xref: /openbmc/linux/drivers/pci/pci.c (revision 12eb4683)
1 /*
2  *	PCI Bus Services, see include/linux/pci.h for further explanation.
3  *
4  *	Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5  *	David Mosberger-Tang
6  *
7  *	Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/pci.h>
14 #include <linux/pm.h>
15 #include <linux/slab.h>
16 #include <linux/module.h>
17 #include <linux/spinlock.h>
18 #include <linux/string.h>
19 #include <linux/log2.h>
20 #include <linux/pci-aspm.h>
21 #include <linux/pm_wakeup.h>
22 #include <linux/interrupt.h>
23 #include <linux/device.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/pci_hotplug.h>
26 #include <asm-generic/pci-bridge.h>
27 #include <asm/setup.h>
28 #include "pci.h"
29 
30 const char *pci_power_names[] = {
31 	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
32 };
33 EXPORT_SYMBOL_GPL(pci_power_names);
34 
35 int isa_dma_bridge_buggy;
36 EXPORT_SYMBOL(isa_dma_bridge_buggy);
37 
38 int pci_pci_problems;
39 EXPORT_SYMBOL(pci_pci_problems);
40 
41 unsigned int pci_pm_d3_delay;
42 
43 static void pci_pme_list_scan(struct work_struct *work);
44 
45 static LIST_HEAD(pci_pme_list);
46 static DEFINE_MUTEX(pci_pme_list_mutex);
47 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
48 
49 struct pci_pme_device {
50 	struct list_head list;
51 	struct pci_dev *dev;
52 };
53 
54 #define PME_TIMEOUT 1000 /* How long between PME checks */
55 
56 static void pci_dev_d3_sleep(struct pci_dev *dev)
57 {
58 	unsigned int delay = dev->d3_delay;
59 
60 	if (delay < pci_pm_d3_delay)
61 		delay = pci_pm_d3_delay;
62 
63 	msleep(delay);
64 }
65 
66 #ifdef CONFIG_PCI_DOMAINS
67 int pci_domains_supported = 1;
68 #endif
69 
70 #define DEFAULT_CARDBUS_IO_SIZE		(256)
71 #define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
72 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
73 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
74 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
75 
76 #define DEFAULT_HOTPLUG_IO_SIZE		(256)
77 #define DEFAULT_HOTPLUG_MEM_SIZE	(2*1024*1024)
78 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
79 unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
80 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
81 
82 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
83 
84 /*
85  * The default CLS is used if arch didn't set CLS explicitly and not
86  * all pci devices agree on the same value.  Arch can override either
87  * the dfl or actual value as it sees fit.  Don't forget this is
88  * measured in 32-bit words, not bytes.
89  */
90 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
91 u8 pci_cache_line_size;
92 
93 /*
94  * If we set up a device for bus mastering, we need to check the latency
95  * timer as certain BIOSes forget to set it properly.
96  */
97 unsigned int pcibios_max_latency = 255;
98 
99 /* If set, the PCIe ARI capability will not be used. */
100 static bool pcie_ari_disabled;
101 
102 /**
103  * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
104  * @bus: pointer to PCI bus structure to search
105  *
106  * Given a PCI bus, returns the highest PCI bus number present in the set
107  * including the given PCI bus and its list of child PCI buses.
108  */
109 unsigned char pci_bus_max_busnr(struct pci_bus* bus)
110 {
111 	struct list_head *tmp;
112 	unsigned char max, n;
113 
114 	max = bus->busn_res.end;
115 	list_for_each(tmp, &bus->children) {
116 		n = pci_bus_max_busnr(pci_bus_b(tmp));
117 		if(n > max)
118 			max = n;
119 	}
120 	return max;
121 }
122 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
123 
124 #ifdef CONFIG_HAS_IOMEM
125 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
126 {
127 	/*
128 	 * Make sure the BAR is actually a memory resource, not an IO resource
129 	 */
130 	if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
131 		WARN_ON(1);
132 		return NULL;
133 	}
134 	return ioremap_nocache(pci_resource_start(pdev, bar),
135 				     pci_resource_len(pdev, bar));
136 }
137 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
138 #endif
139 
140 #define PCI_FIND_CAP_TTL	48
141 
142 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
143 				   u8 pos, int cap, int *ttl)
144 {
145 	u8 id;
146 
147 	while ((*ttl)--) {
148 		pci_bus_read_config_byte(bus, devfn, pos, &pos);
149 		if (pos < 0x40)
150 			break;
151 		pos &= ~3;
152 		pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID,
153 					 &id);
154 		if (id == 0xff)
155 			break;
156 		if (id == cap)
157 			return pos;
158 		pos += PCI_CAP_LIST_NEXT;
159 	}
160 	return 0;
161 }
162 
163 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
164 			       u8 pos, int cap)
165 {
166 	int ttl = PCI_FIND_CAP_TTL;
167 
168 	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
169 }
170 
171 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
172 {
173 	return __pci_find_next_cap(dev->bus, dev->devfn,
174 				   pos + PCI_CAP_LIST_NEXT, cap);
175 }
176 EXPORT_SYMBOL_GPL(pci_find_next_capability);
177 
178 static int __pci_bus_find_cap_start(struct pci_bus *bus,
179 				    unsigned int devfn, u8 hdr_type)
180 {
181 	u16 status;
182 
183 	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
184 	if (!(status & PCI_STATUS_CAP_LIST))
185 		return 0;
186 
187 	switch (hdr_type) {
188 	case PCI_HEADER_TYPE_NORMAL:
189 	case PCI_HEADER_TYPE_BRIDGE:
190 		return PCI_CAPABILITY_LIST;
191 	case PCI_HEADER_TYPE_CARDBUS:
192 		return PCI_CB_CAPABILITY_LIST;
193 	default:
194 		return 0;
195 	}
196 
197 	return 0;
198 }
199 
200 /**
201  * pci_find_capability - query for devices' capabilities
202  * @dev: PCI device to query
203  * @cap: capability code
204  *
205  * Tell if a device supports a given PCI capability.
206  * Returns the address of the requested capability structure within the
207  * device's PCI configuration space or 0 in case the device does not
208  * support it.  Possible values for @cap:
209  *
210  *  %PCI_CAP_ID_PM           Power Management
211  *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
212  *  %PCI_CAP_ID_VPD          Vital Product Data
213  *  %PCI_CAP_ID_SLOTID       Slot Identification
214  *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
215  *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
216  *  %PCI_CAP_ID_PCIX         PCI-X
217  *  %PCI_CAP_ID_EXP          PCI Express
218  */
219 int pci_find_capability(struct pci_dev *dev, int cap)
220 {
221 	int pos;
222 
223 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
224 	if (pos)
225 		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
226 
227 	return pos;
228 }
229 
230 /**
231  * pci_bus_find_capability - query for devices' capabilities
232  * @bus:   the PCI bus to query
233  * @devfn: PCI device to query
234  * @cap:   capability code
235  *
236  * Like pci_find_capability() but works for pci devices that do not have a
237  * pci_dev structure set up yet.
238  *
239  * Returns the address of the requested capability structure within the
240  * device's PCI configuration space or 0 in case the device does not
241  * support it.
242  */
243 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
244 {
245 	int pos;
246 	u8 hdr_type;
247 
248 	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
249 
250 	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
251 	if (pos)
252 		pos = __pci_find_next_cap(bus, devfn, pos, cap);
253 
254 	return pos;
255 }
256 
257 /**
258  * pci_find_next_ext_capability - Find an extended capability
259  * @dev: PCI device to query
260  * @start: address at which to start looking (0 to start at beginning of list)
261  * @cap: capability code
262  *
263  * Returns the address of the next matching extended capability structure
264  * within the device's PCI configuration space or 0 if the device does
265  * not support it.  Some capabilities can occur several times, e.g., the
266  * vendor-specific capability, and this provides a way to find them all.
267  */
268 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
269 {
270 	u32 header;
271 	int ttl;
272 	int pos = PCI_CFG_SPACE_SIZE;
273 
274 	/* minimum 8 bytes per capability */
275 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
276 
277 	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
278 		return 0;
279 
280 	if (start)
281 		pos = start;
282 
283 	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
284 		return 0;
285 
286 	/*
287 	 * If we have no capabilities, this is indicated by cap ID,
288 	 * cap version and next pointer all being 0.
289 	 */
290 	if (header == 0)
291 		return 0;
292 
293 	while (ttl-- > 0) {
294 		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
295 			return pos;
296 
297 		pos = PCI_EXT_CAP_NEXT(header);
298 		if (pos < PCI_CFG_SPACE_SIZE)
299 			break;
300 
301 		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
302 			break;
303 	}
304 
305 	return 0;
306 }
307 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
308 
309 /**
310  * pci_find_ext_capability - Find an extended capability
311  * @dev: PCI device to query
312  * @cap: capability code
313  *
314  * Returns the address of the requested extended capability structure
315  * within the device's PCI configuration space or 0 if the device does
316  * not support it.  Possible values for @cap:
317  *
318  *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
319  *  %PCI_EXT_CAP_ID_VC		Virtual Channel
320  *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
321  *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
322  */
323 int pci_find_ext_capability(struct pci_dev *dev, int cap)
324 {
325 	return pci_find_next_ext_capability(dev, 0, cap);
326 }
327 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
328 
329 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
330 {
331 	int rc, ttl = PCI_FIND_CAP_TTL;
332 	u8 cap, mask;
333 
334 	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
335 		mask = HT_3BIT_CAP_MASK;
336 	else
337 		mask = HT_5BIT_CAP_MASK;
338 
339 	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
340 				      PCI_CAP_ID_HT, &ttl);
341 	while (pos) {
342 		rc = pci_read_config_byte(dev, pos + 3, &cap);
343 		if (rc != PCIBIOS_SUCCESSFUL)
344 			return 0;
345 
346 		if ((cap & mask) == ht_cap)
347 			return pos;
348 
349 		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
350 					      pos + PCI_CAP_LIST_NEXT,
351 					      PCI_CAP_ID_HT, &ttl);
352 	}
353 
354 	return 0;
355 }
356 /**
357  * pci_find_next_ht_capability - query a device's Hypertransport capabilities
358  * @dev: PCI device to query
359  * @pos: Position from which to continue searching
360  * @ht_cap: Hypertransport capability code
361  *
362  * To be used in conjunction with pci_find_ht_capability() to search for
363  * all capabilities matching @ht_cap. @pos should always be a value returned
364  * from pci_find_ht_capability().
365  *
366  * NB. To be 100% safe against broken PCI devices, the caller should take
367  * steps to avoid an infinite loop.
368  */
369 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
370 {
371 	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
372 }
373 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
374 
375 /**
376  * pci_find_ht_capability - query a device's Hypertransport capabilities
377  * @dev: PCI device to query
378  * @ht_cap: Hypertransport capability code
379  *
380  * Tell if a device supports a given Hypertransport capability.
381  * Returns an address within the device's PCI configuration space
382  * or 0 in case the device does not support the request capability.
383  * The address points to the PCI capability, of type PCI_CAP_ID_HT,
384  * which has a Hypertransport capability matching @ht_cap.
385  */
386 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
387 {
388 	int pos;
389 
390 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
391 	if (pos)
392 		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
393 
394 	return pos;
395 }
396 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
397 
398 /**
399  * pci_find_parent_resource - return resource region of parent bus of given region
400  * @dev: PCI device structure contains resources to be searched
401  * @res: child resource record for which parent is sought
402  *
403  *  For given resource region of given device, return the resource
404  *  region of parent bus the given region is contained in or where
405  *  it should be allocated from.
406  */
407 struct resource *
408 pci_find_parent_resource(const struct pci_dev *dev, struct resource *res)
409 {
410 	const struct pci_bus *bus = dev->bus;
411 	int i;
412 	struct resource *best = NULL, *r;
413 
414 	pci_bus_for_each_resource(bus, r, i) {
415 		if (!r)
416 			continue;
417 		if (res->start && !(res->start >= r->start && res->end <= r->end))
418 			continue;	/* Not contained */
419 		if ((res->flags ^ r->flags) & (IORESOURCE_IO | IORESOURCE_MEM))
420 			continue;	/* Wrong type */
421 		if (!((res->flags ^ r->flags) & IORESOURCE_PREFETCH))
422 			return r;	/* Exact match */
423 		/* We can't insert a non-prefetch resource inside a prefetchable parent .. */
424 		if (r->flags & IORESOURCE_PREFETCH)
425 			continue;
426 		/* .. but we can put a prefetchable resource inside a non-prefetchable one */
427 		if (!best)
428 			best = r;
429 	}
430 	return best;
431 }
432 
433 /**
434  * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
435  * @dev: PCI device to have its BARs restored
436  *
437  * Restore the BAR values for a given device, so as to make it
438  * accessible by its driver.
439  */
440 static void
441 pci_restore_bars(struct pci_dev *dev)
442 {
443 	int i;
444 
445 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
446 		pci_update_resource(dev, i);
447 }
448 
449 static struct pci_platform_pm_ops *pci_platform_pm;
450 
451 int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
452 {
453 	if (!ops->is_manageable || !ops->set_state || !ops->choose_state
454 	    || !ops->sleep_wake)
455 		return -EINVAL;
456 	pci_platform_pm = ops;
457 	return 0;
458 }
459 
460 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
461 {
462 	return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
463 }
464 
465 static inline int platform_pci_set_power_state(struct pci_dev *dev,
466                                                 pci_power_t t)
467 {
468 	return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
469 }
470 
471 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
472 {
473 	return pci_platform_pm ?
474 			pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
475 }
476 
477 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
478 {
479 	return pci_platform_pm ?
480 			pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
481 }
482 
483 static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable)
484 {
485 	return pci_platform_pm ?
486 			pci_platform_pm->run_wake(dev, enable) : -ENODEV;
487 }
488 
489 /**
490  * pci_raw_set_power_state - Use PCI PM registers to set the power state of
491  *                           given PCI device
492  * @dev: PCI device to handle.
493  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
494  *
495  * RETURN VALUE:
496  * -EINVAL if the requested state is invalid.
497  * -EIO if device does not support PCI PM or its PM capabilities register has a
498  * wrong version, or device doesn't support the requested state.
499  * 0 if device already is in the requested state.
500  * 0 if device's power state has been successfully changed.
501  */
502 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
503 {
504 	u16 pmcsr;
505 	bool need_restore = false;
506 
507 	/* Check if we're already there */
508 	if (dev->current_state == state)
509 		return 0;
510 
511 	if (!dev->pm_cap)
512 		return -EIO;
513 
514 	if (state < PCI_D0 || state > PCI_D3hot)
515 		return -EINVAL;
516 
517 	/* Validate current state:
518 	 * Can enter D0 from any state, but if we can only go deeper
519 	 * to sleep if we're already in a low power state
520 	 */
521 	if (state != PCI_D0 && dev->current_state <= PCI_D3cold
522 	    && dev->current_state > state) {
523 		dev_err(&dev->dev, "invalid power transition "
524 			"(from state %d to %d)\n", dev->current_state, state);
525 		return -EINVAL;
526 	}
527 
528 	/* check if this device supports the desired state */
529 	if ((state == PCI_D1 && !dev->d1_support)
530 	   || (state == PCI_D2 && !dev->d2_support))
531 		return -EIO;
532 
533 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
534 
535 	/* If we're (effectively) in D3, force entire word to 0.
536 	 * This doesn't affect PME_Status, disables PME_En, and
537 	 * sets PowerState to 0.
538 	 */
539 	switch (dev->current_state) {
540 	case PCI_D0:
541 	case PCI_D1:
542 	case PCI_D2:
543 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
544 		pmcsr |= state;
545 		break;
546 	case PCI_D3hot:
547 	case PCI_D3cold:
548 	case PCI_UNKNOWN: /* Boot-up */
549 		if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
550 		 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
551 			need_restore = true;
552 		/* Fall-through: force to D0 */
553 	default:
554 		pmcsr = 0;
555 		break;
556 	}
557 
558 	/* enter specified state */
559 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
560 
561 	/* Mandatory power management transition delays */
562 	/* see PCI PM 1.1 5.6.1 table 18 */
563 	if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
564 		pci_dev_d3_sleep(dev);
565 	else if (state == PCI_D2 || dev->current_state == PCI_D2)
566 		udelay(PCI_PM_D2_DELAY);
567 
568 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
569 	dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
570 	if (dev->current_state != state && printk_ratelimit())
571 		dev_info(&dev->dev, "Refused to change power state, "
572 			"currently in D%d\n", dev->current_state);
573 
574 	/*
575 	 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
576 	 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
577 	 * from D3hot to D0 _may_ perform an internal reset, thereby
578 	 * going to "D0 Uninitialized" rather than "D0 Initialized".
579 	 * For example, at least some versions of the 3c905B and the
580 	 * 3c556B exhibit this behaviour.
581 	 *
582 	 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
583 	 * devices in a D3hot state at boot.  Consequently, we need to
584 	 * restore at least the BARs so that the device will be
585 	 * accessible to its driver.
586 	 */
587 	if (need_restore)
588 		pci_restore_bars(dev);
589 
590 	if (dev->bus->self)
591 		pcie_aspm_pm_state_change(dev->bus->self);
592 
593 	return 0;
594 }
595 
596 /**
597  * pci_update_current_state - Read PCI power state of given device from its
598  *                            PCI PM registers and cache it
599  * @dev: PCI device to handle.
