1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * PCI Bus Services, see include/linux/pci.h for further explanation. 4 * 5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter, 6 * David Mosberger-Tang 7 * 8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz> 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/kernel.h> 13 #include <linux/delay.h> 14 #include <linux/dmi.h> 15 #include <linux/init.h> 16 #include <linux/msi.h> 17 #include <linux/of.h> 18 #include <linux/pci.h> 19 #include <linux/pm.h> 20 #include <linux/slab.h> 21 #include <linux/module.h> 22 #include <linux/spinlock.h> 23 #include <linux/string.h> 24 #include <linux/log2.h> 25 #include <linux/logic_pio.h> 26 #include <linux/pm_wakeup.h> 27 #include <linux/interrupt.h> 28 #include <linux/device.h> 29 #include <linux/pm_runtime.h> 30 #include <linux/pci_hotplug.h> 31 #include <linux/vmalloc.h> 32 #include <asm/dma.h> 33 #include <linux/aer.h> 34 #include <linux/bitfield.h> 35 #include "pci.h" 36 37 DEFINE_MUTEX(pci_slot_mutex); 38 39 const char *pci_power_names[] = { 40 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown", 41 }; 42 EXPORT_SYMBOL_GPL(pci_power_names); 43 44 #ifdef CONFIG_X86_32 45 int isa_dma_bridge_buggy; 46 EXPORT_SYMBOL(isa_dma_bridge_buggy); 47 #endif 48 49 int pci_pci_problems; 50 EXPORT_SYMBOL(pci_pci_problems); 51 52 unsigned int pci_pm_d3hot_delay; 53 54 static void pci_pme_list_scan(struct work_struct *work); 55 56 static LIST_HEAD(pci_pme_list); 57 static DEFINE_MUTEX(pci_pme_list_mutex); 58 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan); 59 60 struct pci_pme_device { 61 struct list_head list; 62 struct pci_dev *dev; 63 }; 64 65 #define PME_TIMEOUT 1000 /* How long between PME checks */ 66 67 static void pci_dev_d3_sleep(struct pci_dev *dev) 68 { 69 unsigned int delay_ms = max(dev->d3hot_delay, pci_pm_d3hot_delay); 70 unsigned int upper; 71 72 if (delay_ms) { 73 /* Use a 20% upper bound, 1ms minimum */ 74 upper = max(DIV_ROUND_CLOSEST(delay_ms, 5), 1U); 75 usleep_range(delay_ms * USEC_PER_MSEC, 76 (delay_ms + upper) * USEC_PER_MSEC); 77 } 78 } 79 80 bool pci_reset_supported(struct pci_dev *dev) 81 { 82 return dev->reset_methods[0] != 0; 83 } 84 85 #ifdef CONFIG_PCI_DOMAINS 86 int pci_domains_supported = 1; 87 #endif 88 89 #define DEFAULT_CARDBUS_IO_SIZE (256) 90 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024) 91 /* pci=cbmemsize=nnM,cbiosize=nn can override this */ 92 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE; 93 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE; 94 95 #define DEFAULT_HOTPLUG_IO_SIZE (256) 96 #define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024) 97 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024) 98 /* hpiosize=nn can override this */ 99 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE; 100 /* 101 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size, 102 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size; 103 * pci=hpmemsize=nnM overrides both 104 */ 105 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE; 106 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE; 107 108 #define DEFAULT_HOTPLUG_BUS_SIZE 1 109 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 110 111 112 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */ 113 #ifdef CONFIG_PCIE_BUS_TUNE_OFF 114 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF; 115 #elif defined CONFIG_PCIE_BUS_SAFE 116 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE; 117 #elif defined CONFIG_PCIE_BUS_PERFORMANCE 118 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE; 119 #elif defined CONFIG_PCIE_BUS_PEER2PEER 120 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER; 121 #else 122 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT; 123 #endif 124 125 /* 126 * The default CLS is used if arch didn't set CLS explicitly and not 127 * all pci devices agree on the same value. Arch can override either 128 * the dfl or actual value as it sees fit. Don't forget this is 129 * measured in 32-bit words, not bytes. 130 */ 131 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2; 132 u8 pci_cache_line_size; 133 134 /* 135 * If we set up a device for bus mastering, we need to check the latency 136 * timer as certain BIOSes forget to set it properly. 137 */ 138 unsigned int pcibios_max_latency = 255; 139 140 /* If set, the PCIe ARI capability will not be used. */ 141 static bool pcie_ari_disabled; 142 143 /* If set, the PCIe ATS capability will not be used. */ 144 static bool pcie_ats_disabled; 145 146 /* If set, the PCI config space of each device is printed during boot. */ 147 bool pci_early_dump; 148 149 bool pci_ats_disabled(void) 150 { 151 return pcie_ats_disabled; 152 } 153 EXPORT_SYMBOL_GPL(pci_ats_disabled); 154 155 /* Disable bridge_d3 for all PCIe ports */ 156 static bool pci_bridge_d3_disable; 157 /* Force bridge_d3 for all PCIe ports */ 158 static bool pci_bridge_d3_force; 159 160 static int __init pcie_port_pm_setup(char *str) 161 { 162 if (!strcmp(str, "off")) 163 pci_bridge_d3_disable = true; 164 else if (!strcmp(str, "force")) 165 pci_bridge_d3_force = true; 166 return 1; 167 } 168 __setup("pcie_port_pm=", pcie_port_pm_setup); 169 170 /** 171 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children 172 * @bus: pointer to PCI bus structure to search 173 * 174 * Given a PCI bus, returns the highest PCI bus number present in the set 175 * including the given PCI bus and its list of child PCI buses. 176 */ 177 unsigned char pci_bus_max_busnr(struct pci_bus *bus) 178 { 179 struct pci_bus *tmp; 180 unsigned char max, n; 181 182 max = bus->busn_res.end; 183 list_for_each_entry(tmp, &bus->children, node) { 184 n = pci_bus_max_busnr(tmp); 185 if (n > max) 186 max = n; 187 } 188 return max; 189 } 190 EXPORT_SYMBOL_GPL(pci_bus_max_busnr); 191 192 /** 193 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS 194 * @pdev: the PCI device 195 * 196 * Returns error bits set in PCI_STATUS and clears them. 197 */ 198 int pci_status_get_and_clear_errors(struct pci_dev *pdev) 199 { 200 u16 status; 201 int ret; 202 203 ret = pci_read_config_word(pdev, PCI_STATUS, &status); 204 if (ret != PCIBIOS_SUCCESSFUL) 205 return -EIO; 206 207 status &= PCI_STATUS_ERROR_BITS; 208 if (status) 209 pci_write_config_word(pdev, PCI_STATUS, status); 210 211 return status; 212 } 213 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors); 214 215 #ifdef CONFIG_HAS_IOMEM 216 static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar, 217 bool write_combine) 218 { 219 struct resource *res = &pdev->resource[bar]; 220 resource_size_t start = res->start; 221 resource_size_t size = resource_size(res); 222 223 /* 224 * Make sure the BAR is actually a memory resource, not an IO resource 225 */ 226 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) { 227 pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res); 228 return NULL; 229 } 230 231 if (write_combine) 232 return ioremap_wc(start, size); 233 234 return ioremap(start, size); 235 } 236 237 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar) 238 { 239 return __pci_ioremap_resource(pdev, bar, false); 240 } 241 EXPORT_SYMBOL_GPL(pci_ioremap_bar); 242 243 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar) 244 { 245 return __pci_ioremap_resource(pdev, bar, true); 246 } 247 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar); 248 #endif 249 250 /** 251 * pci_dev_str_match_path - test if a path string matches a device 252 * @dev: the PCI device to test 253 * @path: string to match the device against 254 * @endptr: pointer to the string after the match 255 * 256 * Test if a string (typically from a kernel parameter) formatted as a 257 * path of device/function addresses matches a PCI device. The string must 258 * be of the form: 259 * 260 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 261 * 262 * A path for a device can be obtained using 'lspci -t'. Using a path 263 * is more robust against bus renumbering than using only a single bus, 264 * device and function address. 265 * 266 * Returns 1 if the string matches the device, 0 if it does not and 267 * a negative error code if it fails to parse the string. 268 */ 269 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path, 270 const char **endptr) 271 { 272 int ret; 273 unsigned int seg, bus, slot, func; 274 char *wpath, *p; 275 char end; 276 277 *endptr = strchrnul(path, ';'); 278 279 wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC); 280 if (!wpath) 281 return -ENOMEM; 282 283 while (1) { 284 p = strrchr(wpath, '/'); 285 if (!p) 286 break; 287 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end); 288 if (ret != 2) { 289 ret = -EINVAL; 290 goto free_and_exit; 291 } 292 293 if (dev->devfn != PCI_DEVFN(slot, func)) { 294 ret = 0; 295 goto free_and_exit; 296 } 297 298 /* 299 * Note: we don't need to get a reference to the upstream 300 * bridge because we hold a reference to the top level 301 * device which should hold a reference to the bridge, 302 * and so on. 303 */ 304 dev = pci_upstream_bridge(dev); 305 if (!dev) { 306 ret = 0; 307 goto free_and_exit; 308 } 309 310 *p = 0; 311 } 312 313 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot, 314 &func, &end); 315 if (ret != 4) { 316 seg = 0; 317 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end); 318 if (ret != 3) { 319 ret = -EINVAL; 320 goto free_and_exit; 321 } 322 } 323 324 ret = (seg == pci_domain_nr(dev->bus) && 325 bus == dev->bus->number && 326 dev->devfn == PCI_DEVFN(slot, func)); 327 328 free_and_exit: 329 kfree(wpath); 330 return ret; 331 } 332 333 /** 334 * pci_dev_str_match - test if a string matches a device 335 * @dev: the PCI device to test 336 * @p: string to match the device against 337 * @endptr: pointer to the string after the match 338 * 339 * Test if a string (typically from a kernel parameter) matches a specified 340 * PCI device. The string may be of one of the following formats: 341 * 342 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 343 * pci:<vendor>:<device>[:<subvendor>:<subdevice>] 344 * 345 * The first format specifies a PCI bus/device/function address which 346 * may change if new hardware is inserted, if motherboard firmware changes, 347 * or due to changes caused in kernel parameters. If the domain is 348 * left unspecified, it is taken to be 0. In order to be robust against 349 * bus renumbering issues, a path of PCI device/function numbers may be used 350 * to address the specific device. The path for a device can be determined 351 * through the use of 'lspci -t'. 352 * 353 * The second format matches devices using IDs in the configuration 354 * space which may match multiple devices in the system. A value of 0 355 * for any field will match all devices. (Note: this differs from 356 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for 357 * legacy reasons and convenience so users don't have to specify 358 * FFFFFFFFs on the command line.) 359 * 360 * Returns 1 if the string matches the device, 0 if it does not and 361 * a negative error code if the string cannot be parsed. 362 */ 363 static int pci_dev_str_match(struct pci_dev *dev, const char *p, 364 const char **endptr) 365 { 366 int ret; 367 int count; 368 unsigned short vendor, device, subsystem_vendor, subsystem_device; 369 370 if (strncmp(p, "pci:", 4) == 0) { 371 /* PCI vendor/device (subvendor/subdevice) IDs are specified */ 372 p += 4; 373 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device, 374 &subsystem_vendor, &subsystem_device, &count); 375 if (ret != 4) { 376 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count); 377 if (ret != 2) 378 return -EINVAL; 379 380 subsystem_vendor = 0; 381 subsystem_device = 0; 382 } 383 384 p += count; 385 386 if ((!vendor || vendor == dev->vendor) && 387 (!device || device == dev->device) && 388 (!subsystem_vendor || 389 subsystem_vendor == dev->subsystem_vendor) && 390 (!subsystem_device || 391 subsystem_device == dev->subsystem_device)) 392 goto found; 393 } else { 394 /* 395 * PCI Bus, Device, Function IDs are specified 396 * (optionally, may include a path of devfns following it) 397 */ 398 ret = pci_dev_str_match_path(dev, p, &p); 399 if (ret < 0) 400 return ret; 401 else if (ret) 402 goto found; 403 } 404 405 *endptr = p; 406 return 0; 407 408 found: 409 *endptr = p; 410 return 1; 411 } 412 413 static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn, 414 u8 pos, int cap, int *ttl) 415 { 416 u8 id; 417 u16 ent; 418 419 pci_bus_read_config_byte(bus, devfn, pos, &pos); 420 421 while ((*ttl)--) { 422 if (pos < 0x40) 423 break; 424 pos &= ~3; 425 pci_bus_read_config_word(bus, devfn, pos, &ent); 426 427 id = ent & 0xff; 428 if (id == 0xff) 429 break; 430 if (id == cap) 431 return pos; 432 pos = (ent >> 8); 433 } 434 return 0; 435 } 436 437 static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn, 438 u8 pos, int cap) 439 { 440 int ttl = PCI_FIND_CAP_TTL; 441 442 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl); 443 } 444 445 u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap) 446 { 447 return __pci_find_next_cap(dev->bus, dev->devfn, 448 pos + PCI_CAP_LIST_NEXT, cap); 449 } 450 EXPORT_SYMBOL_GPL(pci_find_next_capability); 451 452 static u8 __pci_bus_find_cap_start(struct pci_bus *bus, 453 unsigned int devfn, u8 hdr_type) 454 { 455 u16 status; 456 457 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status); 458 if (!(status & PCI_STATUS_CAP_LIST)) 459 return 0; 460 461 switch (hdr_type) { 462 case PCI_HEADER_TYPE_NORMAL: 463 case PCI_HEADER_TYPE_BRIDGE: 464 return PCI_CAPABILITY_LIST; 465 case PCI_HEADER_TYPE_CARDBUS: 466 return PCI_CB_CAPABILITY_LIST; 467 } 468 469 return 0; 470 } 471 472 /** 473 * pci_find_capability - query for devices' capabilities 474 * @dev: PCI device to query 475 * @cap: capability code 476 * 477 * Tell if a device supports a given PCI capability. 478 * Returns the address of the requested capability structure within the 479 * device's PCI configuration space or 0 in case the device does not 480 * support it. Possible values for @cap include: 481 * 482 * %PCI_CAP_ID_PM Power Management 483 * %PCI_CAP_ID_AGP Accelerated Graphics Port 484 * %PCI_CAP_ID_VPD Vital Product Data 485 * %PCI_CAP_ID_SLOTID Slot Identification 486 * %PCI_CAP_ID_MSI Message Signalled Interrupts 487 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap 488 * %PCI_CAP_ID_PCIX PCI-X 489 * %PCI_CAP_ID_EXP PCI Express 490 */ 491 u8 pci_find_capability(struct pci_dev *dev, int cap) 492 { 493 u8 pos; 494 495 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 496 if (pos) 497 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap); 498 499 return pos; 500 } 501 EXPORT_SYMBOL(pci_find_capability); 502 503 /** 504 * pci_bus_find_capability - query for devices' capabilities 505 * @bus: the PCI bus to query 506 * @devfn: PCI device to query 507 * @cap: capability code 508 * 509 * Like pci_find_capability() but works for PCI devices that do not have a 510 * pci_dev structure set up yet. 511 * 512 * Returns the address of the requested capability structure within the 513 * device's PCI configuration space or 0 in case the device does not 514 * support it. 515 */ 516 u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap) 517 { 518 u8 hdr_type, pos; 519 520 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type); 521 522 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f); 523 if (pos) 524 pos = __pci_find_next_cap(bus, devfn, pos, cap); 525 526 return pos; 527 } 528 EXPORT_SYMBOL(pci_bus_find_capability); 529 530 /** 531 * pci_find_next_ext_capability - Find an extended capability 532 * @dev: PCI device to query 533 * @start: address at which to start looking (0 to start at beginning of list) 534 * @cap: capability code 535 * 536 * Returns the address of the next matching extended capability structure 537 * within the device's PCI configuration space or 0 if the device does 538 * not support it. Some capabilities can occur several times, e.g., the 539 * vendor-specific capability, and this provides a way to find them all. 540 */ 541 u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap) 542 { 543 u32 header; 544 int ttl; 545 u16 pos = PCI_CFG_SPACE_SIZE; 546 547 /* minimum 8 bytes per capability */ 548 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8; 549 550 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE) 551 return 0; 552 553 if (start) 554 pos = start; 555 556 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 557 return 0; 558 559 /* 560 * If we have no capabilities, this is indicated by cap ID, 561 * cap version and next pointer all being 0. 562 */ 563 if (header == 0) 564 return 0; 565 566 while (ttl-- > 0) { 567 if (PCI_EXT_CAP_ID(header) == cap && pos != start) 568 return pos; 569 570 pos = PCI_EXT_CAP_NEXT(header); 571 if (pos < PCI_CFG_SPACE_SIZE) 572 break; 573 574 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 575 break; 576 } 577 578 return 0; 579 } 580 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability); 581 582 /** 583 * pci_find_ext_capability - Find an extended capability 584 * @dev: PCI device to query 585 * @cap: capability code 586 * 587 * Returns the address of the requested extended capability structure 588 * within the device's PCI configuration space or 0 if the device does 589 * not support it. Possible values for @cap include: 590 * 591 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting 592 * %PCI_EXT_CAP_ID_VC Virtual Channel 593 * %PCI_EXT_CAP_ID_DSN Device Serial Number 594 * %PCI_EXT_CAP_ID_PWR Power Budgeting 595 */ 596 u16 pci_find_ext_capability(struct pci_dev *dev, int cap) 597 { 598 return pci_find_next_ext_capability(dev, 0, cap); 599 } 600 EXPORT_SYMBOL_GPL(pci_find_ext_capability); 601 602 /** 603 * pci_get_dsn - Read and return the 8-byte Device Serial Number 604 * @dev: PCI device to query 605 * 606 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial 607 * Number. 608 * 609 * Returns the DSN, or zero if the capability does not exist. 610 */ 611 u64 pci_get_dsn(struct pci_dev *dev) 612 { 613 u32 dword; 614 u64 dsn; 615 int pos; 616 617 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN); 618 if (!pos) 619 return 0; 620 621 /* 622 * The Device Serial Number is two dwords offset 4 bytes from the 623 * capability position. The specification says that the first dword is 624 * the lower half, and the second dword is the upper half. 625 */ 626 pos += 4; 627 pci_read_config_dword(dev, pos, &dword); 628 dsn = (u64)dword; 629 pci_read_config_dword(dev, pos + 4, &dword); 630 dsn |= ((u64)dword) << 32; 631 632 return dsn; 633 } 634 EXPORT_SYMBOL_GPL(pci_get_dsn); 635 636 static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap) 637 { 638 int rc, ttl = PCI_FIND_CAP_TTL; 639 u8 cap, mask; 640 641 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST) 642 mask = HT_3BIT_CAP_MASK; 643 else 644 mask = HT_5BIT_CAP_MASK; 645 646 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos, 647 PCI_CAP_ID_HT, &ttl); 648 while (pos) { 649 rc = pci_read_config_byte(dev, pos + 3, &cap); 650 if (rc != PCIBIOS_SUCCESSFUL) 651 return 0; 652 653 if ((cap & mask) == ht_cap) 654 return pos; 655 656 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, 657 pos + PCI_CAP_LIST_NEXT, 658 PCI_CAP_ID_HT, &ttl); 659 } 660 661 return 0; 662 } 663 664 /** 665 * pci_find_next_ht_capability - query a device's HyperTransport capabilities 666 * @dev: PCI device to query 667 * @pos: Position from which to continue searching 668 * @ht_cap: HyperTransport capability code 669 * 670 * To be used in conjunction with pci_find_ht_capability() to search for 671 * all capabilities matching @ht_cap. @pos should always be a value returned 672 * from pci_find_ht_capability(). 673 * 674 * NB. To be 100% safe against broken PCI devices, the caller should take 675 * steps to avoid an infinite loop. 676 */ 677 u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap) 678 { 679 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap); 680 } 681 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability); 682 683 /** 684 * pci_find_ht_capability - query a device's HyperTransport capabilities 685 * @dev: PCI device to query 686 * @ht_cap: HyperTransport capability code 687 * 688 * Tell if a device supports a given HyperTransport capability. 689 * Returns an address within the device's PCI configuration space 690 * or 0 in case the device does not support the request capability. 691 * The address points to the PCI capability, of type PCI_CAP_ID_HT, 692 * which has a HyperTransport capability matching @ht_cap. 693 */ 694 u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap) 695 { 696 u8 pos; 697 698 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 699 if (pos) 700 pos = __pci_find_next_ht_cap(dev, pos, ht_cap); 701 702 return pos; 703 } 704 EXPORT_SYMBOL_GPL(pci_find_ht_capability); 705 706 /** 707 * pci_find_vsec_capability - Find a vendor-specific extended capability 708 * @dev: PCI device to query 709 * @vendor: Vendor ID for which capability is defined 710 * @cap: Vendor-specific capability ID 711 * 712 * If @dev has Vendor ID @vendor, search for a VSEC capability with 713 * VSEC ID @cap. If found, return the capability offset in 714 * config space; otherwise return 0. 715 */ 716 u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap) 717 { 718 u16 vsec = 0; 719 u32 header; 720 721 if (vendor != dev->vendor) 722 return 0; 723 724 while ((vsec = pci_find_next_ext_capability(dev, vsec, 725 PCI_EXT_CAP_ID_VNDR))) { 726 if (pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER, 727 &header) == PCIBIOS_SUCCESSFUL && 728 PCI_VNDR_HEADER_ID(header) == cap) 729 return vsec; 730 } 731 732 return 0; 733 } 734 EXPORT_SYMBOL_GPL(pci_find_vsec_capability); 735 736 /** 737 * pci_find_dvsec_capability - Find DVSEC for vendor 738 * @dev: PCI device to query 739 * @vendor: Vendor ID to match for the DVSEC 740 * @dvsec: Designated Vendor-specific capability ID 741 * 742 * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability 743 * offset in config space; otherwise return 0. 744 */ 745 u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec) 746 { 747 int pos; 748 749 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC); 750 if (!pos) 751 return 0; 752 753 while (pos) { 754 u16 v, id; 755 756 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER1, &v); 757 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER2, &id); 758 if (vendor == v && dvsec == id) 759 return pos; 760 761 pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC); 762 } 763 764 return 0; 765 } 766 EXPORT_SYMBOL_GPL(pci_find_dvsec_capability); 767 768 /** 769 * pci_find_parent_resource - return resource region of parent bus of given 770 * region 771 * @dev: PCI device structure contains resources to be searched 772 * @res: child resource record for which parent is sought 773 * 774 * For given resource region of given device, return the resource region of 775 * parent bus the given region is contained in. 776 */ 777 struct resource *pci_find_parent_resource(const struct pci_dev *dev, 778 struct resource *res) 779 { 780 const struct pci_bus *bus = dev->bus; 781 struct resource *r; 782 int i; 783 784 pci_bus_for_each_resource(bus, r, i) { 785 if (!r) 786 continue; 787 if (resource_contains(r, res)) { 788 789 /* 790 * If the window is prefetchable but the BAR is 791 * not, the allocator made a mistake. 792 */ 793 if (r->flags & IORESOURCE_PREFETCH && 794 !(res->flags & IORESOURCE_PREFETCH)) 795 return NULL; 796 797 /* 798 * If we're below a transparent bridge, there may 799 * be both a positively-decoded aperture and a 800 * subtractively-decoded region that contain the BAR. 801 * We want the positively-decoded one, so this depends 802 * on pci_bus_for_each_resource() giving us those 803 * first. 804 */ 805 return r; 806 } 807 } 808 return NULL; 809 } 810 EXPORT_SYMBOL(pci_find_parent_resource); 811 812 /** 813 * pci_find_resource - Return matching PCI device resource 814 * @dev: PCI device to query 815 * @res: Resource to look for 816 * 817 * Goes over standard PCI resources (BARs) and checks if the given resource 818 * is partially or fully contained in any of them. In that case the 819 * matching resource is returned, %NULL otherwise. 820 */ 821 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res) 822 { 823 int i; 824 825 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 826 struct resource *r = &dev->resource[i]; 827 828 if (r->start && resource_contains(r, res)) 829 return r; 830 } 831 832 return NULL; 833 } 834 EXPORT_SYMBOL(pci_find_resource); 835 836 /** 837 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos 838 * @dev: the PCI device to operate on 839 * @pos: config space offset of status word 840 * @mask: mask of bit(s) to care about in status word 841 * 842 * Return 1 when mask bit(s) in status word clear, 0 otherwise. 843 */ 844 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask) 845 { 846 int i; 847 848 /* Wait for Transaction Pending bit clean */ 849 for (i = 0; i < 4; i++) { 850 u16 status; 851 if (i) 852 msleep((1 << (i - 1)) * 100); 853 854 pci_read_config_word(dev, pos, &status); 855 if (!(status & mask)) 856 return 1; 857 } 858 859 return 0; 860 } 861 862 static int pci_acs_enable; 863 864 /** 865 * pci_request_acs - ask for ACS to be enabled if supported 866 */ 867 void pci_request_acs(void) 868 { 869 pci_acs_enable = 1; 870 } 871 872 static const char *disable_acs_redir_param; 873 874 /** 875 * pci_disable_acs_redir - disable ACS redirect capabilities 876 * @dev: the PCI device 877 * 878 * For only devices specified in the disable_acs_redir parameter. 