xref: /openbmc/linux/drivers/pci/pci.c (revision 19758688)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * PCI Bus Services, see include/linux/pci.h for further explanation.
4  *
5  * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6  * David Mosberger-Tang
7  *
8  * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/msi.h>
17 #include <linux/of.h>
18 #include <linux/pci.h>
19 #include <linux/pm.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/log2.h>
25 #include <linux/logic_pio.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/pci_hotplug.h>
31 #include <linux/vmalloc.h>
32 #include <asm/dma.h>
33 #include <linux/aer.h>
34 #include <linux/bitfield.h>
35 #include "pci.h"
36 
37 DEFINE_MUTEX(pci_slot_mutex);
38 
39 const char *pci_power_names[] = {
40 	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
41 };
42 EXPORT_SYMBOL_GPL(pci_power_names);
43 
44 #ifdef CONFIG_X86_32
45 int isa_dma_bridge_buggy;
46 EXPORT_SYMBOL(isa_dma_bridge_buggy);
47 #endif
48 
49 int pci_pci_problems;
50 EXPORT_SYMBOL(pci_pci_problems);
51 
52 unsigned int pci_pm_d3hot_delay;
53 
54 static void pci_pme_list_scan(struct work_struct *work);
55 
56 static LIST_HEAD(pci_pme_list);
57 static DEFINE_MUTEX(pci_pme_list_mutex);
58 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
59 
60 struct pci_pme_device {
61 	struct list_head list;
62 	struct pci_dev *dev;
63 };
64 
65 #define PME_TIMEOUT 1000 /* How long between PME checks */
66 
67 /*
68  * Following exit from Conventional Reset, devices must be ready within 1 sec
69  * (PCIe r6.0 sec 6.6.1).  A D3cold to D0 transition implies a Conventional
70  * Reset (PCIe r6.0 sec 5.8).
71  */
72 #define PCI_RESET_WAIT 1000 /* msec */
73 
74 /*
75  * Devices may extend the 1 sec period through Request Retry Status
76  * completions (PCIe r6.0 sec 2.3.1).  The spec does not provide an upper
77  * limit, but 60 sec ought to be enough for any device to become
78  * responsive.
79  */
80 #define PCIE_RESET_READY_POLL_MS 60000 /* msec */
81 
82 static void pci_dev_d3_sleep(struct pci_dev *dev)
83 {
84 	unsigned int delay_ms = max(dev->d3hot_delay, pci_pm_d3hot_delay);
85 	unsigned int upper;
86 
87 	if (delay_ms) {
88 		/* Use a 20% upper bound, 1ms minimum */
89 		upper = max(DIV_ROUND_CLOSEST(delay_ms, 5), 1U);
90 		usleep_range(delay_ms * USEC_PER_MSEC,
91 			     (delay_ms + upper) * USEC_PER_MSEC);
92 	}
93 }
94 
95 bool pci_reset_supported(struct pci_dev *dev)
96 {
97 	return dev->reset_methods[0] != 0;
98 }
99 
100 #ifdef CONFIG_PCI_DOMAINS
101 int pci_domains_supported = 1;
102 #endif
103 
104 #define DEFAULT_CARDBUS_IO_SIZE		(256)
105 #define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
106 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
107 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
108 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
109 
110 #define DEFAULT_HOTPLUG_IO_SIZE		(256)
111 #define DEFAULT_HOTPLUG_MMIO_SIZE	(2*1024*1024)
112 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE	(2*1024*1024)
113 /* hpiosize=nn can override this */
114 unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
115 /*
116  * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
117  * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
118  * pci=hpmemsize=nnM overrides both
119  */
120 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
121 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
122 
123 #define DEFAULT_HOTPLUG_BUS_SIZE	1
124 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
125 
126 
127 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
128 #ifdef CONFIG_PCIE_BUS_TUNE_OFF
129 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
130 #elif defined CONFIG_PCIE_BUS_SAFE
131 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
132 #elif defined CONFIG_PCIE_BUS_PERFORMANCE
133 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
134 #elif defined CONFIG_PCIE_BUS_PEER2PEER
135 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
136 #else
137 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
138 #endif
139 
140 /*
141  * The default CLS is used if arch didn't set CLS explicitly and not
142  * all pci devices agree on the same value.  Arch can override either
143  * the dfl or actual value as it sees fit.  Don't forget this is
144  * measured in 32-bit words, not bytes.
145  */
146 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
147 u8 pci_cache_line_size;
148 
149 /*
150  * If we set up a device for bus mastering, we need to check the latency
151  * timer as certain BIOSes forget to set it properly.
152  */
153 unsigned int pcibios_max_latency = 255;
154 
155 /* If set, the PCIe ARI capability will not be used. */
156 static bool pcie_ari_disabled;
157 
158 /* If set, the PCIe ATS capability will not be used. */
159 static bool pcie_ats_disabled;
160 
161 /* If set, the PCI config space of each device is printed during boot. */
162 bool pci_early_dump;
163 
164 bool pci_ats_disabled(void)
165 {
166 	return pcie_ats_disabled;
167 }
168 EXPORT_SYMBOL_GPL(pci_ats_disabled);
169 
170 /* Disable bridge_d3 for all PCIe ports */
171 static bool pci_bridge_d3_disable;
172 /* Force bridge_d3 for all PCIe ports */
173 static bool pci_bridge_d3_force;
174 
175 static int __init pcie_port_pm_setup(char *str)
176 {
177 	if (!strcmp(str, "off"))
178 		pci_bridge_d3_disable = true;
179 	else if (!strcmp(str, "force"))
180 		pci_bridge_d3_force = true;
181 	return 1;
182 }
183 __setup("pcie_port_pm=", pcie_port_pm_setup);
184 
185 /**
186  * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
187  * @bus: pointer to PCI bus structure to search
188  *
189  * Given a PCI bus, returns the highest PCI bus number present in the set
190  * including the given PCI bus and its list of child PCI buses.
191  */
192 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
193 {
194 	struct pci_bus *tmp;
195 	unsigned char max, n;
196 
197 	max = bus->busn_res.end;
198 	list_for_each_entry(tmp, &bus->children, node) {
199 		n = pci_bus_max_busnr(tmp);
200 		if (n > max)
201 			max = n;
202 	}
203 	return max;
204 }
205 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
206 
207 /**
208  * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
209  * @pdev: the PCI device
210  *
211  * Returns error bits set in PCI_STATUS and clears them.
212  */
213 int pci_status_get_and_clear_errors(struct pci_dev *pdev)
214 {
215 	u16 status;
216 	int ret;
217 
218 	ret = pci_read_config_word(pdev, PCI_STATUS, &status);
219 	if (ret != PCIBIOS_SUCCESSFUL)
220 		return -EIO;
221 
222 	status &= PCI_STATUS_ERROR_BITS;
223 	if (status)
224 		pci_write_config_word(pdev, PCI_STATUS, status);
225 
226 	return status;
227 }
228 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
229 
230 #ifdef CONFIG_HAS_IOMEM
231 static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar,
232 					    bool write_combine)
233 {
234 	struct resource *res = &pdev->resource[bar];
235 	resource_size_t start = res->start;
236 	resource_size_t size = resource_size(res);
237 
238 	/*
239 	 * Make sure the BAR is actually a memory resource, not an IO resource
240 	 */
241 	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
242 		pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
243 		return NULL;
244 	}
245 
246 	if (write_combine)
247 		return ioremap_wc(start, size);
248 
249 	return ioremap(start, size);
250 }
251 
252 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
253 {
254 	return __pci_ioremap_resource(pdev, bar, false);
255 }
256 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
257 
258 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
259 {
260 	return __pci_ioremap_resource(pdev, bar, true);
261 }
262 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
263 #endif
264 
265 /**
266  * pci_dev_str_match_path - test if a path string matches a device
267  * @dev: the PCI device to test
268  * @path: string to match the device against
269  * @endptr: pointer to the string after the match
270  *
271  * Test if a string (typically from a kernel parameter) formatted as a
272  * path of device/function addresses matches a PCI device. The string must
273  * be of the form:
274  *
275  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
276  *
277  * A path for a device can be obtained using 'lspci -t'.  Using a path
278  * is more robust against bus renumbering than using only a single bus,
279  * device and function address.
280  *
281  * Returns 1 if the string matches the device, 0 if it does not and
282  * a negative error code if it fails to parse the string.
283  */
284 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
285 				  const char **endptr)
286 {
287 	int ret;
288 	unsigned int seg, bus, slot, func;
289 	char *wpath, *p;
290 	char end;
291 
292 	*endptr = strchrnul(path, ';');
293 
294 	wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC);
295 	if (!wpath)
296 		return -ENOMEM;
297 
298 	while (1) {
299 		p = strrchr(wpath, '/');
300 		if (!p)
301 			break;
302 		ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
303 		if (ret != 2) {
304 			ret = -EINVAL;
305 			goto free_and_exit;
306 		}
307 
308 		if (dev->devfn != PCI_DEVFN(slot, func)) {
309 			ret = 0;
310 			goto free_and_exit;
311 		}
312 
313 		/*
314 		 * Note: we don't need to get a reference to the upstream
315 		 * bridge because we hold a reference to the top level
316 		 * device which should hold a reference to the bridge,
317 		 * and so on.
318 		 */
319 		dev = pci_upstream_bridge(dev);
320 		if (!dev) {
321 			ret = 0;
322 			goto free_and_exit;
323 		}
324 
325 		*p = 0;
326 	}
327 
328 	ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
329 		     &func, &end);
330 	if (ret != 4) {
331 		seg = 0;
332 		ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
333 		if (ret != 3) {
334 			ret = -EINVAL;
335 			goto free_and_exit;
336 		}
337 	}
338 
339 	ret = (seg == pci_domain_nr(dev->bus) &&
340 	       bus == dev->bus->number &&
341 	       dev->devfn == PCI_DEVFN(slot, func));
342 
343 free_and_exit:
344 	kfree(wpath);
345 	return ret;
346 }
347 
348 /**
349  * pci_dev_str_match - test if a string matches a device
350  * @dev: the PCI device to test
351  * @p: string to match the device against
352  * @endptr: pointer to the string after the match
353  *
354  * Test if a string (typically from a kernel parameter) matches a specified
355  * PCI device. The string may be of one of the following formats:
356  *
357  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
358  *   pci:<vendor>:<device>[:<subvendor>:<subdevice>]
359  *
360  * The first format specifies a PCI bus/device/function address which
361  * may change if new hardware is inserted, if motherboard firmware changes,
362  * or due to changes caused in kernel parameters. If the domain is
363  * left unspecified, it is taken to be 0.  In order to be robust against
364  * bus renumbering issues, a path of PCI device/function numbers may be used
365  * to address the specific device.  The path for a device can be determined
366  * through the use of 'lspci -t'.
367  *
368  * The second format matches devices using IDs in the configuration
369  * space which may match multiple devices in the system. A value of 0
370  * for any field will match all devices. (Note: this differs from
371  * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
372  * legacy reasons and convenience so users don't have to specify
373  * FFFFFFFFs on the command line.)
374  *
375  * Returns 1 if the string matches the device, 0 if it does not and
376  * a negative error code if the string cannot be parsed.
377  */
378 static int pci_dev_str_match(struct pci_dev *dev, const char *p,
379 			     const char **endptr)
380 {
381 	int ret;
382 	int count;
383 	unsigned short vendor, device, subsystem_vendor, subsystem_device;
384 
385 	if (strncmp(p, "pci:", 4) == 0) {
386 		/* PCI vendor/device (subvendor/subdevice) IDs are specified */
387 		p += 4;
388 		ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
389 			     &subsystem_vendor, &subsystem_device, &count);
390 		if (ret != 4) {
391 			ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
392 			if (ret != 2)
393 				return -EINVAL;
394 
395 			subsystem_vendor = 0;
396 			subsystem_device = 0;
397 		}
398 
399 		p += count;
400 
401 		if ((!vendor || vendor == dev->vendor) &&
402 		    (!device || device == dev->device) &&
403 		    (!subsystem_vendor ||
404 			    subsystem_vendor == dev->subsystem_vendor) &&
405 		    (!subsystem_device ||
406 			    subsystem_device == dev->subsystem_device))
407 			goto found;
408 	} else {
409 		/*
410 		 * PCI Bus, Device, Function IDs are specified
411 		 * (optionally, may include a path of devfns following it)
412 		 */
413 		ret = pci_dev_str_match_path(dev, p, &p);
414 		if (ret < 0)
415 			return ret;
416 		else if (ret)
417 			goto found;
418 	}
419 
420 	*endptr = p;
421 	return 0;
422 
423 found:
424 	*endptr = p;
425 	return 1;
426 }
427 
428 static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
429 				  u8 pos, int cap, int *ttl)
430 {
431 	u8 id;
432 	u16 ent;
433 
434 	pci_bus_read_config_byte(bus, devfn, pos, &pos);
435 
436 	while ((*ttl)--) {
437 		if (pos < 0x40)
438 			break;
439 		pos &= ~3;
440 		pci_bus_read_config_word(bus, devfn, pos, &ent);
441 
442 		id = ent & 0xff;
443 		if (id == 0xff)
444 			break;
445 		if (id == cap)
446 			return pos;
447 		pos = (ent >> 8);
448 	}
449 	return 0;
450 }
451 
452 static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
453 			      u8 pos, int cap)
454 {
455 	int ttl = PCI_FIND_CAP_TTL;
456 
457 	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
458 }
459 
460 u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
461 {
462 	return __pci_find_next_cap(dev->bus, dev->devfn,
463 				   pos + PCI_CAP_LIST_NEXT, cap);
464 }
465 EXPORT_SYMBOL_GPL(pci_find_next_capability);
466 
467 static u8 __pci_bus_find_cap_start(struct pci_bus *bus,
468 				    unsigned int devfn, u8 hdr_type)
469 {
470 	u16 status;
471 
472 	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
473 	if (!(status & PCI_STATUS_CAP_LIST))
474 		return 0;
475 
476 	switch (hdr_type) {
477 	case PCI_HEADER_TYPE_NORMAL:
478 	case PCI_HEADER_TYPE_BRIDGE:
479 		return PCI_CAPABILITY_LIST;
480 	case PCI_HEADER_TYPE_CARDBUS:
481 		return PCI_CB_CAPABILITY_LIST;
482 	}
483 
484 	return 0;
485 }
486 
487 /**
488  * pci_find_capability - query for devices' capabilities
489  * @dev: PCI device to query
490  * @cap: capability code
491  *
492  * Tell if a device supports a given PCI capability.
493  * Returns the address of the requested capability structure within the
494  * device's PCI configuration space or 0 in case the device does not
495  * support it.  Possible values for @cap include:
496  *
497  *  %PCI_CAP_ID_PM           Power Management
498  *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
499  *  %PCI_CAP_ID_VPD          Vital Product Data
500  *  %PCI_CAP_ID_SLOTID       Slot Identification
501  *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
502  *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
503  *  %PCI_CAP_ID_PCIX         PCI-X
504  *  %PCI_CAP_ID_EXP          PCI Express
505  */
506 u8 pci_find_capability(struct pci_dev *dev, int cap)
507 {
508 	u8 pos;
509 
510 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
511 	if (pos)
512 		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
513 
514 	return pos;
515 }
516 EXPORT_SYMBOL(pci_find_capability);
517 
518 /**
519  * pci_bus_find_capability - query for devices' capabilities
520  * @bus: the PCI bus to query
521  * @devfn: PCI device to query
522  * @cap: capability code
523  *
524  * Like pci_find_capability() but works for PCI devices that do not have a
525  * pci_dev structure set up yet.
526  *
527  * Returns the address of the requested capability structure within the
528  * device's PCI configuration space or 0 in case the device does not
529  * support it.
530  */
531 u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
532 {
533 	u8 hdr_type, pos;
534 
535 	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
536 
537 	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
538 	if (pos)
539 		pos = __pci_find_next_cap(bus, devfn, pos, cap);
540 
541 	return pos;
542 }
543 EXPORT_SYMBOL(pci_bus_find_capability);
544 
545 /**
546  * pci_find_next_ext_capability - Find an extended capability
547  * @dev: PCI device to query
548  * @start: address at which to start looking (0 to start at beginning of list)
549  * @cap: capability code
550  *
551  * Returns the address of the next matching extended capability structure
552  * within the device's PCI configuration space or 0 if the device does
553  * not support it.  Some capabilities can occur several times, e.g., the
554  * vendor-specific capability, and this provides a way to find them all.
555  */
556 u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap)
557 {
558 	u32 header;
559 	int ttl;
560 	u16 pos = PCI_CFG_SPACE_SIZE;
561 
562 	/* minimum 8 bytes per capability */
563 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
564 
565 	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
566 		return 0;
567 
568 	if (start)
569 		pos = start;
570 
571 	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
572 		return 0;
573 
574 	/*
575 	 * If we have no capabilities, this is indicated by cap ID,
576 	 * cap version and next pointer all being 0.
577 	 */
578 	if (header == 0)
579 		return 0;
580 
581 	while (ttl-- > 0) {
582 		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
583 			return pos;
584 
585 		pos = PCI_EXT_CAP_NEXT(header);
586 		if (pos < PCI_CFG_SPACE_SIZE)
587 			break;
588 
589 		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
590 			break;
591 	}
592 
593 	return 0;
594 }
595 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
596 
597 /**
598  * pci_find_ext_capability - Find an extended capability
599  * @dev: PCI device to query
600  * @cap: capability code
601  *
602  * Returns the address of the requested extended capability structure
603  * within the device's PCI configuration space or 0 if the device does
604  * not support it.  Possible values for @cap include:
605  *
606  *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
607  *  %PCI_EXT_CAP_ID_VC		Virtual Channel
608  *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
609  *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
610  */
611 u16 pci_find_ext_capability(struct pci_dev *dev, int cap)
612 {
613 	return pci_find_next_ext_capability(dev, 0, cap);
614 }
615 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
616 
617 /**
618  * pci_get_dsn - Read and return the 8-byte Device Serial Number
619  * @dev: PCI device to query
620  *
621  * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
622  * Number.
623  *
624  * Returns the DSN, or zero if the capability does not exist.
625  */
626 u64 pci_get_dsn(struct pci_dev *dev)
627 {
628 	u32 dword;
629 	u64 dsn;
630 	int pos;
631 
632 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
633 	if (!pos)
634 		return 0;
635 
636 	/*
637 	 * The Device Serial Number is two dwords offset 4 bytes from the
638 	 * capability position. The specification says that the first dword is
639 	 * the lower half, and the second dword is the upper half.
640 	 */
641 	pos += 4;
642 	pci_read_config_dword(dev, pos, &dword);
643 	dsn = (u64)dword;
644 	pci_read_config_dword(dev, pos + 4, &dword);
645 	dsn |= ((u64)dword) << 32;
646 
647 	return dsn;
648 }
649 EXPORT_SYMBOL_GPL(pci_get_dsn);
650 
651 static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap)
652 {
653 	int rc, ttl = PCI_FIND_CAP_TTL;
654 	u8 cap, mask;
655 
656 	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
657 		mask = HT_3BIT_CAP_MASK;
658 	else
659 		mask = HT_5BIT_CAP_MASK;
660 
661 	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
662 				      PCI_CAP_ID_HT, &ttl);
663 	while (pos) {
664 		rc = pci_read_config_byte(dev, pos + 3, &cap);
665 		if (rc != PCIBIOS_SUCCESSFUL)
666 			return 0;
667 
668 		if ((cap & mask) == ht_cap)
669 			return pos;
670 
671 		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
672 					      pos + PCI_CAP_LIST_NEXT,
673 					      PCI_CAP_ID_HT, &ttl);
674 	}
675 
676 	return 0;
677 }
678 
679 /**
680  * pci_find_next_ht_capability - query a device's HyperTransport capabilities
681  * @dev: PCI device to query
682  * @pos: Position from which to continue searching
683  * @ht_cap: HyperTransport capability code
684  *
685  * To be used in conjunction with pci_find_ht_capability() to search for
686  * all capabilities matching @ht_cap. @pos should always be a value returned
687  * from pci_find_ht_capability().
688  *
689  * NB. To be 100% safe against broken PCI devices, the caller should take
690  * steps to avoid an infinite loop.
691  */
692 u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap)
693 {
694 	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
695 }
696 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
697 
698 /**
699  * pci_find_ht_capability - query a device's HyperTransport capabilities
700  * @dev: PCI device to query
701  * @ht_cap: HyperTransport capability code
702  *
703  * Tell if a device supports a given HyperTransport capability.
704  * Returns an address within the device's PCI configuration space
705  * or 0 in case the device does not support the request capability.
706  * The address points to the PCI capability, of type PCI_CAP_ID_HT,
707  * which has a HyperTransport capability matching @ht_cap.
708  */
709 u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
710 {
711 	u8 pos;
712 
713 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
714 	if (pos)
715 		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
716 
717 	return pos;
718 }
719 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
720 
721 /**
722  * pci_find_vsec_capability - Find a vendor-specific extended capability
723  * @dev: PCI device to query
724  * @vendor: Vendor ID for which capability is defined
725  * @cap: Vendor-specific capability ID
726  *
727  * If @dev has Vendor ID @vendor, search for a VSEC capability with
728  * VSEC ID @cap. If found, return the capability offset in
729  * config space; otherwise return 0.
730  */
731 u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap)
732 {
733 	u16 vsec = 0;
734 	u32 header;
735 	int ret;
736 
737 	if (vendor != dev->vendor)
738 		return 0;
739 
740 	while ((vsec = pci_find_next_ext_capability(dev, vsec,
741 						     PCI_EXT_CAP_ID_VNDR))) {
742 		ret = pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER, &header);
743 		if (ret != PCIBIOS_SUCCESSFUL)
744 			continue;
745 
746 		if (PCI_VNDR_HEADER_ID(header) == cap)
747 			return vsec;
748 	}
749 
750 	return 0;
751 }
752 EXPORT_SYMBOL_GPL(pci_find_vsec_capability);
753 
754 /**
755  * pci_find_dvsec_capability - Find DVSEC for vendor
756  * @dev: PCI device to query
757  * @vendor: Vendor ID to match for the DVSEC
758  * @dvsec: Designated Vendor-specific capability ID
759  *
760  * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability
761  * offset in config space; otherwise return 0.
762  */
763 u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec)
764 {
765 	int pos;
766 
767 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC);
768 	if (!pos)
769 		return 0;
770 
771 	while (pos) {
772 		u16 v, id;
773 
774 		pci_read_config_word(dev, pos + PCI_DVSEC_HEADER1, &v);
775 		pci_read_config_word(dev, pos + PCI_DVSEC_HEADER2, &id);
776 		if (vendor == v && dvsec == id)
777 			return pos;
778 
779 		pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC);
780 	}
781 
782 	return 0;
783 }
784 EXPORT_SYMBOL_GPL(pci_find_dvsec_capability);
785 
786 /**
787  * pci_find_parent_resource - return resource region of parent bus of given
788  *			      region
789  * @dev: PCI device structure contains resources to be searched
790  * @res: child resource record for which parent is sought
791  *
792  * For given resource region of given device, return the resource region of
793  * parent bus the given region is contained in.
794  */
795 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
796 					  struct resource *res)
797 {
798 	const struct pci_bus *bus = dev->bus;
799 	struct resource *r;
800 
801 	pci_bus_for_each_resource(bus, r) {
802 		if (!r)
803 			continue;
804 		if (resource_contains(r, res)) {
805 
806 			/*
807 			 * If the window is prefetchable but the BAR is
808 			 * not, the allocator made a mistake.
809 			 */
810 			if (r->flags & IORESOURCE_PREFETCH &&
811 			    !(res->flags & IORESOURCE_PREFETCH))
812 				return NULL;
813 
814 			/*
815 			 * If we're below a transparent bridge, there may
816 			 * be both a positively-decoded aperture and a
817 			 * subtractively-decoded region that contain the BAR.
818 			 * We want the positively-decoded one, so this depends
819 			 * on pci_bus_for_each_resource() giving us those
820 			 * first.
821 			 */
822 			return r;
823 		}
824 	}
825 	return NULL;
826 }
827 EXPORT_SYMBOL(pci_find_parent_resource);
828 
829 /**
830  * pci_find_resource - Return matching PCI device resource
831  * @dev: PCI device to query
832  * @res: Resource to look for
833  *
834  * Goes over standard PCI resources (BARs) and checks if the given resource
835  * is partially or fully contained in any of them. In that case the
836  * matching resource is returned, %NULL otherwise.
837  */
838 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
839 {
840 	int i;
841 
842 	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
843 		struct resource *r = &dev->resource[i];
844 
845 		if (r->start && resource_contains(r, res))
846 			return r;
847 	}
848 
849 	return NULL;
850 }
851 EXPORT_SYMBOL(pci_find_resource);
852 
853 /**
854  * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
855  * @dev: the PCI device to operate on
856  * @pos: config space offset of status word
857  * @mask: mask of bit(s) to care about in status word
858  *
859  * Return 1 when mask bit(s) in status word clear, 0 otherwise.
860  */
861 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
862 {
863 	int i;
864 
865 	/* Wait for Transaction Pending bit clean */
866 	for (i = 0; i < 4; i++) {
867 		u16 status;
868 		if (i)
869 			msleep((1 << (i - 1)) * 100);
870 
871 		pci_read_config_word(dev, pos, &status);
872 		if (!(status & mask))
873 			return 1;
874 	}
875 
876 	return 0;
877 }
878 
879 static int pci_acs_enable;
880 
881 /**
882  * pci_request_acs - ask for ACS to be enabled if supported
883  */
884 void pci_request_acs(void)
885 {
886 	pci_acs_enable = 1;
887 }
888 
889 static const char *disable_acs_redir_param;
890 
891 /**
892  * pci_disable_acs_redir - disable ACS redirect capabilities
893  * @dev: the PCI device
894  *
895  * For only devices specified in the disable_acs_redir parameter.
896  */
897 static void pci_disable_acs_redir(struct pci_dev *dev)
898 {
899 	int ret = 0;
900 	const char *p;
901 	int pos;
902 	u16 ctrl;
903 
904 	if (!disable_acs_redir_param)
905 		return;
906 
907 	p = disable_acs_redir_param;
908 	while (*p) {
909 		ret = pci_dev_str_match(dev, p, &p);
910 		if (ret < 0) {
911 			pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
912 				     disable_acs_redir_param);
913 
914 			break;
915 		} else if (ret == 1) {
916 			/* Found a match */
917 			break;
918 		}
919 
920 		if (*p != ';' && *p != ',') {
921 			/* End of param or invalid format */
922 			break;
923 		}
924 		p++;
925 	}
926 
927 	if (ret != 1)
928 		return;
929 
930 	if (!pci_dev_specific_disable_acs_redir(dev))
931 		return;
932 
933 	pos = dev->acs_cap;
934 	if (!pos) {
935 		pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
936 		return;
937 	}
938 
939 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
940 
941 	/* P2P Request & Completion Redirect */
942 	ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
943 
944 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
945 
946 	pci_info(dev, "disabled ACS redirect\n");
947 }
948 
949 /**
950  * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
951  * @dev: the PCI device
952  */
953 static void pci_std_enable_acs(struct pci_dev *dev)
954 {
955 	int pos;
956 	u16 cap;
957 	u16 ctrl;
958 
959 	pos = dev->acs_cap;
960 	if (!pos)
961 		return;
962 
963 	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
964 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
965 
966 	/* Source Validation */
967 	ctrl |= (cap & PCI_ACS_SV);
968 
969 	/* P2P Request Redirect */
970 	ctrl |= (cap & PCI_ACS_RR);
971 
972 	/* P2P Completion Redirect */
973 	ctrl |= (cap & PCI_ACS_CR);
974 
975 	/* Upstream Forwarding */
976 	ctrl |= (cap & PCI_ACS_UF);
977 
978 	/* Enable Translation Blocking for external devices and noats */
979 	if (pci_ats_disabled() || dev->external_facing || dev->untrusted)
980 		ctrl |= (cap & PCI_ACS_TB);
981 
982 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
983 }
984 
985 /**
986  * pci_enable_acs - enable ACS if hardware support it
987  * @dev: the PCI device
988  */
989 static void pci_enable_acs(struct pci_dev *dev)
990 {
991 	if (!pci_acs_enable)
992 		goto disable_acs_redir;
993 
994 	if (!pci_dev_specific_enable_acs(dev))
995 		goto disable_acs_redir;
996 
997 	pci_std_enable_acs(dev);
998 
999 disable_acs_redir:
1000 	/*
1001 	 * Note: pci_disable_acs_redir() must be called even if ACS was not
1002 	 * enabled by the kernel because it may have been enabled by
1003 	 * platform firmware.  So if we are told to disable it, we should
1004 	 * always disable it after setting the kernel's default
1005 	 * preferences.
