1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * PCI Bus Services, see include/linux/pci.h for further explanation. 4 * 5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter, 6 * David Mosberger-Tang 7 * 8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz> 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/kernel.h> 13 #include <linux/delay.h> 14 #include <linux/dmi.h> 15 #include <linux/init.h> 16 #include <linux/msi.h> 17 #include <linux/of.h> 18 #include <linux/pci.h> 19 #include <linux/pm.h> 20 #include <linux/slab.h> 21 #include <linux/module.h> 22 #include <linux/spinlock.h> 23 #include <linux/string.h> 24 #include <linux/log2.h> 25 #include <linux/logic_pio.h> 26 #include <linux/pm_wakeup.h> 27 #include <linux/interrupt.h> 28 #include <linux/device.h> 29 #include <linux/pm_runtime.h> 30 #include <linux/pci_hotplug.h> 31 #include <linux/vmalloc.h> 32 #include <asm/dma.h> 33 #include <linux/aer.h> 34 #include "pci.h" 35 36 DEFINE_MUTEX(pci_slot_mutex); 37 38 const char *pci_power_names[] = { 39 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown", 40 }; 41 EXPORT_SYMBOL_GPL(pci_power_names); 42 43 int isa_dma_bridge_buggy; 44 EXPORT_SYMBOL(isa_dma_bridge_buggy); 45 46 int pci_pci_problems; 47 EXPORT_SYMBOL(pci_pci_problems); 48 49 unsigned int pci_pm_d3hot_delay; 50 51 static void pci_pme_list_scan(struct work_struct *work); 52 53 static LIST_HEAD(pci_pme_list); 54 static DEFINE_MUTEX(pci_pme_list_mutex); 55 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan); 56 57 struct pci_pme_device { 58 struct list_head list; 59 struct pci_dev *dev; 60 }; 61 62 #define PME_TIMEOUT 1000 /* How long between PME checks */ 63 64 static void pci_dev_d3_sleep(struct pci_dev *dev) 65 { 66 unsigned int delay = dev->d3hot_delay; 67 68 if (delay < pci_pm_d3hot_delay) 69 delay = pci_pm_d3hot_delay; 70 71 if (delay) 72 msleep(delay); 73 } 74 75 #ifdef CONFIG_PCI_DOMAINS 76 int pci_domains_supported = 1; 77 #endif 78 79 #define DEFAULT_CARDBUS_IO_SIZE (256) 80 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024) 81 /* pci=cbmemsize=nnM,cbiosize=nn can override this */ 82 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE; 83 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE; 84 85 #define DEFAULT_HOTPLUG_IO_SIZE (256) 86 #define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024) 87 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024) 88 /* hpiosize=nn can override this */ 89 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE; 90 /* 91 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size, 92 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size; 93 * pci=hpmemsize=nnM overrides both 94 */ 95 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE; 96 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE; 97 98 #define DEFAULT_HOTPLUG_BUS_SIZE 1 99 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 100 101 102 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */ 103 #ifdef CONFIG_PCIE_BUS_TUNE_OFF 104 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF; 105 #elif defined CONFIG_PCIE_BUS_SAFE 106 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE; 107 #elif defined CONFIG_PCIE_BUS_PERFORMANCE 108 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE; 109 #elif defined CONFIG_PCIE_BUS_PEER2PEER 110 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER; 111 #else 112 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT; 113 #endif 114 115 /* 116 * The default CLS is used if arch didn't set CLS explicitly and not 117 * all pci devices agree on the same value. Arch can override either 118 * the dfl or actual value as it sees fit. Don't forget this is 119 * measured in 32-bit words, not bytes. 120 */ 121 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2; 122 u8 pci_cache_line_size; 123 124 /* 125 * If we set up a device for bus mastering, we need to check the latency 126 * timer as certain BIOSes forget to set it properly. 127 */ 128 unsigned int pcibios_max_latency = 255; 129 130 /* If set, the PCIe ARI capability will not be used. */ 131 static bool pcie_ari_disabled; 132 133 /* If set, the PCIe ATS capability will not be used. */ 134 static bool pcie_ats_disabled; 135 136 /* If set, the PCI config space of each device is printed during boot. */ 137 bool pci_early_dump; 138 139 bool pci_ats_disabled(void) 140 { 141 return pcie_ats_disabled; 142 } 143 EXPORT_SYMBOL_GPL(pci_ats_disabled); 144 145 /* Disable bridge_d3 for all PCIe ports */ 146 static bool pci_bridge_d3_disable; 147 /* Force bridge_d3 for all PCIe ports */ 148 static bool pci_bridge_d3_force; 149 150 static int __init pcie_port_pm_setup(char *str) 151 { 152 if (!strcmp(str, "off")) 153 pci_bridge_d3_disable = true; 154 else if (!strcmp(str, "force")) 155 pci_bridge_d3_force = true; 156 return 1; 157 } 158 __setup("pcie_port_pm=", pcie_port_pm_setup); 159 160 /* Time to wait after a reset for device to become responsive */ 161 #define PCIE_RESET_READY_POLL_MS 60000 162 163 /** 164 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children 165 * @bus: pointer to PCI bus structure to search 166 * 167 * Given a PCI bus, returns the highest PCI bus number present in the set 168 * including the given PCI bus and its list of child PCI buses. 169 */ 170 unsigned char pci_bus_max_busnr(struct pci_bus *bus) 171 { 172 struct pci_bus *tmp; 173 unsigned char max, n; 174 175 max = bus->busn_res.end; 176 list_for_each_entry(tmp, &bus->children, node) { 177 n = pci_bus_max_busnr(tmp); 178 if (n > max) 179 max = n; 180 } 181 return max; 182 } 183 EXPORT_SYMBOL_GPL(pci_bus_max_busnr); 184 185 /** 186 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS 187 * @pdev: the PCI device 188 * 189 * Returns error bits set in PCI_STATUS and clears them. 190 */ 191 int pci_status_get_and_clear_errors(struct pci_dev *pdev) 192 { 193 u16 status; 194 int ret; 195 196 ret = pci_read_config_word(pdev, PCI_STATUS, &status); 197 if (ret != PCIBIOS_SUCCESSFUL) 198 return -EIO; 199 200 status &= PCI_STATUS_ERROR_BITS; 201 if (status) 202 pci_write_config_word(pdev, PCI_STATUS, status); 203 204 return status; 205 } 206 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors); 207 208 #ifdef CONFIG_HAS_IOMEM 209 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar) 210 { 211 struct resource *res = &pdev->resource[bar]; 212 213 /* 214 * Make sure the BAR is actually a memory resource, not an IO resource 215 */ 216 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) { 217 pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res); 218 return NULL; 219 } 220 return ioremap(res->start, resource_size(res)); 221 } 222 EXPORT_SYMBOL_GPL(pci_ioremap_bar); 223 224 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar) 225 { 226 /* 227 * Make sure the BAR is actually a memory resource, not an IO resource 228 */ 229 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) { 230 WARN_ON(1); 231 return NULL; 232 } 233 return ioremap_wc(pci_resource_start(pdev, bar), 234 pci_resource_len(pdev, bar)); 235 } 236 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar); 237 #endif 238 239 /** 240 * pci_dev_str_match_path - test if a path string matches a device 241 * @dev: the PCI device to test 242 * @path: string to match the device against 243 * @endptr: pointer to the string after the match 244 * 245 * Test if a string (typically from a kernel parameter) formatted as a 246 * path of device/function addresses matches a PCI device. The string must 247 * be of the form: 248 * 249 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 250 * 251 * A path for a device can be obtained using 'lspci -t'. Using a path 252 * is more robust against bus renumbering than using only a single bus, 253 * device and function address. 254 * 255 * Returns 1 if the string matches the device, 0 if it does not and 256 * a negative error code if it fails to parse the string. 257 */ 258 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path, 259 const char **endptr) 260 { 261 int ret; 262 int seg, bus, slot, func; 263 char *wpath, *p; 264 char end; 265 266 *endptr = strchrnul(path, ';'); 267 268 wpath = kmemdup_nul(path, *endptr - path, GFP_KERNEL); 269 if (!wpath) 270 return -ENOMEM; 271 272 while (1) { 273 p = strrchr(wpath, '/'); 274 if (!p) 275 break; 276 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end); 277 if (ret != 2) { 278 ret = -EINVAL; 279 goto free_and_exit; 280 } 281 282 if (dev->devfn != PCI_DEVFN(slot, func)) { 283 ret = 0; 284 goto free_and_exit; 285 } 286 287 /* 288 * Note: we don't need to get a reference to the upstream 289 * bridge because we hold a reference to the top level 290 * device which should hold a reference to the bridge, 291 * and so on. 292 */ 293 dev = pci_upstream_bridge(dev); 294 if (!dev) { 295 ret = 0; 296 goto free_and_exit; 297 } 298 299 *p = 0; 300 } 301 302 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot, 303 &func, &end); 304 if (ret != 4) { 305 seg = 0; 306 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end); 307 if (ret != 3) { 308 ret = -EINVAL; 309 goto free_and_exit; 310 } 311 } 312 313 ret = (seg == pci_domain_nr(dev->bus) && 314 bus == dev->bus->number && 315 dev->devfn == PCI_DEVFN(slot, func)); 316 317 free_and_exit: 318 kfree(wpath); 319 return ret; 320 } 321 322 /** 323 * pci_dev_str_match - test if a string matches a device 324 * @dev: the PCI device to test 325 * @p: string to match the device against 326 * @endptr: pointer to the string after the match 327 * 328 * Test if a string (typically from a kernel parameter) matches a specified 329 * PCI device. The string may be of one of the following formats: 330 * 331 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 332 * pci:<vendor>:<device>[:<subvendor>:<subdevice>] 333 * 334 * The first format specifies a PCI bus/device/function address which 335 * may change if new hardware is inserted, if motherboard firmware changes, 336 * or due to changes caused in kernel parameters. If the domain is 337 * left unspecified, it is taken to be 0. In order to be robust against 338 * bus renumbering issues, a path of PCI device/function numbers may be used 339 * to address the specific device. The path for a device can be determined 340 * through the use of 'lspci -t'. 341 * 342 * The second format matches devices using IDs in the configuration 343 * space which may match multiple devices in the system. A value of 0 344 * for any field will match all devices. (Note: this differs from 345 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for 346 * legacy reasons and convenience so users don't have to specify 347 * FFFFFFFFs on the command line.) 348 * 349 * Returns 1 if the string matches the device, 0 if it does not and 350 * a negative error code if the string cannot be parsed. 351 */ 352 static int pci_dev_str_match(struct pci_dev *dev, const char *p, 353 const char **endptr) 354 { 355 int ret; 356 int count; 357 unsigned short vendor, device, subsystem_vendor, subsystem_device; 358 359 if (strncmp(p, "pci:", 4) == 0) { 360 /* PCI vendor/device (subvendor/subdevice) IDs are specified */ 361 p += 4; 362 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device, 363 &subsystem_vendor, &subsystem_device, &count); 364 if (ret != 4) { 365 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count); 366 if (ret != 2) 367 return -EINVAL; 368 369 subsystem_vendor = 0; 370 subsystem_device = 0; 371 } 372 373 p += count; 374 375 if ((!vendor || vendor == dev->vendor) && 376 (!device || device == dev->device) && 377 (!subsystem_vendor || 378 subsystem_vendor == dev->subsystem_vendor) && 379 (!subsystem_device || 380 subsystem_device == dev->subsystem_device)) 381 goto found; 382 } else { 383 /* 384 * PCI Bus, Device, Function IDs are specified 385 * (optionally, may include a path of devfns following it) 386 */ 387 ret = pci_dev_str_match_path(dev, p, &p); 388 if (ret < 0) 389 return ret; 390 else if (ret) 391 goto found; 392 } 393 394 *endptr = p; 395 return 0; 396 397 found: 398 *endptr = p; 399 return 1; 400 } 401 402 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn, 403 u8 pos, int cap, int *ttl) 404 { 405 u8 id; 406 u16 ent; 407 408 pci_bus_read_config_byte(bus, devfn, pos, &pos); 409 410 while ((*ttl)--) { 411 if (pos < 0x40) 412 break; 413 pos &= ~3; 414 pci_bus_read_config_word(bus, devfn, pos, &ent); 415 416 id = ent & 0xff; 417 if (id == 0xff) 418 break; 419 if (id == cap) 420 return pos; 421 pos = (ent >> 8); 422 } 423 return 0; 424 } 425 426 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn, 427 u8 pos, int cap) 428 { 429 int ttl = PCI_FIND_CAP_TTL; 430 431 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl); 432 } 433 434 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap) 435 { 436 return __pci_find_next_cap(dev->bus, dev->devfn, 437 pos + PCI_CAP_LIST_NEXT, cap); 438 } 439 EXPORT_SYMBOL_GPL(pci_find_next_capability); 440 441 static int __pci_bus_find_cap_start(struct pci_bus *bus, 442 unsigned int devfn, u8 hdr_type) 443 { 444 u16 status; 445 446 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status); 447 if (!(status & PCI_STATUS_CAP_LIST)) 448 return 0; 449 450 switch (hdr_type) { 451 case PCI_HEADER_TYPE_NORMAL: 452 case PCI_HEADER_TYPE_BRIDGE: 453 return PCI_CAPABILITY_LIST; 454 case PCI_HEADER_TYPE_CARDBUS: 455 return PCI_CB_CAPABILITY_LIST; 456 } 457 458 return 0; 459 } 460 461 /** 462 * pci_find_capability - query for devices' capabilities 463 * @dev: PCI device to query 464 * @cap: capability code 465 * 466 * Tell if a device supports a given PCI capability. 467 * Returns the address of the requested capability structure within the 468 * device's PCI configuration space or 0 in case the device does not 469 * support it. Possible values for @cap include: 470 * 471 * %PCI_CAP_ID_PM Power Management 472 * %PCI_CAP_ID_AGP Accelerated Graphics Port 473 * %PCI_CAP_ID_VPD Vital Product Data 474 * %PCI_CAP_ID_SLOTID Slot Identification 475 * %PCI_CAP_ID_MSI Message Signalled Interrupts 476 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap 477 * %PCI_CAP_ID_PCIX PCI-X 478 * %PCI_CAP_ID_EXP PCI Express 479 */ 480 int pci_find_capability(struct pci_dev *dev, int cap) 481 { 482 int pos; 483 484 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 485 if (pos) 486 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap); 487 488 return pos; 489 } 490 EXPORT_SYMBOL(pci_find_capability); 491 492 /** 493 * pci_bus_find_capability - query for devices' capabilities 494 * @bus: the PCI bus to query 495 * @devfn: PCI device to query 496 * @cap: capability code 497 * 498 * Like pci_find_capability() but works for PCI devices that do not have a 499 * pci_dev structure set up yet. 500 * 501 * Returns the address of the requested capability structure within the 502 * device's PCI configuration space or 0 in case the device does not 503 * support it. 504 */ 505 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap) 506 { 507 int pos; 508 u8 hdr_type; 509 510 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type); 511 512 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f); 513 if (pos) 514 pos = __pci_find_next_cap(bus, devfn, pos, cap); 515 516 return pos; 517 } 518 EXPORT_SYMBOL(pci_bus_find_capability); 519 520 /** 521 * pci_find_next_ext_capability - Find an extended capability 522 * @dev: PCI device to query 523 * @start: address at which to start looking (0 to start at beginning of list) 524 * @cap: capability code 525 * 526 * Returns the address of the next matching extended capability structure 527 * within the device's PCI configuration space or 0 if the device does 528 * not support it. Some capabilities can occur several times, e.g., the 529 * vendor-specific capability, and this provides a way to find them all. 530 */ 531 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap) 532 { 533 u32 header; 534 int ttl; 535 int pos = PCI_CFG_SPACE_SIZE; 536 537 /* minimum 8 bytes per capability */ 538 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8; 539 540 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE) 541 return 0; 542 543 if (start) 544 pos = start; 545 546 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 547 return 0; 548 549 /* 550 * If we have no capabilities, this is indicated by cap ID, 551 * cap version and next pointer all being 0. 552 */ 553 if (header == 0) 554 return 0; 555 556 while (ttl-- > 0) { 557 if (PCI_EXT_CAP_ID(header) == cap && pos != start) 558 return pos; 559 560 pos = PCI_EXT_CAP_NEXT(header); 561 if (pos < PCI_CFG_SPACE_SIZE) 562 break; 563 564 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 565 break; 566 } 567 568 return 0; 569 } 570 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability); 571 572 /** 573 * pci_find_ext_capability - Find an extended capability 574 * @dev: PCI device to query 575 * @cap: capability code 576 * 577 * Returns the address of the requested extended capability structure 578 * within the device's PCI configuration space or 0 if the device does 579 * not support it. Possible values for @cap include: 580 * 581 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting 582 * %PCI_EXT_CAP_ID_VC Virtual Channel 583 * %PCI_EXT_CAP_ID_DSN Device Serial Number 584 * %PCI_EXT_CAP_ID_PWR Power Budgeting 585 */ 586 int pci_find_ext_capability(struct pci_dev *dev, int cap) 587 { 588 return pci_find_next_ext_capability(dev, 0, cap); 589 } 590 EXPORT_SYMBOL_GPL(pci_find_ext_capability); 591 592 /** 593 * pci_get_dsn - Read and return the 8-byte Device Serial Number 594 * @dev: PCI device to query 595 * 596 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial 597 * Number. 598 * 599 * Returns the DSN, or zero if the capability does not exist. 600 */ 601 u64 pci_get_dsn(struct pci_dev *dev) 602 { 603 u32 dword; 604 u64 dsn; 605 int pos; 606 607 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN); 608 if (!pos) 609 return 0; 610 611 /* 612 * The Device Serial Number is two dwords offset 4 bytes from the 613 * capability position. The specification says that the first dword is 614 * the lower half, and the second dword is the upper half. 615 */ 616 pos += 4; 617 pci_read_config_dword(dev, pos, &dword); 618 dsn = (u64)dword; 619 pci_read_config_dword(dev, pos + 4, &dword); 620 dsn |= ((u64)dword) << 32; 621 622 return dsn; 623 } 624 EXPORT_SYMBOL_GPL(pci_get_dsn); 625 626 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap) 627 { 628 int rc, ttl = PCI_FIND_CAP_TTL; 629 u8 cap, mask; 630 631 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST) 632 mask = HT_3BIT_CAP_MASK; 633 else 634 mask = HT_5BIT_CAP_MASK; 635 636 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos, 637 PCI_CAP_ID_HT, &ttl); 638 while (pos) { 639 rc = pci_read_config_byte(dev, pos + 3, &cap); 640 if (rc != PCIBIOS_SUCCESSFUL) 641 return 0; 642 643 if ((cap & mask) == ht_cap) 644 return pos; 645 646 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, 647 pos + PCI_CAP_LIST_NEXT, 648 PCI_CAP_ID_HT, &ttl); 649 } 650 651 return 0; 652 } 653 /** 654 * pci_find_next_ht_capability - query a device's Hypertransport capabilities 655 * @dev: PCI device to query 656 * @pos: Position from which to continue searching 657 * @ht_cap: Hypertransport capability code 658 * 659 * To be used in conjunction with pci_find_ht_capability() to search for 660 * all capabilities matching @ht_cap. @pos should always be a value returned 661 * from pci_find_ht_capability(). 662 * 663 * NB. To be 100% safe against broken PCI devices, the caller should take 664 * steps to avoid an infinite loop. 665 */ 666 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap) 667 { 668 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap); 669 } 670 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability); 671 672 /** 673 * pci_find_ht_capability - query a device's Hypertransport capabilities 674 * @dev: PCI device to query 675 * @ht_cap: Hypertransport capability code 676 * 677 * Tell if a device supports a given Hypertransport capability. 678 * Returns an address within the device's PCI configuration space 679 * or 0 in case the device does not support the request capability. 680 * The address points to the PCI capability, of type PCI_CAP_ID_HT, 681 * which has a Hypertransport capability matching @ht_cap. 682 */ 683 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap) 684 { 685 int pos; 686 687 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 688 if (pos) 689 pos = __pci_find_next_ht_cap(dev, pos, ht_cap); 690 691 return pos; 692 } 693 EXPORT_SYMBOL_GPL(pci_find_ht_capability); 694 695 /** 696 * pci_find_parent_resource - return resource region of parent bus of given 697 * region 698 * @dev: PCI device structure contains resources to be searched 699 * @res: child resource record for which parent is sought 700 * 701 * For given resource region of given device, return the resource region of 702 * parent bus the given region is contained in. 703 */ 704 struct resource *pci_find_parent_resource(const struct pci_dev *dev, 705 struct resource *res) 706 { 707 const struct pci_bus *bus = dev->bus; 708 struct resource *r; 709 int i; 710 711 pci_bus_for_each_resource(bus, r, i) { 712 if (!r) 713 continue; 714 if (resource_contains(r, res)) { 715 716 /* 717 * If the window is prefetchable but the BAR is 718 * not, the allocator made a mistake. 719 */ 720 if (r->flags & IORESOURCE_PREFETCH && 721 !(res->flags & IORESOURCE_PREFETCH)) 722 return NULL; 723 724 /* 725 * If we're below a transparent bridge, there may 726 * be both a positively-decoded aperture and a 727 * subtractively-decoded region that contain the BAR. 728 * We want the positively-decoded one, so this depends 729 * on pci_bus_for_each_resource() giving us those 730 * first. 731 */ 732 return r; 733 } 734 } 735 return NULL; 736 } 737 EXPORT_SYMBOL(pci_find_parent_resource); 738 739 /** 740 * pci_find_resource - Return matching PCI device resource 741 * @dev: PCI device to query 742 * @res: Resource to look for 743 * 744 * Goes over standard PCI resources (BARs) and checks if the given resource 745 * is partially or fully contained in any of them. In that case the 746 * matching resource is returned, %NULL otherwise. 747 */ 748 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res) 749 { 750 int i; 751 752 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 753 struct resource *r = &dev->resource[i]; 754 755 if (r->start && resource_contains(r, res)) 756 return r; 757 } 758 759 return NULL; 760 } 761 EXPORT_SYMBOL(pci_find_resource); 762 763 /** 764 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos 765 * @dev: the PCI device to operate on 766 * @pos: config space offset of status word 767 * @mask: mask of bit(s) to care about in status word 768 * 769 * Return 1 when mask bit(s) in status word clear, 0 otherwise. 770 */ 771 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask) 772 { 773 int i; 774 775 /* Wait for Transaction Pending bit clean */ 776 for (i = 0; i < 4; i++) { 777 u16 status; 778 if (i) 779 msleep((1 << (i - 1)) * 100); 780 781 pci_read_config_word(dev, pos, &status); 782 if (!(status & mask)) 783 return 1; 784 } 785 786 return 0; 787 } 788 789 static int pci_acs_enable; 790 791 /** 792 * pci_request_acs - ask for ACS to be enabled if supported 793 */ 794 void pci_request_acs(void) 795 { 796 pci_acs_enable = 1; 797 } 798 799 static const char *disable_acs_redir_param; 800 801 /** 802 * pci_disable_acs_redir - disable ACS redirect capabilities 803 * @dev: the PCI device 804 * 805 * For only devices specified in the disable_acs_redir parameter. 