879 */ 880 static void pci_disable_acs_redir(struct pci_dev *dev) 881 { 882 int ret = 0; 883 const char *p; 884 int pos; 885 u16 ctrl; 886 887 if (!disable_acs_redir_param) 888 return; 889 890 p = disable_acs_redir_param; 891 while (*p) { 892 ret = pci_dev_str_match(dev, p, &p); 893 if (ret < 0) { 894 pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n", 895 disable_acs_redir_param); 896 897 break; 898 } else if (ret == 1) { 899 /* Found a match */ 900 break; 901 } 902 903 if (*p != ';' && *p != ',') { 904 /* End of param or invalid format */ 905 break; 906 } 907 p++; 908 } 909 910 if (ret != 1) 911 return; 912 913 if (!pci_dev_specific_disable_acs_redir(dev)) 914 return; 915 916 pos = dev->acs_cap; 917 if (!pos) { 918 pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n"); 919 return; 920 } 921 922 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 923 924 /* P2P Request & Completion Redirect */ 925 ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC); 926 927 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 928 929 pci_info(dev, "disabled ACS redirect\n"); 930 } 931 932 /** 933 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities 934 * @dev: the PCI device 935 */ 936 static void pci_std_enable_acs(struct pci_dev *dev) 937 { 938 int pos; 939 u16 cap; 940 u16 ctrl; 941 942 pos = dev->acs_cap; 943 if (!pos) 944 return; 945 946 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap); 947 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 948 949 /* Source Validation */ 950 ctrl |= (cap & PCI_ACS_SV); 951 952 /* P2P Request Redirect */ 953 ctrl |= (cap & PCI_ACS_RR); 954 955 /* P2P Completion Redirect */ 956 ctrl |= (cap & PCI_ACS_CR); 957 958 /* Upstream Forwarding */ 959 ctrl |= (cap & PCI_ACS_UF); 960 961 /* Enable Translation Blocking for external devices and noats */ 962 if (pci_ats_disabled() || dev->external_facing || dev->untrusted) 963 ctrl |= (cap & PCI_ACS_TB); 964 965 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 966 } 967 968 /** 969 * pci_enable_acs - enable ACS if hardware support it 970 * @dev: the PCI device 971 */ 972 static void pci_enable_acs(struct pci_dev *dev) 973 { 974 if (!pci_acs_enable) 975 goto disable_acs_redir; 976 977 if (!pci_dev_specific_enable_acs(dev)) 978 goto disable_acs_redir; 979 980 pci_std_enable_acs(dev); 981 982 disable_acs_redir: 983 /* 984 * Note: pci_disable_acs_redir() must be called even if ACS was not 985 * enabled by the kernel because it may have been enabled by 986 * platform firmware. So if we are told to disable it, we should 987 * always disable it after setting the kernel's default 988 * preferences. 989 */ 990 pci_disable_acs_redir(dev); 991 } 992 993 /** 994 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up) 995 * @dev: PCI device to have its BARs restored 996 * 997 * Restore the BAR values for a given device, so as to make it 998 * accessible by its driver. 999 */ 1000 static void pci_restore_bars(struct pci_dev *dev) 1001 { 1002 int i; 1003 1004 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) 1005 pci_update_resource(dev, i); 1006 } 1007 1008 static inline bool platform_pci_power_manageable(struct pci_dev *dev) 1009 { 1010 if (pci_use_mid_pm()) 1011 return true; 1012 1013 return acpi_pci_power_manageable(dev); 1014 } 1015 1016 static inline int platform_pci_set_power_state(struct pci_dev *dev, 1017 pci_power_t t) 1018 { 1019 if (pci_use_mid_pm()) 1020 return mid_pci_set_power_state(dev, t); 1021 1022 return acpi_pci_set_power_state(dev, t); 1023 } 1024 1025 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev) 1026 { 1027 if (pci_use_mid_pm()) 1028 return mid_pci_get_power_state(dev); 1029 1030 return acpi_pci_get_power_state(dev); 1031 } 1032 1033 static inline void platform_pci_refresh_power_state(struct pci_dev *dev) 1034 { 1035 if (!pci_use_mid_pm()) 1036 acpi_pci_refresh_power_state(dev); 1037 } 1038 1039 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev) 1040 { 1041 if (pci_use_mid_pm()) 1042 return PCI_POWER_ERROR; 1043 1044 return acpi_pci_choose_state(dev); 1045 } 1046 1047 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable) 1048 { 1049 if (pci_use_mid_pm()) 1050 return PCI_POWER_ERROR; 1051 1052 return acpi_pci_wakeup(dev, enable); 1053 } 1054 1055 static inline bool platform_pci_need_resume(struct pci_dev *dev) 1056 { 1057 if (pci_use_mid_pm()) 1058 return false; 1059 1060 return acpi_pci_need_resume(dev); 1061 } 1062 1063 static inline bool platform_pci_bridge_d3(struct pci_dev *dev) 1064 { 1065 if (pci_use_mid_pm()) 1066 return false; 1067 1068 return acpi_pci_bridge_d3(dev); 1069 } 1070 1071 /** 1072 * pci_update_current_state - Read power state of given device and cache it 1073 * @dev: PCI device to handle. 1074 * @state: State to cache in case the device doesn't have the PM capability 1075 * 1076 * The power state is read from the PMCSR register, which however is 1077 * inaccessible in D3cold. The platform firmware is therefore queried first 1078 * to detect accessibility of the register. In case the platform firmware 1079 * reports an incorrect state or the device isn't power manageable by the 1080 * platform at all, we try to detect D3cold by testing accessibility of the 1081 * vendor ID in config space. 1082 */ 1083 void pci_update_current_state(struct pci_dev *dev, pci_power_t state) 1084 { 1085 if (platform_pci_get_power_state(dev) == PCI_D3cold) { 1086 dev->current_state = PCI_D3cold; 1087 } else if (dev->pm_cap) { 1088 u16 pmcsr; 1089 1090 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1091 if (PCI_POSSIBLE_ERROR(pmcsr)) { 1092 dev->current_state = PCI_D3cold; 1093 return; 1094 } 1095 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1096 } else { 1097 dev->current_state = state; 1098 } 1099 } 1100 1101 /** 1102 * pci_refresh_power_state - Refresh the given device's power state data 1103 * @dev: Target PCI device. 1104 * 1105 * Ask the platform to refresh the devices power state information and invoke 1106 * pci_update_current_state() to update its current PCI power state. 1107 */ 1108 void pci_refresh_power_state(struct pci_dev *dev) 1109 { 1110 platform_pci_refresh_power_state(dev); 1111 pci_update_current_state(dev, dev->current_state); 1112 } 1113 1114 /** 1115 * pci_platform_power_transition - Use platform to change device power state 1116 * @dev: PCI device to handle. 1117 * @state: State to put the device into. 1118 */ 1119 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state) 1120 { 1121 int error; 1122 1123 error = platform_pci_set_power_state(dev, state); 1124 if (!error) 1125 pci_update_current_state(dev, state); 1126 else if (!dev->pm_cap) /* Fall back to PCI_D0 */ 1127 dev->current_state = PCI_D0; 1128 1129 return error; 1130 } 1131 EXPORT_SYMBOL_GPL(pci_platform_power_transition); 1132 1133 static int pci_resume_one(struct pci_dev *pci_dev, void *ign) 1134 { 1135 pm_request_resume(&pci_dev->dev); 1136 return 0; 1137 } 1138 1139 /** 1140 * pci_resume_bus - Walk given bus and runtime resume devices on it 1141 * @bus: Top bus of the subtree to walk. 1142 */ 1143 void pci_resume_bus(struct pci_bus *bus) 1144 { 1145 if (bus) 1146 pci_walk_bus(bus, pci_resume_one, NULL); 1147 } 1148 1149 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout) 1150 { 1151 int delay = 1; 1152 u32 id; 1153 1154 /* 1155 * After reset, the device should not silently discard config 1156 * requests, but it may still indicate that it needs more time by 1157 * responding to them with CRS completions. The Root Port will 1158 * generally synthesize ~0 (PCI_ERROR_RESPONSE) data to complete 1159 * the read (except when CRS SV is enabled and the read was for the 1160 * Vendor ID; in that case it synthesizes 0x0001 data). 1161 * 1162 * Wait for the device to return a non-CRS completion. Read the 1163 * Command register instead of Vendor ID so we don't have to 1164 * contend with the CRS SV value. 1165 */ 1166 pci_read_config_dword(dev, PCI_COMMAND, &id); 1167 while (PCI_POSSIBLE_ERROR(id)) { 1168 if (delay > timeout) { 1169 pci_warn(dev, "not ready %dms after %s; giving up\n", 1170 delay - 1, reset_type); 1171 return -ENOTTY; 1172 } 1173 1174 if (delay > PCI_RESET_WAIT) 1175 pci_info(dev, "not ready %dms after %s; waiting\n", 1176 delay - 1, reset_type); 1177 1178 msleep(delay); 1179 delay *= 2; 1180 pci_read_config_dword(dev, PCI_COMMAND, &id); 1181 } 1182 1183 if (delay > PCI_RESET_WAIT) 1184 pci_info(dev, "ready %dms after %s\n", delay - 1, 1185 reset_type); 1186 1187 return 0; 1188 } 1189 1190 /** 1191 * pci_power_up - Put the given device into D0 1192 * @dev: PCI device to power up 1193 * 1194 * On success, return 0 or 1, depending on whether or not it is necessary to 1195 * restore the device's BARs subsequently (1 is returned in that case). 1196 */ 1197 int pci_power_up(struct pci_dev *dev) 1198 { 1199 bool need_restore; 1200 pci_power_t state; 1201 u16 pmcsr; 1202 1203 platform_pci_set_power_state(dev, PCI_D0); 1204 1205 if (!dev->pm_cap) { 1206 state = platform_pci_get_power_state(dev); 1207 if (state == PCI_UNKNOWN) 1208 dev->current_state = PCI_D0; 1209 else 1210 dev->current_state = state; 1211 1212 if (state == PCI_D0) 1213 return 0; 1214 1215 return -EIO; 1216 } 1217 1218 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1219 if (PCI_POSSIBLE_ERROR(pmcsr)) { 1220 pci_err(dev, "Unable to change power state from %s to D0, device inaccessible\n", 1221 pci_power_name(dev->current_state)); 1222 dev->current_state = PCI_D3cold; 1223 return -EIO; 1224 } 1225 1226 state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1227 1228 need_restore = (state == PCI_D3hot || dev->current_state >= PCI_D3hot) && 1229 !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET); 1230 1231 if (state == PCI_D0) 1232 goto end; 1233 1234 /* 1235 * Force the entire word to 0. This doesn't affect PME_Status, disables 1236 * PME_En, and sets PowerState to 0. 1237 */ 1238 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, 0); 1239 1240 /* Mandatory transition delays; see PCI PM 1.2. */ 1241 if (state == PCI_D3hot) 1242 pci_dev_d3_sleep(dev); 1243 else if (state == PCI_D2) 1244 udelay(PCI_PM_D2_DELAY); 1245 1246 end: 1247 dev->current_state = PCI_D0; 1248 if (need_restore) 1249 return 1; 1250 1251 return 0; 1252 } 1253 1254 /** 1255 * pci_set_full_power_state - Put a PCI device into D0 and update its state 1256 * @dev: PCI device to power up 1257 * 1258 * Call pci_power_up() to put @dev into D0, read from its PCI_PM_CTRL register 1259 * to confirm the state change, restore its BARs if they might be lost and 1260 * reconfigure ASPM in acordance with the new power state. 1261 * 1262 * If pci_restore_state() is going to be called right after a power state change 1263 * to D0, it is more efficient to use pci_power_up() directly instead of this 1264 * function. 1265 */ 1266 static int pci_set_full_power_state(struct pci_dev *dev) 1267 { 1268 u16 pmcsr; 1269 int ret; 1270 1271 ret = pci_power_up(dev); 1272 if (ret < 0) 1273 return ret; 1274 1275 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1276 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1277 if (dev->current_state != PCI_D0) { 1278 pci_info_ratelimited(dev, "Refused to change power state from %s to D0\n", 1279 pci_power_name(dev->current_state)); 1280 } else if (ret > 0) { 1281 /* 1282 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT 1283 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning 1284 * from D3hot to D0 _may_ perform an internal reset, thereby 1285 * going to "D0 Uninitialized" rather than "D0 Initialized". 1286 * For example, at least some versions of the 3c905B and the 1287 * 3c556B exhibit this behaviour. 1288 * 1289 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave 1290 * devices in a D3hot state at boot. Consequently, we need to 1291 * restore at least the BARs so that the device will be 1292 * accessible to its driver. 1293 */ 1294 pci_restore_bars(dev); 1295 } 1296 1297 return 0; 1298 } 1299 1300 /** 1301 * __pci_dev_set_current_state - Set current state of a PCI device 1302 * @dev: Device to handle 1303 * @data: pointer to state to be set 1304 */ 1305 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data) 1306 { 1307 pci_power_t state = *(pci_power_t *)data; 1308 1309 dev->current_state = state; 1310 return 0; 1311 } 1312 1313 /** 1314 * pci_bus_set_current_state - Walk given bus and set current state of devices 1315 * @bus: Top bus of the subtree to walk. 1316 * @state: state to be set 1317 */ 1318 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state) 1319 { 1320 if (bus) 1321 pci_walk_bus(bus, __pci_dev_set_current_state, &state); 1322 } 1323 1324 /** 1325 * pci_set_low_power_state - Put a PCI device into a low-power state. 1326 * @dev: PCI device to handle. 1327 * @state: PCI power state (D1, D2, D3hot) to put the device into. 1328 * 1329 * Use the device's PCI_PM_CTRL register to put it into a low-power state. 1330 * 1331 * RETURN VALUE: 1332 * -EINVAL if the requested state is invalid. 1333 * -EIO if device does not support PCI PM or its PM capabilities register has a 1334 * wrong version, or device doesn't support the requested state. 1335 * 0 if device already is in the requested state. 1336 * 0 if device's power state has been successfully changed. 1337 */ 1338 static int pci_set_low_power_state(struct pci_dev *dev, pci_power_t state) 1339 { 1340 u16 pmcsr; 1341 1342 if (!dev->pm_cap) 1343 return -EIO; 1344 1345 /* 1346 * Validate transition: We can enter D0 from any state, but if 1347 * we're already in a low-power state, we can only go deeper. E.g., 1348 * we can go from D1 to D3, but we can't go directly from D3 to D1; 1349 * we'd have to go from D3 to D0, then to D1. 1350 */ 1351 if (dev->current_state <= PCI_D3cold && dev->current_state > state) { 1352 pci_dbg(dev, "Invalid power transition (from %s to %s)\n", 1353 pci_power_name(dev->current_state), 1354 pci_power_name(state)); 1355 return -EINVAL; 1356 } 1357 1358 /* Check if this device supports the desired state */ 1359 if ((state == PCI_D1 && !dev->d1_support) 1360 || (state == PCI_D2 && !dev->d2_support)) 1361 return -EIO; 1362 1363 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1364 if (PCI_POSSIBLE_ERROR(pmcsr)) { 1365 pci_err(dev, "Unable to change power state from %s to %s, device inaccessible\n", 1366 pci_power_name(dev->current_state), 1367 pci_power_name(state)); 1368 dev->current_state = PCI_D3cold; 1369 return -EIO; 1370 } 1371 1372 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 1373 pmcsr |= state; 1374 1375 /* Enter specified state */ 1376 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 1377 1378 /* Mandatory power management transition delays; see PCI PM 1.2. */ 1379 if (state == PCI_D3hot) 1380 pci_dev_d3_sleep(dev); 1381 else if (state == PCI_D2) 1382 udelay(PCI_PM_D2_DELAY); 1383 1384 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1385 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1386 if (dev->current_state != state) 1387 pci_info_ratelimited(dev, "Refused to change power state from %s to %s\n", 1388 pci_power_name(dev->current_state), 1389 pci_power_name(state)); 1390 1391 return 0; 1392 } 1393 1394 /** 1395 * pci_set_power_state - Set the power state of a PCI device 1396 * @dev: PCI device to handle. 1397 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 1398 * 1399 * Transition a device to a new power state, using the platform firmware and/or 1400 * the device's PCI PM registers. 1401 * 1402 * RETURN VALUE: 1403 * -EINVAL if the requested state is invalid. 1404 * -EIO if device does not support PCI PM or its PM capabilities register has a 1405 * wrong version, or device doesn't support the requested state. 1406 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported. 1407 * 0 if device already is in the requested state. 1408 * 0 if the transition is to D3 but D3 is not supported. 1409 * 0 if device's power state has been successfully changed. 1410 */ 1411 int pci_set_power_state(struct pci_dev *dev, pci_power_t state) 1412 { 1413 int error; 1414 1415 /* Bound the state we're entering */ 1416 if (state > PCI_D3cold) 1417 state = PCI_D3cold; 1418 else if (state < PCI_D0) 1419 state = PCI_D0; 1420 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev)) 1421 1422 /* 1423 * If the device or the parent bridge do not support PCI 1424 * PM, ignore the request if we're doing anything other 1425 * than putting it into D0 (which would only happen on 1426 * boot). 1427 */ 1428 return 0; 1429 1430 /* Check if we're already there */ 1431 if (dev->current_state == state) 1432 return 0; 1433 1434 if (state == PCI_D0) 1435 return pci_set_full_power_state(dev); 1436 1437 /* 1438 * This device is quirked not to be put into D3, so don't put it in 1439 * D3 1440 */ 1441 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3)) 1442 return 0; 1443 1444 if (state == PCI_D3cold) { 1445 /* 1446 * To put the device in D3cold, put it into D3hot in the native 1447 * way, then put it into D3cold using platform ops. 1448 */ 1449 error = pci_set_low_power_state(dev, PCI_D3hot); 1450 1451 if (pci_platform_power_transition(dev, PCI_D3cold)) 1452 return error; 1453 1454 /* Powering off a bridge may power off the whole hierarchy */ 1455 if (dev->current_state == PCI_D3cold) 1456 pci_bus_set_current_state(dev->subordinate, PCI_D3cold); 1457 } else { 1458 error = pci_set_low_power_state(dev, state); 1459 1460 if (pci_platform_power_transition(dev, state)) 1461 return error; 1462 } 1463 1464 return 0; 1465 } 1466 EXPORT_SYMBOL(pci_set_power_state); 1467 1468 #define PCI_EXP_SAVE_REGS 7 1469 1470 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev, 1471 u16 cap, bool extended) 1472 { 1473 struct pci_cap_saved_state *tmp; 1474 1475 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) { 1476 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap) 1477 return tmp; 1478 } 1479 return NULL; 1480 } 1481 1482 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap) 1483 { 1484 return _pci_find_saved_cap(dev, cap, false); 1485 } 1486 1487 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap) 1488 { 1489 return _pci_find_saved_cap(dev, cap, true); 1490 } 1491 1492 static int pci_save_pcie_state(struct pci_dev *dev) 1493 { 1494 int i = 0; 1495 struct pci_cap_saved_state *save_state; 1496 u16 *cap; 1497 1498 if (!pci_is_pcie(dev)) 1499 return 0; 1500 1501 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1502 if (!save_state) { 1503 pci_err(dev, "buffer not found in %s\n", __func__); 1504 return -ENOMEM; 1505 } 1506 1507 cap = (u16 *)&save_state->cap.data[0]; 1508 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]); 1509 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]); 1510 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]); 1511 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]); 1512 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]); 1513 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]); 1514 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]); 1515 1516 return 0; 1517 } 1518 1519 void pci_bridge_reconfigure_ltr(struct pci_dev *dev) 1520 { 1521 #ifdef CONFIG_PCIEASPM 1522 struct pci_dev *bridge; 1523 u32 ctl; 1524 1525 bridge = pci_upstream_bridge(dev); 1526 if (bridge && bridge->ltr_path) { 1527 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, &ctl); 1528 if (!(ctl & PCI_EXP_DEVCTL2_LTR_EN)) { 1529 pci_dbg(bridge, "re-enabling LTR\n"); 1530 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, 1531 PCI_EXP_DEVCTL2_LTR_EN); 1532 } 1533 } 1534 #endif 1535 } 1536 1537 static void pci_restore_pcie_state(struct pci_dev *dev) 1538 { 1539 int i = 0; 1540 struct pci_cap_saved_state *save_state; 1541 u16 *cap; 1542 1543 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1544 if (!save_state) 1545 return; 1546 1547 /* 1548 * Downstream ports reset the LTR enable bit when link goes down. 1549 * Check and re-configure the bit here before restoring device. 1550 * PCIe r5.0, sec 7.5.3.16. 1551 */ 1552 pci_bridge_reconfigure_ltr(dev); 1553 1554 cap = (u16 *)&save_state->cap.data[0]; 1555 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]); 1556 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]); 1557 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]); 1558 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]); 1559 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]); 1560 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]); 1561 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]); 1562 } 1563 1564 static int pci_save_pcix_state(struct pci_dev *dev) 1565 { 1566 int pos; 1567 struct pci_cap_saved_state *save_state; 1568 1569 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1570 if (!pos) 1571 return 0; 1572 1573 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1574 if (!save_state) { 1575 pci_err(dev, "buffer not found in %s\n", __func__); 1576 return -ENOMEM; 1577 } 1578 1579 pci_read_config_word(dev, pos + PCI_X_CMD, 1580 (u16 *)save_state->cap.data); 1581 1582 return 0; 1583 } 1584 1585 static void pci_restore_pcix_state(struct pci_dev *dev) 1586 { 1587 int i = 0, pos; 1588 struct pci_cap_saved_state *save_state; 1589 u16 *cap; 1590 1591 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1592 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1593 if (!save_state || !pos) 1594 return; 1595 cap = (u16 *)&save_state->cap.data[0]; 1596 1597 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]); 1598 } 1599 1600 static void pci_save_ltr_state(struct pci_dev *dev) 1601 { 1602 int ltr; 1603 struct pci_cap_saved_state *save_state; 1604 u32 *cap; 1605 1606 if (!pci_is_pcie(dev)) 1607 return; 1608 1609 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR); 1610 if (!ltr) 1611 return; 1612 1613 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR); 1614 if (!save_state) { 1615 pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n"); 1616 return; 1617 } 1618 1619 /* Some broken devices only support dword access to LTR */ 1620 cap = &save_state->cap.data[0]; 1621 pci_read_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap); 1622 } 1623 1624 static void pci_restore_ltr_state(struct pci_dev *dev) 1625 { 1626 struct pci_cap_saved_state *save_state; 1627 int ltr; 1628 u32 *cap; 1629 1630 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR); 1631 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR); 1632 if (!save_state || !ltr) 1633 return; 1634 1635 /* Some broken devices only support dword access to LTR */ 1636 cap = &save_state->cap.data[0]; 1637 pci_write_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap); 1638 } 1639 1640 /** 1641 * pci_save_state - save the PCI configuration space of a device before 1642 * suspending 1643 * @dev: PCI device that we're dealing with 1644 */ 1645 int pci_save_state(struct pci_dev *dev) 1646 { 1647 int i; 1648 /* XXX: 100% dword access ok here? */ 1649 for (i = 0; i < 16; i++) { 1650 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]); 1651 pci_dbg(dev, "saving config space at offset %#x (reading %#x)\n", 1652 i * 4, dev->saved_config_space[i]); 1653 } 1654 dev->state_saved = true; 1655 1656 i = pci_save_pcie_state(dev); 1657 if (i != 0) 1658 return i; 1659 1660 i = pci_save_pcix_state(dev); 1661 if (i != 0) 1662 return i; 1663 1664 pci_save_ltr_state(dev); 1665 pci_save_dpc_state(dev); 1666 pci_save_aer_state(dev); 1667 pci_save_ptm_state(dev); 1668 return pci_save_vc_state(dev); 1669 } 1670 EXPORT_SYMBOL(pci_save_state); 1671 1672 static void pci_restore_config_dword(struct pci_dev *pdev, int offset, 1673 u32 saved_val, int retry, bool force) 1674 { 1675 u32 val; 1676 1677 pci_read_config_dword(pdev, offset, &val); 1678 if (!force && val == saved_val) 1679 return; 1680 1681 for (;;) { 1682 pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n", 1683 offset, val, saved_val); 1684 pci_write_config_dword(pdev, offset, saved_val); 1685 if (retry-- <= 0) 1686 return; 1687 1688 pci_read_config_dword(pdev, offset, &val); 1689 if (val == saved_val) 1690 return; 1691 1692 mdelay(1); 1693 } 1694 } 1695 1696 static void pci_restore_config_space_range(struct pci_dev *pdev, 1697 int start, int end, int retry, 1698 bool force) 1699 { 1700 int index; 1701 1702 for (index = end; index >= start; index--) 1703 pci_restore_config_dword(pdev, 4 * index, 1704 pdev->saved_config_space[index], 1705 retry, force); 1706 } 1707 1708 static void pci_restore_config_space(struct pci_dev *pdev) 1709 { 1710 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) { 1711 pci_restore_config_space_range(pdev, 10, 15, 0, false); 1712 /* Restore BARs before the command register. */ 1713 pci_restore_config_space_range(pdev, 4, 9, 10, false); 1714 pci_restore_config_space_range(pdev, 0, 3, 0, false); 1715 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 1716 pci_restore_config_space_range(pdev, 12, 15, 0, false); 1717 1718 /* 1719 * Force rewriting of prefetch registers to avoid S3 resume 1720 * issues on Intel PCI bridges that occur when these 1721 * registers are not explicitly written. 1722 */ 1723 pci_restore_config_space_range(pdev, 9, 11, 0, true); 1724 pci_restore_config_space_range(pdev, 0, 8, 0, false); 1725 } else { 1726 pci_restore_config_space_range(pdev, 0, 15, 0, false); 1727 } 1728 } 1729 1730 static void pci_restore_rebar_state(struct pci_dev *pdev) 1731 { 1732 unsigned int pos, nbars, i; 1733 u32 ctrl; 1734 1735 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 1736 if (!pos) 1737 return; 1738 1739 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1740 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >> 1741 PCI_REBAR_CTRL_NBAR_SHIFT; 1742 1743 for (i = 0; i < nbars; i++, pos += 8) { 1744 struct resource *res; 1745 int bar_idx, size; 1746 1747 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1748 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX; 1749 res = pdev->resource + bar_idx; 1750 size = pci_rebar_bytes_to_size(resource_size(res)); 1751 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 1752 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT; 1753 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 1754 } 1755 } 1756 1757 /** 1758 * pci_restore_state - Restore the saved state of a PCI device 1759 * @dev: PCI device that we're dealing with 1760 */ 1761 void pci_restore_state(struct pci_dev *dev) 1762 { 1763 if (!dev->state_saved) 1764 return; 1765 1766 /* 1767 * Restore max latencies (in the LTR capability) before enabling 1768 * LTR itself (in the PCIe capability). 