PCI device being suspended.
1941  *
1942  * Prepare @dev to generate wake-up events at run time and put it into a low
1943  * power state.
1944  */
1945 int pci_finish_runtime_suspend(struct pci_dev *dev)
1946 {
1947 	pci_power_t target_state = pci_target_state(dev);
1948 	int error;
1949 
1950 	if (target_state == PCI_POWER_ERROR)
1951 		return -EIO;
1952 
1953 	dev->runtime_d3cold = target_state == PCI_D3cold;
1954 
1955 	__pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev));
1956 
1957 	error = pci_set_power_state(dev, target_state);
1958 
1959 	if (error) {
1960 		__pci_enable_wake(dev, target_state, true, false);
1961 		dev->runtime_d3cold = false;
1962 	}
1963 
1964 	return error;
1965 }
1966 
1967 /**
1968  * pci_dev_run_wake - Check if device can generate run-time wake-up events.
1969  * @dev: Device to check.
1970  *
1971  * Return true if the device itself is capable of generating wake-up events
1972  * (through the platform or using the native PCIe PME) or if the device supports
1973  * PME and one of its upstream bridges can generate wake-up events.
1974  */
1975 bool pci_dev_run_wake(struct pci_dev *dev)
1976 {
1977 	struct pci_bus *bus = dev->bus;
1978 
1979 	if (device_run_wake(&dev->dev))
1980 		return true;
1981 
1982 	if (!dev->pme_support)
1983 		return false;
1984 
1985 	while (bus->parent) {
1986 		struct pci_dev *bridge = bus->self;
1987 
1988 		if (device_run_wake(&bridge->dev))
1989 			return true;
1990 
1991 		bus = bus->parent;
1992 	}
1993 
1994 	/* We have reached the root bus. */
1995 	if (bus->bridge)
1996 		return device_run_wake(bus->bridge);
1997 
1998 	return false;
1999 }
2000 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2001 
2002 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2003 {
2004 	struct device *dev = &pdev->dev;
2005 	struct device *parent = dev->parent;
2006 
2007 	if (parent)
2008 		pm_runtime_get_sync(parent);
2009 	pm_runtime_get_noresume(dev);
2010 	/*
2011 	 * pdev->current_state is set to PCI_D3cold during suspending,
2012 	 * so wait until suspending completes
2013 	 */
2014 	pm_runtime_barrier(dev);
2015 	/*
2016 	 * Only need to resume devices in D3cold, because config
2017 	 * registers are still accessible for devices suspended but
2018 	 * not in D3cold.
2019 	 */
2020 	if (pdev->current_state == PCI_D3cold)
2021 		pm_runtime_resume(dev);
2022 }
2023 
2024 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2025 {
2026 	struct device *dev = &pdev->dev;
2027 	struct device *parent = dev->parent;
2028 
2029 	pm_runtime_put(dev);
2030 	if (parent)
2031 		pm_runtime_put_sync(parent);
2032 }
2033 
2034 /**
2035  * pci_pm_init - Initialize PM functions of given PCI device
2036  * @dev: PCI device to handle.
2037  */
2038 void pci_pm_init(struct pci_dev *dev)
2039 {
2040 	int pm;
2041 	u16 pmc;
2042 
2043 	pm_runtime_forbid(&dev->dev);
2044 	pm_runtime_set_active(&dev->dev);
2045 	pm_runtime_enable(&dev->dev);
2046 	device_enable_async_suspend(&dev->dev);
2047 	dev->wakeup_prepared = false;
2048 
2049 	dev->pm_cap = 0;
2050 	dev->pme_support = 0;
2051 
2052 	/* find PCI PM capability in list */
2053 	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2054 	if (!pm)
2055 		return;
2056 	/* Check device's ability to generate PME# */
2057 	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2058 
2059 	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2060 		dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
2061 			pmc & PCI_PM_CAP_VER_MASK);
2062 		return;
2063 	}
2064 
2065 	dev->pm_cap = pm;
2066 	dev->d3_delay = PCI_PM_D3_WAIT;
2067 	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2068 	dev->d3cold_allowed = true;
2069 
2070 	dev->d1_support = false;
2071 	dev->d2_support = false;
2072 	if (!pci_no_d1d2(dev)) {
2073 		if (pmc & PCI_PM_CAP_D1)
2074 			dev->d1_support = true;
2075 		if (pmc & PCI_PM_CAP_D2)
2076 			dev->d2_support = true;
2077 
2078 		if (dev->d1_support || dev->d2_support)
2079 			dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
2080 				   dev->d1_support ? " D1" : "",
2081 				   dev->d2_support ? " D2" : "");
2082 	}
2083 
2084 	pmc &= PCI_PM_CAP_PME_MASK;
2085 	if (pmc) {
2086 		dev_printk(KERN_DEBUG, &dev->dev,
2087 			 "PME# supported from%s%s%s%s%s\n",
2088 			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2089 			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2090 			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2091 			 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2092 			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2093 		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2094 		dev->pme_poll = true;
2095 		/*
2096 		 * Make device's PM flags reflect the wake-up capability, but
2097 		 * let the user space enable it to wake up the system as needed.
2098 		 */
2099 		device_set_wakeup_capable(&dev->dev, true);
2100 		/* Disable the PME# generation functionality */
2101 		pci_pme_active(dev, false);
2102 	}
2103 }
2104 
2105 static void pci_add_saved_cap(struct pci_dev *pci_dev,
2106 	struct pci_cap_saved_state *new_cap)
2107 {
2108 	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
2109 }
2110 
2111 /**
2112  * _pci_add_cap_save_buffer - allocate buffer for saving given
2113  *                            capability registers
2114  * @dev: the PCI device
2115  * @cap: the capability to allocate the buffer for
2116  * @extended: Standard or Extended capability ID
2117  * @size: requested size of the buffer
2118  */
2119 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
2120 				    bool extended, unsigned int size)
2121 {
2122 	int pos;
2123 	struct pci_cap_saved_state *save_state;
2124 
2125 	if (extended)
2126 		pos = pci_find_ext_capability(dev, cap);
2127 	else
2128 		pos = pci_find_capability(dev, cap);
2129 
2130 	if (pos <= 0)
2131 		return 0;
2132 
2133 	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2134 	if (!save_state)
2135 		return -ENOMEM;
2136 
2137 	save_state->cap.cap_nr = cap;
2138 	save_state->cap.cap_extended = extended;
2139 	save_state->cap.size = size;
2140 	pci_add_saved_cap(dev, save_state);
2141 
2142 	return 0;
2143 }
2144 
2145 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
2146 {
2147 	return _pci_add_cap_save_buffer(dev, cap, false, size);
2148 }
2149 
2150 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
2151 {
2152 	return _pci_add_cap_save_buffer(dev, cap, true, size);
2153 }
2154 
2155 /**
2156  * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2157  * @dev: the PCI device
2158  */
2159 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2160 {
2161 	int error;
2162 
2163 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2164 					PCI_EXP_SAVE_REGS * sizeof(u16));
2165 	if (error)
2166 		dev_err(&dev->dev,
2167 			"unable to preallocate PCI Express save buffer\n");
2168 
2169 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2170 	if (error)
2171 		dev_err(&dev->dev,
2172 			"unable to preallocate PCI-X save buffer\n");
2173 
2174 	pci_allocate_vc_save_buffers(dev);
2175 }
2176 
2177 void pci_free_cap_save_buffers(struct pci_dev *dev)
2178 {
2179 	struct pci_cap_saved_state *tmp;
2180 	struct hlist_node *n;
2181 
2182 	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
2183 		kfree(tmp);
2184 }
2185 
2186 /**
2187  * pci_configure_ari - enable or disable ARI forwarding
2188  * @dev: the PCI device
2189  *
2190  * If @dev and its upstream bridge both support ARI, enable ARI in the
2191  * bridge.  Otherwise, disable ARI in the bridge.
2192  */
2193 void pci_configure_ari(struct pci_dev *dev)
2194 {
2195 	u32 cap;
2196 	struct pci_dev *bridge;
2197 
2198 	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
2199 		return;
2200 
2201 	bridge = dev->bus->self;
2202 	if (!bridge)
2203 		return;
2204 
2205 	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
2206 	if (!(cap & PCI_EXP_DEVCAP2_ARI))
2207 		return;
2208 
2209 	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
2210 		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
2211 					 PCI_EXP_DEVCTL2_ARI);
2212 		bridge->ari_enabled = 1;
2213 	} else {
2214 		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
2215 					   PCI_EXP_DEVCTL2_ARI);
2216 		bridge->ari_enabled = 0;
2217 	}
2218 }
2219 
2220 static int pci_acs_enable;
2221 
2222 /**
2223  * pci_request_acs - ask for ACS to be enabled if supported
2224  */
2225 void pci_request_acs(void)
2226 {
2227 	pci_acs_enable = 1;
2228 }
2229 
2230 /**
2231  * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites
2232  * @dev: the PCI device
2233  */
2234 static int pci_std_enable_acs(struct pci_dev *dev)
2235 {
2236 	int pos;
2237 	u16 cap;
2238 	u16 ctrl;
2239 
2240 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2241 	if (!pos)
2242 		return -ENODEV;
2243 
2244 	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2245 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2246 
2247 	/* Source Validation */
2248 	ctrl |= (cap & PCI_ACS_SV);
2249 
2250 	/* P2P Request Redirect */
2251 	ctrl |= (cap & PCI_ACS_RR);
2252 
2253 	/* P2P Completion Redirect */
2254 	ctrl |= (cap & PCI_ACS_CR);
2255 
2256 	/* Upstream Forwarding */
2257 	ctrl |= (cap & PCI_ACS_UF);
2258 
2259 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2260 
2261 	return 0;
2262 }
2263 
2264 /**
2265  * pci_enable_acs - enable ACS if hardware support it
2266  * @dev: the PCI device
2267  */
2268 void pci_enable_acs(struct pci_dev *dev)
2269 {
2270 	if (!pci_acs_enable)
2271 		return;
2272 
2273 	if (!pci_std_enable_acs(dev))
2274 		return;
2275 
2276 	pci_dev_specific_enable_acs(dev);
2277 }
2278 
2279 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
2280 {
2281 	int pos;
2282 	u16 cap, ctrl;
2283 
2284 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2285 	if (!pos)
2286 		return false;
2287 
2288 	/*
2289 	 * Except for egress control, capabilities are either required
2290 	 * or only required if controllable.  Features missing from the
2291 	 * capability field can therefore be assumed as hard-wired enabled.
