1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * PCI Bus Services, see include/linux/pci.h for further explanation. 4 * 5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter, 6 * David Mosberger-Tang 7 * 8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz> 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/kernel.h> 13 #include <linux/delay.h> 14 #include <linux/dmi.h> 15 #include <linux/init.h> 16 #include <linux/msi.h> 17 #include <linux/of.h> 18 #include <linux/pci.h> 19 #include <linux/pm.h> 20 #include <linux/slab.h> 21 #include <linux/module.h> 22 #include <linux/spinlock.h> 23 #include <linux/string.h> 24 #include <linux/log2.h> 25 #include <linux/logic_pio.h> 26 #include <linux/pm_wakeup.h> 27 #include <linux/interrupt.h> 28 #include <linux/device.h> 29 #include <linux/pm_runtime.h> 30 #include <linux/pci_hotplug.h> 31 #include <linux/vmalloc.h> 32 #include <asm/dma.h> 33 #include <linux/aer.h> 34 #include <linux/bitfield.h> 35 #include "pci.h" 36 37 DEFINE_MUTEX(pci_slot_mutex); 38 39 const char *pci_power_names[] = { 40 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown", 41 }; 42 EXPORT_SYMBOL_GPL(pci_power_names); 43 44 #ifdef CONFIG_X86_32 45 int isa_dma_bridge_buggy; 46 EXPORT_SYMBOL(isa_dma_bridge_buggy); 47 #endif 48 49 int pci_pci_problems; 50 EXPORT_SYMBOL(pci_pci_problems); 51 52 unsigned int pci_pm_d3hot_delay; 53 54 static void pci_pme_list_scan(struct work_struct *work); 55 56 static LIST_HEAD(pci_pme_list); 57 static DEFINE_MUTEX(pci_pme_list_mutex); 58 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan); 59 60 struct pci_pme_device { 61 struct list_head list; 62 struct pci_dev *dev; 63 }; 64 65 #define PME_TIMEOUT 1000 /* How long between PME checks */ 66 67 /* 68 * Following exit from Conventional Reset, devices must be ready within 1 sec 69 * (PCIe r6.0 sec 6.6.1). A D3cold to D0 transition implies a Conventional 70 * Reset (PCIe r6.0 sec 5.8). 71 */ 72 #define PCI_RESET_WAIT 1000 /* msec */ 73 74 /* 75 * Devices may extend the 1 sec period through Request Retry Status 76 * completions (PCIe r6.0 sec 2.3.1). The spec does not provide an upper 77 * limit, but 60 sec ought to be enough for any device to become 78 * responsive. 79 */ 80 #define PCIE_RESET_READY_POLL_MS 60000 /* msec */ 81 82 static void pci_dev_d3_sleep(struct pci_dev *dev) 83 { 84 unsigned int delay_ms = max(dev->d3hot_delay, pci_pm_d3hot_delay); 85 unsigned int upper; 86 87 if (delay_ms) { 88 /* Use a 20% upper bound, 1ms minimum */ 89 upper = max(DIV_ROUND_CLOSEST(delay_ms, 5), 1U); 90 usleep_range(delay_ms * USEC_PER_MSEC, 91 (delay_ms + upper) * USEC_PER_MSEC); 92 } 93 } 94 95 bool pci_reset_supported(struct pci_dev *dev) 96 { 97 return dev->reset_methods[0] != 0; 98 } 99 100 #ifdef CONFIG_PCI_DOMAINS 101 int pci_domains_supported = 1; 102 #endif 103 104 #define DEFAULT_CARDBUS_IO_SIZE (256) 105 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024) 106 /* pci=cbmemsize=nnM,cbiosize=nn can override this */ 107 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE; 108 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE; 109 110 #define DEFAULT_HOTPLUG_IO_SIZE (256) 111 #define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024) 112 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024) 113 /* hpiosize=nn can override this */ 114 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE; 115 /* 116 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size, 117 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size; 118 * pci=hpmemsize=nnM overrides both 119 */ 120 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE; 121 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE; 122 123 #define DEFAULT_HOTPLUG_BUS_SIZE 1 124 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 125 126 127 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */ 128 #ifdef CONFIG_PCIE_BUS_TUNE_OFF 129 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF; 130 #elif defined CONFIG_PCIE_BUS_SAFE 131 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE; 132 #elif defined CONFIG_PCIE_BUS_PERFORMANCE 133 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE; 134 #elif defined CONFIG_PCIE_BUS_PEER2PEER 135 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER; 136 #else 137 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT; 138 #endif 139 140 /* 141 * The default CLS is used if arch didn't set CLS explicitly and not 142 * all pci devices agree on the same value. Arch can override either 143 * the dfl or actual value as it sees fit. Don't forget this is 144 * measured in 32-bit words, not bytes. 145 */ 146 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2; 147 u8 pci_cache_line_size; 148 149 /* 150 * If we set up a device for bus mastering, we need to check the latency 151 * timer as certain BIOSes forget to set it properly. 152 */ 153 unsigned int pcibios_max_latency = 255; 154 155 /* If set, the PCIe ARI capability will not be used. */ 156 static bool pcie_ari_disabled; 157 158 /* If set, the PCIe ATS capability will not be used. */ 159 static bool pcie_ats_disabled; 160 161 /* If set, the PCI config space of each device is printed during boot. */ 162 bool pci_early_dump; 163 164 bool pci_ats_disabled(void) 165 { 166 return pcie_ats_disabled; 167 } 168 EXPORT_SYMBOL_GPL(pci_ats_disabled); 169 170 /* Disable bridge_d3 for all PCIe ports */ 171 static bool pci_bridge_d3_disable; 172 /* Force bridge_d3 for all PCIe ports */ 173 static bool pci_bridge_d3_force; 174 175 static int __init pcie_port_pm_setup(char *str) 176 { 177 if (!strcmp(str, "off")) 178 pci_bridge_d3_disable = true; 179 else if (!strcmp(str, "force")) 180 pci_bridge_d3_force = true; 181 return 1; 182 } 183 __setup("pcie_port_pm=", pcie_port_pm_setup); 184 185 /** 186 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children 187 * @bus: pointer to PCI bus structure to search 188 * 189 * Given a PCI bus, returns the highest PCI bus number present in the set 190 * including the given PCI bus and its list of child PCI buses. 191 */ 192 unsigned char pci_bus_max_busnr(struct pci_bus *bus) 193 { 194 struct pci_bus *tmp; 195 unsigned char max, n; 196 197 max = bus->busn_res.end; 198 list_for_each_entry(tmp, &bus->children, node) { 199 n = pci_bus_max_busnr(tmp); 200 if (n > max) 201 max = n; 202 } 203 return max; 204 } 205 EXPORT_SYMBOL_GPL(pci_bus_max_busnr); 206 207 /** 208 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS 209 * @pdev: the PCI device 210 * 211 * Returns error bits set in PCI_STATUS and clears them. 212 */ 213 int pci_status_get_and_clear_errors(struct pci_dev *pdev) 214 { 215 u16 status; 216 int ret; 217 218 ret = pci_read_config_word(pdev, PCI_STATUS, &status); 219 if (ret != PCIBIOS_SUCCESSFUL) 220 return -EIO; 221 222 status &= PCI_STATUS_ERROR_BITS; 223 if (status) 224 pci_write_config_word(pdev, PCI_STATUS, status); 225 226 return status; 227 } 228 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors); 229 230 #ifdef CONFIG_HAS_IOMEM 231 static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar, 232 bool write_combine) 233 { 234 struct resource *res = &pdev->resource[bar]; 235 resource_size_t start = res->start; 236 resource_size_t size = resource_size(res); 237 238 /* 239 * Make sure the BAR is actually a memory resource, not an IO resource 240 */ 241 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) { 242 pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res); 243 return NULL; 244 } 245 246 if (write_combine) 247 return ioremap_wc(start, size); 248 249 return ioremap(start, size); 250 } 251 252 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar) 253 { 254 return __pci_ioremap_resource(pdev, bar, false); 255 } 256 EXPORT_SYMBOL_GPL(pci_ioremap_bar); 257 258 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar) 259 { 260 return __pci_ioremap_resource(pdev, bar, true); 261 } 262 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar); 263 #endif 264 265 /** 266 * pci_dev_str_match_path - test if a path string matches a device 267 * @dev: the PCI device to test 268 * @path: string to match the device against 269 * @endptr: pointer to the string after the match 270 * 271 * Test if a string (typically from a kernel parameter) formatted as a 272 * path of device/function addresses matches a PCI device. The string must 273 * be of the form: 274 * 275 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 276 * 277 * A path for a device can be obtained using 'lspci -t'. Using a path 278 * is more robust against bus renumbering than using only a single bus, 279 * device and function address. 280 * 281 * Returns 1 if the string matches the device, 0 if it does not and 282 * a negative error code if it fails to parse the string. 283 */ 284 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path, 285 const char **endptr) 286 { 287 int ret; 288 unsigned int seg, bus, slot, func; 289 char *wpath, *p; 290 char end; 291 292 *endptr = strchrnul(path, ';'); 293 294 wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC); 295 if (!wpath) 296 return -ENOMEM; 297 298 while (1) { 299 p = strrchr(wpath, '/'); 300 if (!p) 301 break; 302 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end); 303 if (ret != 2) { 304 ret = -EINVAL; 305 goto free_and_exit; 306 } 307 308 if (dev->devfn != PCI_DEVFN(slot, func)) { 309 ret = 0; 310 goto free_and_exit; 311 } 312 313 /* 314 * Note: we don't need to get a reference to the upstream 315 * bridge because we hold a reference to the top level 316 * device which should hold a reference to the bridge, 317 * and so on. 318 */ 319 dev = pci_upstream_bridge(dev); 320 if (!dev) { 321 ret = 0; 322 goto free_and_exit; 323 } 324 325 *p = 0; 326 } 327 328 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot, 329 &func, &end); 330 if (ret != 4) { 331 seg = 0; 332 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end); 333 if (ret != 3) { 334 ret = -EINVAL; 335 goto free_and_exit; 336 } 337 } 338 339 ret = (seg == pci_domain_nr(dev->bus) && 340 bus == dev->bus->number && 341 dev->devfn == PCI_DEVFN(slot, func)); 342 343 free_and_exit: 344 kfree(wpath); 345 return ret; 346 } 347 348 /** 349 * pci_dev_str_match - test if a string matches a device 350 * @dev: the PCI device to test 351 * @p: string to match the device against 352 * @endptr: pointer to the string after the match 353 * 354 * Test if a string (typically from a kernel parameter) matches a specified 355 * PCI device. The string may be of one of the following formats: 356 * 357 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 358 * pci:<vendor>:<device>[:<subvendor>:<subdevice>] 359 * 360 * The first format specifies a PCI bus/device/function address which 361 * may change if new hardware is inserted, if motherboard firmware changes, 362 * or due to changes caused in kernel parameters. If the domain is 363 * left unspecified, it is taken to be 0. In order to be robust against 364 * bus renumbering issues, a path of PCI device/function numbers may be used 365 * to address the specific device. The path for a device can be determined 366 * through the use of 'lspci -t'. 367 * 368 * The second format matches devices using IDs in the configuration 369 * space which may match multiple devices in the system. A value of 0 370 * for any field will match all devices. (Note: this differs from 371 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for 372 * legacy reasons and convenience so users don't have to specify 373 * FFFFFFFFs on the command line.) 374 * 375 * Returns 1 if the string matches the device, 0 if it does not and 376 * a negative error code if the string cannot be parsed. 377 */ 378 static int pci_dev_str_match(struct pci_dev *dev, const char *p, 379 const char **endptr) 380 { 381 int ret; 382 int count; 383 unsigned short vendor, device, subsystem_vendor, subsystem_device; 384 385 if (strncmp(p, "pci:", 4) == 0) { 386 /* PCI vendor/device (subvendor/subdevice) IDs are specified */ 387 p += 4; 388 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device, 389 &subsystem_vendor, &subsystem_device, &count); 390 if (ret != 4) { 391 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count); 392 if (ret != 2) 393 return -EINVAL; 394 395 subsystem_vendor = 0; 396 subsystem_device = 0; 397 } 398 399 p += count; 400 401 if ((!vendor || vendor == dev->vendor) && 402 (!device || device == dev->device) && 403 (!subsystem_vendor || 404 subsystem_vendor == dev->subsystem_vendor) && 405 (!subsystem_device || 406 subsystem_device == dev->subsystem_device)) 407 goto found; 408 } else { 409 /* 410 * PCI Bus, Device, Function IDs are specified 411 * (optionally, may include a path of devfns following it) 412 */ 413 ret = pci_dev_str_match_path(dev, p, &p); 414 if (ret < 0) 415 return ret; 416 else if (ret) 417 goto found; 418 } 419 420 *endptr = p; 421 return 0; 422 423 found: 424 *endptr = p; 425 return 1; 426 } 427 428 static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn, 429 u8 pos, int cap, int *ttl) 430 { 431 u8 id; 432 u16 ent; 433 434 pci_bus_read_config_byte(bus, devfn, pos, &pos); 435 436 while ((*ttl)--) { 437 if (pos < 0x40) 438 break; 439 pos &= ~3; 440 pci_bus_read_config_word(bus, devfn, pos, &ent); 441 442 id = ent & 0xff; 443 if (id == 0xff) 444 break; 445 if (id == cap) 446 return pos; 447 pos = (ent >> 8); 448 } 449 return 0; 450 } 451 452 static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn, 453 u8 pos, int cap) 454 { 455 int ttl = PCI_FIND_CAP_TTL; 456 457 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl); 458 } 459 460 u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap) 461 { 462 return __pci_find_next_cap(dev->bus, dev->devfn, 463 pos + PCI_CAP_LIST_NEXT, cap); 464 } 465 EXPORT_SYMBOL_GPL(pci_find_next_capability); 466 467 static u8 __pci_bus_find_cap_start(struct pci_bus *bus, 468 unsigned int devfn, u8 hdr_type) 469 { 470 u16 status; 471 472 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status); 473 if (!(status & PCI_STATUS_CAP_LIST)) 474 return 0; 475 476 switch (hdr_type) { 477 case PCI_HEADER_TYPE_NORMAL: 478 case PCI_HEADER_TYPE_BRIDGE: 479 return PCI_CAPABILITY_LIST; 480 case PCI_HEADER_TYPE_CARDBUS: 481 return PCI_CB_CAPABILITY_LIST; 482 } 483 484 return 0; 485 } 486 487 /** 488 * pci_find_capability - query for devices' capabilities 489 * @dev: PCI device to query 490 * @cap: capability code 491 * 492 * Tell if a device supports a given PCI capability. 493 * Returns the address of the requested capability structure within the 494 * device's PCI configuration space or 0 in case the device does not 495 * support it. Possible values for @cap include: 496 * 497 * %PCI_CAP_ID_PM Power Management 498 * %PCI_CAP_ID_AGP Accelerated Graphics Port 499 * %PCI_CAP_ID_VPD Vital Product Data 500 * %PCI_CAP_ID_SLOTID Slot Identification 501 * %PCI_CAP_ID_MSI Message Signalled Interrupts 502 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap 503 * %PCI_CAP_ID_PCIX PCI-X 504 * %PCI_CAP_ID_EXP PCI Express 505 */ 506 u8 pci_find_capability(struct pci_dev *dev, int cap) 507 { 508 u8 pos; 509 510 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 511 if (pos) 512 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap); 513 514 return pos; 515 } 516 EXPORT_SYMBOL(pci_find_capability); 517 518 /** 519 * pci_bus_find_capability - query for devices' capabilities 520 * @bus: the PCI bus to query 521 * @devfn: PCI device to query 522 * @cap: capability code 523 * 524 * Like pci_find_capability() but works for PCI devices that do not have a 525 * pci_dev structure set up yet. 526 * 527 * Returns the address of the requested capability structure within the 528 * device's PCI configuration space or 0 in case the device does not 529 * support it. 530 */ 531 u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap) 532 { 533 u8 hdr_type, pos; 534 535 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type); 536 537 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f); 538 if (pos) 539 pos = __pci_find_next_cap(bus, devfn, pos, cap); 540 541 return pos; 542 } 543 EXPORT_SYMBOL(pci_bus_find_capability); 544 545 /** 546 * pci_find_next_ext_capability - Find an extended capability 547 * @dev: PCI device to query 548 * @start: address at which to start looking (0 to start at beginning of list) 549 * @cap: capability code 550 * 551 * Returns the address of the next matching extended capability structure 552 * within the device's PCI configuration space or 0 if the device does 553 * not support it. Some capabilities can occur several times, e.g., the 554 * vendor-specific capability, and this provides a way to find them all. 555 */ 556 u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap) 557 { 558 u32 header; 559 int ttl; 560 u16 pos = PCI_CFG_SPACE_SIZE; 561 562 /* minimum 8 bytes per capability */ 563 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8; 564 565 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE) 566 return 0; 567 568 if (start) 569 pos = start; 570 571 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 572 return 0; 573 574 /* 575 * If we have no capabilities, this is indicated by cap ID, 576 * cap version and next pointer all being 0. 577 */ 578 if (header == 0) 579 return 0; 580 581 while (ttl-- > 0) { 582 if (PCI_EXT_CAP_ID(header) == cap && pos != start) 583 return pos; 584 585 pos = PCI_EXT_CAP_NEXT(header); 586 if (pos < PCI_CFG_SPACE_SIZE) 587 break; 588 589 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 590 break; 591 } 592 593 return 0; 594 } 595 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability); 596 597 /** 598 * pci_find_ext_capability - Find an extended capability 599 * @dev: PCI device to query 600 * @cap: capability code 601 * 602 * Returns the address of the requested extended capability structure 603 * within the device's PCI configuration space or 0 if the device does 604 * not support it. Possible values for @cap include: 605 * 606 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting 607 * %PCI_EXT_CAP_ID_VC Virtual Channel 608 * %PCI_EXT_CAP_ID_DSN Device Serial Number 609 * %PCI_EXT_CAP_ID_PWR Power Budgeting 610 */ 611 u16 pci_find_ext_capability(struct pci_dev *dev, int cap) 612 { 613 return pci_find_next_ext_capability(dev, 0, cap); 614 } 615 EXPORT_SYMBOL_GPL(pci_find_ext_capability); 616 617 /** 618 * pci_get_dsn - Read and return the 8-byte Device Serial Number 619 * @dev: PCI device to query 620 * 621 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial 622 * Number. 623 * 624 * Returns the DSN, or zero if the capability does not exist. 625 */ 626 u64 pci_get_dsn(struct pci_dev *dev) 627 { 628 u32 dword; 629 u64 dsn; 630 int pos; 631 632 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN); 633 if (!pos) 634 return 0; 635 636 /* 637 * The Device Serial Number is two dwords offset 4 bytes from the 638 * capability position. The specification says that the first dword is 639 * the lower half, and the second dword is the upper half. 640 */ 641 pos += 4; 642 pci_read_config_dword(dev, pos, &dword); 643 dsn = (u64)dword; 644 pci_read_config_dword(dev, pos + 4, &dword); 645 dsn |= ((u64)dword) << 32; 646 647 return dsn; 648 } 649 EXPORT_SYMBOL_GPL(pci_get_dsn); 650 651 static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap) 652 { 653 int rc, ttl = PCI_FIND_CAP_TTL; 654 u8 cap, mask; 655 656 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST) 657 mask = HT_3BIT_CAP_MASK; 658 else 659 mask = HT_5BIT_CAP_MASK; 660 661 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos, 662 PCI_CAP_ID_HT, &ttl); 663 while (pos) { 664 rc = pci_read_config_byte(dev, pos + 3, &cap); 665 if (rc != PCIBIOS_SUCCESSFUL) 666 return 0; 667 668 if ((cap & mask) == ht_cap) 669 return pos; 670 671 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, 672 pos + PCI_CAP_LIST_NEXT, 673 PCI_CAP_ID_HT, &ttl); 674 } 675 676 return 0; 677 } 678 679 /** 680 * pci_find_next_ht_capability - query a device's HyperTransport capabilities 681 * @dev: PCI device to query 682 * @pos: Position from which to continue searching 683 * @ht_cap: HyperTransport capability code 684 * 685 * To be used in conjunction with pci_find_ht_capability() to search for 686 * all capabilities matching @ht_cap. @pos should always be a value returned 687 * from pci_find_ht_capability(). 688 * 689 * NB. To be 100% safe against broken PCI devices, the caller should take 690 * steps to avoid an infinite loop. 691 */ 692 u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap) 693 { 694 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap); 695 } 696 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability); 697 698 /** 699 * pci_find_ht_capability - query a device's HyperTransport capabilities 700 * @dev: PCI device to query 701 * @ht_cap: HyperTransport capability code 702 * 703 * Tell if a device supports a given HyperTransport capability. 704 * Returns an address within the device's PCI configuration space 705 * or 0 in case the device does not support the request capability. 706 * The address points to the PCI capability, of type PCI_CAP_ID_HT, 707 * which has a HyperTransport capability matching @ht_cap. 708 */ 709 u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap) 710 { 711 u8 pos; 712 713 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 714 if (pos) 715 pos = __pci_find_next_ht_cap(dev, pos, ht_cap); 716 717 return pos; 718 } 719 EXPORT_SYMBOL_GPL(pci_find_ht_capability); 720 721 /** 722 * pci_find_vsec_capability - Find a vendor-specific extended capability 723 * @dev: PCI device to query 724 * @vendor: Vendor ID for which capability is defined 725 * @cap: Vendor-specific capability ID 726 * 727 * If @dev has Vendor ID @vendor, search for a VSEC capability with 728 * VSEC ID @cap. If found, return the capability offset in 729 * config space; otherwise return 0. 730 */ 731 u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap) 732 { 733 u16 vsec = 0; 734 u32 header; 735 int ret; 736 737 if (vendor != dev->vendor) 738 return 0; 739 740 while ((vsec = pci_find_next_ext_capability(dev, vsec, 741 PCI_EXT_CAP_ID_VNDR))) { 742 ret = pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER, &header); 743 if (ret != PCIBIOS_SUCCESSFUL) 744 continue; 745 746 if (PCI_VNDR_HEADER_ID(header) == cap) 747 return vsec; 748 } 749 750 return 0; 751 } 752 EXPORT_SYMBOL_GPL(pci_find_vsec_capability); 753 754 /** 755 * pci_find_dvsec_capability - Find DVSEC for vendor 756 * @dev: PCI device to query 757 * @vendor: Vendor ID to match for the DVSEC 758 * @dvsec: Designated Vendor-specific capability ID 759 * 760 * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability 761 * offset in config space; otherwise return 0. 762 */ 763 u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec) 764 { 765 int pos; 766 767 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC); 768 if (!pos) 769 return 0; 770 771 while (pos) { 772 u16 v, id; 773 774 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER1, &v); 775 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER2, &id); 776 if (vendor == v && dvsec == id) 777 return pos; 778 779 pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC); 780 } 781 782 return 0; 783 } 784 EXPORT_SYMBOL_GPL(pci_find_dvsec_capability); 785 786 /** 787 * pci_find_parent_resource - return resource region of parent bus of given 788 * region 789 * @dev: PCI device structure contains resources to be searched 790 * @res: child resource record for which parent is sought 791 * 792 * For given resource region of given device, return the resource region of 793 * parent bus the given region is contained in. 794 */ 795 struct resource *pci_find_parent_resource(const struct pci_dev *dev, 796 struct resource *res) 797 { 798 const struct pci_bus *bus = dev->bus; 799 struct resource *r; 800 801 pci_bus_for_each_resource(bus, r) { 802 if (!r) 803 continue; 804 if (resource_contains(r, res)) { 805 806 /* 807 * If the window is prefetchable but the BAR is 808 * not, the allocator made a mistake. 809 */ 810 if (r->flags & IORESOURCE_PREFETCH && 811 !(res->flags & IORESOURCE_PREFETCH)) 812 return NULL; 813 814 /* 815 * If we're below a transparent bridge, there may 816 * be both a positively-decoded aperture and a 817 * subtractively-decoded region that contain the BAR. 818 * We want the positively-decoded one, so this depends 819 * on pci_bus_for_each_resource() giving us those 820 * first. 821 */ 822 return r; 823 } 824 } 825 return NULL; 826 } 827 EXPORT_SYMBOL(pci_find_parent_resource); 828 829 /** 830 * pci_find_resource - Return matching PCI device resource 831 * @dev: PCI device to query 832 * @res: Resource to look for 833 * 834 * Goes over standard PCI resources (BARs) and checks if the given resource 835 * is partially or fully contained in any of them. In that case the 836 * matching resource is returned, %NULL otherwise. 837 */ 838 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res) 839 { 840 int i; 841 842 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 843 struct resource *r = &dev->resource[i]; 844 845 if (r->start && resource_contains(r, res)) 846 return r; 847 } 848 849 return NULL; 850 } 851 EXPORT_SYMBOL(pci_find_resource); 852 853 /** 854 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos 855 * @dev: the PCI device to operate on 856 * @pos: config space offset of status word 857 * @mask: mask of bit(s) to care about in status word 858 * 859 * Return 1 when mask bit(s) in status word clear, 0 otherwise. 860 */ 861 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask) 862 { 863 int i; 864 865 /* Wait for Transaction Pending bit clean */ 866 for (i = 0; i < 4; i++) { 867 u16 status; 868 if (i) 869 msleep((1 << (i - 1)) * 100); 870 871 pci_read_config_word(dev, pos, &status); 872 if (!(status & mask)) 873 return 1; 874 } 875 876 return 0; 877 } 878 879 static int pci_acs_enable; 880 881 /** 882 * pci_request_acs - ask for ACS to be enabled if supported 883 */ 884 void pci_request_acs(void) 885 { 886 pci_acs_enable = 1; 887 } 888 889 static const char *disable_acs_redir_param; 890 891 /** 892 * pci_disable_acs_redir - disable ACS redirect capabilities 893 * @dev: the PCI device 894 * 895 * For only devices specified in the disable_acs_redir parameter. 