1769 */ 1770 pci_restore_ltr_state(dev); 1771 1772 pci_restore_pcie_state(dev); 1773 pci_restore_pasid_state(dev); 1774 pci_restore_pri_state(dev); 1775 pci_restore_ats_state(dev); 1776 pci_restore_vc_state(dev); 1777 pci_restore_rebar_state(dev); 1778 pci_restore_dpc_state(dev); 1779 pci_restore_ptm_state(dev); 1780 1781 pci_aer_clear_status(dev); 1782 pci_restore_aer_state(dev); 1783 1784 pci_restore_config_space(dev); 1785 1786 pci_restore_pcix_state(dev); 1787 pci_restore_msi_state(dev); 1788 1789 /* Restore ACS and IOV configuration state */ 1790 pci_enable_acs(dev); 1791 pci_restore_iov_state(dev); 1792 1793 dev->state_saved = false; 1794 } 1795 EXPORT_SYMBOL(pci_restore_state); 1796 1797 struct pci_saved_state { 1798 u32 config_space[16]; 1799 struct pci_cap_saved_data cap[]; 1800 }; 1801 1802 /** 1803 * pci_store_saved_state - Allocate and return an opaque struct containing 1804 * the device saved state. 1805 * @dev: PCI device that we're dealing with 1806 * 1807 * Return NULL if no state or error. 1808 */ 1809 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev) 1810 { 1811 struct pci_saved_state *state; 1812 struct pci_cap_saved_state *tmp; 1813 struct pci_cap_saved_data *cap; 1814 size_t size; 1815 1816 if (!dev->state_saved) 1817 return NULL; 1818 1819 size = sizeof(*state) + sizeof(struct pci_cap_saved_data); 1820 1821 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) 1822 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1823 1824 state = kzalloc(size, GFP_KERNEL); 1825 if (!state) 1826 return NULL; 1827 1828 memcpy(state->config_space, dev->saved_config_space, 1829 sizeof(state->config_space)); 1830 1831 cap = state->cap; 1832 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) { 1833 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1834 memcpy(cap, &tmp->cap, len); 1835 cap = (struct pci_cap_saved_data *)((u8 *)cap + len); 1836 } 1837 /* Empty cap_save terminates list */ 1838 1839 return state; 1840 } 1841 EXPORT_SYMBOL_GPL(pci_store_saved_state); 1842 1843 /** 1844 * pci_load_saved_state - Reload the provided save state into struct pci_dev. 1845 * @dev: PCI device that we're dealing with 1846 * @state: Saved state returned from pci_store_saved_state() 1847 */ 1848 int pci_load_saved_state(struct pci_dev *dev, 1849 struct pci_saved_state *state) 1850 { 1851 struct pci_cap_saved_data *cap; 1852 1853 dev->state_saved = false; 1854 1855 if (!state) 1856 return 0; 1857 1858 memcpy(dev->saved_config_space, state->config_space, 1859 sizeof(state->config_space)); 1860 1861 cap = state->cap; 1862 while (cap->size) { 1863 struct pci_cap_saved_state *tmp; 1864 1865 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended); 1866 if (!tmp || tmp->cap.size != cap->size) 1867 return -EINVAL; 1868 1869 memcpy(tmp->cap.data, cap->data, tmp->cap.size); 1870 cap = (struct pci_cap_saved_data *)((u8 *)cap + 1871 sizeof(struct pci_cap_saved_data) + cap->size); 1872 } 1873 1874 dev->state_saved = true; 1875 return 0; 1876 } 1877 EXPORT_SYMBOL_GPL(pci_load_saved_state); 1878 1879 /** 1880 * pci_load_and_free_saved_state - Reload the save state pointed to by state, 1881 * and free the memory allocated for it. 1882 * @dev: PCI device that we're dealing with 1883 * @state: Pointer to saved state returned from pci_store_saved_state() 1884 */ 1885 int pci_load_and_free_saved_state(struct pci_dev *dev, 1886 struct pci_saved_state **state) 1887 { 1888 int ret = pci_load_saved_state(dev, *state); 1889 kfree(*state); 1890 *state = NULL; 1891 return ret; 1892 } 1893 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state); 1894 1895 int __weak pcibios_enable_device(struct pci_dev *dev, int bars) 1896 { 1897 return pci_enable_resources(dev, bars); 1898 } 1899 1900 static int do_pci_enable_device(struct pci_dev *dev, int bars) 1901 { 1902 int err; 1903 struct pci_dev *bridge; 1904 u16 cmd; 1905 u8 pin; 1906 1907 err = pci_set_power_state(dev, PCI_D0); 1908 if (err < 0 && err != -EIO) 1909 return err; 1910 1911 bridge = pci_upstream_bridge(dev); 1912 if (bridge) 1913 pcie_aspm_powersave_config_link(bridge); 1914 1915 err = pcibios_enable_device(dev, bars); 1916 if (err < 0) 1917 return err; 1918 pci_fixup_device(pci_fixup_enable, dev); 1919 1920 if (dev->msi_enabled || dev->msix_enabled) 1921 return 0; 1922 1923 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin); 1924 if (pin) { 1925 pci_read_config_word(dev, PCI_COMMAND, &cmd); 1926 if (cmd & PCI_COMMAND_INTX_DISABLE) 1927 pci_write_config_word(dev, PCI_COMMAND, 1928 cmd & ~PCI_COMMAND_INTX_DISABLE); 1929 } 1930 1931 return 0; 1932 } 1933 1934 /** 1935 * pci_reenable_device - Resume abandoned device 1936 * @dev: PCI device to be resumed 1937 * 1938 * NOTE: This function is a backend of pci_default_resume() and is not supposed 1939 * to be called by normal code, write proper resume handler and use it instead. 1940 */ 1941 int pci_reenable_device(struct pci_dev *dev) 1942 { 1943 if (pci_is_enabled(dev)) 1944 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1); 1945 return 0; 1946 } 1947 EXPORT_SYMBOL(pci_reenable_device); 1948 1949 static void pci_enable_bridge(struct pci_dev *dev) 1950 { 1951 struct pci_dev *bridge; 1952 int retval; 1953 1954 bridge = pci_upstream_bridge(dev); 1955 if (bridge) 1956 pci_enable_bridge(bridge); 1957 1958 if (pci_is_enabled(dev)) { 1959 if (!dev->is_busmaster) 1960 pci_set_master(dev); 1961 return; 1962 } 1963 1964 retval = pci_enable_device(dev); 1965 if (retval) 1966 pci_err(dev, "Error enabling bridge (%d), continuing\n", 1967 retval); 1968 pci_set_master(dev); 1969 } 1970 1971 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags) 1972 { 1973 struct pci_dev *bridge; 1974 int err; 1975 int i, bars = 0; 1976 1977 /* 1978 * Power state could be unknown at this point, either due to a fresh 1979 * boot or a device removal call. So get the current power state 1980 * so that things like MSI message writing will behave as expected 1981 * (e.g. if the device really is in D0 at enable time). 1982 */ 1983 pci_update_current_state(dev, dev->current_state); 1984 1985 if (atomic_inc_return(&dev->enable_cnt) > 1) 1986 return 0; /* already enabled */ 1987 1988 bridge = pci_upstream_bridge(dev); 1989 if (bridge) 1990 pci_enable_bridge(bridge); 1991 1992 /* only skip sriov related */ 1993 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 1994 if (dev->resource[i].flags & flags) 1995 bars |= (1 << i); 1996 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++) 1997 if (dev->resource[i].flags & flags) 1998 bars |= (1 << i); 1999 2000 err = do_pci_enable_device(dev, bars); 2001 if (err < 0) 2002 atomic_dec(&dev->enable_cnt); 2003 return err; 2004 } 2005 2006 /** 2007 * pci_enable_device_io - Initialize a device for use with IO space 2008 * @dev: PCI device to be initialized 2009 * 2010 * Initialize device before it's used by a driver. Ask low-level code 2011 * to enable I/O resources. Wake up the device if it was suspended. 2012 * Beware, this function can fail. 2013 */ 2014 int pci_enable_device_io(struct pci_dev *dev) 2015 { 2016 return pci_enable_device_flags(dev, IORESOURCE_IO); 2017 } 2018 EXPORT_SYMBOL(pci_enable_device_io); 2019 2020 /** 2021 * pci_enable_device_mem - Initialize a device for use with Memory space 2022 * @dev: PCI device to be initialized 2023 * 2024 * Initialize device before it's used by a driver. Ask low-level code 2025 * to enable Memory resources. Wake up the device if it was suspended. 2026 * Beware, this function can fail. 2027 */ 2028 int pci_enable_device_mem(struct pci_dev *dev) 2029 { 2030 return pci_enable_device_flags(dev, IORESOURCE_MEM); 2031 } 2032 EXPORT_SYMBOL(pci_enable_device_mem); 2033 2034 /** 2035 * pci_enable_device - Initialize device before it's used by a driver. 2036 * @dev: PCI device to be initialized 2037 * 2038 * Initialize device before it's used by a driver. Ask low-level code 2039 * to enable I/O and memory. Wake up the device if it was suspended. 2040 * Beware, this function can fail. 2041 * 2042 * Note we don't actually enable the device many times if we call 2043 * this function repeatedly (we just increment the count). 2044 */ 2045 int pci_enable_device(struct pci_dev *dev) 2046 { 2047 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO); 2048 } 2049 EXPORT_SYMBOL(pci_enable_device); 2050 2051 /* 2052 * Managed PCI resources. This manages device on/off, INTx/MSI/MSI-X 2053 * on/off and BAR regions. pci_dev itself records MSI/MSI-X status, so 2054 * there's no need to track it separately. pci_devres is initialized 2055 * when a device is enabled using managed PCI device enable interface. 2056 */ 2057 struct pci_devres { 2058 unsigned int enabled:1; 2059 unsigned int pinned:1; 2060 unsigned int orig_intx:1; 2061 unsigned int restore_intx:1; 2062 unsigned int mwi:1; 2063 u32 region_mask; 2064 }; 2065 2066 static void pcim_release(struct device *gendev, void *res) 2067 { 2068 struct pci_dev *dev = to_pci_dev(gendev); 2069 struct pci_devres *this = res; 2070 int i; 2071 2072 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) 2073 if (this->region_mask & (1 << i)) 2074 pci_release_region(dev, i); 2075 2076 if (this->mwi) 2077 pci_clear_mwi(dev); 2078 2079 if (this->restore_intx) 2080 pci_intx(dev, this->orig_intx); 2081 2082 if (this->enabled && !this->pinned) 2083 pci_disable_device(dev); 2084 } 2085 2086 static struct pci_devres *get_pci_dr(struct pci_dev *pdev) 2087 { 2088 struct pci_devres *dr, *new_dr; 2089 2090 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL); 2091 if (dr) 2092 return dr; 2093 2094 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL); 2095 if (!new_dr) 2096 return NULL; 2097 return devres_get(&pdev->dev, new_dr, NULL, NULL); 2098 } 2099 2100 static struct pci_devres *find_pci_dr(struct pci_dev *pdev) 2101 { 2102 if (pci_is_managed(pdev)) 2103 return devres_find(&pdev->dev, pcim_release, NULL, NULL); 2104 return NULL; 2105 } 2106 2107 /** 2108 * pcim_enable_device - Managed pci_enable_device() 2109 * @pdev: PCI device to be initialized 2110 * 2111 * Managed pci_enable_device(). 2112 */ 2113 int pcim_enable_device(struct pci_dev *pdev) 2114 { 2115 struct pci_devres *dr; 2116 int rc; 2117 2118 dr = get_pci_dr(pdev); 2119 if (unlikely(!dr)) 2120 return -ENOMEM; 2121 if (dr->enabled) 2122 return 0; 2123 2124 rc = pci_enable_device(pdev); 2125 if (!rc) { 2126 pdev->is_managed = 1; 2127 dr->enabled = 1; 2128 } 2129 return rc; 2130 } 2131 EXPORT_SYMBOL(pcim_enable_device); 2132 2133 /** 2134 * pcim_pin_device - Pin managed PCI device 2135 * @pdev: PCI device to pin 2136 * 2137 * Pin managed PCI device @pdev. Pinned device won't be disabled on 2138 * driver detach. @pdev must have been enabled with 2139 * pcim_enable_device(). 2140 */ 2141 void pcim_pin_device(struct pci_dev *pdev) 2142 { 2143 struct pci_devres *dr; 2144 2145 dr = find_pci_dr(pdev); 2146 WARN_ON(!dr || !dr->enabled); 2147 if (dr) 2148 dr->pinned = 1; 2149 } 2150 EXPORT_SYMBOL(pcim_pin_device); 2151 2152 /* 2153 * pcibios_device_add - provide arch specific hooks when adding device dev 2154 * @dev: the PCI device being added 2155 * 2156 * Permits the platform to provide architecture specific functionality when 2157 * devices are added. This is the default implementation. Architecture 2158 * implementations can override this. 2159 */ 2160 int __weak pcibios_device_add(struct pci_dev *dev) 2161 { 2162 return 0; 2163 } 2164 2165 /** 2166 * pcibios_release_device - provide arch specific hooks when releasing 2167 * device dev 2168 * @dev: the PCI device being released 2169 * 2170 * Permits the platform to provide architecture specific functionality when 2171 * devices are released. This is the default implementation. Architecture 2172 * implementations can override this. 2173 */ 2174 void __weak pcibios_release_device(struct pci_dev *dev) {} 2175 2176 /** 2177 * pcibios_disable_device - disable arch specific PCI resources for device dev 2178 * @dev: the PCI device to disable 2179 * 2180 * Disables architecture specific PCI resources for the device. This 2181 * is the default implementation. Architecture implementations can 2182 * override this. 2183 */ 2184 void __weak pcibios_disable_device(struct pci_dev *dev) {} 2185 2186 /** 2187 * pcibios_penalize_isa_irq - penalize an ISA IRQ 2188 * @irq: ISA IRQ to penalize 2189 * @active: IRQ active or not 2190 * 2191 * Permits the platform to provide architecture-specific functionality when 2192 * penalizing ISA IRQs. This is the default implementation. Architecture 2193 * implementations can override this. 2194 */ 2195 void __weak pcibios_penalize_isa_irq(int irq, int active) {} 2196 2197 static void do_pci_disable_device(struct pci_dev *dev) 2198 { 2199 u16 pci_command; 2200 2201 pci_read_config_word(dev, PCI_COMMAND, &pci_command); 2202 if (pci_command & PCI_COMMAND_MASTER) { 2203 pci_command &= ~PCI_COMMAND_MASTER; 2204 pci_write_config_word(dev, PCI_COMMAND, pci_command); 2205 } 2206 2207 pcibios_disable_device(dev); 2208 } 2209 2210 /** 2211 * pci_disable_enabled_device - Disable device without updating enable_cnt 2212 * @dev: PCI device to disable 2213 * 2214 * NOTE: This function is a backend of PCI power management routines and is 2215 * not supposed to be called drivers. 2216 */ 2217 void pci_disable_enabled_device(struct pci_dev *dev) 2218 { 2219 if (pci_is_enabled(dev)) 2220 do_pci_disable_device(dev); 2221 } 2222 2223 /** 2224 * pci_disable_device - Disable PCI device after use 2225 * @dev: PCI device to be disabled 2226 * 2227 * Signal to the system that the PCI device is not in use by the system 2228 * anymore. This only involves disabling PCI bus-mastering, if active. 2229 * 2230 * Note we don't actually disable the device until all callers of 2231 * pci_enable_device() have called pci_disable_device(). 2232 */ 2233 void pci_disable_device(struct pci_dev *dev) 2234 { 2235 struct pci_devres *dr; 2236 2237 dr = find_pci_dr(dev); 2238 if (dr) 2239 dr->enabled = 0; 2240 2241 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0, 2242 "disabling already-disabled device"); 2243 2244 if (atomic_dec_return(&dev->enable_cnt) != 0) 2245 return; 2246 2247 do_pci_disable_device(dev); 2248 2249 dev->is_busmaster = 0; 2250 } 2251 EXPORT_SYMBOL(pci_disable_device); 2252 2253 /** 2254 * pcibios_set_pcie_reset_state - set reset state for device dev 2255 * @dev: the PCIe device reset 2256 * @state: Reset state to enter into 2257 * 2258 * Set the PCIe reset state for the device. This is the default 2259 * implementation. Architecture implementations can override this. 2260 */ 2261 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev, 2262 enum pcie_reset_state state) 2263 { 2264 return -EINVAL; 2265 } 2266 2267 /** 2268 * pci_set_pcie_reset_state - set reset state for device dev 2269 * @dev: the PCIe device reset 2270 * @state: Reset state to enter into 2271 * 2272 * Sets the PCI reset state for the device. 2273 */ 2274 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state) 2275 { 2276 return pcibios_set_pcie_reset_state(dev, state); 2277 } 2278 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state); 2279 2280 #ifdef CONFIG_PCIEAER 2281 void pcie_clear_device_status(struct pci_dev *dev) 2282 { 2283 u16 sta; 2284 2285 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta); 2286 pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta); 2287 } 2288 #endif 2289 2290 /** 2291 * pcie_clear_root_pme_status - Clear root port PME interrupt status. 2292 * @dev: PCIe root port or event collector. 2293 */ 2294 void pcie_clear_root_pme_status(struct pci_dev *dev) 2295 { 2296 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME); 2297 } 2298 2299 /** 2300 * pci_check_pme_status - Check if given device has generated PME. 2301 * @dev: Device to check. 2302 * 2303 * Check the PME status of the device and if set, clear it and clear PME enable 2304 * (if set). Return 'true' if PME status and PME enable were both set or 2305 * 'false' otherwise. 2306 */ 2307 bool pci_check_pme_status(struct pci_dev *dev) 2308 { 2309 int pmcsr_pos; 2310 u16 pmcsr; 2311 bool ret = false; 2312 2313 if (!dev->pm_cap) 2314 return false; 2315 2316 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL; 2317 pci_read_config_word(dev, pmcsr_pos, &pmcsr); 2318 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS)) 2319 return false; 2320 2321 /* Clear PME status. */ 2322 pmcsr |= PCI_PM_CTRL_PME_STATUS; 2323 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) { 2324 /* Disable PME to avoid interrupt flood. */ 2325 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2326 ret = true; 2327 } 2328 2329 pci_write_config_word(dev, pmcsr_pos, pmcsr); 2330 2331 return ret; 2332 } 2333 2334 /** 2335 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set. 2336 * @dev: Device to handle. 2337 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag. 2338 * 2339 * Check if @dev has generated PME and queue a resume request for it in that 2340 * case. 2341 */ 2342 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset) 2343 { 2344 if (pme_poll_reset && dev->pme_poll) 2345 dev->pme_poll = false; 2346 2347 if (pci_check_pme_status(dev)) { 2348 pci_wakeup_event(dev); 2349 pm_request_resume(&dev->dev); 2350 } 2351 return 0; 2352 } 2353 2354 /** 2355 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary. 2356 * @bus: Top bus of the subtree to walk. 2357 */ 2358 void pci_pme_wakeup_bus(struct pci_bus *bus) 2359 { 2360 if (bus) 2361 pci_walk_bus(bus, pci_pme_wakeup, (void *)true); 2362 } 2363 2364 2365 /** 2366 * pci_pme_capable - check the capability of PCI device to generate PME# 2367 * @dev: PCI device to handle. 2368 * @state: PCI state from which device will issue PME#. 2369 */ 2370 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state) 2371 { 2372 if (!dev->pm_cap) 2373 return false; 2374 2375 return !!(dev->pme_support & (1 << state)); 2376 } 2377 EXPORT_SYMBOL(pci_pme_capable); 2378 2379 static void pci_pme_list_scan(struct work_struct *work) 2380 { 2381 struct pci_pme_device *pme_dev, *n; 2382 2383 mutex_lock(&pci_pme_list_mutex); 2384 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) { 2385 if (pme_dev->dev->pme_poll) { 2386 struct pci_dev *bridge; 2387 2388 bridge = pme_dev->dev->bus->self; 2389 /* 2390 * If bridge is in low power state, the 2391 * configuration space of subordinate devices 2392 * may be not accessible 2393 */ 2394 if (bridge && bridge->current_state != PCI_D0) 2395 continue; 2396 /* 2397 * If the device is in D3cold it should not be 2398 * polled either. 2399 */ 2400 if (pme_dev->dev->current_state == PCI_D3cold) 2401 continue; 2402 2403 pci_pme_wakeup(pme_dev->dev, NULL); 2404 } else { 2405 list_del(&pme_dev->list); 2406 kfree(pme_dev); 2407 } 2408 } 2409 if (!list_empty(&pci_pme_list)) 2410 queue_delayed_work(system_freezable_wq, &pci_pme_work, 2411 msecs_to_jiffies(PME_TIMEOUT)); 2412 mutex_unlock(&pci_pme_list_mutex); 2413 } 2414 2415 static void __pci_pme_active(struct pci_dev *dev, bool enable) 2416 { 2417 u16 pmcsr; 2418 2419 if (!dev->pme_support) 2420 return; 2421 2422 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2423 /* Clear PME_Status by writing 1 to it and enable PME# */ 2424 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE; 2425 if (!enable) 2426 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2427 2428 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2429 } 2430 2431 /** 2432 * pci_pme_restore - Restore PME configuration after config space restore. 2433 * @dev: PCI device to update. 2434 */ 2435 void pci_pme_restore(struct pci_dev *dev) 2436 { 2437 u16 pmcsr; 2438 2439 if (!dev->pme_support) 2440 return; 2441 2442 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2443 if (dev->wakeup_prepared) { 2444 pmcsr |= PCI_PM_CTRL_PME_ENABLE; 2445 pmcsr &= ~PCI_PM_CTRL_PME_STATUS; 2446 } else { 2447 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2448 pmcsr |= PCI_PM_CTRL_PME_STATUS; 2449 } 2450 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2451 } 2452 2453 /** 2454 * pci_pme_active - enable or disable PCI device's PME# function 2455 * @dev: PCI device to handle. 2456 * @enable: 'true' to enable PME# generation; 'false' to disable it. 2457 * 2458 * The caller must verify that the device is capable of generating PME# before 2459 * calling this function with @enable equal to 'true'. 2460 */ 2461 void pci_pme_active(struct pci_dev *dev, bool enable) 2462 { 2463 __pci_pme_active(dev, enable); 2464 2465 /* 2466 * PCI (as opposed to PCIe) PME requires that the device have 2467 * its PME# line hooked up correctly. Not all hardware vendors 2468 * do this, so the PME never gets delivered and the device 2469 * remains asleep. The easiest way around this is to 2470 * periodically walk the list of suspended devices and check 2471 * whether any have their PME flag set. The assumption is that 2472 * we'll wake up often enough anyway that this won't be a huge 2473 * hit, and the power savings from the devices will still be a 2474 * win. 2475 * 2476 * Although PCIe uses in-band PME message instead of PME# line 2477 * to report PME, PME does not work for some PCIe devices in 2478 * reality. For example, there are devices that set their PME 2479 * status bits, but don't really bother to send a PME message; 2480 * there are PCI Express Root Ports that don't bother to 2481 * trigger interrupts when they receive PME messages from the 2482 * devices below. So PME poll is used for PCIe devices too. 2483 */ 2484 2485 if (dev->pme_poll) { 2486 struct pci_pme_device *pme_dev; 2487 if (enable) { 2488 pme_dev = kmalloc(sizeof(struct pci_pme_device), 2489 GFP_KERNEL); 2490 if (!pme_dev) { 2491 pci_warn(dev, "can't enable PME#\n"); 2492 return; 2493 } 2494 pme_dev->dev = dev; 2495 mutex_lock(&pci_pme_list_mutex); 2496 list_add(&pme_dev->list, &pci_pme_list); 2497 if (list_is_singular(&pci_pme_list)) 2498 queue_delayed_work(system_freezable_wq, 2499 &pci_pme_work, 2500 msecs_to_jiffies(PME_TIMEOUT)); 2501 mutex_unlock(&pci_pme_list_mutex); 2502 } else { 2503 mutex_lock(&pci_pme_list_mutex); 2504 list_for_each_entry(pme_dev, &pci_pme_list, list) { 2505 if (pme_dev->dev == dev) { 2506 list_del(&pme_dev->list); 2507 kfree(pme_dev); 2508 break; 2509 } 2510 } 2511 mutex_unlock(&pci_pme_list_mutex); 2512 } 2513 } 2514 2515 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled"); 2516 } 2517 EXPORT_SYMBOL(pci_pme_active); 2518 2519 /** 2520 * __pci_enable_wake - enable PCI device as wakeup event source 2521 * @dev: PCI device affected 2522 * @state: PCI state from which device will issue wakeup events 2523 * @enable: True to enable event generation; false to disable 2524 * 2525 * This enables the device as a wakeup event source, or disables it. 2526 * When such events involves platform-specific hooks, those hooks are 2527 * called automatically by this routine. 2528 * 2529 * Devices with legacy power management (no standard PCI PM capabilities) 2530 * always require such platform hooks. 2531 * 2532 * RETURN VALUE: 2533 * 0 is returned on success 2534 * -EINVAL is returned if device is not supposed to wake up the system 2535 * Error code depending on the platform is returned if both the platform and 2536 * the native mechanism fail to enable the generation of wake-up events 2537 */ 2538 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable) 2539 { 2540 int ret = 0; 2541 2542 /* 2543 * Bridges that are not power-manageable directly only signal 2544 * wakeup on behalf of subordinate devices which is set up 2545 * elsewhere, so skip them. However, bridges that are 2546 * power-manageable may signal wakeup for themselves (for example, 2547 * on a hotplug event) and they need to be covered here. 2548 */ 2549 if (!pci_power_manageable(dev)) 2550 return 0; 2551 2552 /* Don't do the same thing twice in a row for one device. */ 2553 if (!!enable == !!dev->wakeup_prepared) 2554 return 0; 2555 2556 /* 2557 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don 2558 * Anderson we should be doing PME# wake enable followed by ACPI wake 2559 * enable. To disable wake-up we call the platform first, for symmetry. 2560 */ 2561 2562 if (enable) { 2563 int error; 2564 2565 /* 2566 * Enable PME signaling if the device can signal PME from 2567 * D3cold regardless of whether or not it can signal PME from 2568 * the current target state, because that will allow it to 2569 * signal PME when the hierarchy above it goes into D3cold and 2570 * the device itself ends up in D3cold as a result of that. 2571 */ 2572 if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold)) 2573 pci_pme_active(dev, true); 2574 else 2575 ret = 1; 2576 error = platform_pci_set_wakeup(dev, true); 2577 if (ret) 2578 ret = error; 2579 if (!ret) 2580 dev->wakeup_prepared = true; 2581 } else { 2582 platform_pci_set_wakeup(dev, false); 2583 pci_pme_active(dev, false); 2584 dev->wakeup_prepared = false; 2585 } 2586 2587 return ret; 2588 } 2589 2590 /** 2591 * pci_enable_wake - change wakeup settings for a PCI device 2592 * @pci_dev: Target device 2593 * @state: PCI state from which device will issue wakeup events 2594 * @enable: Whether or not to enable event generation 2595 * 2596 * If @enable is set, check device_may_wakeup() for the device before calling 2597 * __pci_enable_wake() for it. 2598 */ 2599 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable) 2600 { 2601 if (enable && !device_may_wakeup(&pci_dev->dev)) 2602 return -EINVAL; 2603 2604 return __pci_enable_wake(pci_dev, state, enable); 2605 } 2606 EXPORT_SYMBOL(pci_enable_wake); 2607 2608 /** 2609 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold 2610 * @dev: PCI device to prepare 2611 * @enable: True to enable wake-up event generation; false to disable 2612 * 2613 * Many drivers want the device to wake up the system from D3_hot or D3_cold 2614 * and this function allows them to set that up cleanly - pci_enable_wake() 2615 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI 2616 * ordering constraints. 