1006 	 */
1007 	pci_disable_acs_redir(dev);
1008 }
1009 
1010 /**
1011  * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
1012  * @dev: PCI device to have its BARs restored
1013  *
1014  * Restore the BAR values for a given device, so as to make it
1015  * accessible by its driver.
1016  */
1017 static void pci_restore_bars(struct pci_dev *dev)
1018 {
1019 	int i;
1020 
1021 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
1022 		pci_update_resource(dev, i);
1023 }
1024 
1025 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
1026 {
1027 	if (pci_use_mid_pm())
1028 		return true;
1029 
1030 	return acpi_pci_power_manageable(dev);
1031 }
1032 
1033 static inline int platform_pci_set_power_state(struct pci_dev *dev,
1034 					       pci_power_t t)
1035 {
1036 	if (pci_use_mid_pm())
1037 		return mid_pci_set_power_state(dev, t);
1038 
1039 	return acpi_pci_set_power_state(dev, t);
1040 }
1041 
1042 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
1043 {
1044 	if (pci_use_mid_pm())
1045 		return mid_pci_get_power_state(dev);
1046 
1047 	return acpi_pci_get_power_state(dev);
1048 }
1049 
1050 static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
1051 {
1052 	if (!pci_use_mid_pm())
1053 		acpi_pci_refresh_power_state(dev);
1054 }
1055 
1056 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
1057 {
1058 	if (pci_use_mid_pm())
1059 		return PCI_POWER_ERROR;
1060 
1061 	return acpi_pci_choose_state(dev);
1062 }
1063 
1064 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
1065 {
1066 	if (pci_use_mid_pm())
1067 		return PCI_POWER_ERROR;
1068 
1069 	return acpi_pci_wakeup(dev, enable);
1070 }
1071 
1072 static inline bool platform_pci_need_resume(struct pci_dev *dev)
1073 {
1074 	if (pci_use_mid_pm())
1075 		return false;
1076 
1077 	return acpi_pci_need_resume(dev);
1078 }
1079 
1080 static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
1081 {
1082 	if (pci_use_mid_pm())
1083 		return false;
1084 
1085 	return acpi_pci_bridge_d3(dev);
1086 }
1087 
1088 /**
1089  * pci_update_current_state - Read power state of given device and cache it
1090  * @dev: PCI device to handle.
1091  * @state: State to cache in case the device doesn't have the PM capability
1092  *
1093  * The power state is read from the PMCSR register, which however is
1094  * inaccessible in D3cold.  The platform firmware is therefore queried first
1095  * to detect accessibility of the register.  In case the platform firmware
1096  * reports an incorrect state or the device isn't power manageable by the
1097  * platform at all, we try to detect D3cold by testing accessibility of the
1098  * vendor ID in config space.
1099  */
1100 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1101 {
1102 	if (platform_pci_get_power_state(dev) == PCI_D3cold) {
1103 		dev->current_state = PCI_D3cold;
1104 	} else if (dev->pm_cap) {
1105 		u16 pmcsr;
1106 
1107 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1108 		if (PCI_POSSIBLE_ERROR(pmcsr)) {
1109 			dev->current_state = PCI_D3cold;
1110 			return;
1111 		}
1112 		dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1113 	} else {
1114 		dev->current_state = state;
1115 	}
1116 }
1117 
1118 /**
1119  * pci_refresh_power_state - Refresh the given device's power state data
1120  * @dev: Target PCI device.
1121  *
1122  * Ask the platform to refresh the devices power state information and invoke
1123  * pci_update_current_state() to update its current PCI power state.
1124  */
1125 void pci_refresh_power_state(struct pci_dev *dev)
1126 {
1127 	platform_pci_refresh_power_state(dev);
1128 	pci_update_current_state(dev, dev->current_state);
1129 }
1130 
1131 /**
1132  * pci_platform_power_transition - Use platform to change device power state
1133  * @dev: PCI device to handle.
1134  * @state: State to put the device into.
1135  */
1136 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1137 {
1138 	int error;
1139 
1140 	error = platform_pci_set_power_state(dev, state);
1141 	if (!error)
1142 		pci_update_current_state(dev, state);
1143 	else if (!dev->pm_cap) /* Fall back to PCI_D0 */
1144 		dev->current_state = PCI_D0;
1145 
1146 	return error;
1147 }
1148 EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1149 
1150 static int pci_resume_one(struct pci_dev *pci_dev, void *ign)
1151 {
1152 	pm_request_resume(&pci_dev->dev);
1153 	return 0;
1154 }
1155 
1156 /**
1157  * pci_resume_bus - Walk given bus and runtime resume devices on it
1158  * @bus: Top bus of the subtree to walk.
1159  */
1160 void pci_resume_bus(struct pci_bus *bus)
1161 {
1162 	if (bus)
1163 		pci_walk_bus(bus, pci_resume_one, NULL);
1164 }
1165 
1166 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1167 {
1168 	int delay = 1;
1169 	bool retrain = false;
1170 	struct pci_dev *bridge;
1171 
1172 	if (pci_is_pcie(dev)) {
1173 		bridge = pci_upstream_bridge(dev);
1174 		if (bridge)
1175 			retrain = true;
1176 	}
1177 
1178 	/*
1179 	 * After reset, the device should not silently discard config
1180 	 * requests, but it may still indicate that it needs more time by
1181 	 * responding to them with CRS completions.  The Root Port will
1182 	 * generally synthesize ~0 (PCI_ERROR_RESPONSE) data to complete
1183 	 * the read (except when CRS SV is enabled and the read was for the
1184 	 * Vendor ID; in that case it synthesizes 0x0001 data).
1185 	 *
1186 	 * Wait for the device to return a non-CRS completion.  Read the
1187 	 * Command register instead of Vendor ID so we don't have to
1188 	 * contend with the CRS SV value.
1189 	 */
1190 	for (;;) {
1191 		u32 id;
1192 
1193 		pci_read_config_dword(dev, PCI_COMMAND, &id);
1194 		if (!PCI_POSSIBLE_ERROR(id))
1195 			break;
1196 
1197 		if (delay > timeout) {
1198 			pci_warn(dev, "not ready %dms after %s; giving up\n",
1199 				 delay - 1, reset_type);
1200 			return -ENOTTY;
1201 		}
1202 
1203 		if (delay > PCI_RESET_WAIT) {
1204 			if (retrain) {
1205 				retrain = false;
1206 				if (pcie_failed_link_retrain(bridge)) {
1207 					delay = 1;
1208 					continue;
1209 				}
1210 			}
1211 			pci_info(dev, "not ready %dms after %s; waiting\n",
1212 				 delay - 1, reset_type);
1213 		}
1214 
1215 		msleep(delay);
1216 		delay *= 2;
1217 	}
1218 
1219 	if (delay > PCI_RESET_WAIT)
1220 		pci_info(dev, "ready %dms after %s\n", delay - 1,
1221 			 reset_type);
1222 
1223 	return 0;
1224 }
1225 
1226 /**
1227  * pci_power_up - Put the given device into D0
1228  * @dev: PCI device to power up
1229  *
1230  * On success, return 0 or 1, depending on whether or not it is necessary to
1231  * restore the device's BARs subsequently (1 is returned in that case).
1232  *
1233  * On failure, return a negative error code.  Always return failure if @dev
1234  * lacks a Power Management Capability, even if the platform was able to
1235  * put the device in D0 via non-PCI means.
1236  */
1237 int pci_power_up(struct pci_dev *dev)
1238 {
1239 	bool need_restore;
1240 	pci_power_t state;
1241 	u16 pmcsr;
1242 
1243 	platform_pci_set_power_state(dev, PCI_D0);
1244 
1245 	if (!dev->pm_cap) {
1246 		state = platform_pci_get_power_state(dev);
1247 		if (state == PCI_UNKNOWN)
1248 			dev->current_state = PCI_D0;
1249 		else
1250 			dev->current_state = state;
1251 
1252 		return -EIO;
1253 	}
1254 
1255 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1256 	if (PCI_POSSIBLE_ERROR(pmcsr)) {
1257 		pci_err(dev, "Unable to change power state from %s to D0, device inaccessible\n",
1258 			pci_power_name(dev->current_state));
1259 		dev->current_state = PCI_D3cold;
1260 		return -EIO;
1261 	}
1262 
1263 	state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1264 
1265 	need_restore = (state == PCI_D3hot || dev->current_state >= PCI_D3hot) &&
1266 			!(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET);
1267 
1268 	if (state == PCI_D0)
1269 		goto end;
1270 
1271 	/*
1272 	 * Force the entire word to 0. This doesn't affect PME_Status, disables
1273 	 * PME_En, and sets PowerState to 0.
1274 	 */
1275 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, 0);
1276 
1277 	/* Mandatory transition delays; see PCI PM 1.2. */
1278 	if (state == PCI_D3hot)
1279 		pci_dev_d3_sleep(dev);
1280 	else if (state == PCI_D2)
1281 		udelay(PCI_PM_D2_DELAY);
1282 
1283 end:
1284 	dev->current_state = PCI_D0;
1285 	if (need_restore)
1286 		return 1;
1287 
1288 	return 0;
1289 }
1290 
1291 /**
1292  * pci_set_full_power_state - Put a PCI device into D0 and update its state
1293  * @dev: PCI device to power up
1294  *
1295  * Call pci_power_up() to put @dev into D0, read from its PCI_PM_CTRL register
1296  * to confirm the state change, restore its BARs if they might be lost and
1297  * reconfigure ASPM in accordance with the new power state.
1298  *
1299  * If pci_restore_state() is going to be called right after a power state change
1300  * to D0, it is more efficient to use pci_power_up() directly instead of this
1301  * function.
1302  */
1303 static int pci_set_full_power_state(struct pci_dev *dev)
1304 {
1305 	u16 pmcsr;
1306 	int ret;
1307 
1308 	ret = pci_power_up(dev);
1309 	if (ret < 0) {
1310 		if (dev->current_state == PCI_D0)
1311 			return 0;
1312 
1313 		return ret;
1314 	}
1315 
1316 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1317 	dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1318 	if (dev->current_state != PCI_D0) {
1319 		pci_info_ratelimited(dev, "Refused to change power state from %s to D0\n",
1320 				     pci_power_name(dev->current_state));
1321 	} else if (ret > 0) {
1322 		/*
1323 		 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1324 		 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1325 		 * from D3hot to D0 _may_ perform an internal reset, thereby
1326 		 * going to "D0 Uninitialized" rather than "D0 Initialized".
1327 		 * For example, at least some versions of the 3c905B and the
1328 		 * 3c556B exhibit this behaviour.
1329 		 *
1330 		 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1331 		 * devices in a D3hot state at boot.  Consequently, we need to
1332 		 * restore at least the BARs so that the device will be
1333 		 * accessible to its driver.
1334 		 */
1335 		pci_restore_bars(dev);
1336 	}
1337 
1338 	if (dev->bus->self)
1339 		pcie_aspm_pm_state_change(dev->bus->self);
1340 
1341 	return 0;
1342 }
1343 
1344 /**
1345  * __pci_dev_set_current_state - Set current state of a PCI device
1346  * @dev: Device to handle
1347  * @data: pointer to state to be set
1348  */
1349 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1350 {
1351 	pci_power_t state = *(pci_power_t *)data;
1352 
1353 	dev->current_state = state;
1354 	return 0;
1355 }
1356 
1357 /**
1358  * pci_bus_set_current_state - Walk given bus and set current state of devices
1359  * @bus: Top bus of the subtree to walk.
1360  * @state: state to be set
1361  */
1362 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1363 {
1364 	if (bus)
1365 		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1366 }
1367 
1368 /**
1369  * pci_set_low_power_state - Put a PCI device into a low-power state.
1370  * @dev: PCI device to handle.
1371  * @state: PCI power state (D1, D2, D3hot) to put the device into.
1372  *
1373  * Use the device's PCI_PM_CTRL register to put it into a low-power state.
1374  *
1375  * RETURN VALUE:
1376  * -EINVAL if the requested state is invalid.
1377  * -EIO if device does not support PCI PM or its PM capabilities register has a
1378  * wrong version, or device doesn't support the requested state.
1379  * 0 if device already is in the requested state.
1380  * 0 if device's power state has been successfully changed.
1381  */
1382 static int pci_set_low_power_state(struct pci_dev *dev, pci_power_t state)
1383 {
1384 	u16 pmcsr;
1385 
1386 	if (!dev->pm_cap)
1387 		return -EIO;
1388 
1389 	/*
1390 	 * Validate transition: We can enter D0 from any state, but if
1391 	 * we're already in a low-power state, we can only go deeper.  E.g.,
1392 	 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1393 	 * we'd have to go from D3 to D0, then to D1.
1394 	 */
1395 	if (dev->current_state <= PCI_D3cold && dev->current_state > state) {
1396 		pci_dbg(dev, "Invalid power transition (from %s to %s)\n",
1397 			pci_power_name(dev->current_state),
1398 			pci_power_name(state));
1399 		return -EINVAL;
1400 	}
1401 
1402 	/* Check if this device supports the desired state */
1403 	if ((state == PCI_D1 && !dev->d1_support)
1404 	   || (state == PCI_D2 && !dev->d2_support))
1405 		return -EIO;
1406 
1407 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1408 	if (PCI_POSSIBLE_ERROR(pmcsr)) {
1409 		pci_err(dev, "Unable to change power state from %s to %s, device inaccessible\n",
1410 			pci_power_name(dev->current_state),
1411 			pci_power_name(state));
1412 		dev->current_state = PCI_D3cold;
1413 		return -EIO;
1414 	}
1415 
1416 	pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1417 	pmcsr |= state;
1418 
1419 	/* Enter specified state */
1420 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1421 
1422 	/* Mandatory power management transition delays; see PCI PM 1.2. */
1423 	if (state == PCI_D3hot)
1424 		pci_dev_d3_sleep(dev);
1425 	else if (state == PCI_D2)
1426 		udelay(PCI_PM_D2_DELAY);
1427 
1428 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1429 	dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1430 	if (dev->current_state != state)
1431 		pci_info_ratelimited(dev, "Refused to change power state from %s to %s\n",
1432 				     pci_power_name(dev->current_state),
1433 				     pci_power_name(state));
1434 
1435 	if (dev->bus->self)
1436 		pcie_aspm_pm_state_change(dev->bus->self);
1437 
1438 	return 0;
1439 }
1440 
1441 /**
1442  * pci_set_power_state - Set the power state of a PCI device
1443  * @dev: PCI device to handle.
1444  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1445  *
1446  * Transition a device to a new power state, using the platform firmware and/or
1447  * the device's PCI PM registers.
1448  *
1449  * RETURN VALUE:
1450  * -EINVAL if the requested state is invalid.
1451  * -EIO if device does not support PCI PM or its PM capabilities register has a
1452  * wrong version, or device doesn't support the requested state.
1453  * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1454  * 0 if device already is in the requested state.
1455  * 0 if the transition is to D3 but D3 is not supported.
1456  * 0 if device's power state has been successfully changed.
1457  */
1458 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1459 {
1460 	int error;
1461 
1462 	/* Bound the state we're entering */
1463 	if (state > PCI_D3cold)
1464 		state = PCI_D3cold;
1465 	else if (state < PCI_D0)
1466 		state = PCI_D0;
1467 	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1468 
1469 		/*
1470 		 * If the device or the parent bridge do not support PCI
1471 		 * PM, ignore the request if we're doing anything other
1472 		 * than putting it into D0 (which would only happen on
1473 		 * boot).
1474 		 */
1475 		return 0;
1476 
1477 	/* Check if we're already there */
1478 	if (dev->current_state == state)
1479 		return 0;
1480 
1481 	if (state == PCI_D0)
1482 		return pci_set_full_power_state(dev);
1483 
1484 	/*
1485 	 * This device is quirked not to be put into D3, so don't put it in
1486 	 * D3
1487 	 */
1488 	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1489 		return 0;
1490 
1491 	if (state == PCI_D3cold) {
1492 		/*
1493 		 * To put the device in D3cold, put it into D3hot in the native
1494 		 * way, then put it into D3cold using platform ops.
1495 		 */
1496 		error = pci_set_low_power_state(dev, PCI_D3hot);
1497 
1498 		if (pci_platform_power_transition(dev, PCI_D3cold))
1499 			return error;
1500 
1501 		/* Powering off a bridge may power off the whole hierarchy */
1502 		if (dev->current_state == PCI_D3cold)
1503 			pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1504 	} else {
1505 		error = pci_set_low_power_state(dev, state);
1506 
1507 		if (pci_platform_power_transition(dev, state))
1508 			return error;
1509 	}
1510 
1511 	return 0;
1512 }
1513 EXPORT_SYMBOL(pci_set_power_state);
1514 
1515 #define PCI_EXP_SAVE_REGS	7
1516 
1517 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1518 						       u16 cap, bool extended)
1519 {
1520 	struct pci_cap_saved_state *tmp;
1521 
1522 	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1523 		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1524 			return tmp;
1525 	}
1526 	return NULL;
1527 }
1528 
1529 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1530 {
1531 	return _pci_find_saved_cap(dev, cap, false);
1532 }
1533 
1534 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1535 {
1536 	return _pci_find_saved_cap(dev, cap, true);
1537 }
1538 
1539 static int pci_save_pcie_state(struct pci_dev *dev)
1540 {
1541 	int i = 0;
1542 	struct pci_cap_saved_state *save_state;
1543 	u16 *cap;
1544 
1545 	if (!pci_is_pcie(dev))
1546 		return 0;
1547 
1548 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1549 	if (!save_state) {
1550 		pci_err(dev, "buffer not found in %s\n", __func__);
1551 		return -ENOMEM;
1552 	}
1553 
1554 	cap = (u16 *)&save_state->cap.data[0];
1555 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1556 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1557 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1558 	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
1559 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1560 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1561 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1562 
1563 	return 0;
1564 }
1565 
1566 void pci_bridge_reconfigure_ltr(struct pci_dev *dev)
1567 {
1568 #ifdef CONFIG_PCIEASPM
1569 	struct pci_dev *bridge;
1570 	u32 ctl;
1571 
1572 	bridge = pci_upstream_bridge(dev);
1573 	if (bridge && bridge->ltr_path) {
1574 		pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, &ctl);
1575 		if (!(ctl & PCI_EXP_DEVCTL2_LTR_EN)) {
1576 			pci_dbg(bridge, "re-enabling LTR\n");
1577 			pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
1578 						 PCI_EXP_DEVCTL2_LTR_EN);
1579 		}
1580 	}
1581 #endif
1582 }
1583 
1584 static void pci_restore_pcie_state(struct pci_dev *dev)
1585 {
1586 	int i = 0;
1587 	struct pci_cap_saved_state *save_state;
1588 	u16 *cap;
1589 
1590 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1591 	if (!save_state)
1592 		return;
1593 
1594 	/*
1595 	 * Downstream ports reset the LTR enable bit when link goes down.
1596 	 * Check and re-configure the bit here before restoring device.
1597 	 * PCIe r5.0, sec 7.5.3.16.
1598 	 */
1599 	pci_bridge_reconfigure_ltr(dev);
1600 
1601 	cap = (u16 *)&save_state->cap.data[0];
1602 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1603 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1604 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1605 	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1606 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1607 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1608 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1609 }
1610 
1611 static int pci_save_pcix_state(struct pci_dev *dev)
1612 {
1613 	int pos;
1614 	struct pci_cap_saved_state *save_state;
1615 
1616 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1617 	if (!pos)
1618 		return 0;
1619 
1620 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1621 	if (!save_state) {
1622 		pci_err(dev, "buffer not found in %s\n", __func__);
1623 		return -ENOMEM;
1624 	}
1625 
1626 	pci_read_config_word(dev, pos + PCI_X_CMD,
1627 			     (u16 *)save_state->cap.data);
1628 
1629 	return 0;
1630 }
1631 
1632 static void pci_restore_pcix_state(struct pci_dev *dev)
1633 {
1634 	int i = 0, pos;
1635 	struct pci_cap_saved_state *save_state;
1636 	u16 *cap;
1637 
1638 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1639 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1640 	if (!save_state || !pos)
1641 		return;
1642 	cap = (u16 *)&save_state->cap.data[0];
1643 
1644 	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1645 }
1646 
1647 static void pci_save_ltr_state(struct pci_dev *dev)
1648 {
1649 	int ltr;
1650 	struct pci_cap_saved_state *save_state;
1651 	u32 *cap;
1652 
1653 	if (!pci_is_pcie(dev))
1654 		return;
1655 
1656 	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1657 	if (!ltr)
1658 		return;
1659 
1660 	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1661 	if (!save_state) {
1662 		pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1663 		return;
1664 	}
1665 
1666 	/* Some broken devices only support dword access to LTR */
1667 	cap = &save_state->cap.data[0];
1668 	pci_read_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap);
1669 }
1670 
1671 static void pci_restore_ltr_state(struct pci_dev *dev)
1672 {
1673 	struct pci_cap_saved_state *save_state;
1674 	int ltr;
1675 	u32 *cap;
1676 
1677 	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1678 	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1679 	if (!save_state || !ltr)
1680 		return;
1681 
1682 	/* Some broken devices only support dword access to LTR */
1683 	cap = &save_state->cap.data[0];
1684 	pci_write_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap);
1685 }
1686 
1687 /**
1688  * pci_save_state - save the PCI configuration space of a device before
1689  *		    suspending
1690  * @dev: PCI device that we're dealing with
1691  */
1692 int pci_save_state(struct pci_dev *dev)
1693 {
1694 	int i;
1695 	/* XXX: 100% dword access ok here? */
1696 	for (i = 0; i < 16; i++) {
1697 		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1698 		pci_dbg(dev, "save config %#04x: %#010x\n",
1699 			i * 4, dev->saved_config_space[i]);
1700 	}
1701 	dev->state_saved = true;
1702 
1703 	i = pci_save_pcie_state(dev);
1704 	if (i != 0)
1705 		return i;
1706 
1707 	i = pci_save_pcix_state(dev);
1708 	if (i != 0)
1709 		return i;
1710 
1711 	pci_save_ltr_state(dev);
1712 	pci_save_dpc_state(dev);
1713 	pci_save_aer_state(dev);
1714 	pci_save_ptm_state(dev);
1715 	return pci_save_vc_state(dev);
1716 }
1717 EXPORT_SYMBOL(pci_save_state);
1718 
1719 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1720 				     u32 saved_val, int retry, bool force)
1721 {
1722 	u32 val;
1723 
1724 	pci_read_config_dword(pdev, offset, &val);
1725 	if (!force && val == saved_val)
1726 		return;
1727 
1728 	for (;;) {
1729 		pci_dbg(pdev, "restore config %#04x: %#010x -> %#010x\n",
1730 			offset, val, saved_val);
1731 		pci_write_config_dword(pdev, offset, saved_val);
1732 		if (retry-- <= 0)
1733 			return;
1734 
1735 		pci_read_config_dword(pdev, offset, &val);
1736 		if (val == saved_val)
1737 			return;
1738 
1739 		mdelay(1);
1740 	}
1741 }
1742 
1743 static void pci_restore_config_space_range(struct pci_dev *pdev,
1744 					   int start, int end, int retry,
1745 					   bool force)
1746 {
1747 	int index;
1748 
1749 	for (index = end; index >= start; index--)
1750 		pci_restore_config_dword(pdev, 4 * index,
1751 					 pdev->saved_config_space[index],
1752 					 retry, force);
1753 }
1754 
1755 static void pci_restore_config_space(struct pci_dev *pdev)
1756 {
1757 	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1758 		pci_restore_config_space_range(pdev, 10, 15, 0, false);
1759 		/* Restore BARs before the command register. */
1760 		pci_restore_config_space_range(pdev, 4, 9, 10, false);
1761 		pci_restore_config_space_range(pdev, 0, 3, 0, false);
1762 	} else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1763 		pci_restore_config_space_range(pdev, 12, 15, 0, false);
1764 
1765 		/*
1766 		 * Force rewriting of prefetch registers to avoid S3 resume
1767 		 * issues on Intel PCI bridges that occur when these
1768 		 * registers are not explicitly written.
1769 		 */
1770 		pci_restore_config_space_range(pdev, 9, 11, 0, true);
1771 		pci_restore_config_space_range(pdev, 0, 8, 0, false);
1772 	} else {
1773 		pci_restore_config_space_range(pdev, 0, 15, 0, false);
1774 	}
1775 }
1776 
1777 static void pci_restore_rebar_state(struct pci_dev *pdev)
1778 {
1779 	unsigned int pos, nbars, i;
1780 	u32 ctrl;
1781 
1782 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1783 	if (!pos)
1784 		return;
1785 
1786 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1787 	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1788 		    PCI_REBAR_CTRL_NBAR_SHIFT;
1789 
1790 	for (i = 0; i < nbars; i++, pos += 8) {
1791 		struct resource *res;
1792 		int bar_idx, size;
1793 
1794 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1795 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1796 		res = pdev->resource + bar_idx;
1797 		size = pci_rebar_bytes_to_size(resource_size(res));
1798 		ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1799 		ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1800 		pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1801 	}
1802 }
1803 
1804 /**
1805  * pci_restore_state - Restore the saved state of a PCI device
1806  * @dev: PCI device that we're dealing with
1807  */
1808 void pci_restore_state(struct pci_dev *dev)
1809 {
1810 	if (!dev->state_saved)
1811 		return;
1812 
1813 	/*
1814 	 * Restore max latencies (in the LTR capability) before enabling
1815 	 * LTR itself (in the PCIe capability).
1816 	 */
1817 	pci_restore_ltr_state(dev);
1818 
1819 	pci_restore_pcie_state(dev);
1820 	pci_restore_pasid_state(dev);
1821 	pci_restore_pri_state(dev);
1822 	pci_restore_ats_state(dev);
1823 	pci_restore_vc_state(dev);
1824 	pci_restore_rebar_state(dev);
1825 	pci_restore_dpc_state(dev);
1826 	pci_restore_ptm_state(dev);
1827 
1828 	pci_aer_clear_status(dev);
1829 	pci_restore_aer_state(dev);
1830 
1831 	pci_restore_config_space(dev);
1832 
1833 	pci_restore_pcix_state(dev);
1834 	pci_restore_msi_state(dev);
1835 
1836 	/* Restore ACS and IOV configuration state */
1837 	pci_enable_acs(dev);
1838 	pci_restore_iov_state(dev);
1839 
1840 	dev->state_saved = false;
1841 }
1842 EXPORT_SYMBOL(pci_restore_state);
1843 
1844 struct pci_saved_state {
1845 	u32 config_space[16];
1846 	struct pci_cap_saved_data cap[];
1847 };
1848 
1849 /**
1850  * pci_store_saved_state - Allocate and return an opaque struct containing
1851  *			   the device saved state.
1852  * @dev: PCI device that we're dealing with
1853  *
1854  * Return NULL if no state or error.
