1 /* 2 * PCI Bus Services, see include/linux/pci.h for further explanation. 3 * 4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter, 5 * David Mosberger-Tang 6 * 7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz> 8 */ 9 10 #include <linux/kernel.h> 11 #include <linux/delay.h> 12 #include <linux/init.h> 13 #include <linux/pci.h> 14 #include <linux/pm.h> 15 #include <linux/slab.h> 16 #include <linux/module.h> 17 #include <linux/spinlock.h> 18 #include <linux/string.h> 19 #include <linux/log2.h> 20 #include <linux/pci-aspm.h> 21 #include <linux/pm_wakeup.h> 22 #include <linux/interrupt.h> 23 #include <linux/device.h> 24 #include <linux/pm_runtime.h> 25 #include <linux/pci_hotplug.h> 26 #include <asm-generic/pci-bridge.h> 27 #include <asm/setup.h> 28 #include "pci.h" 29 30 const char *pci_power_names[] = { 31 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown", 32 }; 33 EXPORT_SYMBOL_GPL(pci_power_names); 34 35 int isa_dma_bridge_buggy; 36 EXPORT_SYMBOL(isa_dma_bridge_buggy); 37 38 int pci_pci_problems; 39 EXPORT_SYMBOL(pci_pci_problems); 40 41 unsigned int pci_pm_d3_delay; 42 43 static void pci_pme_list_scan(struct work_struct *work); 44 45 static LIST_HEAD(pci_pme_list); 46 static DEFINE_MUTEX(pci_pme_list_mutex); 47 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan); 48 49 struct pci_pme_device { 50 struct list_head list; 51 struct pci_dev *dev; 52 }; 53 54 #define PME_TIMEOUT 1000 /* How long between PME checks */ 55 56 static void pci_dev_d3_sleep(struct pci_dev *dev) 57 { 58 unsigned int delay = dev->d3_delay; 59 60 if (delay < pci_pm_d3_delay) 61 delay = pci_pm_d3_delay; 62 63 msleep(delay); 64 } 65 66 #ifdef CONFIG_PCI_DOMAINS 67 int pci_domains_supported = 1; 68 #endif 69 70 #define DEFAULT_CARDBUS_IO_SIZE (256) 71 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024) 72 /* pci=cbmemsize=nnM,cbiosize=nn can override this */ 73 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE; 74 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE; 75 76 #define DEFAULT_HOTPLUG_IO_SIZE (256) 77 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024) 78 /* pci=hpmemsize=nnM,hpiosize=nn can override this */ 79 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE; 80 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE; 81 82 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF; 83 84 /* 85 * The default CLS is used if arch didn't set CLS explicitly and not 86 * all pci devices agree on the same value. Arch can override either 87 * the dfl or actual value as it sees fit. Don't forget this is 88 * measured in 32-bit words, not bytes. 89 */ 90 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2; 91 u8 pci_cache_line_size; 92 93 /* 94 * If we set up a device for bus mastering, we need to check the latency 95 * timer as certain BIOSes forget to set it properly. 96 */ 97 unsigned int pcibios_max_latency = 255; 98 99 /* If set, the PCIe ARI capability will not be used. */ 100 static bool pcie_ari_disabled; 101 102 /** 103 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children 104 * @bus: pointer to PCI bus structure to search 105 * 106 * Given a PCI bus, returns the highest PCI bus number present in the set 107 * including the given PCI bus and its list of child PCI buses. 108 */ 109 unsigned char pci_bus_max_busnr(struct pci_bus* bus) 110 { 111 struct list_head *tmp; 112 unsigned char max, n; 113 114 max = bus->busn_res.end; 115 list_for_each(tmp, &bus->children) { 116 n = pci_bus_max_busnr(pci_bus_b(tmp)); 117 if(n > max) 118 max = n; 119 } 120 return max; 121 } 122 EXPORT_SYMBOL_GPL(pci_bus_max_busnr); 123 124 #ifdef CONFIG_HAS_IOMEM 125 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar) 126 { 127 /* 128 * Make sure the BAR is actually a memory resource, not an IO resource 129 */ 130 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) { 131 WARN_ON(1); 132 return NULL; 133 } 134 return ioremap_nocache(pci_resource_start(pdev, bar), 135 pci_resource_len(pdev, bar)); 136 } 137 EXPORT_SYMBOL_GPL(pci_ioremap_bar); 138 #endif 139 140 #define PCI_FIND_CAP_TTL 48 141 142 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn, 143 u8 pos, int cap, int *ttl) 144 { 145 u8 id; 146 147 while ((*ttl)--) { 148 pci_bus_read_config_byte(bus, devfn, pos, &pos); 149 if (pos < 0x40) 150 break; 151 pos &= ~3; 152 pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID, 153 &id); 154 if (id == 0xff) 155 break; 156 if (id == cap) 157 return pos; 158 pos += PCI_CAP_LIST_NEXT; 159 } 160 return 0; 161 } 162 163 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn, 164 u8 pos, int cap) 165 { 166 int ttl = PCI_FIND_CAP_TTL; 167 168 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl); 169 } 170 171 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap) 172 { 173 return __pci_find_next_cap(dev->bus, dev->devfn, 174 pos + PCI_CAP_LIST_NEXT, cap); 175 } 176 EXPORT_SYMBOL_GPL(pci_find_next_capability); 177 178 static int __pci_bus_find_cap_start(struct pci_bus *bus, 179 unsigned int devfn, u8 hdr_type) 180 { 181 u16 status; 182 183 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status); 184 if (!(status & PCI_STATUS_CAP_LIST)) 185 return 0; 186 187 switch (hdr_type) { 188 case PCI_HEADER_TYPE_NORMAL: 189 case PCI_HEADER_TYPE_BRIDGE: 190 return PCI_CAPABILITY_LIST; 191 case PCI_HEADER_TYPE_CARDBUS: 192 return PCI_CB_CAPABILITY_LIST; 193 default: 194 return 0; 195 } 196 197 return 0; 198 } 199 200 /** 201 * pci_find_capability - query for devices' capabilities 202 * @dev: PCI device to query 203 * @cap: capability code 204 * 205 * Tell if a device supports a given PCI capability. 206 * Returns the address of the requested capability structure within the 207 * device's PCI configuration space or 0 in case the device does not 208 * support it. Possible values for @cap: 209 * 210 * %PCI_CAP_ID_PM Power Management 211 * %PCI_CAP_ID_AGP Accelerated Graphics Port 212 * %PCI_CAP_ID_VPD Vital Product Data 213 * %PCI_CAP_ID_SLOTID Slot Identification 214 * %PCI_CAP_ID_MSI Message Signalled Interrupts 215 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap 216 * %PCI_CAP_ID_PCIX PCI-X 217 * %PCI_CAP_ID_EXP PCI Express 218 */ 219 int pci_find_capability(struct pci_dev *dev, int cap) 220 { 221 int pos; 222 223 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 224 if (pos) 225 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap); 226 227 return pos; 228 } 229 230 /** 231 * pci_bus_find_capability - query for devices' capabilities 232 * @bus: the PCI bus to query 233 * @devfn: PCI device to query 234 * @cap: capability code 235 * 236 * Like pci_find_capability() but works for pci devices that do not have a 237 * pci_dev structure set up yet. 238 * 239 * Returns the address of the requested capability structure within the 240 * device's PCI configuration space or 0 in case the device does not 241 * support it. 242 */ 243 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap) 244 { 245 int pos; 246 u8 hdr_type; 247 248 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type); 249 250 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f); 251 if (pos) 252 pos = __pci_find_next_cap(bus, devfn, pos, cap); 253 254 return pos; 255 } 256 257 /** 258 * pci_find_next_ext_capability - Find an extended capability 259 * @dev: PCI device to query 260 * @start: address at which to start looking (0 to start at beginning of list) 261 * @cap: capability code 262 * 263 * Returns the address of the next matching extended capability structure 264 * within the device's PCI configuration space or 0 if the device does 265 * not support it. Some capabilities can occur several times, e.g., the 266 * vendor-specific capability, and this provides a way to find them all. 267 */ 268 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap) 269 { 270 u32 header; 271 int ttl; 272 int pos = PCI_CFG_SPACE_SIZE; 273 274 /* minimum 8 bytes per capability */ 275 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8; 276 277 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE) 278 return 0; 279 280 if (start) 281 pos = start; 282 283 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 284 return 0; 285 286 /* 287 * If we have no capabilities, this is indicated by cap ID, 288 * cap version and next pointer all being 0. 289 */ 290 if (header == 0) 291 return 0; 292 293 while (ttl-- > 0) { 294 if (PCI_EXT_CAP_ID(header) == cap && pos != start) 295 return pos; 296 297 pos = PCI_EXT_CAP_NEXT(header); 298 if (pos < PCI_CFG_SPACE_SIZE) 299 break; 300 301 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 302 break; 303 } 304 305 return 0; 306 } 307 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability); 308 309 /** 310 * pci_find_ext_capability - Find an extended capability 311 * @dev: PCI device to query 312 * @cap: capability code 313 * 314 * Returns the address of the requested extended capability structure 315 * within the device's PCI configuration space or 0 if the device does 316 * not support it. Possible values for @cap: 317 * 318 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting 319 * %PCI_EXT_CAP_ID_VC Virtual Channel 320 * %PCI_EXT_CAP_ID_DSN Device Serial Number 321 * %PCI_EXT_CAP_ID_PWR Power Budgeting 322 */ 323 int pci_find_ext_capability(struct pci_dev *dev, int cap) 324 { 325 return pci_find_next_ext_capability(dev, 0, cap); 326 } 327 EXPORT_SYMBOL_GPL(pci_find_ext_capability); 328 329 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap) 330 { 331 int rc, ttl = PCI_FIND_CAP_TTL; 332 u8 cap, mask; 333 334 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST) 335 mask = HT_3BIT_CAP_MASK; 336 else 337 mask = HT_5BIT_CAP_MASK; 338 339 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos, 340 PCI_CAP_ID_HT, &ttl); 341 while (pos) { 342 rc = pci_read_config_byte(dev, pos + 3, &cap); 343 if (rc != PCIBIOS_SUCCESSFUL) 344 return 0; 345 346 if ((cap & mask) == ht_cap) 347 return pos; 348 349 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, 350 pos + PCI_CAP_LIST_NEXT, 351 PCI_CAP_ID_HT, &ttl); 352 } 353 354 return 0; 355 } 356 /** 357 * pci_find_next_ht_capability - query a device's Hypertransport capabilities 358 * @dev: PCI device to query 359 * @pos: Position from which to continue searching 360 * @ht_cap: Hypertransport capability code 361 * 362 * To be used in conjunction with pci_find_ht_capability() to search for 363 * all capabilities matching @ht_cap. @pos should always be a value returned 364 * from pci_find_ht_capability(). 365 * 366 * NB. To be 100% safe against broken PCI devices, the caller should take 367 * steps to avoid an infinite loop. 368 */ 369 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap) 370 { 371 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap); 372 } 373 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability); 374 375 /** 376 * pci_find_ht_capability - query a device's Hypertransport capabilities 377 * @dev: PCI device to query 378 * @ht_cap: Hypertransport capability code 379 * 380 * Tell if a device supports a given Hypertransport capability. 381 * Returns an address within the device's PCI configuration space 382 * or 0 in case the device does not support the request capability. 383 * The address points to the PCI capability, of type PCI_CAP_ID_HT, 384 * which has a Hypertransport capability matching @ht_cap. 385 */ 386 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap) 387 { 388 int pos; 389 390 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 391 if (pos) 392 pos = __pci_find_next_ht_cap(dev, pos, ht_cap); 393 394 return pos; 395 } 396 EXPORT_SYMBOL_GPL(pci_find_ht_capability); 397 398 /** 399 * pci_find_parent_resource - return resource region of parent bus of given region 400 * @dev: PCI device structure contains resources to be searched 401 * @res: child resource record for which parent is sought 402 * 403 * For given resource region of given device, return the resource 404 * region of parent bus the given region is contained in or where 405 * it should be allocated from. 406 */ 407 struct resource * 408 pci_find_parent_resource(const struct pci_dev *dev, struct resource *res) 409 { 410 const struct pci_bus *bus = dev->bus; 411 int i; 412 struct resource *best = NULL, *r; 413 414 pci_bus_for_each_resource(bus, r, i) { 415 if (!r) 416 continue; 417 if (res->start && !(res->start >= r->start && res->end <= r->end)) 418 continue; /* Not contained */ 419 if ((res->flags ^ r->flags) & (IORESOURCE_IO | IORESOURCE_MEM)) 420 continue; /* Wrong type */ 421 if (!((res->flags ^ r->flags) & IORESOURCE_PREFETCH)) 422 return r; /* Exact match */ 423 /* We can't insert a non-prefetch resource inside a prefetchable parent .. */ 424 if (r->flags & IORESOURCE_PREFETCH) 425 continue; 426 /* .. but we can put a prefetchable resource inside a non-prefetchable one */ 427 if (!best) 428 best = r; 429 } 430 return best; 431 } 432 433 /** 434 * pci_restore_bars - restore a devices BAR values (e.g. after wake-up) 435 * @dev: PCI device to have its BARs restored 436 * 437 * Restore the BAR values for a given device, so as to make it 438 * accessible by its driver. 439 */ 440 static void 441 pci_restore_bars(struct pci_dev *dev) 442 { 443 int i; 444 445 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) 446 pci_update_resource(dev, i); 447 } 448 449 static struct pci_platform_pm_ops *pci_platform_pm; 450 451 int pci_set_platform_pm(struct pci_platform_pm_ops *ops) 452 { 453 if (!ops->is_manageable || !ops->set_state || !ops->choose_state 454 || !ops->sleep_wake) 455 return -EINVAL; 456 pci_platform_pm = ops; 457 return 0; 458 } 459 460 static inline bool platform_pci_power_manageable(struct pci_dev *dev) 461 { 462 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false; 463 } 464 465 static inline int platform_pci_set_power_state(struct pci_dev *dev, 466 pci_power_t t) 467 { 468 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS; 469 } 470 471 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev) 472 { 473 return pci_platform_pm ? 474 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR; 475 } 476 477 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable) 478 { 479 return pci_platform_pm ? 480 pci_platform_pm->sleep_wake(dev, enable) : -ENODEV; 481 } 482 483 static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable) 484 { 485 return pci_platform_pm ? 486 pci_platform_pm->run_wake(dev, enable) : -ENODEV; 487 } 488 489 /** 490 * pci_raw_set_power_state - Use PCI PM registers to set the power state of 491 * given PCI device 492 * @dev: PCI device to handle. 493 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 494 * 495 * RETURN VALUE: 496 * -EINVAL if the requested state is invalid. 497 * -EIO if device does not support PCI PM or its PM capabilities register has a 498 * wrong version, or device doesn't support the requested state. 499 * 0 if device already is in the requested state. 500 * 0 if device's power state has been successfully changed. 501 */ 502 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state) 503 { 504 u16 pmcsr; 505 bool need_restore = false; 506 507 /* Check if we're already there */ 508 if (dev->current_state == state) 509 return 0; 510 511 if (!dev->pm_cap) 512 return -EIO; 513 514 if (state < PCI_D0 || state > PCI_D3hot) 515 return -EINVAL; 516 517 /* Validate current state: 518 * Can enter D0 from any state, but if we can only go deeper 519 * to sleep if we're already in a low power state 520 */ 521 if (state != PCI_D0 && dev->current_state <= PCI_D3cold 522 && dev->current_state > state) { 523 dev_err(&dev->dev, "invalid power transition " 524 "(from state %d to %d)\n", dev->current_state, state); 525 return -EINVAL; 526 } 527 528 /* check if this device supports the desired state */ 529 if ((state == PCI_D1 && !dev->d1_support) 530 || (state == PCI_D2 && !dev->d2_support)) 531 return -EIO; 532 533 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 534 535 /* If we're (effectively) in D3, force entire word to 0. 536 * This doesn't affect PME_Status, disables PME_En, and 537 * sets PowerState to 0. 