2292 	 */
2293 	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
2294 	acs_flags &= (cap | PCI_ACS_EC);
2295 
2296 	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2297 	return (ctrl & acs_flags) == acs_flags;
2298 }
2299 
2300 /**
2301  * pci_acs_enabled - test ACS against required flags for a given device
2302  * @pdev: device to test
2303  * @acs_flags: required PCI ACS flags
2304  *
2305  * Return true if the device supports the provided flags.  Automatically
2306  * filters out flags that are not implemented on multifunction devices.
2307  *
2308  * Note that this interface checks the effective ACS capabilities of the
2309  * device rather than the actual capabilities.  For instance, most single
2310  * function endpoints are not required to support ACS because they have no
2311  * opportunity for peer-to-peer access.  We therefore return 'true'
2312  * regardless of whether the device exposes an ACS capability.  This makes
2313  * it much easier for callers of this function to ignore the actual type
2314  * or topology of the device when testing ACS support.
2315  */
2316 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2317 {
2318 	int ret;
2319 
2320 	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2321 	if (ret >= 0)
2322 		return ret > 0;
2323 
2324 	/*
2325 	 * Conventional PCI and PCI-X devices never support ACS, either
2326 	 * effectively or actually.  The shared bus topology implies that
2327 	 * any device on the bus can receive or snoop DMA.
2328 	 */
2329 	if (!pci_is_pcie(pdev))
2330 		return false;
2331 
2332 	switch (pci_pcie_type(pdev)) {
2333 	/*
2334 	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
2335 	 * but since their primary interface is PCI/X, we conservatively
2336 	 * handle them as we would a non-PCIe device.
2337 	 */
2338 	case PCI_EXP_TYPE_PCIE_BRIDGE:
2339 	/*
2340 	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
2341 	 * applicable... must never implement an ACS Extended Capability...".
2342 	 * This seems arbitrary, but we take a conservative interpretation
2343 	 * of this statement.
2344 	 */
2345 	case PCI_EXP_TYPE_PCI_BRIDGE:
2346 	case PCI_EXP_TYPE_RC_EC:
2347 		return false;
2348 	/*
2349 	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
2350 	 * implement ACS in order to indicate their peer-to-peer capabilities,
2351 	 * regardless of whether they are single- or multi-function devices.
2352 	 */
2353 	case PCI_EXP_TYPE_DOWNSTREAM:
2354 	case PCI_EXP_TYPE_ROOT_PORT:
2355 		return pci_acs_flags_enabled(pdev, acs_flags);
2356 	/*
2357 	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
2358 	 * implemented by the remaining PCIe types to indicate peer-to-peer
2359 	 * capabilities, but only when they are part of a multifunction
2360 	 * device.  The footnote for section 6.12 indicates the specific
2361 	 * PCIe types included here.
2362 	 */
2363 	case PCI_EXP_TYPE_ENDPOINT:
2364 	case PCI_EXP_TYPE_UPSTREAM:
2365 	case PCI_EXP_TYPE_LEG_END:
2366 	case PCI_EXP_TYPE_RC_END:
2367 		if (!pdev->multifunction)
2368 			break;
2369 
2370 		return pci_acs_flags_enabled(pdev, acs_flags);
2371 	}
2372 
2373 	/*
2374 	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
2375 	 * to single function devices with the exception of downstream ports.
2376 	 */
2377 	return true;
2378 }
2379 
2380 /**
2381  * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2382  * @start: starting downstream device
2383  * @end: ending upstream device or NULL to search to the root bus
2384  * @acs_flags: required flags
2385  *
2386  * Walk up a device tree from start to end testing PCI ACS support.  If
2387  * any step along the way does not support the required flags, return false.
2388  */
2389 bool pci_acs_path_enabled(struct pci_dev *start,
2390 			  struct pci_dev *end, u16 acs_flags)
2391 {
2392 	struct pci_dev *pdev, *parent = start;
2393 
2394 	do {
2395 		pdev = parent;
2396 
2397 		if (!pci_acs_enabled(pdev, acs_flags))
2398 			return false;
2399 
2400 		if (pci_is_root_bus(pdev->bus))
2401 			return (end == NULL);
2402 
2403 		parent = pdev->bus->self;
2404 	} while (pdev != end);
2405 
2406 	return true;
2407 }
2408 
2409 /**
2410  * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2411  * @dev: the PCI device
2412  * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
2413  *
2414  * Perform INTx swizzling for a device behind one level of bridge.  This is
2415  * required by section 9.1 of the PCI-to-PCI bridge specification for devices
2416  * behind bridges on add-in cards.  For devices with ARI enabled, the slot
2417  * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2418  * the PCI Express Base Specification, Revision 2.1)
2419  */
2420 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
2421 {
2422 	int slot;
2423 
2424 	if (pci_ari_enabled(dev->bus))
2425 		slot = 0;
2426 	else
2427 		slot = PCI_SLOT(dev->devfn);
2428 
2429 	return (((pin - 1) + slot) % 4) + 1;
2430 }
2431 
2432 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
2433 {
2434 	u8 pin;
2435 
2436 	pin = dev->pin;
2437 	if (!pin)
2438 		return -1;
2439 
2440 	while (!pci_is_root_bus(dev->bus)) {
2441 		pin = pci_swizzle_interrupt_pin(dev, pin);
2442 		dev = dev->bus->self;
2443 	}
2444 	*bridge = dev;
2445 	return pin;
2446 }
2447 
2448 /**
2449  * pci_common_swizzle - swizzle INTx all the way to root bridge
2450  * @dev: the PCI device
2451  * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2452  *
2453  * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
2454  * bridges all the way up to a PCI root bus.
2455  */
2456 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
2457 {
2458 	u8 pin = *pinp;
2459 
2460 	while (!pci_is_root_bus(dev->bus)) {
2461 		pin = pci_swizzle_interrupt_pin(dev, pin);
2462 		dev = dev->bus->self;
2463 	}
2464 	*pinp = pin;
2465 	return PCI_SLOT(dev->devfn);
2466 }
2467 
2468 /**
2469  *	pci_release_region - Release a PCI bar
2470  *	@pdev: PCI device whose resources were previously reserved by pci_request_region
2471  *	@bar: BAR to release
2472  *
2473  *	Releases the PCI I/O and memory resources previously reserved by a
2474  *	successful call to pci_request_region.  Call this function only
2475  *	after all use of the PCI regions has ceased.
2476  */
2477 void pci_release_region(struct pci_dev *pdev, int bar)
2478 {
2479 	struct pci_devres *dr;
2480 
2481 	if (pci_resource_len(pdev, bar) == 0)
2482 		return;
2483 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
2484 		release_region(pci_resource_start(pdev, bar),
2485 				pci_resource_len(pdev, bar));
2486 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
2487 		release_mem_region(pci_resource_start(pdev, bar),
2488 				pci_resource_len(pdev, bar));
2489 
2490 	dr = find_pci_dr(pdev);
2491 	if (dr)
2492 		dr->region_mask &= ~(1 << bar);
2493 }
2494 EXPORT_SYMBOL(pci_release_region);
2495 
2496 /**
2497  *	__pci_request_region - Reserved PCI I/O and memory resource
2498  *	@pdev: PCI device whose resources are to be reserved
2499  *	@bar: BAR to be reserved
2500  *	@res_name: Name to be associated with resource.
2501  *	@exclusive: whether the region access is exclusive or not
2502  *
2503  *	Mark the PCI region associated with PCI device @pdev BR @bar as
2504  *	being reserved by owner @res_name.  Do not access any
2505  *	address inside the PCI regions unless this call returns
2506  *	successfully.
2507  *
2508  *	If @exclusive is set, then the region is marked so that userspace
2509  *	is explicitly not allowed to map the resource via /dev/mem or
2510  *	sysfs MMIO access.
2511  *
2512  *	Returns 0 on success, or %EBUSY on error.  A warning
2513  *	message is also printed on failure.
2514  */
2515 static int __pci_request_region(struct pci_dev *pdev, int bar,
2516 				const char *res_name, int exclusive)
2517 {
2518 	struct pci_devres *dr;
2519 
2520 	if (pci_resource_len(pdev, bar) == 0)
2521 		return 0;
2522 
2523 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
2524 		if (!request_region(pci_resource_start(pdev, bar),
2525 			    pci_resource_len(pdev, bar), res_name))
2526 			goto err_out;
2527 	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
2528 		if (!__request_mem_region(pci_resource_start(pdev, bar),
2529 					pci_resource_len(pdev, bar), res_name,
2530 					exclusive))
2531 			goto err_out;
2532 	}
2533 
2534 	dr = find_pci_dr(pdev);
2535 	if (dr)
2536 		dr->region_mask |= 1 << bar;
2537 
2538 	return 0;
2539 
2540 err_out:
2541 	dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
2542 		 &pdev->resource[bar]);
2543 	return -EBUSY;
2544 }
2545 
2546 /**
2547  *	pci_request_region - Reserve PCI I/O and memory resource
2548  *	@pdev: PCI device whose resources are to be reserved
2549  *	@bar: BAR to be reserved
2550  *	@res_name: Name to be associated with resource
2551  *
2552  *	Mark the PCI region associated with PCI device @pdev BAR @bar as
2553  *	being reserved by owner @res_name.  Do not access any
2554  *	address inside the PCI regions unless this call returns
2555  *	successfully.
2556  *
2557  *	Returns 0 on success, or %EBUSY on error.  A warning
2558  *	message is also printed on failure.
2559  */
2560 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
2561 {
2562 	return __pci_request_region(pdev, bar, res_name, 0);
2563 }
2564 EXPORT_SYMBOL(pci_request_region);
2565 
2566 /**
2567  *	pci_request_region_exclusive - Reserved PCI I/O and memory resource
2568  *	@pdev: PCI device whose resources are to be reserved
2569  *	@bar: BAR to be reserved
2570  *	@res_name: Name to be associated with resource.
2571  *
2572  *	Mark the PCI region associated with PCI device @pdev BR @bar as
2573  *	being reserved by owner @res_name.  Do not access any
2574  *	address inside the PCI regions unless this call returns
2575  *	successfully.
2576  *
2577  *	Returns 0 on success, or %EBUSY on error.  A warning
2578  *	message is also printed on failure.