1855  */
1856 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1857 {
1858 	struct pci_saved_state *state;
1859 	struct pci_cap_saved_state *tmp;
1860 	struct pci_cap_saved_data *cap;
1861 	size_t size;
1862 
1863 	if (!dev->state_saved)
1864 		return NULL;
1865 
1866 	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1867 
1868 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1869 		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1870 
1871 	state = kzalloc(size, GFP_KERNEL);
1872 	if (!state)
1873 		return NULL;
1874 
1875 	memcpy(state->config_space, dev->saved_config_space,
1876 	       sizeof(state->config_space));
1877 
1878 	cap = state->cap;
1879 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1880 		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1881 		memcpy(cap, &tmp->cap, len);
1882 		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1883 	}
1884 	/* Empty cap_save terminates list */
1885 
1886 	return state;
1887 }
1888 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1889 
1890 /**
1891  * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1892  * @dev: PCI device that we're dealing with
1893  * @state: Saved state returned from pci_store_saved_state()
1894  */
1895 int pci_load_saved_state(struct pci_dev *dev,
1896 			 struct pci_saved_state *state)
1897 {
1898 	struct pci_cap_saved_data *cap;
1899 
1900 	dev->state_saved = false;
1901 
1902 	if (!state)
1903 		return 0;
1904 
1905 	memcpy(dev->saved_config_space, state->config_space,
1906 	       sizeof(state->config_space));
1907 
1908 	cap = state->cap;
1909 	while (cap->size) {
1910 		struct pci_cap_saved_state *tmp;
1911 
1912 		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1913 		if (!tmp || tmp->cap.size != cap->size)
1914 			return -EINVAL;
1915 
1916 		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1917 		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1918 		       sizeof(struct pci_cap_saved_data) + cap->size);
1919 	}
1920 
1921 	dev->state_saved = true;
1922 	return 0;
1923 }
1924 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1925 
1926 /**
1927  * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1928  *				   and free the memory allocated for it.
1929  * @dev: PCI device that we're dealing with
1930  * @state: Pointer to saved state returned from pci_store_saved_state()
1931  */
1932 int pci_load_and_free_saved_state(struct pci_dev *dev,
1933 				  struct pci_saved_state **state)
1934 {
1935 	int ret = pci_load_saved_state(dev, *state);
1936 	kfree(*state);
1937 	*state = NULL;
1938 	return ret;
1939 }
1940 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1941 
1942 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1943 {
1944 	return pci_enable_resources(dev, bars);
1945 }
1946 
1947 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1948 {
1949 	int err;
1950 	struct pci_dev *bridge;
1951 	u16 cmd;
1952 	u8 pin;
1953 
1954 	err = pci_set_power_state(dev, PCI_D0);
1955 	if (err < 0 && err != -EIO)
1956 		return err;
1957 
1958 	bridge = pci_upstream_bridge(dev);
1959 	if (bridge)
1960 		pcie_aspm_powersave_config_link(bridge);
1961 
1962 	err = pcibios_enable_device(dev, bars);
1963 	if (err < 0)
1964 		return err;
1965 	pci_fixup_device(pci_fixup_enable, dev);
1966 
1967 	if (dev->msi_enabled || dev->msix_enabled)
1968 		return 0;
1969 
1970 	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1971 	if (pin) {
1972 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
1973 		if (cmd & PCI_COMMAND_INTX_DISABLE)
1974 			pci_write_config_word(dev, PCI_COMMAND,
1975 					      cmd & ~PCI_COMMAND_INTX_DISABLE);
1976 	}
1977 
1978 	return 0;
1979 }
1980 
1981 /**
1982  * pci_reenable_device - Resume abandoned device
1983  * @dev: PCI device to be resumed
1984  *
1985  * NOTE: This function is a backend of pci_default_resume() and is not supposed
1986  * to be called by normal code, write proper resume handler and use it instead.
1987  */
1988 int pci_reenable_device(struct pci_dev *dev)
1989 {
1990 	if (pci_is_enabled(dev))
1991 		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1992 	return 0;
1993 }
1994 EXPORT_SYMBOL(pci_reenable_device);
1995 
1996 static void pci_enable_bridge(struct pci_dev *dev)
1997 {
1998 	struct pci_dev *bridge;
1999 	int retval;
2000 
2001 	bridge = pci_upstream_bridge(dev);
2002 	if (bridge)
2003 		pci_enable_bridge(bridge);
2004 
2005 	if (pci_is_enabled(dev)) {
2006 		if (!dev->is_busmaster)
2007 			pci_set_master(dev);
2008 		return;
2009 	}
2010 
2011 	retval = pci_enable_device(dev);
2012 	if (retval)
2013 		pci_err(dev, "Error enabling bridge (%d), continuing\n",
2014 			retval);
2015 	pci_set_master(dev);
2016 }
2017 
2018 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
2019 {
2020 	struct pci_dev *bridge;
2021 	int err;
2022 	int i, bars = 0;
2023 
2024 	/*
2025 	 * Power state could be unknown at this point, either due to a fresh
2026 	 * boot or a device removal call.  So get the current power state
2027 	 * so that things like MSI message writing will behave as expected
2028 	 * (e.g. if the device really is in D0 at enable time).
2029 	 */
2030 	pci_update_current_state(dev, dev->current_state);
2031 
2032 	if (atomic_inc_return(&dev->enable_cnt) > 1)
2033 		return 0;		/* already enabled */
2034 
2035 	bridge = pci_upstream_bridge(dev);
2036 	if (bridge)
2037 		pci_enable_bridge(bridge);
2038 
2039 	/* only skip sriov related */
2040 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
2041 		if (dev->resource[i].flags & flags)
2042 			bars |= (1 << i);
2043 	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
2044 		if (dev->resource[i].flags & flags)
2045 			bars |= (1 << i);
2046 
2047 	err = do_pci_enable_device(dev, bars);
2048 	if (err < 0)
2049 		atomic_dec(&dev->enable_cnt);
2050 	return err;
2051 }
2052 
2053 /**
2054  * pci_enable_device_io - Initialize a device for use with IO space
2055  * @dev: PCI device to be initialized
2056  *
2057  * Initialize device before it's used by a driver. Ask low-level code
2058  * to enable I/O resources. Wake up the device if it was suspended.
2059  * Beware, this function can fail.
2060  */
2061 int pci_enable_device_io(struct pci_dev *dev)
2062 {
2063 	return pci_enable_device_flags(dev, IORESOURCE_IO);
2064 }
2065 EXPORT_SYMBOL(pci_enable_device_io);
2066 
2067 /**
2068  * pci_enable_device_mem - Initialize a device for use with Memory space
2069  * @dev: PCI device to be initialized
2070  *
2071  * Initialize device before it's used by a driver. Ask low-level code
2072  * to enable Memory resources. Wake up the device if it was suspended.
2073  * Beware, this function can fail.
2074  */
2075 int pci_enable_device_mem(struct pci_dev *dev)
2076 {
2077 	return pci_enable_device_flags(dev, IORESOURCE_MEM);
2078 }
2079 EXPORT_SYMBOL(pci_enable_device_mem);
2080 
2081 /**
2082  * pci_enable_device - Initialize device before it's used by a driver.
2083  * @dev: PCI device to be initialized
2084  *
2085  * Initialize device before it's used by a driver. Ask low-level code
2086  * to enable I/O and memory. Wake up the device if it was suspended.
2087  * Beware, this function can fail.
2088  *
2089  * Note we don't actually enable the device many times if we call
2090  * this function repeatedly (we just increment the count).
2091  */
2092 int pci_enable_device(struct pci_dev *dev)
2093 {
2094 	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
2095 }
2096 EXPORT_SYMBOL(pci_enable_device);
2097 
2098 /*
2099  * Managed PCI resources.  This manages device on/off, INTx/MSI/MSI-X
2100  * on/off and BAR regions.  pci_dev itself records MSI/MSI-X status, so
2101  * there's no need to track it separately.  pci_devres is initialized
2102  * when a device is enabled using managed PCI device enable interface.
2103  */
2104 struct pci_devres {
2105 	unsigned int enabled:1;
2106 	unsigned int pinned:1;
2107 	unsigned int orig_intx:1;
2108 	unsigned int restore_intx:1;
2109 	unsigned int mwi:1;
2110 	u32 region_mask;
2111 };
2112 
2113 static void pcim_release(struct device *gendev, void *res)
2114 {
2115 	struct pci_dev *dev = to_pci_dev(gendev);
2116 	struct pci_devres *this = res;
2117 	int i;
2118 
2119 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
2120 		if (this->region_mask & (1 << i))
2121 			pci_release_region(dev, i);
2122 
2123 	if (this->mwi)
2124 		pci_clear_mwi(dev);
2125 
2126 	if (this->restore_intx)
2127 		pci_intx(dev, this->orig_intx);
2128 
2129 	if (this->enabled && !this->pinned)
2130 		pci_disable_device(dev);
2131 }
2132 
2133 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
2134 {
2135 	struct pci_devres *dr, *new_dr;
2136 
2137 	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
2138 	if (dr)
2139 		return dr;
2140 
2141 	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
2142 	if (!new_dr)
2143 		return NULL;
2144 	return devres_get(&pdev->dev, new_dr, NULL, NULL);
2145 }
2146 
2147 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
2148 {
2149 	if (pci_is_managed(pdev))
2150 		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
2151 	return NULL;
2152 }
2153 
2154 /**
2155  * pcim_enable_device - Managed pci_enable_device()
2156  * @pdev: PCI device to be initialized
2157  *
2158  * Managed pci_enable_device().
2159  */
2160 int pcim_enable_device(struct pci_dev *pdev)
2161 {
2162 	struct pci_devres *dr;
2163 	int rc;
2164 
2165 	dr = get_pci_dr(pdev);
2166 	if (unlikely(!dr))
2167 		return -ENOMEM;
2168 	if (dr->enabled)
2169 		return 0;
2170 
2171 	rc = pci_enable_device(pdev);
2172 	if (!rc) {
2173 		pdev->is_managed = 1;
2174 		dr->enabled = 1;
2175 	}
2176 	return rc;
2177 }
2178 EXPORT_SYMBOL(pcim_enable_device);
2179 
2180 /**
2181  * pcim_pin_device - Pin managed PCI device
2182  * @pdev: PCI device to pin
2183  *
2184  * Pin managed PCI device @pdev.  Pinned device won't be disabled on
2185  * driver detach.  @pdev must have been enabled with
2186  * pcim_enable_device().
2187  */
2188 void pcim_pin_device(struct pci_dev *pdev)
2189 {
2190 	struct pci_devres *dr;
2191 
2192 	dr = find_pci_dr(pdev);
2193 	WARN_ON(!dr || !dr->enabled);
2194 	if (dr)
2195 		dr->pinned = 1;
2196 }
2197 EXPORT_SYMBOL(pcim_pin_device);
2198 
2199 /*
2200  * pcibios_device_add - provide arch specific hooks when adding device dev
2201  * @dev: the PCI device being added
2202  *
2203  * Permits the platform to provide architecture specific functionality when
2204  * devices are added. This is the default implementation. Architecture
2205  * implementations can override this.
2206  */
2207 int __weak pcibios_device_add(struct pci_dev *dev)
2208 {
2209 	return 0;
2210 }
2211 
2212 /**
2213  * pcibios_release_device - provide arch specific hooks when releasing
2214  *			    device dev
2215  * @dev: the PCI device being released
2216  *
2217  * Permits the platform to provide architecture specific functionality when
2218  * devices are released. This is the default implementation. Architecture
2219  * implementations can override this.
2220  */
2221 void __weak pcibios_release_device(struct pci_dev *dev) {}
2222 
2223 /**
2224  * pcibios_disable_device - disable arch specific PCI resources for device dev
2225  * @dev: the PCI device to disable
2226  *
2227  * Disables architecture specific PCI resources for the device. This
2228  * is the default implementation. Architecture implementations can
2229  * override this.
2230  */
2231 void __weak pcibios_disable_device(struct pci_dev *dev) {}
2232 
2233 /**
2234  * pcibios_penalize_isa_irq - penalize an ISA IRQ
2235  * @irq: ISA IRQ to penalize
2236  * @active: IRQ active or not
2237  *
2238  * Permits the platform to provide architecture-specific functionality when
2239  * penalizing ISA IRQs. This is the default implementation. Architecture
2240  * implementations can override this.
2241  */
2242 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
2243 
2244 static void do_pci_disable_device(struct pci_dev *dev)
2245 {
2246 	u16 pci_command;
2247 
2248 	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2249 	if (pci_command & PCI_COMMAND_MASTER) {
2250 		pci_command &= ~PCI_COMMAND_MASTER;
2251 		pci_write_config_word(dev, PCI_COMMAND, pci_command);
2252 	}
2253 
2254 	pcibios_disable_device(dev);
2255 }
2256 
2257 /**
2258  * pci_disable_enabled_device - Disable device without updating enable_cnt
2259  * @dev: PCI device to disable
2260  *
2261  * NOTE: This function is a backend of PCI power management routines and is
2262  * not supposed to be called drivers.
2263  */
2264 void pci_disable_enabled_device(struct pci_dev *dev)
2265 {
2266 	if (pci_is_enabled(dev))
2267 		do_pci_disable_device(dev);
2268 }
2269 
2270 /**
2271  * pci_disable_device - Disable PCI device after use
2272  * @dev: PCI device to be disabled
2273  *
2274  * Signal to the system that the PCI device is not in use by the system
2275  * anymore.  This only involves disabling PCI bus-mastering, if active.
2276  *
2277  * Note we don't actually disable the device until all callers of
2278  * pci_enable_device() have called pci_disable_device().
2279  */
2280 void pci_disable_device(struct pci_dev *dev)
2281 {
2282 	struct pci_devres *dr;
2283 
2284 	dr = find_pci_dr(dev);
2285 	if (dr)
2286 		dr->enabled = 0;
2287 
2288 	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2289 		      "disabling already-disabled device");
2290 
2291 	if (atomic_dec_return(&dev->enable_cnt) != 0)
2292 		return;
2293 
2294 	do_pci_disable_device(dev);
2295 
2296 	dev->is_busmaster = 0;
2297 }
2298 EXPORT_SYMBOL(pci_disable_device);
2299 
2300 /**
2301  * pcibios_set_pcie_reset_state - set reset state for device dev
2302  * @dev: the PCIe device reset
2303  * @state: Reset state to enter into
2304  *
2305  * Set the PCIe reset state for the device. This is the default
2306  * implementation. Architecture implementations can override this.
2307  */
2308 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2309 					enum pcie_reset_state state)
2310 {
2311 	return -EINVAL;
2312 }
2313 
2314 /**
2315  * pci_set_pcie_reset_state - set reset state for device dev
2316  * @dev: the PCIe device reset
2317  * @state: Reset state to enter into
2318  *
2319  * Sets the PCI reset state for the device.
2320  */
2321 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2322 {
2323 	return pcibios_set_pcie_reset_state(dev, state);
2324 }
2325 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2326 
2327 #ifdef CONFIG_PCIEAER
2328 void pcie_clear_device_status(struct pci_dev *dev)
2329 {
2330 	u16 sta;
2331 
2332 	pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2333 	pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2334 }
2335 #endif
2336 
2337 /**
2338  * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2339  * @dev: PCIe root port or event collector.
2340  */
2341 void pcie_clear_root_pme_status(struct pci_dev *dev)
2342 {
2343 	pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2344 }
2345 
2346 /**
2347  * pci_check_pme_status - Check if given device has generated PME.
2348  * @dev: Device to check.
2349  *
2350  * Check the PME status of the device and if set, clear it and clear PME enable
2351  * (if set).  Return 'true' if PME status and PME enable were both set or
2352  * 'false' otherwise.
2353  */
2354 bool pci_check_pme_status(struct pci_dev *dev)
2355 {
2356 	int pmcsr_pos;
2357 	u16 pmcsr;
2358 	bool ret = false;
2359 
2360 	if (!dev->pm_cap)
2361 		return false;
2362 
2363 	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2364 	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2365 	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2366 		return false;
2367 
2368 	/* Clear PME status. */
2369 	pmcsr |= PCI_PM_CTRL_PME_STATUS;
2370 	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2371 		/* Disable PME to avoid interrupt flood. */
2372 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2373 		ret = true;
2374 	}
2375 
2376 	pci_write_config_word(dev, pmcsr_pos, pmcsr);
2377 
2378 	return ret;
2379 }
2380 
2381 /**
2382  * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2383  * @dev: Device to handle.
2384  * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2385  *
2386  * Check if @dev has generated PME and queue a resume request for it in that
2387  * case.
2388  */
2389 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2390 {
2391 	if (pme_poll_reset && dev->pme_poll)
2392 		dev->pme_poll = false;
2393 
2394 	if (pci_check_pme_status(dev)) {
2395 		pci_wakeup_event(dev);
2396 		pm_request_resume(&dev->dev);
2397 	}
2398 	return 0;
2399 }
2400 
2401 /**
2402  * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2403  * @bus: Top bus of the subtree to walk.
2404  */
2405 void pci_pme_wakeup_bus(struct pci_bus *bus)
2406 {
2407 	if (bus)
2408 		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2409 }
2410 
2411 
2412 /**
2413  * pci_pme_capable - check the capability of PCI device to generate PME#
2414  * @dev: PCI device to handle.
2415  * @state: PCI state from which device will issue PME#.
2416  */
2417 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2418 {
2419 	if (!dev->pm_cap)
2420 		return false;
2421 
2422 	return !!(dev->pme_support & (1 << state));
2423 }
2424 EXPORT_SYMBOL(pci_pme_capable);
2425 
2426 static void pci_pme_list_scan(struct work_struct *work)
2427 {
2428 	struct pci_pme_device *pme_dev, *n;
2429 
2430 	mutex_lock(&pci_pme_list_mutex);
2431 	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2432 		struct pci_dev *pdev = pme_dev->dev;
2433 
2434 		if (pdev->pme_poll) {
2435 			struct pci_dev *bridge = pdev->bus->self;
2436 			struct device *dev = &pdev->dev;
2437 			struct device *bdev = bridge ? &bridge->dev : NULL;
2438 			int bref = 0;
2439 
2440 			/*
2441 			 * If we have a bridge, it should be in an active/D0
2442 			 * state or the configuration space of subordinate
2443 			 * devices may not be accessible or stable over the
2444 			 * course of the call.
2445 			 */
2446 			if (bdev) {
2447 				bref = pm_runtime_get_if_active(bdev, true);
2448 				if (!bref)
2449 					continue;
2450 
2451 				if (bridge->current_state != PCI_D0)
2452 					goto put_bridge;
2453 			}
2454 
2455 			/*
2456 			 * The device itself should be suspended but config
2457 			 * space must be accessible, therefore it cannot be in
2458 			 * D3cold.
2459 			 */
2460 			if (pm_runtime_suspended(dev) &&
2461 			    pdev->current_state != PCI_D3cold)
2462 				pci_pme_wakeup(pdev, NULL);
2463 
2464 put_bridge:
2465 			if (bref > 0)
2466 				pm_runtime_put(bdev);
2467 		} else {
2468 			list_del(&pme_dev->list);
2469 			kfree(pme_dev);
2470 		}
2471 	}
2472 	if (!list_empty(&pci_pme_list))
2473 		queue_delayed_work(system_freezable_wq, &pci_pme_work,
2474 				   msecs_to_jiffies(PME_TIMEOUT));
2475 	mutex_unlock(&pci_pme_list_mutex);
2476 }
2477 
2478 static void __pci_pme_active(struct pci_dev *dev, bool enable)
2479 {
2480 	u16 pmcsr;
2481 
2482 	if (!dev->pme_support)
2483 		return;
2484 
2485 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2486 	/* Clear PME_Status by writing 1 to it and enable PME# */
2487 	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2488 	if (!enable)
2489 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2490 
2491 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2492 }
2493 
2494 /**
2495  * pci_pme_restore - Restore PME configuration after config space restore.
2496  * @dev: PCI device to update.
2497  */
2498 void pci_pme_restore(struct pci_dev *dev)
2499 {
2500 	u16 pmcsr;
2501 
2502 	if (!dev->pme_support)
2503 		return;
2504 
2505 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2506 	if (dev->wakeup_prepared) {
2507 		pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2508 		pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2509 	} else {
2510 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2511 		pmcsr |= PCI_PM_CTRL_PME_STATUS;
2512 	}
2513 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2514 }
2515 
2516 /**
2517  * pci_pme_active - enable or disable PCI device's PME# function
2518  * @dev: PCI device to handle.
2519  * @enable: 'true' to enable PME# generation; 'false' to disable it.
2520  *
2521  * The caller must verify that the device is capable of generating PME# before
2522  * calling this function with @enable equal to 'true'.
2523  */
2524 void pci_pme_active(struct pci_dev *dev, bool enable)
2525 {
2526 	__pci_pme_active(dev, enable);
2527 
2528 	/*
2529 	 * PCI (as opposed to PCIe) PME requires that the device have
2530 	 * its PME# line hooked up correctly. Not all hardware vendors
2531 	 * do this, so the PME never gets delivered and the device
2532 	 * remains asleep. The easiest way around this is to
2533 	 * periodically walk the list of suspended devices and check
2534 	 * whether any have their PME flag set. The assumption is that
2535 	 * we'll wake up often enough anyway that this won't be a huge
2536 	 * hit, and the power savings from the devices will still be a
2537 	 * win.
2538 	 *
2539 	 * Although PCIe uses in-band PME message instead of PME# line
2540 	 * to report PME, PME does not work for some PCIe devices in
2541 	 * reality.  For example, there are devices that set their PME
2542 	 * status bits, but don't really bother to send a PME message;
2543 	 * there are PCI Express Root Ports that don't bother to
2544 	 * trigger interrupts when they receive PME messages from the
2545 	 * devices below.  So PME poll is used for PCIe devices too.
2546 	 */
2547 
2548 	if (dev->pme_poll) {
2549 		struct pci_pme_device *pme_dev;
2550 		if (enable) {
2551 			pme_dev = kmalloc(sizeof(struct pci_pme_device),
2552 					  GFP_KERNEL);
2553 			if (!pme_dev) {
2554 				pci_warn(dev, "can't enable PME#\n");
2555 				return;
2556 			}
2557 			pme_dev->dev = dev;
2558 			mutex_lock(&pci_pme_list_mutex);
2559 			list_add(&pme_dev->list, &pci_pme_list);
2560 			if (list_is_singular(&pci_pme_list))
2561 				queue_delayed_work(system_freezable_wq,
2562 						   &pci_pme_work,
2563 						   msecs_to_jiffies(PME_TIMEOUT));
2564 			mutex_unlock(&pci_pme_list_mutex);
2565 		} else {
2566 			mutex_lock(&pci_pme_list_mutex);
2567 			list_for_each_entry(pme_dev, &pci_pme_list, list) {
2568 				if (pme_dev->dev == dev) {
2569 					list_del(&pme_dev->list);
2570 					kfree(pme_dev);
2571 					break;
2572 				}
2573 			}
2574 			mutex_unlock(&pci_pme_list_mutex);
2575 		}
2576 	}
2577 
2578 	pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2579 }
2580 EXPORT_SYMBOL(pci_pme_active);
2581 
2582 /**
2583  * __pci_enable_wake - enable PCI device as wakeup event source
2584  * @dev: PCI device affected
2585  * @state: PCI state from which device will issue wakeup events
2586  * @enable: True to enable event generation; false to disable
2587  *
2588  * This enables the device as a wakeup event source, or disables it.
2589  * When such events involves platform-specific hooks, those hooks are
2590  * called automatically by this routine.
2591  *
2592  * Devices with legacy power management (no standard PCI PM capabilities)
2593  * always require such platform hooks.
2594  *
2595  * RETURN VALUE:
2596  * 0 is returned on success
2597  * -EINVAL is returned if device is not supposed to wake up the system
2598  * Error code depending on the platform is returned if both the platform and
2599  * the native mechanism fail to enable the generation of wake-up events
2600  */
2601 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2602 {
2603 	int ret = 0;
2604 
2605 	/*
2606 	 * Bridges that are not power-manageable directly only signal
2607 	 * wakeup on behalf of subordinate devices which is set up
2608 	 * elsewhere, so skip them. However, bridges that are
2609 	 * power-manageable may signal wakeup for themselves (for example,
2610 	 * on a hotplug event) and they need to be covered here.
2611 	 */
2612 	if (!pci_power_manageable(dev))
2613 		return 0;
2614 
2615 	/* Don't do the same thing twice in a row for one device. */
2616 	if (!!enable == !!dev->wakeup_prepared)
2617 		return 0;
2618 
2619 	/*
2620 	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2621 	 * Anderson we should be doing PME# wake enable followed by ACPI wake
2622 	 * enable.  To disable wake-up we call the platform first, for symmetry.
2623 	 */
2624 
2625 	if (enable) {
2626 		int error;
2627 
2628 		/*
2629 		 * Enable PME signaling if the device can signal PME from
2630 		 * D3cold regardless of whether or not it can signal PME from
2631 		 * the current target state, because that will allow it to
2632 		 * signal PME when the hierarchy above it goes into D3cold and
2633 		 * the device itself ends up in D3cold as a result of that.
2634 		 */
2635 		if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold))
2636 			pci_pme_active(dev, true);
2637 		else
2638 			ret = 1;
2639 		error = platform_pci_set_wakeup(dev, true);
2640 		if (ret)
2641 			ret = error;
2642 		if (!ret)
2643 			dev->wakeup_prepared = true;
2644 	} else {
2645 		platform_pci_set_wakeup(dev, false);
2646 		pci_pme_active(dev, false);
2647 		dev->wakeup_prepared = false;
2648 	}
2649 
2650 	return ret;
2651 }
2652 
2653 /**
2654  * pci_enable_wake - change wakeup settings for a PCI device
2655  * @pci_dev: Target device
2656  * @state: PCI state from which device will issue wakeup events
2657  * @enable: Whether or not to enable event generation
2658  *
2659  * If @enable is set, check device_may_wakeup() for the device before calling
2660  * __pci_enable_wake() for it.
2661  */
2662 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2663 {
2664 	if (enable && !device_may_wakeup(&pci_dev->dev))
2665 		return -EINVAL;
2666 
2667 	return __pci_enable_wake(pci_dev, state, enable);
2668 }
2669 EXPORT_SYMBOL(pci_enable_wake);
2670 
2671 /**
2672  * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2673  * @dev: PCI device to prepare
2674  * @enable: True to enable wake-up event generation; false to disable
2675  *
2676  * Many drivers want the device to wake up the system from D3_hot or D3_cold
2677  * and this function allows them to set that up cleanly - pci_enable_wake()
2678  * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2679  * ordering constraints.
2680  *
2681  * This function only returns error code if the device is not allowed to wake
2682  * up the system from sleep or it is not capable of generating PME# from both
2683  * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2684  */
2685 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2686 {
2687 	return pci_pme_capable(dev, PCI_D3cold) ?
2688 			pci_enable_wake(dev, PCI_D3cold, enable) :
2689 			pci_enable_wake(dev, PCI_D3hot, enable);
2690 }
2691 EXPORT_SYMBOL(pci_wake_from_d3);
2692 
2693 /**
2694  * pci_target_state - find an appropriate low power state for a given PCI dev
2695  * @dev: PCI device
2696  * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2697  *
2698  * Use underlying platform code to find a supported low power state for @dev.
2699  * If the platform can't manage @dev, return the deepest state from which it
2700  * can generate wake events, based on any available PME info.
2701  */
2702 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2703 {
2704 	if (platform_pci_power_manageable(dev)) {
2705 		/*
2706 		 * Call the platform to find the target state for the device.