538 */ 539 switch (dev->current_state) { 540 case PCI_D0: 541 case PCI_D1: 542 case PCI_D2: 543 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 544 pmcsr |= state; 545 break; 546 case PCI_D3hot: 547 case PCI_D3cold: 548 case PCI_UNKNOWN: /* Boot-up */ 549 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot 550 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET)) 551 need_restore = true; 552 /* Fall-through: force to D0 */ 553 default: 554 pmcsr = 0; 555 break; 556 } 557 558 /* enter specified state */ 559 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 560 561 /* Mandatory power management transition delays */ 562 /* see PCI PM 1.1 5.6.1 table 18 */ 563 if (state == PCI_D3hot || dev->current_state == PCI_D3hot) 564 pci_dev_d3_sleep(dev); 565 else if (state == PCI_D2 || dev->current_state == PCI_D2) 566 udelay(PCI_PM_D2_DELAY); 567 568 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 569 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 570 if (dev->current_state != state && printk_ratelimit()) 571 dev_info(&dev->dev, "Refused to change power state, " 572 "currently in D%d\n", dev->current_state); 573 574 /* 575 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT 576 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning 577 * from D3hot to D0 _may_ perform an internal reset, thereby 578 * going to "D0 Uninitialized" rather than "D0 Initialized". 579 * For example, at least some versions of the 3c905B and the 580 * 3c556B exhibit this behaviour. 581 * 582 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave 583 * devices in a D3hot state at boot. Consequently, we need to 584 * restore at least the BARs so that the device will be 585 * accessible to its driver. 586 */ 587 if (need_restore) 588 pci_restore_bars(dev); 589 590 if (dev->bus->self) 591 pcie_aspm_pm_state_change(dev->bus->self); 592 593 return 0; 594 } 595 596 /** 597 * pci_update_current_state - Read PCI power state of given device from its 598 * PCI PM registers and cache it 599 * @dev: PCI device to handle. 600 * @state: State to cache in case the device doesn't have the PM capability 601 */ 602 void pci_update_current_state(struct pci_dev *dev, pci_power_t state) 603 { 604 if (dev->pm_cap) { 605 u16 pmcsr; 606 607 /* 608 * Configuration space is not accessible for device in 609 * D3cold, so just keep or set D3cold for safety 610 */ 611 if (dev->current_state == PCI_D3cold) 612 return; 613 if (state == PCI_D3cold) { 614 dev->current_state = PCI_D3cold; 615 return; 616 } 617 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 618 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 619 } else { 620 dev->current_state = state; 621 } 622 } 623 624 /** 625 * pci_power_up - Put the given device into D0 forcibly 626 * @dev: PCI device to power up 627 */ 628 void pci_power_up(struct pci_dev *dev) 629 { 630 if (platform_pci_power_manageable(dev)) 631 platform_pci_set_power_state(dev, PCI_D0); 632 633 pci_raw_set_power_state(dev, PCI_D0); 634 pci_update_current_state(dev, PCI_D0); 635 } 636 637 /** 638 * pci_platform_power_transition - Use platform to change device power state 639 * @dev: PCI device to handle. 640 * @state: State to put the device into. 641 */ 642 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state) 643 { 644 int error; 645 646 if (platform_pci_power_manageable(dev)) { 647 error = platform_pci_set_power_state(dev, state); 648 if (!error) 649 pci_update_current_state(dev, state); 650 } else 651 error = -ENODEV; 652 653 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */ 654 dev->current_state = PCI_D0; 655 656 return error; 657 } 658 659 /** 660 * __pci_start_power_transition - Start power transition of a PCI device 661 * @dev: PCI device to handle. 662 * @state: State to put the device into. 663 */ 664 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state) 665 { 666 if (state == PCI_D0) { 667 pci_platform_power_transition(dev, PCI_D0); 668 /* 669 * Mandatory power management transition delays, see 670 * PCI Express Base Specification Revision 2.0 Section 671 * 6.6.1: Conventional Reset. Do not delay for 672 * devices powered on/off by corresponding bridge, 673 * because have already delayed for the bridge. 674 */ 675 if (dev->runtime_d3cold) { 676 msleep(dev->d3cold_delay); 677 /* 678 * When powering on a bridge from D3cold, the 679 * whole hierarchy may be powered on into 680 * D0uninitialized state, resume them to give 681 * them a chance to suspend again 682 */ 683 pci_wakeup_bus(dev->subordinate); 684 } 685 } 686 } 687 688 /** 689 * __pci_dev_set_current_state - Set current state of a PCI device 690 * @dev: Device to handle 691 * @data: pointer to state to be set 692 */ 693 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data) 694 { 695 pci_power_t state = *(pci_power_t *)data; 696 697 dev->current_state = state; 698 return 0; 699 } 700 701 /** 702 * __pci_bus_set_current_state - Walk given bus and set current state of devices 703 * @bus: Top bus of the subtree to walk. 704 * @state: state to be set 705 */ 706 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state) 707 { 708 if (bus) 709 pci_walk_bus(bus, __pci_dev_set_current_state, &state); 710 } 711 712 /** 713 * __pci_complete_power_transition - Complete power transition of a PCI device 714 * @dev: PCI device to handle. 715 * @state: State to put the device into. 716 * 717 * This function should not be called directly by device drivers. 718 */ 719 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state) 720 { 721 int ret; 722 723 if (state <= PCI_D0) 724 return -EINVAL; 725 ret = pci_platform_power_transition(dev, state); 726 /* Power off the bridge may power off the whole hierarchy */ 727 if (!ret && state == PCI_D3cold) 728 __pci_bus_set_current_state(dev->subordinate, PCI_D3cold); 729 return ret; 730 } 731 EXPORT_SYMBOL_GPL(__pci_complete_power_transition); 732 733 /** 734 * pci_set_power_state - Set the power state of a PCI device 735 * @dev: PCI device to handle. 736 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 737 * 738 * Transition a device to a new power state, using the platform firmware and/or 739 * the device's PCI PM registers. 740 * 741 * RETURN VALUE: 742 * -EINVAL if the requested state is invalid. 743 * -EIO if device does not support PCI PM or its PM capabilities register has a 744 * wrong version, or device doesn't support the requested state. 745 * 0 if device already is in the requested state. 746 * 0 if device's power state has been successfully changed. 747 */ 748 int pci_set_power_state(struct pci_dev *dev, pci_power_t state) 749 { 750 int error; 751 752 /* bound the state we're entering */ 753 if (state > PCI_D3cold) 754 state = PCI_D3cold; 755 else if (state < PCI_D0) 756 state = PCI_D0; 757 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev)) 758 /* 759 * If the device or the parent bridge do not support PCI PM, 760 * ignore the request if we're doing anything other than putting 761 * it into D0 (which would only happen on boot). 762 */ 763 return 0; 764 765 /* Check if we're already there */ 766 if (dev->current_state == state) 767 return 0; 768 769 __pci_start_power_transition(dev, state); 770 771 /* This device is quirked not to be put into D3, so 772 don't put it in D3 */ 773 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3)) 774 return 0; 775 776 /* 777 * To put device in D3cold, we put device into D3hot in native 778 * way, then put device into D3cold with platform ops 779 */ 780 error = pci_raw_set_power_state(dev, state > PCI_D3hot ? 781 PCI_D3hot : state); 782 783 if (!__pci_complete_power_transition(dev, state)) 784 error = 0; 785 /* 786 * When aspm_policy is "powersave" this call ensures 787 * that ASPM is configured. 788 */ 789 if (!error && dev->bus->self) 790 pcie_aspm_powersave_config_link(dev->bus->self); 791 792 return error; 793 } 794 795 /** 796 * pci_choose_state - Choose the power state of a PCI device 797 * @dev: PCI device to be suspended 798 * @state: target sleep state for the whole system. This is the value 799 * that is passed to suspend() function. 800 * 801 * Returns PCI power state suitable for given device and given system 802 * message. 803 */ 804 805 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state) 806 { 807 pci_power_t ret; 808 809 if (!dev->pm_cap) 810 return PCI_D0; 811 812 ret = platform_pci_choose_state(dev); 813 if (ret != PCI_POWER_ERROR) 814 return ret; 815 816 switch (state.event) { 817 case PM_EVENT_ON: 818 return PCI_D0; 819 case PM_EVENT_FREEZE: 820 case PM_EVENT_PRETHAW: 821 /* REVISIT both freeze and pre-thaw "should" use D0 */ 822 case PM_EVENT_SUSPEND: 823 case PM_EVENT_HIBERNATE: 824 return PCI_D3hot; 825 default: 826 dev_info(&dev->dev, "unrecognized suspend event %d\n", 827 state.event); 828 BUG(); 829 } 830 return PCI_D0; 831 } 832 833 EXPORT_SYMBOL(pci_choose_state); 834 835 #define PCI_EXP_SAVE_REGS 7 836 837 838 static struct pci_cap_saved_state *pci_find_saved_cap( 839 struct pci_dev *pci_dev, char cap) 840 { 841 struct pci_cap_saved_state *tmp; 842 843 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) { 844 if (tmp->cap.cap_nr == cap) 845 return tmp; 846 } 847 return NULL; 848 } 849 850 static int pci_save_pcie_state(struct pci_dev *dev) 851 { 852 int i = 0; 853 struct pci_cap_saved_state *save_state; 854 u16 *cap; 855 856 if (!pci_is_pcie(dev)) 857 return 0; 858 859 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 860 if (!save_state) { 861 dev_err(&dev->dev, "buffer not found in %s\n", __func__); 862 return -ENOMEM; 863 } 864 865 cap = (u16 *)&save_state->cap.data[0]; 866 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]); 867 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]); 868 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]); 869 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]); 870 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]); 871 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]); 872 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]); 873 874 return 0; 875 } 876 877 static void pci_restore_pcie_state(struct pci_dev *dev) 878 { 879 int i = 0; 880 struct pci_cap_saved_state *save_state; 881 u16 *cap; 882 883 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 884 if (!save_state) 885 return; 886 887 cap = (u16 *)&save_state->cap.data[0]; 888 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]); 889 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]); 890 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]); 891 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]); 892 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]); 893 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]); 894 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]); 895 } 896 897 898 static int pci_save_pcix_state(struct pci_dev *dev) 899 { 900 int pos; 901 struct pci_cap_saved_state *save_state; 902 903 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 904 if (pos <= 0) 905 return 0; 906 907 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 908 if (!save_state) { 909 dev_err(&dev->dev, "buffer not found in %s\n", __func__); 910 return -ENOMEM; 911 } 912 913 pci_read_config_word(dev, pos + PCI_X_CMD, 914 (u16 *)save_state->cap.data); 915 916 return 0; 917 } 918 919 static void pci_restore_pcix_state(struct pci_dev *dev) 920 { 921 int i = 0, pos; 922 struct pci_cap_saved_state *save_state; 923 u16 *cap; 924 925 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 926 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 927 if (!save_state || pos <= 0) 928 return; 929 cap = (u16 *)&save_state->cap.data[0]; 930 931 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]); 932 } 933 934 935 /** 936 * pci_save_state - save the PCI configuration space of a device before suspending 937 * @dev: - PCI device that we're dealing with 938 */ 939 int 940 pci_save_state(struct pci_dev *dev) 941 { 942 int i; 943 /* XXX: 100% dword access ok here? */ 944 for (i = 0; i < 16; i++) 945 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]); 946 dev->state_saved = true; 947 if ((i = pci_save_pcie_state(dev)) != 0) 948 return i; 949 if ((i = pci_save_pcix_state(dev)) != 0) 950 return i; 951 return 0; 952 } 953 954 static void pci_restore_config_dword(struct pci_dev *pdev, int offset, 955 u32 saved_val, int retry) 956 { 957 u32 val; 958 959 pci_read_config_dword(pdev, offset, &val); 960 if (val == saved_val) 961 return; 962 963 for (;;) { 964 dev_dbg(&pdev->dev, "restoring config space at offset " 965 "%#x (was %#x, writing %#x)\n", offset, val, saved_val); 966 pci_write_config_dword(pdev, offset, saved_val); 967 if (retry-- <= 0) 968 return; 969 970 pci_read_config_dword(pdev, offset, &val); 971 if (val == saved_val) 972 return; 973 974 mdelay(1); 975 } 976 } 977 978 static void pci_restore_config_space_range(struct pci_dev *pdev, 979 int start, int end, int retry) 980 { 981 int index; 982 983 for (index = end; index >= start; index--) 984 pci_restore_config_dword(pdev, 4 * index, 985 pdev->saved_config_space[index], 986 retry); 987 } 988 989 static void pci_restore_config_space(struct pci_dev *pdev) 990 { 991 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) { 992 pci_restore_config_space_range(pdev, 10, 15, 0); 993 /* Restore BARs before the command register. */ 994 pci_restore_config_space_range(pdev, 4, 9, 10); 995 pci_restore_config_space_range(pdev, 0, 3, 0); 996 } else { 997 pci_restore_config_space_range(pdev, 0, 15, 0); 998 } 999 } 1000 1001 /** 1002 * pci_restore_state - Restore the saved state of a PCI device 1003 * @dev: - PCI device that we're dealing with 1004 */ 1005 void pci_restore_state(struct pci_dev *dev) 1006 { 1007 if (!dev->state_saved) 1008 return; 1009 1010 /* PCI Express register must be restored first */ 1011 pci_restore_pcie_state(dev); 1012 pci_restore_ats_state(dev); 1013 1014 pci_restore_config_space(dev); 1015 1016 pci_restore_pcix_state(dev); 1017 pci_restore_msi_state(dev); 1018 pci_restore_iov_state(dev); 1019 1020 dev->state_saved = false; 1021 } 1022 1023 struct pci_saved_state { 1024 u32 config_space[16]; 1025 struct pci_cap_saved_data cap[0]; 1026 }; 1027 1028 /** 1029 * pci_store_saved_state - Allocate and return an opaque struct containing 1030 * the device saved state. 1031 * @dev: PCI device that we're dealing with 1032 * 1033 * Return NULL if no state or error. 1034 */ 1035 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev) 1036 { 1037 struct pci_saved_state *state; 1038 struct pci_cap_saved_state *tmp; 1039 struct pci_cap_saved_data *cap; 1040 size_t size; 1041 1042 if (!dev->state_saved) 1043 return NULL; 1044 1045 size = sizeof(*state) + sizeof(struct pci_cap_saved_data); 1046 1047 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) 1048 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1049 1050 state = kzalloc(size, GFP_KERNEL); 1051 if (!state) 1052 return NULL; 1053 1054 memcpy(state->config_space, dev->saved_config_space, 1055 sizeof(state->config_space)); 1056 1057 cap = state->cap; 1058 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) { 1059 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1060 memcpy(cap, &tmp->cap, len); 1061 cap = (struct pci_cap_saved_data *)((u8 *)cap + len); 1062 } 1063 /* Empty cap_save terminates list */ 1064 1065 return state; 1066 } 1067 EXPORT_SYMBOL_GPL(pci_store_saved_state); 1068 1069 /** 1070 * pci_load_saved_state - Reload the provided save state into struct pci_dev. 1071 * @dev: PCI device that we're dealing with 1072 * @state: Saved state returned from pci_store_saved_state() 1073 */ 1074 int pci_load_saved_state(struct pci_dev *dev, struct pci_saved_state *state) 1075 { 1076 struct pci_cap_saved_data *cap; 1077 1078 dev->state_saved = false; 1079 1080 if (!state) 1081 return 0; 1082 1083 memcpy(dev->saved_config_space, state->config_space, 1084 sizeof(state->config_space)); 1085 1086 cap = state->cap; 1087 while (cap->size) { 1088 struct pci_cap_saved_state *tmp; 1089 1090 tmp = pci_find_saved_cap(dev, cap->cap_nr); 1091 if (!tmp || tmp->cap.size != cap->size) 1092 return -EINVAL; 1093 1094 memcpy(tmp->cap.data, cap->data, tmp->cap.size); 1095 cap = (struct pci_cap_saved_data *)((u8 *)cap + 1096 sizeof(struct pci_cap_saved_data) + cap->size); 1097 } 1098 1099 dev->state_saved = true; 1100 return 0; 1101 } 1102 EXPORT_SYMBOL_GPL(pci_load_saved_state); 1103 1104 /** 1105 * pci_load_and_free_saved_state - Reload the save state pointed to by state, 1106 * and free the memory allocated for it. 1107 * @dev: PCI device that we're dealing with 1108 * @state: Pointer to saved state returned from pci_store_saved_state() 1109 */ 1110 int pci_load_and_free_saved_state(struct pci_dev *dev, 1111 struct pci_saved_state **state) 1112 { 1113 int ret = pci_load_saved_state(dev, *state); 1114 kfree(*state); 1115 *state = NULL; 1116 return ret; 1117 } 1118 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state); 1119 1120 static int do_pci_enable_device(struct pci_dev *dev, int bars) 1121 { 1122 int err; 1123 1124 err = pci_set_power_state(dev, PCI_D0); 1125 if (err < 0 && err != -EIO) 1126 return err; 1127 err = pcibios_enable_device(dev, bars); 1128 if (err < 0) 1129 return err; 1130 pci_fixup_device(pci_fixup_enable, dev); 1131 1132 return 0; 1133 } 1134 1135 /** 1136 * pci_reenable_device - Resume abandoned device 1137 * @dev: PCI device to be resumed 1138 * 1139 * Note this function is a backend of pci_default_resume and is not supposed 1140 * to be called by normal code, write proper resume handler and use it instead. 