896 */ 897 static void pci_disable_acs_redir(struct pci_dev *dev) 898 { 899 int ret = 0; 900 const char *p; 901 int pos; 902 u16 ctrl; 903 904 if (!disable_acs_redir_param) 905 return; 906 907 p = disable_acs_redir_param; 908 while (*p) { 909 ret = pci_dev_str_match(dev, p, &p); 910 if (ret < 0) { 911 pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n", 912 disable_acs_redir_param); 913 914 break; 915 } else if (ret == 1) { 916 /* Found a match */ 917 break; 918 } 919 920 if (*p != ';' && *p != ',') { 921 /* End of param or invalid format */ 922 break; 923 } 924 p++; 925 } 926 927 if (ret != 1) 928 return; 929 930 if (!pci_dev_specific_disable_acs_redir(dev)) 931 return; 932 933 pos = dev->acs_cap; 934 if (!pos) { 935 pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n"); 936 return; 937 } 938 939 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 940 941 /* P2P Request & Completion Redirect */ 942 ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC); 943 944 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 945 946 pci_info(dev, "disabled ACS redirect\n"); 947 } 948 949 /** 950 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities 951 * @dev: the PCI device 952 */ 953 static void pci_std_enable_acs(struct pci_dev *dev) 954 { 955 int pos; 956 u16 cap; 957 u16 ctrl; 958 959 pos = dev->acs_cap; 960 if (!pos) 961 return; 962 963 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap); 964 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 965 966 /* Source Validation */ 967 ctrl |= (cap & PCI_ACS_SV); 968 969 /* P2P Request Redirect */ 970 ctrl |= (cap & PCI_ACS_RR); 971 972 /* P2P Completion Redirect */ 973 ctrl |= (cap & PCI_ACS_CR); 974 975 /* Upstream Forwarding */ 976 ctrl |= (cap & PCI_ACS_UF); 977 978 /* Enable Translation Blocking for external devices and noats */ 979 if (pci_ats_disabled() || dev->external_facing || dev->untrusted) 980 ctrl |= (cap & PCI_ACS_TB); 981 982 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 983 } 984 985 /** 986 * pci_enable_acs - enable ACS if hardware support it 987 * @dev: the PCI device 988 */ 989 static void pci_enable_acs(struct pci_dev *dev) 990 { 991 if (!pci_acs_enable) 992 goto disable_acs_redir; 993 994 if (!pci_dev_specific_enable_acs(dev)) 995 goto disable_acs_redir; 996 997 pci_std_enable_acs(dev); 998 999 disable_acs_redir: 1000 /* 1001 * Note: pci_disable_acs_redir() must be called even if ACS was not 1002 * enabled by the kernel because it may have been enabled by 1003 * platform firmware. So if we are told to disable it, we should 1004 * always disable it after setting the kernel's default 1005 * preferences. 1006 */ 1007 pci_disable_acs_redir(dev); 1008 } 1009 1010 /** 1011 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up) 1012 * @dev: PCI device to have its BARs restored 1013 * 1014 * Restore the BAR values for a given device, so as to make it 1015 * accessible by its driver. 1016 */ 1017 static void pci_restore_bars(struct pci_dev *dev) 1018 { 1019 int i; 1020 1021 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) 1022 pci_update_resource(dev, i); 1023 } 1024 1025 static inline bool platform_pci_power_manageable(struct pci_dev *dev) 1026 { 1027 if (pci_use_mid_pm()) 1028 return true; 1029 1030 return acpi_pci_power_manageable(dev); 1031 } 1032 1033 static inline int platform_pci_set_power_state(struct pci_dev *dev, 1034 pci_power_t t) 1035 { 1036 if (pci_use_mid_pm()) 1037 return mid_pci_set_power_state(dev, t); 1038 1039 return acpi_pci_set_power_state(dev, t); 1040 } 1041 1042 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev) 1043 { 1044 if (pci_use_mid_pm()) 1045 return mid_pci_get_power_state(dev); 1046 1047 return acpi_pci_get_power_state(dev); 1048 } 1049 1050 static inline void platform_pci_refresh_power_state(struct pci_dev *dev) 1051 { 1052 if (!pci_use_mid_pm()) 1053 acpi_pci_refresh_power_state(dev); 1054 } 1055 1056 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev) 1057 { 1058 if (pci_use_mid_pm()) 1059 return PCI_POWER_ERROR; 1060 1061 return acpi_pci_choose_state(dev); 1062 } 1063 1064 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable) 1065 { 1066 if (pci_use_mid_pm()) 1067 return PCI_POWER_ERROR; 1068 1069 return acpi_pci_wakeup(dev, enable); 1070 } 1071 1072 static inline bool platform_pci_need_resume(struct pci_dev *dev) 1073 { 1074 if (pci_use_mid_pm()) 1075 return false; 1076 1077 return acpi_pci_need_resume(dev); 1078 } 1079 1080 static inline bool platform_pci_bridge_d3(struct pci_dev *dev) 1081 { 1082 if (pci_use_mid_pm()) 1083 return false; 1084 1085 return acpi_pci_bridge_d3(dev); 1086 } 1087 1088 /** 1089 * pci_update_current_state - Read power state of given device and cache it 1090 * @dev: PCI device to handle. 1091 * @state: State to cache in case the device doesn't have the PM capability 1092 * 1093 * The power state is read from the PMCSR register, which however is 1094 * inaccessible in D3cold. The platform firmware is therefore queried first 1095 * to detect accessibility of the register. In case the platform firmware 1096 * reports an incorrect state or the device isn't power manageable by the 1097 * platform at all, we try to detect D3cold by testing accessibility of the 1098 * vendor ID in config space. 1099 */ 1100 void pci_update_current_state(struct pci_dev *dev, pci_power_t state) 1101 { 1102 if (platform_pci_get_power_state(dev) == PCI_D3cold) { 1103 dev->current_state = PCI_D3cold; 1104 } else if (dev->pm_cap) { 1105 u16 pmcsr; 1106 1107 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1108 if (PCI_POSSIBLE_ERROR(pmcsr)) { 1109 dev->current_state = PCI_D3cold; 1110 return; 1111 } 1112 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1113 } else { 1114 dev->current_state = state; 1115 } 1116 } 1117 1118 /** 1119 * pci_refresh_power_state - Refresh the given device's power state data 1120 * @dev: Target PCI device. 1121 * 1122 * Ask the platform to refresh the devices power state information and invoke 1123 * pci_update_current_state() to update its current PCI power state. 1124 */ 1125 void pci_refresh_power_state(struct pci_dev *dev) 1126 { 1127 platform_pci_refresh_power_state(dev); 1128 pci_update_current_state(dev, dev->current_state); 1129 } 1130 1131 /** 1132 * pci_platform_power_transition - Use platform to change device power state 1133 * @dev: PCI device to handle. 1134 * @state: State to put the device into. 1135 */ 1136 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state) 1137 { 1138 int error; 1139 1140 error = platform_pci_set_power_state(dev, state); 1141 if (!error) 1142 pci_update_current_state(dev, state); 1143 else if (!dev->pm_cap) /* Fall back to PCI_D0 */ 1144 dev->current_state = PCI_D0; 1145 1146 return error; 1147 } 1148 EXPORT_SYMBOL_GPL(pci_platform_power_transition); 1149 1150 static int pci_resume_one(struct pci_dev *pci_dev, void *ign) 1151 { 1152 pm_request_resume(&pci_dev->dev); 1153 return 0; 1154 } 1155 1156 /** 1157 * pci_resume_bus - Walk given bus and runtime resume devices on it 1158 * @bus: Top bus of the subtree to walk. 1159 */ 1160 void pci_resume_bus(struct pci_bus *bus) 1161 { 1162 if (bus) 1163 pci_walk_bus(bus, pci_resume_one, NULL); 1164 } 1165 1166 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout) 1167 { 1168 int delay = 1; 1169 bool retrain = false; 1170 struct pci_dev *bridge; 1171 1172 if (pci_is_pcie(dev)) { 1173 bridge = pci_upstream_bridge(dev); 1174 if (bridge) 1175 retrain = true; 1176 } 1177 1178 /* 1179 * After reset, the device should not silently discard config 1180 * requests, but it may still indicate that it needs more time by 1181 * responding to them with CRS completions. The Root Port will 1182 * generally synthesize ~0 (PCI_ERROR_RESPONSE) data to complete 1183 * the read (except when CRS SV is enabled and the read was for the 1184 * Vendor ID; in that case it synthesizes 0x0001 data). 1185 * 1186 * Wait for the device to return a non-CRS completion. Read the 1187 * Command register instead of Vendor ID so we don't have to 1188 * contend with the CRS SV value. 1189 */ 1190 for (;;) { 1191 u32 id; 1192 1193 pci_read_config_dword(dev, PCI_COMMAND, &id); 1194 if (!PCI_POSSIBLE_ERROR(id)) 1195 break; 1196 1197 if (delay > timeout) { 1198 pci_warn(dev, "not ready %dms after %s; giving up\n", 1199 delay - 1, reset_type); 1200 return -ENOTTY; 1201 } 1202 1203 if (delay > PCI_RESET_WAIT) { 1204 if (retrain) { 1205 retrain = false; 1206 if (pcie_failed_link_retrain(bridge)) { 1207 delay = 1; 1208 continue; 1209 } 1210 } 1211 pci_info(dev, "not ready %dms after %s; waiting\n", 1212 delay - 1, reset_type); 1213 } 1214 1215 msleep(delay); 1216 delay *= 2; 1217 } 1218 1219 if (delay > PCI_RESET_WAIT) 1220 pci_info(dev, "ready %dms after %s\n", delay - 1, 1221 reset_type); 1222 1223 return 0; 1224 } 1225 1226 /** 1227 * pci_power_up - Put the given device into D0 1228 * @dev: PCI device to power up 1229 * 1230 * On success, return 0 or 1, depending on whether or not it is necessary to 1231 * restore the device's BARs subsequently (1 is returned in that case). 1232 * 1233 * On failure, return a negative error code. Always return failure if @dev 1234 * lacks a Power Management Capability, even if the platform was able to 1235 * put the device in D0 via non-PCI means. 1236 */ 1237 int pci_power_up(struct pci_dev *dev) 1238 { 1239 bool need_restore; 1240 pci_power_t state; 1241 u16 pmcsr; 1242 1243 platform_pci_set_power_state(dev, PCI_D0); 1244 1245 if (!dev->pm_cap) { 1246 state = platform_pci_get_power_state(dev); 1247 if (state == PCI_UNKNOWN) 1248 dev->current_state = PCI_D0; 1249 else 1250 dev->current_state = state; 1251 1252 return -EIO; 1253 } 1254 1255 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1256 if (PCI_POSSIBLE_ERROR(pmcsr)) { 1257 pci_err(dev, "Unable to change power state from %s to D0, device inaccessible\n", 1258 pci_power_name(dev->current_state)); 1259 dev->current_state = PCI_D3cold; 1260 return -EIO; 1261 } 1262 1263 state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1264 1265 need_restore = (state == PCI_D3hot || dev->current_state >= PCI_D3hot) && 1266 !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET); 1267 1268 if (state == PCI_D0) 1269 goto end; 1270 1271 /* 1272 * Force the entire word to 0. This doesn't affect PME_Status, disables 1273 * PME_En, and sets PowerState to 0. 1274 */ 1275 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, 0); 1276 1277 /* Mandatory transition delays; see PCI PM 1.2. */ 1278 if (state == PCI_D3hot) 1279 pci_dev_d3_sleep(dev); 1280 else if (state == PCI_D2) 1281 udelay(PCI_PM_D2_DELAY); 1282 1283 end: 1284 dev->current_state = PCI_D0; 1285 if (need_restore) 1286 return 1; 1287 1288 return 0; 1289 } 1290 1291 /** 1292 * pci_set_full_power_state - Put a PCI device into D0 and update its state 1293 * @dev: PCI device to power up 1294 * 1295 * Call pci_power_up() to put @dev into D0, read from its PCI_PM_CTRL register 1296 * to confirm the state change, restore its BARs if they might be lost and 1297 * reconfigure ASPM in accordance with the new power state. 1298 * 1299 * If pci_restore_state() is going to be called right after a power state change 1300 * to D0, it is more efficient to use pci_power_up() directly instead of this 1301 * function. 1302 */ 1303 static int pci_set_full_power_state(struct pci_dev *dev) 1304 { 1305 u16 pmcsr; 1306 int ret; 1307 1308 ret = pci_power_up(dev); 1309 if (ret < 0) { 1310 if (dev->current_state == PCI_D0) 1311 return 0; 1312 1313 return ret; 1314 } 1315 1316 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1317 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1318 if (dev->current_state != PCI_D0) { 1319 pci_info_ratelimited(dev, "Refused to change power state from %s to D0\n", 1320 pci_power_name(dev->current_state)); 1321 } else if (ret > 0) { 1322 /* 1323 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT 1324 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning 1325 * from D3hot to D0 _may_ perform an internal reset, thereby 1326 * going to "D0 Uninitialized" rather than "D0 Initialized". 1327 * For example, at least some versions of the 3c905B and the 1328 * 3c556B exhibit this behaviour. 1329 * 1330 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave 1331 * devices in a D3hot state at boot. Consequently, we need to 1332 * restore at least the BARs so that the device will be 1333 * accessible to its driver. 1334 */ 1335 pci_restore_bars(dev); 1336 } 1337 1338 if (dev->bus->self) 1339 pcie_aspm_pm_state_change(dev->bus->self); 1340 1341 return 0; 1342 } 1343 1344 /** 1345 * __pci_dev_set_current_state - Set current state of a PCI device 1346 * @dev: Device to handle 1347 * @data: pointer to state to be set 1348 */ 1349 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data) 1350 { 1351 pci_power_t state = *(pci_power_t *)data; 1352 1353 dev->current_state = state; 1354 return 0; 1355 } 1356 1357 /** 1358 * pci_bus_set_current_state - Walk given bus and set current state of devices 1359 * @bus: Top bus of the subtree to walk. 1360 * @state: state to be set 1361 */ 1362 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state) 1363 { 1364 if (bus) 1365 pci_walk_bus(bus, __pci_dev_set_current_state, &state); 1366 } 1367 1368 /** 1369 * pci_set_low_power_state - Put a PCI device into a low-power state. 1370 * @dev: PCI device to handle. 1371 * @state: PCI power state (D1, D2, D3hot) to put the device into. 1372 * 1373 * Use the device's PCI_PM_CTRL register to put it into a low-power state. 1374 * 1375 * RETURN VALUE: 1376 * -EINVAL if the requested state is invalid. 1377 * -EIO if device does not support PCI PM or its PM capabilities register has a 1378 * wrong version, or device doesn't support the requested state. 1379 * 0 if device already is in the requested state. 1380 * 0 if device's power state has been successfully changed. 1381 */ 1382 static int pci_set_low_power_state(struct pci_dev *dev, pci_power_t state) 1383 { 1384 u16 pmcsr; 1385 1386 if (!dev->pm_cap) 1387 return -EIO; 1388 1389 /* 1390 * Validate transition: We can enter D0 from any state, but if 1391 * we're already in a low-power state, we can only go deeper. E.g., 1392 * we can go from D1 to D3, but we can't go directly from D3 to D1; 1393 * we'd have to go from D3 to D0, then to D1. 1394 */ 1395 if (dev->current_state <= PCI_D3cold && dev->current_state > state) { 1396 pci_dbg(dev, "Invalid power transition (from %s to %s)\n", 1397 pci_power_name(dev->current_state), 1398 pci_power_name(state)); 1399 return -EINVAL; 1400 } 1401 1402 /* Check if this device supports the desired state */ 1403 if ((state == PCI_D1 && !dev->d1_support) 1404 || (state == PCI_D2 && !dev->d2_support)) 1405 return -EIO; 1406 1407 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1408 if (PCI_POSSIBLE_ERROR(pmcsr)) { 1409 pci_err(dev, "Unable to change power state from %s to %s, device inaccessible\n", 1410 pci_power_name(dev->current_state), 1411 pci_power_name(state)); 1412 dev->current_state = PCI_D3cold; 1413 return -EIO; 1414 } 1415 1416 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 1417 pmcsr |= state; 1418 1419 /* Enter specified state */ 1420 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 1421 1422 /* Mandatory power management transition delays; see PCI PM 1.2. */ 1423 if (state == PCI_D3hot) 1424 pci_dev_d3_sleep(dev); 1425 else if (state == PCI_D2) 1426 udelay(PCI_PM_D2_DELAY); 1427 1428 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1429 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1430 if (dev->current_state != state) 1431 pci_info_ratelimited(dev, "Refused to change power state from %s to %s\n", 1432 pci_power_name(dev->current_state), 1433 pci_power_name(state)); 1434 1435 if (dev->bus->self) 1436 pcie_aspm_pm_state_change(dev->bus->self); 1437 1438 return 0; 1439 } 1440 1441 /** 1442 * pci_set_power_state - Set the power state of a PCI device 1443 * @dev: PCI device to handle. 1444 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 1445 * 1446 * Transition a device to a new power state, using the platform firmware and/or 1447 * the device's PCI PM registers. 1448 * 1449 * RETURN VALUE: 1450 * -EINVAL if the requested state is invalid. 1451 * -EIO if device does not support PCI PM or its PM capabilities register has a 1452 * wrong version, or device doesn't support the requested state. 1453 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported. 1454 * 0 if device already is in the requested state. 1455 * 0 if the transition is to D3 but D3 is not supported. 1456 * 0 if device's power state has been successfully changed. 1457 */ 1458 int pci_set_power_state(struct pci_dev *dev, pci_power_t state) 1459 { 1460 int error; 1461 1462 /* Bound the state we're entering */ 1463 if (state > PCI_D3cold) 1464 state = PCI_D3cold; 1465 else if (state < PCI_D0) 1466 state = PCI_D0; 1467 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev)) 1468 1469 /* 1470 * If the device or the parent bridge do not support PCI 1471 * PM, ignore the request if we're doing anything other 1472 * than putting it into D0 (which would only happen on 1473 * boot). 1474 */ 1475 return 0; 1476 1477 /* Check if we're already there */ 1478 if (dev->current_state == state) 1479 return 0; 1480 1481 if (state == PCI_D0) 1482 return pci_set_full_power_state(dev); 1483 1484 /* 1485 * This device is quirked not to be put into D3, so don't put it in 1486 * D3 1487 */ 1488 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3)) 1489 return 0; 1490 1491 if (state == PCI_D3cold) { 1492 /* 1493 * To put the device in D3cold, put it into D3hot in the native 1494 * way, then put it into D3cold using platform ops. 1495 */ 1496 error = pci_set_low_power_state(dev, PCI_D3hot); 1497 1498 if (pci_platform_power_transition(dev, PCI_D3cold)) 1499 return error; 1500 1501 /* Powering off a bridge may power off the whole hierarchy */ 1502 if (dev->current_state == PCI_D3cold) 1503 pci_bus_set_current_state(dev->subordinate, PCI_D3cold); 1504 } else { 1505 error = pci_set_low_power_state(dev, state); 1506 1507 if (pci_platform_power_transition(dev, state)) 1508 return error; 1509 } 1510 1511 return 0; 1512 } 1513 EXPORT_SYMBOL(pci_set_power_state); 1514 1515 #define PCI_EXP_SAVE_REGS 7 1516 1517 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev, 1518 u16 cap, bool extended) 1519 { 1520 struct pci_cap_saved_state *tmp; 1521 1522 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) { 1523 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap) 1524 return tmp; 1525 } 1526 return NULL; 1527 } 1528 1529 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap) 1530 { 1531 return _pci_find_saved_cap(dev, cap, false); 1532 } 1533 1534 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap) 1535 { 1536 return _pci_find_saved_cap(dev, cap, true); 1537 } 1538 1539 static int pci_save_pcie_state(struct pci_dev *dev) 1540 { 1541 int i = 0; 1542 struct pci_cap_saved_state *save_state; 1543 u16 *cap; 1544 1545 if (!pci_is_pcie(dev)) 1546 return 0; 1547 1548 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1549 if (!save_state) { 1550 pci_err(dev, "buffer not found in %s\n", __func__); 1551 return -ENOMEM; 1552 } 1553 1554 cap = (u16 *)&save_state->cap.data[0]; 1555 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]); 1556 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]); 1557 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]); 1558 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]); 1559 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]); 1560 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]); 1561 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]); 1562 1563 return 0; 1564 } 1565 1566 void pci_bridge_reconfigure_ltr(struct pci_dev *dev) 1567 { 1568 #ifdef CONFIG_PCIEASPM 1569 struct pci_dev *bridge; 1570 u32 ctl; 1571 1572 bridge = pci_upstream_bridge(dev); 1573 if (bridge && bridge->ltr_path) { 1574 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, &ctl); 1575 if (!(ctl & PCI_EXP_DEVCTL2_LTR_EN)) { 1576 pci_dbg(bridge, "re-enabling LTR\n"); 1577 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, 1578 PCI_EXP_DEVCTL2_LTR_EN); 1579 } 1580 } 1581 #endif 1582 } 1583 1584 static void pci_restore_pcie_state(struct pci_dev *dev) 1585 { 1586 int i = 0; 1587 struct pci_cap_saved_state *save_state; 1588 u16 *cap; 1589 1590 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1591 if (!save_state) 1592 return; 1593 1594 /* 1595 * Downstream ports reset the LTR enable bit when link goes down. 1596 * Check and re-configure the bit here before restoring device. 1597 * PCIe r5.0, sec 7.5.3.16. 1598 */ 1599 pci_bridge_reconfigure_ltr(dev); 1600 1601 cap = (u16 *)&save_state->cap.data[0]; 1602 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]); 1603 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]); 1604 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]); 1605 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]); 1606 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]); 1607 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]); 1608 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]); 1609 } 1610 1611 static int pci_save_pcix_state(struct pci_dev *dev) 1612 { 1613 int pos; 1614 struct pci_cap_saved_state *save_state; 1615 1616 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1617 if (!pos) 1618 return 0; 1619 1620 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1621 if (!save_state) { 1622 pci_err(dev, "buffer not found in %s\n", __func__); 1623 return -ENOMEM; 1624 } 1625 1626 pci_read_config_word(dev, pos + PCI_X_CMD, 1627 (u16 *)save_state->cap.data); 1628 1629 return 0; 1630 } 1631 1632 static void pci_restore_pcix_state(struct pci_dev *dev) 1633 { 1634 int i = 0, pos; 1635 struct pci_cap_saved_state *save_state; 1636 u16 *cap; 1637 1638 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1639 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1640 if (!save_state || !pos) 1641 return; 1642 cap = (u16 *)&save_state->cap.data[0]; 1643 1644 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]); 1645 } 1646 1647 static void pci_save_ltr_state(struct pci_dev *dev) 1648 { 1649 int ltr; 1650 struct pci_cap_saved_state *save_state; 1651 u32 *cap; 1652 1653 if (!pci_is_pcie(dev)) 1654 return; 1655 1656 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR); 1657 if (!ltr) 1658 return; 1659 1660 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR); 1661 if (!save_state) { 1662 pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n"); 1663 return; 1664 } 1665 1666 /* Some broken devices only support dword access to LTR */ 1667 cap = &save_state->cap.data[0]; 1668 pci_read_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap); 1669 } 1670 1671 static void pci_restore_ltr_state(struct pci_dev *dev) 1672 { 1673 struct pci_cap_saved_state *save_state; 1674 int ltr; 1675 u32 *cap; 1676 1677 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR); 1678 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR); 1679 if (!save_state || !ltr) 1680 return; 1681 1682 /* Some broken devices only support dword access to LTR */ 1683 cap = &save_state->cap.data[0]; 1684 pci_write_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap); 1685 } 1686 1687 /** 1688 * pci_save_state - save the PCI configuration space of a device before 1689 * suspending 1690 * @dev: PCI device that we're dealing with 1691 */ 1692 int pci_save_state(struct pci_dev *dev) 1693 { 1694 int i; 1695 /* XXX: 100% dword access ok here? */ 1696 for (i = 0; i < 16; i++) { 1697 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]); 1698 pci_dbg(dev, "save config %#04x: %#010x\n", 1699 i * 4, dev->saved_config_space[i]); 1700 } 1701 dev->state_saved = true; 1702 1703 i = pci_save_pcie_state(dev); 1704 if (i != 0) 1705 return i; 1706 1707 i = pci_save_pcix_state(dev); 1708 if (i != 0) 1709 return i; 1710 1711 pci_save_ltr_state(dev); 1712 pci_save_dpc_state(dev); 1713 pci_save_aer_state(dev); 1714 pci_save_ptm_state(dev); 1715 return pci_save_vc_state(dev); 1716 } 1717 EXPORT_SYMBOL(pci_save_state); 1718 1719 static void pci_restore_config_dword(struct pci_dev *pdev, int offset, 1720 u32 saved_val, int retry, bool force) 1721 { 1722 u32 val; 1723 1724 pci_read_config_dword(pdev, offset, &val); 1725 if (!force && val == saved_val) 1726 return; 1727 1728 for (;;) { 1729 pci_dbg(pdev, "restore config %#04x: %#010x -> %#010x\n", 1730 offset, val, saved_val); 1731 pci_write_config_dword(pdev, offset, saved_val); 1732 if (retry-- <= 0) 1733 return; 1734 1735 pci_read_config_dword(pdev, offset, &val); 1736 if (val == saved_val) 1737 return; 1738 1739 mdelay(1); 1740 } 1741 } 1742 1743 static void pci_restore_config_space_range(struct pci_dev *pdev, 1744 int start, int end, int retry, 1745 bool force) 1746 { 1747 int index; 1748 1749 for (index = end; index >= start; index--) 1750 pci_restore_config_dword(pdev, 4 * index, 1751 pdev->saved_config_space[index], 1752 retry, force); 1753 } 1754 1755 static void pci_restore_config_space(struct pci_dev *pdev) 1756 { 1757 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) { 1758 pci_restore_config_space_range(pdev, 10, 15, 0, false); 1759 /* Restore BARs before the command register. */ 1760 pci_restore_config_space_range(pdev, 4, 9, 10, false); 1761 pci_restore_config_space_range(pdev, 0, 3, 0, false); 1762 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 1763 pci_restore_config_space_range(pdev, 12, 15, 0, false); 1764 1765 /* 1766 * Force rewriting of prefetch registers to avoid S3 resume 1767 * issues on Intel PCI bridges that occur when these 1768 * registers are not explicitly written. 1769 */ 1770 pci_restore_config_space_range(pdev, 9, 11, 0, true); 1771 pci_restore_config_space_range(pdev, 0, 8, 0, false); 1772 } else { 1773 pci_restore_config_space_range(pdev, 0, 15, 0, false); 1774 } 1775 } 1776 1777 static void pci_restore_rebar_state(struct pci_dev *pdev) 1778 { 1779 unsigned int pos, nbars, i; 1780 u32 ctrl; 1781 1782 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 1783 if (!pos) 1784 return; 1785 1786 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1787 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >> 1788 PCI_REBAR_CTRL_NBAR_SHIFT; 1789 1790 for (i = 0; i < nbars; i++, pos += 8) { 1791 struct resource *res; 1792 int bar_idx, size; 1793 1794 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1795 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX; 1796 res = pdev->resource + bar_idx; 1797 size = pci_rebar_bytes_to_size(resource_size(res)); 1798 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 1799 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT; 1800 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 1801 } 1802 } 1803 1804 /** 1805 * pci_restore_state - Restore the saved state of a PCI device 1806 * @dev: PCI device that we're dealing with 1807 */ 1808 void pci_restore_state(struct pci_dev *dev) 1809 { 1810 if (!dev->state_saved) 1811 return; 1812 1813 /* 1814 * Restore max latencies (in the LTR capability) before enabling 1815 * LTR itself (in the PCIe capability). 