2707 		 */
2708 		pci_power_t state = platform_pci_choose_state(dev);
2709 
2710 		switch (state) {
2711 		case PCI_POWER_ERROR:
2712 		case PCI_UNKNOWN:
2713 			return PCI_D3hot;
2714 
2715 		case PCI_D1:
2716 		case PCI_D2:
2717 			if (pci_no_d1d2(dev))
2718 				return PCI_D3hot;
2719 		}
2720 
2721 		return state;
2722 	}
2723 
2724 	/*
2725 	 * If the device is in D3cold even though it's not power-manageable by
2726 	 * the platform, it may have been powered down by non-standard means.
2727 	 * Best to let it slumber.
2728 	 */
2729 	if (dev->current_state == PCI_D3cold)
2730 		return PCI_D3cold;
2731 	else if (!dev->pm_cap)
2732 		return PCI_D0;
2733 
2734 	if (wakeup && dev->pme_support) {
2735 		pci_power_t state = PCI_D3hot;
2736 
2737 		/*
2738 		 * Find the deepest state from which the device can generate
2739 		 * PME#.
2740 		 */
2741 		while (state && !(dev->pme_support & (1 << state)))
2742 			state--;
2743 
2744 		if (state)
2745 			return state;
2746 		else if (dev->pme_support & 1)
2747 			return PCI_D0;
2748 	}
2749 
2750 	return PCI_D3hot;
2751 }
2752 
2753 /**
2754  * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2755  *			  into a sleep state
2756  * @dev: Device to handle.
2757  *
2758  * Choose the power state appropriate for the device depending on whether
2759  * it can wake up the system and/or is power manageable by the platform
2760  * (PCI_D3hot is the default) and put the device into that state.
2761  */
2762 int pci_prepare_to_sleep(struct pci_dev *dev)
2763 {
2764 	bool wakeup = device_may_wakeup(&dev->dev);
2765 	pci_power_t target_state = pci_target_state(dev, wakeup);
2766 	int error;
2767 
2768 	if (target_state == PCI_POWER_ERROR)
2769 		return -EIO;
2770 
2771 	pci_enable_wake(dev, target_state, wakeup);
2772 
2773 	error = pci_set_power_state(dev, target_state);
2774 
2775 	if (error)
2776 		pci_enable_wake(dev, target_state, false);
2777 
2778 	return error;
2779 }
2780 EXPORT_SYMBOL(pci_prepare_to_sleep);
2781 
2782 /**
2783  * pci_back_from_sleep - turn PCI device on during system-wide transition
2784  *			 into working state
2785  * @dev: Device to handle.
2786  *
2787  * Disable device's system wake-up capability and put it into D0.
2788  */
2789 int pci_back_from_sleep(struct pci_dev *dev)
2790 {
2791 	int ret = pci_set_power_state(dev, PCI_D0);
2792 
2793 	if (ret)
2794 		return ret;
2795 
2796 	pci_enable_wake(dev, PCI_D0, false);
2797 	return 0;
2798 }
2799 EXPORT_SYMBOL(pci_back_from_sleep);
2800 
2801 /**
2802  * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2803  * @dev: PCI device being suspended.
2804  *
2805  * Prepare @dev to generate wake-up events at run time and put it into a low
2806  * power state.
2807  */
2808 int pci_finish_runtime_suspend(struct pci_dev *dev)
2809 {
2810 	pci_power_t target_state;
2811 	int error;
2812 
2813 	target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2814 	if (target_state == PCI_POWER_ERROR)
2815 		return -EIO;
2816 
2817 	__pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2818 
2819 	error = pci_set_power_state(dev, target_state);
2820 
2821 	if (error)
2822 		pci_enable_wake(dev, target_state, false);
2823 
2824 	return error;
2825 }
2826 
2827 /**
2828  * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2829  * @dev: Device to check.
2830  *
2831  * Return true if the device itself is capable of generating wake-up events
2832  * (through the platform or using the native PCIe PME) or if the device supports
2833  * PME and one of its upstream bridges can generate wake-up events.
2834  */
2835 bool pci_dev_run_wake(struct pci_dev *dev)
2836 {
2837 	struct pci_bus *bus = dev->bus;
2838 
2839 	if (!dev->pme_support)
2840 		return false;
2841 
2842 	/* PME-capable in principle, but not from the target power state */
2843 	if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2844 		return false;
2845 
2846 	if (device_can_wakeup(&dev->dev))
2847 		return true;
2848 
2849 	while (bus->parent) {
2850 		struct pci_dev *bridge = bus->self;
2851 
2852 		if (device_can_wakeup(&bridge->dev))
2853 			return true;
2854 
2855 		bus = bus->parent;
2856 	}
2857 
2858 	/* We have reached the root bus. */
2859 	if (bus->bridge)
2860 		return device_can_wakeup(bus->bridge);
2861 
2862 	return false;
2863 }
2864 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2865 
2866 /**
2867  * pci_dev_need_resume - Check if it is necessary to resume the device.
2868  * @pci_dev: Device to check.
2869  *
2870  * Return 'true' if the device is not runtime-suspended or it has to be
2871  * reconfigured due to wakeup settings difference between system and runtime
2872  * suspend, or the current power state of it is not suitable for the upcoming
2873  * (system-wide) transition.
2874  */
2875 bool pci_dev_need_resume(struct pci_dev *pci_dev)
2876 {
2877 	struct device *dev = &pci_dev->dev;
2878 	pci_power_t target_state;
2879 
2880 	if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2881 		return true;
2882 
2883 	target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2884 
2885 	/*
2886 	 * If the earlier platform check has not triggered, D3cold is just power
2887 	 * removal on top of D3hot, so no need to resume the device in that
2888 	 * case.
2889 	 */
2890 	return target_state != pci_dev->current_state &&
2891 		target_state != PCI_D3cold &&
2892 		pci_dev->current_state != PCI_D3hot;
2893 }
2894 
2895 /**
2896  * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2897  * @pci_dev: Device to check.
2898  *
2899  * If the device is suspended and it is not configured for system wakeup,
2900  * disable PME for it to prevent it from waking up the system unnecessarily.
2901  *
2902  * Note that if the device's power state is D3cold and the platform check in
2903  * pci_dev_need_resume() has not triggered, the device's configuration need not
2904  * be changed.
2905  */
2906 void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2907 {
2908 	struct device *dev = &pci_dev->dev;
2909 
2910 	spin_lock_irq(&dev->power.lock);
2911 
2912 	if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2913 	    pci_dev->current_state < PCI_D3cold)
2914 		__pci_pme_active(pci_dev, false);
2915 
2916 	spin_unlock_irq(&dev->power.lock);
2917 }
2918 
2919 /**
2920  * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2921  * @pci_dev: Device to handle.
2922  *
2923  * If the device is runtime suspended and wakeup-capable, enable PME for it as
2924  * it might have been disabled during the prepare phase of system suspend if
2925  * the device was not configured for system wakeup.
2926  */
2927 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2928 {
2929 	struct device *dev = &pci_dev->dev;
2930 
2931 	if (!pci_dev_run_wake(pci_dev))
2932 		return;
2933 
2934 	spin_lock_irq(&dev->power.lock);
2935 
2936 	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2937 		__pci_pme_active(pci_dev, true);
2938 
2939 	spin_unlock_irq(&dev->power.lock);
2940 }
2941 
2942 /**
2943  * pci_choose_state - Choose the power state of a PCI device.
2944  * @dev: Target PCI device.
2945  * @state: Target state for the whole system.
2946  *
2947  * Returns PCI power state suitable for @dev and @state.
2948  */
2949 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
2950 {
2951 	if (state.event == PM_EVENT_ON)
2952 		return PCI_D0;
2953 
2954 	return pci_target_state(dev, false);
2955 }
2956 EXPORT_SYMBOL(pci_choose_state);
2957 
2958 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2959 {
2960 	struct device *dev = &pdev->dev;
2961 	struct device *parent = dev->parent;
2962 
2963 	if (parent)
2964 		pm_runtime_get_sync(parent);
2965 	pm_runtime_get_noresume(dev);
2966 	/*
2967 	 * pdev->current_state is set to PCI_D3cold during suspending,
2968 	 * so wait until suspending completes
2969 	 */
2970 	pm_runtime_barrier(dev);
2971 	/*
2972 	 * Only need to resume devices in D3cold, because config
2973 	 * registers are still accessible for devices suspended but
2974 	 * not in D3cold.
2975 	 */
2976 	if (pdev->current_state == PCI_D3cold)
2977 		pm_runtime_resume(dev);
2978 }
2979 
2980 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2981 {
2982 	struct device *dev = &pdev->dev;
2983 	struct device *parent = dev->parent;
2984 
2985 	pm_runtime_put(dev);
2986 	if (parent)
2987 		pm_runtime_put_sync(parent);
2988 }
2989 
2990 static const struct dmi_system_id bridge_d3_blacklist[] = {
2991 #ifdef CONFIG_X86
2992 	{
2993 		/*
2994 		 * Gigabyte X299 root port is not marked as hotplug capable
2995 		 * which allows Linux to power manage it.  However, this
2996 		 * confuses the BIOS SMI handler so don't power manage root
2997 		 * ports on that system.
2998 		 */
2999 		.ident = "X299 DESIGNARE EX-CF",
3000 		.matches = {
3001 			DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
3002 			DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
3003 		},
3004 	},
3005 	{
3006 		/*
3007 		 * Downstream device is not accessible after putting a root port
3008 		 * into D3cold and back into D0 on Elo Continental Z2 board
3009 		 */
3010 		.ident = "Elo Continental Z2",
3011 		.matches = {
3012 			DMI_MATCH(DMI_BOARD_VENDOR, "Elo Touch Solutions"),
3013 			DMI_MATCH(DMI_BOARD_NAME, "Geminilake"),
3014 			DMI_MATCH(DMI_BOARD_VERSION, "Continental Z2"),
3015 		},
3016 	},
3017 #endif
3018 	{ }
3019 };
3020 
3021 /**
3022  * pci_bridge_d3_possible - Is it possible to put the bridge into D3
3023  * @bridge: Bridge to check
3024  *
3025  * This function checks if it is possible to move the bridge to D3.
3026  * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
3027  */
3028 bool pci_bridge_d3_possible(struct pci_dev *bridge)
3029 {
3030 	if (!pci_is_pcie(bridge))
3031 		return false;
3032 
3033 	switch (pci_pcie_type(bridge)) {
3034 	case PCI_EXP_TYPE_ROOT_PORT:
3035 	case PCI_EXP_TYPE_UPSTREAM:
3036 	case PCI_EXP_TYPE_DOWNSTREAM:
3037 		if (pci_bridge_d3_disable)
3038 			return false;
3039 
3040 		/*
3041 		 * Hotplug ports handled by firmware in System Management Mode
3042 		 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
3043 		 */
3044 		if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
3045 			return false;
3046 
3047 		if (pci_bridge_d3_force)
3048 			return true;
3049 
3050 		/* Even the oldest 2010 Thunderbolt controller supports D3. */
3051 		if (bridge->is_thunderbolt)
3052 			return true;
3053 
3054 		/* Platform might know better if the bridge supports D3 */
3055 		if (platform_pci_bridge_d3(bridge))
3056 			return true;
3057 
3058 		/*
3059 		 * Hotplug ports handled natively by the OS were not validated
3060 		 * by vendors for runtime D3 at least until 2018 because there
3061 		 * was no OS support.
3062 		 */
3063 		if (bridge->is_hotplug_bridge)
3064 			return false;
3065 
3066 		if (dmi_check_system(bridge_d3_blacklist))
3067 			return false;
3068 
3069 		/*
3070 		 * It should be safe to put PCIe ports from 2015 or newer
3071 		 * to D3.
3072 		 */
3073 		if (dmi_get_bios_year() >= 2015)
3074 			return true;
3075 		break;
3076 	}
3077 
3078 	return false;
3079 }
3080 
3081 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
3082 {
3083 	bool *d3cold_ok = data;
3084 
3085 	if (/* The device needs to be allowed to go D3cold ... */
3086 	    dev->no_d3cold || !dev->d3cold_allowed ||
3087 
3088 	    /* ... and if it is wakeup capable to do so from D3cold. */
3089 	    (device_may_wakeup(&dev->dev) &&
3090 	     !pci_pme_capable(dev, PCI_D3cold)) ||
3091 
3092 	    /* If it is a bridge it must be allowed to go to D3. */
3093 	    !pci_power_manageable(dev))
3094 
3095 		*d3cold_ok = false;
3096 
3097 	return !*d3cold_ok;
3098 }
3099 
3100 /*
3101  * pci_bridge_d3_update - Update bridge D3 capabilities
3102  * @dev: PCI device which is changed
3103  *
3104  * Update upstream bridge PM capabilities accordingly depending on if the
3105  * device PM configuration was changed or the device is being removed.  The
3106  * change is also propagated upstream.
3107  */
3108 void pci_bridge_d3_update(struct pci_dev *dev)
3109 {
3110 	bool remove = !device_is_registered(&dev->dev);
3111 	struct pci_dev *bridge;
3112 	bool d3cold_ok = true;
3113 
3114 	bridge = pci_upstream_bridge(dev);
3115 	if (!bridge || !pci_bridge_d3_possible(bridge))
3116 		return;
3117 
3118 	/*
3119 	 * If D3 is currently allowed for the bridge, removing one of its
3120 	 * children won't change that.
3121 	 */
3122 	if (remove && bridge->bridge_d3)
3123 		return;
3124 
3125 	/*
3126 	 * If D3 is currently allowed for the bridge and a child is added or
3127 	 * changed, disallowance of D3 can only be caused by that child, so
3128 	 * we only need to check that single device, not any of its siblings.
3129 	 *
3130 	 * If D3 is currently not allowed for the bridge, checking the device
3131 	 * first may allow us to skip checking its siblings.
3132 	 */
3133 	if (!remove)
3134 		pci_dev_check_d3cold(dev, &d3cold_ok);
3135 
3136 	/*
3137 	 * If D3 is currently not allowed for the bridge, this may be caused
3138 	 * either by the device being changed/removed or any of its siblings,
3139 	 * so we need to go through all children to find out if one of them
3140 	 * continues to block D3.
3141 	 */
3142 	if (d3cold_ok && !bridge->bridge_d3)
3143 		pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
3144 			     &d3cold_ok);
3145 
3146 	if (bridge->bridge_d3 != d3cold_ok) {
3147 		bridge->bridge_d3 = d3cold_ok;
3148 		/* Propagate change to upstream bridges */
3149 		pci_bridge_d3_update(bridge);
3150 	}
3151 }
3152 
3153 /**
3154  * pci_d3cold_enable - Enable D3cold for device
3155  * @dev: PCI device to handle
3156  *
3157  * This function can be used in drivers to enable D3cold from the device
3158  * they handle.  It also updates upstream PCI bridge PM capabilities
3159  * accordingly.
3160  */
3161 void pci_d3cold_enable(struct pci_dev *dev)
3162 {
3163 	if (dev->no_d3cold) {
3164 		dev->no_d3cold = false;
3165 		pci_bridge_d3_update(dev);
3166 	}
3167 }
3168 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
3169 
3170 /**
3171  * pci_d3cold_disable - Disable D3cold for device
3172  * @dev: PCI device to handle
3173  *
3174  * This function can be used in drivers to disable D3cold from the device
3175  * they handle.  It also updates upstream PCI bridge PM capabilities
3176  * accordingly.
3177  */
3178 void pci_d3cold_disable(struct pci_dev *dev)
3179 {
3180 	if (!dev->no_d3cold) {
3181 		dev->no_d3cold = true;
3182 		pci_bridge_d3_update(dev);
3183 	}
3184 }
3185 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3186 
3187 /**
3188  * pci_pm_init - Initialize PM functions of given PCI device
3189  * @dev: PCI device to handle.
3190  */
3191 void pci_pm_init(struct pci_dev *dev)
3192 {
3193 	int pm;
3194 	u16 status;
3195 	u16 pmc;
3196 
3197 	pm_runtime_forbid(&dev->dev);
3198 	pm_runtime_set_active(&dev->dev);
3199 	pm_runtime_enable(&dev->dev);
3200 	device_enable_async_suspend(&dev->dev);
3201 	dev->wakeup_prepared = false;
3202 
3203 	dev->pm_cap = 0;
3204 	dev->pme_support = 0;
3205 
3206 	/* find PCI PM capability in list */
3207 	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3208 	if (!pm)
3209 		return;
3210 	/* Check device's ability to generate PME# */
3211 	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3212 
3213 	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3214 		pci_err(dev, "unsupported PM cap regs version (%u)\n",
3215 			pmc & PCI_PM_CAP_VER_MASK);
3216 		return;
3217 	}
3218 
3219 	dev->pm_cap = pm;
3220 	dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3221 	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3222 	dev->bridge_d3 = pci_bridge_d3_possible(dev);
3223 	dev->d3cold_allowed = true;
3224 
3225 	dev->d1_support = false;
3226 	dev->d2_support = false;
3227 	if (!pci_no_d1d2(dev)) {
3228 		if (pmc & PCI_PM_CAP_D1)
3229 			dev->d1_support = true;
3230 		if (pmc & PCI_PM_CAP_D2)
3231 			dev->d2_support = true;
3232 
3233 		if (dev->d1_support || dev->d2_support)
3234 			pci_info(dev, "supports%s%s\n",
3235 				   dev->d1_support ? " D1" : "",
3236 				   dev->d2_support ? " D2" : "");
3237 	}
3238 
3239 	pmc &= PCI_PM_CAP_PME_MASK;
3240 	if (pmc) {
3241 		pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3242 			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3243 			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3244 			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3245 			 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3246 			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3247 		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
3248 		dev->pme_poll = true;
3249 		/*
3250 		 * Make device's PM flags reflect the wake-up capability, but
3251 		 * let the user space enable it to wake up the system as needed.
3252 		 */
3253 		device_set_wakeup_capable(&dev->dev, true);
3254 		/* Disable the PME# generation functionality */
3255 		pci_pme_active(dev, false);
3256 	}
3257 
3258 	pci_read_config_word(dev, PCI_STATUS, &status);
3259 	if (status & PCI_STATUS_IMM_READY)
3260 		dev->imm_ready = 1;
3261 }
3262 
3263 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3264 {
3265 	unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3266 
3267 	switch (prop) {
3268 	case PCI_EA_P_MEM:
3269 	case PCI_EA_P_VF_MEM:
3270 		flags |= IORESOURCE_MEM;
3271 		break;
3272 	case PCI_EA_P_MEM_PREFETCH:
3273 	case PCI_EA_P_VF_MEM_PREFETCH:
3274 		flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3275 		break;
3276 	case PCI_EA_P_IO:
3277 		flags |= IORESOURCE_IO;
3278 		break;
3279 	default:
3280 		return 0;
3281 	}
3282 
3283 	return flags;
3284 }
3285 
3286 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3287 					    u8 prop)
3288 {
3289 	if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3290 		return &dev->resource[bei];
3291 #ifdef CONFIG_PCI_IOV
3292 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3293 		 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3294 		return &dev->resource[PCI_IOV_RESOURCES +
3295 				      bei - PCI_EA_BEI_VF_BAR0];
3296 #endif
3297 	else if (bei == PCI_EA_BEI_ROM)
3298 		return &dev->resource[PCI_ROM_RESOURCE];
3299 	else
3300 		return NULL;
3301 }
3302 
3303 /* Read an Enhanced Allocation (EA) entry */
3304 static int pci_ea_read(struct pci_dev *dev, int offset)
3305 {
3306 	struct resource *res;
3307 	int ent_size, ent_offset = offset;
3308 	resource_size_t start, end;
3309 	unsigned long flags;
3310 	u32 dw0, bei, base, max_offset;
3311 	u8 prop;
3312 	bool support_64 = (sizeof(resource_size_t) >= 8);
3313 
3314 	pci_read_config_dword(dev, ent_offset, &dw0);
3315 	ent_offset += 4;
3316 
3317 	/* Entry size field indicates DWORDs after 1st */
3318 	ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
3319 
3320 	if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3321 		goto out;
3322 
3323 	bei = (dw0 & PCI_EA_BEI) >> 4;
3324 	prop = (dw0 & PCI_EA_PP) >> 8;
3325 
3326 	/*
3327 	 * If the Property is in the reserved range, try the Secondary
3328 	 * Property instead.
3329 	 */
3330 	if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3331 		prop = (dw0 & PCI_EA_SP) >> 16;
3332 	if (prop > PCI_EA_P_BRIDGE_IO)
3333 		goto out;
3334 
3335 	res = pci_ea_get_resource(dev, bei, prop);
3336 	if (!res) {
3337 		pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3338 		goto out;
3339 	}
3340 
3341 	flags = pci_ea_flags(dev, prop);
3342 	if (!flags) {
3343 		pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3344 		goto out;
3345 	}
3346 
3347 	/* Read Base */
3348 	pci_read_config_dword(dev, ent_offset, &base);
3349 	start = (base & PCI_EA_FIELD_MASK);
3350 	ent_offset += 4;
3351 
3352 	/* Read MaxOffset */
3353 	pci_read_config_dword(dev, ent_offset, &max_offset);
3354 	ent_offset += 4;
3355 
3356 	/* Read Base MSBs (if 64-bit entry) */
3357 	if (base & PCI_EA_IS_64) {
3358 		u32 base_upper;
3359 
3360 		pci_read_config_dword(dev, ent_offset, &base_upper);
3361 		ent_offset += 4;
3362 
3363 		flags |= IORESOURCE_MEM_64;
3364 
3365 		/* entry starts above 32-bit boundary, can't use */
3366 		if (!support_64 && base_upper)
3367 			goto out;
3368 
3369 		if (support_64)
3370 			start |= ((u64)base_upper << 32);
3371 	}
3372 
3373 	end = start + (max_offset | 0x03);
3374 
3375 	/* Read MaxOffset MSBs (if 64-bit entry) */
3376 	if (max_offset & PCI_EA_IS_64) {
3377 		u32 max_offset_upper;
3378 
3379 		pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3380 		ent_offset += 4;
3381 
3382 		flags |= IORESOURCE_MEM_64;
3383 
3384 		/* entry too big, can't use */
3385 		if (!support_64 && max_offset_upper)
3386 			goto out;
3387 
3388 		if (support_64)
3389 			end += ((u64)max_offset_upper << 32);
3390 	}
3391 
3392 	if (end < start) {
3393 		pci_err(dev, "EA Entry crosses address boundary\n");
3394 		goto out;
3395 	}
3396 
3397 	if (ent_size != ent_offset - offset) {
3398 		pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3399 			ent_size, ent_offset - offset);
3400 		goto out;
3401 	}
3402 
3403 	res->name = pci_name(dev);
3404 	res->start = start;
3405 	res->end = end;
3406 	res->flags = flags;
3407 
3408 	if (bei <= PCI_EA_BEI_BAR5)
3409 		pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3410 			   bei, res, prop);
3411 	else if (bei == PCI_EA_BEI_ROM)
3412 		pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3413 			   res, prop);
3414 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3415 		pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3416 			   bei - PCI_EA_BEI_VF_BAR0, res, prop);
3417 	else
3418 		pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3419 			   bei, res, prop);
3420 
3421 out:
3422 	return offset + ent_size;
3423 }
3424 
3425 /* Enhanced Allocation Initialization */
3426 void pci_ea_init(struct pci_dev *dev)
3427 {
3428 	int ea;
3429 	u8 num_ent;
3430 	int offset;
3431 	int i;
3432 
3433 	/* find PCI EA capability in list */
3434 	ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3435 	if (!ea)
3436 		return;
3437 
3438 	/* determine the number of entries */
3439 	pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3440 					&num_ent);
3441 	num_ent &= PCI_EA_NUM_ENT_MASK;
3442 
3443 	offset = ea + PCI_EA_FIRST_ENT;
3444 
3445 	/* Skip DWORD 2 for type 1 functions */
3446 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3447 		offset += 4;
3448 
3449 	/* parse each EA entry */
3450 	for (i = 0; i < num_ent; ++i)
3451 		offset = pci_ea_read(dev, offset);
3452 }
3453 
3454 static void pci_add_saved_cap(struct pci_dev *pci_dev,
3455 	struct pci_cap_saved_state *new_cap)
3456 {
3457 	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3458 }
3459 
3460 /**
3461  * _pci_add_cap_save_buffer - allocate buffer for saving given
3462  *			      capability registers
3463  * @dev: the PCI device
3464  * @cap: the capability to allocate the buffer for
3465  * @extended: Standard or Extended capability ID
3466  * @size: requested size of the buffer
3467  */
3468 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3469 				    bool extended, unsigned int size)
3470 {
3471 	int pos;
3472 	struct pci_cap_saved_state *save_state;
3473 
3474 	if (extended)
3475 		pos = pci_find_ext_capability(dev, cap);
3476 	else
3477 		pos = pci_find_capability(dev, cap);
3478 
3479 	if (!pos)
3480 		return 0;
3481 
3482 	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3483 	if (!save_state)
3484 		return -ENOMEM;
3485 
3486 	save_state->cap.cap_nr = cap;
3487 	save_state->cap.cap_extended = extended;
3488 	save_state->cap.size = size;
3489 	pci_add_saved_cap(dev, save_state);
3490 
3491 	return 0;
3492 }
3493 
3494 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3495 {
3496 	return _pci_add_cap_save_buffer(dev, cap, false, size);
3497 }
3498 
3499 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3500 {
3501 	return _pci_add_cap_save_buffer(dev, cap, true, size);
3502 }
3503 
3504 /**
3505  * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3506  * @dev: the PCI device
3507  */
3508 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3509 {
3510 	int error;
3511 
3512 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3513 					PCI_EXP_SAVE_REGS * sizeof(u16));
3514 	if (error)
3515 		pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3516 
3517 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3518 	if (error)
3519 		pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3520 
3521 	error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3522 					    2 * sizeof(u16));
3523 	if (error)
3524 		pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3525 
3526 	pci_allocate_vc_save_buffers(dev);
3527 }
3528 
3529 void pci_free_cap_save_buffers(struct pci_dev *dev)
3530 {
3531 	struct pci_cap_saved_state *tmp;
3532 	struct hlist_node *n;
3533 
3534 	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3535 		kfree(tmp);
3536 }
3537 
3538 /**
3539  * pci_configure_ari - enable or disable ARI forwarding
3540  * @dev: the PCI device
3541  *
3542  * If @dev and its upstream bridge both support ARI, enable ARI in the
3543  * bridge.  Otherwise, disable ARI in the bridge.
3544  */
3545 void pci_configure_ari(struct pci_dev *dev)
3546 {
3547 	u32 cap;
3548 	struct pci_dev *bridge;
3549 
3550 	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3551 		return;
3552 
3553 	bridge = dev->bus->self;
3554 	if (!bridge)
3555 		return;
3556 
3557 	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3558 	if (!(cap & PCI_EXP_DEVCAP2_ARI))
3559 		return;
3560 
3561 	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3562 		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3563 					 PCI_EXP_DEVCTL2_ARI);
3564 		bridge->ari_enabled = 1;
3565 	} else {
3566 		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3567 					   PCI_EXP_DEVCTL2_ARI);
3568 		bridge->ari_enabled = 0;
3569 	}
3570 }
3571 
3572 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3573 {
3574 	int pos;
3575 	u16 cap, ctrl;
3576 
3577 	pos = pdev->acs_cap;
3578 	if (!pos)
3579 		return false;
3580 
3581 	/*
3582 	 * Except for egress control, capabilities are either required
3583 	 * or only required if controllable.  Features missing from the
3584 	 * capability field can therefore be assumed as hard-wired enabled.
3585 	 */
3586 	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3587 	acs_flags &= (cap | PCI_ACS_EC);
3588 
3589 	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3590 	return (ctrl & acs_flags) == acs_flags;
3591 }
3592 
3593 /**
3594  * pci_acs_enabled - test ACS against required flags for a given device
3595  * @pdev: device to test
3596  * @acs_flags: required PCI ACS flags
3597  *
3598  * Return true if the device supports the provided flags.  Automatically
3599  * filters out flags that are not implemented on multifunction devices.