1141 */ 1142 int pci_reenable_device(struct pci_dev *dev) 1143 { 1144 if (pci_is_enabled(dev)) 1145 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1); 1146 return 0; 1147 } 1148 1149 static void pci_enable_bridge(struct pci_dev *dev) 1150 { 1151 struct pci_dev *bridge; 1152 int retval; 1153 1154 bridge = pci_upstream_bridge(dev); 1155 if (bridge) 1156 pci_enable_bridge(bridge); 1157 1158 if (pci_is_enabled(dev)) { 1159 if (!dev->is_busmaster) 1160 pci_set_master(dev); 1161 return; 1162 } 1163 1164 retval = pci_enable_device(dev); 1165 if (retval) 1166 dev_err(&dev->dev, "Error enabling bridge (%d), continuing\n", 1167 retval); 1168 pci_set_master(dev); 1169 } 1170 1171 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags) 1172 { 1173 struct pci_dev *bridge; 1174 int err; 1175 int i, bars = 0; 1176 1177 /* 1178 * Power state could be unknown at this point, either due to a fresh 1179 * boot or a device removal call. So get the current power state 1180 * so that things like MSI message writing will behave as expected 1181 * (e.g. if the device really is in D0 at enable time). 1182 */ 1183 if (dev->pm_cap) { 1184 u16 pmcsr; 1185 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1186 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 1187 } 1188 1189 if (atomic_inc_return(&dev->enable_cnt) > 1) 1190 return 0; /* already enabled */ 1191 1192 bridge = pci_upstream_bridge(dev); 1193 if (bridge) 1194 pci_enable_bridge(bridge); 1195 1196 /* only skip sriov related */ 1197 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 1198 if (dev->resource[i].flags & flags) 1199 bars |= (1 << i); 1200 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++) 1201 if (dev->resource[i].flags & flags) 1202 bars |= (1 << i); 1203 1204 err = do_pci_enable_device(dev, bars); 1205 if (err < 0) 1206 atomic_dec(&dev->enable_cnt); 1207 return err; 1208 } 1209 1210 /** 1211 * pci_enable_device_io - Initialize a device for use with IO space 1212 * @dev: PCI device to be initialized 1213 * 1214 * Initialize device before it's used by a driver. Ask low-level code 1215 * to enable I/O resources. Wake up the device if it was suspended. 1216 * Beware, this function can fail. 1217 */ 1218 int pci_enable_device_io(struct pci_dev *dev) 1219 { 1220 return pci_enable_device_flags(dev, IORESOURCE_IO); 1221 } 1222 1223 /** 1224 * pci_enable_device_mem - Initialize a device for use with Memory space 1225 * @dev: PCI device to be initialized 1226 * 1227 * Initialize device before it's used by a driver. Ask low-level code 1228 * to enable Memory resources. Wake up the device if it was suspended. 1229 * Beware, this function can fail. 1230 */ 1231 int pci_enable_device_mem(struct pci_dev *dev) 1232 { 1233 return pci_enable_device_flags(dev, IORESOURCE_MEM); 1234 } 1235 1236 /** 1237 * pci_enable_device - Initialize device before it's used by a driver. 1238 * @dev: PCI device to be initialized 1239 * 1240 * Initialize device before it's used by a driver. Ask low-level code 1241 * to enable I/O and memory. Wake up the device if it was suspended. 1242 * Beware, this function can fail. 1243 * 1244 * Note we don't actually enable the device many times if we call 1245 * this function repeatedly (we just increment the count). 1246 */ 1247 int pci_enable_device(struct pci_dev *dev) 1248 { 1249 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO); 1250 } 1251 1252 /* 1253 * Managed PCI resources. This manages device on/off, intx/msi/msix 1254 * on/off and BAR regions. pci_dev itself records msi/msix status, so 1255 * there's no need to track it separately. pci_devres is initialized 1256 * when a device is enabled using managed PCI device enable interface. 1257 */ 1258 struct pci_devres { 1259 unsigned int enabled:1; 1260 unsigned int pinned:1; 1261 unsigned int orig_intx:1; 1262 unsigned int restore_intx:1; 1263 u32 region_mask; 1264 }; 1265 1266 static void pcim_release(struct device *gendev, void *res) 1267 { 1268 struct pci_dev *dev = container_of(gendev, struct pci_dev, dev); 1269 struct pci_devres *this = res; 1270 int i; 1271 1272 if (dev->msi_enabled) 1273 pci_disable_msi(dev); 1274 if (dev->msix_enabled) 1275 pci_disable_msix(dev); 1276 1277 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) 1278 if (this->region_mask & (1 << i)) 1279 pci_release_region(dev, i); 1280 1281 if (this->restore_intx) 1282 pci_intx(dev, this->orig_intx); 1283 1284 if (this->enabled && !this->pinned) 1285 pci_disable_device(dev); 1286 } 1287 1288 static struct pci_devres * get_pci_dr(struct pci_dev *pdev) 1289 { 1290 struct pci_devres *dr, *new_dr; 1291 1292 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL); 1293 if (dr) 1294 return dr; 1295 1296 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL); 1297 if (!new_dr) 1298 return NULL; 1299 return devres_get(&pdev->dev, new_dr, NULL, NULL); 1300 } 1301 1302 static struct pci_devres * find_pci_dr(struct pci_dev *pdev) 1303 { 1304 if (pci_is_managed(pdev)) 1305 return devres_find(&pdev->dev, pcim_release, NULL, NULL); 1306 return NULL; 1307 } 1308 1309 /** 1310 * pcim_enable_device - Managed pci_enable_device() 1311 * @pdev: PCI device to be initialized 1312 * 1313 * Managed pci_enable_device(). 1314 */ 1315 int pcim_enable_device(struct pci_dev *pdev) 1316 { 1317 struct pci_devres *dr; 1318 int rc; 1319 1320 dr = get_pci_dr(pdev); 1321 if (unlikely(!dr)) 1322 return -ENOMEM; 1323 if (dr->enabled) 1324 return 0; 1325 1326 rc = pci_enable_device(pdev); 1327 if (!rc) { 1328 pdev->is_managed = 1; 1329 dr->enabled = 1; 1330 } 1331 return rc; 1332 } 1333 1334 /** 1335 * pcim_pin_device - Pin managed PCI device 1336 * @pdev: PCI device to pin 1337 * 1338 * Pin managed PCI device @pdev. Pinned device won't be disabled on 1339 * driver detach. @pdev must have been enabled with 1340 * pcim_enable_device(). 1341 */ 1342 void pcim_pin_device(struct pci_dev *pdev) 1343 { 1344 struct pci_devres *dr; 1345 1346 dr = find_pci_dr(pdev); 1347 WARN_ON(!dr || !dr->enabled); 1348 if (dr) 1349 dr->pinned = 1; 1350 } 1351 1352 /* 1353 * pcibios_add_device - provide arch specific hooks when adding device dev 1354 * @dev: the PCI device being added 1355 * 1356 * Permits the platform to provide architecture specific functionality when 1357 * devices are added. This is the default implementation. Architecture 1358 * implementations can override this. 1359 */ 1360 int __weak pcibios_add_device (struct pci_dev *dev) 1361 { 1362 return 0; 1363 } 1364 1365 /** 1366 * pcibios_release_device - provide arch specific hooks when releasing device dev 1367 * @dev: the PCI device being released 1368 * 1369 * Permits the platform to provide architecture specific functionality when 1370 * devices are released. This is the default implementation. Architecture 1371 * implementations can override this. 1372 */ 1373 void __weak pcibios_release_device(struct pci_dev *dev) {} 1374 1375 /** 1376 * pcibios_disable_device - disable arch specific PCI resources for device dev 1377 * @dev: the PCI device to disable 1378 * 1379 * Disables architecture specific PCI resources for the device. This 1380 * is the default implementation. Architecture implementations can 1381 * override this. 1382 */ 1383 void __weak pcibios_disable_device (struct pci_dev *dev) {} 1384 1385 static void do_pci_disable_device(struct pci_dev *dev) 1386 { 1387 u16 pci_command; 1388 1389 pci_read_config_word(dev, PCI_COMMAND, &pci_command); 1390 if (pci_command & PCI_COMMAND_MASTER) { 1391 pci_command &= ~PCI_COMMAND_MASTER; 1392 pci_write_config_word(dev, PCI_COMMAND, pci_command); 1393 } 1394 1395 pcibios_disable_device(dev); 1396 } 1397 1398 /** 1399 * pci_disable_enabled_device - Disable device without updating enable_cnt 1400 * @dev: PCI device to disable 1401 * 1402 * NOTE: This function is a backend of PCI power management routines and is 1403 * not supposed to be called drivers. 1404 */ 1405 void pci_disable_enabled_device(struct pci_dev *dev) 1406 { 1407 if (pci_is_enabled(dev)) 1408 do_pci_disable_device(dev); 1409 } 1410 1411 /** 1412 * pci_disable_device - Disable PCI device after use 1413 * @dev: PCI device to be disabled 1414 * 1415 * Signal to the system that the PCI device is not in use by the system 1416 * anymore. This only involves disabling PCI bus-mastering, if active. 1417 * 1418 * Note we don't actually disable the device until all callers of 1419 * pci_enable_device() have called pci_disable_device(). 1420 */ 1421 void 1422 pci_disable_device(struct pci_dev *dev) 1423 { 1424 struct pci_devres *dr; 1425 1426 dr = find_pci_dr(dev); 1427 if (dr) 1428 dr->enabled = 0; 1429 1430 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0, 1431 "disabling already-disabled device"); 1432 1433 if (atomic_dec_return(&dev->enable_cnt) != 0) 1434 return; 1435 1436 do_pci_disable_device(dev); 1437 1438 dev->is_busmaster = 0; 1439 } 1440 1441 /** 1442 * pcibios_set_pcie_reset_state - set reset state for device dev 1443 * @dev: the PCIe device reset 1444 * @state: Reset state to enter into 1445 * 1446 * 1447 * Sets the PCIe reset state for the device. This is the default 1448 * implementation. Architecture implementations can override this. 1449 */ 1450 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev, 1451 enum pcie_reset_state state) 1452 { 1453 return -EINVAL; 1454 } 1455 1456 /** 1457 * pci_set_pcie_reset_state - set reset state for device dev 1458 * @dev: the PCIe device reset 1459 * @state: Reset state to enter into 1460 * 1461 * 1462 * Sets the PCI reset state for the device. 1463 */ 1464 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state) 1465 { 1466 return pcibios_set_pcie_reset_state(dev, state); 1467 } 1468 1469 /** 1470 * pci_check_pme_status - Check if given device has generated PME. 1471 * @dev: Device to check. 1472 * 1473 * Check the PME status of the device and if set, clear it and clear PME enable 1474 * (if set). Return 'true' if PME status and PME enable were both set or 1475 * 'false' otherwise. 1476 */ 1477 bool pci_check_pme_status(struct pci_dev *dev) 1478 { 1479 int pmcsr_pos; 1480 u16 pmcsr; 1481 bool ret = false; 1482 1483 if (!dev->pm_cap) 1484 return false; 1485 1486 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL; 1487 pci_read_config_word(dev, pmcsr_pos, &pmcsr); 1488 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS)) 1489 return false; 1490 1491 /* Clear PME status. */ 1492 pmcsr |= PCI_PM_CTRL_PME_STATUS; 1493 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) { 1494 /* Disable PME to avoid interrupt flood. */ 1495 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 1496 ret = true; 1497 } 1498 1499 pci_write_config_word(dev, pmcsr_pos, pmcsr); 1500 1501 return ret; 1502 } 1503 1504 /** 1505 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set. 1506 * @dev: Device to handle. 1507 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag. 1508 * 1509 * Check if @dev has generated PME and queue a resume request for it in that 1510 * case. 1511 */ 1512 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset) 1513 { 1514 if (pme_poll_reset && dev->pme_poll) 1515 dev->pme_poll = false; 1516 1517 if (pci_check_pme_status(dev)) { 1518 pci_wakeup_event(dev); 1519 pm_request_resume(&dev->dev); 1520 } 1521 return 0; 1522 } 1523 1524 /** 1525 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary. 1526 * @bus: Top bus of the subtree to walk. 1527 */ 1528 void pci_pme_wakeup_bus(struct pci_bus *bus) 1529 { 1530 if (bus) 1531 pci_walk_bus(bus, pci_pme_wakeup, (void *)true); 1532 } 1533 1534 /** 1535 * pci_wakeup - Wake up a PCI device 1536 * @pci_dev: Device to handle. 1537 * @ign: ignored parameter 1538 */ 1539 static int pci_wakeup(struct pci_dev *pci_dev, void *ign) 1540 { 1541 pci_wakeup_event(pci_dev); 1542 pm_request_resume(&pci_dev->dev); 1543 return 0; 1544 } 1545 1546 /** 1547 * pci_wakeup_bus - Walk given bus and wake up devices on it 1548 * @bus: Top bus of the subtree to walk. 1549 */ 1550 void pci_wakeup_bus(struct pci_bus *bus) 1551 { 1552 if (bus) 1553 pci_walk_bus(bus, pci_wakeup, NULL); 1554 } 1555 1556 /** 1557 * pci_pme_capable - check the capability of PCI device to generate PME# 1558 * @dev: PCI device to handle. 1559 * @state: PCI state from which device will issue PME#. 1560 */ 1561 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state) 1562 { 1563 if (!dev->pm_cap) 1564 return false; 1565 1566 return !!(dev->pme_support & (1 << state)); 1567 } 1568 1569 static void pci_pme_list_scan(struct work_struct *work) 1570 { 1571 struct pci_pme_device *pme_dev, *n; 1572 1573 mutex_lock(&pci_pme_list_mutex); 1574 if (!list_empty(&pci_pme_list)) { 1575 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) { 1576 if (pme_dev->dev->pme_poll) { 1577 struct pci_dev *bridge; 1578 1579 bridge = pme_dev->dev->bus->self; 1580 /* 1581 * If bridge is in low power state, the 1582 * configuration space of subordinate devices 1583 * may be not accessible 1584 */ 1585 if (bridge && bridge->current_state != PCI_D0) 1586 continue; 1587 pci_pme_wakeup(pme_dev->dev, NULL); 1588 } else { 1589 list_del(&pme_dev->list); 1590 kfree(pme_dev); 1591 } 1592 } 1593 if (!list_empty(&pci_pme_list)) 1594 schedule_delayed_work(&pci_pme_work, 1595 msecs_to_jiffies(PME_TIMEOUT)); 1596 } 1597 mutex_unlock(&pci_pme_list_mutex); 1598 } 1599 1600 /** 1601 * pci_pme_active - enable or disable PCI device's PME# function 1602 * @dev: PCI device to handle. 1603 * @enable: 'true' to enable PME# generation; 'false' to disable it. 1604 * 1605 * The caller must verify that the device is capable of generating PME# before 1606 * calling this function with @enable equal to 'true'. 1607 */ 1608 void pci_pme_active(struct pci_dev *dev, bool enable) 1609 { 1610 u16 pmcsr; 1611 1612 if (!dev->pme_support) 1613 return; 1614 1615 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1616 /* Clear PME_Status by writing 1 to it and enable PME# */ 1617 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE; 1618 if (!enable) 1619 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 1620 1621 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 1622 1623 /* 1624 * PCI (as opposed to PCIe) PME requires that the device have 1625 * its PME# line hooked up correctly. Not all hardware vendors 1626 * do this, so the PME never gets delivered and the device 1627 * remains asleep. The easiest way around this is to 1628 * periodically walk the list of suspended devices and check 1629 * whether any have their PME flag set. The assumption is that 1630 * we'll wake up often enough anyway that this won't be a huge 1631 * hit, and the power savings from the devices will still be a 1632 * win. 1633 * 1634 * Although PCIe uses in-band PME message instead of PME# line 1635 * to report PME, PME does not work for some PCIe devices in 1636 * reality. For example, there are devices that set their PME 1637 * status bits, but don't really bother to send a PME message; 1638 * there are PCI Express Root Ports that don't bother to 1639 * trigger interrupts when they receive PME messages from the 1640 * devices below. So PME poll is used for PCIe devices too. 1641 */ 1642 1643 if (dev->pme_poll) { 1644 struct pci_pme_device *pme_dev; 1645 if (enable) { 1646 pme_dev = kmalloc(sizeof(struct pci_pme_device), 1647 GFP_KERNEL); 1648 if (!pme_dev) { 1649 dev_warn(&dev->dev, "can't enable PME#\n"); 1650 return; 1651 } 1652 pme_dev->dev = dev; 1653 mutex_lock(&pci_pme_list_mutex); 1654 list_add(&pme_dev->list, &pci_pme_list); 1655 if (list_is_singular(&pci_pme_list)) 1656 schedule_delayed_work(&pci_pme_work, 1657 msecs_to_jiffies(PME_TIMEOUT)); 1658 mutex_unlock(&pci_pme_list_mutex); 1659 } else { 1660 mutex_lock(&pci_pme_list_mutex); 1661 list_for_each_entry(pme_dev, &pci_pme_list, list) { 1662 if (pme_dev->dev == dev) { 1663 list_del(&pme_dev->list); 1664 kfree(pme_dev); 1665 break; 1666 } 1667 } 1668 mutex_unlock(&pci_pme_list_mutex); 1669 } 1670 } 1671 1672 dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled"); 1673 } 1674 1675 /** 1676 * __pci_enable_wake - enable PCI device as wakeup event source 1677 * @dev: PCI device affected 1678 * @state: PCI state from which device will issue wakeup events 1679 * @runtime: True if the events are to be generated at run time 1680 * @enable: True to enable event generation; false to disable 1681 * 1682 * This enables the device as a wakeup event source, or disables it. 1683 * When such events involves platform-specific hooks, those hooks are 1684 * called automatically by this routine. 