2617 * 2618 * This function only returns error code if the device is not allowed to wake 2619 * up the system from sleep or it is not capable of generating PME# from both 2620 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it. 2621 */ 2622 int pci_wake_from_d3(struct pci_dev *dev, bool enable) 2623 { 2624 return pci_pme_capable(dev, PCI_D3cold) ? 2625 pci_enable_wake(dev, PCI_D3cold, enable) : 2626 pci_enable_wake(dev, PCI_D3hot, enable); 2627 } 2628 EXPORT_SYMBOL(pci_wake_from_d3); 2629 2630 /** 2631 * pci_target_state - find an appropriate low power state for a given PCI dev 2632 * @dev: PCI device 2633 * @wakeup: Whether or not wakeup functionality will be enabled for the device. 2634 * 2635 * Use underlying platform code to find a supported low power state for @dev. 2636 * If the platform can't manage @dev, return the deepest state from which it 2637 * can generate wake events, based on any available PME info. 2638 */ 2639 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup) 2640 { 2641 if (platform_pci_power_manageable(dev)) { 2642 /* 2643 * Call the platform to find the target state for the device. 2644 */ 2645 pci_power_t state = platform_pci_choose_state(dev); 2646 2647 switch (state) { 2648 case PCI_POWER_ERROR: 2649 case PCI_UNKNOWN: 2650 return PCI_D3hot; 2651 2652 case PCI_D1: 2653 case PCI_D2: 2654 if (pci_no_d1d2(dev)) 2655 return PCI_D3hot; 2656 } 2657 2658 return state; 2659 } 2660 2661 /* 2662 * If the device is in D3cold even though it's not power-manageable by 2663 * the platform, it may have been powered down by non-standard means. 2664 * Best to let it slumber. 2665 */ 2666 if (dev->current_state == PCI_D3cold) 2667 return PCI_D3cold; 2668 else if (!dev->pm_cap) 2669 return PCI_D0; 2670 2671 if (wakeup && dev->pme_support) { 2672 pci_power_t state = PCI_D3hot; 2673 2674 /* 2675 * Find the deepest state from which the device can generate 2676 * PME#. 2677 */ 2678 while (state && !(dev->pme_support & (1 << state))) 2679 state--; 2680 2681 if (state) 2682 return state; 2683 else if (dev->pme_support & 1) 2684 return PCI_D0; 2685 } 2686 2687 return PCI_D3hot; 2688 } 2689 2690 /** 2691 * pci_prepare_to_sleep - prepare PCI device for system-wide transition 2692 * into a sleep state 2693 * @dev: Device to handle. 2694 * 2695 * Choose the power state appropriate for the device depending on whether 2696 * it can wake up the system and/or is power manageable by the platform 2697 * (PCI_D3hot is the default) and put the device into that state. 2698 */ 2699 int pci_prepare_to_sleep(struct pci_dev *dev) 2700 { 2701 bool wakeup = device_may_wakeup(&dev->dev); 2702 pci_power_t target_state = pci_target_state(dev, wakeup); 2703 int error; 2704 2705 if (target_state == PCI_POWER_ERROR) 2706 return -EIO; 2707 2708 pci_enable_wake(dev, target_state, wakeup); 2709 2710 error = pci_set_power_state(dev, target_state); 2711 2712 if (error) 2713 pci_enable_wake(dev, target_state, false); 2714 2715 return error; 2716 } 2717 EXPORT_SYMBOL(pci_prepare_to_sleep); 2718 2719 /** 2720 * pci_back_from_sleep - turn PCI device on during system-wide transition 2721 * into working state 2722 * @dev: Device to handle. 2723 * 2724 * Disable device's system wake-up capability and put it into D0. 2725 */ 2726 int pci_back_from_sleep(struct pci_dev *dev) 2727 { 2728 int ret = pci_set_power_state(dev, PCI_D0); 2729 2730 if (ret) 2731 return ret; 2732 2733 pci_enable_wake(dev, PCI_D0, false); 2734 return 0; 2735 } 2736 EXPORT_SYMBOL(pci_back_from_sleep); 2737 2738 /** 2739 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend. 2740 * @dev: PCI device being suspended. 2741 * 2742 * Prepare @dev to generate wake-up events at run time and put it into a low 2743 * power state. 2744 */ 2745 int pci_finish_runtime_suspend(struct pci_dev *dev) 2746 { 2747 pci_power_t target_state; 2748 int error; 2749 2750 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev)); 2751 if (target_state == PCI_POWER_ERROR) 2752 return -EIO; 2753 2754 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev)); 2755 2756 error = pci_set_power_state(dev, target_state); 2757 2758 if (error) 2759 pci_enable_wake(dev, target_state, false); 2760 2761 return error; 2762 } 2763 2764 /** 2765 * pci_dev_run_wake - Check if device can generate run-time wake-up events. 2766 * @dev: Device to check. 2767 * 2768 * Return true if the device itself is capable of generating wake-up events 2769 * (through the platform or using the native PCIe PME) or if the device supports 2770 * PME and one of its upstream bridges can generate wake-up events. 2771 */ 2772 bool pci_dev_run_wake(struct pci_dev *dev) 2773 { 2774 struct pci_bus *bus = dev->bus; 2775 2776 if (!dev->pme_support) 2777 return false; 2778 2779 /* PME-capable in principle, but not from the target power state */ 2780 if (!pci_pme_capable(dev, pci_target_state(dev, true))) 2781 return false; 2782 2783 if (device_can_wakeup(&dev->dev)) 2784 return true; 2785 2786 while (bus->parent) { 2787 struct pci_dev *bridge = bus->self; 2788 2789 if (device_can_wakeup(&bridge->dev)) 2790 return true; 2791 2792 bus = bus->parent; 2793 } 2794 2795 /* We have reached the root bus. */ 2796 if (bus->bridge) 2797 return device_can_wakeup(bus->bridge); 2798 2799 return false; 2800 } 2801 EXPORT_SYMBOL_GPL(pci_dev_run_wake); 2802 2803 /** 2804 * pci_dev_need_resume - Check if it is necessary to resume the device. 2805 * @pci_dev: Device to check. 2806 * 2807 * Return 'true' if the device is not runtime-suspended or it has to be 2808 * reconfigured due to wakeup settings difference between system and runtime 2809 * suspend, or the current power state of it is not suitable for the upcoming 2810 * (system-wide) transition. 2811 */ 2812 bool pci_dev_need_resume(struct pci_dev *pci_dev) 2813 { 2814 struct device *dev = &pci_dev->dev; 2815 pci_power_t target_state; 2816 2817 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev)) 2818 return true; 2819 2820 target_state = pci_target_state(pci_dev, device_may_wakeup(dev)); 2821 2822 /* 2823 * If the earlier platform check has not triggered, D3cold is just power 2824 * removal on top of D3hot, so no need to resume the device in that 2825 * case. 2826 */ 2827 return target_state != pci_dev->current_state && 2828 target_state != PCI_D3cold && 2829 pci_dev->current_state != PCI_D3hot; 2830 } 2831 2832 /** 2833 * pci_dev_adjust_pme - Adjust PME setting for a suspended device. 2834 * @pci_dev: Device to check. 2835 * 2836 * If the device is suspended and it is not configured for system wakeup, 2837 * disable PME for it to prevent it from waking up the system unnecessarily. 2838 * 2839 * Note that if the device's power state is D3cold and the platform check in 2840 * pci_dev_need_resume() has not triggered, the device's configuration need not 2841 * be changed. 2842 */ 2843 void pci_dev_adjust_pme(struct pci_dev *pci_dev) 2844 { 2845 struct device *dev = &pci_dev->dev; 2846 2847 spin_lock_irq(&dev->power.lock); 2848 2849 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) && 2850 pci_dev->current_state < PCI_D3cold) 2851 __pci_pme_active(pci_dev, false); 2852 2853 spin_unlock_irq(&dev->power.lock); 2854 } 2855 2856 /** 2857 * pci_dev_complete_resume - Finalize resume from system sleep for a device. 2858 * @pci_dev: Device to handle. 2859 * 2860 * If the device is runtime suspended and wakeup-capable, enable PME for it as 2861 * it might have been disabled during the prepare phase of system suspend if 2862 * the device was not configured for system wakeup. 2863 */ 2864 void pci_dev_complete_resume(struct pci_dev *pci_dev) 2865 { 2866 struct device *dev = &pci_dev->dev; 2867 2868 if (!pci_dev_run_wake(pci_dev)) 2869 return; 2870 2871 spin_lock_irq(&dev->power.lock); 2872 2873 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold) 2874 __pci_pme_active(pci_dev, true); 2875 2876 spin_unlock_irq(&dev->power.lock); 2877 } 2878 2879 /** 2880 * pci_choose_state - Choose the power state of a PCI device. 2881 * @dev: Target PCI device. 2882 * @state: Target state for the whole system. 2883 * 2884 * Returns PCI power state suitable for @dev and @state. 2885 */ 2886 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state) 2887 { 2888 if (state.event == PM_EVENT_ON) 2889 return PCI_D0; 2890 2891 return pci_target_state(dev, false); 2892 } 2893 EXPORT_SYMBOL(pci_choose_state); 2894 2895 void pci_config_pm_runtime_get(struct pci_dev *pdev) 2896 { 2897 struct device *dev = &pdev->dev; 2898 struct device *parent = dev->parent; 2899 2900 if (parent) 2901 pm_runtime_get_sync(parent); 2902 pm_runtime_get_noresume(dev); 2903 /* 2904 * pdev->current_state is set to PCI_D3cold during suspending, 2905 * so wait until suspending completes 2906 */ 2907 pm_runtime_barrier(dev); 2908 /* 2909 * Only need to resume devices in D3cold, because config 2910 * registers are still accessible for devices suspended but 2911 * not in D3cold. 2912 */ 2913 if (pdev->current_state == PCI_D3cold) 2914 pm_runtime_resume(dev); 2915 } 2916 2917 void pci_config_pm_runtime_put(struct pci_dev *pdev) 2918 { 2919 struct device *dev = &pdev->dev; 2920 struct device *parent = dev->parent; 2921 2922 pm_runtime_put(dev); 2923 if (parent) 2924 pm_runtime_put_sync(parent); 2925 } 2926 2927 static const struct dmi_system_id bridge_d3_blacklist[] = { 2928 #ifdef CONFIG_X86 2929 { 2930 /* 2931 * Gigabyte X299 root port is not marked as hotplug capable 2932 * which allows Linux to power manage it. However, this 2933 * confuses the BIOS SMI handler so don't power manage root 2934 * ports on that system. 2935 */ 2936 .ident = "X299 DESIGNARE EX-CF", 2937 .matches = { 2938 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."), 2939 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"), 2940 }, 2941 }, 2942 { 2943 /* 2944 * Downstream device is not accessible after putting a root port 2945 * into D3cold and back into D0 on Elo i2. 2946 */ 2947 .ident = "Elo i2", 2948 .matches = { 2949 DMI_MATCH(DMI_SYS_VENDOR, "Elo Touch Solutions"), 2950 DMI_MATCH(DMI_PRODUCT_NAME, "Elo i2"), 2951 DMI_MATCH(DMI_PRODUCT_VERSION, "RevB"), 2952 }, 2953 }, 2954 #endif 2955 { } 2956 }; 2957 2958 /** 2959 * pci_bridge_d3_possible - Is it possible to put the bridge into D3 2960 * @bridge: Bridge to check 2961 * 2962 * This function checks if it is possible to move the bridge to D3. 2963 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt. 2964 */ 2965 bool pci_bridge_d3_possible(struct pci_dev *bridge) 2966 { 2967 if (!pci_is_pcie(bridge)) 2968 return false; 2969 2970 switch (pci_pcie_type(bridge)) { 2971 case PCI_EXP_TYPE_ROOT_PORT: 2972 case PCI_EXP_TYPE_UPSTREAM: 2973 case PCI_EXP_TYPE_DOWNSTREAM: 2974 if (pci_bridge_d3_disable) 2975 return false; 2976 2977 /* 2978 * Hotplug ports handled by firmware in System Management Mode 2979 * may not be put into D3 by the OS (Thunderbolt on non-Macs). 2980 */ 2981 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge)) 2982 return false; 2983 2984 if (pci_bridge_d3_force) 2985 return true; 2986 2987 /* Even the oldest 2010 Thunderbolt controller supports D3. */ 2988 if (bridge->is_thunderbolt) 2989 return true; 2990 2991 /* Platform might know better if the bridge supports D3 */ 2992 if (platform_pci_bridge_d3(bridge)) 2993 return true; 2994 2995 /* 2996 * Hotplug ports handled natively by the OS were not validated 2997 * by vendors for runtime D3 at least until 2018 because there 2998 * was no OS support. 2999 */ 3000 if (bridge->is_hotplug_bridge) 3001 return false; 3002 3003 if (dmi_check_system(bridge_d3_blacklist)) 3004 return false; 3005 3006 /* 3007 * It should be safe to put PCIe ports from 2015 or newer 3008 * to D3. 3009 */ 3010 if (dmi_get_bios_year() >= 2015) 3011 return true; 3012 break; 3013 } 3014 3015 return false; 3016 } 3017 3018 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data) 3019 { 3020 bool *d3cold_ok = data; 3021 3022 if (/* The device needs to be allowed to go D3cold ... */ 3023 dev->no_d3cold || !dev->d3cold_allowed || 3024 3025 /* ... and if it is wakeup capable to do so from D3cold. */ 3026 (device_may_wakeup(&dev->dev) && 3027 !pci_pme_capable(dev, PCI_D3cold)) || 3028 3029 /* If it is a bridge it must be allowed to go to D3. */ 3030 !pci_power_manageable(dev)) 3031 3032 *d3cold_ok = false; 3033 3034 return !*d3cold_ok; 3035 } 3036 3037 /* 3038 * pci_bridge_d3_update - Update bridge D3 capabilities 3039 * @dev: PCI device which is changed 3040 * 3041 * Update upstream bridge PM capabilities accordingly depending on if the 3042 * device PM configuration was changed or the device is being removed. The 3043 * change is also propagated upstream. 3044 */ 3045 void pci_bridge_d3_update(struct pci_dev *dev) 3046 { 3047 bool remove = !device_is_registered(&dev->dev); 3048 struct pci_dev *bridge; 3049 bool d3cold_ok = true; 3050 3051 bridge = pci_upstream_bridge(dev); 3052 if (!bridge || !pci_bridge_d3_possible(bridge)) 3053 return; 3054 3055 /* 3056 * If D3 is currently allowed for the bridge, removing one of its 3057 * children won't change that. 3058 */ 3059 if (remove && bridge->bridge_d3) 3060 return; 3061 3062 /* 3063 * If D3 is currently allowed for the bridge and a child is added or 3064 * changed, disallowance of D3 can only be caused by that child, so 3065 * we only need to check that single device, not any of its siblings. 3066 * 3067 * If D3 is currently not allowed for the bridge, checking the device 3068 * first may allow us to skip checking its siblings. 3069 */ 3070 if (!remove) 3071 pci_dev_check_d3cold(dev, &d3cold_ok); 3072 3073 /* 3074 * If D3 is currently not allowed for the bridge, this may be caused 3075 * either by the device being changed/removed or any of its siblings, 3076 * so we need to go through all children to find out if one of them 3077 * continues to block D3. 3078 */ 3079 if (d3cold_ok && !bridge->bridge_d3) 3080 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold, 3081 &d3cold_ok); 3082 3083 if (bridge->bridge_d3 != d3cold_ok) { 3084 bridge->bridge_d3 = d3cold_ok; 3085 /* Propagate change to upstream bridges */ 3086 pci_bridge_d3_update(bridge); 3087 } 3088 } 3089 3090 /** 3091 * pci_d3cold_enable - Enable D3cold for device 3092 * @dev: PCI device to handle 3093 * 3094 * This function can be used in drivers to enable D3cold from the device 3095 * they handle. It also updates upstream PCI bridge PM capabilities 3096 * accordingly. 3097 */ 3098 void pci_d3cold_enable(struct pci_dev *dev) 3099 { 3100 if (dev->no_d3cold) { 3101 dev->no_d3cold = false; 3102 pci_bridge_d3_update(dev); 3103 } 3104 } 3105 EXPORT_SYMBOL_GPL(pci_d3cold_enable); 3106 3107 /** 3108 * pci_d3cold_disable - Disable D3cold for device 3109 * @dev: PCI device to handle 3110 * 3111 * This function can be used in drivers to disable D3cold from the device 3112 * they handle. It also updates upstream PCI bridge PM capabilities 3113 * accordingly. 3114 */ 3115 void pci_d3cold_disable(struct pci_dev *dev) 3116 { 3117 if (!dev->no_d3cold) { 3118 dev->no_d3cold = true; 3119 pci_bridge_d3_update(dev); 3120 } 3121 } 3122 EXPORT_SYMBOL_GPL(pci_d3cold_disable); 3123 3124 /** 3125 * pci_pm_init - Initialize PM functions of given PCI device 3126 * @dev: PCI device to handle. 3127 */ 3128 void pci_pm_init(struct pci_dev *dev) 3129 { 3130 int pm; 3131 u16 status; 3132 u16 pmc; 3133 3134 pm_runtime_forbid(&dev->dev); 3135 pm_runtime_set_active(&dev->dev); 3136 pm_runtime_enable(&dev->dev); 3137 device_enable_async_suspend(&dev->dev); 3138 dev->wakeup_prepared = false; 3139 3140 dev->pm_cap = 0; 3141 dev->pme_support = 0; 3142 3143 /* find PCI PM capability in list */ 3144 pm = pci_find_capability(dev, PCI_CAP_ID_PM); 3145 if (!pm) 3146 return; 3147 /* Check device's ability to generate PME# */ 3148 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc); 3149 3150 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) { 3151 pci_err(dev, "unsupported PM cap regs version (%u)\n", 3152 pmc & PCI_PM_CAP_VER_MASK); 3153 return; 3154 } 3155 3156 dev->pm_cap = pm; 3157 dev->d3hot_delay = PCI_PM_D3HOT_WAIT; 3158 dev->d3cold_delay = PCI_PM_D3COLD_WAIT; 3159 dev->bridge_d3 = pci_bridge_d3_possible(dev); 3160 dev->d3cold_allowed = true; 3161 3162 dev->d1_support = false; 3163 dev->d2_support = false; 3164 if (!pci_no_d1d2(dev)) { 3165 if (pmc & PCI_PM_CAP_D1) 3166 dev->d1_support = true; 3167 if (pmc & PCI_PM_CAP_D2) 3168 dev->d2_support = true; 3169 3170 if (dev->d1_support || dev->d2_support) 3171 pci_info(dev, "supports%s%s\n", 3172 dev->d1_support ? " D1" : "", 3173 dev->d2_support ? " D2" : ""); 3174 } 3175 3176 pmc &= PCI_PM_CAP_PME_MASK; 3177 if (pmc) { 3178 pci_info(dev, "PME# supported from%s%s%s%s%s\n", 3179 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "", 3180 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "", 3181 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "", 3182 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "", 3183 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : ""); 3184 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT; 3185 dev->pme_poll = true; 3186 /* 3187 * Make device's PM flags reflect the wake-up capability, but 3188 * let the user space enable it to wake up the system as needed. 3189 */ 3190 device_set_wakeup_capable(&dev->dev, true); 3191 /* Disable the PME# generation functionality */ 3192 pci_pme_active(dev, false); 3193 } 3194 3195 pci_read_config_word(dev, PCI_STATUS, &status); 3196 if (status & PCI_STATUS_IMM_READY) 3197 dev->imm_ready = 1; 3198 } 3199 3200 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop) 3201 { 3202 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI; 3203 3204 switch (prop) { 3205 case PCI_EA_P_MEM: 3206 case PCI_EA_P_VF_MEM: 3207 flags |= IORESOURCE_MEM; 3208 break; 3209 case PCI_EA_P_MEM_PREFETCH: 3210 case PCI_EA_P_VF_MEM_PREFETCH: 3211 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH; 3212 break; 3213 case PCI_EA_P_IO: 3214 flags |= IORESOURCE_IO; 3215 break; 3216 default: 3217 return 0; 3218 } 3219 3220 return flags; 3221 } 3222 3223 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei, 3224 u8 prop) 3225 { 3226 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO) 3227 return &dev->resource[bei]; 3228 #ifdef CONFIG_PCI_IOV 3229 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 && 3230 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH)) 3231 return &dev->resource[PCI_IOV_RESOURCES + 3232 bei - PCI_EA_BEI_VF_BAR0]; 3233 #endif 3234 else if (bei == PCI_EA_BEI_ROM) 3235 return &dev->resource[PCI_ROM_RESOURCE]; 3236 else 3237 return NULL; 3238 } 3239 3240 /* Read an Enhanced Allocation (EA) entry */ 3241 static int pci_ea_read(struct pci_dev *dev, int offset) 3242 { 3243 struct resource *res; 3244 int ent_size, ent_offset = offset; 3245 resource_size_t start, end; 3246 unsigned long flags; 3247 u32 dw0, bei, base, max_offset; 3248 u8 prop; 3249 bool support_64 = (sizeof(resource_size_t) >= 8); 3250 3251 pci_read_config_dword(dev, ent_offset, &dw0); 3252 ent_offset += 4; 3253 3254 /* Entry size field indicates DWORDs after 1st */ 3255 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2; 3256 3257 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */ 3258 goto out; 3259 3260 bei = (dw0 & PCI_EA_BEI) >> 4; 3261 prop = (dw0 & PCI_EA_PP) >> 8; 3262 3263 /* 3264 * If the Property is in the reserved range, try the Secondary 3265 * Property instead. 3266 */ 3267 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED) 3268 prop = (dw0 & PCI_EA_SP) >> 16; 3269 if (prop > PCI_EA_P_BRIDGE_IO) 3270 goto out; 3271 3272 res = pci_ea_get_resource(dev, bei, prop); 3273 if (!res) { 3274 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei); 3275 goto out; 3276 } 3277 3278 flags = pci_ea_flags(dev, prop); 3279 if (!flags) { 3280 pci_err(dev, "Unsupported EA properties: %#x\n", prop); 3281 goto out; 3282 } 3283 3284 /* Read Base */ 3285 pci_read_config_dword(dev, ent_offset, &base); 3286 start = (base & PCI_EA_FIELD_MASK); 3287 ent_offset += 4; 3288 3289 /* Read MaxOffset */ 3290 pci_read_config_dword(dev, ent_offset, &max_offset); 3291 ent_offset += 4; 3292 3293 /* Read Base MSBs (if 64-bit entry) */ 3294 if (base & PCI_EA_IS_64) { 3295 u32 base_upper; 3296 3297 pci_read_config_dword(dev, ent_offset, &base_upper); 3298 ent_offset += 4; 3299 3300 flags |= IORESOURCE_MEM_64; 3301 3302 /* entry starts above 32-bit boundary, can't use */ 3303 if (!support_64 && base_upper) 3304 goto out; 3305 3306 if (support_64) 3307 start |= ((u64)base_upper << 32); 3308 } 3309 3310 end = start + (max_offset | 0x03); 3311 3312 /* Read MaxOffset MSBs (if 64-bit entry) */ 3313 if (max_offset & PCI_EA_IS_64) { 3314 u32 max_offset_upper; 3315 3316 pci_read_config_dword(dev, ent_offset, &max_offset_upper); 3317 ent_offset += 4; 3318 3319 flags |= IORESOURCE_MEM_64; 3320 3321 /* entry too big, can't use */ 3322 if (!support_64 && max_offset_upper) 3323 goto out; 3324 3325 if (support_64) 3326 end += ((u64)max_offset_upper << 32); 3327 } 3328 3329 if (end < start) { 3330 pci_err(dev, "EA Entry crosses address boundary\n"); 3331 goto out; 3332 } 3333 3334 if (ent_size != ent_offset - offset) { 3335 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n", 3336 ent_size, ent_offset - offset); 3337 goto out; 3338 } 3339 3340 res->name = pci_name(dev); 3341 res->start = start; 3342 res->end = end; 3343 res->flags = flags; 3344 3345 if (bei <= PCI_EA_BEI_BAR5) 3346 pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 3347 bei, res, prop); 3348 else if (bei == PCI_EA_BEI_ROM) 3349 pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n", 3350 res, prop); 3351 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5) 3352 pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 3353 bei - PCI_EA_BEI_VF_BAR0, res, prop); 3354 else 3355 pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n", 3356 bei, res, prop); 3357 3358 out: 3359 return offset + ent_size; 3360 } 3361 3362 /* Enhanced Allocation Initialization */ 3363 void pci_ea_init(struct pci_dev *dev) 3364 { 3365 int ea; 3366 u8 num_ent; 3367 int offset; 3368 int i; 3369 3370 /* find PCI EA capability in list */ 3371 ea = pci_find_capability(dev, PCI_CAP_ID_EA); 3372 if (!ea) 3373 return; 3374 3375 /* determine the number of entries */ 3376 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT, 3377 &num_ent); 3378 num_ent &= PCI_EA_NUM_ENT_MASK; 3379 3380 offset = ea + PCI_EA_FIRST_ENT; 3381 3382 /* Skip DWORD 2 for type 1 functions */ 3383 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) 3384 offset += 4; 3385 3386 /* parse each EA entry */ 3387 for (i = 0; i < num_ent; ++i) 3388 offset = pci_ea_read(dev, offset); 3389 } 3390 3391 static void pci_add_saved_cap(struct pci_dev *pci_dev, 3392 struct pci_cap_saved_state *new_cap) 3393 { 3394 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space); 3395 } 3396 3397 /** 3398 * _pci_add_cap_save_buffer - allocate buffer for saving given 3399 * capability registers 3400 * @dev: the PCI device 3401 * @cap: the capability to allocate the buffer for 3402 * @extended: Standard or Extended capability ID 3403 * @size: requested size of the buffer 3404 */ 3405 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap, 3406 bool extended, unsigned int size) 3407 { 3408 int pos; 3409 struct pci_cap_saved_state *save_state; 3410 3411 if (extended) 3412 pos = pci_find_ext_capability(dev, cap); 3413 else 3414 pos = pci_find_capability(dev, cap); 3415 3416 if (!pos) 3417 return 0; 3418 3419 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL); 3420 if (!save_state) 3421 return -ENOMEM; 3422 3423 save_state->cap.cap_nr = cap; 3424 save_state->cap.cap_extended = extended; 3425 save_state->cap.size = size; 3426 pci_add_saved_cap(dev, save_state); 3427 3428 return 0; 3429 } 3430 3431 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size) 3432 { 3433 return _pci_add_cap_save_buffer(dev, cap, false, size); 3434 } 3435 3436 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size) 3437 { 3438 return _pci_add_cap_save_buffer(dev, cap, true, size); 3439 } 3440 3441 /** 3442 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities 3443 * @dev: the PCI device 3444 */ 3445 void pci_allocate_cap_save_buffers(struct pci_dev *dev) 3446 { 3447 int error; 3448 3449 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP, 3450 PCI_EXP_SAVE_REGS * sizeof(u16)); 3451 if (error) 3452 pci_err(dev, "unable to preallocate PCI Express save buffer\n"); 3453 3454 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16)); 3455 if (error) 3456 pci_err(dev, "unable to preallocate PCI-X save buffer\n"); 3457 3458 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR, 3459 2 * sizeof(u16)); 3460 if (error) 3461 pci_err(dev, "unable to allocate suspend buffer for LTR\n"); 3462 3463 pci_allocate_vc_save_buffers(dev); 3464 } 3465 3466 void pci_free_cap_save_buffers(struct pci_dev *dev) 3467 { 3468 struct pci_cap_saved_state *tmp; 3469 struct hlist_node *n; 3470 3471 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next) 3472 kfree(tmp); 3473 } 3474 3475 /** 3476 * pci_configure_ari - enable or disable ARI forwarding 3477 * @dev: the PCI device 3478 * 3479 * If @dev and its upstream bridge both support ARI, enable ARI in the 3480 * bridge. Otherwise, disable ARI in the bridge. 3481 */ 3482 void pci_configure_ari(struct pci_dev *dev) 3483 { 3484 u32 cap; 3485 struct pci_dev *bridge; 3486 3487 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn) 3488 return; 3489 3490 bridge = dev->bus->self; 3491 if (!bridge) 3492 return; 3493 3494 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3495 if (!