3600  *
3601  * Note that this interface checks the effective ACS capabilities of the
3602  * device rather than the actual capabilities.  For instance, most single
3603  * function endpoints are not required to support ACS because they have no
3604  * opportunity for peer-to-peer access.  We therefore return 'true'
3605  * regardless of whether the device exposes an ACS capability.  This makes
3606  * it much easier for callers of this function to ignore the actual type
3607  * or topology of the device when testing ACS support.
3608  */
3609 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3610 {
3611 	int ret;
3612 
3613 	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3614 	if (ret >= 0)
3615 		return ret > 0;
3616 
3617 	/*
3618 	 * Conventional PCI and PCI-X devices never support ACS, either
3619 	 * effectively or actually.  The shared bus topology implies that
3620 	 * any device on the bus can receive or snoop DMA.
3621 	 */
3622 	if (!pci_is_pcie(pdev))
3623 		return false;
3624 
3625 	switch (pci_pcie_type(pdev)) {
3626 	/*
3627 	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3628 	 * but since their primary interface is PCI/X, we conservatively
3629 	 * handle them as we would a non-PCIe device.
3630 	 */
3631 	case PCI_EXP_TYPE_PCIE_BRIDGE:
3632 	/*
3633 	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
3634 	 * applicable... must never implement an ACS Extended Capability...".
3635 	 * This seems arbitrary, but we take a conservative interpretation
3636 	 * of this statement.
3637 	 */
3638 	case PCI_EXP_TYPE_PCI_BRIDGE:
3639 	case PCI_EXP_TYPE_RC_EC:
3640 		return false;
3641 	/*
3642 	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3643 	 * implement ACS in order to indicate their peer-to-peer capabilities,
3644 	 * regardless of whether they are single- or multi-function devices.
3645 	 */
3646 	case PCI_EXP_TYPE_DOWNSTREAM:
3647 	case PCI_EXP_TYPE_ROOT_PORT:
3648 		return pci_acs_flags_enabled(pdev, acs_flags);
3649 	/*
3650 	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3651 	 * implemented by the remaining PCIe types to indicate peer-to-peer
3652 	 * capabilities, but only when they are part of a multifunction
3653 	 * device.  The footnote for section 6.12 indicates the specific
3654 	 * PCIe types included here.
3655 	 */
3656 	case PCI_EXP_TYPE_ENDPOINT:
3657 	case PCI_EXP_TYPE_UPSTREAM:
3658 	case PCI_EXP_TYPE_LEG_END:
3659 	case PCI_EXP_TYPE_RC_END:
3660 		if (!pdev->multifunction)
3661 			break;
3662 
3663 		return pci_acs_flags_enabled(pdev, acs_flags);
3664 	}
3665 
3666 	/*
3667 	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3668 	 * to single function devices with the exception of downstream ports.
3669 	 */
3670 	return true;
3671 }
3672 
3673 /**
3674  * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
3675  * @start: starting downstream device
3676  * @end: ending upstream device or NULL to search to the root bus
3677  * @acs_flags: required flags
3678  *
3679  * Walk up a device tree from start to end testing PCI ACS support.  If
3680  * any step along the way does not support the required flags, return false.
3681  */
3682 bool pci_acs_path_enabled(struct pci_dev *start,
3683 			  struct pci_dev *end, u16 acs_flags)
3684 {
3685 	struct pci_dev *pdev, *parent = start;
3686 
3687 	do {
3688 		pdev = parent;
3689 
3690 		if (!pci_acs_enabled(pdev, acs_flags))
3691 			return false;
3692 
3693 		if (pci_is_root_bus(pdev->bus))
3694 			return (end == NULL);
3695 
3696 		parent = pdev->bus->self;
3697 	} while (pdev != end);
3698 
3699 	return true;
3700 }
3701 
3702 /**
3703  * pci_acs_init - Initialize ACS if hardware supports it
3704  * @dev: the PCI device
3705  */
3706 void pci_acs_init(struct pci_dev *dev)
3707 {
3708 	dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3709 
3710 	/*
3711 	 * Attempt to enable ACS regardless of capability because some Root
3712 	 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3713 	 * the standard ACS capability but still support ACS via those
3714 	 * quirks.
3715 	 */
3716 	pci_enable_acs(dev);
3717 }
3718 
3719 /**
3720  * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3721  * @pdev: PCI device
3722  * @bar: BAR to find
3723  *
3724  * Helper to find the position of the ctrl register for a BAR.
3725  * Returns -ENOTSUPP if resizable BARs are not supported at all.
3726  * Returns -ENOENT if no ctrl register for the BAR could be found.
3727  */
3728 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3729 {
3730 	unsigned int pos, nbars, i;
3731 	u32 ctrl;
3732 
3733 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3734 	if (!pos)
3735 		return -ENOTSUPP;
3736 
3737 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3738 	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3739 		    PCI_REBAR_CTRL_NBAR_SHIFT;
3740 
3741 	for (i = 0; i < nbars; i++, pos += 8) {
3742 		int bar_idx;
3743 
3744 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3745 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3746 		if (bar_idx == bar)
3747 			return pos;
3748 	}
3749 
3750 	return -ENOENT;
3751 }
3752 
3753 /**
3754  * pci_rebar_get_possible_sizes - get possible sizes for BAR
3755  * @pdev: PCI device
3756  * @bar: BAR to query
3757  *
3758  * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3759  * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3760  */
3761 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3762 {
3763 	int pos;
3764 	u32 cap;
3765 
3766 	pos = pci_rebar_find_pos(pdev, bar);
3767 	if (pos < 0)
3768 		return 0;
3769 
3770 	pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3771 	cap = FIELD_GET(PCI_REBAR_CAP_SIZES, cap);
3772 
3773 	/* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
3774 	if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
3775 	    bar == 0 && cap == 0x700)
3776 		return 0x3f00;
3777 
3778 	return cap;
3779 }
3780 EXPORT_SYMBOL(pci_rebar_get_possible_sizes);
3781 
3782 /**
3783  * pci_rebar_get_current_size - get the current size of a BAR
3784  * @pdev: PCI device
3785  * @bar: BAR to set size to
3786  *
3787  * Read the size of a BAR from the resizable BAR config.
3788  * Returns size if found or negative error code.
3789  */
3790 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3791 {
3792 	int pos;
3793 	u32 ctrl;
3794 
3795 	pos = pci_rebar_find_pos(pdev, bar);
3796 	if (pos < 0)
3797 		return pos;
3798 
3799 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3800 	return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3801 }
3802 
3803 /**
3804  * pci_rebar_set_size - set a new size for a BAR
3805  * @pdev: PCI device
3806  * @bar: BAR to set size to
3807  * @size: new size as defined in the spec (0=1MB, 19=512GB)
3808  *
3809  * Set the new size of a BAR as defined in the spec.
3810  * Returns zero if resizing was successful, error code otherwise.
3811  */
3812 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3813 {
3814 	int pos;
3815 	u32 ctrl;
3816 
3817 	pos = pci_rebar_find_pos(pdev, bar);
3818 	if (pos < 0)
3819 		return pos;
3820 
3821 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3822 	ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3823 	ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3824 	pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3825 	return 0;
3826 }
3827 
3828 /**
3829  * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3830  * @dev: the PCI device
3831  * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3832  *	PCI_EXP_DEVCAP2_ATOMIC_COMP32
3833  *	PCI_EXP_DEVCAP2_ATOMIC_COMP64
3834  *	PCI_EXP_DEVCAP2_ATOMIC_COMP128
3835  *
3836  * Return 0 if all upstream bridges support AtomicOp routing, egress
3837  * blocking is disabled on all upstream ports, and the root port supports
3838  * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3839  * AtomicOp completion), or negative otherwise.
3840  */
3841 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3842 {
3843 	struct pci_bus *bus = dev->bus;
3844 	struct pci_dev *bridge;
3845 	u32 cap, ctl2;
3846 
3847 	/*
3848 	 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit
3849 	 * in Device Control 2 is reserved in VFs and the PF value applies
3850 	 * to all associated VFs.
3851 	 */
3852 	if (dev->is_virtfn)
3853 		return -EINVAL;
3854 
3855 	if (!pci_is_pcie(dev))
3856 		return -EINVAL;
3857 
3858 	/*
3859 	 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3860 	 * AtomicOp requesters.  For now, we only support endpoints as
3861 	 * requesters and root ports as completers.  No endpoints as
3862 	 * completers, and no peer-to-peer.
3863 	 */
3864 
3865 	switch (pci_pcie_type(dev)) {
3866 	case PCI_EXP_TYPE_ENDPOINT:
3867 	case PCI_EXP_TYPE_LEG_END:
3868 	case PCI_EXP_TYPE_RC_END:
3869 		break;
3870 	default:
3871 		return -EINVAL;
3872 	}
3873 
3874 	while (bus->parent) {
3875 		bridge = bus->self;
3876 
3877 		pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3878 
3879 		switch (pci_pcie_type(bridge)) {
3880 		/* Ensure switch ports support AtomicOp routing */
3881 		case PCI_EXP_TYPE_UPSTREAM:
3882 		case PCI_EXP_TYPE_DOWNSTREAM:
3883 			if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3884 				return -EINVAL;
3885 			break;
3886 
3887 		/* Ensure root port supports all the sizes we care about */
3888 		case PCI_EXP_TYPE_ROOT_PORT:
3889 			if ((cap & cap_mask) != cap_mask)
3890 				return -EINVAL;
3891 			break;
3892 		}
3893 
3894 		/* Ensure upstream ports don't block AtomicOps on egress */
3895 		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3896 			pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3897 						   &ctl2);
3898 			if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3899 				return -EINVAL;
3900 		}
3901 
3902 		bus = bus->parent;
3903 	}
3904 
3905 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3906 				 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3907 	return 0;
3908 }
3909 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3910 
3911 /**
3912  * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3913  * @dev: the PCI device
3914  * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3915  *
3916  * Perform INTx swizzling for a device behind one level of bridge.  This is
3917  * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3918  * behind bridges on add-in cards.  For devices with ARI enabled, the slot
3919  * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3920  * the PCI Express Base Specification, Revision 2.1)
3921  */
3922 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3923 {
3924 	int slot;
3925 
3926 	if (pci_ari_enabled(dev->bus))
3927 		slot = 0;
3928 	else
3929 		slot = PCI_SLOT(dev->devfn);
3930 
3931 	return (((pin - 1) + slot) % 4) + 1;
3932 }
3933 
3934 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3935 {
3936 	u8 pin;
3937 
3938 	pin = dev->pin;
3939 	if (!pin)
3940 		return -1;
3941 
3942 	while (!pci_is_root_bus(dev->bus)) {
3943 		pin = pci_swizzle_interrupt_pin(dev, pin);
3944 		dev = dev->bus->self;
3945 	}
3946 	*bridge = dev;
3947 	return pin;
3948 }
3949 
3950 /**
3951  * pci_common_swizzle - swizzle INTx all the way to root bridge
3952  * @dev: the PCI device
3953  * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3954  *
3955  * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
3956  * bridges all the way up to a PCI root bus.
3957  */
3958 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3959 {
3960 	u8 pin = *pinp;
3961 
3962 	while (!pci_is_root_bus(dev->bus)) {
3963 		pin = pci_swizzle_interrupt_pin(dev, pin);
3964 		dev = dev->bus->self;
3965 	}
3966 	*pinp = pin;
3967 	return PCI_SLOT(dev->devfn);
3968 }
3969 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3970 
3971 /**
3972  * pci_release_region - Release a PCI bar
3973  * @pdev: PCI device whose resources were previously reserved by
3974  *	  pci_request_region()
3975  * @bar: BAR to release
3976  *
3977  * Releases the PCI I/O and memory resources previously reserved by a
3978  * successful call to pci_request_region().  Call this function only
3979  * after all use of the PCI regions has ceased.
3980  */
3981 void pci_release_region(struct pci_dev *pdev, int bar)
3982 {
3983 	struct pci_devres *dr;
3984 
3985 	if (pci_resource_len(pdev, bar) == 0)
3986 		return;
3987 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3988 		release_region(pci_resource_start(pdev, bar),
3989 				pci_resource_len(pdev, bar));
3990 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3991 		release_mem_region(pci_resource_start(pdev, bar),
3992 				pci_resource_len(pdev, bar));
3993 
3994 	dr = find_pci_dr(pdev);
3995 	if (dr)
3996 		dr->region_mask &= ~(1 << bar);
3997 }
3998 EXPORT_SYMBOL(pci_release_region);
3999 
4000 /**
4001  * __pci_request_region - Reserved PCI I/O and memory resource
4002  * @pdev: PCI device whose resources are to be reserved
4003  * @bar: BAR to be reserved
4004  * @res_name: Name to be associated with resource.
4005  * @exclusive: whether the region access is exclusive or not
4006  *
4007  * Mark the PCI region associated with PCI device @pdev BAR @bar as
4008  * being reserved by owner @res_name.  Do not access any
4009  * address inside the PCI regions unless this call returns
4010  * successfully.
4011  *
4012  * If @exclusive is set, then the region is marked so that userspace
4013  * is explicitly not allowed to map the resource via /dev/mem or
4014  * sysfs MMIO access.
4015  *
4016  * Returns 0 on success, or %EBUSY on error.  A warning
4017  * message is also printed on failure.
4018  */
4019 static int __pci_request_region(struct pci_dev *pdev, int bar,
4020 				const char *res_name, int exclusive)
4021 {
4022 	struct pci_devres *dr;
4023 
4024 	if (pci_resource_len(pdev, bar) == 0)
4025 		return 0;
4026 
4027 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
4028 		if (!request_region(pci_resource_start(pdev, bar),
4029 			    pci_resource_len(pdev, bar), res_name))
4030 			goto err_out;
4031 	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
4032 		if (!__request_mem_region(pci_resource_start(pdev, bar),
4033 					pci_resource_len(pdev, bar), res_name,
4034 					exclusive))
4035 			goto err_out;
4036 	}
4037 
4038 	dr = find_pci_dr(pdev);
4039 	if (dr)
4040 		dr->region_mask |= 1 << bar;
4041 
4042 	return 0;
4043 
4044 err_out:
4045 	pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
4046 		 &pdev->resource[bar]);
4047 	return -EBUSY;
4048 }
4049 
4050 /**
4051  * pci_request_region - Reserve PCI I/O and memory resource
4052  * @pdev: PCI device whose resources are to be reserved
4053  * @bar: BAR to be reserved
4054  * @res_name: Name to be associated with resource
4055  *
4056  * Mark the PCI region associated with PCI device @pdev BAR @bar as
4057  * being reserved by owner @res_name.  Do not access any
4058  * address inside the PCI regions unless this call returns
4059  * successfully.
4060  *
4061  * Returns 0 on success, or %EBUSY on error.  A warning
4062  * message is also printed on failure.
4063  */
4064 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
4065 {
4066 	return __pci_request_region(pdev, bar, res_name, 0);
4067 }
4068 EXPORT_SYMBOL(pci_request_region);
4069 
4070 /**
4071  * pci_release_selected_regions - Release selected PCI I/O and memory resources
4072  * @pdev: PCI device whose resources were previously reserved
4073  * @bars: Bitmask of BARs to be released
4074  *
4075  * Release selected PCI I/O and memory resources previously reserved.
4076  * Call this function only after all use of the PCI regions has ceased.
4077  */
4078 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
4079 {
4080 	int i;
4081 
4082 	for (i = 0; i < PCI_STD_NUM_BARS; i++)
4083 		if (bars & (1 << i))
4084 			pci_release_region(pdev, i);
4085 }
4086 EXPORT_SYMBOL(pci_release_selected_regions);
4087 
4088 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
4089 					  const char *res_name, int excl)
4090 {
4091 	int i;
4092 
4093 	for (i = 0; i < PCI_STD_NUM_BARS; i++)
4094 		if (bars & (1 << i))
4095 			if (__pci_request_region(pdev, i, res_name, excl))
4096 				goto err_out;
4097 	return 0;
4098 
4099 err_out:
4100 	while (--i >= 0)
4101 		if (bars & (1 << i))
4102 			pci_release_region(pdev, i);
4103 
4104 	return -EBUSY;
4105 }
4106 
4107 
4108 /**
4109  * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
4110  * @pdev: PCI device whose resources are to be reserved
4111  * @bars: Bitmask of BARs to be requested
4112  * @res_name: Name to be associated with resource
4113  */
4114 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
4115 				 const char *res_name)
4116 {
4117 	return __pci_request_selected_regions(pdev, bars, res_name, 0);
4118 }
4119 EXPORT_SYMBOL(pci_request_selected_regions);
4120 
4121 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
4122 					   const char *res_name)
4123 {
4124 	return __pci_request_selected_regions(pdev, bars, res_name,
4125 			IORESOURCE_EXCLUSIVE);
4126 }
4127 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
4128 
4129 /**
4130  * pci_release_regions - Release reserved PCI I/O and memory resources
4131  * @pdev: PCI device whose resources were previously reserved by
4132  *	  pci_request_regions()
4133  *
4134  * Releases all PCI I/O and memory resources previously reserved by a
4135  * successful call to pci_request_regions().  Call this function only
4136  * after all use of the PCI regions has ceased.
4137  */
4138 
4139 void pci_release_regions(struct pci_dev *pdev)
4140 {
4141 	pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
4142 }
4143 EXPORT_SYMBOL(pci_release_regions);
4144 
4145 /**
4146  * pci_request_regions - Reserve PCI I/O and memory resources
4147  * @pdev: PCI device whose resources are to be reserved
4148  * @res_name: Name to be associated with resource.
4149  *
4150  * Mark all PCI regions associated with PCI device @pdev as
4151  * being reserved by owner @res_name.  Do not access any
4152  * address inside the PCI regions unless this call returns
4153  * successfully.
4154  *
4155  * Returns 0 on success, or %EBUSY on error.  A warning
4156  * message is also printed on failure.
4157  */
4158 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
4159 {
4160 	return pci_request_selected_regions(pdev,
4161 			((1 << PCI_STD_NUM_BARS) - 1), res_name);
4162 }
4163 EXPORT_SYMBOL(pci_request_regions);
4164 
4165 /**
4166  * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
4167  * @pdev: PCI device whose resources are to be reserved
4168  * @res_name: Name to be associated with resource.
4169  *
4170  * Mark all PCI regions associated with PCI device @pdev as being reserved
4171  * by owner @res_name.  Do not access any address inside the PCI regions
4172  * unless this call returns successfully.
4173  *
4174  * pci_request_regions_exclusive() will mark the region so that /dev/mem
4175  * and the sysfs MMIO access will not be allowed.
4176  *
4177  * Returns 0 on success, or %EBUSY on error.  A warning message is also
4178  * printed on failure.
4179  */
4180 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
4181 {
4182 	return pci_request_selected_regions_exclusive(pdev,
4183 				((1 << PCI_STD_NUM_BARS) - 1), res_name);
4184 }
4185 EXPORT_SYMBOL(pci_request_regions_exclusive);
4186 
4187 /*
4188  * Record the PCI IO range (expressed as CPU physical address + size).
4189  * Return a negative value if an error has occurred, zero otherwise
4190  */
4191 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
4192 			resource_size_t	size)
4193 {
4194 	int ret = 0;
4195 #ifdef PCI_IOBASE
4196 	struct logic_pio_hwaddr *range;
4197 
4198 	if (!size || addr + size < addr)
4199 		return -EINVAL;
4200 
4201 	range = kzalloc(sizeof(*range), GFP_ATOMIC);
4202 	if (!range)
4203 		return -ENOMEM;
4204 
4205 	range->fwnode = fwnode;
4206 	range->size = size;
4207 	range->hw_start = addr;
4208 	range->flags = LOGIC_PIO_CPU_MMIO;
4209 
4210 	ret = logic_pio_register_range(range);
4211 	if (ret)
4212 		kfree(range);
4213 
4214 	/* Ignore duplicates due to deferred probing */
4215 	if (ret == -EEXIST)
4216 		ret = 0;
4217 #endif
4218 
4219 	return ret;
4220 }
4221 
4222 phys_addr_t pci_pio_to_address(unsigned long pio)
4223 {
4224 #ifdef PCI_IOBASE
4225 	if (pio < MMIO_UPPER_LIMIT)
4226 		return logic_pio_to_hwaddr(pio);
4227 #endif
4228 
4229 	return (phys_addr_t) OF_BAD_ADDR;
4230 }
4231 EXPORT_SYMBOL_GPL(pci_pio_to_address);
4232 
4233 unsigned long __weak pci_address_to_pio(phys_addr_t address)
4234 {
4235 #ifdef PCI_IOBASE
4236 	return logic_pio_trans_cpuaddr(address);
4237 #else
4238 	if (address > IO_SPACE_LIMIT)
4239 		return (unsigned long)-1;
4240 
4241 	return (unsigned long) address;
4242 #endif
4243 }
4244 
4245 /**
4246  * pci_remap_iospace - Remap the memory mapped I/O space
4247  * @res: Resource describing the I/O space
4248  * @phys_addr: physical address of range to be mapped
4249  *
4250  * Remap the memory mapped I/O space described by the @res and the CPU
4251  * physical address @phys_addr into virtual address space.  Only
4252  * architectures that have memory mapped IO functions defined (and the
4253  * PCI_IOBASE value defined) should call this function.
4254  */
4255 #ifndef pci_remap_iospace
4256 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4257 {
4258 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4259 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4260 
4261 	if (!(res->flags & IORESOURCE_IO))
4262 		return -EINVAL;
4263 
4264 	if (res->end > IO_SPACE_LIMIT)
4265 		return -EINVAL;
4266 
4267 	return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4268 				  pgprot_device(PAGE_KERNEL));
4269 #else
4270 	/*
4271 	 * This architecture does not have memory mapped I/O space,
4272 	 * so this function should never be called
4273 	 */
4274 	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4275 	return -ENODEV;
4276 #endif
4277 }
4278 EXPORT_SYMBOL(pci_remap_iospace);
4279 #endif
4280 
4281 /**
4282  * pci_unmap_iospace - Unmap the memory mapped I/O space
4283  * @res: resource to be unmapped
4284  *
4285  * Unmap the CPU virtual address @res from virtual address space.  Only
4286  * architectures that have memory mapped IO functions defined (and the
4287  * PCI_IOBASE value defined) should call this function.
4288  */
4289 void pci_unmap_iospace(struct resource *res)
4290 {
4291 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4292 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4293 
4294 	vunmap_range(vaddr, vaddr + resource_size(res));
4295 #endif
4296 }
4297 EXPORT_SYMBOL(pci_unmap_iospace);
4298 
4299 static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
4300 {
4301 	struct resource **res = ptr;
4302 
4303 	pci_unmap_iospace(*res);
4304 }
4305 
4306 /**
4307  * devm_pci_remap_iospace - Managed pci_remap_iospace()
4308  * @dev: Generic device to remap IO address for
4309  * @res: Resource describing the I/O space
4310  * @phys_addr: physical address of range to be mapped
4311  *
4312  * Managed pci_remap_iospace().  Map is automatically unmapped on driver
4313  * detach.
4314  */
4315 int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4316 			   phys_addr_t phys_addr)
4317 {
4318 	const struct resource **ptr;
4319 	int error;
4320 
4321 	ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4322 	if (!ptr)
4323 		return -ENOMEM;
4324 
4325 	error = pci_remap_iospace(res, phys_addr);
4326 	if (error) {
4327 		devres_free(ptr);
4328 	} else	{
4329 		*ptr = res;
4330 		devres_add(dev, ptr);
4331 	}
4332 
4333 	return error;
4334 }
4335 EXPORT_SYMBOL(devm_pci_remap_iospace);
4336 
4337 /**
4338  * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4339  * @dev: Generic device to remap IO address for
4340  * @offset: Resource address to map
4341  * @size: Size of map
4342  *
4343  * Managed pci_remap_cfgspace().  Map is automatically unmapped on driver
4344  * detach.
4345  */
4346 void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4347 				      resource_size_t offset,
4348 				      resource_size_t size)
4349 {
4350 	void __iomem **ptr, *addr;
4351 
4352 	ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4353 	if (!ptr)
4354 		return NULL;
4355 
4356 	addr = pci_remap_cfgspace(offset, size);
4357 	if (addr) {
4358 		*ptr = addr;
4359 		devres_add(dev, ptr);
4360 	} else
4361 		devres_free(ptr);
4362 
4363 	return addr;
4364 }
4365 EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4366 
4367 /**
4368  * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4369  * @dev: generic device to handle the resource for
4370  * @res: configuration space resource to be handled
4371  *
4372  * Checks that a resource is a valid memory region, requests the memory
4373  * region and ioremaps with pci_remap_cfgspace() API that ensures the
4374  * proper PCI configuration space memory attributes are guaranteed.
4375  *
4376  * All operations are managed and will be undone on driver detach.
4377  *
4378  * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4379  * on failure. Usage example::
4380  *
4381  *	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4382  *	base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4383  *	if (IS_ERR(base))
4384  *		return PTR_ERR(base);
4385  */
4386 void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4387 					  struct resource *res)
4388 {
4389 	resource_size_t size;
4390 	const char *name;
4391 	void __iomem *dest_ptr;
4392 
4393 	BUG_ON(!dev);
4394 
4395 	if (!res || resource_type(res) != IORESOURCE_MEM) {
4396 		dev_err(dev, "invalid resource\n");
4397 		return IOMEM_ERR_PTR(-EINVAL);
4398 	}
4399 
4400 	size = resource_size(res);
4401 
4402 	if (res->name)
4403 		name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev),
4404 				      res->name);
4405 	else
4406 		name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL);
4407 	if (!name)
4408 		return IOMEM_ERR_PTR(-ENOMEM);
4409 
4410 	if (!devm_request_mem_region(dev, res->start, size, name)) {
4411 		dev_err(dev, "can't request region for resource %pR\n", res);
4412 		return IOMEM_ERR_PTR(-EBUSY);
4413 	}
4414 
4415 	dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4416 	if (!dest_ptr) {
4417 		dev_err(dev, "ioremap failed for resource %pR\n", res);
4418 		devm_release_mem_region(dev, res->start, size);
4419 		dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4420 	}
4421 
4422 	return dest_ptr;
4423 }
4424 EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4425 
4426 static void __pci_set_master(struct pci_dev *dev, bool enable)
4427 {
4428 	u16 old_cmd, cmd;
4429 
4430 	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4431 	if (enable)
4432 		cmd = old_cmd | PCI_COMMAND_MASTER;
4433 	else
4434 		cmd = old_cmd & ~PCI_COMMAND_MASTER;
4435 	if (cmd != old_cmd) {
4436 		pci_dbg(dev, "%s bus mastering\n",
4437 			enable ? "enabling" : "disabling");
4438 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4439 	}
4440 	dev->is_busmaster = enable;
4441 }
4442 
4443 /**
4444  * pcibios_setup - process "pci=" kernel boot arguments
4445  * @str: string used to pass in "pci=" kernel boot arguments
4446  *
4447  * Process kernel boot arguments.  This is the default implementation.
4448  * Architecture specific implementations can override this as necessary.
4449  */
4450 char * __weak __init pcibios_setup(char *str)
4451 {
4452 	return str;
4453 }
4454 
4455 /**
4456  * pcibios_set_master - enable PCI bus-mastering for device dev
4457  * @dev: the PCI device to enable
4458  *
4459  * Enables PCI bus-mastering for the device.  This is the default
4460  * implementation.  Architecture specific implementations can override
4461  * this if necessary.