1685 * 1686 * Devices with legacy power management (no standard PCI PM capabilities) 1687 * always require such platform hooks. 1688 * 1689 * RETURN VALUE: 1690 * 0 is returned on success 1691 * -EINVAL is returned if device is not supposed to wake up the system 1692 * Error code depending on the platform is returned if both the platform and 1693 * the native mechanism fail to enable the generation of wake-up events 1694 */ 1695 int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, 1696 bool runtime, bool enable) 1697 { 1698 int ret = 0; 1699 1700 if (enable && !runtime && !device_may_wakeup(&dev->dev)) 1701 return -EINVAL; 1702 1703 /* Don't do the same thing twice in a row for one device. */ 1704 if (!!enable == !!dev->wakeup_prepared) 1705 return 0; 1706 1707 /* 1708 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don 1709 * Anderson we should be doing PME# wake enable followed by ACPI wake 1710 * enable. To disable wake-up we call the platform first, for symmetry. 1711 */ 1712 1713 if (enable) { 1714 int error; 1715 1716 if (pci_pme_capable(dev, state)) 1717 pci_pme_active(dev, true); 1718 else 1719 ret = 1; 1720 error = runtime ? platform_pci_run_wake(dev, true) : 1721 platform_pci_sleep_wake(dev, true); 1722 if (ret) 1723 ret = error; 1724 if (!ret) 1725 dev->wakeup_prepared = true; 1726 } else { 1727 if (runtime) 1728 platform_pci_run_wake(dev, false); 1729 else 1730 platform_pci_sleep_wake(dev, false); 1731 pci_pme_active(dev, false); 1732 dev->wakeup_prepared = false; 1733 } 1734 1735 return ret; 1736 } 1737 EXPORT_SYMBOL(__pci_enable_wake); 1738 1739 /** 1740 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold 1741 * @dev: PCI device to prepare 1742 * @enable: True to enable wake-up event generation; false to disable 1743 * 1744 * Many drivers want the device to wake up the system from D3_hot or D3_cold 1745 * and this function allows them to set that up cleanly - pci_enable_wake() 1746 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI 1747 * ordering constraints. 1748 * 1749 * This function only returns error code if the device is not capable of 1750 * generating PME# from both D3_hot and D3_cold, and the platform is unable to 1751 * enable wake-up power for it. 1752 */ 1753 int pci_wake_from_d3(struct pci_dev *dev, bool enable) 1754 { 1755 return pci_pme_capable(dev, PCI_D3cold) ? 1756 pci_enable_wake(dev, PCI_D3cold, enable) : 1757 pci_enable_wake(dev, PCI_D3hot, enable); 1758 } 1759 1760 /** 1761 * pci_target_state - find an appropriate low power state for a given PCI dev 1762 * @dev: PCI device 1763 * 1764 * Use underlying platform code to find a supported low power state for @dev. 1765 * If the platform can't manage @dev, return the deepest state from which it 1766 * can generate wake events, based on any available PME info. 1767 */ 1768 pci_power_t pci_target_state(struct pci_dev *dev) 1769 { 1770 pci_power_t target_state = PCI_D3hot; 1771 1772 if (platform_pci_power_manageable(dev)) { 1773 /* 1774 * Call the platform to choose the target state of the device 1775 * and enable wake-up from this state if supported. 1776 */ 1777 pci_power_t state = platform_pci_choose_state(dev); 1778 1779 switch (state) { 1780 case PCI_POWER_ERROR: 1781 case PCI_UNKNOWN: 1782 break; 1783 case PCI_D1: 1784 case PCI_D2: 1785 if (pci_no_d1d2(dev)) 1786 break; 1787 default: 1788 target_state = state; 1789 } 1790 } else if (!dev->pm_cap) { 1791 target_state = PCI_D0; 1792 } else if (device_may_wakeup(&dev->dev)) { 1793 /* 1794 * Find the deepest state from which the device can generate 1795 * wake-up events, make it the target state and enable device 1796 * to generate PME#. 1797 */ 1798 if (dev->pme_support) { 1799 while (target_state 1800 && !(dev->pme_support & (1 << target_state))) 1801 target_state--; 1802 } 1803 } 1804 1805 return target_state; 1806 } 1807 1808 /** 1809 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state 1810 * @dev: Device to handle. 1811 * 1812 * Choose the power state appropriate for the device depending on whether 1813 * it can wake up the system and/or is power manageable by the platform 1814 * (PCI_D3hot is the default) and put the device into that state. 1815 */ 1816 int pci_prepare_to_sleep(struct pci_dev *dev) 1817 { 1818 pci_power_t target_state = pci_target_state(dev); 1819 int error; 1820 1821 if (target_state == PCI_POWER_ERROR) 1822 return -EIO; 1823 1824 /* D3cold during system suspend/hibernate is not supported */ 1825 if (target_state > PCI_D3hot) 1826 target_state = PCI_D3hot; 1827 1828 pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev)); 1829 1830 error = pci_set_power_state(dev, target_state); 1831 1832 if (error) 1833 pci_enable_wake(dev, target_state, false); 1834 1835 return error; 1836 } 1837 1838 /** 1839 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state 1840 * @dev: Device to handle. 1841 * 1842 * Disable device's system wake-up capability and put it into D0. 1843 */ 1844 int pci_back_from_sleep(struct pci_dev *dev) 1845 { 1846 pci_enable_wake(dev, PCI_D0, false); 1847 return pci_set_power_state(dev, PCI_D0); 1848 } 1849 1850 /** 1851 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend. 1852 * @dev: PCI device being suspended. 1853 * 1854 * Prepare @dev to generate wake-up events at run time and put it into a low 1855 * power state. 1856 */ 1857 int pci_finish_runtime_suspend(struct pci_dev *dev) 1858 { 1859 pci_power_t target_state = pci_target_state(dev); 1860 int error; 1861 1862 if (target_state == PCI_POWER_ERROR) 1863 return -EIO; 1864 1865 dev->runtime_d3cold = target_state == PCI_D3cold; 1866 1867 __pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev)); 1868 1869 error = pci_set_power_state(dev, target_state); 1870 1871 if (error) { 1872 __pci_enable_wake(dev, target_state, true, false); 1873 dev->runtime_d3cold = false; 1874 } 1875 1876 return error; 1877 } 1878 1879 /** 1880 * pci_dev_run_wake - Check if device can generate run-time wake-up events. 1881 * @dev: Device to check. 1882 * 1883 * Return true if the device itself is capable of generating wake-up events 1884 * (through the platform or using the native PCIe PME) or if the device supports 1885 * PME and one of its upstream bridges can generate wake-up events. 1886 */ 1887 bool pci_dev_run_wake(struct pci_dev *dev) 1888 { 1889 struct pci_bus *bus = dev->bus; 1890 1891 if (device_run_wake(&dev->dev)) 1892 return true; 1893 1894 if (!dev->pme_support) 1895 return false; 1896 1897 while (bus->parent) { 1898 struct pci_dev *bridge = bus->self; 1899 1900 if (device_run_wake(&bridge->dev)) 1901 return true; 1902 1903 bus = bus->parent; 1904 } 1905 1906 /* We have reached the root bus. */ 1907 if (bus->bridge) 1908 return device_run_wake(bus->bridge); 1909 1910 return false; 1911 } 1912 EXPORT_SYMBOL_GPL(pci_dev_run_wake); 1913 1914 void pci_config_pm_runtime_get(struct pci_dev *pdev) 1915 { 1916 struct device *dev = &pdev->dev; 1917 struct device *parent = dev->parent; 1918 1919 if (parent) 1920 pm_runtime_get_sync(parent); 1921 pm_runtime_get_noresume(dev); 1922 /* 1923 * pdev->current_state is set to PCI_D3cold during suspending, 1924 * so wait until suspending completes 1925 */ 1926 pm_runtime_barrier(dev); 1927 /* 1928 * Only need to resume devices in D3cold, because config 1929 * registers are still accessible for devices suspended but 1930 * not in D3cold. 1931 */ 1932 if (pdev->current_state == PCI_D3cold) 1933 pm_runtime_resume(dev); 1934 } 1935 1936 void pci_config_pm_runtime_put(struct pci_dev *pdev) 1937 { 1938 struct device *dev = &pdev->dev; 1939 struct device *parent = dev->parent; 1940 1941 pm_runtime_put(dev); 1942 if (parent) 1943 pm_runtime_put_sync(parent); 1944 } 1945 1946 /** 1947 * pci_pm_init - Initialize PM functions of given PCI device 1948 * @dev: PCI device to handle. 1949 */ 1950 void pci_pm_init(struct pci_dev *dev) 1951 { 1952 int pm; 1953 u16 pmc; 1954 1955 pm_runtime_forbid(&dev->dev); 1956 pm_runtime_set_active(&dev->dev); 1957 pm_runtime_enable(&dev->dev); 1958 device_enable_async_suspend(&dev->dev); 1959 dev->wakeup_prepared = false; 1960 1961 dev->pm_cap = 0; 1962 dev->pme_support = 0; 1963 1964 /* find PCI PM capability in list */ 1965 pm = pci_find_capability(dev, PCI_CAP_ID_PM); 1966 if (!pm) 1967 return; 1968 /* Check device's ability to generate PME# */ 1969 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc); 1970 1971 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) { 1972 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n", 1973 pmc & PCI_PM_CAP_VER_MASK); 1974 return; 1975 } 1976 1977 dev->pm_cap = pm; 1978 dev->d3_delay = PCI_PM_D3_WAIT; 1979 dev->d3cold_delay = PCI_PM_D3COLD_WAIT; 1980 dev->d3cold_allowed = true; 1981 1982 dev->d1_support = false; 1983 dev->d2_support = false; 1984 if (!pci_no_d1d2(dev)) { 1985 if (pmc & PCI_PM_CAP_D1) 1986 dev->d1_support = true; 1987 if (pmc & PCI_PM_CAP_D2) 1988 dev->d2_support = true; 1989 1990 if (dev->d1_support || dev->d2_support) 1991 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n", 1992 dev->d1_support ? " D1" : "", 1993 dev->d2_support ? " D2" : ""); 1994 } 1995 1996 pmc &= PCI_PM_CAP_PME_MASK; 1997 if (pmc) { 1998 dev_printk(KERN_DEBUG, &dev->dev, 1999 "PME# supported from%s%s%s%s%s\n", 2000 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "", 2001 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "", 2002 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "", 2003 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "", 2004 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : ""); 2005 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT; 2006 dev->pme_poll = true; 2007 /* 2008 * Make device's PM flags reflect the wake-up capability, but 2009 * let the user space enable it to wake up the system as needed. 2010 */ 2011 device_set_wakeup_capable(&dev->dev, true); 2012 /* Disable the PME# generation functionality */ 2013 pci_pme_active(dev, false); 2014 } 2015 } 2016 2017 static void pci_add_saved_cap(struct pci_dev *pci_dev, 2018 struct pci_cap_saved_state *new_cap) 2019 { 2020 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space); 2021 } 2022 2023 /** 2024 * pci_add_cap_save_buffer - allocate buffer for saving given capability registers 2025 * @dev: the PCI device 2026 * @cap: the capability to allocate the buffer for 2027 * @size: requested size of the buffer 2028 */ 2029 static int pci_add_cap_save_buffer( 2030 struct pci_dev *dev, char cap, unsigned int size) 2031 { 2032 int pos; 2033 struct pci_cap_saved_state *save_state; 2034 2035 pos = pci_find_capability(dev, cap); 2036 if (pos <= 0) 2037 return 0; 2038 2039 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL); 2040 if (!save_state) 2041 return -ENOMEM; 2042 2043 save_state->cap.cap_nr = cap; 2044 save_state->cap.size = size; 2045 pci_add_saved_cap(dev, save_state); 2046 2047 return 0; 2048 } 2049 2050 /** 2051 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities 2052 * @dev: the PCI device 2053 */ 2054 void pci_allocate_cap_save_buffers(struct pci_dev *dev) 2055 { 2056 int error; 2057 2058 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP, 2059 PCI_EXP_SAVE_REGS * sizeof(u16)); 2060 if (error) 2061 dev_err(&dev->dev, 2062 "unable to preallocate PCI Express save buffer\n"); 2063 2064 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16)); 2065 if (error) 2066 dev_err(&dev->dev, 2067 "unable to preallocate PCI-X save buffer\n"); 2068 } 2069 2070 void pci_free_cap_save_buffers(struct pci_dev *dev) 2071 { 2072 struct pci_cap_saved_state *tmp; 2073 struct hlist_node *n; 2074 2075 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next) 2076 kfree(tmp); 2077 } 2078 2079 /** 2080 * pci_configure_ari - enable or disable ARI forwarding 2081 * @dev: the PCI device 2082 * 2083 * If @dev and its upstream bridge both support ARI, enable ARI in the 2084 * bridge. Otherwise, disable ARI in the bridge. 2085 */ 2086 void pci_configure_ari(struct pci_dev *dev) 2087 { 2088 u32 cap; 2089 struct pci_dev *bridge; 2090 2091 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn) 2092 return; 2093 2094 bridge = dev->bus->self; 2095 if (!bridge) 2096 return; 2097 2098 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 2099 if (!(cap & PCI_EXP_DEVCAP2_ARI)) 2100 return; 2101 2102 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) { 2103 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, 2104 PCI_EXP_DEVCTL2_ARI); 2105 bridge->ari_enabled = 1; 2106 } else { 2107 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2, 2108 PCI_EXP_DEVCTL2_ARI); 2109 bridge->ari_enabled = 0; 2110 } 2111 } 2112 2113 /** 2114 * pci_enable_ido - enable ID-based Ordering on a device 2115 * @dev: the PCI device 2116 * @type: which types of IDO to enable 2117 * 2118 * Enable ID-based ordering on @dev. @type can contain the bits 2119 * %PCI_EXP_IDO_REQUEST and/or %PCI_EXP_IDO_COMPLETION to indicate 2120 * which types of transactions are allowed to be re-ordered. 2121 */ 2122 void pci_enable_ido(struct pci_dev *dev, unsigned long type) 2123 { 2124 u16 ctrl = 0; 2125 2126 if (type & PCI_EXP_IDO_REQUEST) 2127 ctrl |= PCI_EXP_DEVCTL2_IDO_REQ_EN; 2128 if (type & PCI_EXP_IDO_COMPLETION) 2129 ctrl |= PCI_EXP_DEVCTL2_IDO_CMP_EN; 2130 if (ctrl) 2131 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2, ctrl); 2132 } 2133 EXPORT_SYMBOL(pci_enable_ido); 2134 2135 /** 2136 * pci_disable_ido - disable ID-based ordering on a device 2137 * @dev: the PCI device 2138 * @type: which types of IDO to disable 2139 */ 2140 void pci_disable_ido(struct pci_dev *dev, unsigned long type) 2141 { 2142 u16 ctrl = 0; 2143 2144 if (type & PCI_EXP_IDO_REQUEST) 2145 ctrl |= PCI_EXP_DEVCTL2_IDO_REQ_EN; 2146 if (type & PCI_EXP_IDO_COMPLETION) 2147 ctrl |= PCI_EXP_DEVCTL2_IDO_CMP_EN; 2148 if (ctrl) 2149 pcie_capability_clear_word(dev, PCI_EXP_DEVCTL2, ctrl); 2150 } 2151 EXPORT_SYMBOL(pci_disable_ido); 2152 2153 /** 2154 * pci_enable_obff - enable optimized buffer flush/fill 2155 * @dev: PCI device 2156 * @type: type of signaling to use 2157 * 2158 * Try to enable @type OBFF signaling on @dev. It will try using WAKE# 2159 * signaling if possible, falling back to message signaling only if 2160 * WAKE# isn't supported. @type should indicate whether the PCIe link 2161 * be brought out of L0s or L1 to send the message. It should be either 2162 * %PCI_EXP_OBFF_SIGNAL_ALWAYS or %PCI_OBFF_SIGNAL_L0. 2163 * 2164 * If your device can benefit from receiving all messages, even at the 2165 * power cost of bringing the link back up from a low power state, use 2166 * %PCI_EXP_OBFF_SIGNAL_ALWAYS. Otherwise, use %PCI_OBFF_SIGNAL_L0 (the 2167 * preferred type). 2168 * 2169 * RETURNS: 2170 * Zero on success, appropriate error number on failure. 2171 */ 2172 int pci_enable_obff(struct pci_dev *dev, enum pci_obff_signal_type type) 2173 { 2174 u32 cap; 2175 u16 ctrl; 2176 int ret; 2177 2178 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP2, &cap); 2179 if (!(cap & PCI_EXP_DEVCAP2_OBFF_MASK)) 2180 return -ENOTSUPP; /* no OBFF support at all */ 2181 2182 /* Make sure the topology supports OBFF as well */ 2183 if (dev->bus->self) { 2184 ret = pci_enable_obff(dev->bus->self, type); 2185 if (ret) 2186 return ret; 2187 } 2188 2189 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &ctrl); 2190 if (cap & PCI_EXP_DEVCAP2_OBFF_WAKE) 2191 ctrl |= PCI_EXP_DEVCTL2_OBFF_WAKE_EN; 2192 else { 2193 switch (type) { 2194 case PCI_EXP_OBFF_SIGNAL_L0: 2195 if (!(ctrl & PCI_EXP_DEVCTL2_OBFF_WAKE_EN)) 2196 ctrl |= PCI_EXP_DEVCTL2_OBFF_MSGA_EN; 2197 break; 2198 case PCI_EXP_OBFF_SIGNAL_ALWAYS: 2199 ctrl &= ~PCI_EXP_DEVCTL2_OBFF_WAKE_EN; 2200 ctrl |= PCI_EXP_DEVCTL2_OBFF_MSGB_EN; 2201 break; 2202 default: 2203 WARN(1, "bad OBFF signal type\n"); 2204 return -ENOTSUPP; 2205 } 2206 } 2207 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, ctrl); 2208 2209 return 0; 2210 } 2211 EXPORT_SYMBOL(pci_enable_obff); 2212 2213 /** 2214 * pci_disable_obff - disable optimized buffer flush/fill 2215 * @dev: PCI device 2216 * 2217 * Disable OBFF on @dev. 2218 */ 2219 void pci_disable_obff(struct pci_dev *dev) 2220 { 2221 pcie_capability_clear_word(dev, PCI_EXP_DEVCTL2, 2222 PCI_EXP_DEVCTL2_OBFF_WAKE_EN); 2223 } 2224 EXPORT_SYMBOL(pci_disable_obff); 2225 2226 /** 2227 * pci_ltr_supported - check whether a device supports LTR 2228 * @dev: PCI device 2229 * 2230 * RETURNS: 2231 * True if @dev supports latency tolerance reporting, false otherwise. 