2579  *
2580  *	The key difference that _exclusive makes it that userspace is
2581  *	explicitly not allowed to map the resource via /dev/mem or
2582  *	sysfs.
2583  */
2584 int pci_request_region_exclusive(struct pci_dev *pdev, int bar,
2585 				 const char *res_name)
2586 {
2587 	return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
2588 }
2589 EXPORT_SYMBOL(pci_request_region_exclusive);
2590 
2591 /**
2592  * pci_release_selected_regions - Release selected PCI I/O and memory resources
2593  * @pdev: PCI device whose resources were previously reserved
2594  * @bars: Bitmask of BARs to be released
2595  *
2596  * Release selected PCI I/O and memory resources previously reserved.
2597  * Call this function only after all use of the PCI regions has ceased.
2598  */
2599 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
2600 {
2601 	int i;
2602 
2603 	for (i = 0; i < 6; i++)
2604 		if (bars & (1 << i))
2605 			pci_release_region(pdev, i);
2606 }
2607 EXPORT_SYMBOL(pci_release_selected_regions);
2608 
2609 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
2610 					  const char *res_name, int excl)
2611 {
2612 	int i;
2613 
2614 	for (i = 0; i < 6; i++)
2615 		if (bars & (1 << i))
2616 			if (__pci_request_region(pdev, i, res_name, excl))
2617 				goto err_out;
2618 	return 0;
2619 
2620 err_out:
2621 	while (--i >= 0)
2622 		if (bars & (1 << i))
2623 			pci_release_region(pdev, i);
2624 
2625 	return -EBUSY;
2626 }
2627 
2628 
2629 /**
2630  * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
2631  * @pdev: PCI device whose resources are to be reserved
2632  * @bars: Bitmask of BARs to be requested
2633  * @res_name: Name to be associated with resource
2634  */
2635 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
2636 				 const char *res_name)
2637 {
2638 	return __pci_request_selected_regions(pdev, bars, res_name, 0);
2639 }
2640 EXPORT_SYMBOL(pci_request_selected_regions);
2641 
2642 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
2643 					   const char *res_name)
2644 {
2645 	return __pci_request_selected_regions(pdev, bars, res_name,
2646 			IORESOURCE_EXCLUSIVE);
2647 }
2648 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
2649 
2650 /**
2651  *	pci_release_regions - Release reserved PCI I/O and memory resources
2652  *	@pdev: PCI device whose resources were previously reserved by pci_request_regions
2653  *
2654  *	Releases all PCI I/O and memory resources previously reserved by a
2655  *	successful call to pci_request_regions.  Call this function only
2656  *	after all use of the PCI regions has ceased.
2657  */
2658 
2659 void pci_release_regions(struct pci_dev *pdev)
2660 {
2661 	pci_release_selected_regions(pdev, (1 << 6) - 1);
2662 }
2663 EXPORT_SYMBOL(pci_release_regions);
2664 
2665 /**
2666  *	pci_request_regions - Reserved PCI I/O and memory resources
2667  *	@pdev: PCI device whose resources are to be reserved
2668  *	@res_name: Name to be associated with resource.
2669  *
2670  *	Mark all PCI regions associated with PCI device @pdev as
2671  *	being reserved by owner @res_name.  Do not access any
2672  *	address inside the PCI regions unless this call returns
2673  *	successfully.
2674  *
2675  *	Returns 0 on success, or %EBUSY on error.  A warning
2676  *	message is also printed on failure.
2677  */
2678 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
2679 {
2680 	return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
2681 }
2682 EXPORT_SYMBOL(pci_request_regions);
2683 
2684 /**
2685  *	pci_request_regions_exclusive - Reserved PCI I/O and memory resources
2686  *	@pdev: PCI device whose resources are to be reserved
2687  *	@res_name: Name to be associated with resource.
2688  *
2689  *	Mark all PCI regions associated with PCI device @pdev as
2690  *	being reserved by owner @res_name.  Do not access any
2691  *	address inside the PCI regions unless this call returns
2692  *	successfully.
2693  *
2694  *	pci_request_regions_exclusive() will mark the region so that
2695  *	/dev/mem and the sysfs MMIO access will not be allowed.
2696  *
2697  *	Returns 0 on success, or %EBUSY on error.  A warning
2698  *	message is also printed on failure.
2699  */
2700 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
2701 {
2702 	return pci_request_selected_regions_exclusive(pdev,
2703 					((1 << 6) - 1), res_name);
2704 }
2705 EXPORT_SYMBOL(pci_request_regions_exclusive);
2706 
2707 /**
2708  *	pci_remap_iospace - Remap the memory mapped I/O space
2709  *	@res: Resource describing the I/O space
2710  *	@phys_addr: physical address of range to be mapped
2711  *
2712  *	Remap the memory mapped I/O space described by the @res
2713  *	and the CPU physical address @phys_addr into virtual address space.
2714  *	Only architectures that have memory mapped IO functions defined
2715  *	(and the PCI_IOBASE value defined) should call this function.
2716  */
2717 int __weak pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
2718 {
2719 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
2720 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
2721 
2722 	if (!(res->flags & IORESOURCE_IO))
2723 		return -EINVAL;
2724 
2725 	if (res->end > IO_SPACE_LIMIT)
2726 		return -EINVAL;
2727 
2728 	return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
2729 				  pgprot_device(PAGE_KERNEL));
2730 #else
2731 	/* this architecture does not have memory mapped I/O space,
2732 	   so this function should never be called */
2733 	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
2734 	return -ENODEV;
2735 #endif
2736 }
2737 
2738 static void __pci_set_master(struct pci_dev *dev, bool enable)
2739 {
2740 	u16 old_cmd, cmd;
2741 
2742 	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
2743 	if (enable)
2744 		cmd = old_cmd | PCI_COMMAND_MASTER;
2745 	else
2746 		cmd = old_cmd & ~PCI_COMMAND_MASTER;
2747 	if (cmd != old_cmd) {
2748 		dev_dbg(&dev->dev, "%s bus mastering\n",
2749 			enable ? "enabling" : "disabling");
2750 		pci_write_config_word(dev, PCI_COMMAND, cmd);
2751 	}
2752 	dev->is_busmaster = enable;
2753 }
2754 
2755 /**
2756  * pcibios_setup - process "pci=" kernel boot arguments
2757  * @str: string used to pass in "pci=" kernel boot arguments
2758  *
2759  * Process kernel boot arguments.  This is the default implementation.
2760  * Architecture specific implementations can override this as necessary.
2761  */
2762 char * __weak __init pcibios_setup(char *str)
2763 {
2764 	return str;
2765 }
2766 
2767 /**
2768  * pcibios_set_master - enable PCI bus-mastering for device dev
2769  * @dev: the PCI device to enable
2770  *
2771  * Enables PCI bus-mastering for the device.  This is the default
2772  * implementation.  Architecture specific implementations can override
2773  * this if necessary.
2774  */
2775 void __weak pcibios_set_master(struct pci_dev *dev)
2776 {
2777 	u8 lat;
2778 
2779 	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
2780 	if (pci_is_pcie(dev))
2781 		return;
2782 
2783 	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
2784 	if (lat < 16)
2785 		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
2786 	else if (lat > pcibios_max_latency)
2787 		lat = pcibios_max_latency;
2788 	else
2789 		return;
2790 
2791 	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
2792 }
2793 
2794 /**
2795  * pci_set_master - enables bus-mastering for device dev
2796  * @dev: the PCI device to enable
2797  *
2798  * Enables bus-mastering on the device and calls pcibios_set_master()
2799  * to do the needed arch specific settings.
2800  */
2801 void pci_set_master(struct pci_dev *dev)
2802 {
2803 	__pci_set_master(dev, true);
2804 	pcibios_set_master(dev);
2805 }
2806 EXPORT_SYMBOL(pci_set_master);
2807 
2808 /**
2809  * pci_clear_master - disables bus-mastering for device dev
2810  * @dev: the PCI device to disable
2811  */
2812 void pci_clear_master(struct pci_dev *dev)
2813 {
2814 	__pci_set_master(dev, false);
2815 }
2816 EXPORT_SYMBOL(pci_clear_master);
2817 
2818 /**
2819  * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
2820  * @dev: the PCI device for which MWI is to be enabled
2821  *
2822  * Helper function for pci_set_mwi.
2823  * Originally copied from drivers/net/acenic.c.
2824  * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
2825  *
2826  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2827  */
2828 int pci_set_cacheline_size(struct pci_dev *dev)
2829 {
2830 	u8 cacheline_size;
2831 
2832 	if (!pci_cache_line_size)
2833 		return -EINVAL;
2834 
2835 	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
2836 	   equal to or multiple of the right value. */
2837 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2838 	if (cacheline_size >= pci_cache_line_size &&
2839 	    (cacheline_size % pci_cache_line_size) == 0)
2840 		return 0;
2841 
2842 	/* Write the correct value. */
2843 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
2844 	/* Read it back. */
2845 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2846 	if (cacheline_size == pci_cache_line_size)
2847 		return 0;
2848 
2849 	dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not supported\n",
2850 		   pci_cache_line_size << 2);
2851 
2852 	return -EINVAL;
2853 }
2854 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
2855 
2856 /**
2857  * pci_set_mwi - enables memory-write-invalidate PCI transaction
2858  * @dev: the PCI device for which MWI is enabled
2859  *
2860  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2861  *
2862  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2863  */
2864 int pci_set_mwi(struct pci_dev *dev)
2865 {
2866 #ifdef PCI_DISABLE_MWI
2867 	return 0;
2868 #else
2869 	int rc;
2870 	u16 cmd;
2871 
2872 	rc = pci_set_cacheline_size(dev);
2873 	if (rc)
2874 		return rc;
2875 
2876 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
2877 	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
2878 		dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
2879 		cmd |= PCI_COMMAND_INVALIDATE;
2880 		pci_write_config_word(dev, PCI_COMMAND, cmd);
2881 	}
2882 	return 0;
2883 #endif
2884 }
2885 EXPORT_SYMBOL(pci_set_mwi);
2886 
2887 /**
2888  * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
2889  * @dev: the PCI device for which MWI is enabled
2890  *
2891  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2892  * Callers are not required to check the return value.