4462  */
4463 void __weak pcibios_set_master(struct pci_dev *dev)
4464 {
4465 	u8 lat;
4466 
4467 	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4468 	if (pci_is_pcie(dev))
4469 		return;
4470 
4471 	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4472 	if (lat < 16)
4473 		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4474 	else if (lat > pcibios_max_latency)
4475 		lat = pcibios_max_latency;
4476 	else
4477 		return;
4478 
4479 	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4480 }
4481 
4482 /**
4483  * pci_set_master - enables bus-mastering for device dev
4484  * @dev: the PCI device to enable
4485  *
4486  * Enables bus-mastering on the device and calls pcibios_set_master()
4487  * to do the needed arch specific settings.
4488  */
4489 void pci_set_master(struct pci_dev *dev)
4490 {
4491 	__pci_set_master(dev, true);
4492 	pcibios_set_master(dev);
4493 }
4494 EXPORT_SYMBOL(pci_set_master);
4495 
4496 /**
4497  * pci_clear_master - disables bus-mastering for device dev
4498  * @dev: the PCI device to disable
4499  */
4500 void pci_clear_master(struct pci_dev *dev)
4501 {
4502 	__pci_set_master(dev, false);
4503 }
4504 EXPORT_SYMBOL(pci_clear_master);
4505 
4506 /**
4507  * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4508  * @dev: the PCI device for which MWI is to be enabled
4509  *
4510  * Helper function for pci_set_mwi.
4511  * Originally copied from drivers/net/acenic.c.
4512  * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4513  *
4514  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4515  */
4516 int pci_set_cacheline_size(struct pci_dev *dev)
4517 {
4518 	u8 cacheline_size;
4519 
4520 	if (!pci_cache_line_size)
4521 		return -EINVAL;
4522 
4523 	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4524 	   equal to or multiple of the right value. */
4525 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4526 	if (cacheline_size >= pci_cache_line_size &&
4527 	    (cacheline_size % pci_cache_line_size) == 0)
4528 		return 0;
4529 
4530 	/* Write the correct value. */
4531 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4532 	/* Read it back. */
4533 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4534 	if (cacheline_size == pci_cache_line_size)
4535 		return 0;
4536 
4537 	pci_dbg(dev, "cache line size of %d is not supported\n",
4538 		   pci_cache_line_size << 2);
4539 
4540 	return -EINVAL;
4541 }
4542 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4543 
4544 /**
4545  * pci_set_mwi - enables memory-write-invalidate PCI transaction
4546  * @dev: the PCI device for which MWI is enabled
4547  *
4548  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4549  *
4550  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4551  */
4552 int pci_set_mwi(struct pci_dev *dev)
4553 {
4554 #ifdef PCI_DISABLE_MWI
4555 	return 0;
4556 #else
4557 	int rc;
4558 	u16 cmd;
4559 
4560 	rc = pci_set_cacheline_size(dev);
4561 	if (rc)
4562 		return rc;
4563 
4564 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4565 	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4566 		pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4567 		cmd |= PCI_COMMAND_INVALIDATE;
4568 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4569 	}
4570 	return 0;
4571 #endif
4572 }
4573 EXPORT_SYMBOL(pci_set_mwi);
4574 
4575 /**
4576  * pcim_set_mwi - a device-managed pci_set_mwi()
4577  * @dev: the PCI device for which MWI is enabled
4578  *
4579  * Managed pci_set_mwi().
4580  *
4581  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4582  */
4583 int pcim_set_mwi(struct pci_dev *dev)
4584 {
4585 	struct pci_devres *dr;
4586 
4587 	dr = find_pci_dr(dev);
4588 	if (!dr)
4589 		return -ENOMEM;
4590 
4591 	dr->mwi = 1;
4592 	return pci_set_mwi(dev);
4593 }
4594 EXPORT_SYMBOL(pcim_set_mwi);
4595 
4596 /**
4597  * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4598  * @dev: the PCI device for which MWI is enabled
4599  *
4600  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4601  * Callers are not required to check the return value.
4602  *
4603  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4604  */
4605 int pci_try_set_mwi(struct pci_dev *dev)
4606 {
4607 #ifdef PCI_DISABLE_MWI
4608 	return 0;
4609 #else
4610 	return pci_set_mwi(dev);
4611 #endif
4612 }
4613 EXPORT_SYMBOL(pci_try_set_mwi);
4614 
4615 /**
4616  * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4617  * @dev: the PCI device to disable
4618  *
4619  * Disables PCI Memory-Write-Invalidate transaction on the device
4620  */
4621 void pci_clear_mwi(struct pci_dev *dev)
4622 {
4623 #ifndef PCI_DISABLE_MWI
4624 	u16 cmd;
4625 
4626 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4627 	if (cmd & PCI_COMMAND_INVALIDATE) {
4628 		cmd &= ~PCI_COMMAND_INVALIDATE;
4629 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4630 	}
4631 #endif
4632 }
4633 EXPORT_SYMBOL(pci_clear_mwi);
4634 
4635 /**
4636  * pci_disable_parity - disable parity checking for device
4637  * @dev: the PCI device to operate on
4638  *
4639  * Disable parity checking for device @dev
4640  */
4641 void pci_disable_parity(struct pci_dev *dev)
4642 {
4643 	u16 cmd;
4644 
4645 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4646 	if (cmd & PCI_COMMAND_PARITY) {
4647 		cmd &= ~PCI_COMMAND_PARITY;
4648 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4649 	}
4650 }
4651 
4652 /**
4653  * pci_intx - enables/disables PCI INTx for device dev
4654  * @pdev: the PCI device to operate on
4655  * @enable: boolean: whether to enable or disable PCI INTx
4656  *
4657  * Enables/disables PCI INTx for device @pdev
4658  */
4659 void pci_intx(struct pci_dev *pdev, int enable)
4660 {
4661 	u16 pci_command, new;
4662 
4663 	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4664 
4665 	if (enable)
4666 		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4667 	else
4668 		new = pci_command | PCI_COMMAND_INTX_DISABLE;
4669 
4670 	if (new != pci_command) {
4671 		struct pci_devres *dr;
4672 
4673 		pci_write_config_word(pdev, PCI_COMMAND, new);
4674 
4675 		dr = find_pci_dr(pdev);
4676 		if (dr && !dr->restore_intx) {
4677 			dr->restore_intx = 1;
4678 			dr->orig_intx = !enable;
4679 		}
4680 	}
4681 }
4682 EXPORT_SYMBOL_GPL(pci_intx);
4683 
4684 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4685 {
4686 	struct pci_bus *bus = dev->bus;
4687 	bool mask_updated = true;
4688 	u32 cmd_status_dword;
4689 	u16 origcmd, newcmd;
4690 	unsigned long flags;
4691 	bool irq_pending;
4692 
4693 	/*
4694 	 * We do a single dword read to retrieve both command and status.
4695 	 * Document assumptions that make this possible.
4696 	 */
4697 	BUILD_BUG_ON(PCI_COMMAND % 4);
4698 	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4699 
4700 	raw_spin_lock_irqsave(&pci_lock, flags);
4701 
4702 	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4703 
4704 	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4705 
4706 	/*
4707 	 * Check interrupt status register to see whether our device
4708 	 * triggered the interrupt (when masking) or the next IRQ is
4709 	 * already pending (when unmasking).
4710 	 */
4711 	if (mask != irq_pending) {
4712 		mask_updated = false;
4713 		goto done;
4714 	}
4715 
4716 	origcmd = cmd_status_dword;
4717 	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4718 	if (mask)
4719 		newcmd |= PCI_COMMAND_INTX_DISABLE;
4720 	if (newcmd != origcmd)
4721 		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4722 
4723 done:
4724 	raw_spin_unlock_irqrestore(&pci_lock, flags);
4725 
4726 	return mask_updated;
4727 }
4728 
4729 /**
4730  * pci_check_and_mask_intx - mask INTx on pending interrupt
4731  * @dev: the PCI device to operate on
4732  *
4733  * Check if the device dev has its INTx line asserted, mask it and return
4734  * true in that case. False is returned if no interrupt was pending.
4735  */
4736 bool pci_check_and_mask_intx(struct pci_dev *dev)
4737 {
4738 	return pci_check_and_set_intx_mask(dev, true);
4739 }
4740 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4741 
4742 /**
4743  * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4744  * @dev: the PCI device to operate on
4745  *
4746  * Check if the device dev has its INTx line asserted, unmask it if not and
4747  * return true. False is returned and the mask remains active if there was
4748  * still an interrupt pending.
4749  */
4750 bool pci_check_and_unmask_intx(struct pci_dev *dev)
4751 {
4752 	return pci_check_and_set_intx_mask(dev, false);
4753 }
4754 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4755 
4756 /**
4757  * pci_wait_for_pending_transaction - wait for pending transaction
4758  * @dev: the PCI device to operate on
4759  *
4760  * Return 0 if transaction is pending 1 otherwise.
4761  */
4762 int pci_wait_for_pending_transaction(struct pci_dev *dev)
4763 {
4764 	if (!pci_is_pcie(dev))
4765 		return 1;
4766 
4767 	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4768 				    PCI_EXP_DEVSTA_TRPND);
4769 }
4770 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4771 
4772 /**
4773  * pcie_flr - initiate a PCIe function level reset
4774  * @dev: device to reset
4775  *
4776  * Initiate a function level reset unconditionally on @dev without
4777  * checking any flags and DEVCAP
4778  */
4779 int pcie_flr(struct pci_dev *dev)
4780 {
4781 	if (!pci_wait_for_pending_transaction(dev))
4782 		pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4783 
4784 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4785 
4786 	if (dev->imm_ready)
4787 		return 0;
4788 
4789 	/*
4790 	 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4791 	 * 100ms, but may silently discard requests while the FLR is in
4792 	 * progress.  Wait 100ms before trying to access the device.
4793 	 */
4794 	msleep(100);
4795 
4796 	return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4797 }
4798 EXPORT_SYMBOL_GPL(pcie_flr);
4799 
4800 /**
4801  * pcie_reset_flr - initiate a PCIe function level reset
4802  * @dev: device to reset
4803  * @probe: if true, return 0 if device can be reset this way
4804  *
4805  * Initiate a function level reset on @dev.
4806  */
4807 int pcie_reset_flr(struct pci_dev *dev, bool probe)
4808 {
4809 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4810 		return -ENOTTY;
4811 
4812 	if (!(dev->devcap & PCI_EXP_DEVCAP_FLR))
4813 		return -ENOTTY;
4814 
4815 	if (probe)
4816 		return 0;
4817 
4818 	return pcie_flr(dev);
4819 }
4820 EXPORT_SYMBOL_GPL(pcie_reset_flr);
4821 
4822 static int pci_af_flr(struct pci_dev *dev, bool probe)
4823 {
4824 	int pos;
4825 	u8 cap;
4826 
4827 	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4828 	if (!pos)
4829 		return -ENOTTY;
4830 
4831 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4832 		return -ENOTTY;
4833 
4834 	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4835 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4836 		return -ENOTTY;
4837 
4838 	if (probe)
4839 		return 0;
4840 
4841 	/*
4842 	 * Wait for Transaction Pending bit to clear.  A word-aligned test
4843 	 * is used, so we use the control offset rather than status and shift
4844 	 * the test bit to match.
4845 	 */
4846 	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4847 				 PCI_AF_STATUS_TP << 8))
4848 		pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4849 
4850 	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4851 
4852 	if (dev->imm_ready)
4853 		return 0;
4854 
4855 	/*
4856 	 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4857 	 * updated 27 July 2006; a device must complete an FLR within
4858 	 * 100ms, but may silently discard requests while the FLR is in
4859 	 * progress.  Wait 100ms before trying to access the device.
4860 	 */
4861 	msleep(100);
4862 
4863 	return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4864 }
4865 
4866 /**
4867  * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4868  * @dev: Device to reset.
4869  * @probe: if true, return 0 if the device can be reset this way.
4870  *
4871  * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4872  * unset, it will be reinitialized internally when going from PCI_D3hot to
4873  * PCI_D0.  If that's the case and the device is not in a low-power state
4874  * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4875  *
4876  * NOTE: This causes the caller to sleep for twice the device power transition
4877  * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4878  * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4879  * Moreover, only devices in D0 can be reset by this function.
4880  */
4881 static int pci_pm_reset(struct pci_dev *dev, bool probe)
4882 {
4883 	u16 csr;
4884 
4885 	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4886 		return -ENOTTY;
4887 
4888 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4889 	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4890 		return -ENOTTY;
4891 
4892 	if (probe)
4893 		return 0;
4894 
4895 	if (dev->current_state != PCI_D0)
4896 		return -EINVAL;
4897 
4898 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4899 	csr |= PCI_D3hot;
4900 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4901 	pci_dev_d3_sleep(dev);
4902 
4903 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4904 	csr |= PCI_D0;
4905 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4906 	pci_dev_d3_sleep(dev);
4907 
4908 	return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4909 }
4910 
4911 /**
4912  * pcie_wait_for_link_status - Wait for link status change
4913  * @pdev: Device whose link to wait for.
4914  * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE.
4915  * @active: Waiting for active or inactive?
4916  *
4917  * Return 0 if successful, or -ETIMEDOUT if status has not changed within
4918  * PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
4919  */
4920 static int pcie_wait_for_link_status(struct pci_dev *pdev,
4921 				     bool use_lt, bool active)
4922 {
4923 	u16 lnksta_mask, lnksta_match;
4924 	unsigned long end_jiffies;
4925 	u16 lnksta;
4926 
4927 	lnksta_mask = use_lt ? PCI_EXP_LNKSTA_LT : PCI_EXP_LNKSTA_DLLLA;
4928 	lnksta_match = active ? lnksta_mask : 0;
4929 
4930 	end_jiffies = jiffies + msecs_to_jiffies(PCIE_LINK_RETRAIN_TIMEOUT_MS);
4931 	do {
4932 		pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta);
4933 		if ((lnksta & lnksta_mask) == lnksta_match)
4934 			return 0;
4935 		msleep(1);
4936 	} while (time_before(jiffies, end_jiffies));
4937 
4938 	return -ETIMEDOUT;
4939 }
4940 
4941 /**
4942  * pcie_retrain_link - Request a link retrain and wait for it to complete
4943  * @pdev: Device whose link to retrain.
4944  * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE, for status.
4945  *
4946  * Retrain completion status is retrieved from the Link Status Register
4947  * according to @use_lt.  It is not verified whether the use of the DLLLA
4948  * bit is valid.
4949  *
4950  * Return 0 if successful, or -ETIMEDOUT if training has not completed
4951  * within PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
4952  */
4953 int pcie_retrain_link(struct pci_dev *pdev, bool use_lt)
4954 {
4955 	int rc;
4956 
4957 	/*
4958 	 * Ensure the updated LNKCTL parameters are used during link
4959 	 * training by checking that there is no ongoing link training to
4960 	 * avoid LTSSM race as recommended in Implementation Note at the
4961 	 * end of PCIe r6.0.1 sec 7.5.3.7.
4962 	 */
4963 	rc = pcie_wait_for_link_status(pdev, use_lt, !use_lt);
4964 	if (rc)
4965 		return rc;
4966 
4967 	pcie_capability_set_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL);
4968 	if (pdev->clear_retrain_link) {
4969 		/*
4970 		 * Due to an erratum in some devices the Retrain Link bit
4971 		 * needs to be cleared again manually to allow the link
4972 		 * training to succeed.
4973 		 */
4974 		pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL);
4975 	}
4976 
4977 	return pcie_wait_for_link_status(pdev, use_lt, !use_lt);
4978 }
4979 
4980 /**
4981  * pcie_wait_for_link_delay - Wait until link is active or inactive
4982  * @pdev: Bridge device
4983  * @active: waiting for active or inactive?
4984  * @delay: Delay to wait after link has become active (in ms)
4985  *
4986  * Use this to wait till link becomes active or inactive.
4987  */
4988 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4989 				     int delay)
4990 {
4991 	int rc;
4992 
4993 	/*
4994 	 * Some controllers might not implement link active reporting. In this
4995 	 * case, we wait for 1000 ms + any delay requested by the caller.
4996 	 */
4997 	if (!pdev->link_active_reporting) {
4998 		msleep(PCIE_LINK_RETRAIN_TIMEOUT_MS + delay);
4999 		return true;
5000 	}
5001 
5002 	/*
5003 	 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
5004 	 * after which we should expect an link active if the reset was
5005 	 * successful. If so, software must wait a minimum 100ms before sending
5006 	 * configuration requests to devices downstream this port.
5007 	 *
5008 	 * If the link fails to activate, either the device was physically
5009 	 * removed or the link is permanently failed.
5010 	 */
5011 	if (active)
5012 		msleep(20);
5013 	rc = pcie_wait_for_link_status(pdev, false, active);
5014 	if (active) {
5015 		if (rc)
5016 			rc = pcie_failed_link_retrain(pdev);
5017 		if (rc)
5018 			return false;
5019 
5020 		msleep(delay);
5021 		return true;
5022 	}
5023 
5024 	if (rc)
5025 		return false;
5026 
5027 	return true;
5028 }
5029 
5030 /**
5031  * pcie_wait_for_link - Wait until link is active or inactive
5032  * @pdev: Bridge device
5033  * @active: waiting for active or inactive?
5034  *
5035  * Use this to wait till link becomes active or inactive.
5036  */
5037 bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
5038 {
5039 	return pcie_wait_for_link_delay(pdev, active, 100);
5040 }
5041 
5042 /*
5043  * Find maximum D3cold delay required by all the devices on the bus.  The
5044  * spec says 100 ms, but firmware can lower it and we allow drivers to
5045  * increase it as well.
5046  *
5047  * Called with @pci_bus_sem locked for reading.
5048  */
5049 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
5050 {
5051 	const struct pci_dev *pdev;
5052 	int min_delay = 100;
5053 	int max_delay = 0;
5054 
5055 	list_for_each_entry(pdev, &bus->devices, bus_list) {
5056 		if (pdev->d3cold_delay < min_delay)
5057 			min_delay = pdev->d3cold_delay;
5058 		if (pdev->d3cold_delay > max_delay)
5059 			max_delay = pdev->d3cold_delay;
5060 	}
5061 
5062 	return max(min_delay, max_delay);
5063 }
5064 
5065 /**
5066  * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
5067  * @dev: PCI bridge
5068  * @reset_type: reset type in human-readable form
5069  *
5070  * Handle necessary delays before access to the devices on the secondary
5071  * side of the bridge are permitted after D3cold to D0 transition
5072  * or Conventional Reset.
5073  *
5074  * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
5075  * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
5076  * 4.3.2.
5077  *
5078  * Return 0 on success or -ENOTTY if the first device on the secondary bus
5079  * failed to become accessible.
5080  */
5081 int pci_bridge_wait_for_secondary_bus(struct pci_dev *dev, char *reset_type)
5082 {
5083 	struct pci_dev *child;
5084 	int delay;
5085 
5086 	if (pci_dev_is_disconnected(dev))
5087 		return 0;
5088 
5089 	if (!pci_is_bridge(dev))
5090 		return 0;
5091 
5092 	down_read(&pci_bus_sem);
5093 
5094 	/*
5095 	 * We only deal with devices that are present currently on the bus.
5096 	 * For any hot-added devices the access delay is handled in pciehp
5097 	 * board_added(). In case of ACPI hotplug the firmware is expected
5098 	 * to configure the devices before OS is notified.
5099 	 */
5100 	if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
5101 		up_read(&pci_bus_sem);
5102 		return 0;
5103 	}
5104 
5105 	/* Take d3cold_delay requirements into account */
5106 	delay = pci_bus_max_d3cold_delay(dev->subordinate);
5107 	if (!delay) {
5108 		up_read(&pci_bus_sem);
5109 		return 0;
5110 	}
5111 
5112 	child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
5113 				 bus_list);
5114 	up_read(&pci_bus_sem);
5115 
5116 	/*
5117 	 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
5118 	 * accessing the device after reset (that is 1000 ms + 100 ms).
5119 	 */
5120 	if (!pci_is_pcie(dev)) {
5121 		pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
5122 		msleep(1000 + delay);
5123 		return 0;
5124 	}
5125 
5126 	/*
5127 	 * For PCIe downstream and root ports that do not support speeds
5128 	 * greater than 5 GT/s need to wait minimum 100 ms. For higher
5129 	 * speeds (gen3) we need to wait first for the data link layer to
5130 	 * become active.
5131 	 *
5132 	 * However, 100 ms is the minimum and the PCIe spec says the
5133 	 * software must allow at least 1s before it can determine that the
5134 	 * device that did not respond is a broken device. Also device can
5135 	 * take longer than that to respond if it indicates so through Request
5136 	 * Retry Status completions.
5137 	 *
5138 	 * Therefore we wait for 100 ms and check for the device presence
5139 	 * until the timeout expires.
5140 	 */
5141 	if (!pcie_downstream_port(dev))
5142 		return 0;
5143 
5144 	if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
5145 		u16 status;
5146 
5147 		pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
5148 		msleep(delay);
5149 
5150 		if (!pci_dev_wait(child, reset_type, PCI_RESET_WAIT - delay))
5151 			return 0;
5152 
5153 		/*
5154 		 * If the port supports active link reporting we now check
5155 		 * whether the link is active and if not bail out early with
5156 		 * the assumption that the device is not present anymore.
5157 		 */
5158 		if (!dev->link_active_reporting)
5159 			return -ENOTTY;
5160 
5161 		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &status);
5162 		if (!(status & PCI_EXP_LNKSTA_DLLLA))
5163 			return -ENOTTY;
5164 
5165 		return pci_dev_wait(child, reset_type,
5166 				    PCIE_RESET_READY_POLL_MS - PCI_RESET_WAIT);
5167 	}
5168 
5169 	pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
5170 		delay);
5171 	if (!pcie_wait_for_link_delay(dev, true, delay)) {
5172 		/* Did not train, no need to wait any further */
5173 		pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
5174 		return -ENOTTY;
5175 	}
5176 
5177 	return pci_dev_wait(child, reset_type,
5178 			    PCIE_RESET_READY_POLL_MS - delay);
5179 }
5180 
5181 void pci_reset_secondary_bus(struct pci_dev *dev)
5182 {
5183 	u16 ctrl;
5184 
5185 	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
5186 	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
5187 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
5188 
5189 	/*
5190 	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
5191 	 * this to 2ms to ensure that we meet the minimum requirement.
5192 	 */
5193 	msleep(2);
5194 
5195 	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
5196 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
5197 }
5198 
5199 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
5200 {
5201 	pci_reset_secondary_bus(dev);
5202 }
5203 
5204 /**
5205  * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
5206  * @dev: Bridge device
5207  *
5208  * Use the bridge control register to assert reset on the secondary bus.
5209  * Devices on the secondary bus are left in power-on state.
5210  */
5211 int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
5212 {
5213 	pcibios_reset_secondary_bus(dev);
5214 
5215 	return pci_bridge_wait_for_secondary_bus(dev, "bus reset");
5216 }
5217 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
5218 
5219 static int pci_parent_bus_reset(struct pci_dev *dev, bool probe)
5220 {
5221 	struct pci_dev *pdev;
5222 
5223 	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
5224 	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5225 		return -ENOTTY;
5226 
5227 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
5228 		if (pdev != dev)
5229 			return -ENOTTY;
5230 
5231 	if (probe)
5232 		return 0;
5233 
5234 	return pci_bridge_secondary_bus_reset(dev->bus->self);
5235 }
5236 
5237 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe)
5238 {
5239 	int rc = -ENOTTY;
5240 
5241 	if (!hotplug || !try_module_get(hotplug->owner))
5242 		return rc;
5243 
5244 	if (hotplug->ops->reset_slot)
5245 		rc = hotplug->ops->reset_slot(hotplug, probe);
5246 
5247 	module_put(hotplug->owner);
5248 
5249 	return rc;
5250 }
5251 
5252 static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe)
5253 {
5254 	if (dev->multifunction || dev->subordinate || !dev->slot ||
5255 	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5256 		return -ENOTTY;
5257 
5258 	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
5259 }
5260 
5261 static int pci_reset_bus_function(struct pci_dev *dev, bool probe)
5262 {
5263 	int rc;
5264 
5265 	rc = pci_dev_reset_slot_function(dev, probe);
5266 	if (rc != -ENOTTY)
5267 		return rc;
5268 	return pci_parent_bus_reset(dev, probe);
5269 }
5270 
5271 void pci_dev_lock(struct pci_dev *dev)
5272 {
5273 	/* block PM suspend, driver probe, etc. */
5274 	device_lock(&dev->dev);
5275 	pci_cfg_access_lock(dev);
5276 }
5277 EXPORT_SYMBOL_GPL(pci_dev_lock);
5278 
5279 /* Return 1 on successful lock, 0 on contention */
5280 int pci_dev_trylock(struct pci_dev *dev)
5281 {
5282 	if (device_trylock(&dev->dev)) {
5283 		if (pci_cfg_access_trylock(dev))
5284 			return 1;
5285 		device_unlock(&dev->dev);
5286 	}
5287 
5288 	return 0;
5289 }
5290 EXPORT_SYMBOL_GPL(pci_dev_trylock);
5291 
5292 void pci_dev_unlock(struct pci_dev *dev)
5293 {
5294 	pci_cfg_access_unlock(dev);
5295 	device_unlock(&dev->dev);
5296 }
5297 EXPORT_SYMBOL_GPL(pci_dev_unlock);
5298 
5299 static void pci_dev_save_and_disable(struct pci_dev *dev)
5300 {
5301 	const struct pci_error_handlers *err_handler =
5302 			dev->driver ? dev->driver->err_handler : NULL;
5303 
5304 	/*
5305 	 * dev->driver->err_handler->reset_prepare() is protected against
5306 	 * races with ->remove() by the device lock, which must be held by
5307 	 * the caller.
5308 	 */
5309 	if (err_handler && err_handler->reset_prepare)
5310 		err_handler->reset_prepare(dev);
5311 
5312 	/*
5313 	 * Wake-up device prior to save.  PM registers default to D0 after
5314 	 * reset and a simple register restore doesn't reliably return
5315 	 * to a non-D0 state anyway.
5316 	 */
5317 	pci_set_power_state(dev, PCI_D0);
5318 
5319 	pci_save_state(dev);
5320 	/*
5321 	 * Disable the device by clearing the Command register, except for
5322 	 * INTx-disable which is set.  This not only disables MMIO and I/O port
5323 	 * BARs, but also prevents the device from being Bus Master, preventing
5324 	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
5325 	 * compliant devices, INTx-disable prevents legacy interrupts.
5326 	 */
5327 	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
5328 }
5329 
5330 static void pci_dev_restore(struct pci_dev *dev)
5331 {
5332 	const struct pci_error_handlers *err_handler =
5333 			dev->driver ? dev->driver->err_handler : NULL;
5334 
5335 	pci_restore_state(dev);
5336 
5337 	/*
5338 	 * dev->driver->err_handler->reset_done() is protected against
5339 	 * races with ->remove() by the device lock, which must be held by
5340 	 * the caller.