2232 */ 2233 static bool pci_ltr_supported(struct pci_dev *dev) 2234 { 2235 u32 cap; 2236 2237 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP2, &cap); 2238 2239 return cap & PCI_EXP_DEVCAP2_LTR; 2240 } 2241 2242 /** 2243 * pci_enable_ltr - enable latency tolerance reporting 2244 * @dev: PCI device 2245 * 2246 * Enable LTR on @dev if possible, which means enabling it first on 2247 * upstream ports. 2248 * 2249 * RETURNS: 2250 * Zero on success, errno on failure. 2251 */ 2252 int pci_enable_ltr(struct pci_dev *dev) 2253 { 2254 int ret; 2255 2256 /* Only primary function can enable/disable LTR */ 2257 if (PCI_FUNC(dev->devfn) != 0) 2258 return -EINVAL; 2259 2260 if (!pci_ltr_supported(dev)) 2261 return -ENOTSUPP; 2262 2263 /* Enable upstream ports first */ 2264 if (dev->bus->self) { 2265 ret = pci_enable_ltr(dev->bus->self); 2266 if (ret) 2267 return ret; 2268 } 2269 2270 return pcie_capability_set_word(dev, PCI_EXP_DEVCTL2, 2271 PCI_EXP_DEVCTL2_LTR_EN); 2272 } 2273 EXPORT_SYMBOL(pci_enable_ltr); 2274 2275 /** 2276 * pci_disable_ltr - disable latency tolerance reporting 2277 * @dev: PCI device 2278 */ 2279 void pci_disable_ltr(struct pci_dev *dev) 2280 { 2281 /* Only primary function can enable/disable LTR */ 2282 if (PCI_FUNC(dev->devfn) != 0) 2283 return; 2284 2285 if (!pci_ltr_supported(dev)) 2286 return; 2287 2288 pcie_capability_clear_word(dev, PCI_EXP_DEVCTL2, 2289 PCI_EXP_DEVCTL2_LTR_EN); 2290 } 2291 EXPORT_SYMBOL(pci_disable_ltr); 2292 2293 static int __pci_ltr_scale(int *val) 2294 { 2295 int scale = 0; 2296 2297 while (*val > 1023) { 2298 *val = (*val + 31) / 32; 2299 scale++; 2300 } 2301 return scale; 2302 } 2303 2304 /** 2305 * pci_set_ltr - set LTR latency values 2306 * @dev: PCI device 2307 * @snoop_lat_ns: snoop latency in nanoseconds 2308 * @nosnoop_lat_ns: nosnoop latency in nanoseconds 2309 * 2310 * Figure out the scale and set the LTR values accordingly. 2311 */ 2312 int pci_set_ltr(struct pci_dev *dev, int snoop_lat_ns, int nosnoop_lat_ns) 2313 { 2314 int pos, ret, snoop_scale, nosnoop_scale; 2315 u16 val; 2316 2317 if (!pci_ltr_supported(dev)) 2318 return -ENOTSUPP; 2319 2320 snoop_scale = __pci_ltr_scale(&snoop_lat_ns); 2321 nosnoop_scale = __pci_ltr_scale(&nosnoop_lat_ns); 2322 2323 if (snoop_lat_ns > PCI_LTR_VALUE_MASK || 2324 nosnoop_lat_ns > PCI_LTR_VALUE_MASK) 2325 return -EINVAL; 2326 2327 if ((snoop_scale > (PCI_LTR_SCALE_MASK >> PCI_LTR_SCALE_SHIFT)) || 2328 (nosnoop_scale > (PCI_LTR_SCALE_MASK >> PCI_LTR_SCALE_SHIFT))) 2329 return -EINVAL; 2330 2331 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR); 2332 if (!pos) 2333 return -ENOTSUPP; 2334 2335 val = (snoop_scale << PCI_LTR_SCALE_SHIFT) | snoop_lat_ns; 2336 ret = pci_write_config_word(dev, pos + PCI_LTR_MAX_SNOOP_LAT, val); 2337 if (ret != 4) 2338 return -EIO; 2339 2340 val = (nosnoop_scale << PCI_LTR_SCALE_SHIFT) | nosnoop_lat_ns; 2341 ret = pci_write_config_word(dev, pos + PCI_LTR_MAX_NOSNOOP_LAT, val); 2342 if (ret != 4) 2343 return -EIO; 2344 2345 return 0; 2346 } 2347 EXPORT_SYMBOL(pci_set_ltr); 2348 2349 static int pci_acs_enable; 2350 2351 /** 2352 * pci_request_acs - ask for ACS to be enabled if supported 2353 */ 2354 void pci_request_acs(void) 2355 { 2356 pci_acs_enable = 1; 2357 } 2358 2359 /** 2360 * pci_enable_acs - enable ACS if hardware support it 2361 * @dev: the PCI device 2362 */ 2363 void pci_enable_acs(struct pci_dev *dev) 2364 { 2365 int pos; 2366 u16 cap; 2367 u16 ctrl; 2368 2369 if (!pci_acs_enable) 2370 return; 2371 2372 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS); 2373 if (!pos) 2374 return; 2375 2376 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap); 2377 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 2378 2379 /* Source Validation */ 2380 ctrl |= (cap & PCI_ACS_SV); 2381 2382 /* P2P Request Redirect */ 2383 ctrl |= (cap & PCI_ACS_RR); 2384 2385 /* P2P Completion Redirect */ 2386 ctrl |= (cap & PCI_ACS_CR); 2387 2388 /* Upstream Forwarding */ 2389 ctrl |= (cap & PCI_ACS_UF); 2390 2391 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 2392 } 2393 2394 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags) 2395 { 2396 int pos; 2397 u16 cap, ctrl; 2398 2399 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS); 2400 if (!pos) 2401 return false; 2402 2403 /* 2404 * Except for egress control, capabilities are either required 2405 * or only required if controllable. Features missing from the 2406 * capability field can therefore be assumed as hard-wired enabled. 2407 */ 2408 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap); 2409 acs_flags &= (cap | PCI_ACS_EC); 2410 2411 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl); 2412 return (ctrl & acs_flags) == acs_flags; 2413 } 2414 2415 /** 2416 * pci_acs_enabled - test ACS against required flags for a given device 2417 * @pdev: device to test 2418 * @acs_flags: required PCI ACS flags 2419 * 2420 * Return true if the device supports the provided flags. Automatically 2421 * filters out flags that are not implemented on multifunction devices. 2422 * 2423 * Note that this interface checks the effective ACS capabilities of the 2424 * device rather than the actual capabilities. For instance, most single 2425 * function endpoints are not required to support ACS because they have no 2426 * opportunity for peer-to-peer access. We therefore return 'true' 2427 * regardless of whether the device exposes an ACS capability. This makes 2428 * it much easier for callers of this function to ignore the actual type 2429 * or topology of the device when testing ACS support. 2430 */ 2431 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags) 2432 { 2433 int ret; 2434 2435 ret = pci_dev_specific_acs_enabled(pdev, acs_flags); 2436 if (ret >= 0) 2437 return ret > 0; 2438 2439 /* 2440 * Conventional PCI and PCI-X devices never support ACS, either 2441 * effectively or actually. The shared bus topology implies that 2442 * any device on the bus can receive or snoop DMA. 2443 */ 2444 if (!pci_is_pcie(pdev)) 2445 return false; 2446 2447 switch (pci_pcie_type(pdev)) { 2448 /* 2449 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec, 2450 * but since their primary interface is PCI/X, we conservatively 2451 * handle them as we would a non-PCIe device. 2452 */ 2453 case PCI_EXP_TYPE_PCIE_BRIDGE: 2454 /* 2455 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never 2456 * applicable... must never implement an ACS Extended Capability...". 2457 * This seems arbitrary, but we take a conservative interpretation 2458 * of this statement. 2459 */ 2460 case PCI_EXP_TYPE_PCI_BRIDGE: 2461 case PCI_EXP_TYPE_RC_EC: 2462 return false; 2463 /* 2464 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should 2465 * implement ACS in order to indicate their peer-to-peer capabilities, 2466 * regardless of whether they are single- or multi-function devices. 2467 */ 2468 case PCI_EXP_TYPE_DOWNSTREAM: 2469 case PCI_EXP_TYPE_ROOT_PORT: 2470 return pci_acs_flags_enabled(pdev, acs_flags); 2471 /* 2472 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be 2473 * implemented by the remaining PCIe types to indicate peer-to-peer 2474 * capabilities, but only when they are part of a multifunction 2475 * device. The footnote for section 6.12 indicates the specific 2476 * PCIe types included here. 2477 */ 2478 case PCI_EXP_TYPE_ENDPOINT: 2479 case PCI_EXP_TYPE_UPSTREAM: 2480 case PCI_EXP_TYPE_LEG_END: 2481 case PCI_EXP_TYPE_RC_END: 2482 if (!pdev->multifunction) 2483 break; 2484 2485 return pci_acs_flags_enabled(pdev, acs_flags); 2486 } 2487 2488 /* 2489 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable 2490 * to single function devices with the exception of downstream ports. 2491 */ 2492 return true; 2493 } 2494 2495 /** 2496 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy 2497 * @start: starting downstream device 2498 * @end: ending upstream device or NULL to search to the root bus 2499 * @acs_flags: required flags 2500 * 2501 * Walk up a device tree from start to end testing PCI ACS support. If 2502 * any step along the way does not support the required flags, return false. 2503 */ 2504 bool pci_acs_path_enabled(struct pci_dev *start, 2505 struct pci_dev *end, u16 acs_flags) 2506 { 2507 struct pci_dev *pdev, *parent = start; 2508 2509 do { 2510 pdev = parent; 2511 2512 if (!pci_acs_enabled(pdev, acs_flags)) 2513 return false; 2514 2515 if (pci_is_root_bus(pdev->bus)) 2516 return (end == NULL); 2517 2518 parent = pdev->bus->self; 2519 } while (pdev != end); 2520 2521 return true; 2522 } 2523 2524 /** 2525 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge 2526 * @dev: the PCI device 2527 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD) 2528 * 2529 * Perform INTx swizzling for a device behind one level of bridge. This is 2530 * required by section 9.1 of the PCI-to-PCI bridge specification for devices 2531 * behind bridges on add-in cards. For devices with ARI enabled, the slot 2532 * number is always 0 (see the Implementation Note in section 2.2.8.1 of 2533 * the PCI Express Base Specification, Revision 2.1) 2534 */ 2535 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin) 2536 { 2537 int slot; 2538 2539 if (pci_ari_enabled(dev->bus)) 2540 slot = 0; 2541 else 2542 slot = PCI_SLOT(dev->devfn); 2543 2544 return (((pin - 1) + slot) % 4) + 1; 2545 } 2546 2547 int 2548 pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge) 2549 { 2550 u8 pin; 2551 2552 pin = dev->pin; 2553 if (!pin) 2554 return -1; 2555 2556 while (!pci_is_root_bus(dev->bus)) { 2557 pin = pci_swizzle_interrupt_pin(dev, pin); 2558 dev = dev->bus->self; 2559 } 2560 *bridge = dev; 2561 return pin; 2562 } 2563 2564 /** 2565 * pci_common_swizzle - swizzle INTx all the way to root bridge 2566 * @dev: the PCI device 2567 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD) 2568 * 2569 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI 2570 * bridges all the way up to a PCI root bus. 2571 */ 2572 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp) 2573 { 2574 u8 pin = *pinp; 2575 2576 while (!pci_is_root_bus(dev->bus)) { 2577 pin = pci_swizzle_interrupt_pin(dev, pin); 2578 dev = dev->bus->self; 2579 } 2580 *pinp = pin; 2581 return PCI_SLOT(dev->devfn); 2582 } 2583 2584 /** 2585 * pci_release_region - Release a PCI bar 2586 * @pdev: PCI device whose resources were previously reserved by pci_request_region 2587 * @bar: BAR to release 2588 * 2589 * Releases the PCI I/O and memory resources previously reserved by a 2590 * successful call to pci_request_region. Call this function only 2591 * after all use of the PCI regions has ceased. 2592 */ 2593 void pci_release_region(struct pci_dev *pdev, int bar) 2594 { 2595 struct pci_devres *dr; 2596 2597 if (pci_resource_len(pdev, bar) == 0) 2598 return; 2599 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) 2600 release_region(pci_resource_start(pdev, bar), 2601 pci_resource_len(pdev, bar)); 2602 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) 2603 release_mem_region(pci_resource_start(pdev, bar), 2604 pci_resource_len(pdev, bar)); 2605 2606 dr = find_pci_dr(pdev); 2607 if (dr) 2608 dr->region_mask &= ~(1 << bar); 2609 } 2610 2611 /** 2612 * __pci_request_region - Reserved PCI I/O and memory resource 2613 * @pdev: PCI device whose resources are to be reserved 2614 * @bar: BAR to be reserved 2615 * @res_name: Name to be associated with resource. 2616 * @exclusive: whether the region access is exclusive or not 2617 * 2618 * Mark the PCI region associated with PCI device @pdev BR @bar as 2619 * being reserved by owner @res_name. Do not access any 2620 * address inside the PCI regions unless this call returns 2621 * successfully. 2622 * 2623 * If @exclusive is set, then the region is marked so that userspace 2624 * is explicitly not allowed to map the resource via /dev/mem or 2625 * sysfs MMIO access. 2626 * 2627 * Returns 0 on success, or %EBUSY on error. A warning 2628 * message is also printed on failure. 2629 */ 2630 static int __pci_request_region(struct pci_dev *pdev, int bar, const char *res_name, 2631 int exclusive) 2632 { 2633 struct pci_devres *dr; 2634 2635 if (pci_resource_len(pdev, bar) == 0) 2636 return 0; 2637 2638 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) { 2639 if (!request_region(pci_resource_start(pdev, bar), 2640 pci_resource_len(pdev, bar), res_name)) 2641 goto err_out; 2642 } 2643 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) { 2644 if (!__request_mem_region(pci_resource_start(pdev, bar), 2645 pci_resource_len(pdev, bar), res_name, 2646 exclusive)) 2647 goto err_out; 2648 } 2649 2650 dr = find_pci_dr(pdev); 2651 if (dr) 2652 dr->region_mask |= 1 << bar; 2653 2654 return 0; 2655 2656 err_out: 2657 dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar, 2658 &pdev->resource[bar]); 2659 return -EBUSY; 2660 } 2661 2662 /** 2663 * pci_request_region - Reserve PCI I/O and memory resource 2664 * @pdev: PCI device whose resources are to be reserved 2665 * @bar: BAR to be reserved 2666 * @res_name: Name to be associated with resource 2667 * 2668 * Mark the PCI region associated with PCI device @pdev BAR @bar as 2669 * being reserved by owner @res_name. Do not access any 2670 * address inside the PCI regions unless this call returns 2671 * successfully. 2672 * 2673 * Returns 0 on success, or %EBUSY on error. A warning 2674 * message is also printed on failure. 2675 */ 2676 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name) 2677 { 2678 return __pci_request_region(pdev, bar, res_name, 0); 2679 } 2680 2681 /** 2682 * pci_request_region_exclusive - Reserved PCI I/O and memory resource 2683 * @pdev: PCI device whose resources are to be reserved 2684 * @bar: BAR to be reserved 2685 * @res_name: Name to be associated with resource. 2686 * 2687 * Mark the PCI region associated with PCI device @pdev BR @bar as 2688 * being reserved by owner @res_name. Do not access any 2689 * address inside the PCI regions unless this call returns 2690 * successfully. 2691 * 2692 * Returns 0 on success, or %EBUSY on error. A warning 2693 * message is also printed on failure. 2694 * 2695 * The key difference that _exclusive makes it that userspace is 2696 * explicitly not allowed to map the resource via /dev/mem or 2697 * sysfs. 2698 */ 2699 int pci_request_region_exclusive(struct pci_dev *pdev, int bar, const char *res_name) 2700 { 2701 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE); 2702 } 2703 /** 2704 * pci_release_selected_regions - Release selected PCI I/O and memory resources 2705 * @pdev: PCI device whose resources were previously reserved 2706 * @bars: Bitmask of BARs to be released 2707 * 2708 * Release selected PCI I/O and memory resources previously reserved. 2709 * Call this function only after all use of the PCI regions has ceased. 2710 */ 2711 void pci_release_selected_regions(struct pci_dev *pdev, int bars) 2712 { 2713 int i; 2714 2715 for (i = 0; i < 6; i++) 2716 if (bars & (1 << i)) 2717 pci_release_region(pdev, i); 2718 } 2719 2720 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars, 2721 const char *res_name, int excl) 2722 { 2723 int i; 2724 2725 for (i = 0; i < 6; i++) 2726 if (bars & (1 << i)) 2727 if (__pci_request_region(pdev, i, res_name, excl)) 2728 goto err_out; 2729 return 0; 2730 2731 err_out: 2732 while(--i >= 0) 2733 if (bars & (1 << i)) 2734 pci_release_region(pdev, i); 2735 2736 return -EBUSY; 2737 } 2738 2739 2740 /** 2741 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources 2742 * @pdev: PCI device whose resources are to be reserved 2743 * @bars: Bitmask of BARs to be requested 2744 * @res_name: Name to be associated with resource 2745 */ 2746 int pci_request_selected_regions(struct pci_dev *pdev, int bars, 2747 const char *res_name) 2748 { 2749 return __pci_request_selected_regions(pdev, bars, res_name, 0); 2750 } 2751 2752 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, 2753 int bars, const char *res_name) 2754 { 2755 return __pci_request_selected_regions(pdev, bars, res_name, 2756 IORESOURCE_EXCLUSIVE); 2757 } 2758 2759 /** 2760 * pci_release_regions - Release reserved PCI I/O and memory resources 2761 * @pdev: PCI device whose resources were previously reserved by pci_request_regions 2762 * 2763 * Releases all PCI I/O and memory resources previously reserved by a 2764 * successful call to pci_request_regions. Call this function only 2765 * after all use of the PCI regions has ceased. 