806 */ 807 static void pci_disable_acs_redir(struct pci_dev *dev) 808 { 809 int ret = 0; 810 const char *p; 811 int pos; 812 u16 ctrl; 813 814 if (!disable_acs_redir_param) 815 return; 816 817 p = disable_acs_redir_param; 818 while (*p) { 819 ret = pci_dev_str_match(dev, p, &p); 820 if (ret < 0) { 821 pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n", 822 disable_acs_redir_param); 823 824 break; 825 } else if (ret == 1) { 826 /* Found a match */ 827 break; 828 } 829 830 if (*p != ';' && *p != ',') { 831 /* End of param or invalid format */ 832 break; 833 } 834 p++; 835 } 836 837 if (ret != 1) 838 return; 839 840 if (!pci_dev_specific_disable_acs_redir(dev)) 841 return; 842 843 pos = dev->acs_cap; 844 if (!pos) { 845 pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n"); 846 return; 847 } 848 849 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 850 851 /* P2P Request & Completion Redirect */ 852 ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC); 853 854 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 855 856 pci_info(dev, "disabled ACS redirect\n"); 857 } 858 859 /** 860 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities 861 * @dev: the PCI device 862 */ 863 static void pci_std_enable_acs(struct pci_dev *dev) 864 { 865 int pos; 866 u16 cap; 867 u16 ctrl; 868 869 pos = dev->acs_cap; 870 if (!pos) 871 return; 872 873 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap); 874 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 875 876 /* Source Validation */ 877 ctrl |= (cap & PCI_ACS_SV); 878 879 /* P2P Request Redirect */ 880 ctrl |= (cap & PCI_ACS_RR); 881 882 /* P2P Completion Redirect */ 883 ctrl |= (cap & PCI_ACS_CR); 884 885 /* Upstream Forwarding */ 886 ctrl |= (cap & PCI_ACS_UF); 887 888 /* Enable Translation Blocking for external devices */ 889 if (dev->external_facing || dev->untrusted) 890 ctrl |= (cap & PCI_ACS_TB); 891 892 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 893 } 894 895 /** 896 * pci_enable_acs - enable ACS if hardware support it 897 * @dev: the PCI device 898 */ 899 static void pci_enable_acs(struct pci_dev *dev) 900 { 901 if (!pci_acs_enable) 902 goto disable_acs_redir; 903 904 if (!pci_dev_specific_enable_acs(dev)) 905 goto disable_acs_redir; 906 907 pci_std_enable_acs(dev); 908 909 disable_acs_redir: 910 /* 911 * Note: pci_disable_acs_redir() must be called even if ACS was not 912 * enabled by the kernel because it may have been enabled by 913 * platform firmware. So if we are told to disable it, we should 914 * always disable it after setting the kernel's default 915 * preferences. 916 */ 917 pci_disable_acs_redir(dev); 918 } 919 920 /** 921 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up) 922 * @dev: PCI device to have its BARs restored 923 * 924 * Restore the BAR values for a given device, so as to make it 925 * accessible by its driver. 926 */ 927 static void pci_restore_bars(struct pci_dev *dev) 928 { 929 int i; 930 931 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) 932 pci_update_resource(dev, i); 933 } 934 935 static const struct pci_platform_pm_ops *pci_platform_pm; 936 937 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops) 938 { 939 if (!ops->is_manageable || !ops->set_state || !ops->get_state || 940 !ops->choose_state || !ops->set_wakeup || !ops->need_resume) 941 return -EINVAL; 942 pci_platform_pm = ops; 943 return 0; 944 } 945 946 static inline bool platform_pci_power_manageable(struct pci_dev *dev) 947 { 948 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false; 949 } 950 951 static inline int platform_pci_set_power_state(struct pci_dev *dev, 952 pci_power_t t) 953 { 954 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS; 955 } 956 957 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev) 958 { 959 return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN; 960 } 961 962 static inline void platform_pci_refresh_power_state(struct pci_dev *dev) 963 { 964 if (pci_platform_pm && pci_platform_pm->refresh_state) 965 pci_platform_pm->refresh_state(dev); 966 } 967 968 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev) 969 { 970 return pci_platform_pm ? 971 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR; 972 } 973 974 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable) 975 { 976 return pci_platform_pm ? 977 pci_platform_pm->set_wakeup(dev, enable) : -ENODEV; 978 } 979 980 static inline bool platform_pci_need_resume(struct pci_dev *dev) 981 { 982 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false; 983 } 984 985 static inline bool platform_pci_bridge_d3(struct pci_dev *dev) 986 { 987 if (pci_platform_pm && pci_platform_pm->bridge_d3) 988 return pci_platform_pm->bridge_d3(dev); 989 return false; 990 } 991 992 /** 993 * pci_raw_set_power_state - Use PCI PM registers to set the power state of 994 * given PCI device 995 * @dev: PCI device to handle. 996 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 997 * 998 * RETURN VALUE: 999 * -EINVAL if the requested state is invalid. 1000 * -EIO if device does not support PCI PM or its PM capabilities register has a 1001 * wrong version, or device doesn't support the requested state. 1002 * 0 if device already is in the requested state. 1003 * 0 if device's power state has been successfully changed. 1004 */ 1005 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state) 1006 { 1007 u16 pmcsr; 1008 bool need_restore = false; 1009 1010 /* Check if we're already there */ 1011 if (dev->current_state == state) 1012 return 0; 1013 1014 if (!dev->pm_cap) 1015 return -EIO; 1016 1017 if (state < PCI_D0 || state > PCI_D3hot) 1018 return -EINVAL; 1019 1020 /* 1021 * Validate transition: We can enter D0 from any state, but if 1022 * we're already in a low-power state, we can only go deeper. E.g., 1023 * we can go from D1 to D3, but we can't go directly from D3 to D1; 1024 * we'd have to go from D3 to D0, then to D1. 1025 */ 1026 if (state != PCI_D0 && dev->current_state <= PCI_D3cold 1027 && dev->current_state > state) { 1028 pci_err(dev, "invalid power transition (from %s to %s)\n", 1029 pci_power_name(dev->current_state), 1030 pci_power_name(state)); 1031 return -EINVAL; 1032 } 1033 1034 /* Check if this device supports the desired state */ 1035 if ((state == PCI_D1 && !dev->d1_support) 1036 || (state == PCI_D2 && !dev->d2_support)) 1037 return -EIO; 1038 1039 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1040 if (pmcsr == (u16) ~0) { 1041 pci_err(dev, "can't change power state from %s to %s (config space inaccessible)\n", 1042 pci_power_name(dev->current_state), 1043 pci_power_name(state)); 1044 return -EIO; 1045 } 1046 1047 /* 1048 * If we're (effectively) in D3, force entire word to 0. 1049 * This doesn't affect PME_Status, disables PME_En, and 1050 * sets PowerState to 0. 1051 */ 1052 switch (dev->current_state) { 1053 case PCI_D0: 1054 case PCI_D1: 1055 case PCI_D2: 1056 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 1057 pmcsr |= state; 1058 break; 1059 case PCI_D3hot: 1060 case PCI_D3cold: 1061 case PCI_UNKNOWN: /* Boot-up */ 1062 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot 1063 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET)) 1064 need_restore = true; 1065 fallthrough; /* force to D0 */ 1066 default: 1067 pmcsr = 0; 1068 break; 1069 } 1070 1071 /* Enter specified state */ 1072 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 1073 1074 /* 1075 * Mandatory power management transition delays; see PCI PM 1.1 1076 * 5.6.1 table 18 1077 */ 1078 if (state == PCI_D3hot || dev->current_state == PCI_D3hot) 1079 pci_dev_d3_sleep(dev); 1080 else if (state == PCI_D2 || dev->current_state == PCI_D2) 1081 udelay(PCI_PM_D2_DELAY); 1082 1083 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1084 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 1085 if (dev->current_state != state) 1086 pci_info_ratelimited(dev, "refused to change power state from %s to %s\n", 1087 pci_power_name(dev->current_state), 1088 pci_power_name(state)); 1089 1090 /* 1091 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT 1092 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning 1093 * from D3hot to D0 _may_ perform an internal reset, thereby 1094 * going to "D0 Uninitialized" rather than "D0 Initialized". 1095 * For example, at least some versions of the 3c905B and the 1096 * 3c556B exhibit this behaviour. 1097 * 1098 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave 1099 * devices in a D3hot state at boot. Consequently, we need to 1100 * restore at least the BARs so that the device will be 1101 * accessible to its driver. 1102 */ 1103 if (need_restore) 1104 pci_restore_bars(dev); 1105 1106 if (dev->bus->self) 1107 pcie_aspm_pm_state_change(dev->bus->self); 1108 1109 return 0; 1110 } 1111 1112 /** 1113 * pci_update_current_state - Read power state of given device and cache it 1114 * @dev: PCI device to handle. 1115 * @state: State to cache in case the device doesn't have the PM capability 1116 * 1117 * The power state is read from the PMCSR register, which however is 1118 * inaccessible in D3cold. The platform firmware is therefore queried first 1119 * to detect accessibility of the register. In case the platform firmware 1120 * reports an incorrect state or the device isn't power manageable by the 1121 * platform at all, we try to detect D3cold by testing accessibility of the 1122 * vendor ID in config space. 1123 */ 1124 void pci_update_current_state(struct pci_dev *dev, pci_power_t state) 1125 { 1126 if (platform_pci_get_power_state(dev) == PCI_D3cold || 1127 !pci_device_is_present(dev)) { 1128 dev->current_state = PCI_D3cold; 1129 } else if (dev->pm_cap) { 1130 u16 pmcsr; 1131 1132 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1133 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 1134 } else { 1135 dev->current_state = state; 1136 } 1137 } 1138 1139 /** 1140 * pci_refresh_power_state - Refresh the given device's power state data 1141 * @dev: Target PCI device. 1142 * 1143 * Ask the platform to refresh the devices power state information and invoke 1144 * pci_update_current_state() to update its current PCI power state. 1145 */ 1146 void pci_refresh_power_state(struct pci_dev *dev) 1147 { 1148 if (platform_pci_power_manageable(dev)) 1149 platform_pci_refresh_power_state(dev); 1150 1151 pci_update_current_state(dev, dev->current_state); 1152 } 1153 1154 /** 1155 * pci_platform_power_transition - Use platform to change device power state 1156 * @dev: PCI device to handle. 1157 * @state: State to put the device into. 1158 */ 1159 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state) 1160 { 1161 int error; 1162 1163 if (platform_pci_power_manageable(dev)) { 1164 error = platform_pci_set_power_state(dev, state); 1165 if (!error) 1166 pci_update_current_state(dev, state); 1167 } else 1168 error = -ENODEV; 1169 1170 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */ 1171 dev->current_state = PCI_D0; 1172 1173 return error; 1174 } 1175 EXPORT_SYMBOL_GPL(pci_platform_power_transition); 1176 1177 /** 1178 * pci_wakeup - Wake up a PCI device 1179 * @pci_dev: Device to handle. 1180 * @ign: ignored parameter 1181 */ 1182 static int pci_wakeup(struct pci_dev *pci_dev, void *ign) 1183 { 1184 pci_wakeup_event(pci_dev); 1185 pm_request_resume(&pci_dev->dev); 1186 return 0; 1187 } 1188 1189 /** 1190 * pci_wakeup_bus - Walk given bus and wake up devices on it 1191 * @bus: Top bus of the subtree to walk. 1192 */ 1193 void pci_wakeup_bus(struct pci_bus *bus) 1194 { 1195 if (bus) 1196 pci_walk_bus(bus, pci_wakeup, NULL); 1197 } 1198 1199 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout) 1200 { 1201 int delay = 1; 1202 u32 id; 1203 1204 /* 1205 * After reset, the device should not silently discard config 1206 * requests, but it may still indicate that it needs more time by 1207 * responding to them with CRS completions. The Root Port will 1208 * generally synthesize ~0 data to complete the read (except when 1209 * CRS SV is enabled and the read was for the Vendor ID; in that 1210 * case it synthesizes 0x0001 data). 1211 * 1212 * Wait for the device to return a non-CRS completion. Read the 1213 * Command register instead of Vendor ID so we don't have to 1214 * contend with the CRS SV value. 1215 */ 1216 pci_read_config_dword(dev, PCI_COMMAND, &id); 1217 while (id == ~0) { 1218 if (delay > timeout) { 1219 pci_warn(dev, "not ready %dms after %s; giving up\n", 1220 delay - 1, reset_type); 1221 return -ENOTTY; 1222 } 1223 1224 if (delay > 1000) 1225 pci_info(dev, "not ready %dms after %s; waiting\n", 1226 delay - 1, reset_type); 1227 1228 msleep(delay); 1229 delay *= 2; 1230 pci_read_config_dword(dev, PCI_COMMAND, &id); 1231 } 1232 1233 if (delay > 1000) 1234 pci_info(dev, "ready %dms after %s\n", delay - 1, 1235 reset_type); 1236 1237 return 0; 1238 } 1239 1240 /** 1241 * pci_power_up - Put the given device into D0 1242 * @dev: PCI device to power up 1243 */ 1244 int pci_power_up(struct pci_dev *dev) 1245 { 1246 pci_platform_power_transition(dev, PCI_D0); 1247 1248 /* 1249 * Mandatory power management transition delays are handled in 1250 * pci_pm_resume_noirq() and pci_pm_runtime_resume() of the 1251 * corresponding bridge. 1252 */ 1253 if (dev->runtime_d3cold) { 1254 /* 1255 * When powering on a bridge from D3cold, the whole hierarchy 1256 * may be powered on into D0uninitialized state, resume them to 1257 * give them a chance to suspend again 1258 */ 1259 pci_wakeup_bus(dev->subordinate); 1260 } 1261 1262 return pci_raw_set_power_state(dev, PCI_D0); 1263 } 1264 1265 /** 1266 * __pci_dev_set_current_state - Set current state of a PCI device 1267 * @dev: Device to handle 1268 * @data: pointer to state to be set 1269 */ 1270 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data) 1271 { 1272 pci_power_t state = *(pci_power_t *)data; 1273 1274 dev->current_state = state; 1275 return 0; 1276 } 1277 1278 /** 1279 * pci_bus_set_current_state - Walk given bus and set current state of devices 1280 * @bus: Top bus of the subtree to walk. 1281 * @state: state to be set 1282 */ 1283 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state) 1284 { 1285 if (bus) 1286 pci_walk_bus(bus, __pci_dev_set_current_state, &state); 1287 } 1288 1289 /** 1290 * pci_set_power_state - Set the power state of a PCI device 1291 * @dev: PCI device to handle. 1292 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 1293 * 1294 * Transition a device to a new power state, using the platform firmware and/or 1295 * the device's PCI PM registers. 1296 * 1297 * RETURN VALUE: 1298 * -EINVAL if the requested state is invalid. 1299 * -EIO if device does not support PCI PM or its PM capabilities register has a 1300 * wrong version, or device doesn't support the requested state. 1301 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported. 1302 * 0 if device already is in the requested state. 1303 * 0 if the transition is to D3 but D3 is not supported. 1304 * 0 if device's power state has been successfully changed. 1305 */ 1306 int pci_set_power_state(struct pci_dev *dev, pci_power_t state) 1307 { 1308 int error; 1309 1310 /* Bound the state we're entering */ 1311 if (state > PCI_D3cold) 1312 state = PCI_D3cold; 1313 else if (state < PCI_D0) 1314 state = PCI_D0; 1315 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev)) 1316 1317 /* 1318 * If the device or the parent bridge do not support PCI 1319 * PM, ignore the request if we're doing anything other 1320 * than putting it into D0 (which would only happen on 1321 * boot). 1322 */ 1323 return 0; 1324 1325 /* Check if we're already there */ 1326 if (dev->current_state == state) 1327 return 0; 1328 1329 if (state == PCI_D0) 1330 return pci_power_up(dev); 1331 1332 /* 1333 * This device is quirked not to be put into D3, so don't put it in 1334 * D3 1335 */ 1336 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3)) 1337 return 0; 1338 1339 /* 1340 * To put device in D3cold, we put device into D3hot in native 1341 * way, then put device into D3cold with platform ops 1342 */ 1343 error = pci_raw_set_power_state(dev, state > PCI_D3hot ? 1344 PCI_D3hot : state); 1345 1346 if (pci_platform_power_transition(dev, state)) 1347 return error; 1348 1349 /* Powering off a bridge may power off the whole hierarchy */ 1350 if (state == PCI_D3cold) 1351 pci_bus_set_current_state(dev->subordinate, PCI_D3cold); 1352 1353 return 0; 1354 } 1355 EXPORT_SYMBOL(pci_set_power_state); 1356 1357 /** 1358 * pci_choose_state - Choose the power state of a PCI device 1359 * @dev: PCI device to be suspended 1360 * @state: target sleep state for the whole system. This is the value 1361 * that is passed to suspend() function. 1362 * 1363 * Returns PCI power state suitable for given device and given system 1364 * message. 1365 */ 1366 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state) 1367 { 1368 pci_power_t ret; 1369 1370 if (!dev->pm_cap) 1371 return PCI_D0; 1372 1373 ret = platform_pci_choose_state(dev); 1374 if (ret != PCI_POWER_ERROR) 1375 return ret; 1376 1377 switch (state.event) { 1378 case PM_EVENT_ON: 1379 return PCI_D0; 1380 case PM_EVENT_FREEZE: 1381 case PM_EVENT_PRETHAW: 1382 /* REVISIT both freeze and pre-thaw "should" use D0 */ 1383 case PM_EVENT_SUSPEND: 1384 case PM_EVENT_HIBERNATE: 1385 return PCI_D3hot; 1386 default: 1387 pci_info(dev, "unrecognized suspend event %d\n", 1388 state.event); 1389 BUG(); 1390 } 1391 return PCI_D0; 1392 } 1393 EXPORT_SYMBOL(pci_choose_state); 1394 1395 #define PCI_EXP_SAVE_REGS 7 1396 1397 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev, 1398 u16 cap, bool extended) 1399 { 1400 struct pci_cap_saved_state *tmp; 1401 1402 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) { 1403 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap) 1404 return tmp; 1405 } 1406 return NULL; 1407 } 1408 1409 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap) 1410 { 1411 return _pci_find_saved_cap(dev, cap, false); 1412 } 1413 1414 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap) 1415 { 1416 return _pci_find_saved_cap(dev, cap, true); 1417 } 1418 1419 static int pci_save_pcie_state(struct pci_dev *dev) 1420 { 1421 int i = 0; 1422 struct pci_cap_saved_state *save_state; 1423 u16 *cap; 1424 1425 if (!pci_is_pcie(dev)) 1426 return 0; 1427 1428 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1429 if (!save_state) { 1430 pci_err(dev, "buffer not found in %s\n", __func__); 1431 return -ENOMEM; 1432 } 1433 1434 cap = (u16 *)&save_state->cap.data[0]; 1435 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]); 1436 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]); 1437 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]); 1438 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]); 1439 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]); 1440 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]); 1441 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]); 1442 1443 return 0; 1444 } 1445 1446 static void pci_restore_pcie_state(struct pci_dev *dev) 1447 { 1448 int i = 0; 1449 struct pci_cap_saved_state *save_state; 1450 u16 *cap; 1451 1452 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1453 if (!save_state) 1454 return; 1455 1456 cap = (u16 *)&save_state->cap.data[0]; 1457 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]); 1458 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]); 1459 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]); 1460 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]); 1461 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]); 1462 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]); 1463 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]); 1464 } 1465 1466 static int pci_save_pcix_state(struct pci_dev *dev) 1467 { 1468 int pos; 1469 struct pci_cap_saved_state *save_state; 1470 1471 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1472 if (!pos) 1473 return 0; 1474 1475 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1476 if (!save_state) { 1477 pci_err(dev, "buffer not found in %s\n", __func__); 1478 return -ENOMEM; 1479 } 1480 1481 pci_read_config_word(dev, pos + PCI_X_CMD, 1482 (u16 *)save_state->cap.data); 1483 1484 return 0; 1485 } 1486 1487 static void pci_restore_pcix_state(struct pci_dev *dev) 1488 { 1489 int i = 0, pos; 1490 struct pci_cap_saved_state *save_state; 1491 u16 *cap; 1492 1493 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1494 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1495 if (!save_state || !pos) 1496 return; 1497 cap = (u16 *)&save_state->cap.data[0]; 1498 1499 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]); 1500 } 1501 1502 static void pci_save_ltr_state(struct pci_dev *dev) 1503 { 1504 int ltr; 1505 struct pci_cap_saved_state *save_state; 1506 u16 *cap; 1507 1508 if (!pci_is_pcie(dev)) 1509 return; 1510 1511 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR); 1512 if (!ltr) 1513 return; 1514 1515 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR); 1516 if (!save_state) { 1517 pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n"); 1518 return; 1519 } 1520 1521 cap = (u16 *)&save_state->cap.data[0]; 1522 pci_read_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap++); 1523 pci_read_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, cap++); 1524 } 1525 1526 static void pci_restore_ltr_state(struct pci_dev *dev) 1527 { 1528 struct pci_cap_saved_state *save_state; 1529 int ltr; 1530 u16 *cap; 1531 1532 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR); 1533 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR); 1534 if (!save_state || !ltr) 1535 return; 1536 1537 cap = (u16 *)&save_state->cap.data[0]; 1538 pci_write_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap++); 1539 pci_write_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, *cap++); 1540 } 1541 1542 /** 1543 * pci_save_state - save the PCI configuration space of a device before 1544 * suspending 1545 * @dev: PCI device that we're dealing with 1546 */ 1547 int pci_save_state(struct pci_dev *dev) 1548 { 1549 int i; 1550 /* XXX: 100% dword access ok here? */ 1551 for (i = 0; i < 16; i++) { 1552 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]); 1553 pci_dbg(dev, "saving config space at offset %#x (reading %#x)\n", 1554 i * 4, dev->saved_config_space[i]); 1555 } 1556 dev->state_saved = true; 1557 1558 i = pci_save_pcie_state(dev); 1559 if (i != 0) 1560 return i; 1561 1562 i = pci_save_pcix_state(dev); 1563 if (i != 0) 1564 return i; 1565 1566 pci_save_ltr_state(dev); 1567 pci_save_dpc_state(dev); 1568 pci_save_aer_state(dev); 1569 return pci_save_vc_state(dev); 1570 } 1571 EXPORT_SYMBOL(pci_save_state); 1572 1573 static void pci_restore_config_dword(struct pci_dev *pdev, int offset, 1574 u32 saved_val, int retry, bool force) 1575 { 1576 u32 val; 1577 1578 pci_read_config_dword(pdev, offset, &val); 1579 if (!force && val == saved_val) 1580 return; 1581 1582 for (;;) { 1583 pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n", 1584 offset, val, saved_val); 1585 pci_write_config_dword(pdev, offset, saved_val); 1586 if (retry-- <= 0) 1587 return; 1588 1589 pci_read_config_dword(pdev, offset, &val); 1590 if (val == saved_val) 1591 return; 1592 1593 mdelay(1); 1594 } 1595 } 1596 1597 static void pci_restore_config_space_range(struct pci_dev *pdev, 1598 int start, int end, int retry, 1599 bool force) 1600 { 1601 int index; 1602 1603 for (index = end; index >= start; index--) 1604 pci_restore_config_dword(pdev, 4 * index, 1605 pdev->saved_config_space[index], 1606 retry, force); 1607 } 1608 1609 static void pci_restore_config_space(struct pci_dev *pdev) 1610 { 1611 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) { 1612 pci_restore_config_space_range(pdev, 10, 15, 0, false); 1613 /* Restore BARs before the command register. */ 1614 pci_restore_config_space_range(pdev, 4, 9, 10, false); 1615 pci_restore_config_space_range(pdev, 0, 3, 0, false); 1616 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 1617 pci_restore_config_space_range(pdev, 12, 15, 0, false); 1618 1619 /* 1620 * Force rewriting of prefetch registers to avoid S3 resume 1621 * issues on Intel PCI bridges that occur when these 1622 * registers are not explicitly written. 1623 */ 1624 pci_restore_config_space_range(pdev, 9, 11, 0, true); 1625 pci_restore_config_space_range(pdev, 0, 8, 0, false); 1626 } else { 1627 pci_restore_config_space_range(pdev, 0, 15, 0, false); 1628 } 1629 } 1630 1631 static void pci_restore_rebar_state(struct pci_dev *pdev) 1632 { 1633 unsigned int pos, nbars, i; 1634 u32 ctrl; 1635 1636 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 1637 if (!pos) 1638 return; 1639 1640 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1641 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >> 1642 PCI_REBAR_CTRL_NBAR_SHIFT; 1643 1644 for (i = 0; i < nbars; i++, pos += 8) { 1645 struct resource *res; 1646 int bar_idx, size; 1647 1648 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1649 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX; 1650 res = pdev->resource + bar_idx; 1651 size = ilog2(resource_size(res)) - 20; 1652 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 1653 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT; 1654 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 1655 } 1656 } 1657 1658 /** 1659 * pci_restore_state - Restore the saved state of a PCI device 1660 * @dev: PCI device that we're dealing with 1661 */ 1662 void pci_restore_state(struct pci_dev *dev) 1663 { 1664 if (!dev->state_saved) 1665 return; 1666 1667 /* 1668 * Restore max latencies (in the LTR capability) before enabling 1669 * LTR itself (in the PCIe capability). 