1816 */ 1817 pci_restore_ltr_state(dev); 1818 1819 pci_restore_pcie_state(dev); 1820 pci_restore_pasid_state(dev); 1821 pci_restore_pri_state(dev); 1822 pci_restore_ats_state(dev); 1823 pci_restore_vc_state(dev); 1824 pci_restore_rebar_state(dev); 1825 pci_restore_dpc_state(dev); 1826 pci_restore_ptm_state(dev); 1827 1828 pci_aer_clear_status(dev); 1829 pci_restore_aer_state(dev); 1830 1831 pci_restore_config_space(dev); 1832 1833 pci_restore_pcix_state(dev); 1834 pci_restore_msi_state(dev); 1835 1836 /* Restore ACS and IOV configuration state */ 1837 pci_enable_acs(dev); 1838 pci_restore_iov_state(dev); 1839 1840 dev->state_saved = false; 1841 } 1842 EXPORT_SYMBOL(pci_restore_state); 1843 1844 struct pci_saved_state { 1845 u32 config_space[16]; 1846 struct pci_cap_saved_data cap[]; 1847 }; 1848 1849 /** 1850 * pci_store_saved_state - Allocate and return an opaque struct containing 1851 * the device saved state. 1852 * @dev: PCI device that we're dealing with 1853 * 1854 * Return NULL if no state or error. 1855 */ 1856 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev) 1857 { 1858 struct pci_saved_state *state; 1859 struct pci_cap_saved_state *tmp; 1860 struct pci_cap_saved_data *cap; 1861 size_t size; 1862 1863 if (!dev->state_saved) 1864 return NULL; 1865 1866 size = sizeof(*state) + sizeof(struct pci_cap_saved_data); 1867 1868 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) 1869 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1870 1871 state = kzalloc(size, GFP_KERNEL); 1872 if (!state) 1873 return NULL; 1874 1875 memcpy(state->config_space, dev->saved_config_space, 1876 sizeof(state->config_space)); 1877 1878 cap = state->cap; 1879 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) { 1880 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1881 memcpy(cap, &tmp->cap, len); 1882 cap = (struct pci_cap_saved_data *)((u8 *)cap + len); 1883 } 1884 /* Empty cap_save terminates list */ 1885 1886 return state; 1887 } 1888 EXPORT_SYMBOL_GPL(pci_store_saved_state); 1889 1890 /** 1891 * pci_load_saved_state - Reload the provided save state into struct pci_dev. 1892 * @dev: PCI device that we're dealing with 1893 * @state: Saved state returned from pci_store_saved_state() 1894 */ 1895 int pci_load_saved_state(struct pci_dev *dev, 1896 struct pci_saved_state *state) 1897 { 1898 struct pci_cap_saved_data *cap; 1899 1900 dev->state_saved = false; 1901 1902 if (!state) 1903 return 0; 1904 1905 memcpy(dev->saved_config_space, state->config_space, 1906 sizeof(state->config_space)); 1907 1908 cap = state->cap; 1909 while (cap->size) { 1910 struct pci_cap_saved_state *tmp; 1911 1912 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended); 1913 if (!tmp || tmp->cap.size != cap->size) 1914 return -EINVAL; 1915 1916 memcpy(tmp->cap.data, cap->data, tmp->cap.size); 1917 cap = (struct pci_cap_saved_data *)((u8 *)cap + 1918 sizeof(struct pci_cap_saved_data) + cap->size); 1919 } 1920 1921 dev->state_saved = true; 1922 return 0; 1923 } 1924 EXPORT_SYMBOL_GPL(pci_load_saved_state); 1925 1926 /** 1927 * pci_load_and_free_saved_state - Reload the save state pointed to by state, 1928 * and free the memory allocated for it. 1929 * @dev: PCI device that we're dealing with 1930 * @state: Pointer to saved state returned from pci_store_saved_state() 1931 */ 1932 int pci_load_and_free_saved_state(struct pci_dev *dev, 1933 struct pci_saved_state **state) 1934 { 1935 int ret = pci_load_saved_state(dev, *state); 1936 kfree(*state); 1937 *state = NULL; 1938 return ret; 1939 } 1940 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state); 1941 1942 int __weak pcibios_enable_device(struct pci_dev *dev, int bars) 1943 { 1944 return pci_enable_resources(dev, bars); 1945 } 1946 1947 static int do_pci_enable_device(struct pci_dev *dev, int bars) 1948 { 1949 int err; 1950 struct pci_dev *bridge; 1951 u16 cmd; 1952 u8 pin; 1953 1954 err = pci_set_power_state(dev, PCI_D0); 1955 if (err < 0 && err != -EIO) 1956 return err; 1957 1958 bridge = pci_upstream_bridge(dev); 1959 if (bridge) 1960 pcie_aspm_powersave_config_link(bridge); 1961 1962 err = pcibios_enable_device(dev, bars); 1963 if (err < 0) 1964 return err; 1965 pci_fixup_device(pci_fixup_enable, dev); 1966 1967 if (dev->msi_enabled || dev->msix_enabled) 1968 return 0; 1969 1970 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin); 1971 if (pin) { 1972 pci_read_config_word(dev, PCI_COMMAND, &cmd); 1973 if (cmd & PCI_COMMAND_INTX_DISABLE) 1974 pci_write_config_word(dev, PCI_COMMAND, 1975 cmd & ~PCI_COMMAND_INTX_DISABLE); 1976 } 1977 1978 return 0; 1979 } 1980 1981 /** 1982 * pci_reenable_device - Resume abandoned device 1983 * @dev: PCI device to be resumed 1984 * 1985 * NOTE: This function is a backend of pci_default_resume() and is not supposed 1986 * to be called by normal code, write proper resume handler and use it instead. 1987 */ 1988 int pci_reenable_device(struct pci_dev *dev) 1989 { 1990 if (pci_is_enabled(dev)) 1991 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1); 1992 return 0; 1993 } 1994 EXPORT_SYMBOL(pci_reenable_device); 1995 1996 static void pci_enable_bridge(struct pci_dev *dev) 1997 { 1998 struct pci_dev *bridge; 1999 int retval; 2000 2001 bridge = pci_upstream_bridge(dev); 2002 if (bridge) 2003 pci_enable_bridge(bridge); 2004 2005 if (pci_is_enabled(dev)) { 2006 if (!dev->is_busmaster) 2007 pci_set_master(dev); 2008 return; 2009 } 2010 2011 retval = pci_enable_device(dev); 2012 if (retval) 2013 pci_err(dev, "Error enabling bridge (%d), continuing\n", 2014 retval); 2015 pci_set_master(dev); 2016 } 2017 2018 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags) 2019 { 2020 struct pci_dev *bridge; 2021 int err; 2022 int i, bars = 0; 2023 2024 /* 2025 * Power state could be unknown at this point, either due to a fresh 2026 * boot or a device removal call. So get the current power state 2027 * so that things like MSI message writing will behave as expected 2028 * (e.g. if the device really is in D0 at enable time). 2029 */ 2030 pci_update_current_state(dev, dev->current_state); 2031 2032 if (atomic_inc_return(&dev->enable_cnt) > 1) 2033 return 0; /* already enabled */ 2034 2035 bridge = pci_upstream_bridge(dev); 2036 if (bridge) 2037 pci_enable_bridge(bridge); 2038 2039 /* only skip sriov related */ 2040 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 2041 if (dev->resource[i].flags & flags) 2042 bars |= (1 << i); 2043 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++) 2044 if (dev->resource[i].flags & flags) 2045 bars |= (1 << i); 2046 2047 err = do_pci_enable_device(dev, bars); 2048 if (err < 0) 2049 atomic_dec(&dev->enable_cnt); 2050 return err; 2051 } 2052 2053 /** 2054 * pci_enable_device_io - Initialize a device for use with IO space 2055 * @dev: PCI device to be initialized 2056 * 2057 * Initialize device before it's used by a driver. Ask low-level code 2058 * to enable I/O resources. Wake up the device if it was suspended. 2059 * Beware, this function can fail. 2060 */ 2061 int pci_enable_device_io(struct pci_dev *dev) 2062 { 2063 return pci_enable_device_flags(dev, IORESOURCE_IO); 2064 } 2065 EXPORT_SYMBOL(pci_enable_device_io); 2066 2067 /** 2068 * pci_enable_device_mem - Initialize a device for use with Memory space 2069 * @dev: PCI device to be initialized 2070 * 2071 * Initialize device before it's used by a driver. Ask low-level code 2072 * to enable Memory resources. Wake up the device if it was suspended. 2073 * Beware, this function can fail. 2074 */ 2075 int pci_enable_device_mem(struct pci_dev *dev) 2076 { 2077 return pci_enable_device_flags(dev, IORESOURCE_MEM); 2078 } 2079 EXPORT_SYMBOL(pci_enable_device_mem); 2080 2081 /** 2082 * pci_enable_device - Initialize device before it's used by a driver. 2083 * @dev: PCI device to be initialized 2084 * 2085 * Initialize device before it's used by a driver. Ask low-level code 2086 * to enable I/O and memory. Wake up the device if it was suspended. 2087 * Beware, this function can fail. 2088 * 2089 * Note we don't actually enable the device many times if we call 2090 * this function repeatedly (we just increment the count). 2091 */ 2092 int pci_enable_device(struct pci_dev *dev) 2093 { 2094 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO); 2095 } 2096 EXPORT_SYMBOL(pci_enable_device); 2097 2098 /* 2099 * Managed PCI resources. This manages device on/off, INTx/MSI/MSI-X 2100 * on/off and BAR regions. pci_dev itself records MSI/MSI-X status, so 2101 * there's no need to track it separately. pci_devres is initialized 2102 * when a device is enabled using managed PCI device enable interface. 2103 */ 2104 struct pci_devres { 2105 unsigned int enabled:1; 2106 unsigned int pinned:1; 2107 unsigned int orig_intx:1; 2108 unsigned int restore_intx:1; 2109 unsigned int mwi:1; 2110 u32 region_mask; 2111 }; 2112 2113 static void pcim_release(struct device *gendev, void *res) 2114 { 2115 struct pci_dev *dev = to_pci_dev(gendev); 2116 struct pci_devres *this = res; 2117 int i; 2118 2119 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) 2120 if (this->region_mask & (1 << i)) 2121 pci_release_region(dev, i); 2122 2123 if (this->mwi) 2124 pci_clear_mwi(dev); 2125 2126 if (this->restore_intx) 2127 pci_intx(dev, this->orig_intx); 2128 2129 if (this->enabled && !this->pinned) 2130 pci_disable_device(dev); 2131 } 2132 2133 static struct pci_devres *get_pci_dr(struct pci_dev *pdev) 2134 { 2135 struct pci_devres *dr, *new_dr; 2136 2137 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL); 2138 if (dr) 2139 return dr; 2140 2141 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL); 2142 if (!new_dr) 2143 return NULL; 2144 return devres_get(&pdev->dev, new_dr, NULL, NULL); 2145 } 2146 2147 static struct pci_devres *find_pci_dr(struct pci_dev *pdev) 2148 { 2149 if (pci_is_managed(pdev)) 2150 return devres_find(&pdev->dev, pcim_release, NULL, NULL); 2151 return NULL; 2152 } 2153 2154 /** 2155 * pcim_enable_device - Managed pci_enable_device() 2156 * @pdev: PCI device to be initialized 2157 * 2158 * Managed pci_enable_device(). 2159 */ 2160 int pcim_enable_device(struct pci_dev *pdev) 2161 { 2162 struct pci_devres *dr; 2163 int rc; 2164 2165 dr = get_pci_dr(pdev); 2166 if (unlikely(!dr)) 2167 return -ENOMEM; 2168 if (dr->enabled) 2169 return 0; 2170 2171 rc = pci_enable_device(pdev); 2172 if (!rc) { 2173 pdev->is_managed = 1; 2174 dr->enabled = 1; 2175 } 2176 return rc; 2177 } 2178 EXPORT_SYMBOL(pcim_enable_device); 2179 2180 /** 2181 * pcim_pin_device - Pin managed PCI device 2182 * @pdev: PCI device to pin 2183 * 2184 * Pin managed PCI device @pdev. Pinned device won't be disabled on 2185 * driver detach. @pdev must have been enabled with 2186 * pcim_enable_device(). 2187 */ 2188 void pcim_pin_device(struct pci_dev *pdev) 2189 { 2190 struct pci_devres *dr; 2191 2192 dr = find_pci_dr(pdev); 2193 WARN_ON(!dr || !dr->enabled); 2194 if (dr) 2195 dr->pinned = 1; 2196 } 2197 EXPORT_SYMBOL(pcim_pin_device); 2198 2199 /* 2200 * pcibios_device_add - provide arch specific hooks when adding device dev 2201 * @dev: the PCI device being added 2202 * 2203 * Permits the platform to provide architecture specific functionality when 2204 * devices are added. This is the default implementation. Architecture 2205 * implementations can override this. 2206 */ 2207 int __weak pcibios_device_add(struct pci_dev *dev) 2208 { 2209 return 0; 2210 } 2211 2212 /** 2213 * pcibios_release_device - provide arch specific hooks when releasing 2214 * device dev 2215 * @dev: the PCI device being released 2216 * 2217 * Permits the platform to provide architecture specific functionality when 2218 * devices are released. This is the default implementation. Architecture 2219 * implementations can override this. 2220 */ 2221 void __weak pcibios_release_device(struct pci_dev *dev) {} 2222 2223 /** 2224 * pcibios_disable_device - disable arch specific PCI resources for device dev 2225 * @dev: the PCI device to disable 2226 * 2227 * Disables architecture specific PCI resources for the device. This 2228 * is the default implementation. Architecture implementations can 2229 * override this. 2230 */ 2231 void __weak pcibios_disable_device(struct pci_dev *dev) {} 2232 2233 /** 2234 * pcibios_penalize_isa_irq - penalize an ISA IRQ 2235 * @irq: ISA IRQ to penalize 2236 * @active: IRQ active or not 2237 * 2238 * Permits the platform to provide architecture-specific functionality when 2239 * penalizing ISA IRQs. This is the default implementation. Architecture 2240 * implementations can override this. 2241 */ 2242 void __weak pcibios_penalize_isa_irq(int irq, int active) {} 2243 2244 static void do_pci_disable_device(struct pci_dev *dev) 2245 { 2246 u16 pci_command; 2247 2248 pci_read_config_word(dev, PCI_COMMAND, &pci_command); 2249 if (pci_command & PCI_COMMAND_MASTER) { 2250 pci_command &= ~PCI_COMMAND_MASTER; 2251 pci_write_config_word(dev, PCI_COMMAND, pci_command); 2252 } 2253 2254 pcibios_disable_device(dev); 2255 } 2256 2257 /** 2258 * pci_disable_enabled_device - Disable device without updating enable_cnt 2259 * @dev: PCI device to disable 2260 * 2261 * NOTE: This function is a backend of PCI power management routines and is 2262 * not supposed to be called drivers. 2263 */ 2264 void pci_disable_enabled_device(struct pci_dev *dev) 2265 { 2266 if (pci_is_enabled(dev)) 2267 do_pci_disable_device(dev); 2268 } 2269 2270 /** 2271 * pci_disable_device - Disable PCI device after use 2272 * @dev: PCI device to be disabled 2273 * 2274 * Signal to the system that the PCI device is not in use by the system 2275 * anymore. This only involves disabling PCI bus-mastering, if active. 2276 * 2277 * Note we don't actually disable the device until all callers of 2278 * pci_enable_device() have called pci_disable_device(). 2279 */ 2280 void pci_disable_device(struct pci_dev *dev) 2281 { 2282 struct pci_devres *dr; 2283 2284 dr = find_pci_dr(dev); 2285 if (dr) 2286 dr->enabled = 0; 2287 2288 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0, 2289 "disabling already-disabled device"); 2290 2291 if (atomic_dec_return(&dev->enable_cnt) != 0) 2292 return; 2293 2294 do_pci_disable_device(dev); 2295 2296 dev->is_busmaster = 0; 2297 } 2298 EXPORT_SYMBOL(pci_disable_device); 2299 2300 /** 2301 * pcibios_set_pcie_reset_state - set reset state for device dev 2302 * @dev: the PCIe device reset 2303 * @state: Reset state to enter into 2304 * 2305 * Set the PCIe reset state for the device. This is the default 2306 * implementation. Architecture implementations can override this. 2307 */ 2308 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev, 2309 enum pcie_reset_state state) 2310 { 2311 return -EINVAL; 2312 } 2313 2314 /** 2315 * pci_set_pcie_reset_state - set reset state for device dev 2316 * @dev: the PCIe device reset 2317 * @state: Reset state to enter into 2318 * 2319 * Sets the PCI reset state for the device. 2320 */ 2321 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state) 2322 { 2323 return pcibios_set_pcie_reset_state(dev, state); 2324 } 2325 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state); 2326 2327 #ifdef CONFIG_PCIEAER 2328 void pcie_clear_device_status(struct pci_dev *dev) 2329 { 2330 u16 sta; 2331 2332 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta); 2333 pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta); 2334 } 2335 #endif 2336 2337 /** 2338 * pcie_clear_root_pme_status - Clear root port PME interrupt status. 2339 * @dev: PCIe root port or event collector. 2340 */ 2341 void pcie_clear_root_pme_status(struct pci_dev *dev) 2342 { 2343 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME); 2344 } 2345 2346 /** 2347 * pci_check_pme_status - Check if given device has generated PME. 2348 * @dev: Device to check. 2349 * 2350 * Check the PME status of the device and if set, clear it and clear PME enable 2351 * (if set). Return 'true' if PME status and PME enable were both set or 2352 * 'false' otherwise. 2353 */ 2354 bool pci_check_pme_status(struct pci_dev *dev) 2355 { 2356 int pmcsr_pos; 2357 u16 pmcsr; 2358 bool ret = false; 2359 2360 if (!dev->pm_cap) 2361 return false; 2362 2363 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL; 2364 pci_read_config_word(dev, pmcsr_pos, &pmcsr); 2365 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS)) 2366 return false; 2367 2368 /* Clear PME status. */ 2369 pmcsr |= PCI_PM_CTRL_PME_STATUS; 2370 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) { 2371 /* Disable PME to avoid interrupt flood. */ 2372 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2373 ret = true; 2374 } 2375 2376 pci_write_config_word(dev, pmcsr_pos, pmcsr); 2377 2378 return ret; 2379 } 2380 2381 /** 2382 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set. 2383 * @dev: Device to handle. 2384 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag. 2385 * 2386 * Check if @dev has generated PME and queue a resume request for it in that 2387 * case. 2388 */ 2389 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset) 2390 { 2391 if (pme_poll_reset && dev->pme_poll) 2392 dev->pme_poll = false; 2393 2394 if (pci_check_pme_status(dev)) { 2395 pci_wakeup_event(dev); 2396 pm_request_resume(&dev->dev); 2397 } 2398 return 0; 2399 } 2400 2401 /** 2402 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary. 2403 * @bus: Top bus of the subtree to walk. 2404 */ 2405 void pci_pme_wakeup_bus(struct pci_bus *bus) 2406 { 2407 if (bus) 2408 pci_walk_bus(bus, pci_pme_wakeup, (void *)true); 2409 } 2410 2411 2412 /** 2413 * pci_pme_capable - check the capability of PCI device to generate PME# 2414 * @dev: PCI device to handle. 2415 * @state: PCI state from which device will issue PME#. 2416 */ 2417 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state) 2418 { 2419 if (!dev->pm_cap) 2420 return false; 2421 2422 return !!(dev->pme_support & (1 << state)); 2423 } 2424 EXPORT_SYMBOL(pci_pme_capable); 2425 2426 static void pci_pme_list_scan(struct work_struct *work) 2427 { 2428 struct pci_pme_device *pme_dev, *n; 2429 2430 mutex_lock(&pci_pme_list_mutex); 2431 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) { 2432 struct pci_dev *pdev = pme_dev->dev; 2433 2434 if (pdev->pme_poll) { 2435 struct pci_dev *bridge = pdev->bus->self; 2436 struct device *dev = &pdev->dev; 2437 struct device *bdev = bridge ? &bridge->dev : NULL; 2438 int bref = 0; 2439 2440 /* 2441 * If we have a bridge, it should be in an active/D0 2442 * state or the configuration space of subordinate 2443 * devices may not be accessible or stable over the 2444 * course of the call. 2445 */ 2446 if (bdev) { 2447 bref = pm_runtime_get_if_active(bdev, true); 2448 if (!bref) 2449 continue; 2450 2451 if (bridge->current_state != PCI_D0) 2452 goto put_bridge; 2453 } 2454 2455 /* 2456 * The device itself should be suspended but config 2457 * space must be accessible, therefore it cannot be in 2458 * D3cold. 2459 */ 2460 if (pm_runtime_suspended(dev) && 2461 pdev->current_state != PCI_D3cold) 2462 pci_pme_wakeup(pdev, NULL); 2463 2464 put_bridge: 2465 if (bref > 0) 2466 pm_runtime_put(bdev); 2467 } else { 2468 list_del(&pme_dev->list); 2469 kfree(pme_dev); 2470 } 2471 } 2472 if (!list_empty(&pci_pme_list)) 2473 queue_delayed_work(system_freezable_wq, &pci_pme_work, 2474 msecs_to_jiffies(PME_TIMEOUT)); 2475 mutex_unlock(&pci_pme_list_mutex); 2476 } 2477 2478 static void __pci_pme_active(struct pci_dev *dev, bool enable) 2479 { 2480 u16 pmcsr; 2481 2482 if (!dev->pme_support) 2483 return; 2484 2485 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2486 /* Clear PME_Status by writing 1 to it and enable PME# */ 2487 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE; 2488 if (!enable) 2489 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2490 2491 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2492 } 2493 2494 /** 2495 * pci_pme_restore - Restore PME configuration after config space restore. 2496 * @dev: PCI device to update. 2497 */ 2498 void pci_pme_restore(struct pci_dev *dev) 2499 { 2500 u16 pmcsr; 2501 2502 if (!dev->pme_support) 2503 return; 2504 2505 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2506 if (dev->wakeup_prepared) { 2507 pmcsr |= PCI_PM_CTRL_PME_ENABLE; 2508 pmcsr &= ~PCI_PM_CTRL_PME_STATUS; 2509 } else { 2510 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2511 pmcsr |= PCI_PM_CTRL_PME_STATUS; 2512 } 2513 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2514 } 2515 2516 /** 2517 * pci_pme_active - enable or disable PCI device's PME# function 2518 * @dev: PCI device to handle. 2519 * @enable: 'true' to enable PME# generation; 'false' to disable it. 2520 * 2521 * The caller must verify that the device is capable of generating PME# before 2522 * calling this function with @enable equal to 'true'. 2523 */ 2524 void pci_pme_active(struct pci_dev *dev, bool enable) 2525 { 2526 __pci_pme_active(dev, enable); 2527 2528 /* 2529 * PCI (as opposed to PCIe) PME requires that the device have 2530 * its PME# line hooked up correctly. Not all hardware vendors 2531 * do this, so the PME never gets delivered and the device 2532 * remains asleep. The easiest way around this is to 2533 * periodically walk the list of suspended devices and check 2534 * whether any have their PME flag set. The assumption is that 2535 * we'll wake up often enough anyway that this won't be a huge 2536 * hit, and the power savings from the devices will still be a 2537 * win. 2538 * 2539 * Although PCIe uses in-band PME message instead of PME# line 2540 * to report PME, PME does not work for some PCIe devices in 2541 * reality. For example, there are devices that set their PME 2542 * status bits, but don't really bother to send a PME message; 2543 * there are PCI Express Root Ports that don't bother to 2544 * trigger interrupts when they receive PME messages from the 2545 * devices below. So PME poll is used for PCIe devices too. 2546 */ 2547 2548 if (dev->pme_poll) { 2549 struct pci_pme_device *pme_dev; 2550 if (enable) { 2551 pme_dev = kmalloc(sizeof(struct pci_pme_device), 2552 GFP_KERNEL); 2553 if (!pme_dev) { 2554 pci_warn(dev, "can't enable PME#\n"); 2555 return; 2556 } 2557 pme_dev->dev = dev; 2558 mutex_lock(&pci_pme_list_mutex); 2559 list_add(&pme_dev->list, &pci_pme_list); 2560 if (list_is_singular(&pci_pme_list)) 2561 queue_delayed_work(system_freezable_wq, 2562 &pci_pme_work, 2563 msecs_to_jiffies(PME_TIMEOUT)); 2564 mutex_unlock(&pci_pme_list_mutex); 2565 } else { 2566 mutex_lock(&pci_pme_list_mutex); 2567 list_for_each_entry(pme_dev, &pci_pme_list, list) { 2568 if (pme_dev->dev == dev) { 2569 list_del(&pme_dev->list); 2570 kfree(pme_dev); 2571 break; 2572 } 2573 } 2574 mutex_unlock(&pci_pme_list_mutex); 2575 } 2576 } 2577 2578 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled"); 2579 } 2580 EXPORT_SYMBOL(pci_pme_active); 2581 2582 /** 2583 * __pci_enable_wake - enable PCI device as wakeup event source 2584 * @dev: PCI device affected 2585 * @state: PCI state from which device will issue wakeup events 2586 * @enable: True to enable event generation; false to disable 2587 * 2588 * This enables the device as a wakeup event source, or disables it. 2589 * When such events involves platform-specific hooks, those hooks are 2590 * called automatically by this routine. 2591 * 2592 * Devices with legacy power management (no standard PCI PM capabilities) 2593 * always require such platform hooks. 2594 * 2595 * RETURN VALUE: 2596 * 0 is returned on success 2597 * -EINVAL is returned if device is not supposed to wake up the system 2598 * Error code depending on the platform is returned if both the platform and 2599 * the native mechanism fail to enable the generation of wake-up events 2600 */ 2601 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable) 2602 { 2603 int ret = 0; 2604 2605 /* 2606 * Bridges that are not power-manageable directly only signal 2607 * wakeup on behalf of subordinate devices which is set up 2608 * elsewhere, so skip them. However, bridges that are 2609 * power-manageable may signal wakeup for themselves (for example, 2610 * on a hotplug event) and they need to be covered here. 2611 */ 2612 if (!pci_power_manageable(dev)) 2613 return 0; 2614 2615 /* Don't do the same thing twice in a row for one device. */ 2616 if (!!enable == !!dev->wakeup_prepared) 2617 return 0; 2618 2619 /* 2620 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don 2621 * Anderson we should be doing PME# wake enable followed by ACPI wake 2622 * enable. To disable wake-up we call the platform first, for symmetry. 2623 */ 2624 2625 if (enable) { 2626 int error; 2627 2628 /* 2629 * Enable PME signaling if the device can signal PME from 2630 * D3cold regardless of whether or not it can signal PME from 2631 * the current target state, because that will allow it to 2632 * signal PME when the hierarchy above it goes into D3cold and 2633 * the device itself ends up in D3cold as a result of that. 2634 */ 2635 if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold)) 2636 pci_pme_active(dev, true); 2637 else 2638 ret = 1; 2639 error = platform_pci_set_wakeup(dev, true); 2640 if (ret) 2641 ret = error; 2642 if (!ret) 2643 dev->wakeup_prepared = true; 2644 } else { 2645 platform_pci_set_wakeup(dev, false); 2646 pci_pme_active(dev, false); 2647 dev->wakeup_prepared = false; 2648 } 2649 2650 return ret; 2651 } 2652 2653 /** 2654 * pci_enable_wake - change wakeup settings for a PCI device 2655 * @pci_dev: Target device 2656 * @state: PCI state from which device will issue wakeup events 2657 * @enable: Whether or not to enable event generation 2658 * 2659 * If @enable is set, check device_may_wakeup() for the device before calling 2660 * __pci_enable_wake() for it. 2661 */ 2662 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable) 2663 { 2664 if (enable && !device_may_wakeup(&pci_dev->dev)) 2665 return -EINVAL; 2666 2667 return __pci_enable_wake(pci_dev, state, enable); 2668 } 2669 EXPORT_SYMBOL(pci_enable_wake); 2670 2671 /** 2672 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold 2673 * @dev: PCI device to prepare 2674 * @enable: True to enable wake-up event generation; false to disable 2675 * 2676 * Many drivers want the device to wake up the system from D3_hot or D3_cold 2677 * and this function allows them to set that up cleanly - pci_enable_wake() 2678 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI 2679 * ordering constraints. 