2766 */ 2767 2768 void pci_release_regions(struct pci_dev *pdev) 2769 { 2770 pci_release_selected_regions(pdev, (1 << 6) - 1); 2771 } 2772 2773 /** 2774 * pci_request_regions - Reserved PCI I/O and memory resources 2775 * @pdev: PCI device whose resources are to be reserved 2776 * @res_name: Name to be associated with resource. 2777 * 2778 * Mark all PCI regions associated with PCI device @pdev as 2779 * being reserved by owner @res_name. Do not access any 2780 * address inside the PCI regions unless this call returns 2781 * successfully. 2782 * 2783 * Returns 0 on success, or %EBUSY on error. A warning 2784 * message is also printed on failure. 2785 */ 2786 int pci_request_regions(struct pci_dev *pdev, const char *res_name) 2787 { 2788 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name); 2789 } 2790 2791 /** 2792 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources 2793 * @pdev: PCI device whose resources are to be reserved 2794 * @res_name: Name to be associated with resource. 2795 * 2796 * Mark all PCI regions associated with PCI device @pdev as 2797 * being reserved by owner @res_name. Do not access any 2798 * address inside the PCI regions unless this call returns 2799 * successfully. 2800 * 2801 * pci_request_regions_exclusive() will mark the region so that 2802 * /dev/mem and the sysfs MMIO access will not be allowed. 2803 * 2804 * Returns 0 on success, or %EBUSY on error. A warning 2805 * message is also printed on failure. 2806 */ 2807 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name) 2808 { 2809 return pci_request_selected_regions_exclusive(pdev, 2810 ((1 << 6) - 1), res_name); 2811 } 2812 2813 static void __pci_set_master(struct pci_dev *dev, bool enable) 2814 { 2815 u16 old_cmd, cmd; 2816 2817 pci_read_config_word(dev, PCI_COMMAND, &old_cmd); 2818 if (enable) 2819 cmd = old_cmd | PCI_COMMAND_MASTER; 2820 else 2821 cmd = old_cmd & ~PCI_COMMAND_MASTER; 2822 if (cmd != old_cmd) { 2823 dev_dbg(&dev->dev, "%s bus mastering\n", 2824 enable ? "enabling" : "disabling"); 2825 pci_write_config_word(dev, PCI_COMMAND, cmd); 2826 } 2827 dev->is_busmaster = enable; 2828 } 2829 2830 /** 2831 * pcibios_setup - process "pci=" kernel boot arguments 2832 * @str: string used to pass in "pci=" kernel boot arguments 2833 * 2834 * Process kernel boot arguments. This is the default implementation. 2835 * Architecture specific implementations can override this as necessary. 2836 */ 2837 char * __weak __init pcibios_setup(char *str) 2838 { 2839 return str; 2840 } 2841 2842 /** 2843 * pcibios_set_master - enable PCI bus-mastering for device dev 2844 * @dev: the PCI device to enable 2845 * 2846 * Enables PCI bus-mastering for the device. This is the default 2847 * implementation. Architecture specific implementations can override 2848 * this if necessary. 2849 */ 2850 void __weak pcibios_set_master(struct pci_dev *dev) 2851 { 2852 u8 lat; 2853 2854 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */ 2855 if (pci_is_pcie(dev)) 2856 return; 2857 2858 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat); 2859 if (lat < 16) 2860 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency; 2861 else if (lat > pcibios_max_latency) 2862 lat = pcibios_max_latency; 2863 else 2864 return; 2865 2866 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat); 2867 } 2868 2869 /** 2870 * pci_set_master - enables bus-mastering for device dev 2871 * @dev: the PCI device to enable 2872 * 2873 * Enables bus-mastering on the device and calls pcibios_set_master() 2874 * to do the needed arch specific settings. 2875 */ 2876 void pci_set_master(struct pci_dev *dev) 2877 { 2878 __pci_set_master(dev, true); 2879 pcibios_set_master(dev); 2880 } 2881 2882 /** 2883 * pci_clear_master - disables bus-mastering for device dev 2884 * @dev: the PCI device to disable 2885 */ 2886 void pci_clear_master(struct pci_dev *dev) 2887 { 2888 __pci_set_master(dev, false); 2889 } 2890 2891 /** 2892 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed 2893 * @dev: the PCI device for which MWI is to be enabled 2894 * 2895 * Helper function for pci_set_mwi. 2896 * Originally copied from drivers/net/acenic.c. 2897 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. 2898 * 2899 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 2900 */ 2901 int pci_set_cacheline_size(struct pci_dev *dev) 2902 { 2903 u8 cacheline_size; 2904 2905 if (!pci_cache_line_size) 2906 return -EINVAL; 2907 2908 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be 2909 equal to or multiple of the right value. */ 2910 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 2911 if (cacheline_size >= pci_cache_line_size && 2912 (cacheline_size % pci_cache_line_size) == 0) 2913 return 0; 2914 2915 /* Write the correct value. */ 2916 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size); 2917 /* Read it back. */ 2918 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 2919 if (cacheline_size == pci_cache_line_size) 2920 return 0; 2921 2922 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not " 2923 "supported\n", pci_cache_line_size << 2); 2924 2925 return -EINVAL; 2926 } 2927 EXPORT_SYMBOL_GPL(pci_set_cacheline_size); 2928 2929 #ifdef PCI_DISABLE_MWI 2930 int pci_set_mwi(struct pci_dev *dev) 2931 { 2932 return 0; 2933 } 2934 2935 int pci_try_set_mwi(struct pci_dev *dev) 2936 { 2937 return 0; 2938 } 2939 2940 void pci_clear_mwi(struct pci_dev *dev) 2941 { 2942 } 2943 2944 #else 2945 2946 /** 2947 * pci_set_mwi - enables memory-write-invalidate PCI transaction 2948 * @dev: the PCI device for which MWI is enabled 2949 * 2950 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 2951 * 2952 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 2953 */ 2954 int 2955 pci_set_mwi(struct pci_dev *dev) 2956 { 2957 int rc; 2958 u16 cmd; 2959 2960 rc = pci_set_cacheline_size(dev); 2961 if (rc) 2962 return rc; 2963 2964 pci_read_config_word(dev, PCI_COMMAND, &cmd); 2965 if (! (cmd & PCI_COMMAND_INVALIDATE)) { 2966 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n"); 2967 cmd |= PCI_COMMAND_INVALIDATE; 2968 pci_write_config_word(dev, PCI_COMMAND, cmd); 2969 } 2970 2971 return 0; 2972 } 2973 2974 /** 2975 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction 2976 * @dev: the PCI device for which MWI is enabled 2977 * 2978 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 2979 * Callers are not required to check the return value. 2980 * 2981 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 2982 */ 2983 int pci_try_set_mwi(struct pci_dev *dev) 2984 { 2985 int rc = pci_set_mwi(dev); 2986 return rc; 2987 } 2988 2989 /** 2990 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev 2991 * @dev: the PCI device to disable 2992 * 2993 * Disables PCI Memory-Write-Invalidate transaction on the device 2994 */ 2995 void 2996 pci_clear_mwi(struct pci_dev *dev) 2997 { 2998 u16 cmd; 2999 3000 pci_read_config_word(dev, PCI_COMMAND, &cmd); 3001 if (cmd & PCI_COMMAND_INVALIDATE) { 3002 cmd &= ~PCI_COMMAND_INVALIDATE; 3003 pci_write_config_word(dev, PCI_COMMAND, cmd); 3004 } 3005 } 3006 #endif /* ! PCI_DISABLE_MWI */ 3007 3008 /** 3009 * pci_intx - enables/disables PCI INTx for device dev 3010 * @pdev: the PCI device to operate on 3011 * @enable: boolean: whether to enable or disable PCI INTx 3012 * 3013 * Enables/disables PCI INTx for device dev 3014 */ 3015 void 3016 pci_intx(struct pci_dev *pdev, int enable) 3017 { 3018 u16 pci_command, new; 3019 3020 pci_read_config_word(pdev, PCI_COMMAND, &pci_command); 3021 3022 if (enable) { 3023 new = pci_command & ~PCI_COMMAND_INTX_DISABLE; 3024 } else { 3025 new = pci_command | PCI_COMMAND_INTX_DISABLE; 3026 } 3027 3028 if (new != pci_command) { 3029 struct pci_devres *dr; 3030 3031 pci_write_config_word(pdev, PCI_COMMAND, new); 3032 3033 dr = find_pci_dr(pdev); 3034 if (dr && !dr->restore_intx) { 3035 dr->restore_intx = 1; 3036 dr->orig_intx = !enable; 3037 } 3038 } 3039 } 3040 3041 /** 3042 * pci_intx_mask_supported - probe for INTx masking support 3043 * @dev: the PCI device to operate on 3044 * 3045 * Check if the device dev support INTx masking via the config space 3046 * command word. 3047 */ 3048 bool pci_intx_mask_supported(struct pci_dev *dev) 3049 { 3050 bool mask_supported = false; 3051 u16 orig, new; 3052 3053 if (dev->broken_intx_masking) 3054 return false; 3055 3056 pci_cfg_access_lock(dev); 3057 3058 pci_read_config_word(dev, PCI_COMMAND, &orig); 3059 pci_write_config_word(dev, PCI_COMMAND, 3060 orig ^ PCI_COMMAND_INTX_DISABLE); 3061 pci_read_config_word(dev, PCI_COMMAND, &new); 3062 3063 /* 3064 * There's no way to protect against hardware bugs or detect them 3065 * reliably, but as long as we know what the value should be, let's 3066 * go ahead and check it. 3067 */ 3068 if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) { 3069 dev_err(&dev->dev, "Command register changed from " 3070 "0x%x to 0x%x: driver or hardware bug?\n", orig, new); 3071 } else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) { 3072 mask_supported = true; 3073 pci_write_config_word(dev, PCI_COMMAND, orig); 3074 } 3075 3076 pci_cfg_access_unlock(dev); 3077 return mask_supported; 3078 } 3079 EXPORT_SYMBOL_GPL(pci_intx_mask_supported); 3080 3081 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask) 3082 { 3083 struct pci_bus *bus = dev->bus; 3084 bool mask_updated = true; 3085 u32 cmd_status_dword; 3086 u16 origcmd, newcmd; 3087 unsigned long flags; 3088 bool irq_pending; 3089 3090 /* 3091 * We do a single dword read to retrieve both command and status. 3092 * Document assumptions that make this possible. 3093 */ 3094 BUILD_BUG_ON(PCI_COMMAND % 4); 3095 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS); 3096 3097 raw_spin_lock_irqsave(&pci_lock, flags); 3098 3099 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword); 3100 3101 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT; 3102 3103 /* 3104 * Check interrupt status register to see whether our device 3105 * triggered the interrupt (when masking) or the next IRQ is 3106 * already pending (when unmasking). 3107 */ 3108 if (mask != irq_pending) { 3109 mask_updated = false; 3110 goto done; 3111 } 3112 3113 origcmd = cmd_status_dword; 3114 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE; 3115 if (mask) 3116 newcmd |= PCI_COMMAND_INTX_DISABLE; 3117 if (newcmd != origcmd) 3118 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd); 3119 3120 done: 3121 raw_spin_unlock_irqrestore(&pci_lock, flags); 3122 3123 return mask_updated; 3124 } 3125 3126 /** 3127 * pci_check_and_mask_intx - mask INTx on pending interrupt 3128 * @dev: the PCI device to operate on 3129 * 3130 * Check if the device dev has its INTx line asserted, mask it and 3131 * return true in that case. False is returned if not interrupt was 3132 * pending. 3133 */ 3134 bool pci_check_and_mask_intx(struct pci_dev *dev) 3135 { 3136 return pci_check_and_set_intx_mask(dev, true); 3137 } 3138 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx); 3139 3140 /** 3141 * pci_check_and_mask_intx - unmask INTx of no interrupt is pending 3142 * @dev: the PCI device to operate on 3143 * 3144 * Check if the device dev has its INTx line asserted, unmask it if not 3145 * and return true. False is returned and the mask remains active if 3146 * there was still an interrupt pending. 3147 */ 3148 bool pci_check_and_unmask_intx(struct pci_dev *dev) 3149 { 3150 return pci_check_and_set_intx_mask(dev, false); 3151 } 3152 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx); 3153 3154 /** 3155 * pci_msi_off - disables any MSI or MSI-X capabilities 3156 * @dev: the PCI device to operate on 3157 * 3158 * If you want to use MSI, see pci_enable_msi() and friends. 3159 * This is a lower-level primitive that allows us to disable 3160 * MSI operation at the device level. 3161 */ 3162 void pci_msi_off(struct pci_dev *dev) 3163 { 3164 int pos; 3165 u16 control; 3166 3167 /* 3168 * This looks like it could go in msi.c, but we need it even when 3169 * CONFIG_PCI_MSI=n. For the same reason, we can't use 3170 * dev->msi_cap or dev->msix_cap here. 3171 */ 3172 pos = pci_find_capability(dev, PCI_CAP_ID_MSI); 3173 if (pos) { 3174 pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control); 3175 control &= ~PCI_MSI_FLAGS_ENABLE; 3176 pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control); 3177 } 3178 pos = pci_find_capability(dev, PCI_CAP_ID_MSIX); 3179 if (pos) { 3180 pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control); 3181 control &= ~PCI_MSIX_FLAGS_ENABLE; 3182 pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control); 3183 } 3184 } 3185 EXPORT_SYMBOL_GPL(pci_msi_off); 3186 3187 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size) 3188 { 3189 return dma_set_max_seg_size(&dev->dev, size); 3190 } 3191 EXPORT_SYMBOL(pci_set_dma_max_seg_size); 3192 3193 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask) 3194 { 3195 return dma_set_seg_boundary(&dev->dev, mask); 3196 } 3197 EXPORT_SYMBOL(pci_set_dma_seg_boundary); 3198 3199 /** 3200 * pci_wait_for_pending_transaction - waits for pending transaction 3201 * @dev: the PCI device to operate on 3202 * 3203 * Return 0 if transaction is pending 1 otherwise. 3204 */ 3205 int pci_wait_for_pending_transaction(struct pci_dev *dev) 3206 { 3207 int i; 3208 u16 status; 3209 3210 /* Wait for Transaction Pending bit clean */ 3211 for (i = 0; i < 4; i++) { 3212 if (i) 3213 msleep((1 << (i - 1)) * 100); 3214 3215 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status); 3216 if (!(status & PCI_EXP_DEVSTA_TRPND)) 3217 return 1; 3218 } 3219 3220 return 0; 3221 } 3222 EXPORT_SYMBOL(pci_wait_for_pending_transaction); 3223 3224 static int pcie_flr(struct pci_dev *dev, int probe) 3225 { 3226 u32 cap; 3227 3228 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap); 3229 if (!(cap & PCI_EXP_DEVCAP_FLR)) 3230 return -ENOTTY; 3231 3232 if (probe) 3233 return 0; 3234 3235 if (!pci_wait_for_pending_transaction(dev)) 3236 dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n"); 3237 3238 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR); 3239 3240 msleep(100); 3241 3242 return 0; 3243 } 3244 3245 static int pci_af_flr(struct pci_dev *dev, int probe) 3246 { 3247 int i; 3248 int pos; 3249 u8 cap; 3250 u8 status; 3251 3252 pos = pci_find_capability(dev, PCI_CAP_ID_AF); 3253 if (!pos) 3254 return -ENOTTY; 3255 3256 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap); 3257 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR)) 3258 return -ENOTTY; 3259 3260 if (probe) 3261 return 0; 3262 3263 /* Wait for Transaction Pending bit clean */ 3264 for (i = 0; i < 4; i++) { 3265 if (i) 3266 msleep((1 << (i - 1)) * 100); 3267 3268 pci_read_config_byte(dev, pos + PCI_AF_STATUS, &status); 3269 if (!(status & PCI_AF_STATUS_TP)) 3270 goto clear; 3271 } 3272 3273 dev_err(&dev->dev, "transaction is not cleared; " 3274 "proceeding with reset anyway\n"); 3275 3276 clear: 3277 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR); 3278 msleep(100); 3279 3280 return 0; 3281 } 3282 3283 /** 3284 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0. 3285 * @dev: Device to reset. 3286 * @probe: If set, only check if the device can be reset this way. 3287 * 3288 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is 3289 * unset, it will be reinitialized internally when going from PCI_D3hot to 3290 * PCI_D0. If that's the case and the device is not in a low-power state 3291 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset. 3292 * 3293 * NOTE: This causes the caller to sleep for twice the device power transition 3294 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms 3295 * by default (i.e. unless the @dev's d3_delay field has a different value). 3296 * Moreover, only devices in D0 can be reset by this function. 3297 */ 3298 static int pci_pm_reset(struct pci_dev *dev, int probe) 3299 { 3300 u16 csr; 3301 3302 if (!dev->pm_cap) 3303 return -ENOTTY; 3304 3305 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr); 3306 if (csr & PCI_PM_CTRL_NO_SOFT_RESET) 3307 return -ENOTTY; 3308 3309 if (probe) 3310 return 0; 3311 3312 if (dev->current_state != PCI_D0) 3313 return -EINVAL; 3314 3315 csr &= ~PCI_PM_CTRL_STATE_MASK; 3316 csr |= PCI_D3hot; 3317 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 3318 pci_dev_d3_sleep(dev); 3319 3320 csr &= ~PCI_PM_CTRL_STATE_MASK; 3321 csr |= PCI_D0; 3322 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 3323 pci_dev_d3_sleep(dev); 3324 3325 return 0; 3326 } 3327 3328 /** 3329 * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge. 3330 * @dev: Bridge device 3331 * 3332 * Use the bridge control register to assert reset on the secondary bus. 3333 * Devices on the secondary bus are left in power-on state. 