600  * @state: State to cache in case the device doesn't have the PM capability
601  */
602 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
603 {
604 	if (dev->pm_cap) {
605 		u16 pmcsr;
606 
607 		/*
608 		 * Configuration space is not accessible for device in
609 		 * D3cold, so just keep or set D3cold for safety
610 		 */
611 		if (dev->current_state == PCI_D3cold)
612 			return;
613 		if (state == PCI_D3cold) {
614 			dev->current_state = PCI_D3cold;
615 			return;
616 		}
617 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
618 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
619 	} else {
620 		dev->current_state = state;
621 	}
622 }
623 
624 /**
625  * pci_power_up - Put the given device into D0 forcibly
626  * @dev: PCI device to power up
627  */
628 void pci_power_up(struct pci_dev *dev)
629 {
630 	if (platform_pci_power_manageable(dev))
631 		platform_pci_set_power_state(dev, PCI_D0);
632 
633 	pci_raw_set_power_state(dev, PCI_D0);
634 	pci_update_current_state(dev, PCI_D0);
635 }
636 
637 /**
638  * pci_platform_power_transition - Use platform to change device power state
639  * @dev: PCI device to handle.
640  * @state: State to put the device into.
641  */
642 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
643 {
644 	int error;
645 
646 	if (platform_pci_power_manageable(dev)) {
647 		error = platform_pci_set_power_state(dev, state);
648 		if (!error)
649 			pci_update_current_state(dev, state);
650 	} else
651 		error = -ENODEV;
652 
653 	if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
654 		dev->current_state = PCI_D0;
655 
656 	return error;
657 }
658 
659 /**
660  * __pci_start_power_transition - Start power transition of a PCI device
661  * @dev: PCI device to handle.
662  * @state: State to put the device into.
663  */
664 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
665 {
666 	if (state == PCI_D0) {
667 		pci_platform_power_transition(dev, PCI_D0);
668 		/*
669 		 * Mandatory power management transition delays, see
670 		 * PCI Express Base Specification Revision 2.0 Section
671 		 * 6.6.1: Conventional Reset.  Do not delay for
672 		 * devices powered on/off by corresponding bridge,
673 		 * because have already delayed for the bridge.
674 		 */
675 		if (dev->runtime_d3cold) {
676 			msleep(dev->d3cold_delay);
677 			/*
678 			 * When powering on a bridge from D3cold, the
679 			 * whole hierarchy may be powered on into
680 			 * D0uninitialized state, resume them to give
681 			 * them a chance to suspend again
682 			 */
683 			pci_wakeup_bus(dev->subordinate);
684 		}
685 	}
686 }
687 
688 /**
689  * __pci_dev_set_current_state - Set current state of a PCI device
690  * @dev: Device to handle
691  * @data: pointer to state to be set
692  */
693 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
694 {
695 	pci_power_t state = *(pci_power_t *)data;
696 
697 	dev->current_state = state;
698 	return 0;
699 }
700 
701 /**
702  * __pci_bus_set_current_state - Walk given bus and set current state of devices
703  * @bus: Top bus of the subtree to walk.
704  * @state: state to be set
705  */
706 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
707 {
708 	if (bus)
709 		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
710 }
711 
712 /**
713  * __pci_complete_power_transition - Complete power transition of a PCI device
714  * @dev: PCI device to handle.
715  * @state: State to put the device into.
716  *
717  * This function should not be called directly by device drivers.
718  */
719 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
720 {
721 	int ret;
722 
723 	if (state <= PCI_D0)
724 		return -EINVAL;
725 	ret = pci_platform_power_transition(dev, state);
726 	/* Power off the bridge may power off the whole hierarchy */
727 	if (!ret && state == PCI_D3cold)
728 		__pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
729 	return ret;
730 }
731 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
732 
733 /**
734  * pci_set_power_state - Set the power state of a PCI device
735  * @dev: PCI device to handle.
736  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
737  *
738  * Transition a device to a new power state, using the platform firmware and/or
739  * the device's PCI PM registers.
740  *
741  * RETURN VALUE:
742  * -EINVAL if the requested state is invalid.
743  * -EIO if device does not support PCI PM or its PM capabilities register has a
744  * wrong version, or device doesn't support the requested state.
745  * 0 if device already is in the requested state.
746  * 0 if device's power state has been successfully changed.
747  */
748 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
749 {
750 	int error;
751 
752 	/* bound the state we're entering */
753 	if (state > PCI_D3cold)
754 		state = PCI_D3cold;
755 	else if (state < PCI_D0)
756 		state = PCI_D0;
757 	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
758 		/*
759 		 * If the device or the parent bridge do not support PCI PM,
760 		 * ignore the request if we're doing anything other than putting
761 		 * it into D0 (which would only happen on boot).
762 		 */
763 		return 0;
764 
765 	/* Check if we're already there */
766 	if (dev->current_state == state)
767 		return 0;
768 
769 	__pci_start_power_transition(dev, state);
770 
771 	/* This device is quirked not to be put into D3, so
772 	   don't put it in D3 */
773 	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
774 		return 0;
775 
776 	/*
777 	 * To put device in D3cold, we put device into D3hot in native
778 	 * way, then put device into D3cold with platform ops
779 	 */
780 	error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
781 					PCI_D3hot : state);
782 
783 	if (!__pci_complete_power_transition(dev, state))
784 		error = 0;
785 	/*
786 	 * When aspm_policy is "powersave" this call ensures
787 	 * that ASPM is configured.
788 	 */
789 	if (!error && dev->bus->self)
790 		pcie_aspm_powersave_config_link(dev->bus->self);
791 
792 	return error;
793 }
794 
795 /**
796  * pci_choose_state - Choose the power state of a PCI device
797  * @dev: PCI device to be suspended
798  * @state: target sleep state for the whole system. This is the value
799  *	that is passed to suspend() function.
800  *
801  * Returns PCI power state suitable for given device and given system
802  * message.
803  */
804 
805 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
806 {
807 	pci_power_t ret;
808 
809 	if (!dev->pm_cap)
810 		return PCI_D0;
811 
812 	ret = platform_pci_choose_state(dev);
813 	if (ret != PCI_POWER_ERROR)
814 		return ret;
815 
816 	switch (state.event) {
817 	case PM_EVENT_ON:
818 		return PCI_D0;
819 	case PM_EVENT_FREEZE:
820 	case PM_EVENT_PRETHAW:
821 		/* REVISIT both freeze and pre-thaw "should" use D0 */
822 	case PM_EVENT_SUSPEND:
823 	case PM_EVENT_HIBERNATE:
824 		return PCI_D3hot;
825 	default:
826 		dev_info(&dev->dev, "unrecognized suspend event %d\n",
827 			 state.event);
828 		BUG();
829 	}
830 	return PCI_D0;
831 }
832 
833 EXPORT_SYMBOL(pci_choose_state);
834 
835 #define PCI_EXP_SAVE_REGS	7
836 
837 
838 static struct pci_cap_saved_state *pci_find_saved_cap(
839 	struct pci_dev *pci_dev, char cap)
840 {
841 	struct pci_cap_saved_state *tmp;
842 
843 	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
844 		if (tmp->cap.cap_nr == cap)
845 			return tmp;
846 	}
847 	return NULL;
848 }
849 
850 static int pci_save_pcie_state(struct pci_dev *dev)
851 {
852 	int i = 0;
853 	struct pci_cap_saved_state *save_state;
854 	u16 *cap;
855 
856 	if (!pci_is_pcie(dev))
857 		return 0;
858 
859 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
860 	if (!save_state) {
861 		dev_err(&dev->dev, "buffer not found in %s\n", __func__);
862 		return -ENOMEM;
863 	}
864 
865 	cap = (u16 *)&save_state->cap.data[0];
866 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
867 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
868 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
869 	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
870 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
871 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
872 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
873 
874 	return 0;
875 }
876 
877 static void pci_restore_pcie_state(struct pci_dev *dev)
878 {
879 	int i = 0;
880 	struct pci_cap_saved_state *save_state;
881 	u16 *cap;
882 
883 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
884 	if (!save_state)
885 		return;
886 
887 	cap = (u16 *)&save_state->cap.data[0];
888 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
889 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
890 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
891 	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
892 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
893 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
894 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
895 }
896 
897 
898 static int pci_save_pcix_state(struct pci_dev *dev)
899 {
900 	int pos;
901 	struct pci_cap_saved_state *save_state;
902 
903 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
904 	if (pos <= 0)
905 		return 0;
906 
907 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
908 	if (!save_state) {
909 		dev_err(&dev->dev, "buffer not found in %s\n", __func__);
910 		return -ENOMEM;
911 	}
912 
913 	pci_read_config_word(dev, pos + PCI_X_CMD,
914 			     (u16 *)save_state->cap.data);
915 
916 	return 0;
917 }
918 
919 static void pci_restore_pcix_state(struct pci_dev *dev)
920 {
921 	int i = 0, pos;
922 	struct pci_cap_saved_state *save_state;
923 	u16 *cap;
924 
925 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
926 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
927 	if (!save_state || pos <= 0)
928 		return;
929 	cap = (u16 *)&save_state->cap.data[0];
930 
931 	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
932 }
933 
934 
935 /**
936  * pci_save_state - save the PCI configuration space of a device before suspending
937  * @dev: - PCI device that we're dealing with
938  */
939 int
940 pci_save_state(struct pci_dev *dev)
941 {
942 	int i;
943 	/* XXX: 100% dword access ok here? */
944 	for (i = 0; i < 16; i++)
945 		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
946 	dev->state_saved = true;
947 	if ((i = pci_save_pcie_state(dev)) != 0)
948 		return i;
949 	if ((i = pci_save_pcix_state(dev)) != 0)
950 		return i;
951 	return 0;
952 }
953 
954 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
955 				     u32 saved_val, int retry)
956 {
957 	u32 val;
958 
959 	pci_read_config_dword(pdev, offset, &val);
960 	if (val == saved_val)
961 		return;
962 
963 	for (;;) {
964 		dev_dbg(&pdev->dev, "restoring config space at offset "
965 			"%#x (was %#x, writing %#x)\n", offset, val, saved_val);
966 		pci_write_config_dword(pdev, offset, saved_val);
967 		if (retry-- <= 0)
968 			return;
969 
970 		pci_read_config_dword(pdev, offset, &val);
971 		if (val == saved_val)
972 			return;
973 
974 		mdelay(1);
975 	}
976 }
977 
978 static void pci_restore_config_space_range(struct pci_dev *pdev,
979 					   int start, int end, int retry)
980 {
981 	int index;
982 
983 	for (index = end; index >= start; index--)
984 		pci_restore_config_dword(pdev, 4 * index,
985 					 pdev->saved_config_space[index],
986 					 retry);
987 }
988 
989 static void pci_restore_config_space(struct pci_dev *pdev)
990 {
991 	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
992 		pci_restore_config_space_range(pdev, 10, 15, 0);
993 		/* Restore BARs before the command register. */
994 		pci_restore_config_space_range(pdev, 4, 9, 10);
995 		pci_restore_config_space_range(pdev, 0, 3, 0);
996 	} else {
997 		pci_restore_config_space_range(pdev, 0, 15, 0);
998 	}
999 }
1000 
1001 /**
1002  * pci_restore_state - Restore the saved state of a PCI device
1003  * @dev: - PCI device that we're dealing with
1004  */
1005 void pci_restore_state(struct pci_dev *dev)
1006 {
1007 	if (!dev->state_saved)
1008 		return;
1009 
1010 	/* PCI Express register must be restored first */
1011 	pci_restore_pcie_state(dev);
1012 	pci_restore_ats_state(dev);
1013 
1014 	pci_restore_config_space(dev);
1015 
1016 	pci_restore_pcix_state(dev);
1017 	pci_restore_msi_state(dev);
1018 	pci_restore_iov_state(dev);
1019 
1020 	dev->state_saved = false;
1021 }
1022 
1023 struct pci_saved_state {
1024 	u32 config_space[16];
1025 	struct pci_cap_saved_data cap[0];
1026 };
1027 
1028 /**
1029  * pci_store_saved_state - Allocate and return an opaque struct containing
1030  *			   the device saved state.
1031  * @dev: PCI device that we're dealing with
1032  *
1033  * Return NULL if no state or error.
1034  */
1035 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1036 {
1037 	struct pci_saved_state *state;
1038 	struct pci_cap_saved_state *tmp;
1039 	struct pci_cap_saved_data *cap;
1040 	size_t size;
1041 
1042 	if (!dev->state_saved)
1043 		return NULL;
1044 
1045 	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1046 
1047 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1048 		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1049 
1050 	state = kzalloc(size, GFP_KERNEL);
1051 	if (!state)
1052 		return NULL;
1053 
1054 	memcpy(state->config_space, dev->saved_config_space,
1055 	       sizeof(state->config_space));
1056 
1057 	cap = state->cap;
1058 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1059 		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1060 		memcpy(cap, &tmp->cap, len);
1061 		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1062 	}
1063 	/* Empty cap_save terminates list */
1064 
1065 	return state;
1066 }
1067 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1068 
1069 /**
1070  * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1071  * @dev: PCI device that we're dealing with
1072  * @state: Saved state returned from pci_store_saved_state()
1073  */
1074 int pci_load_saved_state(struct pci_dev *dev, struct pci_saved_state *state)
1075 {
1076 	struct pci_cap_saved_data *cap;
1077 
1078 	dev->state_saved = false;
1079 
1080 	if (!state)
1081 		return 0;
1082 
1083 	memcpy(dev->saved_config_space, state->config_space,
1084 	       sizeof(state->config_space));
1085 
1086 	cap = state->cap;
1087 	while (cap->size) {
1088 		struct pci_cap_saved_state *tmp;
1089 
1090 		tmp = pci_find_saved_cap(dev, cap->cap_nr);
1091 		if (!tmp || tmp->cap.size != cap->size)
1092 			return -EINVAL;
1093 
1094 		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1095 		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1096 		       sizeof(struct pci_cap_saved_data) + cap->size);
1097 	}
1098 
1099 	dev->state_saved = true;
1100 	return 0;
1101 }
1102 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1103 
1104 /**
1105  * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1106  *				   and free the memory allocated for it.
1107  * @dev: PCI device that we're dealing with
1108  * @state: Pointer to saved state returned from pci_store_saved_state()
1109  */
1110 int pci_load_and_free_saved_state(struct pci_dev *dev,
1111 				  struct pci_saved_state **state)
1112 {
1113 	int ret = pci_load_saved_state(dev, *state);
1114 	kfree(*state);
1115 	*state = NULL;
1116 	return ret;
1117 }
1118 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1119 
1120 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1121 {
1122 	int err;
1123 
1124 	err = pci_set_power_state(dev, PCI_D0);
1125 	if (err < 0 && err != -EIO)
1126 		return err;
1127 	err = pcibios_enable_device(dev, bars);
1128 	if (err < 0)
1129 		return err;
1130 	pci_fixup_device(pci_fixup_enable, dev);
1131 
1132 	return 0;
1133 }
1134 
1135 /**
1136  * pci_reenable_device - Resume abandoned device
1137  * @dev: PCI device to be resumed
1138  *
1139  *  Note this function is a backend of pci_default_resume and is not supposed
1140  *  to be called by normal code, write proper resume handler and use it instead.
1141  */
1142 int pci_reenable_device(struct pci_dev *dev)
1143 {
1144 	if (pci_is_enabled(dev))
1145 		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1146 	return 0;
1147 }
1148 
1149 static void pci_enable_bridge(struct pci_dev *dev)
1150 {
1151 	struct pci_dev *bridge;
1152 	int retval;
1153 
1154 	bridge = pci_upstream_bridge(dev);
1155 	if (bridge)
1156 		pci_enable_bridge(bridge);
1157 
1158 	if (pci_is_enabled(dev)) {
1159 		if (!dev->is_busmaster)
1160 			pci_set_master(dev);
1161 		return;
1162 	}
1163 
1164 	retval = pci_enable_device(dev);
1165 	if (retval)
1166 		dev_err(&dev->dev, "Error enabling bridge (%d), continuing\n",
1167 			retval);
1168 	pci_set_master(dev);
1169 }
1170 
1171 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1172 {
1173 	struct pci_dev *bridge;
1174 	int err;
1175 	int i, bars = 0;
1176 
1177 	/*
1178 	 * Power state could be unknown at this point, either due to a fresh
1179 	 * boot or a device removal call.  So get the current power state
1180 	 * so that things like MSI message writing will behave as expected
1181 	 * (e.g. if the device really is in D0 at enable time).
1182 	 */
1183 	if (dev->pm_cap) {
1184 		u16 pmcsr;
1185 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1186 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1187 	}
1188 
1189 	if (atomic_inc_return(&dev->enable_cnt) > 1)
1190 		return 0;		/* already enabled */
1191 
1192 	bridge = pci_upstream_bridge(dev);
1193 	if (bridge)
1194 		pci_enable_bridge(bridge);
1195 
1196 	/* only skip sriov related */
1197 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1198 		if (dev->resource[i].flags & flags)
1199 			bars |= (1 << i);
1200 	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1201 		if (dev->resource[i].flags & flags)
1202 			bars |= (1 << i);
1203 
1204 	err = do_pci_enable_device(dev, bars);
1205 	if (err < 0)
1206 		atomic_dec(&dev->enable_cnt);
1207 	return err;
1208 }
1209 
1210 /**
1211  * pci_enable_device_io - Initialize a device for use with IO space
1212  * @dev: PCI device to be initialized
1213  *
1214  *  Initialize device before it's used by a driver. Ask low-level code
1215  *  to enable I/O resources. Wake up the device if it was suspended.
1216  *  Beware, this function can fail.
1217  */
1218 int pci_enable_device_io(struct pci_dev *dev)
1219 {
1220 	return pci_enable_device_flags(dev, IORESOURCE_IO);
1221 }
1222 
1223 /**
1224  * pci_enable_device_mem - Initialize a device for use with Memory space
1225  * @dev: PCI device to be initialized
1226  *
1227  *  Initialize device before it's used by a driver. Ask low-level code
1228  *  to enable Memory resources. Wake up the device if it was suspended.
1229  *  Beware, this function can fail.