1670 */ 1671 pci_restore_ltr_state(dev); 1672 1673 pci_restore_pcie_state(dev); 1674 pci_restore_pasid_state(dev); 1675 pci_restore_pri_state(dev); 1676 pci_restore_ats_state(dev); 1677 pci_restore_vc_state(dev); 1678 pci_restore_rebar_state(dev); 1679 pci_restore_dpc_state(dev); 1680 1681 pci_aer_clear_status(dev); 1682 pci_restore_aer_state(dev); 1683 1684 pci_restore_config_space(dev); 1685 1686 pci_restore_pcix_state(dev); 1687 pci_restore_msi_state(dev); 1688 1689 /* Restore ACS and IOV configuration state */ 1690 pci_enable_acs(dev); 1691 pci_restore_iov_state(dev); 1692 1693 dev->state_saved = false; 1694 } 1695 EXPORT_SYMBOL(pci_restore_state); 1696 1697 struct pci_saved_state { 1698 u32 config_space[16]; 1699 struct pci_cap_saved_data cap[]; 1700 }; 1701 1702 /** 1703 * pci_store_saved_state - Allocate and return an opaque struct containing 1704 * the device saved state. 1705 * @dev: PCI device that we're dealing with 1706 * 1707 * Return NULL if no state or error. 1708 */ 1709 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev) 1710 { 1711 struct pci_saved_state *state; 1712 struct pci_cap_saved_state *tmp; 1713 struct pci_cap_saved_data *cap; 1714 size_t size; 1715 1716 if (!dev->state_saved) 1717 return NULL; 1718 1719 size = sizeof(*state) + sizeof(struct pci_cap_saved_data); 1720 1721 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) 1722 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1723 1724 state = kzalloc(size, GFP_KERNEL); 1725 if (!state) 1726 return NULL; 1727 1728 memcpy(state->config_space, dev->saved_config_space, 1729 sizeof(state->config_space)); 1730 1731 cap = state->cap; 1732 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) { 1733 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1734 memcpy(cap, &tmp->cap, len); 1735 cap = (struct pci_cap_saved_data *)((u8 *)cap + len); 1736 } 1737 /* Empty cap_save terminates list */ 1738 1739 return state; 1740 } 1741 EXPORT_SYMBOL_GPL(pci_store_saved_state); 1742 1743 /** 1744 * pci_load_saved_state - Reload the provided save state into struct pci_dev. 1745 * @dev: PCI device that we're dealing with 1746 * @state: Saved state returned from pci_store_saved_state() 1747 */ 1748 int pci_load_saved_state(struct pci_dev *dev, 1749 struct pci_saved_state *state) 1750 { 1751 struct pci_cap_saved_data *cap; 1752 1753 dev->state_saved = false; 1754 1755 if (!state) 1756 return 0; 1757 1758 memcpy(dev->saved_config_space, state->config_space, 1759 sizeof(state->config_space)); 1760 1761 cap = state->cap; 1762 while (cap->size) { 1763 struct pci_cap_saved_state *tmp; 1764 1765 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended); 1766 if (!tmp || tmp->cap.size != cap->size) 1767 return -EINVAL; 1768 1769 memcpy(tmp->cap.data, cap->data, tmp->cap.size); 1770 cap = (struct pci_cap_saved_data *)((u8 *)cap + 1771 sizeof(struct pci_cap_saved_data) + cap->size); 1772 } 1773 1774 dev->state_saved = true; 1775 return 0; 1776 } 1777 EXPORT_SYMBOL_GPL(pci_load_saved_state); 1778 1779 /** 1780 * pci_load_and_free_saved_state - Reload the save state pointed to by state, 1781 * and free the memory allocated for it. 1782 * @dev: PCI device that we're dealing with 1783 * @state: Pointer to saved state returned from pci_store_saved_state() 1784 */ 1785 int pci_load_and_free_saved_state(struct pci_dev *dev, 1786 struct pci_saved_state **state) 1787 { 1788 int ret = pci_load_saved_state(dev, *state); 1789 kfree(*state); 1790 *state = NULL; 1791 return ret; 1792 } 1793 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state); 1794 1795 int __weak pcibios_enable_device(struct pci_dev *dev, int bars) 1796 { 1797 return pci_enable_resources(dev, bars); 1798 } 1799 1800 static int do_pci_enable_device(struct pci_dev *dev, int bars) 1801 { 1802 int err; 1803 struct pci_dev *bridge; 1804 u16 cmd; 1805 u8 pin; 1806 1807 err = pci_set_power_state(dev, PCI_D0); 1808 if (err < 0 && err != -EIO) 1809 return err; 1810 1811 bridge = pci_upstream_bridge(dev); 1812 if (bridge) 1813 pcie_aspm_powersave_config_link(bridge); 1814 1815 err = pcibios_enable_device(dev, bars); 1816 if (err < 0) 1817 return err; 1818 pci_fixup_device(pci_fixup_enable, dev); 1819 1820 if (dev->msi_enabled || dev->msix_enabled) 1821 return 0; 1822 1823 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin); 1824 if (pin) { 1825 pci_read_config_word(dev, PCI_COMMAND, &cmd); 1826 if (cmd & PCI_COMMAND_INTX_DISABLE) 1827 pci_write_config_word(dev, PCI_COMMAND, 1828 cmd & ~PCI_COMMAND_INTX_DISABLE); 1829 } 1830 1831 return 0; 1832 } 1833 1834 /** 1835 * pci_reenable_device - Resume abandoned device 1836 * @dev: PCI device to be resumed 1837 * 1838 * NOTE: This function is a backend of pci_default_resume() and is not supposed 1839 * to be called by normal code, write proper resume handler and use it instead. 1840 */ 1841 int pci_reenable_device(struct pci_dev *dev) 1842 { 1843 if (pci_is_enabled(dev)) 1844 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1); 1845 return 0; 1846 } 1847 EXPORT_SYMBOL(pci_reenable_device); 1848 1849 static void pci_enable_bridge(struct pci_dev *dev) 1850 { 1851 struct pci_dev *bridge; 1852 int retval; 1853 1854 bridge = pci_upstream_bridge(dev); 1855 if (bridge) 1856 pci_enable_bridge(bridge); 1857 1858 if (pci_is_enabled(dev)) { 1859 if (!dev->is_busmaster) 1860 pci_set_master(dev); 1861 return; 1862 } 1863 1864 retval = pci_enable_device(dev); 1865 if (retval) 1866 pci_err(dev, "Error enabling bridge (%d), continuing\n", 1867 retval); 1868 pci_set_master(dev); 1869 } 1870 1871 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags) 1872 { 1873 struct pci_dev *bridge; 1874 int err; 1875 int i, bars = 0; 1876 1877 /* 1878 * Power state could be unknown at this point, either due to a fresh 1879 * boot or a device removal call. So get the current power state 1880 * so that things like MSI message writing will behave as expected 1881 * (e.g. if the device really is in D0 at enable time). 1882 */ 1883 if (dev->pm_cap) { 1884 u16 pmcsr; 1885 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1886 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 1887 } 1888 1889 if (atomic_inc_return(&dev->enable_cnt) > 1) 1890 return 0; /* already enabled */ 1891 1892 bridge = pci_upstream_bridge(dev); 1893 if (bridge) 1894 pci_enable_bridge(bridge); 1895 1896 /* only skip sriov related */ 1897 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 1898 if (dev->resource[i].flags & flags) 1899 bars |= (1 << i); 1900 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++) 1901 if (dev->resource[i].flags & flags) 1902 bars |= (1 << i); 1903 1904 err = do_pci_enable_device(dev, bars); 1905 if (err < 0) 1906 atomic_dec(&dev->enable_cnt); 1907 return err; 1908 } 1909 1910 /** 1911 * pci_enable_device_io - Initialize a device for use with IO space 1912 * @dev: PCI device to be initialized 1913 * 1914 * Initialize device before it's used by a driver. Ask low-level code 1915 * to enable I/O resources. Wake up the device if it was suspended. 1916 * Beware, this function can fail. 1917 */ 1918 int pci_enable_device_io(struct pci_dev *dev) 1919 { 1920 return pci_enable_device_flags(dev, IORESOURCE_IO); 1921 } 1922 EXPORT_SYMBOL(pci_enable_device_io); 1923 1924 /** 1925 * pci_enable_device_mem - Initialize a device for use with Memory space 1926 * @dev: PCI device to be initialized 1927 * 1928 * Initialize device before it's used by a driver. Ask low-level code 1929 * to enable Memory resources. Wake up the device if it was suspended. 1930 * Beware, this function can fail. 1931 */ 1932 int pci_enable_device_mem(struct pci_dev *dev) 1933 { 1934 return pci_enable_device_flags(dev, IORESOURCE_MEM); 1935 } 1936 EXPORT_SYMBOL(pci_enable_device_mem); 1937 1938 /** 1939 * pci_enable_device - Initialize device before it's used by a driver. 1940 * @dev: PCI device to be initialized 1941 * 1942 * Initialize device before it's used by a driver. Ask low-level code 1943 * to enable I/O and memory. Wake up the device if it was suspended. 1944 * Beware, this function can fail. 1945 * 1946 * Note we don't actually enable the device many times if we call 1947 * this function repeatedly (we just increment the count). 1948 */ 1949 int pci_enable_device(struct pci_dev *dev) 1950 { 1951 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO); 1952 } 1953 EXPORT_SYMBOL(pci_enable_device); 1954 1955 /* 1956 * Managed PCI resources. This manages device on/off, INTx/MSI/MSI-X 1957 * on/off and BAR regions. pci_dev itself records MSI/MSI-X status, so 1958 * there's no need to track it separately. pci_devres is initialized 1959 * when a device is enabled using managed PCI device enable interface. 1960 */ 1961 struct pci_devres { 1962 unsigned int enabled:1; 1963 unsigned int pinned:1; 1964 unsigned int orig_intx:1; 1965 unsigned int restore_intx:1; 1966 unsigned int mwi:1; 1967 u32 region_mask; 1968 }; 1969 1970 static void pcim_release(struct device *gendev, void *res) 1971 { 1972 struct pci_dev *dev = to_pci_dev(gendev); 1973 struct pci_devres *this = res; 1974 int i; 1975 1976 if (dev->msi_enabled) 1977 pci_disable_msi(dev); 1978 if (dev->msix_enabled) 1979 pci_disable_msix(dev); 1980 1981 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) 1982 if (this->region_mask & (1 << i)) 1983 pci_release_region(dev, i); 1984 1985 if (this->mwi) 1986 pci_clear_mwi(dev); 1987 1988 if (this->restore_intx) 1989 pci_intx(dev, this->orig_intx); 1990 1991 if (this->enabled && !this->pinned) 1992 pci_disable_device(dev); 1993 } 1994 1995 static struct pci_devres *get_pci_dr(struct pci_dev *pdev) 1996 { 1997 struct pci_devres *dr, *new_dr; 1998 1999 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL); 2000 if (dr) 2001 return dr; 2002 2003 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL); 2004 if (!new_dr) 2005 return NULL; 2006 return devres_get(&pdev->dev, new_dr, NULL, NULL); 2007 } 2008 2009 static struct pci_devres *find_pci_dr(struct pci_dev *pdev) 2010 { 2011 if (pci_is_managed(pdev)) 2012 return devres_find(&pdev->dev, pcim_release, NULL, NULL); 2013 return NULL; 2014 } 2015 2016 /** 2017 * pcim_enable_device - Managed pci_enable_device() 2018 * @pdev: PCI device to be initialized 2019 * 2020 * Managed pci_enable_device(). 2021 */ 2022 int pcim_enable_device(struct pci_dev *pdev) 2023 { 2024 struct pci_devres *dr; 2025 int rc; 2026 2027 dr = get_pci_dr(pdev); 2028 if (unlikely(!dr)) 2029 return -ENOMEM; 2030 if (dr->enabled) 2031 return 0; 2032 2033 rc = pci_enable_device(pdev); 2034 if (!rc) { 2035 pdev->is_managed = 1; 2036 dr->enabled = 1; 2037 } 2038 return rc; 2039 } 2040 EXPORT_SYMBOL(pcim_enable_device); 2041 2042 /** 2043 * pcim_pin_device - Pin managed PCI device 2044 * @pdev: PCI device to pin 2045 * 2046 * Pin managed PCI device @pdev. Pinned device won't be disabled on 2047 * driver detach. @pdev must have been enabled with 2048 * pcim_enable_device(). 2049 */ 2050 void pcim_pin_device(struct pci_dev *pdev) 2051 { 2052 struct pci_devres *dr; 2053 2054 dr = find_pci_dr(pdev); 2055 WARN_ON(!dr || !dr->enabled); 2056 if (dr) 2057 dr->pinned = 1; 2058 } 2059 EXPORT_SYMBOL(pcim_pin_device); 2060 2061 /* 2062 * pcibios_add_device - provide arch specific hooks when adding device dev 2063 * @dev: the PCI device being added 2064 * 2065 * Permits the platform to provide architecture specific functionality when 2066 * devices are added. This is the default implementation. Architecture 2067 * implementations can override this. 2068 */ 2069 int __weak pcibios_add_device(struct pci_dev *dev) 2070 { 2071 return 0; 2072 } 2073 2074 /** 2075 * pcibios_release_device - provide arch specific hooks when releasing 2076 * device dev 2077 * @dev: the PCI device being released 2078 * 2079 * Permits the platform to provide architecture specific functionality when 2080 * devices are released. This is the default implementation. Architecture 2081 * implementations can override this. 2082 */ 2083 void __weak pcibios_release_device(struct pci_dev *dev) {} 2084 2085 /** 2086 * pcibios_disable_device - disable arch specific PCI resources for device dev 2087 * @dev: the PCI device to disable 2088 * 2089 * Disables architecture specific PCI resources for the device. This 2090 * is the default implementation. Architecture implementations can 2091 * override this. 2092 */ 2093 void __weak pcibios_disable_device(struct pci_dev *dev) {} 2094 2095 /** 2096 * pcibios_penalize_isa_irq - penalize an ISA IRQ 2097 * @irq: ISA IRQ to penalize 2098 * @active: IRQ active or not 2099 * 2100 * Permits the platform to provide architecture-specific functionality when 2101 * penalizing ISA IRQs. This is the default implementation. Architecture 2102 * implementations can override this. 2103 */ 2104 void __weak pcibios_penalize_isa_irq(int irq, int active) {} 2105 2106 static void do_pci_disable_device(struct pci_dev *dev) 2107 { 2108 u16 pci_command; 2109 2110 pci_read_config_word(dev, PCI_COMMAND, &pci_command); 2111 if (pci_command & PCI_COMMAND_MASTER) { 2112 pci_command &= ~PCI_COMMAND_MASTER; 2113 pci_write_config_word(dev, PCI_COMMAND, pci_command); 2114 } 2115 2116 pcibios_disable_device(dev); 2117 } 2118 2119 /** 2120 * pci_disable_enabled_device - Disable device without updating enable_cnt 2121 * @dev: PCI device to disable 2122 * 2123 * NOTE: This function is a backend of PCI power management routines and is 2124 * not supposed to be called drivers. 2125 */ 2126 void pci_disable_enabled_device(struct pci_dev *dev) 2127 { 2128 if (pci_is_enabled(dev)) 2129 do_pci_disable_device(dev); 2130 } 2131 2132 /** 2133 * pci_disable_device - Disable PCI device after use 2134 * @dev: PCI device to be disabled 2135 * 2136 * Signal to the system that the PCI device is not in use by the system 2137 * anymore. This only involves disabling PCI bus-mastering, if active. 2138 * 2139 * Note we don't actually disable the device until all callers of 2140 * pci_enable_device() have called pci_disable_device(). 2141 */ 2142 void pci_disable_device(struct pci_dev *dev) 2143 { 2144 struct pci_devres *dr; 2145 2146 dr = find_pci_dr(dev); 2147 if (dr) 2148 dr->enabled = 0; 2149 2150 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0, 2151 "disabling already-disabled device"); 2152 2153 if (atomic_dec_return(&dev->enable_cnt) != 0) 2154 return; 2155 2156 do_pci_disable_device(dev); 2157 2158 dev->is_busmaster = 0; 2159 } 2160 EXPORT_SYMBOL(pci_disable_device); 2161 2162 /** 2163 * pcibios_set_pcie_reset_state - set reset state for device dev 2164 * @dev: the PCIe device reset 2165 * @state: Reset state to enter into 2166 * 2167 * Set the PCIe reset state for the device. This is the default 2168 * implementation. Architecture implementations can override this. 2169 */ 2170 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev, 2171 enum pcie_reset_state state) 2172 { 2173 return -EINVAL; 2174 } 2175 2176 /** 2177 * pci_set_pcie_reset_state - set reset state for device dev 2178 * @dev: the PCIe device reset 2179 * @state: Reset state to enter into 2180 * 2181 * Sets the PCI reset state for the device. 2182 */ 2183 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state) 2184 { 2185 return pcibios_set_pcie_reset_state(dev, state); 2186 } 2187 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state); 2188 2189 void pcie_clear_device_status(struct pci_dev *dev) 2190 { 2191 u16 sta; 2192 2193 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta); 2194 pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta); 2195 } 2196 2197 /** 2198 * pcie_clear_root_pme_status - Clear root port PME interrupt status. 2199 * @dev: PCIe root port or event collector. 2200 */ 2201 void pcie_clear_root_pme_status(struct pci_dev *dev) 2202 { 2203 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME); 2204 } 2205 2206 /** 2207 * pci_check_pme_status - Check if given device has generated PME. 2208 * @dev: Device to check. 2209 * 2210 * Check the PME status of the device and if set, clear it and clear PME enable 2211 * (if set). Return 'true' if PME status and PME enable were both set or 2212 * 'false' otherwise. 2213 */ 2214 bool pci_check_pme_status(struct pci_dev *dev) 2215 { 2216 int pmcsr_pos; 2217 u16 pmcsr; 2218 bool ret = false; 2219 2220 if (!dev->pm_cap) 2221 return false; 2222 2223 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL; 2224 pci_read_config_word(dev, pmcsr_pos, &pmcsr); 2225 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS)) 2226 return false; 2227 2228 /* Clear PME status. */ 2229 pmcsr |= PCI_PM_CTRL_PME_STATUS; 2230 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) { 2231 /* Disable PME to avoid interrupt flood. */ 2232 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2233 ret = true; 2234 } 2235 2236 pci_write_config_word(dev, pmcsr_pos, pmcsr); 2237 2238 return ret; 2239 } 2240 2241 /** 2242 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set. 2243 * @dev: Device to handle. 2244 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag. 2245 * 2246 * Check if @dev has generated PME and queue a resume request for it in that 2247 * case. 2248 */ 2249 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset) 2250 { 2251 if (pme_poll_reset && dev->pme_poll) 2252 dev->pme_poll = false; 2253 2254 if (pci_check_pme_status(dev)) { 2255 pci_wakeup_event(dev); 2256 pm_request_resume(&dev->dev); 2257 } 2258 return 0; 2259 } 2260 2261 /** 2262 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary. 2263 * @bus: Top bus of the subtree to walk. 2264 */ 2265 void pci_pme_wakeup_bus(struct pci_bus *bus) 2266 { 2267 if (bus) 2268 pci_walk_bus(bus, pci_pme_wakeup, (void *)true); 2269 } 2270 2271 2272 /** 2273 * pci_pme_capable - check the capability of PCI device to generate PME# 2274 * @dev: PCI device to handle. 2275 * @state: PCI state from which device will issue PME#. 2276 */ 2277 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state) 2278 { 2279 if (!dev->pm_cap) 2280 return false; 2281 2282 return !!(dev->pme_support & (1 << state)); 2283 } 2284 EXPORT_SYMBOL(pci_pme_capable); 2285 2286 static void pci_pme_list_scan(struct work_struct *work) 2287 { 2288 struct pci_pme_device *pme_dev, *n; 2289 2290 mutex_lock(&pci_pme_list_mutex); 2291 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) { 2292 if (pme_dev->dev->pme_poll) { 2293 struct pci_dev *bridge; 2294 2295 bridge = pme_dev->dev->bus->self; 2296 /* 2297 * If bridge is in low power state, the 2298 * configuration space of subordinate devices 2299 * may be not accessible 2300 */ 2301 if (bridge && bridge->current_state != PCI_D0) 2302 continue; 2303 /* 2304 * If the device is in D3cold it should not be 2305 * polled either. 2306 */ 2307 if (pme_dev->dev->current_state == PCI_D3cold) 2308 continue; 2309 2310 pci_pme_wakeup(pme_dev->dev, NULL); 2311 } else { 2312 list_del(&pme_dev->list); 2313 kfree(pme_dev); 2314 } 2315 } 2316 if (!list_empty(&pci_pme_list)) 2317 queue_delayed_work(system_freezable_wq, &pci_pme_work, 2318 msecs_to_jiffies(PME_TIMEOUT)); 2319 mutex_unlock(&pci_pme_list_mutex); 2320 } 2321 2322 static void __pci_pme_active(struct pci_dev *dev, bool enable) 2323 { 2324 u16 pmcsr; 2325 2326 if (!dev->pme_support) 2327 return; 2328 2329 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2330 /* Clear PME_Status by writing 1 to it and enable PME# */ 2331 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE; 2332 if (!enable) 2333 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2334 2335 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2336 } 2337 2338 /** 2339 * pci_pme_restore - Restore PME configuration after config space restore. 2340 * @dev: PCI device to update. 2341 */ 2342 void pci_pme_restore(struct pci_dev *dev) 2343 { 2344 u16 pmcsr; 2345 2346 if (!dev->pme_support) 2347 return; 2348 2349 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2350 if (dev->wakeup_prepared) { 2351 pmcsr |= PCI_PM_CTRL_PME_ENABLE; 2352 pmcsr &= ~PCI_PM_CTRL_PME_STATUS; 2353 } else { 2354 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2355 pmcsr |= PCI_PM_CTRL_PME_STATUS; 2356 } 2357 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2358 } 2359 2360 /** 2361 * pci_pme_active - enable or disable PCI device's PME# function 2362 * @dev: PCI device to handle. 2363 * @enable: 'true' to enable PME# generation; 'false' to disable it. 2364 * 2365 * The caller must verify that the device is capable of generating PME# before 2366 * calling this function with @enable equal to 'true'. 2367 */ 2368 void pci_pme_active(struct pci_dev *dev, bool enable) 2369 { 2370 __pci_pme_active(dev, enable); 2371 2372 /* 2373 * PCI (as opposed to PCIe) PME requires that the device have 2374 * its PME# line hooked up correctly. Not all hardware vendors 2375 * do this, so the PME never gets delivered and the device 2376 * remains asleep. The easiest way around this is to 2377 * periodically walk the list of suspended devices and check 2378 * whether any have their PME flag set. The assumption is that 2379 * we'll wake up often enough anyway that this won't be a huge 2380 * hit, and the power savings from the devices will still be a 2381 * win. 2382 * 2383 * Although PCIe uses in-band PME message instead of PME# line 2384 * to report PME, PME does not work for some PCIe devices in 2385 * reality. For example, there are devices that set their PME 2386 * status bits, but don't really bother to send a PME message; 2387 * there are PCI Express Root Ports that don't bother to 2388 * trigger interrupts when they receive PME messages from the 2389 * devices below. So PME poll is used for PCIe devices too. 2390 */ 2391 2392 if (dev->pme_poll) { 2393 struct pci_pme_device *pme_dev; 2394 if (enable) { 2395 pme_dev = kmalloc(sizeof(struct pci_pme_device), 2396 GFP_KERNEL); 2397 if (!pme_dev) { 2398 pci_warn(dev, "can't enable PME#\n"); 2399 return; 2400 } 2401 pme_dev->dev = dev; 2402 mutex_lock(&pci_pme_list_mutex); 2403 list_add(&pme_dev->list, &pci_pme_list); 2404 if (list_is_singular(&pci_pme_list)) 2405 queue_delayed_work(system_freezable_wq, 2406 &pci_pme_work, 2407 msecs_to_jiffies(PME_TIMEOUT)); 2408 mutex_unlock(&pci_pme_list_mutex); 2409 } else { 2410 mutex_lock(&pci_pme_list_mutex); 2411 list_for_each_entry(pme_dev, &pci_pme_list, list) { 2412 if (pme_dev->dev == dev) { 2413 list_del(&pme_dev->list); 2414 kfree(pme_dev); 2415 break; 2416 } 2417 } 2418 mutex_unlock(&pci_pme_list_mutex); 2419 } 2420 } 2421 2422 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled"); 2423 } 2424 EXPORT_SYMBOL(pci_pme_active); 2425 2426 /** 2427 * __pci_enable_wake - enable PCI device as wakeup event source 2428 * @dev: PCI device affected 2429 * @state: PCI state from which device will issue wakeup events 2430 * @enable: True to enable event generation; false to disable 2431 * 2432 * This enables the device as a wakeup event source, or disables it. 2433 * When such events involves platform-specific hooks, those hooks are 2434 * called automatically by this routine. 2435 * 2436 * Devices with legacy power management (no standard PCI PM capabilities) 2437 * always require such platform hooks. 2438 * 2439 * RETURN VALUE: 2440 * 0 is returned on success 2441 * -EINVAL is returned if device is not supposed to wake up the system 2442 * Error code depending on the platform is returned if both the platform and 2443 * the native mechanism fail to enable the generation of wake-up events 2444 */ 2445 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable) 2446 { 2447 int ret = 0; 2448 2449 /* 2450 * Bridges that are not power-manageable directly only signal 2451 * wakeup on behalf of subordinate devices which is set up 2452 * elsewhere, so skip them. However, bridges that are 2453 * power-manageable may signal wakeup for themselves (for example, 2454 * on a hotplug event) and they need to be covered here. 2455 */ 2456 if (!pci_power_manageable(dev)) 2457 return 0; 2458 2459 /* Don't do the same thing twice in a row for one device. */ 2460 if (!!enable == !!dev->wakeup_prepared) 2461 return 0; 2462 2463 /* 2464 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don 2465 * Anderson we should be doing PME# wake enable followed by ACPI wake 2466 * enable. To disable wake-up we call the platform first, for symmetry. 2467 */ 2468 2469 if (enable) { 2470 int error; 2471 2472 if (pci_pme_capable(dev, state)) 2473 pci_pme_active(dev, true); 2474 else 2475 ret = 1; 2476 error = platform_pci_set_wakeup(dev, true); 2477 if (ret) 2478 ret = error; 2479 if (!ret) 2480 dev->wakeup_prepared = true; 2481 } else { 2482 platform_pci_set_wakeup(dev, false); 2483 pci_pme_active(dev, false); 2484 dev->wakeup_prepared = false; 2485 } 2486 2487 return ret; 2488 } 2489 2490 /** 2491 * pci_enable_wake - change wakeup settings for a PCI device 2492 * @pci_dev: Target device 2493 * @state: PCI state from which device will issue wakeup events 2494 * @enable: Whether or not to enable event generation 2495 * 2496 * If @enable is set, check device_may_wakeup() for the device before calling 2497 * __pci_enable_wake() for it. 2498 */ 2499 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable) 2500 { 2501 if (enable && !device_may_wakeup(&pci_dev->dev)) 2502 return -EINVAL; 2503 2504 return __pci_enable_wake(pci_dev, state, enable); 2505 } 2506 EXPORT_SYMBOL(pci_enable_wake); 2507 2508 /** 2509 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold 2510 * @dev: PCI device to prepare 2511 * @enable: True to enable wake-up event generation; false to disable 2512 * 2513 * Many drivers want the device to wake up the system from D3_hot or D3_cold 2514 * and this function allows them to set that up cleanly - pci_enable_wake() 2515 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI 2516 * ordering constraints. 