2893  *
2894  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2895  */
2896 int pci_try_set_mwi(struct pci_dev *dev)
2897 {
2898 #ifdef PCI_DISABLE_MWI
2899 	return 0;
2900 #else
2901 	return pci_set_mwi(dev);
2902 #endif
2903 }
2904 EXPORT_SYMBOL(pci_try_set_mwi);
2905 
2906 /**
2907  * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
2908  * @dev: the PCI device to disable
2909  *
2910  * Disables PCI Memory-Write-Invalidate transaction on the device
2911  */
2912 void pci_clear_mwi(struct pci_dev *dev)
2913 {
2914 #ifndef PCI_DISABLE_MWI
2915 	u16 cmd;
2916 
2917 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
2918 	if (cmd & PCI_COMMAND_INVALIDATE) {
2919 		cmd &= ~PCI_COMMAND_INVALIDATE;
2920 		pci_write_config_word(dev, PCI_COMMAND, cmd);
2921 	}
2922 #endif
2923 }
2924 EXPORT_SYMBOL(pci_clear_mwi);
2925 
2926 /**
2927  * pci_intx - enables/disables PCI INTx for device dev
2928  * @pdev: the PCI device to operate on
2929  * @enable: boolean: whether to enable or disable PCI INTx
2930  *
2931  * Enables/disables PCI INTx for device dev
2932  */
2933 void pci_intx(struct pci_dev *pdev, int enable)
2934 {
2935 	u16 pci_command, new;
2936 
2937 	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
2938 
2939 	if (enable)
2940 		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
2941 	else
2942 		new = pci_command | PCI_COMMAND_INTX_DISABLE;
2943 
2944 	if (new != pci_command) {
2945 		struct pci_devres *dr;
2946 
2947 		pci_write_config_word(pdev, PCI_COMMAND, new);
2948 
2949 		dr = find_pci_dr(pdev);
2950 		if (dr && !dr->restore_intx) {
2951 			dr->restore_intx = 1;
2952 			dr->orig_intx = !enable;
2953 		}
2954 	}
2955 }
2956 EXPORT_SYMBOL_GPL(pci_intx);
2957 
2958 /**
2959  * pci_intx_mask_supported - probe for INTx masking support
2960  * @dev: the PCI device to operate on
2961  *
2962  * Check if the device dev support INTx masking via the config space
2963  * command word.
2964  */
2965 bool pci_intx_mask_supported(struct pci_dev *dev)
2966 {
2967 	bool mask_supported = false;
2968 	u16 orig, new;
2969 
2970 	if (dev->broken_intx_masking)
2971 		return false;
2972 
2973 	pci_cfg_access_lock(dev);
2974 
2975 	pci_read_config_word(dev, PCI_COMMAND, &orig);
2976 	pci_write_config_word(dev, PCI_COMMAND,
2977 			      orig ^ PCI_COMMAND_INTX_DISABLE);
2978 	pci_read_config_word(dev, PCI_COMMAND, &new);
2979 
2980 	/*
2981 	 * There's no way to protect against hardware bugs or detect them
2982 	 * reliably, but as long as we know what the value should be, let's
2983 	 * go ahead and check it.
2984 	 */
2985 	if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) {
2986 		dev_err(&dev->dev, "Command register changed from 0x%x to 0x%x: driver or hardware bug?\n",
2987 			orig, new);
2988 	} else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) {
2989 		mask_supported = true;
2990 		pci_write_config_word(dev, PCI_COMMAND, orig);
2991 	}
2992 
2993 	pci_cfg_access_unlock(dev);
2994 	return mask_supported;
2995 }
2996 EXPORT_SYMBOL_GPL(pci_intx_mask_supported);
2997 
2998 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
2999 {
3000 	struct pci_bus *bus = dev->bus;
3001 	bool mask_updated = true;
3002 	u32 cmd_status_dword;
3003 	u16 origcmd, newcmd;
3004 	unsigned long flags;
3005 	bool irq_pending;
3006 
3007 	/*
3008 	 * We do a single dword read to retrieve both command and status.
3009 	 * Document assumptions that make this possible.
3010 	 */
3011 	BUILD_BUG_ON(PCI_COMMAND % 4);
3012 	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
3013 
3014 	raw_spin_lock_irqsave(&pci_lock, flags);
3015 
3016 	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
3017 
3018 	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
3019 
3020 	/*
3021 	 * Check interrupt status register to see whether our device
3022 	 * triggered the interrupt (when masking) or the next IRQ is
3023 	 * already pending (when unmasking).
3024 	 */
3025 	if (mask != irq_pending) {
3026 		mask_updated = false;
3027 		goto done;
3028 	}
3029 
3030 	origcmd = cmd_status_dword;
3031 	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
3032 	if (mask)
3033 		newcmd |= PCI_COMMAND_INTX_DISABLE;
3034 	if (newcmd != origcmd)
3035 		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
3036 
3037 done:
3038 	raw_spin_unlock_irqrestore(&pci_lock, flags);
3039 
3040 	return mask_updated;
3041 }
3042 
3043 /**
3044  * pci_check_and_mask_intx - mask INTx on pending interrupt
3045  * @dev: the PCI device to operate on
3046  *
3047  * Check if the device dev has its INTx line asserted, mask it and
3048  * return true in that case. False is returned if not interrupt was
3049  * pending.
3050  */
3051 bool pci_check_and_mask_intx(struct pci_dev *dev)
3052 {
3053 	return pci_check_and_set_intx_mask(dev, true);
3054 }
3055 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
3056 
3057 /**
3058  * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
3059  * @dev: the PCI device to operate on
3060  *
3061  * Check if the device dev has its INTx line asserted, unmask it if not
3062  * and return true. False is returned and the mask remains active if
3063  * there was still an interrupt pending.
3064  */
3065 bool pci_check_and_unmask_intx(struct pci_dev *dev)
3066 {
3067 	return pci_check_and_set_intx_mask(dev, false);
3068 }
3069 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
3070 
3071 /**
3072  * pci_msi_off - disables any MSI or MSI-X capabilities
3073  * @dev: the PCI device to operate on
3074  *
3075  * If you want to use MSI, see pci_enable_msi() and friends.
3076  * This is a lower-level primitive that allows us to disable
3077  * MSI operation at the device level.
3078  */
3079 void pci_msi_off(struct pci_dev *dev)
3080 {
3081 	int pos;
3082 	u16 control;
3083 
3084 	/*
3085 	 * This looks like it could go in msi.c, but we need it even when
3086 	 * CONFIG_PCI_MSI=n.  For the same reason, we can't use
3087 	 * dev->msi_cap or dev->msix_cap here.
3088 	 */
3089 	pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
3090 	if (pos) {
3091 		pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
3092 		control &= ~PCI_MSI_FLAGS_ENABLE;
3093 		pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
3094 	}
3095 	pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
3096 	if (pos) {
3097 		pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
3098 		control &= ~PCI_MSIX_FLAGS_ENABLE;
3099 		pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
3100 	}
3101 }
3102 EXPORT_SYMBOL_GPL(pci_msi_off);
3103 
3104 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
3105 {
3106 	return dma_set_max_seg_size(&dev->dev, size);
3107 }
3108 EXPORT_SYMBOL(pci_set_dma_max_seg_size);
3109 
3110 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
3111 {
3112 	return dma_set_seg_boundary(&dev->dev, mask);
3113 }
3114 EXPORT_SYMBOL(pci_set_dma_seg_boundary);
3115 
3116 /**
3117  * pci_wait_for_pending_transaction - waits for pending transaction
3118  * @dev: the PCI device to operate on
3119  *
3120  * Return 0 if transaction is pending 1 otherwise.
3121  */
3122 int pci_wait_for_pending_transaction(struct pci_dev *dev)
3123 {
3124 	if (!pci_is_pcie(dev))
3125 		return 1;
3126 
3127 	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
3128 				    PCI_EXP_DEVSTA_TRPND);
3129 }
3130 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
3131 
3132 static int pcie_flr(struct pci_dev *dev, int probe)
3133 {
3134 	u32 cap;
3135 
3136 	pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
3137 	if (!(cap & PCI_EXP_DEVCAP_FLR))
3138 		return -ENOTTY;
3139 
3140 	if (probe)
3141 		return 0;
3142 
3143 	if (!pci_wait_for_pending_transaction(dev))
3144 		dev_err(&dev->dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
3145 
3146 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
3147 	msleep(100);
3148 	return 0;
3149 }
3150 
3151 static int pci_af_flr(struct pci_dev *dev, int probe)
3152 {
3153 	int pos;
3154 	u8 cap;
3155 
3156 	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
3157 	if (!pos)
3158 		return -ENOTTY;
3159 
3160 	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
3161 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
3162 		return -ENOTTY;
3163 
3164 	if (probe)
3165 		return 0;
3166 
3167 	/*
3168 	 * Wait for Transaction Pending bit to clear.  A word-aligned test
3169 	 * is used, so we use the conrol offset rather than status and shift
3170 	 * the test bit to match.
3171 	 */
3172 	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
3173 				 PCI_AF_STATUS_TP << 8))
3174 		dev_err(&dev->dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
3175 
3176 	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
3177 	msleep(100);
3178 	return 0;
3179 }
3180 
3181 /**
3182  * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
3183  * @dev: Device to reset.
3184  * @probe: If set, only check if the device can be reset this way.
3185  *
3186  * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
3187  * unset, it will be reinitialized internally when going from PCI_D3hot to
3188  * PCI_D0.  If that's the case and the device is not in a low-power state
3189  * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
3190  *
3191  * NOTE: This causes the caller to sleep for twice the device power transition
3192  * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
3193  * by default (i.e. unless the @dev's d3_delay field has a different value).
3194  * Moreover, only devices in D0 can be reset by this function.
3195  */
3196 static int pci_pm_reset(struct pci_dev *dev, int probe)
3197 {
3198 	u16 csr;
3199 
3200 	if (!dev->pm_cap)
3201 		return -ENOTTY;
3202 
3203 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
3204 	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
3205 		return -ENOTTY;
3206 
3207 	if (probe)
3208 		return 0;
3209 
3210 	if (dev->current_state != PCI_D0)
3211 		return -EINVAL;
3212 
3213 	csr &= ~PCI_PM_CTRL_STATE_MASK;
3214 	csr |= PCI_D3hot;
3215 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3216 	pci_dev_d3_sleep(dev);
3217 
3218 	csr &= ~PCI_PM_CTRL_STATE_MASK;
3219 	csr |= PCI_D0;
3220 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3221 	pci_dev_d3_sleep(dev);
3222 
3223 	return 0;
3224 }
3225 
3226 void pci_reset_secondary_bus(struct pci_dev *dev)
3227 {
3228 	u16 ctrl;
3229 
3230 	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
3231 	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
3232 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3233 	/*
3234 	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
3235 	 * this to 2ms to ensure that we meet the minimum requirement.