1230  */
1231 int pci_enable_device_mem(struct pci_dev *dev)
1232 {
1233 	return pci_enable_device_flags(dev, IORESOURCE_MEM);
1234 }
1235 
1236 /**
1237  * pci_enable_device - Initialize device before it's used by a driver.
1238  * @dev: PCI device to be initialized
1239  *
1240  *  Initialize device before it's used by a driver. Ask low-level code
1241  *  to enable I/O and memory. Wake up the device if it was suspended.
1242  *  Beware, this function can fail.
1243  *
1244  *  Note we don't actually enable the device many times if we call
1245  *  this function repeatedly (we just increment the count).
1246  */
1247 int pci_enable_device(struct pci_dev *dev)
1248 {
1249 	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1250 }
1251 
1252 /*
1253  * Managed PCI resources.  This manages device on/off, intx/msi/msix
1254  * on/off and BAR regions.  pci_dev itself records msi/msix status, so
1255  * there's no need to track it separately.  pci_devres is initialized
1256  * when a device is enabled using managed PCI device enable interface.
1257  */
1258 struct pci_devres {
1259 	unsigned int enabled:1;
1260 	unsigned int pinned:1;
1261 	unsigned int orig_intx:1;
1262 	unsigned int restore_intx:1;
1263 	u32 region_mask;
1264 };
1265 
1266 static void pcim_release(struct device *gendev, void *res)
1267 {
1268 	struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
1269 	struct pci_devres *this = res;
1270 	int i;
1271 
1272 	if (dev->msi_enabled)
1273 		pci_disable_msi(dev);
1274 	if (dev->msix_enabled)
1275 		pci_disable_msix(dev);
1276 
1277 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1278 		if (this->region_mask & (1 << i))
1279 			pci_release_region(dev, i);
1280 
1281 	if (this->restore_intx)
1282 		pci_intx(dev, this->orig_intx);
1283 
1284 	if (this->enabled && !this->pinned)
1285 		pci_disable_device(dev);
1286 }
1287 
1288 static struct pci_devres * get_pci_dr(struct pci_dev *pdev)
1289 {
1290 	struct pci_devres *dr, *new_dr;
1291 
1292 	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1293 	if (dr)
1294 		return dr;
1295 
1296 	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1297 	if (!new_dr)
1298 		return NULL;
1299 	return devres_get(&pdev->dev, new_dr, NULL, NULL);
1300 }
1301 
1302 static struct pci_devres * find_pci_dr(struct pci_dev *pdev)
1303 {
1304 	if (pci_is_managed(pdev))
1305 		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1306 	return NULL;
1307 }
1308 
1309 /**
1310  * pcim_enable_device - Managed pci_enable_device()
1311  * @pdev: PCI device to be initialized
1312  *
1313  * Managed pci_enable_device().
1314  */
1315 int pcim_enable_device(struct pci_dev *pdev)
1316 {
1317 	struct pci_devres *dr;
1318 	int rc;
1319 
1320 	dr = get_pci_dr(pdev);
1321 	if (unlikely(!dr))
1322 		return -ENOMEM;
1323 	if (dr->enabled)
1324 		return 0;
1325 
1326 	rc = pci_enable_device(pdev);
1327 	if (!rc) {
1328 		pdev->is_managed = 1;
1329 		dr->enabled = 1;
1330 	}
1331 	return rc;
1332 }
1333 
1334 /**
1335  * pcim_pin_device - Pin managed PCI device
1336  * @pdev: PCI device to pin
1337  *
1338  * Pin managed PCI device @pdev.  Pinned device won't be disabled on
1339  * driver detach.  @pdev must have been enabled with
1340  * pcim_enable_device().
1341  */
1342 void pcim_pin_device(struct pci_dev *pdev)
1343 {
1344 	struct pci_devres *dr;
1345 
1346 	dr = find_pci_dr(pdev);
1347 	WARN_ON(!dr || !dr->enabled);
1348 	if (dr)
1349 		dr->pinned = 1;
1350 }
1351 
1352 /*
1353  * pcibios_add_device - provide arch specific hooks when adding device dev
1354  * @dev: the PCI device being added
1355  *
1356  * Permits the platform to provide architecture specific functionality when
1357  * devices are added. This is the default implementation. Architecture
1358  * implementations can override this.
1359  */
1360 int __weak pcibios_add_device (struct pci_dev *dev)
1361 {
1362 	return 0;
1363 }
1364 
1365 /**
1366  * pcibios_release_device - provide arch specific hooks when releasing device dev
1367  * @dev: the PCI device being released
1368  *
1369  * Permits the platform to provide architecture specific functionality when
1370  * devices are released. This is the default implementation. Architecture
1371  * implementations can override this.
1372  */
1373 void __weak pcibios_release_device(struct pci_dev *dev) {}
1374 
1375 /**
1376  * pcibios_disable_device - disable arch specific PCI resources for device dev
1377  * @dev: the PCI device to disable
1378  *
1379  * Disables architecture specific PCI resources for the device. This
1380  * is the default implementation. Architecture implementations can
1381  * override this.
1382  */
1383 void __weak pcibios_disable_device (struct pci_dev *dev) {}
1384 
1385 static void do_pci_disable_device(struct pci_dev *dev)
1386 {
1387 	u16 pci_command;
1388 
1389 	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1390 	if (pci_command & PCI_COMMAND_MASTER) {
1391 		pci_command &= ~PCI_COMMAND_MASTER;
1392 		pci_write_config_word(dev, PCI_COMMAND, pci_command);
1393 	}
1394 
1395 	pcibios_disable_device(dev);
1396 }
1397 
1398 /**
1399  * pci_disable_enabled_device - Disable device without updating enable_cnt
1400  * @dev: PCI device to disable
1401  *
1402  * NOTE: This function is a backend of PCI power management routines and is
1403  * not supposed to be called drivers.
1404  */
1405 void pci_disable_enabled_device(struct pci_dev *dev)
1406 {
1407 	if (pci_is_enabled(dev))
1408 		do_pci_disable_device(dev);
1409 }
1410 
1411 /**
1412  * pci_disable_device - Disable PCI device after use
1413  * @dev: PCI device to be disabled
1414  *
1415  * Signal to the system that the PCI device is not in use by the system
1416  * anymore.  This only involves disabling PCI bus-mastering, if active.
1417  *
1418  * Note we don't actually disable the device until all callers of
1419  * pci_enable_device() have called pci_disable_device().
1420  */
1421 void
1422 pci_disable_device(struct pci_dev *dev)
1423 {
1424 	struct pci_devres *dr;
1425 
1426 	dr = find_pci_dr(dev);
1427 	if (dr)
1428 		dr->enabled = 0;
1429 
1430 	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1431 		      "disabling already-disabled device");
1432 
1433 	if (atomic_dec_return(&dev->enable_cnt) != 0)
1434 		return;
1435 
1436 	do_pci_disable_device(dev);
1437 
1438 	dev->is_busmaster = 0;
1439 }
1440 
1441 /**
1442  * pcibios_set_pcie_reset_state - set reset state for device dev
1443  * @dev: the PCIe device reset
1444  * @state: Reset state to enter into
1445  *
1446  *
1447  * Sets the PCIe reset state for the device. This is the default
1448  * implementation. Architecture implementations can override this.
1449  */
1450 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1451 					enum pcie_reset_state state)
1452 {
1453 	return -EINVAL;
1454 }
1455 
1456 /**
1457  * pci_set_pcie_reset_state - set reset state for device dev
1458  * @dev: the PCIe device reset
1459  * @state: Reset state to enter into
1460  *
1461  *
1462  * Sets the PCI reset state for the device.
1463  */
1464 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1465 {
1466 	return pcibios_set_pcie_reset_state(dev, state);
1467 }
1468 
1469 /**
1470  * pci_check_pme_status - Check if given device has generated PME.
1471  * @dev: Device to check.
1472  *
1473  * Check the PME status of the device and if set, clear it and clear PME enable
1474  * (if set).  Return 'true' if PME status and PME enable were both set or
1475  * 'false' otherwise.
1476  */
1477 bool pci_check_pme_status(struct pci_dev *dev)
1478 {
1479 	int pmcsr_pos;
1480 	u16 pmcsr;
1481 	bool ret = false;
1482 
1483 	if (!dev->pm_cap)
1484 		return false;
1485 
1486 	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1487 	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1488 	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1489 		return false;
1490 
1491 	/* Clear PME status. */
1492 	pmcsr |= PCI_PM_CTRL_PME_STATUS;
1493 	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1494 		/* Disable PME to avoid interrupt flood. */
1495 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1496 		ret = true;
1497 	}
1498 
1499 	pci_write_config_word(dev, pmcsr_pos, pmcsr);
1500 
1501 	return ret;
1502 }
1503 
1504 /**
1505  * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1506  * @dev: Device to handle.
1507  * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1508  *
1509  * Check if @dev has generated PME and queue a resume request for it in that
1510  * case.
1511  */
1512 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1513 {
1514 	if (pme_poll_reset && dev->pme_poll)
1515 		dev->pme_poll = false;
1516 
1517 	if (pci_check_pme_status(dev)) {
1518 		pci_wakeup_event(dev);
1519 		pm_request_resume(&dev->dev);
1520 	}
1521 	return 0;
1522 }
1523 
1524 /**
1525  * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1526  * @bus: Top bus of the subtree to walk.
1527  */
1528 void pci_pme_wakeup_bus(struct pci_bus *bus)
1529 {
1530 	if (bus)
1531 		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1532 }
1533 
1534 /**
1535  * pci_wakeup - Wake up a PCI device
1536  * @pci_dev: Device to handle.
1537  * @ign: ignored parameter
1538  */
1539 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
1540 {
1541 	pci_wakeup_event(pci_dev);
1542 	pm_request_resume(&pci_dev->dev);
1543 	return 0;
1544 }
1545 
1546 /**
1547  * pci_wakeup_bus - Walk given bus and wake up devices on it
1548  * @bus: Top bus of the subtree to walk.
1549  */
1550 void pci_wakeup_bus(struct pci_bus *bus)
1551 {
1552 	if (bus)
1553 		pci_walk_bus(bus, pci_wakeup, NULL);
1554 }
1555 
1556 /**
1557  * pci_pme_capable - check the capability of PCI device to generate PME#
1558  * @dev: PCI device to handle.
1559  * @state: PCI state from which device will issue PME#.
1560  */
1561 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1562 {
1563 	if (!dev->pm_cap)
1564 		return false;
1565 
1566 	return !!(dev->pme_support & (1 << state));
1567 }
1568 
1569 static void pci_pme_list_scan(struct work_struct *work)
1570 {
1571 	struct pci_pme_device *pme_dev, *n;
1572 
1573 	mutex_lock(&pci_pme_list_mutex);
1574 	if (!list_empty(&pci_pme_list)) {
1575 		list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1576 			if (pme_dev->dev->pme_poll) {
1577 				struct pci_dev *bridge;
1578 
1579 				bridge = pme_dev->dev->bus->self;
1580 				/*
1581 				 * If bridge is in low power state, the
1582 				 * configuration space of subordinate devices
1583 				 * may be not accessible
1584 				 */
1585 				if (bridge && bridge->current_state != PCI_D0)
1586 					continue;
1587 				pci_pme_wakeup(pme_dev->dev, NULL);
1588 			} else {
1589 				list_del(&pme_dev->list);
1590 				kfree(pme_dev);
1591 			}
1592 		}
1593 		if (!list_empty(&pci_pme_list))
1594 			schedule_delayed_work(&pci_pme_work,
1595 					      msecs_to_jiffies(PME_TIMEOUT));
1596 	}
1597 	mutex_unlock(&pci_pme_list_mutex);
1598 }
1599 
1600 /**
1601  * pci_pme_active - enable or disable PCI device's PME# function
1602  * @dev: PCI device to handle.
1603  * @enable: 'true' to enable PME# generation; 'false' to disable it.
1604  *
1605  * The caller must verify that the device is capable of generating PME# before
1606  * calling this function with @enable equal to 'true'.
1607  */
1608 void pci_pme_active(struct pci_dev *dev, bool enable)
1609 {
1610 	u16 pmcsr;
1611 
1612 	if (!dev->pme_support)
1613 		return;
1614 
1615 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1616 	/* Clear PME_Status by writing 1 to it and enable PME# */
1617 	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1618 	if (!enable)
1619 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1620 
1621 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1622 
1623 	/*
1624 	 * PCI (as opposed to PCIe) PME requires that the device have
1625 	 * its PME# line hooked up correctly. Not all hardware vendors
1626 	 * do this, so the PME never gets delivered and the device
1627 	 * remains asleep. The easiest way around this is to
1628 	 * periodically walk the list of suspended devices and check
1629 	 * whether any have their PME flag set. The assumption is that
1630 	 * we'll wake up often enough anyway that this won't be a huge
1631 	 * hit, and the power savings from the devices will still be a
1632 	 * win.
1633 	 *
1634 	 * Although PCIe uses in-band PME message instead of PME# line
1635 	 * to report PME, PME does not work for some PCIe devices in
1636 	 * reality.  For example, there are devices that set their PME
1637 	 * status bits, but don't really bother to send a PME message;
1638 	 * there are PCI Express Root Ports that don't bother to
1639 	 * trigger interrupts when they receive PME messages from the
1640 	 * devices below.  So PME poll is used for PCIe devices too.
1641 	 */
1642 
1643 	if (dev->pme_poll) {
1644 		struct pci_pme_device *pme_dev;
1645 		if (enable) {
1646 			pme_dev = kmalloc(sizeof(struct pci_pme_device),
1647 					  GFP_KERNEL);
1648 			if (!pme_dev) {
1649 				dev_warn(&dev->dev, "can't enable PME#\n");
1650 				return;
1651 			}
1652 			pme_dev->dev = dev;
1653 			mutex_lock(&pci_pme_list_mutex);
1654 			list_add(&pme_dev->list, &pci_pme_list);
1655 			if (list_is_singular(&pci_pme_list))
1656 				schedule_delayed_work(&pci_pme_work,
1657 						      msecs_to_jiffies(PME_TIMEOUT));
1658 			mutex_unlock(&pci_pme_list_mutex);
1659 		} else {
1660 			mutex_lock(&pci_pme_list_mutex);
1661 			list_for_each_entry(pme_dev, &pci_pme_list, list) {
1662 				if (pme_dev->dev == dev) {
1663 					list_del(&pme_dev->list);
1664 					kfree(pme_dev);
1665 					break;
1666 				}
1667 			}
1668 			mutex_unlock(&pci_pme_list_mutex);
1669 		}
1670 	}
1671 
1672 	dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled");
1673 }
1674 
1675 /**
1676  * __pci_enable_wake - enable PCI device as wakeup event source
1677  * @dev: PCI device affected
1678  * @state: PCI state from which device will issue wakeup events
1679  * @runtime: True if the events are to be generated at run time
1680  * @enable: True to enable event generation; false to disable
1681  *
1682  * This enables the device as a wakeup event source, or disables it.
1683  * When such events involves platform-specific hooks, those hooks are
1684  * called automatically by this routine.
1685  *
1686  * Devices with legacy power management (no standard PCI PM capabilities)
1687  * always require such platform hooks.
1688  *
1689  * RETURN VALUE:
1690  * 0 is returned on success
1691  * -EINVAL is returned if device is not supposed to wake up the system
1692  * Error code depending on the platform is returned if both the platform and
1693  * the native mechanism fail to enable the generation of wake-up events
1694  */
1695 int __pci_enable_wake(struct pci_dev *dev, pci_power_t state,
1696 		      bool runtime, bool enable)
1697 {
1698 	int ret = 0;
1699 
1700 	if (enable && !runtime && !device_may_wakeup(&dev->dev))
1701 		return -EINVAL;
1702 
1703 	/* Don't do the same thing twice in a row for one device. */
1704 	if (!!enable == !!dev->wakeup_prepared)
1705 		return 0;
1706 
1707 	/*
1708 	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1709 	 * Anderson we should be doing PME# wake enable followed by ACPI wake
1710 	 * enable.  To disable wake-up we call the platform first, for symmetry.
1711 	 */
1712 
1713 	if (enable) {
1714 		int error;
1715 
1716 		if (pci_pme_capable(dev, state))
1717 			pci_pme_active(dev, true);
1718 		else
1719 			ret = 1;
1720 		error = runtime ? platform_pci_run_wake(dev, true) :
1721 					platform_pci_sleep_wake(dev, true);
1722 		if (ret)
1723 			ret = error;
1724 		if (!ret)
1725 			dev->wakeup_prepared = true;
1726 	} else {
1727 		if (runtime)
1728 			platform_pci_run_wake(dev, false);
1729 		else
1730 			platform_pci_sleep_wake(dev, false);
1731 		pci_pme_active(dev, false);
1732 		dev->wakeup_prepared = false;
1733 	}
1734 
1735 	return ret;
1736 }
1737 EXPORT_SYMBOL(__pci_enable_wake);
1738 
1739 /**
1740  * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1741  * @dev: PCI device to prepare
1742  * @enable: True to enable wake-up event generation; false to disable
1743  *
1744  * Many drivers want the device to wake up the system from D3_hot or D3_cold
1745  * and this function allows them to set that up cleanly - pci_enable_wake()
1746  * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1747  * ordering constraints.
1748  *
1749  * This function only returns error code if the device is not capable of
1750  * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1751  * enable wake-up power for it.
1752  */
1753 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1754 {
1755 	return pci_pme_capable(dev, PCI_D3cold) ?
1756 			pci_enable_wake(dev, PCI_D3cold, enable) :
1757 			pci_enable_wake(dev, PCI_D3hot, enable);
1758 }
1759 
1760 /**
1761  * pci_target_state - find an appropriate low power state for a given PCI dev
1762  * @dev: PCI device
1763  *
1764  * Use underlying platform code to find a supported low power state for @dev.