(cap & PCI_EXP_DEVCAP2_ARI)) 3496 return; 3497 3498 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) { 3499 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, 3500 PCI_EXP_DEVCTL2_ARI); 3501 bridge->ari_enabled = 1; 3502 } else { 3503 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2, 3504 PCI_EXP_DEVCTL2_ARI); 3505 bridge->ari_enabled = 0; 3506 } 3507 } 3508 3509 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags) 3510 { 3511 int pos; 3512 u16 cap, ctrl; 3513 3514 pos = pdev->acs_cap; 3515 if (!pos) 3516 return false; 3517 3518 /* 3519 * Except for egress control, capabilities are either required 3520 * or only required if controllable. Features missing from the 3521 * capability field can therefore be assumed as hard-wired enabled. 3522 */ 3523 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap); 3524 acs_flags &= (cap | PCI_ACS_EC); 3525 3526 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl); 3527 return (ctrl & acs_flags) == acs_flags; 3528 } 3529 3530 /** 3531 * pci_acs_enabled - test ACS against required flags for a given device 3532 * @pdev: device to test 3533 * @acs_flags: required PCI ACS flags 3534 * 3535 * Return true if the device supports the provided flags. Automatically 3536 * filters out flags that are not implemented on multifunction devices. 3537 * 3538 * Note that this interface checks the effective ACS capabilities of the 3539 * device rather than the actual capabilities. For instance, most single 3540 * function endpoints are not required to support ACS because they have no 3541 * opportunity for peer-to-peer access. We therefore return 'true' 3542 * regardless of whether the device exposes an ACS capability. This makes 3543 * it much easier for callers of this function to ignore the actual type 3544 * or topology of the device when testing ACS support. 3545 */ 3546 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags) 3547 { 3548 int ret; 3549 3550 ret = pci_dev_specific_acs_enabled(pdev, acs_flags); 3551 if (ret >= 0) 3552 return ret > 0; 3553 3554 /* 3555 * Conventional PCI and PCI-X devices never support ACS, either 3556 * effectively or actually. The shared bus topology implies that 3557 * any device on the bus can receive or snoop DMA. 3558 */ 3559 if (!pci_is_pcie(pdev)) 3560 return false; 3561 3562 switch (pci_pcie_type(pdev)) { 3563 /* 3564 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec, 3565 * but since their primary interface is PCI/X, we conservatively 3566 * handle them as we would a non-PCIe device. 3567 */ 3568 case PCI_EXP_TYPE_PCIE_BRIDGE: 3569 /* 3570 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never 3571 * applicable... must never implement an ACS Extended Capability...". 3572 * This seems arbitrary, but we take a conservative interpretation 3573 * of this statement. 3574 */ 3575 case PCI_EXP_TYPE_PCI_BRIDGE: 3576 case PCI_EXP_TYPE_RC_EC: 3577 return false; 3578 /* 3579 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should 3580 * implement ACS in order to indicate their peer-to-peer capabilities, 3581 * regardless of whether they are single- or multi-function devices. 3582 */ 3583 case PCI_EXP_TYPE_DOWNSTREAM: 3584 case PCI_EXP_TYPE_ROOT_PORT: 3585 return pci_acs_flags_enabled(pdev, acs_flags); 3586 /* 3587 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be 3588 * implemented by the remaining PCIe types to indicate peer-to-peer 3589 * capabilities, but only when they are part of a multifunction 3590 * device. The footnote for section 6.12 indicates the specific 3591 * PCIe types included here. 3592 */ 3593 case PCI_EXP_TYPE_ENDPOINT: 3594 case PCI_EXP_TYPE_UPSTREAM: 3595 case PCI_EXP_TYPE_LEG_END: 3596 case PCI_EXP_TYPE_RC_END: 3597 if (!pdev->multifunction) 3598 break; 3599 3600 return pci_acs_flags_enabled(pdev, acs_flags); 3601 } 3602 3603 /* 3604 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable 3605 * to single function devices with the exception of downstream ports. 3606 */ 3607 return true; 3608 } 3609 3610 /** 3611 * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy 3612 * @start: starting downstream device 3613 * @end: ending upstream device or NULL to search to the root bus 3614 * @acs_flags: required flags 3615 * 3616 * Walk up a device tree from start to end testing PCI ACS support. If 3617 * any step along the way does not support the required flags, return false. 3618 */ 3619 bool pci_acs_path_enabled(struct pci_dev *start, 3620 struct pci_dev *end, u16 acs_flags) 3621 { 3622 struct pci_dev *pdev, *parent = start; 3623 3624 do { 3625 pdev = parent; 3626 3627 if (!pci_acs_enabled(pdev, acs_flags)) 3628 return false; 3629 3630 if (pci_is_root_bus(pdev->bus)) 3631 return (end == NULL); 3632 3633 parent = pdev->bus->self; 3634 } while (pdev != end); 3635 3636 return true; 3637 } 3638 3639 /** 3640 * pci_acs_init - Initialize ACS if hardware supports it 3641 * @dev: the PCI device 3642 */ 3643 void pci_acs_init(struct pci_dev *dev) 3644 { 3645 dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS); 3646 3647 /* 3648 * Attempt to enable ACS regardless of capability because some Root 3649 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have 3650 * the standard ACS capability but still support ACS via those 3651 * quirks. 3652 */ 3653 pci_enable_acs(dev); 3654 } 3655 3656 /** 3657 * pci_rebar_find_pos - find position of resize ctrl reg for BAR 3658 * @pdev: PCI device 3659 * @bar: BAR to find 3660 * 3661 * Helper to find the position of the ctrl register for a BAR. 3662 * Returns -ENOTSUPP if resizable BARs are not supported at all. 3663 * Returns -ENOENT if no ctrl register for the BAR could be found. 3664 */ 3665 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar) 3666 { 3667 unsigned int pos, nbars, i; 3668 u32 ctrl; 3669 3670 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 3671 if (!pos) 3672 return -ENOTSUPP; 3673 3674 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3675 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >> 3676 PCI_REBAR_CTRL_NBAR_SHIFT; 3677 3678 for (i = 0; i < nbars; i++, pos += 8) { 3679 int bar_idx; 3680 3681 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3682 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX; 3683 if (bar_idx == bar) 3684 return pos; 3685 } 3686 3687 return -ENOENT; 3688 } 3689 3690 /** 3691 * pci_rebar_get_possible_sizes - get possible sizes for BAR 3692 * @pdev: PCI device 3693 * @bar: BAR to query 3694 * 3695 * Get the possible sizes of a resizable BAR as bitmask defined in the spec 3696 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable. 3697 */ 3698 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar) 3699 { 3700 int pos; 3701 u32 cap; 3702 3703 pos = pci_rebar_find_pos(pdev, bar); 3704 if (pos < 0) 3705 return 0; 3706 3707 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap); 3708 cap &= PCI_REBAR_CAP_SIZES; 3709 3710 /* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */ 3711 if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f && 3712 bar == 0 && cap == 0x7000) 3713 cap = 0x3f000; 3714 3715 return cap >> 4; 3716 } 3717 EXPORT_SYMBOL(pci_rebar_get_possible_sizes); 3718 3719 /** 3720 * pci_rebar_get_current_size - get the current size of a BAR 3721 * @pdev: PCI device 3722 * @bar: BAR to set size to 3723 * 3724 * Read the size of a BAR from the resizable BAR config. 3725 * Returns size if found or negative error code. 3726 */ 3727 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar) 3728 { 3729 int pos; 3730 u32 ctrl; 3731 3732 pos = pci_rebar_find_pos(pdev, bar); 3733 if (pos < 0) 3734 return pos; 3735 3736 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3737 return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT; 3738 } 3739 3740 /** 3741 * pci_rebar_set_size - set a new size for a BAR 3742 * @pdev: PCI device 3743 * @bar: BAR to set size to 3744 * @size: new size as defined in the spec (0=1MB, 19=512GB) 3745 * 3746 * Set the new size of a BAR as defined in the spec. 3747 * Returns zero if resizing was successful, error code otherwise. 3748 */ 3749 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size) 3750 { 3751 int pos; 3752 u32 ctrl; 3753 3754 pos = pci_rebar_find_pos(pdev, bar); 3755 if (pos < 0) 3756 return pos; 3757 3758 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3759 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 3760 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT; 3761 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 3762 return 0; 3763 } 3764 3765 /** 3766 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port 3767 * @dev: the PCI device 3768 * @cap_mask: mask of desired AtomicOp sizes, including one or more of: 3769 * PCI_EXP_DEVCAP2_ATOMIC_COMP32 3770 * PCI_EXP_DEVCAP2_ATOMIC_COMP64 3771 * PCI_EXP_DEVCAP2_ATOMIC_COMP128 3772 * 3773 * Return 0 if all upstream bridges support AtomicOp routing, egress 3774 * blocking is disabled on all upstream ports, and the root port supports 3775 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit 3776 * AtomicOp completion), or negative otherwise. 3777 */ 3778 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask) 3779 { 3780 struct pci_bus *bus = dev->bus; 3781 struct pci_dev *bridge; 3782 u32 cap, ctl2; 3783 3784 /* 3785 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit 3786 * in Device Control 2 is reserved in VFs and the PF value applies 3787 * to all associated VFs. 3788 */ 3789 if (dev->is_virtfn) 3790 return -EINVAL; 3791 3792 if (!pci_is_pcie(dev)) 3793 return -EINVAL; 3794 3795 /* 3796 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be 3797 * AtomicOp requesters. For now, we only support endpoints as 3798 * requesters and root ports as completers. No endpoints as 3799 * completers, and no peer-to-peer. 3800 */ 3801 3802 switch (pci_pcie_type(dev)) { 3803 case PCI_EXP_TYPE_ENDPOINT: 3804 case PCI_EXP_TYPE_LEG_END: 3805 case PCI_EXP_TYPE_RC_END: 3806 break; 3807 default: 3808 return -EINVAL; 3809 } 3810 3811 while (bus->parent) { 3812 bridge = bus->self; 3813 3814 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3815 3816 switch (pci_pcie_type(bridge)) { 3817 /* Ensure switch ports support AtomicOp routing */ 3818 case PCI_EXP_TYPE_UPSTREAM: 3819 case PCI_EXP_TYPE_DOWNSTREAM: 3820 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE)) 3821 return -EINVAL; 3822 break; 3823 3824 /* Ensure root port supports all the sizes we care about */ 3825 case PCI_EXP_TYPE_ROOT_PORT: 3826 if ((cap & cap_mask) != cap_mask) 3827 return -EINVAL; 3828 break; 3829 } 3830 3831 /* Ensure upstream ports don't block AtomicOps on egress */ 3832 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) { 3833 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, 3834 &ctl2); 3835 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK) 3836 return -EINVAL; 3837 } 3838 3839 bus = bus->parent; 3840 } 3841 3842 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2, 3843 PCI_EXP_DEVCTL2_ATOMIC_REQ); 3844 return 0; 3845 } 3846 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root); 3847 3848 /** 3849 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge 3850 * @dev: the PCI device 3851 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD) 3852 * 3853 * Perform INTx swizzling for a device behind one level of bridge. This is 3854 * required by section 9.1 of the PCI-to-PCI bridge specification for devices 3855 * behind bridges on add-in cards. For devices with ARI enabled, the slot 3856 * number is always 0 (see the Implementation Note in section 2.2.8.1 of 3857 * the PCI Express Base Specification, Revision 2.1) 3858 */ 3859 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin) 3860 { 3861 int slot; 3862 3863 if (pci_ari_enabled(dev->bus)) 3864 slot = 0; 3865 else 3866 slot = PCI_SLOT(dev->devfn); 3867 3868 return (((pin - 1) + slot) % 4) + 1; 3869 } 3870 3871 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge) 3872 { 3873 u8 pin; 3874 3875 pin = dev->pin; 3876 if (!pin) 3877 return -1; 3878 3879 while (!pci_is_root_bus(dev->bus)) { 3880 pin = pci_swizzle_interrupt_pin(dev, pin); 3881 dev = dev->bus->self; 3882 } 3883 *bridge = dev; 3884 return pin; 3885 } 3886 3887 /** 3888 * pci_common_swizzle - swizzle INTx all the way to root bridge 3889 * @dev: the PCI device 3890 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD) 3891 * 3892 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI 3893 * bridges all the way up to a PCI root bus. 3894 */ 3895 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp) 3896 { 3897 u8 pin = *pinp; 3898 3899 while (!pci_is_root_bus(dev->bus)) { 3900 pin = pci_swizzle_interrupt_pin(dev, pin); 3901 dev = dev->bus->self; 3902 } 3903 *pinp = pin; 3904 return PCI_SLOT(dev->devfn); 3905 } 3906 EXPORT_SYMBOL_GPL(pci_common_swizzle); 3907 3908 /** 3909 * pci_release_region - Release a PCI bar 3910 * @pdev: PCI device whose resources were previously reserved by 3911 * pci_request_region() 3912 * @bar: BAR to release 3913 * 3914 * Releases the PCI I/O and memory resources previously reserved by a 3915 * successful call to pci_request_region(). Call this function only 3916 * after all use of the PCI regions has ceased. 3917 */ 3918 void pci_release_region(struct pci_dev *pdev, int bar) 3919 { 3920 struct pci_devres *dr; 3921 3922 if (pci_resource_len(pdev, bar) == 0) 3923 return; 3924 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) 3925 release_region(pci_resource_start(pdev, bar), 3926 pci_resource_len(pdev, bar)); 3927 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) 3928 release_mem_region(pci_resource_start(pdev, bar), 3929 pci_resource_len(pdev, bar)); 3930 3931 dr = find_pci_dr(pdev); 3932 if (dr) 3933 dr->region_mask &= ~(1 << bar); 3934 } 3935 EXPORT_SYMBOL(pci_release_region); 3936 3937 /** 3938 * __pci_request_region - Reserved PCI I/O and memory resource 3939 * @pdev: PCI device whose resources are to be reserved 3940 * @bar: BAR to be reserved 3941 * @res_name: Name to be associated with resource. 3942 * @exclusive: whether the region access is exclusive or not 3943 * 3944 * Mark the PCI region associated with PCI device @pdev BAR @bar as 3945 * being reserved by owner @res_name. Do not access any 3946 * address inside the PCI regions unless this call returns 3947 * successfully. 3948 * 3949 * If @exclusive is set, then the region is marked so that userspace 3950 * is explicitly not allowed to map the resource via /dev/mem or 3951 * sysfs MMIO access. 3952 * 3953 * Returns 0 on success, or %EBUSY on error. A warning 3954 * message is also printed on failure. 3955 */ 3956 static int __pci_request_region(struct pci_dev *pdev, int bar, 3957 const char *res_name, int exclusive) 3958 { 3959 struct pci_devres *dr; 3960 3961 if (pci_resource_len(pdev, bar) == 0) 3962 return 0; 3963 3964 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) { 3965 if (!request_region(pci_resource_start(pdev, bar), 3966 pci_resource_len(pdev, bar), res_name)) 3967 goto err_out; 3968 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) { 3969 if (!__request_mem_region(pci_resource_start(pdev, bar), 3970 pci_resource_len(pdev, bar), res_name, 3971 exclusive)) 3972 goto err_out; 3973 } 3974 3975 dr = find_pci_dr(pdev); 3976 if (dr) 3977 dr->region_mask |= 1 << bar; 3978 3979 return 0; 3980 3981 err_out: 3982 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar, 3983 &pdev->resource[bar]); 3984 return -EBUSY; 3985 } 3986 3987 /** 3988 * pci_request_region - Reserve PCI I/O and memory resource 3989 * @pdev: PCI device whose resources are to be reserved 3990 * @bar: BAR to be reserved 3991 * @res_name: Name to be associated with resource 3992 * 3993 * Mark the PCI region associated with PCI device @pdev BAR @bar as 3994 * being reserved by owner @res_name. Do not access any 3995 * address inside the PCI regions unless this call returns 3996 * successfully. 3997 * 3998 * Returns 0 on success, or %EBUSY on error. A warning 3999 * message is also printed on failure. 4000 */ 4001 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name) 4002 { 4003 return __pci_request_region(pdev, bar, res_name, 0); 4004 } 4005 EXPORT_SYMBOL(pci_request_region); 4006 4007 /** 4008 * pci_release_selected_regions - Release selected PCI I/O and memory resources 4009 * @pdev: PCI device whose resources were previously reserved 4010 * @bars: Bitmask of BARs to be released 4011 * 4012 * Release selected PCI I/O and memory resources previously reserved. 4013 * Call this function only after all use of the PCI regions has ceased. 4014 */ 4015 void pci_release_selected_regions(struct pci_dev *pdev, int bars) 4016 { 4017 int i; 4018 4019 for (i = 0; i < PCI_STD_NUM_BARS; i++) 4020 if (bars & (1 << i)) 4021 pci_release_region(pdev, i); 4022 } 4023 EXPORT_SYMBOL(pci_release_selected_regions); 4024 4025 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars, 4026 const char *res_name, int excl) 4027 { 4028 int i; 4029 4030 for (i = 0; i < PCI_STD_NUM_BARS; i++) 4031 if (bars & (1 << i)) 4032 if (__pci_request_region(pdev, i, res_name, excl)) 4033 goto err_out; 4034 return 0; 4035 4036 err_out: 4037 while (--i >= 0) 4038 if (bars & (1 << i)) 4039 pci_release_region(pdev, i); 4040 4041 return -EBUSY; 4042 } 4043 4044 4045 /** 4046 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources 4047 * @pdev: PCI device whose resources are to be reserved 4048 * @bars: Bitmask of BARs to be requested 4049 * @res_name: Name to be associated with resource 4050 */ 4051 int pci_request_selected_regions(struct pci_dev *pdev, int bars, 4052 const char *res_name) 4053 { 4054 return __pci_request_selected_regions(pdev, bars, res_name, 0); 4055 } 4056 EXPORT_SYMBOL(pci_request_selected_regions); 4057 4058 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars, 4059 const char *res_name) 4060 { 4061 return __pci_request_selected_regions(pdev, bars, res_name, 4062 IORESOURCE_EXCLUSIVE); 4063 } 4064 EXPORT_SYMBOL(pci_request_selected_regions_exclusive); 4065 4066 /** 4067 * pci_release_regions - Release reserved PCI I/O and memory resources 4068 * @pdev: PCI device whose resources were previously reserved by 4069 * pci_request_regions() 4070 * 4071 * Releases all PCI I/O and memory resources previously reserved by a 4072 * successful call to pci_request_regions(). Call this function only 4073 * after all use of the PCI regions has ceased. 4074 */ 4075 4076 void pci_release_regions(struct pci_dev *pdev) 4077 { 4078 pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1); 4079 } 4080 EXPORT_SYMBOL(pci_release_regions); 4081 4082 /** 4083 * pci_request_regions - Reserve PCI I/O and memory resources 4084 * @pdev: PCI device whose resources are to be reserved 4085 * @res_name: Name to be associated with resource. 4086 * 4087 * Mark all PCI regions associated with PCI device @pdev as 4088 * being reserved by owner @res_name. Do not access any 4089 * address inside the PCI regions unless this call returns 4090 * successfully. 4091 * 4092 * Returns 0 on success, or %EBUSY on error. A warning 4093 * message is also printed on failure. 4094 */ 4095 int pci_request_regions(struct pci_dev *pdev, const char *res_name) 4096 { 4097 return pci_request_selected_regions(pdev, 4098 ((1 << PCI_STD_NUM_BARS) - 1), res_name); 4099 } 4100 EXPORT_SYMBOL(pci_request_regions); 4101 4102 /** 4103 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources 4104 * @pdev: PCI device whose resources are to be reserved 4105 * @res_name: Name to be associated with resource. 4106 * 4107 * Mark all PCI regions associated with PCI device @pdev as being reserved 4108 * by owner @res_name. Do not access any address inside the PCI regions 4109 * unless this call returns successfully. 4110 * 4111 * pci_request_regions_exclusive() will mark the region so that /dev/mem 4112 * and the sysfs MMIO access will not be allowed. 4113 * 4114 * Returns 0 on success, or %EBUSY on error. A warning message is also 4115 * printed on failure. 4116 */ 4117 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name) 4118 { 4119 return pci_request_selected_regions_exclusive(pdev, 4120 ((1 << PCI_STD_NUM_BARS) - 1), res_name); 4121 } 4122 EXPORT_SYMBOL(pci_request_regions_exclusive); 4123 4124 /* 4125 * Record the PCI IO range (expressed as CPU physical address + size). 4126 * Return a negative value if an error has occurred, zero otherwise 4127 */ 4128 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr, 4129 resource_size_t size) 4130 { 4131 int ret = 0; 4132 #ifdef PCI_IOBASE 4133 struct logic_pio_hwaddr *range; 4134 4135 if (!size || addr + size < addr) 4136 return -EINVAL; 4137 4138 range = kzalloc(sizeof(*range), GFP_ATOMIC); 4139 if (!range) 4140 return -ENOMEM; 4141 4142 range->fwnode = fwnode; 4143 range->size = size; 4144 range->hw_start = addr; 4145 range->flags = LOGIC_PIO_CPU_MMIO; 4146 4147 ret = logic_pio_register_range(range); 4148 if (ret) 4149 kfree(range); 4150 4151 /* Ignore duplicates due to deferred probing */ 4152 if (ret == -EEXIST) 4153 ret = 0; 4154 #endif 4155 4156 return ret; 4157 } 4158 4159 phys_addr_t pci_pio_to_address(unsigned long pio) 4160 { 4161 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR; 4162 4163 #ifdef PCI_IOBASE 4164 if (pio >= MMIO_UPPER_LIMIT) 4165 return address; 4166 4167 address = logic_pio_to_hwaddr(pio); 4168 #endif 4169 4170 return address; 4171 } 4172 EXPORT_SYMBOL_GPL(pci_pio_to_address); 4173 4174 unsigned long __weak pci_address_to_pio(phys_addr_t address) 4175 { 4176 #ifdef PCI_IOBASE 4177 return logic_pio_trans_cpuaddr(address); 4178 #else 4179 if (address > IO_SPACE_LIMIT) 4180 return (unsigned long)-1; 4181 4182 return (unsigned long) address; 4183 #endif 4184 } 4185 4186 /** 4187 * pci_remap_iospace - Remap the memory mapped I/O space 4188 * @res: Resource describing the I/O space 4189 * @phys_addr: physical address of range to be mapped 4190 * 4191 * Remap the memory mapped I/O space described by the @res and the CPU 4192 * physical address @phys_addr into virtual address space. Only 4193 * architectures that have memory mapped IO functions defined (and the 4194 * PCI_IOBASE value defined) should call this function. 4195 */ 4196 #ifndef pci_remap_iospace 4197 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr) 4198 { 4199 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 4200 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 4201 4202 if (!(res->flags & IORESOURCE_IO)) 4203 return -EINVAL; 4204 4205 if (res->end > IO_SPACE_LIMIT) 4206 return -EINVAL; 4207 4208 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr, 4209 pgprot_device(PAGE_KERNEL)); 4210 #else 4211 /* 4212 * This architecture does not have memory mapped I/O space, 4213 * so this function should never be called 4214 */ 4215 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n"); 4216 return -ENODEV; 4217 #endif 4218 } 4219 EXPORT_SYMBOL(pci_remap_iospace); 4220 #endif 4221 4222 /** 4223 * pci_unmap_iospace - Unmap the memory mapped I/O space 4224 * @res: resource to be unmapped 4225 * 4226 * Unmap the CPU virtual address @res from virtual address space. Only 4227 * architectures that have memory mapped IO functions defined (and the 4228 * PCI_IOBASE value defined) should call this function. 4229 */ 4230 void pci_unmap_iospace(struct resource *res) 4231 { 4232 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 4233 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 4234 4235 vunmap_range(vaddr, vaddr + resource_size(res)); 4236 #endif 4237 } 4238 EXPORT_SYMBOL(pci_unmap_iospace); 4239 4240 static void devm_pci_unmap_iospace(struct device *dev, void *ptr) 4241 { 4242 struct resource **res = ptr; 4243 4244 pci_unmap_iospace(*res); 4245 } 4246 4247 /** 4248 * devm_pci_remap_iospace - Managed pci_remap_iospace() 4249 * @dev: Generic device to remap IO address for 4250 * @res: Resource describing the I/O space 4251 * @phys_addr: physical address of range to be mapped 4252 * 4253 * Managed pci_remap_iospace(). Map is automatically unmapped on driver 4254 * detach. 4255 */ 4256 int devm_pci_remap_iospace(struct device *dev, const struct resource *res, 4257 phys_addr_t phys_addr) 4258 { 4259 const struct resource **ptr; 4260 int error; 4261 4262 ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL); 4263 if (!ptr) 4264 return -ENOMEM; 4265 4266 error = pci_remap_iospace(res, phys_addr); 4267 if (error) { 4268 devres_free(ptr); 4269 } else { 4270 *ptr = res; 4271 devres_add(dev, ptr); 4272 } 4273 4274 return error; 4275 } 4276 EXPORT_SYMBOL(devm_pci_remap_iospace); 4277 4278 /** 4279 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace() 4280 * @dev: Generic device to remap IO address for 4281 * @offset: Resource address to map 4282 * @size: Size of map 4283 * 4284 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver 4285 * detach. 4286 */ 4287 void __iomem *devm_pci_remap_cfgspace(struct device *dev, 4288 resource_size_t offset, 4289 resource_size_t size) 4290 { 4291 void __iomem **ptr, *addr; 4292 4293 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL); 4294 if (!ptr) 4295 return NULL; 4296 4297 addr = pci_remap_cfgspace(offset, size); 4298 if (addr) { 4299 *ptr = addr; 4300 devres_add(dev, ptr); 4301 } else 4302 devres_free(ptr); 4303 4304 return addr; 4305 } 4306 EXPORT_SYMBOL(devm_pci_remap_cfgspace); 4307 4308 /** 4309 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource 4310 * @dev: generic device to handle the resource for 4311 * @res: configuration space resource to be handled 4312 * 4313 * Checks that a resource is a valid memory region, requests the memory 4314 * region and ioremaps with pci_remap_cfgspace() API that ensures the 4315 * proper PCI configuration space memory attributes are guaranteed. 4316 * 4317 * All operations are managed and will be undone on driver detach. 