5341 	 */
5342 	if (err_handler && err_handler->reset_done)
5343 		err_handler->reset_done(dev);
5344 }
5345 
5346 /* dev->reset_methods[] is a 0-terminated list of indices into this array */
5347 static const struct pci_reset_fn_method pci_reset_fn_methods[] = {
5348 	{ },
5349 	{ pci_dev_specific_reset, .name = "device_specific" },
5350 	{ pci_dev_acpi_reset, .name = "acpi" },
5351 	{ pcie_reset_flr, .name = "flr" },
5352 	{ pci_af_flr, .name = "af_flr" },
5353 	{ pci_pm_reset, .name = "pm" },
5354 	{ pci_reset_bus_function, .name = "bus" },
5355 };
5356 
5357 static ssize_t reset_method_show(struct device *dev,
5358 				 struct device_attribute *attr, char *buf)
5359 {
5360 	struct pci_dev *pdev = to_pci_dev(dev);
5361 	ssize_t len = 0;
5362 	int i, m;
5363 
5364 	for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5365 		m = pdev->reset_methods[i];
5366 		if (!m)
5367 			break;
5368 
5369 		len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "",
5370 				     pci_reset_fn_methods[m].name);
5371 	}
5372 
5373 	if (len)
5374 		len += sysfs_emit_at(buf, len, "\n");
5375 
5376 	return len;
5377 }
5378 
5379 static int reset_method_lookup(const char *name)
5380 {
5381 	int m;
5382 
5383 	for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5384 		if (sysfs_streq(name, pci_reset_fn_methods[m].name))
5385 			return m;
5386 	}
5387 
5388 	return 0;	/* not found */
5389 }
5390 
5391 static ssize_t reset_method_store(struct device *dev,
5392 				  struct device_attribute *attr,
5393 				  const char *buf, size_t count)
5394 {
5395 	struct pci_dev *pdev = to_pci_dev(dev);
5396 	char *options, *name;
5397 	int m, n;
5398 	u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 };
5399 
5400 	if (sysfs_streq(buf, "")) {
5401 		pdev->reset_methods[0] = 0;
5402 		pci_warn(pdev, "All device reset methods disabled by user");
5403 		return count;
5404 	}
5405 
5406 	if (sysfs_streq(buf, "default")) {
5407 		pci_init_reset_methods(pdev);
5408 		return count;
5409 	}
5410 
5411 	options = kstrndup(buf, count, GFP_KERNEL);
5412 	if (!options)
5413 		return -ENOMEM;
5414 
5415 	n = 0;
5416 	while ((name = strsep(&options, " ")) != NULL) {
5417 		if (sysfs_streq(name, ""))
5418 			continue;
5419 
5420 		name = strim(name);
5421 
5422 		m = reset_method_lookup(name);
5423 		if (!m) {
5424 			pci_err(pdev, "Invalid reset method '%s'", name);
5425 			goto error;
5426 		}
5427 
5428 		if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) {
5429 			pci_err(pdev, "Unsupported reset method '%s'", name);
5430 			goto error;
5431 		}
5432 
5433 		if (n == PCI_NUM_RESET_METHODS - 1) {
5434 			pci_err(pdev, "Too many reset methods\n");
5435 			goto error;
5436 		}
5437 
5438 		reset_methods[n++] = m;
5439 	}
5440 
5441 	reset_methods[n] = 0;
5442 
5443 	/* Warn if dev-specific supported but not highest priority */
5444 	if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 &&
5445 	    reset_methods[0] != 1)
5446 		pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user");
5447 	memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods));
5448 	kfree(options);
5449 	return count;
5450 
5451 error:
5452 	/* Leave previous methods unchanged */
5453 	kfree(options);
5454 	return -EINVAL;
5455 }
5456 static DEVICE_ATTR_RW(reset_method);
5457 
5458 static struct attribute *pci_dev_reset_method_attrs[] = {
5459 	&dev_attr_reset_method.attr,
5460 	NULL,
5461 };
5462 
5463 static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj,
5464 						    struct attribute *a, int n)
5465 {
5466 	struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj));
5467 
5468 	if (!pci_reset_supported(pdev))
5469 		return 0;
5470 
5471 	return a->mode;
5472 }
5473 
5474 const struct attribute_group pci_dev_reset_method_attr_group = {
5475 	.attrs = pci_dev_reset_method_attrs,
5476 	.is_visible = pci_dev_reset_method_attr_is_visible,
5477 };
5478 
5479 /**
5480  * __pci_reset_function_locked - reset a PCI device function while holding
5481  * the @dev mutex lock.
5482  * @dev: PCI device to reset
5483  *
5484  * Some devices allow an individual function to be reset without affecting
5485  * other functions in the same device.  The PCI device must be responsive
5486  * to PCI config space in order to use this function.
5487  *
5488  * The device function is presumed to be unused and the caller is holding
5489  * the device mutex lock when this function is called.
5490  *
5491  * Resetting the device will make the contents of PCI configuration space
5492  * random, so any caller of this must be prepared to reinitialise the
5493  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5494  * etc.
5495  *
5496  * Returns 0 if the device function was successfully reset or negative if the
5497  * device doesn't support resetting a single function.
5498  */
5499 int __pci_reset_function_locked(struct pci_dev *dev)
5500 {
5501 	int i, m, rc;
5502 
5503 	might_sleep();
5504 
5505 	/*
5506 	 * A reset method returns -ENOTTY if it doesn't support this device and
5507 	 * we should try the next method.
5508 	 *
5509 	 * If it returns 0 (success), we're finished.  If it returns any other
5510 	 * error, we're also finished: this indicates that further reset
5511 	 * mechanisms might be broken on the device.
5512 	 */
5513 	for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5514 		m = dev->reset_methods[i];
5515 		if (!m)
5516 			return -ENOTTY;
5517 
5518 		rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET);
5519 		if (!rc)
5520 			return 0;
5521 		if (rc != -ENOTTY)
5522 			return rc;
5523 	}
5524 
5525 	return -ENOTTY;
5526 }
5527 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5528 
5529 /**
5530  * pci_init_reset_methods - check whether device can be safely reset
5531  * and store supported reset mechanisms.
5532  * @dev: PCI device to check for reset mechanisms
5533  *
5534  * Some devices allow an individual function to be reset without affecting
5535  * other functions in the same device.  The PCI device must be in D0-D3hot
5536  * state.
5537  *
5538  * Stores reset mechanisms supported by device in reset_methods byte array
5539  * which is a member of struct pci_dev.
5540  */
5541 void pci_init_reset_methods(struct pci_dev *dev)
5542 {
5543 	int m, i, rc;
5544 
5545 	BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS);
5546 
5547 	might_sleep();
5548 
5549 	i = 0;
5550 	for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5551 		rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE);
5552 		if (!rc)
5553 			dev->reset_methods[i++] = m;
5554 		else if (rc != -ENOTTY)
5555 			break;
5556 	}
5557 
5558 	dev->reset_methods[i] = 0;
5559 }
5560 
5561 /**
5562  * pci_reset_function - quiesce and reset a PCI device function
5563  * @dev: PCI device to reset
5564  *
5565  * Some devices allow an individual function to be reset without affecting
5566  * other functions in the same device.  The PCI device must be responsive
5567  * to PCI config space in order to use this function.
5568  *
5569  * This function does not just reset the PCI portion of a device, but
5570  * clears all the state associated with the device.  This function differs
5571  * from __pci_reset_function_locked() in that it saves and restores device state
5572  * over the reset and takes the PCI device lock.
5573  *
5574  * Returns 0 if the device function was successfully reset or negative if the
5575  * device doesn't support resetting a single function.
5576  */
5577 int pci_reset_function(struct pci_dev *dev)
5578 {
5579 	int rc;
5580 
5581 	if (!pci_reset_supported(dev))
5582 		return -ENOTTY;
5583 
5584 	pci_dev_lock(dev);
5585 	pci_dev_save_and_disable(dev);
5586 
5587 	rc = __pci_reset_function_locked(dev);
5588 
5589 	pci_dev_restore(dev);
5590 	pci_dev_unlock(dev);
5591 
5592 	return rc;
5593 }
5594 EXPORT_SYMBOL_GPL(pci_reset_function);
5595 
5596 /**
5597  * pci_reset_function_locked - quiesce and reset a PCI device function
5598  * @dev: PCI device to reset
5599  *
5600  * Some devices allow an individual function to be reset without affecting
5601  * other functions in the same device.  The PCI device must be responsive
5602  * to PCI config space in order to use this function.
5603  *
5604  * This function does not just reset the PCI portion of a device, but
5605  * clears all the state associated with the device.  This function differs
5606  * from __pci_reset_function_locked() in that it saves and restores device state
5607  * over the reset.  It also differs from pci_reset_function() in that it
5608  * requires the PCI device lock to be held.
5609  *
5610  * Returns 0 if the device function was successfully reset or negative if the
5611  * device doesn't support resetting a single function.
5612  */
5613 int pci_reset_function_locked(struct pci_dev *dev)
5614 {
5615 	int rc;
5616 
5617 	if (!pci_reset_supported(dev))
5618 		return -ENOTTY;
5619 
5620 	pci_dev_save_and_disable(dev);
5621 
5622 	rc = __pci_reset_function_locked(dev);
5623 
5624 	pci_dev_restore(dev);
5625 
5626 	return rc;
5627 }
5628 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5629 
5630 /**
5631  * pci_try_reset_function - quiesce and reset a PCI device function
5632  * @dev: PCI device to reset
5633  *
5634  * Same as above, except return -EAGAIN if unable to lock device.
5635  */
5636 int pci_try_reset_function(struct pci_dev *dev)
5637 {
5638 	int rc;
5639 
5640 	if (!pci_reset_supported(dev))
5641 		return -ENOTTY;
5642 
5643 	if (!pci_dev_trylock(dev))
5644 		return -EAGAIN;
5645 
5646 	pci_dev_save_and_disable(dev);
5647 	rc = __pci_reset_function_locked(dev);
5648 	pci_dev_restore(dev);
5649 	pci_dev_unlock(dev);
5650 
5651 	return rc;
5652 }
5653 EXPORT_SYMBOL_GPL(pci_try_reset_function);
5654 
5655 /* Do any devices on or below this bus prevent a bus reset? */
5656 static bool pci_bus_resettable(struct pci_bus *bus)
5657 {
5658 	struct pci_dev *dev;
5659 
5660 
5661 	if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5662 		return false;
5663 
5664 	list_for_each_entry(dev, &bus->devices, bus_list) {
5665 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5666 		    (dev->subordinate && !pci_bus_resettable(dev->subordinate)))
5667 			return false;
5668 	}
5669 
5670 	return true;
5671 }
5672 
5673 /* Lock devices from the top of the tree down */
5674 static void pci_bus_lock(struct pci_bus *bus)
5675 {
5676 	struct pci_dev *dev;
5677 
5678 	list_for_each_entry(dev, &bus->devices, bus_list) {
5679 		pci_dev_lock(dev);
5680 		if (dev->subordinate)
5681 			pci_bus_lock(dev->subordinate);
5682 	}
5683 }
5684 
5685 /* Unlock devices from the bottom of the tree up */
5686 static void pci_bus_unlock(struct pci_bus *bus)
5687 {
5688 	struct pci_dev *dev;
5689 
5690 	list_for_each_entry(dev, &bus->devices, bus_list) {
5691 		if (dev->subordinate)
5692 			pci_bus_unlock(dev->subordinate);
5693 		pci_dev_unlock(dev);
5694 	}
5695 }
5696 
5697 /* Return 1 on successful lock, 0 on contention */
5698 static int pci_bus_trylock(struct pci_bus *bus)
5699 {
5700 	struct pci_dev *dev;
5701 
5702 	list_for_each_entry(dev, &bus->devices, bus_list) {
5703 		if (!pci_dev_trylock(dev))
5704 			goto unlock;
5705 		if (dev->subordinate) {
5706 			if (!pci_bus_trylock(dev->subordinate)) {
5707 				pci_dev_unlock(dev);
5708 				goto unlock;
5709 			}
5710 		}
5711 	}
5712 	return 1;
5713 
5714 unlock:
5715 	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5716 		if (dev->subordinate)
5717 			pci_bus_unlock(dev->subordinate);
5718 		pci_dev_unlock(dev);
5719 	}
5720 	return 0;
5721 }
5722 
5723 /* Do any devices on or below this slot prevent a bus reset? */
5724 static bool pci_slot_resettable(struct pci_slot *slot)
5725 {
5726 	struct pci_dev *dev;
5727 
5728 	if (slot->bus->self &&
5729 	    (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5730 		return false;
5731 
5732 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5733 		if (!dev->slot || dev->slot != slot)
5734 			continue;
5735 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5736 		    (dev->subordinate && !pci_bus_resettable(dev->subordinate)))
5737 			return false;
5738 	}
5739 
5740 	return true;
5741 }
5742 
5743 /* Lock devices from the top of the tree down */
5744 static void pci_slot_lock(struct pci_slot *slot)
5745 {
5746 	struct pci_dev *dev;
5747 
5748 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5749 		if (!dev->slot || dev->slot != slot)
5750 			continue;
5751 		pci_dev_lock(dev);
5752 		if (dev->subordinate)
5753 			pci_bus_lock(dev->subordinate);
5754 	}
5755 }
5756 
5757 /* Unlock devices from the bottom of the tree up */
5758 static void pci_slot_unlock(struct pci_slot *slot)
5759 {
5760 	struct pci_dev *dev;
5761 
5762 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5763 		if (!dev->slot || dev->slot != slot)
5764 			continue;
5765 		if (dev->subordinate)
5766 			pci_bus_unlock(dev->subordinate);
5767 		pci_dev_unlock(dev);
5768 	}
5769 }
5770 
5771 /* Return 1 on successful lock, 0 on contention */
5772 static int pci_slot_trylock(struct pci_slot *slot)
5773 {
5774 	struct pci_dev *dev;
5775 
5776 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5777 		if (!dev->slot || dev->slot != slot)
5778 			continue;
5779 		if (!pci_dev_trylock(dev))
5780 			goto unlock;
5781 		if (dev->subordinate) {
5782 			if (!pci_bus_trylock(dev->subordinate)) {
5783 				pci_dev_unlock(dev);
5784 				goto unlock;
5785 			}
5786 		}
5787 	}
5788 	return 1;
5789 
5790 unlock:
5791 	list_for_each_entry_continue_reverse(dev,
5792 					     &slot->bus->devices, bus_list) {
5793 		if (!dev->slot || dev->slot != slot)
5794 			continue;
5795 		if (dev->subordinate)
5796 			pci_bus_unlock(dev->subordinate);
5797 		pci_dev_unlock(dev);
5798 	}
5799 	return 0;
5800 }
5801 
5802 /*
5803  * Save and disable devices from the top of the tree down while holding
5804  * the @dev mutex lock for the entire tree.
5805  */
5806 static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5807 {
5808 	struct pci_dev *dev;
5809 
5810 	list_for_each_entry(dev, &bus->devices, bus_list) {
5811 		pci_dev_save_and_disable(dev);
5812 		if (dev->subordinate)
5813 			pci_bus_save_and_disable_locked(dev->subordinate);
5814 	}
5815 }
5816 
5817 /*
5818  * Restore devices from top of the tree down while holding @dev mutex lock
5819  * for the entire tree.  Parent bridges need to be restored before we can
5820  * get to subordinate devices.
5821  */
5822 static void pci_bus_restore_locked(struct pci_bus *bus)
5823 {
5824 	struct pci_dev *dev;
5825 
5826 	list_for_each_entry(dev, &bus->devices, bus_list) {
5827 		pci_dev_restore(dev);
5828 		if (dev->subordinate)
5829 			pci_bus_restore_locked(dev->subordinate);
5830 	}
5831 }
5832 
5833 /*
5834  * Save and disable devices from the top of the tree down while holding
5835  * the @dev mutex lock for the entire tree.
5836  */
5837 static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5838 {
5839 	struct pci_dev *dev;
5840 
5841 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5842 		if (!dev->slot || dev->slot != slot)
5843 			continue;
5844 		pci_dev_save_and_disable(dev);
5845 		if (dev->subordinate)
5846 			pci_bus_save_and_disable_locked(dev->subordinate);
5847 	}
5848 }
5849 
5850 /*
5851  * Restore devices from top of the tree down while holding @dev mutex lock
5852  * for the entire tree.  Parent bridges need to be restored before we can
5853  * get to subordinate devices.
5854  */
5855 static void pci_slot_restore_locked(struct pci_slot *slot)
5856 {
5857 	struct pci_dev *dev;
5858 
5859 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5860 		if (!dev->slot || dev->slot != slot)
5861 			continue;
5862 		pci_dev_restore(dev);
5863 		if (dev->subordinate)
5864 			pci_bus_restore_locked(dev->subordinate);
5865 	}
5866 }
5867 
5868 static int pci_slot_reset(struct pci_slot *slot, bool probe)
5869 {
5870 	int rc;
5871 
5872 	if (!slot || !pci_slot_resettable(slot))
5873 		return -ENOTTY;
5874 
5875 	if (!probe)
5876 		pci_slot_lock(slot);
5877 
5878 	might_sleep();
5879 
5880 	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5881 
5882 	if (!probe)
5883 		pci_slot_unlock(slot);
5884 
5885 	return rc;
5886 }
5887 
5888 /**
5889  * pci_probe_reset_slot - probe whether a PCI slot can be reset
5890  * @slot: PCI slot to probe
5891  *
5892  * Return 0 if slot can be reset, negative if a slot reset is not supported.
5893  */
5894 int pci_probe_reset_slot(struct pci_slot *slot)
5895 {
5896 	return pci_slot_reset(slot, PCI_RESET_PROBE);
5897 }
5898 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5899 
5900 /**
5901  * __pci_reset_slot - Try to reset a PCI slot
5902  * @slot: PCI slot to reset
5903  *
5904  * A PCI bus may host multiple slots, each slot may support a reset mechanism
5905  * independent of other slots.  For instance, some slots may support slot power
5906  * control.  In the case of a 1:1 bus to slot architecture, this function may
5907  * wrap the bus reset to avoid spurious slot related events such as hotplug.
5908  * Generally a slot reset should be attempted before a bus reset.  All of the
5909  * function of the slot and any subordinate buses behind the slot are reset
5910  * through this function.  PCI config space of all devices in the slot and
5911  * behind the slot is saved before and restored after reset.
5912  *
5913  * Same as above except return -EAGAIN if the slot cannot be locked
5914  */
5915 static int __pci_reset_slot(struct pci_slot *slot)
5916 {
5917 	int rc;
5918 
5919 	rc = pci_slot_reset(slot, PCI_RESET_PROBE);
5920 	if (rc)
5921 		return rc;
5922 
5923 	if (pci_slot_trylock(slot)) {
5924 		pci_slot_save_and_disable_locked(slot);
5925 		might_sleep();
5926 		rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET);
5927 		pci_slot_restore_locked(slot);
5928 		pci_slot_unlock(slot);
5929 	} else
5930 		rc = -EAGAIN;
5931 
5932 	return rc;
5933 }
5934 
5935 static int pci_bus_reset(struct pci_bus *bus, bool probe)
5936 {
5937 	int ret;
5938 
5939 	if (!bus->self || !pci_bus_resettable(bus))
5940 		return -ENOTTY;
5941 
5942 	if (probe)
5943 		return 0;
5944 
5945 	pci_bus_lock(bus);
5946 
5947 	might_sleep();
5948 
5949 	ret = pci_bridge_secondary_bus_reset(bus->self);
5950 
5951 	pci_bus_unlock(bus);
5952 
5953 	return ret;
5954 }
5955 
5956 /**
5957  * pci_bus_error_reset - reset the bridge's subordinate bus
5958  * @bridge: The parent device that connects to the bus to reset
5959  *
5960  * This function will first try to reset the slots on this bus if the method is
5961  * available. If slot reset fails or is not available, this will fall back to a
5962  * secondary bus reset.
5963  */
5964 int pci_bus_error_reset(struct pci_dev *bridge)
5965 {
5966 	struct pci_bus *bus = bridge->subordinate;
5967 	struct pci_slot *slot;
5968 
5969 	if (!bus)
5970 		return -ENOTTY;
5971 
5972 	mutex_lock(&pci_slot_mutex);
5973 	if (list_empty(&bus->slots))
5974 		goto bus_reset;
5975 
5976 	list_for_each_entry(slot, &bus->slots, list)
5977 		if (pci_probe_reset_slot(slot))
5978 			goto bus_reset;
5979 
5980 	list_for_each_entry(slot, &bus->slots, list)
5981 		if (pci_slot_reset(slot, PCI_RESET_DO_RESET))
5982 			goto bus_reset;
5983 
5984 	mutex_unlock(&pci_slot_mutex);
5985 	return 0;
5986 bus_reset:
5987 	mutex_unlock(&pci_slot_mutex);
5988 	return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET);
5989 }
5990 
5991 /**
5992  * pci_probe_reset_bus - probe whether a PCI bus can be reset
5993  * @bus: PCI bus to probe
5994  *
5995  * Return 0 if bus can be reset, negative if a bus reset is not supported.
5996  */
5997 int pci_probe_reset_bus(struct pci_bus *bus)
5998 {
5999 	return pci_bus_reset(bus, PCI_RESET_PROBE);
6000 }
6001 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
6002 
6003 /**
6004  * __pci_reset_bus - Try to reset a PCI bus
6005  * @bus: top level PCI bus to reset
6006  *
6007  * Same as above except return -EAGAIN if the bus cannot be locked
6008  */
6009 static int __pci_reset_bus(struct pci_bus *bus)
6010 {
6011 	int rc;
6012 
6013 	rc = pci_bus_reset(bus, PCI_RESET_PROBE);
6014 	if (rc)
6015 		return rc;
6016 
6017 	if (pci_bus_trylock(bus)) {
6018 		pci_bus_save_and_disable_locked(bus);
6019 		might_sleep();
6020 		rc = pci_bridge_secondary_bus_reset(bus->self);
6021 		pci_bus_restore_locked(bus);
6022 		pci_bus_unlock(bus);
6023 	} else
6024 		rc = -EAGAIN;
6025 
6026 	return rc;
6027 }
6028 
6029 /**
6030  * pci_reset_bus - Try to reset a PCI bus
6031  * @pdev: top level PCI device to reset via slot/bus
6032  *
6033  * Same as above except return -EAGAIN if the bus cannot be locked
6034  */
6035 int pci_reset_bus(struct pci_dev *pdev)
6036 {
6037 	return (!pci_probe_reset_slot(pdev->slot)) ?
6038 	    __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
6039 }
6040 EXPORT_SYMBOL_GPL(pci_reset_bus);
6041 
6042 /**
6043  * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
6044  * @dev: PCI device to query
6045  *
6046  * Returns mmrbc: maximum designed memory read count in bytes or
6047  * appropriate error value.
6048  */
6049 int pcix_get_max_mmrbc(struct pci_dev *dev)
6050 {
6051 	int cap;
6052 	u32 stat;
6053 
6054 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
6055 	if (!cap)
6056 		return -EINVAL;
6057 
6058 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
6059 		return -EINVAL;
6060 
6061 	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
6062 }
6063 EXPORT_SYMBOL(pcix_get_max_mmrbc);
6064 
6065 /**
6066  * pcix_get_mmrbc - get PCI-X maximum memory read byte count
6067  * @dev: PCI device to query
6068  *
6069  * Returns mmrbc: maximum memory read count in bytes or appropriate error
6070  * value.
6071  */
6072 int pcix_get_mmrbc(struct pci_dev *dev)
6073 {
6074 	int cap;
6075 	u16 cmd;
6076 
6077 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
6078 	if (!cap)
6079 		return -EINVAL;
6080 
6081 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
6082 		return -EINVAL;
6083 
6084 	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
6085 }
6086 EXPORT_SYMBOL(pcix_get_mmrbc);
6087 
6088 /**
6089  * pcix_set_mmrbc - set PCI-X maximum memory read byte count
6090  * @dev: PCI device to query
6091  * @mmrbc: maximum memory read count in bytes
6092  *    valid values are 512, 1024, 2048, 4096
6093  *
6094  * If possible sets maximum memory read byte count, some bridges have errata
6095  * that prevent this.
6096  */
6097 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
6098 {
6099 	int cap;
6100 	u32 stat, v, o;
6101 	u16 cmd;
6102 
6103 	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
6104 		return -EINVAL;
6105 
6106 	v = ffs(mmrbc) - 10;
6107 
6108 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
6109 	if (!cap)
6110 		return -EINVAL;
6111 
6112 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
6113 		return -EINVAL;
6114 
6115 	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
6116 		return -E2BIG;
6117 
6118 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
6119 		return -EINVAL;
6120 
6121 	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
6122 	if (o != v) {
6123 		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
6124 			return -EIO;
6125 
6126 		cmd &= ~PCI_X_CMD_MAX_READ;
6127 		cmd |= v << 2;
6128 		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
6129 			return -EIO;
6130 	}
6131 	return 0;
6132 }
6133 EXPORT_SYMBOL(pcix_set_mmrbc);
6134 
6135 /**
6136  * pcie_get_readrq - get PCI Express read request size
6137  * @dev: PCI device to query
6138  *
6139  * Returns maximum memory read request in bytes or appropriate error value.
6140  */
6141 int pcie_get_readrq(struct pci_dev *dev)
6142 {
6143 	u16 ctl;
6144 
6145 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6146 
6147 	return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6148 }
6149 EXPORT_SYMBOL(pcie_get_readrq);
6150 
6151 /**
6152  * pcie_set_readrq - set PCI Express maximum memory read request
6153  * @dev: PCI device to query
6154  * @rq: maximum memory read count in bytes
6155  *    valid values are 128, 256, 512, 1024, 2048, 4096
6156  *
6157  * If possible sets maximum memory read request in bytes
6158  */
6159 int pcie_set_readrq(struct pci_dev *dev, int rq)
6160 {
6161 	u16 v;
6162 	int ret;
6163 	struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
6164 
6165 	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
6166 		return -EINVAL;
6167 
6168 	/*
6169 	 * If using the "performance" PCIe config, we clamp the read rq
6170 	 * size to the max packet size to keep the host bridge from
6171 	 * generating requests larger than we can cope with.
6172 	 */
6173 	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
6174 		int mps = pcie_get_mps(dev);
6175 
6176 		if (mps < rq)
6177 			rq = mps;
6178 	}
6179 
6180 	v = (ffs(rq) - 8) << 12;
6181 
6182 	if (bridge->no_inc_mrrs) {
6183 		int max_mrrs = pcie_get_readrq(dev);
6184 
6185 		if (rq > max_mrrs) {
6186 			pci_info(dev, "can't set Max_Read_Request_Size to %d; max is %d\n", rq, max_mrrs);
6187 			return -EINVAL;
6188 		}
6189 	}
6190 
6191 	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6192 						  PCI_EXP_DEVCTL_READRQ, v);
6193 
6194 	return pcibios_err_to_errno(ret);
6195 }
6196 EXPORT_SYMBOL(pcie_set_readrq);
6197 
6198 /**
6199  * pcie_get_mps - get PCI Express maximum payload size
6200  * @dev: PCI device to query
6201  *
6202  * Returns maximum payload size in bytes
6203  */
6204 int pcie_get_mps(struct pci_dev *dev)
6205 {
6206 	u16 ctl;
6207 
6208 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6209 
6210 	return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6211 }
6212 EXPORT_SYMBOL(pcie_get_mps);
6213 
6214 /**
6215  * pcie_set_mps - set PCI Express maximum payload size
6216  * @dev: PCI device to query
6217  * @mps: maximum payload size in bytes
6218  *    valid values are 128, 256, 512, 1024, 2048, 4096
6219  *
6220  * If possible sets maximum payload size
6221  */
6222 int pcie_set_mps(struct pci_dev *dev, int mps)
6223 {
6224 	u16 v;
6225 	int ret;
6226 
6227 	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
6228 		return -EINVAL;
6229 
6230 	v = ffs(mps) - 8;
6231 	if (v > dev->pcie_mpss)
6232 		return -EINVAL;
6233 	v <<= 5;
6234 
6235 	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6236 						  PCI_EXP_DEVCTL_PAYLOAD, v);
6237 
6238 	return pcibios_err_to_errno(ret);
6239 }
6240 EXPORT_SYMBOL(pcie_set_mps);
6241 
6242 /**
6243  * pcie_bandwidth_available - determine minimum link settings of a PCIe
6244  *			      device and its bandwidth limitation
6245  * @dev: PCI device to query
6246  * @limiting_dev: storage for device causing the bandwidth limitation
6247  * @speed: storage for speed of limiting device
6248  * @width: storage for width of limiting device
6249  *
6250  * Walk up the PCI device chain and find the point where the minimum
6251  * bandwidth is available.  Return the bandwidth available there and (if
6252  * limiting_dev, speed, and width pointers are supplied) information about
6253  * that point.  The bandwidth returned is in Mb/s, i.e., megabits/second of
6254  * raw bandwidth.