1765  * If the platform can't manage @dev, return the deepest state from which it
1766  * can generate wake events, based on any available PME info.
1767  */
1768 pci_power_t pci_target_state(struct pci_dev *dev)
1769 {
1770 	pci_power_t target_state = PCI_D3hot;
1771 
1772 	if (platform_pci_power_manageable(dev)) {
1773 		/*
1774 		 * Call the platform to choose the target state of the device
1775 		 * and enable wake-up from this state if supported.
1776 		 */
1777 		pci_power_t state = platform_pci_choose_state(dev);
1778 
1779 		switch (state) {
1780 		case PCI_POWER_ERROR:
1781 		case PCI_UNKNOWN:
1782 			break;
1783 		case PCI_D1:
1784 		case PCI_D2:
1785 			if (pci_no_d1d2(dev))
1786 				break;
1787 		default:
1788 			target_state = state;
1789 		}
1790 	} else if (!dev->pm_cap) {
1791 		target_state = PCI_D0;
1792 	} else if (device_may_wakeup(&dev->dev)) {
1793 		/*
1794 		 * Find the deepest state from which the device can generate
1795 		 * wake-up events, make it the target state and enable device
1796 		 * to generate PME#.
1797 		 */
1798 		if (dev->pme_support) {
1799 			while (target_state
1800 			      && !(dev->pme_support & (1 << target_state)))
1801 				target_state--;
1802 		}
1803 	}
1804 
1805 	return target_state;
1806 }
1807 
1808 /**
1809  * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1810  * @dev: Device to handle.
1811  *
1812  * Choose the power state appropriate for the device depending on whether
1813  * it can wake up the system and/or is power manageable by the platform
1814  * (PCI_D3hot is the default) and put the device into that state.
1815  */
1816 int pci_prepare_to_sleep(struct pci_dev *dev)
1817 {
1818 	pci_power_t target_state = pci_target_state(dev);
1819 	int error;
1820 
1821 	if (target_state == PCI_POWER_ERROR)
1822 		return -EIO;
1823 
1824 	/* D3cold during system suspend/hibernate is not supported */
1825 	if (target_state > PCI_D3hot)
1826 		target_state = PCI_D3hot;
1827 
1828 	pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
1829 
1830 	error = pci_set_power_state(dev, target_state);
1831 
1832 	if (error)
1833 		pci_enable_wake(dev, target_state, false);
1834 
1835 	return error;
1836 }
1837 
1838 /**
1839  * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1840  * @dev: Device to handle.
1841  *
1842  * Disable device's system wake-up capability and put it into D0.
1843  */
1844 int pci_back_from_sleep(struct pci_dev *dev)
1845 {
1846 	pci_enable_wake(dev, PCI_D0, false);
1847 	return pci_set_power_state(dev, PCI_D0);
1848 }
1849 
1850 /**
1851  * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
1852  * @dev: PCI device being suspended.
1853  *
1854  * Prepare @dev to generate wake-up events at run time and put it into a low
1855  * power state.
1856  */
1857 int pci_finish_runtime_suspend(struct pci_dev *dev)
1858 {
1859 	pci_power_t target_state = pci_target_state(dev);
1860 	int error;
1861 
1862 	if (target_state == PCI_POWER_ERROR)
1863 		return -EIO;
1864 
1865 	dev->runtime_d3cold = target_state == PCI_D3cold;
1866 
1867 	__pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev));
1868 
1869 	error = pci_set_power_state(dev, target_state);
1870 
1871 	if (error) {
1872 		__pci_enable_wake(dev, target_state, true, false);
1873 		dev->runtime_d3cold = false;
1874 	}
1875 
1876 	return error;
1877 }
1878 
1879 /**
1880  * pci_dev_run_wake - Check if device can generate run-time wake-up events.
1881  * @dev: Device to check.
1882  *
1883  * Return true if the device itself is capable of generating wake-up events
1884  * (through the platform or using the native PCIe PME) or if the device supports
1885  * PME and one of its upstream bridges can generate wake-up events.
1886  */
1887 bool pci_dev_run_wake(struct pci_dev *dev)
1888 {
1889 	struct pci_bus *bus = dev->bus;
1890 
1891 	if (device_run_wake(&dev->dev))
1892 		return true;
1893 
1894 	if (!dev->pme_support)
1895 		return false;
1896 
1897 	while (bus->parent) {
1898 		struct pci_dev *bridge = bus->self;
1899 
1900 		if (device_run_wake(&bridge->dev))
1901 			return true;
1902 
1903 		bus = bus->parent;
1904 	}
1905 
1906 	/* We have reached the root bus. */
1907 	if (bus->bridge)
1908 		return device_run_wake(bus->bridge);
1909 
1910 	return false;
1911 }
1912 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
1913 
1914 void pci_config_pm_runtime_get(struct pci_dev *pdev)
1915 {
1916 	struct device *dev = &pdev->dev;
1917 	struct device *parent = dev->parent;
1918 
1919 	if (parent)
1920 		pm_runtime_get_sync(parent);
1921 	pm_runtime_get_noresume(dev);
1922 	/*
1923 	 * pdev->current_state is set to PCI_D3cold during suspending,
1924 	 * so wait until suspending completes
1925 	 */
1926 	pm_runtime_barrier(dev);
1927 	/*
1928 	 * Only need to resume devices in D3cold, because config
1929 	 * registers are still accessible for devices suspended but
1930 	 * not in D3cold.
1931 	 */
1932 	if (pdev->current_state == PCI_D3cold)
1933 		pm_runtime_resume(dev);
1934 }
1935 
1936 void pci_config_pm_runtime_put(struct pci_dev *pdev)
1937 {
1938 	struct device *dev = &pdev->dev;
1939 	struct device *parent = dev->parent;
1940 
1941 	pm_runtime_put(dev);
1942 	if (parent)
1943 		pm_runtime_put_sync(parent);
1944 }
1945 
1946 /**
1947  * pci_pm_init - Initialize PM functions of given PCI device
1948  * @dev: PCI device to handle.
1949  */
1950 void pci_pm_init(struct pci_dev *dev)
1951 {
1952 	int pm;
1953 	u16 pmc;
1954 
1955 	pm_runtime_forbid(&dev->dev);
1956 	pm_runtime_set_active(&dev->dev);
1957 	pm_runtime_enable(&dev->dev);
1958 	device_enable_async_suspend(&dev->dev);
1959 	dev->wakeup_prepared = false;
1960 
1961 	dev->pm_cap = 0;
1962 	dev->pme_support = 0;
1963 
1964 	/* find PCI PM capability in list */
1965 	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
1966 	if (!pm)
1967 		return;
1968 	/* Check device's ability to generate PME# */
1969 	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
1970 
1971 	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
1972 		dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
1973 			pmc & PCI_PM_CAP_VER_MASK);
1974 		return;
1975 	}
1976 
1977 	dev->pm_cap = pm;
1978 	dev->d3_delay = PCI_PM_D3_WAIT;
1979 	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
1980 	dev->d3cold_allowed = true;
1981 
1982 	dev->d1_support = false;
1983 	dev->d2_support = false;
1984 	if (!pci_no_d1d2(dev)) {
1985 		if (pmc & PCI_PM_CAP_D1)
1986 			dev->d1_support = true;
1987 		if (pmc & PCI_PM_CAP_D2)
1988 			dev->d2_support = true;
1989 
1990 		if (dev->d1_support || dev->d2_support)
1991 			dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
1992 				   dev->d1_support ? " D1" : "",
1993 				   dev->d2_support ? " D2" : "");
1994 	}
1995 
1996 	pmc &= PCI_PM_CAP_PME_MASK;
1997 	if (pmc) {
1998 		dev_printk(KERN_DEBUG, &dev->dev,
1999 			 "PME# supported from%s%s%s%s%s\n",
2000 			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2001 			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2002 			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2003 			 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2004 			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2005 		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2006 		dev->pme_poll = true;
2007 		/*
2008 		 * Make device's PM flags reflect the wake-up capability, but
2009 		 * let the user space enable it to wake up the system as needed.
2010 		 */
2011 		device_set_wakeup_capable(&dev->dev, true);
2012 		/* Disable the PME# generation functionality */
2013 		pci_pme_active(dev, false);
2014 	}
2015 }
2016 
2017 static void pci_add_saved_cap(struct pci_dev *pci_dev,
2018 	struct pci_cap_saved_state *new_cap)
2019 {
2020 	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
2021 }
2022 
2023 /**
2024  * pci_add_cap_save_buffer - allocate buffer for saving given capability registers
2025  * @dev: the PCI device
2026  * @cap: the capability to allocate the buffer for
2027  * @size: requested size of the buffer
2028  */
2029 static int pci_add_cap_save_buffer(
2030 	struct pci_dev *dev, char cap, unsigned int size)
2031 {
2032 	int pos;
2033 	struct pci_cap_saved_state *save_state;
2034 
2035 	pos = pci_find_capability(dev, cap);
2036 	if (pos <= 0)
2037 		return 0;
2038 
2039 	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2040 	if (!save_state)
2041 		return -ENOMEM;
2042 
2043 	save_state->cap.cap_nr = cap;
2044 	save_state->cap.size = size;
2045 	pci_add_saved_cap(dev, save_state);
2046 
2047 	return 0;
2048 }
2049 
2050 /**
2051  * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2052  * @dev: the PCI device
2053  */
2054 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2055 {
2056 	int error;
2057 
2058 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2059 					PCI_EXP_SAVE_REGS * sizeof(u16));
2060 	if (error)
2061 		dev_err(&dev->dev,
2062 			"unable to preallocate PCI Express save buffer\n");
2063 
2064 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2065 	if (error)
2066 		dev_err(&dev->dev,
2067 			"unable to preallocate PCI-X save buffer\n");
2068 }
2069 
2070 void pci_free_cap_save_buffers(struct pci_dev *dev)
2071 {
2072 	struct pci_cap_saved_state *tmp;
2073 	struct hlist_node *n;
2074 
2075 	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
2076 		kfree(tmp);
2077 }
2078 
2079 /**
2080  * pci_configure_ari - enable or disable ARI forwarding
2081  * @dev: the PCI device
2082  *
2083  * If @dev and its upstream bridge both support ARI, enable ARI in the
2084  * bridge.  Otherwise, disable ARI in the bridge.
2085  */
2086 void pci_configure_ari(struct pci_dev *dev)
2087 {
2088 	u32 cap;
2089 	struct pci_dev *bridge;
2090 
2091 	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
2092 		return;
2093 
2094 	bridge = dev->bus->self;
2095 	if (!bridge)
2096 		return;
2097 
2098 	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
2099 	if (!(cap & PCI_EXP_DEVCAP2_ARI))
2100 		return;
2101 
2102 	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
2103 		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
2104 					 PCI_EXP_DEVCTL2_ARI);
2105 		bridge->ari_enabled = 1;
2106 	} else {
2107 		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
2108 					   PCI_EXP_DEVCTL2_ARI);
2109 		bridge->ari_enabled = 0;
2110 	}
2111 }
2112 
2113 /**
2114  * pci_enable_ido - enable ID-based Ordering on a device
2115  * @dev: the PCI device
2116  * @type: which types of IDO to enable
2117  *
2118  * Enable ID-based ordering on @dev.  @type can contain the bits
2119  * %PCI_EXP_IDO_REQUEST and/or %PCI_EXP_IDO_COMPLETION to indicate
2120  * which types of transactions are allowed to be re-ordered.
2121  */
2122 void pci_enable_ido(struct pci_dev *dev, unsigned long type)
2123 {
2124 	u16 ctrl = 0;
2125 
2126 	if (type & PCI_EXP_IDO_REQUEST)
2127 		ctrl |= PCI_EXP_DEVCTL2_IDO_REQ_EN;
2128 	if (type & PCI_EXP_IDO_COMPLETION)
2129 		ctrl |= PCI_EXP_DEVCTL2_IDO_CMP_EN;
2130 	if (ctrl)
2131 		pcie_capability_set_word(dev, PCI_EXP_DEVCTL2, ctrl);
2132 }
2133 EXPORT_SYMBOL(pci_enable_ido);
2134 
2135 /**
2136  * pci_disable_ido - disable ID-based ordering on a device
2137  * @dev: the PCI device
2138  * @type: which types of IDO to disable
2139  */
2140 void pci_disable_ido(struct pci_dev *dev, unsigned long type)
2141 {
2142 	u16 ctrl = 0;
2143 
2144 	if (type & PCI_EXP_IDO_REQUEST)
2145 		ctrl |= PCI_EXP_DEVCTL2_IDO_REQ_EN;
2146 	if (type & PCI_EXP_IDO_COMPLETION)
2147 		ctrl |= PCI_EXP_DEVCTL2_IDO_CMP_EN;
2148 	if (ctrl)
2149 		pcie_capability_clear_word(dev, PCI_EXP_DEVCTL2, ctrl);
2150 }
2151 EXPORT_SYMBOL(pci_disable_ido);
2152 
2153 /**
2154  * pci_enable_obff - enable optimized buffer flush/fill
2155  * @dev: PCI device
2156  * @type: type of signaling to use
2157  *
2158  * Try to enable @type OBFF signaling on @dev.  It will try using WAKE#
2159  * signaling if possible, falling back to message signaling only if
2160  * WAKE# isn't supported.  @type should indicate whether the PCIe link
2161  * be brought out of L0s or L1 to send the message.  It should be either
2162  * %PCI_EXP_OBFF_SIGNAL_ALWAYS or %PCI_OBFF_SIGNAL_L0.
2163  *
2164  * If your device can benefit from receiving all messages, even at the
2165  * power cost of bringing the link back up from a low power state, use
2166  * %PCI_EXP_OBFF_SIGNAL_ALWAYS.  Otherwise, use %PCI_OBFF_SIGNAL_L0 (the
2167  * preferred type).
2168  *
2169  * RETURNS:
2170  * Zero on success, appropriate error number on failure.
2171  */
2172 int pci_enable_obff(struct pci_dev *dev, enum pci_obff_signal_type type)
2173 {
2174 	u32 cap;
2175 	u16 ctrl;
2176 	int ret;
2177 
2178 	pcie_capability_read_dword(dev, PCI_EXP_DEVCAP2, &cap);
2179 	if (!(cap & PCI_EXP_DEVCAP2_OBFF_MASK))
2180 		return -ENOTSUPP; /* no OBFF support at all */
2181 
2182 	/* Make sure the topology supports OBFF as well */
2183 	if (dev->bus->self) {
2184 		ret = pci_enable_obff(dev->bus->self, type);
2185 		if (ret)
2186 			return ret;
2187 	}
2188 
2189 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &ctrl);
2190 	if (cap & PCI_EXP_DEVCAP2_OBFF_WAKE)
2191 		ctrl |= PCI_EXP_DEVCTL2_OBFF_WAKE_EN;
2192 	else {
2193 		switch (type) {
2194 		case PCI_EXP_OBFF_SIGNAL_L0:
2195 			if (!(ctrl & PCI_EXP_DEVCTL2_OBFF_WAKE_EN))
2196 				ctrl |= PCI_EXP_DEVCTL2_OBFF_MSGA_EN;
2197 			break;
2198 		case PCI_EXP_OBFF_SIGNAL_ALWAYS:
2199 			ctrl &= ~PCI_EXP_DEVCTL2_OBFF_WAKE_EN;
2200 			ctrl |= PCI_EXP_DEVCTL2_OBFF_MSGB_EN;
2201 			break;
2202 		default:
2203 			WARN(1, "bad OBFF signal type\n");
2204 			return -ENOTSUPP;
2205 		}
2206 	}
2207 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, ctrl);
2208 
2209 	return 0;
2210 }
2211 EXPORT_SYMBOL(pci_enable_obff);
2212 
2213 /**
2214  * pci_disable_obff - disable optimized buffer flush/fill
2215  * @dev: PCI device
2216  *
2217  * Disable OBFF on @dev.
2218  */
2219 void pci_disable_obff(struct pci_dev *dev)
2220 {
2221 	pcie_capability_clear_word(dev, PCI_EXP_DEVCTL2,
2222 				   PCI_EXP_DEVCTL2_OBFF_WAKE_EN);
2223 }
2224 EXPORT_SYMBOL(pci_disable_obff);
2225 
2226 /**
2227  * pci_ltr_supported - check whether a device supports LTR
2228  * @dev: PCI device
2229  *
2230  * RETURNS:
2231  * True if @dev supports latency tolerance reporting, false otherwise.
2232  */
2233 static bool pci_ltr_supported(struct pci_dev *dev)
2234 {
2235 	u32 cap;
2236 
2237 	pcie_capability_read_dword(dev, PCI_EXP_DEVCAP2, &cap);
2238 
2239 	return cap & PCI_EXP_DEVCAP2_LTR;
2240 }
2241 
2242 /**
2243  * pci_enable_ltr - enable latency tolerance reporting
2244  * @dev: PCI device
2245  *
2246  * Enable LTR on @dev if possible, which means enabling it first on
2247  * upstream ports.
2248  *
2249  * RETURNS:
2250  * Zero on success, errno on failure.