2517 * 2518 * This function only returns error code if the device is not allowed to wake 2519 * up the system from sleep or it is not capable of generating PME# from both 2520 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it. 2521 */ 2522 int pci_wake_from_d3(struct pci_dev *dev, bool enable) 2523 { 2524 return pci_pme_capable(dev, PCI_D3cold) ? 2525 pci_enable_wake(dev, PCI_D3cold, enable) : 2526 pci_enable_wake(dev, PCI_D3hot, enable); 2527 } 2528 EXPORT_SYMBOL(pci_wake_from_d3); 2529 2530 /** 2531 * pci_target_state - find an appropriate low power state for a given PCI dev 2532 * @dev: PCI device 2533 * @wakeup: Whether or not wakeup functionality will be enabled for the device. 2534 * 2535 * Use underlying platform code to find a supported low power state for @dev. 2536 * If the platform can't manage @dev, return the deepest state from which it 2537 * can generate wake events, based on any available PME info. 2538 */ 2539 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup) 2540 { 2541 pci_power_t target_state = PCI_D3hot; 2542 2543 if (platform_pci_power_manageable(dev)) { 2544 /* 2545 * Call the platform to find the target state for the device. 2546 */ 2547 pci_power_t state = platform_pci_choose_state(dev); 2548 2549 switch (state) { 2550 case PCI_POWER_ERROR: 2551 case PCI_UNKNOWN: 2552 break; 2553 case PCI_D1: 2554 case PCI_D2: 2555 if (pci_no_d1d2(dev)) 2556 break; 2557 fallthrough; 2558 default: 2559 target_state = state; 2560 } 2561 2562 return target_state; 2563 } 2564 2565 if (!dev->pm_cap) 2566 target_state = PCI_D0; 2567 2568 /* 2569 * If the device is in D3cold even though it's not power-manageable by 2570 * the platform, it may have been powered down by non-standard means. 2571 * Best to let it slumber. 2572 */ 2573 if (dev->current_state == PCI_D3cold) 2574 target_state = PCI_D3cold; 2575 2576 if (wakeup) { 2577 /* 2578 * Find the deepest state from which the device can generate 2579 * PME#. 2580 */ 2581 if (dev->pme_support) { 2582 while (target_state 2583 && !(dev->pme_support & (1 << target_state))) 2584 target_state--; 2585 } 2586 } 2587 2588 return target_state; 2589 } 2590 2591 /** 2592 * pci_prepare_to_sleep - prepare PCI device for system-wide transition 2593 * into a sleep state 2594 * @dev: Device to handle. 2595 * 2596 * Choose the power state appropriate for the device depending on whether 2597 * it can wake up the system and/or is power manageable by the platform 2598 * (PCI_D3hot is the default) and put the device into that state. 2599 */ 2600 int pci_prepare_to_sleep(struct pci_dev *dev) 2601 { 2602 bool wakeup = device_may_wakeup(&dev->dev); 2603 pci_power_t target_state = pci_target_state(dev, wakeup); 2604 int error; 2605 2606 if (target_state == PCI_POWER_ERROR) 2607 return -EIO; 2608 2609 pci_enable_wake(dev, target_state, wakeup); 2610 2611 error = pci_set_power_state(dev, target_state); 2612 2613 if (error) 2614 pci_enable_wake(dev, target_state, false); 2615 2616 return error; 2617 } 2618 EXPORT_SYMBOL(pci_prepare_to_sleep); 2619 2620 /** 2621 * pci_back_from_sleep - turn PCI device on during system-wide transition 2622 * into working state 2623 * @dev: Device to handle. 2624 * 2625 * Disable device's system wake-up capability and put it into D0. 2626 */ 2627 int pci_back_from_sleep(struct pci_dev *dev) 2628 { 2629 pci_enable_wake(dev, PCI_D0, false); 2630 return pci_set_power_state(dev, PCI_D0); 2631 } 2632 EXPORT_SYMBOL(pci_back_from_sleep); 2633 2634 /** 2635 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend. 2636 * @dev: PCI device being suspended. 2637 * 2638 * Prepare @dev to generate wake-up events at run time and put it into a low 2639 * power state. 2640 */ 2641 int pci_finish_runtime_suspend(struct pci_dev *dev) 2642 { 2643 pci_power_t target_state; 2644 int error; 2645 2646 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev)); 2647 if (target_state == PCI_POWER_ERROR) 2648 return -EIO; 2649 2650 dev->runtime_d3cold = target_state == PCI_D3cold; 2651 2652 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev)); 2653 2654 error = pci_set_power_state(dev, target_state); 2655 2656 if (error) { 2657 pci_enable_wake(dev, target_state, false); 2658 dev->runtime_d3cold = false; 2659 } 2660 2661 return error; 2662 } 2663 2664 /** 2665 * pci_dev_run_wake - Check if device can generate run-time wake-up events. 2666 * @dev: Device to check. 2667 * 2668 * Return true if the device itself is capable of generating wake-up events 2669 * (through the platform or using the native PCIe PME) or if the device supports 2670 * PME and one of its upstream bridges can generate wake-up events. 2671 */ 2672 bool pci_dev_run_wake(struct pci_dev *dev) 2673 { 2674 struct pci_bus *bus = dev->bus; 2675 2676 if (!dev->pme_support) 2677 return false; 2678 2679 /* PME-capable in principle, but not from the target power state */ 2680 if (!pci_pme_capable(dev, pci_target_state(dev, true))) 2681 return false; 2682 2683 if (device_can_wakeup(&dev->dev)) 2684 return true; 2685 2686 while (bus->parent) { 2687 struct pci_dev *bridge = bus->self; 2688 2689 if (device_can_wakeup(&bridge->dev)) 2690 return true; 2691 2692 bus = bus->parent; 2693 } 2694 2695 /* We have reached the root bus. */ 2696 if (bus->bridge) 2697 return device_can_wakeup(bus->bridge); 2698 2699 return false; 2700 } 2701 EXPORT_SYMBOL_GPL(pci_dev_run_wake); 2702 2703 /** 2704 * pci_dev_need_resume - Check if it is necessary to resume the device. 2705 * @pci_dev: Device to check. 2706 * 2707 * Return 'true' if the device is not runtime-suspended or it has to be 2708 * reconfigured due to wakeup settings difference between system and runtime 2709 * suspend, or the current power state of it is not suitable for the upcoming 2710 * (system-wide) transition. 2711 */ 2712 bool pci_dev_need_resume(struct pci_dev *pci_dev) 2713 { 2714 struct device *dev = &pci_dev->dev; 2715 pci_power_t target_state; 2716 2717 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev)) 2718 return true; 2719 2720 target_state = pci_target_state(pci_dev, device_may_wakeup(dev)); 2721 2722 /* 2723 * If the earlier platform check has not triggered, D3cold is just power 2724 * removal on top of D3hot, so no need to resume the device in that 2725 * case. 2726 */ 2727 return target_state != pci_dev->current_state && 2728 target_state != PCI_D3cold && 2729 pci_dev->current_state != PCI_D3hot; 2730 } 2731 2732 /** 2733 * pci_dev_adjust_pme - Adjust PME setting for a suspended device. 2734 * @pci_dev: Device to check. 2735 * 2736 * If the device is suspended and it is not configured for system wakeup, 2737 * disable PME for it to prevent it from waking up the system unnecessarily. 2738 * 2739 * Note that if the device's power state is D3cold and the platform check in 2740 * pci_dev_need_resume() has not triggered, the device's configuration need not 2741 * be changed. 2742 */ 2743 void pci_dev_adjust_pme(struct pci_dev *pci_dev) 2744 { 2745 struct device *dev = &pci_dev->dev; 2746 2747 spin_lock_irq(&dev->power.lock); 2748 2749 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) && 2750 pci_dev->current_state < PCI_D3cold) 2751 __pci_pme_active(pci_dev, false); 2752 2753 spin_unlock_irq(&dev->power.lock); 2754 } 2755 2756 /** 2757 * pci_dev_complete_resume - Finalize resume from system sleep for a device. 2758 * @pci_dev: Device to handle. 2759 * 2760 * If the device is runtime suspended and wakeup-capable, enable PME for it as 2761 * it might have been disabled during the prepare phase of system suspend if 2762 * the device was not configured for system wakeup. 2763 */ 2764 void pci_dev_complete_resume(struct pci_dev *pci_dev) 2765 { 2766 struct device *dev = &pci_dev->dev; 2767 2768 if (!pci_dev_run_wake(pci_dev)) 2769 return; 2770 2771 spin_lock_irq(&dev->power.lock); 2772 2773 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold) 2774 __pci_pme_active(pci_dev, true); 2775 2776 spin_unlock_irq(&dev->power.lock); 2777 } 2778 2779 void pci_config_pm_runtime_get(struct pci_dev *pdev) 2780 { 2781 struct device *dev = &pdev->dev; 2782 struct device *parent = dev->parent; 2783 2784 if (parent) 2785 pm_runtime_get_sync(parent); 2786 pm_runtime_get_noresume(dev); 2787 /* 2788 * pdev->current_state is set to PCI_D3cold during suspending, 2789 * so wait until suspending completes 2790 */ 2791 pm_runtime_barrier(dev); 2792 /* 2793 * Only need to resume devices in D3cold, because config 2794 * registers are still accessible for devices suspended but 2795 * not in D3cold. 2796 */ 2797 if (pdev->current_state == PCI_D3cold) 2798 pm_runtime_resume(dev); 2799 } 2800 2801 void pci_config_pm_runtime_put(struct pci_dev *pdev) 2802 { 2803 struct device *dev = &pdev->dev; 2804 struct device *parent = dev->parent; 2805 2806 pm_runtime_put(dev); 2807 if (parent) 2808 pm_runtime_put_sync(parent); 2809 } 2810 2811 static const struct dmi_system_id bridge_d3_blacklist[] = { 2812 #ifdef CONFIG_X86 2813 { 2814 /* 2815 * Gigabyte X299 root port is not marked as hotplug capable 2816 * which allows Linux to power manage it. However, this 2817 * confuses the BIOS SMI handler so don't power manage root 2818 * ports on that system. 2819 */ 2820 .ident = "X299 DESIGNARE EX-CF", 2821 .matches = { 2822 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."), 2823 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"), 2824 }, 2825 }, 2826 #endif 2827 { } 2828 }; 2829 2830 /** 2831 * pci_bridge_d3_possible - Is it possible to put the bridge into D3 2832 * @bridge: Bridge to check 2833 * 2834 * This function checks if it is possible to move the bridge to D3. 2835 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt. 2836 */ 2837 bool pci_bridge_d3_possible(struct pci_dev *bridge) 2838 { 2839 if (!pci_is_pcie(bridge)) 2840 return false; 2841 2842 switch (pci_pcie_type(bridge)) { 2843 case PCI_EXP_TYPE_ROOT_PORT: 2844 case PCI_EXP_TYPE_UPSTREAM: 2845 case PCI_EXP_TYPE_DOWNSTREAM: 2846 if (pci_bridge_d3_disable) 2847 return false; 2848 2849 /* 2850 * Hotplug ports handled by firmware in System Management Mode 2851 * may not be put into D3 by the OS (Thunderbolt on non-Macs). 2852 */ 2853 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge)) 2854 return false; 2855 2856 if (pci_bridge_d3_force) 2857 return true; 2858 2859 /* Even the oldest 2010 Thunderbolt controller supports D3. */ 2860 if (bridge->is_thunderbolt) 2861 return true; 2862 2863 /* Platform might know better if the bridge supports D3 */ 2864 if (platform_pci_bridge_d3(bridge)) 2865 return true; 2866 2867 /* 2868 * Hotplug ports handled natively by the OS were not validated 2869 * by vendors for runtime D3 at least until 2018 because there 2870 * was no OS support. 2871 */ 2872 if (bridge->is_hotplug_bridge) 2873 return false; 2874 2875 if (dmi_check_system(bridge_d3_blacklist)) 2876 return false; 2877 2878 /* 2879 * It should be safe to put PCIe ports from 2015 or newer 2880 * to D3. 2881 */ 2882 if (dmi_get_bios_year() >= 2015) 2883 return true; 2884 break; 2885 } 2886 2887 return false; 2888 } 2889 2890 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data) 2891 { 2892 bool *d3cold_ok = data; 2893 2894 if (/* The device needs to be allowed to go D3cold ... */ 2895 dev->no_d3cold || !dev->d3cold_allowed || 2896 2897 /* ... and if it is wakeup capable to do so from D3cold. */ 2898 (device_may_wakeup(&dev->dev) && 2899 !pci_pme_capable(dev, PCI_D3cold)) || 2900 2901 /* If it is a bridge it must be allowed to go to D3. */ 2902 !pci_power_manageable(dev)) 2903 2904 *d3cold_ok = false; 2905 2906 return !*d3cold_ok; 2907 } 2908 2909 /* 2910 * pci_bridge_d3_update - Update bridge D3 capabilities 2911 * @dev: PCI device which is changed 2912 * 2913 * Update upstream bridge PM capabilities accordingly depending on if the 2914 * device PM configuration was changed or the device is being removed. The 2915 * change is also propagated upstream. 2916 */ 2917 void pci_bridge_d3_update(struct pci_dev *dev) 2918 { 2919 bool remove = !device_is_registered(&dev->dev); 2920 struct pci_dev *bridge; 2921 bool d3cold_ok = true; 2922 2923 bridge = pci_upstream_bridge(dev); 2924 if (!bridge || !pci_bridge_d3_possible(bridge)) 2925 return; 2926 2927 /* 2928 * If D3 is currently allowed for the bridge, removing one of its 2929 * children won't change that. 2930 */ 2931 if (remove && bridge->bridge_d3) 2932 return; 2933 2934 /* 2935 * If D3 is currently allowed for the bridge and a child is added or 2936 * changed, disallowance of D3 can only be caused by that child, so 2937 * we only need to check that single device, not any of its siblings. 2938 * 2939 * If D3 is currently not allowed for the bridge, checking the device 2940 * first may allow us to skip checking its siblings. 2941 */ 2942 if (!remove) 2943 pci_dev_check_d3cold(dev, &d3cold_ok); 2944 2945 /* 2946 * If D3 is currently not allowed for the bridge, this may be caused 2947 * either by the device being changed/removed or any of its siblings, 2948 * so we need to go through all children to find out if one of them 2949 * continues to block D3. 2950 */ 2951 if (d3cold_ok && !bridge->bridge_d3) 2952 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold, 2953 &d3cold_ok); 2954 2955 if (bridge->bridge_d3 != d3cold_ok) { 2956 bridge->bridge_d3 = d3cold_ok; 2957 /* Propagate change to upstream bridges */ 2958 pci_bridge_d3_update(bridge); 2959 } 2960 } 2961 2962 /** 2963 * pci_d3cold_enable - Enable D3cold for device 2964 * @dev: PCI device to handle 2965 * 2966 * This function can be used in drivers to enable D3cold from the device 2967 * they handle. It also updates upstream PCI bridge PM capabilities 2968 * accordingly. 2969 */ 2970 void pci_d3cold_enable(struct pci_dev *dev) 2971 { 2972 if (dev->no_d3cold) { 2973 dev->no_d3cold = false; 2974 pci_bridge_d3_update(dev); 2975 } 2976 } 2977 EXPORT_SYMBOL_GPL(pci_d3cold_enable); 2978 2979 /** 2980 * pci_d3cold_disable - Disable D3cold for device 2981 * @dev: PCI device to handle 2982 * 2983 * This function can be used in drivers to disable D3cold from the device 2984 * they handle. It also updates upstream PCI bridge PM capabilities 2985 * accordingly. 2986 */ 2987 void pci_d3cold_disable(struct pci_dev *dev) 2988 { 2989 if (!dev->no_d3cold) { 2990 dev->no_d3cold = true; 2991 pci_bridge_d3_update(dev); 2992 } 2993 } 2994 EXPORT_SYMBOL_GPL(pci_d3cold_disable); 2995 2996 /** 2997 * pci_pm_init - Initialize PM functions of given PCI device 2998 * @dev: PCI device to handle. 2999 */ 3000 void pci_pm_init(struct pci_dev *dev) 3001 { 3002 int pm; 3003 u16 status; 3004 u16 pmc; 3005 3006 pm_runtime_forbid(&dev->dev); 3007 pm_runtime_set_active(&dev->dev); 3008 pm_runtime_enable(&dev->dev); 3009 device_enable_async_suspend(&dev->dev); 3010 dev->wakeup_prepared = false; 3011 3012 dev->pm_cap = 0; 3013 dev->pme_support = 0; 3014 3015 /* find PCI PM capability in list */ 3016 pm = pci_find_capability(dev, PCI_CAP_ID_PM); 3017 if (!pm) 3018 return; 3019 /* Check device's ability to generate PME# */ 3020 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc); 3021 3022 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) { 3023 pci_err(dev, "unsupported PM cap regs version (%u)\n", 3024 pmc & PCI_PM_CAP_VER_MASK); 3025 return; 3026 } 3027 3028 dev->pm_cap = pm; 3029 dev->d3hot_delay = PCI_PM_D3HOT_WAIT; 3030 dev->d3cold_delay = PCI_PM_D3COLD_WAIT; 3031 dev->bridge_d3 = pci_bridge_d3_possible(dev); 3032 dev->d3cold_allowed = true; 3033 3034 dev->d1_support = false; 3035 dev->d2_support = false; 3036 if (!pci_no_d1d2(dev)) { 3037 if (pmc & PCI_PM_CAP_D1) 3038 dev->d1_support = true; 3039 if (pmc & PCI_PM_CAP_D2) 3040 dev->d2_support = true; 3041 3042 if (dev->d1_support || dev->d2_support) 3043 pci_info(dev, "supports%s%s\n", 3044 dev->d1_support ? " D1" : "", 3045 dev->d2_support ? " D2" : ""); 3046 } 3047 3048 pmc &= PCI_PM_CAP_PME_MASK; 3049 if (pmc) { 3050 pci_info(dev, "PME# supported from%s%s%s%s%s\n", 3051 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "", 3052 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "", 3053 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "", 3054 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "", 3055 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : ""); 3056 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT; 3057 dev->pme_poll = true; 3058 /* 3059 * Make device's PM flags reflect the wake-up capability, but 3060 * let the user space enable it to wake up the system as needed. 3061 */ 3062 device_set_wakeup_capable(&dev->dev, true); 3063 /* Disable the PME# generation functionality */ 3064 pci_pme_active(dev, false); 3065 } 3066 3067 pci_read_config_word(dev, PCI_STATUS, &status); 3068 if (status & PCI_STATUS_IMM_READY) 3069 dev->imm_ready = 1; 3070 } 3071 3072 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop) 3073 { 3074 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI; 3075 3076 switch (prop) { 3077 case PCI_EA_P_MEM: 3078 case PCI_EA_P_VF_MEM: 3079 flags |= IORESOURCE_MEM; 3080 break; 3081 case PCI_EA_P_MEM_PREFETCH: 3082 case PCI_EA_P_VF_MEM_PREFETCH: 3083 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH; 3084 break; 3085 case PCI_EA_P_IO: 3086 flags |= IORESOURCE_IO; 3087 break; 3088 default: 3089 return 0; 3090 } 3091 3092 return flags; 3093 } 3094 3095 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei, 3096 u8 prop) 3097 { 3098 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO) 3099 return &dev->resource[bei]; 3100 #ifdef CONFIG_PCI_IOV 3101 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 && 3102 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH)) 3103 return &dev->resource[PCI_IOV_RESOURCES + 3104 bei - PCI_EA_BEI_VF_BAR0]; 3105 #endif 3106 else if (bei == PCI_EA_BEI_ROM) 3107 return &dev->resource[PCI_ROM_RESOURCE]; 3108 else 3109 return NULL; 3110 } 3111 3112 /* Read an Enhanced Allocation (EA) entry */ 3113 static int pci_ea_read(struct pci_dev *dev, int offset) 3114 { 3115 struct resource *res; 3116 int ent_size, ent_offset = offset; 3117 resource_size_t start, end; 3118 unsigned long flags; 3119 u32 dw0, bei, base, max_offset; 3120 u8 prop; 3121 bool support_64 = (sizeof(resource_size_t) >= 8); 3122 3123 pci_read_config_dword(dev, ent_offset, &dw0); 3124 ent_offset += 4; 3125 3126 /* Entry size field indicates DWORDs after 1st */ 3127 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2; 3128 3129 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */ 3130 goto out; 3131 3132 bei = (dw0 & PCI_EA_BEI) >> 4; 3133 prop = (dw0 & PCI_EA_PP) >> 8; 3134 3135 /* 3136 * If the Property is in the reserved range, try the Secondary 3137 * Property instead. 3138 */ 3139 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED) 3140 prop = (dw0 & PCI_EA_SP) >> 16; 3141 if (prop > PCI_EA_P_BRIDGE_IO) 3142 goto out; 3143 3144 res = pci_ea_get_resource(dev, bei, prop); 3145 if (!res) { 3146 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei); 3147 goto out; 3148 } 3149 3150 flags = pci_ea_flags(dev, prop); 3151 if (!flags) { 3152 pci_err(dev, "Unsupported EA properties: %#x\n", prop); 3153 goto out; 3154 } 3155 3156 /* Read Base */ 3157 pci_read_config_dword(dev, ent_offset, &base); 3158 start = (base & PCI_EA_FIELD_MASK); 3159 ent_offset += 4; 3160 3161 /* Read MaxOffset */ 3162 pci_read_config_dword(dev, ent_offset, &max_offset); 3163 ent_offset += 4; 3164 3165 /* Read Base MSBs (if 64-bit entry) */ 3166 if (base & PCI_EA_IS_64) { 3167 u32 base_upper; 3168 3169 pci_read_config_dword(dev, ent_offset, &base_upper); 3170 ent_offset += 4; 3171 3172 flags |= IORESOURCE_MEM_64; 3173 3174 /* entry starts above 32-bit boundary, can't use */ 3175 if (!support_64 && base_upper) 3176 goto out; 3177 3178 if (support_64) 3179 start |= ((u64)base_upper << 32); 3180 } 3181 3182 end = start + (max_offset | 0x03); 3183 3184 /* Read MaxOffset MSBs (if 64-bit entry) */ 3185 if (max_offset & PCI_EA_IS_64) { 3186 u32 max_offset_upper; 3187 3188 pci_read_config_dword(dev, ent_offset, &max_offset_upper); 3189 ent_offset += 4; 3190 3191 flags |= IORESOURCE_MEM_64; 3192 3193 /* entry too big, can't use */ 3194 if (!support_64 && max_offset_upper) 3195 goto out; 3196 3197 if (support_64) 3198 end += ((u64)max_offset_upper << 32); 3199 } 3200 3201 if (end < start) { 3202 pci_err(dev, "EA Entry crosses address boundary\n"); 3203 goto out; 3204 } 3205 3206 if (ent_size != ent_offset - offset) { 3207 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n", 3208 ent_size, ent_offset - offset); 3209 goto out; 3210 } 3211 3212 res->name = pci_name(dev); 3213 res->start = start; 3214 res->end = end; 3215 res->flags = flags; 3216 3217 if (bei <= PCI_EA_BEI_BAR5) 3218 pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 3219 bei, res, prop); 3220 else if (bei == PCI_EA_BEI_ROM) 3221 pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n", 3222 res, prop); 3223 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5) 3224 pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 3225 bei - PCI_EA_BEI_VF_BAR0, res, prop); 3226 else 3227 pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n", 3228 bei, res, prop); 3229 3230 out: 3231 return offset + ent_size; 3232 } 3233 3234 /* Enhanced Allocation Initialization */ 3235 void pci_ea_init(struct pci_dev *dev) 3236 { 3237 int ea; 3238 u8 num_ent; 3239 int offset; 3240 int i; 3241 3242 /* find PCI EA capability in list */ 3243 ea = pci_find_capability(dev, PCI_CAP_ID_EA); 3244 if (!ea) 3245 return; 3246 3247 /* determine the number of entries */ 3248 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT, 3249 &num_ent); 3250 num_ent &= PCI_EA_NUM_ENT_MASK; 3251 3252 offset = ea + PCI_EA_FIRST_ENT; 3253 3254 /* Skip DWORD 2 for type 1 functions */ 3255 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) 3256 offset += 4; 3257 3258 /* parse each EA entry */ 3259 for (i = 0; i < num_ent; ++i) 3260 offset = pci_ea_read(dev, offset); 3261 } 3262 3263 static void pci_add_saved_cap(struct pci_dev *pci_dev, 3264 struct pci_cap_saved_state *new_cap) 3265 { 3266 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space); 3267 } 3268 3269 /** 3270 * _pci_add_cap_save_buffer - allocate buffer for saving given 3271 * capability registers 3272 * @dev: the PCI device 3273 * @cap: the capability to allocate the buffer for 3274 * @extended: Standard or Extended capability ID 3275 * @size: requested size of the buffer 3276 */ 3277 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap, 3278 bool extended, unsigned int size) 3279 { 3280 int pos; 3281 struct pci_cap_saved_state *save_state; 3282 3283 if (extended) 3284 pos = pci_find_ext_capability(dev, cap); 3285 else 3286 pos = pci_find_capability(dev, cap); 3287 3288 if (!pos) 3289 return 0; 3290 3291 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL); 3292 if (!save_state) 3293 return -ENOMEM; 3294 3295 save_state->cap.cap_nr = cap; 3296 save_state->cap.cap_extended = extended; 3297 save_state->cap.size = size; 3298 pci_add_saved_cap(dev, save_state); 3299 3300 return 0; 3301 } 3302 3303 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size) 3304 { 3305 return _pci_add_cap_save_buffer(dev, cap, false, size); 3306 } 3307 3308 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size) 3309 { 3310 return _pci_add_cap_save_buffer(dev, cap, true, size); 3311 } 3312 3313 /** 3314 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities 3315 * @dev: the PCI device 3316 */ 3317 void pci_allocate_cap_save_buffers(struct pci_dev *dev) 3318 { 3319 int error; 3320 3321 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP, 3322 PCI_EXP_SAVE_REGS * sizeof(u16)); 3323 if (error) 3324 pci_err(dev, "unable to preallocate PCI Express save buffer\n"); 3325 3326 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16)); 3327 if (error) 3328 pci_err(dev, "unable to preallocate PCI-X save buffer\n"); 3329 3330 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR, 3331 2 * sizeof(u16)); 3332 if (error) 3333 pci_err(dev, "unable to allocate suspend buffer for LTR\n"); 3334 3335 pci_allocate_vc_save_buffers(dev); 3336 } 3337 3338 void pci_free_cap_save_buffers(struct pci_dev *dev) 3339 { 3340 struct pci_cap_saved_state *tmp; 3341 struct hlist_node *n; 3342 3343 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next) 3344 kfree(tmp); 3345 } 3346 3347 /** 3348 * pci_configure_ari - enable or disable ARI forwarding 3349 * @dev: the PCI device 3350 * 3351 * If @dev and its upstream bridge both support ARI, enable ARI in the 3352 * bridge. Otherwise, disable ARI in the bridge. 