4318 * 4319 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code 4320 * on failure. Usage example:: 4321 * 4322 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 4323 * base = devm_pci_remap_cfg_resource(&pdev->dev, res); 4324 * if (IS_ERR(base)) 4325 * return PTR_ERR(base); 4326 */ 4327 void __iomem *devm_pci_remap_cfg_resource(struct device *dev, 4328 struct resource *res) 4329 { 4330 resource_size_t size; 4331 const char *name; 4332 void __iomem *dest_ptr; 4333 4334 BUG_ON(!dev); 4335 4336 if (!res || resource_type(res) != IORESOURCE_MEM) { 4337 dev_err(dev, "invalid resource\n"); 4338 return IOMEM_ERR_PTR(-EINVAL); 4339 } 4340 4341 size = resource_size(res); 4342 4343 if (res->name) 4344 name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev), 4345 res->name); 4346 else 4347 name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL); 4348 if (!name) 4349 return IOMEM_ERR_PTR(-ENOMEM); 4350 4351 if (!devm_request_mem_region(dev, res->start, size, name)) { 4352 dev_err(dev, "can't request region for resource %pR\n", res); 4353 return IOMEM_ERR_PTR(-EBUSY); 4354 } 4355 4356 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size); 4357 if (!dest_ptr) { 4358 dev_err(dev, "ioremap failed for resource %pR\n", res); 4359 devm_release_mem_region(dev, res->start, size); 4360 dest_ptr = IOMEM_ERR_PTR(-ENOMEM); 4361 } 4362 4363 return dest_ptr; 4364 } 4365 EXPORT_SYMBOL(devm_pci_remap_cfg_resource); 4366 4367 static void __pci_set_master(struct pci_dev *dev, bool enable) 4368 { 4369 u16 old_cmd, cmd; 4370 4371 pci_read_config_word(dev, PCI_COMMAND, &old_cmd); 4372 if (enable) 4373 cmd = old_cmd | PCI_COMMAND_MASTER; 4374 else 4375 cmd = old_cmd & ~PCI_COMMAND_MASTER; 4376 if (cmd != old_cmd) { 4377 pci_dbg(dev, "%s bus mastering\n", 4378 enable ? "enabling" : "disabling"); 4379 pci_write_config_word(dev, PCI_COMMAND, cmd); 4380 } 4381 dev->is_busmaster = enable; 4382 } 4383 4384 /** 4385 * pcibios_setup - process "pci=" kernel boot arguments 4386 * @str: string used to pass in "pci=" kernel boot arguments 4387 * 4388 * Process kernel boot arguments. This is the default implementation. 4389 * Architecture specific implementations can override this as necessary. 4390 */ 4391 char * __weak __init pcibios_setup(char *str) 4392 { 4393 return str; 4394 } 4395 4396 /** 4397 * pcibios_set_master - enable PCI bus-mastering for device dev 4398 * @dev: the PCI device to enable 4399 * 4400 * Enables PCI bus-mastering for the device. This is the default 4401 * implementation. Architecture specific implementations can override 4402 * this if necessary. 4403 */ 4404 void __weak pcibios_set_master(struct pci_dev *dev) 4405 { 4406 u8 lat; 4407 4408 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */ 4409 if (pci_is_pcie(dev)) 4410 return; 4411 4412 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat); 4413 if (lat < 16) 4414 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency; 4415 else if (lat > pcibios_max_latency) 4416 lat = pcibios_max_latency; 4417 else 4418 return; 4419 4420 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat); 4421 } 4422 4423 /** 4424 * pci_set_master - enables bus-mastering for device dev 4425 * @dev: the PCI device to enable 4426 * 4427 * Enables bus-mastering on the device and calls pcibios_set_master() 4428 * to do the needed arch specific settings. 4429 */ 4430 void pci_set_master(struct pci_dev *dev) 4431 { 4432 __pci_set_master(dev, true); 4433 pcibios_set_master(dev); 4434 } 4435 EXPORT_SYMBOL(pci_set_master); 4436 4437 /** 4438 * pci_clear_master - disables bus-mastering for device dev 4439 * @dev: the PCI device to disable 4440 */ 4441 void pci_clear_master(struct pci_dev *dev) 4442 { 4443 __pci_set_master(dev, false); 4444 } 4445 EXPORT_SYMBOL(pci_clear_master); 4446 4447 /** 4448 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed 4449 * @dev: the PCI device for which MWI is to be enabled 4450 * 4451 * Helper function for pci_set_mwi. 4452 * Originally copied from drivers/net/acenic.c. 4453 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. 4454 * 4455 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4456 */ 4457 int pci_set_cacheline_size(struct pci_dev *dev) 4458 { 4459 u8 cacheline_size; 4460 4461 if (!pci_cache_line_size) 4462 return -EINVAL; 4463 4464 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be 4465 equal to or multiple of the right value. */ 4466 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4467 if (cacheline_size >= pci_cache_line_size && 4468 (cacheline_size % pci_cache_line_size) == 0) 4469 return 0; 4470 4471 /* Write the correct value. */ 4472 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size); 4473 /* Read it back. */ 4474 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4475 if (cacheline_size == pci_cache_line_size) 4476 return 0; 4477 4478 pci_dbg(dev, "cache line size of %d is not supported\n", 4479 pci_cache_line_size << 2); 4480 4481 return -EINVAL; 4482 } 4483 EXPORT_SYMBOL_GPL(pci_set_cacheline_size); 4484 4485 /** 4486 * pci_set_mwi - enables memory-write-invalidate PCI transaction 4487 * @dev: the PCI device for which MWI is enabled 4488 * 4489 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4490 * 4491 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4492 */ 4493 int pci_set_mwi(struct pci_dev *dev) 4494 { 4495 #ifdef PCI_DISABLE_MWI 4496 return 0; 4497 #else 4498 int rc; 4499 u16 cmd; 4500 4501 rc = pci_set_cacheline_size(dev); 4502 if (rc) 4503 return rc; 4504 4505 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4506 if (!(cmd & PCI_COMMAND_INVALIDATE)) { 4507 pci_dbg(dev, "enabling Mem-Wr-Inval\n"); 4508 cmd |= PCI_COMMAND_INVALIDATE; 4509 pci_write_config_word(dev, PCI_COMMAND, cmd); 4510 } 4511 return 0; 4512 #endif 4513 } 4514 EXPORT_SYMBOL(pci_set_mwi); 4515 4516 /** 4517 * pcim_set_mwi - a device-managed pci_set_mwi() 4518 * @dev: the PCI device for which MWI is enabled 4519 * 4520 * Managed pci_set_mwi(). 4521 * 4522 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4523 */ 4524 int pcim_set_mwi(struct pci_dev *dev) 4525 { 4526 struct pci_devres *dr; 4527 4528 dr = find_pci_dr(dev); 4529 if (!dr) 4530 return -ENOMEM; 4531 4532 dr->mwi = 1; 4533 return pci_set_mwi(dev); 4534 } 4535 EXPORT_SYMBOL(pcim_set_mwi); 4536 4537 /** 4538 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction 4539 * @dev: the PCI device for which MWI is enabled 4540 * 4541 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4542 * Callers are not required to check the return value. 4543 * 4544 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4545 */ 4546 int pci_try_set_mwi(struct pci_dev *dev) 4547 { 4548 #ifdef PCI_DISABLE_MWI 4549 return 0; 4550 #else 4551 return pci_set_mwi(dev); 4552 #endif 4553 } 4554 EXPORT_SYMBOL(pci_try_set_mwi); 4555 4556 /** 4557 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev 4558 * @dev: the PCI device to disable 4559 * 4560 * Disables PCI Memory-Write-Invalidate transaction on the device 4561 */ 4562 void pci_clear_mwi(struct pci_dev *dev) 4563 { 4564 #ifndef PCI_DISABLE_MWI 4565 u16 cmd; 4566 4567 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4568 if (cmd & PCI_COMMAND_INVALIDATE) { 4569 cmd &= ~PCI_COMMAND_INVALIDATE; 4570 pci_write_config_word(dev, PCI_COMMAND, cmd); 4571 } 4572 #endif 4573 } 4574 EXPORT_SYMBOL(pci_clear_mwi); 4575 4576 /** 4577 * pci_disable_parity - disable parity checking for device 4578 * @dev: the PCI device to operate on 4579 * 4580 * Disable parity checking for device @dev 4581 */ 4582 void pci_disable_parity(struct pci_dev *dev) 4583 { 4584 u16 cmd; 4585 4586 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4587 if (cmd & PCI_COMMAND_PARITY) { 4588 cmd &= ~PCI_COMMAND_PARITY; 4589 pci_write_config_word(dev, PCI_COMMAND, cmd); 4590 } 4591 } 4592 4593 /** 4594 * pci_intx - enables/disables PCI INTx for device dev 4595 * @pdev: the PCI device to operate on 4596 * @enable: boolean: whether to enable or disable PCI INTx 4597 * 4598 * Enables/disables PCI INTx for device @pdev 4599 */ 4600 void pci_intx(struct pci_dev *pdev, int enable) 4601 { 4602 u16 pci_command, new; 4603 4604 pci_read_config_word(pdev, PCI_COMMAND, &pci_command); 4605 4606 if (enable) 4607 new = pci_command & ~PCI_COMMAND_INTX_DISABLE; 4608 else 4609 new = pci_command | PCI_COMMAND_INTX_DISABLE; 4610 4611 if (new != pci_command) { 4612 struct pci_devres *dr; 4613 4614 pci_write_config_word(pdev, PCI_COMMAND, new); 4615 4616 dr = find_pci_dr(pdev); 4617 if (dr && !dr->restore_intx) { 4618 dr->restore_intx = 1; 4619 dr->orig_intx = !enable; 4620 } 4621 } 4622 } 4623 EXPORT_SYMBOL_GPL(pci_intx); 4624 4625 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask) 4626 { 4627 struct pci_bus *bus = dev->bus; 4628 bool mask_updated = true; 4629 u32 cmd_status_dword; 4630 u16 origcmd, newcmd; 4631 unsigned long flags; 4632 bool irq_pending; 4633 4634 /* 4635 * We do a single dword read to retrieve both command and status. 4636 * Document assumptions that make this possible. 4637 */ 4638 BUILD_BUG_ON(PCI_COMMAND % 4); 4639 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS); 4640 4641 raw_spin_lock_irqsave(&pci_lock, flags); 4642 4643 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword); 4644 4645 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT; 4646 4647 /* 4648 * Check interrupt status register to see whether our device 4649 * triggered the interrupt (when masking) or the next IRQ is 4650 * already pending (when unmasking). 4651 */ 4652 if (mask != irq_pending) { 4653 mask_updated = false; 4654 goto done; 4655 } 4656 4657 origcmd = cmd_status_dword; 4658 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE; 4659 if (mask) 4660 newcmd |= PCI_COMMAND_INTX_DISABLE; 4661 if (newcmd != origcmd) 4662 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd); 4663 4664 done: 4665 raw_spin_unlock_irqrestore(&pci_lock, flags); 4666 4667 return mask_updated; 4668 } 4669 4670 /** 4671 * pci_check_and_mask_intx - mask INTx on pending interrupt 4672 * @dev: the PCI device to operate on 4673 * 4674 * Check if the device dev has its INTx line asserted, mask it and return 4675 * true in that case. False is returned if no interrupt was pending. 4676 */ 4677 bool pci_check_and_mask_intx(struct pci_dev *dev) 4678 { 4679 return pci_check_and_set_intx_mask(dev, true); 4680 } 4681 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx); 4682 4683 /** 4684 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending 4685 * @dev: the PCI device to operate on 4686 * 4687 * Check if the device dev has its INTx line asserted, unmask it if not and 4688 * return true. False is returned and the mask remains active if there was 4689 * still an interrupt pending. 4690 */ 4691 bool pci_check_and_unmask_intx(struct pci_dev *dev) 4692 { 4693 return pci_check_and_set_intx_mask(dev, false); 4694 } 4695 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx); 4696 4697 /** 4698 * pci_wait_for_pending_transaction - wait for pending transaction 4699 * @dev: the PCI device to operate on 4700 * 4701 * Return 0 if transaction is pending 1 otherwise. 4702 */ 4703 int pci_wait_for_pending_transaction(struct pci_dev *dev) 4704 { 4705 if (!pci_is_pcie(dev)) 4706 return 1; 4707 4708 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA, 4709 PCI_EXP_DEVSTA_TRPND); 4710 } 4711 EXPORT_SYMBOL(pci_wait_for_pending_transaction); 4712 4713 /** 4714 * pcie_flr - initiate a PCIe function level reset 4715 * @dev: device to reset 4716 * 4717 * Initiate a function level reset unconditionally on @dev without 4718 * checking any flags and DEVCAP 4719 */ 4720 int pcie_flr(struct pci_dev *dev) 4721 { 4722 if (!pci_wait_for_pending_transaction(dev)) 4723 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n"); 4724 4725 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR); 4726 4727 if (dev->imm_ready) 4728 return 0; 4729 4730 /* 4731 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within 4732 * 100ms, but may silently discard requests while the FLR is in 4733 * progress. Wait 100ms before trying to access the device. 4734 */ 4735 msleep(100); 4736 4737 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS); 4738 } 4739 EXPORT_SYMBOL_GPL(pcie_flr); 4740 4741 /** 4742 * pcie_reset_flr - initiate a PCIe function level reset 4743 * @dev: device to reset 4744 * @probe: if true, return 0 if device can be reset this way 4745 * 4746 * Initiate a function level reset on @dev. 4747 */ 4748 int pcie_reset_flr(struct pci_dev *dev, bool probe) 4749 { 4750 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4751 return -ENOTTY; 4752 4753 if (!(dev->devcap & PCI_EXP_DEVCAP_FLR)) 4754 return -ENOTTY; 4755 4756 if (probe) 4757 return 0; 4758 4759 return pcie_flr(dev); 4760 } 4761 EXPORT_SYMBOL_GPL(pcie_reset_flr); 4762 4763 static int pci_af_flr(struct pci_dev *dev, bool probe) 4764 { 4765 int pos; 4766 u8 cap; 4767 4768 pos = pci_find_capability(dev, PCI_CAP_ID_AF); 4769 if (!pos) 4770 return -ENOTTY; 4771 4772 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4773 return -ENOTTY; 4774 4775 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap); 4776 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR)) 4777 return -ENOTTY; 4778 4779 if (probe) 4780 return 0; 4781 4782 /* 4783 * Wait for Transaction Pending bit to clear. A word-aligned test 4784 * is used, so we use the control offset rather than status and shift 4785 * the test bit to match. 4786 */ 4787 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL, 4788 PCI_AF_STATUS_TP << 8)) 4789 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n"); 4790 4791 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR); 4792 4793 if (dev->imm_ready) 4794 return 0; 4795 4796 /* 4797 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006, 4798 * updated 27 July 2006; a device must complete an FLR within 4799 * 100ms, but may silently discard requests while the FLR is in 4800 * progress. Wait 100ms before trying to access the device. 4801 */ 4802 msleep(100); 4803 4804 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS); 4805 } 4806 4807 /** 4808 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0. 4809 * @dev: Device to reset. 4810 * @probe: if true, return 0 if the device can be reset this way. 4811 * 4812 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is 4813 * unset, it will be reinitialized internally when going from PCI_D3hot to 4814 * PCI_D0. If that's the case and the device is not in a low-power state 4815 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset. 4816 * 4817 * NOTE: This causes the caller to sleep for twice the device power transition 4818 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms 4819 * by default (i.e. unless the @dev's d3hot_delay field has a different value). 4820 * Moreover, only devices in D0 can be reset by this function. 4821 */ 4822 static int pci_pm_reset(struct pci_dev *dev, bool probe) 4823 { 4824 u16 csr; 4825 4826 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET) 4827 return -ENOTTY; 4828 4829 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr); 4830 if (csr & PCI_PM_CTRL_NO_SOFT_RESET) 4831 return -ENOTTY; 4832 4833 if (probe) 4834 return 0; 4835 4836 if (dev->current_state != PCI_D0) 4837 return -EINVAL; 4838 4839 csr &= ~PCI_PM_CTRL_STATE_MASK; 4840 csr |= PCI_D3hot; 4841 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4842 pci_dev_d3_sleep(dev); 4843 4844 csr &= ~PCI_PM_CTRL_STATE_MASK; 4845 csr |= PCI_D0; 4846 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4847 pci_dev_d3_sleep(dev); 4848 4849 return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS); 4850 } 4851 4852 /** 4853 * pcie_wait_for_link_delay - Wait until link is active or inactive 4854 * @pdev: Bridge device 4855 * @active: waiting for active or inactive? 4856 * @delay: Delay to wait after link has become active (in ms) 4857 * 4858 * Use this to wait till link becomes active or inactive. 4859 */ 4860 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active, 4861 int delay) 4862 { 4863 int timeout = 1000; 4864 bool ret; 4865 u16 lnk_status; 4866 4867 /* 4868 * Some controllers might not implement link active reporting. In this 4869 * case, we wait for 1000 ms + any delay requested by the caller. 4870 */ 4871 if (!pdev->link_active_reporting) { 4872 msleep(timeout + delay); 4873 return true; 4874 } 4875 4876 /* 4877 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms, 4878 * after which we should expect an link active if the reset was 4879 * successful. If so, software must wait a minimum 100ms before sending 4880 * configuration requests to devices downstream this port. 4881 * 4882 * If the link fails to activate, either the device was physically 4883 * removed or the link is permanently failed. 4884 */ 4885 if (active) 4886 msleep(20); 4887 for (;;) { 4888 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status); 4889 ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA); 4890 if (ret == active) 4891 break; 4892 if (timeout <= 0) 4893 break; 4894 msleep(10); 4895 timeout -= 10; 4896 } 4897 if (active && ret) 4898 msleep(delay); 4899 4900 return ret == active; 4901 } 4902 4903 /** 4904 * pcie_wait_for_link - Wait until link is active or inactive 4905 * @pdev: Bridge device 4906 * @active: waiting for active or inactive? 4907 * 4908 * Use this to wait till link becomes active or inactive. 4909 */ 4910 bool pcie_wait_for_link(struct pci_dev *pdev, bool active) 4911 { 4912 return pcie_wait_for_link_delay(pdev, active, 100); 4913 } 4914 4915 /* 4916 * Find maximum D3cold delay required by all the devices on the bus. The 4917 * spec says 100 ms, but firmware can lower it and we allow drivers to 4918 * increase it as well. 4919 * 4920 * Called with @pci_bus_sem locked for reading. 4921 */ 4922 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus) 4923 { 4924 const struct pci_dev *pdev; 4925 int min_delay = 100; 4926 int max_delay = 0; 4927 4928 list_for_each_entry(pdev, &bus->devices, bus_list) { 4929 if (pdev->d3cold_delay < min_delay) 4930 min_delay = pdev->d3cold_delay; 4931 if (pdev->d3cold_delay > max_delay) 4932 max_delay = pdev->d3cold_delay; 4933 } 4934 4935 return max(min_delay, max_delay); 4936 } 4937 4938 /** 4939 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible 4940 * @dev: PCI bridge 4941 * @reset_type: reset type in human-readable form 4942 * @timeout: maximum time to wait for devices on secondary bus (milliseconds) 4943 * 4944 * Handle necessary delays before access to the devices on the secondary 4945 * side of the bridge are permitted after D3cold to D0 transition 4946 * or Conventional Reset. 4947 * 4948 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For 4949 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section 4950 * 4.3.2. 4951 * 4952 * Return 0 on success or -ENOTTY if the first device on the secondary bus 4953 * failed to become accessible. 4954 */ 4955 int pci_bridge_wait_for_secondary_bus(struct pci_dev *dev, char *reset_type, 4956 int timeout) 4957 { 4958 struct pci_dev *child; 4959 int delay; 4960 4961 if (pci_dev_is_disconnected(dev)) 4962 return 0; 4963 4964 if (!pci_is_bridge(dev)) 4965 return 0; 4966 4967 down_read(&pci_bus_sem); 4968 4969 /* 4970 * We only deal with devices that are present currently on the bus. 4971 * For any hot-added devices the access delay is handled in pciehp 4972 * board_added(). In case of ACPI hotplug the firmware is expected 4973 * to configure the devices before OS is notified. 4974 */ 4975 if (!dev->subordinate || list_empty(&dev->subordinate->devices)) { 4976 up_read(&pci_bus_sem); 4977 return 0; 4978 } 4979 4980 /* Take d3cold_delay requirements into account */ 4981 delay = pci_bus_max_d3cold_delay(dev->subordinate); 4982 if (!delay) { 4983 up_read(&pci_bus_sem); 4984 return 0; 4985 } 4986 4987 child = list_first_entry(&dev->subordinate->devices, struct pci_dev, 4988 bus_list); 4989 up_read(&pci_bus_sem); 4990 4991 /* 4992 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before 4993 * accessing the device after reset (that is 1000 ms + 100 ms). 4994 */ 4995 if (!pci_is_pcie(dev)) { 4996 pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay); 4997 msleep(1000 + delay); 4998 return 0; 4999 } 5000 5001 /* 5002 * For PCIe downstream and root ports that do not support speeds 5003 * greater than 5 GT/s need to wait minimum 100 ms. For higher 5004 * speeds (gen3) we need to wait first for the data link layer to 5005 * become active. 5006 * 5007 * However, 100 ms is the minimum and the PCIe spec says the 5008 * software must allow at least 1s before it can determine that the 5009 * device that did not respond is a broken device. There is 5010 * evidence that 100 ms is not always enough, for example certain 5011 * Titan Ridge xHCI controller does not always respond to 5012 * configuration requests if we only wait for 100 ms (see 5013 * https://bugzilla.kernel.org/show_bug.cgi?id=203885). 5014 * 5015 * Therefore we wait for 100 ms and check for the device presence 5016 * until the timeout expires. 5017 */ 5018 if (!pcie_downstream_port(dev)) 5019 return 0; 5020 5021 if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) { 5022 pci_dbg(dev, "waiting %d ms for downstream link\n", delay); 5023 msleep(delay); 5024 } else { 5025 pci_dbg(dev, "waiting %d ms for downstream link, after activation\n", 5026 delay); 5027 if (!pcie_wait_for_link_delay(dev, true, delay)) { 5028 /* Did not train, no need to wait any further */ 5029 pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n"); 5030 return -ENOTTY; 5031 } 5032 } 5033 5034 return pci_dev_wait(child, reset_type, timeout - delay); 5035 } 5036 5037 void pci_reset_secondary_bus(struct pci_dev *dev) 5038 { 5039 u16 ctrl; 5040 5041 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl); 5042 ctrl |= PCI_BRIDGE_CTL_BUS_RESET; 5043 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 5044 5045 /* 5046 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double 5047 * this to 2ms to ensure that we meet the minimum requirement. 5048 */ 5049 msleep(2); 5050 5051 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET; 5052 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 5053 } 5054 5055 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev) 5056 { 5057 pci_reset_secondary_bus(dev); 5058 } 5059 5060 /** 5061 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge. 5062 * @dev: Bridge device 5063 * 5064 * Use the bridge control register to assert reset on the secondary bus. 5065 * Devices on the secondary bus are left in power-on state. 5066 */ 5067 int pci_bridge_secondary_bus_reset(struct pci_dev *dev) 5068 { 5069 pcibios_reset_secondary_bus(dev); 5070 5071 return pci_bridge_wait_for_secondary_bus(dev, "bus reset", 5072 PCIE_RESET_READY_POLL_MS); 5073 } 5074 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset); 5075 5076 static int pci_parent_bus_reset(struct pci_dev *dev, bool probe) 5077 { 5078 struct pci_dev *pdev; 5079 5080 if (pci_is_root_bus(dev->bus) || dev->subordinate || 5081 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 5082 return -ENOTTY; 5083 5084 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 5085 if (pdev != dev) 5086 return -ENOTTY; 5087 5088 if (probe) 5089 return 0; 5090 5091 return pci_bridge_secondary_bus_reset(dev->bus->self); 5092 } 5093 5094 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe) 5095 { 5096 int rc = -ENOTTY; 5097 5098 if (!hotplug || !try_module_get(hotplug->owner)) 5099 return rc; 5100 5101 if (hotplug->ops->reset_slot) 5102 rc = hotplug->ops->reset_slot(hotplug, probe); 5103 5104 module_put(hotplug->owner); 5105 5106 return rc; 5107 } 5108 5109 static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe) 5110 { 5111 if (dev->multifunction || dev->subordinate || !dev->slot || 5112 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 5113 return -ENOTTY; 5114 5115 return pci_reset_hotplug_slot(dev->slot->hotplug, probe); 5116 } 5117 5118 static int pci_reset_bus_function(struct pci_dev *dev, bool probe) 5119 { 5120 int rc; 5121 5122 rc = pci_dev_reset_slot_function(dev, probe); 5123 if (rc != -ENOTTY) 5124 return rc; 5125 return pci_parent_bus_reset(dev, probe); 5126 } 5127 5128 void pci_dev_lock(struct pci_dev *dev) 5129 { 5130 /* block PM suspend, driver probe, etc. */ 5131 device_lock(&dev->dev); 5132 pci_cfg_access_lock(dev); 5133 } 5134 EXPORT_SYMBOL_GPL(pci_dev_lock); 5135 5136 /* Return 1 on successful lock, 0 on contention */ 5137 int pci_dev_trylock(struct pci_dev *dev) 5138 { 5139 if (device_trylock(&dev->dev)) { 5140 if (pci_cfg_access_trylock(dev)) 5141 return 1; 5142 device_unlock(&dev->dev); 5143 } 5144 5145 return 0; 5146 } 5147 EXPORT_SYMBOL_GPL(pci_dev_trylock); 5148 5149 void pci_dev_unlock(struct pci_dev *dev) 5150 { 5151 pci_cfg_access_unlock(dev); 5152 device_unlock(&dev->dev); 5153 } 5154 EXPORT_SYMBOL_GPL(pci_dev_unlock); 5155 5156 static void pci_dev_save_and_disable(struct pci_dev *dev) 5157 { 5158 const struct pci_error_handlers *err_handler = 5159 dev->driver ? dev->driver->err_handler : NULL; 5160 5161 /* 5162 * dev->driver->err_handler->reset_prepare() is protected against 5163 * races with ->remove() by the device lock, which must be held by 5164 * the caller. 5165 */ 5166 if (err_handler && err_handler->reset_prepare) 5167 err_handler->reset_prepare(dev); 5168 5169 /* 5170 * Wake-up device prior to save. PM registers default to D0 after 5171 * reset and a simple register restore doesn't reliably return 5172 * to a non-D0 state anyway. 5173 */ 5174 pci_set_power_state(dev, PCI_D0); 5175 5176 pci_save_state(dev); 5177 /* 5178 * Disable the device by clearing the Command register, except for 5179 * INTx-disable which is set. This not only disables MMIO and I/O port 5180 * BARs, but also prevents the device from being Bus Master, preventing 5181 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3 5182 * compliant devices, INTx-disable prevents legacy interrupts. 5183 */ 5184 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE); 5185 } 5186 5187 static void pci_dev_restore(struct pci_dev *dev) 5188 { 5189 const struct pci_error_handlers *err_handler = 5190 dev->driver ? dev->driver->err_handler : NULL; 5191 5192 pci_restore_state(dev); 5193 5194 /* 5195 * dev->driver->err_handler->reset_done() is protected against 5196 * races with ->remove() by the device lock, which must be held by 5197 * the caller. 