2251  */
2252 int pci_enable_ltr(struct pci_dev *dev)
2253 {
2254 	int ret;
2255 
2256 	/* Only primary function can enable/disable LTR */
2257 	if (PCI_FUNC(dev->devfn) != 0)
2258 		return -EINVAL;
2259 
2260 	if (!pci_ltr_supported(dev))
2261 		return -ENOTSUPP;
2262 
2263 	/* Enable upstream ports first */
2264 	if (dev->bus->self) {
2265 		ret = pci_enable_ltr(dev->bus->self);
2266 		if (ret)
2267 			return ret;
2268 	}
2269 
2270 	return pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
2271 					PCI_EXP_DEVCTL2_LTR_EN);
2272 }
2273 EXPORT_SYMBOL(pci_enable_ltr);
2274 
2275 /**
2276  * pci_disable_ltr - disable latency tolerance reporting
2277  * @dev: PCI device
2278  */
2279 void pci_disable_ltr(struct pci_dev *dev)
2280 {
2281 	/* Only primary function can enable/disable LTR */
2282 	if (PCI_FUNC(dev->devfn) != 0)
2283 		return;
2284 
2285 	if (!pci_ltr_supported(dev))
2286 		return;
2287 
2288 	pcie_capability_clear_word(dev, PCI_EXP_DEVCTL2,
2289 				   PCI_EXP_DEVCTL2_LTR_EN);
2290 }
2291 EXPORT_SYMBOL(pci_disable_ltr);
2292 
2293 static int __pci_ltr_scale(int *val)
2294 {
2295 	int scale = 0;
2296 
2297 	while (*val > 1023) {
2298 		*val = (*val + 31) / 32;
2299 		scale++;
2300 	}
2301 	return scale;
2302 }
2303 
2304 /**
2305  * pci_set_ltr - set LTR latency values
2306  * @dev: PCI device
2307  * @snoop_lat_ns: snoop latency in nanoseconds
2308  * @nosnoop_lat_ns: nosnoop latency in nanoseconds
2309  *
2310  * Figure out the scale and set the LTR values accordingly.
2311  */
2312 int pci_set_ltr(struct pci_dev *dev, int snoop_lat_ns, int nosnoop_lat_ns)
2313 {
2314 	int pos, ret, snoop_scale, nosnoop_scale;
2315 	u16 val;
2316 
2317 	if (!pci_ltr_supported(dev))
2318 		return -ENOTSUPP;
2319 
2320 	snoop_scale = __pci_ltr_scale(&snoop_lat_ns);
2321 	nosnoop_scale = __pci_ltr_scale(&nosnoop_lat_ns);
2322 
2323 	if (snoop_lat_ns > PCI_LTR_VALUE_MASK ||
2324 	    nosnoop_lat_ns > PCI_LTR_VALUE_MASK)
2325 		return -EINVAL;
2326 
2327 	if ((snoop_scale > (PCI_LTR_SCALE_MASK >> PCI_LTR_SCALE_SHIFT)) ||
2328 	    (nosnoop_scale > (PCI_LTR_SCALE_MASK >> PCI_LTR_SCALE_SHIFT)))
2329 		return -EINVAL;
2330 
2331 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
2332 	if (!pos)
2333 		return -ENOTSUPP;
2334 
2335 	val = (snoop_scale << PCI_LTR_SCALE_SHIFT) | snoop_lat_ns;
2336 	ret = pci_write_config_word(dev, pos + PCI_LTR_MAX_SNOOP_LAT, val);
2337 	if (ret != 4)
2338 		return -EIO;
2339 
2340 	val = (nosnoop_scale << PCI_LTR_SCALE_SHIFT) | nosnoop_lat_ns;
2341 	ret = pci_write_config_word(dev, pos + PCI_LTR_MAX_NOSNOOP_LAT, val);
2342 	if (ret != 4)
2343 		return -EIO;
2344 
2345 	return 0;
2346 }
2347 EXPORT_SYMBOL(pci_set_ltr);
2348 
2349 static int pci_acs_enable;
2350 
2351 /**
2352  * pci_request_acs - ask for ACS to be enabled if supported
2353  */
2354 void pci_request_acs(void)
2355 {
2356 	pci_acs_enable = 1;
2357 }
2358 
2359 /**
2360  * pci_enable_acs - enable ACS if hardware support it
2361  * @dev: the PCI device
2362  */
2363 void pci_enable_acs(struct pci_dev *dev)
2364 {
2365 	int pos;
2366 	u16 cap;
2367 	u16 ctrl;
2368 
2369 	if (!pci_acs_enable)
2370 		return;
2371 
2372 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2373 	if (!pos)
2374 		return;
2375 
2376 	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2377 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2378 
2379 	/* Source Validation */
2380 	ctrl |= (cap & PCI_ACS_SV);
2381 
2382 	/* P2P Request Redirect */
2383 	ctrl |= (cap & PCI_ACS_RR);
2384 
2385 	/* P2P Completion Redirect */
2386 	ctrl |= (cap & PCI_ACS_CR);
2387 
2388 	/* Upstream Forwarding */
2389 	ctrl |= (cap & PCI_ACS_UF);
2390 
2391 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2392 }
2393 
2394 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
2395 {
2396 	int pos;
2397 	u16 cap, ctrl;
2398 
2399 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2400 	if (!pos)
2401 		return false;
2402 
2403 	/*
2404 	 * Except for egress control, capabilities are either required
2405 	 * or only required if controllable.  Features missing from the
2406 	 * capability field can therefore be assumed as hard-wired enabled.
2407 	 */
2408 	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
2409 	acs_flags &= (cap | PCI_ACS_EC);
2410 
2411 	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2412 	return (ctrl & acs_flags) == acs_flags;
2413 }
2414 
2415 /**
2416  * pci_acs_enabled - test ACS against required flags for a given device
2417  * @pdev: device to test
2418  * @acs_flags: required PCI ACS flags
2419  *
2420  * Return true if the device supports the provided flags.  Automatically
2421  * filters out flags that are not implemented on multifunction devices.
2422  *
2423  * Note that this interface checks the effective ACS capabilities of the
2424  * device rather than the actual capabilities.  For instance, most single
2425  * function endpoints are not required to support ACS because they have no
2426  * opportunity for peer-to-peer access.  We therefore return 'true'
2427  * regardless of whether the device exposes an ACS capability.  This makes
2428  * it much easier for callers of this function to ignore the actual type
2429  * or topology of the device when testing ACS support.
2430  */
2431 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2432 {
2433 	int ret;
2434 
2435 	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2436 	if (ret >= 0)
2437 		return ret > 0;
2438 
2439 	/*
2440 	 * Conventional PCI and PCI-X devices never support ACS, either
2441 	 * effectively or actually.  The shared bus topology implies that
2442 	 * any device on the bus can receive or snoop DMA.
2443 	 */
2444 	if (!pci_is_pcie(pdev))
2445 		return false;
2446 
2447 	switch (pci_pcie_type(pdev)) {
2448 	/*
2449 	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
2450 	 * but since their primary interface is PCI/X, we conservatively
2451 	 * handle them as we would a non-PCIe device.
2452 	 */
2453 	case PCI_EXP_TYPE_PCIE_BRIDGE:
2454 	/*
2455 	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
2456 	 * applicable... must never implement an ACS Extended Capability...".
2457 	 * This seems arbitrary, but we take a conservative interpretation
2458 	 * of this statement.
2459 	 */
2460 	case PCI_EXP_TYPE_PCI_BRIDGE:
2461 	case PCI_EXP_TYPE_RC_EC:
2462 		return false;
2463 	/*
2464 	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
2465 	 * implement ACS in order to indicate their peer-to-peer capabilities,
2466 	 * regardless of whether they are single- or multi-function devices.
2467 	 */
2468 	case PCI_EXP_TYPE_DOWNSTREAM:
2469 	case PCI_EXP_TYPE_ROOT_PORT:
2470 		return pci_acs_flags_enabled(pdev, acs_flags);
2471 	/*
2472 	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
2473 	 * implemented by the remaining PCIe types to indicate peer-to-peer
2474 	 * capabilities, but only when they are part of a multifunction
2475 	 * device.  The footnote for section 6.12 indicates the specific
2476 	 * PCIe types included here.
2477 	 */
2478 	case PCI_EXP_TYPE_ENDPOINT:
2479 	case PCI_EXP_TYPE_UPSTREAM:
2480 	case PCI_EXP_TYPE_LEG_END:
2481 	case PCI_EXP_TYPE_RC_END:
2482 		if (!pdev->multifunction)
2483 			break;
2484 
2485 		return pci_acs_flags_enabled(pdev, acs_flags);
2486 	}
2487 
2488 	/*
2489 	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
2490 	 * to single function devices with the exception of downstream ports.
2491 	 */
2492 	return true;
2493 }
2494 
2495 /**
2496  * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2497  * @start: starting downstream device
2498  * @end: ending upstream device or NULL to search to the root bus
2499  * @acs_flags: required flags
2500  *
2501  * Walk up a device tree from start to end testing PCI ACS support.  If
2502  * any step along the way does not support the required flags, return false.
2503  */
2504 bool pci_acs_path_enabled(struct pci_dev *start,
2505 			  struct pci_dev *end, u16 acs_flags)
2506 {
2507 	struct pci_dev *pdev, *parent = start;
2508 
2509 	do {
2510 		pdev = parent;
2511 
2512 		if (!pci_acs_enabled(pdev, acs_flags))
2513 			return false;
2514 
2515 		if (pci_is_root_bus(pdev->bus))
2516 			return (end == NULL);
2517 
2518 		parent = pdev->bus->self;
2519 	} while (pdev != end);
2520 
2521 	return true;
2522 }
2523 
2524 /**
2525  * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2526  * @dev: the PCI device
2527  * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
2528  *
2529  * Perform INTx swizzling for a device behind one level of bridge.  This is
2530  * required by section 9.1 of the PCI-to-PCI bridge specification for devices
2531  * behind bridges on add-in cards.  For devices with ARI enabled, the slot
2532  * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2533  * the PCI Express Base Specification, Revision 2.1)
2534  */
2535 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
2536 {
2537 	int slot;
2538 
2539 	if (pci_ari_enabled(dev->bus))
2540 		slot = 0;
2541 	else
2542 		slot = PCI_SLOT(dev->devfn);
2543 
2544 	return (((pin - 1) + slot) % 4) + 1;
2545 }
2546 
2547 int
2548 pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
2549 {
2550 	u8 pin;
2551 
2552 	pin = dev->pin;
2553 	if (!pin)
2554 		return -1;
2555 
2556 	while (!pci_is_root_bus(dev->bus)) {
2557 		pin = pci_swizzle_interrupt_pin(dev, pin);
2558 		dev = dev->bus->self;
2559 	}
2560 	*bridge = dev;
2561 	return pin;
2562 }
2563 
2564 /**
2565  * pci_common_swizzle - swizzle INTx all the way to root bridge
2566  * @dev: the PCI device
2567  * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2568  *
2569  * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
2570  * bridges all the way up to a PCI root bus.
2571  */
2572 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
2573 {
2574 	u8 pin = *pinp;
2575 
2576 	while (!pci_is_root_bus(dev->bus)) {
2577 		pin = pci_swizzle_interrupt_pin(dev, pin);
2578 		dev = dev->bus->self;
2579 	}
2580 	*pinp = pin;
2581 	return PCI_SLOT(dev->devfn);
2582 }
2583 
2584 /**
2585  *	pci_release_region - Release a PCI bar
2586  *	@pdev: PCI device whose resources were previously reserved by pci_request_region
2587  *	@bar: BAR to release
2588  *
2589  *	Releases the PCI I/O and memory resources previously reserved by a
2590  *	successful call to pci_request_region.  Call this function only
2591  *	after all use of the PCI regions has ceased.
2592  */
2593 void pci_release_region(struct pci_dev *pdev, int bar)
2594 {
2595 	struct pci_devres *dr;
2596 
2597 	if (pci_resource_len(pdev, bar) == 0)
2598 		return;
2599 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
2600 		release_region(pci_resource_start(pdev, bar),
2601 				pci_resource_len(pdev, bar));
2602 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
2603 		release_mem_region(pci_resource_start(pdev, bar),
2604 				pci_resource_len(pdev, bar));
2605 
2606 	dr = find_pci_dr(pdev);
2607 	if (dr)
2608 		dr->region_mask &= ~(1 << bar);
2609 }
2610 
2611 /**
2612  *	__pci_request_region - Reserved PCI I/O and memory resource
2613  *	@pdev: PCI device whose resources are to be reserved
2614  *	@bar: BAR to be reserved
2615  *	@res_name: Name to be associated with resource.
2616  *	@exclusive: whether the region access is exclusive or not
2617  *
2618  *	Mark the PCI region associated with PCI device @pdev BR @bar as
2619  *	being reserved by owner @res_name.  Do not access any
2620  *	address inside the PCI regions unless this call returns
2621  *	successfully.
2622  *
2623  *	If @exclusive is set, then the region is marked so that userspace
2624  *	is explicitly not allowed to map the resource via /dev/mem or
2625  *	sysfs MMIO access.
2626  *
2627  *	Returns 0 on success, or %EBUSY on error.  A warning
2628  *	message is also printed on failure.
2629  */
2630 static int __pci_request_region(struct pci_dev *pdev, int bar, const char *res_name,
2631 									int exclusive)
2632 {
2633 	struct pci_devres *dr;
2634 
2635 	if (pci_resource_len(pdev, bar) == 0)
2636 		return 0;
2637 
2638 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
2639 		if (!request_region(pci_resource_start(pdev, bar),
2640 			    pci_resource_len(pdev, bar), res_name))
2641 			goto err_out;
2642 	}
2643 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
2644 		if (!__request_mem_region(pci_resource_start(pdev, bar),
2645 					pci_resource_len(pdev, bar), res_name,
2646 					exclusive))
2647 			goto err_out;
2648 	}
2649 
2650 	dr = find_pci_dr(pdev);
2651 	if (dr)
2652 		dr->region_mask |= 1 << bar;
2653 
2654 	return 0;
2655 
2656 err_out:
2657 	dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
2658 		 &pdev->resource[bar]);
2659 	return -EBUSY;
2660 }
2661 
2662 /**
2663  *	pci_request_region - Reserve PCI I/O and memory resource
2664  *	@pdev: PCI device whose resources are to be reserved
2665  *	@bar: BAR to be reserved
2666  *	@res_name: Name to be associated with resource
2667  *
2668  *	Mark the PCI region associated with PCI device @pdev BAR @bar as
2669  *	being reserved by owner @res_name.  Do not access any
2670  *	address inside the PCI regions unless this call returns
2671  *	successfully.
2672  *
2673  *	Returns 0 on success, or %EBUSY on error.  A warning
2674  *	message is also printed on failure.
2675  */
2676 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
2677 {
2678 	return __pci_request_region(pdev, bar, res_name, 0);
2679 }
2680 
2681 /**
2682  *	pci_request_region_exclusive - Reserved PCI I/O and memory resource
2683  *	@pdev: PCI device whose resources are to be reserved
2684  *	@bar: BAR to be reserved
2685  *	@res_name: Name to be associated with resource.
2686  *
2687  *	Mark the PCI region associated with PCI device @pdev BR @bar as
2688  *	being reserved by owner @res_name.  Do not access any
2689  *	address inside the PCI regions unless this call returns
2690  *	successfully.
2691  *
2692  *	Returns 0 on success, or %EBUSY on error.  A warning
2693  *	message is also printed on failure.
2694  *
2695  *	The key difference that _exclusive makes it that userspace is
2696  *	explicitly not allowed to map the resource via /dev/mem or
2697  *	sysfs.
2698  */
2699 int pci_request_region_exclusive(struct pci_dev *pdev, int bar, const char *res_name)
2700 {
2701 	return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
2702 }
2703 /**
2704  * pci_release_selected_regions - Release selected PCI I/O and memory resources
2705  * @pdev: PCI device whose resources were previously reserved
2706  * @bars: Bitmask of BARs to be released
2707  *
2708  * Release selected PCI I/O and memory resources previously reserved.
2709  * Call this function only after all use of the PCI regions has ceased.
2710  */
2711 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
2712 {
2713 	int i;
2714 
2715 	for (i = 0; i < 6; i++)
2716 		if (bars & (1 << i))
2717 			pci_release_region(pdev, i);
2718 }
2719 
2720 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
2721 				 const char *res_name, int excl)
2722 {
2723 	int i;
2724 
2725 	for (i = 0; i < 6; i++)
2726 		if (bars & (1 << i))
2727 			if (__pci_request_region(pdev, i, res_name, excl))
2728 				goto err_out;
2729 	return 0;
2730 
2731 err_out:
2732 	while(--i >= 0)
2733 		if (bars & (1 << i))
2734 			pci_release_region(pdev, i);
2735 
2736 	return -EBUSY;
2737 }
2738 
2739 
2740 /**
2741  * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
2742  * @pdev: PCI device whose resources are to be reserved
2743  * @bars: Bitmask of BARs to be requested
2744  * @res_name: Name to be associated with resource
2745  */
2746 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
2747 				 const char *res_name)
2748 {
2749 	return __pci_request_selected_regions(pdev, bars, res_name, 0);
2750 }
2751 
2752 int pci_request_selected_regions_exclusive(struct pci_dev *pdev,
2753 				 int bars, const char *res_name)
2754 {
2755 	return __pci_request_selected_regions(pdev, bars, res_name,
2756 			IORESOURCE_EXCLUSIVE);
2757 }
2758 
2759 /**
2760  *	pci_release_regions - Release reserved PCI I/O and memory resources
2761  *	@pdev: PCI device whose resources were previously reserved by pci_request_regions
2762  *
2763  *	Releases all PCI I/O and memory resources previously reserved by a
2764  *	successful call to pci_request_regions.  Call this function only
2765  *	after all use of the PCI regions has ceased.
2766  */
2767 
2768 void pci_release_regions(struct pci_dev *pdev)
2769 {
2770 	pci_release_selected_regions(pdev, (1 << 6) - 1);
2771 }
2772 
2773 /**
2774  *	pci_request_regions - Reserved PCI I/O and memory resources
2775  *	@pdev: PCI device whose resources are to be reserved
2776  *	@res_name: Name to be associated with resource.
2777  *
2778  *	Mark all PCI regions associated with PCI device @pdev as
2779  *	being reserved by owner @res_name.  Do not access any
2780  *	address inside the PCI regions unless this call returns
2781  *	successfully.
2782  *
2783  *	Returns 0 on success, or %EBUSY on error.  A warning
2784  *	message is also printed on failure.