3236 	 */
3237 	msleep(2);
3238 
3239 	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
3240 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3241 
3242 	/*
3243 	 * Trhfa for conventional PCI is 2^25 clock cycles.
3244 	 * Assuming a minimum 33MHz clock this results in a 1s
3245 	 * delay before we can consider subordinate devices to
3246 	 * be re-initialized.  PCIe has some ways to shorten this,
3247 	 * but we don't make use of them yet.
3248 	 */
3249 	ssleep(1);
3250 }
3251 
3252 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
3253 {
3254 	pci_reset_secondary_bus(dev);
3255 }
3256 
3257 /**
3258  * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge.
3259  * @dev: Bridge device
3260  *
3261  * Use the bridge control register to assert reset on the secondary bus.
3262  * Devices on the secondary bus are left in power-on state.
3263  */
3264 void pci_reset_bridge_secondary_bus(struct pci_dev *dev)
3265 {
3266 	pcibios_reset_secondary_bus(dev);
3267 }
3268 EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus);
3269 
3270 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
3271 {
3272 	struct pci_dev *pdev;
3273 
3274 	if (pci_is_root_bus(dev->bus) || dev->subordinate || !dev->bus->self)
3275 		return -ENOTTY;
3276 
3277 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3278 		if (pdev != dev)
3279 			return -ENOTTY;
3280 
3281 	if (probe)
3282 		return 0;
3283 
3284 	pci_reset_bridge_secondary_bus(dev->bus->self);
3285 
3286 	return 0;
3287 }
3288 
3289 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
3290 {
3291 	int rc = -ENOTTY;
3292 
3293 	if (!hotplug || !try_module_get(hotplug->ops->owner))
3294 		return rc;
3295 
3296 	if (hotplug->ops->reset_slot)
3297 		rc = hotplug->ops->reset_slot(hotplug, probe);
3298 
3299 	module_put(hotplug->ops->owner);
3300 
3301 	return rc;
3302 }
3303 
3304 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
3305 {
3306 	struct pci_dev *pdev;
3307 
3308 	if (dev->subordinate || !dev->slot)
3309 		return -ENOTTY;
3310 
3311 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3312 		if (pdev != dev && pdev->slot == dev->slot)
3313 			return -ENOTTY;
3314 
3315 	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
3316 }
3317 
3318 static int __pci_dev_reset(struct pci_dev *dev, int probe)
3319 {
3320 	int rc;
3321 
3322 	might_sleep();
3323 
3324 	rc = pci_dev_specific_reset(dev, probe);
3325 	if (rc != -ENOTTY)
3326 		goto done;
3327 
3328 	rc = pcie_flr(dev, probe);
3329 	if (rc != -ENOTTY)
3330 		goto done;
3331 
3332 	rc = pci_af_flr(dev, probe);
3333 	if (rc != -ENOTTY)
3334 		goto done;
3335 
3336 	rc = pci_pm_reset(dev, probe);
3337 	if (rc != -ENOTTY)
3338 		goto done;
3339 
3340 	rc = pci_dev_reset_slot_function(dev, probe);
3341 	if (rc != -ENOTTY)
3342 		goto done;
3343 
3344 	rc = pci_parent_bus_reset(dev, probe);
3345 done:
3346 	return rc;
3347 }
3348 
3349 static void pci_dev_lock(struct pci_dev *dev)
3350 {
3351 	pci_cfg_access_lock(dev);
3352 	/* block PM suspend, driver probe, etc. */
3353 	device_lock(&dev->dev);
3354 }
3355 
3356 /* Return 1 on successful lock, 0 on contention */
3357 static int pci_dev_trylock(struct pci_dev *dev)
3358 {
3359 	if (pci_cfg_access_trylock(dev)) {
3360 		if (device_trylock(&dev->dev))
3361 			return 1;
3362 		pci_cfg_access_unlock(dev);
3363 	}
3364 
3365 	return 0;
3366 }
3367 
3368 static void pci_dev_unlock(struct pci_dev *dev)
3369 {
3370 	device_unlock(&dev->dev);
3371 	pci_cfg_access_unlock(dev);
3372 }
3373 
3374 /**
3375  * pci_reset_notify - notify device driver of reset
3376  * @dev: device to be notified of reset
3377  * @prepare: 'true' if device is about to be reset; 'false' if reset attempt
3378  *           completed
3379  *
3380  * Must be called prior to device access being disabled and after device
3381  * access is restored.
3382  */
3383 static void pci_reset_notify(struct pci_dev *dev, bool prepare)
3384 {
3385 	const struct pci_error_handlers *err_handler =
3386 			dev->driver ? dev->driver->err_handler : NULL;
3387 	if (err_handler && err_handler->reset_notify)
3388 		err_handler->reset_notify(dev, prepare);
3389 }
3390 
3391 static void pci_dev_save_and_disable(struct pci_dev *dev)
3392 {
3393 	pci_reset_notify(dev, true);
3394 
3395 	/*
3396 	 * Wake-up device prior to save.  PM registers default to D0 after
3397 	 * reset and a simple register restore doesn't reliably return
3398 	 * to a non-D0 state anyway.
3399 	 */
3400 	pci_set_power_state(dev, PCI_D0);
3401 
3402 	pci_save_state(dev);
3403 	/*
3404 	 * Disable the device by clearing the Command register, except for
3405 	 * INTx-disable which is set.  This not only disables MMIO and I/O port
3406 	 * BARs, but also prevents the device from being Bus Master, preventing
3407 	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
3408 	 * compliant devices, INTx-disable prevents legacy interrupts.
3409 	 */
3410 	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
3411 }
3412 
3413 static void pci_dev_restore(struct pci_dev *dev)
3414 {
3415 	pci_restore_state(dev);
3416 	pci_reset_notify(dev, false);
3417 }
3418 
3419 static int pci_dev_reset(struct pci_dev *dev, int probe)
3420 {
3421 	int rc;
3422 
3423 	if (!probe)
3424 		pci_dev_lock(dev);
3425 
3426 	rc = __pci_dev_reset(dev, probe);
3427 
3428 	if (!probe)
3429 		pci_dev_unlock(dev);
3430 
3431 	return rc;
3432 }
3433 
3434 /**
3435  * __pci_reset_function - reset a PCI device function
3436  * @dev: PCI device to reset
3437  *
3438  * Some devices allow an individual function to be reset without affecting
3439  * other functions in the same device.  The PCI device must be responsive
3440  * to PCI config space in order to use this function.
3441  *
3442  * The device function is presumed to be unused when this function is called.
3443  * Resetting the device will make the contents of PCI configuration space
3444  * random, so any caller of this must be prepared to reinitialise the
3445  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3446  * etc.
3447  *
3448  * Returns 0 if the device function was successfully reset or negative if the
3449  * device doesn't support resetting a single function.
3450  */
3451 int __pci_reset_function(struct pci_dev *dev)
3452 {
3453 	return pci_dev_reset(dev, 0);
3454 }
3455 EXPORT_SYMBOL_GPL(__pci_reset_function);
3456 
3457 /**
3458  * __pci_reset_function_locked - reset a PCI device function while holding
3459  * the @dev mutex lock.
3460  * @dev: PCI device to reset
3461  *
3462  * Some devices allow an individual function to be reset without affecting
3463  * other functions in the same device.  The PCI device must be responsive
3464  * to PCI config space in order to use this function.
3465  *
3466  * The device function is presumed to be unused and the caller is holding
3467  * the device mutex lock when this function is called.
3468  * Resetting the device will make the contents of PCI configuration space
3469  * random, so any caller of this must be prepared to reinitialise the
3470  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3471  * etc.
3472  *
3473  * Returns 0 if the device function was successfully reset or negative if the
3474  * device doesn't support resetting a single function.
3475  */
3476 int __pci_reset_function_locked(struct pci_dev *dev)
3477 {
3478 	return __pci_dev_reset(dev, 0);
3479 }
3480 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
3481 
3482 /**
3483  * pci_probe_reset_function - check whether the device can be safely reset
3484  * @dev: PCI device to reset
3485  *
3486  * Some devices allow an individual function to be reset without affecting
3487  * other functions in the same device.  The PCI device must be responsive
3488  * to PCI config space in order to use this function.
3489  *
3490  * Returns 0 if the device function can be reset or negative if the
3491  * device doesn't support resetting a single function.
3492  */
3493 int pci_probe_reset_function(struct pci_dev *dev)
3494 {
3495 	return pci_dev_reset(dev, 1);
3496 }
3497 
3498 /**
3499  * pci_reset_function - quiesce and reset a PCI device function
3500  * @dev: PCI device to reset
3501  *
3502  * Some devices allow an individual function to be reset without affecting
3503  * other functions in the same device.  The PCI device must be responsive
3504  * to PCI config space in order to use this function.
3505  *
3506  * This function does not just reset the PCI portion of a device, but
3507  * clears all the state associated with the device.  This function differs
3508  * from __pci_reset_function in that it saves and restores device state
3509  * over the reset.
3510  *
3511  * Returns 0 if the device function was successfully reset or negative if the
3512  * device doesn't support resetting a single function.
3513  */
3514 int pci_reset_function(struct pci_dev *dev)
3515 {
3516 	int rc;
3517 
3518 	rc = pci_dev_reset(dev, 1);
3519 	if (rc)
3520 		return rc;
3521 
3522 	pci_dev_save_and_disable(dev);
3523 
3524 	rc = pci_dev_reset(dev, 0);
3525 
3526 	pci_dev_restore(dev);
3527 
3528 	return rc;
3529 }
3530 EXPORT_SYMBOL_GPL(pci_reset_function);
3531 
3532 /**
3533  * pci_try_reset_function - quiesce and reset a PCI device function
3534  * @dev: PCI device to reset
3535  *
3536  * Same as above, except return -EAGAIN if unable to lock device.