3353 */ 3354 void pci_configure_ari(struct pci_dev *dev) 3355 { 3356 u32 cap; 3357 struct pci_dev *bridge; 3358 3359 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn) 3360 return; 3361 3362 bridge = dev->bus->self; 3363 if (!bridge) 3364 return; 3365 3366 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3367 if (!(cap & PCI_EXP_DEVCAP2_ARI)) 3368 return; 3369 3370 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) { 3371 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, 3372 PCI_EXP_DEVCTL2_ARI); 3373 bridge->ari_enabled = 1; 3374 } else { 3375 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2, 3376 PCI_EXP_DEVCTL2_ARI); 3377 bridge->ari_enabled = 0; 3378 } 3379 } 3380 3381 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags) 3382 { 3383 int pos; 3384 u16 cap, ctrl; 3385 3386 pos = pdev->acs_cap; 3387 if (!pos) 3388 return false; 3389 3390 /* 3391 * Except for egress control, capabilities are either required 3392 * or only required if controllable. Features missing from the 3393 * capability field can therefore be assumed as hard-wired enabled. 3394 */ 3395 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap); 3396 acs_flags &= (cap | PCI_ACS_EC); 3397 3398 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl); 3399 return (ctrl & acs_flags) == acs_flags; 3400 } 3401 3402 /** 3403 * pci_acs_enabled - test ACS against required flags for a given device 3404 * @pdev: device to test 3405 * @acs_flags: required PCI ACS flags 3406 * 3407 * Return true if the device supports the provided flags. Automatically 3408 * filters out flags that are not implemented on multifunction devices. 3409 * 3410 * Note that this interface checks the effective ACS capabilities of the 3411 * device rather than the actual capabilities. For instance, most single 3412 * function endpoints are not required to support ACS because they have no 3413 * opportunity for peer-to-peer access. We therefore return 'true' 3414 * regardless of whether the device exposes an ACS capability. This makes 3415 * it much easier for callers of this function to ignore the actual type 3416 * or topology of the device when testing ACS support. 3417 */ 3418 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags) 3419 { 3420 int ret; 3421 3422 ret = pci_dev_specific_acs_enabled(pdev, acs_flags); 3423 if (ret >= 0) 3424 return ret > 0; 3425 3426 /* 3427 * Conventional PCI and PCI-X devices never support ACS, either 3428 * effectively or actually. The shared bus topology implies that 3429 * any device on the bus can receive or snoop DMA. 3430 */ 3431 if (!pci_is_pcie(pdev)) 3432 return false; 3433 3434 switch (pci_pcie_type(pdev)) { 3435 /* 3436 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec, 3437 * but since their primary interface is PCI/X, we conservatively 3438 * handle them as we would a non-PCIe device. 3439 */ 3440 case PCI_EXP_TYPE_PCIE_BRIDGE: 3441 /* 3442 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never 3443 * applicable... must never implement an ACS Extended Capability...". 3444 * This seems arbitrary, but we take a conservative interpretation 3445 * of this statement. 3446 */ 3447 case PCI_EXP_TYPE_PCI_BRIDGE: 3448 case PCI_EXP_TYPE_RC_EC: 3449 return false; 3450 /* 3451 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should 3452 * implement ACS in order to indicate their peer-to-peer capabilities, 3453 * regardless of whether they are single- or multi-function devices. 3454 */ 3455 case PCI_EXP_TYPE_DOWNSTREAM: 3456 case PCI_EXP_TYPE_ROOT_PORT: 3457 return pci_acs_flags_enabled(pdev, acs_flags); 3458 /* 3459 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be 3460 * implemented by the remaining PCIe types to indicate peer-to-peer 3461 * capabilities, but only when they are part of a multifunction 3462 * device. The footnote for section 6.12 indicates the specific 3463 * PCIe types included here. 3464 */ 3465 case PCI_EXP_TYPE_ENDPOINT: 3466 case PCI_EXP_TYPE_UPSTREAM: 3467 case PCI_EXP_TYPE_LEG_END: 3468 case PCI_EXP_TYPE_RC_END: 3469 if (!pdev->multifunction) 3470 break; 3471 3472 return pci_acs_flags_enabled(pdev, acs_flags); 3473 } 3474 3475 /* 3476 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable 3477 * to single function devices with the exception of downstream ports. 3478 */ 3479 return true; 3480 } 3481 3482 /** 3483 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy 3484 * @start: starting downstream device 3485 * @end: ending upstream device or NULL to search to the root bus 3486 * @acs_flags: required flags 3487 * 3488 * Walk up a device tree from start to end testing PCI ACS support. If 3489 * any step along the way does not support the required flags, return false. 3490 */ 3491 bool pci_acs_path_enabled(struct pci_dev *start, 3492 struct pci_dev *end, u16 acs_flags) 3493 { 3494 struct pci_dev *pdev, *parent = start; 3495 3496 do { 3497 pdev = parent; 3498 3499 if (!pci_acs_enabled(pdev, acs_flags)) 3500 return false; 3501 3502 if (pci_is_root_bus(pdev->bus)) 3503 return (end == NULL); 3504 3505 parent = pdev->bus->self; 3506 } while (pdev != end); 3507 3508 return true; 3509 } 3510 3511 /** 3512 * pci_acs_init - Initialize ACS if hardware supports it 3513 * @dev: the PCI device 3514 */ 3515 void pci_acs_init(struct pci_dev *dev) 3516 { 3517 dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS); 3518 3519 if (dev->acs_cap) 3520 pci_enable_acs(dev); 3521 } 3522 3523 /** 3524 * pci_rebar_find_pos - find position of resize ctrl reg for BAR 3525 * @pdev: PCI device 3526 * @bar: BAR to find 3527 * 3528 * Helper to find the position of the ctrl register for a BAR. 3529 * Returns -ENOTSUPP if resizable BARs are not supported at all. 3530 * Returns -ENOENT if no ctrl register for the BAR could be found. 3531 */ 3532 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar) 3533 { 3534 unsigned int pos, nbars, i; 3535 u32 ctrl; 3536 3537 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 3538 if (!pos) 3539 return -ENOTSUPP; 3540 3541 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3542 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >> 3543 PCI_REBAR_CTRL_NBAR_SHIFT; 3544 3545 for (i = 0; i < nbars; i++, pos += 8) { 3546 int bar_idx; 3547 3548 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3549 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX; 3550 if (bar_idx == bar) 3551 return pos; 3552 } 3553 3554 return -ENOENT; 3555 } 3556 3557 /** 3558 * pci_rebar_get_possible_sizes - get possible sizes for BAR 3559 * @pdev: PCI device 3560 * @bar: BAR to query 3561 * 3562 * Get the possible sizes of a resizable BAR as bitmask defined in the spec 3563 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable. 3564 */ 3565 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar) 3566 { 3567 int pos; 3568 u32 cap; 3569 3570 pos = pci_rebar_find_pos(pdev, bar); 3571 if (pos < 0) 3572 return 0; 3573 3574 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap); 3575 return (cap & PCI_REBAR_CAP_SIZES) >> 4; 3576 } 3577 3578 /** 3579 * pci_rebar_get_current_size - get the current size of a BAR 3580 * @pdev: PCI device 3581 * @bar: BAR to set size to 3582 * 3583 * Read the size of a BAR from the resizable BAR config. 3584 * Returns size if found or negative error code. 3585 */ 3586 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar) 3587 { 3588 int pos; 3589 u32 ctrl; 3590 3591 pos = pci_rebar_find_pos(pdev, bar); 3592 if (pos < 0) 3593 return pos; 3594 3595 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3596 return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT; 3597 } 3598 3599 /** 3600 * pci_rebar_set_size - set a new size for a BAR 3601 * @pdev: PCI device 3602 * @bar: BAR to set size to 3603 * @size: new size as defined in the spec (0=1MB, 19=512GB) 3604 * 3605 * Set the new size of a BAR as defined in the spec. 3606 * Returns zero if resizing was successful, error code otherwise. 3607 */ 3608 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size) 3609 { 3610 int pos; 3611 u32 ctrl; 3612 3613 pos = pci_rebar_find_pos(pdev, bar); 3614 if (pos < 0) 3615 return pos; 3616 3617 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3618 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 3619 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT; 3620 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 3621 return 0; 3622 } 3623 3624 /** 3625 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port 3626 * @dev: the PCI device 3627 * @cap_mask: mask of desired AtomicOp sizes, including one or more of: 3628 * PCI_EXP_DEVCAP2_ATOMIC_COMP32 3629 * PCI_EXP_DEVCAP2_ATOMIC_COMP64 3630 * PCI_EXP_DEVCAP2_ATOMIC_COMP128 3631 * 3632 * Return 0 if all upstream bridges support AtomicOp routing, egress 3633 * blocking is disabled on all upstream ports, and the root port supports 3634 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit 3635 * AtomicOp completion), or negative otherwise. 3636 */ 3637 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask) 3638 { 3639 struct pci_bus *bus = dev->bus; 3640 struct pci_dev *bridge; 3641 u32 cap, ctl2; 3642 3643 if (!pci_is_pcie(dev)) 3644 return -EINVAL; 3645 3646 /* 3647 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be 3648 * AtomicOp requesters. For now, we only support endpoints as 3649 * requesters and root ports as completers. No endpoints as 3650 * completers, and no peer-to-peer. 3651 */ 3652 3653 switch (pci_pcie_type(dev)) { 3654 case PCI_EXP_TYPE_ENDPOINT: 3655 case PCI_EXP_TYPE_LEG_END: 3656 case PCI_EXP_TYPE_RC_END: 3657 break; 3658 default: 3659 return -EINVAL; 3660 } 3661 3662 while (bus->parent) { 3663 bridge = bus->self; 3664 3665 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3666 3667 switch (pci_pcie_type(bridge)) { 3668 /* Ensure switch ports support AtomicOp routing */ 3669 case PCI_EXP_TYPE_UPSTREAM: 3670 case PCI_EXP_TYPE_DOWNSTREAM: 3671 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE)) 3672 return -EINVAL; 3673 break; 3674 3675 /* Ensure root port supports all the sizes we care about */ 3676 case PCI_EXP_TYPE_ROOT_PORT: 3677 if ((cap & cap_mask) != cap_mask) 3678 return -EINVAL; 3679 break; 3680 } 3681 3682 /* Ensure upstream ports don't block AtomicOps on egress */ 3683 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) { 3684 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, 3685 &ctl2); 3686 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK) 3687 return -EINVAL; 3688 } 3689 3690 bus = bus->parent; 3691 } 3692 3693 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2, 3694 PCI_EXP_DEVCTL2_ATOMIC_REQ); 3695 return 0; 3696 } 3697 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root); 3698 3699 /** 3700 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge 3701 * @dev: the PCI device 3702 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD) 3703 * 3704 * Perform INTx swizzling for a device behind one level of bridge. This is 3705 * required by section 9.1 of the PCI-to-PCI bridge specification for devices 3706 * behind bridges on add-in cards. For devices with ARI enabled, the slot 3707 * number is always 0 (see the Implementation Note in section 2.2.8.1 of 3708 * the PCI Express Base Specification, Revision 2.1) 3709 */ 3710 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin) 3711 { 3712 int slot; 3713 3714 if (pci_ari_enabled(dev->bus)) 3715 slot = 0; 3716 else 3717 slot = PCI_SLOT(dev->devfn); 3718 3719 return (((pin - 1) + slot) % 4) + 1; 3720 } 3721 3722 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge) 3723 { 3724 u8 pin; 3725 3726 pin = dev->pin; 3727 if (!pin) 3728 return -1; 3729 3730 while (!pci_is_root_bus(dev->bus)) { 3731 pin = pci_swizzle_interrupt_pin(dev, pin); 3732 dev = dev->bus->self; 3733 } 3734 *bridge = dev; 3735 return pin; 3736 } 3737 3738 /** 3739 * pci_common_swizzle - swizzle INTx all the way to root bridge 3740 * @dev: the PCI device 3741 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD) 3742 * 3743 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI 3744 * bridges all the way up to a PCI root bus. 3745 */ 3746 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp) 3747 { 3748 u8 pin = *pinp; 3749 3750 while (!pci_is_root_bus(dev->bus)) { 3751 pin = pci_swizzle_interrupt_pin(dev, pin); 3752 dev = dev->bus->self; 3753 } 3754 *pinp = pin; 3755 return PCI_SLOT(dev->devfn); 3756 } 3757 EXPORT_SYMBOL_GPL(pci_common_swizzle); 3758 3759 /** 3760 * pci_release_region - Release a PCI bar 3761 * @pdev: PCI device whose resources were previously reserved by 3762 * pci_request_region() 3763 * @bar: BAR to release 3764 * 3765 * Releases the PCI I/O and memory resources previously reserved by a 3766 * successful call to pci_request_region(). Call this function only 3767 * after all use of the PCI regions has ceased. 3768 */ 3769 void pci_release_region(struct pci_dev *pdev, int bar) 3770 { 3771 struct pci_devres *dr; 3772 3773 if (pci_resource_len(pdev, bar) == 0) 3774 return; 3775 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) 3776 release_region(pci_resource_start(pdev, bar), 3777 pci_resource_len(pdev, bar)); 3778 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) 3779 release_mem_region(pci_resource_start(pdev, bar), 3780 pci_resource_len(pdev, bar)); 3781 3782 dr = find_pci_dr(pdev); 3783 if (dr) 3784 dr->region_mask &= ~(1 << bar); 3785 } 3786 EXPORT_SYMBOL(pci_release_region); 3787 3788 /** 3789 * __pci_request_region - Reserved PCI I/O and memory resource 3790 * @pdev: PCI device whose resources are to be reserved 3791 * @bar: BAR to be reserved 3792 * @res_name: Name to be associated with resource. 3793 * @exclusive: whether the region access is exclusive or not 3794 * 3795 * Mark the PCI region associated with PCI device @pdev BAR @bar as 3796 * being reserved by owner @res_name. Do not access any 3797 * address inside the PCI regions unless this call returns 3798 * successfully. 3799 * 3800 * If @exclusive is set, then the region is marked so that userspace 3801 * is explicitly not allowed to map the resource via /dev/mem or 3802 * sysfs MMIO access. 3803 * 3804 * Returns 0 on success, or %EBUSY on error. A warning 3805 * message is also printed on failure. 3806 */ 3807 static int __pci_request_region(struct pci_dev *pdev, int bar, 3808 const char *res_name, int exclusive) 3809 { 3810 struct pci_devres *dr; 3811 3812 if (pci_resource_len(pdev, bar) == 0) 3813 return 0; 3814 3815 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) { 3816 if (!request_region(pci_resource_start(pdev, bar), 3817 pci_resource_len(pdev, bar), res_name)) 3818 goto err_out; 3819 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) { 3820 if (!__request_mem_region(pci_resource_start(pdev, bar), 3821 pci_resource_len(pdev, bar), res_name, 3822 exclusive)) 3823 goto err_out; 3824 } 3825 3826 dr = find_pci_dr(pdev); 3827 if (dr) 3828 dr->region_mask |= 1 << bar; 3829 3830 return 0; 3831 3832 err_out: 3833 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar, 3834 &pdev->resource[bar]); 3835 return -EBUSY; 3836 } 3837 3838 /** 3839 * pci_request_region - Reserve PCI I/O and memory resource 3840 * @pdev: PCI device whose resources are to be reserved 3841 * @bar: BAR to be reserved 3842 * @res_name: Name to be associated with resource 3843 * 3844 * Mark the PCI region associated with PCI device @pdev BAR @bar as 3845 * being reserved by owner @res_name. Do not access any 3846 * address inside the PCI regions unless this call returns 3847 * successfully. 3848 * 3849 * Returns 0 on success, or %EBUSY on error. A warning 3850 * message is also printed on failure. 3851 */ 3852 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name) 3853 { 3854 return __pci_request_region(pdev, bar, res_name, 0); 3855 } 3856 EXPORT_SYMBOL(pci_request_region); 3857 3858 /** 3859 * pci_release_selected_regions - Release selected PCI I/O and memory resources 3860 * @pdev: PCI device whose resources were previously reserved 3861 * @bars: Bitmask of BARs to be released 3862 * 3863 * Release selected PCI I/O and memory resources previously reserved. 3864 * Call this function only after all use of the PCI regions has ceased. 3865 */ 3866 void pci_release_selected_regions(struct pci_dev *pdev, int bars) 3867 { 3868 int i; 3869 3870 for (i = 0; i < PCI_STD_NUM_BARS; i++) 3871 if (bars & (1 << i)) 3872 pci_release_region(pdev, i); 3873 } 3874 EXPORT_SYMBOL(pci_release_selected_regions); 3875 3876 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars, 3877 const char *res_name, int excl) 3878 { 3879 int i; 3880 3881 for (i = 0; i < PCI_STD_NUM_BARS; i++) 3882 if (bars & (1 << i)) 3883 if (__pci_request_region(pdev, i, res_name, excl)) 3884 goto err_out; 3885 return 0; 3886 3887 err_out: 3888 while (--i >= 0) 3889 if (bars & (1 << i)) 3890 pci_release_region(pdev, i); 3891 3892 return -EBUSY; 3893 } 3894 3895 3896 /** 3897 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources 3898 * @pdev: PCI device whose resources are to be reserved 3899 * @bars: Bitmask of BARs to be requested 3900 * @res_name: Name to be associated with resource 3901 */ 3902 int pci_request_selected_regions(struct pci_dev *pdev, int bars, 3903 const char *res_name) 3904 { 3905 return __pci_request_selected_regions(pdev, bars, res_name, 0); 3906 } 3907 EXPORT_SYMBOL(pci_request_selected_regions); 3908 3909 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars, 3910 const char *res_name) 3911 { 3912 return __pci_request_selected_regions(pdev, bars, res_name, 3913 IORESOURCE_EXCLUSIVE); 3914 } 3915 EXPORT_SYMBOL(pci_request_selected_regions_exclusive); 3916 3917 /** 3918 * pci_release_regions - Release reserved PCI I/O and memory resources 3919 * @pdev: PCI device whose resources were previously reserved by 3920 * pci_request_regions() 3921 * 3922 * Releases all PCI I/O and memory resources previously reserved by a 3923 * successful call to pci_request_regions(). Call this function only 3924 * after all use of the PCI regions has ceased. 3925 */ 3926 3927 void pci_release_regions(struct pci_dev *pdev) 3928 { 3929 pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1); 3930 } 3931 EXPORT_SYMBOL(pci_release_regions); 3932 3933 /** 3934 * pci_request_regions - Reserve PCI I/O and memory resources 3935 * @pdev: PCI device whose resources are to be reserved 3936 * @res_name: Name to be associated with resource. 3937 * 3938 * Mark all PCI regions associated with PCI device @pdev as 3939 * being reserved by owner @res_name. Do not access any 3940 * address inside the PCI regions unless this call returns 3941 * successfully. 3942 * 3943 * Returns 0 on success, or %EBUSY on error. A warning 3944 * message is also printed on failure. 3945 */ 3946 int pci_request_regions(struct pci_dev *pdev, const char *res_name) 3947 { 3948 return pci_request_selected_regions(pdev, 3949 ((1 << PCI_STD_NUM_BARS) - 1), res_name); 3950 } 3951 EXPORT_SYMBOL(pci_request_regions); 3952 3953 /** 3954 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources 3955 * @pdev: PCI device whose resources are to be reserved 3956 * @res_name: Name to be associated with resource. 3957 * 3958 * Mark all PCI regions associated with PCI device @pdev as being reserved 3959 * by owner @res_name. Do not access any address inside the PCI regions 3960 * unless this call returns successfully. 3961 * 3962 * pci_request_regions_exclusive() will mark the region so that /dev/mem 3963 * and the sysfs MMIO access will not be allowed. 3964 * 3965 * Returns 0 on success, or %EBUSY on error. A warning message is also 3966 * printed on failure. 3967 */ 3968 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name) 3969 { 3970 return pci_request_selected_regions_exclusive(pdev, 3971 ((1 << PCI_STD_NUM_BARS) - 1), res_name); 3972 } 3973 EXPORT_SYMBOL(pci_request_regions_exclusive); 3974 3975 /* 3976 * Record the PCI IO range (expressed as CPU physical address + size). 3977 * Return a negative value if an error has occurred, zero otherwise 3978 */ 3979 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr, 3980 resource_size_t size) 3981 { 3982 int ret = 0; 3983 #ifdef PCI_IOBASE 3984 struct logic_pio_hwaddr *range; 3985 3986 if (!size || addr + size < addr) 3987 return -EINVAL; 3988 3989 range = kzalloc(sizeof(*range), GFP_ATOMIC); 3990 if (!range) 3991 return -ENOMEM; 3992 3993 range->fwnode = fwnode; 3994 range->size = size; 3995 range->hw_start = addr; 3996 range->flags = LOGIC_PIO_CPU_MMIO; 3997 3998 ret = logic_pio_register_range(range); 3999 if (ret) 4000 kfree(range); 4001 #endif 4002 4003 return ret; 4004 } 4005 4006 phys_addr_t pci_pio_to_address(unsigned long pio) 4007 { 4008 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR; 4009 4010 #ifdef PCI_IOBASE 4011 if (pio >= MMIO_UPPER_LIMIT) 4012 return address; 4013 4014 address = logic_pio_to_hwaddr(pio); 4015 #endif 4016 4017 return address; 4018 } 4019 4020 unsigned long __weak pci_address_to_pio(phys_addr_t address) 4021 { 4022 #ifdef PCI_IOBASE 4023 return logic_pio_trans_cpuaddr(address); 4024 #else 4025 if (address > IO_SPACE_LIMIT) 4026 return (unsigned long)-1; 4027 4028 return (unsigned long) address; 4029 #endif 4030 } 4031 4032 /** 4033 * pci_remap_iospace - Remap the memory mapped I/O space 4034 * @res: Resource describing the I/O space 4035 * @phys_addr: physical address of range to be mapped 4036 * 4037 * Remap the memory mapped I/O space described by the @res and the CPU 4038 * physical address @phys_addr into virtual address space. Only 4039 * architectures that have memory mapped IO functions defined (and the 4040 * PCI_IOBASE value defined) should call this function. 4041 */ 4042 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr) 4043 { 4044 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 4045 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 4046 4047 if (!(res->flags & IORESOURCE_IO)) 4048 return -EINVAL; 4049 4050 if (res->end > IO_SPACE_LIMIT) 4051 return -EINVAL; 4052 4053 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr, 4054 pgprot_device(PAGE_KERNEL)); 4055 #else 4056 /* 4057 * This architecture does not have memory mapped I/O space, 4058 * so this function should never be called 4059 */ 4060 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n"); 4061 return -ENODEV; 4062 #endif 4063 } 4064 EXPORT_SYMBOL(pci_remap_iospace); 4065 4066 /** 4067 * pci_unmap_iospace - Unmap the memory mapped I/O space 4068 * @res: resource to be unmapped 4069 * 4070 * Unmap the CPU virtual address @res from virtual address space. Only 4071 * architectures that have memory mapped IO functions defined (and the 4072 * PCI_IOBASE value defined) should call this function. 4073 */ 4074 void pci_unmap_iospace(struct resource *res) 4075 { 4076 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 4077 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 4078 4079 unmap_kernel_range(vaddr, resource_size(res)); 4080 #endif 4081 } 4082 EXPORT_SYMBOL(pci_unmap_iospace); 4083 4084 static void devm_pci_unmap_iospace(struct device *dev, void *ptr) 4085 { 4086 struct resource **res = ptr; 4087 4088 pci_unmap_iospace(*res); 4089 } 4090 4091 /** 4092 * devm_pci_remap_iospace - Managed pci_remap_iospace() 4093 * @dev: Generic device to remap IO address for 4094 * @res: Resource describing the I/O space 4095 * @phys_addr: physical address of range to be mapped 4096 * 4097 * Managed pci_remap_iospace(). Map is automatically unmapped on driver 4098 * detach. 4099 */ 4100 int devm_pci_remap_iospace(struct device *dev, const struct resource *res, 4101 phys_addr_t phys_addr) 4102 { 4103 const struct resource **ptr; 4104 int error; 4105 4106 ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL); 4107 if (!ptr) 4108 return -ENOMEM; 4109 4110 error = pci_remap_iospace(res, phys_addr); 4111 if (error) { 4112 devres_free(ptr); 4113 } else { 4114 *ptr = res; 4115 devres_add(dev, ptr); 4116 } 4117 4118 return error; 4119 } 4120 EXPORT_SYMBOL(devm_pci_remap_iospace); 4121 4122 /** 4123 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace() 4124 * @dev: Generic device to remap IO address for 4125 * @offset: Resource address to map 4126 * @size: Size of map 4127 * 4128 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver 4129 * detach. 