2785  */
2786 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
2787 {
2788 	return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
2789 }
2790 
2791 /**
2792  *	pci_request_regions_exclusive - Reserved PCI I/O and memory resources
2793  *	@pdev: PCI device whose resources are to be reserved
2794  *	@res_name: Name to be associated with resource.
2795  *
2796  *	Mark all PCI regions associated with PCI device @pdev as
2797  *	being reserved by owner @res_name.  Do not access any
2798  *	address inside the PCI regions unless this call returns
2799  *	successfully.
2800  *
2801  *	pci_request_regions_exclusive() will mark the region so that
2802  *	/dev/mem and the sysfs MMIO access will not be allowed.
2803  *
2804  *	Returns 0 on success, or %EBUSY on error.  A warning
2805  *	message is also printed on failure.
2806  */
2807 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
2808 {
2809 	return pci_request_selected_regions_exclusive(pdev,
2810 					((1 << 6) - 1), res_name);
2811 }
2812 
2813 static void __pci_set_master(struct pci_dev *dev, bool enable)
2814 {
2815 	u16 old_cmd, cmd;
2816 
2817 	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
2818 	if (enable)
2819 		cmd = old_cmd | PCI_COMMAND_MASTER;
2820 	else
2821 		cmd = old_cmd & ~PCI_COMMAND_MASTER;
2822 	if (cmd != old_cmd) {
2823 		dev_dbg(&dev->dev, "%s bus mastering\n",
2824 			enable ? "enabling" : "disabling");
2825 		pci_write_config_word(dev, PCI_COMMAND, cmd);
2826 	}
2827 	dev->is_busmaster = enable;
2828 }
2829 
2830 /**
2831  * pcibios_setup - process "pci=" kernel boot arguments
2832  * @str: string used to pass in "pci=" kernel boot arguments
2833  *
2834  * Process kernel boot arguments.  This is the default implementation.
2835  * Architecture specific implementations can override this as necessary.
2836  */
2837 char * __weak __init pcibios_setup(char *str)
2838 {
2839 	return str;
2840 }
2841 
2842 /**
2843  * pcibios_set_master - enable PCI bus-mastering for device dev
2844  * @dev: the PCI device to enable
2845  *
2846  * Enables PCI bus-mastering for the device.  This is the default
2847  * implementation.  Architecture specific implementations can override
2848  * this if necessary.
2849  */
2850 void __weak pcibios_set_master(struct pci_dev *dev)
2851 {
2852 	u8 lat;
2853 
2854 	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
2855 	if (pci_is_pcie(dev))
2856 		return;
2857 
2858 	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
2859 	if (lat < 16)
2860 		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
2861 	else if (lat > pcibios_max_latency)
2862 		lat = pcibios_max_latency;
2863 	else
2864 		return;
2865 
2866 	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
2867 }
2868 
2869 /**
2870  * pci_set_master - enables bus-mastering for device dev
2871  * @dev: the PCI device to enable
2872  *
2873  * Enables bus-mastering on the device and calls pcibios_set_master()
2874  * to do the needed arch specific settings.
2875  */
2876 void pci_set_master(struct pci_dev *dev)
2877 {
2878 	__pci_set_master(dev, true);
2879 	pcibios_set_master(dev);
2880 }
2881 
2882 /**
2883  * pci_clear_master - disables bus-mastering for device dev
2884  * @dev: the PCI device to disable
2885  */
2886 void pci_clear_master(struct pci_dev *dev)
2887 {
2888 	__pci_set_master(dev, false);
2889 }
2890 
2891 /**
2892  * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
2893  * @dev: the PCI device for which MWI is to be enabled
2894  *
2895  * Helper function for pci_set_mwi.
2896  * Originally copied from drivers/net/acenic.c.
2897  * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
2898  *
2899  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2900  */
2901 int pci_set_cacheline_size(struct pci_dev *dev)
2902 {
2903 	u8 cacheline_size;
2904 
2905 	if (!pci_cache_line_size)
2906 		return -EINVAL;
2907 
2908 	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
2909 	   equal to or multiple of the right value. */
2910 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2911 	if (cacheline_size >= pci_cache_line_size &&
2912 	    (cacheline_size % pci_cache_line_size) == 0)
2913 		return 0;
2914 
2915 	/* Write the correct value. */
2916 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
2917 	/* Read it back. */
2918 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2919 	if (cacheline_size == pci_cache_line_size)
2920 		return 0;
2921 
2922 	dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not "
2923 		   "supported\n", pci_cache_line_size << 2);
2924 
2925 	return -EINVAL;
2926 }
2927 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
2928 
2929 #ifdef PCI_DISABLE_MWI
2930 int pci_set_mwi(struct pci_dev *dev)
2931 {
2932 	return 0;
2933 }
2934 
2935 int pci_try_set_mwi(struct pci_dev *dev)
2936 {
2937 	return 0;
2938 }
2939 
2940 void pci_clear_mwi(struct pci_dev *dev)
2941 {
2942 }
2943 
2944 #else
2945 
2946 /**
2947  * pci_set_mwi - enables memory-write-invalidate PCI transaction
2948  * @dev: the PCI device for which MWI is enabled
2949  *
2950  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2951  *
2952  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2953  */
2954 int
2955 pci_set_mwi(struct pci_dev *dev)
2956 {
2957 	int rc;
2958 	u16 cmd;
2959 
2960 	rc = pci_set_cacheline_size(dev);
2961 	if (rc)
2962 		return rc;
2963 
2964 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
2965 	if (! (cmd & PCI_COMMAND_INVALIDATE)) {
2966 		dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
2967 		cmd |= PCI_COMMAND_INVALIDATE;
2968 		pci_write_config_word(dev, PCI_COMMAND, cmd);
2969 	}
2970 
2971 	return 0;
2972 }
2973 
2974 /**
2975  * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
2976  * @dev: the PCI device for which MWI is enabled
2977  *
2978  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2979  * Callers are not required to check the return value.
2980  *
2981  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2982  */
2983 int pci_try_set_mwi(struct pci_dev *dev)
2984 {
2985 	int rc = pci_set_mwi(dev);
2986 	return rc;
2987 }
2988 
2989 /**
2990  * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
2991  * @dev: the PCI device to disable
2992  *
2993  * Disables PCI Memory-Write-Invalidate transaction on the device
2994  */
2995 void
2996 pci_clear_mwi(struct pci_dev *dev)
2997 {
2998 	u16 cmd;
2999 
3000 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
3001 	if (cmd & PCI_COMMAND_INVALIDATE) {
3002 		cmd &= ~PCI_COMMAND_INVALIDATE;
3003 		pci_write_config_word(dev, PCI_COMMAND, cmd);
3004 	}
3005 }
3006 #endif /* ! PCI_DISABLE_MWI */
3007 
3008 /**
3009  * pci_intx - enables/disables PCI INTx for device dev
3010  * @pdev: the PCI device to operate on
3011  * @enable: boolean: whether to enable or disable PCI INTx
3012  *
3013  * Enables/disables PCI INTx for device dev
3014  */
3015 void
3016 pci_intx(struct pci_dev *pdev, int enable)
3017 {
3018 	u16 pci_command, new;
3019 
3020 	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
3021 
3022 	if (enable) {
3023 		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
3024 	} else {
3025 		new = pci_command | PCI_COMMAND_INTX_DISABLE;
3026 	}
3027 
3028 	if (new != pci_command) {
3029 		struct pci_devres *dr;
3030 
3031 		pci_write_config_word(pdev, PCI_COMMAND, new);
3032 
3033 		dr = find_pci_dr(pdev);
3034 		if (dr && !dr->restore_intx) {
3035 			dr->restore_intx = 1;
3036 			dr->orig_intx = !enable;
3037 		}
3038 	}
3039 }
3040 
3041 /**
3042  * pci_intx_mask_supported - probe for INTx masking support
3043  * @dev: the PCI device to operate on
3044  *
3045  * Check if the device dev support INTx masking via the config space
3046  * command word.
3047  */
3048 bool pci_intx_mask_supported(struct pci_dev *dev)
3049 {
3050 	bool mask_supported = false;
3051 	u16 orig, new;
3052 
3053 	if (dev->broken_intx_masking)
3054 		return false;
3055 
3056 	pci_cfg_access_lock(dev);
3057 
3058 	pci_read_config_word(dev, PCI_COMMAND, &orig);
3059 	pci_write_config_word(dev, PCI_COMMAND,
3060 			      orig ^ PCI_COMMAND_INTX_DISABLE);
3061 	pci_read_config_word(dev, PCI_COMMAND, &new);
3062 
3063 	/*
3064 	 * There's no way to protect against hardware bugs or detect them
3065 	 * reliably, but as long as we know what the value should be, let's
3066 	 * go ahead and check it.
3067 	 */
3068 	if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) {
3069 		dev_err(&dev->dev, "Command register changed from "
3070 			"0x%x to 0x%x: driver or hardware bug?\n", orig, new);
3071 	} else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) {
3072 		mask_supported = true;
3073 		pci_write_config_word(dev, PCI_COMMAND, orig);
3074 	}
3075 
3076 	pci_cfg_access_unlock(dev);
3077 	return mask_supported;
3078 }
3079 EXPORT_SYMBOL_GPL(pci_intx_mask_supported);
3080 
3081 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
3082 {
3083 	struct pci_bus *bus = dev->bus;
3084 	bool mask_updated = true;
3085 	u32 cmd_status_dword;
3086 	u16 origcmd, newcmd;
3087 	unsigned long flags;
3088 	bool irq_pending;
3089 
3090 	/*
3091 	 * We do a single dword read to retrieve both command and status.
3092 	 * Document assumptions that make this possible.
3093 	 */
3094 	BUILD_BUG_ON(PCI_COMMAND % 4);
3095 	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
3096 
3097 	raw_spin_lock_irqsave(&pci_lock, flags);
3098 
3099 	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
3100 
3101 	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
3102 
3103 	/*
3104 	 * Check interrupt status register to see whether our device
3105 	 * triggered the interrupt (when masking) or the next IRQ is
3106 	 * already pending (when unmasking).
3107 	 */
3108 	if (mask != irq_pending) {
3109 		mask_updated = false;
3110 		goto done;
3111 	}
3112 
3113 	origcmd = cmd_status_dword;
3114 	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
3115 	if (mask)
3116 		newcmd |= PCI_COMMAND_INTX_DISABLE;
3117 	if (newcmd != origcmd)
3118 		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
3119 
3120 done:
3121 	raw_spin_unlock_irqrestore(&pci_lock, flags);
3122 
3123 	return mask_updated;
3124 }
3125 
3126 /**
3127  * pci_check_and_mask_intx - mask INTx on pending interrupt
3128  * @dev: the PCI device to operate on
3129  *
3130  * Check if the device dev has its INTx line asserted, mask it and
3131  * return true in that case. False is returned if not interrupt was
3132  * pending.
3133  */
3134 bool pci_check_and_mask_intx(struct pci_dev *dev)
3135 {
3136 	return pci_check_and_set_intx_mask(dev, true);
3137 }
3138 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
3139 
3140 /**
3141  * pci_check_and_mask_intx - unmask INTx of no interrupt is pending
3142  * @dev: the PCI device to operate on
3143  *
3144  * Check if the device dev has its INTx line asserted, unmask it if not
3145  * and return true. False is returned and the mask remains active if
3146  * there was still an interrupt pending.
3147  */
3148 bool pci_check_and_unmask_intx(struct pci_dev *dev)
3149 {
3150 	return pci_check_and_set_intx_mask(dev, false);
3151 }
3152 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
3153 
3154 /**
3155  * pci_msi_off - disables any MSI or MSI-X capabilities
3156  * @dev: the PCI device to operate on
3157  *
3158  * If you want to use MSI, see pci_enable_msi() and friends.
3159  * This is a lower-level primitive that allows us to disable
3160  * MSI operation at the device level.
3161  */
3162 void pci_msi_off(struct pci_dev *dev)
3163 {
3164 	int pos;
3165 	u16 control;
3166 
3167 	/*
3168 	 * This looks like it could go in msi.c, but we need it even when
3169 	 * CONFIG_PCI_MSI=n.  For the same reason, we can't use
3170 	 * dev->msi_cap or dev->msix_cap here.
3171 	 */
3172 	pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
3173 	if (pos) {
3174 		pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
3175 		control &= ~PCI_MSI_FLAGS_ENABLE;
3176 		pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
3177 	}
3178 	pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
3179 	if (pos) {
3180 		pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
3181 		control &= ~PCI_MSIX_FLAGS_ENABLE;
3182 		pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
3183 	}
3184 }
3185 EXPORT_SYMBOL_GPL(pci_msi_off);
3186 
3187 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
3188 {
3189 	return dma_set_max_seg_size(&dev->dev, size);
3190 }
3191 EXPORT_SYMBOL(pci_set_dma_max_seg_size);
3192 
3193 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
3194 {
3195 	return dma_set_seg_boundary(&dev->dev, mask);
3196 }
3197 EXPORT_SYMBOL(pci_set_dma_seg_boundary);
3198 
3199 /**
3200  * pci_wait_for_pending_transaction - waits for pending transaction
3201  * @dev: the PCI device to operate on
3202  *
3203  * Return 0 if transaction is pending 1 otherwise.
3204  */
3205 int pci_wait_for_pending_transaction(struct pci_dev *dev)
3206 {
3207 	int i;
3208 	u16 status;
3209 
3210 	/* Wait for Transaction Pending bit clean */
3211 	for (i = 0; i < 4; i++) {
3212 		if (i)
3213 			msleep((1 << (i - 1)) * 100);
3214 
3215 		pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
3216 		if (!(status & PCI_EXP_DEVSTA_TRPND))
3217 			return 1;
3218 	}
3219 
3220 	return 0;
3221 }
3222 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
3223 
3224 static int pcie_flr(struct pci_dev *dev, int probe)
3225 {
3226 	u32 cap;
3227 
3228 	pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
3229 	if (!(cap & PCI_EXP_DEVCAP_FLR))
3230 		return -ENOTTY;
3231 
3232 	if (probe)
3233 		return 0;
3234 
3235 	if (!pci_wait_for_pending_transaction(dev))
3236 		dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
3237 
3238 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
3239 
3240 	msleep(100);
3241 
3242 	return 0;
3243 }
3244 
3245 static int pci_af_flr(struct pci_dev *dev, int probe)
3246 {
3247 	int i;
3248 	int pos;
3249 	u8 cap;
3250 	u8 status;
3251 
3252 	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
3253 	if (!pos)
3254 		return -ENOTTY;
3255 
3256 	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
3257 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
3258 		return -ENOTTY;
3259 
3260 	if (probe)
3261 		return 0;
3262 
3263 	/* Wait for Transaction Pending bit clean */
3264 	for (i = 0; i < 4; i++) {
3265 		if (i)
3266 			msleep((1 << (i - 1)) * 100);
3267 
3268 		pci_read_config_byte(dev, pos + PCI_AF_STATUS, &status);
3269 		if (!(status & PCI_AF_STATUS_TP))
3270 			goto clear;
3271 	}
3272 
3273 	dev_err(&dev->dev, "transaction is not cleared; "
3274 			"proceeding with reset anyway\n");
3275 
3276 clear:
3277 	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
3278 	msleep(100);
3279 
3280 	return 0;
3281 }
3282 
3283 /**
3284  * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
3285  * @dev: Device to reset.
3286  * @probe: If set, only check if the device can be reset this way.
3287  *
3288  * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
3289  * unset, it will be reinitialized internally when going from PCI_D3hot to
3290  * PCI_D0.  If that's the case and the device is not in a low-power state
3291  * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
3292  *
3293  * NOTE: This causes the caller to sleep for twice the device power transition
3294  * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
3295  * by default (i.e. unless the @dev's d3_delay field has a different value).
3296  * Moreover, only devices in D0 can be reset by this function.
3297  */
3298 static int pci_pm_reset(struct pci_dev *dev, int probe)
3299 {
3300 	u16 csr;
3301 
3302 	if (!dev->pm_cap)
3303 		return -ENOTTY;
3304 
3305 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
3306 	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
3307 		return -ENOTTY;
3308 
3309 	if (probe)
3310 		return 0;
3311 
3312 	if (dev->current_state != PCI_D0)
3313 		return -EINVAL;
3314 
3315 	csr &= ~PCI_PM_CTRL_STATE_MASK;
3316 	csr |= PCI_D3hot;
3317 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3318 	pci_dev_d3_sleep(dev);
3319 
3320 	csr &= ~PCI_PM_CTRL_STATE_MASK;
3321 	csr |= PCI_D0;
3322 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3323 	pci_dev_d3_sleep(dev);
3324 
3325 	return 0;
3326 }
3327 
3328 /**
3329  * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge.
3330  * @dev: Bridge device
3331  *
3332  * Use the bridge control register to assert reset on the secondary bus.
3333  * Devices on the secondary bus are left in power-on state.
3334  */
3335 void pci_reset_bridge_secondary_bus(struct pci_dev *dev)
3336 {
3337 	u16 ctrl;
3338 
3339 	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
3340 	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
3341 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3342 	/*
3343 	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
3344 	 * this to 2ms to ensure that we meet the minimum requirement.
3345 	 */
3346 	msleep(2);
3347 
3348 	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
3349 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3350 
3351 	/*
3352 	 * Trhfa for conventional PCI is 2^25 clock cycles.
3353 	 * Assuming a minimum 33MHz clock this results in a 1s
3354 	 * delay before we can consider subordinate devices to
3355 	 * be re-initialized.  PCIe has some ways to shorten this,
3356 	 * but we don't make use of them yet.