3537  */
3538 int pci_try_reset_function(struct pci_dev *dev)
3539 {
3540 	int rc;
3541 
3542 	rc = pci_dev_reset(dev, 1);
3543 	if (rc)
3544 		return rc;
3545 
3546 	pci_dev_save_and_disable(dev);
3547 
3548 	if (pci_dev_trylock(dev)) {
3549 		rc = __pci_dev_reset(dev, 0);
3550 		pci_dev_unlock(dev);
3551 	} else
3552 		rc = -EAGAIN;
3553 
3554 	pci_dev_restore(dev);
3555 
3556 	return rc;
3557 }
3558 EXPORT_SYMBOL_GPL(pci_try_reset_function);
3559 
3560 /* Lock devices from the top of the tree down */
3561 static void pci_bus_lock(struct pci_bus *bus)
3562 {
3563 	struct pci_dev *dev;
3564 
3565 	list_for_each_entry(dev, &bus->devices, bus_list) {
3566 		pci_dev_lock(dev);
3567 		if (dev->subordinate)
3568 			pci_bus_lock(dev->subordinate);
3569 	}
3570 }
3571 
3572 /* Unlock devices from the bottom of the tree up */
3573 static void pci_bus_unlock(struct pci_bus *bus)
3574 {
3575 	struct pci_dev *dev;
3576 
3577 	list_for_each_entry(dev, &bus->devices, bus_list) {
3578 		if (dev->subordinate)
3579 			pci_bus_unlock(dev->subordinate);
3580 		pci_dev_unlock(dev);
3581 	}
3582 }
3583 
3584 /* Return 1 on successful lock, 0 on contention */
3585 static int pci_bus_trylock(struct pci_bus *bus)
3586 {
3587 	struct pci_dev *dev;
3588 
3589 	list_for_each_entry(dev, &bus->devices, bus_list) {
3590 		if (!pci_dev_trylock(dev))
3591 			goto unlock;
3592 		if (dev->subordinate) {
3593 			if (!pci_bus_trylock(dev->subordinate)) {
3594 				pci_dev_unlock(dev);
3595 				goto unlock;
3596 			}
3597 		}
3598 	}
3599 	return 1;
3600 
3601 unlock:
3602 	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
3603 		if (dev->subordinate)
3604 			pci_bus_unlock(dev->subordinate);
3605 		pci_dev_unlock(dev);
3606 	}
3607 	return 0;
3608 }
3609 
3610 /* Lock devices from the top of the tree down */
3611 static void pci_slot_lock(struct pci_slot *slot)
3612 {
3613 	struct pci_dev *dev;
3614 
3615 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3616 		if (!dev->slot || dev->slot != slot)
3617 			continue;
3618 		pci_dev_lock(dev);
3619 		if (dev->subordinate)
3620 			pci_bus_lock(dev->subordinate);
3621 	}
3622 }
3623 
3624 /* Unlock devices from the bottom of the tree up */
3625 static void pci_slot_unlock(struct pci_slot *slot)
3626 {
3627 	struct pci_dev *dev;
3628 
3629 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3630 		if (!dev->slot || dev->slot != slot)
3631 			continue;
3632 		if (dev->subordinate)
3633 			pci_bus_unlock(dev->subordinate);
3634 		pci_dev_unlock(dev);
3635 	}
3636 }
3637 
3638 /* Return 1 on successful lock, 0 on contention */
3639 static int pci_slot_trylock(struct pci_slot *slot)
3640 {
3641 	struct pci_dev *dev;
3642 
3643 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3644 		if (!dev->slot || dev->slot != slot)
3645 			continue;
3646 		if (!pci_dev_trylock(dev))
3647 			goto unlock;
3648 		if (dev->subordinate) {
3649 			if (!pci_bus_trylock(dev->subordinate)) {
3650 				pci_dev_unlock(dev);
3651 				goto unlock;
3652 			}
3653 		}
3654 	}
3655 	return 1;
3656 
3657 unlock:
3658 	list_for_each_entry_continue_reverse(dev,
3659 					     &slot->bus->devices, bus_list) {
3660 		if (!dev->slot || dev->slot != slot)
3661 			continue;
3662 		if (dev->subordinate)
3663 			pci_bus_unlock(dev->subordinate);
3664 		pci_dev_unlock(dev);
3665 	}
3666 	return 0;
3667 }
3668 
3669 /* Save and disable devices from the top of the tree down */
3670 static void pci_bus_save_and_disable(struct pci_bus *bus)
3671 {
3672 	struct pci_dev *dev;
3673 
3674 	list_for_each_entry(dev, &bus->devices, bus_list) {
3675 		pci_dev_save_and_disable(dev);
3676 		if (dev->subordinate)
3677 			pci_bus_save_and_disable(dev->subordinate);
3678 	}
3679 }
3680 
3681 /*
3682  * Restore devices from top of the tree down - parent bridges need to be
3683  * restored before we can get to subordinate devices.
3684  */
3685 static void pci_bus_restore(struct pci_bus *bus)
3686 {
3687 	struct pci_dev *dev;
3688 
3689 	list_for_each_entry(dev, &bus->devices, bus_list) {
3690 		pci_dev_restore(dev);
3691 		if (dev->subordinate)
3692 			pci_bus_restore(dev->subordinate);
3693 	}
3694 }
3695 
3696 /* Save and disable devices from the top of the tree down */
3697 static void pci_slot_save_and_disable(struct pci_slot *slot)
3698 {
3699 	struct pci_dev *dev;
3700 
3701 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3702 		if (!dev->slot || dev->slot != slot)
3703 			continue;
3704 		pci_dev_save_and_disable(dev);
3705 		if (dev->subordinate)
3706 			pci_bus_save_and_disable(dev->subordinate);
3707 	}
3708 }
3709 
3710 /*
3711  * Restore devices from top of the tree down - parent bridges need to be
3712  * restored before we can get to subordinate devices.
3713  */
3714 static void pci_slot_restore(struct pci_slot *slot)
3715 {
3716 	struct pci_dev *dev;
3717 
3718 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3719 		if (!dev->slot || dev->slot != slot)
3720 			continue;
3721 		pci_dev_restore(dev);
3722 		if (dev->subordinate)
3723 			pci_bus_restore(dev->subordinate);
3724 	}
3725 }
3726 
3727 static int pci_slot_reset(struct pci_slot *slot, int probe)
3728 {
3729 	int rc;
3730 
3731 	if (!slot)
3732 		return -ENOTTY;
3733 
3734 	if (!probe)
3735 		pci_slot_lock(slot);
3736 
3737 	might_sleep();
3738 
3739 	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
3740 
3741 	if (!probe)
3742 		pci_slot_unlock(slot);
3743 
3744 	return rc;
3745 }
3746 
3747 /**
3748  * pci_probe_reset_slot - probe whether a PCI slot can be reset
3749  * @slot: PCI slot to probe
3750  *
3751  * Return 0 if slot can be reset, negative if a slot reset is not supported.
3752  */
3753 int pci_probe_reset_slot(struct pci_slot *slot)
3754 {
3755 	return pci_slot_reset(slot, 1);
3756 }
3757 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
3758 
3759 /**
3760  * pci_reset_slot - reset a PCI slot
3761  * @slot: PCI slot to reset
3762  *
3763  * A PCI bus may host multiple slots, each slot may support a reset mechanism
3764  * independent of other slots.  For instance, some slots may support slot power
3765  * control.  In the case of a 1:1 bus to slot architecture, this function may
3766  * wrap the bus reset to avoid spurious slot related events such as hotplug.
3767  * Generally a slot reset should be attempted before a bus reset.  All of the
3768  * function of the slot and any subordinate buses behind the slot are reset
3769  * through this function.  PCI config space of all devices in the slot and
3770  * behind the slot is saved before and restored after reset.
3771  *
3772  * Return 0 on success, non-zero on error.
3773  */
3774 int pci_reset_slot(struct pci_slot *slot)
3775 {
3776 	int rc;
3777 
3778 	rc = pci_slot_reset(slot, 1);
3779 	if (rc)
3780 		return rc;
3781 
3782 	pci_slot_save_and_disable(slot);
3783 
3784 	rc = pci_slot_reset(slot, 0);
3785 
3786 	pci_slot_restore(slot);
3787 
3788 	return rc;
3789 }
3790 EXPORT_SYMBOL_GPL(pci_reset_slot);
3791 
3792 /**
3793  * pci_try_reset_slot - Try to reset a PCI slot
3794  * @slot: PCI slot to reset
3795  *
3796  * Same as above except return -EAGAIN if the slot cannot be locked
3797  */
3798 int pci_try_reset_slot(struct pci_slot *slot)
3799 {
3800 	int rc;
3801 
3802 	rc = pci_slot_reset(slot, 1);
3803 	if (rc)
3804 		return rc;
3805 
3806 	pci_slot_save_and_disable(slot);
3807 
3808 	if (pci_slot_trylock(slot)) {
3809 		might_sleep();
3810 		rc = pci_reset_hotplug_slot(slot->hotplug, 0);
3811 		pci_slot_unlock(slot);
3812 	} else
3813 		rc = -EAGAIN;
3814 
3815 	pci_slot_restore(slot);
3816 
3817 	return rc;
3818 }
3819 EXPORT_SYMBOL_GPL(pci_try_reset_slot);
3820 
3821 static int pci_bus_reset(struct pci_bus *bus, int probe)
3822 {
3823 	if (!bus->self)
3824 		return -ENOTTY;
3825 
3826 	if (probe)
3827 		return 0;
3828 
3829 	pci_bus_lock(bus);
3830 
3831 	might_sleep();
3832 
3833 	pci_reset_bridge_secondary_bus(bus->self);
3834 
3835 	pci_bus_unlock(bus);
3836 
3837 	return 0;
3838 }
3839 
3840 /**
3841  * pci_probe_reset_bus - probe whether a PCI bus can be reset
3842  * @bus: PCI bus to probe
3843  *
3844  * Return 0 if bus can be reset, negative if a bus reset is not supported.
3845  */
3846 int pci_probe_reset_bus(struct pci_bus *bus)
3847 {
3848 	return pci_bus_reset(bus, 1);
3849 }
3850 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
3851 
3852 /**
3853  * pci_reset_bus - reset a PCI bus
3854  * @bus: top level PCI bus to reset
3855  *
3856  * Do a bus reset on the given bus and any subordinate buses, saving
3857  * and restoring state of all devices.
3858  *
3859  * Return 0 on success, non-zero on error.