2680 * 2681 * This function only returns error code if the device is not allowed to wake 2682 * up the system from sleep or it is not capable of generating PME# from both 2683 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it. 2684 */ 2685 int pci_wake_from_d3(struct pci_dev *dev, bool enable) 2686 { 2687 return pci_pme_capable(dev, PCI_D3cold) ? 2688 pci_enable_wake(dev, PCI_D3cold, enable) : 2689 pci_enable_wake(dev, PCI_D3hot, enable); 2690 } 2691 EXPORT_SYMBOL(pci_wake_from_d3); 2692 2693 /** 2694 * pci_target_state - find an appropriate low power state for a given PCI dev 2695 * @dev: PCI device 2696 * @wakeup: Whether or not wakeup functionality will be enabled for the device. 2697 * 2698 * Use underlying platform code to find a supported low power state for @dev. 2699 * If the platform can't manage @dev, return the deepest state from which it 2700 * can generate wake events, based on any available PME info. 2701 */ 2702 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup) 2703 { 2704 if (platform_pci_power_manageable(dev)) { 2705 /* 2706 * Call the platform to find the target state for the device. 2707 */ 2708 pci_power_t state = platform_pci_choose_state(dev); 2709 2710 switch (state) { 2711 case PCI_POWER_ERROR: 2712 case PCI_UNKNOWN: 2713 return PCI_D3hot; 2714 2715 case PCI_D1: 2716 case PCI_D2: 2717 if (pci_no_d1d2(dev)) 2718 return PCI_D3hot; 2719 } 2720 2721 return state; 2722 } 2723 2724 /* 2725 * If the device is in D3cold even though it's not power-manageable by 2726 * the platform, it may have been powered down by non-standard means. 2727 * Best to let it slumber. 2728 */ 2729 if (dev->current_state == PCI_D3cold) 2730 return PCI_D3cold; 2731 else if (!dev->pm_cap) 2732 return PCI_D0; 2733 2734 if (wakeup && dev->pme_support) { 2735 pci_power_t state = PCI_D3hot; 2736 2737 /* 2738 * Find the deepest state from which the device can generate 2739 * PME#. 2740 */ 2741 while (state && !(dev->pme_support & (1 << state))) 2742 state--; 2743 2744 if (state) 2745 return state; 2746 else if (dev->pme_support & 1) 2747 return PCI_D0; 2748 } 2749 2750 return PCI_D3hot; 2751 } 2752 2753 /** 2754 * pci_prepare_to_sleep - prepare PCI device for system-wide transition 2755 * into a sleep state 2756 * @dev: Device to handle. 2757 * 2758 * Choose the power state appropriate for the device depending on whether 2759 * it can wake up the system and/or is power manageable by the platform 2760 * (PCI_D3hot is the default) and put the device into that state. 2761 */ 2762 int pci_prepare_to_sleep(struct pci_dev *dev) 2763 { 2764 bool wakeup = device_may_wakeup(&dev->dev); 2765 pci_power_t target_state = pci_target_state(dev, wakeup); 2766 int error; 2767 2768 if (target_state == PCI_POWER_ERROR) 2769 return -EIO; 2770 2771 pci_enable_wake(dev, target_state, wakeup); 2772 2773 error = pci_set_power_state(dev, target_state); 2774 2775 if (error) 2776 pci_enable_wake(dev, target_state, false); 2777 2778 return error; 2779 } 2780 EXPORT_SYMBOL(pci_prepare_to_sleep); 2781 2782 /** 2783 * pci_back_from_sleep - turn PCI device on during system-wide transition 2784 * into working state 2785 * @dev: Device to handle. 2786 * 2787 * Disable device's system wake-up capability and put it into D0. 2788 */ 2789 int pci_back_from_sleep(struct pci_dev *dev) 2790 { 2791 int ret = pci_set_power_state(dev, PCI_D0); 2792 2793 if (ret) 2794 return ret; 2795 2796 pci_enable_wake(dev, PCI_D0, false); 2797 return 0; 2798 } 2799 EXPORT_SYMBOL(pci_back_from_sleep); 2800 2801 /** 2802 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend. 2803 * @dev: PCI device being suspended. 2804 * 2805 * Prepare @dev to generate wake-up events at run time and put it into a low 2806 * power state. 2807 */ 2808 int pci_finish_runtime_suspend(struct pci_dev *dev) 2809 { 2810 pci_power_t target_state; 2811 int error; 2812 2813 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev)); 2814 if (target_state == PCI_POWER_ERROR) 2815 return -EIO; 2816 2817 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev)); 2818 2819 error = pci_set_power_state(dev, target_state); 2820 2821 if (error) 2822 pci_enable_wake(dev, target_state, false); 2823 2824 return error; 2825 } 2826 2827 /** 2828 * pci_dev_run_wake - Check if device can generate run-time wake-up events. 2829 * @dev: Device to check. 2830 * 2831 * Return true if the device itself is capable of generating wake-up events 2832 * (through the platform or using the native PCIe PME) or if the device supports 2833 * PME and one of its upstream bridges can generate wake-up events. 2834 */ 2835 bool pci_dev_run_wake(struct pci_dev *dev) 2836 { 2837 struct pci_bus *bus = dev->bus; 2838 2839 if (!dev->pme_support) 2840 return false; 2841 2842 /* PME-capable in principle, but not from the target power state */ 2843 if (!pci_pme_capable(dev, pci_target_state(dev, true))) 2844 return false; 2845 2846 if (device_can_wakeup(&dev->dev)) 2847 return true; 2848 2849 while (bus->parent) { 2850 struct pci_dev *bridge = bus->self; 2851 2852 if (device_can_wakeup(&bridge->dev)) 2853 return true; 2854 2855 bus = bus->parent; 2856 } 2857 2858 /* We have reached the root bus. */ 2859 if (bus->bridge) 2860 return device_can_wakeup(bus->bridge); 2861 2862 return false; 2863 } 2864 EXPORT_SYMBOL_GPL(pci_dev_run_wake); 2865 2866 /** 2867 * pci_dev_need_resume - Check if it is necessary to resume the device. 2868 * @pci_dev: Device to check. 2869 * 2870 * Return 'true' if the device is not runtime-suspended or it has to be 2871 * reconfigured due to wakeup settings difference between system and runtime 2872 * suspend, or the current power state of it is not suitable for the upcoming 2873 * (system-wide) transition. 2874 */ 2875 bool pci_dev_need_resume(struct pci_dev *pci_dev) 2876 { 2877 struct device *dev = &pci_dev->dev; 2878 pci_power_t target_state; 2879 2880 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev)) 2881 return true; 2882 2883 target_state = pci_target_state(pci_dev, device_may_wakeup(dev)); 2884 2885 /* 2886 * If the earlier platform check has not triggered, D3cold is just power 2887 * removal on top of D3hot, so no need to resume the device in that 2888 * case. 2889 */ 2890 return target_state != pci_dev->current_state && 2891 target_state != PCI_D3cold && 2892 pci_dev->current_state != PCI_D3hot; 2893 } 2894 2895 /** 2896 * pci_dev_adjust_pme - Adjust PME setting for a suspended device. 2897 * @pci_dev: Device to check. 2898 * 2899 * If the device is suspended and it is not configured for system wakeup, 2900 * disable PME for it to prevent it from waking up the system unnecessarily. 2901 * 2902 * Note that if the device's power state is D3cold and the platform check in 2903 * pci_dev_need_resume() has not triggered, the device's configuration need not 2904 * be changed. 2905 */ 2906 void pci_dev_adjust_pme(struct pci_dev *pci_dev) 2907 { 2908 struct device *dev = &pci_dev->dev; 2909 2910 spin_lock_irq(&dev->power.lock); 2911 2912 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) && 2913 pci_dev->current_state < PCI_D3cold) 2914 __pci_pme_active(pci_dev, false); 2915 2916 spin_unlock_irq(&dev->power.lock); 2917 } 2918 2919 /** 2920 * pci_dev_complete_resume - Finalize resume from system sleep for a device. 2921 * @pci_dev: Device to handle. 2922 * 2923 * If the device is runtime suspended and wakeup-capable, enable PME for it as 2924 * it might have been disabled during the prepare phase of system suspend if 2925 * the device was not configured for system wakeup. 2926 */ 2927 void pci_dev_complete_resume(struct pci_dev *pci_dev) 2928 { 2929 struct device *dev = &pci_dev->dev; 2930 2931 if (!pci_dev_run_wake(pci_dev)) 2932 return; 2933 2934 spin_lock_irq(&dev->power.lock); 2935 2936 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold) 2937 __pci_pme_active(pci_dev, true); 2938 2939 spin_unlock_irq(&dev->power.lock); 2940 } 2941 2942 /** 2943 * pci_choose_state - Choose the power state of a PCI device. 2944 * @dev: Target PCI device. 2945 * @state: Target state for the whole system. 2946 * 2947 * Returns PCI power state suitable for @dev and @state. 2948 */ 2949 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state) 2950 { 2951 if (state.event == PM_EVENT_ON) 2952 return PCI_D0; 2953 2954 return pci_target_state(dev, false); 2955 } 2956 EXPORT_SYMBOL(pci_choose_state); 2957 2958 void pci_config_pm_runtime_get(struct pci_dev *pdev) 2959 { 2960 struct device *dev = &pdev->dev; 2961 struct device *parent = dev->parent; 2962 2963 if (parent) 2964 pm_runtime_get_sync(parent); 2965 pm_runtime_get_noresume(dev); 2966 /* 2967 * pdev->current_state is set to PCI_D3cold during suspending, 2968 * so wait until suspending completes 2969 */ 2970 pm_runtime_barrier(dev); 2971 /* 2972 * Only need to resume devices in D3cold, because config 2973 * registers are still accessible for devices suspended but 2974 * not in D3cold. 2975 */ 2976 if (pdev->current_state == PCI_D3cold) 2977 pm_runtime_resume(dev); 2978 } 2979 2980 void pci_config_pm_runtime_put(struct pci_dev *pdev) 2981 { 2982 struct device *dev = &pdev->dev; 2983 struct device *parent = dev->parent; 2984 2985 pm_runtime_put(dev); 2986 if (parent) 2987 pm_runtime_put_sync(parent); 2988 } 2989 2990 static const struct dmi_system_id bridge_d3_blacklist[] = { 2991 #ifdef CONFIG_X86 2992 { 2993 /* 2994 * Gigabyte X299 root port is not marked as hotplug capable 2995 * which allows Linux to power manage it. However, this 2996 * confuses the BIOS SMI handler so don't power manage root 2997 * ports on that system. 2998 */ 2999 .ident = "X299 DESIGNARE EX-CF", 3000 .matches = { 3001 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."), 3002 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"), 3003 }, 3004 }, 3005 { 3006 /* 3007 * Downstream device is not accessible after putting a root port 3008 * into D3cold and back into D0 on Elo Continental Z2 board 3009 */ 3010 .ident = "Elo Continental Z2", 3011 .matches = { 3012 DMI_MATCH(DMI_BOARD_VENDOR, "Elo Touch Solutions"), 3013 DMI_MATCH(DMI_BOARD_NAME, "Geminilake"), 3014 DMI_MATCH(DMI_BOARD_VERSION, "Continental Z2"), 3015 }, 3016 }, 3017 #endif 3018 { } 3019 }; 3020 3021 /** 3022 * pci_bridge_d3_possible - Is it possible to put the bridge into D3 3023 * @bridge: Bridge to check 3024 * 3025 * This function checks if it is possible to move the bridge to D3. 3026 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt. 3027 */ 3028 bool pci_bridge_d3_possible(struct pci_dev *bridge) 3029 { 3030 if (!pci_is_pcie(bridge)) 3031 return false; 3032 3033 switch (pci_pcie_type(bridge)) { 3034 case PCI_EXP_TYPE_ROOT_PORT: 3035 case PCI_EXP_TYPE_UPSTREAM: 3036 case PCI_EXP_TYPE_DOWNSTREAM: 3037 if (pci_bridge_d3_disable) 3038 return false; 3039 3040 /* 3041 * Hotplug ports handled by firmware in System Management Mode 3042 * may not be put into D3 by the OS (Thunderbolt on non-Macs). 3043 */ 3044 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge)) 3045 return false; 3046 3047 if (pci_bridge_d3_force) 3048 return true; 3049 3050 /* Even the oldest 2010 Thunderbolt controller supports D3. */ 3051 if (bridge->is_thunderbolt) 3052 return true; 3053 3054 /* Platform might know better if the bridge supports D3 */ 3055 if (platform_pci_bridge_d3(bridge)) 3056 return true; 3057 3058 /* 3059 * Hotplug ports handled natively by the OS were not validated 3060 * by vendors for runtime D3 at least until 2018 because there 3061 * was no OS support. 3062 */ 3063 if (bridge->is_hotplug_bridge) 3064 return false; 3065 3066 if (dmi_check_system(bridge_d3_blacklist)) 3067 return false; 3068 3069 /* 3070 * It should be safe to put PCIe ports from 2015 or newer 3071 * to D3. 3072 */ 3073 if (dmi_get_bios_year() >= 2015) 3074 return true; 3075 break; 3076 } 3077 3078 return false; 3079 } 3080 3081 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data) 3082 { 3083 bool *d3cold_ok = data; 3084 3085 if (/* The device needs to be allowed to go D3cold ... */ 3086 dev->no_d3cold || !dev->d3cold_allowed || 3087 3088 /* ... and if it is wakeup capable to do so from D3cold. */ 3089 (device_may_wakeup(&dev->dev) && 3090 !pci_pme_capable(dev, PCI_D3cold)) || 3091 3092 /* If it is a bridge it must be allowed to go to D3. */ 3093 !pci_power_manageable(dev)) 3094 3095 *d3cold_ok = false; 3096 3097 return !*d3cold_ok; 3098 } 3099 3100 /* 3101 * pci_bridge_d3_update - Update bridge D3 capabilities 3102 * @dev: PCI device which is changed 3103 * 3104 * Update upstream bridge PM capabilities accordingly depending on if the 3105 * device PM configuration was changed or the device is being removed. The 3106 * change is also propagated upstream. 3107 */ 3108 void pci_bridge_d3_update(struct pci_dev *dev) 3109 { 3110 bool remove = !device_is_registered(&dev->dev); 3111 struct pci_dev *bridge; 3112 bool d3cold_ok = true; 3113 3114 bridge = pci_upstream_bridge(dev); 3115 if (!bridge || !pci_bridge_d3_possible(bridge)) 3116 return; 3117 3118 /* 3119 * If D3 is currently allowed for the bridge, removing one of its 3120 * children won't change that. 3121 */ 3122 if (remove && bridge->bridge_d3) 3123 return; 3124 3125 /* 3126 * If D3 is currently allowed for the bridge and a child is added or 3127 * changed, disallowance of D3 can only be caused by that child, so 3128 * we only need to check that single device, not any of its siblings. 3129 * 3130 * If D3 is currently not allowed for the bridge, checking the device 3131 * first may allow us to skip checking its siblings. 3132 */ 3133 if (!remove) 3134 pci_dev_check_d3cold(dev, &d3cold_ok); 3135 3136 /* 3137 * If D3 is currently not allowed for the bridge, this may be caused 3138 * either by the device being changed/removed or any of its siblings, 3139 * so we need to go through all children to find out if one of them 3140 * continues to block D3. 3141 */ 3142 if (d3cold_ok && !bridge->bridge_d3) 3143 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold, 3144 &d3cold_ok); 3145 3146 if (bridge->bridge_d3 != d3cold_ok) { 3147 bridge->bridge_d3 = d3cold_ok; 3148 /* Propagate change to upstream bridges */ 3149 pci_bridge_d3_update(bridge); 3150 } 3151 } 3152 3153 /** 3154 * pci_d3cold_enable - Enable D3cold for device 3155 * @dev: PCI device to handle 3156 * 3157 * This function can be used in drivers to enable D3cold from the device 3158 * they handle. It also updates upstream PCI bridge PM capabilities 3159 * accordingly. 3160 */ 3161 void pci_d3cold_enable(struct pci_dev *dev) 3162 { 3163 if (dev->no_d3cold) { 3164 dev->no_d3cold = false; 3165 pci_bridge_d3_update(dev); 3166 } 3167 } 3168 EXPORT_SYMBOL_GPL(pci_d3cold_enable); 3169 3170 /** 3171 * pci_d3cold_disable - Disable D3cold for device 3172 * @dev: PCI device to handle 3173 * 3174 * This function can be used in drivers to disable D3cold from the device 3175 * they handle. It also updates upstream PCI bridge PM capabilities 3176 * accordingly. 3177 */ 3178 void pci_d3cold_disable(struct pci_dev *dev) 3179 { 3180 if (!dev->no_d3cold) { 3181 dev->no_d3cold = true; 3182 pci_bridge_d3_update(dev); 3183 } 3184 } 3185 EXPORT_SYMBOL_GPL(pci_d3cold_disable); 3186 3187 /** 3188 * pci_pm_init - Initialize PM functions of given PCI device 3189 * @dev: PCI device to handle. 3190 */ 3191 void pci_pm_init(struct pci_dev *dev) 3192 { 3193 int pm; 3194 u16 status; 3195 u16 pmc; 3196 3197 pm_runtime_forbid(&dev->dev); 3198 pm_runtime_set_active(&dev->dev); 3199 pm_runtime_enable(&dev->dev); 3200 device_enable_async_suspend(&dev->dev); 3201 dev->wakeup_prepared = false; 3202 3203 dev->pm_cap = 0; 3204 dev->pme_support = 0; 3205 3206 /* find PCI PM capability in list */ 3207 pm = pci_find_capability(dev, PCI_CAP_ID_PM); 3208 if (!pm) 3209 return; 3210 /* Check device's ability to generate PME# */ 3211 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc); 3212 3213 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) { 3214 pci_err(dev, "unsupported PM cap regs version (%u)\n", 3215 pmc & PCI_PM_CAP_VER_MASK); 3216 return; 3217 } 3218 3219 dev->pm_cap = pm; 3220 dev->d3hot_delay = PCI_PM_D3HOT_WAIT; 3221 dev->d3cold_delay = PCI_PM_D3COLD_WAIT; 3222 dev->bridge_d3 = pci_bridge_d3_possible(dev); 3223 dev->d3cold_allowed = true; 3224 3225 dev->d1_support = false; 3226 dev->d2_support = false; 3227 if (!pci_no_d1d2(dev)) { 3228 if (pmc & PCI_PM_CAP_D1) 3229 dev->d1_support = true; 3230 if (pmc & PCI_PM_CAP_D2) 3231 dev->d2_support = true; 3232 3233 if (dev->d1_support || dev->d2_support) 3234 pci_info(dev, "supports%s%s\n", 3235 dev->d1_support ? " D1" : "", 3236 dev->d2_support ? " D2" : ""); 3237 } 3238 3239 pmc &= PCI_PM_CAP_PME_MASK; 3240 if (pmc) { 3241 pci_info(dev, "PME# supported from%s%s%s%s%s\n", 3242 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "", 3243 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "", 3244 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "", 3245 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "", 3246 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : ""); 3247 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT; 3248 dev->pme_poll = true; 3249 /* 3250 * Make device's PM flags reflect the wake-up capability, but 3251 * let the user space enable it to wake up the system as needed. 3252 */ 3253 device_set_wakeup_capable(&dev->dev, true); 3254 /* Disable the PME# generation functionality */ 3255 pci_pme_active(dev, false); 3256 } 3257 3258 pci_read_config_word(dev, PCI_STATUS, &status); 3259 if (status & PCI_STATUS_IMM_READY) 3260 dev->imm_ready = 1; 3261 } 3262 3263 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop) 3264 { 3265 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI; 3266 3267 switch (prop) { 3268 case PCI_EA_P_MEM: 3269 case PCI_EA_P_VF_MEM: 3270 flags |= IORESOURCE_MEM; 3271 break; 3272 case PCI_EA_P_MEM_PREFETCH: 3273 case PCI_EA_P_VF_MEM_PREFETCH: 3274 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH; 3275 break; 3276 case PCI_EA_P_IO: 3277 flags |= IORESOURCE_IO; 3278 break; 3279 default: 3280 return 0; 3281 } 3282 3283 return flags; 3284 } 3285 3286 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei, 3287 u8 prop) 3288 { 3289 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO) 3290 return &dev->resource[bei]; 3291 #ifdef CONFIG_PCI_IOV 3292 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 && 3293 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH)) 3294 return &dev->resource[PCI_IOV_RESOURCES + 3295 bei - PCI_EA_BEI_VF_BAR0]; 3296 #endif 3297 else if (bei == PCI_EA_BEI_ROM) 3298 return &dev->resource[PCI_ROM_RESOURCE]; 3299 else 3300 return NULL; 3301 } 3302 3303 /* Read an Enhanced Allocation (EA) entry */ 3304 static int pci_ea_read(struct pci_dev *dev, int offset) 3305 { 3306 struct resource *res; 3307 int ent_size, ent_offset = offset; 3308 resource_size_t start, end; 3309 unsigned long flags; 3310 u32 dw0, bei, base, max_offset; 3311 u8 prop; 3312 bool support_64 = (sizeof(resource_size_t) >= 8); 3313 3314 pci_read_config_dword(dev, ent_offset, &dw0); 3315 ent_offset += 4; 3316 3317 /* Entry size field indicates DWORDs after 1st */ 3318 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2; 3319 3320 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */ 3321 goto out; 3322 3323 bei = (dw0 & PCI_EA_BEI) >> 4; 3324 prop = (dw0 & PCI_EA_PP) >> 8; 3325 3326 /* 3327 * If the Property is in the reserved range, try the Secondary 3328 * Property instead. 3329 */ 3330 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED) 3331 prop = (dw0 & PCI_EA_SP) >> 16; 3332 if (prop > PCI_EA_P_BRIDGE_IO) 3333 goto out; 3334 3335 res = pci_ea_get_resource(dev, bei, prop); 3336 if (!res) { 3337 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei); 3338 goto out; 3339 } 3340 3341 flags = pci_ea_flags(dev, prop); 3342 if (!flags) { 3343 pci_err(dev, "Unsupported EA properties: %#x\n", prop); 3344 goto out; 3345 } 3346 3347 /* Read Base */ 3348 pci_read_config_dword(dev, ent_offset, &base); 3349 start = (base & PCI_EA_FIELD_MASK); 3350 ent_offset += 4; 3351 3352 /* Read MaxOffset */ 3353 pci_read_config_dword(dev, ent_offset, &max_offset); 3354 ent_offset += 4; 3355 3356 /* Read Base MSBs (if 64-bit entry) */ 3357 if (base & PCI_EA_IS_64) { 3358 u32 base_upper; 3359 3360 pci_read_config_dword(dev, ent_offset, &base_upper); 3361 ent_offset += 4; 3362 3363 flags |= IORESOURCE_MEM_64; 3364 3365 /* entry starts above 32-bit boundary, can't use */ 3366 if (!support_64 && base_upper) 3367 goto out; 3368 3369 if (support_64) 3370 start |= ((u64)base_upper << 32); 3371 } 3372 3373 end = start + (max_offset | 0x03); 3374 3375 /* Read MaxOffset MSBs (if 64-bit entry) */ 3376 if (max_offset & PCI_EA_IS_64) { 3377 u32 max_offset_upper; 3378 3379 pci_read_config_dword(dev, ent_offset, &max_offset_upper); 3380 ent_offset += 4; 3381 3382 flags |= IORESOURCE_MEM_64; 3383 3384 /* entry too big, can't use */ 3385 if (!support_64 && max_offset_upper) 3386 goto out; 3387 3388 if (support_64) 3389 end += ((u64)max_offset_upper << 32); 3390 } 3391 3392 if (end < start) { 3393 pci_err(dev, "EA Entry crosses address boundary\n"); 3394 goto out; 3395 } 3396 3397 if (ent_size != ent_offset - offset) { 3398 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n", 3399 ent_size, ent_offset - offset); 3400 goto out; 3401 } 3402 3403 res->name = pci_name(dev); 3404 res->start = start; 3405 res->end = end; 3406 res->flags = flags; 3407 3408 if (bei <= PCI_EA_BEI_BAR5) 3409 pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 3410 bei, res, prop); 3411 else if (bei == PCI_EA_BEI_ROM) 3412 pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n", 3413 res, prop); 3414 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5) 3415 pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 3416 bei - PCI_EA_BEI_VF_BAR0, res, prop); 3417 else 3418 pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n", 3419 bei, res, prop); 3420 3421 out: 3422 return offset + ent_size; 3423 } 3424 3425 /* Enhanced Allocation Initialization */ 3426 void pci_ea_init(struct pci_dev *dev) 3427 { 3428 int ea; 3429 u8 num_ent; 3430 int offset; 3431 int i; 3432 3433 /* find PCI EA capability in list */ 3434 ea = pci_find_capability(dev, PCI_CAP_ID_EA); 3435 if (!ea) 3436 return; 3437 3438 /* determine the number of entries */ 3439 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT, 3440 &num_ent); 3441 num_ent &= PCI_EA_NUM_ENT_MASK; 3442 3443 offset = ea + PCI_EA_FIRST_ENT; 3444 3445 /* Skip DWORD 2 for type 1 functions */ 3446 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) 3447 offset += 4; 3448 3449 /* parse each EA entry */ 3450 for (i = 0; i < num_ent; ++i) 3451 offset = pci_ea_read(dev, offset); 3452 } 3453 3454 static void pci_add_saved_cap(struct pci_dev *pci_dev, 3455 struct pci_cap_saved_state *new_cap) 3456 { 3457 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space); 3458 } 3459 3460 /** 3461 * _pci_add_cap_save_buffer - allocate buffer for saving given 3462 * capability registers 3463 * @dev: the PCI device 3464 * @cap: the capability to allocate the buffer for 3465 * @extended: Standard or Extended capability ID 3466 * @size: requested size of the buffer 3467 */ 3468 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap, 3469 bool extended, unsigned int size) 3470 { 3471 int pos; 3472 struct pci_cap_saved_state *save_state; 3473 3474 if (extended) 3475 pos = pci_find_ext_capability(dev, cap); 3476 else 3477 pos = pci_find_capability(dev, cap); 3478 3479 if (!pos) 3480 return 0; 3481 3482 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL); 3483 if (!save_state) 3484 return -ENOMEM; 3485 3486 save_state->cap.cap_nr = cap; 3487 save_state->cap.cap_extended = extended; 3488 save_state->cap.size = size; 3489 pci_add_saved_cap(dev, save_state); 3490 3491 return 0; 3492 } 3493 3494 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size) 3495 { 3496 return _pci_add_cap_save_buffer(dev, cap, false, size); 3497 } 3498 3499 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size) 3500 { 3501 return _pci_add_cap_save_buffer(dev, cap, true, size); 3502 } 3503 3504 /** 3505 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities 3506 * @dev: the PCI device 3507 */ 3508 void pci_allocate_cap_save_buffers(struct pci_dev *dev) 3509 { 3510 int error; 3511 3512 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP, 3513 PCI_EXP_SAVE_REGS * sizeof(u16)); 3514 if (error) 3515 pci_err(dev, "unable to preallocate PCI Express save buffer\n"); 3516 3517 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16)); 3518 if (error) 3519 pci_err(dev, "unable to preallocate PCI-X save buffer\n"); 3520 3521 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR, 3522 2 * sizeof(u16)); 3523 if (error) 3524 pci_err(dev, "unable to allocate suspend buffer for LTR\n"); 3525 3526 pci_allocate_vc_save_buffers(dev); 3527 } 3528 3529 void pci_free_cap_save_buffers(struct pci_dev *dev) 3530 { 3531 struct pci_cap_saved_state *tmp; 3532 struct hlist_node *n; 3533 3534 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next) 3535 kfree(tmp); 3536 } 3537 3538 /** 3539 * pci_configure_ari - enable or disable ARI forwarding 3540 * @dev: the PCI device 3541 * 3542 * If @dev and its upstream bridge both support ARI, enable ARI in the 3543 * bridge. Otherwise, disable ARI in the bridge. 3544 */ 3545 void pci_configure_ari(struct pci_dev *dev) 3546 { 3547 u32 cap; 3548 struct pci_dev *bridge; 3549 3550 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn) 3551 return; 3552 3553 bridge = dev->bus->self; 3554 if (!bridge) 3555 return; 3556 3557 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3558 if (!(cap & PCI_EXP_DEVCAP2_ARI)) 3559 return; 3560 3561 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) { 3562 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, 3563 PCI_EXP_DEVCTL2_ARI); 3564 bridge->ari_enabled = 1; 3565 } else { 3566 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2, 3567 PCI_EXP_DEVCTL2_ARI); 3568 bridge->ari_enabled = 0; 3569 } 3570 } 3571 3572 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags) 3573 { 3574 int pos; 3575 u16 cap, ctrl; 3576 3577 pos = pdev->acs_cap; 3578 if (!pos) 3579 return false; 3580 3581 /* 3582 * Except for egress control, capabilities are either required 3583 * or only required if controllable. Features missing from the 3584 * capability field can therefore be assumed as hard-wired enabled. 