3357 	 */
3358 	ssleep(1);
3359 }
3360 EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus);
3361 
3362 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
3363 {
3364 	struct pci_dev *pdev;
3365 
3366 	if (pci_is_root_bus(dev->bus) || dev->subordinate || !dev->bus->self)
3367 		return -ENOTTY;
3368 
3369 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3370 		if (pdev != dev)
3371 			return -ENOTTY;
3372 
3373 	if (probe)
3374 		return 0;
3375 
3376 	pci_reset_bridge_secondary_bus(dev->bus->self);
3377 
3378 	return 0;
3379 }
3380 
3381 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
3382 {
3383 	int rc = -ENOTTY;
3384 
3385 	if (!hotplug || !try_module_get(hotplug->ops->owner))
3386 		return rc;
3387 
3388 	if (hotplug->ops->reset_slot)
3389 		rc = hotplug->ops->reset_slot(hotplug, probe);
3390 
3391 	module_put(hotplug->ops->owner);
3392 
3393 	return rc;
3394 }
3395 
3396 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
3397 {
3398 	struct pci_dev *pdev;
3399 
3400 	if (dev->subordinate || !dev->slot)
3401 		return -ENOTTY;
3402 
3403 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3404 		if (pdev != dev && pdev->slot == dev->slot)
3405 			return -ENOTTY;
3406 
3407 	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
3408 }
3409 
3410 static int __pci_dev_reset(struct pci_dev *dev, int probe)
3411 {
3412 	int rc;
3413 
3414 	might_sleep();
3415 
3416 	rc = pci_dev_specific_reset(dev, probe);
3417 	if (rc != -ENOTTY)
3418 		goto done;
3419 
3420 	rc = pcie_flr(dev, probe);
3421 	if (rc != -ENOTTY)
3422 		goto done;
3423 
3424 	rc = pci_af_flr(dev, probe);
3425 	if (rc != -ENOTTY)
3426 		goto done;
3427 
3428 	rc = pci_pm_reset(dev, probe);
3429 	if (rc != -ENOTTY)
3430 		goto done;
3431 
3432 	rc = pci_dev_reset_slot_function(dev, probe);
3433 	if (rc != -ENOTTY)
3434 		goto done;
3435 
3436 	rc = pci_parent_bus_reset(dev, probe);
3437 done:
3438 	return rc;
3439 }
3440 
3441 static void pci_dev_lock(struct pci_dev *dev)
3442 {
3443 	pci_cfg_access_lock(dev);
3444 	/* block PM suspend, driver probe, etc. */
3445 	device_lock(&dev->dev);
3446 }
3447 
3448 static void pci_dev_unlock(struct pci_dev *dev)
3449 {
3450 	device_unlock(&dev->dev);
3451 	pci_cfg_access_unlock(dev);
3452 }
3453 
3454 static void pci_dev_save_and_disable(struct pci_dev *dev)
3455 {
3456 	/*
3457 	 * Wake-up device prior to save.  PM registers default to D0 after
3458 	 * reset and a simple register restore doesn't reliably return
3459 	 * to a non-D0 state anyway.
3460 	 */
3461 	pci_set_power_state(dev, PCI_D0);
3462 
3463 	pci_save_state(dev);
3464 	/*
3465 	 * Disable the device by clearing the Command register, except for
3466 	 * INTx-disable which is set.  This not only disables MMIO and I/O port
3467 	 * BARs, but also prevents the device from being Bus Master, preventing
3468 	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
3469 	 * compliant devices, INTx-disable prevents legacy interrupts.
3470 	 */
3471 	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
3472 }
3473 
3474 static void pci_dev_restore(struct pci_dev *dev)
3475 {
3476 	pci_restore_state(dev);
3477 }
3478 
3479 static int pci_dev_reset(struct pci_dev *dev, int probe)
3480 {
3481 	int rc;
3482 
3483 	if (!probe)
3484 		pci_dev_lock(dev);
3485 
3486 	rc = __pci_dev_reset(dev, probe);
3487 
3488 	if (!probe)
3489 		pci_dev_unlock(dev);
3490 
3491 	return rc;
3492 }
3493 /**
3494  * __pci_reset_function - reset a PCI device function
3495  * @dev: PCI device to reset
3496  *
3497  * Some devices allow an individual function to be reset without affecting
3498  * other functions in the same device.  The PCI device must be responsive
3499  * to PCI config space in order to use this function.
3500  *
3501  * The device function is presumed to be unused when this function is called.
3502  * Resetting the device will make the contents of PCI configuration space
3503  * random, so any caller of this must be prepared to reinitialise the
3504  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3505  * etc.
3506  *
3507  * Returns 0 if the device function was successfully reset or negative if the
3508  * device doesn't support resetting a single function.
3509  */
3510 int __pci_reset_function(struct pci_dev *dev)
3511 {
3512 	return pci_dev_reset(dev, 0);
3513 }
3514 EXPORT_SYMBOL_GPL(__pci_reset_function);
3515 
3516 /**
3517  * __pci_reset_function_locked - reset a PCI device function while holding
3518  * the @dev mutex lock.
3519  * @dev: PCI device to reset
3520  *
3521  * Some devices allow an individual function to be reset without affecting
3522  * other functions in the same device.  The PCI device must be responsive
3523  * to PCI config space in order to use this function.
3524  *
3525  * The device function is presumed to be unused and the caller is holding
3526  * the device mutex lock when this function is called.
3527  * Resetting the device will make the contents of PCI configuration space
3528  * random, so any caller of this must be prepared to reinitialise the
3529  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3530  * etc.
3531  *
3532  * Returns 0 if the device function was successfully reset or negative if the
3533  * device doesn't support resetting a single function.
3534  */
3535 int __pci_reset_function_locked(struct pci_dev *dev)
3536 {
3537 	return __pci_dev_reset(dev, 0);
3538 }
3539 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
3540 
3541 /**
3542  * pci_probe_reset_function - check whether the device can be safely reset
3543  * @dev: PCI device to reset
3544  *
3545  * Some devices allow an individual function to be reset without affecting
3546  * other functions in the same device.  The PCI device must be responsive
3547  * to PCI config space in order to use this function.
3548  *
3549  * Returns 0 if the device function can be reset or negative if the
3550  * device doesn't support resetting a single function.
3551  */
3552 int pci_probe_reset_function(struct pci_dev *dev)
3553 {
3554 	return pci_dev_reset(dev, 1);
3555 }
3556 
3557 /**
3558  * pci_reset_function - quiesce and reset a PCI device function
3559  * @dev: PCI device to reset
3560  *
3561  * Some devices allow an individual function to be reset without affecting
3562  * other functions in the same device.  The PCI device must be responsive
3563  * to PCI config space in order to use this function.
3564  *
3565  * This function does not just reset the PCI portion of a device, but
3566  * clears all the state associated with the device.  This function differs
3567  * from __pci_reset_function in that it saves and restores device state
3568  * over the reset.
3569  *
3570  * Returns 0 if the device function was successfully reset or negative if the
3571  * device doesn't support resetting a single function.
3572  */
3573 int pci_reset_function(struct pci_dev *dev)
3574 {
3575 	int rc;
3576 
3577 	rc = pci_dev_reset(dev, 1);
3578 	if (rc)
3579 		return rc;
3580 
3581 	pci_dev_save_and_disable(dev);
3582 
3583 	rc = pci_dev_reset(dev, 0);
3584 
3585 	pci_dev_restore(dev);
3586 
3587 	return rc;
3588 }
3589 EXPORT_SYMBOL_GPL(pci_reset_function);
3590 
3591 /* Lock devices from the top of the tree down */
3592 static void pci_bus_lock(struct pci_bus *bus)
3593 {
3594 	struct pci_dev *dev;
3595 
3596 	list_for_each_entry(dev, &bus->devices, bus_list) {
3597 		pci_dev_lock(dev);
3598 		if (dev->subordinate)
3599 			pci_bus_lock(dev->subordinate);
3600 	}
3601 }
3602 
3603 /* Unlock devices from the bottom of the tree up */
3604 static void pci_bus_unlock(struct pci_bus *bus)
3605 {
3606 	struct pci_dev *dev;
3607 
3608 	list_for_each_entry(dev, &bus->devices, bus_list) {
3609 		if (dev->subordinate)
3610 			pci_bus_unlock(dev->subordinate);
3611 		pci_dev_unlock(dev);
3612 	}
3613 }
3614 
3615 /* Lock devices from the top of the tree down */
3616 static void pci_slot_lock(struct pci_slot *slot)
3617 {
3618 	struct pci_dev *dev;
3619 
3620 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3621 		if (!dev->slot || dev->slot != slot)
3622 			continue;
3623 		pci_dev_lock(dev);
3624 		if (dev->subordinate)
3625 			pci_bus_lock(dev->subordinate);
3626 	}
3627 }
3628 
3629 /* Unlock devices from the bottom of the tree up */
3630 static void pci_slot_unlock(struct pci_slot *slot)
3631 {
3632 	struct pci_dev *dev;
3633 
3634 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3635 		if (!dev->slot || dev->slot != slot)
3636 			continue;
3637 		if (dev->subordinate)
3638 			pci_bus_unlock(dev->subordinate);
3639 		pci_dev_unlock(dev);
3640 	}
3641 }
3642 
3643 /* Save and disable devices from the top of the tree down */
3644 static void pci_bus_save_and_disable(struct pci_bus *bus)
3645 {
3646 	struct pci_dev *dev;
3647 
3648 	list_for_each_entry(dev, &bus->devices, bus_list) {
3649 		pci_dev_save_and_disable(dev);
3650 		if (dev->subordinate)
3651 			pci_bus_save_and_disable(dev->subordinate);
3652 	}
3653 }
3654 
3655 /*
3656  * Restore devices from top of the tree down - parent bridges need to be
3657  * restored before we can get to subordinate devices.
3658  */
3659 static void pci_bus_restore(struct pci_bus *bus)
3660 {
3661 	struct pci_dev *dev;
3662 
3663 	list_for_each_entry(dev, &bus->devices, bus_list) {
3664 		pci_dev_restore(dev);
3665 		if (dev->subordinate)
3666 			pci_bus_restore(dev->subordinate);
3667 	}
3668 }
3669 
3670 /* Save and disable devices from the top of the tree down */
3671 static void pci_slot_save_and_disable(struct pci_slot *slot)
3672 {
3673 	struct pci_dev *dev;
3674 
3675 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3676 		if (!dev->slot || dev->slot != slot)
3677 			continue;
3678 		pci_dev_save_and_disable(dev);
3679 		if (dev->subordinate)
3680 			pci_bus_save_and_disable(dev->subordinate);
3681 	}
3682 }
3683 
3684 /*
3685  * Restore devices from top of the tree down - parent bridges need to be
3686  * restored before we can get to subordinate devices.
3687  */
3688 static void pci_slot_restore(struct pci_slot *slot)
3689 {
3690 	struct pci_dev *dev;
3691 
3692 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
3693 		if (!dev->slot || dev->slot != slot)
3694 			continue;
3695 		pci_dev_restore(dev);
3696 		if (dev->subordinate)
3697 			pci_bus_restore(dev->subordinate);
3698 	}
3699 }
3700 
3701 static int pci_slot_reset(struct pci_slot *slot, int probe)
3702 {
3703 	int rc;
3704 
3705 	if (!slot)
3706 		return -ENOTTY;
3707 
3708 	if (!probe)
3709 		pci_slot_lock(slot);
3710 
3711 	might_sleep();
3712 
3713 	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
3714 
3715 	if (!probe)
3716 		pci_slot_unlock(slot);
3717 
3718 	return rc;
3719 }
3720 
3721 /**
3722  * pci_probe_reset_slot - probe whether a PCI slot can be reset
3723  * @slot: PCI slot to probe
3724  *
3725  * Return 0 if slot can be reset, negative if a slot reset is not supported.
3726  */
3727 int pci_probe_reset_slot(struct pci_slot *slot)
3728 {
3729 	return pci_slot_reset(slot, 1);
3730 }
3731 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
3732 
3733 /**
3734  * pci_reset_slot - reset a PCI slot
3735  * @slot: PCI slot to reset
3736  *
3737  * A PCI bus may host multiple slots, each slot may support a reset mechanism
3738  * independent of other slots.  For instance, some slots may support slot power
3739  * control.  In the case of a 1:1 bus to slot architecture, this function may
3740  * wrap the bus reset to avoid spurious slot related events such as hotplug.
3741  * Generally a slot reset should be attempted before a bus reset.  All of the
3742  * function of the slot and any subordinate buses behind the slot are reset
3743  * through this function.  PCI config space of all devices in the slot and
3744  * behind the slot is saved before and restored after reset.
3745  *
3746  * Return 0 on success, non-zero on error.
3747  */
3748 int pci_reset_slot(struct pci_slot *slot)
3749 {
3750 	int rc;
3751 
3752 	rc = pci_slot_reset(slot, 1);
3753 	if (rc)
3754 		return rc;
3755 
3756 	pci_slot_save_and_disable(slot);
3757 
3758 	rc = pci_slot_reset(slot, 0);
3759 
3760 	pci_slot_restore(slot);
3761 
3762 	return rc;
3763 }
3764 EXPORT_SYMBOL_GPL(pci_reset_slot);
3765 
3766 static int pci_bus_reset(struct pci_bus *bus, int probe)
3767 {
3768 	if (!bus->self)
3769 		return -ENOTTY;
3770 
3771 	if (probe)
3772 		return 0;
3773 
3774 	pci_bus_lock(bus);
3775 
3776 	might_sleep();
3777 
3778 	pci_reset_bridge_secondary_bus(bus->self);
3779 
3780 	pci_bus_unlock(bus);
3781 
3782 	return 0;
3783 }
3784 
3785 /**
3786  * pci_probe_reset_bus - probe whether a PCI bus can be reset
3787  * @bus: PCI bus to probe
3788  *
3789  * Return 0 if bus can be reset, negative if a bus reset is not supported.
3790  */
3791 int pci_probe_reset_bus(struct pci_bus *bus)
3792 {
3793 	return pci_bus_reset(bus, 1);
3794 }
3795 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
3796 
3797 /**
3798  * pci_reset_bus - reset a PCI bus
3799  * @bus: top level PCI bus to reset
3800  *
3801  * Do a bus reset on the given bus and any subordinate buses, saving
3802  * and restoring state of all devices.
3803  *
3804  * Return 0 on success, non-zero on error.
3805  */
3806 int pci_reset_bus(struct pci_bus *bus)
3807 {
3808 	int rc;
3809 
3810 	rc = pci_bus_reset(bus, 1);
3811 	if (rc)
3812 		return rc;
3813 
3814 	pci_bus_save_and_disable(bus);
3815 
3816 	rc = pci_bus_reset(bus, 0);
3817 
3818 	pci_bus_restore(bus);
3819 
3820 	return rc;
3821 }
3822 EXPORT_SYMBOL_GPL(pci_reset_bus);
3823 
3824 /**
3825  * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
3826  * @dev: PCI device to query
3827  *
3828  * Returns mmrbc: maximum designed memory read count in bytes
3829  *    or appropriate error value.
3830  */
3831 int pcix_get_max_mmrbc(struct pci_dev *dev)
3832 {
3833 	int cap;
3834 	u32 stat;
3835 
3836 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3837 	if (!cap)
3838 		return -EINVAL;
3839 
3840 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3841 		return -EINVAL;
3842 
3843 	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
3844 }
3845 EXPORT_SYMBOL(pcix_get_max_mmrbc);
3846 
3847 /**
3848  * pcix_get_mmrbc - get PCI-X maximum memory read byte count
3849  * @dev: PCI device to query
3850  *
3851  * Returns mmrbc: maximum memory read count in bytes
3852  *    or appropriate error value.
3853  */
3854 int pcix_get_mmrbc(struct pci_dev *dev)
3855 {
3856 	int cap;
3857 	u16 cmd;
3858 
3859 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3860 	if (!cap)
3861 		return -EINVAL;
3862 
3863 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3864 		return -EINVAL;
3865 
3866 	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
3867 }
3868 EXPORT_SYMBOL(pcix_get_mmrbc);
3869 
3870 /**
3871  * pcix_set_mmrbc - set PCI-X maximum memory read byte count
3872  * @dev: PCI device to query
3873  * @mmrbc: maximum memory read count in bytes
3874  *    valid values are 512, 1024, 2048, 4096
3875  *
3876  * If possible sets maximum memory read byte count, some bridges have erratas
3877  * that prevent this.
3878  */
3879 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
3880 {
3881 	int cap;
3882 	u32 stat, v, o;
3883 	u16 cmd;
3884 
3885 	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
3886 		return -EINVAL;
3887 
3888 	v = ffs(mmrbc) - 10;
3889 
3890 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3891 	if (!cap)
3892 		return -EINVAL;
3893 
3894 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3895 		return -EINVAL;
3896 
3897 	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
3898 		return -E2BIG;
3899 
3900 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3901 		return -EINVAL;
3902 
3903 	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
3904 	if (o != v) {
3905 		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
3906 			return -EIO;
3907 
3908 		cmd &= ~PCI_X_CMD_MAX_READ;
3909 		cmd |= v << 2;
3910 		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
3911 			return -EIO;
3912 	}
3913 	return 0;
3914 }
3915 EXPORT_SYMBOL(pcix_set_mmrbc);
3916 
3917 /**
3918  * pcie_get_readrq - get PCI Express read request size
3919  * @dev: PCI device to query
3920  *
3921  * Returns maximum memory read request in bytes
3922  *    or appropriate error value.