3860  */
3861 int pci_reset_bus(struct pci_bus *bus)
3862 {
3863 	int rc;
3864 
3865 	rc = pci_bus_reset(bus, 1);
3866 	if (rc)
3867 		return rc;
3868 
3869 	pci_bus_save_and_disable(bus);
3870 
3871 	rc = pci_bus_reset(bus, 0);
3872 
3873 	pci_bus_restore(bus);
3874 
3875 	return rc;
3876 }
3877 EXPORT_SYMBOL_GPL(pci_reset_bus);
3878 
3879 /**
3880  * pci_try_reset_bus - Try to reset a PCI bus
3881  * @bus: top level PCI bus to reset
3882  *
3883  * Same as above except return -EAGAIN if the bus cannot be locked
3884  */
3885 int pci_try_reset_bus(struct pci_bus *bus)
3886 {
3887 	int rc;
3888 
3889 	rc = pci_bus_reset(bus, 1);
3890 	if (rc)
3891 		return rc;
3892 
3893 	pci_bus_save_and_disable(bus);
3894 
3895 	if (pci_bus_trylock(bus)) {
3896 		might_sleep();
3897 		pci_reset_bridge_secondary_bus(bus->self);
3898 		pci_bus_unlock(bus);
3899 	} else
3900 		rc = -EAGAIN;
3901 
3902 	pci_bus_restore(bus);
3903 
3904 	return rc;
3905 }
3906 EXPORT_SYMBOL_GPL(pci_try_reset_bus);
3907 
3908 /**
3909  * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
3910  * @dev: PCI device to query
3911  *
3912  * Returns mmrbc: maximum designed memory read count in bytes
3913  *    or appropriate error value.
3914  */
3915 int pcix_get_max_mmrbc(struct pci_dev *dev)
3916 {
3917 	int cap;
3918 	u32 stat;
3919 
3920 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3921 	if (!cap)
3922 		return -EINVAL;
3923 
3924 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3925 		return -EINVAL;
3926 
3927 	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
3928 }
3929 EXPORT_SYMBOL(pcix_get_max_mmrbc);
3930 
3931 /**
3932  * pcix_get_mmrbc - get PCI-X maximum memory read byte count
3933  * @dev: PCI device to query
3934  *
3935  * Returns mmrbc: maximum memory read count in bytes
3936  *    or appropriate error value.
3937  */
3938 int pcix_get_mmrbc(struct pci_dev *dev)
3939 {
3940 	int cap;
3941 	u16 cmd;
3942 
3943 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3944 	if (!cap)
3945 		return -EINVAL;
3946 
3947 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3948 		return -EINVAL;
3949 
3950 	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
3951 }
3952 EXPORT_SYMBOL(pcix_get_mmrbc);
3953 
3954 /**
3955  * pcix_set_mmrbc - set PCI-X maximum memory read byte count
3956  * @dev: PCI device to query
3957  * @mmrbc: maximum memory read count in bytes
3958  *    valid values are 512, 1024, 2048, 4096
3959  *
3960  * If possible sets maximum memory read byte count, some bridges have erratas
3961  * that prevent this.
3962  */
3963 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
3964 {
3965 	int cap;
3966 	u32 stat, v, o;
3967 	u16 cmd;
3968 
3969 	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
3970 		return -EINVAL;
3971 
3972 	v = ffs(mmrbc) - 10;
3973 
3974 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3975 	if (!cap)
3976 		return -EINVAL;
3977 
3978 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3979 		return -EINVAL;
3980 
3981 	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
3982 		return -E2BIG;
3983 
3984 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3985 		return -EINVAL;
3986 
3987 	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
3988 	if (o != v) {
3989 		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
3990 			return -EIO;
3991 
3992 		cmd &= ~PCI_X_CMD_MAX_READ;
3993 		cmd |= v << 2;
3994 		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
3995 			return -EIO;
3996 	}
3997 	return 0;
3998 }
3999 EXPORT_SYMBOL(pcix_set_mmrbc);
4000 
4001 /**
4002  * pcie_get_readrq - get PCI Express read request size
4003  * @dev: PCI device to query
4004  *
4005  * Returns maximum memory read request in bytes
4006  *    or appropriate error value.
4007  */
4008 int pcie_get_readrq(struct pci_dev *dev)
4009 {
4010 	u16 ctl;
4011 
4012 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4013 
4014 	return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
4015 }
4016 EXPORT_SYMBOL(pcie_get_readrq);
4017 
4018 /**
4019  * pcie_set_readrq - set PCI Express maximum memory read request
4020  * @dev: PCI device to query
4021  * @rq: maximum memory read count in bytes
4022  *    valid values are 128, 256, 512, 1024, 2048, 4096
4023  *
4024  * If possible sets maximum memory read request in bytes
4025  */
4026 int pcie_set_readrq(struct pci_dev *dev, int rq)
4027 {
4028 	u16 v;
4029 
4030 	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
4031 		return -EINVAL;
4032 
4033 	/*
4034 	 * If using the "performance" PCIe config, we clamp the
4035 	 * read rq size to the max packet size to prevent the
4036 	 * host bridge generating requests larger than we can
4037 	 * cope with
4038 	 */
4039 	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
4040 		int mps = pcie_get_mps(dev);
4041 
4042 		if (mps < rq)
4043 			rq = mps;
4044 	}
4045 
4046 	v = (ffs(rq) - 8) << 12;
4047 
4048 	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4049 						  PCI_EXP_DEVCTL_READRQ, v);
4050 }
4051 EXPORT_SYMBOL(pcie_set_readrq);
4052 
4053 /**
4054  * pcie_get_mps - get PCI Express maximum payload size
4055  * @dev: PCI device to query
4056  *
4057  * Returns maximum payload size in bytes
4058  */
4059 int pcie_get_mps(struct pci_dev *dev)
4060 {
4061 	u16 ctl;
4062 
4063 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4064 
4065 	return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
4066 }
4067 EXPORT_SYMBOL(pcie_get_mps);
4068 
4069 /**
4070  * pcie_set_mps - set PCI Express maximum payload size
4071  * @dev: PCI device to query
4072  * @mps: maximum payload size in bytes
4073  *    valid values are 128, 256, 512, 1024, 2048, 4096
4074  *
4075  * If possible sets maximum payload size
4076  */
4077 int pcie_set_mps(struct pci_dev *dev, int mps)
4078 {
4079 	u16 v;
4080 
4081 	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
4082 		return -EINVAL;
4083 
4084 	v = ffs(mps) - 8;
4085 	if (v > dev->pcie_mpss)
4086 		return -EINVAL;
4087 	v <<= 5;
4088 
4089 	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4090 						  PCI_EXP_DEVCTL_PAYLOAD, v);
4091 }
4092 EXPORT_SYMBOL(pcie_set_mps);
4093 
4094 /**
4095  * pcie_get_minimum_link - determine minimum link settings of a PCI device
4096  * @dev: PCI device to query
4097  * @speed: storage for minimum speed
4098  * @width: storage for minimum width
4099  *
4100  * This function will walk up the PCI device chain and determine the minimum
4101  * link width and speed of the device.
4102  */
4103 int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed,
4104 			  enum pcie_link_width *width)
4105 {
4106 	int ret;
4107 
4108 	*speed = PCI_SPEED_UNKNOWN;
4109 	*width = PCIE_LNK_WIDTH_UNKNOWN;
4110 
4111 	while (dev) {
4112 		u16 lnksta;
4113 		enum pci_bus_speed next_speed;
4114 		enum pcie_link_width next_width;
4115 
4116 		ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
4117 		if (ret)
4118 			return ret;
4119 
4120 		next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
4121 		next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
4122 			PCI_EXP_LNKSTA_NLW_SHIFT;
4123 
4124 		if (next_speed < *speed)
4125 			*speed = next_speed;
4126 
4127 		if (next_width < *width)
4128 			*width = next_width;
4129 
4130 		dev = dev->bus->self;
4131 	}
4132 
4133 	return 0;
4134 }
4135 EXPORT_SYMBOL(pcie_get_minimum_link);
4136 
4137 /**
4138  * pci_select_bars - Make BAR mask from the type of resource
4139  * @dev: the PCI device for which BAR mask is made
4140  * @flags: resource type mask to be selected
4141  *
4142  * This helper routine makes bar mask from the type of resource.
4143  */
4144 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
4145 {
4146 	int i, bars = 0;
4147 	for (i = 0; i < PCI_NUM_RESOURCES; i++)
4148 		if (pci_resource_flags(dev, i) & flags)
4149 			bars |= (1 << i);
4150 	return bars;
4151 }
4152 EXPORT_SYMBOL(pci_select_bars);
4153 
4154 /**
4155  * pci_resource_bar - get position of the BAR associated with a resource
4156  * @dev: the PCI device
4157  * @resno: the resource number
4158  * @type: the BAR type to be filled in
4159  *
4160  * Returns BAR position in config space, or 0 if the BAR is invalid.