4130 */ 4131 void __iomem *devm_pci_remap_cfgspace(struct device *dev, 4132 resource_size_t offset, 4133 resource_size_t size) 4134 { 4135 void __iomem **ptr, *addr; 4136 4137 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL); 4138 if (!ptr) 4139 return NULL; 4140 4141 addr = pci_remap_cfgspace(offset, size); 4142 if (addr) { 4143 *ptr = addr; 4144 devres_add(dev, ptr); 4145 } else 4146 devres_free(ptr); 4147 4148 return addr; 4149 } 4150 EXPORT_SYMBOL(devm_pci_remap_cfgspace); 4151 4152 /** 4153 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource 4154 * @dev: generic device to handle the resource for 4155 * @res: configuration space resource to be handled 4156 * 4157 * Checks that a resource is a valid memory region, requests the memory 4158 * region and ioremaps with pci_remap_cfgspace() API that ensures the 4159 * proper PCI configuration space memory attributes are guaranteed. 4160 * 4161 * All operations are managed and will be undone on driver detach. 4162 * 4163 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code 4164 * on failure. Usage example:: 4165 * 4166 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 4167 * base = devm_pci_remap_cfg_resource(&pdev->dev, res); 4168 * if (IS_ERR(base)) 4169 * return PTR_ERR(base); 4170 */ 4171 void __iomem *devm_pci_remap_cfg_resource(struct device *dev, 4172 struct resource *res) 4173 { 4174 resource_size_t size; 4175 const char *name; 4176 void __iomem *dest_ptr; 4177 4178 BUG_ON(!dev); 4179 4180 if (!res || resource_type(res) != IORESOURCE_MEM) { 4181 dev_err(dev, "invalid resource\n"); 4182 return IOMEM_ERR_PTR(-EINVAL); 4183 } 4184 4185 size = resource_size(res); 4186 name = res->name ?: dev_name(dev); 4187 4188 if (!devm_request_mem_region(dev, res->start, size, name)) { 4189 dev_err(dev, "can't request region for resource %pR\n", res); 4190 return IOMEM_ERR_PTR(-EBUSY); 4191 } 4192 4193 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size); 4194 if (!dest_ptr) { 4195 dev_err(dev, "ioremap failed for resource %pR\n", res); 4196 devm_release_mem_region(dev, res->start, size); 4197 dest_ptr = IOMEM_ERR_PTR(-ENOMEM); 4198 } 4199 4200 return dest_ptr; 4201 } 4202 EXPORT_SYMBOL(devm_pci_remap_cfg_resource); 4203 4204 static void __pci_set_master(struct pci_dev *dev, bool enable) 4205 { 4206 u16 old_cmd, cmd; 4207 4208 pci_read_config_word(dev, PCI_COMMAND, &old_cmd); 4209 if (enable) 4210 cmd = old_cmd | PCI_COMMAND_MASTER; 4211 else 4212 cmd = old_cmd & ~PCI_COMMAND_MASTER; 4213 if (cmd != old_cmd) { 4214 pci_dbg(dev, "%s bus mastering\n", 4215 enable ? "enabling" : "disabling"); 4216 pci_write_config_word(dev, PCI_COMMAND, cmd); 4217 } 4218 dev->is_busmaster = enable; 4219 } 4220 4221 /** 4222 * pcibios_setup - process "pci=" kernel boot arguments 4223 * @str: string used to pass in "pci=" kernel boot arguments 4224 * 4225 * Process kernel boot arguments. This is the default implementation. 4226 * Architecture specific implementations can override this as necessary. 4227 */ 4228 char * __weak __init pcibios_setup(char *str) 4229 { 4230 return str; 4231 } 4232 4233 /** 4234 * pcibios_set_master - enable PCI bus-mastering for device dev 4235 * @dev: the PCI device to enable 4236 * 4237 * Enables PCI bus-mastering for the device. This is the default 4238 * implementation. Architecture specific implementations can override 4239 * this if necessary. 4240 */ 4241 void __weak pcibios_set_master(struct pci_dev *dev) 4242 { 4243 u8 lat; 4244 4245 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */ 4246 if (pci_is_pcie(dev)) 4247 return; 4248 4249 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat); 4250 if (lat < 16) 4251 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency; 4252 else if (lat > pcibios_max_latency) 4253 lat = pcibios_max_latency; 4254 else 4255 return; 4256 4257 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat); 4258 } 4259 4260 /** 4261 * pci_set_master - enables bus-mastering for device dev 4262 * @dev: the PCI device to enable 4263 * 4264 * Enables bus-mastering on the device and calls pcibios_set_master() 4265 * to do the needed arch specific settings. 4266 */ 4267 void pci_set_master(struct pci_dev *dev) 4268 { 4269 __pci_set_master(dev, true); 4270 pcibios_set_master(dev); 4271 } 4272 EXPORT_SYMBOL(pci_set_master); 4273 4274 /** 4275 * pci_clear_master - disables bus-mastering for device dev 4276 * @dev: the PCI device to disable 4277 */ 4278 void pci_clear_master(struct pci_dev *dev) 4279 { 4280 __pci_set_master(dev, false); 4281 } 4282 EXPORT_SYMBOL(pci_clear_master); 4283 4284 /** 4285 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed 4286 * @dev: the PCI device for which MWI is to be enabled 4287 * 4288 * Helper function for pci_set_mwi. 4289 * Originally copied from drivers/net/acenic.c. 4290 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. 4291 * 4292 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4293 */ 4294 int pci_set_cacheline_size(struct pci_dev *dev) 4295 { 4296 u8 cacheline_size; 4297 4298 if (!pci_cache_line_size) 4299 return -EINVAL; 4300 4301 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be 4302 equal to or multiple of the right value. */ 4303 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4304 if (cacheline_size >= pci_cache_line_size && 4305 (cacheline_size % pci_cache_line_size) == 0) 4306 return 0; 4307 4308 /* Write the correct value. */ 4309 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size); 4310 /* Read it back. */ 4311 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4312 if (cacheline_size == pci_cache_line_size) 4313 return 0; 4314 4315 pci_info(dev, "cache line size of %d is not supported\n", 4316 pci_cache_line_size << 2); 4317 4318 return -EINVAL; 4319 } 4320 EXPORT_SYMBOL_GPL(pci_set_cacheline_size); 4321 4322 /** 4323 * pci_set_mwi - enables memory-write-invalidate PCI transaction 4324 * @dev: the PCI device for which MWI is enabled 4325 * 4326 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4327 * 4328 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4329 */ 4330 int pci_set_mwi(struct pci_dev *dev) 4331 { 4332 #ifdef PCI_DISABLE_MWI 4333 return 0; 4334 #else 4335 int rc; 4336 u16 cmd; 4337 4338 rc = pci_set_cacheline_size(dev); 4339 if (rc) 4340 return rc; 4341 4342 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4343 if (!(cmd & PCI_COMMAND_INVALIDATE)) { 4344 pci_dbg(dev, "enabling Mem-Wr-Inval\n"); 4345 cmd |= PCI_COMMAND_INVALIDATE; 4346 pci_write_config_word(dev, PCI_COMMAND, cmd); 4347 } 4348 return 0; 4349 #endif 4350 } 4351 EXPORT_SYMBOL(pci_set_mwi); 4352 4353 /** 4354 * pcim_set_mwi - a device-managed pci_set_mwi() 4355 * @dev: the PCI device for which MWI is enabled 4356 * 4357 * Managed pci_set_mwi(). 4358 * 4359 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4360 */ 4361 int pcim_set_mwi(struct pci_dev *dev) 4362 { 4363 struct pci_devres *dr; 4364 4365 dr = find_pci_dr(dev); 4366 if (!dr) 4367 return -ENOMEM; 4368 4369 dr->mwi = 1; 4370 return pci_set_mwi(dev); 4371 } 4372 EXPORT_SYMBOL(pcim_set_mwi); 4373 4374 /** 4375 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction 4376 * @dev: the PCI device for which MWI is enabled 4377 * 4378 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4379 * Callers are not required to check the return value. 4380 * 4381 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4382 */ 4383 int pci_try_set_mwi(struct pci_dev *dev) 4384 { 4385 #ifdef PCI_DISABLE_MWI 4386 return 0; 4387 #else 4388 return pci_set_mwi(dev); 4389 #endif 4390 } 4391 EXPORT_SYMBOL(pci_try_set_mwi); 4392 4393 /** 4394 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev 4395 * @dev: the PCI device to disable 4396 * 4397 * Disables PCI Memory-Write-Invalidate transaction on the device 4398 */ 4399 void pci_clear_mwi(struct pci_dev *dev) 4400 { 4401 #ifndef PCI_DISABLE_MWI 4402 u16 cmd; 4403 4404 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4405 if (cmd & PCI_COMMAND_INVALIDATE) { 4406 cmd &= ~PCI_COMMAND_INVALIDATE; 4407 pci_write_config_word(dev, PCI_COMMAND, cmd); 4408 } 4409 #endif 4410 } 4411 EXPORT_SYMBOL(pci_clear_mwi); 4412 4413 /** 4414 * pci_intx - enables/disables PCI INTx for device dev 4415 * @pdev: the PCI device to operate on 4416 * @enable: boolean: whether to enable or disable PCI INTx 4417 * 4418 * Enables/disables PCI INTx for device @pdev 4419 */ 4420 void pci_intx(struct pci_dev *pdev, int enable) 4421 { 4422 u16 pci_command, new; 4423 4424 pci_read_config_word(pdev, PCI_COMMAND, &pci_command); 4425 4426 if (enable) 4427 new = pci_command & ~PCI_COMMAND_INTX_DISABLE; 4428 else 4429 new = pci_command | PCI_COMMAND_INTX_DISABLE; 4430 4431 if (new != pci_command) { 4432 struct pci_devres *dr; 4433 4434 pci_write_config_word(pdev, PCI_COMMAND, new); 4435 4436 dr = find_pci_dr(pdev); 4437 if (dr && !dr->restore_intx) { 4438 dr->restore_intx = 1; 4439 dr->orig_intx = !enable; 4440 } 4441 } 4442 } 4443 EXPORT_SYMBOL_GPL(pci_intx); 4444 4445 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask) 4446 { 4447 struct pci_bus *bus = dev->bus; 4448 bool mask_updated = true; 4449 u32 cmd_status_dword; 4450 u16 origcmd, newcmd; 4451 unsigned long flags; 4452 bool irq_pending; 4453 4454 /* 4455 * We do a single dword read to retrieve both command and status. 4456 * Document assumptions that make this possible. 4457 */ 4458 BUILD_BUG_ON(PCI_COMMAND % 4); 4459 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS); 4460 4461 raw_spin_lock_irqsave(&pci_lock, flags); 4462 4463 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword); 4464 4465 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT; 4466 4467 /* 4468 * Check interrupt status register to see whether our device 4469 * triggered the interrupt (when masking) or the next IRQ is 4470 * already pending (when unmasking). 4471 */ 4472 if (mask != irq_pending) { 4473 mask_updated = false; 4474 goto done; 4475 } 4476 4477 origcmd = cmd_status_dword; 4478 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE; 4479 if (mask) 4480 newcmd |= PCI_COMMAND_INTX_DISABLE; 4481 if (newcmd != origcmd) 4482 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd); 4483 4484 done: 4485 raw_spin_unlock_irqrestore(&pci_lock, flags); 4486 4487 return mask_updated; 4488 } 4489 4490 /** 4491 * pci_check_and_mask_intx - mask INTx on pending interrupt 4492 * @dev: the PCI device to operate on 4493 * 4494 * Check if the device dev has its INTx line asserted, mask it and return 4495 * true in that case. False is returned if no interrupt was pending. 4496 */ 4497 bool pci_check_and_mask_intx(struct pci_dev *dev) 4498 { 4499 return pci_check_and_set_intx_mask(dev, true); 4500 } 4501 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx); 4502 4503 /** 4504 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending 4505 * @dev: the PCI device to operate on 4506 * 4507 * Check if the device dev has its INTx line asserted, unmask it if not and 4508 * return true. False is returned and the mask remains active if there was 4509 * still an interrupt pending. 4510 */ 4511 bool pci_check_and_unmask_intx(struct pci_dev *dev) 4512 { 4513 return pci_check_and_set_intx_mask(dev, false); 4514 } 4515 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx); 4516 4517 /** 4518 * pci_wait_for_pending_transaction - wait for pending transaction 4519 * @dev: the PCI device to operate on 4520 * 4521 * Return 0 if transaction is pending 1 otherwise. 4522 */ 4523 int pci_wait_for_pending_transaction(struct pci_dev *dev) 4524 { 4525 if (!pci_is_pcie(dev)) 4526 return 1; 4527 4528 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA, 4529 PCI_EXP_DEVSTA_TRPND); 4530 } 4531 EXPORT_SYMBOL(pci_wait_for_pending_transaction); 4532 4533 /** 4534 * pcie_has_flr - check if a device supports function level resets 4535 * @dev: device to check 4536 * 4537 * Returns true if the device advertises support for PCIe function level 4538 * resets. 4539 */ 4540 bool pcie_has_flr(struct pci_dev *dev) 4541 { 4542 u32 cap; 4543 4544 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4545 return false; 4546 4547 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap); 4548 return cap & PCI_EXP_DEVCAP_FLR; 4549 } 4550 EXPORT_SYMBOL_GPL(pcie_has_flr); 4551 4552 /** 4553 * pcie_flr - initiate a PCIe function level reset 4554 * @dev: device to reset 4555 * 4556 * Initiate a function level reset on @dev. The caller should ensure the 4557 * device supports FLR before calling this function, e.g. by using the 4558 * pcie_has_flr() helper. 4559 */ 4560 int pcie_flr(struct pci_dev *dev) 4561 { 4562 if (!pci_wait_for_pending_transaction(dev)) 4563 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n"); 4564 4565 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR); 4566 4567 if (dev->imm_ready) 4568 return 0; 4569 4570 /* 4571 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within 4572 * 100ms, but may silently discard requests while the FLR is in 4573 * progress. Wait 100ms before trying to access the device. 4574 */ 4575 msleep(100); 4576 4577 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS); 4578 } 4579 EXPORT_SYMBOL_GPL(pcie_flr); 4580 4581 static int pci_af_flr(struct pci_dev *dev, int probe) 4582 { 4583 int pos; 4584 u8 cap; 4585 4586 pos = pci_find_capability(dev, PCI_CAP_ID_AF); 4587 if (!pos) 4588 return -ENOTTY; 4589 4590 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4591 return -ENOTTY; 4592 4593 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap); 4594 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR)) 4595 return -ENOTTY; 4596 4597 if (probe) 4598 return 0; 4599 4600 /* 4601 * Wait for Transaction Pending bit to clear. A word-aligned test 4602 * is used, so we use the control offset rather than status and shift 4603 * the test bit to match. 4604 */ 4605 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL, 4606 PCI_AF_STATUS_TP << 8)) 4607 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n"); 4608 4609 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR); 4610 4611 if (dev->imm_ready) 4612 return 0; 4613 4614 /* 4615 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006, 4616 * updated 27 July 2006; a device must complete an FLR within 4617 * 100ms, but may silently discard requests while the FLR is in 4618 * progress. Wait 100ms before trying to access the device. 4619 */ 4620 msleep(100); 4621 4622 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS); 4623 } 4624 4625 /** 4626 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0. 4627 * @dev: Device to reset. 4628 * @probe: If set, only check if the device can be reset this way. 4629 * 4630 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is 4631 * unset, it will be reinitialized internally when going from PCI_D3hot to 4632 * PCI_D0. If that's the case and the device is not in a low-power state 4633 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset. 4634 * 4635 * NOTE: This causes the caller to sleep for twice the device power transition 4636 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms 4637 * by default (i.e. unless the @dev's d3hot_delay field has a different value). 4638 * Moreover, only devices in D0 can be reset by this function. 4639 */ 4640 static int pci_pm_reset(struct pci_dev *dev, int probe) 4641 { 4642 u16 csr; 4643 4644 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET) 4645 return -ENOTTY; 4646 4647 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr); 4648 if (csr & PCI_PM_CTRL_NO_SOFT_RESET) 4649 return -ENOTTY; 4650 4651 if (probe) 4652 return 0; 4653 4654 if (dev->current_state != PCI_D0) 4655 return -EINVAL; 4656 4657 csr &= ~PCI_PM_CTRL_STATE_MASK; 4658 csr |= PCI_D3hot; 4659 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4660 pci_dev_d3_sleep(dev); 4661 4662 csr &= ~PCI_PM_CTRL_STATE_MASK; 4663 csr |= PCI_D0; 4664 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4665 pci_dev_d3_sleep(dev); 4666 4667 return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS); 4668 } 4669 4670 /** 4671 * pcie_wait_for_link_delay - Wait until link is active or inactive 4672 * @pdev: Bridge device 4673 * @active: waiting for active or inactive? 4674 * @delay: Delay to wait after link has become active (in ms) 4675 * 4676 * Use this to wait till link becomes active or inactive. 4677 */ 4678 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active, 4679 int delay) 4680 { 4681 int timeout = 1000; 4682 bool ret; 4683 u16 lnk_status; 4684 4685 /* 4686 * Some controllers might not implement link active reporting. In this 4687 * case, we wait for 1000 ms + any delay requested by the caller. 4688 */ 4689 if (!pdev->link_active_reporting) { 4690 msleep(timeout + delay); 4691 return true; 4692 } 4693 4694 /* 4695 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms, 4696 * after which we should expect an link active if the reset was 4697 * successful. If so, software must wait a minimum 100ms before sending 4698 * configuration requests to devices downstream this port. 4699 * 4700 * If the link fails to activate, either the device was physically 4701 * removed or the link is permanently failed. 4702 */ 4703 if (active) 4704 msleep(20); 4705 for (;;) { 4706 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status); 4707 ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA); 4708 if (ret == active) 4709 break; 4710 if (timeout <= 0) 4711 break; 4712 msleep(10); 4713 timeout -= 10; 4714 } 4715 if (active && ret) 4716 msleep(delay); 4717 4718 return ret == active; 4719 } 4720 4721 /** 4722 * pcie_wait_for_link - Wait until link is active or inactive 4723 * @pdev: Bridge device 4724 * @active: waiting for active or inactive? 4725 * 4726 * Use this to wait till link becomes active or inactive. 4727 */ 4728 bool pcie_wait_for_link(struct pci_dev *pdev, bool active) 4729 { 4730 return pcie_wait_for_link_delay(pdev, active, 100); 4731 } 4732 4733 /* 4734 * Find maximum D3cold delay required by all the devices on the bus. The 4735 * spec says 100 ms, but firmware can lower it and we allow drivers to 4736 * increase it as well. 4737 * 4738 * Called with @pci_bus_sem locked for reading. 4739 */ 4740 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus) 4741 { 4742 const struct pci_dev *pdev; 4743 int min_delay = 100; 4744 int max_delay = 0; 4745 4746 list_for_each_entry(pdev, &bus->devices, bus_list) { 4747 if (pdev->d3cold_delay < min_delay) 4748 min_delay = pdev->d3cold_delay; 4749 if (pdev->d3cold_delay > max_delay) 4750 max_delay = pdev->d3cold_delay; 4751 } 4752 4753 return max(min_delay, max_delay); 4754 } 4755 4756 /** 4757 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible 4758 * @dev: PCI bridge 4759 * 4760 * Handle necessary delays before access to the devices on the secondary 4761 * side of the bridge are permitted after D3cold to D0 transition. 4762 * 4763 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For 4764 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section 4765 * 4.3.2. 4766 */ 4767 void pci_bridge_wait_for_secondary_bus(struct pci_dev *dev) 4768 { 4769 struct pci_dev *child; 4770 int delay; 4771 4772 if (pci_dev_is_disconnected(dev)) 4773 return; 4774 4775 if (!pci_is_bridge(dev) || !dev->bridge_d3) 4776 return; 4777 4778 down_read(&pci_bus_sem); 4779 4780 /* 4781 * We only deal with devices that are present currently on the bus. 4782 * For any hot-added devices the access delay is handled in pciehp 4783 * board_added(). In case of ACPI hotplug the firmware is expected 4784 * to configure the devices before OS is notified. 4785 */ 4786 if (!dev->subordinate || list_empty(&dev->subordinate->devices)) { 4787 up_read(&pci_bus_sem); 4788 return; 4789 } 4790 4791 /* Take d3cold_delay requirements into account */ 4792 delay = pci_bus_max_d3cold_delay(dev->subordinate); 4793 if (!delay) { 4794 up_read(&pci_bus_sem); 4795 return; 4796 } 4797 4798 child = list_first_entry(&dev->subordinate->devices, struct pci_dev, 4799 bus_list); 4800 up_read(&pci_bus_sem); 4801 4802 /* 4803 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before 4804 * accessing the device after reset (that is 1000 ms + 100 ms). In 4805 * practice this should not be needed because we don't do power 4806 * management for them (see pci_bridge_d3_possible()). 4807 */ 4808 if (!pci_is_pcie(dev)) { 4809 pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay); 4810 msleep(1000 + delay); 4811 return; 4812 } 4813 4814 /* 4815 * For PCIe downstream and root ports that do not support speeds 4816 * greater than 5 GT/s need to wait minimum 100 ms. For higher 4817 * speeds (gen3) we need to wait first for the data link layer to 4818 * become active. 4819 * 4820 * However, 100 ms is the minimum and the PCIe spec says the 4821 * software must allow at least 1s before it can determine that the 4822 * device that did not respond is a broken device. There is 4823 * evidence that 100 ms is not always enough, for example certain 4824 * Titan Ridge xHCI controller does not always respond to 4825 * configuration requests if we only wait for 100 ms (see 4826 * https://bugzilla.kernel.org/show_bug.cgi?id=203885). 4827 * 4828 * Therefore we wait for 100 ms and check for the device presence. 4829 * If it is still not present give it an additional 100 ms. 4830 */ 4831 if (!pcie_downstream_port(dev)) 4832 return; 4833 4834 if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) { 4835 pci_dbg(dev, "waiting %d ms for downstream link\n", delay); 4836 msleep(delay); 4837 } else { 4838 pci_dbg(dev, "waiting %d ms for downstream link, after activation\n", 4839 delay); 4840 if (!pcie_wait_for_link_delay(dev, true, delay)) { 4841 /* Did not train, no need to wait any further */ 4842 pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n"); 4843 return; 4844 } 4845 } 4846 4847 if (!pci_device_is_present(child)) { 4848 pci_dbg(child, "waiting additional %d ms to become accessible\n", delay); 4849 msleep(delay); 4850 } 4851 } 4852 4853 void pci_reset_secondary_bus(struct pci_dev *dev) 4854 { 4855 u16 ctrl; 4856 4857 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl); 4858 ctrl |= PCI_BRIDGE_CTL_BUS_RESET; 4859 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 4860 4861 /* 4862 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double 4863 * this to 2ms to ensure that we meet the minimum requirement. 4864 */ 4865 msleep(2); 4866 4867 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET; 4868 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 4869 4870 /* 4871 * Trhfa for conventional PCI is 2^25 clock cycles. 4872 * Assuming a minimum 33MHz clock this results in a 1s 4873 * delay before we can consider subordinate devices to 4874 * be re-initialized. PCIe has some ways to shorten this, 4875 * but we don't make use of them yet. 4876 */ 4877 ssleep(1); 4878 } 4879 4880 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev) 4881 { 4882 pci_reset_secondary_bus(dev); 4883 } 4884 4885 /** 4886 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge. 4887 * @dev: Bridge device 4888 * 4889 * Use the bridge control register to assert reset on the secondary bus. 4890 * Devices on the secondary bus are left in power-on state. 4891 */ 4892 int pci_bridge_secondary_bus_reset(struct pci_dev *dev) 4893 { 4894 pcibios_reset_secondary_bus(dev); 4895 4896 return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS); 4897 } 4898 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset); 4899 4900 static int pci_parent_bus_reset(struct pci_dev *dev, int probe) 4901 { 4902 struct pci_dev *pdev; 4903 4904 if (pci_is_root_bus(dev->bus) || dev->subordinate || 4905 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 4906 return -ENOTTY; 4907 4908 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 4909 if (pdev != dev) 4910 return -ENOTTY; 4911 4912 if (probe) 4913 return 0; 4914 4915 return pci_bridge_secondary_bus_reset(dev->bus->self); 4916 } 4917 4918 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe) 4919 { 4920 int rc = -ENOTTY; 4921 4922 if (!hotplug || !try_module_get(hotplug->owner)) 4923 return rc; 4924 4925 if (hotplug->ops->reset_slot) 4926 rc = hotplug->ops->reset_slot(hotplug, probe); 4927 4928 module_put(hotplug->owner); 4929 4930 return rc; 4931 } 4932 4933 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe) 4934 { 4935 if (dev->multifunction || dev->subordinate || !dev->slot || 4936 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 4937 return -ENOTTY; 4938 4939 return pci_reset_hotplug_slot(dev->slot->hotplug, probe); 4940 } 4941 4942 static void pci_dev_lock(struct pci_dev *dev) 4943 { 4944 pci_cfg_access_lock(dev); 4945 /* block PM suspend, driver probe, etc. */ 4946 device_lock(&dev->dev); 4947 } 4948 4949 /* Return 1 on successful lock, 0 on contention */ 4950 static int pci_dev_trylock(struct pci_dev *dev) 4951 { 4952 if (pci_cfg_access_trylock(dev)) { 4953 if (device_trylock(&dev->dev)) 4954 return 1; 4955 pci_cfg_access_unlock(dev); 4956 } 4957 4958 return 0; 4959 } 4960 4961 static void pci_dev_unlock(struct pci_dev *dev) 4962 { 4963 device_unlock(&dev->dev); 4964 pci_cfg_access_unlock(dev); 4965 } 4966 4967 static void pci_dev_save_and_disable(struct pci_dev *dev) 4968 { 4969 const struct pci_error_handlers *err_handler = 4970 dev->driver ? dev->driver->err_handler : NULL; 4971 4972 /* 4973 * dev->driver->err_handler->reset_prepare() is protected against 4974 * races with ->remove() by the device lock, which must be held by 4975 * the caller. 