3923  */
3924 int pcie_get_readrq(struct pci_dev *dev)
3925 {
3926 	u16 ctl;
3927 
3928 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
3929 
3930 	return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
3931 }
3932 EXPORT_SYMBOL(pcie_get_readrq);
3933 
3934 /**
3935  * pcie_set_readrq - set PCI Express maximum memory read request
3936  * @dev: PCI device to query
3937  * @rq: maximum memory read count in bytes
3938  *    valid values are 128, 256, 512, 1024, 2048, 4096
3939  *
3940  * If possible sets maximum memory read request in bytes
3941  */
3942 int pcie_set_readrq(struct pci_dev *dev, int rq)
3943 {
3944 	u16 v;
3945 
3946 	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
3947 		return -EINVAL;
3948 
3949 	/*
3950 	 * If using the "performance" PCIe config, we clamp the
3951 	 * read rq size to the max packet size to prevent the
3952 	 * host bridge generating requests larger than we can
3953 	 * cope with
3954 	 */
3955 	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
3956 		int mps = pcie_get_mps(dev);
3957 
3958 		if (mps < rq)
3959 			rq = mps;
3960 	}
3961 
3962 	v = (ffs(rq) - 8) << 12;
3963 
3964 	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
3965 						  PCI_EXP_DEVCTL_READRQ, v);
3966 }
3967 EXPORT_SYMBOL(pcie_set_readrq);
3968 
3969 /**
3970  * pcie_get_mps - get PCI Express maximum payload size
3971  * @dev: PCI device to query
3972  *
3973  * Returns maximum payload size in bytes
3974  */
3975 int pcie_get_mps(struct pci_dev *dev)
3976 {
3977 	u16 ctl;
3978 
3979 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
3980 
3981 	return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
3982 }
3983 EXPORT_SYMBOL(pcie_get_mps);
3984 
3985 /**
3986  * pcie_set_mps - set PCI Express maximum payload size
3987  * @dev: PCI device to query
3988  * @mps: maximum payload size in bytes
3989  *    valid values are 128, 256, 512, 1024, 2048, 4096
3990  *
3991  * If possible sets maximum payload size
3992  */
3993 int pcie_set_mps(struct pci_dev *dev, int mps)
3994 {
3995 	u16 v;
3996 
3997 	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
3998 		return -EINVAL;
3999 
4000 	v = ffs(mps) - 8;
4001 	if (v > dev->pcie_mpss)
4002 		return -EINVAL;
4003 	v <<= 5;
4004 
4005 	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4006 						  PCI_EXP_DEVCTL_PAYLOAD, v);
4007 }
4008 EXPORT_SYMBOL(pcie_set_mps);
4009 
4010 /**
4011  * pcie_get_minimum_link - determine minimum link settings of a PCI device
4012  * @dev: PCI device to query
4013  * @speed: storage for minimum speed
4014  * @width: storage for minimum width
4015  *
4016  * This function will walk up the PCI device chain and determine the minimum
4017  * link width and speed of the device.
4018  */
4019 int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed,
4020 			  enum pcie_link_width *width)
4021 {
4022 	int ret;
4023 
4024 	*speed = PCI_SPEED_UNKNOWN;
4025 	*width = PCIE_LNK_WIDTH_UNKNOWN;
4026 
4027 	while (dev) {
4028 		u16 lnksta;
4029 		enum pci_bus_speed next_speed;
4030 		enum pcie_link_width next_width;
4031 
4032 		ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
4033 		if (ret)
4034 			return ret;
4035 
4036 		next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
4037 		next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
4038 			PCI_EXP_LNKSTA_NLW_SHIFT;
4039 
4040 		if (next_speed < *speed)
4041 			*speed = next_speed;
4042 
4043 		if (next_width < *width)
4044 			*width = next_width;
4045 
4046 		dev = dev->bus->self;
4047 	}
4048 
4049 	return 0;
4050 }
4051 EXPORT_SYMBOL(pcie_get_minimum_link);
4052 
4053 /**
4054  * pci_select_bars - Make BAR mask from the type of resource
4055  * @dev: the PCI device for which BAR mask is made
4056  * @flags: resource type mask to be selected
4057  *
4058  * This helper routine makes bar mask from the type of resource.
4059  */
4060 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
4061 {
4062 	int i, bars = 0;
4063 	for (i = 0; i < PCI_NUM_RESOURCES; i++)
4064 		if (pci_resource_flags(dev, i) & flags)
4065 			bars |= (1 << i);
4066 	return bars;
4067 }
4068 
4069 /**
4070  * pci_resource_bar - get position of the BAR associated with a resource
4071  * @dev: the PCI device
4072  * @resno: the resource number
4073  * @type: the BAR type to be filled in
4074  *
4075  * Returns BAR position in config space, or 0 if the BAR is invalid.
4076  */
4077 int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
4078 {
4079 	int reg;
4080 
4081 	if (resno < PCI_ROM_RESOURCE) {
4082 		*type = pci_bar_unknown;
4083 		return PCI_BASE_ADDRESS_0 + 4 * resno;
4084 	} else if (resno == PCI_ROM_RESOURCE) {
4085 		*type = pci_bar_mem32;
4086 		return dev->rom_base_reg;
4087 	} else if (resno < PCI_BRIDGE_RESOURCES) {
4088 		/* device specific resource */
4089 		reg = pci_iov_resource_bar(dev, resno, type);
4090 		if (reg)
4091 			return reg;
4092 	}
4093 
4094 	dev_err(&dev->dev, "BAR %d: invalid resource\n", resno);
4095 	return 0;
4096 }
4097 
4098 /* Some architectures require additional programming to enable VGA */
4099 static arch_set_vga_state_t arch_set_vga_state;
4100 
4101 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
4102 {
4103 	arch_set_vga_state = func;	/* NULL disables */
4104 }
4105 
4106 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
4107 		      unsigned int command_bits, u32 flags)
4108 {
4109 	if (arch_set_vga_state)
4110 		return arch_set_vga_state(dev, decode, command_bits,
4111 						flags);
4112 	return 0;
4113 }
4114 
4115 /**
4116  * pci_set_vga_state - set VGA decode state on device and parents if requested
4117  * @dev: the PCI device
4118  * @decode: true = enable decoding, false = disable decoding
4119  * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
4120  * @flags: traverse ancestors and change bridges
4121  * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
4122  */
4123 int pci_set_vga_state(struct pci_dev *dev, bool decode,
4124 		      unsigned int command_bits, u32 flags)
4125 {
4126 	struct pci_bus *bus;
4127 	struct pci_dev *bridge;
4128 	u16 cmd;
4129 	int rc;
4130 
4131 	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) & (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
4132 
4133 	/* ARCH specific VGA enables */
4134 	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
4135 	if (rc)
4136 		return rc;
4137 
4138 	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
4139 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
4140 		if (decode == true)
4141 			cmd |= command_bits;
4142 		else
4143 			cmd &= ~command_bits;
4144 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4145 	}
4146 
4147 	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
4148 		return 0;
4149 
4150 	bus = dev->bus;
4151 	while (bus) {
4152 		bridge = bus->self;
4153 		if (bridge) {
4154 			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
4155 					     &cmd);
4156 			if (decode == true)
4157 				cmd |= PCI_BRIDGE_CTL_VGA;
4158 			else
4159 				cmd &= ~PCI_BRIDGE_CTL_VGA;
4160 			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
4161 					      cmd);
4162 		}
4163 		bus = bus->parent;
4164 	}
4165 	return 0;
4166 }
4167 
4168 bool pci_device_is_present(struct pci_dev *pdev)
4169 {
4170 	u32 v;
4171 
4172 	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
4173 }
4174 EXPORT_SYMBOL_GPL(pci_device_is_present);
4175 
4176 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
4177 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
4178 static DEFINE_SPINLOCK(resource_alignment_lock);
4179 
4180 /**
4181  * pci_specified_resource_alignment - get resource alignment specified by user.
4182  * @dev: the PCI device to get
4183  *
4184  * RETURNS: Resource alignment if it is specified.
4185  *          Zero if it is not specified.
4186  */
4187 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
4188 {
4189 	int seg, bus, slot, func, align_order, count;
4190 	resource_size_t align = 0;
4191 	char *p;
4192 
4193 	spin_lock(&resource_alignment_lock);
4194 	p = resource_alignment_param;
4195 	while (*p) {
4196 		count = 0;
4197 		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
4198 							p[count] == '@') {
4199 			p += count + 1;
4200 		} else {
4201 			align_order = -1;
4202 		}
4203 		if (sscanf(p, "%x:%x:%x.%x%n",
4204 			&seg, &bus, &slot, &func, &count) != 4) {
4205 			seg = 0;
4206 			if (sscanf(p, "%x:%x.%x%n",
4207 					&bus, &slot, &func, &count) != 3) {
4208 				/* Invalid format */
4209 				printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
4210 					p);
4211 				break;
4212 			}
4213 		}
4214 		p += count;
4215 		if (seg == pci_domain_nr(dev->bus) &&
4216 			bus == dev->bus->number &&
4217 			slot == PCI_SLOT(dev->devfn) &&
4218 			func == PCI_FUNC(dev->devfn)) {
4219 			if (align_order == -1) {
4220 				align = PAGE_SIZE;
4221 			} else {
4222 				align = 1 << align_order;
4223 			}
4224 			/* Found */
4225 			break;
4226 		}
4227 		if (*p != ';' && *p != ',') {
4228 			/* End of param or invalid format */
4229 			break;
4230 		}
4231 		p++;
4232 	}
4233 	spin_unlock(&resource_alignment_lock);
4234 	return align;
4235 }
4236 
4237 /*
4238  * This function disables memory decoding and releases memory resources
4239  * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
4240  * It also rounds up size to specified alignment.
4241  * Later on, the kernel will assign page-aligned memory resource back
4242  * to the device.
4243  */
4244 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
4245 {
4246 	int i;
4247 	struct resource *r;
4248 	resource_size_t align, size;
4249 	u16 command;
4250 
4251 	/* check if specified PCI is target device to reassign */
4252 	align = pci_specified_resource_alignment(dev);
4253 	if (!align)
4254 		return;
4255 
4256 	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
4257 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
4258 		dev_warn(&dev->dev,
4259 			"Can't reassign resources to host bridge.\n");
4260 		return;
4261 	}
4262 
4263 	dev_info(&dev->dev,
4264 		"Disabling memory decoding and releasing memory resources.\n");
4265 	pci_read_config_word(dev, PCI_COMMAND, &command);
4266 	command &= ~PCI_COMMAND_MEMORY;
4267 	pci_write_config_word(dev, PCI_COMMAND, command);
4268 
4269 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) {
4270 		r = &dev->resource[i];
4271 		if (!(r->flags & IORESOURCE_MEM))
4272 			continue;
4273 		size = resource_size(r);
4274 		if (size < align) {
4275 			size = align;
4276 			dev_info(&dev->dev,
4277 				"Rounding up size of resource #%d to %#llx.\n",
4278 				i, (unsigned long long)size);
4279 		}
4280 		r->end = size - 1;
4281 		r->start = 0;
4282 	}
4283 	/* Need to disable bridge's resource window,
4284 	 * to enable the kernel to reassign new resource
4285 	 * window later on.
4286 	 */
4287 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
4288 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
4289 		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
4290 			r = &dev->resource[i];
4291 			if (!(r->flags & IORESOURCE_MEM))
4292 				continue;
4293 			r->end = resource_size(r) - 1;
4294 			r->start = 0;
4295 		}
4296 		pci_disable_bridge_window(dev);
4297 	}
4298 }
4299 
4300 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
4301 {
4302 	if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
4303 		count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
4304 	spin_lock(&resource_alignment_lock);
4305 	strncpy(resource_alignment_param, buf, count);
4306 	resource_alignment_param[count] = '\0';
4307 	spin_unlock(&resource_alignment_lock);
4308 	return count;
4309 }
4310 
4311 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
4312 {
4313 	size_t count;
4314 	spin_lock(&resource_alignment_lock);
4315 	count = snprintf(buf, size, "%s", resource_alignment_param);
4316 	spin_unlock(&resource_alignment_lock);
4317 	return count;
4318 }
4319 
4320 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
4321 {
4322 	return pci_get_resource_alignment_param(buf, PAGE_SIZE);
4323 }
4324 
4325 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
4326 					const char *buf, size_t count)
4327 {
4328 	return pci_set_resource_alignment_param(buf, count);
4329 }
4330 
4331 BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
4332 					pci_resource_alignment_store);
4333 
4334 static int __init pci_resource_alignment_sysfs_init(void)
4335 {
4336 	return bus_create_file(&pci_bus_type,
4337 					&bus_attr_resource_alignment);
4338 }
4339 
4340 late_initcall(pci_resource_alignment_sysfs_init);
4341 
4342 static void pci_no_domains(void)
4343 {
4344 #ifdef CONFIG_PCI_DOMAINS
4345 	pci_domains_supported = 0;
4346 #endif
4347 }
4348 
4349 /**
4350  * pci_ext_cfg_avail - can we access extended PCI config space?
4351  *
4352  * Returns 1 if we can access PCI extended config space (offsets
4353  * greater than 0xff). This is the default implementation. Architecture
4354  * implementations can override this.
4355  */
4356 int __weak pci_ext_cfg_avail(void)
4357 {
4358 	return 1;
4359 }
4360 
4361 void __weak pci_fixup_cardbus(struct pci_bus *bus)
4362 {
4363 }
4364 EXPORT_SYMBOL(pci_fixup_cardbus);
4365 
4366 static int __init pci_setup(char *str)
4367 {
4368 	while (str) {
4369 		char *k = strchr(str, ',');
4370 		if (k)
4371 			*k++ = 0;
4372 		if (*str && (str = pcibios_setup(str)) && *str) {
4373 			if (!strcmp(str, "nomsi")) {
4374 				pci_no_msi();
4375 			} else if (!strcmp(str, "noaer")) {
4376 				pci_no_aer();
4377 			} else if (!strncmp(str, "realloc=", 8)) {
4378 				pci_realloc_get_opt(str + 8);
4379 			} else if (!strncmp(str, "realloc", 7)) {
4380 				pci_realloc_get_opt("on");
4381 			} else if (!strcmp(str, "nodomains")) {
4382 				pci_no_domains();
4383 			} else if (!strncmp(str, "noari", 5)) {
4384 				pcie_ari_disabled = true;
4385 			} else if (!strncmp(str, "cbiosize=", 9)) {
4386 				pci_cardbus_io_size = memparse(str + 9, &str);
4387 			} else if (!strncmp(str, "cbmemsize=", 10)) {
4388 				pci_cardbus_mem_size = memparse(str + 10, &str);
4389 			} else if (!strncmp(str, "resource_alignment=", 19)) {
4390 				pci_set_resource_alignment_param(str + 19,
4391 							strlen(str + 19));
4392 			} else if (!strncmp(str, "ecrc=", 5)) {
4393 				pcie_ecrc_get_policy(str + 5);
4394 			} else if (!strncmp(str, "hpiosize=", 9)) {
4395 				pci_hotplug_io_size = memparse(str + 9, &str);
4396 			} else if (!strncmp(str, "hpmemsize=", 10)) {
4397 				pci_hotplug_mem_size = memparse(str + 10, &str);
4398 			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
4399 				pcie_bus_config = PCIE_BUS_TUNE_OFF;
4400 			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
4401 				pcie_bus_config = PCIE_BUS_SAFE;
4402 			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
4403 				pcie_bus_config = PCIE_BUS_PERFORMANCE;
4404 			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
4405 				pcie_bus_config = PCIE_BUS_PEER2PEER;
4406 			} else if (!strncmp(str, "pcie_scan_all", 13)) {
4407 				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
4408 			} else {
4409 				printk(KERN_ERR "PCI: Unknown option `%s'\n",
4410 						str);
4411 			}
4412 		}
4413 		str = k;
4414 	}
4415 	return 0;
4416 }
4417 early_param("pci", pci_setup);
4418 
4419 EXPORT_SYMBOL(pci_reenable_device);
4420 EXPORT_SYMBOL(pci_enable_device_io);
4421 EXPORT_SYMBOL(pci_enable_device_mem);
4422 EXPORT_SYMBOL(pci_enable_device);
4423 EXPORT_SYMBOL(pcim_enable_device);
4424 EXPORT_SYMBOL(pcim_pin_device);
4425 EXPORT_SYMBOL(pci_disable_device);
4426 EXPORT_SYMBOL(pci_find_capability);
4427 EXPORT_SYMBOL(pci_bus_find_capability);
4428 EXPORT_SYMBOL(pci_release_regions);
4429 EXPORT_SYMBOL(pci_request_regions);
4430 EXPORT_SYMBOL(pci_request_regions_exclusive);
4431 EXPORT_SYMBOL(pci_release_region);
4432 EXPORT_SYMBOL(pci_request_region);
4433 EXPORT_SYMBOL(pci_request_region_exclusive);
4434 EXPORT_SYMBOL(pci_release_selected_regions);
4435 EXPORT_SYMBOL(pci_request_selected_regions);
4436 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
4437 EXPORT_SYMBOL(pci_set_master);
4438 EXPORT_SYMBOL(pci_clear_master);
4439 EXPORT_SYMBOL(pci_set_mwi);
4440 EXPORT_SYMBOL(pci_try_set_mwi);
4441 EXPORT_SYMBOL(pci_clear_mwi);
4442 EXPORT_SYMBOL_GPL(pci_intx);
4443 EXPORT_SYMBOL(pci_assign_resource);
4444 EXPORT_SYMBOL(pci_find_parent_resource);
4445 EXPORT_SYMBOL(pci_select_bars);
4446 
4447 EXPORT_SYMBOL(pci_set_power_state);
4448 EXPORT_SYMBOL(pci_save_state);
4449 EXPORT_SYMBOL(pci_restore_state);
4450 EXPORT_SYMBOL(pci_pme_capable);
4451 EXPORT_SYMBOL(pci_pme_active);
4452 EXPORT_SYMBOL(pci_wake_from_d3);
4453 EXPORT_SYMBOL(pci_target_state);
4454 EXPORT_SYMBOL(pci_prepare_to_sleep);
4455 EXPORT_SYMBOL(pci_back_from_sleep);
4456 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
4457