3585 */ 3586 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap); 3587 acs_flags &= (cap | PCI_ACS_EC); 3588 3589 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl); 3590 return (ctrl & acs_flags) == acs_flags; 3591 } 3592 3593 /** 3594 * pci_acs_enabled - test ACS against required flags for a given device 3595 * @pdev: device to test 3596 * @acs_flags: required PCI ACS flags 3597 * 3598 * Return true if the device supports the provided flags. Automatically 3599 * filters out flags that are not implemented on multifunction devices. 3600 * 3601 * Note that this interface checks the effective ACS capabilities of the 3602 * device rather than the actual capabilities. For instance, most single 3603 * function endpoints are not required to support ACS because they have no 3604 * opportunity for peer-to-peer access. We therefore return 'true' 3605 * regardless of whether the device exposes an ACS capability. This makes 3606 * it much easier for callers of this function to ignore the actual type 3607 * or topology of the device when testing ACS support. 3608 */ 3609 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags) 3610 { 3611 int ret; 3612 3613 ret = pci_dev_specific_acs_enabled(pdev, acs_flags); 3614 if (ret >= 0) 3615 return ret > 0; 3616 3617 /* 3618 * Conventional PCI and PCI-X devices never support ACS, either 3619 * effectively or actually. The shared bus topology implies that 3620 * any device on the bus can receive or snoop DMA. 3621 */ 3622 if (!pci_is_pcie(pdev)) 3623 return false; 3624 3625 switch (pci_pcie_type(pdev)) { 3626 /* 3627 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec, 3628 * but since their primary interface is PCI/X, we conservatively 3629 * handle them as we would a non-PCIe device. 3630 */ 3631 case PCI_EXP_TYPE_PCIE_BRIDGE: 3632 /* 3633 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never 3634 * applicable... must never implement an ACS Extended Capability...". 3635 * This seems arbitrary, but we take a conservative interpretation 3636 * of this statement. 3637 */ 3638 case PCI_EXP_TYPE_PCI_BRIDGE: 3639 case PCI_EXP_TYPE_RC_EC: 3640 return false; 3641 /* 3642 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should 3643 * implement ACS in order to indicate their peer-to-peer capabilities, 3644 * regardless of whether they are single- or multi-function devices. 3645 */ 3646 case PCI_EXP_TYPE_DOWNSTREAM: 3647 case PCI_EXP_TYPE_ROOT_PORT: 3648 return pci_acs_flags_enabled(pdev, acs_flags); 3649 /* 3650 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be 3651 * implemented by the remaining PCIe types to indicate peer-to-peer 3652 * capabilities, but only when they are part of a multifunction 3653 * device. The footnote for section 6.12 indicates the specific 3654 * PCIe types included here. 3655 */ 3656 case PCI_EXP_TYPE_ENDPOINT: 3657 case PCI_EXP_TYPE_UPSTREAM: 3658 case PCI_EXP_TYPE_LEG_END: 3659 case PCI_EXP_TYPE_RC_END: 3660 if (!pdev->multifunction) 3661 break; 3662 3663 return pci_acs_flags_enabled(pdev, acs_flags); 3664 } 3665 3666 /* 3667 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable 3668 * to single function devices with the exception of downstream ports. 3669 */ 3670 return true; 3671 } 3672 3673 /** 3674 * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy 3675 * @start: starting downstream device 3676 * @end: ending upstream device or NULL to search to the root bus 3677 * @acs_flags: required flags 3678 * 3679 * Walk up a device tree from start to end testing PCI ACS support. If 3680 * any step along the way does not support the required flags, return false. 3681 */ 3682 bool pci_acs_path_enabled(struct pci_dev *start, 3683 struct pci_dev *end, u16 acs_flags) 3684 { 3685 struct pci_dev *pdev, *parent = start; 3686 3687 do { 3688 pdev = parent; 3689 3690 if (!pci_acs_enabled(pdev, acs_flags)) 3691 return false; 3692 3693 if (pci_is_root_bus(pdev->bus)) 3694 return (end == NULL); 3695 3696 parent = pdev->bus->self; 3697 } while (pdev != end); 3698 3699 return true; 3700 } 3701 3702 /** 3703 * pci_acs_init - Initialize ACS if hardware supports it 3704 * @dev: the PCI device 3705 */ 3706 void pci_acs_init(struct pci_dev *dev) 3707 { 3708 dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS); 3709 3710 /* 3711 * Attempt to enable ACS regardless of capability because some Root 3712 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have 3713 * the standard ACS capability but still support ACS via those 3714 * quirks. 3715 */ 3716 pci_enable_acs(dev); 3717 } 3718 3719 /** 3720 * pci_rebar_find_pos - find position of resize ctrl reg for BAR 3721 * @pdev: PCI device 3722 * @bar: BAR to find 3723 * 3724 * Helper to find the position of the ctrl register for a BAR. 3725 * Returns -ENOTSUPP if resizable BARs are not supported at all. 3726 * Returns -ENOENT if no ctrl register for the BAR could be found. 3727 */ 3728 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar) 3729 { 3730 unsigned int pos, nbars, i; 3731 u32 ctrl; 3732 3733 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 3734 if (!pos) 3735 return -ENOTSUPP; 3736 3737 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3738 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >> 3739 PCI_REBAR_CTRL_NBAR_SHIFT; 3740 3741 for (i = 0; i < nbars; i++, pos += 8) { 3742 int bar_idx; 3743 3744 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3745 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX; 3746 if (bar_idx == bar) 3747 return pos; 3748 } 3749 3750 return -ENOENT; 3751 } 3752 3753 /** 3754 * pci_rebar_get_possible_sizes - get possible sizes for BAR 3755 * @pdev: PCI device 3756 * @bar: BAR to query 3757 * 3758 * Get the possible sizes of a resizable BAR as bitmask defined in the spec 3759 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable. 3760 */ 3761 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar) 3762 { 3763 int pos; 3764 u32 cap; 3765 3766 pos = pci_rebar_find_pos(pdev, bar); 3767 if (pos < 0) 3768 return 0; 3769 3770 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap); 3771 cap = FIELD_GET(PCI_REBAR_CAP_SIZES, cap); 3772 3773 /* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */ 3774 if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f && 3775 bar == 0 && cap == 0x700) 3776 return 0x3f00; 3777 3778 return cap; 3779 } 3780 EXPORT_SYMBOL(pci_rebar_get_possible_sizes); 3781 3782 /** 3783 * pci_rebar_get_current_size - get the current size of a BAR 3784 * @pdev: PCI device 3785 * @bar: BAR to set size to 3786 * 3787 * Read the size of a BAR from the resizable BAR config. 3788 * Returns size if found or negative error code. 3789 */ 3790 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar) 3791 { 3792 int pos; 3793 u32 ctrl; 3794 3795 pos = pci_rebar_find_pos(pdev, bar); 3796 if (pos < 0) 3797 return pos; 3798 3799 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3800 return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT; 3801 } 3802 3803 /** 3804 * pci_rebar_set_size - set a new size for a BAR 3805 * @pdev: PCI device 3806 * @bar: BAR to set size to 3807 * @size: new size as defined in the spec (0=1MB, 19=512GB) 3808 * 3809 * Set the new size of a BAR as defined in the spec. 3810 * Returns zero if resizing was successful, error code otherwise. 3811 */ 3812 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size) 3813 { 3814 int pos; 3815 u32 ctrl; 3816 3817 pos = pci_rebar_find_pos(pdev, bar); 3818 if (pos < 0) 3819 return pos; 3820 3821 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3822 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 3823 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT; 3824 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 3825 return 0; 3826 } 3827 3828 /** 3829 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port 3830 * @dev: the PCI device 3831 * @cap_mask: mask of desired AtomicOp sizes, including one or more of: 3832 * PCI_EXP_DEVCAP2_ATOMIC_COMP32 3833 * PCI_EXP_DEVCAP2_ATOMIC_COMP64 3834 * PCI_EXP_DEVCAP2_ATOMIC_COMP128 3835 * 3836 * Return 0 if all upstream bridges support AtomicOp routing, egress 3837 * blocking is disabled on all upstream ports, and the root port supports 3838 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit 3839 * AtomicOp completion), or negative otherwise. 3840 */ 3841 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask) 3842 { 3843 struct pci_bus *bus = dev->bus; 3844 struct pci_dev *bridge; 3845 u32 cap, ctl2; 3846 3847 /* 3848 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit 3849 * in Device Control 2 is reserved in VFs and the PF value applies 3850 * to all associated VFs. 3851 */ 3852 if (dev->is_virtfn) 3853 return -EINVAL; 3854 3855 if (!pci_is_pcie(dev)) 3856 return -EINVAL; 3857 3858 /* 3859 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be 3860 * AtomicOp requesters. For now, we only support endpoints as 3861 * requesters and root ports as completers. No endpoints as 3862 * completers, and no peer-to-peer. 3863 */ 3864 3865 switch (pci_pcie_type(dev)) { 3866 case PCI_EXP_TYPE_ENDPOINT: 3867 case PCI_EXP_TYPE_LEG_END: 3868 case PCI_EXP_TYPE_RC_END: 3869 break; 3870 default: 3871 return -EINVAL; 3872 } 3873 3874 while (bus->parent) { 3875 bridge = bus->self; 3876 3877 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3878 3879 switch (pci_pcie_type(bridge)) { 3880 /* Ensure switch ports support AtomicOp routing */ 3881 case PCI_EXP_TYPE_UPSTREAM: 3882 case PCI_EXP_TYPE_DOWNSTREAM: 3883 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE)) 3884 return -EINVAL; 3885 break; 3886 3887 /* Ensure root port supports all the sizes we care about */ 3888 case PCI_EXP_TYPE_ROOT_PORT: 3889 if ((cap & cap_mask) != cap_mask) 3890 return -EINVAL; 3891 break; 3892 } 3893 3894 /* Ensure upstream ports don't block AtomicOps on egress */ 3895 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) { 3896 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, 3897 &ctl2); 3898 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK) 3899 return -EINVAL; 3900 } 3901 3902 bus = bus->parent; 3903 } 3904 3905 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2, 3906 PCI_EXP_DEVCTL2_ATOMIC_REQ); 3907 return 0; 3908 } 3909 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root); 3910 3911 /** 3912 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge 3913 * @dev: the PCI device 3914 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD) 3915 * 3916 * Perform INTx swizzling for a device behind one level of bridge. This is 3917 * required by section 9.1 of the PCI-to-PCI bridge specification for devices 3918 * behind bridges on add-in cards. For devices with ARI enabled, the slot 3919 * number is always 0 (see the Implementation Note in section 2.2.8.1 of 3920 * the PCI Express Base Specification, Revision 2.1) 3921 */ 3922 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin) 3923 { 3924 int slot; 3925 3926 if (pci_ari_enabled(dev->bus)) 3927 slot = 0; 3928 else 3929 slot = PCI_SLOT(dev->devfn); 3930 3931 return (((pin - 1) + slot) % 4) + 1; 3932 } 3933 3934 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge) 3935 { 3936 u8 pin; 3937 3938 pin = dev->pin; 3939 if (!pin) 3940 return -1; 3941 3942 while (!pci_is_root_bus(dev->bus)) { 3943 pin = pci_swizzle_interrupt_pin(dev, pin); 3944 dev = dev->bus->self; 3945 } 3946 *bridge = dev; 3947 return pin; 3948 } 3949 3950 /** 3951 * pci_common_swizzle - swizzle INTx all the way to root bridge 3952 * @dev: the PCI device 3953 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD) 3954 * 3955 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI 3956 * bridges all the way up to a PCI root bus. 3957 */ 3958 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp) 3959 { 3960 u8 pin = *pinp; 3961 3962 while (!pci_is_root_bus(dev->bus)) { 3963 pin = pci_swizzle_interrupt_pin(dev, pin); 3964 dev = dev->bus->self; 3965 } 3966 *pinp = pin; 3967 return PCI_SLOT(dev->devfn); 3968 } 3969 EXPORT_SYMBOL_GPL(pci_common_swizzle); 3970 3971 /** 3972 * pci_release_region - Release a PCI bar 3973 * @pdev: PCI device whose resources were previously reserved by 3974 * pci_request_region() 3975 * @bar: BAR to release 3976 * 3977 * Releases the PCI I/O and memory resources previously reserved by a 3978 * successful call to pci_request_region(). Call this function only 3979 * after all use of the PCI regions has ceased. 3980 */ 3981 void pci_release_region(struct pci_dev *pdev, int bar) 3982 { 3983 struct pci_devres *dr; 3984 3985 if (pci_resource_len(pdev, bar) == 0) 3986 return; 3987 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) 3988 release_region(pci_resource_start(pdev, bar), 3989 pci_resource_len(pdev, bar)); 3990 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) 3991 release_mem_region(pci_resource_start(pdev, bar), 3992 pci_resource_len(pdev, bar)); 3993 3994 dr = find_pci_dr(pdev); 3995 if (dr) 3996 dr->region_mask &= ~(1 << bar); 3997 } 3998 EXPORT_SYMBOL(pci_release_region); 3999 4000 /** 4001 * __pci_request_region - Reserved PCI I/O and memory resource 4002 * @pdev: PCI device whose resources are to be reserved 4003 * @bar: BAR to be reserved 4004 * @res_name: Name to be associated with resource. 4005 * @exclusive: whether the region access is exclusive or not 4006 * 4007 * Mark the PCI region associated with PCI device @pdev BAR @bar as 4008 * being reserved by owner @res_name. Do not access any 4009 * address inside the PCI regions unless this call returns 4010 * successfully. 4011 * 4012 * If @exclusive is set, then the region is marked so that userspace 4013 * is explicitly not allowed to map the resource via /dev/mem or 4014 * sysfs MMIO access. 4015 * 4016 * Returns 0 on success, or %EBUSY on error. A warning 4017 * message is also printed on failure. 4018 */ 4019 static int __pci_request_region(struct pci_dev *pdev, int bar, 4020 const char *res_name, int exclusive) 4021 { 4022 struct pci_devres *dr; 4023 4024 if (pci_resource_len(pdev, bar) == 0) 4025 return 0; 4026 4027 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) { 4028 if (!request_region(pci_resource_start(pdev, bar), 4029 pci_resource_len(pdev, bar), res_name)) 4030 goto err_out; 4031 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) { 4032 if (!__request_mem_region(pci_resource_start(pdev, bar), 4033 pci_resource_len(pdev, bar), res_name, 4034 exclusive)) 4035 goto err_out; 4036 } 4037 4038 dr = find_pci_dr(pdev); 4039 if (dr) 4040 dr->region_mask |= 1 << bar; 4041 4042 return 0; 4043 4044 err_out: 4045 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar, 4046 &pdev->resource[bar]); 4047 return -EBUSY; 4048 } 4049 4050 /** 4051 * pci_request_region - Reserve PCI I/O and memory resource 4052 * @pdev: PCI device whose resources are to be reserved 4053 * @bar: BAR to be reserved 4054 * @res_name: Name to be associated with resource 4055 * 4056 * Mark the PCI region associated with PCI device @pdev BAR @bar as 4057 * being reserved by owner @res_name. Do not access any 4058 * address inside the PCI regions unless this call returns 4059 * successfully. 4060 * 4061 * Returns 0 on success, or %EBUSY on error. A warning 4062 * message is also printed on failure. 4063 */ 4064 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name) 4065 { 4066 return __pci_request_region(pdev, bar, res_name, 0); 4067 } 4068 EXPORT_SYMBOL(pci_request_region); 4069 4070 /** 4071 * pci_release_selected_regions - Release selected PCI I/O and memory resources 4072 * @pdev: PCI device whose resources were previously reserved 4073 * @bars: Bitmask of BARs to be released 4074 * 4075 * Release selected PCI I/O and memory resources previously reserved. 4076 * Call this function only after all use of the PCI regions has ceased. 4077 */ 4078 void pci_release_selected_regions(struct pci_dev *pdev, int bars) 4079 { 4080 int i; 4081 4082 for (i = 0; i < PCI_STD_NUM_BARS; i++) 4083 if (bars & (1 << i)) 4084 pci_release_region(pdev, i); 4085 } 4086 EXPORT_SYMBOL(pci_release_selected_regions); 4087 4088 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars, 4089 const char *res_name, int excl) 4090 { 4091 int i; 4092 4093 for (i = 0; i < PCI_STD_NUM_BARS; i++) 4094 if (bars & (1 << i)) 4095 if (__pci_request_region(pdev, i, res_name, excl)) 4096 goto err_out; 4097 return 0; 4098 4099 err_out: 4100 while (--i >= 0) 4101 if (bars & (1 << i)) 4102 pci_release_region(pdev, i); 4103 4104 return -EBUSY; 4105 } 4106 4107 4108 /** 4109 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources 4110 * @pdev: PCI device whose resources are to be reserved 4111 * @bars: Bitmask of BARs to be requested 4112 * @res_name: Name to be associated with resource 4113 */ 4114 int pci_request_selected_regions(struct pci_dev *pdev, int bars, 4115 const char *res_name) 4116 { 4117 return __pci_request_selected_regions(pdev, bars, res_name, 0); 4118 } 4119 EXPORT_SYMBOL(pci_request_selected_regions); 4120 4121 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars, 4122 const char *res_name) 4123 { 4124 return __pci_request_selected_regions(pdev, bars, res_name, 4125 IORESOURCE_EXCLUSIVE); 4126 } 4127 EXPORT_SYMBOL(pci_request_selected_regions_exclusive); 4128 4129 /** 4130 * pci_release_regions - Release reserved PCI I/O and memory resources 4131 * @pdev: PCI device whose resources were previously reserved by 4132 * pci_request_regions() 4133 * 4134 * Releases all PCI I/O and memory resources previously reserved by a 4135 * successful call to pci_request_regions(). Call this function only 4136 * after all use of the PCI regions has ceased. 4137 */ 4138 4139 void pci_release_regions(struct pci_dev *pdev) 4140 { 4141 pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1); 4142 } 4143 EXPORT_SYMBOL(pci_release_regions); 4144 4145 /** 4146 * pci_request_regions - Reserve PCI I/O and memory resources 4147 * @pdev: PCI device whose resources are to be reserved 4148 * @res_name: Name to be associated with resource. 4149 * 4150 * Mark all PCI regions associated with PCI device @pdev as 4151 * being reserved by owner @res_name. Do not access any 4152 * address inside the PCI regions unless this call returns 4153 * successfully. 4154 * 4155 * Returns 0 on success, or %EBUSY on error. A warning 4156 * message is also printed on failure. 4157 */ 4158 int pci_request_regions(struct pci_dev *pdev, const char *res_name) 4159 { 4160 return pci_request_selected_regions(pdev, 4161 ((1 << PCI_STD_NUM_BARS) - 1), res_name); 4162 } 4163 EXPORT_SYMBOL(pci_request_regions); 4164 4165 /** 4166 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources 4167 * @pdev: PCI device whose resources are to be reserved 4168 * @res_name: Name to be associated with resource. 4169 * 4170 * Mark all PCI regions associated with PCI device @pdev as being reserved 4171 * by owner @res_name. Do not access any address inside the PCI regions 4172 * unless this call returns successfully. 4173 * 4174 * pci_request_regions_exclusive() will mark the region so that /dev/mem 4175 * and the sysfs MMIO access will not be allowed. 4176 * 4177 * Returns 0 on success, or %EBUSY on error. A warning message is also 4178 * printed on failure. 4179 */ 4180 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name) 4181 { 4182 return pci_request_selected_regions_exclusive(pdev, 4183 ((1 << PCI_STD_NUM_BARS) - 1), res_name); 4184 } 4185 EXPORT_SYMBOL(pci_request_regions_exclusive); 4186 4187 /* 4188 * Record the PCI IO range (expressed as CPU physical address + size). 4189 * Return a negative value if an error has occurred, zero otherwise 4190 */ 4191 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr, 4192 resource_size_t size) 4193 { 4194 int ret = 0; 4195 #ifdef PCI_IOBASE 4196 struct logic_pio_hwaddr *range; 4197 4198 if (!size || addr + size < addr) 4199 return -EINVAL; 4200 4201 range = kzalloc(sizeof(*range), GFP_ATOMIC); 4202 if (!range) 4203 return -ENOMEM; 4204 4205 range->fwnode = fwnode; 4206 range->size = size; 4207 range->hw_start = addr; 4208 range->flags = LOGIC_PIO_CPU_MMIO; 4209 4210 ret = logic_pio_register_range(range); 4211 if (ret) 4212 kfree(range); 4213 4214 /* Ignore duplicates due to deferred probing */ 4215 if (ret == -EEXIST) 4216 ret = 0; 4217 #endif 4218 4219 return ret; 4220 } 4221 4222 phys_addr_t pci_pio_to_address(unsigned long pio) 4223 { 4224 #ifdef PCI_IOBASE 4225 if (pio < MMIO_UPPER_LIMIT) 4226 return logic_pio_to_hwaddr(pio); 4227 #endif 4228 4229 return (phys_addr_t) OF_BAD_ADDR; 4230 } 4231 EXPORT_SYMBOL_GPL(pci_pio_to_address); 4232 4233 unsigned long __weak pci_address_to_pio(phys_addr_t address) 4234 { 4235 #ifdef PCI_IOBASE 4236 return logic_pio_trans_cpuaddr(address); 4237 #else 4238 if (address > IO_SPACE_LIMIT) 4239 return (unsigned long)-1; 4240 4241 return (unsigned long) address; 4242 #endif 4243 } 4244 4245 /** 4246 * pci_remap_iospace - Remap the memory mapped I/O space 4247 * @res: Resource describing the I/O space 4248 * @phys_addr: physical address of range to be mapped 4249 * 4250 * Remap the memory mapped I/O space described by the @res and the CPU 4251 * physical address @phys_addr into virtual address space. Only 4252 * architectures that have memory mapped IO functions defined (and the 4253 * PCI_IOBASE value defined) should call this function. 4254 */ 4255 #ifndef pci_remap_iospace 4256 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr) 4257 { 4258 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 4259 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 4260 4261 if (!(res->flags & IORESOURCE_IO)) 4262 return -EINVAL; 4263 4264 if (res->end > IO_SPACE_LIMIT) 4265 return -EINVAL; 4266 4267 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr, 4268 pgprot_device(PAGE_KERNEL)); 4269 #else 4270 /* 4271 * This architecture does not have memory mapped I/O space, 4272 * so this function should never be called 4273 */ 4274 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n"); 4275 return -ENODEV; 4276 #endif 4277 } 4278 EXPORT_SYMBOL(pci_remap_iospace); 4279 #endif 4280 4281 /** 4282 * pci_unmap_iospace - Unmap the memory mapped I/O space 4283 * @res: resource to be unmapped 4284 * 4285 * Unmap the CPU virtual address @res from virtual address space. Only 4286 * architectures that have memory mapped IO functions defined (and the 4287 * PCI_IOBASE value defined) should call this function. 4288 */ 4289 void pci_unmap_iospace(struct resource *res) 4290 { 4291 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 4292 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 4293 4294 vunmap_range(vaddr, vaddr + resource_size(res)); 4295 #endif 4296 } 4297 EXPORT_SYMBOL(pci_unmap_iospace); 4298 4299 static void devm_pci_unmap_iospace(struct device *dev, void *ptr) 4300 { 4301 struct resource **res = ptr; 4302 4303 pci_unmap_iospace(*res); 4304 } 4305 4306 /** 4307 * devm_pci_remap_iospace - Managed pci_remap_iospace() 4308 * @dev: Generic device to remap IO address for 4309 * @res: Resource describing the I/O space 4310 * @phys_addr: physical address of range to be mapped 4311 * 4312 * Managed pci_remap_iospace(). Map is automatically unmapped on driver 4313 * detach. 4314 */ 4315 int devm_pci_remap_iospace(struct device *dev, const struct resource *res, 4316 phys_addr_t phys_addr) 4317 { 4318 const struct resource **ptr; 4319 int error; 4320 4321 ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL); 4322 if (!ptr) 4323 return -ENOMEM; 4324 4325 error = pci_remap_iospace(res, phys_addr); 4326 if (error) { 4327 devres_free(ptr); 4328 } else { 4329 *ptr = res; 4330 devres_add(dev, ptr); 4331 } 4332 4333 return error; 4334 } 4335 EXPORT_SYMBOL(devm_pci_remap_iospace); 4336 4337 /** 4338 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace() 4339 * @dev: Generic device to remap IO address for 4340 * @offset: Resource address to map 4341 * @size: Size of map 4342 * 4343 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver 4344 * detach. 4345 */ 4346 void __iomem *devm_pci_remap_cfgspace(struct device *dev, 4347 resource_size_t offset, 4348 resource_size_t size) 4349 { 4350 void __iomem **ptr, *addr; 4351 4352 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL); 4353 if (!ptr) 4354 return NULL; 4355 4356 addr = pci_remap_cfgspace(offset, size); 4357 if (addr) { 4358 *ptr = addr; 4359 devres_add(dev, ptr); 4360 } else 4361 devres_free(ptr); 4362 4363 return addr; 4364 } 4365 EXPORT_SYMBOL(devm_pci_remap_cfgspace); 4366 4367 /** 4368 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource 4369 * @dev: generic device to handle the resource for 4370 * @res: configuration space resource to be handled 4371 * 4372 * Checks that a resource is a valid memory region, requests the memory 4373 * region and ioremaps with pci_remap_cfgspace() API that ensures the 4374 * proper PCI configuration space memory attributes are guaranteed. 4375 * 4376 * All operations are managed and will be undone on driver detach. 4377 * 4378 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code 4379 * on failure. Usage example:: 4380 * 4381 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 4382 * base = devm_pci_remap_cfg_resource(&pdev->dev, res); 4383 * if (IS_ERR(base)) 4384 * return PTR_ERR(base); 4385 */ 4386 void __iomem *devm_pci_remap_cfg_resource(struct device *dev, 4387 struct resource *res) 4388 { 4389 resource_size_t size; 4390 const char *name; 4391 void __iomem *dest_ptr; 4392 4393 BUG_ON(!dev); 4394 4395 if (!res || resource_type(res) != IORESOURCE_MEM) { 4396 dev_err(dev, "invalid resource\n"); 4397 return IOMEM_ERR_PTR(-EINVAL); 4398 } 4399 4400 size = resource_size(res); 4401 4402 if (res->name) 4403 name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev), 4404 res->name); 4405 else 4406 name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL); 4407 if (!name) 4408 return IOMEM_ERR_PTR(-ENOMEM); 4409 4410 if (!devm_request_mem_region(dev, res->start, size, name)) { 4411 dev_err(dev, "can't request region for resource %pR\n", res); 4412 return IOMEM_ERR_PTR(-EBUSY); 4413 } 4414 4415 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size); 4416 if (!dest_ptr) { 4417 dev_err(dev, "ioremap failed for resource %pR\n", res); 4418 devm_release_mem_region(dev, res->start, size); 4419 dest_ptr = IOMEM_ERR_PTR(-ENOMEM); 4420 } 4421 4422 return dest_ptr; 4423 } 4424 EXPORT_SYMBOL(devm_pci_remap_cfg_resource); 4425 4426 static void __pci_set_master(struct pci_dev *dev, bool enable) 4427 { 4428 u16 old_cmd, cmd; 4429 4430 pci_read_config_word(dev, PCI_COMMAND, &old_cmd); 4431 if (enable) 4432 cmd = old_cmd | PCI_COMMAND_MASTER; 4433 else 4434 cmd = old_cmd & ~PCI_COMMAND_MASTER; 4435 if (cmd != old_cmd) { 4436 pci_dbg(dev, "%s bus mastering\n", 4437 enable ? "enabling" : "disabling"); 4438 pci_write_config_word(dev, PCI_COMMAND, cmd); 4439 } 4440 dev->is_busmaster = enable; 4441 } 4442 4443 /** 4444 * pcibios_setup - process "pci=" kernel boot arguments 4445 * @str: string used to pass in "pci=" kernel boot arguments 4446 * 4447 * Process kernel boot arguments. This is the default implementation. 