3334 */ 3335 void pci_reset_bridge_secondary_bus(struct pci_dev *dev) 3336 { 3337 u16 ctrl; 3338 3339 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl); 3340 ctrl |= PCI_BRIDGE_CTL_BUS_RESET; 3341 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 3342 /* 3343 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double 3344 * this to 2ms to ensure that we meet the minimum requirement. 3345 */ 3346 msleep(2); 3347 3348 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET; 3349 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 3350 3351 /* 3352 * Trhfa for conventional PCI is 2^25 clock cycles. 3353 * Assuming a minimum 33MHz clock this results in a 1s 3354 * delay before we can consider subordinate devices to 3355 * be re-initialized. PCIe has some ways to shorten this, 3356 * but we don't make use of them yet. 3357 */ 3358 ssleep(1); 3359 } 3360 EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus); 3361 3362 static int pci_parent_bus_reset(struct pci_dev *dev, int probe) 3363 { 3364 struct pci_dev *pdev; 3365 3366 if (pci_is_root_bus(dev->bus) || dev->subordinate || !dev->bus->self) 3367 return -ENOTTY; 3368 3369 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 3370 if (pdev != dev) 3371 return -ENOTTY; 3372 3373 if (probe) 3374 return 0; 3375 3376 pci_reset_bridge_secondary_bus(dev->bus->self); 3377 3378 return 0; 3379 } 3380 3381 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe) 3382 { 3383 int rc = -ENOTTY; 3384 3385 if (!hotplug || !try_module_get(hotplug->ops->owner)) 3386 return rc; 3387 3388 if (hotplug->ops->reset_slot) 3389 rc = hotplug->ops->reset_slot(hotplug, probe); 3390 3391 module_put(hotplug->ops->owner); 3392 3393 return rc; 3394 } 3395 3396 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe) 3397 { 3398 struct pci_dev *pdev; 3399 3400 if (dev->subordinate || !dev->slot) 3401 return -ENOTTY; 3402 3403 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 3404 if (pdev != dev && pdev->slot == dev->slot) 3405 return -ENOTTY; 3406 3407 return pci_reset_hotplug_slot(dev->slot->hotplug, probe); 3408 } 3409 3410 static int __pci_dev_reset(struct pci_dev *dev, int probe) 3411 { 3412 int rc; 3413 3414 might_sleep(); 3415 3416 rc = pci_dev_specific_reset(dev, probe); 3417 if (rc != -ENOTTY) 3418 goto done; 3419 3420 rc = pcie_flr(dev, probe); 3421 if (rc != -ENOTTY) 3422 goto done; 3423 3424 rc = pci_af_flr(dev, probe); 3425 if (rc != -ENOTTY) 3426 goto done; 3427 3428 rc = pci_pm_reset(dev, probe); 3429 if (rc != -ENOTTY) 3430 goto done; 3431 3432 rc = pci_dev_reset_slot_function(dev, probe); 3433 if (rc != -ENOTTY) 3434 goto done; 3435 3436 rc = pci_parent_bus_reset(dev, probe); 3437 done: 3438 return rc; 3439 } 3440 3441 static void pci_dev_lock(struct pci_dev *dev) 3442 { 3443 pci_cfg_access_lock(dev); 3444 /* block PM suspend, driver probe, etc. */ 3445 device_lock(&dev->dev); 3446 } 3447 3448 static void pci_dev_unlock(struct pci_dev *dev) 3449 { 3450 device_unlock(&dev->dev); 3451 pci_cfg_access_unlock(dev); 3452 } 3453 3454 static void pci_dev_save_and_disable(struct pci_dev *dev) 3455 { 3456 /* 3457 * Wake-up device prior to save. PM registers default to D0 after 3458 * reset and a simple register restore doesn't reliably return 3459 * to a non-D0 state anyway. 3460 */ 3461 pci_set_power_state(dev, PCI_D0); 3462 3463 pci_save_state(dev); 3464 /* 3465 * Disable the device by clearing the Command register, except for 3466 * INTx-disable which is set. This not only disables MMIO and I/O port 3467 * BARs, but also prevents the device from being Bus Master, preventing 3468 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3 3469 * compliant devices, INTx-disable prevents legacy interrupts. 3470 */ 3471 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE); 3472 } 3473 3474 static void pci_dev_restore(struct pci_dev *dev) 3475 { 3476 pci_restore_state(dev); 3477 } 3478 3479 static int pci_dev_reset(struct pci_dev *dev, int probe) 3480 { 3481 int rc; 3482 3483 if (!probe) 3484 pci_dev_lock(dev); 3485 3486 rc = __pci_dev_reset(dev, probe); 3487 3488 if (!probe) 3489 pci_dev_unlock(dev); 3490 3491 return rc; 3492 } 3493 /** 3494 * __pci_reset_function - reset a PCI device function 3495 * @dev: PCI device to reset 3496 * 3497 * Some devices allow an individual function to be reset without affecting 3498 * other functions in the same device. The PCI device must be responsive 3499 * to PCI config space in order to use this function. 3500 * 3501 * The device function is presumed to be unused when this function is called. 3502 * Resetting the device will make the contents of PCI configuration space 3503 * random, so any caller of this must be prepared to reinitialise the 3504 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 3505 * etc. 3506 * 3507 * Returns 0 if the device function was successfully reset or negative if the 3508 * device doesn't support resetting a single function. 3509 */ 3510 int __pci_reset_function(struct pci_dev *dev) 3511 { 3512 return pci_dev_reset(dev, 0); 3513 } 3514 EXPORT_SYMBOL_GPL(__pci_reset_function); 3515 3516 /** 3517 * __pci_reset_function_locked - reset a PCI device function while holding 3518 * the @dev mutex lock. 3519 * @dev: PCI device to reset 3520 * 3521 * Some devices allow an individual function to be reset without affecting 3522 * other functions in the same device. The PCI device must be responsive 3523 * to PCI config space in order to use this function. 3524 * 3525 * The device function is presumed to be unused and the caller is holding 3526 * the device mutex lock when this function is called. 3527 * Resetting the device will make the contents of PCI configuration space 3528 * random, so any caller of this must be prepared to reinitialise the 3529 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 3530 * etc. 3531 * 3532 * Returns 0 if the device function was successfully reset or negative if the 3533 * device doesn't support resetting a single function. 3534 */ 3535 int __pci_reset_function_locked(struct pci_dev *dev) 3536 { 3537 return __pci_dev_reset(dev, 0); 3538 } 3539 EXPORT_SYMBOL_GPL(__pci_reset_function_locked); 3540 3541 /** 3542 * pci_probe_reset_function - check whether the device can be safely reset 3543 * @dev: PCI device to reset 3544 * 3545 * Some devices allow an individual function to be reset without affecting 3546 * other functions in the same device. The PCI device must be responsive 3547 * to PCI config space in order to use this function. 3548 * 3549 * Returns 0 if the device function can be reset or negative if the 3550 * device doesn't support resetting a single function. 3551 */ 3552 int pci_probe_reset_function(struct pci_dev *dev) 3553 { 3554 return pci_dev_reset(dev, 1); 3555 } 3556 3557 /** 3558 * pci_reset_function - quiesce and reset a PCI device function 3559 * @dev: PCI device to reset 3560 * 3561 * Some devices allow an individual function to be reset without affecting 3562 * other functions in the same device. The PCI device must be responsive 3563 * to PCI config space in order to use this function. 3564 * 3565 * This function does not just reset the PCI portion of a device, but 3566 * clears all the state associated with the device. This function differs 3567 * from __pci_reset_function in that it saves and restores device state 3568 * over the reset. 3569 * 3570 * Returns 0 if the device function was successfully reset or negative if the 3571 * device doesn't support resetting a single function. 3572 */ 3573 int pci_reset_function(struct pci_dev *dev) 3574 { 3575 int rc; 3576 3577 rc = pci_dev_reset(dev, 1); 3578 if (rc) 3579 return rc; 3580 3581 pci_dev_save_and_disable(dev); 3582 3583 rc = pci_dev_reset(dev, 0); 3584 3585 pci_dev_restore(dev); 3586 3587 return rc; 3588 } 3589 EXPORT_SYMBOL_GPL(pci_reset_function); 3590 3591 /* Lock devices from the top of the tree down */ 3592 static void pci_bus_lock(struct pci_bus *bus) 3593 { 3594 struct pci_dev *dev; 3595 3596 list_for_each_entry(dev, &bus->devices, bus_list) { 3597 pci_dev_lock(dev); 3598 if (dev->subordinate) 3599 pci_bus_lock(dev->subordinate); 3600 } 3601 } 3602 3603 /* Unlock devices from the bottom of the tree up */ 3604 static void pci_bus_unlock(struct pci_bus *bus) 3605 { 3606 struct pci_dev *dev; 3607 3608 list_for_each_entry(dev, &bus->devices, bus_list) { 3609 if (dev->subordinate) 3610 pci_bus_unlock(dev->subordinate); 3611 pci_dev_unlock(dev); 3612 } 3613 } 3614 3615 /* Lock devices from the top of the tree down */ 3616 static void pci_slot_lock(struct pci_slot *slot) 3617 { 3618 struct pci_dev *dev; 3619 3620 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 3621 if (!dev->slot || dev->slot != slot) 3622 continue; 3623 pci_dev_lock(dev); 3624 if (dev->subordinate) 3625 pci_bus_lock(dev->subordinate); 3626 } 3627 } 3628 3629 /* Unlock devices from the bottom of the tree up */ 3630 static void pci_slot_unlock(struct pci_slot *slot) 3631 { 3632 struct pci_dev *dev; 3633 3634 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 3635 if (!dev->slot || dev->slot != slot) 3636 continue; 3637 if (dev->subordinate) 3638 pci_bus_unlock(dev->subordinate); 3639 pci_dev_unlock(dev); 3640 } 3641 } 3642 3643 /* Save and disable devices from the top of the tree down */ 3644 static void pci_bus_save_and_disable(struct pci_bus *bus) 3645 { 3646 struct pci_dev *dev; 3647 3648 list_for_each_entry(dev, &bus->devices, bus_list) { 3649 pci_dev_save_and_disable(dev); 3650 if (dev->subordinate) 3651 pci_bus_save_and_disable(dev->subordinate); 3652 } 3653 } 3654 3655 /* 3656 * Restore devices from top of the tree down - parent bridges need to be 3657 * restored before we can get to subordinate devices. 3658 */ 3659 static void pci_bus_restore(struct pci_bus *bus) 3660 { 3661 struct pci_dev *dev; 3662 3663 list_for_each_entry(dev, &bus->devices, bus_list) { 3664 pci_dev_restore(dev); 3665 if (dev->subordinate) 3666 pci_bus_restore(dev->subordinate); 3667 } 3668 } 3669 3670 /* Save and disable devices from the top of the tree down */ 3671 static void pci_slot_save_and_disable(struct pci_slot *slot) 3672 { 3673 struct pci_dev *dev; 3674 3675 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 3676 if (!dev->slot || dev->slot != slot) 3677 continue; 3678 pci_dev_save_and_disable(dev); 3679 if (dev->subordinate) 3680 pci_bus_save_and_disable(dev->subordinate); 3681 } 3682 } 3683 3684 /* 3685 * Restore devices from top of the tree down - parent bridges need to be 3686 * restored before we can get to subordinate devices. 3687 */ 3688 static void pci_slot_restore(struct pci_slot *slot) 3689 { 3690 struct pci_dev *dev; 3691 3692 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 3693 if (!dev->slot || dev->slot != slot) 3694 continue; 3695 pci_dev_restore(dev); 3696 if (dev->subordinate) 3697 pci_bus_restore(dev->subordinate); 3698 } 3699 } 3700 3701 static int pci_slot_reset(struct pci_slot *slot, int probe) 3702 { 3703 int rc; 3704 3705 if (!slot) 3706 return -ENOTTY; 3707 3708 if (!probe) 3709 pci_slot_lock(slot); 3710 3711 might_sleep(); 3712 3713 rc = pci_reset_hotplug_slot(slot->hotplug, probe); 3714 3715 if (!probe) 3716 pci_slot_unlock(slot); 3717 3718 return rc; 3719 } 3720 3721 /** 3722 * pci_probe_reset_slot - probe whether a PCI slot can be reset 3723 * @slot: PCI slot to probe 3724 * 3725 * Return 0 if slot can be reset, negative if a slot reset is not supported. 3726 */ 3727 int pci_probe_reset_slot(struct pci_slot *slot) 3728 { 3729 return pci_slot_reset(slot, 1); 3730 } 3731 EXPORT_SYMBOL_GPL(pci_probe_reset_slot); 3732 3733 /** 3734 * pci_reset_slot - reset a PCI slot 3735 * @slot: PCI slot to reset 3736 * 3737 * A PCI bus may host multiple slots, each slot may support a reset mechanism 3738 * independent of other slots. For instance, some slots may support slot power 3739 * control. In the case of a 1:1 bus to slot architecture, this function may 3740 * wrap the bus reset to avoid spurious slot related events such as hotplug. 3741 * Generally a slot reset should be attempted before a bus reset. All of the 3742 * function of the slot and any subordinate buses behind the slot are reset 3743 * through this function. PCI config space of all devices in the slot and 3744 * behind the slot is saved before and restored after reset. 3745 * 3746 * Return 0 on success, non-zero on error. 3747 */ 3748 int pci_reset_slot(struct pci_slot *slot) 3749 { 3750 int rc; 3751 3752 rc = pci_slot_reset(slot, 1); 3753 if (rc) 3754 return rc; 3755 3756 pci_slot_save_and_disable(slot); 3757 3758 rc = pci_slot_reset(slot, 0); 3759 3760 pci_slot_restore(slot); 3761 3762 return rc; 3763 } 3764 EXPORT_SYMBOL_GPL(pci_reset_slot); 3765 3766 static int pci_bus_reset(struct pci_bus *bus, int probe) 3767 { 3768 if (!bus->self) 3769 return -ENOTTY; 3770 3771 if (probe) 3772 return 0; 3773 3774 pci_bus_lock(bus); 3775 3776 might_sleep(); 3777 3778 pci_reset_bridge_secondary_bus(bus->self); 3779 3780 pci_bus_unlock(bus); 3781 3782 return 0; 3783 } 3784 3785 /** 3786 * pci_probe_reset_bus - probe whether a PCI bus can be reset 3787 * @bus: PCI bus to probe 3788 * 3789 * Return 0 if bus can be reset, negative if a bus reset is not supported. 3790 */ 3791 int pci_probe_reset_bus(struct pci_bus *bus) 3792 { 3793 return pci_bus_reset(bus, 1); 3794 } 3795 EXPORT_SYMBOL_GPL(pci_probe_reset_bus); 3796 3797 /** 3798 * pci_reset_bus - reset a PCI bus 3799 * @bus: top level PCI bus to reset 3800 * 3801 * Do a bus reset on the given bus and any subordinate buses, saving 3802 * and restoring state of all devices. 3803 * 3804 * Return 0 on success, non-zero on error. 3805 */ 3806 int pci_reset_bus(struct pci_bus *bus) 3807 { 3808 int rc; 3809 3810 rc = pci_bus_reset(bus, 1); 3811 if (rc) 3812 return rc; 3813 3814 pci_bus_save_and_disable(bus); 3815 3816 rc = pci_bus_reset(bus, 0); 3817 3818 pci_bus_restore(bus); 3819 3820 return rc; 3821 } 3822 EXPORT_SYMBOL_GPL(pci_reset_bus); 3823 3824 /** 3825 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count 3826 * @dev: PCI device to query 3827 * 3828 * Returns mmrbc: maximum designed memory read count in bytes 3829 * or appropriate error value. 3830 */ 3831 int pcix_get_max_mmrbc(struct pci_dev *dev) 3832 { 3833 int cap; 3834 u32 stat; 3835 3836 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 3837 if (!cap) 3838 return -EINVAL; 3839 3840 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 3841 return -EINVAL; 3842 3843 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21); 3844 } 3845 EXPORT_SYMBOL(pcix_get_max_mmrbc); 3846 3847 /** 3848 * pcix_get_mmrbc - get PCI-X maximum memory read byte count 3849 * @dev: PCI device to query 3850 * 3851 * Returns mmrbc: maximum memory read count in bytes 3852 * or appropriate error value. 3853 */ 3854 int pcix_get_mmrbc(struct pci_dev *dev) 3855 { 3856 int cap; 3857 u16 cmd; 3858 3859 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 3860 if (!cap) 3861 return -EINVAL; 3862 3863 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 3864 return -EINVAL; 3865 3866 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2); 3867 } 3868 EXPORT_SYMBOL(pcix_get_mmrbc); 3869 3870 /** 3871 * pcix_set_mmrbc - set PCI-X maximum memory read byte count 3872 * @dev: PCI device to query 3873 * @mmrbc: maximum memory read count in bytes 3874 * valid values are 512, 1024, 2048, 4096 3875 * 3876 * If possible sets maximum memory read byte count, some bridges have erratas 3877 * that prevent this. 3878 */ 3879 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc) 3880 { 3881 int cap; 3882 u32 stat, v, o; 3883 u16 cmd; 3884 3885 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc)) 3886 return -EINVAL; 3887 3888 v = ffs(mmrbc) - 10; 3889 3890 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 3891 if (!cap) 3892 return -EINVAL; 3893 3894 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 3895 return -EINVAL; 3896 3897 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21) 3898 return -E2BIG; 3899 3900 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 3901 return -EINVAL; 3902 3903 o = (cmd & PCI_X_CMD_MAX_READ) >> 2; 3904 if (o != v) { 3905 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC)) 3906 return -EIO; 3907 3908 cmd &= ~PCI_X_CMD_MAX_READ; 3909 cmd |= v << 2; 3910 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd)) 3911 return -EIO; 3912 } 3913 return 0; 3914 } 3915 EXPORT_SYMBOL(pcix_set_mmrbc); 3916 3917 /** 3918 * pcie_get_readrq - get PCI Express read request size 3919 * @dev: PCI device to query 3920 * 3921 * Returns maximum memory read request in bytes 3922 * or appropriate error value. 