6255  */
6256 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
6257 			     enum pci_bus_speed *speed,
6258 			     enum pcie_link_width *width)
6259 {
6260 	u16 lnksta;
6261 	enum pci_bus_speed next_speed;
6262 	enum pcie_link_width next_width;
6263 	u32 bw, next_bw;
6264 
6265 	if (speed)
6266 		*speed = PCI_SPEED_UNKNOWN;
6267 	if (width)
6268 		*width = PCIE_LNK_WIDTH_UNKNOWN;
6269 
6270 	bw = 0;
6271 
6272 	while (dev) {
6273 		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
6274 
6275 		next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
6276 		next_width = FIELD_GET(PCI_EXP_LNKSTA_NLW, lnksta);
6277 
6278 		next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
6279 
6280 		/* Check if current device limits the total bandwidth */
6281 		if (!bw || next_bw <= bw) {
6282 			bw = next_bw;
6283 
6284 			if (limiting_dev)
6285 				*limiting_dev = dev;
6286 			if (speed)
6287 				*speed = next_speed;
6288 			if (width)
6289 				*width = next_width;
6290 		}
6291 
6292 		dev = pci_upstream_bridge(dev);
6293 	}
6294 
6295 	return bw;
6296 }
6297 EXPORT_SYMBOL(pcie_bandwidth_available);
6298 
6299 /**
6300  * pcie_get_speed_cap - query for the PCI device's link speed capability
6301  * @dev: PCI device to query
6302  *
6303  * Query the PCI device speed capability.  Return the maximum link speed
6304  * supported by the device.
6305  */
6306 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
6307 {
6308 	u32 lnkcap2, lnkcap;
6309 
6310 	/*
6311 	 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18.  The
6312 	 * implementation note there recommends using the Supported Link
6313 	 * Speeds Vector in Link Capabilities 2 when supported.
6314 	 *
6315 	 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
6316 	 * should use the Supported Link Speeds field in Link Capabilities,
6317 	 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
6318 	 */
6319 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
6320 
6321 	/* PCIe r3.0-compliant */
6322 	if (lnkcap2)
6323 		return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
6324 
6325 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6326 	if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
6327 		return PCIE_SPEED_5_0GT;
6328 	else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
6329 		return PCIE_SPEED_2_5GT;
6330 
6331 	return PCI_SPEED_UNKNOWN;
6332 }
6333 EXPORT_SYMBOL(pcie_get_speed_cap);
6334 
6335 /**
6336  * pcie_get_width_cap - query for the PCI device's link width capability
6337  * @dev: PCI device to query
6338  *
6339  * Query the PCI device width capability.  Return the maximum link width
6340  * supported by the device.
6341  */
6342 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
6343 {
6344 	u32 lnkcap;
6345 
6346 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6347 	if (lnkcap)
6348 		return FIELD_GET(PCI_EXP_LNKCAP_MLW, lnkcap);
6349 
6350 	return PCIE_LNK_WIDTH_UNKNOWN;
6351 }
6352 EXPORT_SYMBOL(pcie_get_width_cap);
6353 
6354 /**
6355  * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
6356  * @dev: PCI device
6357  * @speed: storage for link speed
6358  * @width: storage for link width
6359  *
6360  * Calculate a PCI device's link bandwidth by querying for its link speed
6361  * and width, multiplying them, and applying encoding overhead.  The result
6362  * is in Mb/s, i.e., megabits/second of raw bandwidth.
6363  */
6364 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
6365 			   enum pcie_link_width *width)
6366 {
6367 	*speed = pcie_get_speed_cap(dev);
6368 	*width = pcie_get_width_cap(dev);
6369 
6370 	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
6371 		return 0;
6372 
6373 	return *width * PCIE_SPEED2MBS_ENC(*speed);
6374 }
6375 
6376 /**
6377  * __pcie_print_link_status - Report the PCI device's link speed and width
6378  * @dev: PCI device to query
6379  * @verbose: Print info even when enough bandwidth is available
6380  *
6381  * If the available bandwidth at the device is less than the device is
6382  * capable of, report the device's maximum possible bandwidth and the
6383  * upstream link that limits its performance.  If @verbose, always print
6384  * the available bandwidth, even if the device isn't constrained.
6385  */
6386 void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
6387 {
6388 	enum pcie_link_width width, width_cap;
6389 	enum pci_bus_speed speed, speed_cap;
6390 	struct pci_dev *limiting_dev = NULL;
6391 	u32 bw_avail, bw_cap;
6392 
6393 	bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
6394 	bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
6395 
6396 	if (bw_avail >= bw_cap && verbose)
6397 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
6398 			 bw_cap / 1000, bw_cap % 1000,
6399 			 pci_speed_string(speed_cap), width_cap);
6400 	else if (bw_avail < bw_cap)
6401 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
6402 			 bw_avail / 1000, bw_avail % 1000,
6403 			 pci_speed_string(speed), width,
6404 			 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
6405 			 bw_cap / 1000, bw_cap % 1000,
6406 			 pci_speed_string(speed_cap), width_cap);
6407 }
6408 
6409 /**
6410  * pcie_print_link_status - Report the PCI device's link speed and width
6411  * @dev: PCI device to query
6412  *
6413  * Report the available bandwidth at the device.
6414  */
6415 void pcie_print_link_status(struct pci_dev *dev)
6416 {
6417 	__pcie_print_link_status(dev, true);
6418 }
6419 EXPORT_SYMBOL(pcie_print_link_status);
6420 
6421 /**
6422  * pci_select_bars - Make BAR mask from the type of resource
6423  * @dev: the PCI device for which BAR mask is made
6424  * @flags: resource type mask to be selected
6425  *
6426  * This helper routine makes bar mask from the type of resource.
6427  */
6428 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
6429 {
6430 	int i, bars = 0;
6431 	for (i = 0; i < PCI_NUM_RESOURCES; i++)
6432 		if (pci_resource_flags(dev, i) & flags)
6433 			bars |= (1 << i);
6434 	return bars;
6435 }
6436 EXPORT_SYMBOL(pci_select_bars);
6437 
6438 /* Some architectures require additional programming to enable VGA */
6439 static arch_set_vga_state_t arch_set_vga_state;
6440 
6441 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6442 {
6443 	arch_set_vga_state = func;	/* NULL disables */
6444 }
6445 
6446 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
6447 				  unsigned int command_bits, u32 flags)
6448 {
6449 	if (arch_set_vga_state)
6450 		return arch_set_vga_state(dev, decode, command_bits,
6451 						flags);
6452 	return 0;
6453 }
6454 
6455 /**
6456  * pci_set_vga_state - set VGA decode state on device and parents if requested
6457  * @dev: the PCI device
6458  * @decode: true = enable decoding, false = disable decoding
6459  * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6460  * @flags: traverse ancestors and change bridges
6461  * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6462  */
6463 int pci_set_vga_state(struct pci_dev *dev, bool decode,
6464 		      unsigned int command_bits, u32 flags)
6465 {
6466 	struct pci_bus *bus;
6467 	struct pci_dev *bridge;
6468 	u16 cmd;
6469 	int rc;
6470 
6471 	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6472 
6473 	/* ARCH specific VGA enables */
6474 	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6475 	if (rc)
6476 		return rc;
6477 
6478 	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6479 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
6480 		if (decode)
6481 			cmd |= command_bits;
6482 		else
6483 			cmd &= ~command_bits;
6484 		pci_write_config_word(dev, PCI_COMMAND, cmd);
6485 	}
6486 
6487 	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6488 		return 0;
6489 
6490 	bus = dev->bus;
6491 	while (bus) {
6492 		bridge = bus->self;
6493 		if (bridge) {
6494 			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6495 					     &cmd);
6496 			if (decode)
6497 				cmd |= PCI_BRIDGE_CTL_VGA;
6498 			else
6499 				cmd &= ~PCI_BRIDGE_CTL_VGA;
6500 			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6501 					      cmd);
6502 		}
6503 		bus = bus->parent;
6504 	}
6505 	return 0;
6506 }
6507 
6508 #ifdef CONFIG_ACPI
6509 bool pci_pr3_present(struct pci_dev *pdev)
6510 {
6511 	struct acpi_device *adev;
6512 
6513 	if (acpi_disabled)
6514 		return false;
6515 
6516 	adev = ACPI_COMPANION(&pdev->dev);
6517 	if (!adev)
6518 		return false;
6519 
6520 	return adev->power.flags.power_resources &&
6521 		acpi_has_method(adev->handle, "_PR3");
6522 }
6523 EXPORT_SYMBOL_GPL(pci_pr3_present);
6524 #endif
6525 
6526 /**
6527  * pci_add_dma_alias - Add a DMA devfn alias for a device
6528  * @dev: the PCI device for which alias is added
6529  * @devfn_from: alias slot and function
6530  * @nr_devfns: number of subsequent devfns to alias
6531  *
6532  * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6533  * which is used to program permissible bus-devfn source addresses for DMA
6534  * requests in an IOMMU.  These aliases factor into IOMMU group creation
6535  * and are useful for devices generating DMA requests beyond or different
6536  * from their logical bus-devfn.  Examples include device quirks where the
6537  * device simply uses the wrong devfn, as well as non-transparent bridges
6538  * where the alias may be a proxy for devices in another domain.
6539  *
6540  * IOMMU group creation is performed during device discovery or addition,
6541  * prior to any potential DMA mapping and therefore prior to driver probing
6542  * (especially for userspace assigned devices where IOMMU group definition
6543  * cannot be left as a userspace activity).  DMA aliases should therefore
6544  * be configured via quirks, such as the PCI fixup header quirk.
6545  */
6546 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from,
6547 		       unsigned int nr_devfns)
6548 {
6549 	int devfn_to;
6550 
6551 	nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from);
6552 	devfn_to = devfn_from + nr_devfns - 1;
6553 
6554 	if (!dev->dma_alias_mask)
6555 		dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6556 	if (!dev->dma_alias_mask) {
6557 		pci_warn(dev, "Unable to allocate DMA alias mask\n");
6558 		return;
6559 	}
6560 
6561 	bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6562 
6563 	if (nr_devfns == 1)
6564 		pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6565 				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6566 	else if (nr_devfns > 1)
6567 		pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6568 				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6569 				PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6570 }
6571 
6572 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6573 {
6574 	return (dev1->dma_alias_mask &&
6575 		test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6576 	       (dev2->dma_alias_mask &&
6577 		test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6578 	       pci_real_dma_dev(dev1) == dev2 ||
6579 	       pci_real_dma_dev(dev2) == dev1;
6580 }
6581 
6582 bool pci_device_is_present(struct pci_dev *pdev)
6583 {
6584 	u32 v;
6585 
6586 	/* Check PF if pdev is a VF, since VF Vendor/Device IDs are 0xffff */
6587 	pdev = pci_physfn(pdev);
6588 	if (pci_dev_is_disconnected(pdev))
6589 		return false;
6590 	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6591 }
6592 EXPORT_SYMBOL_GPL(pci_device_is_present);
6593 
6594 void pci_ignore_hotplug(struct pci_dev *dev)
6595 {
6596 	struct pci_dev *bridge = dev->bus->self;
6597 
6598 	dev->ignore_hotplug = 1;
6599 	/* Propagate the "ignore hotplug" setting to the parent bridge. */
6600 	if (bridge)
6601 		bridge->ignore_hotplug = 1;
6602 }
6603 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6604 
6605 /**
6606  * pci_real_dma_dev - Get PCI DMA device for PCI device
6607  * @dev: the PCI device that may have a PCI DMA alias
6608  *
6609  * Permits the platform to provide architecture-specific functionality to
6610  * devices needing to alias DMA to another PCI device on another PCI bus. If
6611  * the PCI device is on the same bus, it is recommended to use
6612  * pci_add_dma_alias(). This is the default implementation. Architecture
6613  * implementations can override this.
6614  */
6615 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6616 {
6617 	return dev;
6618 }
6619 
6620 resource_size_t __weak pcibios_default_alignment(void)
6621 {
6622 	return 0;
6623 }
6624 
6625 /*
6626  * Arches that don't want to expose struct resource to userland as-is in
6627  * sysfs and /proc can implement their own pci_resource_to_user().
6628  */
6629 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6630 				 const struct resource *rsrc,
6631 				 resource_size_t *start, resource_size_t *end)
6632 {
6633 	*start = rsrc->start;
6634 	*end = rsrc->end;
6635 }
6636 
6637 static char *resource_alignment_param;
6638 static DEFINE_SPINLOCK(resource_alignment_lock);
6639 
6640 /**
6641  * pci_specified_resource_alignment - get resource alignment specified by user.
6642  * @dev: the PCI device to get
6643  * @resize: whether or not to change resources' size when reassigning alignment
6644  *
6645  * RETURNS: Resource alignment if it is specified.
6646  *          Zero if it is not specified.
6647  */
6648 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6649 							bool *resize)
6650 {
6651 	int align_order, count;
6652 	resource_size_t align = pcibios_default_alignment();
6653 	const char *p;
6654 	int ret;
6655 
6656 	spin_lock(&resource_alignment_lock);
6657 	p = resource_alignment_param;
6658 	if (!p || !*p)
6659 		goto out;
6660 	if (pci_has_flag(PCI_PROBE_ONLY)) {
6661 		align = 0;
6662 		pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6663 		goto out;
6664 	}
6665 
6666 	while (*p) {
6667 		count = 0;
6668 		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6669 		    p[count] == '@') {
6670 			p += count + 1;
6671 			if (align_order > 63) {
6672 				pr_err("PCI: Invalid requested alignment (order %d)\n",
6673 				       align_order);
6674 				align_order = PAGE_SHIFT;
6675 			}
6676 		} else {
6677 			align_order = PAGE_SHIFT;
6678 		}
6679 
6680 		ret = pci_dev_str_match(dev, p, &p);
6681 		if (ret == 1) {
6682 			*resize = true;
6683 			align = 1ULL << align_order;
6684 			break;
6685 		} else if (ret < 0) {
6686 			pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6687 			       p);
6688 			break;
6689 		}
6690 
6691 		if (*p != ';' && *p != ',') {
6692 			/* End of param or invalid format */
6693 			break;
6694 		}
6695 		p++;
6696 	}
6697 out:
6698 	spin_unlock(&resource_alignment_lock);
6699 	return align;
6700 }
6701 
6702 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6703 					   resource_size_t align, bool resize)
6704 {
6705 	struct resource *r = &dev->resource[bar];
6706 	resource_size_t size;
6707 
6708 	if (!(r->flags & IORESOURCE_MEM))
6709 		return;
6710 
6711 	if (r->flags & IORESOURCE_PCI_FIXED) {
6712 		pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6713 			 bar, r, (unsigned long long)align);
6714 		return;
6715 	}
6716 
6717 	size = resource_size(r);
6718 	if (size >= align)
6719 		return;
6720 
6721 	/*
6722 	 * Increase the alignment of the resource.  There are two ways we
6723 	 * can do this:
6724 	 *
6725 	 * 1) Increase the size of the resource.  BARs are aligned on their
6726 	 *    size, so when we reallocate space for this resource, we'll
6727 	 *    allocate it with the larger alignment.  This also prevents
6728 	 *    assignment of any other BARs inside the alignment region, so
6729 	 *    if we're requesting page alignment, this means no other BARs
6730 	 *    will share the page.
6731 	 *
6732 	 *    The disadvantage is that this makes the resource larger than
6733 	 *    the hardware BAR, which may break drivers that compute things
6734 	 *    based on the resource size, e.g., to find registers at a
6735 	 *    fixed offset before the end of the BAR.
6736 	 *
6737 	 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6738 	 *    set r->start to the desired alignment.  By itself this
6739 	 *    doesn't prevent other BARs being put inside the alignment
6740 	 *    region, but if we realign *every* resource of every device in
6741 	 *    the system, none of them will share an alignment region.
6742 	 *
6743 	 * When the user has requested alignment for only some devices via
6744 	 * the "pci=resource_alignment" argument, "resize" is true and we
6745 	 * use the first method.  Otherwise we assume we're aligning all
6746 	 * devices and we use the second.
6747 	 */
6748 
6749 	pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6750 		 bar, r, (unsigned long long)align);
6751 
6752 	if (resize) {
6753 		r->start = 0;
6754 		r->end = align - 1;
6755 	} else {
6756 		r->flags &= ~IORESOURCE_SIZEALIGN;
6757 		r->flags |= IORESOURCE_STARTALIGN;
6758 		r->start = align;
6759 		r->end = r->start + size - 1;
6760 	}
6761 	r->flags |= IORESOURCE_UNSET;
6762 }
6763 
6764 /*
6765  * This function disables memory decoding and releases memory resources
6766  * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6767  * It also rounds up size to specified alignment.
6768  * Later on, the kernel will assign page-aligned memory resource back
6769  * to the device.
6770  */
6771 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6772 {
6773 	int i;
6774 	struct resource *r;
6775 	resource_size_t align;
6776 	u16 command;
6777 	bool resize = false;
6778 
6779 	/*
6780 	 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6781 	 * 3.4.1.11.  Their resources are allocated from the space
6782 	 * described by the VF BARx register in the PF's SR-IOV capability.
6783 	 * We can't influence their alignment here.
6784 	 */
6785 	if (dev->is_virtfn)
6786 		return;
6787 
6788 	/* check if specified PCI is target device to reassign */
6789 	align = pci_specified_resource_alignment(dev, &resize);
6790 	if (!align)
6791 		return;
6792 
6793 	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6794 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6795 		pci_warn(dev, "Can't reassign resources to host bridge\n");
6796 		return;
6797 	}
6798 
6799 	pci_read_config_word(dev, PCI_COMMAND, &command);
6800 	command &= ~PCI_COMMAND_MEMORY;
6801 	pci_write_config_word(dev, PCI_COMMAND, command);
6802 
6803 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6804 		pci_request_resource_alignment(dev, i, align, resize);
6805 
6806 	/*
6807 	 * Need to disable bridge's resource window,
6808 	 * to enable the kernel to reassign new resource
6809 	 * window later on.
6810 	 */
6811 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6812 		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6813 			r = &dev->resource[i];
6814 			if (!(r->flags & IORESOURCE_MEM))
6815 				continue;
6816 			r->flags |= IORESOURCE_UNSET;
6817 			r->end = resource_size(r) - 1;
6818 			r->start = 0;
6819 		}
6820 		pci_disable_bridge_window(dev);
6821 	}
6822 }
6823 
6824 static ssize_t resource_alignment_show(const struct bus_type *bus, char *buf)
6825 {
6826 	size_t count = 0;
6827 
6828 	spin_lock(&resource_alignment_lock);
6829 	if (resource_alignment_param)
6830 		count = sysfs_emit(buf, "%s\n", resource_alignment_param);
6831 	spin_unlock(&resource_alignment_lock);
6832 
6833 	return count;
6834 }
6835 
6836 static ssize_t resource_alignment_store(const struct bus_type *bus,
6837 					const char *buf, size_t count)
6838 {
6839 	char *param, *old, *end;
6840 
6841 	if (count >= (PAGE_SIZE - 1))
6842 		return -EINVAL;
6843 
6844 	param = kstrndup(buf, count, GFP_KERNEL);
6845 	if (!param)
6846 		return -ENOMEM;
6847 
6848 	end = strchr(param, '\n');
6849 	if (end)
6850 		*end = '\0';
6851 
6852 	spin_lock(&resource_alignment_lock);
6853 	old = resource_alignment_param;
6854 	if (strlen(param)) {
6855 		resource_alignment_param = param;
6856 	} else {
6857 		kfree(param);
6858 		resource_alignment_param = NULL;
6859 	}
6860 	spin_unlock(&resource_alignment_lock);
6861 
6862 	kfree(old);
6863 
6864 	return count;
6865 }
6866 
6867 static BUS_ATTR_RW(resource_alignment);
6868 
6869 static int __init pci_resource_alignment_sysfs_init(void)
6870 {
6871 	return bus_create_file(&pci_bus_type,
6872 					&bus_attr_resource_alignment);
6873 }
6874 late_initcall(pci_resource_alignment_sysfs_init);
6875 
6876 static void pci_no_domains(void)
6877 {
6878 #ifdef CONFIG_PCI_DOMAINS
6879 	pci_domains_supported = 0;
6880 #endif
6881 }
6882 
6883 #ifdef CONFIG_PCI_DOMAINS_GENERIC
6884 static DEFINE_IDA(pci_domain_nr_static_ida);
6885 static DEFINE_IDA(pci_domain_nr_dynamic_ida);
6886 
6887 static void of_pci_reserve_static_domain_nr(void)
6888 {
6889 	struct device_node *np;
6890 	int domain_nr;
6891 
6892 	for_each_node_by_type(np, "pci") {
6893 		domain_nr = of_get_pci_domain_nr(np);
6894 		if (domain_nr < 0)
6895 			continue;
6896 		/*
6897 		 * Permanently allocate domain_nr in dynamic_ida
6898 		 * to prevent it from dynamic allocation.
6899 		 */
6900 		ida_alloc_range(&pci_domain_nr_dynamic_ida,
6901 				domain_nr, domain_nr, GFP_KERNEL);
6902 	}
6903 }
6904 
6905 static int of_pci_bus_find_domain_nr(struct device *parent)
6906 {
6907 	static bool static_domains_reserved = false;
6908 	int domain_nr;
6909 
6910 	/* On the first call scan device tree for static allocations. */
6911 	if (!static_domains_reserved) {
6912 		of_pci_reserve_static_domain_nr();
6913 		static_domains_reserved = true;
6914 	}
6915 
6916 	if (parent) {
6917 		/*
6918 		 * If domain is in DT, allocate it in static IDA.  This
6919 		 * prevents duplicate static allocations in case of errors
6920 		 * in DT.
6921 		 */
6922 		domain_nr = of_get_pci_domain_nr(parent->of_node);
6923 		if (domain_nr >= 0)
6924 			return ida_alloc_range(&pci_domain_nr_static_ida,
6925 					       domain_nr, domain_nr,
6926 					       GFP_KERNEL);
6927 	}
6928 
6929 	/*
6930 	 * If domain was not specified in DT, choose a free ID from dynamic
6931 	 * allocations. All domain numbers from DT are permanently in
6932 	 * dynamic allocations to prevent assigning them to other DT nodes
6933 	 * without static domain.
6934 	 */
6935 	return ida_alloc(&pci_domain_nr_dynamic_ida, GFP_KERNEL);
6936 }
6937 
6938 static void of_pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent)
6939 {
6940 	if (bus->domain_nr < 0)
6941 		return;
6942 
6943 	/* Release domain from IDA where it was allocated. */
6944 	if (of_get_pci_domain_nr(parent->of_node) == bus->domain_nr)
6945 		ida_free(&pci_domain_nr_static_ida, bus->domain_nr);
6946 	else
6947 		ida_free(&pci_domain_nr_dynamic_ida, bus->domain_nr);
6948 }
6949 
6950 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6951 {
6952 	return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6953 			       acpi_pci_bus_find_domain_nr(bus);
6954 }
6955 
6956 void pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent)
6957 {
6958 	if (!acpi_disabled)
6959 		return;
6960 	of_pci_bus_release_domain_nr(bus, parent);
6961 }
6962 #endif
6963 
6964 /**
6965  * pci_ext_cfg_avail - can we access extended PCI config space?
6966  *
6967  * Returns 1 if we can access PCI extended config space (offsets
6968  * greater than 0xff). This is the default implementation. Architecture
6969  * implementations can override this.
6970  */
6971 int __weak pci_ext_cfg_avail(void)
6972 {
6973 	return 1;
6974 }
6975 
6976 void __weak pci_fixup_cardbus(struct pci_bus *bus)
6977 {
6978 }
6979 EXPORT_SYMBOL(pci_fixup_cardbus);
6980 
6981 static int __init pci_setup(char *str)
6982 {
6983 	while (str) {
6984 		char *k = strchr(str, ',');
6985 		if (k)
6986 			*k++ = 0;
6987 		if (*str && (str = pcibios_setup(str)) && *str) {
6988 			if (!strcmp(str, "nomsi")) {
6989 				pci_no_msi();
6990 			} else if (!strncmp(str, "noats", 5)) {
6991 				pr_info("PCIe: ATS is disabled\n");
6992 				pcie_ats_disabled = true;
6993 			} else if (!strcmp(str, "noaer")) {
6994 				pci_no_aer();
6995 			} else if (!strcmp(str, "earlydump")) {
6996 				pci_early_dump = true;
6997 			} else if (!strncmp(str, "realloc=", 8)) {
6998 				pci_realloc_get_opt(str + 8);
6999 			} else if (!strncmp(str, "realloc", 7)) {
7000 				pci_realloc_get_opt("on");
7001 			} else if (!strcmp(str, "nodomains")) {
7002 				pci_no_domains();
7003 			} else if (!strncmp(str, "noari", 5)) {
7004 				pcie_ari_disabled = true;
7005 			} else if (!strncmp(str, "cbiosize=", 9)) {
7006 				pci_cardbus_io_size = memparse(str + 9, &str);
7007 			} else if (!strncmp(str, "cbmemsize=", 10)) {
7008 				pci_cardbus_mem_size = memparse(str + 10, &str);
7009 			} else if (!strncmp(str, "resource_alignment=", 19)) {
7010 				resource_alignment_param = str + 19;
7011 			} else if (!strncmp(str, "ecrc=", 5)) {
7012 				pcie_ecrc_get_policy(str + 5);
7013 			} else if (!strncmp(str, "hpiosize=", 9)) {
7014 				pci_hotplug_io_size = memparse(str + 9, &str);
7015 			} else if (!strncmp(str, "hpmmiosize=", 11)) {
7016 				pci_hotplug_mmio_size = memparse(str + 11, &str);
7017 			} else if (!strncmp(str, "hpmmioprefsize=", 15)) {
7018 				pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
7019 			} else if (!strncmp(str, "hpmemsize=", 10)) {
7020 				pci_hotplug_mmio_size = memparse(str + 10, &str);
7021 				pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
7022 			} else if (!strncmp(str, "hpbussize=", 10)) {
7023 				pci_hotplug_bus_size =
7024 					simple_strtoul(str + 10, &str, 0);
7025 				if (pci_hotplug_bus_size > 0xff)
7026 					pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
7027 			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
7028 				pcie_bus_config = PCIE_BUS_TUNE_OFF;
7029 			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
7030 				pcie_bus_config = PCIE_BUS_SAFE;
7031 			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
7032 				pcie_bus_config = PCIE_BUS_PERFORMANCE;
7033 			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
7034 				pcie_bus_config = PCIE_BUS_PEER2PEER;
7035 			} else if (!strncmp(str, "pcie_scan_all", 13)) {
7036 				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
7037 			} else if (!strncmp(str, "disable_acs_redir=", 18)) {
7038 				disable_acs_redir_param = str + 18;
7039 			} else {
7040 				pr_err("PCI: Unknown option `%s'\n", str);
7041 			}
7042 		}
7043 		str = k;
7044 	}
7045 	return 0;
7046 }
7047 early_param("pci", pci_setup);
7048 
7049 /*
7050  * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
7051  * in pci_setup(), above, to point to data in the __initdata section which
7052  * will be freed after the init sequence is complete. We can't allocate memory
7053  * in pci_setup() because some architectures do not have any memory allocation
7054  * service available during an early_param() call. So we allocate memory and
7055  * copy the variable here before the init section is freed.
7056  *
7057  */
7058 static int __init pci_realloc_setup_params(void)
7059 {
7060 	resource_alignment_param = kstrdup(resource_alignment_param,
7061 					   GFP_KERNEL);
7062 	disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
7063 
7064 	return 0;
7065 }
7066 pure_initcall(pci_realloc_setup_params);
7067