4448 * Architecture specific implementations can override this as necessary. 4449 */ 4450 char * __weak __init pcibios_setup(char *str) 4451 { 4452 return str; 4453 } 4454 4455 /** 4456 * pcibios_set_master - enable PCI bus-mastering for device dev 4457 * @dev: the PCI device to enable 4458 * 4459 * Enables PCI bus-mastering for the device. This is the default 4460 * implementation. Architecture specific implementations can override 4461 * this if necessary. 4462 */ 4463 void __weak pcibios_set_master(struct pci_dev *dev) 4464 { 4465 u8 lat; 4466 4467 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */ 4468 if (pci_is_pcie(dev)) 4469 return; 4470 4471 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat); 4472 if (lat < 16) 4473 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency; 4474 else if (lat > pcibios_max_latency) 4475 lat = pcibios_max_latency; 4476 else 4477 return; 4478 4479 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat); 4480 } 4481 4482 /** 4483 * pci_set_master - enables bus-mastering for device dev 4484 * @dev: the PCI device to enable 4485 * 4486 * Enables bus-mastering on the device and calls pcibios_set_master() 4487 * to do the needed arch specific settings. 4488 */ 4489 void pci_set_master(struct pci_dev *dev) 4490 { 4491 __pci_set_master(dev, true); 4492 pcibios_set_master(dev); 4493 } 4494 EXPORT_SYMBOL(pci_set_master); 4495 4496 /** 4497 * pci_clear_master - disables bus-mastering for device dev 4498 * @dev: the PCI device to disable 4499 */ 4500 void pci_clear_master(struct pci_dev *dev) 4501 { 4502 __pci_set_master(dev, false); 4503 } 4504 EXPORT_SYMBOL(pci_clear_master); 4505 4506 /** 4507 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed 4508 * @dev: the PCI device for which MWI is to be enabled 4509 * 4510 * Helper function for pci_set_mwi. 4511 * Originally copied from drivers/net/acenic.c. 4512 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. 4513 * 4514 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4515 */ 4516 int pci_set_cacheline_size(struct pci_dev *dev) 4517 { 4518 u8 cacheline_size; 4519 4520 if (!pci_cache_line_size) 4521 return -EINVAL; 4522 4523 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be 4524 equal to or multiple of the right value. */ 4525 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4526 if (cacheline_size >= pci_cache_line_size && 4527 (cacheline_size % pci_cache_line_size) == 0) 4528 return 0; 4529 4530 /* Write the correct value. */ 4531 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size); 4532 /* Read it back. */ 4533 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4534 if (cacheline_size == pci_cache_line_size) 4535 return 0; 4536 4537 pci_dbg(dev, "cache line size of %d is not supported\n", 4538 pci_cache_line_size << 2); 4539 4540 return -EINVAL; 4541 } 4542 EXPORT_SYMBOL_GPL(pci_set_cacheline_size); 4543 4544 /** 4545 * pci_set_mwi - enables memory-write-invalidate PCI transaction 4546 * @dev: the PCI device for which MWI is enabled 4547 * 4548 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4549 * 4550 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4551 */ 4552 int pci_set_mwi(struct pci_dev *dev) 4553 { 4554 #ifdef PCI_DISABLE_MWI 4555 return 0; 4556 #else 4557 int rc; 4558 u16 cmd; 4559 4560 rc = pci_set_cacheline_size(dev); 4561 if (rc) 4562 return rc; 4563 4564 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4565 if (!(cmd & PCI_COMMAND_INVALIDATE)) { 4566 pci_dbg(dev, "enabling Mem-Wr-Inval\n"); 4567 cmd |= PCI_COMMAND_INVALIDATE; 4568 pci_write_config_word(dev, PCI_COMMAND, cmd); 4569 } 4570 return 0; 4571 #endif 4572 } 4573 EXPORT_SYMBOL(pci_set_mwi); 4574 4575 /** 4576 * pcim_set_mwi - a device-managed pci_set_mwi() 4577 * @dev: the PCI device for which MWI is enabled 4578 * 4579 * Managed pci_set_mwi(). 4580 * 4581 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4582 */ 4583 int pcim_set_mwi(struct pci_dev *dev) 4584 { 4585 struct pci_devres *dr; 4586 4587 dr = find_pci_dr(dev); 4588 if (!dr) 4589 return -ENOMEM; 4590 4591 dr->mwi = 1; 4592 return pci_set_mwi(dev); 4593 } 4594 EXPORT_SYMBOL(pcim_set_mwi); 4595 4596 /** 4597 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction 4598 * @dev: the PCI device for which MWI is enabled 4599 * 4600 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4601 * Callers are not required to check the return value. 4602 * 4603 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4604 */ 4605 int pci_try_set_mwi(struct pci_dev *dev) 4606 { 4607 #ifdef PCI_DISABLE_MWI 4608 return 0; 4609 #else 4610 return pci_set_mwi(dev); 4611 #endif 4612 } 4613 EXPORT_SYMBOL(pci_try_set_mwi); 4614 4615 /** 4616 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev 4617 * @dev: the PCI device to disable 4618 * 4619 * Disables PCI Memory-Write-Invalidate transaction on the device 4620 */ 4621 void pci_clear_mwi(struct pci_dev *dev) 4622 { 4623 #ifndef PCI_DISABLE_MWI 4624 u16 cmd; 4625 4626 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4627 if (cmd & PCI_COMMAND_INVALIDATE) { 4628 cmd &= ~PCI_COMMAND_INVALIDATE; 4629 pci_write_config_word(dev, PCI_COMMAND, cmd); 4630 } 4631 #endif 4632 } 4633 EXPORT_SYMBOL(pci_clear_mwi); 4634 4635 /** 4636 * pci_disable_parity - disable parity checking for device 4637 * @dev: the PCI device to operate on 4638 * 4639 * Disable parity checking for device @dev 4640 */ 4641 void pci_disable_parity(struct pci_dev *dev) 4642 { 4643 u16 cmd; 4644 4645 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4646 if (cmd & PCI_COMMAND_PARITY) { 4647 cmd &= ~PCI_COMMAND_PARITY; 4648 pci_write_config_word(dev, PCI_COMMAND, cmd); 4649 } 4650 } 4651 4652 /** 4653 * pci_intx - enables/disables PCI INTx for device dev 4654 * @pdev: the PCI device to operate on 4655 * @enable: boolean: whether to enable or disable PCI INTx 4656 * 4657 * Enables/disables PCI INTx for device @pdev 4658 */ 4659 void pci_intx(struct pci_dev *pdev, int enable) 4660 { 4661 u16 pci_command, new; 4662 4663 pci_read_config_word(pdev, PCI_COMMAND, &pci_command); 4664 4665 if (enable) 4666 new = pci_command & ~PCI_COMMAND_INTX_DISABLE; 4667 else 4668 new = pci_command | PCI_COMMAND_INTX_DISABLE; 4669 4670 if (new != pci_command) { 4671 struct pci_devres *dr; 4672 4673 pci_write_config_word(pdev, PCI_COMMAND, new); 4674 4675 dr = find_pci_dr(pdev); 4676 if (dr && !dr->restore_intx) { 4677 dr->restore_intx = 1; 4678 dr->orig_intx = !enable; 4679 } 4680 } 4681 } 4682 EXPORT_SYMBOL_GPL(pci_intx); 4683 4684 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask) 4685 { 4686 struct pci_bus *bus = dev->bus; 4687 bool mask_updated = true; 4688 u32 cmd_status_dword; 4689 u16 origcmd, newcmd; 4690 unsigned long flags; 4691 bool irq_pending; 4692 4693 /* 4694 * We do a single dword read to retrieve both command and status. 4695 * Document assumptions that make this possible. 4696 */ 4697 BUILD_BUG_ON(PCI_COMMAND % 4); 4698 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS); 4699 4700 raw_spin_lock_irqsave(&pci_lock, flags); 4701 4702 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword); 4703 4704 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT; 4705 4706 /* 4707 * Check interrupt status register to see whether our device 4708 * triggered the interrupt (when masking) or the next IRQ is 4709 * already pending (when unmasking). 4710 */ 4711 if (mask != irq_pending) { 4712 mask_updated = false; 4713 goto done; 4714 } 4715 4716 origcmd = cmd_status_dword; 4717 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE; 4718 if (mask) 4719 newcmd |= PCI_COMMAND_INTX_DISABLE; 4720 if (newcmd != origcmd) 4721 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd); 4722 4723 done: 4724 raw_spin_unlock_irqrestore(&pci_lock, flags); 4725 4726 return mask_updated; 4727 } 4728 4729 /** 4730 * pci_check_and_mask_intx - mask INTx on pending interrupt 4731 * @dev: the PCI device to operate on 4732 * 4733 * Check if the device dev has its INTx line asserted, mask it and return 4734 * true in that case. False is returned if no interrupt was pending. 4735 */ 4736 bool pci_check_and_mask_intx(struct pci_dev *dev) 4737 { 4738 return pci_check_and_set_intx_mask(dev, true); 4739 } 4740 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx); 4741 4742 /** 4743 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending 4744 * @dev: the PCI device to operate on 4745 * 4746 * Check if the device dev has its INTx line asserted, unmask it if not and 4747 * return true. False is returned and the mask remains active if there was 4748 * still an interrupt pending. 4749 */ 4750 bool pci_check_and_unmask_intx(struct pci_dev *dev) 4751 { 4752 return pci_check_and_set_intx_mask(dev, false); 4753 } 4754 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx); 4755 4756 /** 4757 * pci_wait_for_pending_transaction - wait for pending transaction 4758 * @dev: the PCI device to operate on 4759 * 4760 * Return 0 if transaction is pending 1 otherwise. 4761 */ 4762 int pci_wait_for_pending_transaction(struct pci_dev *dev) 4763 { 4764 if (!pci_is_pcie(dev)) 4765 return 1; 4766 4767 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA, 4768 PCI_EXP_DEVSTA_TRPND); 4769 } 4770 EXPORT_SYMBOL(pci_wait_for_pending_transaction); 4771 4772 /** 4773 * pcie_flr - initiate a PCIe function level reset 4774 * @dev: device to reset 4775 * 4776 * Initiate a function level reset unconditionally on @dev without 4777 * checking any flags and DEVCAP 4778 */ 4779 int pcie_flr(struct pci_dev *dev) 4780 { 4781 if (!pci_wait_for_pending_transaction(dev)) 4782 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n"); 4783 4784 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR); 4785 4786 if (dev->imm_ready) 4787 return 0; 4788 4789 /* 4790 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within 4791 * 100ms, but may silently discard requests while the FLR is in 4792 * progress. Wait 100ms before trying to access the device. 4793 */ 4794 msleep(100); 4795 4796 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS); 4797 } 4798 EXPORT_SYMBOL_GPL(pcie_flr); 4799 4800 /** 4801 * pcie_reset_flr - initiate a PCIe function level reset 4802 * @dev: device to reset 4803 * @probe: if true, return 0 if device can be reset this way 4804 * 4805 * Initiate a function level reset on @dev. 4806 */ 4807 int pcie_reset_flr(struct pci_dev *dev, bool probe) 4808 { 4809 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4810 return -ENOTTY; 4811 4812 if (!(dev->devcap & PCI_EXP_DEVCAP_FLR)) 4813 return -ENOTTY; 4814 4815 if (probe) 4816 return 0; 4817 4818 return pcie_flr(dev); 4819 } 4820 EXPORT_SYMBOL_GPL(pcie_reset_flr); 4821 4822 static int pci_af_flr(struct pci_dev *dev, bool probe) 4823 { 4824 int pos; 4825 u8 cap; 4826 4827 pos = pci_find_capability(dev, PCI_CAP_ID_AF); 4828 if (!pos) 4829 return -ENOTTY; 4830 4831 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4832 return -ENOTTY; 4833 4834 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap); 4835 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR)) 4836 return -ENOTTY; 4837 4838 if (probe) 4839 return 0; 4840 4841 /* 4842 * Wait for Transaction Pending bit to clear. A word-aligned test 4843 * is used, so we use the control offset rather than status and shift 4844 * the test bit to match. 4845 */ 4846 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL, 4847 PCI_AF_STATUS_TP << 8)) 4848 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n"); 4849 4850 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR); 4851 4852 if (dev->imm_ready) 4853 return 0; 4854 4855 /* 4856 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006, 4857 * updated 27 July 2006; a device must complete an FLR within 4858 * 100ms, but may silently discard requests while the FLR is in 4859 * progress. Wait 100ms before trying to access the device. 4860 */ 4861 msleep(100); 4862 4863 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS); 4864 } 4865 4866 /** 4867 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0. 4868 * @dev: Device to reset. 4869 * @probe: if true, return 0 if the device can be reset this way. 4870 * 4871 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is 4872 * unset, it will be reinitialized internally when going from PCI_D3hot to 4873 * PCI_D0. If that's the case and the device is not in a low-power state 4874 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset. 4875 * 4876 * NOTE: This causes the caller to sleep for twice the device power transition 4877 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms 4878 * by default (i.e. unless the @dev's d3hot_delay field has a different value). 4879 * Moreover, only devices in D0 can be reset by this function. 4880 */ 4881 static int pci_pm_reset(struct pci_dev *dev, bool probe) 4882 { 4883 u16 csr; 4884 4885 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET) 4886 return -ENOTTY; 4887 4888 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr); 4889 if (csr & PCI_PM_CTRL_NO_SOFT_RESET) 4890 return -ENOTTY; 4891 4892 if (probe) 4893 return 0; 4894 4895 if (dev->current_state != PCI_D0) 4896 return -EINVAL; 4897 4898 csr &= ~PCI_PM_CTRL_STATE_MASK; 4899 csr |= PCI_D3hot; 4900 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4901 pci_dev_d3_sleep(dev); 4902 4903 csr &= ~PCI_PM_CTRL_STATE_MASK; 4904 csr |= PCI_D0; 4905 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4906 pci_dev_d3_sleep(dev); 4907 4908 return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS); 4909 } 4910 4911 /** 4912 * pcie_wait_for_link_status - Wait for link status change 4913 * @pdev: Device whose link to wait for. 4914 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE. 4915 * @active: Waiting for active or inactive? 4916 * 4917 * Return 0 if successful, or -ETIMEDOUT if status has not changed within 4918 * PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds. 4919 */ 4920 static int pcie_wait_for_link_status(struct pci_dev *pdev, 4921 bool use_lt, bool active) 4922 { 4923 u16 lnksta_mask, lnksta_match; 4924 unsigned long end_jiffies; 4925 u16 lnksta; 4926 4927 lnksta_mask = use_lt ? PCI_EXP_LNKSTA_LT : PCI_EXP_LNKSTA_DLLLA; 4928 lnksta_match = active ? lnksta_mask : 0; 4929 4930 end_jiffies = jiffies + msecs_to_jiffies(PCIE_LINK_RETRAIN_TIMEOUT_MS); 4931 do { 4932 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta); 4933 if ((lnksta & lnksta_mask) == lnksta_match) 4934 return 0; 4935 msleep(1); 4936 } while (time_before(jiffies, end_jiffies)); 4937 4938 return -ETIMEDOUT; 4939 } 4940 4941 /** 4942 * pcie_retrain_link - Request a link retrain and wait for it to complete 4943 * @pdev: Device whose link to retrain. 4944 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE, for status. 4945 * 4946 * Retrain completion status is retrieved from the Link Status Register 4947 * according to @use_lt. It is not verified whether the use of the DLLLA 4948 * bit is valid. 4949 * 4950 * Return 0 if successful, or -ETIMEDOUT if training has not completed 4951 * within PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds. 4952 */ 4953 int pcie_retrain_link(struct pci_dev *pdev, bool use_lt) 4954 { 4955 int rc; 4956 4957 /* 4958 * Ensure the updated LNKCTL parameters are used during link 4959 * training by checking that there is no ongoing link training to 4960 * avoid LTSSM race as recommended in Implementation Note at the 4961 * end of PCIe r6.0.1 sec 7.5.3.7. 4962 */ 4963 rc = pcie_wait_for_link_status(pdev, use_lt, !use_lt); 4964 if (rc) 4965 return rc; 4966 4967 pcie_capability_set_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL); 4968 if (pdev->clear_retrain_link) { 4969 /* 4970 * Due to an erratum in some devices the Retrain Link bit 4971 * needs to be cleared again manually to allow the link 4972 * training to succeed. 4973 */ 4974 pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL); 4975 } 4976 4977 return pcie_wait_for_link_status(pdev, use_lt, !use_lt); 4978 } 4979 4980 /** 4981 * pcie_wait_for_link_delay - Wait until link is active or inactive 4982 * @pdev: Bridge device 4983 * @active: waiting for active or inactive? 4984 * @delay: Delay to wait after link has become active (in ms) 4985 * 4986 * Use this to wait till link becomes active or inactive. 4987 */ 4988 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active, 4989 int delay) 4990 { 4991 int rc; 4992 4993 /* 4994 * Some controllers might not implement link active reporting. In this 4995 * case, we wait for 1000 ms + any delay requested by the caller. 4996 */ 4997 if (!pdev->link_active_reporting) { 4998 msleep(PCIE_LINK_RETRAIN_TIMEOUT_MS + delay); 4999 return true; 5000 } 5001 5002 /* 5003 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms, 5004 * after which we should expect an link active if the reset was 5005 * successful. If so, software must wait a minimum 100ms before sending 5006 * configuration requests to devices downstream this port. 5007 * 5008 * If the link fails to activate, either the device was physically 5009 * removed or the link is permanently failed. 5010 */ 5011 if (active) 5012 msleep(20); 5013 rc = pcie_wait_for_link_status(pdev, false, active); 5014 if (active) { 5015 if (rc) 5016 rc = pcie_failed_link_retrain(pdev); 5017 if (rc) 5018 return false; 5019 5020 msleep(delay); 5021 return true; 5022 } 5023 5024 if (rc) 5025 return false; 5026 5027 return true; 5028 } 5029 5030 /** 5031 * pcie_wait_for_link - Wait until link is active or inactive 5032 * @pdev: Bridge device 5033 * @active: waiting for active or inactive? 5034 * 5035 * Use this to wait till link becomes active or inactive. 5036 */ 5037 bool pcie_wait_for_link(struct pci_dev *pdev, bool active) 5038 { 5039 return pcie_wait_for_link_delay(pdev, active, 100); 5040 } 5041 5042 /* 5043 * Find maximum D3cold delay required by all the devices on the bus. The 5044 * spec says 100 ms, but firmware can lower it and we allow drivers to 5045 * increase it as well. 5046 * 5047 * Called with @pci_bus_sem locked for reading. 5048 */ 5049 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus) 5050 { 5051 const struct pci_dev *pdev; 5052 int min_delay = 100; 5053 int max_delay = 0; 5054 5055 list_for_each_entry(pdev, &bus->devices, bus_list) { 5056 if (pdev->d3cold_delay < min_delay) 5057 min_delay = pdev->d3cold_delay; 5058 if (pdev->d3cold_delay > max_delay) 5059 max_delay = pdev->d3cold_delay; 5060 } 5061 5062 return max(min_delay, max_delay); 5063 } 5064 5065 /** 5066 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible 5067 * @dev: PCI bridge 5068 * @reset_type: reset type in human-readable form 5069 * 5070 * Handle necessary delays before access to the devices on the secondary 5071 * side of the bridge are permitted after D3cold to D0 transition 5072 * or Conventional Reset. 5073 * 5074 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For 5075 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section 5076 * 4.3.2. 5077 * 5078 * Return 0 on success or -ENOTTY if the first device on the secondary bus 5079 * failed to become accessible. 5080 */ 5081 int pci_bridge_wait_for_secondary_bus(struct pci_dev *dev, char *reset_type) 5082 { 5083 struct pci_dev *child; 5084 int delay; 5085 5086 if (pci_dev_is_disconnected(dev)) 5087 return 0; 5088 5089 if (!pci_is_bridge(dev)) 5090 return 0; 5091 5092 down_read(&pci_bus_sem); 5093 5094 /* 5095 * We only deal with devices that are present currently on the bus. 5096 * For any hot-added devices the access delay is handled in pciehp 5097 * board_added(). In case of ACPI hotplug the firmware is expected 5098 * to configure the devices before OS is notified. 5099 */ 5100 if (!dev->subordinate || list_empty(&dev->subordinate->devices)) { 5101 up_read(&pci_bus_sem); 5102 return 0; 5103 } 5104 5105 /* Take d3cold_delay requirements into account */ 5106 delay = pci_bus_max_d3cold_delay(dev->subordinate); 5107 if (!delay) { 5108 up_read(&pci_bus_sem); 5109 return 0; 5110 } 5111 5112 child = list_first_entry(&dev->subordinate->devices, struct pci_dev, 5113 bus_list); 5114 up_read(&pci_bus_sem); 5115 5116 /* 5117 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before 5118 * accessing the device after reset (that is 1000 ms + 100 ms). 5119 */ 5120 if (!pci_is_pcie(dev)) { 5121 pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay); 5122 msleep(1000 + delay); 5123 return 0; 5124 } 5125 5126 /* 5127 * For PCIe downstream and root ports that do not support speeds 5128 * greater than 5 GT/s need to wait minimum 100 ms. For higher 5129 * speeds (gen3) we need to wait first for the data link layer to 5130 * become active. 5131 * 5132 * However, 100 ms is the minimum and the PCIe spec says the 5133 * software must allow at least 1s before it can determine that the 5134 * device that did not respond is a broken device. Also device can 5135 * take longer than that to respond if it indicates so through Request 5136 * Retry Status completions. 5137 * 5138 * Therefore we wait for 100 ms and check for the device presence 5139 * until the timeout expires. 5140 */ 5141 if (!pcie_downstream_port(dev)) 5142 return 0; 5143 5144 if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) { 5145 u16 status; 5146 5147 pci_dbg(dev, "waiting %d ms for downstream link\n", delay); 5148 msleep(delay); 5149 5150 if (!pci_dev_wait(child, reset_type, PCI_RESET_WAIT - delay)) 5151 return 0; 5152 5153 /* 5154 * If the port supports active link reporting we now check 5155 * whether the link is active and if not bail out early with 5156 * the assumption that the device is not present anymore. 5157 */ 5158 if (!dev->link_active_reporting) 5159 return -ENOTTY; 5160 5161 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &status); 5162 if (!(status & PCI_EXP_LNKSTA_DLLLA)) 5163 return -ENOTTY; 5164 5165 return pci_dev_wait(child, reset_type, 5166 PCIE_RESET_READY_POLL_MS - PCI_RESET_WAIT); 5167 } 5168 5169 pci_dbg(dev, "waiting %d ms for downstream link, after activation\n", 5170 delay); 5171 if (!pcie_wait_for_link_delay(dev, true, delay)) { 5172 /* Did not train, no need to wait any further */ 5173 pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n"); 5174 return -ENOTTY; 5175 } 5176 5177 return pci_dev_wait(child, reset_type, 5178 PCIE_RESET_READY_POLL_MS - delay); 5179 } 5180 5181 void pci_reset_secondary_bus(struct pci_dev *dev) 5182 { 5183 u16 ctrl; 5184 5185 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl); 5186 ctrl |= PCI_BRIDGE_CTL_BUS_RESET; 5187 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 5188 5189 /* 5190 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double 5191 * this to 2ms to ensure that we meet the minimum requirement. 5192 */ 5193 msleep(2); 5194 5195 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET; 5196 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 5197 } 5198 5199 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev) 5200 { 5201 pci_reset_secondary_bus(dev); 5202 } 5203 5204 /** 5205 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge. 5206 * @dev: Bridge device 5207 * 5208 * Use the bridge control register to assert reset on the secondary bus. 5209 * Devices on the secondary bus are left in power-on state. 5210 */ 5211 int pci_bridge_secondary_bus_reset(struct pci_dev *dev) 5212 { 5213 pcibios_reset_secondary_bus(dev); 5214 5215 return pci_bridge_wait_for_secondary_bus(dev, "bus reset"); 5216 } 5217 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset); 5218 5219 static int pci_parent_bus_reset(struct pci_dev *dev, bool probe) 5220 { 5221 struct pci_dev *pdev; 5222 5223 if (pci_is_root_bus(dev->bus) || dev->subordinate || 5224 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 5225 return -ENOTTY; 5226 5227 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 5228 if (pdev != dev) 5229 return -ENOTTY; 5230 5231 if (probe) 5232 return 0; 5233 5234 return pci_bridge_secondary_bus_reset(dev->bus->self); 5235 } 5236 5237 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe) 5238 { 5239 int rc = -ENOTTY; 5240 5241 if (!hotplug || !try_module_get(hotplug->owner)) 5242 return rc; 5243 5244 if (hotplug->ops->reset_slot) 5245 rc = hotplug->ops->reset_slot(hotplug, probe); 5246 5247 module_put(hotplug->owner); 5248 5249 return rc; 5250 } 5251 5252 static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe) 5253 { 5254 if (dev->multifunction || dev->subordinate || !dev->slot || 5255 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 5256 return -ENOTTY; 5257 5258 return pci_reset_hotplug_slot(dev->slot->hotplug, probe); 5259 } 5260 5261 static int pci_reset_bus_function(struct pci_dev *dev, bool probe) 5262 { 5263 int rc; 5264 5265 rc = pci_dev_reset_slot_function(dev, probe); 5266 if (rc != -ENOTTY) 5267 return rc; 5268 return pci_parent_bus_reset(dev, probe); 5269 } 5270 5271 void pci_dev_lock(struct pci_dev *dev) 5272 { 5273 /* block PM suspend, driver probe, etc. */ 5274 device_lock(&dev->dev); 5275 pci_cfg_access_lock(dev); 5276 } 5277 EXPORT_SYMBOL_GPL(pci_dev_lock); 5278 5279 /* Return 1 on successful lock, 0 on contention */ 5280 int pci_dev_trylock(struct pci_dev *dev) 5281 { 5282 if (device_trylock(&dev->dev)) { 5283 if (pci_cfg_access_trylock(dev)) 5284 return 1; 5285 device_unlock(&dev->dev); 5286 } 5287 5288 return 0; 5289 } 5290 EXPORT_SYMBOL_GPL(pci_dev_trylock); 5291 5292 void pci_dev_unlock(struct pci_dev *dev) 5293 { 5294 pci_cfg_access_unlock(dev); 5295 device_unlock(&dev->dev); 5296 } 5297 EXPORT_SYMBOL_GPL(pci_dev_unlock); 5298 5299 static void pci_dev_save_and_disable(struct pci_dev *dev) 5300 { 5301 const struct pci_error_handlers *err_handler = 5302 dev->driver ? dev->driver->err_handler : NULL; 5303 5304 /* 5305 * dev->driver->err_handler->reset_prepare() is protected against 5306 * races with ->remove() by the device lock, which must be held by 5307 * the caller. 