4161  */
4162 int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
4163 {
4164 	int reg;
4165 
4166 	if (resno < PCI_ROM_RESOURCE) {
4167 		*type = pci_bar_unknown;
4168 		return PCI_BASE_ADDRESS_0 + 4 * resno;
4169 	} else if (resno == PCI_ROM_RESOURCE) {
4170 		*type = pci_bar_mem32;
4171 		return dev->rom_base_reg;
4172 	} else if (resno < PCI_BRIDGE_RESOURCES) {
4173 		/* device specific resource */
4174 		*type = pci_bar_unknown;
4175 		reg = pci_iov_resource_bar(dev, resno);
4176 		if (reg)
4177 			return reg;
4178 	}
4179 
4180 	dev_err(&dev->dev, "BAR %d: invalid resource\n", resno);
4181 	return 0;
4182 }
4183 
4184 /* Some architectures require additional programming to enable VGA */
4185 static arch_set_vga_state_t arch_set_vga_state;
4186 
4187 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
4188 {
4189 	arch_set_vga_state = func;	/* NULL disables */
4190 }
4191 
4192 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
4193 				  unsigned int command_bits, u32 flags)
4194 {
4195 	if (arch_set_vga_state)
4196 		return arch_set_vga_state(dev, decode, command_bits,
4197 						flags);
4198 	return 0;
4199 }
4200 
4201 /**
4202  * pci_set_vga_state - set VGA decode state on device and parents if requested
4203  * @dev: the PCI device
4204  * @decode: true = enable decoding, false = disable decoding
4205  * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
4206  * @flags: traverse ancestors and change bridges
4207  * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
4208  */
4209 int pci_set_vga_state(struct pci_dev *dev, bool decode,
4210 		      unsigned int command_bits, u32 flags)
4211 {
4212 	struct pci_bus *bus;
4213 	struct pci_dev *bridge;
4214 	u16 cmd;
4215 	int rc;
4216 
4217 	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
4218 
4219 	/* ARCH specific VGA enables */
4220 	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
4221 	if (rc)
4222 		return rc;
4223 
4224 	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
4225 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
4226 		if (decode == true)
4227 			cmd |= command_bits;
4228 		else
4229 			cmd &= ~command_bits;
4230 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4231 	}
4232 
4233 	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
4234 		return 0;
4235 
4236 	bus = dev->bus;
4237 	while (bus) {
4238 		bridge = bus->self;
4239 		if (bridge) {
4240 			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
4241 					     &cmd);
4242 			if (decode == true)
4243 				cmd |= PCI_BRIDGE_CTL_VGA;
4244 			else
4245 				cmd &= ~PCI_BRIDGE_CTL_VGA;
4246 			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
4247 					      cmd);
4248 		}
4249 		bus = bus->parent;
4250 	}
4251 	return 0;
4252 }
4253 
4254 bool pci_device_is_present(struct pci_dev *pdev)
4255 {
4256 	u32 v;
4257 
4258 	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
4259 }
4260 EXPORT_SYMBOL_GPL(pci_device_is_present);
4261 
4262 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
4263 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
4264 static DEFINE_SPINLOCK(resource_alignment_lock);
4265 
4266 /**
4267  * pci_specified_resource_alignment - get resource alignment specified by user.
4268  * @dev: the PCI device to get
4269  *
4270  * RETURNS: Resource alignment if it is specified.
4271  *          Zero if it is not specified.
4272  */
4273 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
4274 {
4275 	int seg, bus, slot, func, align_order, count;
4276 	resource_size_t align = 0;
4277 	char *p;
4278 
4279 	spin_lock(&resource_alignment_lock);
4280 	p = resource_alignment_param;
4281 	while (*p) {
4282 		count = 0;
4283 		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
4284 							p[count] == '@') {
4285 			p += count + 1;
4286 		} else {
4287 			align_order = -1;
4288 		}
4289 		if (sscanf(p, "%x:%x:%x.%x%n",
4290 			&seg, &bus, &slot, &func, &count) != 4) {
4291 			seg = 0;
4292 			if (sscanf(p, "%x:%x.%x%n",
4293 					&bus, &slot, &func, &count) != 3) {
4294 				/* Invalid format */
4295 				printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
4296 					p);
4297 				break;
4298 			}
4299 		}
4300 		p += count;
4301 		if (seg == pci_domain_nr(dev->bus) &&
4302 			bus == dev->bus->number &&
4303 			slot == PCI_SLOT(dev->devfn) &&
4304 			func == PCI_FUNC(dev->devfn)) {
4305 			if (align_order == -1)
4306 				align = PAGE_SIZE;
4307 			else
4308 				align = 1 << align_order;
4309 			/* Found */
4310 			break;
4311 		}
4312 		if (*p != ';' && *p != ',') {
4313 			/* End of param or invalid format */
4314 			break;
4315 		}
4316 		p++;
4317 	}
4318 	spin_unlock(&resource_alignment_lock);
4319 	return align;
4320 }
4321 
4322 /*
4323  * This function disables memory decoding and releases memory resources
4324  * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
4325  * It also rounds up size to specified alignment.
4326  * Later on, the kernel will assign page-aligned memory resource back
4327  * to the device.
4328  */
4329 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
4330 {
4331 	int i;
4332 	struct resource *r;
4333 	resource_size_t align, size;
4334 	u16 command;
4335 
4336 	/* check if specified PCI is target device to reassign */
4337 	align = pci_specified_resource_alignment(dev);
4338 	if (!align)
4339 		return;
4340 
4341 	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
4342 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
4343 		dev_warn(&dev->dev,
4344 			"Can't reassign resources to host bridge.\n");
4345 		return;
4346 	}
4347 
4348 	dev_info(&dev->dev,
4349 		"Disabling memory decoding and releasing memory resources.\n");
4350 	pci_read_config_word(dev, PCI_COMMAND, &command);
4351 	command &= ~PCI_COMMAND_MEMORY;
4352 	pci_write_config_word(dev, PCI_COMMAND, command);
4353 
4354 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) {
4355 		r = &dev->resource[i];
4356 		if (!(r->flags & IORESOURCE_MEM))
4357 			continue;
4358 		size = resource_size(r);
4359 		if (size < align) {
4360 			size = align;
4361 			dev_info(&dev->dev,
4362 				"Rounding up size of resource #%d to %#llx.\n",
4363 				i, (unsigned long long)size);
4364 		}
4365 		r->flags |= IORESOURCE_UNSET;
4366 		r->end = size - 1;
4367 		r->start = 0;
4368 	}
4369 	/* Need to disable bridge's resource window,
4370 	 * to enable the kernel to reassign new resource
4371 	 * window later on.
4372 	 */
4373 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
4374 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
4375 		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
4376 			r = &dev->resource[i];
4377 			if (!(r->flags & IORESOURCE_MEM))
4378 				continue;
4379 			r->flags |= IORESOURCE_UNSET;
4380 			r->end = resource_size(r) - 1;
4381 			r->start = 0;
4382 		}
4383 		pci_disable_bridge_window(dev);
4384 	}
4385 }
4386 
4387 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
4388 {
4389 	if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
4390 		count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
4391 	spin_lock(&resource_alignment_lock);
4392 	strncpy(resource_alignment_param, buf, count);
4393 	resource_alignment_param[count] = '\0';
4394 	spin_unlock(&resource_alignment_lock);
4395 	return count;
4396 }
4397 
4398 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
4399 {
4400 	size_t count;
4401 	spin_lock(&resource_alignment_lock);
4402 	count = snprintf(buf, size, "%s", resource_alignment_param);
4403 	spin_unlock(&resource_alignment_lock);
4404 	return count;
4405 }
4406 
4407 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
4408 {
4409 	return pci_get_resource_alignment_param(buf, PAGE_SIZE);
4410 }
4411 
4412 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
4413 					const char *buf, size_t count)
4414 {
4415 	return pci_set_resource_alignment_param(buf, count);
4416 }
4417 
4418 BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
4419 					pci_resource_alignment_store);
4420 
4421 static int __init pci_resource_alignment_sysfs_init(void)
4422 {
4423 	return bus_create_file(&pci_bus_type,
4424 					&bus_attr_resource_alignment);
4425 }
4426 late_initcall(pci_resource_alignment_sysfs_init);
4427 
4428 static void pci_no_domains(void)
4429 {
4430 #ifdef CONFIG_PCI_DOMAINS
4431 	pci_domains_supported = 0;
4432 #endif
4433 }
4434 
4435 #ifdef CONFIG_PCI_DOMAINS
4436 static atomic_t __domain_nr = ATOMIC_INIT(-1);
4437 
4438 int pci_get_new_domain_nr(void)
4439 {
4440 	return atomic_inc_return(&__domain_nr);
4441 }
4442 #endif
4443 
4444 /**
4445  * pci_ext_cfg_avail - can we access extended PCI config space?
4446  *
4447  * Returns 1 if we can access PCI extended config space (offsets
4448  * greater than 0xff). This is the default implementation. Architecture
4449  * implementations can override this.
4450  */
4451 int __weak pci_ext_cfg_avail(void)
4452 {
4453 	return 1;
4454 }
4455 
4456 void __weak pci_fixup_cardbus(struct pci_bus *bus)
4457 {
4458 }
4459 EXPORT_SYMBOL(pci_fixup_cardbus);
4460 
4461 static int __init pci_setup(char *str)
4462 {
4463 	while (str) {
4464 		char *k = strchr(str, ',');
4465 		if (k)
4466 			*k++ = 0;
4467 		if (*str && (str = pcibios_setup(str)) && *str) {
4468 			if (!strcmp(str, "nomsi")) {
4469 				pci_no_msi();
4470 			} else if (!strcmp(str, "noaer")) {
4471 				pci_no_aer();
4472 			} else if (!strncmp(str, "realloc=", 8)) {
4473 				pci_realloc_get_opt(str + 8);
4474 			} else if (!strncmp(str, "realloc", 7)) {
4475 				pci_realloc_get_opt("on");
4476 			} else if (!strcmp(str, "nodomains")) {
4477 				pci_no_domains();
4478 			} else if (!strncmp(str, "noari", 5)) {
4479 				pcie_ari_disabled = true;
4480 			} else if (!strncmp(str, "cbiosize=", 9)) {
4481 				pci_cardbus_io_size = memparse(str + 9, &str);
4482 			} else if (!strncmp(str, "cbmemsize=", 10)) {
4483 				pci_cardbus_mem_size = memparse(str + 10, &str);
4484 			} else if (!strncmp(str, "resource_alignment=", 19)) {
4485 				pci_set_resource_alignment_param(str + 19,
4486 							strlen(str + 19));
4487 			} else if (!strncmp(str, "ecrc=", 5)) {
4488 				pcie_ecrc_get_policy(str + 5);
4489 			} else if (!strncmp(str, "hpiosize=", 9)) {
4490 				pci_hotplug_io_size = memparse(str + 9, &str);
4491 			} else if (!strncmp(str, "hpmemsize=", 10)) {
4492 				pci_hotplug_mem_size = memparse(str + 10, &str);
4493 			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
4494 				pcie_bus_config = PCIE_BUS_TUNE_OFF;
4495 			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
4496 				pcie_bus_config = PCIE_BUS_SAFE;
4497 			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
4498 				pcie_bus_config = PCIE_BUS_PERFORMANCE;
4499 			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
4500 				pcie_bus_config = PCIE_BUS_PEER2PEER;
4501 			} else if (!strncmp(str, "pcie_scan_all", 13)) {
4502 				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
4503 			} else {
4504 				printk(KERN_ERR "PCI: Unknown option `%s'\n",
4505 						str);
4506 			}
4507 		}
4508 		str = k;
4509 	}
4510 	return 0;
4511 }
4512 early_param("pci", pci_setup);
4513