5198 */ 5199 if (err_handler && err_handler->reset_done) 5200 err_handler->reset_done(dev); 5201 } 5202 5203 /* dev->reset_methods[] is a 0-terminated list of indices into this array */ 5204 static const struct pci_reset_fn_method pci_reset_fn_methods[] = { 5205 { }, 5206 { pci_dev_specific_reset, .name = "device_specific" }, 5207 { pci_dev_acpi_reset, .name = "acpi" }, 5208 { pcie_reset_flr, .name = "flr" }, 5209 { pci_af_flr, .name = "af_flr" }, 5210 { pci_pm_reset, .name = "pm" }, 5211 { pci_reset_bus_function, .name = "bus" }, 5212 }; 5213 5214 static ssize_t reset_method_show(struct device *dev, 5215 struct device_attribute *attr, char *buf) 5216 { 5217 struct pci_dev *pdev = to_pci_dev(dev); 5218 ssize_t len = 0; 5219 int i, m; 5220 5221 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) { 5222 m = pdev->reset_methods[i]; 5223 if (!m) 5224 break; 5225 5226 len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "", 5227 pci_reset_fn_methods[m].name); 5228 } 5229 5230 if (len) 5231 len += sysfs_emit_at(buf, len, "\n"); 5232 5233 return len; 5234 } 5235 5236 static int reset_method_lookup(const char *name) 5237 { 5238 int m; 5239 5240 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) { 5241 if (sysfs_streq(name, pci_reset_fn_methods[m].name)) 5242 return m; 5243 } 5244 5245 return 0; /* not found */ 5246 } 5247 5248 static ssize_t reset_method_store(struct device *dev, 5249 struct device_attribute *attr, 5250 const char *buf, size_t count) 5251 { 5252 struct pci_dev *pdev = to_pci_dev(dev); 5253 char *options, *name; 5254 int m, n; 5255 u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 }; 5256 5257 if (sysfs_streq(buf, "")) { 5258 pdev->reset_methods[0] = 0; 5259 pci_warn(pdev, "All device reset methods disabled by user"); 5260 return count; 5261 } 5262 5263 if (sysfs_streq(buf, "default")) { 5264 pci_init_reset_methods(pdev); 5265 return count; 5266 } 5267 5268 options = kstrndup(buf, count, GFP_KERNEL); 5269 if (!options) 5270 return -ENOMEM; 5271 5272 n = 0; 5273 while ((name = strsep(&options, " ")) != NULL) { 5274 if (sysfs_streq(name, "")) 5275 continue; 5276 5277 name = strim(name); 5278 5279 m = reset_method_lookup(name); 5280 if (!m) { 5281 pci_err(pdev, "Invalid reset method '%s'", name); 5282 goto error; 5283 } 5284 5285 if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) { 5286 pci_err(pdev, "Unsupported reset method '%s'", name); 5287 goto error; 5288 } 5289 5290 if (n == PCI_NUM_RESET_METHODS - 1) { 5291 pci_err(pdev, "Too many reset methods\n"); 5292 goto error; 5293 } 5294 5295 reset_methods[n++] = m; 5296 } 5297 5298 reset_methods[n] = 0; 5299 5300 /* Warn if dev-specific supported but not highest priority */ 5301 if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 && 5302 reset_methods[0] != 1) 5303 pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user"); 5304 memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods)); 5305 kfree(options); 5306 return count; 5307 5308 error: 5309 /* Leave previous methods unchanged */ 5310 kfree(options); 5311 return -EINVAL; 5312 } 5313 static DEVICE_ATTR_RW(reset_method); 5314 5315 static struct attribute *pci_dev_reset_method_attrs[] = { 5316 &dev_attr_reset_method.attr, 5317 NULL, 5318 }; 5319 5320 static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj, 5321 struct attribute *a, int n) 5322 { 5323 struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj)); 5324 5325 if (!pci_reset_supported(pdev)) 5326 return 0; 5327 5328 return a->mode; 5329 } 5330 5331 const struct attribute_group pci_dev_reset_method_attr_group = { 5332 .attrs = pci_dev_reset_method_attrs, 5333 .is_visible = pci_dev_reset_method_attr_is_visible, 5334 }; 5335 5336 /** 5337 * __pci_reset_function_locked - reset a PCI device function while holding 5338 * the @dev mutex lock. 5339 * @dev: PCI device to reset 5340 * 5341 * Some devices allow an individual function to be reset without affecting 5342 * other functions in the same device. The PCI device must be responsive 5343 * to PCI config space in order to use this function. 5344 * 5345 * The device function is presumed to be unused and the caller is holding 5346 * the device mutex lock when this function is called. 5347 * 5348 * Resetting the device will make the contents of PCI configuration space 5349 * random, so any caller of this must be prepared to reinitialise the 5350 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 5351 * etc. 5352 * 5353 * Returns 0 if the device function was successfully reset or negative if the 5354 * device doesn't support resetting a single function. 5355 */ 5356 int __pci_reset_function_locked(struct pci_dev *dev) 5357 { 5358 int i, m, rc; 5359 5360 might_sleep(); 5361 5362 /* 5363 * A reset method returns -ENOTTY if it doesn't support this device and 5364 * we should try the next method. 5365 * 5366 * If it returns 0 (success), we're finished. If it returns any other 5367 * error, we're also finished: this indicates that further reset 5368 * mechanisms might be broken on the device. 5369 */ 5370 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) { 5371 m = dev->reset_methods[i]; 5372 if (!m) 5373 return -ENOTTY; 5374 5375 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET); 5376 if (!rc) 5377 return 0; 5378 if (rc != -ENOTTY) 5379 return rc; 5380 } 5381 5382 return -ENOTTY; 5383 } 5384 EXPORT_SYMBOL_GPL(__pci_reset_function_locked); 5385 5386 /** 5387 * pci_init_reset_methods - check whether device can be safely reset 5388 * and store supported reset mechanisms. 5389 * @dev: PCI device to check for reset mechanisms 5390 * 5391 * Some devices allow an individual function to be reset without affecting 5392 * other functions in the same device. The PCI device must be in D0-D3hot 5393 * state. 5394 * 5395 * Stores reset mechanisms supported by device in reset_methods byte array 5396 * which is a member of struct pci_dev. 5397 */ 5398 void pci_init_reset_methods(struct pci_dev *dev) 5399 { 5400 int m, i, rc; 5401 5402 BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS); 5403 5404 might_sleep(); 5405 5406 i = 0; 5407 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) { 5408 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE); 5409 if (!rc) 5410 dev->reset_methods[i++] = m; 5411 else if (rc != -ENOTTY) 5412 break; 5413 } 5414 5415 dev->reset_methods[i] = 0; 5416 } 5417 5418 /** 5419 * pci_reset_function - quiesce and reset a PCI device function 5420 * @dev: PCI device to reset 5421 * 5422 * Some devices allow an individual function to be reset without affecting 5423 * other functions in the same device. The PCI device must be responsive 5424 * to PCI config space in order to use this function. 5425 * 5426 * This function does not just reset the PCI portion of a device, but 5427 * clears all the state associated with the device. This function differs 5428 * from __pci_reset_function_locked() in that it saves and restores device state 5429 * over the reset and takes the PCI device lock. 5430 * 5431 * Returns 0 if the device function was successfully reset or negative if the 5432 * device doesn't support resetting a single function. 5433 */ 5434 int pci_reset_function(struct pci_dev *dev) 5435 { 5436 int rc; 5437 5438 if (!pci_reset_supported(dev)) 5439 return -ENOTTY; 5440 5441 pci_dev_lock(dev); 5442 pci_dev_save_and_disable(dev); 5443 5444 rc = __pci_reset_function_locked(dev); 5445 5446 pci_dev_restore(dev); 5447 pci_dev_unlock(dev); 5448 5449 return rc; 5450 } 5451 EXPORT_SYMBOL_GPL(pci_reset_function); 5452 5453 /** 5454 * pci_reset_function_locked - quiesce and reset a PCI device function 5455 * @dev: PCI device to reset 5456 * 5457 * Some devices allow an individual function to be reset without affecting 5458 * other functions in the same device. The PCI device must be responsive 5459 * to PCI config space in order to use this function. 5460 * 5461 * This function does not just reset the PCI portion of a device, but 5462 * clears all the state associated with the device. This function differs 5463 * from __pci_reset_function_locked() in that it saves and restores device state 5464 * over the reset. It also differs from pci_reset_function() in that it 5465 * requires the PCI device lock to be held. 5466 * 5467 * Returns 0 if the device function was successfully reset or negative if the 5468 * device doesn't support resetting a single function. 5469 */ 5470 int pci_reset_function_locked(struct pci_dev *dev) 5471 { 5472 int rc; 5473 5474 if (!pci_reset_supported(dev)) 5475 return -ENOTTY; 5476 5477 pci_dev_save_and_disable(dev); 5478 5479 rc = __pci_reset_function_locked(dev); 5480 5481 pci_dev_restore(dev); 5482 5483 return rc; 5484 } 5485 EXPORT_SYMBOL_GPL(pci_reset_function_locked); 5486 5487 /** 5488 * pci_try_reset_function - quiesce and reset a PCI device function 5489 * @dev: PCI device to reset 5490 * 5491 * Same as above, except return -EAGAIN if unable to lock device. 5492 */ 5493 int pci_try_reset_function(struct pci_dev *dev) 5494 { 5495 int rc; 5496 5497 if (!pci_reset_supported(dev)) 5498 return -ENOTTY; 5499 5500 if (!pci_dev_trylock(dev)) 5501 return -EAGAIN; 5502 5503 pci_dev_save_and_disable(dev); 5504 rc = __pci_reset_function_locked(dev); 5505 pci_dev_restore(dev); 5506 pci_dev_unlock(dev); 5507 5508 return rc; 5509 } 5510 EXPORT_SYMBOL_GPL(pci_try_reset_function); 5511 5512 /* Do any devices on or below this bus prevent a bus reset? */ 5513 static bool pci_bus_resetable(struct pci_bus *bus) 5514 { 5515 struct pci_dev *dev; 5516 5517 5518 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 5519 return false; 5520 5521 list_for_each_entry(dev, &bus->devices, bus_list) { 5522 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 5523 (dev->subordinate && !pci_bus_resetable(dev->subordinate))) 5524 return false; 5525 } 5526 5527 return true; 5528 } 5529 5530 /* Lock devices from the top of the tree down */ 5531 static void pci_bus_lock(struct pci_bus *bus) 5532 { 5533 struct pci_dev *dev; 5534 5535 list_for_each_entry(dev, &bus->devices, bus_list) { 5536 pci_dev_lock(dev); 5537 if (dev->subordinate) 5538 pci_bus_lock(dev->subordinate); 5539 } 5540 } 5541 5542 /* Unlock devices from the bottom of the tree up */ 5543 static void pci_bus_unlock(struct pci_bus *bus) 5544 { 5545 struct pci_dev *dev; 5546 5547 list_for_each_entry(dev, &bus->devices, bus_list) { 5548 if (dev->subordinate) 5549 pci_bus_unlock(dev->subordinate); 5550 pci_dev_unlock(dev); 5551 } 5552 } 5553 5554 /* Return 1 on successful lock, 0 on contention */ 5555 static int pci_bus_trylock(struct pci_bus *bus) 5556 { 5557 struct pci_dev *dev; 5558 5559 list_for_each_entry(dev, &bus->devices, bus_list) { 5560 if (!pci_dev_trylock(dev)) 5561 goto unlock; 5562 if (dev->subordinate) { 5563 if (!pci_bus_trylock(dev->subordinate)) { 5564 pci_dev_unlock(dev); 5565 goto unlock; 5566 } 5567 } 5568 } 5569 return 1; 5570 5571 unlock: 5572 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) { 5573 if (dev->subordinate) 5574 pci_bus_unlock(dev->subordinate); 5575 pci_dev_unlock(dev); 5576 } 5577 return 0; 5578 } 5579 5580 /* Do any devices on or below this slot prevent a bus reset? */ 5581 static bool pci_slot_resetable(struct pci_slot *slot) 5582 { 5583 struct pci_dev *dev; 5584 5585 if (slot->bus->self && 5586 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 5587 return false; 5588 5589 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5590 if (!dev->slot || dev->slot != slot) 5591 continue; 5592 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 5593 (dev->subordinate && !pci_bus_resetable(dev->subordinate))) 5594 return false; 5595 } 5596 5597 return true; 5598 } 5599 5600 /* Lock devices from the top of the tree down */ 5601 static void pci_slot_lock(struct pci_slot *slot) 5602 { 5603 struct pci_dev *dev; 5604 5605 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5606 if (!dev->slot || dev->slot != slot) 5607 continue; 5608 pci_dev_lock(dev); 5609 if (dev->subordinate) 5610 pci_bus_lock(dev->subordinate); 5611 } 5612 } 5613 5614 /* Unlock devices from the bottom of the tree up */ 5615 static void pci_slot_unlock(struct pci_slot *slot) 5616 { 5617 struct pci_dev *dev; 5618 5619 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5620 if (!dev->slot || dev->slot != slot) 5621 continue; 5622 if (dev->subordinate) 5623 pci_bus_unlock(dev->subordinate); 5624 pci_dev_unlock(dev); 5625 } 5626 } 5627 5628 /* Return 1 on successful lock, 0 on contention */ 5629 static int pci_slot_trylock(struct pci_slot *slot) 5630 { 5631 struct pci_dev *dev; 5632 5633 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5634 if (!dev->slot || dev->slot != slot) 5635 continue; 5636 if (!pci_dev_trylock(dev)) 5637 goto unlock; 5638 if (dev->subordinate) { 5639 if (!pci_bus_trylock(dev->subordinate)) { 5640 pci_dev_unlock(dev); 5641 goto unlock; 5642 } 5643 } 5644 } 5645 return 1; 5646 5647 unlock: 5648 list_for_each_entry_continue_reverse(dev, 5649 &slot->bus->devices, bus_list) { 5650 if (!dev->slot || dev->slot != slot) 5651 continue; 5652 if (dev->subordinate) 5653 pci_bus_unlock(dev->subordinate); 5654 pci_dev_unlock(dev); 5655 } 5656 return 0; 5657 } 5658 5659 /* 5660 * Save and disable devices from the top of the tree down while holding 5661 * the @dev mutex lock for the entire tree. 5662 */ 5663 static void pci_bus_save_and_disable_locked(struct pci_bus *bus) 5664 { 5665 struct pci_dev *dev; 5666 5667 list_for_each_entry(dev, &bus->devices, bus_list) { 5668 pci_dev_save_and_disable(dev); 5669 if (dev->subordinate) 5670 pci_bus_save_and_disable_locked(dev->subordinate); 5671 } 5672 } 5673 5674 /* 5675 * Restore devices from top of the tree down while holding @dev mutex lock 5676 * for the entire tree. Parent bridges need to be restored before we can 5677 * get to subordinate devices. 5678 */ 5679 static void pci_bus_restore_locked(struct pci_bus *bus) 5680 { 5681 struct pci_dev *dev; 5682 5683 list_for_each_entry(dev, &bus->devices, bus_list) { 5684 pci_dev_restore(dev); 5685 if (dev->subordinate) 5686 pci_bus_restore_locked(dev->subordinate); 5687 } 5688 } 5689 5690 /* 5691 * Save and disable devices from the top of the tree down while holding 5692 * the @dev mutex lock for the entire tree. 5693 */ 5694 static void pci_slot_save_and_disable_locked(struct pci_slot *slot) 5695 { 5696 struct pci_dev *dev; 5697 5698 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5699 if (!dev->slot || dev->slot != slot) 5700 continue; 5701 pci_dev_save_and_disable(dev); 5702 if (dev->subordinate) 5703 pci_bus_save_and_disable_locked(dev->subordinate); 5704 } 5705 } 5706 5707 /* 5708 * Restore devices from top of the tree down while holding @dev mutex lock 5709 * for the entire tree. Parent bridges need to be restored before we can 5710 * get to subordinate devices. 5711 */ 5712 static void pci_slot_restore_locked(struct pci_slot *slot) 5713 { 5714 struct pci_dev *dev; 5715 5716 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5717 if (!dev->slot || dev->slot != slot) 5718 continue; 5719 pci_dev_restore(dev); 5720 if (dev->subordinate) 5721 pci_bus_restore_locked(dev->subordinate); 5722 } 5723 } 5724 5725 static int pci_slot_reset(struct pci_slot *slot, bool probe) 5726 { 5727 int rc; 5728 5729 if (!slot || !pci_slot_resetable(slot)) 5730 return -ENOTTY; 5731 5732 if (!probe) 5733 pci_slot_lock(slot); 5734 5735 might_sleep(); 5736 5737 rc = pci_reset_hotplug_slot(slot->hotplug, probe); 5738 5739 if (!probe) 5740 pci_slot_unlock(slot); 5741 5742 return rc; 5743 } 5744 5745 /** 5746 * pci_probe_reset_slot - probe whether a PCI slot can be reset 5747 * @slot: PCI slot to probe 5748 * 5749 * Return 0 if slot can be reset, negative if a slot reset is not supported. 5750 */ 5751 int pci_probe_reset_slot(struct pci_slot *slot) 5752 { 5753 return pci_slot_reset(slot, PCI_RESET_PROBE); 5754 } 5755 EXPORT_SYMBOL_GPL(pci_probe_reset_slot); 5756 5757 /** 5758 * __pci_reset_slot - Try to reset a PCI slot 5759 * @slot: PCI slot to reset 5760 * 5761 * A PCI bus may host multiple slots, each slot may support a reset mechanism 5762 * independent of other slots. For instance, some slots may support slot power 5763 * control. In the case of a 1:1 bus to slot architecture, this function may 5764 * wrap the bus reset to avoid spurious slot related events such as hotplug. 5765 * Generally a slot reset should be attempted before a bus reset. All of the 5766 * function of the slot and any subordinate buses behind the slot are reset 5767 * through this function. PCI config space of all devices in the slot and 5768 * behind the slot is saved before and restored after reset. 5769 * 5770 * Same as above except return -EAGAIN if the slot cannot be locked 5771 */ 5772 static int __pci_reset_slot(struct pci_slot *slot) 5773 { 5774 int rc; 5775 5776 rc = pci_slot_reset(slot, PCI_RESET_PROBE); 5777 if (rc) 5778 return rc; 5779 5780 if (pci_slot_trylock(slot)) { 5781 pci_slot_save_and_disable_locked(slot); 5782 might_sleep(); 5783 rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET); 5784 pci_slot_restore_locked(slot); 5785 pci_slot_unlock(slot); 5786 } else 5787 rc = -EAGAIN; 5788 5789 return rc; 5790 } 5791 5792 static int pci_bus_reset(struct pci_bus *bus, bool probe) 5793 { 5794 int ret; 5795 5796 if (!bus->self || !pci_bus_resetable(bus)) 5797 return -ENOTTY; 5798 5799 if (probe) 5800 return 0; 5801 5802 pci_bus_lock(bus); 5803 5804 might_sleep(); 5805 5806 ret = pci_bridge_secondary_bus_reset(bus->self); 5807 5808 pci_bus_unlock(bus); 5809 5810 return ret; 5811 } 5812 5813 /** 5814 * pci_bus_error_reset - reset the bridge's subordinate bus 5815 * @bridge: The parent device that connects to the bus to reset 5816 * 5817 * This function will first try to reset the slots on this bus if the method is 5818 * available. If slot reset fails or is not available, this will fall back to a 5819 * secondary bus reset. 5820 */ 5821 int pci_bus_error_reset(struct pci_dev *bridge) 5822 { 5823 struct pci_bus *bus = bridge->subordinate; 5824 struct pci_slot *slot; 5825 5826 if (!bus) 5827 return -ENOTTY; 5828 5829 mutex_lock(&pci_slot_mutex); 5830 if (list_empty(&bus->slots)) 5831 goto bus_reset; 5832 5833 list_for_each_entry(slot, &bus->slots, list) 5834 if (pci_probe_reset_slot(slot)) 5835 goto bus_reset; 5836 5837 list_for_each_entry(slot, &bus->slots, list) 5838 if (pci_slot_reset(slot, PCI_RESET_DO_RESET)) 5839 goto bus_reset; 5840 5841 mutex_unlock(&pci_slot_mutex); 5842 return 0; 5843 bus_reset: 5844 mutex_unlock(&pci_slot_mutex); 5845 return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET); 5846 } 5847 5848 /** 5849 * pci_probe_reset_bus - probe whether a PCI bus can be reset 5850 * @bus: PCI bus to probe 5851 * 5852 * Return 0 if bus can be reset, negative if a bus reset is not supported. 5853 */ 5854 int pci_probe_reset_bus(struct pci_bus *bus) 5855 { 5856 return pci_bus_reset(bus, PCI_RESET_PROBE); 5857 } 5858 EXPORT_SYMBOL_GPL(pci_probe_reset_bus); 5859 5860 /** 5861 * __pci_reset_bus - Try to reset a PCI bus 5862 * @bus: top level PCI bus to reset 5863 * 5864 * Same as above except return -EAGAIN if the bus cannot be locked 5865 */ 5866 static int __pci_reset_bus(struct pci_bus *bus) 5867 { 5868 int rc; 5869 5870 rc = pci_bus_reset(bus, PCI_RESET_PROBE); 5871 if (rc) 5872 return rc; 5873 5874 if (pci_bus_trylock(bus)) { 5875 pci_bus_save_and_disable_locked(bus); 5876 might_sleep(); 5877 rc = pci_bridge_secondary_bus_reset(bus->self); 5878 pci_bus_restore_locked(bus); 5879 pci_bus_unlock(bus); 5880 } else 5881 rc = -EAGAIN; 5882 5883 return rc; 5884 } 5885 5886 /** 5887 * pci_reset_bus - Try to reset a PCI bus 5888 * @pdev: top level PCI device to reset via slot/bus 5889 * 5890 * Same as above except return -EAGAIN if the bus cannot be locked 5891 */ 5892 int pci_reset_bus(struct pci_dev *pdev) 5893 { 5894 return (!pci_probe_reset_slot(pdev->slot)) ? 5895 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus); 5896 } 5897 EXPORT_SYMBOL_GPL(pci_reset_bus); 5898 5899 /** 5900 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count 5901 * @dev: PCI device to query 5902 * 5903 * Returns mmrbc: maximum designed memory read count in bytes or 5904 * appropriate error value. 5905 */ 5906 int pcix_get_max_mmrbc(struct pci_dev *dev) 5907 { 5908 int cap; 5909 u32 stat; 5910 5911 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5912 if (!cap) 5913 return -EINVAL; 5914 5915 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 5916 return -EINVAL; 5917 5918 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21); 5919 } 5920 EXPORT_SYMBOL(pcix_get_max_mmrbc); 5921 5922 /** 5923 * pcix_get_mmrbc - get PCI-X maximum memory read byte count 5924 * @dev: PCI device to query 5925 * 5926 * Returns mmrbc: maximum memory read count in bytes or appropriate error 5927 * value. 5928 */ 5929 int pcix_get_mmrbc(struct pci_dev *dev) 5930 { 5931 int cap; 5932 u16 cmd; 5933 5934 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5935 if (!cap) 5936 return -EINVAL; 5937 5938 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 5939 return -EINVAL; 5940 5941 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2); 5942 } 5943 EXPORT_SYMBOL(pcix_get_mmrbc); 5944 5945 /** 5946 * pcix_set_mmrbc - set PCI-X maximum memory read byte count 5947 * @dev: PCI device to query 5948 * @mmrbc: maximum memory read count in bytes 5949 * valid values are 512, 1024, 2048, 4096 5950 * 5951 * If possible sets maximum memory read byte count, some bridges have errata 5952 * that prevent this. 5953 */ 5954 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc) 5955 { 5956 int cap; 5957 u32 stat, v, o; 5958 u16 cmd; 5959 5960 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc)) 5961 return -EINVAL; 5962 5963 v = ffs(mmrbc) - 10; 5964 5965 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5966 if (!cap) 5967 return -EINVAL; 5968 5969 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 5970 return -EINVAL; 5971 5972 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21) 5973 return -E2BIG; 5974 5975 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 5976 return -EINVAL; 5977 5978 o = (cmd & PCI_X_CMD_MAX_READ) >> 2; 5979 if (o != v) { 5980 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC)) 5981 return -EIO; 5982 5983 cmd &= ~PCI_X_CMD_MAX_READ; 5984 cmd |= v << 2; 5985 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd)) 5986 return -EIO; 5987 } 5988 return 0; 5989 } 5990 EXPORT_SYMBOL(pcix_set_mmrbc); 5991 5992 /** 5993 * pcie_get_readrq - get PCI Express read request size 5994 * @dev: PCI device to query 5995 * 5996 * Returns maximum memory read request in bytes or appropriate error value. 5997 */ 5998 int pcie_get_readrq(struct pci_dev *dev) 5999 { 6000 u16 ctl; 6001 6002 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 6003 6004 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12); 6005 } 6006 EXPORT_SYMBOL(pcie_get_readrq); 6007 6008 /** 6009 * pcie_set_readrq - set PCI Express maximum memory read request 6010 * @dev: PCI device to query 6011 * @rq: maximum memory read count in bytes 6012 * valid values are 128, 256, 512, 1024, 2048, 4096 6013 * 6014 * If possible sets maximum memory read request in bytes 6015 */ 6016 int pcie_set_readrq(struct pci_dev *dev, int rq) 6017 { 6018 u16 v; 6019 int ret; 6020 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus); 6021 6022 if (rq < 128 || rq > 4096 || !is_power_of_2(rq)) 6023 return -EINVAL; 6024 6025 /* 6026 * If using the "performance" PCIe config, we clamp the read rq 6027 * size to the max packet size to keep the host bridge from 6028 * generating requests larger than we can cope with. 6029 */ 6030 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) { 6031 int mps = pcie_get_mps(dev); 6032 6033 if (mps < rq) 6034 rq = mps; 6035 } 6036 6037 v = (ffs(rq) - 8) << 12; 6038 6039 if (bridge->no_inc_mrrs) { 6040 int max_mrrs = pcie_get_readrq(dev); 6041 6042 if (rq > max_mrrs) { 6043 pci_info(dev, "can't set Max_Read_Request_Size to %d; max is %d\n", rq, max_mrrs); 6044 return -EINVAL; 6045 } 6046 } 6047 6048 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 6049 PCI_EXP_DEVCTL_READRQ, v); 6050 6051 return pcibios_err_to_errno(ret); 6052 } 6053 EXPORT_SYMBOL(pcie_set_readrq); 6054 6055 /** 6056 * pcie_get_mps - get PCI Express maximum payload size 6057 * @dev: PCI device to query 6058 * 6059 * Returns maximum payload size in bytes 6060 */ 6061 int pcie_get_mps(struct pci_dev *dev) 6062 { 6063 u16 ctl; 6064 6065 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 6066 6067 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5); 6068 } 6069 EXPORT_SYMBOL(pcie_get_mps); 6070 6071 /** 6072 * pcie_set_mps - set PCI Express maximum payload size 6073 * @dev: PCI device to query 6074 * @mps: maximum payload size in bytes 6075 * valid values are 128, 256, 512, 1024, 2048, 4096 6076 * 6077 * If possible sets maximum payload size 6078 */ 6079 int pcie_set_mps(struct pci_dev *dev, int mps) 6080 { 6081 u16 v; 6082 int ret; 6083 6084 if (mps < 128 || mps > 4096 || !is_power_of_2(mps)) 6085 return -EINVAL; 6086 6087 v = ffs(mps) - 8; 6088 if (v > dev->pcie_mpss) 6089 return -EINVAL; 6090 v <<= 5; 6091 6092 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 6093 PCI_EXP_DEVCTL_PAYLOAD, v); 6094 6095 return pcibios_err_to_errno(ret); 6096 } 6097 EXPORT_SYMBOL(pcie_set_mps); 6098 6099 /** 6100 * pcie_bandwidth_available - determine minimum link settings of a PCIe 6101 * device and its bandwidth limitation 6102 * @dev: PCI device to query 6103 * @limiting_dev: storage for device causing the bandwidth limitation 6104 * @speed: storage for speed of limiting device 6105 * @width: storage for width of limiting device 6106 * 6107 * Walk up the PCI device chain and find the point where the minimum 6108 * bandwidth is available. Return the bandwidth available there and (if 6109 * limiting_dev, speed, and width pointers are supplied) information about 6110 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of 6111 * raw bandwidth. 