5308 */ 5309 if (err_handler && err_handler->reset_prepare) 5310 err_handler->reset_prepare(dev); 5311 5312 /* 5313 * Wake-up device prior to save. PM registers default to D0 after 5314 * reset and a simple register restore doesn't reliably return 5315 * to a non-D0 state anyway. 5316 */ 5317 pci_set_power_state(dev, PCI_D0); 5318 5319 pci_save_state(dev); 5320 /* 5321 * Disable the device by clearing the Command register, except for 5322 * INTx-disable which is set. This not only disables MMIO and I/O port 5323 * BARs, but also prevents the device from being Bus Master, preventing 5324 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3 5325 * compliant devices, INTx-disable prevents legacy interrupts. 5326 */ 5327 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE); 5328 } 5329 5330 static void pci_dev_restore(struct pci_dev *dev) 5331 { 5332 const struct pci_error_handlers *err_handler = 5333 dev->driver ? dev->driver->err_handler : NULL; 5334 5335 pci_restore_state(dev); 5336 5337 /* 5338 * dev->driver->err_handler->reset_done() is protected against 5339 * races with ->remove() by the device lock, which must be held by 5340 * the caller. 5341 */ 5342 if (err_handler && err_handler->reset_done) 5343 err_handler->reset_done(dev); 5344 } 5345 5346 /* dev->reset_methods[] is a 0-terminated list of indices into this array */ 5347 static const struct pci_reset_fn_method pci_reset_fn_methods[] = { 5348 { }, 5349 { pci_dev_specific_reset, .name = "device_specific" }, 5350 { pci_dev_acpi_reset, .name = "acpi" }, 5351 { pcie_reset_flr, .name = "flr" }, 5352 { pci_af_flr, .name = "af_flr" }, 5353 { pci_pm_reset, .name = "pm" }, 5354 { pci_reset_bus_function, .name = "bus" }, 5355 }; 5356 5357 static ssize_t reset_method_show(struct device *dev, 5358 struct device_attribute *attr, char *buf) 5359 { 5360 struct pci_dev *pdev = to_pci_dev(dev); 5361 ssize_t len = 0; 5362 int i, m; 5363 5364 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) { 5365 m = pdev->reset_methods[i]; 5366 if (!m) 5367 break; 5368 5369 len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "", 5370 pci_reset_fn_methods[m].name); 5371 } 5372 5373 if (len) 5374 len += sysfs_emit_at(buf, len, "\n"); 5375 5376 return len; 5377 } 5378 5379 static int reset_method_lookup(const char *name) 5380 { 5381 int m; 5382 5383 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) { 5384 if (sysfs_streq(name, pci_reset_fn_methods[m].name)) 5385 return m; 5386 } 5387 5388 return 0; /* not found */ 5389 } 5390 5391 static ssize_t reset_method_store(struct device *dev, 5392 struct device_attribute *attr, 5393 const char *buf, size_t count) 5394 { 5395 struct pci_dev *pdev = to_pci_dev(dev); 5396 char *options, *name; 5397 int m, n; 5398 u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 }; 5399 5400 if (sysfs_streq(buf, "")) { 5401 pdev->reset_methods[0] = 0; 5402 pci_warn(pdev, "All device reset methods disabled by user"); 5403 return count; 5404 } 5405 5406 if (sysfs_streq(buf, "default")) { 5407 pci_init_reset_methods(pdev); 5408 return count; 5409 } 5410 5411 options = kstrndup(buf, count, GFP_KERNEL); 5412 if (!options) 5413 return -ENOMEM; 5414 5415 n = 0; 5416 while ((name = strsep(&options, " ")) != NULL) { 5417 if (sysfs_streq(name, "")) 5418 continue; 5419 5420 name = strim(name); 5421 5422 m = reset_method_lookup(name); 5423 if (!m) { 5424 pci_err(pdev, "Invalid reset method '%s'", name); 5425 goto error; 5426 } 5427 5428 if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) { 5429 pci_err(pdev, "Unsupported reset method '%s'", name); 5430 goto error; 5431 } 5432 5433 if (n == PCI_NUM_RESET_METHODS - 1) { 5434 pci_err(pdev, "Too many reset methods\n"); 5435 goto error; 5436 } 5437 5438 reset_methods[n++] = m; 5439 } 5440 5441 reset_methods[n] = 0; 5442 5443 /* Warn if dev-specific supported but not highest priority */ 5444 if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 && 5445 reset_methods[0] != 1) 5446 pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user"); 5447 memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods)); 5448 kfree(options); 5449 return count; 5450 5451 error: 5452 /* Leave previous methods unchanged */ 5453 kfree(options); 5454 return -EINVAL; 5455 } 5456 static DEVICE_ATTR_RW(reset_method); 5457 5458 static struct attribute *pci_dev_reset_method_attrs[] = { 5459 &dev_attr_reset_method.attr, 5460 NULL, 5461 }; 5462 5463 static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj, 5464 struct attribute *a, int n) 5465 { 5466 struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj)); 5467 5468 if (!pci_reset_supported(pdev)) 5469 return 0; 5470 5471 return a->mode; 5472 } 5473 5474 const struct attribute_group pci_dev_reset_method_attr_group = { 5475 .attrs = pci_dev_reset_method_attrs, 5476 .is_visible = pci_dev_reset_method_attr_is_visible, 5477 }; 5478 5479 /** 5480 * __pci_reset_function_locked - reset a PCI device function while holding 5481 * the @dev mutex lock. 5482 * @dev: PCI device to reset 5483 * 5484 * Some devices allow an individual function to be reset without affecting 5485 * other functions in the same device. The PCI device must be responsive 5486 * to PCI config space in order to use this function. 5487 * 5488 * The device function is presumed to be unused and the caller is holding 5489 * the device mutex lock when this function is called. 5490 * 5491 * Resetting the device will make the contents of PCI configuration space 5492 * random, so any caller of this must be prepared to reinitialise the 5493 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 5494 * etc. 5495 * 5496 * Returns 0 if the device function was successfully reset or negative if the 5497 * device doesn't support resetting a single function. 5498 */ 5499 int __pci_reset_function_locked(struct pci_dev *dev) 5500 { 5501 int i, m, rc; 5502 5503 might_sleep(); 5504 5505 /* 5506 * A reset method returns -ENOTTY if it doesn't support this device and 5507 * we should try the next method. 5508 * 5509 * If it returns 0 (success), we're finished. If it returns any other 5510 * error, we're also finished: this indicates that further reset 5511 * mechanisms might be broken on the device. 5512 */ 5513 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) { 5514 m = dev->reset_methods[i]; 5515 if (!m) 5516 return -ENOTTY; 5517 5518 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET); 5519 if (!rc) 5520 return 0; 5521 if (rc != -ENOTTY) 5522 return rc; 5523 } 5524 5525 return -ENOTTY; 5526 } 5527 EXPORT_SYMBOL_GPL(__pci_reset_function_locked); 5528 5529 /** 5530 * pci_init_reset_methods - check whether device can be safely reset 5531 * and store supported reset mechanisms. 5532 * @dev: PCI device to check for reset mechanisms 5533 * 5534 * Some devices allow an individual function to be reset without affecting 5535 * other functions in the same device. The PCI device must be in D0-D3hot 5536 * state. 5537 * 5538 * Stores reset mechanisms supported by device in reset_methods byte array 5539 * which is a member of struct pci_dev. 5540 */ 5541 void pci_init_reset_methods(struct pci_dev *dev) 5542 { 5543 int m, i, rc; 5544 5545 BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS); 5546 5547 might_sleep(); 5548 5549 i = 0; 5550 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) { 5551 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE); 5552 if (!rc) 5553 dev->reset_methods[i++] = m; 5554 else if (rc != -ENOTTY) 5555 break; 5556 } 5557 5558 dev->reset_methods[i] = 0; 5559 } 5560 5561 /** 5562 * pci_reset_function - quiesce and reset a PCI device function 5563 * @dev: PCI device to reset 5564 * 5565 * Some devices allow an individual function to be reset without affecting 5566 * other functions in the same device. The PCI device must be responsive 5567 * to PCI config space in order to use this function. 5568 * 5569 * This function does not just reset the PCI portion of a device, but 5570 * clears all the state associated with the device. This function differs 5571 * from __pci_reset_function_locked() in that it saves and restores device state 5572 * over the reset and takes the PCI device lock. 5573 * 5574 * Returns 0 if the device function was successfully reset or negative if the 5575 * device doesn't support resetting a single function. 5576 */ 5577 int pci_reset_function(struct pci_dev *dev) 5578 { 5579 int rc; 5580 5581 if (!pci_reset_supported(dev)) 5582 return -ENOTTY; 5583 5584 pci_dev_lock(dev); 5585 pci_dev_save_and_disable(dev); 5586 5587 rc = __pci_reset_function_locked(dev); 5588 5589 pci_dev_restore(dev); 5590 pci_dev_unlock(dev); 5591 5592 return rc; 5593 } 5594 EXPORT_SYMBOL_GPL(pci_reset_function); 5595 5596 /** 5597 * pci_reset_function_locked - quiesce and reset a PCI device function 5598 * @dev: PCI device to reset 5599 * 5600 * Some devices allow an individual function to be reset without affecting 5601 * other functions in the same device. The PCI device must be responsive 5602 * to PCI config space in order to use this function. 5603 * 5604 * This function does not just reset the PCI portion of a device, but 5605 * clears all the state associated with the device. This function differs 5606 * from __pci_reset_function_locked() in that it saves and restores device state 5607 * over the reset. It also differs from pci_reset_function() in that it 5608 * requires the PCI device lock to be held. 5609 * 5610 * Returns 0 if the device function was successfully reset or negative if the 5611 * device doesn't support resetting a single function. 5612 */ 5613 int pci_reset_function_locked(struct pci_dev *dev) 5614 { 5615 int rc; 5616 5617 if (!pci_reset_supported(dev)) 5618 return -ENOTTY; 5619 5620 pci_dev_save_and_disable(dev); 5621 5622 rc = __pci_reset_function_locked(dev); 5623 5624 pci_dev_restore(dev); 5625 5626 return rc; 5627 } 5628 EXPORT_SYMBOL_GPL(pci_reset_function_locked); 5629 5630 /** 5631 * pci_try_reset_function - quiesce and reset a PCI device function 5632 * @dev: PCI device to reset 5633 * 5634 * Same as above, except return -EAGAIN if unable to lock device. 5635 */ 5636 int pci_try_reset_function(struct pci_dev *dev) 5637 { 5638 int rc; 5639 5640 if (!pci_reset_supported(dev)) 5641 return -ENOTTY; 5642 5643 if (!pci_dev_trylock(dev)) 5644 return -EAGAIN; 5645 5646 pci_dev_save_and_disable(dev); 5647 rc = __pci_reset_function_locked(dev); 5648 pci_dev_restore(dev); 5649 pci_dev_unlock(dev); 5650 5651 return rc; 5652 } 5653 EXPORT_SYMBOL_GPL(pci_try_reset_function); 5654 5655 /* Do any devices on or below this bus prevent a bus reset? */ 5656 static bool pci_bus_resettable(struct pci_bus *bus) 5657 { 5658 struct pci_dev *dev; 5659 5660 5661 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 5662 return false; 5663 5664 list_for_each_entry(dev, &bus->devices, bus_list) { 5665 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 5666 (dev->subordinate && !pci_bus_resettable(dev->subordinate))) 5667 return false; 5668 } 5669 5670 return true; 5671 } 5672 5673 /* Lock devices from the top of the tree down */ 5674 static void pci_bus_lock(struct pci_bus *bus) 5675 { 5676 struct pci_dev *dev; 5677 5678 list_for_each_entry(dev, &bus->devices, bus_list) { 5679 pci_dev_lock(dev); 5680 if (dev->subordinate) 5681 pci_bus_lock(dev->subordinate); 5682 } 5683 } 5684 5685 /* Unlock devices from the bottom of the tree up */ 5686 static void pci_bus_unlock(struct pci_bus *bus) 5687 { 5688 struct pci_dev *dev; 5689 5690 list_for_each_entry(dev, &bus->devices, bus_list) { 5691 if (dev->subordinate) 5692 pci_bus_unlock(dev->subordinate); 5693 pci_dev_unlock(dev); 5694 } 5695 } 5696 5697 /* Return 1 on successful lock, 0 on contention */ 5698 static int pci_bus_trylock(struct pci_bus *bus) 5699 { 5700 struct pci_dev *dev; 5701 5702 list_for_each_entry(dev, &bus->devices, bus_list) { 5703 if (!pci_dev_trylock(dev)) 5704 goto unlock; 5705 if (dev->subordinate) { 5706 if (!pci_bus_trylock(dev->subordinate)) { 5707 pci_dev_unlock(dev); 5708 goto unlock; 5709 } 5710 } 5711 } 5712 return 1; 5713 5714 unlock: 5715 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) { 5716 if (dev->subordinate) 5717 pci_bus_unlock(dev->subordinate); 5718 pci_dev_unlock(dev); 5719 } 5720 return 0; 5721 } 5722 5723 /* Do any devices on or below this slot prevent a bus reset? */ 5724 static bool pci_slot_resettable(struct pci_slot *slot) 5725 { 5726 struct pci_dev *dev; 5727 5728 if (slot->bus->self && 5729 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 5730 return false; 5731 5732 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5733 if (!dev->slot || dev->slot != slot) 5734 continue; 5735 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 5736 (dev->subordinate && !pci_bus_resettable(dev->subordinate))) 5737 return false; 5738 } 5739 5740 return true; 5741 } 5742 5743 /* Lock devices from the top of the tree down */ 5744 static void pci_slot_lock(struct pci_slot *slot) 5745 { 5746 struct pci_dev *dev; 5747 5748 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5749 if (!dev->slot || dev->slot != slot) 5750 continue; 5751 pci_dev_lock(dev); 5752 if (dev->subordinate) 5753 pci_bus_lock(dev->subordinate); 5754 } 5755 } 5756 5757 /* Unlock devices from the bottom of the tree up */ 5758 static void pci_slot_unlock(struct pci_slot *slot) 5759 { 5760 struct pci_dev *dev; 5761 5762 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5763 if (!dev->slot || dev->slot != slot) 5764 continue; 5765 if (dev->subordinate) 5766 pci_bus_unlock(dev->subordinate); 5767 pci_dev_unlock(dev); 5768 } 5769 } 5770 5771 /* Return 1 on successful lock, 0 on contention */ 5772 static int pci_slot_trylock(struct pci_slot *slot) 5773 { 5774 struct pci_dev *dev; 5775 5776 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5777 if (!dev->slot || dev->slot != slot) 5778 continue; 5779 if (!pci_dev_trylock(dev)) 5780 goto unlock; 5781 if (dev->subordinate) { 5782 if (!pci_bus_trylock(dev->subordinate)) { 5783 pci_dev_unlock(dev); 5784 goto unlock; 5785 } 5786 } 5787 } 5788 return 1; 5789 5790 unlock: 5791 list_for_each_entry_continue_reverse(dev, 5792 &slot->bus->devices, bus_list) { 5793 if (!dev->slot || dev->slot != slot) 5794 continue; 5795 if (dev->subordinate) 5796 pci_bus_unlock(dev->subordinate); 5797 pci_dev_unlock(dev); 5798 } 5799 return 0; 5800 } 5801 5802 /* 5803 * Save and disable devices from the top of the tree down while holding 5804 * the @dev mutex lock for the entire tree. 5805 */ 5806 static void pci_bus_save_and_disable_locked(struct pci_bus *bus) 5807 { 5808 struct pci_dev *dev; 5809 5810 list_for_each_entry(dev, &bus->devices, bus_list) { 5811 pci_dev_save_and_disable(dev); 5812 if (dev->subordinate) 5813 pci_bus_save_and_disable_locked(dev->subordinate); 5814 } 5815 } 5816 5817 /* 5818 * Restore devices from top of the tree down while holding @dev mutex lock 5819 * for the entire tree. Parent bridges need to be restored before we can 5820 * get to subordinate devices. 5821 */ 5822 static void pci_bus_restore_locked(struct pci_bus *bus) 5823 { 5824 struct pci_dev *dev; 5825 5826 list_for_each_entry(dev, &bus->devices, bus_list) { 5827 pci_dev_restore(dev); 5828 if (dev->subordinate) 5829 pci_bus_restore_locked(dev->subordinate); 5830 } 5831 } 5832 5833 /* 5834 * Save and disable devices from the top of the tree down while holding 5835 * the @dev mutex lock for the entire tree. 5836 */ 5837 static void pci_slot_save_and_disable_locked(struct pci_slot *slot) 5838 { 5839 struct pci_dev *dev; 5840 5841 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5842 if (!dev->slot || dev->slot != slot) 5843 continue; 5844 pci_dev_save_and_disable(dev); 5845 if (dev->subordinate) 5846 pci_bus_save_and_disable_locked(dev->subordinate); 5847 } 5848 } 5849 5850 /* 5851 * Restore devices from top of the tree down while holding @dev mutex lock 5852 * for the entire tree. Parent bridges need to be restored before we can 5853 * get to subordinate devices. 5854 */ 5855 static void pci_slot_restore_locked(struct pci_slot *slot) 5856 { 5857 struct pci_dev *dev; 5858 5859 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5860 if (!dev->slot || dev->slot != slot) 5861 continue; 5862 pci_dev_restore(dev); 5863 if (dev->subordinate) 5864 pci_bus_restore_locked(dev->subordinate); 5865 } 5866 } 5867 5868 static int pci_slot_reset(struct pci_slot *slot, bool probe) 5869 { 5870 int rc; 5871 5872 if (!slot || !pci_slot_resettable(slot)) 5873 return -ENOTTY; 5874 5875 if (!probe) 5876 pci_slot_lock(slot); 5877 5878 might_sleep(); 5879 5880 rc = pci_reset_hotplug_slot(slot->hotplug, probe); 5881 5882 if (!probe) 5883 pci_slot_unlock(slot); 5884 5885 return rc; 5886 } 5887 5888 /** 5889 * pci_probe_reset_slot - probe whether a PCI slot can be reset 5890 * @slot: PCI slot to probe 5891 * 5892 * Return 0 if slot can be reset, negative if a slot reset is not supported. 5893 */ 5894 int pci_probe_reset_slot(struct pci_slot *slot) 5895 { 5896 return pci_slot_reset(slot, PCI_RESET_PROBE); 5897 } 5898 EXPORT_SYMBOL_GPL(pci_probe_reset_slot); 5899 5900 /** 5901 * __pci_reset_slot - Try to reset a PCI slot 5902 * @slot: PCI slot to reset 5903 * 5904 * A PCI bus may host multiple slots, each slot may support a reset mechanism 5905 * independent of other slots. For instance, some slots may support slot power 5906 * control. In the case of a 1:1 bus to slot architecture, this function may 5907 * wrap the bus reset to avoid spurious slot related events such as hotplug. 5908 * Generally a slot reset should be attempted before a bus reset. All of the 5909 * function of the slot and any subordinate buses behind the slot are reset 5910 * through this function. PCI config space of all devices in the slot and 5911 * behind the slot is saved before and restored after reset. 5912 * 5913 * Same as above except return -EAGAIN if the slot cannot be locked 5914 */ 5915 static int __pci_reset_slot(struct pci_slot *slot) 5916 { 5917 int rc; 5918 5919 rc = pci_slot_reset(slot, PCI_RESET_PROBE); 5920 if (rc) 5921 return rc; 5922 5923 if (pci_slot_trylock(slot)) { 5924 pci_slot_save_and_disable_locked(slot); 5925 might_sleep(); 5926 rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET); 5927 pci_slot_restore_locked(slot); 5928 pci_slot_unlock(slot); 5929 } else 5930 rc = -EAGAIN; 5931 5932 return rc; 5933 } 5934 5935 static int pci_bus_reset(struct pci_bus *bus, bool probe) 5936 { 5937 int ret; 5938 5939 if (!bus->self || !pci_bus_resettable(bus)) 5940 return -ENOTTY; 5941 5942 if (probe) 5943 return 0; 5944 5945 pci_bus_lock(bus); 5946 5947 might_sleep(); 5948 5949 ret = pci_bridge_secondary_bus_reset(bus->self); 5950 5951 pci_bus_unlock(bus); 5952 5953 return ret; 5954 } 5955 5956 /** 5957 * pci_bus_error_reset - reset the bridge's subordinate bus 5958 * @bridge: The parent device that connects to the bus to reset 5959 * 5960 * This function will first try to reset the slots on this bus if the method is 5961 * available. If slot reset fails or is not available, this will fall back to a 5962 * secondary bus reset. 5963 */ 5964 int pci_bus_error_reset(struct pci_dev *bridge) 5965 { 5966 struct pci_bus *bus = bridge->subordinate; 5967 struct pci_slot *slot; 5968 5969 if (!bus) 5970 return -ENOTTY; 5971 5972 mutex_lock(&pci_slot_mutex); 5973 if (list_empty(&bus->slots)) 5974 goto bus_reset; 5975 5976 list_for_each_entry(slot, &bus->slots, list) 5977 if (pci_probe_reset_slot(slot)) 5978 goto bus_reset; 5979 5980 list_for_each_entry(slot, &bus->slots, list) 5981 if (pci_slot_reset(slot, PCI_RESET_DO_RESET)) 5982 goto bus_reset; 5983 5984 mutex_unlock(&pci_slot_mutex); 5985 return 0; 5986 bus_reset: 5987 mutex_unlock(&pci_slot_mutex); 5988 return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET); 5989 } 5990 5991 /** 5992 * pci_probe_reset_bus - probe whether a PCI bus can be reset 5993 * @bus: PCI bus to probe 5994 * 5995 * Return 0 if bus can be reset, negative if a bus reset is not supported. 5996 */ 5997 int pci_probe_reset_bus(struct pci_bus *bus) 5998 { 5999 return pci_bus_reset(bus, PCI_RESET_PROBE); 6000 } 6001 EXPORT_SYMBOL_GPL(pci_probe_reset_bus); 6002 6003 /** 6004 * __pci_reset_bus - Try to reset a PCI bus 6005 * @bus: top level PCI bus to reset 6006 * 6007 * Same as above except return -EAGAIN if the bus cannot be locked 6008 */ 6009 static int __pci_reset_bus(struct pci_bus *bus) 6010 { 6011 int rc; 6012 6013 rc = pci_bus_reset(bus, PCI_RESET_PROBE); 6014 if (rc) 6015 return rc; 6016 6017 if (pci_bus_trylock(bus)) { 6018 pci_bus_save_and_disable_locked(bus); 6019 might_sleep(); 6020 rc = pci_bridge_secondary_bus_reset(bus->self); 6021 pci_bus_restore_locked(bus); 6022 pci_bus_unlock(bus); 6023 } else 6024 rc = -EAGAIN; 6025 6026 return rc; 6027 } 6028 6029 /** 6030 * pci_reset_bus - Try to reset a PCI bus 6031 * @pdev: top level PCI device to reset via slot/bus 6032 * 6033 * Same as above except return -EAGAIN if the bus cannot be locked 6034 */ 6035 int pci_reset_bus(struct pci_dev *pdev) 6036 { 6037 return (!pci_probe_reset_slot(pdev->slot)) ? 6038 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus); 6039 } 6040 EXPORT_SYMBOL_GPL(pci_reset_bus); 6041 6042 /** 6043 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count 6044 * @dev: PCI device to query 6045 * 6046 * Returns mmrbc: maximum designed memory read count in bytes or 6047 * appropriate error value. 6048 */ 6049 int pcix_get_max_mmrbc(struct pci_dev *dev) 6050 { 6051 int cap; 6052 u32 stat; 6053 6054 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 6055 if (!cap) 6056 return -EINVAL; 6057 6058 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 6059 return -EINVAL; 6060 6061 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21); 6062 } 6063 EXPORT_SYMBOL(pcix_get_max_mmrbc); 6064 6065 /** 6066 * pcix_get_mmrbc - get PCI-X maximum memory read byte count 6067 * @dev: PCI device to query 6068 * 6069 * Returns mmrbc: maximum memory read count in bytes or appropriate error 6070 * value. 6071 */ 6072 int pcix_get_mmrbc(struct pci_dev *dev) 6073 { 6074 int cap; 6075 u16 cmd; 6076 6077 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 6078 if (!cap) 6079 return -EINVAL; 6080 6081 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 6082 return -EINVAL; 6083 6084 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2); 6085 } 6086 EXPORT_SYMBOL(pcix_get_mmrbc); 6087 6088 /** 6089 * pcix_set_mmrbc - set PCI-X maximum memory read byte count 6090 * @dev: PCI device to query 6091 * @mmrbc: maximum memory read count in bytes 6092 * valid values are 512, 1024, 2048, 4096 6093 * 6094 * If possible sets maximum memory read byte count, some bridges have errata 6095 * that prevent this. 6096 */ 6097 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc) 6098 { 6099 int cap; 6100 u32 stat, v, o; 6101 u16 cmd; 6102 6103 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc)) 6104 return -EINVAL; 6105 6106 v = ffs(mmrbc) - 10; 6107 6108 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 6109 if (!cap) 6110 return -EINVAL; 6111 6112 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 6113 return -EINVAL; 6114 6115 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21) 6116 return -E2BIG; 6117 6118 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 6119 return -EINVAL; 6120 6121 o = (cmd & PCI_X_CMD_MAX_READ) >> 2; 6122 if (o != v) { 6123 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC)) 6124 return -EIO; 6125 6126 cmd &= ~PCI_X_CMD_MAX_READ; 6127 cmd |= v << 2; 6128 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd)) 6129 return -EIO; 6130 } 6131 return 0; 6132 } 6133 EXPORT_SYMBOL(pcix_set_mmrbc); 6134 6135 /** 6136 * pcie_get_readrq - get PCI Express read request size 6137 * @dev: PCI device to query 6138 * 6139 * Returns maximum memory read request in bytes or appropriate error value. 6140 */ 6141 int pcie_get_readrq(struct pci_dev *dev) 6142 { 6143 u16 ctl; 6144 6145 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 6146 6147 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12); 6148 } 6149 EXPORT_SYMBOL(pcie_get_readrq); 6150 6151 /** 6152 * pcie_set_readrq - set PCI Express maximum memory read request 6153 * @dev: PCI device to query 6154 * @rq: maximum memory read count in bytes 6155 * valid values are 128, 256, 512, 1024, 2048, 4096 6156 * 6157 * If possible sets maximum memory read request in bytes 6158 */ 6159 int pcie_set_readrq(struct pci_dev *dev, int rq) 6160 { 6161 u16 v; 6162 int ret; 6163 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus); 6164 6165 if (rq < 128 || rq > 4096 || !is_power_of_2(rq)) 6166 return -EINVAL; 6167 6168 /* 6169 * If using the "performance" PCIe config, we clamp the read rq 6170 * size to the max packet size to keep the host bridge from 6171 * generating requests larger than we can cope with. 6172 */ 6173 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) { 6174 int mps = pcie_get_mps(dev); 6175 6176 if (mps < rq) 6177 rq = mps; 6178 } 6179 6180 v = (ffs(rq) - 8) << 12; 6181 6182 if (bridge->no_inc_mrrs) { 6183 int max_mrrs = pcie_get_readrq(dev); 6184 6185 if (rq > max_mrrs) { 6186 pci_info(dev, "can't set Max_Read_Request_Size to %d; max is %d\n", rq, max_mrrs); 6187 return -EINVAL; 6188 } 6189 } 6190 6191 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 6192 PCI_EXP_DEVCTL_READRQ, v); 6193 6194 return pcibios_err_to_errno(ret); 6195 } 6196 EXPORT_SYMBOL(pcie_set_readrq); 6197 6198 /** 6199 * pcie_get_mps - get PCI Express maximum payload size 6200 * @dev: PCI device to query 6201 * 6202 * Returns maximum payload size in bytes 6203 */ 6204 int pcie_get_mps(struct pci_dev *dev) 6205 { 6206 u16 ctl; 6207 6208 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 6209 6210 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5); 6211 } 6212 EXPORT_SYMBOL(pcie_get_mps); 6213 6214 /** 6215 * pcie_set_mps - set PCI Express maximum payload size 6216 * @dev: PCI device to query 6217 * @mps: maximum payload size in bytes 6218 * valid values are 128, 256, 512, 1024, 2048, 4096 6219 * 6220 * If possible sets maximum payload size 6221 */ 6222 int pcie_set_mps(struct pci_dev *dev, int mps) 6223 { 6224 u16 v; 6225 int ret; 6226 6227 if (mps < 128 || mps > 4096 || !is_power_of_2(mps)) 6228 return -EINVAL; 6229 6230 v = ffs(mps) - 8; 6231 if (v > dev->pcie_mpss) 6232 return -EINVAL; 6233 v <<= 5; 6234 6235 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 6236 PCI_EXP_DEVCTL_PAYLOAD, v); 6237 6238 return pcibios_err_to_errno(ret); 6239 } 6240 EXPORT_SYMBOL(pcie_set_mps); 6241 6242 /** 6243 * pcie_bandwidth_available - determine minimum link settings of a PCIe 6244 * device and its bandwidth limitation 6245 * @dev: PCI device to query 6246 * @limiting_dev: storage for device causing the bandwidth limitation 6247 * @speed: storage for speed of limiting device 6248 * @width: storage for width of limiting device 6249 * 6250 * Walk up the PCI device chain and find the point where the minimum 6251 * bandwidth is available. Return the bandwidth available there and (if 6252 * limiting_dev, speed, and width pointers are supplied) information about 6253 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of 6254 * raw bandwidth. 