4976 */ 4977 if (err_handler && err_handler->reset_prepare) 4978 err_handler->reset_prepare(dev); 4979 4980 /* 4981 * Wake-up device prior to save. PM registers default to D0 after 4982 * reset and a simple register restore doesn't reliably return 4983 * to a non-D0 state anyway. 4984 */ 4985 pci_set_power_state(dev, PCI_D0); 4986 4987 pci_save_state(dev); 4988 /* 4989 * Disable the device by clearing the Command register, except for 4990 * INTx-disable which is set. This not only disables MMIO and I/O port 4991 * BARs, but also prevents the device from being Bus Master, preventing 4992 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3 4993 * compliant devices, INTx-disable prevents legacy interrupts. 4994 */ 4995 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE); 4996 } 4997 4998 static void pci_dev_restore(struct pci_dev *dev) 4999 { 5000 const struct pci_error_handlers *err_handler = 5001 dev->driver ? dev->driver->err_handler : NULL; 5002 5003 pci_restore_state(dev); 5004 5005 /* 5006 * dev->driver->err_handler->reset_done() is protected against 5007 * races with ->remove() by the device lock, which must be held by 5008 * the caller. 5009 */ 5010 if (err_handler && err_handler->reset_done) 5011 err_handler->reset_done(dev); 5012 } 5013 5014 /** 5015 * __pci_reset_function_locked - reset a PCI device function while holding 5016 * the @dev mutex lock. 5017 * @dev: PCI device to reset 5018 * 5019 * Some devices allow an individual function to be reset without affecting 5020 * other functions in the same device. The PCI device must be responsive 5021 * to PCI config space in order to use this function. 5022 * 5023 * The device function is presumed to be unused and the caller is holding 5024 * the device mutex lock when this function is called. 5025 * 5026 * Resetting the device will make the contents of PCI configuration space 5027 * random, so any caller of this must be prepared to reinitialise the 5028 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 5029 * etc. 5030 * 5031 * Returns 0 if the device function was successfully reset or negative if the 5032 * device doesn't support resetting a single function. 5033 */ 5034 int __pci_reset_function_locked(struct pci_dev *dev) 5035 { 5036 int rc; 5037 5038 might_sleep(); 5039 5040 /* 5041 * A reset method returns -ENOTTY if it doesn't support this device 5042 * and we should try the next method. 5043 * 5044 * If it returns 0 (success), we're finished. If it returns any 5045 * other error, we're also finished: this indicates that further 5046 * reset mechanisms might be broken on the device. 5047 */ 5048 rc = pci_dev_specific_reset(dev, 0); 5049 if (rc != -ENOTTY) 5050 return rc; 5051 if (pcie_has_flr(dev)) { 5052 rc = pcie_flr(dev); 5053 if (rc != -ENOTTY) 5054 return rc; 5055 } 5056 rc = pci_af_flr(dev, 0); 5057 if (rc != -ENOTTY) 5058 return rc; 5059 rc = pci_pm_reset(dev, 0); 5060 if (rc != -ENOTTY) 5061 return rc; 5062 rc = pci_dev_reset_slot_function(dev, 0); 5063 if (rc != -ENOTTY) 5064 return rc; 5065 return pci_parent_bus_reset(dev, 0); 5066 } 5067 EXPORT_SYMBOL_GPL(__pci_reset_function_locked); 5068 5069 /** 5070 * pci_probe_reset_function - check whether the device can be safely reset 5071 * @dev: PCI device to reset 5072 * 5073 * Some devices allow an individual function to be reset without affecting 5074 * other functions in the same device. The PCI device must be responsive 5075 * to PCI config space in order to use this function. 5076 * 5077 * Returns 0 if the device function can be reset or negative if the 5078 * device doesn't support resetting a single function. 5079 */ 5080 int pci_probe_reset_function(struct pci_dev *dev) 5081 { 5082 int rc; 5083 5084 might_sleep(); 5085 5086 rc = pci_dev_specific_reset(dev, 1); 5087 if (rc != -ENOTTY) 5088 return rc; 5089 if (pcie_has_flr(dev)) 5090 return 0; 5091 rc = pci_af_flr(dev, 1); 5092 if (rc != -ENOTTY) 5093 return rc; 5094 rc = pci_pm_reset(dev, 1); 5095 if (rc != -ENOTTY) 5096 return rc; 5097 rc = pci_dev_reset_slot_function(dev, 1); 5098 if (rc != -ENOTTY) 5099 return rc; 5100 5101 return pci_parent_bus_reset(dev, 1); 5102 } 5103 5104 /** 5105 * pci_reset_function - quiesce and reset a PCI device function 5106 * @dev: PCI device to reset 5107 * 5108 * Some devices allow an individual function to be reset without affecting 5109 * other functions in the same device. The PCI device must be responsive 5110 * to PCI config space in order to use this function. 5111 * 5112 * This function does not just reset the PCI portion of a device, but 5113 * clears all the state associated with the device. This function differs 5114 * from __pci_reset_function_locked() in that it saves and restores device state 5115 * over the reset and takes the PCI device lock. 5116 * 5117 * Returns 0 if the device function was successfully reset or negative if the 5118 * device doesn't support resetting a single function. 5119 */ 5120 int pci_reset_function(struct pci_dev *dev) 5121 { 5122 int rc; 5123 5124 if (!dev->reset_fn) 5125 return -ENOTTY; 5126 5127 pci_dev_lock(dev); 5128 pci_dev_save_and_disable(dev); 5129 5130 rc = __pci_reset_function_locked(dev); 5131 5132 pci_dev_restore(dev); 5133 pci_dev_unlock(dev); 5134 5135 return rc; 5136 } 5137 EXPORT_SYMBOL_GPL(pci_reset_function); 5138 5139 /** 5140 * pci_reset_function_locked - quiesce and reset a PCI device function 5141 * @dev: PCI device to reset 5142 * 5143 * Some devices allow an individual function to be reset without affecting 5144 * other functions in the same device. The PCI device must be responsive 5145 * to PCI config space in order to use this function. 5146 * 5147 * This function does not just reset the PCI portion of a device, but 5148 * clears all the state associated with the device. This function differs 5149 * from __pci_reset_function_locked() in that it saves and restores device state 5150 * over the reset. It also differs from pci_reset_function() in that it 5151 * requires the PCI device lock to be held. 5152 * 5153 * Returns 0 if the device function was successfully reset or negative if the 5154 * device doesn't support resetting a single function. 5155 */ 5156 int pci_reset_function_locked(struct pci_dev *dev) 5157 { 5158 int rc; 5159 5160 if (!dev->reset_fn) 5161 return -ENOTTY; 5162 5163 pci_dev_save_and_disable(dev); 5164 5165 rc = __pci_reset_function_locked(dev); 5166 5167 pci_dev_restore(dev); 5168 5169 return rc; 5170 } 5171 EXPORT_SYMBOL_GPL(pci_reset_function_locked); 5172 5173 /** 5174 * pci_try_reset_function - quiesce and reset a PCI device function 5175 * @dev: PCI device to reset 5176 * 5177 * Same as above, except return -EAGAIN if unable to lock device. 5178 */ 5179 int pci_try_reset_function(struct pci_dev *dev) 5180 { 5181 int rc; 5182 5183 if (!dev->reset_fn) 5184 return -ENOTTY; 5185 5186 if (!pci_dev_trylock(dev)) 5187 return -EAGAIN; 5188 5189 pci_dev_save_and_disable(dev); 5190 rc = __pci_reset_function_locked(dev); 5191 pci_dev_restore(dev); 5192 pci_dev_unlock(dev); 5193 5194 return rc; 5195 } 5196 EXPORT_SYMBOL_GPL(pci_try_reset_function); 5197 5198 /* Do any devices on or below this bus prevent a bus reset? */ 5199 static bool pci_bus_resetable(struct pci_bus *bus) 5200 { 5201 struct pci_dev *dev; 5202 5203 5204 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 5205 return false; 5206 5207 list_for_each_entry(dev, &bus->devices, bus_list) { 5208 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 5209 (dev->subordinate && !pci_bus_resetable(dev->subordinate))) 5210 return false; 5211 } 5212 5213 return true; 5214 } 5215 5216 /* Lock devices from the top of the tree down */ 5217 static void pci_bus_lock(struct pci_bus *bus) 5218 { 5219 struct pci_dev *dev; 5220 5221 list_for_each_entry(dev, &bus->devices, bus_list) { 5222 pci_dev_lock(dev); 5223 if (dev->subordinate) 5224 pci_bus_lock(dev->subordinate); 5225 } 5226 } 5227 5228 /* Unlock devices from the bottom of the tree up */ 5229 static void pci_bus_unlock(struct pci_bus *bus) 5230 { 5231 struct pci_dev *dev; 5232 5233 list_for_each_entry(dev, &bus->devices, bus_list) { 5234 if (dev->subordinate) 5235 pci_bus_unlock(dev->subordinate); 5236 pci_dev_unlock(dev); 5237 } 5238 } 5239 5240 /* Return 1 on successful lock, 0 on contention */ 5241 static int pci_bus_trylock(struct pci_bus *bus) 5242 { 5243 struct pci_dev *dev; 5244 5245 list_for_each_entry(dev, &bus->devices, bus_list) { 5246 if (!pci_dev_trylock(dev)) 5247 goto unlock; 5248 if (dev->subordinate) { 5249 if (!pci_bus_trylock(dev->subordinate)) { 5250 pci_dev_unlock(dev); 5251 goto unlock; 5252 } 5253 } 5254 } 5255 return 1; 5256 5257 unlock: 5258 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) { 5259 if (dev->subordinate) 5260 pci_bus_unlock(dev->subordinate); 5261 pci_dev_unlock(dev); 5262 } 5263 return 0; 5264 } 5265 5266 /* Do any devices on or below this slot prevent a bus reset? */ 5267 static bool pci_slot_resetable(struct pci_slot *slot) 5268 { 5269 struct pci_dev *dev; 5270 5271 if (slot->bus->self && 5272 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 5273 return false; 5274 5275 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5276 if (!dev->slot || dev->slot != slot) 5277 continue; 5278 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 5279 (dev->subordinate && !pci_bus_resetable(dev->subordinate))) 5280 return false; 5281 } 5282 5283 return true; 5284 } 5285 5286 /* Lock devices from the top of the tree down */ 5287 static void pci_slot_lock(struct pci_slot *slot) 5288 { 5289 struct pci_dev *dev; 5290 5291 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5292 if (!dev->slot || dev->slot != slot) 5293 continue; 5294 pci_dev_lock(dev); 5295 if (dev->subordinate) 5296 pci_bus_lock(dev->subordinate); 5297 } 5298 } 5299 5300 /* Unlock devices from the bottom of the tree up */ 5301 static void pci_slot_unlock(struct pci_slot *slot) 5302 { 5303 struct pci_dev *dev; 5304 5305 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5306 if (!dev->slot || dev->slot != slot) 5307 continue; 5308 if (dev->subordinate) 5309 pci_bus_unlock(dev->subordinate); 5310 pci_dev_unlock(dev); 5311 } 5312 } 5313 5314 /* Return 1 on successful lock, 0 on contention */ 5315 static int pci_slot_trylock(struct pci_slot *slot) 5316 { 5317 struct pci_dev *dev; 5318 5319 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5320 if (!dev->slot || dev->slot != slot) 5321 continue; 5322 if (!pci_dev_trylock(dev)) 5323 goto unlock; 5324 if (dev->subordinate) { 5325 if (!pci_bus_trylock(dev->subordinate)) { 5326 pci_dev_unlock(dev); 5327 goto unlock; 5328 } 5329 } 5330 } 5331 return 1; 5332 5333 unlock: 5334 list_for_each_entry_continue_reverse(dev, 5335 &slot->bus->devices, bus_list) { 5336 if (!dev->slot || dev->slot != slot) 5337 continue; 5338 if (dev->subordinate) 5339 pci_bus_unlock(dev->subordinate); 5340 pci_dev_unlock(dev); 5341 } 5342 return 0; 5343 } 5344 5345 /* 5346 * Save and disable devices from the top of the tree down while holding 5347 * the @dev mutex lock for the entire tree. 5348 */ 5349 static void pci_bus_save_and_disable_locked(struct pci_bus *bus) 5350 { 5351 struct pci_dev *dev; 5352 5353 list_for_each_entry(dev, &bus->devices, bus_list) { 5354 pci_dev_save_and_disable(dev); 5355 if (dev->subordinate) 5356 pci_bus_save_and_disable_locked(dev->subordinate); 5357 } 5358 } 5359 5360 /* 5361 * Restore devices from top of the tree down while holding @dev mutex lock 5362 * for the entire tree. Parent bridges need to be restored before we can 5363 * get to subordinate devices. 5364 */ 5365 static void pci_bus_restore_locked(struct pci_bus *bus) 5366 { 5367 struct pci_dev *dev; 5368 5369 list_for_each_entry(dev, &bus->devices, bus_list) { 5370 pci_dev_restore(dev); 5371 if (dev->subordinate) 5372 pci_bus_restore_locked(dev->subordinate); 5373 } 5374 } 5375 5376 /* 5377 * Save and disable devices from the top of the tree down while holding 5378 * the @dev mutex lock for the entire tree. 5379 */ 5380 static void pci_slot_save_and_disable_locked(struct pci_slot *slot) 5381 { 5382 struct pci_dev *dev; 5383 5384 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5385 if (!dev->slot || dev->slot != slot) 5386 continue; 5387 pci_dev_save_and_disable(dev); 5388 if (dev->subordinate) 5389 pci_bus_save_and_disable_locked(dev->subordinate); 5390 } 5391 } 5392 5393 /* 5394 * Restore devices from top of the tree down while holding @dev mutex lock 5395 * for the entire tree. Parent bridges need to be restored before we can 5396 * get to subordinate devices. 5397 */ 5398 static void pci_slot_restore_locked(struct pci_slot *slot) 5399 { 5400 struct pci_dev *dev; 5401 5402 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5403 if (!dev->slot || dev->slot != slot) 5404 continue; 5405 pci_dev_restore(dev); 5406 if (dev->subordinate) 5407 pci_bus_restore_locked(dev->subordinate); 5408 } 5409 } 5410 5411 static int pci_slot_reset(struct pci_slot *slot, int probe) 5412 { 5413 int rc; 5414 5415 if (!slot || !pci_slot_resetable(slot)) 5416 return -ENOTTY; 5417 5418 if (!probe) 5419 pci_slot_lock(slot); 5420 5421 might_sleep(); 5422 5423 rc = pci_reset_hotplug_slot(slot->hotplug, probe); 5424 5425 if (!probe) 5426 pci_slot_unlock(slot); 5427 5428 return rc; 5429 } 5430 5431 /** 5432 * pci_probe_reset_slot - probe whether a PCI slot can be reset 5433 * @slot: PCI slot to probe 5434 * 5435 * Return 0 if slot can be reset, negative if a slot reset is not supported. 5436 */ 5437 int pci_probe_reset_slot(struct pci_slot *slot) 5438 { 5439 return pci_slot_reset(slot, 1); 5440 } 5441 EXPORT_SYMBOL_GPL(pci_probe_reset_slot); 5442 5443 /** 5444 * __pci_reset_slot - Try to reset a PCI slot 5445 * @slot: PCI slot to reset 5446 * 5447 * A PCI bus may host multiple slots, each slot may support a reset mechanism 5448 * independent of other slots. For instance, some slots may support slot power 5449 * control. In the case of a 1:1 bus to slot architecture, this function may 5450 * wrap the bus reset to avoid spurious slot related events such as hotplug. 5451 * Generally a slot reset should be attempted before a bus reset. All of the 5452 * function of the slot and any subordinate buses behind the slot are reset 5453 * through this function. PCI config space of all devices in the slot and 5454 * behind the slot is saved before and restored after reset. 5455 * 5456 * Same as above except return -EAGAIN if the slot cannot be locked 5457 */ 5458 static int __pci_reset_slot(struct pci_slot *slot) 5459 { 5460 int rc; 5461 5462 rc = pci_slot_reset(slot, 1); 5463 if (rc) 5464 return rc; 5465 5466 if (pci_slot_trylock(slot)) { 5467 pci_slot_save_and_disable_locked(slot); 5468 might_sleep(); 5469 rc = pci_reset_hotplug_slot(slot->hotplug, 0); 5470 pci_slot_restore_locked(slot); 5471 pci_slot_unlock(slot); 5472 } else 5473 rc = -EAGAIN; 5474 5475 return rc; 5476 } 5477 5478 static int pci_bus_reset(struct pci_bus *bus, int probe) 5479 { 5480 int ret; 5481 5482 if (!bus->self || !pci_bus_resetable(bus)) 5483 return -ENOTTY; 5484 5485 if (probe) 5486 return 0; 5487 5488 pci_bus_lock(bus); 5489 5490 might_sleep(); 5491 5492 ret = pci_bridge_secondary_bus_reset(bus->self); 5493 5494 pci_bus_unlock(bus); 5495 5496 return ret; 5497 } 5498 5499 /** 5500 * pci_bus_error_reset - reset the bridge's subordinate bus 5501 * @bridge: The parent device that connects to the bus to reset 5502 * 5503 * This function will first try to reset the slots on this bus if the method is 5504 * available. If slot reset fails or is not available, this will fall back to a 5505 * secondary bus reset. 5506 */ 5507 int pci_bus_error_reset(struct pci_dev *bridge) 5508 { 5509 struct pci_bus *bus = bridge->subordinate; 5510 struct pci_slot *slot; 5511 5512 if (!bus) 5513 return -ENOTTY; 5514 5515 mutex_lock(&pci_slot_mutex); 5516 if (list_empty(&bus->slots)) 5517 goto bus_reset; 5518 5519 list_for_each_entry(slot, &bus->slots, list) 5520 if (pci_probe_reset_slot(slot)) 5521 goto bus_reset; 5522 5523 list_for_each_entry(slot, &bus->slots, list) 5524 if (pci_slot_reset(slot, 0)) 5525 goto bus_reset; 5526 5527 mutex_unlock(&pci_slot_mutex); 5528 return 0; 5529 bus_reset: 5530 mutex_unlock(&pci_slot_mutex); 5531 return pci_bus_reset(bridge->subordinate, 0); 5532 } 5533 5534 /** 5535 * pci_probe_reset_bus - probe whether a PCI bus can be reset 5536 * @bus: PCI bus to probe 5537 * 5538 * Return 0 if bus can be reset, negative if a bus reset is not supported. 5539 */ 5540 int pci_probe_reset_bus(struct pci_bus *bus) 5541 { 5542 return pci_bus_reset(bus, 1); 5543 } 5544 EXPORT_SYMBOL_GPL(pci_probe_reset_bus); 5545 5546 /** 5547 * __pci_reset_bus - Try to reset a PCI bus 5548 * @bus: top level PCI bus to reset 5549 * 5550 * Same as above except return -EAGAIN if the bus cannot be locked 5551 */ 5552 static int __pci_reset_bus(struct pci_bus *bus) 5553 { 5554 int rc; 5555 5556 rc = pci_bus_reset(bus, 1); 5557 if (rc) 5558 return rc; 5559 5560 if (pci_bus_trylock(bus)) { 5561 pci_bus_save_and_disable_locked(bus); 5562 might_sleep(); 5563 rc = pci_bridge_secondary_bus_reset(bus->self); 5564 pci_bus_restore_locked(bus); 5565 pci_bus_unlock(bus); 5566 } else 5567 rc = -EAGAIN; 5568 5569 return rc; 5570 } 5571 5572 /** 5573 * pci_reset_bus - Try to reset a PCI bus 5574 * @pdev: top level PCI device to reset via slot/bus 5575 * 5576 * Same as above except return -EAGAIN if the bus cannot be locked 5577 */ 5578 int pci_reset_bus(struct pci_dev *pdev) 5579 { 5580 return (!pci_probe_reset_slot(pdev->slot)) ? 5581 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus); 5582 } 5583 EXPORT_SYMBOL_GPL(pci_reset_bus); 5584 5585 /** 5586 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count 5587 * @dev: PCI device to query 5588 * 5589 * Returns mmrbc: maximum designed memory read count in bytes or 5590 * appropriate error value. 5591 */ 5592 int pcix_get_max_mmrbc(struct pci_dev *dev) 5593 { 5594 int cap; 5595 u32 stat; 5596 5597 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5598 if (!cap) 5599 return -EINVAL; 5600 5601 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 5602 return -EINVAL; 5603 5604 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21); 5605 } 5606 EXPORT_SYMBOL(pcix_get_max_mmrbc); 5607 5608 /** 5609 * pcix_get_mmrbc - get PCI-X maximum memory read byte count 5610 * @dev: PCI device to query 5611 * 5612 * Returns mmrbc: maximum memory read count in bytes or appropriate error 5613 * value. 5614 */ 5615 int pcix_get_mmrbc(struct pci_dev *dev) 5616 { 5617 int cap; 5618 u16 cmd; 5619 5620 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5621 if (!cap) 5622 return -EINVAL; 5623 5624 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 5625 return -EINVAL; 5626 5627 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2); 5628 } 5629 EXPORT_SYMBOL(pcix_get_mmrbc); 5630 5631 /** 5632 * pcix_set_mmrbc - set PCI-X maximum memory read byte count 5633 * @dev: PCI device to query 5634 * @mmrbc: maximum memory read count in bytes 5635 * valid values are 512, 1024, 2048, 4096 5636 * 5637 * If possible sets maximum memory read byte count, some bridges have errata 5638 * that prevent this. 5639 */ 5640 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc) 5641 { 5642 int cap; 5643 u32 stat, v, o; 5644 u16 cmd; 5645 5646 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc)) 5647 return -EINVAL; 5648 5649 v = ffs(mmrbc) - 10; 5650 5651 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5652 if (!cap) 5653 return -EINVAL; 5654 5655 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 5656 return -EINVAL; 5657 5658 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21) 5659 return -E2BIG; 5660 5661 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 5662 return -EINVAL; 5663 5664 o = (cmd & PCI_X_CMD_MAX_READ) >> 2; 5665 if (o != v) { 5666 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC)) 5667 return -EIO; 5668 5669 cmd &= ~PCI_X_CMD_MAX_READ; 5670 cmd |= v << 2; 5671 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd)) 5672 return -EIO; 5673 } 5674 return 0; 5675 } 5676 EXPORT_SYMBOL(pcix_set_mmrbc); 5677 5678 /** 5679 * pcie_get_readrq - get PCI Express read request size 5680 * @dev: PCI device to query 5681 * 5682 * Returns maximum memory read request in bytes or appropriate error value. 5683 */ 5684 int pcie_get_readrq(struct pci_dev *dev) 5685 { 5686 u16 ctl; 5687 5688 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 5689 5690 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12); 5691 } 5692 EXPORT_SYMBOL(pcie_get_readrq); 5693 5694 /** 5695 * pcie_set_readrq - set PCI Express maximum memory read request 5696 * @dev: PCI device to query 5697 * @rq: maximum memory read count in bytes 5698 * valid values are 128, 256, 512, 1024, 2048, 4096 5699 * 5700 * If possible sets maximum memory read request in bytes 5701 */ 5702 int pcie_set_readrq(struct pci_dev *dev, int rq) 5703 { 5704 u16 v; 5705 int ret; 5706 5707 if (rq < 128 || rq > 4096 || !is_power_of_2(rq)) 5708 return -EINVAL; 5709 5710 /* 5711 * If using the "performance" PCIe config, we clamp the read rq 5712 * size to the max packet size to keep the host bridge from 5713 * generating requests larger than we can cope with. 5714 */ 5715 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) { 5716 int mps = pcie_get_mps(dev); 5717 5718 if (mps < rq) 5719 rq = mps; 5720 } 5721 5722 v = (ffs(rq) - 8) << 12; 5723 5724 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 5725 PCI_EXP_DEVCTL_READRQ, v); 5726 5727 return pcibios_err_to_errno(ret); 5728 } 5729 EXPORT_SYMBOL(pcie_set_readrq); 5730 5731 /** 5732 * pcie_get_mps - get PCI Express maximum payload size 5733 * @dev: PCI device to query 5734 * 5735 * Returns maximum payload size in bytes 5736 */ 5737 int pcie_get_mps(struct pci_dev *dev) 5738 { 5739 u16 ctl; 5740 5741 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 5742 5743 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5); 5744 } 5745 EXPORT_SYMBOL(pcie_get_mps); 5746 5747 /** 5748 * pcie_set_mps - set PCI Express maximum payload size 5749 * @dev: PCI device to query 5750 * @mps: maximum payload size in bytes 5751 * valid values are 128, 256, 512, 1024, 2048, 4096 5752 * 5753 * If possible sets maximum payload size 5754 */ 5755 int pcie_set_mps(struct pci_dev *dev, int mps) 5756 { 5757 u16 v; 5758 int ret; 5759 5760 if (mps < 128 || mps > 4096 || !is_power_of_2(mps)) 5761 return -EINVAL; 5762 5763 v = ffs(mps) - 8; 5764 if (v > dev->pcie_mpss) 5765 return -EINVAL; 5766 v <<= 5; 5767 5768 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 5769 PCI_EXP_DEVCTL_PAYLOAD, v); 5770 5771 return pcibios_err_to_errno(ret); 5772 } 5773 EXPORT_SYMBOL(pcie_set_mps); 5774 5775 /** 5776 * pcie_bandwidth_available - determine minimum link settings of a PCIe 5777 * device and its bandwidth limitation 5778 * @dev: PCI device to query 5779 * @limiting_dev: storage for device causing the bandwidth limitation 5780 * @speed: storage for speed of limiting device 5781 * @width: storage for width of limiting device 5782 * 5783 * Walk up the PCI device chain and find the point where the minimum 5784 * bandwidth is available. Return the bandwidth available there and (if 5785 * limiting_dev, speed, and width pointers are supplied) information about 5786 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of 5787 * raw bandwidth. 5788 */ 5789 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev, 5790 enum pci_bus_speed *speed, 5791 enum pcie_link_width *width) 5792 { 5793 u16 lnksta; 5794 enum pci_bus_speed next_speed; 5795 enum pcie_link_width next_width; 5796 u32 bw, next_bw; 5797 5798 if (speed) 5799 *speed = PCI_SPEED_UNKNOWN; 5800 if (width) 5801 *width = PCIE_LNK_WIDTH_UNKNOWN; 5802 5803 bw = 0; 5804 5805 while (dev) { 5806 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta); 5807 5808 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS]; 5809 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >> 5810 PCI_EXP_LNKSTA_NLW_SHIFT; 5811 5812 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed); 5813 5814 /* Check if current device limits the total bandwidth */ 5815 if (!bw || next_bw <= bw) { 5816 bw = next_bw; 5817 5818 if (limiting_dev) 5819 *limiting_dev = dev; 5820 if (speed) 5821 *speed = next_speed; 5822 if (width) 5823 *width = next_width; 5824 } 5825 5826 dev = pci_upstream_bridge(dev); 5827 } 5828 5829 return bw; 5830 } 5831 EXPORT_SYMBOL(pcie_bandwidth_available); 5832 5833 /** 5834 * pcie_get_speed_cap - query for the PCI device's link speed capability 5835 * @dev: PCI device to query 5836 * 5837 * Query the PCI device speed capability. Return the maximum link speed 5838 * supported by the device. 