6112 */ 6113 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev, 6114 enum pci_bus_speed *speed, 6115 enum pcie_link_width *width) 6116 { 6117 u16 lnksta; 6118 enum pci_bus_speed next_speed; 6119 enum pcie_link_width next_width; 6120 u32 bw, next_bw; 6121 6122 if (speed) 6123 *speed = PCI_SPEED_UNKNOWN; 6124 if (width) 6125 *width = PCIE_LNK_WIDTH_UNKNOWN; 6126 6127 bw = 0; 6128 6129 while (dev) { 6130 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta); 6131 6132 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS]; 6133 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >> 6134 PCI_EXP_LNKSTA_NLW_SHIFT; 6135 6136 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed); 6137 6138 /* Check if current device limits the total bandwidth */ 6139 if (!bw || next_bw <= bw) { 6140 bw = next_bw; 6141 6142 if (limiting_dev) 6143 *limiting_dev = dev; 6144 if (speed) 6145 *speed = next_speed; 6146 if (width) 6147 *width = next_width; 6148 } 6149 6150 dev = pci_upstream_bridge(dev); 6151 } 6152 6153 return bw; 6154 } 6155 EXPORT_SYMBOL(pcie_bandwidth_available); 6156 6157 /** 6158 * pcie_get_speed_cap - query for the PCI device's link speed capability 6159 * @dev: PCI device to query 6160 * 6161 * Query the PCI device speed capability. Return the maximum link speed 6162 * supported by the device. 6163 */ 6164 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev) 6165 { 6166 u32 lnkcap2, lnkcap; 6167 6168 /* 6169 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The 6170 * implementation note there recommends using the Supported Link 6171 * Speeds Vector in Link Capabilities 2 when supported. 6172 * 6173 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software 6174 * should use the Supported Link Speeds field in Link Capabilities, 6175 * where only 2.5 GT/s and 5.0 GT/s speeds were defined. 6176 */ 6177 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2); 6178 6179 /* PCIe r3.0-compliant */ 6180 if (lnkcap2) 6181 return PCIE_LNKCAP2_SLS2SPEED(lnkcap2); 6182 6183 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 6184 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB) 6185 return PCIE_SPEED_5_0GT; 6186 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB) 6187 return PCIE_SPEED_2_5GT; 6188 6189 return PCI_SPEED_UNKNOWN; 6190 } 6191 EXPORT_SYMBOL(pcie_get_speed_cap); 6192 6193 /** 6194 * pcie_get_width_cap - query for the PCI device's link width capability 6195 * @dev: PCI device to query 6196 * 6197 * Query the PCI device width capability. Return the maximum link width 6198 * supported by the device. 6199 */ 6200 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev) 6201 { 6202 u32 lnkcap; 6203 6204 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 6205 if (lnkcap) 6206 return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4; 6207 6208 return PCIE_LNK_WIDTH_UNKNOWN; 6209 } 6210 EXPORT_SYMBOL(pcie_get_width_cap); 6211 6212 /** 6213 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability 6214 * @dev: PCI device 6215 * @speed: storage for link speed 6216 * @width: storage for link width 6217 * 6218 * Calculate a PCI device's link bandwidth by querying for its link speed 6219 * and width, multiplying them, and applying encoding overhead. The result 6220 * is in Mb/s, i.e., megabits/second of raw bandwidth. 6221 */ 6222 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed, 6223 enum pcie_link_width *width) 6224 { 6225 *speed = pcie_get_speed_cap(dev); 6226 *width = pcie_get_width_cap(dev); 6227 6228 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN) 6229 return 0; 6230 6231 return *width * PCIE_SPEED2MBS_ENC(*speed); 6232 } 6233 6234 /** 6235 * __pcie_print_link_status - Report the PCI device's link speed and width 6236 * @dev: PCI device to query 6237 * @verbose: Print info even when enough bandwidth is available 6238 * 6239 * If the available bandwidth at the device is less than the device is 6240 * capable of, report the device's maximum possible bandwidth and the 6241 * upstream link that limits its performance. If @verbose, always print 6242 * the available bandwidth, even if the device isn't constrained. 6243 */ 6244 void __pcie_print_link_status(struct pci_dev *dev, bool verbose) 6245 { 6246 enum pcie_link_width width, width_cap; 6247 enum pci_bus_speed speed, speed_cap; 6248 struct pci_dev *limiting_dev = NULL; 6249 u32 bw_avail, bw_cap; 6250 6251 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap); 6252 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width); 6253 6254 if (bw_avail >= bw_cap && verbose) 6255 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n", 6256 bw_cap / 1000, bw_cap % 1000, 6257 pci_speed_string(speed_cap), width_cap); 6258 else if (bw_avail < bw_cap) 6259 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n", 6260 bw_avail / 1000, bw_avail % 1000, 6261 pci_speed_string(speed), width, 6262 limiting_dev ? pci_name(limiting_dev) : "<unknown>", 6263 bw_cap / 1000, bw_cap % 1000, 6264 pci_speed_string(speed_cap), width_cap); 6265 } 6266 6267 /** 6268 * pcie_print_link_status - Report the PCI device's link speed and width 6269 * @dev: PCI device to query 6270 * 6271 * Report the available bandwidth at the device. 6272 */ 6273 void pcie_print_link_status(struct pci_dev *dev) 6274 { 6275 __pcie_print_link_status(dev, true); 6276 } 6277 EXPORT_SYMBOL(pcie_print_link_status); 6278 6279 /** 6280 * pci_select_bars - Make BAR mask from the type of resource 6281 * @dev: the PCI device for which BAR mask is made 6282 * @flags: resource type mask to be selected 6283 * 6284 * This helper routine makes bar mask from the type of resource. 6285 */ 6286 int pci_select_bars(struct pci_dev *dev, unsigned long flags) 6287 { 6288 int i, bars = 0; 6289 for (i = 0; i < PCI_NUM_RESOURCES; i++) 6290 if (pci_resource_flags(dev, i) & flags) 6291 bars |= (1 << i); 6292 return bars; 6293 } 6294 EXPORT_SYMBOL(pci_select_bars); 6295 6296 /* Some architectures require additional programming to enable VGA */ 6297 static arch_set_vga_state_t arch_set_vga_state; 6298 6299 void __init pci_register_set_vga_state(arch_set_vga_state_t func) 6300 { 6301 arch_set_vga_state = func; /* NULL disables */ 6302 } 6303 6304 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode, 6305 unsigned int command_bits, u32 flags) 6306 { 6307 if (arch_set_vga_state) 6308 return arch_set_vga_state(dev, decode, command_bits, 6309 flags); 6310 return 0; 6311 } 6312 6313 /** 6314 * pci_set_vga_state - set VGA decode state on device and parents if requested 6315 * @dev: the PCI device 6316 * @decode: true = enable decoding, false = disable decoding 6317 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY 6318 * @flags: traverse ancestors and change bridges 6319 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE 6320 */ 6321 int pci_set_vga_state(struct pci_dev *dev, bool decode, 6322 unsigned int command_bits, u32 flags) 6323 { 6324 struct pci_bus *bus; 6325 struct pci_dev *bridge; 6326 u16 cmd; 6327 int rc; 6328 6329 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY))); 6330 6331 /* ARCH specific VGA enables */ 6332 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags); 6333 if (rc) 6334 return rc; 6335 6336 if (flags & PCI_VGA_STATE_CHANGE_DECODES) { 6337 pci_read_config_word(dev, PCI_COMMAND, &cmd); 6338 if (decode) 6339 cmd |= command_bits; 6340 else 6341 cmd &= ~command_bits; 6342 pci_write_config_word(dev, PCI_COMMAND, cmd); 6343 } 6344 6345 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE)) 6346 return 0; 6347 6348 bus = dev->bus; 6349 while (bus) { 6350 bridge = bus->self; 6351 if (bridge) { 6352 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL, 6353 &cmd); 6354 if (decode) 6355 cmd |= PCI_BRIDGE_CTL_VGA; 6356 else 6357 cmd &= ~PCI_BRIDGE_CTL_VGA; 6358 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL, 6359 cmd); 6360 } 6361 bus = bus->parent; 6362 } 6363 return 0; 6364 } 6365 6366 #ifdef CONFIG_ACPI 6367 bool pci_pr3_present(struct pci_dev *pdev) 6368 { 6369 struct acpi_device *adev; 6370 6371 if (acpi_disabled) 6372 return false; 6373 6374 adev = ACPI_COMPANION(&pdev->dev); 6375 if (!adev) 6376 return false; 6377 6378 return adev->power.flags.power_resources && 6379 acpi_has_method(adev->handle, "_PR3"); 6380 } 6381 EXPORT_SYMBOL_GPL(pci_pr3_present); 6382 #endif 6383 6384 /** 6385 * pci_add_dma_alias - Add a DMA devfn alias for a device 6386 * @dev: the PCI device for which alias is added 6387 * @devfn_from: alias slot and function 6388 * @nr_devfns: number of subsequent devfns to alias 6389 * 6390 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask 6391 * which is used to program permissible bus-devfn source addresses for DMA 6392 * requests in an IOMMU. These aliases factor into IOMMU group creation 6393 * and are useful for devices generating DMA requests beyond or different 6394 * from their logical bus-devfn. Examples include device quirks where the 6395 * device simply uses the wrong devfn, as well as non-transparent bridges 6396 * where the alias may be a proxy for devices in another domain. 6397 * 6398 * IOMMU group creation is performed during device discovery or addition, 6399 * prior to any potential DMA mapping and therefore prior to driver probing 6400 * (especially for userspace assigned devices where IOMMU group definition 6401 * cannot be left as a userspace activity). DMA aliases should therefore 6402 * be configured via quirks, such as the PCI fixup header quirk. 6403 */ 6404 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from, 6405 unsigned int nr_devfns) 6406 { 6407 int devfn_to; 6408 6409 nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from); 6410 devfn_to = devfn_from + nr_devfns - 1; 6411 6412 if (!dev->dma_alias_mask) 6413 dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL); 6414 if (!dev->dma_alias_mask) { 6415 pci_warn(dev, "Unable to allocate DMA alias mask\n"); 6416 return; 6417 } 6418 6419 bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns); 6420 6421 if (nr_devfns == 1) 6422 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n", 6423 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from)); 6424 else if (nr_devfns > 1) 6425 pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n", 6426 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from), 6427 PCI_SLOT(devfn_to), PCI_FUNC(devfn_to)); 6428 } 6429 6430 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2) 6431 { 6432 return (dev1->dma_alias_mask && 6433 test_bit(dev2->devfn, dev1->dma_alias_mask)) || 6434 (dev2->dma_alias_mask && 6435 test_bit(dev1->devfn, dev2->dma_alias_mask)) || 6436 pci_real_dma_dev(dev1) == dev2 || 6437 pci_real_dma_dev(dev2) == dev1; 6438 } 6439 6440 bool pci_device_is_present(struct pci_dev *pdev) 6441 { 6442 u32 v; 6443 6444 /* Check PF if pdev is a VF, since VF Vendor/Device IDs are 0xffff */ 6445 pdev = pci_physfn(pdev); 6446 if (pci_dev_is_disconnected(pdev)) 6447 return false; 6448 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0); 6449 } 6450 EXPORT_SYMBOL_GPL(pci_device_is_present); 6451 6452 void pci_ignore_hotplug(struct pci_dev *dev) 6453 { 6454 struct pci_dev *bridge = dev->bus->self; 6455 6456 dev->ignore_hotplug = 1; 6457 /* Propagate the "ignore hotplug" setting to the parent bridge. */ 6458 if (bridge) 6459 bridge->ignore_hotplug = 1; 6460 } 6461 EXPORT_SYMBOL_GPL(pci_ignore_hotplug); 6462 6463 /** 6464 * pci_real_dma_dev - Get PCI DMA device for PCI device 6465 * @dev: the PCI device that may have a PCI DMA alias 6466 * 6467 * Permits the platform to provide architecture-specific functionality to 6468 * devices needing to alias DMA to another PCI device on another PCI bus. If 6469 * the PCI device is on the same bus, it is recommended to use 6470 * pci_add_dma_alias(). This is the default implementation. Architecture 6471 * implementations can override this. 6472 */ 6473 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev) 6474 { 6475 return dev; 6476 } 6477 6478 resource_size_t __weak pcibios_default_alignment(void) 6479 { 6480 return 0; 6481 } 6482 6483 /* 6484 * Arches that don't want to expose struct resource to userland as-is in 6485 * sysfs and /proc can implement their own pci_resource_to_user(). 6486 */ 6487 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar, 6488 const struct resource *rsrc, 6489 resource_size_t *start, resource_size_t *end) 6490 { 6491 *start = rsrc->start; 6492 *end = rsrc->end; 6493 } 6494 6495 static char *resource_alignment_param; 6496 static DEFINE_SPINLOCK(resource_alignment_lock); 6497 6498 /** 6499 * pci_specified_resource_alignment - get resource alignment specified by user. 6500 * @dev: the PCI device to get 6501 * @resize: whether or not to change resources' size when reassigning alignment 6502 * 6503 * RETURNS: Resource alignment if it is specified. 6504 * Zero if it is not specified. 6505 */ 6506 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev, 6507 bool *resize) 6508 { 6509 int align_order, count; 6510 resource_size_t align = pcibios_default_alignment(); 6511 const char *p; 6512 int ret; 6513 6514 spin_lock(&resource_alignment_lock); 6515 p = resource_alignment_param; 6516 if (!p || !*p) 6517 goto out; 6518 if (pci_has_flag(PCI_PROBE_ONLY)) { 6519 align = 0; 6520 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n"); 6521 goto out; 6522 } 6523 6524 while (*p) { 6525 count = 0; 6526 if (sscanf(p, "%d%n", &align_order, &count) == 1 && 6527 p[count] == '@') { 6528 p += count + 1; 6529 if (align_order > 63) { 6530 pr_err("PCI: Invalid requested alignment (order %d)\n", 6531 align_order); 6532 align_order = PAGE_SHIFT; 6533 } 6534 } else { 6535 align_order = PAGE_SHIFT; 6536 } 6537 6538 ret = pci_dev_str_match(dev, p, &p); 6539 if (ret == 1) { 6540 *resize = true; 6541 align = 1ULL << align_order; 6542 break; 6543 } else if (ret < 0) { 6544 pr_err("PCI: Can't parse resource_alignment parameter: %s\n", 6545 p); 6546 break; 6547 } 6548 6549 if (*p != ';' && *p != ',') { 6550 /* End of param or invalid format */ 6551 break; 6552 } 6553 p++; 6554 } 6555 out: 6556 spin_unlock(&resource_alignment_lock); 6557 return align; 6558 } 6559 6560 static void pci_request_resource_alignment(struct pci_dev *dev, int bar, 6561 resource_size_t align, bool resize) 6562 { 6563 struct resource *r = &dev->resource[bar]; 6564 resource_size_t size; 6565 6566 if (!(r->flags & IORESOURCE_MEM)) 6567 return; 6568 6569 if (r->flags & IORESOURCE_PCI_FIXED) { 6570 pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n", 6571 bar, r, (unsigned long long)align); 6572 return; 6573 } 6574 6575 size = resource_size(r); 6576 if (size >= align) 6577 return; 6578 6579 /* 6580 * Increase the alignment of the resource. There are two ways we 6581 * can do this: 6582 * 6583 * 1) Increase the size of the resource. BARs are aligned on their 6584 * size, so when we reallocate space for this resource, we'll 6585 * allocate it with the larger alignment. This also prevents 6586 * assignment of any other BARs inside the alignment region, so 6587 * if we're requesting page alignment, this means no other BARs 6588 * will share the page. 6589 * 6590 * The disadvantage is that this makes the resource larger than 6591 * the hardware BAR, which may break drivers that compute things 6592 * based on the resource size, e.g., to find registers at a 6593 * fixed offset before the end of the BAR. 6594 * 6595 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and 6596 * set r->start to the desired alignment. By itself this 6597 * doesn't prevent other BARs being put inside the alignment 6598 * region, but if we realign *every* resource of every device in 6599 * the system, none of them will share an alignment region. 6600 * 6601 * When the user has requested alignment for only some devices via 6602 * the "pci=resource_alignment" argument, "resize" is true and we 6603 * use the first method. Otherwise we assume we're aligning all 6604 * devices and we use the second. 6605 */ 6606 6607 pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n", 6608 bar, r, (unsigned long long)align); 6609 6610 if (resize) { 6611 r->start = 0; 6612 r->end = align - 1; 6613 } else { 6614 r->flags &= ~IORESOURCE_SIZEALIGN; 6615 r->flags |= IORESOURCE_STARTALIGN; 6616 r->start = align; 6617 r->end = r->start + size - 1; 6618 } 6619 r->flags |= IORESOURCE_UNSET; 6620 } 6621 6622 /* 6623 * This function disables memory decoding and releases memory resources 6624 * of the device specified by kernel's boot parameter 'pci=resource_alignment='. 6625 * It also rounds up size to specified alignment. 6626 * Later on, the kernel will assign page-aligned memory resource back 6627 * to the device. 6628 */ 6629 void pci_reassigndev_resource_alignment(struct pci_dev *dev) 6630 { 6631 int i; 6632 struct resource *r; 6633 resource_size_t align; 6634 u16 command; 6635 bool resize = false; 6636 6637 /* 6638 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec 6639 * 3.4.1.11. Their resources are allocated from the space 6640 * described by the VF BARx register in the PF's SR-IOV capability. 6641 * We can't influence their alignment here. 6642 */ 6643 if (dev->is_virtfn) 6644 return; 6645 6646 /* check if specified PCI is target device to reassign */ 6647 align = pci_specified_resource_alignment(dev, &resize); 6648 if (!align) 6649 return; 6650 6651 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL && 6652 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) { 6653 pci_warn(dev, "Can't reassign resources to host bridge\n"); 6654 return; 6655 } 6656 6657 pci_read_config_word(dev, PCI_COMMAND, &command); 6658 command &= ~PCI_COMMAND_MEMORY; 6659 pci_write_config_word(dev, PCI_COMMAND, command); 6660 6661 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 6662 pci_request_resource_alignment(dev, i, align, resize); 6663 6664 /* 6665 * Need to disable bridge's resource window, 6666 * to enable the kernel to reassign new resource 6667 * window later on. 6668 */ 6669 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 6670 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) { 6671 r = &dev->resource[i]; 6672 if (!(r->flags & IORESOURCE_MEM)) 6673 continue; 6674 r->flags |= IORESOURCE_UNSET; 6675 r->end = resource_size(r) - 1; 6676 r->start = 0; 6677 } 6678 pci_disable_bridge_window(dev); 6679 } 6680 } 6681 6682 static ssize_t resource_alignment_show(struct bus_type *bus, char *buf) 6683 { 6684 size_t count = 0; 6685 6686 spin_lock(&resource_alignment_lock); 6687 if (resource_alignment_param) 6688 count = sysfs_emit(buf, "%s\n", resource_alignment_param); 6689 spin_unlock(&resource_alignment_lock); 6690 6691 return count; 6692 } 6693 6694 static ssize_t resource_alignment_store(struct bus_type *bus, 6695 const char *buf, size_t count) 6696 { 6697 char *param, *old, *end; 6698 6699 if (count >= (PAGE_SIZE - 1)) 6700 return -EINVAL; 6701 6702 param = kstrndup(buf, count, GFP_KERNEL); 6703 if (!param) 6704 return -ENOMEM; 6705 6706 end = strchr(param, '\n'); 6707 if (end) 6708 *end = '\0'; 6709 6710 spin_lock(&resource_alignment_lock); 6711 old = resource_alignment_param; 6712 if (strlen(param)) { 6713 resource_alignment_param = param; 6714 } else { 6715 kfree(param); 6716 resource_alignment_param = NULL; 6717 } 6718 spin_unlock(&resource_alignment_lock); 6719 6720 kfree(old); 6721 6722 return count; 6723 } 6724 6725 static BUS_ATTR_RW(resource_alignment); 6726 6727 static int __init pci_resource_alignment_sysfs_init(void) 6728 { 6729 return bus_create_file(&pci_bus_type, 6730 &bus_attr_resource_alignment); 6731 } 6732 late_initcall(pci_resource_alignment_sysfs_init); 6733 6734 static void pci_no_domains(void) 6735 { 6736 #ifdef CONFIG_PCI_DOMAINS 6737 pci_domains_supported = 0; 6738 #endif 6739 } 6740 6741 #ifdef CONFIG_PCI_DOMAINS_GENERIC 6742 static DEFINE_IDA(pci_domain_nr_static_ida); 6743 static DEFINE_IDA(pci_domain_nr_dynamic_ida); 6744 6745 static void of_pci_reserve_static_domain_nr(void) 6746 { 6747 struct device_node *np; 6748 int domain_nr; 6749 6750 for_each_node_by_type(np, "pci") { 6751 domain_nr = of_get_pci_domain_nr(np); 6752 if (domain_nr < 0) 6753 continue; 6754 /* 6755 * Permanently allocate domain_nr in dynamic_ida 6756 * to prevent it from dynamic allocation. 6757 */ 6758 ida_alloc_range(&pci_domain_nr_dynamic_ida, 6759 domain_nr, domain_nr, GFP_KERNEL); 6760 } 6761 } 6762 6763 static int of_pci_bus_find_domain_nr(struct device *parent) 6764 { 6765 static bool static_domains_reserved = false; 6766 int domain_nr; 6767 6768 /* On the first call scan device tree for static allocations. */ 6769 if (!static_domains_reserved) { 6770 of_pci_reserve_static_domain_nr(); 6771 static_domains_reserved = true; 6772 } 6773 6774 if (parent) { 6775 /* 6776 * If domain is in DT, allocate it in static IDA. This 6777 * prevents duplicate static allocations in case of errors 6778 * in DT. 6779 */ 6780 domain_nr = of_get_pci_domain_nr(parent->of_node); 6781 if (domain_nr >= 0) 6782 return ida_alloc_range(&pci_domain_nr_static_ida, 6783 domain_nr, domain_nr, 6784 GFP_KERNEL); 6785 } 6786 6787 /* 6788 * If domain was not specified in DT, choose a free ID from dynamic 6789 * allocations. All domain numbers from DT are permanently in 6790 * dynamic allocations to prevent assigning them to other DT nodes 6791 * without static domain. 6792 */ 6793 return ida_alloc(&pci_domain_nr_dynamic_ida, GFP_KERNEL); 6794 } 6795 6796 static void of_pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent) 6797 { 6798 if (bus->domain_nr < 0) 6799 return; 6800 6801 /* Release domain from IDA where it was allocated. */ 6802 if (of_get_pci_domain_nr(parent->of_node) == bus->domain_nr) 6803 ida_free(&pci_domain_nr_static_ida, bus->domain_nr); 6804 else 6805 ida_free(&pci_domain_nr_dynamic_ida, bus->domain_nr); 6806 } 6807 6808 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent) 6809 { 6810 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) : 6811 acpi_pci_bus_find_domain_nr(bus); 6812 } 6813 6814 void pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent) 6815 { 6816 if (!acpi_disabled) 6817 return; 6818 of_pci_bus_release_domain_nr(bus, parent); 6819 } 6820 #endif 6821 6822 /** 6823 * pci_ext_cfg_avail - can we access extended PCI config space? 6824 * 6825 * Returns 1 if we can access PCI extended config space (offsets 6826 * greater than 0xff). This is the default implementation. Architecture 6827 * implementations can override this. 6828 */ 6829 int __weak pci_ext_cfg_avail(void) 6830 { 6831 return 1; 6832 } 6833 6834 void __weak pci_fixup_cardbus(struct pci_bus *bus) 6835 { 6836 } 6837 EXPORT_SYMBOL(pci_fixup_cardbus); 6838 6839 static int __init pci_setup(char *str) 6840 { 6841 while (str) { 6842 char *k = strchr(str, ','); 6843 if (k) 6844 *k++ = 0; 6845 if (*str && (str = pcibios_setup(str)) && *str) { 6846 if (!strcmp(str, "nomsi")) { 6847 pci_no_msi(); 6848 } else if (!strncmp(str, "noats", 5)) { 6849 pr_info("PCIe: ATS is disabled\n"); 6850 pcie_ats_disabled = true; 6851 } else if (!strcmp(str, "noaer")) { 6852 pci_no_aer(); 6853 } else if (!strcmp(str, "earlydump")) { 6854 pci_early_dump = true; 6855 } else if (!strncmp(str, "realloc=", 8)) { 6856 pci_realloc_get_opt(str + 8); 6857 } else if (!strncmp(str, "realloc", 7)) { 6858 pci_realloc_get_opt("on"); 6859 } else if (!strcmp(str, "nodomains")) { 6860 pci_no_domains(); 6861 } else if (!strncmp(str, "noari", 5)) { 6862 pcie_ari_disabled = true; 6863 } else if (!strncmp(str, "cbiosize=", 9)) { 6864 pci_cardbus_io_size = memparse(str + 9, &str); 6865 } else if (!strncmp(str, "cbmemsize=", 10)) { 6866 pci_cardbus_mem_size = memparse(str + 10, &str); 6867 } else if (!strncmp(str, "resource_alignment=", 19)) { 6868 resource_alignment_param = str + 19; 6869 } else if (!strncmp(str, "ecrc=", 5)) { 6870 pcie_ecrc_get_policy(str + 5); 6871 } else if (!strncmp(str, "hpiosize=", 9)) { 6872 pci_hotplug_io_size = memparse(str + 9, &str); 6873 } else if (!strncmp(str, "hpmmiosize=", 11)) { 6874 pci_hotplug_mmio_size = memparse(str + 11, &str); 6875 } else if (!strncmp(str, "hpmmioprefsize=", 15)) { 6876 pci_hotplug_mmio_pref_size = memparse(str + 15, &str); 6877 } else if (!strncmp(str, "hpmemsize=", 10)) { 6878 pci_hotplug_mmio_size = memparse(str + 10, &str); 6879 pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size; 6880 } else if (!strncmp(str, "hpbussize=", 10)) { 6881 pci_hotplug_bus_size = 6882 simple_strtoul(str + 10, &str, 0); 6883 if (pci_hotplug_bus_size > 0xff) 6884 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 6885 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) { 6886 pcie_bus_config = PCIE_BUS_TUNE_OFF; 6887 } else if (!strncmp(str, "pcie_bus_safe", 13)) { 6888 pcie_bus_config = PCIE_BUS_SAFE; 6889 } else if (!strncmp(str, "pcie_bus_perf", 13)) { 6890 pcie_bus_config = PCIE_BUS_PERFORMANCE; 6891 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) { 6892 pcie_bus_config = PCIE_BUS_PEER2PEER; 6893 } else if (!strncmp(str, "pcie_scan_all", 13)) { 6894 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS); 6895 } else if (!strncmp(str, "disable_acs_redir=", 18)) { 6896 disable_acs_redir_param = str + 18; 6897 } else { 6898 pr_err("PCI: Unknown option `%s'\n", str); 6899 } 6900 } 6901 str = k; 6902 } 6903 return 0; 6904 } 6905 early_param("pci", pci_setup); 6906 6907 /* 6908 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized 6909 * in pci_setup(), above, to point to data in the __initdata section which 6910 * will be freed after the init sequence is complete. We can't allocate memory 6911 * in pci_setup() because some architectures do not have any memory allocation 6912 * service available during an early_param() call. So we allocate memory and 6913 * copy the variable here before the init section is freed. 6914 * 6915 */ 6916 static int __init pci_realloc_setup_params(void) 6917 { 6918 resource_alignment_param = kstrdup(resource_alignment_param, 6919 GFP_KERNEL); 6920 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL); 6921 6922 return 0; 6923 } 6924 pure_initcall(pci_realloc_setup_params); 6925