6255 */ 6256 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev, 6257 enum pci_bus_speed *speed, 6258 enum pcie_link_width *width) 6259 { 6260 u16 lnksta; 6261 enum pci_bus_speed next_speed; 6262 enum pcie_link_width next_width; 6263 u32 bw, next_bw; 6264 6265 if (speed) 6266 *speed = PCI_SPEED_UNKNOWN; 6267 if (width) 6268 *width = PCIE_LNK_WIDTH_UNKNOWN; 6269 6270 bw = 0; 6271 6272 while (dev) { 6273 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta); 6274 6275 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS]; 6276 next_width = FIELD_GET(PCI_EXP_LNKSTA_NLW, lnksta); 6277 6278 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed); 6279 6280 /* Check if current device limits the total bandwidth */ 6281 if (!bw || next_bw <= bw) { 6282 bw = next_bw; 6283 6284 if (limiting_dev) 6285 *limiting_dev = dev; 6286 if (speed) 6287 *speed = next_speed; 6288 if (width) 6289 *width = next_width; 6290 } 6291 6292 dev = pci_upstream_bridge(dev); 6293 } 6294 6295 return bw; 6296 } 6297 EXPORT_SYMBOL(pcie_bandwidth_available); 6298 6299 /** 6300 * pcie_get_speed_cap - query for the PCI device's link speed capability 6301 * @dev: PCI device to query 6302 * 6303 * Query the PCI device speed capability. Return the maximum link speed 6304 * supported by the device. 6305 */ 6306 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev) 6307 { 6308 u32 lnkcap2, lnkcap; 6309 6310 /* 6311 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The 6312 * implementation note there recommends using the Supported Link 6313 * Speeds Vector in Link Capabilities 2 when supported. 6314 * 6315 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software 6316 * should use the Supported Link Speeds field in Link Capabilities, 6317 * where only 2.5 GT/s and 5.0 GT/s speeds were defined. 6318 */ 6319 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2); 6320 6321 /* PCIe r3.0-compliant */ 6322 if (lnkcap2) 6323 return PCIE_LNKCAP2_SLS2SPEED(lnkcap2); 6324 6325 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 6326 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB) 6327 return PCIE_SPEED_5_0GT; 6328 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB) 6329 return PCIE_SPEED_2_5GT; 6330 6331 return PCI_SPEED_UNKNOWN; 6332 } 6333 EXPORT_SYMBOL(pcie_get_speed_cap); 6334 6335 /** 6336 * pcie_get_width_cap - query for the PCI device's link width capability 6337 * @dev: PCI device to query 6338 * 6339 * Query the PCI device width capability. Return the maximum link width 6340 * supported by the device. 6341 */ 6342 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev) 6343 { 6344 u32 lnkcap; 6345 6346 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 6347 if (lnkcap) 6348 return FIELD_GET(PCI_EXP_LNKCAP_MLW, lnkcap); 6349 6350 return PCIE_LNK_WIDTH_UNKNOWN; 6351 } 6352 EXPORT_SYMBOL(pcie_get_width_cap); 6353 6354 /** 6355 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability 6356 * @dev: PCI device 6357 * @speed: storage for link speed 6358 * @width: storage for link width 6359 * 6360 * Calculate a PCI device's link bandwidth by querying for its link speed 6361 * and width, multiplying them, and applying encoding overhead. The result 6362 * is in Mb/s, i.e., megabits/second of raw bandwidth. 6363 */ 6364 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed, 6365 enum pcie_link_width *width) 6366 { 6367 *speed = pcie_get_speed_cap(dev); 6368 *width = pcie_get_width_cap(dev); 6369 6370 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN) 6371 return 0; 6372 6373 return *width * PCIE_SPEED2MBS_ENC(*speed); 6374 } 6375 6376 /** 6377 * __pcie_print_link_status - Report the PCI device's link speed and width 6378 * @dev: PCI device to query 6379 * @verbose: Print info even when enough bandwidth is available 6380 * 6381 * If the available bandwidth at the device is less than the device is 6382 * capable of, report the device's maximum possible bandwidth and the 6383 * upstream link that limits its performance. If @verbose, always print 6384 * the available bandwidth, even if the device isn't constrained. 6385 */ 6386 void __pcie_print_link_status(struct pci_dev *dev, bool verbose) 6387 { 6388 enum pcie_link_width width, width_cap; 6389 enum pci_bus_speed speed, speed_cap; 6390 struct pci_dev *limiting_dev = NULL; 6391 u32 bw_avail, bw_cap; 6392 6393 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap); 6394 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width); 6395 6396 if (bw_avail >= bw_cap && verbose) 6397 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n", 6398 bw_cap / 1000, bw_cap % 1000, 6399 pci_speed_string(speed_cap), width_cap); 6400 else if (bw_avail < bw_cap) 6401 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n", 6402 bw_avail / 1000, bw_avail % 1000, 6403 pci_speed_string(speed), width, 6404 limiting_dev ? pci_name(limiting_dev) : "<unknown>", 6405 bw_cap / 1000, bw_cap % 1000, 6406 pci_speed_string(speed_cap), width_cap); 6407 } 6408 6409 /** 6410 * pcie_print_link_status - Report the PCI device's link speed and width 6411 * @dev: PCI device to query 6412 * 6413 * Report the available bandwidth at the device. 6414 */ 6415 void pcie_print_link_status(struct pci_dev *dev) 6416 { 6417 __pcie_print_link_status(dev, true); 6418 } 6419 EXPORT_SYMBOL(pcie_print_link_status); 6420 6421 /** 6422 * pci_select_bars - Make BAR mask from the type of resource 6423 * @dev: the PCI device for which BAR mask is made 6424 * @flags: resource type mask to be selected 6425 * 6426 * This helper routine makes bar mask from the type of resource. 6427 */ 6428 int pci_select_bars(struct pci_dev *dev, unsigned long flags) 6429 { 6430 int i, bars = 0; 6431 for (i = 0; i < PCI_NUM_RESOURCES; i++) 6432 if (pci_resource_flags(dev, i) & flags) 6433 bars |= (1 << i); 6434 return bars; 6435 } 6436 EXPORT_SYMBOL(pci_select_bars); 6437 6438 /* Some architectures require additional programming to enable VGA */ 6439 static arch_set_vga_state_t arch_set_vga_state; 6440 6441 void __init pci_register_set_vga_state(arch_set_vga_state_t func) 6442 { 6443 arch_set_vga_state = func; /* NULL disables */ 6444 } 6445 6446 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode, 6447 unsigned int command_bits, u32 flags) 6448 { 6449 if (arch_set_vga_state) 6450 return arch_set_vga_state(dev, decode, command_bits, 6451 flags); 6452 return 0; 6453 } 6454 6455 /** 6456 * pci_set_vga_state - set VGA decode state on device and parents if requested 6457 * @dev: the PCI device 6458 * @decode: true = enable decoding, false = disable decoding 6459 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY 6460 * @flags: traverse ancestors and change bridges 6461 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE 6462 */ 6463 int pci_set_vga_state(struct pci_dev *dev, bool decode, 6464 unsigned int command_bits, u32 flags) 6465 { 6466 struct pci_bus *bus; 6467 struct pci_dev *bridge; 6468 u16 cmd; 6469 int rc; 6470 6471 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY))); 6472 6473 /* ARCH specific VGA enables */ 6474 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags); 6475 if (rc) 6476 return rc; 6477 6478 if (flags & PCI_VGA_STATE_CHANGE_DECODES) { 6479 pci_read_config_word(dev, PCI_COMMAND, &cmd); 6480 if (decode) 6481 cmd |= command_bits; 6482 else 6483 cmd &= ~command_bits; 6484 pci_write_config_word(dev, PCI_COMMAND, cmd); 6485 } 6486 6487 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE)) 6488 return 0; 6489 6490 bus = dev->bus; 6491 while (bus) { 6492 bridge = bus->self; 6493 if (bridge) { 6494 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL, 6495 &cmd); 6496 if (decode) 6497 cmd |= PCI_BRIDGE_CTL_VGA; 6498 else 6499 cmd &= ~PCI_BRIDGE_CTL_VGA; 6500 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL, 6501 cmd); 6502 } 6503 bus = bus->parent; 6504 } 6505 return 0; 6506 } 6507 6508 #ifdef CONFIG_ACPI 6509 bool pci_pr3_present(struct pci_dev *pdev) 6510 { 6511 struct acpi_device *adev; 6512 6513 if (acpi_disabled) 6514 return false; 6515 6516 adev = ACPI_COMPANION(&pdev->dev); 6517 if (!adev) 6518 return false; 6519 6520 return adev->power.flags.power_resources && 6521 acpi_has_method(adev->handle, "_PR3"); 6522 } 6523 EXPORT_SYMBOL_GPL(pci_pr3_present); 6524 #endif 6525 6526 /** 6527 * pci_add_dma_alias - Add a DMA devfn alias for a device 6528 * @dev: the PCI device for which alias is added 6529 * @devfn_from: alias slot and function 6530 * @nr_devfns: number of subsequent devfns to alias 6531 * 6532 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask 6533 * which is used to program permissible bus-devfn source addresses for DMA 6534 * requests in an IOMMU. These aliases factor into IOMMU group creation 6535 * and are useful for devices generating DMA requests beyond or different 6536 * from their logical bus-devfn. Examples include device quirks where the 6537 * device simply uses the wrong devfn, as well as non-transparent bridges 6538 * where the alias may be a proxy for devices in another domain. 6539 * 6540 * IOMMU group creation is performed during device discovery or addition, 6541 * prior to any potential DMA mapping and therefore prior to driver probing 6542 * (especially for userspace assigned devices where IOMMU group definition 6543 * cannot be left as a userspace activity). DMA aliases should therefore 6544 * be configured via quirks, such as the PCI fixup header quirk. 6545 */ 6546 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from, 6547 unsigned int nr_devfns) 6548 { 6549 int devfn_to; 6550 6551 nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from); 6552 devfn_to = devfn_from + nr_devfns - 1; 6553 6554 if (!dev->dma_alias_mask) 6555 dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL); 6556 if (!dev->dma_alias_mask) { 6557 pci_warn(dev, "Unable to allocate DMA alias mask\n"); 6558 return; 6559 } 6560 6561 bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns); 6562 6563 if (nr_devfns == 1) 6564 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n", 6565 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from)); 6566 else if (nr_devfns > 1) 6567 pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n", 6568 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from), 6569 PCI_SLOT(devfn_to), PCI_FUNC(devfn_to)); 6570 } 6571 6572 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2) 6573 { 6574 return (dev1->dma_alias_mask && 6575 test_bit(dev2->devfn, dev1->dma_alias_mask)) || 6576 (dev2->dma_alias_mask && 6577 test_bit(dev1->devfn, dev2->dma_alias_mask)) || 6578 pci_real_dma_dev(dev1) == dev2 || 6579 pci_real_dma_dev(dev2) == dev1; 6580 } 6581 6582 bool pci_device_is_present(struct pci_dev *pdev) 6583 { 6584 u32 v; 6585 6586 /* Check PF if pdev is a VF, since VF Vendor/Device IDs are 0xffff */ 6587 pdev = pci_physfn(pdev); 6588 if (pci_dev_is_disconnected(pdev)) 6589 return false; 6590 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0); 6591 } 6592 EXPORT_SYMBOL_GPL(pci_device_is_present); 6593 6594 void pci_ignore_hotplug(struct pci_dev *dev) 6595 { 6596 struct pci_dev *bridge = dev->bus->self; 6597 6598 dev->ignore_hotplug = 1; 6599 /* Propagate the "ignore hotplug" setting to the parent bridge. */ 6600 if (bridge) 6601 bridge->ignore_hotplug = 1; 6602 } 6603 EXPORT_SYMBOL_GPL(pci_ignore_hotplug); 6604 6605 /** 6606 * pci_real_dma_dev - Get PCI DMA device for PCI device 6607 * @dev: the PCI device that may have a PCI DMA alias 6608 * 6609 * Permits the platform to provide architecture-specific functionality to 6610 * devices needing to alias DMA to another PCI device on another PCI bus. If 6611 * the PCI device is on the same bus, it is recommended to use 6612 * pci_add_dma_alias(). This is the default implementation. Architecture 6613 * implementations can override this. 6614 */ 6615 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev) 6616 { 6617 return dev; 6618 } 6619 6620 resource_size_t __weak pcibios_default_alignment(void) 6621 { 6622 return 0; 6623 } 6624 6625 /* 6626 * Arches that don't want to expose struct resource to userland as-is in 6627 * sysfs and /proc can implement their own pci_resource_to_user(). 6628 */ 6629 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar, 6630 const struct resource *rsrc, 6631 resource_size_t *start, resource_size_t *end) 6632 { 6633 *start = rsrc->start; 6634 *end = rsrc->end; 6635 } 6636 6637 static char *resource_alignment_param; 6638 static DEFINE_SPINLOCK(resource_alignment_lock); 6639 6640 /** 6641 * pci_specified_resource_alignment - get resource alignment specified by user. 6642 * @dev: the PCI device to get 6643 * @resize: whether or not to change resources' size when reassigning alignment 6644 * 6645 * RETURNS: Resource alignment if it is specified. 6646 * Zero if it is not specified. 6647 */ 6648 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev, 6649 bool *resize) 6650 { 6651 int align_order, count; 6652 resource_size_t align = pcibios_default_alignment(); 6653 const char *p; 6654 int ret; 6655 6656 spin_lock(&resource_alignment_lock); 6657 p = resource_alignment_param; 6658 if (!p || !*p) 6659 goto out; 6660 if (pci_has_flag(PCI_PROBE_ONLY)) { 6661 align = 0; 6662 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n"); 6663 goto out; 6664 } 6665 6666 while (*p) { 6667 count = 0; 6668 if (sscanf(p, "%d%n", &align_order, &count) == 1 && 6669 p[count] == '@') { 6670 p += count + 1; 6671 if (align_order > 63) { 6672 pr_err("PCI: Invalid requested alignment (order %d)\n", 6673 align_order); 6674 align_order = PAGE_SHIFT; 6675 } 6676 } else { 6677 align_order = PAGE_SHIFT; 6678 } 6679 6680 ret = pci_dev_str_match(dev, p, &p); 6681 if (ret == 1) { 6682 *resize = true; 6683 align = 1ULL << align_order; 6684 break; 6685 } else if (ret < 0) { 6686 pr_err("PCI: Can't parse resource_alignment parameter: %s\n", 6687 p); 6688 break; 6689 } 6690 6691 if (*p != ';' && *p != ',') { 6692 /* End of param or invalid format */ 6693 break; 6694 } 6695 p++; 6696 } 6697 out: 6698 spin_unlock(&resource_alignment_lock); 6699 return align; 6700 } 6701 6702 static void pci_request_resource_alignment(struct pci_dev *dev, int bar, 6703 resource_size_t align, bool resize) 6704 { 6705 struct resource *r = &dev->resource[bar]; 6706 resource_size_t size; 6707 6708 if (!(r->flags & IORESOURCE_MEM)) 6709 return; 6710 6711 if (r->flags & IORESOURCE_PCI_FIXED) { 6712 pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n", 6713 bar, r, (unsigned long long)align); 6714 return; 6715 } 6716 6717 size = resource_size(r); 6718 if (size >= align) 6719 return; 6720 6721 /* 6722 * Increase the alignment of the resource. There are two ways we 6723 * can do this: 6724 * 6725 * 1) Increase the size of the resource. BARs are aligned on their 6726 * size, so when we reallocate space for this resource, we'll 6727 * allocate it with the larger alignment. This also prevents 6728 * assignment of any other BARs inside the alignment region, so 6729 * if we're requesting page alignment, this means no other BARs 6730 * will share the page. 6731 * 6732 * The disadvantage is that this makes the resource larger than 6733 * the hardware BAR, which may break drivers that compute things 6734 * based on the resource size, e.g., to find registers at a 6735 * fixed offset before the end of the BAR. 6736 * 6737 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and 6738 * set r->start to the desired alignment. By itself this 6739 * doesn't prevent other BARs being put inside the alignment 6740 * region, but if we realign *every* resource of every device in 6741 * the system, none of them will share an alignment region. 6742 * 6743 * When the user has requested alignment for only some devices via 6744 * the "pci=resource_alignment" argument, "resize" is true and we 6745 * use the first method. Otherwise we assume we're aligning all 6746 * devices and we use the second. 6747 */ 6748 6749 pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n", 6750 bar, r, (unsigned long long)align); 6751 6752 if (resize) { 6753 r->start = 0; 6754 r->end = align - 1; 6755 } else { 6756 r->flags &= ~IORESOURCE_SIZEALIGN; 6757 r->flags |= IORESOURCE_STARTALIGN; 6758 r->start = align; 6759 r->end = r->start + size - 1; 6760 } 6761 r->flags |= IORESOURCE_UNSET; 6762 } 6763 6764 /* 6765 * This function disables memory decoding and releases memory resources 6766 * of the device specified by kernel's boot parameter 'pci=resource_alignment='. 6767 * It also rounds up size to specified alignment. 6768 * Later on, the kernel will assign page-aligned memory resource back 6769 * to the device. 6770 */ 6771 void pci_reassigndev_resource_alignment(struct pci_dev *dev) 6772 { 6773 int i; 6774 struct resource *r; 6775 resource_size_t align; 6776 u16 command; 6777 bool resize = false; 6778 6779 /* 6780 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec 6781 * 3.4.1.11. Their resources are allocated from the space 6782 * described by the VF BARx register in the PF's SR-IOV capability. 6783 * We can't influence their alignment here. 6784 */ 6785 if (dev->is_virtfn) 6786 return; 6787 6788 /* check if specified PCI is target device to reassign */ 6789 align = pci_specified_resource_alignment(dev, &resize); 6790 if (!align) 6791 return; 6792 6793 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL && 6794 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) { 6795 pci_warn(dev, "Can't reassign resources to host bridge\n"); 6796 return; 6797 } 6798 6799 pci_read_config_word(dev, PCI_COMMAND, &command); 6800 command &= ~PCI_COMMAND_MEMORY; 6801 pci_write_config_word(dev, PCI_COMMAND, command); 6802 6803 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 6804 pci_request_resource_alignment(dev, i, align, resize); 6805 6806 /* 6807 * Need to disable bridge's resource window, 6808 * to enable the kernel to reassign new resource 6809 * window later on. 6810 */ 6811 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 6812 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) { 6813 r = &dev->resource[i]; 6814 if (!(r->flags & IORESOURCE_MEM)) 6815 continue; 6816 r->flags |= IORESOURCE_UNSET; 6817 r->end = resource_size(r) - 1; 6818 r->start = 0; 6819 } 6820 pci_disable_bridge_window(dev); 6821 } 6822 } 6823 6824 static ssize_t resource_alignment_show(const struct bus_type *bus, char *buf) 6825 { 6826 size_t count = 0; 6827 6828 spin_lock(&resource_alignment_lock); 6829 if (resource_alignment_param) 6830 count = sysfs_emit(buf, "%s\n", resource_alignment_param); 6831 spin_unlock(&resource_alignment_lock); 6832 6833 return count; 6834 } 6835 6836 static ssize_t resource_alignment_store(const struct bus_type *bus, 6837 const char *buf, size_t count) 6838 { 6839 char *param, *old, *end; 6840 6841 if (count >= (PAGE_SIZE - 1)) 6842 return -EINVAL; 6843 6844 param = kstrndup(buf, count, GFP_KERNEL); 6845 if (!param) 6846 return -ENOMEM; 6847 6848 end = strchr(param, '\n'); 6849 if (end) 6850 *end = '\0'; 6851 6852 spin_lock(&resource_alignment_lock); 6853 old = resource_alignment_param; 6854 if (strlen(param)) { 6855 resource_alignment_param = param; 6856 } else { 6857 kfree(param); 6858 resource_alignment_param = NULL; 6859 } 6860 spin_unlock(&resource_alignment_lock); 6861 6862 kfree(old); 6863 6864 return count; 6865 } 6866 6867 static BUS_ATTR_RW(resource_alignment); 6868 6869 static int __init pci_resource_alignment_sysfs_init(void) 6870 { 6871 return bus_create_file(&pci_bus_type, 6872 &bus_attr_resource_alignment); 6873 } 6874 late_initcall(pci_resource_alignment_sysfs_init); 6875 6876 static void pci_no_domains(void) 6877 { 6878 #ifdef CONFIG_PCI_DOMAINS 6879 pci_domains_supported = 0; 6880 #endif 6881 } 6882 6883 #ifdef CONFIG_PCI_DOMAINS_GENERIC 6884 static DEFINE_IDA(pci_domain_nr_static_ida); 6885 static DEFINE_IDA(pci_domain_nr_dynamic_ida); 6886 6887 static void of_pci_reserve_static_domain_nr(void) 6888 { 6889 struct device_node *np; 6890 int domain_nr; 6891 6892 for_each_node_by_type(np, "pci") { 6893 domain_nr = of_get_pci_domain_nr(np); 6894 if (domain_nr < 0) 6895 continue; 6896 /* 6897 * Permanently allocate domain_nr in dynamic_ida 6898 * to prevent it from dynamic allocation. 6899 */ 6900 ida_alloc_range(&pci_domain_nr_dynamic_ida, 6901 domain_nr, domain_nr, GFP_KERNEL); 6902 } 6903 } 6904 6905 static int of_pci_bus_find_domain_nr(struct device *parent) 6906 { 6907 static bool static_domains_reserved = false; 6908 int domain_nr; 6909 6910 /* On the first call scan device tree for static allocations. */ 6911 if (!static_domains_reserved) { 6912 of_pci_reserve_static_domain_nr(); 6913 static_domains_reserved = true; 6914 } 6915 6916 if (parent) { 6917 /* 6918 * If domain is in DT, allocate it in static IDA. This 6919 * prevents duplicate static allocations in case of errors 6920 * in DT. 6921 */ 6922 domain_nr = of_get_pci_domain_nr(parent->of_node); 6923 if (domain_nr >= 0) 6924 return ida_alloc_range(&pci_domain_nr_static_ida, 6925 domain_nr, domain_nr, 6926 GFP_KERNEL); 6927 } 6928 6929 /* 6930 * If domain was not specified in DT, choose a free ID from dynamic 6931 * allocations. All domain numbers from DT are permanently in 6932 * dynamic allocations to prevent assigning them to other DT nodes 6933 * without static domain. 6934 */ 6935 return ida_alloc(&pci_domain_nr_dynamic_ida, GFP_KERNEL); 6936 } 6937 6938 static void of_pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent) 6939 { 6940 if (bus->domain_nr < 0) 6941 return; 6942 6943 /* Release domain from IDA where it was allocated. */ 6944 if (of_get_pci_domain_nr(parent->of_node) == bus->domain_nr) 6945 ida_free(&pci_domain_nr_static_ida, bus->domain_nr); 6946 else 6947 ida_free(&pci_domain_nr_dynamic_ida, bus->domain_nr); 6948 } 6949 6950 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent) 6951 { 6952 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) : 6953 acpi_pci_bus_find_domain_nr(bus); 6954 } 6955 6956 void pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent) 6957 { 6958 if (!acpi_disabled) 6959 return; 6960 of_pci_bus_release_domain_nr(bus, parent); 6961 } 6962 #endif 6963 6964 /** 6965 * pci_ext_cfg_avail - can we access extended PCI config space? 6966 * 6967 * Returns 1 if we can access PCI extended config space (offsets 6968 * greater than 0xff). This is the default implementation. Architecture 6969 * implementations can override this. 6970 */ 6971 int __weak pci_ext_cfg_avail(void) 6972 { 6973 return 1; 6974 } 6975 6976 void __weak pci_fixup_cardbus(struct pci_bus *bus) 6977 { 6978 } 6979 EXPORT_SYMBOL(pci_fixup_cardbus); 6980 6981 static int __init pci_setup(char *str) 6982 { 6983 while (str) { 6984 char *k = strchr(str, ','); 6985 if (k) 6986 *k++ = 0; 6987 if (*str && (str = pcibios_setup(str)) && *str) { 6988 if (!strcmp(str, "nomsi")) { 6989 pci_no_msi(); 6990 } else if (!strncmp(str, "noats", 5)) { 6991 pr_info("PCIe: ATS is disabled\n"); 6992 pcie_ats_disabled = true; 6993 } else if (!strcmp(str, "noaer")) { 6994 pci_no_aer(); 6995 } else if (!strcmp(str, "earlydump")) { 6996 pci_early_dump = true; 6997 } else if (!strncmp(str, "realloc=", 8)) { 6998 pci_realloc_get_opt(str + 8); 6999 } else if (!strncmp(str, "realloc", 7)) { 7000 pci_realloc_get_opt("on"); 7001 } else if (!strcmp(str, "nodomains")) { 7002 pci_no_domains(); 7003 } else if (!strncmp(str, "noari", 5)) { 7004 pcie_ari_disabled = true; 7005 } else if (!strncmp(str, "cbiosize=", 9)) { 7006 pci_cardbus_io_size = memparse(str + 9, &str); 7007 } else if (!strncmp(str, "cbmemsize=", 10)) { 7008 pci_cardbus_mem_size = memparse(str + 10, &str); 7009 } else if (!strncmp(str, "resource_alignment=", 19)) { 7010 resource_alignment_param = str + 19; 7011 } else if (!strncmp(str, "ecrc=", 5)) { 7012 pcie_ecrc_get_policy(str + 5); 7013 } else if (!strncmp(str, "hpiosize=", 9)) { 7014 pci_hotplug_io_size = memparse(str + 9, &str); 7015 } else if (!strncmp(str, "hpmmiosize=", 11)) { 7016 pci_hotplug_mmio_size = memparse(str + 11, &str); 7017 } else if (!strncmp(str, "hpmmioprefsize=", 15)) { 7018 pci_hotplug_mmio_pref_size = memparse(str + 15, &str); 7019 } else if (!strncmp(str, "hpmemsize=", 10)) { 7020 pci_hotplug_mmio_size = memparse(str + 10, &str); 7021 pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size; 7022 } else if (!strncmp(str, "hpbussize=", 10)) { 7023 pci_hotplug_bus_size = 7024 simple_strtoul(str + 10, &str, 0); 7025 if (pci_hotplug_bus_size > 0xff) 7026 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 7027 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) { 7028 pcie_bus_config = PCIE_BUS_TUNE_OFF; 7029 } else if (!strncmp(str, "pcie_bus_safe", 13)) { 7030 pcie_bus_config = PCIE_BUS_SAFE; 7031 } else if (!strncmp(str, "pcie_bus_perf", 13)) { 7032 pcie_bus_config = PCIE_BUS_PERFORMANCE; 7033 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) { 7034 pcie_bus_config = PCIE_BUS_PEER2PEER; 7035 } else if (!strncmp(str, "pcie_scan_all", 13)) { 7036 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS); 7037 } else if (!strncmp(str, "disable_acs_redir=", 18)) { 7038 disable_acs_redir_param = str + 18; 7039 } else { 7040 pr_err("PCI: Unknown option `%s'\n", str); 7041 } 7042 } 7043 str = k; 7044 } 7045 return 0; 7046 } 7047 early_param("pci", pci_setup); 7048 7049 /* 7050 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized 7051 * in pci_setup(), above, to point to data in the __initdata section which 7052 * will be freed after the init sequence is complete. We can't allocate memory 7053 * in pci_setup() because some architectures do not have any memory allocation 7054 * service available during an early_param() call. So we allocate memory and 7055 * copy the variable here before the init section is freed. 7056 * 7057 */ 7058 static int __init pci_realloc_setup_params(void) 7059 { 7060 resource_alignment_param = kstrdup(resource_alignment_param, 7061 GFP_KERNEL); 7062 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL); 7063 7064 return 0; 7065 } 7066 pure_initcall(pci_realloc_setup_params); 7067