5839 */ 5840 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev) 5841 { 5842 u32 lnkcap2, lnkcap; 5843 5844 /* 5845 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The 5846 * implementation note there recommends using the Supported Link 5847 * Speeds Vector in Link Capabilities 2 when supported. 5848 * 5849 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software 5850 * should use the Supported Link Speeds field in Link Capabilities, 5851 * where only 2.5 GT/s and 5.0 GT/s speeds were defined. 5852 */ 5853 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2); 5854 5855 /* PCIe r3.0-compliant */ 5856 if (lnkcap2) 5857 return PCIE_LNKCAP2_SLS2SPEED(lnkcap2); 5858 5859 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 5860 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB) 5861 return PCIE_SPEED_5_0GT; 5862 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB) 5863 return PCIE_SPEED_2_5GT; 5864 5865 return PCI_SPEED_UNKNOWN; 5866 } 5867 EXPORT_SYMBOL(pcie_get_speed_cap); 5868 5869 /** 5870 * pcie_get_width_cap - query for the PCI device's link width capability 5871 * @dev: PCI device to query 5872 * 5873 * Query the PCI device width capability. Return the maximum link width 5874 * supported by the device. 5875 */ 5876 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev) 5877 { 5878 u32 lnkcap; 5879 5880 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 5881 if (lnkcap) 5882 return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4; 5883 5884 return PCIE_LNK_WIDTH_UNKNOWN; 5885 } 5886 EXPORT_SYMBOL(pcie_get_width_cap); 5887 5888 /** 5889 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability 5890 * @dev: PCI device 5891 * @speed: storage for link speed 5892 * @width: storage for link width 5893 * 5894 * Calculate a PCI device's link bandwidth by querying for its link speed 5895 * and width, multiplying them, and applying encoding overhead. The result 5896 * is in Mb/s, i.e., megabits/second of raw bandwidth. 5897 */ 5898 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed, 5899 enum pcie_link_width *width) 5900 { 5901 *speed = pcie_get_speed_cap(dev); 5902 *width = pcie_get_width_cap(dev); 5903 5904 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN) 5905 return 0; 5906 5907 return *width * PCIE_SPEED2MBS_ENC(*speed); 5908 } 5909 5910 /** 5911 * __pcie_print_link_status - Report the PCI device's link speed and width 5912 * @dev: PCI device to query 5913 * @verbose: Print info even when enough bandwidth is available 5914 * 5915 * If the available bandwidth at the device is less than the device is 5916 * capable of, report the device's maximum possible bandwidth and the 5917 * upstream link that limits its performance. If @verbose, always print 5918 * the available bandwidth, even if the device isn't constrained. 5919 */ 5920 void __pcie_print_link_status(struct pci_dev *dev, bool verbose) 5921 { 5922 enum pcie_link_width width, width_cap; 5923 enum pci_bus_speed speed, speed_cap; 5924 struct pci_dev *limiting_dev = NULL; 5925 u32 bw_avail, bw_cap; 5926 5927 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap); 5928 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width); 5929 5930 if (bw_avail >= bw_cap && verbose) 5931 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n", 5932 bw_cap / 1000, bw_cap % 1000, 5933 pci_speed_string(speed_cap), width_cap); 5934 else if (bw_avail < bw_cap) 5935 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n", 5936 bw_avail / 1000, bw_avail % 1000, 5937 pci_speed_string(speed), width, 5938 limiting_dev ? pci_name(limiting_dev) : "<unknown>", 5939 bw_cap / 1000, bw_cap % 1000, 5940 pci_speed_string(speed_cap), width_cap); 5941 } 5942 5943 /** 5944 * pcie_print_link_status - Report the PCI device's link speed and width 5945 * @dev: PCI device to query 5946 * 5947 * Report the available bandwidth at the device. 5948 */ 5949 void pcie_print_link_status(struct pci_dev *dev) 5950 { 5951 __pcie_print_link_status(dev, true); 5952 } 5953 EXPORT_SYMBOL(pcie_print_link_status); 5954 5955 /** 5956 * pci_select_bars - Make BAR mask from the type of resource 5957 * @dev: the PCI device for which BAR mask is made 5958 * @flags: resource type mask to be selected 5959 * 5960 * This helper routine makes bar mask from the type of resource. 5961 */ 5962 int pci_select_bars(struct pci_dev *dev, unsigned long flags) 5963 { 5964 int i, bars = 0; 5965 for (i = 0; i < PCI_NUM_RESOURCES; i++) 5966 if (pci_resource_flags(dev, i) & flags) 5967 bars |= (1 << i); 5968 return bars; 5969 } 5970 EXPORT_SYMBOL(pci_select_bars); 5971 5972 /* Some architectures require additional programming to enable VGA */ 5973 static arch_set_vga_state_t arch_set_vga_state; 5974 5975 void __init pci_register_set_vga_state(arch_set_vga_state_t func) 5976 { 5977 arch_set_vga_state = func; /* NULL disables */ 5978 } 5979 5980 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode, 5981 unsigned int command_bits, u32 flags) 5982 { 5983 if (arch_set_vga_state) 5984 return arch_set_vga_state(dev, decode, command_bits, 5985 flags); 5986 return 0; 5987 } 5988 5989 /** 5990 * pci_set_vga_state - set VGA decode state on device and parents if requested 5991 * @dev: the PCI device 5992 * @decode: true = enable decoding, false = disable decoding 5993 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY 5994 * @flags: traverse ancestors and change bridges 5995 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE 5996 */ 5997 int pci_set_vga_state(struct pci_dev *dev, bool decode, 5998 unsigned int command_bits, u32 flags) 5999 { 6000 struct pci_bus *bus; 6001 struct pci_dev *bridge; 6002 u16 cmd; 6003 int rc; 6004 6005 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY))); 6006 6007 /* ARCH specific VGA enables */ 6008 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags); 6009 if (rc) 6010 return rc; 6011 6012 if (flags & PCI_VGA_STATE_CHANGE_DECODES) { 6013 pci_read_config_word(dev, PCI_COMMAND, &cmd); 6014 if (decode) 6015 cmd |= command_bits; 6016 else 6017 cmd &= ~command_bits; 6018 pci_write_config_word(dev, PCI_COMMAND, cmd); 6019 } 6020 6021 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE)) 6022 return 0; 6023 6024 bus = dev->bus; 6025 while (bus) { 6026 bridge = bus->self; 6027 if (bridge) { 6028 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL, 6029 &cmd); 6030 if (decode) 6031 cmd |= PCI_BRIDGE_CTL_VGA; 6032 else 6033 cmd &= ~PCI_BRIDGE_CTL_VGA; 6034 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL, 6035 cmd); 6036 } 6037 bus = bus->parent; 6038 } 6039 return 0; 6040 } 6041 6042 #ifdef CONFIG_ACPI 6043 bool pci_pr3_present(struct pci_dev *pdev) 6044 { 6045 struct acpi_device *adev; 6046 6047 if (acpi_disabled) 6048 return false; 6049 6050 adev = ACPI_COMPANION(&pdev->dev); 6051 if (!adev) 6052 return false; 6053 6054 return adev->power.flags.power_resources && 6055 acpi_has_method(adev->handle, "_PR3"); 6056 } 6057 EXPORT_SYMBOL_GPL(pci_pr3_present); 6058 #endif 6059 6060 /** 6061 * pci_add_dma_alias - Add a DMA devfn alias for a device 6062 * @dev: the PCI device for which alias is added 6063 * @devfn_from: alias slot and function 6064 * @nr_devfns: number of subsequent devfns to alias 6065 * 6066 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask 6067 * which is used to program permissible bus-devfn source addresses for DMA 6068 * requests in an IOMMU. These aliases factor into IOMMU group creation 6069 * and are useful for devices generating DMA requests beyond or different 6070 * from their logical bus-devfn. Examples include device quirks where the 6071 * device simply uses the wrong devfn, as well as non-transparent bridges 6072 * where the alias may be a proxy for devices in another domain. 6073 * 6074 * IOMMU group creation is performed during device discovery or addition, 6075 * prior to any potential DMA mapping and therefore prior to driver probing 6076 * (especially for userspace assigned devices where IOMMU group definition 6077 * cannot be left as a userspace activity). DMA aliases should therefore 6078 * be configured via quirks, such as the PCI fixup header quirk. 6079 */ 6080 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from, unsigned nr_devfns) 6081 { 6082 int devfn_to; 6083 6084 nr_devfns = min(nr_devfns, (unsigned) MAX_NR_DEVFNS - devfn_from); 6085 devfn_to = devfn_from + nr_devfns - 1; 6086 6087 if (!dev->dma_alias_mask) 6088 dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL); 6089 if (!dev->dma_alias_mask) { 6090 pci_warn(dev, "Unable to allocate DMA alias mask\n"); 6091 return; 6092 } 6093 6094 bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns); 6095 6096 if (nr_devfns == 1) 6097 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n", 6098 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from)); 6099 else if (nr_devfns > 1) 6100 pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n", 6101 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from), 6102 PCI_SLOT(devfn_to), PCI_FUNC(devfn_to)); 6103 } 6104 6105 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2) 6106 { 6107 return (dev1->dma_alias_mask && 6108 test_bit(dev2->devfn, dev1->dma_alias_mask)) || 6109 (dev2->dma_alias_mask && 6110 test_bit(dev1->devfn, dev2->dma_alias_mask)) || 6111 pci_real_dma_dev(dev1) == dev2 || 6112 pci_real_dma_dev(dev2) == dev1; 6113 } 6114 6115 bool pci_device_is_present(struct pci_dev *pdev) 6116 { 6117 u32 v; 6118 6119 if (pci_dev_is_disconnected(pdev)) 6120 return false; 6121 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0); 6122 } 6123 EXPORT_SYMBOL_GPL(pci_device_is_present); 6124 6125 void pci_ignore_hotplug(struct pci_dev *dev) 6126 { 6127 struct pci_dev *bridge = dev->bus->self; 6128 6129 dev->ignore_hotplug = 1; 6130 /* Propagate the "ignore hotplug" setting to the parent bridge. */ 6131 if (bridge) 6132 bridge->ignore_hotplug = 1; 6133 } 6134 EXPORT_SYMBOL_GPL(pci_ignore_hotplug); 6135 6136 /** 6137 * pci_real_dma_dev - Get PCI DMA device for PCI device 6138 * @dev: the PCI device that may have a PCI DMA alias 6139 * 6140 * Permits the platform to provide architecture-specific functionality to 6141 * devices needing to alias DMA to another PCI device on another PCI bus. If 6142 * the PCI device is on the same bus, it is recommended to use 6143 * pci_add_dma_alias(). This is the default implementation. Architecture 6144 * implementations can override this. 6145 */ 6146 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev) 6147 { 6148 return dev; 6149 } 6150 6151 resource_size_t __weak pcibios_default_alignment(void) 6152 { 6153 return 0; 6154 } 6155 6156 /* 6157 * Arches that don't want to expose struct resource to userland as-is in 6158 * sysfs and /proc can implement their own pci_resource_to_user(). 6159 */ 6160 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar, 6161 const struct resource *rsrc, 6162 resource_size_t *start, resource_size_t *end) 6163 { 6164 *start = rsrc->start; 6165 *end = rsrc->end; 6166 } 6167 6168 static char *resource_alignment_param; 6169 static DEFINE_SPINLOCK(resource_alignment_lock); 6170 6171 /** 6172 * pci_specified_resource_alignment - get resource alignment specified by user. 6173 * @dev: the PCI device to get 6174 * @resize: whether or not to change resources' size when reassigning alignment 6175 * 6176 * RETURNS: Resource alignment if it is specified. 6177 * Zero if it is not specified. 6178 */ 6179 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev, 6180 bool *resize) 6181 { 6182 int align_order, count; 6183 resource_size_t align = pcibios_default_alignment(); 6184 const char *p; 6185 int ret; 6186 6187 spin_lock(&resource_alignment_lock); 6188 p = resource_alignment_param; 6189 if (!p || !*p) 6190 goto out; 6191 if (pci_has_flag(PCI_PROBE_ONLY)) { 6192 align = 0; 6193 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n"); 6194 goto out; 6195 } 6196 6197 while (*p) { 6198 count = 0; 6199 if (sscanf(p, "%d%n", &align_order, &count) == 1 && 6200 p[count] == '@') { 6201 p += count + 1; 6202 } else { 6203 align_order = -1; 6204 } 6205 6206 ret = pci_dev_str_match(dev, p, &p); 6207 if (ret == 1) { 6208 *resize = true; 6209 if (align_order == -1) 6210 align = PAGE_SIZE; 6211 else 6212 align = 1 << align_order; 6213 break; 6214 } else if (ret < 0) { 6215 pr_err("PCI: Can't parse resource_alignment parameter: %s\n", 6216 p); 6217 break; 6218 } 6219 6220 if (*p != ';' && *p != ',') { 6221 /* End of param or invalid format */ 6222 break; 6223 } 6224 p++; 6225 } 6226 out: 6227 spin_unlock(&resource_alignment_lock); 6228 return align; 6229 } 6230 6231 static void pci_request_resource_alignment(struct pci_dev *dev, int bar, 6232 resource_size_t align, bool resize) 6233 { 6234 struct resource *r = &dev->resource[bar]; 6235 resource_size_t size; 6236 6237 if (!(r->flags & IORESOURCE_MEM)) 6238 return; 6239 6240 if (r->flags & IORESOURCE_PCI_FIXED) { 6241 pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n", 6242 bar, r, (unsigned long long)align); 6243 return; 6244 } 6245 6246 size = resource_size(r); 6247 if (size >= align) 6248 return; 6249 6250 /* 6251 * Increase the alignment of the resource. There are two ways we 6252 * can do this: 6253 * 6254 * 1) Increase the size of the resource. BARs are aligned on their 6255 * size, so when we reallocate space for this resource, we'll 6256 * allocate it with the larger alignment. This also prevents 6257 * assignment of any other BARs inside the alignment region, so 6258 * if we're requesting page alignment, this means no other BARs 6259 * will share the page. 6260 * 6261 * The disadvantage is that this makes the resource larger than 6262 * the hardware BAR, which may break drivers that compute things 6263 * based on the resource size, e.g., to find registers at a 6264 * fixed offset before the end of the BAR. 6265 * 6266 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and 6267 * set r->start to the desired alignment. By itself this 6268 * doesn't prevent other BARs being put inside the alignment 6269 * region, but if we realign *every* resource of every device in 6270 * the system, none of them will share an alignment region. 6271 * 6272 * When the user has requested alignment for only some devices via 6273 * the "pci=resource_alignment" argument, "resize" is true and we 6274 * use the first method. Otherwise we assume we're aligning all 6275 * devices and we use the second. 6276 */ 6277 6278 pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n", 6279 bar, r, (unsigned long long)align); 6280 6281 if (resize) { 6282 r->start = 0; 6283 r->end = align - 1; 6284 } else { 6285 r->flags &= ~IORESOURCE_SIZEALIGN; 6286 r->flags |= IORESOURCE_STARTALIGN; 6287 r->start = align; 6288 r->end = r->start + size - 1; 6289 } 6290 r->flags |= IORESOURCE_UNSET; 6291 } 6292 6293 /* 6294 * This function disables memory decoding and releases memory resources 6295 * of the device specified by kernel's boot parameter 'pci=resource_alignment='. 6296 * It also rounds up size to specified alignment. 6297 * Later on, the kernel will assign page-aligned memory resource back 6298 * to the device. 6299 */ 6300 void pci_reassigndev_resource_alignment(struct pci_dev *dev) 6301 { 6302 int i; 6303 struct resource *r; 6304 resource_size_t align; 6305 u16 command; 6306 bool resize = false; 6307 6308 /* 6309 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec 6310 * 3.4.1.11. Their resources are allocated from the space 6311 * described by the VF BARx register in the PF's SR-IOV capability. 6312 * We can't influence their alignment here. 6313 */ 6314 if (dev->is_virtfn) 6315 return; 6316 6317 /* check if specified PCI is target device to reassign */ 6318 align = pci_specified_resource_alignment(dev, &resize); 6319 if (!align) 6320 return; 6321 6322 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL && 6323 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) { 6324 pci_warn(dev, "Can't reassign resources to host bridge\n"); 6325 return; 6326 } 6327 6328 pci_read_config_word(dev, PCI_COMMAND, &command); 6329 command &= ~PCI_COMMAND_MEMORY; 6330 pci_write_config_word(dev, PCI_COMMAND, command); 6331 6332 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 6333 pci_request_resource_alignment(dev, i, align, resize); 6334 6335 /* 6336 * Need to disable bridge's resource window, 6337 * to enable the kernel to reassign new resource 6338 * window later on. 6339 */ 6340 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 6341 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) { 6342 r = &dev->resource[i]; 6343 if (!(r->flags & IORESOURCE_MEM)) 6344 continue; 6345 r->flags |= IORESOURCE_UNSET; 6346 r->end = resource_size(r) - 1; 6347 r->start = 0; 6348 } 6349 pci_disable_bridge_window(dev); 6350 } 6351 } 6352 6353 static ssize_t resource_alignment_show(struct bus_type *bus, char *buf) 6354 { 6355 size_t count = 0; 6356 6357 spin_lock(&resource_alignment_lock); 6358 if (resource_alignment_param) 6359 count = scnprintf(buf, PAGE_SIZE, "%s", resource_alignment_param); 6360 spin_unlock(&resource_alignment_lock); 6361 6362 /* 6363 * When set by the command line, resource_alignment_param will not 6364 * have a trailing line feed, which is ugly. So conditionally add 6365 * it here. 6366 */ 6367 if (count >= 2 && buf[count - 2] != '\n' && count < PAGE_SIZE - 1) { 6368 buf[count - 1] = '\n'; 6369 buf[count++] = 0; 6370 } 6371 6372 return count; 6373 } 6374 6375 static ssize_t resource_alignment_store(struct bus_type *bus, 6376 const char *buf, size_t count) 6377 { 6378 char *param = kstrndup(buf, count, GFP_KERNEL); 6379 6380 if (!param) 6381 return -ENOMEM; 6382 6383 spin_lock(&resource_alignment_lock); 6384 kfree(resource_alignment_param); 6385 resource_alignment_param = param; 6386 spin_unlock(&resource_alignment_lock); 6387 return count; 6388 } 6389 6390 static BUS_ATTR_RW(resource_alignment); 6391 6392 static int __init pci_resource_alignment_sysfs_init(void) 6393 { 6394 return bus_create_file(&pci_bus_type, 6395 &bus_attr_resource_alignment); 6396 } 6397 late_initcall(pci_resource_alignment_sysfs_init); 6398 6399 static void pci_no_domains(void) 6400 { 6401 #ifdef CONFIG_PCI_DOMAINS 6402 pci_domains_supported = 0; 6403 #endif 6404 } 6405 6406 #ifdef CONFIG_PCI_DOMAINS_GENERIC 6407 static atomic_t __domain_nr = ATOMIC_INIT(-1); 6408 6409 static int pci_get_new_domain_nr(void) 6410 { 6411 return atomic_inc_return(&__domain_nr); 6412 } 6413 6414 static int of_pci_bus_find_domain_nr(struct device *parent) 6415 { 6416 static int use_dt_domains = -1; 6417 int domain = -1; 6418 6419 if (parent) 6420 domain = of_get_pci_domain_nr(parent->of_node); 6421 6422 /* 6423 * Check DT domain and use_dt_domains values. 6424 * 6425 * If DT domain property is valid (domain >= 0) and 6426 * use_dt_domains != 0, the DT assignment is valid since this means 6427 * we have not previously allocated a domain number by using 6428 * pci_get_new_domain_nr(); we should also update use_dt_domains to 6429 * 1, to indicate that we have just assigned a domain number from 6430 * DT. 6431 * 6432 * If DT domain property value is not valid (ie domain < 0), and we 6433 * have not previously assigned a domain number from DT 6434 * (use_dt_domains != 1) we should assign a domain number by 6435 * using the: 6436 * 6437 * pci_get_new_domain_nr() 6438 * 6439 * API and update the use_dt_domains value to keep track of method we 6440 * are using to assign domain numbers (use_dt_domains = 0). 6441 * 6442 * All other combinations imply we have a platform that is trying 6443 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(), 6444 * which is a recipe for domain mishandling and it is prevented by 6445 * invalidating the domain value (domain = -1) and printing a 6446 * corresponding error. 6447 */ 6448 if (domain >= 0 && use_dt_domains) { 6449 use_dt_domains = 1; 6450 } else if (domain < 0 && use_dt_domains != 1) { 6451 use_dt_domains = 0; 6452 domain = pci_get_new_domain_nr(); 6453 } else { 6454 if (parent) 6455 pr_err("Node %pOF has ", parent->of_node); 6456 pr_err("Inconsistent \"linux,pci-domain\" property in DT\n"); 6457 domain = -1; 6458 } 6459 6460 return domain; 6461 } 6462 6463 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent) 6464 { 6465 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) : 6466 acpi_pci_bus_find_domain_nr(bus); 6467 } 6468 #endif 6469 6470 /** 6471 * pci_ext_cfg_avail - can we access extended PCI config space? 6472 * 6473 * Returns 1 if we can access PCI extended config space (offsets 6474 * greater than 0xff). This is the default implementation. Architecture 6475 * implementations can override this. 6476 */ 6477 int __weak pci_ext_cfg_avail(void) 6478 { 6479 return 1; 6480 } 6481 6482 void __weak pci_fixup_cardbus(struct pci_bus *bus) 6483 { 6484 } 6485 EXPORT_SYMBOL(pci_fixup_cardbus); 6486 6487 static int __init pci_setup(char *str) 6488 { 6489 while (str) { 6490 char *k = strchr(str, ','); 6491 if (k) 6492 *k++ = 0; 6493 if (*str && (str = pcibios_setup(str)) && *str) { 6494 if (!strcmp(str, "nomsi")) { 6495 pci_no_msi(); 6496 } else if (!strncmp(str, "noats", 5)) { 6497 pr_info("PCIe: ATS is disabled\n"); 6498 pcie_ats_disabled = true; 6499 } else if (!strcmp(str, "noaer")) { 6500 pci_no_aer(); 6501 } else if (!strcmp(str, "earlydump")) { 6502 pci_early_dump = true; 6503 } else if (!strncmp(str, "realloc=", 8)) { 6504 pci_realloc_get_opt(str + 8); 6505 } else if (!strncmp(str, "realloc", 7)) { 6506 pci_realloc_get_opt("on"); 6507 } else if (!strcmp(str, "nodomains")) { 6508 pci_no_domains(); 6509 } else if (!strncmp(str, "noari", 5)) { 6510 pcie_ari_disabled = true; 6511 } else if (!strncmp(str, "cbiosize=", 9)) { 6512 pci_cardbus_io_size = memparse(str + 9, &str); 6513 } else if (!strncmp(str, "cbmemsize=", 10)) { 6514 pci_cardbus_mem_size = memparse(str + 10, &str); 6515 } else if (!strncmp(str, "resource_alignment=", 19)) { 6516 resource_alignment_param = str + 19; 6517 } else if (!strncmp(str, "ecrc=", 5)) { 6518 pcie_ecrc_get_policy(str + 5); 6519 } else if (!strncmp(str, "hpiosize=", 9)) { 6520 pci_hotplug_io_size = memparse(str + 9, &str); 6521 } else if (!strncmp(str, "hpmmiosize=", 11)) { 6522 pci_hotplug_mmio_size = memparse(str + 11, &str); 6523 } else if (!strncmp(str, "hpmmioprefsize=", 15)) { 6524 pci_hotplug_mmio_pref_size = memparse(str + 15, &str); 6525 } else if (!strncmp(str, "hpmemsize=", 10)) { 6526 pci_hotplug_mmio_size = memparse(str + 10, &str); 6527 pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size; 6528 } else if (!strncmp(str, "hpbussize=", 10)) { 6529 pci_hotplug_bus_size = 6530 simple_strtoul(str + 10, &str, 0); 6531 if (pci_hotplug_bus_size > 0xff) 6532 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 6533 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) { 6534 pcie_bus_config = PCIE_BUS_TUNE_OFF; 6535 } else if (!strncmp(str, "pcie_bus_safe", 13)) { 6536 pcie_bus_config = PCIE_BUS_SAFE; 6537 } else if (!strncmp(str, "pcie_bus_perf", 13)) { 6538 pcie_bus_config = PCIE_BUS_PERFORMANCE; 6539 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) { 6540 pcie_bus_config = PCIE_BUS_PEER2PEER; 6541 } else if (!strncmp(str, "pcie_scan_all", 13)) { 6542 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS); 6543 } else if (!strncmp(str, "disable_acs_redir=", 18)) { 6544 disable_acs_redir_param = str + 18; 6545 } else { 6546 pr_err("PCI: Unknown option `%s'\n", str); 6547 } 6548 } 6549 str = k; 6550 } 6551 return 0; 6552 } 6553 early_param("pci", pci_setup); 6554 6555 /* 6556 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized 6557 * in pci_setup(), above, to point to data in the __initdata section which 6558 * will be freed after the init sequence is complete. We can't allocate memory 6559 * in pci_setup() because some architectures do not have any memory allocation 6560 * service available during an early_param() call. So we allocate memory and 6561 * copy the variable here before the init section is freed. 6562 * 6563 */ 6564 static int __init pci_realloc_setup_params(void) 6565 { 6566 resource_alignment_param = kstrdup(resource_alignment_param, 6567 GFP_KERNEL); 6568 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL); 6569 6570 return 0; 6571 } 6572 pure_initcall(pci_realloc_setup_params); 6573