3923 */ 3924 int pcie_get_readrq(struct pci_dev *dev) 3925 { 3926 u16 ctl; 3927 3928 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 3929 3930 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12); 3931 } 3932 EXPORT_SYMBOL(pcie_get_readrq); 3933 3934 /** 3935 * pcie_set_readrq - set PCI Express maximum memory read request 3936 * @dev: PCI device to query 3937 * @rq: maximum memory read count in bytes 3938 * valid values are 128, 256, 512, 1024, 2048, 4096 3939 * 3940 * If possible sets maximum memory read request in bytes 3941 */ 3942 int pcie_set_readrq(struct pci_dev *dev, int rq) 3943 { 3944 u16 v; 3945 3946 if (rq < 128 || rq > 4096 || !is_power_of_2(rq)) 3947 return -EINVAL; 3948 3949 /* 3950 * If using the "performance" PCIe config, we clamp the 3951 * read rq size to the max packet size to prevent the 3952 * host bridge generating requests larger than we can 3953 * cope with 3954 */ 3955 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) { 3956 int mps = pcie_get_mps(dev); 3957 3958 if (mps < rq) 3959 rq = mps; 3960 } 3961 3962 v = (ffs(rq) - 8) << 12; 3963 3964 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 3965 PCI_EXP_DEVCTL_READRQ, v); 3966 } 3967 EXPORT_SYMBOL(pcie_set_readrq); 3968 3969 /** 3970 * pcie_get_mps - get PCI Express maximum payload size 3971 * @dev: PCI device to query 3972 * 3973 * Returns maximum payload size in bytes 3974 */ 3975 int pcie_get_mps(struct pci_dev *dev) 3976 { 3977 u16 ctl; 3978 3979 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 3980 3981 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5); 3982 } 3983 EXPORT_SYMBOL(pcie_get_mps); 3984 3985 /** 3986 * pcie_set_mps - set PCI Express maximum payload size 3987 * @dev: PCI device to query 3988 * @mps: maximum payload size in bytes 3989 * valid values are 128, 256, 512, 1024, 2048, 4096 3990 * 3991 * If possible sets maximum payload size 3992 */ 3993 int pcie_set_mps(struct pci_dev *dev, int mps) 3994 { 3995 u16 v; 3996 3997 if (mps < 128 || mps > 4096 || !is_power_of_2(mps)) 3998 return -EINVAL; 3999 4000 v = ffs(mps) - 8; 4001 if (v > dev->pcie_mpss) 4002 return -EINVAL; 4003 v <<= 5; 4004 4005 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 4006 PCI_EXP_DEVCTL_PAYLOAD, v); 4007 } 4008 EXPORT_SYMBOL(pcie_set_mps); 4009 4010 /** 4011 * pcie_get_minimum_link - determine minimum link settings of a PCI device 4012 * @dev: PCI device to query 4013 * @speed: storage for minimum speed 4014 * @width: storage for minimum width 4015 * 4016 * This function will walk up the PCI device chain and determine the minimum 4017 * link width and speed of the device. 4018 */ 4019 int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed, 4020 enum pcie_link_width *width) 4021 { 4022 int ret; 4023 4024 *speed = PCI_SPEED_UNKNOWN; 4025 *width = PCIE_LNK_WIDTH_UNKNOWN; 4026 4027 while (dev) { 4028 u16 lnksta; 4029 enum pci_bus_speed next_speed; 4030 enum pcie_link_width next_width; 4031 4032 ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta); 4033 if (ret) 4034 return ret; 4035 4036 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS]; 4037 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >> 4038 PCI_EXP_LNKSTA_NLW_SHIFT; 4039 4040 if (next_speed < *speed) 4041 *speed = next_speed; 4042 4043 if (next_width < *width) 4044 *width = next_width; 4045 4046 dev = dev->bus->self; 4047 } 4048 4049 return 0; 4050 } 4051 EXPORT_SYMBOL(pcie_get_minimum_link); 4052 4053 /** 4054 * pci_select_bars - Make BAR mask from the type of resource 4055 * @dev: the PCI device for which BAR mask is made 4056 * @flags: resource type mask to be selected 4057 * 4058 * This helper routine makes bar mask from the type of resource. 4059 */ 4060 int pci_select_bars(struct pci_dev *dev, unsigned long flags) 4061 { 4062 int i, bars = 0; 4063 for (i = 0; i < PCI_NUM_RESOURCES; i++) 4064 if (pci_resource_flags(dev, i) & flags) 4065 bars |= (1 << i); 4066 return bars; 4067 } 4068 4069 /** 4070 * pci_resource_bar - get position of the BAR associated with a resource 4071 * @dev: the PCI device 4072 * @resno: the resource number 4073 * @type: the BAR type to be filled in 4074 * 4075 * Returns BAR position in config space, or 0 if the BAR is invalid. 4076 */ 4077 int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type) 4078 { 4079 int reg; 4080 4081 if (resno < PCI_ROM_RESOURCE) { 4082 *type = pci_bar_unknown; 4083 return PCI_BASE_ADDRESS_0 + 4 * resno; 4084 } else if (resno == PCI_ROM_RESOURCE) { 4085 *type = pci_bar_mem32; 4086 return dev->rom_base_reg; 4087 } else if (resno < PCI_BRIDGE_RESOURCES) { 4088 /* device specific resource */ 4089 reg = pci_iov_resource_bar(dev, resno, type); 4090 if (reg) 4091 return reg; 4092 } 4093 4094 dev_err(&dev->dev, "BAR %d: invalid resource\n", resno); 4095 return 0; 4096 } 4097 4098 /* Some architectures require additional programming to enable VGA */ 4099 static arch_set_vga_state_t arch_set_vga_state; 4100 4101 void __init pci_register_set_vga_state(arch_set_vga_state_t func) 4102 { 4103 arch_set_vga_state = func; /* NULL disables */ 4104 } 4105 4106 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode, 4107 unsigned int command_bits, u32 flags) 4108 { 4109 if (arch_set_vga_state) 4110 return arch_set_vga_state(dev, decode, command_bits, 4111 flags); 4112 return 0; 4113 } 4114 4115 /** 4116 * pci_set_vga_state - set VGA decode state on device and parents if requested 4117 * @dev: the PCI device 4118 * @decode: true = enable decoding, false = disable decoding 4119 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY 4120 * @flags: traverse ancestors and change bridges 4121 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE 4122 */ 4123 int pci_set_vga_state(struct pci_dev *dev, bool decode, 4124 unsigned int command_bits, u32 flags) 4125 { 4126 struct pci_bus *bus; 4127 struct pci_dev *bridge; 4128 u16 cmd; 4129 int rc; 4130 4131 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) & (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY))); 4132 4133 /* ARCH specific VGA enables */ 4134 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags); 4135 if (rc) 4136 return rc; 4137 4138 if (flags & PCI_VGA_STATE_CHANGE_DECODES) { 4139 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4140 if (decode == true) 4141 cmd |= command_bits; 4142 else 4143 cmd &= ~command_bits; 4144 pci_write_config_word(dev, PCI_COMMAND, cmd); 4145 } 4146 4147 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE)) 4148 return 0; 4149 4150 bus = dev->bus; 4151 while (bus) { 4152 bridge = bus->self; 4153 if (bridge) { 4154 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL, 4155 &cmd); 4156 if (decode == true) 4157 cmd |= PCI_BRIDGE_CTL_VGA; 4158 else 4159 cmd &= ~PCI_BRIDGE_CTL_VGA; 4160 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL, 4161 cmd); 4162 } 4163 bus = bus->parent; 4164 } 4165 return 0; 4166 } 4167 4168 bool pci_device_is_present(struct pci_dev *pdev) 4169 { 4170 u32 v; 4171 4172 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0); 4173 } 4174 EXPORT_SYMBOL_GPL(pci_device_is_present); 4175 4176 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE 4177 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0}; 4178 static DEFINE_SPINLOCK(resource_alignment_lock); 4179 4180 /** 4181 * pci_specified_resource_alignment - get resource alignment specified by user. 4182 * @dev: the PCI device to get 4183 * 4184 * RETURNS: Resource alignment if it is specified. 4185 * Zero if it is not specified. 4186 */ 4187 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev) 4188 { 4189 int seg, bus, slot, func, align_order, count; 4190 resource_size_t align = 0; 4191 char *p; 4192 4193 spin_lock(&resource_alignment_lock); 4194 p = resource_alignment_param; 4195 while (*p) { 4196 count = 0; 4197 if (sscanf(p, "%d%n", &align_order, &count) == 1 && 4198 p[count] == '@') { 4199 p += count + 1; 4200 } else { 4201 align_order = -1; 4202 } 4203 if (sscanf(p, "%x:%x:%x.%x%n", 4204 &seg, &bus, &slot, &func, &count) != 4) { 4205 seg = 0; 4206 if (sscanf(p, "%x:%x.%x%n", 4207 &bus, &slot, &func, &count) != 3) { 4208 /* Invalid format */ 4209 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n", 4210 p); 4211 break; 4212 } 4213 } 4214 p += count; 4215 if (seg == pci_domain_nr(dev->bus) && 4216 bus == dev->bus->number && 4217 slot == PCI_SLOT(dev->devfn) && 4218 func == PCI_FUNC(dev->devfn)) { 4219 if (align_order == -1) { 4220 align = PAGE_SIZE; 4221 } else { 4222 align = 1 << align_order; 4223 } 4224 /* Found */ 4225 break; 4226 } 4227 if (*p != ';' && *p != ',') { 4228 /* End of param or invalid format */ 4229 break; 4230 } 4231 p++; 4232 } 4233 spin_unlock(&resource_alignment_lock); 4234 return align; 4235 } 4236 4237 /* 4238 * This function disables memory decoding and releases memory resources 4239 * of the device specified by kernel's boot parameter 'pci=resource_alignment='. 4240 * It also rounds up size to specified alignment. 4241 * Later on, the kernel will assign page-aligned memory resource back 4242 * to the device. 4243 */ 4244 void pci_reassigndev_resource_alignment(struct pci_dev *dev) 4245 { 4246 int i; 4247 struct resource *r; 4248 resource_size_t align, size; 4249 u16 command; 4250 4251 /* check if specified PCI is target device to reassign */ 4252 align = pci_specified_resource_alignment(dev); 4253 if (!align) 4254 return; 4255 4256 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL && 4257 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) { 4258 dev_warn(&dev->dev, 4259 "Can't reassign resources to host bridge.\n"); 4260 return; 4261 } 4262 4263 dev_info(&dev->dev, 4264 "Disabling memory decoding and releasing memory resources.\n"); 4265 pci_read_config_word(dev, PCI_COMMAND, &command); 4266 command &= ~PCI_COMMAND_MEMORY; 4267 pci_write_config_word(dev, PCI_COMMAND, command); 4268 4269 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) { 4270 r = &dev->resource[i]; 4271 if (!(r->flags & IORESOURCE_MEM)) 4272 continue; 4273 size = resource_size(r); 4274 if (size < align) { 4275 size = align; 4276 dev_info(&dev->dev, 4277 "Rounding up size of resource #%d to %#llx.\n", 4278 i, (unsigned long long)size); 4279 } 4280 r->end = size - 1; 4281 r->start = 0; 4282 } 4283 /* Need to disable bridge's resource window, 4284 * to enable the kernel to reassign new resource 4285 * window later on. 4286 */ 4287 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE && 4288 (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) { 4289 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) { 4290 r = &dev->resource[i]; 4291 if (!(r->flags & IORESOURCE_MEM)) 4292 continue; 4293 r->end = resource_size(r) - 1; 4294 r->start = 0; 4295 } 4296 pci_disable_bridge_window(dev); 4297 } 4298 } 4299 4300 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count) 4301 { 4302 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1) 4303 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1; 4304 spin_lock(&resource_alignment_lock); 4305 strncpy(resource_alignment_param, buf, count); 4306 resource_alignment_param[count] = '\0'; 4307 spin_unlock(&resource_alignment_lock); 4308 return count; 4309 } 4310 4311 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size) 4312 { 4313 size_t count; 4314 spin_lock(&resource_alignment_lock); 4315 count = snprintf(buf, size, "%s", resource_alignment_param); 4316 spin_unlock(&resource_alignment_lock); 4317 return count; 4318 } 4319 4320 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf) 4321 { 4322 return pci_get_resource_alignment_param(buf, PAGE_SIZE); 4323 } 4324 4325 static ssize_t pci_resource_alignment_store(struct bus_type *bus, 4326 const char *buf, size_t count) 4327 { 4328 return pci_set_resource_alignment_param(buf, count); 4329 } 4330 4331 BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show, 4332 pci_resource_alignment_store); 4333 4334 static int __init pci_resource_alignment_sysfs_init(void) 4335 { 4336 return bus_create_file(&pci_bus_type, 4337 &bus_attr_resource_alignment); 4338 } 4339 4340 late_initcall(pci_resource_alignment_sysfs_init); 4341 4342 static void pci_no_domains(void) 4343 { 4344 #ifdef CONFIG_PCI_DOMAINS 4345 pci_domains_supported = 0; 4346 #endif 4347 } 4348 4349 /** 4350 * pci_ext_cfg_avail - can we access extended PCI config space? 4351 * 4352 * Returns 1 if we can access PCI extended config space (offsets 4353 * greater than 0xff). This is the default implementation. Architecture 4354 * implementations can override this. 4355 */ 4356 int __weak pci_ext_cfg_avail(void) 4357 { 4358 return 1; 4359 } 4360 4361 void __weak pci_fixup_cardbus(struct pci_bus *bus) 4362 { 4363 } 4364 EXPORT_SYMBOL(pci_fixup_cardbus); 4365 4366 static int __init pci_setup(char *str) 4367 { 4368 while (str) { 4369 char *k = strchr(str, ','); 4370 if (k) 4371 *k++ = 0; 4372 if (*str && (str = pcibios_setup(str)) && *str) { 4373 if (!strcmp(str, "nomsi")) { 4374 pci_no_msi(); 4375 } else if (!strcmp(str, "noaer")) { 4376 pci_no_aer(); 4377 } else if (!strncmp(str, "realloc=", 8)) { 4378 pci_realloc_get_opt(str + 8); 4379 } else if (!strncmp(str, "realloc", 7)) { 4380 pci_realloc_get_opt("on"); 4381 } else if (!strcmp(str, "nodomains")) { 4382 pci_no_domains(); 4383 } else if (!strncmp(str, "noari", 5)) { 4384 pcie_ari_disabled = true; 4385 } else if (!strncmp(str, "cbiosize=", 9)) { 4386 pci_cardbus_io_size = memparse(str + 9, &str); 4387 } else if (!strncmp(str, "cbmemsize=", 10)) { 4388 pci_cardbus_mem_size = memparse(str + 10, &str); 4389 } else if (!strncmp(str, "resource_alignment=", 19)) { 4390 pci_set_resource_alignment_param(str + 19, 4391 strlen(str + 19)); 4392 } else if (!strncmp(str, "ecrc=", 5)) { 4393 pcie_ecrc_get_policy(str + 5); 4394 } else if (!strncmp(str, "hpiosize=", 9)) { 4395 pci_hotplug_io_size = memparse(str + 9, &str); 4396 } else if (!strncmp(str, "hpmemsize=", 10)) { 4397 pci_hotplug_mem_size = memparse(str + 10, &str); 4398 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) { 4399 pcie_bus_config = PCIE_BUS_TUNE_OFF; 4400 } else if (!strncmp(str, "pcie_bus_safe", 13)) { 4401 pcie_bus_config = PCIE_BUS_SAFE; 4402 } else if (!strncmp(str, "pcie_bus_perf", 13)) { 4403 pcie_bus_config = PCIE_BUS_PERFORMANCE; 4404 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) { 4405 pcie_bus_config = PCIE_BUS_PEER2PEER; 4406 } else if (!strncmp(str, "pcie_scan_all", 13)) { 4407 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS); 4408 } else { 4409 printk(KERN_ERR "PCI: Unknown option `%s'\n", 4410 str); 4411 } 4412 } 4413 str = k; 4414 } 4415 return 0; 4416 } 4417 early_param("pci", pci_setup); 4418 4419 EXPORT_SYMBOL(pci_reenable_device); 4420 EXPORT_SYMBOL(pci_enable_device_io); 4421 EXPORT_SYMBOL(pci_enable_device_mem); 4422 EXPORT_SYMBOL(pci_enable_device); 4423 EXPORT_SYMBOL(pcim_enable_device); 4424 EXPORT_SYMBOL(pcim_pin_device); 4425 EXPORT_SYMBOL(pci_disable_device); 4426 EXPORT_SYMBOL(pci_find_capability); 4427 EXPORT_SYMBOL(pci_bus_find_capability); 4428 EXPORT_SYMBOL(pci_release_regions); 4429 EXPORT_SYMBOL(pci_request_regions); 4430 EXPORT_SYMBOL(pci_request_regions_exclusive); 4431 EXPORT_SYMBOL(pci_release_region); 4432 EXPORT_SYMBOL(pci_request_region); 4433 EXPORT_SYMBOL(pci_request_region_exclusive); 4434 EXPORT_SYMBOL(pci_release_selected_regions); 4435 EXPORT_SYMBOL(pci_request_selected_regions); 4436 EXPORT_SYMBOL(pci_request_selected_regions_exclusive); 4437 EXPORT_SYMBOL(pci_set_master); 4438 EXPORT_SYMBOL(pci_clear_master); 4439 EXPORT_SYMBOL(pci_set_mwi); 4440 EXPORT_SYMBOL(pci_try_set_mwi); 4441 EXPORT_SYMBOL(pci_clear_mwi); 4442 EXPORT_SYMBOL_GPL(pci_intx); 4443 EXPORT_SYMBOL(pci_assign_resource); 4444 EXPORT_SYMBOL(pci_find_parent_resource); 4445 EXPORT_SYMBOL(pci_select_bars); 4446 4447 EXPORT_SYMBOL(pci_set_power_state); 4448 EXPORT_SYMBOL(pci_save_state); 4449 EXPORT_SYMBOL(pci_restore_state); 4450 EXPORT_SYMBOL(pci_pme_capable); 4451 EXPORT_SYMBOL(pci_pme_active); 4452 EXPORT_SYMBOL(pci_wake_from_d3); 4453 EXPORT_SYMBOL(pci_target_state); 4454 EXPORT_SYMBOL(pci_prepare_to_sleep); 4455 EXPORT_SYMBOL(pci_back_from_sleep); 4456 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state); 4457